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Abstract. Large Language Models (LLMs) have immense capabilities in under-
standing and generating language. They are becoming increasingly powerful and
hold significant potential in software engineering, where their applications are being
actively explored and investigated. Within the field of software engineering, static
analysis involves evaluating a program without executing its source code, enabling
early detection of bugs and vulnerabilities.

In this study, we focus on evaluating the performance of LLMs in static code
analysis tasks, particularly call graph construction for Python, JavaScript, and Java
programs. We assessed 26 LLMs, including OpenAl’'s GPT series and open-source
models such as LLaMA and Mistral, using both existing and newly designed micro-
benchmarks. As part of this study, we introduced SWARM-CG, a comprehensive
benchmarking suite aimed at evaluating call graph construction tools across multiple
programming languages including Python, JavaScript, and Java. SWARM-CG
facilitates cross-language comparisons and consistent analysis. Additionally, we
developed SWARM-JS, a specialized micro-benchmark tailored for JavaScript call
graph analysis tasks. The performance of LLMs was also systematically compared
with traditional static analysis approaches, highlighting their relative strengths and
limitations.

The results of this study reveal that, in Python, traditional tools like PyCG
significantly outperform LLMs. For JavaScript, the static analysis tool JELLY
surpasses LLMs in soundness, while another tool, TAJS, underperforms due to its
limited support for modern language features. Interestingly, LLMs achieve consider-
ably better results in Python compared to JavaScript, where several models produce
weak outputs. In the case of Java, the static analysis tool SOOTUP falls short due to
its limited support for the dynamic language features present in the CATS benchmark
used for Java evaluations. However, LLMs demonstrate strong performance in Java.
These findings highlight the potential of LLMs to assist static code analysis tasks,
while also underscoring their current limitations in call graph construction. This
study establishes a foundation for integrating LLMs into static analysis workflows and
advocates for further research into their optimization and broader applications.
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Introduction _

With the advancements in artificial intelligence and natural language processing, there has
been a lot of research regarding the application of Large Language Models (LLMs) in Software
Engineering (Hou et al., 2024; Li et al., 2023a; Pearce et al., 2023; Wang et al., 2023; Song
et al., 2023). LLMs are increasingly powerful neural network models trained on large datasets of
text and code, allowing them to learn the underlying patterns in data and produce human-like
responses across a variety of tasks (Ozkaya, 2023). With applications ranging from natural
language processing and translation to code generation and software engineering, LLMs have
great potential across various fields.

Several studies investigate the role LLMs can play in Static Code Analysis (SA) which is
a fundamental aspect of Software Engineering (SE) (Li et al., 2023a; Ozturk et al., 2023; Fan
et al., 2023; Ziems and Wu, 2021). SA focuses on evaluating code without executing it, allowing
developers to detect potential errors, maintain code quality, and identify security vulnerabilities
early in the development lifecycle. Historically, SA tools have faced challenges, such as the high
rates of false positives, the difficulty of scaling to large codebases, and the limited ability to
handle ambiguous or incomplete code. Recent works have shown how different SA tasks can
benefit from LLMs, such as static bug detection and false-positive warning removal (Mohajer
et al., 2024), precise function summaries generation (Li et al., 2023a), type annotation (Sei-
del et al., 2023), and general enhancements in precision and scalability of SA tasks (Li et al.,
2023b), both fundamental issues of SA.

Goal: This thesis is dedicated to examining the effectiveness of LLMs in SA within SE. It
aims to evaluate the accuracy of LLMs in performing static call graph analysis tasks
in Python, JavaScript, and Java programs. Call-graph analysis helps understand the re-
lationships and interactions between different components of a program.

Methodology: This thesis conducts a comprehensive analysis of 26 different LLMs on call
graph analysis tasks, using data from micro-benchmarks and customized prompts. This allows
direct comparison with traditional approaches in static analysis. To assess the performance of
LLMs, the PYCG (Salis et al., 2021) and JArvis (Huang et al., 2024) micro-benchmarks are used
for call-graph analysis in Python and CATS (Reif et al., 2019; Reif, 2021) micro-benchmark is
used for Java. A newly created SWARM-JS micro-benchmark is used for call-graph analysis in
JavaScript. The use of micro-benchmarks in evaluating the performance of LLMs in this study
is grounded in the following key considerations:

e Micro-benchmarks are designed to target specific aspects of the features under test and
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various characteristics of the programming language involved. This helps highlight the
models’ strengths and weaknesses, allowing for a more nuanced understanding of their ca-
pabilities in SA tasks. In this way, micro-benchmarks offer a systematic way to understand
feature-specific limitations and identify areas for improvement.

e Micro-benchmarks development involves rigorous manual inspection and adherence to sci-
entific methods, ensuring reliability and accuracy in evaluation. Benchmarks that provide
ground truths allow for precise comparisons of precision and soundness (Mordahl, 2023).

e This foundational approach is essential to understanding LLMs’ basic limitations and ca-
pabilities before progressing to tests involving complex, large-scale code bases. Conversely,
obtaining large-scale, real-world data that can serve as ground truth is often a challenging
endeavor. Where such data is available, it is susceptible to human errors, which can skew
the results.

The insights from this thesis are intended to offer a preliminary understanding of the role of
LLMs in SA for call-graph construction tasks, contributing to the Artificial Intelligence for Soft-
ware Engineering (AI4SE) and Software Engineering for Artificial Intelligence (SE4AI) fields.

Results: The results of this study show that for Python, static analysis tools like PYCG
significantly outperform LLMs in call-graph generation. In JavaScript, static analysis tools such
as JELLY outperformed LLMs in terms of soundness. TAJS, another static analysis tool for
JavaScript, underperformed due to its inability to handle modern language features introduced
in ECMAScript 6. For Java, LLMs showed notable improvements, with several models achieving
high soundness rates. However, SOOTUP, a static analysis tool for Java, exhibited relatively
lower performance due to its limitations in handling dynamic language features present in the
micro-benchmark used for evaluation.

Contributions: The primary contributions of this thesis are as follows:

e Performed an empirical evaluation of 26 LLMs across Python, Java, and JavaScript for
call-graph inference.

e Introduced SWARM-CG, a comprehensive benchmarking suite for evaluating call-graph
construction tools across multiple programming languages, starting with Python, Java,
and JavaScript, to enable cross-language comparisons and consistent analysis evaluations.

e Developed SWARM-JS, a call-graph micro-benchmark for JavaScript.
e Compared LLM performance with existing traditional approaches in SA.

Structure: This thesis is structured as follows:

In Chapter 2, we provide background information, including (a) an overview of static analysis
and call graphs, (b) a description of existing call graph construction tools for Python, JavaScript,
and Java, and (c) a brief discussion of large language models (LLMs). Chapter 3 reviews relevant
research, focusing on exploring the application of LLMs in software engineering and various static
analysis tasks.

The research questions that guide this thesis are outlined in Chapter 4. In Chapter 5, we
detail the micro-benchmarks used for evaluations in this study. Chapter 6 presents the method-
ology of this study, covering: (a) LLM model selection, (b) prompt design, (c) evaluation metrics,
and (d) implementation details. The results of the evaluation are presented in Chapter 7, which
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CHAPTER 1. INTRODUCTION

addresses each research question in detail. These findings are then discussed in Chapter 8.
Chapter 9 discloses the potential threats to the validity of our study. Finally, the thesis con-
cludes with a summary of findings and outlines directions for future research in Chapter 10.

Availability:

e SWARM-CG is published on GitHub as open-source software: https://github.com/
secure-software-engineering/SWARM-CG


https://github.com/secure-software-engineering/SWARM-CG
https://github.com/secure-software-engineering/SWARM-CG
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Background _

2.1 Static Analysis and Call Graph

Static Analysis. Static Analysis, an essential aspect of SE is the method of debugging a pro-
gram without executing its source code (Novak et al., 2010). It is used for compiler optimization,
coding support, and for the detection of bugs and vulnerabilities. Since SA can be performed
without program execution, it enables early detection of bugs and vulnerabilities. Unlike dy-
namic analysis, which requires running the code, static analysis tools can examine a program’s
structure with less effort and may be applied early in the development process, even before the
program is complete enough for meaningful testing (Chess and McGraw, 2004).

Call Graph. A Call Graph is an essential data structure for conducting SA. It consists of
nodes representing program methods and edges representing calling relationships between the
methods. The primary goal of constructing a call graph is to determine the call edge relation.
A call edge links a call site, which may be an instruction within a method, to the method that
can potentially be invoked from that call site (Ali and Lhotdk, 2012). Call graph construction
plays an important role in various SA tasks, including malware detection (Hu et al., 2009), SA
for security vulnerabilities (Chess and McGraw, 2004; Livshits and Lam, 2005), and software
fault diagnosis (Chen et al., 2020).

