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Assessing healthy distrust in
human-Al interaction:
Interpreting changes in visual
attention

Tobias M. Peters*, Kai Biermeier and Ingrid Scharlau

Department of Psychology, Faculty of Arts and Humanities, Paderborn University, Paderborn, Germany

Introduction: When humans interact with artificial intelligence (Al), one
desideratum is appropriate trust. Typically, appropriate trust encompasses that
humans trust Al except for instances in which they either explicitly notice Al
errors or are suspicious that errors could be present. So far, appropriate trust
or related notions have mainly been investigated by assessing trust and reliance.
In this contribution, we argue that these assessments are insufficient to measure
the complex aim of appropriate trust and the related notion of healthy distrust.
We introduce and test the perspective of covert visual attention as an additional
indicator for appropriate trust and draw conceptual connections to the notion
of healthy distrust.

Methods: To test the validity of our conceptualization, we formalize visual
attention using the Theory of Visual Attention and measure its properties that
are potentially relevant to appropriate trust and healthy distrust in an image
classification task. Based on temporal-order judgment performance, we estimate
participants’ attentional capacity and attentional weight toward correct and
incorrect mock-up Al classifications.

Results and discussion: We observe that misclassifications reduce attentional
capacity compared to correct classifications. However, our results do not
indicate that this reduction is beneficial for a subsequent judgment of the
classifications. The attentional weighting is not affected by the classifications’
correctness but by the difficulty of categorizing the stimuli themselves. We
discuss these results, their implications, and the limited potential for using visual
attention as an indicator of appropriate trust and healthy distrust.

KEYWORDS

appropriate trust, healthy distrust, visual attention, Theory of Visual Attention, human-Al
interaction, Bayesian cognitive model, image classification

1 Introduction

In current research on human-AlI interaction, a common desideratum is appropriate
trust (Kastner et al., 2021; Mehrotra et al., 2024; Visser et al.,, 2025). Appropriate trust
entails that a person would trust AI when it is correct or suitable for a specific task, but
not when it is incorrect or unsuitable for that task. Given that the actual capabilities of
AT are imperfect, appropriate trust and related concepts are a much-needed improvement
over simply aiming to foster trust. However, approaches investigating if and how these
imperfect capabilities are noticed, and what consequences they have on users, are limited.

While a unified definition does not yet exist, appropriate trust and similar concepts all
revolve around the aim to align the perceived and the actual capabilities of AI (Mehrotra
et al,, 2024). This alignment can be defined as appropriate reliance (Lee and See, 2004;
Peters and Visser, 2023). This notion does, however, entail problematic issues. Before
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focusing on them, let us first define the relevant elements. Reliance
can be defined as a decision or action that takes AI support
into account (Visser et al., 2025). Trust “plays a leading role
in determining the willingness of humans to rely on automated
systems in situations characterized by uncertainty” (Hoff and
Bashir, 2015, p. 407). Furthermore, two types of reliance problems
can occur: Overtrust occurs when one relies on Al even when it
is incorrect. Disuse occurs when one does not rely on Al even
when it is correct. For appropriate reliance, both problems should
be prevented. Thus, theoretically, appropriate reliance would be
achieved if a person always relies when the AI support is correct
and never relies when it is incorrect.

Problematically, it is questionable whether a person with
the necessary knowledge for this would need AI support in
the first place. Moreover, a situation in which someone can
rely appropriately all the time would not be characterized by
uncertainty. In terms of the connection to trust, this is problematic
because trust is only of conceptual relevance when the outcome is
uncertain (see definition above, and Mayer et al., 1995; Miihlfried,
2018). While we can imagine that there are some applications
where one can always identify the AT’s correctness, we think that
those applications where this surpasses human knowledge are the
ones of interest for (envisioned) AI use cases. In these cases, we
regard achieving full appropriate reliance more as a theoretical
aim, given the uncertainty of relying on such AI applications.
Instead of leading to appropriate reliance, appropriate trust and
related concepts aim to improve appropriate reliance. Furthermore,
depending on the context, the risk of relying on Al may differ,
which in turn decides whether overtrust, disuse, or both equally
are more detrimental. Thereby, when and how much trust is
appropriate varies and can, thus, change for each context.

To summarize, appropriate reliance is what appropriate trust
aims to achieve. The ideal state with which appropriate reliance
is described oversimplifies the problem it tackles. Not always
knowing the ground truth is a key characteristic of scenarios
where Al is beneficial. This is also reflected in descriptions of
ideal human-AlI interactions. Such descriptions often refrain from
stating that users should be able to identify a model’s errors.
Instead, users should “form a correct mental model of the model’s
error boundaries” because this would allow them to know when
to trust or distrust the model’s recommendations (Zhang et al,
2020, p. 295). Alternatively, they should be enabled to differentiate
when the reasoning of an Al is correct and when suspicion would
be warranted (Bansal et al., 2021). These descriptions exemplify
the range of desirable consequences when faced with incorrect
or unsuitable AI support. Beyond explicitly noticing errors, these
consequences also include a sense of when to be suspicious.
Thus, the aim of appropriate trust might best be described as a
combination of an explicit and conscious identification of errors
and a potentially unconscious intuition of when to doubt, which
parallels the work on epistemic vigilance (Sperber et al.,, 2010).
Conceptualizing and assessing such a range of consequences strikes
us as both necessary and demanding.

So far, the notion of appropriate trust has been mostly
investigated through the concepts of trust and reliance. Reliance
is the decision made after seeing the AI output and potentially
descriptors such as the input, model information, or explanations.
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Trust, typically assessed via self-report, is a user’s introspective
account that may be, and often is, influenced by errors (e.g., Yu
et al., 2018; Yin et al., 2019; Peters and Scharlau, 2025). However,
it is also influenced by a variety of other factors, including pre-
existing knowledge, personality traits, and situational factors (Hoff
and Bashir, 2015; Kaplan et al., 2023). For reliance, the common
result is also that it decreases in the presence of errors (e.g.,
Yin et al., 2019; Papenmeier et al., 2022). Notably, discrepancies
between trust and reliance have been reported (Papenmeier et al.,
2022; Lammert et al, 2024), which emphasize the need to
investigate both because people may rely even though they report
little trust or do not rely despite reporting trust. For the present
argumentation, it is especially important to point out two aspects:
(i) trust and, thereby, reliance are influenced by many factors
besides the actual trustworthiness, and (ii) they do not directly
indicate whether people notice potential errors and how they may
be affected by them.

