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Kurzzusammenfassung

Elektronenenergieverlustspektroskopie (engl. EELS) ist eine fortgeschrittene Analyse-
methode der Transmissionselektronenmikroskopie, die auf atomarer Ebene Einblicke
in Materialcharakteristika wie bspw. Eigenschaften des Elektronensystems oder der
Materialzusammensetzung erlaubt. Die Genauigkeit jeder EELS-Analyse ist jedoch
fundamental durch Rauschen und Unschérfe begrenzt.

Diese Thesis beschreibt solche Rauschphdnomene im Detail. Vor allem bei strahl-
empfindlichen Materialien, die kurze Bestrahlzeiten erfordern, aber auch bei Elektron-
Materie-Wechselwirkungen mit geringer Auftrittshaufigkeit, ist eine solche Beschrei-
bung notwendig, da das Rauschen solche Messungen dominiert. Zusétzlich spielen
Korrelationen des Rauschens eine Rolle, die durch Faltung des verrauschten Signals
mit der Punktspreizfunktion des Detektors entstehen und die sowohl theoretisch als
auch experimentell beschrieben werden. Methoden zur Messung der wichtigsten
Rauschparameter bei typischen Detektorsystemen werden vorgestellt und erlauben
es, das Rauschmodel auf jeden beliebigen EELS-Detektor anzupassen.

Eine neue Entfaltungsmethode wird vorgeschlagen, die EELS-Messungen scharft und
entrauscht. Die Wirksamkeit dieser Methode wird an Simulations- und Experimental-
daten dargelegt. Hierbei wird gezeigt, dass die neue Methode signifikant bessere
Ergebnisse liefert, als bisherige und somit eine Analyse von Messdaten auf einem
Level ermoglicht, das die Moglichkeiten der Elektronenmikroskopie deutlich erweit-
ert.






Abstract

Electron energy-loss spectroscopy (EELS) is an advanced analytical technique in
transmission electron microscopy, as it provides insights into material characteristics,
such as electronic properties or elemental composition, at the atomic scale. The
precision of every EELS analysis, however, is inherently limited by noises and blur.
This thesis offers a comprehensive understanding of the noise, which is particularly
valuable at low dwell times necessary for beam sensitive materials and for electron-
matter interactions with low frequency of occurrence, where the noise dominates
the measurement. Additionally, correlations encountered in the noise of an EELS
measurement are described from both a theoretical and experimental perspective.
These correlations are caused by a convolution of the noisy signal with the detector
point spread function. Methods for characterizing key noise parameters of typical
detectors are described, allowing the noise model to be tailored to any EELS detector.
Ultimately, a novel deconvolution method enabling significant sharpening and denois-
ing of EELS measurements is introduced and demonstrated. Its efficiency is further
validated on both simulation and experimental data. The described advancement
offered by the proposed deconvolution method enables the extension of current
electron microscope capabilities, facilitating analysis that would be unfeasible with
existing deconvolution techniques.
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Chapter 1

Introduction

Electron microscopy serves as a gateway to the nanoworld, allowing the visualization and analysis of
structures down to the atomic or even the sub-atomic level [[1H5]]. As a versatile tool for material char-
acterization, electron microscopy has become an indispensable technique for analyzing semiconductor
materials and beyond [6]]. The production of computer chips, for instance, relies heavily on the regular
compositional analysis of transistors [[6H8]. Considering that modern transistors consist of layers that
are only a few nanometers thick [9, [10], precise composition analysis at the atomic scale is essential to
ensure optimal function [[11} [12].

Typically, such measurements are conducted in modern aberration-corrected transmission electron micro-
scopes (TEM), which can readily achieve the spatial resolution necessary to observe the atomic structure
of materials. In addition, TEM enables the employment of a multitude of analytical characterization
techniques, including energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy
(EELS) [5], both of which allow for determining the elemental compositions. Beyond this, EELS also
has the benefit of providing additional insights into the plasmonic properties of a specimen, the band
structure, the phononic system, and even the bonding states of atoms within the specimen. Due to the
ability to probe the band structure, EELS allows to investigate the optical properties of small objects
by reconstructing the complex optical permittivity through Kramers-Kronig analysis [13] [14] of the
energy-loss signal [[15].

The optical permittivity, for example, plays a crucial role in the design and performance of nanolasers
and waveguides, which are essential components of photonic integrated circuits. In these components,
the reflections at the interface between the structure and its surroundings are critical, as they govern the
wave transport and modal behavior within the material [[16, [17].

One of the drawbacks of EELS is that these measurements are strongly impacted by noise due to the low
probability of occurrence of many electron-specimen interactions of interest. These low probabilities,
in turn, translate into low-intensity EEL signals, which are often superimposed by higher-intensity
background signals. One example of such a background signal is directly related to the zero-loss peak
(ZLP), which is by far the most intense feature of an EEL spectrum. This peak results from beam electrons
transmitting through a specimen without losing energy. In contrast, signal features resulting from
energy-losses related to the band structure of the specimen material remain comparatively small. Due to
the low energy-losses related to optical transitions, these peaks are situated right next to the ZLP and thus
become superimposed by the right-hand side tail of it. This tail forms a background signal, which often
is larger in magnitude than the loss-features related to optical transitions. Due to the quantized nature
of beam electrons, both background signal and energy-loss signal are inherently subject to Poisson noise.
This results in the two noise levels adding up, such that the desired information about the material’s
band gaps is often distorted and not easily accessible.

Noise, in particular, is also a problem for beam-sensitive materials that are prone to degradation and
therefore require low beam exposure. While reducing acquisition times increases the likelihood of mea-
suring undamaged materials [[18420], it also leads to extremely low signal-to-noise ratios. As a result,
obtaining reliable EELS measurements on intact structures under these noisy conditions is challenging
[21], especially in the research of biological and polymer specimen [22-26].
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In addition to being obscured by noise, EEL spectra are inevitably convolved with the energy charac-
teristics of the impinging electron beam and the detector’s point spread function (PSF) [5, 27]. These
contributions cause blurring of the EEL spectra. As blur reduces the energy resolution of the measure-
ment, it is commonly removed through post-processing methods like deconvolution [27]. During the
work on this thesis, it became apparent that current noise models used for EELS detectors are inadequate
and only partially account for the noises faced in such measurements. Since deconvolution methods rely
on precise noise models, a discrepancy between existing noise models and actual noise statistics hinders
the effectiveness of deconvolution and significantly compromises quantitative analyses.

The first objective of this thesis is therefore to develop a comprehensive noise model that accounts for
the whole signal detection process and accurately captures the noise characteristics encountered in
TEM. To achieve this goal, this thesis presents simple and practical methods to determine the key noise
parameters, allowing the proposed noise model to also be tailored to the specific requirements of EELS.
While primarily focusing on detectors employed in TEM, this noise model may also prove useful for
medical imaging, which often relies on a similar type of detector. Due to the generality of the principles,
the noise model is — in large parts — applicable to other array detectors, such as common-use CCD or
CMOS cameras. By providing a clear description, this thesis enables researchers to implement and adjust
the noise model to their respective experimental setups under a variety of different detectors.

The noise model developed in this thesis also enables the characterization of uncertainties associated
with imaging on these detectors, both generally and specifically in the context of EELS measurements.
The determination of such uncertainties is crucial for scientific research, as they decisively determine the
quality of an experiment and, more importantly, the meaningfulness of results.

Building on the proposed noise model, the second objective of this thesis is to develop an improved
deconvolution method that outperforms existing methods in terms of accuracy. This novel deconvolution
method is designed to address the aforementioned challenges: It shall effectively reduce noise, thereby
enabling shorter exposure times to minimize material degradation; and shall further enhance energy
resolution, allowing for the recovery of finer features in EEL spectra. Due to its straightforward imple-
mentation as a post-processing step, this deconvolution method is intended to facilitate advancement
of current research in the field by improving the data. This thesis demonstrates both theoretically and
experimentally that the proposed noise model and the deconvolution method are applicable to current
generations of detectors. Given the universality of the underlying principles, it is anticipated that the
derived formulas will remain valid and applicable for future generations of detectors, thereby benefiting
ongoing research endeavors.

In order to prove that the deconvolution method enhances real measurement EELS data in a way that, in
some cases, makes reasonable evaluation possible in the first place, a Janus nanoparticle consisting of
two sides of different metals was fabricated and analyzed for its energy-losses induced by plasmonic
resonances. Such Janus particles are hardly covered in current literature with respect to their surface
plasmons, especially in EELS measurements. A very recent example of literature on Janus surface
plasmons is [28]] — however, there is not much more to be found in that regard.

In view of the work’s broad applicability, the findings of this thesis have been published in four research
articles, which are part of this manuscript. To aid understanding of this thesis’ contributions to electron
microscopy and EELS, the subsequent chapters offer an overview of transmission electron microscopy,
electron energy-loss spectroscopy, and other relevant characterization techniques employed in this thesis,
as well as a concise introduction to the underlying principles of plasmonics.



Chapter 2

Plasmonic nanoparticles

As this thesis investigates plasmonic nanoparticles, a profound understanding of their properties is
necessary. This chapter aims at explaining the basic concept of plasmons and the use-cases of plasmonic
Janus structures, emphasizing their importance. To enable reproducible production of such particles,
their fabrication process is explained in detail. During this thesis, a corresponding particle simulation
tool was developed as well, since it is highly desirable to simulate these particles. Having simulated
nanoparticles, closely resembling the fabricated ones, allows for more advanced plasmonic simulations.
These, in turn, allow the design and fine-tuning of particles to achieve specific plasmonic characteristics
for optimal behavior in subsequent applications — prior to fabrication. Additionally, this approach
enables the cross-checking of EELS measurement results with the relevant simulation data facilitating
the interpretation of plasmonic features.

2.1 Plasmons

Both electrons and nuclei respond to applied electromagnetic fields and are therefore influenced by
external radiation, such as light. However, due to their significantly larger mass, nuclei are unable to
keep pace with the electrons in high-frequency fields. This disparity in inertia leads to a collective charge
separation within a material in the presence of high-frequency fields, resulting in an oscillating state of
polarization. This polarized state can be treated as a quasi-particle, known as a plasmon [29)[30].
Plasmonics play a crucial role in metals [31], [32], although they also occur, albeit with reduced intensity,
in semiconductors. The low electronegativity of metal atoms leads to a state where the valence electrons
become delocalized, forming an electron gas between the ionized atomic cores. This state resembles a
plasma, hence the term plasmon. Due to the overlap of valence and conduction bands or, in the case
of monovalent metals, a partially filled valence band, electrons can acquire arbitrarily small energy
increments, enabling energy to readily propagate throughout the system via a collective movement of
the electrons. As charge accumulates at the opposing surfaces, a restoring electric field is generated
within a particle, ultimately resulting in a harmonic oscillation of the electronic system. Due to scattering
with the atom hulls and with other electrons, the motion is damped. According to the Lorentz-Drude
model, the equation of motion can be written as [29]:

=

miX (7 t) + myX (7 t) + miQ2X (7 t) = —eEoy (7)) 2.1

with the effective electron mass m?, the elementary charge e, and the damping coefficient v. The

resonant frequency for the electrons bound to the nucleus (similar to the spring in a harmonic oscillator)

is denoted as 2y and the periodic external electrical field is given as Eot (7, t) = Epext * ilFm=wt) g

the time ¢ on position 7, with an amplitude of Ej ¢, a wave vector k and an angular frequency of w.
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This results in the solution [29]:

& € Eext (7?’ t)
X(t) = —_. 2.2
®) mi w? + iyw — Q2 2.2)

The corresponding energy of the plasmon FEp).s, and its frequency wpi.sm, are then given as [29]:

2
Ne €
EPlasm =h- WPlasm and WPlasm — - ) (23)
megeo

with the conduction electron density n. and the permittivity of free space &o.

However, this oscillator is not only characterized by the effective mass of the electron and the electron
density, but also by the particle’s geometry and size [30]. Two distinct types of plasmons can be
identified: the bulk and the surface plasmons. Bulk plasmons oscillate throughout the material, while
surface plasmons are confined to and propagate along the surface of metallic or semiconductor structures.
Typically, plasmon energies range from a few €V for surface plasmons up to several tens of eV for bulk
plasmons.

Particularly in metallic nanostructures, which exhibit a high surface-to-volume ratio, surface-bound
plasmons play a significant role. Here, electric fields can penetrate the entire volume of the particle,
affecting the whole electronic system. The distinction between surface and volume becomes increasingly
blurred. Stable resonant oscillations emerge that are characteristic of localized surface plasmons. Notably,
for smaller particles, the localized surface plasmons shift towards higher energies — a phenomenon
known as the confinement effect [133]].

Plasmons can be excited not only by light but also by beam electrons in a TEM and are therefore
observable with EELS [34H37]. Hence, scanning TEM allows for the spatially resolved excitation of
plasmons in individual nanoparticles. In this context, it is important to consider the differential scattering
cross-section of the beam electrons with plasmons, since strong forward scattering increases the likelihood
of measuring plasmon interactions in the direct beam path with which the EELS spectrometer is typically
aligned. The scattering cross-section can be expressed as [3]:

dO’ 1 oE . EPhsm
- _ s th = ° 2.
A~ 2mag (92 + 933) owith 05 =—F=> 24

with the Bohr radius ag, the scattering angle 6, the characteristic scattering angle 6z, the kinetic energy
of the electron Ej, and the plasmon energy Epasy,.

Given that the kinetic energy of the beam electrons used in this thesis is 200 keV, which by far exceeds
typical plasmon energies in the order of a few to a few tens of eV, strong forward scattering is expected
according to [3]. Therefore, the path of the beam electrons remains rather unchanged under
plasmon scattering, making an EELS setup employed in the direct beam path a suitable tool for plasmon
analysis.
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2.2 Metallic Janus-nanoparticles

In this thesis, plasmonic Janus nanoparticles are of special interest. The terminus Janus refers to the
two-faced roman god Janus and just like the god, these particles compose of two or more distinct
solid-state materials.

Janus nanoparticles, such as cobalt-gold (Co-Au) or iron-gold (Fe-Au) coated polystyrene nanodome-
particles, have proven to be good nanoheaters that can be utilized for photothermal therapies [38,[39] like
optical hyperthermia for cancer treatments or temperature-activated drug delivery. These nanoheaters
exploit the light-absorbing properties in the near infrared (NIR) spectrum of gold on the one hand. On
the other hand, the magnetic properties of the iron or cobalt parts allow for interactions with a low
AC magnetic field to measure viscosity-dependent rotation dynamics of the nanodomes, which in turn
provide information about the local temperature [[38]]. This enables a precise tuning and controlling
of temperature, which is crucial to avoid damaging healthy tissue [38] [39]. Hence, these plasmonic
properties are highly relevant for medical applications [40H43]].

A very interesting application is the usage of such Janus nanoparticles as optical nanomotors. When a
silica sphere with a gold half-cap is illuminated by a plane wave, these particles tend to rotate indefinitely
as long as they are illuminated [44, [45]]. Hence, these particles could, for example, be the heart of a drive
for nanorobots [45]]. Even more interesting is the idea that these particles can be guided by switching
the frequency of the light. This behavior was shown to occur when two caps with different materials are
employed, i.e. with a gold face and a titanium-nitride face, instead of just half-capping the surface [46].
These kinds of particle use thermophoretic drift as the propulsion mechanism.

Janus particles consisting of a gold (Au) and a platinum (Pt) side are especially interesting, as both
combine plasmonic properties with high bio-compatibility. It was shown that these particles exhibit
self-propulsion properties by exploiting electrophoresis, however, this mechanism still requires some
kind of fuel such as hydrogen peroxide [47].

Such Au-Pt Janus nanoparticles were investigated with respect to their plasmonic properties. However,
the noisiness of the EELS measurements and the width of the energy distribution of the microscope
employed in this thesis made it hard to impossible to properly investigate these structures. Therefore, it
was necessary to use the novel deconvolution method on these measurements to make evaluation of
these particles possible. The results are shown in the publication in[Appendix D]alongside the definition
of the deconvolution method.

The Au-Pt Janus particles were fabricated with the technique of double-angle resolved nanosphere
lithography [48H50]. While this technique is not the most precise method with respect to the size
and shape of the particles, it is very cost-efficient and capable of patterning substrates in the order of
several cm? with a high density of such structures. Since the nanoparticles are evaluated in the TEM, it
is desirable to have such a dense population of particles to make sure to catch as many structures as
possible. This is because TEM evaluation requires extensive preparation to create ultra-thin specimens
and also because TEM limits the effectively usable specimen size to only a few hundreds of um?. For
specimens patterned by nanosphere lithography (NSL) techniques, this corresponds to several thousands
of observable nanoparticles. Therefore, NSL provides an ideal tool for fabricating such particles for the
TEM. In the following sections, this method of creating nanoparticles will be explained in detail.
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2.2.1 Fabrication of the nanomask

The Janus particles investigated in this thesis were fabricated by employing nanosphere lithography. Just
as the name suggests, the process of nanosphere lithography (NSL) [48][49] requires a nanosphere mask
to begin with. Such a nanosphere mask can be produced by utilizing the doctor blade technique [55}/56].
For this purpose, a large number of nanospheres is provided in a suspension, which is deposited on a
substrate. For the nanomasks used in this thesis, an aqueous suspension of polystyrene nanospheres
with a diameter of 750 nm was drop-coated on a Si[100]-substrate. This suspension is subsequently
spread-out by a doctor blade that is linearly moved relative to the substrate, as depicted in [Fig. 2.1|(a).
During this procedure, a meniscoid triple-phase boundary is formed between substrate, doctor blade, and
surrounding atmosphere, which follows the relative movement of the doctor blade due to evaporation of
the suspension liquid [51}56]. As a consequence of capillary forces between neighboring nanospheres
and the moving meniscus, the nanospheres self-organize into an energetically favorable order: a hexag-
onal close-packing of spheres. This constitutes a closed nanomask with triangularly shaped openings
between each three neighboring spheres, which can be used as apertures for the NSL process [51]].

The quality of such nanomasks depends on multiple factors, such as humidity, temperature, relative
velocity of the doctor blade to the substrate, surface energy of the substrate, concentration of nanospheres
in the suspension, diameter and diameter distribution of the nanospheres, material of the nanospheres,
composition of the suspension liquid and many more. However, once a stable set of parameters is found,
depending on the current conditions, rather large nanomask-monolayers — in the order of cm? — can
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Fig. 2.1: (a) Schematic of the doctor blade technique (from [51]]) to create a monolayer of nanospheres (white) in
a hexagonally closed-packed order on a substrate (green). The arrow shows the direction of movement of
the substrate relative to the doctorblade (transparent grey). A triple-phase boundary forms at the left side
of the doctor blade between liquid (transparent blue), the substrate, and the surrounding atmosphere.
Due to capillary effects of the nanospheres and the evaporation of the liquid, the nanospheres order at the
boundary per self-organization and form a nanosphere mask that can further be modified for nanosphere
lithography. (b) After creating the nanomask, 15 nm of SiO,, is deposited via electron beam physical vapor
deposition (EBPVD) on top of the spheres at an 86° angle relative to the surface normal of the substrate,
as indicated by the arrows. This angle is chosen such that SiO, is only deposited on top of the spheres, but
not onto the substrate. During the EBPVD process, the substrate is rotated at 15 rpm for several minutes to
create a homogeneous coating from all sides. This results in a cap coating (red) of the central spheres
(green) with an average thickness of approximately 3 — 4 nm, as simulated by a ray-tracing algorithm [52].
(c) Simplified representation of the Stober process (from [53]]). In a first step, a TEOS molecule reacts
with a water molecule and is hydrolyzed as a result. This reaction produces ethanol (EtOH) and a mixture
of ethoxysilanols, such as the depicted Si(OEt)3OH. In a second step, the ethoxysilanols condense with
a loss of water and form increasingly bigger cross-linked structures by repeating the first two steps over
and over again in step 3 [54]. This procedure results in the formation of a large structure that eventually
translates into a SiO, layer growth reducing the aperture size of the nanomask.
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be formed with millions to billions of apertures [55]]. However, to effectively draw well-defined
particles with these apertures, their diameter must partially be closed [57]]. Such a method was proposed
in [58] and utilizes the Stober process [59] to chemically deposit material on top of a nanomask-layer,
controlledly closing the apertures in a couple of hours.

The Stober process characterizes the growth of silica nanospheres forming in a mixture of tetraethy-
lorthosilicate (TEOS) and an alcoholic solution, as depicted in [Fig. 2.1)(c). This process is catalyzed
by increasing the pH of the solution by e.g. adding ammonia; details of the Stober process are found
in [59]]. Important, however, is that this process can also be used to create layer-growth at SiO,,
surfaces by slowing down the process via adjusting the pH value of the solution.

As the Stober process does not work on regular polystyrene nanospheres, coating these with a SiO,-layer
previous to the Stober process is mandatory. To apply this coating to the spheres, the electron beam
physical vapor deposition (EBPVD) process was employed at an incident angle of 86° relative to the
surface normal of the substrate. Due to the high angle, the SiO,, is only deposited on top of the spheres,
as shown in the simulation in[Fig. 2.T|(b), but not onto the substrate. To create a homogeneous layer, the
sample is constantly rotated during evaporation. This method provides good results for subsequent mask
modifications with the Stober process.

When applying the Stober process to such modified spheres, a radial growth on top of the coatings
is observed, shrinking the openings between spheres to provide smaller apertures for the lithography
process. This procedure was implemented in and presented in [60]. One of the obtained results is
shown in[Fig. 2.2 where the shrinking of aperture size is illustrated in the upper row as a function of
the Stober process duration. The lower row shows the vertical projection of gold onto the substrate via
EBPVD, resulting in a nanoparticle capturing the corresponding apertures shape and size. Subsequently,
the nanomask was removed in a tetrahydrofuran (THF) bath, dissolving the polystyrene nanospheres.

30 min 45 min 60 min

Fig. 2.2: SEM images (from [6Q]) showing a time series of the mask modification by the Stéber process. The used
nanospheres had a diameter of 750 nm, were coated with SiO,, according to[Fig. 2.1(b), and subsequently
were submersed into a Stéber solution bath for an increasing time duration. As a consequence, they are
closed to an increasing degree. The upper row depicts the closing of the polystyrene nanosphere mask
in the course of time. The lower row shows the vertical projection of a 4 nm titanium (Ti) adhesion
layer followed by 20 nm of Au onto the substrate via EBPVD. Hence, the dimensions of the resulting gold
nanoparticles correspond to those apertures shown in the upper row and are much easier to evaluate than
the apertures themselves. This is because the visual aperture size of the nanomask strongly depends on the
contrast settings of the SEM, whereas the visual particle size of the gold nanoparticles is considerably less
influenced by this parameter. After the EBPVD process, the nanomask was removed in a tetrahydrofuran
(THF) bath, which dissolved the polystyrene nanospheres. Therefore, only the gold structures visibly
remain on the substrate.
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Both upper and lower row images were measured using a scanning electron microscope (SEM).

In [Fig. 2.3|(a) the mean aperture size is provided as a function of the Strober process duration. The
aperture size is characterized by the height of the projected triangular shaped gold structure in the lower
row of as indicated by the inset in (a). Evaluation of such metallic nanoparticles provides better
contrasts than directly measuring the apertures and therefore improves overall evaluation.

To facilitate the application of the mask modification process, linearity of the aperture closing is desirable.
Therefore, the Stober solution is exchanged after 30 min to mitigate effects of the decrease of TEOS
concentration. Fortunately, this exchange of solutions also eliminates the small silicon nanospheres that
form as an undesirable by-product of the Stéber process and could clog the nanomask apertures. The
exchange of the liquids is indicated by the blue dotted line.

Eventually, the aperture size distributions corresponding to several Stéber process durations were evalu-
ated by determining sizes of several gold particles, such as the ones shown in the lower row of
The resulting size distributions are shown in [Fig. 2.3(b) and were fitted by log-normal distributions
allowing for a rough statement about the homogeneity of the process [[60]. In general, the FWHMSs of
the corresponding distributions are in the order of a few tens of nanometers.

While these results definitely leave room for improvements, it is to note that minor deviations of the
spheres position relative to the regular nanosphere-lattice position as well as small differences in the
diameter of the nanospheres contribute to the FWHM of the particle size distribution and lead to obvious
deviations to the fit. These contributions are unavoidable. However, with increasing progress of the
mask closing procedure, these deviations become smaller with the closing of the aperture, as is apparent
from[Fig. 2.3|(b). The reason for this behavior may at least partially be attributed to geometric reasons.
Since the deviation in sphere position was already present during the deposition of the SiO, coating,
all spheres constituting the aperture are less shadowed by the respective other two spheres during this
process. This results in a coating that penetrates deeper into the aperture relative to that of regular sized
apertures. This reduces the overall distance for closing the aperture, effectively compensating at least in
partial for the increased distance from the deviation.

All in all, the results achieved are sufficient for the general process of drawing Janus particles.
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Fig. 2.3: (a) Closing of the triangular apertures as a function of time, determined by the triangle height, as depicted
in the inset. The blue dotted line indicates an exchange of the Stober solution to reduce the deposition
of SiO,, particles nucleated in the solution and to linearize aperture closing. The colored arrows indicate
the aperture sizes that were further evaluated with respect to their particle size distribution (PSD). These
selected distributions are shown in (b), where the PSDs are normalized to the maximum number of
counted particle sizes after 0 — 60 min in the Stéber solution, following a log-normal model. The colored
arrows in the graph indicate the maximum position of the PSD and correspond to the values indicated by
the same colored arrows in (a). Further explanations of the results are provided in [[52].
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2.2.2 Double-angle resolved nanosphere lithography

After the mask modification process, which defines the aperture size of the nanomask, material can be
deposited through the nanomask by an EBPVD process [61]]. By tilting the sample by an angle § and
rotating the sample by an angle ¢, the aperture of the nanomask is projected onto different positions of
the sample [50], visualized in (a). This process can be controlled in a sufficiently smooth manner
with stepper motors, allowing to draw well-defined nano structures having a pencil width determined
by the aperture. Therefore, double-angle resolved NSL allows fabrication of billions of nano-objects
in parallel [51]]. As several crucibles with the different materials are provided in a revolver setup in
the vacuum chamber, switching materials is possible without breaking the vacuum. In [Fig. 2.4{(b), a
substrate was patterned with elongated gold-platinum Janus nanostructures.

Due to mask clogging caused by the deposited material, the aperture size reduces by approximately
twice the thickness of the deposited material. This is because the material is deposited to all sides of the
aperture, closing it along the surface normals of all spheres by the thickness of the deposited material,
respectively. Hence, depositing 15 nm of a material results in a clogging of the aperture by 30 nm.

Fig. 2.4: (a) Schematic of the projection of material through a nanomask aperture onto a substrate via EBPVD (from
[511D). Due to adjustments of a tilting angle 6 relative to the surface normal (white) of the sample (green)
and by a rotation of an angle ¢, different positions on a substrate can be targeted, as indicated by the blue
arrow. When these angles are continuously changed, i.e. § — 6(t) and ¢ — ¢(t), throughout the EBPVD
process, material can be deposited in a way that resembles a drawing of particles, indicated by the blue
path on the substrate. Due to the hexagonal structure of the nanomask, each nanosphere is surrounded
by six apertures, which all contribute to the patterning of the substrate. In (b), a SEM image of such a
patterned substrate is shown after the mask removal in a THF bath. A chromium (Cr) adhesion layer having
an average thickness of 3.5 nm (15 nm in total deposited material) was deposited at an angle between
¢ = +5° and 6 = +10° prior to the fabrication of the particle. This results in rectangular adhesion patches
that are slightly broader than the particles to be fabricated thereon. Afterwards, the substrate was tilted
from § = 0° to # ~ +10° during the EBPVC process, positive tilt for the gold side and negative tilt for the
platinum side, all while the rotation angle remained ¢ = 0°. During this process, the evaporation material
was switched from gold to platinum five times, with a total deposition of 7.5 nm for each material and
each run, respectively. This results in 120 nm long boat-like structures consisting of equally sized portions
of gold and platinum. The evaporation process was performed in vacuum with the pressure being in the
order of approximately 10~ to 10~° mbar, depending on the deposited material. The process was initiated
on a nanosphere mask with aperture sizes of 120 nm, which are subsequently reduced to 90 nm during the
deposition of the adhesion layer, visible as the size of the particles deposited afterwards. It is apparent that
some very small residual SiO, nanospheres, formed during the Stéber process, adhere to the substrate, as
indicated by the blue arrow. These particles sometimes clog the mask apertures as well, leading to vacant
patterning spots. As an example, one of these spots is highlighted by the red arrow. In the SEM image,
the former sites of the nanospheres are indicated by the dark circular spots on the substrate, whereas the
nanostructures and the residual SiO,, nanospheres appear much brighter.
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2.2.3 Simulation of nanoparticles

When having such a versatile technique to draw nanoparticles, it is desirable to design the particles
upfront before fabrication. Therefore, it is important to get an impression on how the final particles
will look like. Since EBPVD is performed in vacuum, the evaporated atoms of the target material are
expected to move in straight lines, with only the nanomask blocking the path to the substrate. This can
be reproduced in a ray-tracing simulation, such as the one outlined in [57], where both the substrate and
the nanospheres are modeled by a grid consisting of a triangle mesh with vertices and faces therebetween,
as can be seen from the simulated nanospheres in [Fig. 2.5/(a). By checking if a ray can escape a given
vertex of the plane substrate without hitting the spheres [62], one can map the positions where material
is deposited. A vertex, where material is deposited, is then modified in its position by moving it along the
averaged surface-normal direction of its surrounding faces by a margin that corresponds to the height
of the deposited layer. As material is not only deposited to the substrate but is also deposited on the
spheres, the vertices of the nanospheres are also modified according to the above-described method.
As the material is deposited to both substrate and spheres simultaneously in the real process, a similar
effect can be modeled in the simulation by incrementing the layer thickness by only a fraction of the
desired final thickness, while adding the material to both substrate and spheres during several iteration
steps. This increasingly clogs the virtual nanomask similarly to the real one [51I]. Such a clogged
nanomask as a result of an EBPVD process is shown in[Fig. 2.5)(a). Since the aperture size diminishes
during the EBPVD process, less and less material is deposited to the substrate. This results in a tapering
of the nanoparticle to the top. Since the projection of the aperture corresponds to a triangle moving
across the substrate, each drawn particle will also inherit this trait from the aperture. Therefore, the path
defining the final shape of the particle will always appear convolved with a triangle.

In the experimental setup, any target material in a crucible has a certain lateral expansion. Therefore
several solid angles may contribute to the particle formation. Since both, the diameter of the crucible and
its distance to the substrate in the EBPVD chamber are known, this information can be used to calculate
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Fig. 2.5: (a) A simulated mask (green) covered with metal (red). The black triangular mesh represents the
boundaries of the green and red faces. A vertex is defined as the central point of six adjacent triangles. The
initial spheres, before the simulated EBPVD process, correspond to the three central spheres of [Fig. 2.3{(b),
with the Stéber process being modeled by an additional radial layer growth on top of the spheres. In (b)
an example of an Au-Pt Janus particle, fabricated using a 120 nm wide mask aperture, is provided as a
3D map of an AFM measurement and is shown alongside (c¢) the corresponding ray-tracing simulation.
Both appear similar in shape, however, the flanks of both particles do not seem to match quite well. (d)
Comparison of height profiles extracted from the AFM image and the corresponding simulation along the
long axis of the particle. This axis is indicated by the blue arrow in the inset, which, in turn, shows the
vertical projection of the AFM image provided in (b).
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a maximum and minimum solid angle that can possibly contribute to particle formation. This effect can
be modeled in the simulation by testing several solid angles aside from a central position defined by 6
and ¢. In the algorithm designed for this thesis, these penumbra angles are circularly arranged within
two sets of eight angles in a distance of 0.1° and 0.2°, respectively, to the central orientation.

Since more solid angles contribute to material deposition in the middle of the aperture’s projection than
solid angles contribute to the boundary portion, where most of the rays are blocked by the spheres, this
results in a penumbra effect at the borders of the particle with material deposition fading out.

To demonstrate the effectiveness of the simulation, a comparison is provided between a real gold-
platinum Janus nanoparticle measured in an atomic force microscope (AFM), depicted in [Fig. 2.5/(b),
and the corresponding simulation of the same particle, depicted in[Fig. 2.5|(c). While it is evident that
the flanks of both particles differ, the height profiles of the particles along the longer axis shown in (d)
match quite well. The differences of the flanks may be attributed to the real particle minimizing surface
energies and tensions, which leads to a selective grain growth. This phenomenon leads to a rounder
shape of the central portion of the particle, as observable in [Fig. 2.5(b).

All of the above-described is implemented into the ray-tracing simulation program Lithogram. This
program was originally developed in [51]] and was massively modified in the course of this thesis to
improve the algorithm and to adapt it to the requirements of the Stéber mask modification process.
Via the tool EELS-Simulator that was also developed during the course of this thesis, these simulated
particles can further be transferred into the MNPBEM-toolbox [63]] as an input.

This toolbox was initially published in 2012 and updated in 2017. It allows to simulate the plasmonic
behavior of metal nanoparticles, as one could observe it by STEM-EELS plasmonic mapping. It is
intended to solve Maxwell’s equations for typical dielectric environments, i.e. the vacuum necessary
for EELS, where nanoparticles with homogeneous and isotropic dielectric functions are separated by
abrupt interfaces. Hence, the abbreviation MNPBEM stands for Metallic NanoParticle Boundary Element
Method and describes the simulation method. Over the years, the MNPBEM-toolbox has become one of
the preferred tools for simulating EEL signals for plasmonic particles and is cited over a thousand times
in recent literature.

Both, the ray-tracing software Lithogram as well as the software to implement the nanoparticles into the
MNPBEM-toolbox, the EELS-Simulator, are provided on a USB drive attached to the back cover of this
thesis.



12



Chapter 3

Transmission electron microscopy (TEM)

This chapter aims to explain the principles of transmission electron microscopy and related analytical
characterization techniques employed in this thesis. Particular emphasis is placed on electron energy-
loss spectroscopy, which is the main analytical technique this thesis seeks to improve by the proposed
deconvolution method.

3.1 The transmission electron microscope

The transmission electron microscope (TEM) utilizes electrons that pass through the specimen with
minimal interaction and hence experience only little to no elastic or inelastic scatter events. In TEM,
the specimen must be exceptionally thin (< 100 nm) and the electrons must possess a sufficiently high
energy of usually 30 — 300 keV to guarantee electron transparency. The TEM employed in this thesis, the
JEOL JEM-ARM200F, which is schematically depicted in has an optimized energy range of 60 —
200 keV.

Modern transmission electron microscopes typically feature two primary operating modes, the TEM mode
and the scanning-TEM (STEM) mode. In both modes, the beam is formed by a system of electromagnetic
lenses, referred to as the first and second condenser lenses and is projected through an aperture. However,
systems employing more than these two condenser lenses are also possible.

Fundamentally, it is impossible to create perfect rotationally symmetrical electromagnetic lenses in
particle physics. This results in beam shapes that are inherently subject to spherical aberrations and
aberrations of higher orders. To overcome these limitations, a sophisticated electron optical system is
employed, the C-corrector, combining multiple adapter and transfer lenses with two hexapole lenses.
This system corrects for spherical aberrations (denoted as C;), but at the cost of introducing six-fold
astigmatism and higher-order aberrations [64-66]. These higher order lens errors, however, are of minor
impact compared to the spherical aberrations. Therefore, employing a C,-corrector, like the TEM used in
this thesis, allows for smaller probe sizes, consequently enhancing the image resolution.

In TEM mode, a parallel electron beam illuminates a large area of the specimen. The image of this
specimen is then produced in the image plane of the objective lens followed by intermediate and projector
lenses and finally captured by a detector. In STEM mode, the beam is focused to form a convergent
probe that samples the specimen in a raster pattern. In contrast to TEM mode, where all pixels of the
image are captured in parallel, the image in STEM mode consists of a sequence of point measurements
that constitute the pixels of the image. Due to the difference in image acquisition, both modes provide
distinct characterization techniques, enabling the resolution of various specimen characteristics.

For example, as TEM employs a parallel incident beam, the Bragg diffraction enhances or decreases
the image intensity of grains with a specific crystalline orientation. Therefore, TEM readily allows for
the distinction of different crystalline orientations. By orienting the specimen in a certain crystalline
orientation, individual domains and grain boundaries can be analyzed in detail. Further, selected
diffraction spots, which correspond to a specific crystalline orientation, can be blocked in the back
focal plane of the objective lens. As a consequence, grains with this crystalline orientation appear dark
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Transmission electron microscopy (TEM)
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Fig. 3.1: Schematic illustration of the JEOS-JEM-ARM200F transmission electron microscope with a 90°-post-column

Gatan imaging filter system (GIF) Quantum ER spectrometer attached (from [67], further descriptions about
the microscope are found there as well). In TEM mode, the specimen is illuminated by a parallel beam,
and in STEM mode, the beam is focused into a sharp probe that is raster-scanned over the specimen using
beam deflection coils. Notably, the electron microscope employed in this study features a C,-corrector for
STEM-mode, which utilizes a system comprising adapter lenses, transfer lenses, and hexapole lenses to
minimize higher-order aberrations in the electron beam shape. In TEM, the parallel beam is then focused
by the imaging system, comprising pre- and post-field objective lenses and is finally projected onto a
detector, which measures the image. In contrast, STEM images are composed of pixels that represent the
measured intensity of a given position in the raster-pattern. This intensity is often measured by annular
dark field detectors, such as the one displayed in [Fig. 3.2} which capture the beam electrons scattered
at an angle and leave the optical axis of the direct beam path. For EELS measurements, the beam is
further directed into the GIF spectrometer attached to the end of the column. This spectrometer is further

explained in
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in the resulting image. The likelihood of scattering events increases with higher atomic numbers of
the specimen material and its thickness, beside other factors [5, [27]]. Consequently, the intensity in a
bright-field TEM image decreases as beam electrons scatter out of the optical axis of the direct beam path,
enabling the differentiation of structures. The term bright-field refers to an image formation technique
that collects incident beam electrons transmitting through the specimen without deviating much from
the optical axis of the direct beam path [3[]. This is in contrast to dark-field imaging, which explicitly
uses scattered beam electrons that deviate from the optical axis [3].

In STEM, the beam only interacts with a localized region of the specimen, corresponding to the spot
size on the specimen. This enables to link signals to their point of origin, whereas in TEM mode,
spatial information is convolved with contributions from all other specimen positions due to scattering.
Consequently, STEM offers precisely localized information in terms of signal collection, but its pixel-by-
pixel image formation process makes it slower. To compensate for the slower acquisition, often a lower
number of pixels per image is chosen or, alternatively, the pixel dwell time is reduced. However, this
results in images that are more susceptible to noise, as either the sampling of features is performed by
less pixels or the signal strength per pixel is diminished — both approaches result in a reduced image
statistics.

In STEM, differences in atomic number and thickness variations are observable as well, for the same
reasons as were explained for TEM imaging. However, due to the ability to correlate signal strength to
specimen position, STEM enables the measurement of signals of different scattering solid angles using
annular detectors. Consequently, multiple types of information can be extracted simultaneously using
bright-field and dark-field imaging techniques [1}[3]]. This enables a further quantitative investigation of
the signal to gain insight into the interactions within the specimen. The following sections describe the
key STEM techniques employed in this thesis.

3.1.1 Annular dark-field imaging (ADF)

Annular dark-field (ADF) imaging is a technique widely used in STEM. The signal is acquired using an
annular detector located around the electron beam, which detects electrons scattered out of the direct
beam (see [Fig. 3.2). As only scattered electrons are detected, ADF imaging offers the advantage of being
employed simultaneously with other techniques, such as bright-field imaging or EELS, that use the direct
beam. Since ADF detectors collect electrons scattered at an angle, the primary contrast mechanism again
relates to the atomic number of specimen constituents and their projected thickness [5, 68], as explained
in the last section. Consequently, materials with higher atomic numbers or thicker regions of the specimen
generate higher image intensity in the dark field compared to lighter or thinner materials. In this thesis,
gold and platinum nanostructures are investigated for their plasmonic resonances. Due to the high atomic
number of gold and platinum compared to the silicon substrate, ADF contrasts are generally high in
such specimens, making ADF an adequate tool for locating these structures. Furthermore, this technique
enables the visualization of thickness gradients in the silicon substrate, allowing for the qualitative
distinction between thinner and thicker regions, which is crucial for subsequent EELS characterization.
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Fig. 3.2: Schematic illustration (according to [5]) of the annular dark field (ADF) and energy-dispersive X-ray
spectroscopy (EDS) detector arrangement. Note that no pre- and post-specimen lenses are displayed in the
sketch. In STEM mode, the direct beam (light green) is scanned across the specimen (grey) in a raster
pattern. As the beam electrons interact with the specimen, some electrons of the specimen’s atoms are
excited to higher energy states. Upon relaxing, they emit characteristic X-rays (yellow) that can be detected
by the EDS detector. Due to scattering, the beam electrons disperse into various solid angles, where the
lowest angles relative to the incident direction contribute to the direct beam intensity. These electrons
can be further analyzed using EELS. The electrons experiencing higher scattering angles (dark green) are
detected by the ADF detector.

3.1.2 Energy dispersive X-ray spectroscopy (EDS)

Energy-dispersive X-ray spectroscopy (EDS) is an analytical technique commonly used in TEM and
STEM mode to characterize the elemental composition of structures of interest. It relies on inelastic
electron-matter interactions within the specimen, which result in X-rays of characteristic energies that
can be assigned to specific elements. A good overview of the technique is given in [|5,[27] and a schematic
of the experimental setup for STEM is provided in[Fig. 3.2] There, it is illustrated that the EDS detector is
moved close to the specimen to maximize the solid angle at which characteristic X-rays can be detected.
Since the probe position is precisely known in STEM, a quantitative analysis of the X-ray spectrum
reveals the material composition of structures at each pixel leading to elemental maps. By assigning
different colors to each element, this method provides a quick and comprehensive overview of the
material composition.

3.2 Electron energy-loss spectroscopy (EELS)

One of the key analytical techniques in transmission electron microscopy is electron energy-loss spec-
troscopy (EELS), which resolves the energy losses of the electrons that have passed through and interacted
with a specimen. By employing this technique, an intensity spectrum is recorded as a function of the
energy-loss of the beam electrons. Often, these losses are directly related to inelastic scattering events
with the specimen material. Since these interactions lead to specific energy-losses, this technique enables
to identify the corresponding interactions. This enables the deduction of elemental composition, bonding
states, and resonant interactions of the specimen with light, for example.

As this thesis deals with the noises expected in EELS and aims to improve related post-processing
deconvolution methods, further explanations are provided subsequently.
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3.2.1 Measurement technique for EELS

All EELS measurements performed in this work were conducted using a so-called 90°-post-column energy
filter mounted underneath the (S)TEM column, as depicted in[Fig. 3.1} For EELS, all detectors that sit
on the optical axis of the (S)TEM and block the direct beam are retracted. The post-specimen electron
wave is projected by means of the objective lens and a system of imaging lenses onto a magnetic prism
deflecting the beam by 90° via the Lorentz force. As the Lorentz force depends on the velocity of particles,
different deflection angles occur between electrons that have experienced different energy-losses in the
specimen due to elastic scattering. This can be exploited through the use of energy-filtered TEM spectral
imaging (EFTEM-SI) or STEM spectral imaging (STEM-SI) techniques. In the experimental setup used,
both techniques are realized in a Gatan imaging filter system (GIF) Quantum ER, which is well-described
in [69] and depicted in [Fig. 3.3|(a). To enable imaging, the GIF column contains a complex set of
quadrupole and hexapole lenses. These lenses either project the incident beam electrons as a spectrum,
in the case of STEM-SI, or as an image, for EFTEM-SI, onto the EELS detector. For the latter case of
EFTEM-SI, the image is only formed from incident beam electrons that have passed a slit in the energy
dispersive plane of the spectrometer, thereby filtering for electrons having experienced a specific range of
energy-losses. A good overview on both techniques is found in [27, 70} [71]]. However, a brief summery
is provided subsequently for the understanding of this thesis.

EFTEM-SI describes an EELS measurement in TEM-mode, where a broad electron beam with homo-
geneous intensity distribution is illuminating the specimen. A slit is inserted in the beam path of the
GIF, which selects the electrons of a desired energy range and discards the others. To collect an image
for several consequent energy-losses, a drift-tube voltage in the spectrometer is incremented step by
step, such that the selected loss-energy changes accordingly. As a result, only those electrons with the
selected energy range contribute to the image formation on a detector at the end of the GIF column.
Measuring with this technique results in a 3D data cube, consisting of multiple 2D maps of the structure
at different energy-losses (see [Fig. 3.3|(b)). These maps are subsequently concatenated into a third
dimension, providing spectral information about the energy-losses. Since this technique acquires all
electrons of the same energy-loss for the entire image in parallel, many pixels contribute to the image
formation here. This results in a high sampling of lateral features with many pixels. In contrast, the
spectral resolution is severely limited by the width of the energy selective slit and the dispersion of the
spectrometer (in the order of 1 — 5 €V) resulting in a low sampling of spectral features. EFTEM-SI is
therefore the preferred method when investigating larger sample areas. It is also preferred for beam
sensitive materials, since the beam can easily be broadened reducing its current density.

STEM-SI describes an EELS measurement in STEM-mode. In contrast to EFTEM-SI, the energy-filter slit is
removed. At any given specimen position, all electrons are dispersed by their respective energy-losses and
are recorded simultaneously as a spectrum by the detector. Multiple EEL spectra at different specimen
position can spatially be concatenated to form a 3D data cube (see [Fig. 3.3|(c)), the so-called EELS
map. Here, the sampling of spectral features is relatively high, as many pixel columns contribute to the
formation of the spectrum. In contrast, the spatial sampling is often limited due to time constraints of
the overall acquisition process, which is inherently slow for STEM measurements, as explained in the last
section. Spacial sampling is therefore rather low compared to EFTEM-SI. The time constraints usually
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comes from the accumulation of contamination on top of the specimen. These result in undesirable
distortions of the EEL signal for increasing acquisition times [73]]. Also, beam damage may play a role for
sensitive materials since the beam is quite intense due to the requirement of a tiny probe size. Further
relevant factors limiting acquisition times are the increasing energy drifts and instabilities of the electron
beam. Therefore, data cubes rarely contain more than 100 x 100 spectra in the lateral dimensions. Due to
the low spatial sampling of feature, EELS maps acquired with this technique are particularly susceptible
to noise, which obscures measurements and makes proper analysis particularly challenging to conduct.
Especially for finer features of interest, which consist of very few data points, this is a challenging
problem, as they may completely be hidden within the noise. However, the increased spectral sampling
makes STEM-SI the preferred choice for measuring subtle spectral changes, which are necessary for
determining chemical bonding states or optical properties via Kramers-Kronig analysis.

This thesis primarily focuses on EELS measurements conducted in STEM-mode, i.e. STEM-EELS and
STEM-SI measurements, which are subsequently referred to as EELS maps.

(a) Gatan imaging filter system

Specimen a

Entrance Energie-filter

aperture slit
(b) EFTEM-SI Mjﬁ:jfic &WCCD (c) STEM-SI
Quadrupole/Sextupole X
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Fig. 3.3: (a) Schematic of the Gatan imaging filter (GIF) system (from [72]). The transmitted beam (green) from the
specimen passes through the entrance aperture (a width of 5 mm was used in this thesis) and is dispersed
into different loss-energies by a magnetic prism. In EFTEM-SI, a precise drift tube voltage is applied to
the beam electrons before passing the prism. These electrons are subsequently filtered by the energy slit
(purple), which selects for the electrons of a specific energy range while discarding all others. By tuning
the drift tube voltage, a slight increase in beam electron velocity is achieved, which results in a change of
deflection angle. Thereby, electrons having experienced a different energy-loss are selected by the energy
slit. This results in energy-filtered images, which are sequentially recorded by a CCD sensor (black) after
being magnified and focused by a lens system (blue). In STEM-SI, instead of focusing a whole image,
only the small beam is transmitted through the entrance aperture, dispersed by the magnetic prism, and
recorded as a spectrum on the detector as a sequence of beam positions. In both cases, (b) EFTEM-SI and
(c) STEM-SI, a 3D data cube is formed as a result, which consists of multiple voxels. The black grid shows
the individual voxels of the low-loss EELS data cube of a simulated triangular gold nanoparticle from the
MNPBEM-toolbox [[63]. It can be seen that in (a) EFTEM-SI, the data cube is acquired as a sequence of
concatenated slices (blue z-y slice). Red and yellow colors indicate the lower and higher amplitude regions
of the loss intensity. Since the data cube in (b) STEM-SI is generated using a focused electron beam, which
is scanned in z-y-direction across the specimen, the data cube is acquired as a sequence of laterally merged
EEL spectra, represented by the blue voxel stack, where the intensities are given as counts in a spectrum.
Both the EFELS slice and EEL spectrum are shown as examples alongside their respective data cubes.
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3.2.2 Scintillation based-CCD detectors

The USI1000FT-XP 2 employed in the GIF that was used for the measurements of this thesis is a so-called
scintillation-based CCD detector. This type of detector is frequently used in EELS and is schematically
depicted in[Fig. 3.4] In general, such a detector composes of three main layers, a scintillation layer, a
fiber optics, and a CCD sensor, as shown in (a), all of which are glued together.

Upon impact of incident beam electrons, the scintillation layer generates a multitude of photons, typically
in the order of several hundreds to thousands of photons per incident beam electron. These photons
are then guided by the fiber optics to the CCD sensor. In this setup, the fiber optics ensures sharp
images by effectively coupling the scintillation layer to the CCD sensor. It further shields the CCD from
bremsstrahlung created in the scintillation layer due to the deceleration of incident beam electrons.

In the CCD sensor, the photons create charge carriers. These are subsequently read-out by the analogue-
to-digital converter (ADC), which converts the signal into counts that are output as a result. Since several
counts are registered per incident beam electron hitting the scintillation layer, the measured signal from
the CCD is amplified by a gain factor, which is in the order of the order of 10 — 20, as shown in the
publication in[Appendix A] It is apparent that this number is drastically reduced compared to the initial
number of generated photons in the scintillation layer. The reason for this discrepancy is that many
photons are lost through internal reflections and light scattering, such that they do not even reach the
fiber optics in the first place let alone reach the CCD sensor.

CCD sensors consist of an array of pixels that are construed as metal-oxide-semiconductor (MOS)
capacitors [[74]]. As photons with sufficient energy hit the pixel array, electron-hole pairs form as a result
of the photoelectric effect. This generation of charge carriers is largely proportional to the light intensity.
However, not every photon is transformed into such charge carriers and therefore a proportionality factor
is introduced, which is called the quantum efficiency [[75]]. By applying a voltage to the capacitors, charge

(b)| I ]

1 2

©w

2

ntocha X

,,,,, 1

o

o~
3 4

[ I |
Fig. 3.4: (a) Schematic of the scintillation-based detector (from the publication in[Appendix A) with the incident

electron beam (blue), the fluorescent scintillation layer (green) generating optical photons, and the fiber
optic (purple) connecting the fluorescence layer to the CCD sensor. The CCD reconverts the optical photons
in charge carriers and with the analog-digital-converter (dark green) into counts. The red box shall point
out, that several photons are generated per incident electron and spread across the fluorescence layer. (b)
Schematic of the US1000FT-XP 2 detector (from the publication in [Appendix B). Four distinct detector
segments can be identified, labeled 1 - 4, of which only a narrow portion is used for EEL signal detection,
as indicated by the colored boxes in the middle of the detector segments. The shaded areas are discarded.
The inner region is 260 x 2048 pixels. All rows of a detector column get summed up to form EEL channels.
The detector segments are connected to their respective analogue-to-digital converters (ADC), indicated by
the small boxes near the detector.
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carriers are separated by the resulting electric field. Subsequently, the electrons are trapped within a
potential well due to an insulating layer blocking the path to the anode, while the holes are depleted from
that very region due to the applied electrical field, reducing the probability of recombination[74, [75].
Since the potential wells are finite, some of the trapped electrons may diffuse to neighboring pixels. This
results in a spreading-out of the signal recorded in each and every pixel of the array. Typically, this effect
is modeled by the convolution of a measured signal with a detector point spread function (PSF) [76].
For scintillation-based CCD detectors, this PSF also incorporates the spreading-out of the signal due to
scattering processes in the scintillation layer and the transport within the fiber optics.

Eventually, the charge carriers in the pixel array are transported via shift registers to the ADC, which
converts the charges into an output voltage that translates into a certain number of counts. To optimally
use the detectors bandwidth, it is beneficial to only have a positive number of counts [[75]. Therefore,
a DC offset voltage, the so-called bias voltage, is applied to the pixels to ensure positive values during
readout [75]. Further information about the functioning of CCD sensors are found as well in [[74],[75]].

To increase readout speeds, the US1000FT-XP 2 detector is composed of four individual detector segments,
each having a separate ADC, as schematically shown in[Fig. 3.4(b). EEL signals are exclusively measured
in the middle area of these quadrants while all other pixel values outside of this region are discarded.
This helps optimizing signal-to-noise ratios and further optimizes readout times.

Since every pixel is subject to readout noise, as a consequence of the circuitry of the ADC, discarding the
unused pixels helps to reduce the overall noise level of the spectrum. This is because eventually, the
pixels of the EELS region are summed up column-wise to create an EEL spectrum.

The present segmentation also allows for Dual-EELS measurements. In Dual-EELS, a first part of the
spectrum, usually the ZLP region including the low-energy losses is projected at the upper half of the
EELS region (quadrants 1 and 2 of[Fig. 3.4|(b)), while typically a part of the high-loss spectrum, including,
for example, core-loss edges of specific elements, is projected onto the lower half of the EELS region
(quadrants 3 and 4 of [Fig. 3.4|(b)). Therefore, this technique enables the simultaneous acquisition of two
different parts of the spectrum with different exposure times on a single detector.

The different parts of the EEL spectrum, including the most significant features, are subject of the next
section.

3.2.3 The features of EEL spectra

The most straightforward way to understand EELS is to examine an exemplary EEL spectrum (see
Fig. 3.5 and systematically analyze the scattering processes that contribute to specific energy intervals
and the corresponding peaks within them.

The energy gain region (E < 0 eV) is situated immediately adjacent to the zero-loss peak on the
negative side of the loss spectrum, which corresponds to energy gains. The energy gains of the beam
electrons are primarily caused by phonon interactions [77]], which are quantized lattice vibrations. As a
result, the energy gain is typically confined to a narrow interval between zero and a few negative meV.
In general, energy gains are of minor interest and are usually superimposed by and obscured within
the intense and broad zero-loss peak in most microscopes [77]. Consequently, the energy gain interval
preceding the zero-loss peak is dominated by the tail of the ZLP plus detector noise.
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The zero-loss-peak (ZLP)(E = 0) is the strongest peak to encounter in the EEL spectrum of any
material (see [Fig. 3.5)). It contains all electrons that were transmitted or elastically scattered without
energy-loss. Theoretically, the ZLP would be expected to have a delta peak shape, but due to quantum
uncertainty and thermal energies, the electrons emitted by the electron gun have a range of kinetic
energies. Since the transmission electron microscope used in this thesis employs a cold field emission
gun (cFEG), the ZLP intensity distribution can be modeled using the Fowler-Nordheim equation, which
provides the distribution of the beam current of a cold field emitter jrrc as a function of the electron
energies F. It equates as [5]:
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where m is the mass of the electron, ¢ is the charge of the electron, h is the Planck constant, d is a

with d =

measure for the internal energy of the material dependent on the enhanced extraction voltage F at the
sharp emitter tip, kp is the Boltzmann constant, and 7 is the temperature of the emitter. The work
function of the emitter material is given as ¢, y is the relative decrease of the potential energy due to
the applied field, and v(y) and t(y) are slowly varying functions describing correction factors for the
Schottky-Nordheim barrier, which hinders the electrons to escape the tip of the cFEG.

This energy characteristic of the probe and further distortions induced by misalignment and residual lens
aberrations of the spectrometer’s electron optics (see [Fig. 3.3(a)) result in an asymmetrically broadened
peak, which is observable in [Fig. 3.5/(a). Subsequently upon detection, this ZLP is also subject to
broadening by the detector point spread function, as explained in the last section.

Having a good approximation of the ZLP is important for post-processing techniques, since the ZLP must
be removed prior to for deconvolution (see the publication in [Appendix D). Methods of approximating
the ZLP of a measurement include fitting some distribution functions [78H81] to the ZLP. Also approaches
like mirroring its left-hand side (AFE < 0) to the right hand side (AE > 0) have been employed, since
the right-hand side contains valuable information that should not be removed. Further information about
the precise modeling of the ZLP’s intensity distribution can also be found in [5]. However, all of the
above-explained contributions to the ZLP can altogether be measured in vacuum without specimen in the
beam path. This vacuum ZLP measurement provides an easy way to capture the ZLP without specimen
characteristics distorting it. In contrast, utilizing a Nordheim-Fowler fit leads to discrepancies to the
actual ZLP that are observable in [Fig. 3.5 and most likely result from the above-mentioned misalignments
and residual lens aberrations of the spectrometer.

Therefore, the vacuum ZLP was always measured before and right after conducting the actual EELS
measurements. In contrast to all the other methods to model the ZLP, the direct measurement of the
vacuum ZLP provided the most reliable results for the experimental EELS setup employed in this thesis.
To get a good signal statistics of the vacuum ZLP, several ZLPs are energy aligned and averaged. This
vacuum ZLP may subsequently also be fitted to each of the specimen’s spectra individually (by minimizing
the mean squared error (MSE) as a measure for the distance between both curves) in order to subtract it
from the spectrum. This procedure is necessary for deconvolution to avoid artifacts of the deconvolution

results, as will be fully explained in the publication in[Appendix D}
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The low-loss region (F < 50 eV) of the EEL spectrum contains information about the inelastic
scattering at phonons, inter- and intraband transitions, as well as the surface and bulk plasmonic
peaks, most of which are superimposed to the tails of the ZLP. Notably, all data are convolved with the
distribution of the vacuum zero-loss peak. As a result, all the signals are broadened, leading to a loss of
spectral resolution. To remove this blur, deconvolution with the vacuum ZLP is necessary.

For very fast electrons, an additional energy-loss mechanism occurring in the low-loss region is worth
mentioning: Cherenkov radiation [82H84]]. As electrons travel through a material with a velocity
higher than the phase velocity of light in that medium, Cherenkov radiation is emitted with the energy
distribution:

@ —q2~u(w)-x-w'(1 62> , (3.2)
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where 1 is the unit length traveled, w is the frequency of the emitted light, ;1(w) is the permeability of the
material, n(w) is the index of refraction, ¢ is the particle charge, v is the velocity of the incident electron,
and c is the speed of light.

Cherenkov radiation is expected in the EELS measurements conducted in this thesis, since the silicon
substrates used for carrying nanostructures exhibited a thickness of approximately 100 nm after the
TEM preparation, as will be explained in the publication in Therefore, it is standing to rea-
son that Cherenkov radiation is observed. Usually, the energy of Cherenkov radiation is below 10 eV [[84]].

The high-loss region (E > 50 eV) contains information about the elemental composition of the
specimen and bonding states of its constituents, because the electron beam excites and ionizes atoms
or molecules of the specimen material. The high-loss region also contains background signals from the
plasmon tails, the X-ray continuum, and lower energy core-edges. These background signals can be
subtracted using an inverse power law fit [27, [85]:

J(E)=A-E", (3.3)

where A is a scaling coefficient, E is the loss-energy, and r is the slope exponent. Features of the high-loss
region are also convolved with both the vacuum ZLP and the features in the low-loss energy range,
particularly in thick specimens.

As a concise overview, the most important energy intervals and their respective characteristic interaction

are listed in[Tab. 3.11
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Interval/Feature Energy range
Energy gain region <0eV
VAR 0eV
Low-loss region 0-50eVv
Optical transitions 0.1-5eV
Cherenkov radiation <10eV
Surface plasmons 0.1-5eV
Bulk plasmons 10-50eV
High-loss region >50 eV
Composition > 50 eV
Bonding states > 50 eV

Tab. 3.1: Table containing the most important energy intervals with their corresponding interactions. Since the
intervals are used for structuring the EEL spectrum, these are indicated in bold.
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Fig. 3.5: a) Zero-loss peak (ZLP) measured in vacuum as an average across 30 individual measurements with an
acquisition time of t,., = 1-107% s per spectrum. It is apparent that the measured ZLP (blue line) is
asymmetric and appears skewed to the left side. The reason for this is mainly given by the projection of
the ZLP onto the detector by the spectrometer optics (see[Fig. 3.3|(@)), which induces a slight twist to the
ZLP relative to the pixel array orientation, beside many other distortions (see publication in
for more information). Therefore, while the fundamentals of the ZLP may be described by the Nordheim-
Fowler distribution in fitting it (red dashed line) to the ZLP results in discrepancies between
both curves that are particularly pronounced in the tails of the ZLP, which superimpose the band gap
losses and surface plasmonic peaks. b) Measured EEL spectrum of a FeCo specimen contaminated with
carbon, which was acquired using a Dual-EELS setup, as explained in the last section. The first spectrum,
comprising the low-loss energies from O to 50 eV, was recorded with an acquisition time of t,.q. = 0.02 s.
The second spectrum, shown as the inset, comprises part of the high-loss energies from 200 up to 400 eV
and was recorded with an acquisition time of ¢,cq. = 1 s. Per convention, the EEL spectrum is distinguished
into two parts: the low-loss region (< 50 €V), indicated by the vertical dotted line, and the high-loss
region (> 50 €V). In the low-loss region, the most intense peak is the zero-loss peak (ZLP). The tail of the
ZLP superimposes the phonons (typically in the range of a few to a few hundred meV) and the optical
transitions (typically 0.1 — 5 eV). Surface plasmons are typically found in the range of a few eV, while
bulk plasmons are found in the range of 10 — 50 eV. Usually, the bulk plasmonic features are second in
intensity right after the ZLP. In the high-loss region, information is found about the chemical composition,
the bonding states, and about the inner electrons of the atoms. In this example, the K-edge of carbon
is shown. Within this structure, finer details are observed, where the peak at 284 eV is linked to the 7*
molecular orbital and the broader peak at 295 eV can be attributed to the o™ orbital. The overall spectrum
appears similar to the results in [86], indicating a thin layer of amorphous carbon. It is apparent that the
carbon K-edge is situated on top of a power-law background (see [Eq. 3.3), which typically forms from the
plasmon tails, the X-ray continuum, or lower energy core edges.
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Chapter 4

The current state-of-the-art

Throughout the last chapters, it was outlined that transmission electron microscopy and the EELS
technique are fundamental tools in researching various aspects of nano-materials and biological specimen.
It was further described that these kinds of measurements are often hard or even impossible to conduct
because of the beam sensitivity of such materials and a poor imaging statistics as a result thereof. This,
in turn, leads to measurements that are drowned in noise and become uninterpretable.

This thesis aims at significantly improving such measurements by utilizing their inherent noise statistics
in order to restore the underlying signals. To understand the significance of the advancements presented
in this thesis, it is necessary to define the current state-of-the-art for the main developments of this work.
The following sections are intended to provide a brief introduction to the currently used noise models in
transmission electron microscopy and EELS. In defining both, it will become apparent that the currently
used mathematical models are insufficient for this purpose and do not adequately describe the actual
occurring noises.

Further, an introduction of the Richardson-Lucy deconvolution algorithm will be given, which has seen
widespread adoption in EELS [27]]. However, since this algorithm relies on these imprecise noise models,
it is limited in its ability to improve actual EELS measurements.

It is therefore the task of the following sections to highlight the disadvantages of the current models
and deconvolution algorithms in order to provide, within the publications, new approaches to overcome
these issues.

4.1 Noise models in TEM

Every measurement is subject to noise. Cases in which noise becomes dominant commonly occur in
measurements with limited acquisition time due to sensitive materials or short-lived dynamic processes.
In these cases, there are too few interactions to properly determine important characteristics or to
distinguish changes. This problem is often exacerbated when features of interest are sampled with only
a few data points in a measurement. This often occurs in spectroscopic measurements, such as EELS (see
the explanation in[Sec. 3.2.1)). Due to these limitations, noise can obscure measurements to the extent
that they become uninterpretable to the eye.

Having capable post-processing techniques at hand to reduce noise may therefore be a game changer
for such experiments, as these techniques would allow to evaluate interactions that previously were
impossible to observe. These methods, however, require a precise noise model as their foundation in
order to distinguish signal from noise.

Noise models currently used in transmission electron microscopy and especially in EELS only account for
part of the noise and are mainly limited to Poisson noises arising from the quantized nature of electrons.
This simplistic description, however, does neither account for interactions in the detector, altering the
image statistics, nor for the readout noises.

In the following sections, the fundamental noise statistics occurring in EELS will briefly be introduced
and the shortcomings of current noise models will be discussed.
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4.1.1 Noise fundamentals

Noise follows strict statistical principles that one can utilize to describe it. This section deals with the
most common sorts of noise — Gaussian and Poisson noise, their statistical distribution and their origin.

Gaussian noise

The normal distribution or Gaussian noise, named after Carl Friedrich Gauss, has the probability
density function [87]:

Nn) = — exp{(n_m?}, @.1)

N 202

which is described by u the mean value of a signal and ¢ its standard deviation, wherein n represents a
number of counts to which a probability is assigned. This means that any measurement of a variable
influenced by this kind of noise will result in a value that is distributed most likely in the interval of o
around the true mean value of a signal u. The special case, in which series of measurements are statisti-
cally independent and identically distributed at any given pair of times, is called white Gaussian noise.
These properties make Gaussian noise an additive noise, which means that it is uniformly distributed and
independent of the signal strength. It thus forms a background to the signal. In modern experimental
setups, this type of noise is often induced by CCD sensor readouts as a consequence of the electrical
circuitry and the analogue-to-digital converters (ADC) that transform charge carriers in the CCD pixels
into digital counts. Gaussian readout noise is therefore also encountered in presently used TEM detectors
27, 88].

Poisson noise

Poisson noise, named after the mathematician Siméon Denis Poisson, originates in the discrete na-
ture of charges and photons. The Poisson distribution is defined as [89] [90]:
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P(S=mn) (4.2)
In contrast to Gaussian noise, this probability distribution depends on the expected number of counts
of the signal S. It assigns a probability to measuring a certain number of counts n € N, having the
signal S. An important characteristic of the Poisson distribution is that the expected number of counts
of the signal S equals the variance o2 of the distribution. This means that the Poisson noise is directly
incorporated into the signal, as it depends on its strength. It is therefore fundamentally different from
Gaussian noise, which is independent of the signal. In the case of only a few counts, both statistics
differ significantly, however, in the case of a higher number of counts S > 40, the shape of the Poisson
distribution approaches that of a Gaussian.
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4.1.2 Noises in TEM imaging

In the context of measuring signals on a CCD detector, the signal is typically subject to Poisson noise
arising from the quantized nature of photons or electrons. Additionally, the measurement process on
a detector introduces Gaussian readout noise. Consequently, the overall noise distribution is more
accurately characterized by Poisson-Gaussian noise mixed statistics than by either of the individual
components.

Due to heat generated during device operation, thermal excitons form, offsetting pixel values locally,
even in the absence of incoming signals. This phenomenon can be described by so-called dark currents
that increase with time. Consequently, a dark current background image £, often called dark frame,
with corresponding acquisition time must be subtracted from a measurement image ¢ to correct these
offsets for a dark-frame corrected measurement {p g corr, Which is given as:

fDF,CorT = 5 - gDF . (43)

Specifically in scintillation-based CCD detectors that are often employed in electron microscopy, gain
factors alter the noise statistics significantly. As explained in[Sec. 3.2.2] these gains are primarily intro-
duced by the scintillation layer that converts incident beam electrons to multiple photons. Subsequently,
these gains are reduced by the fiber optics, as photons are lost due to internal scattering at the interfaces
of the layers and due to waveguiding. Eventually, some of the photons are not detected by the CCD,
due to limitations in quantum efficiency. Therefore, the pure Poisson noise statistics from is not
applicable, but is rather changed into a super-Poisson distribution. Additionally to this change in Poisson
statistics, scintillation-based CCD have a significant point spread function, as explained in In
combination with the large gain, the PSF inevitably leads to correlations within the Poisson noise that
must be regarded for a sufficient noise model. These changes of Poisson statistics are detailed in the
publication in

Moreover, due to the manufacturing process of these multi-layered detectors, thickness variations in the
scintillation layer may occur in addition to other inhomogeneities, thereby locally altering the gain and
consequently creating image artifacts. This problem can be mitigated by employing a gain reference
image {g. s, which is typically acquired under conditions of homogeneous illumination, where the only
variations to be expected come from the detector itself. This includes capturing a so called bright frame
image {pr, which is dark-frame corrected, and then divided by its corrected mean intensity level I.
Therefore, the gain reference £p.; is given as:

_ &r —&pF
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This gain reference captures all of these gain variations. By subsequently dividing acquired images by
such a gain reference {g. s, any artifacts due to sensitivity variations of the CCD are removed from the
measurement:
§—¢pr
gCorr = - (45)
Eref

However, it should be noted that this procedure does also result in a change of the image statistics.
Additional effects that alter the noise statistics are found in the pixels of the detection system, which
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are limited in their ability to capture and retain charge carriers. This results in non-linearities occurring
as the number of counts increases, primarily due to the difficulty of generating new charge carriers as
the accumulation of charge within the pixel proceeds. This charge accumulation also facilitates charges
escaping the very pixel they are stored in [[76]. Such redistribution processes, however, broaden the PSF
of the detector with increasing signal strength altering — again — the noise statistics.

4.1.3 Noises of EEL spectra

In the above paragraphs, it is laid-out that even for routine TEM images a rudimentary Poisson noise
model may prove inadequate to describe the image statistics of the corrected images, as they are fre-
quently employed in the domain of transmission electron microscopy.

In EELS, spectra are calculated by summing up pixel intensities from the columns of a CCD sensor. As an
extension to single EEL spectra, EELS map measurements allow to probe specimen structures of interest
in a raster pattern. Here, multiple spectra are successively acquired allowing to visualize the lateral
distribution of energy-losses, i.e. the lateral distributions of plasmonic modes of a metal nanoparticle.
However, the conversion from 2D images into 1D spectra alters the signal statistics of EELS and EELS
maps by partially reversing correlations of the signal caused by the detector PSF. This summation leads to
a new detector PSF Qp, for EEL spectra. Additionally, EEL signals are convolved by the energy distribution
of the electron gun Qg and the projection of the magnetic lens system of the spectrometer onto the
detector QgrEM.

It is evident that these convolution processes impose limitations on the energy resolution of the measure-
ment. To address this, deconvolution is employed as a reversal of the convolution process to restore the
original information.

Specifically in EELS map measurements, the sequential acquisition process of spectra permits beam
current deviations and energy drifts between individual spectra, thereby increasing the noise level.
Corrections for the deviations in beam current can be achieved through normalization of the spectra to
the sum of all its counts. Realignments of the position of the ZLP are employed to address energy drifts.
However, it should be noted that both of these methods alter the noise statistics of the measurement, as
shown in the publication in[Appendix B|

It is apparent that even a noise model adapted to the conditions of a scintillation-based CCD detector, as
previously outlined, is significantly different from the noises that must be considered when conducting
EELS and in particular EELS map measurements.

At this point, it may be recognized that defining a proper noise model involves considering many noise
contributions and many interconnections thereof. In order to quantify the individual noise contribu-
tions, they must be regarded in isolation as good as possible to check the foundations of such a noise
model. Eventually, such a noise model must be made applicable to users. It is not sufficient to merely
identify each individual contribution to the noise; it is equally essential to facilitate quantifying these
contributions on every detector. To make such a noise model applicable, a straightforward methodology
for measuring the most significant noise parameters is essential. This methodology is outlined in the

publication in
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4.1.4 Current noise models employed in EELS

In view of the above, it can be deduced that no satisfactory noise model currently exists for either
scintillation-based CCD detector images, or EEL spectra, let alone EELS maps. Nevertheless, several
authors have described aspects of the aforementioned noise model [91493]].

Verbeeck and Bertoni [[93] concentrate on the aspects of correlation of the noise, which is a consequence
of the scattering processes in the scintillation layer and the associated gain. In their publication, they
describe the implications of this for the likelihood approach, which constitutes an essential approach for
deconvolution. Numerous findings and descriptions from Verbeeck and Bertoni have been incorporated
into the publications of this thesis. Notably, the description of correlations by Pearson coefficients
provided a significant foundation for incorporating them in a noise model. While these findings have
offered valuable insight and form part of the foundation on which the present noise model is based,
Verbeeck and Bertoni never demonstrated how to interconnect their findings. For instance, they speak of
noise smoothing by a convolution with a PSF, but do not describe mathematically how to quantify this
smoothing.

Meyer and Kirkland [91], [92]] also investigated scintillation-based CCD detectors with respect to the
scattering processes within the scintillation layer. They described the modulation transfer function
(MTF) as well as the detective quantum efficiency (DQE). Conceptually, the MTF describes the spatial
frequencies contributing to the image formation and is therefore a measure for the contrast of an imaging
system. The MTF is closely related to the point spread function. The DQE, in contrast, describes a
measure similar to the signal-to-noise ratio (SNR) but for the spatial frequencies contributing to the
image. The approach of Meyer and Kirkland is purely based on statistics and Monte-Carlo simulations.
While having a profound mathematical concept of the interactions of the beam electrons with the
scintillation layer is very important for the understanding of the noise, the approach does not provide
concepts on how to incorporate the results into an applicable noise model. The derived formulas
lack being easily incorporated into a noise model that allows, for example, deconvolution. However,
they describe the measurement of the MTF by employing the noise method, which involves analyzing
the noise of homogeneously illuminated detectors. This method provides the basis for employing the
auto-correlation to gather the Pearson coefficients of the noise, as shown in the publication in[Appendix Al

It is evident that both descriptions of noise rather focus on statistical aspects of the noise, while
neither Verbeeck and Bertoni nor Meyer and Kirkland aim to validate their findings by measurements.
This, in turn, constitutes an important element of the approach adopted in the publications of this thesis.
The present thesis adopts an integrated approach that combines statistics and experimental measurement,
which facilitates the identification of the most significant noise contributions and their quantification.
Consequently, the proposed noise model is well-suited for application to real measurements and extends
existing noise models by also incorporating image corrections, such as the application of a gain reference
to account for channel-to-channel gain variations [[94]], into the image statistics.

In practical measurements, several additional factors must also be considered. For instance, detector
non-linearities and saturation effects become increasingly significant as the number of counts per pixel
rises [95]]. These issues are particularly relevant when analyzing high-intensity features, such as the ZLP.
Appropriate non-linearity correction procedures can be applied to restore the original relative intensities
between spectral features, which is essential for accurate quantitative EELS analysis. Furthermore,
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energy drifts and beam intensity deviation can occur between the acquisition of individual spectra within
an EELS map and must also be corrected to ensure data consistency.

A common characteristic of all these correction procedures is their reliance on empirical measurements to
characterize detector-related effects. However, the process of determining these corrections introduces its
own uncertainties, which must be quantified using statistical methods. These uncertainties significantly
alter the noise characteristics of the acquired data. By adopting an integrated approach, it becomes
possible to both mathematically describe and experimentally assess these uncertainties. This, in turn,
enables the development of improved correction strategies through the implementation of novel methods,
which are proposed in the publications of this thesis.

4.2 Deconvolution techniques employed in EELS

In the following, the two main deconvolution techniques currently used in EELS, the Fourier-ratio
method and the Richardson-Lucy algorithm, are described. Although the Fourier-ratio method does not
incorporate any noise statistics, it is the simplest and most direct form of deconvolution and therefore
serves as an easy introduction into the topic. The drawback of this method is directly related to the lack
of noise incorporation, which is why this method is very limited in its application. For a reader without a
mathematical background in the art of deconvolution, the relationship between noise and insufficient
deconvolution may be unclear. Therefore, this section explains how noise affects deconvolution.

As the second, and by far most prominent, deconvolution method employed in EELS, this section
introduces the Richardson-Lucy algorithm. Unlike the Fourier-ratio deconvolution, which does not
depend on any noise statistics, the Richardson-Lucy algorithm is deeply embedded in (pure) Poisson
noise statistics, from which it is directly derived.

It is therefore readily apparent from the last section that both deconvolution methods fail to incorporate
the real noise statistics faced in EELS. As a consequence, both methods tend to diverge before reaching
their full potential, limiting their success in enhancing EELS measurements.

