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The world is changing:
I feel it in the water,
I feel it in the earth,
I smell it in the air.

Tolkien [65]





Abstract

Within the last years, exploration of hazardous environment (e.g. the Mars) by robot swarms
became more and more relevant and theoretical research on robot swarms with restricted
abilities increased. However, fundamental problems such as ARBITRARY-PATTERN-
FORMATION, where the swarm should self-organize to a predefined geometric pattern,
remained difficult under strong restrictions. Therefore, this thesis considers disoriented
robots with limited visibility and presents a novel solution to the ARBITRARY-PATTERN-
FORMATION problem. The well established OBLOT model is assumed; robots are all
identical, compute their decisions locally, and cannot communicate or store persistent
information (oblivious). They act according to the FSYNC scheduler, where robots execute
fully-synchronously LOOK-COMPUTE-MOVE cycles. Disoriented means that each robot
observes its surrounding in a self-centered, arbitrarily rotated coordinate-system. With
limited visibility, only robots within a constant radius can be observed.

ARBITRARY-PATTERN-FORMATION (APF) considers a swarm, where all n robots
know a pattern in advance and must obtain it in arbitrary rotation and translation. The
problem is already solved for oblivious robots with global visibility [69]. The possibility of
forming a pattern depends on its symmetricity, a measurement of the rotational symmetries
that counts how often a pattern matches itself while rotating it around itself. The symme-
tricity of the pattern must be an integer multiple of the swarms symmetricity, otherwise
APF is not solvable in general; this is called symmetry condition in the following. [72]
presents a solution of APF for robots with (arbitrary large) memory and limited visibility,
but the swarm can only form a pattern with diameter ≤ 1: First, the swarm is contracted
to a diameter ≤ 1 (this is called NEAR-GATHERING) without changing its symmetricity,
and then the formation of the pattern from [69] is applied to form a small pattern that
satisfies the symmetry condition. Note that limited visibility naturally restricts the results
to connected swarms, i.e. where the unit-disc-graph is connected. None of the mentioned
results holds for oblivious robots with limited visibility.

This thesis extents the results from [69, 72] to oblivious robots with limited visibility.
First, a class called λ -contracting NEAR-GATHERING protocols is presented, which are to
our knowledge the first NEAR-GATHERING protocols under this model. A NEAR-GATH-
ERING protocol transforms a widespread swarm (diameter can be much larger than 1)
into a contracted swarm (diameter ≤ 1). Secondly, as far as we know the first method for
analyzing the symmetricity change induced by a protocol is presented, and two concrete



symmetricity preserving protocols are given. One protocol always preserves symmetri-
city, but leads only for certain swarms to NEAR-GATHERING. The other one preserves
symmetricity only when the Connectivity-Boundary (the set of robots surrounding the
swarm) is convex and the swarm does not contain a 1-hole (circle of diameter 1 without
a robot) but always leads to a NEAR-GATHERING. Thirdly, to the best knowledge the
first APF protocol for oblivious robots with limited visibility is presented that forms any
large connected pattern (diameter can be much larger than 1) from any contracted initial
configuration that fulfills the symmetry condition above.

To round up the results, they are generalized for APF with widespread patterns – a
significantly more difficult problem as robots have to coordinate themselves outside their
viewing range. The three results above do not require memory. However, it is shown in this
thesis that the formation of a large pattern is not in general possible for oblivious robots
with limited visibility if the swarm is widespread (even though both are connected and the
symmetry condition is fulfilled). But by introducing just one single bit of memory it is
possible to combine the results such that a large connected pattern can be formed from a
widespread swarm. The combined result only holds for swarms that fulfill the symmetry
condition and where NEAR-GATHERING preserves symmetricity, i.e. that have a convex
Connectivity-Boundary and contain no 1-hole.



Zusammenfassung

In den letzten Jahren ist die Erkundung von gefahrenreichen Umgebungen (z.B. dem
Mars) durch Roboterschwärme immer relevanter gewordern und die Forschung an Roboter-
schwärmen mit eingeschränkten Fähighkeiten hat zugenommen. Allerdings sind fundamen-
tale Probleme wie ARBITRARY-PATTERN-FORMATION (zu deutsch: Beliebige-Muster-
Bildung), in dem ein Schwarm selbst organisiert ein vorab definiertes geometrisches Muster
bilden soll, nach wie vor schwer zu lösen für stark eingeschränkt Roboter. Daher betrachten
diese Arbeit orientierungslose Roboter mit eingeschränkter Sichtweite und präsentiert eine
neue Lösung des ARBITRARY-PATTERN-FORMATION Problems. Das OBLOT Modell
wird angenommen, in dem Roboter identisch sind, ihre Entscheidungen lokal treffen
und weder miteinander kommunizieren noch Informationen dauerhaft speichern können
(erinnerungslos). Roboter agieren in vollkommen synchronen Zyklen (FSYNC), in denen
zunächst alle Roboter ihre Umgebung beobachten, dann eine Bewegung auf Basis der
Beobachtung berechnen und diese schließlich ausführen. Orientierungslos heißt, dass
jeder Roboter seine Umgebung in einem selbstzentrierten und beliebig gedrehtem Koordi-
natensystem wahrnimmt. Mit eingeschränkter Sichtweite können nur Roboter in einem
konstanten Radius beobachtet werden.

Das ARBITRARY-PATTERN-FORMATION (APF) Problem betrachtet einen Schwarm,
in dem alle n Roboter ein Muster P ∈ R2n kennen und dieses in beliebiger Rotation und
Translation bilden müssen. Das Problem ist bereits für erinnerungslose Roboter mit glob-
aler Sicht gelöst [69]. Es wurde gezeigt, dass es von der Symmetricity des Musters abhängt,
ob dieses gebildet werden kann. Symmetricity ist eine Einheit für die Rotationssymme-
trien einer Punktmenge; sie zählt, wie häufig die Menge mit sich selbst übereinstimmt,
während sie einmal um sich selbst gedreht wird. Die Symmetricity des Musters muss
ein ganzzahliges Vielfaches der Symmetricity des Schwarmes haben, damit das Muster
gebildet werden kann; dies wird im Folgenden als Symmetriebedingung bezeichnet. [72]
präsentiert eine Lösung des APF Problems für Roboter mit (beliebig großem) Speicher
und begrenzter Sichtweite, allerdings muss das Muster einen Durchmesser von ≤ 1 haben.
Zunächst wird der Schwarm zusammengezogen zu einem Durchmesser ≤ 1 (das wird
NEAR-GATHERING genannt, zu deutsch: Nahes-Versammeln) ohne dass sich seine Sym-
metricity ändert. Dann wird das Protokoll aus [69] angewendet, um ein kleines Muster
zu bilden, welches die Symmetriebedingung erfüllt. Die begrenzte Sichtweite schränkt
die Ergebnisse auf Schwärme ein, deren Unit-Disc-Graph zusammenhängt. Keines der



genannten Ergebnisse gilt für erinnerungslose Roboter mit eingeschränkter Sichtweite.
Diese Dissertation erweitert die Ergebnisse von [69, 72] für orientierungslose OBLOT

Roboter mit eingeschränkter Sichtweite. Erstens: Eine Klasse, genannt λ -kontrahierende
NEAR-GATHERING Protokolle, wird präsentiert, welche nach bestem Wissen die ersten
bekannten NEAR-GATHERING Protokolle für dieses Modell sind. Ein NEAR-GATHERING

Protokoll verwandelt einen weitverteilten Schwarm (der Durchmesser kann viel größer
als 1 sein) in einen kontrahierten Schwarm (Durchmesser ≤ 1). Zweitens: Die, soweit
wir wissen, erste Methode zur Untersuchung der Symmetricity-Änderung aufgrund eines
Protokolls wird präsentiert. Außerdem werden zwei konkrete Symmetricity-erhaltende
Protokolle angegeben. Das eine erhält in allen Fällen die Symmetricity, führt aber nur in
einigen Fällen zu NEAR-GATHERING. Das andere erhält die Symmetricity nur, wenn die
Connectivity-Boundary (die Menge der Roboter, die den Schwarm umschließen) konvex
ist und der Schwarm kein 1-Loch (ein Kreis mit Durchmesser 1 ohne Roboter) beinhaltet,
führt aber in jedem Fall zu NEAR-GATHERING. Drittens: Das, unseres Wissens nach,
erste ARBITRARY-PATTERN-FORMATION Protokoll für dieses Modell wird präsentiert,
welches jedes große und zusammenhängende Muster (der Durchesser kann viel größer als
1 sein) von jedem kontrahierten Schwarm bilden kann, wenn die Symmetriebedingung
erfüllt ist.

Um die Ergebnisse abzurunden werden sie generalisiert für APF mit weitverteilten
Schwärmen – ein signifikant schwereres Problem, da Roboter sich koordinieren müssen
ohne sich gegenseitig sehen zu können. Die drei oben genannten Resultate benötigen
keinen Speicher. Allerdings wird in dieser Arbeit gezeigt, dass das Bilden eines großen
Musters nicht im Generellen für erinnerungslose Roboter mit eingeschränkter Sichtweite
möglich ist, wenn der Schwarm weitverteilt ist (auch dann nicht, wenn beide zusammen-
hängend sind und die Symmetriebedingung erfüllt ist). Mit einem Bit Speicher ist es
jedoch möglich, die Ergebnisse zu kombinieren, sodass ein großes zusammenhängen-
des Muster von einem weitverteiltem Schwarm gebildet werden kann. Das kombinierte
Ergebnis gilt nur für Schwärme, welche die Symmetriebedingung erfüllen und in denen
NEAR-GATHERING die Symmetricity erhält, d.h. die eine konvexe Connectivity-Boundary
haben und kein 1-Loch enthalten.
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1. Introduction

Swarm robots are small robots that cooperate in swarms of large numbers to perform a
single task. There are various areas where such robots would be useful. One example is
rescue and exploration applications in hazardous environments like the surface of planets
[45] or earthquake regions. These robots should be small enough to fit into cracks or
rockets and cheap enough so that the loss of a few robots is not devastating. Another
area is medicine in which small robots could be injected into the bloodstream for precise
surgery or drug administration [63]. One central task for a swarm is the deployment of
individual robots where they are needed. In an exploration scenario the robots should for
example spread evenly around the whole area to survey it. For precise surgery robots must
for example cover the parts of the body that are to be removed. In general one can say the
desired outcome of the deployment can be expressed as a set of coordinates called pattern.
However, due to space constraints or practicability, the robots cannot always be placed as
desired by an external force (like a drone). Therefore, they should be able to reach the set
of coordinates on their own after being released in an arbitrary arrangement (e.g. dumped
out of a bag). The process of reaching a pattern from an arbitrary arrangement in the field
of swarm algorithms this is called PATTERN-FORMATION.

There exist several small robots developed for applications in larger swarms. Most
famous are the NASA Bee Bots [45], which are designed to survey large areas of Mars.
Examples developed for research on swarm behavior are “Jasmine” [48] from the Uni-
versity of Stuttgart and “Kilobots” [61] from Harvard University. Although the examples
mentioned above are small robots (around the size of a coin), they are still large enough to
include powerful communication equipment. Currently, there are commercially available
UMTS and GPS chips smaller than a coin [66, 67]. UMTS allows all robots in a swarm, to
communicate with a central server which says each robot, what to do, and where to move.
Together with a common coordinate system obtained from GPS, this makes the formation
of a pattern trivial. However, there are several scenarios in which the robots cannot be
equipped with GPS and UMTS (or similar technologies). First, those technologies require
a high degree of infrastructure in form of transmission masts or satellites; these are not
necessarily available in certain situations, e.g. on the Mars, in a deep cave or after an
earthquake. Secondly, those technologies require a non-negligible amount of energy. Small
robots can only carry equally small batteries; therefore, the operation of a swarm can be
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extended without GPS and UMTS. Last but not least, the size of communication chips
limits the size of the robots. There exist research on nanobots [40, 42], robots in the scale
of nanometers; if nanobots will eventually be developed, they will likely be too small to
contain technologies like UMTS and GPS.

This thesis analyzes the capabilities of swarms of robots that are not able to communi-
cate or determine their positions in a global coordinate system. It uses mathematical and
geometrical methods and provides a theoretical answer to the question Can a swarm of
such robots form any in advanced specified pattern? In the following, the pattern formation
problem is formally introduced and motivated on the basis of literature and known results.
This contains a short overview of the considered model (a comprehensive description of
the model is given later in Section 1.3). Afterwards in Section 1.2, an outline of this thesis
is presented that contains a summary of its results.

1.1 Introduction into Pattern Formation Problems
Pattern formation for a swarm of autonomous robots is a widely studied field in theoretical
computer science. Initially, the swarm is in an arbitrary configuration (i.e., an unorganized
arrangement of robots). The goal is that the swarm reaches a specified final configuration.
An often considered example for a pattern formation problem is GATHERING where all
robots have to move onto the same not predefined position [24]. There are various results
that consider one specific pattern as a problem. Examples include LINE-FORMATION [9],
where robots must form a straight line, and CIRCLE-FORMATION [32], where a regular
n-gon is formed by n robots (see Figure 1.1). To follow the above described applications
of swarm robots, GATHERING can be used to collect the swarm (for example to recharge
the robots) and CIRCLE-FORMATION can be used to enclose an area such that nothing
enters or leaves unnoticed. In the following a brief description of the model is given before
pattern formation is formally introduced (see Section 1.3 for a comprehensive description
of the model).

Model Summary This thesis considers point shaped (no mass or area) mobile
robots in the Euclidean plane according theOBLOT model [31]. TheOBLOT model
(short for “OBLivious robOT”) assumes that robots are moving entities that are
oblivious (have no persistent memory), identical (perform the same protocol P
and are indistinguishable by any means beside their positions) and autonomous
(compute the protocol P locally). Robots are disoriented, they observe their
surroundings as relative positions in an arbitrarily rotated self-centered coordinate
system where the rotation can change arbitrarily over time. Robots have a common
understanding on the unit distance and sense of rotation (chirality). In addition, they
are deterministic (cannot use randomness) and synchronous (act according to the
FSYNC scheduler). Robots act in discrete time steps where every robot performs an
LCM-cycle consisting of LOOK (taking a snapshot of the surrounding), COMPUTE

(computing an action based on the snapshot specified by the protocol P) and MOVE

(executing the computed action). A robot can move up to distance 1 during the
MOVE phase. The FSYNC scheduler specifies that the phases of the LCM-cycle
are completely synchronous; the cycles are counted as rounds. Oblivious means
that the robot’s memory is erased after each MOVE; while most results in this thesis
consider oblivious robots, Theorem 9 assumes one bit of persistent memory.
A configuration zt ∈R2n describes the positions of n swarm robots at time t. We call
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CIRCLE-FORMATION

GATHERING

LINE-FORMATION

ARBITRARY-

FORMATION
PATTERN-

NEAR-GATHERING

Figure 1.1: Examples of CIRCLE-FORMATION, GATHERING, NEAR-GATHERING, LINE-
FORMATION, and ARBITRARY-PATTERN-FORMATION.

a configuration connected if the unit disc graph (UDG) with distance 1 is connected.
Robots have a limited visibility, the snapshot taken during LOOK contains other
robots only within a constant distance called viewing range around itself. The
viewing range varies throughout the thesis between 1 and 2+

√
2.

A comprehensive description of the model and its implication can be found in
Section 1.3, further notations are defined in Section 1.4.

A pattern P ∈ R2n in the context of pattern formation problems is the desired final configu-
ration of the swarm. The model specifies that each robot computes its movement locally.
Combining all local movements leads to a change from configuration zt to zt+1. This
is defined as the evolution function F : R2n→ R2n with F(zt) = zt+1 for t ≥ 0. For the
GATHERING and LINE-FORMATION problem above we can define the pattern point and
line as follows.

• point :=
(
(0,0), · · · ,(0,0)

)
• line :=

(
(0,0),(0,1), · · · ,(0,n−1)

)
The mentioned results on GATHERING, LINE- and CIRCLE-FORMATION have in

common that the given protocols form only one specific pattern. A more general approach
is the ARBITRARY-PATTERN-FORMATION, introduced in [64]. There, the protocol of the
robots is designed agnostic of the pattern. The pattern P is known by all robots only at
execution, one may assume P as an additional static argument passed every COMPUTE to
the local computation of each robot (respectively, the evolution function F(zt ,P)). The
robots have to form P in arbitrary rotation and translation. The problem is formally defined
as follows.

Definition 1.1 — ARBITRARY-PATTERN-FORMATION (APF). A local protocol with
evolution function F solves the ARBITRARY-PATTERN-FORMATION if for every initial
configuration z0 ∈R2n and every pattern P ∈R2n there exist a rotation matrix Mρ , trans-
lation matrix Mτ , permutation matrix Mκ and round t ′ ∈ N such that MρMτMκP = zt

for all t ≥ t ′.
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R Note that in the considered model not all patterns can be formed by all initial configu-
rations. Instead, it is characterized for every pair of pattern and initial configuration,
whether a formation is possible or not.

ARBITRARY-PATTERN-FORMATION under OBLOT. The first result for ARBITRARY-
PATTERN-FORMATION considering theOBLOT model with global visibility was presented
in [34, 69]. A key aspect that determines whether a pattern can be formed is its symmetry.
The authors introduced a measure called symmetricity that describes the symmetry of a
pattern or swarm configuration.

Definition 1.2 — Symmetricity [34, 64]. Consider P ∈ R2n whose smallest enclosing
circle is centered at c ∈ R2. An m-regular partition of P is a partition of P into
k = |P|/m regular m-gons with common center c. The symmetricity of P is defined as
sym(P) := max{m ∈ N | there is a m-regular partition of P}.

In this definition, a single point is considered as a 1-gon with arbitrary center. Therefore,
any P has a 1-regular partition. Loosely spoken, the symmetricity describes the number of
times a pattern/configuration matches itself while turning it a full rotation around itself.

Symmetricity allows characterizing patterns that can be formed by synchronous oblivi-
ous robots with an unlimited viewing range.

Theorem 1 — Symmetry Condition, [34, Theorem 1]. A pattern P ∈ R2n can be
formed by OBLOT robots with unlimited viewing range in the FSYNC model from
configuration z0 ∈ R2n if and only if sym(z0) divides sym(P).

The impossibility of forming a pattern with incompatible symmetricity follows directly
from our robot model. If you have disoriented robots that are identical and deterministic, it
is not possible to decrease the symmetricity. Two robots that are in symmetric positions
obtain essentially the same snapshot during the LOOK-phase. Therefore, they compute
the same (simply rotated) movement and maintain the symmetricity. Symmetricity can be
increased in such a model, but only by integer factors. Even for robots with global visibility
and persistent memory the limitation based on symmetricity cannot be circumvented [64].

APF with limited visibility. A similar result exists for robots with limited visibility
and persistent memory [72]. There, the swarm first performs NEAR-GATHERING (move
the robots close together) such that all robots have mutual visibility. Then, the protocol
for oblivious robots with global visibility [69] is used to form the pattern with a diameter
smaller than the viewing range. The paper leaves two questions unanswered.

Can a pattern be formed on a large scale if robots have limited visibility?
Is it possible to form (small) patterns with oblivious robots that have limited visibility?

The persistent memory in [72] is only used during NEAR-GATHERING. Therefore, the
formation of small patterns with oblivious robots can be done if NEAR-GATHERING is
possible without memory.

1.1.1 Near-Gathering
NEAR-GATHERING is related to the GATHERING problem, both move robots closer
together. In contrast to GATHERING, robots must in the end obtain unique positions (i.e.,
do not collide with other robots). The goal is to make the swarm configuration have a
constant diameter. This is, strictly speaking, not a pattern formation problem because
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the target configuration cannot be explicitly stated as a list of coordinates. The target
configuration is a Diam-c-Configuration defined as follows.

Definition 1.3 — Diam-c-Configuration. A Diam-c-Configuration is a configuration of
robots with diameter ≤ c without collisions (i.e., each robot obtains a unique position).

Note, that a swarm must avoid collisions throughout the entire execution to end up in a
configuration without collisions. This follows directly from the robot model, where robots
are defined to be oblivious, identical, disoriented and deterministic. If robots are on the
same position, they would always compute the exact same target position in such a model
and therefore never end up on different positions in the future. Using the definition above
one can define NEAR-GATHERING as follows.

Definition 1.4 — NEAR-GATHERING. The NEAR-GATHERING problem is solved, if
there exists a constant c and a protocol that reaches from every collision-free configura-
tion a Diam-c-Configuration and all robots terminate simultaneously.

It is defined, that the protocol must terminate in an instant, i.e., all robots decide
simultaneously (in the same round) with local knowledge that a Diam-1-Configuration is
reached. On one hand, this distinguishes NEAR-GATHERING from the related CONVER-
GENCE problem, where robots converge towards the same position (but neither necessarily
reach it not detect it). On the other hand, the simultaneous termination makes NEAR-
GATHERING especially useful, because afterwards APF (or more generally speaking:
another protocol) can start. Otherwise, it is possible that some robots are still contracting,
while others have already started the next protocol.

Because the symmetricity is of importance for what patterns can be formed, the
symmetricity of the initial configuration must not change during the NEAR-GATHERING.
The authors of [34] use the memory of the robots to ensure that the symmetricity is not
changed. Robots are only indistinguishable when they are disoriented and have the same
current memory. The above NEAR-GATHERING protocol takes advantage of memory by
storing all snapshots. If the initial configuration has a different symmetricity than the final
Diam-c-Configuration, at least two robots must end up at on symmetric positions (i.e., on
the same m-gon, see symmetricity Definition 1.2) that have not originated at symmetric
positions. Those must have seen at least one different snapshot, which is stored in their
memory. This difference can be used to move those robots away from the m-gon in a way
that restores the original symmetricity.

In [57] a NEAR-GATHERING protocol is presented for oblivious robots with limited
visibility and compass. The protocol works only for configurations that are well-connected,
which is defined as follows.

Definition 1.5 — Well-Connectedness. Let v be the viewing range of the robots and
σ > 0 be an arbitrary small constant. A configuration is called well-connected if its
unit-disc-graph with unit-distance v−σ is connected.

The presence of a compass (agreement on a common direction “north”) immediately
eliminates all rotational symmetries. This makes it possible to form all patterns (not only
patterns with fitting symmetricity).

Gathering. There exist results solving gathering for oblivious robots with limited visibil-
ity that have the potential to be complimented with a collision-avoidance method. Most
notably is the GO-TO-THE-CENTER (GTC) protocol [24]. There, robots move towards
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the center of the smallest enclosing circle (SEC) of the locally observed robots. Robots
usually do not move exactly onto this center but only half way to keep the unit-disc-graph
(UDG) connected. Only if the SEC has a small diameter, the robots move exactly to the
center. This property is called collapsing. It makes sure that eventually a GATHERING is
reached because otherwise robots would in general only converge towards one point but not
necessarily reach it. One could assume that it is sufficient to remove the collapsing property
from GTC to obtain a NEAR-GATHERING protocol. However, the correctness proof from
[24] requires the protocol to be collapsing, therefore the correctness of a non-collapsing
GTC is not yet known.

There exists also a notable result in a continuous-time model. It considers robots as
points with a movement vector. The movement vector changes continuously, depending
on the positions of the robots within local visibility. [52] presents a class of protocols
called contracting. It consists of all protocols where the movement vectors point inside
the convex hull of the swarm. The authors proved that all contracting protocols solve
CONVERGENCE if robots move with constant speed. They additional provide a NEAR-
GATHERING protocol in this class. The contracting CONVERGENCE protocol known as
“n-bug problem”, that is further analyzed in [35], is of particular interest when trying to
translate this result to FSYNC. There, n robots are placed in a regular n-gon (or more
general: a circular graph), and each robot moves in the direction of its clockwise neighbor.
Intuitively, one may think that this results in a circular motion. But instead, the robots
move in spirals towards the center. In a discrete-time model (e.g. FSYNC) however, the
robots will in fact move in circles without ever coming nearer to the center. Therefore, this
class of contracting protocols cannot be simply translated from a continuous time model
into FSYNC.

Problem 1 Is it possible to perform NEAR-GATHERING with oblivious, disoriented
robots under limited visibility?

1.1.2 Symmetry Preservation
We motivated above that the possibility to solve ARBITRARY-PATTERN-FORMATION is
highly dependent on the symmetricity of the initial configuration. Hence, any NEAR-GATH-
ERING protocol that is used as a first step towards APF must not change the symmetricity
of the swarm. If NEAR-GATHERING is possible in general, the next question is about sym-
metricity preservation. [72] proves, that it is not possible to preserve the symmetricity in
general with limited visibility when the robots are oblivious and have non-rigid movement
(can be stopped by an adversary during the movement). The argument is the following.
Let us consider the configuration depicted in Figure 1.2 that has a symmetricity of 1. Only
the black robots can move without violating transitive visibility. Robots a and b are the
only two robots, that are not in symmetric positions to another robot. They have to move
towards their only visible neighbor, the adversary can stop them such that they end up on
positions symmetric to each other and the swarm increased its symmetricity to 2. Note
that this argument does not hold for swarms with rigid movement (robots always reach
their computed target positions).

Problem 2 Does a NEAR-GATHERING protocol for oblivious, disoriented robots with
limited visibility and rigid movement exist that does not change the symmetricity of the
swarm?
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a

b

Figure 1.2: A counter example why robots with non-rigid movement and local visibility
cannot preserve symmetricity in general. The viewing ranges of a and b are drawn as gray
circles.

There is very little research on symmetry preservation considering models with disori-
entation and limited visibility. In fact, to the best of our knowledge, there are no known
non-trivial protocols1 under these models that preserve symmetry.

1.1.3 Large Pattern Formation
The second question at the beginning was about the size of the pattern. It is easy to see
that the formation of a large pattern by disoriented, oblivious robots with limited visibility
is not possible. This is shown briefly in the following. Assume a sufficiently large cross as
the target pattern P and a similar cross as the initial configuration z. If both crosses have
different ratios between the two beams as in Figure 1.3, it is not locally observable for a
robot with limited visibility whether it is in P or z. This leads directly to the following
observation.

Observation 1.1 ARBITRARY-PATTERN-FORMATION for disorientatedOBLOT robots
with limited visibility is not always solvable, even if the symmetry condition from
Theorem 1 is matched.

Figure 1.3: An example of configuration z (right), where robots cannot distinguish locally
whether the formation of pattern P (left) already finished. The viewing range is exemplary
marked.

However, one can use one bit of memory to overcome the sketched problem above. If
all robots know in the beginning that the protocol is in its “initial phase” they can start
with the pattern formation. At some point during the execution they can flip this bit, to
remember that the initial phase has ended and continue with the formation of the pattern.

1A trivial protocol is DO-NOTHING where each robot remain at its initial position forever.



22 Chapter 1. Introduction

It is reasonable to use NEAR-GATHERING as the initial phase, because in a Diam-1-Con-
figuration all robots can observe the global state of the swarm without (larger amounts of)
memory and communication.

Let us assume that the initial phase terminated in a Diam-1-Configuration and all
robots set their bit accordingly. All robots can use the methods from [69] to compute
the position that they must obtain in the pattern (in their local coordinate system). The
pattern may have a diameter larger than the visibility range. So, eventually, robots need
to move towards these positions such that the “global visibility” ends (i.e., the swarm
reaches a diameter larger than the viewing range). Without memory and without a fixed
compass, the computed position in the pattern as well as a direction towards it cannot be
maintained. [55] provides a method to use three robots (called TuringMobile) in a way
that the relative positions between them encode the current state and the belt content of a
Turing machine. They further describe a protocol that lets the TuringMobile move around
in a way that collects all other robots (eventually, solving NEAR-GATHERING) and places
them elsewhere to solve ARBITRARY-PATTERN-FORMATION. However, they assume
that one TuringMobile can be identified in the initial configuration. The TuringMobile is
designed so that it has no rotational symmetries (symmetricity of 1). If it is unambiguously
identifiable, the entire configuration must have a symmetricity of 1. Because symmetries
are one of the key obstacles in forming patterns, this is a huge restriction for a general
result on ARBITRARY-PATTERN-FORMATION.

Problem 3 Is it possible to form any large pattern from any Diam-1-Configuration
where the general limitation of Theorem 1 holds with oblivious disoriented robots and
limited visibility?

1.2 Outline of the Thesis and Main Results
In this thesis, we consider the ARBITRARY-PATTERN-FORMATION problem for disori-
ented, oblivious robots according to the OBLOT model acting fully-synchronous with
limited visibility. It fills the gaps of [72] by answering the two questions.

Can a pattern be formed on a large scale if robots have limited visibility?
Is it possible to form (small) patterns with oblivious robots that have limited visibility?
The technique for APF with limited visibility from [72] is adapted to oblivious robots.

The robots first performed a NEAR-GATHERING to reach a Diam-1-Configuration and
formed a small pattern (diameter ≤ 1) afterwards. Remember, that the NEAR-GATHER-
ING utilizes large persistent memory by storing all observed snapshots to preserve the
symmetricity. The formation of a small pattern afterwards exploits the global visibility in a
Diam-1-Configuration to apply the APF-protocol from [69] (without using memory). This
thesis adapts their results, by presenting a APF protocol that first performs NEAR-GATH-
ERING, but without any memory, and afterwards forms a large patter (with a diameter up
to n), again without persistent memory. As already stated in Observation 1.1 the whole
process of forming a large pattern from an arbitrary connected swarm is not in general
possible in the here considered model (especially with obliviousness, disorientation and
limited visibility). This is circumvented by the introduction of one bit of persistent memory.
While both stages of the APF protocol do not need any memory, the robots need this bit to
remember in what stage they currently are.

The results are split into three chapters, each introducing novel solutions to the Prob-
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lems 1–3. First, a class of NEAR-GATHERING strategies for oblivious robots with limited
visibility is presented (Chapter 2 answering Problem 1). Remember that a NEAR-GATH-
ERING must not change the symmetricity of the configuration to be used as a first stage
for an APF protocol because the possibility of forming a pattern is highly dependent on
the symmetricity of the swarm (see Theorem 1). The second result of this thesis intro-
duces methods on how to analyze the impact of protocols on symmetricity. Two concrete
strategies are given that preserve symmetricity. One preserves symmetry in general but
not always leads to a Diam-1-Configuration; the other preserves symmetry only for a
restricted class of initial configurations but solves NEAR-GATHERING in general (Chap-
ter 3 answering Problem 2). Thirdly, a protocol that forms large patterns but requires the
initial configuration to be a contracted swarm (i.e., a Diam-1-Configuration) is presented
(Chapter 4 answering Problem 3).

A detailed summary of the three results is given in the following (Sections 1.2.1–1.2.3),
each subsection restates the problem it is about in the beginning. These summaries give
overviews of central parts of the proofs. The three results are combined in the end of
this section (Section 1.2.4) to follow the main theorem of this thesis, that states under
what conditions a large pattern (diameter >> 1) can be formed by a widespread swarm
(diameter >> 1). A comprehensive description of the model is given in Section 1.3 and
specific notations used in this thesis is defined in Section 1.4. Afterwards an overview on
related work can be found in Section 1.5.

1.2.1 Near-Gathering (Chapter 2)
Problem 1 Is it possible to perform NEAR-GATHERING with oblivious, disoriented
robots under limited visibility?

