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Abstract

This dissertation contributes to the field of multiobjective optimization, with a focus on un-
constrained problems formulated in a general Hilbert space setting under varying regularity
assumptions on the objective functions.

For the class of multiobjective optimization problems with locally Lipschitz continuous objective
functions, we define a multiobjective ε-subdifferential, which we analyze for the first time in the
context of general Hilbert spaces. Building on these theoretical investigations, we present a
descent method in which, at each iteration, a descent direction is determined via a numerical
approximation of the multiobjective ε-subdifferential. To the best of our knowledge, this is the
first method for infinite-dimensional, nonsmooth multiobjective optimization that does not re-
quire either a prior discretization of the infinite-dimensional Hilbert space or a scalarization of
the objective functions.

In the setting of convex, continuously differentiable objective functions with Lipschitz contin-
uous gradients, we introduce a family of inertial gradient dynamical systems that generalize
well-known continuous-time systems from scalar optimization. This work affirms the feasibility
of extending such dynamics to the multiobjective setting. We present three novel systems: one
with constant damping, one with asymptotic vanishing damping, and one combining vanishing
damping with time-dependent Tikhonov regularization. For each, we establish improved con-
vergence results that align with the best-known rates in the scalar case. Notably, our analysis
employs merit functions, which are commonly used in multiobjective optimization, for the first
time in the study of continuous-time systems.

Building on the investigation of the novel gradient dynamical systems, we develop an accelerated
gradient method for multiobjective optimization via discretization of the multiobjective gradient
system with asymptotic vanishing damping. The proposed method retains the favorable con-
vergence properties of the continuous system while achieving faster convergence than standard
approaches, such as the classical multiobjective steepest descent method. In the scalar case, our
algorithm recovers Nesterov’s accelerated gradient method, and we observe convergence rates
consistent with known results. These findings highlight the potential of gradient dynamical
systems to derive efficient gradient methods for multiobjective optimization.





Zusammenfassung

Diese Dissertation enthält Beiträge zum Bereich der Mehrzieloptimierung mit einem Fokus auf
unbeschränkten Problemen, die auf einem allgemeinen Hilbertraum definiert sind, unter ver-
schiedenen Regularitätsannahmen an die Zielfunktionen.

Für die Klasse der Mehrzieloptimierungsprobleme mit lokal Lipschitz-stetigen Zielfunktionen
definieren wir zunächst ein multikriterielles ε-Subdifferential, das wir erstmals im Kontext allge-
meiner Hilberträume analysieren. Aufbauend auf diesen theoretischen Untersuchungen präsen-
tieren wir ein Abstiegsverfahren, bei welchem in jeder Iteration eine Abstiegsrichtung mittels
einer numerischen Approximation des multikriteriellen ε-Subdifferentials bestimmt wird. Nach
unserem Kenntnisstand handelt es sich dabei um das erste Verfahren für unendlichdimensionale,
nichtglatte Mehrzieloptimierungsprobleme, das sowohl ohne vorherige Diskretisierung des un-
endlichdimensionalen Hilbertraums als auch ohne Skalarisierung der Zielfunktionen auskommt.

Im Kontext konvexer, stetig differenzierbarer Zielfunktionen mit Lipschitz-stetigen Gradien-
ten, führen wir eine Familie von dynamischen Gradientensystemen mit Trägheitsterm ein, die
bekannte kontinuierliche Systeme aus der skalaren Optimierung verallgemeinern. Diese Arbeit
zeigt, dass solche Systeme in den multikriteriellen Fall übertragen werden können. Wir stellen
drei neue Systeme vor: eines mit konstanter Dämpfung, eines mit asymptotisch abnehmender
Dämpfung und eines, das zusätzlich eine zeitabhängige Tikhonov-Regularisierung beinhaltet.
Für jedes dieser Systeme zeigen wir verbesserte Konvergenzeigenschaften, die mit den besten
bekannten Raten im skalaren Fall übereinstimmen. Bemerkenswert ist, dass in unserer Analyse
erstmals sogenannte Meritfunktionen, die in der Mehrzieloptimierung häufig verwendet werden,
im Kontext kontinuierlicher dynamischer Systeme eingesetzt werden.

Aufbauend auf den Untersuchungen der neuen dynamischen Gradientensysteme, entwickeln wir
ein beschleunigtes Gradientenverfahren zur Mehrzieloptimierung, das auf einer Diskretisierung
des multikriteriellen Gradientensystems mit asymptotisch abnehmender Dämpfung beruht. Das
hergeleitete Verfahren bewahrt die günstigen Konvergenzeigenschaften des kontinuierlichen Sys-
tems und erreicht gleichzeitig eine schnellere Konvergenz als klassische Ansätze wie das Verfahren
des steilsten Abstiegs zur Mehrzieloptimierung. Im skalaren Fall entspricht unser Verfahren
dem bekannten beschleunigten Gradientenverfahren von Nesterov, wobei wir übereinstimmende
Konvergenzraten nachweisen. Diese Ergebnisse unterstreichen das Potenzial gradientenbasierter
dynamischer Systeme zur Herleitung effizienter Gradientenverfahren zur Mehrzieloptimierung.
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Chapter 1

Introduction

In real-world problems, both in everyday life and technical applications, there is often more than
one objective to consider. For example, when purchasing a residential home, you typically want
it to have the right size and perhaps a large garden. It should be located in a beautiful city, be
well situated, ideally close to your workplace as well as near family and friends. Additionally, the
house should not be too old, should have good energy efficiency, and be as affordable as possible.
In this example, it is clear that no house will perfectly satisfy all these objectives simultaneously.

Similar challenges arise in technical domains. In optimal transport, for example, a goal is to al-
locate resources from suppliers to demanders in a manner that is not only fast and cost-effective,
but also robust to disruptions and sustainable in the long term. In machine learning applications,
a key objective is to design intelligent agents that solve specific tasks with high performance,
while also being data-efficient, energy-efficient, resource-efficient, environmentally sustainable,
robust, and secure. The presence of multiple often conflicting objectives necessitates a careful
balancing act to achieve the best possible overall outcome by means of a suitable compromise.

These introductory examples clearly demonstrate that in the presence of multiple objectives,
identifying a single optimal solution is inherently difficult. This highlights the importance of
investigating methods that can yield effective solutions nonetheless. Many problems in techni-
cal domains can be modeled mathematically and formulated as optimization problems. In such
cases, objectives are expressed as functions to be minimized, such as minimizing total cost or
processing time. This reformulation allows the application of algorithms specifically developed
for function minimization. Classic optimization theory primarily focuses on optimizing a single
objective function, possibly subject to constraints defined by additional functions or geometric
conditions that restrict the feasible solution space. As the earlier examples illustrate, this ap-
proach is limited and often inadequate for problems that naturally involve multiple, conflicting
objectives. Multiobjective optimization offers a structured framework to overcome these limita-
tions.

In multiobjective optimization, we seek to simultaneously minimize multiple objective functions.
As the introductory example illustrates, these objectives are often mutually conflicting. This
shifts the focus from identifying a single optimal solution to determining a set of trade-off so-
lutions, each representing a different balance among the competing objectives. For instance,
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Chapter 1. Introduction

returning to the introductory problem of purchasing a residental house, consider two houses,
one being less expensive, the other more energy efficient. There is no a priori way to deter-
mine which is superior. The choice depends on the preferences of a decision-maker. However, a
rational decision-maker would not choose a house that is both more expensive and less energy
efficient. This concept of preference is formally captured by the notion of Pareto optimality,
attributed to Pareto [189]. In multiobjective settings, a solution is considered Pareto optimal
if no other solution exists that is at least as good in all objectives and strictly better in at least
one. This is a fundamental concept used to model decision-making and rational choice behavior.

Optimization, also known as mathematical programming or operations research, is one of the
most prominent branches in applied mathematics and is widely used across an extensive variety
of fields to solve an ever-growing number of problems. As a result, there is a non-ending thrive to
develop stronger optimization methods, being straightforward to implement, fast and resource
efficient. Unfortunately, we cannot apply optimization theory to solve all real-world problems,
but only those for which we can construct a reasonable mathematical model that fits within the
optimization framework. In such cases, we aim to minimize a mathematical objective function,
possibly subject to additional constraints, which can be represented by constraint functions or
defined through geometric conditions. In this thesis, we use mathematical optimization tech-
niques to solve multiobjective optimization problems.

As described above, mathematical structure is essential to solve a problem using optimization
techniques. In this thesis, we work in the context of Hilbert spaces and consider objective func-
tions under different regularity assumptions. Choosing Hilbert spaces enables the inclusion of a
wide range of classical problems, typically stated in Euclidean spaces, as well as many applica-
tions from optimal control, inverse problems and PDE-constrained optimization. Additionally,
we need to impose some structure on the objective functions. Without any structure, an opti-
mization problem is generally unsolvable. Imposing structure on the problem requires a trade-
off. While assuming more structure allows for the design of efficient optimization techniques,
it simultaneously restricts applicability to problems that satisfy the imposed assumptions. In
this thesis we consider the two following problem classes. We solve infinite-dimensional, un-
constrained multiobjective optimization, with objective functions fulfilling one of the following
assumptions:

• The objective functions are nonconvex and locally Lipschitz continuous;

• The objective functions are convex and continuously differentiable with Lipschitz contin-
uous gradients.

These two problem classes differ significantly, and their analysis highlights the previously dis-
cussed trade-off between generality and structure. The first class is highly general. In continuous
optimization, it is rarely possible to further relax this assumption on the objective functions.
Conversely, the second class is more restrictive, yet it encompasses many important applications.
Tackling simpler problems first is crucial, as it enables a step-by-step increase in complexity while
refining and enhancing the methods. This progression also illustrates the benefits of additional
structure. The method we propose for the first class guarantees convergence to points satisfy-
ing necessary optimality conditions. In contrast, the methods developed for the second class
exhibit stronger theoretical properties, including improved convergence rates and quantitative

2



complexity bounds, which provide insight into how computational effort scales with the desired
solution accuracy.

Following this general introduction on multiobjective optimization we want to explain the title
of this thesis to the reader. In the following, we explain what we understand under first-order
methods and gradient dynamical systems for multiobjective optimization, respectively.

First-order methods for multiobjective optimization

The solution methods investigated in this thesis are iterative methods, i.e., starting from an
initial point these methods generate a sequence of iterates that converges to an optimal solution
or to a point that satisfies a necessary optimality condition. An optimization method is called
a first-order method, if it relies only on problem information in terms of objective function and
gradient evaluations. Hence, the method has only access to local information of the problem.
When the functions under consideration are nonsmooth and classical gradients do not exist, we
allow appropriate generalizations of the gradients, typically in the form of subgradients. The
methods we study, update the current iterate by computing first an appropriate search direction
and then a suitable step length.

Gradient dynamical systems for multiobjective optimization

Gradient dynamical systems, related to optimization problems, are systems that depend on the
gradient information of the objective function. When appropriately designed, these systems
exhibit favorable properties in the context of optimization and are closely connected to first-
order methods: the continuous limit of a first-order method often corresponds to a gradient
dynamical system, and discretizations of gradient dynamical systems yield first-order methods.
These connections often lead to shared asymptotic behavior between the continuous and discrete
formulations. The analysis of continuous systems is often more tractable, as differentiation and
integration can be applied directly, whereas discrete systems typically require more involved
arguments. Therefore, it can be beneficial to begin by studying the gradient dynamical system
and then transfer the obtained results to the analysis of the corresponding discrete method.

The results of this thesis are presented in two independent parts. The first part is formed by
Chapter 3 which deals with nonconvex locally Lipschitz continuous multiobjective optimization
problems. The second parts encompasses Chapters 4 and 5 and is concerned with convex and
smooth multiobjective optimization. Chapter 4 provides a discussion of gradient dynamical
systems, and Chapter 5 introduces a first-order method for multiobjective optimization. In the
following, we present an overview of the development of first-order methods and corresponding
gradient dynamical systems in multiobjective optimization, starting with the case of scalar op-
timization.

The simplest gradient dynamical system associated with an optimization problem with a scalar
objective function is the steepest descent dynamical system or (sub)gradient flow, which was
studied by Bruck [56] in the Hilbert space setting. Using techniques from monotone opera-
tor theory it can be shown that trajectories of the steepest descent dynamical system converge
weakly to solutions of the optimization problem. In the smooth case, an explicit discretization
of this system leads to the steepest descent method which dates back to Cauchy [62] and is
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analyzed more generally in the context of optimization by Polyak [199]. In the nonsmooth
case, the same discretization yields the subgradient method which is attributed to Shor [198].
An implicit discretization of the steepest descent dynamical system gives rise to proximal point
methods. The proximal point method was introduced by Martinet [165] and later analyzed
by Rockafellar [203] and Güler [119]. Combinations of gradient and proximal point meth-
ods lead to proximal gradient methods. These methods belong to the broader class of splitting
methods described by Lions & Mercier [152]. They can be obtained from semi-implicit dis-
cretizations of the subgradient flow for structured optimization problems.

The described methods have the advantage that they are highly general and can readily be
applied to a large class of optimization problems. They are backed by a mature theory, have
convergence guarantees and there exist complexity bounds that describe the numerical effort
required to obtain an approximate solution. On the downside, the described methods can suffer
from slow convergence, especially for ill-conditioned problems. For example, when we consider
the steepest descent method for smooth convex optimization problems with a constant step
size, it is known that the function values converge to the optimal function value at a sublinear
rate in the general case. For smooth and strongly convex problems the iterates converge to the
optimal solution with a linear rate that depends on the condition number of the problem. In
the mathematical optimization literature, numerous methods have been proposed to improve
upon the plain steepest descent method. The most prominent adaptions are linear and non-
linear conjugate gradient methods [99, 130, 195], gradient methods using more sophisticated
step size rules, like exact line search [62], backtracking line search and Armijo conditions [8],
Wolfe conditions [183, 236], Barzilai-Borwein step size rules [30] or trust region approaches [77,
175]. An alternative class of optimization methods are higher-order methods like Newton or
quasi-Newton methods [55, 100, 112, 184, 211]. The initial ideas of the listed approaches are
contained in most text books on nonlinear optimization [38, 101, 155, 178, 180, 184, 197].

In this thesis, we follow a different strategy to accelerate the convergence of first-order methods.
A general way to speed up the convergence of an iterative scheme is proposed by Polyak in [196].
This approach involves introducing a momentum term that utilizes information from previous
iterates to accelerate the convergence. Simultaneously, in [196] an analogous gradient dynamical
system with an inertial term is proposed. The inertial gradient dynamical system introduced
in this work is further analyzed in the context of optimization by different authors. In [19],
Attouch, Goudou & Redont derive the intertial gradient system by modeling a ball rolling
down the graph of a function and therefore denote it by the heavy ball with friction dynamical
system. A more efficient way to accelerate the steepest descent method is proposed byNesterov
[182]. In this paper a method with a non-constant momentum parameter is proposed to derive
improved convergence rates for solving smooth convex optimization problems. These ideas where
adapted to accelerate the proximal point method by Güler [118] and to accelerate proximal
gradient methods by Beck & Teboulle [33]. In [218], Su, Boyd & Candès derive a gradi-
ent dynamical system with asymptotic vanishing damping which is the continuous counterpart
to the accelerated gradient method, and which shares the improved asymptotical convergence
properties. The strong connection between gradient dynamical system and optimization meth-
ods sparked active research on accelerated gradient methods, proximal point methods and more
general splitting schemes. By now, there is a rapidly growing literature investigating these ideas
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in the context of optimization and related applications, like constrained optimization by means
of primal-dual dynamical systems [48, 125, 124, 241], min-max problems [64, 121, 46], mono-
tone inclusions [4, 5, 238, 60, 22] and variation inequalities [209, 45]. Additionally, researchers
strive to derive dynamical systems and optimization methods with better properties by using
higher order information in form of Hessian-driven damping to obtain Newton-like methods
[6, 25], Tikhonov regularization to obtain better convergence properties in infinite-dimensional
spaces [134, 144, 145, 146, 147] and time-scaling to enforce even faster convergence rates [20, 47].

In multiobjective optimization, the connection between dynamical systems and optimization
algorithms remains significantly underexploited. Although, foundational contributions on gra-
dient dynamical systems in the multiobjective setting exist, the field is still developing. One of
the pioneering works in this area is due to Smale [214], who employed smooth continuous-time
trajectories exhibiting a common descent property with respect to all objective functions to
characterize Pareto critical points. This seminal research was motivated by models in full ex-
change economies and grounded in the mathematical frameworks of global analysis and Morse
theory. The first generalization of the steepest descent dynamical system for multiobjective
optimization was proposed by Henry [127] in the context of economics and investigated by
Cornet [78, 79] in resource allocation problems. In the context of multiobjective optimization,
the multiobjective steepest descent system is analyzed by Schäffler, Schultz & Weinzierl
[207] and by Miglerina [170], where it is shown that cluster points of the trajectory satisfy
a necessary optimality condition. In the context of convex, infinite-dimensional problems the
multiobjective steepest descent dynamical system is further examined by Attouch & Goudou
[18]. Generalization to the nonsmooth case were obtained by Attouch, Garrigos & Goudou
[17]. The first inertial multiobjective gradient system in the spirit of the heavy ball with friction
dynamical system is proposed by Attouch & Garrigos [16] which is also part of the PhD the-
sis by Garrigos [105]. Using a constant damping parameter they propose a system for which
convergence of trajectories to Pareto optimal points can be shown. However, it is not clear if
this system improves the multiobjective steepest descent system or if a first-order method with
theoretical convergence guarantees can be derived from this system. In particular, Attouch &
Garrigos [16] identified the challenge of incorporating time-dependent damping into inertial
multiobjective gradient systems and deriving accelerated multiobjective gradient methods from
such continuous-time dynamics.

The multiobjective steepest descent method was initially introduced by Mukai [177] and inde-
pendently by Fliege & Svaiter [104]. They define a multiobjective steepest descent direction
incorporating gradient information of all objective functions, simultaneously. Analogous to de-
velopments in scalar optimization, numerous adaptations of the multiobjective steepest descent
method have been proposed, aiming to enhance its algorithmic performance and convergence
properties. The first attempt to incorporate acceleration into the multiobjective steepest de-
scent framework, inspired by Nesterov’s accelerated gradient method [182], was made by El
Moudden & El Moutasim [94]. Their approach demonstrates improved convergence rates,
although only under restrictive assumptions. Notably, their proof primarily consists of applying
Nesterov’s original accelerated gradient method to a weighted sum scalarization of the multi-
objective problem, rather than directly addressing the multicriterial nature of the problem. A
significant advancement was the introduction of the first proximal gradient method for multi-
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Chapter 1. Introduction

objective optimization that does not rely on an a priori scalarization of the objectives. This
method was proposed by Tanabe, Fukuda & Yamashita [225] and further analyzed in their
subsequent works [223]. This method is not motivated from a gradient dynamical system but
derived from the concept of merit functions. In multiobjective optimization merit functions are
functions that use objective functions values to characterize Pareto optimality. In general, for a
problem a merit function is a function that is positive everywhere and vanishes only at a solu-
tion. In multiobjective optimization, merit functions where first introduced for convex problems
with linear constraints by Chen [66] and later investigated in more general settings [89, 153,
220]. Using this concept Fukuda, Yamashita & Tanabe propose a method for multiobjective
optimization which generalizes the accelerated gradient method from scalar optimization [220,
221, 222].

In this thesis, we address the gap between inertial gradient dynamical systems and accelerated
first-order methods in multiobjective optimization. On the one hand we positively answer the
question proposed in [16] whether it is possible to define fast gradient dynamical systems for
multiobjective optimization, by presenting multiple novel gradient dynamical systems. On the
other hand, we show that our approach is suitable to derive accelerated gradient methods for
multiobjective optimization and we point out the relation to recently discovered fast gradient
methods. The analysis of the proposed systems and methods uses the concept of merit functions
which was not applied for gradient dynamical systems so far. Furthermore, we show that our
approach is strong enough to generalize to more involved gradient dynamical systems. We are
convinced that this approach constitutes a foundational step toward designing novel, efficient
algorithms capable of addressing multiobjective optimization problems with increasingly intri-
cate structures. We conclude the introduction with the outline of this thesis.

In Chapter 2, we present the theoretical background of this thesis. We introduce the most im-
portant concepts from functional analysis, such as Hilbert spaces, essential concepts from convex
analysis, various notions of the derivative and a subdifferential which generalizes the derivative
to nonsmooth functions. Furthermore, we provide an overview on differential equations and
inclusions, summarizing key existence results as well as important differential and integral in-
equalities. The final part of Chapter 2 is reserved for the introduction of the multiobjective
optimization problem. We formally define Pareto optimal points and describe necessary opti-
mality conditions. Additionally, we introduce a merit function which is an important measure
for optimality in multiobjective optimization. Finally, we discuss the multiobjective steepest
descent method which serves as a starting point for the more elaborate first-order methods and
gradient dynamical systems examined in the following chapters.

Chapter 3 is dedicated to a descent method for multiobjective optimization with nonconvex
locally Lipschitz continuous objective functions. This method is based on a gradient sampling
scheme and is the first to address nonsmooth, infinite-dimensional multiobjective optimization
problems, without discretizing the infinite dimensional space or scalarizing the multiple objec-
tives beforehand. Before defining our method, we introduce a generalization of the Goldstein
ε-subdifferential to multiobjective optimization problems. We investigate the main theoretical
properties of the multiobjective ε-subdifferential, which are important for deriving necessary
optimality conditions and for proving convergence of the proposed algorithm. Prior to for-
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mulating the descent method, we describe how to numerically approximate the multiobjective
ε-subdifferential and show that we can obtain a suitable descent direction from this approxima-
tion. Subsequently, we use this direction to define a descent method using a backtracking line
search. To validate the applicability of the proposed method, we apply it to a multiobjective
optimal control problem and demonstrate its capability to efficiently compute Pareto optimal
solutions.

In Chapter 4, we present gradient dynamical systems associated with smooth convex multiob-
jective optimization problems. An introductory section motivates continuous-time approaches
in scalar optimization and outlines the general approach of the analysis. The initial treatment of
scalar optimization problems allows to highlight difficulties arising when shifting to the multiob-
jective setting. Then, we review existing gradient systems for multiobjective optimization. An
extensive discussion of the multiobjective steepest descent dynamical system serves as a start-
ing point for the more advanced systems presented later. Relevant results from the literature
are also thoroughly presented. In the main part of this chapter, we present a total of three
dynamical gradient systems for multiobjective optimization. Before introducing these systems,
an existence result for a generalized differential inclusion is stated, which will be used to prove
existence of solutions for the novel systems. In Section 4.4, we introduce an inertial multiobjec-
tive gradient system and show that trajectories of this system converge weakly to weakly Pareto
optimal points. This system is improved in Section 4.5 by including asymptotically vanishing
damping. It is proven that this yields fast convergence rates for the function values while trajec-
tories achieve weak convergence to weakly Pareto optimal points. Numerical experiments verify
the theoretical convergence rates. Further improvements are made in Section 4.6 by including
vanishing Tikhonov regularization. First, we generalize Tikhonov regularization for multiobjec-
tive optimization. This extension yields strong convergence to Pareto optimal points satisfying
a minimum norm property. Finally, we show that strong convergence is indeed obtained and
verify the theoretical findings by numerical experiments.

An accelerated gradient method for convex smooth multiobjective optimization is developed
in Chapter 5. To provide a solid foundation, we begin with a concise overview of Nesterov’s
accelerated gradient method for scalar optimization. Building on this, our proposed method is
rigorously derived through a discretization of the multiobjective gradient system with asymp-
totically vanishing damping, introduced in Chapter 4. Moreover, we discuss its relation to other
existing first-order methods in multiobjective optimization. The main theoretical contributions
are presented in the section dedicated to the asymptotic analysis of the algorithm. Here, we
establish fast convergence rates for the merit function values and prove weak convergence of the
generated iterates to weakly Pareto optimal points. Notably, our convergence guarantees align
with the optimal rates known from scalar optimization theory. To complement the theoretical
developments, the chapter concludes with multiple numerical experiments. These include both
finite-dimensional problems and an infinite-dimensional problem in a Hilbert space framework,
illustrating the broad applicability of our approach. Overall, our findings demonstrate that fast
multiobjective optimization methods can be systematically derived from gradient dynamical
systems, validating the foundational perspective introduced earlier.
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Chapter 6 presents the conclusion of this thesis by summarizing the main findings, discussing
their implications, and highlighting open questions for future research.

Previous publications

The content of this thesis is based on the following publications. References to these publications
are provided at the beginning of each chapter and section where the corresponding results are
presented.
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554 (2) (2025). doi: 10.1016/j.jmaa.2025.129940.

[215] Sonntag, K.,Gebken, B.,Müller, G., Peitz, S., and Volkwein, S. A descent method
for nonsmooth multiobjective optimization in Hilbert spaces. In: Journal of Optimization
Theory and Applications 203 (1) (2024), pp. 455–487. doi: 10.1007/s10957-024-02520-
4.

[216] Sonntag, K. and Peitz, S. Fast convergence of inertial multiobjective gradient-like
systems with asymptotic vanishing damping. In: SIAM Journal on Optimization 34 (3)
(2024), pp. 2259–2286. doi: 10.1137/23M1588512.

[217] Sonntag, K. and Peitz, S. Fast Multiobjective Gradient Methods with Nesterov Ac-
celeration via Inertial Gradient-Like Systems. In: Journal of Optimization Theory and
Applications 201 (2024), pp. 539–582. doi: 10.1007/s10957-024-02389-3.
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Chapter 2

Theoretical background

In this chapter, we present the theoretical background that forms the foundation of this thesis.
In each section, we provide relevant literature to put our analysis into context, and we cite the
most significant results that will be used later.

In Section 2.1, we introduce various topics related to infinite-dimensional analysis. Since this is
a broad field, we do not attempt to provide a comprehensive introduction to all underlying con-
cepts. Instead, we establish some essential notation and clarify the most important notions to
our work. We introduce general Hilbert spaces and their topological dual spaces. Additionally,
we introduce important concepts from convex analysis. We examine differentiability of functions
defined on a Hilbert space and discuss extensions of the derivative for nonsmooth functions.

Section 2.2 is dedicated to differential equations and inclusions. We review the most important
existence results for differential equations. Furthermore, we introduce key elements of set-valued
analysis and state existence results for differential inclusions. The final part of this section cov-
ers essential differential and integral inequalities that will be applied in the analysis of certain
dynamical systems.

In Section 2.3, we introduce the multiobjective optimization problem which is central to this
thesis. We provide a rigorous definition of Pareto optimal points for a general multiobjective
optimization problem and discuss necessary optimality conditions for both smooth and non-
smooth objective functions. In preparation for the asymptotic analysis of gradient dynamics
and first-order methods, we introduce the concept of merit functions, which are defined using a
suitable scalarization of the objective functions to quantify optimality. We conclude this section
with the introduction of the multiobjective steepest descent method, which we later improve in
subsequent parts of this thesis.

2.1 Functional analysis

2.1.1 Hilbert spaces

In this subsection, we introduce the basic concepts of Hilbert spaces, focusing on the notation
for inner products, norms and the topological dual space. Additionally, we present two vari-
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Chapter 2. Theoretical background

ants of Opial’s Lemma which is an important tool for proving weak convergence of sequences
in infinite-dimensional spaces. We do not present all results from Hilbert space theory used
throughout this thesis. For a comprehensive treatment of the theory, we refer to [50, 206, 239].

In this thesis, H is a real separable Hilbert space with inner product ⟨·, ·⟩ and induced norm
∥·∥ :=

√
⟨·, ·⟩.

H is equipped with the strong topology induced by the norm ∥·∥. The topological dual of H
is denoted by H∗ := {x∗ : H → R : x∗ is linear and continuous }. The dual space H∗ together

with the dual norm ∥x∗∥∗ := supx∈H\{0}
|x∗(x)|
∥x∥ , for x∗ ∈ H∗, forms a Banach space. There exists

a natural embedding of H into H∗ given by R : H → H∗, x 7→ ⟨x, ·⟩, where R(x)(y) := ⟨x, y⟩ for
all x, y ∈ H. This embedding is linear and bounded as a straightforward computation shows,
i.e., ∥R∥ := supx∈H\{0}

∥Rx∥∗
∥x∥ ≤ 1. The relation between H and H∗ is actually stronger. This

observation is described by the Riesz–Fréchet representation Theorem which we recite in the
following [32, Fact 2.24].

Theorem 2.1.1. Let x∗ ∈ H∗. Then there exists a unique vector x ∈ H such that for all y ∈ H
it holds that x∗(y) = ⟨x, y⟩. Moreover, ∥x∗∥∗ = ∥x∥.

This result has strong implications. From Theorem 2.1.1 it follows that R : H → H∗ is not just
an embedding but in fact an isometric isomorphism, which we call the Riesz operator. Using
the inverse R−1 of the Riesz operator, we can define the following inner product on H∗. Define
⟨·, ·⟩∗ : H∗ ×H∗ → R, (x∗, y∗) 7→ ⟨x∗, y∗⟩∗ := ⟨R−1(x∗),R−1(y∗)⟩. For all x∗ ∈ H∗, it holds that√

⟨x∗, x∗⟩∗ =
√
⟨R−1(x∗),R−1(x∗)⟩ = ∥R−1(x∗)∥ = ∥x∗∥∗, and in fact, H∗ together with the

inner product ⟨·, ·⟩∗ forms a Hilbert space with induced norm ∥·∥∗.

Because of the strong relation between a Hilbert space H and its topological dual H∗, one of-
ten identifies H∗ with H without making a distinction between these spaces in notation. In this
thesis, we choose to differentiate between H and H∗ and make use of R in Chapter 3. For the im-
plementation of the algorithm, we develop in this chapter, it is beneficial to distinguish between
H and H∗. In the remaining parts of the thesis, we do not work with the dual space H∗ explicitly.

In the following, we introduce the notion of strong and weak convergence in H. Let (xk)k≥0 ⊂ H
be a sequence and let x∞ ∈ H. If limk→+∞∥xk − x∞∥ = 0, we say that xk converges (strongly)
to x∞ and we write xk → x∗ as k → +∞. Similarly for a function x : [t0,+∞) → H, t 7→ x(t)
and x∞ ∈ H, if limt→+∞∥x(t) − x∞∥ we say x(·) converges (strongly) to x∞ and denote
this by x(t) → x∞ as t → +∞. If a sequence (xk)k≥0 and an element x∞ ∈ H satisfy
limk→+∞⟨xk − x∞, y⟩ → 0, for all y ∈ H, or equivalently limk→+∞ x∗(xk − x∞) = 0, for all
x∗ ∈ H∗, we say that xk converges weakly to x∞ and write xk ⇀ x∞ as k → +∞. Similarly,
for a function x : [t0,+∞) → H, t 7→ x(t) and x∞ ∈ H, with limt→+∞⟨x(t) − x∞, y⟩ = 0, for
all y ∈ H, or equivalently limt→+∞ x∗(x(t) − x∞) = 0, for all x∗ ∈ H∗, we say that x(·) con-
verges weakly to x∞ and write x(t)⇀ x∞ as t→ +∞. Additionally, at certain points we work
in the weak∗-topology on H∗. For a sequence

(
ξk
)
k≥0

⊂ H∗ and an element ξ∞, that satisfy

limk→+∞(ξk − ξ∞)(x) = 0 for all x ∈ H, we say that ξk weak∗-converges to ξ∞ and we write
ξk ⇀∗ ξ∞, as k → +∞.
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2.1. Functional analysis

In this context we fix the following notation.

Definition 2.1.2. We define the interior and closure of subsets of a Hilbert space and the open
and closed ball.

i) Let A ⊂ H and B ⊂ H∗.

a) The interior of A is defined as int(A) :=
⋃

U⊂A,
U open

U .

b) The closure of A is defined as A :=
⋂

A⊂K⊂H,
K closed

K.

c) The weak∗-closure of B is defined as B
∗
:=

⋂
B⊂K⊂H∗,

K weak∗-closed

K.

ii) Let x ∈ H and ε > 0.

a) The open ball centered at x with radius ε is Bε(x) := {y ∈ H : ∥x− y∥ < ε}.
b) As a consequence the closure of the open ball centered at x with radius ε is Bε(x) =

{y ∈ H : ∥x− y∥ ≤ ε}.

In the following, we recall the Banach-Alaoglu Theorem [206, Section 3.15] and the Eberlein-
Šmulian Theorem [234] which are fundamental results in functional analysis and which are used
implicitly in various parts of this thesis. While these theorems hold more generally in Banach
spaces, we stay in the Hilbert space setting for the sake of consistency throughout this thesis.

Theorem 2.1.3. The set B := {ξ ∈ H∗ : ∥ξ∥∗ ≤ 1} is weak∗-compact.

Theorem 2.1.4. Let A ⊂ H. Then, the following are equivalent:

i) Each sequence in A has a subsequence that is weakly convergent in H;

ii) Each sequence of elements in A has a weak cluster point in H;

iii) The weak closure of A is weakly compact.

In multiple parts of this thesis, to prove weak convergence of a sequence or a function, we use
Opial’s Lemma. We recite a discrete and a continuous version of this lemma here. The discrete
version of Opial’s Lemma can be found in [186].

Lemma 2.1.5. Let S ⊆ H be a nonempty set and let (xk)k≥0 ⊂ H be a sequence satisfying the
following conditions:

i) For every z ∈ S, limk→+∞∥xk − z∥ exists;

ii) Every weak sequential cluster point of (xk)k≥0 belongs to S.

Then, xk converges weakly to an element in S, i.e., xk ⇀ x∞ ∈ S as k → +∞.

For the continuous version of Opial’s Lemma we refer to [13, Lemma 5.7].
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Lemma 2.1.6. Let S ⊆ H be a nonempty set and let x : [t0,+∞) → H be a function satisfying
the following conditions:

i) For every z ∈ S, limt→+∞∥x(t)− z∥ exists;

ii) Every weak sequential cluster point of x(·) belongs to S.

Then, x(·) converges weakly to an element in S, i.e., x(t)⇀ x∞ ∈ S as t→ +∞.

2.1.2 Differentiability

In this subsection, we introduce different notions of the derivative of a function f : H → R. We
define the directional derivative, the Gâteaux derivative, the Fréchet derivative and the gradient.
Furthermore, we present two lemmas to locally bound the function f using the gradient. The
content of this subsection is contained in any book featuring analysis in normed spaces, see e.g.,
[75, 233].

Definition 2.1.7. Let f : H → R, x 7→ f(x) be a function and let x, v ∈ H. We say that f is
directionally differentiable at x in direction v, if the limit

f ′(x; v) := lim
t↘0

f(x+ tv)− f(x)

t
,

exists. The limit f ′(x, v) is called the directional derivative of f at x in direction v.

Let x ∈ H. If there exists a linear and bounded operator Df(x) : H → R such that for all v ∈ H
it holds that

f ′(x, v) = Df(x)(v),

we say that f is Gâteaux differentiable in x and we call Df(x) the Gâteaux derivative. Moreover,
f is called Gâteaux differentiable if it is Gâteaux differentiable in every x ∈ H.

Definition 2.1.8. Let f : H → R, x 7→ f(x) be Gâteaux differentiable in x ∈ H. Then, by
Theorem 2.1.1 there exists a unique vector ∇f(x) = R−1 (Df(x)) ∈ H with

f ′(x; v) = Df(x)(v) = ⟨∇f(x), v⟩ for all v ∈ H.

We call ∇f(x) the gradient of f in x.

Definition 2.1.9. Let f : H → R, x 7→ f(x) be a function. We say that f is Fréchet differen-
tiable in x ∈ H, if there exists a linear and bounded operator Ax : H → R, with

lim
v→0

|f(x+ v)− f(x)−Ax(v)|
∥v∥

= 0.

If f is Fréchet differentiable in x it is also Gâteaux differentiable in x and it holds that Ax =
Df(x), and we call Df(x) the Fréchet derivative of f in x. Moreover, f is called Fréchet
differentiable if it is Fréchet differentiable in every x ∈ H.

12



2.1. Functional analysis

Remark 2.1.10. In this thesis, when we say that a function f : H → R, x 7→ f(x) is (continu-
ously) differentiable, we mean that it is (continuously) differentiable in the Fréchet sense.

We close this subsection stating two lemmas which give local upper bounds on the function
values of f close to a point x ∈ H using the gradient ∇f(x).

Lemma 2.1.11. Let f : H → R be Fréchet differentiable and let v ∈ H with ⟨∇f(x), v⟩ < 0.
Then, there exists t > 0 such that for all t ∈ (0, t)

f(x+ tv) < f(x).

Proof. Assume this is not the case. Then, there exists (tk)k≥0 with tk ↘ 0 and f(x+tkv) ≥ f(x)
for all k ≥ 0. From this we conclude

0 ≤ lim
k→+∞

f(x+ tkv)− f(x)

tk
= f ′(x)(v) = ⟨∇f(x), v⟩ < 0,

which is a contradiction.

The following lemma is known as the Descent Lemma [31, 38].

Lemma 2.1.12. Let f : H → R be continuously Fréchet differentiable with L-Lipschitz contin-
uous gradient ∇f , i.e., for all x, y ∈ H, it holds that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

Then, for all x, y ∈ H, it holds that

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2.

Proof. Let x, y ∈ H and define the function

ϕ : [0, 1] → R, t 7→ ϕ(t) := f(x+ t(y − x)).

By definition ϕ(0) = f(x) and ϕ(1) = f(y). Further, ϕ(·) is continuous on [0, 1] and continuously
differentiable on (0, 1) as the composition of a continuously Fréchet differentiable and an affine
linear function. Then, by the fundamental theorem of calculus, the Cauchy–Schwarz inequality
and the Lipschitz continuity of ∇f , we obtain

f(y) = ϕ(1) = ϕ(0) +

∫ 1

0

d

dt
ϕ(t) dt

= f(x) +

∫ 1

0
⟨∇f(x+ t(y − x)), y − x⟩ dt

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0
⟨∇f(x+ t(y − x))−∇f(x), y − x⟩ dt

≤ f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0
∥∇f(x+ t(y − x))−∇f(x)∥ ∥y − x∥ dt

≤ f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0
Lt∥y − x∥2 dt

= f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2.
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2.1.3 Convex analysis

In this subsection, we present fundamental concepts from convex analysis. As this is a well-
established field, we do not provide a comprehensive overview of all key results. Instead, we
present a selection and introduce essential notation. For a comprehensive presentation of the
mentioned topics, we refer to [3, 32, 93, 96, 205]. In the following, we primarily focus on the
projection operator and summarize three lemmas concerning convex projections. Furthermore,
we introduce convex functions, define the convex subdifferential and collect several results related
to these objects.

Definition 2.1.13. A set C ⊂ H is called convex, if for all x, y ∈ C and all λ ∈ [0, 1] it holds
that

λx+ (1− λ)y ∈ C.

Before we discuss properties of convex sets, we introduce the positive unit simplex and the
convex hull.

Definition 2.1.14. Let n ≥ 1. The n-dimensional positive unit simplex is defined as

∆n :=

{
θ ∈ Rn :

n∑
i=1

θi = 1 and θi ≥ 0 for i = 1, . . . , n

}
.

Definition 2.1.15. Let A ⊂ H be an arbitrary set. The convex hull of a set is its smallest
convex superset. The convex hull of a set A is formally defined in the following equivalent ways.

i) conv(A) :=
⋂

A⊂C andC convex

C;

ii) conv(A) :=

{
n∑
i=1

θiξ
i : n ≥ 1, θ ∈ ∆n, ξi ∈ A for i = 1, . . . , n

}
.

Remark 2.1.16. Let m ≥ 1. If A =
{
ξ1, . . . , ξm

}
⊂ H consists out of finitely many vectors,

then

conv(A) =

{
m∑
i=1

θiξ
i : θ ∈ ∆m, ξi ∈ A for i = 1, . . . ,m

}
.

Next, we define the projection onto a closed and convex set.

Theorem 2.1.17. Let C ⊂ H be a convex and closed set and x ∈ H an arbitrary vector. Then,
there exists a unique minimizer of the problem

min
y∈C

∥y − x∥,

which is denoted by

proj
C

(x) := argmin
y∈C

∥y − x∥.

It holds that z = projC(x), if and only if

⟨y − z, z − x⟩ ≥ 0, for all y ∈ C. (2.1)

We refer to (2.1) as the variational characterization of the projection.
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The following lemma can be found in [18, Lemma 3.7].

Lemma 2.1.18. Let H be a real Hilbert space, C ⊂ H a convex and compact set and ξ ∈ H a
fixed vector. Then

proj
C+ξ

(0) = ξ + proj
C

(−ξ).

We originally introduced the following two lemmas in [217, Lemmas A.1, A.2].

Lemma 2.1.19. Let H be a real Hilbert space, C ⊂ H a convex and compact set and η ∈ H a
fixed vector. Then, ξ ∈ H is a solution to the problem

Find ξ ∈ H such that η = proj
C+ξ

(0), (2.2)

if and only if it has the form ξ = η − µ, where µ is a solution to the constrained optimization
problem minµ∈C ⟨µ, η⟩.

Proof. First, we show that an element of the form ξ = η− µ, with µ a solution to minµ∈C ⟨µ, η⟩
is a solution to problem (2.2). The set of minimizers of the problem minµ∈C ⟨µ, η⟩ is nonempty,
since C is compact. Fix an arbitrary solution µ ∈ argminµ∈C⟨µ, η⟩. Since C is convex, the first-
order optimality condition for this problem states that for all x ∈ C it holds that ⟨x− µ, η⟩ ≥ 0
and hence

⟨x+ ξ − (µ+ ξ), η⟩ ≥ 0.

Since we have chosen ξ = η − µ, the equation above reads as

⟨x+ ξ − η, η⟩ ≥ 0,

which is equivalent to η = projC+ξ(0). The other direction works analogously. If the vector ξ
is a solution to problem (2.2) this guarantees that µ = ξ − η satisfies the first-order optimality
condition for problem minµ∈C ⟨µ, η⟩. Since problem minµ∈C ⟨µ, η⟩ is convex and defined over a
convex set, this is equivalent to µ being an optimal solution to minµ∈C ⟨µ, η⟩.

Lemma 2.1.20. Let H be a real Hilbert space, C ⊂ H a convex and closed set and a > 0, ν ∈ H
fixed. Then, the problem

Find ξ ∈ H such that − a(ξ + ν) = proj
C+ξ

(0), (2.3)

has the unique solution ξ = −
(

1
1+a projC (ν) + a

1+aν
)
.

Proof. First, we show that ξ = −
(

1
1+a projC (ν) + a

1+aν
)

is a solution to (2.3). It is easy to

check that −a(ξ + ν) ∈ C + ξ. Define the projection p := projC (ν). For all x ∈ C it holds that
⟨x− p, p− ν⟩ ≥ 0 and hence for all x ∈ C we get

⟨x+ ξ + a(ξ + ν), a(ξ + ν)⟩ ≤ 0,
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which is equivalent to

−a(ξ + ν) = proj
C+ξ

(0).

The uniqueness follows the same way. Assume we have a solution ξ̃ to (2.3). By the same
computations as above it holds that for all x ∈ C

⟨x+ (1 + a)ξ̃ + aν, ξ̃ + ν⟩ ≤ 0.

This is equivalent to

−((1 + a)ξ̃ + aν) = proj
C

(ν),

from which follows that ξ = ξ̃ is the unique solution.

In the following, we collect some results on convex functions starting with a formal definition of
convexity.

Definition 2.1.21. A function f : H → R is called convex, if for all x, y ∈ H and all λ ∈ [0, 1],
it holds that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Convex functions have nice topological properties especially in the presence of lower semicon-
tinuity. We define sequential lower semicontinuity with respect to the strong and the weak
topology in H.

Definition 2.1.22. Let f : H → R be a function.

The function f is called sequentially lower semicontinuous in x ∈ H, if for all (xk)k≥0 ⊂ H with
xk → x as k → +∞, it holds that

f(x) ≤ lim inf
k→+∞

f(xk).

Moreover, we say that f is sequentially lower semicontinuous if it is so in every x ∈ H.

The function f is called sequentially weakly lower semicontinuous in x ∈ H, if for all (xk)k≥0 ⊂
H with xk ⇀ x as k → +∞, it holds that

f(x) ≤ lim inf
k→+∞

f(xk).

Moreover, we say that f is sequentially weakly lower semicontinuous, if it is so in every x ∈ H.

We do not want to introduce the concept of lower semicontinuity and weak lower semicontinuity.
The proper definition of these notions requires the introduction of nets which we omit in this
thesis. The following theorem justifies this decision [32, Theorem 9.1].
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2.1. Functional analysis

Theorem 2.1.23. Let f : H → R be convex. Then, the following are equivalent:

i) f is sequentially weakly lower semicontinuous;

ii) f is sequentially lower semicontinuous;

iii) f is lower semicontinuous;

iv) f is weakly lower semicontinuous.

The following proposition gives a characterization of smooth convex functions.

Proposition 2.1.24. Let f : H → R be continuously differentiable. Then, the following are
equivalent:

i) f is convex;

ii) For all x, y ∈ H it holds that

f(y)− f(x) ≥ ⟨∇f(x), y − x⟩.

The following lemma is an adaption of the Descent Lemma (Lemma 2.1.12) for convex smooth
functions.

Lemma 2.1.25. Let f : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient ∇f . Then, for all x, y, z ∈ H it holds

f(z)− f(x) ≤ ⟨∇f(y), z − x⟩+ L

2
∥z − y∥2.

Proof. The proof combines the Descent Lemma (Lemma 2.1.12) and Proposition 2.1.24. Let
x, y, z ∈ H. By the Descent Lemma it holds that

f(z)− f(y) ≤ ⟨∇f(y), z − y⟩+ L

2
∥z − y∥2. (2.4)

From Proposition 2.1.24, we follow

f(y)− f(x) ≤ ⟨∇f(y), y − x⟩. (2.5)

Summing (2.4) and (2.5) gives

f(z)− f(x) ≤ ⟨∇f(y), z − x⟩+ L

2
∥z − y∥2.

We introduce two more restrictive variants of convexity.

Definition 2.1.26. Let f : H → R, x 7→ f(x) be a function. Then:

i) f is called strictly convex, if for all x, y ∈ H and all λ ∈ (0, 1), it holds that

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y);

17



Chapter 2. Theoretical background

ii) f is called µ-strongly convex for µ > 0, if the function f(·)− µ
2∥·∥

2 is convex.

Proposition 2.1.27. Let f : H → R be µ-strongly convex and lower semicontinuous. Then f
has a unique minimizer x∗ ∈ H and for all x ∈ H it holds that

f(x) ≥ f(x∗) +
µ

2
∥x− x∗∥2.

We introduce a generalization of the gradient for nonsmooth convex functions.

Definition 2.1.28. Let f : H → R be a function. The convex subdifferential of f in x ∈ H is
defined as

∂f(x) := {ξ ∈ H : f(y)− f(x) ≥ ⟨ξ, y − x⟩ for all y ∈ H} .

The elements ξ ∈ ∂f(x) are called subgradients.

For the convex subdifferential a generalization of Fermat’s rule holds.

Proposition 2.1.29. Let f : H → R be convex and lower semicontinuous. Then, x∗ ∈
argminx∈H f(x) if and only if 0 ∈ ∂f(x∗).

2.1.4 Clarke subdifferential

In this subsection, we introduce an extension of the derivative from smooth analysis to the
class of locally Lipschitz continuous functions f : H → R. The introduction we present in the
following is part of our publication [215] and is mostly based on [75]. For a comprehensive
treatment of generalized derivatives see also [174, 193]. Recall that a function f : H → R is
called locally Lipschitz continuous in x ∈ H, if there exist ε > 0 and a constant L = L(x, ε) > 0
with

|f(y)− f(z)| ≤ L ∥y − z∥ for all y, z ∈ Bε(x).

Similarly, we call f globally Lipschitz continuous on U ⊆ H, if there exists a constant L =
L(U) > 0 with

|f(y)− f(z)| ≤ L ∥y − z∥ for all y, z ∈ U .

We say that f is locally (or globally) L-Lipschitz continuous, if we want to point out the specific
Lipschitz constant.

Definition 2.1.30. Let f : H → R be locally Lipschitz continuous. Define the generalized
directional derivative at x in direction v ∈ H as

f◦(x; v) := lim sup
y→x,t↘0

f(y + tv)− f(y)

t
.

In the following, we refer to Propositions 2.1.1, 2.1.2 and 2.1.5 in [75] which state the most
important facts on the generalized directional derivative.

Proposition 2.1.31. Let f : H → R be locally L-Lipschitz continuous in x ∈ H. Then:
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2.1. Functional analysis

i) The function v 7→ f◦(x; v) is finite, positively homogeneous, and subadditive on H (i.e.,
f◦(x; tv) = tf◦(x; v) and f◦(x; v + w) ≤ f◦(x; v) + f◦(x,w) for every t > 0 and v, w ∈ H),
and satisfies

|f◦(x; v)| ≤ L ∥v∥;

ii) f◦(x; v) is upper semicontinuous as a function of (x, v) and, as a function of v alone, is
L-Lipschitz continuous on H;

iii) f◦(x;−v) = (−f)◦(x; v).

Using the generalized directional derivative we are able to define the so-called (Clarke) subdif-
ferential.

Definition 2.1.32. Let f : H → R be locally Lipschitz continuous. Define the (Clarke) subdif-
ferential in x as

∂Cf(x) :=
{
ξ ∈ H∗ : f◦(x; v) ≥ ξ(v) for all v ∈ H

}
.

A functional ξ in the set ∂Cf(x) is called a subderivative of f in x.

Proposition 2.1.33. Let f : H → R be locally L-Lipschitz continuous in x ∈ H. Then:

i) ∂Cf(x) is a nonempty, convex, weak∗-compact subset of H∗ and ∥ξ∥∗ ≤ L for every ξ in
∂Cf(x);

ii) For every v in H, it holds that

f◦(x; v) = max
{
ξ(v) : ξ ∈ ∂Cf(x)

}
.

The following result states that in the case of a smooth function, the Clarke subdifferential
coincides with the derivative. We can derive this proposition from [75, Proposition 2.2.1].

Proposition 2.1.34. Let f : H → R be continuously differentiable and let x ∈ H. Then,

∂Cf(x) = {Df(x)} ,

i.e., the Clarke subdifferential is a singleton only containing the Fréchet derivative of f in x.

Proposition 2.1.35. Let f : H → R be locally Lipschitz continuous in x. Then:

i) We have ξ ∈ ∂Cf(x) if and only if f◦(x; v) ≥ ξ(v) for all v ∈ H;

ii) Let (xk)k≥0 and (ξk)k≥0 be sequences in H and H∗, respectively, with ξk ∈ ∂Cf(x
k) for all

k ≥ 0. Suppose that xk converges to x as k → +∞ and that ξ is a weak∗-accumulation
point of (ξk)k≥0. Then ξ ∈ ∂Cf(x);

iii) ∂Cf(x) =
⋂
ε>0

⋃
y∈Bε(x)

∂Cf(y).

Recall that the Clarke subdifferential in infinite dimensions satisfies the well-known Mean Value
Theorem (cf., [75, Theorem 2.3.7]).
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Theorem 2.1.36. Let x, y ∈ H and let f : H → R be Lipschitz continuous on an open set
containing the line segment [x, y]. Then, there exists a point z on the open line segment (x, y)
such that

f(y)− f(x) ∈ ∂Cf(z)(y − x).

Note that, if f is locally Lipschitz continuous on H, then any line segment [x, y] has a neighbor-
hood on which f is globally Lipschitz continuous since [x, y] is compact in H. We conclude this
section with a necessary optimality condition based on the Clarke subdifferential [75, Proposition
2.3.2].

Proposition 2.1.37. Let f : H → R be locally Lipschitz continuous. If x∗ ∈ argminx∈H f(x),
then 0 ∈ ∂Cf(x

∗).

2.2 Differential equations and inclusions

In this section, we present basic results on differential equations and inclusions. These are par-
ticularly important in Chapter 4 where we define various differential equations and inclusions
with favorable properties in the context of multiobjective optimization.

In Subsection 2.2.1, we present two fundamental existence results in the theory of differential
equations, namely Peano’s Theorem and the Cauchy–Lipschitz Theorem and highlight the dif-
ferences between these results. After discussing general differential equations, in Subsection
2.2.2, we move to the less classical subject of differential inclusions. To present this topic in an
appropriate manner, we introduce definitions from set-valued analysis. This section concludes
with Subsection 2.2.3 which contains a selection of essential differential and integral inequalities.

2.2.1 Differential equations

In this subsection, we present some classical results on differential equations taking values in a
Hilbert space. Introductory literature on this topic can be found in [50, 143, 240]. Central to
this subsection is the equation

ẋ(t) = ϕ(x(t)),

which describes the evolution of a point x(t) in the space H over time t ∈ R, governed by a
function ϕ : H → H. Here ẋ(t) = d

dtx(t) ∈ H denotes the first derivative of the position with
respect to time. Differential equations play a fundamental role in all parts of natural sciences
with prominent applications in physics, engineering, chemistry and economics.

We present the two most important existence results for differential equations: Peano’s Theo-
rem and the Cauchy–Lipschitz Theorem. These results differ significantly. Peano’s Theorem is
more general in the sense that it only requires the function ϕ(·) to be continuous. However, it
is limited to cases where the space H is finite-dimensional, i.e., dim(H) < +∞ and guarantees
only the local existence of solutions. In contrast, the Cauchy–Lipschitz Theorem also applies in
infinite-dimensional spaces and yields existence of global solutions. On the down side, it requires
Lipschitz continuity of the function ϕ(·), i.e., ∥ϕ(x) − ϕ(y)∥ ≤ L∥x − y∥ for all x, y ∈ H. An
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2.2. Differential equations and inclusions

important advantage of the Cauchy–Lipschitz Theorem is that it not only guarantees existence
of a solution but also its uniqueness.

We formulate Peano’s Theorem and the Cauchy–Lipschitz Theorem in the form of initial value
problems which only evolve forward in time given some initial time t0 ∈ R and some initial point
x0 ∈ H, i.e., we are looking for solutions x : [t0, t0 + δ) → H for some positive δ > 0.

Theorem 2.2.1. (Peano’s Theorem) Let H be a finite dimensional Hilbert space and let ϕ :
H → H be continuous. Given initial data t0 ∈ R and x0 ∈ H, the Cauchy problem∣∣∣∣∣ ẋ(t) = ϕ(x(t)), for all t > t0,

x(t0) = x0,

has a local solution, i.e., there exists δ > 0 and a function x : [t0, t0 + δ) → H such that:

i) x(·) is continuous on [t0, t0 + δ);

ii) x(·) is continuously differentiable on (t0, t0 + δ);

iii) x(t0) = x0;

iv) For all t ∈ (t0, t0 + δ) the equation ẋ(t) = ϕ(x(t)) holds.

Proof. The original proof dates back to the works of Peano [190, 191]. A modern proof can be
found in [230].

Theorem 2.2.2. (Cauchy–Lipschitz Theorem) Let H be a Hilbert space and let ϕ : H → H be
Lipschitz continuous. Given initial data t0 ∈ R and x0 ∈ H, the Cauchy problem∣∣∣∣∣ ẋ(t) = ϕ(x(t)), for all t > t0,

x(t0) = x0,

has a unique solution, i.e., there exists a unique function x : [t0,+∞) → H such that:

i) x(·) is continuous on [t0,+∞);

ii) x(·) is continuously differentiable on (t0,+∞);

iii) x(t0) = x0;

iv) For all t ∈ (t0,+∞) the equation ẋ(t) = ϕ(x(t)) holds.

Proof. A proof of this theorem is contained in [50, Theorem 7.3].
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2.2.2 Set-valued analysis and differential inclusions

In this subsection, we introduce several basic concepts from set-valued analysis and differential
inclusions. The notation is consistent with [26] which includes a comprehensive overview of the
topic. The introduction given in this subsection is closely aligned with the one provided in our
paper [217, Appendix A].

In this subsection, let X and Y be real Hilbert spaces and let

G : X ⇒ Y, x 7→ G(x) ⊂ Y,

be a set-valued map.

Definition 2.2.3. We call G : X ⇒ Y upper semicontinuous in x ∈ X , if for all open set
N ⊂ Y with G(x) ⊂ N there exists an open set M ⊂ X with x ∈M such that G(M) ⊂ N .

Moreover, we call G(·) upper semicontinuous, if it is upper semicontinuous in every x ∈ X .

Definition 2.2.4. We call G : X ⇒ Y upper semicontinuous in x in the ε sense, if for all ε > 0,
there exists δ > 0 such that G(Bδ(x)) ⊂ G(x) +Bε(0).
Moreover, we call G(·) upper semicontinuous in the ε sense, if it is upper semicontinuous in the
ε sense in every x ∈ X .

Proposition 2.2.5. Let G : X ⇒ Y be a set valued map. The following statements hold:

i) If G(·) is upper semicontinuous it is also upper semicontinuous in the ε sense;

ii) If G(·) is upper semicontinuous in the ε sense and takes compact values G(x) ⊂ Y for all
x ∈ X , then it is upper semicontinuous.

Definition 2.2.6. We say that a map ϕ : X → Y is locally compact if for every point x ∈ X
there exists an open set U ⊂ X with x ∈ U which is mapped into a compact set, i.e., there exists
K ⊂ Y compact with ϕ(U) ⊂ K.

We recite the following existence result from [26, p. 98, Theorem 3].

Theorem 2.2.7. Let Ω ⊂ R×X be an open set containing (t0, x0). Let G : Ω ⇒ X be an upper
semicontinuous set-valued map which takes as values nonempty, closed and convex subsets of X .
Assume that the map (t, x) 7→ projG(t,x)(0) is locally compact. Then, there exists T > t0 and
an absolutely continuous function x(·) defined on [t0, T ] which is a solution of the differential
inclusion

ẋ(t) ∈ G(t, x(t)), for almost all t ∈ (t0, T ), (2.6)

with x(t0) = x0.

Remark 2.2.8. Consider the general differential inclusion (2.6). A solutions x : [t0, T ] → X
given by Theorem 2.2.7 is not differentiable but merely absolutely continuous. Therefore, the
notion ẋ(t) ∈ G(t, x(t)) may not hold on the entire domain [t0, T ]. An absolutely continuous
function x : [t0, T ] → X is differentiable almost everywhere in [t0, T ]. A solution x(·) to (2.6)
satisfies the inclusion ẋ(t) ∈ G(t, x(t)) in almost every t, where the derivative ẋ(t) is defined.
In general ẋ(·) will not be continuous. But since x(·) is absolutely continuous with values in
a Hilbert space (which satisfies the Radon-Nikodym property), ẋ(·) is Bochner integrable and
x(t) = x(t0) +

∫ t
t0
ẋ(s) ds for all t ≥ t0 (see [76, 87]).
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2.2. Differential equations and inclusions

2.2.3 Differential and integral inequalities

A general introduction to differential and integral inequalities can be found in [187]. This subsec-
tion primarily presents a collection of technical lemmas used in the analysis of certain differential
equations in this thesis. The first result we present is the well-known Gronwall–Bellman Lemma.

Lemma 2.2.9. Let t0 ∈ R and T > t0. Let ϕ ∈ L1([t0, T ],R) with ϕ(t) ≥ 0 for almost all
t ∈ [t0, T ] and let a ≥ 0. Let u : [t0, T ] → R be a continuous function satisfying

u(t) ≤ a+

∫ t

t0

ϕ(s)u(s) ds,

for all t ∈ [t0, T ]. Then for all t ∈ [t0, T ] it holds that

u(t) ≤ a exp

(∫ t

t0

ϕ(s) ds

)
.

Proof. A proof of this lemma is contained in [51, Lemma A.4].

Lemma 2.2.10. Let t0 ∈ R and T > t0. Let ϕ ∈ L1([t0, T ],R) with ϕ(t) ≥ 0 for almost all
t ∈ [t0, T ] and let a ≥ 0. Let u : [t0, T ] → R be a continuous function satisfying

1

2
u(t)2 ≤ 1

2
a2 +

∫ t

t0

ϕ(s)u(s) ds,

for all t ∈ [t0, T ]. Then for all t ∈ [t0, T ] it holds that

|u(t)| ≤ a+

∫ t

t0

ϕ(s) ds.

Proof. A proof of this lemma is contained in [51, Lemma A.5].

The following two lemmas are standard results used to establish the convergence of a real-valued
function that satisfies a differential inequality.

Lemma 2.2.11. Let t0 ∈ R and let h : [t0,+∞) → R be a continuously differentiable function
which is bounded from below. Assume

ḧ(t) + αḣ(t) ≤ g(t),

for almost all t ≥ t0, with α > 0 and g ∈ L1([t0,+∞),R). Then, limt→+∞ h(t) exists.

Proof. A proof of this lemma is contained in [19, Lemma 4.2].

Lemma 2.2.12. Let t0 ∈ R and let h : [t0,+∞) → R be a continuously differentiable function
which is bounded from below. Assume

tḧ(t) + αḣ(t) ≤ g(t),

for almost all t ≥ t0, with α > 1 and g ∈ L1([t0,+∞),R) a nonnegative function. Then,
limt→+∞ h(t) exists.
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Proof. A proof can be found in [23, Lemma A.6.].

We also include the following discrete version of Lemma 2.2.12. Although, this result is not a
differential inequality per se it fits best here next to its continuous counterpart.

Lemma 2.2.13. Let α ≥ 3 and let (θk)k≥0, (δk)k≥0 ⊂ [0,+∞) be positive sequences such that
for all k ≥ 0

θk+1 ≤
k − 1

k + α− 1
θk + δk.

If

∞∑
k=0

kδk < +∞ , then

∞∑
k=0

θk < +∞.

Proof. A proof can be found in [13, Lemma 5.10.].

The following result is a technical lemma on the derivative of the pointwise minimum of a finite
collection of absolutely continuous functions. This lemma can be found in our publication [49].

Lemma 2.2.14. For i = 1, . . . ,m, let hi : [t0,+∞) → R be absolutely continuous functions on
every interval [t0, T ] for T ≥ t0. Define h : [t0,+∞) → R, t 7→ h(t) := mini=1,...,m hi(t). Then,
the following statements are true:

i) The function h is absolutely continuous on every interval [t0, T ] for T ≥ t0, and therefore
differentiable in almost all t ≥ t0;

ii) For almost all t > t0 there exists i ∈ {1, . . . ,m} such h(t) = hi(t) and
d
dth(t) =

d
dthi(t).

Proof.

i) The minimum of a finite family of absolutely continuous functions is absolutely continuous.

ii) Let t > t0 such that h(·) and hi(·) are differentiable in t for all i = 1, . . . ,m. Take an
arbitrary sequence (τk)k≥0 with limk→+∞ τk = 0. Then there exists i ∈ {1, . . . ,m} and a
subsequence (kl)l≥0 ⊂ N with h(t+ τkl) = hi(t+ τkl) for all l ≥ 0. From the continuity of
h(·) and hi(·), it holds h(t) = hi(t). By the definition of the derivative, we get

d

dt
h(t) = lim

l→+∞

h(t+ τkl)− h(t)

τkl
= lim

l→+∞

hi(t+ τkl)− hi(t)

τkl
=

d

dt
hi(t).

We recite the following lemma from our publication [49].

Lemma 2.2.15. Let α, β, a, b > 0 be given constants, and let t0 > 0. Then,∫ t

t0

αs−a exp(βsb)ds = O
(
t1−(a+b) exp(βtb)

)
as t→ +∞.
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Proof. For t ≥ t0, we use integration by parts to get∫ t

t0

αs−a exp
(
βsb
)
ds =

α

βb

∫ t

t0

s1−(a+b) d

ds
exp

(
βsb
)
ds

=
α

βb

[
s1−(a+b) exp

(
βsb
)]t

t0
− 1− (a+ b)

βb

∫ t

t0

αs−(a+b) exp
(
βsb
)
ds. (2.7)

Since b > 0, there exists t1 ≥ t0 such that for all t ≥ t1∣∣∣∣1− (a+ b)

βb

∣∣∣∣ t−b ≤ 1

2
. (2.8)

Define C1 :=
∣∣∣1−(a+b)

βb

∣∣∣ ∫ t1t0 αs−(a+b) exp
(
βsb
)
ds. Then, (2.7) and (2.8) yield for all t ≥ t0∫ t

t0

αs−a exp
(
βsb
)
ds ≤ α

βb

[
s1−(a+b) exp

(
βsb
)]t

t0
+ C1 +

∣∣∣∣1− (a+ b)

βb

∣∣∣∣ ∫ t

t1

αs−(a+b) exp
(
βsb
)
ds

≤ α

βb

[
s1−(a+b) exp

(
βsb
)]t

t0
+ C1 +

1

2

∫ t

t1

αs−a exp
(
βsb
)
ds

≤ α

βb

[
s1−(a+b) exp

(
βsb
)]t

t0
+ C1 +

1

2

∫ t

t0

αs−a exp
(
βsb
)
ds,

hence ∫ t

t0

αs−a exp
(
βsb
)
ds ≤ 2α

βb

[
s1−(a+b) exp

(
βsb
)]t

t0
+ 2C1.

Defining C2 := −2α
βb (t0)

1−(a+b) exp
(
β(t0)

b
)
+ 2C1, we obtain for all t ≥ t0∫ t

t0

αs−a exp
(
βsb
)
ds ≤ 2α

βb
t1−(a+b) exp

(
βtb
)
+ C2,

and the asymptotic bound holds.

The following lemma can be seen as a generalization of Lemma 2.2.12. It is a modification of a
lemma presented in [146, Lemma 16] which we originally introduced in [49].

Lemma 2.2.16. Let t0 > 0, α > 0, q ∈ (0, 1), and let k : [t0,+∞) → R be a nonnegative
function such that

(t 7→ tqk(t)) ∈ L1 ([t0,+∞),R) . (2.9)

Let h : [t0,+∞) → R be a continuously differentiable function that is bounded from below and
possesses an absolutely continuous derivative ḣ(·). Further, assume h(·) satisfies

ḧ(t) +
α

tq
ḣ(t) ≤ k(t) for almost all t ≥ t0. (2.10)

Then,

(
t 7→

[
ḣ(t)

]
+

)
∈ L1 ([t0,+∞),R), where

[
ḣ(t)

]
+

denotes the positive part of ḣ(t), and

further limt→+∞ h(t) exists.
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Proof. Define the function

M : [t0,+∞) → R, t 7→ M(t) := exp

(∫ t

t0

α

sq
ds

)
= CM exp

(
α

1− q
t1−q

)
,

with CM := exp
(
− α

1−q t
1−q
0

)
, and b := α

1−q > 0. For t ≥ t0, using integration by parts, we have

CM

∫ +∞

t

ds

M(s)
=

∫ +∞

t
exp

(
−bs1−q

)
ds = − 1

α

∫ +∞

t
sq
d

ds
exp

(
−bs1−q

)
ds

=− 1

α

([
sq exp

(
−bs1−q

)]+∞
t

−
∫ +∞

t
qsq−1 exp

(
−bs1−q

)
ds

)
(2.11)

=
tq

α
exp

(
−bt1−q

)
+
q

α

∫ +∞

t
sq−1 exp(−bs1−q)ds.