4.2.1 Fourier-ratio method

The Fourier-ratio method (FR), or inverse filtering, provides the easiest approach to deconvolution. All
energy-losses of an EEL spectrum are measured using the same probe, the vacuum ZLP, as explained in
Hence, the measured spectrum {(F) appears as a convolution between the true underlying
spectrum S(E) and the vacuum ZLP Q(E). According to the convolution theorem, this convolution can
be described as a simple multiplication in Fourier space:

£(B) = QE) & S(E)
= F{Flem]-F3®]}, 4.6)
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where ® denotes the convolution operator, F denotes the Fourier transform, and F~! its inverse.
Rearranging yields the direct deconvolution procedure of the Fourier-ratio method [27]:
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where w describes the frequencies of the EEL spectrum in Fourier space. Theoretically, this deconvolution
method would eliminate the energy distribution of the vacuum ZLP, including its asymmetries and tails,
from the measured data [96]]. As a consequence, this operation should yield a spectrum with perfect
energy resolution, if there was no noise N(E) in the spectrum. In practice, however, noise is an inherent
property of the measurement. Hence, the above formula needs to be rewritten:

= 2o S W) + o (4.8)

such that the noise term N (FE) is eventually divided by the vacuum ZLP Q(E). As in general Q(w)— 0 for
higher frequencies, this procedure amplifies high-frequency noise due to the division of higher Fourier
coefficients, resulting in the entire spectrum being dominated by noise in real space.

Usually this effect can be reduced by (re-)convolving the spectrum with a Gaussian mollifier G (E) that
has the same FWHM as the ZLP, damping these high frequencies again [27]:

& - §(w)

S(E)y=F"! {G (w) - Q(w)] , (4.9
yet largely removing asymmetries from the ZLP. This re-convolution, however does not increase the
energy resolution of the data, as the mollifier again broadens the data to the previous extend. If the
FWHM of the Gaussian is chosen smaller than that of the ZLP, the spectrum can be sharpened compared
to the original data, but with the drawback of increased noise content [[96]].

In conclusion, the direct deconvolution procedure provided by the Fourier-ratio method is limited
in sharpening the energy resolution due to the large amplification of noise for reasonably small resolution
improvements.

4.2.2 Richardson-Lucy algorithm (RLA)

Another approach for deconvolution employs statistics to formulate a substantiated estimate of the real
spectrum. The objective is to ascertain a spectrum, that, obscured by the ZLP, yields a result that is
consistent with the observed measurement data. This approach has the advantage of not utilizing a direct
inversion as in the Fourier-ratio of the last section. Thereby, this approach minimizes the amplification of
noises.
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According to Bayes theorem [97]], the conditional probability density relationship is given by:

P(B|A) P(A)

P(AIB) = =25

(4.10)
with the probability P(A | B) that the underlying signal A is observed, given that the noisy spectrum
B has been measured, the prior probability P(A) that the underlying signal A has occurred, P(B) is
the probability of obtaining the noisy spectrum B and P(B| A) is the probability of measuring the
noisy spectrum B given that the underlying signal A is observed. This equation can be used to find an
estimate Sgya (F) for the true spectrum S(E), such that Sgpa(E) ~ S(E). In order to compare this
estimate with the acquired data £(F), it must be blurred with the convolution kernel (E), such that it
can resemble the measurement £(E). Accordingly, one finds S rr.a (E) = Q(E) © Srra(E), such that
Soria(E) = £(F). Applying the above to Bayes theorem yields:

P (£(B) | Soria (B)) P (Somua (E))

PE(E)) , (4.11)

P (Sana (B) € (B)) =

where P(SQ’RL A (E)) is called the Bayesian prior. The probability of measuring a spectrum P (¢ (E)) is
considered a constant value with no effect on the maximization process and thus is being ignored, as
will be shown subsequently. By maximizing the right side of the equation, the most likely estimate of the
true loss probabilities can be found via the maximum likelihood (ML) approach:

ML (Soia () ) = argmax [P (€(B) [B0mua (B)) } : (4.12)
S'Q,RLA €0
with © denoting the discrete parameter space of E = [E} , Es, ..., E;] with k energy channels of the

spectrometer. The ML solution is valid if a uniform probability density for P(&LRL A (E) ) is given [98]].
By approximating the noise statistics of acquiring an EEL spectrum as a Poisson distribution, the
probability P<§ (E) | SQ,RLA(E)) can be written as [99]:

(4.13)

P (5 (E) |§Q,RLA (E)) = H E(E;)!

~ E; A
k| [Sa.rLa (Ei)]g( )eXP{ — [Sa.rLA (Ei)]}
i=1
By comparing this equation with the Poisson distribution from [Eq. 4.2} it can be stated that the mean
value of the signal is given by the convolved estimate \ = §Q7RLA(E) = §RLA(E) ® Q(F) and that
the counts are given by the measured signal n = £(F). For a sufficient minimization to be solved, the
maximum likelihood approach from must be rewritten. Maximizing the probability of the whole
spectrum is equal to minimizing the same probability multiplied by minus one. Therefore, [Eq. 4.13|can
be rewritten as [[99]:

=

—1n [P (£(B) | Sania (B)) ] = [—g(Ei) In [So.nea (B)] + Sounwa (B) + In [€ (Eq-,)!ﬂ . (414)

Gp (5 (E) | gQ,RLA (E)) = Z [* £(E;:) In [Q (B) ® Srra (Ez):l +Q(E) ® Srra (Ez):| s (4.15)
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where the functional G p (5 (E) | So.rL A(E)) is chosen to be the negative natural logarithm of the proba-

bility P(§ (E) | Sa.rL A(E)). This can be done, because logarithms are strictly monotonic functions that
preserve the minimum. Further, the In [¢(E;) !] term can be neglected, as it does not depend on Sgys (E;)
and therefore plays no further role in the subsequent minimization step. Since G p (5 (E) | Sq.rr A(E)) is
convex in Sgra(E), as one might easily imagine by flipping a Poisson distribution (see upside
down, the minimum can be found via derivation:

0
dSrLA

Gp (£(E) [Sania (B) =0, (4.16)

[ §(F)
Q(E) ® Spra (E)

@0 (E)} =1, (4.17)

with the adjoint operator Q7 (E), or complex conjugate in Fourier space, which in this real positive case
equals the flipped distortion function Q7 (E) = Q(—E). Multiplying both sides by Sgr.a (E) and using
Picard iteration [[100] leads to the Richardson-Lucy algorithm (RLA) [101][102]:

§(E)

— s (4.18)
Q(E)® SE A (B)

SEEA (B) = Skia (B) - ©Q(—E)

with the k-th iteration S, , (E) and 89, , (E) = ¢ (E) as the initial guess or starting point of the iteration.
The RLA sharpens the energy resolution [[103][104]] and works equivalently to the Fourier-ratio method
[96]]. Because EEL signals are always meant to be positive, it would be beneficial, if the results obtained
from this method were positive as well. This is indeed a big advantage of the RLA compared to direct
inversions like the Fourier-ratio method, since it ensures the non-negativity of the result for positive
inputs Q(E) > 0 and £(F) > 0 [105].

4.2.3 Insufficiency of current deconvolution techniques

A review of the preceding sections reveals that commonly employed deconvolution methods in EELS
often fail to account for the actual noise statistics inherent of the measurements — or, in some cases,
neglect noise considerations entirely.

Not incorporating noise into the deconvolution process results in a substantial amplification of the
noise, as shown in In an attempt to smooth these noises to an acceptable level, mollifiers must
be employed. However, this smoothing process imposes strict limitations on the method’s ability to
accurately reconstruct sharp spectral features. Given that the approach fails to sufficiently mitigate noise
and falls short in accurately recovering spectral detail, it places the user in a particularly challenging
position, forced to compromise between two suboptimal outcomes. The user is presented a dilemma and
may decide whether a higher noise level or reduced deconvolution is more suitable.

Deconvolution methods that incorporate noise modeling offer a significantly more robust alternative.
This is likely one of the key reasons why the RLA has gained widespread adoption over the past decades.
However, the RLA relies on the assumption that the measured EELS data is fully described by the
pure Poisson noise statistics it was derived from, as shown in the last section. The assumption of pure
Poisson noise, however, has been undoubtedly disproven by various authors [91H95]] and also by the
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publications of this thesis in particular. These findings demonstrate that the noise characteristics in EELS
measurements deviate from pure Poisson behavior, thus calling into question the validity of applying the
RLA without further modification or correction.

One consequence of this mismatch between the assumed and the actual noise statistics is the amplification
of noise during the iterative deconvolution process, typically emerging at an unpredictable iteration step
[105]. A recent mathematical study even goes one step beyond and indicates that the RLA is doomed to
amplify noises even for data adhering to the pure Poisson noise statistics [106]]. As a consequence, a
common strategy to mitigate this effect is the early termination of the RLA after about 15 iterations. This
premature stopping, however, inevitably constrains the algorithm’s capacity to reach its full deconvolution
potential and results in a substantial reduction in its ability to enhance spectral sharpness.

It is therefore desirable to develop a method that can be readily adapted to more accurate noise models,
tailored to the specific characteristics of individual EELS detectors, and that operates deterministically
based on mathematically rigorous and verifiable assumptions in order to improve EELS measurements.
Such a method can be constructed based on the Alternating Direction Method of Multipliers (ADMM)
[107], as shown in the publication in[Appendix C A key advantage of ADMM resides in its ability to solve
a broad class of optimization problems formulated through Lagrangian functions. Its flexibility makes it
particularly well-suited for adaptation to the specific requirements of EELS, including the incorporation
of complex noise models and detector-specific characteristics.

Since this class of algorithms has been proven to converge under broad conditions [107], it offers a
resolution to the dilemma inherent of conventional deconvolution approaches by enabling iteration until
an optimal and stable solution is obtained. As is shown in the publication in the results
achieved with this method are significantly improved compared to those of the RLA.

Nevertheless, the Nyquist-Shannon sampling theorem [[108],[109] imposes a fundamental mathematical
constraint on the ability of any method to fully restore data at perfect resolution. According to this
theorem, accurate reconstruction of features is only possible if the sampling rate is at least twice the
highest frequency present in the signal. In frequency domain, convolution with a broad kernel acts
as a low-pass filter, suppressing high-frequency components of the data. Conversely, noise introduces
a background in frequency domain. If a frequency is obscured by this noise background, it cannot
contribute to the reconstruction of the original data, leading to a loss of features.

These fundamental limitations also extend to methods based on artificial intelligence (AI) or machine
learning (ML) at least insofar as such methods are expected to meet basic scientific standards. In
particular, the validity of results must be grounded in the measured data itself, rather than relying on
algorithmic inference of features that fall below the threshold of statistical significance. Given that the
proposed deconvolution method follows a desirable deterministic and mathematically rigorous approach,
the method proposed in this thesis may also serve as a valuable benchmark for validating or training Al
and ML models, ensuring that they adhere to these scientific principles.



Chapter 5

Summary of the publications and the thesis

This thesis presents a unified noise model for detectors employed in transmission electron microscopy;,
which is rigorously derived and validated. It also demonstrates methods for determining and measuring
the most critical noise parameters. Such a noise model is crucial, as it serves as a basis for post-processing
methods like deconvolution, which is frequently applied to measured data in order to improve spectral
resolution. The proposed algorithm achieves a significant reduction in the noise level of EELS measure-
ments, while also removing the blur caused by the energy characteristics of the probe and the detector
PSF. This enables the analysis of measurements with shorter acquisition times, while maintaining an
improved overall signal-to-noise ratio. The first two publications establish the foundational aspects of the
noise model, while the latter two publications examine the mathematical properties of the deconvolution
method, both in general terms and in the context of its application to EELS data. In more detail:

The first publication titled An applied noise model for scintillation-based CCD detectors in transmission
electron microscopy in Scientific Reports, 15 (2025) (see[Appendix A) presents a foundational statistical
noise model for scintillation-based CCD detectors, which are widely employed in the acquisition of
TEM images and EEL spectra. This publication demonstrates the types of noises that occur on such
detectors and examines the impact of detector calibrations, such as gain normalization and non-linearity
corrections, on the noise statistics. A mathematical model for image acquisition on these detectors is
derived and experimentally validated. Particular emphasis is placed on measuring the most critical noise
parameters for these detectors, enabling the proposed noise model to be tailored to each individual
detector. Additionally, the signal correlation effects induced by the detector point spread function
(PSF) are examined, and their implications for detector binning are demonstrated. In summary, this
publication proposes a novel method for determining the point spread function of scintillation-based
CCD detectors, which are often employed in transmission electron microscopy. The degree of noise
smoothing expected from convolution of the signals with this PSF is mathematically described and made
quantifiable. Methods for improving gain non-linearity corrections are proposed. Uncertainties related
to corrective measures, such as the use of a gain reference are derived and straightforward methods are
proposed to measure them.

A subsequent publication titled An applied noise model for low-loss EELS maps in Ultramicroscopy, 270
(2025) (see builds upon the initial noise model by extending it to EEL spectra and EELS
maps. In the context of EELS, a 2D signal confined to a small area of the detector is integrated to produce
a 1D spectrum. The integration of the signal significantly alters the correlation effects arising from the
point spread function (PSF) of the detector, thereby changing the noise properties relative to the 2D
signals. In the case of EELS maps, energy drifts are anticipated to occur between the sequentially acquired
EEL spectra. The publication therefore examines various energy-alignment strategies and assesses the
effect of these realignments on the overall noise statistics. In summary, it is demonstrated how the 2D
detector point spread function of the previous publication translates into a 1D point spread function for
spectroscopic measurements such as EELS. Uncertainties related to intensity normalization of the spec-
trum and uncertainties related to various energy-alignment techniques are derived and made quantifiable.
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The third publication titled ADMM-TGV image restoration for scientific applications with unbiased parame-
ter choice in Numerical Algorithms, 97 (2024) (see addresses optimization problems related
to the alternating direction method of multipliers (ADMM) algorithm. The ADMM algorithm serves as the
basis for the proposed EELS deconvolution method, enabling the minimization of Lagrangian functions
that formulate the deconvolution problem. The primary focus of this publication is the development of
an algorithm that operates independently of user inputs, relying solely on the mathematical properties
of the algorithm and measured noise parameters of the detector. A mathematical derivation for the
selection of penalty and regularization parameters is presented, which allows for optimal deconvolution
results, unbiased by the user, when employing the proposed algorithm. The effectiveness of the proposed
selection methods is demonstrated using test images that are commonly deployed in the image processing
literature. As the derived algorithms are of wider interest there, the use of these images facilitates
comparability with other results in the literature and thus promotes a general understanding of the
algorithms’ capabilities. Examples of how the algorithm improves transmission electron microscopy
images are provided to illustrate the broad applicability of the algorithm. In summary, a novel method
is proposed to guarantee the convergence of ADMM algorithms employed in image post-processing to
desirable results, eliminating the need for manual selection of essential parameters that determine both
convergence properties and the quality of the deconvolution outcome.

The fourth publication titled An unbiased ADMM-TGYV algorithm for the deconvolution of STEM-EELS maps
in Ultramicroscopy, 275 (2025) (see presents the derivation of the actual deconvolution
method for EELS maps. By integrating the findings from the three preceding publications, the noise

models developed in the publications in [Appendix Aland [Appendix B along with the unbiased parameter
selection methods from the publication in[Appendix G are leveraged to establish an objective algorithm
that can be adapted for use with any EELS detector. The superiority of the algorithm over commonly

used techniques, such as the Richardson-Lucy algorithm (RLA), is demonstrated. It is shown that
post-processing EELS data using the proposed method reveals previously obscured plasmonic features
within plasmon measurements on a Janus-particle. In summary, a new deconvolution method for EELS
is presented that outperforms the widely used and commonly employed Richardson-Lucy algorithm by
60% in terms of the mean squared error (MSE). This distance was measured between the simulated
ground truth data and the deconvolution outcome of the same dataset, which was treated with blur
and noise according to the noise parameters determined for the EELS detector used in this thesis. It is
demonstrated that the deconvolution method works for experimental data as well. Here, it is explicitly
shown that this novel method makes evaluation of plasmonic modes of metallic nanoparticles possible,
which could otherwise not be distinguished with the employed microscope using the wide-spread RLA
deconvolution method. These recovered modes were cross-checked with simulation data and verified.
Eventually, this new deconvolution method was used to analyze the plasmonic modes of a Janus particle
consisting of gold and platinum.

All datasets associated with the publications, along with the evaluation and deconvolution software, are
provided on a USB drive attached to the back cover of this thesis. The core software tools, specifically
those used for noise parameter evaluation and the implementation of the deconvolution algorithm, have
also been uploaded as part of the supplementary materials of the related publications and are accessible
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to everyone through the journal websites. To further facilitate a broad distribution of the code, copies of
the algorithms were uploaded to Mathworks, which is the primary source for users to search for Matlab
related scripts:

* https://www.mathworks.com/matlabcentral/fileexchange/180009-noise-evaluation-in-transmission-
electron-microscopy-tem

* https://www.mathworks.com/matlabcentral/fileexchange/159873-automated-admm-tgv-denoising-
deconvolution-for-images

* https://www.mathworks.com/matlabcentral/fileexchange/181166-admm-tgv-deconvolution-
algorithm-for-stem-eels-maps

All codes have been made freely available under a CC-BY 4 license or similar conditions.

On the USB drive, four programs are found that were improved or developed bottom-up during the work
on this thesis:

* Lithogram — A software tool for raytracing simulations to model the EBPVD process for the fabrication
of nanoparticles in double-angle resolved nanosphere lithography. This software tool was improved
during this thesis and also contains the motor control for providing the correct angles for the
fabrication of the nanoparticles during the EBPVD process.

* EELS-Simulator — A software tool that was developed during this thesis to transfer the simulated
nanoparticles from the Lithogram software into the MNPBEM toolbox [63] in order to create the
simulation of a plasmon related EEL signals.

* Sim-Noiser — A software tool that was developed during this thesis to add blur and noise to
the simulated EEL signal from the MNPBEM toolbox according to the measured blur and noise
parameters of the employed EELS detector. This software also contains the ADMM-TGV and RLA

deconvolution methods in order to compare their results to the underlying ground truth signal.

* EELS-Analyzer — A software tool that was developed during this thesis and is intended to facilitate
the analysis of experimental EELS data, including the application of the non-linearity correction
method proposed in the publication in the energy-alignment method proposed in the
publication in [Appendix B} the intensity normalization, the ZLP subtraction, the deconvolution with
the proposed ADMM-TGV deconvolution method proposed in the publication in [Appendix D} and
the visualization of EELS data cubes as spectra and slices, respectively.

In conclusion, the present thesis presents novel approaches to achieving the objectives stated in the
introduction. Detailed noise models are hereby presented for TEM and particularly for EELS, both
of which accurately capture the noises encountered in these types of measurements. On the basis of
these noise models, a novel deconvolution method for EELS and EELS maps is proposed that verifiably
outperforms currently available techniques in terms of accuracy.
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scintillation-based CCD detectors in
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Christian Zietlow”* & Jorg K. N. Lindner

Measurements in general are limited in accuracy by the presence of noise. This also holds true for
highly sophisticated scintillation-based CCD cameras, as they are used in medical applications,
astronomy or transmission electron microscopy. Further, signals measured with pixelated detectors
are convolved with the inherent detector point spread function. The Poisson noise, arising from

the quantized nature of the beam electrons, gets correlated by this convolution, which allows to
reconstruct the detector PSF based on the Wiener-Khinchin theorem and the Pearson correlation
coefficients under homogeneous illumination conditions. However, correlation also has a strong impact
on the noise statistics of basic operations like the binning of signals, as it is usually done in electron
energy-loss spectroscopy. Thus, this paper aims to give an insight into the different noise contributions
occurring on such detectors, into their underlying statistics and their correlation. Detectors usually
suffer from gain non-linearities and quantum efficiency deviations, which must be corrected for
optimal results. All these operations influence the noise and are influenced by it, vice versa. In this
work, we mathematically describe all these changes and show them experimentally. Methods on how
to measure individual noise and correlation parameters are described allowing readers to implement
routines for finding them. Sufficient knowledge on the noise of a measurement is not only crucial for
classifying its quality and meaningfulness, but also allows for better post-processing operations like
deconvolution, which is a common practice in spectroscopy to enhance signals.

Keywords Noise model, Scintillation detector, Electron microscopy, Non-linearity correction, Brighter-fatter
effect, Point spread function

Every measurement is subject to noise. The most prominent ones for electron microscopy and especially
transmission-electron-microscopy (TEM) certainly are Poisson noise, arising from the quantized signal itself!,
and Gaussian read-out noise from the detector electronics®*. Further, gains that influence the Poisson noise
are generated by the parts of the scintillation-based detector® and differences in quantum efficiency between
pixels on the detector®” alter the noise. Correlation effects between pixels caused by the point spread function
(PSF) of the detector and mathematical operations in order to correct the signal from detector artifacts further
complicate the above mentioned signal alterations. To top it all of, the detector suffers from non-linearities with
increasing signal strength.

To an operator, who does not have year-long experience in the subject of noise and statistics, noise statistics
in general looks confusing and overwhelming. However, understanding the noise helps to interpret artifacts
in the data, helps designing measurement conditions under which certain effects become visible and helps
manufacturers to improve their detectors and image acquisition in the first place. Having a valid noise model
also allows for modern denoising or deconvolution techniques, which improve the evaluation or make it
even possible to evaluate sensitive materials such as organic or biological materials that degrade at very short
exposure times in an electron microscope®~!2. Thus, there is a broad and interdisciplinary need for algorithms
in TEM, which require such a noise model. In'?, we have shown how to design and use ADMM algorithms for
denoising and deconvolution in a scientific context, such that they operate unbiased by the user and purely on
the measurable noise parameters of a detector and a suitable noise model. Scintillation-based CCD detectors are
not limited to electron microscopy, they have use-cases in X-ray detection for astronomy', nuclear physics'® as
well as in medicine'®-%’. Since the detector architecture uses a CCD, the noise model that we will derive in the
following is in large parts valid for general CCD cameras as well.

Nanopatterning-Nanoanalysis-Photonic Materials Group, Department of Physics, Paderborn University,
Warburgerstr. 100, 33098 Paderborn, Germany. *email: christian.zietiow@upb.de
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A ‘rather complex’ statistical framework is needed to describe the noise and all the alterations of measurements
on such a detector. Such frameworks can be found in the references®*? and especially in**. A typical TEM user,
however, may not want to deal with all contributions to the statistics of his detector. Here, we would like to focus
on such contributions that are relevant or may appear relevant for the usage of a scintillation-based CCD camera
attached to a TEM. Further, a typical TEM user cannot open a CCD detector without the risk of damaging it
immediately. This restricts the ability to analyze the detector layers in detail. Thus, many of the parameters such
as coupling efficiencies, gains, input and output quanta needed to utilize noise models for cascaded systems from
Rabbani?* or Cunningham?® are not directly accessible. While these are sophisticated statistical descriptions,
they cannot easily be applied in practical TEM work.

This paper presents a novel approach to understanding detector noise, one that integrates both theoretical
and experimental perspectives to provide a comprehensive framework for noise analysis. Unlike previous
studies, which often focus on either theoretical models or experimental measurements, our work seeks to
bridge the gap between these two approaches. By identifying the most significant noise contributions relevant to
experimentalists, we aim to develop a coherent theoretical framework that can be applied to real-world detectors.

This article starts with a general analysis of key noise sources, such that our approach can be used even
with limited statistical expertise. By presenting a comprehensive treatment of the subject, we hope to facilitate
a deeper understanding of the overall framework, highlighting the interconnectedness of all components and
providing a cohesive framework for noise analysis.

While this paper may be lengthy and detailed, we believe that its comprehensive nature is essential for
providing a thorough understanding of detector noise. By integrating theoretical and experimental perspectives,
we aim to provide a valuable resource for experimentalists seeking to optimize their detectors and minimize the
impact of noise on their measurements.

It is clear that this paper simplifies the vast body of statistical work on noise analysis, which spans thousands
of pages of published research. To develop a practical model that can be applied under common conditions,
we must identify useful approximations that enable us to isolate and separate the different noise components,
allowing us to validate our model through straightforward measurements.

In statistical analysis, the reference frame in which noise is determined is crucial. The measurements proposed
in this paper to quantify noise are no exception, and therefore, we strive to provide precise descriptions of our
experimental methodology. By doing so, we aim to ensure that our results are reliable and reproducible, and that
our model can be applied in real-world scenarios.

First of all, the general architecture of the detector is needed. In our setup, we use the USI000FT-XP 2 detector
installed in a Gatan GIF Quantum ER image filter®®, which is shown schematically in Fig. la. The analysis of this
detector is the basis that we will use to evaluate our noise model. The scintillation-based detector mainly consists
of three layers: a fluorescence layer, that converts incident electrons into photons; a fiber optic, which guides the
photons to a CCD camera; and the CCD camera itself, converting photons into charge carriers. Such systems
were statistically analyzed e.g. by Cunningham et al.>>?’. As shown in Fig. 1b, the CCD camera consists of
four segments with respectively 1024 times 1024 pixels, connected to separate read-out ports, where the charge
carriers are converted into counts via analogue-digital-converters (ADC). The segmentation increases read-out
speeds, but comes at the cost of having different noise properties, which must be regarded individually. In the

(b) (C) 600 Pixel

|

2048 Pixel

600 Pixel

EELS Detector

2048 Pixel

260 Pixel

i >

Fig. 1. (a) Schematic of the scintillation-based detector with the incident electron beam (blue), the fluorescent
scintillation layer (green) generating optical photons and the fiber optic (purple) connecting the fluorescence
layer with the 2D CCD detector, which reconverts the optical photons in charge carriers and with the analog-
digital-converter (dark green) into counts. The red box shall point out, that several photons are generated per
incident electron and spread across the fluorescence layer. (b) Schematic of the USI000FT-XP 2 from Gatan?®
with 4-port read-out electronics indicated. The respective ADC ports are shown in faded colors above or below
the segments. We define the respective column of the CCD to be indicated by the index i and the respective
row of the detector by the index j. The region for EELS detection is located in the middle of the detector
spanning across all four segments with 260 pixels in height. (c) Schematic for an exemplary 600 times 600
pixel binning on a 2048 times 2048 pixel detector, where the blue boxes represent the binned pixels and the red
regions represent the rest that cannot fully be binned into a 600 times 600 pixel. One can easily see, that for

a 2048 times 2048 pixel detector, binning with a number that contains a prime factor unequal to two leads to
leftover pixels.
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image filter, the CCD camera is used for both, recording images and spectra. By guiding the electron beam
through a series of magnets, the electrons disperse with respect to their kinetic energy allowing to investigate
energy losses induced by a specimen. Dispersing the beam in TEM mode is called energy-filtered TEM (EFTEM)
and for scanning electron transmission microscopy (STEM) this method is referred to as electron-energy loss
spectroscopy (EELS). The features of such loss spectra are of special interest, as they allow to determine e.g.
the elemental composition of a given material or to analyze its electronic structure including light-matter
interactions. In the middle of the detector, the EELS signal is measured and then summed across all rows j to
convert a 2D image into a 1D spectrum. We indicated the region on the detector in Fig. 1b, where a typical EELS
signal is measured. This measuring process with the CCD introduces a further spreading of the signal, leading
to correlations, which was analyzed e.g. by Stierstorfer et al.?. Eventually, the summation process can be seen
as a post-binning of the image. So, for a full analysis of the noise model useful for both TEM and STEM mode,
it is necessary to understand the impact of binning. It is obvious that there are leftover pixels for any binning
number containing a prime factor that is unequal to two, considering the analysis of the full 2048 times 2048
pixel detector. A schematic of such a binning is shown as an example in Fig. 1c.

In general, all scintillation-based CCD detectors are quite similar in their design, with the devil being in the
‘details. There are detectors employing less segments or a lens optics instead of fiber optics. This however does
not change the general noise model but only the extend of contributing factors.

In this paper, we focus on the transmission electron microscopy (TEM) mode and give a short outlook on the
impact of those findings for STEM-EELS. It is crucial for the measurement of noises to perform measurements
without a specimen in the beam path to minimize variations of the signal due to external factors other than
noises. This is why we performed all noise measurements in vacuum. The principles of the noise model found
here can be applied to any signals acquired from structures of interest.

This paper is organized as follows: following this introduction, “Section Fundamentals of different noise
statistics” provides an overview of the statistical formulas and mathematical principles exploited in this paper.
This section serves as a reference, to which we will frequently refer during the derivation of our noise model
in “Section The noise model”. In this section, we present the proposed noise model, which encompasses the
mathematical description of the image acquisition process and the various image corrections required to
address deviations and non-linearities in the scintillation-based CCD detector, as well as their influence on
the noise model. Additionally, we demonstrate how binning, a crucial step in the formation of EEL spectra,
affects correlations and gain in the data. In “Section Evaluation of the noise model”, we describe the procedure
for measuring the parameters of the proposed noise model and experimentally validate the mathematical
expressions. Moreover, we outline the process for acquiring the necessary detector corrections and present a
method for determining the detector PSE. In “Section Theoretical considerations on STEM-EELS measurements’,
we examine the implications of our findings for EEL spectra, and “Section Conclusions presents a comprehensive
discussion of the overall results and conclusions.

Fundamentals of different noise statistics

Noise is a stochastic process, allowing for a description in a general statistical framework, even though
knowing its exact representation in the data is impossible. This publication aims to provide a comprehensive
understanding of the fundamental properties of noise in data generated by scintillation-based CCDs. To establish
a solid foundation for our discussion, we briefly outline the underlying mathematical principles in the following
sections. In “Sections Gaussian noise” and “Poisson noise”, we introduce the respective probability distributions
and examine their behavior under various mathematical operations that are essential for developing the noise
model. “Section Noise correlation effects” delves into the impact of correlations on the measured sample
standard deviation, a crucial aspect for our analysis. Finally, in “Section Noise and convolution’, we explore the
effects of convolutional operations on the noise, providing a thorough understanding of this critical component
of the noise model.

Gaussian noise

The most commonly known statistics describing noise in signal processing certainly is the Gaussian distribution.
Coming from statistical independent random processes, it can be described with the probability density function
(PDF) A%

_ 2
/[J(X)—n,u,az]—\/;?e)(p{—(nzﬂu)} ) (1)

with the mean value y and the variance 0. In general, the normal distribution gives the probability to measure
n noise counts as a result of a measurement J of a random and thus independent variable X, which, in our case,
might be a pixel number.

To shorten notation, we will use .4 [,u , 02} as a representation of the above described measurement.

Working with Gaussian distributions requires several important mathematical operations, such as addition,
subtraction, multiplication and so on. These operations change the mean value and variance to different extents,
but fortunately most are commonly found in standard text books of statistics for students. For our work, we need
the following operations for our noise model:

Adding two or more independent random variables X, leads to the addition of their mean values and
their variances. The resulting distribution also corresponds to a Gaussian distribution®’. Adding Gaussian
distributions is also equal to convolving them?!-%
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where ® is the convolution operator.
The multiplication of a Gaussian distributed variable X by a constant c is given as*:

cX =N [cu, 0202] , (3)

where it is important to note that the factor ¢ appears squared in the variance.

The distribution fz of the product of two uncorrelated random variables Z = XY with the expectation

value F (Z) and variance VAR (Z) are given as*:

f2(2) = / o) el e @
E(Z)=E(X)-E(Y) , 5)
VAR (2) = (0% + 1) - (0% + 6% ) — pkny (6)

with the respective probability density functions fx (z) and fy (y). Here, x, y and z denote the position in
the distribution. Note that the resulting distributions are still quite elaborate and often result in infinite sums.
Simplifications of these exact representations are a current topic of research.

For the ratio of a random variable !/ x, one can utilize Diaz-Francés et al.>> who showed that the ratio with a
Gaussian can be approximated by a normal distribution, if the denominator is closely distributed about its mean
value:

2
N [, %] 1mm[u ,4] . 7)

Poisson noise
Another important process occurring as a consequence of the discrete nature of photons or electrons is the
Poisson process. Similar to tossing a coin, there are only two possible outcomes: measuring or not measuring an

event. This leads to a PDF that is slightly skewed towards higher counts*>%:
P[1(8) =n] = 5" exp (=5} ®
= = p )

with the probability #? to measure n counts of a signal S with its expectation value F [S] = S and ] again
denoting the measurement. We shorten the notation to & [S ] . For a sufficiently high count regime, the Poisson

distribution converges to the Gaussian distribution, with both the mean value and the variance equal to the
expectation value®:

lim ,@[S] ANJJV[S', S’] . 9)

S—o0

In fact, a main characteristic of the Poisson distribution is that the noise variance always equals the expectation
value of the signal 0% = 1%,
The summation rule for Poisson distributions is given as

Sz [Su]=2 > Sul, (10)

where the sum of Poisson distributions equals the Poisson distribution of the sum of the expectation values.
Subtracting Poisson distributions in contrast leads to the Poisson-difference distribution, also known as Skellam
distribution®”:

31,36.

S5 I(8) =n .81, 8] =exp {— (%1 +6)) <§)/ﬂ (2v5-%) . an

with .#),,| () denoting the modified Bessel function of the first kind and 5'1,2 the expectation values of S ». For
a shorter notation, we will write . [S 1, Sg] .

Multiplying a Poisson distributed signal S* with a gain factor g such that S = g-S*, leads to the
distribution$-40;
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which is denoted as the super-Poisson distribution for g > 1 and as sub-Poisson distribution for g < 1441,
Here, the multiplication of the signal is comparable to Eq. 3, as it shifts the mean value of the distribution and
changes its variance accordingly. To complete the trio, we will refer to the Poisson distribution as the true-Poisson
distribution for the case g = 1 in the following. This formula is valid for deterministic gains, where each incident
electron generates the exact same number of photons. However, this would only allow for n-values, which are
a multiple of g, and integer values of g. Usually, this is not the case for scintillation-based detectors, as the
generation of photons from beam electrons is a statistical process itself and may vary for each incident electron?
Thus, we consider the gain of the detector to be the mean value of said generation process. This definition allows
the gain to be a fractional number. As a consequence, in the above formula, we have replaced the factorial by the
gamma function I [] to account for non-integer values within the argument, as n! = I'' [n + 1]. It is obvious
that the above scaled Poisson distribution is a simple approximation to the true distribution*?, but we found
it to work quite well for us. A description of the true distribution is found in e.g.?%, but its description is much
more complex and requires many input parameters that are usually not directly measurable on a detector, as
mentioned in the introduction.

Noise correlation effects
So far, the above noise distributions assume the noise to be independently distributed. However, in a detector
this is rarely the case. Thus we need to explain the impact of correlation on the variance of the noise distributions.
To differentiate the variance measured within a single frame a% > which is subject to correlation effects,
from the variance of a single pixel across many frames o2, which we consider independent and thus ‘true, we
use different variables for them. This differentiation is important as the expected variances of both are not equal
under the premise of correlation. In the experimental section of this work, we mainly determine the variances
within a single frame o' > and thus need to elaborate on the implications that this frame of reference offers.
The definition for the variance is given as**3%:

2=EB[$*] -ElSP=E[S-E[5], (13)

with the expectation value E [S] of a random variable S, that in our case could be a signal. For a finite number of
pixels in a detector and a homogeneous signal, where all expectation values are equal E [S] = E [s;,;], the true
variance is unknown but can be estimated using:

2

oip =FE sm—MN Z Zsm n* , (14)

m*=1n*=1

with the value of a pixel s;, ; and the latter term describing the mean value of all pixels with the double sum across
all indices. Here, 7 € [1,. .., N]| describes the position in the row, and j € [1, ..., M] describes the position in
the column. By replacing s;,; with the difference between pixel and its expectation value ds; ; = s;,; — E [s4,5]
in the above expression, we obtain**:

ok =E | ds ,J—MN Z stm v+ Esig] — MN Z ZESm wl . as)

m*=1n*=1 m*=1n*=1

where the first two terms describe deviations of the variance of a given pixel from the mean variance of the
detector. The latter terms vanishes, if the signal is homogeneous, since the expectation value for all s is identical
in this specific case. Utilizing Eq. 13 leads to*

1 M N
otp=Elds};| — E TN Z Z dSms

m*=1n*=1

2 Z ZZZE [dSm* n* - dSpq]

m*=1n*=1 p=1 g=1

|
q

where E [dsfy j] = o gives the expectation value of the variance of a given pixel, which is the true uncertainty

of the data. The latter term describes the mean covariance of all pixels, with the covariance defined as*?

COV [Sm* n* , Spq] = E { (8m*,n* — E [Sm=*nx]) - (8p,g — E [Sp,q]) 17)

=ds =dsp,q

m*, n*
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As the noise is homogeneously distributed across the detector, the covariance cov [Sm* n=, Sp,q] only depends
on the horizontal and vertical separation m = p — m* and n = g — n™, respectively, and not on the individual
pixel s; ;. Often, m and n are referred to as horizontal and vertical lag. We can thus simplify:

COV [Sm* n* , Sm* 4 n]

— . ith —
cov [Sm*,n*, SP«‘Z] cov [Sm*yn*z Sm*«n*} Pm,n y W1 Pm,n cov [Sm*,n*7 Sm*,n*] 8)
) COV [Sm* n*, Sm*+4m,n*+n)
=0 Pm,n = 5 s

g

where ppm,» are the Pearson correlation coefficients*, describing the autocovariance function of two pixels in
the data set. In order to calculate the variance within the single frame, we need to combine Eq. 16 with Eq. 18.
However, two double sums are hard to handle and thus we need a simpler solution. For the values n* = 1 and
q = 1( thus n = 0) within the total sum, we obtain:

M M M M-1
Z ZE[dSm",l dspa] =0 - Z Plom* 0+ P20+ F pPr—me0 = Z (M —1|m]) - pmo - (19)
m*=1 p=1 mr=1 m=—(M—1)

It can easily bee seen that by increasing m* from 1 to M, po,o is contained M times within the sum. We further
find p1,0 and p—1,0 to be contained (M — 1) times, p2,0 and p_2,0 (M — 2) times and so on, until we obtain
pa—1,0and p_(ar—1),0 only once. Repeating this pattern for all the other values of n* and g to complete the two
double sums in Eq. 16, leads to:

M-—1

ohp =0 1—W P> Z (M~ m]) - (N = [n]) - o, | 20)

(M=1) n=—(N—1)

where pp,, n € [—1, 1] ranges from -1, in case of total anti-correlation, through 0, for uncorrelated data, to 1, for
total correlation of the data®2. Naturally, a given pixel is always totally correlated with itself, so po,0 = 1.In a case
with uncorrelated noise between pixels, all other coefficients are zero pm,» = 0. By simplifying and rearranging
the sample variance is revealed*®:

2 MN 2
T M-N—1 75
) M N ) M N 2 (21)
= TN B s 2o 2 s |
i=1 j=1 m*=1n*=1
by utilizing Eq. 14. In a case of total anti-correlation, where all other coeflicients pm,n = —1, the single frame

variance o2 — 202 approaches twice the true variance, as the number of pixels increases. Conversely, in case
of total correlation of the data, with all pm, » = 1, Eq. 20 equals zero as a logical consequence. Per definition
all pixels must have the same value in this case. We can thus establish, that correlated data exhibits a smaller
variance than uncorrelated data and that anti-correlation leads to higher measured sample variances.

Considering all of the above, we can define a factor Bcor+ that accounts for the change in the sample variance
due to correlation:

M—-1

MN 1
Beorr = MN 1 | 1- W Z Z ( - \m|) : (N - |”|) * Pm,n » (22)

m=—(M—1)n=—(N—

with Beorr € [0, 2]. It can easily be seen that for large sets of pixels Bcorr — 1 and thus the influence of
correlation decreases. With the newly defined Scorr, we can rewrite Eq. 20 to:

2

1 M N 1 M N
Bcorr'o'szZZE Si,j—m Z ZSM*,H* . (23)

i=1 j=1 m*=1n*=1

where it can be seen that the measured variance within a single frame changes with correlation.
Correlation indicates a common process that links both variables. It thus does not influence the shape of a
Gaussian or a Poisson distribution, except for their variance:

e/V[/-’L, g ] Cﬂsl JV[,LL Bcorr . 0‘2} and :@ [ ] CDTTEZ ‘]5(,077 [S] . (24)

For the true-Poisson distribution this necessarily leads to a sub-Poisson distribution for correlation or a super-
Poisson in case of anti-correlation. This means that correlation of the signal acts like an additional gain-factor on
the Poisson distribution, when considering the noise inside an image. In contrast, the statistics of a single pixel in
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a series of measurements is not altered. This is for instance the case for EELS-mapping, where a series of spectra
is taken on the same detector.

Correlation also drastically changes the addition of correlated random variables. Adding pixels of a detector,
e.g. by binning, leads to a reduction of the pixel-set, but also to additions within the Pearson correlation
coefficients as shown schematically in Fig. 2. Under the influence of correlation, Eq. 2 changes into®*:

w
Z/[uw, ai] = Zuw, Z Z cov [Sw, Sw=]| (25)
w=1

w=1w*=

in the general case, where the covariances between variables add to the total variance. Under the assumption that
all pixels have the same variance and the same expectation value, we can state for a detector:

v

H Vv
Z phv,ahv]:z/i/ ZZM"”’U pgzg* , with

h=1 v=1 h=1 v=1
(V-1)

Py = Z S H =)V = o] pne

h=—(H—1) v=—(V—1)

(26)

with the summation being limited by the number of available pixels H € [1, M]and V € [1, N]. In general, the
new Pearson coefficients p’.", of a system after vertical summation of V rows and horizontal summation of H
columns are given as:

bin h_—(H 1) Zu__w 1) = 1)) (V = vl) - prometn,vonto 27)

m,n bin,* ’
Po,0

where the central Pearson correlation coefficient is always defined as pols = 1.

The Wiener-Khinchin theorem®®*” states that the autocovariance function K of a random process and
the power spectral density (PSD) form a Fourier-transform pair, which allows to determine all the Pearson
coefficients pn,m of an image £ by normalizing with respect to the maximum entry:

Fig. 2. This schematic shows six pixels (blue) in a row, out of which the first three are binned into one pixel
(grey). The same is done for the next three pixels. The indices of the Pearson correlation coefficient denote the
distance between correlated pixels, thus one can easily count the amount of possible distances within a new or
between new, added up pixels. By adding three neighboring pixels (blue) on the left side, one can see that the
pom *-coefficient of the new pixel (grey) must incorporate 3 times the po-coefficient, 2 times the p1 -coeficient,
and once the p3-coefficient. The correlations, expressed by their Pearson correlation coeflicients, are indicated
with a blue arrow for next neighbors, with a red arrow for the second next neighbors as well as yellow, green
and purple for the more distant neighbors. Note that the distance between pixels works in both ways, so
the negatively numbered Pearson correlation coefficients p_1 and p_2 must be added to the respective new
coefficient in equal number as their positive counterparts. po, indicated in white, is the correlation of a pixel
with itself and i 1s thus defined as 1. Now, the correlation between the binned pixels is of interest. On the right
side the new plm *-coefficient must inherit 3 times the p3-coefficient, 2 times the p2-coefficient, and once
the p1-coefficient of the unbinned pixels. Additionally, one obtains 2 times the p4-coefficient and once the ps
-coeflicient. So, when binning w pixels, one sees that this requires 2w — 1 additions of the Pearson correlation
coefficients of the former system. These principles extend on higher and on negatlve new coefficients. Now,
pom * gives the multlphcand for the old true variance o to form the new Utme pin- Normalizing all new
coefficients by p;'™* gives the nth Pearson correlation coefficient p%™ of the new system, with which a new
b can be calculated using Eq. 22.
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b= ey vith PSD(E) =

’9 {5 — N i X &J} ‘2 (28)
N M '

where .7 [] and .# ' [-] denote the 2D Fourier transform and its inverse, while |-| denotes the absolute
value. Autocovariance and autocorrelation are two terms that are often used synonymously*®. However, the
autocovariance function K (€), , ./ ., between the positions (z,y) and (z’,y’) equals the autocorrelation

function Ry, ,(€) with the mean values of both positions multiplied and subtracted*’:
Kooy (€) = Roy,ar (&) = pay (§) tar g (§) - (29)

Noise and convolution
So far, we have described the fundamentals of different noise distributions and how performing mathematical
operations with them changes their respective distributions. We further discussed, how correlation changes the
measured variances within a single frame and the resulting variances, when adding variables. What we have not
discussed yet, is how convolution changes the noise on a detector.

From a mathematical perspective, convolution and cross-correlation are closely related, with the only
difference being the direction with which the kernel is applied®®. Revisiting the last section, autocorrelation
is nothing else than cross-correlation between a signal and itself’>!. In discrete form, convolution and cross-

correlation are given as’!:

oo oo oo

[f®g]m,n = Z fm—m*, n—n* gm*, n* and [f*g}m,n = Z Z Jm*—m n*—n gm*,n* , (30)

where fin+ —m, n* —n denotes the complex conjugate of fy, —m, n*—n. If fand g are Hermitian, both convolution
and cross-correlation are equal [f ® g, , = [f % g],, ,,°"**. Knowing this and considering the last section,
where we discussed the Pearson correlation coefficients, the idea is obvious that correlation and convolution are
closely related. And indeed, one can show how convolutions changes the power spectral density of the noise,
which is greatly explained in i.e. reference?!. In this section, we will elaborate on this and try to summarize the
most important points.

Since the convolution process satisfies the distributive property®’, we can separate a given signal S into a

pure-signal S and a pure-noise component. Approximating the Poisson distribution by a Gaussian ./ [O, ag]

and convolving, leads to both the signal and the noise being convolved with the same kernel Q*:
QRS+ 4[0,08])) =0 @S+ ®4[0,0%] . (31)

From this point on, we focus on the noisy part of the equation and set aside the convolved signal. Considering a
homogeneous signal, the Poisson noise os is evenly distributed. We can split the convolution into a gain g and
a normalized kernel €2, which we apply on the noise. For noise smoothing to occur by convolution, a scattering
process is needed that generates multiple particles per incident electron, with g >> 1, enabling them to distribute
laterally while remaining correlated due to their common origin. This criterion is more than fulfilled for the
TEM, as every incident beam electron creates a cloud of hundreds to thousands of photons in the scintillation
layer.

In contrast, a smoothing of the noise would not be possible if only one photon was create . In this case,
some lateral deviation from the designated path would indeed lead to image blurring, but not affect the noise at
all. Further, Cunningham et al.?> pointed out that the conversion gain from electrons to photons is a statistical
process itself and thus subject to variations, which they described as Poisson distributed. For lower gains, Eq. 12
must be altered by an noise excess term?® to account for the correct noise variance. Thus, we need to consider a
high conversion gain such that the overall influence of these deviations is small for a sufficient approximation.

d24,25

Given every pixel of this image is a representation drawn from the noise distribution Gi.j € -/ [07 o s] , we
can write:

M,N .
A RC=g- Q¢ , with g:Zanm and Q:Q—. (32)
g

m,n

Autocorrelation yields the Pearson coefficients, as described in the previous section, multiplied by the variance.
It is defined as the cross-correlation of a signal with itself. So, the autocorrelation function of convolved noise
is given as:

gﬂ@(*gﬂ@d :gQ-[Q*Q®C*C] ) (33)

m,n m,n

where we use the associative property for a scalar multiplication®® and Eq. 3 for the gain g. Further, we can
rearrange the equation, in case both 2 and the distribution of noise in the image are Hermitian, due to the
associative property of the convolution®®. Scattering processes are of symmetrical nature and the detector
inherits a x-/y- symmetry of the detector-pixels, thus we can assume that 2 is in close approximation to being
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symmetric with respect to its main diagonal. Additionally, we can assume that all elements 2,,,,» € R, which
then satisfies a Hermitian matrix.

In case the noise is uncorrelated, the autocovariance function yields the Pearson correlation coefficients
multiplied by the variance of the image o'%. The Pearson correlation coefficients can be written as a Dirac delta
functional pm,n = dm,n, as only the po,o = 1. The only functional H obeying [H % H], . = 6m,n is again a
Dirac delta functional, which also satisfies a Hermitian matrix:

@ ax0eced] =g [0x006-03] =i 249, (34)

m,
m,n
where the convolution with ¢ gives the original expression. The equation can be rewritten:

g’o% - [QxQ, , =g°0% Q20 (35)

m,n m,n °
We see, that the autocorrelation takes the shape of the convolution kernel convolved with itself. Considering a
process with a sufficiently high gain, we see that convolving noise with a kernel broader than a Dirac delta peak
0 leads to a reduction of the central element [ ® 9]070 < 1. Since autocorrelation gives the Pearson coefficients
and their central element is defined as po,0 = 1, we need to rescale it to 1:

e, .,
Q®Q

0,0

ICEIOA (36)

0,0

920129 Qe Q]0,0 = 92 'Jg “ Beonv * Pmyn 5 With  prmn =

by introducing a smoothing factor Sconw for the correlation, given as:

—1 —1
M-1 N-1 [Q®Q}mn M-1

N-1
Beomn =[0@ o= Y. > T, | - > > pma]| 06D

m=—(M—-1) n=—(N-1) m=—(M—-1) n=—(N-1)

where Bconv € [0, 1]. We obtain a new variance 052) @5 = Beonw - O'?g for the convolved signal, which is reduced
compared to the original.

Again, regarding Eq. 33 for the case the noise is somehow correlated, we obtain the Pearson correlation
coeflicients to be Hermitian as a result of the autocorrelation function®’. By utilizing the associative property of
the convolution®, the equation can be rewritten as:

0% pmn =05 [N DR, , =05 [Q®Q], . ,with Q=02 . (38)

N
We have shown that the convolution of a signal S with a kernel 2 leads to a gain g, a smoothing factor Bcono
reducing the variance of the signal o5, and to correlation, which further smoothens the variance with a factor
Beorr» if measured within the same image (see Eq. 22). In Eq. 31, we approximated the Poisson distribution by
a Gaussian to separate noise and signal. We need to reassemble both again in order to determine the effect of
convolution on the Poisson distribution. Considering that the noise inherently follows the signal, due to the
quantized nature of the electron, and a gain combined with a convolution changes the expected variance, we can
state that convolution leads to a super- or sub-Poisson distribution, depending on the gain and the smoothing
factor. Again, for a Poisson distributed signal S* and an unnormalized convolution kernel Q* = g - Q, with
S = g-S*, we obtain:

V'RP[S] =08 Py [S] = Pobeons-beore 29S|, given that g> 1, (39)

as multiple particles are needed as a result of a scattering event to spread out.

Owing to the similarity between correlation and convolution, one can determine the PSE or in other words
the convolution kernel, of the entire detector with all its complex architecture as the inverse Fourier transform
of the square root of the PSD function Eq. 28:

Q=77 [(ﬁ‘ ()] W} | (40)

So, if the signal convolved with the detector PSF Q ® S is sufficiently known, e.g. homogeneously distributed,
the mean value of every pixel can be subtracted from a noisy image, following Eq. 28, and the detector PSF can
easily be found hidden within the noise. Later in this paper, we will show how this is done under experimental
conditions.

However, summing the Pearson coefficients of a stationary process p*, such as found on a CCD, eventually

yields zero®*:

M—-1

N-1
Z Z P =0 (41)

m=—(M—-1)n=—(N-1)
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Unfortunately, this leads to an underestimation of the higher coefficients and even produces negative coefficients,
such that the above equation is satisfied.

Now, that we have outlined the mathematical and statistical principles, we can apply them to a real detector
to develop a valid noise model.

The noise model

As is shown in the following, the acquisition of images with a scintillation-based CCD detector like the
US1000FT-XP 2 detector employed in the ‘Gatan Image Filter (GIF) Quantum ER’is a rather complex process. In
these detectors, several transformation processes, from electrons to photons to excitons to counts, are necessary
to gather an image. Starting with a general description of different types of noises and their origins, the following
section will guide through the acquisition process of the camera itself and the mathematical description of
the noises connected to it. Usually these images are further processed to improve the quality of data. Gain
normalization and dark frame subtractions are standard procedures to clear the images of detector induced
artifacts. Pixel binning and summations of the 2D images to individual spectra, like in EELS, are done to improve
the visual understanding of the data, to reduce storage space and processing time - but all these procedures
change the noise level and the corresponding noise distribution. To describe all these processes mathematically,
we need a lot of different variables. We found it helpful to have a list, where all following variables are explained
briefly, to increase the readability of the paper. This list can be found in the supplementary information.

To facilitate understanding of the noise model, we provide a flow chart of the image acquisition process in
Fig. 3, serving as a guide for the reader throughout this paper.

Our experimental setup consists of a JEOL JEM-ARMZ200F’ microscope, with no specimen in the beam
path, as we focus on noise analysis. The beam is directed into the GIF camera, where it interacts with a
scintillation layer, converting the incident electrons into photons. These photons are subsequently transmitted
through fiber optics to a CCD camera. In “Section Signal and detector noise”, we discuss beam correlations
and demonstrate how convolution with the detector’s point-spread function (PSF) affects the resulting Pearson
correlation coefficients of this correlation phenomenon. We also introduce multiple gain factors associated with
individual detector layers and the corresponding smoothing factors arising from convolution operations. A
simple mathematical framework is provided to describe detector deviations and non-linearities, which require
corrections. Furthermore, we identify and describe various components of detector noise.

Subsequently, the detector characteristics are removed through multiple post-processing steps, which are
implemented in software and affect both signal and detector noises. We begin by examining the impact of
background subtraction on detector noise in “Section Dark frame subtraction”. Next, we describe the formation
of a gain reference image in “Section The acquisition of a gain reference”, which is crucial for determining the
uncertainty associated with such a measurement. In “Section The application of a gain reference”, we discuss
how the application of the gain reference alters both signal and detector noises. Furthermore, we address the
non-linearity effects of the camera, which must be incorporated into the noise model. In “Section Gain non-
linearities”, we explain how to include these corrections and demonstrate their impact on signal and detector

JEOL JEM-ARM200F Gatan Image Filter (GIF) camera

E}ectron beam Vnetnit Scintillation Fiber optics CCD camera
in TEM mode layer

Software Output
Background . Gain Corrected
R Gain reference . . -
subtraction linearization image

Fig. 3. Schematic flow chart of the image acquisition process. Our experimental setup utilizes a JEOL JEM-
ARM200F’ transmission electron microscope with no specimen within the beam path, since we are only
interested in the image noises. The microscope constitutes the initial stage of the image acquisition process
(depicted in orange). The image acquisition process then splits into two primary components, the detector
hardware, comprising the ‘Gatan Image Filter (GIF) Quantum ER’ camera, which generates the raw image

data (indicated in green); and the subsequent software post-processing (depicted in blue). The combination
of hardware and software components ultimately yields the corrected image as output (depicted in gray). The
hardware component can be further divided into three distinct detector layers: First, the scintillation layer,
where incident beam electrons are converted into photons. Second, the fiber optics system, which guides these
photons to the subsequent layer. Third, the CCD camera, where the photons are converted into excitons and
ultimately into counts. Following the hardware processing, the software post-processing corrects for offsets

in the image by subtracting a background frame. To compensate for quantum deviations, the resulting image
is then multiplied by a gain reference acquired under homogeneous illumination conditions prior to the
experiment. Finally, the counts are corrected via gain linearization, which accounts for the non-linear behavior
of the CCD detector with increasing count numbers.
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noises. Notably, the non-linearity correction must be applied not only to the measurement data but also to the
gain reference, as it is also acquired using a non-linear detector. Additionally, we discuss the brighter-fatter effect,
a phenomenon that alters the width of the detector’s point-spread function (PSF) with increasing signal strength,
driven by charge diffusion processes in the CCD camera. This effect is considered essential in our noise model.

As binning of multiple detector pixels is a commonly employed feature, we examine its impact on correlation,
detector PSE, signal, and detector noises in “Section Binning of the detector”.

A comprehensive understanding of the individual noise processes is essential for describing the entire
image formation process. Therefore, we will provide a detailed outline of the complete noise model in the
subsequent sections, following the framework described above. This thorough explanation will facilitate a
deeper understanding of the complex interactions between various noise components and their effects on the
imaging process.

Signal and detector noise
Due to the quantization of electrons, the probability of measuring an electron leaving the electron gun in a
given time interval can be modeled as a pure-Poisson distribution &2 [Ssrc,el} (see Eq. 8). However, during

the acceleration phase, Coulomb forces between beam electrons cause spacio-temporal correlations in the
electron beam>**, such that the electron beam is correlated within itself to some degree. This depends on beam
currents and the correlation time, within which consecutively emitted electrons are correlated. Indeed, these
beam correlations are quite important for the measurements and necessary to regard, as will be shown later in
this paper. By broadening the beam in TEM mode, the electrons from the electron gun, which can be modeled
as a point-source, are deflected with a kernel Q7 ), to form a disc. It is thus symmetric, which allows us to
interchangeably use convolution and autocorrelation. Since the uncorrelated electrons are independent, the
Poisson statistics is not affected by the deflection, which is represented by the convolution being applied inside
the Poisson term & [Q*T M ® Ssrc,el]. This changes for the correlated electrons, for which the convolution

acts on the Poisson term itself Q7 55, ® & [5' Src,el] , since the electrons are influenced by the previous ones. We

obtain the electron beam for the TEM mode Bt consisting of both, correlated and uncorrelated electrons
hitting the fluorescence layer of the CCD as:

BTEJW =p- (Q;‘E]w ® <@ [Ssrc,el]) + (1 - p) : 9 I:Q;"E]\/I ® gsrc,el] 3 (42)

where p gives the probability for correlated electrons within the beam. The broadening of the point-source to a
parallel beam happens without additional gain. However, since we are interested in the broadened signal rather
than the total beam intensity we define Q7 5, to have the height of one, indicated by *. This is in contrast to
all following convolutions, which are normalized to the sum of all entries. For this type of signal, we obtain the
Pearson correlation coefficients following Eq. 36 as:

prEMmn =0 Qrem +(1—p)-0) Q (p- VUrpgm + (1 —p) - N pm
[P2 Qrepm ®Qrpm + 2-p- (L=p) - Qrea + (1 —p)2'5]n ;

,m

(43)

Q

where § is the Dirac delta, since the Poisson distributions of the uncorrelated electrons is unchanged by the beam
deflection. For a sufficiently large beam disc Q27 5,, with respect to the detector, we can approximate the first
term as a constant.

In the fluorescence layer of the detector, every incident electron produces a cascade of photons (see Fig.
1a). The generation of photons in the scintillation layer is rather complex, as multiple factors like thickness,
reflections at the scintillator interface and scattering events, defects, etc. influence the electron path and thus
shape the signal locally'°. Verbeeck and Bertoni® pointed out that under the assumption of a rather homogeneous
fluorescence layer, this is negligible. Following Eq. 39, this process can be modeled as another convolution of the
electron beam Br g with a kernel 2 ¢; and with a fluorescence gain gy; > 1. This convolution affects both the
Poisson statistics of the correlated and the uncorrelated electrons, since all electrons produce multiple photons,
which are then spread by the convolution. This leads to a smoothing of the noise, as was shown in “Section Noise
and convolution” With S¢; = Q75 ® Ssre,el, We obtain:

gr1-Qp ® Brem = Pgyy841-8reum [sz ® S'el] , with  BrErm = BrEM,conv - BTEM corr

(44)
and /Bfl = ﬁfl,cmw : /Bfl,cor'r

As a result, we obtain a smoothing of the variance as described in Eqs. 37 and 22, which depends on the Pearson

correlation coeflicients. This smoothing of the noise by SrEMr,conv and Bren,corr as well as B, conv and

B1,corr is the one mentioned by several authors®®. Every following spreading of the correlated signal will thus

add on the PSF applied to the signal, as well as on the smoothing of the formerly true-Poisson noise, which

changes into a super-Poisson distribution, as the gain gy; by far exceeds the smoothing.

After the fluorescence layer, the created photons are guided by the fiber optic, which absorbs or loses some
of the photons, indicating a second gain ¢gop¢+ < 1 and an additional PSF €2,,;. The photons finally arrive at the
CCD camera and are absorbed and converted back into charge carriers. As not every photon creates an exciton,
this leads to a third gain gccp < 1, also known as the Fano factor®®-41, Obviously, the wells of the pixels are
finite, thus creating a third PSF for the actual CCD camera {2ccp. Implementing all these considerations into
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a formula, leads to a convolution of the detector kernel €24 with the different Poisson noise distributions of the
electron beam Bre:

9d - Q@ Brem = PBeony-Beorr-94 [Qd ® Sel] , with Qa4 = Qs ® Qopt ® Qoep - (45)

So a total detector gain value gq = gy1 - gopt - gocp is obtained for the system as well as a smoothing factor
for the convolution Beonv = BTEM,conv * Bfl,conv * Bopt,conv * BcCD,conv and a smoothing factor for the
correlation Beorr = BTEM,corr * Bfi,corr = Bopt,corr * BcCD,corr altering the noise. We combine both to a total
smoothing factor 8 = Bconv - Beorr for shorter notation. As a result of Eq. 38, we can simplify the individual
convolution kernels of the layers to a combined kernel for the entire detector.

Correspondingly, we obtain the Pearson correlation coeflicients of the image formation change from Eq. 43
into:

Pm,n R [Qd @0 (p Qe @ QUEym +2-p-(1—p) - Qren + (1 - ) 5)}%"1 ) (46)

where 2} describes the detector PSF normalized to the height of one. The convolution with a rather constant
first term again yields a constant.

The gain acts as a conversion factor from incident beam electrons to charge carriers in the detector, with the
detector signal given as Sq = g4 - Sei. In a real-world system, quantum efficiencies vary in the fluorescence layer
as well as in the CCD detector. Assuming that the direct path, rather than internal reflections, predominantly
contributes to the intensity of a given detector pixel (i, j) and the others are negligible, the total gain can be written

Za9l; 5 _
asan unknown distribution .2” varying around the mean value of all gains Ga,s,; = ga - % =ga- Z [g] i

with 27 [g], ; € [0, ). The quantum efficiency variations are fixed and therefore are commonly referred to as
fixed-pattern-noise®®>’. This leads to the overall probability to measure 7 signal counts in a detector pixel:

2 ) SRR
(gd 2 ()} [ @8], ) } -
( %[g} .B1. ) exp{—gd 2 gli; B n}

[ a® S,JLJ. :|

ga- & [g]i,j B

n

Q

PB.Gai; [Qd ® Sel} i
» (47)

gd‘%[g]iyj’ﬁ'y{

which can be rescaled to a pure-Poisson distribution by factoring the gains and /3 out (see Eq. 12). Taking into
account the simplification that only the direct path contributes to the signal, we use the approximate sign.

Operating a CCD camera always produces heat, and even if the camera is cooled, this thermal energy is
likely to produce excitons in the course of the acquisition time tacq. The generation of these is known to produce
dark currents Jqqrx and the longer the acquisition time, the higher is the accumulated charge and thus the
offset tttherm = ldark - tacq i charge7. These dark currents are especially favored by certain defects within the
material®8, which are not uniformly distributed across the CCD array, leading to another unknown distribution
Y[t herm} . for the conversion of thermal energy into excitons. Owing to the quantized nature of charge, these
thermal excitons further add Poisson noise5”%.

Finally, charges are converted into counts by the analog-digital-converter (ADC). This process is widely
known to add further Gaussian distributed read-out noise to a measurement®”*°. The Gaussian distribution
is given in Eq. 1. To avoid negative counts, an external bias voltage offsets the read-out process®!. Fluctuations
of bias in between rows occur as row artifacts. We also consider these to be Gaussian distributed, with the
mean value of the respective row firow,; and the variance o2, of the read-out noise. Here, the mean value
itself varies from row to row with .4 [ﬂread, Ufow]. Combining both, the read-out noise can be written as
N I:ﬁ'read ) Uzead + U?ow,j] .

With a conversion gain g. from charge carriers to counts, a total mean gain g = g. - g4 and a total varying
gain G ; = g - 2 [g], ; can be found. The signal in counts is then given as Sc = gc - Sq = g - Se, where S
gives the electron 51gnaljof the beam and Sy gives the detector charge carriers.

However, the gain of the pixels is not a constant, but changes with the intensity due to saturation effects
besides other non-linearities®"*%. As a pixel can be seen as a capacitor, higher levels of accumulated charge
restrain the probability of creating additional excitons, thereby decreasing the overall gain. So, the gain of the
?%stem does not only depend on the camera system itself, but also on the level of the acquired signal, thus

(9] ; = 2 [9(Se))l; ;.
Considering all of the above, we can express the image formation process of the image  as follows:

Q@S
{dﬁ’}:| + ge - <f [T[Hfhe’rm] 7yj] JrJV[ﬂreqd, U?ead + 0’201U7_7'}) s

U} (48)
— [Q‘I@‘éc}u
T 9 X[ASe)l; ;B

i~ g~%[§(9d®5’cz)]w B2

assuming homogeneous read-out noise across the CCD camera and an additional noise term in the vertical and
only in the vertical direction of the image columns 7, as it is fixed per row j. Using the convolution of noise Eq. 2,
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we can write the total noise as the sum of the individual noise distributions. It is important to note that the values
for firead> Oread> Orow and Ltherm Vary between detector segments, as each segment has its own ADC (see Fig.
1b). In the following, we will abbreviate S c; = [Qd ® Sez] to shorten notation.

We consider this image formation as the general case for our detector for measurements in TEM mode and
under reserve for STEM mode, which we will elaborate on later.

Processing operations

We have described the image formation process for a measurement on a typical scintillation-based CCD detector,
but often the quality of the acquired images is enhanced by techniques, such as background subtractions,
applying gain references or gain non-linearity corrections. All these corrections do influence the noise in the
corrected images, which is the subject of this section.

Dark frame subtraction

To clear an image from the offset and additional dark currents, a second image is acquired with a closed shutter
S’el = 0, the so-called dark frame. This dark frame is then subtracted from the original imageﬁ’7 (see Fig. 4a,b),
leading to:

Eps,ij = &i,j — Edark,ij , with Edark,ij = ge - (5‘3 [T[,Uftherm]i’j} + W[ﬁread, 02 ead + Uzow,j]) . (49)

Since both measurements are uncorrelated, the summation rule Eq. 2 can be utilized for the Gaussian distributed
parts of Eq. 48. This increases read-out and row noise, but clears the image from the read-out offset fircaq-
Further, subtracting Poisson distributions leads to a Skellam distribution (see Eq. 11) for the thermal noise. So,
the image formation for a dark frame subtracted image is given as:

05,ij R G- %[ﬁ(ﬁn,ez)hd B [%} +9c- (y [07 T [fitnerm]; ;T [ﬂthwm]i,j] + [0, 207cad + 20’30“},]‘]) » (50)

where the dark frame subtracted image £ps,s,; provides the counts of every pixel cleared by the offset.

Since the noise contribution of dark currents in a cooled CCD is rather small and the zero centered Skellam
distribution with S; = S2 is symmetric, it can be (and usually is) approximated by a Gaussian distribution.
Since Y[ptnerm]; ; is further assumed to be rather homogeneously distributed across the CCD, this yields:

é’DS,i,j ~g- v [g(SQ,El)]ij : ﬁ - P [%} + A [07 ZUgead + 20’30111,‘7‘ + 2at2herm] ) (51)
with U?herm = gc * Mtherm depending on the dark current pi¢nerm. The factor of 2 reflects the fact that two
images are subtracted from each other. However, it shall be noted that the Skellam distribution has larger tails
than the Gaussian distribution. Y[fi¢herm]; ; might also deviate locally due to the construction of the CCD, but
as the noise contribution is generally low, the effect is negligible. To clear notation, in the following read-out, row
and thermal noises will be referred to as ‘detector noise’:

(@)1, (b)

10
512 512
255 5
Dark frame
1024 1024 0
] 250 subtraction
1536 | | 1536 =
245 P
2048 2048 R —
1 512 1024 1536 2048 1 512 1024 1536 2048

Fig. 4. (a) Bias frame averaged across 30 unprocessed images without signal at zero exposure time. It can be
seen that the image is offsetted by ;1 =~ 252 counts indicated by the grey value in between a 50 range displayed.
Further, brighter areas can be spotted on the detector, where dark currents o'¢pcrm are increased and vertical
columns are visible, where the Ohmic resistance changes currents. The four quadrants can be seen at their
boundaries, where image features are interrupted. (b) After subtracting an image without signal, the result
appears without offset, brighter areas are cleared and the image in general has fewer features than before
subtraction. Horizontal lines become visible, where the bias of the entire line varies between read-out, because
image variation in general decreases. Most of the image variation now is given by the read-out noise 0'read
changing between pixels on top of the row noise 0row,;. This procedure of getting from (a) to (b) is referred to
as ‘dark frame subtraction.
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2 2 2 2
04 = Oread + O-row,j + Otherm - (52)

The acquisition of a gain reference

Detectors are often calibrated with respect to their gain distribution to compensate for variations in the quantum
efficiency at each pixel. Generally, the gain reference®’ is acquired with high counts and a uniform signal across
the detector, which can easily be achieved in TEM mode by expanding the beam. The resulting signal frame
image &ref,sF is then dark frame subtracted by a dark frame image &, pr and divided by the mean value of
the image. The gain reference image formation of a scintillation-based CCD detector thus can be modeled as:

PGS0y 98- 2 252] + .0 [0, 20] 53)

Erefiij =

)

g+ Sres

with the convolution of a homogeneous electron signal Q4 ® Sy; = S, having no significant effect other
than for correlation and noise smoothing as described in “Sections Noise correlation effects” and “Noise and
convolution”. The noise term ./ [0, 203] describes the dark frame subtracted detector noise. The denominator

is given by the mean value of the reference signal Sy; — S,.; approaching its expectation value for large
enough pixel sets and a high reference signal. Both assumptions hold for typical CCD cameras and gain
calibration procedures. To mitigate the impact of saturation on deviations in the quantum efficiencies, this
procedure is performed at ~1/10 of the maximum count. As some pixels generate more counts per incident
electron than others, they saturate faster, which leads to an underestimation of the quantum deviations at lower
signal strengths. To maintain high signal strength, w images can be added up, increasing the signal but also the
noises:

2 [5(5ver)],, 98- ,@[ZWT}J“/V[O 2% o]
9> Sres 7

according to the summation rules for Gaussian and Poisson distributions in Eqs. 2 and 10. Further, we can

(54)

Erefiig =

approximate 2°[g(Srey)l; ; = 2 [g (S’mf)} i3S the signal approaches its expectation value Syc; — Spef

across several measurements w. The overall probability to measure a gain reference that resembles the quantum
efficiency differences 2 [g (gre f)] . is given as the convolution (see Eq. 2) of the Poisson distribution with the

normal distributed part:
Sre
9.5.9[%} ®JV[07 Q.ng(ﬂ
“ 932, Sres

As for high signals, the Poisson distribution is in good approximation equal to the normal distribution (see Eq.
9). It can be rewritten:

(55)

r {fref,i,j:%[f?(gTef)]i’j . C'r‘ef,i,ji| ~ %I: (S )]

oo [ Bt Bl (o2 5, o)

(56)
-2, Sres '

Pr [€resis =2 [8(Sres)],; - Gesis| = 2 [3(S0es)],,-

Again, by utilizing the convolution rules of two Gaussian distributions Eq. 2 and the multiplication by a constant
in Eq. 3, this allows to simplify the resulting normal distribution to:

Pr |:£ref, ij — =2 [ ( ref)} : Cref,i,ji| ~ [ ( )] [1 kTef.L]] , with
P WS VIS &
ref,i,j — )

(9-3, Srer)’

where the measured signal in counts is given as Sref,c =g Sres. Further, by approximating the local
kreg,i,j = kres by their overall mean value and by taking the inverse distribution, following Eq. 7, we obtain:

- A -1 .
Ererii(Srer) = %[g(s’“ef)] Crepig o With (58)
C'Iefl] E/V[l kref} 6[07 OO) ’ (59)
where ¢} 7.4,7 is the actual representation of the normal distribution and &y describes the uncertainty of the

gain reference. This gain reference (see Fig. 5) can now be applied to individual images via multiplication, which
is faster in processing as divisions. It is important to note that the gain reference is acquired across all detector
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segments altogether and it is to be assumed that the real gain of each quadrant slightly differs from the others.
This results in slightly different k-values for any subset of pixels differing from the full detector, as it is the case
for EELS in particular. At this point, the acquired gain reference is only valid for a specific intensity Sr.y, as
deviating from this intensity necessarily shifts the individual gain values for all pixels due to the non-linearity
of the detector.

The application of a gain reference
Now, that a suitable gain reference has been found, it needs to be applied to images. In general, applying the gain
reference frame results in ratio distributions, whose probability density functions are complicated and for which
the standard deviation is not always defined. For sufficiently low values of k., which is a basic requirement of a
good gain reference, Eq. 7 is valid and the overall Gaussian of the multiplicand becomes quite narrow. So narrow
that is does not change the overall shape of the respective noise distribution significantly, except for slightly
broadening its variance.

With the above considerations, a gain reference like the one displayed in Fig. 5 can be applied to dark frame
subtracted images (see Eq. 51), which leads to the gain normalized image £*, given as:

. IR Z(9(Sa,er)]; ; Saei;] . A0, 207]
gi,~:€ ;i"'greli's”'e ~ _ /A -/ gﬁ‘@[ - ’,J:|+ ~ , (60
J DS,i,j fs J( f) Crefuig - %[g(sref)]i}j B Ereti (Sref) (60)

with ¢}, describing the ‘new’ fixed-pattern noise induced by gain normalization, whereas the gain reference is

printed into the background noise of the detector.

To see how the application of the gain reference influences the different noises, we separate the above
equation into two separate parts, the Poisson distributed signal part and the Gaussian distributed detector
noise part. Starting with the influence on the Gaussian distributed detector noises of Eq. 60, we can assume
a rather homogeneous distribution of the quantum efficiencies across the detector and roughly approximate

-1 -1 Tref . —1 . : :
e e N [ ref? 91, ] i with o2, 5 cf% 5+ k2 - Here, ¢T61f is the mean value of the inverse gain reference

of each specific segment (see Fig. 5). Due to inhomogenieties in the distribution of the gains, these mean values
slightly differ from one. The detector noises are given as Eq. 52. From Eq. 6 follows that:

(61)
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Fig. 5. Gain reference of our USIO00FT-XP 2 detector in the middle, acquired by adding up 30 images under
homogeneous illumination conditions in TEM mode and then subtracting 30 dark frame images with the
same exposure of ¢ ~; ().85 s. The mean intensity of each image was targeted at S, & 7050 counts. Due

to differences in the glue and the fluorescence layer in the manufacturing, the gain reference shows stripes
superimposed to artifacts from the fiber optics. The gain reference is surrounded by the individual frequency
distributions of the gain values in the four detector quadrants Q1-Q4, where each dot represents an interval
of 0.01 around its center. Since the gain reference normalizes with respect to all quadrants, the respective
mean values of the quadrants differ from 1. The standard deviations o ~ 0.067 are similar for all quadrants
indicating a rather homogeneous gain distribution across the detector, however the aforementioned stripes
and artifacts lead to small differences. Overall, the gain distributions are slightly skewed to the right for all
quadrants, as a result of the inversion. Therefore, the overall mean of the inverse gain reference differs slightly
from 1 (see Eq. 7).
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for each of the four quadrants.
Now, that the effect of the gain reference on the detector noise has been shown, it is to show how it influences
the signal noise of Eq. 60. Assuming, for a moment, that the measured image intensity is in close proximity to

(sl

the image intensity of the gain reference, we can approximate LR = Z[d(Srer)], =~ 1 We will further

elaborate on this term in the next section. Thus, we are left with:

_ S el,i,j S' el,i,j
xR,i,j-crif,i,j-g~ﬁ-L@{“ﬁ“} = Pnij- N [1,k$ef]~g-6@{”’/;”’] : (62)

By utilizing the Gaussian approximation of the Poisson distribution (see Eq. 9) and the multiplication of
distributions (see Eq. 6) it can be shown that:

S el,i,j é el,i,j N A
N [1,kfef] g-B- P2 {%} ~g-B-P {%} +,/V[0, k?ef'(g2'5§22)gl7i’j +g2',3-SQ,el,i,j)] , (63)

i.e. the multiplication by the gain reference deviates the expectation value and the variance Se; of the Poisson
distribution by its variance k. ;. Combining the results of Eqs. 61 and 63, we can rewrite Eq. 60 as:

§ij~ 2Rij-9-B-F {%} + A [0, iy krer (9% Saeri+9° B Sﬂ,el,i,j)] +.4[0,205%] , (64)
with the gain normalized detector noise:

0,2
oi’ = (abrff + - ) “0d s (65)
ref

where ¢ is the mean value of the respective quadrant varying the detector noises between quadrants and oy is
the standard deviation of the acquired gain reference frame.

To make the gain reference independent of the signal strength of the measurement, saturation and other non-
linearity effects must be corrected for in both gain reference and signal.

Gain non-linearities

Often, images cover a large dynamic range. Especially in measurements like EELS, we obtain very high intensities
in the zero-loss peak (ZLP) and comparably small signals of interest. To gather enough statistic for the signals,
the ZLP often reaches into the domain, where saturation effects beside other non-linearities are observed. This
leads to deviations between the original and the measured signal intensity. Also, the gain reference, to this point,
is only valid for a limited range around the target intensity it was acquired with. Especially for EELS, this is
undesirable, as the gain reference is only valid for a small portion of the signal. Thus, it is important to find a
general correction for the detector, which linearizes the gain throughout the entire dynamic range.