The NEAR-GATHERING problem is solved by introducing the class of λ -contracting
NEAR-GATHERING protocols (Definition 2.3) that lead to a Diam-1-Configuration. They
have three important properties; they are λ -contracting (Definition 2.2) and collision-free.
λ -contracting protocols are similar to the continuous protocols in [23]. The target position
of a robot (where it moves) must not only lie inside the convex hull of the swarm, but must
be sufficiently far from the corners of the convex hull (to prevent circular movement as
described above). The following result is shown.

Theorem 2 Consider a swarm of robots in R2 with diameter ∆ that is well-connected
Every λ -contracting NEAR-GATHERING protocol solves NEAR-GATHERING after
O
(
∆2) rounds.

We also show that well-connectedness is a natural requirement for any NEAR-GATH-
ERING protocol in this model (Observation 2.1). While NEAR-GATHERING is a relevant
problem of its own, it can be used as an intermediate step to solve GATHERING-WITHOUT-
EARLY-COLLISION and CIRCLE-FORMATION. GATHERING-WITHOUT-EARLY-COLLI-
SION is a variant of GATHERING where collisions are only allowed in the very last round
[52]. Simultaneous termination allows the robots to move onto one position in the round
after reaching a Diam-1-Configuration.
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Theorem 3 Consider a swarm of robots in R2 with diameter ∆ that is well-connected Ev-
ery λ -contracting NEAR-GATHERING protocol solves GATHERING-WITHOUT-EARLY-
COLLISION in O

(
∆2) fully-synchronous rounds.

Similarly, they could form a small circle in the next round, to solve CIRCLE-FORMA-
TION. Other patterns are not formable in general as a next step, because the protocol class
makes no guaranties on symmetricity changes during the execution.

There exist several λ -contracting protocols, that are presented in the doctoral thesis of
Jannik Castenow [7]. Most notable, the GO-TO-THE-CENTER protocol [2, 24] is one of
them. In this thesis a collision avoidance method is introduced, such that any λ -contracting
protocol can be transformed into a λ -contracting NEAR-GATHERING protocol.

Theorem 4 For every λ ′-contracting protocol P ′ there exist a λ -contracting NEAR-
GATHERING protocol P with λ ∈ O(λ ′).

In Theorem 12 is stated, that GO-TO-THE-CENTER is a concrete example of a λ -
contracting protocol that can be transformed into a λ -contracting NEAR-GATHERING

protocol. The results on λ -contracting NEAR-GATHERING protocols were first published
in

A Unifying Approach to Efficient (Near)-Gathering of Disoriented Robots with
Limited Visibility [10]
Jannik Castenow, Jonas Harbig, Daniel Jung, Peter Kling, Till Knollmann and Friedhelm Meyer auf der
Heide
Conference on Priciples of Distributed Systems (OPODIS) 2022

The paper also contains results on GATHERING (with early collisions) that are part
of Jannik Castenows doctoral thesis [7]. Chapter 2 includes more details on the shared
authorship.

1.2.2 Symmetricity Preservation (Chapter 3)
Problem 2 Does a NEAR-GATHERING protocol for oblivious, disoriented robots with
limited visibility and rigid movement exist that does not change the symmetricity of the
swarm?

As argued above, NEAR-GATHERING is a useful step towards ARBITRARY-PATTERN-
FORMATION. However, to obtain a result comparable to Theorem 1, it is necessary that the
symmetricity during NEAR-GATHERING does not increase. To the best of our knowledge,
there exists no research on symmetry changes induced by local protocols under theOBLOT

model. The second result of this thesis introduces to the best of our knowledge the first
method to analyze the impact of a protocol on the symmetricity of a swarm. It makes use
of invertibility of the protocol’s evolution function. The evolution function F : R2n→ R2n

defines the behavior of a swarm from the perspective of a global observer. If F is invertible,
a global observer can compute where the robots were a round before. The following
theorem is shown.
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Theorem 5 Consider an arbitrary swarm protocol with evolution function F : R2n→ R2n.
Assume that F is (locally) invertible (Definition 3.3). Then, any configuration z ∈ R2n

and its successor configuration z+ := F(z) have the same symmetricity sym(z+) =
sym(z).

The intuition for this is the following. Symmetricity can never decrease for disoriented
oblivious robots as mentioned above to explain Theorem 1. However, it can increase by an
integer factor i. Assume z+ has the predecessor configuration z with sym(z+) = i · sym(z)
for i > 0. When you rotate z by 360◦/i its successor configuration is a rotation of z+ by
360◦/i and therefore equivalent to z+ because sym(z+) is devisible by i. F is not invertible
for z+ if it has multiple predecessor configurations. Therefore, (local) invertibility is a
sufficient condition for the preservation of symmetricity.

The theorem is applied to create two symmetricity preserving protocols. One is based
on the GO-TO-THE-AVERAGE protocol where all robots move towards the average of the
locally observed robots (Algorithm 4). GO-TO-THE-AVERAGE is known to not maintain
connectivity, the swarm will split into multiple clusters that each converge towards one
position (in case the swarm keeps connectivity a Diam-1-Configuration is reached, see
Lemma 3.7). However, the protocol is a demonstration that there exist non-trivial protocols
that preserve symmetricity for all initial configurations.

Theorem 6 The execution of ε-GO-TO-THE-AVERAGE (Algorithm 4) protocol for
ε < 1

29 does not change the symmetricity of the swarm.

Note, that ε-GO-TO-THE-AVERAGE contain n, the number of robots in a swarm, as
a parameter. This global knowledge is implicitly available for NEAR-GATHERING that
is used as part of the ARBITRARY-PATTERN-FORMATION problem, because the pattern
consist of n positions as defined in Definition 1.1.

The second protocol, called WAVE-PROTOCOL, solves NEAR-GATHERING for all
initially connected configurations. It is based on GO-TO-THE-MIDDLE, a protocol where
each robot moves towards the midpoint between its neighbors. The Connectivity-Bound-
ary of a configuration consists of all robots that are near the outside of a swarm (see
Definition 1.6 for a formal definition and Figure 1.4 for an example). Only robots near
to the swarm’s Connectivity-Boundary move in WAVE-PROTOCOL. The robots on the
Connectivity-Boundary perform GO-TO-THE-MIDDLE and other robots nearby move
slightly to prevents collisions. A hole inside the configuration is a circle without robots (see
Definition 1.7 for a formal definition and Figure 1.4 for an example). A larger hole makes
it impossible for robots to locally detect whether they are on the Connectivity-Boundary or
not. However, to proof the invertibility of WAVE-PROTOCOL the invariant is required that
only robots on the Connectivity-Boundary perform GO-TO-THE-MIDDLE. This leads to
the following result on symmetricity preservation.

Theorem 7 We assume robots according the OBLOT model and FSYNC scheduler
with a viewing range of 2+

√
2 in a swarm with a convex Connectivity-Boundary

(Definition 1.6) and no 1-holes (Definition 1.7). The WAVE-PROTOCOL (Algorithm 7)
leads to NEAR-GATHERING and does not change the symmetry.

The restriction for the initial configurations are based on the symmetricity analysis.
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connectivity-boundary

Figure 1.4: Left: a configuration with a non-convex Connectivity-Boundary and its unit-
disc-graph. Right: A configuration with a convex Connectivity-Boundary and its largest
hole.

The evolution-function of GO-TO-THE-MIDDLE is linear and invertible if it is applied to
a closed chain of robots. In a swarm with a convex Connectivity-Boundary and no 1-holes
robots can locally decide whether they are on the Connectivity-Boundary and the protocol
can be designed in a way that the chain of robots performing GO-TO-THE-MIDDLE does
not change. This allows to follow from the invertibility of GO-TO-THE-MIDDLE that
WAVE-PROTOCOL is invertible. The large viewing range of the protocol is necessary
such that robots near the Connectivity-Boundary can detect this move as well (to stay
inside the Connectivity-Boundary and to prevent collisions). For arbitrary connected
configurations (with larger holes and without a convex Connectivity-Boundary) it is shown
in Lemma 3.17, that the protocol still solves NEAR-GATHERING (but not necessarily
preserves symmetricity).

In total, GO-TO-THE-AVERAGE and WAVE-PROTOCOL complement each other to
give novel results on symmetricity preserving NEAR-GATHERING protocols. The first
protocol is in general symmetricity preserving but leads to a Diam-1-Configuration only for
certain configurations. The latter protocol is only analyzed for a subset of configurations
to preserve symmetricity, but it solves NEAR-GATHERING in general2. It is still open
whether a protocol exists, that solves NEAR-GATHERING while preserving symmetry for
any initially connected configuration. The results were first published in

Symmetry Preservation in Swarms of Oblivious Robots with Limited Visibility [36]
Raphael Gerlach, Sören von der Gracht, Christopher Hahn, Jonas Harbig and Peter Kling
Conference on Priciples of Distributed Systems (OPODIS) 2024

For the results on symmetry preservation methods from the mathematical theory of dy-
namical systems are used. The application of these methods is largely contributed by the
co-authors of the paper.

2Note that the λ -contracting NEAR-GATHERING protocol from Chapter 2 are in general superior in
therms of viewing range and running time if a NEAR-GATHERING protocol is needed without requirements
on symmetry preservation.
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1.2.3 Large Pattern Formation from Contracted Swarms (Chapter 3)

Problem 3 Is it possible to form any large pattern from any Diam-1-Configuration
where the general limitation of Theorem 1 holds with oblivious disoriented robots and
limited visibility?

The results on ARBITRARY-PATTERN-FORMATION with global visibility and oblivious
robots [69] and on limited visibility and remembering robots [72] are further generalized to
limited visibility and oblivious robots. Complementing the results on NEAR-GATHERING

discussed above that lead to a Diam-1-Configuration the following result is shown.

Theorem 8 A connected pattern P can be formed by |P| disorientedOBLOT robots with
limited viewing range in the FSYNC model from a Diam-1-Configuration z if and only
if sym(z) | sym(P). The formation takes O(|P|) rounds, which is worst-case optimal.

The DRAWING-PROTOCOL, a protocol for ARBITRARY-PATTERN-FORMATION, is
provided for this model. It uses the protocol for global visibility [69] in the first round
to form sym(z) many drawing formations, small configurations of a subset of robots
that encode an enumeration in O(|z|), as well as the orientation of a common coordinate
system. The drawing formations then each form one part of the pattern by traversing a path
dependent on P and leaving robot at P’s positions, the enumeration being used to remember
the step where it currently is. In contrast to TuringMobile [55] that encodes arbitrary large
numbers with three robots by allowing infinitesimally small differences between their
distances, the drawing formation places robots in a grid with distance Ω(

√
n−1

) between
robots. DRAWING-PROTOCOL has a viewing range of 1 and can only form patterns
where the unit-disc-graph is connected. This is a natural limitation for robots with limited
visibility. However, our technique can be adapted to form disconnected patterns, as long as
they contain a connected component of size ≥ 3. This work was first published in

Forming Large Patterns with Local Robots in the OBLOT Model [39]
Christopher Hahn, Jonas Harbig and Peter Kling
Symposium on Algorithmic Foundations of Dynamic Networks (SAND) 2024

1.2.4 APF for Widespread Swarms (Combined Main Result)

Combining WAVE-PROTOCOL and DRAWING-PROTOCOL leads to an ARBITRARY-PAT-
TERN-FORMATION protocol that works for all initial configurations that have a convex
Connectivity-Boundary, no 1-hole and which fulfills the symmetry condition from The-
orem 1. As shown above, robots are not always able to distinguish locally whether the
pattern is already formed or not (see Observation 1.1). This is solved by introducing one
bit of persistent memory in each robot that is used to remember whether it is currently
executing WAVE-PROTOCOL or DRAWING-PROTOCOL. Initially all bits are set on ‘exe-
cuting WAVE-PROTOCOL’. WAVE-PROTOCOL is a NEAR-GATHERING protocol that ends
with simultaneous termination. At this moment each robot flips its bit; it now indicates
‘executing DRAWING-PROTOCOL’. The combination of Theorems 7 and 8 immediately
yields following main theorem.
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Theorem 9 — Main Theorem. We assume robots according theOBLOT model with the
exception of a single bit of persistent memory. We further assume the FSYNC scheduler,
a viewing range of 2+

√
2 and a configuration z with a convex Connectivity-Boundary

and no 1-holes. A connected pattern P can be formed by |P| robots in configuration z if
and only if sym(z) | sym(P).

1.3 Model
In the following, at first the OBLOT model is defined. Afterwards the schedulers (FSYNC,
SSYNC and ASYNC) are defined. The OBLOT model does not define, how robots are
oriented or when they observe each other; this is described in two separate subsections
below. In the end of the model section, the usage of determinism is depicted. At parts,
multiple models and different model parameters are described. In the end of each subsection
it is explicitly remarked what the concrete model or model parameter of this thesis is.

1.3.1 OBLOT Model
The OBLOT model is described in [31]. OBLOT is an abbreviation of “OBLivious
robOT”. Robots in this model are autonomously moving entities that act in discrete
LOOK-COMPUTE-MOVE (LCM) cycles. An LCM-cycle is split into three phases.

LOOK. The robot observes its surrounding and stores it in a temporary snapshot S .
All information, e.g., the positions of other robots, is stored in a local coordinate
system that is self-centered. Depending on the orientation capabilities of a robot,
the rotation, scaling, or mirroring of the local coordinate system may vary between
robots and from cycle to cycle, but it is consistent until the end the current LCM-
cycle. The snapshot includes all information a robot has about itself, other robots,
or its environment and task (e.g. the pattern).
COMPUTE. The robot uses a predefined protocol P to compute an action based
solely on the snapshot S. An action is usually a movement but can, dependent on
the robot’s capabilities, also be the storage of information in persistent memory or
the communication of a message. A movement is computed as the target position
in the local coordinate system of the snapshot. The target position is defined as the
function targetP(S) dependent on the protocol P and the snapshot S. Usually, a
robot is only allowed to move a limited distance (e.g., 1) in one cycle. The target
position must be within this limit.
MOVE. The robot executes the computed action and moves to targetP(S). If the
movement is rigid, the target position is reached exactly. Otherwise, the robot
moves on a straight line towards the target position but may be stopped by an
adversary at an arbitrary point. Afterwards, the snapshot and the knowledge of the
target position is deleted.

The OBLOT model defines that the robots are homogeneous, anonymous, identical, silent,
and oblivious.

homogenieous. All robots perform the same predefined protocol P . identical.
A robot has no way to distinguish the robots it observes during LOOK beside
their relative position (and possibly messages). Even if it can store the snapshot
from a past cycle in persistent memory, it cannot reliably map the robots from the
past to the current snapshot. anonymous. Robots do not have a unique identifier
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(or similar attribute) to solve leader election (or similar problems) with internal
information. silent. Robots do not communicate. No messages are sent during
MOVE or received during LOOK. oblivious. Robots do not have persistent memory.
They forget everything after MOVE.

From these properties it follows that the snapshot made during LOOK is equivalent to a set
of positions representing the observed robots.

Some results in this thesis use a slightly changed model that considers robots with
persistent memory. The related work also considers models where robots can communicate.
The adaption of the OBLOT model is defined as follows. During the COMPUTE phase a
robot decides, what information I is to be stored in persistent memory or what message M
is to be communicated. In the MOVE phase, I is stored and/or M is communicated. The
next snapshot in LOOK contains the information I stored by the robot in the last MOVE

and the message each observed robot communicated during its respective last MOVE

phases. When the stored information is also communicated (therefore I = M) and has only
a constant size (i.e., can be modeled with constant many states), the model is call LUMI

[31] (for “luminous” because it can be modeled with a light that can shine in different
colors).

R In this thesis, the OBLOT model is assumed. Only Theorem 9 assumes one bit of
persistent memory in addition. The robots’ movement is rigid and limited by distance
1 per cycle.

1.3.2 Scheduler
[31] defines three schedulers that specify how the LCM-cycles of different robots are
synchronized. The fully-synchronous FSYNC scheduler is the strictest as all phases have
to be synchronized. All robots must have finished their LOOK phase before the first robot
can start its COMPUTE phase, and so on. Because no robot is observed during MOVE,
the movement can be assumed to be instant. The cycles executed since initialization are
counted as rounds.

The semi-synchronous SSYNC scheduler loosens these restrictions. Robots can pause
entire rounds. Those robots are called inactive and the others are called active. The phases
of the active robots must be synchronized as defined for FSYNC. An epoch is the time
frame in which each robot was active at least once.

The asynchronous ASYNC scheduler does not give restrictions on the timing of cycles
or phases. Each phase can take an arbitrary (but final) amount of time with arbitrary pauses
in between. During movement, a robot can pause for an arbitrary period of time. Similarly
to SSYNC, an epoch is the time frame where each robot executed at least one LCM-cycle.
All three schedulers guarantee that the duration of a round/epoch is final.

R The results in this thesis mostly assume FSYNC; some results in Chapter 2 are stated
for the more general SSYNC scheduler.

1.3.3 Orientation
Robots are placed in Euclidean hyperspace (usually only two- or three-dimensional). As
described above, a robot observes its surrounding in a self-centered coordinate-system
during LOOK. It is possible to have multiple degrees of agreement between local coordinate-
systems of different robots possible. A compass is an agreement of a common direction
of the X-axis. If robots have no compass we call them disoriented. Disoriented robots
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each have an arbitrarily rotated local-coordinate system. If robots agree on chirality they
have a common understanding of left and right; otherwise, the coordinate-system can be
arbitrarily mirrored.

When considering the protocol executed locally on a disoriented robot, the protocol
can make use of the local orientation of the robot3. However, most literature considering
those models designs protocols invariant under the local orientation.

R This thesis assumes robots in the Euclidean plane. They are disoriented, but agree on
a unit-distance. For Chapter 2 an agreement on chirality is not necessary while the
other results assume a common chirality. The protocols in this thesis are invariant
under the local orientation.

1.3.4 Visibility and Connectivity
OBLOT does not specify what robots can be observed during LOOK. Some results (e.g.
[69]) consider a global visibility where all robots can mutually observe each other. Certain
problems like GATHERING become trivial4 with this assumption. Other results (e.g. [72])
consider limited visibility where robots can only observe other robots within a defined
visibility range. Robots with limited visibility are sometimes called local.

With limited visibility, the question of connectivity is raised. If there is no transitive
visibility between a set of robots, one can hardly assume a unified swarm behavior. Most
of the results in this thesis distinguish between visibility and connectivity; for this case,
a second distance called connectivity range is introduced. A swarm is considered to be
connected if the unit disc graph (UDG), where the unit distance is the connectivity-range is
connected; it is called connectivity-graph. We call robots that are connected neighbors. We
define the boundary of the connectivity-graph (called Connectivity-Boundary) as follows.

Definition 1.6 — Connectivity-Boundary. The connectivity-graph is a graph in the
Euclidean plane. Initially, we define the whole plane as “outside”. Every cycle in the
connectivity graph surrounds an area, we define the union of these areas as “inside”.
The Connectivity-Boundary consists of all nodes (robots) that are adjacent to “outside”.
In the Connectivity-Boundary all induced edges remain that are adjacent to “outside”
and do not cross other nodes.

The Connectivity-Boundary is a graph with exactly one Euler cycle. If the Connec-
tivity-Boundary is convex, the Euler cycle is a Hamilton cycle as well. Sometimes it is
referred to neighbors of a robot in a convex Connectivity-Boundary. This always means
the two neighbors in the Hamilton cycle.

A swarm is called well-connected if a connectivity range is assumed that is smaller
than the visibility range by a constant (see Definition 1.5).

R In this thesis, the distances are always normalized so that the connectivity-range is 1.
Chapter 2 assumes a well-connected swarm, i.e. the viewing range is 1+σ for an
arbitrary constant σ > 0. In Chapter 3 the viewing range is 2+

√
2 for Theorem 7

and 1 for the other results. In Chapter 4, a viewing rage of 1 is assumed.

1.3.5 Determinism
Access to a true source of randomness is a powerful capability for distributed robot
swarms. Most problems considered in this thesis become trivial or much simpler with

3An example would be the protocol where robots move distance 1 in the direction of their local X-axis
4All robots can move to the center of the swarms smallest enclosing circle.
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randomness. For example, NEAR-GATHERING can be reduced to GATHERING. If the
GATHERING is finished each robot can use the randomness to move a very small random
distance in a random direction. With high probability, this solves NEAR-GATHERING

in a few extra steps. Similarly, any configuration with symmetricity > 1 can reduce its
symmetricity to 1 by perturbing the position of each robot. This removes the necessity of
symmetry preservation and even allows forming patterns that do not satisfy the symmetry
condition of Theorem 1. However, the exact analysis of swarm formation problems
considers randomness to be controlled by an adversary. This allows to present solutions to
problems that always works (and not only with high probability) but limits the advantages
of randomness severely. Much of the related work incorporates this into the model by
allowing only deterministic protocols (e.g. [24, 68, 69, 72]).

R This thesis considers deterministic protocols.

1.4 Notation
In the following, special notations used in this thesis are described.

1.4.1 Configuration
Usually, the number of swarm robots is denoted by n ∈ N. Let {r1, · · · ,rn} be the set of
robots in the swarm (the ordering is arbitrary and is not known by the robots). We denote the
positions of robots in an arbitrary global coordinate system. post(ri) = zt

i = (xt
i,y1it) ∈ R2

is defined to be the position of ri. The configuration zt = (zt
i)

n
i=1 ∈ (R2)n ≡ R2n describes

the positions of all robots in round t. z0 is also called initial configuration. The notation z
is sometimes abused to represent the set of points in the configuration rather than a vector,
e.g. p ∈ z.

1.4.2 Target Position
As described above, a robot takes a snapshot S during the LOOK phase and computes
the target-position targetP(S) during COMPUTE. Because the model specified for this
thesis (identical and disoriented robots) contains no additional information to the relative
positions in the snapshot, it is equivalent to a translated and rotated subvector of the
configuration zt . Because the protocol is invariant under the local orientation, the rotation
of the subvector can be ignored. To simplify the notation, targetP(p;z) is used instead to
describe the target position of a robot observing the configuration z from the position p.
For robot ri in round t, this is targetP(zt

i,z
t) and this case is usually abbreviated further to

targetPi (t).

1.4.3 Characterizing Protocols via their Evolution Function
Chapter 3 uses methods from dynamical systems. There, the evolution of the entire
configuration is considered rather than the movement of individual robots. The evolution
of a configuration can be described as

zt+1 = FP(zt) =

targetP(zt
1;zt)

...
targetP(zt

n;zt)

 . (1.1)
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FP is called the evolution function of the protocol P . In the context of the evolution
function, P is usually omitted and f (zt

i;zt) used instead of targetP(zt
i;zt). This leads to the

notation

zt+1 = F(zt) =

 f (zt
1;zt)
...

f (zt
n;zt)

 . (1.2)

Whenever the specific value of t is irrelevant (e.g., when an arbitrary round is investi-
gated) the superscript is dropped and z+i = f (zi;z) abbreviated where z+i ∈ R2 indicates
the “next” position of robot i. Similarly, the notation z+ = F(z) is used to indicate the
“next” configuration if the evolution function F is applied to some configuration z.

1.4.4 Pattern
Remember that the ARBITRARY-PATTERN-FORMATION problem is considered for the
main result (Theorem 9) as well as the results in Chapter 4: a swarm of n robots must
form a target pattern P ⊆ R2 of |P| = n coordinates. Since robots are oblivious, the
standard assumption is used that, each round, they receive P as part of the snapshot during
LOOK in an arbitrary but fixed coordinate system (i.e., robots receive the exact same
numerical values). Without loss of generality, it is assumed that P’s smallest enclosing
circle is centered at the origin (otherwise robots translate P accordingly). P’s symmetry is
measured via its symmetricity (see Definition 1.2).

Let P be a pattern with symmetricity s. The n = |P| positions can be split into n/s
regular s-gons with the same center. We call a set that contains exactly one position from
each s-gon a symmetric-component of P.

1.4.5 Geometrical Notations
A configuration z has several geometric properties that are relevant in multiple definitions.
The convex hull of z is referred to as global convex hull, the diameter of z is the global
diameter. The convex hull and diameter of the subvector of z observed by the robot ri
is referred to as the local convex hull and local diameter of ri. This works analogous
for the global/local smallest enclosing circle (usually abbreviated with SEC). diam(t),
respectively hull(t), is defined as the global diameter, respectively convex hull, in round
t. diami(t), respectively hulli(t), is the local diameter, respectively convex hull, of ri in
round t. The unit-distc-graph for the configuration in round t is denoted with UDG(t).

We define a hole inside a configuration as follows.

Definition 1.7 — δ -hole. A δ -hole of a configuration is a circular area inside the
Connectivity-Boundary with a diameter of δ that contains no robot.

For two points p,q ∈ R2 we define dist(p,q) = ∥p−q∥2 as their Euclidean distance.
We extend this notation in the natural way to sets S ⊆ R2, such that, e.g., dist(p,S) =
min{dist(p,q) | q ∈ S}. We use a set-like notation for sequences S = (si)

n
i=1, like p1 ∈ S,

S ⊆ R2, or dist(p,S). The minimal distance between two points in a set (or sequence)
S ⊆ R2 is mindist(S) := min{dist(p,q) | p,q ∈ S, p ̸= q}. For p ∈ R2 and r ∈ R the set
B(p,r) = {q ∈ R2 | dist(p,q)< r} denotes the open ball around p with radius r. For
a set S ⊆ R2 we write its power set as Pow(S), its closure as S, and its boundary as
∂S = S∩R2 \S.
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1.5 Further Related Work
The section is divided into a section on GATHERING, a section on ARBITRARY-PATTERN-
FORMATION and related work on dynamic systems. See [70] for a survey on pattern
formation. A more recent and general overview of results and open problems in swarm
robotics and related areas can be found in [30].

1.5.1 Gathering and Convergence
GATHERING is the formation of the specific pattern “point”. A highly researched gathering
protocol is GO-TO-THE-CENTER that is already mentioned above while motivating the
NEAR-GATHERING results. It assumes the OBLOT model for disoriented robots with a
limited viewing range and was first introduced in [2]. The running time of Θ(n+∆2) rounds
until a gathering is reached is shown in [6, 24] (n is the number of robots, ∆ the largest
distance between two robots). [6, 7] additionally adapt GTC for the high-dimensional
Euclidean space. There exists no known protocol with an asymptomatic running time faster
than GO-TO-THE-CENTER in the same model. It is conjectured that the running time
of GTC is worst-case optimal in the model [6, 7, 11]. With slight changes of the model,
a faster running time is reached up to the trivial lower bound of Ω(∆). [59] considers
a one-axis agreement (robots have a common compass but not chirality) and provides a
gathering protocol in O(∆).

There exist comparable results of gathering for robots in the two-dimensional grid
(N2). A gathering is possible inO(n2) rounds for oblivious, disoriented robots with limited
visibility [8]. An improvement of the running time to O(n) can be achieved by giving
disoriented robots a constant-sized memory [20].

In intense research was conducted on what assumptions and initial configuration
gathering are possible or impossible to solve. Especially the impossibility results are
relevant for this thesis, because they can directly be translated to the ARBITRARY-PAT-
TERN-FORMATION problem. In the following, robots with global visibility are assumed.
It is shown that oblivious, disoriented robots without multiplicity detection can solve the
gathering under FSYNC [18] but not under SSYNC or ASYNC [60]. With multiplicity
detection (robots can observe whether a position is occupied by 1 or multiple robots), a
swarm can be gathered when it contains at least 3 robots, even under the weaker assumption
of the ASYNC scheduler [17]. However, a swarm with only 2 robots cannot be gathered
under the same assumption [64]. Similarly to the case with limited visibility, a one-axis
agreement is also an advantage with global visibility as well; it enables gathering in general
under ASYNC scheduler [3].

CONVERGENCE is a problem related to GATHERING where robots reach a configuration
of arbitrary small diameter. In contrast to gathering, CONVERGENCE does not require
multiplicity detection for disoriented oblivious robots with global visibility under ASYNC

[18]. [19] showed that convergence is possible in O(n · log ∆/δ) epochs (∆ is the diameter
of the initial configuration, δ the desired diameter of the final configuration). With limited
visibility and otherwise, the same model under SSYNC [2] provides a protocol that solves
CONVERGENCE. Under ASYNC scheduler, convergence is not possible with limited
visibility [47]. However, for O(1)-bounded asynchronicity (i.e. the k-ASYNC scheduler
where one robot is activated at most k times during the LCM-cycle of another robot)
CONVERGENCE is possible with limited visibility and multiplicity detection [46, 47].

GATHERING and CONVERGENCE is considered for connected chains of robots in the
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Euclidean plane as well. A chain connects each robot to a right and left neighbor, the
ends of the chain can have only a right or left neighbor (in a closed chain the relation is
circular). Visibility is measured in distance along the chain, not in Euclidean distance. An
often considered protocol is GO-TO-THE-MIDDLE which solves convergence [27]. It has
a running time of O(n2 · log ∆/δ) to reach a configuration of diameter δ [18]. Similarly to
the grid, the running time is much faster (O(n)) when robots have a constant memory [12].

There exist also research that considers GATHERING and CONVERGENCE with more
uncertainty in the behavior of robots, a survey can be found in [22]. On one hand, the
swarm may include a few robots that crash (remain stationary from this time on) or are
Byzantine (operates an adversarial protocol), on the other hand, the measurement or
movement may be inaccurate.

1.5.2 Arbitrary Pattern Formation
The ARBITRARY-PATTERN-FORMATION problem has been considered in numerous
settings and variants. The works closely related to this thesis [69, 72] are already described
in Section 1.1. They consider disoriented robots according to the OBLOT model under
FSYNC scheduler. A central result there is the general limitation which initial configuration
can result in which patterns based on the symmetricity (Theorem 1). [33] continues these
results by showing under what conditions the formation of any pattern (no matter the
symmetricity) with global visibility is possible. They prove that an agreement on both
axes is sufficient to from any pattern and with a one-axis agreement (common compass,
no chirality) any pattern with an odd number of positions can be formed. [16, 25, 34]
researched APF under the ASYNC scheduler for disoriented robots without common
chirality. They proved that there the ARBITRARY-PATTERN-FORMATION is equivalent to
LEADER-ELECTION, i.e. APF is solvable with initial configuration z0 if and only if the
robots in z0 can agree on one robot as a leader. This is equivalent with a symmetricity of 1
in z0 in the model used for this thesis. Under the sequential scheduler (robots are activated
in a Round-Robin fashion) APF is solvable for all initial configuration unrestricted by the
symmetry condition (Theorem 1) [28].

[64] shows a restriction similar to Theorem 1 for robots with global visibility and
arbitrarily large memory. The memory enables robots to explore the local orientation of all
robots, therefore, the symmetricity definition is adjusted to include the local orientations of
all robots (i.e. a robot is represented by a unit vector instead of a point in Definition 1.2).
[4] considers pattern formation for oblivious robots with unlimited visibility on an infinite
grid, showing that an initially asymmetric swarm can form any pattern. The authors of [5]
assume unlimited but obstructed visibility (i.e., robots can obstruct each others view) with
partial axis agreement and luminous robots (that can communicate via a constant number
of lights). In [21], the authors considered when oblivious robots with unlimited visibility
can form (cyclic) sequences of patterns. Pattern formation for robots in three-dimensional
space is considered in [71].

