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Abstract

Static data-flow analysis aims to ensure bug-free, secure, and quality software by
accounting for all possible executions of a target program. Due to scalability con-
straints, this often entails sound over-approximations that compromise analysis
precision. On the other hand, sparsification, an optimization technique that restricts
data-flow analyses to analysis-relevant program statements, improves scalability
while at the same time maintaining precision.

This thesis presents SPARSEIDE, a novel framework that realizes (data-flow) fact-
specific sparsification for any data-flow analysis that fits the IDE (Interprocedural
Distributive Environments) framework. Although IDE analyses can only be sparsified
with respect to static symbols and not dynamic values, SPARSEIDE yields significantly
lower runtimes and memory consumptions than the original IDE framework.

Scalability-improving approaches from the literature, including SPARSEIDE, use a
fixed call-graph algorithm, without considering its impact on the downstream data-
flow analysis. Through extensive empirical evaluation, this thesis shows how precise
context-sensitive call graphs significantly reduce data-flow analysis runtimes.

Precise data-flow analyses reason about the heap through pointer analyses, which
are also hard to scale. This thesis also presents SPARSEBOOMERANG as an application
of fact-specific sparsification to demand-driven pointer analysis. SPARSEBOOMERANG

realizes two different sparsification strategies that exploit the characteristics of the
pointer analysis domain: a type-aware sparsification and an alias-aware sparsifica-
tion.

Interprocedural data-flow analyses comprise a data-flow solver, a call graph, and
a pointer analysis. This thesis shows how to scale precise data-flow analyses by
considering all three components from the perspective of sparsification. Fact-specific
sparsification reduces the data-flow solver’s workload. As an orthogonal compo-
nent, the choice of call graph significantly influences data-flow analysis scalability.
Pointer analysis, which is known to be a non-distributive problem, also benefits from
fact-specific sparsification when formulated within a distributive data-flow analysis
framework.
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Zusammenfassung
Die statische Datenflussanalyse zielt darauf ab, fehlerfreie, sichere und hochwertige
Software zu gewährleisten, indem sie alle möglichen Ausführungen eines Zielpro-
gramms berücksichtigt. Aufgrund von Skalierbarkeitsbeschränkungen führt dies
häufig zu starken Überapproximationen, die die Präzision der Analyse beeinträchti-
gen. Andererseits verbessert Sparsifizierung, eine Optimierungstechnik, die Daten-
flussanalysen auf analysenrelevante Programmstatements beschränkt, die Skalier-
barkeit der Datenflussanalyse und bewahrt gleichzeitig deren Präzision.

Diese Arbeit stellt SPARSEIDE vor, ein neuartiges Framework, das eine (Datenfluss-)
Fakt-spezifische Sparsifizierung für jede Datenflussanalyse realisiert, die im IDE-
Framework (Interprocedural Distributive Environments) realisiert wird. Obwohl
IDE-Analysen nur in Bezug auf Symbole und nicht auf Werte sparsifiziert werden
können, erzielt SPARSEIDE deutlich geringere Laufzeiten und einen geringeren Spe-
icherverbrauch als das ursprüngliche IDE.

Ansätze zur Verbesserung der Skalierbarkeit aus der Literatur, darunter SPARSEIDE,
verwenden einen festen Call-Graph-Algorithmus, ohne dessen Auswirkungen auf
die nachgelagerte Datenflussanalyse zu berücksichtigen. Anhand einer umfassenden
empirischen Bewertung zeigt diese Arbeit, wie präzise kontextsensitive Call-Graphen
die Laufzeiten der Datenflussanalyse erheblich reduzieren.

Präzise Datenflussanalysen analysieren den Heap anhand von Pointer-Analysen, die
ebenfalls schwer zu skalieren sind. Diese Arbeit stellt SPARSEBOOMERANG als Anwen-
dung der Fakt-spezifischen Sparsifizierung auf die bedarfsorientierte Pointersanal-
yse vor. SPARSEBOOMERANG realisiert zwei verschiedene Sparsifizierung-Strategien,
die die Eigenschaften der Pointeranalyse-Domäne nutzen: eine type-aware Sparsi-
fizierung und eine alias-aware Sparsifizierung.

Interprocedural Datenflussanalysen umfassen einen Datenfluss-Solver, einen Call-
Graph und eine Pointer-Analyse. Diese Arbeit zeigt, wie präzise Datenflussanalysen
skaliert werden können, indem alle drei Komponenten unter dem Gesichtspunkt der
Sparsifizierung betrachtet werden. Eine Fakt-spezifische Sparsifizierung reduziert
die Arbeitslast des Datenfluss-Solvers. Als orthogonale Komponente hat die Wahl des
Call-Graphen einen erheblichen Einfluss auf die Skalierbarkeit der Datenflussanalyse.
Die Pointer-Analyse, die bekanntermaßen ein nicht-distributives Problem darstellt,
profitiert ebenfalls von einer Fakt-spezifischen Sparsifizierung, wenn sie innerhalb
eines distributiven Datenflussanalyse-Frameworks formuliert wird.
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Introduction 1
Static program analysis techniques enable one to reason about interesting prop-
erties of computer programs. Applications of static program analysis have proven
successful for diverse purposes, including compiler optimization [Kil73], program
comprehension [EKS01], and developer assistance [Vas+20]. It is now an essen-
tial component of modern software engineering for assuring bug-free [Aye+08],
secure [LL05], and quality software [FHP07].

Static data-flow analysis [KU76], a powerful static program analysis technique,
makes it possible to detect information leaks and security vulnerabilities in a target
program. It does so by aiming to account for all possible executions of the target pro-
gram without executing it. This ambitious goal is theoretically unachievable [Ric53].
Fortunately, it can still be approximated within the boundaries set in two dimen-
sions: the level of analysis result details and a runtime budget — or, in static analysis
terms, precision and scalability.

Interprocedural data-flow analyses reason about data flows in the presence of
method calls. They aim to produce as precise results as possible and are typically
characterized by some sensitivity criteria. Flow-sensitive analyses keep track of the
order of statements that appear inside a method body. Field-sensitive analyses distin-
guish different fields of a base object. Context-sensitive analyses distinguish different
call sites that invoke a callee method from different calling contexts. An increased
level of precision, obtained through these sensitivity criteria, typically results in
scalability penalties. Such penalties are expected, as each sensitivity criterion re-
quires the data-flow analysis solver to maintain program representations at a finer
level of granularity compared to its insensitive counterpart, and later to reason
about (often) exponentially more data. For instance, field sensitivity entails model-
ing field accesses through access paths, which could be of infinite length, e.g., due
to loops [JM79], and context sensitivity entails modeling call chains, e.g., through
call strings [SP+78], which can also be of infinite length due to recursion.

To adhere to scalability constraints, data-flow analyses resort to design decisions and
optimization techniques that necessitate sound over-approximations. To terminate
within a sensible time budget, they sacrifice on precision aspects. For instance, flow-
insensitive analyses ignore control-flow ordering [SH97], field-insensitive analyses

1



over-approximate field accesses [YHR99], and context-insensitive analyses confuse
different calling contexts [Ruf95]. On the other hand, interestingly, sparsification
improves a data-flow analysis’ scalability while at the same time maintaining its
level of precision [Oh+12].

Sparsification is a well-established optimization technique in the literature for im-
proving the scalability of data-flow analyses [CCF91; Oh+12; HL11; SX16]. The
outcome of a target program’s data-flow analysis depends on how it generates and
transforms data of interest. Real-world programs contain many statements that
have no impact on data of interest, i.e., are irrelevant to the data-flow analysis
problem at hand. The crux of sparsification is restricting the analysis to the analysis-
relevant program statements. Relevance of statements is typically computed through
a cheaper pre-analysis phase [Shi+18; SX16; HL11], and then provided to the
downstream exhaustive data-flow analysis. Initial works in this domain include SSA-
based (static single assignment) sparse data-flow evaluation graphs [CCF91], and
abstract interpretation-based frameworks for designing generic sparse analyses with
precision-preserving guarantees [Oh+12]. Recent work on sparse IFDS [He+19]
has demonstrated that further sparsification is possible by exploiting the data-flow
facts that become available during the analysis runtime.

Sparse IFDS [He+19] sparsifies the data-flow analyses formulated within the IFDS
(Interprocedural, Finite, Distributive, Subset) framework [RHS95]. It has shown
that one can often greatly speed up data-flow analysis by computing data flows
not for every edge in the program’s control-flow graph but instead only along the
definition-use chains of the specific data-flow facts of interest. This yields a so-called
(data-flow) fact-specific sparsification. Fact-specific sparsification [He+19] has been
shown to "sparsify" IFDS-based taint analyses. It is extraordinarily effective because
the taint-state of one variable does not depend on those of others. This allows one
to soundly omit many flow-function computations.

1.1 Contributions

Figure 1.1 shows the essential components of precise interprocedural data-flow
analyses: 1 a data-flow solver to reason about interesting properties of a target
program, 2 a call graph to guide the solver through possible method calls, and 3 a
pointer analysis to reason about heap allocations. This thesis shows how to improve
the scalability of precise interprocedural data-flow analysis by considering all three
components from the perspective of sparsification.
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Figure 1.1: Components of Interprocedural Data-Flow Analysis

Interprocedural data-flow analysis frameworks like IFDS enable defining a data-
flow problem depending on the property that one wants to extract from a target
program. A target program is represented with an intermediate representation (IR),
typically in the form of a control-flow graph (CFG). The IR is generated by a program
analysis framework, which we omit in this diagram. All system components use the
same IR. The call-graph constructor builds a call graph (CG) to represent the calls
between different methods of the target program. The pointer analysis provides alias
information to the data-flow analysis solver, so it can reason about variables that
may point to the same memory location. Depending on the algorithm, the call-graph
constructor may also use the pointer information, and the pointer analysis utilizes
the call graph. The data-flow analysis solver utilizes all of this information to solve
the given data-flow problem in the form of data-flow facts.

Contribution 1: The SparseIDE Framework As the first contribution, this thesis
presents SPARSEIDE, a novel framework that realizes fact-specific sparsification for
any data-flow analysis that fits the IDE [SRH96] (Interprocedural Distributive Envi-
ronments) framework. Unlike IFDS, IDE comprises distributive problems with large
or even infinitely broad domains, such as typestate analysis [Fin+08; Li+22] or
linear constant propagation [Cal+86; Oct+16]. IDE models data-flow facts as en-
vironments [SRH96], which are mappings from symbols (often program variables)
to domain values. The IDE framework fits the data-flow analysis problems that go
beyond mere symbol reachability, i.e., when the values associated with symbols are
also interesting. For instance, a linear constant propagation analysis is interested in
finding the constant integer values program variables might hold, where the sym-
bol to value mapping at the statement x = 42 can be modelled with the mapping,
x 7→ 42. SPARSEIDE generalizes the recent work on sparse IFDS. It enables efficient
sparsification, even in the presence of arbitrarily large value domains. We also show
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the limits of sparsification in IDE: while one can effectively sparsify with respect
to static symbols, such sparsification cannot be performed with respect to dynamic
values. We formalize SPARSEIDE and show how this formalization also subsumes
IFDS-based data-flow analysis problems as a special case. Although IDE analyses
can only be sparsified with respect to symbols, SPARSEIDE yields significantly lower
runtimes and often also lower memory consumption compared to the original IDE.

Contribution 2: Call-Graph Precision’s Impact on Data-Flow Analysis Scalability The
IDE framework reduces data-flow analysis problems to graph reachability on an
exploded supergraph. The exploded supergraph is a data-flow graph induced by
the interprocedural control-flow graph (ICFG) for the whole program. Its nodes
are pairs of program statements and data-flow facts, and its edges correspond to
statements’ effects on the data-flow facts. Data-flow facts are considered to hold
at statements, if and only if they are reachable at those statements [SRH96]. In
the exploded supergraph, intraprocedural edges model symbol reachability within
method boundaries, whereas interprocedural edges model symbol reachability across
methods. Fact-specific sparsification, including SPARSEIDE and sparse IFDS[He+19],
only reasons about the intraprocedural edges. The interprocedural edges, on the
other hand, are obtained from a fixed call-graph algorithm, whose impact on the
downstream data-flow analysis is surprisingly neglected in the literature. As the
second contribution, this thesis presents an extensive empirical evaluation of call
graphs’ impact on data-flow analysis scalability. We assess the impact of 31 differ-
ent call graphs on IFDS-based data-flow analyses. We show that although precise
context-sensitive call graphs can be expensive to build, they significantly reduce the
total data-flow analysis runtimes and, in some cases, improve data-flow analysis
precision.

Contribution 3: Query-Specific Sparsification for Demand-Driven Pointer Analysis
To produce precise results, data-flow analyses must account for aliasing between
the symbols in a target program. To resolve aliasing, precise data-flow analyses rely
on pointer analyses, which are also hard to scale. Compared to exhaustive ones,
demand-driven pointer analyses promise improved scalability because they com-
pute alias information only when client data-flow analyses raise a demand. As the
third contribution, this thesis shows how fact-specific sparsification can be applied
to demand-driven pointer analysis. To this end, we introduce SPARSEBOOMERANG

as an extension to the BOOMERANG [Spä+16] pointer analysis framework. SPARSE-
BOOMERANG provides two sparsification strategies that utilizes information specific
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to the pointer analysis domain: a type-aware sparsification (TAS) and an alias-aware
sparsification (AAS). We show that SPARSEBOOMERANG, with both strategies, main-
tains the precision of BOOMERANG while improving its scalability.

1.2 Overview

In this thesis, we first show how fact-specific sparsification improves data-flow anal-
ysis scalability. Second, we show how the choice of call graph, as an orthogonal com-
ponent, significantly influences data-flow scalability. Third, we show how pointer
analysis, which is known to be a non-distributive problem, also benefits from fact-
specific sparsification when formulated as a distributive data-flow analysis prob-
lem.

The remainder of this thesis is structured as follows. Chapter 2 provides the back-
ground information upon which this thesis builds. It explains IFDS [RHS95] and
IDE [SRH96], the two popular data-flow analysis frameworks that solve a set of
(distributive) data-flow analysis problems. Moreover, it briefly introduces the con-
cepts of call-graph construction, demand-driven pointer analysis using BOOMERANG,
and sparse data-flow analysis. Chapter 3 introduces the SPARSEIDE framework
(Contribution 1), and explains how it is implemented, extending the HEROS IDE
solver [Bod12]. Chapter 4 presents the empirical evaluation of call-graph precision
impact on the data-flow analysis scalability (Contribution 2). Chapter 5 presents
SPARSEBOOMERANG (Contribution 3), and its two sparsification strategies that real-
ize fact-specific sparsification for pointer analysis at two granularity levels. Chapter 6
concludes this thesis.
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Background 2
This chapter presents the key concepts on which this thesis is based. This thesis
proposes novel techniques for improving the scalability of interprocedural data-flow
analyses. We first introduce data-flow analysis and its key concepts in Section 2.1.
We then explain interprocedural data-flow analysis and two state-of-the-art inter-
procedural data-flow analysis frameworks, IFDS [RHS95] and IDE [SRH96], in Sec-
tion 2.2. Interprocedural data-flow analysis requires call graphs to reason about
method invocations. Section 2.3 explains call-graph construction and its relevance
to data-flow analysis. Further, data-flow analyses require pointer information to
reason about the heap. Section 2.4 explains how pointer analysis can aid data-flow
analyses in producing precise results. Finally, Section 2.5 introduces the concept of
sparse data-flow analysis.

2.1 Data-Flow Analysis

Static data-flow analysis aims to understand the flow of certain data throughout
all possible executions of a program on all possible inputs [KSS09]. It does so with-
out executing the target program. Therefore, many concrete runtime values are
unknown during static data-flow analysis, e.g., due to incomputable expressions or
the nonexistence of program inputs and configuration options. By using a simple
analysis scenario as a motivating example, this section presents how static data-flow
analysis overcomes key challenges to producing useful information.

1 void main(String[] args){
2 String s = secret();
3 String p = s;
4 if(args[0]!=null){
5 s = "***";
6 }
7 log(s);
8 }

Figure 2.1: A simple case of information leak
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A simple case of information leak. Consider the example program in Figure 2.1.
The main method is provided with a list of arguments, args. A variable s is assigned
sensitive information returned by secret(). s then passes this information to p with
the assignment p = s. When the args[0] is set, s no longer contains the secret. In
the end, the program logs, i.e., prints to an external file, the content of s. Assume we
want to detect whether the secret information might be leaked when this program
is executed.

Which data should be tracked? In this example, the data of interest is the return
value of secret() and the statement that can potentially leak data is log(s). De-
tection of such leaks is formulated as a specific kind of data-flow analysis problem,
known as taint analysis [EL02]. Taint analysis needs to know about a set of source
and sink statements, where sources taint program variables, and a leak is detected
when tainted variables reach sinks [HCF05].

During program execution, concrete runtime values are computed, whereas during
data-flow analysis, it suffices only to compute the necessary information regarding
the data of interest. From the perspective of taint analysis, the concrete value re-
turned by secret() is irrelevant. The analysis only needs to know whether it is
sensitive information, i.e., a taint source. In data-flow analysis, this information is
typically encoded within an abstract domain [CC77], consisting of a partially or-
dered set (lattice) of possible domain elements. A taint analysis’s abstract domain
can be defined as L = {⊤,⊥}, where ⊤ denotes untainted and ⊥ tainted1. Data-flow
analysis associates program variables, i.e., the set of symbols D, with the abstract
domain values L. Such a mapping, i.e., d ∈ D and l ∈ L, where [d −→ l] constitutes
a data-flow fact. Since the value domain of taint analysis is a binary lattice, a more
compact representation only keeps track of the tainted symbols, e.g., the existence
of a symbol in the end signifies that it is tainted. This enables the data-flow facts to
be reduced to only D.

How to keep track of data? The definition of an abstract domain clarifies what kind
of data-flow facts an analysis can yield; for instance, a taint analysis concludes that
a subset of symbols is tainted. Next, the data-flow analysis needs to know about
the impact of program statements on data-flow facts. Impacts of statements are
represented with so-called data-flow functions. In taint analysis, flow functions can

1The reverse of this notation is also used in the literature, where ⊤ denotes tainted and ⊥ denotes
untainted. In this thesis, we prefer this notation after Sagiv, Reps, and Horwitz [SRH96]. They use
⊤ for an unknown value and ⊥ for a non-constant, i.e., the most sound state in integer constant
propagation analysis.
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generate, kill, or propagate a taint. For instance, the source statement s = secret()

generates the data-flow fact s, meaning after executing this statement, the sym-
bol s is tainted. Assume S is the set of data-flow facts before each statement, the
corresponding flow function is:

f(S) = S ∪ {s}

Similarly, the statement s = "***" kills the fact {s}, i.e., removes {s} from the set,
and can be shown with the flow function:

f(S) = S \ {s}

The statement p = s propagates the taint from s to p if s is tainted. Therefore, its
corresponding flow function is:

f(S) =

S ∪ {p} if s ∈ S

S \ {p}

How to account for all possible execution paths? Figure 2.2 shows the control flow
graph (CFG) of the example program in Figure 2.1. The expression args[0]!=null

has two successors, depending on the outcome of this expression; during program
execution, only one branch can be taken. On the other hand, during program analy-
sis, this expression cannot be computed because the input, i.e., args, simply cannot
be interpreted. Therefore, regardless of the outcome of the conditional expression,
data-flow analysis has to account for both cases. This necessitates a design decision:
should the analysis assume s may contain the secret, or only warn if and only if s
must contain the secret?

To err on the safe side, data-flow analyses often opt for a sound approximation.
Figure 2.2 contains an additional node ⊓ representing a merge point. To achieve a
sound result, the merge operation must be set union over the set of symbols D. As
a result, after the merge point, information from both branches can be combined,
i.e., {p, s} ∪ {p}, which yields {p, s}, and thus, the analysis detects a potential leak
at log(s).

2.1 Data-Flow Analysis 9



START

s = secret()

args[0]!=null

s = "***"

END

log(s)

{ }

{p,s}

{p,s}{p,s}

{p}

{p,s}

{p,s}

 p = s  

Figure 2.2: Control flow graph (CFG) of the code in 2.1

When to terminate the analysis? During program execution, infinite loops may oc-
cur; they are sometimes even required, for instance, for operating systems, which
should run indefinitely. On the other hand, data-flow analyses are expected to ter-
minate. Assume replacing if(args[0]!=null) with while(args[0]!=null) in the
example program in Figure 2.1, causing an infinite loop while the condition holds.
Since the data-flow analysis is only interested in data-flow fact computations in
the abstract domain, it can safely ignore redundant iterations that do not alter the
analysis state regarding this domain. The maximal fixed-point (MFP) algorithm in
the monotone framework [KU77] proposes a solution for such computations. MFP
solution is guaranteed to be a sound approximation of the ideal solution, which is
known as the meet over all paths (MOP) solution [KU77]. MOP describes a solution
where data-flow equations for all the different paths in a target program are solved
individually, which is incomputable for monotone frameworks [KU77].