Adjusting the gains to counteract non-linearities generally changes the noise. To see the actual effects, we need
to reconsider Eq. 64, especially with respect to Zr,q,;j. Due to differences in the thickness in the fluorescence
layer and different quantum efficiencies, some pixels collect more charge than others. Considering a large range
of signals, some pixels saturate more than others, which leads to deviations between the gain reference and the
actual gain distribution represented in another experiment. So, not only the actual measurement but also the
gain reference must be corrected for non-linearities. To compensated with an unknown factor giin,;, 5, defined to
removes the dependency of the gain on the signal level S, linearizing the gain for the entire dynamic range, we
must rescale the intensity of every pixel by its non-linearity correction function. We obtain:

%R o %[glin(ssl,el) . g(SQ,el)]iJ _ %[g]ld -1 (66)
! 3{ [glzn (gref) . g(gref)} %[g]z,J

(%)

Assuming that the gain deviations inside the CCD are much smaller than in the fluorescence layer and fiber
optics, we can approximate the linearization correction gii», to be equal for all pixels. We thus obtain a mean
photon transfer curve (PTC) for the entire detector as the inverse of gyin.

Usually, non-linearities of the detector gain are fitted by a second or third order polynomial as a function
of signal strength g (5'0) =g- (S'C —x —xo- 8% — 23 Sg)“. Here, the coeflicients x1,2,3 represent the fit

parameters. As the signal is subject to different noises, it is better described with the measurement &; ; instead of
S, such that a correction factor is given as:

g-&i,j
guin(§i,j) = : (67)
g (S5 —m1 —w2 &7 — w3 €3)

Note that this correction applies to the original measurement without background subtraction, since the offset
must be considered for the correct total count.
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As the correction factor is obtained by fitting measurements, it is again subject to deviations between fit and
the actual gains. Particularly, as the saturation may vary from pixel to pixel. Based on the previous argumentation
in this work, it can easily be anticipated that these deviations in the gain appear squared in the noise, which
consequently leads to second and forth order terms connected to the Poisson term and to forth and eighth
order deviations in the Gaussian term connected to the deviations induced by the gain reference. To maintain
reasonably clear noise model, we only consider a second order term and neglect the higher ones. Note however
that these deviation of the gain linearization k7,, do not add (much) to the image volatility per se. They rather
alter the linearity of the gain throughout the dynamic range. So, it depends on the difference between intensities
that are compared. For normal imaging as well as for EELS, k7;,, can be neglected and the corresponding noise
term is well below the Poisson noise, as we will see later. However, we require this term for a precision analysis
for the binning of detector noises, where it will appear as a small offset to the uncertainty of the gain reference.

This is the sole reason for its inclusion here.
r_ 91in(§)-€Ds

cor
For a gain normalized and non-linearity corrected image 13 = Gtin(Ercsiorg ) Erer where &y f,0rg denotes
the original measurements used for the gain reference and {ps is the dark frame subtracted image from Eq. 51,
we can write instead of Eq. 64:

corr S el,i,j P A0 b A .
%g‘ﬂ-ﬁ”[%]%/i/[ﬂ, k2‘gz-Sé,ez,i,ﬁk?‘gz-B~Sa,ez,i,j]+W[0, 203 core] » with  (68)

* — 1
0c2l,cor'r ~ §121n : Jd2 and Jiin = W Zglin,i,j as well as k2 = kzef* + k"lQZn ) (69)

4,5

where the factor k includes the uncertainties of the non-linearity corrected gam reference k.. ;+ and the deviation
of the gain linearization ki;,,. We utilized Eq. 6 for the multiplication of O'd corr from Eq. 65 with gi;r,. For the
latter, we neglected the contribution of its variance term, since it depends on the distribution of the signal and
the overall influence is estimated to be quite small.

Another effect, known as ‘brighter-fatter effect’®*%>, describes the increase in the detector PSF with increasing
signal Q — 2 (S) due to diffusion of charge carriers between pixels. This effect leads to the observation that
brighter objects appear larger on the CCD than darker objects, despite being the same size. Following Eq. 37,
describing the smoothing of the noise due to convolution Bconv, and Eq. 22, describing the smoothing of the
noise due to correlation Bcorr, @ broader PSF leads to a reduction of the variance described by the smoothing
factor 8 = Beonv - Beorr and thus to the observation of a reduced smoothed gain 3 - g. Thus, we must rewrite
the smoothing factor 5 — B(.5). This effect is reported to be reduced by binning or summation of neighboring
pixels®, such as it is the case for EEL-spectra in one dimension. As it is impossible to differentiate the gain from
the smoothing within this experimental setup, we speak of a smoothed gain here.

We neglect the additional convolution for simplicity, but describe the effect on the noise by:

Sa,el i,
B BBF

" ~g B Bar- @{ } + A [0, g St + g B B Saas] + X [0, 208 o] - (70)

As we will show in the following evaluation, the additional convolution induced by the brighter-fatter effect is
rather small. It is negligible, even in high-count regimes, where the effect is most pronounced. Its impact on the
variance, however, is important when measuring non-linearity effects with the signal-to-variance method. It
must be corrected for in order to obtain the valid non-linearity correction gi;n (&;,5)%

Binning of the detector

Detector binning is often employed to reduce detector noises. When binning the detector, two or more
neighboring pixels are transferred to the ADC and are cumulatively read out, causing the binned pixels to appear
as one. Relative to signal strength, the detector noises are reduced by binning.

However, due to correlation effects the signal noises change. This is the reason why manufacturers like Gatan
acquire a set of different gain references for the most important binning settings. To maintain consistency, we
focus on post-binning of the images, like it is performed for e.g. EELS measurements. In contrast to regular
binning, post-binning does not reduce detector noises, but it alters the signal noise in the same manner as the
regular binning.

Following Eq. 70, vertically summing V pixel along the columns and horizontally summing H pixel along the
rows, can be written as:

H,V
iy ~ (g B Bor - 9{&%40 K- g® - Sbeiy+k g7 B Bor- Snem+2adcw])- (71)
5 BB N——

K3¥)

1. 2. 3.

Again, we can separate the noise into different parts and treat the summations independently.
Utilizing the addition of Poisson distributions (see Eq. 10) on the first part of Eq. 71 leads to:

S el,i,j Z S(Z el,i,j
Zg 8- Ber- 2|22 =g-Buy  Beruy P | =oL (72)
B Ber 5BF Bu,v - BBF,H,V
i,
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with the column- and row-wise addition of the signal removing some of the noise correlation induced by the
detector PSD. This leads to a reduced smoothing factor 8u,v = Beonv,H,v * Beorr,H,v, where H and V denote
the summed pixels or binning values in the respective direction. As described in Eq. 36, convolution leads to
correlation, which can be described by the Pearson correlation coefficients. According to Egs. 26 and 27, these
coeflicients change under summation. The smoothing due to the convolution Scon. changes according to Eq. 37,
as part of the convolution is removed by summation. Further, the smoothing due to correlation Bcorr changes
according to Eq. 22. As a result, we obtain a change for the smoothing factor 8g,v. The same happens to the
brighter-fatter smoothing Bpr,u,v.

Summing up the variations of the signal introduced by the fixed-pattern noise of the gain reference (see
Eq. 71 1.), however, is more complex, since the column distribution is lost by that summation. As the signal is
not uniformly distributed across a given pixel column or row, some pixels contribute more to the signal than
others. To address this this, we introduce a distribution factor asr,v. Since k2 can be assumed to be rather
homogeneously distributed across the detector, every pixel adds a fraction of k2 equal to its contribution to the
overall signal. So, we can sum up the fist part of the normal distribution of Eq. 71 1. as following:

H,\V H\V H,\V 2
E K '92 . Sglﬁel,i,j =k’ ‘92 . E Sszl,el,i.j = QH,V * (kfef*,H,V + kl%,n) '92 . ( g SQ,E[,i,j) , with (73)
2,3 (W) ©J

2
=kuv
2
HYV A
SQ L
YV = E # . (74)
’ S .
i\d Zzg Qel,i,j

Under typical conditions, the image signal can be considered rather similar between neighboring pixels and for
small binning values, allowing us to often neglect apr, v ~ 1. However, for large binning values, as required for
EELS, ar,v must be taken into consideration.

As the measurement of the non-linearity corrected gain reference k2, e k2, #+,m,v is also correlated, due
to beam correlations and the detector PSE, the same procedure as for the Poisson part has to be applied here,
too. Taking a look into Eq. 57 reveals that k2, #,1,v needs an update for the change in the smoothing factor
B = ﬂcpnv - Beorr, but we observe a change in the expectation value of the non-linearity corrected reference
signal Sy ; as well, due to the summation of pixel intensities during binning. We obtain:

L9 By ZZHJV Srer 230, ijv Giin - 04

2
H,V &x
(9 2.0 50)

2
kref*,H,V = ’ (75)

for the binned uncertainty of the non-linearity corrected gain reference, where gy is the mean value of the
linearization factor ¢iin,s,;, as shown in Eq. 69.

The factor kiin giving the uncertainty of the linearization correction, however, remains unchanged under
summation and thus we obtain k%“/ as defined above.

Similar changes can be found in the summation of the second part of the normal distribution in Eq. 71 2.,
which describes the variation of the Poisson noise by the fixed-pattern noise of the gain reference, which is given
as:

H,V H,V
Z k*-B-Bpr-g° Saeri;=kiv 9> Buyv - Bermy - Z Sa,e1,ij - (76)
i,5 i,

The distribution factor oy, v is not required here, since the noise is independent of the distribution of the signal,
but just a mere variation of the Poisson noise.

The summation of the detector noise 04 corr in the last part of the normal distribution of Eq. 71 3. is
straightforward following Eq. 69, which describes the non-linearity corrected, gain normalized detector noise,
and the summation rule of Eq. 25.

Combining the results of the summation of the Poisson noises in Eq. 72, the summation of the signal variation
in Eq. 73 and the Poisson noise variation by the gain reference in Eq. 76, along with the addition of detector
noises, the vertically binned image and its noises are given as:

H,V &
Zi,j SQ&JZJ‘

N e A . with
g-Buyv - Beruyv [ B ’H’V]

EBinuyv =g Buyv-BeraV P

2

H,V H)V H,V (77)
Chinmy = amy - kiy - an,c,i,j +kirv g Bayv - Bermy - Z 50,c,i,j 2 ZUS,COM ;
4,7 @] 4,7
1. 2. 3.
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where we convert the signal back to counts Sa,c = g+ Sq,e1, as this is how the microscope presents the results.
Note that the row noise 0row,; contained in 04,corr is constant along the rows and thus adds up quadratically.

We consider this our noise model for TEM measurements under binning, from which we obtain the noise
model of a regular image for H = 1 and V' = 1. For the sake of clarity, we provide a concise summary of
the involved variables. g is the overall gain of the detector, which encompasses the gain of the fluorescence
layer gs1 > 1, the gain of the fiber optics gopt < 1, the gain of the CCD detector gccp < 1, and a conversion
gain g. into counts. Due to the broadening of the signal by the detector PSE, the Poisson noise is smoothed
and therefore reduced by a smoothing factor 8. This factor incorporates the smoothing of the noise by the
convolution with the detector PSF Scon. and smoothing that occurs by the effect of the correlation SBeorr
induced by this convolution. Since the width of the detector PSF increases with signal strength, known as the
brighter-fatter effect, we observe a variation of the smoothing that is accounted for by 8pr. As convolutional
effects are mitigated by binning, both 8 and 8gF are functions of the binning values in the horizontal H and
vertical directions V. The expectation value of the signal Sq convolved with the detector PSF €2 in counts ¢ on
the position (3, ), is summed through binning. To recover the original Poisson distribution & of the signal, it is
rescaled by the smoothed gain. Furthermore, we identify three Gaussian distributed .#” noise contributions: 1.
The variation of the signal due to the uncertainty of the gain reference kv which is influenced by the binning
values and the signal distribution factor orr, v, given by Eq. 74. 2. The variation of the Poisson noise resulting
from the uncertainty of the gain reference. 3. The detector noise, characterized by the variance o4, which is
modified by the application of the gain reference and gain-linearization. A factor of 2 arises from the subtraction
of a background frame.

In general, EFTEM does not act like an additional convolution on the image and the noise. As the signal is
splitted into the respective electron-energy loss energies for EFTEM, we discard most of the incident electrons,
changing the effective beam current and thus the beam correlation probability p (see Eq. 43). Without further
changes to the noise model, the smoothing factor 5 would need a reevaluation. In contrast, STEM-EELS
measurements are convolved with the characteristics of the energy distribution of the beam, as we will discuss
later. Note that depending on how one looks at the noise, either with respect to the noise within the image or
between consecutive images, the correlation smoothing factor Beorr( see Eq. 22) must be regarded or discarded
as a component of the smoothing factor 8 = Bconov * Beorr. In general, we can state that the overall uncertainty
of the measurement is given by not considering the smoothing factor for the data correlation SBcorr, whereas
considering it describes the volatility of the noise of an image. This is of special interest for a series of consecutive
EFTEM images or for EELS mapping.

Evaluation of the noise model
To validate the proposed noise model, we will demonstrate how the detector and signal noises behave under
various operations and provide the methodology for measuring the required parameters and factors. For clarity,
we have divided the following section into three main parts: the detector noises, the noises connected to the
signal, and measuring the detector PSE.

In “Section Detector noise”, we describe a method for removing cosmic rays and other artificial spike signals
from the data. This is followed by an analysis of the various components of detector noise, including their time
dependency and correlations, and how post-processing operations, such as applying the gain reference, affect
these contributions. Additionally, we examine the effects of binning on the detector noises in “Section Binning
of detector noises”.

In “Section Signal and fixed-pattern noise”, we present a detailed analysis of the noises connected to the signal.
This includes the acquisition of the gain reference and the fixed-pattern noises arising from the uncertainty
associated with its measurement in “Section The fixed-pattern noise of the gain reference”. Additionally, we
provide an in-depth examination of the brighter-fatter effect in “Section The brighter-fatter effect”, including a
method for determining its impact on measurements. We also investigate the non-linearity effect of the detector
gain with increasing signal strength in “Section Correction of gain non-linearities”, highlighting the importance
of accounting for the brighter-fatter effect in order to achieve a proper correction. Furthermore, we examine
the effects of binning on signal noise and the uncertainty of the gain reference in “Section Binning of signal and
fixed-pattern noises”

Finally, in “Section Beam correlations and the reconstruction of the detector PSF”, we describe a method for
determining the detector point spread function using the signal noise, providing a comprehensive understanding
of the detector’s behavior.

Detector noise

For the evaluation of the different detector noises, images were acquired with zero emission and thus with
no signal measured on the detector. Since unprocessed images do inherit a certain structure (see Fig. 4a),
the following argumentation builds upon dark frame subtracted images that are much more homogeneous.
However, it has to be considered that subtracting two images doubles the variance. All images were cleared of
external counting events such as cosmic rays that accumulate over time (see Fig. 6a). These events appear as
spikes in the image and can be detected as pixels leaving a 50 distance around the mean value of the image (see
Fig. 6b). Since a subtracted dark frame can also contain cosmic rays, the distance is applied to both sides of the
mean. The images were further separated into fractions of read-out noise ocqq and thermal noise otherm( see
Fig. 6¢) as well as row noise 0row,; that occurs as row artifacts (see Fig. 6d). As the thermal noise is influenced
by the temperature of the detector, we cooled it to Tpetector &~ —20° C. By calculating the mean value of the
respective row, it can be observed that the row artifacts seem to be Gaussian distributed around integers (see
Fig. 7b). Considering the standard deviation of the mean, the Gaussian can fully be described by the read-out
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counts/s. Cosmic rays are found as events that are outside by a 50 distance to the mean value of the image

and are excluded from the noise statistics. In (b) an exemplary dark frame subtracted image {ps with an
acquisition time of tacq = 4.75 s is shown with the cosmic rays removed (marked as red patches). To make
them visible to the eye, the dots are exaggerated as 10 times 10 pixel patches. The image was used as acquired
by the Gatan software. By calculating the mean value of each quadrants detector rows, the image can then be
separated into fast changing (c) read-out oy.cqq and thermal noise o¢herm as well as the slow changing (d) row
noise 0row,; Occurring as row artifacts. The images are displayed as a 5o range around their mean.
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Fig. 7. Analysis of a dark frame subtracted image with zero exposure time ¢4cq = 0 s and with cosmic rays
removed. (a) Distribution of the read-out noise orcqq Of the dark frame subtracted image after subtraction of
the rounded row artifacts, with a Gaussian fit (black) superimposed. The same image with the gain reference
applied (red), exhibits a slightly broadened distribution with the standard deviation changing from o ~ 4.03
to o & 4.06 counts. The error bars for both graphs show the deviations expected by the Bernoulli distributed
counts and the chance of calculating a wrong mean value for a row in the row noise. (b) Distribution of the
row noise, with a Gaussian fit (blue) superimposing the central peak. The markers indicate values within an
interval of 0.1 counts around their center. The standard deviation of the Gaussian peak opeqr, = 0.118 £ 0.007
counts is within the 95% confidence interval of the standard deviation of the mean omean = 0.126 = 0.01
counts of the individual rows. This means that the deviations from the integers can be fully attributed to the
uncertainty of measuring the mean value of the rows under the given read-out noise 0rcqq. (¢) Distribution
of the rounded row noise o,ow,; of the dark frame subtracted image (black) and the same image with the gain
reference applied (red). Here, the markers represent an interval of 1 around their center. The distribution can
be approximated by a Gaussian distribution with a standard deviation of ¢ = 0.61 £ 0.03 counts for both
cases. The application of the gain reference has basically no effect on the row noise.

noise orcqa( see Fig. 7a). Thus, it it useful to round the row artifacts to integer values (see Fig. 7¢). By rounding
the row mean values to integers, the error of measuring the wrong mean value can be squeezed to the order
Omean = 4 - 1077 counts, such that it is highly unlikely and statistically occurs only once every few images.
With these separate images, the noise distributions of both can be evaluated. In Fig. 7a, the overall count
distribution of the read-out noise is shown to be approximated by a Gaussian. Since the image was taken with
zero exposure time, it is to be expected that the thermal noise is negligible. By applying the gain reference, the
noise distribution is slightly broadened (see red and black curve in Fig. 7a) according to theory (see Eq. 61).
The row noise distribution in Fig. 7c, however, remains unchanged due to the rounding and the quite narrow
distribution. It is also in good agreement to a Gaussian distribution. We would like to emphasize that, while
being totally insignificant for regular images, the contribution of the row noise 0row,; to the overall detector
noise becomes dominant for summations, e.g. for the total intensity of EEL spectra. We will show this later.
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For the dark frame subtracted image £ p 5, the count distribution is close to a Gaussian distribution. Applying
the gain reference only leads to a slight broadening of the overall distribution.

To get a good approximation of the values for the read-out noise o,.caq and thermal noise o'¢nerm, both must
be separated. As thermal noise increases over time, as dark currents accumulate, we can utilize linear regression
on a time series of dark frame subtracted images {ps. Further, to verify a change in the noise introduced by
the gain reference, we applied the gain reference to the same images. Following Eq. 65, we get to the regression
equation:

Orotat = (Srefian + Oresatt) - (207ead + 20iherm) » With  Otherm o Lark - L, (78)
where the gain reference introduces a multiplication by the mean value ¢ 2 and the variance o2, ¢ of the gain
reference to both the read-out and thermal noises, according to Eq. 6. The mean value and the variance of the
gain reference can be found in Fig. 5.

By comparing the results of both regressions in Fig. 8a,b, it can be seen, that applying the gain reference
changes the read-out noise o,..,4, represented as the offset, and the thermal noise o¢nerm, represented as the
slope of the regression. The change in value due to the application of the gain reference can be fully explained
by the $~* and & values from Fig. 5 and Eq. 78. Only the value for the read-out noises ocqq for Q1 deviates
slightly from the theory. Nevertheless, Eq. 78 provides a good approximation. In Fig. 8c,d, the row noise is given
as the mean value of the row artifacts across all images, where no time dependency is expected. Figure 8c,d might
indicate some kind of different dependency for exposures below a second, which is important for EELS. Possibly
due to some internal mode switching. However, the change in value due to the application of the gain reference
is again according to theory (see Eq. 78).

Eventually, an important property of the detector noise is the correlation as expressed by the Pearson
correlation coefficients (see “Section Noise correlation effects”). In case of a random signal, or white Gaussian
noise, the coeflicients are all zero except for the central element po,0 = 1. For correlation, the coefficients py,,n
are positive and for anti-correlation they are negative. In Fig. 9, the Pearson correlation coefficients of 30 gain
corrected background images with 4. /= 0.85 s are averaged for all quadrants individually after the noise was
separated into 0reqd and o¢perm ( compare Fig. 6¢) as well as row noise 00w, j( compare Eq. 6(d)).

The autocovariance function (see Eq. 28) of the dark frame subtracted image {ps yields the Pearson
coefficients multiplied by the variance 02,;,; of the image:

K (€ps) = 0totar - p(6D5) (79)

where we obtain py,,, as the elements of p(€pg). To further separate the read-out noise from the thermal noise
(compare Eq. 78), we subtracted the values o3,,,.,( see Fig. 8) from the central element O ial - P00, AS WE
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Fig. 8. (a) Linear regression of the sample variance o7,,,; over exposure time of a series of dark frame

subtracted background images, according to Eq. 78, without the gain reference applied. The graphs follow the
same color scheme of Fig. 1. The read-out noise 0=, is given as the offset and the thermal noise o2,.,.,,, as the
slope of all quadrants. The uncertainties of the results are derived from the standard error of regression cser
and a 95% confidence interval. The detector was cooled to a temperature Tpetector & —20° C. (b) By applying

the gain reference, the values change according to Eq. 61. (c) The row variance can be found as the mean value

of the series and (d) does not change with the application of the gain reference due to rounding effects. Below
the graphs, the table shows the noise sample variance of the read-out noise 02, 4, thermal noise 63, and
TOW noise 07, ; of the respective quadrants. These values are derived from the regression analyzes of the
above graphs. For each noise, the table shows the values of the dark frame subtracted images (DF subtr.) and

the same images with the gain reference (Gain Ref.) applied. We further calculated the theoretical values of the

noises for the images treated with the gain reference (Theory), based on the values found in DF subtr. and the
values from Fig. 5, according to Eq. 78. The values are in very good agreement, but we noted a small deviation
in in the read-out noise of Q1, which is slightly outside of the measurement uncertainty.

Scientific Reports |

(2025) 15:3815

| https://doi.org/10.1038/s41598-025-85982-4

nature portfolio



www.nature.com/scientificreports/

Q
~

O

) x103 (C)

o

Vertical Lag n [Pixel]

-10

-10
5 ’
0.6
0 04
5 0.2
10

Horizontal Lag m [Pixel]

3
ial
1 5 2 Q2 -10 1 1.2 ey
B EX fay = 3 1
08l 5 %68 0,529 [T o<l t Q2
K °F e A5 08 e
& 2 4 6 8 10 fc 6= 06 . Q4
y . = &, )
g Oo\gemcal Lag n [Pixel] g 0 0.4§ < 04 ] o
] _ . T § o 8
§ 5 Orge=* - £ B 02§ = 02 g .
14 S, .0.02 Q1 (I 2 0 9 o o
@ o = i Q2 > ©
o g EFoomc + 0o @ 0.2
N i 10 =Y
5 0 5 10 ] 0 5 0 5 10 012345678910
Horizontal Lag m [Pixel] Horizontal Lag m [Pixel Vertical Lag n [PlXel]

Fig. 9. (a) Pearson correlation coefficients py, », of the read-out noise o2, for the Q1 detector quadrant,
indicated by the red box following the color scheme of Fig. 1. The images used for the autocovariance analyzes
were cleared of the row noise (compare Fig. 6¢) and averaged across 30 gain corrected background images with
tage = 0.85 s. The thermal noise ¢2,.,.,,,» which we expect to be uncorrelated, was subtracted from the central
element o2, - po,o before normalization. The black arrows indicate the position and direction in which (b)
depicts the line profiles for all four quadrants across the respective coeflicients. The values indicate a small anti-
correlation in the horizontal direction, whereas the vertical profiles indicate close to no correlation effects. (c)
Pearson correlation coefficients pim,» of the row noise orow,; ( compare Fig. 6d) for the Q1 detector quadrant,
averaged across 30 background images with the same acquisition time as before. Again, the red box indicates
the quadrant Q1. The black arrow indicates the position and direction in which (d) the line profiles for all

four quadrants are shown, just like before. The coefficients indicate a strong correlation in the row noise. This
phenomenon is commonly known as 1/f-noise and is typical for CCD cameras.

expect the thermal noise to be uncorrelated and thus shaped as a Dirac delta peak é. By normalizing with respect
to the central element, we obtain the Pearson correlation coefficients of the read-out noise.

The correlation coefficients for the read-out noise oreqaq in Fig. 9a,b indicate that there is a small anti-
correlation in the horizontal row direction, whereas the noise in the vertical column direction seems to be rather
uncorrelated. As the matrices derived from an autocorrelation process are necessarily Hermitian, as described in
“Section Noise and convolution’, the Pearson correlation coefficients p1,n = p1,—n and pm,1 = p—m,1, which is
why we only show the positive coefficients here.

In Fig. 9¢,d, the correlation coefficients of the row noise orow,; show total correlation in the horizontal row
direction, which is not surprising as all the pixels have the same value (compare Fig. 7c). In vertical direction,
the coefficients reveal a strong correlation, which is typically described as 1/f-noise and is often observed in CCD
cameras®.

From the Pearson correlation coefficients in Fig. 9, we can calculate a factor Bcorr by employing Eg. 22, to see
how correlation changes the measured variances. However, the change induced by correlation to o,; is two
to three orders of magnitude lower than the uncertainty of the measurement, so it is negligible. With the values
obtained from Fig. 9c, we calculate the change to 07,,, ; to be one order of magnitude below the uncertainty.

Binning of detector noises

In the following, we will show how a post-processing binning, like it is used to form EEL spectra, changes the
variance of the noise. For this, we added up an increasing number of neighboring pixels to form new ‘binned
pixels, which are further analyzed. As the number of pixels is not divisible by e.g. three, we cropped the acquired
images according to Fig. 1c. Since this operation changes the regarded part of the detector, we cropped the
images in both directions and took the mean values of the variances.

Similar to Fig. 8, we used the regression on the same images to separate read-out noise 0eqq and thermal
noise 0'¢therm in a series of increasing binning values. In Fig. 10, we plot the resulting variances, where we binned
H columns horizontally along the rows, shown in (a) and (d). We further binned V rows vertically along the
columns, shown in Fig. 10b,e, and along a diagonal, where we binned columns and rows HV equally, as shown
in Fig. 10d-f.

Under summation, the noise variance changes due to the covariances between the pixels, according to Fig.
25. We obtained the reconstructed noise variance from the Pearson correlation coefficients (see Fig. 9), shown
as the colored lines for all quadrants in Fig. 10, to be within the uncertainty (shown as a colored shade) for the
measured variances. The graphs indicate that the increase of both read-out and thermal variances grows nearly
linear with the increasing number of added pixels. This is expected, as the correlation coefficients are small.

The same analysis can be conducted for the row noise 0,ow,; in Fig. 11. Since the mean value is identical for
all pixels in a row, Fig. 11a reveals a quadratic increase of the noise variance under summation in this direction.
In contrast to the read-out and thermal noises, we found a significant discrepancy between reconstruction and
measured variances under binning for Q1 in Fig. 11b. Most likely, this occurs due to the high correlation of the
noise and the considerably smaller sample size compared to the other noises. As the value only changes between
rows, this reduces the sample size per image to a total of 1024 values per quadrant instead of 1024 times 1024 for
the others. However, we think that the results of the reconstruction for the other three quadrants fit quite well.

In Fig. 11c, we obtain a cubic increase, when binning rows and columns equally. Again, we observe deviations
due to the effects described in (b). One can easily see in comparison to Fig. 10 that this noise contribution
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Fig. 10. Analyzes of the read-out noise 02, and thermal noise variance o7,,,.,,, of gain normalized images
under post-process binning of neighboring pixels. The lines represent the reconstruction using the Pearson
correlation coeflicients of Fig. 9 under binning. This is achieved following Eq. 26, which yields the variance

of the binned image, as well as by utilizing Eqs. 27 and 22, which allow to calculate effect on the measured
variance by the correlation of the binned image. The dots represent the results of the regression analyzes
similar to Fig. 8. The colors indicate the respective detector quadrant and the colored shades depict the 95%
confidence interval around the measured values. In (a), the read-out noise variances o2, of a horizontal
binning process are shown in dependence of the binning value H. In (b), the vertical binning in dependence of
the binning value V is displayed and in (c), the diagonal binning is shown, where rows and columns HV were
increased equally. In (d-f), the summations of the thermal noise 02, are shown using the same binning
values as before. All reconstructions are in good agreement with the regression analyzes. However, the thermal
noises seem to be underestimated by the regression analyzes that lead to the dots. As (d) and (e) show a linear
increase of the thermal noise variance within tolerances, one would expect a quadratic increase for the binning
in two directions. However, for higher diagonal binning values HV bigger than 10, the regression analyzes
shows a discrepancy to this model.

becomes dominant for higher binning values. So far, we have shown that our model for the binning of detector
noises in all directions is in good agreement with the theory shown in “Section Binning of the detector”.

Having shown that the detector noises behave according to theory, it is yet to be shown, how signal and fixed-
pattern noises behave under different operations and how they are affected by binning in order to confirm our
noise models for binning (see Eq. 77).

Signal and fixed-pattern noise

To evaluate the signal and fixed-pattern noises, a very homogeneous signal is needed, which can be achieved in
TEM-mode by spreading the beam disc at low magnification. All following signal measurements were performed
at 200 kV accelerating voltage. To further reduce variations of the signals mean value, a new gain reference is
acquired prior to the experiments. Afterwards, the measurements are carried out without changing the beam
parameters. By employing this approach, we isolate the variations in the signal to be solely caused by Poisson and
fixed-pattern noises. These noises are superimposed with the detector noises, which are thoroughly described in
the previous section. We begin our investigation of the signal noises by analyzing the gain reference..

The fixed-pattern noise of the gain reference

For the gain reference, we acquired 30 homogeneous signal &,f,sr and dark ﬁ;ames &ref, DR, both with the
acquisition time of tacq = 0.84 s. This results in a mean target intensity of Sycf,. =~ 7050 counts for the
measured signal. The dark frames &y, pr were recorded before any signal hit the detector to avoid delayed
fluorescence or phosphorescence of the scintillation layer. The dark frames were subtracted from the signal
frames:

Eref,5ig = Eref,sF — Eref,DF , (80)

to obtain images that are solely consisting of the signal being altered by the distribution of quantum efficiencies
superimposed by noise. For further analysis, we acquired an additional 30 pairs.

From the first 30 pairs, we determine a gain reference &rep = $ref.Sig/5,. ;.. according to “Section The
acquisition of a gain reference”. The mean intensity of the electrons can be converted into counts Sref,c = ¢ * Sref,
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Fig. 11. Analyzes of the row variance 07,,, ; of gain normalized images under post-process binning of
neighboring pixels. The lines represent the reconstruction using the Pearson correlation coeflicients of Fig.

9 under binning. This is achieved following Eq. 26, which yields the variance of the binned image, as well as
by utilizing Eqs. 27 and 22, which allow to calculate effect on the measured variance by the correlation of the
binned image. The dots represent the results of the regression analyzes similar to Fig. 8. The colors indicate the
respective detector quadrant and the colored shades depict the 95% confidence interval around the measured
values. In (a), the row variance 00w, of a horizontal binning process is shown in dependence of the binning
value H. In (b), the vertical binning in dependence of the binning variable V and in (c), the diagonal binning
is shown, where rows and columns were HV were increased equally. The Pearson reconstructions generally are
in good agreement with the regression. However, the regression analysis of Q1 leading to the red dots, shows a
slight deviation to higher values.

where g is the gain of the detector and S, is the original signal in electrons. As described in Eq. 57, the k. s
-value describes the uncertainty of the gain reference. Subtracting two gain references, acquired with the same
mean signal, therefore allows to determine the k,.s-value in dependence of the target signal strength Sycy c
using the standard deviation (SD) of the difference image between both. By averaging an increasing number w
of difference images with the same target intensity, this approach allows to check Eq. 57. We choose to increase
the signal strength by adding up difference images of a fixed intensity rather than increasing the exposure time to
avoid non-linearities, which could alter the relation between pixels, as described in “Section Gain non-linearities”.
By increasing the number of summed frames w, we obtain the added pure-signal frames
Eref,sigaw = p_,, Eref.sig and consequently a gain reference &refw = Eref.sigw/y " Spep., according to
“Section The acquisition of a gain reference”. For a gain reference, the uncertainty k.. is determined as:

k _ SD {57‘6]“,111,1 - gref,w,Z}
e 2 ’ (81)
2 (1 + Uref,all)

divided by /2, since the noise of both references is considered, and by the deviation of the quantum efficiencies
1+02, #.a11> Which alters the noise according to Eqs. 57 and 6. As we do not use the inverse gain reference for

our analysis (compare Eq. 78), we set the mean value ¢ = 1. To get the best results, we increased the statistics by
averaging the respective k., -values utilizing all other acquired images, too.

The uncertainty of measuring the true gain reference comprises a part that depends on the Poisson noise
connected to smoothed gain 3 - g, where g is the gain and 3 describes the smoothing of the noise variance by
convolution and correlation, according to Eqs. 37 and 22. The other part of Eq. 57 depends on the detector noise
o4. In Fig. 12a the standard deviation of the difference images ky.s is shown as a function of the summed up
mean signal ) Sy, of the utilized gain references, displayed as black dots.

We obtain the detector noise as the standard deviation of the difference frames of the acquired backgrounds
03 = 8.77 4 0.01 counts. One can compare this value with a combination of the values from our previous
measurement in Fig. 8, added according to Eq. 52. This results in 04 = 8.74 &+ 0.06 counts, which is in good
agreement not only with the previous method, but also with the value determined by the fit of the k... s -value. By
knowing the detector noise, we can rearrange Eq. 57 and obtain:

2w T )
Zw gref,c '

the smoothed gain 8- g ~ 1.5512 £ 0.0002 as the mean value across all summed up difference pairs. With
both the smoothed gain and the detector noise, we can calculate the theoretical value of ks in dependence
of the signal, according to Eq. 57. The resulting red curve is shown in Fig. 12a, where it is observed that the
difference between the curve and the values obtained from Eq. 81 are insignificant. The difference between both
are displayed in Fig. 12b as a residual plot. Considering the high precision of the experiment, we can confirm Eq.
57 as valid. By adding up 30 images for the gain reference shown in Fig. 5, we obtain a value for the uncertainty
of krey = 0.0027111 £ 0.0000002.

ﬁ g = STﬁf,c . (k?ef,w -2 (82)
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Fig. 12. (a) The k,.r-value as the standard deviation of the difference of two gain references according to Eq.
81 as a function of signal strength. The signal strength was increased by summing up w frames with a target
intensity of g - Srey,c = 7050 Counts. By fitting Eq. 57 to the data, the smoothed gain 3 - g of the detector can
be found as a parameter knowing the variance of the detector noise 3. The resulting curve is shown in red. To
demonstrate the validity of the model (b) shows the residual plot of the difference between fit and measured
data, which indicates no significant deviation. The errorbars are mainly given as the uncertainty of the standard
deviation of the difference images from the signal and background frames. In (c) the autocovariance function
resulting from Eq. 83 of the gain reference as acquired from 30 signal and background frames is shown, where
the central element gives kfe ¢ Comparing the ke s-values from method (a) k = 0.0027111 £ 0.000002

with method (¢) £ = 0.0027101 £ 0.0000002, according to Eq. 83 shows marginal differences most likely
occurring due to the restriction of Eq. 41. To get a correct comparison between both methods, we altered (c) by
a smoothing with Eq. 22 due to the correlation.

As the detector correlates the signal between pixels, we also observe the pixel values of the gain reference to
be correlated. Utilizing the autocovariance function from Eq. 28 allows to determine the Pearson correlation
coefficients multiplied by the variance of the gain reference k£ in Fig. 12c.

As variances are additive, we can simply add and subtract autocovariance functions from each other and try
to rebuild Eq. 57 with them. By subtracting two dark frame subtracted (pure-)signal frames &,.c ¢, 5i4 from each
other, we obtain the difference signal image &y, ps to inherit twice the noise variance of the signal and four
times the detector noise of the dark frame (see Eq. 80). Due to the subtraction, we obtain a mean value close to
zero for all pixels, which is necessary for determining the autocovariance function. Since we aim to rebuild Eq.
57, the autocovariance function must be corrected for two times the detector noise of the dark frame, which
can easily be found by the autocovariance function of a difference image of two dark frames &,.f,p5. So, by
subtracting both autocovariance functions K (&ref,ps) — K (§ref,0B), We obtain the correct relation between
signal and detector noises needed for Eq. 57. Similar to Eq. 81, we need to correct the noise for the quantum
efficiency variation. To determine both, variance and Pearson coefficients of the gain reference, we repeat the
process as described above, until all signal and dark frames used for the gain reference have been used for the
respective autocorrelation functions and add them following:

(KT (e, ps)—K(Eref,DB)) .
kzef “p (§T6f) = Zw( )Z S’Tef . ) with grefyDS = grefvsig,l - g'requng (83)

2
1+O_7‘ef,a,”

and §'ref,DB = Eref,DF,l - "Sref,DF,Q ;

where Kt denotes that all negative entries of the autocovariance function were set to zero, in order to correct
for Eq. 41. Since the detector noise exhibits some anti-correlation effects leading to negative entries in the
autocovariance function (as shown in Fig. 9), we decided not to correct these values of K (cf,p5). Summing
up w pairs, contributing to the gain reference, and dividing by the summed total intensity reveals Fig. 12c and a
krey ~ 0.00271.

The brighter-fatter effect

Expanding on the idea of Eq. 83, in a next step, we try to obtain the autocovariance function of the signal
itself using Eq. 64. Again, all autocovariance functions must be of zero mean for all pixels for reliable results.
We can rebuild Eq. 64, if we take the autocovariance function of a dark frame subtracted and gain normalized
homogeneous signal frame with its mean value subtracted £ (§" — Sc). By doing so, we see that again we must
subtract the noise variance contribution of twice the dark frame, which we obtain as the autocovariance function
of the dark frame difference image K ({,cr,pB), as defined in Eq. 83. Further, we must subtract the noise of the
gain reference altering the signal. We multiply the autocovariance function of the gain reference K (&) by the
mean signal S... Eventually, we divide by (1 + k2, f) to correct the signal from the alteration of the Poisson noise

by the gain reference.
This procedure allows to calculate the smoothed gain and its Pearson coefficients as:
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+ *—S.) — S L. + —
K Esig) (§s¢g) , with K (€sig) = K* (& = 8c) = Sc- K (§res) = K (rer.pB)
Sc (1 + kfef)

/Bcon'u g-p (gSig) = . (84)

Again, Kt denotes that all negative entries of the autocovariance function were set to zero. The resulting
autocovariance function yields the smoothed gain 3 - g as its central element, shown in Eq. 84(a). For the
additionally acquired signal frames, which have the same intensity as the gain reference, we obtain a smoothed
gain value 3 - g ~ 1.550, slightly smaller than predicted by Eq. 83, which was 3 - g =~ 1.551. This difference,
however, can be explained by the restriction of Eq. 41.

Normalizing the autocovariance function in Fig. 13a with respect to the central element yields the Pearson
coeflicients. Successively increasing the exposure times of the signal frame allows for a comparison of the
smoothing factors 5 throughout the intensity range. By following the idea of Eq. 37 that the smoothing is
induced by the convolution with a detector PSE, one can easily imagine that a broader PSF leads to an increased
smoothing. Adding up the Pearson coefficients, allows to determine the smoothing factor Bcon.

Following Astier et al.®%, we added up the Pearson coeflicients of only the neighboring pixels, marked in
red in Fig. 13a, to avoid noise in the higher coefficients. We obtain the relative change of the brighter-fatter
smoothing factor Spr in Fig. 13b, relative to the intensity of the gain reference, which we normalized to 1. This
allows to describe the Sp r factor to model the smoothing with respect to a fixed reference point, making further
analysis easier to understand. For very low intensities, we observe a sharp decrease of the smoothing factor
indicating an increase of the detector PSE A reason for this behavior could be an imperfect charge transport,
where a small amount of a charge carriers belonging to a given pixel is read-out into its neighbor. This leads to
an increased correlation between them®. Further, we observe the expected brighter-fatter-effect building up for
higher intensities, as charge diffusion into neighboring pixels increases®>. We found the Padé approximation®’,
an extension of the Taylor series, of order [4/5] to fitting the signal strength dependency of g r quite well (see
red curve in Fig. 13b).

The smoothing by the brighter-fatter effect is given by a squared Gaussian kernel, resembling the PSE. So,
by using the values from Fig. 13b, we can reconstruct the brighter-fatter PSF by reversing Eq. 40 and utilizing
Eq. 37, which yields the smoothing coefficient as a function of the Pearson coefficients. We can estimate the
brighter-fatter PSF for e.g. a 30k counts high intensity spike signal, modeled by a Dirac delta. For this specific
signal strength, we obtain a slight broadening resembled by the PSF in Fig. 13¢c, with a standard deviation of
osr ~ 0.27 pixel or equivalentlya FWHM =~ 0.64 pixel. Summing up the peak as in the standard procedure for
EELS measurements, reveals Fig. 13d, where we show the change from to original Dirac delta peak signal to the
broadened signal. We observe that for this specific signal, a total of 75 counts migrates to neighboring channels
due to the brighter-fatter effect. A value that is totally negligible considering the Poisson noise connected to such
a high signal and the width of a typical ZLP.

Correction of gain non-linearities

With all this, we can estimate the non-linearity function of the detector, following Eq. 64. The correction
depends on the images before dark frame subtraction &;,; to include all offsets and is applied pixel-wise, because
of large deviations in the gain distribution leading to a spectrum of different intensities within a single image.
Assuming that the non-linearity function is similar for all pixels and the gain distribution is mainly altered by the
fluorescence layer and the fiber optics, the goal is to determine the correction according to Eq. 67, which corrects
the gain in both the image and the gain reference. As the gain is expected to change after the correction, we need
to determine four fit parameters: 1, €2, 3 and the smoothed gain 5 - g.

(@) .=(b) 101 (c) - w00 (d) 40
— 3 T FWHM,__ ~ 0.64 Pixel
° S 5t X - BF fory 20
X 5 o = 1005 a 0's 8
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Fig. 13. (a) Autocovariance function of the signal according to Eq. 84. The central value, altered by Eq. 22 due
to correlation, yields 3 - g = 1.55025 £ 0.00002. The red box marks the nearest neighbor coefficients that
were used to calculate (b), which depicts the relative change in the smoothing factor Bcon» when changing the
intensity of the signal relative to the signal of the gain reference. The red curve depicts a Padé approximation
of order [4/5]%. It can be observed that the smoothing factor decreases sharply for very low and decreases
rather linearly with increasing intensities. In (c) the PSF of the brighter-fatter effect is shown for a spike signal
of 30k counts. The PSF was reconstructed by the smoothing value of Bpr ~ 0.995 counts obtained in (b), by
reversing Eq. 40 and utilizing Eq. 37. In (d), we show the effect under vertical summation, as it is performed
e.g. in EELS. It can be seen that the effect is negligible and well below the expected Poisson noise, as only 75
counts migrate to the neighboring channels as a result of the brighter-fatter effect.
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In a series of images with homogeneous signal distribution and increasing exposure times, the total variance
Ototal Of the images can be obtained via the sample standard deviation. It is expected to follow Eq. 70, from
which we can derive a formula for the total noise variance 02,141 Of the image, depending on the mean signal
strength S, in counts:

Utzotal = (1 + kQ) : /BBF : B g SC + kQ ) SS + 2g§,cor'r . (85)

where k% = szef + kfy,, is the uncertainty of the gain reference and the uncertainty of the linearization
correction and 8 = Beonw - Beorr yields the smoothing factor of the measured gain 3 - g. Further, it is important
to take the brighter-fatter effect Spr into account, since we regard a large range of signal strengths. The aim
of the following minimization is to find a correction function g (;,;) following Eq. 67 that we apply to all
contributing images of the gam reference &0 i = Guin (§refiij) - Eref.i,j to correct it. By further applying it to
the gain normalized image 51 7" = guin (&i,7) - & ; that inherits the corrected gain reference, the linearization
minimizes the difference of the functional:

* * Ox * * 2
argmln Z Utotalz_ 1+k 2) ,BBF,BQ 'Sc,z_k: 2 ch_zo-dcc'rr) ’ (86)

x1,22,23,69

across the entire intensity range with Z different intensities, in our case 160 images. We marked all variables
that are changed in this minimization process with an asterisk 4. First, the mean signal strength of the image

(in counts) S* = M ~ ZM N Guin (&i.5) - &7 ; changes with the linearization S, =g- S, asit encompasses

the gain g that is to be linearized. Second, changing the gain automatically changes k. s ( see Eq. 57), as the gain
is contained in the uncertainty. Third, the detector noise changes according to Eq. 69. Eventually, the sample
variance of the linearization corrected image 0.3, = VAR { giin (&i,5) - & j} changes due to the changed

noise contributions.

To further avoid correcting all signals to zero, which indeed would be the minimum of the functional, we
must restrict the correction function in Eq. 67. This is achieved by normalizing the correction function in Eq.
67 by the value of the correction function at the mean signal strength of the gain reference frames giin (rey).
Therefore, all signals are corrected with respect to the actual gain at that specific reference signal.

By iteratively choosing z;, x2, 3 and - ¢ as fit parameters in Eq. 67, one eventually finds an optimal
linearization correction for the gain, which minimizes Eq. 86 across the entire intensity range, as shown in Fig.
14a.

Using the autocovariance function on the corrected gain reference frames and on the additionally acquired
signal frames of similar intensity, we obtain both the gain and k-value for the non-linearity corrected images
k =~ 0.002714 and g = 1.5544, similar to Figs. 13a and 12c, which we can compare to the values of the regression
fit in Fig. 14b. Here, we observe only small deviations. The residual plot Fig. 14c shows the differences between
fit and data to be randomly distributed around the fit, showing that the applied correction really linearizes the
acquired data across the entire intensity range.

However, to show that this correction actually corrects for the gain non-linearities of the system and not
for some other effects, we conducted a second experiment some days apart. Again, we acquired a series of
homogeneous signal frames with increasing exposure times. In contrast to the previous technique, where we
utilized the noise properties of the signal in dependence on the mean value, we decided to use the mean value of
the signal in dependence on the exposure time.

By employing this approach, we can completely ignore the brighter-fatter effect, as it does not alter the mean
value of the signal but only the noise - carrier diffusion preserves the total amount of counts and thus the mean
value. In this setup, we require the signal strength to be constant over time, such that we observe a linear relation
between signal and exposure time. Deviations from the linear model can then be attributed to non-linearity
effects. The problem with this technique is that the signal strength is not constant over time, but is affected by a
decrease of the beam current over time.

To minimize this effect, we use a bracketed repeat-exposure (BRE) method to acquire a reference frame with
a fixed exposure time of 1 s in between measurements, e.g. 0s,15s,15,25,15,3s,1s,4sand so on, and use the
1 s reference frames to correct for the changes in beam currents. To make deviations from a linear model easy to
track, we used the region below 6600 counts to fit a sloped line to the respective data and subtract it. Thereby, we
obtain the original relation as acquired (yellow) depicted in Fig. 14d, as corrected by the beam intensity decrease
(orange) and additionally corrected by the non-linearity curve obtained in Fig. 14a (black). As can be seen, the
correction curve linearizes the gain of this second measurement as well. We further fitted a sloped line (black) to
the saturation corrected data. This slope is not significantly different from zero, which shows that the correction
Fig. 14a indeed corrects for gain non-linearities and saturation effects.

We would like to note that the second experimental setup yields significantly larger deviations than the
previous noise method, which we therefore consider as the better option. Again, we would like to point out that
the non-linearity correction and the brighter-fatter effect are similar in magnitude. Thus, not having corrected
for it in the noise-method would have lead to a significant overestimation of the non-linearity correction, which
would draw visible effects in Fig. 14d. Everything fitting together so nicely is a good indication that the applied
corrections are indeed valid.
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Fig. 14. (a) Non-linearity correction function from Eq. 67 as a result of the minimization of Eq. 86. The

fit parameters are provided within the graph. (b) The mean value of the corrected signal in dependency of

the variance of the corrected signal and (c) the residual plot of the difference to the fit. (d) To show that the
gain non-linearity correction actually works as intended, a second measurement was conducted by using the
bracketed repeat-exposure (BRE) method. In contrast to (b), we analyzed the mean value of the image (without
dark frame subtraction) as a function of the exposure time. To pronounce deviations from a linear model that
we aim to archive, we used the region below 6600 counts to fit a sloped line to the respective data and subtract
it. The uncorrected original data (yellow) shows a drop in value with increasing exposure time relative to a
linear increase. After correcting for deviations in the beam current (orange) by the BRE-method, the drop is
significantly reduced but still observable. Applying both, the non-linearity correction from (a) and the beam
current correction, leads to the desired linear behavior, where the difference to a linear fit shows randomly
distributed deviations with increasing time. A linear fit across the entire range of the data, shown as the black
line, shows no significant slope within tolerances.

Binning of signal and fixed-pattern noises

So far, we have shown that our model for the binning of detector noises is in good agreement with the theory
shown in “Section Binning of the detector”. As a final step in verifying our noise model, we need to show
how the signal and fixed-pattern noises add up under binning. Adding these noises as a result of binning
primarily affects the smoothing factor 8 — Bu v, with 8 = Beonv * Beorr,» and Bpr — BBr,u,v, With
BBF = BBF,conv * BBF,corr, Which both change the measured gain of the detector (see Egs. 26 and 27). Since
both 8 and Bgr act on the gain as a smoothing factor, we combine both into a new 5* = 3 - Bpr. It follows
that part of the convolution is removed in accordance to Eq. 37 as a consequence of binning. Therefore, the
correlation of the data changes with Eq. 22.

To show the effects of detector correlation on the binning of pixels, we post-binned the data shown in the
regression Fig. 14b with respect to the rows and the columns. Binning with values, which are not a divisor of
2048, leads to a remainder of pixels on one end of the detector. These pixels are discarded (see Fig. 1c). We
take the average of the standard deviation of images binned both ways, front-to-end and end-to-front, in such
cases. Smoothed gain 5* - g and the k-value, describing both uncertainty of the gain reference and the gain
linearization k% = kfef* + k7, are then parameters of the quadratic regression fit that can be plotted as a
function of binning,

Higher exposure times, as were required for the non-linearity correction, were left out due to the increased
number of cosmic rays (see Fig. 6). Replacing cosmic rays and their neighboring pixels (affected by the detector
PSF) by the mean signal value of the image, causes the correlation of data to increase. Because of this, we decided
to only use 1/5 of the total range of the detector, corresponding to an exposure time of around 2 s, where we
expect less than 100 of such events. Further, we avoid larger uncertainties of the non-linearity correction, which
might change the slope or curvature of the fit. Still, the regression analyzes contain 113 different intensities for a
high precision measurement.

In Figs. 15a-d and 16a-c, we show the resulting gains and k-values of the regression fits as a function of
the binning value in horizontal H, vertical V and diagonal direction HV, where we binned in both directions
simultaneously. In red, we show the reconstruction solely based on adding the Pearson correlation coefficients
(as described in Eq. 27) of the autocorrelation functions, shown in Figs. 12c and 13a. Additionally, the correlation
effect 37, was calculated using Eq. 22. We provide the differences between both methods in Figs. 15d-f and
16d-f in the lower rows.

The graphs in Fig. 15 demonstrate that the reconstruction is a good estimator to determine the gain under
binning, as the difference between the reconstruction via Pearson coeflicients does not differ significantly from
the regressions. We can thus confirm the summation in Eq. 72. Especially, we would like to emphasize that in
Fig. 15¢, we observe a huge increase in the gain for higher diagonal binning, approaching the total intensity
measured on the detector. Considering that a useful detector is expected to have a rather narrow PSE this is a
contradiction at first glance, which we will resolve in a moment. For Fig. 15a,b, the gain value seems to approach
a constant value, which is expected.

Further, to show the necessity of regarding the 37, coeflicient (see Eq. 22), the same reconstructions
without accounting for 37, are shown as the black dashed line for (a-c) and can be seen to overestimate the
gain, especially for the diagonal binning (c).

In Fig. 16, the development of the k-value is shown under binning (green curve). The signal is homogeneously
distributed across the detector and thus we obtain the distribution factor o ~ 1( see Eq. 74), making the
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Fig. 15. (a-c) The smoothed gain 5 - g, with 8 = Bcorr - Beonw is depicted as a function of binned pixels,

as described in Eq. 72. The blue dots represent the results based on a regression analyzes, similar to Fig. 14b,
but with binned pixels. The red line displays the reconstruction, based on the Pearson correlation coefficients
from Fig. 13a, following Eq. 26. Since binning changes the correlation within the data, we calculate the impact
of it on the smoothing Scor by Eqs. 27 and 22. The black dashed line represents the same reconstruction,
but without regarding Bcorr. The orange dashed line represents the reconstruction with the beam correlation
corrected Pearson correlation coeflicients. The results are shown for (a) horizontal binning with the binning
value H (b) vertical binning with the binning value V and (c) diagonal binning along horizontal and vertical
direction equally HV. It can be seen that both, beam correlation and Bcorr, are necessary to find a good fit to
the regression data. In the lower row (d-f), we provide the difference between both, the regression and the
reconstruction methods. The shades depict the uncertainty within a 95% confidence interval, with again the
red line representing the same reconstruction as in the upper row. It can be seen that the reconstructions via
Pearson coefficients are in good agreement with the regressions.

addition as found in Eq. 73 easier. As described in “Section Gain non-linearities”, we observe an offset of the
k-values obtained from the regression, relative to the reconstruction of the autocovariance function (red curve).
This offset represents the uncertainty of the gain linearization ky;,,. Correcting the saturation and other non-
linearities is limited to the precision of the measurement and the applicability of the model. Small deviations
from the real gain non-linearities lead to a small increase in the noise, but as these deviations are not correlated
between pixels, we obtain no observable change for higher binning. Theoretically, this offset should be a constant
independent of the direction of binning. Here, we calculate ki;, based on a regression fit of the difference
between the coefficients found by the mean-to-variance plot and the reconstruction by the Pearson coefficients.
The latter must necessarily satisfy Eq. 41, as discussed previously, but mathematically it is unclear where the
deviation in the Pearson coefficients manifests and thus the values might be more compromised in one direction
than the other, which would explain the small deviations. Nevertheless, the deviation is so little that it accounts
for only a few variance counts on the maximum intensity of the detector (without binning). Again, as ki acts
on the gain linearity, it acts on the difference of the intensity of signals. Considering a maximum signal of ~ 65
k counts, we see that across the entire dynamic range of the detector, k;;», adds a maximum of 15 counts to the
overall uncertainty of the measurement. This is well below the Poisson noise of that signal with 400 counts for
the standard deviation. As images often consist of small gradients forming structures, one can easily see that ki,
is negligible for imaging.

We can thus confirm the summation Eqgs. 73 and 76, as the results would otherwise deviate significantly. In
total, we have shown that the binning derived in “Section Binning of the detector”, based on the changes in the
smoothing factor 8*, are according to theory.

We believe that the above results provide evidence that there is a good agreement between the shown
reconstruction based on the autocovariance functions and the regression analyzes. It can therefore be assumed
that the autocovariance function resembles the ‘true’ correlations within the data.
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Fig. 16. (a—c) The k-value is displayed as a function of binned pixels, as shown in Eq. 73. Here, the
distribution factor o, — 1, as the signal is homogeneously distributed across the detector. The blue dots
represent the results based on a regression analyzes, similar to Fig. 14b, but with binned pixels. The red

line displays the reconstruction based on the Pearson correlation coefficients from Fig. 12c, following Egs.
26, 27 and 22. The uncertainty of the non-linearity correction k,, is independent of the binning (see Eq.
73). It is obtained by fitting an offset to the reconstructed uncertainty of the gain reference under binning
k?{y = kfef* Hy T+ kZ,,. Combining both uncertainties under a square root yields the green line. The
results are shown for (a) horizontal binning with the binning value H (b) vertical binning with the binning
value H and (c) diagonal binning along horizontal and vertical direction equally HV. In the lower row (d-f),
we provide the difference between both methods. The shades depict the uncertainty within a 95% confidence
interval. It can be seen that the reconstructions via Pearson coefficients plus the ki;,, uncertainty are in good
agreement with the regression analyzes.

Beam correlations and the reconstruction of the detector PSF

Having determined the Pearson correlation coefficients of the signal by normalizing Eq. 84, allows to reconstruct
the PSF of the detector following Eq. 40. This is feasible here, because the gain of the fluorescence layer is
sufficiently larger than 1. Furthermore, it is the first layer of the detector allowing the photons to spread out with
the detector PSE, as described in “Section Noise and convolution”. Typically, several hundreds to a few thousand
photons are generated per incident beam electron. However, the reconstructed PSF from Fig. 17a shows a very
low central peak and non-zero values in the periphery. Upon normalizing the distribution to determine the
relative intensities of the PSE, we observe that only 18 out of 1000 counts are measured within the intended pixel.
This is attributed to the large tails. Convolving any image with such a PSF renders it rather useless, as such a PSF
diminishes any contrast. The very fact that we have contrast in the TEM is a good indication that the tails of this
PSF cannot be connected to anything related to the detector itself.

Therefore, we need to take one step back and reexamine the distribution of the Pearson correlation
coeflicients, from which the PSF was derived. Interestingly, we observe large tails of the correlation distribution
shown in (b), which means that despite the obvious small peak connected to the signal broadening as a result of
diffusion, we have another low magnitude but far reaching correlation within the signal. So, the correlation must
come from the electron beam itself as described in Eq. 43. Considering that effects leading to beam correlations
are described and measured in®*%, it is highly likely that the observed long tails in the distribution of Pearson
coefficients can be attributed to such effects.

In order to determine the PSF of the detector (), the tails or offsets must be subtracted from the overall
distribution of the Pearson correlation coefficients as Eq. 46 suggests. We found it suitable to approximate the
beam correlation in the Pearson correlation coeflicients as an offsetted 2D Gaussian %..,, which we fitted to
the data shown in the inset of Fig. 17b. By omitting the region where the detector PSF dominates, we obtain the
beam correlation shown as the red and the orange dashed lines in Fig. 17b. After subtracting this surface fit from
the covariance function of the signal K (£gi4), described in Eq. 84, we obtain the detector PSF shown in Fig. 17¢
by following Eq. 40 as:
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Fig. 17. (a) Shows the reconstructed PSE, following Eq. 40, from the Pearson correlation coefficients depicted
in Fig. 13a. The distribution implie that only 18 out of 1000 photons are detected within the intended pixel,
which is unlikely given the good contrasts measured with the detector. (b) Shows the Pearson correlation
coefficients pm,n» as line profiles with m = 0 for the horizontal profile and n = 0 for the vertical profile. The
red and orange dotted lines represent the offsetted Gaussian surface fit, with which the beam correlation is
determined. The fit parameters of the surface fit are provided within the graph along with an inset, showing
all the Pearson coefficients of the signal on the detector logarithmically scaled for visibility. The red and
yellow lines on the inset represent the direction the respective line profiles were taken. Subtracting the beam
correlation before reconstructing the PSF leads to (c) the detector PSE. In comparison to (a) the probability of
photons being measured in the intended pixel is significantly increased, making it more reasonable. (d) Shows
the change in the measured smoothed gain (above) and k-value (below), when cropping the acquired frames
according to the diagonal binning Fig. 15d but without the actual binning. It can be seen that the smoothed
gain increases for ‘binning values’ that discard most of the detector, contrasting Fig. 15¢c. Further, it can be seen
that independently of the gain, the k-value decreases for the same image section.

Q; = <g71 [(K (§Sig) - gcor'r)l/z] ) (87)

where € needs to be normalized with respect to the sum of all entries to obtain the relative probabilities of
the detector PSF €24. We observe that the PSF has lost the long tails, compared to Fig. 17a, and has a much
more reasonable central element and a width of FWHM =~ 2.01 pixel, which is in the typical range for such a
scintillation-based CCD detector®®. By following Eq. 44, we can further reconstruct the probability for correlated
electrons p from the parameters from the fit Eq. 46 and determine p ~ 1.7 - 10™*. We can compare this value
with the correlation found by Kodama et al.>*, which is in the order of pxodama = 2 - 1073. Qur electron
beam exhibits correlation one order of magnitude lower, which is entirely reasonable given the different beam
parameters and microscope. Thus, the correlation that we have measured falls well within the range that is
already reported. The values for the width of the Qg distribution orear = 1700 pixel, however, are below
our detector dimensions. For a homogeneous detector illumination, we would at least expect to see at least
orenm ~ 4000 pixel in width. This is a significant deviation, we cannot fully explain yet. At least Eq. 41 gives a
reasonable explanation for this behavior of the autocovariance function.

For the development of the smoothed gain under binning, however, both beam and detector correlations
have to be necessarily regarded. To illustrate this, we added an additional orange dashed line to Fig. 15, which
shows the reconstruction according to Eqs. 27 and 22, similar to the red line, but omitting the beam correlation.
Particularly in Fig. 15c, it is evident that the beam correlation is the dominant factor for the total intensity
measured with the detector using higher diagonal binning. Here, the beam correlation leads to a steady increase
of the smoothed gain, whereas the subtraction of these effects leads to a rather constant smoothed gain despite
increasing the binning. For a detector with a small PSE, this constant behavior would be expected.

Far-reaching correlation has another notable effect on the smoothed gain 5* - g, which is expected when
only part of the detector is analyzed. This is specifically the case for high binning values, where we need to
discard larger and larger parts of the detector like in Fig. 15c. To make the effect visible, we discarded parts of
the detector like in Figs. 15¢ and 16¢, and evaluated 8* - g in the non-discarded parts without binning. The
results are shown in Fig. 17d, reveal the gain to steeply increase for ‘binning’ values that correspond to larger
discarded parts of the detector. The reason for this behavior is that we cut out part of the correlation in the
signal at the boundaries without changing the signal strength itself. From Eq. 22 follows that this must lead to
a slight increase of the smoothed gain. This increase contrasts Fig. 15¢ at first glance, where we see the exactly
opposite behavior, namely a steep decrease in the smoothed gain, where we discard large parts of the detector.
Cutting away part of the correlation function drastically changes the smoothing factor to the downside, as under
binning, these values now discarded would have been added up following Eq. 27. One can easily imagine that
boundary effects dramatically increase for binned detectors. This explains the larger difference between the
Pearson reconstruction and the regression values in Fig. 15c.
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Fig. 18. Shows the relative difference, normalized to the initial smoothed gain without binning, between

the red curve of Fig. 15c¢, representing the binning of both the beam correlation and the detector PSFE, and

the orange curve, representing only the detector PSE The relative difference shows the impact of the beam
correlation on the smoothing factor under binning. Considering that diagonal binning with a factor of 2
corresponds to halving the width of the beam disc, one can see that adjusting the beam disc has a slight but
measurable impact on the smoothed gain 5* - g. The relative difference super-linearly increases for higher
binning values, which represent further contraction of the beam disc. While being rather negligible for small
adjustments in the beam disc, this effect potentially plays a role for EELS measurements in STEM mode, where
the beam appears as a small disc on the entrance aperture of the energy-filter.

For the k-values we consider the distribution of the quantum efficiencies, according to “Section The
acquisition of a gain reference”, to be more important than correlation or boundary effects, which is why we see
an increase in k-value even though the gain in the upper graph drops for the same detector cutout.

Importantly, the beam correlation changes, when expanding or contracting the beam disc in TEM mode. The
loss or gain of parts of the signal is equal to changing the beam current. With a constant correlation time, the
beam correlation obviously changes. Further, by adjusting the beam, which is modeled by the deflection Q7 55,
the smoothing factor B e, conv( see Eq. 37) changes. So it is to be expected that the observed smoothed gain
changes when (re-)optimizing the beam for different magnifications. This change is anticipated to be quite small.
In Fig. 15¢c, we have shown the development of the gain with respect to binning horizontally and vertically,
which with respect to the beam correlation to contracting the beam disc. Here, we must look in the difference
between binning both detector PSF and beam correlation, as shown in the red curve, and the orange curve,
which only gives the binning of the detector PSE. The difference should give a good approximation on how the
beam correlation changes the smoothing factor 5 and is shown in Fig. 18. Thus, we must abandon the notion
that there is just a single ‘correct’ gain to be measured, which is universally applicable for all experiments within
a certain time frame, and instead accept that only a good enough approximation is possible.

Theoretical considerations on STEM-EELS measurements

Since the detector is also widely used for STEM-EELS measurements, we consider it important to also describe
a noise model for EELS. Despite the change in operation mode, Eq. 48 remains valid for STEM with a few
modifications, which we will explain in the following.

Due to a different beam path in comparison to TEM, we obtain the correlated beam from the point-
source-like tip of the electron gun Ssyc,e; convolved with a different deflection kernel Q57 55,, such that
SsrEMcl = Qsrpym ® Sico alters the beam correlation at the entrance aperture of the energy loss
spectrometer that again cuts away part of the signal. 257 5, is again normalized to the height of one. By directing
the electrons through magnetic lenses, the beam disperses into the energy distribution of the probe before being
projected onto the detector. We can write the dispersed STEM probe as Baisp = Qaisp @ Qsrpar @ Ssre,els
where the two convolutions Qq;sp and Q&1 5, affect the signal like in Eq. 42: the convolutions are written inside
the Poisson distribution for the uncorrelated electrons &2 [Qdisp Q Vsrpm ® Ssrc,el] and outside for the

correlated electrons Qgisp @ Qsrpy & &P [gsmel] . We obtain:

Baisp = psTEM - (Qdisp Q@ Qsrpm ® & I:gsrc,el]) + (1 —psrem)- P [Qdisp ® Qsrem ® gsrc,el]

. (88)
~ P [Qdisp ® Qsrem ® SSTc,el] .
Since the signal width is expected to be rather narrow, it is unclear but likely that this cutoff changes the probability
for correlated electrons psT e significantly. Due to the reduced beam current flowing through the aperture,
we cannot use the p-value from the analysis in Fig. 17b. In case that we can neglect the beam correlation, we can
approximate psTeny ~ 0. Otherwise we obtain the Pearson correlation coefficients as:

Scientific Reports |

(2025) 15:3815 | https://doi.org/10.1038/s41598-025-85982-4

nature portfolio



www.nature.com/scientificreports/

Pdisp,mn = [(PSTEM - Qisp @ Urpnm + (1 — pstem) ~5) * (pSTF,M - Qisp @ Usrpm + (1 — psTem) - 5)]

nm . 89
~ [pérea - (Qiiep © Qbrear) ® (Qiip @ Qrpar) + 2 psrem - (1= psrem) - iy ® Lsrpa + (1 — psrem)” - 4] (89)

like in Eq. 43 on the basis of Eq. 40. Under the assumption that both the distribution on the entrance aperture
QsrEn and the dispersion 455, are symmetrical, one can replace the autocorrelation * by a convolution ®( see
Eq. 30). This should be the case for Q57 . However, a symmetrical 4,5, requires the ZLP to be symmetrical.
Since this is often not the case, especially not for measurements with all the scattering interactions, it would be
favorable to retain the autocorrelation. Still, one can argue that the ZLP is rather symmetrical and thus writing a
convolution instead of autocorrelation is possible. However, this is rather to be seen as an approximation. Again,
Q3:sp and Qg;, denote the normalized PSFs to the height of one of the respective distributions. Since the two
convolutions are way smaller than 7z, for a broad beam disc in TEM mode, we cannot approximate the first
term as a constant.

Again, we observe the convolution with the detector PSF €24 to influence both the correlated and uncorrelated
part of the signal equally, such that we obtain the 2D EELS signal in electrons as SEers,e1 = Q2a ® Baisp With
the Pearson correlation coefficients prrrs = Q) ® Q) ® pdisp-

The three convolutions of the beam Q5. the dispersion 4isp and the detector PSF Q4 can
easily be measured in vacuum, as they describe the 2D representation of the ZLP of that measurement
Q7 = Qa ® Qaisp ® QS par- Thus, we obtain:

PEELS,m,n & [P?S‘TEJI (QLp*Qzrp) + 2 psrem - (1—psrem) - (@ Qzrp) + (1 — psrem)’ - (@ Q;)}

(90
~ [ ® Q) (50)

n,m

with Q7 p denoting the normalized distribution to the height of one and, in case the beam correlation is
negligible, we can again simplify the equation.

Under considerable beam correlation, it is rather impossible to directly reconstruct the smoothing factor
B from the TEM mode for STEM-EELS. To obtain the smoothing factor 5 under such conditions, a direct
measurement of the Pearson correlation coeflicients of such an EELS signal would be necessary. This measurement
should be possible by utilizing Eq. 28, but requires the expectation value of the signal to be subtracted from each
point on the CCD camera. Since the signal is inhomogeneously distributed, a good estimate on the expectation
value of the signal can be found as the mean value of several measurements, if the microscope remains very
stable.

Fortunately, the PSF of the detector is identical for both operation modes and can be considered valid in TEM
as well as in STEM mode. Provided, the impact of the beam correlation in STEM mode is rather small, the PSF
might give an estimate for the Pearson correlation coeflicients using Eqs. 37 and 22. In this case, we can indeed
use measurements from TEM mode to obtain the smoothed gain in STEM mode, since the smoothing is only
connected to the detector PSE, which we have already determined in Eq. 40. By correcting Eq. 84 for the beam
correlation, as shown in the previous section, and reducing the signal strength Sc by the correlated electrons, we
obtain the smoothed gain for STEM mode:

K (gsig) - gcorr ]

g BEELS - p(sig) = (1-p) &

(91)

As (3 is only determined by the detector PSF and the signal is fully confined on the detector, which is usually the
case for EELS, Eq. 27 simplifies to the simple sum across all entries frrrs = ZM’N PEELS,m,n( see Eq. 90).

m,n
We can thus add up all Pearson correlation coefficients of the corrected autocovariance function of the signal, as
shown in Fig. 17b, and determine 5 ~ 0.09, from which we can calculate g & 17.43 counts/beam electron as
the gain of our detector. Hart et al. reported a similar gain of 12.6 counts/beam electron® for an older model of
our detector, the USI000FTXP, within a Gatan GIF.

Since the 2D EELS signal is summed up vertically along the columns with V' = 260 to form a spectrum on
our detector, we need to consider the addition of the Pearson correlation coefficients Eq. 90 as shown in Egs.
26 and 27. With it, we obtain Segrrs,1,260 = BEELS,conv,1,260 - BEELS,corr,1,260 =~ 0.24, following Eq. 37,
for the smoothing by convolution and, following Eq. 22, for the smoothing by the correlation as values for our
detector. We neglect the influence of the brighter-fatter effect, as it is contained in the measurement of a vacuum
ZLP and alters it slightly with respect to the shape. As shown in Fig. 13d, it falls below the Poisson noise and is
thus negligible for most measurements.

Implementing all this into Eq. 77, describing the post-binning of the detector, leads to the noise model:

v oA
corn . Z,‘ SEBLS,ci,j ) )
¢epLs = g PEELS1V - P | —— | + JV[07 JEELs} , with
9+ BEELS1,V
v 2 v v (92)
oBELs = 1,V - kgef*,Lv : Z SEELS,cij | + kif*,l,v -g-BeELS1,V - Z SEELS,c,i,j + 2 Z UQEELS,com- ,
J J J

where the EELS signal in counts is found as SepLs,c = g - SEELS,el. Due to the vertical post-binning V to
generate a spectrum from the 2D data for EELS, the distribution factor a1,y can be derived from a 2D ZLP
image, under the assumption that a1,y is not (much) influenced by a specimen. Similar to Eq. 74, we obtain:
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v 2

SEELS.clij
R D B (93)
Zj SEELS,el,i,j

J

As described previously, the uncertainty of the gain linearization ky;,, can be neglected for normal measurements.
So, we neglect it here and leave it with the uncertainty of the non-linearity corrected gain reference ke s+. Since
the gain reference does not change between the operational modes of TEM and EELS, we can use the values from
Fig. 16b for the amount of rows used for EELS and determine krcs+ 1,260 ~ 2.8 - 1074,

For our detector, we observe that the EELS region is located in the middle of the four quadrants (see Fig.
1). Thus, we obtain the detector noise as the sum of the individual detector noises of Q1 and Q3 as well as
Q2 and Q4, due to the positioning of the EELS region on the camera. As the noise depends on the respective
quadrant and the EELS signal is spread across all of them, the respective value sets for the gain normalized

and linearization corrected noises are given as 0%y, Sd= Z;/ 03760”( see Eq. 52 with Egs. 65 and 70). We

consider this our EELS noise model.

Asan EELS signal in vacuum consists of a large ZLP rather than a homogeneous signal, the only way verifying
this model is by comparing vacuum EEL spectra measured multiple times, which is quite complex. Energy-drifts
must be corrected, intensity changes of the beam must be normalized and energy jitters alter the shape of a ZLP.
All of these noise features must be regarded and mathematically be described. Due to the complexity of verifying
this model with an actual EELS measurement and considering the already lengthy paper until now, we leave it
at that.

EELS is also just a signal on the detector, that in theory, should obey the above considerations. We have good
evidence that the proposed noise model is valid for regular TEM measurements and thus we have little reason to
believe that EELS fundamentally changes things on a theoretical level. A follow-up paper addressing the noises
in EELS is provided in reference’”.

Conclusions

In this work, the mathematical derivation of a noise model for scintillation-based CCD detectors is presented
and it is shown how corrective operations like gain normalization affect it. We have shown which different kinds
of noises are to be expected by measuring gain normalized images. Contributions of both detector and signal
noise are separated and analyzed in detail. As an example for the detector architecture, we considered a Gatan
GIF Quantum ER image filter employing the widespread US1000FX-XP 2 CCD detector.

By utilizing the autocovariance function in Egs. 28 and 84, we could determine the Pearson correlation
coeflicients of a flat image in dependence of increasing signal strength in TEM mode, which allowed to examine
the brighter-fatter effect of the detector. Based on our noise model in Eq. 48, we have shown how the gain non-
linearity function can be obtained by utilizing a signal-to-variance fit to counteract gain non-linearities in the
CCD camera. To further prove the applicability of this correction, we have validated it using a bracketed-repeat-
exposure (BRE) technique on a different data set, corrected by this method. Such a non-linearity correction is
necessary to calibrate the detector to the highest precision. It also allows to use a single gain reference for the
entire dynamic range of the detector, whereas recent gain references are only valid for a limited intensity range
around the target intensity they were acquired with. This is specifically important for EEL spectra that cover
a high dynamic range, with the ZLP often being a thousand times more intense than the typical energy-loss
features of a specimen.

With the Pearson correlation coefficients of several flat images, used to obtain the gain reference to correct
images with, we found a Gaussian distributed spatial correlation in the electron beam as an offset to the
coeflicients related to the PSF. This offset must be subtracted before reconstructing the detector PSE

Again, we would like to point out that getting the Pearson correlation coefficients from the signal and the gain
reference in TEM mode is mathematically not expensive and comprises just a few Fourier transformations and
simple subtractions and divisions. It should in theory be feasible to get them as a side-product of the acquisition
of a suitable gain reference using a homogeneous signal. In this paper, we have shown both theoretically and
experimentally how to acquire them. We could further use these coefficients to reconstruct the change in gain
under binning of neighboring pixels following Eqs. 27, 37 and 22, which is a very good indication that these
coefficients are valid. With a few more steps, one could calculate the detector PSF as an automated process.

Further, we have shown that the beam correlation must necessarily change when contracting or broadening
the beam disc and with it, the smoothing factor 3 to the gain changes. Beam correlation contributes to the
overall smoothed gain of a measurement and cannot be neglected for detector binning. This beam correlation
has broader implications for STEM-EELS measurements.

Considering that beam correlation is not negligible in STEM-EELS, we concluded that it is rather impossible
to reliably determine the smoothing factor 8 of a STEM measurement, e.g. for STEM-EELS, by only using a
TEM measurement, without further knowledge on the change of the beam correlation probability p between
TEM and STEM. This probability naturally changes due to different beam paths and apertures. Nevertheless,
we could find a noise model for EELS measurements as a special case for the regular CCD measurement, where
only the beam correlation probability p remains as an unknown. This probability would be necessary to obtain
the Pearson correlation coefficients for EELS. Therefore, we described an experimental technique to determine
the Pearson correlation coefficients for EELS.

However, the point spread function and the uncertainty of the gain reference remain valid for both modes.
In case that the beam correlation is indeed negligible in STEM-EELS, due to reduced beam currents, correlation
effects are only determined by the detector point spread function and can be genuinely reconstructed using
measurements in TEM mode, as shown in “Section Theoretical considerations on STEM-EELS measurements”.
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All in all we found a consistent noise model, which allows to explain every change in the noise as a logical
consequence of the previous image acquisition steps. We found mathematical descriptions and approximations
of all these processes, which are mostly valid within the tolerance of our measurements and showed ways to
utilize the noise to correct a CCD detector.

Noise and its statistics are powerful tools in the hands of operators, who know how to use them for their
benefit. Even though it is often considered annoying to work with, we hope to have shown that sometimes it is
worth to take a closer look at the noise.

