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Abstract

The problem of Joint Blind Source Separation (JBSS), i.e., the joint estimation of latent
sources from multiple observed datasets, occurs in many areas like speech processing
and biomedical signal processing, among others. For example, the latent sources found
in biomedical datasets may provide biomarkers for the detection of disorders like

schizophrenia.

Several matrix and tensor decomposition methods have been developed to achieve
JBSS, i.e., assuming a generative model, to recover the true underlying sources up to
permutation and scaling ambiguities and to correctly align the sources across datasets.
Independent Vector Analysis (IVA), a multiset extension of the well-known Independent
Component Analysis (ICA), achieves JBSS by maximizing independence of sources
within a dataset and maximizing dependence of sources across datasets. There also
exists multiset Canonical Correlation Analysis (mCCA), which was originally developed
to identify variables that are maximally correlated across multiple datasets, called
canonical variables. As correlation between more than two canonical variables can be
quantified in different ways, different mCCA objective functions have been proposed,
with the commonly known ones being sumcor, maxvar, minvar, genvar, and Ssqcor.
While mCCA does not specify a generative model in its formulation, by assuming the
JBSS model, we can study under which conditions the canonical variables estimated by

mCCA recover the true sources.

The conditions under which a method is able to achieve JBSS are more generally
known as source identification conditions. Assuming the JBSS generative model matches
the underlying physics of the data, the source identification conditions of a JBSS
method must be satisfied to interpret the estimated sources, i.e., to attach physical
meaning to them. Therefore, it is important to be aware of these conditions. The source
identification conditions of IVA and mCCA-maxvar for JBSS have been derived in
prior work. In this thesis, we extend the literature by deriving and proving the source
identification conditions of mCCA-sumcor and discussing theoretical considerations for
those of mCCA-minvar, mCCA-genvar, and mCCA-ssqcor. We substantiate the proposed

theoretical conditions with numerical results. We also establish the connections between

il
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an important set of matrix and tensor decomposition methods for JBSS. Understanding
how different methods are connected and knowing their source identification conditions
helps clarify which methods can be useful in which applications.

In some applications, for example, precision medicine, more important than identifying
latent sources is understanding how different (matrix) datasets are related, which is
challenging when datasets are high-dimensional and noisy. We propose a novel method
for identifying the relationship structure among multiple datasets using JBSS, which
describes which subsets of datasets have similar latent sources and how these subsets of
datasets are related, and verify the success of the proposed method in simulations.

Finally, we apply JBSS methods to real-world functional Magnetic Resonance Imaging
(fMRI) and functional Ultrasound (fUS) datasets. We show that the JBSS methods
can perform data fusion of multi-task fMRI data and identify potential biomarkers
for schizophrenia, and that the proposed method identifies a meaningful relationship
structure among the multi-task fMRI datasets. Lastly, we show that JBSS methods
estimate active brain networks in fUS data that are similar to those found by the gold

standard analysis method, under less strict assumptions.



Zusammenfassung

Das Problem der gemeinsamen blinden Quellentrennung (Joint Blind Source Sepa-
ration, JBSS), d. h. der gemeinsamen Schétzung verborgener Quellen aus mehreren
beobachteten Datenséatzen, ist von hoher Relevanz in vielen Fachdisziplinen, unter an-
derem in der Sprachverarbeitung und der biomedizinischen Signalverarbeitung. Beispiels-
weise konnen die in biomedizinischen Datensétzen gefundenen Quellen Biomarker fiir

die Erkennung von Erkrankungen wie Schizophrenie liefern.

Verschiedene Matrix- und Tensorzerlegungsmethoden sind entwickelt worden, um
JBSS zu erzielen, d. h. unter der Annahme eines generativen Modells die wahren zu-
grunde liegenden Quellen bis auf Permutations- und Skalierungsmehrdeutigkeiten wieder-
herzustellen und die Quellen tiber Datensétze hinweg korrekt anzuordnen. Die Analyse
unabhéngiger Vektoren (Independent Vector Analysis, IVA), eine Erweiterung der sehr
bekannten Analyse unabhéngiger Komponenten (Independent Component Analysis,
ICA) fiir mehrere Datensétze, erreicht JBSS durch Maximierung der Unabhéngigkeit von
Quellen innerhalb eines Datensatzes und Maximierung der Abhangigkeit von Quellen
iiber Datensatze hinweg. Des Weiteren gibt es die Kanonische Korrelationsanalyse
fiir mehrere Datensétze (multiset Canonical Correlation Analysis, mCCA), welche ur-
spriinglich entwickelt wurde, um Variablen zu identifizieren, die iiber mehrere Datensatze
hinweg maximal korreliert sind, sogenannte kanonische Variablen. Da die Korrelation
von mehr als zwei kanonischen Variablen auf unterschiedliche Weise quantifiziert werden
kann, wurden verschiedene mCCA-Optimierungsfunktionen vorgeschlagen. Die fiinf
bekanntesten sind sumcor, maxvar, minvar, genvar und ssqcor. Obwohl mCCA in seiner
Formulierung kein generatives Modell festlegt, konnen wir durch die Annahme des
JBSS-Modells untersuchen, unter welchen Bedingungen die von mCCA geschatzten

kanonischen Variablen den wahren Quellen entsprechen.

Die Bedingungen, unter denen eine Methode JBSS erzielen kann, werden allge-
mein als Quellenidentifikationsbedingungen bezeichnet. Unter der Annahme, dass das
JBSS-Modell die zugrunde liegende Physik der Daten beschreiben kann, miissen die
Quellenidentifikationsbedingungen einer JBSS-Methode erfiillt sein, um die geschatzten

Quellen interpretieren zu konnen, d. h. ihnen eine physikalische Bedeutung zuordnen
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zu konnen. Daher ist es wichtig, diese Bedingungen zu kennen. Die Quellenidenti-
fikationsbedingungen von IVA und mCCA-maxvar fiir JBSS wurden in der Literatur
bereits hergeleitet. In dieser Arbeit erweitern wir den Stand der Literatur, indem wir
die Quellenidentifikationsbedingungen von mCCA-sumcor herleiten und beweisen und
theoretische Uberlegungen zu den Bedingungen von mCCA-minvar, mCCA-genvar und
mCCA-ssqcor diskutieren. Wir unterstiitzen die vorgestellten theoretischen Bedingun-
gen mit numerischen Ergebnissen. Wir stellen auflerdem die Zusammenhéange zwischen
wichtigen Matrix- und Tensorzerlegungsmethoden fiir JBSS her. Die Kenntnis iiber
die Zusammenhange verschiedener Methoden und tiber ihre Quellenidentifikationsbe-
dingungen tragt dazu bei, Klarheit dariiber zu schaffen, welche Methoden fiir welche
Anwendungen niitzlich sein kénnen.

Noch wichtiger als die verborgenen Quellen zu identifizieren ist es in einigen Anwen-
dungen, beispielsweise der Prazisionsmedizin, die Beziehung zwischen verschiedenen
(Matrix-)Datensétzen zu verstehen. Dies ist bei hochdimensionalen und verrauschten
Datensatzen eine Herausforderung. Wir schlagen eine neuartige Methode zur Identi-
fizierung der Beziehungsstruktur zwischen mehreren Datenséatzen mithilfe von JBSS
vor, die beschreibt, welche Untergruppen von Datensatzen dhnliche zugrunde liegende
Quellen haben und wie diese Untergruppen zusammenhéngen. Anschliefend demonstri-
eren wir den Erfolg der vorgeschlagenen Methode in Simulationen.

Abschlieflend verwenden wir JBSS-Methoden fiir die Analyse von realen funktio-
nellen Magnetresonanztomographie (fMRT)-Daten und von funktionellen Ultraschall
(fUS)-Daten. Wir zeigen, dass die JBSS-Methoden eine Datenfusion der fMRT-Daten
durchfiihren und potenzielle Biomarker fiir Schizophrenie identifizieren konnen. Zudem
identifiziert die vorgeschlagene Methode eine sinnvolle Beziehungsstruktur zwischen den
fMRT-Datensatzen. Schlieflich zeigen wir, dass JBSS-Methoden aktive Gehirnregionen
in fUS-Daten identifizieren konnen, die ahnlich zu denen sind, die mit der als Goldstan-
dard geltenden Analysemethode gefunden wurden, allerdings unter weniger strengen

Annahmen.
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1 Introduction

1.1 Motivation

A core problem in the field of neuroscience is to localize the sets of brain regions,
in the following called brain networks, associated with various mental processes or
behavior [Pes14], or, more broadly speaking, to understand how the functioning of the
brain relates to the mind [Bas11]. The brain can be seen as a complex system consisting of
multiple subnetworks [Pes14] that control all our actions and thoughts, and decomposing
the brain into these subnetworks helps to understand brain organization [Pes14; Bas11].
In order to gain knowledge about the brain, brain data can be collected using different
techniques. Structural Magnetic Resonance Imaging (sMRI), shown in Figure 1.1(a),
captures the anatomy of the brain, which is composed of white matter and gray matter
and surrounded by Cerebrospinal Fluid (CSF) [Cer01; Gie04]. However, sMRI does
not provide insights into the function of brain networks. Instead, functional imaging
techniques can infer brain activity indirectly through cerebral blood flow changes [Ror04;

Kim23]. For example, functional Magnetic Resonance Imaging (fMRI) measures the

high activation

low activation

Figure 1.1: (a) Structural Magnetic Resonance Imaging (sMRI) data of the human brain,
visualized in three planes. (b) Functional Magnetic Resonance Imaging (fMRI)
data of the human brain (red/yellow color shows active brain networks), overlaid
over sMRI data (anatomical gray image).
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Separation
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\

Figure 1.2: Idea of blind source separation visualized for the application in fMRI data. On the
left, the observed dataset is shown, which contains a mixture of the sources. On
the right, the three separated sources (yellow, red, and blue active brain networks)
are shown.

Blood Oxygenation Level Dependent (BOLD) signal, which is higher when brain activity
increases [Mum06]. For visualization, fMRI data is typically overlaid over an sMRI brain

atlas to see where the active brain networks are located, as shown in Figure 1.1(b).

When functional imaging data of the brain is acquired, a mixture of all active brain
networks is observed, as shown symbolically in Figure 1.2 on the left. Therefore, the
observed data must be unmixed to reveal the separate active brain networks, as shown
in Figure 1.2 on the right. Note that the active brain networks are not necessarily
connected, as we see for the blue one. The problem of separating the active brain
networks, more generally called latent sources, only based on observed mixtures of these
sources is called Blind Source Separation (BSS) [Jut91]. Several methods have been
developed to solve the BSS problem, which primarily work by assuming that the true
underlying sources have specific statistical properties and then estimate sources having

these assumed properties.

Finding the latent sources in fMRI data with BSS not only helps to understand how
the healthy brain functions, but also how neurological disorders affect the brain [Smi04].
To allow generalization of drawn conclusions, fMRI experiments are typically conducted
on multiple subjects or multiple times on the same subject [Smi04]. For example, in
a study with multiple subjects performing the same tasks, similar brain networks are
expected to be active. Therefore, to have a more reliable estimate of the active brain
networks, they can be estimated jointly, which is referred to as Joint Blind Source

Separation (JBSS) [Li09]. Also in JBSS, specific statistical properties are assumed for
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Figure 1.3: Idea of joint blind source separation visualized for the application in fMRI data.
On the left, two observed datasets are shown (e.g., from two different subjects),
where each observed dataset contains a mixture of the sources within that dataset.
On the right, the three separated sources (yellow, red, and blue active brain
networks) are shown for each dataset. Each source is dependent across datasets,
visualized by the same color in different transparencies.

the sources within a dataset, and additionally, dependence of sources across datasets is
exploited. This is visualized in Figure 1.3. On the left, there are two observed datasets
containing mixtures of the sources, and on the right, the separated sources are shown
in yellow, red, and blue for each dataset. Dependence of sources across datasets is
represented by the same color in different transparencies. Note that the sources across
datasets are dependent but not necessarily exactly the same; for example, the brain

networks can be slightly different in their shape and activation.

1.2 State of the art

Since the introduction of BSS in the mid 1980s [Her86], many solutions for this problem
have been proposed. In this thesis, we focus on JBSS methods that assume a linear
mixing of the sources. Here, one of the oldest and probably most well-known methods
for achieving BSS, i.e., recovering the true underlying sources up to permutation and
scaling ambiguities, for one dataset is Independent Component Analysis (ICA) [Jut91;
Com94; Hyv00; Adal4]. Based on the assumption that the true sources are statistically
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independent, ICA can recover the sources from the observed mixtures up to permutation
and scaling ambiguities. ICA has been extended to multiple datasets using either the joint
ICA [Cal06] or the group ICA [Cal01] models, which are limited in performance, though,
as they assume a common mixing matrix or a group-level source vector for all datasets.
More recently, Independent Vector Analysis (IVA) [Kim06] has been proposed, a more
flexible extension of ICA to multiple datasets that additionally leverages dependence of
sources across datasets. In IVA, a Source Component Vector (SCV) is defined as a vector
containing the dependent sources across datasets, e.g., an SCV contains all yellow, all
red, or all blue sources in Figure 1.3, and then IVA achieves JBSS, i.e., recovers the true
underlying sources up to permutation and scaling ambiguities and correctly aligns the
sources across datasets, by minimizing the mutual information across all SCVs [Adal4].

Besides these methods, which are specifically developed for performing (joint) BSS,
there exist methods that were initially introduced for jointly analyzing multiple datasets,
but have later been shown to also be able to achieve JBSS when assuming a generative
model. One of the earliest joint decomposition approaches is Canonical Correlation Anal-
ysis (CCA) [Hot36], which transforms two datasets into a new space where the correlation
of the transformed variables, called canonical variables, is maximized. The extension
of CCA to more than two datasets is called multiset Canonical Correlation Analysis
(mCCA) [Ket71] or Generalized Canonical Correlation Analysis (GCCA) [Sor21]. While
for CCA, maximization of pairwise correlations can be achieved using the singular
value decomposition of the data’s whitened cross-covariance matrix [Sch08], maximizing
correlations in mCCA is not as straightforward because mCCA deals with more than
two datasets at a time. As there are multiple pairwise correlations to consider, there
are several different ways of quantifying correlation within a covariance matrix (such
as the sum of the matrix’s entries and the sum of the squared entries, among others),
each leading to a different mCCA objective function. Kettenring summarized the five
mCCA objective functions sumcor, maxvar, minvar, genvar, and ssqcor along with their
solutions in 1971 [Ket71]. Both CCA and mCCA are frequently used methods because
they are well-understood and easy to interpret, compared with neural networks.

The conditions under which methods like CCA and mCCA are able to achieve
JBSS are known as source identification conditions. There are references attempting to
derive these conditions, but they are limited in scope. The strongest possible source
identification conditions for correlation-based JBSS methods (including mCCA) are
outlined in [Viall], but they are not derived for specific methods such as mCCA. The
source identification conditions of CCA are derived and proven in [Li08], and of mCCA-
maxvar and a modified sumcor objective function in [Li09]. The source identification

conditions of the other mCCA methods remained unknown.
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The so far mentioned JBSS methods—IVA, CCA, and mCCA—are all joint matrix
decompositions, i.e., each dataset is represented as a matrix that is factorized into a set of
matrices. The joint decomposition of multiple datasets is of interest when the datasets are
related, e.g., fMRI datasets of multiple subjects or tasks. Besides decomposing multiple
matrix datasets using joint matrix decompositions, they can be concatenated along a
third dimension such that they form a tensor, i.e., a multi-dimensional (here 3D) array,
and one can also take advantage of the inherent relationship among the datasets using
tensor decompositions, which decompose the tensor into a core tensor multiplied with a
matrix along each dimension [Kol09]. Compared with matrix decompositions, which
are highly non-unique without imposing additional constraints (such as independence),
tensor decompositions are unique under mild conditions [Kol09]. Since the connection
between the well-known CANDECOMP/PARAFAC (CP) tensor decomposition [Har70;
Car70] and joint (simultaneous) matrix diagonalization [Chal4]| has been established
in 2006 [DLO06], several tensor decomposition methods for (joint) BSS have been
developed [Le24]. Such a variety of JBSS methods—matrix and tensor decomposition-
based—makes it hard for researchers to pick one for their specific application, and
therefore, it is of interest to understand how methods are connected and which methods
are suitable for which applications.

The suitability of a JBSS method for a specific application depends on two key factors.
First, the JBSS model needs to match the underlying physics of the application, i.e.,
the way the observed data was generated [Ada22]. Second, the source identification
conditions of a specific JBSS method need to be satisfied. Only if these two key factors
are given, it makes sense to interpret the estimated sources, i.e., to attach physical
meaning to them. Of course, for real-world data without knowledge on the ground-truth
sources, one often cannot verify if these conditions are satisfied or not, but at least one
should be able to check if it is reasonable to assume that the conditions of a method
are satisfied for a specific application, or if another method should be used instead.

BSS and JBSS methods have been used in many applications. For example, brain
networks found using ICA show developmental differences in autism spectrum dis-
order [Bosl4] or may provide biomarkers for neurological diseases like Alzheimer’s
disease [Gre04; de 18] or schizophrenia [Cal04; Koc12]. Furthermore, ICA has been
successfully used to evaluate the effect of epilepsy on language functions [Karll] and for
seizure onset localization [Boe24]. Applications of mCCA include identifying abnormal
brain networks in patients with schizophrenia [Suil3] and improving the understanding
of how the dysregulation of specific microRNAs contributes to the loss of brain areas in
major depressive disorders [Qi18]. Besides interpreting the sources directly, they can

be combined with machine learning methods to solve classification or prediction tasks.
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For example, the combination of ICA with neural networks can help to classify beats
in electrocardigram (ECG) data [Yu08], e.g., for arrhythmia classification [Sar14], to
separate fetal ECG from the mother’s ECG [Zia23], or to classify and remove artifacts
in magnetoencephalography (MEG) data [Tre21], and the combination of ICA with a
Gaussian Mixture Model has been used for tumor classification in MRI data [Chel§].
Furthermore, BSS is not limited to the medical field. ICA is also highly relevant in
speech processing [Kim07], where each source corresponds to a speaker and a set of
microphones observes mixtures of the speakers, and in wireless communications [Luol8§],
among others. For example, neural networks in combination with ICA have been used
for the prediction of the future value of exchange rates in currency markets [Hen19] and
for the prediction of large-scale ground deformation [Pen24|, and ICA with Support
Vector Machine (SVM) for hyperspectral image classification [Fall4]. IVA has been
used for molecular data fusion [Bou21], the combination of IVA with k-means cluster-
ing for abandoned object detection [Bhil7], and IVA with SVM for misinformation
detection [Dam24]. Extensions of mCCA have been proposed to address new challenges,
e.g., scalable mCCA for large-scale word embedding [Ful7], mCCA utilizing structural
regularization [Kanl8| and subspace intersection approaches [Sor21] for cross-language
information retrieval, and supervised mCCA for audio- and video-based emotion recog-
nition [Gaol7]. Further advancements include deep-learning-based extensions of mCCA,
e.g., Deep GCCA (DGCCA) for phonetic transcription of acoustic and articulatory
measurements and for friend recommendation [Benl7], and DGCCA with an attention
mechanism for emotion recognition [Lan20]. Friend recommendation has also been
enhanced with graph mCCA [Chel9] and with a graph autoencoder for mCCA [Kal21].
In some applications, however, more important than identifying latent sources is
understanding how different (matrix) datasets are related. For example, the idea of pre-
cision medicine is that treatment should be tailored to individual patient characteristics
instead of treating every patient in the same way [Kos19a]. By viewing each patient as
a dataset and grouping similar datasets together, the treatment of a new patient can be
adjusted based on what is known from other patients with similar disease characteristics.
Another application where it is of interest to identify the relationship among multiple
datasets is in the detection and prediction of epileptic seizures. It has been found that
the correlations between measures of the peripheral Autonomic Nervous System (ANS)
increased before Generalized Tonic-Clonic Seizures (GTCSs) and decreased after the
seizures [Vie21] and that the changes in these correlations therefore might contain
information for predicting seizures [Vie23]. Therefore, identifying the changes in the
correlations of the ANS measures, i.e., identifying the relationship among multiple ANS

datasets at several time instances, can provide novel biomarkers for seizure detection or
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even seizure prediction.

However, identifying the relationship among multiple datasets is challenging because
the observed datasets are often high-dimensional and noisy. Therefore, using sources
estimated by JBSS, where each source has a one-to-one relationship among all datasets,
can help tackle this problem. Research in this direction already exists, but we are not
aware of a method with the goal to identify the relationship structure among multiple
datasets using estimated sources from JBSS, which describes which subsets of datasets
have similar latent sources and how these subsets of datasets are related. Some of the
related methods in the literature identify the relationship among the individual sources
within each SCV instead of the relationship structure among the datasets. This is,
for example, done in [Akh21], where the dependence structure of latent sources, i.e.,
datasets across which the sources are dependent, is identified using IVA. Also in [Yan22],
an approach based on IVA and Gershgorin discs is proposed for identifying groups of
sources that are related with each other. However, for both methods, a postprocessing
would be necessary to identify the relationship structure among the datasets from the
method’s output, which highlights the need to develop a method with this goal directly.

In this thesis, we address the following two important challenges in the field of JBSS:

e Choice of JBSS method for a specific application:

The large number of JBSS methods makes it hard for researchers to choose one
for their application. Different methods are able to achieve JBSS, i.e., to recover
the true sources up to permutation and scaling ambiguities and to correctly
align sources across datasets, under different assumptions, and the results will
depend on whether a method’s assumptions are likely to be satisfied. In addition,
understanding how methods are connected helps to figure out their advantages
and disadvantages, and this information, together with understanding which
method has which assumptions, clarifies which method is suitable for which type

of application.

e Identification of the relationship among multiple datasets using JBSS:

Understanding how datasets are related is challenging when datasets are high-
dimensional and noisy. One way to simplify the problem is to look at the latent
sources estimated by JBSS and make use of how these sources of different datasets
are related to each other. However, one source can be related among all datasets,
another one only among a subset of datasets, another one among a different subset,
and so on. Thus, it is an open question how the relationship among multiple

datasets can be summarized and quantified by fusing this information, i.e., how
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the sources estimated by JBSS can be used to identify the relationship structure
among multiple datasets, which describes which subsets of datasets have similar

latent sources and how these subsets of datasets are related.

1.3 Contributions

This thesis aims at addressing the challenges in the field of JBSS described in the previous

section. The contributions of this thesis can be divided into theoretical and application-

specific contributions. In the theoretical contributions, we establish the connections

between different JBSS methods, propose their source identification conditions, and

present a robust method for identifying the relationship among multiple datasets. Then,

we apply JBSS methods to real-world biomedical applications. In the following, we

first summarize the theoretical and then the application-specific contributions in more
detail.

Theoretical contributions:

(i)

Establish the connections between matrix and tensor decomposition methods for
JBSS. (Chapter /)

We first provide a concise overview of the matrix decomposition methods ICA,
IVA, CCA, and mCCA, and the tensor decomposition method PARAFAC2, a more
flexible alternative to the well-known CP tensor decomposition. Then, we derive
the connections between the two popular mCCA methods sumcor and maxvar
and prove that under specific constraints, the canonical variables estimated by
these two methods are scaled versions of each other. Lastly, we show that the
PARAFAC2 and IVA models are intimately related: both can be formulated as the
multiplication of a mixing matrix with a source matrix for each dataset, with the
difference that PARAFAC?2 imposes stronger constraints on the mixing matrices
and IVA imposes stronger constraints on the source matrices. In simulations,
we demonstrate the differences between PARAFAC2 and IVA in two different
scenarios and show that also PARAFAC?2 is able to achieve JBSS.

Propose the source identification conditions of mCCA methods for JBSS. (Chap-
ter 5)

After summarizing the source identification conditions of ICA, IVA, CCA, and
mCCA-maxvar, we derive and prove the source identification conditions of mCCA-
sumcor, conjecture those of mCCA-minvar, and discuss theoretical considerations

for those of mCCA-genvar and mCCA-ssqcor. We substantiate the proposed
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theoretical conditions with simulations and test the statistical efficiency of the
five mCCA methods for finite samples in experiments that are close to (but not
exactly) violating their conditions. Based on our experiments, genvar seems to have
the least restrictive source identification conditions among all mCCA methods
and to be also more statistically efficient than the other methods. Therefore,
we generally recommend genvar as the preferred mCCA method for JBSS (over
sumcor and maxvar, despite being the perhaps most commonly used methods)
and recommend maxvar only in specific scenarios based on our experiments. With
these findings, we partly answer the question of which JBSS method should be

used in which application.

(iii) Identify the relationship structure among multiple datasets using JBSS methods.
(Chapter 6)

As the last theoretical contribution, we propose a novel method for identifying
the relationship structure among multiple datasets using JBSS, being the first
to address this challenge to the best of our knowledge. In the first step, latent
sources are estimated using IVA. In step 2, with the help of bootstrap-based
hypothesis testing, the SCVs are identified as “common”, i.e., all sources in an SCV
are correlated with each other, or “structured”, i.e., only subsets of sources are
correlated. In the third step, hierarchical clustering is applied to features extracted
from the structured SCVs, and the relationship structure among the datasets
is revealed in the hierarchical clustering. In simulations, we first demonstrate
that the proposed method outperforms competing techniques in step 2 and then
verify the success of the complete method for identifying the relationship structure

among multiple datasets.
Application-specific contributions:

(i) Find biomarkers for schizophrenia. (Chapter 7)

We show that IVA and PARAFAC2 can perform data fusion, i.e., joint analysis of
multiple related datasets, of fMRI data collected from patients with schizophrenia
and healthy controls who performed three different tasks in which they needed
to press a button when different auditory or visual stimuli occurred. IVA and
PARAFAC2 estimate almost the same sources, which correspond to brain networks
that are expected to be active during these tasks. This indicates the success of
both methods for achieving JBSS on real-world fMRI data. Furthermore, those
brain networks whose activity is significantly different in patients and controls are

promising candidates for brain-based biomarkers in the detection of schizophrenia.
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(ii) Identify the relationship structure among multiple task fMRI datasets. (Chapter 7)

We apply the proposed method to the previously introduced fMRI dataset to
identify the relationship structure among the task datasets. The proposed method
groups task datasets from similar tasks together, which verifies the method’s
success on real-world fMRI data and paves the way for future applications like

identifying patients with similar disease characteristics for precision medicine.

(iii) Map the 3-dimensional (3D) pathway of visual information processing. (Chapter 8)

As the last contribution, we study the application of ICA and IVA to understand
where visual information is processed in the 3D mouse brain, based on only 2-
dimensional (2D) observations collected with functional Ultrasound (fUS). FUS is
a relatively new 2D functional imaging technique, introduced in 2011 [Mac11], with
a higher spatiotemporal resolution than fMRI. The gold standard for analyzing
fUS data collected during a task is using correlation images. These have the
disadvantage that they assume the same brain response strength for all stimuli
(which has been shown to vary across stimuli) and that they do not take information
across the 2D observations into account. Therefore, we propose analyzing fUS data
using ICA and IVA, which do not make any assumptions on the stimulus responses.
The sources estimated by both methods match the active brain networks found by
correlation images, and thus, both methods can be used to analyze fUS task data.
While ICA might split or merge brain networks and requires (time-consuming)
manual alignment, IVA might miss brain networks but automatically aligns them

by leveraging the information across slices.

In the following, we provide the reader with a mathematical definition of BSS and
JBSS and present the matrix and tensor decomposition methods that we study in
this thesis. We continue with the theoretical and application-specific contributions as
described above and complete the thesis with a summary of the most important findings

and a discussion about interesting future directions.



2 Joint Blind Source Separation

In this chapter, after introducing the notation used in this thesis, we mathematically
frame the problems of Blind Source Separation (BSS) and Joint Blind Source Separation

(JBSS) and define what is meant by source identification conditions.

2.1 Notation

In the remainder of this thesis, scalars are denoted by italicized small letters, a, vectors by
bold small letters, a, and matrices by bold capital letters, A. If not stated differently, the
n™ column of A € RM*N is denoted as A(:,n) € RM or a, € RM as a more compact
notation of a.,, the m'™ row of A is denoted as A(m,:) € RN or a,,. € RIXNV,
and the (m,n)™ element of A is denoted as A(m,n) or amy. The superscript (-)7
denotes the transpose of a matrix, HH% denotes the squared Frobenius norm of a
matrix, diag(a) denotes a diagonal matrix with the vector a on the main diagonal, and
blkdiag(A1,...,Ap) denotes a block-diagonal matrix with the matrices Aq,..., Ay on
the main diagonal blocks. The matrix I, y denotes the (N x N)-identity matrix, and
Ox«n denotes a (N x N)-matrix full of zeros. The expected value operator is denoted
by E{-}, the differential entropy of a continuous random variable a by H(a), and the
mutual information of two random variables a,, and ay, by Z(apm; ay). The covariance

matrix of a random vector a, is denoted as C,, = E {ana;g}, and the covariance

[k] (k]

matrix of a random vector al*l is denoted as Cg"” for better readability (instead of

Ca[k}). The cross covariance matrix of two random vectors a,, and a, is denoted as
CL’”’”]. When an eigenvalue decomposition (EVD) or Singular Value Decomposition
(SVD) is performed, we assume without loss of generality (w.l.o.g.) that the eigenvalues
or singular values ay, ..., ay are sorted in descending order, i.e., a; > --- > ap. The
big-O complexity of an algorithm is denoted by O(-). The most commonly used symbols

are summarized in the List of Symbols at the end of the thesis.