As q − 1 < 0, there exists t1 ≥ t0 such that for all t ≥ t1 the inequality q
α t
q−1 ≤ 1

2 holds and
hence

q

α

∫ +∞

t
sq−1 exp(−bs1−q)ds ≤ 1

2

∫ +∞

t
exp(−bs1−q)ds. (2.12)

Combining (2.11) and (2.12), we conclude that for all t ≥ t1

CM

∫ +∞

t

ds

M(s)
=

∫ +∞

t
exp

(
−bs1−q

)
ds ≤ 2tq

α
exp

(
−bt1−q

)
. (2.13)

Using the definition of M(·), equality (2.13) yields for all t ≥ t1(∫ +∞

t

ds

M(s)

)
M(t) =

(∫ +∞

t
exp

(
−bs1−q

))
exp

(
bt1−q

)
≤ 2tq

α
. (2.14)

We multiply (2.14) by k(·), integrate from t0 to +∞, and apply relation (2.9) to follow∫ +∞

t0

(∫ +∞

t

ds

M(s)

)
M(t)k(t)dt < +∞. (2.15)

By the definition of M(·), we have d
dtM(t) = M(t) αtq and then, by (2.10),

d

dt

(
M(t)ḣ(t)

)
= M(t)ḧ(t) +M(t)

α

tq
ḣ(t) ≤ M(t)k(t) for almost all t ≥ t0. (2.16)

We integrate (2.16) from t0 to t ≥ t0 and observe

M(t)ḣ(t)−M(t0)ḣ(t0) ≤
∫ t

t0

M(s)k(s)ds.

The function k(·) takes nonnegative values only and we derive for all t ≥ t0[
ḣ(t)

]
+
≤ |M(t0)ḣ(t)|

M(t)
+

1

M(t)

∫ t

t0

M(s)k(s)ds.
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We integrate this inequality from t0 to +∞ and write∫ +∞

t0

[
ḣ(t)

]
+
dt ≤

∫ t

t0

|M(t0)ḣ(t)|
M(t)

dt+

∫ +∞

t0

1

M(t)

(∫ t

t0

M(s)k(s)ds

)
dt. (2.17)

Since M(·) grows at an exponential rate, we have
∫ +∞
t0

|M(t0)ḣ(t)|
M(t) dt < +∞. We apply Fubini’s

Theorem to the second integral in (2.17) and combine it with (2.15) to conclude∫ +∞

t0

1

M(t)

(∫ t

t0

M(s)k(s)ds

)
dt =

∫ +∞

t0

(∫ +∞

t

ds

M(s)

)
M(t)k(t)dt < +∞. (2.18)

Equation (2.17) and (2.18) imply ∫ +∞

t0

[
ḣ(t)

]
+
dt < +∞,

and by the lower boundedness of h(·) we follow that limt→+∞ h(t) exists.

27



Chapter 2. Theoretical background

2.3 Multiobjective optimization

In this section, we describe the multiobjective optimization problem that forms the main focus
of this thesis. In multiobjective optimization the goal is to simultaneously minimize multiple
objective functions. For an introduction to this area and the related field of vector optimization
we refer the reader to [88, 90, 133, 169]. The multiobjective optimization problem reads as

min
x∈H


f1(x)
...

fm(x)

 ,(MOP)

where the functions fi : H → R for i = 1, . . . ,m are called the objective functions. To summarize
the objective functions in a single vector valued function, we use the notation

F : H → Rm, x 7→ F (x) := (f1(x), . . . , fm(x))
⊤ . (2.19)

The space H is called the decision space, and the space Rm is referred to as the image space.
The set F (H) = {F (x) : x ∈ H} ⊂ Rm is called the attainable set. Note, that we use the
notation F instead of f in (2.19), as the latter is reserved for scalar functions, i.e., f : H → R.

This section is organized as follows. In Subsection 2.3.1, we define solutions to problem (MOP).
We introduce different notions of Pareto optimality and provide an illustrative example. Sub-
section 2.3.2 contains a discussion of necessary first-order optimality conditions. We cover the
smooth case which uses gradient information of the objective functions, and the nonsmooth
case which is based on the Clarke subdifferential. Afterwards, in Subsection 2.3.3, we define
a merit function which forms a key ingredient of our analysis. Merit functions define suitable
scalarizations of the objective functions, characterize the quality of a solution, and are important
for comparing the convergence speed of different methods. In Subsection 2.3.4, we introduce
first-order methods for multiobjective optimization. We define common descent directions, the
multiobjective steepest descent direction, and conclude with an illustrative analysis of the mul-
tiobjective steepest descent method.

2.3.1 Pareto optimality

The optimization problem (MOP) involves multiple objective functions, and therefore the clas-
sical concept of optimality from scalar optimization cannot be applied directly. For every vector
in the decision space x ∈ H the objective function value in the image space F (x) is an ele-
ment of the attainable set F (H) which is a subset of Rm. Since there is no total order on Rm,
there generally does not exist a unique optimal function value as in scalar optimization, unless
the objectives are non-conflicting and share a common minimizer. A suitable generalization
of optimality when dealing with multiple objectives is the notion of Pareto optimality which
is attributed to Pareto [189]. This notion shifts the focus from optimal solutions to optimal
compromises, i.e., we are interested in points where we cannot improve one objective function
without worsening at least one other objective. This idea is formalized in the following Definition
[169].
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2.3. Multiobjective optimization

Definition 2.3.1. Consider the multiobjective optimization problem (MOP).

i) A point x∗ ∈ H is Pareto optimal if there does not exist another point x ∈ H such that
fi(x) ≤ fi(x

∗) for all i = 1, . . . ,m, and fj(x) < fj(x
∗) for at least one index j;

ii) A point x∗ ∈ H is locally Pareto optimal if there exists ε > 0 such that x∗ is Pareto optimal
in Bε(x

∗);

iii) A point x∗ ∈ H is weakly Pareto optimal if there does not exist another point x ∈ H such
that fi(x) < fi(x

∗) for all i = 1, . . . ,m;

iv) A point x∗ ∈ H is locally weakly Pareto optimal if there exists ε > 0 such that x∗ is weakly
Pareto optimal in Bε(x

∗).

From Definition 2.3.1, we immediately derive the following proposition which relates the different
concepts of Pareto optimality.

Proposition 2.3.2. Consider the multiobjective optimization problem (MOP) and let x ∈ H.
Then, the following statements hold:

i) If x is Pareto optimal, then x is weakly Pareto optimal;

ii) If x is Pareto optimal, then x is locally Pareto optimal;

iii) If x is weakly Pareto optimal, then x is locally weakly Pareto optimal;

iv) If x is locally Pareto optimal, then x is locally weakly Pareto optimal.

Remark 2.3.3. Another concept which we use in various parts of this thesis is the notion of
dominance. Let x, y ∈ H. We say that x dominates y, if fi(x) ≤ fi(y) for all i = 1, . . . ,m and
there exists j ∈ {1, . . . ,m} with fj(x) < fj(y). Furthermore, we say that x strictly dominates y,
if fi(x) < fi(y) holds for all i = 1, . . . ,m.

Besides the notation in Definition 2.3.1, the literature on multiobjective optimization and vector
optimization includes a variety of terms to describe Pareto optimal points, such as (Pareto)
efficient points, nondominated points or noninferior points [65, 90].

Using the notions of optimality introduced in Definition 2.3.1, we define the so-called Pareto set
and Pareto front.

Definition 2.3.4. Consider the multiobjective optimization problem (MOP). We define the
following sets:

i) The Pareto set is denoted by P :=
{
x ∈ H : x is Pareto optimal

}
;

ii) The weak Pareto set is denoted by Pw :=
{
x ∈ H : x is weakly Pareto optimal

}
;

iii) The Pareto front is denoted by F (P) =
{
F (x) ∈ Rm : x is Pareto optimal

}
;

iv) The weak Pareto front is denoted by F (Pw) =
{
F (x) ∈ Rm : x is weakly Pareto optimal

}
.

Additionally, we often need the lower level set of a vector-valued function which we introduce
in the following definition.
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Chapter 2. Theoretical background

Definition 2.3.5. Consider the multiobjective optimization problem (MOP).

i) Let a ∈ Rm. We define

L(F, a) := {x ∈ H : F (x) ≦ a} =

m⋂
i=1

{x ∈ H : fi(x) ≤ ai} ,

where “≦” denotes the partial order on Rm induced by Rm+ . For a, b ∈ Rm, we write a ≦ b
if and only if ai ≤ bi for all i = 1, . . . ,m.

ii) We denote the intersection of a lower level set and the weak Pareto set by

LPw(F, a) := L(F, a) ∩ Pw.

In the following elementary example, we illustrate the Pareto set and the Pareto front.

Example 2.3.6. Given matrices and vectors

Q1 =

[
2 0

0 1

]
, Q2 =

[
1 0

0 2

]
, and c1 =

[
5

0

]
, c2 =

[
0

5

]
,

define the objective functions

fi : R2 → R, x 7→ fi(x) :=
1

2
(x− ci)

⊤Qi(x− ci), for i = 1, 2. (2.20)

The objective functions f1 and f2 are strongly convex and continuously differentiable with re-
spective unique minimizers c1 and c2. In this example, we define the multiobjective optimization
problem

min
x∈R2

[
f1(x)

f2(x)

]
,(MOP-Ex)

with the objective functions fi for i = 1, 2 defined in (2.20).
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Figure 2.1: Subfigure 2.1a shows objective function f1 and f2 and the Pareto set P of (MOP-Ex)
in the decision space. Subfigure 2.1a visualizes the attainable set F (H) and the Pareto front
F (P) in the image space.
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2.3. Multiobjective optimization

Figure 2.1 illustrates the Pareto set and the Pareto front of (MOP) given the objective functions
f1 and f2 defined in (2.20). For this problem the Pareto set P can be computed explicitly. It
is shown in Subfigure 2.1a as a red line connecting c1 and c2, the respective minimizers of f1
and f2. The Pareto front F (P) of this problem is visualized in Subfigure 2.1b. The attainable
set F (H) is approximated by an evaluation of the objective functions f1 and f2 on a equidistant
grid, and plotted as blue dots. As Definition 2.3.1 suggests, for each point in the Pareto set,
there does not exist another point which is strictly better with respect to all objective function
values. Already in this simple example, we see that there does not exist a single optimal solution
to (MOP), but a continuum of optimal compromises.

2.3.2 Necessary optimality conditions

The definition of optimality given in Definition 2.3.1 is difficult to apply in practice. Given a
point x ∈ H, to check whether it is Pareto optimal using Definition 2.3.1 directly, we have to
compare its function value against the function values of all other points. This is generally not
feasible, and therefore we need more sophisticated ways to identify optimal points. For this
reason, it is more practical to work with necessary and sufficient optimality conditions. These
usually rely on first- and higher-order derivative information of the objective functions and are
expressed by systems of equations, which can be verified more efficiently. In addition, these con-
ditions give further insight into the optimization problem and can be used to define numerical
methods to solve the optimization problem at hand algorithmically.

For scalar optimization problems minx∈H f(x), with a continuously differentiable objective func-
tion f : H → R the so-called Karush-Kuhn-Tucker conditions (KKT conditions [135, 141]), which
are also known in the smooth and unconstrained case as Fermat’s rule ∇f(x) = 0 [32], provide a
necessary optimality condition. In Subsection 2.1.4, we have already seen that for locally Lips-
chitz functions f : H → R, this condition can be generalized to 0 ∈ ∂Cf(x), where ∂Cf(x) is the
Clarke subdifferential of f in x. In this subsection, we discuss how these optimality conditions
can be generalized to the setting of multiobjective optimization and the concept of Pareto opti-
mality introduced in Definition 2.3.1. Additionally, we describe under which further assumptions
on the objective functions these conditions are not only necessary but also sufficient.

The case of continuously differentiable objective functions

If the objective functions of (MOP) are continuously differentiable, we can define the following
necessary condition for Pareto optimality [141, 169].

Theorem 2.3.7. Let fi : H → R be continuously differentiable for i = 1, . . . ,m and let x∗ be
(locally weakly) Pareto optimal. Then, there exists θ ∈ ∆m such that

m∑
i=1

θi∇fi(x∗) = 0,

which is equivalent to

0 ∈ conv ({∇fi(x∗) : i = 1, . . . ,m}) . (2.21)

We call a point x∗ ∈ H satisfying (2.21) Pareto critical.
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Chapter 2. Theoretical background

The following Theorem investigates Pareto critical points under additional assumptions on the
objective functions.

Theorem 2.3.8. Let fi : H → R be continuously differentiable for i = 1, . . . ,m and let x∗ ∈ H
be Pareto critical. Then, the following statements hold:

i) If fi is convex for all i = 1, . . . ,m, then x∗ is weakly Pareto optimal;

ii) If fi is strictly convex for all i = 1, . . . ,m, then x∗ is Pareto optimal.

Proof. A proof is contained in [220].

In the following example we discuss Pareto critical points.

Example 2.3.9. Reconsider the multiobjective optimization problem from Example 2.3.6.

0 5

x1

0

5

x
2

x 2 P

rf1(x)

rf2(x)

f1

f2

P

Figure 2.2: Contour plots of f1 and f2 and Pareto set P of (MOP-Ex) with a Pareto optimal
point x ∈ P and corresponding gradients ∇f1(x) and ∇f2(x).

Figure 2.2 shows a Pareto optimal point x ∈ P and the gradients ∇fi(x) for i = 1, 2 evaluated
in x. As the gradients point in opposing directions, there exists θ ∈ ∆2 such that θ1∇f1(x) +
θ2∇f2(x) = 0 and therefore x is Pareto critical. The objective function f1 and f2 defined in
(2.20) are strictly convex and hence Theorems 2.3.7 and 2.3.8 state that x is Pareto optimal
if and only if x is Pareto critical. Therefore, in this example we can compute P solving the
nonlinear, constrained system of equations

θ1∇f1(x) + θ2∇f2(x) = 0, with x ∈ H and θ ∈ ∆2,

from which we obtain

P =

{[
10λ
λ+1

10−10λ
2−λ

]
: λ ∈ [0, 1]

}
.

The case of locally Lipschitz continuous objective functions

In Subsection 2.1.4, the Clarke subdifferential is introduced for a locally Lipschitz continuous
function f : H → R. Proposition 2.1.37 states that 0 ∈ ∂Cf(x) is a necessary condition for
x ∈ argminx∈H f(x). This condition can be extended to the multiobjective setting similar to
Theorem 2.3.7 as the following theorem shows.
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2.3. Multiobjective optimization

Theorem 2.3.10. Let fi : H → R be locally Lipschitz continuous for all i = 1, . . . ,m and let
x∗ ∈ H be (locally weakly) Pareto optimal. Then, there exists θ ∈ ∆m and ξi ∈ ∂Cfi(x

∗) for
i = 1, . . . ,m such that

0 =
m∑
i=1

θiξi.

which is equivalent to

0 ∈ conv

(
m⋃
i=1

∂Cfi(x
∗)

)
. (2.22)

If a vector x∗ ∈ H satisfies (2.22) we call it Pareto critical.

Proof. A proof can be found in [159, Theorem 12]. Note that in [159] the finite-dimensional
case (H = Rn) is considered. However, the proof can also be applied in general Hilbert spaces,
since the used arguments only require properties of the generalized directional derivative and
the Clarke subdifferential that we state in Propositions 2.1.31, 2.1.35 and Theorem 2.1.36.

Remark 2.3.11. Notice that the definitions of Pareto critical points in Theorems 2.3.7 and
2.3.10 are equivalent in the smooth case. If the objective functions fi are continuously differen-
tiable, Proposition 2.1.34 states that ∂Cfi(x) = {Dfi(x)} for all i = 1, . . . ,m. Then, it holds
that conv (

⋃m
i=1 ∂Cfi(x)) = conv ({Dfi(x) : i = 1, . . . ,m}) and hence 0 ∈ conv (

⋃m
i=1 ∂Cfi(x)) if

and only if 0 ∈ conv ({∇fi(x) : i = 1, . . . ,m}).

Remark 2.3.12. In the literature, optimality conditions for constrained multiobjective optimiza-
tion problems and sufficient optimality conditions that rely on second-order derivatives, have been
established [131]. In this thesis, we focus on unconstrained optimization problems and we are
concerned solely with first-order methods and gradient dynamical systems. Therefore, we do not
present more sophisticated results in these directions.

2.3.3 Merit functions

In scalar optimization, all optimal points yield the same function value. In contrast, in multi-
objective optimization the function values of the different objectives vary along the Pareto set.
As a result, it is not straightforward to express the optimality of a point solely in terms of its
function values. One intuitive approach is to consider the distance of the objective function
value to the Pareto front, i.e., dist(F (x), F (P)) = infF ∗∈F (P)∥F (x)− F ∗∥ with a suitable norm
∥·∥ on Rm, to define a measure of optimality. However, this is impractical since the Pareto
front F (P) ⊂ Rm is not convex, and the mapping x 7→ dist(F (x), F (P)) suffers in general from
bad analytical properties. Despite these challenges, a measure of optimality based on function
values is valuable as it provides further insight into the multiobjective optimization problem
and serves as a basis to compare the complexity of numerical methods. In this subsection, we
introduce a merit function for multiobjective optimization. Generally, a merit (or gap) func-
tion for a problem is a scalar function that attains nonnegative values everywhere and vanishes
only at solutions. Merit functions for multiobjective optimization were first applied for convex
and linearly constrained problems [66], and later extended to more general settings [89, 153, 220].
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In this thesis, we use the following merit function related to the multiobjective optimization
problem (MOP),

φ : H → R, x 7→ φ(x) := sup
z∈H

min
i=1,...,m

(fi(x)− fi(z)) . (2.23)

The following theorem states that φ(·) is a merit function with respect to weak Pareto optimality.

Theorem 2.3.13. Let fi : H → R be an arbitrary function for i = 1, . . . ,m and let φ(·) be
defined as in (2.23). For all x ∈ H it holds that φ(x) ≥ 0. Moreover, x ∈ H is weakly Pareto
optimal for (MOP), if and only if φ(x) = 0.

Proof. A proof can be found in [224, Theorem 3.1].

In the single objective case, i.e., for m = 1 and f1 := f , it holds φ(x) = f(x)− infz∈H f(z) for all
x ∈ H, which is a merit function for the scalar optimization problem minx∈H f(x). This provides
another justification for using φ(·) as a measure of optimality in multiobjective optimization.
One should note that, even if all objective functions fi are smooth, the function φ(·) is not
smooth in general.

f1

f2 F (H)

F (z∗)

F (x)

f1(x)− f1(z
∗)

f2(x)− f2(z
∗)

Figure 2.3: Attainable set of a convex multiobjective optimization problem with two objective
functions. Given x ∈ H the point z∗ ∈ H is the solution to supz∈Hmini=1,...,m fi(x) − fi(z)
which satisfies fi(x)− fi(z

∗) = φ(x) for all i = 1, . . . ,m.

Figure 2.3 visualizes how the merit function value φ(x) can be computed for a convex multiob-
jective optimization problem as a solution to the problem supz∈Hmini=1,...,m fi(x) − fi(z). In
the well-behaved case there exists z∗ ∈ LPw(F, F (x)) such that fi(x) − fi(z

∗) = φ(x) for all
i = 1, . . . ,m. In this case, φ(x) = dist∥·∥∞(F (x), F (Pw)) = infF ∗∈F (Pw)∥F (x) − F ∗∥∞, where
∥·∥∞ is the infinity norm on Rm.

Theorem 2.3.14. Let fi : H → R be sequentially weakly lower semicontinuous for i = 1, . . . ,m.
Then the function φ(·) defined in (2.23) is sequentially weakly lower semicontinuous, i.e., for
(xk)k≥0 with xk ⇀ x∞ ∈ H it holds that

φ(x∞) ≤ lim inf
k→+∞

φ(xk).
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2.3. Multiobjective optimization

Proof. Let (xk)k≥0 ⊂ H be a sequence with xk ⇀ x∞ as k → +∞. The minimum of a finite
family of weakly lower semicontinuous functions is weakly lower semicontinuous, i.e., for all
z ∈ H

min
i=1,...,m

fi(x
∞)− fi(z) ≤ lim inf

k→+∞
min

i=1,...,m
fi(x

k)− fi(z). (2.24)

Since (2.24) holds for all z ∈ H, we conclude

φ(x∞) = sup
z∈H

min
i=1,...,m

fi(x
∞)− fi(z) ≤ sup

z∈H
lim inf
k→+∞

min
i=1,...,m

fi(x
k)− fi(z)

= sup
z∈H

sup
l≥0

inf
k≥l

min
i=1,...,m

fi(x
k)− fi(z) = sup

l≥0
sup
z∈H

inf
k≥l

min
i=1,...,m

fi(x
k)− fi(z)

≤ sup
l≥0

inf
k≥l

sup
z∈H

min
i=1,...,m

fi(x
k)− fi(z) = sup

l≥0
inf
k≥l

φ(xk) = lim inf
k→+∞

φ(xk).

By Theorem 2.3.14, we conclude that every weak accumulation point of a sequence (xk)k≥0

with limk→+∞ φ(xk) = 0 is weakly Pareto optimal. The following lemma provides a way to
obtain the value of φ(x) without taking the supremum with respect to the whole space H. This
lemma is important in the analysis of first-order methods and gradient dynamical systems for
multiobjective optimization. The version of the lemma we use can be found in [49].

Lemma 2.3.15. For x0 ∈ H and a ∈ Rm+ , assume that LPw(F, F (x)) ̸= ∅ holds for all x ∈
L(F, F (x0) + a). Then, for all x ∈ L(F, F (x0) + a) it holds that

φ(x) = sup
z∈LPw(F,F (x0)+a)

min
i=1,...,m

fi(x)− fi(z)

= sup
F ∗∈F (LPw(F,F (x0)+a))

inf
z∈F−1({F ∗})

min
i=1,...,m

fi(x)− fi(z).

Proof. We start by proving the first equality. Let x ∈ L(F, F (x0) + a) be fixed. Obviously,

sup
z∈LPw(F,F (x0)+a)

min
i=1,...,m

fi(x)− fi(z) ≤ sup
z∈H

min
i=1,...,m

fi(x)− fi(z) = φ(x). (2.25)

Next, we show that mini=1,...,m fi(x) − fi(z) ≤ supz′∈L(F,F (x))mini=1,...,m fi(x) − fi(z
′) holds

for all z ∈ H. We assume that there exists z ̸∈ L(F, F (x)) with mini=1,...,m fi(x) − fi(z) >
supz′∈L(F,F (x))mini=1,...,m fi(x) − fi(z

′). Since z ̸∈ L(F, F (x)), there exists j ∈ {1, . . . ,m} with
fj(z) > fj(x). Therefore

0 > min
i=1,...,m

fi(x)− fi(z) ≥ sup
z′∈L(F,F (x))

min
i=1,...,m

fi(x)− fi(z
′) ≥ 0,

which leads to a contradiction. Hence,

sup
z∈H

min
i=1,...,m

fi(x)− fi(z) ≤ sup
z∈L(F,F (x))

min
i=1,...,m

fi(x)− fi(z). (2.26)

35



Chapter 2. Theoretical background

Next, we show that supz∈L(F,F (x))mini=1,...,m fi(x)− fi(z) ≤ supz∈LPw(F,F (x))mini=1,...,m fi(x)−
fi(z). By assumption, for all z ∈ L(F, F (x)) there exists z′ ∈ LPw(F, F (z)) ⊆ LPw(F, F (x)).
Since z′ ∈ LPw(F, F (z))), it holds fi(z′) ≤ fi(z) for all i = 1, . . . ,m, hence

min
i=1,...,m

fi(x)− fi(z) ≤ min
i=1,...,m

fi(x)− fi(z
′). (2.27)

From (2.27), we conclude

sup
z∈L(F,F (x))

min
i=1,...,m

fi(x)− fi(z) ≤ sup
z∈LPw(F,F (x))

min
i=1,...,m

fi(x)− fi(z). (2.28)

Since x ∈ L(F, F (x0) + a), we have LPw(F, F (x)) ⊆ LPw(F, F (x0) + a), hence

sup
z∈LPw(F,F (x))

min
i=1,...,m

fi(x)− fi(z) ≤ sup
z∈LPw(F,F (x0)+a)

min
i=1,...,m

fi(x)− fi(z). (2.29)

Combining (2.26), (2.28) and (2.29), it yields

φ(x) ≤ sup
z∈LPw(F,F (x0)+a)

min
i=1,...,m

fi(x)− fi(z), (2.30)

which proves the first equality. The second inequality follows since for all z ∈ F−1({F ∗}) it
holds that F (z) = F ∗.

2.3.4 A representative first-order method for multiobjective optimization

In this subsection, we introduce the multiobjective steepest descent method [104, 177]. This
method serves as a natural starting point for first-order methods in multiobjective optimization,
and the more sophisticated algorithms presented later in this thesis can be seen as advancements
of this foundational approach.

The multiobjective steepest descent direction

Before introducing the steepest descent direction, we first describe the general concept of a
descent direction. Since we are dealing with multiple objectives, it is necessary to identify a
direction that yields local descent with respect to all objectives.

Definition 2.3.16. Let fi : H → R be continuously differentiable for i = 1, . . . ,m and let x ∈ H.
A vector v ∈ H is a called a common descent direction in x if it satisfies

⟨∇fi(x), v⟩ < 0 for all i = 1, . . . ,m.

To construct a descent method, a mere descent direction is not sufficient to define an efficient
algorithm. A stronger condition is required. In the next definition, we introduce the multiob-
jective steepest descent direction, as presented in [104, 177].

Definition 2.3.17. Let fi : H → R be continuously differentiable for i = 1, . . . ,m and let x ∈ H.
Then, the multiobjective steepest descent direction in x is defined as the unique solution to the
strongly convex optimization problem

min
d∈H

max
i=1,...,m

⟨∇fi(x), d⟩+
1

2
∥d∥2. (2.31)
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2.3. Multiobjective optimization

The objective function in (2.31) is a piecewise linear approximation of d 7→ maxi=1,...,m fi(x +
d) − fi(x) with a quadratic regularization term. The problem (2.31) is nonsmooth, but it can
be transformed to a quadratic optimization problem with linear constraints. In the following
proposition, we present a duality result to obtain a different formulation of the multiobjective
steepest descent direction.

Proposition 2.3.18. Let fi : H → R be continuously differentiable for i = 1, . . . ,m and let
x ∈ H. Let d∗ be the the multiobjective steepest descent direction at x. Then it holds that

d∗ = −
m∑
i=1

θ∗i∇fi(x),

where θ∗ ∈ Rm is the solution to

min
θ∈Rm

1

2

∥∥∥∥∥
m∑
i=1

θi∇fi(x)

∥∥∥∥∥
2

,

s.t.

m∑
i=1

θi = 1,

θi ≥ 0, for i = 1, . . . ,m.

(2.32)

Furthermore, d∗ can be written as

d∗ = −proj
C(x)

(0), (2.33)

where

C(x) := conv ({∇fi(x) : i = 1, . . . ,m}) .

Proof. Rewrite the problem (2.31) into

min
(d,β)∈H×R

Φ(d, β) := β +
1

2
∥d∥2 ,

s.t. gi(d, β) := ⟨∇fi(x), d⟩ − β ≤ 0, for i = 1, . . . ,m.

(P)

Define the Lagrangian function

L : (H× R)× Rm → R, ((d, β), θ) 7→ Φ(d, β) +
m∑
i=1

θigi(d, β)

= β +
1

2
∥d∥2 +

m∑
i=1

θi (⟨∇fi(x), d⟩ − β)

=

(
1−

m∑
i=1

θi

)
β +

1

2
∥d∥2 +

〈
m∑
i=1

θi∇fi(x), d

〉
.

The dual problem

inf
θ∈Rm

s.t. θi ≥ 0, for i=1,...,m

sup
(d, β)∈H×R

L((d, β), θ),
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Chapter 2. Theoretical background

reduces to

min
θ∈Rm

1

2

∥∥∥∥∥
m∑
i=1

θi∇fi(x)

∥∥∥∥∥
2

,

s.t.
m∑
i=1

θi = 1,

θi ≥ 0, for i = 1, . . . ,m.

(D)

Since (P) is a convex optimization problem with linear constraints and an objective func-
tion which is bounded from below on the feasible set, strong duality holds [155]. Hence,
for an optimal solution d∗ ∈ H to (2.31) which induces the optimal solution (d∗, β∗), with
β∗ = maxi=1,...,m⟨∇fi(x), d∗⟩ to (P), there exists a Lagrange multiplier θ∗ ∈ Rm, such that
((d∗, β∗), θ∗) is a KKT point of (P). A KKT point is a saddle point of the Lagrangian and hence
∇d L((d∗, θ∗), β∗) = 0, and we conclude d∗ = −

∑m
i=1 θ

∗
i∇fi(x). By strong duality, θ∗ ∈ Rm is a

solution to (D). By Definition 2.1.15 and Remark 2.1.16, it follows that

d∗ = −proj
C(x)

(0).

Remark 2.3.19. Motivated by Proposition 2.3.18, we usually denote the steepest descent di-
rection by −projC(x)(0), where C(x) := conv ({∇fi(x) : i = 1, . . . ,m}) is the convex hull of the
gradients.

Example 2.3.20. Reconsider the multiobjective optimization problem from Example 2.3.6.

0 5

x1

0

5

x
2

d

!C(x)

x 2 H

!rf1(x)

!rf2(x)

f1

f2

P

Figure 2.4: Contour plots of f1 and f2 and Pareto set P of (MOP-Ex) with a point x ∈ H
and corresponding negative gradients −∇f1(x) and −∇f2(x) and the multiobjective steepest
descent direction d = −projC(x)(0).

Figure 2.4 visualizes the multiobjective steepest descent direction computed in a point x ∈ H.
The figure shows the the contour plots of the functions f1 and f2 in the decision space and the
Pareto set P. For x ∈ H the set −C(x) is the convex hull of the negative gradients −∇f1(x) and
−∇f2(x). The steepest descent direction d = −projC(x)(0) is perpendicular to the set −C(x).
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2.3. Multiobjective optimization

The following proposition describes the regularity of the multiobjective steepest descent direction
−projC(x)(0) with respect to changes x ∈ H.

Proposition 2.3.21. Let fi : H → Rm be continuously differentiable with L-Lipschitz continu-
ous gradient ∇fi. Then the function

ϕ : H → H, x 7→ −proj
C(x)

(0),

is locally Hölder continuous with exponent 1
2 , i.e., for all x ∈ H there exists ε > 0 and a constant

C > 0, such that

∥ϕ(y)− ϕ(z)∥ ≤ C∥y − z∥
1
2 , for all y, z ∈ Bε(x).

Proof. A proof of this proposition is contained in [219].

Remark 2.3.22. The paper [219] not only establishes the Hölder continuity of the multiobjective
steepest descent direction with exponent 1

2 , but also shows that this is the optimal exponent in
the general case. Consequently the multiobjective steepest descent direction is not Lipschitz con-
tinuous in general. A counterexamples to the Lipschitz continuity of the multiobjective steepest
descent direction is provided in [219, Proposition 3.2].

The multiobjective steepest descent direction is directly connected to the concept of Pareto
criticality as the following Proposition describes.

Proposition 2.3.23. Let fi : H → R be continuously differentiable. Then x∗ is Pareto critical,
if and only if 0 = projC(x∗)(0).

Proof. The proof follows immediately by the definition of Pareto critical points given in Theorem
2.3.10.

Proposition 2.3.23 motivates the investigation of the closedness of the operator x 7→ projC(x)(0).
The following lemma states a demiclosedness property of the set-valued mapping C : H ⇒
H, x 7→ C(x) (see [24, Lemma 2.4] and [16, Lemma 4.10]).

Lemma 2.3.24. Let fi : H → R be continuously differentiable for i = 1, . . . ,m. Let (xk)k≥0 be
a sequence in H that converges weakly to x∞, and assume there exists a sequence (gk)k≥0 with
gk ∈ C(xk) that converges strongly to zero. Then, 0 ∈ C(x∞) and hence x∞ is Pareto critical.

The multiobjective steepest descent method

Using the multiobjective steepest descent direction introduced previously, we define the so-called
multiobjective steepest descent method. Given an initial iterate x0 ∈ H and step size h > 0
define the multiobjective steepest descent method by the scheme

θk ∈ argminθ∈∆m

∥∥∥∥∥
m∑
i=1

θi∇fi(xk)

∥∥∥∥∥
2

,

xk+1 = xk − h
∑m

i=1 θ
k
i∇fi(xk),

 for k ≥ 0.(MGD)
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Chapter 2. Theoretical background

This method can more concisely be written as

xk+1 = xk − h proj
C(xk)

(0), for k ≥ 0.(MGD’)

While (MGD) is more explicit from an algorithmic point of view, the formulation (MGD’)
provides valuable insight from an analytical perspective, as the following proposition shows.

Proposition 2.3.25. Let fi : H → R be continuously differentiable with L-Lipschitz continuous
gradient ∇fi for all i = 1, . . . ,m, let 0 < h ≤ 1

L and let (xk)k≥0 be the sequence defined by
(MGD). Then, for all i = 1, . . . ,m and all k ≥ 0

fi(x
k+1) ≤ fi(x

k)− 1

2h
∥xk+1 − xk∥2.

Proof. We use the variational characterization of (MGD’). Since ∇fi(xk) ∈ C(xk) and 1
h(x

k −
xk+1) = projC(xk)(0), we follow from the variational characterization of the projection (see
Theorem 2.1.17) for all i = 1, . . . ,m and all k ≥ 0

⟨∇fi(xk), xk+1 − xk⟩ ≤ −1

h
∥xk+1 − xk∥2.

By Lemma 2.1.25, we have for all i = 1, . . . ,m and all k ≥ 0

fi(x
k+1)− fi(x

k) ≤
〈
∇fi(xk), xk+1 − xk

〉
+
L

2
∥xk+1 − xk∥2

≤
(
L

2
− 1

h

)
∥xk+1 − xk∥2.

Since 0 < h ≤ 1
L , we can bound L

2 − 1
h ≤ − 1

2h and conclude the proof.

From Proposition 2.3.25, we derive immediate consequences which we collect in the following
corollary.

Corollary 2.3.26. Let fi : H → R be continuously differentiable with L-Lipschitz continuous
gradient ∇fi for all i = 1, . . . ,m, let 0 < h ≤ 1

L and let (xk)k≥0 be the sequence defined by
(MGD). Then, the following statements hold:

i) For all i = 1, . . . ,m, the limit limk→+∞ fi(x
k) ∈ R ∪ {−∞} exists;

ii) The sequence (φ(xk))k≥0 is monotonically decreasing and the limit limk→+∞ φ(xk) exists;

iii) Assume there exists i ∈ {1, . . . ,m} such that the level set
{
x ∈ H : fi(x) ≤ fi(x

0)
}

is
bounded. Then, the sequence (xk)k≥0 remains bounded;

iv) Assume there exists i ∈ {1, . . . ,m} such that limk→+∞ fi(x
k) > −∞. Then,

∞∑
k=0

∥xk+1 − xk∥2 < +∞.
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2.3. Multiobjective optimization

Proposition 2.3.25 shows that (MGD) is a common descent method, i.e., for all i = 1, . . . ,m
it holds that (fi(x

k))k≥0 is a monotonically decreasing sequence. In the following theorem, we
describe more concrete asymptotical results.

Theorem 2.3.27. Let fi : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient ∇fi for all i = 1, . . . ,m, let 0 < h ≤ 1

L and let (xk)k≥0 be the sequence
defined by (MGD). Then, for all z ∈ H it holds that

lim
k→+∞

min
i=1,...,m

fi(x
k)− fi(z) ≤ 0.

Proof. Let z ∈ H. By Lemma 2.1.25, for all i = 1, . . . ,m and all k ≥ 0

fi(x
k+1)− fi(z) ≤ ⟨∇fi(xk), xk+1 − z⟩+ L

2
∥xk+1 − xk∥2.

We apply the minimum and derive for all k ≥ 0

min
i=1,...,m

fi(x
k+1)− fi(z) ≤

m∑
i=1

θki (fi(x
k+1)− fi(z))

≤

〈
m∑
i=1

θki∇fi(xk), xk+1 − z

〉
+
L

2
∥xk+1 − xk∥2

=
1

h

〈
xk − xk+1, xk+1 − z

〉
+
L

2
∥xk+1 − xk∥2

=
1

2h

[
∥xk − z∥2 − ∥xk − xk+1∥2 − ∥xk+1 − z∥2

]
+
L

2
∥xk+1 − xk∥2.

(2.34)

We use 0 < h ≤ 1
L and obtain from (2.34)

min
i=1,...,m

fi(x
k+1)− fi(z) ≤

1

2h

[
∥xk − z∥2 − ∥xk+1 − z∥2

]
. (2.35)

Since fi(x
k) is monotonically decreasing for all i = 1, . . . ,m, we follow that for all z ∈ H the

sequence mini=1,...,m fi(x
k+1)− fi(z) is monotonically decreasing and hence for all k ≥ 0

min
i=1,...,m

fi(x
k+1)− fi(z) ≤ min

i=1,...,m
fi(x

0)− fi(z). (2.36)

We combine (2.35) and (2.36) to get for all z ∈ H and all k ≥ 0

(k + 1) min
i=1,...,m

fi(x
k+1)− fi(z) ≤

k∑
l=0

fi(x
l+1)− fi(z) ≤

1

2h

k∑
l=0

[
∥xl − z∥2 − ∥xl+1 − z∥2

]
≤ 1

2h

[
∥x0 − z∥2 − ∥xk+1 − z∥2

]
≤ 1

2h
∥x0 − z∥2.

Therefore, we have for all k ≥ 1

min
i=1,...,m

fi(x
k)− fi(z) ≤

∥x0 − z∥2

2hk
. (2.37)

By taking the limit for k → +∞, the statement holds.
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Chapter 2. Theoretical background

Theorem 2.3.27 describes that there does not exist a z ∈ H which strictly dominates xk in the
limit. Under an additional assumption on the objective functions we can derive the following
refined version of this theorem.

Theorem 2.3.28. Let fi : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient ∇fi for all i = 1, . . . ,m, let 0 < h ≤ 1

L and let (xk)k≥0 be the sequence
defined by (MGD). Assume the functions fi are bounded from below for i = 1, . . . ,m. Then,

lim
k→+∞

φ(xk) = 0.

Proof. By Corollary 2.3.26, φ∞ := limk→+∞ φ(xk) ∈ R ∪ {+∞} exists. Since the functions fi
are bounded from below for all i = 1, . . . ,m, it holds that φ∞ < +∞. We give a proof by
contradiction to show φ∞ = 0. Assume φ∞ > 0. By the definition of φ(·) for all k ≥ 0 there
exists zk ∈ H with

min
i=1,...,m

fi(x
k)− fi(z

k) >
φ∞

2
.

Since (fi(x
k))k≥0 is monotonically decreasing for all i = 1, . . . ,m by Proposition 2.3.25 and since

fi is bounded from below by assumption, it holds that f∞i := limk→+∞ fi(x
k) ∈ R exists for all

i = 1, . . . ,m. For all a, b ∈ Rm it holds that mini=1,...,m ai ≤ maxi=1,...,m(ai− bi)+mini=1,...,m bi.
By this, we obtain

φ∞

2
< min

i=1,...,m
fi(x

k)− fi(z
k) ≤ max

i=1,...,m
fi(x

k)− f∞i + min
i=1,...,m

f∞i − fi(z
k). (2.38)

Since fi(x
k)− f∞i → 0 as k → +∞ for all i = 1, . . . ,m there exists K ≥ 0 such that

max
i=1,...,m

fi(x
K)− f∞i ≤ φ∞

4
. (2.39)

Combining (2.38) and (2.39), we get

φ∞

4
< min

i=1,...,m
f∞i − fi(z

K) = lim
k→+∞

fi(x
k)− fi(z

K),

which contradicts Theorem 2.3.27.

Building on Theorems 2.3.27 and 2.3.28, we derive asymptotic convergence rates for the method
(MGD) with respect to the merit function values φ(xk). To obtain these rates, we require
the following technical assumption. We postpone a detailed discussion of this assumption to
later sections, where it is applied to more involved first-order methods and gradient dynamical
systems in multiobjective optimization, as our goal for this subsection is merely to summarize
the most important results.

(A) For all x0 ∈ H and for all x ∈ L(F, F (x0)) it holds that LPw(F, F (x)) ̸= ∅ and further

R := sup
F ∗∈F (LPw(F,F (x0)))

inf
z∈F−1({F ∗})

1

2
∥z − x0∥2 < +∞. (2.40)
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2.3. Multiobjective optimization

Theorem 2.3.29. Let fi : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient ∇fi for all i = 1, . . . ,m, let 0 < h ≤ 1

L and let (xk)k≥0 be the sequence
defined by (MGD). Assume that Assumption (A) holds. Then for all k ≥ 1, it holds that

φ(xk) ≤ R

hk
,

where R > 0 is defined in Assumption (A).

Proof. The result follows immediately from the proof of Theorem 2.3.27. Inequality 2.34 states
for all z ∈ H and k ≥ 1

min
i=1,...,m

fi(x
k)− fi(z) ≤

∥x0 − z∥2

2hk
.

If we apply the supremum and infimum as in (A) and use Lemma 2.3.15 with a = 0, we obtain

φ(xk) = sup
F ∗∈F (LPw(F,F (x0)))

inf
z∈F−1({F ∗})

min
i=1,...,m

fi(x
k)− fi(z)

≤ sup
F ∗∈F (LPw(F,F (x0)))

inf
z∈F−1({F ∗})

∥x0 − z∥2

2hk
=

R

hk
.

We conclude the analysis of the multiobjective steepest descent method with the following
theorem which states that the sequence (xk)k≥0 given by (MGD) converges weakly to a weakly
Pareto optimal point of (MOP) under a boundedness assumption.

Theorem 2.3.30. Let fi : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient ∇fi for all i = 1, . . . ,m, let 0 < h ≤ 1

L and let (xk)k≥0 be the sequence
defined by (MGD). Assume the sequence (xk)k≥0 remains bounded. Then xk converges weakly
to a weakly Pareto optimal point of (MOP).

Proof. Define the set

S :=

{
z ∈ H : fi(z) ≤ lim

k→+∞
fi(x

k) for all i = 1, . . . ,m

}
.

Note that the limit limk→+∞ fi(x
k) ∈ R exists for all i = 1, . . . ,m by the boundedness of (xk)k≥0

and the fact that fi(x
k) is monotonically decreasing by Proposition 2.3.25. We will apply Opial’s

Lemma (Lemma 2.1.5) to prove that xk converges weakly to an element x∞ ∈ H. In a subse-
quent step, we show that x∞ ∈ Pw.

We begin by verifying the assumptions required for Opial’s Lemma. Since (xk)k≥0 is bounded it
posses at least one sequential cluster point x∞ ∈ H, i.e., there exists a monotonically increasing
subsequence (kl)l≥0 with xkl ⇀ x∞ as l → +∞. By the weak lower semicontinuity of the
objective functions we follow for all i = 1, . . . ,m

fi(x
∞) ≤ lim inf

l→+∞
fi(x

kl) = lim
k→+∞

fi(x
k).
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Therefore, x∞ ∈ S and by the same argument each weak sequential cluster point of (xk)k≥0

belongs to S. Let z ∈ S. By (2.35), we follow for all k ≥ 0

1

2h

[
∥xk+1 − z∥2 − ∥xk − z∥2

]
≤ − min

i=1,...,m
fi(x

k+1)− fi(z).

Since z ∈ S, it holds that mini=1,...,m fi(x
k+1)− fi(z) ≥ 0 for all i = 1, . . . ,m and therefore for

all k ≥ 0

∥xk+1 − z∥ ≤ ∥xk − z∥.

Hence, for all z ∈ S, the limit limk→+∞∥xk − z∥ exists. Then by Opial’s Lemma (Lemma 2.1.5)
it follows that xk converges weakly to an element in S, i.e., xk ⇀ x∞ ∈ S as k → +∞. Since xk

is bounded, it holds that fi(x
k) is uniformly bounded from below for all k ≥ 0 and i = 1, . . . ,m.

Then, by Corollary 2.3.26, we have

∞∑
k=0

∥∥∥∥∥projC(xk)

(0)

∥∥∥∥∥
2

=
1

h2

∞∑
k=0

∥xk+1 − xk∥2 < +∞.

Therefore, projC(xk)(0) → 0 as k → +∞. By Lemma 2.3.24, it follows that x∞ is Pareto critical
and hence weakly Pareto optimal due to the convexity of the objective functions.
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Chapter 3

A descent method for nonconvex
locally Lipschitz continuous
multiobjective optimization

In this chapter, we consider the multiobjective optimization problem

min
x∈H


f1(x)
...

fm(x)

 ,(MOP)

with objective functions fi : H → R for i = 1, . . . ,m. Naturally, there are applications, where the
objectives fi feature nonsmoothness. For example, in [168], an obstacle problem with an elastic
string is considered, where one objective is maximization of the contact area between the string
and a given obstacle and another objective is minimization of the total force applied to the string.

There is a vast amount of methods available for solving various types of finite-dimensional opti-
mization problems, but while most of them are designed to deal with either nonsmoothness [28]
or multiple objectives [169, 92], algorithms for nonsmooth multiobjective optimization problems
are scarce. Two possible methods designed for nonsmooth multiobjective optimization problems
are the proximal bundle method [158, 160] and the gradient sampling method [107].

Combining nonsmoothness, multiple objectives and an infinite-dimensional Hilbert space set-
ting becomes additionally challenging. When presented with such a nonsmooth multiobjective
optimization problem in infinite dimensions, there are several options to proceed, among them:

1. Discretize the infinite-dimensional nonsmooth multiobjective optimization problem and
then use a solver for finite-dimensional problems, e.g., one of those presented in [158, 160,
107].

2. Scalarize the problem and then use a solver for infinite-dimensional nonsmooth scalar
optimization, e.g., [169, 37].

3. Design a method that is capable of treating infinite dimensions, nonsmooth objective
functions and multiple objectives at the same time.
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optimization

Option 1 does not incorporate the underlying infinite-dimensional problem’s topology and can
therefore suffer from mesh-dependent behavior such as inconsistent termination criteria between
different meshes; see, e.g., the discussion in [132, Sections 3.2.2-3.2.4]. Option 2, as in the smooth
case, struggles in the presence of nonconvexity or when the number of objectives exceeds two.
Option 3 suffers from neither of these drawbacks but is technically challenging to realize. Pre-
viously, infinite-dimensional nonsmooth multiobjective optimization problems have been mostly
addressed under additional assumptions on the structure, such as convexity or composite struc-
ture (e.g., [41, 43, 115]). To the best of our knowledge, the method introduced in [215], which we
discuss in this chapter, presents the first nonscalarizing method for solving general, unstructured
nonsmooth infinite-dimensional multiobjective optimization problems.

In this chapter, we generalize the common descent method based on subderivative sampling
presented in [107] from finite-dimensional to infinite-dimensional (Hilbert space) settings. The
main idea in [107] is to replace the Clarke subdifferential [75] in the design of the descent direc-
tion in the dynamic gradient approach of [17] with the Goldstein ε-subdifferential [113], and to
approximate the latter via an adaptive gradient sampling scheme. This way, a descent direction
for nonsmooth multiobjective optimization problems can be computed. Combining this descent
direction with an Armijo-backtracking-type step size control yields a descent method, for which
convergence to points satisfying a necessary optimality condition has been shown. This algorith-
mic approach can be extended to a general Hilbert space setting in a relatively straightforward
manner, but the convergence analysis of the algorithm requires modifications to account for the
loss of compactness of bounded and closed sets. Additionally, the notions of optimality employed
in [107] will be adapted. While the Clarke subdifferential and the Goldstein ε-subdifferential
have already been defined on Hilbert spaces [75, 164, 163], their multiobjective counterparts re-
quire additional attention. We generalize these objects and prove that they satisfy a generalized
demiclosedness property, and employ them in the derivation of necessary conditions for Pareto
optimality.

This chapter is organized as follows. In Section 3.1, we extend the Goldstein ε-subdifferential to
the multiobjective, infinite-dimensional setting and investigate its properties. Theorem 3.1.10
describes a demiclosedness property of the multiobjective ε-subdifferential, which is important
for the convergence proof of the introduced method. The main results of this chapter are pre-
sented in Section 3.2. First, in Subsection 3.2.1 we describe how descent directions satisfying
a sufficient descent property for all objective functions can be obtained theoretically using the
generalized subdifferential from the previous section. In Subsection 3.2.2, we present an al-
gorithm to efficiently compute such descent directions (under the assumption that at least one
subderivative can be computed at every point) and prove its feasibility. Using this algorithm, we
introduce a descent method for locally Lipschitz continuous multiobjective optimization prob-
lems in general Hilbert spaces (Algorithm 3) in Subsection 3.2.3. We prove that this method
generates sequences of iterates with Pareto critical accumulation points in Theorem 3.2.10. In
Section 3.3, we demonstrate and analyze the behavior of our method in application to a multi-
objective obstacle problem on a two-dimensional domain.
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The content of this chapter was already published in the following paper:

[215] Sonntag, K.,Gebken, B.,Müller, G., Peitz, S., and Volkwein, S. A descent method
for nonsmooth multiobjective optimization in Hilbert spaces. In: Journal of Optimization
Theory and Applications 203 (1) (2024), pp. 455–487. doi: 10.1007/s10957-024-02520-
4.

3.1 Generalized derivatives

In this section, we introduce a generalization of the Clarke subdifferential for the class of locally
Lipschitz continuous functions f : H → R. In Subsection 3.1.1 we introduce the so-called
Goldstein ε-subdifferential, and then extend it to the multiobjective setting in Subsection 3.1.2.

3.1.1 Goldstein ε-subdifferential

In finite dimensions, ∂Cf(x) is the convex hull of the limits of the derivatives of f in all sequences
(where the derivatives are defined) that converge to x. Thus, if we evaluate the Fréchet derivative
Df in a number of points close to x (where it is defined) and take the convex hull, we expect the
resulting set to be an approximation of ∂Cf(x). To formalize this, we introduce the following
definition (see [113, 138]).

Definition 3.1.1. Let f : H → R, ε ≥ 0 and x ∈ H. Then, we define the (Goldstein) ε-
subdifferential of f in x by

∂εCf(x) := conv∗

 ⋃
y∈Bε(x)

∂Cf(y)

 ,

which is the weak∗-closure of the convex hull of the union of the Clarke subdifferentials of the
objective function f evaluated in the closed ball centered at x with radius ε. We call ξ ∈ ∂εCf(x)
an ε-subderivative.

Note that ∂0Cf(x) = ∂Cf(x) and ∂Cf(x) ⊆ ∂εCf(x) for all ε > 0.

Proposition 3.1.2. Let x ∈ H and let f : H → R be globally Lipschitz continuous on the ball
Bε̄(x) for some ε̄ > 0. Moreover, suppose that ε ∈ [0, ε̄). Then, ∂εCf(x) is nonempty, convex
and weak∗-compact.

Proof. For ∂εCf(x), the claim was shown in [164, Proposition 2.3]. To apply the proof we need a

neighbourhood of Bε(x), where f is globally Lipschitz continuous. For that reason we introduce
the open ball Bε̄(x) ⊋ Bε(x) in the formulation of this proposition.

In the following, we present a theorem that is a stronger version of parts ii) and iii) of Proposition
2.1.35. This result relates the ε-subdifferential to the Clarke subdifferential. Before we state the
theorem we prove a preparatory lemma.
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Chapter 3. A descent method for nonconvex locally Lipschitz continuous multiobjective
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Lemma 3.1.3. Let f : H → R be locally Lipschitz continuous in x ∈ H, v ∈ H\{0} and α ∈ R.
If

α > ξ(v) for all ξ ∈ ∂Cf(x), (3.1)

then there exists an ε > 0, such that for all 0 ≤ ε ≤ ε

α > ξ(v) for all ξ ∈ ∂εCf(x). (3.2)

Proof of Lemma 3.1.3. We do not show (3.2) directly but first conclude that the separation
holds in the weaker form of

α > ξ(v) for all ξ ∈
⋃

y∈Bε(x)

∂Cf(y) ⊂ ∂εCf(x), (3.3)

which is a consequence of Proposition 2.1.35 as we prove in the following.

Let v ∈ H\{0} and α ∈ R. Assume for all ε̄ > 0 there exists an ε ∈ (0, ε̄] and ξ ∈
⋃
y∈Bε(x)

∂Cf(x)

with ξ(v) ≥ α. Then, there exist a sequence (εk)k≥0 of positive real numbers and sequences
(yk)k≥0 and (ξk)k≥0 of elements in H and H∗, respectively, such that εk converges to zero as
k → +∞, ξk ∈ ∂Cf(y

k), ξk(v) ≥ α for all k ≥ 0 and ∥yk − x∥ < εk converges to zero. Since
f is locally Lipschitz continuous in x, there exists an K ≥ 0 such that for all k ≥ K the map-
ping f is locally L-Lipschitz continuous in yk. Then, Proposition 2.1.33 i) states that for all
k ≥ K the elements of the sequence (ξk)k≥0 are contained in the weak∗-compact set BL(0) ⊂ H∗.
Therefore, the sequence (ξk)k≥0 has a sequential weak∗-accumulation point ξ∗. By Proposition
2.1.35 ii) the point ξ∗ is an element of ∂Cf(x). Since ξk(v) ≥ α for all k ≥ 0 we get by the
weak∗-convergence of a subsequence of (ξk)k≥0 to ξ∗, that ξ∗(v) ≥ α which is a contradiction to
(3.1). Therefore, (3.3) holds.

The remainder of the proof follows by the definition of the ε-subdifferential (see Definition 3.1.1).
If a set lies on one side of a hyperplane, then also its convex hull lies on that side and also its
closure.

Remark 3.1.4. Lemma 3.1.3 states that the ε-subdifferential contracts in a well-behaved manner
to the Clarke subdifferential as ε → 0. In view of Proposition 2.1.35 iii) this lemma states that
we do not have to take the full set-valued limit to contract the ε-subdifferential to one side of the
hyperplane defined by v and α.

Theorem 3.1.5. Let f : H → R be locally Lipschitz continuous in x ∈ H. Then, the following
statements hold:

i) Let (xk)k≥0 be a sequence in H converging to x and (εk)k≥0 a sequence in R>0 tending to 0.
Suppose that the sequence (ξk)k≥0 satisfies ξk ∈ ∂εkC f(x

k) for all k ≥ 0. Let ξ be a sequential
weak∗-accumulation point of (ξk)k≥0. Then, ξ ∈ ∂Cf(x);

ii) ∂Cf(x) =
⋂
ε>0

∂εCf(x).
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3.1. Generalized derivatives

Proof. i) Since ξk ∈ ∂εkC f(x
k) it follows that ξk ∈ ∂κkC f(x), with κk := εk+∥xk−x∥. Assume

ξ /∈ ∂Cf(x). Then, since ∂Cf(x) is convex and weak∗-compact, it is closed and the strict
separation theorem states that there exists v ∈ H \ {0} and α ∈ R satisfying

ξ(v) > α > η(v) for all η ∈ ∂Cf(x).

Since κk converges to 0, Lemma 3.1.3 states that there exists an K ≥ 0 such that

ξ(v) > α > η(v) for all η ∈ ∂κkC f(x), k ≥ K,

and hence

ξ(v) > α > ξk(v) for all k ≥ K.

This is a contradiction to the fact that ξ is a sequential weak∗-accumulation point of
(ξk)k≥0.

ii) From Proposition 2.1.35 iii), we immediately get the inclusion

∂Cf(x) =
⋂
ε>0

⋃
y∈Bε(x)

∂Cf(y) ⊆
⋂
ε>0

conv

( ⋃
y∈Bε(x)

∂Cf(y)

)
=
⋂
ε>0

∂εCf(x).

The other inclusion is a consequence of Lemma 3.1.3 and we prove it analogously to part
i). Assume that ξ ∈ ∩ε>0∂

ε
Cf(x), but ξ /∈ ∂Cf(x). Then, since ∂Cf(x) is convex and

weak∗-compact and therefore closed, the strict separation theorem states that there exist
v ∈ H \ {0} and α ∈ R such that

ξ(v) > α > η(v) for all η ∈ ∂Cf(x).

Lemma 3.1.3 states that there exists an ε > 0 such that

ξ(v) > α > η(v) for all η ∈ ∂εCf(x)

and hence ξ /∈ ∂εCf(x). Therefore, it follows that ξ /∈
⋂
ε>0 ∂

ε
Cf(x), which is a contradiction.

In total, we derive ∩ε>0∂
ε
Cf(x) ⊆ ∂Cf(x) which completes the proof.

3.1.2 Multiobjective ε-subdifferential

In this subsection, we extend the Goldstein ε-subdifferential to the multiobjective setting and
investigate its main properties.

Definition 3.1.6. Let fi : H → R be locally Lipschitz continuous for i = 1, . . . ,m and let ε ≥ 0
and x ∈ H. Then, we define the multiobjective ε-subdifferential by

Cε : H ⇒ H, x 7→ Cε(x) := conv∗

(
m⋃
i=1

∂εCfi(x)

)
,

which is the weak∗-closure of the convex hull of the union of the Goldstein ε-subdifferentials of
the objective function fi evaluated in x.
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For a visualization of Cε(x) in case of a finite-dimensional decision space, we refer to Example 3.1
in [107]. We use the multiobjective ε-subdifferential to give an approximate notion of criticality
with the following definition. Additionally, in the descent method we present in the next section
the step directions are defined using convex combinations of ε-subderivatives which are elements
in Cε(x).

Definition 3.1.7. We say that x ∈ H is (ε, δ)-critical for constants ε ≥ 0 and δ ≥ 0, if there

exists a ξ ∈ Cε(x) with ∥ξ∥∗ ≤ δ, or equivalently if
∥∥∥projCε(x)(0)

∥∥∥
∗
≤ δ.

Lemma 3.1.8. The convex hull of a finite union of convex, weak∗-compact sets is weak∗-
compact.

Proof. Although the proof utilizes standard arguments, we state it here for the sake of com-
pleteness. Let Ai ⊆ H∗ be nonempty, convex and weak∗-compact for all i = 1, . . . ,m and set
A := conv

(
∪mi=1A

i
)
. Let (ξk)k≥0 be an arbitrary sequence in A. The sets Ai are convex and

therefore we can write

ξk =
m∑
i=1

λki ξ
k
i for all k ≥ 0,

with λk = (λk1, . . . , λ
k
m)

⊤ ∈ ∆m and ξki ∈ Ai. Since ∆m is compact and the sets Ai are
sequentially weak∗-compact, there exists a subsequence (kl)l≥0 such that λkl → λ∗ ∈ ∆m and

ξkli ⇀∗ ξ∗i ∈ Ai as l → +∞ for all i = 1, . . . ,m. Then, ξkl converges to ξ∗ =
∑m

i=1 λ
∗
i ξ

∗
i ∈

conv (∪mi=1Ai) in the weak∗-topology, which completes the proof.

Now, we formulate the following result analogously to Proposition 3.1.2.

Proposition 3.1.9. Let x ∈ H, 0 ≤ ε < ε and let fi : H → R be globally Lipschitz continuous
on Bε̄(x) for i = 1, . . . ,m. Then, Cε(x) is nonempty, convex and weak∗-compact. Furthermore,

Cε(x) = conv

(
m⋃
i=1

∂εCfi(x)

)
,

in other words, the closure in Definition 3.1.6 is superfluous in this case.

Proof. The proof follows from Proposition 3.1.2 and Lemma 3.1.8.

The following theorem extends Theorem 3.1.5 to the multiobjective setting.

Theorem 3.1.10. Let fi : H → R be locally Lipschitz continuous in x ∈ H for i = 1, . . . ,m.
Let (εk)k≥0 be a sequence of positive numbers that converges to 0. Let (xk)k≥0 and (ξk)k≥0 be
sequences in H and H∗, respectively, and assume that xk converges to x and that ξk converges
to ξ in the weak∗-topology as k → +∞. Further, assume that ξk ∈ Cεk(xk) for all k ≥ 0. Then,

ξ ∈ C0(x) = conv

(
m⋃
i=1

∂Cfi(x)

)
.

50



3.2. Derivation of the descent method

Proof. Since the functions fi are locally Lipschitz continuous for i = 1, . . . ,m, there exists ε > 0
such that fi is L-Lipschitz continuous on Bε(x) for all i = 1, . . . ,m. Similar to the proof of
Theorem 3.1.5 we define κk := εk + ∥xk − x∥ for all k ≥ 0 and fix K ≥ 0 such that for all k ≥ K
it holds that κk ≤ ε. From ∂εkC f(x

k) ⊆ ∂κkC f(x) it follows that Cεk(xk) ⊆ Cκk(x). Proposition
3.1.9 implies that Cκk(x) is nonempty, convex and weak∗-compact and

Cκk(x) = conv

(
m⋃
i=1

∂κkC fi(x)

)
.

The remainder of the proof can be seen as a combination of the proofs of Theorem 3.1.5 and
Proposition 3.1.9. Since ξk is an element of Cκk(x) for all k ≥ K it can be written as

ξk =
m∑
i=1

λki ξ
k
i ,

with λk = (λk1, . . . λ
k
m) ∈ ∆m and ξki ∈ ∂κkC fi(x). Since κk ≤ ε it follows that ξki is contained in

the weak∗-compact set BL(0) ⊂ H∗. Hence, there exists a subsequence (kl)l≥0 such that

λkl → λ∗ ∈ ∆m and ξkli ⇀∗ ξ∗i ∈ BL(0) for all i = 1, . . . ,m as l → +∞.

From Theorem 3.1.5, it follows that ξ∗i ∈ ∂Cfi(x). Then, ξkl =
∑m

i=1 λ
kl
i ξ

kl
i converges to ξ∗ =∑m

i=1 λ
∗
i ξ

∗
i ∈ conv(∪mi=1∂Cfi(x)) in the weak∗-topology as l → +∞. Since the this limit is unique

and ξk converges to ξ in the weak∗-topology, the proof is complete.

The next corollary follows directly from Theorem 3.1.10 and gives a sufficient condition for a
point to be Pareto critical.

Corollary 3.1.11. Let fi : H → R be locally Lipschitz continuous in x ∈ H for i = 1, . . . ,m.
Assume that

0 ∈ Cε(x) for all ε > 0.

Then x is Pareto critical, i.e.,

0 ∈ conv

(
m⋃
i=1

∂Cfi(x)

)
.

After describing the optimality conditions for (MOP), we now move towards the algorithms
from [107] that we extend to the infinite-dimensional setting.

3.2 Derivation of the descent method

In this section, we present a line-search based common descent method, meaning that, starting
from a point x0 ∈ H, we generate a sequence (xk)k≥0 in H in which each point is an improvement
over the previous point with respect to all objective functions, that is

fi(x
k+1) < fi(x

k) for all k ≥ 0 and i = 1, . . . ,m,

and where xk+1 = xk + tkv
k for a search direction vk := R−1(ξk) generated from a dual element

ξk ∈ H∗ and corresponding step lengths tk > 0. The critical computation of the search direction
generalizes the method from [107] to the infinite-dimensional setting.
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3.2.1 Descent directions obtained from the multiobjective ε-subdifferential

The foundation of our approach is the following result from convex analysis.

Theorem 3.2.1. Let Ξ ⊆ H∗ be convex and closed. Then,

ξ̄ := argmin
ξ∈−Ξ

∥ξ∥2∗ (3.4)

is well-defined and unique. Further, it holds that either ξ̄ ̸= 0 and

⟨ξ̄, ξ⟩∗ ≤ −∥ξ̄∥2∗ < 0 for all ξ ∈ Ξ,

or ξ̄ = 0 and there is no ξ̃ ∈ H with ⟨ξ̃, ξ⟩∗ < 0 for all ξ ∈ Ξ.

Proof. This theorem is stated in [31, Theorem 3.14].

When considering Ξ = Cε(x) (which is convex and closed by definition), then this immediately
yields the following corollary.

Corollary 3.2.2. Let fi : H → R be locally Lipschitz continuous in x ∈ H for i = 1, . . . ,m and
let ε ≥ 0.

i) If x is locally weakly Pareto optimal, then

0 ∈ Cε(x);

ii) Let x ∈ H and

ξ̄ := argmin
ξ∈−Cε(x)

∥ξ∥2∗. (3.5)

Then either ξ̄ ̸= 0 and

⟨ξ̄, ξ⟩∗ ≤ −∥ξ̄∥2∗ < 0 for all ξ ∈ Cε(x),

or ξ̄ = 0 and there is no ξ̃ ∈ H with ⟨ξ̃, ξ⟩∗ < 0 for all ξ ∈ Cε(x).

This means that, when working with the ε-subdifferential instead of the Clarke subdifferential,
we still have a necessary optimality condition and a way to compute descent directions, although
the optimality conditions are weaker and descent can be expected to be weaker than when using
the unrelaxed subdifferential.

For the direction from (3.5), we can find a lower bound for a step size up to which we have
guaranteed descent in each objective function fi.

Lemma 3.2.3. Let fi : H → R be locally Lipschitz continuous in x ∈ H for i = 1, . . . ,m.
Moreover, we assume that ε ≥ 0 holds and we define v̄ := R−1(ξ̄) for the solution ξ̄ ∈ −Cε(x)
of (3.5). Then

fi(x+ tv̄) ≤ fi(x)− t ∥v̄∥2 for all 0 ≤ t ≤ ε

∥v̄∥
and i = 1, . . . ,m.
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Proof. The proof of [107, Lemma 3.2] can be adapted to the infinite-dimensional case using the
fact that the Mean Value Theorem (Theorem 2.1.36) holds for the Clarke subdifferential also in
infinite dimensions and because ∥v̄∥ = ∥ξ̄∥∗.

