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ABSTRACT
Entangled twomodeGaussian states constitute an important building block for continuous variable quantum computing and communication
protocols. In this work, we theoretically study twomode bipartite states, which are extracted from multimode light generated via typeII
parametric downconversion (PDC) in lossy waveguides. For these states, we demonstrate that the squeezing quantifies entanglement and
we construct a measurement basis, which results in the maximal bipartite entanglement. We illustrate our findings by numerically solving
the spatial master equation for PDC in a Markovian environment. The optimal measurement modes are compared with two widely used
broadband bases: the Mercer–Wolf basis (the firstorder coherence basis) and the Williamson–Euler basis.
© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0293116

I. INTRODUCTION
Entangled twomode bipartite Gaussian states play a funda

mental role in quantum optics as they represent building blocks for
many quantum optical protocols.1,2 An efficient source of highly
entangled states is thus an essential part for scalable quantum
technological applications.3 Currently, one of the most promis
ing platforms for producing Gaussian quantum light is based on
singlepath pulsed parametric downconversion (PDC) in nonlin
ear waveguides with secondorder nonlinear susceptibility.4–8 These
platforms potentially allow for the generation of ultrashort pulsed
squeezed vacuum states with a highrepetition rate. However, two
main factors are limiting the performance of such sources. The first
one is the presence of scattering losses, i.e., the intrinsic waveguide
losses,9,10 which are caused by technological imperfections during
the fabrication and result in the generation of a mixed state in the
PDC process. The second limiting factor is the multimode struc
ture of the generated PDC light,11–15 which is induced by nonlinear
optical coupling of interacting fields and strongly depends on the
waveguide dispersion and the pump profile. To accurately operate
with multimode PDC light, it is necessary to determine the cor
rect mode shapes, since measurements in the wrong modes can lead

to the loss of nonclassicality.14,16,17 One of the tasks where mode
shapes play a crucial role is the generation of the twomode bipartite
states (TMBSs) based on multimode typeII PDC light. Experimen
tally, TMBS can be obtained from the initial multimode bipartite
light by using a single quantum pulse gate (QPG)18–20 for each par
tition. Alternatively, one can selectively work with the chosen two
modes of the multimode light by implementing proper gates with
the use of homodyne detection.21,22

In this paper, we study twomode bipartite Gaussian states
extracted from pulsed typeII multimode PDC generated in lossy
waveguides. We show how to choose the measurement basis
for obtaining the maximally entangled twomode bipartite state
(TMBS), which then can be used for a proper homodyne detection
or QPG protocol.

II. THEORETICAL DESCRIPTION
A. Theoretical model for typeII PDC

For the description of PDC generated in lossy media, we use
the numerical scheme developed in Refs. 14 and 15. The details of
this approach are given in Appendixes A and B. In the framework of
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multimode Gaussian states, the typeII PDC is described as a mul
timode bipartite system: part A (also called signal) and part B (also
called idler), each consisting of N bosonic monochromatic modes,
â = â 0, â 1, . . . , â NT and b̂ = b̂ 0, b̂ 1, . . . , b̂ NT , respectively. The
lower indices correspond to the different discrete frequencies. The
quantum state generated via PDC from the vacuum state is fully
described by the correlation matrices D and C , which obey the spa
tial master equations. For a typeII PDC process in a Markovian
environment, see Ref. 15 and Appendix B, their solution has the
form

D = (⟨â†â⟩ 0
0 ⟨â†b̂⟩), C = ( 0 ⟨âb̂⟩⟨b̂â⟩ 0

), (1)

where the matrices ⟨â†â⟩, ⟨b̂†b̂⟩, and ⟨âb̂⟩ are the correlation matri
ces with elements ⟨â†i âj⟩, ⟨b̂†i b̂j⟩, and ⟨âib̂j⟩, respectively. The expec
tation values ⟨â †⟩ = ⟨â⟩ = ⟨b̂ †⟩ = ⟨b̂⟩ ≡ 0 due to the initial vacuum
state. Note that the presence of zero matrices 0 in Eq. (1) is a
property of the considered typeII PDC. Indeed, in this case, the
PDC Hamiltonian contains only the interaction terms between the
signal and idler subsystems. Below, we restrict ourselves to type
II PDC and therefore use Eq. (1) as the starting point for further
derivations.

Note that in this study, we only focus on losses during PDC
generation; however, the linear external losses, e.g., transmission and
detection losses, could easily be included in the consideration. The
procedure for introducing frequencydependent external losses is
described in detail in Ref. 14. Here, we onlymention that the external
losses are included via the transformations ân → tanân and b̂n → tbnb̂n,
where tan and tbn are the complex field transmission coefficients. These
transformations do not change the structure of Eq. (1); therefore,
all the results we obtained are also valid for frequencydependent
external losses.