11
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2.2 Blind Source Separation for K = 1 dataset

Let x € RY denote a dataset, represented as a random vector, which is assumed to be

generated according to the model [Hyv00]
x = As, (2.1)

where A € RV*N is an unknown invertible mixing matrix, and

is an unknown source vector containing the source components s,. W.l.o.g., the source
vector is assumed to have zero mean, i.e., E{s} = 0p. The goal of BSS is to estimate

the source vectors [Hyv00]

s = Wx,

where W € RV>*N ig an invertible demixing matrix. BSS is successfully achieved if the
estimated source vector S recover the true source vector s up to unavoidable permutation

and scaling ambiguities [Hyv00], i.e., if
s =PI,

where P € RV >N ig an arbitrary permutation matrix, and I' € RVXN g a diagonal
scale matrix. Then, the desired W is W = PT'A ™1, If the true source components are
assumed to have unit variance and unit-variance source components are estimated, then
the scale ambiguity reduces to a sign ambiguity, i.e., W = Pf‘A_l, where I' € RV XV

is a diagonal matrix with diagonal elements equal to either —1 or 1.

Since matrix factorizations are generally non-unique, constraints have to be added to
get a unique solution for W and 8. These constraints typically enforce the assumptions
made in a specific method. In Section 3.1, the ICA method [Hyv00] is presented, where

the assumed constraint is independence of the source components in s.
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2.3 Joint Blind Source Separation for K > 1 datasets

Now let there be K datasets X[k], k=1,..., K, which are assumed to be generated by
the model [Li09]

xFl = AlFIglH =1 K. (2.2)
Here, Alkl ¢ RNXN , k=1,..., K, are again unknown invertible mixing matrices, and
o
shl= | : | erV, k=1,.. K,
i
[]

are unknown zero-mean source vectors containing the source components s, '. The goal

of JBSS is to estimate the source vectors [Li09]
skl — wilkl (k]

k]

JBSS is successfully achieved if the estimated source vectors sl recover the true source

k]

vectors sl up to unavoidable permutation and scaling ambiguities [And12], i.e., if

st — prl*lslil =1, K.

While the diagonal scale matrix Tkl € RV*N
permutation matrix P € RY*Y must be the same for all datasets [And12]. This

means that the source components can be permuted arbitrarily within a dataset, but

can be different for each dataset, the

the permutation must be the same for each dataset so that the source components
are aligned across datasets. Also here, the scale ambiguity can be reduced to a sign

ambiguity by assuming and estimating unit-variance source components.

As in ICA, also in IVA, different methods have different assumptions, which are
enforced through the corresponding constraints. A common and practical assumption in
JBSS is that the source components 37[{6] within a dataset are independent [Li09; Has20],
and when additionally dependence of source components across datasets is leveraged,
this leads to the IVA method presented in Section 3.2. However, another possible
constraint is that source components 57[1]6] across datasets are maximally correlated, i.e.,
linear dependent, leading to the CCA and mCCA methods presented in Sections 3.3

and 3.4.
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2.4 Source identification conditions for BSS and
JBSS

In this section, we introduce the definition of source identification conditions for BSS
and JBSS.

Definition 2.1 (Source identification conditions for BSS). Let s € RY be the true
source vector, and let S € RY be the estimated source vector of a specific BSS method.
We define the source identification conditions of the method as the conditions on
the true source components in s under which the method achieves BSS, i.e., under
which the estimated source vector S recovers the true source vector s up to scaling and

permutation:
s = PT's,

where P € RV*N ig 4 permutation matrix, and I" € RVXN g g diagonal scale matrix.
This definition can be easily extended to JBSS:

Definition 2.2 (Source identification conditions for JBSS). Let skl ¢ RN k=1,...,K,
be the true source vectors, and let skl ¢ ]RN, k=1,..., K, be the estimated source
vectors of a specific JBSS method. We define the source identification conditions of
the method as the conditions on the true source components in sl*] under which the
method achieves JBSS, i.e., under which the estimated source vectors s* vecover the

[]

true source vectors s!*! up to a scaling and a common permutation:

sl = prliklgltl k=1, K,

where P € RVXN g 4 permutation matrix, which is common for all datasets, and

Tk e RNXN are diagonal scale matrices.

2.5 A small note on the use of samples

Our notation up to this point represents datasets x[*l € RN and source vectors slfl € RY

as random vectors. However, in practice, we handle observed datasets X[k ¢ RN V,
where V' is the number of samples, and X[k](:, v) € RY denotes the vt sample of X[,

(K]

Then, source vectors are denoted by SIH € RVXV  where si' € RYXV denotes the rth

T
row, i.e., source component, of SU"], and covariance matrices, e.g., ng =K {x(x[l“]) },

~[k T
are replaced by their estimates, e.g., CL] = %XW (X[k]> , and so on. In the remainder
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of the thesis, we keep the random vector notation for deriving theoretical concepts and
use the sample notation when we discuss practical implementation, e.g., in the form of

pseudocode.






3 Matrix and tensor decomposition
methods for BSS and JBSS

This chapter provides the reader with an overview of the matrix and tensor decomposition
methods studied in this thesis. We explain ICA, IVA, CCA, mCCA, and PARAFAC2
all with a common notation for all methods and provide pseudocodes for an easier

understanding of the methods.!

3.1 Independent Component Analysis

Independent Component Analysis (ICA) is one of the oldest and most well-known
methods for achieving BSS. The generative model of ICA is given by (2.1) and repeated
here for better readability:

x = As,

and ICA estimates s = Wx, with the goal that s equals s up to scaling and permutation.

By defining the probability density function (pdf) of the n' source component as
Ps,(sn), n=1,...,N,
we can formulate the assumptions of ICA [Hyv00]:

e W.lo.g., source components have zero mean, i.e.,

E{s} =0y. (ICA.1)

ISection 3.4 of this chapter is based on the paper: “A Comprehensive Guide to Multiset Canon-
ical Correlation Analysis and its Application to Joint Blind Source Separation,” I. Lehmann”,
B. Gabrielson”, T. Hasija, and T. Adali, submitted for review, 2025. I specifically contributed
to proving the source identification conditions of sumcor, deriving the connection between max-
var [Ket71] and sumcor [Nie95], implementing and running the experiments, creating all figures,
and writing the paper. B. Gabrielson has provided theoretical insights in the connection between
maxvar [Car68] and sumcor [Nie95] and the source identification conditions of genvar. Discussions
and feedback along the way until the final paper have contributions from all authors.

17
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e W.lo.g., source components have unit variance, i.e.,

E{sg}:1, n=1,....N. (ICA.2)
e Source components are independent, i.e.,
psl,.‘.,SN<517 ceey SN) = psl(sl) o psN(SN)' (ICAg)

Several algorithms for ICA have been developed. The popular Infomax ICA [Bel95]
uses a neural network approach with a given non-linearity function, where the observed
data is the input and the estimated source components are the output of the neural
network. Then, maximizing statistical independence between the estimated source
components is achieved by maximizing the mutual information between the input
and output of the neural network. FastICA [Hyv00] achieves independence of the
estimated source components by making them as non-Gaussian as possible, where
non-Gaussianity is measured by an approximation of negentropy. More recently, I[CA by
Entropy Bound Minimization (ICA-EBM) [Li10] has been proposed, where independence
of the estimated source components is achieved by minimizing their entropy, which is
approximated by the maximum entropy bound. In this thesis, we use FastICA, which is

described in more detail below.

FastICA

The idea of FastICA is based on the central limit theorem, which states that the sum
of an infinite number of random variables has a Gaussian distribution under certain
conditions [Hyv00]. Therefore, if source components are assumed to be non-Gaussian,
the distribution of the sum (mixture) of several source components is more Gaussian
than any of the individual components, and maximizing non-Gaussianity of an estimated
source component

S0 = wix,

where WIL e RN denotes the n'® row of the demixing matrix W, gives one of the
true source components [Hyv00]. Note that we denote the nth row of W by W% instead
of wy: in order to be consistent with the literature. An additional constraint needs to
be imposed on the next source component so that it does not estimate the same one
as before. Since source components are assumed to be independent, and independence
implies uncorrelatedness, Gram-Schmidt-like decorrelation can be used to estimate the

remaining source components in a deflationary way.
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The question is, therefore, how non-Gaussianity of the random variable s, can be

measured. Two classical measures are Kurtosis and negentropy [Hyv00]. The Kurtosis,

defined as
kurt (3,) = E {é\g} ~3 (JE {@%})2

is zero for Gaussian random variables, positive for super-Gaussian random variables (e.g.,
Laplacian), and negative for sub-Gaussian random variables (e.g., uniform) [Hyv00]. The
squared or absolute value of the Kurtosis can be used as a measure for non-Gaussianity,
but it is very sensitive to outliers [Hub85]. The alternative measure is negentropy,
defined as [Hyv00]

T (5n) =H (v) = H(sn),

where

H(sp) = —/pgn@n)ln (ps,(3n)) A3,

is the differential entropy of s,, and H(v) is the differential entropy of a Gaussian
random variable with the same mean and variance as ;. As a Gaussian random variable
has the largest differential entropy among all random variables that have the same
variance, the negentropy is always non-negative and is zero if 5, is Gaussian [Hyv00].
In practice, the negentropy is hard to compute, as an estimate of the pdf of s, would
be necessary. Therefore, the FastICA algorithm uses the following approximation of

negentropy to measure non-Gaussianity:

T Ga) ~ (B{g Gu)} — E{g(v)})?,

where ¢(+) is a non-quadratic function, for which very useful options are [Hyv00]

u2

g(u) =In(cosh(u)) or g(u)=—e 2.

For the FastICA algorithm using Newton’s method, the first and second derivatives of

g(+) are needed, which are

2

_u-
2

¢ (u) = tanh(u) or g¢'(u)= ue

and

w2

g"(u) =1 —tanh*(u) or ¢'(u)= (1 — u2> e T,

The resulting FastICA algorithm for finding W = [wl, W N}T is derived in [HyvO00]
and turns out to be incredibly simple. The pseudocode for FastICA is given in Algorithm
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1, where a typical value for € is 0.0001. The big-O complexity of this method is (’)(IN2 V),

where [ is the number of iterations. It is dominated by line 8 in Algorithm 1.

Algorithm 1 FastICA [Hyv00]

Input: X € RVxV
oo\ 1/2 .
1: X (VXX ) X > whiten data
2: W <= randn(N, N) > initialize demixing matrix W
—1/2
3 W (WWT> ”w > make W orthogonal
4: for 1 = 1,..., maxlIter do

5. WD w
6: forn=1,...,N do

7 Wy — (W(n,:))"

-
8: Wi(n,:) « (% 211;/:1 X(:,v)g' (WILX(t, v)) — % Z;le q" (WILX(Z, v)) Wn>
T (WWT>_1/2W
10: if max (1 — diag (‘W(Old)WT’» < e then > FastICA converged
INEN break
12: S + WX

Output: W € RVXN § ¢ RVxV

When ICA is applied separately to multiple datasets, then ikl — P[k]I‘[k}s[k], k=
1,..., K, are estimated. As the permutation matrix Pl can be different for each
dataset, the source components may not be aligned across datasets. To overcome this
problem and automatically align the independent source components across datasets,

IVA has been proposed, which is explained in the next section.

3.2 Independent Vector Analysis

Independent Vector Analysis (IVA) [Kim06] is an extension of ICA to multiple datasets.
The generative model for IVA is given by (2.2) and repeated here for better readability:
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source vectors source component
vectors (SCVs)
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Figure 3.1: The n'h element of all source vectors is concatenated to form the ntt SCV.

and TVA estimates the source vectors 81| = W[k]xm, where

)

wi =1 =+ |,
(i)'

with the goal that sl equals sl¥] up to scaling and permutation. Note that also here,
we denote the n'® row of WK by (WW)T e RN instead of w%{i] in order to be
consistent with the literature. In order to easier state the assumptions of IVA, let the
n'h Source Component Vector (SCV) be defined by stacking the n' source of each

dataset as

1 K
Psn(sn):ps[l] S[K]<57[L]7--~,57[L }>, n=1,...,N,

N 399N

we can formulate the assumptions of IVA [And14]:

e W.lo.g., source components have zero mean, i.e.,

]E{s[k]} —0y, k=1,... K. (IVA.1)
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e W.lo.g., source components have unit variance, i.e.,

E{(s,[f]>2}:1, n=1,....N, k=1,... K. (IVA.2)

e Source components are independent across SCVs (but can be dependent within
an SCV), i.e.,

Psi,sy (S15- - SN) = psy(s1) -+ psy (i) (IVA.3)

This can be seen in Figure 3.1, where the independent SCVs have different colors,

and the dependent source components within an SCV have the same color in

different transparencies. Assumption (IVA.3) is not w.l.o.g. and may not necessarily

hold for any given dataset. However, it is a common and practical assumption

for deriving solutions and studying their source identification conditions [Li09;
Has20].

IVA identifies maximally independent SCVs by minimizing the mutual information
among the estimated SCVs, which is defined as [And10]

Tiva (Wm; . ;W[K]) - iv: M (3n) — i In (‘det(w[k]) D o, (31
n=1 k=1

where

MG = E{=In (15, G))} = = [ | 75, (Bn) n 15, o) 5

is the differential entropy of the nth estimated SCV §,,, and C is a constant term. Since

H (3n) = fj () T (),

k=1

where

e () = g () = f g () 0 5

is the differential entropy of 57[%]6] and Z (sp) is the mutual information of the nth
SCV, we see that by minimizing the mutual information among the estimated SCVs,
IVA simultaneously maximizes the mutual information within each SCV [And10], i.e.,
maximizes the dependence of the source components within an SCV. Depending on the
selection of the multivariate pdf pg (sy) for the estimated SCVs, IVA can take either

second-order or all-order statistics into account [Adal4]. In the two following sections,
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we present two IVA methods, of which one takes second-order statistics into account

and one takes all-order statistics into account.

Four algorithms for minimizing the IVA optimization function in (3.1) are described
in [And12], of which the gradient-based algorithm is the easiest to understand, and the
Newton-based algorithm is reported to be most computationally efficient. Therefore, in

this thesis, we explain IVA using the gradient update and the Newton SCV update.

The gradient of (3.1) with respect to (w.r.t.) w%ﬂ] € RY is [And12]
o1 -1
8‘%* =B L — (W) (), (3.2)

-1 -1
where (W[k]> (:,n) is the n'M column of (WU“]> , and the score function
k n
o (3.3)

denotes the negative derivative of the nth SCV’s pdf by the ™ element in the nth
SCV. The computation of the expected value depends on pg (Sp) and is described later
for specific pdfs. Then, the IVA gradient update is just

SOPRNCI ;Y
Wn

[]

where 0 < p < 1 is the step size. Finally, each demixing vector w;' must be made

unit-norm by

(k]
w%]e%, k=1,... K. (3.4)
[

For the Newton SCV update, the gradient and the Hessian matrix of the IVA

optimization function in (3.1) need to be known. Let

[1]

Wn

WIE]
n
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contain the concatenated demixing vectors of the nth estimated SCV

()

()

The gradient of (3.1) w.r.t. wy, is given as [And12]

OTrya
aww
_O0Iva _ |
n - - . )l
ow
" OTiva
8w[,f( ]

where ZII\[%]* is given in (3.2). The Hessian matrix of (3.1) is [And12]

Wn
_ 07Irya NK x NK
Wy, OW
" alfotl o gllKl
where the (k, 1) matrix block HI! ¢ RVXN i
(k1] O*Irya
H, ! =
(K]

owp, 0 <w[é]>T

- o (W%]>T 0, else.

Then, the Newton SCV update of wy, is [And12]
Wi wy — uH gy,

[£]

and then wy," are again made unit-norm as described in (3.4).

3.2.1 IVA-G

X[k]ﬁgb—[,f] n (W[k])_l (:,n) (WW]) (n,)), k=1

IVA with a Gaussian model (IVA-G) [And10] assumes that the SCVs follow the
multivariate Gaussian distribution, i.e., that the pdf of the n'® estimated SCV is given
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ps, (8n) = !
\/(QW)K det

1.-
exp<—§ TCS sn) n=1,...,N, (3.6)
(Cs,,)
where

Csn - E {SnSIL} € RKXK

is the (unknown) covariance matrix of the n'" SCV. Then, the differential entropy of
the n'? estimated SCV is [And12]

K In(2me)

H(En) = =

+ %m (det(Cs, ). (3.7)

Inserting (3.7) in (3.1) gives the IVA-G optimization function that is to be mini-
mized [And10],

NK In(2
Tiva-G (WU];...;W[K]> NK In(2me) Zln (det (Cs,,))

- kglln <‘det<W[k]> D _c.

In the following, we describe the IVA-G Newton SCV update. The score function
defined in (3.3) for the Gaussian pdf in (3.6) is [And12]

o) =3hC5 1 (k) = C3 (k. )8, (3.9)

where Cs_nl(:, k) is the & column of Cs_nl, and Cs_nl(k;, ) is the kM row of Cs_nl. Inserting
(3.9) in the expected value in (3.2) gives [And12]

5 {X[k1¢gfl} _E {X[k]ggc;nl(;, k)} —E {x[’“] [3,&” . ELK]] } Cs, (k)
= [l BRI et ),
where we have used that fs)[lk] = (X[k]>T W[Tf]v and

clbl _g {XM (XM)T}

is the cross-covariance matrix of the k™' and I*! dataset. Then, the IVA-G gradient
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w.r.t. W%ﬁ] is [And12]

3IIVA_G: C[k,l]w[l] C[k,K]W[K] c—l(;,k)—(WV“]>_1 (:,n).
_aW[T{C] X n X n Sn

Likewise, the expected value in (3.5) can be evaluated as [And12]

(k]
E X[k]&LT —E X[HC;}(/{, ) n -
o(wi) ) 0 ()
( OT
_ * [t 1 "
=E 3 ety - oglep)] | (x10)
\ OT
.
—E {x[k]c;nl(k, 0) (XU]) }
= 5k e,
and the (k, 1)™ matrix block of the IVA-G Hessian matrix is
Ll Ll (WW>_1 (:,n) (WW>_T (n,:), k=1
H%’]:C;nl(k,l)cg’]—i— ? I )
0, else.

For observed data, Cgﬁ Y is estimated as
~[k] 1
C, = VX[k] (X[ﬂ> :

and Cg, is estimated as

. 1~ AT
Cs, = 775nSy.

and the (k, )™ element of (Ajsn can be efficiently estimated as

—~ T o
Cs, (k1) = (wh!) Gl

In practice, it is recommended to whiten the observed data X[k e RV*V pefore
applying IVA-G. The pseudocode for IVA-G using the Newton SCV update is given in
Algorithms 24, where a typical value for € is 1e — 06. The big-O complexity of this
method is O(N2K?V 4+ IN*K*?), where I is the number of iterations. It is dominated
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Algorithm 2 IVA-G using Newton SCV Update [And12]

Input: XM e RV<V k=1, K
1: for k=1,..., K do > recommended: whiten observed datasets
T —1/2
2 XM o (%X[k] (x#) > x#]
3: for k=1,...,K do > cross-covariance matrix of k™ and "M observed dataset
4: for (=1,...,K do
~ T
s Gl e X (xI0)

6: for k=1,..., K do > initialize an orthogonal demixing matrix

7 W« randn(N, V)

™ —1/2
o Wil (wm (wih) ) Wik
9: for i = 1,..., maxlter do

0. WL wik

11: forn=1,...,N do

12: for k=1,...,K do > covariance matrix of the n' estimated SCV
13: forlzl,...,Kdo
~ T
14: c%my{ ) Gl gl DQW)mMMMWdWW
15: g, < calculate gradlent(a ,Cy, W wWIKD
16: H,, < calculate_hessian(Cs,, , Cx W[ ] ., WIKD
ol
17: Wn < :
Wl
n
18: wn — wp —pH g, > update the demixing vectors for the n'® SCV
19: for k=1,...,K do
wit]
20: w%‘“] — H > normalize W[,{ﬂ]
Wo,
21: forn=1,...,N do
22: for k=1,..., K do
k Ko\ [k
2 o g ‘(wglg’n) wit!
24: if max,, j, w%ﬂ < € then > IVA-G converged
25: break
26: for k=1,..., K do > estimate sources

o §M o wikxK
Output: WI*! E]RNXN,g[k] eRV*V =1, K

by line 18 in Algorithm 2. In order to achieve a more efficient implementation, the
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(k]

inversion of W%l in line 2 in Algorithm 3 and line 5 in Algorithm 4 can be replaced

using a decoupling trick as described in [And10].

Algorithm 3 calculate_gradient

Input: (Ajsn € REXK Cy e RVEXNK wlll  wlK] ¢ RNV
1: for k=1,...,K do
k K Akl (a1 -1 OZLvA-
2 g e D G Wi C, (k) — (WIH) () > O
1
o
38y — | s 9Tva-G
: Wn
(K]
gn
Output: g, € RNK
Algorithm 4 calculate_hessian
Input: (Ajsn € REXK Cy e RVEXNKE il wlK] ¢ RVxN
1: for k=1,..., K do
2: for/=1,...,K do
~—1 ~ |k, 2
3. a1l etk el _PIvag
n (k] 5 (oLl
owy, (‘3(wn)
4: if £k ==1 then . T
5 H e (WD o) (W) ()
gl L gl
. . 9*T,
6: H,, + : - : s 97liva-g
: ) : Oow 0wl
HL’LI(71] e HL{(’K]

Output: H, € RVEXNK

As a small note, we would like to add that even though this method is called IVA-G in
the literature, a more suitable name would be Uncorrelated Vector Analysis (UVA), as
in fact it just makes the estimated SCVs maximally uncorrelated instead of maximally

independent.

3.2.2 IVA-L-SOS

IVA with a Laplacian model and second-order statistics (IVA-L-SOS) [Bhil9] assumes
that the SCVs follow a multivariate Laplacian distribution that allows for a non-identity
covariance matrix, and therefore, dependence is measured by second-order statistics

(correlations) and higher-order statistics. The multivariate Laplacian distribution can
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be expressed by the Multivariate Generalized Gaussian Distribution (MGGD) [G6m98]
with shape parameter 5 = 0.5, and the pdf of the nth estimated SCV is

1
B P

Ps, (Sn) = oK +17K /2D (k) P\ TV S S ) (3.10)

where I'(+) is the Gamma function, and 3, € REXK is a positive definite scatter matrix

that accounts for second-order statistics [Bhil9]. The relationship of ¥, and the nth

SCV’s covariance matrix Csg,, is [GOm9S§]

AI'K + 2)2 _ 4K+1DINK+1),  4K+1)KT(K)

G = KT (K) KT(K) " T KI(K)

Therefore, the score function of (3.10) is [And13a]

1 2, (k) VK +1Cg (k)8

o) = - , (3.11)
2 s 1g, shCsls,
and inserting (3.11) in (3.2) gives the IVA-L-SOS gradient w.r.t. W[Tf]:
-1 e _
OTvA-L-S0S _ p ) ([0 VE +1Cs (k)sn | <W[k]> 1 ().
ol ots
Wn CS Sn
IVA-L-SOS is optimized using the gradient update, i.e,.
k K OIyA-L-
W[n] - ng} iy TVA EC]SOS’
owy,
and then demixing vectors are again made unit-norm as in (3.4).
For observed data, Cs, is estimated as
~ 145 4T
Cs, = VSnSn7 (3.12)

and the gradient is

311;/;;5;]808 _ ;ZV;XW(:, )\/V i T(A_)En(:,v) B (W[k])—l Con),
O (Su:) €aSate)
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3.3 Canonical Correlation Analysis

Compared with ICA and IVA, Canonical Correlation Analysis (CCA) does not assume
a generative model on the datasets. Instead, CCA linearly transforms two datasets
x1l € RN and x[ € RY into a new space where the correlation of the transformed
variables, called canonical variables, is maximized. Interestingly, it has been shown that

under specific conditions, which are presented in Section 5.3, CCA is able to achieve
JBSS.

The n*! canonical variables are defined as
T T
u,Ll] = (tg]) <1 and ug] = (t[nz]> X[2], n=1,...,N,

[1]

where t;° € RV and t[,%] € RY are unknown transformation vectors. W.lo.g., the

datasets are assumed to have zero mean, i.e.,

E{X[l]} = E{xm} =0y,

which then also holds for the canonical variables, i.e.,
]E{uT[L”}:IE{ug]}:O, n—=1,...N. (3.13)

As correlation and covariance of the n' canonical variables coincide due to (3.13), the

optimization function for finding the nth canonical variables u}l] and UF} therefore is
max E {ug]ug]} , (3.14)
th e

where

o = B {1} = (e) " {0 () el = (e R n—r

b canonical variables. To avoid maximiz-

is called the canonical correlation of the n'
ing (3.14) simply by scaling the transformation vectors, the canonical variables are

constrained to have unit variance, i.e.,

E{<UL1])2}=E{<uL2])2}=1, n=1,... N, (3.15)
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where

E{(u%"]f} - (tW)TE {x[’f] (x[’f])T} o) = (tW)T el k=12

After the first canonical variables are found, an additional constraint needs to be imposed
on the next canonical variables so that they do not estimate the same ones as before.
Thus, canonical variables are constrained to be uncorrelated within a dataset [Hot36],
ie.,

E{u,[ll]uw} :E{uﬁ]uﬁ} =0, n#m, nm=1,...,N, (3.16)

where

B () = ()Tl ko 1a

Finally, the N canonical variables of each dataset form the canonical vectors

They are found as

where

T[m:[tgkl tyﬂ, k=12,

is the transformation matrix for the k™ dataset, k = 1,2. By performing an SVD on

the coherence matrix [SchO8§]

i _ (CE’Q])_% 2 (CE’Q]>_% _ plig (F[21>T7

where the diagonal elements of K = diag (k1,...,kp) turn out to be the canonical
correlations sorted that k1 > --- > Kk, the transformation matrices T ¢ RVNXN are
found as [Sch08§]

and the canonical vectors are
k ENT (BN T2k
u”z(F”) (cx) xkF k=12

It is interesting to see that this solution can be interpreted as first whitening the datasets
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_1
using Mahalanobis whitening [Kes18], i.e, yw = (C@) ’ x* k= 1,2, and then

finding the transformation vectors as the singular vectors of the cross-covariance matrix
T
of the whitened datasets, Cg,l’Q] =E {ym <y[2])

The pseudocode for CCA using the SVD is given in Algorithm 5. The big-O complexity
of this method is O(N? V). It is dominated by lines 2 and 3.

Algorithm 5 CCA [Hot36]

Input: X[ X[2 ¢ RVxV
1: for k=1,2 do

ool e pxi(xi)!

s ol e x (x2)
4: 6&’2] — (C@)l/2 CE’Q] (CX2]>1/2 > coherence matrix

5. FIUI K, Fl2l « svD(C)
6: for k =1,2 do

—1/2
T = (C@) / Fl#l > transformation matrix

=

& for £k =1,2 do

-
Ukl (T[k]) x ¥l > canonical vectors
Output: Th ¢ RVXN yltl e RNV | = 1,2

©

3.4 Multiset Canonical Correlation Analysis

Besides the wide use of multiset Canonical Correlation Analysis (mCCA), there is still
a lack of comprehensive understanding of its theory and implementation with different
objective functions all under one umbrella. Therefore, in this section, we present the
optimization problems of the five mCCA methods sumcor, maxvar, minvar, ssqcor, and
genvar and provide a clear and concise overview of their solutions and underlying factor

models.2

2This section is based on the paper: “A Comprehensive Guide to Multiset Canonical Correlation
Analysis and its Application to Joint Blind Source Separation,” I. Lehmann*, B. Gabrielson”,
T. Hasija, and T. Adali, submitted for review, 2025. I specifically contributed to proving the source
identification conditions of sumcor, deriving the connection between maxvar [Ket71] and sumcor
[Nie95], implementing and running the experiments, creating all figures, and writing the paper.
B. Gabrielson has provided theoretical insights in the connection between maxvar [Car68] and
sumcor [Nie95] and the source identification conditions of genvar. Discussions and feedback along
the way until the final paper have contributions from all authors.



Matrix and tensor decomposition methods for BSS and JBSS 33

MCCA extends CCA to K > 2 datasets and aims to estimate canonical vari-
ables [Ket71]

such that the n*® canonical variables ug], e ULK] are maximally correlated for each
n =1,...,N. Here, u%k] denotes the n'® canonical variable in the kP dataset, and

t%€ ] € RY is the corresponding transformation vector. Also mCCA is able to achieve

JBSS under specific conditions, which we will see later in Section 5.4.