In the following Java code, the main method creates an instance of the Main class at line
3 and Car c is instantiated using the nested class constructor m.new Car() at line 4. The
manufacture () method is then called on the Car object c at line 5.

public class Main {
public static void main(String[] args) {
Main m = new Main () ;
Car ¢ = m.new Car();
c¢.manufacture () ;

}

public class Car {
public void manufacture() {
System.out.println ("Manufacture me!");
}



2.2 CALL GRAPH CONSTRUCTION TOOLS

The complete call graph for the Java code snippet is as follows:
main — main. <init>
main — car.<init>
main — car.manufacture()

2.2 Call Graph Construction Tools

This section briefly describes the existing call graph construction approaches across multiple
programming languages, specifically Python, JavaScript, and Java. First, we discuss PYCG
(Salis et al., 2021), a call graph construction technique for Python. Next, we introduce JELLY
(Laursen et al., 2024) and TAJS (Jensen et al., 2009), both of which are static tools designed
for JavaScript. Finally, we discuss SootUp (Karakaya et al., 2024) for Java, which is a reimple-
mentation of the Soot (Vallée-Rai et al., 2000) static analysis framework.

2.2.1 PyCG

PyCG (Salis et al., 2021) is a static call-graph construction technique for Python. PyCG con-
ducts a flow-insensitive analysis and works in two steps. Initially, it computes an assignment
graph which is a structure that shows relations between program identifiers such as functions,
variables, classes, and modules, through an inter-procedural analysis. Next, the call graph of
the given Python program is constructed by analyzing the assignment graph.

The tool is capable of handling complex Python features such as modules, generators, lamb-
das, and multiple inheritance. It is evaluated on both micro-benchmarks and real-world Python
packages. The PYCG micro-benchmark is a test suite of minimal Python programs organized
into distinct feature categories. In this study, we are utilizing PYCG micro-benchmark for the
evaluation of call graph tasks in Python. Details of the micro-benchmark are discussed in Chap-
ter 5.1. PyCG exhibits strong performance in terms of precision and recall, achieving a precision
of 99.2% and a recall rate of around 69.9%.

2.2.2  Jelly

JELLY (Laursen et al., 2024) is a hybrid approach combining static and dynamic analysis to
improve JavaScript analysis accuracy. The approach involves two steps. The first step is to
perform a dynamic pre-analysis which is referred to as approzimate interpretation. It is a
form of forced execution that generates hints about the possible values involved and dynamic
property accesses. The information produced in this step is then used by the main static call
graph analysis to improve the soundness of the generated call graphs.

JELLY supports the latest ECMAScript language features, and can handle multi-file test
cases as input. Depending on the options enabled, it generates a call graph both in JSON
format and for HTML visualization. The —approzx option may be used to enable static analysis
with approximate interpretation. The JELLY analyzer was found to be more accurate for
real-world JavaScript programs than other existing static analysis tools for JavaScript such as
TAJS (Jensen et al., 2009) and ACG (Feldthaus et al., 2013).

2.2.3 TAIJS

TAJS (Jensen et al., 2009) is a static analysis tool designed for JavaScript that performs type
inference and constructs call graphs. It fully supports ECMAScript 3rd edition and provides
partial support for ECMAScript 5, including its standard library, HI'ML DOM, and browser
APIs. However, TAJS does not support features introduced in ECMAScript 6 (ECMA, 2015),
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CHAPTER 2. BACKGROUND

such as classes, arrow functions, and modules, which limits its effectiveness in analyzing modern
JavaScript applications. TAJS offers a command-line option to export these call graphs as DOT
files, which can be converted into JSON for further analysis or integration with other tools.

2.2.4 SootUp

SooTUp (Karakaya et al., 2024) for Java is a complete reimplementation of the widely used
SooT (Vallée-Rai et al., 2000) static analysis framework. SOOTUP is designed as a modular
library, with its components separated into independent modules. This modular architecture
enables its clients to include only the necessary functionality in their applications. This not
only improves performance but also reduces memory usage, making it suitable for analyzing
large-scale applications. Additionally, SootUp’s modularity allows it to be extended to support
programming languages beyond Java, making it a versatile framework for multi-language static
analysis.

The core module of SOOTUP contains the core building blocks such as the Jimple IR, control
flow graphs, and frontend interfaces. The rest of the modules are built on the core module. The
callgraph module contains implementations of common call graph construction algorithms such
as Class Hierarchy Analysis (CHA) and Rapid Type Analysis (RTA).

2.3 Large Language Models

Language models are computational models that can understand and generate human language
(Chang et al., 2023). Studies have shown that scaling Pre-trained Language Models (PLMs) by
increasing their size or using larger training datasets often results in better performance across
various tasks. These larger PLMs were found to display behaviors that differ from smaller
models, enabling them to handle more complex tasks effectively (Hou et al., 2023). This dis-
tinction led to the introduction of the term Large Language Models (LLMs) (Zhao et al., 2023;
Hou et al., 2023) to refer to these larger models. Hou et al. (2023), in their paper categorizes
the LLMs they investigated into three groups: encoder-only, encoder-decoder, and decoder-only
LLMs based on their architectures. The decoder-only models are the most recent type among
encoder, encoder-decoder, and decoder models. They use a decoder module to generate the tar-
get output text, relying heavily on the model’s ability to understand language structure, syntax,
and context (Hou et al., 2023). Models such as the GPT series models (OpenAl, 2022), Llama
(Touvron et al., 2023), Llama 2, and Bard (Google, 2023) are a few examples of decoder-only
implementations.

Due to their remarkable capabilities, there has been significant research into the application
of LLMs in Software Engineering (Koide et al., 2024; Zan et al., 2022; Lajké et al., 2022; Sridhara
et al., 2023). Studies indicate that within SE, LLMs are primarily used in the software devel-
opment domain, especially in areas like coding and development (Hou et al., 2023). They have
also been utilized in software maintenance, quality assurance, design, software management, and
requirements engineering domains.

Fine-tuning is one of the most widely used approaches for LLM optimization. It involves
adapting models to perform specific tasks and training on various datasets to enhance their
performance. Fine-tuning LLMs using a variety of datasets that describe tasks in natural lan-
guage is called instruction tuning (Zhao et al., 2023). With instruction tuning, the models can
understand and respond to new tasks, even if they haven’t seen those specific tasks before.

Prompt engineering is another prominent approach to improving the performance of LLMs
on specific tasks. Studies show that well-designed prompts can significantly enhance results
across various tasks(Liu et al., 2021, 2023; White et al., 2023; Liu and Chilton, 2021). It is
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2.3 LARGE LANGUAGE MODELS

an iterative process that involves creating customized prompts to effectively guide LLMs in
performing particular tasks (Hou et al., 2023). Schulhoff et al. (2024), in their study presents a
taxonomy of existing prompt engineering techniques and examines over 200 different methods.

Evaluating the performance of LLMs and assessing the reliability of their outputs is an
important aspect of their development and use in various software engineering tasks (Kang
et al., 2023). To evaluate the performance and effectiveness of LLMs, it is common practice to
compare them against existing datasets and established baselines (Hou et al., 2023). By doing
so, we can measure how well LLMs perform on specific tasks compared to previous models
or benchmark standards. This process helps quantify improvements, identify strengths and
weaknesses, and provide a clearer understanding of a model’s capabilities.



Related Work _

In this chapter, we discuss the role of LLMs in software engineering, as well as their application
to various static code analysis tasks such as call graph construction, bug detection, and code
summarization.