Alternatively to the matrices D and C , the generated PDC
state can be presented in terms of the covariance matrix Σ. The
relationship between the matrices D , C , and Σ are given in
Appendix A.

B. Twomode bipartite Gaussian state
Let us assume that we measure the light in only two modes:

one mode in each of subsystems A and B. This scenario can exper
imentally be realized using the QPGs as shown in Fig. 1 or in
homodyne detection, where the modes of local oscillators corre
spond tomeasurement modes. As a result, instead of using the initial
multimode state, we effectively work with a TMBS built by two
measurement modes. In the general case, these modes are repre
sented as a superposition of the initial monochromatic PDC modes;
therefore, mathematically they can be found using a passive local
transformation,

U = (uA 0N
0N uB

), (2)

where uA and uB are the normalized rowvectors of size N. Then,
the annihilation operators for the broadband measurement modes
are given by Â = uAâ and B̂ = uBb̂.

FIG. 1. Scheme of a TMBS preparation from a multimode typeII PDC process.
After the lossy PDC process, a multimode mixed state with the covariance matrix
Σ is generated. Two quantum pulse gates (QPGs) in partition A with the mode uA
and in partition B with the mode uB provide the TMBS with the covariance matrix
σuA, uB⌞.

Applying the transformation U to the initial multimode system
Eq. (1), via the rules (A7), one obtains the following nonzero second
order correlators for the introduced broadband modes:

⟨Â †Â⟩ = u∗A⟨â†â⟩uTA, (3)

⟨B̂ †B̂⟩ = u∗B⟨b̂†b̂⟩uTB , (4)

⟨ÂB̂⟩ = uA⟨âb̂⟩uTB. (5)

To simplify the following expressions, we choose the phases of the
modes in such a way that Im⟨ÂB̂⟩ = 0. This can be achieved via
additional phase rotations, uA → uAeiϕA and uB → uBeiϕB . The num
ber of photons in the signal and idler parts are NA = ⟨Â †Â⟩ and
NB = ⟨B̂ †B̂⟩, respectively. Note that the vectors uA and uB fully deter
mine the TMBS: choosing different measurement modes, we obtain
different TMBS.

By introducing the quadrature operators for broadband
modes q̂ A = Â† + Â, p̂ A = iÂ† − Â and q̂ B = B̂ † + B̂, p̂ B = iB̂† − B̂ (we use h = 2, the commutation relations q̂ A, p̂ A= q̂ B, p̂ B = 2i, q̂ A, p̂ B = 0), the covariance matrix for the
corresponding TMBS reads

σuA,uB =
⎛⎜⎜⎜⎜⎝

α 0 γ 0
0 α 0 −γ
γ 0 β 0
0 −γ 0 β

⎞⎟⎟⎟⎟⎠
, (6)

where we order the quadratures as q̂ A, p̂ A, q̂ B, p̂ B. The para
meters of the matrix are defined as follows: α ≡ ⟨p̂ Ap̂A⟩ = ⟨q̂ Aq̂A⟩= 1 + 2⟨Â†Â⟩, β ≡ ⟨p̂ Bp̂ B⟩ = ⟨q̂ Bq̂ B⟩ = 1 + 2⟨B̂†B̂⟩, and γ ≡ ⟨q̂ Aq̂ B⟩= −⟨p̂ Ap̂ B⟩ = 2⟨ÂB̂⟩.

Note that the condition Im⟨ÂB̂⟩ = 0 leads to the absence
of correlations between the coordinates and momenta of different
subsystems, namely, ⟨q̂ Ap̂ B⟩ = ⟨p̂ Aq̂ B⟩ = 0, see Appendix A. More
over, the covariance matrix Eq. (6) represents a special case of the
socalled standard form covariance matrix,23,24 which significantly
simplifies the characterization of entanglement.

C. Entanglement in TMBS
Since different broadband modes provide different TMBSs,

the problem of extracting the TMBS with the maximal degree of
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entanglement EM reduces to maximizing a proper entanglement
measure25,26 E σ by varying the local transformation U,

EM = max
uA ,uB :∣uA ∣=1,∣uB ∣=1

E σuA,uB. (7)

In this work, as the entanglement measure, we use the logarithmic
negativity,27,28

E σ = max − log ν−σ̃, 0, (8)

where the value ν−σ̃ is the minimal symplectic value of a par
tially transposed covariance matrix σ̃ = TσT with T = diag1, 1⊕
diag1,−1. The symplectic spectrum of the partially transformed
covariance matrix νσ̃ corresponds to the eigenspectrum of the

matrix2,25,27 ∣iΩσ̃∣, where Ω = ω⊕ ω and ω = ⎛⎝ 0 1
−1 0

⎞⎠. For the

matrix Eq. (6), the corresponding characteristic polynomial reads
px = x4 − α2 + β2 + 2γ2x2 + αβ − γ22 = 0, and results in the
symplectic values,