ARBITRARY-PATTERN-FORMATION designs an algorithm that can form any at runtime
given pattern. A protocol can be designed much more dedicated if the pattern is known in
advance. One example of such a specific pattern formation is the GATHERING problem
above. Other patterns often considered are “circle” and “line”. The CIRCLE-FORMA-
TION problem (forming a n-gon of given radius) is solved for disoriented OBLOT under
ASYNC with global visibility and non-rigid movement [32, 56, 68]. The MAX-LINE-
FORMATION problem (forming a line with distance 1 between robots) is solved forOBLOT
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robots with limited visibility and one-axis agreement [9]. However, robots must have a
square connectivity and viewing range (robots are connected/observed within a square
of a given side length; the square is aligned with the common axis direction), otherwise
MAX-LINE-FORMATION is in general impossible. The problem of forming a line is also
studied for connected chains of robots, there it is called (MAX-)CHAIN-FORMATION.
The GO-TO-THE-MIDDLE protocol solves it [27] by reaching the shortest line between
two static endpoints of the chain. [13] presents a protocol that reaches a long line by
maximizing the distances between the two endpoints of the chain.

There exists also research on pattern-formation considering robots with identifiers.
Each robot has a color, each group of robots with the same color has to form the pattern.
This problem is solved for GATHERING and CIRCLE-FORMATION [29, 62].

1.5.3 Dynamical System
In dynamical systems theory, much of the related literature considers consensus or synchro-
nization problems that share characteristics with GATHERING or NEAR-GATHERING, e.g.,
by identifying robot positions with “opinions” the agents want to find a consensus on. A
good overview over this research branch can be found in [58] or in the slightly more recent
surveys [14, 26]. Extensions of these methods to pattern formation have been proposed as
well (see e.g., [1]). However, in this area the focus is typically on time-continuous systems
— in the form of differential equations — and the models are not as strictly restricted as
necessary in our context, e.g., allowing global communication range.

There are several results in the field of swarm robots applying techniques from dynami-
cal systems theory. [49, 50] use it, to prove that a swarm of robots can form a grid. [35]
analyzes the convergence speed of different circular structures on the basis of dynamical
systems theory.





2. A Class of Near-Gathering
Strategies

The contribution of this chapter is to provide a class of protocols that solves NEAR-
GATHERING in O(∆2) rounds, where the diameter ∆ denotes the initial maximal distance
between two robots. It is based on a class called λ -contracting protocols. Such protocols
restrict the allowed target points to a specific subset of a robot’s local convex hull (formed
by the positions of all visible robots, including itself) in the following way. Let diam
denote the diameter of a robot’s local convex hull. Then, a target point p is an allowed
target point if it is the center of a line segment of length λ ·diam, completely contained in
the local convex hull. This guarantees that the target point lies far enough inside the local
convex hull (at least along one dimension) to decrease the swarm’s diameter sufficiently.
See Figure 2.1 for an illustration.

Figure 2.1: Two local convex hulls, each formed by 3 robots. The gray area marks valid
target points of λ -contracting protocols. The exemplary line segments all have length
λ ·diam, where diam is the diameter of the respecting convex hull. On the left λ = 4/7, on
the right λ = 4/11.

We believe these λ -contracting protocols encapsulate the core property of fast CON-
VERGENCE protocols. Note that λ -contracting protocols do neither lead directly to GATH-
ERING, which requires robots to eventually reach the same position, nor to NEAR-GATH-
ERING, which requires simultaneous termination and collision avoidance.

In this chapter, the class of λ -contracting NEAR-GATHERING protocols is presented
that solves NEAR-GATHERING. Naturally, those protocols must ensure collision-freeness.
As in previous work on this problem [57], our protocols require that the initial swarm is
well-connected, that is, that the swarm is connected with respect to connectivity range of 1
and the robots have viewing range of 1+ τ , for the constant τ > 0 (Definition 1.5). The
protocols ensure that the swarm stays connected concerning the connectivity range. These
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are, to our knowledge, the first NEAR-GATHERING protocols for oblivious disoriented
robots with limited visibility.

Well-connectedness serves two purposes. First, it allows a robot to compute its target
point under the given λ -contracting protocol and the target points of nearby robots to
prevent collisions. Its second purpose is to enable termination. Once there is a robot whose
local convex hull has a diameter at most τ , all robots must have a distance at most τ , as
otherwise the swarm would not be connected in terms of the connectivity range 1. Thus, all
robots can simultaneously decide (in the same round in FSYNC) whether NEAR-GATHER-
ING is solved. If the swarm is not well-connected, it is easy to see that such a simultaneous
decision is impossible. Consider a protocol that solves NEAR-GATHERING for a swarm
of two robots and terminates in the FSYNC model. Fix the last round before termination
and add a new robot visible to only one robot (the resulting swarm is connected). One of
the original two robots still sees the same situation as before and will terminate, although
NEAR-GATHERING is not solved.

Observation 2.1 NEAR-GATHERING with simultanous termination is not possible in a
swarm of oblivious robots with limited visibility if the swarm is not well-connected.

Simultaneous termination also allows us to derive the first protocol to solve UNIFORM-
CIRCLE-FORMATION for disoriented robots with limited visibility as well as GATHERING

without early collisions. Once the robots’ local diameter (and hence also the global
diameter) is less than τ , they essentially have a global view. As the UNIFORM CIRCLE

protocol from [32] maintains a small diameter, it can be used after the termination of
our NEAR-GATHERING protocol without any modification. For GATHERING all robots
simply move in one step onto the center of the SEC (any deterministically computable
point invariant of rotation and translation inside the convex hull is sufficient). Because the
protocol is otherwise collision-free, collisions only occur in this last step.

ARBITRARY-PATTERN-FORMATION cannot be solved directly after the NEAR-GATH-
ERING, even though there are protocols that consider a similar model at first glance ([69]
and Chapter 4). These protocols restrict the set of formable patterns to have rotational
symmetry similar to the initial configuration, i.e., the patterns symmetricity (Definition 1.2)
must be an integer multiple of the symmetricity of the initial configuration. However, the
class of protocols presented here does not guarantee symmetry preservation. Therefore,
we can only make trivial assumptions about which patterns are formable by which initial
configuration before the NEAR-GATHERING. Symmetricity always divides the number of
robots n. Therefore, patterns with symmetricity n can always be formed. The only two
patterns that match this definition have already been mentioned above: circle and point. In
Chapter 3, a method is presented for preserving the symmetricity.

The results of this chapter were first published in

A Unifying Approach to Efficient (Near)-Gathering of Disoriented Robots with
Limited Visibility [10]
Jannik Castenow, Jonas Harbig, Daniel Jung, Peter Kling, Till Knollmann and Friedhelm Meyer auf der
Heide
Conference on Priciples of Distributed Systems (OPODIS) 2022

Joint Work. The design of λ -contracting protocols (Sections 2.1 and 2.2) was a joint
work and is also published in the doctoral thesis of Jannik Castenow [7]. Castenow focused
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on the GATHERING problem and developed a class of λ -contracting gathering protocols
while this thesis presents the related λ -contracting NEAR-GATHERING protocols with
results on NEAR-GATHERING. The correctness and running proofs for both protocol
classes are based on the same high-level idea that is presented in Section 2.2.1. However,
they are different on a technical level because the proof for λ -contracting NEAR-GATHER-
ING protocols utilizes that the swarm is well-connected (Definition 1.5). A λ -contracting
gathering protocol does not require the swarm to be well-connected, instead the proof in
[7] uses that the protocol is collapsing, i.e. robots move regularly onto the same position.
The developed λ -contracting NEAR-GATHERING protocols (Section 2.3) and the related
proofs (Section 2.4) are mainly written by the author of this thesis (Jonas Harbig) and not
published in any other doctoral thesis.

Outline. First, the classes of λ -contracting and λ -contracting NEAR-GATHERING proto-
cols are formally introduced (Section 2.1); a proof is given in Section 2.2 that λ -contracting
NEAR-GATHERING protocols solve NEAR-GATHERING. In Section 2.3, it is presented
how to create a λ -contracting NEAR-GATHERING protocol from any λ -contracting proto-
col; the proofs can be found in the next section (Section 2.4).

2.1 A Class of Contracting Protocols
The first intuition to define a class of protocols that contracts would be to transfer the class
of continuous contracting protocols from [51] (cf. Section 1.5) to the discrete LCM case.
Robots that are part of the global convex hull move with constant speed toward the inside
or along the boundary of the global convex hull. A translation to the discrete (LCM) case
might be to demand that each robot moves a constant distance inward (away from the
boundary) of the global convex hull, cf. Figure 2.2.

Figure 2.2: Ideally, every robot that is close
to the boundary of the global convex hull
would move a constant distance inwards.

Figure 2.3: Visualization of the example to
emphasize that continuous protocols cannot
be directly translated to the LCM case.

However, such a protocol cannot exist in the discrete LCM setting. Consider n robots
placed on the vertices of a regular polygon with side length 1. Now take one robot and
mirror its position along the line segment connecting its two neighbors (cf. Figure 2.3).
Next, we assume that all robots would move a constant distance along the angle bisector
between their direct neighbors in the given gathering protocol. Other movements would
lead to the same effect since the robots are disoriented. In the given configuration, n−1
robots would move a constant distance inside the global convex hull while one robot even
leaves the global convex hull. Not only does the global convex hull not decrease as desired,
but also the connectivity of the UDG is not maintained as the robot moving outside loses
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connectivity to its direct neighbors. Consequently, discrete gathering protocols have to
move the robots more carefully to maintain connectivity.

2.1.1 λ -contracting Protocols

Initially, we emphasize two core features of the protocols. A protocol is connectivity
preserving if it always maintains the connectivity of UDG(t). Due to the limited visibility
and disorientation, every protocol to solve NEAR-GATHERING must be connectivity
preserving since it is deterministically impossible to reconnect lost robots to the remaining
swarm. Moreover, we study protocols that are invariant, i.e., the movement of a robot
does not change no matter how its local coordinate system is oriented. This is a natural
assumption since the robots have variable disorientation and thus cannot rely on their local
coordinate system to synchronize their movement with nearby robots. Moreover, many
known protocols under the given robot capabilities are invariant, e.g., [2, 6, 53, 54].

Definition 2.1 — λ -Centered. Let Q be a convex polygon with diameter diam and
0 < λ ≤ 1 a constant. A point p ∈ Q is called to be λ -centered if it is the midpoint of a
line segment that is completely contained in Q and has a length of λ ·diam.

Definition 2.2 — λ -Contracting. A connectivity preserving and invariant robot forma-
tion protocol P is called λ -contracting if targetPi (t) is a λ -centered point of hulli(t) for
every robot ri and every t ∈ N0.

Two examples of λ -centered points are depicted in Figure 2.1. Observe that Definition 2.2
does not necessarily enforce a final GATHERING or NEAR-GATHERING of the protocols.
Consider, for instance, two robots. A protocol that demands the two robots to move
halfway towards the midpoint between themselves would be 1/4-contracting, but the robots
would only converge towards the same position. However, for GATHERING, the robots
must compute the same target point eventually. That robots converge (even without
collisions) does also not lead directly to NEAR-GATHERING, because this requires robots
to simultaneously terminate. Without memory or communication, a swarm must be well-
connected (Definition 1.5) to do that, i.e., let the viewing range be 1+ τ for a constant
τ > 0 and let UDG be connected. Consider a protocol that solves NEAR-GATHERING

for a swarm of two robots and terminates in the FSYNC model. Fix the last round before
termination and add a new robot visible to only one robot (the resulting swarm is not
connected). One of the original two robots still sees the same situation as before and
will terminate, although NEAR-GATHERING is not solved. We state this in the following
observation.

Observation 2.2 Any swarm of robots according to the OBLOT model must be well-
connected to solve NEAR-GATHERING.

Additionally, a NEAR-GATHERING protocol must avoid collisions. This leads to the
following class of protocols.

Definition 2.3 — λ -Contracting Near-Gathering Protocol. A robot formation pro-
tocol P is a λ -contracting near-gathering protocol if P is λ -contracting, collision-free
and keeps the swarm well-connected.
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2.2 Analysis of λ -contracting Near-Gathering Protocols
We state the following upper bound for λ -contracting NEAR-GATHERING protocols.

Theorem 2 — restated. Consider a swarm of robots in R2 with diameter ∆ that is well-
connected Every λ -contracting NEAR-GATHERING protocol solves NEAR-GATHERING

after O
(
∆2) rounds.

Note, that the protocol also works under SSYNC with the same asymptotic running
time, see Observation 2.3.

The running time proof for the upper bound can be found in the following sections and
is split in a high-level description and a detailed analysis, that contains the proofs.

The following matching lower bound for λ -contracting protocols can be shown. The
proof of the lower bound is, in most parts, identical to the lower bound of the GTC protocol
[24].

Theorem 10 For a swarm of n robots in R2 with a viewing range of 2−δ there exists a
connected configuration z0 such that every λ -contracting protocol P requires Ω

(
∆2)

rounds to reach a Diam-1-Configuration if δ is constant.

Proof. A worst case configuration to show the theorem is a regular n-gon with side length
1. Because the robots are disoriented and the protocols deterministic, the robots can be
rotated in a way that the configuration always remains a regular n-gon. With a viewing
range of 2−δ , a robots only see its two direct neighbor on the n-gon as long the side-length
> 1− δ/2. Because the protocols is λ -contracting a robot must stay inside the triangle of
itself and its two neighbors. Therefore, the radius of the n-gon can shrink by at most height
of this triangle. Analogous to the proof of Lemma 3.18 can be shown, that it needs at least
Ω(∆2) rounds such that the side length of the n-gon becomes ≤ 1− δ/2 and a robot can see
more neighbors. ■

Gathering without early collision. This chapter is about NEAR-GATHERING, which
is in some way the opposite of GATHERING because the latter requires collisions. A
stronger variant of the GATHERING problem considers it without early collision, i.e. only
in the very last step do all robots move onto the same position while having no collisions
beforehand. Our λ -contracting NEAR-GATHERING protocol can easily be adapted to solve
this problem in a fully-synchronous setting. NEAR-GATHERING requires that the robots
terminate simultaneously in the end. At this moment, each robot can observe the whole
swarm, and no collision has happened. Instead of termination, the robots move onto the
SEC center.

Theorem 3 — restated. Consider a swarm of robots in R2 with diameter ∆ that is
well-connected Every λ -contracting NEAR-GATHERING protocol solves GATHERING-
WITHOUT-EARLY-COLLISION in O

(
∆2) fully-synchronous rounds.

2.2.1 High-Level Description of Running Time Proof
The proof is inspired by the proof of the GTC protocol [24]. The proof aims to show that the
radius of the global smallest enclosing circle (SEC), i.e., the SEC that encloses all robots’
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positions in a global coordinate system, decreases by Ω(1/∆) every two rounds. Since the
initial radius is upper bounded by ∆, the runtime of O

(
∆2) follows. See Figure 2.4 for a

visualization.

round t round t+ 2

∈ Ω
(

1
∆

)

λ-contracting

gathering protocol P

Figure 2.4: We show that the radius of the global SEC decreases by Ω(1/∆) every round.

We consider the fixed circular segment Sλ of the global SEC and analyze how the
inside robots behave. A circular segment is a region of a circle “cut off” by a chord.
The circular segment Sλ ·τ/2 has a chord length of at most λ · τ (for a formal definition,
see below) and we can prove a height h of Sλ ·τ/2 in the order of Ω(1/∆) (Lemma 2.1).
Observe that in any circular segment, the chord’s endpoints are the points that have a
maximum distance within the circular segment, and hence, the maximum distance between
any pair of points in Sλ ·τ/2 is at most λ · τ/2. Recall that every robot ri moves to the
λ -centered point targetPi (t). Moreover, targetPi (t) is the midpoint of a line segment ℓ of
length λ ·diami(t) that is completely contained in the local convex hull of ri. For robots
with diami(t)≥ τ , we see that ℓ is larger than λ · τ and thus targetPi (t) cannot lie inside
Sλ ·τ/2. From well-connectedness (Definition 1.5) follows that diami(t) ≥ τ as long as
NEAR-GATHERING is not finished (Lemma 2.2). Finally, the previous statements can be
combined to give a lower bound on how much the radius of the global SEC decreases.

2.2.2 Detailed Analysis
First, we introduce some definitions. Let GS := GS(t) be the (global) smallest enclosed
circle of all robots in the round t and R := R(t) be its radius. Now, fix any point b on the
boundary of GS. The two points in distance λ/2 of b on the boundary of GS determine the
circular segment Sλ with height h (analog distance τ · λ/4 for Sλ ·τ/2). See Figure 2.5 for a
depiction of the circular segments Sλ and Sλ ·τ/2. In the following, all lemmata consider
robots that move according to a λ -contracting NEAR-GATHERING protocol P .

λ
2 h Sλ

GS

γ

b

GS

b
Sλ·τ/2λ·τ

4

≤ λ·τ
2

GS

b

Figure 2.5: The circular segments Sλ (to the left) and Sλ ·τ/2 of the global SEC GS are
depicted.
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In the following, we prove that all robots leave the circular segment Sλ ·τ/2 every round.
As a consequence, the radius of GS decreases by at least h. Initially, we give a bound on h.
We use Jung’s Theorem (Theorem 11) to obtain a bound on R and also on h.

Theorem 11 — Jung’s Theorem [43, 44]. The smallest enclosing hypersphere of a
point set K ⊂ Rd with diameter diam has a radius of at most diam ·

√
d

2·(d+1) .

Lemma 2.1 The height of Sλ ·τ/2 is h≥
√

3λ 2τ2

64π∆
.

Proof. In this proof, we show the height of Sλ , because this simplifies the equations. The
respective height of Sλ ·τ/2 can be followed analogously.

Initially, we give an upper bound on the angle γ; see Figure 2.5 for its definition. The
circumference of GS is 2πR. We can position at most 2

λ
πR points on the boundary of GS

that are at a distance λ

2 from the points closest to them and form a regular convex polygon.
The internal angle of this regular polygon is 2γ . Hence, the sum of all internal angles is( 4

λ
πR−2

)
·π . Thus, each individual angle has a size of at most (

4
λ

πR−2)·π
4
λ

πR
= π− 2π

4
λ

πR
=

π − λ

2R . Hence, γ ≤ π

2 −
λ

4R . Now, we are able to bound h. First, we derive a relation
between h and γ: cos(γ) = h

λ

2
= 2h

λ
⇐⇒ h = λ ·cos(γ)

2 . In the following upper bound, we

make use of the fact that cos(x)≥− 2
π

x+1 for x ∈ [0, π

2 ].

h =
λ · cos(γ)

2
≥

λ · cos
(

π

2 −
λ

4R

)
2

≥
λ ·

(
− 2

π
·
(

π

2 −
λ

4R

)
+1

)
2

=
λ · λ

8πR
2

=
λ 2

16πR

Applying Theorem 11 with d = 2 yields h≥
√

3·λ 2

16π∆
for Sλ .

Analog, the height of Sλ ·τ/2 is ≥
√

3λ 2τ2

64π∆
. ■

For any well-connected configuration, we state an important observation.

Lemma 2.2 Let the considered swarm be well-connected, i.e. let the viewing range
be 1+ τ for a constant τ > 0 and let the UDG be connected. If diam(t) > τ , then
diami(t)> τ , for every robot ri.

Proof. We prove the claim by contradiction. Let the UDG be connected and diam(t)> τ .
To derive the contradiction, we assume that there is a robot ri with diami(t) ≤ τ . By
definition, |pi(t)− pk(t)| ≤ τ for all rk ∈ Ni(t) (the neighborhood of ri). Consequently,
there exists at least one robot r j /∈ Ni(t). For all robots r j /∈ Ni(t), |pi(t)− p j(t)|> 1+ τ .
For all rk ∈Ni(t) and r j /∈Ni(t), we have |pk(t)− p j(t)|> 1. Hence, none of ri’s neighbors
is at a distance of at most 1 from a robot that ri cannot see. This is a contradiction since
we have assumed that the UDG is connected. Hence, diami(t)> τ . ■

Due to the λ -contracting property, robots close to the boundary of the global smallest
enclosing circle (SEC) move upon activation at least Ω

(
diami(t)

∆

)
inwards. With diami(t)>

τ , it follows that the radius of the SEC decreases by Ω(τ/∆) after each robot was active at
least once (see Lemma 2.3). Consequently, diam(t)≤ τ after O(∆2) rounds.
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Lemma 2.3 Let P be a λ -contracting protocol. For a robot ri with diami(t) > τ ,
targetPi (t) ∈ N \Sλ ·τ/2.

Proof. Since diami(t) > c and P is λ -contracting, targetPi (t) is the midpoint of a line
segment ℓPi (t) of length at least λ ·diami(t)> λ · τ . Observe that the maximum distance
between any pair of points in Sλ ·τ/2 is τ · λ/2. It follows directly, that the midpoint of ℓPi (t)
cannot lie inside Sλ ·τ/2. ■

Theorem 2 — restated. Consider a swarm of robots in R2 with diameter ∆ that is well-
connected Every λ -contracting NEAR-GATHERING protocol solves NEAR-GATHERING

after O
(
∆2) rounds.

Note, that the protocol works under the SSYNC scheduler as well. We provide the proof
directly considering the SSYNC scheduler which allows us follow directly observation
Observation 2.3 below.

Proof. The initial configuration is well-connected, and a λ -contracting NEAR-GATHER-
ING protocol keeps it well-connected by definition. W.l.o.g let the viewing range of P be
1+ τ for a constant τ > 0 and let the UDG (with respect to distance 1) be connected. As
long diam(t)> τ , by Lemma 2.2 we know that diami(t)> τ . From Lemma 2.3, it follows
that a robot leaves Sλ ·τ/2 when it becomes active. This happens for all robots at most once
per epoch. Hence, R(t), the radius of the (global) SEC of all robots in epoch t, decreases
by h, where h denotes the height of Sλ ·τ/2. In Lemma 2.1, we showed that the height h of

Sλ ·τ/2 ≥
√

3λ 2τ2

64π∆
. Thus, R(t) decreases by at least

√
3λ 2τ2

64π∆
in one epoch. By Theorem 11,

we know that the initial global SEC has a radius of at most ∆/
√

2. After
∆/
√

2
h = O(∆2)

epochs, the global SEC has a radius ≤ τ/2 and diam(t)≤ τ .
From Lemma 2.2 follows directly, that robot ri can locally decide that the swarm

has finished NEAR-GATHERING if diami(t) < τ . All robots detect this in the same
epoch and terminate simultaneously. This matches the definition of NEAR-GATHERING

(Definition 1.4). ■

Observation 2.3 Consider a swarm of robots in R2 with diameter ∆ that is well-
connected Every λ -contracting NEAR-GATHERING protocol solves NEAR-GATHER-
ING after O

(
∆2) semi-synchone epoch.

2.3 From Contracting Protocols to Near-Gathering
In this section, we introduce a method to transform any λ -contracting protocol into a
λ -contracting NEAR-GATHERING protocol. A λ -contracting protocol P , in general, does
neither keep the swarm well-connected nor prevents collisions; both properties are crucial
for λ -contracting NEAR-GATHERING protocols. Well-connectedness requires that the
connectivity range is by a constant smaller than the viewing range, but P has a viewing
range that might be identical to the connectivity range. We normalized the distances so that
the connectivity range of P is 1. Our new protocol Pcl will have the same connectivity
range and a viewing range of 1+ τ for a constant 0 < τ < 2/3. Note that the upper bound
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on τ is only required because τ/2 also represents the maximum movement distance of a
robot (see below). In general, the viewing range could also be chosen larger than 1+ τ

without any drawbacks while keeping the maximum movement distance at τ/2.

The main idea of our approach can be summarized as follows: first, robots compute a
potential target point based on a λ -contracting protocol P that considers only robots at
a distance at most 1. Afterward, a robot ri uses the viewing range of 1+ τ to determine
whether its potential target point collides with any potential target point of a nearby
neighbor. If there might be a collision, ri does not move to its potential target point.
Instead, it only moves to a point between itself and the potential target point where no other
robot moves. At the same time, it is also ensured that ri moves sufficiently far towards
the potential target point to maintain the time bound of O

(
∆2) rounds. To realize the

ideas with a viewing range of 1+ τ , we restrict the maximum movement distance of any
robot to τ/2. More precisely, if the potential target point of any robot given by P is at
a distance of more than τ

2 , the robot moves at most τ

2 towards it. With this restriction,
each robot could only collide with other robots at a distance of at most τ . The viewing
range of 1+ τ allows computing the potential target point based on P of all neighbors at a
distance at most τ . By knowing all these potential target points, the own target point of the
collision-free protocol can be chosen. While this only summarizes the key ideas, we give a
more technical intuition and a summary of the proof in Section 2.4.

Theorem 4 — restated. For every λ ′-contracting protocolP ′ there exist a λ -contracting
NEAR-GATHERING protocol P with λ ∈ O(λ ′).

2.3.1 The Protocol

In this subsection, we define the collision-free protocol Pcl(P,τ,ε) (usually abbreviated
with Pcl). Its construction depends on the parameters P , ε , and τ that we briefly define. P
is a λ -contracting protocol (designed for robots with a viewing range of 1). The constant
τ has two purposes. The robots have a viewing range of 1+ τ , and τ/2 is the maximum
movement distance of any robot, 0 < τ ≤ 2/3. Lastly, the constant ε ∈ (0,1/2) determines
how close each robot moves towards its target point based on P . To define the protocol
Pcl(P,τ,ε), the local by robot ri computed target function targetP

cl(P,τ,ε)
i (t) (usually

abbreviated with targetP
cl

i (t)) is stated in Algorithm 1.

The computation of targetP
cl

i (t) is based on the movement ri would do in a slightly
modified version of P , denoted as Pτ . The protocol Pτ is defined by targetP

τ

i (t) in
Algorithm 3 and a detailed intuition of why it is needed can be found alongside the proof
in Section 2.2. The position of targetP

cl

i (t) lies on the collision vector collvecP
τ

i (t), the
vector from pi(t) to targetP

τ

i (t). On collvecP
τ

i (t), there may be several collision points.
These are either current positions, potential target points (targetP

τ

k (t)) of other robots rk or
single intersection points between collvecP

τ

i (t) and another collision vector collvecP
τ

k (t).
The computation targetP

τ

i (t) of collision points is defined in Algorithm 2. Let di > 0 be
the minimal distance between a collision point and targetP

τ

i (t). The final target point
targetP

cl

i (t) is exactly at a distance di · ε · 2/τ ·
∣∣collvecP

τ

i (t)
∣∣ from targetP

τ

i (t). Figure 2.6
gives an example of collision points and target points of Pcl .
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r1 targetPτ
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Figure 2.6: Example of targetP
cl

i (t) with τ = 2/3 and ε = 0.49. (i) shows the collision
points and computation of d1,d2 and d3 (line 3 in Algorithm 1). (ii) shows the positions
where r1,r2 and r3 will move to in protocol Pcl as returned by Algorithm 1.

Algorithm 1 targetP
cl(P,τ,ε)

i (t)

1: Ri← {rk : |pk(t)− pi(t)| ≤ τ} ▷ Robots in radius τ around ri (including ri)
2: Ci← collisionPointsP

τ

i (Ri, t) ▷ Collision points on collvecP
τ

i (t), see Algorithm 2
3: di← min

({∣∣c− targetP
τ

i (t)
∣∣ : c ∈Ci \{targetP

τ

i (t)}
})

▷ min. dist. to collision point

4: return point on collvecP
τ

i (t) with distance di · ε · 2/τ ·
∣∣collvecP

τ

i (t)
∣∣ to targetP

τ

i (t)

2.4 Proofs for Near-Gathering Protocols Pcl(P,τ,ε)
In this section, the proof is given that Pcl(P,τ,ε) is a λ -contracting NEAR-GATHER-
ING protocol and therefore solves the NEAR-GATHERING problem for arbitrary initial
configurations where the UDG is connected. Because the proof is closely interconnected
with the technical intuitions behind the protocol, both are explained side by side. The
entire protocol Pcl is described in Section 2.3.1. The idea for Pcl is straightforward: robots
compute a potential target point based on a λ -contracting protocol P (that uses a viewing
range of 1), restrict the maximum movement distance to τ/2 and use the viewing range of
1+ τ to avoid collisions with robots in the distance at most τ . However, there are several
technical details we want to emphasize.

The protocol Pτ is merely an intermediate protocol to increase the viewing range
without violating the λ -contracting properties of a protocol. It is analyzed in subsection

Algorithm 2 collisionPointsPi (Ri, t)

1: Ci← empty set
2: for all rk ∈ Ri do
3: compute targetPk (t) and collvecPk (t) in local coordinate system of ri

4: if pk(t) ∈ collvecPk (t) then
5: add pk(t) to Ci ▷ position of rk

6: if targetPk (t) ∈ collvecPi (t) then
7: add targetPk (t) to Ci

8: if collvecPk (t) intersects collvecPi (t) and is not collinear to collvecPi (t) then
9: add intersection point between collvecPk (t) and collvecPi (t) to Ci

10: return Ci
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Algorithm 3 targetP
τ

i (t)

1: if robots in range 1 have pairwise distance ≤ τ/2 then
2: P1+τ/2← protocol P scaled to viewing range 1+ τ/2

3: Pi← targetP
1+τ/2

i (t)
4: else
5: Pi← targetPi (t)
6: if distance pi(t) to Pi > τ/2 then
7: return point with distance τ/2 to pi(t) between pi(t) and Pi
8: else
9: return Pi

Section 2.4.1, where we show that it keeps the UDG connected (Lemma 2.4) and is
λ -contracting (Lemma 2.5). These properties are important because they are directly
translatable to Pcl (Lemmas 2.11 and 2.12). The protocol Pcl adds collision avoidance and
is analyzed in Section 2.4.2. Some of the more technical proofs showing that the protocol
indeed prevents collisions (Lemma 2.10) can be found in Section 2.4.5. All statements are
combined in Section 2.4.3 to prove Theorem 2.

2.4.1 Analysis of the Intermediate Protocol Pτ

Recall that the main goal is to compute potential target points based on a λ -contracting
protocol P with viewing range 1. Let us ignore the collision avoidance in this section
and only concentrate on the λ -contracting properties of such a protocol if applied to a
scenario with a viewing range of 1+ τ . Unfortunately, a direct translation of the protocol
loses the λ -contracting property in general. Consider the following example, which is
depicted in Figure 2.7. The robots r1,r2 and r3 are on one line with respective distances to
r1 of 1/n and 1+ 1/n. Now assume the protocol P with viewing range 1, where r1 moves
to the midpoint between r1 and r2 robot; diam1(t) = 1/n and targetP1 (t) is 1-centered. By
increasing r1’s viewing range to 1+ τ , r1 observes r3, which it could not see before. Thus,
diam1(t) increases significantly to 1+ 1/n. Now assume r1 still moves to the midpoint
between r1 and r2. The maximal line segment with the target point as the center has length
1/n. However, there is no constant λ such that 1/n≥ λ · (1+ 1/n) for all n (λ depends on
n). Hence, in the example, the protocol P is not λ -contracting (Definition 2.2) anymore
because of the increased viewing range.