The datasets are again assumed to have zero mean, i.e.,
E{x[k]} —0y, k=1,... K,
and therefore also the canonical variables, i.e.,
E{u,[Lk}}:O, n=1,. N, k=1, . K. (3.17)

Maximizing correlation across multiple random variables requires a measure of this
correlation. Such a measure is not uniquely defined; however, there are different ways of
empirically measuring the correlation of more than two random variables. One intuitive

measure is the sum of the pairwise covariances E {u%f] uy]} among the pth

canonical
variables from all K datasets, as covariances and correlations coincide due to the
canonical variables being zero-mean. This leads to the following optimization problem

[]

to find the first canonical variable of all datasets, u; ", k =1,..., K:

K K
max Z Z E {u{k] u{”} . (3.18)

IR i
Later we discuss an additional constraint needed on the u,[lk] that, like in CCA, is
necessary to avoid maximizing the objective function simply by scaling the transforma-
tion vectors tgf ], which we call the “trivial solution”. To simplify the notation in the
following, let all K canonical variables with index n be stacked in the nth Canonical

Component Vector (CCV)

u, = : ERK, n=1...,N.
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This is similar to the definition of SCVs visualized in Figure 3.1, where now the same
color in different transparencies represents correlation, i.e., linear dependence. Now, for
the next CCV, the sum of correlations between the elements in ug is maximized. Also
here an additional constraint is needed in the optimization problem, as otherwise the
same CCV would be estimated as before. We will later introduce possible options for
such a constraint. Finally, after estimating the N CCVs, the N canonical variables of

the kP dataset form the canonical vector

which is found as T
u[k] — (T[H) X[k]’ k:l,...,K,

with transformation matrix

Tkl — [t[k] t[k}] e RVXN,
N
As noted before, there is more than one way to measure correlation across multiple

random variables, leading to several mCCA optimization problems. Let
Cu, :E{unuﬁ} eREXE  ,—1 N,

be the covariance matrix of the nt® CCV, which consists of the pairwise covariances
E {u%k]u%]}, k.l=1,...,K, and let

be the eigenvalues of Cy,,. W.l.o.g., we assume in this thesis that eigenvalues are sorted
in descending order, i.e., 411] > e > ELLK]. Kettering [Ket71] summarizes five mCCA
objective functions, which all reduce to the CCA objective function (3.14) for K = 2
datasets, as a function of Cy,, for the nth CCOV. If all canonical variables have unit
variance and are uncorrelated, then Cy, = I . Ultimately, the goal of all of the
following mCCA objective functions boils down to making Cy,, as far away as possible

from I, g, i.e., increasing correlation within Cy,, .
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e mCCA-sumcor [Hor61]:

Maximize the sum of covariances,

K K
jsumcor Cun ZZ un 7 (Fl)

where ch 1 denotes the (k, )™ entry in Cy,,. This is the expression from (3.18)

written in terms of Cy,, and is the natural extension of CCA to more than two
datasets [Asel5].

e mCCA-ssqcor [Ket71]:

Maximize the sum of squared covariances,

K K K 9
xyssqcor Cun Z Z (Cun ) Z <€%€]) . (F2)

k=1[=1 k=1

This removes the effect of the sign of the covariances compared with sumcor, such
that negative covariances do not cancel out positive ones. The fact that the sum

[]

of squared elements in Cy,, can be expressed in terms of its eigenvalues ;" makes

it reasonable that also other functions of these eigenvalues can be used in the
optimization problem, which are stated in the following.

e mCCA-maxvar [Hor61]:

Maximize the largest eigenvalue of Cy,,,

jmaxvar(cun) = dll]a (F?’)

(1]

where /;," is the largest eigenvalue of Cy,,. This Cy,, is the best approximation
to a rank-1 matrix, i.e., a matrix in which the covariances between all variables in

the CCV u,, are as close as possible to one.

e mCCA-minvar [Ket71]:

Minimize the smallest eigenvalue of Cy,,,

jminvar(cun) = E[nK]a (F4)

where 6[,{( ) is the smallest eigenvalue of Cy,,. This idea can be viewed as the

reverse of maxvar.
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e mCCA-genvar [Steb1]:

Minimize the determinant of Cy,,,

K
jgenvar(cun) = det(cun) = H g[rf] (F5)
k=1

The determinant of a covariance matrix is referred to as its generalized variance
[Wil32], thus the name. This last objective function is similar to ssqcor in being
defined over all eigenvalues, but while the sum of squared eigenvalues is heavily
influenced by large eigenvalues, the product of eigenvalues places greater emphasis

on the small eigenvalues.

As mentioned before, constraints must be added to all the presented optimization
problems to avoid the trivial solution. In this thesis, we consider the following two

constraints on the canonical variables within the nt CCV Up:

. ]E{@f})z} - (tW)T e — 1 p—1. K (3.19)

K 9 K T
e Y E { (un) } =3 () el =1, (3.20)
k=1

k=1
where

clfl - E{Xm (XW)T} e RN

is the covariance matrix of the k'™ dataset. We know the first constraint (3.19), which
means that each canonical variable has unit variance, already from CCA. Constraint
(3.19) is also used by Kettenring [Ket71] and corresponds to the third constraint in
Nielsen [Nie95]. The second constraint (3.20) means that the sum over the variances of
all K canonical variables within a CCV is one and corresponds to the fourth constraint
in [Nie95].

Furthermore, we consider the following two constraints on the canonical variables

across CCVs uy, and uyy,:

.E{ulf]u,[fi]}:o, ntm, nm=1,.. N, k=1, K, (3.21)
K

.ZE{U%}U%]}:Q ntm, nm=1,.. N (3.22)
k=1

Constraint (3.21), which we again know from CCA, denotes that canonical variables
within the same dataset are uncorrelated [Ket71, eq. (9.5)], while (3.22) is a weaker
constraint [Nie95, eq. (3.63)].
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In the following subsections, we present the solutions of the five mCCA methods.

3.4.1 mCCA-sumcor

For the nth CCV, sumcor aims to find the transformation vectors t% ) that maximize
the objective function given in (F1), i.e., the sum of the elements of the n'™® CCV’s

covariance matrix Cy,, [Ket71]. Kettenring proposed a deflationary numerical solution

for sumcor under (3.19) and (3.21) [Ket71], i.e., a solution where the tg], . ,t%K] are
estimated sequentially for n = 1,..., N, using a numerical method for each CCV uy,.

Under (3.20) and (3.22), however, sumcor also enjoys an all-at-once analytical solution,
i.e., a solution where all CCVs are found simultaneously using an analytical method.
This method is considerably more straightforward and more efficient regarding runtime
and JBSS performance than the deflationary solution. For the remainder of this thesis,
when discussing sumcor, we focus on this all-at-once analytical solution, which we

present in the following.

All-at-once analytical solution

Nielsen [Nie95] derived the following all-at-once analytical solution for (F1) under (3.20)

and (3.22). First, the datasets are concatenated as

x1
X = : € RNK,
x[¥]

and the covariance matrix of the concatenated datasets is

Cx=E {XXT} c RVEXNK

Defining Dx as the block-diagonal matrix consisting of the covariance matrices of the

datasets,
cll 0
DX — .. c RNKXNK
0 clfl

the transformation vectors tgf I can be found by solving the Generalized EVD (GEVD)
problem [Nie95]
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is a diagonal matrix consisting of the
e RNK x NK

where ® = diag (¢1,...,oyx) € RVEXNE

eigenvalues of Cx w.r.t. Dx, and T = [tq,...,tyg] is an orthogonal

matrix with the corresponding eigenvectors as columns. Let
T = [t1,...,tn] € RVEXN

be the matrix consisting of the N principal eigenvectors (corresponding to the N largest

eigenvalues), then the transformation vectors t%g ] eRN k=1,... K, for the nh CCV

are found by partitioning t,, as

!
ty, = € RNKa
fi
and
T
,’f _ : c RNKXN (3.24)
TlX]

K], In the end, we normalize

the canonical variables to unit-variance and multiply tyf ] by the variance of ullk],

contains the transformation matrices for the &t dataset, T

n=1,....N, k=1,..., K, for comparison with the other methods. The pseudocode for
the all-at-once analytical sumcor method is given in Algorithm 6. The big-O complexity
of this method is O(N2K2V), where we have assumed that V > NK. It is dominated
by line 2.

Underlying factor model

The CCVs estimated by sumcor underlie the model [Ket71]

u, =1g fn+vp, n=1,..., N, (3.25)
where f,, is the best fitting zero-mean unit-variance common factor present in all u,[lk],
k=1,...,K, 1k is a vector full of ones, and v,, € RX is a noise vector. In the JBSS
setting, this means that sumcor assumes an effective rank of one for the SCVs, i.e.,
there is only one common factor for all source components sllk] within the n*® SCV,
which is represented by f, [Gab24].
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Algorithm 6 All-at-once analytical sumcor [Nie95]

Input: XM e RV<V k=1, K
x[1]

1: X ¢ :
X K]
2 Cx + - XXT
D, < blkdiag [ LX) (xH)
3 D « blkdiag (£ X (xI)

A~

¢.T + GEVD(Cx, Dx)

T+ T(:;,1: N)

for k=1,...,K do
T = T ((k — 1)N +1: kN, )
Ul (T[k1>TX[k1

9: for k=1,...,K do
10: T [k], UM « normalize (T[k], U[k]> > normalize canonical variables

Output: Tl € RVXN Ukl e RVNXV g =1,... K

*

3.4.2 mCCA-maxvar

For the n'® CCV, maxvar aims to find the transformation vectors t[f ) that maximize

the largest eigenvalue of its covariance matrix Cy,, as denoted in (F3) [Ket71].

Deflationary analytical solution

Kettenring proposes in [Ket71, section 10] the following deflationary solution for maxvar
using constraints (3.19) and (3.21), where each CCV uy, is found analytically as follows.
First, each dataset x[kl € RY is whitened using Mahalanobis whitening [Kes18] to
obtain

_1
y[’f]:<c£f]) 2xHerN, p=1,.. K. (3.26)

The whitened datasets are concatenated into the vector
Sl

y=1| ' | eRVE
K]

and the covariance matrix of the whitened datasets is

Cy=E {ny} e RNEXNK (3.27)
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Now, the following EVD is performed sequentially for n =1,..., N:

e RNK xNK RNK

where ¢, denotes the largest eigenvalue of H, CyH,, , Vi € the cor-
responding eigenvector, and the matrix H,, is described in the following. For estimating
the first CCV, Hy = Iyg « Ny - For the next CCVs, Hy, € RNVEXNK ig calculated using
the eigenvectors from the previous n — 1 EVDs as follows. First, the eigenvectors are

partitioned as

and then the normalized eigenvectors of the f;th dataset,

g
i = e i=Len—1,
P
(3
are concatenated in
\7%] _ [~[k] ~[¥] ] c RVx(n—1)
(n—1) — [V1 Vin—1
to form the block-diagonal matrix
[
B V(n—l) 0
Vin-1) =
K]
| 0 Vin-1)
vl s 0 0
{0 0 P e RNEx(n-1)K_
: : : o --. 0
(0 - 0 iR

Using this matrix, Hy, is found as the projection matrix onto the subspace that is

orthogonal to {f(n_l) :

~ ~T ~ -1 .7
Hy =T Vo)) (Vi) Vien) Vi
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This is repeated until the eigenvectors of all N EVDs are found. Finally, they are

concatenated in

VH= Gl el e VAN ¢ gV

to find the transformation matrix for the k" dataset

Tl = <CX )_j vHorZ1 K (3.29)

The multiplication by (CgC ]) is necessary because {f[k] is for the whitened datasets.

The pseudocode for the deflationary analytical maxvar method is given in Algorithm
7. The big-O complexity of this method is O(N2K2V + N*K3). It is dominated by
lines 4 and 11.

Algorithm 7 Deflationary analytical maxvar [Ket71]
Input: XM e RNV k=1, K

1: fork=1,...,K do > whiten observed datasets
™ —1/2
2yl (%Xm (x0H) ) xI¥
v
3 Y
v (K]

4: Cy + HYYT
5: forn=1,...,N do

6: if n =1 then
T: Hy <INk <Nk
8: else_
0: V(1) ¢ blkdiag ( |3 vl ] [ - )
10: Hy 1V, 1)( )
11: On, Vi EVD(HnCyHn, 1) > largest eigenvalue and eigenvector
12: for k=1,..., K do
13: v v (B = 1DN +1: kN)
- (%] - ~ [k
14: v%‘] — ‘V% > V[Tf;] is the n'! column of V[ ]
Vn

15: for k=1,..., K do

Tl e (hx(x)")
w Ul e (7)) X

Output: T € RVXN ylkl eRVXV k=1, K
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All-at-once analytical solution

Contrasting this deflationary analytical approach, Carroll proposed an all-at-once
analytical solution for maxvar [Car68]. Therefore, he introduces an auxiliary variable z,
(]

and seeks uy, ' of all datasets that are maximally correlated to z,, n =1,..., N. Instead

of imposing constraints (3.19) or (3.20), [Car68] imposes
E{z} =1,

and also makes the z,..., zy uncorrelated instead of the canonical variables across

CCVs, i.e., imposes the constraint
E{znzm} =0, n#m, n,m=1,...,N,

instead of (3.21) or (3.22). Carroll’s solution directly considers observed sample datasets
X[k ¢ RN % V, where N is the dimension of the data and V' is the number of samples,
instead of random variables. Carroll allows for a different scalar weighting factor for
each dataset, which we choose in this thesis to be equal to one, i.e., all datasets have an
equal weight. The choice of this value will become clear once we derive the connection

to sumecor. Carroll defines
K T T\ !
Q=Y <X[k]) <XW (XW) ) Xk e RV*V, (3.30)
k=1

which can be interpreted as the summation of the K datasets’ projection matrices,

representing the row space of the datasets. Then, by performing an EVD on Q, we have
QZ =79, (3.31)

with Z € RV*V and ® € RV*V. We denote Z = z1,....z5] € RV*N as the matrix
consisting of the N principal eigenvectors of Q. Then, the the transformation matrix
for the k1 dataset T can be found as [Car68]

i) — (xm <X[k1)T) xHZ, (3.32)

In the end, we normalize the canonical variables to unit-variance and multiply t% ] by

the variance of the n* row of U[k], n=1,...,N, k=1,..., K, for comparison with

the other methods. The pseudocode for the all-at-once analytical maxvar method is



Matrix and tensor decomposition methods for BSS and JBSS 43

given in Algorithm 8. The big-O complexity of this method is O(V3). It is dominated
by line 2 under the assumption that V > NK.

Algorithm 8 All-at-once analytical maxvar [Car68]
Input: XH e RNV p=1,... K
T T\ !
K
Qe kL, (x0) (X[k] (x04) ) X4
. ¢,Z + EVD(Q)

: Z<+Z(:;,1:N)
:fork=1,...,K do
-1

sl (x® (xm)T) X7

o Ul (T[k])T X[

7. fork=1,..., K do
8: T[k], U « normalize (T[k], UU‘“]> > normalize canonical variables

Output: T € RNXN ylkl eRVV k=1, K

[t

[\

=~ W

Underlying factor model

The CCVs estimated by maxvar underlie the model [Ket71]

where f,, is the best fitting zero-mean unit-variance common factor, the elements of
m, € RX weight the contribution of this factor to each ullk], and v, € RE is again a
noise vector. Thus, also maxvar assumes the SCVs to have an effective rank of one in
the JBSS setting [Gab24|, but compared with sumcor, here the common factor has a
different contribution to each source component 87[1k].

Given this factor model, another interpretation of (3.32) is to consider the overdeter-

mined system

and then

min
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and therefore the t[f ] can be interpreted as regression coefficients that extract z, from

each dataset X[k], where the z, € RV can be interpreted as sample versions of the

common factors in (3.33).

3.4.3 mCCA-minvar

The goal of minvar is very similar to maxvar, with the difference that now for the
nt CCV, minvar aims to find transformation vectors t[rf ] that minimize the smallest

eigenvalue of each Cy,, as denoted in (F4) [Ket71].

Deflationary analytical solution

Kettenring [Ket71] proposed, using constraints (3.19) and (3.21), the same deflationary

analytical solution as for maxvar, i.e., performing the EVD
HnCyHnVn = QnVn

sequentially for n = 1,..., N, but while in maxvar ¢,, denoted the largest eigenvalue,
here in minvar ¢, denotes the smallest non-zero eigenvalue, and v, € RNE ig the
corresponding eigenvector. The pseudocode for the deflationary analytical minvar
method is the same as that for the deflationary analytical maxvar method given in
Algorithm 7 on page 41, but line 11 is replaced as shown in Algorithm 9, where
NK — (n — 1)K is the position index of the smallest non-zero eigenvalue for the n'?
EVD. The big-O complexity of this method is the same as that of the deflationary

analytical maxvar method, i.e., O(N2K2V + N4K3).

Algorithm 9 Deflationary analytical minvar [Ket71]

11: ¢p, vy EVD(HnéyHn, NK — (n—1)K) > smallest non-zero eigenvalue and
eigenvector

Underlying factor model

The CCVs estimated by minvar underlie the model [Ket71]

K-1
w = > mi Y v, (3.34)
r=1
where fér), r=1,...,K — 1, are the K — 1 zero-mean unit-variance uncorrelated

common factors, the elements of mﬁf) e RK weight the contribution of each fér) to
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[£]

each uy’, and v, € RE is again a noise vector. Whereas maxvar assumes a CCV to
have an effective rank-1 model (one common factor), minvar assumes a CCV to have

an effective rank-(K — 1) model.

3.4.4 mCCA-genvar

For the n'h CCV, genvar aims to find the transformation vectors t%ﬁ ] that minimize the

determinant of its covariance matrix Cy,, as denoted in (F5) [Ket71].

Deflationary numerical solution

Kettenring proposed in [Ket71] the following deflationary solution for genvar using
constraints (3.19) and (3.21), where each CCV is found using the following numerical
method. First, the datasets are whitened using Mahalanobis whitening as in (3.26),

[]

and the joint covariance matrix Cy of the whitened datasets y!*! is calculated as in

(3.27). Then, the transformation vectors v[f | for the whitened datasets are initialized
as unit-norm vectors with all elements equal to \/Lﬁ As for the deflationary analytical
maxvar method in (3.28), N EVDs are performed sequentially for n = 1,..., N, but

now separately for each dataset, i.e.,

(K], K]

~ |k
aHE gl _ Wy K (3.35)
where gb[,f } denotes the largest eigenvalue, V%ﬂ ] e RY the corresponding eigenvector, and
we explain in the following how to form the k™ datasets’ projection matrices H[,{C ] €

RV*N and the matrices ém e RVXN For estimating the first CCV, H[lk] =Iyun-

For the other CCVs,

k k k T Ik R T
= Ty = Vi ((VU_U) VEn]—m) (Vi)

where

[kl _ [ [K] (K] Nx(n-1)
V(n—l) - Vl . Vn— eR
contains the concatenated transformation vectors for the k" whitened dataset from the
n — 1 previous EVDs. While H[,f ] is only dependent on the V% ] of the previous stages,

. =lk] . . : . . =lk] .
the matrix CLT]L is updated in every iteration. The matrix CLT]L is defined as

cl _ Nl (CL}’”) ! (NL{“)T e RVXN (3.36)
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where

NI = [y gl I Gl R ¢ V()

[1]

(] with the canonical variables U,

consists of the covariances of the whitened dataset y

I 4k Lk=1,..., K, ie,

il _ g {ym <ym)TVL§J} —E{yHudl RV, 1k

and CL:L]C] € RUE-1)x(K~1) ig the matrix obtained by removing the k™ row and column
of the n' CCV’s covariance matrix Cu,,, which is calculated as

.
Cu, = blkdiag <v£}],...,v[,f(]> Cyblkdiag (v[,}], . ,vﬁfﬂ) e REXK

Using the updated éfi, the EVD in (3.35) is performed to update VL{C}, and Cy,,, and

~ [k
then CLT]L, V[f ] and Cy,, are updated again in the next iteration until either convergence
or a maximum number of iterations has been reached. Convergence is achieved when
the sum of the differences between the largest eigenvalues of the current iteration ¢ and

the previous iteration 7 — 1 is smaller than a user-defined threshold € > 0, i.e., when

K
S |enl) — (i - 1)) <«

k=1

where Q/JLk]@') = gzﬁ%g }(2) is the largest eigenvalue of the i'!" iteration [Ket71]. After the

k]

iterative process is completed, the transformation matrices T are found as

ol _ (Cgfl)‘i VIk

D=

The multiplication by (le ]> is necessary because VI# is found for the whitened
datasets. The pseudocode for the deflationary numerical genvar method is given in
Algorithms 10 and 11. The big-O complexity of this method is O(N2K2 V+ [N3K4),
where [ is the number of iterations. It is dominated by line 5 in Algorithm 10 and line 3

in Algorithm 11.
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Algorithm 10 Deflationary numerical genvar [Ket71]
Input: XM e RV<V k=1, K

1: for k=1,..., K do > whiten observed datasets
o v (g (xw)T)‘” ’ Xl

3: for k=1,...,K do > cross-covariance matrix of £™ and [*" whitened dataset
4: for/=1,...,K do

5 el Lyl (Y[l]>T

6: for k=1,...,K do > initialize transformation matrix for whitened data

=

VI \/—%foK

& forn=1,...,N do
9: for k=1,...,K do

10: if n :kl then
11: H[n} — INXN
12: else L L
13: VETL]—].) — [V[lk] . V:]—l} > V[n] is the nt column of V¥
-1
. %] 1] K \T Ik K \T
1 Hl = vy = Vi (Vi) V<n—1>> (Vi)
15: ’l,bn ~—0
16: for i« = 2,..., maxlIter do
17: for k£ = 1 , K do
18: Cﬂg] <—Calcu1ate C[ ](k Cy, L],...7V[nK])
19: ¢n ,V <— EVD(H[ ]CKC } H% ], 1) > largest eigenvalue and eigenvector
k
2 W(z) “ o)
21: if sum(|vp,, (i) — 1, (i —1)|) < € then > genvar converged
22: break

23: for k=1,...,K do
T —1/2
o1 T <%X[’f] <X[k]> ) vkl

25: Ul (T[k]>T x [¥]

Output: Tk e RV>N ylkl e RNV | =1,... K

Underlying factor model

The CCVs estimated by genvar underlie the model [Ket71]

u, = Z m{ ) L Mt + v, (3.37)
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Algorithm 11 calculate,égﬂ [Ket71]

Input: £, éy e RVEXNK. V[nl], o ,v[nK] e RN
k ~ ~ —_ _ ~ ~
I: NLZ] — [ng’l]v[ry Cg, k l]v[rf 1 ng’k+1]v[rf+1] Cgc’K]V[T{(]]
2 V,, < blkdiag <v[,}], o ,V£1K]>
3: éun — Vﬁéyvn > covariance matrix of the n'? estimated CCV
4: (AjL_nk] « delete k™ row and column of (A?un
- ~—p\ L T
5 ) NIl (CLﬁ) (N3)
Output: égﬂ e RVXN
-
with M, — [mgn mgf()} e REXK ¢, — [((D) . frgK)] e RE and v, €

R¥. The model (3.37) is similar to the maxvar / minvar models in (3.33) and (3.34) but
now assumes an effective rank-K model with K different mgf) and fér). It was noted
in [Ket71] that genvar can be seen as more “unpredictable” as the determinant cost is
more sensitive to the smaller eigenvalues. While this may sound like a disadvantage,

we later demonstrate that genvar is consistently among the best-performing mCCA
methods for JBSS.

3.4.5 mCCA-ssqcor

For the n'h CCV, ssqcor aims to find the transformation vectors t[rf ] that maximize the

sum of squared correlations within each Cy,, as denoted in (F2) [Ket71].

Deflationary numerical solution

Kettenring proposed in [Ket71], using constraints (3.19) and (3.21), a solution very

~ |k
similar to that of genvar, with the difference that CLJL in (3.36) is now defined as

Cu) = NIF (N%])T, (3.38)
The pseudocode for the deflationary numerical ssqcor method is the same as that for
the deflationary numerical genvar method given in Algorithms 10 and 11 on pages 47
and 48, but line 5 in Algorithm 11 is replaced as shown in Algorithm 12, so that lines
2, 3, and 4 in Algorithm 11 are no longer necessary. The big-O complexity of this
method is O(N2K?2V + IN3K (K + N)), where I is the number of iterations. It is
dominated by lines 5 and 19 in Algorithm 10, line 1 in Algorithm 11, and modified
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Table 3.1: Overview of the computational complexity of the mCCA methods, categorized by
the nature of their solutions.

all-at-once deflationary
: sumcor [Nie95]: O(N2K2V) maxvar [Ket71]: O(N2K2V + N4K3)
analytical 3 ) 9.9 473
maxvar [Car68]: O(V?) minvar [Ket71]: O(N*K*V + N*K?)
sumcor [Ket71]: (not further explained)
numerical — genvar [Ket71]: O(N?K?V + IN3K%)

ssqcor [Ket71]: O(N?2K2V + IN3K (K + N))

line 5 in Algorithm 12.

Algorithm 12 Deflationary analytical ssqcor [Ket71]

5 ) NI (NW)T

Underlying factor model

The CCVs estimated by ssqcor also underlie the model in (3.37) [Ket71]. By comparing
(3.37) to (3.33), we observe that if only one single factor heavily influences the CCVs,
i.e., all except for one mg) are nearly zero, ssqcor will estimate CCVs that are very
similar to those of maxvar. However, in the JBSS setting, ssqcor is more flexible than

maxvar in that ssqcor can estimate SCVs with any effective rank (from 1 to K).

3.4.6 Comment on different solutions

We have seen in the previous subsections that the different optimization problems of
mCCA are solved by various methods, which we have summarized in Table 3.1. The
mCCA methods presented in [Ket71] all require estimating the transformation vectors
in a deflationary way, i.e., sequentially estimating each CCV, where the solution for each
CCV can be found either analytically (typically manifesting as EVD) or numerically,
e.g., using gradient descent. On the other hand, the methods from [Car68] and [Nie95]
estimate the transformation vectors all at once together for all CCVs with an analytical

solution.
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3.5 PARAFAC2

After having introduced the matrix decomposition methods ICA, IVA, CCA, and IVA,
in this section, we present the tensor decomposition method PARAFAC2, which is
closely related to IVA-G, as we will show in Section 4.3. The PARAFAC2 [Har72] tensor
model has proven useful for jointly analyzing datasets [Che07; Mad17; Roa20] as it
does not impose strong constraints on them, in contrast to the well-known CP [Har70;
Car70] tensor decomposition method. As PARAFAC?2 is a more flexible version of the

well-known CP tensor decomposition, we briefly present this method before explaining

PARAFAC2.
Let X € RVXVXK e the tensor consisting of the K observed datasets as frontal

slices, i.e.,

X6k =XEerV<V p=1... K.

The well-known CP tensor model [Har70; Car70] represents a third-order tensor X €

RVXVXK ¢onsisting of R components as follows:

R
X~Y arobroc, (3.39)
r=1

with the factor matrices

A= [a1 aR] ERNXR,

B=[b;...bp] e RV*E

C=lcy...cpl e REXE

and the outer product denoted by o. The solution of (3.39) is found by solving the
following optimization problem [Kol09]:
R 2
i X — b . 3.40
¥ Lo 0
F

When fixing all but one of the factor matrices, (3.40) reduces to a linear least-squares
problem, and therefore, the solution for A, B, C can be found using Alternating Least
Squares (ALS) [Kol09].

With X*| € RV*V being the k™ frontal slice of X, (3.39) can be rewritten as [Kol09]

XM ~ A diag ()BT, k=1,...,K, (3.41)
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L yow of

where c;.. is the
C1:
C=|: | erfxE
CK:
and we see that the CP model assumes common factor matrices A and B for all K
frontal slices, i.e., observed datasets. In contrast to this, PARAFAC2 [Har72; Kie99] is
a more flexible model, as it allows for changes of the B matrix, meaning that the factor

k] ¢ RV ¥R

matrix B can be different in each frontal slice (observed dataset):

X+ ~ A diag (cy..) (B[k]>T
; (3.42)
5.t (B[k]> BM—M, k=1,... K,

where M € RE*E is an arbitrary matrix, and with the constraint introduced to preserve
uniqueness of the components up to permutation and scaling ambiguities [Har72; Kie99].
The solution of (3.42) is found by introducing the matrices J*| € RV*% and B € RE*E
such that

Bk —JHB, k=1 . K,

and solving the following optimization problem using an ALS-based algorithm [Kie99]:
K

min | Z

1 K
AB.c Il gkl =

T2

X*H — A diag (cp,.) BT (J[k]>

F (3.43)
5.t (JW>TJW 1, k=1,... K.

Therefore, after initializing A, B, C, the solution of (3.43) for J (%] is found as [Kie99]
K — plil (glk)'
gkl — (G ) C k=1....K,
where Flfl € RV*E and GIF e REXE are found using the SVD of
K" A di T _ gl (gl
(X ) A diag (c;.) BT = FINK (G ) .