ν±σ̃ = 1
2
α + β ±√α − β2 + 4γ2. (9)

D. Squeezing in TMBS
The eigenvalues λσ of the covariance matrix σ are deter

mined by the roots of its characteristic polynomial, which for the
matrix Eq. (6) reads pλ = det σ − λ1 = λ − αλ − β − γ22= 0. The smallest eigenvalue λ−σ determines the maximal degree
of squeezing29,30 contained in the system. The states with λ−σ ≜ 1
are called the squeezed states (in our units, the variance of the
vacuum state equals to 1). Note that a higher degree of squeezing
corresponds to a lower eigenvalue (lower quadrature variance). In
what follows, the squeezing is given in dB as 10 log10λ−.
E. Connection between squeezing and entanglement
for typeII PDC

Comparing the eigenvalues of the covariance matrix Eq. (6)
with the symplectic spectrum of the partially transformed covariance
matrix Eq. (9), we notice that they coincide, namely,

λ±σ ≡ ν±σ̃. (10)

As a result, the maximal degree of squeezing [minimal eigenvalue
λ−σ] is a proper entanglement measure for the studied TMBS.
This means that the optimization task Eq. (7) can be reformulated
in terms of finding the maximal squeezing of the initial multimode
state.

F. Connection between squeezing and entanglement
for arbitrary system

In general, the connection between squeezing and entangle
ment is not as trivial and was studied, e.g., in Ref. 30: Squeezing
is present in entangled Gaussian states, while the opposite is not
always true. As an example, we consider the TMBS consisting of two

singlemode systems with the covariance matrix σsm = ⎛⎝ er 0
0 e−r

⎞⎠

⊕ ⎛⎝ er 0
0 e−r

⎞⎠. This state is squeezed but is not entangled. There

fore, the presence of singlemode squeezing in one of the subsystems
breaks Eq. (10).

To answer the question why Eq. (10) holds for our system, we
notice that the initial multimode system Eq. (1) does not contain
singlemode squeezing in either part A or B. Indeed, the corre
lation matrices ⟨ââ⟩ = ⟨b̂b̂⟩ = 0, which physically comes from the
absence of signal–signal (and idler–idler) terms in the typeII PDC
interaction Hamiltonian and resulting master equations. As a result,
the inequalities ⟨Δp̂ A2⟩ = ⟨Δq̂ A2⟩ ≥ 1 and ⟨Δp̂ B2⟩ = ⟨Δq̂ B2⟩≥ 1 hold for any choice of modes uA and uB, indicating the absence
of singlemode squeezing. Therefore, the only possible squeezing⟨Δp̂ F2⟩ ≜ 1 can only be present in some joint mode F̂ = tÂ + rB̂
with ∣t∣2 + ∣r∣2 = 1 and t, r ≠ 0. This type of squeezing is known as
twomode squeezing. In turn, the mode F̂ can always be chosen to
get ⟨Δp̂ F2⟩ = λ−σ.
G. Maximally squeezed basis

To find the maximally entangled TMBS, which can be obtained
from the initial multimode system Eq. (1), we have to find the modes
with maximal squeezing (minimal eigenvalue) for initial multimode
system. Indeed, the lowest eigenvalue λmin of the covariance matrix
Σ determines the maximal squeezing present in the initial multi
mode system. Then, by determining the vectors uA and uB, for which
λ−σuA,uB = λmin, one finds the required shapes of the modes
that maximize Eq. (7).

The basis that provides maximal squeezing of lossy sys
tems and brings the covariance matrix to the second canon
ical form29 is the maximally squeezed basis (MSqbasis).14
The mode F̂ of this basis is found from the eigenvector
vmin = xa1, ya1, . . . , xaN , yaN ; xb1, yb1, . . . , xbN , ybN that corresponds to the
eigenvalue λmin, namely, F̂ = ∑n vanân + vbnb̂n, where we have
introduced two complex vectors van = yan + ixan and vbn = ybn+ ixbn. Then, the normalized vectors uMSq

A = va∣va ∣ and uMSq
B = vb∣vb ∣ give

us the desired broadband modes that minimize Eq. (7). The vectors
uMSq
A and uMSq

B define the state called MSqTMBS and the cor
responding covariance matrix σMSq ≡ σuMSq

A ,uMSq
B . The minimal

eigenvalues of matrices Σ and σMSq coincide, which guarantee that
the generated TMBS is a TMBS with the maximal squeezing and
therefore with the maximal entanglement.