However, solving (3.5) generally requires the knowledge of the entire ε-subdifferential, which is
impractical. Instead, we will use Theorem 3.2.1 to compute a finitely generated approximation
Ξ of conv (∪mi=1∂

ε
Cfi(x)), where the resulting direction is guaranteed to have sufficient descent.

3.2.2 Computation of descent directions by adaptive subderivative sampling

In practice, it is generally not possible to compute the entire Clarke subdifferential ∂Cfi(x), un-
less additional structure of fi is known. In this subsection, we describe how the solution of (3.5)
can be replaced by a suboptimal one when for every i ∈ {1, . . . ,m}, only a single subderivative
from ∂Cfi(x) is available at every x ∈ H. Similar to the gradient sampling approach, the idea
behind this method is to use instead of Cε(x) in (3.5) the convex hull of a finite number of
ε-subderivatives ξ0, . . . , ξj from Cε(x) for j ≥ 0. Since it is impossible to know a priori how
many and which ε-subderivatives are required to obtain a good descent direction, we solve (3.5)
multiple times in an iterative manner while enriching our approximation until a satisfying di-
rection has been found. To this end, in the following, we will specify how to enrich our current
approximation conv({ξ0, . . . , ξj}) and how to characterize an acceptable descent direction.

Suppose that Ξ = {ξ0, . . . , ξj} ⊆ Cε(x) and define

ξ̃ := argmin
ξ∈− conv(Ξ)

∥ξ∥2∗. (3.6)

Let c ∈ (0, 1). Motivated by Lemma 3.2.3, we regard ṽ := R−1(ξ̃) as an acceptable descent
direction, if

fi

(
x+

ε

∥ṽ∥
ṽ

)
≤ fi(x)− cε∥ṽ∥ for all i = 1, . . . ,m. (3.7)

If the set I ⊆ {1, . . . ,m} for which (3.7) is violated is nonempty, then we have to find a new
ε-subderivative ξ′ ∈ Cε(x) such that Ξ∪ {ξ′} yields a better descent direction. Intuitively, (3.7)
being violated means that the local behavior of fi, for i ∈ I, in x in the direction ṽ is not
sufficiently captured in Ξ. Thus, for each i ∈ I, we expect that there exists some t′ ∈ (0, ε/∥ṽ∥]
such that ξ′ ∈ ∂Cfi(x+ t

′ṽ) improves the approximation of Cε(x). This is stated in the following
lemma. For a proof, we refer to [107, Lemma 3.3].

Lemma 3.2.4. Let c ∈ (0, 1), Ξ = {ξ0, . . . , ξj} ⊆ Cε(x) and ṽ := R−1(ξ̃) for the solution ξ̃ of
(3.6) and assume ṽ ̸= 0. If

fi

(
x+

ε

∥ṽ∥
ṽ

)
> fi(x)− c ε∥ṽ∥ for some i ∈ {1, . . . ,m},

then there exists a t′ ∈ (0, ε/∥ṽ∥] and ξ′ ∈ ∂Cfi(x+ t′ṽ) such that

⟨ξ̃, ξ′⟩∗ > −c ∥ξ̃∥2∗. (3.8)

In particular, ξ′ ∈ Cε(x) \ conv(Ξ).
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Note that Lemma 3.2.4 only shows the existence of t′ and ξ′ without stating a way how to
actually compute them. To solve this problem, let i ∈ {1, . . . ,m} be the index of an objective
function for which (3.7) is not satisfied, define

hi : R → R, t 7→ fi(x+ tṽ)− fi(x) + ct ∥ṽ∥2,

and consider Algorithm 1. If fi is continuously differentiable around x, then (3.8) is equivalent

Algorithm 1 (Computing of a new subderivative)

Require: Current point x ∈ H, direction ṽ = R−1(ξ̃) ∈ H, tolerance ε > 0, Armijo parameter
c ∈ (0, 1).

1: Set a = 0, b = ε/∥ṽ∥ and t = (a+ b)/2.
2: for j = 1, 2, . . . do
3: Compute a ξ′ ∈ ∂Cfi(x+ tṽ).
4: if ⟨ξ̃, ξ′⟩∗ > −c ∥ξ̃∥2∗ then
5: stop.
6: end if
7: if hi(b) > hi(t) then
8: set a = t.
9: else

10: set b = t.
11: end if
12: Set t = (a+ b)/2.
13: end for
14: return Current ξ′ ∈ ∂Cfi(x+ tṽ).

to h′i(t
′) > 0, in other words, hi being monotonically increasing around t′. Thus, the idea of

Algorithm 1 is to find some t such that hi is monotonically increasing around t, while checking
if (3.8) is satisfied for a subderivative ξ ∈ ∂Cfi(x + tṽ). For a more thorough discussion of the
behavior and termination of Algorithm 1, we refer to [106, 107]. Note that the computation of
a subderivative in Step 3 of the algorithm is a problem specific task that may be challenging on
its own, see also Section 3.3.3 for details on how this is solved in the numerical example.

We use this method of finding new subderivatives to construct an algorithm that computes
descent directions of nonsmooth multiobjective optimization problems, namely Algorithm 2. In
Theorem 3.2.8, we will show that Algorithm 2 stops after a finite number of iterations and
produces an acceptable descent direction, i.e., a direction that satisfies (3.7). In the infinite-
dimensional setting, the proof of [107, Theorem 3.1] cannot be applied directly. The proof uses
the fact that the closed ball Bε(x) is a compact subset of Rn to conclude that there exists a
common Lipschitz constant L on Bε(x) for the locally Lipschitz continuous objective functions
fi . This premise does not hold for infinite-dimensional Hilbert spaces. In fact one can construct
a function f that is locally Lipschitz continuous on H but not Lipschitz continuous on B2(0),
as demonstrated in the following example.

Example 3.2.5. Let H be a separable Hilbert space with orthonormal basis
(
ei
)
i∈N. For i ≥ 2

we define by Bi := B1/i(ei) a family of closed balls. Obviously, we have Bi ∩ Bj = ∅ for i ̸= j,
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Algorithm 2 (Computing a descent direction)

Require: Current point x ∈ H, tolerances ε, δ > 0, Armijo parameter c ∈ (0, 1).
1: Compute ξ0i ∈ ∂εCfi(x) for all i = 1, . . . ,m. Set Ξ0 = {ξ01 , . . . , ξ0m} and l = 0.
2: for l = 0, 1, 2, . . . do
3: Compute ξl = argminξ∈− conv(Ξl)

∥ξ∥2∗ and set vl = R−1
(
ξl
)
.

4: if
∥∥ξl∥∥∗ ≤ δ then

5: return vl.
6: else
7: Find all objective functions for which there is insufficient descent:

Il =
{
i ∈ {1, . . . ,m} : fi

(
x+ εvl/∥vl∥

)
> fi(x)− c ε ∥vl∥

}
.

8: if Il = ∅ then
9: stop.

10: else
11: For each i ∈ Il compute ti ∈ (0, ε/∥vl∥] and ξli ∈ ∂Cfi(x+tiv

l) with ⟨ξl, ξli⟩∗ > −c ∥ξl∥2∗
by applying Algorithm 1.

12: Set Ξl+1 = Ξl ∪ {ξli : i ∈ Il}.
13: end if
14: end if
15: end for

since ∥ei − ej∥=
√
2 > 1/i+ 1/j. Using the sets Bi define the function

f : H → R, x 7→

{
i ∥x− ei∥ if x ∈ Bi,
1 otherwise.

The local Lipschitz continuity can be derived from the definition of f . In fact, the set H\
⋃
i≥2 Bi

is open and hence for every x ∈ H\
⋃
i≥2 Bi there exists a neighborhood of x on which f is constant

and therefore Lipschitz continuous. If x ∈ Bi for some i ≥ 2 there exists an open neighborhood U
of x such that U ∩Bj = ∅ for j ̸= i. Then, for all y, z ∈ U it holds that |f(y)− f(z)| ≤ i∥y− z∥,
which can be verified by a simple case separation considering all the case where y and z belong
to H \

⋃
i≥2 Bi or Bi.

If f would be Lipschitz continuous on B2(0) with some Lipschitz constant L > 0 we arrive at a
contradiction because then Bi(0) = ∂Cf(ei) ⊆ BL(0) has to hold since ei ∈ B2(0) for all i ≥ 2.

Nevertheless, we can show that Algorithm 2 still converges for an infinite-dimensional Hilbert
space. We can recover the main argument of the proof of [107, Theorem 3.1] but need some
preparatory results to bypass the fact that we cannot use a common Lipschitz constant for the
functions fi on Bε(x). To this end, we introduce the two following lemmas.

Lemma 3.2.6. Let C1 ⊆ C2 ⊆ H∗ be two convex and closed subsets. Define

ξ1 := argmin
ξ∈C1

∥ξ∥2∗ and ξ2 := argmin
ξ∈C2

∥ξ∥2∗.
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Note that ξ1 and ξ2 are well-defined and unique. Let δ ≥ 0 such that ∥ξ2∥∗ ≥ δ. Then

∥ξ1 − ξ2∥2∗ ≤ ∥ξ1∥2∗ − δ2.

Proof. Simply rewriting the squared norm yields

∥ξ1 − ξ2∥2∗ = ∥ξ1∥2∗ − ∥ξ2∥2∗ + 2 ⟨ξ2, ξ2 − ξ1⟩∗.

From ξ1 ∈ C2 we infer the projection property ⟨ξ2, ξ2 − ξ1⟩∗ ≤ 0. In addition with the relation
−∥ξ2∥2∗ ≤ −δ2 we get the desired result.

In the proof of the following lemma we directly incorporate Lemma 3.2.6.

Lemma 3.2.7. Let (ξl)l≥0 be an arbitrary sequence in H∗. Define Ξl := {ξ0, . . . , ξl} for l ≥ 0.
Let the sequence (ψl)l≥0 ⊂ H∗ be given by

ψl = argmin
ψ∈− conv(Ξl)

∥ψ∥2∗.

Then ψl converges strongly in H∗.

Proof. From the definition of the elements ψl we obtain that (∥ψl∥∗)l≥0 is monotonically de-
creasing. Hence we can conclude that there exists a δ ≥ 0 such that

lim
l→+∞

∥ψl∥2∗ =: δ2 ≥ 0.

Using the limit δ2 ≥ 0 and Lemma 3.2.6, we will show that (ψl)l≥0 is a Cauchy sequence in
H∗. Let l,m ≥ 1 and consider ∥ψl − ψl+m∥∗. Choosing C1 = − conv(Ξl), C2 = − conv(Ξl+m),
ξ1 = ψl and ξ2 = ψl+m with ∥ψl+m∥∗ ≥ δ we infer from Lemma 3.2.6 that

∥ψl − ψl+m∥2∗ ≤ ∥ψl∥2∗ − δ2.

Since liml→+∞∥ψl∥2∗ = δ2 it follows that (ψl)l≥0 is a Cauchy sequence in H∗. Consequently, ψl

converges strongly in H∗.

Using Lemmas 3.2.6 and 3.2.7, we can adapt the proof of [107, Theorem 3.1] to show that
Algorithm 2 terminates in the Hilbert space setting.

Theorem 3.2.8. Let fi : H → R be locally Lipschitz continuous for i = 1, . . . ,m. Then, Algo-
rithm 2 terminates and hence the sequence (vl)l≥0 is finite. If ṽ is the last element of (vl)l≥0

and ξ̃ = R(ṽ), then either ∥ξ̃∥∗ ≤ δ or ṽ is an acceptable descent direction, that is,

fi

(
x+

ε

∥ṽ∥
ṽ

)
≤ fi(x)− cε∥ṽ∥ for all i = 1, . . . ,m.

Proof. Assume Algorithm 2 does not terminate, that is, the sequences (ξl)l≥0 and (vl)l≥0 =(
R−1(ξl)

)
l≥0

are infinite sequences. Independently from Steps 7 and 11, Lemma 3.2.7 guar-

antees that ξl converges to an element ξ̃ ∈ H∗ as l → +∞, and, accordingly, vl converges to
ṽ = R−1(ξ̃) as l → +∞. Hence, the scalars tli ∈ (0, ε/∥vl∥] chosen in Step 11 are bounded for all
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l ≥ 0 and i ∈ Il. Using this, we choose a subsequence (lk)k≥0 such that Ilk = Ĩ remains constant

and tlki → t̃i ∈ [0, ε/∥ṽ∥] for k → +∞ for all i ∈ Ĩ. Accordingly, x + tlki vlk converges to x + t̃iṽ
as k → +∞.

Since the functions fi are locally Lipschitz continuous, there exists a common local Lipschitz
constant L ≥ 0 such that all objective functions fi are L-Lipschitz continuous in a neighborhood
of x + t̃iṽ, respectively. Due to the convergence of the sequences, we can find an index K ≥ 0
and κ ≥ 0 such that ∥∥ξlki ∥∥∗ ≤ L+ κ for all k ≥ K and i ∈ Ĩ . (3.9)

On the other hand, we can bound ∥ξl∥∗ ≤ ∥ξ0∥∗ ≤ max
(
∥ξ0∥∗, L+ κ

)
for all l ≥ 0. For

convenience, we update L→ max
(
∥ξ0∥∗, L+ κ

)
for the remainder of the proof to get a uniform

bound for ∥ξlki ∥∗ and ∥ξl∥∗ for all k ≥ K, i ∈ Ĩ and l ≥ 0.

Now, let k ≥ K and i ∈ Ĩ. Since ξ
lk−1

i ∈ Ξlk and −ξlk−1 ∈ conv
(
Ξlk−1

)
⊆ conv (Ξlk), we have

(1 − s)(−ξlk−1) + sξ
lk−1

i ∈ conv (Ξlk) for all s ∈ [0, 1]. Therefore, the minimization property of
ξlk yields that∥∥ξlk∥∥2∗ ≤ ∥∥− ξlk−1 + s(ξ

lk−1

i + ξlk−1)
∥∥2
∗

=
∥∥ξlk−1

∥∥2
∗ − 2s

〈
ξlk−1 , ξ

lk−1

i + ξlk−1
〉
∗ + s2

∥∥ξlk−1

i + ξlk−1
∥∥2
∗

=
∥∥ξlk−1

∥∥2
∗ − 2s

〈
ξlk−1 , ξ

lk−1

i

〉
∗ − 2s

∥∥ξlk−1
∥∥2
∗ + s2

∥∥ξlk−1

i + ξlk−1
∥∥2
∗,

(3.10)

for all s ∈ [0, 1]. Since i ∈ Ĩ we must have〈
ξlk−1 , ξ

lk−1

i

〉
∗ > −c

∥∥ξlk−1
∥∥2
∗, (3.11)

by Step 11. From inequality (3.9) and the choice of the Lipschitz constant L, we can conclude
that ∥∥ξlk−1

i + ξlk−1
∥∥
∗ ≤ 2L. (3.12)

Combining (3.10) with (3.11) and (3.12) yields∥∥ξlk∥∥2∗ < ∥∥ξlk−1
∥∥2
∗ + 2sc

∥∥ξlk−1
∥∥2
∗ − 2s

∥∥ξlk−1
∥∥2
∗ + 4s2L2

=
∥∥ξlk−1

∥∥2
∗ − 2s(1− c)

∥∥ξlk−1
∥∥2
∗ + 4s2L2.

Now, we choose s := (1 − c)∥ξlk−1∥2∗/(4L2). Since 1 − c ∈ (0, 1) and ∥vlk−1∥∗ ≤ L we have
s ∈ (0, 1). Thus, we obtain

∥∥ξlk∥∥2∗ < ∥∥ξlk−1
∥∥2
∗ −

2(1− c)2

4L2

∥∥ξlk−1
∥∥4
∗ +

(1− c)2

4L2

∥∥ξlk−1
∥∥4
∗

=

(
1− (1− c)2

4L2

∥∥ξlk−1
∥∥2
∗

)∥∥ξlk−1
∥∥2
∗.
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We have assumed that Algorithm 2 does not terminate. Therefore, we must have ∥ξlk−1∥∗ > δ,
which implies ∥∥ξlk∥∥2∗ < r

∥∥ξlk−1
∥∥2
∗,

with r :=
(
1−

(
1−c
2L δ

)2)
. Note that we have δ < ∥ξlk∥∗ ≤ L for all k ≥ 0, so r ∈ (0, 1).

Additionally, r does not depend on lk, so we have∥∥ξlk∥∥2∗ < r
∥∥ξlk−1

∥∥2
∗ < r2

∥∥ξlk−2
∥∥2
∗ < . . . < rk

∥∥ξl0∥∥2∗ ≤ rkL2.

In particular, there exists some k such that ∥ξlk∥∗ ≤ δ, which is a contradiction.

Remark 3.2.9. The proof of Theorem 3.2.8 shows that for convergence of Algorithm 2, it would
be sufficient to consider only a single i ∈ Il in Step 11. Similarly, for the initial approximation
Ξ0, a single element of ∂εCfi(x) for any i ∈ {1, . . . ,m} would be enough. A modification of either
step can potentially reduce the number of executions of Step 11 (i.e., Algorithm 1) in Algorithm
2 in case the ε-subdifferentials of multiple objective functions are similar. However, we will forgo
these modifications and leave Algorithm 2 as it is, since both modifications also introduce a bias
towards certain objective functions, which we want to avoid.

3.2.3 The final descent method

Building on Algorithm 2, it is now straightforward to construct the descent method for locally
Lipschitz continuous multiobjective optimization problems given in Algorithm 3.

Algorithm 3 (Nonsmooth descent method)

Require: Initial point x0 ∈ H, parameters for stopping criterion δ, ε ≥ 0, tolerance sequences
(δk)k≥0, (εk)k≥0 ⊆ R>0, Armijo parameters c ∈ (0, 1), t0 > 0.

1: for k = 0, 1, 2, . . . do
2: Compute a descent direction vk via Algorithm 2 with inputs (xk, εk, δk, c).
3: Use backtracking line search to determine

s̄ = inf
{
s ∈ N ∪

{
0} : fi(x

k + 2−st0v
k) ≤ fi(x

k)− 2−sct0 ∥vk∥2

for all i ∈ {1, . . . ,m}
}

and set t̄ = max
(
2−s̄t0, εk/∥vk∥

)
.

4: if ∥vk∥ ≤ δ and εk ≤ ε then
5: return (ε, δ)-critical point xk

6: else
7: Set xk+1 = xk + t̄vk.
8: end if
9: end for

In Step 3, the classical Armijo backtracking line search is used (see [103]) for the sake of sim-
plicity. Note that it is well-defined due to Step 7 in Algorithm 2.
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Clearly, the stopping condition matches the Definition 3.1.7 of the current iterate being (ε, δ)-
critical exactly. Thus, when Algorithm 3 terminates, it will in fact return an (ε, δ)-critical point.
We state a convergence as well as a termination result for Algorithm 3. First off, in Theorem
3.2.10, we address the case, where the tolerances ε and δ are both set to 0. The theorem states
that Algorithm 3 converges (in the sense of subsequences) to Pareto critical points in the limit.
Then, in Theorem 3.2.11 we show that the algorithm is capable of finding (ε, δ)-critical points,
for generalized parameter settings.

Theorem 3.2.10. For i = 1, . . . ,m let fi : H → R be locally Lipschitz continuous. Let x0 be an
element in H and (δk)k≥0, (εk)k≥0 ⊆ R>0 be two sequences with

δk → 0, εk → 0 as k → +∞ and

∞∑
k=1

εkδk = ∞.

Let further ε = δ = 0, c ∈ (0, 1) and t0 > 0. Assume Algorithm 3 does not converge af-
ter finitely many steps. Let (xk)k≥0 be the sequence generated by Algorithm 3 with inputs
(x0, δ, ε, (δk)k≥0, (εk)k≥0, c, t0). Then, the following statements hold:

i) Every accumulation point of (xk)k≥0 is Pareto critical;

ii) If one fi is bounded from below then (xk)k≥0 possesses a subsequence (xkl)l≥0 such that
∥vkl∥ → 0 as l → ∞.

Proof.

i) In the following proof we choose appropriate subsequences of (xk)k≥0 multiple times. We
do this without relabeling the sequence and only comment when doing so. Let x∗ be
an accumulation point of (xk)k≥0. Then, there exists a subsequence (no relabeling) with
xk → x∗ as k → ∞.

First we show that ∥vk∥ ≤ δk is true for infinitely many k ≥ 0. In each iteration of Algo-
rithm 3, we use Algorithm 2. Therefore at least one of the stopping criteria of Algorithm 2
is met infinitely many times. Assume the stopping criteria ∥vk∥ < δ in Step 4 of Algorithm
2 (where ∥vk∥ = ∥ξk∥∗) is only met finitely many times. Then, there exists J ≥ 0 such
that for all k ≥ J it holds that

fi(x
k+1) ≤ fi(x

k)− cεk∥vk∥ for all i = 1, . . . ,m and ∥vk∥ > δk. (3.13)

The first inequality follows from the active stopping criterion in Step 7 of Algorithm 2 and
the way the backtracking rule in Step 3 of Algorithm 3 is defined. We show that these
inequalities lead to a contradiction. Let i ∈ {1, . . . ,m} and K ≥ J . Then, we have

fi(x
K+1)− fi(x

J) =

K∑
k=J

fi(x
k+1)− fi(x

k) ≤
K∑
k=J

−cεk∥vk∥

< −c
K∑
k=J

εkδk.

(3.14)
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We know by the assumptions on (δk)k≥0 and (εk)k≥0 that the last series diverges. Accord-
ingly, the sequential continuity of fi yields that

fi(x
∗)− fi(x

J) = −c lim
K→+∞

K−1∑
k=J

εkδk = −∞,

which is a contradiction as the difference on the left hand side is finite.

Therefore, ∥vk∥ ≤ δk holds for infinitely many k ≥ 1. This means, we can choose an
appropriate subsequence of (xk)k≥0 (no relabeling) such that

xk → x∗ as k → +∞ and ∥vk∥ < δk for all k ≥ K.

By Theorem 3.1.10 it follows that 0 ∈ conv(∪mi=1∂Cfi(x
∗)). Hence x∗ is Pareto critical.

ii) The proof follows from inequalities (3.13) and (3.14) and the fact that ∥vk∥ ≤ δk has to
hold for infinitely many k ≥ 0 if fi is bounded from below.

In practice, we will rely on Algorithm 3 terminating after a finite number of iterations due to
the stopping criterion for tolerances ε, δ > 0 instead of generating infinite sequences of iterates.
The following theorem states that the algorithm will in fact terminate after a finite number of
iterations, for example, if the sequences (εk)k≥0 and (δk)k≥0 are chosen as certain constants.

Theorem 3.2.11. Let fi : H → R be locally Lipschitz continuous for i = 1, . . . ,m. We suppose
that x0 is an element in H and set ε, δ > 0. Let (δk)k≥0, (εk)k≥0 ⊆ R>0 be constant sequences
with δk = δ, εk = ε for all k ≥ 0, c ∈ (0, 1) and t0 > 0. Let (xk)k≥0 be the sequence generated by
Algorithm 3 with inputs (x0, δ, ε, (δk)k≥0, (εk)k≥0, c, t0) and assume that one objective function
fi is bounded from below. Then, Algorithm 3 returns an (ε, δ)-critical point after finitely many
iterations.

Proof. Assume Algorithm 3 does not terminate after finitely many steps and produces an infinite
sequence (xk)k≥0. Since the condition εk ≤ ε is fulfilled in every iteration of Algorithm 3, we
show that ∥vk∥ ≤ δ has to hold for one k ≥ 1. Then, Algorithm 3 stops since the condition εk ≤ ε
is fulfilled in every step. Again one of the stopping criteria of Algorithm 2 has to be fulfilled
infinitely many times. If ∥vk∥ ≤ δ in Step 4 of Algorithm 2 is fulfilled then also Algorithm 3
stops. If this is not the case then Algorithm 2 only stops due to the stopping condition in Step
8 and we conclude that for all k ≥ 0 it holds that

fi(x
k+1) ≤ fi(x

k)− c ε∥vk∥ for all i = 1, . . . ,m and ∥vk∥ > δ.

Combining these inequalities, we have for all k ≥ 0

fi(x
k+1) ≤ fi(x

k)− c εδ for all i = 1, . . . ,m. (3.15)

This leads to a contradiction. Fix i ∈ {1, . . . ,m} such that fi is bounded from below. Then, by
(3.15), we have for all K ≥ 1

fi(x
K)− fi(x

0) =
K−1∑
k=0

fi(x
k+1)− fi(x

k) ≤
K−1∑
k=0

−c εδ = −Kcεδ. (3.16)
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Since the right-hand side of (3.16) diverges to −∞ for K → ∞, we arrive at a contradiction
given that fi is bounded from below.

Remark 3.2.12. The choice of the tolerance sequences (δk)k≥0 and (εk)k≥0 in Theorem 3.2.11
can be further relaxed. We are not forced to use constant sequences δk = δ and εk = ε. Instead,
we could choose arbitrary sequences with δk ∈ (0, δ] and εk ∈ (0, ε] that satisfy the condition∑∞

k=0 δkεk = ∞ similar to the requirements of Theorem 3.2.10. This could be further relaxed to
arbitrary positive sequences δk > 0 and εk > 0 provided that they remain bounded by δ and ε for
almost all iterations and that they also satisfy the summability property

∑∞
k=0 δkεk = ∞. The

proof in these settings follows analogously to the proof of Theorem 3.2.11.

3.3 Application in bicriterial optimal control of an obstacle prob-
lem

In this section, we examine the behavior of Algorithm 3 applied to a classic, nonsmooth obstacle-
constrained optimal control problem – see, for example, [136, Section 6] – on the two-dimensional
domain Ω := (−1, 1)2 for two objective functions.

The forward problem, that is, the constraint in the optimal control problem, can be interpreted
as the problem of finding a displacement y : Ω → R of a clamped membrane under external,
distributed vertical forces u : Ω → R (assuming small displacements with linear response) with
a rigid obstacle, described by ψ : Ω → R, limiting the vertical displacement to y ≤ ψ.

This constrained problem can be equivalently formulated as a convex energy minimization prob-
lem or via the corresponding partial differential variational inequality, and it is well understood.
Most importantly, the control-to-state operator is known to be well-defined, Lipschitz continu-
ous and Hadamard- but generally not Fréchet-differentiable everywhere [122, 151, 171]. There is
also extensive literature on computational aspects for obstacle constrained dynamics, including
efficient solvers [116, 117, 167, 232].

Various aspects of optimal control problems with the obstacle constraint have previously been
considered in a broad range of publications (e.g., [72, 171, 231]), but, to the best of our knowl-
edge, obstacle-constrained optimization problems have not been considered in the context of
infinite-dimensional multiobjective optimization (though their discretizations have been dealt
with in finite-dimensional, nonsmooth multiobjective optimization [168]). Due to the nonlin-
earity of the control-to-state operator, these problems are generally nonconvex and nonsmooth.
However, (varying notions of) subdifferentials of the control-to-state operator have been charac-
terized in [201], and [200, Theorem 5.7] shows how to compute an element of the Clarke subdif-
ferential of control reduced optimal control of the obstacle problem – which is what we require
in order to employ our common descent method. Note that this exact technique for computing
subderivatives was applied in scalar optimal control of obstacle-constrained problems using an
inexact bundle method in function space [128, 129].
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3.3.1 Problem description

The domain we consider is the two dimensional square Ω = (−1, 1)2 ⊆ R2 with an obsta-
cle described by a function ψ ∈ H1(Ω) (to be specified later), yielding the set of admissible
displacements

K :=
{
y ∈ V := H1

0 (Ω) : y ≤ ψ a.e. on Ω
}
,

which is guaranteed to be nonempty by choosing ψ appropriately. The variational inequality
formulation of the constraining obstacle problem for a fixed, distributed external load f ∈ V ∗ :=
H−1(Ω) amounts to finding y ∈ K, such that

⟨Ay − f, v − y⟩V ∗,V ≥ 0 for all v ∈ K. (3.17)

Here, A : V → V ∗ is a linear, continuous and coercive partial differential operator (we will be
using the weak form of A = −∆ in the following), and ⟨· , ·⟩V ∗,V denotes the dual pairing. In the
optimal control problem, we consider the control space U := L2(Ω) with the standard U ↪→ V ∗

Gelfand-type embedding to let u ∈ U assume the role of f in (3.17).

Given a desired state and reference control yd ∈ H := L2(Ω), ud ∈ U , we then fix the two cost
functionals to obtain the optimal control problem

min
(y,u)∈K×U

1

2

(
∥y − yd∥2H
C ∥u− ud∥2U

)
,

s.t. ⟨Ay − u, v − y⟩V ∗,V ≥ 0 for all v ∈ K,

(3.18)

with a hyperparameter C > 0. Note that C is essentially introduced in order to scale the axes
in the plots of the Pareto fronts, so that they are easier to interpret. Introducing and tuning
the parameter C can be interpreted as preconditioning of the problem.

Problem (3.18) is an optimal control problem and clearly a constrained problem. To make it
fit into the realm of unconstrained optimization, which we have formulated the algorithms in
this chapter for, we simply make use of the existence of the Hadamard-differentiable solution
operator of the obstacle problem S : U → K ⊆ V mapping a control u to the solution y = S(u)
of the constraining variational inequality of (3.18) to obtain the equivalent control-reduced
multiobjective optimization problem

min
u∈U

1

2

(
∥S(u)− yd∥2H
C ∥u− ud∥2U

)
. (3.19)

Using the direct method of variational calculus, one can easily show, that the weighted-sum-
scalarized problems corresponding to this problem possess solutions, and hence the Pareto set
and the Pareto front of this problem are nonempty. What remains to be fixed in the remainder
is the choice of the algorithmic parameters, the desired states and controls yd, ud and the specific
obstacle ψ.
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We describe the choice of the free parameters in the following subsection. In all cases, we ensure
that our problem configuration in fact captures the nonsmooth behavior of the problem. As
mentioned above, the nonsmoothness of the problem is introduced by the solution operator.
More specifically, the points of non-Fréchet-differentiability are precisely those of so called weak
contact, that is, where the control corresponds to a state that is in contact with the obstacle,
but where there are no normal forces actively preventing penetration on a sufficiently large area
(in the sense of Sobolev capacities). Such configurations of “coincidental” contact are exactly
those, where the problem transfers from a free Poisson problem to a full constrained problem.

3.3.2 Computational procedure and joint parameters

The goal of our numerical procedure is to find an approximate representation of the Pareto front
and Pareto set of the obstacle-constrained optimal control problem (3.19). To this end, we apply
Algorithm 3 starting from a number of varying initial values. As shown in Theorem 3.2.11, for
each initial value, Algorithm 3 terminates at an (ε, δ)-critical point after finitely many steps.
As the terminal iterate of the algorithm typically varies with varying initial guesses, we obtain
a representation of the Pareto front and the Pareto set of (3.19) by (ε, δ)-critical points. We
chose the different initial controls u0 ∈ U constant on the entire domain. Specifically, we apply
the algorithm for constant initial controls for all values u0 ≡ û ∈ {1, 2, . . . , 8} and for all mesh
discretizations hmax ∈ {0.2, 0.1, 0.05, 0.02}.

For all experiments, we fix the scaling parameter C = 1.5e−2 and the hyperparameters ε =
δ = 1e−4, c = 1e−1 and the constant sequences (εk)k≥0 ≡ ε, (δk)k≥0 ≡ δ. Further, we set
yd ≡ 2 and ud ≡ 0. This choice yields a setting where the first cost functional improves when
the state is pushed upwards towards the desired state, while the second objective is optimal for
vanishing controls, leading to a setting where optimal compromises can be expected to achieve
some upwards deformation of the state using controls ”efficiently”. This suggests that contact
should be established in optimal compromises, but no additional forces are to be applied, lead-
ing to a nonsmooth weak-contact situation in the optimal compromise. We therefore expect the
algorithm to have to deal with increasing nonsmoothness over the course of the run.

Note that at this point, only the obstacle remains to be fixed in each of the examples. We will
specify the obstacles we use in the experiment runs in Subsection 3.3.4.

3.3.3 Implementation details

We discretize the optimal control problem using Lagrangian P1 finite elements on a triangulation
of Ω supplied by Matlab’s PDE-toolbox with a predetermined target maximum element edge
length hmax (which is typically only violated by fractions of a percent) and nodally interpolate
the obstacle ψ to essentially enforce the nonpenetration constraint nodally. The discretizations
of Ω we use are those corresponding to hmax ∈ {0.2, 0.1, 0.05, 0.02}. Additionally, we compute
a reference solution u∗ref for hmax = 0.01 to emulate the exact solution in order to investigate
convergence of the solutions for finer meshes. The number of finite elements corresponding to
each mesh discretization can be seen in Table 3.1, ranging from 135 to 45 857 elements.
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hmax 0.2 0.1 0.05 0.02 0.01

# FEM 135 494 1 909 11 682 45 857

Table 3.1: Number of finite elements for different maximum edge lengths hmax.

The control-to-state operator is implemented using an active-set strategy applied to the equiv-
alent energy minimization formulation of the obstacle problem and the subderivatives are ob-
tained based on the discretized analogue of the adjoint-based computations in [200, Theorem
5.7], where the discrete approximation to the adjoint state is computed using Matlab’s mldi-
vide routine to solve the corresponding linear system. Our implementations of Algorithms 1-3
is also in Matlab. The preconditioner that maps generalized subderivatives to primal objects,
in other words, Riesz’s operator (in, e.g., Lemma 3.2.3), is chosen as the canonical L2(Ω)-Riesz
operator.

3.3.4 Numerical results

In this subsection, we present the numerical results obtained by Algorithm 3 for the optimal
control problem described in Subsection 3.3.1. The settings of the parameters for Algorithm 3
are specified in Subsection 3.3.2, while the implementation details to handle the PDE-constraints
are described in Subsection 3.3.3. To conduct the experiments, we only have to choose the shape
of the obstacle ψ, which we do in two example instances below. We consider a constant obstacle
and a more involved example. Further, we analyze the size of the approximated Goldstein ε-
subdifferential, which is computed in every iteration of Algorithm 3 using Algorithm 2, in order
to investigate the behavior of our algorithm.

Configuration 1: Constant obstacle

For the first example configuration, we set ψ ≡ 1. Since the desired state is yd ≡ 2, the minimiza-
tion of J1(u) = 1/2 ∥S(u)− yd∥2H is expected to lead to configurations with contact y(x) = ψ(x)
for some points x ∈ Ω. On the other hand, the second objective function J2(u) = C/2 ∥u−ud∥2U ,
with ud ≡ 0, penalizes the control cost. We end up in a scenario with conflicting objective
functions, with solutions drawn to the obstacle by one objective. An (approximate) optimal

(a) Control (b) State (c) Obstacle

Figure 3.1: A Pareto optimal control computed with Algorithm 3 for mesh size hmax = 0.02,
initial control u0 ≡ 8 and the constant obstacle ψ ≡ 1.
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Figure 3.2: Qualitative analysis of the solutions derived by Algorithm 3 for different discretiza-
tions for the constant obstacle. Subfigures (b) - (d) use the reference solution u∗ref corresponding
to mesh size hmax = 0.01.
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hmax

0.2 0.1 0.05 0.02 0.01

u0

1 4 4 3 3 3

2 4 5 4 4 4

3 21 22 11 37 32

4 106 160 236 264 91

5 426 2 281 1 116 542 210

6 3 885 3 894 1 619 1 025 323

7 4 756 6 190 2 918 1 370 657

8 2 491 3 576 3 194 2 697 822

Table 3.2: Configuration 1: Number of iterations of Algorithm 3 for different initial values u0
and mesh sizes hmax.

compromise in this conflicting setting can be seen in Figure 3.1.

Subfigure 3.1a shows the optimal control u computed over 2 697 iterations. The corresponding
state y is shown in Subfigure 3.1b with the obstacle ψ in Subfigure 3.1c. All solutions obtained
by Algorithm 3 for the different meshes and initial states share similar features. In the middle
of the domain, there is an area of contact, that is, a region with y(x) = ψ(x). In this area the
control u(x) vanishes. This is intuitive, since increasing the control at a point with contact only
increases the objective function value of C/2 ∥u−ud∥2U without decreasing the objective function
value of 1/2 ∥S(u)− yd∥2H . The size of the area of contact is influenced by the magnitude of the
initial control u0. For larger control values, we observe a larger area of contact in the solution,
while for smaller values, the size of the area of contact is smaller. If we start with small initial
control (e.g., u0 ≡ 1), we get solutions with no contact at all, in other words, solutions where
the obstacle problem reduces to Poisson’s equation and the obstacle ψ can be ignored.

A complete picture of the solutions obtained by Algorithm 3 and the convergence behavior is
depicted in Figure 3.2 and Table 3.2. A qualitative analysis of the solutions is included in Figure
3.2. The iteration numbers required for each run are summarized in Table 3.2. For all initial
values and mesh sizes the algorithm successfully terminates before reaching the maximum num-
ber of 10 000 iterations and computes an (ε, δ)-critical point. Subfigure 3.2a shows the obtained
solutions in the objective space for all initial values ranging from u0 ≡ 0 to u0 ≡ 8 and for all
mesh sizes hmax ∈ {0.2, 0.1, 0.05, 0.02} marked with different symbols and colors, respectively.
The solutions with the same initial value (but for different mesh discretizations) cluster, while
solutions for different initial values are evenly distributed and form a curved front. The clus-
tering behaviour in the objective space will be examined further in Subfigure 3.2b. The figure
shows the distance of the objective function values of the obtained solutions to the objective
function values of the reference solution which corresponds to a mesh size of hmax = 0.01. The
plot contains one line for the different initial values u0 ≡ û ∈ {1, 3, 5, 7} and shows how the dis-
tance evolves for finer meshes. Linear decay of the distances in double logarithmic scale can be
observed, suggesting convergence of the front for hmax → 0. Similar behaviour can be observed
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(a) Control (b) State (c) Obstacle

Figure 3.3: A Pareto optimal control computed with Algorithm 3 for mesh size hmax = 0.02,
initial control u0 ≡ 8 and the piecewise constant obstalce ψ defined in (3.20).

in Subfigures 3.2c and 3.2d. Subfigure 3.2c shows how the distance of the obtained control to
the reference control in the L2-norm evolves for finer meshes. The distance of the corresponding
states to the reference state in the H1-norm can be seen in Subfigure 3.2d. In both subfigures, we
can observe linear decay in the double logarithmic scale, indicating convergence of the controls
and states computed by Algorithm 3 for finer mesh sizes.

Table 3.2 contains the number of iterations Algorithm 3 performed for the different initial values
and mesh sizes. For all mesh sizes the number of iterations increase with the magnitude of the
initial control u0. For u0 ≡ 1 and u0 ≡ 2 there is no contact between the state and the obstacle
over the course of the optimization resulting in a small number of iterations. The number of
iterations does not increase for finer meshes and we expect to converge to a finite value for
hmax → 0 for all initial values.

Configuration 2: Piecewise constant obstacle

In the second example, we choose an obstacle ψ given by a piecewise constant function defined
by

ψ : Ω → R, x 7→


1/3 if x1 ≤ 0 and x2 ≤ 0,
1 if x1 ≥ 0 and x2 ≥ 0,
2/3 otherwise.

(3.20)

This obstacle can be interpreted analogously to that in Subsection 3.3.4. An approximate Pareto
optimal control obtained by Algorithm 3 for initial value u0 ≡ 8 and hmax = 0.02 together with
the corresponding state can be seen in Subfigure 3.3a and Subfigure 3.3b. The obstacle ψ, defined
in (3.20), is shown in Subfigure 3.3c. Due to the nonconstant obstacle, we see a less structured
behaviour in the control and state. Similarly to the first example, we observe vanishing con-
trol in areas with contact of the state with the obstacle. Algorithmically, solving this problem
configuration is expected to be more challenging compared to the first configuration with the
constant obstacle, as the area of contact of the state changes more dynamically over the course
of the algorithm’s run, in other words, the problems nondifferentiability is more pronounced.

Figure 3.4 contains a qualitative analysis of the solutions obtained by Algorithm 3 for the piece-
wise constant obstacle. The objective function values obtained from Algorithm 2 for different
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hmax

0.2 0.1 0.05 0.02 0.01

u0

1 10 8 37 18 17

2 8 8 16 22 15

3 41 85 48 48 28

4 33 863 528 286 150

5 324 3 135 2 381 1 254 1 013

6 4 070 3 701 2 696 1 046 513

7 9 344 7 907 5 079 1 705 827

8 9 719 4 539 4 757 2 387 970

Table 3.3: Configuration 2: Number of iterations of Algorithm 3 for nonconstant obstacle.

initial values u0 ≡ û ∈ {1, 2, . . . , 8} and different mesh sizes hmax ∈ {0.2, 0.1, 0.05, 0.02} are
visualized in Subfigure 3.4a. The objective function values form a front in the image space and
solutions for different mesh discretizations but with same initial control cluster. This clustering
is further examined in Subfigure 3.4a, where the diminishing mesh size hmax is plotted over the
distance between the computed objective function value and the objective function value of the
reference solution. We observe linear decay of the distance in double logarithmic scale. Subfig-
ures 3.4c and 3.4d contain the distance of the obtained optimal control to reference control in
the L2-norm and the distance of the corresponding state to the reference stated in the H1-norm,
respectively. Again, we note linear decay for distances for smaller values of hmax in the double
logarithmic scale. These plots indicate convergence of the solutions obtained by Algorithm 3 for
finer meshes.

Table 3.3 contains a comparison of the number of iterations performed to reach the stopping
criterion in Algorithm 3 for the different initial controls and the different meshes. We see the
same trend as in the first example. However, for the piecewise constant obstacle, the iteration
numbers are higher for almost all runs compared to the results for the constant obstacle. For
all meshes we see an increasing number of iterations with an increasing magnitude of the initial
control u0. This is expected since for a higher magnitude of the initial control, we have more
points with contact in the beginning. The number of iterations is bounded for the different mesh
sizes and we expect convergence for hmax → 0 for all initial values of u0.

Size of the approximated multiobjective ε-subdifferential

In this part, we take a closer look at Step 2 in Algorithm 3. In this step a common descent
direction yielding sufficient descent for all objective functions is computed using Algorithm 2.
Algorithm 2 computes a descent direction by iteratively updating an approximation Ξl to the
multiobjective ε-subdifferential, using subderivatives of the objective functions. The number of
subderivatives (i.e., the size of the final Ξl) depends on the number of iterations of Algorithm
2 (and the size of the Il in Step 7). Figure 3.5 shows the number of subderivatives in the final
approximated ε-subdifferential in each iteration of a run of Algorithm 3 with initial control
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Figure 3.4: Qualitative analysis of the solutions derived by Algorithm 3 for different discretiza-
tions for the nonconstant obstacle. Subfigures (b)-(d) use the reference solution u∗ref correspond-
ing to mesh size hmax = 0.01.
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Figure 3.5: Size of the approximated subdifferential for each iteration. Results obtained by
Algorithm 3 for the piecewise constant obstacle with mesh size hmax = 0.02 and initial control
u0 ≡ 8.

u0 ≡ 8 and maximum edge length hmax = 0.02. We observe an increasing trend for the size of
the subdifferential with the number of iterations. Up to iteration 900 the algorithm regularly
only requires two subderivatives. From iteration 1 500 onwards at least four subderivatives get
used in every iteration. In the end, the subdifferential consists of up to 18 subderivatives.
This behaviour is not surprising: We expect the first objective function to be nonsmooth close
to optima of the multiobjective control problem (3.19) (for the chosen initial control u0), and
hence, the algorithm converges to points, where the first objective function is not differentiable.
To find a common descent direction in these areas, we need a sufficient number of subderivatives
to describe the local behaviour of the objective function. The behaviour in Figure 3.5 can
be observed across different mesh sizes and initial values. This indicates that the concept of
Algorithm 3 and the approximation of the multiobjective ε-subdifferential in Algorithm 2 behave
as expected.
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Chapter 4

Gradient dynamical systems for
convex multiobjective optimization

In this chapter, we consider the multiobjective optimization problem

min
x∈H

F (x) :=


f1(x)
...

fm(x)

 ,(MOP)

with convex and continuously differentiable objective functions fi : H → R for i = 1, . . . ,m.
The main contributions of this chapter are the introduction and analysis of three novel gradi-
ent dynamical systems which are connected to the problem (MOP). Our interest in gradient
dynamical systems for multiobjective optimization is motivated by the ongoing research on fast
gradient methods and their relationship to accelerated gradient dynamics in scalar optimization.
In the following, we provide a brief overview of the foundational ideas behind these developments.

Let f : H → R be a convex and continuously differentiable function with L-Lipschitz continuous
gradient ∇f with L > 0. Consider the scalar optimization problem

min
x∈H

f(x).(SOP)

One of the simplest iterative methods to solve the problem (SOP) is the gradient descent method,
which dates back at least to Cauchy [62, 149]. For an initial iterate x0 ∈ H and a fixed step
size h > 0, define the sequence (xk)k≥0 by

xk+1 = xk − h∇f(xk), for k ≥ 0.(GD)

Under the assumption argminx∈H f(x) ̸= ∅ and for a step size 0 < h ≤ 1
L , it holds that

f(xk) − infx∈H f(x) = O
(
1
k

)
as k → +∞ [181]. The method (GD) is naturally linked to the

steepest descent dynamical system

ẋ(t) +∇f(x(t)) = 0.(SD)

The method (GD) can be derived from the system (SD) using an explicit discretization. The
system (SD) shares the same asymptotical features as the method (GD). For convex and smooth
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functions, it holds that f(x(t)) → infx∈H f(x) as t → +∞. Further, the convergence rate
f(x(t)) − infx∈H f(x) = O

(
1
t

)
and weak convergence, i.e., x(t) ⇀ x∞ ∈ argminx∈H f(x), can

be obtained under the additional assumption argminx∈H f(x) ̸= ∅. A discussion of the system
(SD) is contained in Section 4.1. While the steepest descent method (GD) is straightforward to
implement, in practice it suffers from slow convergence, especially for ill-conditioned problems.
A general idea to improve the convergence is proposed in [196], where inertia is introduced into
(GD) to obtain

xk+1 = xk + β(xk − xk−1)− h∇f(xk), for k ≥ 0,(IGD)

with a fixed step size h > 0 and fixed constant β > 0. The method (IGD) is still straightforward
to implement but behaves in practice better than (GD). Additionally, for strongly convex
functions, it can be shown that the method (IGD) converges at an improved linear rate in
comparison to (GD) [196]. The continuous version of (IGD) is the so-called heavy ball with
friction dynamical system

µẍ(t) + γẋ(t) +∇f(x(t)) = 0,(HBF)

with fixed constant µ, γ > 0. The system (HBF) can be seen as a model of a ball with mass
µ > 0 rolling down the graph of the function f , subject to friction γ > 0 [19]. In the context of
scalar optimization, the system (HBF) has improved properties in comparison to (SD) [4, 114].
Another way to improve the convergence of the method (GD) is presented in the seminal paper
[182], where Nesterov’s accelerated gradient method is proposed, which is given by the scheme

yk = xk + k−1
k+α−1(x

k − xk−1),

xk+1 = yk − h∇f(yk),

}
for k ≥ 0,(NAG)

with fixed step size h > 0 and a constant parameter α > 0. Compared to (IGD) the method
(NAG) does not use a constant momentum factor β > 0 but a time-dependent parameter k−1

k+α−1 ,
which converges to 1 as k → +∞. Further, in (NAG) the acceleration step and the gradient
update step are separated. The system (NAG) has the following improved convergence properties
[15]. Given a step size satisfies h ≤ 1

L , α ≥ 3 and assuming argminx∈H f(x) ̸= ∅, it holds that
f(xk)−infx∈H f(x) = O

(
k−2

)
as k → +∞. Further, if α > 3, then f(xk)−infx∈H f(x) = o

(
k−2

)
as k → +∞ and xk converges weakly to a point in argminx∈H f(x). A key contribution to the
understanding of the method (NAG) can be found in the seminal paper [218]. In this paper, it
is shown that the system (NAG) can be obtained from a discretization of the inertial gradient
system with asymptotic vanishing damping

ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0.(AVD)

For this system fast convergence rates of the function values can be shown. These results match
the asymptotic convergence of (NAG) and can be found, e.g., in [13, 166]. If α ≥ 3, then
f(x(t)) − infx∈H f(x) = O

(
t−2
)
as t → +∞. For α > 3, it holds that f(x(t)) − infx∈H f(x) =

o
(
t−2
)
as t→ +∞ and x(·) converges weakly to a point in argminx∈H f(x).

It remained an open question whether similar results could be obtained in the context of multi-
objective optimization [16]. This question was only recently addressed. While there have been
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first results on generalization of the steepest descent dynamical system in convex multiobjective
optimization [17, 18] and first attempts to include inertia in this system [16], a satisfactory
generalization of accelerated dynamical systems was still lacking. In this chapter, we provide
a positive answer to this question and demonstrate that accelerated gradient dynamics can be
extended to the multiobjective setting.

This chapter is outlined as follows. As a motivating example, in Section 4.1, we carry out
the asymptotic analysis of the steepest descent dynamical system (SD) in the context of scalar
optimization. This serves as the baseline for the analysis of dynamical systems in relation to
optimization problems and helps to highlight the differences in the analysis of gradient dynamical
systems for scalar versus multiobjective optimization problems. Section 4.2 includes a literature
review on existing gradient methods for multiobjective optimization. Additionally, this section
includes the analysis of the multiobjective steepest descent dynamical system

ẋ(t) + proj
C(x(t))

(0) = 0,(MSD)

where C(x) := conv ({∇fi(x) : i = 1, . . . ,m}) is the convex hull of the gradients, and a com-
parison of (MSD) with the analysis of the system (SD). Before introducing the novel gradient
dynamics for multiobjective optimization, in Section 4.3, we give an existence result for a general-
ized differential equation. The systems introduced in the following chapters are special instances
of this generalized equation, and this way we unify the discussion of existence of solutions. In
Section 4.4, we define the inertial multiobjective gradient system

αẋ(t) + proj
C(x(t))+ẍ(t)

(0) = 0,(IMOG’)

with α > 0, which generalizes the system (HBF) to the multiobjective setting. For this system,
we prove weak convergence of trajectories to weakly Pareto optimal points. Building on this, in
Section 4.5, we present the multiobjective gradient system with asymptotic vanishing damping

α

t
ẋ(t) + proj

C(x(t))+ẍ(t)
(0) = 0,(MAVD)

with α > 0. We show that this system generalizes (AVD) in a satisfactory way to the multi-
objective setting, giving fast convergence of the function values and weak convergence of the
trajectories to weakly Pareto optimal points. Finally, in Section 4.6, we consider a further modi-
fication of the system (MAVD), namely, the multiobjective Tikhonov regularized inertial gradient
system

α

tq
ẋ(t) + proj

C(x(t))+ β
tp
x(t)+ẍ(t)

(0) = 0,(MTRIGS)

with constant parameters α, β > 0, q ∈ (0, 1], p ∈ (0, 2]. The system (MTRIGS) adapts (MAVD)
by a vanishing Tikhonov regularization term which improves the convergence properties of the
system. We discuss the system (MTRIGS) for different values of the parameters, and prove
fast convergence rates of the function values and convergence of the trajectories x(·) to weakly
Pareto optimal points. Convergence is achieved in either the weak or strong topology of the
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underlying Hilbert space, depending on the choice of parameters.

The content of this chapter is based on the following publications. Specific references to these
publications are provided in the introductions of the respective sections.

[49] Boţ, R. I. and Sonntag, K. Inertial dynamics with vanishing Tikhonov regularization
for multiobjective optimization. In: Journal of Mathematical Analysis and Applications
554 (2) (2025). doi: 10.1016/j.jmaa.2025.129940.
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4.1. An introductory example from scalar optimization

4.1 An introductory example from scalar optimization

In this section, we demonstrate the general procedure for analyzing a gradient dynamical sys-
tem related to an optimization problem. This serves as a template for the analysis of the novel
multiobjective gradient systems introduced in later sections. Furthermore, comparing the mul-
tiobjective gradient systems with the system discussed in this section, allows to highlight the
challenges of using gradient systems in multiobjective optimization. We outline the general
analysis by means of the following problem from scalar optimization. Consider the optimization
problem

min
x∈H

f(x),(SOP)

with a convex and continuously differentiable objective function f : H → R with Lipschitz
continuous gradient ∇f . To the scalar optimization problem (SOP), we associate the steepest
descent dynamical system

ẋ(t) +∇f(x(t)) = 0, for t > t0,(SD)

with initial data t0 > 0 and x(t0) = x0 ∈ H. The system (SD), in connection with (SOP), is
well-studied in the literature under various assumptions on the objective function f [54, 196,
199, 208]. The results for the convex case discussed in this section can be found in [7, 51, 52, 53,
56], while the behavior of (SD) in the nonconvex setting is more involved, as counterexamples
show [1, 80, 188].

In this thesis, the analysis of gradient dynamical systems follows a consistent structure, described
as follows:

1. Discussion of existence and uniqueness of solutions;

2. Preparatory results;

3. Asymptotic analysis.

Before analyzing the properties of the solutions, we verify the existence of solutions to the dy-
namical system under consideration and discuss their uniqueness. Then, we collect preparatory
results, which include energy estimates and statements on the boundedness and regularity of
solutions. Finally, we present asymptotic results, which are the main focus of the analysis.
The asymptotic analysis contains convergence rates of function values f(x(t)), as well as state-
ments on weak or strong convergence of trajectories x(t) to an optimal point of the considered
optimization problem.

Discussion of existence and uniqueness of solutions

In this part, we provide a formal definition of a solution to (SD), followed by a theorem that
states the existence and uniqueness of solutions, given the objective function f is sufficiently
smooth.
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Definition 4.1.1. A function x : [t0,+∞) → H is called a solution to (SD) if it satisfies the
following properties:

i) x ∈ C1([t0,+∞),H), i.e., x(·) is continuously differentiable;

ii) x(t0) = x0;

iii) For all t > t0 it holds that ẋ(t) +∇f(x(t)) = 0.

Theorem 4.1.2. Let f : H → R be continuously differentiable with Lipschitz continuous gradient
∇f . Then, for all t0 > 0 and x0 ∈ H there exists a unique solution x(·) to (SD) in the sense of
Definition 4.1.1.

Proof. The proof follows immediately by the Cauchy–Lipschitz Theorem (Theorem 2.2.2).

Preparatory results

In this part, we show that the function f is an energy function for the system (SD). Generally
speaking, the term energy function refers to any function that depends on a solution x(·) of
(SD) and is monotonically decreasing with respect to time.

Proposition 4.1.3. Let f : H → R be continuously differentiable with L-Lipschitz continuous
gradient ∇f and let x(·) be a solution to (SD) in the sense of Definition 4.1.1. Then, for all
t > t0

d

dt
f(x(t)) = −∥ẋ(t)∥2 ≤ 0. (4.1)

Proof. The proof follows immediately by applying the chain rule and using equation (SD). Let
t > t0, then

d

dt
f(x(t)) = ⟨∇f(x(t)), ẋ(t)⟩ = −∥ẋ(t)∥2 ≤ 0.

Corollary 4.1.4. Let f : H → R be continuously differentiable with L-Lipschitz continuous
gradient ∇f and let x : [t0,+∞) → H be a solution to (MSD) in the sense of Definition 4.1.1.
If f is bounded from below, then ∫ +∞

t0

∥ẋ(s)∥2 ds < +∞.

Proof. By integration inequality (4.1) in Proposition 4.1.3, we have for all t ≥ t0

f(x(t)) ≤ f(x(t0))−
∫ t

t0

∥ẋ(s)∥2 ds. (4.2)

From inequality (4.2), we follow∫ +∞

t0

∥ẋ(s)∥2 ds ≤ f(x(t0))− inf
x∈H

f(x). (4.3)

Since f is bounded from below, the right-hand side of (4.3) is bounded and the statement
follows.
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Asymptotic analysis

In this part, we present the asymptotic analysis of solutions x(·) to (SD). The term asymptotic
analysis refers to the examination of the properties of the solution x(t) as t → +∞. First, we
prove that for any smooth convex objective function f the function values along the trajectories
converge to the minimal value, i.e, f(x(t)) → infx∈H f(x) as t → +∞. Afterwards, under
the condition argminx∈H f(x) ̸= ∅, we show that f(x(t)) − infx∈H f(x) = O

(
1
t

)
as t → +∞.

Additionally, we prove under this condition that solutions x(·) converge weakly to optimal points
of (SOP), i.e., x(t)⇀ x∞ ∈ argminx∈H f(x) as t→ +∞.

Theorem 4.1.5. Let f : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient ∇f and let x(·) be a solution to (SD) in the sense of Definition 4.1.1. Then

lim
t→+∞

f(x(t)) = inf
x∈H

f(x).

Proof. For z ∈ H, define the anchored energy function

Ez : [t0,+∞) → R, t 7→ (t− t0) (f(x(t))− f(z)) +
1

2
∥x(t)− z∥2. (4.4)

This function is continuously differentiable and we compute the derivative using the chain rule
to obtain

d

dt
Ez(t) =(t− t0)⟨∇f(x(t)), ẋ(t)⟩+ f(x(t))− f(z) + ⟨x(t)− z, ẋ(t)⟩

≤ − (t− t0)∥ẋ(t)∥2,

where the last inequality follows from the convexity of f (see Proposition 2.1.24). Therefore,
the function Ez(·) is monotonically decreasing and we follow for all t ≥ t0

(t− t0)(f(x(t))− f(z)) ≤ Ez(t) ≤ Ez(t0) =
1

2
∥x0 − z∥2. (4.5)

From inequality (4.5), we obtain for all t > t0

f(x(t))− f(z) ≤ ∥x(t0)− z∥
2(t− t0)

. (4.6)

By Proposition 4.1.3, t 7→ f(x(t)) is monotonically decreasing and hence limt→+∞ f(x(t)) ∈
R ∪ {−∞} exists. From inequality (4.6), we conclude limt→+∞ f(x(t))− f(z) ≤ 0 for all z ∈ H
and hence limt→+∞ f(x(t)) = infx∈H f(x).

Example 4.1.6. Theorem 4.1.5 states that any solution x(·) of (SD) minimizes the objective
function f . However, this result is to some extend unsatisfactory as it does not provide further
information on how long it will take for limt→+∞ f(x(t)) = infx∈H f(x) to converge. In the
following example, we show that even for functions which are bounded from below the convergence
can be arbitrary slow. Let H = R with the euclidean inner product and norm. For a fixed
p ∈ (0, 1), consider the objective function

f : R → R, x 7→

{
−px+ p+ 1, if x ≤ 1,

1
xp , else.

(4.7)
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The function f is convex and continuously differentiable with globally Lipschitz continuous gra-
dient. Consider the system

ẋ(t) +∇f(x(t)) = 0, for t > t0,(SD)

with t0 = 1 and x(t0) = 1. For the objective function f defined in (4.7), the unique solution to

(SD) is given by x(t) = (1+p(p+2)(t−1))
1

p+2 . As Theorem 4.1.5 states, we observe convergence
to the optimal value

f(x(t)) = (1 + p(p+ 2)(t− 1))
− p

p+2 → 0 = inf
x∈H

f(x), as t→ +∞. (4.8)

From (4.8), we infer the convergence rate

f(x(t))− inf
x∈H

f(x) = O
(
t
− p

p+2

)
, as t→ +∞. (4.9)

In the beginning of this example the parameter p ∈ (0, 1) was chosen arbitrarily. For p → 0 the
convergence in (4.9) gets arbitrary slow.
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Figure 4.1: Function f defined in (4.7) and function values f(x(t)) of solutions x(·) to (SD) for
different values of p ∈ {1e−1, 1e−2, 1e−3}.

The slow decay of the function values which is formally described in (4.9) is illustrated in Figure
4.4. Subfigure 4.4a shows the objective function f for different values of p ∈ {1e−1, 1e−2, 1e−3}.
For all choices of p, we have infx∈R f(x) = limx→+∞ f(x) = 0. For smaller values of p the
functions decay slower as x → +∞. Subfigure 4.4b shows the function values f(x(t)) along
solutions x(·) to (MSD), for t ∈ [1, 1e5] and different values of p ∈ {1e−1, 1e−2, 1e−3}. For
p = 1e−1 and p = 1e−2, we observe decay in the function values. For the smallest values
p = 1e−3, the function t 7→ f(x(t)) appears nearly constant and decays extremely slowly, as we
expect from (4.9).

From Theorem 4.1.5, we derive the following corollary.
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Corollary 4.1.7. Let f : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient ∇f and let x(·) be a solution to (SD) in the sense of Definition 4.1.1.
Then, the following are equivalent:

i) x(·) is bounded;

ii) argminx∈H f(x) ̸= ∅.

Proof. Assume x(·) is bounded. Then x(·) possesses a weak sequential cluster point, i.e., there
exists a sequence (tk)k≥0 ⊂ [t0,+∞) with tk → +∞ and x(tk) ⇀ x∞ ∈ H as k → +∞. Since
the function f is convex and continuous it is weakly lower semicontinuous and we follow

f(x∞) ≤ lim inf
k→+∞

f(x(tk)) = lim
t→+∞

f(x(t)) = inf
x∈H

f(x),

where the existence of the limit follows from Theorem 4.1.5. Hence, x∞ ∈ argminx∈H f(x).

Assume argminx∈H f(x) ̸= ∅ and let x∗ ∈ argminx∈H f(x). In the proof of Theorem 4.1.5, it is
shown that

Ex∗ : [t0,+∞) → R, t 7→ (t− t0)(f(x(t))− f(x∗)) +
1

2
∥x(t)− x∗∥2,

is monotonically decreasing. Since f(x(t))− f(x∗) ≥ 0, for all t ≥ t0

1

2
∥x(t)− x∗∥2 ≤ Ex∗(t) ≤ Ex∗(t0) =

1

2
∥x(t0)− x∗∥2,

and hence x(·) is bounded.

The convergence of solutions x(·) to (SD) can be very slow as Example 4.1.6 demonstrates.
However, the slow convergence occurs primarily because the chosen objective function is in-
tentionally constructed to cause slow convergence. The objective function f defined in (4.7)
is bounded from below but does not posses a minimizer. In the next theorem, we show that
solutions x(·) exhibit better asymptotic properties under the condition argminx∈H f(x) ̸= ∅.

Theorem 4.1.8. Let f : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient ∇f and let x(·) be a solution to (SD) in the sense of Definition 4.1.1.
Further, assume S := argminx∈H f(x) ̸= ∅. Then, for all t ≥ t0

f(x(t))− inf
x∈H

f(x) ≤ dist(x0, S)
2

2(t− t0)
. (4.10)

Proof. Fix x∗ ∈ argminx∈H f(x). We differentiate 1
2∥x(t)− x∗∥2 with respect to t to obtain

d

dt

1

2
∥x(t)− x∗∥2 = ⟨x(t)− x∗, ẋ(t)⟩ = ⟨x∗ − x(t),∇f(x(t))⟩ ≤ f(x∗)− f(x(t)),

where the last inequality follows by the convexity of f due to Proposition 2.1.24. Hence,

f(x(t))− f(x∗) ≤ − d

dt

1

2
∥x(t)− x∗∥2. (4.11)
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Integrating inequality (4.11) from t0 to t ≥ t0 gives

∫ t

t0

f(x(s))− f(x∗) ds ≤ 1

2
∥x(t0)− x∗∥2 − 1

2
∥x(t)− x∗∥2 ≤ 1

2
∥x(t0)− x∗∥2. (4.12)

Proposition 4.1.3 states that t 7→ f(x(t)) is monotonically decreasing and hence

(t− t0)(f(x(t))− f(x∗)) =

∫ t

t0

f(x(t))− f(x∗) ds ≤
∫ t

t0

f(x(s))− f(x∗) ds. (4.13)

Combining (4.12) and (4.13), we have

(t− t0)(f(x(t))− f(x∗)) ≤ 1

2
∥x(t0)− x∗∥2. (4.14)

and therefore

f(x(t))− inf
x∈H

f(x) ≤ ∥x0 − x∗∥2

2(t− t0)

Since this bound is uniform with respect to x∗ ∈ argminx∈H f(x), we can apply the infimum to
obtain (4.10).

Example 4.1.9. In the following example, we demonstrate the sharpness of Theorem 4.1.8. For
H = R with the euclidean inner product and norm, consider the optimization problem (SOP)
with the objective function

f : R → R, x 7→ |x|p, (4.15)

for p > 2. The function f is convex and continuously differentiable with locally Lipschitz con-
tinuous gradient. (Despite the fact that the Lipschitz continuity is merely local, the preceding
theorems still apply because solutions to (SD) remain in compact sets.) For the objective func-
tion f defined in (4.15), the unique solution to (SD) with initial data with t0 = 1 and x(t0) = 1

is given by x(t) = (1 + p(p− 2)(t− 1))
1

2−p . Therefore,

f(x(t))− inf
x∈H

f(x) = (1 + p(p− 2)(t− 1))
p

2−p = O
(

1

t
p

p−2

)
, as t→ +∞. (4.16)

We observe p
p−2 → 1 as p→ +∞ and hence we get closer to the asymptoical rate f(x(t)) = O

(
1
t

)
for bigger values of p.
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Figure 4.2: Function f defined in (4.15) and function values f(x(t)) of solutions x(·) to (SD) for
different values of p ∈ {4, 8, 16}.

The asymptotic convergence rates summarized in (4.16) are visualized in Figure 4.2. Subfigure
4.2a shows the function f , defined in (4.15), for different values of p ∈ {4, 8, 16}. For larger
values of p, the function f is flatter around the global minimum x∗ = 0. This leads to smaller
gradients near the optimum and hence slower convergence of x(·) to the optimum x∗ = 0. This
effect is illustrated in Subfigure 4.2b. For the largest value, p = 16, the asymptotic convergence
is the slowest, as seen from the slope of t 7→ f(x(t)) in the interval t ∈ [1e1, 1e5] while for the
smallest value, p = 2, the asymptotic decay is the fastest. Initially, in the interval t ∈ [1, 1e1],
this trend is reversed, but only because the function x 7→ |x|p is steeper at the initial point x0 = 1
for higher values of p. However, this does not affect the asymptotic convergence.