Next, we argue how to transform the protocol P with viewing range 1 into a protocol
Pτ with viewing range 1+τ such thatPτ is λ -contracting gathering protocol. The example
above already emphasizes the main problem: robots can have very small local diameters
diami(t). Instead of moving according to P , those robots compute a target point based
on P1+τ/2, which is a λ -contracting gathering protocol concerning the viewing range of
1+ τ/2. Protocol P1+τ/2 is obtained by scaling P to the larger viewing range of 1+ τ/2.
More precisely, robots ri with diami(t)≤ τ/2 compute their target points based on P1+τ/2

and all others according to P . In addition, Pτ ensures that no robot moves more than a
distance of τ/2 towards the target points computed in P and P1+τ/2. The first reason is
to maintain the connectivity of UDG(t). While the protocol P maintains connectivity by
definition, the protocol P1+τ/2 could violate the connectivity of UDG(t). Restricting the
movement distance to τ/2 and upper bounding τ by 2/3 resolves this issue.
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r2

1
n 1

targetP1 (t)

r1 r3

r2

targetP1 (t)

r1 r3

Figure 2.7: To the left, r1 has a viewing range of 1 (circle) and diam1(t) = 1/n. It moves to
the 1-centered point targetP1 (t). The robot r3 is not visible to r1.
To the right, the same setup with a viewing range of 1+ τ is depicted; now, r1 can also
see r3 and diam1(t) = 1+ 1/n. targetP1 (t) remains unchanged and is not λ -centered for
λ ∈ ω(1/n).

Lemma 2.4 Let P be a λ -contracting protocol with a viewing range of 1. The UDG
stays connected while executing Pτ .

Proof. Any protocol P must hold the connectivity concerning its connectivity range 1.
However, with scaling the protocol up to a viewing range of 1+ τ/2, its connectivity range
increases as well, hence the protocol P1+τ/2 only guarantees connectivity with respect
to distance 1+ τ/2. Now suppose that a robot ri moves according to P1+τ/2 in Pτ . This
only happens if there is no robot in distance dist ∈ (τ/2,1] around ri, all connected robots
rk have a distance ≤ τ/2 before the movement. ri and rk can both move at most a distance
of τ/2 in one round. It follows that in the next round their distance is ≤ 3 · τ/2≤ 1 because
τ ≤ 2/3 by definition. ■

The second reason for bounding the movement distance by τ/2 is that collisions are only
possible within a range of τ . While Pτ has a viewing range of 1+ τ , it never uses its full
viewing range for computing its target point. The additional viewing range is utilized in Pcl

for collision avoidance. It is easy to see that the configuration in Figure 2.7 does not violate
the λ -contracting property of Pτ . If 1/n > τ/2 it is trivial that targetP1 (t) is λ -centered in Pτ

with λ ∈ O(τ). Else, targetP
τ

1 (t) = targetP
1+τ/2

1 (t). P1+τ/2 also considers r3 in distance
1+ 1/n≤ 1+ τ/2 (note, there always exists a robot between r2 and r4 to ensure UDG(t) is
connected). Hence, targetP

1+τ/2

1 (t) is λ · 1+τ/2
1+τ

-centered in Pτ . This argument is generalized
in Lemma 2.5 to show that Pτ is a λ -contracting gathering protocol. Technically, the same
problem as described above can still happen: The robot set used for the computation of
targetP

τ

i (t) has a relatively small diameter while diami(t)> 1+ τ/2. Nevertheless, contrary
to the example above, the robot set cannot have an arbitrarily small diameter in such a
configuration. P1+τ/2 is simulated if the set has a diameter ≤ τ/2. P1+τ/2 utilizes an
additional radius of τ/2 of the viewing range to make sure that always a robot in constant
distance > 1 is used for the computation. This property leads to the following proof,
showing that Pτ is λ -contracting.
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Lemma 2.5 Let P be a λ -contracting protocol. Pτ is λ ′-contracting with λ ′ = λ ·
τ

4·(1+τ) .

Proof. By Lemmas 2.2 and 2.4, it follows that diami(t)≥ τ/2 for all i. The protocol Pτ

has a viewing range of 1+τ . targetP
τ

i (t) either equals to targetPi (t) (P with viewing range
1) or targetP

1+τ/2

i (t) (P1+τ/2 with viewing range 1+ τ/2), dependent on the local diameter
diami(t) of a robot. If targetP

τ

i (t) = targetPi (t), we know that a line segment with length
λ · τ/2 exists with targetPi (t) as midpoint, because the robots used to simulate have at least
a diameter of τ/2 (see condition in line 1 of Algorithm 3) and P is λ -contracting.

By Lemma 2.4 we know that UDG(t) stays connected. P1+τ/2 has a viewing range of
1+ τ/2 By Lemma 2.2, it follows that the diameter of robots used for simulating P1+τ/2 is
≥ τ/2 if diam(t)≥ τ/2. Because P1+τ/2 is λ -contracting, there exists a line segment with
length λ · τ/2 trough targetP

1+τ/2

i (t).
The local diameter is naturally bounded by diami(t)≤ 2(1+τ). The length of the above

described line segment with Pτ as midpoint is λ · τ/2 = λ · τ/2
2(1+τ) ·2(1+ τ)≥ λ · τ

4(1+τ) ·
diami(t). Therefore, Pτ is λ ′-contracting GATHERING protocol with λ ′ = λ · τ

4·(1+τ) .
■

To conclude, the protocol Pτ has two main properties: it restricts the movement
distance of any robot to at most τ/2 and robots ri with diami(t)≤ τ/2 compute their target
points based on protocol P1+τ/2 with viewing range 1+ τ/2.

2.4.2 Analysis of the Protocol Pcl

Next, we argue how to transform the protocol Pτ into the collision-free protocol Pcl . The
viewing range of 1+ τ in Pcl allows a robot ri to compute targetP

τ

k (t) (the target point in
protocol Pτ ) for all robots rk within distance at most τ . Since the maximum movement
distance of a robot in Pτ is τ/2, this enables ri to know the movement directions of all
robots rk which can collide with ri. Pcl ensures that each robot ri moves to some position
on collvecP

τ

i (t) and avoids positions of all other collvecP
τ

k (t). Henceforth, no collision
can happen. While this is the basic idea of our collision avoidance, there are some details
to add.

First of all, Pτ has the same viewing range as Pcl of 1+ τ . However, it never uses the
full viewing range to compute the target position targetP

τ

i (t). This ensures that each robot
is able to compute targetP

τ

k (t) for robots in the nearest surroundings.

Lemma 2.6 Let P be a λ -contracting protocol with a viewing range of 1. A viewing
range of 1+ τ is sufficient to compute targetP

τ

k (t) for all robots rk within a radius of τ .

Proof. The computation requires that the entire neighborhood of rk relevant to compute
targetP

τ

k (t) is also in ri’s neighborhood. Depending on whether there exists a robot
in distance dist ∈ (τ/2,1] around rk, is this the neighborhood relevant for targetPk (t) or
targetP

τ

k (t) (first if/else block in Algorithm 3).
targetPk (t) needs a viewing range of 1 around rk. The distance between rk and ri is at

most τ and ri has a viewing range of 1+ τ , therefore all robots relevant for computing
targetPk (t) are in ri’s neighborhood. targetP

τ

k (t) needs a viewing range of 1+ τ/2 around
rk. The condition that the pairwise distance between robots in range 1 around rk is ≤ τ/2
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makes sure that |pi(t)− pk(t)| ≤ τ/2. ri has a viewing range of 1+ τ , therefore are all
robots relevant for computing targetP

τ

k (t) are in ri’s neighborhood. ■

Secondly, ri cannot avoid positions on all other collvecP
τ

k (t) in some cases. For
instance, collvecP

τ

i (t) may be completely contained in collvecP
τ

k (t) (e.g., collvecP
τ

2 (t) ∈
collvecP

τ

1 (t) in the example depicted in Figure 2.6). In case collvecP
τ

i (t) and collvecP
τ

k (t)
are not collinear and intersect in a single point, both robots simply avoid the intersection
point (e.g. r1 and r4 in the example).

Lemma 2.7 No robot moves to a point that is the intersection of two collision vectors
that are not collinear.

If collvecP
τ

i (t) and collvecP
τ

k (t) are collinear, both robots move to a point closer to
their target point than to the other one (e.g., r1 and r3 in the example).

Lemma 2.8 If the target points of robots are different in Pτ they are different in Pcl .

But there are cases, in which robots have the same target point in Pτ (e.g. r1,r2 and
r6 in the example). Because robots stay in the same direction towards the target point,
collisions can only happen if one robot is currently on the collision vector of another one
(e.g., r2 is on collvecP

τ

1 (t)). Their movement is scaled by the distance to the target point,
which must be different. Therefore, their target points in Pcl must be different as well.

Lemma 2.9 If the target points of robots are the same in Pτ they are different in Pcl .

The proof of Lemmas 2.8 and 2.9 can be found in Section 2.4.5. Both lemmas combined
yield the following statement.

Lemma 2.10 The protocol Pcl is collision-free.

It remains to show that Pcl is still λ -contracting and keeps the UDG connected.

Lemma 2.11 If P is a λ ′-contracting protocol, Pcl is λ -contracting with λ = λ ′ ·
τ

4·(1+τ) · (1− ε).

Proof. From Lemma 2.5, we obtain that Pτ is λ ′′-contracting with λ ′′ = λ ′ · τ

4·(1+τ) .

Because Pτ and Pcl have the same viewing range, targetP
τ

i (t) is always λ -centered for
Pcl .

targetP
cl

i (t) is chosen such that a robot moves in direction targetP
τ

i (t) and targetP
cl

i (t)
targetPτ

i (t)
≥

(1− ε). Analogous to the arguments in Theorem 15 of [10], we can follow with the
intercept theorem, that λ = λ ′′ · (1− ε) = λ ′ · τ

4·(1+τ) · (1− ε).
■

Lemma 2.12 Let P be a λ -contracting protocol with a viewing range of 1. Pcl has a
viewing range of 1+ τ and the UDG stays connected while executing Pcl .

From this lemma can directly be followed that Pcl keeps the swarm well-connected
(Definition 1.5).
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Proof. Pcl has the same viewing range as Pτ that is 1+ τ (Lemma 2.6). If the UDG
is connected in the initial configuration, it will stay connected while executing Pτ

(Lemma 2.4). Because of the semi-synchronous environment, we know that ri,rk with
|pi(t)− pk(t)| ≤ 1 implies

∣∣targetP
τ

i (t)− targetP
τ

k (t)
∣∣ ≤ 1 and

∣∣targetP
τ

i (t)− pk(t)
∣∣ ≤ 1,

respectively
∣∣pi(t)− targetP

τ

k (t)
∣∣≤ 1 (in case rk, respectively ri, is inactive in round t and

pk(t)= pk(t+1)). If both endpoints of both collision vectors collvecP
τ

i (t) and collvecP
τ

k (t)
are pairwise at a distance ≤ 1, all points on both vectors are pairwise at a distance ≤ 1.
For all robots targetP

cl

i (t) ∈ collvecPi (t) and therefore, the UDG stays connected while
executing Pcl . ■

2.4.3 Proof of Theorem 4

Theorem 4 — restated. For every λ ′-contracting protocolP ′ there exist a λ -contracting
NEAR-GATHERING protocol P with λ ∈ O(λ ′).

We prove the following more precise formulation of the theorem.

For every λ ′-contracting protocol P , every τ ∈ (0,2/3] and every ε(0,1/2) there exists the
λ -contracting NEAR-GATHERING protocol Pcl(P,τ,ε) with λ = λ ′ · τ

4·(1+τ) · (1− ε)

Proof. We have shown the following three properties defined in Definition 2.3, to conclude
the statement. (Lemma 2.11) Pcl is a collisionless λ -contracting protocol with λ =
λ ′ · τ

4·(1+τ) · (1− ε). (Lemma 2.10) Pcl is collision-free. (Lemma 2.12) Pcl keeps the
swarm well-connected.

■

2.4.4 Examples of a λ -contracting NEAR-GATHERING protocol
Jannik Castenow gives in his doctoral thesis [7] a few examples of λ -contracting protocols.
He most notably proved that GO-TO-THE-CENTER [24] is

(√
3/16

)
-contracting. Together

with our theorem above that leads to the following result.

Theorem 12 GO-TO-THE-CENTER [24] is a λ ′-contracting protocol that can be
transformed into an λ -contracting NEAR-GATHERING protocol with λ =O(λ ′).

2.4.5 Proof of Lemma 2.10

Lemma 2.10 — restated. The protocol Pcl is collision-free.

The lemma follows directly from Lemmas 2.8 and 2.9.

Lemma 2.7 — restated. No robot moves to a point that is the intersection of two
collision vectors that are not collinear.

Proof. More formally, we prove the following statement: Let collvecP
τ

i (t) and collvecP
τ

k (t)
be collision vectors that intersect in a single point I. targetP

cl

i (t) ̸= I. ri and rk have a
distance of at most τ , because the movement distance of τ/2 is an upper bound for the
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length of collvecP
τ

i (t), respectively collvecP
τ

k (t). Hence, rk is in Ri as computed in line 1
of Algorithm 1. In line 3 of Algorithm 3, the collision vector collvecP

τ

k (t) is checked for
intersections with collvecP

τ

i (t). By Lemma 2.6, we know, that collvecP
τ

k (t) is computable
by ri with the available viewing range of 1+ τ . It follows that I is in Ci (l. 2 Algorithm 1).
targetP

cl

i (t) is some point in between the nearest points in Ci \{pi} and targetP
τ

i (t). This
can never be I. ■

Lemma 2.8 — restated. If the target points of robots are different in Pτ they are
different in Pcl .

Proof. More formally, we prove the following statement: Let ri and rk be two robots
with targetP

τ

i (t) ̸= targetP
τ

k (t). It follows that targetP
cl

i (t) ̸= targetP
cl

k (t). If collvecP
τ

i (t)
and collvecP

τ

k (t) are not collinear, the statement follows directly from Lemma 2.7. We
consider both robots with collinear collvecP

τ

i (t) and collvecP
τ

k (t). Let Pi = targetP
τ

i (t),
Pk = targetP

τ

k (t). We distinguish all three cases how ri,Pi and Pk can be arranged: Pk is
between ri and Pi; ri is between Pi and Pk; Pi is between ri and Pk.

• Case Pk is between ri and Pi: Analogous to the arguments in Lemma 2.7, rk ∈ Ri (line
1 Algorithm 1) and Pk is added to Ci (line 7 Algorithm 2). di (line 3 Algorithm 1) is
at most the distance between Pi and Pk. ri stops a distance of di ·ε ·2/τ ·

∣∣collvecP
τ

i (t)
∣∣

away from Pi. By definition is ε < 0.5 and
∣∣collvecP

τ

i (t)
∣∣≤ τ/2. It follows di ·ε · 2/τ ·∣∣collvecP

τ

i (t)
∣∣≤ di · ε < di/2. ri will move onto a point closer to Pi than to Pk.

• Case ri is between Pi and Pk: ri will move onto a point closer to Pi than to Pk because
di ≤

∣∣collvecP
τ

i (t)
∣∣ which is in this case less than the distance between Pi and Pk.

• Case Pi is between Ri and Pk: ri will move to a point between its current position
and Pi, this is naturally closer to Pi than to Pk.

In all cases, targetP
cl

i (t) is closer to Pi than to Pk and analogously, targetP
cl

k (t) is closer to
Pk than to Pi. Hence, targetP

cl

i (t) ̸= targetP
cl

k (t).
■

Lemma 2.9 — restated. If the target points of robots are the same in Pτ they are
different in Pcl .

Proof. More formally, we prove the following statement: Let ri and rk be two robots with
targetP

τ

i (t) = targetP
τ

k (t). It follows that targetP
cl

i (t) ̸= targetP
cl

k (t).
Let P = targetP

τ

i (t) = targetP
τ

k (t). A robot moving towards P will stay on the same
side of P, and none will reach P. So collisions can solely happen if collvecP

τ

i (t) and
collvecP

τ

k (t) are collinear pointing from the same side to P. We consider this case. W.l.o.g.,
let ri be closer to P than to rk. di, respectively dk, is computed by the point in Ci \ {P},
respectively Ck \ {P}, with minimal distance to P (line 3 in Algorithm 1). Let this be
ci ∈Ci, respectively ck ∈Ck. We assume ci ̸= ck. From ci ̸= ck, it follows directly ci /∈Ck
or ck /∈Ci.

• Case ci /∈ Ck: ri and rk are chosen in a way that collvecP
τ

i (t) ⊂ collvecP
τ

k (t), it
follows ci is also on collvecP

τ

k (t). ci is a point on collvecP
τ

j (t) the collision vector
of some robot r j (see Algorithm 2).

∣∣collvecP
τ

j (t)
∣∣+ ∣∣collvecP

τ

k (t)
∣∣≤ τ is an upper
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bound for the distance between rk and r j. r j must be in Rk as computed in line 1 of
Algorithm 1. Hence, collvecP

τ

j (t) is checked for collisions and ci must be in Ck.
• Case ck /∈Ci: Similar to the arguments above, pi(t) is the position of robot ri, in

Ck. The distance of ck to P is therefore is not larger than the distance
∣∣collvecP

τ

i (t)
∣∣

(otherwise would pi(t) be nearer to P than the chosen collision point ck with minimal
distance to P). It follows that ck is also on collvecP

τ

i (t). Analogous to the case above,
ck ∈Ci.

ci = ck and di = dk, accordingly.
∣∣collvecP

τ

i (t)
∣∣ ̸= ∣∣collvecP

τ

k (t)
∣∣, otherwise would ri

and rk be at the same position and a collision has happened earlier. It follows that
di ·ε · 2/τ ·

∣∣collvecP
τ

i (t)
∣∣ ̸= dk ·ε · 2/τ ·

∣∣collvecP
τ

k (t)
∣∣ in every case such that ri and r j move

to different positions. ■

2.4.6 Semi-synchronous
Observation 2.3 shows, that λ -contracting NEAR-GATHERING protocols also work under
the SSYNC scheduler. In SSYNC, robots may be inactive in one round. Nevertheless, in
the same way, single intersection points between collision vectors and the positions of
other robots are avoided as well. A robot cannot know which robots are active or inactive.
However, the protocol is designed so that no robot moves to the current position of any
robot. This can be proven analogously to Lemma 2.7 because in line 5 of Algorithm 2 the
positions of robots on the collision vector are added to the set of collision points.

Observation 2.4 The protocol Pcl is collision-free under SSYNC scheduler.

The protocol is still λ -contracting and Lemma 2.4 holds true under SSYNC as well,
therefore Theorem 4 holds true as well.





3. Near-Gathering with Symmetry
Preservation

In this chapter, we initiate the systematical study of when and how a swarm of oblivious
robots with limited viewing range can perform global tasks like NEAR-GATHERING

without increasing the swarm’s initial symmetricity. We derive a mathematical framework
based on methods from the theory of dynamical systems. In particular, we formulate the
following simple but useful theorem (see Section 3.1) that provides sufficient properties
for a given swarm protocol to preserve symmetricity. A protocol is represented by its
evolution function F : R2n→ R2n that describes the configuration z+ := F(z) after one
protocol step on a given configuration z ∈ R2n of n robots in the Euclidean plane. .For
the precise definitions of the used terms, like a configuration z’s symmetries and (local)
invertibility, we refer to Section 3.1 and Section 1.3.

Theorem 5 — restated. Consider an arbitrary swarm protocol with evolution function
F : R2n→ R2n. Assume that F is (locally) invertible (Definition 3.3). Then, any config-
uration z ∈ R2n and its successor configuration z+ := F(z) have the same symmetricity
sym(z+) = sym(z).

The framework of dynamical systems provides a clean mathematical basis to formu-
late the symmetries of a given configuration and how they are affected by a protocol
step. To prove the usefulness of our framework, we provide two example protocols that,
under certain conditions, achieve a NEAR-GATHERING without increasing the swarms
symmetricity.

The first protocol (see Section 3.2) is a variant of the GO-TO-THE-AVERAGE protocol.
This protocol is known to not always preserve the swarm’s initial connectivity (see Fig-
ure 3.1b for an example), but if it does, it leads to NEAR-GATHERING (Lemma 3.7). Our
framework easily implies that it preserves the swarm’s initial symmetry (Theorem 6).

The second protocol (see Section 3.3) is an adaption of the GO-TO-THE-MIDDLE

strategy and called WAVE-PROTOCOL. It restricts movements to robots close to the
swarm’s boundary and coordinates the movement of nearby robots to ensure that no
symmetries are created. While WAVE-PROTOCOL always preserves connectivity and
leads to NEAR-GATHERING (Lemma 3.17), it is not always symmetry preserving (see
Figure 3.1a for an example). A proof is provided that its evolution function is locally
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(a) Example with hole. WAVE-PROTOCOL:
NEAR-GATHERING but introduces new symme-
tries.1 GO-TO-THE-AVERAGE: NEAR-GATH-
ERING with symmetry preservation.2

(b) Example with convex boundary and without
hole. WAVE-PROTOCOL: NEAR-GATHERING

with symmetry preservation. GO-TO-THE-AV-
ERAGE: Keeps symmetry but looses connectiv-
ity (swarm splits at the gray line)3.

Figure 3.1: Visualization of example configurations where either protocol fails.

invertible (and, thus, the protocol symmetry preserving) for configurations that contain
no “holes” and are convex (these requirements are formalized in Section 3.3). Note, that
the WAVE-PROTOCOL is inferior to the λ -contracting NEAR-GATHERING protocols from
Chapter 2 when symmetry preservation is not relevant (see Section 3.3.4). The content of
this chapter was first published in

Symmetry Preservation in Swarms of Oblivious Robots with Limited Visibility [36]
Raphael Gerlach, Sören von der Gracht, Christopher Hahn, Jonas Harbig and Peter Kling
Conference on Priciples of Distributed Systems (OPODIS) 2024

The application of methods from dynamical systems is largely contributed by the co-
authors. This mainly concerns the results in Sections 3.1 and 3.2.

Outline. This chapter is outlined as follows: A formal description of the problem is
given and a sufficient condition for the preservation of symmetries based on the theory of
dynamical systems formulated (Section 3.1). The two protocols are presented and analyzed
in Section 3.2 and Section 3.3.

3.1 Preserving Symmetries via Local Invertibility
This section introduces some formal notation and definitions we use throughout the rest
of the chapter. In particular, we use some tools from the theory of dynamical systems to
formulate sufficient conditions for swarm protocols that preserve symmetries.

As explained in the introduction, we seek NEAR-GATHERING strategies that do not
increase the swarm’s symmetricity (because of the symmetricity condition for pattern
formation, see [34, Theorem 1]). The symmetricity measures the rotational symmetries
of a finite set P ⊆ R2 (in our case the set of robot positions), see Definition 1.2. Since

1The black robot does not observe robots on the outer rectangle (circle depicts viewing range). It assumes
it is a boundary-robot and moves accordingly. All other robots in the inside of the rectangle do not move,
because they see enough robots on the outer rectangle to detect, that they are inner-robots.

2We simulated this example with the shown viewing range.
3The distance between grid points is 1/

√
2 and the viewing range 2+

√
2. We simulated it with 400 robots

at each cluster.
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here we consider the configuration typically in the global coordinate system of the external
observer (which can be chosen arbitrarily), we assume (without loss of generality) that the
swarm’s center c is the origin.

We now formalize the notion of a symmetry in such a way that we can apply the
theory of dynamical systems to argue how a protocol’s evolution function influences
those symmetries. For a swarm of symmetricity m > 1 there are exactly m rotations
ρ : R2→ R2 around the origin (center) under which the set of robot positions is invariant
(i.e., {ρ(z1), . . . ,ρ(zn)} = {z1, . . . ,zn }). We represent configurations as tuples instead
of sets, which is more typical in the context of dynamical systems. Thus, we define a
symmetry of a configuration z ∈ (R2)n as follows (using a permutation to “relabel” the
tuple suitably after the rotation).

Definition 3.1 — Symmetry of a Configuration. Consider a rotation ρ : R2→ R2

centered at the origin and a configuration z = (z1, . . . ,zn)
T. Then ρ is a symmetry of

the configuration z if and only if there exists a permutation κ : {1, . . . ,n}→ {1, . . . ,n}
such that ρ(zi) = zκ(i) for all i ∈ {1, . . . ,n}.

To lift the rotation ρ and permutation κ from Definition 3.1 to the entire configuration
z ∈ (R2)n ≡ R2n, we use the following block matrices Mρ and Mκ (n×n matrices with
entries in R2×2) implied by ρ and κ:

Mρ =


ρ 0 · · · 0

0 ρ
. . . ...

... . . . . . . 0
0 · · · 0 ρ

 and (Mκ)i j =

{
12, if κ(i) = j
0, otherwise.

(3.1)

Here, 1l denotes for the l× l identity matrix and 0 the zero matrix of suitable dimensions.
Without further mention, we identify both matrices with their R2n×2n counterparts.

The matrices above allows us to reformulate the condition from Definition 3.1 as
Mρz = Mκz. Since Mκ is furthermore invertible with M−1

κ = Mκ−1 (and the inverse κ−1 is
also a permutation), we can reformulate Definition 3.1:

Definition 3.2 — Symmetry of a Configuration (alternative). Consider a configu-
ration z ∈ R2n and a rotation ρ : R2 → R2, both centered at the origin. Then ρ is a
symmetry of the configuration z if and only if there exists a permutation κ : {1, . . . ,n}→
{1, . . . ,n} such that MκMρz = z.

We denote the set of all potential symmetries as

G = {MκMρ | κ : {1, . . . ,n}→ {1, . . . ,n}permutation,ρ : R2→ R2 rotation} . (3.2)

and the subset of (actual) symmetries of a configuration z as

Gz = {MκMρ ∈ G |MκMρz = z} . (3.3)

With this formalization at hand, we can study how a protocol (via its evolution function)
influences a configurations actual symmetries. In fact, the classical theory of equivariant
dynamics [15, 38] immediately yields that a protocol can never cause the loss of symme-
tries.5 Our Theorem 5 states that if the evolution function F is additionally invertible, then
we also cannot gain symmetries. Its proof is given below in this section.

5For example, robots forming an identical n-gon have identical views and, thus, perform the same local
calculations. Thus, the swarm would be forever trapped in a, possibly scaled, n-gon formation.
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Note that the assumption of invertibility is required on the level of the configuration.
This means there exists a function F−1 : R2n→R2n such that F(F−1(z)) = F−1(F(z)) = z
for all z ∈ R2n. In general, F−1 is not the evolution function of a distributed protocol. In
particular, a robot does not have to be able to determine its previous position based on its
local information ( f is not invertible). Informally speaking, from our perspective as an
external observer we must always be able to determine the swarm’s configuration in the
previous round. The term “locally” in Theorem 5 is a mathematical characterization of
the inverse function F−1. It makes the statement stronger, since the inverse function needs
to be defined only locally, meaning for all configurations that are sufficiently similar to
a given one. This is, for example, central for the analysis of the averaging strategy from
Section 3.2.

Definition 3.3 — (Local) invertibility. An evolution function F : R2n→ R2n is called
invertible if there exists an inverse function F−1 : R2n→ R2n such that F(F−1(z)) =
F−1(F(z)) = z for all z ∈ R2n. The evolution function is called locally invertible if
for any configuration z there are open subsets Uz and VF(z) containing z and F(z),
respectively, such that Fz : Uz → VF(z) is invertible, i.e., there exists a local inverse
function F−1

z : Vz→UF(z)) such that Fz(F−1
z (y))= y for all y∈UF(z) and F−1

z (Fz(y))=
y for all y ∈Uz.

Moreover, it is important to emphasize that Theorem 5 does not require any regularity
of the evolution function F . In particular, it remains true even if F is non-continuous,
which will be essential for the protocol presented in Section 3.3 below.

3.1.1 Symmetries of a protocol
We begin by investigating the interplay of the symmetries defined above, and the dynamics
induced by a protocol. The robots do not know the global coordinate system that we
choose as the external observer. Hence, their computation and movement is insensitive to
rotations of the global coordinates in the sense that collectively rotating all robots positions
by ρ causes each robot to move to a rotated target point in each round.

R In principle, the same holds true for translations of the global coordinate systems.
However, since we fixed the origin, we typically omit these transformations without
loss of generality.

On the other hand, recall that the robots are indistinguishable. That means if a robot
observes another robot in a certain position, it does not know which label this robot has.
More precisely, the computations and movement of every single robot depend on the set of
the other robots’ positions rather than their ordered tuple. Once again, this can be recast
by stating that computation and movement are insensitive to arbitrary permutations of all
robots positions.

Summarizing these observations and reformulating them in terms of the function
governing the dynamics of all robots f , we obtain

Lemma 3.1 Let η ∈R2 and z=(z1, . . . ,zn)
T ∈R2n be arbitrary. The function governing

the dynamics of all robots f has the following symmetry properties:
(i) f (ρη ;ρz1, . . . ,ρzn) = ρ f (η ;z) for all rotations ρ : R2→ R2;

(ii) f (η ;zκ(1), . . . ,ρzκ(n))= f (η ;z) for all permutations κ : {1, . . . ,n}→{1, . . . ,n}.
These can be restated using matrices (3.1) as
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(i) f (ρη ;Mρz) = ρ f (η ;z) for all rotations ρ : R2→ R2;
(ii) f (η ;Mκz) = f (η ;z) for all permutations κ : {1, . . . ,n}→ {1, . . . ,n}.

From the global perspective, considering the collective evolution of the entire formation,
these symmetry properties imply that the evolution is insensitive to arbitrary rotations and
arbitrary permutations of the robots. More precisely, it does not matter if first all robots
compute/move and then rotate/permute or do it the other way around. More precisely,
we may even replace rotate/permute by rotate and permute which gives us the combined
transformations in G.

Lemma 3.2 The evolution function F is symmetric—or equivariant—with respect to
all potential symmetries of formations MκMρ ∈ G:

F ◦ (MκMρ) = (MκMρ)◦F. (3.4)

Proof. We claim that it suffices to prove that F is equivariant as in (3.4) with respect to
Mκ for all κ and Mρ for all ρ individually to prove the statement. In fact, if this holds true
we immediately see

F ◦ (MκMρ) = F ◦ (Mκ ◦Mρ)

= (F ◦Mκ)◦Mρ

= (Mκ ◦F)◦Mρ

= Mκ ◦ (F ◦Mρ)

= Mκ ◦ (Mρ ◦F)

= (MκMρ)◦F.

Hence, we prove the claim using the symmetry properties in Lemma 3.1. To that end
let z = (z1, . . . ,zn)

T ∈ R2n be an arbitrary point in configuration space, κ : {1, . . . ,n}→
{1, . . . ,n} an arbitrary permutation, and ρ : R2 → R2 an arbitrary rotation. Then, we
compute

(F ◦Mκ)(z) = F(Mκz)

=

 f ((Mκz)1,Mκz)
...

f ((Mκz)n,Mκz)


=

 f (zκ(1),Mκz)
...

f (zκ(n),Mκz)


=

 f (zκ(1),z)
...

f (zκ(n),z)


=

F(z)κ(1)
...

F(z)κ(n)


= MκF(z)
= (Mκ ◦F)(z),

(3.5)
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where the fourth equality holds due to Lemma 3.1. Similarly, we obtain

(F ◦Mρ)(z) = F(Mρz)

=

 f ((Mρz)1,Mρz)
...

f ((Mρz)n,Mρz)


=

 f (ρz1,Mρz)
...

f (ρzn,Mρz)


=

ρ f (z1,z)
...

ρ f (zn,z)


= MρF(z)
= (MρF)(z)

(3.6)

again using Lemma 3.1. This completes the proof of the claim. ■

By the previous lemma, F commutes with all elements of G. Hence, whenever we refer to
an arbitrary symmetry without the need to specify rotation and permutation separately, we
use M,M′, . . . ∈ G from now on.