H. Other broadband bases
Studies of multimode properties of nonclassical optical states

are commonly performed with two other broadband bases: the
Mercer–Wolf (MW) basis31,32 (also known as the firstorder coher
ence mode basis33) and the Williamson–Euler (WE) basis.2,34–38
Based on the MW and WE decompositions, the vectors uMW

A ,
uMW
B and uWE

A , uWE
B can be obtained, respectively. These vec

tors define additional TMBSs (for details see Appendix C) that
are further referred to as MWTMBS and WETMBS with the
covariance matrices σMW ≡ σuMW

A ,uMW
B  and σWE ≡ σuWE

A ,uWE
B ,

respectively.
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I. Special case: Pure multimode state
The special case, where the Mercer–Wolf, Williamson–Euler,

and MSq bases coincide, corresponds to a pure multimode state, i.e.,
to PDC generated in a lossless waveguide.14 This basis is known as
the Schmidtmode basis.33,39 The first Schmidt mode is a mode with
the highest number of photons and, at the same time, with the small
est eigenvalue of the covariance matrix. Building the TMBS based on
the first Schmidt mode, we obtain a pure state that is characterized
by a covariance matrix σS with parameters α = β and γ = 

1 − α2
and corresponds to the ideal twomode squeezer.

III. NUMERICAL SIMULATIONS
To simulate frequencydegenerate typeII PDC, we consider a

1 cm long waveguide with manually defined dispersion and losses.
As the pump, we use a Gaussian pulse with a full width at half
maximum of Δτ = 0.4 ps and a central wavelength of λp = 755 nm.
For simplicity, we limit ourselves to the linear refractive index
dependence for each field, which is parameterized as nω = nω0+ ω−ω0

ω0
[ c
vgω0 − nω0], where c is the speed of light, vg is the

group velocity, and ω0 is the central frequency. For our studies, we
choose the following parameters for the pump, signal, and idler fields
(indices p, s, and i, respectively): np = nωp = 1.9, vpg = 0.9c/np;
ns = nωp/2 = 1.9, vsg = 0.96vpg ; and ni = nωp/2 = 1.8 vig = 0.98vpg .
Quasiphasematching is obtained with kQPM = ωp

2c 2np − ns − ni.
Usually, the internal waveguide losses for the TE and TM

modes are different.10 In order to take this into account, we intro
duce two frequencyindependent loss coefficients for the signal and
idler fields ηs and ηi, respectively. We parameterize these coefficients
as η̄ = ηs+ηi

2 , rη = ηs−ηi
ηs+ηi . In this paper, we consider three waveguides:

● lossless waveguide WG0 with ηs = ηi = 0;● waveguide WG1 with equal losses ηs = ηi and rη = 0; and● waveguide WG2 with unbalanced losses for the signal and
idler modes ηs = 2ηi and rη = 1

3 .

In the limit η̄ → 0, both waveguides WG1 and WG2 coincide
with the lossless waveguide WG0. We numerically solve the mas
ter equations (see Appendix B and Ref. 40) for each waveguide for
different parametric gains Γ and losses η̄, rη. For the resulting corre
lationmatricesD Γ, η̄, rη and C Γ, η̄, rη, we find theMercer–Wolf,

FIG. 2. Numerical results for a lossless waveguide WG0, the parameters of
which are given in the main text. (a) Normalized joint spectral intensity for low
gain PDC, δω = ω − ω0, where ω0 = ωp/2 is the central frequency of the PDC
light. (b) Dependence of the smallest quadrature variance ⟨Δp̂ F⌞2⟩ = λ−σ⌞
as a function of the number of photons NA = NB. The additional axis shows the
corresponding logarithmic negativity E σS⌞.

Williamson–Euler, and MSq modes. For each basis, we calculate the
TMBS with the algorithms described above.

Figure 2 shows results of numerical simulations for the lossless
waveguide WG0, for which, as was mentioned above, there exists
the optimal TMBS based on the first Schmidt mode. Note that the
shape of the joint spectral intensity is similar to the results pre
sented for the LiNbO3 based waveguides.41 Figure 2(b) demonstrates
the dependence of the smallest eigenvalue λ−σS (characterized by
quadrature variance ⟨Δp̂ F2⟩) as a function of the number of pho
tons. The obtained TMBS is pure and corresponds to the twomode
squeezed state; therefore, entanglement and squeezing are always
present in this state.

In Fig. 3, results of numerical simulations for the lossy wave
guides WG1 and WG2 are presented. The simulations were per
formed for a fixed gain Γ, which for the corresponding lossless
waveguide WG0 gives the number of photons NA = NB = 40 and
the logarithmic negativity E σS = 5.1. In contrast to the lossless
case, here the MW, WE, and MSqTMBS provide different quan
tum states. In Figs. 3(a) and 3(b), the number of photons for the
signal and idler parts for different TMBSs are calculated as a func
tion of internal losses η̄, respectively. As can be seen, with increasing
η̄, the number of photons in each TMBS decreases. For the wave
guides with equal losses, the number of photons in the signal and
idler subsystems coincides, while the unbalanced losses lead to dif
ferent numbers of signal and idler photons in each TMBS. Note that