Assuming n0 is the entry node of a method’s CFG, fn is the flow function correspond-
ing to node n, and pred(n) returns the predecessors of n in the CFG. The maximal
fixed-point solution is defined as:

MFP(n0) = initial value

MFP(n) = ⊓{fp(MFP(p)) | p ∈ pred(n)}
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Monotone data-flow frameworks are defined as M = (L,⊓, F ), where L is a finite-
height semi-lattice with meet operator ⊓, F is the set of monotone flow functions
associated with L, that satisfies the monotonicity condition [KU77]:

∀x, y ∈ L. ∀f ∈ F : f(x) ⊓ f(y) ⊏ f(x ⊓ y) (2.1)

This condition ensures that merging data-flow facts from different branches and
then applying the following flow function leads to a safe approximation of applying
the flow functions and then merging the resulting facts. For instance, in the taint
analysis domain, L = {⊤,⊥}, where ⊤ corresponds to untainted and ⊥ corresponds
to tainted, a safer approximation is to prefer ⊥ over ⊤, i.e., the least element in
this lattice. This ensures soundly maintaining a possible taint under uncertainty.
In this case, being sound means assuming a data-flow fact is tainted if it may be
tainted. Although such a sound approximation leads to precision loss, it enables
computability by allowing one to merge data-flow facts as soon as possible instead
of maintaining different sets of data-flow facts for each possible path in a CFG.

2.2 Interprocedural Data-Flow Analysis

The monotone framework we explained in the previous section has historically been
applied to intraprocedural data-flow analysis problems, typically for compiler op-
timization [Kil73]. While intraprocedural data-flow analysis focuses on obtaining
data-flow information from individual procedures, interprocedural data-flow anal-
ysis connects such information to reason about the whole program. It does so by
summarizing procedure-level information, and plugging them in their respective
call sites [Bar78]. Interprocedural data-flow analysis requires reasoning about the
data flows in the presence of method invocations. An inherent challenge of han-
dling method invocations is distinguishing different calling contexts, i.e., context-
sensitivity. This section explains IFDS (Interprocedural, Finite, Distributive, Sub-
set) [RHS95] and IDE (Interprocedural Distributive Environments) [SRH96] frame-
works for interprocedural flow- and context-sensitive data-flow analysis.
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2.2.1 IFDS

IFDS [RHS95] represents data-flow analysis problems as graph reachability on an
exploded supergraph, whose nodes are pairs of program statements and data-flow
facts. The individual edges in the exploded supergraph constitute flow functions; they
show each statement’s effect on each data-flow fact’s reachability. A flow function
determines whether a data-flow fact is being generated, propagates to the next
statement, spawns another fact, or gets killed.

Both IFDS and IDE exploit the distributivity property of certain types of data-flow
analysis problems. Such problems are a subset of those that can be defined with the
monotone framework. Following the Equation 2.1, distributivity property is defined
as:

∀x, y ∈ L. ∀f ∈ F : f(x) ⊓ f(y) = f(x ⊓ y) (2.2)

This condition ensures that the MFP solution, i.e., merging data-flow facts from
different branches and then applying the following flow function leads to the same
result as the MOP solution, i.e., applying the flow functions and then merging the
resulting facts. This important property allows one to generate compact procedure
summaries, which speeds up the analysis.

fid: λS.S fgen: λS.(S ∪ {a}) fas: λS.if a ∈ S: (S ∪ {b}) else (S \ {b})
Λ

Λ

a

a

Λ

Λ

a

a

Λ

Λ

a

a

b

b

Figure 2.3: Flow functions (reproduced from [RHS95]).

Flow function syntax. Figure 2.3 shows how the flow functions are represented as
edges in the exploded supergraph. To define the flow functions we use the following
notation: fn : λS.S′, where fn is the name of the flow fuction for the statement n,
S is the set of data-flow facts before n, and S′ shows the the impact of n on S.

In Figure 2.3, the data-flow fact above the edge means that it holds before applying
the function; the fact below means that it holds after. A special fact, Λ, holds always.
Facts connected to it are newly generated. The identity function, fid, leaves data-
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flow facts unchanged. The function fgen shows the case where data-flow fact a is
being generated. The function fas shows how the existing fact, a creates another
fact, b, e.g., at an assignment, b = a.

2.2.2 IDE

The IDE [SRH96] framework generalizes the IFDS [RHS95] framework by comput-
ing environments, i.e., mappings from program symbols to data-flow analysis domain
values. It does so in two phases: first, it determines whether symbols are reachable,
just like IFDS, and then computes their values. IDE achieves this by annotating the
individual exploded supergraph edges with so-called edge functions, which constitute
environment transformers.

eid: λenv.env eval: λenv.env[a 7→ 3] eop: λenv.env[b 7→ 2 ∗ env(a) + 1]
Λ

Λ

λl.l

a

a

λl.l

Λ

Λ

λl.l

a

a

λl.3

Λ

Λ

λl.l

a

a

λl.l

b

b

λl.2 ∗ l + 1

Figure 2.4: Edge functions (reproduced from [SRH96]).

Edge function syntax. Figure 2.4 shows how the edge functions annotate the edges
in the exploded supergraph. To define the edge functions we use the following
notation: en : λenv.env′, where en is the name of the edge fuction for the statement
n, env is the environment, i.e., a set of mappings from data-flow facts to domain
values, before n, and env′ shows the the impact of n on env.

In Figure 2.4, The environment transformer eid keeps the values as they are. eval

shows the case where data-flow fact, a is mapped to a domain value, e.g., through
a constant assignment, a = 3. eop shows how the value of b is calculated depending
on the value of a, e.g., through a linear arithmetic operation, b = 2*a + 1. IDE can
only compute linear equations precisely.

IFDS and IDE apply to a wide class of data-flow analysis problems. IFDS requires
data-flow problems to be defined with distributive flow functions over the meet
operator. Many reachability problems, such as taint, reaching definitions, or live
variables analysis, fall into this category. IDE, on the other hand, also requires data-
flow problems to be expressed with distributive environment transformers. IFDS
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suits better the problems with a binary value domain, e.g., taint analysis where the
domain simply consists of two values, tainted or not tainted [Arz+14]. It has been
applied to more complex domains, e.g., for typestate analysis where the domain
contains arbitrary object states [NL08]. The drawback of IFDS is that it forces one
to represent non-trivial data-flow facts as symbol-value pairs. This blows up the
data-flow fact space with the increasing domain size. Because of this representation,
IFDS’s runtime performance not only depends on the size of the set of symbols, but
also on the size of the value domain. Figure 2.5 shows a comparison of the binary
domain for taint analysis and the integer domain for constant propagation analysis.
In the case of taint analysis it suffices for IFDS to associate each corresponding
symbol with the taint state (⊥). However, in the case of integer constant propagation
analysis, it needs to associate each corresponding symbol with all the possible integer
values it might be take.

⊥

⊤
..., -1, 0, 1, ...

Unknown

Non-constant

⊤

⊥

Not Tainted

Tainted

(a) Binary Domain (b) Integer Domain

Figure 2.5: Comparison of Lattices for the Domains of Taint Analysis and Integer Constant
Propagation Analysis

Figure 2.6 shows a comparison of the data-flow graphs that IFDS and IDE would
generate during the integer constant propagation analysis of a simple loop that
increments an integer. Theoretically IFDS may not terminate when the value domain
is infinitely broad because with each iteration it would generate a new data-flow fact
as a symbol-value pair. For instane, in Figure 2.6, the symbol i is being associated
with a different integer value with each iteration. IDE, on the other hand, restricts
data-flow facts to static symbols and computes their (approximated) runtime values
using the edge functions along the path where the symbols are reachable in the
exploded supergraph. IDE’s representation is more efficient than that of the IFDS.
Therefore, although IDE-based analysis may also apply the edge functions multiple
times, e.g., to merge to some larger interval, it does not lead to generating new data-
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inc(){
 
  i = 0

  while(){
    
    i++
  
  }

  return i
}

0

1st iteration

(i,0) (i,1) (i,2) (i,3) 0 i

λl.0

λl.l+1 

λl.l

λl.l

λl.l

2nd iteration 3rd iteration

(i,n)

nth iteration

...

(a) IFDS (b) IDE

Figure 2.6: Comparison of Data-Flow Graphs for Integer Constant Propagation Analysis
using IFDS and IDE

flow facts with each iteration. The advantage of IDE over IFDS is that it can terminate
efficiently even with infinitely broad value domains—only the set of symbols must
be finite2.

2.3 Call-Graph Construction

A call graph is a special kind of data structure that represents method calls that
might occur during the execution of a target program. Its nodes model the meth-
ods, and the edges between the methods model the possible invocations between
them. As shown in Figure 1.1, call-graph construction is an integral component of
interprocedural data-flow analysis.

Due to language features and limitations of statically computable information, static
call-graph construction has to approximate when resolving potential callees at a call
site. For instance, object-oriented languages like Java allow polymorphic calls on
interface instances, whose exact receiver object is only known at runtime.

Figure 2.7 shows the inference rules for generic call-graph construction. R is the
set of reachable methods. Rule ENTRY states that entry methods are reachable.
Rule CALL states that if a method m is reachable, contains a call site s in the form
b.foo(...), and resolvePotentialCallee(foo) can resolve a method m′, there exists an

2Further information on this can be found at https://www.youtube.com/watch?v=0uMHX3UY9bg
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m ∈ E, E is the set of entry methods
m ∈ R

ENTRY

m ∈ R call site s : b.foo(. . .) in method m
resolvePotentialCallee(foo) = m′

s→ m′
CALL

s→ m

m ∈ R
REACHABLE

Figure 2.7: Inference rules for generic call-graph construction (adapted from [Ali+14])

edge from s to m′. m′ is a static approximation of foo depending on the underly-
ing call-graph algorithm used in resolvePotentialCallee(). Finally, rule REACHABLE

states that if there is an edge from a call site s to a method m, m is reachable.

A target program’s call graph essentially steers the data-flow analysis solver through
different calling contexts, i.e., the snapshot of the call stack at run time [KSS09].
Therefore, the call graph potentially also impacts the performance of the data-flow
analysis. In this thesis, we empirically investigate the impact of call-graph precision
on interprocedural data-flow analysis.

2.4 Demand-Driven Pointer Analysis

Pointer analysis determines which program variables can point to which objects
at runtime. It is required in real-world analysis problems where multiple program
variables frequently point to the same object. Two variables that point to the same
object are called aliases. Such alias information is crucial for a precise data-flow
analysis to track indirect data-flows through the aliases. Pointer analysis is not
distributive [Ram94] at an assignment x.f = t; one must assign aliases of t to the
f-fields of all the aliases of x. For this reason, one cannot usually soundly handle
all aliases independently, and distributive frameworks like IFDS and IDE are not
applicable by default.

As opposed to exhaustive pointer analysis, demand-driven pointer analysis [HT01]
is performed only for variables on which a demand, e.g., a pointer or alias query,
is raised. It computes just enough information to satisfy the query. Interestingly, as
Späth et al. showed [Spä+16], one can decompose a flow-sensitive pointer analysis
such that when queries raise sub-queries at “points of indirection” (POI), e.g., at
reads and writes to/from the heap, the evaluation of those sub-queries does become
a distributive and thus distributively solvable analysis problem.
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foo(){

   

L1:   A a1 = new A();

   

L2:   A a2 = a1;

   

L3:   a1.f = source();

   

L4:   sink(a2.f);


}


0 a1.f a2.f

Pointer
Analysis

query

alias query / information

taint analysis with alias information

Figure 2.8: Data-Flow Graphs for Taint Analysis with Alias Information (Simplified
from [Spä+16])

Figure 2.8 shows the data-flow graphs that a taint analysis would produce with
alias information. At line L1, a1 is being assigned with an instance of A. At L2, a2
and a1 alias through an assignment. At L3, a1.f points to sensitive information, i.e.,
tainted by a taint source, which implicitly causes a2.f to hold the same information
at runtime. Therefore, to be sound, the static data-flow analysis has to taint both
a1.f and a2.f. To know that the analysis must taint a2.f at L3, it must know that
a1 and a2 alias at that point. Pointer analyses provide such information.

BOOMERANG [Spä+16] is a state-of-the-art context-, flow-, and field-sensitive stand
alone demand-driven pointer analysis. It allows data-flow analyses to query alias in-
formation at program locations where the aliases of variables need to be considered,
for instance, at field store and load statements. In this thesis, we use BOOMERANG to
resolve aliases during data-flow analysis, and also improve BOOMERANG’s scalability
through sparsification.

2.5 Sparse Data-Flow Analysis

Data-flow analyses can be instantiated to solve a wide range of analysis problems.
Depending on the problem, flow functions, which model the effects of the program
statements, differ. For instance, the effects of arithmetic operations are important for
constant propagation analysis, but not for taint analysis. Sparsification approaches
can speed up the analysis by instructing it to ignore statements that have no effect
in the context of that particular analysis problem.
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The sparsification techniques presented in this thesis are based on the state-of-the-art
fact-specific sparsification by He et al. [He+19]. In data-flow analysis, flow functions
that do not affect any facts at a given statement are known as id functions. During
data-flow analysis, many non-id flow functions, in fact, behave as fact-specific id func-
tions: while they may affect some data-flow facts, they are irrelevant to many others.
Because IFDS, due to its distributivity, evaluates data-flow facts independently of
each other, one can, during the evaluation of a data-flow fact d, safely disregard
a flow function f if it is a d-specific identity function. Using this observation, He
et al. [He+19] introduced the sparse IFDS algorithm, which includes fact-specific
sparsification: it creates on-demand SCFGs specific to each data-flow fact that is be-
ing propagated. Facts are propagated to their next use point within their individual
SCFGs. The original IFDS algorithm [RHS95] instead propagates data-flow facts
to all reachable program points. Fact-specific sparsification is explained in detail in
Section 3.3.

Although the main idea of sparsification is widely accepted in the literature, there is
no agreement on a common term that defines the sparse graph. In previous works,
it is referred to as Sparse Evaluation Graph (SEG) [CCF91], Compact Evaluation
Graph [Ram02], Sparse Value-Flow Graph (SVFG) [SYX12], and Sparse Control-Flow
Graph (SCFG) [He+19]. This thesis uses the term "SCFG" to refer to such sparse
graphs.
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SPARSEIDE: Symbol-Specific
Sparsification of IDE
Problems

3

This chapter introduces the first major contribution (Contribution 1) of this thesis,
SPARSEIDE, a novel framework that realizes fact-specific sparsification for data-flow
analysis problems that can be modeled within the IDE (Interprocedural Distributive
Environments) framework [SRH96]. This also subsumes all the problems that fit the
IFDS (Interprocedural, Finite, Distributive, Subset) framework [RHS95], as a special
case. In the context of IDE, instead of the term fact-specific, we use symbol-specific,
which better represents the approach, as the sparsification can only be done with
respect to symbols, and not to their associated values.

IDE (Interprocedural Distributive Environment) [SRH96], with its extensions [NLR10;
AB14; SAB17], is a state-of-the-art, precise interprocedural static analysis frame-
work. It covers a wide class of data-flow problems ranging from variations of classi-
cal taint analysis [JKK06] to typestate [Fin+08; Li+22] and constant propagation
[Oct+16] analyses. IDE represents data-flow analysis problems on an exploded su-
pergraph and models data-flow facts as environments. Environments are mappings
from symbols (often program variables) to domain values. The exploded supergraph
is a data-flow graph induced by the interprocedural control-flow graph (ICFG) for
the whole program. Its nodes are pairs (s, d) of program statements and data-flow
facts. A data-flow fact d holds at a statement s if in the exploded supergraph the
corresponding node (s, d) is reachable from the start node. The edges of the ex-
ploded supergraph represent the effects of program statements on a data-flow fact.
IDE computes over the exploded supergraph by tracking all data-flow facts densely
across all program points. As previous work [He+19; Arz21; Li+21; Yu+20] has
shown, this approach does not scale well for large-scale real-world programs. A key
observation is, however, that in practice, many program statements do not affect the
analysis result. Such statements thus can be safely ignored, e.g., by sparsifying the
exploded supergraph.
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Sparsification is a well-known technique for scaling data-flow analyses [Shi+18;
SX16; HL11; Oh+12; Sui+11; HL09] while still maintaining their precision. Sparsi-
fication approaches create sparse versions of the original CFGs of a target program by
removing statements irrelevant to the analysis and then computing over the sparse
CFGs. Recent work on on-demand sparsification [He+19] improves data-flow anal-
ysis performance further by utilizing the information available during the analysis.
It accelerates taint analysis by computing over sparse CFGs specialized to individ-
ual data-flow facts. Yet, it demonstrates sparsification on IFDS-based problems that
focus on mere symbol reachability, without considering value computation.

3.1 Motivation

The IFDS [RHS95] framework is the “small brother” of IDE. It reduces the data-
flow analysis problems to a pure graph reachability problem. Yet, IFDS is limited
to data-flow problems with finite domains: all IFDS problems can be encoded as
IDE problems, but only a subset of IDE problems can be encoded as IFDS prob-
lems [SRH96]. Consider the statement a = a + 1 as an example. Here, using IFDS,
one can encode a simple taint analysis inferring that a is tainted/reachable after the
statement if and only if it was previously tainted/reachable. Efficient computation
of a’s numeric value, however, requires one to compute values within the infinitely
broad domain of integers, going beyond pure reachability.

As we show, this has implications for sparsification: while the statement a = a + 1

can be safely considered irrelevant w.r.t. a’s reachability, and will be disregarded in
sparsification approaches for IFDS [He+19], it is a relevant statement when con-
stant propagation is considered: it changes a’s value. This observation is not limited
to constant propagation analysis; it applies to other data-flow analysis problems
that require value mappings. For instance, a sparse typestate analysis must retain
statements that alter a symbol’s associated state value. The recent work on SPARSE-
DROID, i.e., on sparse IFDS [He+19], does not generalize to handle such cases. This
motivated us to investigate whether fact-specific sparsification can be generalized to
the IDE framework, enabling efficient sparsification, even in arbitrarily large value
domains.
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3.2 Contributions

In this chapter, we formalize SPARSEIDE, and show how this formalization also cov-
ers IFDS data-flow analysis problems as a special case. We implement SPARSEIDE in
a tool called SPARSEHEROS, extending the popular HEROS IDE solver [Bod12]. We
compare both implementations in terms of performance and show that sparsifica-
tion maintains correctness. To this end, we implement a linear constant propagation
analysis client that uses both implementations. To validate SPARSEHEROS’s correct-
ness, we run both on CONSTANTBENCH, a novel microbenchmark suite for integer
linear constant propagation analysis. To evaluate its performance impact, we run
the analysis client on real-world Java libraries using both HEROS and SPARSEHEROS.
The analysis client produces the same results in both cases while terminating signif-
icantly faster when using SPARSEHEROS.

To summarize, this chapter presents the following original contributions:

• A formalization of SPARSEIDE and its implementation in SPARSEHEROS on top
of HEROS and SOOT [Val+99],

• its correctness evaluation on the CONSTANTBENCH micro-benchmark suite for
linear constant propagation analysis, and

• its performance evaluation on real-world Java libraries.

3.3 Fact-Specific On-Demand Sparsification

Data-flow analysis techniques aim to produce precise results while remaining scal-
able within a reasonable time budget. Techniques that prioritize scalability often
resort to sacrificing precision aspects: flow-insensitive analyses ignore control-flow
ordering [YSX14], field-insensitive analyses approximate field accesses [Deu94], and
context-insensitive analyses do not distinguish different calling contexts [Li+20].
Sparse data-flow analyses, on the other hand, often improve a dense data-flow anal-
ysis’s scalability while maintaining its precision. They sparsify a target program’s
control-flow graph by removing program statements that provably do not affect
the analysis result. Sparsification often uses a cheaper pre-analysis stage to aid a
more expensive analysis [Shi+18; SX16; HL11]. Recent on-demand sparse data-flow
analyses sparsify further by exploiting the information that is only available during
analysis runtime [He+19]. In this context, there exist no explicit demand in the
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sense of demand-driven program analysis. The technique is called on-demand be-
cause the control-flow graphs are sparsified only when a data-flow fact needs to be
propagated, therefore, the demand implicitly originates from the data-flow analysis
itself.

When IFDS and IDE compute a data-flow fact’s reachability, starting from the state-
ment that generates the data-flow fact, they propagate it along all statements as long
as it is not killed. At each statement, they check whether the statement is relevant
for all the data-flow facts that have reached it. Figure 3.1 shows how the reachability
is computed for an example constant-propagation analysis setting. The fact-specific
id edges and non-id edges show the edges that IFDS and IDE create when propagat-
ing data-flow facts. The data-flow facts actually only need to be propagated to the
required nodes. For instance, data-flow fact a only needs to propagate to the state-
ment b = a;, all other statements are irrelevant to the taint status of a. Similarly,
b only needs to propagate to the statement, c = b + 1. Based on this observation,
He et al. [He+19] introduced the sparse IFDS algorithm in their implementation
SPARSEDROID. Instead of propagating all the data-flow facts to the next statement,
it propagates them simply to the next statement that uses the respective fact. Sparse
IFDS keeps all non-id edges and replaces the fact-specific id edges with sparse id edges,
effectively keeping all required nodes and skipping over all redundant nodes.

int foo(){
 
  a = 1

  b = a

  x = new X()

  c = b + 1

  x.f = "_"

  d = c

  return d
}

Λ a b c d

fact-specific id edges
non-id edge

sparse id edges

required node

redundant node

Figure 3.1: Original and sparse propagations after applying fact-specific on-demand sparsi-
fication.
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Fact-specific on-demand sparsification allows effective propagation of the data-flow
facts along the sparse CFGs specific to them. This is not limited to data-flow anal-
ysis. In Chapter 5, we also apply it to pointer analysis, where the variable in alias
queries is treated as the initial data-flow fact and propagated along its query-specific
sparse CFGs. Fact-specific on-demand sparsification has only been applied to the
analysis problems that deal with fact reachability. With SPARSEIDE, we expand the
scope of fact-specific on-demand sparsification to include the data-flow analyses
that compute over an additional value domain, specifically IDE.