Theorem 4.1.10. Let f : H → R be continuously differentiable with L-Lipschitz continuous
gradient ∇f and let x(·) be a solution to (SD) in the sense of Definition 4.1.1. Further, assume
S := argminx∈H f(x) ̸= ∅. Then

x(t)⇀ x∞ ∈ S, as t→ +∞. (4.17)

Proof. We apply Opial’s Lemma (Lemma 2.1.6) to prove the weak convergence of x(·). Since
S ̸= ∅ holds by assumption, we only have to verify that each sequential cluster point of x(·)
belongs to S and that for all z ∈ S the limit limt→+∞∥x(t)− z∥ exists.

Let x∞ be a weak sequential cluster point of x(·). Hence, there exists a sequence (tk)k≥0 with
tk → +∞ and x(tk)⇀ x∞ as k → +∞. By the weak lower semicontinuity of f we have

f(x∞) ≤ lim inf
k→+∞

f(x(tk)) = lim
t→+∞

f(x(t)) = inf
x∈H

f(x),

where the equalities follow from the monotonic decay of t 7→ f(x(t)) and Theorem 4.1.5. There-
fore, we conclude x∞ ∈ S.
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For all z ∈ S it holds that

d

dt

1

2
∥x(t)− z∥2 = ⟨x(t)− z, ẋ(t)⟩ = ⟨z − x(t),∇f(x(t))⟩ ≤ 0,

where the last inequality follows by Proposition 2.1.24 and the convexity of f . Then, ∥x(t)−z∥ ≥
0 is monotonically decreasing in t and hence convergent.

Therefore, all conditions of Opial’s Lemma (Lemma 2.1.6) are verified and in total we follow

x(t)⇀ x∞ ∈ S = argmin
x∈H

f(x), as t→ +∞.

Remark 4.1.11. Under additional assumptions on the objective function, better convergence
rates of the function values and improved convergence properties of x(·) can be established. For
example, if the objective function f is strongly convex, the function values converge linearly to the
optimal value, and the solution x(·) converges strongly to the unique minimizer of the optimiza-
tion problem [199]. The contribution of this thesis focuses on the analysis of gradient dynamical
systems for multiobjective optimization under the mere assumption of convexity. Therefore, we
do not restate results that require stronger assumptions, but refer the reader to the literature
cited in the beginning of this section.
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4.2 Review of existing gradient systems for multiobjective op-
timization

4.2.1 The multiobjective steepest descent dynamical system (MSD)

The first multiobjective gradient system discussed in this review is the multiobjective steepest
descent dynamical system

ẋ(t) + proj
C(x(t))

(0) = 0, for t > t0,(MSD)

with initial data t0 > 0 and x(t0) = x0 ∈ H, and where C(x) := conv ({∇fi(x) : i = 1, . . . ,m})
is the convex hull of the gradients ∇fi(x) for i = 1, . . . ,m. This system can equivalently be
written as ẋ(t) = ϕ(x(t)), where ϕ : H → H, x 7→ ϕ(x) := −projC(x)(0), is the multiobjective
steepest descent direction, introduced in Subsection 2.3.4. Therefore, the system (MSD) can be
seen as the multiobjective counterpart to the steepest descent dynamical system

ẋ(t) +∇f(x(t)) = 0,(SD)

for scalar optimization problems minx∈H f(x), with a smooth objective function f : H → R.
The system (SD) is extensively discussed in the previous section. In this section, we show
that the results obtained for the system (SD) can be recovered in the context of multiobjective
optimization for the system (MSD). On the other hand, the system (MSD) can be seen as the
continuous-time counterpart of the multiobjective gradient method (MGD), which can be written
as

xk+1 = xk − h proj
C(xk)

(0), for k ≥ 0,(MGD’)

for an initial iterate x0 ∈ H and step size h > 0. The scheme (MGD’) can be obtained from an
explicit discretization of (MSD). We show that we recover the results for the method (MGD’)
summarized in Subsection 2.3.4 in the continuous-time setting.

The first systems related to (MSD) were studied in the context of economics [127, 214], and in
particular for resource allocation problems [79]. In [170, 207], the system (MSD) is analyzed in
the context of multiobjective optimization where the existence of solutions to (MSD) and the
convergence of solutions x(·) to (MSD) to Pareto optimal points of (MOP) are investigated.
Further variants of (MSD) are proposed in [16, 17, 18], and we present these in the following
subsections of this review.

In this subsection, we carry out the asymptotic analysis of the system (MSD), analogous to
the analysis of the system (SD). This helps us to highlight the differences between gradient
systems for scalar and multiobjective optimization. The techniques applied in this subsection
are fundamental for the analysis of the novel multiobjective gradient system presented in this
chapter.
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Assumptions

In this subsection, we make the following assumptions on the objective functions.

(A1) The objective functions fi : H → R are convex and continuously differentiable with L-
Lipschitz continuous gradients ∇fi : H → H with L > 0 for all i = 1, . . . ,m.

(A2) For all x0 ∈ H and for all x ∈ L(F, F (x0)) it holds that LPw(F, F (x)) ̸= ∅ and further

R := sup
F ∗∈F (LPw(F,F (x0)))

inf
z∈F−1({F ∗})

1

2
∥z − x0∥2 < +∞. (4.18)

At the end of this subsection, we discuss Assumption (A2) in the context of the system (MSD)
to demonstrate that it is a natural assumption in the analysis ot the asymptotic properties of
multiobjective gradient systems.

Existence and uniqueness of solutions

In this part, we present a proof of the existence of solutions to (MSD) and a discussion of their
uniqueness. In contrast to the analogous analysis in Section 4.1 on the system (SD), the results
obtained for the system (MSD) are weaker. Even when the gradients ∇fi of the objective
functions are Lipschitz continuous, the multiobjective steepest descent direction is in general
only Hölder continuous (see Proposition 2.3.21 and Remark 2.3.22). Therefore, we cannot use
the Cauchy–Lipschitz Theorem, which guarantees the existence of a unique global solution and
which is applicable in arbitrary Hilbert spaces. Instead, we apply Peano’s Theorem to obtain
a solution, though this approach has certain limitations. First, it is applicable only in finite-
dimensional Hilbert spaces. This limitation is restrictive, although the asymptotic analysis of
solutions remains valid in general Hilbert spaces. Moreover, when we derive an optimization
method from the gradient system by a numerical discretization scheme, we do not work with
an ODE, and this limitation becomes irrelevant for the derivation of optimization algorithms.
Second, Peano’s Theorem only gives local solutions and we must put in additional effort to
extend local to global solutions. This is not a major drawback, since it can be achieved using
standard techniques based on Gronwall-type arguments and Zorn’s Lemma. Third, the solutions
are not necessarily unique. However, we argue that non-uniqueness is acceptable in our setting,
since the asymptotic analysis, which is our main focus, applies to all solutions. In the following,
we formally define a solution to (MSD) and then prove the main existence result, and conclude
with a remark on the uniqueness.

Definition 4.2.1. A function x : [t0,+∞) → H is called a solution to (MSD) if it satisfies the
following properties:

i) x ∈ C1([t0,+∞),H), i.e., x(·) is continuously differentiable;

ii) x(t0) = x0;

iii) For all t > t0 it holds that ẋ(t) + projC(x(t))(0) = 0.

Before proving the existence of solutions, we introduce a different description of the multiobjec-
tive steepest descent direction −projC(x(t))(0) in the following remark, which is more convenient
for certain parts of the analysis.
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Remark 4.2.2. Let fi : H → R be continuously differentiable with L-Lipschitz continuous
gradient ∇fi for i = 1, . . . ,m and let x : [t0,+∞) → H be a solution to (MSD) in the sense of
Definition 4.2.1. Then for all t > t0, there exists θ(t) ∈ ∆m such that

ẋ(t) = − proj
C(x(t))

(0) = −
m∑
i=1

θi(t)∇fi(x(t)). (4.19)

In the following subsection, whenever we use θ(t) we refer to the weights implicitly given by
(4.19). The mapping

θ : [t0,+∞) → ∆m, t 7→ θ(t),

which is implicitly defined by (4.19), is in general measurable and has better regularity properties
under additional assumptions. Since the analysis of (MSD) does not require θ(·) to satisfy
further conditions, we do not discuss these properties here.

Theorem 4.2.3. Assume H is finite dimensional. Let fi : H → R be continuously differentiable
with L-Lipschitz continuous gradient ∇fi for i = 1, . . . ,m. Then, for all t0 > 0 and x0 ∈ H
there exists a solution x(·) to (SD) in the sense of Definition 4.2.1.

Proof. By assumption dim(H) < +∞ and by Proposition 2.3.21 the mapping ϕ : H → H, x 7→
−projC(x)(0) is Hölder continuous. Therefore, we can use Peano’s Theorem (Theorem 2.2.1)
to conclude the existence of a local solution to (MSD), i.e., there exists T > t0 and a function
x ∈ C1([t0, T ),H) with x(t0) = x0 and ẋ(t) + projC(x(t))(0) = 0 for all t ∈ (t0, T ). We extend
this solution to a global one using a standard technique based on Gronwall-type arguments and
Zorn’s Lemma.

First, we establish a growth property of ϕ(·) which is necessary to guarantee that solutions x(·)
do not become unbounded in finite time. Using the weights θ(t) ∈ ∆m defined in (4.19), we
write for all t > t0

ϕ(x(t)) = −
m∑
i=1

θi(t)∇fi(x(t)).

Then, it holds that

∥ϕ(x(t))∥ =

∥∥∥∥∥
m∑
i=1

θi(t)∇fi(x(t))

∥∥∥∥∥ ≤

∥∥∥∥∥
m∑
i=1

θi(t)∇fi(x(t0))

∥∥∥∥∥+
∥∥∥∥∥
m∑
i=1

θi(t) (∇fi(x(t))−∇fi(x(t0)))

∥∥∥∥∥
≤

∥∥∥∥∥
m∑
i=1

θi(t)∇fi(x(t0))

∥∥∥∥∥+
m∑
i=1

θi(t)∥∇fi(x(t))−∇fi(x(t0))∥

≤
m∑
i=1

θi(t) ∥∇fi(x(t0))∥+
m∑
i=1

θi(t)L∥x(t)− x(t0)∥

≤ max
i=1,...,m

∥∇fi(x(t0))∥+ L∥x(t)− x(t0)∥,

and hence

∥ϕ(x(t))∥ ≤ c+ L∥x(t)− x(t0)∥, (4.20)
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with c := maxi=1,...,m ∥∇fi(x(t0))∥.

With the growth condition (4.20) in place, we proceed to show the existence of a global solution
using Zorn’s Lemma. Define the set

S :=
{
(x, T ) : T ∈ (t0,+∞] and x ∈ C1([t0, T ),H), x(t0) = x0,

and ẋ(t) + proj
C(x(t))

(0) = 0 for all t ∈ [t0, T )
}
.

(Note that T ∈ (t0,+∞] in the definition of S allows for the value +∞ for T .) By Peano’s
Theorem, as we stated in the beginning of the proof, the set S is nonempty. On S we define
the reflexive, transitive and antisymmetric partial order

(x1, T1) ≼ (x2, T2) :⇐⇒ T1 ≤ T2 and x1(t) = x2(t) for all t ∈ [t0, T1).

Next, we show that every nonempty, totally ordered subset of S has an upper bound in S. Let
C ⊆ S be a nonempty, totally ordered subset of S. Define

TC := sup {T : (x, T ) ∈ C} ,

and

xC : [t0, TC) → H, t 7→ xC(t) := x(t) for t < t < TC and (x, t) ∈ C.

By construction, (xC, TC) ∈ S and (x, T ) ≼ (x, TC) for all (x, T ) ∈ C. Hence, (xC, TC) is an
upper bound of C in S. Then, by Zorn’s Lemma (see [61, 120]), there exists a maximal element
(x, T ) ∈ S. If T = +∞, then x(·) is a solution to (MSD) in the sense of Definition 4.2.1. We
show that T = +∞ must hold by contradiction.

Assume T < +∞. Define the function

h : [t0, T ) → R, t 7→ h(t) := ∥x(t)− x(t0)∥.

Then, by the chain rule and the Cauchy–Schwarz inequality, we derive

d

dt

1

2
h(t)2 = ⟨x(t)− x(t0), ẋ(t)⟩ ≤ ∥x(t)− x(t0)∥ ∥ẋ(t)∥ = h(t)∥ϕ(x(t))∥. (4.21)

Starting from (4.21) and using (4.20), we derive the bound

d

dt

1

2
h(t)2 ≤ h(t) (c+ Lh(t)) . (4.22)

We follow the boundedness of h(t) from (4.22) as in [16, Theorem 3.5]. Let ε > 0 and consider
the function h(·) on the closed interval [t0, T − ε]. Integrating inequality (4.22) from t0 to t > t0
and using h(t0) = 0 gives for all t ∈ [t0, T − ε]

1

2
h(t)2 ≤

∫ t

t0

(c+ Lh(s))h(s) ds.
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The function h(·) is continuous and therefore (c+Lh(·)) ∈ L1([t0, T −ε],R). Then, we can apply
Lemma 2.2.10 to follow for all t ∈ [t0, T − ε]

h(t) ≤
∫ t

t0

c+ Lh(s) ds ≤ cT +

∫ t

t0

Lh(s) ds. (4.23)

We apply Lemma 2.2.9 to (4.23) and get for all t ∈ [t0, T − ε]

h(t) ≤ cT exp (L(t− t0)) ≤ cT exp (L(T − t0)) < +∞.

Since this bound is uniform in ε > 0 and t > t0, h(·) is bounded on [t0, T ). Then, by (4.20) the
velocity ẋ(·) is bounded as well on [t0, T ), and by the continuity of ẋ(·), we follow the existence
of

xT := x0 +

∫ T

t0

ẋ(s) ds ∈ H.

Using Peano’s Theorem, as in the beginning of the proof, we conclude the existence of δ >
0 and a solution x̂ : [T, T + δ) → H that satisfies x̂ ∈ C1([T, T + δ)),H), x̂(t) = xT and
˙̂x(t) + projC(x̂(t)(0) = 0 for all t ∈ (T, T + δ). Then, we define

x∗ : [t0, T + δ) → H, t 7→

{
x(t), for t ∈ [t0, T ),

x̂(t), for t ∈ [T, T + δ),

and have (x∗, T + δ) ∈ S. By construction it holds that (x, T ) ̸= (x∗, T + δ) and (x, T ) ≼
(x∗, T + δ) which is a contradiction to the maximality of (x, T ) in S. Hence, the assumption
T < +∞ leads to the desired contradiction, and therefore a global solution exists.

Remark 4.2.4. Under additional assumptions, we can prove the existence of unique solutions in
infinite-dimensional Hilbert spaces. If the gradients ∇fi(x0) are linearly independent at x0 ∈ H,
the mapping ϕ : H → H, x 7→ − projC(x)(0) is locally Lipschitz continuous in x0. Hence, one
can apply the Cauchy–Lipschitz Theorem to conclude the existence of a unique local solution to
(MSD) [17, Proposition 3.1]. We do not present this result in detail, as this technique cannot
be applied to the novel multiobjective gradient dynamical systems discussed in this thesis.

Preparatory results

The preparatory results for the system (MSD) are structurally analogous to the ones for the
system (SD) presented in the previous section. The solutions x(·) to (MSD) produce monotonic
decay in the objective function values fi(x(t)) for all i = 1 . . . ,m, as stated in the following
proposition.

Proposition 4.2.5. Let fi : H → R be continuously differentiable with L-Lipschitz continuous
gradient ∇fi for i = 1, . . . ,m and let x : [t0,+∞) → H be a solution to (MSD) in the sense of
Definition 4.2.1. Then for all i = 1, . . . ,m and all t > t0

d

dt
fi(x(t)) ≤ −∥ẋ(t)∥2. (4.24)
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Proof. We apply the chain rule to obtain for t > t0

d

dt
fi(x(t)) = ⟨∇fi(x(t)), ẋ(t)⟩. (4.25)

By the definition of (MSD), we have for all t > t0

−ẋ(t) = proj
C(x(t))

(0).

Since ∇fi(x(t)) ∈ C(x(t)) for all i = 1, . . . ,m, by the variational characterization of the projec-
tion (Theorem 2.1.17), we obtain

⟨∇fi(x(t))− (−ẋ(t)),−ẋ(t)⟩ ≥ 0, for all i = 1, . . . ,m,

and hence,

⟨∇fi(x(t)), ẋ(t)⟩ ≤ −∥ẋ(t)∥2. (4.26)

Together, (4.25) and (4.26) give

d

dt
fi(x(t)) ≤ −∥ẋ(t)∥2 ≤ 0.

From Proposition 4.2.5, we derive the same integral bound for the velocity as for the system
(SD). For this derivation, it is enough that one objective function fi is bounded from below.

Corollary 4.2.6. Let fi : H → R be continuously differentiable with L-Lipschitz continuous
gradient ∇fi for i = 1, . . . ,m and let x : [t0,+∞) → H be a solution to (MSD) in the sense
of Definition 4.2.1. If there exists j ∈ {1, . . . ,m} such that fj is bounded from below, i.e.,
infx∈H fj(x) > −∞, then ∫ +∞

t0

∥ẋ(s)∥2 ds < +∞.

Proof. We integrate inequality (4.24) with i = j from t0 to t > t0 to get

fj(x(t)) ≤ fj(x(t0)) +

∫ t

t0

d

ds
fj(x(s)) ds ≤ fj(x(t0))−

∫ t

t0

∥ẋ(s)∥2 ds.

Since fj is bounded from below, we derive the integral estimate∫ +∞

t0

∥ẋ(s)∥2 ds ≤ fj(x(t0))− inf
x∈H

fj(x) < +∞,

which completes the proof.
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Asymptotic analysis

The asymptotic analysis presented in this section differs from the analysis for the system (SD)
provided in the previous section. For the system (SD) in the context of the convex, scalar
optimization problem (SOP), the asymptotic convergence of the function values, f(x(t)) →
infx∈H f(x), was established. Additionally, improved convergence rates of order f(x(t)) −
infx∈H f(x) = O(t−1) were shown, under the assumption argminx∈H f(x) ̸= ∅.

However, these results cannot be directly translated to the context of multiobjective optimiza-
tion, since there is no unique optimal function value. Furthermore, it is not meaningful to
work with the respective optimal function values infx∈H fi(x) for i = 1, . . . ,m since there is
not a single point x∗ ∈ H that is optimal with respect to all objectives. Instead, to measure
the convergence of the function values, we use the merit function φ(·) introduced in Subsection
2.3.3. While the function φ(·) is a suitable measure for the convergence speed, it introduces
analytical challenges, as φ(·) is in general not differentiable, even if all objective functions are
smooth. Consequently, directly working with the derivative d

dtφ(x(t)) to investigate convergence
is inconvenient.

To address this, we introduce multiple anchored energy functions and derive the results from
there. This approach is crucial, and the observations will play a significant role in the analysis
of the novel multiobjective gradient systems we discuss in the main part of this chapter.

Overall, we generalize the results obtained for the system (SD) in a satisfactory way. For convex
objective functions, we prove that φ(x(t)) → 0 as t → +∞ in the general setting, and verify
the rate φ(x(t)) = O(t−1) as t → +∞ under Assumption (A2) which generalizes the condition
argminx∈H f(x) ̸= ∅ for the problem (SOP). Under this condition, we also prove the weak
convergence of x(·) to a weakly Pareto optimal point of (MOP). We close this section with an
example that highlights the necessity of Assumption (A2).

Theorem 4.2.7. Let fi : H → R be continuously differentiable with L-Lipschitz continuous
gradient ∇fi for i = 1, . . . ,m and let x : [t0,+∞) → H be a solution to (MSD) in the sense of
Definition 4.2.1. Then, t 7→ φ(x(t)) is monotonically decreasing. If fi is bounded from below for
all i = 1, . . . ,m, then limt→+∞ φ(x(t)) ∈ R exists.

Proof. For i = 1, . . . ,m and z ∈ H, define the anchored energy function

Wi,z : [t0,+∞) → R, t 7→ Wi,z(t) := fi(x(t))− fi(z),

and for z ∈ H, define

Wz : [t0,+∞) → R, t 7→ Wz(t) := min
i=1,...,m

Wi,z(t) = min
i=1,...,m

fi(x(t))− fi(z).

The function Wz(·) is absolutely continuous on every compact interval, differentiable almost
everywhere and satisfies for all t ≥ t0,

φ(x(t)) = sup
z∈H

Wz(t).
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By Proposition 4.2.5, we have for all z ∈ H, i = 1, . . . ,m and t > t0

d

dt
Wi,z(t) ≤ −∥ẋ(t)∥2.

Then, by Lemma 2.2.14 for all z ∈ H and almost all t > t0

d

dt
Wz(t) ≤ −∥ẋ(t)∥2. (4.27)

Integrating this from t1 > t0 to t2 > t1 yields for all z ∈ H and all t2 > t1 > t0

Wz(t2) ≤ Wz(t1)−
∫ t2

t1

∥ẋ(s)∥2 ds.

Applying the supremum over z ∈ H on both sides, gives for all t2 > t1 > t0

φ(x(t2)) ≤ φ(x(t1))−
∫ t2

t1

∥ẋ(s)∥2 ds ≤ φ(x(t1)).

Hence t 7→ φ(x(t)) is monotonically decreasing. If fi is bounded from below for all i =
1, . . . ,m then φ(x) < +∞ for all x ∈ H. Then, since φ(x) ≥ 0 for all x ∈ H, we conclude
limt→+∞ φ(x(t)) ∈ R exists.

Theorem 4.2.8. Let fi : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient ∇fi for i = 1, . . . ,m and let x : [t0,+∞) → H be a solution to (MSD) in
the sense of Definition 4.2.1. Then, for all z ∈ H

lim
t→+∞

min
i=1,...,m

fi(x(t))− fi(z) ≤ 0.

Proof. Let x(·) be a trajectory solution to (MSD). Define for i = 1, . . . ,m and z ∈ H the
function

Ei,z : [t0,+∞) → R, t 7→ Ei,z(t) := (t− t0) (fi(x(t))− fi(z)) +
1

2
∥x(t)− z∥2,

and for z ∈ H define

Ez : [t0,+∞) → R, t 7→ Ez(t) := min
i=1,...,m

Ei,z(t) = (t− t0) min
i=1,...,m

(fi(x(t))− fi(z)) +
1

2
∥x(t)− z∥2.

The function Ez(·) is absolutely continuous on every compact interval and differentiable almost
everywhere. We use the chain rule and θ(t) ∈ ∆m from (4.19) to get for almost all t > t0

d

dt
Ei,z(t) =(t− t0)⟨∇f(x(t)), ẋ(t)⟩+ fi(x(t))− fi(z) + ⟨x(t)− z, ẋ(t)⟩

≤ − (t− t0)∥ẋ(t)∥2 + fi(x(t))− fi(z) +

〈
m∑
i=1

θi(t)∇fi(x(t)), z − x(t)

〉

≤− (t− t0)∥ẋ(t)∥2 + fi(x(t))− fi(z) +

m∑
i=1

θi(t) (fi(z)− fi(x(t)))

≤− (t− t0)∥ẋ(t)∥2 + fi(x(t))− fi(z)− min
i=1,...,m

(fi(x(t))− fi(z)) .
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By Lemma 2.2.14, we derive for all z ∈ H and almost all t > t0

d

dt
Ez(t) ≤ min

i=1,...,m

d

dt
Ei,z(t) ≤ −(t− t0)∥ẋ(t)∥2. (4.28)

We integrate (4.28) from t0 to t > t0 to get for all z ∈ H and all t > t0

(t− t0) min
i=1,...,m

(fi(x(t))− fi(z)) ≤ Ez(t) ≤ Ez(t0)−
∫ t

t0

(s− t0)∥ẋ(s)∥2 ds ≤ Ez(t0). (4.29)

By (4.29), we follow for all z ∈ H and all t > t0

min
i=1,...,m

(fi(x(t))− fi(z)) ≤
Ez(t0)
t− t0

=
∥x(t0)− z∥2

2(t− t0)
. (4.30)

By Proposition 4.2.5, the function t 7→ fi(x(t)) is monotonically decreasing for all i = 1, . . . ,m.
Furthermore, the limit on the left-hand side of (4.30) exists and hence

lim
t→+∞

min
i=1,...,m

(fi(x(t))− fi(z)) ≤ 0.

Theorem 4.2.8 asserts that there does not exist a z ∈ H that strictly dominates x(t) in the
limit t → +∞. In the following theorem, we show that φ(x(t)) → 0 as t → +∞ given that the
functions fi are bounded from below for i = 1, . . . ,m.

Theorem 4.2.9. Let fi : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient ∇fi for i = 1, . . . ,m and let x : [t0,+∞) → H be a solution to (MSD) in
the sense of Definition 4.2.1. Assume fi is bounded from below for all i = 1, . . . ,m. Then,

lim
t→+∞

φ(x(t)) = 0.

Proof. By Theorem 4.2.7, φ∞ := limt→+∞ φ(x(t)) ∈ R ∪ {+∞} exists as t 7→ φ(x(t)) is
monotonically decreasing. Since the functions fi are bounded from below, we can conclude
φ∞ ≤ φ(x(t0)) < +∞. We prove the statement by contraposition.

Assume φ∞ > 0. By the definition of φ(·) in (2.23), we conclude for all t ≥ t0 the existence of
an element z(t) ∈ H with

min
i=1,...,m

fi(x(t))− fi(z(t)) ≥
φ∞

2
> 0. (4.31)

By Proposition 4.2.5, the function t 7→ fi(x(t)) is monotonically decreasing for all i = 1, . . . ,m.
Since fi is bounded from below by assumption, the limit f∞i := limt→+∞ fi(x(t)) exists for all
i = 1, . . . ,m. For all a, b ∈ Rm it holds that mini=1,...,m ai ≤ mini=1,...,m (ai − bi)+mini=1,...,m bi.
We apply this inequality in (4.31) to conclude

φ∞

2
< min

i=1,...,m
fi(x(t))− fi(z(t)) ≤ max

i=1,...,m
fi(x(t))− f∞i + min

i=1,...,m
f∞i − fi(z(t)). (4.32)
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Since fi(x(t)) → f∞i as t→ +∞ for all i = 1, . . . ,m, there exists T > t0 such that

max
i=1,...,m

fi(x(T ))− f∞i ≤ φ∞

4
. (4.33)

Together, (4.32) and (4.33) give

φ∞

4
< min

i=1,...,m
f∞i − fi(z(T )) = lim

t→+∞
fi(x(t))− fi(z(T )),

which contradicts Theorem 4.2.8. This completes the contraposition.

Theorem 4.2.10. Let fi : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient ∇fi for i = 1, . . . ,m and let x : [t0,+∞) → H be a solution to (MSD) in
the sense of Definition 4.2.1. Assume Assumption (A2) holds. Then, for all t > t0

φ(x(t)) ≤ R

t− t0
,

where R > 0 is defined in Assumption (A2).

Proof. Let z ∈ H. We use the chain rule and θ(t) ∈ ∆m defined in (4.19) to conclude for all
t > t0

d

dt

1

2
∥x(t)− z∥2 =⟨x(t)− z, ẋ(t)⟩ ≤

〈
z − x(t),

m∑
i=1

θi(t)∇fi(x(t))

〉

≤
m∑
i=1

θi(t) (fi(z)− fi(x(t))) ≤ − min
i=1,...,m

fi(x(t))− fi(z).

(4.34)

Integrating (4.34) from t0 to t > t0 gives

1

2
∥x(t)− z∥2 − 1

2
∥x(t0)− z∥2 ≤ −

∫ t

t0

min
i=1,...,m

fi(x(s))− fi(z) ds. (4.35)

By Proposition 4.2.5, the function t 7→ fi(x(t)) is monotonically decreasing for all i = 1, . . . ,m
and we conclude from (4.35) for all t > t0

(t− t0) min
i=1,...,m

fi(x(t))− fi(z) =

∫ t

t0

min
i=1,...,m

fi(x(t))− fi(z) ds

≤
∫ t

t0

min
i=1,...,m

fi(x(s))− fi(z) ds ≤
1

2
∥x(t0)− z∥2 − 1

2
∥x(t)− z∥2 ≤ 1

2
∥x0 − z∥2.

Therefore, we get for all z ∈ H and all t ≥ t0

min
i=1,...,m

fi(x(t))− fi(z) ≤
∥x0 − z∥2

2(t− t0)
. (4.36)

Applying the supremum and infimum as in Lemma 2.3.15 and using Assumption (A2), we follow

φ(x(t)) ≤ R

t− t0
,

which completes the proof.
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Theorem 4.2.11. Let fi : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient ∇fi for i = 1, . . . ,m and let x : [t0,+∞) → H be a solution to (MSD) in
the sense of Definition 4.2.1. Assume x(·) is bounded. Then, x(·) converges weakly to a weakly
Pareto optimal point of (MOP).

Proof. We prove the weak convergence of x(·) using Opial’s Lemma (Lemma 2.1.6). Since x(·)
is bounded and the function fi is convex and continuous it holds that inft≥t0 fi(x(t)) > −∞
for all i = 1, . . . ,m. By Proposition 4.2.5, t 7→ fi(x(t)) is monotonically decreasing and hence
f∞i := limt→+∞ fi(x(t)) = inft≥t0 fi(x(t)) > −∞ for all i = 1, . . . ,m. Then, we define the set

S := {z ∈ H : fi(z) ≤ f∞i , for all i = 1, . . . ,m} .

Using Opial’s Lemma, we show that x(·) converges weakly to an element x∞ ∈ S and prove the
optimality of x∞ in a subsequent step. To apply Opial’s Lemma, we have to show that S ̸= ∅,
all weak sequential cluster points of x(·) belong to S and limt→+∞∥x(t)− z∥ exists for all z ∈ S.

Since x(·) is bounded, it possesses at least one weak sequential cluster point x∞ ∈ H, i.e., there
exists a sequence (tk)k≥0 with tk → +∞ and x(tk) ⇀ x∞ as k → +∞. Since the functions fi
are convex and continuous, they are weakly lower semicontinuous for all i = 1, . . . ,m and we
follow

fi(x
∞) ≤ lim inf

k→+∞
fi(x(tk)) = lim

t→+∞
fi(x(t)) = f∞i .

Therefore, x∞ ∈ S and hence S ̸= ∅. By the same argument all weak sequential cluster points
of x(·) belong to S.

For z ∈ S, we define

hz : [t0,+∞) → R, t 7→ 1

2
∥x(t)− z∥2. (4.37)

Using the chain rule to differentiate hz(·) combined with θ(t) ∈ ∆m from (4.19) gives

d

dt
hz(t) = ⟨x(t)− z, ẋ(t)⟩ =

〈
z − x(t),

m∑
i=1

θi(t)∇fi(x(t))

〉
=

m∑
i=1

θi(t)⟨z − x(t),∇fi(x(t))⟩.

Since the functions fi are convex for all i = 1, . . . ,m, we bound this using Proposition 2.1.24,
to obtain

≤
m∑
i=1

θi(t) (fi(z)− fi(x(t))) ≤ − min
i=1,...,m

fi(x(t))− fi(z) ≤ − min
i=1,...,m

f∞i − fi(z) ≤ 0,

where the last inequality follows by z ∈ S. Hence, the function hz(·) is monotonically decreasing
for all z ∈ S. Therefore, all conditions of Opial’s Lemma are satisfied and we conclude

x(t)⇀ x∞ ∈ S as t→ +∞.

By Theorem 2.3.14, the function φ(·) is weakly lower semicontinuous and we conclude

φ(x∞) ≤ lim inf
k→+∞

φ(x(tk)) = lim
t→+∞

φ(x(t)) = 0, (4.38)

where the last equality follows by Theorem 4.2.9. Finally, from (4.38) we obtain that x∞ is a
weakly Pareto optimal point of (MOP) using Theorem 2.3.13.
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A discussion of Assumption (A2) in the context of (MSD)

Initially, Assumption (A2) might appear unnatural. In the following, we examine the assumption
in detail by means of an illustrative example. We restate Assumption (A2) as follows:

(A2) For all x0 ∈ H and for all x ∈ L(F, F (x0)) it holds that LPw(F, F (x)) ̸= ∅ and further

R := sup
F ∗∈F (LPw(F,F (x0)))

inf
z∈F−1({F ∗})

1

2
∥z − x0∥2 < +∞. (4.39)

Assumption (A2) not only asks for the existence of weakly Pareto optimal points, but also im-
poses a certain uniform boundedness condition. For the scalar optimization problem (SOP), a
common assumption is argminx∈H f(x) ̸= ∅. This assumption is equivalent to the boundedness
of solutions x(·) to (SD), as shown in Corollary 4.1.7. In the context of multiobjective optimiza-
tion, we want to find weakly Pareto optimal points of (MOP). Therefore, it seems natural to
extend the assumption argminx∈H f(x) ̸= ∅ from scalar optimization to the assumption Pw ̸= ∅
for multiobjective optimization. However, in the following example, we show that the assump-
tion Pw ̸= ∅ is not sufficient to obtain the results proven in Theorems 4.2.10 and 4.2.11. We
construct objective functions for which the problem (MOP) satisfies Pw ̸= ∅ but not Assumption
(A2). For this problem there exist unbounded solutions x(·) to (MSD) that do not converge
to weakly Pareto optimal points of (MOP), and for which the convergence rate of the function
values φ(x(t)) = O(t−1) as t→ +∞ is not satisfied.

Define the function

g : R2 → R, x 7→


1
2x

2
1 +

1
2x

2
2, if |x1| ≤ 1, x2 + 1 ≤

√
1− x21,

|x1|+ 1
2x

2
2 − 1

2 , if |x1| > 1, x2 + 1 ≤ 0,√
x21 + (x2 + 1)2 − (x2 + 1), else,

(4.40)

which is convex and continuously differentiable with Lipschitz continuous gradients. A discussion
of the properties of the function g can be found in Example 4.6.9 in Section 4.6 on the system
(MTRIGS). We refer the reader to Section 4.6 for further details, as the function g was originally
introduced in [49] where the system (MTRIGS) was introduced.

Figure 4.3: Function g defined in (4.40).
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The function g is a so-called perspective function [32]. It satisfies argminx∈H g(x) = {x ∈ R2 :
x1 = 0, x2 ≥ 0} and for all x1 ∈ R it holds that g(x1, x2) → 0 as x2 → +∞. Using the function
g we define

f1 : R2 → R, x 7→ g

([
x1 − 1

x2

])
and f2 : R2 → R, x 7→ g

([
x1 + 1

x2

])
. (4.41)

For the functions f1 and f2 defined in (4.41), we consider the multiobjective optimization problem

min
x∈R2

[
f1(x)

f2(x)

]
.(MOP-Ex)

The weak Pareto set of (MOP-Ex) is Pw :=
{
x ∈ R2 : x1 ∈ {−1, 1}, x2 ≥ 0

}
, which is shown

in Subfigure 4.4a. Hence, Pw ̸= ∅ and furthermore, LPw(F, F (x)) = Pw ∩ L(F, F (x)) ̸= ∅ for
all x ∈ R2. Nevertheless, Assumption (A2) is not satisfied as there is no uniform bound of the
weak Pareto set with respect to different optimal objective function values in the Pareto front.

-3 -1.5 0 1.5 3

x1

-2

0

2

4

x
2

f1

f2

Pw

(a)

0 1 2 3

f1

0

1

2

3

f 2

F (H)

F (Pw)

(b)

Figure 4.4: Subfigure 4.4a shows contour plots of objective functions f1 and f2 defined in (4.41)
and the weak Pareto set corresponding to (MOP-Ex). The attainable set F (H) and the weak
Pareto front F (Pw) of problem (MOP-Ex) are illustrated in Subfigure 4.4b.

For the multiobjective optimization problem (MOP-Ex), there exist unbounded solutions x(·)
to (MSD). We do not compute a solution in full detail, but sketch a way to show that x(·) does
not converge. Consider x(·) a solution to (MSD) with initial data t0 = 1 and x(t0) = (0, 0)⊤.
From the symmetry of the objective functions it can be deduced that x1(t) = 0 and x2(t) ≥ 0 for
all t ≥ t0. Then, by computing projC(x(t))(0), we see that the second component of the solution
satisfies

ẋ2(t) = 1− x2(t) + 1√
1 + (x2(t) + 1)2

≥ 1

4(x2(t) + 1)2
.

From this, it follows that x2(t) → +∞ as t→ +∞. Hence x(·) is not bounded and not converging
to an element in Pw. Additionally, dist(x(t),Pw) = 1 for all t ≥ t0. Nevertheless, φ(x(t)) → 0
as t→ +∞ but at a slower asymptotic rate than O

(
1
t

)
.
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4.2.2 Adaption of (MSD) for constrained MOPs

So far, we have only considered unconstrained optimization problems, where the goal is to find
weakly Pareto optimal points in the entire space H. In [18], the system (MSD) is adapted to
address constrained multiobjective optimization problems of the form

min
x∈K


f1(x)
...

fm(x)

 ,(CMOP)

where K ⊂ H is a closed, convex and nonempty set. Under the assumptions that fi : H → R
is quasi-convex and continuously differentiable with Lipschitz continuous gradient ∇fi for i =
1, . . . ,m, the following constrained multiobjective steepest descent system is proposed in [18]:

ẋ(t) + proj
NK(x(t))+C(x(t))

(0) = 0, for t > t0,(CMSD)

with initial data t0 > 0 and x(t0) = x0 ∈ K. Here

NK : K ⇒ H, x 7→ NK(x) := {z ∈ H : ⟨z, y − x⟩ ≤ 0, for all y ∈ K},

is the normal cone mapping which models the contact forces of the constrained in the system
(CMSD), while

C : H ⇒ H, x 7→ C(x) := conv ({∇fi(x) : for all i = 1, . . . ,m}) ,

is the convex hull of the gradients, which describes the driving forces. In the interior of K, i.e.,
for x(t) ∈ int(K), it holds that NK(x(t)) = {0}, and therefore the system (CMSD) is equivalent
to the multiobjective steepest descent system (MSD). For the system (CMSD) a solution is
given by the following definition.

Definition 4.2.12. A function x : [t0,+∞) → K ⊂ H is called a solution to (CMSD) if it
satisfies the following properties:

i) x(·) is continuous and absolutely continuous on each compact interval [t0, T ] for t0 < T <
+∞;

ii) There exist v, w : [t0,+∞) → H such that:

a) v, w ∈ L2([t0, T ],H) for all t0 < T < +∞;

b) v(t) ∈ NK(x(t)), w(t) ∈ C(x(t)) for almost all t > t0;

c) v(t) + w(t) = projNK(x(t))+C(x(t))(0) for almost all t > t0;

d) ẋ(t) + v(t) + w(t) = 0 for almost all t > t0.

The normal cone mapping NK(·) introduces discontinuities in equation (CMSD). As a result,
solutions x(·) to (CMSD) are not continuously differentiable but less regular, and the differential
equation is satisfied only almost everywhere. The following existence result can be established
for (CMSD).
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Theorem 4.2.13. Assume H is finite dimensional. Let K ⊂ H be closed, convex and nonempty.
Let fi : H → R be continuously differentiable with Lipschitz continuous gradient ∇fi for i =
1, . . . ,m. Then, for all t0 > 0 and all x0 ∈ K there exists a solution to (CMSD) in the sense of
Definition 4.2.12.

Remark 4.2.14. The proof of Theorem 4.2.13 given in [18] is more general and applies to
equations of the form

ẋ(t) + proj
∂Φ(x(t))−B(x(t))

(0) = 0, (4.42)

where Φ : H → R ∪ {+∞} is convex and lower semicontinuous and B : H ⇒ H is a continuous
set-valued operator which satisfies a certain growth property. The existence proof relies on a
Yosida approximation of the maximal monotone operator ∂Φ and Peano’s Theorem to conclude
existence of solutions to a regularized version of (4.42). Then a solution to the original equation
is derived by letting the regularization parameter in the Yosida approximation tend to zero and
conclude the existence of a limit that satisfies (4.42) by compactness arguments and the closedness
of the involved operators.

For the system (CMSD), the following asymptotic results can be derived.

Theorem 4.2.15. Let fi : H → R be continuously differentiable with Lipschitz continuous
gradient ∇fi and assume fi is bounded from below on K for i = 1, . . . ,m. Let x : [t0,+∞) → H
be a solution to (CMSD) in the sense of Definition 4.2.12. Then:

i) For all i = 1, . . . ,m and for almost all t > t0

d

dt
fi(x(t)) ≤ −∥ẋ(t)∥2;

ii) It holds that ∫ +∞

t0

∥ẋ(t)∥2 dt < +∞;

iii) If x(·) is bounded, then x(·) converges weakly in H, i.e., x(t)⇀ x∞ ∈ H as t→ +∞.

4.2.3 Adaption of (MSD) for constrained and nonsmooth MOPs

A further adaption of (MSD) is presented in [17], where an extension of (CMSD) to nons-
mooth multiobjective optimization problems is proposed. The paper investigates constrained
multiobjective optimization problems

min
x∈K


f1(x)
...

fm(x)

 ,(CMOP’)
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where K ⊂ H is a closed, convex and nonempty set and the objective functions fi : H → R are
convex and Lipschitz continuous on bounded sets for i = 1, . . . ,m. Under these assumptions,
the following constrained multiobjective steepest descent system is introduced:

ẋ(t) + proj
NK(x(t))+C̃(x(t))

(0) = 0, for t > t0,(CMSD’)

with initial data t0 > 0 and x(t0) ∈ K. Similar to (CMSD), the mapping

NK : K ⇒ H, x 7→ NK(x) := {z ∈ H : ⟨z, y − x⟩ ≤ 0, for all y ∈ K},

is the normal cone mapping, which models the contact forces of the trajectory x(·) and the
boundary of K in (CMSD’). The set-valued operator

C̃ : H ⇒ H, x 7→ C̃(x) := conv

(
m⋃
i=1

∂fi(x)

)
,

maps x ∈ H to the closure of the convex hull of the union of the convex subdifferentials ∂fi(x)
of the respective objective functions. The mapping C̃(·) extends the multiobjective steepest
descent direction to nonsmooth convex objective functions. A solution to (CMSD’) is given by
the following definition.

Definition 4.2.16. A function x : [t0,+∞) → K ⊂ H is called a solution to (CMSD’) if it
satisfies the following properties:

i) x(·) is continuous and absolutely continuous on each compact interval [t0, T ] for t0 < T <
+∞;

ii) There exist v, ξi : [t0,+∞) → H and θi : [t0,+∞) → [0, 1] for i = 1, . . . ,m such that:

a) θi ∈ L∞([0,+∞),R) and θ(t) ∈ ∆m for almost all t > t0;

b) v ∈ L∞([0, T ],H) and ξi ∈ L∞([0, T ],H) for all T > t0 and all i = 1, . . . ,m;

c) η(t) ∈ NK(x(t)) and ξi(t) ∈ ∂fi(x(t)) for all i = 1, . . . ,m and almost all t > t0;

d) ẋ(t) + η(t) +
∑m

i=1 θi(t)ξi(t) = 0 for almost all t > t0;

e) ẋ(t) + projNK(x(t))+C̃(x(t)) = 0 for almost all t > t0.

Similar to (CMSD), solutions x(·) to (CMSD’) are not continuously differentiable, but merely
absolutely continuous on compact intervals, as a consequence of the discontinuities in (CMSD’)
introduced by the normal cone mappingNK(·). Therefore, the equation (CMSD’) is only satisfied
almost everywhere in [t0,+∞).

Theorem 4.2.17. Assume H is finite dimensional. Let K ⊂ H be closed, convex and nonempty
and let fi : H → R be convex, Lipschitz continuous on bounded sets and bounded from below for
all i = 1, . . . ,m. Then, for all t0 > 0 and all x0 ∈ K there exists a solution to (CMSD’) in the
sense of Definition 4.2.16.
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Remark 4.2.18. Similar to the proof of existence of solutions to (CMSD), Theorem 4.2.17
relies on a Yosida approximation of the maximal monotone operator NK(·) and a Moreau–
Yosida approximation of the convex functions fi for i = 1, . . . ,m. A solution to (CMSD’) can
be obtained by letting the regularization parameters converge to zero and showing that there exists
a limit which is a solution in the sense of Definition 4.2.16, using the closedness of the associated
operators and compactness arguments. As the analysis in this thesis does not make use of this
technique, we do not present these ideas in detail. We summarize the asymptotic properties of
(CMSD’) which are analogous to Theorem 4.2.15 for the system (CMSD).

Theorem 4.2.19. Let K ⊂ H be closed, convex and nonempty and let fi : H → R be convex,
Lipschitz continuous on bounded sets and bounded from below for all i = 1, . . . ,m. Let x :
[t0,+∞) → H be a solution to (CMSD’) in the sense of Definition 4.2.16. Then:

i) For all i = 1, . . . ,m and for almost all t > t0

d

dt
fi(x(t)) ≤ −∥ẋ(t)∥2;

ii) It holds that ∫ +∞

t0

∥ẋ(t)∥2 dt < +∞;

iii) If x(·) is bounded, then x(·) converges weakly to a weakly Pareto optimal point of (CMOP’),
i.e., x(t)⇀ x∞ ∈ Pw as t→ +∞.

4.2.4 The inertial multiobjective gradient system (IMOG)

The final system we introduce in this literature review is the inertial multiobjective gradient
system

µẍ(t) + γẋ(t) + proj
C(x(t))

(0) = 0, for t > t0,(IMOG)

with positive constants µ, γ > 0, and initial data t0 > 0 and x(t0) = x0, ẋ(t0) = v0 ∈ H. Here,
C(x) := conv ({∇fi(x) : i = 1, . . . ,m}) is the convex hull of the gradients. The system (IMOG)
was introduced in [16] to incorporate inertial effects into multiobjective gradient dynamics. It
combines the multiobjective steepest descent dynamical system

ẋ(t) + proj
C(x(t))

(0) = 0,(MSD)

which is discussed in detail in Subsection 4.2.1, with the so-called heavy ball with friction system

ẍ(t) + γẋ(t) +∇f(x(t)) = 0,(HBF)

with γ > 0. The system (HBF) was studied in [196] in the context of accelerating iterative
schemes for scalar optimization. Its name originates from [19], where it was derived as a model
for a heavy ball rolling down the graph of the function f and analyzed in the context of global
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optimization. The system (IMOG) serves as an important starting point for the analysis de-
veloped in this chapter. We provide further references and a more detailed discussion on the
system (HBF) in Section 4.4, where we introduce a related system to (IMOG) that addresses
some limitations of the original inertial multiobjective gradient system. In this section, we briefly
summarize the theoretical results related to (IMOG).

A solution to (IMOG) is formally defined in the following way.

Definition 4.2.20. A function x : [t0,+∞) → H is called a solution to (IMOG) if it satisfies
the following properties:

i) x ∈ C2([t0,+∞),H), i.e., x(·) is twice continuously differentiable;

ii) x(t0) = x0 and ẋ(t0) = v0;

iii) µẍ(t) + γẋ(t) + projC(x(t))(0) = 0 for all t > t0.

By Peano’s Theorem and the regularity of the objective functions, the existence of global solu-
tions to (IMOG) follows, as the following theorem states.

Theorem 4.2.21. Assume that H is finite dimensional. Let fi be continuously differentiable
with Lipschitz continuous gradient ∇fi for all i = 1, . . . ,m. Then, for all t0 > 0 and x0, v0 ∈ H
there exists a solution to (IMOG) in the sense of Definition 4.2.20.

The proof of Theorem 4.2.21 is similar to the proof of existence of solutions to (MSD) (Theorem
4.2.3). It also relies on Peano’s Theorem and therefore applies only in finite-dimensional spaces,
and does not guarantee the uniqueness of solutions. The following proposition in [16] further
addresses the question of uniqueness.

Proposition 4.2.22. Let fi be convex and continuously differentiable with L-Lipschitz contin-
uous gradient ∇fi for i = 1, . . . ,m and let x : [t0,+∞) → H be a solution to (IMOG) in the
sense of Definition 4.2.20. If the gradients {∇fi(x(t)) : i = 1, . . . ,m} are linearly independent
for all t > t0, then x(·) is the unique solution to (IMOG).

The multiobjective steepest descent direction x 7→ −projC(x)(0) is locally Lipschitz continuous
in x ∈ H, if the gradients {∇fi(x) : i = 1, . . . ,m} are linearly independent in x. Then, the
uniqueness of solutions in Proposition 4.2.22 follows by the Cauchy–Lipschitz Theorem (Theo-
rem 2.2.2).

The energy functions introduced in the following proposition are an important component in
the analysis of (IMOG).

Proposition 4.2.23. Let fi be convex and continuously differentiable with L-Lipschitz contin-
uous gradient ∇fi for i = 1, . . . ,m and let x : [t0,+∞) → H be a solution to (IMOG) in the
sense of Definition 4.2.20. Define for all i = 1, . . . ,m,

Ei : [t0,+∞) → H, t 7→ Ei(t) := fi(x(t)) +
µ

γ

d

dt
fi(x(t)) + µ∥ẋ(t)∥2.
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For all i = 1, . . . ,m, the function Ei(·) is differentiable almost everywhere. Then, for all i =
1, . . . ,m and almost all t > t0,

d

dt
Ei(t) ≤ −µ

2

γ
∥ẍ(t)∥2 − 1

γ

(
γ2 − µL

)
∥ẋ(t)∥2.

Proposition 4.2.23 shows monotonic decay of the energy function Ei(·) given that γ2 > µL. This
condition will be necessary to derive further asymptotic results on (IMOG).

Proposition 4.2.24. Let fi be convex and continuously differentiable with L-Lipschitz contin-
uous gradient ∇fi for i = 1, . . . ,m and let x : [t0,+∞) → H be a solution to (IMOG) in the
sense of Definition 4.2.20 and assume γ2 > µL. Then:

i) For all i = 1, . . . ,m, it holds that limt→+∞ Ei(t) = E∞
i ∈ R exists;

ii) ẋ ∈ L2([t0,+∞),H) ∩ L∞([t0,+∞),H) and limt→+∞∥ẋ(t)∥ = 0;

iii) ẍ(t) ∈ L∞([t0,+∞),H) ∩ L2([t0,+∞),H) and liminfesst→+∞∥ẍ(t)∥ = 0;

iv) For all i = 1, . . . ,m, it holds that limt→+∞ fi(x(t)) = E∞
i ;

v) There exists a measurable function θ : [t0,+∞) → ∆m, t 7→ θ(t) such that for all t ∈
[t0,+∞)

µẍ(t) + γẋ(t) +

m∑
i=1

θi(t)∇fi(x(t)) = 0.

The asymptotic results stated in Proposition 4.2.24 are followed by a theorem showing that
solutions x(·) to (IMOG) converge to Pareto optimal points of (MOP).

Theorem 4.2.25. Let fi be convex and continuously differentiable with L-Lipschitz continuous
gradient ∇fi for i = 1, . . . ,m and assume γ2 > µL. Let x : [t0,+∞) → H be a bounded solution
to (IMOG) in the sense of Definition 4.2.20. Then, x(·) converges weakly to a weakly Pareto
optimal point of (MOP), i.e., x(t)⇀ x∞ ∈ Pw as t→ +∞.
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4.3 Existence results for a generalized differential equation

In the course of this chapter, we introduce three novel gradient dynamical systems, which are
connected to the multiobjective optimization problem (MOP), namely (IMOG’), (MAVD) and
(MTRIGS). To unify the discussion on the existence of solutions, in this section, we propose the
generalized differential equation (D). We prove existence of solutions to this equation for finite
dimensional spaces, i.e., dim(H) < +∞. A uniqueness result is not included in this chapter,
but moved to the following sections, where special instances of (D) get discussed. The proof on
existence of solutions makes use of existence results for a related differential inclusion and uses
techniques developed in our papers [49, 216, 217].

4.3.1 The generalized differential equation (D)

Let di : (0,+∞) × H → H, (t, u) 7→ di(t, u) be continuous for i = 1, . . . ,m and define the set-
valued map D : (0,+∞) × H ⇒ H, (t, u) 7→ D(t, u) := conv ({di(t, u) : i = 1, . . . ,m}) and let
γ : (0,+∞) → [0,+∞), t 7→ γ(t) be a monotonically decreasing and continuous function. We
define the generalized differential equation

γ(t)ẋ(t) + proj
D(t,x(t))+ẍ(t)

(0) = 0, for t > t0,(D)

with initial data t0 > 0, x(t0) = x0 ∈ H and ẋ(t0) = v0 ∈ H.

In this section, we prove under additional conditions on the functions di(·, ·) the existence of
global solutions to (D). The implicit structure of (D) does not allow for application of Peano’s
Theorem (Theorem 2.2.1) or the Cauchy–Lipschitz Theorem (Theorem 2.2.2) to prove existence
of solutions. Instead, we show that the system (D) possesses a solution if there exists a solution
to a related differential inclusion. This way, we do not have to treat the implicit equation (D)
directly, but can employ existence results for differential inclusions. By this approach, we do
not obtain solutions x(·) which are twice continuously differentiable but less regular. We give a
precise definition of a solution to (D) after the discussion of the announced differential inclusion.

4.3.2 The associated differential inclusion (DI-D)

In the following definition, we introduce the set valued map H : (0,+∞) × H × H → H × H,
which specifies the differential inclusion that is central to this subsection.

Definition 4.3.1. Let di : (0,+∞)×H → H, (t, u) 7→ di(t, u) be continuous for i = 1, . . . ,m, de-
fine the set-valued map D : (0,+∞)×H ⇒ H, (t, u) 7→ D(t, u) := conv ({di(t, u) : i = 1, . . . ,m})
and let γ : (0,+∞) → [0,+∞), t 7→ γ(t) be a monotonically decreasing and continuous function.
Define the set-valued map

H : (0,+∞)×H×H ⇒ H×H,

(t, u, v) 7→ H(t, u, v) := {v} ×

(
−γ(t)v − argmin

g∈D(t,u)
⟨g,−v⟩

)
.

(4.43)

The main object of interest in this subsection is the differential inclusion
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∣∣∣∣∣∣∣
(u̇(t), v̇(t)) ∈ H(t, u(t), v(t)), for t > t0,

(u(t0), v(t0)) = (u0, v0),

(DI-D)

given initial data t0 > 0 and u0, v0 ∈ H, where the set-valued map H : (0,+∞)×H×H ⇒ H×H
is given by Definition 4.3.1.

We start by discussing the properties of the set-valued mapping H(·, ·, ·) given by Definition
4.3.1. To this end, we introduce the following auxiliary lemma. Lemma 4.3.2 states that the
set-valued map (t, u, v) 7→ argming∈D(t,u)⟨g,−v⟩ is upper semicontinuous (see Definition 2.2.3).

Lemma 4.3.2. Let di : (0,+∞)×H → H for i = 1, . . . ,m and D : (0,+∞)×H ⇒ H be given
by Definition 4.3.1. Let (t, u, v) ∈ (0,+∞) × H × H be fixed. Then, for all ε > 0 there exists
δ > 0 such that for all (t, u, v) ∈ (0,+∞)×H×H with ∥(t, u, v)− (t, u, v)∥R×H×H < δ and for
all g ∈ argming∈D(t,u)⟨g,−v⟩ there exists g ∈ argming∈D(t,u)⟨g,−v⟩ with ∥g − g∥ < ε.

Proof.
Let (t, u, v) ∈ [t0,+∞)×H×H be fixed. We can describe the set argming∈D(t,u)⟨g,−v⟩ using the

vertices of D(t, u) since the set D(t, u) is a convex polyhedron and the objective function g 7→
⟨g,−v⟩ is linear. A minimum of ming∈D(t,u)⟨g,−v⟩ is attained at a vertex ofD(t, u) and since this

set is compact it exists at least one i ∈ {1, . . . ,m} such that ⟨di(t, u),−v⟩ = ming∈D(t,u)⟨g,−v⟩.
The same can be done for any (t, u, v) ∈ [t0,+∞)×H×H. Define the index sets of optimal and
non-optimal vertices

A(t, u, v) :=

{
i ∈ {1, . . . ,m} : ⟨di(t, u),−v⟩ = min

g∈D(t,u)
⟨g,−v⟩

}
, and

I(t, u, v) := {1, . . . ,m} \ A(t, u, v),

and fix the notation A := A(t, u, v) and I := I(t, u, v). By the arguments mentioned above
A(t, u, v) ̸= ∅ holds for all (t, u, v) ∈ (0,+∞)×H×H. (Note that the following argument also
works in the case I = ∅.) There exists M ∈ R such that for all i ∈ A and j ∈ I it holds that

⟨di(t, u),−v⟩ < M < ⟨dj(t, u),−v⟩.

Then by the continuity of (t, u, v) 7→ ⟨di(t, u), v⟩ we can choose δ > 0 such that for all (t, u, v) ∈
[t0,+∞)×H×H with ∥(t, u, v)− (t, u, v)∥R×H×H < δ and all i ∈ A and j ∈ I

⟨di(t, u),−v⟩ < M < ⟨dj(t, u),−v⟩.

Hence, for all (t, u, v) ∈ (0,+∞) × H × H with ∥(t, u, v) − (t, u, v)∥R×H×H < δ it holds that
A(t, u, v) ⊂ A. Now, the remainder of the proof follows from the continuity of the functions
di(·, ·) for i = 1, . . . ,m. Let g ∈ argming∈D(t,u)⟨g,−v⟩ be arbitrary. Write g =

∑
i∈A(t,u,v) θidi(t, u)

as a convex combination of the optimal vertices of D(t, u) with θ ∈ ∆m. From A(t, u, v) ⊂ A,
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it follows that g =
∑

i∈A(t,u,v) θidi(t, u) is a solution to ming∈D(t,u)⟨g,−v⟩. Since the functions
di(·, ·) are continuous for all i = 1, . . . ,m, we can choose δ > 0 such that

∥g − g∥ =

∥∥∥∥∥∥
∑

i∈A(t,u,v)

θi
(
di(t, u)− di(t, u)

)∥∥∥∥∥∥ ≤ max
i=1,...,m

∥di(t, u)− di(t, u)∥ < ε.

Proposition 4.3.3. Let di : (0,+∞) × H → H for i = 1, . . . ,m, D : (0,+∞) × H ⇒ H and
γ : (0,+∞) → [0,+∞) be given by Definition 4.3.1. Then, the set-valued map H(·, ·, ·) defined
in (4.43) has the following properties:

i) For all (t, u, v) ∈ (0,+∞)×H×H, the set H(t, u, v) ⊂ H×H is convex and compact;

ii) H(·, ·, ·) is upper semicontinuous;

iii) The map

ψ : (0,+∞)×H×H → H×H, (t, u, v) 7→ ψ(t, u, v) := proj
H(t,u,v)

(0)

is locally compact if and only if dim(H) < +∞;

iv) Let t0 > 0. Assume the functions di(·, ·) are uniformly L-Lipschitz continuous in the second
component on [t0 + ∞) × H with L > 0, i.e., ∥di(t, u1) − di(t, u2)∥ ≤ L∥u1 − u2∥ for all
t ∈ [t0,+∞), u1, u2 ∈ H and i = 1, . . . ,m. Then, there exists c > 0 such that for all
(t, u, v) ∈ [t0,+∞)×H×H, it holds that

sup
ξ∈H(t,u,v)

∥ξ∥H×H ≤ c(1 + ∥(u, v)∥H×H).

Proof.

i) Fix (t, u, v) ∈ (0,+∞) ×H ×H. The set D(t, u) := conv ({di(t, u) : i = 1, . . . ,m}) is convex
and compact. Then argming∈D(t,u)⟨g,−v⟩ is also convex and compact and the statement follows
since sums and Cartesian products of convex and compact sets are convex and compact.

ii) We show that H(·, ·, ·) is upper semicontinuous in the ε sense (see Definition 2.2.4) using
Lemma 4.3.2. Then, we use Proposition 2.2.5 together with i) to conclude H(·, ·, ·) is upper
semicontinuous as well. Using Lemma 4.3.2 we will show that for all ε > 0 there exists δ > 0
satisfying

H(Bδ((t, u, v))) ⊂ H(t, u, v) +Bε((0, 0)),

where Bδ((t, u, v))) ⊂ R × H × H and Bε((0, 0)) ⊂ H × H are open balls with radius δ
and ε, respectively. To this end, we show that for all (t, u, v) ∈ (0,+∞) × H × H with
∥(t, u, v) − (t, u, v)∥R×H×H < δ and for all (x, y) ∈ H(t, u, v) there exists an element (x, y) ∈
H(t, u, v) with ∥(x, y)− (x, y)∥H×H < ε.
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Let (t, u, v) ∈ (0,+∞)×H×H and ε > 0 be arbitrary but fixed. For all (t, u, v) ∈ (0,+∞)×H×H
the relation (x, y) ∈ H(t, u, v) is equivalent to

x = v,

y = −γ(t)v − g, with

g ∈ argmin
g∈D(t,u)

⟨g,−v⟩.
(4.44)

By Lemma 4.3.2, there exists δ1 > 0 such that for all (t, u, v) ∈ (0,+∞)×H×H with ∥(t, u, v)−
(t, u, v)∥H×H < δ1 and all g ∈ argming∈D(t,u)⟨g,−v⟩ there exists g ∈ argming∈D(t,u)⟨g,−v⟩ with

∥g − g∥ < ε

3
. (4.45)

By continuity of γ(·), there exists δ2 > 0 such that for all t ∈ (0,+∞) with |t− t| < δ2 it holds
that ∣∣γ(t)− γ(t)

∣∣ ∥v∥ < ε

3
. (4.46)

Fix δ = min
{
δ1, δ2,

ε
3(1+γ(t0))

}
and let (t, u, v) ∈ (0,+∞)×H×H with ∥(t, u, v)−(t, u, v)∥R×H×H <

δ and let (x, y) = (v,−γ(t)v − g) ∈ H(t, u, v) with g ∈ argming∈D(t,u)⟨g,−v⟩. By the choice of
δ there exists

(x, y) =
(
v,−γ(t)v − g

)
∈ H(t, u, v),

with g ∈ argming∈D(t,u)⟨g,−v⟩ satisfying (4.45) and (4.46). Then, it follows that

∥(x, y)− (x, y)∥H×H ≤ ∥v − v∥+
∥∥−γ(t)v − g + γ(t)v + g

∥∥
≤ (1 + γ(t0)) ∥v − v∥+

∣∣γ(t)− γ(t)
∣∣ ∥v∥+ ∥g − g∥ < ε,

which completes the proof.

iii) If dim(H) < +∞, the proof follows from ii). On the other hand, from ψ being locally com-
pact, we follow that v 7→ v is locally compact which is equivalent to H being finite-dimensional.

iv) Recall the following inequality between the norm ∥(·, ·)∥H×H and the norm ∥·∥. For all
x, y ∈ H, it holds that

∥(x, y)∥H×H ≤ ∥x∥+ ∥y∥ ≤
√
2 ∥(x, y)∥H×H . (4.47)

Let (t, u, v) ∈ [t0,+∞) × H × H and ξ ∈ H(t, u, v). Then, ξ = (v,−γ(t)v − g) with g ∈
argming∈D(t,u)⟨g,−v⟩. Using the definition of ξ and the first inequality of (4.47) we get

∥ξ∥H×H ≤ ∥v∥+ ∥γ(t)v + g∥ .

Bounding ∥g∥ by the element with maximum norm in D(t, u) and using the triangle inequality
gives

≤ (1 + γ(t)) ∥v∥+ max
θ∈∆m

∥∥∥∥∥
m∑
i=1

θidi(t, u)

∥∥∥∥∥
≤ (1 + γ(t0)) ∥v∥+ max

θ∈∆m

∥∥∥∥∥
m∑
i=1

θi (di(t, u)− di(t0, 0))

∥∥∥∥∥+ max
θ∈∆m

∥∥∥∥∥
m∑
i=1

θidi(t0, 0)

∥∥∥∥∥ .
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In the next step, we use the Lipschitz continuity of di(·, ·) and get

≤ (1 + γ(t0)) ∥v∥+ L∥u∥+ max
i=1,...,m

∥di(t0, 0)∥ .

Finally, we use the second inequality from (4.47) and have

≤ c
(
1 + ∥(u, v)∥H×H

)
,

with c =
√
2max ({1 + γ(t0), L,maxi=1,...,m ∥di(t0, 0)∥}).

The next theorem states an existence result for the differential inclusion (DI-D).

Theorem 4.3.4. Assume H is finite-dimensional. Then, for all (u0, v0) ∈ H × H there exists
T > t0 and and a solution to the differential inclusion (DI-D) on [t0, T ], i.e., there exists an
absolutely continuous function (u, v) : [t0, T ] → H × H, t 7→ (u(t), v(t)) with (u(t0), v(t0)) =
(u0, v0) and which satisfies

(u̇(t), v̇(t)) ∈ H(t, u(t), v(t)),

for almost all t ∈ (t0, T ).

Proof. The proof follows immediately from Proposition 4.3.3 i) - iii) which shows that the set-
valued map H(·, ·, ·) given by Definition 4.3.1 satisfies all conditions required to apply Theorem
2.2.7.

Theorem 4.3.4 states the existence of local solutions to (DI-D). In the following theorem, we
extend local solutions to global solutions using a standard technique, which relies on Zorn’s
Lemma.

Theorem 4.3.5. Assume H is finite dimensional and assume the function di(·, ·) are uniformly
L-Lipschitz continuous in the second component on [t0,+∞) ×H with L > 0, i.e., ∥di(t, u1) −
di(t, u2)∥ ≤ L∥u1−u2∥ for all t ∈ [t0,+∞), u1, u2 ∈ H and i = 1, . . . ,m. Then, for all (u0, v0) ∈
H ×H there exists a solution to the differential inclusion (DI-D) on [t0,+∞), i.e., there exists
a continuous function (u, v) : [t0,+∞) → H ×H, t 7→ (u(t), v(t)) with (u(t0), v(t0)) = (u0, v0)
which is absolutely continuous on every compact interval [t0, T ] ⊂ [t0,+∞) and which satisfies

(u̇(t), v̇(t)) ∈ H(t, u(t), v(t)),

for almost all t ∈ (t0,+∞).

Proof. Define the set

S :=
{
(u, v, T ) : T ∈ (t0,+∞] and (u, v) : [t0, T ) → H×H is absolutely continuous on every

compact interval contained in [t0, T ) and is a solution of (DI-D) on [t0, T )
}
.