The latter is problematic because the results obtained from
these established operationalizations leave room for different causal
pathways and influences on trust and reliance. For example, Lai
and Tan (2019) report that, in general, their participants trusted
correct advice more than incorrect advice. They also observed,
however, that trust was increased by adding randomly generated
heatmaps as explanations, which did not justify an increase in trust.
It remains unresolved whether their participants did not notice that
the recommendations were incorrect or if they did notice but relied
on them anyway.

One way to overcome such limitations would be to let
participants indicate their perception of the recommendation’s
correctness. However, as we discussed above, appropriate trust
and similar concepts are not only about clearly noticing errors
but also about merely sensing possible errors. The latter may be
difficult to explicate and thus also difficult to operationalize via
self-report. Therefore, extending the typical assessments of self-
report and reliance seems advisable for a more thorough analysis of
human-AlI interactions. In this contribution, we want to introduce
the perspective of visual attention as one important aspect
influencing the initial perception of and subsequent interaction
with AL Thereby, we want to suggest and test another indicator
of appropriate trust, or rather, healthy distrust, and thereto also
highlight conceptual issues of trust and distrust.

Readers may deem it far-fetched to suggest visual attention
as an indicator of appropriate trust or similar concepts. However,
visual attention covers early processes involved in information
processing within human-AlI interaction, and it is a core function
relevant for the selection and recognition of visual stimuli
(Bundesen, 1990; Evans et al,, 2011). Accordingly, we consider
visual attention highly relevant in detecting (potential) errors in
visual scenarios. For example, consider a medical professional
viewing a mammography image of a dense breast classified as
cancerous. Given the professional’s knowledge that, for such cases,
mammography is a poor choice of imaging technique (Calisto et al.,
2021), this classification would seem wrong to them. Thus, the
image may receive more attention than an image that does not
indicate such an error.

Moreover, methods from visual attention research are well-
equipped to quantify such changes in attentional weighting, i.e., the
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distribution changes of the overall attentional capacity (Bundesen
et al, 2015). Therefore, measuring a person’s attention while
interacting with erroneous AI may shed further light on whether
and how people notice errors (consciously or unconsciously), and
ultimately, may provide an indicator for (dis)trust and thus be a
means to improve the assessment of appropriate trust and healthy
distrust. We will describe this in more detail in the following.

1.1 Healthy distrust & visual attention

Recently, we and others (IKKohn et al., 2021; Peters and Visser,
2023; Paaflen et al, 2025) have advocated for not considering
only trust but also distrust in the current AI context. This is
based on at least three issues: i) the conceptualization of trust and
distrust as two related yet separate dimensions, ii) the benefits
of distrust, and iii) the current focus on trust in the AI context.
Firstly, Lewicki et al. (1998) prominently proposed trust and
distrust as two related yet separate dimensions. Unfortunately, this
theoretically and empirically well-justified suggestion had received
little attention, neither in Psychology nor in related disciplines
(Vaske, 2016). This is also true for the context of A, even though a
few recent exceptions exist (Kohn et al., 2021; Colville and Ostern,
2024; Scharowski et al., 2025). What is promising about this two-
dimensional approach is that it conceptually allows for trusting
and distrusting something at the same time. This state may be
an element of vigilance or suspicion, which might turn out to be
elements of appropriate trust. This co-existence can be difficult to
imagine, but especially for measuring appropriate trust, it may be
important to assess trust and distrust separately.

Despite the typical negative connotation, distrust can also have
beneficial consequences, such as increasing creativity or memory
performance (Mayer and Mussweiler, 2011; Posten and Gino,
2021) and reducing confirmatory biases (Mayo, 2015). These are
benefits that would contribute to the aim of appropriate trust
and appropriate reliance. Typical characteristics of distrust are
skepticism, vigilance, and wariness (Lewicki et al., 1998; Cho,
2006). Following the two-dimensional conceptualization of trust
and distrust, only evaluating trust would neglect these interesting
characteristics that are likely to be crucial for detecting errors or the
potential for them, and that are, thus, important when ATDs actual
capabilities are poor.

However, only 14% of studies on appropriate trust also consider
and measure distrust (Mehrotra et al., 2024). As recently argued,
this could be improved by aiming to foster a healthy distrust
alongside appropriate trust (Paaflen et al., 2025). Healthy distrust
can be understood as an expression of “a careful or negative stance”
(Paaflen et al, 2025, p.15) and is distinct from instilling outright
distrust. This distinction is important because, as Mayo (2024)
argues, distrust is a “double-edged sword” and can, just like trust,
lead to unwanted consequences such as an increase in conspiracy
beliefs and a neglect of correct information. Accordingly, she
suggests fostering an evaluative mindset rather than a distrust
mindset. The evaluative mindset entails making a pause instead of
directly accepting or rejecting information.

Because vigilance and wariness are closely connected to
attention, we suggest the assessment of attention as a promising
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indicator for healthy distrust and a useful addition to the
assessment of self-reported (dis)trust and reliance. Given our
experimental scenarios, we will focus on visual attention in the
following. As a starting point, we will manipulate the presence
and absence of errors via mock-up Al classifications, and we will
focus on single-turn decisions. This simplifies what appropriate
trust and healthy distrust encompass. As discussed above, these
notions also apply to the question of whether a certain model
is trusted or distrusted for a specific task, and not only to such
single-turn interactions. However, as a first step, this simplification
is useful.

To measure visual attention, we instantiate the Theory of Visual
Attention (TVA; Bundesen, 1990) to describe task performance
in a specific experimental paradigm (Ttunnermann et al, 2015).
This allows us to quantify the overall attentional capacity C and
attentional weights w that certain stimuli receive. Both parameters
have the potential to serve as an indicator of distrust. For instance,
wrongly classified images that are distrusted may attract more
attention, which would be reflected in w. Moreover, distrust caused
by the incongruency between image type and its classification in
the case of misclassification may also affect the overall attentional
capacity. It could lead to a higher C, indicative of a more attentive
state, or to a lower C, indicative of attentional detriments due to
additional demands of such incongruencies.

TVA formalizes visual attention as a fixed-capacity independent
race. This means that a fixed capacity is spread across all stimuli
within the visual field. Each of the stimuli races for representation
in visual short-term memory (Bundesen et al., 2015). Each stimulus
has a processing speed v, which determines how likely it is that
the stimulus wins the race for representation in visual short-
term memory. The processing speed of a stimulus depends on its
visual evidence, a decision bias, and, central for this contribution,
on its attentional weight w (for further details, see Section 2.5.1
and e.g., Bundesen et al, 2015; Tinnermann et al.,, 2017). The
attentional weight determines how much of the attentional capacity
the stimulus receives. If a stimulus has a higher w, it is more likely
to finish the race first.