3.4 Symbol-specific On-Demand Sparsificiation with
SparseIDE

In this section, we first explain the original IDE algorithm [SRH96] in detail. We
then introduce the SPARSEIDE algorithm by highlighting the modifications to the
original IDE algorithm.

3.4.1 The Original IDE Algorithm

Sagiv et al. [SRH96] define an IDE problem instance formally as IP = (G∗, D, L, M),
where

• G∗ is the program supergraph (ICFG), which consists of control flow graphs
(CFG), Gp of individual procedures,

• D is a finite set of program symbols,

• L is a finite-height lattice (which can be infinitely broad), and

• M : E∗
d−→ (Env(D, L) → Env(D, L)) is an assignment of distributive

environment transformers to the edges of G∗.

The original IDE algorithm [SRH96] solves such an IDE problem, IP , in two phases.
In Phase I, it creates the jump functions that show the reachability of each d ∈ D, by
assuming that their initial mappings to L are always λl.⊤. In Phase II, it computes
each d’s actual value mapping to L by evaluating the edge functions defined in M .
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1 Function ForwardComputeJumpFunctionsSLRPs():

2 for ⟨sp, d′⟩, ⟨m, d⟩ s.t. m occurs in proc. p and d′, d ∈ D ∪ {Λ} do

3 JumpFn(⟨sp, d′⟩ → ⟨m, d⟩) = λl.⊤
4 for corresponding call-return pairs (c, r) and d′, d ∈ D ∪ {Λ} do

5 SummaryFn(⟨c, d′⟩ → ⟨r, d⟩) = λl.⊤
6 PathWorkList := {⟨smain, Λ⟩ → ⟨smain, Λ⟩}
7 JumpFn(⟨smain, Λ⟩ → ⟨smain, Λ⟩) := id

8 while PathWorkList ̸= ∅ do

9 Select and remove an item ⟨sp, d1⟩ → ⟨n, d2⟩ from PathWorkList
10 let f = JumpFn(⟨sp, d1⟩ → ⟨n, d2⟩)
11 switch (n) do

12 case n is a call node in p, calling a procedure q do

13 for d3 s.t. ⟨n, d2⟩ → ⟨sq, d3⟩ ∈ E# do

14 Propagate(⟨sq, d3⟩ → ⟨sq, d3⟩, id)

15 let r be the return-site node that corresponds to n

16 for d3 s.t. e = ⟨n, d2⟩ → ⟨r, d3⟩ ∈ E# do

17 Propagate(⟨sp, d1⟩ → ⟨r, d3⟩, EdgeFn(e) ◦ f)

18 for d3 s.t. f3 = SummaryFn(⟨n, d2⟩ → ⟨r, d3⟩) ̸= λl.⊤ do

19 Propagate(⟨sp, d1⟩ → ⟨r, d3⟩, f3 ◦ f)

20 case n is the exit node of p do

21 for call node c that calls p with corresponding return-site node r do

22 for d4, d5 s.t. ⟨c, d4⟩ → ⟨sp, d1⟩ ∈ E# and ⟨ep, d2⟩ → ⟨r, d5⟩ ∈ E# do

23 let f4 = EdgeFn(⟨c, d4⟩ → ⟨sp, d1⟩) and

24 f5 = EdgeFn(⟨ep, d2⟩ → ⟨r, d5⟩) and

25 f ′ = (f5 ◦ f ◦ f4) ⊓ SummaryFn(⟨c, d4⟩ → ⟨r, d5⟩)
26 if f ′ ̸= SummaryFn(⟨c, d4⟩ → ⟨r, d5⟩) then

27 SummaryFn(⟨c, d4⟩ → ⟨r, d5⟩) := f ′

28 let sq be the start node of c’s procedure

29 for d3 s.t. f3 = JumpFn(⟨sq, d3⟩ → ⟨c, d4⟩) ̸= λl.⊤ do

30 Propagate(⟨sq, d3⟩ → ⟨r, d5⟩, f ′ ◦ f3)

31 case n is an intraprocedural node in p do

32 for ⟨m, d3⟩s.t.⟨n, d2⟩ → ⟨m, d3⟩ ∈ E# do

33 Propagate(⟨sp, d1⟩ → ⟨m, d3⟩,
34 EdgeFn(⟨n, d2⟩ → ⟨m, d3⟩) ◦ f)

35

36 Function Propagate(e, f):

37 let f ′ = f ⊓ JumpFn(e)
38 if f ′ ̸= JumpFn(e) then

39 JumpFn(e) := f ′

40 Insert e into PathWorkList

Figure 3.2: The original IDE algorithm for Phase I (reproduced from [SRH96]).
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According to Sagiv et al. [SRH96], the total cost of the IDE algorithm is bounded by
O(|E||D|3), which is the cost of Phase I. Since D is the set of symbols that belong
to the target program, it is out of scope for sparsification. We, therefore, apply our
sparsification approach in Phase I, where the jump functions are created by reducing
E, the set of edges. Phase II is oblivious to how the jump functions are created—it
automatically benefits from the sparsification of Phase I.

Figure 3.2 shows the algorithm for Phase I. Each procedure p’s CFG, Gp consists of a
start node sp, an exit node ep, and normal (non-call) nodes m or n. Procedure calls
are represented with two nodes: the call-site node c denotes the point right before
the procedure call, and the return-site node r denotes the point right after. Program
symbols, e.g., variables, access paths, etc., are denoted with d′, d ∈ D ∪ {Λ} in-
cluding the special symbol Λ. Λ is required for generating new symbols at arbitrary
program points.

Initialization. In lines 2–5, jump and summary functions are initialized. Jump func-
tions, denoted by JumpFn, correspond to the same-level realizable paths (SLRPs)
from the start node sp of a procedure p to a node m in p. Summary functions, de-
noted by SummaryFn, summarize the effect of a procedure call through same-level
realizable paths from the call-site c to return-site r. In line 3, JumpFn(⟨sp, d′⟩ →
⟨m, d⟩) = λl.⊤ states that the jump function from the node ⟨sp, d′⟩ to each ⟨m, d⟩
is initialized to λl.⊤. In line 5, SummaryFn(⟨c, d′⟩ → ⟨r, d⟩) = λl.⊤ states that the
summary function from each call-site node ⟨c, d′⟩ to its corresponding return-site
⟨r, d⟩ is initialized to λl.⊤. Line 6 initializes the PathWorkList to {⟨smain, Λ⟩ →
⟨smain, Λ⟩} representing a self-loop edge on the start node of the main procedure
whose jump function is the identity function, id. The jump function from the start
node sp until the current statement n is denoted with f .

Call nodes. Lines 12-19 handle the case where n is a call-site node in p, calling a
procedure q. In line 14, the self-loop edge on the start node of the callee procedure
q is initialized with id. In line 17, the edge from sp the corresponding return-site r is
computed by composing the f , the jump function until n and the edge function from
n to r. In line 19, the edge from sp the corresponding return-site r is computed by
composing f and f3, the corresponding summary function when it is not mapping
to ⊤.
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Exit nodes. Lines 20-30 handle the case where n is the exit node of p. Edges from
each call-site node c to the start node sp (shown with f4) and from the exit node,
ep to each caller’s return-site r (shown with f5) must be computed. In line 25, a
new summary function f ′ is computed by composing f5, f , and f4 and merging the
existing summary function for the same c and r. When it is a new summary, a new
jump function is computed from the caller procedure’s start node sq to the node
return-site node r by composing the f ′ with the existing jump function f3 from sq

to call-site node c.

Normal nodes. Lines 31-33 handle the case where n is a non-call or intraprocedural
node. Edges from the start node sp to each node m, which is the statement that
appears directly after n in procedure p, are computed by composing the edges from
sp to n (shown with f) and the edges from n to m.

3.4.2 The SparseIDE Algorithm

In the original IDE algorithm, each symbol d ∈ D ∪ {Λ} at a statement n is propa-
gated to its direct successor statement m. As also pointed out in previous work [He+19],
this behavior is desired when n is a call and exit node. For these nodes, the reachabil-
ity of each d in different contexts is left to the data-flow function definition. call-flow
functions propagate each d into the context of the callee procedure. return-flow func-
tions propagate each d back to the context of the caller procedure. call-to-return-flow
functions propagate each d from before a procedure is called to after the procedure
is called. However, when n is a non-call node, each d can safely be propagated to
d’s next use statement.

Figure 3.3 shows the modifications for the SPARSEIDE algorithm for Phase I. We
replace line 17 from the original IDE algorithm with lines 17-19 in the SPARSEIDE
algorithm. Instead of propagating d3 to the direct return site node r, we obtain
r′, which is the next use statement of d3 in its symbol-specific sparse control flow
graph. Similarly, we replace line 33 with lines 33-35, to propagate d3 to its next use
statement m′, its sparse control flow graph. Our sparsification approach mirrors that
of sparse IFDS algorithm [He+19], however, since we generalize it to IDE, we also
account for edge function composition.
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1 Function ForwardComputeSparseJumpFunctionsSLRPs():

2 . . .

8 while PathWorkList ̸= ∅ do

9 Select and remove an item ⟨sp, d1⟩ → ⟨n, d2⟩ from PathWorkList
10 let f = JumpFn(⟨sp, d1⟩ → ⟨n, d2⟩)
11 switch (n) do

12 case n is a call node in p, calling a procedure q do

13 . . .

15 let r be the return-site node that corresponds to n

16 for d3 s.t. e = ⟨n, d2⟩ → ⟨r, d3⟩ ∈ E# do

17 let r′ = NextUse(p, d3, r)

18 Propagate(⟨sp, d1⟩ → ⟨r′, d3⟩,
19 EdgeFn(⟨n, d2⟩ → ⟨r, d3⟩) ◦ f)

20 . . .

31 case n is an intraprocedural node in p do

32 for ⟨m, d3⟩s.t.⟨n, d2⟩ → ⟨m, d3⟩ ∈ E# do

33 let m′ = NextUse(p, d3, n)

34 Propagate(⟨sp, d1⟩ → ⟨m′, d3⟩,
35 EdgeFn(⟨n, d2⟩ → ⟨m, d3⟩) ◦ f)

36

41 Function NextUse(p, d, n):

42 let Gp,d be the sparse CFG of d in procedure p

43 let C be the sparse CFG cache with (p, d) typed keys and Gp,d as values

44 if Gp,d /∈ C then

45 construct Gp,d and add to C

46 return the next statement after n from Gp,d

Figure 3.3: Modifications for SPARSEIDE algorithm for Phase I (mirrors the design from
[He+19]).

3.4.3 Sparse IFDS Revisited

As shown in Figure 3.1, a statement can behave as identity function, meaning it does
not affect any data-flow fact, d ∈ D. However, as shown by He et al. [He+19], many
statements only affect a few data-flow facts, often even just a single fact. Their flow
functions can be considered fact-specific identity functions for the facts that they do
not affect. Sparse IFDS defines fact-specific identity functions as follows [He+19]:

Given a symbol, d ∈ D and a flow function, f ∈ 2D → 2D, f is a d-specific identity
function if the following conditions hold:
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int bar(){
 
  a = 2

  a = 3

  a = a + 1

  b = a

  return b
}

Λ a b

fact-specific id edges
non-id edge

sparse id edges

required node

redundant node

Λ a b

λl.2

λl.l+1 

λl.3

λl.l

(a) Sparse IFDS (b) SPARSEIDE

Figure 3.4: Comparison of the Sparsification Approaches of Sparse IFDS and SPARSEIDE

∀X ∈ 2D : d ∈ X ⇒ d ∈ f(X) (1.1)

∀X ∈ 2D\{d} : f(X) \ {d} = f(X ∪ {d}) \ {d} (1.2)

Condition 1.1 states that d is not affected by other facts when applying f , and
1.2 states that d does not affect the other facts when applying f . However, these
conditions only apply to symbols from D and ignore mappings from D to the value
domain L, and, if applied to IDE problems, one would wrongly treat such flow
functions that are annotated with non-identity edge functions as d-specific identity
functions as well.

Figure 3.4 shows two important cases where sparse IFDS would sparsify incorrectly.
First, reassignments: a = 3 reassigns a, but sparse IFDS recognizes that a already
exists (is “tainted”), and therefore it treats this statement as a-specific identity. Sec-
ond, value updates: a = a + 1 updates a’s value, but sparse IFDS has no notion
of values; therefore, from its perspective, this statement is “identity” as well. SPAR-
SEIDE, on the other hand, is aware of the effects on the value domain and retains
both statements.
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3.4.4 Fact-Specific Identity Transformers

To generalize fact-specific sparsification to the IDE framework, we define symbol-
specific identity transformers that take into account the environments that map
the symbols from domain D to the values from domain L. Given a symbol d ∈ D

and a value l ∈ L, env = [d 7→ l] is an environment env mapping from d to
l, i.e., env(d) = l. Then env is an element of the set of environments Env(D, L).
An environment transformer, t ∈ Env(D, L) → Env(D, L) is a d-specific identity
transformer, denoted by t ≡ td, if the following holds: First, the transformer t keeps
all d-specific mappings intact:

given d ∈ D : ∀env ∈ Env(D, L) :

env(d) = t(env)(d) (2.1)

Second, for all other mappings, t produces identical results no matter whether or
not d-specific mappings are present:

given d ∈ D : ∀env ∈ Env(D, L). ∀d′ ∈ D \ {d}. ∀l ∈ L :

t(env)(d′) = t(env[d 7→ l])(d′) (2.2)

We test the edge functions from Figure 2.4 under these conditions. eid is an a-specific
identity transformer (eid ≡ ea

id), because applying λenv.env does not change a’s
previous mapping. eval is not an a-specific identity transformer (eval ̸≡ ea

val), because
applying λenv.env[a 7→ 3] changes a’s previous mapping. eop is also not an a-specific
identity transformer (eop ̸≡ ea

op) because applying λenv.env[b 7→ 2 ∗ env(a) + 1]
changes another value’s mapping (for b) depending on what a maps to, and because
it changes b’s value eop is not a b-specific identity transformer either (eop ̸≡ eb

op).
Note that, importantly, a transformer can only be considered a d-specific identity
transformer if the above restrictions hold irrespective of any concrete l ∈ L that
might be associated with b: (2.2) quantifies over all l ∈ L. This is necessary because
IDE produces procedure summaries that must be sound with respect to all l and
thus their creation must not be made dependent on l.

As explained in Section 3.4.1, the IDE algorithm consists of two phases; the reacha-
bility of each symbol d is computed in Phase I and symbol to value mappings, [d 7→ l],
are calculated in Phase II. Since the values are not computed until Phase II, the val-
ues are not yet known at the time the sparsification takes place, i.e., in Phase I. In
other words, IDE can support symbol-specific but not value-specific sparsification!
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3.4.5 Determining Symbol-Specific Identity

When propagating fact d, we consider only those statements as irrelevant statements
for d that fulfil conditions (2.1) and (2.2). But since these conditions are value-
agnostic—they quantify over all l ∈ L, this allows one to determine ahead of time the
statements whose environment transformers adhere to both conditions, structurally.
First, by Condition 2.1, a statement’s corresponding environment transformer t is
not a d-specific identity transformer if t affects d’s value mapping in any way, i.e., t =
λenv.env[d 7→ _]. Second, by Condition 2.2, t is not a d-specific identity transformer
either, if t uses d’s value mapping env(d) to compute another fact’s value, i.e., t =
λenv.env[_ 7→ . . . env(d) . . .].

Naturally, sparsification effectiveness is closely tied to the analysis-specific environment-
transformer definitions. The environment transformer for the statement a = a + 1

is t ≡ ta for taint analysis, where t = λenv.env. For constant propagation analysis,
however, t ̸≡ ta, where t = λenv.env[env(a) + 1].

SPARSEIDE strictly generalizes Sparse IFDS as presented in SPARSEDROID [He+19].
One can easily define sparse IFDS as an instantiation of SPARSEIDE by restricting the
value domain L to {⊥,⊤}, where symbols that map to⊥ are considered reachable. In
this setting, our definitions (2.1) and (2.2) become equivalent to (1.1) and (1.2).

3.5 Application to Linear Constant Propagation

As Sagiv, Reps, and Horwitz explain in their seminal work [SRH96], constant propa-
gation analysis is the perfect problem setting where IDE outperforms IFDS [RHS95].
This is not only because the problem’s lattice is larger than the binary domain, but
also because it is infinitely broad, where IFDS cannot terminate. We are, therefore,
motivated to apply the SPARSEIDE framework to linear constant propagation analy-
sis. HEROS, and thus SPARSEHEROS, are generic tools and they are independent of
the target language and their intermediate representations (IRs). In this work, we
use SOOT [Val+99] static program analysis framework for Java and its intermediate
representation JIMPLE. Therefore, in the following, we explain our implementation
based on the JIMPLE IR.
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Table 3.1: Statements for Linear Constant Propagation Analysis with Corresponding IRs
and Flow/Edge Functions.

Statement IR Flow Function Edge Function

constant a← Const λS.{S ∪ {a}} λenv.env[a 7→ Const]

binop a← b⊙ Const
λS.

{
S ∪ {a} if b ∈ S

S \ {a}
λenv.env[a 7→ env(b) ⊙̂Const]

local a← b
λS.

{
S ∪ {a} if b ∈ S

S \ {a}
λenv.env[a 7→ env(b)]

field load a← b.f
λS.

{
S ∪ {a} if b.f ∈ S

S \ {a}
λenv.env[a 7→ env(b.f)]

field store a.f ← b
λS.

{
S ∪ {p.f | p ∈ aliases(a)} if b ∈ S

S \ {p.f | p ∈ aliases(a)}
λenv.env[p.f 7→ env(b)]

static field load a← T.f
λS.

{
S ∪ {a} if T.f ∈ S

S \ {a}
λenv.env[a 7→ env(T.f)]

static field store T.f ← b
λS.

{
S ∪ {p.f | p ∈ aliases(T )} if b ∈ S

S \ {p.f | p ∈ aliases(T )}
λenv.env[p.f 7→ env(b)]

array load a← A[i]
λS.

{
S ∪ {a} if A[i] ∈ S

S \ {a}
λenv.env[a 7→ env(A[i])]

array store A[i]← b
λS.

{
S ∪ {p[i] | p ∈ aliases(A)} if b ∈ S

S \ {p[i] | p ∈ aliases(A)}
λenv.env[p[i] 7→ env(b)]

call r ← b.m(ai)
λS.

{
S ∪ {pi} if ai ∈ S ∧ ai 7→ pi in m

S \ {pi}
λenv.env[pi 7→ env(ai)]

return r ← b.m(ai)
λS.

{
S ∪ {r} if r′ ∈ S ∧m returns r′

S \ {r}
λenv.env[r 7→ env(r′)]

call-to-return r ← b.m(ai)
λS.

{
S \ {ai} if ai ∈ S ∧ ai 7→ pi in m

S

λenv.env

3.5.1 Analysis Definition

Linear constant propagation analysis handles the linear expressions that generate
a new data-flow fact by using just a single other fact, e.g., a = b or a = 2*b + 1.
Full constant propagation analysis involves statements such as a = b + c. Such
a statement’s flow function is not distributive; it cannot be precisely computed
within the IDE framework. Our linear constant propagation analysis implementation
handles the assignment statements shown in Table 3.1.
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IR. The IR always ensures binary operation (binop) representation by reducing
more complex operations to binary operations. For instance, a = 2*b + 1 would be
reduced to s1 = 2 * b and a = s1 + 1. The IR also reduces longer access paths
to multiple assignments with a single access path (n=1). For instance, a statement
such as a = b.f1.f2 would be reduced to s1 = b.f1, s2 = s1.f2, and a = s2. The
same reduction applies to procedure invocations as well.

Flow functions. We generate a symbol when it is assigned with an integer constant.
As discussed, we handle the binary operations in the linear form. We distinguish
between the assignments that require alias handling and the ones that do not. The
assignments such as local, field load, static field load, and array load, overwrite the lo-
cal variable, a, on their left-hand side and therefore do not need to know a’s aliases.
The assignments such as field store, static field store, and array store, on the other
hand, require handling the aliases of the base variables or the array references. To
handle aliasing, we use the BOOMERANG [Spä+16] demand-driven pointer analysis
framework. When necessary, we query the aliases of the base variables and add them
to the set of propagated symbols. Note that in Table 3.1, the alias sets also contain
the query variable. The IDE framework requires three flow function types to model
the effects of invoke statements. The call flow function propagates the symbol for
the actual parameter to the context of the callee procedure, by mapping it to the pro-
cedure’s corresponding formal parameter. The return flow function propagates the
symbol for the returned variable to the context of the caller procedure, by mapping
it to the symbol on the left-hand side of the invoke expression. The call-to-return
flow function propagates the symbols that are not passed to the context of the callee
procedure, to the next statement after the invoke statement.