LLMs for Software Engineering. Xia and Zhang (2024) propose an automated program
repair approach called ChatRepair, which leverages ChatGPT to perform code repairs. Their
evaluations demonstrate that this LLM-based tool achieves state-of-the-art performance on the
Defects4J dataset. Hey et al. (2020) present NoRBERT, an approach based on the language
model BERT for requirements classification. The approach achieves Fl-scores of up to 94%
for classifying functional and non-functional requirements and outperforms recent methods in
subclassifying non-functional requirements. The results of their study demonstrate NoRBERT’s
ability to improve requirements classification, even in unseen project settings. Pearce et al.
(2023) examined the effectiveness of LLMs in addressing software vulnerabilities and generating
zero-shot fixes. The results of their study indicate that while models are capable of producing
accurate fixes in simple scenarios, they struggle when dealing with real-world scenarios. Pei
et al. (2024) introduce SYMC, a new approach to improve how LLMs learn code semantics for
program analysis tasks. SYMC modifies Transformer architectures to naturally incorporate code
symmetries, enabling the model to focus on semantic structure rather than syntax. Lemieux
et al. (2023) present CODAMOSA, a hybrid approach that combines Search-Based Software
Testing (SBST) with Large Language Models (LLMs) like OpenAI’s Codex. CODAMOSA
utilizes LLMs to generate additional test cases for under-covered functions, enabling SBST
to explore more effectively. Evaluations show that CODAMOSA achieves significantly higher
coverage on numerous benchmarks compared to SBST and LLM-only methods, demonstrating
the potential of integrating LLMs with traditional testing techniques.

LLMs for Vulnerability Detection. Sun et al. (2024) introduces GPTScan, a tool com-
bining GPT with static analysis for detecting logic vulnerabilities in smart contracts. Traditional
tools struggle with detecting 80% of Web3 security bugs due to their lack of domain-specific vul-
nerability descriptions. GPTScan utilizes GPT’s ability to understand and reason about code.
Evaluations show that GPT'Scan identifies ground-truth logic vulnerabilities with a recall of over
70%. Khare et al. (2024) explores the potential of LLMs for detecting security vulnerabilities
across diverse code samples. Evaluating 16 pre-trained LLMs on 5,000 code samples from five
security datasets, the study finds that while LLMs show modest overall effectiveness, with an
average accuracy of 62.8% and F1 score of 0.71, they excel in detecting vulnerabilities requir-
ing intra-procedural reasoning, such as OS Command Injection and NULL Pointer Dereference,
outperforming popular static analysis tools like CodeQL. The study highlights the impact of
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advanced prompting strategies on improving LLM performance, yielding up to an 18% improve-
ment in F1 score on real-world datasets. These findings suggest that LLMs can effectively
perform parts of vulnerability detection, such as identifying vulnerability-related specifications
and understanding code behavior, which could inspire future developments in LLM-assisted
vulnerability detection systems. Li et al. (2024) proposes LLift, an automated framework for
enhanced bug detection using LLMs. The approach gives promising results and underscores the
potential of integrating LLMs with SA tasks.

LLMs for SA tasks. The paper by Sun et al. (2023) investigates ChatGPT’s effective-
ness in automatic code summarization for Python programs, comparing it with state-of-the-art
models like NCS, Code-BERT, and CodeT5. Despite ChatGPT’s promising potential, the re-
sults show that it underperforms in code summarization compared to these models. The authors
identify key challenges, including the need for improved prompt engineering and evaluation met-
rics in future research. Ma et al. (2024) evaluated LLMs’ proficiency in syntax and semantic
comprehension for SE tasks. The study evaluated LLM models (GPT-4, GPT-3.5, StarCoder,
CodeLlama) in Python, Java, C, and Solidity. Their findings indicate that the models do well
at syntax comprehension and basic static analysis but struggle to understand dynamic behav-
iors. Mohajer et al. (2023) introduce an LLM-based tool to detect specific vulnerabilities in
the source code specifically null dereferencing and resource leaks. The tool is also capable of
false-positive warning removal and bug repair tasks. The static analyzer Infer (Havelund et al.,
2015) is used to detect errors in code and generate warnings. The study focuses on two models
from OpenAl, ChatGPT-4 and ChatGPT-3.5 Turbo, and is limited to Java projects. The results
show that the LLM-based tool achieves up to 12.86% and 43.13% higher precision compared to
Infer in detecting null dereference and resource leak bugs. Li et al. (2023a) explores the use of
LLMs, particularly GPT-3.5 and GPT-4, to assist static analysis tools in reducing false positives
and false negatives. Their approach focuses on generating more precise function summaries by
leveraging LLMs.

Venkatesh et al. (2024b) in their work provides a comprehensive evaluation of 26 LLMs,
focusing on call graph analysis and type inference for Python programs. Their findings indicate
that while LLMs surpass traditional methods in type inference accuracy, their performance in
callgraph analysis is limited. This underscores the need for task-specific fine-tuning and addi-
tional research across programming languages. Based on these findings, this thesis focuses on
call graph analysis across multiple programming languages (Python, Java, JavaScript), broad-
ening the scope to cross-language evaluations and benchmarking LLMs against existing static
analysis tools.
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Research Questions _

Call graphs are a vital component of static analysis. It provides insights into program behavior
and the relationships between its components. While traditional static analysis tools have
been instrumental in this domain, they face challenges with precision, scalability, and high false-
positive rates (Li et al., 2023a; Johnson et al., 2013; Park et al., 2022). Recent advances in LLMs
present an opportunity to examine their potential in the field of static analysis. The research
questions of this thesis are intended to bridge this gap, providing a comprehensive understanding
of how well LLMs perform call graph analysis on micro-benchmarks and how their performances
vary across languages. This thesis focuses on answering the following research questions:

RQ1: What is the accuracy of LLMs in performing callgraph analysis against micro-benchmarks?
RQ2: How does the accuracy of LLMs vary across different languages?

RQ3: How does the performance of LLMs compare to that of existing static analysis tools?

To address these research questions, we use language-specific micro-benchmarks which pro-
vide a structured way to test the capabilities of LLMs. The scope of this study is Python,
JavaScript, and Java. For Python, we use the PYCG micro-benchmark, for JavaScript we use
SWARM-JS and for Java, we use the CATS micro-benchmark In the following chapter, we
discuss each of these micro-benchmarks in detail.
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Micro-benchmarks _

In this thesis, we evaluate the performance of LLMs and static analysis tools for call graph
generation using micro-benchmarks tailored for each language.

To answer RQ1 and RQ2, the PYCG (Salis et al., 2021) and JARvis (Huang et al., 2024)
micro-benchmarks are used for call-graph analysis in Python and CATS (Reif et al., 2019; Reif,
2021) micro-benchmark is used for Java. A newly created SWARM-JS micro-benchmark is used
for call-graph analysis in JavaScript. To answer RQ3 we choose the call graph construction tools
discussed in Section 2.2: PYCG for Python, JELLY and TAJS for JavaScript, and SOoTUP for
Java. The following sections detail the micro-benchmarks used in this thesis.

5.1 PyCG: Call-graph Micro-Benchmark

The PYCG micro-benchmark suite is a test suite for benchmarking call graph generation in
Python (Salis et al., 2021). It is designed to evaluate and compare various call graph generation
approaches in Python. PYCG consists of 112 minimal and focused test cases categorized into
distinct feature areas including classes, decorators, imports, and generators. KEach category
contains a number of test cases and each test case comprises of:

(1) source code

(2) call graph in JSON format

(3) short description
The ground-truth call graphs are in a simple JSON format, detailing the relationships between
functions as adjacency lists. An edge (src, dst) is represented as an entry of dst in the list
assigned to the key src:

{
"srcA": ["dstB", "dstC"],
"srcB": ["dstD"],
"srcC": []

}

The tests are structured to be easy to categorize and expand, with each focusing on a single
execution path, without the use of conditionals or loops. This design ensures that the generated
call graph accurately reflects the execution of the source code. To validate the micro-benchmark
suite, PYCG was reviewed by two researchers who have professional experience as Python de-
velopers. The test suite was assessed based on its completeness, code quality, and description
clarity. Based on the feedback received, the micro-benchmark was refactored and enhanced.
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5.2 SWARM-CG: Swiss ARMY KNIFE OoF CALL GRAPH BENCHMARKS

Additional tests were included to address missing features, such as built-in functions and gen-
erators.

In this thesis, we use an extended version of the PYCG benchmark by adding new test cases
from JARvis (Huang et al., 2024). The JARVIS micro-benchmark was developed by enhancing
PyCG to ensure a more comprehensive coverage of features. For this study, we have incorporated
14 additional test cases from JARvVIS, including 4 in the args category, 4 in assignments, 5
in direct_calls, and 1 in imports. The final extended PYCG benchmark used in this study
includes 126 test cases in the following 17 categories: Arguments (10), Assignments (8), Builtins
(3), Classes (21), Decorators (7), Dicts (12), Direct Calls (9), Dynamic (1), Ezxceptions (3),
Functions (4), Generators (6), Imports (15), Kwargs (3), Lambdas (5), Lists (8), Mro (7),
Returns (4)

5.2 SWARM-CG: Swiss Army Knife of Call Graph Benchmarks

The lack of structured and standardized call-graph benchmarks across diverse programming lan-
guages poses several challenges in evaluating and comparing call-graph construction tools. This
gap makes cross-language comparisons difficult and unreliable, hindering consistent assessments
of different analysis techniques.