Data availability

The data sets generated during this study are available from the corresponding author upon request. Additional-
ly, the MATLAB scripts used to analyze the noises are provided in the supplementary materials section for open
access and use.

Received: 28 March 2024; Accepted: 7 January 2025
Published online: 30 January 2025

References

1. Meyer, R. & Kirkland, A. The effects of electron and photon scattering on signal and noise transfer properties of scintillators in
CCD cameras used for electron detection. Ultramicroscopy 75, 23-33. https://doi.org/10.1016/50304-3991(98)00051-5 (1998).

2. Ishikawa, R., Lupini, A. R., Findlay, S. D. & Pennycook, S. J. Quantitative annular dark field electron microscopy using single
electron signals. Microscopy Microanal. 20, 99-110. https://doi.org/10.1017/S1431927613013664 (2014).

3. Haruta, M. et al. Low count detection for EELS spectrum by reducing CCD read-out noise. Microscopy Microanal. 26, 1202-1204.
https://doi.org/10.1017/S1431927620017328 (2020).

4. Tkoma, H., Broxton, M., Kudo, T. & Wetzstein, G. A convex 3D deconvolution algorithm for low photon count fluorescence
imaging. Sci. Rep. 8, 11489. https://doi.org/10.1038/s41598-018-29768-x (2018).

5. Verbeeck, J. & Bertoni, G. Model-based quantification of EELS spectra: Treating the effect of correlated noise. Ultramicroscopy 108,
74-83. https://doi.org/10.1016/j.ultramic.2007.03.004 (2008).

6. Egerton, R. E Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, 2011).

7. Zuo, ]. M. & Spence, J. C. H. Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience (Springer, 2017).

8. Velazco, A., Béché, A., Jannis, D. & Verbeeck, J. Reducing electron beam damage through alternative stem scanning strategies, part
I: Experimental findings. Ultramicroscopy 232, 113398. https://doi.org/10.1016/j.ultramic.2021.113398 (2022).

9. Ilett, M. et al. Analysis of complex, beam-sensitive materials by transmission electron microscopy and associated techniques.
Philos. Trans. A Math. Phys. Eng. Sci. 378, 20190601. https://doi.org/10.1098/rsta.2019.0601 (2020).

10. Dang, Z., Luo, Y., Wang, X.-S., Imran, M. & Gao, P. Electron-beam-induced degradation of halide-perovskite-related semiconductor
nanomaterials. Chin. Opt. Lett. 19, 030002. https://doi.org/10.3788/C0OL202119.030002 (2021).

11. Buban, J. P,, Ramasse, Q., Gipson, B., Browning, N. D. & Stahlberg, H. High-resolution low-dose scanning transmission electron
microscopy. J. Electron Microsc. 59, 103-112. https://doi.org/10.1093/jmicro/dfp052 (2010).

12. Ortega, E. & de Jonge, N. Analysis of the dose-limited spatial resolution in transmission electron microscopy. Microscopy
Microanal. 26, 1216-1217. https://doi.org/10.1017/S1431927620017365 (2020).

13. Zietlow, C. & Lindner, J. K. N. ADMM-TGYV image restoration for scientific applications with unbiased parameter choice. Numer.
Algor. 97, 1481-1512. https://doi.org/10.1007/s11075-024-01759-2 (2024).

14. Iyudin, A. E. & Svertilov, S. I. Application of scintillation detectors in cosmic experiments. In Engineering of Scintillation Materials
and Radiation Technologies, vol. 227 of Springer Proceedings in Physics (eds Korzhik, M. & Gektin, A.) 165-185 (Springer, 2019).
https://doi.org/10.1007/978-3-030-21970-3_12.

15. Sahlholm, A., Svenonius, O. & Petersson, S. Scintillator technology for enhanced resolution and contrast in X-ray imaging. Nuclear
Instrum. Methods Phys. Res. Sect. A Accelerators Spectrometers Detect. Assoc. Equip. 648, S16-S19. https://doi.org/10.1016/j.nima.2
011.01.113 (2011).

16. Xu, L.-J,, Lin, X., He, Q., Worku, M. & Ma, B. Highly efficient eco-friendly X-ray scintillators based on an organic manganese
halide. Nat. Commun. 11, 4329. https://doi.org/10.1038/s41467-020-18119-y (2020).

17. Bugby, S. L., Jambi, L. K. & Lees, J. E. A comparison of CsI: TI and GOS in a scintillator-CCD detector for nuclear medicine
imaging. J. Instrum. 11, P09009-P09009. https://doi.org/10.1088/1748-0221/11/09/P09009 (2016).

18. Yousefi, A, Jafari, H., Khorsandi, M. & Faezmehr, A. Assessment of a low-cost commercial CCD for use in X-ray imaging. Appl.
Radiat. Isotopes 190, 110476. https://doi.org/10.1016/j.apradiso.2022.110476 (2022).

19. Lacroix, E, Beaulieu, L., Archambault, L. & Beddar, A. S. Simulation of the precision limits of plastic scintillation detectors using
optimal component selection. Med. Phys. 37, 412-418. https://doi.org/10.1118/1.3276734 (2010).

20. Roncali, E., Mosleh-Shirazi, M. A. & Badano, A. Modelling the transport of optical photons in scintillation detectors for diagnostic
and radiotherapy imaging. Phys. Med. Biol. 62, R207-R235. https://doi.org/10.1088/1361-6560/aa8b31 (2017).

21. Beutel, J. et al. (eds) Handbook of Medical Imaging (SPIE Press, 2000).

22. Barrett, H. H. Radiological Imaging: The Theory of Image Formation, Detection, and Processing (Academic Press, 1981).

23. Barrett, H. H. & Myers, K. J. Foundations of Image Science. Wiley Series in Pure and Applied Optics (Wiley-Interscience, 2004).

24. Rabbani, M., Shaw, R. & van Metter, R. Detective quantum efficiency of imaging systems with amplifying and scattering
mechanisms. J. Opt. Soc. Am. A Opt. Image Sci. 4, 895-901. https://doi.org/10.1364/josaa.4.000895 (1987).

25. Cunningham, I. A., Westmore, M. S. & Fenster, A. A spatial-frequency dependent quantum accounting diagram and detective
quantum efficiency model of signal and noise propagation in cascaded imaging systems. Med. Phys. 21, 417-427. https://doi.org/1
0.1118/1.597401 (1994).

26. Gubbens, A. et al. The GIF Quantum, a next generation post-column imaging energy filter. Ultramicroscopy 110, 962-970. https:/
/doi.org/10.1016/j.ultramic.2010.01.009 (2010).

27. Tanguay, ., Yun, S., Kim, H. K. & Cunningham, I. A. Detective quantum efficiency of photon-counting X-ray detectors. Med. Phys.
42, 491-509. https://doi.org/10.1118/1.4903503 (2015).

28. Stierstorfer, K., Hupfer, M. & Koster, N. Modeling the DQE(f) of photon-counting detectors: Impact of the pixel sensitivity profile.
Phys. Med. Biol. 64, 105008. https://doi.org/10.1088/1361-6560/ab1766 (2019).

29. Ross, S. M. Introduction to Probability Models 30th edn. (Academic Press, 2024).

30. Bretthorst, G. L. & Jaynes, E. T. (eds) Probability Theory: The Logic of Science 17th edn. (Cambridge University Press, 2017).

31. Klenke, A. Probability Theory: A Comprehensive Course 2nd edn. (Springer, 2013).

32. Lemons, D. S. An Introduction to Stochastic Processes in Physics (Johns Hopkins University Press, 2002).

33. Goodman, L. A. On the exact variance of products. J. Am. Stat. Assoc. 55, 708. https://doi.org/10.2307/2281592 (1960).

34. Cui, G, Yu, X., Iommelli, S. & Kong, L. Exact distribution for the product of two correlated Gaussian random variables. IEEE Signal
Process. Lett. 23, 1662-1666. https://doi.org/10.1109/LSP.2016.2614539 (2016).

Scientific Reports |

(2025) 15:3815 | https://doi.org/10.1038/541598-025-85982-4 nature portfolio



www.nature.com/scientificreports/

35.

36.
37.

38.

39.

40.

Diaz-Francés, E. & Rubio, E J. On the existence of a normal approximation to the distribution of the ratio of two independent
normal random variables. Stat. Pap. 54, 309-323. https://doi.org/10.1007/s00362-012-0429-2 (2013).

Réfrégier, P. Noise Theory and Application to Physics: From Fluctuations to Information. Advanced Texts in Physics (Springer, 2004).
Skellam, J. G. The frequency distribution of the difference between two Poisson variates belonging to different populations. J. R.
Stat. Soc. 109, 296. https://doi.org/10.2307/2981372 (1946).

Kaas, R., Denuit, M., Dhaene, J. & Goovaerts, M. J. Modern actuarial risk theory: Using R 2nd edn. SpringerLink Biicher (Springer,
2008).

Bertalmio, M. (ed.) Denoising of Photographic Images and Video: Fundamentals, Open Challenges and New Trends SpringerLink
Biicher (Springer International Publishing, 2018).

Rajdl, K., Lansky, P. & Kostal, L. Fano factor: A potentially useful information. Front. Comput. Neurosci. 14, 569049. https://doi.or
¢/10.3389/fncom.2020.569049 (2020).

41. Bousselham, A., Barrett, H. H., Bora, V. & Shah, K. Photoelectron anticorrelations and sub-Poisson statistics in scintillation
detectors. Nuclear Instrum. Methods Phys. Res. Sect. A Accelerators Spectrometers Detectors Assoc. Equip. 620, 359-362. https://doi.
0rg/10.1016/j.nima.2010.03.152 (2010).

42. Bohm, G. & Zech, G. Statistics of weighted Poisson events and its applications. Nuclear Instrum. Methods Phys. Res. Sect. A
Accelerators Spectrometers Detectors Assoc. Equip. 748, 1-6. https://doi.org/10.1016/j.nima.2014.02.021 (2014).

43. Rudolf Schieder. Noise and correlation.

44. Pearson, K. & Galton Laboratory for National Eugenics. Note on Regression and Inheritance in the Case of Two Parents. Proceedings
of the Royal Society (Royal Society, 1895).

45. Hogg, R. V., McKean, J. W. & Craig, A. T. Introduction to Mathematical Statistics 8th edn. (Pearson, London, 2018).

46. Wiener, N. Generalized harmonic analysis. Acta Math. 55, 117-258. https://doi.org/10.1007/BF02546511 (1930).

47. Khintchine, A. Korrelationstheorie der stationren stochastischen Prozesse. Math. Ann. 109, 604-615. https://doi.org/10.1007/BF0
1449156 (1934).

48. Lapidoth, A. A Foundation in Digital Communication (Cambridge University Press, 2017).

49. Gubner, J. A. Probability and Random Processes for Electrical and Computer Engineers (Cambridge University Press, 2006).

50. Yarlagadda, R. K. R. & Yarlagadda, R. K. R. Analog and Digital Signals and Systems Electrical engineering (Springer, 2010).

51. Gray, R. M. & Goodman, ]. W. Fourier Transforms: An Introduction for Engineers, vol. SECS 322 of The Kluwer International Series
in Engineering and Computer Science (Springer, 1995).

52. Guenther, B. D. Modern Optics Simplified. Oxford Scholarship Online 1st edn. (Oxford University Press, 2020)

53. Hassani, H. Sum of the sample autocorrelation function. Random Oper. Stochastic Equ.[SPACE]https://doi.org/10.1016/j.physa.20
09.12.050 (2009).

54. Kodama, T., Osakabe, N. & Tonomura, A. Correlation in a coherent electron beam. Phys. Rev. A[SPACE]https://doi.org/10.1103/P
hysRevA.83.063616 (2011).

55. Kodama, T. & Osakabe, N. Mechanism for correlation in a coherent electron beam. Microscopy (Oxford, England) 68, 133-143.
https://doi.org/10.1093/jmicro/dfy129 (2019).

56. van Nieuwenhove, V. et al. Dynamic intensity normalization using eigen flat fields in X-ray imaging. Opt. Express 23, 27975-27989.
https://doi.org/10.1364/OE.23.027975 (2015).

57. Seki, T., Ikuhara, Y. & Shibata, N. Theoretical framework of statistical noise in scanning transmission electron microscopy.
Ultramicroscopy 193, 118-125. https://doi.org/10.1016/j.ultramic.2018.06.014 (2018).

58. Liu, B, Li, Y., Wen, L., Zhang, X. & Guo, Q. Effects of hot pixels on pixel performance on backside illuminated complementary
metal oxide semiconductor (CMOS) image sensors. Sensors (Basel, Switzerland)[SPACE]https://doi.org/10.3390/s23136159
(2023).

59. Carter, C. B. & Williams, D. B. Transmission Electron Microscopy (Springer International Publishing, 2016).

60. Snyder, D. L., Helstrom, C. W,, Lanterman, A. D., White, R. L. & Faisal, M. Compensation for readout noise in CCD images. J. Opt.
Soc. Am. A 12, 272. https://doi.org/10.1364/JOSAA.12.000272 (1995).

61. Howell, S. B. Handbook of CCD Astronomy (Cambridge University Press, 2012).

62. Xia, G., Liu, Q., Zhou, H. & Yu, E. A non-linearity correction method of charge-coupled device array spectrometer. In AOPC
2015: Optical Test, Measurement, and Equipment, SPIE Proceedings (eds Han, S., Ellis, J. D., Guo, J. & Guo, Y.) 96770] (SPIE, 2015).
https://doi.org/10.1117/12.2197725

63. Astier, P. et al. The shape of the photon transfer curve of CCD sensors. Astron. Astrophys. 629, A36. https://doi.org/10.1051/0004-6
361/201935508 (2019).

64. Downing, M., Baade, D., Sinclaire, P, Deiries, S. & Christen, E. CCD riddle: a) signal vs time: linear; b) signal vs variance: non-
linear. In High Energy, Optical, and Infrared Detectors for Astronomy II, SPIE Proceedings (eds Dorn, D. A. & Holland, A. D.)
627609 (SPIE, 2006). https://doi.org/10.1117/12.671457.

65. Walter, C. W. The brighter-fatter and other sensor effects in CCD simulations for precision astronomy. J. Instrum. 10, C05015-
C05015. https://doi.org/10.1088/1748-0221/10/05/C05015 (2015).

66. Kuroda, T. Essential Principles of Image Sensors (CRC Press, 2015).

67. Padé, H. Sur la représentation approchée d’une fonction par des fractions rationnelles. Annales scientifiques de I'Ecole normale
supérieure 9, 3-93. https://doi.org/10.24033/asens.378 (1892).

68. Plotkin-Swing, B. et al. Hybrid pixel direct detector for electron energy loss spectroscopy. Ultramicroscopy 217, 113067. https://do
i.org/10.1016/j.ultramic.2020.113067 (2020).

69. Hart, J. L. et al. Direct detection electron energy-loss spectroscopy: A method to push the limits of resolution and sensitivity. Sci.
Rep. 7, 8243. https://doi.org/10.1038/s41598-017-07709-4 (2017).

70. Zietlow, C. & Lindner, J. K. N. An applied noise model for low-loss EELS maps. Ultramicroscopy 270, 114101. https://doi.org/10.1
016/j.ultramic.2024.114101 (2025).

Acknowledgements

We acknowledge support for the publication costs by the Open Access Publication Fund of Paderborn Univer-

sity.

Author contributions
All authors contributed to the study conception and design. The manuscript was written by CZ. All authors read
and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Scientific Reports |

(2025) 15:3815

| https://doi.org/10.1038/541598-025-85982-4 nature portfolio



www.nature.com/scientificreports/

Declarations

Competing interests
The authors declare no competing interest.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/1
0.1038/s41598-025-85982-4.

Correspondence and requests for materials should be addressed to C.Z.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025, corrected publication 2025

Scientific Reports |

(2025) 15:3815 | https://doi.org/10.1038/541598-025-85982-4 nature portfolio



An applied noise model for scintillation-based CCD
detectors in transmission electron microscopy

Christian Zietlow'" and Jorg K. N. Lindner!

'Nanopatterning-Nanoanalysis-Photonic Materials Group, Department of Physics, Paderborn University,
Warburgerstr. 100, 33098 Paderborn
“christian.zietlow@upb.de

A Supplementary material

Our noise model contains a lot of (slightly) different variables. This supplementary information aims to support the readability
of the paper by giving a short explanation of the respective variables.

Running indices and miscellaneous:

i,j - index of the respective row, column.

m,n - index of the respective horizontal, vertical lag.

M.N - number of total pixels in horizontal, vertical direction.

HYV - number of horizontally, vertically added pixels.

w - added images.

P - probability of correlated electrons in the electron beam.

DSTEM - probability of correlated electrons in the electron beam for STEM-mode.

PTEM - Pearson correlation coefficient of the electron beam in TEM mode.

p - Pearson correlation coefficient of the complete image formation.

Pdisp - Pearson correlation coefficient of the dispersed electron beam in STEM mode.

PEELS - Pearson correlation coefficient of a 2D EELS signal.

K (&) - autocovariance function of the image €.

KT (&) - positivity constrained autocovariance function of the image .

X1, X2, x3 - fit parameters for the gain linearization correction.

Z - used images for the non-linearity functional.

9 orr - offsetted Gaussian fit for the beam correlation in the Pearson correlation coefficients of the signal.
Gains and gain distributions:

gri - gain of the fluorescence layer.

8opt - gain of the fiber optics layer.

gccp - gain of the CCD detector.

8c - conversion gain from charge carriers in the CCD to counts.

84 - mean gain of the total detector including the gains g/, gopr and gccp-

Gy - gain of the detector including the variations from pixel to pixel.

Z'lg] - distribution of the quantum efficiencies from pixel to pixel.

g - mean gain of the total detector g; with the conversion gain g, to convert charge carriers into counts.

Z'1g] - normalized distribution of the quantum efficiencies from pixel to pixel around the mean gain g,.

2 - ration between the gain distribution at a given signal level

and the signal level the gain reference was acquired with.
8lin - correction to linearize the non-linear gain throughout the whole dynamic range of the detector.
8lin - mean value of the gain linearization of an image.



Noises, dark currents and uncertainties:

Cread - read out noise of the CCD.

Otherm - thermal noise of the CCD.

Crow,j - row noise of the CCD, where the offset value of a given row is constant over all pixels in that row.
Wrow - offset value of a given row.

Aread - offset value of the detector due to row noise and the bias of the image to prevent negative counts.
Weherm - offset value of the detector due to dark currents.

Y[therm) - distribution of dark currents.

Liark - dark current.

tacq - acquisition time.

(o7} - detector noise, inheriting Gyeqd, Otherm and Gy, ;-

kref - uncertainty of the gain reference.

Krefw - uncertainty of the gain reference with w summed up signal and background frames.

Oref - standard deviation of the gain reference.

Oref - mean value of the gain reference (all quadrant differ from 1).

N - detector noise varied by the standard deviation o,y of the gain reference and

Ca its respective mean value ¢, of each detector quadrant.
OpE - standard deviation of the quantum efficiencies of the detector.
kyin - uncertainty of the gain linearization correction.
kre pr - uncertainty of the linearization corrected gain reference.
Od corr - detector noise varied by the the gain referenec and the gain linearization.
k - combined uncertainty of the linearization corrected gain reference and the linearization correction.
X - uncertainty of the linearization corrected gain reference
refSHY - under binning H pixels horizontally and V pixels vertically.
Oy - distribution factor of the signal on the binned pixels.
Giotal total noise standard deviation of a given image containing all noise contributions.
Signals of the electron beam:
S - expectation value of any of the following signals.
§ - mean value of any of the following signals.
Sre.el - stream of electrons from a point source or electron gun.
B, - total electron beam (consisting of uncorrelated and correlated electrons).
Sel - total electron beam, broadened by the deflection of the electron-optical system.
Sa - total electron beam converted into charge carriers by the CCD.
Se - total electron beam converted into counts.
Sq.el - total electron beam broadened by the detector point spread function.
Sref - total electron beam used for the acquisition of the gain reference.
Sref.c - total electron beam used for the acquisition of the gain reference, converted into counts.
S, - total electron beam used for the acquisition of the gain reference, converted into counts and with
ref-¢W \y summed up signal and background frames.
Byisp - dispersed total electron beam (consisting of uncorrelated and correlated electrons) in STEM mode.
Seerser - 2D EELS signal in electrons.
Seerse - 2D EELS signal converted into counts.
Signal broadening point spread functions (PSF) / convolution kernels:
Q* - denotes the normalization of the respective PSF to the height of one.
Qrey - deflection acting on of all the beam electrons to form a beam disc in TEM mode, normalized to the height of one.
(OF] - PSF of the fluorescence layer of the detector.
Qopt - PSF of the fiber optics layer of the detector.
Qcep - PSF of the CCD of the detector.
Qg - PSF of the complete detector, including Q;, Q,,; and Qccp.

Qgrem - deflection acting on of all the beam electrons to form a point like signal in STEM mode.
- deflection acting on of all the beam electrons in the energy filter of the Gatan GIF

to form a dispersed energy signal used for EELS measurements.

- combines both the dispersion PSF Q;,,, and the detector PSF Q4

to represent the PSF leading to a ZLP in vacuum.

disp

Qzrp
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Smoothing factors:
Brem.conn - smoothing factor of the beam convolution with Q7.
Brem.corr - smoothing factor of the beam correlation in TEM mode.

Brem - smoothing factor including both beam smoothing factors for correlation and convolution in TEM mode.
Bﬂ,m,w - smoothing factor of the convolution of the fluorescence layer Q ;.

Bricorr - smoothing factor of the correlation induced by the fluorescence layer.

By - smoothing factor including both fluorescence layer smoothing factors for correlation and convolution.
Bopt comv - smoothing factor of the convolution of the fiber optics layer €,;.

Bopt corr - smoothing factor of the correlation induced by the fiber optics layer.

Bopt - smoothing factor including both fiber optics layer smoothing factors for correlation and convolution.

Bcep,conv - smoothing factor of the convolution of the CCD Q¢cp.

Bcep,corr - smoothing factor of the correlation induced by the CCD.
Bccp - smoothing factor including both CCD smoothing factors for correlation and convolution.
Beonv - smoothing factor of all of the above convolutions.
Beorr - smoothing factor of all of the above correlations.
- smoothing factor including both the smoothing factors for correlation and convolution of
B all of the above smoothing factors.
Ber - smoothing by the brighter-fatter effect.
B v - smoothing factor after binning H pixel horizontally and V pixel vertically.
Berayv - brighter-fatter smoothing factor after binning H pixel horizontally and V pixel vertically.
B* - combines the smoothing factor B with the brighter-fatter smoothing SBgr.
BEELS - smoothing factor of a 2D EELS signal (similar to Brgu).
Beers.1y - smoothing factor of an EEL spectrum after binning V pixels vertically.
Images:
'3 - unprocessed image as acquired.
Edark - dark frame image.
&ps - dark frame subtracted image.
Erersr - unprocessed signal frame image of the gain reference.
Ere r.oF - dark frame image of the gain reference.
Ererps - difference signal image of the gain reference.
¢eppp - difference background image of the gain reference.
Erey - gain reference.
Erefw - gain reference with w summed up signal and background frames.
Crer - actual representation of the noise on top of the gain reference.
Ex - dark frame subtracted and gain normalized image.
Eeorr - dark frame subtracted, gain normalized and gain linearized image.
pimny - dark frame subtracted, gain normalized and gain linearized image, after binning H pixel horizontally and V pixels vertically.
r‘g‘}’ " - non-linearity corrected gain reference.
EELS - dark frame subtracted, gain normalized and gain linearized EEL spectrum.
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ARTICLE INFO ABSTRACT

Keywords: Electron energy-loss spectroscopy (EELS) performed in a scanning transmission electron microscope (STEM)

Noise model is susceptible to noise, just like every other measurement. EELS measurements are also affected by signal

EELS maps blurring, related to the energy distribution of the electron beam and the detector point spread function (PSF).

;:f]l;s ;i_etecwrt Moreover, the signal blurring caused by the detector introduces correlation effects, which smooth the noise. A
alignmen

general understanding of the noise is essential for evaluating the quality of measurements or for designing
more effective post-processing techniques such as deconvolution, which especially in the context of EELS
is a common practice to enhance signals. Therefore, we offer theoretical insight into the noise smoothing
by convolution and characterize the resulting noise correlations by Pearson coefficients. Additional effects
play a role in EELS mapping, where multiple spectra are acquired sequentially at various specimen positions.
These three-dimensional datasets are affected by energy drifts of the electron beam, causing spectra to shift
relative to each other, and by beam current deviations, which alter their relative proportion. We investigate
several energy alignment techniques to correct energy drifts on a sub-channel level and describe the intensity
normalization necessary to correct for beam current deviations. Both procedures affect noises and uncertainties
of the measurement to various degrees. In this paper, we mathematically derive an applied noise model for
EELS measurements, which is straightforward to use. Therefore, we provide the necessary methods to determine
the most important noise parameters of the EELS detector enabling users to adapt the model. In summary, we
aim to provide a comprehensive understanding of the noises faced in EELS and offer the necessary tools to
apply this knowledge in practice.

Noise parameters
Point spread function EELS

1. Introduction

Noise is an inherent component when carrying out a measurement. Large electron microscopes such as transmission-electron-microscopes (TEM)
are no exception to this rule. Typically, these noises consist of two different noise statistics, the normal distributed Gaussian noise originating from
the detector electronics [1,2] and the Poisson noise arising from the quantized signal itself [3,4]. In modern electron microscopy, a common type of
detector is the scintillation-based CCD detector [5-8], converting the beam electrons into photons via a fluorescence layer before being measured
by a CCD camera. This fluorescence layer typically generates several hundred photons per incident electron, thereby increasing the signal by a gain
and modifying the Poisson distribution [9]. Another common detector type is the direct detector [5,7,10-12], which, lacking a scintillation layer,
is directly exposed to the beam electrons. Image acquisition with both types of detectors results in a convolution of the signal with a detector point
spread function (PSF), which broadens the signal and is primarily driven by diffusion processes [13,14]. The broadening inherently smooths the
noise and introduces correlations in the measured signals that must be considered for a sufficient noise model [9].

Electron energy-loss spectroscopy (EELS) is a versatile technique with broad application in physics and materials science [15], in chemistry [16],
and life sciences [17], as it enables the analysis of a specimen through the inelastic scattering processes of the beam electrons. These material specific
interactions result in energy losses of the beam electrons, which are relevant for analyzing plasmonic behavior, material composition and bonding
states.

Advanced techniques like EELS are often performed in scanning electron microscopy (STEM-)mode, where the electron beam is focused to a
fine spot and scanned over a specimen. Magnetic fields in a spectrometer disperse the beam electrons according to their kinetic energy allowing
to resolve energy losses at a given specimen position. The loss signal is recorded by a camera and summed to reveal a characteristic 1D spectrum.
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260 Pixels

Fig. 1. (a) A low-loss EELS data cube simulated using the MNPBEM-toolbox [31] that is generated for a focused electron beam scanned in x-y-direction across a triangular gold
nano-particle. The EEL signal is measured spectrum-by-spectrum by the CCD detector and then concatenated into a data cube. Note that the ZLP is not included in the data cube,
as it is not calculated by the MNPBEM-toolbox. To clarify terminology, the green slice from the 3D-data-cube is referred to as an energy slice, which represents an image of the
specimen where all contributing beam electrons have experienced the same energy-losses. The blue extract is called a spectrum and comprises all dispersed beam electrons at a
given point on the specimen. Therefore, the 3D data cube consists of tens to hundreds of thousands of individual data points, which are referred to as voxels. This distinction is
important for differentiating the EELS measurement from the (detector-)image and pixel, respectively. (b) Schematic of the US1000FT-XP 2 detector, commonly used in Gatan GIF
Quantum ER image filters [32]. Four distinct detector segments can be identified, labeled 1-4, of which only a narrow portion is used for EELS signal detection, as indicated by
the colored boxes in the middle of the detector segments. The shaded areas are discarded. The inner region is 260 x 2048 pixels. All rows j of a detector column i get summed up
to form EEL channels, therefore it is useful to refer to the left side (segment 1 and 3) and the right side (segment 2 and 4) of the detector. The detector segments are connected
to their respective analogue-to-digital converters (ADC), indicated by the small boxes near the detector.

The most prominent feature in every EEL spectrum is the zero-loss peak (ZLP). The beam consists of electrons that have not undergone inelastic
scattering [18]. These beam electrons retain their initial energy and thus their energy loss remains zero. In vacuum, this is the sole feature present.
When measuring specimens, surface and bulk plasmons are typically found in the low-loss region, while the high-loss region provides information
about material-specific core-loss features [18]. A comprehensive overview of EELS applications is given in [19].

EELS maps are an extension of the EELS technique enabling the consecutive measurement of several spectra on defined positions of a 1D or 2D
array projected onto a specimen. Thereby, these measurements provide additional spacial information on the energy losses within the structures
of interest. Consequently, EELS maps are multidimensional data sets, comprising one or two lateral dimensions and one energy dimension.

for analyzing plasmonic resonances [20-26] and determining the chemical composition of nano-structures [27-30].

Fig. 1(a) displays a simulated EELS map of a gold nano-triangle generated with the MNPBEM-toolbox [31]. EELS maps like these with two
lateral dimensions are commonly referred to as 3D data cubes. As 3D data can be challenging to visualize, the data is often cut into energy slices,
i.e. images with the same energy loss, or into the individual spectra, which represent the full acquired energy-loss spectrum at a specific position
within the investigated area. To distinguish between terms related to the 3D data and images acquired on the detector, we will exclusively use the
terms image, pixel, row and column for the images, whereas we will use the terms energy slices, spectra and voxel for the 3D data cube.

Understanding the noises associated with such measurements is crucial. Especially in quantitative EELS measurements, noise primarily
determines the uncertainty associated with such a measurement. Moreover, the quality of EELS data can be enhanced by employing modern
deconvolution techniques, such as ‘alternating direction method of multipliers’ (ADMM) algorithms [33], to sharpen spectra and reduce the noise
to facilitate evaluation, or even enable data analysis in low-dose environments. Therefore, there are clear use-cases for an applied noise model.

In [34], we have developed mathematical descriptions and approximations to handle correlation effects related to the detector and demonstrated
further how signals sum under the given noise condition. These findings can directly be applied to EELS measurements. The measurements in [34]
were conducted in transmission electron microscopy (TEM-) mode, which provides homogeneous signals necessary to obtain highly precise results
of the noise variances. In the present paper, we aim to demonstrate the applicability of our noise model to EELS measurements, too — despite the
non-uniformity of signals in this mode.

The fundamental data acquisition processes and their mathematical descriptions are outlined in [34] and in the following, we will build upon
this previous work to develop a well-suited noise model for EELS measurements. In the present paper, we will also extend our previous work to
EELS maps, which in addition to the signal and detector noises, are affected by energy drifts and variations in beam intensity between consecutively
acquired spectra. Therefore, two distinct layers of noise exist: one in the energy direction and another, the spacial noise, which arises from the
sequential acquisition process and differs from the former.

However, EELS maps acquired in a vacuum enable us to analyze the noise of EELS measurements between spectra. We observe it as a fluctuation
between spectra centered around a common mean value for each EEL channel. With a profound knowledge on the other noise contributions, this
enables us to verify the noise model from [34] for EELS. To isolate the noise from external variations caused by an inhomogeneous specimen, it is
crucial to take the measurement in vacuum. We utilized a cold field-emission gun (cFEG) in our experiments due to its narrow energy distribution of
beam energies, although our setup lacks an additional energy filter in the microscope column. The measurements were performed at an accelerating
voltage of 200 k eV.

Our work primarily focuses on a scintillation-based CCD detector, specifically the wide-spread US1000FT-XP 2 detector in a Gatan GIF Quantum
ER image filter [32], enabling a maximum dispersion of 0.01 eV/channel. The scintillation-based CCD detector comprises three distinct layers: A
fluorescence layer that converts incident electrons into photons, a second layer guiding these photons via fiber optics and a third layer, the CCD
camera, which converts photons into counts.

Scintillation-based CCD detectors used for EELS share similar design principles. However, some detectors feature single or multiple read-out
ports or employ a lens optics instead of fiber optics. These variations have a minor impact on the general noise model, primarily affecting the
extend of noise contributions and convolutions. The principles of convolution and correlation also apply to direct electron detectors (DED). The
mere differences between the two detectors, regarding convolution and correlation are the high gain and the extend of the point spread function.
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Thus, the proposed noise model should also be valid for DEDs in general. However, several other factors distinguish between the two detector types,
including the absence of read-out noise or dark currents in DEDs [5,35], which is due to their different acquisition mechanism. These changes must
necessarily be taken into account, when adapting the noise model from CCD detectors to DEDs.

For the acquisition of EELS spectra, we discard most of the detector area, to minimize unnecessary detector noise, except for a narrow region
of 260 x 2048 pixels in the middle of all four quadrants of the segmented detector (we show the utilized CCD schematically in Fig. 1(b)). Since
all rows j in a given column i are summed to form so called EEL channels, it is more convenient to refer to the left and right side of the detector
rather than to the individual quadrants. However, each quadrant has its signal read-out by a separate individual analogue-digital-converter (ADC).
This segmentation enables very short read-out times.

As previously mentioned, EELS is utilized to measure both low and high energy-losses of electrons. To demonstrate our noise model, we need
to perform repeated measurements of a constant signal in vacuum in order to compare them. In vacuum, the only signal measured is the ZLP. No
higher losses are present. Therefore, we focus on low-loss spectra in this study. Although we focus on low-loss spectra, the principles discussed are
largely transferable to high-energy or core-loss spectra and are applicable to element mapping.

Having introduced the terminology and principles of EELS and EELS maps, we will now discuss the fundamentals of the most prominent noise
statistics, essential for the understanding of our noise model. We also explore how operations such as additions, multiplications and divisions alter
the noise and provide a brief introduction into the Pearson correlation coefficients and their relationship with convolutions.

2. Fundamentals of different noise statistics

The noises in an EELS spectrum can be described with two key distributions, the Gaussian normal distribution N and the Poisson distribution
P [36-38]:

2
N[M,62]= _(n_ﬂ)

1
-« €X]
V2ro? b { 202

where n denotes the number of counts in both cases. For the normal distribution, the mean value of a signal is denoted as y and the variance
of the noise as ¢2. For a Poisson distributed signal .S, the expectation value S and the variance of the signal o'% to be equal. This equality is a
fundamental property of the Poisson distribution. Scaling both distributions with a (gain) factor g, which e.g. converts beam electrons into counts,
results in [36,39]:

} and  P[8] = S exp (-5} )

g-N[ﬂ,62]=N[g-y,g2-a2] and g~P[.§*]=g~P[§] ,with S=g-5%, (2)
noting that the gain factor appears squared in the Gaussian noise. Because the Poisson distribution requires the noise variance to equal the
expectation value of the signal, a Poisson distributed signal S* scaled by a gain g, such that S = g - S*, must be rescaled to satisfy the Poisson
distribution. The sum of a number W of either Gaussian or Poisson distributed random variables results in [37,38,40]:

w w w w
Z N[ﬂw, 630] =N [Z Hy s ai:| and Z P [Sw] =P [Z Sw] . 3
w=1 w=1 1 w= w=1
The product of two independent Gaussian random variables, with expectation values y; and y, and variances af and a%, can be approximated
as [41]:
Nlusot] - Nz 03] % N - . (0F + 17) - (03 + 13) = wims] )

The inverse of a Gaussian distributed variable can be approximated by a normal distribution, if the denominator is closely distributed around its
mean value [42]:

J\/[M,oz]_l ~ J\f[/fl, 0-—2] . (5)

i

w

w=

We found that when the ratio of "—i < 0.05 the inversion is sufficiently precise for our noise model.
For a sufficiently high signal §, the Poisson distribution can be approximated by a Gaussian [38]:

lim P[$] = NS .
Jim P[§] = NS, 5] (6)
The Pearson correlation coefficients p,, [43] quantify the normalized covariance between two pixels x; and x,,,,, which defines the correlation:

o = cov [x;, X;4m] ’ @
Gxi ’ Uxi+m
where the index m denotes the distance between the two EEL channels. Note that the distance between channels is bidirectional, so there are also
negatively numbered Pearson correlation coefficients, i.e. from m € [-(M —1),..., M — 1], where M denotes the total number of EEL channels.
Since the Pearson correlation coefficients can be obtained by the autocovariance function, m is often referred to as the lag of the noise.
Furthermore, we have demonstrated that a scattering process associated with a sufficient gain and a point spread function 2 results in a

smoothing of the Poisson noise. For a Poisson distributed signal .S* scaled by a gain g, such that S = g - .5*, we find [34]:

g"Q@P[S*]=ﬂconv'ﬁcarr'g'P[ 285
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] for g>1 ,with 8



C. Zietlow and J.K.N. Lindner Ultramicroscopy 270 (2025) 114101

aswellas p, = [2*® Q"] , an

for the 1D signal. The formulas for 2D images can be found in [34]. Here, f.,,, describes the smoothing of the noise due to convolution, g,
describes the smoothing of the noise due to correlation effects, p,, denotes the Pearson correlation coefficients for the lag m, as discussed earlier,
and Q* is the convolution kernel, such as a ZLP, normalized to the height of one. It is worth noting that g, only affects the noise within a single
measurement, not in between consecutive measurements. For the above model, it is required that multiple photons per incident beam electron are
produced in the scintillation layer, allowing them to spread out. A scattering event without such a gain would result in a blurring of the signal,
but would not affect the noise [44].

In [34] we presented a method for recovering the Pearson correlation coefficients of the signal under homogeneous illumination in TEM mode.
We applied the Wiener-Khinchin theorem [45,46], which states that the autocovariance function of a random process and the power spectral
density (PSD) form a Fourier-transform pair. Using the Pearson correlation coefficients obtained by this method, one can reconstruct the point
spread function of the detector. However, it was demonstrated in [3] that the modulation transfer function (MTF), which is closely related to the
PSF, obtained by analyzing the noises should only be considered an approximation of the true PSF of the system. Since we are more interested
in the correlation effects, which are precisely measured by the autocovariance function, rather than determining the true PSF of the system, we
consider this approximation sufficient for a practical noise model.

3. The noise model

Below, we will briefly explain our noise model for acquiring a single EELS spectrum. A detailed derivation of a noise model for scintillation-
based CCD detectors is presented in [34]. Note that the output from the microscope in counts does not necessarily represent the number of incident
electrons. Therefore, we will denote a signal either .S, for electrons or S, for counts. In the following, we will discuss a detector that has undergone
gain linearization.

We begin with the number of beam electrons S,., emitted by the point-source like electron gun. The beam electrons are deflected by the
electron optics of the microscope, resulting in the distribution €%, ., at the entrance aperture of the energy-loss spectrometer. As before, the
asterisk indicates normalization with respect to the height of the convolution kernel, since we are interested in the distribution at the entrance and
not in the initial beam current leaving the electron gun. The beam is then dispersed into its energy distribution £;,, by the spectrometer magnets.
Finally, the beam is broadened by the detector point spread function 2,.

For independent beam electrons, which appears to be the case in our experiments, the Poisson statistics is not affected by the deflection. From
a mathematical perspective, this is equivalent to the convolution occurring inside the Poisson term. Kodama et al. [47,48] have demonstrated that
beam correlations are possible; therefore, we have also examined a case that includes beam correlations for the sake of completeness and provided
the general formula for the Pearson correlation coefficients for such a case in [34]. Since correlations seem to be negligible for our experiments,
we continue with the case of uncorrelated beam electrons.

In contrast to the previous convolution, the spreading caused by the detector PSF does indeed alter the Poisson statistics. The distribution of
the electron beam B for EELS on the CCD is therefore given by:

B = ‘QD ® P[Qdixp ® Q;‘TEM ® Ssrc,el] ) (12)

As the electrons in the beam propagate through a specimen, they lose some of their energy due to inelastic scattering, which contributes to the

deflection Q;,, = Qp ® Qg,;,, where Qp describes the energy distribution of the electron beam emitted by the electron gun and Qg;, is the

desired information about the beam interactions with the specimen. Therefore, the signals of interest appears to be heavily convolved with other

distributions. Fortunately, the various convolutions can be directly measured together as the 2D ZLP in vacuum Qy,. = Qp ® Q5 ® Q2%
Using Eq. (11), we obtain the Pearson correlation coefficients of the 2D signal on the detector as [34]:

Pun (25 @2} 13)

ot

Therefore, the Pearson correlation coefficients of independent beam electrons only depend on the detector PSF. In [34], we have demonstrated
how to measure this detector PSF from the signal noises in TEM mode and have analyzed it in detail.

Furthermore, the signal is stored in the pixels and read-out from the detector, which introduces thermal and read-out noise. A detailed description
of the detector noises of scintillation-based CCD detectors can also be found in [34]. The detector noises are modified by applying a gain reference,
which corrects for quantum deviations in the detector, and a non-linearity correction, which linearizes the gain across the entire dynamic range of
the detector. Both processes are mathematically described and evaluated in [34]. Methods for measuring uncertainties related to the gain reference
and for determining the gain non-linearity function of the detector are also proposed there.

The signal is ultimately summed by software to create a spectrum from the 2D data. By summing the 2D representation of the dispersed electron
beam distribution along the rows j, we obtain the convolved EELS signal measured in the corresponding EEL channel i on the detector as:

N N N
Sc‘; = Z B,-,j = [QZLP ®g- Se[]i with 'QZLP,i = Z-QVac,i,j and Sel,i = Z [‘QSig ® Ssrc,el],-‘j 4 )
J J

J

The index ¢ denotes the signal in counts instead of el for electrons, where S, = g - S,;. The gain of the detector g converts electrons into counts,
which is how the microscope displays the results. For brevity, we write S, = 2, ® S, for the entire signal instead of the convolution, where
Q,; p denotes the vacuum ZLP summed to a spectrum. For convenience, we also define the point spread function for EELS as Qpgp = Zjv Qp.

Upon summing the signal, part of the correlation due to the detector PSF is eliminated. As described in [34], the new Pearson correlation
coefficients can be obtained as:

N-1
2,,:7(1\]71) Pmn

N-1
Zn=_(1v_1) Pon

if the signal is fully contained within the EELS region in the vertical direction, which usually is the case for EELS.

Pm = ) (15)
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According to the summation rules from Eq. (3), the formation process for a single EELS measurement ¢ in the EEL channel i can be expressed
as:

P Zed +N[0, 07 ith (16)
& R 8 Beonv * Peorr m [ ] » Wl

]
@‘2 ~ a-k? S‘?I + kpz‘ef 8 Peonv * Peorr AS’;L‘,i + 20_%”
Y— "

ref
——
2) 3) 4)

We separate the noise into a Poisson distributed part 1) for the signal noise and Gaussian normal distributed parts 2—4) for the noises inherent of
the detector. In 1), we identify two distinct smoothing factors for the noise: .,,, is the smoothing factor connected to the convolution according
to Eq. (9), and f.,,, is the smoothing factor due to correlation, according to Eq. (10). Both of these factors depend on the Pearson correlation
coefficients described in Eq. (15). We also determine the expectation value of the EELS signal S}J =[Qzp® Q5,®8" S‘sme,]i.

Images are often corrected with a gain reference to account for deviations in the quantum efficiencies in the fluorescence layer and the CCD
detector itself. Due to uncertainties in the measurement of the gain reference k,, , applying it to an EELS measurement introduces a fixed-pattern
noise, which is described in term 2).

In brief, the gain reference is acquired in TEM mode with homogeneous illumination and a target intensity S, r- Aset of W irnages is acquired
and summed, and then W background images are subtracted. The resulting image is them normalized by the target intensity Z w Sres- For EELS,
we also need to sum the pixels within the EELS region, which results in both the Poisson and Gaussian noises (and their correlations) increasing.
By summing, the target intensity S, s increases as well. The uncertainty of this gain reference for EELS is described in [34] as:

N
5 gz'ﬁcanu'ﬂcorr"zl‘ Z Sref+2 Z Z D,J
ref = New & \? ’
(Zj Zw Sref)

where o, ; gives the detector noise of the 2D image. Therefore, the uncertainty of the gain reference can be reduced in two ways: either by
increasing the number of counts per image or by increasing the number of acquired frames W. Initially, it appears that increasing the number of
counts per frame is preferable, since this does not increase read-out noises. However, as discussed in [34], non-linearities of the gain that arise at
higher count numbers may make this option less desirable, so it is often preferable to combine multiple frames with reasonable low intensity.

In [34], we described methods for determining k,, , in detail and experimentally demonstrated its changes due to pixel summations, as performed
for EELS.

The pixel-wise summation of the gain reference requires the introduction of a factor , which describes the signal distribution on the 2D detector
along the columns before summation to form a spectrum. The factor is given by [34]:

él/ac (RN} ?
ar s 18
2 < Z éVac C.,i,j ) ( )
where &, is the measurement of the 2D EELS signal in vacuum before summation. The distribution factor « is valid under the assumption that the
signal distribution along the column forming a given EEL channel is very similar to the distribution of the signal in every other EEL channel, except
for a scaling factor related to the amplitude of the channels. For a homogeneously distributed signal, the distribution factor is « = 1. However, it
decreases for non-uniform signals e.g. a Gaussian distributed signal along the column, or when some pixels within the column are not exposed to
a signal. Part 3) of Eq. (16) describes the variation of the Poisson noise of the signal due to the application of the gain reference, while part 4)

describes the detector noises o, as varied by the gain reference. A detailed description of the detector noises is also presented in [34]. The factor
of 2 applied to the detector noise reflects the background subtraction, which doubles the detector noise, as described in Eq. (3).

a7

3.1. EELS maps

So far, we have discussed the noise properties of single EELS measurements, which we now try to extend to EELS maps and find that the noise
changes depending on weather we consider the noise within a spectrum or the noise between spectra. Considering arrays of multiple EEL spectra,
we have the energy dimension, or spectrum, which is acquired in a single measurement, and one or two lateral dimensions consisting of independent
measurements of the energy slice (see Fig. 1(a)).

Acquiring multiple EEL spectra in a row or in an array as in EELS profiles or in EELS mapping also allows for changes in beam intensity between
spectra, since the beam current is expected to fluctuate slightly around a mean value within short time intervals, due to the influence of electron
stimulated desorption of adsorbents from the tip of the electron gun [49]. Furthermore, the beam intensity is Poisson distributed and decreases
over time, so no two spectra have exactly the same intensity. Additionally, energy drifts may modify not only the width of the ZLP but also the
energy alignment between different spectra. However, these changes do not affect the spectrum itself, but rather alter the distributions between
the spectra in the lateral dimensions. Therefore, having multiple energy spectra in a single data cube allows for a greater variety of effects of to
occur, beyond just correlation effects. This emphasizes the necessity of two distinct noise models — one for the energy direction of the individual
spectra and one for the lateral directions between spectra.

The commonly used way to eliminate intensity deviations is by normalization of the total counts of the spectrum, and there are multiple methods
to realign the spectra. Both normalization and realignment introduce new uncertainties that must be considered.

Since users are often more interested in loss probabilities than absolute counts, normalization serves two purposes simultaneously. Dividing the
individual spectra by their respective summed intensity leads to:

§X¢y,i

éx, »M

Sxpi = SxpM

M
cwith &y =D& 19)
i

The first part describes the variations in the measured beam intensity and the second part describes the normalized spectra (or energy loss
probabilities under certain conditions, which will be evaluated later). In this context, the EEL spectrum at the position (x, y) in the array is summed



C. Zietlow and J.K.N. Lindner Ultramicroscopy 270 (2025) 114101

over the EEL channel index i to M channels in total. To allow for intensity variation between spectra, the signal SA'C’x’y’i =1,,8,,, is defined as the
energy loss probability 3, ,;, which represents the beam distribution between EEL channels /, multiplied by the intensity map Z, ,. The intensity

map captures the total intensity measured by the detector at position (x, y) on the EELS map. It is given as:

Ix,y=g~S

sre.el,x,y

- T

xy 2

(20)

with the beam current S, ,, ., at the corresponding position (x, y), multiplied by the transmission probability of the specimen T, , and the gain g
to convert the signal from electrons to counts.

Additionally, the acquisition of the background frame differs slightly between EELS maps and single EELS measurements, as shown in Eq. (16).
In the Gatan software ‘Digital Micrograph’, a ‘high quality’ background is averaged over a heuristic of A = /X - Y dark frames, for a 2D spectrum
array with a side-length of X and Y spectra. This background is then subtracted from every spectrum in the array. The noise changes depending
on the direction, whether in the lateral directions of an energy slice or in energy direction of the spectrum. We begin by considering the energy

direction, which we denote with the underlined index i. The noise from Eq. (16) can be rewritten to:

Ix,y : §x,y,i .
R P oy +N[o.e2,,] , with @1)
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for the spectrum in energy direction, we find the factor (1 + % for the detector noises, rather than the factor of 2 found in Eq. (16).
For the lateral directions, which we will again denote with the underlined indices, here x, y, we find:

Ix,y : .
Eepi ™ & Beon - P[W] +N[0.62,,] , with 22)

2 o 2 N 4 2
Oy MA@ kref (Xy'SX.y,!) t K8 Beoms * (1 xy.sx,y,i)+(1+z>'o-b,i .

When considering the noise between spectra, the smoothing factor g, vanishes as we are interested in the noise between spectra rather than
within a given spectrum. This is in contrast to the noise in the energy direction, where we need the correlation factor g,,,,.

Furthermore, for the detector noise, it is essential that the same background is subtracted from all spectra equally, so it does not affect the noise
in between them in the array, causing the factor (1 + %) to disappear. Because an energy alignment of the spectra alters the positions at which
each EEL channel is measured on the detector column for every spectrum, we introduce a shifting factor ¢, to account for the shift in detector
columns. The same applies for the fixed-pattern noise on the signal. As the name suggests, fixed-pattern noises introduce the same deviations to
all spectra equally, so that they do not affect the relation between them. If an energy drift occurs between the spectra, an EEL channel will get
recorded by a different pixel column. Therefore, the energy shift of the signal reintroduces some of the fixed-pattern noise that would not occur
without it. However, the variation of the Poisson noise caused by the gain reference is not affected by drifts and thus ¢ does not apply in this case.
The shifting coefficient ¢ can be calculated as the mean drift over all spectra:

XY XY M

XY(XY—I) IPIPNL

xy x'y i

[

vy = Oy y/,,-‘ , with (x',)) > (x,y) , (23)

where § denotes a Dirac delta distribution at the peak position of the ZLP in every spectrum of the array. By summing the differences of the delta
functions, such that each spectrum is subtracted from every other spectrum in the array once, we obtain a shifting factor of ¢ = 0 if no drift occurs
at all, and ¢ = 1 if the mean drift of the spectra is equal or greater than one channel. If some spectra are recorded as already perfectly aligned
while others are not, the shifting factor will give a value between ¢ € [0, ..., 1], indicating the percentage of channel shift per spectrum.

Thus far, we have discussed two distinct noise models that describe slightly different noise volatility in their respective directions, which arises
from the acquisition of the EELS data cube as a series of individual measurements concatenated. To determine the uncertainty of measuring a
certain intensity in an individual voxel of an EELS map, we must compare the individual noise contributions between both directions term-by-term
and consider the maximum contribution in each case. This yields the overall uncertainty of an individual voxel in the reference frame of the EELS
map measurement, given by:

Lay 5 2 .
§x,y,i R & Peonw P [—] + N[O nyz] , with (24)
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To demonstrate that the uncertainty is independent of the direction, we omit the underlining of indices. Both noise models, which consider volatility,
and the overall uncertainty are equally important and have their respective use case. The first two equations (see Egs. (21) and (22)) are used
to characterize the uncertainty when comparing e.g. two energy-loss peaks within a spectrum or in between spectra of an EELS cube, or when
using a ‘total variation’ approach for denoising or deconvolution (see Refs. [2,33] as examples). The overall uncertainty in Eq. (24) is important
for e.g. comparing plasmons that appear as a 3D structure or for designing a Bayesian likelihood functional for denoising or deconvolution (again
see Refs. [2,33] as examples).

Since the directional noise models comprise the overall uncertainty, we will continue working with these models in the following sections
instead of the overall uncertainty. Ultimately, we will again combine them to obtain the overall uncertainty, thereby reestablishing the trio.

3.1.1. Uncertainty of alignment

As time passes between the acquisition of multiple spectra in an array, the spectra can drift significantly in the energy direction with respect
to each other. To compensate for the energy drift, a common technique is to realign the spectra by fitting e.g. a Gaussian function to the ZLP
and using its center as a reference point for realigning all spectra. However, fitting is affected by uncertainties which leads to deviations o,
in the alignment. The influence of the alignment on the noise in lateral directions is closely related to the slope in the energy direction of the

spectra, given by S¢xi- The faster the intensities change, the stronger the deviations are; conversely, there is no change for plain signals. The
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drift also affects the width and shape of the ZLP, as the signal drifts during the exposure time. For a drift below one channel, the influence can
be approximately described by the intensity change and a factor oy,;,, which describes the drift deviations during the exposure time #,,. By
combining both uncertainties, we obtain the uncertainty of misalignment, given by 012\4 A= "%i . 55”. I Based on this, we can derive the noise term
that accounts for the implications of the energy shift in EELS maps:

2
2 _ 2 d A
OShift = Oma " (Zx.y T Sx,y,i) ’ (25)

which increases the noise of the lateral directions, but does not affect the noise in the energy direction.

Current state-of-the-art alignments methods recommend sub-channel alignments using cross-correlation [50,51]. Since the EEL channels
intensities are discrete, this type of alignment requires interpolation to estimate the intensities between channels. For simplicity, we use linear
interpolation in this work. Interpolating EEL channels &_, with an interpolation shift of 4 leads to:

g =(1— 14D - & + 4] - &1y
= [5 ® ‘antenA]; H with leer,A = (1 - |A| |A| 0 0) . (26)

We suggest 4] < 0.5 channel, as otherwise it is more beneficial to shift the entire signal by one channel and then interpolate in the opposite
direction. Since the drift is expected to be continuous throughout the measurement, we assume a continuous distribution of the interpolation shift
A, which is later confirmed by experiment. For a perfect alignment fit, the misalignment of the spectra has an expectation value of at least |4],
resulting in an uncertainty of o4 > /_()(')_55 dA 4| = i channels for non-interpolated EELS data cubes.

Linear interpolation can be viewed as a convolution of the spectrum with an ‘interpolation kernel’ that smooths the noises without broadening
the spectrum. For the largely uncorrelated detector noise, we can easily find the expectation value for the smoothing factor g, by integrating over
all A. This yields g, ~ /_06'55 da (1 -4 +|4)% = %, since the noise of both channels is added squared (see Eq. (3)). This value can be used to estimate
an ‘effective interpolation shift’ of 4 ~ 0.211 channels, which can then be used to calculate the effective interpolation kernel ;.. ;. However, it is
essential to note that the additional smoothing of the noises differs significantly between detector and signal noise. In case of linear interpolation,
we find that the Pearson correlation coefficients of the signal from Eq. (13) change to:

Pinter.Amn = [Qimer,A * Qjm‘er,A ® Qz ® QZ mn ’ (27)

where x denotes the auto-correlation of the interpolation kernel .Q’;nm " defined in Eq. (26), Q) is the detector PSF, and the asterisk indicates
normalization to a height of one for all kernels.

This additional convolution necessarily alters the coefficients g,,,, and g, of the Poisson signal noise, as described by Egs. (9) and (10). By
inserting Q;,,,, 5 into Eq. (27), we can determine the change in the Pearson coefficients of the signal. In general, the overall impact of the smoothing
on the signal noise is significantly reduced compared to the detector noise, since the signal is already smoothed by the detector PSF. The wider
the detector PSF, the lesser the impact of interpolation on noise smoothing. It can be concluded that correlated noises are affected differently by
interpolation than uncorrelated noises. Since the fixed-pattern noise is uncorrelated, we find a similar impact on it as on the Gaussian detector
noise, with fp = % Due to this smoothing of both detector and fixed-pattern noise, we expect some minor correlations to emerge within these
noises, leading to further smoothing similar to f,,,. within the spectra in energy direction. We can neglect this influence since g,,,, ; # 0.9997 (as
per Eq. (10)) for both the detector and fixed-pattern noise.

However, linear interpolation is subject to uncertainties. Usually, these are negligible, as they are small compared to the impact of misalignment.
A brief discussion on the uncertainty of interpolation is found in Appendix A.1. For simplicity, we assume that these deviations follow a Gaussian
distribution, which completes our noise model for the lateral directions:

I.,-8,,;
Ehryi ® g.ﬂwnv.P[M] +J\f[o, @im] +N[0, 6] , with (28)
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where ¢, denotes the total uncertainty of alignment. Here, &, , ,; denotes the noise in the lateral directions, excluding the uncertainty of alignment
h 2 d hi 1 i f ali H d h ise in the 1 1di i luding th i f ali

but including smoothing effects of interpolation. This expression &, , ,; will be relevant later. Additionally, we must slightly modify the noise model
in the energy direction to account for the interpolation: o

L., -5,
5A,x,y,£ g ﬁcanu . ﬂcorr -P %] + N[O, @ﬁ,x,y{] 4 with (29)
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Once again, we obtain the updated 4,,,, (see Eq. (9)) and f,,,,. (see Eq. (10)), both calculated according to Eq. (27), as well as the smoothing of the
detector noise . We do not consider the uncertainty of alignment o, , or the uncertainty of interpolation o/, at this point, as neither affects
the volatility of the noise in energy direction.

3.1.2. Summed intensities

To normalize EELS maps, we require a suitable noise model for the summed intensities, which will enable us to obtain the first part of the
separation in Eq. (19), approximating the intensity map Z, ,. Once again, we must consider differences in the noise model between the energy and
lateral directions.
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First, we begin by summing the noise model for the lateral directions, as given in Eq. (28), where the underlining x, y is used to indicate the
considered direction again. With regards to the addition of Gaussian and Poisson noises (see Eq. (3)), we sum the intensities with respect to the
EEL channel i, resulting in:

éAt,x,y,M

Py i X, )1
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where in term 1) and 3) the smoothing factor g,,,,, while in 2) the smoothing factor fp and in 4) the smoothing factor g;, vanish. All these factors
vanish because of the summation in energy direction, which effectively removes the correlation. In the terms 2) and 3) we observe a change from
ey = kyer m» resulting from the summation of M channels, as demonstrated in [34]. A more detailed discussion on the exact summation can be
found in Section 4.

In term 2), we examine the summation of the fixed-pattern noises, for which we need a new distribution factor a,,. This factor can be
approximated using an average of the normalized EELS signal over the array:

L X Mo e N2

X, )50
ay ~a- _— 31
M X'Y§Z<§x,y,M)

under the general assumption that k,,, is relatively homogeneously distributed, which is expected for a homogeneously distributed signal in TEM
mode used for acquiring a gain reference. Additionally, we assume that « remains constant between EEL channels, similar to the assumptions made
in Eq. (18).

Additionally, we must introduce a new shifting factor, as ¢ — ¢,,, which is similar to the one presented in Eq. (23). Unlike the shifting factor
¢ in Eq. (23), which uses the Dirac delta to measure the drift, ¢, utilizes the mean difference between all normalized spectra, prior to alignment.
Therefore, we refer to ¢,, as the ‘overlap factor’. As the fixed-pattern noise, which accounts for the uncertainty of the gain reference, is fixed to the
EEL channels, it only varies the signal by the difference of the signal between measurements. Consequently, we find that the fixed-pattern noise
depends on the overlap of the spectra. The overlap factor can be calculated as:

Oy R )il )i/ f Sy - Sy with (x’ y’) > (x y) (32)
XY (XY - 1) xy xy i gx,y,M é:x’,y’.M ’ ' ’ ’

summing up pairs in such a way that each unaligned spectrum &, , is subtracted from every other spectrum &,/ s in the array exactly once. In
this case, ¢,, ~ 0 when all spectra overlap completely and ¢,, ~ 1 when all spectra do not overlap at all. Normalization is crucial to cancel out
differences in the intensity as good as possible.

As the same background is subtracted from all spectra equally in term 4), the factor ( 1+ £ Zlassoaated with the detector noise 02 ; disappears.
Furthermore, alignments do not affect this result, since intensities are summed over all EEL channels Consequently, the factor dlsappears in the
summed intensities, in comparison to Eq. (28). We observe that the detector noise changes from 012) DM due to the summation of M channels,
as shown in Eq. (3). However, due to correlations within the detector noise, as demonstrated in [34] the summed detector noise is significantly
larger than the sum of the individual detector noises of the EEL channels, indicating that o‘ v > Z 0' . This will be demonstrated later in the
evaluation of the noises.

Ultimately, we must consider the impact of the alignments, but it is clear that they do not play a significant role in this case, as the drift noise
disappears when all spectra are summed, provided that no regions of high intensity are excluded or truncated by the detector. Generally, this holds
true as long as the ZLP is not positioned near the detector edge, which would otherwise lead to boundary effects.

Additionally, interpolation has no impact on the total sum of the noises, since it preserves the total count (see Eq. (26)), which is subject to the
noise.

Following a similar approach, we derive a summed noise model from Eq. (29), denoted by the underlined index M for the energy direction:

—>O'

X,y i OX,yi .
Easodt = Dbaxyi ¥ 8P [—g ] +N[o &, M] Jwith €%, =263, and (33)
1 1

M 2 M |
2 2 ° 2 N 2
@AxyM = ay ~kref7M . <Ix'y . st,yiy,-) +kref4’M -g- <Ix'y . st,yy,) + (1 + X) "Opm s
i i

where the difference between the noise model in lateral directions to the above model lies in the absence of the overlap factor ¢,, and the presence
of the factor of (1 + i) in the detector noises, where the shifting factor ¢ is absent. In this reference frame, the background subtracted dark frame
contributes to the noise of the total intensities regardless of any realignments.

Having such a noise model for the summed intensities is important e.g. for deriving an uncertainty for thickness mapping, where the intensity
within the ZLP is compared to the overall intensity of the spectrum.

At a glance, having two different noise models for the same quantity, namely the summed intensities, may seem redundant. However, this
apparent luxury is resolved upon closer inspection. It is worth noting that we have now derived two equally valid noise models, which differ in
their approach to incorporate fixed-pattern noises and background subtraction into the uncertainty of the measurement. In fact, one could argue
that the differences between values at different positions on the total intensity map &, , 5, can be seen as the overall uncertainty. Alternatively,
one could consider the summed intensities &, , », individually and determine the uncertainty based on the expected deviation at that position
between multiple consecutively acquired total intensity maps. In this case, the uncertainty associated with background subtraction must be taken
into account. Both perspectives are represented in their corresponding noise models. Later in this work, we will combine these models to develop
a noise model for the individual voxel that is applicable to all directions. However, at this stage, we will proceed with both noise models.
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3.1.3. Intensity normalization and loss probabilities

Having established a noise model for the summed intensities &, , , 5, in Eq. (30) and &, , , 5, in Eq. (33), which provide the first factor of the
separation Eq. (19) from different perspectives on the noise, we now require a noise model for the normalized EEL spectra, which constitute the
second factor in Eq. (19), in order to complete the separation. As previously demonstrated, the noise in lateral directions must be viewed separately
from the noise in energy direction. Therefore, in a next step, we utilize the summed intensities &,  ,, ), from Eq. (30) and &, , , ), from Eq. (33) as
estimates of the true intensity map Z, , to normalize the individual spectra.

We begin again by examining the noise in the lateral directions. By applying the summation rule in Eq. (3), we can decompose Eq. (28) into a
part &, . ,; and a Gaussian distributed part that accounts for the uncertainty of alignment:

é/&,x,y,i éA,ﬂ,i N[O . O'i]

Shxyi (34

Xyl Shxy.M - SaxyM  SAxyM
However, upon normalizing the EELS map, we observe that the energy slice of interest &, , ,; from Eq. (28) is contained within the summed
intensities &, . , »s from Eq. (30): o
- M
EaxoM =Eaxy R+ Eaxyi > With &4 p= Z‘SA,x,y,h s (35)
XY, Xy Xy XY, P
with £, , g describing the intensity in all other remaining EEL channels. Since ¢, ., g is very similar to &, ., in Eg. (30), we provide the

corresponding formula in Appendix A.2. With this reduction by the regarded channel i, the uncertainty of the gain reference changes kfe M K2

ref,R’

as well as the summed detector noise of all remaining EEL channels a%)’ Vi a%’ > the distribution factor of the remaining EEL channels ay, —»fa R

and the overlap factor of the remaining EEL channels ¢,, — @y for the fixed-pattern noise. Since ay and ¢y are very similar to Eq. (31) and
Eq. (32), both are given in Appendix A.2.

To solve the first term on the right-hand side of Eq. (34), we can rewrite the denominator into Eq. (35). By taking a measurement, the EEL

channels take distinct values 7, - {4, ,; € &4, from the distribution, collapsing it to the actual representation of loss probabilities ¢y,

- . . ) . ) ) .
multiplied by the intensity map Z, ,. Thus, we find the loss probabilities ¢ Axyi € Nu;, k Ay and ¢ Axy.R € Npug, k AxyR|" As the corresponding
uncertainties k, , ,; and k4, , p are lengthy, both are derived in Appendix A.2. The corresponding mean values, however, are given as:
a M . M
Sx.pi . Zh#i Sx.y.h N
= o M and pr= TN Y S (36
Z,‘ Sx.pi i Sxoi h#i

From these mean values, a first criterion for the normalization of EELS maps is identified as the aforementioned normalization based on the total
transmitted intensity, which is only useful if the acquired loss probability wa 3,y ~ 1, which means that it is large enough to cover a high
percentage of the transmitted intensity of the intensity map I, ,. Alternatively, the loss probability Z,M 3y, = const. should remain constant over
all energy spectra (x, y), thereby preserving the relation between them. Typically, one of these conditions is satisfied when the ZLP does not drift
outside the CCD array and the plasmonic peaks are not truncated. This is due to the fact that both combined account for the majority of the overall
intensity of the signal.

As a consequence, normalized low-loss EELS measurements, which often do not fully capture the bulk plasmonic peaks, artificially overestimate
the loss probability of materials with high plasmonic resonance, typically metals, relative to those of lower resonance, such as semiconductors,
organic materials or polymers. This has significant implications for the evaluation of such material systems!

We use the equality of {4, ,; in both nominator and denominator to obtain:

Exyi Loy Caxyi 1 37)

CAxyR
éA’H'M Ix,y . (CA,x,y.R + CA,x,y,i) {Aﬂ -+ 1
I — .HJ

From this point, it can be inferred that when normalizing energy slices of EELS data cubes by the summed intensities, additional information
regarding the total intensity from all other slices, excluding the one of interest, is required. The greater the contribution of a single energy slice
to the total intensity of the spectra, the more uncertain it gets to normalize that particular slice by the total intensity. Therefore, we identify the
second criterion for intensity normalization: The signal of the EEL spectra should ideally be distributed over a broader portion of the spectrum.
Typically, this condition is met when the ZLP is not confined to a single EEL channel, but rather is broadened over several dozen channels or
alternatively this is true for all channels, except for the channels containing a narrow ZLP. The resulting noise model for intensity normalized EELS
maps in the lateral directions can be expressed as:

2 %2 2 %2 2
N 1 M, us, -0 7N C) + 0%,
& Beons " M5 I3, TN D YA M R T Axyi i Ax.y.R A*
&= R.p 24N [0, ———— R 40, — — , (38)
24 1 & P Iy E e
o _J
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1+k2 )~62 2
2 ~ R 2 ( ref Int N O'l @
@;nyy_,w @ @ Prp -k (I-8,,,) + kfﬁf+T -g-ﬂwnb_-(I~Sx_yvi)+<l+ 12m .<1+Z>-ﬂn-62m s
i .
2)
3)
M 2 (1 + i )~o’2 M 2
%2 ~ 2 N 2 ref,M Int N Cim 2
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N ————
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2
2 _ 2 2 d .
o2 —(l+kA’ﬂ’M)-oMAA<I-Esxw-) ,

where uy as well as y; are defined in Eq. (36), the distribution factor « is given in Eq. (18), the shifting factor ¢ is presented in Eq. (23), and ¢y
and ay are found in Appendix A.2 Eq. (53), where the subscript R denotes the reduction in channels (see Eq. (35)). Additionally, ,,,, and g,,,,. are
smoothing factors while k,,, and k,,, g describe the uncertainty of the gain reference and the reduced summed gain reference, respectively. The
gain is denoted as g, the mean intensity of the intensity map Z, , is given as I, and a%m denotes the variance of the intensity map, as described
in Appendix A.2. The detector noise and reduced summed detector noise are represented by o, and o z. Additionally o,,, characterizes the
misalignment of the individual spectra with respect to each other. The derivation of the above noise model is quite extensive and would compromise
the readability of the paper. Therefore, we present it only in Appendix A.3.

Within the noise model, we identify four terms associated with the spectrum and an additional four terms related to the summed intensity
used for the intensity normalization of the spectra. Both uy and yu; serve as weighting factors for the noise terms related to the spectrum and
the normalization. Beginning with the noise terms associated with the spectrum itself, we identify: 1) The first term that describes the Poisson
distributed signal noise. 2) The second term that describes the fixed-pattern noise induced by applying the gain reference. 3) A third term that
describes alterations of the Poisson noise by the application of the gain reference and by applying the intensity normalization. A last term 4) that
describes the read-out noise of the detector.

Four terms are also associated with the intensity normalization, consisting of: 5) A term that resembles the Poisson signal noise of all other
channels R, which we cannot be transformed back into the Poisson distribution using Eq. (6) due to its zero mean value. 6) Another term that
describes the fixed-pattern noise induced by the gain reference to all other channels R. 7) A term that describes alterations of the Poisson noise in
all other channels R by applying the gain reference and by applying the intensity normalization. A last term 8) that describes the read-out noise
of the detector in all other channels R. Upon comparison with the terms 1-4), a clear repetition becomes apparent.

Eventually, we identify a term representing the uncertainty of misalignment and another term that describes a multiplication (see Eq. (4))
between the noises of the spectrum and the noises of the normalization, which is subsequently deemed insignificant and therefore neglected in this
context.

It is crucial to note that the validity of this noise model is limited to sufficiently high beam intensities, as it relies on several approximations
that require this condition to be met (a strong ZLP usually suffices this condition). Consequently, we establish a third criterion for normalization:
the uncertainty of the normalization must be sufficiently small k4, , s < 0.05 (see Eq. (5), Appendix A.2 and Appendix A.3) to enable an accurate
estimate of the noise. o

Regarding the noise model in energy direction, we obtain:

";:A,x,y,i

* L= . 39
§A,x,yi Sy M :

Notably, the above equation can be viewed from two distinct perspectives — one focusing on the noise volatility of the measurement and the other
focusing on the uncertainty of the measurement. These two perspectives represent fundamentally different entities:

It is readily apparent that the summed intensities act as a scalar with respect to the individual spectra, and dividing a spectrum by a scalar does
not change the noise volatility within the spectrum, except for a scaling of the variance. Normalizing by the summed intensities does not introduce
additional noise terms in energy direction, unlike the lateral noise model presented in Eq. (38). In the lateral directions, such a normalization
significantly alters the variance, beyond the obvious scaling effect. In contrast, the change in variance for the energy direction remains solely a
scaling effect. Thus one could conclude at Eq. (39). It is worth noting that such a variance model plays a crucial role for the ‘total variation’
approach employed in denoising or deconvolution.

From the perspective of the uncertainty associated with measuring such spectra, a completely different picture emerges. In this context, the
precision of the normalization plays a crucial role and must be taken into account. Consequently, we obtain a similar model to Eq. (38). Using the
same line of reasoning as before, we must replace &, , ,; from Eq. (29) and &, . , », from Eg. (33) by their actual representations, which yields a
noise model similar to Eq. (37):

Eaxpi T,y Caxyi
5;&%5 _ o y Vi _ 1 ] (40)

Caxy,
SAxy M I, (CA,x,y,R + gA,xA,y,[) # +1
- - AP

We subsequently obtain the overall uncertainty for normalized EELS spectra in the energy direction as:
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Unlike the volatility model, the uncertainty model presented above is relevant for calculating the total uncertainty of a normalized voxel, similar
to Eq. (24). However at this stage, we find that a combined noise model is too complex to be readily applicable. Therefore, we will examine the
impact of the different noise terms on the total noise and omit certain terms in advance.

Consequently, we must consider two very distinct noise models in energy direction, depending on the purpose, whereas the noise model in the
lateral directions simultaneously characterizes both volatility and uncertainty.
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Fig. 2. (a) Displays the average autocovariance function from Eq. (42) of a homogeneous signal recorded in TEM mode divided by the target intensity of S,cf ~ 7000 counts, as
described in [34]. We cropped the full autocovariance function of the regular 2D image to the EELS region and found that only the very central elements contribute to the function,
as shown in the cutout on the right side. The autocovariance function yields the variance of the Poisson noise o7 multiplied by the Pearson correlation coefficients p,,, of the 2D
image (see Eq. (42)). Dividing the Poisson noise variance 62 = f.y,,2p - & - S‘,d by the target intensity S‘,d yields the smoothed gain as the central element f,,,,,p - g poo =~ 1.55 of
the 2D signal, since p,, = 1 by definition. Upon vertically summing the autocovariance function shown in (a), according to Eq. (15), we find f,,,, - & - py ® 4.2 as an estimate of
the smoothed gain for EELS measurements, again with p, = 1. By normalizing the resulting distribution to the height of one, the Pearson correlation coefficients are revealed, as
shown in (b). Using these coefficients, we can calculate g,,,, and g, according to Eq. (9) and Eq. (10). Having calculated both g,,,, and the smoothed gain estimate f,,,,-g for
EELS, we can readily determine the total gain of the detector g. (¢) Displays the detector PSF for EELS ., calculated using Eq. (43). (d) Shows the uncertainty of the gain
reference k> for regular 2D images, multiplied by its Pearson correlation coefficients. Vertical summation according to Eq. (15) and Eq. (17) yields the uncertainty of the

P,
ref2p " Pmn
gain reference for EEL spectra kfe and subsequent horizontal summation provides the uncertainty of the gain reference for the entire spectrum kfz / M=2048" Taking the square root

of both values yields the results presented in (d).

4. Estimation of the noise parameters

To apply the noise model, it is essential to determine the contributing factors and coefficients. This section aims to demonstrate how to determine
these parameters, thereby tailoring the noise model to the detector.

In our previous work [34], we demonstrated how to determine the Pearson correlation coefficients p(ére_f) for a signal under homogeneous
illumination conditions in TEM mode, similar to those used for the gain reference ¢&,,,. By applying the Wiener—Khitchine theorem [45,46] and
analyzing the autocovariance function K (&) for such a frame, we gained insight into the correlations within the signal:

K(éref) =G%'p(§ref) E] (42)

with the variance of the Poisson noise 572). The Pearson correlation coefficients of the signal comprise the individual elements p,, ,, with horizontal

lagme [-(M —1),...,M — 1] and vertical lag n € [- (N — 1), ..., N — 1]. Consequently, the size of p(&, ) is nearly twice that of the initial frame,
which has M x N pixels in each direction. Therefore, we must crop the frame to match the size of the EELS region, as illustrated in Fig. 2(a). For
instance, an EELS region of 260 x 2048 pixels yields 519 x 4095 Pearson correlation coefficients. The autocovariance function Eq. (42) provides
the Pearson correlation coefficients scaled by the variance of the Poisson noise of the 2D image o‘% - pm.n- The Poisson noise variance is then given
by the product of the smoothed gain of 2D images f,,,,,p & and the target intensity S,, 1> resulting in 072, = Peons2p & Sre 7~ By dividing the Poisson
noise variance by the target intensity, which was approximately S$,, + ~ 7000 counts, we obtain the smoothed gain of the 2D image at the central
element of the gain correlation map, as illustrated in Fig. 2(a). This follows from the fact that p,, = 1 by definition. Consequently, the smoothed

gain can be expressed as f,,,,2p - & = ;i ~ 1.55, which applies to regular 2D images acquired with our detector.

s a result of the smoothing caused ,by the detector PSF, the Pearson correlation coefficients are distributed densely around the center. We
therefore display the central region as an extract in Fig. 2(a) marked by the red box. All other correlation coefficients, located in the periphery,
are zero.

Since the signal is expected to be entirely contained within the detector region used for EELS, we can directly sum all correlation coefficients
from Fig. 2(a) (according to Eq. (15)) to obtain the smoothing factors 8,,,, ~ 0.2412 (according to Eq. (9)) and B,,,, ~ 0.9985 (according to Eq. (9))
for EELS measurements [34]. with the smoothed gain §,,,,- g and f,,,, known, we can readily calculate the initial gain of our US1000FT-X2 camera
to be g ~ 17.43 counts/beam electron, which is comparable to the gain of 12.6 counts/beam electron reported for a US1000FTXP detector in a
Gatan GIF [5].

By summing the Pearson coefficients from Fig. 2(a) vertically, according to Eq. (15), we obtain Fig. 2(b), which displays the correlation
coefficients for EELS measurements.