Following Ttnnermann et al. (2015, 2017), we use temporal-
order judgments (TOJ). The TVA-TOJ approach has the advantage
that it consists of a task that is easily combined with our stimulus
material, or, for that matter, with practically any visual stimulus
material (Kriiger et al., 2021).

1.2 Research questions & hypotheses

In this paper, we investigate how decision difficulty and Al
errors affect visual attention as a potential indicator of (healthy)
distrust and test if participants’ task performance is improved by an
option to deliberate on their judgment. In the present study, the AI
errors are incorrect image classifications. To assess visual attention,
we investigate the overall attentional capacity C that participants
have in our experimental scenario and the attentional weight w
that certain types of stimuli receive. Furthermore, we study whether
the option to withhold a decision by choosing that the image and
its classification are shown again later (SAL-option) improves the
combined human-Al performance compared to two alternative
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forced-choice decisions (2-AFC). Based on this, we investigate the
following research questions:

e RQI: Do images that are more difficult to categorize receive
a higher attentional weight w than more easily categorizable
images?

e RQ2: Do images classified wrongly lead to a different
attentional capacity C than correctly classified images?

e RQ3: Do wrongly classified images receive a higher attentional
weight w than correctly classified images?

e RQ4: Does the SAL-response option improve performance
compared to the 2-AFC decisions?

Research Question 1 is investigated in Experiment 1, while the
other research questions are investigated in Experiment 2. After the
participants are familiarized with the material, we assess whether
images that are more difficult to categorize receive more attention.
Thus, as Hypothesis 1, we expect a higher attentional weight w
for images that are difficult to classify than for images that are
easy to classify. To address Research Question 2, we compare
the C estimates of trials with two misclassifications to those of
trials with two correct classifications. As Hypothesis 2, we expect
a difference between these two trial types. Research Question 3
will be studied using trials with one correct and one incorrect
classification. Because we assume increased attention toward
potentially incorrect decisions, we expect a higher attentional
weight w for the incorrect classifications as Hypothesis 3. For
Research Question 4, we compare the participants’ performance
when making 2-AFC decisions and when using the SAL-option. As
Hypothesis 4, we expect higher performance in the trials with the
SAL-option.

2 Methods

To investigate the research questions and test the hypotheses
formulated above, we conducted two experiments, each split
into a Familiarization and a Main Part. The experiments were
approved by the ethics committee of Paderborn University. The
second experiment was preregistered.! For both experiments, a
24" monitor with a resolution of 1,920 x 1,080 px and a 60Hz
frame rate was used, and stimuli were presented against a gray
background (RGB: 192, 192, 192). In the first part, participants
were familiarized with the stimulus material and could practice
categorizing the forms. The Main Part of Experiment 1 is a
single-factor within-subjects design. We manipulated the factor
Comparison, which consisted of the three levels BlueBlue, RedRed,
and BlueRed, determining which types of stimuli were used as
probe and reference.

The main part of Experiment 2 follows a 2 x 3 within-subjects
design. We manipulated the factors Classification Correctness
and SAL-Option (present vs. absent). In each trial, two images
with one classification were presented. Based on the Classification
Correctness, the classification for each of these images could be
correct for both, wrong for both, or correct for one image and
wrong for the other. The factor SAL-Option determined whether

1 For the preregistration, see https://doi.org/10.17605/OSF.IO/NZKX9.
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TABLE 1 Trials per SOA per condition.

SOA levels (ms)

—100 —50 —16.6667 0 16.6667 50 100
Exp. 1 20 20 20 20 20 20 20

n trials
Exp. 2 28 40 48 48 48 40 28

participants could only respond that the classification was correct
or not, or if they could also respond “show again later.” In 25%
of the trials, the SAL-option was present. It was counterbalanced
whether the SAL-option was present for Type A or Type B forms
and whether it was present in the first or second half of the
Main Part.

Furthermore, to conduct the TVA-TOJ analysis, we chose seven
levels of stimulus-onset asynchrony (SOA). In Experiment 1, there
were 20 trials per SOA level per Comparison, and in Experiment
2, we ensured at least 28 trials per SOA level per Classification
Correctness, resulting in the trial frequencies that are summarized
in Table 1. The image classifications were not Al-generated. The
forms were classified so that they fit the design described above.

2.1 Participants

We recruited German-speaking students enrolled at Paderborn
University via announcements during lectures and mailing lists.
Participants had to be at least 18 years old. Persons with visual
color deficiencies were excluded from participation. Participation
was compensated with 10€ per hour or course credit, and the three
best-performing participants were rewarded with a 20€ bonus.
Participants in Experiment 1 (N = 32) were between 18 and 39
years old (M = 23.55,SD = 4.3). 79.41% identified as female.
Participants in Experiment 2 (N = 51) were between 18 and
34 years old (M = 23.35,SD = 3.72) with 68.63% identifying
as female. Participation in both experiments was allowed, and
35.29% of Experiment 2’s sample also participated in Experiment
1. The TOJ performance of two participants in Experiment 2 was
at chance level for all SOAs, indicating careless and insufficient
effort in responding. These participants were excluded from all
subsequent analyses.

2.2 Stimulus material

The stimulus material was based on another study on erroneous
image classifications (Peters and Scharlau, 2025). The stimuli are
two-dimensional forms generated in Python with matplotlib. The
stimuli of the present experiments are newly generated but share
the same features as the stimuli used in Peters and Scharlau (2025).
All forms have five points, five straight lines, and one curved line
(for examples, see Figure 1).

The forms vary by three features: their color (blue, RGB:
0,0,139; red, RGB: 139,0,0), the curvature (convex vs. concave) of
their curved line, and their width-to-height ratio. Depending on
these features, we formulated the following categorization rules.
The forms are categorized as Type A if they are either:

frontiersin.org


https://doi.org/10.3389/fpsyg.2025.1694367
https://doi.org/10.17605/OSF.IO/NZKX9
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Peters et al.

TN
N =

FIGURE 1
Examples of the used stimulus material (left: Type A, right: Type B).

e blue, have a concave line, and are wider than high, or
e red, have a concave line, and are higher than wide.

They are categorized as Type B if they are either:

e blue, have a convex line, and are higher than wide, or
e red, have a concave line, and are wider than high.