To address this issue, we developed the Swiss Army Knife of Call Graph Benchmarks
(SWARM-CG), a benchmarking suite designed to provide a standardized platform for eval-
uating call graph construction tools across multiple programming languages. The primary goal
of SWARM-CG is to create a unified environment that facilitates consistent comparisons and
promotes further research in the field of call-graph analysis, especially in the current landscape,
where ML models are being explored as alternatives to traditional static analysis. ML models
often lack the transparency and verifiability that static analysis provides. As researchers inves-
tigate these models in call-graph construction, having a standardized framework is essential for
accurately comparing their effectiveness with established methods. SWARM-CG fulfills this
need by offering a well-organized, comprehensive set of call-graph benchmarks with ground truth
annotations for each code snippet, enabling reliable and consistent evaluations.

Furthermore, each tool that SWARM-CG supports is dockerized to simplify the evaluation
process. As a proof of concept, we have added support for the following tools: (1) PYCG, (2)
Transformers, (3) Ollama, (4) JeLLy, (5) TAJS, and (6) SoorUp. SWARM-CG supports
multiple programming languages, starting with Python, JavaScript, and Java, with plans to
extend to additional languages. The suite is designed to be community-driven, encouraging
contributions from both static analysis experts and enthusiasts. Thus, it is a dynamic and
evolving resource for the research community.

5.3 SWARM-JS: Call-graph Micro-Benchmark

Despite the increasing importance of JavaScript analysis, the availability of well-defined bench-
marks tailored for JavaScript call-graph construction remains limited.

Existing benchmarks, such as SunSpider (WebKit, 2010), part of the WebKit browser en-
gine, are primarily designed to test the performance aspects of JavaScript engines rather than
facilitating program analysis. SunSpider includes single-file JavaScript examples that represent
real-world scenarios in varying complexities and with multiple function types, but it does not
provide explicit ground truth for call graphs. In a recent study by (Antal et al., 2023), the
authors assessed static call-graph techniques using the SunSpider benchmark by manually com-
paring the call graphs generated by the tools with the source code. Precision was measured
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by verifying whether specific edges in the graph were accurately identified. However, this man-
ual approach limits the scope of the evaluation and limits the extensibility of the respective
research. Furthermore, the lack of attention to recall in this manual evaluation process results
in an incomplete understanding of the tools’ performance.

To address these limitations, we developed a new JavaScript micro-benchmark, SWARM-
JS, tailored specifically for call-graph construction. Inspired by call-graph micro benchmarks in
Python, such as PyCG and Jarvis, our benchmark aims to provide a systematic and compre-
hensive set of test cases that reflect the diverse features of JavaScript.

We first surveyed existing generic JavaScript benchmarks. This survey enabled the identifi-
cation and compilation of essential JavaScript-specific features and edge cases. A comparative
analysis was performed against Python benchmarks, specifically PyCG and Jarvis, to determine
which features could be directly adapted and which were unique to JavaScript. For example,
Python’s lambda functions were mapped to JavaScript’s arrow functions due to their analogous
roles in both languages.

SWARM-JS comprises 126 JavaScript code snippets, organized into 18 feature categories.
The feature categories are: args (10), assignments (8), builtins (3), classes (21), decorators
(7), objects (12), direct calls (9), dynamic (1), exceptions (3), functions (4), generators (6),
imports (15), kwargs (3), arrow functions (5), arrays (8), inheritance (4), mizins (3), returns
(4). Categories such as arrow functions and mixins ensure comprehensive coverage, allowing the
benchmark to evaluate a broad spectrum of JavaScript features.

Fach snippet in the benchmark is accompanied by a corresponding ground truth file, which
provides the expected call graph. The ground truth schema follows the PyCG benchmark, al-
lowing for a consistent framework for evaluating call-graph accuracy across different languages.
The code snippets and ground truth information were manually inspected and iteratively refined
to ensure correctness. Additionally, another researcher, who is an expert in JavaScript, verified
a randomly selected subset of 25 test cases. An example code snippet is shown in Listing 5.1
and its corresponding ground truth is given in Listing 5.2.

i function paramFunc() {} |

2 2 "main . func": |

3 "main . paramFunc"
 function func(a) { | !,

a(); 5 "main.paramFunc": [],
6 } 6 "main": |
7 7 "main . func"
8 8 ]
o func (paramFunc) ; o }
Listing 5.1: Code snippet of main.js Listing 5.2: Ground truth for main.js

5.4 CATS: Call-graph Assessment and Test Suite

CATS (Reif et al., 2019) is a Java project for testing and comparing call graph algorithms. The
micro-benchmark is designed to systematically evaluate call-graph construction algorithms by
providing small, targeted test cases. These test cases focus on verifying the correct handling of
Java language features, core APIs, and runtime (JVM) callbacks. The test suite was created by
analyzing the Java Virtual Machine Specification (JVMSpec) (Gosling et al., 2018) and Java’s
core APIs. The goal was to craft test cases that would only succeed if a call-graph algorithm
explicitly handled the specific language feature being tested.
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To define the expected behavior, ground truth annotations (GT annotations) are used to
capture the call edges relevant to the specific feature being tested in each test case. A call
graph algorithm is considered sound if all ground truth annotated call edges are present in its
computed call graph. However, this may not always work as some tests may pass unintentionally
because of the algorithm’s inherent imprecision. Also, the test suite doesn’t include test cases
related to custom native methods due to limited framework support for cross-language analyses.

In this thesis, we use 109 test cases from CATS micro-benchmark, organized into 15 feature
categories. These are: Classloading (1), DynamicProzies (1), JVMCalls (5), Java8InterfaceMethods
(7), Java8Invokedynamics (11), Library (5), ModernReflection (8), NonVirtualCalls (5), Reflec-
tion (20), Serialization (14), Signature PolymorphicMethods (7), StaticInitializers (8), Types (6),
Unsafe (7), VirtualCalls (4)

Test Categories. Classloading: Tests related to the usage of java.lang. ClassLoader.
DynamicProzies: Java’s Dynamic Proxy API is used to create type-safe proxy classes. These
proxy classes use reflection to forward the calls to a previously configured handler class.
JVMCalls: Calls of those methods that are (only) done by the JVM due to some event, such as
JVM calling the finalize method during garbage collection.

Java8InterfaceMethods: Tests the resolution of Java 8 interface default methods and static in-
terface methods.

Java8Invokedynamics: Tests related to the invokedynamic instructions created by Java 8 method
references and lambda expressions.

Library: This category comprises test cases for the analysis of software libraries.
ModernReflection: Reflective calls using the java.lang.invoke.* APIs and Java 7’s MethodHandle
API which are not signature polymorphic.

NonVirtualCalls: Comprises test cases related to non-virtual methods: static method calls, con-
structor calls (initializers), super method calls, and private method calls.

Reflection: Tests related to Java’s reflection API in combination with java.lang.Class’s meth-
ods.

Serialization: Comprises test cases that model callbacks that must be handled when dealing
with java.io.Serializable classes or java.io.FExternalizable classes. Also tests Java’s serialization
mechanism when Lambdas are (de)serialized.

SignaturePolymorphicMethods: This category includes calls to signature-polymorphic meth-
ods, specifically Java’s java.lang. MethodHandle methods invoke and invokeExact, as well as
java.lang.invoke. VarHandle.

StaticInitializers: Static initializers are called by the JVM when a class is loaded. Those calls
are implicit and, therefore, must be explicitly modeled by the CG algorithm.

Types: Test cases that test both: API-based and language-feature-based type casts and in-
stanceof checks.

Unsafe: Test cases related to the usage of sun.misc. Unsafe.

VirtualCalls: Tests related to the resolution of standard virtual methods.

The CATS micro-benchmark organizes its test cases into markdown files, with each file cor-
responding to a specific test category, such as Reflection or Serialization. Each markdown file
is structured using first-level headers to indicate the sub-category of test cases and second-level
headers to identify individual test cases. Fach test case includes a small, runnable Java program,
and the ground truth is embedded directly within the Java source code using annotations. In
this study, CATS micro-benchmark was adapted to suit our requirements and to be integrated
seamlessly with SWARM-CG. The ground truth information, embedded as annotations within
the Java source code, was converted into separate JSON files by a fellow researcher who is an
expert in Java. This adaptation decoupled the ground truth from the Java source code with
each test case now consisting of the following components:
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(1) Java source code
(2) call graph in JSON format
(3) markdown file providing short description

An example Java code snippet is shown in Listing 5.3 and its corresponding ground truth is
given in Listing 5.4.