Then, the optimization problem can be written equivalently as

min f: HX[’“]JM — Adiag (c;.) BTH; (3.44)
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and we see that the solution of (3.44) for A, B, C just corresponds to the CP decompo-

sition of a tensor X with XK1 JIE] as frontal slices, i.e.,
X, k) = X glE],

Here, one update for A, B, C in the CP-ALS algorithm is sufficient for the PARAFAC2-
ALS algorithm to converge. Then, using the updated A, B, C, the Jm, e ,J[K] are
updated, until convergence is reached. For better convergence, A is initialized with
the R principal eigenvectors of 25:1 X [#] (X[k]>T, while B[l], e ,B[K] and C are
initialized as identity matrices [Kie99]. The pseudocode for PARAFAC2 is given in
Algorithm 13, where CP,update(XN, A, B, C) denotes one CP-ALS update of A,B,C

given the current tensor X ,and A, B, C from the previous iteration.

Algorithm 13 PARAFAC2 [Kie99]
Input: R, X € RVXVXK
.
1: ¢,V « EVD (zf_l X [#] (X[k]) )

22 A~ V(,1:R)

3: B« IRXR

4: C <+ IKXR

ot ¢(1) ~—0

6: for i = 2,..., maxlter do

7 for k=1,...,K do

s EU @l o svo ((x)] Ading e B7)

@

3 = i (GlH1)'

10: for k=1,...,K do

11: X(:,: k) = Xk glk]

12: A B, C < CP_update(X,A,B, C)

130 (i) HXW — Adiag (c;.) BT (J[’f])TH

14: if (i —1)— (i) <ey(i — 1) then > PARAFAC?2 converged

15: break
Output: T e RVNXN ylkl e RN*V k=1, ... K




4 Connections between JBSS
methods

This chapter is dedicated to establishing connections between an important set of
JBSS methods. We start by comparing the two most closely related, and perhaps the
most commonly used [Sor21], mCCA methods: the sumcor method and the maxvar
method. We prove that the canonical variables estimated by the all-at-once analytical
maxvar method [Car68] are scaled versions of those from the all-at-once analytical
sumcor method [Nie95], and thus, the canonical variables of both methods are the
same if they are normalized to unit variance. This is important to understand because
the latter is computationally much faster. Furthermore, we show that the canonical
vectors from the deflationary analytical maxvar method [Ket71] and those of the all-
at-once analytical sumcor method [Nie95] are closely related but different, with the
difference that the canonical variables estimated by the latter are not constrained to be
uncorrelated within a dataset. Thereafter, we address the connection of IVA-G [And12]
and PARAFAC2 [Har72; Kie99]. We show that the PARAFAC2 model and the model
of IVA-G with dimension reduction are intimately related and can both be formulated
as the multiplication of a mixing matrix with a source matrix for each dataset, where
the latter is more constrained in terms of the sources and the first is more constrained

in terms of the mixing matrices, and demonstrate these differences in simulations.!

ISections 4.1 and 4.2 of this chapter are based on the paper: “A Comprehensive Guide to Multiset
Canonical Correlation Analysis and its Application to Joint Blind Source Separation,” I. Lehmann*7
B. Gabrielson*, T. Hasija, and T. Adali, submitted for review, 2025. 1 specifically contributed
to proving the source identification conditions of sumcor, deriving the connection between max-
var [Ket71] and sumcor [Nie95], implementing and running the experiments, creating all figures,
and writing the paper. B. Gabrielson has provided theoretical insights in the connection between
maxvar [Car68] and sumcor [Nie95] and the source identification conditions of genvar. Discussions
and feedback along the way until the final paper have contributions from all authors. Section 4.3 of
this chapter is based on the paper: “Multi-task fMRI Data Fusion Using IVA and PARAFAC?2,”
I. Lehmann, E. Acar, T. Hasija, M. A. B. S. Akhonda, V. D. Calhoun, P. Schreier, and T. Adali,
2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022,
pp- 1466-1470.

23
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4.1 Connection between all-at-once analytical
sumcor [Nie95] and all-at-once analytical

maxvar [Car68]

Comparing the sumcor GEVD in (3.23) and the maxvar EVD in (3.31), we see that
we can write both EVDs in terms of the whitened datasets. By doing so, we find the
connection between the EVDs and, thereby, also the connection between the methods.
As Carroll formulated the maxvar method [Car68] using samples, we also use sample

notation for the sumcor method [Nie95| to state their connection in Theorem 4.1.

Theorem 4.1. Let the concatenated whitened datasets be

v (1]
Y — . c RNKXV
YIK]

where

k] _ (L Ik (x[R\T ] - uNxV .
Y _(VX (X )) XH e rRN*V  p =1 K.

Nl =

The canonical vectors estimated by the all-at-once analytical mazvar method [Car68] are
scaled versions of those estimated by the all-at-once analytical sumcor method [Nie95]

(before normalization), i.e.,

Ulthenr = 7 0 Uheor, k=1, K,
or in CCV notation,
Unnaxvar,n = 7+ Usumeorns 7= 1., N,
where V' is the number of samples, and Q= diag (w1, ...,wyN) € RV*N s q diagonal

matriz consisting of the N largest singular values of Y.
The proof of Theorem 4.1 consists of three steps.

1. Write the sumcor GEVD in (3.23) and the maxvar EVD in (3.31) in terms of the

concatenated whitened datasets Y.
2. Derive the relation of the eigenvectors in these two EVDs.

3. Find the connection of the canonical vectors.
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Proof. 1) The covariance matrix of the concatenated whitened datasets is

Gy — %YYT e RVEXNK_
and .
%X[l] (X[”> 0
T
0 L xIK] (X[K])

The sumcor GEVD in (3.23), given by

~ ~_1
can be written in terms of Cy by multiplying it from the left with Dy * [Nie95]:
~—1 o 1 1 ~ 1
D, ?CxD, ?D2T = DIT &
—— N N~
¢, B B
& CyB = B®, (4.2)

where the matrix .
B = ]SQT c RNKXNK
— X

NK xNK

contains the eigenvectors of (A}y, and ® € R contains its eigenvalues on the

main diagonal. Lastly, let
T = [tl tN} e RVEXN
consist of the N principal generalized eigenvectors of éx w.r.t. f)x, and let

B=|b - by|eRMOY

~ ~T~
consist of the N principal eigenvectors of Cy, with B'B = Iy, y.

In the maxvar EVD in (3.31), given by

QZ =72,
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the matrix Q can be written in terms of Y as

T/1

Lxle (Xm)T) -
i (x14)

) <
[k])T (

K 1 1 T _-fr 1 T _%
_ - - = x (k] (x[#] (k]
_];VX -X ) (VX (X)) X
1 f: (Y[k]>TY[k1
Y%

k=1

v

1 { T T _

5 ()T ey |

JCORCRNIEN
o loT VxV
= ;Y'Y RV,

where we have chosen the weighting factor to be equal to one. Let

7 = [zl zN] e RVXN

. .. . 1 S5y
consist of the N principal eigenvectors of Q, with Z Z = Iy« n-

2) Now, let the SVD of Y be
Y = BQZ',

where B € RVEXNK () ¢ RNEXNK 4nq 7 ¢ RV*NK and let the rank-N approxi-

mation of Y be

Y = BOZ'

with B and Z as defined above, and € = diag (w1, ..., wy) € RVXN_ With the

partitions of Y and ]§, we have

and thus, for each dataset
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3) We know that the sumcor transformation matrices T are the blocks of

1]
To| ¢ | erMON,

~_1
Thus, by inserting (4.1) in T = Dy *B, we find

1
K (L (x\T 2glH
TH o = (VX (X ) BlH, (4.3)

Furthermore, we know from (3.32) that the maxvar transformation matrices are

For the canonical vectors, this means

Ugi]axvar = (Tgi]axvar>-r XW = %ﬁ (Tgfl]mcor>-r X[k} = %ﬁ Ugfl]mcora

i.e., the canonical variables of the all-at-once analytical maxvar [Car68] and the all-at-

once analytical sumcor [Nie95] are scaled versions of each other.
O

Note that the canonical variables estimated by these two methods are the same when
they are normalized to unit variance. As the all-at-once analytical maxvar method is
computationally more expensive than the all-at-once analytical sumcor method (because
the EVD is performed on a V' x V matrix instead of an N x N matrix), we do not report

the all-at-once analytical maxvar results but only the sumcor results in the remainder
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of this thesis.

4.2 Connection between all-at-once analytical
sumcor [Nie95] and deflationary analytical

maxvar [Ket71]

After having seen how the sumcor EVD in (3.23) can be written in terms of the whitened
datasets in (4.2), we can write this EVD in a deflationary way and compare it with
the deflationary maxvar EVD in (3.28). By doing so, we find the connection between
the EVDs and, thereby, also the connection between the methods. As the maxvar
method [Ket71] and the sumcor method [Nie95] are formulated using random vector

notation, we also use this notation to state their connection in Theorem 4.2.

Theorem 4.2. The transformation matrices, and therefore the canonical variables, of
the all-at-once analytical sumcor method [Nie95] and the deflationary analytical mazvar
method [Ket71] are different but closely related. More precisely, let

vIkl — [V[lk] VE]\;]] c RVxN

be the transformation matrixz for the whitened datasets

vl = (Cgﬂ])_

Nl

x| cRY

such that -
ultl — (V[k]) vyt r=1.. K.

Then, for mazvar [Ket71], the transformation vectors V[Tf] for all datasets are orthogonal,

1.€.,
-
(V,[,{d) V[n];} =0, m#n, m=1...,N, k=1,...,K,
while for sumcor [Nie95], the concatenated transformation vectors
M
c RNK
N

Vn
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are orthogonal, i.e.,
T
VILVm:Z (VLJ) an] =0, m#n, n,m=1,...,N.
k=1

The proof of Theorem 4.2 consists of two steps:

1. Write the sumcor EVD in (3.23) depending on the whitened datasets y[k] in a

deflationary way.

2. Compare the deflationary sumcor EVD with the deflationary maxvar EVD in
(3.28).

Proof. 1) Let
_1
v = (cd)  er?

be the k™ whitened dataset, and let
Cy =E {ny} c RNVExNK
be the covariance matrix of the concatenated whitened datasets

yl1
y = : e RVK,
yIK]

As in (4.2), the sumcor EVD can be written as
CyB = ®B,

where
B— [b1 bNK] c RVEKxNK

contains the eigenvectors of Cy, and

by
bp=| : | eRVE n=1..., N

bl
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contains the transformation vectors bgf ] for the k*h whitened dataset. Now we define

Eﬁn—l): h” o bn—J c RVK x(n—1)
and Hy, as [Sta09]

Hy =1 B(, ) (B], B y)) B,y € RYONE,
Then, H;, Cy is the projection of Cy, on the subspace that is orthogonal to by, ..., b,_1
[Sta09]. Let us denote the principal eigenvector of H;,Cy by v,. Now, it is obvious to see
that v, = by, i.e., that the principal eigenvector of H;,Cy equals the pth eigenvector of
Cy. As Hj, is symmetric and idempotent, the eigenvectors of H;,Cy are equal to those
of H,CyH,, [Ket71]. Thus, the all-at-once sumcor EVD in (4.2) can also be performed
in a deflationary way by performing the following EVD sequentially for n =1,..., N:

HnCyHnVn = PnVn,

where ¢y, denotes the largest eigenvalue of H, CyHy,

i

N
denotes the corresponding eigenvector, and H,, is calculated as follows. In the first
EVD, H1 = INKXNK> and then,

T “loT
Hy =1V, (V(n_l)v(n,l)) Vi n=2...N,

where
V?] Vgl1
V(n—l) = [Vl . anl} — : c RNKX(n—l)
JEL K
1 n—1

consists of the eigenvectors of the n — 1 previous EVDs.

2) In the deflationary maxvar EVD in (3.28), also given by H,CyH,, v, = ¢, vy, the
definition of H,, is different:

- ~T o 1T
H, =1-V, (V(n—l)v(n—1)> V(n-1);
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where
B 0 0 |
Vi g - o - 0 3 L e pVEx(n-1)K
(n—1) : : . 0 0
(0 - 0 g[lK] VL&K—]L

consists of the partitioned and normalized eigenvectors

JH_ Vi o
G
n
of the n — 1 previous EVDs. While the first eigenvectors V[lk] from Kettenring are the
same as v[lk} from Nielsen, £ = 1,..., K, all following eigenvectors are different because

the matrix {7(”_1) is built differently than V(n—l): Instead of concatenating the n — 1
previous eigenvectors horizontally, Kettenring partitions the eigenvectors according to
the datasets they belong to, normalizes these partitions, and then stacks all normalized
partitions into a block-diagonal matrix. As a result, in sumcor [Nie95], the vy, vy,

T
are orthogonal, i.e., V;I:LVm = Zi(:l (V[f]) vﬁfﬂ = 0, while in maxvar [Ket71], the V[f],

T
V@ are orthogonal, i.e., (V,[,{ﬂ) V[n]ﬂ =0,k=1,...,K. ]

4.3 Connection between PARAFAC2 and IVA-G

In this section, we establish the connection between the PARAFAC2 and IVA-G models.
Consider the PARAFAC2 model, shown in Figure 4.1, which we repeat here for better
readability:

X* ~ A diag (ci.) (B[k]>T
4.4
5.t (BW)TBW —M, k=1,.. K, -

Col
-
with XIH ¢ RNXV A ¢ RVXE ¢, ¢ RIXE, (B[kl) — : e REXV,
KT
(b
and M e REXE ig an arbitrary matrix. We see that PARAFAC2 represents the

datasets through R components, where R is typically smaller than N, and therefore
indirectly performs a dimension reduction on the datasets. Furthermore, the PARAFAC2
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R

Figure 4.1: Illustration of an R-component PARAFAC2 model. The APl are more con-
strained than in IVA-G; however, the Bl*l are less constrained by only fulfilling

(B[k]>TB[k] _ ML

formulation considers observed datasets X[k € RV V k=1,...,K, where V is the

number of samples, instead of random vectors xlkl e RNV Therefore, we compare the

PARAFAC2 model with the IVA-G model for dimension-reduced observed datasets,

which we derive in the following.

First, dimension reduction via Principal Component Analysis (PCA) is performed on

the observed datasets X[* to get the dimension-reduced observed datasets
~ T
x (xp[k]) X ¢ REXV. (4.5)

where WUl € RNXE ig the matrix consisting of the R < N principal eigenvectors of the

estimated covariance matrix of the k™ observed dataset,
el _ 1 [ (X[k]>T c RNVXN.
V
Now, X[k] is assumed to be generated according to the model
xM = AWgl] (4.6)

where SI¥l € RE*XV consists of the sample versions of the R source components, and
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—
~ e —— -
Al 0:‘ : —! QlK]
. rglil
R 1%

R
Figure 4.2: Ilustration of the PCA-IVA-G model with reduced dimension R.

~k . .. .
1+ € REXR ig the mixing matrix. Then,

—~ [k
where W[ ]

the original data from the dimension-reduced datasets as

S|k
€ REXE ig estimated by applying IVA-G to X[ ]. Finally, by approximating

X ~ wlhlx™ (4.7)

where we misused notation and denoted the approximated dataset the same as the
original dataset, and inserting (4.6) in (4.7), the PCA-IVA-G model is found as

(4.8)
Alkl

where AlFl € RVN*E ig the non-square mixing matrix for the &' dataset. The PCA-

IVA-G model is shown in Figure 4.2.

Comparing (4.4) and (4.8), we see that the PCA-IVA-G and PARAFAC2 models are
T
equivalent when AlFl = Adiag(c;.) and Sl = (B[k]> . Similar to the ™ SCV S, in
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PCA-IVA-G, which consists of the r row st;] of all S[k], ie.,

(1]

Sp:
S']" — E RKXV,

i)

-
we can define the r™ SCV in PARAFAC2 by concatenating the r* row of all (B[k])

as

)"

B, = : e REXV,

(vF)’
However, each method has different cost functions and hence different assumptions, i.e.,
PARAFAC2 is more constrained in terms of AW, while PCA-IVA-G is more constrained
in terms of SI¥. If M = I, where I is the identity matrix, the assumptions of the two
models become more similar as both assume uncorrelatedness of the sources. While
PARAFAC2 may have an upper limit on the number of components to uniquely estimate,
which is K > R(R+ 1)(R + 2)(R + 3)/24 [Kie99], typical values for R in PCA-IVA-G
are significantly higher. This higher value of R allows for a more detailed decomposition
using PCA-IVA-G that is easier to interpret, as order selection is highly linked to
the interpretability of the source components [Ada22]. However, as PARAFAC2 has a
smaller set of parameters to estimate than PCA-IVA-G, it is likely to be more robust

against noise. In the following subsections, we demonstrate the differences between
PCA-IVA-G and PARAFAC2 in simulations.

4.3.1 Simulation setup

We simulate a tensor of dimension N = 300 subjects, V' = 5000 voxels, and K = 12
datasets, i.e., xI* e R300x5000 % — 1 .. 12. The number and dimension of the
observed datasets are similar to those of the real-world fMRI datasets described in
Section 7.1. A typical assumption in fMRI analysis is that the observed datasets can
be modeled with a lower-dimensional set of latent sources [Ada22], and therefore, we
model only R = 4 underlying source components, i.e., Skl = (B[k])T € R4*5000 Tpen,

the observed data can be generated as

X[ — AlFlglk]
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where AlFl € R300%5 ig the non-square mixing matrix.2

We compare PCA-IVA-G and PARAFAC?2 in two different scenarios. In the first,
AlF] is modeled as in (4.4), i.c.,

Al = Adiag(cp.), k=1,...,K, (4.9)

but in the second, (4.9) is violated. For the subjects mode in scenario 1, the elements
of the first and third column of A € R300%4 are drawn from the normal distribution
N(0,1), and then 0.5 is added to the last 150 elements of these columns, i.e., a1 (151 : 300)
and a3(151 : 300), to simulate a difference between patients and controls. The second
and fourth column are also distributed normally, with a mean of zero and standard
deviation as the average of the standard deviations of aj and ag, i.e., 09 = 04 = Uﬁl}ﬂ.
Then, the AlFl are calculated as in (4.9). In scenario 2, the Al are calculated as
before, but then, we subtract 0.5 from ag(151 : 300), and the third column of AlM i
recalculated for the last eight datasets, i.e., alkl = ckgaénew), k =b5,...,8. This way,

Al £ Adiag(cy.) for the third component. In both scenarios, for the vozels mode,

the sources S = (B[k]> e R¥*5000 4r6 generated using a multivariate Gaussian
distribution with the covariance matrix Cg, for each SCV shown in Figure 4.3. Note
that Cs,, denotes the covariance matrices and C the factor matrix. These covariance
matrices are designed to have similar values for the correlations between sources like
those of the fMRI datasets in Section 7.2. We see that in Cg,, all source components
are uncorrelated; thus, there is no dependence that IVA-G can leverage for this SCV.
For the task/datasets mode, the factor matrix C € R12x4 s also generated equally
for both scenarios. The elements of the first three columns cq, c9, cg are drawn from
N (1.5,0.01). Then, from the elements corresponding to the first four datasets in co, i.e.,
c2(1:4), and the last eight datasets in cg3, i.e., c3(5 : 12), we subtract one to simulate
that the component is not present in these datasets. The elements of ¢4 are drawn from

N(1.5,0.25) to make sure that the columns of C are not too similar.

4.3.2 Performance evaluation

The SCVs in IVA-G are sorted according to their determinant to match the order
of the true SCVs. For PARAFAC2, non-negativity constraints are imposed on the
task/datasets mode to solve the potential sign indeterminacy per component [Har72].
Then, the correct permutation of the components is found by maximizing the cosine

similarity of the concatenated true and estimated B*] matrices. To test for statistically

2The Python code for the simulations is available at: https://github.com/SSTGroup/ICASSP2022.


https://github.com/SSTGroup/ICASSP2022

66 Connections between JBSS methods

R

Figure 4.3: Covariance matrices (12 x 12) of simulated sources for each SCV, which are
estimated reliably by both models (not shown).

significant difference (p < 0.05) between patients and controls (first vs. second half of
each column in A[k]), a two-sample ¢-test (unequal variances) is applied on each column
of A[k], and the corresponding p-values are calculated. The distributions of the true
and estimated p-values are compared in boxplots. Furthermore, the average correlation

of the true and estimated sources across datasets for each SCV is calculated.

4.3.3 Results of the simulated data analysis

For PCA-IVA-G, the dimension of the simulated datasets is reduced to R = 4, as we
have simulated R = 4 underlying source components, and IVA-G is applied to the
dimension-reduced datasets 5([“ e REXV PARAFAC? is applied to the simulated
datasets X[l € RV*V ¢ estimate R = 4 components, with non-negativity constraints
imposed on C. Both IVA-G and PARAFAC2 are run for multiple initializations, and the
results for the most consistent run [Lon18] in IVA-G3 and for the smallest reconstruction
error in PARAFAC2? are reported. The results for the simulated data analysis, averaged
across 50 independent Monte-Carlo runs, show that IVA-G and PARAFAC2 both
achieve an almost perfect correlation (> 0.97) between the true and estimated sources.
Thus, PARAFAC?2 is able to estimate B correctly, i.e., to achieve JBSS, despite the
assumption on Alkl being violated. Figure 4.4 shows the distributions of the true and
estimated p-values for both scenarios. As A is the same for all datasets in scenario 1,
the true p-value for all datasets is also the same, while in scenario 2, A is different
for the first four and last eight datasets in component 3 and therefore, we show the
distribution of the p-value for the first four and last eight datasets of ag{:] separately. We
see in Figure 4.4(a) that for scenario 1, component 3, IVA-G overestimates the p-value

for some datasets, while PARAFAC2 estimates the p-value small enough matching the

3The Python implementation is available at: https://github.com/SSTGroup/independent_vector_
analysis.
4The Python implementation is available at: https://github.com /tensorly/tensorly [Roa20; Kos19b].
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Figure 4.4: Distribution of the true and estimated p-values in AlFL.

ground truth. However, for scenario 2, we see in Figure 4.4(b) that IVA-G can capture
the different p-values in component 3 due to its more flexible model design in terms of
A[k], while PARAFAC2 cannot capture the differences and finds the same p-value for

all datasets because it assumes the same mixing matrix.

4.4 Summary

In this chapter, we have established the connections between an important set of JBSS
methods. First, we have derived the connection between the two perhaps most commonly
used mCCA methods sumcor and maxvar, proving that if the canonical variables are
normalized to unit variance, those estimated by the all-at-once analytical sumcor
method [Nie95] are the same as those estimated by the all-at-once analytical maxvar
method [Car68]. Furthermore, we have shown that the canonical variables estimated
by the all-at-once analytical sumcor method [Nie95] and by the deflationary analytical
maxvar method [Ket71] are closely related, with their main difference being that the

canonical variables within a dataset are constrained to be uncorrelated in maxvar but
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not in sumcor. Finally, we have shown that the PCA-IVA-G and PARAFAC2 models
are intimately related. We show the differences between the two methods in simulations
inspired by real-world fMRI data, which reveal that while both methods can accurately
capture the underlying source components, i.e., achieve JBSS, PARAFAC2 captures
group differences more reliably, providing a compact representation when subject scores
differ only up to a scaling across different datasets, and IVA-G performs better when
different subject scores are expected in different datasets.

To be able to also connect the mCCA methods with IVA and PARAFAC2, a next step
is to formally derive the connection between mCCA-genvar and a deflationary version
of IVA-G with orthogonality constraint, which have similar cost functions [And10].
A more detailed comparison of IVA using its different versions (not only IVA-G but
also IVA-L-SOS) and PARAFAC2 using different constraints could further complete
the comparison between JBSS methods. Having a complete picture of the connections
between these methods and their performance in JBSS in different scenarios would
help to ultimately solve the challenge of choosing the right JBSS method for a specific
application. In order to move another step forward towards this goal, in the next chapter,

we discuss the conditions under which the methods are able to achieve JBSS.



5 Source identification conditions
for BSS and JBSS

This chapter is dedicated to summarizing the source identification conditions of matrix
decomposition methods for BSS and JBSS as defined in Definitions 2.1 and 2.2, i.e., the
conditions on the true source components under which a method is able to achieve BSS
or JBSS. Knowing these conditions is important because without having guarantees
to identify the true sources, it would not make sense to interpret them, i.e., to attach
physical meaning to them [Ada22]. Of course, for real-world data without knowledge of
the ground-truth sources, one often cannot verify if the conditions of a specific method
are satisfied, but at least one should be able to check if it is reasonable to assume
this, or if another method should be chosen instead. This knowledge on the source
identification conditions, together with our insights from Chapter 4 on the connections
of the methods, will ultimately help to solve the challenge of choosing a JBSS method
for a specific application.

To simplify the formulations of the source identification conditions, we make the

following assumption throughout the whole chapter:

e All source components within an SCV are sufficiently correlated such that its

covariance matrix cannot be partitioned into a (permuted) block-diagonal matrix.
(JBSS)

If Assumption (JBSS) does not hold, the conditions to identify the true source compo-
nents can be extended to account for block-diagonal covariance matrices using so-called
a-Gaussian SCVs, similar to the development in [And14]. However, for block-diagonal

matrices, methods may not be able to correctly align sources across datasets.!

ISection 5.4 of this chapter is based on the paper: “A Comprehensive Guide to Multiset Canon-
ical Correlation Analysis and its Application to Joint Blind Source Separation,” I. Lehmann”,
B. Gabrielson”, T. Hasija, and T. Adali, submitted for review, 2025. I specifically contributed
to proving the source identification conditions of sumcor, deriving the connection between max-
var [Ket71] and sumcor [Nie95], implementing and running the experiments, creating all figures,
and writing the paper. B. Gabrielson has provided theoretical insights in the connection between
maxvar [Car68] and sumcor [Nie95] and the source identification conditions of genvar. Discussions
and feedback along the way until the final paper have contributions from all authors.

69
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5.1 Source identification conditions of ICA for BSS
(K =1 dataset)

The source identification conditions of ICA for BSS depend on the ICA method. In
Theorem 5.1, we present the source identification conditions of FastICA, which are
stated in [Hyv00].

Theorem 5.1 (Source identification conditions of FastICA from [Hyv00]). We assume
Assumptions (ICA.1), (ICA.2), and (ICA.3) from page 17. Let

be the true source vector. If at most one of the source components s, has a Gaussian
distribution, then FastICA [Hyv00] achieves BSS, i.e., the estimated source vector s

recovers the true source vector s up to sign and permutation:

s = PIs,

where P € RVXN s 4 permutation matriz and [ e RVXN s q diagonal matrix with

diagonal elements equal to either —1 or 1.

5.2 Source identification conditions of IVA for JBSS
(K > 2 datasets)

The conditions under which IVA can identify all sources up to a scaling and an individual
permutation for each dataset are stated in [And14; Adal4]. These conditions do not
imply that the source components are also correctly aligned across datasets, i.e., that
the permutation matrix is the same for all datasets. In order for IVA to also align
the identified sources correctly, i.e., to recover the true sources up to a scaling and a
common permutation for all datasets, there must not exist two SCVs that both contain
a subset of source components that is independent of the other source components in
that same SCV [And14]. This condition is included in Assumption (JBSS) from page 69,
as the covariance matrix of such SCVs would be a (permuted) block-diagonal matrix.

In the next two subsections, we present the source identification conditions of IVA-G

and IVA-L-SOS for JBSS.
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5.2.1 Source identification conditions of IVA-G

In IVA-G, the SCVs are assumed to have a multivariate Gaussian distribution, and
JBSS is therefore achieved by maximizing uncorrelatedness of the SCVs instead of
statistical independence. Therefore, Assumption (IVA.3) on page 20 reduces for IVA-G
to:

e Source components are uncorrelated across SCVs (but can be correlated within
an SCV), i.e.,

E{sns—,rn}:OKxK m#mn, nmn,m=1,...,N. (IVA.3D)

The source identification conditions of IVA-G are derived and proven in [And12] and

presented in Theorem 5.2.

Theorem 5.2 (Source identification conditions of IVA-G [And12]). We assume As-
sumptions (IVA.1) and (IVA.2) from page 21, Assumption (IVA.3b), and Assumption
(JBSS) from page 69. Let Cg, € REXK pe the covariance matriz of the nth SCV
sp € RE. If the following condition holds for this SCV sy:

Cs,, is distinct from all other Cs,, by more than a sign, i.e.,
Cs, # DpCs,, Dy, m#n, m=1,...,N,
where Dy, € REXK 45 ¢ diagonal matrix with diagonal elements equal to either —1 or

1, then this SCV sy, can be identified by IVA-G [And12]. If this condition holds for all
n=1,..., N, then IVA-G achieves JBSS, i.c., the estimated source vectors st recover

[+]

the true source vectors s'™! up to a sign and a common permutation:

oW —prlMlglhl p o1 K

(k] c RVXN

where P € RY*N s 4 common permutation matriz and T are diagonal

matrices with diagonal elements equal to either —1 or 1.