Edge functions. For most statements, the edge functions map the target symbol to
the value of the source symbol, acting as identity transformers. The constant and
binop statements are the only exceptions. The constant statement maps the target
symbol, a to the given constant value, Const. The binop statement maps the target
symbol, a to a new value. The value is computed by simulating the operation⊙ using
the source symbol’s value, env(b) and the constant operand, Const. Edge functions
must be composed and reduced to a simple value mapping when computing the
actual values. Given f1, f2 ∈ Env(D, L) and f1 appears before f2 as an edge in the
exploded supergraph, we compose the edge functions as follows:
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f2 ◦ f1 :=


f2 if f1 = λenv.env

f1 if f2 = λenv.env

f2 if f2 = λenv.env[a 7→ Const]

f2(f1) if f2 = λenv.env[a 7→ env(b) ⊙̂Const]

If an edge function is the identity transformer, we always apply the other function
by the first two conditions. We always apply the subsequent edge function if it is
a constant assignment, by the third condition. If the subsequent edge is a binary
operation, we compute its value immediately in place by applying the preceding
edge first, as suggested in previous work [Bod12].

Lattice. We perform the linear constant propagation on integers. Therefore, the
lattice is Z⊤⊥. Given l1, l2 ∈ Z⊤⊥, we define the meet operator as follows:

l1 ⊓ l2 =


l1 if l2 = ⊤

l2 if l1 = ⊤

⊥ if l1 = ⊥ ∨ l2 = ⊥

⊤ if l1 = ⊤ ∧ l2 = ⊤

If a value is ⊤, the meet operator yields the other value by the first two conditions.
If either of the values is ⊥, the meet yields ⊥, and if both values are ⊤ it yields ⊤
by the third and fourth conditions respectively.

3.5.2 Sparsification for Constant Propagation

Our sparsification approach has much in common with the one proposed by He et
al. [He+19], though modifications were necessary. We build the sparse control flow
graphs (CFGs) by ignoring symbol-specific identity functions. Given a procedure,
p, Gp is its original dense CFG. We build sparse CFGs specific to each symbol, d in
p, denoted as Gp,d, and propagate d across its own sparse CFG. As shown with the
IR in Table 3.1, d can be a local, an instance field, a static field, or an array access.
Gp,d is constructed by determining whether each statement’s corresponding flow
function in Gp is a d-specific identity function.

As a significant modification, and most importantly, we account for a statement’s
effect on the value domain. In addition to determining whether each statement’s
corresponding flow function is a d-specific identity function, we determine whether
its edge function is a d-specific identity transformer with the assumptions explained
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in Section 3.4.3. Further, we propagate the tautological fact, Λ, (sparsely) to the
statements that can generate new data-flow facts, e.g., a ← Const. Otherwise, it
is impossible to generate new facts at arbitrary program points. Finally, we soundly
retain all branching statements to keep the original CFGs’ control flow as it is.

3.6 Evaluation

Next, we explain the research questions guiding our evaluation and its experimental
setup, then discuss the evaluation results. Sparse data-flow analyses promise exten-
sive performance improvements while maintaining their non-sparse counterparts’
precision. Therefore, first, we compare the sparse analysis results against the non-
sparse analysis results. Second, we measure whether the sparse analysis produces
the promised performance benefits. Third, we investigate the factors contributing to
the performance impact. Therefore, we focus on the following research questions:

• RQ1: Does Sparse IDE produce the same results as the original IDE?

• RQ2: How does the sparsification impact the performance in terms of runtime
and memory?

• RQ3: To what extent does the number of propagations correlate with the
performance impact?

3.6.1 Experimental Setup

We implement the proposed approach in SPARSEHEROS, by extending the open
source HEROS IDE solver’s latest version, at the time of writing (e7e4a85) [soo12].
We implement a linear constant propagation analysis using SPARSEHEROS and the
SOOT static analysis framework [Val+99]. To handle aliasing, we integrate our client
analysis with the BOOMERANG [Spä+16] demand-driven pointer analysis, using the
version (1179227) [Cod19].

As benchmark subjects, we use:

• CONSTANTBENCH: A benchmark suite for constant propagation analysis tar-
geting Java, did not previously exist. We, therefore, created CONSTANTBENCH

as a micro-benchmark suite for integer linear constant propagation analysis.
We run both HEROS and SPARSEHEROS on this benchmark suite and compare
the analysis results that they produce.
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• Real-world Libraries: We include real-world Java libraries to investigate the
performance of our approach under the workload of large-scale and complex
programs. Unlike applications, libraries do not have a specific entry method.
We follow the closed package assumption [Rei+16] for analyzing library code,
and treat public methods of the libraries as entry methods. We consider a
method as an entry method if it adheres to the following entry method selec-
tion criteria:

– c1: The method is a public instance method that is not abstract, native,
or a constructor,

– c2: The method contains an integer assignment statement.

We selected the most downloaded Java libraries, with more than 5000 down-
loads, from the Maven repository [Rep]. We discarded the libraries that do not
contain any entry methods according to the selection criteria, and the ones
that caused an error in the underlying static analysis tool, SOOT [Val+99]. In
the end, we retained 30 libraries.

• Replication Package: We set up a replication package, available at https:
//zenodo.org/records/10461449

We have performed the evaluations on an Intel i7 Quad-Core at 2,3 GHz with 32GB
of memory. We configured the JVM with 25GB maximum heap size (-Xmx25g) and
1GB stack size (-Xss1g).

3.6.2 RQ1: Does Sparse IDE produce the same results as the
original IDE?

CONSTANTBENCH consists of 40 target programs with various program properties
and sensitivity-testing edge cases, as listed in Table 3.2. Assignment cases test possi-
ble flow and edge functions, as well as flow sensitivity. Branching and Loops cases test
the meet operation. Field sensitivity cases test field sensitivity and aliasing scenarios.
Context sensitivity cases test various calling contexts. Array cases test array handling
and NonLinear cases test analysis’ behavior under unanticipated non-linear opera-
tions. The results validate the correctness of SPARSEIDE by showing that SPARSE-
HEROS produces the same outputs as the non-sparse HEROS.
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Table 3.2: CONSTANTBENCH Test Cases

Assignment Field Sensitivity
Constant LoadConstant

ConstantBinop StoreConstant

LocalBinop StoreViaAlias

LocalMultipleBinop StoreBinop

Overwrite FieldToField

Increment StoreBinopViaAlias

Operators StoreLocalViaAlias

AssignmentChain Context Sensitivity

Static Id

Branching Increment

SameValueMergedAndUsed Add

SameValueMergedNotUsed Nested

SameValueMergedAndUsedInBinop AssignFieldInCallee

DiffValuesMergedAndUsed AssignStaticInCallee

DiffValuesMergedNotUsed Array

DiffValuesMergedAndUsedInBinop LoadConstant

Loops StoreConstant

ForLoopFixedBound ArrayToArray

ForLoopUnkownBound AliasedArrays

WhileTrue LargeIndex

WhileUnknown Non-Linear

NestedLoops Binop

HashCode
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3.6.3 RQ2: How does the sparsification impact the performance in
terms of runtime and memory?

Figure 3.5 shows the relative analysis runtime spent by SPARSEIDE in comparison
to the runtime of the baseline original IDE algorithm. We sorted the results for each
library by the time spent by the original IDE algorithm. Note that we keep the same
sorting for the rest of the paper. This sorting highlights the fact that our SPARSEIDE
approach pays off better for the cases where the original IDE’s runtime is relatively
larger. SPARSEIDE, compared to the original IDE algorithm, performs up to 30.7x
faster. We measure the mean speedup as 7.9x, and the median speedup as 6.7x.
The concrete measurements are presented in Table 3.3. Results show that, in terms
of runtime, SPARSEIDE outperforms the original IDE in each run, except for the
libraries #1-#3 (jcl-over-slf4j, slf4j-api, lombok), which have the shortest analysis
time. In each run, the Sparse CFG construction overhead is lower than 1% of the
SPARSEIDE total analysis runtime, which is substantially smaller than the achieved
speedups.

Figure 3.6 shows the relative memory consumption of SPARSEIDE in comparison to
the memory consumption of the original IDE algorithm. We have measured up to
94% reduction in memory consumption in the best case, and up to a 19% increase in
the worst. The SPARSEIDE algorithm, compared to the original IDE, associates data-
flow facts with fewer statements; therefore, we anticipated memory improvements.
On the other hand, because we cache sparse CFGs (Gd,p) per each symbol and
procedure pair (d, p), for some input programs, memory consumption increases.
However, as shown in Figure 3.6, these cases are limited to a few outliers. Moreover,
the mean and median impacts on memory consumption are 51% and 63% reduction,
respectively.

We statistically assess the significance of the SPARSEIDE algorithm’s impact on
runtime and memory improvements. According to the Wilcoxon signed-rank test
[Wil92] at a 0.05 significance level, SPARSEIDE significantly improves both the run-
time (p = 6.1e−08) and memory consumption (p = 5.7e−07) of the original IDE
algorithm.
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3.6.4 RQ3: To what extent does the number of propagations
correlate with the performance impact?

The essence of the SPARSEIDE approach is that, compared to the original IDE algo-
rithm, it propagates data-flow facts to fewer statements. We investigate the extent
to which this contributes to improving the scalability of the original IDE algorithm.
Figure 3.7, shows how the ratio of data-flow fact propagations in IDE and SPAR-
SEIDE correlate with the ratio of runtime speedups. We observe that reducing the
number of propagations is an effective approach to improving IDE’s scalability in
terms of runtime.
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Figure 3.7: Ratio of data-flow fact propagations and corresponding speedup ratios, in log
scale

We also investigate the impact of sparsification on the memory consumption. Fig-
ure 3.8 shows how the ratio of data-flow fact propagations in IDE and SPARSEIDE
correlate with the ratio of memory consumption in IDE and SPARSEIDE. We ob-
serve a comparable trend, but not to the same degree. Given these findings, in the
future, one could investigate the potential synergies between our approach and re-
cent approaches that improve scalability, particularly in terms of memory [Arz21;
Li+21].
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Figure 3.8: Ratio of data-flow fact propagations and corresponding memory consumption
ratios, in log scale

3.6.5 Threats to Validity

By definition, SPARSEIDE can solve the same data-flow problems as the original
IDE framework [SRH96]. It requires data-flow analysis problems to be expressible
as distributive environment problems. Many popular static analyses, such as taint
analysis for vulnerability detection [Arz+14] or typestate analysis for API misuse
detection [Emm+21], are expressible as distributive environment problems. Just
like the sparse IFDS [He+19], SPARSEIDE also exploits analysis domain knowledge.
Domain-specific analysis semantics must be correctly encoded with flow and edge
function definitions within the IDE framework.

SPARSEIDE should theoretically lead to a similar performance impact on other data-
flow analysis problems where IDE is applicable. For instance, when performing
a typestate analysis, SPARSEIDE would safely omit the statements that have no
impact on the tracked state. However, due to space constraints, we were not able
to empirically show whether our evaluation results carry over to other analysis
problems.

The reported evaluation results might depend on the selected set of Java libraries,
and entry-method selection criteria. Nevertheless, for real-world library selection,
we followed the systematic procedure described in Section 3.6.1. To account for
variations in runtime and memory measurements, we conducted three runs and
presented the average across these runs.
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A direct comparison to SPARSEDROID [He+19] was not possible for many rea-
sons. It extends an existing taint analysis client (FLOWDROID [Arz+14]) that has a
basic integrated alias analysis, whereas our analysis client utilizes a sophisticated
external demand-driven pointer analysis [Spä+16]. Therefore, SPARSEDROID’s per-
formance gains benefit from sparsifying the integrated alias analysis. Moreover,
SPARSEDROID also benefits from FLOWDROID’s multi-threadedness. HEROS, and
thus SPARSEHEROS, also support multi-threading. Yet, because BOOMERANG is single-
threaded, our client analysis uses a single thread. Therefore, our evaluation results
present single-thread performance. Finally, SPARSEDROID’s implementation is not
publicly available, and most importantly, IFDS may not terminate when the value
domain is infinitely broad.

3.7 Related Work

The IFDS [RHS95] and IDE [SRH96] frameworks enabled precise interprocedural
data-flow analyses that are flow- and context-sensitive. Previous works have ex-
tended these frameworks with diverse goals. Naeem et al. [NLR10] proposed four
extensions to the IFDS framework, to improve its scalability and precision under cer-
tain practical analysis conditions. HEROS [Bod12] introduced a Java-based generic
IFDS and IDE solver. REVISER [AB14] proposed an algorithm to adapt IFDS and
IDE to incremental program updates. CLEANDROID [Arz21] introduced a technique
for reducing the memory footprint of IFDS-based data-flow analyses. D ISKDROID

[Li+21] applied a disk-assisted computing approach for improving the scalability of
IFDS-based taint analysis.

Sparsification has been applied to improve the scalability of static analyses. Choi
et al. [CCF91] introduced sparse data-flow evaluation graphs based on SSA (static-
single assignment). Oh et al. [Oh+12] presented an abstract interpretation-based
framework for designing generic sparse analyses, which guarantees to preserve
the precision of the non-sparse analysis through data dependencies. P INPOINT

[Shi+18], SVF [SX16] and SFS [HL11] utilize cheaper pre-analyses to sparsify
pointer analyses. Recent on-demand sparsification approaches exploit the data-flow
facts that become available during the analysis runtime for further sparsification.
SPARSEBOOMERANG, as we show in this thesis, exploits the variables in alias queries
during demand-driven pointer analysis to create query-specific sparse CFGs. The
sparse IFDS algorithm [He+19] exploits data-flow facts to create fact-specific sparse
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CFGs and propagate each fact on its own sparse CFG. In this work, we present
the more generic SPARSEIDE algorithm that efficiently solves not just IFDS-based
reachability problems, but also IDE problems that require value computation.

3.8 Conclusion

In this chapter, we presented the first major contribution of this thesis, the SPAR-
SEIDE framework (Contribution 1) as a scalable alternative to the original IDE
framework. SPARSEIDE is the first fact-specific sparsification approach that allows
for computations on infinitely broad domains. SPARSEIDE produces equally precise
results as the original IDE, while significantly improving its scalability. We also explic-
itly discuss the limits of sparsification for IDE: while symbol-specific sparsification is
possible and useful, one cannot sparsify with respect to the (typically numeric and
infinite) value domain.

The essence of SPARSEIDE is creating symbol-specific sparse control flow graphs on
demand, and propagating data-flow facts sparsely through these graphs. Therefore,
sparsification is applied only intraprocedurally, i.e., within individual methods ob-
tained from a call graph at call sites. In the next chapter (Chapter 4), we investigate
the extent to which call-graph precision impacts the scalability of data-flow analyses.
To this end present and discuss the findings from an extensive empricial evaluation
using 31 different call-graph algorithms (Contribution 2).
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In this thesis, we present novel techniques to improve the scalability of IFDS- and
IDE-based interprocedural data-flow analysis, mainly through sophisticated fact-
specific sparsification. As explained in Section 2.2, the call graph is an integral
component of interprocedural data-flow analysis.

Surprisingly, the literature neglects the call graphs’ impact on the scalability of data-
flow analysis. The large body of work on call-graph analysis [EGH94; DGC95; BS96;
TP00; Sun+00; GC01; Lho03] only assess call-graph quality, typically in interms of
precision and recall of the call graphs themselves, but without looking at the client
analyses that rely on these call graphs.

Although there are many recent works [Arz21; He+23; Li+21; Wan+23; He+19;
Sch+24] on scaling IFDS and IDE-based analyses, none of them target optimizing
the call graph. They propose sophisticated techniques ranging from sparsification
and disk-assisted computing to intelligent garbage collection. Yet, they choose a
fixed call graph, thereby disregarding its implications on scalability.

In this chapter, we present the second major contribution of this thesis, an empirical
evaluation of the impact of call graph precision on the precision and scalability
of the IFDS framework (Contribution 2). To this end, we build QCG, a call graph
generation tool for Android that extends the QILIN pointer analysis framework, and
integrate it with FLOWDROID, a state-of-the-art IFDS-based taint analysis solver. We
assess the precision of 27 call graphs built with QCG and 4 default call graphs in
FLOWDROID, on the TAINTBENCH benchmark of Android malware. We then evaluate
how increasing the call-graph precision impacts FLOWDROID’s runtime performance
and memory consumption on real-world apps.
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As we report, the time invested in building precise context-sensitive call graphs pays
off: They significantly reduce IFDS analyses’ runtimes while also improving their
precision. However, there appears to be a sweet spot in the trade-off between the
call graph construction time and the reduction in total analysis runtime.

4.1 Motivation

As previous works [Avd+15; Hua+15] have shown, IFDS-based analyses can easily
become unscalable when analyzing complex real-world programs. The scalability
of the IFDS framework is bounded by (1) the runtime cost of propagating individ-
ual path edges and (2) the memory requirements to accommodate these edges for
later reuse. Scalable IFDS extensions aim to either improve how these edges are
computed [He+19], or how they are stored in memory [Arz21; He+23; Li+21;
Wan+23; Sch+24]. They, however, often choose a fixed call-graph algorithm with-
out considering its implications on how these edges are computed, and thus, how
they are stored later on.

Precision and scalability are historically known to be competing objectives. Previous
works on call graphs [Gro+97; Mur+98; TP00; GC01] have shown that increased
call-graph precision comes with an increased runtime cost during callgraph con-
struction. Others [Bod18] have seen a trend where cheaper-to-compute call graphs
waste time and precision in the later phases of the analysis, but so far there has been
no empirical evidence that confirms this observation.

void foo(){
 
  s = source()

  B b = new C()

  A a = b

  x = a.bar(s)

  sink(x)

}

0 xs

Class A:
Str bar(p){

    ret p
}

0 p Class B:
Str bar(q){

    ret q
}

0 q Class C:
Str bar(r){

    ret "..."
}

0 r

⊓

killtaint taint

Intraprocedural Edges
Interprocedural Edges

(a) caller (b) callee in A (c) callee in B (d) callee in C

Figure 4.1: Call-graph precision’s theoretical implications on the computation of the IFDS
algorithm.1
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Figure 4.1 shows a motivating example of an IFDS-based taint analysis on an ex-
ploded supergraph. Here, having a precise call graph not only reduces the workload
of the IFDS algorithm but also improves its precision. Given the method foo() in
Figure 4.1.a, s is being tainted by source() and passed to method bar(). Assum-
ing the class hierarchy, where C <: B <: A, the method bar() in class C should
be executed, which kills the taint, and therefore, there should not be any leaks.
Using an imprecise call-graph algorithm, for instance, CHA (Class Hierarchy Anal-
ysis) [DGC95], would resolve to method bar() in all three classes. Consequently,
the IFDS algorithm will map the data-flow fact s into all three methods and union
their effects on s. This results in both an increased number of methods to process
and an imprecise finding, as the taint analysis would falsely report a leak at sink(x).
We are therefore motivated to assess whether this theoretical implication holds in
practice.

4.2 Contributions

This chapter presents an empirical evaluation of the impact of call-graph precision on
the precision and scalability of the IFDS framework. To perform the experiments, we
use FLOWDROID [Arz+14], a state-of-the-art Android taint analysis, as a reference
for the IFDS implementation. To obtain call graphs with varying degrees of precision,
we extend QILIN [HLX22], a state-of-the-art Java pointer analysis framework, in a
tool called QCG. QCG enables leveraging QILIN’s pointer analysis to obtain Android-
compatible call graphs. First, we sort call graphs by their degrees of precision. To
do so, we assess how they impact the precision and recall of FLOWDROID on the
TAINTBENCH [Luo+22] benchmark of Android malware. Second, we evaluate how
increasing the call-graph precision impacts FLOWDROID’s runtime performance and
memory on a set of popular real-world apps.

To summarize, this chapter presents the following contributions:

• QCG, a QILIN-based call-graph generation tool for Android, which is open-
sourced at Github,

• precision and recall of FLOWDROID when using its 4 call graphs and 27 call
graphs obtained by QCG, and

• an evaluation of the call graphs’ impact on FLOWDROID’s scalability.

4.2 Contributions 47



4.3 Foundations

This section briefly introduces the foundations that our empirical study builds on.
We first explain how and why call graphs may affect data-flow analysis performance.
Then we discuss the relationship between call-graph generation and pointer analysis.
We present the QILIN pointer analysis framework, how it fits into this work, and
why we had to extend it in QCG.

4.3.1 Call Graph’s Implications on IFDS

Real-world programs written in object-oriented languages often contain many poly-
morphic call sites, whose actual runtime call targets can only be approximated by
static call-graph algorithms. To be efficient, they compromise on many precision
aspects (e.g., on flow-, field-, or context-sensitivities), which results in an imprecise
call graph with a coarser set of potential call targets for each call site. This has direct
implications for the IFDS algorithm regarding both precision and runtime.

Precision. The IFDS framework [RHS95] requires data-flow analysis problems to
define distributive flow functions over the meet operator. In IFDS, the meet operator
is set union.2 This property allows propagating data-flow facts along diverging
execution paths, e.g., for conditional branches or potential call targets, and unioning
them when the paths meet without compromising soundness. Compared to a precise
one, an imprecise call graph contains more potential call targets. This requires
propagating data-flow facts into more call targets, which increases the probability
of losing precision. Precise static call-graph generation techniques rely on pointer
information to either prune existing imprecise call graphs [Sun+00] or create them
on-the-fly [AL12].

Runtime. The complexity of the IFDS algorithm is in O(|E||D|3), and is determined
by the number of edges |E| and the number of data-flow facts |D| [RHS95]. |D|
depends on how the data-flow analysis is formulated; in problems with a binary
lattice (e.g., in taint analysis), D is the set of program variables. It can, however,
grow larger with a larger lattice (e.g., in type-state analysis, where variables are
also associated with a state). |E| depends on the control flow of the program un-
der analysis, i.e., on how many edges need to be created within each method, and

2Intersection problems need to be transformed to a complementary union problem [RHS95].
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across method boundaries. As shown in Figure 4.1, the intraprocedural edges connect
data-flow facts per statements within individual method boundaries, whereas the
interprocedural edges map the data-flow facts at call sites to corresponding callee
methods and back to their return sites in the caller methods. The number of inter-
procedural edges at each call site increases linearly with the number of potential
call targets. This also implies more intraprocedural edges to process in each call
target, leading to an increased runtime.