In general, the blue forms are easier to categorize than the red.
For the red forms, the closer the width-to-height ratio is to 1, the
more difficult they are to categorize. This does not apply to the blue
forms because if the categorization rules are fully understood, the
width-to-height ratio is not necessary to categorize them.

2.3 Procedure—Experiment 1

2.3.1 Familiarization

After giving their consent to the terms of the experiment,
participants were informed that the following experiment is
split into the Familiarization and the Main Part. Before the
Familiarization Part, they received information about the stimuli
and the features that were relevant for categorizing the material.
They were informed that they should learn to categorize the
stimuli into Type A and B and that the following procedure
would be repeated once or, depending on their performance,
twice. Participants went through 6 blocks of 4 trials with examples
of correctly categorized forms, and 10 trials without examples.
This procedure was repeated; this time, however, with 20 trials
without examples. If the participants answered at least 80% of
the trials correctly, they continued with the Main Part. Otherwise,
the practice with and without examples was repeated once more,
again with 20 trials without examples. Afterward, regardless of
performance, all participants continued with the Main Part. For
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each repetition of the practice part, new stimuli were used.
Participants received auditory feedback throughout all trials.

2.3.2 Main experiment

First, participants were instructed about the upcoming
procedure verbally and on screen. They were instructed to try to
respond as accurately as possible. They were reminded about the
performance-based bonus. The participants were informed that
the bonus would be based on both their TOJ performance and
their performance in the query trials. With this incentivization,
we wanted to ensure that participants focused on both tasks. Each
trial consisted of a TOJ with two forms. In 25% of the trials, a
query asking which type the two forms belong to followed. At
the beginning of each trial, a fixation point at the center of the
screen appeared, and two forms, one on each side, were presented
with a 300px vertical offset. Unbeknownst to the participants, in
the BlueRed and the RedRed comparisons, the probe stimulus was
more difficult to categorize. In the BlueRed comparison, the probe
was always the red form. In the RedRed comparison, the probe
always had a width-to-height ratio more difficult to judge than that
of the reference. In the BlueBlue comparison, both types of blue
forms were equally often probe or reference, for which no difficulty
difference was expected.

After a 700 ms fixation time, an offset-onset flicker occurred for
the two stimuli. The delay between and the order of the probe and
reference flicker was determined by the SOA values. For negative
SOAs, the probe led; for positive SOAs, the reference led; and for
the zero SOA, the flicker occurred simultaneously. Whether the
probe was presented on the left and the reference on the right
or vice versa was counterbalanced. The participants had to judge
which of the two images flickered first by pressing “Q” for the left
and “P” for the right stimulus.

If the TOJ was followed by the query about the forms, the
participants had to judge to which type each form belonged. They
had to respond within 2 s via key-press (“A” for Type A, “L” for Type
B; the keys were marked with A and B on the keyboard).

2.4 Procedure—Experiment 2

The Familiarization Part followed the same procedure as in
Experiment 1. As soon as participants reached at least 80% correct
in a categorization block, the main part of Experiment 2 followed.
At most, two repetitions of the Familiarization were offered. If
the participant did not achieve 80% correct at least once, they
could not participate in the Main Part. Before the Main Part,
participants were informed about the upcoming procedure verbally
and on screen. Participants were informed that they would not
see actual Al classification, but should imagine that the presented
classifications were Al-generated.? To help participants imagine

2 We chose this instruction, because we recruited from a pool of potential
subjects that already participated in studies where they were deceived about
mock-up Al advice being actual Al advice. Therefore, they were unlikely to

be convinced again.
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FIGURE 2

Setup of the main part of experiment 2 [(left) TOJ, (right) judgment about the Al classification with SAL-option]
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FIGURE 3
Structure of the Bayesian model for the TVA-TOJ analysis.
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this, the classifications were labeled and referred to as Al advice
throughout the remainder of the experiment.

At the beginning of the Main Part, participants had 48 tutorial
trials to practice the task. In the tutorial, for each trial, participants
were told on screen which classification of the mock-up AI had
been generated for the upcoming two images, which remained
visible throughout the whole trial. After one second, two images
and a fixation mark appeared. After a brief delay (1,700-1,900 ms,
randomized), an offset-onset flicker happened for the two stimuli
in the same way as in Experiment 1. The fixation mark was either
an “A” or a “B;” depending on the classification. After the tutorial,
the classification was only indicated by the fixation mark, and each
trial started with the appearance of the fixation mark and the two

Frontiersin Psychology

forms. In the Ieach condition, the probe stimulus was always the
incorrect classification.

After each TOJ, the participants were asked to judge via key-
press whether the classification was correct (“A”) or false (“L).
When it was a SAL-option-present trial, they could also press
“Space” to judge the image later. To visualize their options, boxes
appeared on screen as shown in Figure 2. Participants judged
these images one at a time. The image to be judged was visually
highlighted, while the other one was grayed out. Both images had to
be judged, and whether the left or right image was judged first was
counterbalanced. The participants had 3 s to make each judgment.
If they were too slow, the trial was recorded as no response, and a
warning appeared to answer more quickly.
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C (Hz) - sample C (Hz) - population
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Cond. BlueRed
mean=9 95% HDI
Cond. RedRed
= 95% HDI
I Cond. BlueBlue
= 95% HDI
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60 80 100 120 140 160 180 60 80 100 120 140 160 180
FIGURE 4
(Left) Mean attentional capacity C for each comparison type (sample estimates). (Right) Mean attentional capacity C for each comparison type
(population estimates).

To reduce task demands for the participants, we chose to
vary the image classification and the SAL-option not trial-wise
but block-wise. Otherwise, the participants would have had to
check which classification was made each trial, leading to a noisier
measurement. Each block consisted of 30 trials. The classified type
changed each block; whether the first block was Type A or B was
counterbalanced across participants. For both classification types,
the trial count for each level of Classification Correctness was equal
across all blocks but was randomized within each block (across all
blocks, the three levels of Classification Correctness occurred 280
times each, but in one block, one of the three levels could by chance
occur, e.g., 12 times out of 20).

At the end of the experiment, participants had to judge if
they focused more on forms where they were certain that the
AT classification was correct or on the forms where they were
uncertain that the classification was correct on a 5-point Likert
scale. Furthermore, they were asked to approximate how often,
on a scale from 0 to 100%, the AI classification was correct.
Moreover, self-reported trust and distrust were assessed six times
throughout the experiment via single items on a seven-point Likert
scale (How much do you “trust’/“distrust” the Al classification?).
This is beyond the scope of the article and is thus not included in
the analysis.