Note that if only a few elements of Cs, and D, Cg,, Dy, are different, the condition
Cs,, # D, Cs,,, Dy, is almost violated. When more elements are different, the condition

is better satisfied, and IVA-G can better achieve JBSS.
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5.2.2 Source identification conditions of IVA-L-SOS

In IVA-L-SOS, the assumptions on the SCVs are as stated in Section 3.2, as IVA-L-SOS
also considers higher-order statistics. The source identification conditions of IVA-L-SOS

are derived and proven in [And14] and presented in Theorem 5.3.

Theorem 5.3 (Source identification conditions of IVA-L-SOS [And14]). We assume
Assumptions (IVA.1), (IVA.2), and (IVA.3) from page 21, and Assumption (JBSS)
from page 69. Let Cg,, € REXE pe the covariance matriz of the nth SCV's, € RX. If
one of the following two conditions holds for this SCV sy:

1. the assumed distribution of the estimated SCV Sy, matches the distribution of the
true SC'V sy, i.e.,

[ () (det(z)) 2 .
S, ) = — / -1
P, 5n) = Ponlon) = = i R ) eXp(_§ g S")’

where I'(+) is the Gamma function and %, = ﬁ(}sn,

2. or Cg,, is distinct from all other Cg,, by more than a sign, i.e.,

Cs, # DpCs,, Dy, m#n, m=1,...,N,

ERKXK

where Dy, 18 a diagonal matriz with diagonal elements equal to either

—1 orl,

then this SCV sy, can be identified by IVA-L-SOS [Bhil9]. If one of these conditions
holds for alln =1,..., N, then IVA-L-SOS achieves JBSS, i.e., the estimated source
(]

vectors /s\m recover the true source vectors s\ up to a sign and a common permutation:

st —prlPgM p o1 K,

(K] c RVXN

where P € RNXN s o common permutation matriz and r are diagonal

matrices with diagonal elements equal to either —1 or 1.

5.3 Source identification conditions of CCA for
JBSS (K =2 datasets)

By its formulation, CCA does not have a generative model. However, to investigate its

ability to achieve JBSS, a generative model needs to be assumed for CCA. It is therefore
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assumed in [Li08] that datasets xlFl e RN are generated according to the JBSS model
in (2.2), given as x[kl = AFlslE] | = 1,2. Since CCA achieves JBSS by maximizing
correlations of canonical variables (not their higher-order statistics), the assumptions on
the sources for CCA are the same as those for IVA-G, which minimizes correlations of
the SCVs, i.e., considers only second-order statistics. The source identification conditions

of CCA, which have been proven in [Li08|, are presented in Theorem 5.4.

Theorem 5.4 (Source identification conditions of CCA from [Li08]). We assume
Assumptions (IVA.1) and (IVA.2) from page 21, Assumption (IVA.3b) from page 71,
and Assumption (JBSS) from page 69. Let

L pn
pn 1

Cs, = € R**?

n

be the covariance matrix of the nth SCV's, € R2, where pn 1S the correlation of the nth

source component across the 2 datasets. If the following condition holds for this SC'V
Sp:

the magnitude of the correlation |py| is distinct from all other |pp|, i.e.,

|Pn|7é|Pm|7 m;én, mzlv"‘7Na

then, this SCV sy, can be identified by CCA [Hot36]. If this condition holds for all
n=1,...,N, then CCA achieves JBSS for K = 2 datasets, i.e., the canonical vectors

k] k]

ulkl recover the true source vectors sl up to a sign and a common permutation:

ulbl = PR 1 0

) Y

where P € RY*N s o common permutation matrix and T are diagonal

matrices with diagonal elements equal to either —1 or 1.
We can rewrite Theorem 5.4 in terms of the eigenvalues of Cg,, , as we know that

Al =14 pn, MlI=1-pp n=1...N

Thus, if |pp| # |pm], then )\Q] =+ )\EL] and )\g] -+ )\[,?l], and we find Theorem 5.5 for the

source identification conditions of CCA depending on the eigenvalues of Csg, .

Theorem 5.5 (Source identification conditions of CCA from [Li08]). We assume
Assumptions (IVA.1) and (IVA.2) from page 21, Assumption (IVA.3b) from page 71,
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and Assumption (JBSS) from page 69. Let

A
An= |12
n
be the eigenvalues of Cs, € R2%2 the covariance matriz of the nth SCV's, € R2,
sorted such that )\[,y > /\g]. If the following condition holds for this SCV sy, :

the largest eigenvalue of Cs,, is distinct from the largest eigenvalue of all other Csg,,,

1.€.,
)\L}]#Aw, m#mn, m=1,..., N,

then, this SCV sy, can be identified by CCA [Hot36]. If this condition holds for all
n=1,...,N, then CCA achieves JBSS for K = 2 datasets, i.c., the canonical vectors

k] k]

ulkl recover the true source vectors sl up to a sign and a common permutation:

ulbl = PR 10

)=

where P € RY*N s o common permutation matrix and T are diagonal

matrices with diagonal elements equal to either —1 or 1.

5.4 Source identification conditions of mCCA for
JBSS (K > 2 datasets)

In this section, the source identification conditions of the different mCCA methods are
presented. The source identification conditions of maxvar have been derived in [Li09].
We derive and prove the source identification conditions of sumcor, conjecture those
of minvar, and discuss theoretical considerations for those of genvar and ssqcor. We
substantiate the proposed theoretical conditions with simulations, test the statistical
efficiency of the five mCCA methods for finite samples in experiments that are close to
(but not exactly) violating their conditions, and investigate what influence the effective
rank of the SCVs has on the methods’ ability to achieve JBSS.

Like CCA, also mCCA does not have a generative model. To investigate its ability

[kl € RY are generated

to achieve JBSS, we therefore assume again that datasets x
according to the JBSS model in (2.2), given as x[kl = A[k]s[k], k=1,..., K. Following

the same logic as in CCA, the assumptions on the sources for mCCA are the same as
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those for IVA-G.2

5.4.1 Source identification conditions of mCCA-sumcor

The sumcor transformation vectors are the partitions of the principal eigenvectors in
the GEVD in (3.23). We can write this GEVD in terms of the concatenated SCVs’
covariance matrix to find the relationship between the sumcor transformation vectors
and the eigenvectors of the concatenated SCVs’ covariance matrix. By doing so, we find
the conditions that the eigenvalues of the SCV covariance matrices must satisfy such
that the canonical vectors estimated by sumcor recover the true source vectors (up to
permutation and scaling). These conditions are the source identification conditions of

sumcor, which we propose in Theorem 5.6.

Theorem 5.6 (Source identification conditions of sumcor). We assume Assumptions
(IVA.1) and (IVA.2) from page 21, Assumption (IVA.3b) from page 71, and Assumption

(JBSS) from page 69. Let
[1]
A

n
Ap = :
A
be the eigenvalues of Cs, € REXE  the covariance matriz of the nth SCV's, € RE,
sorted such that /\[7}] > > )x[nK]. If the following two conditions hold for this SCV sy, :

1. the largest eigenvalue of Cs,, is distinct from the largest eigenvalue of all other
Cs,,, tc.,

)\Q]#)\w, m#*n, m=1...,N,

2. and the largest eigenvalue of this Cs,, is greater than the second-largest (and all

following) eigenvalues of all other Cs,,, i.e.,

MISAH o K m4n, m=1,....N,

then this SCV sy can be identified by sumcor [Nie95]. If these conditions hold for all

2This section is based on the paper: “A Comprehensive Guide to Multiset Canonical Correlation
Analysis and its Application to Joint Blind Source Separation,” I. Lehmann*, B. Gabrielson”,
T. Hasija, and T. Adali, submitted for review, 2025. I specifically contributed to proving the
source identification conditions of sumcor, deriving the connection between maxvar [Ket71] and
sumcor [Nie95], implementing and running the experiments, creating all figures, and writing the
paper. B. Gabrielson has provided theoretical insights in the connection between maxvar [Car68|
and sumcor [Nie95] and the source identification conditions of genvar. Discussions and feedback
along the way until the final paper have contributions from all authors.
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k]

n=1,...,N, then sumcor achieves JBSS, i.e., the canonical vectors ulkl recover the

k]

source vectors sl up to a scaling and a common permutation:

ulfl = prlFlgll k=1, . K,

RNXN [k] e RNXN

where P € 1s a common permutation matriz and T’ are diagonal

scale matrices.

The proof is given in Appendix 5.6. Note that the ambiguity here is up to a scaling
and not only up to a sign, as the canonical variables estimated by sumcor [Nie95| are
not constrained to have unit variance. However, if they are post-normalized to have
unit variance, which is what we do in this thesis, they can recover the true sources up
to a sign and a common permutation. The conditions in Theorem 5.6 also hold for the
all-at-once analytical maxvar [Car68] since the estimated canonical variables are the

same up to a scaling.

5.4.2 Source identification conditions of mCCA-maxvar

In Theorem 5.7, we present the source identification conditions of the deflationary

analytical maxvar [Ket71], which are derived and proven in [Li09].

Theorem 5.7 (Source identification conditions of maxvar from [Li09]). We assume
Assumptions (IVA.1) and (IVA.2) from page 21, Assumption (IVA.3b) from page 71,
and Assumption (JBSS) from page 69. Let

be the eigenvalues of Cs,, € REXK the covariance matriz of the n'™ SCV's, € RE,
sorted such that )\w > > )\[nK]. If the following condition holds for this SC'V sy,:
the largest eigenvalue of Cs,, s distinct from the largest eigenvalue of all other Csg,,,
1.€.,

)\B]?ﬁ)\%}? m#*n, m=1...,N,

then this SCV s, can be identified by mazvar [Ket71]. If this condition holds for all

n=1,..., N, then mazvar achieves JBSS, i.e., the canonical vectors ul®! recover the
(k]

source vectors s\ up to a sign and a common permutation:

o —prFgk o1 K
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RNXN (k] c RNXN

where P € 1s a common permutation matriz and T’ are diagonal

matrices with diagonal elements equal to either —1 or 1.

These conditions are less restrictive than the source identification conditions of sumcor,

which also depend on the second-largest eigenvalues.

5.4.3 Source identification conditions of mCCA-minvar

As minvar minimizes the smallest eigenvalue, while maxvar maximizes the largest
eigenvalue, we conjecture that the source identification conditions of minvar are identical
to those of maxvar but depend on the smallest eigenvalue instead. We present the

conjectured source identification conditions of minvar in 5.1.

Conjecture 5.1 (Source identification conditions of minvar). We assume Assumptions
(IVA.1) and (IVA.2) from page 21, Assumption (IVA.3b) from page 71, and Assumption
(JBSS) from page 69. Let

be the eigenvalues of Cs,, € REXK the covariance matriz of the nth SCV s, € RE,
sorted such that /\[nl] > > )\LK]. If the following condition holds for this SCV sy:

the smallest eigenvalue of Cs,, is distinct from the smallest eigenvalue of all other Cs,,,
1.€.,

)\LK]#)\%(], m#*n, m=1...,N,

then this SCV sy can be identified by minvar [Ket71]. If this condition holds for all

n=1,..., N, then minvar achieves JBSS, i.e., the canonical vectors ul®! recover the

k]

source vectors sl up to a sign and a common permutation.:

ulfl = Pf‘[k]s[k], k=1,....K,

RNXN (k] c RNXN

where P € 15 @ common permutation matrix and I’ are diagonal

matrices with diagonal elements equal to either —1 or 1.

Note that these conditions are unlikely to be satisfied in real-world datasets, as the

smallest eigenvalues in practice are typically very similar to each other.
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5.4.4 Source identification conditions of mCCA-genvar

We discuss theoretical considerations for the source identification conditions of genvar
using its connection to IVA-G. More precisely, suppose that IVA-G does not estimate
(1] (K]

the demixing vectors wy,",...,wy * for all n =1,..., N simultaneously, but instead in
a deflationary way. Furthermore, suppose that the demixing vectors W%ﬂ ] and W% for
different SCVs n # m are constrained to be orthogonal for all k = 1,..., K. Under these

[£] ) is equal to zero, and the IVA-G optimization function in

assumptions, In <‘det (W
(3.8) would result in the following deflationary orthogonal IVA-G optimization function

for the nt® SCV:

Tdefl. orth. IVA-G (W[r}}; . ;W[nK]) = In(det (Cs,)) — C o)
5.1

T
s.t. (W%]) ng]zo, 1=1,...,n—1,

where C is a constant. For unit-variance canonical variables and sources, it holds that
det (Cy,,) = det (Csg,,) if genvar achieves JBSS. Then, (5.1) is equal to the genvar
optimization function in (F5) on page 36, given by det (Cy,, ), with constraint (3.21) up
to the natural logarithm and a constant. Since In(+) is a monotonic function, maximizing
or minimizing the In(+) of some function f(z) is respectively equivalent to maximizing
or minimizing f(z), and vice versa. Thus, since In (det (Cs,)) has the same minima
as det (Csg,, ), it seems plausible to assume that the source identification conditions of
genvar are similar to those of deflationary orthogonal IVA-G. The source identification
conditions of deflationary orthogonal IVA-G are currently unknown and an interesting
question for future work. As the source identification conditions of unconstrained IVA-G,
given in Theorem 5.2, depend on the SCV covariance matrices and therefore both on
their eigenvalues and eigenvectors, we expect that the source identification conditions of
genvar also depend on the eigenvalues and eigenvectors of the SCV covariance matrices.
This would mean that genvar can achieve JBSS even for equal eigenvalues across SCVs
as long as the eigenvectors are different, and thereby seems to have the least restrictive

source identification conditions of all mCCA methods.

5.4.5 Source identification conditions of mCCA-ssqcor

As the genvar and ssqcor methods are the only mCCA methods with objective functions
defined over all eigenvalues of the covariance matrices Cy,,, we expect the source
identification conditions of ssqcor to be similar to those of genvar, and therefore to also

depend on the eigenvalues and eigenvectors of the SCV covariance matrices.
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5.4.6 Simulation study of source identification conditions of
mCCA

In this section, we substantiate the source identification conditions of the different
mCCA methods with simulations. We start with an experiment where we violate
the conditions of all methods and continue with experiments that substantiate the
conditions of specific mCCA methods. As the methods have different underlying models
and therefore assume different effective ranks for the SCVs, we end this simulation
study with an experiment where we investigate the influence of the effective rank on
the methods’ ability to achieve JBSS.
In all experiments, we model the nth SCVs’ covariance matrix Cs, € REXK 49
in [Gab24],
Cs, = CY’I'LL’I”LL-IT; + (1 —an)lgxk, (5.2)

where the elements of L, € RE*® are drawn from N(0,1) and each row of Ly, is
normalized to unit-norm so that the diagonal elements of Cgs, are equal to one, and
K__—ll < ap < 1. The matrix LnLg thus has rank R, the addition of the identity matrix
is necessary to make Cs, have full rank, and (1 — a,) determines the proportion of the
full-rank part of Cs,. The model (5.2) corresponds to the SCV model [Gab24]

sn = Mpfy, +vg,

where f,, € R consists of the R common factors in the n*® SCV, M,, € REX weights
the contribution of each factor (element of f,) to each source component (element of
Sn), and vy, € RX is a noise vector with diagonal covariance matrix. This SCV model

generalizes all mCCA factor models. If we choose R = 1, the covariance matrix Cg,, in

(5.2) has K — 1 identical eigenvalues with the value )\%] =l—ap, k=1,...,K —1,
and one different eigenvalue with the value )\[nK l_ k- (K —1)(1 — apy). Thus, to make
the different eigenvalue /\[Tf( } > (0 have a specific value, we can choose
K]
K — !
=1 — . .
anp 1 (5.3)

Now, when testing the ability of the mCCA methods to achieve JBSS, it is important
to note that estimation performance is determined not only by whether the sources
satisfy the source identification conditions of the method but also by the method’s
statistical efficiency, i.e., how efficient the method makes use of observed data (with
finite samples) when estimating the sources. A more statistically efficient estimator

needs fewer samples to adequately estimate the sources. Since in this chapter we focus on
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theoretical conditions, we need to decouple testing source identification conditions from
testing statistical efficiency when possible. Therefore, the simulations are performed
twice, first representing an infinite number of samples (testing only source identification
conditions) and second for a finite number of samples (testing both statistical efficiency
and source identification conditions).

To represent infinite samples, the true covariance matrices, instead of their estimates,
are used by the methods. Therefore, starting from the true joint covariance matrix

CéSCV) = blkdiag (Csl, e CSN) e RVEXNK the covariance matrix of the concate-

nated source vectors s € RVK ig found as Cg = HCgSCV)HT, where IT € RVEXNK
is a specific permutation matrix to sort the elements of Cg in source vector ordering
instead of SCV ordering. Then, the joint mixing matrix A = blkdiag (Am, ey A[K}> is
generated, where AlF] is an invertible mixing matrix with elements drawn from A(0, 1).
Finally, the covariance matrix of the concatenated datasets x € RN s Cy = ACSAT7
and the covariance matrix of the concatenated whitened datasets is Cy = Dy %CXD; %,
where Dy is a block-diagonal matrix consisting of the diagonal blocks of Cx.

To simulate with finite samples, V' = 10000 samples are drawn for the SCVs S,, €
REXV from a multivariate Gaussian distribution with zero mean and the previously
specified Cs, , and the source components are normalized to have zero mean and unit
variance. Then, the source components of the SCVs S,, are distributed to each S[k],
and the observed datasets X/¥l € RVXV are generated by mixing the source matrices
as X[+ = A[k]S[k], where Al € RVXN g generated as described previously. Then,
the covariance matrices GX and (Ajy are estimated using the observed datasets X[,

We simulate N =5 SCVs and K = 100 datasets. In the following paragraphs, we
describe how we choose the values of R and «, for experiments A-E.3 Then, after
introducing the performance metric, we report the results observed in 50 runs of the

experiments.

A. Violating the source identification conditions of all methods

We start with an experiment where we violate the source identification conditions of all
methods. Consider the EVD of the SCV covariance matrices Cg,, = @nAnGIL, where
A, = diag (M) € REXK contains the eigenvalues of Cg, on its main diagonal, and
0, € REXK contains the corresponding eigenvectors. This experiment is designed
so that all Cs, have the same eigenvalues A, and the same eigenvectors @, up to

a sign (i.e., for some nt® and mth SCVs, ©, = D;0,, for any diagonal matrix D,

3The Python implementation of the mCCA methods, as well as the code for the experiments, is
available at: https://github.com/SSTGroup/multiset_canonical_correlation_analysis.
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Figure 5.1: Example eigenvalues for experiments A—D; every tenth value is plotted. A. The
source identification conditions of all methods are violated. B. The experiment
substantiates the conditions of genvar and ssqcor. C. The experiment substantiates
the conditions of minvar. D. The experiment substantiates the conditions of sumcor
and maxvar.

with diagonal elements equal to either —1 or 1). To achieve this, we first generate
Cs, € REXK with R = K = 100 and a; = 1 and perform the EVD Cs, = @1A10].
We then generate @, = D;01, n = 2,..., N, where D, is a diagonal matrix with
randomly generated £1 elements on its diagonal. Finally, we generate the remaining
SCV covariance matrices as Cg,, = ©,A C-)IL, n =2,...,N. The eigenvalues for one
run of the experiment are shown in Figure 5.1(a). As the eigenvalues are the same for
each SCV covariance matrix and the eigenvectors are also the same (up to a sign), the

source identification conditions of all methods are violated.

B. Substantiating the source identification conditions of genvar and ssqcor

In this experiment, we substantiate our theoretical considerations for the source identi-
fication conditions of genvar and ssqcor from Subsections 5.4.4 and 5.4.5. Therefore, we
generate the SCV covariance matrices Csg,, such that they still have the same eigenval-
ues but different eigenvectors. First, we generate Cg; as described in Subsection 5.4.6,
perform the EVD, and use A; € RX as the same eigenvalues for all N SCV covariance
matrices, shown in Figure 5.1(b) for one run. However, now we use the scipy function
random_correlation [Vir20] to generate Cs,, ..., Cs, having these same eigenvalues
A1 but different eigenvectors. Thus, we expect genvar and ssqcor to achieve JBSS but
sumcor /maxvar and minvar not, as their proposed source identification conditions are
still violated since all SCV covariance matrices have the same largest and smallest

eigenvalue.

C. Substantiating the source identification conditions of minvar

In this experiment, we generate Cs, such that the proposed source identification

conditions of minvar are satisfied. Therefore, we choose R = 1 and specify the val-
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Figure 5.2: Example eigenvalues for experiment E for different values of the effective rank R;
every tenth value is plotted.

ues of «ay according to (5.3) such that the smallest eigenvalues )\%min) are )\[nK I

{0.1,0.15,0.2,0.25,0.3} for n = 1,...,5. The eigenvalues for one run are shown in
Figure 5.1(d). Note that this is a very artificial scenario, as the resulting covariance
matrices are very close to identity matrices, and thus the correlations between the
source components are almost zero. The source identification conditions of maxvar are
almost violated, as the largest eigenvalues are very close to each other, and those of
sumcor are violated, as the largest eigenvalue of each SCV covariance matrix is not
greater than all second-largest eigenvalues. We expect genvar to achieve JBSS here,
and we expect ssqcor to perform similarly to maxvar as they estimate similar SCVs if

R =1

D. Substantiating the source identification conditions of sumcor and maxvar

In this experiment, we generate Cg, such that the source identification conditions of
sumcor and maxvar are satisfied. Therefore, we choose R = 1 and specify the values of ay,

according to (5.3) such that the largest eigenvalues A%max) are )\LLK] = {10, 15,20, 25,30}

for n = 1,...,5. Note that here we call the largest eigenvalue )\Lf(] instead of )\%] to
keep the notation as in (5.3). The eigenvalues for one run are shown in Figure 5.1(c).
The source identification conditions of minvar are almost violated, as the smallest
eigenvalues are very close to each other. We expect genvar and ssqcor to achieve JBSS

here based on our theoretical considerations for their source identification conditions.

E. Changing the effective rank R of the SCVs

In this experiment, we generate Cs,, such that we can investigate the influence of the
effective rank R on the methods’ ability to achieve JBSS. Therefore, we vary the value of
R =1,2,5,10,20,50, and for each value of R we choose ay, = {0.9,0.85,0.8,0.75,0.7}
for n = 1,...,5. To satisfy the source identification conditions of sumcor, we make
sure that maxy, (A%) < miny, (Aﬂ) — €, where € = %, i.e., that the second-largest

eigenvalue of all SCVs is smaller than the largest eigenvalue of all SCVs. The eigenvalues
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for one run for R = 1,10, 20,50 are shown in Figure 5.2. As we see, the eigenvalues
of all SCV covariance matrices are distinct, but as the smallest eigenvalues are very
close to each other, the conditions of minvar are almost violated, similar to the case in

experiment D.

Performance metric

To measure if JBSS has been successful, we use the joint Inter-Symbol-Interference

(GISI) from [And12], which is defined as

N N
jISI:; Z M—l + Z Zé\f:lgnm_l
2N(N —1) maxm gnm maxp Gnm ’

where gnp is the (n, m)™ element of
G= Z ’W ’ e RVXN,

The jISI is normalized between zero and one, where values close to zero indicate successful
JBSS, i.e., source components are separated correctly within a dataset and also aligned
correctly across datasets. To get more insight into what the joint ISI measures, let us
look at the formula in more detail. If JBSS is achieved, i.e., if wlk = pril#l (AU“]> -
then,

K

=3 |wh ‘_ ‘PI‘ ‘_ZP KP,

k=1 k=1
where we have used that the diagonal elements of T'* can only be +1 because we assume
sources and estimated sources to have unit variance. As for any permutation matrix it
holds that there is one element in each row and column that is equal to one and the other

elements are equal to zero, 21]7\]1:1 gnm = MaXm gmn = Zfzvzl Jnm = Maxy gmn = 1,
and thus jIST = 0.

Results

Figures 5.3 and 5.4 show how successful the five mCCA methods (sumcor from [Nie95],
and maxvar, minvar, ssqcor and genvar from [Ket71]) are in achieving JBSS in exper-
iments A-D and E, respectively, where the results representing infinite samples are
shown in Figures 5.3(a) and 5.4(a) for finite samples in Figures 5.3(b) and 5.4(b). The

diamonds and lines indicate the mean and standard deviation of the jISI across 50 runs
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Figure 5.3: Joint ISI value (lower is better) for experiments A-D, averaged across 50 runs.
The diamonds show the mean value and the end lines plus or minus one standard
deviation. The sumcor method is according to Nielsen [Nie02], and the other
methods are according to Kettenring [Ket71]. (a) For the simulation representing
infinite samples, the methods perform as expected. (b) With finite samples, we
see that in experiment C also maxvar and ssqcor fail, and in experiment D minvar
fails. This is because their source identification conditions are almost violated in
these experiments.

for each experiment.

In Figure 5.3(a) in experiment A, where all SCV covariance matrices have the same
eigenvalues and the same eigenvectors (up to a sign), the source identification conditions
of all methods are violated, and we see that, indeed, no method is able to achieve
JBSS. In experiment B, where the eigenvalues are still the same but the eigenvectors
are different across SCVs, ssqcor and genvar achieve JBSS, while sumcor, maxvar, and
minvar fail. This supports our theoretical considerations in Subsections 5.4.4 and 5.4.5
that genvar could achieve JBSS even if the eigenvalues are the same across SCVs as
long as the eigenvectors are different, and that the source identification conditions of
ssqcor could be similar to those of genvar. In experiment C, where all SCVs have a
different smallest eigenvalue, minvar achieves JBSS, supporting Conjecture 5.1. Maxvar
also achieves JBSS, since the largest eigenvalue is also different for each SCV (even
though the difference is very small), but sumcor fails as the largest eigenvalues are equal
to the second-largest, substantiating Theorems 5.6 and 5.7. Finally, in experiment D,
where the largest eigenvalue is different for each SCV (and the smallest eigenvalue is
also different with a very small difference), all methods are successful. To conclude these
experiments, our simulations support the proposed theoretical source identification

conditions.

In Figure 5.3(b), we see how using finite samples, i.e., estimating the covariance
matrices, affects the methods’ ability to achieve JBSS. The trends for experiments

A and B are the same as those in the simulation representing infinite samples. In
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Figure 5.4: Joint ISI value (lower is better) for experiment E for different values of R, averaged
across 50 runs. (a) For the simulation representing infinite samples, all methods
are able to achieve JBSS. (b) With finite samples, minvar fails to achieve JBSS as
its source identification conditions are almost violated. With an increasing value
of R > 1, sumcor and maxvar fail to achieve JBSS because both of them assume
that SCVs have an effective rank of R = 1. Lastly, genvar and ssqcor achieve JBSS
for all values of R.

experiment C, minvar and genvar again successfully achieve JBSS, but sumcor and
maxvar fail now because the largest eigenvalues of the estimated covariance matrices
are too similar, which violates their source identification conditions. Also ssqcor fails
to achieve JBSS, substantiating that it performs similarly to maxvar for R = 1. In
experiment D, minvar is the only method that fails to achieve JBSS because the smallest
eigenvalues of the estimated covariance matrices are too similar. To conclude these
experiments, it is observed that genvar is more statistically efficient than the other
methods, as its performance is not so strongly affected by using finite samples compared
with the other methods.

In Figure 5.4(a), we see that all methods are able to achieve JBSS in experiment E
for all values of the effective rank R, which is expected as the eigenvalues of all SCV
covariance matrices are distinct. In Figure 5.4(b), where the covariance matrices are
estimated from finite samples, we see that minvar fails to achieve JBSS, which is also
expected as the smallest eigenvalues are very similar to each other. For R = 1, all
other methods achieve JBSS, but for an increasing value of R, sumcor and maxvar fail.
This can be explained by the fact that both methods assume that the SCVs have an
effective rank of R = 1 because of their underlying factor models in (3.25) and (3.33). In
contrast, genvar and ssqcor achieve JBSS for all values of R in this experiment, as they
can estimate SCVs with any effective rank from 1 to K according to their underlying

factor model in (3.37).
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5.5 Summary

In this chapter, we have discussed the source identification conditions of several matrix
decomposition methods, i.e., the conditions on the true underlying source components
under which the methods are able to achieve BSS or JBSS. After summarizing the
source identification conditions of ICA, IVA, CCA, and mCCA-maxvar, we have derived
and proven the source identification conditions of mCCA-sumcor, conjectured those of
mCCA-minvar, and discussed theoretical considerations for those of mCCA-genvar and
mCCA-ssqcor. We have substantiated the proposed source identification conditions of
mCCA with simulations, where we have observed that the ability of the methods to
achieve JBSS is related to their underlying factor models. Some of them have similar
underlying factor models, and as such, we discuss them together. First, maxvar [Ket71]
and sumcor [Nie95] both are effective in estimating SCVs with an effective rank of one,
meaning that the sources of all datasets within each SCV have the same underlying
factor. Their main difference is that the sources within a dataset are constrained to
be uncorrelated in maxvar, but not in sumcor, which leads to better interpretability
of the maxvar sources and makes maxvar the preferred method of these two. Then,
genvar [Ket71] and ssqcor [Ket71] can both effectively estimate SCVs with an arbitrary
effective rank, while it is worth mentioning that ssqcor performs similarly to maxvar
if the SCVs have an effective rank of one. Lastly, minvar [Ket71] is only effective for
estimating SCVs in a very artificial scenario. Based on our experiments, genvar seems
to have the least restrictive source identification conditions among all mCCA methods
and thus can identify sources that the other methods may not recover. This is especially
notable for a finite number of samples, where we observed in our experiments that
genvar seems to be the most statistically efficient method. As the source identification
conditions of ICA, IVA, and CCA were already known, they were not included in these
simulations that focused on demonstrating the novel findings of this chapter. Building

on our findings, we summarize our recommended choices of mCCA methods as follows:

e In general, we recommend choosing genvar [Ket71] for achieving JBSS based on
our experiments, as it seems to have the least restrictive source identification
conditions and to be more statistically efficient than the other methods. This
is a significant finding, as sumcor and maxvar, despite being perhaps the most
commonly used mCCA methods [Sor21], are outperformed by genvar in our

simulation study.

e However, the computational complexity of genvar is the highest among all mCCA

methods, with differences becoming stronger with an increasing number of datasets



Source identification conditions for BSS and JBSS 87

or dimension of data. Therefore, in specific scenarios, it makes sense to use a
faster mCCA method. As the ability of the methods to achieve JBSS depends on
their underlying factor models, we recommend the use of maxvar [Ket71] if it is

reasonable to assume that the true SCVs have an effective rank of one.