4.3.2 Call-Graph Generation using Pointer Information

Pointer information associates program variables with sets of objects they might refer
to at runtime. Static pointer analyses approximate this information by choosing an
appropriate level of abstraction [LH06], usually by trading off between precision and
scalability. Pointer information is crucial for call-graph generation because (virtual)
method resolution depends on the runtime types of receiver objects [Sun+00].

Recall the motivating example in Figure 4.1, where the statements b = new C()

and a = b result in the pointer assignment graph (PAG) in Figure 4.2a. By looking
at the PAG, one can see that the receiver object of the method bar() is of type C.
Disregarding this information would lead to the call graph in Figure 4.2b, where the
call b.bar() resolves to all possible implementation of method bar(). By utilizing
the pointer information, on the other hand, one can obtain an induced subset of the
same call graph that contains the actual executed edge.

new C( )

b

a

(a) PAG

foo( )

bar( )

Class B

bar( )

Class C

bar( )

Class A

executed
edge

(b) Call graph

Figure 4.2: Pointer assignment graph (PAG) and call graph of the code in Figure 4.1

Precise pointer analysis is undecidable [Ram94]. Real-world programs require han-
dling various scenarios, where static pointer analyses cannot preserve precision [Hin01].
They often maintain a set of feasible sensitivity criteria that can be optimized de-
pending on the analysis requirements. Pointer analysis frameworks [Lho03; LH08;
BS09; LH22; HLX22] enable testing variations of such sensitivity criteria.
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4.3.3 Qilin

QILIN [HLX22] is a pointer analysis framework that implements many state-of-the-
art, and also advanced, pointer analysis techniques. QILIN modularly separates anal-
ysis logic from its implementation to support easy extension. It builds on top of a
parameterized pointer analysis kernel that can be configured with context-sensitivity
parameters to obtain different pointer analysis flavors.

Table 4.1 shows the pointer analysis techniques in QILIN. The level of context-
sensitivities ranges from Andersen-style insensitive and traditional method-level k-
limiting analyses to more recent variable-level fine-grained context-sensitive analy-
ses. QILIN also enables parametric instantiations of existing techniques by specify-
ing a context constructor (e.g., insensitive, callsite-, object-, type-sensitive, or hybrid
(callsite- and object- sensitive) ), a context selector (e.g., uniform, heuristic, selective,
or partial), and a heap abstractor (e.g., allocation-site, heuristic, or type-consistency).
By doing so, for instance, one can instantiate k-object-sensitive analyses based on
Z IPPER (Z-kOBJ), EAGLE (E-kOBJ) or TURNER (T-kOBJ).

Table 4.1: Pointer Analysis Techniques in QILIN.

Context-Sensitivity Techniques

Method-Level

k-callsite-sensitivity (kCFA) [SP+78],
k-object-sensitivity (kOBJ) [MRR02],
k-type-sensitivity (kTYPE) [SBL11],
hybrid k-object-sensitivity H-kOBJ [KS13]

Fine-Grained
BEAN [TLX16], MAHJONG [TLX17], Z IPPER [Li+18],
EAGLE [LX19], TURNER [He+21], CONCH [HLX21],
DATA -DRIVEN [Jeo+17]
CONTEXT-TUNNELING [JJO18]

QILIN is built on top of the SOOT [Val+99] static analysis framework for Java and
therefore it also contains SOOT’s default call-graph algorithms. However, QILIN can
only construct call graphs for Java code; to conduct our evaluations on Android
applications, we have extended QILIN in QCG.

4.3.4 QCG

QILIN itself expects a main() method to be present in a given target program. main()
is the default entry method for Java applications, which is used as the starting point
of the pointer analyses in QILIN. QILIN also models complex language features of

50 Chapter 4 An Empirical Study on the Impact of Call-Graph Precision on the
Scalability of Data-Flow Analysis



Java by introducing a FakeMain() method. It contains method calls for the cases that
JVM handles implicitly, for instance, system/main thread groups, class initialization,
static initializers [HLX22].

Unlike Java applications, which typically have a single entry point, Android applica-
tions feature multiple entry points. In Android, many methods are invoked implicitly
by the Android framework based on the application’s state defined in the Android
life cycle. The Android life cycle manages various components within an Android
application, such as activities, services, broadcast receivers, and content providers.
Previous work by Arzt et al. [Arz+14] shows how these implicit methods must be
handled to obtain sound call graphs for Android applications. In QCG, we mirror the
same approach. We extend QILIN to model the implicit calls of the Android frame-
work. By doing so, we unleash QCG’s capabilities for Android. QCG can be used as
a standalone tool to obtain sound call graphs for Android applications powered by
QILIN’s pointer analyses.

4.4 Study Design

This section presents the empirical study design. We begin with the research ques-
tions and explain how we designed the experiments to address these questions.
Then, we give an overview of the experimental setup and explain each component
in our setup.

4.4.1 Research Questions

This chapter primarily focuses on measuring the impact of call-graph precision on
the scalability of the IFDS-based data-flow analyses. As secondary goals, we also in-
vestigate the call graph’s impact on analysis precision and the influence of call-graph
properties on analysis performance. To summarize, our empirical study focuses on
the following concrete research questions:

• RQ1: How does call graph precision impact the precision of IFDS analyses?

• RQ2: How does call graph precision impact the performance of IFDS analyses
in terms of runtime and memory?

• RQ3: How does the number of interprocedural edges correlate with the analy-
sis runtime and memory consumption?
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In section 4.3.1, we discussed the theoretical implications of call-graph precision
on the precision of the IFDS-based analyses. With RQ1, we investigate whether
these implications hold when performing IFDS analyses on real-world applications.
Similarly, in section 4.3.1, we discussed the theoretical implications of call-graph
precision on the runtime of the IFDS-based analyses. With RQ2, we investigate the
extent of these implications on practical IFDS analysis runs. The main advantage
of a precise call graph is that it contains fewer potential call targets, which then
constitute the interprocedural edges in the IFDS framework. Intuitively, one expects
a correlation between the number of interprocedural edges and the analysis per-
formance. With RQ3, we aim to find out whether such a correlation exists when
analyzing real-world applications.

4.4.2 Experimental Setup

We have designed our experiments to be conducted in two phases. In Phase I, we
aim to answer RQ1 and in phase II, we aim to answer RQ2 and RQ3. In the following,
we introduce the components in our setup and explain the workings of the phases
in detail.

IFDS Analysis Client. In both phases, we use FLOWDROID as the reference IFDS-
based taint analysis implementation. FLOWDROID is one of the most mature and
widely used taint analyses. It soundly handles many Android-specific language fea-
tures, as well as many precision dimensions. Flow- and context-sensitivities are
inherent properties of the IFDS framework. Further, its solver is field-sensitive (by
using access paths as data-flow fact abstraction) and it contains an integrated on-
demand alias analysis.

Call-Graph Framework. In both phases, we use QCG as the call-graph framework.
QCG extends QILIN with Android-specific call-graph-building capabilities. QCG es-
sentially provides the connection between FLOWDROID and QILIN, by also ensuring
that QILIN-generated call graphs contain necessary methods for FLOWDROID to per-
form the taint analysis. We configure QILIN in each run with the parameters for a
specific pointer analysis flavor. In addition, in some runs, for comparison, we uti-
lize the call-graph algorithms available in FLOWDROID by default. In those cases,
FLOWDROID handles the call-graph generation internally. At the end, we obtain 31
different call graphs.

Replication Package. We have prepared an artifact to run the complete evaluation
pipeline, which is available at https://zenodo.org/records/17041537.

52 Chapter 4 An Empirical Study on the Impact of Call-Graph Precision on the
Scalability of Data-Flow Analysis

https://zenodo.org/records/17041537


Phase I

Figure 4.3 shows the setup for the first phase of our experimental study. In this phase,
we use TAINTBENCH as the analysis target. TAINTBENCH contains 39 real-world
Android malware applications with custom sources & sinks and well-documented
ground truth. In taint analysis, sources are a set of tainting methods, and sinks are a
set of methods that taints should not reach. The Ground truth defines expected and
unexpected taint-flows that might occur between the sources and the sinks.

QILIN

QCG

FlowDroid

TaintBench

Taint Analysis 
Results

Comparison Precision
Metrics

RQ1: Impact on Precision

Pointer Analysis
Parameters

Call
Graph

Sources & Sinks

Android
Malware Apps

Ground Truth

Figure 4.3: Experimental Setup Phase I: Collecting precision metrics

As an alternative to TAINTBENCH, one could also use other popular benchmarks such
as DROIDBENCH [Arz+14] or ICC-BENCH [Wei+18]. They do not fit our study
well because the apps in those benchmarks are designed to test the handling of
individual Android-specific features. Their call graphs do not contain more than a
few methods, which would not show the differences between different call-graph
algorithms.

In this phase, we evaluate the precision of FLOWDROID under different call graphs,
each with varying degrees of precision. We run FLOWDROID with each of the 31
call graphs on each of the 39 apps from TAINTBENCH, in total we conduct 31 · 39 =
1, 209 runs. We compare the taint analysis results against the ground truth from
TAINTBENCH and compute the precision of FLOWDROID with each call graph. In
the end, we select a set of call-graph algorithms that lead to the most precise taint
analysis results.
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Phase II

Figure 4.4 shows the setup for the second phase of our experimental study. In this
phase, we use 20 popular Android applications from the Play Store (for the names,
see Table 4.4) and FLOWDROID’s default sources & sinks. We chose to use apps
from the Play Store to conduct the performance evaluations because, during our
preliminary evaluations on TAINTBENCH apps, we discovered that it is rather cheap
to analyze them. We believe analysis performance on TAINTBENCH may not be
representative of analysis performance on large-scale code bases.

Performance
Metrics

RQ2: Impact on Scalability

RQ3: Correlation

FlowDroid
Call

Graph
QILIN

QCG

Selected Pointer
Analysis ParametersSources & Sinks

Play Store
Apps

Figure 4.4: Experimental Setup Phase II: Collecting performance metrics

In this phase, we evaluate the call graph’s impact on the scalability of FLOWDROID

in terms of runtime and memory consumption. We run FLOWDROID with 8 differ-
ent call-graph algorithms, where 4 of them are the default algorithms in FLOW-
DROID and 4 of them are selected as the most precise algorithms in Phase I. The
default call-graph options in FLOWDROID represent a set of most commonly used
(cheap and rather imprecise) call graphs in literature, namely CHA (class hierarchy
analysis) [DGC95], RTA (rapid type analysis) [BS96], VTA (variable type analy-
sis) [Sun+00], and SPARK [Lho03]. The selected algorithms from QILIN represent a
set of state-of-the-art call graphs that rely on fine-grained context-sensitive pointer
analyses. In Phase 2, in total, we conduct 20x8 distinct runs and repeat each distinct
run 3 times to account for the noise on runtime and memory measurements. We
perform the evaluations on a Linux virtual machine with 22 CPUs and 256 GB of
memory. Each run was given a 5-hour time budget and 220 GB memory budget by
configuring the JVM’s maximum heap size (-Xmx220g).
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4.5 Experimental Results

We next present the experimental results. We start by measuring the precision (RQ1)
of the call graphs and selecting the most precise ones to compare against a set
of commonly used call graphs. Then we measure the call graphs’ impact on the
scalability of the IFDS analysis (RQ2). Finally, we investigate the correlation (RQ3)
between the performance impact and the number of interprocedural edges that the
data-flow analysis obtains from the call graphs.

4.5.1 RQ1: How does call graph precision impact the precision of
IFDS analyses?

Table 4.2 shows the precision measurements of the call graphs and taint analysis
measurements when using each call graph. Column 1 shows the call graph algo-
rithms. Column 2 shows the total number of call edges in each call graph created
for all the apps in TAINTBENCH. Column 3 shows the percentage of call edges in
each call graph compared to those of the CHA-based, the least precise, call graph.
Columns 4 and 5 show taint analysis findings as true positives and false positives,
respectively. Columns 6 and 7 are the taint analysis precision and recall, respectively,
and Column 8 is the F1 score.

Call-Graph Precision. We use the prefix k to refer to all the parameterized instan-
tiations of a call graph. We use the number of call edges as the precision metric
for the call graphs. Our findings align with the experiments presented in previous
work [LX19; Li+18; He+21; LHX21; HLX22]. EAGLE-based [LX19] call graphs
(E-kOBJ) preserve the number of call-graph edges, compared to those of corre-
sponding kOBJ-based call graphs. MAHJONG [TLX17] (M-kOBJ and M-kCFA) and
Z IPPER [Li+18] (Z-kOBJ and Z-kCFA) sometimes lose precision, i.e., contain more
call-graph edges than other kOBJ- and kCFA-based call graphs. TURNER-based call
graphs (T-kOBJ) [He+21] contain either the same or slightly less number of call
edges, compared to the Z-kOBJ-based call graphs. Selective context sensitivity-based
call graphs (s-kCFA) [LHX21] always contain either less or the same number of call
edges, compared to the Z-kCFA-based call graphs.

Taint Analysis Precision. Considering the precision of the taint analysis, we observe
that, generally, a more precise call graph does lead to a more precise taint analysis.
Table 4.2 is first sorted by precision and then by recall of the taint analysis. The most
precise call graphs by the number of call edges are underlined. Each of them helps
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taint analysis to yield more precise results. However, when considering the recall
of the taint analysis, 2CFA- and M-2CFA-based call graphs cause a slight drop in
recall.

Table 4.2: Call graphs and their impact on FLOWDROID’s findings, sorted by descending
precision and recall. The most precise call graphs are underlined. The call graphs
that are selected for the evaluation in phase II are indicated in bold.

Call #Call Comp. Taint Analysis

Graph Edges to CHA TP FP Precision Recall F1

s-2CFA 36 543 7.47% 45 8 0.85 0.22 0.35
Z-2OBJ 36 621 7.49% 45 8 0.85 0.22 0.35
M-2OBJ 36 660 7.50% 44 8 0.85 0.22 0.35
T-1OBJ 36 660 7.50% 43 8 0.84 0.21 0.34
2HYB 36 621 7.49% 43 8 0.84 0.21 0.34
2OBJ 36 621 7.49% 41 8 0.84 0.2 0.32
2TYPE 36 621 7.49% 41 8 0.84 0.2 0.32
1CFA 36 660 7.50% 41 8 0.84 0.2 0.32
1HYB 36 660 7.50% 41 8 0.84 0.2 0.32
1HYB-TYPE 36 699 7.51% 41 8 0.84 0.2 0.32
1OBJ 36 660 7.50% 41 8 0.84 0.2 0.32
1TYPE 36 660 7.50% 41 8 0.84 0.2 0.32
2CFA 36 543 7.47% 41 8 0.84 0.2 0.32
2HYB-TYPE 36 699 7.51% 41 8 0.84 0.2 0.32
D-2CFA 36 699 7.51% 41 8 0.84 0.2 0.32
D-2OBJ 36 699 7.51% 41 8 0.84 0.2 0.32
E-1OBJ 36 816 7.53% 41 8 0.84 0.2 0.32
E-2OBJ 36 738 7.51% 41 8 0.84 0.2 0.32
M-1CFA 36 660 7.50% 41 8 0.84 0.2 0.32
M-1OBJ 36 660 7.50% 41 8 0.84 0.2 0.32
M-2CFA 36 543 7.47% 41 8 0.84 0.2 0.32
B-2OBJ 36 621 7.49% 41 8 0.84 0.2 0.32
Z-1CFA 36 660 7.50% 41 8 0.84 0.2 0.32
Z-1OBJ 36 699 7.51% 41 8 0.84 0.2 0.32
Z-2CFA 36 582 7.48% 41 8 0.84 0.2 0.32
T-2OBJ 36 621 7.49% 41 8 0.84 0.2 0.32
s-1CFA 36 660 7.50% 41 8 0.84 0.2 0.32
SPARK 66 729 13.65% 42 10 0.81 0.21 0.33
VTA 137 904 28.20% 42 10 0.81 0.21 0.33
RTA 271 245 55.48% 42 10 0.81 0.21 0.33
CHA 488 943 100% 43 10 0.81 0.21 0.33

It appears that a more precise call graph does not always lead to more effective taint
analysis results; one must also consider its impact on recall. Based on these results,
we select the following QILIN-based call graphs, s-2CFA, Z-2OBJ, M-2OBJ, T-1OBJ,
to be compared against the default call graphs in FLOWDROID, i.e., CHA, RTA, VTA,
SPARK in phase II.
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A more precise call graph leads to a more precise taint analysis, but it does not
guarantee better recall.

4.5.2 RQ2: How does call graph precision impact the performance
of IFDS analyses in terms of runtime and memory?

Figure 4.5 shows average analysis runtime and memory consumption when running
FLOWDROID with each call graph on 20 real-world apps.

Runtime. We observe that FLOWDROID’s runtime tends to decrease with increased
call-graph precision. The least precise call-graph algorithm, CHA, leads to an average
runtime of 3410 seconds, whereas the most precise algorithm, s-2CFA, leads to an
average runtime of 2106 seconds (1.6x speedup). We observe, in particular, that
all the algorithms with fine-grained context sensitivity, compared to FLOWDROID’s
default call-graph algorithms, lead to a smaller analysis runtime. Yet, a more precise
call graph does not always reduce the total analysis runtime: Figure 4.5 shows that
although RTA, VTA, and SPARK are more precise than CHA, they lead to a longer
runtime than CHA. Similarly, M-2OBJ and Z-2OBJ lead to a slightly longer runtime
than T-1OBJ.
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Figure 4.5: Average analysis runtime and memory consumption

Memory. FLOWDROID’s memory consumption tends to decrease with increased call-
graph precision. The least precise call-graph algorithm, CHA, leads to an average
memory consumption of 152 GB, whereas the most precise algorithm, s-2CFA, leads
to an average of 48 GB (69% reduction). We observe a slight increase in memory
consumption when switching from context-insensitive SPARK to algorithms with
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fine-grained context sensitivity. Call graphs with context sensitivity are expected
to increase memory consumption because they store each method’s context per a
context identifier. However, surprisingly, overall memory consumption when using
context-sensitive call graphs decreases substantially. We attribute this to the reduc-
tion in the number of call-edges, which reduces IFDS computation and the space
required to store the method summaries.

CHA RTA VTA SPARK T-1obj M-2obj Z-2obj s-2cfa0
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Figure 4.6: Relative time spent on taint analysis and CG construction (in %)

Trade-off. We observe a trade-off between the time invested in constructing a more
precise call graph and the time saved during the downstream taint analysis. Figure
4.6 shows the relative time spent on constructing call graphs and on taint analysis.
We see that precise call graphs are expensive to compute. For instance, the relative
times spent on call-graph construction by RTA, VTA and SPARK are larger than that
of CHA. Similarly, the relative times spent on call-graph construction by M-2OBJ, Z-
2OBJ and s-2CFA are larger than those of CHA, VTA and SPARK, and T-1OBJ has the
least relative call-graph construction time. Among FLOWDROID’s context-insensitive
call-graph algorithms, CHA has the least precision. Despite this, counterintuitively,
a large number of interprocedural edges does not result in a blow-up in the IFDS
analysis runtime. Among the call graphs based on fine-grained context-sensitive
pointer analyses, T-1OBJ is the cheapest to compute but still precise enough that
the total analysis time when using T-1OBJ is still less than the total analysis times
when using M-2OBJ and Z-2OBJ, respectively. Figure 4.6 clearly shows that this
is because of the larger portion of total time being spent on call-graph construc-
tion by M-2OBJ and Z-2OBJ. s-2CFA, on the other hand, shows the exemplary case,
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where despite a larger portion of time spent on call-graph construction, the speedup
in the IFDS analysis runtime is so much that it pays off for the total analysis duration.

Time invested in building precise context-sensitive call graphs pays off, but a more
precise call graph does not always improve scalability, as it might take longer to
build.

4.5.3 RQ3: How does the number of interprocedural edges
correlate with the analysis runtime and memory consumption?

Section 4.5.2 showed the call-graph precision’s impact on the scalability of the IFDS
analyses. This section investigates the reasons behind this impact. As explained in
Section 4.3.1, a call graph can impact the scalability of the IFDS framework primarily
through the number of interprocedural edges it provides. By definition, an increased
number of interprocedural edges also leads to an increased number of intrapro-
cedural edges, which increases the total number of data-flow facts that are being
propagated by the IFDS solver. We, therefore, investigate the call-graph precision’s
impact primarily by looking at how the number of interprocedural edges correlates
with runtime and memory. Moreover, we also investigate how the number of inter-
procedural edges correlates with the number of data-flow fact propagations.

Figure 4.7 shows the correlation between FLOWDROID’s runtime and the number of
interprocedural edges that FLOWDROID obtains through each call-graph algorithm.
Each subplot shows a trend where an increasing number of interprocedural edges
positively correlates with an increasing runtime. This correlation seems less apparent
for the analysis run that uses the CHA algorithm, where the slope of the trend is the
smallest among all subplots.