FIG. 3. Numerical results for lossy waveguides: (a), (c), and (e) WG1 and (b), (d),
and (f) WG2. The waveguide parameters are given in the main text. The different
colors correspond to TMBS build with different modes: MW (blue), WE (green), and
MSq (red). (a) and (b) Number of photons NA (solid lines) and NB (dashed lines)
as a function of losses η̄. (c) and (d) Dependencies of the smallest quadrature
variance ⟨Δp̂ F⌞2⟩ = λ−σ⌞ for σMW , σWE , and σMSq as a function of losses η̄.
The additional right axis shows the logarithmic negativity E σ⌞. The gray area
highlights the region with zero logarithmic negativity. (e) and (f) Purities of σMW ,
σWE , and σMSq as a function of losses η̄.
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FIG. 4. TMBS for the lossy waveguide WG2 (unbalanced losses) with η̄ = 5 dB
and r = 1

3
. (a)–(c) Covariance matrices σMW , σWE , and σMSq, respectively. (d)

Absolute value and (e) phase of signal modes uA; (f) absolute value and (g) phase
of idler modes uB. The blue, green, and red colors correspond to the MW, WE,
and MSqTMBS bases, respectively. Note that the phases of modes are well
defined, providing the covariance matrices (a)–(c) to be in the form Eq. (6).

the MWTMBS contains the maximally possible number of photons
in each partition. Figures 3(c) and 3(d) demonstrate the depen
dence of the lowest eigenvalues λ−σMW, λ−σWE, and λ−σMSq
on the internal loss coefficient η̄ for WG1 and WG2, respectively.
As expected, the increase of the internal losses η̄ decreases both
the squeezing and entanglement of all studied TMBS. However, the
maximally entangled state is clearly realized for the MSqTMBS.
Moreover, the purity of MSqTMBS is the highest compared to
σMW and σWE as is demonstrated in Figs. 3(e) and 3(f), respectively.

In the case of unbalanced losses, choosing a MWbasis may
even lead to a loss of entanglement, as it is demonstrated in Fig. 3(d)
for WG2. Here, for η̄ ∈ 2.6 dB, the lowest eigenvalue is greater than
unity, λ−σMW ∈ 1, whichmeans that theMWTMBS becomes sep
arable [see the gray region in Fig. 3(d)]. For the losses that exhibit the
maximum difference in the smallest eigenvalue between the three
bases in Fig. 3(d), namely, η̄ = 5 dB, we present the explicit form
of the covariance matrices σMW , σWE, and σMSq, see Figs. 4(a)–4(c),

TABLE I. Results for different TMBSs for the lossy waveguide WG2 (unbalanced
losses) with η̄ = 5 dB and r = 1

3 .

TMBS Mercer–Wolf Williamson–Euler MSq

NA 20.6 16.3 10.2
NB 24.7 17.9 10.8
λ−σ = ν−σ̃ 1.55 0.12 0.10⟨Δp̂2⟩, dB 1.90 −9.07 −9.90
E σ 0 2.09 2.28
Purity 0.007 0.115 0.223

and the spectral and phase profiles of uA and uB modes, see
Figs. 4(d)–4(g). It is clearly seen that the covariance matrix and the
spectral width of the modes strongly depend on the chosen basis.
For example, in the MWbasis, the modes uA and uB have almost
the same width, while in the MSqbasis, their widths differ signif
icantly. The mean number of photons, the lowest eigenvalue, and
the negativity and purity for this special loss point are presented in
Table I and show the importance of choosing the correct basis for a
particular lossy system.

IV. SUMMARY
Summing up, we demonstrate how to create the TMBS

with the maximal degree of entanglement from a bipartite
multimode Gaussian mixed state generated via pulsed typeII
multimode PDC in lossy waveguides. We show that, in the
obtained TMBS, the Gaussian entanglement is characterized by
the degree of squeezing and show how the maximally entangled
TMBS can be constructed with the use of the MSqbasis. We
compare this optimal TMBS with the TMBS obtained via the
Mercer–Wolf and the Williamson–Euler modes. By numerical
simulations of lossy waveguides, we demonstrate that neither
the first Mercer–Wolf mode nor the first Williamson–Euler
mode is optimal for preparing the maximally entangled
state.