(Note that T ∈ (t0,+∞] in the definition of S allows for the value +∞ for T .) By Theorem
4.3.4, the set S is not empty. On S we define the partial order ≼ the following way. For
(u1, v1, T1), (u2, v2, T2) ∈ S, define

(u1, v1, T1) ≼ (u2, v2, T2) :⇐⇒ T1 ≤ T2 and (u1(t), v1(t)) = (u2(t), v2(t)) for all t ∈ [t0, T1).
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The partial order ≼ is reflexive, transitive and antisymmetric. We show that any nonempty,
totally ordered subset of S has an upper bound in S. Let C ⊆ S be a totally ordered nonempty
subset of S. We define

TC := sup {T : (u, v, T ) ∈ C} ,

and

(uC, vC) : [t0, TC) → H×H, (uC, vC)(t) := (u(t), v(t)) for t < t < TC and (u, v, t) ∈ C.

By construction, (uC, vC, TC) ∈ S and (u, v, T ) ≼ (uC, vC, TC), hence there exists an upper bound
of C in S. According to Zorn’s Lemma (see [61, 120]), there exists a maximal element in S,
which we denote by (u, v, T ). If T = +∞, the proof is complete. Assume that T < +∞. We
show that this contradicts the maximality of (u, v, T ) in S. Define on [t0, T ) the function

h : [t0, T ) → R, t 7→ h(t) := ∥(u(t), v(t))− (u(t0), v(t0))∥H×H .

Using the Cauchy–Schwarz inequality, we get for almost all t ∈ [t0, T )

d

dt

(
1

2
h2(t)

)
= ⟨(u̇(t), v̇(t)), (u(t), v(t))− (u(t0), v(t0))⟩H×H ≤ ∥(u̇(t), v̇(t))∥H×H h(t). (4.48)

Proposition 4.3.3 iv) guarantees the existence of a constant c > 0 with

∥(u̇(t), v̇(t))∥H×H ≤ c(1 + ∥(u(t), v(t))∥H×H), (4.49)

for almost all t ∈ [t0, T ). Define c̃ := c (1 + ∥(u(t0), v(t0))∥H×H). We apply the triangle inequal-
ity and get for almost all t ∈ [t0, T )

∥(u̇(t), v̇(t))∥H×H ≤ c̃ (1 + ∥(u(t), v(t))− (u(t0), v(t0))∥H×H) . (4.50)

Combining (4.48) and (4.50) gives

d

dt

(
1

2
h2(t)

)
≤ c̃ (1 + h(t))h(t). (4.51)

Using a Gronwall-type argument (see Lemma 2.2.9, Lemma 2.2.10 and Theorem 3.5 in [16]), we
conclude from (4.51) that for all t ∈ [t0, T )

h(t) ≤ c̃T exp(c̃T ).

Therefore, h is bounded on [t0, T ). Then, u and v are also bounded on [t0, T ) and from (4.49)
we deduce that u̇ and v̇ are essentially bounded. This and the fact that u̇ and v̇ are absolutely
continuous guarantees that

uT := u0 +

∫ T

t0

u̇(s) ds ∈ H and vT := v0 +

∫ T

t0

v̇(s) ds ∈ H
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are well-defined. In the next step we extend the solution from (uT , vT ). Considering the differ-
ential inclusion ∣∣∣∣∣∣∣

(u̇(t), v̇(t)) ∈ H(t, u(t), v(t)), for t > T,

(u(T ), v(T )) = (uT , vT ),

(4.52)

and using Theorem 4.3.4, we obtain that there exist δ > 0 and a solution (û, v̂) : [T, T + δ] →
H×H of (4.52) which is absolutely continuous on compact intervals of [T, T + δ]. Defining

(u∗, v∗) : [t0, T + δ) → H×H, t 7→

{
(u(t), v(t)), for t ∈ [t0, T ),

(û(t), v̂(t)), for t ∈ [T, T + δ),

we obtain an element (u∗, v∗, T + δ) ∈ S with the property that (u, v, T ) ̸= (u∗, v∗, T + δ) and
(u, v, T ) ≼ (u∗, v∗, T + δ). This is a contradiction to the fact that (u, v, T ) is a maximal element
in S.

4.3.3 Existence of solutions to (D)

Building on the preparatory work carried out in the preceding subsection, we are able to define
a solution to (D) and formulate the final existence result.

Definition 4.3.6. We call a function x : [t0,+∞) → H a solution to (D) with initial data
t0 > 0, x(t0) = x0 and ẋ(t0) = v0 if it satisfies the following conditions:

i) x ∈ C1([t0,+∞),H), i.e., x is continuously differentiable on [t0,+∞);

ii) ẋ is absolutely continuous on [t0, T ] for all T ≥ t0;

iii) There exists a (Bochner) measurable function ẍ : [t0,+∞) → H with ẋ(t) = ẋ(t0) +∫ t
t0
ẍ(s) ds for all t ≥ t0;

iv) ẋ is differentiable almost everywhere and d
dt ẋ(t) = ẍ(t) holds for almost all t ∈ [t0,+∞);

v) γ(t)ẋ(t) + projD(t,x(t))+ẍ(t)(0) = 0 holds for almost all t ∈ [t0,+∞);

vi) x(t0) = x0 and ẋ(t0) = v0 hold.

Remark 4.3.7. Conditions iii) and iv) are merely consequences of ii) (see [76, 87]), since ẋ
is absolutely continuous on every compact interval [t0, T ] with values in a Hilbert space (which
satisfies the Radon-Nikodym property). The (Bochner) measurability of ẍ will be of importance
in the analysis of the trajectories in the following subsections.

In this subsection, we construct trajectory solutions of (D) starting from solutions of the dif-
ferential inclusion (DI-D). To this end, we use Lemma 2.1.19 to show that solutions of (DI-D)
give solutions to (D).
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Lemma 4.3.8. Let x0, v0 ∈ H and t0 > 0. Assume (u(·), v(·)) : [t0,+∞) → H×H is a solution
to (DI-D) with (u(t0), v(t0)) = (x0, v0). Then, it follows that x(t) := u(t) satisfies

γ(t)ẋ(t) + proj
D(t,x(t))+ẍ(t)

(0) = 0,

for almost all t ∈ [t0,+∞) and x(t0) = x0, ẋ(t0) = v0.

Proof. Since (u(·), v(·)) is a solution to (DI-D), the relations

u̇(t) = v(t) and

v̇(t) ∈ −γ(t)v(t)− argmin
g∈D(t,u(t))

⟨g,−v(t)⟩, (4.53)

hold for almost all t ∈ [t0,+∞). Using γ(t) > 0, we can write the second line as v̇(t) ∈
−γ(t)v(t) − argming∈D(t,u(t))⟨g,−γ(t)v(t)⟩. Using Lemma 2.1.19 with η = −γ(t)v(t), C =
D(t, u(t)) and ξ = v̇(t), the second line in (4.53) gives for almost all t > t0

−γ(t)v(t) = proj
D(t,u(t))+v̇(t)

(0).

Rewriting this system using x(t) = u(t), ẋ(t) = u̇(t) = v(t) and ẍ(t) = v̇(t) and verifying the
initial conditions x(t0) = u(t0) = x0 and ẋ(t0) = v(t0) = v0 yields the desired result.

Finally, we can state the full existence theorem for the system (D).

Theorem 4.3.9. Assume H is finite-dimensional and and assume the function di(·, ·) are uni-
formly L-Lipschitz continuous in the second component on [t0,+∞) × H with L > 0, i.e.,
∥di(t, u1)− di(t, u2)∥ ≤ L∥u1 − u2∥ for all t ∈ [t0,+∞), u1, u2 ∈ H and i = 1, . . . ,m. Then, for
all x0, v0 ∈ H, there exists a function x(·) which is a solution to equation (D) in the sense of
Definition 4.3.6.

Proof. The proof follows immediately combining Theorem 4.3.4 and Lemma 4.3.8.

Remark 4.3.10. In Theorem 4.3.9, we assume that the functions di(·, ·) are uniformly Lipschitz
continuous in the second component on [t0,+∞) × H. One can relax this condition and only
require Lipschitz continuity on bounded sets given that the solutions remain bounded.
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4.4 The inertial multiobjective gradient system (IMOG’)

In this section, we present the inertial multiobjective gradient system

αẋ(t) + proj
C(x(t))+ẍ(t)

(0) = 0, for t > t0,(IMOG’)

with α > 0, C(x) := conv ({∇fi(x) : i = 1, . . . ,m}) and initial data t0 > 0, x(t0) = x0 ∈ H and
ẋ(t0) = v0 ∈ H. The system (IMOG’) is a further development of the multiobjective steepest
descent system (MSD), and does not use the steepest descent direction projC(x(t))(0) directly
but enhances it by second-order information. In the following, we motivate the derivation of
the system (IMOG’). We choose the designation (IMOG’) to emphasize its relation to the
differential equation

µẍ(t) + γẋ(t) + proj
C(x(t))

(0) = 0,(IMOG)

with µ, γ > 0, which gets introduced in [16] in the context of multiobjective optimization and
which forms the foundational step in defining inertial gradient systems for multiobjective opti-
mization. Both systems (IMOG’) and (IMOG) reduce in the single objective setting (m = 1),
to the heavy ball with friction system

ẍ(t) + γẋ(t) +∇f(x(t)) = 0,(HBF)

with γ > 0. The system (HBF) is well studied in various contexts. In the setting of scalar
optimization it gets discussed in [196] as a general approach to accelerate iterative methods. In
the context of convex optimization, further contributions can be found in [4, 19, 114]. In scalar
optimization, it is shown that this system improves the steepest descent dynamical system and
gives faster convergence. A discretization of (HBF) leads to a first-order method with momen-
tum which improves the steepest descent method [7, 9]. Similar ideas were applied to solve
monotone inclusions [5].

The system (IMOG) can be obtained from (HBF) by replacing the gradient ∇f(x(t)) by the
multiobjective steepest descent direction projC(x(t))(0). This is a natural approach to an inertial
system for multiobjective optimization. In [16, Theorem 4.7] it is shown that the solutions x(t)
of (IMOG) in fact converge to solutions of (MOP) as we recite in the following.

Theorem 4.4.1. Let fi be convex and continuously differentiable with L-Lipschitz continuous
gradients ∇fi with L > 0 for i = 1, . . . ,m. Let x : [t0,+∞) → H be a bounded solution to
(IMOG) and assume that γ2 ≥ µL. Then x(t) converges weakly to a weakly Pareto optimal
point of (MOP).

While this result shows that solutions to (IMOG) converge to Pareto optimal solutions of (MOP),
there is no theoretical evidence that these solutions converge faster than the ones obtained from
the multiobjective steepest descent system (MSD). From an optimization point of view, it would
be desirable to use a time dependent damping coefficient γ = α

t to obtain gradient systems for
multiobjective optimization which behave similar to the inertial gradient system with asymptotic
vanishing damping for scalar optimization

ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0,(AVD)
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with α ≥ 3, which gets discussed in [218] in connection to Nesterov’s accelerated gradient method
[182]. The authors of [16] conjectured that the system (IMOG) with time dependent damping
γ = α

t gives the same improvement in the context of multiobjective optimization and can lead to
fast first-order methods for multiobjective optimization. However, for an adaption of (IMOG)
with asymptotically vanishing damping the analysis laid out in [16] breaks down because of the
condition γ2 ≥ µL.

When trying to incorporate time dependent damping in (IMOG), it turns out that the general-
ization of (HBF) to the multiobjective optimization setting might be the problem. We obtain the
generalization (IMOG’) by investigating the following energy estimate. For the system (HBF),
we can prove decaying energy in the form

d

dt

(
f(x(t)) +

1

2
∥ẋ(t)∥2

)
= −α∥ẋ(t)∥2.(E)

An estimate analogous to this does not hold for the system (IMOG). This observation was the
starting point in the derivation of (IMOG’). Generalizing (E) to the multiobjective setting leads
to the inequalities

d

dt

(
fi(x(t)) +

1

2
∥ẋ(t)∥2

)
≤ −α∥ẋ(t)∥2,

for i = 1, . . . ,m. Writing out the left-hand side using the chain rule and rewriting this as a
variational inequality we obtain (IMOG’) from these energy estimates by interpreting the vari-
ational inequality as a projection (see Proposition 4.4.5).

From an analytical point of view (IMOG’) looks disadvantageous in comparison to (IMOG)
since it is an implicit differential equation. And in fact, this makes it harder to prove existence
of solutions as we cannot invoke standard results like Peano’s Theorem or the Cauchy–Lipschitz
Theorem. However, we see in the following sections and chapters that this is the key observation
to develop more sophisticated fast gradient dynamics and first-order methods for multiobjective
optimization.

This section contains two main results. In the first part, we prove existence of solutions to
(IMOG’) by using results prepared in Subsection 4.3. This is followed by an asymptotical anal-
ysis of the solutions to (IMOG’) and a prove on the weak converge to weakly Pareto optimal
points of (MOP).

In this section, we make the following standing assumption:

(A1) The objective functions fi : H → R are convex and continuously differentiable with L-
Lipschitz continuous gradients ∇fi : H → H for all i = 1, . . . ,m.

The content of this section was already published in the following paper:

[217] Sonntag, K. and Peitz, S. Fast Multiobjective Gradient Methods with Nesterov Ac-
celeration via Inertial Gradient-Like Systems. In: Journal of Optimization Theory and
Applications 201 (2024), pp. 539–582. doi: 10.1007/s10957-024-02389-3.
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4.4.1 Discussion of existence and uniqueness of solutions

The discussion of existence and uniqueness of solutions to (IMOG’) is based on Section 4.3. We
begin by properly defining a solution to (IMOG’).

Definition 4.4.2. We call a function x : [t0,+∞) → H a solution to (IMOG’) with initial data
t0 > 0, x(t0) = x0 and ẋ(t0) = v0 if it satisfies the following conditions:

i) x ∈ C1([t0,+∞),H), i.e., x(·) is continuously differentiable on [t0,+∞);

ii) ẋ(·) is absolutely continuous on [t0, T ] for all T ≥ t0;

iii) There exists a (Bochner) measurable function ẍ : [t0,+∞) → H with ẋ(t) = ẋ(t0) +∫ t
t0
ẍ(s) ds for all t ≥ t0;

iv) ẋ(·) is differentiable almost everywhere and d
dt ẋ(t) = ẍ(t) holds for almost all t ∈ [t0,+∞);

v) αẋ(t) + projC(x(t))+ẍ(t)(0) = 0 holds for almost all t ∈ [t0,+∞).

vi) x(t0) = x0 and ẋ(t0) = v0 hold.

Theorem 4.4.3. Assume H is finite-dimensional and and assume the gradients of the objective
function ∇fi are uniformly L-Lipschitz continuous for all i = 1, . . . ,m. Then, for all t0 > 0 and
x0, v0 ∈ H, there exists a function x(·) which is a solution to equation (IMOG’) in the sense of
Definition 4.4.2.

Proof. The proof follows from Theorem 4.3.9. We show (IMOG’) is a special instance of (D)
for appropriate choices of γ(·) and di(·, ·). Define the functions

γ : (0,+∞) → [0,+∞), t 7→ γ(t) := α,

di : (0,+∞)×H → H, (t, u) 7→ ∇fi(u),
(4.54)

and let D(·, ·) be as defined in Definition 4.3.1. By (4.54) the functions γ(·) and di(·, ·) have
the following properties. The function γ(·) is continuous and monotonically decreasing. The
functions di(·, ·) are continuous on (0,+∞) × H and uniformly L-Lipschitz continuous in the
second component on [t0,+∞)×H for all i = 1, . . . ,m. Further, for all (t, u) ∈ (0,+∞)×H it
holds that

D(t, u) = C(u).

For this choice of γ(·) and di(·, ·) equation (D) reduces to (IMOG’) and we conclude the existence
of a solution to (D) in the sense of Definition 4.3.6 by Theorem 4.3.9.

Remark 4.4.4. It remains unclear whether solutions to (IMOG’) are unique. There are two
main challenges in establishing uniqueness. First, the multiobjective steepest descent direction is
only Hölder continuous, not Lipschitz continuous (see Proposition 2.3.21 and Remark 2.3.22).
Therefore, even for simpler gradient dynamics such as the multiobjective steepest descent dy-
namical system ẋ(t) + projC(x(t))(0) = 0, we cannot conclude uniqueness without additional
assumptions. Second, (IMOG’) is not an ordinary differential equation, but rather an implicit
differential equation. This prevents the application of standard tools like the Cauchy–Lipschitz
Theorem to prove uniqueness. Nevertheless, the asymptotic analysis of solutions presented in
the following subsections holds independently of uniqueness.
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4.4.2 Preparatory results

In this subsection, we omit the assumption dim(H) < +∞. We show that trajectories of the
differential equation (IMOG’) converge weakly to weakly Pareto optimal points of (MOP). This
follows from a dissipative property of the system and an argument that relies on Opial’s Lemma.
We first define an energy function for the system (IMOG’) that has Lyapunov-type properties.

Proposition 4.4.5. Let x : [t0,+∞) → H be a solution to (IMOG’) in the sense of Definition
4.4.2. For i = 1, . . . ,m define the function

Wi : [t0, T ) → R, t 7→ Wi(t) := fi(x(t)) +
1

2
∥ẋ(t)∥2.

Then, for all i = 1, . . . ,m and almost all t ∈ (t0,+∞) it holds that d
dtWi(t) ≤ −α∥ẋ(t)∥2.

Proof. By Definition 4.4.2 the function x(·) is continuously differentiable and ẋ(·) is absolutely
continuous on each compact interval [t0, T ] and therefore differentiable almost everywhere with
derivative ẍ(t). Hence, for almost all t > t0 the function Wi(·) is differentiable and by the chain
rule we have

d

dt
Wi(t) = ⟨∇fi(x(t)), ẋ(t)⟩+ ⟨ẋ(t), ẍ(t)⟩. (4.55)

By the variational characterization of the convex projection αẋ(t) = projC(x(t))+ẍ(t)(0), we get
for all i = 1, . . . ,m and almost all t > t0

⟨αẋ(t) +∇fi(x(t)) + ẍ(t), αẋ(t)⟩ ≤ 0, (4.56)

Together (4.55) and (4.56) imply the desired result.

Corollary 4.4.6. Let x : [t0,+∞) → H be a solution to (IMOG’) with initial data t0 > 0,
x(t0) = x0 and ẋ(t0) = v0 in the sense of Definition 4.4.2. Assume there exists i ∈ {1, . . . ,m}
such that the lower level set

L
(
fi, fi(x(t0)) +

1

2
∥ẋ(t0)∥2

)
=

{
z ∈ H : fi(z) ≤ fi(x(t0)) +

1

2
∥ẋ(t0)∥2

}
,

is bounded. Then x(·) is bounded.

Proof. By Proposition 4.4.5 the function Wi(·) is monotonically decreasing for all i = 1, . . . ,m
and therefore

fi(x(t)) ≤ Wi(t) ≤ Wi(t0) = fi(x(t0)) +
1

2
∥ẋ(t0)∥2.

Hence

x(t) ∈ L
(
fi, fi(x(t0)) +

1

2
∥ẋ(t0)∥2

)
,

for all i = 1, . . . ,m. If one of these sets is bounded then x(t) is bounded as well.
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Proposition 4.4.7. Let x : [t0,+∞) → H be a bounded solution of (IMOG’) in the sense
of Definition 4.4.2 and let further ∇fi be Lipschitz continuous on bounded sets. Then, for all
i = 1, . . . ,m it holds that:

i) W∞
i := limt→+∞Wi(t) > −∞;

ii) ẋ ∈ L2([t0,+∞),H) ∩ L∞([t0,+∞),H);

iii) ẍ ∈ L∞([t0,+∞),H), limt→+∞∥ẋ(t)∥ = 0 and limt→+∞ fi(x(t)) = W∞
i ;

iv) There exists a monotonically increasing unbounded sequence (tk)k≥0 with
projC(x(tk))

(0) → 0 as k → +∞.

Proof. i) From Proposition 4.4.5, we immediately get that Wi(·) is monotonically decreasing
and therefore W∞

i := limt→+∞Wi(t) ∈ R∪{−∞} exists. Next, we show W∞
i > −∞. Since ∇fi

is bounded on bounded sets, we can conclude by the Mean Value Theorem that fi is bounded on
bounded sets. Since x(·) remains bounded by assumption, we conclude that fi(x(t)) is uniformly
bounded from below for all t ≥ t0, and hence

W∞
i ≥ inf

t≥t0
fi(x(t)) > −∞.

ii) We know that fi(x(t)) is bounded. Then, by the definition of Wi(·) and the fact that Wi(·)
is monotonically decreasing, we immediately get that ẋ(·) is bounded for all t ≥ t0. Since it is
continuous, it follows that ẋ ∈ L∞([t0,+∞),H). Using Proposition 4.4.5, we bound

α

∫ +∞

t0

∥ẋ(t)∥2 dt ≤ −
∫ +∞

t0

d

dt
Wi(s) ds = Wi(t0)−W∞

i < +∞,

and therefore ẋ ∈ L2([t0,+∞),H).

iii) By Lemma 2.1.18 the solution x(·) satisfies for almost all t > t0,

ẍ(t) + αẋ(t) + proj
C(x(t))

(−ẍ(t)) = 0.

Since ẋ(t) and ∇fi(x(t)) remain bounded for all t ≥ t0 it follows that ẍ(t) = −αẋ(t) −
projC(x(t))(−ẍ(t)) remains bounded for almost all t ≥ t0. By Definition 4.4.2, the function

ẍ(·) is measurable and we follow ẍ ∈ L∞([t0,+∞),H). Then, from ẋ ∈ L2([t0,+∞),H) being
absolutely continuous and ẍ ∈ L∞([t0,+∞),H) it follows that limt→+∞∥ẋ(t)∥ = 0. We Con-
clude limt→+∞ fi(x(t)) = W∞

i by limt→+∞∥ẋ(t)∥ = 0 and part i).

iv) Assume the negation of statement iv) holds, i.e., there exists M > 0 and T ≥ t0 such
that for all t ≥ T it holds that ∥∥∥∥∥ proj

C(x(t))
(0)

∥∥∥∥∥ ≥M. (4.57)
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Fix an arbitrary δ > 0. Since ẋ(t) → 0 and ∇fi is Lipschitz continuous on a set containing x(t)
it follows that there exists Tδ > T such that for all t > Tδ and s ∈ [t, t+ δ)

∥∇fi(x(s))−∇fi(x(t))∥ <
M

4
and ∥αẋ(s)∥ < M

4
. (4.58)

Let t ≥ Tδ be arbitrary. Define v(t) := projC(x(t)) /∥projC(x(t))∥. From (4.57) it follows that

⟨ξ(t), v(t)⟩ ≥M for all ξ(t) ∈ C(x(t)). (4.59)

Next, we combine (4.58) and (4.59). Let s ∈ [t, t+δ) and ξ(s) ∈ C(x(s)). There exists θ(s) ∈ ∆m

with ξ(s) =
∑m

i=1 θi(s)∇fi(x(s)). Then

⟨ξ(s) + αẋ(s), v(t)⟩ =

〈
m∑
i=1

θi(s)∇fi(x(s)), v(t)

〉
+ ⟨αẋ(s), v(t)⟩

=

〈
m∑
i=1

θi(s)∇fi(x(t)), v(t)

〉
+

m∑
i=1

θi(s)⟨∇fi(x(s))−∇fi(x(t)), v(t)⟩+ ⟨αẋ(s), v(t)⟩.
(4.60)

Since
∑m

i=1 θi(s)∇fi(x(t)) ∈ C(x(t)), we can use (4.59) to bound this by

≥M +
m∑
i=1

θi(s)⟨∇fi(x(s))−∇fi(x(t)), v(t)⟩+ ⟨αẋ(s), v(t)⟩. (4.61)

Now, we apply the Cauchy–Schwarz inequality and get

≥M −
m∑
i=1

θi(s)∥∇fi(x(s))−∇fi(x(t))∥ ∥v(t)∥ − ∥αẋ(s)∥ ∥v(t)∥. (4.62)

By definition we have ∥v(t)∥ = 1. Then, we use (4.58) to bound (4.62) by

≥M − M

4
− M

4
=
M

2
. (4.63)

Inequalities (4.60) – (4.63) give

⟨−ẍ(s), v(t)⟩ ≥ M

2
for almost all s ∈ [t, t+ δ).

Using the Cauchy–Schwarz inequality once more, we get

∥ẋ(t)− ẋ(t+ δ)∥ ≥ ⟨ẋ(t)− ẋ(t+ δ), v(t)⟩ =
〈∫ t+δ

t
−ẍ(s) ds, v(t)

〉
=

∫ t+δ

t
⟨−ẍ(s), v(t)⟩ ds ≥

∫ t+δ

t

M

2
ds =

Mδ

2
.

Since this holds for all t ≥ Tδ the functions ẋ(·) is not Cauchy and therefore not converging
which contradicts limt→+∞ ẋ(t) = 0.

We use part iv) of Proposition 4.4.7 to show that each weak limit point of the trajectory x(t) is
Pareto critical and hence weakly Pareto optimal.
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4.4.3 Asymptotic analysis

If we can show that the trajectories of (IMOG’) converge weakly, Proposition 4.4.7 together
with Lemma 2.3.24 guarantees that the limit points are Pareto critical and therefore weakly
Pareto optimal. To prove convergence of solutions, we require Opial’s Lemma (Lemma 2.1.6).

Proposition 4.4.8. Let x : [t0,+∞) → H be a solution of (IMOG’) in the sense of Definition
4.4.2 and assume x(·) is bounded. Then, the set

S := {z ∈ H : fi(z) ≤ W∞
i for all i = 1, . . . ,m} , (4.64)

is nonempty.

Proof. Part iii) of Proposition 4.4.7 states that limt→+∞ fi(x(t)) = W∞
i for all i = 1, . . . ,m.

Since x(·) is bounded, it possesses at least one weak sequential cluster point x∞, i.e., there exists
a sequence (tk)k≥0 with x(tk) ⇀ x∞ as k → +∞. The objective functions fi are convex and
continuous and therefore weakly lower semicontinuous for all i = 1, . . . ,m. Therefore

fi(x
∞) ≤ lim inf

k→+∞
fi(x(tk)) = lim

t→+∞
fi(x(t)) = W∞

i ,

and we conclude x∞ ∈ S.

For the set S defined in (4.64) and a bounded solution x(·) of (IMOG’), the first part of Opial’s
Lemma is easy to obtain. It follows analogously to the proof of Proposition 4.4.8 where it
is shown that S is nonempty. To show the second part of Opial’s Lemma, we verify that
hz(t) :=

1
2∥x(t) − z∥2 satisfies a differential inequality. Then, the convergence can be deduced

from Lemma 2.2.11. With these ingredients, we can formulate the main convergence theorem of
this subsection.

Theorem 4.4.9. Assume the gradients ∇fi are Lipschitz continuous on bounded sets for i =
1, . . . ,m. Let x : [t0,+∞) → H be a solution of (IMOG’) in the sense of Definition 4.4.2
and assume x(·) is bounded. Then, x(·) converges weakly to a weakly Pareto optimal point of
(MOP).

Proof. Let S be as defined in (4.64). For z ∈ S define

hz : [t0,+∞) → R, t 7→ hz(t) :=
1

2
∥x(t)− z∥2.

By Definition 4.4.2 the function hz(·) is continuously differentiable with absolutely continuous
derivative. Using the chain rule, we compute the first and the second derivative of hz(·) as

ḣz(t) = ⟨x(t)− z, ẋ(t)⟩, and ḧz(t) = ⟨x(t)− z, ẍ(t)⟩+ ∥ẋ(t)∥2,

where the equation for ḧz(t) only holds almost everywhere. For almost all t ∈ (t0,+∞)

αḣz(t) + ḧz(t) = ⟨ẍ(t) + αẋ(t), x(t)− z⟩+ ∥ẋ(t)∥2.
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Using the definition of (IMOG’), we write ẍ(t) + αẋ(t) = −
∑m

i=1 θi(t)∇fi(x(t)) for almost all
t ∈ (t0,+∞) with weights θ(t) ∈ ∆m. Then, for almost all t ∈ (t0,+∞)

αḣz(t) + ḧz(t) =
m∑
i=1

θi(t)⟨∇fi(x(t)), z − x(t)⟩+ ∥ẋ(t)∥2. (4.65)

By Proposition 4.4.5 Wi(·) is monotonically decreasing for all i = 1, . . . ,m and we get

fi(x(t)) +
1

2
∥ẋ(t)∥2 = Wi(t) ≥ W∞

i ≥ fi(z) ≥ fi(x(t)) + ⟨∇fi(x(t)), z − x(t)⟩,

and therefore

m∑
i=1

θi(t)⟨∇fi(x(t)), z − x(t)⟩ ≤ 1

2
∥ẋ(t)∥2. (4.66)

Combining inequalities (4.65) and (4.66) gives for almost all t ∈ (t0,+∞)

αḣz(t) + ḧz(t) ≤
3

2
∥ẋ(t)∥2.

By Proposition 4.4.7, we know ∥ẋ(·)∥2 ∈ L1([t0,+∞),R). Then, Lemma 2.2.11 states that
limt→+∞ hz(t) exists. In addition, we know that every weak sequential cluster point of x(t)
belongs to S by the weak lower semicontinuity of the objective functions fi for i = 1, . . . ,m.
Then, we can use Opial’s Lemma (Lemma 2.1.6) to prove that x(t) converges weakly to an
element in S. Let x∞ be the weak limit of x(t). Then, by Proposition 4.4.7, there exists a
monotonically increasing unbounded sequence (tk)k≥0 with projC(x(tk))

(0) → 0 for k → +∞.
Since x(tk) converges weakly to x∞, Lemma 2.3.24 states that x∞ is Pareto critical. Since all
objective functions are convex, we conclude that x∞ is weakly Pareto optimal.
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4.5 The multiobjective gradient system with asymptotic van-
ishing damping (MAVD)

In this section, we discuss the multiobjective gradient system with asymptotic vanishing damping

α

t
ẋ(t) + proj

C(x(t))+ẍ(t)
(0) = 0,(MAVD)

with α > 0, C(x) := conv ({∇fi(x) : i = 1, . . . ,m}) and initial data t0 > 0, x(t0) = x0 ∈ H
and ẋ(t0) = v0 ∈ H. Our interest in the system (MAVD) is motivated by the active research
in dynamical systems for fast minimization and their relationship with numerical optimization
methods. In Section 4.4, we described the development of the inertial multiobjective gradient
system

αẋ(t) + proj
C(x(t))+ẍ(t)

(0) = 0,(IMOG’)

as a generalization of the heavy ball with friction system

µẍ(t) + γẋ(t) +∇f(x(t)) = 0,(HBF)

to multiobjective optimization. Adapting the system (HBF) by time dependent damping leads
to the inertial gradient system with asymptotic vanishing damping

ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0,(AVD)

which is introduced in [218] in connection with Nesterov’s accelerated gradient method [182] and
analyzed further in [13, 58, 59]. For α > 0, every solution x(·) of (AVD) satisfies limt→+∞ f(x(t)) =
minx∈H f(x). For α ≥ 3, it holds that f(x(t)) − minx∈H f(x) = O(t−2) [218]. For α > 3, the
trajectories experience an improved converge rate of order f(x(t))−minx∈H f(x) = o(t−2), and
every solution x(·) converges weakly to a minimizer of f given that the set of minimizers is
nonempty [13, 166].

It was an open question whether similar results can be obtained for multiobjective optimization
problems [16]. This question is answered positively in [216] by introducing the system (MAVD),
which this section is dedicated to. Similar to (AVD) the system (MAVD) is obtained by en-
hancing (IMOG’) using an asymptotically vanishing damping coefficient γ = α

t . In this section,
we show that this system significantly improves on the multiobjective steepest descent dynamic
(MSD). We prove that the function values of a solution x(·) to (MAVD) with α ≥ 3 decay faster
with rate φ(x(t)) = O(t−2) measured with the merit function φ(·). Additionally, we prove weak
convergence of the trajectories to weakly Pareto optimal points of (MOP) under the condition
α > 3. In the single objective case (m = 1) these findings reduce to the known results for the
system (AVD) [13, 15, 58, 59, 166, 218].

The content of this section was already published in the following paper:

[216] Sonntag, K. and Peitz, S. Fast convergence of inertial multiobjective gradient-like
systems with asymptotic vanishing damping. In: SIAM Journal on Optimization 34 (3)
(2024), pp. 2259–2286. doi: 10.1137/23M1588512.
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4.5. The multiobjective gradient system with asymptotic vanishing damping (MAVD)

4.5.1 Assumptions

(A1) The objective functions fi : H → R are convex and continuously differentiable with L-
Lipschitz continuous gradients ∇fi : H → H with L > 0 for all i = 1, . . . ,m.

(A2) For all x0 ∈ H and for all x ∈ L(F, F (x0)) it holds that LPw(F, F (x)) ̸= ∅ and further

R := sup
F ∗∈F (LPw(F,F (x0)))

inf
z∈F−1({F ∗})

1

2
∥z − x0∥2 < +∞. (4.67)

Discussion of Assumption (A2)

In the literature, Assumption (A2) is a typical assumption made in the asymptotic analysis of
gradient systems and first-order methods for multiobjective optimization [156, 221, 222, 223,
224]. In the following remark, we compare Assumption (A2) with common assumptions made
in scalar optimization.

Remark 4.5.1. Assumption (A2) is satisfied in the following cases.

i) For singleobjective optimization problems, Assumption (A2) is satisfied if the optimization
problem has at least one optimal solution. In this setting, for all x0 ∈ H the weak Pareto
set Pw = LPw(F, F (x0)) coincides with the solution set argminx∈H f(x) and infx∈Pw

1
2∥x−

x0∥2 < +∞ holds.

ii) Assumption (A2) is valid, if the level set L(F, F (x0)) is bounded. For example, this is the
case when for at least one i ∈ {1, . . . ,m} the set {x ∈ H : fi(x) ≤ fi(x0)} is bounded.

We close the discussion on Assumption (A2) by two examples giving further context to Remark
4.5.1.

Example 4.5.2. We discuss Assumption (A2) and Remark 4.5.1 by the means of two examples.

i) Assumption (A2) cannot hold when the weak Pareto set is empty. Since any scalar opti-
mization problem is also a multiobjective optimization problem, we can consider

min
x∈R

F (x) := exp(x). (MOP-Ex1)

For all x0 ∈ R the set LPw(F, F (x0)) ⊂ Pw = argminx∈R F (x) = ∅ is empty and hence
Assumption (A2) does not hold.

ii) In the second example the weak Pareto set is nonempty but the supremum defining R is not
bounded. Consider the multiobjective optimization problem

min
x∈R2

F (x) :=

[
x21

exp(x2)

]
, (MOP-Ex2)

with two objective functions defined on R2. For (MOP-Ex2) the weak Pareto set is Pw =
{0} ×R. For all x0 ∈ R2 it holds that LPw(F, F (x0)) = {0} × (−∞, (x0)2] ̸= ∅, but for this
problem R = +∞.

For the problems (MOP-Ex1) and (MOP-Ex2) all objective functions have unbounded level sets.
As stated in Remark 4.5.1 ii), a bounded level set of one objective functions is a sufficient
condition for Assumption (A2) to hold.
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4.5.2 Discussion of existence and uniqueness of solutions

Similar to the last section where the system (IMOG’) gets discussed, the discussion of existence
and uniqueness of solutions to (MAVD) is based on Section 4.3. In the following definition, we
describe what is to be understood under a solution to (MAVD).

Definition 4.5.3. We call a function x : [t0,+∞) → H a solution to (MAVD) with initial data
t0 > 0, x(t0) = x0 and ẋ(t0) = v0 if it satisfies the following conditions:

i) x ∈ C1([t0,+∞),H), i.e., x(·) is continuously differentiable on [t0,+∞);

ii) ẋ(·) is absolutely continuous on [t0, T ] for all T ≥ t0;

iii) There exists a (Bochner) measurable function ẍ : [t0,+∞) → H with ẋ(t) = ẋ(t0) +∫ t
t0
ẍ(s)ds for all t ≥ t0;

iv) ẋ(·) is differentiable almost everywhere and d
dt ẋ(t) = ẍ(t) holds for almost all t ∈ [t0,+∞);

v) α
t ẋ(t) + projC(x(t))+ẍ(t)(0) = 0 holds for almost all t ∈ [t0,+∞);

vi) x(t0) = x0 and ẋ(t0) = v0 hold.

Theorem 4.5.4. Assume H is finite-dimensional and and assume the gradients of the objective
function ∇fi are L-Lipschitz continuous with L > 0 for all i = 1, . . . ,m. Then, for all t0 > 0
and x0, v0 ∈ H, there exists a function x(·) which is a solution to equation (IMOG’) in the sense
of Definition 4.5.3.

Proof. The proof follows from Theorem 4.3.9. We show (MAVD) is a special instance of (D) for
appropriate choices of γ(·) and di(·, ·). Define the functions

γ : (0,+∞) → [0,+∞), t 7→ γ(t) :=
α

t
,

di : (0,+∞)×H → H, (t, u) 7→ di(t, u) := ∇fi(u),
(4.68)

and let D(·, ·) be as given in Definition 4.3.1. By (4.68) the functions γ(·) and di(·, ·) have
the following properties. The function γ(·) is continuous and monotonically decreasing. The
functions di(·, ·) are continuous on (0,+∞) × H and uniformly L-Lipschitz continuous in the
second component on [t0,+∞)×H for all i = 1, . . . ,m. Further, for all (t, u) ∈ (0,+∞)×H it
holds that

D(t, u) = C(u).

For this choice of γ(·) and di(·, ·) equation (D) reduces to (MAVD) and the existence of a solution
to (D) in the sense of Definition 4.3.6 holds by Theorem 4.3.9.

Remark 4.5.5. The discussion of the uniqueness of solutions to (MAVD) is analogous to the
discussion for (IMOG’). The multiobjective steepest descent direction is not Lipschitz contin-
uous, but merely Hölder continuous (see Proposition 2.3.21 and Remark 2.3.22). As with the
system (IMOG’), the second difficulty arises from the implicit structure of the equation (MAVD),
which precludes the application of standard results like the Cauchy–Lipschitz Theorem to establish
uniqueness.
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4.5.3 Preparatory results

In this section, we collect some preliminary results on the solutions to (MAVD). We show that
the trajectories x(·) of (MAVD) minimize the function values. In Theorem 4.5.12, we show for
α > 0 that φ(x(t))+ 1

2∥ẋ(t)∥
2 → 0 as t→ +∞. By this, it follows that every weak accumulation

point of x(·) is weakly Pareto optimal.

We omit the assumption dim(H) < +∞ from this point on. Throughout this subsection, we
fix a solution x : [t0,+∞) → H to (MAVD) in the sense of Definition 4.5.3 with initial velocity
ẋ(t0) = 0. Setting the initial velocity to zero has the advantage that the trajectories x(·) remain
in the level set L(F, F (x0)) as stated in Corollary 4.5.7. Hence, if the level set L(F, F (x0))
is bounded, the solution x(·) remains bounded. The results can be generalized to the case
ẋ(t0) ̸= 0.

Proposition 4.5.6. For i = 1, . . . ,m, define the component-wise energy functions

Wi : [t0,+∞) → R, t 7→ Wi(t) := fi(x(t)) +
1

2
∥ẋ(t)∥2. (4.69)

Then, for all i = 1, . . . ,m and almost all t ∈ [t0,+∞), it holds that d
dtWi(t) ≤ −α

t ∥ẋ(t)∥
2.

Hence, Wi(·) is monotonically decreasing, and W∞
i := limt→+∞Wi(t) ∈ R ∪ {−∞} exists. If fi

is bounded from below, then W∞
i ∈ R.

Proof. The function Wi is differentiable almost everywhere in [t0,+∞) with derivative

d

dt
Wi(t) =

d

dt

[
fi(x(t)) +

1

2
∥ẋ(t)∥2

]
= ⟨∇fi(x(t)), ẋ(t)⟩+ ⟨ẋ(t), ẍ(t)⟩ . (4.70)

Using the variational representation of −α
t ẋ(t) = projC(x(t))+ẍ(t)(0) and the fact that∇fi(x(t)) ∈

C(x(t)), we get for all i = 1, . . . ,m〈
ẍ(t) +

α

t
ẋ(t) +∇fi(x(t)), ẋ(t)

〉
≤ 0,

and hence,

⟨∇fi(x(t)), ẋ(t)⟩+ ⟨ẍ(t), ẋ(t)⟩ ≤ −α
t
∥ẋ(t)∥2. (4.71)

Combining (4.70) and (4.71) gives the desired results.

Due to the inertial effects in (MAVD), there is in general no monotone descent for the objective
values along the trajectories. The following corollary guarantees that the function values along
the trajectories are bounded from above by the initial function values given ẋ(t0) = 0.

Corollary 4.5.7. For all i = 1, . . . ,m and all t ∈ [t0,+∞), it holds that

fi(x(t)) ≤ fi(x0),

i.e., x(t) ∈ L(F, F (x0)) for all t ≥ t0.
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Proof. From Proposition 4.5.6, we follow for all t ∈ [t0,+∞)

fi(x0) = Wi(t0) ≥ Wi(t) = fi(x(t)) +
1

2
∥ẋ(t)∥2 ≥ fi(x(t)).

In the following analysis, we use the weights θ(t) ∈ ∆m which are implicitly given by

−α
t
ẋ(t) = proj

C(x(t))+ẍ(t)
(0) =

m∑
i=1

θi(t)∇fi(x(t)) + ẍ(t), (4.72)

for almost all t ∈ [t0,+∞). To evaluate the integral over the function θ(·), we have to guarantee
that we can find a measurable selection t 7→ θ(t) ∈ ∆m satisfying (4.72).

Lemma 4.5.8. There exists a measurable function

θ : [t0,+∞) → ∆m, t 7→ θ(t),

with

proj
C(x(t))+ẍ(t)

(0) =
m∑
i=1

θi(t)∇fi(x(t)) + ẍ(t),

for all t ∈ [t0,+∞).

Proof. Our proof is based on the proof of Proposition 4.6 in [16]. Rewrite θ(t) as a solution to
the problem

θ(t) ∈ argmin
θ∈∆m

j(t, θ), with j(t, θ) :=
1

2

∥∥∥∥∥
m∑
i=1

θi∇fi(x(t)) + ẍ(t)

∥∥∥∥∥
2

.

We show that j(·, ·) is a Carathéodory integrand. Then, the proof follows from Theorem 14.37
in [204], which guarantees the existence of a measurable selection θ : [t0,+∞) → ∆m, t 7→ θ(t) ∈
argminθ∈∆m j(t, θ). For all t ∈ [t0,+∞), the function θ 7→ j(t, θ) is continuous. By Definition
4.5.3, ẍ(·) is (Bochner) measurable. Then, for all θ ∈ ∆m the function t 7→ j(θ, t) is measurable
as a composition of a measurable and a continuous function. This implies that j(·, ·) is indeed
a Carathéodory integrand which completes the proof.

In the following, whenever we write θ(·), we refer to the measurable function described in Lemma
4.5.8.

Lemma 4.5.9. For z ∈ H, define

hz : [t0,+∞) → R, t 7→ hz(t) :=
1

2
∥x(t)− z∥2. (4.73)

The function hz(·) is continuously differentiable and its derivative ḣz(·) is absolutely continuous.
For almost all t ∈ [t0,+∞), it holds that

ḧz(t) +
α

t
ḣz(t) +

m∑
i=1

θi(t)(fi(x(t))− fi(z)) ≤ ∥ẋ(t)∥2. (4.74)

122



4.5. The multiobjective gradient system with asymptotic vanishing damping (MAVD)

Proof. The regularity of hz(·) is a consequence of Definition 4.5.3. By the chain rule, we have
for almost all t ∈ [t0,+∞)

ḣz(t) = ⟨x(t)− z, ẋ(t)⟩ and ḧz(t) = ⟨x(t)− z, ẍ(t)⟩+ ∥ẋ(t)∥2.

We combine these expressions with (4.72) to get

ḧz(t) +
α

t
ḣz(t) =∥ẋ(t)∥2 +

〈
x(t)− z,−

m∑
i=1

θi(t)∇fi(x(t))

〉
. (4.75)

The objective functions fi are convex and hence ⟨x(t) − z,∇fi(x(t))⟩ ≥ fi(x(t)) − fi(z) for
i = 1, . . . ,m. Using this inequality in (4.75) gives for almost all t ∈ [t0,+∞)

ḧz(t) +
α

t
ḣz(t) +

m∑
i=1

θi(t)(fi(x(t))− fi(z)) ≤ ∥ẋ(t)∥2.

From Lemma 4.5.9, we derive the following relation between hz(·) and Wi(·).

Lemma 4.5.10. Let z ∈ H and let Wi(·) and hz(·) be defined as in (4.69) and (4.73), respec-
tively. Then, for all t ∈ [t0,+∞), it holds that∫ t

t0

1

s

m∑
i=1

θi(s) (Wi(s)− fi(z)) ds+
3

2α

m∑
i=1

θi(t) (Wi(t)− fi(z)) ≤ Cz −
1

t
ḣz(t),

with Cz := (α+ 1) 1
t20
hz(t0) +

3
2α maxi=1,...,m (fi(x0)− fi(z)).

Proof. Adding 1
2∥ẋ(t)∥

2 to inequality (4.74) and dividing by t, we get for almost all t ∈ [t0,+∞)

1

t
ḧz(t) +

α

t2
ḣz(t) +

1

t

m∑
i=1

θi(t)(Wi(t)− fi(z)) ≤
3

2t
∥ẋ(t)∥2. (4.76)

We reorder the terms in inequality (4.76) and integrate from t0 to t > t0, to obtain∫ t

t0

1

s

m∑
i=1

θi(s)(Wi(s)− fi(z))ds

≤−
∫ t

t0

(
1

s
ḧz(s) +

α

s2
ḣz(s)

)
ds+

∫ t

t0

3

2s
∥ẋ(s)∥2ds.

Integration by parts on the first integral on the right-hand side and using ḣz(t0) = 0 gives

≤ −1

t
ḣz(t)− (α+ 1)

∫ t

t0

1

s2
ḣz(s)ds+

∫ t

t0

3

2s
∥ẋ(s)∥2ds. (4.77)

By Proposition 4.5.6, we have for all t ∈ [t0,+∞)∫ t

t0

3

2s
∥ẋ(s)∥2ds ≤ 3

2α

m∑
i=1

θi(t) (Wi(t0)−Wi(t)) . (4.78)
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Applying inequality (4.78) to (4.77) and using Wi(t0) = fi(x0) yields for all t ∈ [t0,+∞)∫ t

t0

1

s

m∑
i=1

θi(s)(Wi(s)− fi(z))ds

≤− 1

t
ḣz(t)− (α+ 1)

∫ t

t0

1

s2
ḣz(s)ds+

3

2α

m∑
i=1

θi(t) (fi(x0)−Wi(t)) .

(4.79)

Using integration by parts one more time gives∫ t

t0

1

s2
ḣz(s)ds =

1

t2
hz(t)−

1

t20
hz(t0) +

∫ t

t0

2

s3
hz(s)ds ≥ − 1

t20
hz(t0). (4.80)

Combining (4.79) and (4.80), we derive∫ t

t0

1

s

m∑
i=1

θi(s)(Wi(s)− fi(z))ds

≤− 1

t
ḣz(t) + (α+ 1)

1

t20
hz(t0) +

3

2α

m∑
i=1

θi(t) (fi(x0)−Wi(t))

≤− 1

t
ḣz(t) + (α+ 1)

1

t20
hz(t0) +

3

2α

m∑
i=1

θi(t) (fi(x0)− fi(z))

+
3

2α

m∑
i=1

θi(t) (fi(z)−Wi(t))

≤Cz −
1

t
ḣz(t)−

3

2α

m∑
i=1

θi(t) (Wi(t)− fi(z)) ,

with

Cz := (α+ 1)
1

t20
hz(t0) +

3

2α
max

i=1,...,m
(fi(x0)− fi(z)) , (4.81)

which completes the proof.

Lemma 4.5.11. Let z ∈ H and let Wi(·), hz(·) and Cz be defined as in (4.69), (4.73) and (4.81),
respectively. Then, for all τ > t0 it holds that

min
i=1,...,m

(Wi(τ)− fi(z)) [τ ln τ +Aτ +B] ≤ Cz(τ − t0) +
hz(t0)

t0
,

with constants A,B ∈ R which are independent of z.

Proof. Let z ∈ H and τ ≥ t > t0. Proposition 4.5.6 states that the functions Wi(·) are
monotonically decreasing for all i = 1, . . . ,m. Therefore, we have for all s ∈ [t0, t], that
Wi(τ)− fi(z) ≤ Wi(s)− fi(z) and hence

min
i=1,...,m

(Wi(τ)− fi(z))

∫ t

t0

1

s
ds+

3

2α
min

i=1,...,m
(Wi(τ)− fi(z))

≤
∫ t

t0

1

s
min

i=1,...,m
(Wi(s)− fi(z)) ds+

3

2α
min

i=1,...,m
(Wi(t)− fi(z)) .

(4.82)
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Using Lemma 4.5.10, we get∫ t

t0

1

s
min

i=1,...,m
(Wi(s)− fi(z)) ds+

3

2α
min

i=1,...,m
(Wi(t)− fi(z))

≤
∫ t

t0

1

s

m∑
i=1

θi(s) (Wi(s)− fi(z)) ds+
3

2α

m∑
i=1

θi(t) (Wi(t)− fi(z))

≤Cz −
1

t
ḣz(t).

(4.83)

Together, inequalities (4.82) and (4.83) give

min
i=1,...,m

(Wi(τ)− fi(z))

[
ln t− ln t0 +

3

2α

]
≤ Cz −

1

t
ḣz(t). (4.84)

Integrating inequality (4.84) from t = t0 to t = τ , we have

min
i=1,...,m

(Wi(τ)− fi(z))

[
τ ln τ − τ − t0 ln t0 + t0 +

(
3

2α
− ln t0

)
(τ − t0)

]
≤ Cz(τ − t0)−

∫ τ

t0

1

t
ḣz(t)dt.

(4.85)

Integration by parts yields∫ τ

t0

1

t
ḣz(t)dt =

hz(τ)

τ
− hz(t0)

t0
+

∫ τ

t0

hz(t)

t2
dt ≥ −hz(t0)

t0
. (4.86)

Using inequality (4.86) in (4.85), we write

min
i=1,...,m

(Wi(τ)− fi(z))

[
τ ln τ − τ − t0 ln t0 + t0 +

(
3

2α
− ln t0

)
(τ − t0)

]
≤ Cz(τ − t0) +

hz(t0)

t0
.

Introducing suitable constants A,B ∈ R, this gives the desired result.

The next theorem is the main result of this subsection. Theorem 4.5.12 states that the function
values of the trajectory F (x(t)) ∈ Rm converge to an element of the Pareto front. As a conse-
quence of Theorem 4.5.12, every weak limit point of the trajectory x(·) is weakly Pareto optimal.
This is important for proving the weak convergence of the trajectories to weakly Pareto optimal
points in Subsection 4.5.4.

Theorem 4.5.12. Define the energy function

W : [t0,+∞) → R, t 7→ W(t) := sup
z∈H

min
i=1,...,m

(Wi(t)− fi(z))

= sup
z∈H

min
i=1,...,m

(fi(x(t))− fi(z)) +
1

2
∥ẋ(t)∥2

=φ(x(t)) +
1

2
∥ẋ(t)∥2.

Assume the functions fi are bounded from below for i = 1, . . . ,m and Assumption (A2) holds.
Then, limt→+∞W(t) = 0. Hence, limt→+∞∥ẋ(t)∥ = 0 and limt→+∞ φ(x(t)) = 0 and by Theorem
2.3.13 every weak limit point of x(·) is Pareto critical.
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Proof. Lemma 4.5.11 states for all τ > t0

min
i=1,...,m

(Wi(τ)− fi(z)) [τ ln τ +Aτ +B] ≤ Cz(τ − t0) +
hz(t0)

t0
. (4.87)

We cannot directly take the supremum on both sides since Cz might be unbounded w.r.t. z ∈ H.
For z ∈ L(F, F (x0)) we have maxi=1,...,m (fi(x0)− fi(z)) ≤ maxi=1,...,m (fi(x0)− infz∈H fi(z)) =:

M . Since all fi are bounded from below by assumption, we have M < +∞. Fix F ∗ ∈
F (LPw(F, F (x0))). Using the definition of Cz given in (4.81), we get for all z ∈ F−1({F ∗})

Cz(τ − t0) +
hz(t0)

t0
≤
(
(α+ 1)

1

t20
hz(t0) +

3

2α
M

)
(τ − t0) +

hz(t0)

t0

=

(
α+ 1

t20
(τ − t0) +

1

t0

)
hz(t0) +

3

2α
M(τ − t0).

(4.88)

By Assumption (A2) supF ∗∈F (LPw(F,F (x0))) infz∈F−1({F ∗}) hz(t0) = R < +∞. Applying this
infimum and supremum to (4.88) we have

sup
F ∗∈F (LPw(F,F (x0)))

inf
z∈F−1({F ∗})

(
Cz(τ − t0) +

hz(t0)

t0

)
≤
(
(α+ 1)R

t20
+

3

2α
M

)
(τ − t0) +

R

t0
.

(4.89)

Combining Lemma 2.3.15 with (4.87) and (4.89), we get for all τ > t0

W(τ) [τ ln τ +Aτ +B] ≤ Cτ +D, (4.90)

with A,B,D ∈ R and C > 0. Since W(t) is nonnegative, limt→+∞W(t) = 0 holds.

Remark 4.5.13. From the proof of Theorem 4.5.12, we can deduce a slightly stronger result.
There is not only convergence limt→+∞W(t) = 0, but from inequality (4.90) we get convergence
of order

W(t) = O
(

1

ln t

)
, as t→ +∞.

Since this is a rather slow rate of convergence, which is not used in the following proofs, we do
not point it out in Theorem 4.5.12.

We can derive some additional facts on the function values fi(x(t)) along the trajectories from
Theorem 4.5.12.

Theorem 4.5.14. Assume all assumptions of Theorem 4.5.12 are met. Then, for all i =
1, . . . ,m

lim
t→∞

fi(x(t)) = f∞i ∈ R

exists.

Proof. Theorem 4.5.12 states limt→∞W(t) = 0. By definition, we have W(t) = φ(x(t)) +
1
2∥ẋ(t)∥

2. Theorem 2.3.13 guarantees φ(x(t)) ≥ 0 for all t ≥ t0 and obviously 1
2∥ẋ(t)∥

2 ≥ 0.
Then, from limt→+∞W(t) = 0 it follows that limt→+∞

1
2∥ẋ(t)∥

2 = 0. By Proposition 4.5.6
limt→+∞Wi(t) = limt→+∞ fi(x(t)) +

1
2∥ẋ(t)∥

2 exists and hence limit limt→+∞ fi(x(t)) exists,
which completes the proof.
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4.5.4 Asymptotic analysis

For α ≥ 3, we prove fast convergence for the function values with rate φ(x(t)) = O(t−2) as
t → +∞, as we show in Theorem 4.5.18. In Theorem 4.5.20, we prove that for α > 3 the
trajectories x(·) of (MAVD) converge weakly to weakly Pareto optimal points using Opial’s
Lemma.

Fast convergence of function values

In this part, we show that solutions of (MAVD) have good properties with respect to multi-
objective optimization. Along the trajectories of (MAVD) the function values converge with
order O(t−2) to an optimal value, given α ≥ 3. The convergence has to be understood in terms
of the merit function φ(·) which is introduced in Subsection 2.3.3. We prove this result using
Lyapunov type energy functions similar to the analysis of the scalar case laid out in [13, 218]. To
this end, we introduce two important auxiliary functions in Definition 4.5.15 and discuss their
basic properties in the following lemmas. The main result of this subsection on the convergence
of the function values is stated in Theorem 4.5.18.

Definition 4.5.15. Let λ ≥ 0, ξ ≥ 0, z ∈ H and x : [t0,+∞) → H be a solution to (MAVD) in
the sense of Definition 4.5.3. Define for all i = 1, . . . ,m the component-wise energy functions

Ei,λ,ξ,z : [t0,+∞) → R, t 7→ Ei,λ,ξ,z(t) :=t2(fi(x(t))− fi(z)) +
1

2
∥λ(x(t)− z) + tẋ(t)∥2

+
ξ

2
∥x(t)− z∥2.

(4.91)

Using the functions Ei,λ,ξ,z(·), define the energy function

Eλ,ξ,z : [t0,+∞) → R, t 7→ Eλ,ξ,z(t) := min
i=1,...,m

Ei,λ,ξ,z(t) = t2 min
i=1,...,m

(fi(x(t))− fi(z))

+
1

2
∥λ(x(t)− z) + tẋ(t)∥2 + ξ

2
∥x(t)− z∥2.

(4.92)

Lemma 4.5.16. Let λ > 0, α ≥ λ+ 1, fix ξ∗ = λ(α − 1− λ) > 0 and let z ∈ H. Then, for all
i = 1, . . . ,m and almost all t ∈ [t0,+∞)

d

dt
Ei,λ,ξ∗,z(t) ≤ 2t(fi(x(t))− fi(z))− tλ min

i=1,...,m
(fi(x(t))− fi(z)) + t(λ+ 1− α)∥ẋ(t)∥2.

Proof. The function Ei,λ,ξ∗,z(·) is differentiable almost everywhere since fi is continuously dif-
ferentiable and x(·) is continuously differentiable with absolutely continuous derivative ẋ(·) by
Definition 4.5.3. Compute d

dtEi,λ,ξ∗,z(t) using the chain rule on (4.91)

d

dt
Ei,λ,ξ∗,z(t) = 2t(fi(x(t))− fi(z)) + t2 ⟨ẋ(t),∇fi(x(t)) + ẍ(t)⟩

+ t

〈
x(t)− z,

λ(λ+ 1) + ξ∗

t
ẋ(t) + λẍ(t)

〉
+ t(λ+ 1)∥ẋ(t)∥2.

(4.93)
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Using Proposition 4.5.6 on the second summand in (4.93), we bound this by

≤2t(fi(x(t))− fi(z)) + t

〈
x(t)− z,

λ(λ+ 1) + ξ∗

t
ẋ(t) + λẍ(t)

〉
+ t(λ+ 1− α)∥ẋ(t)∥2.

(4.94)

We rewrite (4.94) into

= 2t(fi(x(t))− fi(z)) + tλ
〈
x(t)− z,

α

t
ẋ(t) + ẍ(t)

〉
+ t(λ+ 1− α)∥ẋ(t)∥2,

using λ(λ+ 1) + ξ∗ = λα. The definition of (MAVD) together with Lemma 4.5.8 implies

= 2t(fi(x(t))− fi(z))− tλ
m∑
i=1

θi(t) ⟨x(t)− z,∇fi(x(t))⟩+ t(λ+ 1− α)∥ẋ(t)∥2.

The objective functions fi are convex and hence fi(z) − fi(x(t)) ≥ ⟨∇fi(x(t)), z − x(t)⟩ and
therefore,

≤ 2t(fi(x(t))− fi(z))− tλ

m∑
i=1

θi(t) (fi(x(t))− fi(z)) + t(λ+ 1− α)∥ẋ(t)∥2.

We bound the convex combination using the minimum to get

≤ 2t(fi(x(t))− fi(z))− tλ min
i=1,...,m

(fi(x(t))− fi(z)) + t(λ+ 1− α)∥ẋ(t)∥2.

To retrieve a result similar to Lemma 4.5.16 for the function Eλ,ξ,z(·) defined in (4.92), we use
Lemma 2.2.14 which helps us to treat the derivative of Eλ,ξ,z(·).

Lemma 4.5.17. Let λ > 0, α ≥ λ + 1, fix ξ∗ = λ(α − 1 − λ) > 0 and let z ∈ H. The energy
function Eλ,ξ∗,z(·) satisfies the following conditions:

i) The function Eλ,ξ∗,z(·) is differentiable in almost all t ∈ [t0,+∞);

ii) For almost all t ∈ [t0,+∞), it holds that

d

dt
Eλ,ξ∗,z(t) ≤ (2− λ)t min

i=1,...,m
(fi(x(t))− fi(z))− (α− λ− 1)t∥ẋ(t)∥2; (4.95)

iii) For all t ∈ [t0,+∞), it holds that

Eλ,ξ∗,z(t)− Eλ,ξ∗,z(t0) ≤ (2− λ)

∫ t

t0

t min
i=1,...,m

(fi(x(t))− fi(z)) dt

+

∫ t

t0

t(λ+ 1− α)∥ẋ(t)∥2dt.
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Proof. i) The functions t 7→ fi(x(t)) are continuously differentiable for all i = 1, . . . ,m. Then,
by Lemma 2.2.14 the function t 7→ mini=1,...,m (fi(x(t))− fi(z)) is differentiable in t for almost
all t ∈ [t0,+∞). Since x(·) is a solution to (MAVD) in the sense of Definition 4.5.3, we know
that ∥λ(x(t) − z) + tẋ(t)∥2 and ξ

2∥x(t) − z∥2 are differentiable in t for almost all t ∈ [t0,+∞).
In total we get that Eλ,ξ∗,z(t) is differentiable in t for almost all t ∈ [t0,+∞).

ii) We need the derivative of mini=1,...,m (fi(x(t))− fi(z)) in order to compute the derivative of
Eλ,ξ∗,z(t). By Lemma 2.2.14 for almost all t ∈ [t0,+∞) there exists j ∈ {1, . . . ,m} with

d

dt
min

i=1,...,m
(fi(x(t))− fi(z)) =

d

dt
(fj(x(t))− fj(z)) , and

min
i=1,...,m

(fi(x(t))− fi(z)) = fj(x(t))− fj(z).
(4.96)

For the remainder of the proof fix t ∈ [t0,+∞) and j ∈ {1, . . . ,m} satisfying equation (4.96).
From the first part of (4.96), we immediately get

d

dt
Eλ,ξ∗,z(t) =

d

dt
Ej,λ,ξ∗(t). (4.97)

Applying Lemma 4.5.16, we bound (4.97) by

≤ 2t(fj(x(t))− fj(z))− tλ min
i=1,...,m

(fi(x(t))− fi(z)) + t(λ+ 1− α)∥ẋ(t)∥2.

Then, the second equation in (4.96) gives

=(2− λ)t min
i=1,...,m

(fi(x(t))− fi(z)) + t(λ+ 1− α)∥ẋ(t)∥2.

Statement iii) follows immediately from ii) by integrating inequality (4.95) from t0 to t > t0.

The term mini=1,...,m (fi(x(t))− fi(z)) will not remain nonnegative in general. Hence, we cannot
guarantee that Eλ,ξ∗,z(t) is nonnegative. Therefore, the function Eλ,ξ∗,z(t) is not suitable for
convergence analysis and we cannot directly retrieve results on the convergence rates. We are
still able to get convergence results using Lemma 2.3.15.

Theorem 4.5.18. Let α ≥ 3 and assume Assumption (A2) holds. Then

t2φ(x(t)) ≤ t20φ(x0) + 2(α− 1)R+ (3− α)

∫ t

t0

s∥ẋ(s)∥2ds,

and hence φ(x(t)) ≤ t20φ(x0)+2(α−1)R
t2

for all t ∈ [t0,+∞).

Proof. We consider the energy function Eλ,ξ∗,z(·) with parameter λ = 2. From the definition of
E2,ξ∗,z(·) and part iii) of Lemma 4.5.17, we deduce

t2 min
i=1,...,m

(fi(x(t))− fi(z)) ≤ E2,ξ∗,z(t0) + (3− α)

∫ t

t0

s∥ẋ(s)∥2ds.
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Writing out the definition of E2,ξ∗,z(t0) and using λ = 2 and ξ∗ = λ(α − 1 − λ) = 2(α − 3), we
have

t2 min
i=1,...,m

(fi(x(t))− fi(z)) ≤t20 min
i=1,...,m

(fi(x0)− fi(z)) + (α− 1)∥x0 − z∥2

+ (3− α)

∫ t

t0

s∥ẋ(s)∥2ds.
(4.98)

We want to apply the supremum and infimum in accordance with Lemma 2.3.15. Let F ∗ =
(f∗1 , . . . , f

∗
m) ∈ F (LPw(F, F (x0))), then

inf
z∈F−1({F ∗})

[
t20 min
i=1,...,m

(fi(x0)− fi(z)) + (α− 1)∥x0 − z∥2
]

=t20 min
i=1,...,m

(fi(x0)− f∗i ) + (α− 1) inf
z∈F−1({F ∗})

∥x0 − z∥2.
(4.99)

Now, we can apply the supremum to inequality (4.99) and get

sup
F ∗∈LPw(F,F (x0))

inf
z∈F−1({F ∗})

[
t20 min
i=1,...,m

(fi(x0)− fi(z)) + (α− 1)∥x0 − z∥2
]

≤t20 sup
F ∗∈LPw(F,F (x0))

inf
z∈F−1({F ∗})

min
i=1,...,m

(fi(x0)− f∗i )

+ (α− 1) sup
F ∗∈LPw(F,F (x0))

inf
z∈F−1({F ∗})

inf
z∈F−1({F ∗})

∥x0 − z∥2.

(4.100)

By Assumption (A2) and the definition of φ(·), this is equal to

= t20φ(x0) + 2(α− 1)R. (4.101)

Now, by applying supF ∗∈LPw(F,F (x0)) infz∈F−1({F ∗}) to t
2mini=1,...,m (fi(x(t))− fi(z)) and using

(4.98) - (4.101), we get

t2φ(x(t)) ≤ t20φ(x0) + 2(α− 1)R+ (3− α)

∫ t

t0

s∥ẋ(s)∥2ds.

Corollary 4.5.19. Let α > 3 and assume Assumption (A2) holds. Then∫ +∞

t0

s∥ẋ(s)∥2ds < +∞,

i.e., (t 7→ t∥ẋ(t)∥2) ∈ L1([t0,+∞),R).

Weak convergence of trajectories

In this part, we show that bounded solutions of (MAVD) converge weakly to weakly Pareto
optimal points of (MOP), given α > 3. We prove this in Theorem 4.5.20 using Opial’s Lemma
(Lemma 2.1.6). Since we need to apply Theorem 4.5.12 and Theorem 4.5.14, we assume in
this subsection that the functions fi are bounded from below for all i = 1, . . . ,m and that
Assumption (A2) holds. In order to utilize Opial’s Lemma we need Lemma 2.2.12 .
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Theorem 4.5.20. Let α > 3 and let x : [t0,+∞) → H be a bounded solution to (MAVD).
Assume that the functions fi are bounded from below and that Assumption (A2) holds. Then,
x(t) converges weakly to a weakly Pareto optimal point of (MOP).