1 // vec/Class.java 1 {
> package vc; 2
; class Class { 3 "ve. Class :main(java.lang.String ||
| public void target(){ } )"
5 public static void main(String[] 4
args){ 5 "ve. Class:target ()"

6 Class cls = new Class () ; 6
7 cls.target () ; 7 ]
8 } 8
9 } 9 }

Listing 5.3: Code snippet of Class.java Listing 5.4: Ground truth for Class.java
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Methodology _

This section discusses the implementation details, model selection criteria, prompt design, and
the evaluation metrics used in this study to address the research questions.

6.1 Model Selection

In this study, we selected the LLMs by focusing on organizations actively researching and re-
leasing state-of-the-art models on the Hugging Face platform.! We selected 26 LLMs from
prominent organizations including OpenAl, Alibaba, Google, Meta, Microsoft, and Mistral, all
known for their contributions to advancing LLM research.

The Qwen2 models from Alibaba are expected to perform well in a variety of tasks such as
language understanding, language generation, coding, and reasoning. Gemma models, developed
by Google are text-text, decoder-only large language models. They are optimized for various
text generation tasks, such as summarization and question-answering. The Llama 3.1 and
Llama 3.2 instruction-tuned models developed by Meta are optimized for multilingual dialogue
tasks. They are designed to provide high-quality summarization capabilities. TinyLlama is a
smaller and more compact version of Llama with just 1.1B parameters. It is trained on massive
datasets and its compactness makes it suitable for lightweight applications while still delivering
impressive performance in various tasks. The Phi-3 models from Microsoft are instruction-
tuned and demonstrate capabilities in language understanding, coding, math, long context,
and logical reasoning tasks. Mistral models, specifically the Mistral-Large-Instruct-2407 (Al
2024) is a 123B parameter large language model known for its strong reasoning, knowledge,
and coding capabilities. It supports multiple languages, including English, French, and Spanish,
and is trained in over 80 programming languages including Python, Java, and JavaScript. The
model excels in agentic tasks with function calling and JSON output and offers state-of-the-art
mathematical and reasoning abilities.

We also included other specialized code models, which are optimized for code understanding
and related tasks. These models are expected to perform better on code-specific benchmarks.
CodeLlama models are specifically fine-tuned for coding tasks. They specialize in code synthesis
and comprehension, can generate code in various programming languages, and are expected
to assist well with debugging, test writing, and even handling unfinished code. The Codestral
model is trained in over 80 programming languages. It is also optimized for various coding tasks
such as code generation and completion.

"https://huggingface.co/
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6.2 ProMPT DESIGN

Table 6.1: Selected Models and Parameter Sizes

Organization Model Name Parameter Size

(billion)

. Qwen/Qwen2-7B-Instruct 7B
Alibaba Qweanwen2—72B—Instruct 72B
google/gemma-2-2b-it 2B

Google google/gemma-2-9b-it 9B
google/gemma-2-27b-it 27B

GPT gpt-do )
gpt-4o0-mini ;
meta-llama/CodeLlama-7b-Instruct-hf 7B
meta-llama/CodeLlama-13b-Instruct-hf 13B
meta-llama/CodeLlama-34b-Instruct-hf 34B

Meta meta-llama/Meta-Llama-3.1-8B-Instruct 8B
meta-llama/Meta-Llama-3.1-70B-Instruct 70B
TinyLlama/TinyLlama-1.1B-Chat-v1.0 1.1B
meta-llama/Llama-3.2-1B-Instruct 1B
meta-llama/Llama-3.2-3B-Instruct 3B

microsoft /Phi-3-medium-128k-instruct 14B

Microsoft microsoft /Phi-3.5-mini-instruct 3.8B
microsoft /Phi-3.5-MoE-instruct 41.9B

microsoft /Phi-3-mini-128k-instruct 3.8B
mistralai/Mixtral-8x7B-Instruct-v0.1 46.7B
mistralai/Mistral-7B-Instruct-v0.3 7B
mistralai/Mistral-Nemo-Instruct-2407 12.2B

Mistral mistralai/Mistral-Large-Instruct-2407 123B
mistralai/Mistral-Small-Instruct-2409 22B
mistralai/Ministral-8B-Instruct-2410 8B
mistralai/Codestral-22B-v0.1 22B

Two closed-source models from OpenAl, GPT-40 and GPT-40-mini, were included due to
their superior performance in general-purpose tasks, providing a benchmark for comparison
against open-source models. The list of models evaluated in this study is listed in the Table 6.1.

6.2 Prompt Design

To optimize prompt design, we adopted an iterative and experimental approach (Chen et al.,
2024; Schulhoff et al., 2024). Initial efforts focused on enhancing the prompt by including detailed
task descriptions and specifying the expected response format. We used a one-shot prompting
technique, embedding an example question and answer within the prompt. Despite these refine-
ments, we encountered challenges with the LLM’s ability to produce structured outputs. Our
experiments revealed that even with explicit instructions to generate outputs in JSON format,
models struggled to deliver results that could be reliably parsed. To address this, we explored
a question-answer based method, querying the model and then translating its natural-language
responses into a structured JSON format. Note that the same prompt is used to evaluate all
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models, including code models.

The prompt design employed in this study follows a structured two-part approach to guide
the LLM through the task. The first part, which is the task description outlines the specific
requirements for analyzing the call graph and instructions for formatting the output to ensure
consistency in the model’s responses. As an example, we have listed the task descriptions for
Python, JavaScript, and Java in Listing A.1, A.2, and A.3 respectively. This is followed by the
second part, which includes an example input-output pair in line with the one-shot prompting
technique. Finally, the code relevant to the task is added to the prompt. Note that for test
cases with file imports, all the relevant file contents are added to the prompt with relative file
names to indicate the file structure of the test case.

Despite the careful structuring, we encountered difficulties in the initial attempts to generate
valid JSON output using this approach. Specifically, the model often failed to consistently
produce JSON in the required format. The primary issues observed were missing keys or the
inclusion of unexpected keys, attributed to the LLM’s inability to adhere to the complex output
schema. To address these limitations, the task complexity was reduced by breaking the task
down into a series of question-answer pairs and using the one-shot prompting technique. This
approach simplifies the requirement to follow specific output schema and enhances its ability to
follow the prompt more accurately.

For Python and JavaScript, the first question typically addresses function calls at the module
level, followed by questions regarding each call made within function definitions as illustrated
in Listing A.4 and Listing A.5. For Java, the questions focus on identifying the target functions
invoked by a caller function within a given class as shown in Listing A.6. In practical scenarios,
these questions can be generated by iterating through the AST of the program. By identifying
function definitions and call nodes within the AST, the necessary information can be extracted.
However, for this study, ground truth data was used to formulate the questions, allowing for
a more straightforward implementation. To clarify, consider the full prompt for a call graph
analysis task in Python in Listing A.7. In this case, the first question addresses function calls at
the module level main. The remaining questions in the prompt are generated by iterating over
the ground-truth data and extracting the caller function names. In theory, this information could
be obtained by parsing the AST of the program. Examples of the full prompts for JavaScript
and Java are also provided in Listing A.8 and A.9, respectively.

Finally, the model’s responses were parsed using regular expressions, which enabled the
correct mapping of answers back to the original questions. This method allowed for generating
JSON outputs that adhered to the respective microbenchmark’s ground truth schema, which
were then used for the evaluation. To demonstrate this in practice, we have listed examples for
Python, Java, and JavaScript, including the source code, ground truth, model responses, and
parsed JSON, in Appendix A.2.

The prompts used in this study were comfortably within the context limits of all the LLMs
evaluated. The model with the largest context size, GPT-40, supports up to 128,000 tokens,
while the smallest context size was offered by TinyLlama-1.1b, which has a limit of 2,048 tokens.

6.3 Evaluation Metrics

In this study, we measure completeness, soundness, and exact matches to assess flow-insensitive
callgraph construction.
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6.3.1 Completeness and Soundness

In this study, we use the terms completeness and soundness as they have been pre-established
in callgraph research (Salis et al., 2021; Venkatesh et al., 2024a). The terms completeness and
soundness are closely related to the precision and recall metrics. Precision is directly tied to
completeness, as it measures the proportion of correctly identified call edges relative to all edges
produced by the model. A complete call graph would inherently have high precision, as it avoids
false positives. This terminology can be a bit confusing at first because it implies that a call
graph that is “incomplete“ in the above sense is not one that misses call edges but one that has
false or incorrect edges. Recall is closely related to soundness, as it measures the proportion of
true call edges that are correctly identified. A sound call graph would demonstrate high recall
by including all true call edges, without omitting any.