3.1.2 Proof of Theorem 5

Theorem 5 — restated. Consider an arbitrary swarm protocol with evolution function
F : R2n→ R2n. Assume that F is (locally) invertible (Definition 3.3). Then, any config-
uration z ∈ R2n and its successor configuration z+ := F(z) have the same symmetricity
sym(z+) = sym(z).

Lemma 3.2 places our mathematical framework in the context of equivariant dynamics,
for which there exists a well developed theory to investigate the interplay of dynamics and
symmetries (e.g. [15, 38]). It allows us to prove the theorem. We do so in the following
three lemmas, which combined give the statement of the theorem.

Lemma 3.3 Consider the dynamics of a configuration according to an arbitrary protocol
(1.2). Then the configuration after one round cannot have fewer symmetries than the
initial one: Gz ⊂ Gz+ .

Proof. Let z ∈ R2n be some arbitrary configuration and M ∈ Gz. Consider the evolution
z+ = F(z) in one round. Then

Mz+ = MF(z) = F(Mz) = F(z) = z+,

where we have exploited the symmetry of F (Lemma 3.2) as well as the fact that M leaves
z unchanged. In particular, this implies M ∈ Gz+ proving the statement. ■

In a very similar manner we may prove that a configuration cannot gain any symmetries
during the temporal evolution. This statement, however, is only true in general if the
evolution function F is invertible.
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Lemma 3.4 Consider the dynamics of a configuration according to an arbitrary pro-
tocol (1.2). Assume that the evolution function F : R2n→ R2n is invertible. Then the
configuration after one round cannot have more symmetries than the initial one. In
particular, Gz = Gz+ .

Proof. The setup for the proof is the same as in the previous. Let z∈R2n be some arbitrary
configuration. Consider the evolution z+ = F(z) in one round. By assumption, F is
invertible and we may restate z = F−1(z+). It can readily be seen that the inverse F−1 has
the same symmetry properties as F :

F ◦M = M ◦F ⇐⇒ F ◦M ◦F−1 = M ⇐⇒ M ◦F−1 = F−1 ◦M

for any M ∈ G.
In particular, for M ∈ Gz+ we may apply Lemma 3.3 to F−1 to obtain M ∈ Gz. This

implies Gz+ ⊂ Gz, which in combination with Lemma 3.3 proves the claim. ■

The previous lemma requires the existence of a global inverse F−1 to F . However,
the weaker notion of local invertibility is sufficiently strong to draw the conclusions of
Lemma 3.4.

Lemma 3.5 Consider the dynamics of a configuration according to an arbitrary protocol
(1.2). Assume that the evolution function F : R2n→ R2n is locally invertible. Then,
the configuration after one round cannot have more symmetries than the initial one. In
particular, Gz = Gz+ .

Proof. As we have a local inverse for every configuration z∈R2n, we may compare Gz and
Gz+ using the local inverse as before. To that end, let z ∈R2n be an arbitrary configuration,
z+ = F(z), F−1

z the local inverse, and M ∈ Gz+ . Then

z = F−1
z (z+)

= F−1
z (Mz+)

= F−1
z (MF(F−1

z (z+)))
= F−1

z (F(MF−1
z (z+)))

= MF−1
z (z+) = Mz.

All applications of the local inverse are well-defined, as M leaves z+ unchanged. In
particular, we have shown that M ∈ Gz proving the necessary inclusion as in Lemma 3.4.

■

3.2 Preserving Symmetries via Averaging
This section presents a protocol that preserves the symmetries of a configuration (which
we prove via Theorem 5). However, it does not always achieve NEAR-GATHERING as
certain initial configurations may result in several clusters of NEAR-GATHERINGs that
have a mutual distance of ≤ 1. Our proposed protocol ε-GO-TO-THE-AVERAGE does the
following in each round:
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Algorithm 4 ε-GO-TO-THE-AVERAGE protocol.
neighborhood← positions of visible neighbors (viewing range 1).
p← weighted average (see below) of neighborhood
Move an ε-fraction towards p for an ε ∈ (0,1).

The weights of the i-robot at position zi for a visible neighbor at position z j is derived
via a monotonically decreasing bump function of their squared distances X := ∥zi− z j∥2

defined via

b(X) =

{
exp

(
− X2

1−X2

)
if X ∈ [0,1]

0 if X > 1.
(3.7)

whose graph is shown in Figure 3.2.
With the bump function, we can model the computation of local weighted average of a

robot in position zi ∈ R2 of a configuration z ∈ R2n as

T (zi;z) =
1
n

n

∑
j=1

b(∥zi− z j∥2)(z j− zi). (3.8)

We assume that the global information n, i.e., the total number of robots, is known to all
robots. This is a reasonable assumption, especially for a protocol that is used as part of
ARBITRARY-PATTERN-FORMATION, because APF defines that all robots know P with
|P| = n. Beside the knowledge of n, the protocol does not need any global information.
Note that the weights (values of the bump function) for robots outside of the viewing range
of i are 0 and, hence, do not affect the computation. Therefore the protocol can indeed be
executed with limited visibility. The target function of robot zi is defined by

z+i = f (zi;z) = zi + ε ·T (zi;z) = zi +
ε

n

n

∑
j=1

b(∥zi− z j∥2) · (z j− zi) (3.9)

for some fixed ε ∈ (0,1). This yields our protocol’s evolution function F as specified
in Equation (1.2).

The next lemma states that if ε is chosen small enough, F is locally invertible.As a
direct consequence of Theorem 5, this implies that ε-GO-TO-THE-AVERAGE preserves
symmetries.

Lemma 3.6 Consider the evolution function F of the ε-GO-TO-THE-AVERAGE proto-
col for ε ≤ 1/29. Then F is locally invertible.

The proof is given in the next subsection (Section 3.2.1). The following theorem can
directly be followed by applying Theorem 5.

Theorem 6 — restated. The execution of ε-GO-TO-THE-AVERAGE (Algorithm 4)
protocol for ε < 1

29 does not change the symmetricity of the swarm.

Unfortunately, as with the standard GO-TO-THE-AVERAGE protocol, we cannot
guarantee that connectivity is preserved by this adaptation. Thus, in general we might not
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Figure 3.2: Graph of bump function b(X). It decreases monotonically from 1 (for X =
∥zi− z j∥2 = 0; i.e., when j is at the same position as i) to 0 (for X = 1; i.e., when j is at
the brink of being invisible).

end up in a NEAR-GATHERING, but in several clusters at distance ≥ 1, each of which can
be seen as a “separate” NEAR-GATHERINGs. However, if we start in a configuration for
which GO-TO-THE-AVERAGE maintains connectivity (like highly regular meshes), we
achieve NEAR-GATHERING without increasing the symmetries. This is formulated in the
following lemma. Note that it is not possible to simply assume connectivity (distance ≤ 1
between robots) to show that, because the bump function b excludes robots at distance ≥ 1.
If the distance between two robots approaches 1, the bump function becomes infinitesimal.
This can lead to an arbitrary high number of rounds until robots moved significantly.
Therefore, we assume a strongly connected swarm (the UDG with unit distance 1−δ is
connected) and state the following lemma.

Lemma 3.7 Let a swarm of robots be and stays strongly connected regarding distance
1−δ . After finite many rounds executing ε-GO-TO-THE-AVERAGE NEAR-GATHER-
ING is solved.

Proof. In strongly connected swarm, ε-GO-TO-THE-AVERAGE has properties comparable
to a λ -contracting NEAR-GATHERING protocol (Definition 2.3) with

λ =
ε

2n
·min(b(X),X ∈ [δ ,1−δ ]),

such that we can adapt the proof of Theorem 2 to show that after finite rounds the global
enclosing circle GS decreases it radius R byO

(
(λ ·δ )2

R

)
(see Section 2.2.2 for the definitions

and notation). This leads, eventually, to NEAR-GATHERING.
The value for λ is composed as follows. Concerning the λ -contracting properties we

consider a viewing range of 1−δ , let z j be the robot with maximal distance to zi within
range of 1−δ . In the worst case, all other n−2 robots are on the exact same position as zi.
Then, zi would move distance ε

2n ·b(∥zi− z j∥2) towards z j (see Equation (3.9)).
Consider all robots that are inside Sδ ·λ (see Section 2.2.2 for the definition). Whenever

a robot ri ∈ Sδ ·λ sees another robots in distance ≥ δ analog to Lemma 2.3 can be shown,
that it leaves Sδ ·λ . All robots in Sδ ·λ have mutual visibility and will converge towards one
point, if they observe no robots outside Sδ ·λ . At least on of the robots in Sδ ·λ (w.l.o.g z j)
must observe another robot in distance [δ ,1− δ ] (w.l.o.g. zk) because the swarm is by
assumption connected regarding distance 1−δ . While the other robots converge towards
one position, z j will move (slightly) towards zk. Eventually, z j reaches a distance of ≥ δ

to the other robots in Sδ ·λ or the other robots in Sδ ·λ followed z j up to the point that they
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observe zk in distance ≥ δ or left Sδ ·λ . In all cases, Sδ ·λ contains no robots after finite
many rounds.

■

3.2.1 Invertibility of Averaging
Here we prove Lemma 3.6, namely that our first protocol (Section 3.2) satisfies the
assumptions of Theorem 5. In fact, we need to confirm, that the induced evolution function
is indeed locally invertible. The main ingredients of the proof are

• the inverse function theorem (e.g., [41]), which states that a continuously differen-
tiable function is locally invertible at every point where its Jacobian is an invertible
matrix, and

• the Gershgorin circle theorem [37], which states that all eigenvalues of a matrix A =
(ai, j)

n
i, j=1 are contained in the union of the circles {z∈C | |z−ai,i| ≤∑

n
j=1, j ̸=i |ai, j|}.

We first fix some notation. Recall from (3.9) that

f (zi,z) = zi +
ε

n

n

∑
j=1

b(∥zi− z j∥2)(z j− zi),

which is smooth—and thus continuously differentiable in particular—by construction.
Furthermore, it is a two-dimensional expression. The collection of these expressions for
i = 1, . . . ,n is the evolution function F . To specify the x- and y-directions separately, we
denote

F(z) =

 f (z1,z)
...

f (zn,z)

=


Fx

1 (z)
Fy

1 (z)
...

Fx
n (z)

Fy
n (z)

 . (3.10)

We use the representation (3.10) to compute the Jacobian DF(z) at an arbitrary point
z = ((x1,y1), . . . ,(xn,yn)) ∈ R2n. It is of the form

DF(z) = (Di, j)
n
i, j=1 with Di, j =

(
∂x jF

x
i (z) ∂y jF

x
i (z)

∂x jF
y
i (z) ∂y jF

y
i (z)

)
.

The 2n Gershgorin circles of the Jacobian DF(z) are centered at ∂xiF
x
i (z) and ∂yiF

y
i (z) for

i = 1, . . . ,n. Their radii are given by

Rx
i (z) = ∑

j ̸=i
|∂x jF

x
i (z)|+

n

∑
j=1
|∂y jF

x
i (z)| and Ry

i (z) = ∑
j ̸=i
|∂y jF

y
i (z)|+

n

∑
j=1
|∂x jF

y
i (z)|

respectively.
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We compute the partial derivatives as

∂x jF
x
i (z) =

{
2 ε

nb′(∥zi− z j∥2)(xi− x j)
2 + ε

nb(∥zi− z j∥2), j ̸= i,

1−2 ε

n ∑ j ̸=i(b′(∥zi− z j∥2)(xi− x j)
2 +b(∥zi− z j∥2)), j = i,

∂y jF
x
i (z) =

{
2 ε

nb′(∥zi− z j∥2)(xi− x j)(yi− y j), j ̸= i,

2 ε

n ∑ j ̸=i b′(∥zi− z j∥2)(xi− x j)(yi− y j), j = i,

∂x jF
y
i (z) =

{
2 ε

nb′(∥zi− z j∥2)(xi− x j)(yi− y j), j ̸= i,

2 ε

n ∑ j ̸=i b′(∥zi− z j∥2)(xi− x j)(yi− y j), j = i,

∂y jF
y
i (z) =

{
2 ε

nb′(∥zi− z j∥2)(yi− y j)
2 + ε

nb(∥zi− z j∥2), j ̸= i,

1−2 ε

n ∑ j ̸=i(b′(∥zi− z j∥2)(yi− y j)
2 +b(∥zi− z j∥2)), j = i.

Using these expressions we follow

Lemma 3.8 For

ε ≤ 1/29 (3.11)

one has

Rx
i (z)< |∂xiF

x
i (z)| and Ry

i (z)< |∂yiF
y
i (z)|. (3.12)

Proof. We estimate the radii Rx
i (z), one can follow Ry

i (z) analogously.
The partial derivatives ∂xiF

x
i (z) and ∂yiF

x
i (z) can be written as follows.

∂xiF
x
i (z) = 1−∑

j ̸=i
∂x jF

x
i (z)−∑

j ̸=i

ε

n
b(∥zi−z j∥2) and ∂yiF

x
i (z) = ∑

j ̸=i
∂y jF

x
i (z) (3.13)

By applying Equation (3.13) as well as the definition of Rx
i (z) on Equation (3.12) we

get the following equivalent notations.

Rx
i (z)< |∂xiF

x
i (z)| ⇔

∑
j ̸=i
|∂x jF

x
i (z)|+∑

j ̸=i
|∂y jF

x
i (z)|+ |∂yiF

x
i (z)|< |∂xiF

x
i (z)| ⇔

∑
j ̸=i
|∂x jF

x
i (z)|+∑

j ̸=i
|∂y jF

x
i (z)|+ |∑

j ̸=i
∂y jF

x
i (z)|< |1−∑

j ̸=i
∂x jF

x
i (z)−∑

j ̸=i

ε

n
b(∥zi− z j∥2)|

The inequality will only become stronger, if the right side becomes smaller and the left
side larger. This can be done by moving the computation of the absolute values to get the
following.

∑
j ̸=i
|∂x jF

x
i (z)|+∑

j ̸=i
|∂y jF

x
i (z)|+∑

j ̸=i
|∂y jF

x
i (z)|< 1−∑

j ̸=i
|∂x jF

x
i (z)|−|∑

j ̸=i

ε

n
b(∥zi−z j∥2)|

This is equivalent with
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1 > 2 ∑
j ̸=i
|∂x jF

x
i (z)|+2 ∑

j ̸=i
|∂y jF

x
i (z)|+ |∑

j ̸=i

ε

n
b(∥zi− z j∥2)|. (3.14)

The maxima and minima of the bump function b (see (3.7)) and its derivative b′ can
be estimated by plotting it in the interval X ∈ [0,1]. For larger X both function are 0 by
definition.

b′(X) =− 2X ·b(X)

(1−X2)2 ∈ [0,3] and b(x) ∈ [0,1] (3.15)

It is directly clear, that |∑ j ̸=i
ε

nb(∥zi− z j∥2)| ≤ ε

n(n−1). If ∥zi− z j∥2 > 1 it follows
that ∂x jF

x
i (z) = 0 and ∂y jF

x
i (z) = 0 because b(∥zi− z j∥2) = 0 and b′(∥zi− z j∥2) = 0. If

∥zi− z j∥2 ≤ 1 it follows that (xi− x j)≤ 1 and (yi− y j)≤ 1. Therefore,

|∂x jF
x
i (z)| ≤ 2

ε

n
|b′(∥zi−z j∥2)+b(∥zi−z j∥2)| and |∂y jF

x
i (z)| ≤ 2

ε

n
|b′(∥zi−z j∥2)|

(3.16)

We can estimate

|∂x jF
x
i (z)| ≤ 2

ε

n
·4 and |∂y jF

x
i (z)| ≤ 2

ε

n
·3

from Equations (3.15) and (3.16). Applying this estimation to Equation (3.14) yields

1 > 2 ∑
j ̸=i

2
ε

n
·4+2 ∑

j ̸=i
2

ε

n
·3+ (n−1)

n
ε

=
16 · (n−1)

n
ε +

12 · (n−1)
n

ε +
(n−1)

n
ε

=
29 · (n−1)

n
ε.

(3.17)

This is the case for

ε ≤ 1/29 <
n

29(n−1)
.

■

R The estimate (3.11) is not sharp but sufficient to guarantee the estimate of the radii
(3.12).

In particular, (3.12) shows that none of the Gershgorin circles contains 0. Therefore,
0 cannot be an eigenvalue and the Jacobian DF(z) is invertible for any z ∈ R2n. By the
inverse function theorem, F is therefore locally invertible at every z ∈ R2n.

3.3 Preserving Symmetries via Contracting Waves
In this section, we will provide the symmetry preserving WAVE-PROTOCOL that yields
NEAR-GATHERING. However, it only works on a subset of initial configurations, and it
needs a larger viewing range.
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connectivity-boundary

unit-distance unit-distance
largest hole

connectivity-boundary

Figure 3.3: Connectivity-Boundary and Holes. (left) depicts a configuration with a
non-convex Connectivity-Boundary. The small dotted lines are the unit-disc-graph; the
Connectivity-Boundary is the outer boundary of this graph. Note that our proof does
not apply to this configuration because the Connectivity-Boundary is not convex. (right)
depicts the same configuration scaled by factor 0.35, such that the Connectivity-Boundary
is convex. It also shows the largest hole. Because the unit-disc-graph in this example is
close to a complete graph, we omitted it.

Requirements of the protocol. The Connectivity-Boundary of a configuration is
defined in Definition 1.6. A δ -hole of a configuration is a circular area inside the Con-
nectivity-Boundary with a diameter of δ that contains no robot. We require that the
swarm starts in a configuration that contains no 1-hole and that has a convex6 Connec-
tivity-Boundary (see Figure 3.3 for an example). The robots have a viewing range of
2+
√

2.
Usually, protocols with limited visibility allow initial configurations with a connected

unit disc graph. Our requirements only allow a subset of these configurations. However,
the subset still allows a high variety of initial configurations of n robots with arbitrary low
entropy and a diameter in Θ(n).

Overview. The robots on the Connectivity-Boundary (we call them boundary-robots) will
perform the ε-GO-TO-THE-MIDDLE protocol, where robots move towards the midpoint
between their two neighbors. The advantage of this protocol is that it is invertible (and
therefore connectivity preserving) and a NEAR-GATHERING protocol. The robots near to
the boundary will move with the boundary-robots, one may get the impression they are
being pushed to the inside by the boundary like a wave (we call them wave-robots). We
will carefully construct the way wave-robots move such that this movement is invertible.
All other robots (called inner-robots) do not move. The boundary will contract, more
and more inner-robots will become wave-robots and are further pushed inwards until a
NEAR-GATHERING is reached.

We split the description of the protocol in three subsections. In Section 3.3.1 we define
the boundary-robots and their protocol. We prove, that boundary-robots will remain a
convex set during the execution of their protocol (Lemma 3.10) and that their protocol is
invertible (Lemma 3.9). In Section 3.3.2 we define an area around the boundary-robots
called Wave. All robots in this area are wave-robots. We define their protocol and prove that

6Note, that we do not consider it to be strictly convex. It may contain multiple collinear robots.
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their movement is invertible assuming the Wave is known. Both protocols are combined
for the WAVE-PROTOCOL in Section 3.3.3. We depict the execution of one round in
Figure 3.8.

3.3.1 Boundary Movement
Definition 3.4 — Boundary-Robots. Robots that are part of the Connectivity-Bound-
ary are called boundary-robots. We denote the boundary robots in round t by bt =
(bt

0, · · · ,bt
k). We assume that robots are enumerated counterclockwise with bt

0 chosen
arbitrarily.

We define the following protocol based on GO-TO-THE-MIDDLE [27] for boundary-
robots. Afterwards, we prove that it is invertible.

Algorithm 5 Boundary-protocol: ε-GO-TO-THE-MIDDLE

ε -GTM(bt
k,b

t) := ε ·
bt

k−1 +bt
k+1

2
+(1− ε) ·bt

k

R The protocol is in general not executable in our model, because robots cannot decide
locally, whether they are boundary-robots. In Lemma 3.13, we prove that it is
executable in swarms meeting our requirements. In Section 3.3.4 we argue, how the
protocol works in swarms not meeting these requirements.

R If not stated otherwise, we assume that bt+1
k = ε -GTM(bt

k,b
t). In general, the robots

on the Connectivity-Boundary may change during the execution, depending on where
other robots move. However, in Lemma 3.12, we prove that the set of boundary-robots
does not change during the execution of our protocol.

Lemma 3.9 If ε ∈ [0,0.5), ε-GO-TO-THE-MIDDLE is invertible for a global observer.

Proof. ε-GO-TO-THE-MIDDLE can be described as zt+1 = F(zt) with

F =


1− ε

ε

2 0 0 0 · · · 0 ε

2
ε

2 1− ε
ε

2 0 0 · · · 0 0
0 ε

2 1− ε
ε

2 0 · · · 0 0
0 0 ε

2 1− ε
ε

2 · · · 0 0
· · ·
ε

2 0 0 0 0 · · · ε

2 1− ε

 .

For ε < 0.5, F is strictly diagonally dominant. By [37], F is invertable.
■

Note, that ε -GTM is only invertible because the neighborhood relation is fixed.
The following two geometric properties show, that ε -GTM decreases the surrounded

area and stays convex.
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btk

btk+1

btk−1

bt+1
k above l′

bt+1
k−1 and bt+1

k+1 below l′

l′

Figure 3.4: Shows that a convex corner in wavet is convex in wavet+1 as well
(Lemma 3.10).

Lemma 3.10 If bt is convex, bt+1 is convex as well. Let area(bt) denote the area
enclosed by bt . Then, area(bt+1)⊆ area(bt).

Proof. Let us assume bt is a convex set. We consider three neighboring robots bt
k−1,b

t
k,b

t
k+1

in bt that are not collinear. They form a triangle. Let τ be the target point of bt
k executing

ε -GTM with ε = 1. The point τ is on the line l between bt
k−1 and bt

k+1 (black in Figure 3.4).
The position of robot bt+1

k is the target point of ε -GTM with ε < 0.5. It can be constructed
by moving τ factor ε towards bt

k which is more than half the way. Therefore, it must lie
above l′, the parallel line to l move half way towards bt

k (dotted in Figure 3.4).
Let τ ′ be the target point of bt

k+1 executing ε -GTM with ε = 1. Because bt is a convex
set, bt

k+2 must lie below l. The midpoint between bt
k and bt

k+2 cannot lie above l′. Moving
τ ′ towards bt

k+1 cannot move it above l′. Therefore, bt+1
k+1 and (analogous) bt+1

k−1 lies below
l′. Therefore, the robots bt+1

k−1,b
t+1
k and bt+1

k+1 form a convex corner in bt+1.
If bt

k−1,b
t
k,b

t
k+1 are collinear, they might move onto target points on the same line. But

with analog arguments as above, it is easy to see that they cannot move onto positions that
form a concave corner.

Therefore, the set bt+1 is still convex.
In the proof above we have shown, that bt+1

k lies inside the triangle bt
k−1,b

t
k,b

t
k+1.

Therefore, the area surrounded by bt+1 is a subset of the area surrounded by bt .
■

3.3.2 Wave Movement
In this subsection we will define the set of wave-robots and construct their protocol
Algorithm 6. In Lemma 3.10 we have shown, that the area enclosed by bt+1 is inside the
area enclosed by bt . The goal of the wave-protocol is, to remove all inner robots that are
outside of the area of bt+1 inside that area such that bt+1 is the Connectivity-Boundary in
round t +1. We first define this area formally. Because this process is similar to a wave
front that pushes the robots inwards we use the terminology wave to describe it and call
the area Wave.

Definition 3.5 — Wave. Let area(bt) denote the area enclosed by bt . We define wavet

as area(bt)\area(bt+1) (see Figure 3.5 for a visualization).

Definition 3.6 — Wave-robot. We call robots in wavet and wavet+1 at time t wave-
robots.
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bt0 bt1

bt6

bt1+bt6
2

bt+1
0 =

bt
1
+bt

6
2 +bt0
2

bt

bt+1

bt+2

wavet
wavet+1

bt0 bt1
segt+1

0

segt
1

segt
0

bt6

Figure 3.5: (left) shows how the wave segments are computed via the midpoints of
neighboring robots (Algorithm 5). For the point bt+1

0 the formula is written. (right) shows
the naming of the waves (Definition 3.5), its segments (Definition 3.7) and the boundary
(Definition 3.4).

Definition 3.7 — Wave-segment. We cut wavet by cutting from bt
k to bt+1

k for
all 1 ≤ k ≤ n. This yields n Wave-Segments. We call the segment with corners
bt

k,b
t
k+1,b

t+1
k ,bt+1

k+1 the k-th wave-segment of wavet or segt
k.

We will design Algorithm 6 such that all robots from segt
k move into segt+1

k . The
robots in segt+1

k move inside their segment as well, to prevent collisions with incoming
robots.

Preliminary Statements. To use wave-segments as a base for our protocol, we need to
make sure that they partition the robots unambiguously. In the following we prove that
segments do not overlap and are not twisted. But there are configurations of bt (in case
of collinear robots in bt) where the quadrilateral is degenerated, i.e. partly without area
or just a line without any area. We prove that a segment in wavet will not become more
degenerated in wavet+1.

Corollary 3.1 Let bt be a convex set of robots. The segments of wavet are not twisted
quadrilaterals, i.e., two sides do not intersect on a single point, and do not overlap.

Proof. From the arguments of Lemma 3.10 follows, that each position bt+1
k lies in the

triangle bt
k,

bt
k+bt

k−1
2 ,

bt
k+bt

k+1
2 . Figure 3.6 shows these triangles with gray dashed lines. It is

easy to see, that such quadrilaterals have neither crossing edges nor overlapping areas.
■

Corollary 3.2 We call a quadrilateral where all four corners are collinear fully de-
generated, and where three corners are collinear partially degenerated. Otherwise a
quadrilateral has 3 collinear corners and a has 4 collinear corners.

1. If segt
k is a non-degenerated quadrilateral, segt+1

k is also a non-degenerated
quadrilateral.

2. If segt
k is a partially degenerated segment, segt+1

k is a non-degenerated segment.

Proof. (1) can be followed from Lemma 3.10.
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btk

btk+1

btk−1

bt+1
k

btk−2

btk+2

bt+1
k+1

bt+1
k−1

Figure 3.6: Shows that a convex corner in wavet is convex in wavet+1 as well
(Lemma 3.10).

(2) If bt
k,b

t
k+1 and bt

k+2 are collinear but bt
k−1 is not, bt+1

k+1 = bt
k+1 will not move

but bt+1
k ̸= bt

k. Therefore, bt+1
k ,bt+1

k+1 and bt+1
k+2 are not anymore collinear and segt+1

k is
non-degenerated. ■

Corollary 3.3 Robots in segt
k and segt+1

k have a distance of ≤ 1+ ε2/2 to bt
k and bt

k+1.

Proof. We compute the distances between the corners of segt
k and segt+1

k .

In the equations below we estimate |bt
k−bt

k+1| ≤ 1, |bt
k−bt

k+2| ≤ 2 and
∣∣bt

k−bt
k+3

∣∣≤ 3.∣∣bt
k−bt+1

k+1

∣∣= ∣∣∣bt
k−

ε

2
bt

k−
ε

2
bt

k+2− (1− ε)bt
k+1

∣∣∣
=

ε

2

∣∣bt
k−bt

k+2
∣∣+(1− ε)

∣∣bt
k +bt

k+1
∣∣

≤ ε +(1− ε) = 1

Analog is
∣∣bt

k+1−bt+1
k

∣∣≤ 1. It is clear, that
∣∣bt

k−bt+1
k

∣∣≤ ε and
∣∣bt

k+1−bt+1
k+1

∣∣≤ ε .

∣∣bt
k−bt+2

k+1

∣∣= ∣∣∣bt
k− (1− ε)bt+1

k+1−
ε

2
bt+1

k − ε

2
bt+1

k+2

∣∣∣
≤ (1− ε) ·1+ ε

2
· ε + ε

2

∣∣∣bt
k−

ε

2
bt

k+1−
ε

2
bt

k+3− (1− ε)bt
k+2

∣∣∣
≤ (1− ε)+

ε2

2
+

ε

2
(
ε

2
+3

ε

2
+2(1− ε))

= (1+ ε)(1− ε)+
3
2

ε
2

= 1+
ε2

2

Analog is
∣∣bt

k+1−bt+2
k

∣∣≤ 1+ ε2

2 . It is clear, that
∣∣bt

k−bt+2
k

∣∣≤ 2ε and
∣∣bt

k+1−bt+2
k+1

∣∣≤
2ε .

Any robot inside segt
k or segt+1

k as a smaller or equal distance to bt
k and bt

k+1 than the

farthest corner of the wave-segments. Therefore, the distance is ≤ 1+ ε2

2 . ■
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A
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C

D
x: 0.3 0.7

y: 0.7

0.3

Figure 3.7: Shows a grid inside a segment according to Definition 3.8.

Definition of the Protocol. The protocol uses a bijective mapping from the area
segt

k ∪seg
t+1
k onto segt+1

k . For this mapping we define a normalized two-dimensional
coordinate system inside each segment from ranging from (0,0) to (1,1) (Definition 3.8).
In rectangular segments these are simple vertical and horizontal lines and the x- and y
unit-distance is scaled accordingly, for other shapes the lines are adjusted to follow the
boundaries of the shape. Algorithm 6 is a simple mapping between the areas of the
segments based on the normalized coordinates. Wave robots from segt

k move inside the
outer half of segt+1

k while the robots inside segt+1
k move into the inner half of segt+1

k .
See Figure 3.8 for an example. In the end we prove that the wave protocol is invertible
(Lemma 3.11).

Definition 3.8 — normalized coordinate-system inside a quadrilateral. Let A,B,C,
D be the corners of the quadrilateral, we denote the line-segments between the corners
by AB. For x ∈ [0,1] we define (x,0) := A+ x · (D−A) and (x,1) := B+ x · (C−B)
(in particular (0,0) = A;(1,0) = B;(1,1) = C and (0,1) = D). If the quadrilateral is
convex, for y ∈ [0,1] we equally distribute (x,y) on the straight line between (x,0) and
(x,1). For non-convex quadrilaterals we assume w.l.o.g. that C is the concave corner.
For x ∈ [0,1] we connect (x,0) and (x,1) with a parallel to AB starting at (x,0) and
a parallel to CD starting at (x,1). For y ∈ [0,1] we equally distribute (x,y) on this
connection. See Figure 3.7 and the figures in Figure 3.8 for an example.

For wave-segment segt
k we define A = bt

k,B = bt
k+1,C = bt+1

k+1 and D = bt+1
k . To

denote the position (x,y) inside segt
k we use the notation segt

k(x,y).

Algorithm 6 Protocol for wave-robots
This protocol gets the positions of boundary-robots bt as input. It is used to compute wavet

and wavet+1. The protocol then determines whether zt
i is in segt

k or segt+1
k for some k and

the coordinates x and y according to Definition 3.8.

WAVE-MOVEMENT(zt
i,b

t) =

{
segt+1

k (x/2,y), if zt
i = segt

k(x,y)
segt+1

k (1/2+ x/2,y), if zt
i = segt+1

k (x,y)

Lemma 3.11 Assuming bt and the wave-robots in round t are fixed and known. After
executing Algorithm 6 with all wave-robots, we can compute the positions of the
wave-robots in round t.