Proof. Define the set

S := {z ∈ H : fi(z) ≤ f∞i for all i = 1, . . . ,m},

where f∞i = limt→+∞ fi(x(t)). This limit exists due to Theorem 4.5.14. Since x(t) is bounded
it posses a weak sequential cluster point x∞ ∈ H. Hence, there exists a sequence (x(tk))k≥0

with tk → +∞ and x(tk) ⇀ x∞ as k → +∞. Because the objective functions are lower
semicontinuous in the weak topology, we get for all i = 1, . . . ,m

fi(x
∞) ≤ lim inf

k→+∞
fi(x(tk)) = lim

k→+∞
fi(x(tk)) = f∞i .

Therefore, we can conclude that x∞ ∈ S. Hence, S is nonempty and each weak sequenial cluster
point of x(t) belongs to S. Let z ∈ S and define

hz : [t0,+∞) → R, t 7→ hz(t) :=
1

2
∥x(t)− z∥2.

By Definition 4.5.3, the function hz(·) is continuously differentiable with absolutely continuous
derivative ḣz(·). The first and second derivative of hz(t) is given by

ḣz(t) = ⟨x(t)− z, ẋ(t)⟩ and ḧz(t) = ⟨x(t)− z, ẍ(t)⟩+ ∥ẋ(t)∥2,

for almost all t ∈ [t0,+∞). Multiplying ḣz(t) with
α
t and adding it to ḧz(t) gives

ḧz(t) +
α

t
ḣz(t) =

〈
x(t)− z, ẍ(t) +

α

t
ẋ(t)

〉
+ ∥ẋ(t)∥2. (4.102)

Using the equation (MAVD) together with the weights θ(t) ∈ ∆m from Lemma 4.5.8, we get
from (4.102) the equation

ḧz(t) +
α

t
ḣz(t) =

m∑
i=1

θi(t) ⟨z − x(t),∇fi(x(t))⟩+ ∥ẋ(t)∥2. (4.103)

We want to bound the inner products ⟨z − x(t),∇fi(x(t))⟩. Since Wi(·) is monotonically de-
creasing by Proposition 4.5.6 and converging to f∞i by Theorem 4.5.14, we get

fi(x(t)) +
1

2
∥ẋ(t)∥2 = Wi(t) ≥ f∞i , (4.104)

for all i = 1, . . . ,m. From z ∈ S and the convexity of the functions fi, we conclude for all
i = 1, . . . ,m

f∞i ≥ fi(z) ≥ fi(x(t)) + ⟨∇fi(x(t)), z − x(t)⟩. (4.105)

Together, (4.104) and (4.105) imply

⟨∇fi(x(t)), z − x(t)⟩ ≤ 1

2
∥ẋ(t)∥2, (4.106)
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for all i = 1, . . . ,m. Now, we combine (4.103) and (4.106) and multiply with t, to conclude

tḧz(t) + αḣz(t) ≤
3t

2
∥ẋ(t)∥2. (4.107)

Theorem 4.5.18 states that (t 7→ t∥ẋ(t)∥2) ∈ L1([t0,+∞),R) for α > 3. Then, Lemma 2.2.12
applied to equation (4.107) guarantees that hz(t) converges and by Opial’s Lemma (Lemma
2.1.6) we conclude that x(t) converges weakly to an element in S. By Theorem 4.5.12, we know
that every weak accumulation point of x(t) is weakly Pareto optimal.

4.5.5 Numerical experiments

In this subsection, we conduct numerical experiments to verify the convergence rates we prove
in the previous subsection. In particular, we show that the convergence of φ(x(t)) with rate
O(t−2) as stated in Theorem 4.5.18 holds. Since we cannot calculate analytical solutions to
(MAVD) for a general multiobjective optimization problem in closed form, we compute the
approximation to a solution x(·) using a discretization. We do not discuss the quality of the
discretization we use. For all experiments we use initial time t0 = 1, set a fixed initial state
x(t0) = x0 and use initial velocity ẋ(t0) = 0. We use equidistant time steps tk = t0 + kh,

with h = 1e−3. We use the scheme x(tk) ≈ xk, ẋ(tk) ≈ xk+1−xk
h and ẍ(tk) ≈ xk+1−2xk+xk−1

h2

to compute the discretization (xk)k≥0 of the trajectory x(·) for 100 000 time steps. We look at
two examples with instances of the multiobjective optimization problem (MOP). Both problem
instances use two convex and smooth objective functions fi : R2 → R for i = 1, 2. In Subsection
4.5.5, we look at a quadratic multiobjective optimization problem and in Subsection 4.5.5, we
consider a convex optimization problem with objective functions that are not strongly convex.
For both examples we plot approximations of the solution x(·) and plot the function φ(x(t))

to show that the inequality φ(x(t)) ≤ t20φ(x0)+2(α−1)R
t2

holds for t ≥ t0. To compute φ(x(t)) we
have to solve the optimization problem φ(xk) = supz∈Hmini=1,...,m fi(x

k)−fi(z) for every of the
100 000 iterations with adequate accuracy. Therefore, we restrict ourselves to problems where
the Pareto set of (MOP) can be explicitly computed. For these problems φ(·) can be evaluated
more efficiently using Lemma 2.3.15.

A quadratic multiobjective optimization problem

We begin with an instance of (MOP) with two quadratic objective functions

fi : R2 → R, x 7→ 1

2
(x− xi)⊤Qi(x− xi),

for i = 1, 2, given matrices and vectors

Q1 =

(
2 0

0 1

)
, Q2 =

(
1 0

0 2

)
, x1 =

(
1

0

)
, x2 =

(
0

1

)
.

For this problem the Pareto set is

P =

{
x ∈ R2 : x =

(
2λ/(1 + λ)

2(1− λ)/(2− λ)

)
, for λ ∈ [0, 1]

}
.
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Figure 4.5: Trajectories x(·) and inequalities φ(x(t)) ≤ t20φ(x0)+2(α−1)R
t2

for different values of
α ∈ {3, 10, 50, 100}.

In our first experiment, we use the initial value x0 = (−.2,−.1)⊤. We compute an approxi-
mation of a solution to (MAVD) for different values of α ∈ {3, 10, 50, 100} as described in the
introduction of this subsection. The results can be seen in Figure 4.5. Subfigures 4.5a - 4.5d
contain plots of the trajectories x(·) for different values of α. In the plots of the trajectories we
added a circle every 500 iterations to visualize the velocities. In Subfigures 4.5e - 4.5h the values

of φ(x(t)) and the bounds
t20φ(x0)+2(α−1)R

t2
for different values of α are shown. The inequality

φ(x(t)) ≤ t20φ(x0)+2(α−1)R
t2

holds for each value of α. For the smallest value of α = 3, we see a
large number of oscillations in the trajectory and in the values of φ(x(t)), respectively. This
behavior is typical for systems with asymptotic vanishing damping. For larger values of α, we
observe fewer oscillations and see improved convergence rates, with slower movement in the
beginning due to the high friction. These phenomena are consistent with the observations made
in the singleobjective setting.

A nonquadratic multiobjective optimization problem

In our second example, we consider an instance of problem (MOP) with two objective functions

fi : R2 → R, x 7→ log

 p∑
j=1

exp

((
a
(i)
j

)⊤
x− b

(i)
j

) , (4.108)
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for i = 1, 2, p = 4 and given matrices and vectors

A(1) =


(
a
(1)
1

)⊤
...(

a
(1)
4

)⊤
 =


10 10

10 −10

−10 −10

−10 10

 , b(1) =


0

−20

0

20

 ,

A(2) =


(
a
(2)
1

)⊤
...(

a
(2)
4

)⊤
 =


10 10

10 −10

−10 −10

−10 10

 , b(2) =


0

20

0

−20

 .

The objective functions given by (4.108) are convex but not strongly convex. Taking advantage
of the symmetry in the objective functions fi, the Pareto set P can be explicitly computed as

P =

{
x ∈ R2 : x =

(
−1 + 2λ

1− 2λ

)
, for λ ∈ [0, 1]

}
.
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Figure 4.6: Trajectories x(·) and inequalities φ(x(t)) ≤ t20φ(x0)+2(α−1)R
t2

for different values of
α ∈ {3, 10, 50, 100}.

We choose the initial value x0 = (0, 3)⊤ and compute an approximate solution to (MAVD) as
described in the beginning of this subsection. Analogous to the last example, we present the
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results of the computations in Figure 4.6. Again, Subfigures 4.6a - 4.6d contain plots of the
trajectories and Subfigures 4.6e - 4.6h contain the values of the merit function φ(x(t)). We
observe results similar to the example in Subsection 4.5.5. Since the objective functions given in
(4.108) are not strongly convex, we experience slower convergence. Once more, we see for small
values of α oscillations in the trajectory x(·) and the merit function values φ(x(t)) introduced
by the inertia in the system (MAVD). Larger values of α correspond to higher friction in the
beginning and we therefore experience slower convergence for the time interval we consider.
Oscillations can only be seen for α = 3 and close to the end for α = 10. The slower convergence
in this example is expected due to the lack of strong convexity.
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4.6 The multiobjective Tikhonov regularized inertial gradient
system (MTRIGS)

In this section we study the multiobjective Tikhonov regularized inertial gradient system

α

tq
ẋ(t) + proj

C(x(t))+ β
tp
x(t)+ẍ(t)

(0) = 0, for t > t0,(MTRIGS)

with α, β > 0, q ∈ (0, 1], p ∈ (0, 2] and C(x) := conv ({∇fi(x) : i = 1, . . . ,m}), with initial data
t0 > 0, x(t0) = x0 ∈ H and ẋ(t0) = v0 ∈ H. In the case of scalar optimization (m = 1), the
system (MTRIGS) reduces to the Tikhonov regularized inertial gradient system

ẍ(t) +
α

tq
ẋ(t) +∇f(x(t)) + β

tp
x(t) = 0,(TRIGS)

which is extensively studied in the literature [12, 21, 146]. Assuming that argminx∈H f(x)
is not empty, if, for instance, p ∈ (0, 2), q ∈ (0, 1) and p < q + 1, then for the trajectory
solution x(·) of (TRIGS) it holds f(x(t)) − minx∈H f(x) = O (t−p) as t → +∞. Thus, a
convergence rate arbitrary close to O

(
t−2
)
can be obtained. Additionally, the trajectory solution

converges strongly to the element with minimum norm in argminx∈H f(x), that is, x(t) →
projargminx∈H f(x)(0) as t→ +∞. On the other hand, (MTRIGS) is related to the multiobjective
gradient system with asymptotic vanishing damping

α

t
ẋ(t) + proj

C(x(t))+ẍ(t)
(0) = 0,(MAVD)

with α ≥ 3, which we discuss in Section 4.5. We have shown fast convergence of the function
values along the trajectory solution, namely, φ(x(t)) = O(t−2) as t → +∞. In addition, for
α > 3, the trajectory solutions x(·) of (MAVD) converge weakly to a weakly Pareto optimal
point of (MOP). In the scalar case, when m = 1 and f := f1, the system (MAVD) reduces to
the celebrated inertial gradient system with asymptotic vanishing damping

ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0,(AVD)

which was introduced in [218] as the continuous counterpart of Nesterov’s accelerated gradient
method [182]. The system (AVD) has further been studied in several papers, including [13, 58,
59, 166]. It holds that f(x(t)) − minx∈H f = O(t−2) as t → +∞ and, for α > 3, the trajec-
tory solutions converge weakly to a global minimizer of f , provided that argminx∈H f(x) is not
empty. Due to its convergence properties, (MAVD) is the natural counterpart of (AVD) when
considering multiobjective optimization problems. The dynamical system (TRIGS) enhances
the asymptotic properties of (AVD) by ensuring, depending on the chosen parameters α, β, p
and q, weak and even strong convergence of the trajectory to the minimum norm solution, while
retaining the rapid convergence of function values. The dynamical system (MTRIGS) provides
a similar improvement over (MAVD) in the context of multiobjective optimization. The main
results regarding the asymptotic behavior of (MTRIGS) obtained in this section are summa-
rized in Table 4.1. In principal, we obtain convergence rates for the function values which can be
arbitrarily close to O(t−2) as t→ +∞. Furthermore, for p ∈ (0, 2), q ∈ (0, 1) and p < q + 1 the
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trajectory solution x(·) converges strongly to a weakly Pareto optimal point which has the min-
imal norm in the set L (F, F∞) ⊆ Pw, with F∞ := limt→+∞ F (x(t)). For p ∈ (0, 2), q ∈ (0, 1)
and p > q + 1, we show that the trajectory converges weakly to a weakly Pareto optimal point.
The case p = q+1 is critical, as it seems that convergence results for the trajectories cannot be
obtained. In addition, we treat some boundary cases for the parameters p and q, which require
additional conditions on the parameters α and β.

Conditions on
p, q, α, β

φ(x(t)) ∥ẋ(t)∥ ∥x(t)− z(t)∥ x(t)

p ∈ (0, 2], 2q < p O
(
t−2q

)
O (t−q) O (1) -

q ∈ (0, 1), p < q + 1 O (t−p) O
(
t
max(q,p−q)−(p+1)

2

)
O
(
t
max(q,p−q)−1

2

) strong
convergence

q = 1, α ≥ 3 O (t−p) O
(
t−

p
2

)
O (1) -

p ∈ (0, 2), q + 1 < p O
(
t−2q

) O (t−q),∫ +∞
t0

s∥ẋ(s)∥2 < +∞ O (1)
weak

convergence

q ∈ (0, 1), p = 2,
β ≥ q(1− q)

O
(
t−2q

) O (t−q),∫ +∞
t0

s∥ẋ(s)∥2 < +∞ O (1)
weak

convergence

Table 4.1: Summary of main asymptotic results for (MTRIGS). The function z(·) is the gen-
eralized regularization path, that will be introduced in Section 4.6.2. The merit function φ(·)
measures the decay of the function values and gets introduced in Subsection 2.3.3. All results
have to be understood asymptotically, i.e., as t→ +∞.

To this end, we extend the concept of Tikhonov regularization, initially developed in order to
handle ill-posed integral equations in [228, 229], to multiobjective optimization. The Tikhonov
regularization of a convex optimization problem

min
x∈H

f(x),

reads

min
x∈H

f(x) +
ε

2
∥x∥2,

where ε > 0 is a positive constant. Denoting for all ε > 0 its unique minimizer by

xε := argmin
x∈H

{
f(x) +

ε

2
∥x∥2

}
,

it holds that xε converges strongly to projargminx∈H f(x)(0) as ε→ 0, given argminx∈H f(x) ̸= ∅.
The set {xε : ε > 0} forms a smooth curve called regularization path. This is one of the key
ingredients used to prove the strong convergence of the trajectory solution of (TRIGS) to the
element of minimum norm in argminx∈H f(x). To extend this approach to the multiobjective
optimization setting, we need to define an appropriate generalization of the regularization path.
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Although there are a few studies addressing Tikhonov regularization in multiobjective optimiza-
tion (see [69, 68, 73, 74]), these works are limited to the finite dimensional case and impose
stringent assumptions, such as the compactness of the weak Pareto set. Furthermore, these
studies do not address whether a Pareto optimum with the minimum norm is achieved and are
thus not suitable for our convergence analysis.

Therefore, given a regularization function ε(·) and a solution x(·) to (MTRIGS), we define the
generalized regularization path for our problem as

z(t) := argmin
z∈H

max
i=1,...,m

fi(z)− fi(x(t)) +
ε(t)

2
∥z∥2. (4.109)

The optimization problem in (4.109) can be seen as a regularization of an adaptive Pascoletti-
Serafini scalarization of (MOP) [91]. In fact, z(·) converges strongly to the weakly Pareto
optimal point of (MOP) with minimal norm in a particular lower level set of the objective
function. This result will allow us to conclude that the trajectory solutions x(·) of (MTRIGS)
converges strongly to the same weakly Pareto optimal point of (MOP).

This section is organized as follows. In Subsection 4.6.1, we discuss the standing assumptions
for this section. Subsection 4.6.2 is dedicated to Tikhonov regularization. We discuss the single
objective case, provide a brief overview of existing work for the multiobjective setting, and prove
the strong convergence of the generalized regularization path to the weakly Pareto optimal point
of (MOP) with minimal norm in a particular lower level set of the objective function. In Subsec-
tion 4.6.3 we prove existence of solutions in finite dimensions and discuss uniqueness. Subsection
4.6.5 contains the asymptotic analysis of solutions of (MTRIGS). The main results of this sec-
tion concern the fast convergence rate of the function values in terms of the merit function and
the strong convergence of the trajectory solutions. To verify the theoretical results, we conclude
this section with several numerical experiments presented in Subsection 4.6.6.

The content of this section was already published in the following paper:

[49] Boţ, R. I. and Sonntag, K. Inertial dynamics with vanishing Tikhonov regularization
for multiobjective optimization. In: Journal of Mathematical Analysis and Applications
554 (2) (2025). doi: 10.1016/j.jmaa.2025.129940.
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4.6. The multiobjective Tikhonov regularized inertial gradient system (MTRIGS)

4.6.1 Assumptions

We require the following standing assumptions, which we assume to hold throughout this section.

(A1) The objective functions fi : H → R are convex and continuously differentiable with L-
Lipschitz continuous gradients ∇fi : H → H with L > 0 for all i = 1, . . . ,m.

(A2) Given initial data t0 > 0 and x0, v0 ∈ H, define a ∈ Rm with ai :=
β
2tp0

∥x0∥2 + 1
2∥v0∥

2 for

i = 1, . . . ,m. For all x ∈ L(F, F (x0) + a) it holds that LPw(F, F (x)) ̸= ∅ and further

R := sup
F ∗∈F (LPw(F,F (x0)+a))

inf
z∈F−1({F ∗})

∥z∥ < +∞. (4.110)

(A3) The set S(q) := argminz∈Hmaxi=1,...,m fi(z)− qi ̸= ∅ is nonempty for all q ∈ Rm and the
mapping z0 : Rm → H, q 7→ projS(q)(0), is continuous.

Discussion of Assumption (A2)

Assumption (A2) is in the spirit of a hypothesis used in the literature (see [156, 216, 217, 221, 222,
224]) in the asymptotic analysis of gradient systems and first-order methods for multiobjective
optimization. There, the assumption is formulated only for a = 0, which is recovered in our
setting if we restrict the initial conditions to x0 = v0 = 0. For arbitrary initial conditions, our
analysis requires the assumption to hold for a ∈ Rm+ with ai := β

2tp0
∥x(t0)∥ + 1

2∥ẋ(t0)∥
2 ≥ 0

for i = 1, . . . ,m, as for this choice of a, the solutions of (MTRIGS) can be shown to remain in
L(F, F (x(t0))+a). This expansion of the level set is necessary because of the additional Tikhonov
regularization which can produce trajectories that leave the initial level set L(F, F (x(t0))). We
visualize (A2) in Figure 4.7, which shows the schematic image space for an (MOP) with two
objective functions. Given an initial point x0 ∈ H and a ∈ Rm from (A2), the set F (LPw(F (x0)+
a)) is shown in blue. For all function values F ∗ ∈ F (LPw(F (x0) + a)) the constant R gives a
uniform bound on the minimum norm element in the preimage F−1({F ∗}). For the case of scalar
optimization (m = 1) this assumption is naturally satisfied if a solution to the optimization
problem exists.

Discussion of Assumption (A3)

We need Assumption (A3) to show the strong convergence of the generalized regularization path
for multiobjective optimization problems. We illustrate the necessity of this assumption with
an example in Subsection 4.6.2. In the following, we show that the continuity of the projection
q 7→ z0(q) := projS(q)(0) is closely connected with the continuity of the set-valued map (see [27,
34, 35, 42, 176, 226] for related discussions)

S : Rm ⇒ H, q 7→ S(q) := argmin
z∈H

max
i=1,...,m

fi(z)− qi.

To this end, we recall the notion of Mosco convergence [34].

Definition 4.6.1. Let
(
Ck
)
k≥0

, C∗ ⊆ H be nonempty, convex and closed sets. We say that the

sequence
(
Ck
)
k≥0

is Mosco convergent to C∗ if
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f1

f2 F (H)

F (x(t))

F (x0)

F (x0) + a

F (LPw(F, F (x0) + a))

Figure 4.7: Visualization of (A2) with a trajectory x(t) ∈ LPw(F, F (x0) + a).

i) For any x∗ ∈ C∗ there exists (xk)k≥0 with xk → x∗ such that xk ∈ Ck for all k ≥ 0;

ii) For any sequence (kl)l≥0 ⊆ N with xkl ∈ Ckl for all l ≥ 0 such that xkl ⇀ x∗ as l → +∞,
it holds x∗ ∈ C∗.

The following theorem can be used to derive the continuity of z0(·) from the Mosco continuity
of S(·). We recall that a set-valued map S(·) is said to be Mosco continuous if for all q∗ ∈ Rm
and any sequence

(
qk
)
k≥0

⊆ Rm with qk → q∗ the sequence
(
S(qk)

)
k≥0

is Mosco convergent to

S(q∗).

Theorem 4.6.2. ([34, Sonntag-Attouch Theorem]) Let
(
Ck
)
k≥0

, C∗ ⊆ H be nonempty, convex
and closed sets. The following statements are equivalent:

i)
(
Ck
)
k≥0

is Mosco convergent to C∗;

ii)
(
Ck
)
k≥0

is Wijsman convergent to C∗, i.e., for all x ∈ H, it holds limk→+∞ dist(x,Ck) =

dist(x,C∗);

iii) For all x ∈ H, it holds limk→+∞ projCk(x) = projC∗(x).

The following proposition shows that for all q∗ ∈ Rm and for any sequence
(
qk
)
k≥0

⊆ Rm with

qk → q∗, condition ii) in the definition of the Mosco convergence of
(
S(qk)

)
k≥0

to S(q∗) is always
fulfilled.

Proposition 4.6.3. Let q∗ ∈ Rm and
(
qk
)
k≥0

⊆ Rm be a sequence with qk → q∗ as k → +∞.

Let (xk)k≥0 ⊆ H be a sequence with xk ∈ S(qk) for all k ≥ 0 such that xk ⇀ x∗ ∈ H as k → +∞.
Then, x∗ ∈ S(q∗).

Proof. We show that for all z ∈ H

max
i=1,...,m

fi(x
∗)− q∗i ≤ max

i=1,...,m
fi(z)− q∗i .
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Let z ∈ H be arbitrary. We use the weak lower semicontinuity of maxi=1,...,m fi(·) − q∗i to
conclude

max
i=1,...,m

fi(x
∗)− q∗i ≤ lim inf

k→+∞
max

i=1,...,m
fi(x

k)− q∗i ≤ lim inf
k→+∞

(
max

i=1,...,m
fi(x

k)− qki + max
i=1,...,m

qki − q∗i

)
= lim inf

k→+∞
max

i=1,...,m
fi(x

k)− qki ≤ lim inf
k→+∞

max
i=1,...,m

fi(z)− qki

≤ lim inf
k→+∞

(
max

i=1,...,m
fi(z)− q∗i + max

i=1,...,m
q∗i − qki

)
= max

i=1,...,m
fi(z)− q∗i .

Hence x∗ ∈ S(q∗), which completes the proof.

The condition i) in the definition of the Mosco convergence of
(
S(qk)

)
k≥0

to S(q∗) when qk → q∗

as k → +∞ does not hold in general, but can be shown to be satisfied under various circum-
stances. One of these is when the function x 7→ maxi=1,...,m fi(x)−qi exhibits a growth property
uniformly for q ∈ Rm along approximating sequences.

Definition 4.6.4. (Growth property uniformly along approximating sequences) Assume S(q) ̸= ∅
for all q ∈ Rm. We say that the function x 7→ maxi=1,...,m fi(x)− qi satisfies the growth property
uniformly along approximating sequences if for all q∗ ∈ Rm there exists a strictly increasing
function ψ : [0,+∞) → [0,+∞) with ψ(0) = 0 such that for all sequences

(
qk
)
k≥0

⊆ Rm with

qk → q∗ as k → +∞ it holds

max
i=1,...,m

fi(x
∗)− qki − inf

z∈H
max

i=1,...,m
fi(z)− qki ≥ ψ

(
dist(x∗, S(qk))

)
,

for all x∗ ∈ S(q∗) and k ≥ 0.

The following lemma states the Lipschitz continuity of the optimal value function arising in the
definition of the set-valued map S(·).

Lemma 4.6.5. Assume S(q) ̸= ∅ for all q ∈ Rm. Then, the optimal value function

v : Rm → R, q 7→ v(q) := inf
z∈H

max
i=1,...,m

fi(z)− qi,

is Lipschitz continuous.

Proof. Let q1, q2 ∈ Rm and choose x1 ∈ S(q1) and x2 ∈ S(q2). It holds

v(q1) = max
i=1,...,m

fi(x
1)− q1i ≤ max

i=1,...,m
fi(x

2)− q1i

≤ max
i=1,...,m

fi(x
2)− q2i + max

i=1,...,m
q2i − q1i ≤ v(q2) + ∥q1 − q2∥∞.

Analogously,

v(q2) ≤ v(q1) + ∥q1 − q2∥∞,

thus,

|v(q1)− v(q2)| ≤ ∥q1 − q2∥∞.
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The next theorem shows that the uniform growth property indeed guarantees that for all q∗ ∈ Rm
and for any sequence

(
qk
)
k≥0

⊆ Rm with qk → q∗, the sequence
(
S(qk)

)
k≥0

is Mosco convergent

to S(q∗). Therefore, in the light of Theorem 4.6.2, Assumption (A3) is fulfilled.

Theorem 4.6.6. Assume S(q) ̸= ∅ for all q ∈ Rm and that x 7→ maxi=1,...,m fi(x)− qi satisfies
the growth property uniformly along approximating sequences. Let q∗ ∈ Rm and

(
qk
)
k≥0

⊆ Rm

be a sequence with qk → q∗ as k → +∞. Then,
(
S(qk)

)
k≥0

is Mosco convergent to S(q∗).

Proof. Condition ii) in Definition 4.6.1 is satisfied according to Proposition 4.6.3. We prove by
contradiction that condition i) is also satisfied. Let x∗ ∈ S(q∗) be such that for any sequence(
xk
)
k≥0

with xk ∈ S(qk) for all k ≥ 0, it holds xk ̸→ x∗ as k → +∞. Hence, there exist δ > 0

and a subsequence (kl)l≥0 ⊆ N such that dist(x∗, S(qkl)) > δ for all l ≥ 0. We use the growth
property to conclude for all l ≥ 0

max
i=1,...,m

fi(x
∗)− qkli − inf

z∈H
max

i=1,...,m
fi(z)− qkli ≥ ψ

(
dist(x∗, S(qkl))

)
≥ ψ(δ) > 0,

which yields for all l ≥ 0

max
i=1,...,m

q∗i − qkli + v(q∗)− v(qkl) ≥ ψ(δ) > 0.

We let l → +∞ and use qkl → q∗ and the continuity of the optimal value function to derive a
contradiction.

4.6.2 Tikhonov regularization for multiobjective optimization

In this subsection we extend the concept of Tikhonov regularization from scalar optimization to
multiobjective optimization and study the properties of the associated regularization path. The
obtained results will play a crucial role in the asymptotic analysis we perform in the following
subsections for (MTRIGS).

A fundamental concept in the study of Tikhonov regularization when minimizing a convex and
differentiable function f : H → R, is the regularization path. This path, defined as {xε : ε > 0}
where xε is the unique minimizer of f+ ε

2∥·∥
2, is a smooth and bounded curve. As ε→ 0, it holds

xε → projargminx∈H f(x)(0) converges strongly in H (see [32, Theorem 27.23]). The regularization
path is crucial in the asymptotic analysis conducted in [12] for the system (TRIGS), where the
convergence of the trajectory solution x(·) to the minimum norm solution gets demonstrated
by showing that limt→+∞∥x(t) − xε(t)∥ = 0. We aim to extend this idea to the multiobjective
setting when studying (MOP) and the dynamical system (MTRIGS).

Although the analysis presented in this section holds in a more general form for any continuously
differentiable and monotonically decreasing function ε : [t0,+∞) → (0,+∞) which satisfies
limt→+∞ ε(t) = 0, we restrict the analysis in this section to the case ε(t) = β

tp in order to be
consistent with the formulation of the system (MTRIGS). Define for all t ≥ t0 the Tikhonov
regularized multiobjective optimization problem

min
x∈H

 ft,1(x)
...

ft,m(x)

 :=

 f1(x) +
β
2tp ∥x∥

2

...

fm(x) +
β
2tp ∥x∥

2

 ,(MOP β
tp
)
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where we use for i = 1, . . . ,m the component-wise regularization

ft,i : H → R, x 7→ ft,i(x) := fi(x) +
β

2tp
∥x∥2.

Although the functions ft,i are strongly convex, one cannot expect (MOP β
tp
) to have a unique

Pareto optimal solution. This necessitates a suitable concept of a regularization path. To address
this, we utilize the merit function defined in (2.23) for the regularized problem (MOP β

tp
), that

we define for all t ≥ t0 as

φt : H → R, x 7→ φt(x) := sup
z∈H

min
i=1,...,m

ft,i(x)− ft,i(z)

= sup
z∈H

min
i=1,...,m

fi(x)− fi(z) +
β

2tp
∥x∥2 − β

2tp
∥z∥2.

(4.111)

The optimization problem in the definition of the merit function φt(·) can be interpreted as the
Pascoletti-Serafini scalarization of the problem (MOP β

tp
) (see, e.g., [91, Section 2.1]). Inspired by

the formulation of the merit function and by the Tikhonov regularization in scalar optimization,
we consider for all t ≥ t0 the unique minimizer

z(t) ∈ argmin
z∈H

max
i=1,...,m

fi(z)− fi(x(t)) +
β

2tp
∥z∥2, (4.112)

as an element of the regularization path, where x : [t0,+∞) → H is a trajectory which will be
specified later. Note that in scalar optimization, namely when m = 1, we recover the classical
regularization path independent of the trajectory x(·). Since the function z 7→ maxi=1,...,m fi(z)−
fi(x(t)) depends on t, we cannot make use of the properties of the regularization path in scalar
optimization to characterize the asymptotic behavior of this new path. This will be done in the
following result.

Theorem 4.6.7. Let q : [t0,+∞) → Rm be a continuous function with q(t) → q∗ ∈ Rm as
t→ +∞, and

z(t) := argmin
z∈H

max
i=1,...,m

fi(z)− qi(t) +
β

2tp
∥z∥2 for all t ≥ t0,

S(q) := argmin
z∈H

max
i=1,...,m

fi(z)− qi for all q ∈ Rm,

z0(q) := proj
S(q)

(0) for all q ∈ Rm.

(4.113)

Then, z(t) → z0(q
∗) converges strongly as t→ +∞.

Proof. Let (tk)k≥0 ⊂ [t0,+∞) be an arbitrary sequence with tk → +∞ as k → +∞. For all

k ≥ 0, we denote εk :=
β

(tk)p
, qk := q(tk), z

k := z(tk), and z
k
0 := z0(q

k). For all k ≥ 0 it holds

max
i=1,...,m

fi(z
k)− qki +

εk
2
∥zk∥2 ≤ max

i=1,...,m
fi(z

k
0 )− qki +

εk
2
∥zk0∥2

≤ max
i=1,...,m

fi(z
k)− qki +

εk
2
∥zk0∥2,

(4.114)
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hence,

∥zk∥ ≤ ∥zk0∥. (4.115)

According to Assumption (A3), z0(·) is continuous, consequently,
(
zk0
)
k≥0

is bounded. This

implies that
(
zk
)
k≥0

is also bounded and hence possesses a weak sequential cluster point. We

show that this cluster point is unique, which will imply that
(
zk
)
k≥0

is weakly convergent.

Let z∞ be an arbitrary weak sequential cluster point of
(
zk
)
k≥0

. Then, there exists a subsequence

with zkl ⇀ z∞ weakly in H as l → +∞. For all z ∈ H it holds

max
i=1,...,m

(fi(z
∞)− q∗i ) ≤ lim inf

l→+∞
max

i=1,...,m

(
fi(z

kl)− q∗i

)
+
εkl
2
∥zkl∥2

≤ lim inf
l→+∞

(
max

i=1,...,m

(
fi(z

kl)− qkli

)
+
εkl
2
∥zkl∥2 + max

i=1,...,m

(
qkli − q∗i

))
≤ lim inf

l→+∞

(
max

i=1,...,m

(
fi(z)− qkli

)
+
εkl
2
∥z∥2

)
≤ lim inf

l→+∞

(
max

i=1,...,m
(fi(z)− q∗i ) +

εkl
2
∥z∥2 + max

i=1,...,m

(
q∗i − qkli

))
= max
i=1,...,m

(fi(z)− q∗i ) .

(4.116)

From here, z∞ ∈ S(q∗) follows. Next, we show that z∞ = z0(q
∗). From the continuity of z0(·)

we have

zkl0 = z0(q
kl) → z0(q

∗) as l → +∞, (4.117)

and the weak lower semicontinuity of the norm gives

∥z∞∥ ≤ lim inf
l→+∞

∥zkl∥ ≤ lim sup
l→+∞

∥zkl∥ ≤ lim sup
l→+∞

∥zkl0 ∥ = ∥z0(q∗)∥. (4.118)

Since z∞ ∈ S(q∗) and z0(q
∗) = projS(q∗)(0), we get z∞ = z0(q

∗). This proves that
(
zk
)
k≥0

converges weakly to z0(q
∗). Using again (4.118), we get

lim
k→+∞

∥zk∥ = ∥z0(q∗)∥,

from which we conclude that zk → z0(q
∗) converges strongly as k → +∞.

Remark 4.6.8. The continuity of z0(·) formulated in Assumption (A3) can be seen as a regu-
larity condition on the objective functions fi for i = 1, . . . ,m. It is satisfied for convex scalar
optimization problems as long as the set of minimizers is not empty. In this setting the mapping
q → z0(q) is constant. The following example shows that the Assumption (A3) is crucial for
obtaining convergence of z(t) as t→ +∞.
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Example 4.6.9. Define the functions

ϕ : R → R, y 7→ 1

2
max (y − 3, 0)2 +

1

2
max (2− y, 0)2 ,

g : R2 → R, x 7→


1
2x

2
1 +

1
2x

2
2, if |x1| ≤ 1, x2 + 1 ≤

√
1− x21,

|x1|+ 1
2x

2
2 − 1

2 , if |x1| > 1, x2 + 1 ≤ 0,√
x21 + (x2 + 1)2 − (x2 + 1), else,

f1 : R2 → R, x 7→ 1

2
(x1 − 1)2 + ϕ(x2) + g(x),

f2 : R2 → R, x 7→ 1

2
(x1 + 1)2 + ϕ(x2) + g(x),

(4.119)

which are all convex and continuously differentiable with Lipschitz continuous gradients. In the
following, we verify the differentiability of g : R2 → R and show that ∇g is Lipschitz continuous.
Then, the regularity of f1 and f2 follows.

The gradient of g is given by

∇g : R2 → R2, x 7→



x, if x ∈M1,[ x1
|x1|
x2

]
, if x ∈M2, x1√

x21+(x2+1)2

x2+1√
x21+(x2+1)2

− 1

 , if x ∈M3,

with

M1 :=

{
x ∈ R2 : |x1| ≤ 1, x2 + 1 ≤

√
1− x21

}
,

M2 :=
{
x ∈ R2 : |x1| > 1, x2 + 1 ≤ 0

}
,

M3 := R2 \ (M1 ∪M2) .

The gradient ∇g is Lipschitz continuous on Mi for i = 1, 2, 3. Since ∇g
∣∣
Mi

and ∇g
∣∣
Mj

co-

incide on Mi ∩ Mj for i ̸= j ∈ {1, 2, 3}, the Lipschitz continuity of ∇g follows. In fact,
∇g(·) = projM1

(·), hence the Lipschitz constant of the gradient is 1.

Now, we consider the multiobjective optimization problem

min
x∈H

[
f1(x)
f2(x)

]
, (4.120)
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x1

x2

M1M2 M2

M3 R2

Figure 4.8: The sets Mi ⊆ R2 for i = 1, 2, 3.

and the Tikhonov regularized problem

min
x∈H

[
f1(x) +

ε
2∥x∥

2

f2(x) +
ε
2∥x∥

2

]
. (4.121)

Figure 4.9a illustrates the Pareto set of the problem (4.120) (denoted by P ) alongside the Pareto
set of the regularized problem (4.121) for various values of ε > 0 (denoted by Pε). As ε decreases,
the Pareto set of (4.121) “converges” to the Pareto set of (4.120). Due to the T-shape of the
Pareto set, the edges of the regularized Pareto sets become sharper as ε diminishes. For this
problem the map

z0 : R2 → R2, q 7→ z0(q) = proj
S(q)

(0),

with S(q) = argmin
z∈R2

max (f1(z)− q1, f2(z)− q2) is not continuous everywhere. Indeed,

z0(q1, 0) → (0, 3) ̸= (0, 2) = proj
{0}×[2,3]

(0) = z0((0, 0)), as q1 → 0.

We define, for t0 := (192β)
1
p ,

q : [t0,+∞) → R, t 7→
[
q1(t)
q2(t)

]
:=

 2(ω(t) + 1)

√(
tp

tp−βω(t)

)2
− 1

0

 ,
with ω(t) := 10+sin(ηt)

4 , where η > 0 is a positive scaling parameter. It holds q(t) → q∗ = (0, 0)⊤

as t→ +∞.
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Figure 4.9: Contour plots of the functions f1 and f2 defined in (4.119): (a) The Pareto sets of
(4.120) and (4.121) for ε ∈ {10−1, 10−1.5, 10−2, 10−2.5, 10−3}. (b) The Pareto set of (4.120) and
the regularization path z(·) defined in (4.123) with parameters p = 1, β = 1

2 , η = 1
50 .

For this example, for all t ≥ t0 the regularization path

z(t) ∈ argmin
z∈R2

max (f1(z)− q1(t), f2(z)− q2(t)) +
β

2tp
∥z∥2, (4.122)

is given by

z(t) =

 −(ω(t) + 1)

√(
tp

tp−βω(t)

)2
− 1

ω(t)

 , (4.123)

as we show in the following. For all t ≥ t0, the function

Φt : R2 → R, z 7→ Φt(z) := max (f1(z)− q1(t), f2(z)− q2(t)) +
β

2tp
∥z∥2,

is strongly convex and therefore has a unique minimizer. We show that

0 ∈ ∂zΦt(z(t)), (4.124)

where ∂zΦt(z(t)) denotes the convex subdifferential of Φt(·) evaluated at z(t). Note that z2(t) ∈
[2.25, 2.75] for all t ≥ t0 and hence

Φt(z) =
1

2
z21 +

1

2
+ g(z) +

β

2tp
∥z∥2 +max (−z1 − q1(t), z1) ,

on an open neighborhood of z(t). We have

∂zΦt(z(t)) =

 z1(t) +
z1(t)√

z1(t)2+(z2(t)+1)2
+ β

tp z1(t)

z2(t)+1√
z1(t)2+(z2(t)+1)2

− 1 + β
tp z2(t)

+ ∂zmax (−z1(t)− q1(t), z1(t)) .
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Since z1(t) = −1
2q1(t) we have ∂zmax (−z1(t)− q1(t), z1(t)) = [−1, 1]× {0} and hence

∂zΦt(z(t)) =

 z1(t) +
z1(t)√

z1(t)2+(z2(t)+1)2
+ β

tp z1(t)

z2(t)+1√
z1(t)2+(z2(t)+1)2

− 1 + β
tp z2(t)

+ [−1, 1]× {0}. (4.125)

For all t ≥ t0 = (192β)
1
p , taking into account the definition of z1(t) and z2(t) ∈ [2.25, 2.75], it

holds that

z1(t) +
z1(t)√

z1(t)2 + (z2(t) + 1)2
+
β

tp
z1(t) ∈ [−1, 1].

On the other hand, since

z1(t) = −(z2(t) + 1)

√(
tp

tp − βz2(t)

)2

− 1,

we have
z2(t) + 1√

z1(t)2 + (z2(t) + 1)2
= 1− β

tp
z2(t),

which proves that (4.124) and therefore (4.122) are satisfied.

In Figure 4.9 (b), the regularization path z(·) given by (4.123) is depicted. One can observe that
it oscillates in the x2-coordinate between the values 2.25 and 2.75 as t→ +∞. The function z(t)
does not converge as t → +∞, although all accumulation points are Pareto optimal and global
minimizers of max (f1(z)− q∗1, f2(z)− q∗2). The minimal norm solution z0(q

∗) = (0, 2) is not an
accumulation point of z(·). This example clearly shows that the continuity of z0(·) is essential
to derive Theorem 4.6.7.

We conclude this section by introducing three propositions that summarize the main properties
of z(·).

Proposition 4.6.10. Let a ∈ Rm+ and assume that the function x : [t0,+∞) → H fulfills
x(t) ∈ L(F, F (x(t0)) + a) for all t ≥ t0. Then, the regularization path,

z(t) := argmin
z∈H

max
i=1,...,m

fi(z)− fi(x(t)) +
β

2tp
∥z∥2, for all t ≥ t0,

is bounded. Specifically, z(t) ∈ BR(0) for all t ≥ t0, where R is defined in (A2).

Proof. By (A3), it holds S(F (x(t))) := argmin
z∈H

maxi=1,...,m (fi(z)− fi(x(t))) ̸= ∅ for all t ≥ t0.

Fix some t ≥ t0. From the properties of Tikhonov regularization in scalar optimization (see [32,
Theorem 27.23]), we know

∥z(t)∥ ≤ ∥z∥ for all z ∈ S(F (x(t))). (4.126)

Next, we show that

F−1({F ∗}) ⊆ S(x(t)) for all F ∗ ∈ F (S(F (x(t))). (4.127)
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Let F ∗ ∈ F (S(F (x(t))). Then, there exists z ∈ S(F (x(t)) with F (z) = F ∗. Let w ∈ F−1({F ∗})
then F (w) = F (z) and hence

max
i=1,...,m

fi(w)− fi(x(t)) = max
i=1,...,m

fi(z)− fi(x(t)) = inf
z∈H

max
i=1,...,m

fi(z)− fi(x(t)).

This shows w ∈ S(F (x(t)) and hence (4.127) holds. From (4.126) and (4.127) we conclude that
for all F ∗ ∈ F (S(F (x(t)))) we get

∥z(t)∥ ≤ ∥z∥ for all z ∈ F−1({F ∗}),

and hence

∥z(t)∥ ≤ inf
z∈F−1({F ∗})

∥z∥ for all F ∗ ∈ F (S(F (x(t)))).

Since this bound holds for all F ∗ ∈ F (S(F (x(t)))), we get

∥z(t)∥ ≤ inf
z∈F−1(F (S(F (x(t)))))

∥z∥ = inf
{z∈H:F (z)∈F (S(F (x(t))))}

∥z∥

≤ sup
F ∗∈F (S(F (x(t)))

inf
z∈F−1({F ∗})

∥z∥.
(4.128)

Next, we prove that

S(F (x(t))) ⊆ LPw(F, F (x(t0)) + a). (4.129)

Let z ∈ S(F (x(t))). Then,

max
i=1,...,m

fi(z)− fi(x(t)) ≤ max
i=1,...,m

fi(x(t))− fi(x(t)) = 0,

hence

fi(z) ≤ fi(x(t)) ≤ fi(x(t0)) + ai for all i = 1, . . . ,m,

and therefore z ∈ L(F, F (x(t0)) + a). Assuming that z ̸∈ LPw(F, F (x(t0)) + a), it follows that
z ̸∈ Pw and hence there exists some y ∈ H with

fi(y) < fi(z) for all i = 1, . . . ,m.

Therefore,

max
i=1,...,m

fi(x)− fi(x(t)) < max
i=1,...,m

fi(z)− fi(x(t)),

which is a contradiction to z ∈ S(F (x(t))). This proves inclusion (4.129). Consequently, ac-
cording to (4.128) and (4.129),

∥z(t)∥ ≤ sup
F ∗∈F (LPw(F,F (x(t0))+a)

inf
z∈F−1({F ∗})

∥z∥ = R < +∞,

where the upper bound R is given by (A2).
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Proposition 4.6.11. Let q : [t0,+∞) → Rm be a continuous function and define

z : [t0,+∞) → H, t 7→ z(t) := argmin
z∈H

max
i=1,...,m

fi(z)− qi(t) +
β

2tp
∥z∥2.

Then, z(·) is a continuous mapping.

Proof. We fix an arbitrary t ≥ t0 and show that z(·) is continuous (continuous from the right if
t = t0) in t. Let t ∈

[
t− κ, t+ κ

]
∩ [t0,+∞) for some κ > 0. Then, by strong convexity and the

minimizing properties of z(t) and z(t), we get

max
i=1,...,m

(
fi(z(t))− qi(t)

)
+

β

2tp
∥z(t)∥2

− max
i=1,...,m

(fi(z(t))− qi(t))−
β

2tp
∥z(t)∥2 ≥ β

2tp
∥z(t)− z(t)∥2,

(4.130)

and

max
i=1,...,m

(
fi(z(t))− qi(t)

)
+

β

2t
p ∥z(t)∥2

− max
i=1,...,m

(
fi(z(t)− qi(t)

)
− β

2t
p ∥z(t)∥2 ≥

β

2t
p ∥z(t)− z(t)∥2,

(4.131)

respectively. Using the monotonicity of t 7→ β
2tp , (4.130) and (4.131) lead to

max
i=1,...,m

(
fi(z(t)− qi(t)

)
+ max
i=1,...,m

(
qi(t)− qi(t)

)
+

β

2tp
∥z(t)∥2

− max
i=1,...,m

(fi(z(t)− qi(t))−
β

2tp
∥z(t)∥2 ≥ β

2(t+ κ)p
∥z(t)− z(t)∥2,

(4.132)

respectively,

max
i=1,...,m

(fi(z(t))− qi(t)) + max
i=1,...,m

(
qi(t)− qi(t)

)
+

β

2t
p ∥z(t)∥2

− max
i=1,...,m

(
fi(z(t)− qi(t)

)
− β

2t
p ∥z(t)∥2 ≥

β

2(t+ κ)p
∥z(t)− z(t)∥2.

(4.133)

Adding (4.132) and (4.133) yields

2∥q(t)− q(t)∥∞ +
1

2

(
β

t
p − β

tp

)(
∥z(t)∥2 − ∥z(t)∥2

)
≥ β

(t+ κ)p
∥z(t)− z(t)∥2. (4.134)

By Proposition 4.6.10, the function z(·) is bounded, so by the continuity of q(·) the left-hand-side
of (4.134) vanishes as t→ t. This demonstrates the continuity of z(·) in t.

In the next proposition, we describe the connection between the original merit function φ(·)
and the merit function φt(·) of the regularized problem. This will allow us to derive asymptotic
convergence results on φ(x(t)) for t→ +∞.
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Proposition 4.6.12. Let a ∈ Rm+ be the vector introduced in Assumption (A2) and assume that
x : [t0,+∞) → H fulfills x(t) ∈ L(F, F (x(t0)) + a) for all t ≥ t0. We define

z(t) := argmin
z∈H

max
i=1,...,m

fi(z)− fi(x(t)) +
β

2tp
∥z∥2 for all t ≥ t0.

Then, the following statements hold:

i) For all t ≥ t0 and all y ∈ H

min
i=1,...,m

fi(x(t))− fi(y) ≤ min
i=1,...,n

ft,i(x(t))− ft,i(z(t)) +
β

2tp
∥y∥2,

hence

φ(x(t)) ≤ φt(x(t)) +
βR2

2tp
,

where R is defined in (A2).

ii) For all t ≥ t0

∥x(t)− z(t)∥2 ≤ tpφt(x(t))

β
.

Proof. i) Fix t ≥ t0 and y ∈ H. From the definition of z(t), we have

max
i=1,...,m

ft,i(y)− ft,i(x(t)) ≥ max
i=1,...,m

ft,i(z(t))− ft,i(x(t)),

hence

min
i=1,...,m

fi(x(t))− fi(y) +
β

2tp
∥x(t)∥2 − β

2tp
∥y∥2 ≤ min

i=1,...,m
ft,i(x(t))− ft,i(z(t)).

Using the definition of φt(·), we get

min
i=1,...,m

fi(x(t))− fi(y) ≤ φt(x(t)) +
β

2tp
∥y∥2. (4.135)

By (A2), it holds LPw(F, F (x(t0)) + a) ̸= ∅, therefore,

sup
F ∗∈F (LPw(F,F (x(t0))+a))

inf
y∈F−1({F ∗})

min
i=1,...,m

fi(x(t))− fi(y)

≤ φt(x(t)) +
β

2tp
sup

F ∗∈F (LPw(F,F (x(t0))+a))
inf

y∈F−1({F ∗})
∥y∥2. (4.136)

Additionally, we have

sup
y∈LPw(F,F (x(t0))+a)

min
i=1,...,m

fi(x(t))− fi(y)

= sup
F ∗∈F (LPw(F,F (x(t0))+a))

inf
y∈F−1({F ∗})

min
i=1,...,m

fi(x(t))− fi(y).
(4.137)
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Note that (4.137) holds since for all y ∈ LPw(F, F (x(t0)) + a) there exists F ∗ = F (y) ∈
F (LPw(F, F (x(t0))+a)) with mini=1,...,m fi(x(t))−fi(y) = mini=1,...,m fi(x(t))−fi(z) for all z ∈
F−1({F ∗}). On the other hand, for all F ∗ ∈ F (LPw(F, F (x(t0))+a)) any y ∈ LPw(F, F (x(t0))+
a) with F (y) = F ∗ satisfies mini=1,...,m fi(x(t)) − fi(y) = infz∈F−1({F ∗})mini=1,...,m fi(x(t)) −
fi(z). Combining (4.136) and (4.137), and using Lemma 2.3.15 and (A2) yields

φ(x(t)) ≤ φt(x(t)) +
βR2

2tp
.

ii) From the strong convexity of ft,i with modulus β
tp , we conclude the strong convexity of

z 7→ maxi=1,...,m ft,i(z)− ft,i(x(t)) with modulus β
tp . This gives for all t ≥ t0

φt(x(t)) = min
i=1,...,m

ft,i(x(t))− ft,i(z(t))

= max
i=1,...,m

ft,i(x(t))− ft,i(x(t))− max
i=1,...,m

ft,i(z(t))− ft,i(x(t))

≥ β

tp
∥x(t)− z(t)∥2,

and the desired inequality follows.

4.6.3 Discussion of existence and uniqueness of solutions

The discussion of existence and uniqueness of solutions to (MTRIGS) is based on Section 4.3.
We begin by properly defining a solution to (MTRIGS).

Definition 4.6.13. We call a function x : [t0,+∞) → H a solution to (MTRIGS) with initial
data t0 > 0, x(t0) = x0 and ẋ(t0) = v0 if it satisfies the following conditions:

i) x ∈ C1([t0,+∞),H), i.e., x(·) is continuously differentiable on [t0,+∞);

ii) ẋ(·) is absolutely continuous on [t0, T ] for all T ≥ t0;

iii) There exists a (Bochner) measurable function ẍ : [t0,+∞) → H with ẋ(t) = ẋ(t0) +∫ t
t0
ẍ(s)ds for all t ≥ t0;

iv) ẋ(·) is differentiable almost everywhere and d
dt ẋ(t) = ẍ(t) holds for almost all t ∈ [t0,+∞);

v) α
tq ẋ(t) + proj

C(x(t))+ β
tp
x(t)+ẍ(t)

(0) = 0 holds for almost all t ∈ [t0,+∞);

vi) x(t0) = x0 and ẋ(t0) = v0 hold.

Theorem 4.6.14. Assume H is finite-dimensional and and assume the gradients of the objective
function ∇fi(·) are L-Lipschitz continuous for all i = 1, . . . ,m. Then, for all t0 > 0 and
x0, v0 ∈ H, there exists a function x(·) which is a solution to equation (IMOG’) in the sense of
Definition 4.4.2.

Proof. The proof follows from Theorem 4.3.9. We show (MTRIGS) is a special instance of (D)
for appropriate choices of γ(·) and di(·, ·). Define the functions

γ : (0,+∞) → [0,+∞), t 7→ γ(t) :=
α

tq
,

di : (0,+∞)×H → H, (t, u) 7→ di(t, u) := ∇fi(u) +
β

tp
u,

(4.138)
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and let D(·, ·) be as defined in Definition 4.3.1. By (4.138) the functions γ(·) and di(·, ·) have
the following properties. The function γ(·) is continuous and monotonically decreasing. The

functions di(·, ·) are continuous on (0,+∞)×H and uniformly
(
L+ β

(t0)p

)
-Lipschitz continuous

in the second component on [t0,+∞)×H for all i = 1, . . . ,m. Further, for all (t, u) ∈ (0,+∞)×H
it holds that

D(t, u) = C(u) +
β

tp
u.

For this choice of γ(·) and di(·, ·) equation (D) reduces to (MTRIGS) and we conclude the
existence of a solution to (D) in the sense of Definition 4.3.6 by Theorem 4.3.9.

Remark 4.6.15. The uniqueness of the trajectory solutions of (MTRIGS) remains an open
problem. There are two major difficulties in deriving uniqueness, as for the dynamical sys-
tem (MAVD). First, the multiobjective steepest descent direction is not Lipschitz continu-
ous, but only Hölder continuous. So even for simpler multiobjective gradient systems like
ẋ(t) = −projC(x(t))(0) it is not trivial to show uniqueness of trajectories in the general set-
ting. The second problem is the implicit structure of the equation (MTRIGS). Therefore, we
cannot use standard arguments like the Cauchy–Lipschitz Theorem to derive the uniqueness of
solutions. Note that the asymptotic analysis presented in this section applies to any trajectory
solution x(·) of (MTRIGS), which reduces the importance of the uniqueness statement.

4.6.4 Preparatory results

In this subsection, we derive some properties that all trajectory solution x(·) of the system
(MTRIGS) share.

Proposition 4.6.16. Let x(·) be a trajectory solution of (MTRIGS) in the sense of Definition
4.6.13. Then, for all i = 1, . . . ,m and almost all t ≥ t0 it holds〈

∇fi(x(t)) +
β

tp
x(t) + ẍ(t) +

α

tq
ẋ(t), ẋ(t)

〉
≤ 0,

and therefore 〈
∇fi(x(t)) +

β

tp
x(t) + ẍ(t), ẋ(t)

〉
≤ −α

tq
∥ẋ(t)∥2.

Proof. According to Definition 4.6.13, each solution x(·) satisfies

−α

tq
ẋ(t) = proj

C(x(t))+ β
tp
x(t)+ẍ(t)

(0),

for almost all t ≥ t0. From the variational characterization of the projection, it follows that〈
∇fi(x(t)) +

β

tp
x(t) + ẍ(t) +

α

tq
ẋ(t),

α

tq
ẋ(t)

〉
≤ 0,

for almost all t ≥ t0 and all i = 1, . . . ,m, which leads to the desired inequality.
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In the next proposition, we define component-wise energy functions for the system (MTRIGS)
and show they fulfill a general decay property.

Proposition 4.6.17. Let x(·) be a trajectory solution of (MTRIGS) in the sense of Definition
4.6.13. For all i = 1, . . . ,m, define the energy function

Wi : [t0,+∞) → R, t 7→ Wi(t) := fi(x(t)) +
β

2tp
∥x(t)∥2 + 1

2
∥ẋ(t)∥2. (4.139)

Then, for all i = 1, . . . ,m and almost all t ≥ t0 it holds

d

dt
Wi(t) ≤ − pβ

2tp+1
∥x(t)∥2 − α

tq
∥ẋ(t)∥2 ≤ 0.

Further, for a ∈ Rm+ defined as ai :=
β
2tp0

∥x(t0)∥2 + 1
2∥ẋ(t0)∥

2 for i = 1, . . . ,m, it holds

x(t) ∈ L(F, F (x(t0)) + a) for all t ≥ t0.

Proof. According to Definition 4.6.13, the velocity ẋ(·) of a trajectory solution is differentiable
almost everywhere. For all i = 1, . . . ,m and almost all t ≥ t0 it holds

d

dt
Wi(t) = ⟨∇fi(x(t)), ẋ(t)⟩ −

pβ

2tp+1
∥x(t)∥2 + β

tp
⟨x(t), ẋ(t)⟩+ ⟨ẋ(t), ẍ(t)⟩

= − pβ

2tp+1
∥x(t)∥2 +

〈
∇fi(x(t)) +

β

tp
x(t) + ẍ(t), ẋ(t)

〉
≤ − pβ

2tp+1
∥x(t)∥2 − α

tq
∥ẋ(t)∥2 ≤ 0,

where the last inequality follows from Proposition 4.6.16. The last statement of the proposition
follows using the monotonicity of Wi(·) for i = 1, . . . ,m, on [t0,+∞).

For all t ≥ t0 we have proj
C(x(t))+ β

tp
x(t)+ẍ(t)

(0) ∈ C(x(t)) + β
tpx(t) + ẍ(t) and hence there exists

θ(t) ∈ ∆m with

−α

tq
ẋ(t) = proj

C(x(t))+ β
tp
x(t)+ẍ(t)

(0) =

m∑
i=1

θi(t)∇fi(x(t)) +
β

tp
x(t) + ẍ(t). (4.140)

In the following proposition, we show that there exists a measurable function θ(·) satisfying
(4.140).

Proposition 4.6.18. Let x(·) be a trajectory solution of (MTRIGS) in the sense of Definition
4.6.13. Then, there exists a measurable function

θ : [t0,+∞) → ∆m, t 7→ θ(t),

with

−α

tq
ẋ(t) = proj

C(x(t))+ β
tp
x(t)+ẍ(t)

(0) =
m∑
i=1

θi(t)∇fi(x(t)) +
β

tp
x(t) + ẍ(t), (4.141)

for all t ∈ [t0,+∞).
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Proof. The proof follows the lines of the proof of Lemma 4.5.8, where a similar result is shown
for the system (MAVD). For almost all t ≥ t0, there exists θ(t) ∈ ∆m such that

θ(t) ∈ argmin
θ∈∆m

j(t, θ), where j(t, θ) :=

∥∥∥∥∥
m∑
i=1

θi∇fi(x(t)) +
β

tp
x(t) + ẍ(t)

∥∥∥∥∥
2

. (4.142)

The existence of a measurable selection θ : [t0,+∞) → ∆m, t 7→ θ(t) ∈ argminθ∈∆m j(t, θ) can
be verified using [204, Theorem 14.37]. To this end, we have to show that j(·, ·) is a Carathéodory
integrand, i.e., j(·, θ) is measurable for all θ ∈ ∆m and j(t, ·) is continuous for all t ≥ t0. The
second condition is obviously satisfied. Since x(·) is a trajectory solution of (MTRIGS) in
the sense of Definition 4.6.13, ẍ(·) is (Bochner) measurable. Hence, for all θ ∈ ∆m, j(θ, ·) is
measurable as a composition of a measurable and a continuous function. This demonstrates
that the first condition is also satisfied.

By using the weight function θ(·) we can give a further variational characterization of a trajectory
solution of (MTRIGS).

Proposition 4.6.19. Let x(·) be a trajectory solution of (MTRIGS) in the sense of Definition
4.6.13 and θ(·) the corresponding measurable weight function given by Proposition 4.6.18. Then,
for all i = 1, . . . ,m and almost all t ≥ t0 it holds that

⟨∇fi(x(t)), ẋ(t)⟩ ≤

〈
m∑
i=1

θi(t)∇fi(x(t)), ẋ(t)

〉
.

Proof. By Proposition 4.6.16, we have for all i = 1, . . . ,m and almost all t ≥ t0〈
∇fi(x(t)) +

β

tp
x(t) + ẍ(t) +

α

tq
ẋ(t), ẋ(t)

〉
≤ 0, (4.143)

which, combined with (4.141), yields

⟨∇fi(x(t)), ẋ(t)⟩ ≤

〈
m∑
i=1

θi(t)∇fi(x(t)), ẋ(t)

〉
.

We conclude this part on the preparatory results with the following proposition.

Proposition 4.6.20. Let x(·) be a trajectory solution of (MTRIGS) in the sense of Definition
4.6.13. Then, the following statements are true:

i) ẋ(·) is bounded;

ii) If x(·) is bounded, then ẍ(·) is essentially bounded.

Proof. i) According to Proposition 4.6.17, we have for all i = 1, . . . ,m and all t ≥ t0

1

2
∥ẋ(t)∥2 ≤ Wi(t) ≤ Wi(t0),
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which proves the first statement.

ii) If x(·) is bounded, then ∇fi(x(·)) is also bounded for all i = 1, . . . ,m, as a consequence of
the Lipschitz continuity of the gradients. According to (MTRIGS), we have for almost all t ≥ t0

ẍ(t) +
α

tq
ẋ(t) = proj

C(x(t))+ β
tp
x(t)

(−ẍ(t)),

hence,

∥ẍ(t)∥ ≤ α

tq
∥ẋ(t)∥+

∥∥∥∥∥∥ proj
C(x(t))+ β

tp
x(t)

(−ẍ(t))

∥∥∥∥∥∥ . (4.144)

Since all expressions on the right hand side of (4.144) are bounded on [t0,+∞), ẍ(·) is essentially
bounded.

A general energy function

The following energy functions are the key to the asymptotic analysis of (MTRIGS).

Definition 4.6.21. Let x(·) be a trajectory solution of (MTRIGS) in the sense of Definition
4.6.13, r ∈ [q, 1] and z ∈ H. Let γ : [t0,+∞) → [0,+∞) and ξ : [t0,+∞) → R be continuously
differentiable functions. Define for i = 1, . . . ,m

Gri,γ,ξ,z(t) := t2r (ft,i(x(t))− ft,i(z)) +
1

2
∥γ(t)(x(t)− z) + trẋ(t)∥2 + ξ(t)

2
∥x(t)− z∥2

and

Grγ,ξ,z(t) := t2r min
i=1,...,m

(ft,i(x(t))− ft,i(z)) +
1

2
∥γ(t)(x(t)− z) + trẋ(t)∥2 + ξ(t)

2
∥x(t)− z∥2.

For z(t) := argminz∈Hmaxi=1,...,m ft,i(z)− ft,i(x(t)) for t ≥ t0, we define

Grγ,ξ : [t0,+∞) → R, t 7→ Grγ,ξ,z(t)(t) = t2r min
i=1,...,m

(ft,i(x(t))− ft,i(z(t)))

+
1

2
∥γ(t)(x(t)− z(t)) + trẋ(t)∥2 + ξ(t)

2
∥x(t)− z(t)∥2.

= t2rφt(x(t))

+
1

2
∥γ(t)(x(t)− z(t)) + trẋ(t)∥2 + ξ(t)

2
∥x(t)− z(t)∥2.

The functions γ(·) and ξ(·) will be specified at a later point in the analysis. In the next propo-
sition, we derive estimates for the derivatives of the energy functions introduced above.

Proposition 4.6.22. Let x(·) be a trajectory solution of (MTRIGS) in the sense of Definition
4.6.13, r ∈ [q, 1] and z ∈ H. Let γ : [t0,+∞) → [0,+∞) and ξ : [t0,+∞) → R be continuously
differentiable functions.
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i) For all i = 1, . . . ,m, the function Gri,γ,ξ,z(·) is absolutely continuous on every interval [t0, T ]
for T ≥ t0, differentiable almost everywhere on [t0,+∞), and its derivative satisfies for
almost all t ∈ [t0,+∞)

d

dt
Gri,γ,ξ,z(t) ≤ 2rt2r−1 (ft,i(x(t))− ft,i(z)) +

pβt2r

2tp+1
∥z∥2

− trγ(t) min
i=1,...,m

(ft,i(x(t))− ft,i(z))

+
(
γ(t)(γ(t) + rtr−1 − αtr−q) + trγ′(t) + ξ(t)

)
⟨x(t)− z, ẋ(t)⟩

+

(
γ(t)γ′(t) +

ξ′(t)

2
− γ(t)tr

β

2tp

)
∥x(t)− z∥2

+ tr(γ(t) + rtr−1 − αtr−q)∥ẋ(t)∥2.

(4.145)

ii) The function Grγ,ξ,z(·) is absolutely continuous on every interval [t0, T ] for T ≥ t0, differen-
tiable almost everywhere on [t0,+∞), and its derivative satisfies for almost all t ∈ [t0,+∞)

d

dt
Grγ,ξ,z(t) ≤

(
2rt2r−1 − trγ(t)

)
min

i=1,...,m
(ft,i(x(t))− ft,i(z)) +

pβt2r

2tp+1
∥z∥2

+
(
γ(t)(γ(t) + rtr−1 − αtr−q) + trγ′(t) + ξ(t)

)
⟨x(t)− z, ẋ(t)⟩

+

(
γ(t)γ′(t) +

ξ′(t)

2
− γ(t)tr

β

2tp

)
∥x(t)− z∥2

+ tr(γ(t) + rtr−1 − αtr−q)∥ẋ(t)∥2.

(4.146)

Proof. Fix an arbitrary i ∈ {1, . . . ,m}. It is obvious that Gri,γ,ξ,z(·) is absolutely continuous on
every interval [t0, T ] for T ≥ t0 and therefore differentiable almost everywhere on [t0,+∞). Let
t ≥ t0 be a point at which Gri,γ,z(·) is differentiable. By the chain rule, it holds that

d

dt
Gri,γ,ξ,z(t) = 2rt2r−1 (ft,i(x(t))− ft,i(z)) + t2r⟨∇ft,i(x(t)), ẋ(t)⟩ −

pβt2r

2tp+1
∥x(t)∥2 + pβt2r

2tp+1
∥z∥2

+
〈
γ(t)(x(t)− z) + trẋ(t), (γ(t) + rtr−1)ẋ(t) + γ′(t)(x(t)− z) + trẍ(t)

〉
+ ξ(t)⟨x(t)− z, ẋ(t)⟩+ ξ′(t)

2
∥x(t)− z∥2.

Let θ(·) be the measurable weight function given by Proposition 4.6.18. By Proposition 4.6.19,
we have

d

dt
Gri,γ,ξ,z(t) ≤

2rt2r−1 (ft,i(x(t))− ft,i(z)) + t2r

〈
m∑
i=1

θi(t)∇ft,i(x(t)), ẋ(t)

〉
+
pβt2r

2tp+1
∥z∥2

+
〈
γ(t)(x(t)− z) + trẋ(t), (γ(t) + rtr−1)ẋ(t) + γ′(t)(x(t)− z) + trẍ(t)

〉
+ ξ(t)⟨x(t)− z, ẋ(t)⟩+ ξ′(t)

2
∥x(t)− z∥2.