2.5 Statistical analysis

For the statistical analysis, we used RStudio (R version 4.4.0),
Jupyter Notebooks (Python version 3.12.10), and JASP (version
0.19.3, JASP Team, 2025). The Bayesian visual attention model has
been implemented using pymc5 (Abril-Pla et al., 2023) and applied
to the data using the NoUTurn Sampler (Hoffman and Gelman,
2014, with 4 chains, 16,000 tuning samples, 24,000 draws). Further
Bayesian tests were calculated in JASP.

2.5.1 Bayesian TVA-TOJ model

For the TVA-based analysis, we used the TVA-TOJ model by
Tinnermann et al. (2015). This model characterizes the probability
of categorizing the probe as flickered first (Pprope first)» dependent
on the processing speed distributed on each stimulus (vy(ope)&
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Vr(eference)) and the respective SOA. As briefly mentioned in
Section 1.1, this approach allows us to estimate the attentional
capacity C and the attentional weight w. Both are theoretically
meaningful and easily interpretable parameters. C quantifies in
Hertz (Hz) how many stimuli in the given setup are being
processed. Thus, in the TVA-TOJ approach, C =
that the flickering event of 90 stimuli can be processed within

90Hz means

one second.’

w quantifies how much of this capacity a stimulus receives.
Typically, the attentional weight for the probe stimulus is reported.
A Wprope = 0.6 can be interpreted as the probe receiving 60% of
the attentional capacity. Given that only two stimuli (probe and
reference) are considered, the reference stimulus receives 40% of
the attentional capacity. For simplicity, in the following, we will
refer t0 Wpyyope as W.

To derive C and w, we use the observed frequencies with
which the participants judged that the probe flickered first across
the different SOA levels. For readers interested in the actual
formalization of this, turn to the following paragraphs. Otherwise,
it suffices to state that the more accurate the judgment of the
temporal order of the probe and reference is, the higher the
attentional capacity C. With regards to w, the more often the probe
is judged first, the more attention the probe receives, which would
be reflected ina w > 0.5.

This characterization is formally expressed in Equation 1 and
can be subdivided into three cases.

1— e—vp\SOAl + e—vPISOA|( Vp

e Vp + Vr

——
Case2

if SOA <0

Case 1

Pprobe first (0 |Vpa v, SOA) =
¢ r1S0Al( Yp
vp+ vy
—_—_————
Case3

if SOA > 0

1)

3 It should be noted that still, the visual short-term memory limits the
amount of stimuli that can be represented in parallel, which is defined in the

TVA as the parameter K.
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Case 1 applies if the SOA is negative (probe flickers before
reference) and the processing of the probe flicker finishes before
the reference’s flickering starts its race for encoding. In this case,
Pprobe first follows a cumulative exponential distribution according
to TVA assumptions about encoding times. Case 2 applies if the
SOA is negative, but the processing of the probe flicker does not
finish before the reference flicker starts to race. Then, the probe’s
encoding probability is described by the complement of Case 1

Case 3 applies if the SOA is positive (reference flickers before
probe). This case is analogous to Case 2, namely that the reference
has not finished processing during the SOA (i.e., complementary
probability to the one given by the distribution function of
the exponential distribution), and thus probe and reference race
together. The probe then wins the race with the probability of its
relative processing speed advantage according to Luce choice rule.
As a data model for Pprope first» We used a binomial distribution
because it is the maximum entropy distribution for two-alternative
choice data (McElreath, 2020).

So far, we have parameterized the TVA-TOJ model by v, and
v, to be consistent with its derivation from TVA assumptions.
Because we are interested in C and w for testing our hypotheses,
a reparameterization in terms of C and w is needed. Following
the TVA, we can substitute vp and v, according to (Equation 2;
Bundesen, 1990) to directly estimate C and w from our model.
When we substitute vp and v, in this way, we can estimate C and
w from our model directly.

vw=C-w 2
v, =C-(1—w)

As we conducted a Bayesian estimation of the model’s
parameters, we also had to specify priors. We chose a hierarchical
non-centered implementation because shrinkage to the group
mean is known to improve estimates on average (McElreath,
2020). The hierarchical non-centered implementation of the TVA-
TOJ model has been proposed by Tiinnermann (2024) and has
been applied in Biermeier et al. (2024); Banh et al. (2024). The
parameters of the hyperpriors (Equation 3) are chosen to match
the empirical priors by Tiinnermann (2024). An overview of the
described model is given in Figure 3. For the standard model
diagnostics, including prior- and posterior-predictive simulations,
please refer to the supplementary materials.

Cy ~ Normal(n = —3,0 = 1)
Cs ~ HalfNormal(oc = 0.5)
Celi] ~ Normal(u = 0,0 = 1) Vi € Participants ~ (3)

C; = CntCoxCei Vi € Participants

w; ~ Beta(1,1) Vi € Participants

2.5.2 Power analysis

We conducted a Bayesian power search (Kruschke, 2014) by
simulating data from and fitting the data to the TVA-TOJ model.
The power search was implemented using the general workflow
and simulation of Tiinnermann (2024) along with the convenience
wrappers and modeling facility of Biermeier (2025). Consider
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Algorithm 1 for details. The power search indicated that at least
43 participants are needed to recover all expected effects (i.e.,
the recovered difference excluded a minimal difference considered
indistinguishable from zero) with a power of 0.83 [0.78,0.88].

3 Results
3.1 Experiment 1

Figure 4 shows the C estimates of the three comparison types.
We report the population estimate of C (C,,) and the C sample
mean (average across individual C estimates). Both estimations
result in the same distribution mean. As expected from a modeling
point of view, C estimates on the sample level are more certain than
on the population level; i.e., their highest density intervals (HDIs)
are narrower. This phenomenon is rooted in our assumption about
Cy. C,, reflects the uncertainty that our sample is just one random
sample and that other, more different samples may exist, while our
sample-level C estimate does not. The C estimates are very similar
to each other and indicate a high processing speed compared to
other TVA assessments (e.g., Kriiger et al., 2021; Espeseth et al.,
2014).

In Figure 5, we report the w estimates of the three comparison
types. In the BlueBlue and RedRed comparisons, w centers at
0.51 [0.49,0.53] and 0.51 [0.49,0.53], respectively. Contrary to
our expectation, w in the BlueRed comparison is below 0.5 at
0.45 [0.44,0.47]. This indicates that the easier stimuli received more
attention than the more difficult ones.