Figure 4.8 shows the correlation between FLOWDROID’s memory consumption and
the number of interprocedural edges in FLOWDROID. Each subplot shows a trend
where an increasing number of interprocedural edges positively correlates with
an increasing memory consumption. This correlation seems more apparent for the
analysis runs that use the CHA, the RTA, and the VTA algorithms, where the slopes
of the trends are the largest.

Both Figure 4.7 and 4.8 show how the number of interprocedural edges obtained
through each call-graph implementation directly correlates with the scalability of
the IFDS-based analyses in terms of runtime and memory. Figure 4.9, on the other
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Figure 4.7: Number of interprocedural edges obtained from each call graph and correspond-
ing total analysis runtime on each app (in log scale)

hand, shows the correlation between the number of data-flow fact propagations
that FLOWDROID performs and the number of interprocedural edges in FLOWDROID
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Figure 4.8: Number of interprocedural edges obtained from each call graph and correspond-
ing memory consumption by the taint analysis on each app (in log scale)

obtains through each call graph. The number of data-flow fact propagations, i.e.,
propagations along both intraprocedural and interprocedural edges, increases when
the number of interprocedural edges increases.
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Figure 4.9: Number of interprocedural edges obtained from each call graph and correspond-
ing number of data-flow fact propagations by the taint analysis on each app (in
log scale)

Table 4.3 shows the Pearson coefficients and p-values for the correlations between
the number of interprocedural edges and the performance metrics: runtime, memory
consumption, and the number of data-flow fact propagations. Positive coefficients
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mean a positive correlation between the number of interprocedural edges and the
performance metrics, where a value between 0.5 and 1.0 indicates a strong corre-
lation. We, therefore, report a strong correlation between all the metrics and the
number of interprocedural edges for each call graph, except for CHA, where the run-
time has a weak correlation. We also report that all the correlations are significant
at a 0.05 significance level, except for CHA’s runtime. We attribute this finding to
CHA’s cheap construction time, compensating for the subsequent expensive IFDS
taint analysis time. We generally observe a trend where fewer interprocedural edges,
i.e., fewer methods contained in call graphs, cause fewer data-flow fact propaga-
tions. This means the data-flow solver must propagate fewer data-flow facts through
fewer method contexts, leading to a lower runtime and memory consumption.

The main promise of a precise call graph is to reduce the number of methods
analyzed by the data-flow analysis. This rule holds in general: fewer methods in
the call graph mean fewer data-flow fact propagations, which in turn means a
lower runtime and memory consumption.

4.5.4 Discussion

Table 4.4 presents the full set of absolute numbers for runtime and propagation met-
rics collected in Phase II. It shows the number of data-flow fact propagations (#P),
the number of interprocedural edges (#IE), and the analysis runtimes (as seconds)
with each call-graph algorithm and on each app. Note that, due to time (5 hours)
and memory (220GB) budget, some runs resulted in time-out exceptions (TOE) or
out-of-memory errors (OOM). The runtimes of the runs with TOE are still included
in the final results (as 5 hours), but the ones with OOM errors are not included in
the final results, to prevent rewarding the early terminations with a shorter runtime.
Also on some apps, analyses terminated prematurely with a runtime exception (RE).
We observe that although CHA is imprecise, the taint analysis runs that use CHA
almost always terminate, except for the app Viber. RTA terminates with a runtime
exception when analyzing 4 apps, and VTA terminates with a runtime exception on
5 apps. We find this behavior surprising because, in theory, they should prune an
initial CHA-based call graph. These exceptions appear to be implementation bugs
in the underlying SOOT framework. Therefore, when using SOOT-based call-graphs,
the least precise CHA still seems to be a sound option. The analysis runs that use
context-sensitive call-graph algorithms, i.e., T-1OBJ, M-2OBJ, Z-2OBJ, and s-2CFA,
never terminated due to OOM, while only in a few cases they terminated due to
TOE.
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Table 4.3: Statistical significance of the correlation between #Interprocedural edges and
performance metrics

Call Graph Metric Coefficient p-value

Runtime 0.19 4.3e−1
CHA Memory 0.83 9.9e−6

#Propagations 0.87 1.5e−6

Runtime 0.66 1.9e−2
RTA Memory 0.85 4.7e−4

#Propagations 0.83 8.3e−4

Runtime 0.75 2.1e−2
VTA Memory 0.85 3.7e−3

#Propagations 0.93 2.2e−4

Runtime 0.96 7.79e−9
SPARK Memory 0.64 1.0e−2

#Propagations 0.98 1.72e−10

Runtime 0.96 3.53e−10
T-1OBJ Memory 0.76 2.68e−4

#Propagations 0.98 3.63e−13

Runtime 0.95 1.94e−9
M-2OBJ Memory 0.75 3.34e−4

#Propagations 0.98 3.02e−13

Runtime 0.94 3.89e−9
Z-2OBJ Memory 0.71 9.4e−4

#Propagations 0.99 1.06e−13

Runtime 0.83 6.47e−5
s-2CFA Memory 0.69 2.84e−3

#Propagations 0.98 3.34e−11

A Call graph can theoretically impact the scalability of the IFDS framework primarily
through the number of interprocedural edges it provides. Table 4.4 shows that, in
general, when the number of interprocedural edges (#IE) increases, analysis run-
times increase as well. In the IFDS framework, by definition, an increased number
of interprocedural edges will lead to an increased number of data-flow fact propaga-
tions, i.e., the tainted variables will be propagated through an increased number of
method contexts. We observe that when the number of interprocedural edges (#IE)
increases (i.e., when using a less precise call graph), the number of data-flow fact
propagations (#P) increases as well. However, it is hard to conclude a general rule
for the correlation between the number of interprocedural edges and propagations.
The number of program statements, through which the data-flow facts are propa-
gated, is unlikely to be the same across all different methods. Although we observe
a clear correlation, it is hard to predict a call graph’s exact impact on the scalability
solely based on the number of its call edges.
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4.5.5 Threats to Validity

Similarly to previous work [LX19; Li+18; He+21; LHX21; HLX22], we use the
number of call-graph edges discovered to measure the precision of call-graph algo-
rithms. Previous work also often uses the number of polymorphic calls discovered
as a metric, in this study, however, we instead use the number of interprocedural
edges. We prefer this because, although interprocedural edges are obtained through
polymorphic calls, only a subset of the polymorphic calls end up being interproce-
dural edges in the IFDS framework. The IFDS framework creates interprocedural
edges if and only if data-flow facts need to be propagated into callee methods.

We perform the precision measurements on TAINTBENCH in phase I and performance
metrics on a set of popular apps from the Play Store in phase II. Doing both measure-
ments on the same set of apps was not possible, because the apps from taint analysis
benchmarks [Arz+14; Wei+18; Luo+22] contain ground truth to asses analysis
precision but they are not complex enough to test analysis scalability. Similarly, the
apps from the Play Store are complex enough to test analysis scalability but they do
not contain ground truth to asses analysis precision. Therefore, the reported evalua-
tion results might depend on the target apps used in each phase. We, nevertheless,
selected a set of the most popular apps to obtain representative results. The set of
most precise call-graph algorithms that we selected after obtaining the precision
results in phase I, might differ when using different benchmarks. However, to the
best of our knowledge, TAINTBENCH is the only benchmark of real-world Android
malware applications with ground truth.

Our work measures the call-graph precision’s impact on the scalability of IFDS-
based data-flow analyses. We employ FLOWDROID as the reference IFDS analysis
implementation because of its maturity and wide acceptance in the research com-
munity. The results presented in this work should theoretically generalize to other
IFDS-based [RHS95] analysis implementations as well as to IDE-based [SRH96]
analyses.

4.6 Related Work

This section presents the related work on call graphs and approaches that aim to
improve the scalability of the IFDS-based data-flow analyses.
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4.6.1 Call Graphs

Call graphs are indispensable data structures for interprocedural program analyses
and have been studied intensively in the literature [TP00; GC01]. CHA [DGC95]
and RTA [BS96] are classical examples of call-graph algorithms that do not rely
on pointer information. Modern call-graph techniques rely on pointer analyses to
improve their precision. Pointer analyses aim to compute a set of memory locations
that each variable in a program might point to. Andersen’s pointer analysis [And94]
is one of the earlier works in this domain that is widely used as a baseline tech-
nique. Sundaresan et al. [Sun+00] show how pointer information can aid with
virtual method resolution at polymorphic call sites. SPARK pointer analysis frame-
work [Lho03] of Soot [Val+99] enables one to obtain cheap context-insensitive
pointer information, which is the default choice in many Soot-based analyses, such
as FLOWDROID.

Handling contexts in pointer analysis is key to achieving increased precision. Emami
et al. [EGH94] introduced a context-sensitive pointer analysis that simply models
the entire heap as a single concrete location. Milanova et al. [MRR02] proposed
an object-sensitive pointer analysis technique that analyzes methods individually
for each receiving object. Smaragdakis et al. [SBL11] introduced type-sensitive
pointer analysis that utilizes types as context. Kastrinis et al. [KS13] combined both
call-site- and object-sensitivity in pointer analysis, formulating a hybrid sensitivity
approach.

Modern pointer analysis techniques aim to increase scalability by intelligently decid-
ing when to sacrifice precision. MAHJONG [TLX17] is a technique that aims to serve
a specific set of type-dependent analysis clients, such as call graphs. EAGLE [LX19]
and Z IPPER [Li+18] are partial context-sensitivity approaches that perform context-
sensitive analysis only for selected allocation sites or methods. Q IL IN [HLX22] is a
pointer analysis framework that implements many of the modern pointer analysis
techniques.

Sui et al. [Sui+20] measured the recall of call-graph algorithms in practice and
showed that handling dynamic language features can significantly improve recall.
Reif et al. [Rei+19] performed an extensive study to find sources of unsoundness for
Java call graphs. Neupane and Thakur [NT23] measured the effect of FLOWDROID’s
default call-graph algorithms on its precision. In this work, we present an empirical
study on the impact of call-graph precision on the scalability of the IFDS-based
data-flow analyses, by using an extensive set of call graphs that use state-of-the-art
context-sensitive pointer analyses.
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4.6.2 Scalable IFDS Extensions

As discussed by related work [Avd+15; Hua+15; Sch+24], scaling the IFDS- and
IDE-based data-flow analyses is an open challenge. Recently, many new techniques
have been introduced to address this challenge. SPARSEDROID [He+19] speeds up
IFDS analyses through sparsification, where intraprocedural edges are created not
for every statement in a method but instead only for statements where data-flow
facts are being used. D ISKDROID [Li+21] improves the memory consumption of
IFDS analyses by storing analysis data on disk when memory consumption reaches
a threshold. DSTREAM [Wan+23] scales IFDS analyses through a fine-grained
and highly parallel streaming-based computation model. CLEANDROID [Arz21]
improves the memory footprint of IFDS analyses through an intelligent garbage
collection mechanism that safely removes the intraprocedural edges that the IFDS
solver no longer needs. FPC [He+23] improves this approach using a fine-grained
garbage collection at the data-flow fact level. Schiebel et al. [Sch+24] propose
two optimizations for IDE-based data-flow analyses, and implement these optimiza-
tions on top of the IDE solver in PhASAR [SHB19], an LLVM-based static analysis
framework. They first present an efficient layout for storing the jump-functions
in memory, and then they leverage the intelligent garbage collection approach of
CLEANDROID [Arz21].

Interestingly, none of the scalable IFDS extensions mention which call graphs they
use under the hood, except for CLEANDROID, which reports using FLOWDROID’s
default context-insensitive call-graph algorithm SPARK [Lho03]. We argue that all
of these techniques would benefit from employing a more precise call graph because
they will essentially have fewer interprocedural edges to compute.

4.7 Conclusion

This chapter presented the second major contribution of this thesis, an empirical
study on the impact of call-graph precision on the precision and scalability of IFDS-
based data-flow analyses (Contribution 2). Interprocedural data-flow analysis frame-
works like IFDS rely on call graphs to propagate data-flow facts across methods.
We show, for the specific case of IFDS, that fewer call edges lead to an increase in
data-flow analysis precision, but they may also lead to a slight decrease in analysis
recall. We also show that, in general, an increased call-graph precision pays off for
the IFDS analyses in terms of memory consumption. In terms of runtime, there
appears to be a sweet spot in the trade-off between the precision, and thus the
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construction time, of a call graph and the total analysis runtime. Nonetheless, we
observe that fine-grained context-sensitive call graphs lead to significantly better
IFDS analysis runtimes while improving the analysis precision. Since IDE only dif-
ferentiates from IFDS in annotating the intraprocedural edges with the mappings
on the value domain, we expect the results to carry over to IDE-based data-flow
analyses.

As explained in Section 2.4, pointer analyses are essential for improving the precision
of data-flow analyses. They help data-flow analyses reason about aliasing relation-
ships between program variables, which may point to the same objects during pro-
gram execution. In the next chapter (Chapter 5), we show precise pointer analyses
can also benefit from fact-specific sparsification. To this end, we implement SPARSE-
BOOMERANG (Contribution 3), a sparse alternative to the BOOMERANG [Spä+16]
demand-driven pointer analysis.
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SparseBoomerang:
Query-Specific Sparsification
for Demand-Driven Pointer
Analysis

5

As explained in Section 2.4, precise data-flow analyses rely on pointer analyses to
resolve aliasing. Exhaustive pointer analyses compute pointer information for the
whole program upfront, which is argued to be inefficient [Spä+16]. Client data-flow
analyses need pointer information only at statements that read from and write to
the heap. Demand-driven pointer analysis seeks to be efficient by computing pointer
information only for variables on which a demand is raised, through a points-to or
alias query. Yet, research has shown that when applied to large-scale programs, even
demand-driven analyses can become expensive in terms of memory and runtime.

In Chapter 3, we have shown how fact-specific sparsification can improve the scal-
ability of whole-program data-flow analysis (Contribution 1). In this chapter, we
present the third major contribution of this thesis (Contribution 3) by investigating
to what extent demand-driven pointer analysis can be accelerated further if being
executed over a sparse control-flow graph (CFG), specialized to those queries. In the
context of demand-driven pointer analysis, instead of the term fact-specific, we use
query-specific. An alias query typically contains more information than an individual
data-flow fact.

Static program analysis clients, independent of their domain, require pointer infor-
mation [Hin01]. For that purpose, they sometimes implement a pointer analysis as
part of the client analysis [Arz+14], but more frequently use a pre-existing pointer
analysis [LBS19]. Fast and precise pointer analysis is still an open challenge for
large-scale programs. To be precise, pointer analyses track calling contexts, fields,
and statements, but that can hinder scalability. To be more scalable, many current
pointer analyses are performed in a demand-driven manner [HT01], as opposed
to conducting an exhaustive whole-program analysis [Lho03]. They benefit from
the fact that client analyses frequently require pointer information only for certain
variables at certain program points. For instance, assume a direct assignment in a
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taint analysis, e.g., x.f = t where t is tainted. Here, aliases of x need to be known
to the taint analysis so that this analysis can taint the f fields of x’s aliases, too.
Demand-driven pointer analyses exploit just that: They compute alias information
only for variables on which clients raise a demand through a query. Yet, previous
work has shown that even demand-driven analyses can be expensive when run on
large-scale programs [Spä+16].

BOOMERANG [Spä+16] is a state-of-the-art demand-driven pointer analysis frame-
work that uses synchronized pushdown systems (SPDS) [SAB19]. Pushdown sys-
tems (PDS) [Rep+05] apply to context-free language reachability problems, with
which context- and field-sensitivity can be modeled [SAB19]. BOOMERANG intersects
two PDS that model context- and field-sensitivity, respectively. Both PDS depend on
rules that correspond to data-flow functions. In this work, we exploit that many of
these rules are redundant as they only affect data-flow facts that do not matter to
the end result. Data-flow facts in pointer analysis correspond to the variables and
their aliases. Redundant rules exist because control flow graphs (CFG) not only con-
tain statements that affect the alias relationships, but also many other statements
that do not. The beauty of demand-driven pointer analysis is that one knows the
exact query variable (i.e., the variable, whose aliases are being queried), ahead of
the analysis time. Therefore, when answering a raised demand, one can sparsify the
CFG by removing the statements that are irrelevant to the result for the particular
query variable, and thus omit the redundant rules during the construction of the
SPDS.

Although our query-specific sparsification is inspired by the sparse IFDS work pre-
sented by He et al. [He+19], this work presents insights from two novel aspects
when applying such sparsifications. First, we demonstrate fact-specific sparsification
on the domain of pointer analysis, which enable us to propose two different sparsifi-
cation strategies that exploit characteristics of this domain. Second, we demonstrate
fact-specific sparsification on top a novel SPDS solver, showing that fact-specific
sparsification is not limited to IFDS- and IDE-based solvers.

5.1 Motivation

Previous work has successfully applied sparsification to improve the scalability of
general data-flow analyses [Shi+18; SX16; Oh+12] and pointer analysis in par-
ticular [Sui+11; HL11; HL09]. All these approaches create sparse versions of the
control flow graphs (CFGs) of a target program. These sparse versions are often
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referred to as sparse value flow graphs (SVFGs) [SX16] or sparse control flow
graphs(SCFGs) [He+19]. Most previous approaches create those SCFGs in a pre-
analysis stage, for the whole program, and thus settle for the information available
at that stage. Recent work by He et al. [He+19] showed that one can increase
sparseness, i.e., omit from the CFG more irrelevant statements, by specializing the
SCFGs to the individual data-flow facts. Their work was applied to the IFDS [RHS95]
framework, which applies only to distributive analysis problems. Pointer analysis is
known to be non-distributive [PK13]. In this work, we thus investigate to what ex-
tent one can make use of the idea of fact-specific sparseness, also in pointer analysis.
In the proposed framework SPARSEBOOMERANG, the analysis creates a new SCFG
specific to any queried value.

The goal of sparsification is to speed up the analysis run by restricting it to fewer pro-
gram statements, while ideally generating results identical to those of an exhaustive
analysis. Yet, the creation of the SCFGs incurs a cost in both memory and run-
time. Sparsification pays off when the savings during evaluating the sparse graph,
in comparison to the original exhaustive graph, outweigh the construction time.
To investigate this performance trade-off, this chapter presents two sparsification
strategies with varying degrees of sparsification. Both strategies create on-demand
SCFGs specific to each alias query. First, type-aware sparsification (TAS), where the
resulting CFG only consists of the statements containing variables that are type-
compatible with the query variable. Second, alias-aware sparsification (AAS), where
the resulting CFG consists of the def-use chains of the query variable and all its intra-
procedural aliases. Those strategies mirror designs published earlier in the context
of virtual call resolution [Sun+00], declared-type analysis (DTA), and variable-type
analysis (VTA), respectively. DTA and VTA create assignment chains, where each
node represents a variable either as its declared type (in DTA) or as itself (in VTA).
Our strategies create def-use chains, where each node represents a statement either
with the types (in TAS) or with the variables (in AAS) it contains.

5.2 Contributions

In this chapter, we evaluate the applicability of the proposed two sparsification
strategies within the SPDS framework. For that, we implement SPARSEBOOMERANG

by extending the SPDS-based BOOMERANG. To validate whether the two sparsifica-
tion strategies maintain the precision of the original exhaustive BOOMERANG, we
run all approaches on the POINTERBENCH [Eng19] benchmark suite for alias analy-
sis. To evaluate the performance impact of the strategies, we run both BOOMERANG
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and SPARSEBOOMERANG on real-world Android applications. To this end, we ex-
tend FLOWDROID, a state-of-the-art taint analysis client for Android applications,
so that it creates on-demand alias queries to BOOMERANG and SPARSEBOOMERANG.
Evaluation results show that SPARSEBOOMERANG using either of the sparsification
strategies solves the alias queries on average twice as fast as BOOMERANG, and while
maintaining full precision. The performance gains achieved by the demand-driven
pointer analysis are reflected in the taint analysis client, FLOWDROID. To summarize,
this paper presents these original contributions:

• Two sparsification strategies: type-aware sparsification and alias-aware sparsi-
fication for demand-driven pointer analysis,

• a sparse implementation of BOOMERANG, which we call SPARSEBOOMERANG,
which maintains BOOMERANG’s precision, and

• a modification of FLOWDROID that uses demand-driven pointer analyses BOOMERANG

and SPARSEBOOMERANG, and their performance evaluation on real-world an-
droid apps.

5.3 Background

In this section, we introduce the key concepts that are required to understand the
contributions presented in this chapter. We first explain why pointer analysis is a
non-distributive problem. We then explain the concept of demand-driven pointer
analysis, and how it can benefit from fact-specific sparsification. Finally, we briefly
explain BOOMERANG’s approach to pointer analysis.