Proof. All robots from segt
k and segt+1

k moved inside segt+1
k for 0 ≤ k < |bt |. The
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segments do not overlap (Corollary 3.1), therefore the movement is unambiguous. If segt
k

is non-degenerated, then segt+1
k is also non-degenerated (Corollary 3.2). In both segments,

the coordinates are unambiguous. Therefore, Definition 3.8 yields a bijective mapping. If
segt

k is partly degenerated, there may exist (x,y) ̸= (x′,y′) with segt
k(x,y) = segt

k(x
′,y′).

But segt+1
k is non-degenerated (Corollary 3.2), therefore no two robots move onto the same

positions in segt+1
k . Therefore, the origins for all robots is unambiguous. If segt+1

k (x,y)
is fully-degenerated (is only a line), it follows from Corollary 3.2 that segt

k(x,y) must be
fully-degenerated as well. But because both segments are only a line without area in this
case, the mapping is bijective. ■

3.3.3 Main Protocol
We first define inner-robots, that are the remaining robots beside boundary- and wave-
robots. Afterwards we state the main protocol formally and prove its correctness as well as
that it is symmetry preserving.

Definition 3.9 — inner-robots. We call robots in waveq,q> t+1 at time t inner-robots.

Algorithm 7 WAVE-PROTOCOL

Based on zt the positions of boundary-robots bt can be observed. bt is used to compute
wavet and wavet+1 to determine wave-robots and inner-robots.

f (zt
k,z

t) =


ε -GTM(zt

k,b
t) if zt

k is a boundary-robot (Definition 3.4),
WAVE-MOVEMENT(zt

k,b
t) if zt

k is a wave-robot (Definition 3.6),
zt

k if zt
k is an inner-robot (Definition 3.9).

See Figure 3.8 for an example.

R To execute Algorithm 7 as it is written, robots must observe bt . They are not able
to observe bt fully because of the limited visibility in out model. But we prove in
Lemma 3.13 that they are able to observe the locally relevant part of bt to compute
Algorithm 7 locally.

Lemma 3.12 If bt is convex and the Connectivity-Boundary of a swarm without
2.24-holes that executes Algorithm 7 than

bt+1 = ε -GTM(bt)

Proof. From Lemma 3.10 we know, that ε -GTM(bt) is convex. Neighboring positions
in ε -GTM(bt) have distance ≤ 1. Therefore, ε -GTM(bt) would be the Connectivity-
Boundary of the new configuration, if all other robots are within area(ε -GTM(bt)). We
defined wavet as area(bt)\area(ε -GTM(bt)). Algorithm 6 is designed such that all robots
from wavet move into wavet+1, therefore moving inside area(ε -GTM(bt)). Only robots
from coordinates segt

k(x,0) move onto coordinates segt+1
k (x,0) (see Algorithm 6). On

coordinates segt
k(x,0) are by definition only boundary-robots. Therefore, ε -GTM(bt) is

the Connectivity-Boundary of the swarm in round t +1. ■
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boundary-robot
wave-robot
inner-robot

segt
6

segt+1
6

Figure 3.8: (left) shows the partition of robots in boundary-robot (Definition 3.4), wave-
robots (Definition 3.6) and inner-robots (Definition 3.9). (right) shows the new robot
positions after execution Algorithm 7. The figure in the middle shows a close-up on segt

6
and segt+1

6 that demonstrates the computation of Algorithm 6, based on the coordinate-
system defined in Definition 3.8.

Lemma 3.13 In a configuration with a convex Connectivity-Boundary and no 2.24-
holes, Algorithm 7 is executable for OBLOT-robots with a viewing range of 2+

√
2.

Proof. Decide robot state locally (boundary, wave, inner). With no 2.24-holes, a robot
is on the Connectivity-Boundary if it is on the border of the convex hull of its 2.24-
surrounding. This can be determined with a viewing range of 2.24. A robot r inside segt

k
or segt+1

k has a distance ≤ 1+ ε2/2 < 1.12 to bt
k and bt

k+1 (see Corollary 3.3). Therefore,
r with a viewing range of 1.12+ 2.24 < 2+

√
2 can determine, whether the robot on

bt
k is a boundary-robot. To compute segt

k and segt+1
k robots on bt

k−2, · · · ,b
t
k+3 must be

observed. To bt
k and bt

k+1 these have a maximal distance of up to 2. Because the robot
on bt

k could already be identified, it is known where the outside of the Connectivity-
Boundary is. We know that the Connectivity-Boundary is connected with a distance ≤ 1.
Therefore, the 1-surrounding around a known boundary-robot is sufficient to identify its
next neighbor along the boundary. With a viewing range of 2+

√
2 the 1-surrounding of

bt
k and bt

k+1 as well as from bt
k−1 and bt

k+2 is observable. This allows to identify robots
on bt

k−2, · · · ,b
t
k+3. Therefor, each robot in segt

k and segt+1
k can identify, that it is in the

mentioned segment (wave-robots). All robots r not in these segments can either not find
sufficient many boundary-robots or can compute that they are not in segments of wavet or
wavet+1 adjacent to the observed boundary-robots. Both is sufficient to decide, that r is an
inner robot.

Compute the protocol locally. For boundary robots (ε-GO-TO-THE-MIDDLE) and
inner robots (do not move) this is trivial. The wave-segments are not overlapping. Target
positions are computed based on the segment the robot is in. Therefore, robots not on the
borders of a segment can unambiguously compute their target positions. Robots on the
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Figure 3.9: Distance between segt
k (gray) and the midpoint of a 2.24-hole.

border of a segment will compute for both segments the exact target position, therefor it is
unambiguous as well. The movement distance is ≤ 1, therefore the computed move can be
executed. ■

Lemma 3.14 In a configuration with a convex Connectivity-Boundary, Algorithm 7
does not lead to collisions.

Proof. We consider round t. Robot within wavet ′, t ′ ≥ t + 2 (inner-robots) cannot have
collisions with each other, because they do not move. They can also have no collisions with
other robots, because boundary- and wave-robots move within wavet and wavet+1. Bound-
ary robots are essentially wave robots with the special case that they are on coordinates
segt

k(x,0). From the proof of Lemma 3.11 follows, that Algorithm 6 is collision-free. ■

Lemma 3.15 In a configuration with convex Connectivity-Boundary and initially no
1-holes, Algorithm 7 does not create 2.24-holes.

Proof. All robots not inside wavet have been inner robots until now and have not moved
at all. Therefore, holes that have no overlap with wavet must have existed initially and
can only have diameter < 1. Let us consider a 2.24-hole that overlaps with wavet . See
the construction of segt

k that overlaps with a 2.24-hole in Figure 3.9. segt
k cannot lie

completely within the hole, because that would mean the boundary robots are inside the
hole. But the boundary of segt

k can be a secant with length ≤ 1 of the hole. The height
of such a secant of a circle with radius 1.12 is ≥ 1. A wave-segment can have a maximal
width of 0.5, therefore all points of segt

k have a distance ≥ 0.5 to the midpoint of the hole.
Therefore, 1-hole with the same midpoint does not overlap with wavet and must have
existed initially. ■

Lemma 3.16 In a configuration with a convex Connectivity-Boundary, Algorithm 7 is
locally invertible.

Proof. Let us assume bt is convex and the Connectivity-Boundary of the swarm in round t.
For the initial configuration this is true by definition. We will show, that we can compute
the swarm in round t from round t +1. From Lemma 3.10 we know that bt+1 is convex.
From Lemma 3.12 we know, that bt+1 is the Connectivity-Boundary in round t +1. The
Connectivity-Boundary can easily be identified by a global observer, therefore bt+1 is
known. By Lemma 3.9 we know that ε -GTM is invertible. Therefore, we can compute
bt and wavet as well as wavet+1. We know that all robots that were in round t not in
wavet or wavet+1 are inner-robots and have not moved (Definition 3.9). Therefore, all
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robots in wavet+1 in round t + 1 must have been wave- or boundary-robots in round t.
Because all wave- and boundary-robots in round t move into wavet+1 the robots in wavet+1

in round t + 1 are the complete set of wave- and boundary-robots in round t + 1. The
boundary-robots are already identified, therefore we know the set of wave-robots. This
allows us to apply Lemma 3.11 to compute the positions of the wave-robots in round t. All
other robots are inner robots, therefore they do not move in round t. ■

Theorem 7 — restated. We assume robots according the OBLOT model and FSYNC

scheduler with a viewing range of 2+
√

2 in a swarm with a convex Connectivity-
Boundary (Definition 1.6) and no 1-holes (Definition 1.7). The WAVE-PROTOCOL

(Algorithm 7) leads to NEAR-GATHERING and does not change the symmetry.

Proof. The protocol is executable in the assumed model (Lemma 3.13). From [27] we
know, that ε-GO-TO-THE-MIDDLE converges towards gathering. From Lemma 3.12 we
know, that bt+1 = ε -GTM(bt). Therefore, bt will converge towards gathering for t← ∞.
Because bt is the Connectivity-Boundary, all robots are within area(bt). At the same time,
each robot keeps its own position (Lemma 3.14). Therefore, eventually a NEAR-GATH-
ERING will be reached. Because Algorithm 7 is locally invertible (Lemma 3.16) we can
follow from Theorem 5 that the symmetries are not changed. ■

3.3.4 Contracting Waves as a General Near-Gathering Protocol
The WAVE-PROTOCOL presented in this section works for general swarms where the
Connectivity-Boundary is not necessarily convex and the swarm may contain (large) holes.
A non-convex Connectivity-Boundary and (large) holes changes some properties of the
protocol because the detection of the robot role (boundary-, wave- or inner-robot) is not
perfect anymore. For example, not all robots on the Connectivity-Boundary can detect
locally that they are boundary-robots. However, all robots that are near the global enclosing
circle can locally detect whether they are boundary-robots or not and move inside. We use
this insight to show analog to the proof in Section 2.2.2, that eventually a Diam-1-Config-
uration is reached. Note, that the protocol need to be changed slightly, and the viewing
range must be doubled which is explained during the proof. However, these changes do
only affect swarms with a non-convex Connectivity-Boundary or larger holes; the changed
protocol is equivalent to Algorithm 7 if the Connectivity-Boundary is convex and the
swarm contains no 1-hole. While a NEAR-GATHERING is always reached as shown below,
the symmetry preservation can only be guarantied of the Connectivity-Boundary is convex
and the swarm contains no 1-hole.

Lemma 3.17 We assume robots according the OBLOT model and FSYNC scheduler
with a viewing range of 4+2

√
2 in a connected swarm. Algorithm 7 with slight changes

leads to NEAR-GATHERING.

Proof. Not all robots on the Connectivity-Boundary can detect locally that they are
boundary-robots. For situations where a robot is only connected to one other robots
(e.g. a robot at the end of a line) ε -GTM must be slightly altered such that a robot con-
siders one neighbor as its left and right neighbor at the same time in these situations. A
large hole in the swarm may result in robots that locally assume they are boundary-robots
but are not on the Connectivity-Boundary. This results in multiple disconnected chains of
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boundary-robots that perform ε -GTM. Because ε -GTM results never in a loss of connec-
tivity, this is not a harmful behavior. However, it may result in collisions if the wave-robots
are do move accordingly.

The detection of wave-robots has the following problem. Whenever two boundary-
robots of different chains are close to each other, a robot may be in two different waves.
This leads to unambiguous behavior. We can fix that as follows by doubling the viewing
range of robots. A boundary-robot uses its regular viewing range (2+

√
2) to look whether

it in on the local convex hull, if not it does not count as boundary-robots. This way, a
connected chain of boundary-robots always ends with a robot that is boundary-robot in
its 1-neighborhood but not in its regular-viewing range and that does not move. For the
wave-definition this static robot at the end is a boundary-robot bt

k that does not move
(therefore bt

k = bt+1
k = bt+2

k ). Wave robots use the doubled viewing range (4+ 2
√

2) to
check the same for their observed boundary-robots (a boundary-robots b that is relevant
for the computation of wave-robots w’s wave-segment is within the regular viewing-range
of w, the doubled is used to check whether b counts as boundary robot according the
new definition). The waves constructed this way cannot overlap, because two robots that
are locally detected as boundary-robots but not connected via the Connectivity-Boundary
within their viewing range must have a distance ≥ 2+

√
2 and a wave-segment has only a

diameter of ≤
√

2.
Boundary-robots near the global enclosing circle in circle-cap S1 (see Section 2.2.2 for

the definition) are always boundary-robots according the new criterias. Connected chains
of boundary-robots must always end outside S1. Therefore, all boundary-robots leave S1/2

after a finite amount of time. Because the wave-robots stay within the convex hull of their
respective boundary-robots, all robots leave S1/2 after a finite amount of time. Analog to
the proof in Section 2.2.2 we can follow, that the protocol reaches a Diam-1-Configuration
after a finite amount of time. ■

While Algorithm 7 is a near-gathering protocol it is inferior to λ -contracting NEAR-
GATHERING protocols (Definition 2.3) concerning the running time. λ -contracting NEAR-
GATHERING protocols reach a Diam-1-Configuration of n robots after O(n2). In the
following we show, that there exist configurations where Algorithm 7 needs Ω(log(n) ·n2)
rounds. The proof is in parts analog to the running time proofs of GO-TO-THE-CENTER

and GO-TO-THE-MIDDLE in [18, 24].

Lemma 3.18 Let z0 be a regular n-gon with side length 1. Algorithm 7 needs Ω(log(n) ·
n2) rounds to reach a Diam-1-Configuration.

Proof. In the configuration z0 all robots are boundary robots and perform ε -GTM. The
configuration z1 (and iteratively zt for all t > 0) is again a regular n-gon, just with a smaller
side length. We define the following measures

• s(t) is the side-length of the n gon in round t
• r(t) is the radius of the n-gon in round t
• γ = π− 2π/n is the inner-angle of the n-gon (values in radian)
In each round, the robots move factor ε towards the midpoint of their neighbors. This

is a distance of ε · s(t) · cos(γ/2). The radius decreases by twice this amount.

r(t +1) = r(t)− ε · s(t) · cos(γ/2).

We can approximate the side length from the radius as follows
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s(t)≤ r(t) · 2π/n.

The cosine can be approximated with the following formula

cos(x)≤ π/2− x for 0≤ x≤ π/2

This results for cos(γ/2) with γ = π− 2π/n in

cos(γ/2)≤ 4π/n.

Therefore, we can estimate the radius as follows

r(t +1)≤ r(t)− ε · r(t) ·2π/n ·4π/n = r(t)− εΘ(r(t)/n2)

With ε < 1 it needs at least Ω(n2) round to halve the radius. Therefore, we need at
least Ω(log(n) ·n2) rounds to reach a radius ≤ 1. ■



4. Forming Large Patterns from
Contracted Swarms

In this chapter we present a protocol that solves ARBITRARY-PATTERN-FORMATION. The
previous chapters showed how a swarm could reach a Diam-1-Configuration by NEAR-
GATHERING. The following main result of this chapter builds on this by assuming that the
initial configuration is a Diam-1-Configuration.

Theorem 8 — restated. A connected pattern P can be formed by |P| disoriented
OBLOT robots with limited viewing range in the FSYNC model from a Diam-1-Config-
uration z if and only if sym(z) | sym(P). The formation takes O(|P|) rounds, which is
worst-case optimal.

Note that the restriction on the symmetricity (see Definition 1.2) is necessary in
general even for swarm with global visibility as (see Theorem 1). The λ -contracting
NEAR-GATHERING protocols from Chapter 2 lead to a Diam-1-Configuration from any
strongly connected initial configuration z0. However, it does not make any guarantee on the
symmetricity of the Diam-1-Configuration. This allows only limited usage of the theorem
above. In Section 3.3 a protocol is presented that reaches a Diam-1-Configuration with the
same symmetricity as z0 under the assumption that the Connectivity-Boundary is convex
and the z0 contains no 1-holes. The theorem above allows directly to follow that for such
z0, that can have a diameter up to Ω(n), any connected pattern P with sym(z0) | sym(P)
can be formed (see Theorem 9).

Requiring that P is connected (see Section 1.3) is natural for robots of limited viewing
range. However, our technique can even be adapted to form disconnected patterns, as long
as they contain a connected component of size ≥ 3 (see Section 5.1 for a brief discussion).

In a nutshell, our protocol partitions the input pattern P into sym(P) rotation-symmetric
components. Using the initial mutual visibility, we let the robots form one cluster, called
drawing formation, per component. Such a drawing formation relies on a careful placement
of its contained robots to store information about the component it is responsible for and to
coordinate its movement. We show how the drawing formation’s robots can compute and
coordinately move along a deliberately constructed path through the component in order to
“draw” the pattern by dropping one robot at each contained coordinate. The content of this
chapter was first published in
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Forming Large Patterns with Local Robots in the OBLOT Model [39]
Christopher Hahn, Jonas Harbig and Peter Kling
Symposium on Algorithmic Foundations of Dynamic Networks (SAND) 2024

Outline. Section 4.1 contains the major part of our protocol description and its analysis.
That section formalizes notions like drawing formations or drawing paths and details how
we coordinate the robots that form a drawing formation. At the section’s end, we prove
Theorem 8 under the assumptions that there is a drawing path that adheres to certain
conditions (namely Definition 4.12) and that sym(P)< |P|/2. The construction of such a
drawing path is subject of Section 4.2. In Section 4.3 pseudocode for the whole protocol is
presented.

4.1 Forming Patterns via Drawing
Given a pattern P of symmetricity sym(P) ∈ N, we “draw” P using sym(P) drawing
formations. Each drawing formation consists of a carefully arranged subset of state robots
and is responsible to form one of sym(P) symmetric subpatterns P′ ⊆ P. The state robots’
careful placement enables them to coordinately move through P′ along a specific drawing
path. While doing so, some state robots are “dropped” at nearby pattern coordinates to
form P′.

We start in Section 4.1.1 by formalizing the idea of drawing formations and related
concepts. Section 4.1.2 details the legal arrangements of state robots in a drawing formation
and shows how we can use this to coordinate state robots. Equipped with this coordination,
Section 4.1.3 formalizes the drawing path vvv and what properties a drawing formation F
must have in order to traverse vvv while suitably dropping robots. Afterward, Section 4.1.4
shows how we can create sym(P) different drawing formations and use them to draw
suitable, symmetric subpatterns of P. Finally, Section 4.1.5 puts everything together
to prove Theorem 8. We often define protocols implicitly during the proofs. To better
illustrate the protocols, we provide pseudocode in Section 4.3.

4.1.1 Drawing Formations & Movement
We first define the drawing hull, representing the general shape of a drawing forma-
tion.

Definition 4.1 — Drawing Hull. A drawing hull H = (a,d,φ ,∆) consists of an anchor
a∈R2, a direction d∈R2 with ∥d∥2 = 1, a span φ ∈ (0,π/3], and a diameter ∆∈ (0,1].

As illustrated in Figure 4.1a, one should think of a drawing hull H = (a,d,φ ,∆) as the point
set {x ∈ R2 | dist(x,a)≤ ∆∧∠(d,x−a) ∈ [0,φ)}.1 With this in mind, we sometimes
abuse notation and identify H with this set to write, e.g., pos(r) ∈ H for a robot r.

A drawing formation is defined by a drawing hull and all robots contained in it. These
robots form a tight cluster whose exact placement inside the hull (the drawing formation’s
state) allows us to coordinate their movement (see Section 4.1.2).

Definition 4.2 — Drawing Formation. A drawing formation F = (HF ,RF) consists
of a drawing hull HF and the robot setRF := {r ∈ z | pos(r) ∈ HF }. We call r ∈RF a
state robot of F and SF := pos(RF) the state of F . The size of F is |RF |.

1Note that φ ≤ π/3 ensures that ∆ is indeed the diameter of the point set H.
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We sometimes identify a drawing formation with its associated hull, allowing us to,
e.g., speak of a drawing formation’s anchor or diameter.

A drawing formation F forms a given pattern by “moving” F along a specific drawing
path (see Section 4.1.3) that visits all pattern coordinates, dropping one state robot per
pattern coordinate along the way. The following Definition formalizes such moves (see
Figure 4.1c for an illustration).

Definition 4.3 — Move. Consider a drawing formation F = (HF ,RF) with drawing
hull HF = (p,d,φ) in configuration z. Let z+ denote the configuration in the next
round. We say F moves from p (in configuration z) to p′ (in configuration z+) if a
state robot subsetRF ′ ⊆RF of F forms a drawing formation F ′ =

(
(p′,d,φ),RF ′

)
in

configuration z+. We call the robotsRF \RF ′ dropped robots.

When moving from one drawing path vertex to the next, the remaining state robots
change state (their placement in the drawing formation) to encode the progress on the
drawing path. To ensure that a drawing formation can adopt any (reasonable) state after a
movement, we restrict its movement distance to 1−∆ (s.t. each state robot can reach any
other location in the resulting drawing formation of diameter ∆).

Observation 4.1 Consider a drawing formation F of diameter ∆ that moves from
position p to p′. If dist(p, p′) ≤ 1−∆, the robots that are not dropped can form any
state in the resulting drawing formation.

4.1.2 States of a Drawing Formation
Given a target pattern P, our protocol considers only drawing formations F with fixed
span φ = 2π/sym(P) (depending only on P) and fixed diameter ∆ (constant). Moving F
between vertices of the drawing path (see Section 4.1.3) requires a coordinated movement
of F’s state robots. To achieve this, any robot must

1. decide whether it is one of F’s state robots and, if so,
2. know the current progress on the drawing path.

To achieve (1), we use a careful placement of three defining robots that allows any robot
r that sees them to deduce the remaining hull parameters (anchor and direction); once
all four hull parameters are known, r can compute the hull HF and decide whether it lies
inside HF or not. To achieve (2), we require that any additional state robots are placed on
an ε-grid (ε > 0 fixed, depending only on P) that is aligned with the defining robots; using
an arbitrary but fixed enumeration scheme for ℓ robots on such a grid, all state robots can
agree on the same ordering of states and use it (in combination with F’s size ℓ) to encode
the progress on the drawing path.

Legal States. We continue to formalize this idea for a given parameter ε > 0. The
placement of the defining robots r1, r2, and r3 of a drawing formation F with anchor a and
direction d is as follows:

1. r1 is at the anchor a,
2. r2 is at distance ε in direction d from anchor a, and
3. r3 is at distance ∈ {2ε,4ε, . . .} in direction d from r2.

Further state robots (if any) must be placed on the non-negative 2ε-grid with origin r2 and
whose x-axis is aligned with d (see Figure 4.1b).

The robot pair {r1,r2 } can be identified since they are the only state robots with
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distance ε . And since r3 at distance ≥ 2ε is closer to r2 than to r1, robots can distinguish
r1 from r2, from which they can infer both the hull’s anchor and direction.

We get the following set of potential state robot locations:

Definition 4.4 — ε-Granular Locations. Consider a drawing formation F = (HF ,RF)
with anchor a and direction d. Let d⊥ be the unit vector with ∠(d,d⊥) = π/2. The set
of ε-granular locations of F is

LF(ε) := {a,a+(1+2i)ε ·d+2 jε ·d⊥ | i, j ∈ N0 }∩HF . (4.1)

States (i.e., state robot placements) considered legal by our protocol consist of all
possible placements on ε-granular locations with the mentioned restrictions on the three
defining robots’ positions.

Definition 4.5 — ε-Granular States. Consider a drawing formation F with anchor a
and direction d. The set of ε-granular states of F is

AF(ε) := {S ∪T | S ∈ P(LF),T ∈ T (ε)} .

with T (ε) :=
⋃⌊(∆/ε−1)/2⌋

i=1 {{a,a+ ε ·d,a+(1+2i)ε ·d}} being the sets of defining
robots. For ℓ ∈N we define Aℓ

F(ε) := {S ∈ AF(ε) | |S|= ℓ} as the set of all ε-granular
states of F that can be adopted with ℓ state robots.

Our protocol considers only drawing formations that adhere to the above restrictions,
leading us to the following Definition:

Definition 4.6 — ε-Granular Drawing Formation. A drawing formation F is ε-
granular if F is in an ε-granular state and if F’s state robots knowa the fixed parameters
ε , ∆, and φ .

aThe parameters are either hard-coded into the protocol or can be computed from the target pattern P.

Note that all subsets of robots in the current configuration that fulfill the definition
above are ε-granular drawing formations. We require that r ∈ F knows the parameter ε,∆
and φ of F . Therefore r ∈ F can check all subsets in its viewing range whether they are
drawing formations with these parameters. With a viewing range of 1≥ ∆, r observes all
robots in F and can compute the drawing hull of F .

Observation 4.2 Let F be a ε-granular drawing formation. All state robots in F can
compute the anchor of F and d.

As a final property, we only want non-overlapping drawing formations. If two drawing
hulls were overlapping, a robot might be state robot in two drawing formations that move
in different directions.

Definition 4.7 — Validity. An ε-granular drawing formation F = (HF ,RF) is valid in
configuration z ⊇RF if for any other ε-granular drawing formation F ′ = (HF ′,RF ′)
we have HF ∩HF ′ = /0.

Counting via States. Given an ε-granular drawing formation F of size ℓ (i.e., consisting
of ℓ state robots), we can easily enumerate Aℓ

F(ε) in a way that depends solely on the
relative positions of its locations. In particular, all state robots can use this enumeration
and thus agree on the order of states, which basically equips the state robots with a shared
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Figure 4.1

counter. A concrete implementation is depicted in Section 4.1.6.

Definition 4.8 — i-th State. Using an arbitrary, unique state enumeration on Aℓ
F(ε)

that depends solely on the relative position of locations, for i ∈ {1,2, . . . ,
∣∣Aℓ

F(ε)
∣∣} we

define the i-th state of F as the corresponding state in this enumeration.

We conclude with a lower bound on the number of states that an ε-granular drawing
formation may have.

Lemma 4.1 Consider a drawing formation F with hull diameter ∆ and span φ ∈ (0,π/3].
We have

∣∣A3
F(ε)

∣∣= ⌊(∆/ε−1)/2⌋ and
∣∣Aℓ

F(ε)
∣∣= Ω(∆3 ·φ/ε3) for 4≤ ℓ≤ |LF(ε)|−1.

Proof. For ℓ = 3 robots, only the third defining robot r3 can choose between multiple
locations; the first and second defining robots r1 and r2 have a fixed location inside HF .
Since r3 can be placed on any of the locations of the form a+(1+2i)ε ·d for i ∈ N that
lies in HF , we get

∣∣A3
F

∣∣= ⌊(∆/ε−1)/2⌋.
For ℓ= 4, observe that there are k := |LF(ε)|= Ω(∆2 ·φ/ε2) ε-granular locations in

F , since the 2ε-grid allows for Ω(1/ε2) many locations per unit area and the total area
covered by F’s hull is π ·∆2 ·φ/(2π) = ∆2 ·φ/2. Again, the first two defining robots have
a fixed location, while the third defining robot may occupy one of Ω(∆/ε) many locations.
The remaining ℓ−3≥ 1 robots can be arranged on the remaining k−3 locations in

(k−3
ℓ−3

)
ways. By the Lemma’s restriction on ℓ we have ℓ− 3 ≥ 4 and ℓ− 3 ≤ k− 4, such that(k−3
ℓ−3

)
≥
(k−3

k−4

)
=
(k−3

1

)
= Ω(∆2 ·φ/ε2). Together, we get the desired bound. ■

4.1.3 Drawing a Pattern via a Drawing Path
This section introduces the drawing path of a (sub-) pattern P, which is a path in R2 that
visits all pattern coordinates. This path should allow a drawing formation to move along
its vertices while dropping one state robot per pattern coordinate along the way to form P.
An instructive illustration of the idea can be found in Section 4.1.6.

A drawing path vvv has a parameter δ that controls the maximal distance between
consecutive vertices as well as between each pattern coordinate and the path. Moreover,
vvv must depend only on P, such that oblivious robots can all recalculate vvv each LCM-
cycle.
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Definition 4.9 — Drawing Path. Consider any pattern P. A path vvv = (v j)
k
j=1 of k

vertices v j ∈ R2 is a δ -drawing path of P if
1. vvv can be calculated from P,
2. ∀p ∈ P : dist(p,vvv)≤ 1−δ , and
3. ∀ j ∈ {1,2, . . . ,k−1} : dist(v j,v j+1)≤ 1−δ .

Choosing δ equal to the diameter of a drawing formation F enables F to traverse vvv while
forming any state (Observation 4.1). We omit δ if it is irrelevant for the matter at hand.

When traversing vvv, we want a drawing formation to drop a robot at pattern coordinate
p ∈ P when leaving the latest vertex v j that is close enough to p. This ensures that, at any
time after being dropped, the dropped robot has a distance of at least 1−δ to the drawing
formation that dropped it. We say p is covered by vertex v j.

Definition 4.10 — Covered Coordinates. Consider a δ -drawing path vvv = (v j)
k
j=1 of a

pattern P. Coordinate p ∈ P is covered by vertex v j if j ∈ {1,2, . . . ,k} is the maximal
index for which dist(p,v j)≤ 1−δ . Let cov(v j) denote the set of all coordinates covered
by v j.

We extend cov(•) in the natural way to subsequence vvv′′′ of vvv, such that cov(vvv′′′) =⋃
u∈vvv′′′ cov(u). Care must be taken once a drawing formation dropped so many robots that

it reached size ℓ = 3: It must not drop further robots before the path’s end, since the
remaining two robots would no longer form a drawing formation and could not coordinate
(see Section 4.1.2). We capture this (possibly non-existent) path region in the following
Definition 4.11.

Definition 4.11 — Tail of a Drawing Path. The tail tail(vvv) of a drawing path vvv =
(v j)

k
j=1 is the longest suffix (v j)

k
j=s s.t. ∑

k
j=s

∣∣cov(v j)
∣∣< 4.

As a final notion, we declare when a drawing formation and a drawing path are
compatible (i.e., can be used to form the path’s pattern). Here, we use hops(vs,vt) to
denote the number of edges between two path vertices vs,vt ∈ vvv.

Definition 4.12 — Compatibility. An ε-granular drawing formation F with diameter ∆

and span Φ is compatible with a δ -drawing path vvv = (v j)
k
j=1 of a pattern P if

1. ε < mindist(P) and ∆≤ δ ,
2. ∀s < t s.t.

⋃t−1
j=s cov(v j) = /0 : hops(vs,vt)≤

∣∣A4
F(ε)

∣∣,
3. |tail(vvv)| ≤

∣∣A3
F(ε)

∣∣, and
4. |cov(tail(v))|= 3 and cov(tail(vvv))⊆ B(vk,1) .

Item 1 ensures that the distance ε (identifying F’s defining robots) does not occur in P
and that F can traverse vvv (by Observation 4.1). Item 2 requires that, after dropping a
robot, the state space Aℓ

F ⊇ A4
F of the remaining ℓ robots is large enough to encode the

progress towards the next vertex where a robot is dropped. These two properties are used
in Lemma 4.2 to prove that F can traverse the non-tail of vvv while appropriately dropping
robots.