Furthermore, we checked that the stimuli we considered more
difficult based on previous studies were indeed more difficult in
this sample as well. This is confirmed by the frequency of correct
responses in Tables 2, 3.

3.2 Experiment 2

The attentional capacities C,, of each condition are visualized
in Figure 6. On average, the highest C is observed in the 2correct
Condition with a value of 112Hz [106, 118]. The values in the 2false
and Ieach conditions are very similar to each other, with a mean
value of 106Hz [100,111] and 107Hz [101, 112], respectively. To
investigate Hypothesis 2, in Figure 7, the averaged individual C
differences of the conditions are depicted. Comparing the 2false
to the leach condition, no meaningful C difference is observed,
with zero well included in the HDI. Comparing the 2correct to the
Ieach condition, a tendency toward a positive difference is observed
(5.2Hz [—3,14]). Also, the posterior difference of the 2correct
and 2false conditions (6Hz [—2.1, 14]) shows a tendency toward a
positive difference, with 0 just included in the HDI. This indicates
a smaller attentional capacity when both images are incorrectly
classified. Comparing these differences and their HDIs to a region
of practical equivalence (ROPE), set at —oco to 5Hz, it is 1.49 times
more likely that the 2correct-2false difference is above rather than
within the ROPE. This can be interpreted as anecdotal evidence
(Lee and Wagenmakers, 2014) for a positive difference and thus
as weak support for Hypothesis 2. Taken together, as soon as one
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FIGURE 5
Experiment 1: mean attentional weight w of each condition.

0.50 0.52 0.54

TABLE 2 Contingency table for the frequencies of correct responses split
by the color of the forms.

Form color Response correct

False True
Blue 1,212 (30.72%) 2,734 (69.29%) 3,946
Red 1,474 (37.49%) 2,458 (62.51%) 3,932
Total 2,686 (34.10%) 5,192 (65.91%) 7,878

Difference by color: BFyg > 10, 000.

image is incorrectly classified, the attentional capacity C tends
to decrease.

Contrary to our expectation of Hypothesis 3, the posterior
distribution of the attentional weight w of Condition Ileach
(Figure 8) centers at 0.5 [0.49,0.51], indicating no effect of
Classification Correctness on the attentional weights’ distribution.
Inspecting the attentional weights of each participant (Figure 9), we
can see both increases and decreases in the attentional weight of the
probe stimulus (incorrect classification).

In terms of the SAL-option, we cannot draw any conclusions.
Unfortunately, only 12 participants used this option at all, and if
they did, they did so only a few times (M = 9.92, with a range of
1 to 56 times out of 420). Further investigation, with an adapted
design that incentivizes the SAL-option more strongly, is needed to
study Hypothesis 4.

3.3 Additional analyses

For further exploration of the observed effects, we performed
additional analyses beyond what we had specified in our pre-
registration. Firstly, we further investigated the individual w values.
Based on the self-report at the end of the study, we grouped the
participants. Even with the grouping, no pattern in the results is
present (see Appendix for further details). What we do observe
here is a difference in C depending on the post-questionnaire
grouping. Across all three conditions, we observe that participants
who reported that they focused more on the stimuli they
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were sure about had a lower attentional capacity C than the
participants who reported focusing more on the stimuli they were
unsure about.

Secondly, we tested for a possible relation between the C
difference between the 2correct and 2false conditions and the
participants’ performance in judging the classification but did not
observe any meaningful relationship (r = 0.04, BFjp = 0.18).

Furthermore, to corroborate the findings of Experiment 1, we
also tested the effect of stimulus difficulty in Experiment 2. We
conducted another TVA-TOJ analysis, now with the data split
by stimulus difficulty. The probe was more difficult when it was
red and the reference was blue, or, in the case both stimuli were
red, when the probe’s width-to-height ratio was more difficult
to judge than the references ratio. The results are visualized in
Figure 10. Again, the stimuli that were easier to categorize received
more attention.

4 Discussion

In this contribution, we offer the perspective of visual attention
as another aspect to investigate human-Al interaction. Appropriate
trust and similar concepts have the complex aim of fostering users’
abilities to notice errors and also to foster their intuition regarding
when to expect errors. We have argued that the established
measurements of self-reported (dis)trust and reliance are relevant
but not sufficient to assess this range of consequences, which is
why we suggested attention as an additional indicator. To test this
potential indicator, we investigated visual attention toward correct
and incorrect image classifications.

In Experiment 1, we first tested if the difficulty of categorizing
the stimuli influences the participants’ attentional capacity C or its
distribution. Our results indicate that categorization difficulty does
not affect the attentional capacity C. The capacity’s distribution,
assessed via the attentional weight w, is affected by the difficulty.
Stimuli that were easier to categorize received more attention than
those that were more difficult. An additional analysis with data
from Experiment 2 further corroborates this finding. Overall, this
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TABLE 3 Contingency table for the frequencies of correct responses split by the forms’ color and the difficulty of their width-to-height ratio.

Width-to-height

Blue forms

Response correct

Red

forms

Response correct

False True False True
Easy 587 (29.75%) 1,386 (70.25%) 1,973 636 (32.09%) 1,346 (67.91%) 1,982
Hard 625 (31.68%) 1,348 (68.32%) 1,973 8,38 (42.97%) 1,112 (57.03%) 1,950
Total 1,212 (30.72%) 2,734 (69.29%) 3,946 1,474 (37.49%) 2,458 (62.51%) 3,932
Difference by width-to-height difficulty: blue forms: BF;o = 0.09; red forms: BF; > 10, 000.
. I Cond. leach
C (Hz) - sample C (Hz) - population — 529 {iBi
mean=107 mean=108 EEE Cond. 2correct
=—— 95% HDI
mean=106 mean=112 mean=107 mean=113 [ Cond. 2false
= 95% HDI
100
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8
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FIGURE 6
(Left) Mean attentional capacity C for each condition (sample estimates). (Right) Mean attentional capacity C,, for each condition (population
estimates).
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FIGURE 7
Differences in attentional capacity C between the conditions.
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FIGURE 8
Mean attentional weight w for each condition.
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FIGURE 9

Forest plot of the individual attentional weights w split by condition. Green area: ROPE from 0.475 to 0.525.

contradicts Hypothesis 1 and opposes our expectation, namely that
more easily classified stimuli receive more attention.

The direction of the observed effect can, of course, be specific
to the task setup. Especially, the time constraint for making the
decisions that followed the TOJ task may have led to the increased
attention toward the easier stimuli. Without this time constraint,
the effect may reverse or disappear. However, the query response
was sped up to ensure that participants would not separate the
two tasks, and thus, removing the time constraint could alter
the link between classification correctness and the attentional
estimates. Alternatively, further research could test different forms
of incentivization or allow participants to complete the TOJ either
after the query or before and after the query.