5.3.1 Non-Distributivity of Pointer Analysis

Pointer analysis determines which program variables can point to which objects
at runtime. It is essential in real-world analysis settings where multiple program
variables frequently point to the same object. Two variables that point to the same
object are called aliases. Such alias information is crucial for a precise data-flow
analysis, enabling the tracking of indirect data flows through aliases. Pointer analysis
is usually not distributive: at an assignment x.f = t; one must assign aliases of t
to the f-fields of all the aliases of x.
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1 if(...){
2 x = new A();
3 } else {
4 x = new B();
5 }
6
7 if(x instanceof A){
8 x.f1 = 23;
9 } else if(x instanceof B){

10 x.f2 = 42;
11 }

Figure 5.1: Example code demonstraing non-distributivity of pointer analysis

For instance, assume performing pointer analysis on the example code in Figure 5.1
and recall the distributivity property presented with the equation 2.2 on page 12,
where the MOP (meet over all paths) solution equals to the MFP (maximal fixed-
point) solution. We first apply the MOP approach, i.e., maintain data-flow facts from
all the branches separately and then merge at the end. In this solution, after l2

(line 2), x 7→ A, and after l4, x 7→ B. Since these facts are kept separate, we can
conclude that after l8, {A}.f1 7→ 23, and after l10, {B}.f2 7→ 42. Therefore the
MOP solution SMOP = {{A}.f1 7→ 23, {B}.f2 7→ 42} when the analysis terminates.
We then apply the MFP approach, i.e., merge data-flow facts from different branches
immediately. In this case, after l5, x 7→ {A, B}, as we merge the results from l2 and
l4. Using this information, we conclude that after l8, {{A}.f1 7→ 23, {B}.f1 7→ 23},
and after l10, {{A}.f2 7→ 42, {B}.f2 7→ 42} as in both branches x may point to
an instance of A and of B. Therefore the MFP solution is SMF P = {{A}.f1 7→
23, {B}.f1 7→ 23, {A}.f2 7→ 42, {B}.f2 7→ 42}. Since SMOP ̸= SMF P , we see that
the pointer analysis problem violates the distributivity property.

5.3.2 Demand-driven Pointer Analysis

Because pointer analysis is not distributive, one cannot usually soundly handle all
aliases independently, and the IFDS framework is not applicable by default, thus
neither is Sparse IFDS. Yet, as opposed to whole-program pointer analysis, demand-
driven pointer analysis [HT01] is performed only for variables on which a demand,
e.g., a pointer or alias query, is raised. It computes just enough information to satisfy
the query. Interestingly, as Späth et al. showed [Spä+16], one can decompose a
flow-sensitive pointer analysis such that when queries raise sub-queries at “points
of indirection” (POI), e.g., at reads and writes to/from the heap, the evaluation of
those sub-queries does become a distributive and thus distributively solvable analysis

5.3 Background 75



problem. Figure 2.8 on page 17 shows the data-flow graphs that a taint analysis
would produce with alias information. To know that the analysis must taint a2.f
at L3, it must know that a1 and a2 alias at that point. In the case of a context-
and flow-sensitive demand-driven pointer analysis, an alias query would look as
follows:

mayAliases(v, s, m)

v is the query variable for which alias information is required. s is the query state-
ment and m its surrounding method. Thus, the query in Figure 2.8 on page 17 would
be instantiated as:

mayAliases(a1, L3, foo())

In demand-driven pointer analysis, the query variable is used as the initial data-flow
fact. It is provided explicitly, ahead of the analysis time. This allows one to perform
on-demand fact-specific sparsification, building an SCFG specific to each particular
query.

5.3.3 Boomerang

With BOOMERANG, Späth et al. [Spä+16] showed that the pointer analysis problem
can be modeled with distributive sub-queries that can still be solved with the IFDS
algorithm. Such sub-queries are created at POIs (points of indirections). POIs cause
the outer IFDS solver to instantiate sub-queries in the opposite direction, which are
then again solved by inner IFDS solvers. BOOMERANG handles the following POIs:

• Allocation Site: Upon finding an allocation site (new object creation) during a
backward analysis, a forward sub-query is created to find out which variables
point to this object.

• Field Write and Read: Upon finding a field write statement during a forward
analysis, a backward sub-query is created to find the aliases of the base variable
of the field. Field read statements are handled in a backward analysis similar
to the field write statements in the forward analysis.

• Return and Call: Return indirections are caused by the context change during
the forward analysis, and call indirections are caused during the backward
analysis.

Recently, BOOMERANG has been reimplemented with SPDS [SAB19] instead of the
IFDS framework. IFDS and PDS are equally expressive and can be used to model
the same inter-procedural data-flow problems [Rep+05]. SPDS uses two pushdown

76 Chapter 5 SparseBoomerang: Query-Specific Sparsification for Demand-
Driven Pointer Analysis



systems, Call-PDS and Field-PDS. The Call-PDS models flow- and context-sensitive
data-flow analysis. Its push rules correspond to call-flow functions of the IFDS frame-
work, whereas its pop rules correspond to return-flow functions. Normal rules of the
Call-PDS are equivalent to the intra-procedural flow functions of IFDS, i.e., normal-
flow functions and call-to-return-flow functions. The Field-PDS models flow- and
field-sensitive data-flow analysis. Push and pop rules of the Field-PDS represent
field store and field load statements respectively, where its normal rules correspond
to assignments. SPDS improves over the IFDS via its compact encoding of field-
sensitivity with the Field-PDS [SAB19]. Call-PDS and Field-PDS both benefit from
the proposed sparsification strategies because they both process the same CFG for
the same query variable. From the sparsification point of view, the underlying solver
(IFDS-, or SPDS-based) does not directly matter because, in the end, they both com-
pute the same data flows over the same CFGs. Therefore, although our sparsification
technique is inspired by the sparse IFDS work [He+19], we implement it on top of
BOOMERANG’s new SPDS-based solver.

5.4 Demand-Driven Sparsification Strategies

In Section 5.3.2, we showed that an alias query consists of a query variable, a
statement where its aliases are required, and a method that defines its context.
Figure 5.2a shows an input program for pointer analysis. An example alias query
looks as follows:

mayAliases(a1, L8, bar())

We seek to find the aliases of a1 at line L8 in method bar(). Figure 5.2b shows
how BOOMERANG performs this on a non-sparse CFG by default. It first initiates a
backward pass (for a1@L8) to find the allocation site of the object that a1 points
to. After finding the allocation site at L1, a POI, a forward pass for B@L1 is initiated.
The forward pass continues until it reaches the initial query location, yielding all
variables that point to the same object (B@L1) as the query variable.

In fact, only the statements in lines L1, L4, L6 can affect the aliasing relationships of
a1, where L8 is the query statement. Therefore, the edges that originate from the
other statements are irrelevant. Irrelevant statements and edges that start from them
are highlighted in Figure 5.2. Note that after sparsification, relevant edges connect
to the relevant statements that are next in the respective SCFGs. By sparsifying CFGs,
i.e., removing redundant transition rules, a significant amount of computation time
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bar(){

L1:   B b1 = new B();   


L2:   B b2 = new B();

   

L3:   C c1 = new C();

   

L4:   A a1 = b1;


L5:   A a2 = b2;


L6:   B b3 = b1;

   

L7:   C c2 = c1;

   

L8:   a1.f = source();


L9:   sink(b3.f);


}


a1 b1

b1 a1

B@L1

b3

a1 b1

b1 a1

B@L1

b3

a1 b1

b1 a1

B@L1

b3

a1@L8 a1@L8 a1@L8

Relevant Statement

Irrelevant Statement

Relevant Edge

Irrelevant Edge

(a) Input Program (b) Non-sparse CFG (c) Type-aware SCFG (d) Alias-aware SCFG

Figure 5.2: Data-flow Graphs of BOOMERANG’s Analysis on Non-Sparse CFG and SPARSE-
BOOMERANG’s Analyses on Type-aware and Alias-aware SCFGs (Sparse Control
Flow Graphs) on an Input Program where B is a subtype of A

can potentially be saved. However, sparsification also consumes computation time,
which depends on the degree of sparsification. Therefore, in the remainder of this
paper, we will seek to validate or refute the following assumption:

Assumption: A fine-grained SCFG is cheap to analyze, yet expensive to build,
whereas a coarse SCFG is cheap to build, yet more expensive to analyze.

To investigate whether this assumption holds, we implemented two sparsification
strategies with different degrees of sparsification. We will present these next.

Given a query, mayAliases(v, s, m), the sparse CFG specific to the query, SCFGv,s,m,
is obtained from the original CFG of the method m, CFGm, by removing those
statements that are irrelevant to the aliasing of v at the statement s. Below, we
explain how the two sparsification strategies identify irrelevant statements.

5.4.1 Type-Aware Sparsification

Type-aware sparsification follows a heuristic that is inspired by Declared-Type Anal-
ysis [Sun+00], which is based on the following idea. Given a program written in a
strongly typed language, a variable can only point to an object compatible with its
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declared type. In object-oriented languages such as Java, this definition includes any
types that are subtypes or supertypes of the declared type of the variable. Supertypes
need to be included to incorporate the possibility of explicit casts. Accordingly, an
assignment, leading to aliasing, can only happen between two variables whose types
are in a subtype-supertype relationship. With type-aware sparsification, we utilize
this information specific to the pointer analysis domain. Therefore, given a query
variable, we obtain an SCFG by keeping only the relevant statements according to
definition of type-compatibility.

Type-aware sparsification retains the relevant statements as follows. Given a query
variable v, hierarchy_types(v) is the set of types in the type hierarchy of v’s declared
type, i.e., its sub- and supertypes. var_types(s) is the set of types that the statement s

references, e.g., the type of the left-hand side and right-hand side for an assignment,
or the argument types and base type for a method call. Then, s is a relevant statement
with respect to v if and only if:

hierarchy_types(v) ∩ var_types(s) ̸= ∅

Figure 5.3 illustrates how type-aware sparsification works on the example code
provided in Figure 5.2a, when an alias query as mayAliases(a1, L8, bar()) is raised.
First, as shown in Figure 5.3a, we find the types of all the variables contained in
each statement, e.g., by applying the var_types function. Then we find the state-
ments that contain a variable whose type is also contained in the type hierarchy
of the initial query variable a1. Since in this example type B is a subtype of A,
hierarchy_types(a1) = {A, B}. Therefore, we mark such statements as relevant
statements, and finally remove the other irrelevant statements from the initial CFG
and obtain a SCFG specific to the given query. Figure 5.2c shows how SPARSE-
BOOMERANG solves an alias query over the resulting SCFGa1,L8,bar. Note that it
still contains irrelevant edges, due to the coarse-grained type-aware approach.

5.4.2 Alias-Aware Sparsification

Alias-aware sparsification likewise follows the approach introduced with the Variable-
Type Analysis (VTA) algorithm [Sun+00]; it represents variables by themselves, here
denoted by variable names. VTA uses def-use chains. Definitions and uses of a vari-
able cause aliasing. Intuitively, one can obtain an SCFG that only consists of the
statements that belong to the def-use chain of the query variable. However, it is
also necessary to be aware of the def-use chains of all the aliases created in the
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(a) Each statement si is associated with its var_types(si)
(b) After applying hierarchy_types(a1) ∩ var_types(si)
(c) The final SCFGa1,L8,bar after removing irrelevant statements

Figure 5.3: Running example of applying type-aware sparsification on the code in Fig-
ure 5.2a

initial def-use chain, until a fixed point is reached where there are no new aliases
to be discovered. To ensure this, alias-aware sparsification works in two passes,
similarly to BOOMERANG [Spä+16] but intra-procedurally. First, a backward pass
is performed until an allocation site is found, then a forward pass follows until the
query statement is reached. There may be multiple such passes, whose details are
explained in Section 5.5.2.

Alias-aware sparsification retains the relevant statements as follows. Given a query
variable v, intra_aliases(v) is the set of intra-procedural aliases of v. uses(s) is the
set of variables used in the statement s, then s is a relevant statement with respect to
v if and only if:

intra_aliases(v) ∩ uses(s) ̸= ∅

We maintain intra_aliases(v), which initially only contains the v itself. The meaning
of use depends on the direction of the pass. For instance, in a backward pass, the
left-hand side (LHS) of an assignment is in the uses(s), and in a forward pass, the
right-hand side (RHS). Accordingly, in a backward pass, the RHS of an assignment
is added to the set intra_aliases(v), and in a forward pass, the LHS.
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(e)
(a) Backward pass, each si is labeled with uses(si), i.e., LHS
(b) After applying intra_aliases(a1) ∩ uses(si)
(c) Forward pass, each si is represented by uses(si), i.e., RHS
(d) After applying intra_aliases(a1) ∩ uses(si)
(e) The final SCFGa1,L8,bar, union of the relevant statements in all passes

Figure 5.4: Running example of applying alias-aware sparsification on the code in Fig-
ure 5.2a

Figure 5.4 illustrates how alias-aware sparsification works on the example code pro-
vided in Figure 5.2a, when the alias query mayAliases(a1, L8, bar()) is raised. First, in
Figure 5.4a, in a backward pass, we label each statement with its uses, i.e., LHS of the
assignments. Then, in Figure 5.4b, we find all the statements that contain intraproce-
dural aliases of the initial query variable a1. Since initially intra_aliases(a1) = {a1},
we find the statement a1=b1 as relevant. This statement causes b1 to alias with a1
through an assignment; therefore, we check the relevance of the next statements
(in the backward direction) to a1 with intra_aliases(a1) = {a1, b1}. In Figure 5.4c,
in a forward pass, we again label each statement with its uses, i.e., RHS of the
assignments. Then in Figure 5.4d, we again find the statements that contain in-
traprocedural aliases of a1. Since we know that intra_aliases(a1) = {a1, b1}, we
also additionally identify the statement b3=b1 as relevant, which was initially over-
looked, when b1 was not identified as an alias of a1. At the end of this pass, in-
traprocedural aliases of a1 contain {a1, b1, b3}. Finally, in Figure 5.4e, we union the
relevant statements found in each pass, remove the irrelevant statements from the
initial CFG and obtain a SCFG specific to the given query. Figure 5.2d shows how
SPARSEBOOMERANG solves an alias query over SCFGa1,L8,bar that is obtained via
the alias-aware sparsification.
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Figure 5.5: System Overview of SPARSEBOOMERANG

5.5 SparseBoomerang

In this section, we explain the implementation details of our approach. Figure 5.5
shows the system overview of SPARSEBOOMERANG. It applies a caching mechanism
similar to that of sparse IFDS [He+19], with a nuance that SCFGs are cached per
query instead of per data-flow fact. Queries can be both originating from the client
or internal queries that the SPDS solver issues, e.g., on switching contexts. De-
pending on the configured sparsification strategy (type-aware or alias-aware), the
corresponding SCFG builder and the cache are instantiated.

In Section 5.4, we explained how the proposed sparsification strategies find relevant
statements. We next explain how the statements are handled at the intermediate
representation (IR) level and introduce the algorithms for each strategy.

5.5.1 Implementation of Type-Aware Sparsification

Table 5.1 shows the statements handled by type-aware sparsification with their IR.
assign and cast statements are handled the same, but we make the distinction to
point out that assignments from both supertypes and subtypes exist. load and store
statements concern reading from, and writing to the heap using field references.
This makes it necessary to track the aliases of their base variables. To do so, we
maintain a worklist of types, typeWorklist, where we store the declared types of
the base variables of field references and process them in the subsequent iterations.
var_types correspond to the declared types of the variables involved in a statement.
Note that invoke statements may have multiple arguments (e.g., b.m(a1.f, a2.f, ...)),
so each of them must be included.
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Table 5.1: Statements Handled by Type-aware Sparsification.
To handle aliasing that may be caused because of field load, store, and method
invoke statements, types of field bases and invocation receivers are also considered.

Statement IR var_types Effect on typeWorklist

assign x← y {t(x), t(y)} —
cast x← (T )y {t(x), t(y)} —
load x← y.f {t(x), t(y.f)} add(t(y))
store x.f ← y {t(x.f), t(y)} add(t(x))
invoke r ← b.m(ai.f) {t(r), t(ai.f)} add(t(b), t(ai))

Figure 5.6 shows the algorithm of type-aware sparsification. It takes as input the
variables passed as part of the alias query, mayAliases(v, s, m). relevantStmts is the
set of statements that are relevant to the alias query. typeWorklist is initiated with
the type of the query variable, type(v). The algorithm works until the typeWorklist
is empty, e.g., there are no further relevant types to process.

1 Function TypeAwareSparsification(v, s, m):
2 relevantStmts← {}
3 typeWorklist← {type(v)}
4 while typeWorklist ̸= {} do
5 Get t from typeWorklist
6 FindRelevantStmts(t, s, m)

7 Sparsify(m, relevantStmts)
8 Function FindRelevantStmts(t, s, m):
9 foreach si in pred(s) in m do

10 if var_types(si) ∩ hierarchy_types(t) ̸= ∅ then
11 Add si to relevantStmts
12 HandleBase(si)

13 Function HandleBase(si):
14 if si contains field then
15 Add type(base(field)) to typeWorklist

Figure 5.6: The Algorithm of Type-Aware Sparsification

FindRelevantStmts iterates over the CFG of the query method m until it reaches the
query statement s. The method HandleBase identifies the statements that contain a
field reference and populates the typeWorklist with the type of their base variables,
i.e., type(base(field)). To sparsify the CFG, it is traversed at the end to retain the
relevantStmts.

Figure 5.7 shows, on a simple example code, how the type-aware sparsification
algorithm works. Given a query variable q with the type A at statement q=y.f

the typeWorkList is instantiated with A. All the statements that contain a type that
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L1:   A a = new A();   

L2:   A b = a;
   
L3:   A c = b;
   
L4:   X x = new X();

L5:   x.f = a;

L6:   X y = x;
   
L7:   A q = y.f;

typeWorkList = {A}

a=B()

b=a

c=b

x.f=a

q=y.f

{A}

{A}

{A}

{A}

{A}

typeWorkList = {X}

x=X()

y=x {X}

{X}

add type(x)
to typeWorkList

Figure 5.7: Visualization of Type-Aware Sparsification Algorithm on an Example

belongs to the same type hierarchy as A are marked as relevant statements. As shown
in Table 5.1, certain statements require new types to be handled. For instance, at
line L5 due to the field store at x.f=a, type(x), X is added to the typeWorklist. In
the next iteration, all the statements that are type compatible with X are then also
marked as relevant statements, e.g., at L4, x = new X(), and at L6, y=x. Ignoring
these statements would prevent BOOMERANG’s solver from discovering the fact that
x and y alias at line L6, and therefore also x.f, y.f, and q alias. The statements that
are marked as relevant are then retained during sparsification.

5.5.2 Implementation of Alias-aware Sparsification

Table 5.2 shows the statements handled by alias-aware sparsification. In this case,
we additionally handle allocation and identity statements, which were treated as
simple assignments by the type-aware variant. These statements originate from the
underlying J IMPLE intermediate representation (IR). In J IMPLE, identity statements
model assignments from method parameters to local variables. allocation indicates
that an object is instantiated within the current CFG. identity and load indicate that
an object is instantiated elsewhere. store signals that the base variable of the field
reference must be handled. invoke is a special case. In a backward pass, it must be
handled similarly to an allocation; in a forward pass, it must be handled similarly
to a field store.
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Table 5.2: Statements Handled by Alias-aware Sparsification.
To handle aliasing, certain statements (as explained in [Spä+16]) cause switching
analysis direction. Impact of such statements, depending on the analysis direction,
are shown in bold. Other statements are simply iterated in the analysis direction.

Statement IR During Backward Pass During Forward Pass

assign x← y add(y) to bwWorklist add(x) to fwWorklist
cast x← (T )y add(y) to bwWorklist add(x) to fwWorklist
allocation x← T () add(x) to fwWorklist add(x) to fwWorklist
identity x← arg add(x) to fwWorklist add(x) to fwWorklist

load x← y.f

add(y.f) to bwWorklist
add(x) to fwWorklist add(x) to fwWorklist

store x.f ← y add(y) to bwWorklist
add(x.f) to fwWorklist
add(x) to bwWorklist

invoke r ← b.m(ai.f) add(r) to fwWorklist add(b, ai) to bwWorklist

To discover the aliasing relationships caused by different kinds of statements, this
strategy maintains two worklists. A backward worklist is used to create the def-use
chains in the backward pass, and a forward worklist is used to create them in the
forward pass. During a backward pass, the current value is searched in the LHS
of the statements. When a matching statement is found, its RHS is added to the
backward worklist bwWorklist. Similarly, during a forward pass, the current value
is searched in the RHS of the statements, and the LHS of a matching statement is
added to the forward worklist fwWorklist.

Certain statements require special handling to account for statements that do not
belong to the discovered def-use chain in the current analysis direction but may
cause aliasing relationships. During a backward pass, all the statements that may
instantiate an object outside the current method’s context are handled similarly to
an allocation statement, and their LHSs are added to the fwWorklist. These include
identity, load, and invoke statements. During a forward pass, base variables of store
statements and receivers of invoke statements are added to the bwWorklist.