Based on our comparison of IVA-G and PARAFAC2 in the simulations in the previous
chapter, where both methods have been able to achieve JBSS, we recommend the use
of PARAFAC2 when the columns of the mixing matrices across different datasets are
expected to differ only up to a scaling and of IVA-G when different mixing matrices are
expected in different datasets. These findings partly answer the question of which JBSS
method (more specifically, which mCCA method) should be used in which application
and form the basis for further research. The next logical steps are to formally prove
the conjecture for minvar and to derive and prove the source identification conditions
of genvar, ssqcor, and PARAFAC2. After filling these theoretical gaps, more extensive
simulations testing the JBSS performance of all mCCA methods, IVA-G, IVA-L-SOS,
and PARAFAC2 together would help to ultimately solve the challenge of choosing a
JBSS method for a specific application. In the next chapter, we address the second
challenge of this thesis, identifying the relationship among multiple datasets using JBSS

methods.

5.6 Appendix: Proof of source identification

conditions of sumecor

In order to prove Theorem 5.6, we prove that if the source identification conditions
of sumcor are satisfied, then the sumcor transformation matrices TI* and the mixing

(] are related as follows:

(T[k1>T —prit ( A[k])‘l |

matrices A

which is equivalent to ulfl = PTHsF but slightly shorter to prove. The proof of

Theorem 5.6 consists of three steps.

1. Derive the relationship of ’T‘, the concatenated sumcor transformation matrices
in (3.29), and A, the eigenvectors of the concatenated SCVs’ covariance matrix
CgSCV): T= A_THA, where IT is a specific permutation matrix.

2. Show that the structure of A is A = diag (0[11], cee 9%) PT under the conditions

in Theorem 5.6.



88 Source identification conditions for BSS and JBSS

3. Use 1 and 2 to show that <TU"]>T — pritl <AV"])_1.

Proof. 1) First, we express Cx and Dx in the GEVD in (3.23), given by CxT = DxT®,

in terms of CéSCV)’ the covariance matrix of the concatenated SCVs. Therefore, we

define the concatenated source vector

sl
s = : c RVK
glK]
with covariance matrix
B 1.2 1,K] 7
Inxn C[s’] C[s’ ]
T P 1y, :
G=Bfss'} =7 clE-1K]|
: . . g
K1 K. K—-1
[C SR

where we used that C[Sk] =Iyun, k=1,..., K, according to Assumptions (IVA.2)

from page 22 and (IVA.3b) from page 71, we define the joint mixing matrix

Alll 0
A . c RNK xNK

0 AlK]

and we define the concatenated datasets

X = : c RVK,

Now, we can write the JBSS model in (2.2), given by x[kl = A[k}s[k], k=1,...,K, for
all datasets in one equation:
X = As.

Then, the covariance matrix of the concatenated datasets is
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and

Dy = A AT = AAT € RVEXNK,
0 Iyxn

Now, we define the covariance matrix of the concatenated SCVs as the block-diagonal

matrix

@%W:E : H-”'T} _ - e RVEXNK

SN O CSN

where the off-diagonal blocks are equal to zero because the SCVs are assumed to
be uncorrelated by Assumption (IVA.3b) from page 71. Then, we can write Cg, the

. . . SCV
covariance matrix of the concatenated source vectors, as a permuted version of Cg ):

Cs = eV e RVV,

where IT € RVEXNK g 5 specific permutation matrix. This gives Cx = AHCéSCV)HTAT,
and the GEVD in (3.23) becomes

ATICSVTITATT = AATT®. (5.4)

SCV)

Multiplying (5.4) from the left with TITA~! results in COCVITITATT = ITATT®,

and defining A = ITTATT yields the EVD

cPVaA = A

Let T = [tl et N] e RVEXN onsist of the N principal generalized eigenvectors of

Cx w.r.t. Dy, and let A= [61 5N] e RVEXN ¢onsist of the N principal eigen-

vectors of CéSCV). We know that T consists of the concatenated sumcor transformation

matrices TW, ie.,
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and their relationship with the eigenvectors of CéSCV) is

T =ATIA. (5.6)

2) We now determine the structure of A. Let

1]

A
A= ¢ | eRE
A
be the eigenvalues of Cg,, such that /\[T}] > > /\[nK], and let
0= [0l .. oK) e RIXK

be the corresponding eigenvectors. Let

o1
p=| : | erRVE
PNK
; (SCV) e
be the eigenvalues of Cg such that ¢1 > --- > ¢nyi. Under the conditions in
Theorem 5.6, the N largest eigenvalues of CgSCV) are equal to the set consisting of the
largest eigenvalue of each Cs,, n =1,..., N, ie.,
1 1
{or,onh = {0
L (scv) .
and the non-zero chunks of the N principal eigenvectors of Cg thus consist of the
principal eigenvector 0[,%] of each Cs,,n=1,..., N, ie,
oy o o
[1] [1] :
N 0] 0 0, (K) 0 :
(1] 1
0 oL 0 o)
o o oK)
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RYXN 45 the columns of A

Note that we have introduced a permutation matrix P €
can be in arbitrary ordering depending on the ordering of the largest eigenvalue of each

Cs

3) Now, inserting (5.7) in (5.6), the permutation matrix IT resorts the rows of A, and

n*

we have -] -
oy 0 - 0
0 :
0
0 0 0¥ ()
T=ATTIA=AT| Lo t | P
oll(x) o 0
0
0
0 0 oK)
By defining the diagonal matrix
- -
k) o 0
TR I P 0
: o 0
0 0 68 (k)]
and using the partitioning of T in (5.5), we see that
[ -T
Tl | (Al) 0 Tl
] = P!
K =T K
T!X] 0 (A[K]) T«
: =T
(AH]) rlpT 0
T
0 (A[K]) r&lpT

and thus,
(TM)T _ prit <A[k])_1, k=1.... K.

-1
AW> up to a scaling and a common permutation.

]

Y -
ie., (T[ ]> correctly estimates

N






6 Identifying the relationship

structure among multiple datasets
using JBSS

In recent years, identifying relationships among multiple datasets has received growing
attention in medical applications, such as for making group inferences when estimating
brain activations [Corl0] or for better localization of brain activity [Call2]. One poten-
tial application for identifying the relationship among multiple datasets is subgroup
identification [Lip17]. In this context, each dataset corresponds to a subject, and a group
of related subject datasets is called a subject group or subgroup. The identified subgroups
can be used in multiple applications. For example, in Electronic Health Records (EHR)
data, identifying subgroups can help uncover previously unknown connections between
illnesses [Wan20b], while in precision medicine, estimating the dose of medication for
a patient can be achieved based on the known dose of other patients in the same
subgroup [Loh19; Nat11]. Another application where it is of interest to identify the
relationship among multiple datasets over time is in the detection and prediction of
epileptic seizures, as it has been found that the correlations between measures of the
peripheral Autonomic Nervous System (ANS) increased before Generalized Tonic-Clonic
Seizure (GTCS) and decreased after the seizures [Vie21] and that the changes in these

correlations therefore might contain information for predicting seizures [Vie23].

However, identifying the relationship among multiple datasets is challenging because
datasets are often high-dimensional and noisy. JBSS methods simplify the problem
by extracting interpretable sources that are linked across datasets. Based on these
latent sources, a group can be defined as a subset of datasets with similar latent
sources. Analyzing how the datasets are distributed in these groups and how these
groups are related reveals the relationship structure among the datasets. To the best of
our knowledge, no method has yet been developed to achieve this goal. Some of the
related methods in the literature identify the relationship among the individual sources

within each SCV instead of the relationship structure among the whole datasets. This

93
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is, for example, done in [Akh21], where the dependence structure of latent sources,
i.e., datasets across which they are dependent, is identified using IVA. That work
extends [Has20], where the correlation structure between latent signal components is
identified without estimating the components themselves. Also in [Lon20], IVA has been
used to identify groups of sources that are related with each other, but this method is
based on user-defined thresholds. To overcome the need for subject-specific thresholds,
an approach based on IVA and Gershgorin discs is proposed in [Yan22] for identifying
groups of related sources. For all these methods, a postprocessing would be necessary
to identify the relationship structure among the datasets from the method’s output.
In this chapter, we therefore propose a method for identifying the relationship
structure among multiple datasets based on JBSS and thereby address the second
challenge of this thesis. The proposed method works as follows. 1) The latent sources in
the datasets are estimated using IVA-L-SOS, 2) the SCVs are identified that contain
information about the relationship among the datasets, and 3) features are extracted
from these SCVs as the input of a hierarchical clustering, which reveals the relationship
structure among the datasets in a resulting dendrogram. Unlike related approaches for
Step 2, the proposed method can effectively handle non-Gaussian data. It achieves this
by incorporating higher-order statistics through IVA-L-SOS and extracting features
with an eigenvalue decomposition-based approach without distributional assumptions.
In simulations, we experimentally demonstrate the superior performance of the second
step of the proposed method over the competing techniques in [Akh21] and [Yan22],
and we show that the proposed method reveals the true relationship structure among
the datasets, as measured by a perfect Adjusted Mutual Information (AMI) for different

values of the correlation between the sources.!

6.1 Problem formulation

In the following, we formulate the problem for which we are proposing a solution in

this chapter.

Problem 6.1. Given K datasets, identify their relationship structure, i.e., group
datasets based on the similarity (high statistical dependence) between their latent vari-
ables. Note that this cannot be achieved through simple clustering approaches, as revealing

the relationship structure relies on the dependence of the latent variables across datasets.

IThis chapter is based on the paper: “Identifying the Relationship Structure among Multiple Datasets
Using Independent Vector Analysis: Application to Multi-task fMRI Data,” I. Lehmann, T. Hasija,
B. Gabrielson, M. A. B. S. Akhonda, V. D. Calhoun, T. Adali, IEEE Access, 2024, pp. 109443—
109456.
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In [Lon20] and [Leh22], it is shown that information about the relationship among
the datasets can be inferred from the linear dependence, i.e., correlation, of the source
components across datasets. This information is revealed in the covariance matrices of
the SCVs. An SCV covariance matrix with all non-zero off-diagonal values implies that
all source components within that SCV are correlated, and hence describes a common
SCV, i.e., an SCV with source components common across all datasets [Lon20]. Similarly,
an SCV covariance matrix exhibiting a block-diagonal structure (with off-block elements
equal to zero) implies that source components are correlated within each block but
uncorrelated across blocks. We call SCVs with these covariance matrices structured.
Note that this also holds for SCV covariance matrices Cs,, that can be transformed
into block-diagonal matrices using an orthogonal permutation matrix P, € REXK
s.t. (stn = PnCsnPL is block-diagonal. While common SCVs only provide limited
useful information about the relationship among the datasets, structured SCVs are
most informative for this. Consequently, in this chapter, we are primarily interested
in identifying the structured SCVs and then using them to identify the relationship

structure among the datasets.

6.2 Proposed method for identifying the

relationship structure among multiple datasets

In the following, we propose a method for identifying the relationship structure among
multiple datasets. Figure 6.1 shows the three steps of the method: 1) estimation of
latent sources using a JBSS method, 2) identification of common and structured SCVs,
and 3) identification of the relationship structure using structured SCVs. The following

sections explain the details of each step.

6.2.1 Step 1: Estimation of SCVs

To be able to infer information about the relationship structure from the SCV covariance
matrices, the unknown source components in the SCVs must be estimated from the
observed datasets. For this, we use IVA-L-SOS [Bhil9], described in Subsection 3.2.2, as
it has been shown that the assumed pdf of the SCVs in IVA-L-SOS is a good match for
real-world fMRI data [Bhil9; Lon20], which is the main application field in this thesis.
However, if the method is applied to data with different source distributions, Step 1 can
be replaced by another JBSS method with appropriate assumptions for that type of data.
We assume that the dimension N of the observed datasets X[k € RV V, k=1,...,K,

is much higher than the number R of latent source components of interest—a typical
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Step 1: Estimation of SCVs

-

8 = WK s - [T

Estimating the common SCVs:
number of eigenval- D . D
ues greater than 1: L

C={r:d, =1}
structured SCVs:

dp. =2 dp=2 E!H

S={r:d, >1}

Step 3: Identification of the relationship structure using the structured SCVs

structured SCVs: d, leading eigenvectors: feature matrix:

=l il M
1, |
1 i

—

dy=2d,, =2 i e dr

XOXB e XK

Figure 6.1: Visualization of the proposed method for identifying the relationship structure
among multiple datasets. We have K (dimension-reduced) observed datasets

i[k] € REXV where V is the number of voxels and R the (reduced) dimension of
the data. In step 1, the latent sources in the SCVs §,~ e REXV are estimated by
applying IVA-L-SOS on the observed datasets. In step 2, the SCVs are identified
as structured or common by applying an eigenvalue decomposition (EVD) on their
covariance matrices and using the proposed bootstrap technique (BT) to f/i\nd Er,
the estimated number of eigenvalues greater than one in the ™ SCV. If d, = 1,
the vt SCV is identified as common, and if /a\fr > 1, as structured. We denote the
indices of the structured SCVs as S = {z’l, ey i|3|}. In Step 3, the ET leading
eigenvectors of the structured SCVs are concatenated to form a feature matrix,
which is the input of the hierarchical clustering. The resulting clusters are the
identified groups (in this example, there are two groups: orange and green), and
the dendrogram reveals the relationship structure among the datasets.

assumption in many applications including fMRI analysis [Ada22]—and therefore

dimension reduction via PCA has been performed on X[# as preprocessing. The

estimation of the R SCVs §r € RE*V from the dimension-reduced observed datasets

<k
X[ } e RE*V is shown in Step 1 in Figure 6.1.
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6.2.2 Step 2: Identification of common and structured SCVs

In Step 2, it must be determined which of the estimated SCVs are common and which
are structured. Only the structured SCVs contain information about the relationship
among the datasets, and thus, only these structured SCVs are utilized in Step 3 to

determine features for identifying the relationship structure.

In theory, the true SCVs can be identified as either common or structured based on

the eigenvalues of their covariance matrices. Let the EVD of
Cs, =E {STSI} ,
the true covariance matrix of the rth SCV, be

Cs, = ©, diag (A,) O],

REXEK contains the corre-

where A, € RE contains the true eigenvalues, and O, €
sponding true eigenvectors of Cg, as columns. If Cs, = I, all its eigenvalues are
equal to one. However, if Cg, # I, some eigenvalues are different from one. Let d, be
defined as the number of eigenvalues of Cg, that are greater than one. We assume that

the SCV covariance matrices have only one of the following two structures:

e For common SCVs, where all the source components within an SCV are correlated
with each other, the covariance matrix Cgs, has ones on the diagonal, and all
off-diagonal values (corresponding to the correlation coefficients) are non-zero.
In [Has20], it is shown that, under certain conditions on correlation coefficients,

Cs, has exactly one eigenvalue greater than one, i.e., dr = 1.

e For structured SCVs, the covariance matrix Csg, is block-diagonal with ones on the
diagonal and zero off-block values (or can be permuted into a block-diagonal matrix
ésr = PTCSTPI, where P, € REXK g an orthogonal permutation matrix). We
assume that the covariance matrices of structured SCVs have at least two blocks.
To determine the number of eigenvalues greater than one for such SCV covariance

matrices, we propose the following corollary:

Corollary 6.1. Let Cg, € REXE pe g block-diagonal matrix consisting of dp > 2
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blocks B; € REXEKi sych that

B, 0 0|
0
CST = )
B, 0
0 0 I

and B; contains ones on the diagonal and positive entries on its off-diagonal

elements. Then, Cg, has ezactly dy eigenvalues greater than one.

Since it is proven in [Has20] that [{\(B;) > 1}| = 1 (and the remaining eigenvalues
are less than or equal to one), it follows naturally for d, blocks in Cg, that
{A\(Cs,.) > 1}| = dy. Note that Corollary 6.1 also holds if (NJST (and not Csg, ) is

block-diagonal because ésT has the same eigenvalues as Cs,..

As we assume that a structured SCV consists of at least two blocks, we can differentiate
between a common SCV (d, = 1) and a structured SCV (d, > 1) by counting the
number of eigenvalues greater than one. We define C = {r : d,, = 1} as the set of indices
of the common SCVs and § = {r : d, > 1} as the set of indices of the structured SCVs.

In the following, we denote the indices in S as

S = {ir,...ig))-

Note that we do not consider SCVs with identity covariance matrices, which would
correspond to completely uncorrelated datasets, because we assume that in real-world
data, some correlations typically exist in each SCV.

Now, when covariance matrices are estimated over finite samples V,

G, — %§§T
the estimated correlation coefficients corresponding to the uncorrelated datasets will not
be exactly zero, and thus, more than d,- eigenvalues for a structured SCV will be greater
than one. Thus, by just counting the estimated eigenvalues greater than one, d, would
be overestimated. Consequently, it is necessary to estimate d,. Estimating the number
of significant eigenvalues is commonly addressed as a model-order selection problem in
the literature [Wax85]. However, these model-order selection techniques assume certain
asymptotic properties (as V — oo) on the non-significant eigenvalues, for example,
assuming they all or a subset of them are equal to each other (in [Has20; Wax85]).

These properties are not applicable to the SCV covariance matrices. For example, if



Identifying the relationship structure among multiple datasets using JBSS 99

all the source components in an SCV covariance matrix belonged to one of the blocks,
and thus there were no uncorrelated source components, then for arbitrary correlation
coefficients, none of the non-significant eigenvalues would be equal to each other.

To estimate dy- for the ™ SCV covariance matrix Cs,., we perform a binary hypothesis
test for each £k = 1,..., K with the null hypothesis

Hy )\Lk] <1,
and the alternative
Hy: )\Lk] > 1,
where )\Lk] is the true (unknown) k™ eigenvalue of Cs, . The estimated eigenvalues XL]{]

are used as follows to perform the hypothesis test. A test statistic T = XLk] — 1 is defined,

and to perform the hypothesis test, the distribution of the statistic under Hy [Kay98§]
must be known. However, neither the sample nor the asymptotic distribution of the test
statistic is known. We, therefore, propose a bootstrap-based hypothesis test [Zou04]
to estimate this distribution. Under certain conditions, the distribution estimated by
bootstrap converges to the true distribution if the number of samples goes to infinity
(V — o0) [Dav06], and thereby we can estimate d, for each SCV.

The pseudocode for the proposed bootstrap technique for estimating d, is given in

Algorithm 14. In the following, we describe the steps of the algorithm.

N ~ T

1. The sample covariance matrix Cg, = ‘%STS,A’ is calculated (line 1). The absolute
value is necessary because of a possible sign ambiguity in the sources. Then, an

~ ~ . - T

EVD is applied on Cs, to get the eigenvalues A, = [/\LIL o )\LK] , sorted in
descending order (line 2). Here, XL]C] denotes the estimate of )\W.

2. The SCVs are resampled with replacement for B times, where for each resampling,
V' indices are drawn from Uiy (1, V') (uniform distribution of integers between
1 and V) (line 4), and the SCVs are resampled on those indices (line 5). The
resampled SCVs bgr thus also have V samples. The prescript b denotes the pth

bootstrap resample.

~ ~ ~ AT
3. The eigenvalues A, from the covariance matrices ;Csg, = ‘% »Sr S, | are calcu-

lated (lines 6-7).

4. The test statistic 7' = XLk] — 1 is defined (line 9).

5. The test statistic , T* = bXW — XW is calculated (line 11).
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6. The values of b?* are sorted in ascending order (line 12). Using a given false
alarm probability Py, a threshold n?* is found, where n = [(B+1)- (1 — Pg,)]|

(line 13), and 77?* is b?* for b =n. If T> n?*, then Hj is rejected, i.e., )\Lk] is

kth

greater than one with a significance of 1 — Pf,, and the element in a vector z

is set to one (lines 14-17).

7. In the end, the number of ones in z is counted, which equals to Er, the estimated

number of eigenvalues greater than one in the ™ SCV (line 18).

Algorithm 14 Bootstrap technique for estimating d,
Input: S, e REXV B, Py,

~ o~

1: s, ¢ abs (%srsr>

2 Ap, ©p + EVD(Cs,) b st A > ... A
3 forb=1,...,B do
4: bjA<— raEdint(l, V,V) > V integers ~ Uip (1, V)

5 pSr < Sr(:, b-])

6: bésr < abs (% bgr b§-1|:>
& bx’f'a bér <_EVD<baST‘)
& for k=1,...,K do
9

: /T — Xg«k] -1
10: for b=1,...,B do
11: b/T* — b;\\Lk] — }\\Lk]
3k >k ~ ~
12: T <« sort(T) >st. T <. < pgT*

13 p=[(B+1)-(1- Pg)]
14: if T < nT* then

15: P LI s A <
16: else

k] o (k]
17: 2P 1 > Hy is rejected. A\’ > 1
18: dy = count_nonzero(z) > number of elements in z equal to one
Output: d, > estimate of d,

The identification of common and structured SCVs is shown in Step 2 in Figure 6.1.

6.2.3 Step 3: Identification of the relationship structure using
the structured SCVs

In Step 3, the eigenvectors of the covariance matrices of the structured SCVs are used

as features for the hierarchical clustering. In [Has20], it is shown that the eigenvector
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corresponding to an eigenvalue greater than one characterizes the correlated datasets
in the corresponding block. More specifically, for each eigenvalue greater than one,
all eigenvector elements corresponding to datasets that are not part of the correlated
datasets are zero, while the eigenvector elements corresponding to the correlated datasets
are greater than zero. This means that the d, leading eigenvectors contain information
about the relationship among the datasets within the rth SCV. As stated in Step 2, the
covariance matrices are estimated from finite samples, and d, is also estimated with
the proposed bootstrap-based hypothesis test. We will thus use this estimated 37« from
Step 2. As different SCVs provide complementary information about the relationship
among the datasets, the ET leading eigenvectors from all structured SCV covariance
matrices (r € S) are horizontally concatenated to form a feature matrix, F, of 3 .. dy
eigenvector columns, which is then fed into the hierarchical clustering:
F = concat (@21 (:, 1: E“) e ’@iIS\ (:, 1: A¢|5|)> € RKXETESET.

This way, the proposed method leverages the knowledge of all SCVs together instead of
performing an analysis separately on each SCV. The advantage of using hierarchical
clustering, compared with, e.g., K-means clustering, is that no prior knowledge or
estimation of the number of clusters is necessary. Additionally, while K-means clustering
would only identify the groups of datasets, which correspond to the resulting clusters,
hierarchical clustering also identifies the relationship structure among the datasets,
which is revealed in the dendrogram. The identification of the relationship structure is

shown in Step 3 in Figure 6.1.

6.2.4 Computational complexity of the proposed method

In the following, we compute the big-O complexity for each step of the proposed method.
In Step 1, the complexity is dominated by the multiplication of 6; ! e REXE with
§r € REXV in the main loop of IVA-L-SOS. In each iteration, 6;1 is updated K times
per SCV (and thus this multiplication is performed K times per SCV), which results
for all R SCVs in a complexity of O(IRK3 V), where I is the number of iterations. In
Step 2, the dominant cost is the calculation of the covariance matrices of the resampled
SCVs b/S\T e REXV which for all B bootstrap resamples in all R SCVs has complexity
O(BRK 2 V). In Step 3, the complexity is dominated by the hierarchical clustering of
the K datasets, which is of complexity O(K?3) [Sas13]. Thus, the method has a big-O
complexity of O(RK?V (IK + B)).
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6.3 Simulations

To demonstrate the performance of the proposed bootstrap technique, we simulate
common and structured SCVs.2 We generate the entries of the true SCV covariance

matrices Cg, according to the following model:

1, k =1 (diagonal elements)
Cs, (k. 1) =10, k#1,Cs, (k1) ¢ Bj,1<i< dy
p+ (k1) k#1,Cs (k1) €B;1<i<d

where B; is the i block, p is the correlation coefficient of the correlated sources, and
ny(k, 1) = nq(1, k) ~ N(0,0.0025) is added variability so that IVA-L-SOS can identify
the sources correctly. Note that this does not mean that the sources are also aligned
correctly; in fact, the conditions for correct alignment are not satisfied because of the
block structure of the SCVs, which violates Assumption (JBSS) on page 69. However,
if the blocks of correlated sources are interchanged between SCVs, this is not a problem
for our proposed method as the E,n eigenvectors of all structured SCVs are concatenated
in the end. Figure 6.2 shows the structure of the six 10 x 10 SCV covariance matrices in
our simulations for p = 0.2. Cg; corresponds to a common SCV, i.e., d; = 1, while the
other SCVs are structured. Cg,, Cg; and Cg, all have two blocks, i.e., dy = d3 = dy = 2,
Cs; has three blocks, i.e., d5s = 3, and Cg; has four blocks, i.e., dg = 4. Note that Cg,
and Cg, contain one and four uncorrelated source components, respectively. Using these
SCV covariance matrices, we generate R = 6 SCVs S, € REXV  each with K = 10
source components and V' = 1000 samples. The samples are drawn from a Laplacian
distribution as described in [Kot01, section 6.4], with zero mean and with covariance
matrices specified as shown in Figure 6.2.

We perform two experiments. In the first experiment in Subsection 6.3.1, we compare
the performance of the proposed bootstrap technique and two competing methods
for estimating d,. Here, we estimate d, from the generated sample SCVs because, as
explained before, the identified sources from IVA-L-SOS may not be aligned correctly
among SCVs, i.e., the correlated blocks in the covariance matrices may be permuted
among SCVs. Due to this, Er of the output of IVA-L-SOS may not match E,- of the
generated SCVs. In the second experiment in Subsection 6.3.2, we apply the complete
method, including the IVA step and the hierarchical clustering, on the simulated

observed datasets and investigate the robustness of the method for different correlation

2The Python code for the simulations is available at: https://github.com/SSTGroup/relationship_
structure_identification.


https://github.com/SSTGroup/relationship_structure_identification
https://github.com/SSTGroup/relationship_structure_identification
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SRR

Figure 6.2: R = 6 simulated SCV covariance matrices (of dimension 10 x 10) for p = 0.2.
We have d] =1, dp = d3 = dg = 2, dy = 3, and dg = 4. Using these covariance
matrices, 6 SCVs with Laplacian-distributed sources are generated.

coefficients p. In both of these scenarios, we did not consider noise, as we assumed
that for real-world data, noise is effectively removed during the PCA-based dimension
reduction step in the preprocessing. This is based on the assumption that the dimension
of the observed datasets is higher than the number of latent source components, which

is a common assumption in fMRI data analysis [Ada22].

6.3.1 Estimating d,

We evaluate the performance of three techniques for estimating d, from the generated
sample SCVs. The first technique is our proposed bootstrap (BT) technique, described
in Algorithm 14 on page 100, with B = 1000 bootstrap resamples and P, = 0.05. The
second technique based on Hard Thresholding (HT) of the eigenvalues [Akh21] directly
counts how many eigenvalues are greater than one in the rth SCV’s covariance matrix,
ie., dr = |{k: )\Lk] > 1}|. The third technique is the Gershgorin Disc (GD) technique
from [Yan22].

We simulate 50 Monte-Carlo runs. We investigate the two performance metrics

# (87” = dr)

#runs

P(E,-: dr> —

which estimates the probability that d, is estimated correctly, and
:U’ETJ

which is the average value of the estimated Er.

The boxplot of P (Er = dr> for the R = 6 SCVs is shown in Figure 6.3 for different
values of p, with circles denoting outliers. Notably, the proposed BT technique demon-
strates robust performance by accurately estimating d, even for very small correlation

values in the underlying data, showcasing its effectiveness in handling the Laplacian
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Figure 6.3: Boxplot of P (@ = dr) ,7=1,...,6, for different values of p for the BT, HT and

GD technique. The higher p, the more accurate is the estimation of d, for the
BT and HT techniques. The GD technique does not depend on p but fails for all
values. The proposed BT technique is superior to HT and GD for all values of p.