Frontiersin Psychology 11

In Experiment 2, participants encountered supposed Al image
(mis)classifications. The results do not support Hypothesis 3
because the Classification Correctness did not affect w. Even for
the participants who reported that they focused on the stimuli they
were not sure were being classified correctly, we only observed a
small tendency of increased attention toward misclassified images.
Overall, the small deviations of individual ws from 0.5 (ie.,
uniform distribution of attention) and thereby the small expected
differences in w are most probably caused by measurement
uncertainty. Remember that the full posterior still assigns much
probability to values close to 0.5.

In terms of the overall attentional capacity C, we observed
a difference due to the Classification Correctness, supporting
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FIGURE 10
Mean attentional weight w split by the difficulty of the probe stimulus compared to the reference stimulus.

Hypothesis 2. When both stimuli were correctly classified, a
higher attentional capacity was observed. The fact that this
difference occurred as soon as one image was incorrectly classified
indicates that there may be additional demands from the presence
of misclassifications. This could mean that participants quickly
noticed the misclassifications and prepared for the potentially
more demanding response that the classification was incorrect.
However, this is not supported by the second additional analysis,
which did not show a relation between the C differences and the
subsequent performance.

The fact that we observed a difference in the C estimates
depending on the grouping for the additional analysis of w
is interesting. Nevertheless, given the post-hoc nature of this
analysis, we can only speculate about the causalities. It could be a
motivational effect that leads to higher C values and also reporting
that one focused on the forms they were unsure about. It could also
be that participants who were struggling more with the TOJs could
only focus on the stimuli they were sure about, which is reflected in
their self-report, and those who performed the TOJ with more ease
could allow themselves to focus on stimuli they were unsure about.

In summary, the participants’ visual attention, estimated
via the TVA-TOJ approach, is affected by our experimental
manipulation, but neither of the two investigated parameters
clearly indicates healthy distrust. The reduction of the attentional
capacity indicates a slower processing speed for these images when
image misclassifications were encountered. However, there was
no relationship to the performance in the subsequent judgment
task about these images. Therefore, it remains inconclusive if
the reduced attentional capacity is otherwise beneficial. Further
research that replicates this result pattern and tests for beneficial
effects is needed. If such results could be established, only
then could the attentional capacity serve as an indicator of
healthy distrust.

The weight parameter w does not qualify as an indicator of
healthy distrust in our scenario. We only observed a meaningful
change in w because of the categorization difficulty, but not because
of the Classification Correctness. This shows that the attentional
weight is sensitive to participants’ difficulty in categorizing the
stimuli, but that it is not sensitive to the AI's correctness. Future
research could investigate a systematic variation of the AIs
correctness. Instead of having errors for all types of forms, the
classifications could err for only a certain subtype of the stimuli.
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After allowing the participants to apprehend the systematic error, it
would be interesting to test if this influences their attention toward
the error-prone stimuli.

4.1 Limitations

A first limitation is that Experiment 2’s sample only consists of
subjects who performed well in categorizing the stimuli. While this
was needed to ensure that participants could distinguish correct
from incorrect classifications, it introduces a selection bias to
our sample that may have influenced our results, thus preventing
their generalizability. Further insights would be provided by
using different performance requirements for participation and
comparing the results.

Secondly, as mentioned in Section 2.4, our participants were
informed about the mock-up nature of the AI advice. It certainly
makes a difference, especially for self-reported trust and distrust,
to interact with actual AI instead of only imagining that one
receives Al advice. However, for our purpose of testing whether
the correctness of a classification influences visual attention, we
regard this difference as less relevant. We assumed that the effects
of noticing incorrectly classified stimuli would be at least similar,
regardless of whether participants knew about the mock-up nature
of the AT advice. Nonetheless, if extending our approach to a naive
sample, it is preferable to instruct participants that they will interact
with actual AL

The observed change in w due to the categorization difficulty
was mainly observed when comparing the easier blue forms to the
more difficult red forms. Therefore, instead of the difficulty, the
color of the forms could also provide a simpler explanation for
the results. Indeed, the luminance difference (L values in CIELab)
between the blue color and the background color is larger than the
difference between the red color and the background, which can
lead to a higher saliency and the observed change in attentional
weighting (Wolfe and Horowitz, 2004; Kriger et al, 2016).
However, the luminance differences are of similar magnitude, and
the lines were rather thin compared to colored circles or thick bars,
with which such saliency effects are typically investigated. As the
participants were engaged in the more abstract and higher-level
task of categorizing the forms, it is unlikely that the observed effect
stems solely from the colors™ saliency. Nonetheless, switching the

frontiersin.org


https://doi.org/10.3389/fpsyg.2025.1694367
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Peters et al.

colors or using different colors would further inform the present
results.

Moreover, as one reviewer pointed out, this would allow for a
more nuanced analysis of what exactly drives the observed change
in w. In the TVA, w is defined as the multiplication of sensory
evidence, i.e., how easily the stimuli’s features are encoded, and
pertinence, i.e., how much importance is given to each of these
features. The former is influenced, for example, by the discussed
luminance difference. The latter is influenced, for example, by
the categorization rules, because if one feature is more relevant
than another for a participant’s decision to categorize the stimuli,
this feature has a higher pertinence. Suppose a change in sensory
evidence, such as switching colors, does not change the observed
effect. In that case, we could attribute the effect with more certainty
to the pertinence. To fully disentangle whether the w effect stems
from the sensory evidence or the pertinence, it would be best
to keep the sensory evidence constant and only manipulate the
pertinence. Ideally, two sets of categorization rules are needed that
vary in the importance of certain aspects of the stimuli and still
apply to the same stimuli. This is not possible with the present
stimulus set.

Furthermore, in comparison to other TVA studies (Kriiger
etal., 2021; Espeseth etal,, 2014), our C estimates are high. Potential
reasons are that most of our participants were familiar with TOJ
tasks, that we did not use any distractors during the TOJs, and
that our stimuli were comparably large, which was needed to
ensure that the forms’ type could be identified. Moreover, the
combination of TOJs and the queries about the forms may have
made the experiment less monotonous than a pure TOJ paradigm.
All of this can contribute to a simpler or less error-prone TOJ and
thus to higher C values. Given our within-subjects design, this is
unproblematic for our comparison of conditions, but it leads to
more uncertainty about the C estimates.