Figure 5.8, shows the algorithm of alias-aware sparsification. It may perform multi-
ple backward and forward passes depending on the number of statements that cause
switching direction. To be brief, we assume intra_aliases(v) is maintained implicitly.
Both algorithms soundly preserve branching statements and stop processing after
reaching the query statement.
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1 Function AliasAwareSparsification(v, s, m):
2 relevantStmts← {}
3 bwWorklist← {v}
4 fwWorklist← {}
5 while bwWorklist ̸= {} do
6 Get v from bwWorklist
7 s = FindDefBW(v, s, m)

8 while fwWorklist ̸= {} do
9 Get v from fwWorklist

10 s = FindUseFW(v, s, m)

11 Sparsify(m, relevantStmts)
12 Function FindDefBW(v, s, m):
13 foreach si in pred(s) in m do
14 if lhs(si) ∩ intra_aliases(v) ̸= ∅ then
15 Add si to relevantStmts
16 Add rhs(si) to bwWorklist
17 if rhs(si) is alloc, identity, load, or invoke then
18 Add lhs(si) to fwWorklist
19 return si

20 return s

21 Function FindUseFW(v, s, m):
22 foreach si in succ(s) in m do
23 if rhs(si) ∩ intra_aliases(v) ̸= ∅ then
24 Add si to relevantStmts
25 Add lhs(si) to fwWorklist
26 if lhs(si) contains field then
27 Add base(field) to bwWorklist
28 if si contains invoke then
29 Add receiver(invoke) to bwWorklist
30 return si

31 return s

Figure 5.8: The Algorithm of Alias-Aware Sparsification
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L1:   A a = new A();   

L2:   A b = a;
   
L3:   A c = a;
   
L4:   X x = c.f;

L5:   X y = x;

L6:   X q = x;

bwWorkList = {q}

c=a

x=c.f

q=x

{a}

{x}

{q}

a=A()

x=c.f

{a}

{x}

fwWorkList = {a,x}

a=A()

{c}

b=a

c=a

{a}

{a}

add x
to fwWorkList

add a
to fwWorkList

y=x {x}

Figure 5.9: Visualization of Alias-Aware Sparsification Algorithm on an Example

Figure 5.9 shows, on a simple example code, how alias-aware sparsification is per-
formed. Given a query variable q at statement q=x, a backward pass is initiated. The
backward pass continues until an object instantiation is reached. Iterations continue
for the values discovered along the way, e.g., for x at q=x, c.f at x=c.f, and a at c=a
until a=new A() is found. All the statements that belong to this consecutive def-use
chain are marked as relevant statements, i.e., the ones that should not be sparsified
away. As shown in Table 5.2, certain statements require changing the analysis direc-
tion. For instance, in this example, at L4, x and at L1, a are added to the fwWorklist.
This is required to discover the relevant statements in the forward pass. Otherwise
these statements would be wrongly ignored, e.g., at L2, b=a and at L5, y=x.

5.6 Evaluation

Sparsification aims to enhance the performance of analyses while maintaining their
precision. Therefore, we evaluate the impact of the proposed sparsification strategies
considering two dimensions: Precision and performance impact. To do so, we have
formulated the following research questions:

• RQ1: Do the sparsification strategies cause precision loss?

• RQ2: How do the sparsification strategies impact the performance of the
demand-driven pointer analysis and its client?

• RQ3: How does the degree of sparsification impact the SCFG construction
time and its evaluation time?
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5.6.1 Experimental Setup

SPARSEBOOMERANG, available at https://github.com/secure-software-engine
ering/SparseBoomerang, extends the latest version of BOOMERANG at the time of
writing (1179227) [Cod19]. We use FLOWDROID as a taint analysis client with its de-
fault source and sink definitions. We also extended the latest version of FLOWDROID

(d97f9d9) [Eng18] so that it creates on-demand alias queries for BOOMERANG and
SPARSEBOOMERANG instead of using its own integrated alias analysis. Both tools
are based on the Soot static analysis framework [Val+99]. We use the following
benchmarks in our experiments:

• POINTERBENCH: POINTERBENCH [Eng19] is a micro-benchmark suite for alias
analysis. We use this suite to evaluate the correctness of the sparsification
approaches. We check whether we can obtain the same aliases by issuing alias
queries to BOOMERANG without sparsification and to SPARSEBOOMERANG with
type-aware and alias-aware sparsification strategies.

• Real-world Apps: We include real-world Android apps to investigate the per-
formance of our approach under the workload of large-scale and complex
programs. For that, we selected the 20 most downloaded Android apps from
the Google Play store listed in androidrank.org [Ran], then we downloaded
their most recent version from Androzoo [All+16].

• Replication Package: We provide a replication package that contains the
complete toolchain to reproduce the findings, along with their source codes.
The replication package is available at https://zenodo.org/records/16928
052.

All the experiments were performed on a Quad-Core Intel i7 processor at 2,3 GHz
and 32 GB of memory. The JVM was configured with a maximum heap size of
25GB, and a maximum stack size of 1GB. All performance data was generated as
the average of five runs of each input app with each alias analysis.

5.6.2 RQ1: Do the sparsification strategies cause precision loss?

It is crucial for the sparsification approaches to maintain the precision of their non-
sparse counterparts. Sparsification aims to reduce the number of statements that are
irrelevant to the particular analysis, but this requires a careful study of the program
statements to find out how to handle each one of these. We, therefore, test whether
both approaches maintain the level of precision that is obtained by non-sparse

88 Chapter 5 SparseBoomerang: Query-Specific Sparsification for Demand-
Driven Pointer Analysis

https://github.com/secure-software-engineering/SparseBoomerang
https://github.com/secure-software-engineering/SparseBoomerang
https://zenodo.org/records/16928052
https://zenodo.org/records/16928052


#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20
0

20

40

60

80

100

31
 s

16
 s

15
 s

5 
s

41
 s

13
 s

6 
s

15
 s

18
 s

12
 s

16
 s

24
0 

s

73
 s

6 
s

4 
s

20
0 

s

20
1 

s

16
 s

10
 s

10
1 

sBaseline
Runtime

FD using Boomerang
Boomerang

FD using SB-TAS
SB-TAS

FD using SB-AAS
SB-AAS

Figure 5.10: Relative time spent on taint analysis and solving alias queries by FLOWDROID

(FD) using baseline BOOMERANG, SPARSEBOOMERANG (SB) with TAS and with
AAS, in %

BOOMERANG, on POINTERBENCH. The micro-benchmark suite contains 35 target
programs. Its basic tests include branching, loops, recursion, and inter-procedural
aliasing. It also includes corner cases where field-, flow-, and context-sensitivities are
tested. The results show that both sparsification approaches yield results identical to
those of the non-sparse analysis. Precision, in particular, is therefore maintained.

5.6.3 RQ2: How do the sparsification strategies impact the
performance of the demand-driven pointer analysis and its
client?

As discussed in Section 5.5, both sparsification strategies come at a cost. They need
to build on-demand, sparse versions of the original control flow graphs (CFGs) of
the input programs. To measure the impact of the sparsification strategies on solving
alias queries and on the overall runtime of the taint analysis client, we evaluate the
performance of SPARSEBOOMERANG by comparing it to BOOMERANG.

Figure 5.10 shows the relative time spent by FLOWDROID on taint analysis and by
BOOMERANG and SPARSEBOOMERANG on solving alias queries on each real-world
app from the Google Play store that we have included in our evaluation set. FLOW-
DROID using BOOMERANG is used as the baseline. Each run by SPARSEBOOMERANG

with TAS, and with AAS is normalized against this baseline. It can be observed that,
despite their cost in SCFG construction, both sparsification strategies frequently
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reduce the time spent by demand-driven pointer analysis on solving alias queries.
More specifically, SPARSEBOOMERANG, compared to BOOMERANG, solves the alias
queries on average 2.4 times faster with type-aware sparsification, and 2.8 times
faster with the alias-aware variant. The maximum speedups achieved by each strat-
egy are 14.6 times and 18.7 times, respectively. The speedups gained during the
pointer analysis are also reflected in the client analysis. FLOWDROID using SPARSE-
BOOMERANG performs the taint analysis on average 1.13 times faster with type-
aware sparsification and 1.17 times faster with alias-aware sparsification. The maxi-
mum speedups by each strategy are 1.9 times and 2.5 times, respectively. The full
set of absolute numbers is contained in Table 5.3.

To investigate the significance of the results, we have also performed the Wilcoxon
signed-rank test [Wil92] at a 0.05 significance level. Both TAS (p=0.0027) and AAS
(p=0.0094) improve the performance of the pointer analysis significantly. Similarly,
the client’s performance also increases significantly when using TAS (p=0.0012)
and AAS (p=0.0011).
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Figure 5.11: Relative Memory Consumption of FLOWDROID using SPARSEBOOMERANG with
TAS and with AAS compared to the baseline BOOMERANG, in %

Figure 5.11 shows the maximum memory consumption of FLOWDROID using SPARSE-
BOOMERANG with TAS and AAS compared to the baseline memory consumption of
FLOWDROID using BOOMERANG. On average, the maximum memory consumption
increases. We have measured an average of 3% increase in memory consumption
when using SPARSEBOOMERANG with TAS, and 13% when it’s using AAS. However,
according to the Wilcoxon signed-rank test, memory increases with TAS (p=0.24),
and AAS (p=0.70) are insignificant. The impact on memory consumption is largest
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for apps #10 and #20. When observing the same apps in Figure 5.10, it can be
observed that these apps also benefited from a large speedup in the analysis run-
time.

An increase in memory consumption was expected. This is because, after all, both
sparsification strategies make use of caching to reduce the amount of time spent
on sparsification in case the same queries are issued. However, surprisingly, we
see that for some subject apps, e.g., #5, #13, and #17, sparsification substantially
decreases memory consumption. We attribute this to savings in the client analysis,
which, given the sparsification, requires associating data-flow facts with fewer CFG
nodes.

5.6.4 RQ3: How does the degree of sparsification impact the SCFG
construction time and its evaluation time?

We have already informally used the term degree of sparsification (DoS). We define
it formally as follows. Given an input program p, M is the set of all the methods
of p in which an alias query is issued. Let m a method in M , where CFGm is its
original non-sparse CFG, and SCFGm is its sparse SCFG. |CFGm| is the number of
statements in CFGm and |SCFGm| is the number of statements in SCFGm. DoSp

is then calculated as:

DoSp =
∑

m∈M |CFGm| − |SCFGm|∑
m∈M |CFGm|

In Section 5.4, we made the assumption that a higher DoS would lead to a larger
decrease in runtime when solving alias queries. To investigate this, in Figure 5.12,
we show, for each run, the correlation between DoS and the average time taken to
solve alias queries in these runs. The trend shows the assumed inverse relation on
a small scale. When the DoS increases, i.e., when more irrelevant statements are
removed, it takes less time to solve the alias queries. Accordingly, when the DoS
decreases, i.e., when it is necessary to retain a large fraction of relevant statements,
on average, it takes more time to solve the alias queries.

To further highlight the impact of the DoS, in Figure 5.13 we show the relative time
spent by each sparsification strategy on constructing the SCFGs, and then solving the
alias queries over them. We observe that the assumption generally holds: in most
cases, a higher degree of sparsification shortens the alias-query evaluation time.
However, the results on apps #6, #7, #8, #9 contradict the rule: counter-intuitively,
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Figure 5.12: Degree of sparsification (DoS) and average time spent on solving alias queries

for those apps, we see that the construction of the type-aware SCFGs actually takes
longer than the construction of the alias-aware SCFGs, although the latter actually
operates on a more detailed data structure, the def-use chains.
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Figure 5.13: Relative Time Spent on Solving the Alias Queries and Constructing the SCFGs
by each Strategy, in %

We have preferred calculating DoS based on the number of statements, to have a
common metric that can be used by both the pointer analysis and the sparsification
approaches. While the complexity of pointer analysis depends on the number of
edges in the CFG, the complexities of the sparsification strategies depend on the
diversity of the base types (for TAS) and the number of POIs (for AAS).
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5.6.5 Discussion and Threats to Validity

The sparsification techniques we present in this thesis apply at two different ab-
straction levels. First, at the framework level, we extend an existing non-sparse
framework with a new interface, so that it can obtain a SparseCFGBuilder specific
to the concrete data-flow analysis problem (domain). Second, at the client analy-
sis level, we implement concrete data-flow analyses and provide their correspond-
ing SparseCFGBuilder, like the constant propagation analysis client in Chapter 3.
BOOMERANG poses a special case, where the analysis framework also contains an
integrated pointer analysis client. Therefore, in this case, we could focus on multiple
sparsification strategies (TAS and AAS) specific to the domain of pointer analysis.

Theoretically, AAS corresponds to the most finely grained, variable-level fact-specific
sparsification. TAS, on the other hand, is a more coarse-grained, type-level sparsifica-
tion. Whether one can apply a similar strategy to TAS for SPARSEIDE depends on the
concrete analysis problem at hand. For instance, for integer constant propagation
analysis, one can retain all the statements that contain an integer type. Similarly, for
a type state analysis, one can retain all the statements containing the types whose
state properties are under analysis.

For the evaluation of SPARSEBOOMERANG, we have used the most installed apps
on androidrank.org [Ran]. Among them, we have discarded the ones that did not
contain any sources or sinks that FLOWDROID could detect with its default config-
uration. Further, we have ignored the apps that caused an error for the underlying
static analysis framework, Soot. This might introduce some selection bias, however,
appears hard to avoid.

To even out noise in runtime and memory measurements, we measured five runs
and here report the average over these five runs. Because both the pointer and the
client analysis are running in the same process, it is very hard to attribute increases
or decreases in memory consumption to either of them, let alone individual data
structures and algorithms. We thus focus on reporting the overall consumption.

5.7 Related Work

Sparsification has been applied in diverse static-analysis settings. P INPOINT [Shi+18]
is a staged sparsification approach that uses intraprocedural data dependence to
solve only the necessary interprocedural data dependence queries selectively. SVF
[SX16] uses as input points-to information that is generated by a cheap, imprecise
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analysis, constructs value-flows which are then used for a precise, sparse analysis.
Sparsification approaches are typically specific to particular analyses; however, Oh
et al. [Oh+12] introduced a general sparsification framework that is theoretically
applicable to any analysis. Our work can be seen as an instantiation of their frame-
work.

Applications of sparsification have also been performed for pointer analysis in par-
ticular. SFS [HL11] is a flow-sensitive pointer-analysis approach that uses sparse
def-use chains created by a flow-insensitive analysis stage. With alias-aware sparsifi-
cation, we also create def-use chains, albeit in a demand-driven manner, utilizing the
query information available at analysis time. Hardekopf and Lin [HL09] introduced
a semi-sparse approach, where sparsification is only applied to top-level variables.
This approach could be employed as a further, more coarse-grained sparsification
strategy. SPAS [Sui+11] is a path-sensitive sparsification approach that is applied
in stages to pointer analysis. Handling path-sensitivity is beyond the scope of our
study.

Many of the existing approaches sparsify program parts in a pre-analysis stage,
where only limited information about the target program is available. The Sparse
IFDS algorithm by He et al. [He+19] showed that further sparsification is possible
when applying sparsification on-demand and using the information available at
the runtime of the analysis. Their approach is also demonstrated by extending
FLOWDROID. Yet, a direct comparison with their approach was not possible because
they sparsify the FLOWDROID itself, whereas we sparsify BOOMERANG. So the impact
of our approach is only indirectly reflected in FLOWDROID. FLOWDROID is multi-
threaded, but BOOMERANG currently does not support multi-threading, so neither
does SPARSEBOOMERANG.

5.8 Conclusion

In this chapter, we presented the third major contribution of this thesis. We pro-
posed two sparsification strategies to accelerate demand-driven pointer analysis,
implemented in SPARSEBOOMERANG (Contribution 3). Both strategies create query-
specific sparse CFGs by utilizing the information available at the analysis runtime.
This highligts how sparsification can benefit from domain-specific information, in
this case, in the domain of pointer analysis. Moreover, with this work we also show
how fact-specific sparsification is not limited to IFDS- and IDE-based data-flow anal-
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yses. We demonstrate it in a novel setting, on top of a pushdown systems-based
solver. Although sparse CFG construction requires time, we have demonstrated that
it is negligible given the achieved speedups.
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Conclusion and Outlook 6
Scaling precise interprocedural static data-flow analyses on large-scale real-world
code bases is challenging. To improve scalability, static analysis designers often need
to restrict various analysis sensitivities, which means too many imprecise findings
for the analysis clients.

The SPARSEIDE framework (Contribution 1), presented in Chapter 3, shows how
one can significantly scale up the data-flow analysis problems that fit the classical
IDE framework [SRH96]. Importantly, SPARSEIDE maintains the precision of the
IDE framework. While SPARSEIDE mirrors the design of previous work on sparse
IFDS [He+19], unlike sparse IFDS, SPARSEIDE can realize sparsifications for data-
flow analysis problems with large or even infinite domains. SPARSEIDE strictly gen-
eralizes sparse IFDS; one can define sparse IFDS as an instantiation of SPARSEIDE.
SPARSEIDE’s sparsification is limited to program symbols; it cannot sparsify with
respect to the value domain.

Sparsification techniques, including sparse IFDS [He+19] and SPARSEIDE, create on-
demand sparse control flow graphs (SCFGs) for individual procedures, on which the
data-flow solver propagates data-flow facts sparsely. They only optimize intraproce-
dural data-flow edges; on the other hand, interprocedural data-flow edges, obtained
from call graphs, are required for modelling method invocations. In Chapter 4, we
perform an extensive empirical evaluation to investigate the extent to which call
graphs impact the scalability of data-flow analyses (Contribution 2). We show that
although precise call-graphs are expensive to generate, they significantly improve
the scalability of downstream data-flow analyses, and in some cases, improve their
precision. We hope that these findings will motivate researchers to develop fur-
ther optimizations targeting the call graph and interprocedural edges when scaling
data-flow analyses.

Precise data-flow analyses must account for the aliasing problem, which is often
delegated to standalone pointer analyses. Previous works [SAB17; LBS19] have
improved data-flow analysis precision by integrating the BOOMERANG [Spä+16]
demand-driven pointer analysis into their solvers to obtain alias information. The
alias analysis of BOOMERANG is flow-, field-, and context-sensitive, which makes it
highly precise, yet hard to scale. In Chapter 5, we show how BOOMERANG can also
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benefit from sparsification. To this end, we propose two sparsification strategies:
a type-aware sparsification (TAS) and an alias-aware sparsification (AAS), imple-
mented in SPARSEBOOMERANG (Contribution 3).

This thesis presents novel tools and techniques for improving the scalability of
precise interprocedural data-flow analyses, mainly through sparsification. We show
that sparse data-flow analyses pay off when analyzing real-world code bases, and can
replace their non-sparse counterparts. Further, we show how call-graph precision
directly impacts data-flow analysis scalability, and can complement the performance
benefits of sparse data-flow analyses. Finally, we show how pointer analysis can
be sparsified through fact-specific sparsification specialized for the pointer analysis
domain.

The sparsification strategies presented in this work were implemented manually
depending on the requirements of each data-flow analysis problem. For instance,
the sparse CFG builder for the integer constant propagation analysis problem needs
to recognize integer constant assignments and arithmetic operations, whereas the
sparse CFG builder for the pointer analysis problem needs to recognize object initial-
izations. Generating sparse CFG builders for each analysis problem would enable
problem-independent sparsification; however, we were not able to feasibly solve
this problem within the scope of this thesis. Therefore, problem-independent sparsi-
fication remains an open challenge.

The fact-specific sparsification approach presented in this work creates a sparse CFG
for each data-flow fact in a method. This causes a runtime overhead, which is often
negligible. However, as we have observed, uniformly applying a fixed sparsification
strategy may lead to suboptimal performance where the speedups gained during
analyzing the sparse CFG do not outweigh the sparsification overhead. A so-called
adaptive sparsification may utilize method features to decide which sparsification
strategy to apply, e.g., in the presence of multiple strategies, or not to sparsify at all.
Application of such an adaptive sparsification can be investigated in future work.

Current fact-specific sparsification techniques operate intraprocedurally, i.e., within
method boundaries, and they always soundly retain method invocations that use the
data-flow fact being actively propagated. This can be optimized further. A simple
heuristic can guide the sparsification strategies to check whether the data-flow fact
is actually being used in the callee method context. Employing such a heuristic can
potentially prevent doing additional work for method contexts that have no impact
on the analysis end result. Future work may investigate the performance benefits of
employing sparsifications that go beyond method boundaries.
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Artifacts

In this thesis, we have presented several tools and techniques for improving the
scalability of data-flow analyses. To enable other researchers to reuse, validate,
and extend these contributions we provide all the implementations as open source
artifacts.

SparseIDE: Symbol-Specific Sparsification of
Interprocedural Distributive Environment Problems

The implementation of the SPARSEIDE framework that we have presented in Chap-
ter 3 is published at https://github.com/secure-software-engineering/Sp
arseIDE. This repository contains SPARSEHEROS, the sparse version of the HEROS

solver, the contant propagation analysis client that we have implemented on top
of SPARSEHEROS, and the CONSTANTBENCH microbenchmark suite. The repository
contains instructions for building the client from the source code and also using the
SPARSEIDE framework as a dependency. Moreover, the complete toolchain of the
evaluation presented in Section 3.6 along with all the source code is available at
https://zenodo.org/records/10498325.

Qcg Framework for Call-Graph Generation

The implementation of the QCG framework for call-graph generation that we have
used for the emprical evaluation presented in Chapter 4 is published at https:

//github.com/secure-software-engineering/QCG. The complete toolchain of
the evalution presented in Section 4.5 along with all the source code is available at
https://zenodo.org/records/17041537.

99

https://github.com/secure-software-engineering/SparseIDE
https://github.com/secure-software-engineering/SparseIDE
https://zenodo.org/records/10498325
https://github.com/secure-software-engineering/QCG
https://github.com/secure-software-engineering/QCG
https://zenodo.org/records/17041537


SparseBoomerang: Two Sparsification Strategies
for Accelerating Demand-Driven Pointer Analysis

The implementation of the SPARSEBOOMERANG for demand-driven sparse pointer
analysis presented in Chapter 5 is published at https://github.com/secure-so
ftware-engineering/SparseBoomerang/. The complete toolchain of the evalution
presented in Section 5.6 along with all the source code is available at https://ze
nodo.org/records/16928052.
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[LH06] Ondřej Lhoták and Laurie Hendren. “Context-Sensitive points-to analysis: is
it worth it?” In: Proceedings of the 15th International Conference on Compiler
Construction. CC’06. Vienna, Austria: Springer-Verlag, 2006, pp. 47–64. DOI:
10.1007/11688839_5 (cit. on p. 49).
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