(4.147)
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Using (4.141), we write

trẍ(t) = −αtr−qẋ(t)− tr
m∑
i=1

θi(t)∇ft,i(x(t)),

which we use to evaluate〈
γ(t)(x(t)− z) + trẋ(t), (γ(t) + rtr−1)ẋ(t) + γ′(t)(x(t)− z) + trẍ(t)

〉
= γ(t)(γ(t) + rtr−1 − αtr−q) ⟨x(t)− z, ẋ(t)⟩+ γ(t)γ′(t)∥x(t)− z∥2

− trγ(t)

〈
x(t)− z,

m∑
i=1

θi(t)∇ft,i(x(t))

〉
− t2r

〈
m∑
i=1

θi(t)∇ft,i(x(t)), ẋ(t)

〉
+ tr(γ(t) + rtr−1 − αtr−q)∥ẋ(t)∥2 + trγ′(t)⟨ẋ(t), x(t)− z⟩

=
[
γ(t)(γ(t) + rtr−1 − αtr−q) + trγ′(t)

]
⟨x(t)− z, ẋ(t)⟩+ γ(t)γ′(t)∥x(t)− z∥2

− trγ(t)

〈
x(t)− z,

m∑
i=1

θi(t)∇ft,i(x(t))

〉
+ tr(γ(t) + rtr−1 − αtr−q)∥ẋ(t)∥2

− t2r

〈
m∑
i=1

θi(t)∇ft,i(x(t)), ẋ(t)

〉
.

(4.148)

We combine (4.147) and (4.148) to derive

d

dt
Gri,γ,ξ,z(t) ≤

2rt2r−1 (ft,i(x(t))− ft,i(z)) + t2r

〈
m∑
i=1

θi(t)∇ft,i(x(t)), ẋ(t)

〉
+
pβt2r

2tp+1
∥z∥2

+
(
γ(t)(γ(t) + rtr−1 − αtr−q) + trγ′(t)

)
⟨x(t)− z, ẋ(t)⟩+ γ(t)γ′(t)∥x(t)− z∥2

− trγ(t)

〈
x(t)− z,

m∑
i=1

θi(t)∇ft,i(x(t))

〉
+ tr(γ(t) + rtr−1 − αtr−q)∥ẋ(t)∥2

− t2r

〈
m∑
i=1

θi(t)∇ft,i(x(t)), ẋ(t)

〉
+ ξ(t)⟨x(t)− z, ẋ(t)⟩+ ξ′(t)

2
∥x(t)− z∥2

= 2rt2r−1 (ft,i(x(t))− ft,i(z)) +
pβt2r

2tp+1
∥z∥2 +

(
γ(t)γ′(t) +

ξ′(t)

2

)
∥x(t)− z∥2

+
(
γ(t)(γ(t) + rtr−1 − αtr−q) + trγ′(t) + ξ(t)

)
⟨x(t)− z, ẋ(t)⟩

+ trγ(t)

〈
z − x(t),

m∑
i=1

θi(t)∇ft,i(x(t))

〉
+ tr(γ(t) + rtr−1 − αtr−q)∥ẋ(t)∥2.

(4.149)

By strong convexity of x 7→
∑m

i=1 θi(t)(ft,i(x)− ft,i(z)) we have〈
z − x(t),

m∑
i=1

θi(t)∇ft,i(x(t))

〉
≤

m∑
i=1

θi(t) (ft,i(z)− ft,i(x(t)))−
β

2tp
∥x(t)− z∥2

≤ − min
i=1,...,m

ft,i(x(t))− ft,i(z)−
β

2tp
∥x(t)− z∥2.

(4.150)
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Plugging (4.149) into (4.150) gives

d

dt
Gri,γ,ξ,z(t) ≤

2rt2r−1 (ft,i(x(t))− ft,i(z))− trγ(t) min
i=1,...,m

(ft,i(x(t))− ft,i(z))− γ(t)tr
β

2tp
∥x(t)− z∥2

+
(
γ(t)(γ(t) + rtr−1 − αtr−q) + trγ′(t) + ξ(t)

)
⟨x(t)− z, ẋ(t)⟩

+

(
γ(t)γ′(t) +

ξ′(t)

2

)
∥x(t)− z∥2 + tr(γ(t) + rtr−1 − αtr−q)∥ẋ(t)∥2 + pβt2r

2tp+1
∥z∥2,

concluding part i). Statement ii) follows immediately from i) and Lemma 2.2.14.

In the asymptotical analysis, we do also use the following special instance of Gri,γ,ξ,z(·).

Definition 4.6.23. Let x(·) be a trajectory solution of (MTRIGS) in the sense of Definition
4.6.13. Let λ > 0 and r ∈ [q, 1] and define

γ : [t0,+∞) → [0,+∞), t 7→ γ(t) := λ, and

ξ : [t0,+∞) → R, t 7→ ξ(t) := λ
(
rtr−1 + αtr−q − 2λ

)
.

For this choice of the two parameter functions, we rename the energy functions as follows:

Eri,λ,z : [t0,+∞) → R, t 7→ Eri,λ,z(t) := Gri,γ,ξ,z(t)

= t2r(ft,i(x(t))− ft,i(z)) +
1

2
∥λ(x(t)− z) + trẋ(t)∥2

+
λ

2

(
rtr−1 + αtr−q − 2λ

)
∥x(t)− z∥2,

for i = 1, . . . ,m,

Erλ,z : [t0,+∞) → R, t 7→ Erλ,z(t) := Grγ,ξ,z(t)

= t2r min
i=1,...,m

(ft,i(x(t))− ft,i(z)) +
1

2
∥λ(x(t)− z) + trẋ(t)∥2

+
λ

2

(
rtr−1 + αtr−q − 2λ

)
∥x(t)− z∥2,

and

Erλ : [t0,+∞) → R, t 7→ Erλ(t) := Grγ,ξ(t)

= t2r min
i=1,...,m

(ft,i(x(t))− ft,i(z(t))) +
1

2
∥λ(x(t)− z(t)) + trẋ(t)∥2

+
λ

2

(
rtr−1 + αtr−q − 2λ

)
∥x(t)− z(t)∥2

= t2rφt(x(t)) +
1

2
∥λ(x(t)− z(t)) + trẋ(t)∥2

+
λ

2

(
rtr−1 + αtr−q − 2λ

)
∥x(t)− z(t)∥2,

where z(t) := argminz∈Hmaxi=1,...,m ft,i(z)− ft,i(x(t)) for t ≥ t0.
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In the following, we formulate a proposition on Eri,λ,z(·) and Erλ,z(·) similar to Proposition 4.6.22.

Proposition 4.6.24. Let x(·) be a trajectory solution of (MTRIGS) in the sense of Definition
4.6.13, λ > 0, r ∈ [q, 1] and z ∈ H.

i) For all i = 1, . . . ,m, the function Eri,λ,z(·) is absolutely continuous on every interval [t0, T ]
for T ≥ t0, differentiable almost everywhere on [t0,+∞), and its derivative satisfies for
almost all t ∈ [t0,+∞)

d

dt
Eri,λ,z(t) ≤

2rt2r−1(ft,i(x(t))− ft,i(z)− λtr min
i=1,...,m

(ft,i(x(t))− ft,i(z)) +
pβt2r

2tp+1
∥z∥2

+ λ
(
2rtr−1 − λ

)
⟨x(t)− z, ẋ(t)⟩+ tr

(
λ+ rtr−1 − αtr−q

)
∥ẋ(t)∥2

+
λ

2

(
r(r − 1)tr−2 + α(r − q)tr−q−1 − βtr−p

)
∥x(t)− z∥2.

(4.151)

ii) The functions Erλ,z(·) is absolutely continuous on every interval [t0, T ] for T ≥ t0, differen-
tiable almost everywhere on [t0,+∞), and its derivative satisfies for almost all t ∈ [t0,+∞)

d

dt
Erλ,z(t) ≤

(
2rt2r−1 − λtr

)
min

i=1,...,m
(ft,i(x(t))− ft,i(z)) + +

pβt2r

2tp+1
∥z∥2

+ λ
(
2rtr−1 − λ

)
⟨x(t)− z, ẋ(t)⟩+ tr

(
λ+ rtr−1 − αtr−q

)
∥ẋ(t)∥2

+
λ

2

(
r(r − 1)tr−2 + α(r − q)tr−q−1 − βtr−p

)
∥x(t)− z∥2.

(4.152)

Proof. The proof follows immediately by Proposition 4.6.22 using γ′(t) = 0 and ξ′(t) = λ(r(r −
1)tr−2 + α(r − q)tr−q−1) for t ≥ t0.

Lemma 4.6.25. Let q ∈ (0, 1), x(·) be a trajectory solution of (MTRIGS) in the sense of
Definition 4.6.13, λ > 0, r ∈ [q, 1), and z ∈ H. Define µr : [t0,+∞) → R, µr(t) := λ

tr − 2r
t .

Then, for almost all t ≥ t1 := max
((

2r
λ

) 1
1−r , t0

)
, it holds that

d

dt
Erλ,z(t) + µr(t)Erλ,z(t)

≤tr
(
3

2
λ− αtr−q

)
∥ẋ(t)∥2 + pβt2r

2tp+1
∥z∥2 + λ

2

[
3λr

t
− λ2

tr
+
λα

tq
− β

tp−r

]
∥x(t)− z∥2.

(4.153)

Proof. For all t ≥ t0 it holds

Erλ,z(t) = t2r min
i=1,...,m

(ft,i(x(t))− ft,i(z)) +
λ2

2
∥x(t)− z∥2 + λtr⟨x(t)− z, ẋ(t)⟩

+
t2r

2
∥ẋ(t)∥2 + λ

2

(
rtr−1 + αtr−q − 2λ

)
∥x(t)− z∥2

= t2r min
i=1,...,m

(ft,i(x(t))− ft,i(z)) +
λ

2

(
rtr−1 + αtr−q − λ

)
∥x(t)− z∥2

+ λtr⟨x(t)− z, ẋ(t)⟩+ t2r

2
∥ẋ(t)∥2.

(4.154)
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Note that µr(t) ≥ 0 for all t ≥
(
2r
λ

) 1
1−r . Then, combining (4.152) and (4.154), it yields for

almost all t ≥ t1

d

dt
Erλ,z(t) + µr(t)Erλ,z(t) ≤(
2rt2r−1 − λtr

)
min

i=1,...,m
(ft,i(x(t))− ft,i(z)) + tr

(
λ+ rtr−1 − αtr−q

)
∥ẋ(t)∥2

+
λ

2

(
r(r − 1)tr−2 + α(r − q)tr−q−1 − βtr−p

)
∥x(t)− z∥2

+ λ
(
2rtr−1 − λ

)
⟨x(t)− z, ẋ(t)⟩+ pβt2r

2tp+1
∥z∥2

+
(
λtr − 2rt2r−1

)
min

i=1,...,m
(ft,i(x(t))− ft,i(z))

+
λ

2

[
3λr

t
+
λα

tq
− λ2

tr
− 2r2

t2−r
− 2rα

t1−r+q

]
∥x(t)− z∥2

+ λ
(
λ− 2rtr−1

)
⟨x(t)− z, ẋ(t)⟩+ 1

2

(
λtr − 2rt2r−1

)
∥ẋ(t)∥2

= tr
(
3

2
λ− αtr−q

)
∥ẋ(t)∥2 + pβt2r

2tp+1
∥z∥2

+
λ

2

[
−r(r + 1)

t2−r
− α(r + q)

t1−r+q
+

3λr

t
+
λα

tq
− λ2

tr
− βtr−p

]
∥x(t)− z∥2

≤ tr
(
3

2
λ− αtr−q

)
∥ẋ(t)∥2 + pβt2r

2tp+1
∥z∥2 + λ

2

[
3λr

t
− λ2

tr
+
λα

tq
− β

tp−r

]
∥x(t)− z∥2.

The result above can be extended to the case q ∈ (0, 1] and r = 1 for λ ≥ 2 as we state in the
following lemma.

Lemma 4.6.26. Let q ∈ (0, 1], x(·) be a trajectory solution of (MTRIGS), λ ≥ 2, r = 1 and
z ∈ H. Define µ1 : [t0,+∞) → R, t 7→ µ1(t) :=

λ−2
t . Then, for almost all t ≥ t0, it holds that

d

dt
E1
λ,z(t) + µ1(t)E1

λ,z(t) ≤ t

(
3

2
λ− αt1−q

)
∥ẋ(t)∥2 + pβ

2tp−1
∥z∥2

+
λ

2

[
(1− λ)(λ− 2)

t
+
α(λ− (1 + q))

tq
− β

tp−1

]
∥x(t)− z∥2.

(4.155)

Proof. The proof is analogous to the one of Lemma 4.6.25.

4.6.5 Asymptotic analysis

In this subsection, we study the asymptotic behavior of the trajectory solutions to (MTRIGS).
The convergence rates for the merit function values and the convergence of the trajectory depend
heavily on the parameters p ∈ (0, 2], q ∈ (0, 1] and α, β > 0.
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The case p ∈ (0, 2] and q < p
2 : convergence rates

In Theorem 4.6.27, we derive convergence rates for the merit function along trajectory solutions
of (MTRIGS) when the parameters p and q satisfy p ∈ (0, 2] and q < p

2 .

Theorem 4.6.27. Let p ∈ (0, 2] with q < p
2 , x(·) be a bounded trajectory solution of (MTRIGS)

in the sense of Definition 4.6.13, and z(t) := argminz∈Hmaxi=1,...,m ft,i(z)−ft,i(x(t)) for t ≥ t0.
Then, we have the following convergence rates as t→ +∞:

i) Eqλ(t) = O (1) for 0 < λ < α
2 ;

ii) φt(x(t)) = O
(
t−2q

)
;

iii) φ(x(t)) = O
(
t−2q

)
;

iv) ∥x(t)− z(t)∥ = O (1) ;

v) ∥ẋ(t)∥ = O (t−q) .

Proof. i) Let 0 < λ < α
2 and z ∈ H fixed. We derive a bound for the energy function Eqλ,z(·) by

considering inequality (4.153) with r = q, i.e., for almost all t ≥ max

((
2q
λ

) 1
1−q

, t0

)
d

dt
Eqλ,z(t) + µq(t)Eqλ,z(t) ≤

tq
(
3

2
λ− α

)
∥ẋ(t)∥2 + pβ

2
t2q−p−1∥z∥2 + λ

2

[
3λq

t
− λ2

tq
+
λα

tq
− β

tp−q

]
∥x(t)− z∥2.

(4.156)

From here, we derive for almost all t ≥ max

((
2q
λ

) 1
1−q

, t0, 1

)
d

dt
Eqλ,z(t) + µq(t)Eqλ,z(t) ≤

pβ

2
t2q−p−1∥z∥2 + λ2(3 + α− λ)

2tq
∥x(t)− z∥2

≤ pβ

2
t2q−p−1∥z∥2 + λ2(3 + α− λ)t−q

(
∥z∥2 + ∥x(t)∥2

)
.

Since x(·) is bounded and q < p
2 ≤ 1, there exist t2 ≥ max

((
2q
λ

) 1
1−q

, t0, 1

)
and c,M > 0 such

that for almost all t ≥ t2

d

dt
Eqλ,z(t) + µq(t)Eqλ,z(t) ≤ c

(
M + ∥z∥2

)
t−q. (4.157)

We define the function

Mq : [t2,+∞) → R, t 7→ Mq(t) := exp

(∫ t

t2

µq(s)ds

)
= exp

(∫ t

t2

λ

sq
− 2q

s
ds

)

=CMq

exp
(

λ
1−q t

1−q
)

t2q
,

(4.158)
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with CMq =
t2q2

exp
(

λ
1−q

t1−q
2

) > 0. The function Mq(·) is constructed such that d
dtMq(t) =

Mq(t)µq(t) and hence

d

dt

(
Mq(t)Eqλ,z(t)

)
= Mq(t)

(
d

dt
Eqλ,z(t) + µq(t)Eqλ,z(t)

)
for almost all t ≥ t2. (4.159)

The relations (4.159) and (4.157) give for almost all t ≥ t2

d

dt

(
Mq(t)Eqλ,z

)
≤ cMq(t)

(
M + ∥z∥2

)
t−q. (4.160)

We integrate (4.160) from t2 to t ≥ t2 to get

Mq(t)Eqλ,z(t)−Mq(t2)Eqλ,z(t2) ≤ c
(
M + ∥z∥2

) ∫ t

t2

Mq(s)s
−qds,

thus, for all t ≥ t2 it holds

Eqλ,z(t) ≤
Mq(t2)Eqλ,z(t2)

Mq(t)
+ c

(
M + ∥z∥2

) CMq

Mq(t)

∫ t

t2

exp

(
λ

1− q
s1−q

)
s−3qds. (4.161)

The inequality above holds for all z ∈ H and all t ≥ t2. For all t ≥ t2, we choose

z := z(t) ∈ argmin
z∈H

max
i=1,...,m

ft,i(z)− ft,i(x(t)),

which, since Eqλ(t) = Eqλ,z(t)(t), yields

Eqλ(t) ≤
Mq(t2)Eqλ,z(t)(t2)

Mq(t)
+ c

(
M + ∥z(t)∥2

) CMq

Mq(t)

∫ t

t2

exp

(
λ

1− q
s1−q

)
s−3qds.

By Proposition 4.6.10, z(·) is bounded, and hence there exist constants C1, C2 > 0 such that for
all t ≥ t2

Eqλ(t) ≤
C1

Mq(t)
+

C2

Mq(t)

∫ t

t2

exp

(
λ

1− q
s1−q

)
s−3qds. (4.162)

We apply Lemma 2.2.15 to the integral in (4.162) to derive the asymptotic bound∫ t

t2

exp

(
λ

1− q
s1−q

)
s−3qds = O

(
t−2q exp

(
λ

1− q
t1−q

))
as t→ +∞,

hence

C2

Mq(t)

∫ t

t2

exp

(
λ

1− q
s1−q

)
s−2qds = O (1) as t→ +∞. (4.163)

We conclude from (4.162) and (4.163) that

Eqλ(t) = O (1) as t→ +∞, (4.164)
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proving statement i). From here, we can prove the remaining four statements of the theorem.

ii) By the choice of 0 < λ < α
2 , we have for all t ≥ t0

qtq−1 + α− 2λ ≥ 0.

Then, by the definition of Eqλ(·) we have for all t ≥ t0

t2qφt(x(t)) ≤ Eqλ(t),

which, according to (4.164), gives

φt(x(t)) = O
(
t−2q

)
as t→ +∞.

iii) Using Proposition 4.6.12 and ii) yields

φ(x(t)) ≤ φt(x(t)) +
βR2

2tp
= O

(
t−2q

)
as t→ +∞.

iv) Since for all t ≥ t0

qtq−1 + α− 2λ ≥ α− 2λ > 0,

it holds

λ

2
(α− 2λ)∥x(t)− z(t)∥2 ≤ Eqλ(t).

This estimate together with (4.164) implies that

∥x(t)− z(t)∥ = O (1) as t→ +∞. (4.165)

v) From i) and iv), we have

t2q

2
∥ẋ(t)∥2 ≤ ∥λ(x(t)− z(t)) + tqẋ(t)∥2 + λ2∥x(t)− z(t)∥2

≤ 2Eqλ(t) + λ2∥x(t)− z(t)∥2 = O (1) as t→ +∞.

From here, we conclude

∥ẋ(t)∥ = O
(
t−q
)

as t→ +∞.

The case q ∈ (0, 1) and p < q + 1 : convergence rates and strong convergence of the
trajectories

In this part, we perform the asymptotic analysis for (MTRIGS) for the case p < q + 1.

Theorem 4.6.28. Let q ∈ (0, 1) and p < q + 1, x(·) be a trajectory solution of (MTRIGS) in
the sense of Definition 4.6.13, and z(t) := argminz∈Hmaxi=1,...,m ft,i(z) − ft,i(x(t)) for t ≥ t0.
Then, for r ∈ [q, 1) ∩ [p− q, 1), we have the following convergence rates as t→ +∞:
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i) Erλ(t) = O
(
t3r−(p+1)

)
for λ ∈

(
0, 2α3

]
∩
(
0, βα

]
;

ii) φt(x(t)) = O
(
tr−(p+1)

)
;

iii) φ(x(t)) = O (t−p) ;

iv) ∥x(t)− z(t)∥ = O
(
t
r−1
2

)
;

v) ∥ẋ(t)∥ = O
(
t
r−(p+1)

2

)
.

Proof. i) Let r ∈ [q, 1) ∩ [p − q, 1) and z ∈ H fixed. From (4.153), we have for almost all

t ≥ max
((

2r
λ

) 1
1−r , t0

)
d

dt
Erλ,z(t) + µr(t)Erλ,z(t) ≤

tr
(
3

2
λ− αtr−q

)
∥ẋ(t)∥2 + pβt2r

2tp+1
∥z∥2 + λ

2

[
3λr

t
− λ2

tr
+
λα

tq
− β

tp−r

]
∥x(t)− z∥2.

(4.166)

Since r < 1, and p − r ≤ q, λ ≤ β
α , and r − q ≥ 0, λ ≤ 2α

3 there exists t2 ≥ max
((

2r
λ

) 1
1−r , t0

)
such that for almost all t ≥ t2

d

dt
Erλ,z(t) + µq(t)Erλ,z(t) ≤

pβt2r

2tp+1
∥z∥2. (4.167)

As before, we define the function

Mr : [t2,+∞) → R, t 7→ Mr(t) := exp

(∫ t

t2

µr(s)ds

)
= exp

(∫ t

t1

λ

sr
− 2r

s
ds

)

=CMr

exp
(

λ
1−r t

1−r
)

t2r
,

(4.168)

with CMr =
t2r2

exp( λ
1−r

t1−r
2 )

> 0. The functionMr(·) is constructed such that d
dtMr(t) = Mr(t)µr(t)

and hence

d

dt

(
Mr(t)Erλ,z(t)

)
= Mr(t)

(
d

dt
Erλ,z(t) + µr(t)Erλ,z(t)

)
for almost all t ≥ t2. (4.169)

The relations (4.169) and (4.167) give for almost all t ≥ t2

d

dt

(
Mr(t)Erλ,z(t)

)
≤ pβ

2
∥z∥2Mr(t)t

2r−(p+1). (4.170)

We integrate (4.170) from t2 to t ≥ t2 to get

Mr(t)Erλ,z(t)−Mr(t2)Erλ,z(t2) ≤
pβ

2
∥z∥2

∫ t

t2

Mr(s)s
2r−(p+1)ds,
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thus, for all t ≥ t2 it holds

Erλ,z(t) ≤
Mr(t2)Erλ,z(t2)

Mr(t)
+
pβ

2
∥z∥2 CMr

Mr(t)

∫ t

t2

exp

(
λ

1− r
s1−r

)
s−(p+1)ds. (4.171)

The inequality above holds for all z ∈ H and all t ≥ t2. For all t ≥ t2, we choose

z := z(t) ∈ argmin
z∈H

max
i=1,...,m

ft,i(z)− ft,i(x(t)),

which, since Erλ(t) = Erλ,z(t)(t), yields

Erλ(t) ≤
Mr(t2)Erλ,z(t)(t2)

Mr(t)
+
pβ

2
∥z(t)∥2 CMr

Mr(t)

∫ t

t2

exp

(
λ

1− r
s1−r

)
s−(p+1)ds.

By Proposition 4.6.10, z(·) is bounded, hence there exist constants C1, C2 > 0 such that for all
t ≥ t2

Erλ(t) ≤
C1

Mr(t)
+

C2

Mr(t)

∫ t

t2

exp

(
λ

1− r
s1−r

)
s−(p+1)ds. (4.172)

We apply Lemma 2.2.15 to the integral in (4.172) to derive the asymptotic bound∫ t

t2

exp

(
λ

1− r
s1−r

)
s−(p+1)ds = O

(
tr−(p+1) exp

(
λ

1− r
t1−r

))
as t→ +∞,

hence

C2

Mr(t)

∫ t

t2

exp

(
λ

1− r
s1−r

)
s−(p+1)ds = O

(
t3r−(p+1)

)
as t→ +∞. (4.173)

We conclude from (4.172) and (4.173) that

Erλ(t) = O
(
t3r−(p+1)

)
as t→ +∞, (4.174)

proving statement i). From here, we can prove the other four statements of the theorem.

ii) If r > q, for t ≥
(
2λ
α

) 1
r−q we have rtr−1 + αtr−q − 2λ ≥ 0 and hence

t2rφt(x(t)) ≤ Erλ(t). (4.175)

For the case r = q the argument follows in a similar manner. We apply part i) for λ ∈(
0, α2

)
∩
(
0, βα

]
⊆
(
0, 2α3

]
∩
(
0, βα

]
. Then, qtq−1 + α− 2λ ≥ 0 for all t ≥ t0 and hence

t2qφt(x(t)) ≤ Eqλ(t). (4.176)

Both cases, together with (4.174), imply that for all r ∈ [q, 1) ∩ [p− q, 1)

φt(x(t)) = O
(
tr−(p+1)

)
as t→ +∞.
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iii) Using Proposition 4.6.12 and ii) yields

φ(x(t)) ≤ φt(x(t)) +
βR2

2tp
= O

(
t−p
)

as t→ +∞.

iv) By Proposition 4.6.12, we have for all t ≥ t0

∥x(t)− z(t)∥2 ≤ 2tp

β
φt(x(t)),

and hence by ii) we get

∥x(t)− z(t)∥ = O
(
t
r−1
2

)
as t→ +∞. (4.177)

v) From the above considerations, we have

t2r

2
∥ẋ(t)∥2 ≤ ∥λ(x(t)− z(t)) + trẋ(t)∥2 + λ2∥x(t)− z(t)∥2

≤ 2Erλ(t) + λ2∥x(t)− z(t)∥2 = O
(
t3r−(p+1)

)
as t→ +∞.

From here, we conclude

∥ẋ(t)∥ = O
(
t
r−(p+1)

2

)
as t→ +∞.

For this parameter settings, alongside establishing convergence rates, we demonstrate that the
bounded trajectory solutions of (MTRIGS) converge strongly to a weakly Pareto optimal point
of (MOP). Notably, this point is also the element of minimum norm within the lower level set
of the objective function with respect to its value at the weakly Pareto optimal point.

Theorem 4.6.29. Let q ∈ (0, 1), p < q + 1, and x(·) be a bounded trajectory solution of
(MTRIGS) in the sense of Definition 4.6.13. Then, x(t) converges strongly to a weakly Pareto
optimal point x∗ of (MOP) as t→ +∞, which is the element of minimum norm in L(F, F (x∗)).

Proof. To prove the strong convergence of the trajectory solution x(·) we use Theorem 4.6.7,
which states that z(·) converges strongly, in combination with Theorem 4.6.28 iv), which states
that ∥x(t) − z(t)∥ → 0 as t → +∞. Since x(·) is bounded, it holds inft≥t0 fi(x(t)) > −∞ for
i = 1, . . . ,m, and therefore

inf
t≥t0

Wi(t) = inf
t≥t0

(
fi(x(t)) +

β

2tp
∥x(t)∥2 + 1

2
∥ẋ(t)∥2

)
≥ inf

t≥t0
fi(x(t)) > −∞,

where Wi(·) is the function introduced in (4.139). By Proposition 4.6.17, the function Wi(·) is
monotonically decreasing and therefore, limt→+∞Wi(t) exists for i = 1, . . . ,m. According to
Theorem 4.6.28, ẋ(t) → 0, hence β

2tp ∥x(t)∥
2+ 1

2∥ẋ(t)∥
2 → 0 as t→ +∞. Thus, for i = 1, . . . ,m,

lim
t→+∞

fi(x(t)) = lim
t→+∞

Wi(t) = inf
t≥t0

Wi(t) > −∞.
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We denote by F ∗ := limt→+∞ F (x(t)) = limt→+∞ (f1(x(t)), . . . , fm(x(t))) ∈ Rm. We use Theo-
rem 4.6.7 with q(t) := F (x(t)) to conclude

z(t) → x∗ := proj
S(F ∗)

(0) as t→ +∞,

where z(t) := argminz∈Hmaxi=1,...,m ft,i(z)−ft,i(x(t)) and S(F ∗) := argminz∈Hmaxi=1,...,m (fi(z)− f∗i ).
According to Theorem 4.6.28, we have ∥x(t)− z(t)∥ → 0, hence

x(t) → x∗ as t→ +∞.

Since φ(x(t)) → 0 as t → +∞, it yields φ(x∗) = 0, thus x∗ is a weakly Pareto optimal point of
(MOP). By continuity, F ∗ = F (x∗) and, since x∗ is a weakly Pareto optimal solution of (MOP),
it holds S(F ∗) = L(F, F (x∗)).

The case p ∈ (0, 2] and q = 1

In this part, we consider the boundary case q = 1, allowing for p ∈ (0, 2]. The assumption
we make for α is consistent with that made in the setting of inertial dynamics with vanishing
damping in the scalar case, see [13, 218].

Theorem 4.6.30. Let p ∈ (0, 2], q = 1 and α ≥ 3, x(·) be a bounded trajectory solution of
(MTRIGS) in the sense of Definition 4.6.13, and z(t) := argminz∈Hmaxi=1,...,m ft,i(z)−ft,i(x(t))
for t ≥ t0. Then, we have the following convergence rates as t→ +∞:

i) E1
λ(t) = O

(
t2−p

)
for λ ∈

[
2, 2α3

]
;

ii) φt(x(t)) = O (t−p);

iii) φ(x(t)) = O (t−p) ;

iv) ∥x(t)− z(t)∥ = O (1);

v) ∥ẋ(t)∥ = O
(
t−

p
2

)
.

Proof. i) Let r = q = 1 and z ∈ H fixed. We consider the energy function Erλ,z(·). From
inequality (4.155) we get for almost all t ≥ t0

d

dt
E1
λ,z(t) + µ1(t)E1

λ,z(t) ≤

t

(
3

2
λ− α

)
∥ẋ(t)∥2 + pβ

2tp−1
∥z∥2 + λ

2

[
α(λ− 2)

t
− β

tp−1

]
∥x(t)− z∥2.

(4.178)

Since p − 1 ≤ 1, λ ≤ 2α
3 and x(·) is bounded, there exist t1 ≥ t0 and M, c > 0 such that for

almost all t ≥ t1

d

dt
E1
λ,z(t) + µ1(t)E1

λ,z(t) ≤
c

2tp−1

(
M + ∥z∥2

)
. (4.179)
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As before, we define the function

M1 : [t1,+∞) → R, t 7→ M1(t) := exp

(∫ t

t1

µ1(s)ds

)
= exp

(∫ t

t1

λ− 2

s
ds

)
=CM1t

λ−2,

(4.180)

with CM1 = t2−λ1 . The function M1(·) is constructed such that d
dtM1(t) = M1(t)µ1(t), hence

d

dt

(
M1(t)E1

λ,z(t)
)
= M1(t)

(
d

dt
E1
λ,z(t) + µ1(t)E1

λ,z(t)

)
for almost all t ≥ t1. (4.181)

The relations (4.181) and (4.179) give for almost all t ≥ t1

d

dt

(
M1(t)E1

λ,z(t)
)
≤ c

2

(
M + ∥z∥2

)
M1(t)t

1−p. (4.182)

We integrate (4.182) from t1 to t ≥ t1 to get

M1(t)E1
λ,z(t)−M1(t1)E1

λ,z(t1) ≤
c

2

(
M + ∥z∥2

) ∫ t

t1

M1(s)s
1−pds.

Thus, for all t ≥ t1 it holds

E1
λ,z(t) ≤

M1(t1)E1
λ,z(t1)

M1(t)
+
c

2

(
M + ∥z∥2

) CM1

M1(t)

∫ t

t1

sλ−(p+1)ds. (4.183)

The inequality above holds for all z ∈ H and all t ≥ t1. For all t ≥ t1, we choose

z := z(t) ∈ argmin
z∈H

max
i=1,...,m

ft,i(z)− ft,i(x(t)),

which, since E1
λ(t) = E1

λ,z(t)(t), yields

E1
λ(t) ≤

M1(t1)E1
λ,z(t)(t1)

CM1t
λ−2

+
c

2tλ−2

(
M + ∥z(t)∥2

) [ tλ−p
λ− p

− tλ−p1

λ− p

]
.

By Proposition 4.6.10, z(·) is bounded, which means that there exist constants C1, C2 > 0 such
that for all t ≥ t1

E1
λ(t) ≤ C1 + C2t

2−p, (4.184)

and hence

E1
λ(t) = O

(
t2−p

)
as t→ +∞, (4.185)

proving statement i). From here, the remaining four statements of the theorem follow as in the
proof of Theorem 4.6.28.

Remark 4.6.31. If we choose λ = 2 in the proof of Theorem 4.6.30, we do not need to assume
the boundedness of x(·) to conclude (4.179) from (4.178). This implies that in the case q = 1 and
α ≥ 3 the bound ∥x(t) − z(t)∥ = O(1) as t → +∞ follows without the boundedness assumption
on x(·).
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The case p ∈ (0, 2] and q + 1 < p : weak convergence of the trajectories

In this part, we show that in the case p ∈ (0, 2] and q + 1 < p the bounded trajectory solutions
of (MTRIGS) converge weakly to a weakly Pareto optimal point of (MOP). To this end, we
make use of Opial’s Lemma and the energy function from Definition 4.6.21 with γ(·) and ξ(·) to
be specified later. The convergence rates derived in Subsection 4.6.5 are valid in this setting.

Theorem 4.6.32. Let p ∈ (0, 2), q + 1 < p, and x(·) be a trajectory solution of (MTRIGS) in

the sense of Definition 4.6.13. Then, for r ∈
[
q, q+1

2

]
, we have∫ +∞

t0

s2r−q∥ẋ(s)∥2ds < +∞.

Proof. Let z ∈ H fixed. Define

γ : [t0,+∞) → R, t 7→ γ(t) = 2rtr−1.

With this choice, inequality (4.146) reads for almost all t ≥ t0

d

dt
Grγ,ξ,z(t) ≤

pβt2r

2tp+1
∥z∥2 + tr(2rtr−1 + rtr−1 − αtr−q)∥ẋ(t)∥2

+
(
2rtr−1(2rtr−1 + rtr−1 − αtr−q) + 2r(r − 1)t2r−2 + ξ(t)

)
⟨x(t)− z, ẋ(t)⟩

+

(
4r2(r − 1)t2r−3 +

ξ′(t)

2
− βrt2r−1−p

)
∥x(t)− z∥2

=
pβt2r

2tp+1
∥z∥2 +

(
2rtr−1(3rtr−1 − αtr−q) + 2r(r − 1)t2r−2 + ξ(t)

)
⟨x(t)− z, ẋ(t)⟩

+

(
4r2(r − 1)t2r−3 +

ξ′(t)

2
− βrt2r−1−p

)
∥x(t)− z∥2 + tr(3rtr−1 − αtr−q)∥ẋ(t)∥2.

(4.186)

Now we choose

ξ : [t0,+∞) → R, t 7→ ξ(t) := 2rtr−1(αtr−q − 3rtr−1) + 2r(1− r)t2(r−1)

= 2αrt2r−q−1 + 2r(1− 4r)t2(r−1),

and notice that ξ′(t) = 2αr(2r − q − 1)t2r−q−2 + 4r(r − 1)(1− 4r)t2r−3 for all t ≥ t0. With this
choice, inequality (4.186) simplifies for almost all t ≥ t0 to

d

dt
Grγ,ξ,z(t) ≤

(
2r(r − 1)(1− 2r)t2r−3 + αr(2r − q − 1)t2r−q−2 − βrt2r−1−p) ∥x(t)− z∥2

+
pβt2r

2tp+1
∥z∥2 + tr(3rtr−1 − αtr−q)∥ẋ(t)∥2.

(4.187)

Since r ≤ q+1
2 , we conclude from (4.187) that for almost all t ≥ max

((
max(2(r−1)(1−2r),0)

β

) 1
2−p

, t0

)
d

dt
Grγ,ξ,z(t) ≤tr(3rtr−1 − αtr−q)∥ẋ(t)∥2 + pβt2r

2tp+1
∥z∥2. (4.188)
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Hence, there exist t1 ≥ max

((
max(2(r−1)(1−2r),0)

β

) 1
2−p

, t0

)
and a, b > 0 such that for almost all

t ≥ t1

d

dt
Grγ,ξ,z(t) ≤− at2r−q∥ẋ(t)∥2 + bt2r−p−1∥z∥2,

therefore for all t ≥ t1

Grγ,ξ,z(t)− Grγ,ξ,z(t1) ≤− a

∫ t

t1

s2r−q∥ẋ(s)∥2ds+ b∥z∥2
∫ t

t1

s2r−p−1ds.

Since this holds for all z ∈ H, we conclude for all t ≥ t1

Grλ,ξ(t)− Grλ,ξ,z(t)(t1) ≤− a

∫ t

t1

s2r−q∥ẋ(s)∥2ds+ b∥z(t)∥2
∫ t

t1

s2r−p−1ds.

For t ≥
(
max(1−4r,0)

α

) 1
1−q

, it holds that ξ(t) ≥ 0 and hence Grλ,ξ(t) ≥ 0. Then, for all t ≥

max
(
max(1−4r,0)

α , t1

)
a

∫ t

t1

s2r−q∥ẋ(s)∥2ds ≤ Grλ,ξ,z(t)(t1) + b∥z(t)∥2
∫ t

t1

s2r−p−1ds.

Since z(·) is bounded by Proposition 4.6.10 and 2r − p − 1 < −1, the right hand side of the

previous inequality is uniformly bounded for all t ≥ max
((

1−4r
α

) 1
1−q , t1

)
, hence∫ +∞

t0

s2r−q∥ẋ(s)∥2ds < +∞.

Next, we discuss the boundary case p = 2. To derive weak convergence, we need an additional
condition on the parameter β > 0.

Theorem 4.6.33. Let p = 2, q ∈ (0, 1), β ≥ q(1− q), and x(·) be a bounded trajectory solution

of (MTRIGS) in the sense of Definition 4.6.13. Then, for r ∈
[
q, 1+q2

]
, we have∫ +∞

t0

s2r−q ∥ẋ(s)∥2ds < +∞. (4.189)

Proof. The proof follows analogously to the proof of Theorem 4.6.32, with the difference that in
order to conclude (4.188) from (4.187) the additional inequality

2(r − 1)(1− 2r) ≤ β, (4.190)

is necessary. Since r := q+1
2 satisfies (4.190), it holds∫ +∞

t0

s ∥ẋ(s)∥2ds < +∞,

which implies that (4.189) holds for all r ∈
[
q, q+1

2

]
.
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Remark 4.6.34. In both regimes, namely, for p ∈ (0, 2) with q+1 < p, and for p = 2, q ∈ (0, 1)
with β ≥ q(1 − q), choosing r := 1+q

2 we obtain the following integral estimate, which describes
the convergence behavior of the velocity of the trajectory∫ +∞

t0

s ∥ẋ(s)∥2ds < +∞.

We use the integral estimates given in Theorem 4.6.32 and in Theorem 4.6.33 to prove the weak
convergence of the trajectory solution using Opial’s Lemma (see Lemma 2.1.6). The following
two results prove that the first condition in Opial’s Lemma is satisfied, while the final weak
convergence statement is shown in Theorem 4.6.37.

Lemma 4.6.35. Let p ∈ (0, 2] and let q ∈ (0, 1), or q = 1 with α ≥ 3, and let x(·) be a bounded
trajectory solution of (MTRIGS) in the sense of Definition 4.6.13. Let Wi(·), i = 1, ...,m, be
the energy function defined in Proposition 4.6.17. Then, for all i = 1, . . . ,m, the limit

f∞i := lim
t→+∞

fi(x(t)) = lim
t→+∞

Wi(t) = inf
t≥t0

Wi(t) ∈ R

exists.

Proof. Let i ∈ {1, . . . ,m} be fixed. Since x(·) is bounded, inft≥t0 fi(x(t)) ∈ R holds, therefore

inf
t≥t0

Wi(t) = inf
t≥t0

(
fi(x(t)) +

β

2tp
∥x(t)∥2 + 1

2
∥ẋ(t)∥2

)
≥ inf

t≥t0
fi(x(t)) ∈ R. (4.191)

By Proposition 4.6.17, Wi(·) is monotonically decreasing, thus

lim
t→+∞

Wi(t) = inf
t≥t0

Wi(t) > −∞. (4.192)

By Theorem 4.6.27, Theorem 4.6.28 and Theorem 4.6.30, it holds ẋ(t) → 0 as t→ +∞. Hence,
β
2tp ∥x(t)∥

2 + 1
2∥ẋ(t)∥

2 → 0 as t→ +∞. Thus

lim
t→+∞

fi(x(t)) = lim
t→+∞

Wi(t), (4.193)

which leads to the desired result.

Lemma 4.6.36. Let p ∈ (0, 2), q ∈ (0, 1) with q + 1 < p, or p = 2, q ∈ (0, 1) and β ≥ q(1− q),
x(·) be a bounded trajectory solution of (MTRIGS) in the sense of Definition 4.6.13, and assume
that

S := {z ∈ H : fi(z) ≤ f∞i for i = 1, . . . ,m} ≠ ∅,

with f∞i = limt→∞ fi(x(t)) ∈ R. Then, for all z ∈ S, the limit limt→+∞∥x(t)− z∥ exists.

Proof. Let z ∈ S, and define the function

hz : [t0,+∞) → R, t 7→ hz(t) :=
1

2
∥x(t)− z∥2.

For almost all t ≥ t0 it holds that

ḣz(t) = ⟨x(t)− z, ẋ(t)⟩ and ḧz(t) = ⟨x(t)− z, ẍ(t)⟩+ ∥ẋ(t)∥2. (4.194)
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From (4.194) and (4.141), we have for almost all t ≥ t0

ḧz(t) +
α

tq
ḣz(t) =

〈
ẍ(t) +

α

tq
ẋ(t), x(t)− z

〉
+ ∥ẋ(t)∥2,

=

〈
−

m∑
i=1

θi(t)∇fi(x(t))−
β

tp
x(t), x(t)− z

〉
+ ∥ẋ(t)∥2,

(4.195)

where θ(·) be the measurable weight function given by Proposition 4.6.18. Since z ∈ S, we have
for all i = 1, . . . ,m, and almost all t ≥ t0

fi(x(t)) +
β

2tp
∥x(t)∥2 + 1

2
∥ẋ(t)∥2 ≥ fi(z) = fi(z) +

β

2tp
∥z∥2 − β

2tp
∥z∥2

≥ fi(x(t)) +
β

2tp
∥x(t)∥2 +

〈
∇fi(x(t)) +

β

tp
x(t), z − x(t)

〉
− β

2tp
∥z∥2,

hence 〈
∇fi(x(t)) +

β

tp
x(t), z − x(t)

〉
≤ β

2tp
∥z∥2 + 1

2
∥ẋ(t)∥2. (4.196)

We define the function

k : [t0,+∞) → [0,+∞), t 7→ k(t) :=
β

2tp
∥z∥2 + 3

2
∥ẋ(t)∥2.

By Theorem 4.6.32 and Theorem 4.6.33, we have
(
t 7→ tq∥ẋ(t)∥2

)
∈ L1 ([t0,+∞),R). On

the other hand, since q + 1 < p, we get
(
t 7→ βtq

2tp ∥z∥
2
)

∈ L1 ([t0,+∞),R), consequently,

(t 7→ tqk(t)) ∈ L1 ([t0,+∞),R). Combining (4.195) and (4.196) gives for almost all t ≥ t0

ḧz(t) +
α

tq
ḣz(t) ≤ k(t).

Now, we can use Lemma 2.2.16 to conclude that the limit

lim
t→+∞

∥x(t)− z∥ exists.

Theorem 4.6.37. Let p ∈ (0, 2) with q + 1 < p, or p = 2, q ∈ (0, 1) with β ≥ q(1 − q), and
let x(·) be a bounded trajectory solution of (MTRIGS) in the sense of Definition 4.6.13. Then,
x(t) converges weakly to a weakly Pareto optimal point of (MOP) as t→ +∞, which belongs to
L(F, F∞), where F∞ = limt→+∞ F (x(t)) for i = 1, . . . ,m.

Proof. We define the set S := {z ∈ H : fi(z) ≤ f∞i for i = 1, . . . ,m} as in Lemma 4.6.36. Since
x(·) is bounded, it possesses a weak sequential cluster point x∞ ∈ H. This means that there
exists a sequence (tk)k≥0 which converges to +∞ with the property that x(tk) converges weakly
to x∞ as k → +∞. The functions fi being weakly lower semicontinuous fulfill for all i = 1, . . . ,m

fi(x
∞) ≤ lim inf

k→+∞
fi(x(tk)) = lim

k→+∞
fi(x(tk)) = f∞i ,
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therefore x∞ ∈ S. We conclude that S is nonempty and all weak sequential cluster points of x(·)
belong to S. On the other hand, according to Lemma 4.6.36 we have that limt→+∞∥x(t) − z∥
exists for all z ∈ S. We can use Opial’s Lemma (Lemma 2.1.6) to conclude that x(t) converges
weakly to an element in S as t→ +∞. By Theorem 4.6.27, φ(x(t)) → 0 as t→ +∞, therefore,
since φ(·) is weakly lower semicontinuous (see Theorem 2.3.14), φ(x∞) ≤ lim infk→+∞ φ(x(tk)) =
0. By Theorem 2.3.13, x∞ is a weakly Pareto optimal point of (MOP).

4.6.6 Numerical experiments

In this section, we illustrate the typical behavior of the trajectory solution x(·) of (MTRIGS)
using two example problems. In the first example, we show that trajectory solutions x(·) of
(MTRIGS) converge to a weakly Pareto optimal point x∗, which is the element of minimum
norm in

⋂m
i=1 L(fi, fi(x∗)), whereas those of (MAVD) may fail to exhibit this behavior. In the

second example, we analyze the sensitivity of trajectory solutions of (MTRIGS) with respect to
q ∈ (0, 1] and p ∈ (0, 2]. We highlight how different parameter choices affect the decay of the
merit function values φ(x(t)) and the asymptotic behavior of the distance ∥x(t) − z(t)∥ to the
generalized regularization path as t→ +∞.

-3 -2 -1 0 1 2 3

x1

-1

0

1

2

3

4

x
2

f1

f2

Pw

x(t) (MTRIGS)
x(t) (MAVD)

Figure 4.10: Contour plots of f1 and f2 defined in (4.197), the weak Pareto set Pw of the problem
(MOP-Ex1) and the trajectory solutions x(·) of (MTRIGS) and (MAVD) with identical initial
conditions, respectively.

Comparison of (MTRIGS) with (MAVD)

In the first example, we consider the following instance of (MOP). Define the sets

S1 := {−1} × [1, 2] ⊆ R2 and S2 := {1} × [1, 2] ⊆ R2,

and the functions

fi : R2 → R, x 7→ fi(x) :=
1

2
dist(x, Si)

2, for i = 1, 2, (4.197)

which are both convex and continuously differentiable, and have Lipschitz continuous gradients.
The weak Pareto set of the multiobjective optimization problem
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4.6. The multiobjective Tikhonov regularized inertial gradient system (MTRIGS)

min
x∈R2

[
f1(x)
f2(x)

]
(MOP-Ex1)

is given by

Pw = conv (S1 ∪ S2) = [−1, 1]× [1, 2].

Let z = (z1, z2)
⊤ ∈ Pw. Then, the element of minimum norm in

⋂2
i=1 L(fi, fi(z)) is given by

proj⋂2
i=1 L(fi,fi(z))

(0) = (z1, 1). (4.198)

We approximate a trajectory solution for (MTRIGS) and (MAVD), respectively, in the following
context:

• For (MTRIGS), we set α := 4, β := 1
2 , q :=

7
8 and p := 7

4 ;

• For (MAVD), we set α := 4;

• For both systems, we use as initial conditions x(t0) = (2.5, 0.5) and ẋ(t0) = (0, 0), where
t0 = 1;

• For both systems, we use an equidistant discretization in time, i.e., time steps tk := t0+kh
with step size h = 1e−2;

• For both systems, we approximate the first and second derivatives by ẋ(tk) =
x(tk+1)−x(tk)

h

and ẍ(tk) =
x(tk+1)−2x(tk)+x(tk−1)

h2
, respectively;

• For both systems, we consider the trajectory solutions for t ∈ [1, 100].

Note that for (MTRIGS) it holds that p < q + 1. According to Theorem 4.6.28 and Theorem
4.6.29, we have convergence of the merit function values φ(x(t)) → 0, convergence of the distance
of the trajectory to the regularization path ∥x(t) − z(t)∥ → 0 and strong convergence of the
trajectory x(t) to a weakly Pareto optimal point as t→ +∞.
Figure 4.10 shows the contour plots of the objective function f1 and f2 defined in (4.197),
along with the weak Pareto set Pw highlighted in red in the decision space. The figure also
displays the trajectory solutions of (MTRIGS) and (MAVD) with identical initial conditions,
respectively, which both converge to points in the weak Pareto set. Notably, the solution of
(MAVD) evolves solely in the x1-direction, whereas the Tikhonov regularization ensures that
the solution of (MTRIGS) converges to an element as specified by (4.198).
Figure 4.11 visualizes the behavior of the trajectory solutions of (MTRIGS) and (MAVD) by
showing, in two subfigures, the evolution of the merit function values and the distance of the
trajectories to the generalized regularization paths. As already shown in Figure 4.10, the tra-
jectories enter the weak Pareto set Pw after some time, implying that the merit function values
φ(x(t)) vanish accordingly. This is illustrated in Subfigure 4.11a. Subfigure 4.11b depicts the
distance between the trajectory and the generalized regularization path, i.e., ∥x(t) − z(t)∥ for
t ∈ [1, 100]. For the solution of (MAVD), this distance converges to a positive limit as t→ +∞.
In contrast, for the solution of (MTRIGS), the distance decays to zero at a sublinear rate, as
predicted by Theorem 4.6.28.
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Figure 4.11: The merit function values φ(x(t)) and the distance ∥x(t)− z(t)∥ of the trajectory
solutions to the generalized regularization path for (MTRIGS) and (MAVD) for the problem
(MOP-Ex1).

The convergence behaviour of (MTRIGS) for different values of q ∈ (0, 1] and p ∈ (0, 2]

The numerical experiments in this subsection demonstrate a similar influence of the parameters
q and p in on the asymptotic behaviour of (MTRIGS) as was observed in [146] for the system
(TRIGS) in the context of single objective optimization. Consider

f1 : R4 → R, x 7→ f1(x) :=
1

2
(x1 − 1)2 +

1

2
(x2 − 1)2, and

f2 : R4 → R, x 7→ f1(x) :=
1

2
(x1 + 1)2 +

1

2
(x2 − 1)2,

which are both convex and continuously differentiable functions, and have Lipschitz continuous
gradients. The weak Pareto set of the multiobjective optimization problem

min
x∈R4

[
f1(x)
f2(x)

]
(MOP-Ex2)

is given by

Pw := [−1, 1]× {1} × R× R ⊆ R4.

We approximate a trajectory solution for (MTRIGS) in the following context:

• We set α := 4, β := 1
2 , and consider different values for q ∈ (0, 1] and p ∈ (0, 2];

• We use as initial conditions x(t0) = x0 and ẋ(t0) = 0 with t0 = 1 and x0 = (2, 3, 4, 5)⊤;

• We use an equidistant discretization in time, i.e., time steps tk := t0 + kh with step size
h = 1e−3;
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4.6. The multiobjective Tikhonov regularized inertial gradient system (MTRIGS)

• We approximate the first and second derivative of x(·) in time by ẋ(tk) =
x(tk+1)−x(tk)

h and

ẍ(tk) =
x(tk+1)−2x(tk)+x(tk−1)

h2
respectively;

• We consider the trajectory solutions for t ∈ [1, 100].

We first fix q = 0.8 and vary the parameter p over the set {0.25, 0.75, 1.25, 1.75}. Afterwards,
we fix p = 1.1 and vary q over the set {0.3, 0.6, 0.8, 0.99}.

1 20 40 60 80 100

t

10!10

10!5

100

'
(x

(t
))

p = 0:25

(a)

1 20 40 60 80 100

t

10!10

10!5

100

'
(x

(t
))

p = 0:75

(b)

1 20 40 60 80 100

t

10!10

10!5

100

'
(x

(t
))

p = 1:25

(c)

1 20 40 60 80 100

t

10!10

10!5

100

'
(x

(t
))

p = 1:75

(d)

1 20 40 60 80 100

t

10!4

10!2

100

102

kx
(t

)
!

z
(t

)k

p = 0:25

(e)

1 20 40 60 80 100

t

10!4

10!2

100

102

kx
(t

)
!

z
(t

)k

p = 0:75

(f)

1 20 40 60 80 100

t

10!4

10!2

100

102

kx
(t

)
!

z
(t

)k

p = 1:25

(g)

1 20 40 60 80 100

t

10!4

10!2

100

102

kx
(t

)
!

z
(t

)k

p = 1:75

(h)

Figure 4.12: The merit function values φ(x(t)) and the distance ∥x(t)− z(t)∥ of the trajectory
to the generalized regularization path for q = 0.8 and p ∈ {0.25, 0.75, 1.25, 1.75}.

Figure 4.12 shows the evolution of the merit function values φ(x(t)) and of the distance ∥x(t)−
z(t)∥ of the trajectory to the generalized regularization path for q = 0.8 and p ∈ {0.25, 0.75, 1.25, 1.75}.
The merit function values exhibit the fastest decay for the largest value of p = 1.75. This behav-
ior is expected, as higher values of p cause the Tikhonov regularization parameter to decay more
rapidly, thus exerting less influence and allowing the function values to converge more quickly.
Conversely, the distance ∥x(t) − z(t)∥ decays most rapidly for smaller values of p, where the
regularization parameter vanishes more slowly and effectively guides the trajectory towards the
regularization path.

Figure 4.13 shows the evolution of the merit function values φ(x(t)) and the distance ∥x(t)−z(t)∥
of the trajectory to the generalized regularization path for p = 1.1 and q ∈ {0.3, 0.6, 0.8, 0.99}.
The decay of the merit function values φ(x(t)) is generally insensitive to the choice of q; for all
considered values of q, the convergence rate remains essentially the same. However, for larger
values of q, the merit function exhibits more pronounced oscillations. This behavior is expected,
as a larger value of q implies a faster decay of the friction term α

tq , thereby reducing damping.
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Figure 4.13: The merit function values φ(x(t)) and the distance ∥x(t)− z(t)∥ of the trajectory
to the generalized regularization path for p = 1.1 and q ∈ {0.3, 0.6, 0.8, 0.99}.

In contrast, the decay of the distance ∥x(t) − z(t)∥ is strongly influenced by q, particularly
for q = 0.99, where convergence is significantly faster. For the smallest value q = 0.3, the
distance decreases only slowly, at a sublinear rate. These observations align with expectations:
higher values of q correspond to weaker friction, which allows the trajectory to approach the
regularization path more rapidly in the early phase.
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Chapter 5

An accelerated gradient method for
convex multiobjective optimization

In optimization, first-order methods – i.e., methods that use only objective function and gradient
information – are very popular, as they are straightforward to implement and can be applied to
a variety of problems. Additionally, they are backed by a mature theory and admit convergence
guarantees in many settings. On the downside, they can suffer from slow convergence, espe-
cially if the considered optimization problems are ill-conditioned. A general idea to overcome
this problem is to accelerate an iterative method by incorporating inertia or momentum, using
information from past iterates in the update scheme [196]. While accelerated first-order meth-
ods for smooth optimization [180, 182], nonsmooth optimization [118], problems with separable
structure [24, 33, 63], min-max problems [46, 64, 121] and related problems like monotone in-
clusions [4, 5, 60, 238] and variational inequalities [45, 209], are growing in popularity because
of application in areas like image processing [33, 64], signal processing [179, 194] or machine
learning and statistics [150], these methods are not considered extensively in multiobjective op-
timization. Inspired by the active research and successful application in the listed areas, we want
to develop fast first-order methods for multiobjective optimization. Building on the observations
in Chapter 4 on gradient dynamical systems related to multiobjective optimization problems,
we develop an accelerated first-order method to solve the problem

min
x∈H

F (x) :=

 f1(x)
...

fm(x)

 ,(MOP)

whereH is a real Hilbert space and the objective functions fi : H → R are convex and sufficiently
smooth for all i = 1, . . . ,m. The accelerated gradient method we propose in this chapter is an
improvement of the multiobjective steepest descent method (MGD) we present in Subsection
2.3.4 and uses the idea of Nesterov acceleration [182]. The method can be seen as a discretiza-
tion of the multiobjective gradient system with asymptotic vanishing damping (MAVD), which
we discuss in Section 4.5. Similar to the improvement of the system (MAVD) over the system
(MSD) in terms of convergence rates we achieve an improvement in the convergence behavior
for the presented method.
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We use the abbreviation multiobjective Nesterov accelerated gradient method for the following
scheme given α > 0, step size h > 0 and initial iterates x0 = x−1 ∈ H to define the sequences
(xk)k≥0, (y

k)k≥0 ⊂ H and (θk)k≥0 ⊂ ∆m by

yk = xk +
k − 1

k + α− 1

(
xk − xk−1

)
,

θk ∈ argminθ∈∆m

1

2

∥∥∥∥∥h
m∑
i=1

θi∇fi(yk) + xk − yk

∥∥∥∥∥
2

,

xk+1 = yk − h
m∑
i=1

θki∇fi(yk),


for k ≥ 0.(MNAG)

Analogously to the observations on the multiobjective steepest descent method (MGD) and
(MGD’) we can write the scheme (MNAG) more concisely as

yk = xk + k−1
k+α−1

(
xk − xk−1

)
,

xk+1 = yk − hprojC(yk)

(
1
h(y

k − xk)
)
,

}
for k ≥ 0,(MNAG’)

where C(x) := conv ({∇fi(x) : i = 1, . . . ,m}) denotes the convex hull of the gradients in x ∈ H.
This chapter is outlined as follows. In Section 5.1, we present a derivation of the multiobjec-
tive Nesterov accelerated gradient method, as a discretization of (MAVD). We review the case
of scalar optimization to motivate this derivation. Additionally, we discuss related methods
in multiobjective optimization. The introduction of the method is followed by the asymptotic
analysis in Section 5.2. After deriving some preliminary results on the sequence (xk)k≥0 defined
by (MNAG), we prove an asymptotic result on the convergence of function values measured
with the merit function φ(·) which is defined in (2.23). For α ≥ 3 the function values of the
iterates converge at a rate of order φ(xk) = O(k−2) as k → +∞. Additionally, for α > 3, we
prove weak convergence of the iterates to a weakly Pareto optimal point. We close this section
with some numerical experiments laid out in Section 5.3 to verify the obtained convergence rates.

The content of this chapter is based on the following publication:

[217] Sonntag, K. and Peitz, S. Fast Multiobjective Gradient Methods with Nesterov Ac-
celeration via Inertial Gradient-Like Systems. In: Journal of Optimization Theory and
Applications 201 (2024), pp. 539–582. doi: 10.1007/s10957-024-02389-3.

In [217] only the case α = 3 is included, while this thesis contains a generalization of the results
to the case α ≥ 3. We recover the convergence rate of order φ(xk) = O(k−2). Additionally,
we prove weak convergence of the iterates to weakly Pareto optimal points in the Hilbert space
setting given α > 3.
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5.1. Derivation of the accelerated multiobjective gradient method (MNAG)

5.1 Derivation of the accelerated multiobjective gradient method
(MNAG)

5.1.1 Nesterov’s accelerated gradient method for scalar optimization

In this subsection, we summarize Nesterov’s accelerated gradient method for scalar convex op-
timization which was first published in 1983 in the seminal paper [182] by Nesterov. In [182]
the author proposes a first-order method to solve a smooth and convex optimization problem
with convergence rate O(k−2). This is an improvement to the complexity rate of O(k−1) which
is for example given by the steepest descent method (see [181, Theorem 2.1.14]). The problem
of interest reads as

min
x∈H

f(x),

where f : H → R is convex and smooth. In the following we recite a version of Nesterov’s
accelerated gradient method which uses a different acceleration parameter then the original
method. The acceleration parameter we use can be found, e.g., in [63]. For α > 0, h > 0 and
x0 = x−1 ∈ H, define the sequences (xk)k≥0, (y

k)k≥0 ⊂ H by

yk = xk + k−1
k+α−1(x

k − xk−1),

xk+1 = yk − h∇f(yk),

}
for k ≥ 0.(NAG)

The method (NAG) is straight-forward to implement and does not need more gradient evalua-
tions per iteration, than, e.g., the steepest descent method. We recite a theorem summarizing
the asymptotic properties of the sequence (xk)k≥0 given by (NAG) from [15, Theorem 2.1].

Theorem 5.1.1. Let f : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient ∇f and assume argminx∈H f(x) ̸= ∅. Let α ≥ 3 and 0 < h ≤ 1

L . Let
(xk)k≥0 be the sequence given by (NAG). Then, as k → +∞:

i) f(xk)−minx∈H f(x) = O
(

1
k2

)
;

ii) ∥xk+1 − xk∥ = O
(
1
k

)
.

If α > 3, the following improved rates hold as k → +∞:

i) f(xk)−minx∈H f(x) = o
(

1
k2

)
;

ii) ∥xk+1 − xk∥ = o
(
1
k

)
;

iii) xk ⇀ x∞ ∈ argminx∈H f(x).

In [218], it is shown that Nesterov’s accelerated gradient method is connected to the following
gradient system with asymptotically vanishing damping

ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0,(AVD)

which we described earlier in the introduction of Section 4.5 in relation to the system (MAVD). If
the step size h→ 0 tends to zero, the iterates (xk)k≥0 converge to a solution x(·) of the differential
equation (AVD). Further, the scheme (NAG) can be recovered from an implicit discretization
of (AVD). Additionally, the trajectory solutions to (AVD) share similar asymptotical features
to the iterates (xk)k≥0 as we summarize in the following Theorem (see [13, 166]).
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Theorem 5.1.2. Let f : H → R be convex and continuously differentiable and assume that
argminx∈H f(x) ̸= ∅. Let α ≥ 3 and let x(·) be a global solution to (AVD). Then, as t→ +∞:

i) f(x(t))−minx∈H f(x) = O
(
1
t2

)
;

ii) ∥ẋ(t)∥ = O
(
1
t

)
;

If α > 3, the following improved rates hold as t→ +∞:

i) f(x(t))−minx∈H f(x) = o
(
1
t2

)
;

ii) ∥ẋ(t)∥ = o
(
1
t

)
;

iii) x(t)⇀ x∞ ∈ argminx∈H f(x).

In Section 4.5, we obtain analogous results for the system (MAVD). Motivated by this obser-
vation, we develop an accelerated gradient method from the multiobjective gradient dynamical
system with asymptotic vanishing damping (MAVD) by using a discretization similar to the one
used for (AVD) to obtain (NAG) (see [13, 15, 218]).

5.1.2 Discretization of the system (MAVD)

We show that an implicit discretization of this system leads to an accelerated multiobjective
gradient method with an improved convergence rate of the function values. The starting point
of the derivation is the multiobjective gradient system with asymptotic vanishing damping

α

t
ẋ(t) + proj

C(x(t))+ẍ(t)
(0) = 0,(MAVD)

which gets discussed extensively in Section 4.5. Using an Ansatz similar to Section 2 of [218] (see
also [15, Subsection 3.2]), we write out the following implicit discretization of the differential
equation (MAVD) with step size

√
h > 0.

α

k
√
h

xk+1 − xk√
h

+ proj
C(yk)+xk+1−2xk+xk−1

h

(0) = 0, (5.1)

with yk = xk + k−1
k+α−1(x

k − xk−1). By using C(yk) = conv
({

∇fi(yk) : i = 1, . . . ,m
})

, we

do not evaluate the gradients ∇fi at xk but at an extrapolated point. Before we develop a
gradient method from this scheme, we show in an informal manner that we can recover from
this scheme the differential equation (MAVD). We want to emphasize that the derivation of
this method is not straightforward as the discretization of a dynamical system is by no means
unique. The computations laid out in this subsection for the equation (MAVD) are inspired by
similar considerations for the case of scalar optimization as mentioned previously when discussing
(AVD) and (NAG). We multiply (5.1) by

√
h and get

α

k

xk+1 − xk√
h

+ proj
√
hC(yk)+xk+1−2xk+xk−1

√
h

(0) = 0. (5.2)
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We use the Ansatz xk ≈ x(k
√
h) for some smooth curve x(t) defined for all t ≥ 0. We rewrite

k = t√
h
. When the step size

√
h goes to zero x(t) ≈ x t√

h
= xk and x(t) ≈ x t+

√
h√

h

= xk+1. Then,

Taylor expansion gives

xk+1 − xk√
h

= ẋ(t) +
1

2
ẍ(t)

√
h+ o(

√
h) and

xk − xk−1

√
h

= ẋ(t)− 1

2
ẍ(t)

√
h+ o(

√
h), (5.3)

and hence

xk+1 − 2xk + xk−1

√
h

= ẍ(t)
√
h+ o(

√
h). (5.4)

For all i = 1, . . . ,m, we have
√
h∇fi(yk) =

√
h∇fi(x(t)) + o(

√
h). Since the convex projection

depends in a well-behaved manner on the convex set we project onto, we get

proj
√
hC(yk)+xk+1−2xk+xk−1

√
h

(0) =
√
h proj
C(x(t))+ẍ(t)

(0) + o(
√
h). (5.5)

Combining (5.3), (5.4) and (5.5), we get from (5.2)

3
√
h

t

(
ẋ(t) +

1

2
ẍ(t)

√
h+ o(

√
h)

)
+
√
h proj
C(x(t))+ẍ(t)

(0) + o(
√
h) = 0.

Comparing the coefficients of
√
h, we obtain

α

t
ẋ(t) + proj

C(x(t))+ẍ(t)
(0) = 0.

Therefore, we have shown that the differential equation (MAVD) can be derived from the scheme
(5.1). Next, we derive a method from this scheme. Using Lemma 2.1.20 on (5.1), we get that
xk+1 is uniquely defined as

xk+1 = −

(
k

k + α
proj

hC(yk)−2xk+xk−1

(−xk)− α

k + α
xk

)

= xk − k

k + α
proj

hC(yk)−xk−xk−1

(0).