From an experimental point of view, there are three important
corollaries. First, to get the maximally entangled TMBS from the
typeII PDC, the measurement basis should coincide with the first
mode of the MSqbasis. However, this mode does not provide the
maximal number of photons; therefore, the intuitive experimental
approach of maximizing intensity would not result in a maximally
entangled TMBS. Second, for TMBS, we can use the twomode
squeezing as an experimental measure of entanglement. Therefore,
the proper measurement basis can be found via a diagonalization
of the measured covariance matrix. Alternatively, one can experi
mentally implement a multiparameter optimization procedure via
Eq. (7) using the twomode squeezing degree λ−σuA,uB as a
target parameter; however, this procedure requires further inves
tigation, which is out of scope of the present paper. Third, we
performed our numerical simulations only for internal PDC losses,
assuming the absence of the external (transmission and detection)
losses. However, as was mentioned above, frequencydependent
external losses can easily be taken into account, in particular, when
the PDC light passes through spectral filters. All the procedures
and arguments for building an optimal TMBS are also valid for
the case of external losses, and we leave its detailed study for the
future.
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APPENDIX A: MULTIMODE BIPARTITE
GAUSSIAN STATE

A detailed description can be found in Refs. 14 and 15. Let
us consider the multimode Gaussian system, consisting of two
parts: the part A, which consists of N bosonic modes, denoted
as â = â 0, â 1, . . . , â NT , and the part B, consisting of M bosonic
modes, b̂ = b̂ 0, b̂ 1, . . . , b̂MT . Commutation relations are bosonic,
âiz, â†j z = b̂iz, b̂†j z = δij and âiz, b̂†j z = 0. The cor
relation matrices that fully describe the state of the full system
read

Dab = (⟨â †â⟩ ⟨â †b̂⟩⟨b̂ †â⟩ ⟨b̂ †b̂⟩), Cab = (⟨ââ⟩ ⟨âb̂⟩⟨b̂â⟩ ⟨b̂b̂⟩). (A1)

The expressions in the form ⟨â †b̂⟩ and ⟨âb̂⟩ denote the
N ×M matrices with matrix elements ⟨â†i zb̂jz⟩ and⟨âizb̂jz⟩, respectively.

Alternatively, the state of the full system can be described by the
covariance matrix Σ with matrix elements,

Σij = ⟨x̂i x̂j + x̂j x̂i⟩
2

− ⟨x̂i⟩⟨x̂j⟩, (A2)

where the vector x̂ = q̂ a
1, p̂ a

1, . . . , q̂ a
N , p̂ a

N ; q̂ b
1, p̂ b

1, . . . , q̂ b
M , p̂ b

MT ,
while the quadrature operators are q̂ci = ĉ†i + ĉi and p̂ci = iĉ†i − ĉi,
with the commutation relations q̂cn, p̂dm = 2iδnmδcd. Here, the upper
indices indicate arbitrary modes c, d = a, b. The elements of the
covariance matrix are connected with the correlation matrices (A1)
as

⟨q̂ci q̂dj ⟩ = δijδcd + 2Re⟨ĉ†i d̂j⟩ + Re⟨ĉi d̂j⟩, (A3)

⟨p̂ci p̂dj ⟩ = δijδcd + 2Re⟨ĉ†i d̂j⟩ − Re⟨ĉi d̂j⟩, (A4)

⟨p̂ci q̂dj + q̂dj p̂ci ⟩
2

= 2Im⟨ĉi d̂j⟩ − Im⟨ĉ†i d̂j⟩, (A5)

⟨q̂ci ⟩ = 2 Re⟨ĉi⟩, ⟨p̂cj⟩ = 2 Im⟨ĉj⟩. (A6)

The general local passive unitary transformation is defined as
U = UA ⊕UB, where the new broadband modes are Â = UAâ and
B̂ = UBb̂. The correlation matrices in the new broadband modes are

DAB = U∗
DabUT and CAB = UCabUT. (A7)

In addition to the creation and annihilation operators, we
also need the quadrature operators for new broadband modes.
For an arbitrary mode with the annihilation operator F̂n, the
quadrature operators are q̂Fn = F̂†

n + F̂n and p̂Fn = iF̂†
n − F̂n, with the

commutation relations q̂Fn , p̂Fm = 2iδnm.

APPENDIX B: MASTER EQUATION
The typeII PDC in a lossy waveguide can be described in

terms of a master equation of the correlation matrices (A1). The
signal and idler fields are taken in a discrete uniform frequency
space ω0,ω1, . . . ,ωN, which allows us to describe signal and idler
systems by N monochromatic modes âz and N monochromatic
modes b̂z, respectively. The spatial master equation for the PDC
correlation matrices has the form

dD z
dz

= iD zK − K∗
D z + iΓC∗zMTz −M∗zC z,

(B1)

dC z
dz

= iC zK + KC z + iΓMzD z +MzT
+MzD z, (B2)

where the superscript ⋅∗ denotes the complex conjugation of
a matrix. The matrix K is a diagonal matrix consisting of com
plex wave vectors diag κa0, . . . κaN , κb0, . . . , κbN. Here, κan = kan + iηa/2,
where kan is a real wave vector for mode ân and ηa is the loss
coefficient for subsystem a. The zdependent matrix Mz is given
by

Mz = ( 0N Jz
JTz 0N

) (B3)

and is a coupling matrix of a spatial generator for the PDC pro
cess Ĝpdcz = 1

2 h̵Γ∑i,j Jijzâ†i zb̂†j z + h.c. Explicitly, the matrix
Jijz = Sωi + ωjeikpωi+ωj−kQPMz ; Sω is the pump spectral dis
tribution at z = 0; ka,b,pn ≡ ka,b,pωn = na,b,p⌞ωnωn

c are the wave
vectors of the (a) signal, (b) idler, and (p) pump fields in the wave
guide; kQPM = 2π/Λ; and Λ is the poling period for the quasiphase
matching condition. The parameter Γ determines the coupling
strength of the PDC process.