(non-Gaussian) data distribution and varying correlation values p. In contrast, the
HT technique only achieves high P (@ = dr> values with increasing p, while the GD
technique does not perform well for all values of p.

To investigate the reason for the small values of P (Er = dr> in the HT and GD
technique, we show 1, and 13, in Figure 6.4, estimated for the BT, HT and GD
techniques. We see that the HT technique (blue triangles) overestimates dy (also ds,
not shown here), with an improvement for higher p values, while the BT (blue circles)
and GD (blue squares) techniques estimate dy close to the ground truth for all p values.
Furthermore, we see that the GD technique (orange squares) strongly underestimates
ds (also dp and dg, not shown) compared with the BT (orange circles) and HT (orange
triangles) techniques for all p values. The over- and underestimation of d; in the HT
and GD techniques is the reason for the decreased values of P (er = d7«> compared
with the BT technique. Thus, the proposed BT technique is superior to HT and GD in

-o-u5 (BT)

44 4 da
A A A 7Ar—uzi\4 (HT)
34 d5—3* E}'uzi\4 (GD)
dy = 2 4 G G 2 2 - pg, (BT)
1- 1- g, (HT)
p. (GD)

0 T T T 0 T T T 5

0.2 0.5 0.8 0.2 0.5 0.8
P P

Figure 6.4: Average value of ET for SCVs 4 and 5 for different values of p for the BT, HT
and GD technique. The true values are dy = 2 and d; = 3. The proposed BT
technique estimates both values close to the ground truth, while the HT technique
overestimates d4 and the GD technique underestimates d5.
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terms of estimating d;-.

6.3.2 Identifying the relationship structure among multiple

datasets

We have seen in the previous subsection that the BT technique is superior to the HT
and GD techniques in terms of estimating d,. Therefore, we evaluate the complete
method for identifying the relationship structure only with the BT technique. We are
not aware of other methods that identify the relationship structure—and not only
groups of datasets—with which we could compare the complete proposed method.

We generate the SCVs as described in Subsection 6.3.1 and the datasets as X[+ =
AlFIS[F where the elements of Alfl € R6%6 are drawn from A (0,1). After performing
IVA-L-SOS with 20 random initializations and choosing the estimated sources of the
most consistent run® as in [Lon18], the BT technique is applied to the estimated SCVs
to find Er. The er leading eigenvectors of the structured SCVs are concatenated in a
feature matrix F, which we feed into the hierarchical clustering. Hierarchical clustering is
performed using the linkage function from scikit-learn [Ped11] with the ‘ward’ linkage
(minimizing the variance of the clusters) and visualized using the dendrogram function.
Also, here, we simulate 50 Monte-Carlo runs.

Figure 6.5 shows the dendrogram revealing the true relationship structure among
the datasets (for p = 0.2, dendrograms for the other values of p are very similar). For
creating this ground truth dendrogram, we set d, manually and concatenate the d,
eigenvectors of the true (instead of sample) covariance matrices as the input for the
hierarchical clustering. The labels of the datasets are denoted on the x-axis of the
dendrogram, and the y-axis shows the distance between the clusters. A small distance
means that the corresponding clusters are very similar. We see that three groups
exist in the datasets, i.e., datasets 5-7 form one group (orange), datasets 8-10 form a
second group (green), and datasets 1-4 form a third group (red). We also see that the
groups of datasets 5-7 and 8-10 are closer to each other than to those of datasets 1-4.
The labels that result from the clustering are the same within each cluster but with
arbitrary ordering. We denote the true label for the k™ dataset with c;. and choose
cr=cg=c3=c4=1,c5=cg=cy=2,and cg = cg = c1g = 3.

Figure 6.6 shows the SCV covariance matrices estimated by IVA-L-SOS for one of
the 50 Monte-Carlo runs. Comparing these estimated covariance matrices with the

true covariance matrices in Figure 6.2, we see that some of the correlated blocks are

3The Python implementation is available at https://github.com/SSTGroup/independent_vector_
analysis.


https://github.com/SSTGroup/independent_vector_analysis
https://github.com/SSTGroup/independent_vector_analysis
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Figure 6.5: The ground truth dendrogram (for p = 0.2) shows the relationship structure among
the 10 datasets. There exist three groups: consisting of datasets 5-7 (orange), 8-10
(green), and 14 (red).

permuted among the SCV covariance matrices. For example, the (4 x 4)-block in Csg,
has moved to 654, and the (2 x 2)-block in Csy has moved to 653. Even though the
blocks are permuted, the SCV covariance matrices still provide information about the
relationship among the datasets, and therefore, the identification of the relationship

structure is not affected by this, as we will see in the following.

We are not aware of a performance metric that captures how well the relationship
structure among the datasets is estimated; instead, we use the Adjusted Mutual
Information (AMI) [Vin09] between the true and estimated clusters, which evaluates
if the groups are identified correctly. The AMI is a normalized metric based on the
mutual information of the true and estimated clustering, i.e., the AMI is equal to
one if the true and the estimated clusters are equal, and equal to zero if the mutual
information between the true and estimated clusters equals the expected value of the

mutual information between the true and a random clustering. Furthermore, the AMI

Cs, Cs, Cs, Cs, C Cs,

Figure 6.6: R = 6 estimated SCV covariance matrices (of dimension 10 x 10) for p = 0.2.
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corrects for the permutation ambiguity between the true and the estimated clusters.
The proposed method achieves an AMI of one for p = 0.2,0.5,0.8, i.e., it correctly

identifies the groups in 100% of the runs for all the correlation values.

6.4 Summary

In this chapter, we have proposed a method to identify the relationship structure among
multiple datasets using JBSS and thereby addressed the second challenge of this thesis.
The proposed method consists of three steps: 1) estimating latent sources from observed
datasets using IVA-1-SOS, 2) identifying structured SCVs (SCVs whose covariance
matrices have more than one eigenvalue greater than one), and 3) extracting features
from the structured SCVs, which are then used by hierarchical clustering to identify the
relationship structure among the datasets. In simulations, we have first demonstrated the
superior performance of the second step of the method against the techniques in [Akh21]
and [Yan22|. Compared with these approaches, the proposed method eliminates the need
to assume Gaussianity in the data by 1) including higher-order statistics through the
use of IVA-L-SOS for source estimation, which leads to more interpretable components,
and 2) not relying on any distributional assumptions, which is achieved by estimating
the number of eigenvalues greater than one using a bootstrap-based hypothesis test.
Thereafter, we have verified the success of the proposed method for identifying the
relationship structure among multiple datasets, where it has achieved perfect AMI
for different correlation values between the sources. To the best of our knowledge, no
competing technique exists in the literature that identifies the relationship structure of
multiple datasets using JBSS. A limitation of the proposed method is that it does not
identify SCVs with identity covariance matrices, i.e., SCVs that consist of completely
uncorrelated sources, as they typically do not exist in real-world data. However, a
possible way to overcome this limitation in the future may be to adapt the bootstrap
test. In the next chapter, we apply the proposed method to multi-task fMRI data and

demonstrate its success also for real-world data.






7 JBSS for multi-task fMRI data

analysis

One of the important applications of JBSS is data fusion, i.e., the joint analysis of
multiple related datasets such that they can interact and inform each other [Lah15].
JBSS methods perform data fusion by making use of the dependence of the latent
sources across datasets [Lahl5; Adalb; Hunl7; Adal9]. Over the years, there has
been an increase in the utilization of IVA for functional Magnetic Resonance Imaging
(fMRI) data fusion because IVA 1) naturally aligns the sources across datasets [LS17],
2) effectively retains subject variability in multi-subject fMRI data [Bhil9], and 3) can
provide information about the relationship among multiple datasets [Lon20]. The
interest in data fusion of multi-task TMRI data, where datasets are collected from
the same subjects while they are performing different tasks, has grown [Cal06; LS17;
San20]. FMRI datasets from multiple tasks provide complementary information about
the brain [Ram15; Mij12] because different tasks involve cognitive functions that are
either task-specific or common across all tasks [San20]. By performing data fusion, the
function of and relationship among brain networks can be identified [San20], which

eventually helps to understand the brain organization [Con22].

In this chapter, we analyze fMRI datasets from patients with schizophrenia and
healthy controls who perform multiple tasks. Schizophrenia is a neuropsychiatric disorder
associated with cognitive deficits [Ram15; Mwal7] and altered connections between
brain networks [Mic09], which might not be captured when analyzing only the data from
a single task [Ram15]. Performing data fusion on these multi-task datasets, therefore,
may help to better understand schizophrenia and to reveal latent neural patterns called
biomarkers, e.g., a common network among the tasks, that capture differences between
patients with schizophrenia and healthy controls [Cal06; Mic09]. Previous studies that
concentrated on performing JBSS to distinguish between patients with schizophrenia
and healthy controls made use of a single fMRI feature vector per task, e.g., [LS17]. It
is also of interest to analyze multiple feature vectors per task, which report on different

aspects of the task, to examine the relationship among different brain networks in this

109
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task.

In the following section, we introduce the multi-task fMRI datasets. Thereafter, we
apply IVA-G and PARAFAC?2 for data fusion of the multi-task fMRI data, where we
identify potential biomarkers for schizophrenia and show that the SCV covariance
matrices provide information about the relationship among the task datasets. Building
on these findings, we apply the proposed method from Chapter 6 for identifying the
relationship structure among multiple datasets. We verify the success of the proposed
method by identifying a meaningful relationship structure among the multi-task fMRI
datasets, as the method groups together the task datasets from similar tasks, and we
again reveal brain networks with significantly different activations in patients with

schizophrenia and healthy controls that might be potential biomarkers for the disorder.!

7.1 fMRI dataset and preprocessing

We analyze fMRI datasets from the MIND Clinical Imaging Consortium (MCIC)
collection [Gol13], which are collected from 271 subjects (121 patients with schizophrenia
and 150 healthy controls) that perform three different tasks: Auditory Oddball (AOD),
Sensory Motor (SM), and Sternberg Item Recognition Paradigm (SIRP).

In the AOD task, three stimuli are played: a frequent standard stimulus (1 kHz
tone), an infrequent target stimulus (1.2 kHz tone), and an infrequent novel stimulus
(computer-generated, complex sound). Whenever the target stimulus occurs, the subject
must press a button with the right index finger [Gol13|. During the SM task, in total 16
different audio tones are played, in increasing order until the highest pitch is reached,
then in decreasing order. The subject must press a button with the right thumb every
time a new tone occurs [Gol13]. The SIRP task consists of two phases, encoding (SIRP-E)
and probe (SIRP-P). In the encoding phase, a set of one, three, or five integer digits
(randomly selected from zero to nine) is presented on a screen, and the subject needs to
memorize this set. In the following probe (SIRP-P), digits are presented subsequently
in a pseudo-random order. The subject must press a button with the right thumb if the
digit was in the set and with the left thumb if not [Goll3].

For each of the subjects, multiple three-dimensional brain scans were collected over

ISections 7.1 and 7.3 of this chapter are based on the paper: “Identifying the Relationship Structure
among Multiple Datasets Using Independent Vector Analysis: Application to Multi-task fMRI
Data,” I. Lehmann, T. Hasija, B. Gabrielson, M. A. B. S. Akhonda, V. D. Calhoun, T. Adali, I[EFEE
Access, 2024, pp. 109443-109456. Section 7.2 of this chapter is based on the paper: “Multi-task fIMRI
Data Fusion Using IVA and PARAFAC2,” 1. Lehmann, E. Acar, T. Hasija, M. A. B. S. Akhonda,
V. D. Calhoun, P. Schreier, and T. Adali, 2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2022, pp. 1466-1470.
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time during each task. The recorded scans were then preprocessed as in [Mic09; LS17]:
Using the Statistical Parametric Mapping (SPM) MATLAB toolbox [Mem20], a simple
voxelwise linear regression was applied to the data to eliminate the temporal dimension.
The regressors were created by convolving the default Hemodynamic Response Function
(HRF) in SPM with the desired predictors for each task, which will be described in the
next paragraph. For each subject and task, the resulting regression coefficient maps,
also called “contrast images”, are flattened and used as one-dimensional feature vectors
that capture the variations across subjects. The flattened feature vectors of length
V' = 48546 voxels are concatenated for the N = 271 subjects to create the k™ task
dataset XM e RNV L =1,... K.

In the AOD task, the occurrences of the novel stimuli (AOD-N), the novel with
standard stimuli (AOD-NS), the target stimuli (AOD-T), and the target with standard
stimuli (AOD-TS) are each modeled as delta functions and used as predictors [LS17].
Thus, there are four task datasets for the AOD task. In the SM task, the entire increase
and decrease block is used as the predictor [LS17]; thus, there is one task dataset for
the SM task. For both phases of SIRP (E and P), also the whole block is used as the
predictor. This way, the data allows us to analyze the learning and retrieval phases of
this task separately. There is one task dataset for the encoding phase and the probe
phase for each one, three, and five digits, and the average data; thus, there are eight
task datasets for the SIRP task.

We expect task-specific activations of the auditory brain networks for the auditory
tasks (AOD and SM) and of the visual brain networks for the visual tasks (SIRP),
along with activations of the DMN for all tasks. As the task datasets are collected from
patients and controls, we can use them to evaluate which tasks more clearly discriminate
between patients with schizophrenia and healthy controls and thus may be involved
in the development of novel biomarkers. Furthermore, our prior knowledge about the
relationship among the task datasets provides us with the opportunity to directly assess
the success of the proposed method from Chapter 6 with real-world data, which is
typically not easily achievable, as for real-world data, one often does not know the true

relationship structure.

7.2 IVA-G and PARAFAC2 for multi-task fMRI

data fusion

In this section, we study IVA-G and PARAFAC2 for data fusion of the multi-task fMRI
data. We use all K = 13 task datasets described in Section 7.1, i.e, four AOD datasets,
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one SM dataset, and eight SIRP datasets. By making use of these rich multi-task
fMRI datasets, we show how the two methods can be used for achieving two important
goals at once, namely 1) finding interpretable latent source components that allow to
discriminate between patients with schizophrenia and healthy controls and 2) providing
information about the relationship among the tasks in the SCVs. To the best of our
knowledge, this is the first application of PARAFAC2 to perform JBSS on multiple
fMRI task datasets with the goal of obtaining information about the relationship among

the task datasets based on the latent sources.?

7.2.1 Implementation details

As a common assumption in many applications, including fMRI analysis, is that the
datasets can be modeled with a lower-dimensional set of latent sources [Ada22], a
dimension reduction is performed via PCA before applying IVA-G, as described in
Section 4.3. Like it is mostly the case for real-world data, also in the MCIC data, we
do not know the true number R of the latent sources. Since PARAFAC2 may have an
upper limit on R as described in Section 4.3, we have studied different values for R up
to the limit for PARAFAC2, and we obtained the most interpretable source components
for R = 2. To have a fair comparison of the two methods, we also have chosen the PCA
dimension R = 2 and run IVA-G on the dimension-reduced datasets 5{““] e REXV,
k=1,..., K. We report the results of the best run of IVA-G and PARAFAC2, which
are found as described in Subsection 4.3.3.

The R source components §£nk] e R V, i.e., the rth rows of S
by IVA-G and PARAFAC2, are normalized to unit variance. To visualize the active brain

networks, we calculate the (scalar) mean ;LL"’] and standard deviation UW of each /S\ka],

and calculate the z-score of each voxel in §£~k] by subtracting ,u[rk] and dividing by aL’“].

I e RVaxVyx Vs

k
¥ c REXV estimated

. . k
Then, each z-scored source component is reshaped into a tensor ZL

We show L = 9 slices of the resulting tensor, where we visualize only the voxels (4, j)

where ‘ZW (4,7, l)‘ > 2. The visible voxels in ZLk] (:,:,1) form the active brain networks

in the It slice.

(k] € RNXR

The estimated mixing matrices A are reconstructed by multiplying the

[£]

PCA transformation matrix W' with the inverse of the estimated demixing matrix

2This section is based on the paper: “Multi-task fMRI Data Fusion Using IVA and PARAFAC2,”
I. Lehmann, E. Acar, T. Hasija, M. A. B. S. Akhonda, V. D. Calhoun, P. Schreier, and T. Adali,
2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022,
pp. 1466-1470.
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wil,

A _ gl (W[k})_l e RVXE
and the r*! column ﬁLk] is the subject profile corresponding to the N brain network in
the k'™ dataset. As we are also interested in identifying the source components that
discriminate between patients and controls, we apply a two-sample t-test on the first 150
(controls) and the following 121 (patients) values of each column ﬁLk] e R27L. We consider
p-values smaller than 0.05 to be significant, indicating that the corresponding active

(]

brain networks in ;.. are different in patients with schizophrenia and healthy controls.
Using this t-test, we corrected the signs of the estimated sources §[k] € REX48546
overcome the sign ambiguity of IVA: We made sure that the ¢-values of the datasets that
show a significant difference between patients and controls (p < 0.05) are positive or
made positive by multiplying the estimated source components /S\Lk] and corresponding
subject profiles ?a\Lk] by —1 (if the t-value is negative). This way, positive values of the
(zero-mean) sources indicate higher activations in controls, and negative values indicate

higher activation in patients.

7.2.2 Results

The SCV covariance matrices (absolute values) estimated by both IVA-G and PARAFAC2
are shown in Figure 7.1. Light values correspond to high correlations. We see that the
estimated SCV covariance matrices ésn of both methods provide information about the
relationship among the task datasets. In Figure 7.1(a), the first SCV in IVA-G shows
high correlations only across subsets of task datasets, while the second SCV shows
high correlations across all task datasets. On the other hand, shown in Figure 7.1(b),
both SCVs in PARAFAC2 show high correlations only across subsets of task datasets.
Thus, although PARAFAC2 does not model the dependence within an SCV, in the final
decomposition, the estimated SCVs also contain the information about the relationship
among the task datasets. For both methods, the block-structured covariance matrices
indicate that correlations across task datasets form two distinct groups, one across the
AOD and SM datasets and another across the SIRP datasets. This is because the AOD
and SM tasks are more similar to each other compared with the SIRP task [LS17].

A subset of the source components, i.e., fMRI maps, corresponding to the block-
structured covariance matrix of SCV 1 in IVA-G and the corresponding SCV 1 in
PARAFAC2, are visualized (thresholded at |z| = 2) over the anatomical gray images
in Figure 7.2(a) and Figure 7.2(b), respectively. Because of the sign correction, red or

yellow voxels indicate that a brain network is more active in controls, and blue voxels
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Figure 7.1: Covariance matrices (absolute values) of the R = 2 estimated SCVs for the multi-
task fMRI data.

indicate higher activation in patients. Then, we adjusted the sign of the non-significant
datasets (p > 0.05) manually by matching the color (red/blue) of the active brain
networks to the significant datasets (p < 0.05) of the same task. Significant p-values
are displayed in magenta with the superscript *.

In both methods, source components estimated for the AOD and SM datasets are
showing higher activations in controls in the auditory and motor networks (red/yellow
focal areas in slices 5-7 and 2-3), while the source components in the SIRP-E datasets
are showing higher activations mostly in the visual network (red/yellow focal areas
in slices 6-8), and in the SIRP-P datasets in the motor and in parts of the visual
network (red/yellow focal areas in slices 2-3 and 7-8). The p-value is the same for
all task datasets in PARAFAC2 and is very small; thus, all task datasets seem to
provide a high discrimination between patients and controls. However, IVA-G can
identify which of the task datasets are providing significantly different activations
between patients and controls, which improves the interpretability, especially if IVA-G
estimates more components. The active brain networks in the AOD tasks, which show
the largest difference (i.e., smallest p-value) between patients and controls, are known
to be affected by schizophrenia from previous studies [Cal04; Dul2], and therefore are
promising candidates for biomarkers for schizophrenia. The Default Mode Network
(DMN) (blue focal areas in slices 4-6), which is present in all but the SM datasets, is
more active in patients than in controls. This makes sense as the DMN mostly represents
the resting state: the less concentrated one is on a given task, the more dominant are
the resting state source components, and typically, controls show a higher task-related
suppression of the DMN than patients [Hul7; WG09]. The DMN is more clearly visible
in the SIRP-P dataset for PARAFAC2 than for IVA-G. Also the DMN has been shown
to be affected by schizophrenia [WG09] and thus may be used as another potential
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Figure 7.2: Subset of estimated fMRI maps corresponding to SCV 1. The auditory network is
more active in controls in the AOD and SM datasets (red/yellow areas in slices
5-7) and not active in the SIRP datasets. The visual network is more active in
controls in the SIRP-E and SIRP-P datasets (red/yellow areas in slices 6-8) and
not active in the AOD and SM datasets. The motor network is more active in
controls in the AOD-TS, SM, and SIRP-P datasets (red/yellow areas in slices
2-3) and not active in the AOD-NS and SIRP-E datasets, as no motor action is
required in the latter tasks. The default mode network is more active in patients
in the AOD and SIRP datasets (blue areas in slices 4-6) and is almost not active
in the SM dataset.

biomarker for the disorder, in agreement with [Hul7].

Finally, PARAFAC2 provides us with an additional summary of the task datasets
through the factor matrix C € R?*13, Ag in the simulations in Section 4.3, C should
not be confused with the covariance matrices Gsn. The two columns of 6, ¢y and
Co, are shown in Figure 7.3, where each element of ¢, is plotted. The x-axis shows to
which dataset each element of ¢, corresponds, and the y-axis shows how strong the

source component is present in the dataset. More specifically, the k™R element in Cr, Chyy
~[ENT . .

represents how strong the k™ source component of the rth SCV, (bL ]) , s present in

the k' dataset. We see that the first SCV is present in all task datasets, thus showing

an average component, while the second SCV is more present in the SIRP datasets.
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Figure 7.3: Dataset covariations estimated by PARAFAC2. The first component is present
in all task datasets, and the second component is mainly present in the SIRP
datasets.

To conclude this section, both IVA-G and PARAFAC2 identify source components
that discriminate between patients with schizophrenia and healthy controls, with the
strongest discrimination found in the AOD task, and provide information about the

relationship among task datasets in the SCV covariance matrices.

7.3 Identifying the relationship structure among
multi-task fMRI datasets

In the previous section, we have only estimated a small number of sources with IVA-G
to have a fair comparison with PARAFAC2, which can only estimate a small number of
sources due to its uniqueness conditions. Even for this small number of sources, the SCV
covariance matrices provide information about the relationship among the task datasets.
Based on these results, in this section, we apply the proposed method from Chapter 6
to identify the relationship structure among the task datasets, which are described in
Section 7.1. This time, we have removed redundant datasets and used K = 10 task
datasets, which are AOD-N, AOD-T, AOD-TS, SM, and SIRP-E and SIRP-P each for
one, three, and five digits in the set that needed to be remembered. We now estimate
more sources (through a higher PCA dimension R) than in the previous section, which
has the advantage that now the active brain networks in one SCV correspond to one
task, whereas before, one single SCV captured the active brain networks of all tasks.
Furthermore, instead of IVA-G, we now use IVA-L-SOS, as it has been shown that
the assumed pdf of the SCVs in IVA-L-SOS is a good match for real-world fMRI
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data [Bhil9; Lon20]. We show that the proposed method successfully reveals active
brain networks associated with the disorder and identifies the relationship structure

among task datasets that matches our prior knowledge of the experiment.?

7.3.1 Implementation details

We again perform dimension reduction via PCA to transform each observed dataset in
a lower-dimensional subspace of dimension R. Then, IVA-L-SOS is performed on the
dimension-reduced datasets )Ni[k] e REXV ¢ estimate the source matrices §[k] e REXV,
From these, the SCVs /S\r e REXV 1 =1,... R, are formed. Selecting an appropriate
value for R is important to get meaningful results. The proposed method achieves
robust clustering results for a wide range of values for R = 20,21,...,30. In this
section, we present the results for R = 25 because at this order, the estimated source
components are 1) stable, i.e., active brain networks are not split (as in higher orders) or
merged (as in lower orders), and 2) meaningful, i.e., active brain networks are physically
interpretable. The visualization of active brain networks and calculation of p-values is
done as described in the previous section.

The proposed method is primarily data-driven, with the exception of two user-selected
parameters in Step 2, the probability of false alarm Pf, and the number of bootstrap
resamples B. With Py, we can directly control the risk of overestimating dy, i.e., the
number of eigenvalues greater than one in the rth SCV covariance matrix. The higher
the value for B is chosen, the better the distribution is estimated, but for a too high
value of B, there will not be a better estimate at some point. We choose B = 1000
bootstrap resamples and Pf, = 0.05 to estimate d;, as these are typical values for these

parameters and achieve good results in general.

7.3.2 Results
Identification of common and structured SCVs

A subset of the covariance matrices of the estimated SCVs (absolute values) is shown
in Figure 7.4 along with the estimated values 37«. Light values correspond to high
correlations. For SCVs 3 and 13, gr = 1, thus, these SCVs are identified as common.
SCVs 15-17, 22, and 25 are identified as structured because Er >1. Like in the previous

section, the visible block structure in each structured SCV provides information about

3This section is based on the paper: “Identifying the Relationship Structure among Multiple Datasets
Using Independent Vector Analysis: Application to Multi-task fMRI Data,” I. Lehmann, T. Hasija,
B. Gabrielson, M. A. B. S. Akhonda, V. D. Calhoun, T. Adali, IEEE Access, 2024, pp. 109443—
109456.
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Figure 7.4: Subset of the estimated SCV covariance matrices (absolute values). SCVs 3 and 13
are identified as common, and SCVs 15-17, 22, and 25 are identified as structured.

the relationship among the task datasets. For example, the covariance matrix of SCV16
clearly shows high correlations within the AOD and SM datasets and within the SIRP

datasets, but small correlations across these task datasets.

Estimation of sources with IVA-L-SOS

The estimated source components, i.e., fMRI maps, show which brain networks are active
in which tasks. In the following, we present SCV3, SCV16, and SCV17 as examples

of common and structured SCVs because they either show active brain networks that
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Figure 7.5: Estimated fMRI maps corresponding to SCV3. The default mode network and the
visual network are more active in controls (red/yellow areas in slices 4-6 and 7-9),
while the sensorimotor areas are more active in patients (blue areas in slices 2-3).
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Figure 7.6: Estimated fMRI maps corresponding to SCV16. The auditory network is more
active in controls in the AOD and SM datasets (red/yellow areas in slices 5-7)
and not active in the SIRP datasets.

are common in all tasks or correspond to specific tasks. All fMRI maps are visualized
(thresholded at |z| = 2) over the anatomical gray images. Significant p-values are
displayed in magenta with the superscript *. The sign correction is performed as in the
previous section. Therefore, red or yellow voxels again indicate that a brain network is

more active in controls, and blue voxels again indicate higher activation in patients.

In SCV 3 in Figure 7.5, we see activations of the DMN (red/yellow focal areas in
slices 4-6). The DMN is known to have a decreased activation when a task is performed
[San20; Hul7]. The higher activation of the DMN in controls means that the deactivation
is stronger in patients. This can be interpreted as patients needing to focus more on a
task to perform it well. The sensorimotor network (blue focal areas in slices 2-3) is more
active in patients and therefore supports this interpretation. There are minor activations
in the visual network (red/yellow focal areas in slices 7-9), which are expected because
the subjects had their eyes open during all tasks. The very small p-values in the AOD-T
and AOD-TS datasets indicate that especially when the target stimulus occurs, the
patients are significantly more engaged with the task, i.e., have significantly smaller
activation of the DMN. These lower p-values in the AOD datasets are expected since the

AOD task has been shown to be important in discriminating patients with schizophrenia
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Figure 7.7: Estimated fMRI maps corresponding to SCV17. The visual network is more active
in controls in the SIRP-E datasets (red/yellow areas in slices 6-7), more active in
patients in the SIRP-P datasets (blue areas in slice 7), and not active in the AOD
and SM datasets.

and healthy controls, as patients have a smaller oddball response [Kim09]. In the SIRP-P
datasets, there is no significant difference between patients and controls for the DMN.
In contrast, in the SIRP-E datasets, the p-values become smaller with increasing task
difficulty, i.e., the deactivations of the DMN become stronger for patients. This coincides
with the literature, as with an increasing level of difficulty of a task, the deactivation of
the DMN becomes stronger [San20].

The fMRI maps corresponding to SCV16 are shown in Figure 7.6. The auditory
network (red/yellow focal areas in slices 5-7) is more active in controls in the AOD and
SM datasets and not active in the SIRP datasets. The p-values are also significant for
the AOD and SM datasets, supporting the literature that activations in the auditory
network may be a biomarker for differentiating patients with schizophrenia and healthy
controls [Cal04].

The fMRI maps corresponding to SCV17, shown in Figure 7.7, show strong activations
in the visual network for the SIRP datasets (red/yellow focal areas in slices 6-7 in the
SIRP-E datasets and blue focal areas in slice 7 in the SIRP-P datasets). A significant
difference between patients and controls is found for SIRP-E5 (in accordance with
SCV3) and SIRP-P1. What is most surprising here is that the visual network is more
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active in controls for the SIRP encoding phase, but more active in patients for the
SIRP probe phase. An explanation might be that patients need to focus more on a digit
to remember it, while the controls just briefly see the digit, and their memory can be

accessed faster.