The last term can be written as

xk +
k

k + α
(xk − xk−1)− hk

k + α

m∑
i=1

θki∇fi(yk),

where θk ∈ Rm is a solution to the quadratic optimization problem

min
θ∈∆m

∥∥∥∥∥h
(

m∑
i=1

θi∇fi(yk)

)
− (xk − xk−1)

∥∥∥∥∥
2

. (5.6)
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Chapter 5. An accelerated gradient method for convex multiobjective optimization

We want to drop the factor k
k+α in front of the term

∑m
i=1 θ

k
i∇fi(yk) to get a method that more

closely resembles (NAG) (see [15, Remark 3.1]). In addition, we perform a shift of the index
k to transform k

k+α into k−1
k+α−1 . The final method we obtain can be written as follows. For

x0 = x−1 ∈ H and h > 0 and α > 0 define the scheme

yk = xk +
k − 1

k + α− 1

(
xk − xk−1

)
,

xk+1 = yk − h

m∑
i=1

θki∇fi(yk),

 for k ≥ 0, (5.7)

where in each step θk ∈ Rm is a solution to the quadratic optimization problem

min
θ∈∆m

∥∥∥∥∥h
(

m∑
i=1

θi∇fi(yk)

)
− k − 1

k + α− 1
(xk − xk−1)

∥∥∥∥∥
2

. (5.8)

The fact that we have to transform the quadratic optimization problem from (5.6) into (5.8)
is an observation from the proof of Proposition 5.2.1. Using k−1

k+α−1(x
k − xk−1) = yk − xk we

combine (5.7) and (5.8) to (MNAG) which can equivalently be written as (MNAG’).

5.1.3 Relation to other existing methods

A first accelerated gradient method for multiobjective optimization is proposed in [94]. The
authors are able to prove improved convergence rate of order O(k−2) but only under the very
restrictive assumptions that the weights θk remain constant from some point on. In this case the
method is equivalent to an accelerated gradient method applied to the weighted sum scalarization
(see [91]) of the multiobjective optimization problem and convergence follows. In [222] the
authors define an accelerated proximal gradient method for finite dimensional multiobjective
optimization problems with objective functions that have a separable structure of the form
fi(x) = gi(x) + hi(x), where gi : Rn → R is convex, continuously differentiable with L-Lipschitz
continuous gradient and hi : Rn → R is convex, lower semicontinuous and proper for all i =
1, . . . ,m. This method is an improvement of the multiobjective proximal gradient method [223,
225]. Since we only treat the case of smooth objective functions fi, we set in the comparison
hi ≡ 0 for all i = 1, . . . ,m. Then, the accelerated gradient method by Tanabe, Fukuda and
Yamashita can be written as follows. For x0 = x−1 ∈ Rn and h > 0 and t0 = 1 define

tk+1 =
√
t2k +

1
4 + 1

2 ,

yk = xk + tk−1
tk+1

(
xk − xk−1

)
,

xk+1 = argmin
z∈Rn

max
i=1,...,m

⟨∇fi(yk), z − yk⟩+ fi(y
k)− fi(x

k) + 1
2h∥z − yk∥2,

 for k ≥ 0.(TFY)

In comparison to (MNAG) where the parameter k−1
k+α−1 with α ≥ 3 is used in (TFY) the

acceleration parameter is tk−1
tk+1

with tk+1 =
√
t2k +

1
4 +

1
2 and t0 = 1. The acceleration parameter

used in (TFY) is the one used originally in [182] and which is also adapted in [33] for the
fast iterative shrinkage-thresholding algorithm while the parameter k−1

k+α−1 is obtained from a

generalization of (tk)k≥0 [63]. Another difference is the way the iterate xk+1 gets updated. The
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5.1. Derivation of the accelerated multiobjective gradient method (MNAG)

auxiliary problem in (TFY) is similar to the primal formulation of the multiobjective steepest
descent direction (see (2.31)) while the computation of the descent direction in (MNAG), is closer
to the dual formulation of the multiobjective steepest descent direction (see (2.32)). We rewrite
(TFY) to point out its similarity to (MNAG). Using the dual formulation of the optimization
problem which is solved in every iteration to compute xk+1 in (TFY) (similar to Proposition
2.3.18), we obtain

tk+1 =
√
t2k +

1
4 + 1

2 ,

yk = xk +
tk − 1

tk+1

(
xk − xk−1

)
,

θk ∈ argminθ∈∆m

h

2

∥∥∥∥∥
m∑
i=1

θi∇fi(yk)

∥∥∥∥∥
2

+

m∑
i=1

θi

(
fi(x

k)− fi(y
k)
)
,

xk+1 = yk − h

m∑
i=1

θki∇fi(yk),


for k ≥ 0.(TFY’)

The connection between (MNAG) and (TFY) becomes more evident through (TFY’). If we
compare the respective computations of the weights θk for the gradient update we see, that they
use similar objective functions. We investigate the quadratic optimization problems that have
to be solved in each iteration of the methods. In (TFY’), the step direction is computed solving
an optimization problem with linear constraints and the quadratic objective function

Ψ : Rm → R, θ 7→ Ψ(θ) :=
h

2

∥∥∥∥∥
m∑
i=1

θi∇fi(yk)

∥∥∥∥∥
2

+

m∑
i=1

θi

(
fi(x

k)− fi(y
k)
)
.

Using the first-order approximation fi(x
k)− fi(y

k) ≈ ⟨∇fi(yk), xk − yk⟩, we get

Ψ(θ) ≈ h

2

∥∥∥∥∥
m∑
i=1

θi∇fi(yk)

∥∥∥∥∥
2

+

〈
m∑
i=1

θi∇fi(yk), xk − yk

〉
.

Minimizing Ψ(·) is equivalent to minimizing the function

Φ : Rm → R, θ 7→ Φ(θ) :=
h2

2

∥∥∥∥∥
m∑
i=1

θi∇fi(yk)

∥∥∥∥∥
2

+

〈
h

m∑
i=1

θi∇fi(yk), xk − yk

〉
+

1

2
∥xk − yk∥2

=
1

2

∥∥∥∥∥h
m∑
i=1

θi∇fi(yk) + xk − yk

∥∥∥∥∥
2

.

We note that Φ(·) is in fact the objective function of the quadratic optimization problem that is
used to compute θk in (MNAG). The connection between the methods (MNAG) and (TFY) and
the system (MAVD) is even stronger. In [156] it is shown that (MAVD) can be derived as the
continuous model to (TFY). Building on these observations in [156] the authors introduce a novel
accelerated proximal gradient method for multiobjective optimization. Further generalizations
of (TFY) can be found in [221].
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Chapter 5. An accelerated gradient method for convex multiobjective optimization

5.2 Asymptotic analysis

The analysis carried out in the remainder of this chapter is based on the classical results from
[182]. Additionally, the proofs are influenced by the finding in [24], where improved convergence
rates for (NAG) are proven, and the results in [221], where a generalization of (TFY) gets
discussed.

5.2.1 Assumptions

(A1) The objective functions fi : H → R are convex and continuously differentiable with L-
Lipschitz continuous gradients ∇fi : H → H for all i = 1, . . . ,m.

(A2) For all x0 ∈ H and for all x ∈ LF (F (x0)) = L(F, F (x0)) it holds that LPw(F, F (x)) ̸= ∅
and further

R := sup
F ∗∈F (LPw(F,F (x0)))

inf
z∈F−1({F ∗})

1

2
∥z − x0∥2 < +∞. (5.9)

The assumptions used in this section are identical with the ones introduced in Subsection 4.5.1 for
the analysis of the system (MAVD). We want to emphasize that assumption (A2), while looking
technical, is a common assumption used in the literature [216, 217, 221, 222, 223, 224] and is
natural in the sense that it reduces in the case of scalar optimization to argminx∈H f(x) ̸= ∅.
In scalar optimization this condition is necessary to obtain fast convergence rates (see Theorem
5.1.1 and Theorem 5.1.2). Additionally, Subsection 4.5.1 includes a discussion of (A2) by means
of example multiobjective optimization problems. In particular, (A2) is important in the context
of Lemma 2.3.15 to bound the merit function value φ(xk) = supz∈Hmini=1,...,m fi(x

k) − fi(z)
using the distance of xk to the set LPw(F, F (x0)).

5.2.2 Preparatory results

We start the investigations of (MNAG) with the following energy estimate.

Proposition 5.2.1. Assume the objective functions fi are convex and continuously differentiable
with L-Lipschitz continuous gradients ∇fi for all i = 1, . . . ,m. Let α > 0 and 0 < h ≤ 1

L
and let (xk)k≥0, (y

k)k≥0 and (θk)k≥0 be the sequences given by (MNAG) with initial iterates
x0 = x−1 ∈ H. Define for all i = 1, . . . ,m the energy sequence (Wi,k)k≥0 by

Wi,k := fi(x
k) +

1

2h
∥xk − xk−1∥2.

For all k ≥ 0, it holds that

Wi,k+1 −Wi,k ≤ − 1

2h

α

k + α− 1
∥xk − xk−1∥2.

Proof. From the definition of (xk)k≥0 and (yk)k≥0 in (MNAG), we get for all k ≥ 0

xk+1 − xk + proj
hC(yk)− k−1

k+α−1
(xk−xk−1)

(0) = 0.
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5.2. Asymptotic analysis

Hence, for all i = 1, . . . ,m it holds that〈
xk+1 − xk + h∇fi(yk)−

k − 1

k + α− 1
(xk − xk−1), xk+1 − xk

〉
≤ 0,

from which we follow

h⟨∇fi(yk), xk+1 − xk⟩ ≤ −∥xk+1 − xk∥2 + k − 1

k + α− 1
⟨xk+1 − xk, xk − xk−1⟩

=− α

k + α− 1
∥xk+1 − xk∥ − 1

2

k − 1

k + α− 1
∥xk+1 − 2xk + xk−1∥2

+
1

2

k − 1

k + α− 1

[
∥xk − xk−1∥ − ∥xk+1 − xk∥

]
.

Writing out the definition of yk, one can easily verify that

∥xk+1 − yk∥2 ≤ k − 1

k + α− 1
∥xk+1 − 2xk + xk−1∥2 + α

k + α− 1
∥xk+1 − xk∥2.

Combining the inequalities above and using hL ≤ 1 we get

h(fi(x
k+1)− fi(x

k)) ≤ h⟨∇fi(yk), xk+1 − xk⟩+ 1

2
∥xk+1 − yk∥2

≤− 1

2

α

k + α− 1
∥xk+1 − xk∥2 + 1

2

k − 1

k + α− 1

[
∥xk − xk−1∥ − ∥xk+1 − xk∥

]
=
1

2

[
∥xk − xk−1∥2 − ∥xk+1 − xk∥2

]
− 1

2

α

k + α− 1
∥xk − xk−1∥2,

which completes the proof.

Corollary 5.2.2. Assume the objective functions fi are convex and continuously differentiable
with L-Lipschitz continuous gradients ∇fi for all i = 1, . . . ,m. Let α > 0 and 0 < h ≤ 1

L and
let (xk)k≥0 be given by (MNAG). Then, for all k ≥ 0 and all i = 1, . . . ,m

fi(x
k) ≤ fi(x

0).

Definition 5.2.3. For an arbitrary z ∈ H we define the sequence (φz,k)k≥0 which is associated
to the multiobjectve optimization problem (MOP) and the sequence (xk)k≥0 given by (MNAG).
For z ∈ H and k ≥ 0 define

φz,k := min
i=1,...,m

fi(x
k)− fi(z). (5.10)

The sequence (φz,k)k≥0 is naturally linked to the merit function φ(·) defined in (2.23) by the
relation

φ(xk) = sup
z∈H

φz,k,

for all k ≥ 0.
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Chapter 5. An accelerated gradient method for convex multiobjective optimization

We use the notation (φz,k)k≥0 to simplify the proofs carried out in the asymptotic analysis.
Before we obtain results on the convergence rates of φ(xk) we present intermediate results on
the sequence (φz,k)k≥0 for an arbitrary z ∈ H.

Lemma 5.2.4. Assume the objective functions fi are convex and continuously differentiable
with L-Lipschitz continuous gradients ∇fi for all i = 1, . . . ,m. Let α > 0 and 0 < h ≤ 1

L and
let (xk)k≥0 and (yk)k≥0 be given by (MNAG). Then, for all z ∈ H and all k ≥ 0, it holds that

φz,k+1 ≤ −1

h
⟨xk+1 − yk, yk − z⟩ − 1

2h
∥xk+1 − yk∥2.

Proof. The objective functions fi are convex with L-Lipschitz continuous gradients. Then, by
the Descent Lemma (Lemma 2.1.12), for all i = 1, . . . ,m it holds that

fi(x
k+1)− fi(z) ≤ ⟨∇fi(yk), xk+1 − z⟩+ L

2
∥xk+1 − yk∥2. (5.11)

By the definition of φz,k+1, we follow

φz,k+1 = min
i=1,...,m

fi(x
k+1)− fi(z) ≤

m∑
i=1

θki

(
fi(x

k+1)− fi(z)
)
. (5.12)

Combining (5.11) and (5.12) and using
∑m

i=1 θ
k
i∇fi(yk) = 1

h(y
k − xk+1) and L ≤ 1

h , we get

φz,k+1 ≤

〈
m∑
i=1

θki∇fi(yk), xk+1 − z

〉
+
L

2
∥xk+1 − yk∥2

=
1

h
⟨yk − xk+1, xk+1 − z⟩+ L

2
∥xk+1 − yk∥2

= − 1

h
⟨xk+1 − yk, yk − z⟩ − 1

2h
∥xk+1 − yk∥2,

which completes the proof.

We want to find a similar inequality for the expression fi(x
k+1) − fi(x

k). To this end, we
introduce the following lemma.

Lemma 5.2.5. Let α, h > 0 and let (xk)k≥0, (y
k)k≥0 and (θk)k≥0 be given by (MNAG). Define

for k ≥ 0 the optimization problem

min
(d,β)∈H×R

Φ(d, β) :=
1

2

∥∥∥hd+ yk − xk
∥∥∥2 + β,

s.t. gi(d, β) :=
〈
h∇fi(yk)− (yk − xk), hd+ (yk − xk)

〉
− β ≤ 0, for i = 1, . . . ,m.

(Pk)

Then, for all k ≥ 0 the dual problem to (Pk) is the quadratic problem

min
θ∈Rm

1

2

∥∥∥∥∥h
m∑
i=1

θi∇fi(yk) + xk − yk

∥∥∥∥∥
2

,

s.t.

m∑
i=1

θi = 1,

θi ≥ 0, for i = 1, . . . ,m,

(Dk)
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and the optimal solution θk to (Dk) satisfies〈
m∑
i=1

θki∇fi(yk), xk+1 − xk

〉
= max

i=1,...,m

〈
∇fi(yk), xk+1 − xk

〉
.

Proof. Since H can be infinite-dimensional, we need duality statements for infinite-dimensional
constrained optimization problems. The statements we use in this proof can be found in Sections
8.3 to 8.6 of [155]. The optimization problem (Pk) has a fairly simple structure and therefore the
duality between (Pk) and (Dk) follows from a straightforward computation. Since the objective
function Φ(·, ·) of (Pk) is convex and all constraints gi(·, ·) are linear, strong duality holds. Hence
a KKT point ((dk, βk), θ

k) ∈ (H×R)×Rm of problem (Pk) yields a solution to (Dk). From the
KKT conditions for (Pk) we get that

dk = −h
m∑
i=1

θki∇fi(yk).

By primal feasibility, gi(d
k, βk) ≤ 0 holds for all i = 1, . . . ,m and hence〈
h∇fi(yk)− (yk − xk), hdk + (yk − xk)

〉
≤ βk.

By complementarity of θki and gi(d
k, βk), we get〈

h
m∑
i=1

θki∇fi(yk)− (yk − xk), hdk + (yk − xk)

〉
= βk

= max
i=1,...,m

〈
h∇fi(yk)− (yk − xk), hdk + (yk − xk)

〉
.

(5.13)

The second equality in (5.13) follows from the fact that θkj > 0 holds for at least one j ∈
{1, . . . ,m} as a consequence of dual feasibility. Using dk = −

∑m
i=1 θ

k
i∇fi(yk), we get hdk =

xk+1 − yk and therefore 〈
h

m∑
i=1

θki∇fi(yk)− (yk − xk), xk+1 − xk

〉
= max
i=1,...,m

〈
h∇fi(yk)− (yk − xk), xk+1 − xk)

〉
.

Lemma 5.2.6. Assume the objective functions fi are convex and continuously differentiable
with L-Lipschitz continuous gradients ∇fi for all i = 1, . . . ,m. Let α > 0 and 0 < h ≤ 1

L and
let (xk)k≥0 and (yk)k≥0 be given by (MNAG). Then, for all z ∈ H and all k ≥ 0, it holds that

φz,k+1 − φz,k ≤ −1

h
⟨xk+1 − yk, yk − xk⟩ − 1

2h
∥xk+1 − yk∥2.
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Proof. For all a, b ∈ Rm it holds that(
min

i=1,...,m
ai

)
−
(

min
i=1,...,m

bi

)
≤ max

i=1,...,m
(ai − bi)

and therefore for all z ∈ H and all k ≥ 0

φz,k+1 − φz,k ≤ max
i=1,...,m

(
fi(x

k+1)− fi(x
k)
)
.

Using that the objective functions fi are convex with L-Lipschitz continuous gradients and the
fact that hL ≤ 1, we can bound this expression by

≤ max
i=1,...,m

(
⟨∇fi(yk), xk+1 − xk⟩+ 1

2h
∥xk+1 − yk∥2

)
.

Now, we use Lemma 5.2.5 and get the equality

=

m∑
i=1

θki ⟨∇fi(yk), xk+1 − xk⟩+ 1

2h
∥xk+1 − yk∥2.

From here, we continue by using the definitions of (xk)k≥0, (y
k)k≥0 and (θk)k≥0 from (MNAG)

to get

=
1

h
⟨yk − xk+1, xk+1 − xk⟩+ 1

2h
∥xk+1 − yk∥2

=− 1

h
⟨xk+1 − yk, yk − xk⟩ − 1

2h
∥xk+1 − yk∥2.

Corollary 5.2.7. Assume the objective functions fi are convex and continuously differentiable
with L-Lipschitz continuous gradients ∇fi for all i = 1, . . . ,m. Let α > 0 and 0 < h ≤ 1

L and
let (xk)k≥0 and (yk)k≥0 be given by (MNAG). Then, for all z ∈ H and all 1 ≤ k1 ≤ k2

φz,k2 − φz,k1 ≤ 1

2h

[∥∥∥xk1 − xk1−1
∥∥∥2 − ∥∥∥xk2 − xk2−1

∥∥∥2]
+

1

2h

k2−1∑
k=k1

((
k − 1

k + α− 1

)2

− 1

)
∥xk − xk−1∥2.

Proof. We start from the inequality presented in Lemma 5.2.6 and perform some straight forward
manipulations. For all k ≥ 1 we have

φz,k+1 − φz,k ≤ − 1

h
⟨xk+1 − yk, yk − xk⟩ − 1

2h
∥xk+1 − yk∥2

= − 1

2h

[
∥xk+1 − xk∥2 − ∥xk+1 − yk∥2 − ∥yk − xk∥2

]
− 1

2h
∥xk+1 − yk∥2

=
1

2h

[
∥yk − xk∥2 − ∥xk+1 − xk∥2

]
.

(5.14)
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Now, we use the relation yk = xk + k−1
k+α−1(x

k − xk−1) to follow

=
1

2h

[(
k − 1

k + α− 1

)2

∥xk − xk−1∥2 − ∥xk+1 − xk∥2
]

=
1

2h

[
∥xk − xk−1∥2 − ∥xk+1 − xk∥2

]
+

1

2h

((
k − 1

k + α− 1

)2

− 1

)
∥xk − xk−1∥2.

(5.15)

Together, (5.14) and (5.15) give

φz,k+1 − φz,k ≤
1

2h

[
∥xk − xk−1∥2 − ∥xk+1 − xk∥2

]
+

1

2h

((
k − 1

k + α− 1

)2

− 1

)
∥xk − xk−1∥2.

(5.16)

Summing this inequality from k = k1 to k2 − 1 gives the desired result.

5.2.3 Convergence of function values with rate O(k−2)

In this subsection, we combine the partial results presented in the preceding subsection to
conclude asymptotic convergence rates of the function values of the sequence (xk)k≥0 defined by
(MNAG) measured with the merit function φ(·) defined in (2.23). Before further investigating
the rate of φ(xk), in the following theorem, we present a weaker result on the sequence (φz,k)k≥0

for an arbitrary z ∈ H.

Theorem 5.2.8. Assume the objective functions fi are convex and continuously differentiable
with L-Lipschitz continuous gradients ∇fi for all i = 1, . . . ,m. Let α ≥ 3 and 0 < h ≤ 1

L .
Let z ∈ H be arbitrary and let the sequence (xk)k≥0 be given by (MNAG) with initial iterates
x0 = x−1 ∈ H. Then, the sequence (φz,k)k≥0 defined in (5.10) satisfies for all k ≥ 1[

(k + α− 2)2 +
(k − 1)k(α− 3)

2
+ (k − 1)(α− 2)2

]
φz,k ≤

(α− 1)2

2h
∥x0 − z∥2.

Proof. Lemma 5.2.4 and Lemma 5.2.6 state for all k ≥ 0

φz,k+1 ≤ −1

h
⟨xk+1 − yk, yk − z⟩ − 1

2h
∥xk+1 − yk∥2 and

φz,k+1 − φz,k ≤ −1

h
⟨xk+1 − yk, yk − xk⟩ − 1

2h
∥xk+1 − yk∥2.

Taking a convex combination of these inequalities with weights α−1
k+α−1 and k

k+α−1 yields

φz,k+1 −
k

k + α− 1
φz,k

≤− 1

h

〈
xk+1 − yk, yk − k

k + α− 1
xk − α− 1

k + α− 1
z

〉
− 1

2h
∥xk+1 − yk∥2

=
1

h

〈
xk+1 − yk,

k

k + α− 1
(xk − yk) +

α− 1

k + α− 1
(z − yk)

〉
− 1

2h
∥xk+1 − yk∥2.

(5.17)
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Define

zk :=
k + α− 1

α− 1
yk − k

α− 1
xk = xk +

k − 1

α− 1
(xk − xk−1), (5.18)

and notice that

k

k + α− 1
(yk − xk) +

α− 1

k + α− 1
(yk − z) =

α− 1

k + α− 1
(zk − z). (5.19)

Using identity (5.19) in (5.17), we get

φz,k+1 −
k

k + α− 1
φz,k ≤ − α− 1

h(k + α− 1)
⟨xk+1 − yk, zk − z⟩ − 1

2h
∥xk+1 − yk∥2. (5.20)

From the definition of zk in (5.18), one can see that

zk+1 = zk +
k + α− 1

α− 1
(xk+1 − yk).

Using this identity, we can simply compute the squared norm of ∥zk+1 − z∥2 as

1

2
∥zk+1 − z∥2 = 1

2
∥zk − z∥2 + k + α− 1

α− 1
⟨zk − z, xk+1 − yk⟩+ 1

2

(
k + α− 1

α− 1

)2

∥xk+1 − yk∥2.

Rearranging this identity and multiplying with (α−1)2

h(k+α−1)2
yields

(α− 1)2

2h(k + α− 1)2

(
∥zk − z∥2 − ∥zk+1 − z∥2

)
=− α− 1

h(k + α− 1)
⟨zk − z, xk+1 − yk⟩ − 1

2h
∥xk+1 − yk∥2.

(5.21)

Combining (5.20) and (5.21), in total we have

φz,k+1 −
k

k + α− 1
φz,k ≤

(α− 1)2

2h(k + α− 1)2

(
∥zk − z∥2 − ∥zk+1 − z∥2

)
.

Then, multiplying both sides with (k + α− 1)2 yields

(k + α− 1)2φz,k+1 − k(k + α− 1)φz,k ≤
(α− 1)2

2h

(
∥zk − z∥2 − ∥zk+1 − z∥2

)
. (5.22)

We use k(k + α− 1) = (k + α− 2)2 − k(α− 3)− (α− 2)2 and write

(k + α− 1)2φz,k+1 − (k + α− 2)2φz,k

≤−
(
k(α− 3) + (α− 2)2

)
φz,k +

(α− 1)2

2h

(
∥zk − z∥2 − ∥zk+1 − z∥2

)
.

(5.23)

Let k ≥ 0 and k − 1 ≤ n. We use Corollary 5.2.7 with k1 = k and k2 = n+ 1 to conclude

−φz,k ≤− φz,n+1 +
1

2h

[∥∥∥xk − xk−1
∥∥∥2 − ∥∥xn+1 − xn

∥∥2]
+

1

2h

n∑
l=k

((
l − 1

l + α− 1

)2

− 1

)
∥xl − xl−1∥2.

(5.24)
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We use (5.24) on the right-hand side of (5.23), to derive

(k + α− 1)2φz,k+1 − (k + α− 2)2φz,k ≤

−
(
k(α− 3) + (α− 2)2

)
φz,n+1 +

1

2h

(
k(α− 3) + (α− 2)2

)
∥xk − xk−1∥2

+
1

2h

(
k(α− 3) + (α− 2)2

) n∑
l=k

((
l − 1

l + α− 1

)2

− 1

)
∥xl − xl−1∥2

+
(α− 1)2

2h

[
∥zk − z∥2 − ∥zk+1 − z∥2

]
.

Summing this inequality from k = 1 to k = n, we follow

(n+ α− 1)2φz,n+1 − (α− 1)2φz,1

≤−
n∑
k=1

(
k(α− 3) + (α− 2)2

)
φz,n+1 +

1

2h

n∑
k=1

(
k(α− 3) + (α− 2)2

)
∥xk − xk−1∥2

+
1

2h

n∑
k=1

n∑
l=k

(
k(α− 3) + (α− 2)2

)(( l − 1

l + α− 1

)2

− 1

)
∥xl − xl−1∥2

+
(α− 1)2

2h

[
∥z1 − z∥2 − ∥zn+1 − z∥2

]
.

(5.25)

For all sequences (ak,l)k,l≥1 ⊆ R and all n ≥ 1 it holds that

n∑
k=1

n∑
l=k

ak,l =
n∑
l=1

l∑
k=1

ak,l. (5.26)

We apply the identity (5.26) to the double sum in (5.25) to obtain

n∑
k=1

n∑
l=k

(
k(α− 3) + (α− 2)2

)(( l − 1

l + α− 1

)2

− 1

)
∥xl − xl−1∥2

=
n∑
k=1

(
k(k + 1)(α− 3)

2
+ k(α− 2)2

)((
k − 1

k + α− 1

)2

− 1

)
∥xk − xk−1∥2.

(5.27)
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We use this to rewrite the sums

n∑
k=1

(
k(α− 3) + (α− 2)2

)
∥xk − xk−1∥2

+
n∑
k=1

n∑
l=k

(
k(α− 3) + (α− 2)2

)(( l − 1

l + α− 1

)2

− 1

)
∥xl − xl−1∥2

=
n∑
k=1

(
k(α− 3) + (α− 2)2

)
∥xk − xk−1∥2

+
n∑
k=1

(
k(k + 1)(α− 3)

2
+ k(α− 2)2

)((
k − 1

k + α− 1

)2

− 1

)
∥xk − xk−1∥2

=
n∑
k=1

k(α− 3)

[
1 +

k + 1

2

((
k − 1

k + α− 1

)2

− 1

)]
∥xk − xk−1∥2

+
n∑
k=1

(α− 2)2

[
1 + k

((
k − 1

k + α− 1

)2

− 1

)]
∥xk − xk−1∥2.

(5.28)

For all k ≥ 1, we have

1 + k

((
k − 1

k + α− 1

)2

− 1

)
≤ 1 +

k + 1

2

((
k − 1

k + α− 1

)2

− 1

)
≤ 0,

and this combined with (5.28) gives

n∑
k=1

(
k(α− 3) + (α− 2)2

)
∥xk − xk−1∥2

+

n∑
k=1

n∑
l=k

(
k(α− 3) + (α− 2)2

)(( l − 1

l + α− 1

)2

− 1

)
∥xl − xl−1∥2 ≤ 0.

(5.29)

Combining (5.25) and (5.29) we get

(n+ α− 1)2φz,n+1 − (α− 1)2φz,1 ≤−
n∑
k=1

(
k(α− 3) + (α− 2)2

)
φz,n+1

+
(α− 1)2

2h

[
∥z1 − z∥2 − ∥zn+1 − z∥2

]
.

(5.30)

Using z1 = x1, inequality (5.30) simplifies to[
(n+ α− 1)2 +

n(n+ 1)(α− 3)

2
+ n(α− 2)2

]
φz,n+1 ≤ (α− 1)2φz,1 +

(α− 1)2

2h
∥x1 − z∥2.

From Lemma 5.2.4, we derive

φz,1 ≤
1

2h
∥x0 − z∥2 − 1

2h
∥x1 − z∥2,
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and we obtain for all k ≥ 1[
(k + α− 2)2 +

(k − 1)k(α− 3)

2
+ (k − 1)(α− 2)2

]
φz,k ≤

(α− 1)2

2h
∥x0 − z∥2.

The theorem above is not straight forward to interpret since the sequence (φz,k)k≥0 does not
remain positive for all k ≥ 0 and we only get an upper bound of order O(k−2). This on its own
does not imply the convergence of f(xk) =

(
f1(x

k), . . . , fm(x
k)
)
to an element of the Pareto

front. However we can refine the statement of Theorem 5.2.8 in the following way to get a
stronger convergence statement.

Theorem 5.2.9. Assume that Assumption (A2) holds and assume the objective functions fi
are convex and continuously differentiable with L-Lipschitz continuous gradients ∇fi for all
i = 1, . . . ,m. Let α ≥ 3 and 0 < h ≤ 1

L . Let the sequence (xk)k≥0 be given by (MNAG) with
initial iterates x0 = x−1 ∈ H. Then, for all k ≥ 1

φ(xk) ≤ (α− 1)2R

h(k + α− 2)2
,

and hence

φ(xk) = O
(

1

k2

)
as k → +∞.

Proof. Theorem 5.2.8 gives for all z ∈ H[
(k + α− 2)2 +

(k − 1)k(α− 3)

2
+ (k − 1)(α− 2)2

]
φz,k ≤

(α− 1)2

2h
∥x0 − z∥2. (5.31)

By Assumption (A2) and Lemma 2.3.15, we have

sup
F ∗∈F (LPw(F,F (x0)))

inf
z∈F−1({F ∗})

φz,k = φ(xk).

Then, by the definition of R > 0 in Assumption (A2) we conclude from (5.31)[
(k + α− 2)2 +

(k − 1)k(α− 3)

2
+ (k − 1)(α− 2)2

]
φ(xk) ≤ (α− 1)2R

h
.

Since φ(xk) ≥ 0 and (k + α− 2)2 + (k−1)k(α−3)
2 + (k − 1)(α− 2)2 ≥ (k + α− 2)2 we get

φ(xk) ≤ (α− 1)2R

h(k + α− 2)2
.

The following corollary can be derived from Theorem 5.2.9.
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Corollary 5.2.10. Assume that Assumption (A2) holds and assume the objective functions
fi are convex and continuously differentiable with L-Lipschitz continuous gradients ∇fi for all
i = 1, . . . ,m. Let α ≥ 3 and 0 < h ≤ 1

L . Let the sequence (xk)k≥0 be given by (MNAG) with
initial iterates x0 = x−1 ∈ H. Then every weak sequential cluster point of (xk)k≥0 is weakly
Pareto optimal

Proof. The statement follows by the last Theorem and the fact that φ(·) is weakly lower semi-
continuous by Theorem 2.3.14.

5.2.4 Weak convergence of iterates

In this subsection we prove the weak convergence of the iterates (xk)k≥0 to a weakly Pareto
optimal point of (MOP) using Opial’s Lemma (Lemma 2.1.6). Before we can apply Opial’s
Lemma we have to derive asymptotic bounds on ∥xk − xk−1∥.

Lemma 5.2.11. Assume the objective functions fi are convex and continuously differentiable
with L-Lipschitz continuous gradients ∇fi for all i = 1, . . . ,m. Let α > 3 and 0 < h ≤ 1

L . Let
z ∈ H be arbitrary and let the sequence (xk)k≥0 be given by (MNAG) and (φz,k)k≥0 be given by
(5.10). Then for all K ≥ 1 it holds that

K∑
k=1

[
k +

(α− 2)2

α− 3

]
φz,k ≤ (α− 1)2φz,1 − (K + α− 1)2φz,K+1 +

(α− 1)2

2h
∥x1 − z∥2.

Proof. The proof follows immediately by (5.23).

Lemma 5.2.12. Assume the objective functions fi are convex and continuously differentiable
with L-Lipschitz continuous gradients ∇fi for all i = 1, . . . ,m. Let α > 3 and 0 < h ≤ 1

L . Let
z ∈ H be arbitrary and let the sequence (xk)k≥0 be given by (MNAG) and (φz,k)k≥0 be given by

(5.10) and define β := (α−2)2

α−3 + 1
2 . Then for all K ≥ 1 it holds that

1

2h
(K + 1)2∥xK+1 − xK∥2 + 1

h

K∑
k=1

(k + 1)∥xk+1 − xk∥2

≤ (β2 + 2(α− 1)2)φz,1 −
(
(K + β)2 + 2(K + α− 1)2

)
φz,K+1

+
(α− 1)2

h
∥x1 − z∥2 + (β − 1)2

2h
∥x1 − x0∥2.

Proof. To abbreviate the notation we introduce the sequence (dk)k≥0, with

dk :=
1

2h
∥xk − xk−1∥2,

for k ≥ 0. Inequality (5.16) gives for all k ≥ 1

φz,k+1 − φz,k ≤
(

k − 1

k + α− 1

)2

dk − dk+1.
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For β = (α−2)2

α−3 + 1
2 with α ≥ 3, we have

k − 1

k + α− 1
≤ k + β − 2

k + β
,

and hence

φz,k+1 − φz,k ≤
(
k + β − 2

k + β

)2

dk − dk+1.

We rewrite this into

(k + β)2dk+1 − (k + β − 2)2dk ≤ (k + β)2(φz,k − φz,k+1)

We use (k + β)2 = (k + β − 1)2 + 2
(
k + β − 1

2

)
and hence

(k + β − 1)2dk+1 − (k + β − 2)2dk + 2

(
k + β − 1

2

)
dk+1 ≤

(k + β − 1)2φz,k − (k + β)2φz,k+1 + 2

(
k + β − 1

2

)
φz,k.

We use β − 1
2 = (α−2)2

α−3 and k + β − 1
2 ≥ 1 with dk+1 ≥ 0 to conclude

(k + β − 1)2dk+1 − (k + β − 2)2dk + 2 (k + 1) dk+1 ≤

(k + β − 1)2φz,k − (k + β)2φz,k+1 + 2

(
k +

(α− 2)2

α− 3

)
φz,k.

We sum this inequality from k = 1, . . . ,K to follow

(K + β − 1)2dK+1 − (β − 1)2d1 + 2
K∑
k=1

(k + 1) dk+1 ≤

β2φz,1 − (K + β)2φz,K+1 + 2

K∑
k=1

(
k +

(α− 2)2

α− 3

)
φz,k.

By Lemma 5.2.11 we follow

(K + β − 1)2dK+1 − (β − 1)2d1 + 2
K∑
k=1

(k + 1) dk+1 ≤

(
β2 + 2(α− 1)2

)
φz,1 −

(
(K + β)2 + 2(K + α− 1)2

)
φz,K+1 +

(α− 1)2

h
∥x1 − z∥2.

We rewrite this into

(K + β − 1)2dK+1 + 2

K∑
k=1

(k + 1) dk+1 ≤(
β2 + 2(α− 1)2

)
φz,1 −

(
(K + β)2 + 2(K + α− 1)2

)
φz,K+1

+
(α− 1)2

h
∥x1 − z∥2 + (β − 1)2d1,

which completes the proof.
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Building on the previous Lemma, in the following theorem we state asymptotic bounds on
∥xk − xk−1∥ as k → +∞.

Theorem 5.2.13. Assume the objective functions fi are convex and continuously differentiable
with L-Lipschitz continuous gradients ∇fi for all i = 1, . . . ,m. Let α > 3 and 0 < h ≤ 1

L .
Let the sequence (xk)k≥0 be given by (MNAG) and assume it is bounded. Then the following
statements hold.

i) ∥xk+1 − xk∥ = O
(
k−1

)
as k → +∞;

ii)

+∞∑
k=1

k∥xk+1 − xk∥2 < +∞.

Proof. We use the notation dk :=
1
2h∥x

k−xk−1∥2 for k ≥ 0. Lemma 5.2.12 with z = xK+1, gives
for all K ≥ 1

(K + β − 1)2dK+1 + 2

K∑
k=1

(k + 1) dk+1 ≤

(
β2 + 2(α− 1)2

)
min

i=1,...,m
fi(x

1)− fi(x
K+1) +

(α− 1)2

h

∥∥x1 − xK+1
∥∥2 + (β − 1)2d1.

(5.32)

Since (xk)k≥0 is bounded by assumption, the right hand side of (5.32) is bounded by a constant
C > 0 and we follow for all k,K ≥ 0

∥xk+1 − xk∥2 ≤ C

k2
and

K∑
k=1

k∥xk+1 − xk∥2 ≤ C,

which completes the proof.

Lemma 5.2.14. Assume the objective functions fi are convex and continuously differentiable
with L-Lipschitz continuous gradients ∇fi for all i = 1, . . . ,m. Let α > 3 and 0 < h ≤ 1

L . Let
(xk)k≥0 and (yk)k≥0 be the sequences generated by (MNAG). Define the set

S :=

{
z ∈ H : fi(z) ≤ lim inf

k→+∞
fi(x

k) for all i = 1, . . . ,m

}
.

If (xk)k≥0 is bounded then S ̸= ∅. Further, for all z ∈ S and all k ≥ 1〈
xk+1 − yk, xk+1 − z

〉
≤ 1

2
∥xk+1 − xk∥2 + 1

2
∥xk+1 − yk∥2. (5.33)

Proof. By convexity and weak lower semicontinuity, we know that every weak limit point of xk

belongs to S and by boundedness of xk there exists at least one cluster point and hence S is
nonempty. Let z ∈ S. We start from (5.11) and write

fi(x
k+1)− fi(z) ≤ ⟨∇fi(yk), xk+1 − z⟩+ L

2
∥xk+1 − yk∥2. (5.34)
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Since z ∈ S we conclude by Proposition 5.2.1 for all i = 1, . . . ,m and all k ≥ 0

fi(x
k+1)− fi(z) ≥ − 1

2h
∥xk+1 − xk∥2. (5.35)

Combining (5.34) and (5.35) gives

− 1

2h
∥xk+1 − xk∥2 ≤

m∑
i=1

θki

(
fi(x

k+1)− fi(z)
)
≤

〈
m∑
i=1

θki∇fi(yk), xk+1 − z

〉
+
L

2
∥xk+1 − yk∥2

=
1

h

〈
yk − xk+1, xk+1 − z

〉
+
L

2
∥xk+1 − yk∥2,

and in total we observe〈
xk+1 − yk, xk+1 − z

〉
≤ 1

2
∥xk+1 − xk∥2 + 1

2
∥xk+1 − yk∥2.

Theorem 5.2.15. Assume the objective functions fi are convex and continuously differentiable
with L-Lipschitz continuous gradients ∇fi for all i = 1, . . . ,m. Let α > 3 and 0 < h ≤ 1

L .
Assume (xk)k≥0 is bounded and define

S :=

{
z ∈ H : fi(z) ≤ lim inf

k→+∞
fi(x

k) for all k ≥ 0

}
.

Then xk ⇀ x∞ ∈ S converges weakly in H as k → +∞ and x∞ is weakly Pareto optimal.

Proof. By Lemma 5.2.14 it holds that S ̸= ∅. Let z ∈ S and define

hz,k =
1

2
∥xk − z∥2.

Simple manipulations give

hz,k+1 − hz,k =
1

2
∥xk+1 − z∥2 − 1

2
∥xk − z∥2

=⟨xk+1 − xk, xk+1 − z⟩ − 1

2
∥xk+1 − xk∥2

=⟨xk+1 − yk, xk+1 − z⟩ − 1

2
∥xk+1 − xk∥2 + ⟨yk − xk, xk+1 − z⟩.

(5.36)

We apply (5.33) and bound this by

≤1

2
∥xk+1 − yk∥2 − ∥xk+1 − xk∥2 + ⟨yk − xk, xk+1 − z⟩

=
1

2
∥xk+1 − yk∥2 − ∥xk+1 − xk∥2 + k − 1

k + α− 1
⟨xk − xk−1, xk+1 − z⟩.

(5.37)

Analogously, we have

hz,k − hz,k−1 = ⟨xk − xk−1, xk − z⟩ − 1

2
∥xk − xk−1∥2. (5.38)
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Combining (5.36), (5.37) and (5.38), we get

hz,k+1 − hz,k −
k − 1

k + α− 1
(hz,k − hz,k−1) ≤

1

2
∥xk+1 − yk∥2 − ∥xk+1 − xk∥2

+
k − 1

k + α− 1

[
⟨xk − xk−1, xk+1 − xk⟩+ 1

2
∥xk − xk−1∥2

]
.

(5.39)

We use the following identity in (5.39)

∥xk+1 − yk∥2 =∥xk+1 − xk∥2 − 2
k − 1

k + α− 1
⟨xk+1 − xk, xk − xk−1⟩

+

(
k − 1

k + α− 1

)2

∥xk − xk−1∥2,

to obtain

hz,k+1 − hz,k −
k − 1

k + α− 1
(hz,k − hz,k−1)

≤ − 1

2
∥xk+1 − xk∥2 + 1

2

(
k − 1

k + α− 1

)2

∥xk − xk−1∥2 + 1

2

k − 1

k + α− 1
∥xk − xk−1∥2

≤ ∥xk − xk−1∥2.

(5.40)

For a real number a ∈ R we define the positive part of a as [a]+ := max(a, 0). Using this notion
we derive from (5.40)

[hz,k+1 − hz,k]+ − k − 1

k + α− 1
[hz,k − hz,k−1]+ ≤ ∥xk − xk−1∥2.

The sequence [hz,k+1 − hz,k]+ is nonnegative and part ii) of Theorem 5.2.13 states

+∞∑
k=1

k∥xk −

xk−1∥2 < +∞. Then, by Lemma 2.2.13

+∞∑
k=1

[hz,k+1 − hz,k]+ < +∞.

As hz,k ≥ 0 for all k ≥ 1, we follow limk→+∞ hz,k exists. In the beginning of the proof z ∈ S
was chosen arbitrarily and hence limk→+∞∥xk − z∥ exists for all z ∈ S. By the weak lower
semicontinuity of the objective functions each weak sequential cluster point of (xk)k≥0 belongs
to S. Then by Opial’s Lemma xk converges weakly to an element in x∞ ∈ S. By Corollary
5.2.10 the element x∞ is weakly Pareto optimal.

5.3 Numerical experiments

In this section we conduct numerical experiments on the multiobjective Nesterov accelerated
gradient method (MNAG). The goal of this experiments is to verify the asymptotic results of

the previous subsections. Foremost, we want to verify the bound φ(xk) ≤ (α−1)2R
h(k+α−2)2

given by
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Theorem 5.2.9 and compare the behavior of (MNAG) for different values of α. We start with a
comparison of the method (MNAG) with its continuous counter part (MAVD) by reconsidering
the numerical experiments from Subsection 4.5.5. Additionally, we include comparisons to the
multiobjective steepest descent method (MGD), presented in Subsection 2.3.4, to show that the
accelerated method (MNAG) in fact converges faster. All numerical experiments in this section
where implemented using Matlab R2021b.

5.3.1 Comparison with the continuous system (MAVD)

In the first two numerical experiments, we compare the convergence of the merit function values
of the sequence (xk)k≥0 given by (MNAG) with the trajectory x(·) given by (MAVD). To this
end, we revisit the numerical experiments from Subsection 4.5.5 on (MAVD), where a quadratic
multiobjective optimization problem and a nonquadratic convex multiobjective optimization
problem get examined.

The two experiments share the following joint parameters. Both problems have two convex
continuously differentiable objective functions fi : R2 → R, x 7→ fi(x) for i = 1, 2. For both
problems we perform kmax = 1000 iterations of (MNAG) with initial iterate x0 = x−1 ∈ R2.
The function definitions and the initial iterates get specified in the respective parts. We use
step size h = 1e−3 and four different acceleration parameters α ∈ {3, 10, 50, 100}. We compute
the constant R > 0 from Assumption (A2) using the fact that the weak Pareto sets Pw can
be computed explicitly for the problems (see Subsection 4.5.5). Additionally, we solve φ(xk) =
supz∈Hmaxi=1,...,m fi(x

k) − fi(z) for all iterates k = 1, . . . , kmax = 1000 using Lemma 2.3.15
and the known Pareto set.

A quadratic multiobjective optimization problem

In the first example, we reconsider the following multiobjective optimization problem with two
quadratic objective functions

fi : R2 → R, x 7→ 1

2
(x− ci)⊤Qi(x− ci), (5.41)

for i = 1, 2, given symmetric and positive definite matrices and vectors

Q1 =

(
2 0
0 1

)
, Q2 =

(
1 0
0 2

)
, c1 =

(
1
0

)
, c2 =

(
0
1

)
.

Using x0 = x−1 = (−.2,−.1)⊤ as an initial iterate and the remaining parameters as specified in
the beginning of this subsection, we compute 1 000 iterations of (MNAG) and the corresponding
merit function values φ(xk).
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Figure 5.1: Values of merit function φ(xk) and bound (α−1)2R
h(k+α−2)2

for sequence (xk)k≥0 given by

(MNAG) generated for different values of α ∈ {3, 10, 50, 100}.

In Figure 5.1, the evolution of the merit function values φ(xk) and the theoretical bounds
(α−1)2R
h(k+α−2)2

are shown for k = 0, . . . , 1 000. The figure includes four subfigures, one for each value

of α ∈ {3, 10, 50, 100}. For all values of α ∈ {3, 10, 50, 100} the bound φ(xk) ≤ (α−1)2R
h(k+α−2)2

as

stated in Theorem 5.2.9 holds. The inertial features in (MNAG) introduced by the acceleration
step lead to oscillations in φ(xk). This is typical for accelerated first-order methods. For small
values of α the merit function values φ(xk) experience faster decay in the beginning, but have
more oscillations and therefore an over all slower convergence. For bigger values of α the merit
function values converge slower in the beginning but have less oscillations in the considered
regime and decay faster later on. Depending on the desired tolerance for φ(xk), different values
of α ≥ 3 are preferable. Since the objective functions fi defined in (5.41) are strongly convex for
i = 1, 2, the merit function values φ(xk) decay faster than the theoretical bound. The plots are
similar to the ones from Subsection 4.5.5 where an experiment on the same objective functions
and with the same initial iterate was conducted on trajectory solutions x(·) of the multiobjective
gradient system with asymptotic vanishing damping (MAVD). As described in Subsection 5.1.2,
the scheme (MNAG) can be interpreted as a discretization of the system (MAVD). Therefore,
the similarity in the results is expected.

A nonquadratic multiobjective optimization problem

In the following, we reconsider the second example from Subsection 4.5.5. Define

fi : R2 → R, x 7→ ln

 p∑
j=1

exp

((
a
(i)
j

)⊤
x− b

(i)
j

) , (5.42)
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for i = 1, 2 and p = 4 with given matrices and vectors

A(1) =


(
a
(1)
1

)⊤
...(

a
(1)
4

)⊤
 =


10 10
10 −10

−10 −10
−10 10

 , b(1) =


0

−20
0

20

 ,

A(2) =


(
a
(2)
1

)⊤
...(

a
(2)
4

)⊤
 =


10 10
10 −10

−10 −10
−10 10

 , b(2) =


0

20
0

−20

 .

The objective functions defined in (5.42) are convex but not strongly convex. The initial iterate
is set to x0 = x−1 = (0, 3)⊤ and we choose the remaining parameters as specified in the begin-
ning of this subsection.
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Figure 5.2: Values of merit function φ(xk) and bound (α−1)2R
h(k+α−2)2

for sequence (xk)k≥0 given by

(MNAG) generated for different values of α ∈ {3, 10, 50, 100}.

Similar to the last experiment, we compute the sequence (xk)k≥0 defined by (MNAG) and

plot φ(xk) and the bound (α−1)2R
h(k+α−2)2

from Theorem 5.2.9 in Figure 5.2. For all values of α ∈

{3, 10, 50, 100} the inequality φ(xk) ≤ (α−1)2R
h(k+α−2)2

holds for all k = 0, . . . , 1 000. Because the

objective functions in this example are not strongly convex, we see slower decay of the merit
function values φ(xk) compared to the last experiment. For the smallest values α = 3 the merit
function values φ(xk) are not monotone but decay fast in the beginning. For higher values of α we
have slower decay and do not observe oscillations. The plots are consistent with the observations
made in Subsection 4.5.5, where a similar experiment is conducted for trajectory solutions x(·)
of the multiobjective gradient system with asymptotic vanishing damping (MAVD).

5.3.2 Finite dimensional convex multiobjective optimization

Compared to the first two experiments, in this subsection we consider a higher-dimensional
example with three objective functions (m = 3) defined on Rn with n = 100. We define the
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Chapter 5. An accelerated gradient method for convex multiobjective optimization

objective functions using the following parameters. For p = 200, let A(i) =
(
a
(i)
1 , . . . , a

(i)
p

)⊤
∈

Rp×n with a
(i)
j ∈ Rn for j = 1, . . . , p and b(i) ∈ Rp for i = 1, 2, 3. Then, for i = 1, 2, 3, we define

the objective functions

fi : Rn → R, x 7→ ln

 p∑
j=1

exp

((
a
(i)
j

)⊤
x− b

(i)
j

) .

We randomly generate matrices A(i) ∈ Rp×n and vectors b(i) ∈ Rp with entries uniformly sam-
pled in [−1, 1] for i = 1, 2, 3. The initial iterate is set to x0 = x−1 = [1, . . . , 1]⊤ ∈ Rn and the
step size is chosen as h = 1e−1. For this parameter settings we execute kmax = 1000 itera-
tions of (MNAG) for α ∈ {3, 10, 50, 100}. For comparison we execute 1 000 iterations of the
multiobjective steepest descent method (MGD) with the same initial iterate x0 and with step
size h = 1e−1. For each iterate we compute φ(xk) = supz∈Hmaxi=1,...,m fi(x

k) − fi(z) with
a SQP method with sufficient accuracy using the function fmincon implemented in Matlab.
Additionally, we approximate R > 0 defined in Assumption (A2) by approximating the Pareto
set using a weighted sum approach (see [91]), i.e., for 1275 equidistant weights θl ∈ ∆m, we solve
the problem minx∈Rn θl1f1(x) + θl2f2(x) + θl3f3(x) where each weighted sum problem is solved
with a Quasi-Newton method using the function fminunc implemented in Matlab.
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Figure 5.3: Values of merit function φ(xk) and bound (α−1)2R
h(k+α−2)2

for sequence (xk)k≥0 given by

(MNAG) generated for different values of α ∈ {3, 10, 50, 100}.

In Figure 5.3 the merit function values φ(xk) get visualized with one subfigure for each value of

α ∈ {3, 10, 50100}, respectively. The bound φ(xk) ≤ (α−1)2R
h(k+α−2)2

from Theorem 5.2.9 is satisfied

for all α ∈ {3, 10, 50, 100}. Depending on the desired tolerance for φ(xk), different values of
α are advantageous. For smaller values of α we see faster decay of the merit function values
φ(xk) in the beginning but slower decay later on and overall more oscillations. For α = 50 the
merit function values decay the fastest for the given example. Additionally, Figure 5.4 includes
a comparison of (MNAG) and (MGD). Subfigure 5.4a shows the merit function values φ(xk)
generated by (MNAG) for α ∈ {3, 10, 50, 100} and (MGD). For all choices of α the merit function
values for (MNAG) decay faster than the ones obtained for (MGD). Subfigure 5.4b contains
a comparison on the discrete velocities ∥xk+1 − xk∥. For the accelerated method (MNAG) the
velocity increases in the beginning for all values of α ∈ {3, 10, 50, 100}, while for (MGD) the
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velocity is monotonically decreasing. In both subfigures oscillations can be observed in the plots
for α = 3 and α = 10 as a consequence of the inertial features in (MNAG) introduced by the
acceleration step. For α = 50 and α = 100 the merit function values and velocities decay rapidly
in comparison to (MGD).
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(a) Merit function values φ(xk)
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(b) Discrete velocities ∥xk+1 − xk∥

Figure 5.4: Comparison of merit function values φ(xk) and discrete velocities ∥xk+1 − xk∥ for
sequences (xk)k≥0 given by (MNAG) for different values of α ∈ {3, 10, 50, 100} and for a sequence
given by (MGD).

5.3.3 Infinite dimensional convex multiobjective optimization in H1
0 (Ω)

In the last numerical experiment, we consider a multiobjective optimization problem defined on
an infinite dimensional vector space. Given the domain Ω = (0, 1) ⊂ R we consider the Sobolev
space H1

0 (Ω) with topological dual H−1(Ω) (see e.g. [132]). On this space, we define the two
objective functions

f1 : H
1
0 (Ω) → R, u 7→ f1(u) :=

c1
2
∥u− uref∥2L2(Ω),

f2 : H
1
0 (Ω) → R, u 7→ f2(u) :=

c2
2
∥∇u∥2L2(Ω),

(5.43)

with c1, c2 > 0, uref ∈ L2(Ω) and where ∇ : H1
0 (Ω) → L2(Ω) is the bounded linear operator

which assigns to a vector u ∈ H1
0 (Ω) its weak derivative ∇u ∈ L2(Ω). Both objective functions

are convex and continuously Fréchet differentiable with Lipschitz continuous derivatives

Df1(u) = c1⟨u− uref , · ⟩L2(Ω) ∈ H−1(Ω),

Df2(u) = c2⟨∇u,∇ · ⟩L2(Ω) ∈ H−1(Ω),

with Lipschitz constants c1 and c2, respectively. Therefore, we can use (MNAG) to solve the
multiobjective optimization problem

min
u∈H1

0 (Ω)

 c1
2
∥u− uref∥2L2(Ω)
c2
2
∥∇u∥2L2(Ω)

 =:

[
f1(u)
f2(u)

]
.(MOP-H1

0 )

Problem (MOP-H1
0 ) can be interpreted as follows. Given a reference function uref ∈ L2(Ω),

we want to find a function u ∈ H1
0 (Ω) which is as close to uref as possible and has low H1-

seminorm ∥∇u∥L2(Ω). These objectives are in general conflicting, especially if uref ̸∈ H1
0 (Ω) or
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if uref ∈ H1
0 (Ω) but the norm ∥∇uref∥L2(Ω) is very large.

To numerically treat this problem, we use a FEM discretization with Lagrangian P1 finite
elements on a uniform discretization of Ω = (0, 1) with 49 elements. We use the following
reference function in the definition of (5.43). Define

uref : Ω → R, x 7→ uref(x) :=

{
1, if x ≤ 1

2 ,
2, else.

(5.44)

The function uref ∈ L2(Ω) is shown in Subfigure 5.5a. Further, we choose constants c1 = c2 =
1e−1 and step size h = 1e−1 and α ∈ {3, 10, 50, 100}. As the initial iterate u0 = u−1 ∈ H1

0 (Ω)
we use a piecewise linear function which nodally interpolates the function

g : Ω → R, x 7→ 80(1− x)x

(
x− 1

2

)2

+ 8(1− x)x exp (−2x) . (5.45)

The function g is shown in Subfigure 5.5b. For all values of α ∈ {3, 10, 50, 100} we perform
kmax = 4000 iterations of (MNAG). For comparison, we compute 4 000 iterations of (MGD)
with step size h = 1e−1 and the same initial iterate u0.
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(a) Reference function uref ∈ L2(Ω) de-
fined in (5.44)
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(b) Function g defined in (5.45), which is
used to define u0 by piecewise linear inter-
polation

For all iterates, we compute φ(uk) using an interior-point method via the function fmincon that
is implemented in Matlab. Additionally, we evaluate the discrete velocity ∥uk+1 − uk∥H1(Ω).

Subfigure 5.6a shows φ(uk) for the different values of α ∈ {3, 10, 50, 100} and (MGD). For
small values of α, the merit function values φ(uk) decay faster in the beginning but exhibit
more oscillations and converge more slowly later. For bigger values of α the merit function
values φ(uk) converge slower in the beginning but overall faster in the considered range. For
all values of α ∈ {3, 10, 50, 100}, the accelerated method is faster than (MGD). For the discrete
velocities ∥uk+1 − uk∥H1(Ω) plotted in Subfigure 5.6b we can make similar observations. For
(MGD) the velocities are monotonically decreasing. For the accelerated methods for all values
of α ∈ {3, 10, 50, 100}, the velocities initially grow but decay more rapidly later. For α = 3 and
α = 5, we observe significant oscillations and slower decay. Within the considered ranges, the
merit function values and velocities decay the fastest for α = 50.
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(a) Merit function values φ(uk)
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(b) Discrete velocities ∥uk+1 − uk∥H1(Ω)

Figure 5.6: Comparison of merit function values φ(uk) and discrete velocities ∥uk+1 − uk∥H1(Ω)

for sequences (uk)k≥0 given by (MNAG) for different values of α ∈ {3, 10, 50, 100} and for a
sequence given by (MGD).

Figure 5.7 shows 1 000 iterates (uk)k≥0 of (MNAG) for α ∈ {3, 50} and (MGD), separately
plotted in three subfigures. In Subfigures 5.7a and 5.7b the final iterates of (MNAG) appear
to be smooth approximations of uref , as expected from the interpretation of (MOP-H1

0 ). In
comparison, the final iterate of (MGD), shown in Subfigure 5.7c, does not appear to have
converged to a solution. These observations are consistent with those made for the merit function
values φ(uk).

(a) α = 3 (b) α = 50 (c) (MGD)

Figure 5.7: Iterates (uk)k≥0 of (MNAG) for different values of α ∈ {3, 50} and (MGD) for
k = 0, . . . , 1 000.
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Chapter 6

Conclusion

A descent method for nonconvex locally Lipschitz continuous
multiobjective optimization

In Chapter 3, we investigate multiobjective optimization problems with locally Lipschitz continu-
ous objective functions defined on a general Hilbert space. In this context, we present a common
descent method that neither requires an a priori discretization of the infinite-dimensional deci-
sion space nor relies on scalarization techniques. Avoiding early discretization is crucial, as naive
approaches can lead to inconsistency with the topology of the underlying infinite-dimensional
problem, resulting in mesh-dependent behavior, such as non-uniform convergence or inconsistent
stopping criteria across different discretizations. Similarly, straightforward scalarization strate-
gies can be inadequate in the presence of nonconvex objectives or when the number of objective
functions exceeds two.

The proposed method overcomes these difficulties and, to the best of our knowledge, repre-
sents the first approach of its kind applicable to such a general setting. It extends a common
descent method originally designed for finite-dimensional problems based on subgradient sam-
pling. To facilitate this extension to Hilbert spaces, we introduce a generalized multiobjective
ε-subdifferential, which serves as a foundational tool for our algorithmic design. We rigorously
analyze its key analytical properties, including a generalized closedness result in the strong ×
weak∗ topology, which is an essential ingredient for establishing convergence toward Pareto crit-
ical points in a subsequential sense.

Before formally introducing the common descent algorithm, we show that approximate descent
directions satisfying a sufficient decrease condition can be constructed from numerical approx-
imations of the ε-subdifferential. Moreover, we prove that such directions can be obtained in
finitely many steps via a subgradient sampling procedure. The descent method is then defined
using these directions in combination with an Armijo-backtracking-type step size strategy. The
main theoretical results are contained in two theorems: The first establishes that any cluster
point of the generated sequence is Pareto critical. The second demonstrates that, under alterna-
tive parameter choices, the algorithm attains an approximate criticality condition within finitely
many iterations.
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Chapter 6. Conclusion

Several promising research directions emerge from our current framework. Given the abstract
formulation of both the theoretical results and the algorithm, a natural extension would be
their application in general Banach spaces. It is particularly important to investigate which
Banach spaces allow the multiobjective ε-subdifferential to retain its generalized closedness
properties. Such a generalization would broaden the applicability of the method, particularly in
more complex settings in optimal control and PDE-constrained optimization. Additionally, there
is potential to enhance convergence properties by incorporating higher-order gradient sampling
techniques, such as those explored in [111].

Gradient dynamical systems for convex multiobjective optimiza-
tion

Chapter 4 is dedicated to gradient dynamical systems associated with multiobjective optimiza-
tion problems with convex and continuously differentiable objective functions with Lipschitz
continuous gradients. As a starting point, we revisit the classical steepest descent dynamical
system for scalar optimization, followed by a survey of existing gradient dynamical systems in
the multiobjective setting.

In Section 4.4, we introduce the inertial multiobjective gradient system (IMOG’) and estab-
lish the existence of solutions in finite-dimensional Hilbert spaces. We show that solutions to
(IMOG’) converge weakly to weakly Pareto optimal points.

We improve the system (IMOG’) in Section 4.5 and derive the multiobjective gradient system
with asymptotically vanishing damping (MAVD). We prove existence of solutions in finite-
dimensional spaces and carry out a detailed asymptotic analysis. In particular, we establish
improved convergence rates of the merit function values and confirm weak convergence to weak
Pareto optima. Theoretical results are supported by a series of numerical experiments.

In Section 4.6, we propose the multiobjective Tikhonov regularized inertial gradient system
(MTRIGS). Prior to presenting the system, we discuss the role of Tikhonov regularization in
multiobjective optimization and show that an associated generalized regularization path con-
verges strongly to weak Pareto optimal solutions. We prove existence of solutions to (MTRIGS)
in the finite-dimensional setting and analyze their asymptotic behavior under varying param-
eter choices. For a broad class of parameter regimes, we demonstrate strong convergence of
trajectories to weak Pareto optima, alongside rapid decay of the merit function values. The
section concludes with extensive numerical experiments that validate the theoretical findings
and examine the convergence behavior of trajectories in detail.

The results presented in this chapter provide a solid foundation for investigating more advanced
dynamical systems in the context of multiobjective optimization. Through the different systems
proposed, we demonstrate that the underlying framework is flexible and robust enough to sup-
port the development of more advanced gradient dynamical systems. Several research directions
naturally arise from this work. One key direction is the extension to constrained multiobjective
optimization problems. In particular, integrating primal-dual dynamics, as explored in [48, 124,
125, 241]. Another promising direction is the generalization of these systems to multiobjective

210



min-max optimization problems [46, 64, 121], which are relevant in robust optimization, game
theory, and machine learning. Additionally, incorporating time-rescaling techniques [20, 47] and
Hessian-driven damping [6, 25] could further improve convergence behavior and dynamic stabil-
ity. Finally, an exciting direction lies in the study of high-resolution ODE models [212], which
have recently been applied in the single-objective setting and may carry over valuable insights
into the multiobjective case.

An accelerated gradient method for convex multiobjective opti-
mization

In Chapter 5, we propose an accelerated gradient method for multiobjective optimization prob-
lems with convex and continuously differentiable objective functions with Lipschitz continuous
gradients. After revisiting Nesterov’s accelerated gradient method for scalar optimization, we
derive the accelerated multiobjective gradient method (MNAG) via a discretization of the multi-
objective gradient system with asymptotic vanishing damping (MAVD). Following the method’s
definition, we compare (MNAG) to existing first-order methods in multiobjective optimization.

The main results of this chapter are contained in the section on the asymptotic analysis of the
method (MNAG). We show that the function values of the iterates converge at a fast rate to an
optimal function value, as measured by a suitable merit function for multiobjective optimization.
Moreover, we prove weak convergence of the sequence of iterates to weakly Pareto optimal points.

The chapter concludes with numerical experiments demonstrating the practical efficiency of the
accelerated multiobjective gradient method (MNAG). First, we test the method on two finite-
dimensional problems, confirming that the observed convergence behavior aligns with the theo-
retical results. Then, we extend the experiments to an infinite-dimensional Hilbert space setting,
illustrating the method’s applicability beyond finite dimensions. For the infinite-dimensional
problem (MNAG) exhibits substantially faster convergence compared to the classical multiob-
jective steepest descent method.

Several promising directions for future research emerge naturally from this work, reflecting
those outlined in Chapter 4. The derivation of the method (MNAG) from the system (MAVD)
shows that it is fruitful to further investigate these research directions. The next sensible step
is the derivation of fast gradient and proximal point methods with Tikhonov regularization
for multiobjective optimization from the system (MTRIGS), similar to [134, 144, 145, 146,
147]. In addition, it would be valuable to explore fast primal-dual algorithms for constrained
multiobjective optimization [48, 124, 125, 241], as well as Newton-type methods inspired by fast
gradient systems with Hessian-driven damping [6, 25]. Other interesting topics include time-
rescaling techniques [20, 47], min-max optimization methods [46, 64, 121], and the investigation
of accelerated gradient systems with restart mechanisms, building on preliminary studies such
as [29, 156, 185].
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[44] Boţ, R. I., Csetnek, E. R., and Nguyen, D.-K. Fast Augmented Lagrangian Method
in the convex regime with convergence guarantees for the iterates. In: Mathematical Pro-
gramming 200 (2022), pp. 147–197. doi: 10.1007/s10107-022-01879-4.
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[117] Gräser, C., Sack, U., and Sander, O. Truncated nonsmooth Newton multigrid meth-
ods for convex minimization problems. In: Lecture Notes in Computational Science and
Engineering. Berlin, Heidelberg: Springer, 2009, pp. 129–136. doi: 10.1007/978-3-642-
02677-5_12.
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[207] Schäffler, S., Schultz, R., and Weinzierl, K. Stochastic method for the solution
of unconstrained vector optimization problems. In: Journal of Optimization Theory and
Applications 114 (1) (2002), pp. 209–222. doi: 10.1023/A:1015472306888.

[208] Schropp, J. Using dynamical systems methods to solve minimization problems. In: Ap-
plied Numerical Mathematics 18 (1-3) (1995), pp. 321–335. doi: 10.1016/0168-9274(95)
00065-3.
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