Lemma 4.2 Consider a compatible drawing path vvv = (v j)
k
j=1 of a pattern P. Let z be

the configuration formed by a drawing formation F of size |P| in state 1 anchored in v1
that is compatible with vvv. Then F can traverse vvv by taking one edge per LCM-cycle
while dropping one robot at each coordinate in cov(v j) when leaving v j ̸∈ tail(vvv).
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Proof. Enumeration of States. We defined in Definition 4.8 an enumeration of Aℓ
F , let

the i-th state of Aℓ
F be state(i, ℓ). We define the following unique states for the path, using

an enumeration that includes different sizes ℓ of drawing formations fitting to the number
of not dropped robots at a node.

f (vi) := |cov((v j)
k
j=i)|

g(vi) := max
(
|(v j)

i−1
j<i|

)
with cov((v j)

i−1
j<i) = /0

state(vi) := state(g(vi)+1, f (vi))

From (3) and (4) of Definition 4.12 follows directly, that all such states exist.
Induction Proof. Assumption: F with anchor on vi with |F |= |cov((v j)

k
j=i)| in state

i and dropped robots on cov((v j)
i−1
j=1). Let HF = (a,d,φ ,∆) be the drawing hull of F

(Definition 4.1). We define the coordinate system S as the coordinate system with x
direction d and origin at v1. Start: At node v1 this is initially given.

Step: No coordinates p ∈ B(vi,1−δ ) contain robots r /∈ F , otherwise p ∈ cov(v j)∩
B(vi,1−δ ), j < i with is a contradiction to Definition 4.10. Therefore F is valid (Defini-
tion 4.7). r ∈ F knows anchor a and direction vector d of F (see Observation 4.2) and F is
unabigous because it is valid (i.e. r ∈ F is not in another ε-granular drawing formation).
Because v is a drawing path (Definition 4.9), r can compute v from P. With the assumption
that a (the anchor of F) is at vi and F in state state(vi), it can determine the coordinate
system S . dist(vi,vi+1)≤ 1−δ (by Definition 4.9) and 1−δ ≤ 1−∆ (by Definition 4.12).
From Observation 4.1 follows that F can move from vi to vi+1. F moves such that its new
anchor is vi+1, |cov(vi)| robots are dropped onto the coordinates cov(vi) and its new state
state(vi+1).

■

Lemma 4.3 uses Item 3 to traverse the tail and Item 4 to drop the final three robots at
the tail’s end. This final drop is slightly more involved: if the last three coordinates form,
e.g., a straight path of edge length 1, our drawing formation cannot drop all robots at once.
With the help of Item 4, we handle this via an intermediate step.

Lemma 4.3 Consider a compatible drawing path vvv = (v j)
k
j=1 of a pattern P. Let z be

the configuration that has
1. one robot at each coordinate in P\ cov(tail(vvv)) and
2. a drawing formation F of size 3 in state |tail(vvv)| anchored in vk that is compatible

with vvv.
Then F can dissolve within two LCM-cycles while dropping one robot at each coordi-
nate in cov(tail(vvv)).

Proof. Lemma 4.3 follows immediately from Observation 4.3 and Lemma 4.4 that are
given in the following. ■

We have shown in Lemma 4.2 that on all coordinates outside the tail(v), F can drop
robots while traversing the drawing path v. On the tail it cannot further drop robots before
reaching the end; otherwise |RF | ≤ 2, which is not an ε-granular drawing formation
anymore. In fact, it can never be a valid drawing formation because two robots can not
encode the direction d in a model without a compass. Therefore, F does not drop robots
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ϵ
ϵ/2

Figure 4.2: A depiction of an ε-intermediate-shape (Definition 4.13). All positions (×)
have a distance of 1 to the robot (•) in the center.

onto cov(tail(v)) during the traversal. Instead, the drawing formation moves onto vk,
and the robots will move from there onto cov(tail(v)). Because dist(cov(tail(v)),vk)≤ 1
for a compatible path, the drawing formation is close enough to all remaining positions.
However, not all robots inRF are on vk; they can have a distance up to ∆. If dist(vk, p)>
1−∆, p ∈ cov(tail(v)) then the drawing formation F can be placed inconveniently such
that dist(r, p) > 1,r ∈ RF . We will add an intermediate step that reshapes the drawing
formation such that all robots have a distance of ≤ 1 to the coordinate they must obtain in
the end. Robots may leave the drawing hull HF , but most properties of a drawing formation
must still be fulfilled. This intermediate shape Finter must be valid in the sense that robots
in Finter must be able to determine the position of vk and the direction vector d to compute
the global coordinate system. In the following, we will define the intermediate shape and
prove that robots can obtain this information.

Definition 4.13 — ε-intermediate-shape. Let P be a pattern and v = (v1, · · · ,vk) be
its drawing path with

1. |cov(tail(v))|= 3 and
2. B(vk,1)⊇ cov(tail(v))

Let cov(tail(v)) = {p1, p2, p3}. The intermediate shape Finter definines the following
positions for a set of three robots r1,r2,r3.

• r1 is on vk

• r2 is distance ε/2 in direction p2 and
• r3 is distance ε/3 in direction p3

See Figure 4.2 for a depiction of an intermediate shape.

Observation 4.3 Let Finter be an intermediate shape as in Definition 4.13. It is clear,
that dist(r1, p1)≤ 1, dist(r2, p2)≤ 1 and dist(r3, p3)≤ 1.

Lemma 4.4 Let P be a pattern and v = (v1, · · · ,vk) be a drawing path which is compati-
ble with an ε-ganular drawing formation. Let Finter be an intermediate shape as defined
in Definition 4.13 which is on vk. Let dist(vk,z\Finter)> ε . All robots r ∈ Finter can
decide, that they are in Finter and can compute the positions of tail(vk) in their local
coordinate system.

Proof. To decide, whether a robot r ∈ Finter is in Finter it observes other robots in distance
ε . Because the dist(vk,z\Finter)> ε it only finds one triple of robots with distances ε/2
and ε/3. Let r1,r2,r3, p1, p2, p3 be as in Definition 4.13. The triangle r1,r2,r3 is never
equiliteral (one side has length ε/2 and another ε/3). With chirality, all three robots know,
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(a) Pattern P with symme-
tricity sym(P) = 7 and cone
C(1).

(b) Symmetric component P(1)

with an aligned drawing forma-
tion F(1).

2δ F (1)

(c) Initial drawing pattern I
for sym(P) = 7.

Figure 4.3

who is r1,r2 and r3. They know the coordinates p1, p2 and p3 as well as the position of
vk in the global coordinate system. The positions of r1,r2 and r3 in the global coordinate
system are also defined. Therefore, they can translate/rotate their local coordinate system
and compute tail(vk). ■

4.1.4 Full Pattern via Many Drawing Formations
As shown in Section 4.1.3, we can draw any pattern P if we start in a suitable drawing
formation F (and have a compatible drawing path). But we must first form such a drawing
formation from the initial NEAR-GATHERING, which might have a symmetricity s > 1.
In that case, since any drawing formation has symmetricity 1, we cannot form F (by
Theorem 1). Instead, we show how to form sym(P) symmetric copies of F that are placed
such that they

1. have symmetricity sym(P) (we have s | sym(P) or we cannot form P, even globally)
and

2. do not interfere with each other (if using suitable drawing paths, see Section 4.2).
We start by partitioning the pattern P of symmetricity sym(P) into sym(P) symmetric

components, each of which will be drawn by its own drawing formation.

Definition 4.14 — Cone & Symmetric Component. Let ex := (1,0). For a pattern P
of symmetricity sym(P), define the i-th cone

C(i) := { p ∈ R2 | ∠(ex, p) ∈ [(i−1) ·2π/sym(P), i ·2π/sym(P))} (4.2)

and the i-th symmetric component P(i) := P∩C(i).

Note that the symmetric components are pairwise disjoint and that P =
⋃sym(P)

i=1 P(i).
See Figure 4.3a for an illustration.

To form pattern P, we first form a suitable initial drawing pattern of diameter ≤
1. This initial drawing pattern places each robot r ∈ z in one of sym(P) ε-granular
drawing formations F(i) of size |P|/sym(P) in state 1. If there exists a drawing path
vvv(1) for P(1) that is compatible with F(1) and starts at the anchor of F(1), we immediately
get a corresponding (rotation-symmetric) drawing path for each F(i). Assuming that,
additionally, those drawing paths lie “sufficiently inside” their respective cone C(i), we will
prove a generalization of Lemmas 4.2 and 4.3, basically showing that the different F(i) can
draw their P(i) without interfering with each other. The existence of suitable drawing paths
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is shown in Section 4.2.
To enable the robots to deduce the symmetric component P(i) they are drawing2, we

require F(i) to be aligned with P(i):

Definition 4.15 — Alignment. Fix i ∈ {1,2, . . . ,sym(P)} and the i-th symmetric com-
ponent P(i) of a pattern P with symmetricity sym(P). Let F be a drawing formation with
direction d and span φ . Then F is aligned with P(i) if ∠(d,ex) = (i−1) ·2π/sym(P)
and if φ = min{2π/sym(P),π/3}.

Figure 4.3b gives an illustration. With this, we define the initial drawing pattern of a pattern
P and a suitable drawing formation F as follows (illustrated in Figure 4.3c):

Definition 4.16 — Initial Drawing Pattern. Fix a pattern P of symmetricity sym(P).
An initial drawing pattern I for P is a configuration of |P| robots that consists of

sym(P) drawing formations {F(i) }sym(P)
i=1 of diameter ∆≤ 1/6 in state 1 such that:

1. F(1) is aligned with P(1) and anchored in (2∆,π/sym(P)).
2. F(i) is a rotation of F(1) by (i−1) ·2π/sym(P).

We say I is ε-granular if the F(i) are ε-granular.

Note that, by construction, each F(i) is aligned with P(i). Moreover, I is a pattern with
diameter ≤ 1 and has symmetricity sym(P), such that we can form I from any Diam-1-
Configuration for which the symmetry condition (Theorem 1) holds.

It remains to prove that once the initial drawing pattern is formed, each drawing
formation F(i) forms its symmetric component P(i) and does not interfere with the operation
of any other drawing formation F( j) with j ̸= i.

Lemma 4.5 Assume the current configuration is an ε-granular initial drawing pattern I
for a pattern P of symmetricity sym(P). Consider a drawing path vvv(1) =

(
v(1)j

)k
j=1 of

symmetric component P(1) that is compatible with F(1) such that
1. the path vvv(1) starts in the anchor of F(1),
2. vvv(1) lies in the first cone (i.e., vvv(1) ⊆C(1)) and

dist
(

vvv(1),∂C(1)
)
> max{ ε,∆ · sin(2π/sym(P))} (4.3)

.
Then P can be formed in O

(
k
)

many LCM-cycles.

Proof. From Lemmas 4.2 and 4.3 we know, P(1) can be formed by F(1) assuming P(1) is
the whole pattern. The traversal of this path takes at most k rounds to reach v(1)k plus 2
rounds for dropping the last robots. With the other symmetric components P(i) next to P(1),
F(1) can still form P(1) if F(1) is always valid. We will prove in the following, that F(1) is
always valid.

Validity. F(1) = (RF ,HF) is valid, if there exists no subset RG ⊆ z which fulfills
the criteria of Definition 4.6 such that G = (RG,HG) a ε-granular drawing formation
RG ̸=RF and HF ∩HG ̸= /0. F(1) is aligned with C(1) (Definition 4.15). It follows directly,
that F(1) ⊆C(1) and naturally for all symmetric drawing formation F(i) that F(i) ⊆C(i).

2Since robots are disoriented, they cannot deduce which P(i) they are drawing. But they can deduce P(i)’s
coordinates in their own, local coordinate systems.
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Therefore, those drawing formations have disjunct hulls. From the proof of Lemma 4.2 we
know that all dropped robots on p ∈ P(1) have a distance ≥ ∆ to HF , therefore those robots
cannot be part of RG. It is left to show, that r ∈C(i) with i ̸= 1 cannot build a drawing
formation G that intersects HF .

Two dropped robots r1,r2 on p1, p2 ∈ P have dist(r1,r2) > ε , this follows from the
fact that ε ≤ mindist(P) (Item 1 of Definition 4.12). Let F be anchored on v(1)j . By

prerequisit (1) dist(v(1)j ,∂C(1))> ε . Because F(1) is aligned to C(1), dist(∂C(1),RF)> ε .
Therefore r1 ∈ F(1) and r2 /∈ F(1) have dist(r1,r2)> ε . Therefore, drawing formation G
must have a pair of dist(r1,r2) > ε which are part of the same drawing formation F(i).
There must exist a third robot r3 /∈F(i) collinear to r1,r2 with dist(r3,{r1,r2})≤∆. W.l.o.g
i = 1. Let HF = (a,d,Φ,∆) be the drawing hull of F(1). Because F(1) is aligned to C(1)

(Definition 4.15) d is parallel to one side of its boundary and the line segment line(a,−d,∆)
can never cut this side. line(a,−d,∆− ε) cuts the other side of C(1) boundary with angle

Φ. The length of line(a,−d,∆− ε) must be ≥ dist(∂C(1))
sin(Φ) . The line segment has a length

of ∆. Φ = 2π

sym(P) (Definition 4.15) dist(a,∂C(1))≥ ∆ · sin
(

2π

sym(P)

)
(assumption (2) of this

lemma). This resolves to ∆− ε ≥ ∆ · sin
(

2π

sym(P)

)
/sin

(
2π

sym(P)

)
= ∆, which is obviously

a contradiction. Therefore, line(a,−d,∆− ε) is completely in C(1) and cannot contain
r3 /∈ F(1). ■

4.1.5 Putting Everything Together
Section 4.1.4 showed how to form a pattern P assuming we start in a suitable initial drawing
pattern I and if a compatible drawing path vvv(1) for P(1) exists. We continue by showing
the existence of such a path for patterns with symmetricity sym(P) := sym(P) < |P|/2
(Lemma 4.6); patterns of larger symmetricity can be handled without drawing formations
(Lemma 4.7). Afterward, in Lemma 4.8, we prove that each robot can distinguish in which
phase of our protocol it is:

1. forming I,
2. being part of a valid ε-granular drawing formation F ,
3. dropping the last three robots at the tail’s end, or
4. having been dropped at a pattern coordinate.

Putting everything together, we conclude this section with the proof of Theorem 8.

Lemma 4.6 Consider the ε-granular drawing formation F(1) of the initial drawing
pattern for a connected pattern P of symmetricity sym(P) < |P|/2. The parameter ε

can be chosen such that F(1) has
∣∣LF(1)(ε)

∣∣≥ 2+
∣∣∣P(1)

∣∣∣ ε-granular locations. Moreover,

there exists a drawing path vvv(1) of symmetric component P(1) that is compatible with
F(1) such that

1. the path vvv(1) starts in the anchor a = (2∆,π/sym(P)) of F(1),
2. vvv(1) lies in the first cone (i.e., vvv(1) ⊆C(1)) and

dist
(

vvv(1),∂C(1)
)
> max{ ε,∆ · sin(2π/sym(P))} (4.4)

.
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The proof can be found in Section 4.2, where a suitable drawing path is constructed.

Lemma 4.7 Consider a pattern P with symmetricity sym(P)≥ |P|/2. P can be formed.

In the following proof, we give a protocol for patterns with a symmetricity of n or
n/2. If the diameter of P is ≤ 1, the pattern can be formed in one step, assuming suitable
symmetricity. Otherwise, the robots form P scaled down to diameter 1. Then, the robots
scale the small pattern back to its original (large) size. We show that this protocol can be
computed and executed by the individual robots in our model with limited visibility and
without memory.

Proof. For sym(P) = |P|/2, the pattern P has coordinates

∪sym(P)−1
i=0 {(D1,α1 + i ·2π/sym(P)),(D2,α2 + i ·2π/sym(P))}

with α1,α2 ≤ 2π/sym(P). sym(P) = |P| is just a special case with D1 = D2 and α1 = α2.
Let post(ri) be the positon of the robot ri in round t. In a configuration with symmetricity
|P|/2, the positions are as follows post(ri) = (d1(t),β1(t)+((i−1)/2) ·2π/sym(P)) if i
uneven, post(ri) = (d2(t),β2(t)+(i/2) ·2π/sym(P)) if i even. The robots form in the first
round of the execution the pattern P scaled to a diameter ≤ 1. From there on, they scale
the pattern up. Therefore d1(t)

d2(t)
= D1

D2
and β1(t) = α1,β2(t) = α2 for t > 1. It is clear, that

the “uneven” (i is uneven) robots on post(ri) = (d1(t),α1 +((i−1)/2) ·2π/sym(P)) can
distinguish themself from the “even” robots on post(ri) = (d2(t),α2 +(i/2) ·2π/sym(P))
when d1(t)

d2(t)
= D1

D2
. This is enough to compute the global coordinate system. The robots

move onto positions with the same angle and

d1(i+1) = min
(

d1(i)+1,d1(i) ·
d2(i)+1

d2(i)
,D1

)

d2(i+1) = min
(

d2(i)+1,d2(i) ·
d1(i)+1

d1(i)
,D2

)
.

This reached d1(t) = D1and d2(t) = D2 after ≤max(D1,D2)≤ |P| rounds.
■

Lemma 4.8 Let r ∈ z be a robot in a configuration described in Lemma 4.6 executing
the protocol from Lemma 4.5. Then r can locally distinguish between the following
situations:

1. r is in an initial configuration before the initial drawing pattern is formed
2. r ∈ HF of a valid ε-granular drawing formation F
3. r ∈ Finter ε-intermediate shape
4. r has been dropped from a drawing formation

Proof. The proof argues all four situations separately in the following.
1. If a robot r ∈ z sees |P| robots, it is in a Diam-1-Configuration and observes all

robots z. In that case, r checks whether z equals the initial drawing pattern I
(Definition 4.16) or any of the execution steps resulting from the protocol described
in Lemma 4.5 that are still a Diam-1-Configuration (Θ(1) many). If not, r can
conclude that it is in the initial configuration.
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2. Is clear by Observation 4.2.
3. Is shown in Lemma 4.4.
4. When a robot is dropped from a drawing formation it is on p ∈ P. We know, that

mindist(P) > ε , therefore dropped robots can never form an ε-granular drawing
formation. Moreover, in Lemma 4.5 we have shown that all ε-granular drawing
formations in the configuration are valid. Therefore, no robot r′ ∈ HF can be part
of another ε-granular drawing formation F ′. Similar arguments are true for Finter.
Hence, a robot observing that it is not in one of the first three situations knows that it
has been dropped. ■

Theorem 8 — restated. A connected pattern P can be formed by |P| disoriented
OBLOT robots with limited viewing range in the FSYNC model from a Diam-1-Config-
uration z if and only if sym(z) | sym(P). The formation takes O(|P|) rounds, which is
worst-case optimal.

Proof. The first direction follows from Theorem 1, since a pattern where sI := sym(I)
does not divide sym(P) := sym(P) cannot be formed.

For the second direction, assume sI | sym(P). By Lemma 4.7 the pattern can be formed
if sym(P) ≥ |P|/2, so assume sym(P) < |P|/2. Then we must execute the protocol
described in Lemma 4.5, whose prerequisites (esp. the existence of a suitable drawing
path) can be fulfilled: By Lemma 4.8 we know, that a robot can locally decide between the
phases necessary to start and execute the protocol. If z is in an initial Diam-1-Configuration
before forming the initial drawing pattern I, the robots collectively form I (which has
symmetricity sym(P) and thus can be formed by Theorem 1). From Lemma 4.6’s guarantee
on

∣∣LF(1)(ε)
∣∣ we get that the drawing formation has enough locations for the number of

robots as well as the existence of a suitable drawing path. Thus, we can apply Lemma 4.5
to get that one robot is dropped at each p ∈ P after at most O(|P|) rounds. By Lemma 4.8,
robots can realize that they have been dropped and remain idle on their respective pattern
coordinate. ■
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4.1.6 Illustration of Drawing Path Traversal
The following is an illustration how our protocol traverses a drawing path. The drawing
formation F has initial size ℓ = 7 and state i = 1. Black dots are robots (left: dropped
robots; right: state robots), gray circles are vertices of the drawing path and gray crosses
the pattern positions. Note that the drawing path used for the example not the outcome of
the construction in Section 4.2. However, it is compatible (Definition 4.12) with the pattern.
On the left side an image of the current configuration with a symbolic representation of the
ε-granular drawing formation F is depicted, while the right side zooms in on F , indicating
the state i of the drawing formation F each time (see Definition 4.8). Before the last step,
the three state robots form an ε-intermediate shape (Definition 4.13), an example of such a
shape is depicted in Figure 4.2.

State:
ℓ = 7
i = 1

State: State:
ℓ = 5
i = 6

State:

State:
ℓ = 5
i = 1

State: State:
ℓ = 5
i = 7

State:

State:
ℓ = 5
i = 2

State: State:
ℓ = 4
i = 1

State:

State:
ℓ = 5
i = 3

State: State:
ℓ = 3
i = 1

State:

State:
ℓ = 5
i = 4

State:
shape
intermediate

State:
ℓ = 5
i = 5

State:
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4.2 Existence of Suitable Drawing Paths
In the previous section, we showed that a drawing formation F(i) which is placed in C(i)

can traverse a drawing path vvv of P(i) if F(i) is compatibiliy to vvv(i). We omited all details on
how we can create such a drawing path. In this section, we will construct a path and prove
that it fulfills all required properties of Lemma 4.6. The final proof of Lemma 4.6 can be
found in the end of Section 4.2.2.

Outline. For a symmetric component P(1), we define a tree T (1) with O(n) nodes such
that its nodes cover all points of P(1). The tree’s root node will be (2∆,π/sym(P)), the
initial position of the drawing formation F(1) aligned to P(1). It is clear that a simple
traversal of T (1) will fulfill the requirement (1) and (4) of compatibility. To additionally
fulfill (2) and (3), we construct a tail that fits the requirements and append it to the traversal.
To prove that such a tail always exists we show, that it is always possible to rotate P s.t.
P(1) contains ≥ 3 connected positions.3 We use these three positions to append a tail to
T (1) that fulfills the requirement of compatibility. An illustration of the construction of a
drawing tree can be found in Section 4.2.3.

4.2.1 Constructing a Drawing Tree
Definition 4.17 — Drawing-Tree. Let P(1) be a symmetric component of P. We call
T (1) constructed with algorithm Algorithm 8 a drawing-tree of P(1).

Algorithm 8 CONSTRUCTDRAWINGTREE(P(1))

root← (2∆,π/sym(P))
Basele f t← linear line (2∆,π/sym(P))+ i ·(4δ ,2π/sym(P)) for i∈ {1, · · · ,∞} starting

at root
Baseright ← linear line (2∆,π/sym(P))+ i · (4δ ,0) for i ∈ {1, · · · ,∞} starting at root
T (1)← root +Basele f t +Baseright ▷ Base Tree
while cov(T (1)) ̸= P(1) do ▷ grow the tree inside the cone

let (p, t), p ∈ P(1) \ cov(T (1)), t ∈ T (1) be the pair with minimal distance
if dist(p, t)< 1−δ then

add p to T (1) and connect it to t
else

t ′← (p+ t)/2 ▷ Intermediate node between p and t
add t ′ to T (1) and connect it to t; add p to T (1) and connect it to t ′

remove all subtrees of T (1) that do not cover any p ∈ P(1) and return T (1)

It is clear that T (1) is computable from P. The nodes cover all positions in P(1). Dis-
tances between neighboring nodes are 4δ on the linear lines and at most 1−δ everywhere
else. So T (1) fulfills all requirements for a drawing path for δ ≤ 0.2.4

3While the pattern is connected by definition, the cuts in symmetric components can disconnect parts of
the component. E.g. if the pattern is a multi-helix spiral

4It holds for δ ≤ 0.2 that 4δ ≤ 1−δ
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Observation 4.4 A reasonable short and deterministically computable traversal of T (1)

as defined in Definition 4.17 is a drawing path for δ ≤ 0.2. We define trav(T (1)) to
represent the path of this traversal.

4.2.2 Appending a Tail
trav(T (1)) is a drawing path, but it is not necessarily compatible to a drawing formation
because the tail does not always fulfill the requirements of Definition 4.12. The tail is
the last part of the path, which covers in total ≤ 3 pattern positions (Definition 4.11).
For the compatibility, it must have a length that is traversable by a drawing formation
of 3 robots, i.e. length ≤

∣∣A3
F(ε)

∣∣. Additionally, all positions covered by the tail must
be in the distance ≤ 1 to the last node of the tail. This allows the remaining 3 robots
of the drawing formation to reach the last three pattern positions from the last node of
the tail. In Lemma 4.9 we first show that there exists suitable start point qstart and end
point qend for such a tail. qend is a suitable end point, when it has at least 3 positions
p1, p2, p3 ∈ P(1) in its 1-surrounding. qstart must have a constant distance to qend and cover
at least one additional position p4 ∈ P(1) \{ p1, p2, p3 }. To prove Lemma 4.6 we construct
a compatible drawing path out of qstart , qend and T (1). We connect qstart and qend with
intermediate nodes in a straight line and add possibly up to 3 additional intermediate nodes
around qend to cover the positions p1, p2 and p3. qstart is connected with a straight line
of intermediate nodes to the end of T (1) as well. Because qstart and qend have a constant
distance and cover, together with the intermediate nodes, at least the positions p1, · · · , p4
we know that the tail fulfills the requirements mentioned above.

Lemma 4.9 Let P be a pattern with symmetricity sym(P)< |P|/2. There exist for each
symmetric component P(1) with cone C(1) points qstart and qend such that

1. |B(qend,1)| ≥ 3
2. if

∣∣∣P(i)
∣∣∣> 3

a. |B(qstart ,1−δ )∪B(qend,1)| ≥ 4
b. dist(qstart ,qend) =O(1)
c. dist({qstart ,qend},∂C(1)) = Ω(1/sym(P)+mindist(P))

Proof. (1) Consider a finite subset S⊂R2 of symmetricity s and size |S| ≥ 3s. Assume the
unit disc graph U(S) is connected. It is a geometric fact that there exists a subset C ⊆ S of
size |C|= 3 and with ∠(C)< 2π/s such that U(C) is connected. We stated and proved this
as an auxiliary result in the end of this section (Lemma 4.10). Our pattern P is such a set and
a symmetric component P(1) is a subset with ∠(C)< 2π/s, therefore there exists a rotation
of P such that p1, p2, p3 ∈ P(1) with U({p1, p2, p3}) connected. W.l.o.g. we assume this is
the rotation of P. Then, there exists a point qend with B(qend,1)⊇ {p1, p2, p3}.

Trivial cases for (a), (b) and (c). If P(1) contains 4 positions with U({p1, p2, p3, p4})
connected, it is clear that qstart and qend can be placed with B(qstart ,1−δ )∪B(qend,1)⊇
{p1, p2, p3, p4} (a). If |B(qend,1−δ )| ≤ 3 (w.l.o.g. p4 /∈ B(qend,1−δ )), we place qstart
in distance ≤ 1− δ to p4 (b). qstart and qend have a constant distance (c). If B(qend,1)
contains more than three positions that are not all connected, the placement for qstart is
analog.

(a) and (b) We assume that B(qend,1) = {p1, p2, p3}. Because U(P) is connected,
there exists a path from p1 to p′ ∈ P(1) \ {p1, p2, p3} in U(P). Let p1,w1 · · · ,wk, p′ be
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a shortest path form p1 to p′. The path can only contain 3 consecutive nodes in one
symmetric component (otherwise the component would contain 4 connected positions),
therefore there exist w j ∈ P(2) with j ≤ 3 and wl /∈ P(2) with l ≤ j+3. If wl ∈ P(1), we
find p4 = wl with dist(p1, p3)≤ 6. If wl ∈ P(3), there exist a rotational symmetric point in
P(1), let this be p4. It is clear that dist(p1, p4)≤ dist(p1,wl)≤ 6. We can place qstart in
the distance 1−δ of p4 to fulfill (a) and (b).

(c) qstart can be placed relatively freely in a radius of 1− δ around p4, this easily
fulfill (c). There exist cases where qend must be placed directly on one of the three
connected positions, let this be p1. From Lemma 4.10 we can follow, that w.l.o.g. pend
lies on the bisector of C(1). Let p′P(2) be the rotational symmetric point to p1. Naturally,
dist(qend,∂C(1)) = 1

2dist(p1, p′)≥ mindist(P). ■

Lemma 4.6 — restate. Consider the ε-granular drawing formation F(1) of the ini-
tial drawing pattern for a connected pattern P of symmetricity sym(P)< |P|/2. The
parameter ε can be chosen such that F(1) has

∣∣LF(1)(ε)
∣∣ ≥ 2+

∣∣∣P(1)
∣∣∣ ε-granular loca-

tions. Moreover, there exists a drawing path vvv(1) of symmetric component P(1) that is
compatible with F(1) such that

1. the path vvv(1) starts in the anchor a = (2∆,π/sym(P)) of F(1),
2. vvv(1) lies in the first cone (i.e., vvv(1) ⊆C(1)) and

dist
(

vvv(1),∂C(1)
)
> max{ ε,∆ · sin(2π/sym(P))} (4.4)

.

Proof. Let T (1) be the drawing tree of P(1) Definition 4.17. trav(T (1)) has all prop-
erties for a drawing path (Observation 4.4). Let F(1) be a drawing formation with
ε = Θ(min(1/sym(P),mindist(P),1/

√
|P|) and ∆ = 0.1 and Φ = 2π/sym(P). To make

trav(T (1)) compatible with F(1) we append the points qstart and qend from Lemma 4.9. We
add b =O(P) itermediate nodes w1, · · · ,wb between the end of trav(T (1)) and qstart . We
add b′ =O(1) intermediate nodes wb+1, · · · ,wb+b′ between qstart and qend . The resulting
path is

vvv(1) := trav(T (1))+(wi)
b
i=0 +(qstart)+(wi)

b+b′
i=b+1 +(qend)

We make sure, that

cov((wi)
b+b′
i=b+ j +(qend))⊆ B(qend,1) with |cov((wi)

b+b′
i=b+ j +(qend))| ≥ 3

for 1≤ j≤ b′. This is possible by placing up to 3 intermediate nodes in distance≤ δ to qend .
This number of nodes is sufficient to reach qstart , respectively qend , with distances ≤ 1−δ

between wi and wi+1, because qstart has a distance O(|P|) from any node of trav(T (1))
and qend has a constant distance from qstart (see Lemma 4.9). There obviously exist
deterministic methods to define the intermediate paths, chose qend , qstart , and determine
trav(T (1)) with hops(trav(T (1))) =O(|P|).

Compatibiliy We show that conditions (1) - (4) from Definition 4.12 are fullfiled. (1)
with δ = 0.1 this is fullfiled (2) From Lemma 4.9 we know that |B(qend)|= 3. From the
equation in the beginning of this proof follows cov(tail(v(1)))⊆ B(qend), (3) If |P(1)| ≥ 4
than |B(qstart ,1−δ )∪B(qend,1)| ≥ 4 (by Lemma 4.9 (2)) Hence, the tail of v(1) must start
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after qstart . |tail(v(1))|=O(1) in this case (3) is fulfilled (see Lemma 4.1). If |P(1)|= 3 we
know that ε =O(1/|P|). By Lemma 4.1) follows that A3

F(ε) = Ω(|P|). tail(v(1)) = v(1)

with length O(|P|) in this case. This fulfills (3). (4): With ε = O(1/
√
|P|) we have

|A4
F(ε)|= Ω(|P|) (see Lemma 4.1). We have |v(1)|=O(|P|). This fulfills (4)

Requirements (1) and (2) of Lemma 4.6. (1) the root node of T (1) has coordi-
nate (2∆,π/sym(P)) and is the start of v(1). (2) By construction of Definition 4.17 is
clear that dist(t,∂c(1))≥ dist((2∆,π/sym(P)),∂c(1)) = ∆ · sin

( 2π

sym(P)

)
for t ∈ T (1). By

Lemma 4.3 we know that

dist(zi,∂C(1)) = Ω(mindist(P)), i ∈ {1,2} and

ε < min(1/sym(P),mindist(P),1/
√
|P|) ·∆.