Here, completeness and soundness are measured at the individual test case level within the
benchmark. A test case is considered complete if there are no false positives in the generated
call graph for that specific case. Similarly, it is considered sound if there are no false negatives.
This means that if even a single false positive or false negative is detected in the responses
generated for a particular test case, it is marked as a failure in terms of completeness or sound-
ness, respectively. Precision and recall have specific implications when evaluated at the level of
individual test cases, particularly in a micro-benchmark setting. Rather than measuring how
precise or recall-efficient a system is overall, it is more insightful to determine whether a test
case is fully complete or sound with respect to the specific feature being tested. This binary
evaluation, either complete or sound, provides clearer insights into whether specific features are
fully captured, without the ambiguity that partial correctness metrics like precision or recall
might introduce. This evaluation approach mirrors the methodologies used in previous studies,
specifically in PYCG (Salis et al., 2021).

6.3.2 Exact matches

The exact-matches metric measures the number of function calls that exactly match the ground
truth. To compute this, we compare the expected calls for each node in the ground truth with
those produced by the model. For nodes where both lists are non-empty, we count exact matches
when every element in the generated list appears in the ground truth. For nodes with empty
lists, an exact match is counted if the model also produces an empty list.

6.3.3 Time

Time measurements were taken on open models, as they were all executed on the same hardware
using identical parameters for model loading and inference. To ensure uniformity in the testing
setup, all models were loaded using 4-bit quantization, with a batch size of 2. To ensure a fair
comparison, we applied the same batch size across all models. While smaller models could,
in practical scenarios, process more prompts per batch due to lower memory requirements, we
chose to standardize the testing conditions. This approach prevents smaller models from having
an advantage and allows for a fair assessment.

The time recorded represents the total time needed to process all benchmark test cases.
Time measurements for OpenAl models were omitted, as they were inferred using a batch API
that returns results after 24 hours at a 50% lower cost. Given that these models were not run
on our hardware, a direct comparison with the open models would not be appropriate.
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6.4 Implementation Details

6.4.1 LLM Experiments

For the implementation of our LLM experiments, we used the Hugging Face transformers (Wolf
et al., 2020) Python interface to run LLMs on our hardware. This interface provides a flexible
and efficient environment to manage inference tasks across multiple models.

The models were loaded using 4-bit quantization, with a batch size of 2, and configured to use
greedy search. Greedy search was chosen to always select the most probable next token, ensuring
deterministic outputs across all runs. All experiments were run on the following hardware
configuration: one NVIDIA H100-80C GPU, 16 Intel(R) Xeon(R) Platinum 8462Y+ processors,

and 78 GB of memory.

6.4.2 Static Analysis Tools

For the comparative study with existing static analysis tools, we use the PYCG tool for Python,
JELLY and TAJS tool for JavaScript, and SooTUP for Java. From SooTUP, we use the
SooTUPcya and SOOTUPRTA algorithms.

We built a custom adaptor within the SWARM-CG framework for all call-graph experi-
ments involving these static analysis tools. As the outputs of different tools vary in format, we
developed translation functions where necessary to adapt their outputs to the respective micro-
benchmark schemas. For JavaScript, the JSON outputs of JELLY and TAJS were translated
into the SWARM-JS schema, which is the micro-benchmark used for JavaScript evaluations.
For the translation of JELLY output JSON to the required schema, the esprima? tool is em-
ployed to generate abstract syntax trees (ASTs), which are then used to restructure and adapt
the call graph data. This enables us to evaluate the results effectively within the SWARM-CG
framework.

To provide a concrete illustration, an example JavaScript code snippet and its ground truth
is shown in Listing 6.1 and 6.2, respectively. The resulting JELLY call graph output is shown
in Listing 5.4, and the translated SWARM-JS format output is shown in Listing 5.4.

1{

i function paramFunc() { 2 "main. func": |
>} ] "main . paramFunc'
3 1 ],
i function func(a) { 5 "main . paramFunc": [],
5 a(); 6 "main": |
6 } 7 "main . func”
7 8 ]
s func (paramFunc) ; o }

Listing 6.1: Code snippet of main.js Listing 6.2: Ground truth for main.js

’https://esprima.org/

23


https://esprima.org/

I S

[CHEN CEENCER Y

ot

6.4 IMPLEMENTATION DETAILS

{
"time": "Sat, 30 Nov 2024 11:27:44 GMI",

"entries": |
"main. js"
I,

"files": |
"main. js"

I,

"functions": {
"0": "0:1:1:2:2"
"1": "0:4:1:6:2",
"2 "0:1:1:8:17"
}

"calls": {

"3'": '"0:5:5:5:8",
"4": "0:8:1:8:16"

b

1

"fun2fun": | 2 "main . paramFunc": [],
3
!

(2, 1], [1, 0] "main. func": |
) , "main . paramFunc"
"call2fun": | 5 ],
(3, 0], [4, 1] 6 "main": |
I, 7 "main . func'
"ignore': [] 8 ]
} )}
Listing 6.3: Jelly output Listing 6.4: Translated output
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We next address the research questions and highlight the key results of our different analyses.

7.1 RQ1: Accuracy of LLMs in performing Callgraph Analysis

The results of our experiments for flow-insensitive call-graph analysis for Python, JavaScript,
and Java are presented in Tables 7.1, 7.2 and 7.3 respectively. Specific rows and values that
are discussed in the text are highlighted in the table for clarity. In the tables, we’ve included
the existing static analysis tools used for our comparative study of LLMs and traditional tools:
PyCG for Python, JELLY and TAJS for JavaScript, and SooTUP for Java. While the perfor-
mance of these tools is discussed in greater detail in Section 7.3 when addressing RQ3, they are
included here to give an overall view of the performance metrics.

The Python results are based on the extended PYCG micro-benchmark suite, JavaScript re-
sults use the SWARM-JS micro-benchmark, and Java results use the CATS micro-benchmark.
For Java, the evaluation only uses soundness as the metric. This is because, the CATS micro-
benchmark used for Java, focuses on testing whether the call graph construction tools correctly
capture the expected call edges for specific features. Since the ground truth annotations are
feature-specific and do not provide an exhaustive list of all possible call edges, evaluating com-
pleteness or exact matches would not be meaningful. Focusing solely on soundness ensures
fairness and consistency with the benchmark’s intended purpose. In contrast, for JavaScript
and Python, the evaluation uses soundness, completeness, and exact match metrics. In the
following sections, we discuss each of these results in detail.

7.1.1 Python Callgraph Analysis

As evident from the first row of Table 7.1, the static analysis tool PYCG outperforms all 26
LLMs used in this study in terms of completeness, soundness, exact matches, and processing
time. For this research question, however, our focus is on analyzing the performance of LLMs.

Top Models. Among the LLMs, the best-performing one was the closed-source model
GPT-40, which achieved a high exact match score of 87.6%, soundness of 71.4%, and a lower
completeness score of 60%. This indicates that while it correctly identifies many function call
edges, it also introduces false positives and misses some valid edges. The Mistral-Large-1T-2407-
123B follows closely, achieving an exact match score of 86.6%, but shows moderate performance
in both completeness and soundness.
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As we move from smaller to larger models, performance improves generally, with better exact
match scores and higher soundness. However, Gemma2-IT-9B with 9B parameters outperforms
Gemma2-IT-27B with 27B parameters in terms of exact matches, achieving a score of 64%
compared to 58%. Both models have the same soundness score (31.7%), but the 9B model
shows a slight edge in completeness (35.7% vs. 23.8%). This indicates that increasing model
size does not always lead to better performance.

Models from the Phi-3 family such as Phi3-Mini-IT-3.8B and Phi3.5-Mini-IT-3.8B have
shown very poor results compared to others, likely due to their smaller size and limitations
in processing capabilities for this task. The phi3.5-moe-it-41.9b model was found to achieve a
similar level of language understanding and better reasoning capability compared to mistral-
nemo-it-2407-12.2b and llama3.1-it-8b models '. However, for this task, it lags in soundness
(19.0%) and exact matches score (27.7%) compared to the other two models indicating its limi-
tation for certain tasks. The model also had a high runtime of 1744.23 seconds.