Identification of the relationship structure

As described in Subsection 6.2.3, the Er leading eigenvectors of the structured SCVs are
concatenated to form a feature matrix, which is the input of the hierarchical clustering.
The dendrogram for the hierarchical clustering, which reveals the relationship structure
among the task datasets, is shown in Figure 7.8. The labels of the datasets are again
denoted on the x-axis of the dendrogram, and the y-axis again shows the distance
between the clusters. Each cluster refers to a group of task datasets (in contrast to
a group of subjects, as in subgroup identification). The SIRP tasks form one group
(orange), and the AOD and SM tasks form a second group (green). As the SIRP task
involves a visual stimulus and the AOD and SM tasks both involve auditory stimuli,
these resulting groups are meaningful. Within the SIRP group, there are two finer

groups visible: one consisting of the encoding datasets and the other of the probe
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Figure 7.8: The dendrogram for the multi-task fMRI data reveals the relationship structure
among the task datasets. Two groups are found, consisting of the visual task
datasets (orange), SIRP-E and SIRP-P, and of the auditory task datasets (green),
AOD and SM. Within the visual datasets, the SIRP-E and SIRP-P datasets form
two groups. Within the auditory datasets, there is one group consisting of the
AOD datasets.
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datasets. This makes sense because they refer to two different phases of the SIRP task.
Within the auditory group, the AOD datasets form a finer group.

To conclude this section, the proposed method reveals active brain networks that
allow to discriminate between patients with schizophrenia and healthy controls and
successfully identifies the relationship structure among the task datasets, as it groups

together datasets from similar tasks in the hierarchical clustering.

7.4 Summary

In this chapter, we have analyzed multi-task fMRI datasets from patients with schizophre-
nia and healthy controls using JBSS methods. We have started by performing data
fusion of these datasets with IVA-G and PARAFAC2, where we have observed that both
methods identify source components corresponding to brain networks that discriminate
between patients with schizophrenia and healthy controls. The active brain networks in
the AOD task show the strongest discrimination between patients and controls and,
therefore, are promising candidates for biomarkers for schizophrenia. Besides having
found brain networks that are expected to be active during the tasks, which indicates
the success of both methods for achieving JBSS on real-world fMRI data, we have seen
that the SCV covariance matrices provide information about the relationship among
task datasets.

Based on these results, we have applied the proposed method from Chapter 6 to the
task datasets. Again, the estimated source components correspond to brain networks that
are known to be affected by schizophrenia: We see significantly stronger deactivations of
the DMN in patients and significantly stronger activations of the auditory brain network
in controls. While we were able to draw conclusions from the here presented estimated
fMRI maps, it is important to note that interpretation is not always straightforward.
We have carefully selected and presented SCVs that show activations in meaningful
brain networks, which we identified according to Brodmann areas [Lac08]. Despite the
simplicity of the task design, many of the unrepresented components cannot easily
be explained in a straightforward manner. However, interpreting a subset of the most
meaningful components can already help in understanding how the brain functions.
Thus, a good guideline for using the proposed method for fMRI analysis is to find
a range of R values that lead to stable results after the dimension reduction and
then compare the estimated components with established brain networks such as the
Brodmann areas [Lac08] to facilitate interpretation. It is important to remember that

relying solely on comparisons with known brain atlas components might cause us to
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overlook brain networks that are not included in the user-defined atlas. Nevertheless,
comparing the brain networks with an atlas provides an initial reference point before
conducting further investigations.

Finally, we have verified the success of the proposed method for identifying the
relationship structure among the multi-task fMRI datasets, as it groups datasets from
similar tasks together. Importantly, the proposed method is not limited to task datasets
but is applicable to more general problems. For example, by identifying the relationship
structure among subject datasets of, e.g., patients with schizophrenia, bipolar disorder,
and their subtypes, the proposed method could be used for subgroup identification in
precision medicine. Applying the proposed method to ANS measures from several time
instances before and after epileptic seizures, and thereby identifying the changes in the
relationship among these measures over time, might help to develop novel techniques
for seizure detection or prediction. After having demonstrated the suitability of JBSS
methods for fMRI data analysis, in the next chapter, we study their application for fUS

data, an alternative measure to fMRI for inferring brain activity.






8 Deriving 3D functional brain

networks from multi-slice fUS
data using JBSS

In addition to the gold-standard method fMRI, also functional Ultrasound (fUS) can be
used to infer brain activity. FUS, first introduced in 2011 [Macl1], invasively measures
the cerebral blood volume in the brain. Because of neurovascular coupling, an increase
in this blood flow and/or volume can be linked to increased neural activity [Macl1].
Compared with fMRI, fUS has a higher spatio-temporal resolution: the spatial resolution
of fUS is 50-350 wm compared with 1-3 mm in fMRI, and the temporal resolution is
4-10 Hz for fUS and 0.3-1 Hz for fMRI, respectively [Mar21; Bru2l]. Typically, fUS
data is collected in a 2-dimensional (2D) imaging plane, which means that in order to
collect full-brain information, several 2D images are collected for a fixed position of
the ultrasound probe for the duration of the experiment, before the probe is moved
to the next position. As a result, a 3-dimensional (3D) functional volume consists of
subsequent, time-disjunct 2D datasets. In contrast, in fMRI, the magnetic field is moved
after scanning each slice, and after some time correction preprocessing, the resulting

tensor naturally is a 3D scan of the brain over time.

The gold standard way to analyze multi-slice fUS datasets is using correlation images
or a General Linear Model (GLM)-based approach [Bru2l]. However, besides the fact
that these slice-by-slice analyses are not making use of the dependence across datasets,
it was shown in previous work [Ero22] that the brain response strength varies a lot
across consecutive stimuli, so correlation/GLM-based approaches may be too rigid and
cannot capture this variability. Furthermore, these approaches can only be applied if
the data is collected during a task experiment and the expected stimulus responses for
the task are known. Therefore, they are not feasible for analyzing resting state data,
which is of great importance to obtain information about the functional organization of
the brain [Urb15; PR21]. Instead, the use of data-driven analysis using SVD or ICA for

retrieving functional networks [Osm14] or regions of interest [Ero22; Wij23] within a

125
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single slice has become more popular in recent years, as these methods do not require
prior information. Very recently, ICA has also been used to map whole-brain mouse
functional connectivity from novel 3D recordings [Hik23] and for slice-by-slice evaluation
of consecutive 2D recordings [Ber23]. However, in the latter case, ICA does not exploit
the information that is common across the slices.

In this chapter, we therefore propose the use of IVA for JBSS of fUS datasets, with the
goal to map the mouse visual information processing pathway in 3D, i.e., to track the
estimated active brain networks over multiple 2D slices. The preprocessing of the fUS
datasets is very important but not straightforward, and is also explained in this chapter.
By evaluating ICA and IVA on a multi-slice fUS dataset collected during an experiment
with visual stimuli at different locations, we demonstrate the successful application of
these methods, as they estimate similar active brain networks as found by the gold
standard correlation images, without prior knowledge about the experiment design.

Furthermore, we provide guidance as to when which method might be desirable.!

8.1 fUS dataset and preprocessing

fUS imaging data is collected from a head-fixed mouse on a wheel, which is looking at two
screens. During the experiment, black-and-white flickerings occurred at nine different
locations on the screens. The flickering at each location is called a stimulus; thus, there
are nine different stimuli in this experiment. The stimuli occur in a pseudo-random
order, where each stimulus is presented five times. The stimulus duration is 2.92 seconds,
and the duration of the breaks between stimuli is between 7.52 and 10.88 seconds.
After collecting the Power Doppler Images (PDIs) over T time points (with a sampling
frequency fs = 4.65 Hz) for a fixed probe position, the probe is moved to a different
position, and the experiment is repeated. The order of the stimulus occurrences is the
same for each probe position. We use data collected from the following probe positions
(distance from Bregma): -3.16 mm, -3.36 mm, -4.26 mm, -4.56 mm, -4.76 mm, -4.96 mm.
Thus, for each probe position, one slice of the brain is captured, and in total we have
K = 6 datasets. We denote the data of the k! slice as a tensor X+ € RVzxVax T
where V, = 150 and V, = 256 are the numbers of pixels in the z and z direction,
respectively, and T = 2530 is the number of time points over which data is collected.
This experiment, by virtue of its simplicity, enables us to easily demonstrate and

evaluate the performance of ICA and IVA by comparing their results with the correlation

IThis chapter is based on the paper: “Deriving 3D Functional Brain Regions from Multi-Slice
Functional Ultrasound Data Using ICA and IVA,” I. Lehmann, P. Kruizinga, B. Hunyadi, 2023
57th Asilomar Conference on Signals, Systems, and Computers, 2023, pp. 1484-1490.
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images and interpreting the identified active brain networks.
The following preprocessing is applied to the PDIs of each slice X (] ¢ RVaxVax T

k=1,..., K, separately.

1. (a) For correlation images: image standardization: The image for each time point
t, XW(:, .. 1) € RV=%Vz is made zero-mean and unit-variance.
(b) For ICA/IVA: temporal standardization: Each pixel’s time course, X [F] (i,7,:)

€ ]RT, is made zero-mean and unit-variance.

2. Spatial smoothing: A 2-dimensional Gaussian filter with o = 1 is applied to the
image collected for each time point ¢, X[k](:, 1) € RV=xVe,

3. Temporal smoothing: A fifth-order Butterworth lowpass filter with a cut-off
frequency of 0.2 Hz is applied on each pixel’s time course X’ (k] (3,7,:).

The following two steps are only applied for ICA/IVA.

4. Reshaping: The tensor X[# € RV=*VaxT ig unfolded in a matrix X € RTXV
where V = V, V,. Compared with the fMRI datasets, where each dataset X[#]
was of dimension N x V', with N being the number of subjects, now each dataset

is of dimension 7' x V', with T being the number of time points.

5. Dimensionality reduction and whitening: PCA is applied to X[ o get the
~ T
dimension-reduced observed datasets X[k] = (\Il[k]> X[k ¢ REX V' where wltl e

RT*E R < T, is the PCA transformation matrix. As with the fMRI data, ICA
<k
and IVA are then applied to X[ ].

8.2 Estimation of active brain networks

8.2.1 Using correlation images

The gold standard for identifying active brain networks in fUS task data is to use corre-

lation images [Urb15], which are calculated from the image-standardized, spatially and

[kl € RV2xVaxT a5 follows. We denote the correlation
image for the ™ stimulus in the & slice as GLk] e RV=*Vz_ The value of each pixel

temporally smoothed tensor X

(i,7) in GLk] is the Pearson correlation coefficient of X [k](i, 7,:) € R7T the time course
of that pixel, with the expected stimulus response e, € R, which is the convolution of
the time course of the ™ stimulus ¢,(¢) with the HRF A(t):

er(t) = cr(t) x h(t).
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We model the HRF by a shifted Dirac impulse:

h(t) = o(t — t),

and we choose ) = 7 samples as time shift, which corresponds to approximately 1.75

seconds. The highly correlated pixels in GLk] form the active brain network in the k™

slice corresponding to the 1 gtimulus.

8.2.2 Using ICA

As the measured data is assumed to be a mixture of the activity fluctuations of

multiple spatially independent functio-anatomical brain networks, we apply ICA to
(K] RxV - o
eR separately to get the estimated demixing

—k =~
matrix W[ ] € REXE and the estimated source matrices S[ ] e REX V, with R = 20
and V = 38,400. The rth estimated source component of the f;th dataset, denoted by

ng] e RV is reshaped into an image GLk] e RV=*Vz and the R images for the k'

each dimension-reduced dataset X

. : . . .~k
slice are independent of each other. The estimated mixing matrices A[ ] e RTXE are

(]

reconstructed by multiplying the PCA transformation matrix W!*! with the inverse of

—~k
the estimated demixing matrix W[ ], as in the fMRI data:

1
AH _ gk (W{k‘}) c RT¥E

[£]

and the 7 column ai. - is the time course corresponding to the rh active brain network
in the k™ dataset. To overcome the sign ambiguity of ICA, we made sure that the
majority of the pixels in each active brain network is positive or made positive by
multiplying the corresponding row of §[k] and column of :&[k by —1. To overcome the
permutation ambiguity, we manually aligned the 20 components across the six slices,
which is prone to subjective biases/errors. In the final step, we removed the components

corresponding to noise, and eight components remained.

8.2.3 Using IVA

4] c REXV Recon-

structing the mixing matrices, solving the sign ambiguity, and reshaping the source

[]

components into images G- is performed in the same way as for ICA. As IVA jointly es-

IVA is jointly applied on the K dimension-reduced datasets X

timates the sources, the permutation ambiguity is automatically resolved by this method.

Finally, we match the estimated IVA components to the selected ICA components to
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compare the results of the methods.

8.2.4 Visualization of active brain networks

The significant pixels (p < 0.01) in each image form an active brain network. To visualize

these brain networks, we calculate the (scalar) mean ML’“] and standard deviation UW of

each image GLk], and calculate the z-score of each pixel in GW by subtracting ,uw and

dividing by JW. From the resulting z-scored image ZLM e RV=*Vz we visualize only

the significant pixels, i.e., the pixels (i,7) where ‘ZLM(’Z, Jj )’ > 2.58, which corresponds
to a significance level of p < 0.01 for a two-sided ¢-test.

(K]

logmean’
which is calculated from the raw PDIs (without any preprocessing) for each slice as:

The active brain networks are visualized over the logarithmic mean image X

k
[k] - Xln]ean
logmean ~ log %] )
max (Xmean>

X

where Xlﬁ}ean = Zthl x[H (:,:,t). Then, we overlay the Allen brain atlas [Wan20a| for

the corresponding slice so that we can interpret the active brain networks in terms of

anatomical regions.

8.3 Results

8.3.1 Correlation images

Figure 8.1 shows the correlation images of probe position -3.36 mm for the nine stimuli.
In the following, we link the active brain networks to the anatomical regions defined in
the Allen brain atlas [Wan20a]. We see positive correlations mainly in V1 on the right
side of the brain with stimuli 1-4 and on the left side with stimuli 8-9, which makes
sense as V1 is part of the visual pathway with contra-lateral activation. For stimuli 5-7,
we see the movement of the V1 and RSG networks from right to left. Thus, the location
of the stimulus can be visually tracked in the correlation images for probe positions

-3.36 mm (and also for -4.26 mm and -4.56 mm, which are not shown).
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Figure 8.1: For probe position -3.36 mm, the location of the stimuli can be tracked in the
correlation images: From stimulus 1 to 9 (location most left to most right), we see
a movement of the active brain networks from right to left.

8.3.2 ICA results

We run FastICA2, described in Section 3.1, 20 times with random initializations and
present the results of the most consistent run [Lon18]. Figure 8.2(a) shows the active
brain networks estimated by ICA for the six probe positions. All brain networks for one
slice are plotted in the same image. To distinguish between them, each brain network is
plotted in a different color. Furthermore, a component that occurs in multiple slices
(as identified manually) is plotted in the same color for each slice. Figure 8.2(b) shows
the correlation of the ICA time courses (corresponding to the active brain networks in
Figure 8.2(a)) with the nine expected stimulus responses. If a component is not present in
a slice, the corresponding row is empty. The identified active brain networks correspond
to meaningful anatomical brain regions. Component 1 (C1) (dark blue) belongs mainly
to the left V1 for probe positions -3.36 mm, -4.26 mm, -4.56 mm, -4.76 mm, and
-4.96 mm. The corresponding time courses of C1 are more highly correlated with the
stimuli located on the right side of the screen (stimuli 6-9), which makes sense as the
brain network is also present in the correlation images for those stimuli. C2 (orange)
corresponds to left V2ML, V2MM, and RSA/RSG at -3.16 mm, and then evolves to

2The Python implementation is available at: https://scikit-learn.org/stable/index.html [Ped11].
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(a) Active brain networks estimated by ICA for the six probe positions. Each brain
network is visualized in a different color within a slice, and the corresponding brain
networks are visualized in the same color across slices.
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(b) Correlation of ICA time courses and expected stimulus responses.

Figure 8.2: ICA results. The active brain networks of Components 1/2 (C1/C2) and C7 belong
to the left and right V1, respectively. The time course of C1/C2 is more highly
correlated with the stimuli on the right side, and the time course of C7 is more
highly correlated with the stimuli on the left side.

mainly activations of V1 (shared with C1) at -3.36 mm to -4.56 mm. Also for the time
courses corresponding to this component, we see higher correlations with the stimuli
on the right. C5 (purple) belongs to left S (-3.36 mm), left and right PrS (-4.26 mm),
and left PrS (-4.56 mm). C7 (olive) shows activations of right V2ML and right V1 (at
-3.16 mm) and then mainly right V1 at -3.52 mm to -4.56 mm. The corresponding time

course is more highly correlated with the stimuli on the left.



132 Deriving 3D functional brain networks from multi-slice fUS data using JBSS

8.3.3 IVA results

We run IVA-G 20 times with random initializations and present the results of the most
consistent run [Lon18]. In Figure 8.3(a), we see the estimated active brain networks of
IVA for each slice, and in Figure 8.3(b), we see the correlation of the IVA time courses
with the expected stimulus responses. We can directly see that C1 and C2 in ICA at
-3.36 mm to -4.56 mm are merged in C1 in IVA, which makes more sense as they belong
to the same anatomical region (left V1) and again reflect the contra-lateral activation
of the visual pathway. However, C3 and C5 are completely missing in IVA. C7 and
C8 are very similar for ICA and IVA, and also the brain networks of C1 and C6 for

Probe position: -3.16 mm Probe position: -3.36 mm Probe position: -4.26 mm

Depth in mm
© N o uo»s
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O 0 N o U B
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(a) Active brain networks estimated by IVA for the six probe positions. Each brain
network is visualized in a different color within a slice, and the corresponding brain
networks are visualized in the same color across slices.
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(b) Correlation of IVA time courses and expected stimulus responses.

Figure 8.3: IVA results. The active brain networks of C1 and C7 belong to the left and right
V1, respectively. The time course of C1 is more highly correlated with the stimuli
on the right side, and the time course of C7 is more highly correlated with the
stimuli on the left side. The time courses of C4, corresponding to the RSA/RSG
regions, are anti-correlated with all stimuli.
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probe positions -4.76 mm and -4.96 mm look almost identical for both methods. The
time courses of C1 (left side of brain) are again more highly correlated with the right
stimuli, and the time courses of C7 (right side of brain) with the left stimuli. We see
a strong negative correlation between the time course of C4 and all stimuli, which is
not present in ICA. The activations of C4 in the RSA/RSG regions for probe positions
-3.16 mm and -3.36 mm, which are associated with the mouse default mode network, do
not correspond to C4 but to C2 in ICA. Thus, IVA seems to extract the default mode

network, which ICA seems to merge with another component.

8.4 Summary

In this chapter, we have proposed the use of ICA and IVA to track the 3D visual
information processing pathway in multi-slice 2D fUS imaging data. We demonstrated
the suitability of these two methods by showing that the identified functio-anatomical
brain networks match the activations in the correlation images for our specific task
dataset. Furthermore, we have shown that the ICA/IVA time courses of the estimated
active brain networks are correlated with the expected stimulus responses of those
stimuli for which the corresponding brain network is present in the correlation images.

In terms of comparison of the methods ICA and IVA, IVA has the clear advantage
of automatically aligning the identified brain networks across slices by making use
of their dependence when estimating them. However, because IVA aims to make the
components dependent across all slices, it tends to miss components that are present
only in a few slices. On the other hand, ICA might split or merge brain networks.
Choosing the proper analysis method involves a trade-off between obtaining a detailed
understanding and minimizing the amount of time spent. We suggest the use of IVA if
one is interested in tracking the active brain networks over slices and finds it acceptable
if brain networks may be missed, and the use of ICA if one is interested to identify as
many brain networks as possible while taking the risk that one brain network might be
split in two components.

As we have demonstrated the successful application of ICA and IVA for multi-slice
fUS task data, the next step can be to analyze resting state data using one of these
two methods, where the gold standard of correlation images cannot be used as there
is no expected stimulus response. Furthermore, instead of IVA-G, IVA-L-SOS [Bhil9]
can be used to estimate the sources, as it also takes higher-order statistics into account
and thus does not only look at correlations like IVA-G does. Lastly, the quality of

the estimated components can be automatically determined by, e.g., analyzing which
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percentage of pixels in a brain region according to the atlas is significant.



9 Conclusion

9.1 Summary

In this thesis, we have addressed two main challenges in the field of JBSS, which are
1) choosing a JBSS method for a specific application, and 2) identifying the relationship
structure among multiple datasets using JBSS. In order to address the first challenge,
we have established the connections between matrix and tensor decomposition methods
for JBSS in Chapter 4 and discussed their source identification conditions in Chapter 5.
In Chapter 4, we have proven that the canonical variables estimated by the all-at-
once analytical mCCA-sumcor method [Nie95] and those estimated by the all-at-once
analytical mCCA-maxvar method [Car68] are scaled versions of each other. Furthermore,
we have shown that the canonical variables estimated by the all-at-once analytical
sumcor method [Nie95] and by the deflationary analytical maxvar method [Ket71] are
closely related, with their main difference being that the canonical variables within a
dataset are constrained to be uncorrelated in maxvar but not in sumcor. Thereafter,
we have shown that the PARAFAC2 and IVA models are intimately related: both
can be formulated as the multiplication of a mixing matrix with a source matrix for
each dataset, with the difference that PARAFAC2 imposes stronger constraints on the
mixing matrices and IVA-G imposes stronger constraints on the source matrices. In
simulations, we have demonstrated that also PARAFAC2 is able to achieve JBSS. In
Chapter 5, we have summarized the source identification conditions of ICA, IVA, CCA,
and mCCA-maxvar. To complete the comparison of the mCCA methods, we have derived
and proven the source identification conditions of mCCA-sumcor, conjectured those
of mCCA-minvar, and discussed theoretical considerations for those of mCCA-genvar
and mCCA-ssqcor. Based on our experiments, which have substantiated the proposed
conditions, genvar seems to have the least restrictive source identification conditions
among all mCCA methods and thus can identify sources that the other methods may
not recover. This is especially notable for a finite number of samples, where we observed
in our experiments that genvar is the most statistically efficient method. According to

our findings from Chapters 4 and 5, we generally recommend mCCA-genvar [Ket71]
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as the preferred mCCA method for JBSS based on our experiments. However, if it
is reasonable to assume that the true SCVs have an effective rank of one, meaning
that the source components of all datasets within each SCV have the same underlying
factor, we recommend the use of maxvar [Ket71], which is computationally much faster,
especially when the dimension or number of datasets is high. Based on our comparison
of IVA-G and PARAFAC2 in simulations, we recommend the use of PARAFAC2 when
the columns of the mixing matrices across different datasets are expected to differ only
up to a scaling, and of IVA-G when different mixing matrices are expected in different
datasets.

We have also proposed a method to identify the relationship structure among multiple
datasets using JBSS methods in Chapter 6, being the first to address this challenge to the
best of our knowledge. The proposed method consists of three steps: 1) estimating latent
sources from observed datasets using IVA-L-SOS, 2) identifying structured SCVs based
on bootstrap-based hypothesis testing, and 3) extracting features from the structured
SCVs, which are then used by hierarchical clustering to identify the relationship structure
among the datasets. We have first verified the superior performance of the second step
of the proposed method against competing techniques and then demonstrated in
simulations that the complete method successfully identifies the relationship structure
among multiple datasets.

After having finished the theoretical discussions of this thesis, we have applied the
JBSS methods to real-world functional imaging data. In Chapter 7, we have shown
that IVA-G and PARAFAC2 can perform data fusion—the joint analysis of multiple
related datasets such that they can interact and inform each other—of multi-task fMRI
data collected from patients with schizophrenia and healthy controls. Both methods
identify potential biomarkers for schizophrenia, i.e., source components corresponding
to brain networks that discriminate between patients with schizophrenia and healthy
controls, and provide information about the relationship among the task datasets in the
SCV covariance matrices. Building on these findings, we have successfully applied the
proposed method from Chapter 6, which identifies a meaningful relationship structure
among the multi-task fMRI datasets, as the method groups together the task datasets
from similar tasks. Furthermore, it again reveals brain networks with significantly
different activations in patients with schizophrenia and healthy controls that might
serve as potential biomarkers for the disorder. After having demonstrated the suitability
of JBSS methods for fMRI data analysis, in Chapter 8, we have studied their application
for deriving 3D functional brain networks from multi-slice fUS data, an alternative
measure to fMRI for inferring brain activity with higher spatio-temporal resolution.

We have shown that ICA and IVA successfully estimate active brain networks that
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are similar to those found by the gold standard correlation images. While ICA might
split or merge brain networks and requires (time-consuming) manual alignment, IVA
might miss brain networks but automatically aligns them by leveraging the information
across slices. Finally, we would like to emphasize that the JBSS methods studied in
this thesis, as well as the proposed method for identifying the relationship structure
among multiple datasets, are not limited to the analysis of functional imaging data but

can also be applied in different fields.

9.2 Future Work

Deriving further connections and theoretical understanding of the JBSS methods would
help to ultimately give a recommendation on which JBSS method should be used for
which type of application. A good start in this direction is, for example, to formally
derive the connection between mCCA-genvar and a deflationary version of IVA-G with
orthogonality constraint, which have similar cost functions [And10], and thereby be
able to also connect the mCCA methods with IVA and PARAFAC2. Building on these
connections, the next steps can be to formally prove the conjecture for mCCA-minvar
and to derive and prove the source identification conditions of mCCA-genvar, mCCA-
ssqcor, and PARAFAC2. Thereafter, the JBSS performance of IVA-G, IVA-L-SOS; all
mCCA methods, and PARAFAC2 can be tested together in more extensive simulations,
e.g., in simulations where the source identification conditions of the different methods
are violated or in simulations inspired by multiple different applications.
Furthermore, the proposed 3-step method for identifying the relationship structure
among multiple datasets can be applied to more interesting datasets to solve further
medical challenges, of which we list a few possibilities in the following. For example,
by identifying the relationship structure among subject datasets of, e.g., patients with
schizophrenia, bipolar disorder, and their subtypes, the proposed method could be
used for subgroup identification in precision medicine. Applying the proposed method
to ANS measures from several time instances before and after epileptic seizures, and
thereby identifying the changes in the relationship structure among these measures
over time, might allow the development of novel techniques for seizure detection or
prediction. Also, directly applying the suitable JBSS methods to analyze resting-state
fMRI or fUS data is of great importance to obtain information about the functional
organization of the brain [Urb15; PR21], which cannot be achieved with correlation

images, as there exists no external stimulus.

Lastly, but just as important, is a comparison between the matrix and tensor
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decomposition-based JBSS methods and deep learning methods. Both of them learn
a representation from observed data in a data-driven manner, depending on their as-
sumptions. A deep neural network trained for a classification task, e.g., the detection of
schizophrenia, learns the representation that leads to the best classification accuracy and
therefore outperforms matrix and tensor decompositions, which learn representations
that are easier to interpret (because of their connection with the physical model [Ada22])
but typically do not achieve as high classification accuracies as the black-box models.
With the advancement of eXplainable Artificial Intelligence (XAI) methods, strategies
have been developed to explain the predictions or classifications of neural networks, e.g.,
SHapley Additive exPlanations (SHAP) [Lunl7]. However, XAI methods in the end just
perform a post-processing to try to understand what the network learns, but do not
make the networks learn something interpretable in the first place. In contrast to this,
matrix and tensor decomposition-based JBSS methods find interpretable components by
their design (if the JBSS model matches the underlying physics of the data [Ada22] and
the source identification conditions of a specific JBSS method are satisfied), which is of
advantage in fields like medicine where interpretability is of importance. A compromise
for finding interpretable representations but still achieving high classification accuracies
can be found in deep-learning extensions of matrix and tensor decomposition methods,
e.g., Deep CCA (DCCA) [And13b] or Deep Canonically Correlated AutoEncoders
(DCCAE) [Wanl5]. A strategy to explain DCCA, eXplanations for DCCA (XDCCA), is
proposed in [Kus25]. A promising future direction in JBSS is to extend this strategy to
deep-learning based extensions of mCCA like DGCCA [Ben17], which is an extension
of maxvar [Car68]. Furthermore, we see a high potential in developing a deep-learning
extension of genvar, as it may outperform DGCCA in JBSS of real-world data where
source components in an SCV are assumed to be nonlinearly dependent and generated by
more than one underlying factor. However, deep-learning based CCA methods typically
come at the cost that it is not clear under which conditions the true underlying sources
can be identified [Lyu20]. Identification conditions for a nonlinear multiview analysis
method similar to DCCAE are derived and proven in [Lyu20], but they assume that
the non-linearity is applied to each dimension separately, which usually is not the case
in real-world applications. Therefore, to combine the advantages of both approaches,
matrix and tensor decompositions can be explored to find identifiable and interpretable
sources, e.g., biomarkers, and then, the deep learning methods can be used to perform
downstream tasks such as classification or regression based on these biomarkers, as
done in, e.g., [Vie21] and [Vie23; Has25].
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