With this choice of ε we can create a ε-granular drawing formation that has more locations
that |P(1)|+2.

Such that F is an ε-granular drawing formation, the parameter ∆,φ and ε must be
known. ∆ and Φ are given above and computable from P.

ε = min(1/sym(P),mindist(P),1/
√
|P|) · c

for a constant c < 1. The constant can be deterministically determined (but we never write
it down). ■

4.2.3 Illustration of the Drawing Path Construction
The construction of a drawing path for one symmetric component is illustrated in the
following. It considers a square as the pattern P; its symmetricity is sym(P) = 4 and is
split into 4 symmetric components. The cone of the symmetric component has an angle of
90◦. As a first step, the “Base Tree” along the cone is created. Nodes are depicted as ◦
and pattern positions as ×. The gray area around a node depicts the distance, that can be
reached by robots in a drawing formation on that node.

Next, the tree “grows” iteratively towards the nearest pattern position. Two steps are
exemplary illustrated, the third image depicts the final drawing tree after all positions are
within the reach of a node.
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Afterwards, all subtrees where no nodes are within reach of a pattern position are removed
and a traversal of the drawing tree is computed. To get the final drawing path, a fitting tail
is computed and appended in the end.

4.2.4 Auxiliary Result

Lemma 4.10 Consider a finite connected subset S⊂R2 of symmetricity s := sym(S) ∈
N and size |S| ≥ 3s. There exists a subset C ⊆ S of size |C|= 3 and with ∠(C)< 2π/s
such that C is connected.

Proof. For s = 1 the statement is trivial. So assume s > 1, such that 2π/s≤ π . Consider
the points from S in polar coordinates, where we consider angular coordinates on (−π,π].
Since S is connected and |S| ≥ 3, there are three points p = (r,φ),q1 = (r1,φ

′
1),q2 =

(r2,φ
′
2)∈ S with dist(p,q1)≤ 1 and dist(p,q2)≤ 1. Because S has symmetricity s, without

loss of generality we can assume φ ∈ [0,2π/s) (otherwise we find corresponding rotation-
symmetric points for p, q1, and q2). Using again the symmetricity, for each i ∈ {1,2} we
find a pi = (ri,φi) ∈ S with φi ∈ [0,2π/s).

For i∈ {1,2} and k ∈K := {0,1, . . . ,s−1}, define pi,k := pi+(0,k ·2π/s) =: (ri,φi,k)
and set Si := { pi,k | k ∈ K } ⊆ S.5 In other words, Si is the set of all points in S that are
rotation-symmetric to pi. In particular, qi ∈ Si. For any pi,k ∈ Si, the distance formula for
points in polar coordinates yields

dist(p, pi,k)
2 = r2 + r2

i −2r · ri · cos
(

φ −φi− k · 2π

s

)
. (4.5)

By choice of pi, we have |φ −φi| ∈ [0,2π/s). The right-hand side of Equation (4.5) is
minimized at the unique ki ∈ K for which |φ −φi− ki ·2π/s| ∈ [0,π/s). More exactly, we
have

• ki = 0 if |φ −φi| ≤ π/s,
• ki = 1 if φ −φi ≥ 2π/s, and
• ki = s−1 if φ −φi ≤−2π/s.

In any case, the choice of ki yields ∠(p, pi) =
∣∣φ −φi,ki

∣∣< π/s as well as (together with
qi ∈ Si ⊆ S) dist(p, pi,ki)≤ dist(p,qi)≤ 1.

Now consider the three element set C := { p, p1,k1, p2,k2 } ⊆ S. As shown above,
dist(p, pi,ki)≤ 1 for both i ∈ {1,2}, so C is connected. Moreover,

∠(C)≤ ∠(p, p1,k1)+∠(p, p2,k2)< 2π/s. (4.6)

Thus, we found a set C with the required properties. ■
5Remember that we consider angular coordinates modulo the interval [−π,π), such that φi,k ∈ [−π,π)

for all i ∈ {1,2} and k ∈ K := {0,1, . . . ,s−1}.
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4.3 Description of the Pattern-Formation Protocol
Even though we have proven that a protocol for ARBITRARY-PATTERN-FORMATION

exists in this chapter, its description is split throughout many sections and done implicitly
during proofs. Some parts of the protocol are proven to be possible without even defining
how to do them. In this section we like to present the protocol in a complete and more
streamlined version with pseudocode.

The main algorithm of the protocol is PATTERNFORMATION(P,r, neighborhood). It
is described in the proof of Theorem 8. Every robot executes this algorithm in each
round. For better readability, we pass the executing robot r and its neighborhood (all robots
withing viewing range of r) to the algorithm. The algorithm call several subroutines that are
presented afterwards. All subroutines are derived from definitions, lemmas, and proofs of
this chapter. Note that, for a better readability, we assume P as well as the below computed
parameters ε,∆,φ and δ as global variables and do not pass them to every subroutine.

Algorithm 9 PATTERNFORMATION(P,r, neighborhood)

P(1)← GETSYMMETRICCOMPONENT(P)
ε,∆,φ ,δ ← COMPUTEPARAMETERS(P)
vvv(1)← CONSTRUCTDRAWINGPATH(P(1))
F , phase← COMPUTEPHASEANDDRAWINGFORMATION(r, neighborhood)
if phase = “robot is in Diam-1-Configuration” then

FORMINITIALDRAWINGPATTERN(P(1),r, neighborhood)
execute formation of initial drawing pattern (Definition 4.16)

else if phase = “‘robot is in drawing formation” then
MOVEDRAWINGFORMATION(vvv(1),F,r, neighborhood)

else if phase = “in intermediate shape” then
EXECUTEMOVEOFLASTTHREEROBOTS(vvv(1),F,r, neighborhood)

else if phase = “robot is on final position” then
do nothing

A symmetric component (Definition 4.14) can be computed easily by simply splitting
the pattern at its SEC-center in cake-pices. In Lemma 4.10 is state, that there always exist
a rotation of P such that P(1) contains three positions where the unit disc graph (regarding
unit distance 1) is connected (see also the proof of Lemma 4.9). The following algorithm
makes sure, that P is rotated accordingly. Note, that the parameter P has always the exact
same value (i.e. the positions are in the same order) for all robots and all rounds. Therefore,
the following algorithm always produces the exact same value of P(1).

Algorithm 10 GETSYMMETRICCOMPONENT(P)
translate P such that its SEC-center is at the origin
index← 0
P(1)← as defined in Definition 4.14
while P(1) contain not three connected positions do

P← rotate P such that pindex is on the positive X-axis
index← index+1
P(1)← as defined in Definition 4.14 in the current rotation of P

return P(1)



4.3 Description of the Pattern-Formation Protocol 99

Our protocol uses an ε-granular drawing formation (Definition 4.6) that traverses a
δ -drawing path (Definition 4.9). Such that this traversal can be executed both must be
compatible (Definition 4.12) with each other. Lemma 4.6 states, that it is possible to
create a compatible pair. To guarantee this, we compute ε,φ ,δ and ∆ and use these in the
computation of the drawing path as well as the computation of the drawing formation. The
algorithm below contains the constant factor c that is not further specified. It is composed
of the following. The number of states in the drawing formation must be least the length
of the drawing path. Note, that this is a relevant requirement for the compatibility because
the steps along the path are counted via the states. During the proof of Lemma 4.6 (see
Section 4.2.2, paragraph Compatibility in the proof) we have shown that the drawing
formation has at least

∣∣A4
F(ε)

∣∣ states. In Lemma 4.1 we estimate the sizes of
∣∣A4

F(ε)
∣∣ with

Ω(∆3 ·φ/ε3). We know that φ ≥ 1/sym(P) and ∆ is a constant. With ε ≤ 1/sym(P) and
ε ≤ 1/

√
|P| as chosen below we know that

∣∣A4
F(ε)

∣∣ ∈Ω(|P|). The length of the drawing
path that is computed in CONSTRUCTDRAWINGPATH(P(1)) is in O(|P|). To get a fitting
value of c it is sufficient to start with c = 1 and count

∣∣A4
F(ε)

∣∣, and the length of the drawing
path. If

∣∣A4
F(ε)

∣∣ is to small one can double c and try again. It only needs constant many
repeats to reach a fitting c.

Algorithm 11 COMPUTEPARAMETERS(P)
∆← 0.1
δ ← 0.5
ε ←min(1/sym(P),mindist(P),1/c

√
|P|) ▷ constant c as described above

φ ←min(2π/sym(P),π/3)
return ε,∆,φ

The following subroutine describes the construction of a drawing path as described in
Lemma 4.6. It is also illustrated in Section 4.2.3. We do not further specify how to compute
the traversal of the drawing tree T (1). As stated in Observation 4.4 any reasonable short
traversal (length in O(|T (1)|)) will do as long it is deterministically computable (returns
exactly the same path each time).

Algorithm 12 CONSTRUCTDRAWINGPATH(P(1))

T (1)← CONSTRUCTDRAWINGTREE(P(1)) ▷ Algorithm 8, the drawing tree of P(1)

trav← traversal of T (1)

tail← CONSTRUCTFITTINGTAIL(P(1),P, trav,∆,ε )
return traversal + tail

The construction of the tail is described in the beginning of Section 4.2.2. In GET-
SYMMETRICCOMPONENT(P(1)) we made sure, that P(1) contains at least 3 positions that
are connected in the unit disc graph. One of these positions, we call it pend , must be
connected to the other both. The following algorithm searches pend iteratively to end the
tail there. Note, that the proof of Lemma 4.9 requires that pend is on the bisector of C(1)

(the cone enclosing P(1), see Definition 4.14). W.l.o.g. we assume, that P(1) is rotated
accordingly (this could be easily implemented in GETSYMMETRICCOMPONENT(P(i)) but
is omitted there for readability). qstart is the start of the tail. As required in Lemma 4.9 it
must have a constant distance to pend , be near a fourth position and sufficiently fare away
from the boundary of the cone C(1). We have shown in the proof Lemma 4.9 that there



100 Chapter 4. Forming Large Patterns from Contracted Swarms

always exists a fourth position pstart ∈ P(1) with distance ≤ 6 to pend (see paragraph (a)
and (b)). We place qstart within distance 1−δ to pstart such that it fulfills all the conditions
of Lemma 4.9.

Algorithm 13 CONSTRUCTFITTINGTAIL(P(1), trav)

for pend, p, p′ ∈ P(1) do
if dist pend, p≤ 1 and dist pend, p′ ≤ 1 then

qend ← pend
p, p′ are stored
end of for-loop

for pend ∈ P(1) do
if dist(pstart , pend)≤ 6 and pstart ̸= pend and pstart ̸= p and pstart ̸= pend then

pend is stored
end of for-loop

dmax←max{ ε,∆ · sin(2π/sym(P))} ▷ see Lemma 4.5 for an explanation of the value
if dist({pstart},∂C(1))< dmax then ▷ distance to boundary C(1) to small

if bisector of C(1) is within distance 1/2 to pstart then
qstart ← pstart projected orthogonal on the bisector of C(1)

elseqstart ← pstart moved 1/2 towards the bisector of C(1)

else
qstart ← pstart

pathToTail← direct path from last node of trav to qstart with nodes in distance 1−δ

tail← direct path from qstart to qend with nodes in distance 1−δ

return pathToTail + tail

We defined in Lemma 4.8 that we can distinguish four situations (called phases) which
we can label with “robot is in Diam-1-Configuration”, “robot is in drawing formation”,
“robot in intermediate shape”, and “robot is on final position”. The following algorithm
computes, in which of these phases a robot is. A central part of this computation is
the detection of a drawing formation in the neighborhood, this is defined as a separate
subroutine below.

Algorithm 14 COMPUTEPHASEANDDRAWINGFORMATION(r, neighborhood)

F , phase← COMPUTEDRAWINGFORMATION((ε,∆,φ),r, neighborhood)
if |neighborhood|= |P| and dist(neighborhood)≤ 1 then

if neighborhood is a configuration that fits to the state of F then
pass ▷ the phase check is continued below

else
return /0, “robot is in Diam-1-Configuration”

if phase = “robot is in drawing formation” then
return F , “robot is in drawing formation”

else if phase = “robot is in intermediate shape” then
return F , “robot is in intermediate shape”

else
return /0, “robot is on final position”
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The following algorithm is used such that robots that are part of a drawing formation
compute the drawing formation to determine the current drawing formation Observation 4.2.
If a robot is not part of a drawing formation, the algorithm will return /0, therefore it can be
used to check whether a robot is part of a drawing formation.

Algorithm 15 COMPUTEDRAWINGFORMATION(r, neighborhood)

pairs← detect all pairs (r1,r2) with dist(r1,r2) = ε in neighborhood
found-drawing-formation← None
for all (r1,r2) ∈ pairs do

r3← find colinear robot in distance ≤ ∆ to r1 and r2
if r3 exists then

a,d ← compute anchor and direction of the defining robots r1,r2,r3 (Sec-
tion 4.1.2)

H← drawing hull with a,d,∆,φ (Definition 4.1)
R← robots within H ▷ state robots, seeDefinition 4.2
F ← (R,H) ▷ ε-granular drawing formation (Definition 4.6)
if r is in H then

return F , “robot is in drawing formation”
elsefound-DF← F

else ▷ this is used for EXECUTEMOVEOFLASTTHREEROBOTS

find third robot in distance ε

Finter← intermediate shape as defined in Definition 4.13
if r ∈ Finter then

return Finter, “robot is in intermediate shape”
elsefound-DF← Finter

return found-drawing-formation, “robot is not in drawing formation”

The initial drawing pattern I of pattern P is defined in Definition 4.16. It is a pattern
with symmetricity sym(P). Initially, the robots have a global visibility because the diameter
of the swarm is smaller than the viewing range. Therefore, the protocol from [69] can
be applied to form it. The following algorithm applies this protocol. A central part of
this protocol is the computation of a common coordinate system that is independent of
the local orientation of robots. A separate subroutine translates the neighborhood is such
an independent coordinate system. Note, that GETSYMMETRICCOMPONENT(M) always
returns the same Q(1) if the same value M is passed. It is necessary that r is in Q(1). If this
is not the case, Q(1) is rotated accordingly by a multiple of 2π/sym(z0) (see while-loop
below).

Algorithm 16 FORMINITIALDRAWINGPATTERN(r, neighborhood)
N← list of coordinates in neighborhood (arbitrary order, in local coordinate system)
M,center,rot← COMPUTECOMMONCOORDINATESYSTEM(N)
Q(1)← GETSYMMETRICCOMPONENT(M)
translate local coordinate system that center is the origin
rotate the local coordinate system by rot
while r not in Q(1) do

rotate Q(1) by 2π/sym(M)

I← initial drawing pattern as defined in Definition 4.16
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translate I such that it is centered at the origin
I(1)← cut I with the cone of Q(1)

num← index of p′ in Q(1) with p′ = r
p← position with index num in I(1)

r moves onto position p

The following subroutine computes a unified translation, rotation and order of the
coordinate list N. This makes the coordinates independent of the local position and orien-
tation of the robot. If N has a symmetricity > 1, there is no unambiguous deterministically
computable rotation rotmin as described below. However, there are multiple rotmin that are
rotations of each other by a multiple of 2π/sym(N). It is a key property of the symme-
tricity (Definition 1.2) that all such rotmin leads to exactly the same value of Nrot below.
Note, that the concrete chosen and returned rotmin has a relevance for the subroutine above
(the while-loop there corrects it).

Algorithm 17 COMPUTECOMMONCOORDINATESYSTEM(N)
center← the center of the SEC of N
Ncentered ← translate N such that center is the origin
lexmin← smallest lex of the following loop
for p ∈ N do

rot← rotation such that p is on the positive X-axis
N′← Ncentered rotated accordingly, coordinates lexicographical sorted
lex← lexicographical representation N′

rotmin← rot with lex = lexmin of the previous loop
Nrot ← rotate Ncentered by rotmin
return Nrot ,center,rotmin

The following algorithm describes how each individual robot inside the drawing
formation computes the movement of the whole drawing formation as well as where the
individual robot has to move. We defined in Observation 4.1 that a drawing formation F
can be moved by mapping state robots of the drawing formation in round t to the state
robots in round t +1 and pattern positions nearby (”drop-coordinates”). For the last step,
robots form an intermediate shape Finter as defined in Definition 4.13 (see subroutine
Algorithm 19 for more explanation).

Algorithm 18 MOVEDRAWINGFORMATION(vvv(1),F,r)

let F = (R,a,d,∆,φ) ▷ a is the anchor andR the set of state robots
num← number of stateR ▷ see “Enumeration of States” in the proof of Lemma 4.2
i← index of robot r in the list of state robotsR
let vvv(1) = (v1, · · · ,vk)
if num < k then ▷ anchor is not on the last node
R+← state with number num+1 ▷ state of the next drawing formation
move← vnum+1− vnum
a+← a+move ▷ anchor of the next drawing formation
F+← (R+,a+,d,∆,φ) ▷ the next drawing formation
if vnum /∈ tail(vvv(1)) then

drop-coordinates←{p− vi for p ∈ cov(vi)}



4.3 Description of the Pattern-Formation Protocol 103

else
drop-coordinates← /0

if i≤ |R+| then ▷ robot r will be part of the next drawing formation
r moves onto coordinates of state robot with index num inR+

else ▷ robot r will move onto one of the drop-coordinates
r moves onto drop-coordinate number i−|R+ |

else if num = k then ▷ anchor is on the last node
Finter← intermediate shape on a as defined in Definition 4.13
r moves onto the coordinate of index i in Finter

Reaching the last three positions of a symmetric component is different from the
movement onto a “drop-coordinate” as done in the algorithm above. The nodes of the
traversal path are always placed near to the positions such that each robot can reach it with
a movement of distance ≤ 1. For the last three positions it may happen, that robots need to
move a distance of 1+∆, this is not possible in one round. Because robots have no memory,
they cannot simply remember how to continue the movement in the next round. We defined
in the proof of Lemma 4.3 how the last three positions of a symmetric component can be
reached with an intermediate step Definition 4.13 that, similar to a drawing formation state,
can be locally recognized by the robots in the next round to continue the movement onto
the desired pattern positions (see Lemma 4.4). During TRAVERSEDRAWINGPATH above,
the intermediate shape is formed if the drawing formation is on the last node. Note, that
the intermediate shape is designed in a way that each of the three robots is nearest to the
position where it has to move. The following algorithm uses this property to move the
robots onto these positions.

Algorithm 19 EXECUTEMOVEOFLASTTHREEROBOTS(vvv(1),Finterr, neighborhood)
Lemma 4.3

let positions be the remaining three position
let r′ and r′′ be the other two robots in Finter
for p ∈ positions do

if dist(p,r)≤ dist(p,r′) and dist(p,r)< dist(p,r′′) then
r moves onto p





5. Conclusion and Outlook

In this thesis a (partial) solution of the ARBITRARY-PATTERN-FORMATION for disoriented
robots with limited visibility was presented. It was already known that even with global
visibility and memory the formation of a pattern is only possible when the symmetricity of
the initial configuration divides the symmetricity of the pattern (Theorem 1). A protocol
that forms any connected pattern (“large pattern”) from any connected configuration
(“widespread swarm”) with the mentioned condition would be the best possible solution
for APF with limited visibility under the known limitations (it is discussed below in
Section 5.1 whether it is truly necessary that the configuration or the pattern needs to be
connected). These results are fully reached with Theorem 8 for an initial configuration
that has a diameter of ≤ 1 (“contracted swarms”). In Observation 1.1 it is shown that,
using the same model, APF for a widespread swarm is not possible. Instead, a solution
that uses one bit of memory is presented. Any NEAR-GATHERING protocol that does not
change the symmetricity of the swarm can be used to solve APF because the robots can
remember with one bit of memory, that they already gathered and are now executing the
APF protocol above.

NEAR-GATHERING protocols are presented that contract any connected swarm such
that its diameter is ≤ 1 (Chapter 2). However, these protocols may change the symmetri-
city of the configuration. In Section 5.2.1 we discuss the challenges that λ -contracting
NEAR-GATHERING protocols face to preserve the symmetricity. Chapter 3 presents a
different approach on NEAR-GATHERING protocols that preserve the symmetricity of a
configuration under certain conditions: the Connectivity-Boundary of the initial configu-
ration must be convex and must not contain holes (Theorem 7). Under these conditions,
ARBITRARY-PATTERN-FORMATION is solved for disoriented robots with limited visi-
bility. In Section 5.2.2 we discuss how the NEAR-GATHERING protocol can be adapted
to preserve symmetricity for all connected configurations. A second protocol based on
GO-TO-THE-AVERAGE is given that preserves symmetricity for all initial configurations.
However, it does not always solve NEAR-GATHERING because robots can lose connectiv-
ity and requires some degree of global knowledge. A discussion about why connectivity
cannot be preserved and how to reduce the necessity of global knowledge can be found in
Section 5.2.3.

This thesis assumes the fully synchronous FSYNC scheduler. Some results on APF
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[16] show that patterns can also be formed in ASYNC, even though this requires a stronger
condition on the initial configuration. In Section 5.3 we discuss how the results of this
thesis can be translated for asynchronous models.

5.1 Limited Visibility and Connectivity
In our theorems, we assume that the unit disc graph of the pattern P and the initial
configuration z are connected. This is a natural assumption for robots with limited visibility
because they cannot interact beyond their viewing range. Whenever such pattern formation
is used in a real-world application, basically only connected patterns are meaningful (e.g.,
for creating an ad-hoc-network). z must always be connected. Otherwise, it cannot be
guaranteed that all robots are contracted to a configuration with diameter ≤ 1. However,
our protocol is capable of forming patterns with less connectivity. It applies to any pattern
P where a compatible drawing path can be created. When we translate Definition 4.12 to a
pattern, we get the following condition:

Let perm(P) be a permutation of P. There exists perm(P) = (pi)
k
i=1 such that

1. dist(pi, pi+1)≤
∣∣∣Ak−i

F (ε)
∣∣∣ for 1≤ i≤ k−2

2. pk−2, pk−1 and pk must have a smallest enclosing circle of radius ≤ 1
Condition (1) follows from (1) and (2) of Definition 4.12, and condition (2) is necessary
such that a drawing path can fulfill (4) of Definition 4.12.

Besides the last three robots, the maximal distance between two pattern positions
is dependent on

∣∣∣Ak−i
F (ε)

∣∣∣. In the proof of Lemma 4.1 we have shown that
∣∣∣Ak−i

F (ε)
∣∣∣ =

O
((

ε−1

k−i−3

))
. We can choose ε freely to reach any distance necessary.

5.2 NEAR-GATHERING with Symmetricity Preservation
The discussion is split into three parts, each arguing about the possibilities of transforming
one of the three NEAR-GATHERING approaches of this thesis (λ -contracting NEAR-GATH-
ERING protocol, WAVE-PROTOCOL and ε-GO-TO-THE-AVERAGE) into a more general
symmetricity preserving NEAR-GATHERING protocol.

5.2.1 Symmetricity Preservation with λ -contracting NEAR-GATHERING
protocol
In [10], a class of NEAR-GATHERING functions is introduced. In general, these functions
do not preserve symmetry. A simple example is an adaptation of the GO-TO-THE-CENTER

protocol where robots move to the center of the smallest enclosing circle of their local
neighborhood1. Let us assume a configuration zt with symmetry. After performing GO-TO-
THE-CENTER the new configuration zt+1 must also be symmetric. The smallest enclosing
circle depends only on robots that reside exactly on the circle. We fix all robots in z that
are on these circles and perturb all other robots so that the configuration is asymmetric. Let
this be configuration z̆t . After performing GO-TO-THE-CENTER the new configuration
is z̆t+1. Because the smallest enclosing circles have not changed, the robots in z̆t move
onto the same positions as the robots in zt . Therefore, with z̆t+1 = zt+1 we can introduce
symmetries. The following open problem remains.

1In GO-TO-THE-CENTER as defined in [2, 24] robots move only halfway towards the center.
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Open Problem 1 Does a λ -contracting NEAR-GATHERING protocol exist that pre-
serves symmetry?

5.2.2 Generalization of WAVE-PROTOCOL

A central part of our analysis is that the robots on the Connectivity-Boundary perform the
same linear function during the execution. This is only the case, if the set of boundary-
robots never changes. If we allow for a non-convex Connectivity-Boundary, robots move
towards the outside of the swarm in concave sections. So, eventually two robots of the
Connectivity-Boundary that initially have a distance > 1 will reach a distance ≤ 1. One of
these robots is no longer part of the Connectivity-Boundary in the next round. One could fix
this by introducing memory, but with memory symmetry preserving NEAR-GATHERING

is already solved [72]. Another possible fix is to not move robots on concave parts of the
Connectivity-Boundary. But eventually, these parts become convex and robots start to
move according to ε -GTM which, again, changes the linear function.

The second restriction are holes. Robots at the boundary of large holes cannot distin-
guish their location locally from the Connectivity-Boundary. Therefore, they will start
with a NEAR-GATHERING that eventually leads to a configuration, where no hole exists
anymore. But this configuration can have another pre-image where the inner robots already
had the position of the eliminated hole. Therefore, the protocol is not invertible in this
case.

The proofs in Section 3.3 can be generalized for a class of strategies. Our core idea
is to split the robots into layers (i.e. boundary, wave and inner). The outermost layer
performs a NEAR-GATHERING protocol that is symmetry preserving. All other layers
perform protocols, such that they stay inside the outermost layer. The outermost layer is
always distinguishable and invertible. The inner layers are distinguishable and invertible, if
the outer layers are known. The advantage of this class of protocols is, that you can reduce
the problem of an invertible NEAR-GATHERING protocol to a restricted set of robots.
However, even for a restricted set of robots like those on the Connectivity-Boundary it
turns out to be a major challenge to find a symmetricity preserving protocol that works for
all configurations.

5.2.3 Generalization of Averaging
To solve NEAR-GATHERING with the averaging protocol Algorithm 4 the initial configura-
tions must contain evenly spread robots. One example is a square (or triangle or hexagon)
that is filled with a regular grid with distance < viewing range. Also, perturbations of such
configurations lead to NEAR-GATHERING. However, you can always create configurations
that loose connectivity. Place twice n/2−1 robots in Diam-δ -Configuration with distances
3−3δ in between. Place two robots between them, such that the UDG with unit distance
1−δ is connected. Even for the weight functions, the connectivity will be lost if n is large
enough. Therefore, a general NEAR-GATHERING protocol cannot be based on averaging.
The following problem remains open.

Open Problem 2 Let us consider disoriented robots according the OBLOT model with
limited visibility. Does a NEAR-GATHERING protocol that preserves symmetricity for
connected configurations with non-convex Connectivity-Boundary (Definition 1.6) or
1-holes (Definition 1.7) exist?
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The averaging protocol uses the global knowledge of the number n of robots in the
swarm. In the ARBITRARY-PATTERN-FORMATION problem, this knowledge is implicitly
available with the pattern P because it is defined with |P| = n. To adapt ε-GO-TO-
THE-AVERAGE without any global knowledge, the parameter n in Equation (3.9) can be
replaced by ∑

n
j=1 b(∥zi− z j∥2). This does not significantly change the NEAR-GATHERING

properties of the protocol; however, the changed evolution function must be proven to be
invertible. To adapt the invertibility proof of Lemma 3.6 a new estimation of ε is required
that is dependent on the Gersch Gorin radii of the evolution functions Jacobian DF(z)
(Lemma 3.8). An attempt to estimate it yields a result that still depends on n. However,
the estimation was not sharp. Therefore, different analysis methods may show, that ε can
indeed be estimated independent of n. The following problem remains open.

Open Problem 3 Consider disoriented robots according to the OBLOT model with
limited visibility. Does a non-trivial protocol exist that used no global knowledge and
preserves symmetricity for all configurations?

5.3 Synchronicity
We assume the fully-synchronous FSYNC scheduler for our protocol. In the related work,
many papers assume ASYNC. It turns out that APF is significantly harder under ASYNC

than under FSYNC. The authors of [16] proved that, for an unlimited viewing range,
APF under ASYNC is equivalent to LEADER-ELECTION. This means the limitation from
Theorem 1 does not hold forASYNC, instead the symmetricity of a configuration must be 1
to solve APF. The problem is not only a harder one in therms of solution space, apparently
the solutions to the problem are also harder to prove correct. [34] provided a solution for
the same problem and stated, that APF is equivalent under ASYNC and FSYNC. However,
[16] disproved their result.

An unlimited viewing range makes it much easier to maintain common knowledge in
the swarm (like a common coordinate system). For a limited viewing range, our protocol
must maintain this information during execution (e.g. using the ε-granular drawing
formations). In the ASYNC model, where only a part of the drawing formation might
be activated, we would have to ensure that “partially” moving a drawing formation does
not destroy the encoded information (e.g., by encoding information redundantly). It is a
crucial part of ε-granular drawing formations that their robots can identify them and we
would have to maintain this property under partial movements. While it seems challenging
(especially considering the failed attempt from [34]), a careful design might be able to
solve this.

Open Problem 4 Let us consider disoriented robots according the OBLOT model with
limited visibility and ASYNC scheduler. Does a protocol exist that solves APF for any
non-trivial combination of initial configuration and pattern?

Furthermore, NEAR-GATHERING must also work in asynchronicity. The λ -contracting
NEAR-GATHERING protocols work under SSYNC (see Observations 2.3 and 2.4), but its
collision avoidance does not work under ASYNC. The collision avoidance requires that
robots can compute all possible target positions of the robots around. When in ASYNC

a robot r is observed, which is currently moving, the snapshot that r used to compute its
movement cannot be observed. Therefore, its target position cannot be computed, and the
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collision avoidance method does not work. A different approach to collision avoidance
that would work well under ASYNC is to define for each robot an exclusive area where it
is allowed to move, but no other robot may enter. This can be done with a function that is
only dependent on the current positions of robots, not their target positions (e.g. Voronoi
cells). A major problem with this approach is that the movement of robots near the global
convex hull may be infinitesimal small, if they are blocked by nearby robots in the inside
of the swarm. The system must be carefully designed so that no deadlock is created. The
protocol is not λ -contracting because a robot that is at the edge of its local convex hull
may observe other robots in a constant distance but nevertheless moves only infinitesimal
far. Therefore, the running-time and correctness proof provided in Chapter 2 would not
apply for this approach.

Open Problem 5 Does a NEAR-GATHERING protocol for disoriented robots according
the OBLOT model with limited visibility and ASYNC scheduler exist?

The method of analyzing the symmetricity change induced by a protocol presented in
Chapter 3 requires that the evolution function of a protocol be locally invertible (Theorem 5).
The partial activation of robots in SSYNC can be included in the evolution function
by adding the binary parameters a1, · · · ,an, where ai determines whether z+i = zi or
z+i = f (zi,z). However, because of the arbitrary nature of the activation, that makes the
evolution function non-invertible. Therefore, our method cannot be adapted for SSYNC

and ASYNC. The following problem remains open.

Open Problem 6 What properties must a protocol have to preserve symmetricity under
the SSYNC or ASYNC scheduler?
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