There is a noticeable trade-off between completeness and soundness scores across the smaller
models. For instance, models such as the llamag3.1-it-8b, llama-3.2-3B-Instruct, and qwen2-it-7b
show higher soundness scores (37.3%, 42.0%, and 36.5%) but much lower completeness scores
(0.3%, 0.0%, and 0.0%), meaning they tend to produce a lot of false positives. The tinyllama-
1.1b model, one of the smallest in terms of parameter size, demonstrated poor performance
across all metrics.

Code Models. The codestral-v0.1-22b is designed as a code model with 22B parameters
trained in over 80 programming languages, making it suitable for various code-related tasks?.
However, for this task, the model showed weak results with a 15.9% completeness and 25.5% ex-
act match score, while only slightly surpassing the mistral-Small-Instruct-2409 (a 22.2B model)
in soundness (27.8% vs. 26.2%). This performance could suggest limitations in handling specific
call graph tasks. The Code Llama instruction-tuned models tested in this study included the
34B, 13B, and 7B variants. These models are optimized for general code generation and under-
standing. While the codellama-it-34b achieved 48.4% completeness and 19.05% soundness, the
smaller models (13B and 7B) showed weaker performance, likely due to their reduced parameter
sizes.

To clarify how the results are parsed and evaluated, we provide an example in the appendix,
showcasing the source code, ground truth, raw LLM response, and parsed call-graph JSON for
both the top-performing model, GPT-40, and the least-performing model, phi3.5-mini-it-3.8b,
for the same test case in our benchmark. These examples can be found in Appendix A.2.1 and
A.2.2, respectively.

7.1.2 JavaScript Callgraph Analysis

The results from analyzing the JavaScript SWARM-JS micro-benchmark are presented in Ta-
ble 7.2. Results of the static tools for JavaScript, JELLY and TAJS are also included.

Top Models. Among the LLMs, GPT-40 achieved 48.4% completeness and 61.9% sound-
ness, making it the top-performing model overall, with an exact match score of 82.7% which
indicates a strong performance in capturing valid function calls. The mistral-large-it-2407-123b
model achieved 42.0% completeness and 46.0% soundness, and an exact match score of 77.5%,
performing comparably to GPT-40 in terms of exact match rates. However, most other open-
source LLMs demonstrated weak performance.

Notably, the gemma2-it-9b model outperformed its larger variant, gemma2-it-27b, across all
metrics. It achieved an exact match score of 57%, soundness of 17.4%, and completeness of

https://huggingface.co/microsoft/Phi-3.5-MoE-instruct
’https://mistral.ai/news/codestral/
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CHAPTER 7. RESULTS

Table 7.1: Comparative analysis across LLMs for flow-insensitive call-graph analysis on the
PyCG Python micro-benchmark

@ 80-100%, @ 60-80%, @ 40-60%, O 20-40%, O 0-20%

Complete Sound Exact Matches

Model Time (s)
126 cases 599 cases
PyCG 104 © 107 © 566 O 12.24
gpt-4o0 @ 90 525 @ n/a
mistral-large-it-2407-123b 7 d 78 QO 519 © 1136.99
qwen2-it-72b 34 0 69 O 431 @ 640.65
llama3.1-it-70b 40 O 57 O 413 @ 576.95
mistral-Small-Instruct-2409 80 @ 33 O 399 @ 207.86
gpt-4o-mini 4 O 47 O 394 @ n/a
gemma?2-it-9b 45 O 40 O 384 @ 171.73
mistral-nemo-it-2407-12.2b 48 O 43 O 366 @ 104.59
gemma?2-it-27b 30 O 40 O 348 O 332.18
ministral-8B-Instruct-2410 18 O 53 O 282 O 112.8
llama3.1-it-8b 50 47 O 202 O 171.7
phi3.5-moe-it-41.9 7O 240 166 O 1744.23
qwen2-it-Tb 20 46 O 154 O 99.93
codestral-v0.1-22b 20 O 35 O 153 O 970.27
llama-3.2-3B-Instruct 0O 53 O 153 O 98.25
phi3-medium-it-14b O 29 O 143 O 263.79
codellama-it-34b 61 O 24 O 132 O 782.02
mistral-v0.3-it-7b 50 26 O 128 O 166.03
tinyllama-1.1b 36 O 5 O 86 O 806.37
gemma2-it-2b 13 O 10 O 83 O 104.07
llama-3.2-1B-Instruct 2 O 19 O 78 O 100.49
mixtral-v0.1-it-8x7b 20 180 50 O 879.32
codellama-it-13b 19 O 19 O 44 O 921.53
codellama-it-7b 6 O @) 30 O 456.33
phi3-mini-it-3.8b O ©) 17 O 138.36
phi3.5-mini-it-3.8b 2 O @) 11 O 138.58
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33.3%. In comparison, the gemma2-it-27b achieved an exact match score of 50%, soundness of
11.9%, and completeness of 11%. The phi3.5-moe-it-41.9b model performed poorly and had a
very high runtime of 2627.33 seconds, making it both inefficient and ineffective. The codellama-
it-34b model, one of the code-specific models, showed high completeness score (83/126), but very
low soundness (9/126). This indicates that although the model generated few false positives, it
missed nearly all valid function calls, leading to mostly empty call graphs. The least-performing
model was mixtral-v0.1-it-8x7b with very poor results across all metrics.

An example showing the source code, ground truth, raw LLM response, and parsed call
graph response for GPT-40 and mixtral-v0.1-it-8x7b is provided in Appendix A.2.3 and A.2.4,
respectively.

7.1.3 Java Callgraph Analysis

The results of Java call-graph analysis on CATS micro-benchmark are presented in Table 7.3.
Results of the static tool, SOOTUP for Java are also included in the table. From SootUp, we
utilized the SOOTUPcya and SOOTUPRTA algorithms.

For Java, the evaluation focuses solely on soundness as the primary metric. This decision
aligns with the design of CATS micro-benchmark, which emphasizes testing whether the call-
graph construction tools correctly capture the expected call edges for specific features. Since
the CATS ground truth is feature-specific and does not provide an exhaustive list of all possible
call edges, evaluating only soundness ensures fairness.

Top Models. Among the 26 models evaluated, GPT-40 achieved the highest overall per-
formance with a high soundness score of 82.5%, showcasing its robustness in identifying valid
function call edges. The mistral-Small-Instruct-2409, a 22B parameters model followed very
closely behind with a soundness of 80.7%. Llama3.1-it-70b also demonstrated strong perfor-
mance, having a soundness of 78%. Both models outperformed larger models such as the
mistral-large-it-2407-123b. These results underscore GPT-40’s dominance, but also the com-
petitive capabilities of open-source models like Mistral and LLaMA.

An interesting observation is the performance of the gemmaZ2-it-9b model. It achieved a
soundness score of 68.8%, which is comparable to the 69.7% score achieved by mistral-large-
it-2407-123b. This near-equivalent performance between gemma2-it-9b and mistral-large-it-
2407-123b, despite the vast difference in parameter sizes, underscores the potential of smaller,
optimized models to rival significantly larger ones in performing specific tasks.

The smaller models, such as phi3.5-mini-it-3.8b, mistral-nemo-it-2407-12.2b, mistral-v0.3-
it-7b, qwen2-it-7b, and llama-3.2-1B-Instruct, exhibited very weak performance. For instance,
the phi3-mini-it-3.8b model achieved a soundness score of only 2/109. This suggests that the
model struggled to identify valid function calls, leading to numerous test case failures and the
generation of nearly empty call graphs.

Code Models. The code-specific models showed moderate to weak performance, with
codellama-it-7b emerging as the top performer among the codellama models. It achieved a sound-
ness score of 32/109 (29.3%), indicating limitations in identifying valid edges. The codestral-
v0.1-22b model, despite being larger in terms of parameters, performed even worse, achieving a
soundness score of just 10/109 (9.1%).