Furthermore, using the distribution of the Pearson correlation coefficients in Fig. 2(b), we can compute the detector point spread function Qp gy
for EELS measurements, which differs from the detector PSF for regular 2D images . This is achieved by taking the square root of the normalized
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Fig. 3. (a) Displays the relative intensity of a ZLP measured on the detector in 2D, with an acquisition time of ,,, = 107 s. According to Eq. (18) and Eq. (31), we determine
the distribution factors @ and a,,. (b) By acquiring a 50 x 50 2D EELS map, again with r,,, = 10~ s, and rearranging them to a sequential order along the vertical direction, we

observe that the zero-loss peaks, shown in yellow, exhibit drift over the course of the experiment. The entire acquisition process of the 50 x 50 EELS map took approximately
5 min. Using this image, we can calculate the shifting and overlap factors ¢ and ¢,, according to Eq. (23) and Eq. (32). Furthermore, we can utilize this arrangement to evaluate
strategies for ZLP alignment. The variance in vertical direction serves as a reliable indicator, as it approaches a minimum for optimal alignment. To minimize deviations in the
beam current, the spectra were normalized. We employed the noise model from Eq. (38) using the standard deviation of the misalignment o, as a fitting parameter. The results
for various alignment techniques are presented in (c), where we plot the noise model as a line with slightly different shade than the experimental data represented by dots. It
can be seen that aligning with respect to the maximum position (Max.) of the peak, shown as the black dots, is the least precise technique, yielding o,,, = 1.32 channels. Here,
it is best seen that the uncertainty of alignment closely follows the first derivative of the mean signal I. The cross-correlation method, which is the standard procedure used in
‘Gatan Digital Micrograph’, yields improved results, with o,,, ~ 0.26 channels. The fit reveals a result close to the expected standard deviation o,,, of a quarter channel, as derived
in Section 3.1.1. Therefore, the theory is in good agreement with the data. By applying a Gaussian fit to the tip of the ZLP or to the cross-correlation function yields a precise
estimate of the sub-channel drift, enabling to interpolate between channels and to correct the drift. Both procedures lead to the best results, with ¢,,, ~ 0 channels. (d) The
sub-channel drifts obtained using these methods are presented as a histogram with a bar width of 0.1 channel. The results suggest a homogeneous distribution, consistent with
the uncertainties of the Bernoulli distribution. Both channels at +0.5 eV exhibit only half the frequency of appearance compared to the others, since channels are effectively cut
in half due to the threshold for shifting the spectrum by a whole channel. (e) Shows the alignment after interpolation. However, interpolating the spectra causes slight changes
in g,,,, and g, compared to Fig. 2, due to the additional convolution described in Eq. (27).

Pearson correlation coefficients for EELS in Fourier space (see Eq. (11)):

1/2
o= (5]

The resulting detector PSF is displayed in Fig. 2(c) and is comparable with the line spread function (LSF) obtained on other detectors employing
the knife-edge method [52,53] or integrated single spot illumination [54].

In Fig. 2(d) we present the distribution of the Pearson correlation coefficients for the gain reference, multiplied by its variance. Dividing by the
target intensity S,,;, according to Eq. (17), yields kfe i P For a detailed explanation and analysis, we refer to [34]. The interpretation of this
result is analogous to that of the extract of the gain correlation of the signal noise in Fig. 2(a). Likewise, we display an extract centered around the
central element, which reveals kfe ;o Poo R 7137 107%, given that py, = 1 by definition. By taking the square root, we obtain the uncertainty of the
gain reference k., ~ 2.72- 107 for regular 2D images. To determine the uncertainty of the gain reference for EELS measurements and the total
count of an EELS measurement, we require the vertical sum and the total sum of all coefficients, respectively. The procedure is analogous to that of
the gain correlation in Fig. 2(a). However, summing the gain reference also involves summing the target intensity with which it was acquired (see
Eq. (17)). Since the gain reference for 2D images is already normalized by the total target intensity, we simply divide by the square of the number
of added pixels, which is 260% for EELS spectra and (260 - 2048)* for summed EELS spectra, as required for the normalization of the total count to
account for beam current fluctuations. By taking the square root of the uncertainty variances kfe ; and kfe - M=20ag> WE obtain the new uncertainties
Kyop ~2.8- 10~ for EELS measurements and k,, .M=2048 ~ 0.46 - 10~* for the summed intensities.

For the subsequent EELS measurements, we used the highest dispersion available to us, which is 0.01 eV/channel. All measurements were
performed at a magnification of x 400k and for a good energy resolution, we employed a cold FEG in our microscope.

In Fig. 3(a) we depict a 2D representation of the ZLP on the EELS region of the detector, allowing to calculate the distribution factors a ~ 0.0067
from Eq. (18) and a,, ~ 1.183 - 10~* from Eq. (31). These two factors affect the impact of the fixed-pattern noise cause by the uncertainty of the
gain reference (see Eq. (16) and Eq. (30)). The coefficient ay from Appendix A.2 Eq. (53) can be determined by omitting the respective column i.

To validate the EELS noise model, we must demonstrate that the noise behaves as expected. However, the signal in EELS is far from being
homogeneously distributed, as required for the standard deviation analysis, instead forming a large peak — the ZLP. Consequently, noise analysis
is only possible to conduct between sequentially acquired spectra with the same expectation value S, which are energy aligned. We therefore
acquired an EELS map in vacuum, which corresponds to a time series of the vacuum ZLP, allowing for channel-wise evaluation.

In Fig. 3(b) we present such a measurement of a 50 x 50 EELS map in vacuum with an acquisition time of 7,,, = 107> s and an overall
measurement time of approx. 5 min. We rearranged all acquired spectra, such that they are sequentially displayed as a series of spectra. It is
evident that the high intensity ZLP (shown in yellow) drifts throughout the measurement, necessitating alignment to conduct noise measurements,
which require a homogeneous expectation value of the signal § within a given energy loss channel.

Shifting the spectra also shifts the fixed-pattern noise, requiring the calculation of shifting factors ¢ ~ 0.97 following Eq. (23) and ¢,, ~ 0.22
following Eq. (32), to account for the shift in the fixed-pattern noises.

A perfect energy alignment minimizes the standard deviation among all spectra within a given EEL channel. Consequently, we can utilize the
variance to compare various alignment strategies and identify the most suitable one, as illustrated in Fig. 3(c). We evaluated alignment methods
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Fig. 4. By acquiring a 50 x 50 EELS maps without signal and rearranging it similar to Fig. 3(a), the variance of every channel can easily be determined by applying the standard
deviation vertically. The resulting variances o2 5, are presented in (a) as the green curve, without gain reference applied, where only a dark frame background subtraction was
performed for each spectrum (DF subtr.), and the blue curve, with gain reference applied in addition. It can be observed that the variance varies significantly from channel to
channel, and that applying a of a gain reference substantially alters the noise distribution. Upon interpolating the spectra with a continuous sub-channel drift 4, we obtain the
orange curve, which exhibits a significant reduction in variances. The smoothing factor obtained between the blue and orange curve agrees well with the theoretical value of
Pp = 2/3 (see Section 3.1.1). In (b) and (c), we display the mean variance over all channels without interpolation (and thus colored blue) as a function of exposure time, for
the left side and for the right side of the segmented detector, respectively. We find no time dependency in either case, which enables to neglect noise contributions from dark
currents. This allows to determine a mean value o7, for each side of the detector, which is represented by the black line in the graphs. In (d) we show the variance of the sum
of the entire spectrum o, 5,_,043 for 2048 channels, agam with no visible time dependency within the considered time intervals and without interpolation. Again, the mean value
is represented by the black line.

based on the position of the maximum intensity (Max.), the alignment with the cross-correlation function (Correl.) as well as an alignment by
fitting a Gaussian function to the tip (10-15 channels) of the ZLP (Gauss) and fitting a Gaussian to the cross-correlation function (Correl. + Gauss).
The latter two allow for sub-channel alignments, but require some kind of interpolation between channels. To keep things simple, we used linear
interpolation leading to a smoothing of the other noises as described in Section 3.1.1 and an additional uncertainty of interpolation.

To further reduce the variance, we normalized the spectra with respect to the total sum of counts, thereby accounting for changes in beam
intensity. According to Eq. (38), we calculated the expected noise and fitted the alignment noise term o 4. (see Eq. (38) term 8) to the data. As
will be show later, the influence of the intensity variation 7,/1? can be neglected for normalized spectra in vacuum. The results (black data points,
gray fit curve) clearly indicate that aligning with respect to the maximum position is the least favorable technique, resulting in a misalignment of
opma & 1.32 channels. Furthermore, it is evident that the model for alignment uncertainty, as proposed in Eq. (25), indeed exhibits a dependence
on the first derivative of the signal. This is evident from the two maxima adjacent to the position of the ZLP tip, which are well fitted by the gray
curve, based on the first derivative of the signal, according to Eq. (38) term 8).

The standard procedure in ‘Gatan Digital Micrograph’ involves alignment via cross-correlation [32], which indeed yields better results than the
maximum intensity technique (dark blue data points, light blue fit curve). However, we still observe a residual misalignment of )4 ~ 0.26 channels.
Assuming a continuous distribution of the sub-channel drift, the result is in good agreement to the expected mean value of o,,4 = 0.25 channels,
which we derived in Section 3.1.1. Small deviations from this value are expected, as the sub-channel drift 4 is Bernoulli distributed within small
intervals, reflecting the common uncertainty in histograms. Such a histogram will be shown below.

We found that both techniques, fitting a Gaussian either to the tip of the ZLP (dark red data points, light red fit curve) or to the cross-correlation
function (dark green data points, light green fit curve) are best suited for alignment, as both enable sub-channel adjustments and reduce the
uncertainty of alignment below the measurable 6,4 ~ 0 channels. For actual measurements of EEL spectra on specimens we found that fitting the
cross-correlation function is better suited for alignments, owing to its greater symmetry compared to the ZLP of a specimen.

The histogram in Fig. 3(d), displays the frequency of occurrence of the sub-channel drift A4 ranging from —0.5 to 0.5 channels, in intervals of
0.1 channels in width. The red error bars represent the uncertainty, characterized by the Bernoulli distribution, within a 95% percent confidence
interval. Obviously, all sub-channel intervals are nearly equally likely, suggesting a continuous distribution. As the intervals around both +0.5
channels are cut in half, due to threshold for shifting the entire spectrum by a whole channel, the frequency of occurrence is also reduced by half.

The interpolation that corrects this sub-channel drift can be described by an additional convolution, as depicted in Eq. (27), resulting in an
increased correlation among the other noises. Consequently, we observe additional smoothing, corresponding to changes in g,,,, ~ 0.2412 - 0.2102
and f.,,, ~ 0.9985 — 0.9982, due to interpolation. Following interpolation, the spectra become sub-channel aligned, as shown in Fig. 3(e). This
enables the evaluation of the noise model, since the expectation value S; of the signal remains constant within a given EEL channel i.

The last parameters required for evaluating the noise model are the read-out noises from the CCD detector, which are displayed in Fig. 4(a—d).
Analogous to Fig. 3, we rearranged a 50 x 50 EELS map, acquired with the electron beam blanked, and determined the variance of a given channel
as the deviation between spectra.

Fig. 4(a) displays the variance of the detector noise for an EELS map, resolved across all channels. We present three curves, each with an
acquisition time of 7., = 1073 s, which differ by the corrections applied to the spectrum. The green curve represents the detector noise without a
gain reference applied, which has only undergone dark frame subtraction. The blue curve displays the variances with a gain reference additionally
applied; and we will discuss the orange line later. All curves demonstrate that the detector noise significantly varies from channel to channel,
particularly between the left and the right side of the detector, as evidenced by the abrupt decrease in variance after 1024 channels, which marks
the transition between detector segments. Additionally, the green curve reveals a significant increase in variance towards the edges of the detector.

As demonstrated in [34], the detector noise is significantly affected by the application of a gain reference. Consequently, the gain reference
employed to correct for differences in the quantum efficiencies of the detector pixels modulates the detector noise, resulting in the observed change
in distribution between the green and blue curve of the detector noise.

Additionally, it is also interesting weather the detector noise depends on the acquisition time, as dark currents accumulate and increase the
noise. To explore this, we acquired a time series of the mean value of the noise variance across all channels, separately for the left and the right
side of the segmented detector. This approach allows us to account for different behavior of the read-out electronics of the detector segments.
As EELS measurement are typically gain normalized, we conducted consecutive measurements on the gain normalized data. We observe that the
detector noise remains relatively stable within typical acquisition times, which are well below a second for both the left side in Fig. 4(b) and for
the right side in (c) of the segmented detector, indicating that time dependencies, such as dark currents are negligible. Given that the camera is
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Fig. 5. (a) The inset displays the mean values of the rearranged 50 x 50 2D EELS map in vacuum, similar to Fig. 3(b), as a function of the electron energy-loss for increasing
acquisition times. To minimize variances, the spectra were sub-channel aligned using a Gaussian fit to the cross-correlation function. In the main figure, the spectra were normalized
with respect to the summed counts. Notably, all spectra exhibit a similar shape, with a common FWHM ~ 0.42 eV and a zero loss probability of 3,,, ~ 0.02, as indicated by the
black dotted line. (b) We calculated the noise contribution of the individual terms from Eq. (38) based on the parameters determined in the previous figures, for the most intense
spectrum in (a), represented by the green curve at an acquisition time of t,,, = 11073 s. The results indicate that only the signal noise terms 1) and 4) and the detector noise

acq.

terms 4) and 8) contribute significantly to the noise. All other noise contributions are several orders of magnitude smaller and can therefore be neglected.

cooled to T' ~ —20° G, this is not unexpected. On average, across all channels (left and right), we obtain a detector noise of ¢),; ~ 45 counts. For a
more detailed examination of the time dependency, we refer to [34].

Eventually, we must determine the detector noise for the summed intensities required for normalizing the EEL spectra. Summing EEL spectra
results in the addition of the detector noise variance of all channels, as described in Eq. (3). The noise variance, however, increases super-linearly.
As we have demonstrated in [34], the pixels within a row of the detector are offsetted by a common mean value, which varies from row to row. This
row noise arises from fluctuations in the bias voltage used to suppress negative counts [34]. For example, consider a detector with a single row of
1024 pixels, where the signal is offset by only one count. Consequently, the sum of the entire row is offset by a value of 1024 counts. Since the mean
value of the row varies between measurements with a standard deviation of o,,,, this results in a noise variance of (1024 - amw)z. Consequently,
summing the row noise results in a quadratic increase of the variance. For our detector, this results in a summed detector noise of 6, y_yp45 =~ 18400
counts, which is far larger than the simple sum of 1/1024 - 2253 + 1024 - 1763 counts = 2028 counts that would be expected without row noise. As
observed earlier for the respective sides of the detector, the noise remains constant within the uncertainties for short acquisition times.

Notably, when the number of pixels contributing to an EEL channel is doubled, for instance from 260 to 520 pixels, the detector noise variance

~also doubles. As demonstrated in [34], the detector noise is independent in column direction, resulting in a linear increase in noise variance
when adding pixels within a column.

To demonstrate the effects of linear interpolation, we artificially interpolated each spectrum from the 50 x 50 EELS map of the detector noise
measurement, using the respective sub-channel drifts evaluated for the 50 x 50 EELS map in Fig. 3. The result is the orange curve in Fig. 4(a),
which represents the channel variance of the gain normalized and interpolated spectra. Both blue (gain normalized) and orange (gain normalized
and interpolated) noise distributions differ by a constant smoothing factor of g, ~ 0.68. This result is in close agreement with the expectation value
of pp = 2/3, predicted in Section 3.1.1. The slight deviation of the theoretical value from the value shown in Fig. 3(a) is within the uncertainty of
the Bernoulli distribution of the sub-channel drifts in Fig. 3(d).

To demonstrate the overall validity of our noise model in Eq. (38), we acquired five 50 x 50 EELS maps in vacuum with increasing acquisition
times. We consistently employed a dispersion of 0.01 eV/channel, enabling us to cover a total range of 20.48 eV, out of which only a fraction
(~ 2 eV) is occupied by the signal of the ZLP. The signal measured in these channels spans a range of 0 to 25k counts (or approximately 1430 beam
electrons). This number of counts significantly exceeds the typical range, in which plasmonic low-loss features are observed with our microscope.

We again aligned all spectra using the fitted cross-correlation method to achieve sub-channel precision, thereby minimizing the variance within
each EEL channel. The corresponding mean values per channel are displayed in the inset of Fig. 5(a). After the normalizing to the total sum of
counts, we observe small deviations between spectra Fig. 5(a), as well as an overall FWHM =~ 0.42 eV and a maximum zero-loss probability of
59y = 0.02, denoted by the black dotted line. In Fig. 5(b), we display the contributions of the individual noise components. Notably, the Poisson
distributed signal noise from Eq. (38) term 1), represented by the dark blue line, dominates for higher intensities, whereas the Gaussian detector
read-out noise from Eq. (38) term 4) contributes a relatively constant offset to the variance, as shown by the dark green line. Additionally, both the
Poisson noise of the summed intensities from Eq. (38) term 5), represented by the light blue line, and the Gaussian detector noise of the summed
intensities Eq. (38) term 8), shown in light green, exhibit a dependence on the squared signal and dominate at the highest intensities. These two
contributions can be regarded as the primary contributions to the uncertainty of the normalization. All other contributions appear to be several
orders of magnitude smaller than the variance of the detector noise and thus can be neglected: The fixed-pattern noises, represented in orange
from Eq. (38) term 2) and in yellow for Eq. (38) term 6); the alteration of the Poisson noise due to the gain reference from Eq. (38) term 3) in
red and from Eq. (38) term 7) in dark red; the alignment noise from Eq. (38) in purple; and the noise multiplication term between spectrum and
normalization noise (comparable to Eq. (4)), which we previously proposed to neglect2in Eq. (38), shown in pink.

a closer examination is necessary. In Eq. (20),
we defined the intensity map 7, , = g - Sy erx, - Ty, @s the product of the gain g with, the beam current of the electron source S“S,C,e,,x,y, and the
transmittance 7, ,, both at the spectrum position (x, y). In vacuum, where all the measurements were performed, T, , = 1 is uniformly equal at all
positions. For measurements on specimen, we observe:

Int

o2 2 T? .62 +5%.6 +O' r:
Ix,yzg-Ssrc,c,‘N[l T N1 T ~1-N|1, T e T, (44

S2 2
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The transmittance is clearly not normal distributed, but rather follows the shape, thickness and composition of a specimen. However, for simplicity,
we approximate it with a Gaussian distribution. Based on the multiplication of Gaussian distributions (see Eq. (4)), we derive Eq. (44), which
involves the mean beam current S, in electrons, the mean transmittance 7', and consequently, the mean intensity I = g - S,,.,, - T of the EELS
map.

Since we anticipate that the deviation due to the transmittance 7, , will be significantly larger for typical specimen than the deviation of the
electron beam S, ,, the intensity deviations cannot be readily negligible in our noise model and must be taken into account, despite their
relative insignificance in vacuum.

o2 VAR . s
Determining - ’ 2~ M is straight forward for a specimen, with the variance of the intensity map VAR |&, .y, Md] In this case, the majority of

the variance arlses from the variation of the beam due to the specimen. Consequently, we can simplify our noise model in Eq. (38) for normalized
spectra in lateral directions, assuming sub-channel energy alignment and a suitable gain reference with a sufficiently low uncertainty &,,,. We

obtain the simplification for an applied noise model in lateral directions by replacing y; = 3, ,; with the original expression (see Eq. (36)):
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which includes the overall uncertainty of the normalization ki]grm ;- Similarly, we obtain a simplification for the unnormalized EELS maps in lateral
directions: ’

I- §X Vi G%rt 2 %4
Ng- Lp| = sre (-5 ). 5, 62
Eyi ® & Peonw P[g'ﬂmu] + N0, 152 (I-5,,:)" + (1+ A) Bp - o, s (46)
o2 2
with the beam source variation %, which solely accounts for the deviation of S, ., ’
2
also encompasses the variations in transmittance T, = %

For measurements performed on specimen JS;‘ is not readlly determined, as it depends on the current state of the microscope. Therefore, it may
be advantageous to normalize the data, allowing all parameters to be determined, which in term enables the establishment of a well-defined noise
model. Accordingly, we recommend the use of Eq. (45) instead of Eq. (46).

Based on our results in Fig. 5(b), we can also simplify the noise model in energy direction by omitting insignificant noise terms:
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In Fig. 6, we evaluate the performance of both the normalized and the unnormalized noise models for the lateral directions. The upper row Fig. 6(a-
¢) demonstrates the applicability of Eq. (46) for the unnormalized EELS maps, while the lower row Fig. 6(d—f) demonstrates the applicability of
Eq. (45) for the normalized EELS maps. In Fig. 6(a) we used the first three spectra from Fig. 5(a), which correspond to the shortest acquisition times
of 15, =5-107% s to 2-10~* s. Rather than measuring the mean value per channel, we analyzed the variance to facilitate a comparison with our
noise model across several acquisition times. The red lines represent the noise model without accounting for beam variations; in contrast, the green
lines represent the model with beam variations, we fitted to the experimental data, revealing a decrease in cr./1 for an increase in acquisition time.
This outcome is not unsuspected, as increased acquisition time leads to a regression towards the mean of the beam currents, which is an anticipated
result. In Fig. 6(b) for t,,, =1-10~* s and (c) 1,,, =2-107* s, we organized the variances by their mean channel value to generate mean—variance
plots, allowing for a straightforward assessment of the linearity of the data. To distinguish between left and right side of the ZLP, we employed
distinct color shades. We display the expected noise variance from Eq. (46), with the _parameters shown in the previous figures, in black for the

left and in red for the right side of the ZLP, assuming negligible beam variances as GI’;’ = 0. It is readily apparent that the model deviates from
a linear behavior at higher intensities, indicating beam deviations cannot be neglected. However, in the lower count regime, a linear behavior is
observed, which agrees well with the estimated smoothing of the Poisson noise for interpolated spectra (see Fig. 3(e)) and the corresponding offset
due to the smoothed detector noise (see Fig. 4(a)) In dark/bright green we display the expected noise variance from Eq. (46); in contrast to the

black/red line, we fitted the beam variance 7 2 to the experimental data, which shows a good agreement. However, fitting the beam variation is
a poor predictor of the validity of the noise model, as the fit could also account for unknown noise contributions - a reliable noise model must be
self-consistent. We therefore present the last two spectra from Fig. 5(a), which have the longest acquisition times of 7,., =5 - 10*sand 1-1073
s, normalized with respect to their summed intensity, as shown in Fig. 6(f). In the lower row Fig. 6(d—-f), we display the variances predicted by
the noise model in Eq. (45). In contrast to the upper row, we observe lower normalized variances for longer acquisition times, which is a result of
the normalization applied in (d). For (e) t,,, =5-10~* s and (f) Tacg. =1 103 s, we again organized the channels by their respective mean values

acq.
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Fig. 6. (a) The graphs display the experimental data for the noise variance per EEL channel with increasing acquisition time ranging from #,,, =5-107 s to 2-10~* s, similar to
the inset in Fig. 5(a), which shows the mean value per channel. The red lines represent our noise model for the unnormalized EELS maps (see Eq. (46)), were we neglected the
influence of the beam variance. The green line represents the noise model with the beam variance fitted to the data, revealing a significant change in the results with acquisition
time. To demonstrate the applicability of the noise model, we sorted the channels by their respective mean values, shown in (b) for r,,, = 1-10~* s and (¢) for t,,, =2-10~*

acq. acq.

s. Also, we maintained the color scheme from (a), but differentiated between the mean values on the left and on the right side of the ZLP, which are represented by differently
shaded data points. In both (b) and (c), we display the estimates from the noise model, represented by black lines (for left side of the ZLP) and red lines (right side) without beam
variation, and by darker green lines (left side) and lighter green lines (right side) with the beam variation values obtained in (a). Both (b) and (c) suggest that the beam variance
cannot be easily neglected, as there is a significant discrepancy between the unfitted noise model and the experimental data, while the fitted noise model exhibits a good fit.
Since the beam variation changes between measurements, we normalized each spectrum with respect to the sum of the total intensity and then determined the channel variance,
as shown in (d) for locg. =5° 107* s and 1-1073 s. In contrast to (a), we observe that the normalized variance to decreases with increasing acquisition time. Here, we display our
noise model for normalized EELS maps (see Eq. (45)) as red lines. In (e) and (f) we again sorted the normalized variances by the respective mean values, similar to (b) and (c).
We observe a good fit of our intensity normalized noise model to the normalized data.

to generate the mean—variance plots. Upon normalizing the spectra by their total intensity, without further fitting, we observe good agreement
between the prediction of the noise model and the experimental data in both cases, indicating that the noise model is indeed valid. In Fig. 6(d-f),
we present the normalized noise model only for the longer acquisition times, due to the normalization requirement k, , ,, ), < 0.05, as explained
in Section 3.1.3. Furthermore, we observe small discrepancies between data points on the left and right side of the ZLP with similar mean values,
which are likely caused by beam instabilities.

With this framework, we are unable to demonstrate the validity of the noise model in energy direction from Eq. (47), as the signal is
inhomogeneous and forms the ZLP, rendering it impossible to quantify the noise precisely enough using standard deviation or variance. However,
our experimental results in [34] have demonstrated that the underlying theory of Eq. (47) is highly accurate. Given that the noise model in lateral
directions accurately fits the data and the expected noise in energy direction is similar, there is little reason to question the validity in energy
direction, even without explicit demonstration.

As a final step, we must determine a global uncertainty for measuring a voxel (x, y,i) within a normalized EELS data cube, which involves
combining the uncertainties of both noise models in the respective directions from Eq. (47) and from Eq. (45), following a similar approach to that
used in Eq. (24).

In fact, the noise models in energy direction from Eq. (47) and the lateral noise model from Eq. (45) exhibit strong similarities. However, the
Poisson noise contribution of the lateral directions is slightly larger than that in energy direction, due to the absence of additional smoothing from
P..rr- Regarding the detector noise contributions, we observe that the noise in energy direction is slightly larger, since ¢ < 1 and (1 + %) > 1.
Consequently, the noise model for measuring an individual voxel within an EELS data cube can be expressed as:
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where 3, ,; denotes the expected loss probability for a given EEL channel i at position (x, y) on the EELS map. Here, g is the gain of the detector,
Peonw describes the smoothing of the Poisson noise by convolution with the detector PSF, and I denotes the mean intensity of the intensity map

1, ,. Additionally, up (see Eq. (36)) originates from the fact that the original noise of a given EEL channel is also incorporated in the intensity
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normalization (see Appendices A.2 and A.3), which is defined as the sum over all EEL channels Z,M 3, ;- We also have the variance of the intensity
map a?m, the detector noise variance ¢ ;, the number of averaged background frames A to be subtracted from the signal, and the smoothing of the
detector noise by interpolation #;, ~ 0.66, as derived and discussed in Section 3.1.1. Finally, we have the uncertainty of the intensity normalization
ky x> which includes the summed detector noises o, g, representing the sum of detector noises of all EEL channels except the one in question.

5. Conclusions

In this paper, we have investigated the noises present in EELS and EELS maps recorded with a camera mounted on a scanning transmission
electron microscope. The noise model to be described therein has been shown to be valid for scintillation-based CCD detectors and is expected to be
applicable to direct electron detectors (DED) as well. For single EEL spectra (see Eq. (16)), the first noise contribution is the Gaussian distributed
detector noise, whose variance doubles due the to background subtractions required to eliminate detector offsets. The variance of the detector
noise varies from channel to channel due to differences in the detector electronics. Upon applying a gain normalization to account for quantum
efficiency deviations on the detector, the channel variances also change.

The second major contribution is the Poisson distributed signal noise, which is dependent on the signal strength. Due to the conversion of
incident beam electrons into counts, which are received as output from the microscope, the Poisson distribution is modified by a gain factor. The
signal is also broadened by the detector point spread function, resulting in correlation effects in the noise between neighboring EEL channels. These
correlation effects lead to a smoothing of the signal noise.

Based on the autocovariance function of homogeneously illuminated TEM images, we can describe the correlation in regular 2D images using the
Pearson correlation coefficients, as previously explained in [34]. The present paper extends these descriptions and demonstrates how correlations
change when calculating 1D spectra from 2D images, as is typically performed in EELS. We demonstrate that this operation significantly reduces
the noise correlation and provide a theoretical description of the change. Furthermore, we present a method for estimating the total gain of the
detector based on the correlation coefficients and the general property of the Poisson noise, which has equal expectation values of the signal and
variance. This enables the application of our noise model to detectors without electron-to-count calibration.

Additional contributions to the noise, in the form of fixed-pattern noise induced by the uncertainty of the gain reference, are mathematically
characterized (see Eq. (17)) and experimentally verified to be negligible. Owing to the inhomogeneity of the EELS signal, it is not possible to
directly determine the signal noise within a single EEL spectrum by using standard deviation and variance. However, with a relatively stable ZLP,
it is possible to measure signal noises between consecutively measured spectra, assuming a constant expectation value of the signal within each
respective EEL channel. This assumption enables us to evaluate signal noises in the first place, provided that the energy drift between consecutive
spectra is minimized.

To measure the signal noise, we had to further extended the EELS noise model to accommodate the requirements of EELS mapping (see Eq. (22)).
However, both energy misalignment of the ZLP and deviations in the beam current are big contributors to the overall noise between spectra and
must be taken into account. We conclude that, due to these deviations, a separate noise model is necessary to describe the deviations between
spectra that differs from the EELS noise model in energy direction.

We have experimentally tested several methods of energy realignment and found that the uncertainty of alignment is dependent on the first
derivative of the signal in energy direction (see Eq. (29)). The standard method employed by ‘Gatan Digital Micrograph’, namely the cross-correlation
method, results in an uncertainty with an expected standard deviation of approximately 0.25 channels, which we have derived theoretically and
confirmed experimentally. This is due to the fact that sub-channel drifts cannot be corrected by this method alone. By fitting a Gaussian to the
cross-correlation function used for the energy alignment, we can estimate the sub-channel drift and determine it to be continuous. The residual
sub-channel drift can be corrected by interpolating the respective spectra. We demonstrate that this alignment operation minimizes the noise
between spectra to the extend that no uncertainty misalignment can be measured, which strongly suggests the success of the method.

Interpolation, however, affects all other noise components. Since interpolation can be considered as an additional convolution applied to the
noises, as shown in Eq. (26), it smooths signal and detector noises to varying degree. This is because the detector noise is largely uncorrelated,
whereas the signal noise is already affected by a convolution with the detector point spread function. Consequently, interpolation results in a more
pronounced smoothing of detector noise compared to signal noise.

To mitigate the effect of beam current fluctuations, we normalized all spectra within an EELS map by the sum of all counts within the respective
spectrum. We discussed three criteria for the success of such a normalization: First, for normalization to be effective, it is essential that the spectrum
encompasses a high percentage of the overall loss probabilities, or that the loss probabilities remain constant across the entire EELS map, thereby
preserving the proportions between spectra. From this, we concluded that in low-loss spectra, which do not fully encompass the bulk plasmons
of all materials within the specimen, an artificial overestimation of materials with a high plasmonic resonance is expected. This results in an
overestimation of e.g. surface plasmonic peaks of metals in comparison to those of semiconductor or organic substrates. The second criterion is
that, to normalize a specific EEL channel, sufficient intensity is required in all other EEL channels. The third criterion is that the uncertainty of the
total intensity (see Appendix A.2 Eq. (62)) must be sufficiently small (standard deviation below 5%) for the mathematical model to yield precise
results.

When using intensity normalized EELS maps, an additional noise term is introduced, which depends on the uncertainty of the total intensity
of the spectra. This uncertainty is primarily determined by the detector noises and the Poisson noise of the total signal. Furthermore, we find that
deviations in the total intensity of a spectrum, naturally induced by specimen, must be taken into account and contribute to an increase of the
overall noise of all respective noise terms.

We omit additional contributions for sub-pixel aligned spectra such as uncertainties in linear interpolation and the uncertainty of alignment, as
they are all below the detector read-out noise. By omitting these minor contributions, we can combine the noise models in energy direction with
those in lateral directions, thereby deriving an uncertainty model for an individual voxel within the normalized EELS data cube (see Eq. (48)).

For DEDs, some modifications to the noise contributions are necessary to account for differences in the acquisition process. However, the
applicability of the proposed noise model to DEDs appears straightforward, but its validity remains to be experimentally verified. We hope that
this noise model will find widespread application in estimating uncertainties in EELS and enable better deconvolution results with well-suited
deconvolution algorithms. To this end, we provide methods for determining all necessary factors for the most important noise contributions, which
can be used as input parameters for the noise model. This enables the measurement of noise parameters on any EELS detector, making this noise
model widely applicable to everyone.

An example of applying this noise model in conjunction with the ‘alternating direction method of multipliers’ (ADMM) deconvolution algorithm
will be presented in a forthcoming article [55].
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Appendix
A.1. Uncertainty of interpolation

Linear interpolation itself has limitations in terms of precision when reconstructing the signal. Typically, the error bounds for a polynomial
interpolation of degree n are given as [56]:

_ fn+l (Sc,x,y,i) A )n+1

N d? Sxyi o
gc,y,i) - n+ 1! : ( cex i+l T Pexyi

=Ix,y'ﬁ B -4%, (49)

which leads to the expected uncertainty for linear interpolation with n = 1, as shown on the right-hand side of the above equation. By considering
a continuous distribution of the interpolation shift 4 and by integrating ff)(fj dA|A* = é one finds the expectation value for the interpolation error

A 2 5oy . . .
as Ey (Seyyi) Ly & Zvi o L Therefore, the uncertainty of the interpolation can be expressed as:

Xy o diz 2 12°

E, (S. — E (Sc,x,y,i)

s (L., &LV 50
O Inter = ﬂ x,y‘ﬁsx,y,i . (50)

Since the uncertainty of interpolation is given as the second derivative of the signal, it is significantly smaller than the uncertainty of the alignment
depending on the first derivative of the signal. However, the uncertainty of interpolation provides a lower bound on a general realignment error.

A.2. The intensity map

For the derivation of the noise model for the intensity map, we need a formula for the square root of a Gaussian distribution in addition to
the formulas described in Section 2. The square root of a Gaussian distribution can be found by applying the well-known rules of uncertainty
propagation [57], which employ a Taylor expansion to derive:

2
N zN[\/ﬁ, Z_M] . 51)

We provide an alternative derivation in the appendix Appendix A.4, which demonstrates that the distribution remains Gaussian for sufficiently
large 4 compared to the variance 2.

We start with the noise model in lateral directions and find it similar to Eq. (30) as:

M A
¢ P [Ix,y Zh#i Sx.y.h

Q
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M 2 M
2 _ 2 R 2 R 2
@AA,H,R = QR PR kref,R : (Zx,y ) Z Sx.th) + kref,R & <Ix.y : 2 stl) +0pr -

h#i hti

2 £R the summed detector noise of all remaining EEL channels aé’ v~ 05 g With
(o2 ~

DR o-f) IV o-f)l., the distribution factor of the remaining EEL channels ay (similar to Eq. (31)) and the overlap factor of the remaining EEL
channels ¢ for the fixed-pattern noise (similar to Eq. (32)):
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with the modified uncertainty of the gain reference k> -k
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By approximating the Poisson distributed component by a Gaussian normal distribution for high counts (see Eq. (6)) and factoring out (see Eq. (2))
the total counts Zx,y-Z,M 3,.y.i» we find the overall probability to obtain a representation of the summed intensities by measurement &, . , s = C4x.m
resembling the intensity map 7, , as: T o

M
Pr{Casym= Loy (CA,Q,R + CA'MJ')] ~ <Ix,y . Z §x,y4,i) . (N[MR ) k?nt,R] + ./\f[lli , k?mj]) , with (54)
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M 2
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N 2
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By measuring EEL spectra and their respective sums, we collapse the probability distributions for the lateral directions into an actual representation,
denoted as ¢y  ,,;, in which the noises are fixed. This is of significant importance for Section 3.1.3. We obtain the realized values from the Gaussian

18



C. Zietlow and J.K.N. Lindner Ultramicroscopy 270 (2025) 114101

normal distributions, characterized by the mean values uy and y; as well as the uncertainties associated with the intensity normalization k%n . g and
N .
Ko Xyt

The EELS map I, , can exhibit variations between positions due to fluctuations in the beam current or differences in specimen transmittance.

multiplied by the sum of the loss probabilities Z,M 8

We can roughly approximate the intensity map using a Gaussian, such that 7, , ~ - N [1, L |, which varies with a standard deviation ¢;,, around

a mean value /. We can further use Eq. (3) to decompose the normal distribution Eq. (54) into parts depending on I, , in the denominator, parts
depending on 12 and parts that are independent on the intensity. By inversely applying the multiplication with a scalar (see Eq. (2)), the square
root of a Gau551an distributed random variable Eq. (51) and the multiplication of Gaussian distributed random variables Eq. (4), the uncertainties

of the intensity normalization including the beam current variations are obtained. We denote these as k2 AxR and k - for the uncertainties of
the respective beam intensity parts and the combined uncertainty ki M . Assuming Z 84y ~ 1, these uncertainties can be expressed as:
i i 2
nt. nt
2 <1+m> (1+krefM) g (1+ 12>.0'D,M 2
kA,ﬂ,M ~ I + 12 tay op kref,M > (57)
o2 o2
Iut 2 In 2
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— h#i h#i
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kA,Q,i ~ Vi © By t B +a-@-Prp-k, ;- 85 yi . (59)

If Z,M 8,y =~ const., then the constant can be incorporated as an additional factor into the mean intensity I, effectively reducing it. By applying
the inverse of the Gaussian distribution in Eq. (5), we can express the actual representation of the intensity map denoted as {4, , p from Eq. (54)

as:

Casont = Loy (Chxnr +Gagpd ) s With  Cagpr € N g Ker |er0. ), (60)
and Caspi € N [;4,. N ] €0, ), 61)
and thus Cy gy € Loy N [ 1.8 0] €10.00). (62)
Accordingly, we adjust the factors up and y; to account for Z,M Sypiml
M
HRr = hz Sy and =3, (63)
#i

Following the same line of argumentation, we obtain the uncertainties of the intensity map in energy direction as:
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from which we derive the probabilities of obtaining an actual representation of the intensity map {4, , m:
Cawar = Ly (Caspr +Canps ) With  Liyp € N [uR, K g ] €0, ), 67)
and Gy € Nw KL, 00, (68)
and thus Cyepy € Loy N [ 1,8 0] €10, ). 69

In general, it can be stated that the higher the signal intensity measured by the detector, the lower the uncertainty of the intensity map will be.

A.3. Derivation of the normalized noise

We can rewrite the denominator of Eq. (37) as:

(Z,M §x,y,i) N [ﬂR ’ ki,ﬂ,R]

(Z,M §x,y,i> N [Ili ’ ki,ﬂ,i]

HR 2 .2 2 42 2 2
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; XY,
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by utilizing the inverse of a Gaussian random variable (see Eq. (5)) and the property of multiplication of Gaussian random variables (see Eq. (4)).
Since the above expression is found in the denominator, we apply the inverse of a Gaussian (see Eq. (5)) and find with uy + y; = 1 that:

St N 2.2y 242 Rk
Y ~ His HR " Kg xpi Hi " KaxyR Axy. R TAxyi
X, - - - -
~ 242 242
8N [ i | N[00 ] : 71)
which we can split into separate normal distributions according to the summation rule in Eq. (3) and neglect the term N [O, kﬁ s ] due to
Xy R T A Xy

its insignificance, as shown in the main manuscript. This term is referred to as the noise multiplication term there. By rewriting N’ [;4,- , ;4%{ . ki . y‘.]

in a form similar to Eq. (29), we obtain:

2 *2
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2)

4)

3)
We can identify four terms: 1) The first term, which we can re-transform into the initial Poisson distributed part by utilizing Eq. (6). 2) The second
term, which describes the fixed-pattern noise of the gain reference. 3) A third term, which describes alterations of the Poisson noise due to the
gain reference and intensity normalization and 4) a last term, which describes the read-out noise of the detector.

By further rewriting ' [O, ;4,,2 . kixy ] in a form similar to Eq. (52), we obtain:

.R
2 M 2. 9*2
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7

Additionally, obtain four more terms: 5) A term that incorporates the Poisson signal noise of all other channels R, which cannot be transformed
back into the Poisson distribution due to its mean value of zero. 6) Another term, which describes the fixed-pattern noise of the gain reference for
all other channels R. 7) A term, which describes alterations of the Poisson noise of all other channels R due to the gain reference and the intensity
normalization and 8) a last term, which describes the read-out noise of the detector for all other channels R. Comparing these terms with the terms
1-4), a repetition is apparent.

Eventually, we need to find a solution for the normalized uncertainty of alignment in order to complete Eq. (34). By replacing &, , , ,y with
the representation ¢ Ay M (see Eq. (62)) and utilizing the inverse of a Gaussian (see Eq. (5)) as well as the multiplication property of Gaussian
distributions (see Eq. (4)), we can rewrite:

N[0, 62 N0, 62 o*2
6[ Al = [0. 73] =N 0’1_A2 , with 74
Ax,y,M 2
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Combining all the terms leads to a noise model for the lateral directions for intensity normalized EELS maps:

y “ Peonv * 2 I'ﬁx i ”yz'g’l‘zM,'fx ”i.@:,zx,',i+#i2.9:,2x,,R+6i*
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where we obtain GZWZX’W in Eq. (72), @Z,zx,y, r in Eq. (73), 62, in Eq. (75), with up and y; given by:
M
HR = Z §x,y,h and Hi = §x,y,i . (77)
hi
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A.4. Square root of the Gaussian distribution

To find the square root of a Gaussian random variable, we utilize the y2-distribution [58-60] and its well-known square root, the y-

distribution [61,62].

v/2-1 — x""Lexp {—**/2
xfzwzj\/[v,h] and ;(V=¢z./\/[\/v—l/z,l/2] both for x>0, (78)
23 2]

in the large-v approximation, where I' [x] represents the Gamma function of x and v gives the degrees of freedom. So, by utilizing the approximation
and rewriting the Gaussian:

2 2
Np. o = ;_,4 SN [263)02, 42)e?] & ;_,4 12 with  v=2w/2, 79)

the square root of the Gaussian can easily be found as:

2
\/N[ﬂ,az]zj\f[\/_,:—”] s (80)

where we neglect the —1/2 term in the mean value of the resulting Gaussian for large u to simplify the equation.
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Data will be made available on request.
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Abstract

Image restoration via alternating direction method of multipliers (ADMM) has gained
large interest within the last decade. Solving standard problems of Gaussian and Pois-
son noise, the set of “Total Variation” (TV)-based regularizers proved to be efficient
and versatile. In the last few years, the “Total Generalized Variation” (TGV) approach
combined TV regularizers of different orders adaptively to better suit local regions in
the image. This improved the technique significantly. The approach solved the staircase
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The iterative minimization for the augmented Lagrangian of TGV problems requires
four important parameters: two penalty parameters p and n and two regularization
parameters Ao and A1. The choice of penalty parameters decides on the convergence
speed, and the regularization parameters decide on the impact of the respective regu-
larizer and are determined by the noise level in the image. For scientific applications of
such algorithms, an automated and thus objective method to determine these param-
eters is essential to receive unbiased results independent of the user. Obviously, both
sets of parameters are to be well chosen to achieve optimal results, too. In this paper,
a method is proposed to adaptively choose optimal p and 1 values for the iteration
to converge faster, based on the primal and dual residuals arising from the optimality
conditions of the augmented Lagrangian. Further, we show how to choose Ag and A1
based on the inherent noise in the image.
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1 Introduction

Every measurement contains noise, which most of the time is undesirable, as it dis-
guises the signal and thus the information to be extracted from it [1]. Often, iterative
denoising [2—6] is needed to recover part of the information hidden by the noise. For
recovering as much of information as possible, the algorithm has to address the right
noise statistics, obtain a suitable prior, and, of course, converge to a certain solution.
One category of algorithms for denoising relies on the principles of solving the “aug-
mented Lagrangian,” which is adaptable to a large variety of problems concerning
image optimization. One of these algorithms is the “alternating direction method of
multipliers” (ADMM) algorithm, which was first described by Glowinski and Marroco
[7] and Gabay and Mercier [8]. It has proven to be a good tool to solve these kinds of
ill-posed inverse problems successfully and thus has gained huge interest within the
last decade, during which huge efforts were made to optimize specialized priors or
regularizers for all types of structure occurring in images [9-15]. Many of these algo-
rithms interpret the principle of “total variation” (TV) by Rudin et al. [16] in slightly
different ways. The newest approach called “total generalized variation” (TGV) from
Bredis et al. [17] utilizes an adaptive mixture of different higher orders of TV and
applies them on suiting local regions on the image, solving the staircase problem of
first order TV, with the benefit of preserving sharp edges, that would otherwise be lost
in higher-order TV approaches [18].

As will be shown in this work, successful denoising and deconvolution in the
context of total variation break down to the choice of two sets of parameters: the
penalty parameters p and 1, which have a great influence on the convergence speed
[19-22], and the regularization parameters A¢ and A1, that depend on the amount
of noise and determine the quality of the outcome [23, 24]. To use these ADMM-
based algorithms to evaluate experimental data in a scientific context, the choice of
these parameters must necessarily be objective to avoid altering the results by the
user. Today, this hurdle restricts natural scientist to switch to better-suited algorithms.
Instead, it pushes them to use algorithms, such as the “Richardson-Lucy-Algorithm”
(RLA), Fourier-ratio deconvolution, or Wiener filtering [25-31], that cannot compete
with modern algorithms, such as the ADMM, in terms of adaptability and versatility.

By balancing primal and dual residuals, arising from optimality conditions for
the ADMM, the penalty parameters can be found adaptively in a stable scheme for
image denoising or deconvolution, speeding up convergence and making the algorithm
independent on the initial choice of these parameters. Further, we will show how reg-
ularization parameters Ag and A1 need to be chosen in order to improve the image
quality significantly, based on the standard deviation of the noise. With our work,
the ADMM-based TGV algorithm can be designed such that it operates purely on a
mathematical foundation and on noise parameters that can be determined experimen-
tally by analyzing the used detector itself. Thus, our algorithm enables experimental
scientist to use ADMM-based denoising and deconvolution techniques, adapt them to
their respective experiments, and improve their data evaluation significantly.

By testing sets of these four parameters p and n and Ag and A for noisy images,
we can further show that regions of optimal results can be found for different noise
types and different priors, allowing to compare results of the standard ADMM-TGV
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algorithm with the ones of the residual balanced. In this way, we can show that the
automated choice does not only objectify the parameters, but also increases the con-
vergence speed for most initial values. In the following subsections, the noise and the
fundamentals of the respective algorithms are explained in detail.

1.1 Gaussian noise fundamentals

Whenever images are captured, the acquisition process adds noise. Gaussian noise is
inflicted in terms of, e.g., camera read-out noise and can be described as an additive
process. The image formation process equates the following [16]:

§=QX+N(/L,02) , (1)

with the measured image &, a point-spread-function (PSF) € convolved with the
noise-free image x and Gaussian noise A with the mean value y and the variance o2,
To clarify notations, in the following, we will use bold letters to indicate vectors or
matrices. Scalars and indices remain in normal font.

The mean value can be leveled by subtracting a background image. For removing
noise with the variance o2 from the data, denoising is required. In terms of Bayes’
theorem [32], the likelihood L 5r of having a good estimate of the “true” convolved

image 2x can be expressed as the conditional probability P knowing & [33]:

LA(Rx) = P(§|2x)

T (12X~ )
1 Xlmn—=8m,n
=[]z {‘za—z} @
m,n

with the individual pixels m, n of an MxN image. This equation can be reformulated
into the negative log-likelihood functional [33]:

M,N
([ﬂx]m,n_sm,n)z
FAARX) o —In {LAARx)} oc )~ S omns
m,n
=5 1 2x—& |3 : (3)
with the Frobenius norm || - || as an extension of the Euclidean norm for matrices.

1.2 Poisson noise fundamentals

Due to the quantized nature of photons or electrons used for imaging, the Poisson noise
occurs as count fluctuations. It thus differs from the Gaussian noise in the overall image
statistics, as it is deeply embedded in the signal [34]:

£ =P(R) , 4)
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with the Poisson noise P. Similar to flipping a coin, a probability of counting a certain
number of incidents can be assigned to every pixel. Utilizing Bayes’ theorem again
to have the true convolved image €2x, the likelihood can be expressed as follows
[34]:

Lp(@x) = P (§] 2x)
N.M [Szx]iflr;{n €xXp {_[Szx]n,m ]

=11 B! : )

n,m

with the negative log-likelihood functional [34]:

Gp(2x) « —In{Lp(2x)} (6)

N,M
= > —n{12x},,} (Epm) + (K], 0. (7)

In the formulation of Gp, the factorial in the denominator can be left out, as it vanishes
in the derivation and thus plays no further role in the minimization.

1.3 General scaled ADMM

The general scaled ADMM algorithm solves problems in the form of [22]:

argmin £ (x) + g(2)

X,Z

subjectto Ax + Bz =, (8)

with two convex functions f and g applied to the variables x and z. A and B then are
operators applied to the variables, and ¢ is a constant.
As an example in imaging, f and g can be functions that correspond to a given noise
statistic or allow to distinguish between a “true” image without blur and noise and
the noise itself. The variable x in this case corresponds to the “true” image and z to
the noise to be separated. Both variables are connected via one or several conditions,
including the operators A and B that for example could act as a convolution with a
blur kernel or difference operators. The application of ADMM for image treatments
is shown in Sect. 2.

Staying with more general expressions, the overall problem can be formulated into
the scaled augmented Lagrangian to be minimized, which is given by the following
[22]:

J% P
L,(x,z,u) = f(x)+g(z) + EIIAX +Bz—c+ul; - 5 lul3, )

with the Euclidean norm | - ||2, the scaled dual variable (or Lagrange multiplier)
u = %y associated with the constraint Ax + Bz = ¢, and y being the unscaled dual
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variable. The iterative minimization process then can be decomposed and carried out
in a three-step pattern [22]:

xk+1 :argmin{f(x)—l—gHAX-l-BZk—C-l-llk ||%} , (10)
X

Z+1 = arg min {g(z) + g | Ax*T! + Bz — ¢ +u* |3 } (11)
z

uf = ok 4 AxED B! ¢ ’ (12)

minimizing with respect to x first, z second and then updating the dual variable u. In
this context, p > 0 appears as a penalty parameter. Its careful choice is crucial for the
convergence speed, as a good choice might result in an accurate solution within a few
tens of iterations, while a bad choice might delay convergence to a couple of thousand
iterations or even lead to divergence. Obviously, it is desirable to minimize time cost,
so somehow, an optimal p choice has to be found.

1.4 Optimality conditions and residual balancing

Three feasibility conditions have to be fulfilled for the ADMM to optimally converge.
These arise from the Karush-Kuhn-Tucker conditions [35], which utilize first-order
derivatives to find a saddle point in the Lagrangian. Deriving £, (X, z, u) with respect
to the unscaled Lagrange parameter y yields the primal feasibility condition [9, 22]:

0=Ax*"+Bz* —c¢, (13)

with the star marking the optimum choice of the respective variable. As the Lagrangian
is minimized by the updates x**! and z**!, the difference from zero of the above
equation gives the primal residual [9, 22]:

R = AxMH 4 BZF ! — ¢ (14)

Second, both the x- and z-updates must satisfy the dual feasibility conditions with
respect to the unscaled dual variable y = pu, yielding the following [9, 22]:

0 € o f(x*) + pATu*, (15)
0€d,g(z*) + pBlu*, (16)

with AT, BT denoting the adjoint operator of A and B. The subdifferential operator 9
can be replaced by a gradient and the € by an equal sign, in the case of g and f being
differentiable [22]. Further, assuming ,ok to be variable between iterations, where 7¥
optimizes p**1:

prl =tk ot : (17)
k k+1
1 k u“ + R
u ! = p{H = a— (18)
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Then, the scaled dual variable has to be rescaled inversely [22], to adjust for the right
y**+1. To make it easier to follow the general idea, we switch the order of both dual
feasibility conditions for a moment. The approach for the residual balancing is hidden
in (15), eventually. However, (16) is needed for completeness:

As the z-update happens after the x-update, x**! « x* is already updated. Per defi-
nition, the z-update £, (x¥*1 z, u*) is minimized by z*!, and deriving with respect
to z and substituting it into the equation (16) yield the following [22]:

0e azﬁp(xk+1 ’ Zk+] : uk)
— azg(zk+1) +,0kBTuk +,0kBT (Axk+1 +sz+1 _c>
— azg(zk+l) +pk+lBTuk+l, (19)

showing that optimality is always assured by z<*! and u¥*!, even when p is changing.

Thus, it is left to show how the x-update satisfies (15). Since the x-update comes
before the z-update, zF has not been updated yet. As per definition, the x-update
L(x, z¢, uX) is minimized by x**!, and deriving with respect to x and substituting it
into the equation (15) yield the following [22]:
0 € L,(xF z,ub)
— 8Xf(xk+1) + ,OkATllk + ,OkAT <Axk+1 +sz _ C)
— 9 (T 4 pFHIATuk L L pFATR <Zk _ Zk+1>

P ,OkATB <Zk+1 _ Zk) c 8xf(xk+1) —|—,0k+1ATuk+1. (20)

In order to assure optimality, the first term, which can be seen as the dual residual [9,
22]
Sk — HkATB <Zk+1 _ Zk) ’ @1

has to vanish. Further, Wohlberg suggested the usage of relative residuals [36] making
them invariant to problem scaling. In contrast to his approach, we propose to alter the
normalization of the relative primal residual Rf:;l slightly, such that ¢ is grouped with

the Bz norm, making the norm more resilient against high constants c:
kAT k+1 k
k+1 _ p*AB (21 —2)
[ ’
" max {[[dx f (¥ T 1) [l2, [[pFAT (b + REFT) ||

bl AXk+l +sz+l —c
(A k+1 k+1
T max {[|[AX*T1]|,, Bz —cl|2}

(22)

(23)

He et al. [37] define the distance from convergence for ADMM based on these
residuals as D¥F!1 = | RT3 4 || S¥F1 3 allowing to increase the performance
of the algorithm. Equations (10) and (11) suggest a decreasing norm of the primal
residual for an increasing p, but (21) suggests an increase of dual residual norm
simultaneously—for decreasing p vice versa. So, somehow, balancing p, such that
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both residuals approach zero, seems to be a reasonable heuristic for minimizing the
overall distance [36]. As both norms for the relative residuals converge, a similar
relative distance measure Dlr‘zl = || er‘:;l ||% + | S’r‘;';l ||% must also vanish, showing
that the normalization of the residuals is also a valid strategy.

For the purpose of utilizing both residuals, Boyd proposes an update scheme for p,

which keeps both residuals in the same magnitude, called “residual balancing” [22]:

k- AR, > ) SEFL ),

P =3k ISy > | REFL, (24)

ok otherwise

with a balancing parameter =10 and 7 =2. This approach was found successful by
various authors [38—41]. In the proof by He et al. [37], convergence for this adaptive
scheme comes down to bounds on the sequence ,ok [37]:

infy {,ok} >0 and sup, {,ok} < 400, (25)
with Y 2o — 1 < 400 : (26)

The latter is a slight variation of the original proof, as He et al. define their factor
(here 7) slightly different than the authors do T = (7 + 1). The main consequence
of this proof is that 7 — 1 must converge eventually. Since the definition t > 1 is
necessary for t to be useful, it increases the sum (26) every iteration indefinitely until
it converges to 1. In Boyd’s approach, the infinite sum is mainly prevented by a high
value of u, hoping that at some point, R and S diverge so slowly from one another,
that this threshold basically stops any further updates from happening. A low value
of wu in contrast would be desirable, as it would adjust p much faster. However, a
low u leads to balancing p* regularly, making it oscillate around an optimal p and
never attaining it. This necessarily violates (26) for any value 7 # 1, which, despite
converging, would be pointless. This scheme is thus compelled to updating p quite
slowly, as it takes time for R and S to diverge from one another.

Both residuals can be utilized in a more direct way, as Wohlberg showed by using
relative residuals, extending the scheme to choosing v = ¥ at each iteration and
utilizing a ratio of the relative residuals v*! to make the p update much faster [36]:

Uk—H if Tyge > Uk—l—l > 1
-1 . .
tk—i—l — (Uk—l—l) if =1 <kt — 1 with (27)

max —

Tmax otherwise

k+1 k+1
vt = \/IIRM /18541 1.

Since 71,4 provides a bound on 7, convergence still holds for the extension, as the
sequence p* would be bounded away from zero and infinity [36]. But again, T must
eventually settle to 1 or updates must unnecessarily be delayed by a high value of .
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However, the general idea of delaying the updates is not wrong, but the method of
thresholding the residuals by a factor p proves to be unpredictable. Since the initial
choice of p determines the development of both primal and dual residual, respectively,
it depends on that very choice whether the first balancing of p appears sooner or later
during the iterations. But since the progress in the early iterations is much larger than
in the later ones, it is important to place p on the right track, as early as possible.

Here, we propose a similar method with neither the strict requirement 7— 1 nor the
unpredictability. By choosing i = 1, the above extended scheme (24) with (27) can
be simplified to the following:

Lk . 0= U = o
; —1 .
ket _ | min {,0 ) rext} elseif p < 1 o8)
max {/0_], te_}} elseif p > 1
1 otherwise
P = Yokt i prl < phl gk (29)
it T >

We propose to balance p by the above equations, but to increase the length of the update
interval exponentially. This could be done by, e.g., updating ten times per magnitude
of iterations, such that the updates are exponentially spaced:

. (30)
1 otherwise

{rk+1 if k € Val
where Val is a series of exponentially growing values. Thus, the update occurs regularly
in the early iterations, where it is necessary to find a good p, and fades out at a later
stage, when convergence is more important. With the exponential increase of the
update interval, the interval length eventually approaches infinity, which is equal to
the standard ADMM, assuring convergence. Since T8 = 1 for every step without
balancing, the mean value of all ¥ between two balancing events approaches one,
which satisfies (26).

In the above equations, p is bounded away from zero and infinity by forbidding a direct
scaling with these and by limiting the number of update steps. However, v¥*! being
either zero or infinity indicates an over-extension of the balancing parameter p. A
useful strategy is to relief an overextended p by pushing the parameter back towards
1 by introducing a factor t.y; > 1, with which p is either increased or decreased
monotonically until v**+! € (0, co) again is within boundaries and is well defined. For
both, increasing or decreasing p monotonically He et al. proved convergence [37].
Further, the authors suggest to set a limit p,,, to assure the numerical stability of the
algorithm.
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2 ADMM with total generalized variation

In order to distinguish “true” image x and noise, some additional information about
the image needs to be taken into consideration. The total variation approach relies on
the assumption that images are smooth to a certain degree and noise is highly volatile.
Consequently, derivatives can be utilized to find the noise, as the derivative of the noise
is expected a lot higher than the derivative of the smooth and slowly changing image.
However, if the image has a gradient itself, this assumption in inconvenient as part
of the image slope is forced to be piece-wise constant in the reconstruction, leading
to staircase artifacts [18]. Here, a higher-order derivative can help to smoothen the
gradient of the image, instead of the image itself, leading to a better approximation of
the image, but at the cost of preserving sharp edges.

Total generalized variation of second order as a method for image smoothing was
first described by Bredis et al. [17] aiming to combine both orders of derivatives in a
beneficial way, such that regions of the image are denoised in the most optimal manner
with the help of self-adapting filter masks.

In terms of an isotropic TGV penalizer, an ADMM algorithm can be formulated
following Shirai and Okuda [42]:

AQLAL L :
X = min (Ag|ls 2] Gt . 31
IXI17%y = min Gollslr + 211Gt r) (1)

The auxiliary matrices s and t are linked to the flat and sloped region of the image,
where t contains the latter. The matrices D and G contain derivatives in all possible
directions. For images, they are given as follows [42]:

_(Dy r  (DpD, 0
p-(p) & =(hp) (32)

where the individual entries Dy, and D, are forward difference operators for the hori-
zontal and vertical direction. Both and the matrix of zeros O follow a “block circulant
with circulant blocks” (BCCB) structure [42]. So for an image with N x M pixels,
all entries Dy, ,, and the matrix of zeros 0 have the same size and dimension as said
image {D;,, D,, 0} € RV*M According to (31), the minimization separates the image
in flat and sloped regions, which later serve as filter masks for first- and second-order
smoothing. Thus, t contains the first-order derivatives of the sloped regions of the
image, at which a further derivation G is applied. These sloped regions get subtracted
from Dx leaving over the first-order filter mask s, which then only contains the flat
regions of the image.

2.1 Gaussian noise ADMM with TGV

Depending on the noise type, the structure of the ADMM must be adapted. For the
Gaussian-type noise, following (3), it can be formulated as follows [42]:

argmin  1/(202) | x — £[17 + Aollzi |l F + Allz2llF

X,21,722
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subject to z1 =Dx—t,z, = Gt , (33)

with the acquired image &, a point-spread-function €2, and the regularization parame-
ters Ao and A1. The augmented Lagrangian to be solved is given as follows [42]:

L,y (X, t,21, 22,01, 02) =1/(202) | x — £ |15 (34)
420 1zt || F + 22 IDX — t — z1 +up |3 —0/2 | ug |5
+a1 |ZllF + 721Gt — 24w |3 —n/2 ] uy ||%.

with the penalty parameters p and 5. Note that for pure denoising problems, the
“deconvolution kernel” €2 simplifies to a matrix of ones £ = 1. Further, it is important
to mention that often in literature, o2 is found to be absorbed into p = po? and ) = o>
and thus excluded from the equation. But to show the dependency of the optimal
Aocl/o, it is more convenient to stay with the deﬁnition chosen here.
Starting with x = 0, t0 =0, le =0, 12 =0, “11 = (Danduzj = 0, with i and
J denoting the respectlve directions of the derlvatlves and 0 being matrices of zeros,
the iteration steps are given as follows [42]:

{xk'H, tk'H} = argmin £, , (x,t,zll‘,zg,u’f,ué) ,

x,t

k+1 . k+1 4k+1 .k

z,; = argmin Ly (X o ’Zl,l’ul,i> ’
Zy,

k+1 - _ : k1 gk+1 50 gk

z,, = ar% min £, (x A SN T i) (35)
2.

k+1 _ Lk k+1 k+1 _ o ktl
Wi —“1,i+([DX li—t _Z'> ’

1,i
k+1 ok k+1 k+1
o=+ ([Gt ]] z,; )

For images i € {h,v} and j € {h,d, v}, with d denoting the diagonal direction
connected to both horizontal and vertical derivatives. Further, t, z; 2, and u; > are
given as follows [42]:
_ ([t
= (1)

[ Z1,h [ U1,h
71 = <Z1,v> , U = (uw) , (36)

7 p uz i
Z = |74 , U = | Uy s
7).y u2 y

with, according to the BCCB structure, all entries having the size of the image. The
solution for the x- and t- update is shown in detail by Shirai and Okuda [42]. Note,
however, that both x- and t-updates minimize the same Lagrangian, but with respect
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to different variables. The minimization of z; ; and z; ; can be done via the “block
soft threshold operator” S, [42], which is given as follows [42]:

Sy(v):max{(l— v )vi,o}, (37)
v Il2
such that:
2yt = Sy (DX — thH! k) (38)
25t = 8y (G 4 ) : (39)

withi and j denoting the respective direction of the derivative, whichin2Disi € {h, v}
for (38) and j € {h, d, v} for (39). This operator is applied pixel-wise to the image.

2.2 Poisson noise ADMM with TGV

Incorporating the log-likelihood functional (7) directly into ADMM leads to problems
of finding a straightforward solution for the x- and t-update. Thus, it is usually used
as a penalizer functional g(z), as these problems do not occur then. For data corrupted
with Poisson noise, the minimization states as follows:

argmin G p(zo) + MollzillF + Aillz2llF

X,720,21,72

subjectto zp = 2x,z; =Dx —t,z; = Gt (40)

with the corresponding augmented Lagrangian:

Lopn (X t,20,21,20, 00,01, W) = Gplzo) +¢2|Rx—20 +uoll:  —9¢/2]ug %
+aollzillF + £/2IDX — t —z1 +uy |5 — £/2]luy |15

+aillzllF + 020Gt — 23 +wal% = 02wy |5 (41)

As initial values for the algorithm, the following are chosen: x° = 0, t? =0, z8 =&,

Z(I)J- =0, zg = 0, u8 =0, u?,l. = (0 and ug i = 0. With this, the iteration steps then

are given as:

k1 ¢k+1] _ : kook ok ook ok vk
[x Lt }_argr:nnﬁ(p,p’,,(x,t,zo,zl,zz,uo,ul,uz),
X’

k+1 : k+1 ¢k+1 k
z, = argmin Ly (x Lt 7, uo) ,
zo
k+1 . k+1 ¢k+1 k
)} = argmin £, (x*t1, 51 2y ul) ,
71,
k+1 : k+1 ¢k+1 k
) = ar% min £, (x**1, t5t1 2, uf) , (42)
2,j

k+1 _ _k k+1 k+1
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KLk 1T gkl k]
Ui = “1,i+<[DX li—t _zl,i> ;

k+1 k k+1 k+1

The resulting Lagrangian can be solved in the same manner as the Gaussian noise
ADMM as shown by Shirai and Okuda [42]. However, despite the slight changes in
the x- and t-update, the only difference in the iteration pattern is the additional z
and ug-update step, together with the introduction of a new penalty parameter ¢. The
minimization with respect to zg is given by the Poisson noise operator, which equates
to the following [34]:

ng = prox (Slxk+l + ué) , (43)

¢

with the operator being defined as follows [34]:

2
prox(v)z—l_wv—i-\/(l_(pv) L5 (44)
P, ¢

2¢ 2¢

Again, this operator is applied pixel-wise. All other z-updates are carried out as in the
Gaussian ADMM.

3 ADMM-TGV with residual balancing

When utilizing the residual balancing for ADMM-TGYV algorithms, as described in
Sect. 1.4, p, n, and ¢ are to be balanced here. So, the overall structure can be divided
into two parts for the Gaussian algorithm—one for the p-balancing and one for the ,-
balancing. Further, a third part for the Poisson algorithm is needed—the ¢-balancing.

3.1 Primal feasibility conditions of ADMM-TGV

Since p, n, and ¢ are scalars, acting on all pixels equally, we need to find global
residuals, depending on all pixels. Following the pattern of Sect. 1.4 by deriving the
augmented Lagrangian for Gaussian (see (34)) or Poisson noise (41) with respect to
the unscaled dual variables y;; = pu;; andy; ; = puy ; (and additionally yo = pug
for Poisson) for all respective directions leads to the primal feasibility conditions with
their respective relative residuals:

k+1 k+1 k+1
Rkl _ IRFIE DX — t“Hh — 2| (45)
rel,p - k+1 - b
V) max [ DR — e )
k+1 k+1
k1 IREE IGt™ — 2" ||F 46)

rel,n = k+1) - k1
VRS)  max [1GE 1, 25t

with the standard primal residual || R’;‘H || 7 in the numerator and the normalization for
the scaled residual N (R’;‘Ll) in the denominator. Here, Dx*t1 — tht1 = g*+1 form
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a single norm in the normalization (45) instead of appearing as separated norms like
(23) suggests, because both are coupled via (31).

For the Poisson TGV, a primal residual for the new penalty parameter ¢ can be found
as follows:

1 RGN 1@xkH — 281 5

reby = k+1) 2 k+1p2 ]
N(RET)  max {l@x 2 |

(47)

3.2 Dual feasibility conditions of ADMM-TGV

Since the updates happen jointly in (35) and (42), x* and all tll‘ are not updated yet,
regardless which variable we consider. To find the whole set of dual residuals, the
augmented Lagrangian has to be derived with respect to x and to all t;. This leads to
the equations:

Xk+l e arg mil’l EIO’n (X’ tk’ lec’ ZS’ ul{’ ulé) ? (48)
X
ti = argmin ACp,r] (X 7tlvt[’Z]’Z2’u1’u2)’ (49)

t;

with t; denoting all other vector elements of t excluding the i-th element (for images
[ € {h,v]|l #i}) as both x and t; rely on the former iterates of the respective other
variables.
Deriving the augmented Lagrangian with respect to x leads to the first dual feasibility
condition:

0=0,f(x)+ ,OkDT <ka+1 —th— z]f + u’l‘)
— 0 f(X) + kaT ( k1 gkl ZIIH itk _ Z/1<>
& — ,okDT<tk+1—|—zkle tk z’f) =1/2 Q7 (@x — &) + ,okHDTu]fH, (50)

which can be seen as the dual residual, with f(x) = 1/26%||2x — EH% (see (34)) for
the Gaussian algorithm. The corresponding relative dual residual is given as follows:

||Sk+1||F ” _ pk [DT <tk+1 _ tk + Z/1<+1 1)] ”F

N(sE)  max{1yo> @7 @x—&)llr, 10D7 (uf + R )£
(51
with the standard dual residual || S"‘Jrl || in the numerator and the normalization for the

k+1
Srel 0. X

scaled residual N (S’;“,Lxl) in the denommator.
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For the Poisson algorithm, however, the dual feasibility condition equates to the fol-
lowing:

_ ok SZT<ZIS+1 _ zé) _ kaT<tk+1_'_Zlf+1_tk_ Zl;) = gkt SZTug“ n pk—f—lDTullc—}-l’

(52)
with f(x) = 0 (see (41)). Since all residuals must vanish eventually, we can rearrange
the dual residual into a residual for the balancing of p and for ¢:

o ISERE 1S5 .
rebpx T or (G T « ((Qh+1 e (k1) _ k+1y ]
0,X ax 1IN Sp,x 7, IIN S(p,x S(p,x | F
k+1 k+1
Sk+1 _ ”Sgp,x “F _ ”Sgp,x ”F , (54)

rel,p,x — -
N(SER) max {INe (SR ) 1, IN® () = SER 1

with:
it = (e ) |
N*(SEH) = pfDT (u’f +R’1‘+1) ,
S A /

NS = ot ()

For both Poisson and Gaussian, (51) and (53) show that a change between iterations
in z; ; can be induced by a change in t, but then does not change the residual for the
x-update.

Deriving the augmented Lagrangian ((34) or (41)) with respect to the dual variables
t; with n-dimensions leads to the following:

r k+1
(e ) [ ) ()] oot -4
_H?k ZDZ (ué,il - ZS,il) ) (55)
!

with i being the direction of the derivative (or vector row) and (i/) denoting all the
diagonal vector elements for i, here for images (i) € {hv, vh} = {d}. Solving for the
relative dual residuals connected to both p and 5 leads to the following:

k+1 k+1
T vl IS5

rel,p,t; — -
N(SEE)  max [N (SEE) e N (SEE) — S5

, (56)
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Gl ISy e IS5 F 5
N(sken)  max fINT(SEE) e, N (SEE!) = SE4T ]
with:
SI;)—Z_I = pk Di <Xk — Xk+1> + leci«—l — Z]I,i] ’
k+1 k[ k k+1
N* (Spﬁi) = P W +Ry; ] ’
k+1 k k1 ok T (¢k k41 k+1 &
L ]
N* (sﬁil> = 1| D (ulﬁ,i + R'ﬁf) +Y D, (ulﬁ,iz + Rlzcjll)}
L !

These equations show that a change in z; ; in between iterations might be induced by
a change in x, which then also does not appear in the residual for the t; filter mask
update. The same holds for a change in the diagonal z;; elements, which can occur
due to a change in the other t; filter masks.

)t( , the same holds for the dual residuals.

Thus, applying the Frobenius norm to form a global relative residual for the p, 1, and
¢ balancing seems logical:

Since x and t; can be represented as a vector

k k
gert | ISP+ X IS 1 (58)
rel,p — 2 27

\ N (S]Zﬁcl> +2i N (S];J,rt})

k+1 12

shit o | ZilSui e (59
rel k1) ’

\ Zi N (ST):; )

k+1

k1 ”S(p,x | F (60)

l, = ——

The dual residuals arising from the derivation with respect to t stay identical to the
Poisson ADMM-TGV.

These primal and dual residuals are used for balancing p and n in the following
according to (28). The residual balanced algorithms are hereafter called ADMM-
RBTGYV for Gauss or Poisson noise.

3.3 ADMM for Gaussian and Poisson noise with RBTGV

Implementing the residual balanced algorithm for Gaussian noise gives the following
algorithm, with starting conditions x) =0, t? =0, Z(I) ; =0, zg i = 0, u? ; =0,
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ug’ I 0 and finally p® = 1, n° = 1, leading to the following:

{ka, tkH} = argmin L .« (X, t, zt, 25, uk, ub) , (after [42])
x,t
k+1 . 1 4k+1 k
Zit = argmin L (Xk+ t ,zl,i,ul,i> , (after (38))
AW}
k+1 : 1 1 k
z,5 = ar%mm Lo (xk+ it ,zz,j,uz,j> , (after (39))
2,j
if k e Val
r‘f“ <« rg, t,’7‘+1 <~ ‘L’,]; , (after (28)) (61)
pFHl — pk, gkl , (after (29))
else
k+1 __ k+1 __
T, = 1, T, = 1 ,
end
k k+1 k+1
k+1 ul,i+<[DXk+1]i_ti+ _le )
ul,i .L.S-H )
k k+17 _ k+1
ot uf +([6t 1], -4F)
2, = T ’
»J T

with Val being a series of exponentially growing values, such that the residual balancing
occurs less and less often. The initial values are the same as in the algorithm for the
standard Gaussian ADMM with TGV (35).

The residual balanced algorithm for Poisson noise, with the starting conditions of the
Gaussian algorithm plus z(l{ ; =& and u8 = 0, is given as follows:

k+1 gk+1] _ . k ok ok ok ok ok
{x , t }_argr:unﬁ(pk’pk’nk(X,t,zo,zl,zz,uo,ul,uz), (after [42])
X,

z’é“ = argmin L (xk+l,tk+l,Z0,u§) . (after (47))
79
z’i"i‘l = argmin £ (x5 21 uf) , (after (38))
AW
Zl;-;l = argmin L (x¥1 t571 25, uf) , (after (39))
Z2,j
if k € Val
k+1 k k+1 k k+1 k
T, T, T T, T, T, (after (28)) (62)
/Ok+1 <« pk’ nk+1 <« nk’ q)k+1 < (pk , (after(29))
else
k+1 _ k+1 _ k+1
=1 =1 =1,
end
k k+1 k+1
gl ug +<Slx+ —1z, >
0 r£+1 ?
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k k1] gkl _ ket
“1,i+<[Dx T A )

k+1
u, ., = k1 >
1, 5
k k+17 k41
ol = u +<[Gt ; Z2,j)
2,7 = r,’frl

4 Evaluation of the algorithms

In this section, the algorithms are tested on images for denoising and deconvolution
problems to demonstrate the success of residual balancing and to show its impact on
the convergence of the respective algorithm.

An image is superimposed with noise, such that it is easy to compare the restoration
with the original image and show which parameter sets work best. For TGV, four
parameters have to be well chosen to achieve optimality, p and 1, A9 and A;; for
Poisson, this list extends by an additional penalty parameter ¢.

For evaluating the algorithm, a quality measure is defined. For the quality of the
restoration, the mean squared error (MSE) after iteration k

MSEf = —— (x’-‘ - &Qﬁg')z : (63)

is a commonly used criterion, with the original image Sor 8- known and the current
iterate image x*. In order to make optimal regions for the parameter choices visible,
initially, p = n(= ¢ for Poisson) and Ay = A1 are chosen over orders of magnitude
from 107> < p < 10° and 107° Joo < Ay < 10° /oo, where o is the standard deviation
of the inherent noise in the image and w is an attenuation coefficient depending on the
deconvolution kernel.

Looking at the total generalized variation ADMM approach for Gaussian noise (33)
and settinga - A = A9, b - A = Ay, with = 1,

argmin /202 |x — &[5 +A(a- |z1llF + b - |22 F)

X’ZI ’Z2

subject to 2 =Dx—t, 2z, =Gt , (64)

the following can be seen: If the true, noise-free image x* could be found, the first
term of the minimization would equal:

1 N,M1 N,M
TN —ElE=) 0 = IX—&lE=) o7, (65)
n,m n,m

by definition of the standard deviation o, as o characterizes the mean noise level of all
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contributing pixels. In a perfect setting with perfect noise detection, the TGV prior
would be that exact difference:

N.M /2
Ae(a-lzillF+b-lz2llp) =A- X" —&|lF = (Z)Lzﬂz) . (©0
n,m

Since we have perfect noise estimation in this example, the noise level would be
irrelevant for the noise detection and for the image. Putting (65) and (66) into the
minimization (64) shows that the minimum only depends on the total amount of
pixels, if A = 1/5 is chosen as an optimal regularization parameter:

NM N.M /2
arg min Z -+ Z PR . (67)
X.21,22 n,m 2 n,m

But as the image can only be separated into piece-wise flat or sloped regions either
connected to ||z1||r or ||Z2||r, @ and b must add to 1 to comprise the whole image.
However, as noise cannot be predicted perfectly, the optimal A deviates according to
the quality and applicability of the prior. In case of a bad prior, distortions are induced
and may at some point outweigh the benefits to the restoration process. Conversely, this
would reduce the optimal regularization parameter compared to what would be the case
with a good prior. However, as most images comprise piece-wise flat or sloped regions,
it is reasonable to assume that TGV is close to approaching the optimal regularization
parameter of A = 1/o. If the standard deviation of the noise o is sufficiently known,
optimality mainly depends on the choice of a and b weighting ||z;||r and ||z2] F,
respectively.