As recently shown (Banh and Scharlau, 2025), the higher the
estimated C values are, the larger their HDI width is, and thus
the uncertainty about them. High C values are obtained when
participants make very few errors during the TOJs. For high C
values, a single error leads to a much larger change in C than it
does for lower C values. Therefore, future studies should ensure a
certain difficulty of their TOJs to obtain sharper estimations of C.
Changes to the previously mentioned issues of stimulus and task
design would ensure that.

5 Conclusion

To sum up, the usefulness of our attempt to assess visual
attention as an indicator for healthy distrust, appropriate trust, or
similar notions is limited. While we do observe changes due to the
Classification Correctness, only the capacity is affected. For this, the
causal interpretation is difficult. In terms of w, the Classification
Correctness did not have an effect. The fact that the categorization
difficulty influenced w in both experiments shows that this formal
assessment of the weighting of visual attention is sensitive to such
a task, which is why we, as described above, advocate further
empirical exploration.
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In general, research on human-Al interaction needs to continue
investigating (dis)trust and reliance, and it should combine this
with further analysis to fully address the complexity of appropriate
trust and healthy distrust. For instance, relevant conceptual insights
are provided by interpersonal research on epistemic vigilance
and its application to the domain of developmental psychology
(Mercier, 2017; Sperber et al., 2010; Koenig and Harris, 2007).
To improve the assessment of knowing when to doubt, the core
contribution of the notion of healthy distrust is an important
endeavor. Some approaches on decision time or mouse tracking
can also be useful additions (Dechant et al., 2023; Vereschak
et al, 2021). However, in comparison to our approach, these
measurements lack the formal definition and theoretical base that
the TVA provides.

Regardless of the exact approach, the recent developments of
AT applications, most prominently in the interaction with LLM-
based applications, emphasize the need to foster critical usage; for
that, we need ways to assess and evaluate healthy distrust. Due to
the complexity of how such healthy distrust can manifest itself, it is
most likely that a combination of measurement types is needed to
fully cover this important and complex desideratum. We hope our
contribution makes this complexity more apparent and stimulates
further research on it.
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Appendix

Power analysis

Assumptions

Cconditiono ~ Normal(;w = 50Hz, 0 = 20Hz)
Ccondition1 ~ Normal(;w = 60Hz, 0 = 20Hz)
Cconditionz ~ Normal(;n = 50Hz, 0 = 20Hz)
Wconditiono ~ Beta(e = 50, 8 = 50)
Wcondition1 ~ Beta(e = 50, 8 = 50)
Weonditionz ~ Beta(e = 60, B = 40)

R

Success criteria
L. mean(CConditionl - Ccondition 0) > 3Hz
2. 95% — HDlIjgyer(Weondition 2) > 0.525

Additional analysis - post questionnaire
grouping

The participants were sorted into three groups based on their
self-report of whether they focused more on the stimuli that they
were sure about that they were correctly classified, unsure about, or
if they were undecided. After grouping the participants according
to their self-reported focus on the stimuli, the w estimates indicate
uniform distribution of attention to probe and reference or a slight
0.51). Thus, at most
only in this group of participants, a slight tendency in the expected
direction (Hypothesis 3) is observed.

preference for probe in Grp. unsure (w

During this additional analysis, we also inspected the C
estimates. As one would expect, the overall C estimates remained
unchanged. Interestingly, the grouping explains a portion of the
variation of C estimates. Figure A2 visualizes the portion of C
that is explained by the post-hoc grouping for Group unsure and
Group sure compared to the Group undecided. From this, we
can see that on average across the three conditions, participants
who reported focusing more on the stimuli they were sure about
had a lower attentional capacity C (—22Hz [—41,—2.1]). For
participants who reported focusing more on the stimuli they were
unsure about, a reverse but less convincing pattern is visible
(9.7Hz [—13, 33]).

w Probe
mean=0.5

Grp. unsure
95% HDI

Grp. undecided
95% HDI

Il Grp. sure

= 95% HDI

050 052 054

0.48

0.46

FIGURE A1
w Probe estimates of condition 1each after applying the post-hoc
grouping.
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N < {30, 35, 40, 45, 50, 60}
to start with
for nel do > Find start Sample Size
Co,[1..n] ~Normal(56Hz, 20Hz)
paramaters
Cy,[1..n] ~Normal(66Hz, 20Hz)
Cy,[1..n] ~Normal(56Hz, 20Hz)
We [1..n] ~ Beta(50, 50)
Wy [1..n] ~ Beta(50, 50)
Wy [1..n] ~ Beta(60, 40)
simData <« Simulate(n, [Cq «, C1 4, C2 4],
[Wo,x, Wi s, W2 i 1)
Co s\ Wy w < FitTVATOJ(simData)
if CheckCriteria(éM*,W&*) then
N<«n
Break
end if

end for

> Candiate samples sizes

> Simulation

while power < 80% do > Find first sample-size
with power > 0.8
successes < 0@
for ie[0,1, ...,200] do
Co,[1..n] ~Normal(56Hz, 20Hz)
Paramaters
Cy,[1..n] ~Normal(68Hz, 20Hz)
Cy [1..n] ~Normal(586Hz, 20Hz)
We [1..n] ~ Beta(50, 50)
1..n] ~ Beta(50, 50)
1.0~ Beta(60, 40)
simData < Simulate(N, [Co 4, C1 4, C2.4],
(Wo,x, Wi s, W2 i 1)
Co s\ Wy w < FItTVATOJ(simData)
if CheckCriteria(C*,*, Wy ) then
successes < successes + 1
end if

end for

> Simulation

J L
Ll
Ll
W‘]’[
Wa

power = successes/200 > power = share of
simulations with recovered effect
if power >=80% then return N
else
N <« N+1
end if

end while

Algorithm 1. Bayesian power search.
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leach - unsure leach - sure
meam=19 meap=-8.6
31 9 -43 5
~-100 0 100 -100 0 100
2correct - unsure 2correct - sure
mean=14 meap=-21
-32 62 —GOA 18
-100 0 100 -100 0 100
2false - unsure 2false - sure
mean=16 mean=-16
-25 8 -50 19
-100 0 100 —-100 0 100
average - unsure average - sure
mea=16 mean=-15
-9 41 -35 5.7
-100 0 100 -100 0 100
FIGURE A2

Portion of C (Hz) that is explained by the post-hoc grouping. Reported are the values of group unsure and group sure, with group undecided serving

as baseline.
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