The initial condition (vacuum state) reads D 0 = C 0 = 02N
and, together with the coupling matrix in the form of Eq. (B3),
determines the structure of the solution in the form of Eq. (1).
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APPENDIX C: MERCER–WOLF AND
WILLIAMSON–EULER DECOMPOSITIONS
1. Mercer–Wolf modes

Mercer–Wolf mode can be obtained via the diagonalization of
the matrix D .14,15 Its diagonalization can be obtained via the inde
pendent eigendecomposition of the matrices ⟨â †â⟩ = VAΛAVH

A and⟨b̂ †b̂⟩ = VBΛBVH
B , where the diagonal matrices ΛA and ΛB are given

in decreasing order.
The TMBS, based on the Mercer–Wolf modes (MWTMBS), is

built for the vectors uMW
A = ei

ϕ
2 vA and uMW

B = ei
ϕ
2 vB, where the row

vectors vA and vB are the first rows of the matrices VT
A and VT

B ,
respectively, and a constant phase ϕ = arg vA⟨âb̂⟩vTB. The covari
ance matrix of MWTMBS is defined as σMW ≡ σuMW

A ,uMW
B . As

long as the modes are obtained via the diagonalization of matrix D ,
the first Mercer–Wolf modes uMW

A and uMW
B contain the maximally

possible number of photons per mode.

2. Williamson–Euler modes
Williamson–Euler modes are obtained via the

Williamson–Euler decomposition,14,37 namely, a decompo
sition of the initial covariance matrix σ = OlΛOrDOT

r ΛOT
l ,

where the matrices Ol and Or are orthogonal and matrices
D = diagν1, ν1, . . . , νN , νN and Λ = diag er1 , e−r1 , . . . , erN , e−rN  are
diagonal; the values ri are sorted in descending order. Having the
first vector v1 = xa1, ya1, . . . , xaN , yaN ; xb1, yb1, . . . , xbM , ybM of matrix
Ol, and applying the same procedure as for the MSq mode, we can
build modes for each part as ÂWE = uWE

A â and B̂WE = uWE
B b̂, where

uWE
A = va∣va ∣ and uWE

B = vb∣vb ∣ with van = yan + ixan and vbn = ybn + ixbn,
respectively. Numerically, the Williamson–Euler decomposi
tion can be found with the use of algorithms presented in, e.g.,
Refs. 35, 36, and 38. The TMBS obtained by the vectors uWE

A and
uWE
B is further called WETMBS; the corresponding covariance

matrix is defined as σWE ≡ σuWE
A ,uWE

B .
REFERENCES
1S. L. Braunstein and P. van Loock, “Quantum information with continuous
variables,” Rev. Mod. Phys. 77, 513–577 (2005).
2C. Weedbrook, S. Pirandola, R. GarcíaPatrón, N. J. Cerf, T. C. Ralph, J. H.
Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84,
621–669 (2012).
3V. C. Usenko, A. Acín, R. Alléaume, U. L. Andersen, E. Diamanti, T. Gehring,
A. A. E. Hajomer, F. Kanitschar, C. Pacher, S. Pirandola, and V. Pruneri,
“Continuousvariable quantum communication,” arXiv:2501.12801 [quantph]
(2025).
4H. S. Stokowski, T. P. McKenna, T. Park, A. Y. Hwang, D. J. Dean, O. T.
Celik, V. Ansari, M. M. Fejer, and A. H. SafaviNaeini, “Integrated quantum
optical phase sensor in thin film lithium niobate,” Nat. Commun. 14, 3355
(2023).
5A. Henry, D. Barral, I. Zaquine, A. Boes, A. Mitchell, N. Belabas, and K.
Bencheikh, “Correlated twinphoton generation in a silicon nitride loaded thin
film PPLN waveguide,” Opt. Express 31, 7277 (2023).
6F. Roeder, A. Gnanavel, R. Pollmann, O. Brecht, M. Stefszky, L. Padberg, C.
Eigner, C. Silberhorn, and B. Brecht, “Ultrabroadband nondegenerate guided
wave biphoton source in the near and midinfrared,” New J. Phys. 26, 123025
(2024).