The same argumentation also holds for Poisson noise, as it approaches Gaussian noise
for the increasing number of counts. However, for deconvolution, the z; and z; are
applied to the deconvolved estimate of the image x and not to the convolved estimate
2x (see (35) and (42)). The noise is thus attenuated by a factor  which depends
on the convolution kernel the image is convolved with. The wider the kernel €2 for
deconvolution, the more of the noise gets drawn into a single pixel. By normalizing
the kernel to its maximum peak, we can find the contributions of the other pixel noises
to the attenuated noise. Since adding noises corresponds to adding their variances, this

leads to the following: Ny

2 __ ,
@ _Zmax{ﬂivj} ' (68)

L]

So, the overall scaling needs to be 1/wo. For denoising, the attenuation is w> = 1, since
€2 corresponds to a delta peak function.
To make regions visible where the overall quality improves the MSE of a given itera-
tion, k can divided by the initial MSE®:

MSEF

NormMSEF = 5
MSE

(69)
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showing how much the image improves relatively.

4.1 Denoising of images with Gaussian noise

The first original image can be found in Fig. 1a. In Fig. 1b, Gaussian noise of o = 50
was added to the image to achieve a signal-to-noise ratio of SNR =~ 20. To visualize
the effect of residual balancing, a suboptimal choice of the penalty parameters p and
n was done, while the regularization parameters Ao and A; were kept close to the
optimum. In Fig. 1 ¢ and d, the denoised images for the ADMM-TGV and ADMM-
RBTGYV algorithms after 1000 iterations are compared.

The difference between both denoised images Fig. I ¢ and d is rather easy to spot, as ¢
looks blurry compared to d. The suboptimal choice of p and 1 diminishes the progress
of the denoising. However, as residual balancing equalizes the denoising result over all
penalty parameters, making the result independent of the initial choice, the progress
of the algorithm is further advanced, and thus, the quality of the reconstruction is
significantly improved.

To show that penalty parameters p and n for residual balancing can in fact be arbi-
trarily chosen, Fig.2 displays the course of thousand iterations for a wide range of
regularization parameters. The NormMSE (see (69)) is displayed such that it shows
parameter sets improving the image quality in blue and the rest in yellow. This depic-
tion allows to quickly get an insight into the relevant range of the parameters, that an
operator would preferably choose from.

It can be seen that the original ADMM-TGV algorithm in the upper row of Fig.2
strongly depends on the initial choice of p and 5 as the blue-colored optimal region
slowly shifts to higher p and 5 in the course of iterations. With a higher number of iter-
ations, the NormMSE-map of the original ADMM-TGYV forms an inverted L-shaped
optimal region that grows in p-direction with increasing the number of iterations.
Thus, the optimality map can be divided into three regions: the first region at low
values of A bordered by the first red line, in which the algorithm does not improve the
image quality significantly, because the noise is estimated too low, leading to under-
smoothing; the second, inside the red boundaries, where the algorithm converges to
a better-than-before solution around the optimum; and a third region in which the
algorithm decreases image quality due to over-smoothing, eventually. In the left outer
regions at some point in the iterations, an optimum is reached for some p at a given

Original

| 2000

1500

1000

500

Fig. 1 a Test image “onion” from MATLAB. The pixel intensities were multiplied by a factor of 10. b
Image with additional Gaussian white noise with a standard deviation of o = 50 and the attenuation w = 1.
¢ The result of the original ADMM-TGV (see (35)) and d the result of our ADMM-RBTGYV algorithm (see
(61)), after 1000 iterations and with unfavorable starting values for the penalty parameters p = n = 1 and
optimal regularization parameters Ao = A ~ 0.63/wo as values, respectively
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TGV 10 Iterations 100 Iterations 1000 lterations
1 1 1
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102 | 102 ) 10° I
2 400 48' 052 10° 48' 05 10° 3 0.5
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Fig. 2 NormMSE maps generated from applying both ADMM-TGV and ADMM-RBTGYV algorithms on
Fig. 1, with the individual pixels showing the denoising results under Gaussian noise of the respective
(p = n| Ao = A1)- pair. In the upper row, the results of the original ADMM-TGYV are shown after a 10, b
100, and ¢ 1000 iterations. In the lower row (d—f), the results of the residual balanced ADMM-RBTGV
approach are displayed at the same iteration stages. The two red lines in every map indicate the region, in
which the algorithm eventually improves the image quality compared to the initial noisy image, and the
dashed line indicates the Ag=2A1- value in units of 1/wo at which results are optimal (Aops ~ 0.63/wo)

iterate, but lost due to convergence to another result. It is, however, not predictable for
a given image, when this incident occurs and thus recommended to stay in the sec-
ond, optimal region. For every p in this optimal region, the TGV algorithm converges
eventually to the same result for a given A, but might need many iterations due to a
poor choice of p.

In order to investigate convergence for all initial choices of p =n, the residual balanc-
ing is applied in the second row of Fig. 2. Here, the results at a given A9 = A1 column
are constant for all starting values p = n as early as after ten iterations, indicating that
the residual balanced approach does not depend heavily on the initial choice of p and
n.

To elaborate further, if a faster convergence of the algorithm compared to the original,
the drop rate of the R and S residuals connected to p and 7 are evaluated in Figs.3 a
and b, respectively.

The developments of the R and S residuals are shown for the optimal choice of
A0 = A1 & 0.631/wo and an unfavorable p = n = 1 value as found in Fig.2. By
comparing the residuals for the ADMM-TGV algorithm in Fig.3a and the ADMM-
RBTGYV algorithm in b, it can be seen that the regular rebalancing of the R and S pairs
leads to an increased drop rate of all residuals. Combining all residuals to a distance
measure D*H1=| REF (|2 4[| S5 |12 4| REF! (|74 || S5+ || following the scheme
of He et al. [37] leads to a clearer picture. In Fig.3c, the distance D of the residual
balanced ADMM-RBTGV (RB) can be seen to drop faster than the distance for the
original ADMM-TGYV. These trends stand out even more, when analyzing relative
residuals (rel.) in Fig.3 a and b as defined in (45) and (46) as well as in (58) and
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Fig.3 a Trend of the R and S residuals connected to both p and n belonging to the standard ADMM-TGV
algorithm for Gaussian noise (Fig.2d) and the relative residuals Rye) and Sy described in Sect.3.1 and
Sect.3.2. Unfavorable starting values of p =#n = 1 and optimal values for Ay = A| = Aopr ~ 0.63 1/wo
were chosen to compare with b the residuals of the residual balanced ADMM-RBTGYV denoted as RB.
The optimal values for Ay = A1 were found as the column with minimal NormMSE values in Fig.2d. It
can be seen that for the residual balancing, the respective R and S residuals for p and 5 are bound to each
other and drop faster than for the original algorithm. ¢ Combining all four residuals to a distance measure D
confirms increased drop rates for the residual balancing. d The NormMSE shows that the RBTGV algorithm
(red) converges faster than the original algorithm (black), as it approaches the optimum zone (green) of the
converged result (green dotted line) from early on. The NormMSE values for an optimal choice (denoted
asopt)of p =n~6.3- 107>, however, are faster for both algorithms with the residual balancing (orange
dotted line) being equally fast as the original algorithm (gray). e Development of p and 7 in the course of
the iterations

(60). Here, the relative S, , residual increases for the original algorithm whereas it
decreases in the residual balanced.

The residual balancing thus results in a faster convergence, as can be seen in Fig. 3d,
where the NormMSE value of the residual balanced ADMM-RBTGYV settles close
to a value of 0.3 after around ten iterations, whereas the non-balanced ADMM-TGV
requires several thousand. To set this into perspective, the NormMSE value for the
optimal choice of p = n =6.3 - 107, as found as the column with minimum values
in Fig.2, settles after four iterations, with no difference between residual balancing
and the original algorithm. Thus, ADMM-RBTGYV is beneficial when the optimal p
and n values are unknown, which in general is true without excessive testing of both
values.

In Fig. 3e, the trends of p and 7 for the residual balanced algorithm are shown, which
indicate that the initial (unfavorable) choice was indeed set too high, as the residual
balancing corrects these values significantly to lower values.

4.2 Deconvolution of images with Poisson noise

To further demonstrate the versatile applicability to other types of data reconstruction,
in a next example, residual balancing is applied to an image affected by blur and pure
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Poisson noise. The original image can be found in Fig.4a. After convolution with a
Gaussian kernel (FWHM = 1 Pixel), Poisson noise (0,04, & 31.7) 1s added in Fig. 4b.
Further, in Fig.4 ¢ and d, the deconvolved image for the ADMM-TGV and ADMM-
RBTGYV algorithms after 1000 iterations, respectively, is displayed.

At a glance, the image reconstructed by the ADMM-RBTGYV looks sharper compared
to the ADMM-TGV-treated image, and further analysis can confirm this: Similar to
the Gaussian noise results, regions of optimality for p = n = ¢ and A = A can
be found via the NormMSE maps as shown in Fig.5. Again, the convergence of the
original algorithm (Fig.5 a—c) lags behind the ADMM-RBTGV (Fig.5 d—f) conver-
gence for most p = n = ¢ values. Our algorithm shows nearly the same result for all
p of a given A after approximately ten iterations (Fig. Se), indicating that the residual
balancing is applicable here, too. But the convergence is slightly slower than in the
Gaussian example, as an additional penalizer for the Poisson noise must be balanced
in.

Figure 6a indicates that the residual for p, 1, and ¢ are bound to each other and
drop faster in the residual balanced case (Fig.6b) altogether for an unfavorable
choice of p =n = ¢ = 1. Despite all three R,.;-residuals being significantly lower
from the start for the ADMM-TGYV, the S,.;-residuals do not decrease at all. As all
residuals must vanish, convergence is slowed down significantly for the original algo-
rithm. In Fig.6 a and b, we only display the relative residuals, as they give a better
impression on the development of the algorithm. For completeness, in Fig. 6¢, again,
both original and relative distances from convergence are shown. Here, the distance
DFHI= [ REFT 2 4 | SEHT 2 -  REFV 2 4 1 SEFT 2 4 | REF 12 + [ SEH |2
is extended by the residuals of ¢. It can be seen that the distance from convergence
vanishes faster with residual balancing overall. The same behavior is shown in Fig. 6d
for the NormMSE. Interestingly, both the distance from convergence D and the Nor-
mMSE increase significantly within the first five iterations of the ADMM-RBTGYV, as
the R,.;-residuals rise. As the log-likelihood functional for Poisson noise (3), which
is tied to the original image, is influenced by the residual balancing, the difference
between the new iteration of x* and the original image is significantly increased. But
the increase is only transient as with increasing iterations, the average t converges to
1 due to increased intervals between balancing steps. After approximately 16 itera-
tions, convergence is close for the ADMM-RBTGYV (indicated as the green dotted line
within the green optimum zone in Fig. 6d), while the original ADMM-TGYV has not

Original Blur & Poisson Noise C) Deconvolution Result TGV d) Deconvolution Result RBTGV -

Fig.4 a Gray scaled test image “onion” from Matlab. The pixel intensities were multiplied by a factor of
10. b Image with pure Poisson noise (0,,¢45n =~ 31.7) added after convolution with a 2D Gaussian kernel
(FWHM = 1 Pixel). ¢ The result of the ADMM-TGV and d the ADMM-RBTGV algorithm after 1000
iterations, with unfavorable penalty parameters p = n = ¢ = 1 and optimal regularization parameters
A = A1 & 04/wo as starting values, respectively. According to (68), the attenuation @ amounts to w = 2.5
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Fig.5 NormMSE maps, with the individual pixels showing the deconvolution results under Poisson noise
with a Gaussian kernel (FWHM = 1 Pixel) of the respective (p = n = ¢ | A9 = A1)- pairs. In the upper
row, the results of the original ADMM-TGYV are shown after a 10, b 100, and ¢ 1000 iterations. In the lower
row d—f, the results of the residual balanced ADMM-RBTGYV are displayed at the same iteration stages.
The two red lines in every map indicate the region, in which the algorithm eventually improves the image
quality compared to the initial noisy image, and the dashed line indicates the Ag = A1- value in units of
l/wo, with the standard deviation o = 31.7 of the noise and the attenuation w ~ 2.5, at which results are
optimal (Apps ~ 0.4/w0)

made significant progress. Even for the choice of a close to optimal (denoted as opt)
p=n=¢=06.3-1073, the original ADMM-TGYV (gray) is slower than the residual
balanced ADMM-RBTGV (orange), since all three penalty parameters are identically
chosen and thus suboptimal. Finding the optimal penalty parameters often is time-
consuming, whereas residual balancing is fully automated and allows to quickly adapt
all penalty parameters to optimal values. Figure 6e shows the development of p, 7,
and ¢ due to the residual balancing, indicating that the initial values were chosen too
high.

4.3 Optimality for Ag and 1,4

Having established the residual balancing for Gaussian and Poisson problems, p, 7,
and ¢ are no longer necessary to be chosen by the user, but instead are automatically set
by the algorithm. The parameter choice thus reduces to A and A; to achieve optimality.
Therefore, the NormMSE maps for Gaussian denoising and Poisson deconvolution are
displayed in Fig. 7 a and c for pairs of A1 and A¢, with the starting values fixedto p = 1,
n =1 and ¢ = 1 for the Poisson case.

Both maps exhibit two branches of optimality forming an L-shape. The first is con-
nected to the value for Ay, which controls the impact of the derivatives D acting on
the flat parts of the image, and the second is connected to the A1 value controlling the
derivatives G acting like a second-order derivative applied to the sloped regions of the
image. Depending on the features of the image, both parameters have to be chosen
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Fig.6 a Trend of the relative R and S,..; residuals (described in Sect. 3.1 and Sect. 3.2) connected to p, 7,
and ¢ belonging to the standard ADMM-TGYV algorithm for deconvolution under Poisson noise (Fig. 5d).
Unfavorable starting values of p =n= ¢ = 1 and optimal values for Ao = 1| =A,ps = 0.4/wo were chosen
to compare with b the residuals of the residual balanced ADMM-RBTGV denoted as RB. The optimal
values for Ay = A1 were found as the column with minimal NormMSE values in Fig.5d. It can be seen
that for the residual balancing, the respective relative Ry and S;q residuals for p, n, and ¢ stay bound
together and drop faster, whereas the relative residuals of the original algorithm stagnate. Initially, this leads
to a rise in all three R)- residuals. ¢ Combining all six residuals to a distance measure D confirms the
impression of a faster drop rate for the residual balancing. However, Drg and DRp re] show a transient
increase in iteration three, where the increase in DRrp is more pronounced. d The NormMSE shows that the
residual balancing (red) leads to a faster convergence than the original algorithm (black), as it approaches
the optimal zone (green) of the converged result (green dotted line) from iteration 16 on. The NormMSE
values for the “optimal” choiceof p =n=9¢p =1"- 103 converges a lot slower in the original algorithm
(gray) than for residual balancing (orange). Like the initial rise of the distance measure D suggests, the
NormMSE initially increases before seeing a fast convergence. e The development of p, 1, and ¢ in the
course of the iteration

carefully and therefore typically require experience.

Since the chosen image comprises of flat and sloped features, optimality is influenced
by the choice of both, the Ao and A;-parameter. As long as Ao is above a certain
threshold of 2/wo, the result dominantly depends on the A{- parameter. The same is
true as long as A is above 2/wo, vice versa. Raising either A or A to unreasonably
high numbers leads to large distances to the image. To reduce the distance, the filter
masks adapt and minimize the parts of the image it is applied to. Thus, only the other
derivative takes part in the minimization.

The optima of both branches differ significantly from 1 in Fig.7 a and c, which is
an indication that neither first- nor second-order TV alone is optimal. But 1| being
slightly closer to 1 than Ay in a and by much in ¢ shows that it is better suited and
comes with lower cost. While in a, both branches are equal, the difference between
both in c is large which shows as the much darker color of the A1 branch.

As the biggest advantage of TGV is the mixture between both orders of total variation,
it appears that when both types of structure, piece-wise flat and sloped, are combined
in one image, the optimal A(, A1 pair is found in the overlap region of both branches.
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Fig.7 NormMSE as a function of A and A after applying 1000 iterations of RBTGV for Gaussian denoising
a of Fig. 1b, with the zoomed extract marked with a blue box in b. The same for Poisson deconvolution
¢ of Fig.4b, with the zoomed extract marked with a blue box in d. The red lines in a and ¢ indicate
the region, in which the algorithm eventually improves the image quality compared to the initial noisy
image. For both, a Gaussian denoising with the noise standard deviation o = 50 and the attenuation of
w = 1 as well as ¢ Poisson deconvolution with o &~ 31.7 and the attenuation of w ~ 2.5, two branches
occur forming an L-shape at which results are better than before. The first branch is connected to the X
balancing parameter for the first order total variation, and the second branch is connected to A1; the dotted
red line indicates the position of the optimal Ao ,,; and A1 ,p; value connected to either branch. For a
Gaussian denoising, these values are ()»O,opt | A1 70p,) ~ (0.25]0.63) l/wo and for ¢ Poisson deconvolution
(Aoy opt | 2 l,opt) ~ (0.1]0.63) 1/wo. b and d show the overlap region of the branches for Gaussian denoising
and Poisson deconvolution, respectively. Here, the red cross indicates the optimal point, at which the overall
minimum is found. For b Gaussian denoising, the optimal value is found at (Aq | A1 )(,p,%(0.36 10.59) lwo.
For d Poisson deconvolution, the optimal value is found at (1 | A1 )opt™(0.57 | 0.46) 1/wo

Since this overlap is only possible with the TGV approach, it shows the advantage
over using only simple first- or second-order TV approaches.

Figures7 b and d display the respective overlap regions, where the optimum values
can be found, as indicated by the red cross.

It appears that for both denoising and deconvolution, the optimum values for Ag
and A1 add up to one, approximately. This indicates both are dependent on l/wo
introduced in (67) and (68). The clear difference between both sets for Gaus-
sia denoising (Ao [ A1),y =~ (0.36[0.59) l/wo in b and for Poisson deconvolution
(20 [ A1) opr = (0.57]0.46) 1/wo in d is an indication that the balancing between ||z || 7
and ||z || does not solely depend on the original image, as it is identical for both
restorations, but rather on the significant features, which can be distinguished from
the noise. This produces a dilemma in scientific applications that cannot be resolved,
as features are not only unknown, but also the main subject of the debate, to which
the restoration should add to. For an unbiased choice, we propose to weight both Ag
and A1 equally with /200, since this choice will always increase the outcome quality
significantly, while preserving an unbiased and thus scientific approach to the data.

4.4 Comparison of residual balancing strategies

To further show the benefit of using our approach, it is tested against the former
approaches of Boyd [22] and Wohlberg [36] (see (24) and (27)) in Fig.8 for both
denoising with Gaussian noise (a—f) and deconvolution with Poisson (g—1) noise under
different parameters u and t. Boyd suggested values of © = 10 and 7 = 2 for his
algorithms (see (24)) as used in Fig.8a for Gaussian and g for Poisson noise. Fur-
ther, we tested the same values for Wohlberg d and j again for both types of noise.
Both approaches show unstable and inconsistent results. As residual balancing is only
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Fig. 8 NormMSE maps with the individual pixels showing the denoising results under Gaussian noise
a—f with standard deviation o = 50 (same problem as Fig.2). The approaches of Boyd [22] a and b and
Wohlberg [36] d—f are tested with different ; and 7 parameters (see Sect. 1.4) against ¢ ours after 1000
iterations, respectively. It can be seen that only u = 1 produces the same result for all given p = 7 for every
Ag = XA1. The black regions in the Wohlberg approach show the algorithm diverging to infinity and thus
failing for the respective pairs. The colored boxes mark all results that are further analyzed in Fig. 9a, since
they at least converge for optimal choices of A. Images g-1 show the deconvolution results under Poisson
noise with standard deviation o & 31.7 and a 2D Gaussian Kernel with FWHM =1 pixel (same problem
as Fig.5) under the same conditions as for the Gaussian noise aforementioned

applied when R and S residuals differ by one order of magnitude, it leads to the respec-
tive algorithms balancing the penalty parameters at different iterations depending on
their initial value, which leads to different results at a given iteration. However, for this
problem, we found u = 1 as proposed by Wohlberg [36] in Fig.8 b and h as well as
e and k more convincing. Since the residual balancing is now applied every iteration,
differences between the initial penalty parameters are reduced more effectively. In a
test for several u, stability increased both for Boyds and Wohlbergs algorithms as
uw— 1.

Increasing t leads to a faster adaption of all penalty parameters as the residuals can
be balanced in larger steps. However, as Boyd’s algorithm does not further adapt the
step size in the course of iterations, the optimal p and n can only be reached within
a factor of 7, which is why we stayed with the proposed value of t = 2 by Boyd.
Wohlberg’s algorithm, in contrast, allows to approach the optimal p, n and ¢ since t
is variable between 0 and its maximum value T,

However, choosing t too high leads to divergences for Wohlberg’s algorithm, marked
as black areas in d—f and j—1. For both Gaussian denoising and Poisson deconvolution,
this happens if the A- values are estimated too high leading to over-smoothing.
Compared to Wohlberg’s algorithm, ours showed stability in both cases (Fig.8 ¢ and
1). The main difference between Wohlbergs and our proposed algorithm here is the
upper limit on p, 1, and ¢ instead of the limit on 7,4, that prevents our algorithm
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from divergence, and the increasing number of iterations between two consecutive
balancing steps, which enforces convergence instead.

As Fig. 8 does not show the speed or progress of the respective algorithms, all con-
verging strategies marked with colored boxes are tested against each other in Fig.9
at an unfavorable p = n = ¢ = 1 and A, pair (similar to Fig.3d and Fig. 6d). The
graphs indicate that the approach of Boyd for Gaussian denoising (Fig. 9a) and Poisson
deconvolution (Fig. 9b) is the slowest, since the optimal penalty parameters can never
be reached due to the limitation of 7, which is overcome by Wohlberg’s approach
with 7,4, = 2. For the first six iterations, both Boyd and Wohlberg’s approach show
the same NormMSE values, indicating that afterwards, the variable t is beneficial.
Further increasing t,,,, leads to a faster convergence, as the maximum balancing step
is increased. Our approach is superior to the others in terms of convergence speed,
since we do not limit the step size at all, but only set an upper limit to p, 1, and ¢.

5 Application examples

In Fig. 10, we give two examples of applications in physics. Figure 10a shows gold
nanoparticles on a silicon oxide substrate as acquired with a scanning transmission
electron microscope (STEM) in annular dark field mode (ADF) with inherent blur by
the point-spread-function of the electron beam and some minor defocus. Deconvolving
with a more specialized and adaptable mixed Poisson-Gaussian noise model (MPQG)
[43] with our ADMM-RBTGYV (b) improves the overall quality of the reconstruction
compared to the original as can especially be seen in the zoomed extract of ¢, where
the crystalline structures appear much clearer.

The second example in Fig. 10d demonstrates the application of the ADMM-RBTGV
algorithm to 1D data (spectra), here an electron-energy loss spectrum (EELS) recorded
in a STEM. EEL spectra suffer from both the finite energy width of the impinging

a) Gaussian Denoising b) Poisson Deconvolution
30 . 2 '
Boyd p=1|r = 2 Boyd pu=1|r =2
——Wohlb. p =1 Tmax_ 2 1 5 Wohlb. =1 Tmax 2
10+t Wohib. =17 =10 Wohlb. p=1]7 =10
w) ours ( {)max=10100 ) % 1 ours ( Prax = 10100)
= =
S S
0.3 j = 0.3
10° 10’ 102 103 10° 10" 102 10°
Iteration Iteration

Fig. 9 The graphs display the progress of the NormMSE within 1000 iterations. To show differences in
the speed of convergence from the respective stable ADMM-RBTGV algorithms for a Gaussian and b
Poisson noise (see Fig. 8) marked with the same line color as the boxes before. It can be seen that Boyd’s
(black) approach [22] is the slowest of all for both problems. It is observed that an increase of the 7,4
translates into a faster convergence for Wohlberg’s approach [36] (blue and green). The fastest convergence
is achieved with our algorithm (red) by only limiting p and 5 instead of ¢
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Fig. 10 a Noisy image of a metallic nanoparticle acquired in a transmission electron microscope. b The
deconvolved image with the ADMM-RBTGYV after 1500 iterations. ¢ Comparison of zoomed extracts
of both, original and deconvolved images at the positions marked with the respective colors. d Electron
energy loss signal from the oxygen K-edge of a Hematite (Fe»O3) nanoparticle with only the background
subtracted (black), deconvolved with the zero-loss-peak by the commonly used RLA after 15 iterations
(blue), 150 iterations (cyan) iterations (red), and the ADMM-RBTGYV after 1500 iterations, with a mixed
Poisson-Gauss noise model [43]. It can be seen that our approach produces a much smoother outcome, due
to the better-adjusted noise model. Additionally, our result leaves much less room for interpretations of
additional peaks, that occur around 540 eV in both RLA results

electron beam, leading to a convolution of characteristic spectral features, and noise,
owing to the limited electron dose used in a measurement. The black spectrum was
recorded from a catalytic metal oxide nanoparticle near the oxygen K-edge, where
a background was subtracted using a common power-law mode. The blue and cyan
curves show the spectrum after applying the commonly used Richardson-Lucy algo-
rithm (RLA) 15 and 150 times, respectively. Deconvolving the image with the RLA
sharpens the edges, but due to a misfit in the noise model by completely ignoring Gaus-
sian read-out noise and not regarding the change in statistics by the subtraction of the
background, the RLA diverges with increasing iterations. This is why the RLA is often
limited to 15 iterations in EELS applications [44]. Oscillations occurring after 150 iter-
ations of RLA near the spectral maximum at 542 eV might be easily misinterpreted
as characteristic features. At energy losses above 550 eV, RLA-treated spectra show
additional oscillations with the same amplitude as the peaks around 542 eV are pro-
duced by the RLA. These artifacts are commonly known as ringing artifacts [45-47].
In comparison, the spectrum obtained by applying the ADMM-RBTGYV (1500 times)
nicely corresponds to the spectra expected for metal oxide particles [48—51]. Thus,
by utilizing MPG with our ADMM-RBTGY, the overall quality of the reconstruction
improves significantly compared to the other as the signal appears much smoother and
less noisy. All in all, the examples show that ADMM-RBTGYV can reliably improve
image and signal quality, unbiased by the choice of input parameters by the user.

6 Conclusions

In this paper, a novel residual balancing approach for ADMM image denoising and
deconvolution with total generalized variation is described. It is applied to standard
images as well as scientific 2D and 1D data superimposed with both Gaussian- and
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Poisson-type noises. The usefulness, objectivity, and fast convergence of the algo-
rithm are demonstrated. By automatically choosing penalty parameters p, 1, and ¢
for the Poisson case and equalizing their initial choice after a few iterations, residual
balancing makes the algorithm user-friendly and unbiased. Moreover, it increases the
convergence speed for almost all initial choices of the penalty parameters significantly.
If the optimum is already known, residual balancing is indeed slower than the original
algorithm, but does not delay convergence by much. However, as the optimum is hard
to guess, residual balancing provides an easy and successful way of choosing p and
n in the case of the Gaussian noise ADMM and an additional ¢ for the Poisson case.
It is shown that the original algorithm and the residual balanced one converge to the
same result for different initial choices of the penalty parameters over several orders of
magnitude for the same values for the regularization parameters Ay and A ;. Further, we
could show that our approach of residual balancing is superior to others, as it provides
the fastest convergence and is stable at all tested pairs.

As the applicability is clearly shown, this work allows to adapt the principles of resid-
ual balancing to other penalizers for image restoration in general and for different
dimensionality of the data.

By reducing the set of four parameters (or five in the Poisson case) to be chosen by the
user to two, optimal regions can be found by only testing (Ao | A1)-pairs. This makes
visualization easier and reduces computational time for finding the optimal set.

It is shown that the regularization parameters Ao connected to the first derivative and
A1 connected to the second derivative depend on the inverse standard deviation of the
noise l/wo, that gets attenuated by a factor of w in the case of a deconvolution. This
factor depends on the deconvolution kernel, as it drags more noise into a single pixel.
Selecting either Ag or A1 too high while keeping the other close to the optimum leads to
the filter masks adapting and minimizing the influence of the respective first or second
matrix of derivatives D or G. The conclusion drawn from this is that TGV can either
converge to results of the standard first-order TV or the second-order TV. However, as
most images consist of both flat and sloped parts, optimality is found in the overlap of
both 1y and A1 regions. Here, we could show that both regularization parameters g
and A1 must add up to a total value of 1/wo to achieve optimality. The ratio between
both depends on the significant features in the image, which can be distinguished from
the noise. Thus, for the same image under different noise conditions, the optimality
of these parameters is not identical, but changes significantly.

Finally, with our work, the algorithm can be set up such that it operates on objective
criteria and not on the arbitrary choice of user inputs: The penalty parameters are cho-
sen automatically on a mathematical foundation, and the regularization parameters A
and A can be chosen equal to /200, such that they only depend on the noise standard
deviation o. Since the features in an image are not known in a scientific context, the
true optimality of the ratio of both parameters cannot be achieved without introducing
a certain bias. But fixing the ratio of both regularization parameters still improves
images significantly, since both parameters continue to be located within the optimal-
ity region. This allows for an unbiased approach on the restoration of experimental
data as there is no room for altering the results. With sufficient knowledge of the noise
in an experiment, which can be found by carefully investigating the detector, our work
enables the use of the ADMM-based image restoration algorithms for scientific tasks.
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Unfortunately, we found inconsistencies in the use of indices denoting the dimen-
sions of the images at five places in the finally published version of this paper. These
inconsistencies, however, do not affect the correctness of the mathematics of this paper.

1) The first instance is on p.1484 in (5) and (7), where the indices m, n and M, N are
swapped and must read m, n and M, N instead. Accordingly, the correct equations
are:

Lp (Rx) = P (§]|8x)

_ l—[M,N (X1 exp{— 121} (5)
- m,n Em,n! ’
Gp (2x) o« —In{Lp (2x)) (6)
M,N
=Y —In{[@x],,} (€,.,) + [0 - (7)

This is to match the definition of the dimension of the images as provided in (2) of the
manuscript.

2) Furthermore, we have spotted the same swapping of indices on page 1489, where
we refer to an “image with N x M pixels”, while an “image with M x N pixels”
would be correct in view of (2) of the manuscript. Consequently, the continuation
of said passage: “all entries Dy, , and the matrix of zeros O have the same size and
dimension as said image {Dj,, D,, 0} € RM*N> would be correct.

3) Another inconsistency is found on p. 1497 in (63), where the summation indices
m, n do not match the indices of the variables to be summed i, j. The correct equation
should instead be:

The original article can be found online at https://doi.org/10.1007/s11075-024-01759-2.
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1 MN Orie\2
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4) Again, N, M should be swapped to M, N and n, m should be swapped to m, n on
p. 1497 and p. 1498 in (65), (66), and (67):

1 M,N 1 M,N
TSI =gl =)0 = I —ElE=) 07, (65)
m,n m,n
M,N /2
oG- lallr+b-lzlp) =h-Ix —Elr = Y 32-02) . (66)
m,n
M.N M.N /2
argmin Z -+ Z 22 o i (67)
X.21,22 m,n 2 m,n

5) Finally, on p. 1498 in (68) the indices should be m, n instead of i, j and M, N
instead of N, M for a consistent notation. Therefore, (68) should read:

M,N Q
2 Z m,n
YT S max () 9

In this context w should be called “amplification coefficient”, because w > 1. It was
called “attenuation” coefficient due to a different definition in a previous version of
the manuscript. Accordingly, the words “attenuation” or “attenuated” appear ten times
in the paper (once on p. 1497, three times on 1498, once in the caption of Fig. 1 on
p. 1499, once in the caption of Fig. 4 on p. 1502, once in the caption of Fig. 5 on p.
1503, twice in the caption of Fig. 7 on p. 1505, and once on p. 1509) and should be
replaced by “amplification” and “amplified”.

MATLAB scripts of the algorithms are now provided in MathWorks. The link is:
https://www.mathworks.com/matlabcentral/fileexchange/159873-automated-admm-
tgv-denoising-deconvolution-for-images.
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ARTICLE INFO ABSTRACT

Keywords: Electron-energy-loss-spectroscopy (EELS) spectra in the scanning transmission electron microscope (STEM) are
EELS map affected by various types of noise. Additionally, they are convolved with the detector point spread function
Deconvolution

and the energy distribution of the electron source. Often, iterative deconvolution is employed to sharpen

?D NiM lized variation (TGV peaks and improve the data. However, since the Richardson-Lucy algorithm (RLA) has become the standard
P;::mi:s:a ized variation (TGV) deconvolution algorithm in EELS, little progress has been made in terms of technique. In this paper, the authors

aim to provide an update to STEM-EELS deconvolution and demonstrate how to significantly improve results
compared to those achievable with the RLA. The major limitation of the RLA is that it does not guarantee
convergence. Furthermore, the RLA is restricted to pure Poisson noise and lacks adaptability due to limitations
in its general structure, particularly when compared to more modern algorithms. A new and versatile approach
is the Alternating Direction Method of Multipliers (ADMM), which is based on Lagrangian methods and enables
to overcome these restrictions. The generality of ADMM allows us to develop a deconvolution algorithm
tailored to EELS maps and incorporate a recent noise model. We extend the standard Bayesian maximum
likelihood of the RLA to a maximum a-posteriori approach in ADMM, which enables us to leverage the
principles of total general variation (TGV) to enforce convergence. Furthermore, we define the algorithm such
that it operates unbiased of the user. To demonstrate the superiority of the ADMM, it is tested against the RLA
using simulated data. Eventually, our algorithm is successfully applied to experimental data as well.

1. Introduction

Every measurement is subject to noise. The most prominent noise types in electron energy-loss spectroscopy (EELS) are certainly Poisson
noise, which arises from the quantized nature of the signal [1,2], and Gaussian read-out noise originating from the detector electronics [3,4].
However, as noted by Verbeeck and Bertoni [5], the Poisson statistics is significantly altered by the different layers in the scintillator detector,
which introduce gains and correlations into the data. We will describe the most important noise parameters in EELS and utilize a noise model that
we have theoretically derived and experimentally validated in [6,7].

Noise is only one aspect of the problem when performing EELS measurements. Since every energy-loss is measured with a given energy
distribution of the electron gun. Therefore, the signals of interest are convolved and appear blurred. Additionally, the detector point spread function
contributes to the blurring and also correlates the noise. These correlation effects necessarily alter the noise statistics and must be taken into account
for optimal deconvolution results. However, the energy distribution of the electron gun, combined with the smaller detector convolutions, can easily
be measured in vacuum. Since beam electrons do not undergo inelastic scattering in vacuum, the energy-loss remains zero. The resulting peak is
therefore referred to as the zero-loss-peak (ZLP). This peak also occurs when a specimen is inserted into the beam path, since the probability of
the electrons not losing any energy is quite high.

Deconvolution is a process that enables to address both noise and blur. Several algorithms are used for the deconvolution of EEL spectra,
including Fourier deconvolution [8,9], Wiener deconvolution [8,10,11], maximum entropy [8,12], or the widely used Richardson-Lucy algorithm
(RLA) [13,14].

In EELS, the iterative Richardson-Lucy-algorithm has become a popular choice [8,9,15,16], largely replacing other algorithms. By utilizing
a ZLP as the deconvolution kernel and assuming pure Poisson noise, it has been claimed that energy-loss peaks can be distinguished that were
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previously hidden in the ZLP [17]. Particularly in the low-loss regime, where optical transitions and plasmonics are situated, this procedure has
become a standard method for differentiating between the ZLP and signal, as well as for sharpening these peaks.

However, all these algorithms mentioned above suffer from limited adaptability and impose strict requirements on the inherent noise of the
data. In particular, the RLA is only valid for pure Poisson noise, as it is directly derived from the log-likelihood functional of pure Poisson statistics.
The RLA ignores the Gaussian distributed detector read-out noises and other noise contributions. Therefore, the image statistics used by the RLA
is inherently incomplete, which poses a significant problem for deconvolution. Particularly, when subtracting backgrounds such as the ZLP in the
low-loss region or a power-law background in the high-loss region, the noise statistics assumed by the RLA and the actual noise statistics bear
little resemblance. The direct consequence of this mismatch between mathematical foundation of the algorithm and the actual noise is a divergent
algorithm. Recent research of the RLA fundamentals even indicates that the algorithm is doomed to diverge even for the true Poisson noise statistics,
it was inherently build upon [18], therefore leaving it without proper use-cases where it would converge to a fixed result.

Divergence, however, is the most undesirable outcome for such an algorithm, as it leads to the amplification of noise peaks and unstable
solutions, which have been widely reported in literature [19-22] and are also observed in EELS [23]. The ancient Latin principle of deductive
reasoning: ‘Ex falso quodlibet — from falsehood, [anything] follows’ is particularly relevant here as it casts doubt on the validity of results obtained
from a divergent algorithm.

In an attempt to mitigate the damage to the result, it has been suggested that the number of iterations of the RLA be limited to 15 [15], 20 [16]
or some other arbitrary number [8,9,11,17,24,25]. Indeed, limiting the number of iterations prevents the results from diverging; however, the limit
should be set to a relatively low number of iterations, as suggested by Egerton [15]. It is evident that premature termination limits the ability of
the RLA to reach its full potential.

In this paper, we propose to use the alternating direction method of multipliers (ADMM) as a deconvolution algorithm for EELS. ADMM
has been reported to be highly successful in the field of medical imaging [26-28], in biology [4,29,30] and has also been applied in electron
microscopy [31,32]. However, to the best of our knowledge, it has not been used for EELS data processing yet. Therefore, this paper will provide
the reader with all necessary information to set up the ADMM deconvolution algorithm for EELS data. Owing to its mathematical structure, ADMM
is guaranteed to converge within a reasonable number of iterations [33] and, unlike the RLA, does not require early termination. This enables the
algorithm to be utilized to its full potential and also makes it relatively independent of the exact number of iterations, especially when convergence is
nearly achieved. We will demonstrate how to utilize self-adjusting parameters and noise estimates, which can be measured directly on the detector,
to fine-tune the convergence properties of the algorithm and optimize the results. Since all parameters are selected based on objective criteria and
mathematical properties, the results remain unbiased by the user.

ADMM enables to incorporate a-priori information into the deconvolution process extending the maximum likelihood (ML) approach to a
maximum a-priori (MAP) approach. Such a-priori information encompasses general properties of the data that are known in advance, such as
the non-negativity of EELS signals, since there cannot be a negative number of incident beam electrons, and the relative smoothness of the data
compared to the noise, which is highly volatile and rough. This principle is known as total variation (TV) and was first introduced by Rudin, Osher
and Fatemi [34]. Clearly noise is highly volatile and simulations can easily demonstrate that the assumption of smoothness is valid for plasmonic
features and other signals of interest, thereby validating the use of TV approaches for EELS. In the subsequent sections, we will provide a more
detailed explanation of this concept.

Total generalized variation (TGV), introduced by Bredies et al. [26,35], is a more advanced extension of the TV principle, which also leverages
the roughness of the noise to distinguish it from the signal. However, TGV employs self-adjusting filter masks to better adapt to the data. A detailed
explanation of TGV will be provided in Section 4.5.

These filter masks are especially beneficial for EELS map measurements, which are a lateral extension to the regular EEL spectrum. In EELS
map measurements, several spectra of a structure of interest are acquired in a raster pattern and allow to visualize, e.g. the lateral distribution of
plasmons.

Through the implementation of TGV, ADMM enables the coupling of deconvolution results between the spectra, thereby allowing us to apply
the deconvolution to the entire dataset, rather than just individual decoupled spectra, as is the case with the RLA. With a larger number of data
points available to the algorithm, in the vicinity of a data point to be restored, the success of deconvolution is significantly improved.

For the application of TGV, it is advantageous to provide data that are as smooth as possible. However, the EELS features are overlaid with
variations in the measured beam intensity, which are induced not only by changes in beam current but also by variations in specimen thickness and
material composition, resulting in differences in the transmittance of the direct beam. All these factors contribute to an increase in data roughness.
Normalizing all spectra to their respective total count allows to remove this additional roughness, but comes at the expense of significantly altering
the noise statistics.

Here, the generality of ADMM comes in handy and enables us to rescale the image during the iterations. This allows preserving a much simpler
noise statistics compared to the normalized noise statistics that would otherwise be necessary while maintaining the benefits of reduced data
roughness.

The advantages of ADMM yield superior results compared to the RLA, as will be demonstrated on a simulated dataset using the MNPBEM-
toolbox [36]. This simulated dataset will be treated with various types of noise, as encountered in EELS measurements, by imitating the image
formation process. Subsequently, this dataset will be deconvolved with the proposed ADMM algorithm as well as with the RLA. This approach
allows to objectively evaluate the results against the original dataset by means of the mean square error (MSE) and therefore enables a direct
comparison between ADMM and RLA algorithms. The success of the described ADMM deconvolution method will also be demonstrated on a real
measurement of a truncated pyramidal gold nanostructure. Finally, we will present an experimental comparison of the plasmonic behavior of a
bottle-shaped gold and a bottle-shaped gold-platinum Janus particle, highlighting the advantages of the proposed ADMM algorithm. The presented
study on the Janus particle would be impossible to conduct by only employing recent RLA techniques, while in contrast, the proposed ADMM
deconvolution algorithm reveals important plasmonic features, which were formerly hidden within the noise.

2. A noise model for EELS

It is well established that EELS measurements are affected by two distinct types of noise, the Gaussian distribution N, which describes the
read-out noises of the detector [6,7,37-39] and the Poisson distribution P [5-7,38,39], which describes the inherent noise of the signal itself.
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Owing to the quantized nature of the beam electrons used for the measurement of EELS, it is either possible to detect an electron within a given
time interval or not detecting it. These fluctuations are inherent in the nature of electrons. Both distributions can be described as [40-42]:

2 Sn
N [ o] = _("‘”)} and P[5 =5 exp (-5} . W

1
\V2ro2 P { 202
We can determine the probability of measuring n counts for both distributions. For the Gaussian distribution, the probabilities are distributed
around a mean value y with the variance 2. For the Poisson distribution, the probability of measuring » counts primarily depends on the signal
S; both, the mean and variance of the Poisson distribution are equal to the expectation value of the signal S. This is a fundamental property of the
Poisson distribution. However, for a scintillation-based CCD detector, we expect a gain in the conversion of incident beam electrons .S,, to photons
and subsequently into counts .S, which are output to the user. Scaling the Gaussian and the Poisson distribution by a gain g yields [6]:

gu/\/[u,a]:./\f[g~;4,g2~0] and gAP[S‘e,]:gJ’[g] ,with S=g-5,. (2)

Therefore, multiplying a noisy signal with a factor results in multiplying the variance by the squared factor, while the mean value is only changed
linearly. This is why the gain factor cannot be simply incorporated into the notation of the Poisson noise, as this operation changes the relation
between mean signal and noise level.

While the sum of W Gaussian or Poisson distributed random variables is given by [41-43]:

w w w w
> Ny o2 =N [ Hs Y ai,] , P[S,)=P [Z Su] , 3)
w=1 1 1 w=1

w=1 w=
such that the sum of the respective mean values and variances of both distributions comprises the resulting distribution.
Measuring a signal on an imperfect detector causes the signal to be blurred by a point spread function £, and also introduces correlation
effects between the noises of neighboring EEL channels. These correlations can be characterized by Pearson correlation coefficients p,,, which are
given as [44]:

w

w=

g = cov [x, s xH,m] ’ @
0" Oiym
where m represents the distance between two EEL channels. The Pearson correlation coefficients are defined as the covariance between two
channels x; and x;,,, on a detector, normalized to the standard deviations of both channels, such that p,, € [-1,...,1]. For p, = —1 we
observe total anti-correlation, for p,, = 0 the channels are uncorrelated, and for p,, = 1, there is total correlation between both channels. Since
mée [-(M—-1),...,M — 1], where M represents the number of EEL channels, there are nearly twice as many Pearson correlation coefficients as
EEL channels. Consequently, for M = 2048 EEL channels found on our detector, we obtain 4095 Pearson correlation coefficients p,,.
Due to convolution with the detector PSF, positive correlation is expected in the EELS data and results in a smoothing of the signal noise [5].
In [6], we mathematically described this smoothing for regular 2D images and subsequently extended it in [7] to accommodate the needs of EELS.
We derived that a convolution ® of the signal with the detector PSF €, acts on the Poisson distribution, such that [7]:
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] for g>1 ,with (5)

where p,, represents the Pearson correlation coefficients and €7 is the detector point spread function in EELS, normalized to the height of one.
Consequently, two distinct smoothing coefficients are observed in EELS. Firstly, f.,,, describes a smoothing resulting from the convolution of the
noise with the detector PSF, and secondly, f.,,, describes an additional smoothing of the noise due to the correlation induced by this operation. The
latter smoothing coefficient f.,,,. describes the influence of the correlation on the measured sample variance. For correlated noise, it is apparent
that the measured variance is reduced compared to uncorrelated noise, since the noise counts of neighboring channels tend to deviate in the same
direction. However, larger sample sizes, i.e. many EEL channels, typically mitigate this effect because the correlation length is often short, making
the noise of distant channels independent of the channel in question. Therefore, the measured variance approaches that of uncorrelated noise in such
cases. However, correlation is restricted to the measured spectrum and therefore changes the measured noise only within this spectrum, without
affecting the noise between spectra. So, f.,,, is rather an effect occurring when measuring the sample variance of correlated data. In contrast, g,,,,
accounts for the effect that convolution broadens the noise of a given channel to the neighboring channels mixing them. This results in the noise
of neighboring channels canceling each other out to a certain degree, leading to a smoothing of the noise that is observed. This effect affects the
noise variance both within and between measurements and is independent of the sample size. Both effects, which lead to 8,,,, and 8.,,,, are caused
by convolution and occur simultaneously due to their close relationship.

However, it is essential to note that the above formulas Eq. (5) to Eq. (7) are only valid for processes where multiple photons are generated as
a result of a scattering event in the scintillation layer, leading to g > 1. Particles are discrete entities; therefore, several of them must be created
in order to spread laterally and smooth out the noise. A single particle would merely be dislocated, resulting in a blur of the signal, but the noise
would remain unaffected by the convolution [45]. For scintillation-based CCD detectors in TEM, however, this condition is readily met, as hundreds
to thousands of photons are generated by a single incident electron.

In [6], we demonstrated a method for precisely measuring the Pearson correlation coefficients for the entire detector using the autocovariance
function on homogeneously illuminated images in TEM mode. Furthermore, we demonstrated how to reconstruct the 2D detector PSF from
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the Pearson coefficients obtained by this method. Homogeneous illumination conditions, which are required for the acquisition of the Pearson
correlation coefficients, are commonly encountered during the acquisition process of a gain reference, a standard procedure for image corrections
in transmission electron microscopy. In [7], we detailed the calculation the Pearson correlation coefficients for EELS measurements, based on those
measured for 2D images, and described the reconstruction of the 1D detector PSF for EELS.

In EELS, the signal arises from inelastic scattering processes of the beam electrons with a specimen, resulting in a loss of kinetic energy. The
electrons are directed to the entrance aperture of the EEL spectrometer by the magnetic lenses of the microscope. Within the spectrometer, the beam
is further dispersed by magnets according to the kinetic energy of the electrons and eventually reaches the detector with a certain distribution.
This distribution encompasses the desired information about the interactions with a specimen, represented as the signal S, as well as the energy
distribution Q2 of the emitter. Furthermore, due to the small diameter of the aperture in the spectrometer, the signal exhibits a minimal diameter
on the detector, which we characterize using £2¢; £, as it is dependent on the optics of the system in STEM mode. However, these convolutions
Qgrey and Qp do not affect the noise properties of the Poisson distribution, but only describe the distribution of the signal on the detector.
We consider all above convolutions £ to be normalized, such that the probabilities sum to one Z,I,‘,l:( m—1) @m = 1, facilitating a straightforward
mathematical description. In conjunction with a conversion gain g, which converts incident beam electrons into counts as the output from the
microscope, we obtain [6,7]:

Qsrem ® 2p ®~§]

g ﬂcanu : ﬂcorr

Q® S ]

g ﬂconv . ﬁcorr
Measuring an EELS signal in vacuum yields the vacuum ZLP £, which comprises the distributions at the entrance aperture of the spectrometer
QgrEuy, the energy distribution of the electron gun £, and the detector PSF Q. The vacuum ZLP determines the energy resolution of the
microscope. As no energy-losses are expected in the absence of a specimen, the signal .S is represented by a Dirac delta function that is broadened
by the ZLP characteristics.

Acquiring any signal using a CCD or a CMOS camera introduces read-out noise and dark currents into the measurement, thereby altering the
signal. To eliminate dark currents, background subtractions are performed as a standard procedure. These subtractions, however, while canceling
out dark currents, double the variance of the read-out noise and introduce additional noise arising from the Poisson distribution of the dark currents.
We denote the cumulative noise from the detector electronics as o, ;, for each channel i, respectively. This is due to the significant variation of the
noise from channel to channel [7]. As the resulting dark frame subtracted spectrum consist of two independent measurements, we find 2 - "%),,- to be
the variance of an additional noise term in EELS. In [6], we presented a detailed analysis of the detector noises, including how they are affected by
the application of a gain reference and gain non-linearity corrections. The formation process of an EELS measurement ¢ can be described as [7]:
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where the conversion gain g relates the incident electrons to the number of counts presented as output, and [.Q ® S‘][ represents the convolved
signal within the ith EEL channel. The signal noise is reduced due to convolution with the 1D detector PSF for EELS, yielding two smoothing
factors B,,,, and B,,.,. We therefore obtain the desired signal .S in counts, convolved with the vacuum ZLP €, and an additional Gaussian noise
term associated with twice the detector noise, due to the background subtraction.

In [7], we demonstrated how to determine the gain g for EELS using the autocovariance function and the resulting Pearson correlation
coefficients. This enables the use of the noise model even with detectors lacking electron-to-counts calibration.

2.1. Noise model for EELS maps

In this section, we extend the noise model for single EEL spectra from Eq. (10) to EELS maps. EELS maps comprise multiple sequentially acquired
spectra, concatenated in the lateral dimension, thereby forming 3D data cubes. To facilitate better data visualization, these cubes are often sectioned
into energy slices, comprising the same EEL channel i from all corresponding EEL spectra, thereby revealing only the lateral distribution (x, y) of
a specific energy loss; or into a spectrum, which solely displays the energy-loss distribution across all EEL channels for a particular position on
a specimen. Voxels represent the smallest unit (x, y,i) of information within the 3D data cube, serving as the fundamental building blocks of the
dataset. As demonstrated in [6], EELS maps necessitate two separate noise models: one for the energy dimension, denoted by the underlined index
i, and another in the lateral dimensions, denoted by the underlined indices x, y. This concept will be elaborated upon in the subsequent sections.

In the Gatan software ‘Digital Micrograph’, a slightly different background subtraction approach is employed compared to single EEL spectra.
Specifically, a ‘High Quality’-background is generated by averaging across A = /X - Y dark frames, where the EELS map has a side-length of X and
Y spectra. This HQ background is then subtracted uniformly from all spectra. Since the background is averaged over A spectra, the corresponding
noise in this frame is firstly added up according to Eq. (3), resulting in )’ , O-%),i =A- 012)’1., and then divided by a factor of A2, according to Eq.

(2), resulting in % . o‘%) .- Consequently, by removing the averaged backround frame instead of a simple background frame without averaging, the

factor changes from 2 to (1 + %) for the variance of the detector noise in energy direction. However, the noise volatility in the lateral dimensions
remains unaffected by this correction, since the HQ-background is subtracted uniformly from all EEL spectra within the EELS map. Each energy
slice is therefore effectively subtracted by the same corresponding scalar value within this reference frame.

As an example, consider three consecutive energy slices of a STEM-EELS data cube, which get background subtracted. Since the background
is acquired as a spectrum, the noise is in energy direction. Concatenating copies of said spectrum laterally results in the first energy slice being
subtracted by an exemplary value of 3, the second gets subtracted for instance by 7 and the third by -2. It is apparent that, since all values in a
given energy slice get subtracted by the same value, the volatility inside the energy slice cannot increase by subtracting this background, but since
the ‘noisy’ values 2,7,-3 are being subtracted from consecutive slices, the variance between them increases.

Therefore, subtracting a HQ-background does not contribute to the noise volatility in the lateral dimensions, and the factor (1 + %) reduces to
1. This serves as a first example of why two distinct noise models are necessary for the respective directions.



C. Zietlow and J.K.N. Lindner Ultramicroscopy 275 (2025) 114159

In general, the noise volatility is different between the different directions of data, i.e. between the lateral dimensions and the spectral (or
energy) dimension. This is a consequence of the data cube being recorded spectrum by spectrum — one at a time as a whole — and then being
merged laterally. One can easily imagine that for example the convolution with a detector point spread function only affects the spectrum per se
and cannot act between spectra. This results in the necessity for a bifurcated noise model, split between lateral and energy directions.

In EELS maps, energy drifts may occur between spectra due to their sequential acquisition. To correct these drifts, the spectra must be realigned
with respect to the ZLP or any other significant feature that is shared among all spectra at the same energy position. In [7], we demonstrated the
effectiveness of a sub-channel alignment using the cross-correlation function, to which we fitted a Gaussian distribution. However, this realignment
reintroduces some noise due to background subtraction in the lateral dimension, resulting in a factor of (1 + %), similar to the energy direction,
but with a shifting factor ¢. This factor can be estimated as the mean drift across all spectra [7]:
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with a Dirac delta distribution &, positioned at the peak of a significant feature that is common to every spectrum in the array at the same energy,
such as a ZLP. This approach enables to quantify the difference in shift by summing the differences between the delta functions. We subtract the
Delta peaks in a manner that ensures each spectrum is subtracted once from every other spectrum in the array. In the absence of an energy shift,
this results in a shifting factor of ¢ = 0. Conversely, if the mean drift between neighboring channels is equal to or exceeds one EEL channel, we
obtain ¢ = 1. Therefore, the shifting factor is found to be within the range between ¢ € [0, ..., 1], indicating the percentage of channel shift per
spectrum.

Sub-channel alignments require some form of interpolation. As demonstrated in [6], linear interpolation of the spectra between channels renders
the uncertainty of alignment negligible. However, interpolation is not a standard procedure in ‘Gatan Digital Micrograph’ [46]. For non-interpolated
spectra, we found a dependence of the uncertainty on the first derivative of the signal. Furthermore, we mathematically derived the overall
uncertainty of alignment o), , > 0.25 channels, and experimentally verified it, assuming a continuous distribution of the energy shift. The uncertainty
can be described as [7]:

2
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which we assume to be Gaussian distributed for simplicity. For the present paper, we utilize interpolated spectra to achieve optimal results, and
therefore neglect this term.

Interpolation results in an additional convolution with €;, which smooths the noises and consequently leads to a slight modification in g,,,,
and B.,,,, due to the altered Pearson correlation coefficients. The Pearson correlation coefficients for the interpolated signal p and the detector
noises pp, are given as:

Pn=[2p®Qp®Q; x2;] and pp, = [ * 2] , with 13)
Q= [(1-14D),14], ..., 0] )

where x represents cross-correlation, 4 represents the sub-channel drift, and [-],, represents the mth element of the distribution. Consequently,
according to Eq. (6), we obtain an additional smoothing factor for the detector noises, denoted as f;. We have observed that the sub-channel
drift is uniformly distributed in the acquisition of a typical EELS map and derived in [7] that g, = % as the mathematical consequence, which we
could validate experimentally. According to Eq. (6), this smoothing corresponds to an average effective sub-channel shift of 4 ~ 0.211 channels.
Subsequently, we neglect the smoothing effect of the correlation f,,,, induced by interpolation due to its minor impact. However, although
interpolation affects the noise, it does not alter the width of the ZLP nor any of its component. The ZLP width is still given as 2 = Qg7 py @R Q2.

It is worth reiterating that the smoothing effect of correlation g, is only applicable within a given spectrum and not between spectra.
Additionally, the background is subtracted uniformly from all spectra, resulting in two distinct noise models for the lateral directions and the
energy direction [7]. To specify direction being referred to when describing the noise volatility, we denote them by underlining the corresponding
indices x, y or the index i
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where [.Q ® Sx,y]i represents the ith EEL channel of the convolved signal, located at position (x, y) on the EELS map.

Thus far, we have developed two distinct noise models for standard EELS measurements, one for the energy and one for the lateral directions,
as presented in Eqgs. (14) and (15), respectively. The lateral model describes the noise volatility between spectra, whereas the energy direction
model describes it within a given spectrum.

Such volatile noise is at the foundation of the total variation approach that distinguishes noise and signal by volatility, i.e. by employing
derivatives, as will be explained in the corresponding section Section 4.5. Data fidelity is a different concept and is equally important, but does not
necessarily need all the aspects of volatility. Imagine having measured a signal, a spectrum for example. This spectrum is, as a whole, offset by a
value subject to noise. That means, the first measurement is offset by 1, the second by —5 and a third by 0. While the noise volatility inside the
spectrum is, by any means, unaffected by this varying offset, the result is subject to uncertainty that would be characterized by employing error
calculus or propagation of uncertainty. Such an approach of uncertainty is necessary to define the data fidelity employed by the log-likelihood
constraint, which in greater detail will be explored in the corresponding section Section 4.3.

Therefore, we must determine the maximum contributions, term by term, between both models to establish the total uncertainty associated
with measuring a voxel within the data cube:

Eui 58 Peons P [%] w0, (1+5) po-od] 16)
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as per definition g,,,. < 1 and ¢ < 1. The above noise model represents the uncertainty of an EEL spectrum within the array as a combination of both
noise models, where we omit the underlined indices since this noise model provides the total uncertainty in all directions. This noise model will be
crucial in defining the Bayesian likelihood approach for deconvolution, as it enables the voxel-wise comparison of deconvolution results with the
original measurement. Based on the probability distribution of the noise components, the likelihood approach establishes a distance measure that
penalizes deconvolution estimates that deviate significantly from the original data. This concept will be further elaborated upon in Section 4.3.

However, the sequential acquisition of spectra within the EELS map allows for beam current fluctuations between measurements. To account
for these changes in, we rewrite the EELS signal as S’x’y =1,,-3,,, where the intensity map 7, , = S srex,y  Ix,y» cOmprises the beam current S'm’x_y
incident on the specimen, and the transmittance of the specimen T, , at the corresponding position (x, y) in the EELS map. Furthermore, we denote
the loss probabilities using the lowercase letter 3, .

The intensity map can be estimated by summing the spectra along the energy direction. Normalizing the spectra using such a map allows to
eliminate both beam intensity fluctuations in S;,. , , and variations in the transmittance T, , of the specimen from the equation. Frequently, the loss
probabilities are more relevant than the overall counts. This normalization approach effectively addresses both issues simultaneously. However,
summing all EEL channels M also results in the summation of all noise components, making the total summed intensity Z,M &,y only an estimate

of the intensity map 7, ,, which is subject to uncertainties. For a sufficiently large signal, the estimate is precise enough to be usable. We obtain [7]:
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where ky .,y represents the uncertainty in measuring the intensity map Z, ,, which is necessary for a normalization of the measurement in a next
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step. Further, o‘%)  represents the sum of detector noises across all channels M. We obtain the mean value as I = L
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of the intensity map as o, = Y7 Xy Do 1S significantly higher
for CCD detectors than the expected sum of variances in Eq. (3) suggests. This discrepancy arises from an offset in the individual detector rows,
which vary from row to row, as was demonstrated in [6,7].

The normalization approach, based on summed intensities, is effective under three conditions [7]: Firstly, either E,M 3,y ~ 1 is required to
encompass a significant portion of the loss probabilities throughout the specimen, or Z,M 8, ~ const. must hold, ensuring independence from the
specimen position (x, y) and thus maintaining the relative proportion between all spectra. In the case of low-loss EEL spectra, which often truncate
large bulk plasmonic peaks, this approach inevitably results in an artificial overestimation of the loss probabilities for materials exhibiting high
plasmonic resonance. This phenomenon typically occurs in material systems comprising a metal particle on a semiconductor or organic material
substrate.

Secondly, the condition ky , , 5 < 0.05 is necessary, as the mathematical approximations for the noise model rely on this assumption. Thirdly,
to ensure sufficient normalization of an EEL channel, it is necessary that all other channels contribute a significant portion of the overall loss
probabilities. This is due to the fact that, when normalizing a given EEL channel by the sum of all channels, the channel itself is included in the
sum, resulting in a slight modification of the noise models.

Considering these factors, we derive a noise model for the noise volatility in the lateral dimensions of normalized EEL channels [7]:
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where pup represents a factor that arises from the inclusion of the respective EEL channel within the total sum. Accordingly, o% R= 0'% I O-%)i

corresponds mostly to o-f) »+ In Eq. (18) the following terms are present: (1) The Poisson distributed signal noise, smoothed by the convolution with
the detector PSF and interpolation. (2) The variation of the smoothed Poisson noise by the distribution of the intensity map, which contains beam
current fluctuations and variations of the specimen transmittivity. (3) The uncertainty associated with intensity normalization. Additionally, one
finds (4) the smoothed detector noise resulting from interpolation. All terms are normalized by the mean intensity I of the intensity map, which
appears in the denominator.

Both, the comprehensive derivation of the formulas and the experimental validation of this noise model are presented in [7]. Additionally, [6,7]
demonstrate how to experimentally measure all the relevant parameters, enabling the noise model to be tailored to each EELS detector.

The volatility model in energy direction for normalized EEL channels is relatively straightforward [7]:
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since all EEL channels i of a given spectrum are divided by the same summed intensity value. Therefore, intensity normalization does not alter the
noise volatility in energy direction. Instead, the noise is scaled by the denominator, which serves as a scalar for each position (x, y) in the EELS
map.
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In the next section, a ZLP will be subtracted from the spectra. Hence, the subtraction of the ZLP must be incorporated into the noise model.
Since there are multiple ways of creating such a ZLP for subtraction, no definite noise model can be provided. However, some thoughts on this
subtraction shall be shared in this regard.

For a ZLP that is provided by fitting some formula to the ZLP, no additional noise volatility is expected, since the fit is smooth. However, there
is an uncertainty in fitting that must be regarded between spectra, which depends on the fitting model itself.

In an alternative case where the ZLP is measured, preferably in vacuum, and averaged across several measurements, as was done for the
measurements in this paper, the above noise models for volatility and uncertainty also do apply to the ZLP to be subtracted. They must be
incorporated in the same way as the background subtraction: by multiplying the ZLP noise variance, as calculated by the respective noise models,
by one over the number of averaged spectra.

An easy way to subtract such a vacuum ZLP from a measurement is by fitting it to all spectra separately. In this case, a scaling factor is introduced
for each spectrum, similar to Eq. (2), which appears squared in the noise. Due to the similarities between the ZLP and a Gaussian, an uncertainty
of the fit can be approximated by the same uncertainty as a Gaussian fit would inherit. When averaging several dozen ZLP’s with a number of
counts similar to that of the measurement spectra of interest, the noise can often be neglected.

Having established the deconvolution kernel in Eq. (9), as well as a noise model of the original measurement in Eq. (16) (for the likelihood
approach in Section 4.3) and a model for the noise volatility in all directions of the intensity normalized loss probabilities in Eq. (18) and Eq. (19)
(for a total variation approach in Section 4.5), we now introduce the necessary data preparations. These preparations are crucial before defining
a deconvolution algorithm that aims to recover the desired information, as we will elaborate upon subsequently.

3. Data preparation

To obtain good results with the deconvolution, it is essential to correct the detector. A standard procedure is the application of a gain reference.
In [6], we calculated the uncertainties associated with this procedure and described the fixed-pattern noises it introduces. Additionally, we
demonstrated in [7] how to calculate the uncertainty underlying the summations performed for EELS, and showed that this uncertainty is negligible
for sufficiently large counts in the gain reference. However, we found it advisable for our detector to acquire multiple gain reference frames with a
target intensity not exceeding 10% of the total dynamic range of the detector, in order to avoid gain non-linearities. We also demonstrated in [6]
how to correct these non-linearities after acquiring a gain reference. In this paper, we apply both gain reference and non-linearity corrections to
the data for the measurements performed.

Additionally, cosmic rays can alter the signal, manifesting as spike events. It is essential to remove these artifacts prior to deconvolution, as
they follow a long-term statistics that is fundamentally different from the general image statistics. A straightforward method applicable for EELS
maps involves comparing a voxel within its respective energy slice and checking the standard deviation of the surrounding voxels. If the respective
voxel falls outside a 10c threshold, it is typically a cosmic ray. The voxel can be replaced by using the main value of the surrounding voxels. This
approach is the standard method employed in Gatan Digital Micrograph for EELS data cubes [46].

Eventually, the spectra must be aligned. We investigated several methods in [7] and found the cross-correlation method to be the most effective.
This method is also the standard procedure used by Gatan Digital Micrograph [46]. By incorporating an additional fitting of the peak of the cross-
correlation function, we achieved sub-channel alignment of the spectra, resulting in even better outcomes. We applied this method to align the
EELS spectra used in this paper prior to deconvolution.

Additional steps must be taken prior to deconvolution, including the subtraction of the ZLP, determination of the deconvolution kernel, and
padding of the spectra. These steps are described in detail below.

3.1. Subtraction of the ZLP

When deconvolving EEL spectra, regardless of whether RLA or ADMM algorithms are used, the results sometimes suffer from ringing artifacts, a
well-reported issue in EELS [15,24,47,48]. These artifacts are typically associated with an imprecise noise model or noise within the deconvolution
kernel [22] and are particularly pronounced at sharp edges within the deconvolved data. The ZLP can often be considered as such a sharp edge. As
the ZLP dominates the entire spectrum, these ringing artifacts can severely distort low-loss plasmonic features or even surpass them in intensity.
In [49], we demonstrated how such artifacts in the high-loss region, arising from an incorrect noise model in the RLA, can be easily misinterpreted as
actual features in an EEL spectrum. As an example for the alteration of the deconvolution results by not subtracting the ZLP prior to deconvolution,
we present in Fig. 1(a) a simulated EEL spectrum of a gold nanoparticle with a dispersion of 0.01 eV per channel, calculated using the MNPBEM
toolbox [36]. To this simulation data, we added a Dirac delta peak at the zero-loss position. We consider this spectrum (green) to be the ground
truth for evaluating the deconvolution results. This ground truth spectrum was convolved with a Gaussian shaped ZLP with a FWHM =1 eV and
superimposed with true Poisson noise (black). It is evident that the ZLP overlaps the plasmonic peak. In red, we present the deconvolution result
obtained with the RLA after 15 iterations, without subtracting the ZLP prior to deconvolution. In blue, we present the results obtained with the same
parameters, but with the ZLP removed prior to deconvolution. By comparing both results to the ground truth, it is evident that the ZLP subtraction
is necessary. Only the RLA with the ZLP removed yields the correct position of the plasmonic peak, whereas the peak of the RLA without prior
ZLP removal appears to be shifted. This shift is caused by the ringing artifacts, which superimpose on the result and displace the peak position as
the artifacts grow in intensity with increasing number of iterations.

Note that the RLA algorithm relies on the assumption that the measured intensity and the noise variance are equal, which is a characteristic of
true Poisson noise. For low-loss EEL spectra, this necessary step of ZLP subtraction immediately introduces a significant mismatch in the Poisson
noise at the region of interest for surface plasmons. This miss-match, in turn, gives rise to ringing artifacts in the RLA results, which is why the
iteration is often terminated prematurely. Therefore, even for EEL spectra with matching noise statistics, the application of the RLA is inherently
flawed by design. The ZLP removal dilemma is one of the primary reasons why we deem the RLA unsuitable for deconvolving low-loss EEL spectra.

The ringing behavior near large peaks is not unique to the RLA, but also occurs with ADMM. To mitigate these ringing artifacts in our algorithm,
we must subtract the ZLP from each spectrum prior to deconvolution. In ADMM, however, this does not pose a problem, as the signal used for the
image statistics can differ from the signal being deconvolved. This enables the restoration of correct signal statistics during deconvolution, even
for background subtracted datasets.
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Fig. 1. (a) Simulated EEL spectrum (green) calculated using the MNPBEM toolbox [36], serving as the ground truth. This spectrum was convolved with a Gaussian shaped ZLP
(FWHM = 1 eV), causing the ZLP to overlap with the plasmonic peak, and true Poisson noise was superimposed (black). This spectrum was deconvolved using the RLA with 15
iterations, without removing the ZLP prior to deconvolution (red). As can be seen, that the peak position of the deconvolution result, marked with the dotted red line, is shifted
relative to the ground truth. In contrast, removing the ZLP prior to applying the RLA with 15 iterations yields the correct peak position in the deconvolution results (blue), which
demonstrates the necessity of removing the ZLP. (b) Illustrates the padding (red) of an EEL spectrum as an extension of the regular spectrum (blue), creating circular boundary
conditions for deconvolution. The padding comprises the right side of the ZLP measured in vacuum and is fitted to the end of the spectrum. Similar noise, as found in the spectrum,
is added to blend in the padding seamlessly.

The ZLP, as measured in vacuum, is mathematically described by Eq. (9). We measure the ZLP with the same acquisition time before and after
acquiring the EELS map, using a hole in the specimen. By acquiring a 15 x 15 EELS map in vacuum, aligning the spectra sub-channel with respect
to their energy drift and averaging the ZLPs across all spectra, we obtain a good estimate, which can be fitted in height to each spectrum in the
EELS map of interest. Since we have acquired two vacuum ZLPs, we can fit a linear combination of both to account for any deviations in the ZLP
that may occur during the measurement.

Subtracting ZLPs measured in vacuum adds noise to the EELS map, which must be taken into account for optimal deconvolution results according
to the thoughts provided in Section 2.1. However, it is often sufficient to neglect these noises.

3.2. Deconvolution kernel

The same spectrum used for ZLP subtraction can also be used for deconvolution. When deconvolving with an average ZLP measured in vacuum,
as described in the previous section, it is advisable to set the low-count regime of that ZLP to zero to prevent ringing artifacts.

There is a method reported, which utilizes the spectra from ‘background’ regions on the specimen, additionally enabling the deconvolution of
substrate characteristics, such as bulk plasmons from thicker regions, from low-loss spectra [9,15]. This deconvolution method is also commonly
applied to core-loss spectra in a slightly different form, where the low-loss spectrum is used as the deconvolution kernel to mitigate the convolution
effects of the plasmonic peaks. However, this approach requires ‘padding’ of the spectra to be deconvolved; otherwise, deconvolution will lead to
ringing artifacts. Through padding, which is explained in the next section, these artifacts can be minimized.

3.3. Padding

Deconvolution frequently employs the fast Fourier transform (FFT). For a spectrum with M EEL channels, a deconvolution kernel with an equal
amount of channels is used. However, this approach assumes circular boundary conditions of the dataset, implying that the spectrum is periodic
and repeats after M channels. Without additional measures, this can readily lead to mutual influence between the boundaries in the deconvolution
result [21,50]. This is clearly undesirable.

The discrete convolution two distributions f and g, both with a finite number of EEL channels M, represents the true convolution in the
microscope:

M

[ ®8l= 2 fom & - (20)
m*=—M

To perform (de-)convolution in a mathematically correct sense, we must pad the EEL spectrum with an array of % additional channels to each

side of the original spectrum, creating circular boundaries without interference between them. Fortunately, the vacuum ZLP comprises only a few

dozen EEL channels at high dispersion levels, while the other channels exhibit no measurable signal. Therefore, we can limit the overall padding

to the number of non-zero channels in the ZLP.

In an ideal case, both ends of the spectrum already exhibit zero intensity, indicating that in the original (unconvolved) spectrum, the first and
last features are separated by at least the number of non-zero elements of the ZLP, circularly.

The presence of intensity in the first or the last channel of an EEL spectrum complicates the padding. This is often the case in EELS, as the
number of EEL channels is finite and therefore truncates peaks at the end of the detector array. In this case, we need to find a padding solution
that allows the signal to approach zero intensity without disrupting the continuity of the convolved signal with respect to the ZLP shape. Failing
to meet this requirement necessarily leads to boundary artifacts, which propagate into the deconvolved result with the width equal to half the
number of non-zero elements in the deconvolution kernel. To minimize artifacts, we found that padding the boundary with the right side of the
ZLP measured in vacuum is a useful and straightforward method. By fitting the height to the end of the EEL signal, one can create a padding that
maintains the ZLP shape as the signal approaches zero. We also recommend adding the same types of noises present in the regular data to padded
region to make the padding blend in. An example of such padding is shown in Fig. 1(b) as a red extension to the spectrum.
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However, the deconvolved boundary region should not be trusted with respect to the validity of the deconvolution result, as padding cannot
recover the lost information outside of the boundary, which in turn affects the deconvolution result at the boundary region.

To accelerate the FFT, it may be beneficial to pad a few additional channels, so that the number of channels (including the padded channels)
has a high number of prime factors in its prime factorization [51].

4. Deconvolution with ADMM

The fundamental concept of deconvolution is to invert the effect of convolution. To facilitate the readability of the algorithm, we will denote
variables containing one or multiple matrices having the size of the EELS map data in bold letters subsequetly. In Fourier space, convolution is
equivalent to the multiplication of a signal S by a kernel Q2. Therefore, it is evident that deconvolution can be achieved through simple division
in Fourier space [9], hence the term Fourier ratio deconvolution. In the absence of noise, the process would be straightforward. However, noise
is unavoidable, and deconvolving a noisy signal results in an amplification of the noise to the point where the signal becomes unusable. The
Richardson-Lucy algorithm (RLA) [13,14] involves estimating the unconvolved signal, convolving it with the deconvolution kernel, and comparing
the results to the measurement data using Bayesian methods and the Poisson statistics, thereby obtaining an improved estimate in the next iteration
step. The mathematical formulation of Fourier ratio deconvolution and the RLA are as follows:
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where Q7 is the adjoint operator of €2 and & represents the noisy signal measured, which is convolved with a kernel €2, while § denotes the
underlying signal of interest. Therefore, the underlying principle of RLA is to minimize the distance between convolved estimate and measured
noisy data. As we have reasoned in the previous sections, RLA is not suitable for the deconvolution of EEL spectra. However, minimization can
nevertheless be a powerful tool to obtaining a good estimate of the signal Sg; 4.

Having established both a suitable noise model and the necessary data preparation, the final step is to define a useful minimization to improve
the data through deconvolution. The objective of this section is to apply the mathematical concepts and experimentally determined parameters
discussed previously. In the following sections, we will develop an ADMM algorithm that converges to a reliable estimate of the underlying electron
energy-loss probabilities of the signal §,py-

4.1. ADMM in general

To achieve convergence, a more general approach to deconvolution is required, one that can be tailored to the specific needs of the data. In
this context, Lagrangian minimization provides offers a highly versatile alternative, as it is neither restricted to specific noise statistics nor data
treatment. One approach to solving such a Lagrangian is the alternating direction method of multipliers (ADMM), which can solve minimization
problems of the form [33]:

arg min f(x)+g(z)
X,Z

subjectto Ax+Bz+¢=0. (22)

In the context of deconvolution, f and g are convex functions that define desired properties of the result, such as suitable noise statistics, ensuring
that the deconvolution outcome remains close to the measured data. Other desirable properties include the smoothness of the deconvolution result
and its strict non-negativity, as all signals in an EELS map are inherently non-negative. The functions f and g are applied to distinct variables x
and z. Further, A and B define operators that are applied to x and z. Following this example x contains the estimate of the noise-free signal of the
EELS map, which is blurred by a convolution kernel A. In deconvolution, B is often chosen to be a negative matrix of ones —1, such that we obtain
Ax —z+c¢ = 0. This equation can be rearranged, such that e.g. z = Ax + ¢ stores the blurred dataset Ax and a background c that is added. Therefore,
z serves as an auxiliary variable that depends on x.

It is evident that a functional g (z), incorporating the noise statistics in this example, would preserve the correct signal statistics, even if the
deconvolution result x is background subtracted. In this example, a suitable deconvolution minimization for Poisson noise can be obtained with
f (x) =0, since f is not required in this case. In the following sections, we will derive a functional g (z) specifically tailored to EELS.

Generally, imaging problems of this type can be formulated as Lagrangian functions to be minimized, yielding a good deconvolution result. One
obtains [33]:

L£,(x,z,w) = f(x) +g(2) + gqu +Bz+c+ul} - g a2 . (23)

Here, || - ||, depicts the Euclidean norm, where u is called the scaled dual variable associated with the constraint Ax+ Bz +c¢ =0, and y is a penalty
parameter that primarily controls the convergence rate of the algorithm. The last term ||u||, is commonly referred to as the augmentation, which
resembles a repetition of the preceding term, enhancing the convergence properties of the algorithm [33]. Therefore, Eq. (23) is commonly known
as the ‘augmented Lagrangian’. The iterative minimization process is performed in a three-step pattern [33]:

x**1 = argmin {f(X) + % | Ax +Bz" + ¢ +u’ |3 } ’ ey
X

L = argmin{ @)+ g | AX“*! + Bz + ¢ +ub |2 } , @9
z

u = vk + Ax B2 1 e ’ o

minimizing the Lagrangian with respect to x first, followed by a minimization with respect to z and finally updating the dual variable u.
Additional information about ADMM can be found in [33,52], which provide a comprehensive overview. Details on the specific application of
ADMM to deconvolution can be found in [4,49,53,54].
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4.2. Residual balancing

In [49], we proposed a method for automatically selecting the parameter y, called ‘residual balancing’ (RB). We consider this additional selection
step crucial, not only because it accelerates the algorithm and simplifies its operation, but also because it determines the parameter based on
mathematical properties of the algorithm, thereby eliminating the need for manual user input. This automated selection ensures the algorithm’s
objectivity and unbiasedness.

Residual balancing is based on the Karush-Kuhn-Tucker conditions [55], which enable the derivation of optimality conditions by evaluating
the saddle point of the Lagrangian £, (x,z,u). Two residuals can be defined: the primal residual R and the dual residual S [33]. The concept of
residual balancing involves maintaining relative residuals of similar magnitude, as both residuals approach zero, which is the prerequisite for the
algorithm to converge. Using a suitable normalization, the relative residuals can be obtained as [49,56]:

k AT k+1 k
Kl _ Axk+l+sz+l +e Sk+l _ y AIB(Z+ —z )

- - , @7)
el max {JAXT, | 1BZ +ell,) el max {1 S (D)1, , (I74AT (ub + AXFT + B2 +¢) [, )

which are easier to compare in terms of magnitude, wherein the numerator of the above equations provides the unnormalized residuals R**! and
Sk+1. Again, AT denotes the adjoint operator of A. Using both relative residuals, a multiplication factor z**! can be determined as:

han if 0 <okl <

P .
min , T, elseif y < 1 .
okl = {r i’;’} r ,with 0% = JIRG /sty (28)

max {y~!, z;}} elseif y > 1

1 otherwise

to adjust the penalty parameter y* such that it is optimal for the next iteration:

ko okl if Vs S¥E- T <y
k1 - . 7
VARRER Sy if ym{}x < yk . gkl . (29)
Ymas/y* if rhooktl sy o

with an upper limit ,,,, = 10'% of the penalty parameter, which is necessary for maintaining numerical stability in all cases [49]. If either ||R’::;' 15

or ||Sf;;' I, become zero or infinity during the iterations, it indicates that the penalty parameter y* has been over-extended. A useful strategy for
relieving the parameter is to push it back towards 1, using a value of 7, , > 1 [49]. In our experience 7,,, = 10 has proven effective. Additionally,

it is crucial to gradually reduce the frequency of the residual balancing, such that [49]:
kel k1 if ke Val (30)
1 otherwise

where Val is a sequence of exponentially increasing values that dictate when residual balancing should occur. Consequently, the balancing occurs
e.g. only ten times per order of magnitude of iteration, resulting in an exponential increase in interval length throughout the progression of the
algorithm. Eventually, the dual variable u**! must be scaled inversely with respect to ¥*!. Combining all of the above, we obtain the ADMM-RB:

. — argmin {f(x) ¥ % | Ax + Bz* + ¢+ u¥ |2 } , (31)
x
L+ - argmin{ 2(2) + % I AX*! 4 Bz + ¢ + u¥ |2 } ) (32)
if keVval ’
Ll ok , (acc. to Eq. (28)) (33)
PR gk , (acc. to Eq. (29)) G4
else
S , (35)
Rk , (36)
end
! _ uk + Axk*:k;-f—lek+1 +c ) 37)

For further details on residual balancing, we refer to [49].
4.3. Log-likelihood of the noise model

Having discussed ADMM as well as the residual balancing in general, we must now tailor the algorithm to accommodate the noise model
expected for EELS maps. To incorporate the noise model into an ADMM framework, we require a convex function that, when minimized,
penalizes discrepancies between a reconstructed blurred signal relying upon the deconvolution result and the original measurement data itself.
This penalization ensures that the deconvolution result remains tied to the measured data, thereby providing a reliable estimate of the original
underlying signal.

In ADMM, this is achieved by utilizing the variable x that is set up to approaching the loss probabilities § during the iterations and eventually
resembling them without all the noise xX ~ §, when convergence of the ADMM algorithm is achieved after K iterations. However, the desired
loss probabilities § are not directly accessible by the real measurement &. In the real measurement &, the loss probabilities § are convolved with a
convolution kernel, i.e. the vacuum ZLP, altered by beam current deviations and superimposed by offsets, such as tails of the ZLP. Obviously, these
measured signals are of course also subject to noise. To facilitate a statistical comparison with the measurement £, we must define an auxiliary
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variable z, resembling the measurement ¢ ~ z,, but without the noise. Since we want to eventually recover the loss probabilities by optimization,
the auxiliary variable z, must depend on the deconvolution estimate x approaching the loss probabilities. The estimate x must therefore be altered
in z, in the same manner as § is altered in £ to make both entities comparable in the first place.

Since the desired result of deconvolution xX shall resemble the deconvolved, normalized, and ZLP subtracted loss probabilities, we invert these
operations to obtain a reconstructed signal z, = N - 2x + c¢. Here, N = Z,M &, represents the normalization factor, calculated as the total sum
of the spectra &, ¢ represents the ZLP to be subtracted, € is the deconvolution kernel. Therefore Qx is the blurred loss probability estimate of a
current iteration.

Accordingly, the basic scheme of the algorithm is to find a new estimate x, update the auxiliary variable z,, according to the above formula, and
compare the reconstructed signal z, to the noisy measurement £ by statistical means. Based on this scheme, the algorithm is intended to iteratively
find the most likely deconvolution result xX by continuously approaching the true loss probabilities .

The right tool for such a statistical comparison is the Bayesian likelihood [57]. This likelihood describes the probabilities P (z4 | £) of observing
a reconstructed noise-free signal z4, given that a noise affected EELS map & has been measured.

According to Bayes, the conditional probability in terms of z, and & can be expressed as:

P(£l2y) - P(24)
P

with the probability P (z, | £) that the reconstructed signal z, is observed, given that £ has been measured, the prior probability P (z4) of
the reconstructed signal z,, P () is the probability of obtaining measurement & and P (£ |z,) is the probability of measuring & given that the
reconstructed signal z,, is present.

The left-hand side of the equation defines a distance metric between z, and the measurement &, where larger distances correspond to lower
probabilities. The optimal estimate the reconstructed signal z, is obtained by maximizing the right-hand side of the equation. One method for
finding the maximum is the ‘maximum likelihood approach’ (ML) [58]:

P(z418) = , (38)

ML(z,) = argmax[P (¢ | z4)] . (39)

Note that this approach disregards the probabilities P (£) and P (z,). However, the probability P (&) is trivial, since we have already obtained
a measured EELS map £. Consequently, this term does not affect the maximization process. P (z,) is called the ‘a-priori’ knowledge and will be
crucial in the next section, where we introduce the ‘non-negativity constraint’ and the ‘total generalized variation’ approach. Therefore, it will be
addressed later.

For now, we will focus on the maximum likelihood approach. To calculate probabilities, a noise model for the measurement is required that
characterizes the uncertainty.

Since the original (and therefore unnormalized) measurement & is compared to z,, no normalizations are to be incorporated into the noise
model. Therefore, the simple noise model previously proposed in Eq. (16) is applicable.

The noise probability distribution encountered in EELS is a mixture of Poisson distributed signal noise and Gaussian distributed detector
noise. However, a closed-form solution of the likelihood of such a mixed noise model is unattainable due to the presence of infinite sums. As
demonstrated in [59], a precise approximation of this mixed distribution is complex but feasible, albeit at a high computational cost. Consequently,
the computations with the true distribution are quite slow, and the benefits are limited compared to approximations such as the shifted-Poisson
model (SP) [4] or the mixed-Poisson-Gauss (MPG) model [60].

A significant advantage is only anticipated in the low-count regime, where the detector noise standard deviation o, < 10 counts. The difference
between the Gaussian and Poisson probability distribution for 40+ counts is on the order of 0.1% (as can be easily calculate using Eq. (1)). Given
that we measure o, ~ 45 counts on our detector, it is clear that the true distribution is not worth the additional computational cost — approximating
the distribution will suffice, with minimal error.

In the following, we will employ the MPG model, as it provides a better fit to the probability distribution of the low intensity regime, given the
high Gaussian noise level [60]. In contrast, the difference between the SP and the MPG is expected to be negligible for the high-intensity regime.

In the MPG approximation, we assume that the entire noise follows a Gaussian distribution, with a variable variance that depends on the signal
and includes the detector noise as an offset. Therefore, we can derive a total variance from Eq. (16):
02y = & B [2@8,) +(145)Po- o,

X, i

Q

g ﬂcom) : éx,y,i + (1 + %) . ﬂD . O_f),,' > (40)
——
RZAxyi
on the position (x, y, i) of the signal. Since we do not have direct access to the signal, we can approximate it with the noisy measurement &, ,;, which
we, in turn, can replace by the auxiliary variable z, resembling it without the noise. The variance O-)%,y,i based on z, can be directly incorporated
into the Gaussian probability density function for the MPG approach to compare z, to the measurement &.

In the case of correlated Gaussian noise, however, the probability density function is given by a multivariate Gaussian distribution and as a
consequence the probability P (£ | z,) must be expressed as:

XY XY 1 1
T 1 s,
P (5 I ZA) = H P (5x,y | ZA,xA,y) = H ' EXp {_5 (ZA,x,y - ‘SXA,,V) @ (ZA,x.,y - 5x,y)} , with: (41)
xy xy A/ @o)M - det (@)
T T
Zaxy = (ZA,x,y,l ZA,x,y,M) ’ Exy = (gx,y,l éx,y,M) , and
* * * *
Py Oxy.10xy.1 Py Oxy10xy2 Py Oxy.10xy3 o Py1%xy1%xyM
£ £ K £
P_10x,y20xy1 Py Ox,y20x,y2 Pl Oxy20xy3 s Py2%xy2%xy M
£ £ £ s
D = P_50x,y30xy,1 P_10x,y30xy2 Py Oxy3%xy3 o Py3%xy3%xy.M >
* * * £
pf(Mfl)Gx,y,MGX.y,l pf(Mfz)Ux,y,M Oxy.2 pf(M73)°'x,y,MGX.y,3 Py Ox.yMOx,y.M
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where z, ., and &, , are vectors that contain all the entries of the respective matrices in energy direction at the position (x,y) on the EELS map,
with T denoting the transpose. @ represents the covariance matrix, which comprises the Pearson correlation coefficients p?, where the index
m indicates the distance between the considered EEL channels. o, ,; and o, ,,,, represent the noise standard deviations of the EEL channels i
and i + m, respectively. Based on the total noise present in the EEL channels following Eq. (40), one can separate U)Zc,y,i into a noise contribution

0% . ™ & Peonv * L4y, depending on the signal strength and a noise contribution depending on the detector noise G%),x.y,i ~ fp - (}f + %) . 0-12)’,..

S.x,,i
This is possible, because Gaussian noise is additive. Since signal and detector noise are independent of each other, we can regard the signal and
detector noises independently. With respect to Eq. (41), this is equal to separating the one Gaussian into two separate Gaussians with variances
ag o and af“yi, according to Eq. (3). Therefore, we can express the respective elements of the covariance matrix of the signal noise @ and of

the detector noise ® p independently as:

1
* _ * _
ps’mGS,x,y,iO-S,x,y,i+m =Pm-8" ﬂconv vV ZA,x,y,i . zA,x,y.i+m and pD,mo-D,x,y.iGD,x,y,i+m = Ppm"’ ﬁD : (1 + Z) ‘0D ODi+m * (42)

By again combining both Gaussians, the entries of the overall covariance matrix @ of Eq. (41) can be expressed as:

1
pjnax,y,io_x,y,iﬂn =Pm- 8" ﬂconu "V zA,x,yJ : ZA,x,y,i+m + PDm " ﬂD ) (1 + Z) ‘0D, OD,i+m » (43)

where p,, represent the Pearson correlation coefficients of the EEL signal, and p, ,, represents the Pearson correlation coefficients of the detector
noise resulting from interpolation. Because the spectra at positions &, , are acquired sequentially, no correlations are expected between them.
Therefore, the overall probability can be expressed as the product of the individual spectra probabilities.

One can see that, by assuming independence of EEL channels for a given distance between them, the covariance matrix @ takes the form of a
sparse banded matrix, where all non-zero entries are confined to a diagonal band, while all other entries are zero. Additionally, @ is symmetric,
since p; 0y 0y yitm = PXOx.yitmOx.yi» OWING to the symmetry of the Pearson coefficients.

Maximizing the overall probability is equivalent to minimizing its negative logarithm:

w1 1 M

—In [P (E124)] = Y, 3 Inldet @)1+ 5 (24.cy = &uy) @7 (20— &cy) + 5 Inl27] - (44)

XY,
The sparsity of @ and its general structure can be leveraged to simplify the matrices within the likelihood P (& |z4). However, it is clear that
minimizing the above probability with respect to z, remains extremely challenging and computationally expensive, as no analytic solution exists.
Therefore, we must simplify the above equation. A common approach is to neglect the correlations and assume independence between data points.
This approach, however, is insufficient, since neglecting correlations without further action readily overestimates the data fidelity. Therefore, we
propose the decomposition of the likelihood as if no correlations were present, but also to remove the smoothing factors g,,,, and f, resulting from
the correlations as well. The idea behind this is pretty simple: The ZLP € is significantly larger than the detector PSF €2, causing the correlations.
As a consequence, the size of any meaningful feature is large compared to the correlation length. Therefore, we can assume similar signal strength
across the entire correlation length of a given EEL channel, hence z, , ,; % 24, ;4 and 6p; & 6p;,,, Since convolution ‘mixes’ the uncertainty
of the signal of several neighboring channels into a single channel and the uncertainty of neighboring channels is very similar to each respective
other channel due to their similar signal strength, it follows that the convolution, with e.g. a comparably small detector PSF €2, or an interpolation
kernel €;,,,,, do not change much the uncertainty. It is as if the convolution never happened. Therefore, we can regard the uncertainty of the
given EEL channel as if correlation was not there — and consequently, we must neglect the smoothing factors for the data fidelity term to create the
conditions of the initial uncertainties before convolution. Note that this is completely opposed to the observed noise variance appearing drastically
smoothed, which is why we introduced the smoothing factors in the first place. This will be important later in the manuscript.

As a result of the above thoughts, we can decompose Eq. (41) into:

XY M
P(§ | ZA) ~ H P (éx,y,i | ZA,x,y,i) > Wlth (45)
X0
2
Zpxyi— éx. Wi
P(‘fx,y,i |ZA,x,y,i) ~ ! ceXpy— ( A > ) . (46)

\/271'~ (g'ZA,x,y.,-+ (1 + %) .U%),i) 2 (g‘zA’X’y*" + <1+ %)‘63’)

Maximizing the probability of the entire spectrum is equivalent to minimizing the following functional:
Owreg (z4) = —In[P (&]24)]
2
RRE (ZA,x,y,i - gx,y,i)

X, 2~<g-szxyy'[+ (1 + %) -a%i

) +%ln [(g'z*‘*"’y’iJr (1 + %) .g%’i)] , 47)

where we omit the additional term % In [x] since it does not affect the minimization process, being merely an offset. This functional is referred to
as the ‘negative log-likelihood’ functional of the MPG model. We can rewrite it as:

2

. —
Gmpe (24) =nzlin % A—gl/z + % (In[g-z4 +62] , ﬂ)F , with ¢ = (1 + %)%71211. . (48)

A (g-24 +02) r
by utilizing the Frobenius norm || - || as an extension of the Euclidean norm for matrices and the Frobenius inner product {-,- )y to simplify the

notation, where 1 represents a matrix of ones with the same dimension as the EELS data cube.

However, there is a minor issue with this approach: the expression z, = N-Qx —c significantly increases the complexity of the overall algorithm.
From a complexity standpoint, it is advantageous to define z, = Qx and perform the rescaling with the total intensity N, as well as the re-addition of
the background ¢, within the functional itself. This simplification helps maintain a clear and efficient overall ADMM algorithm. Since the uncertainty
of all voxels is approximately independent of each other voxel, as explained above, it is sufficient to minimize the functional for each voxel
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individually. For this reason, minimizing for each voxel individually is equivalent to minimizing the sum over all voxels and therefore allows to
further simplify the algorithm. With the changes applied, we now define the new signal-restoring MPG functional (RMPG) as:
1

2
T +5In [e-(N-zy+¢c)+0%] forallg,,, >0
2

(N-zg+c)—¢
(g (N-zg+¢)+02

1
Crairg (20) = n;in 2
0

) (49

0 otherwise

for every voxel (x, y,i) within the original dataset ¥ (without padding) and set all values of z, < 0 to zero, as signals are always meant to be
positive. We assign no penalty to the padded region, as it is an artificial construct that should adapt maintain the continuity of the deconvolved
signal.

4.4. Non-negativity constraint

With the aid of additional information about the dataset, referred to as ‘prior [knowledge]’, the minimization can be defined in such a way that it
yields a more accurate result, provided that our understanding of the data is correct. We can formulate a maximum ‘a-posteriori’ (MAP) approach:
MAP(zy) = argmax[P (& | zy) P (z)] , (50)
by extending the negative log likelihood to:
—In[P (&) P(2)] = Grmpc (20) —In [P (2)] ,with P (zg) =exp{-g (z;) — ... — 2, (z,)}
Crue (20) + 81 (21) + - + 84 (2,) (51)

where z; _, represent criteria related to x, which are penalized, and g; , are convex functions that determine the impact of the penalty. It is evident
that the ML-approach can be easily extended by incorporating additional knowledge terms.

Since the deconvolution results represent the loss probabilities § of the data cube, we know that these probabilities are always positive. With
this knowledge, we can penalize negativity within the voxels. This prior knowledge therefore helps ensure the meaningfulness of the result. We
define a non-negativity constraint G, (z,) = I, (2, ), with the indicator function Iy , which is defined as [4,61]:

0 eR
Iy, (2,) = { o PR (52)
o Zy +

where we set z, = x, as we require the outcome of the deconvolution to be non-negative. The idea is therefore again to update x, then to update
z,, and to include this new information additionally to the statistical comparison from the last section into the new x of the next iteration.

4.5. Total generalized variation (TGV)

Another prior relies upon the assumption that the loss probabilities exhibit smooth transitions with respect to both the lateral and the energy
dimension, at least to a certain extend, whereas in contrast noise is highly volatile.

This distinction between noise-free signals and noise can be leveraged and forms the basis of the ‘total variation’ approach, which was first
introduced by Rudin, Osher and Fatemi [34]. They explain how derivatives can be used to identify noise: The derivative of the noise is expected to
be significantly higher than that of the smooth, slowly changing signal. However, for signals that inherently possess a gradient, this assumption in
insufficient. A portion of the slope is attributed to noise, resulting in staircase artifacts [26]. Employing higher-order derivatives can help mitigate
this issue by smoothing the gradient of the signal instead of the signal itself, although this comes at the expense of losing sharp edges.

Total generalized variation (TGV) effectively combines first- and second-order derivatives. Bredies et al. [35] first introduced TGV, which
employs self-adapting filter masks that adjust to different signal regions, thereby optimally utilizing first- and second-order derivatives.

Following Shirai and Okuda [62], an isotropic TGV penalizer can be formulated within the ADMM framework as:

Ixlirgy =, __gmin o (Wllzill + dallzsla) - (53)
According to TGV theory, s and t represent filter masks associated with the flat and sloped regions of the signal. The above minimization enforces
the separation of the data, since the derivatives D of the data x contained in z, become minimal when only flat regions are treated therein. This
is because the derivative of data with a gradient is non-zero. As a consequence t must adapt to the derivative of the sloped regions in order to
subtract them in z; = s = Dx —t to minimize ||z, ||,. Therefore, ||z,||, aims at minimizing the derivatives G of the slope of the data t, corresponding
to second-order derivatives of the data. Consequently, by minimizing the above functional, we continue to distinguish x into flat regions in the
filter mask s and sloped regions in the filter mask t in order to denoise them.

The idea of the algorithm is therefore to update the gradient Dx employed in z, on the basis of the deconvolution result x, and to subtract
the sloped filter mask t providing the gradient of the sloped regions. Both terms constitute the filter mask s, which is therefore only providing the
gradient of the flat regions of the data. Then the second-order gradients in z, are updated based on the filter mask t, which describes the gradient of
the sloped regions of the data. In addition to the statistical comparison and the non-negativity from the last two sections, all this TGV information
is also included in the updated estimate of x and the updated filter mask t of the next iteration. Since all the derivatives employed in z; and z,
are sensitive to noise, minimizing both norms, ||z, ||, and ||z,[|,, suppresses the noise in the next iteration of x and t and, consequently, leads to a
better adaption of s and t to the significant features of the data in a positive feedback loop.

Following the TGV notation, the operators D and G contain the derivatives in all possible directions. We have not found these operators being
defined for 3D data in literature yet, however, by closely following Shirai and Okuda [62], it is readily apparent that the scheme can be easily
expanded into 3D space. Showing this for D is quite trivial by simply expanding it by one dimension. For G, the operator must be expanded by the
new derivative and their mixed derivatives with the other two dimensions. It is to remark that both D'D and G’ G, following the above notation,
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remain identical for 2D and 3D data if one derivative is set to zero. As a consequence, D and G do contain their 2D representation as a special
case. For 3D EELS maps, D and G can be expressed as:

D, D, D, 0 D, 0 O
D=|D, , G'=fo D, D, 0 D, O , 54
D, ® 0 © D, D, D,

where D, represents the horizontal finite difference operator, D, represents the vertical finite difference operator, and D, represents the finite
difference operator in energy direction, with the energy slices stacked. For a data cube with X XY x (M + P) data points, where P denotes
the number of additional padding channels, each finite difference operator is represented by a matrix having the same size as the data cube,
ie. {D;.D,.D,,0} € RXY*M+P) with the matrix of zeros @. Examples of the operators D, and D, in 2D space are provided in the supplementary
materials, since 3D representations are hard to provide on a paper sheet. From these examples, the reader may unambiguously derive the 3D
representations of D,, D,, and D, in 3D space.

Furthermore, t, z; as well as z, and the corresponding dual variables u; as well as u, are defined as follows [62]:

Lh Uy p
z u
2,hv 2,hv
ty Zy ) u Z u,
t= |t , zy=|z1,|, w=|u,|, =" wu=| "], (55)
t Z) hs W ps
s zl,s ul,s
zZ,Us u2,us
Z u2,x

with hv, hs, vs denoting the diagonal directions connected to their respective directions. Each entry, once more, has the size of the data cube.

The last two parameters to be defined are 4, and 4,, which are regularization parameters that determine the impact of the respective part of the
penalizer. In [49], we have shown that the optimal choice of both i-parameters for deconvolution is anti-proportional to the mean noise volatility
of the data o,,,,,. Therefore, only the volatility aspect of the noise is of importance here, which is in contrast to the derivation of the log-likelihood
prior derived in Section 4.3, where the uncertainty aspect was of interest.

In the context of an unbiased parameter choice, both 4, and A, are set equal. To account for the increase in noise due to deconvolution, we
introduced an amplification coefficient w that modifies the impact of the regularizer, which depends on the deconvolution kernel €2. We have
found [6]:

XY (M+P)
h=h= L with o= Y (56)

W - Xy
2-w Omean X, 50

where ﬂ;yj represents the values of the deconvolution kernel, which specifically comprises the ZLP in our case. The asterisk = indicates
normalization to the height of one. Note that since deconvolution in EELS only acts in energy direction, the deconvolution kernel only incorporates
the ZLP oriented in energy direction once (e.g. in x = 1, y = 1), whereas all other entries are set zero, such that the kernel € has the same
dimension as the EELS data cube. In this context, the independent noise variance of multiple channels is added — one could say that deconvolution
can be thought of as consolidating the noise from several channels into a single channel, thereby amplifying it [49]. This necessitates correction
by amplifying the noise.

Since the TGV prior is applied to the deconvolution estimate x, which is normalized, we need to apply the normalized noise models from Egs.
(18) and (19) to derive 6,,,4,-

However, w was defined for uncorrelated noise and must be modified to account for the correlations. Since the deconvolution kernel, i.e. the
ZLP measured in vacuum €2, is much broader than the convolutions leading to noise correlation, the smoothing factors # are eliminated. The same
applies to the convolution kernel of the detector PSF €2, or the interpolation kernel to accommodate sub-channel drifts for the ZLP-alignment Q,,,,,,
as explained in Eq. (13). The above implies that part of the amplification coefficient must be the inverse of g.,,, from Eq. (6) (and additionally
P.orr from Eq. (7) in energy direction).

Based on this, we can decompose the deconvolution into two consecutive deconvolutions. One part removes the detector PSF €2, as well as the
interpolation kernel €;,,,,, which are responsible for the correlation effects. Another part further describes the amplification factor applied to the
uncorrelated noise after removing the detector PSF and the interpolation kernel. Therefore, we need to decompose the full deconvolution kernel

into:
P M-1 XY (M+P)
Q=0 Qe QF! [—] = o} =< P >< QR'S”,.> , (57)
e F [QD ® anter] * m:—%\:’l—]) " ’;W o
.

=Qps 1

= —_— =
Beonv (-Peorr)

AN

where Qp, ¢ describes the reduced deconvolution kernel of the signal, €2;,,., = ©; x ©; represents the auto-correlation of the interpolation kernel,
wg;, describes the overall amplification factor applied to the signal noise, and wg describes the leftover amplification coefficient applied to the
signal noise. The first term of a)?gi eliminates the smoothing caused by convolution f,,,, and, in energy direction, also the smoothing caused by
correlation f,,,,., as indicated by the brackets. The second term, denoted as wé, provides additional amplification due to the deconvolution kernel
being larger than the correlation kernel. Similarly, we obtain the amplification coefficient applied to the detector noise as:

F’[ﬂ] M-1 XY (M+P)
Q= le‘er ® P_l |:—:| = szet = < Z pD,m) ’ ( Z QR,D,x.y,i) > (58)
F [anrer] m=—(M-1) X, Y5l
N———— — N o
=Qgrp - L =w
Ap

o

where Qp, p, describes the reduced deconvolution kernel of the detector noise, wp,, describes the overall amplification factor applied to the detector
noise and w,, describes the leftover amplification coefficient applied to the detector noise. Using both amplification coefficients, we can determine
the mean noise level ¢ of the deconvolved data set, as required by Eq. (56).
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Given that we have two noise models for normalized EELS maps, one in the lateral directions (Eq. (18) and one in the energy direction (Eq.
(19)), it is useful to slightly modify the TGV prior:

2

Az,h
2 Ao ndip

Alsdy 2 2 2 y' 2 4;

1 - o the —_ — N

(BN '_zlzs:DrP—l?,zzzGt(|MZZ1”2+|Mlz2”2) , with: 27 = j'z‘” and 4; = /12:/1“ . (59)

Ls A%,u’ll,s

AZ,S

When 4,, 4, and 4, are equal, the prior in Eq. (59) is equivalent to Eq. (53). Here, the multiplications A%zl and A%zz can be understood in terms
of a Hadamard product, where the respective elements are multiplied element-wise. However, by differentiating between these parameters, we
can specify the noise in different directions, leading to the concept of ‘directionally distinguished TGV’ (DTGV). Unlike the log-likelihood functional
defined in Section 4.3, which required a global noise model to specify the uncertainty of individual voxels, the TGV prior treats noise based on its
volatility. Since volatility varies across different directions, we must account for those changes to achieve optimal results. Furthermore, we found
that multiplying the normalized data cube by the mean value of the intensity map I = ﬁ f”yy 1., is beneficial for the results obtained, since
the minimization enforcing non-negativity will work more efficiently with this variant of the algorithm.

Based on the above considerations and utilizing Eq. (19), we derive the noises for the energy direction. From Eq. (19), which finds its basis in

Eq. (14), we can define a total noise level as:

' 1% 12 1 2
o-x.y,g' ~ g ﬂconv ) ﬂcorr : ? : gx,y,i + ? . <1 + Z) . ﬂD : O_D,i > (60)
(Zi gx,y,i) (Z, §x,y,i)
o-.zs‘lg.x.y.i GZDeLx.yg

where we again replaced the signal [Q ® SW} by the measured signal &, ;. Along with the amplification factors, we can derive:
1
2. 2 _ 2 2 2 2
- o-x.y,[ - wSig : O-Sig,x,y,j + a)Det : O-Det,x,y,[ ’ (61)

where we observe that all the smoothing factors f.,,., Beorr
amplification coefficients, as described in Egs. (57) and (58).
Similarly and according to Eq. (18), we can derive the total noise level in the lateral direction as:

2 i Evi & : o2 @
- e\ 2. X 2 2 X o\ oo P\ o 2
ot (05 ) oot r (G ) b (g ) + (105 ) b (0 ) (62

_

and f; are eliminated, and all noises are multiplied by their respective leftover

2 2 2
O Sigxyi ONorm,x,y,i ®Detxyi

where we replaced the convolved loss probabilities [ﬂ ® §X,y][ by the normalized signal Zf]’;’ . Along with the noise amplification coefficients,

i X0

we can derive:

2. 2 _ 2 | 2 2
4 'Gﬂ,i_wSig GS[g,ﬂ,[_'-o-Norm,ﬂ,i

2
T Opy (63)

2
" ODetxyi *
Once again, the smoothing factors f,,,, and fp are eliminated through deconvolution. Because the uncertainty of normalization is multiplicative

and orthogonal to the direction in which deconvolution operates, no amplification coefficient is applicable to o-?VWm i’

Eventually, we determine the optimal regularization parameters as the mean value of the noise multiplied with the amplification coefficient in

the respective direction, averaged across all voxels (padding included):
2o, = ! and 2 =22 = !
s 2,s

1hw 2,h,v 1 XY M+P > > 1 XY .M ’
S S Y, 2, -2 R S Y .M+P 2. 2
4 X-Y-(M+P) Zny.t (co o'x.yvt) 4 X-Y-(M+P) wa‘ (w Gx,y-L)

64

where P denotes the number of padded channels.

With the regularization parameters established, we have now defined the DTGV approach.

Having read the last sections concerning a-priori information, it is apparent that all these concepts must by weighted in to come to useful results.
Here, we have come full circle, because this weighting is provided by the principles of residual balancing approach, described in Section 4.2. In
the following section, we will therefore integrate the various components and formulate a deconvolution algorithm for normalized EELS maps.

4.6. Deconvolution algorithm for EELS maps

As demonstrated in [49], we have established a method for setting up a Poisson deconvolution algorithm that operates based on mathematically
determined parameters, thereby eliminating user bias and ensuring convergence. The underlying concept of the present algorithm is to deconvolve
the loss probabilities associated with a measured EELS map, rather than the direct measurement itself. This approach offers the advantage that the
loss probabilities are smoother than the original image, since transmittances and beam current fluctuations are mitigated through normalization to
the total intensity of the respective spectra. Consequently, the normalized data is smoother in the first place, enabling the DTGV prior to smooth the
data more efficiently due to reduced data roughness. Additionally, since loss probabilities cannot be negative, we impose a non-negativity prior on
the deconvolved data. To facilitate comparison between the deconvolution result x with the original data, we must rescale x by the normalization
factor N, reconvolve it with the deconvolution kernel €2, i.e. the ZLP in vacuum, and then reintroduce the previously subtracted background c.
This process is incorporated into the negative log-likelihood operator of the MPG noise model. The algorithm can be formulated as follows:

: 2 2
argmin Gy (20) + Gy (24) + 1472, 15 + 1452, 11,
X,20,Z4 .21 )
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subjectto zy=Qx,z,=x,z, =Dx-t,z,=Gt , (65)

utilizing the deconvolution kernel € and regularization parameters 4, and 4,, as calculated in Eq. (64). The augmented Lagrangian that needs to
be solved for each voxel individually is defined as [62]:

Em,h,yﬂ (X,t,zo,z+,z],zz,uo,u+,u1,u2) = GrwmpG (ZO) + 10/2 ||QX—ZO+“0||§ - 1/2 |luy ||§
+ Gy (2) +r/2lx =z, +ull) - /2 luglll
+ ||/1%Z1||2 + 72|Dx —t -z, +“1||§ = 72l ||§
+143z3ll, + 121Gt — 25 + w3 = 2 uy 3. (66)

where y, v,, y and  denote the penalty parameters. This Lagrangian function can be minimized iteratively using the three-step pattern of the
ADMM described in Section 4.1, which involves a sequence of updates (x-update, z-update and u-update), each comprising multiple sub-updates.
In extension, the residual balancing approach outlined in Section 4.1, is employed.

We initialize the iteration at k = 0 with x* = 0, t = 0, z = max(‘f < ), 20 = max(E ([D) zO. =0, zo. =0, uO =0, uO, =0 and u(z)j =0,

N +
where 0 represents matrices of zeros. Additionally, we define N = Z & represents the intensity map and I = x 7 Xy oy

denotes the mean value of the intensity map. Here, ¢ represents the background subtracted from the data, such as a fitted vacuum ZLP. Smce N
takes the form of a 2D map for 3D EELS maps, it needs to be applied to each energy slice individually, e.g. by repeating and concatenating N such
that it matches the energy dimension. The iteration steps are presented below:

K+l (k1Y _ : k gk gk gk Lk ok ke gk
{x ot }_argxrtnln Eyg,yi,y",n" (x,t,zo,z+,zl, z5,ug, uff ul,uz) s 67)
! =argmin £ " k+1 24, uk , (68)
0 0> %o
Zy
! =argmin £k( oz, ut) , (69)
Zy
24 =argmin £ (x5 2, uk) , (70)
’ z,
2+ : K+l gk+1 k
z,7 =argmin L (x4 25, 05) s (71)
le
if keVal
PR gk kel ok kel gk kel gk , (72)
Y0 Yo Y+ Y+ 14 14 n n
k+1 ko k+l k k+1 k Kk+1 k
Yoo Vo Yoo <V, v« rt, o nt e s (73)
else
k+1 _ k+1 _ k+1 _ k+1 _
T =1, 7, =1, T, =1, T, =1 s (74)
K+l _ ok k+l _ Kk K+l _ k K+l _ K
Yoo =Yoo Y4 =Yy, v o=y, o0 =1 s (75)
end
u +(ka+l_zk+l)
ukrl =0 0 (76)
0 Zh+l ’
Y0
k k1 _ k1
uk+| =u+ +(X Z+ ) (77)
+ k1 ?
V+
k k+1 k+1 _ k+1
e Wi +([ l, -t Zy; ) 8
W = Tk+1 ’ 78)
“12(,- ([Gtk+1] k+1)
uH =2
Wi = e ’ (79)
n

where Val represents a sequence of exponentially increasing values that determine when residual balancing is performed. To obtain the desired
loss probabilities, we must divide the deconvolution result xX after K iterations of the above algorithm by the mean intensity I of the intensity
map, yielding:

SADMM /i (80)

In the above equations, several Lagrangian functions with a reduced set of indices and arguments are found, such as the Lagrangian function

L 7 (x¥*1, g, 0, ) in Eq. (68). These Lagrangian functions refer to the original Lagrangian function £ x,t,2,2,,21,25,0p,u, ,u;,1u,) as defined

Y0 47N (
in Eq (66) after k iterations. Since this Lagrangian is minimized with respect to a different variable, e.g. £ e (x**1 25, uf
to z, most of the terms in Eq. (66) vanish to zero. In this example, this relates to all the lines in Eq. (66) except the first one. Therefore, lines 2—-4

could have been left out in the first place for the minimization. Accordingly, it is useful to define a reduced Lagrangian function £ i (x*1, gz, (’j)

) is minimized with respect

for a concise notation focusing on the relevant terms. This reduction is often encountered in the ADMM literature.
In the subsequent sections, we will demonstrate how to tackle the minimization problems presented in Eq. (67) to Eq. (71) and define the
required relative residuals for residual balancing.
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4.6.1. The {x,t}-update
Minimizing the augmented Lagrangian in Eq. (67) with respect to x and t yields a Karush-Kuhn-Tucker (KKT) system, as demonstrated in [62]:

[SEEE

k k k _ yk k k vk k
<yOQTQ+yJ'i1]+ykDTD —y"Di > (x") =<yOQT (zo—u0)+y_l: (2k —uk) + . TDT(Z u}()>’ 1)
— 7D 1, + n* GG -7 (Z )""WG G(z 2)
where 1, represents the identity matrix corresponding to the dimensionality »n of the data. We also note a minor correction to the work of Shirai
and Okuda [62], where the transposes in the first column of the first matrix are adjusted. For a three-dimensional data cube, such as those found
in EELS maps, the matrices can be expressed as:
p’D  D,D! DD’
1T 0 0
G¢'G=| p,p7 DD D.D!| with D'D= D/D,+D'D,+D'D, and IL;=(0 1 Of . (82)
o 0 1
p,07 DD’ D'D
As before, © and 1 represent matrices of zeros and ones, respectively, with dimensions matching those of the data cube. The equation system in
Eq. (81) can be expressed in the form Pr = q, as demonstrated in [62]:

ngTQ + yf_ﬂ +ykDTD - ykDZ; - ykDZ - ykDf xk
P -v*D, y*1 +#*DTD n*D,DT 7DD} e t 83)
-7*D, n*D,DT  y*1+4*D'D n*D, D! ’ tk ’
-7 D, n*D, DT n*D,DT 71 +7*D'D tk
kT (75 _ uk k (k k kT ( 5k k kT ( 4k uk kT ( 4k k
reQT (z —uo) +rk(zk —uk ) +yfD (zl’h —uy, ) +7*D] (zlv —uy, ) +y Ds<zl’s —uj, )
k(k k k k k k ok k k k
q= s (Zl,h - l,h) +n°D, (Zz,h W ) 7D, (zz m ™ Y2 ho ) +n°Dy (Zz,hs - u2,hs>
k k k k k K k ok k k k
7 (Zl,v U ) +17Dy, (Zz o~ Y2hp ) +n'D, (ZZI/ W, ) +n°D <ZZ,US - u2,vs)
k (k k k k k k k k k k k
Y (Z],s - “],s ) +n°Dy, (z2,hs - u2.hs ) +n°D, (2 ( 208 u2,vs ) +n°D, ( 2 s u2,s )

The equation for x and t can be solved by applying the Fourier transformation to the individual block elements, yielding 7 {P,;} =P, ;, F {r;} = §,
and F {q,} = §;, as described in [62]:

P =g

P, Py Py P F a
o|P2r Paa Pz PR 1G] (84)

Pyi Pyp Pis Pyl a3

Py Pyp Pyz Py} liy a

We can employ the adjugate method to compute the inverse matrix P~ = adj {P} det™ {P}, and subsequently obtain = P §. Finally, we can apply
the inverse Fourier transformation to obtain r = 7! {¥}. The adjugate can be computed by transposing the cofactor matrix C, which is comprised
of the minor determinants. Consequently, the adjugate can be expressed as adj {f’} = CT. The determinant det {f’} can be computed using the
Laplace expansion method. Due to the large size of the resulting matrices, the detailed calculation steps for the exact {x, t}-update are provided in
the supplementary materials.

4.6.2. The z,-update
Next, we minimize the Lagrangian in Eq. (68) with respect to z,, where the functional Gyypg is defined in Eq. (49). Although the Lagrangian
is differentiable, it lacks an analytical solution. Therefore, we employ Newton’s method to solve the functional, using Iter iterations [60]:

zrl;,() = max {z(’;o , 0}
for I=1to Iter

oz
k
z - —0 ° forallzf ey
k _ 0,71 2 K+l k 0,1-1,x,y,i k+1
25, = it (xt+1zg.uf ) ,with vy =QxM' +uf . (85)
Vo otherwise
z~ = max\ z 0
0,1 0,1 °
end
2K+ = gk
0 ZO Iter

As will be demonstrated in the evaluation Section 5, a single Newton iteration Iter is sufficient for the algorithm to converge to a satisfactory result.
We apply this minimization to each voxel (x, y,i) within the original dataset ¥. In contrast, the padded regions do not require adherence to
the noise statistics, as they are artificially introduced - these regions are updated without penalty as Gr) pg = 0, rendering the derivation of
augmented Lagrangian in Eq. (68) straightforward for these cases. Since z, comprises of the EELS map signal including some background, it must
be non-negative. Therefore, we impose the constraint z; > 0.
The first and second derivatives of the augmented Lagrangian in Eq. (68), required for the Newton iteration, are given as:

9 ol by N©-9 g N-(©-¢ gN K
c 7o, uk) = - + - -z, , 86
9z 4 () (8:0+0?) 2.(g-0+02)° 2:(¢-0+0?) 70 <V° ZOH) (86)
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iu(k”zou")=gZ'NZ'(O_‘f)Z—2'g'N2'(0_5)+ N &N +71 (87)
oz} 70 0 (-0 +02)° (-0 +02) (6:0+0%) 2.(g-0+02)

where the restored signal is given by O =N - z0 ;1 +¢ and the variance is calculated as 2= (1+1). 6%)1" as per Eq. (48). The above formulas
are to be understood as element-wise operations, voxel-per-voxel, where the matrices @, N (after being repeated as explained in Section 4.6), c,
), Vo and matrix of ones 1 all have the same dimension as the EELS map.

4.6.3. The z,-update
By definition, the minimization of the Lagrangian in Eq. (69) with respect to z, can be expressed using the proximal operator [61]. Applying
this to Eq. (69), we obtain:

v, ifv,>0 .

z’jr“ =prox(vy) =4 * = , with v, =x*1 4+ u’jr s (88)
Tp, 0  otherwise

where the above operation is again performed element wise, voxel-per-voxel. Additional details on the solution of the z, -update are provided in

the supplementary materials.

4.6.4. The z,- and z,-updates

We can minimize z,; and z, ;, which perform the actual smoothing, using the ‘block soft threshold’ operator [62]. In this context, i, j represent
the respective directions of the derivatives. Specifically, for three-dimensional EELS maps, we have i € {h,v,s} and j € {h,v,s, hv, hs,vs}. Since
we anticipate slightly different noise volatility in energy and lateral directions, as demonstrated in Eq. (59), we modify the block soft threshold
operator by incorporating 4 into the norm. This approach yields the ‘weighted block soft threshold’ operator S, ,:

=S, (V) {(1 ks > o} (89)
= V) = max - Vi, .
o I 2v 1l

The derivation of the weighted block soft threshold operator is provided in the supplementary materials. Using the weighted block soft threshold
operator, we can calculate the z,- and z,- updates as:

77 =S, e (DXt )] (90)
';jl =S, [(GEF! +uf)] . (91)

Again, the operations are performed voxel-per-voxel.

4.6.5. The yy-, v,-, v- and n-updates

To perform residual balancing on the penalty parameters y,, v,, y and n, we must define the relative primal residuals Rf;l and dual residuals
S¥*1 for each penalty parameter, as described in Eq. (27). In our previous work [49], we derived the residuals for a Poisson deconvolution ADMM
with TGV. These residuals can be extended to the algorithm presented here. The relative primal residuals are obtained as:

k+1 1 k+1
ral IR, "Il | Qxk+! —ZS+ lr e ||R},+ Il [|xk+1 —Z}fl Il 92)
N (REFY) max {Qxk2 2 e N(RE) max (IR )
70 F o ''F Vs + F
. IRl DX — ¢4+ — 2 Rt IR, G+ — 25| ©3)
= = RE = = ,
rel.y N (R max {IDx<H! — ¢+t (jzi | ) re N(REFY) max {[|GtE+! ||, (12540}

where || - || again denotes the Frobenius norm as an extension to the Euclidean norm for matrices. The Frobenius norm is employed here as scalar
values are needed for balancing. To compute the relative residuals N (-) is required, which represents the norm of the residuals. Unlike the primal
residuals, the dual residuals comprise two sets, one associated with the x-update and the other with the t-update. These two sets must be combined
to obtain the total relative residuals, which are then used in the residual balancing approach.

The first set of relative dual residuals, associated with the x-update, is given by:

sl ||S’y‘;,l(|lp ||SI;0+,IC||F
relyy.x = k+ = ) (94)
N (Sp)  max {IN® (SEr) 1 IN* (SEED) + Ne (852 ) =SB0 = st |
IIS"+1 Il ||Sk+1 Il
sk — R 95
rel.y,x <Sk+1 ) max { IIN* <Sk+l ) lp o (IN® (SEED) + N (SEFL) — il — st } (95)
V4 X F » Y0-X XIF
IS5+ ||Sk+1||F
kel _ v _
S’:’r’y’x N (SEEh) B . (QhH s« (Qk+1 i ((Qk+l e+l _ kel ) (%6)
v max{llN' (SSE) e IN* (S5 ) + N (S ) Sy = SMIIF}
with:
st = -yl (gt 1) L ON(sk) = el (v eRET) ©7)
Skl = k(T -4k) CON(SEL) =gk (uE R (98)
S/;;l = [DT (tk+1 _tk +lec+1 _zllc)] , N (S/;J;l> = /DT ( Rk+1> (99)
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and the second set of relative dual residuals, associated with the t-update, where we have the t;-sub-updates for all three dimensions of the data
cube. The corresponding residuals are given as:

L IS5 100
rely t; = = 5
N (sk“) max { [IN* (s’;;,_l) Iy IN* (s’;f,,') - sptl IIF}
”Sk+1”F ||Sk+]||F
So = = , 101)
N(s) max (N (S5 ) e s N (S1) st |
with:
S = D, (xE X -2, , (102)
N* (SI;-;-1> = gk [u I+ k+1 tk+1 Ilc-:-l] , (103)
Sy, =t [D (CH ) ZDI( Fot) + el Z’z‘,,-l)] : (104)
N* (S];JZl) - 7 |D, < Gt - k+1) z D, ( £+ G, - 1;31)] ) (105)

where the indices i € {h,v, s} represent the three dimensions of the derivative D for EELS maps, while (i/) € {hv, hs,vs} specifically denote the
diagonal entries associated with each direction i. For instance, if i represents the horizontal direction &, then / € {v, s}, resulting in (hl) € {hv, hs}.
By combining the x- and t-residuals, we obtain the total relative dual residuals:

k+1 k+1
G IS4 G IS 106,
rel,yy (S;]f:}:) rely, N (Sl;:-lx)

”Sk+1”2 +Z ”Sk+l”2 Z ||Sk+1”2
2 2
N (i) N (8) RICH)
With all relative residuals R,,; and S,,, calculated, we can now update the penalty parameters using Egs. (28) and (29).

However, implementing the algorithm may be challenging for users without prior experience in ADMM. To facilitate implementation, we provide
a MATLAB script of our ADMM algorithm in the supplementary materials.

k+1
rel.n

Sk+] —

relyy (107)

>

5. Comparison of the ADMM-TGV with the RLA on a simulated nanoparticle

To evaluate the algorithm, we require a signal that closely resembles a real EELS map measurement, including all of its characteristic features,
since in a real-world measurement, the ground truth would be unknown. Hence, it essential to simulate such an EELS map to employ an objective
comparison between a deconvolution result and the ground truth. Therefore, we simulated an EELS map of a truncated gold nano-pyramid, 25 nm
in height, on a SiO, substrate (depicted in Fig. 2(a) top view and in Fig. 2(b) side view), as an exemplary data set. A particle of similar shape
and size, as shown in the STEM annular dark field (ADF) image in Fig. 2(e), is subsequently evaluated in a real measurement. Consequently, the
simulated data can be used for comparison with a real EELS map later in this paper. The gold nanoparticle in Fig. 2(a) was simulated using a ray-
tracing algorithm for a nanosphere-lithography (NSL) [63,64] process, as described in [65]. This process involves using a self-organized monolayer
of hexagonally close-packed spheres as a shadow mask for depositing a regular array of nanoparticles. We modified the algorithm to incorporate
a different mask closing mechanism, which is described later, allowing to fine-tune the aperture size between three neighboring nanospheres, as
depicted in Fig. 2(c) side view and in Fig. 2(d) top view. As shown in Fig. 2(d), the evaporation of material through the nanomask, orthogonal to
the substrate, results in nanoparticles with a triangular base. The deposited material not only forms particles but also accumulates on top of the
nanomask, causing it to clog. To account for mask-clogging during the evaporation process, the simulation iteratively considers the deposition of
material on top of the nanospheres. The mask-clogging material is represented by the red layer on top of the green spheres, which is visible in the
side view Fig. 2(c). The green spheres represent the initial state of the nanosphere mask prior to the evaporation process.

We used the particle depicted in Fig. 2(a) and (b) to simulate an EELS map with a dispersion of 0.01 eV/channel and a range of 0.75 —
5 eV, employing the MNPBEM toolbox [36]. Due to the difficulty in visualizing 3D data cubes as a whole, we selected three dominant plasmonic
resonances at 0.99 eV (black frame), 1.91 eV (cyan frame), and 2.49 eV (magenta frame). We display these as 0.01 eV thick slices in Fig. 3(a-c)
to illustrate the spatial distribution of the plasmonic mode. The green line indicates the boundaries of the nano-particle for orientation purposes.
Additionally, we present the respective spectra in Fig. 3(d) measured at the tip of the triangular projection of the nano-pyramid, where the first
plasmonic resonance reaches its maximum, at the middle of the particle, where the third mode is maximal, and at the bottom, where the second
mode is maximal. The locations where the spectra were obtained are indicated in Fig. 3(a-c) by small boxes matching the corresponding color.
The corresponding spectra in Fig. 3(d,h,l,p) display the average of all spectra within these boxes. All spectra maintain the same color scheme and
display an energy region of interest (ROI) from 0.75 — 3 eV, which corresponds to the location of the relevant surface plasmons. We regard the
data in Fig. 3(a-d) as the ground truth for our analysis.

To simulate data as measured by our detector, we scale the data to a typical intensity range for plasmonic resonances and convolve it with a
Gaussian shaped probe characteristic, featuring a full width at half maximum (FWHM) of FWHM = 0.5 eV. Additionally, we superimpose the data
with beam intensity, signal and detector noises, as described by the noise model in Eq. (10), using the parameters evaluated in [7] (% = 0.008,
g ~ 17.43 counts/beam electron and ¢, ~ 45 counts, from which a background that was averaged across A = 100 frames was subtracted). This result
in an average SNR = 10 for the ROI from 0.75 - 3 eV across the data. We also utilize the detector PSF 2, (FWHM ~ 1.77 EEL channels corresponding
to approximately 0.018 eV, which results in g,,,, ~ 0.24), which we have measured on our detector [7], to introduce noise correlations in the Poisson
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Fig. 2. Simulated (a) top view and (b) side view of a truncated gold nano-pyramid, 25 nm in height on top of a SiO, substrate. The particle was simulated using a ray-trace
algorithm (similar [65]) to model a nanosphere lithography (NSL) process. A nanosphere mask, depicted in side view (c) and top view (d), was created for the simulation, featuring
nanospheres with a diameter of 750 nm. As evident in (d), the nanosphere mask blocks the beam paths of evaporated materials, except for the aperture formed between three
adjacent spheres. Consequently, a truncated nano-pyramid is formed during the lithography process. Additionally, material is deposited onto the mask, clogging the aperture. This is
accounted for in the simulation by iteratively adding material to both the substrate (creating the particle) and the nanomask (to model clogging). The initial spheres (green), visible
in (c), become coated with clogging material (red), causing the aperture to gradually close as more material is deposited. Consequently, the particle in (a) and (b) tapers towards
the top, forming a pyramidal height profile. A particle of this type is subsequently used to simulate EELS maps, as shown in Fig. 3. (e¢) STEM annular dark field (STEM-ADF)
image of a real truncated nano-pyramid, analogous to the simulated particle in (a) and (b). This real particle is used to demonstrate the applicability of the ADMM-TGV algorithm
to real EELS maps.

noise. In Fig. 3(e-h) we display the blurred and noisy data for the three dominant resonance modes, along with their respective spectra at the same
positions as above.

As proposed in Section 3.1, we subtracted the ZLP before deconvolution for evaluation purposes. We display the results obtained using the
commonly employed RLA (as described in Eq. (21)) with 15 iterations in Fig. 3(i-1), and the results obtained using the proposed ADMM-TGV
algorithm (as described in the previous section) with 1500 iterations in Fig. 3(m-p). According to Eq. (80), the ADMM algorithm is defined to
reveal loss-probabilities as an output. Since the RLA does not reveal loss-probabilities but outputs counts, we need to undo the division of the
ADMM result by the mean value of the original beam intensity I as of Eq. (80) to enable a direct comparison between the two results.

A visual inspection reveals that the ADMM-TGV results (m-o) exhibit lower noise levels compared to the RLA results. Moreover, the ADMM-TGV
algorithm Fig. 3(p) significantly enhances the peak sharpness compared to the RLA Fig. 3(1), demonstrating the effectiveness of the ADMM-based
deconvolution process.

Nevertheless, the overall effectiveness of deconvolution is constrained by the width of the convolution kernel and the overall noise level of
the data. The Nyquist-Shannon sampling theorem [66,67] states that a feature can only be fully resolved if the sampling rate is at least twice the
highest contributing frequency. In the frequency domain, convolution with a broad kernel functions as a low-pass filter, attenuating the higher
frequencies in the data. The kernel width significantly influences the attenuation of the higher frequencies, with broader kernels resulting in greater
attenuation. Noise, on the other hand, introduces a background in frequency domain that is either flat (for white, independent Gaussian noise)
or sloped (for colored, correlated noise). If a frequency is obscured by this noise background, it cannot contribute to the reconstruction of the
original data, leading to a loss of features as predicted by the Nyquist-Shannon sampling theorem and observed in Fig. 3(d) compared to Fig.
3(1) or (p). Therefore, it is essential to optimize the microscope and beam parameters prior to measuring EELS maps, minimizing the convolution
kernel to the greatest extend possible. The quality of the deconvolution algorithm solely determines the number of frequencies that can be restored
under the given conditions. Consequently, the overall success of deconvolution is inherently limited by the point at which the signal frequencies
become mathematically indistinguishable from the noise background. Given the finite set of a-priori information available to aid in reconstructing
these frequencies, this limit imposes a significant constrain on scientifically sound algorithms — a constrain that artificial intelligence (AI) based
algorithms must also necessarily respect.

Although deconvolution is subject to this limitation, it remains a valuable tool for enhancing EEL spectra and EELS maps. However, the
comparison in Fig. 3 is largely qualitative in nature. To establish an objective criterion and demonstrate the effectiveness of deconvolution, we

introduce a distance measure defined as the ‘mean squared error’ (MSE) between the deconvolution result §2DMM at the kth iteration (see Eq. (80))
and the normalized ground truth §;,, from the simulation representing the true loss-probabilities:
k 1 s ok 2

MSE" = Y70 I8sim.0 — sADMM@IIF s (108)

k
NormMSEF = MSE , (109)

MSE?
where © denotes the energy ROI, which we have defined as the range of EEL channels from 0.75 — 3 eV, as this region primarily contains the
plasmonic peaks, and || - || again denotes the Frobenius norm as an extension of the Euclidean norm for matrices. Additionally, we define 6 as
the number of channels contributing to the ROL For the RLA results, these calculations are performed equivalently, but since the RLA produces an

. . a . e A SRLA .y . . .
estimate of the signal Sg; 5, instead of loss probabilities 8g; A , ,,; = ZMRgA’ the results are normalized. To illustrate the convergence properties
i SRLAx.y.i

of both the RLA and the ADMM-TGYV algorithm, we compute the MSE¥ at each iteration k. For comparative purposes, it is helpful to normalize the
MSE* with respect to the initial MSE?, obtained before running the algorithms. This normalization enables a clear visualization of the extend to
which deconvolution enhances the noisy and blurry data.

A review of [9,11,15,17,23,68] might lead one to conclude that the FWHM of the deconvolved ZLP could be a valid criterion for evaluating the
success of deconvolution. However, while this idea looks promising at first, it really is not. As we have discussed previously, the ability to restore
features is linked to the Nyquist-Shannon theorem, which states that a signal can only be restored if it is sampled at twice the highest contributing
frequency. One could argue that a sharp ZLP with a low FWHM is an indication of an algorithm’s ability to restore these high frequencies better,
but unfortunately, this is often not the case. A prominent example is provided by the RLA itself, which amplifies the higher frequencies, leading to a
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Fig. 3. (a-c) EELS map slices with a dispersion of 0.01 eV/channel were simulated using the MNPBEM toolbox [36] for the particle depicted in Fig. 2, at three distinct energy
losses. The entire data cube was scaled to ensure that the plasmonic peaks are of the same order of magnitude as those measure by our detector. The modes at 0.99 eV, 1.91 eV,
and 2.49 eV emerge as the dominant plasmonic modes of this particle, exhibiting the highest intensities. Each plasmon is linked o a specific location on the particle, as indicated
the by colored boxes in (a-c), while the green line indicates the boundary of the nanoparticle. The average spectra of the boxed regions are displayed in (d), with the positions
of 0.99 eV, 1.91 eV, and 2.49 eV marked by dash-dotted lines in their respective colors. The second row (e-h) presents the data in the same manner as above, but with the
addition of a convolution using a Gaussian energy distribution of FWHM = 0.5 eV and a beam current deviation of 22 = (0.008 between spectra, as per [7]. Poisson noise, with a
gain of g = 17.41 counts/beam electron (as reported in [7]) is superimposed on the signal, which is then convolved with the detector PSF (FWHM = 0.02 eV which corresponds to
approximately 2 EEL channels, as described in [7]), to introduce correlations within the noise, with ., ~ 0.24. Finally, read-out noise (¢, ~ 45 counts) is added — all according
to the noise model outlined in Eq. (10), except that the background used for subtraction was averaged across A = 100 frames. This result in an average SNR ~ 10 for the ROI
from 0.75 - 3 eV across the data. The spectra were also not shifted nor realigned. Since no sub-channel realignment is therefore necessary, no interpolation can induce further
correlations into the signal nor into the detector noise. The third row (i-1) presents the deconvolution results obtained using the RLA after 15 iterations, while the fourth row (m-p)
displays the deconvolution results obtained using the proposed ADMM-TGV algorithm after 1500 iterations. In a direct comparison of the ground truth (a-c) with the deconvolution
results obtained using the RLA in (i-k) and the ADMM-TGV in (m-p) reveals that both algorithms improve the data quality. However, it is also apparent that the estimates obtained
using our proposed algorithm are less noisy than those obtained using the RLA and appear to be more closely aligned with the ground truth (a-c). A comparison of the spectra
in (d) with the results obtained using the RLA in (1) and the ADMM-TGV in (p) reveals that the features in the latter are significantly sharper than those reconstructed using the
RLA. However, neither algorithm is able to fully recover the fine features of the ground truth in (d), owing to the broad convolution kernel and a substantial noise level.

sharpening of the ZLP; however, it also increases the noise to the point where it dominates the spectrum, yet the ZLP still appears sharp. An algorithm
must not simply amplify the higher frequencies but also distinguish these frequencies from the noise background correctly for deconvolution to be
successful. Thus, the FWHM is not the right measure for success. Further, the spectra also consist of a multitude of different frequencies, which
all need to be restored for an optimal deconvolution result. The individual contribution of these factors to the sharpness of the ZLP is relatively
limited. To illustrate this point, consider the Fourier transform of a narrow Gaussian peak, which is predominantly comprised of lower frequency
components with respect to their amplitude. In contrast, the higher frequency components have a relatively minor impact. Consequently, comparing
ZLPs obtained from different algorithms does not necessarily provide a reliable indication of the algorithms’ ability to restore the higher frequency
components. Therefore, we use the MSE, which is a significantly better criterion for comparison.

In Fig. 4(a), we display the NormMSE* as a function of the iteration number, up to 1500 iterations, for both the RLA (dashed lines) and
the ADMM-TGV (solid lines) algorithms, with an energy resolution of FWHM = 0.5 eV (blue curves). Additionally, we present results for energy
resolutions of FWHM = 0.3 eV (orange curves) and FWHM = 0.1 eV (green curves) to illustrate the effect of the convolution kernel width on
the deconvolution result, while maintaining constant noise levels. The detector PSF €2, is kept constant across all three scenarios, allowing us to
isolate the effect of changing energy resolution. It is evident that the RLA diverges after 10-100 iterations. However, without extensive testing,
determining the exact iteration yielding the best deconvolution result is impossible to the best of our knowledge. As the ZLP narrows, this optimal
iteration appears to occur earlier. However, excessive iteration of the RLA eventually leads to divergence and produces results that are worse than
the initial estimate, as evident from the NormMSE exceeding 1. Due to the risk of missing the optimal iteration, which is significant given the
unknown optimal iteration number, the RLA is frequently terminated prematurely, as discussed in the introduction Section 1.
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Fig. 4. (a) NormMSE, as defined in Eq. (109), serves as a distance measure between the deconvolution result 8% . at iteration k and the simulated ground truth §g,,. The same

applies to the distance between ground truth §,, and 8 ,. A value NormMSE > 1 indicates a worse-than-before result, while NormMSE < 1 indicates a better-than-before result.

To help contextualizing the results with respect to data quality, we provide the MSE’ of the initial data. The results obtained using the RLA are represented by dashed lines, while
the results obtained using the ADMM-TGV are represented by solid lines. To illustrate the effect of the ZLP width, we computed the results for three different energy resolutions:
FWHM = 0.5 eV (blue), FWHM = 0.3 eV (orange) and FWHM = 0.1 eV (green), all with a constant detector PSF €, (FWHM =~ 0.02 eV). It is evident that the RLA diverges after
few iterations, whereas the proposed ADMM-TGV algorithm converges to stable result. Given that the NormMSE of the converged ADMM-TGV is significantly lower than that
of the RLA terminated at the optimal iteration, it is clear that the ADMM-TGV algorithm outperforms the RLA. (b) Dependence of the results in (a) on the number of Newton
iterations used for the z,-update (see Section 4.6.2). We retained the color coding used in (a) to represent the width of the energy distribution, with the results for 1 Newton
iteration displayed as solid lines, 5 iterations as dashed lines, and 10 iterations as dotted lines, where the color shade lightens with increasing Newton iterations. It is evident that
the results are virtually identical for all three cases, leading us to recommend using only 1 Newton iteration for the z,-update.

In contrast, the proposed ADMM-TGV algorithm converges after a certain number of iterations, with the convergence point dependent on
the width of the ZLP convolving the data. Notably, the timing of iteration termination is inconsequential, as the results remain consistent after
convergence is attained. This advantage should not be underestimated. The results can be deemed valid and final after a specified number of
iterations, at which point the changes between iterations become negligible. Consequently, convergence plays a crucial role for the development
of an unbiased deconvolution algorithm. We recommend 500 iterations for our algorithm to guarantee convergence. This number has been found
to be sufficient in numerous experiments conducted under various beam conditions.

The peak observed in the green and blue curves in Fig. 4(a) and (b) after the third iteration is a consequence of the residual balancing establishing
a suitable value for all penalty parameters y,, y,, y and #, respectively, as discussed in Section 4.2. For further explanations, we refer the reader
to [49], where this phenomenon is described in detail.

Under typical beam conditions for our detector, we find that the ADMM-TGV reduces the MSE by approximately 60% relative to the original
data, whereas the RLA achieves a maximum reduction of 40%, albeit with the risk of missing the optimal iteration. In practice, terminating the
RLA after 15 iterations results in an overall performance that is only half that of our proposed ADMM-TGV algorithm. Therefore, although the RLA
is computationally faster than ADMM-TGYV, the latter demonstrates superior accuracy. The speed of the algorithm in comparison to the RLA will
be evaluated later in Section 8.

In [15], it is suggested to apply the RLA multiple times instead of only once to further improve the results. However, the ability to restore
information is linked to the algorithm’s ability to recover the frequencies of the EEL spectra. Since no new information enters into the second
application of the RLA (e.g. in the form of new a-priori information), one cannot expect to gain new true features within the results. Moreover, the
noise statistics are fundamentally obscured by the previous application of the RLA, which means that reapplying it results in a mismatch between
the noise anticipated by the RLA model and the data it is intended to improve. Therefore, although the results may appear smoother after the
second application, this comes at the cost of losing even more features.

Fig. 4(b) illustrates the dependence of the ADMM-TGYV algorithm on the number of Newton iterations used for the z,-update (see Section 4.6.2).
We present the results for all three deconvolutions, corresponding to different kernel widths, as shown in Fig. 4(a), where FWHM = 0.5 eV is
displayed as the blue curves, FWHM = 0.3 eV as the orange curves and FWHM = 0.1 eV as the green curve, with varying numbers of Newton
iterations as Iter = 1 (solid line, darkest color shade), Iter = 5 (dashed line, medium color shade) and Iter = 10 (dotted line, lightest color
shade), maintaining the color scheme from Fig. 4(a). It is evident that the choice of the number of Newton iterations has negligible impact on
the convergence and does not significantly affect the number of iterations required to achieve convergence. Therefore, we recommend using only
one Newton iteration, as this is clearly the most computationally efficient approach.

6. Deconvolution of an experimental plasmonic EELS map

Having demonstrated the success of ADMM-TGV on simulated data, we must now validate its applicability to real measurements. The
measurements presented in the following were acquired using a JEOL JEM-ARM200F with a Gatan imaging filter system (GIF) Quantum ER having
a USI1000FT-XP 2 detector attached. The convergence semi-angle and collection semi-angle were 70 mrad and 20.833 mrad, respectively, for all
EELS measurements. We prepared gold nano-pyramids on a SiO, substrate, one of which is depicted in Fig. 2(e). This particle was prepared using
electron beam physical vapor deposition (EBPVD) [69] within a nanosphere-lithography (NSL) setup [70]. In this process, polystyrene nanospheres
with a diameter of 750 nm were applied to the substrate using the doctor blade technique [71,72]. The spheres were then coated with a layer of
SiO,, and the triangular mask openings were partially closed by applying Stober’s method [73,74], resulting in a radial growth on top of the SiO,
coating. Finally, 25 nm of gold was deposited on top of a 3 nm thick adhesion layer of titanium through the mask. This process yields nanoparticles
on the substrate with a triangularly shaped base. The nanospheres are then removed in a toluene bath, leaving only the truncated nano-pyramids
on the specimen, which is further prepared for TEM analysis.

Analogous to Fig. 3, we conducted an EELS map measurement with a dispersion of 0.01 eV/channel and present three 0.01 eV thick energy
slices of the data cube at the corresponding energy-loss positions of 0.99 eV, 1.91 eV and 2.49 eV (Fig. 5(a-c)). Additionally, we provide three
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Fig. 5. (a-c) Visualization of the normalized EELS map, measured for the truncated nano-pyramid depicted in Fig. 2(e) without deconvolution applied. We estimate the signal-to-noise
ratio of the ROI shown from 0.75 — 3 eV based on our noise model Eq. (16) to be SNR ~ 26. Analogous to Fig. 3, we present three energy slices with a dispersion of 0.01
eV, displaying the spatial distributions of plasmonic modes at 0.99 eV (black frame), 1.91 eV (cyan frame) and 2.49 eV (magenta frame). These three modes were found to be
dominant in the simulation data displayed in Fig. 3 and are used again to facilitate comparison between the two datasets. Each plasmon is liked to a specific location on the
particle, as indicated by colored boxes in (a-c), while the green line indicates the boundary of the nanoparticle. The average spectra of the boxed regions are displayed in (d), with
the positions of 0.99 eV, 1.91 eV, and 2.49 eV marked by dash-dotted lines in their respective colors. The second row (e-h) presents the data in the same manner as above, but
deconvolved using the proposed ADMM-TGV algorithm after 500 iterations. The third row (i-1) displays the deconvolved simulation data from Fig. 3(m-p), rescaled to match the
loss probabilities of the measurement above. This dataset was chosen because deconvolution is unable to restore the fine features within the spectrum. For comparison purposes, it
is therefore more suitable to use the deconvolved simulation data. Generally, it is observed that deconvolution significantly improves the results (a-d) compared to the simulated
data (i-1). This is particularly evident in the reduced noise of (e-g) compared to (a-c). Additionally, the features in (h) appear sharper compared to those in (d). In general, the
deconvolution results (e-h) show good agreement with the simulated data (i-1), particularly for the edge mode at 1.91 eV, which exhibits a high degree of similarity between
the two datasets. Deviations occurring between (h) and (I) may be attributed to differences between the simulated particle and the measured particle, which can be observed in
Fig. 2(a) and (e), especially with respect to the internal grain structure, which is not represented in the simulation. The tip mode at 0.99 eV exhibits a positional match between
(h) and (). In the deconvolved experimental data (e), the lateral distribution of the plasmon appears more pronounced than in (i), particularly at the bottom of the structure.
However, the breathing mode at 2.49 eV remains significantly underpronounced in (g) compared to (k). Upon comparing the magenta spectra in (h) and (1), it is evident that the
peak of the real measurement is shifted to slightly lower energies relative to the simulated data. For the sake of completeness, the corresponding energy slice is provided in the
supplementary materials.

spectra in (d), corresponding to the tip (black), middle position (magenta), and bottom (cyan) of the projection of the truncated nano-pyramid
indicated, as indicated by the colored boxes in (a-c). The colored dash-dotted lines within the spectra indicate the respective energies at which
the energy slices (a-c) were acquired. We present the original normalized data, as acquired from the microscope, in Fig. 5(a-d), the ADMM-TGV
deconvolved data after 500 iterations in Fig. 5(e-h) and the rescaled dataset from the ADMM-TGV deconvolved simulation data Fig. 3(m-p) for
comparison in Fig. 5(i-1). Given that deconvolution is expected to result in a loss of small features, it is more insightful to compare the deconvolved
real data with the deconvolved simulation data.

Generally, we observe a good agreement between the deconvolved experimental data and the simulation. The tip mode at 0.99 eV exhibits
good agreement in (e) and (i), and the peak positions in the black spectra (h) and (1) match well. However, the bottom part is more pronounced
in the real data than in the simulated data. The exact shape of the real particle differs slightly from that of the simulated particle, owing to
agglomerations of gold atoms at positions with low height and grain structure inside the material. Additionally, the titanium layer was omitted
in the simulation. Consequently, small deviations in the plasmonic characteristics are anticipated and indeed observed. The edge mode at 1.91
eV exhibits a particularly good fit, both in the energy slices in (f) and (j) and in the cyan spectra (h) and (I). The breathing mode at 2.49 eV is
underpronounced in (g) compared to (k). Notably, upon comparing the magenta spectra in (h) and (1), it is evident that the peak of the measurement
appears shifted to lower energies. The lateral distribution of the plasmon at 2.26 eV, which illustrates the corresponding breathing mode, is provided
in the supplementary materials.

From a broader perspective, it is evident that deconvolution using the proposed ADMM-TGV algorithm significantly enhances the data,
particularly in terms of feature width in all spectra (d) and (h), as well as the overall smoothness of the data (e-g) compared to (a-c). Given
the similarity between the deconvolved data and the expected simulation data, we consider the deconvolution results to be valid.
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Fig. 6. (a) STEM-ADF image of a gold, bottle-shaped nanostructure. An EDS map, located in the top right corner as an inset, reveals that the particle is composed of gold (blue).
(b) STEM-ADF image of a gold-platinum, bottle-shaped Janus nanostructure. An EDS image, located in the top right corner as an inset, reveals that the particle comprises a gold
top (blue) and a platinum bottom (green). Additionally, we simulated the bottle particles using our ray-tracing algorithm [65]. The simulated particle is depicted in (c) in top
view and in (d) in side view.
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Fig. 7. (a-c) Visualization of the normalized EELS map measured for the gold nano-bottle depicted in Fig. 6(a), presented as original data prior to deconvolution. The estimated
signal-to-noise ratio of the ROI is SNR ~ 7.3. We present three slices that display the spatial distributions of the plasmonic modes at 1.06 eV (black frame), 1.41 eV (magenta
frame), and 1.80 eV (yellow frame). Each plasmon is linked to a distinct position on the particle, indicated by colored boxes in (a-c), while the green line indicates the boundary
of the nano-bottle. The average spectra of the boxed regions are displayed in (d), with the positions of 1.06 eV, 1.41 eV, and 1.80 eV marked with dash-dotted lines in their
respective color. The second row (e-h) displays the data in the same manner as above, but deconvolved using the proposed ADMM-TGV algorithm after 500 iterations. It is evident
that the second mode at 1.41 eV becomes visible only after deconvolution. This is confirmed by the results in the third row (i-1), which present the deconvolved simulation
data obtained using the MNPBEM toolbox [36]. Here, it is clear that the mode at 1.41 €V is predicted by theory and becomes visible only through our deconvolution algorithm.
Generally, we observe a very good agreement between the deconvolution results and the simulation data.

7. Comparison of two bottle-shaped (Janus) particles

In the following section, we compare two bottle-shaped particles, each approximately 15 nm in height, one composed of pure gold and the other
a Janus particle with a gold top and a platinum bottom. Both particles are depicted in Fig. 6(a) and (b). To determine the elemental composition,
we conducted energy dispersive X-ray spectroscopy (EDS) on both particles, with the results displayed as insets in the top right corners of (a) and

(b).
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Fig. 8. (a-c) Displays the visualization of the normalized EELS map measured for the gold-platinum Janus particle depicted in Fig. 6(b), prior to deconvolution. The estimated
signal-to-noise ratio of the ROI is SNR =~ 7.2. We present three slices that display the spatial distributions of the plasmonic modes at (a) 0.96 eV (cyan frame), (b) 1.88 eV (yellow
frame), and (c) 2.52 eV (magenta frame). Each plasmon is linked to a distinct position on the particle, indicated by a colored box in (a-c), while the green line indicates the
boundary of the nano-bottle. The average spectra of the boxed regions are displayed in (d), with the positions of 0.96 eV, 1.88 eV, and 2.52 eV marked by dash-dotted lines in
the respective colors. The second row (e-h) presents the data in the same manner as above, but deconvolved using the proposed ADMM-TGV algorithm after 500 iterations.
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Fig. 9. Intensity normalized results of the RLA deconvolution after 15 iterations for both bottle structures depicted in Fig. 6(a) and (b). The first two images display the energy
slices at (a) 1.06 eV (compare Fig. 7(e)) and (b) 1.44 eV (compare Fig. 7(f)) for the pure gold structure. The energy slices of the gold-platin Janus particle are displayed in next
two images at (c¢) 0.96 eV (compare Fig. 8(e)) and at (d) 1.88 eV (compare Fig. 8(f)).

The bottle-shape was created using double-angle resolved NSL [65], a technique that enables the ‘drawing’ of particles by tilting the sample
relative to the material flux during EBPVD. As a result, the projection of the aperture moves across the sample, depositing material along its path,
which is determined by the tilting and azimuthal angles. Both samples were fabricated on a 1 nm thick chromium adhesion layer. Using our
ray-tracing algorithm [65], we simulated a bottle particle, which is depicted in Fig. 6(c) and (d) in top and side views. We measured the EELS
map again with a dispersion of 0.01 eV/channel and performed simulations using the MNPBEM toolbox [36] for the particle in Fig. 6(c), in order
to verify the deconvolution results. To ensure comparability, we also blurred and deconvolved the simulation data.

Fig. 7 presents EELS data for the gold bottle shown in Fig. 6(a). We present the original normalized EELS data in the first row (Fig. 7(a-d)) and
the deconvolved data in the second row (Fig. 7(e-h)). The third row (Fig. 7(i-1)) displays the simulation results. Three energy slices were selected
at 1.06 eV, 1.41 eV, and 1.80 eV, and the corresponding spectra are presented in (d) with the positions marked in (a-c) using the respective colors.
Similarly, the energy positions of slices are indicated by dash-dotted lines in (d).

Upon comparing the original data (a-c) with the deconvolved data (e-h), it becomes apparent that without deconvolution, the intermediate
mode at 1.41 eV, featuring three maxima, would have remained undetected. This mode is also present in the simulation data (Fig. 7(i)). All three
modes observed through deconvolution exhibit good agreement with the simulation data.

Fig. 8 displays EELS data for the gold-platinum Janus bottle depicted in Fig. 6(b). Analogous to Fig. 7, the original normalized EELS data are
presented in the first row (Fig. 8(a-d)), and the deconvolved data are presented in the second row (Fig. 8(e-h)).

Unfortunately, the MNPBEM toolbox [36] is incapable of performing corresponding simulations, as it yields negative loss probabilities in the
overlap region of the simulated gold and platinum layers of the Janus particle. Consequently, we omit these simulations and do not include them in
this paper. Fig. 8(a-c) presents three energy slices at 0.96 eV, 1.88 eV, and 2.52 eV, with the corresponding spectra of the boxed regions displayed
in (d).

Upon comparing the energy slices of the Janus particle (Fig. 8(e-g)) with the corresponding data for the pure gold particle (Fig. 7(e-g)), it
becomes apparent that, despite a small energy shift, the first tip mode is nearly identical for both structures.