7M. Placke, J. Schlegel, F. Mann, P. Della Casa, A. Thies, M. Weyers, G. Trän
kle, and S. Ramelow, “Telecomband spontaneous parametric downconversion
in AlGaAsoninsulator waveguides,” Laser Photonics Rev. 18, 2301293
(2024).
8J. Schuhmann, L. Lazzari, M. Morassi, A. Lemaître, I. Sagnes, G. Beaudoin,
M. I. Amanti, F. Boeuf, F. Raineri, F. Baboux, and S. Ducci, “Hybrid IIIV/silicon
quantum photonic device generating broadband entangled photon pairs,” PRX
Quantum 5, 040321 (2024).
9M. Hammer, S. Babel, H. Farheen, L. Padberg, J. C. Scheytt, C. Silberhorn, and J.
Förstner, “Estimation of losses caused by sidewall roughness in thinfilm lithium
niobate rib and strip waveguides,” Opt. Express 32, 22878–22891 (2024).
10D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: Guiding
light through imperfections,” Adv. Opt. Photonics 6, 156 (2014).
11A. Christ, B. Brecht, W. Mauerer, and C. Silberhorn, “Theory of quantum
frequency conversion and typeII parametric downconversion in the highgain
regime,” New J. Phys. 15, 053038 (2013).
12P. Sharapova, A. M. Pérez, O. V. Tikhonova, and M. V. Chekhova, “Schmidt
modes in the angular spectrum of bright squeezed vacuum,” Phys. Rev. A 91,
043816 (2015).
13D. B. Horoshko, L. La Volpe, F. Arzani, N. Treps, C. Fabre, and M. I. Kolobov,
“BlochMessiah reduction for twin beams of light,” Phys. Rev. A 100, 013837
(2019).
14D. A. Kopylov, T. Meier, and P. R. Sharapova, “Theory of multimode squeezed
light generation in lossy media,” Quantum 9, 1621 (2025).
15D. A. Kopylov, M. Stefszky, T. Meier, C. Silberhorn, and P. R. Shara
pova, “Spectral and temporal properties of typeII parametric downconversion:
The impact of losses during state generation,” Phys. Rev. Res. 7, 033122
(2025).
16A. Christ, C. Lupo, M. Reichelt, T. Meier, and C. Silberhorn, “Theory of fil
tered typeII parametric downconversion in the continuousvariable domain:
Quantifying the impacts of filtering,” Phys. Rev. A 90, 023823 (2014).
17V. Kala, D. Kopylov, P. Marek, and P. Sharapova, “Nonlinear squeezing gen
eration via multimode PDC and single photon measurement,” Opt. Express 33,
14000–14011 (2025).
18B. Brecht, D. V. Reddy, C. Silberhorn, and M. Raymer, “Photon temporal
modes: A complete framework for quantum information science,” Phys. Rev. X
5, 041017 (2015).
19D. V. Reddy and M. G. Raymer, “Highselectivity quantum pulse gating of pho
tonic temporalmodes using alloptical Ramsey interferometry,” Optica 5, 423–428
(2018).
20L. Serino, J. GilLopez, M. Stefszky, R. Ricken, C. Eigner, B. Brecht, and C.
Silberhorn, “Realization of a multioutput quantum pulse gate for decoding high
dimensional temporal modes of singlephoton states,” PRX Quantum 4, 020306
(2023).
21T. Kouadou, F. Sansavini, M. Ansquer, J. Henaff, N. Treps, and V. Parigi,
“Spectrally shaped and pulsebypulse multiplexed multimode squeezed states of
light,” APL Photonics 8, 086113 (2023).
22C. Roh, G. Gwak, Y.D. Yoon, and Y.S. Ra, “Generation of threedimensional
cluster entangled state,” Nat. Photonics 19, 526–532 (2025).
23R. Simon, “PeresHorodecki separability criterion for continuous variable
systems,” Phys. Rev. Lett. 84, 2726–2729 (2000).
24L.M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for
continuous variable systems,” Phys. Rev. Lett. 84, 2722–2725 (2000).
25G. Adesso and F. Illuminati, “Gaussian measures of entanglement versus
negativities: Ordering of twomode Gaussian states,” Phys. Rev. A 72, 032334
(2005).
26M. B. Plenio and S. Virmani, “An introduction to entanglement measures,”
Quantum Inf. Comput. 7, 1–51 (2007).
27G. Vidal and R. F. Werner, “Computable measure of entanglement,”
Phys. Rev. A 65, 032314 (2002).
28M. B. Plenio, “Logarithmic negativity: A full entanglement monotone that is not
convex,” Phys. Rev. Lett. 95, 090503 (2005).
29R. Simon, N. Mukunda, and B. Dutta, “Quantumnoise matrix for multi
mode systems: U(n) invariance, squeezing, and normal forms,” Phys. Rev. A 49,
1567–1583 (1994).

APL Quantum 2, 046116 (2025); doi: 10.1063/5.0293116 2, 0461167

© Author(s) 2025

13
Ja
nu
ary

20
26
11
:45
:02