However, the three-maxima mode of the pure gold particle (Fig. 7(f)) at 1.41 eV, is notably absent in the Janus particle. The mode is expected
to be located at the interface between the two materials. We hypothesize that scattering of the plasmons at the interface is the primary reason for
the mode’s absence. Notably, we observe an edge mode for both particles at approximately 1.80 — 1.90 eV. This mode completely extends across
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Table 1

Computation times of the deconvolution results of Figs. 5, 7 and 8 employing the ADMM-TGV algorithm with 500 iterations compared to
employing the RLA with 1 iterations. The deconvolutions were calculated using a i9-10900X CPU and a Quadro RTX 4000 GPU for both single
and double precision values in MATLAB. For the ADMM-TGV, 500 iterations were used as proposed in Section 5, for the RLA 15 iterations
were used, as proposed by [15]. The size of the data is indicated as X XY X (M + P) voxels, where X and Y refer to the lateral dimension of
the EELS maps, and M + P refer to the energy direction, padding (see Section 3.3) included.

Fig. 5 Fig. 7 Fig. 8
100 x 100 x 2204 voxels 100 x 60 x 2182 voxels 60 x 70 x 2164 voxels
ADMM-TGV RLA ADMM-TGV RLA ADMM-TGV RLA
500 Iter. 15 Iter. 500 Iter. 15 Iter. 500 Iter. 15. Iter
Py single 4211 s 17 s 2559 s 8s 1694 s 6s
double 5432 s 20 s 3351 s 10 s 2265 s 8s
GpU single 2444 s 2s 1476 s 1s 905 s 1s
double 5043 s 7s 2561 s 4s 1548 2s

both sides of the gold nano-bottle (Fig. 7(f)), whereas for the Janus particle, we find the edge mode to be confined to the gold part at a higher
energy (2.52 eV). However, at higher energies, we observe the side-mode of the Janus bottle extending to the platinum part.

It becomes readily apparent that without considering the deconvolution results from our ADMM-TGV deconvolution algorithm in the second
rows of Figs. 7 and 8, this analysis would not have been feasible at our energy resolution (ZLP with FWHM = 0.4 — 0.45 eV), as the different modes
were not clearly resolvable.

To demonstrate that these results are not attainable using standard RLA deconvolution, we deconvolved both nano-bottle datasets with the RLA,
employing 15 iterations and normalized them with respect to the total intensity of the individual spectra. The results are presented in Fig. 9(a-c).
Despite the disparity in the noise levels between the results, it is readily apparent that the modes of the gold bottle at 1.41 eV (compare Fig. 9(b)
and Fig. 7(f)) and the mode of the gold-platinum Janus bottle at 0.96 eV (compare Fig. 9(c) and Fig. 8(e)) are not resolvable using the RLA, but
rather only with the proposed ADMM-TGV algorithm. This example effectively illustrates the advantages of utilizing our algorithm over the RLA.

In light of the success of this method, we believe it is essential to share our novel algorithm for EELS deconvolution. It may be anticipated that
ADMM-TGV will also enable to resolve finer features in future EELS data recorded at much improved energy resolution.

8. Speed comparison of the ADMM-TGV with the RLA

To get an impression on how long the novel ADMM-TGV deconvolution algorithm takes to iterate compared to the commonly employed RLA, the
computation times that were used to calculate Fig. 5, Figs. 7 and 8 with the ADMM-TGV algorithm and the computation times for the RLA results,
respectively, are provided Table 1. The computations were performed on a i9-10900X CPU and a Quadro RTX 4000 GPU for both algorithms. While
we employ 500 iterations for the ADMM-TGV algorithm, as we have proposed in this paper, we employ only 15 iterations for the RLA algorithm,
as proposed by [15] to avoid divergence.

It is rather obvious, given the complexity of the proposed ADMM-TGV algorithm that it takes much more time to compute (in the order of 1 h)
with respect to the rather simple RLA algorithm from Eq. (21) (in the order of seconds). However, the success of the ADMM-TGV algorithm relative
to the RLA, as demonstrated in the previous sections, may outweigh the time increase in deconvolution time.

The above cited figures provide applied examples from measuring plasmonic nanostructures. To resolve them sufficiently, EELS maps with a
side-length of 50-100 spectra are necessary. Acquiring larger maps in EELS often comes with significant disadvantages such as increased energy
drifts, beam instabilities, and contamination during beam exposure of the specimen due to the increase in acquisition time and are therefore
difficult to perform. The reader might also wonder, why the length of the spectra varies from the usually encountered 2048 channels. This is
because ZLP-realignment shifts the spectra with respect to each other, resulting in a protrusion at the edges. These must be cut off. The additional
channels are then a result of the padding-procedure described in Section 3.3. Hence, these examples provide a good impression on how long
deconvolution with our algorithm may take. Given that both GPU and CPU components are already more than 5 years on the market, more recent
configurations may provide a significant boost in computation time.

We recommend using a GPU for the calculations due to their known benefits for matrix-heavy computations. Since the Quadro RTX 4000 GPU
only comes with 4 GB of VRAM, the computations could not fully be performed on the GPU but required frequent transfer of data from CPU to GPU,
vise versa, which takes a considerable about of time for each transfer. These transfers are clearly viewed as a bottleneck of our employed setup.
Therefore, we expect much faster computations, if a GPU with more VRAM is utilized for the computations. Nevertheless, we consider computation
times of up to one hour as absolutely tolerable, especially given the huge increase in data quality.

Eventually, we could not find any visible difference between using single precision values over using double precision values for the calculation
in MATLAB. Since the computations with the latter are much slower, we recommend the readers of this paper the usage of single precision values.

9. Conclusions

In this work, we propose a novel algorithm for the deconvolution of intensity normalized EELS maps. The algorithm is based on a Lagrangian
function and is solved using the alternating direction method of multipliers (ADMM). One of the key advantages of this approach is that it is more
versatile and adaptable than the Richardson-Lucy algorithm (RLA), which is commonly used for the deconvolution of EELS data.

Since ADMM represents a novel approach to EELS deconvolution, the fundamental principles of the algorithm are outlined in this paper. The
algorithm typically requires user-defined parameters, which influence its convergence properties. To eliminate dependence on initial parameter
selection, we exploit the mathematical properties of the algorithm, enabling automatic parameter choice. This is achieved through residual
balancing, which was derived and demonstrated in [49].

By leveraging the versatility of the Lagrangian function, we implemented a mixed Gaussian-Poisson distribution for the Bayesian log-likelihood
data fidelity term. This likelihood is based on a noise model that accounts for the original data as captured by the microscope. The accuracy of
this noise model has been validated in [6,7], where it is shown how to determine the relevant noise parameters for the EELS detector. These noise
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parameters are then used to fine-tune the proposed algorithm for our specific detector. Additionally, we discuss how correlations affect the data
fidelity functional, binding the deconvolution result to the measured data.

Using prior knowledge, we extend the classical likelihood approach to a maximum a-posteriori (MAP) framework. To prevent the algorithm
from producing negative results for the deconvolved EEL probabilities, we introduce a non-negativity prior. Since loss probabilities in EELS are
inherently non-negative, this constraint is particularly useful. Additionally, we incorporate the total generalized variation (TGV) approach as a
smoothness prior, which helps reduce noise in the deconvolution results. Plasmons exhibit smooth and continuous behavior to some extend, while
noise is typically rough and highly volatile. This distinction allows us to effectively discriminate between noise and signal. The TGV method employs
adaptive filter masks, based on derivatives, to optimally denoise both flat and sloped regions of the data.

The TGV approach also requires manually set parameters. However, we have demonstrated how to select these parameters based on the noise
characteristics of the detector, ensuring that the parameter choice remains objective.

Deconvolution generally requires some data preparation to achieve optimal results, such as the padding to address circular boundaries or the
subtraction of the zero-loss peak (ZLP) to avoid ringing artifacts. These preprocessing steps are explained in detail in this work.

To demonstrate the advantages of the proposed algorithm compared to the RLA, we tested both on simulated EELS data generated using the
MNPBEM toolbox [36]. The key advantage of using simulation data is that the ground truth is known. The simulation data were then convolved
with a detector point spread function and a Gaussian energy distribution of the electron beam. To make the data as realistic as possible, noise was
superimposed according to our noise model and the noise parameters of our detector. As a result, the simulated noisy dataset closely resembles
EELS data as measured on a real detector, but in contrast to real EELS data, the ground truth is known. The noisy datasets were then deconvolved
using both ADMM-TGV and RLA methods.

Using the mean squared error (MSE) between the ground truth and the deconvolution results, we demonstrate that the proposed ADMM-TGV
algorithm outperforms the RLA by 60% in terms of its proximity to the original data. Most notably, we show that the proposed algorithm converges,
whereas the RLA tends to diverge after an unspecified number of iterations — which is why the RLA is often terminated after 15 iterations.

However, the deconvolution results of both methods reveal fewer features than the original ground truth. We attribute this discrepancy to
the attenuation of high frequencies in Fourier space caused by convolution, as well as the presence of a noise background that obscures these
frequencies, making them unrecoverable. According to the Nyquist-Shannon theorem, this leads to the observed loss of small features. Consequently,
we conclude that the effectiveness of deconvolution is fundamentally limited. This underscores the importance of optimizing beam parameters and
alignments to minimize the ZLP for the best EELS results.

Note that the limitations imposed by the Nyquist-Shannon theorem do also apply to algorithms employing artificial intelligence (AI) or machine
learning (ML), at least if these algorithms shall suffice basic scientific standards. This means that results must be deduced from the measured data
itself and not be subject to algorithms interpreting features into the data that are below significance. Since the proposed algorithm employs a
deterministic and purely mathematical approach, it may therefore also serve to cross-check results of such AI or ML algorithms in order to train
them to fulfill these standards.

To underscore the success of our approach, we have demonstrated the applicability of the proposed ADMM-TGV algorithm to real data
by comparing it with corresponding simulations. Given the strong agreement between the deconvolution results and the simulated data, this
comparison supports the validity of the deconvolution results. This shows that our algorithm is not only effective with artificially created simulation
data but also significantly improves real measurements.

To further highlight the advantage of the proposed algorithm, we present an example where the ADMM-TGV method enables to distinguish
additional plasmonic modes, which were previously obscured in the original data and could not be recovered using the RLA. These plasmonic
modes were further validated by simulations, confirming their existence.

In summary, we have mathematically derived an algorithm for the deconvolution of EELS maps and demonstrated its advantages over the
commonly used Richardson-Lucy algorithm. The proposed algorithm significantly enhances real data at the cost of a much increased computation
time relative to the RLA. The computation time to achieve convergence of the ADMM-TGV deconvolution algorithm proposed in this paper is in
the order of 1 h for regular EELS map measurements using regular desktop computers.

Importantly, recognizing that the implementation may be complex for users without prior experience with ADMM, we provide the ADMM-TGV
algorithm as a MATLAB script in the supplementary materials, making it accessible for all users.
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Supplementary materials — An unbiased ADMM-TGV algorithm
for the deconvolution of STEM-EELS maps
Christian Zietlow?, Jorg K. N. Lindner”

“Nanopatterning-Nanoanalysis-Photonic Materials Group, Department of Physics, Paderborn University, Warburgerstr.
100, Paderborn, 33098, Germany

A. On the derivatives D and the kernel Q

The finite difference operators can be applied to the data via convolution. The corresponding matrices are given as
D,, D, and D,. Since 3D matrices are complicated to provide on a paper sheet, we will provide the 2D matrices
corresponding to D, and D, from which the reader can easily deduce the corresponding 3D matrices by expanding
zeros into the third dimension:

h,u,s

1 -1 0 ... 0 100 ... 0
0 00 .. 0 -1 00 ... 0

D,=[{o oo .. of ., pD,=[0 00 ... of. (1)
0 00 .. 0 000 .. 0

For a data cube with X X Y X (M + P) data points, each derivative is represented by a matrix of the size of the data
cube, i.e. {D;,,D,,D,,0} € RX>X¥YX(M+P),

While the above examples correspond to the forward difference operators D, D, and D, the corresponding adjoint
operators D7, DZ and DST provide the backward difference operators with the same dimension:

1 00 ... -1 1 00 ... 0
000 ... 0 000 ... 0

D/ =[{0 0 0 ol .p"= 000 ... 0f, 2)
000 ... O -1 0 0 ... 0

and can easily be calculated from the forward operators by using the complex conjugate in Fourier space and then
re-transforming, i.e.:

D] =F~! [conj(F [Dy])] - 3)

Accordingly, the adjoint convolution kernel Q7 is also defined as the complex conjugate of the convolution kernel Q
in Fourier space. Therefore, the adjoint operators can be seen as mirrored variants of the original operators.

Further information about the implementation can be appreciated from the MATLAB algorithm appended to this
document.
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E< christian.zietlow@upb.de (C. Zietlow); lindner@physik.upb.de (J.K.N. Lindner)

https://physik.uni-paderborn.de/en/lindner (J.K.N. Lindner)
ORCID(s): 0000-0001-9696-619X (C. Zietlow); 0000-0003-2367-9610 (J.K.N. Lindner)
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B. On the {x, t}-update

To solve the {x, t}-update, we require the inverse P from Eq. 83 and Eq. 84 of the main paper. The adjugate method
enables us to invert the matrix:

P'=adj{P} det {P} . )

The adjugate of P can be determined by transposing the cofactor matrix adj {13} = CT, which is given by the matrix
of the minor determinants IBi’j:

det 131’1 —det PI,Z det f’173 —det f)l,4
C N det P2’1 det P2,2 —det P2’3 det P2,4 (5)
- det P3’1 —det P3’2 det P3’3 —det P3’4 ’
—det Py, det\Py,; —det{Py3 det Py 4
where the transpose is obtained by swapping the indices, such that:
det 131’1 —det 132’1 det 133,1 —det f’4,1
o b det\ Py, det Py, —det{P;, det\ Py, ©)
det P1’3 —det P2’3 det P3,3 —det P4’3
—det P1’4 det P2’4 —det P3’4 det P4’4

For a f’4><4 matrix representing the DTGV in three dimensions, this yields 16 determinants of 3X3 minors, which are
defined as:

+D22 P33 Paa +D12P33Paa

N ~ N +Dy3 D34 Pan - ~ - +D13 D34 P42

5 Py P23 Paa +I32’4 173’2 15473 5 Pra P13 Pra +I31’4 133,2 ﬁ4,3
det{Py,} = P30 B33 Pya|= 40200 det{P,} = P30 P33 DBya|= 402003,

Pan Paz Paa P42 P33 P24 Par Pra Pag D42 P33 P14

’ ’ ’ —DP43P34P22 ’ ’ ’ —P43P34P12

~P44D32P23 —P44D32P13

+Dy.1 D33 Paa +D1.1 P33 Paa

N N N +D23 P34 Pat < < < +D13 P34 P41

5 Pay P23 P24 + 4 133’1 134’3 5 PriPis Pia +h1 4 133’1 174’3
det{Pl,Z} = p3,1 p3,3 p3,4 _= LT LT det{Pz’z} = p3,1 p373 p3’4 = s T R Y

DPay Ps3 DPas ParP33Pos Pay Pa3z DPaa ParP33Pra

’ ’ ’ —P43D34D21 ’ ’ ’ —P43DP34P11

—P44P31P23 —P44P31P13

+D2,1 P32 Paa +D1,1 P32 Paa

N N N +D22 P34 Pay - - - +D12 P34 P4

5 Par P22 Paa +152’4 133’1 134’2 5 Pri Pz Pia +I31’4 133’1 174’2
det{P 3} = P31 BPsp Paa|= 40100 det{P,3} = P31 Psp Paa|= 54001002,

Pay Pap Paa ParP3aPas Pay Pap DPag ParP3oPra

’ ’ ’ —P42 D34 P21 ’ ’ ’ —P42 P34 P11

—DP44P31P22 —P44P31P12

+D2,1 P32 Pa3 +D1,1 P32 P43

N ~ N +Dy2 P33 Pay ~ ~ - +D12 P33 Pa

5 Py P2 P23\ yp B s i P Pras Pis\ 45 pay Bas

det{P 4} = |B31 Psp Pas|= 5 tih det{Py 4} = |P31 P3p B3zl = - =01ih?, (7

Pay Pap Pa3 Pa.1P32 P23 Pat Pan Pas Pa,1 P32 P13

’ ’ ’ —DP42P33P21 ’ ’ ’ —P42P33P1,1

—DP43P3,1DP22 —DP43P31P12

+D12 P23 Paa +D12 P23 P34

N ~ N +P13D24 Pap - ~ - +D13D24 P32

5 Pra P13 Pia +I31’i a2 Pas 5 Pra Py Pia +I31’431 Pra ﬁ?s
det{Py } = |Pry Pz Poa|=_ P 2200 det{Py} = Prn Doz DBoa|= 4022033,

Psp Pa3  Paa Pap P23 Pra D33 P33 DP3a P32 P23 Pra

‘ ’ ’ —DP43D24P12 - ” - —P33P24P12

—P4a D22 P13 —P3aD22P13
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P11
P21
P4

det{f)&z} =

1281
D21
P4y

det{f’:}”?)} =

P11
P21
P41

det{f)3’4} =

P13
Pa3
Paj3

D3
D23
Paj3

P12
P22
) 2%)

D14
Pra
Paa

D14
DPra
P44

P13
P23
P43

+P1.1 P23 Paa
+D13 P24 Pal

P13 P24 P ) P11
= TPLalaPas e (B,,) = |y,
—P41 D23 P14 ’ 173’1
—P43 D24 P11 ,
P44 P21 P13
+ﬁ1,1 ﬁ2,2 ﬁ4,4
+D12 P24 Pa P11
_ +131,4 P21 P4 , det{l~’4,3} = 172:1
—Da1 P22 P14 P31
P42 P24 P11 ’
P44 D21 P12
+D1,1 P22 Paj
+D12 P23 P D11
_ TP13P21 Pap ., det{P, 4} = 172:1
—Pa1 P22 P13 ’ P31
—P42 D23 D11 ’
P43 P21 P12

The determinant can be calculated using the Laplace expansion method:

Having obtained both adj {f’} and det{f’}, we can now determine:

1

" det{P}

Finally, to proceed with the {x, t}-update, we must define q, which is given as:

N=}]
Il
Il

where we define Vf: = zf

and subsequently obtain the solution via inverse Fourier transformation r = 7-!{¥}, yielding:

det f’l,l —det Pz,l det 133’1
—det I:)I,Z det I:’z,z —det I:’3,2
det{P3; —detiPy; det{P; 3
—det Py 4 det P,y —detiPsy

a y(’)‘T' {QTV0}+y’jT’{ Vk } +ykf’{DT k

—ykT’{ Lh} 7 { Dy, bt r {

_ykf»{ k

hlh

v

} +}/k7D { DTVk

P13
Pr3
P33

P12
D22
P32

P12
P22
D32

DUVZh

+n*F {thghv } +i1k7:'{ D V
k k k

ls} +n F{thz,hs} +n F{D Vzus}

— u’; for all indices * above. With this definition, we can solve for ¥ = P!

D14
D24
P34

D14
D24
P34

P13

Dol =

D33

+P1.1 P23 P34
+D13 D24 P31
+P1.4 D21 P33
—P31 P23 P14’
—P33 P24 P11
=P34 D21 P13

+D1.1 D22 D34
+P12 Pra P31
+D14 D21 P32
—P31 P22 P14’
—D32 D24 D11
=P34 D21 P12

+D1.1 D22 P33
+P12 P23 P31
+P13 D21 P32
—P31P22P13
—P32 P23 P11
—P33 D21 P12

®)
det I~’4’2
—det 134’3 (9)
det P474
k T ok
Lo [ 1Y T’{ stl,s}
k k
+n*F {DSV1 hs} (10)
k k ’
+n*F {stl’vs}
k k
+n F{ stl,s }

q in Fourier space

xk+1 P! 131_’11511 +f’1_é‘~12+1) d; + P} 404
g+t B Yl f’£11‘~11 +P1g, + P2 1G5 + P2 Ly an
tht BiE f’;jfh +P3’12(I2 +l~)3_é(~l3 +P3LQ4
tht! F-l f’;llql +13;12q2 +f’;§q3 +P 4,
We have solved the {x, t}-update.
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C. On the z__-update

In its general form, the proximal operator is defined as [1]:

prox(v) = argmin g(z) + L|| v—z|?2, (12)
g7/1 VA 21

provided that g is a closed convex function and does not evaluate to infinity everywhere. Notably, this proximal operator
yields finite results, even when g (z) evaluates to infinity at certain points. Applying this to Eq. 69 of the main paper,
we obtain:

. Y .
sz+1 = prox (v,) = arg min IR+(Z+) + % |z, —v, ||§ ,with v, = xk+1 4 u'i , (13)
IR+,}’+ zy
from which two distinct cases can be derived:
Casev, >0:
In this scenario, since IR+(Z +) = 0, Eq. 13 reduces to:
k+1 . 2 k+1
;7 =argmin |z, -v, |5 = z7 =v,. (14)

Z
Notably, the factor % has no effect in thi scenario, and we obtain the z_ -update for the first case.

Case v, <O0:

In this scenario, IR+(Z +) = oo, which is far from minimal. Instead, we select a z, that is closest to a negative v,
while still satisfying the condition IR+(Z +) = 0. This yields:

Zk+l

Ml =argmin||z, —v, |} . withv, <0 = z'=0. (15)

Z

We have defined the z_ -update.
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D. On the weighted block soft threshold operator

Consider a Lagrangian that incorporates a total variation norm, e.g. a Lagrangian similar to that of the z;-update:
L, (X1 2 ub) = 1A%, + 2D — 9 —z a3, (16)

where each of the matrices D, t, z, and u is comprised of three sub-matrices D;, t;, z;, and u;, representing all three
possible directions in a 3D data cube. We disregard all other variables, as they do not affect the minimization of z.
To perform the z-update, the Lagrangian must be minimized with respect to each z;. By setting the derivative of the
Lagrangian equal to zero, we obtain the optimal value of zk"'1 that minimizes the following equation:

0, | %zlly —y (DX =t — 2 4 uf) =0 = 27" = (DX -t +ulf) - (/) 0, 1472l , (17)

with the sub-differential [1]:

v; .
| it IVl # 0
0, IVl = a,, zvg={uvu2 | "

" w; * loll, <1 i lvll; =0

The general minimization equation Dx — t — z + u = O indicates that the vectors Dx — t and z point in the

same direction and have a similar length, differing only by the vector u. Therefore, the ratio can be expressed as
Z{c+l D xk+1 tk+l+ k
1

||zk+1||2 ”(ka+1_tk+1+ k)”
Euclidean norm of || 4?z||, can be expressed as:

. Scaling by a scalar A; preserves the direction. It follows that the sub-differential of the

/12<ka+1 tk+1 i)

: 2 k+1 k+1 k
0, 17%2ll, = 9, /Z 272 = T if (142 (Dx** -t 4 ub) [l 20 (19)

e, £1 if |47 (DxM — ¢+ 4wk |, =0

with the minimization splitting up into two cases:

Case || A% (Dx*1 — t-+1 1 uk) ||, # 0

For the first case, the minimization problem is formulated as:

k+1 _ ¢k+1 k
24 = (DA — g4 k) - (Dix 6+ +uy) 20)
i ! i i Ve (Dxk+1 — th+l uk) ||, '

Case || A% (Dx*1 —tF+1 +uk) |, =0

In the second case, the equation takes the form:
0e (Dx ' =t +uf) = (/) {; @ lloll, <1} . Q1)
Rearranging yields:
y (DxkH — tl.kJrl +uh) e {o ol <1}
=  2Zy(Dx -t 1 ub) e 22 {o, ¢ ol <1}, (22)
from which can be concluded:

Iy 22 (DX — ¢+ pub) |, < 22 = 122 (DxR -t k) |, < 2y (23)

Consequently, if |42 (Dx*+! — tk+1 4+ uk) ||, < 4}/y, then the z;-update reduces to zero: z+' = 0.
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By combining both cases, we obtain the so-called ‘weighted block soft threshold’ operator [1]:

k+1 k+1 k+1
z _SL},[D,.X -t +ui]

1
i/
= max { <1 7 AZ(DXk+1—t};‘+1+uk)||2) . (Dixk+1 — tl_k+1 + uf‘) ,0 } . 24)

In the case where 4; = A, which is commonly encountered in literature, the regular block soft threshold operator
emerges as a special case.
We have also defined the z, ;-updates and the z, ;-updates, as both sets exhibit a similar structural form.

For readers interested in further details, an alternative and more elegant approach to demonstrating the properties
of this z-minimization is available through its Fenchel conjugate. Specifically, the indicator function combined with
the support function of the unit ball of Z,, as well as Moreau’s decomposition [1]. However, at least in the opinion of
an experimental physicist, this way is less intuitive, which is why we provide the above derivation.

E. Plasmonic map of a truncated gold nano-pyramid at 2.26 eV

2.26 eV %10

y [nm]

50 0 -50
x [nm]

Fig. 1: Deconvolution result obtained using the ADMM-TGV algorithm for the plasmonic map of the truncated gold
nano-pyramid from Fig. 5 at an electron energy-loss of 2.26 eV.

F. MATLAB-Script of the Algorithm

The software for the evaluation of noise parameters can be found athttps://de.mathworks.com/matlabcentral/
fileexchange/180009-noise-evaluation-in-transmission-electron-microscopy-tem.

A software to read ‘.dm4’ files from Gatan Digital Micrograph can be found at https://www.mathworks.com/
matlabcentral/fileexchange/45933-gatan-digital-micrograph-file-reader.

On the following pages, the MATLAB script of the ADMM-TGV deconvolution algorithm for STEM-EELS maps
can be found appended to this PDF. Updates of the algorithm are provided in https://www.mathworks.com/

matlabcentral/fileexchange/181166-admm-tgv-deconvolution-algorithm-for-stem-eels-maps.

If you use the algorithm or parts of it, please quote our paper.

References
[1] Neal Parikh. Proximal algorithms. Foundations and Trends® in Optimization, 1(3):127-239, 2014.
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function DecResult = ADMM_TGV_EELS_maps(EELSData,Kernel,SubtrBack,DetectorPSF,Gain,ReadVAR,Phi, TotalVAR,BackVAR isInterp, Iter,ZLPPos,set_ZLP_zero)

%% Please cite the paper:

% Christian Zietlow and J6rg K. N. Lindner

% An unbiased ADMM-TGV algorithm for the deconvolution of STEM-EELS maps
% Ultramicroscopy 275 (2025), Article 114159

% https://doi.org/10.1016/j.ultramic.2025.114159

% Please note, however, that the authors disclaim any liability for damages or consequences arising from the use of the provided scripts.
% Users are responsible for ensuring the proper functioning and application of the code.

% A software to read '.dm4' files from Gatan Digital Micrograph can be found at https://www.mathworks.com/matlabcentral/fileexchange/45933-gatan-digital-micrograph-file-reader .
% The software for the evaluation of noise parameters can be found at https://de.mathworks.com/matlabcentral/fileexchange/180009-noise-evaluation-in-transmission-electron-microscopy-tem .

% Updates of the below deconvolution algorithm are provided at https://www.mathworks.com/matlabcentral/fileexchange/181166-admm-tgv-deconvolution-algorithm-for-stem-eels-maps .
%% _Definition of input paramter_:

% In the following, EnergyDim characterizes a speficic number of EELS channels, that must be equal for the dimension size of all input
% data that it is mentioned in. For 'Kernel' and 'DetectorPSF', deviations from EnergyDim are automatically corrected for in the script.

% EELSData contains the EELS data cube without padding. Requires size of (YDim,XDim,EnergyDim) as single/double
% Kernel contains e.g. a ZLP measured in vacuum used for the deconvolution., Requires size of (1,EnergyDim) as single/double

% SubtrBack contains the signal background that is subtracted from the EELS data cube, e.g. a ZLP._____Requires size of (YDim,XDim,EnergyDim) as single/double
% DetectorPSF contains the detector point-spread function, with the maximum in the middle of the array._Requires size of (1,EnergyDim) as single/double

% Gain is the total gain (not the smoothed gain) of the detector in counts / beam electron. Requires scalar (Gain) as single/double

% ReadVAR contains all detector noises measured for the individual EELS channels.____ ___Requires scalar (ReadVAR) as single/double

% Phi contains the shifting factor that indicates the energy drift in [0,1]. Requires scalar (Phi) as single/double

% TotalVAR contains all detector noises measured for all EELS channels combined. Requires scalar (TotalVAR) as single/double

% BackVAR contains all noises for the background subtracted from the EELS data cube. _____Requires size of (YDim,XDim,EnergyDim) as single/double
% isInterp set (1) if EELS data was energy aligned using interpolation, else set (0). Requires logical (1) or (0) as logical

% lter gives the number of ADMM-TGYV iterations. Requires scalar (Iterations) as single/double

% ZLPPos gives the index (not loss energy!) where the ZLP starts and ends (Startindex,Endindex). Requires size of (1,2) as single/double

% set_ZLP_zero deletes the ZLP region during deconvolution Requires logical (1) or (0)) as logical

% This might be helpful for the algorithm to succeed if large residuals

% remain after subtraction. These residuals do not necessarily obey the

% regular noise statistics due to missmatches if the subtraction differs much from the data ZLPs.
% If applicable, these residuals might ruin the deconvolution and must be removed.

%% _Check input paramters_-

% Check number of input parameters

if nargin<13
warndlg(‘Input parameters missing for ADMM_TGV_EELS_maps script!')
return

elseif nargin>13
warndlg('To many input parameters for ADMM_TGV_EELS_maps script!')
return

end

% Check size EELSData vs SubtrBack

if ~all(size(EELSData)==size(SubtrBack))
warndlg(‘EELSData and SubtrBack must have the same dimensions for ADMM_TGV_EELS_maps script!")
return

end

% Check size BackVAR vs SubtrBack

if ~all(size(BackVAR)==size(SubtrBack))
warndlg(‘BackVAR and SubtrBack must have the same dimensions for ADMM_TGV_EELS_maps script!')
return

end

% Check size Kernel
if size(size(Kernel),2)> 2 || size(size(Kernel),2) <2
warndlg(‘Kernel has the wrong number of dimension for ADMM_TGV_EELS_maps script!")
return
elseif size(Kernel,1)>1 && size(Kernel,2)>=1
warndlg(‘Kernel has the wrong dimension for ADMM_TGV_EELS_maps script!")
return
end

% Check DetectorPSF
if size(size(DetectorPSF),2)> 2 || size(size(DetectorPSF),2) <2
warndlg(‘'DetectorPSF has the wrong number of dimension for ADMM_TGV_EELS_maps script!')
return
elseif size(DetectorPSF,1)>1 && size(DetectorPSF,2)>=1
warndlg('DetectorPSF has the wrong dimension for ADMM_TGV_EELS_maps script!')
return
end
[~.Ind] = max(ifftshift(DetectorPSF));
if Ind~=1
warndlg('DetectorPSF maximum is not in the middle of the array!")
DetectorPSF = fftshift(DetectorPSF);
[~Ind] = max(ifftshift(DetectorPSF));

if Ind~=1
return
end
end
%% _Create Padding_-

% Padding is necessary to create circular boundaries for the deconvolution.
% Not creating this circular boundary creates artifacts that alter the
% deconvolution results.

OrigLength = size(EELSData,3);
Padding = EELSPadding(EELSData,ZLPPos,DetectorPSF,Gain,ReadVAR,Phi,isInterp);
EELSData = cat(3,EELSData,Padding);



% Adjust the Kernel size accordingly
Diff = size(EELSData,3)-size(Kernel,2);

[~,MaxInd] = max(Kernel,[],2);

Kernel = circshift(Kernel,-MaxInd+1,2);
Kernel = fftshift(Kernel);
if Diff>0

pad1 = zeros([1,ceil( Diff/2)]);

pad2 = zeros([1,floor(Diff/2)]);

Kernel = [pad1,Kernel,pad2];
elseif Diff<0

Ind1 = - floor(Diff/2);

Ind2 = - ceil(Diff/2);

Kernel = Kernel(1,Ind1:end-Ind2);
end
Kernel = ifftshift(Kernel);

% Adjust the background variance size accordingly
Diff = size(EELSData,3)-size(SubtrBack,3);

if Diff>0
pad = zeros([size(SubtrBack, 1),size(SubtrBack,2),Diff]);
BackVAR = cat(3,BackVAR ,pad);

elseif Diff<0
BackVAR = BackVAR(;,:, 1:end-Diff);

end

% Adjust the subtracted background size accordingly
SubtrBack = BackPadding(SubtrBack,EELSData,DetectorPSF,ZLPPos);

% Adjust the detector PSF size accordingly

Diff = size(EELSData,3)-size(DetectorPSF,2);
if Diff>0

pad1 = zeros([1,ceil( Diff/2)]);

pad2 = zeros([1,floor(Diff/2)]);

DetectorPSF = [pad1,DetectorPSF,pad2];
elseif Diff<0

Ind1 = - floor(Diff/2);

Ind2 = - ceil(Diff/2);

DetectorPSF = DetectorPSF(1,Ind1:end-Ind2);
end
%% _Parameter choice for the TGV prior_-

% Start script

WB = waitbar(0,' Define Parameters');

ReadStd = sqrt(ReadVAR);

EELSData(EELSData+ReadStd<0) = randn.*ReadStd; % replace negative values that differ too much from the noise statistics.
EELSSignal = max(EELSData,0); % for the mean noise level, we need a signal that is positive.

% This does not alter the data to be deconvolved.

EELSSig = EELSSignal;
if set_ZLP_zero
SubtrBack( :,;,ZLPPos(1):ZLPPos(2)) = EELSSignal(;:ZLPPos(1):ZLPPos(2)); % sets the region of the ZLP to 0 if selected.
% This might be helpful if data ZLP and subtracted ZLP differ much.
EELSSignal(;,;,ZLPPos(1):ZLPPos(2)) = 0;
BackVAR( ::ZLPPos(1):ZLPPos(2)) = 0;
end

% Calculate amplification factors of the signal noise: omega_s
DetectorPSF = DetectorPSF./sum(DetectorPSF,2);
Kernel = Kernel ./sum(Kernel,2);

SizeDiff = (size(DetectorPSF,2) - size(Kernel,2)+1)/2;
DetectorPSF = DetectorPSF(1,ceil(SizeDiff):end-floor(SizeDiff));

omega_s = ifft(fft(Kernel,[],2)./fft(DetectorPSF,[1,2),01,2);
omega_s = omega_s./max(omega_s,[].2);

omega_s = sum(omega_s,2);

clearvars DetectorPSF

% Calculate amplification factors of the detector noise: omega_d
% & Calculate derivative of the signal: Deriv

if isinterp
Pearsinterp = zeros([1,size(EELSSignal,3)]);
Pearsinterp(1,1:2) = [2/3,1/6];
Pearsinterp(1,end) = 1/6;

PSFinter = ifft(sqrt(abs(fft(Pearsinterp,[1,2))).01,2);
PSFInter(PSFInter<0) = 0;

PSFinter = PSFiInter./sum(PSFinter,all’);

omega_d = ifft(fft(Kernel,[],2)./fft(PSFinter,[],2),[1.2);
omega_d = omega_d./max(omega_d,[],2);
omega_d = sum(omega_d,2);

clearvars Pearsinterp PSFInter

Deriv = zeros(size(EELSSignal));
Sigma_Interp =0;
else
omega_d =1;
Deriv = reshape(EELSSignal,[size(EELSSignal, 1)*size(EELSSignal,2),size(EELSSignal,3)]);

Deriv = mean(Deriv,1);



Deriv = (Deriv - circshift(Deriv,-1,2)).A2;

Deriv = reshape(Deriv,[1,1,size(Deriv,3)]);
Deriv = repmat(Deriv,[size(EELSSignal,1),size(EELSSignal,2),1]);
Sigma_Interp =1/4;

end

clearvars isinterp

% Calculate Noise Sums

Sum = sum(EELSSig(:: 1:OrigLength),3);

Mean = mean(Sum,all’);

Norm = Sum./Mean;

IntDev = std(Sum,0, all’)./Mean;

A = round(sqrt(size(EELSSignal,1)*size(EELSSignal,2)));

% Noise Estimate in Energy Direction and Lambda_Z paramters
ReadVAR = repmat(ReadVAR size(EELSSignal));
SignalNoise = omega_s.*Gain.*EELSSignal ./Sum.A2;
DetecNoise = omega_d.*(1 + 1./A).*ReadVAR./Sum.A2;
BackSubtrNoise = omega_s.*BackVAR /Sum.A2;

NoiseEst Z = Mean.*sqrt(mean(SignalNoise + DetecNoise + BackSubtrNoise, ‘all'));

lambda_1z = 1./(2.*NoiseEst_Z);
lambda_2z = 1./(2.*NoiseEst_Z);

% Noise Estimate in Lateral Direction and Lambda_XY paramters

sig = EELSSignal;
sig(;;,OrigLength+1:end)=0;

mu_R = (Sum - sig)./Sum;
Read_R = TotalVAR - ReadVAR;

Read_R(;:OrigLength+1:end)=0;

k_square = (1 + IntDev.A2./4) .* Gain .* mu_R.*Mean + (1 + IntDev.”2).*Read_R;
k_square = k_square./Mean.A2;

SignalNoise = omega_s.*(1 + IntDev.A2./4).* Gain.*mu_R.A2 .* EELSSignal./Sum./Mean ;
NormNoise = k_square .*(EELSSignal./Sum).A2;

DetecNoise = omega_d.*(1 + IntDev.~2).*(1 + Phi./A).*mu_R.A2 *ReadVAR./Mean.A2 ;
BackSubtrNoise = omega_s.*IntDev.*2.*BackVAR./Sum./Mean;

Deriv = Sigma_Interp.A2 .* Deriv./Mean."2;

NoiseEst_ XY = Mean.*sqrt(mean(SignalNoise + NormNoise + DetecNoise + BackSubtrNoise + Deriv, ‘all'));
lambda_1xy = 1./(2.*NoiseEst_XY);
lambda_2xy = 1./(2.*NoiseEst_XY);

% Parameter for Deconvolution Algorithm
ReadVAR = (1+1./A).*ReadStd.A2;
clearvars -except EELSData Kernel SubtrBack Gain ReadVAR OrigLength Iter lambda_1z lambda_2z lambda_1xy lambda_2xy WB Norm Mean

%% _Initialize deconvolution algorithm_:

waitbar(0.5,WB,'Initialize Deconvolution’);
% Initialize Residual Balancing Limits

lim =10;

Lim =100;

% Initialize Penalty Parameters

gamma =1,
gamma_0 =1;
gamma_p =1;
eta =1,

% Initialize lambda_2xyz
lambda_2xyz = sqrt(lambda_2xy.*lambda_2z);

% Initialize z-Variables

Sizelmg = size(EELSData);

20 = max((EELSData- SubtrBack)./Norm,0);
zp = max((EELSData- SubtrBack)./Norm,0);
z1x = zeros(Sizelmg);

zly = zeros(Sizelmg);

z1z = zeros(Sizelmg);

72X = zeros(Sizelmg);

2y = zeros(Sizelmg);

72z = zeros(Sizelmg);

22Xy = zeros(Sizelmg);

72xZ = zeros(Sizelmg);

z2yz = zeros(Sizelmg);

% Initialize u-Variables

u0 = zeros(Sizelmg);
up = zeros(Sizelmg);
ulx = zeros(Sizelmg);
uly = zeros(Sizelmg);
ulz = zeros(Sizelmg);
u2x = zeros(Sizelmg);
u2y = zeros(Sizelmg);
u2z = zeros(Sizelmg);
u2xy = zeros(Sizelmg);
u2xz = zeros(Sizelmg);

u2yz = zeros(Sizelmg);



% Initialize x/t-Variables

X = zeros(Sizelmg);
T1 = zeros(Sizelmg);
T2 = zeros(Sizelmg);
T3 = zeros(Sizelmg);

% Initialize Kernel

kernel = Kernel;

Kernel = zeros(Sizelmg);
Kernel(1,1,:) = kernel;

A = fftn(Kernel,Sizelmg);

clearvars Kernel kernel

At = conj(A);
AtA = At*A;

% Initialize Total Generalalized Variation

dx =[1,-1,0];

dy =[1,-1,015

dz(., 1) =1,

dz(.,;2) =-1;

dx = fftn(dx,Sizelmg);
dy = fftn(dy,Sizelmg);
dz = fftn(dz,Sizelmg);
dtx = conj(dx);

dty = conj(dy);

dtz = conj(dz);

DtD = dtx.*dx + dty.*dy + dtz.*dz;

% Initialize denominator for x/t- update

A11 = gamma_0.*AtA + gamma_p + gamma.*DtD ; A12 = -gamma *dtx; A13 = -gamma *dty;A14 = -gamma *dtz;
A21 = - gamma.*dx ; A22 = gamma + eta .*DtD  ; A23 = eta *dy .*dtx; A24 = eta .*dz .*dtx;
A31 = - gamma.*dy ; A32 = eta .*dx .*dty; A33 = gamma + eta *DtD  ;A34 = eta .*dz *dty;
A41 = - gamma.*dz ; A42 = eta .*dx *dtz; A43 = eta *dy .*dtz; A44 = gamma + eta *DtD ;
C11 = ((A22.*A33.*A44) + (A23.*A34.*A42) + (A24.*A32.*A43) - (A42.*A33.*A24)- (A43.*A34.*A22) - (A44.*A32.*A23) );

C12 = -((A21.*A33.*Ad4) + (A23.*A34.*A41) + (A24.*A31.*A43) - (A41.*A33.*A24)- (A43.*A34.*A21) - (A44.*A31.*A23));

C13 = ((A21.*A32.*A44) + (A22.*A34.*A41) + (A24.*A31.*A42) - (A41.*A32.*A24)- (A42*A34.*A21) - (A44.*A31.*A22) );

C14 = -((A21.*A32.*A43) + (A22.*A33.*A41) + (A23.*A31.*A42) - (A41.*A32.*A23)- (A42.*A33.*A21) - (A43.*A31.*A22) );

C21 = -((A12.*A33.*Ad4) + (A13.*A34.*A42) + (A14.*A32.*A43) - (A42.*A33.*A14)- (A43.*A34.*A12) - (A44.*A32.*A13));

C22 = ((A11.*A33.*Ad4) + (A13.*A34.*A41) + (A14.5A31.%A43) - (A41.*A33.*A14)- (A43.*A34.*A11) - (A44.*A31.*A13) );

C23 = -((A11.*A32.*A44) + (A12.*A34.*A41) + (A14.*A31.*A42) - (A41.*A32.*A14)- (A42.*A34.*A11) - (A44.*A31.*A12) );

C24 = ((A11.*A32.*A43) + (A12.*A33.%A41) + (A13.*A31.%A42) - (A41.*A32.*A13)- (A42.*A33.*A11) - (A43.*A31.*A12) );

C31 = ((A12.*A23.*A44) + (A13.*A24.*A42) + (A14.*A22.*A43) - (A42.*A23.*A14)- (A43.*A24.*A12) - (A44.*A22*A13) );
C32 = -((A11.*A23.*Ad4) + (A13.*A24.*A41) + (A14.*A21.*A43) - (A41.*A23.*A14)- (A43.*A24.*A11) - (A44.*A21.*A13) );
C33 = ((A11.*A22.*A44) + (A12.*A24.*A41) + (A14.5A21.5A42) - (A41.*A22.*A14)- (A42*A24*A11) - (A44.*A21.*A12) );
clearvars A44

C34 = -((A11.*A22.*Ad3) + (A12.*A23.*A41) + (A13.*A21.*A42) - (A41.*A22.*A13)- (A42.*A23.*A11) - (A43.*A21.*A12) );
clearvars A42 A43

C41 = -((A12.*A23.*A34) + (A13.*A24.*A32) + (A14.*A22.*A33) - (A32.*A23.*A14)- (A33.*A24.*A12) - (A34.*A22.*A13) );
C42 = ((A11.*A23.*A34) + (A13.*A24.*A31) + (A14.*A21.*A33) - (A31.*A23.*A14)- (A33.*A24.*A11) - (A34.*A21.*A13) );
C43 = -((A11.*A22.*A34) + (A12.*A24.*A31) + (A14.*A21.*A32) - (A31.*A22.*A14)- (A32.*A24.*A11) - (A34.*A21.*A12) );
clearvars A14 A24 A34

C44 = ((A11.*A22.*A33) + (A12.*A23.%A31) + (A13.*A21.*A32) - (A31.*A22.*A13)- (A32.*A23.*A11) - (A33.*A21.*A12) );
clearvars A12 A13 A22 A23  A32 A33

detA = 1./(A11.*C11 + A21.*C21 + A31.*C31 + A41.*C41);
clearvars A11 A21 A31 A41

iA11 = C11.*detA ; clearvars C11; iA21 = C12.*detA ; clearvars C12 ; iA31 = C13.*detA ;clearvars C13; iA41 = C14.*detA ; clearvars C14 ;
iA12 = C21.*detA ; clearvars C21 ; iA22 = C22.*detA ; clearvars C22 ; iA32 = C23.*detA ;clearvars C23 ; iA42 = C24.*detA ; clearvars C24 ;
iA13 = C31.*detA ; clearvars C31; iA23 = C32.*detA ; clearvars C32 ; iA33 = C33.*detA ;clearvars C33; iA43 = C34.*detA ; clearvars C34 ;
iA14 = C41.*detA ; clearvars C41 ; iA24 = C42.*detA ; clearvars C42 ; iA34 = C43.*detA ;clearvars C34 ; iA44 = C44.*detA ; clearvars C44 ;
clearvars detA

waitbar(1,WB, ' Define Parameters');
close(WB);

%% _Iterate deconvolution algorithm_

WB = waitbar(0,{['Iteration ',num2str(0)," of ",num2str(lter), ' finished!'],[num2str(0),'%});
for iter=1:Iter
doResBal = ~mod(iter,round(10” (round(log10(iter)*10)/10))) || iter<10 || iter==Iter; % Performs residual balancing logarithmically spaced 10 times per magnitude

% x/t updates

vO =20 -u0 ;
vp =zp -up ;
vix =zlx -ulx;
vly =zly -uly;
vlz =2z1z -ulz;
V2X =Z2X -u2x;
v2y =2z2y -u2y;
v2z =122z -u2z;
V2xy =z2Xxy - u2xy;
V2XZ = Z2XZ - u2xz;
V2yz =z2yz - u2yz;

xnum1 = gamma_0.*At.*fftn(v0 ,Sizelmg) + gamma_p.*fftn(vp ,Sizelmg) + gamma.*fftn(Dt(v1x ,2) ,Sizelmg) + gamma.*fftn(Dt(v1y ,1),Sizelmg) + gamma.*fftn(Dt(v1z ,3),Sizelmg);
clearvars vO vp

xnum2 = - gamma *fftn(vix,Sizelmg) + eta .*fftn(D( v2x ,2) ,Sizelmg) + eta .*fftn(D( v2xy,1),Sizelmg) + eta .*fftn(D( v2xz,3),Sizelmg);

clearvars v1x v2x

xnum3 = - gamma *fftn(v1y,Sizelmg) + eta .*fftn(D( v2xy,2) ,Sizelmg) + eta .*fftn(D( v2y ,1),Sizelmg) + eta .*fftn(D( v2yz,3),Sizelmg);



clearvars v1y v2xy v2y

xnumé = - gamma *fftn(v1z,Sizelmg) + eta .*fftn(D( v2xz,2) ,Sizelmg) + eta

clearvars v1z v2xz v2yz v2z

if doResBal
x_old =x;
T1_old =T1;
T2_old = T2;
T3_old = T3;
end
x = iAT1*xnum1 + iA12.*xnum2 + iA13.*xnum3 + iA14.*xnum4;

T1 = iA21*xnum1 + iA22.*xnum2 + iA23.*xnum3 + iA24.*xnum4;
T2 = iA31*xnum1 + iA32.*xnum2 + iA33.*xnum3 + iA34.*xnum4;
T3 = iA41*xnum1 + iA42.*xnum2 + iA43.*xnum3 + iAd44.*xnum4;
clearvars xnum1 xnum2 xnum3 xnumé4

x = ifftn(x ,Sizelmg);

T1 = ifftn(T1,Sizelmg);
T2 = ifftn(T2Sizelmg);
T3 = ifftn(T3,Sizelmg);

x = sign(real(x )).*abs(x );

T1 = sign(real(T1)).*abs(T1);
T2 = sign(real(T2)).*abs(T2);
T3 = sign(real(T3)).*abs(T3);

if doResBal
x_old =x - x_old;
T1_old = T1-T1_old;
T2_old = T2 - T2_old;
T3_old = T3 - T3_old;
end

% z_0 update

Ax = ifftn(A.*fftn(x,Sizelmg),Sizelmg);
Ax = sign(real(Ax)).*abs(Ax);
vO = Ax + uQ;
if doResBal
z0_old = z0;
end
z0 = RMPG(EELSData,z0,v0,gamma_0,Norm,SubtrBack,Gain,ReadVAR,OrigLength,1);
u0 =v0 - z0;
clearvars v0
if doResBal

Atz0 = ifftn(At.*fftn(z0 - z0_old,Sizelmg),Sizelmg);
clearvars z0_old

Atz0 = sign(real(Atz0)).*abs(Atz0);

SO = -gamma_0.*Atz0;

clearvars Atz0

AtU0 = ifftn(At.*fftn(u0,Sizelmg) Sizelmg);
Atu0 = sign(real(Atu0)).*abs(Atu0);
SOnorm = gamma_0.*Atu0;

clearvars Atu0

RO = sqrt(mean((Ax - z0).A2,'all"));
ROnorm = sqrt(max(mean(Ax.A2,'all'),mean(z0.72,'all"));
RnormO = RO/ROnorm;
clearvars RO ROnorm
end
clearvars Ax

% z_p update
vp =X +up;
if doResBal

zp_old = zp;
end

zp = max(vp,0);

up  =vp-zp;

clearvars vp

if doResBal
Sp = -gamma_p.*(zp - zp_old);
clearvars zp_old
Spnorm = gamma_p.*up;

Rp = sqgrt(mean((x - zp).”2,'all");
Rpnorm = sqrt(max(mean(x.A2, all’),mean( zp.A2,'all')));
Rnormp = Rp./Rpnorm;
clearvars Rp Rpnorm
end

% z_1 update
Dx = D(x,2);

vix =Dx-T1+ ulx

Dy =D(1)
vly =Dy-T2+uly;

Dz =D(x3);
vlz =Dz-T3 +ulz

vnorm = sqrt((lambda_1xy.*v1x).A2 + (lambda_1xy.*v1y).A2 + (lambda_1z.*v1z).A2);

if doResBal

Hftn(D( v2yz,1),Sizelmg) + eta

Hftn(D( v2z ,3),Sizelmg);



z1x_old = z1x;
end
z1x = wBST(v1x,vnorm,lambda_1xy,gamma);
ulx =vix-zlix
clearvars vix

if doResBal
z1x old = z1x -z1x old ;
S = -gamma.*Dt(T1_old + z1x_old,2);
Stnorm = gamma.*Dt(u1x 2);
Sl1a = gamma.*(D(-x_old,2) + z1x_old );

clearvars z1x_old
Slanorm = gamma.*ulx;

R = mean((Dx - z1x - T1).A2,all’);
RTnorm = mean((Dx -T1).A2,all);
R2norm =mean(( zlx ).A2/all);
end
clearvars Dx
if doResBal
zly_old = z1y;
end
z1ly = wBST(v1y,vnorm,lambda_1xy,gamma);
uly =vly-zly;
clearvars v1y
if doResBal
zly old = zly -zlyold ;
S =S -gamma*Dt(T2_old + zly_ old,1);
S2norm = gamma.*Dt(uly )
S2a = gamma.*(D(-x_old,1) + z1ly_old );
clearvars z1y_old
S2anorm = gamma.*uly;
R =R+ mean((Dy - z1y - T2).72,all);

R1norm = R1norm + mean((Dy - T2).72,all);
R2norm = R2norm + mean(( zly ).72/all’);
end
clearvars Dy

if doResBal
z1z_old = z1z
end
z1z = wBST(v1zvnorm,lambda_1z,gamma);
clearvars vnorm
ulz =vlz-z1z
clearvars viz

if doResBal
z1z_old = 71z -z1z_old ;
S =S-gamma.*Dt(T3_old + z1z_old ,3);
S3norm = gamma.*Dt(ulz 3)
S3a = gamma.*(D(-x_old,3) + z1z_old );
clearvars x_old z1z_old
S3anorm = gamma.*ulz
SNO = max(mean( SOnorm.”2 ,'all'),mean((Spnorm + STnorm + S2norm + S3norm - Sp - S).A2,'all");
SNp = max(mean( Spnorm.A2 ,'all'),mean((SOnorm + STnorm + S2norm + S3norm - SO - S ).A2,'all"));
SN = max(mean((SThorm + S2norm + S3norm).A2,'all’),mean((SOnorm + Spnorm - S0 - Sp).A2,'all");

clearvars SOnorm Spnorm S1norm S2norm S3norm

Snorm0 = sqrt(mean(S0.12,"all')/SNO);

clearvars SO SNO

Snormp = sqrt(mean(Sp.~2,all’)/SNp);

clearvars Sp SNp

S = sgrt(mean(S.A2,'all') + mean(S1a.A2,'all') + mean(S2a.72,'all') + mean(S3a.72,'all"));

R =sqrt(R + mean((Dz - z1z - T3).A2,'all"));
Rlnorm = R1norm + mean((Dz -T3).A2,all");
R2norm = R2norm + mean(( zlz ).~2/all’);

RN = sqrt(max(R1norm,R2norm));
clearvars R1Tnorm R2norm

Rnorm = R/RN;
clearvars R RN
end
clearvars Dz

% z_2 update
Htx = Dt(T1,2);
v2x = Htx + u2x;

Htxy = Dt(T1,1) + Dt(T2,2);
v2xy = Htxy + u2xy;

Hty = Dy(T2,1);
v2y =Hty +u2y;

Htxz = Dt(T1,3) + Dt(T3,2);
v2xz = Htxz + u2xz;

Htyz = Dt(T2,3) + D(T3,1);
v2yz = Htyz + u2yz;



Htz = Dt(T3,3);
Vv2z = Htz + u2z;

vhorm = sqrt((lambda_2xy.*v2x).A2 + (lambda_2xy.*v2xy).A2 + (lambda_2xy.*v2y).A2 + (lambda_2xyz.*v2xz).A2 + (lambda_2xyz.*v2yz).A2 + (lambda_2z.*v2z).A2);

if doResBal
z2x_old = z2x;
end
z2x = wBST(v2x,vnorm,lambda_2xy,eta);
u2x =v2x -z2x;
clearvars v2x

if doResBal
s1 = - eta.*D(z2x - z2x_old,2);
clearvars z2x_old
sTnorm = eta.*D(u2x 2);
r = mean((Htx - z2x).A2,'all’);
rinorm = mean((Htx  ).”2/all’);
r2norm = mean((  z2x).72,'all’);
end

clearvars Htx

if doResBal
z2xy_old = z2xy;
end
z2xy = wBST(v2xy,vnorm,lambda_2xy,eta);
u2xy = v2xy - z2xy;
clearvars v2xy

if doResBal
z2xy old = z2xy  -z2xy_old ;
s1 =s1 -eta*D(Dt(-T2_old,2) + z2xy_old ,1);
sTnorm = sTnorm + eta.*D( uxy 1)
s2 = - eta.*D(Dt(-T1_old,1) + z2xy_old ,2);
clearvars z2xy_old
s2norm = eta.*D( uzxy ,2);
r =r + mean((Htxy - z2xy).*2,'all’);
rlnorm = rinorm + mean((Htxy ).A2,allY);
r2norm = r2norm + mean(( z2xy). "2, all");
end

clearvars Htxy

if doResBal
z2y old = 22y ;
end
z2y = wBST(v2y,vnorm,lambda_2xy,eta);
u2y =v2y -z2y;
clearvars v2y
if doResBal
s2 =52 -eta*(D(z2y - z2y_old,1));

clearvars z2y old
s2norm = s2norm + eta*(D(  u2y 1))

r =r  + mean((Hty - z2y).72,all’);

rinorm = rinorm + mean((Hty ~ ).A2,'all’);

r2norm = r2norm + mean((  z2y).A2,'all’);
end

clearvars Hty

if doResBal
z2xz_old = z2xz;
end
z2xz = wBST(v2xz,vnorm,lambda_2xyz,eta);
U2XZ = V2XZ - 22XZ;
clearvars v2xz

if doResBal
z2xz_old = z2xz  -z2xz_old ;
s1 =s1 -eta*D(Dt(-T3_old,2) + z2xz_old ,3);
stnorm = slnorm + eta.*D( u2xz ,3)
s = mean(s1.72,'all’);
sn = max(mean((STanorm - S1a).”A2,"all’), mean(s1norm.A2 ,‘all);
clearvars S1a
SN = SN + max(mean((sTnorm -s1).A2,'all'’), mean(S1anorm.*2,all");

clearvars S1anorm s1 sTnorm

s3 = - eta.*D(Dt(-T1_old,3) + z2xz_old ,2);
s3norm = eta.*D( u2xz ,2);
r =r + mean((Htxz - z2xz).72,'all');

rinorm = rinorm + mean((Htxz ).A2all);
r2norm = r2norm + mean(( 22xz).72,'all’);
end
clearvars Htxz

if doResBal
z2yz_old = z2yz;
end
z2yz = wBST(v2yz,vnorm,lambda_2xyz,eta);
u2yz = v2yz - z2yz;
clearvars v2yz

if doResBal
z2yz old = z2yz  -z2yz old ;
s2 =s2 -eta*D(Dt(-T3_old,1) + z2yz_old ,3);

s2norm = s2norm + eta.*D( u2yz ,3);



s =5 + mean(s2./72,'all");

sn = sn + max(mean((S2anorm - S2a).72,'all'), mean(s2norm.”2 ,'all"));
clearvars S2a
SN = SN + max(mean((s2norm - s2).A2,'all'), mean(S2anorm.*2,"all");

clearvars S2anorm s2 s2norm

s3 =s3 - eta*D(Dt(-T2_old,3) + z2yz_old ,1);
s3norm = s3norm + eta.*D( u2yz 1);
r =r + mean((Htyz - z2yz).A2,'all’);
rlnorm = rinorm + mean((Htyz )42, all’);
r2norm = r2norm + mean(( 22yz). A2, all");

end

clearvars Htyz

if doResBal
z2z_old = z2z;
end
72z = wBST(v2z,vnorm,lambda_2z,eta);
u2z =v2z -22z;
clearvars v2z vnorm
if doResBal
s3 =s3 -eta*D(z2z - z2z_old,3);
clearvars z2z_old
s3norm = s3norm + eta.*D(u2z 3);
s = sqrt(s + mean(s3.42,'all"));

sn = sqrt(sn + max(mean((S3anorm - S3a).A2,'all'), mean(s3norm.A2 ,'all')));
clearvars S3a

SN = sqrt(SN + max(mean((s3norm -s3).72,'all’), mean(S3anorm.”2,all")));
clearvars S3anorm s3 s3norm

snorm = s/sn;
clearvars s sn
Snorm = S/SN;
clearvars S SN

r =sqrt(r  + mean((Htz - z22).72,all"));
rinorm = rinorm + mean((Htz ~ ).”~2,'all’);
r2norm = r2norm + mean((  z2z).72,'all");
m = sqrt(max(rinorm,r2norm));
clearvars rinorm r2norm
rnorm = r/rn;
clearvars r

end

clearvars Htz

if doResBal
% Applies the residual balancing to the penalty parameters gamma_0 (z0 residuals), gamma_p (z_p residuals), gamma (z1 residuals) and eta (z2 residuals)

% gamma_0 update
tau_gamma_0 = sqrt(Rnorm0/SnormO0);

if isnan(tau_gamma_0) || tau_gamma_0==0 || tau_gamma_0==inf
if gamma_0 > 1
tau_gamma_0 = limA(-1);
elseif gamma_0 < 1
tau_gamma_0 = lim~( 1);
else
tau_gamma_0 = 1;
end
end

tau_gamma_0 = max(min(tau_gamma_0,10% (Lim)/gamma_0),10"(-Lim)/gamma_0);
gamma_0 = gamma_0.*tau_gamma_0;
u0 =u0 ./tau_gamma_0; % all u variables must be rescaled inversely

% gamma_p update
tau_gamma_p = sqrt(Rnormp/Snormp);

if isnan(tau_gamma_p) || tau_gamma_p==0 || tau_gamma_p==inf
if gamma_p > 1
tau_gamma_p = limA(-1);
elseif gamma_p < 1
tau_gamma_p = lim~( 1);

else
tau_gamma_p = 1;
end
end
tau_gamma_p = max(min(tau_gamma_p,10/(Lim)/gamma_p), 10/ (-Lim)/gamma_p);
gamma_p = gamma_p.*tau_gamma_p;
up =up ./tau_gamma_p; % all u variables must be rescaled inversely

% gamma update
tau_gamma = sqrt(Rnorm/Snorm);

if isnan(tau_gamma) || tau_gamma==0 || tau_gamma==inf
if gamma > 1
tau_gamma = lim~(-1);
elseif gamma < 1
tau_gamma = lim~( 1);
else
tau_gamma = 1;
end
end



tau_gamma = max(min(tau_gamma,10/ (Lim)/gamma), 10/ (-Lim)/gamma);

gamma = gamma.*tau_gamma;

ulx =ulx ./tau_gamma; % all u variables must be rescaled inversely
uly =uly ./tau_gamma;

ulz =ulz ./tau_gamma;

% eta update
tau_eta = sqrt(rnorm/snorm);

if isnan(tau_eta) || tau_eta==0 || tau_eta==inf
if eta > 1
tau_eta = lim~(-1);
elseif eta < 1
tau_eta = lim~( 1);
else
tau_eta = 1;
end
end
tau_eta = max(min(tau_eta, 10" (Lim)/eta), 10" (-Lim)/eta);
eta = eta.*tau_eta;
u2x = u2x./tau_eta; % all u variables must be rescaled inversely
u2xy = u2xy./tau_eta;
u2y = u2y./tau_eta;
u2xz = u2xz./tau_eta;
u2yz = u2yz/tau_eta;
u2z = u2z /tau_eta;

% Update denominator for x/t update
if tau_gamma_0 ~=1 && tau_gamma_p ~=1 && tau_gamma ~=1 && tau_eta~=

A11 = gamma_0.*AtA + gamma_p + gamma.*DtD; A12 = -gamma *dtx; A13 = -gamma .*dty;A14 = -gamma .*dtz;
A21 = - gamma.*dx ; A22 = gamma + eta *DtD  ; A23 = eta*dy *dtx ; A24 = eta.*dz *dtx ;

A31 = - gamma.*dy ; A32 = eta .*dx .*dty; A33 = gamma + eta*DtD ; A34 = eta.*dz *dty ;

A4l = - gamma.*dz ; Ad42 = eta .*dx .*dtz; A43 = eta*dy *dtz; Ad4 = gamma + eta*DtD  ;

C11 = ((A22.*A33.*Ad4) + (A23.*A34.*A42) + (A24.*A32.*A43) - (A42.*A33.*A24)- (A43*A34.*A22) - (A44.*A32.*A23) );

)
(A41.*A33*A24)- (A43.*A34.*A21) - (A44.*A31*A23) ),
(A41.*A32.*A24)- (A42.*A34.*A21) - (A44.*A31.*A22) );
(

A41.*A32.*A23)- (A42.*A33.*A21) - (A43.*A31.*A22) );

(
C13 = ((A21.*A32.*Ad4) + (A22.*A34.*A41) + (A24.*A31.*A42
C14 = -((A21.*A32.*A43) + (A22.*A33.*A41) + (A23.*A31.*A42

+
C12 = -((A21.*A33.*Ad4) + (A23.*A34.*A41) + (A24.*A31.*A43)
+
+

C21 = -((A12*A33.4A44) + (A13.*A34.*A42) + (A14*A32.*A43) - (A42.*A33*AT4)- (A43.*A34.*A12) - (A44.*A32.*A13));
€22 = ((A11*A33*A44) + (A13*A34.*A41) + (A14.*A31.5A43) - (A41*A33*A14)- (A43*A344AT1) - (A44*A3T1*AT3) );
€23 = -((A11.A32*A44) + (A12*A34*A4T) + (A14*A314A42) - (A41*A32*AT4)- (A42.*A34*AT1) - (A44.*A31*A12) );
C24 = ((A11*A32*A43) + (A12*A33*A41) + (A13.*A31.5A42) - (A41*A32*A13)- (A42*A33.4A11) - (A43*A312A12) );

C31 = ((A12.5A23.*A44) + (A13.A24.5A42) + (A14.5A22.*A43) - (A42.*A23.*A14)- (A43*A24*A12) - (A44 *A22.*A13));
C32 = -((A11.*A23.A44) + (A13.A24.%A41) + (A14.5A21.5A43) - (A41.*A23*A14)- (A43.*A24.*A11) - (A44.*A21*A13));
C33 = ((A11.5A22.5A44) + (A12.A24.5A41) + (A14.5A21.5A42) - (A41.*A22.*AT14)- (A42*A24*A11) - (A44*A21*A12));
clearvars A44

C34 = -((A11.5A22.5A43) + (A12A23.*Ad1) + (A13.5A21.5A42) - (A41.*A22.*A13)- (A42.*A23*AT1) - (A43.*A21.A12));
clearvars A42 A43

C41 = -((A12.*A23.#A34) + (A13.*A24.%A32) + (A14.5A22.*A33) - (A32.*A23.*A14)- (A33.*A24.*A12) - (A34.*A22.*A13));
C42 = ((A11.5A23.#A34) + (A13.*A24.%A31) + (A14.5A21.*A33) - (A31.*A23.*A14)- (A33.*A24.%A11) - (A34.*A21.*A13));
C43 = -((A11.*A22.A34) + (A12.*A24.*A31) + (A14.5A21.5A32) - (A31.A22.*A14)- (A32.*A24.*A11) - (A34.*A21.*A12));
clearvars A14 A24 A34

C44 = ((A11.5A22.#A33) + (A12.A23.5A31) + (A13.5A21.5A32) - (A31.*A22.*A13)- (A32.*A23*A11) - (A33.*A21.*A12) );
clearvars A12 A13 A22 A23  A32 A33

detA = 1./(A11.*C11 + A21.*C21 + A31.*C31 + A41.*C41);
clearvars A11 A21 A31 A41

iA11 = C11.*detA ; clearvars C11; iA21 = C12.*detA ; clearvars C12; iA31 = C13.*detA ;clearvars C13; iA41 = C14.*detA ; clearvars C14 ;
iA12 = C21.*detA ; clearvars C21 ; iA22 = C22.*detA ; clearvars C22 ; iA32 = C23.*detA ;clearvars C23 ; iA42 = C24.*detA ; clearvars C24 ;
iA13 = C31.*detA ; clearvars C31; iA23 = C32.*detA ; clearvars C32 ; iA33 = C33.*detA ;clearvars C33 ; iA43 = C34.*detA ; clearvars C34 ;
iA14 = C41.*detA ; clearvars C41 ; iA24 = C42.*detA ; clearvars C42 ; iA34 = C43.*detA ;clearvars C34 ; iA44 = C44.*detA ; clearvars C44 ;
clearvars detA
end
end
waitbar(round(iter/Iter,3),WB,{['lteration ',num2str(iter)," of ',num2str(lter), ' finished!'],[num2str(round(iter/Iter*100,2)),'%1});

end
DecResult = max(x./Mean,0); % divide by mean intensity to get overall loss probabilities
close(WB);

clearvars -except DecResult
end

function z0 = RMPG(Image,z0,v0,gamma_0,N,ZLP,a,VAR,OrgLength,Newtlter)
% restoring mixed Poisson-Gaussian noise (RMPG).

% Restores the deconv. estimate to the original state: by blurring the

% deconv result, adding the subtracted bacground and by undoing the

% normalization. Then, it is comared to the measurement data.

z0(z0<0) = 0;
for I=1:Newtlter
Est =N.*z0 + ZLP;
Noise = a.*Est + VAR;
dz = N.*(Est-lmage) ./(Noise) - a*N .*(Est-lmage).”2./(2.*Noise."2) + a.*N./(2.*Noise) - gamma_0.*(v0-z0);
dz2 = af2*N.A2*(Est-Image).”2./(Noise.A3) - 2.*a*N.A2.*(Est-Image) ./( Noise.A2) + N.~2./( Noise) - a.*2.*N.*2./(2.*Noise.*2) + gamma_0

z0 =20 - dz./dz2;
20(z0<0) = 0;
end
z0(;;,OrgLength+1:end) = vO(;;,OrgLength+1:end);
clearvars -except z0
end



function z_i = wBST(v_i,vnorm,lambda,gamma)
% weighted block soft thresholding operator

k = lambda.*2./gamma;

z_i = zeros(size(v_i));

z_i(vnorm>=k) = v_i(vhorm>=k)- k .* v_i(vnorm>=k)./vnorm(vnorm> =k);
clearvars -except z_i

end

function Grad = D(x,dim)
% forward derivative

Grad = x - circshift(x,+1,dim);
clearvars -except Grad
end

function Grad = Dt(x,dim)
% backward derivative

Grad = x - circshift(x,-1,dim);
clearvars -except Grad
end

function Padding = EELSPadding(EELSData,ZLPPos,DetectorPSF,Gain,ReadVAR,Phi,isinterp)

% Padding is created using the right side of the ZLP of the EELS data.
ReadStd = sqrt(ReadVAR);

% Select ZLP for padding

ZLPInd1 = ZLPPos(1,1);

ZLPInd2 = ZLPPos(1,2);

Padding = EELSData(;:ZLPInd1:ZLPInd2);

% Normalize padding to height of 1

pad = reshape(Padding,[size(Padding, 1)*size(Padding,2),size(Padding,3)]);
pad = mean(pad,1);
pad = pad./max(pad,[],2);

%Adjust detector PSF for the noise

PSFFactor = DetectorPSF./max(DetectorPSF,[],2);

SizeDiff = (size(PSFFactor,2) - size(pad,2)+1)/2;
PSFFactor = PSFFactor(1,ceil(SizeDiff).end-floor(SizeDiff));
PSFFactor = ifftshift(PSFFactor)./sum(PSFFactor,2);
PSFFactor = ifft(fft(PSFFactor,[],2).*fft(pad,[1,2),[1,2);
PSFFactor = max(PSFFactor,[],2)(-1);

% get start and end values of the EELS data
StartPoint = mean(EELSData(;,:,1:5),3);
EndPoint = mean(EELSData(;:end-5:end),3); % sets the endpoint as mean value of the last 5 points

% Adjust padding to the start and end points of the EELS data
Padding = reshape(Padding,[size(Padding,1)*size(Padding,2),size(Padding,3)]);
Padding = mean(Padding,1);

[~Ind] = max(Padding,[].2);
Padding = Padding-min(Padding,[],2);
Padding = Padding./max(Padding,[],2);

Padding = reshape(Padding,[1,1,size(Padding,2)]);
Padding = repmat(Padding,[size(EELSData,1),size(EELSData,2)]);
Padding = Padding.*repmat((EndPoint-StartPoint).*PSFFactor,[1,1,size(Padding,3)])+repmat(StartPoint,[1,1,size(Padding,3)]);

% To blend in the padding, we add the same noises as are foud in the regular data
% This also helps to easily calculate the mean noise level of the data for
% the ADMM-TGV algo

% Poisson distr. signal noise

Padding = Padding./(Gain).*10"(-12);
Padding = imnoise(Padding, 'poisson’);
Padding = Padding.*10/(12).*(Gain);

% Correlations in the signal noise

SizeDiff = (size(DetectorPSF,2) - size(Padding,3)+1)/2;

DetectorPSF = DetectorPSF(1,ceil(SizeDiff).end-floor(SizeDiff));
DetectorPSF = ifftshift(DetectorPSF)./sum(DetectorPSF,2);

DetectorPSF = reshape(DetectorPSF,[1,1,size(DetectorPSF,2)]);
DetectorPSF = repmat(DetectorPSF,[size(Padding,1),size(Padding,2),1]);

Padding = ifft(fft(Padding,[],3).*fft(DetectorPSF,[],3),[1,3);
Padding = sign(real(Padding)).*abs(Padding);
Padding = Padding(::Ind:end);

% Gaussian distr. read-out noise of the detector
ReadNoise = randn((size(Padding))).*ReadStd;

% Correlations in the detector noise due to possible interpolation of the data (energy realignment)
if isinterp

Pearsinterp = zeros([1,size(Padding,3)]);

Pearsinterp(1,1:2) = [2/3,1/6];

Pearsinterp(1,end) = 1/6;



PSFinte

r

= ifft(sqrt(abs(fft(Pearsinterp,[],2))).[1,2);

PSFInter(PSFInter<0) = 0;

PSFinte
PSFinte
PSFinte

ReadNoise
ReadNoise

ReadBa
ReadBa
ReadBa

r
r
r

ck
ck
ck

ReadBack

end

Padding

= PSFiInter./sum(PSFinter, all’);

= reshape(PSFinter,[1,1,size(Padding,3)]);

= repmat(PSFInter,[size(Padding,1),size(Padding,2),1]);
= ifft(fft(ReadNoise,[],3).*fft(PSFInter,[],3),(1.3);
= sign(real(ReadNoise)).*abs(ReadNoise);

= randn((size(Padding(1,1,:)))).*ReadStd./(sqrt(size(Padding, 1)*size(Padding,2))).*sqrt(Phi);
= ifft(fft(ReadBack,[1,3). *ft(PSFInter(1,1,),[1,3),[1.3);

= sign(real(ReadBack)).*abs(ReadBack);

= repmat(ReadBack,[size(Padding, 1),size(Padding,2),11);

Padding + ReadNoise + ReadBack;

clearvars -except Padding

end

function SubtrBack = BackPadding(SubtrBack,EELSData,DetectorPSF,ZLPPos)
%% ====n=mmmmmmmmmmmmommmee _Create Padding_----------------------------
% Padding is created using the right side of the ZLP of the EELS data.

% Select ZLP for padding
= ZLPPos(1,1);
= ZLPPos(1,2);

ZLPInd1
ZLPInd2
Padding

padding
[~Ind]

if Diff<0

EELSData(;,;,ZLPInd1:ZLPInd2);

mean(reshape(Padding, [size(Padding, 1)*size(Padding,2),size(Padding,3)]),1);

= max(padding,[],2);

PaddingSize = ZLPInd2 - ZLPInd1 + 1 -Ind + 1;
TotalSize = size(SubtrBack,3) + PaddingSize;
Diff = size(EELSData,3) - TotalSize;

SubtrBack = SubtrBack(;:, 1:end+ Diff);

end

% Normalize padding to height of 1
pad = reshape(Padding,[size(Padding,1)*size(Padding,2),size(Padding,3)]);

pad =
pad =

mean(pad,1);
pad./max(pad,[],2);

%Adjust detector PSF for the noise
PSFFactor = DetectorPSF./max(DetectorPSF,[],2);
= (size(PSFFactor,2) - size(pad,2)+1)/2;

SizeDiff

PSFFactor
PSFFactor
PSFFactor
PSFFactor

PSFFactor(1,ceil(SizeDiff):end-floor(SizeDiff));
ifftshift(PSFFactor)./sum(PSFFactor,2);
ifft(fft(PSFFactor, [],2).*fft(pad,[],2),[1.2);
max(PSFFactor,[],2)A(-1);

% get start and end values of the EELS data
StartPoint = mean(SubtrBack(;:,1:5),3);

EndPoint

mean(SubtrBack(;,;,end-5:end),3); % sets the endpoint as mean value of the last 5 points

% Adjust padding to the start and end points of the background data

Padding
[~,Ind]

Padding
Padding
Padding

Padding
Padding
Padding

SizeDiff

Padding
Padding
Padding

if Diff>0
Padd2

end

reshape(Padding,[size(Padding, 1)*size(Padding,2),size(Padding,3)]);

= max(mean(Padding,1),[1,2);

mean(Padding,1);
Padding-min(Padding,[],2);
Padding./max(Padding,[1.2);

reshape(Padding,[1,1,size(Padding,2)]);
repmat(Padding,[size(SubtrBack,1),size(SubtrBack,2)]);
Padding.*repmat((EndPoint-StartPoint).*PSFFactor,[1,1,size(Padding,3)]) +repmat(StartPoint,[1,1,size(Padding,3)]);

= (size(DetectorPSF,2) - size(Padding,3)+1)/2;

DetectorPSF = DetectorPSF(1,ceil(SizeDiff).end-floor(SizeDiff));
DetectorPSF = ifftshift(DetectorPSF)./sum(DetectorPSF,2);

DetectorPSF = reshape(DetectorPSF,[1,1,size(DetectorPSF,2)]);
DetectorPSF = repmat(DetectorPSF,[size(Padding,1),size(Padding,2),1]);

ifft(fft(Padding,[],3).*fft(DetectorPSF,[],3),[1,3);
sign(real(Padding)).*abs(Padding);
Padding(:,: Ind:end);

= ones([size(Padding, 1),size(Padding,2),Diff]).*EndPoint;
Padding = cat(3,Padd2,Padding);

SubtrBack = cat(3,SubtrBack,Padding);

clearvars -except SubtrBack

end
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