We have provided an example in the appendix, showcasing the source code, ground truth,
raw LLM response, and parsed call-graph JSON for GPT-40 (see Appendix A.2.5) and Llama-
3.2-1B-Instruct (see Appendix A.2.6).
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Table 7.2: Comparative analysis across LLMs for flow-insensitive call-graph analysis on the
SWARM-JS JavaScript micro-benchmark

© 80-100%, @ 60-80%, O 40-60%, O 20-40%, O 0-20%

Complete Sound Exact Matches

Model Time (s)
126 cases 596 cases
gpt-4o0 61 O 78 Q@ 493 © n/a
Jelly 49 O 85 O 490 © 643.51
mistral-large-it-2407-123b 53 O 58 O 462 @ 1124.65
qwen2-it-72b 31 0 520 393 @ 704.53
llama3.1-it-70b 21 © 34 O 359 @ 565.94
mistral-Small-Instruct-2409 65 O 18 O 357 @ 210.63
gpt-4o-mini 280 27 O 341 O n/a
gemma?2-it-9b 42 O 22 O 340 O 162.29
mistral-nemo-it-2407-12.2b 45 O 25 O 307 O 103.64
gemma2-it-27b 14 O 15 O 298 O 316.47
ministral-8B-Instruct-2410 16 O 47 O 265 O 115.93
llama3.1-it-8b o 39 0 194 O 108.29
phi3.5-moe-it-41.9b O 11 O 161 O 2627.33
llama-3.2-3B-Instruct O 45 0O 156 O 95.73
mistral-v0.3-it-7b o 220 145 O 185.56
codestral-v0.1-22b 40 O 14 O 126 O 1006.89
phi3-medium-it-14b 2 O 18 O 125 O 258.44
qwen2-it-7b 2 O 27 O 99 O 88.68
gemma2-it-2b 10 O 6 O 95 O 105.76
TAJS 119 © 14 O 83 O 136.74
codellama-it-34b 83 @ 9 O 83 O 835.92
llama-3.2-1B-Instruct 0O 14 O 72 O 130.7
codellama-it-7b 14 O 2 O 42 O 484.55
phi3-mini-it-3.8b 3 0 2 O 41 O 112.45
tinyllama-1.1b 11 O 1 O 29 O 872.21
codellama-it-13b O 10 O 23 O 1180.64
phi3.5-mini-it-3.8b 30 30 20 O 151.07
mixtral-v0.1-it-8x7b O O 14 O 765.36
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Table 7.3: Comparative analysis across LLMs for flow-insensitive call-graph analysis on the
CATS Java micro-benchmark

© 80-100%, @ 60-80%, O 40-60%, O 20-40%, O 0-20%

Model Sound Time (s)
(109 cases)
gpt-4o0 90 @ n/a
mistral-Small-Instruct-2409 88 © 258.88
llama3.1-it-70b 85 @ 400.32
gpt-4o-mini 76 n/a
mistral-large-it-2407-123b 76 @ 1270.26
gemma?2-it-9b 7 119.06
qwen2-it-72b 73 @ 427.13
ministral-8B-Instruct-2410 69 @ 323.97
llamad.1-it-8b 66 @ 118.12
gemma2-it-27b 62 O 330.12
phi3-medium-it-14b 50 O 162.63
llama-3.2-3B-Instruct 45 O 148.32
SootUpcua 41 O 649.48
SootUprra 41 O 647.02
codellama-it-7b 32 O 282.07
codellama-it-34b 24 O 1400.1
mixtral-v0.1-it-8x7b 21 O 396.86
gemmaz2-it-2b 19 O 53.85
phi3.5-moe-it-41.9b 17 O 669.72
codellama-it-13b 17 O 482.28
codestral-v0.1-22b 10 O 850.35
tinyllama-1.1b 5 O 867.49
phi3.5-mini-it-3.8b 4 O 228.42
mistral-v0.3-it-Tb 30 74.81
qwen2-it-7b 3 0O 40.1
llama-3.2-1B-Instruct 30 78.7
mistral-nemo-it-2407-12.2b 2 O 59.95
phi3-mini-it-3.8b 2 O 290.05
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7.2 RQ2: LLM Accuracy in Call Graph Analysis Across Lan-
guages

To address this research question, we focus on comparing the performance of LLMs in call
graph analysis across Python and JavaScript. Although Java is included in this study, a direct
comparison with Python and JavaScript is not feasible due to the specific characteristics of
the CATS micro-benchmark used for Java evaluations. The CATS micro-benchmark focuses
on capturing call edges relevant to the specific features under test rather than providing a
comprehensive view of all possible call edges. This feature-specific focus means that the ground
truth annotations in CATS are not exhaustive and therefore, metrics such as completeness and
exact matches cannot be meaningfully applied. As a result, Java evaluations are limited to the
soundness metric, which reflects feature-specific correctness. In contrast, Python and JavaScript
evaluations use micro-benchmarks that are designed to evaluate call graphs comprehensively.
These benchmarks enable the computation of metrics such as soundness, completeness, and
exact matches. Since Python and JavaScript results are based on these directly comparable
metrics, their comparison is both fair and meaningful. Thus, to ensure fairness and validity,
we limit this section to comparing Python and JavaScript results. Table 7.4 presents the top
10 performing LLMs, with completeness, soundness, and exact match rates reported for both
languages.

GPT-40, the top-performing model for both languages, achieved a high exact match score
of 88% in Python, compared to 83% in JavaScript. Similarly, GPT-40’s soundness scores were
71% for Python and 62% for JavaScript, while its completeness scores were 60% and 48%,
respectively. Across both languages, GPT-40 exhibited consistent dominance, outperforming
other models across all metrics. Following GPT-40, the second-best model, mistral-large-it-
2407-123b, demonstrated a similar trend, with Python results outperforming JavaScript across
all three metrics. The exact match rates were 87% in Python compared to 78% in JavaScript,
soundness scores were 62% and 46%, and completeness scores were 60% and 42%, respectively.

The top four models for both Python and JavaScript were the same: GPT-40, mistral-large-
it-2407-123b, llamad.1-it-70b, and qwen2-it-72b. This indicates that these models maintained
consistent performance irrespective of the programming language. However, the performance
gap between these top models was more pronounced in JavaScript. For instance, the difference
in exact match rates between GPT-40 and the second-best model (mistral-large-it-2407-123b)
was b percentage points (83% vs. 78%) in JavaScript, compared to just 1 percentage point (88%
vs. 87%) in Python.

Interestingly, smaller variants of certain models outperformed their larger counterparts in
both Python and JavaScript. For example, gemmaz2-it-9b consistently outperformed gemma2-it-
27b across all metrics. In Python, gemma2-it-9b achieved an exact match rate of 64%, compared
to 58% for gemmaZ2-it-27b. Similarly, in JavaScript, gemma2-it-9b achieved 57%, while the larger
variant achieved only 50%. This trend highlights that scaling model size does not always guaran-
tee better performance. The smallest model in the comparison, llamagd.1-it-8b, exhibited notably
weak performance, particularly in completeness scores across both Python and JavaScript. In
Python, it achieved a completeness score of only 4%, and in JavaScript, the score was 3%. While
its exact match and soundness scores were slightly better, llamad3.1-it-8b still lagged behind the
top-performing models, indicating the challenges faced by smaller models in tackling call graph
analysis tasks.
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Table 7.4: Percentage comparison of models across Python and JavaScript flow-insensitive call-
graph evaluations

O 80-100%, @ 60-80%, O 40-60%, O 20-40%, O 0-20%

Model Python (%) ‘ JavaScript (%)
Comp. Sound EM.|Comp. Sound EM.
gpt-4o0 60 @ 71 @ 8 ©| 48 O 62 @ 83 ©
mistral-large-it-2407-123b 60 @ 62 @ 87 ©| 42 O 46 O 78 @
llama3.1-it-70b 320 45 069 @] 21 O 27 O 60 @
qwen2-it-72b 27 O 55 O 72 @] 25 O 41 O 66 @
mistral-Small-Instruct-2409 64 @ 26 O 67 @] 52 O 14 O 60 @
gpt-4o-mini 35 O 37 O 66 @ 27 O 22 O 59 O
gemmaZ2-it-9b 36 O 32064 @] 33 O 18 O 57 O
gemma?2-it-27b 24 O 32 O 58 O 11 0 12 O 50 O
mistral-nemo-it-2407-12.2b 3830 34 061 @] 36 O 20 O 52 O
llama3.1-it-8b 4 O 371 O 34 O 30 31 0330

7.3 RQ3: Comparison of LLMs and Traditional Static Analysis
Tools

To address this research question, we compare the top-performing LLM for each programming
language with an existing static analysis tool for that language. Details of the existing call graph
construction tools used in this study are discussed in Section 2.2. For Python, the results of call
graph analysis using the static analysis tool PYCG and the top-performing model GPT-4o, are
presented in Table 7.5. This comparison is based on the PYCG micro-benchmark. For Java, the
results of call graph analysis using GPT-40 and SOOTUP on the CATS micro-benchmark are
summarized in Table 7.7. For JavaScript, Table 7.6 presents the results of JELLY and GPT-40
on the SWARM-JS JavaScript micro-benchmark.

The static analysis tool for JavaScript, TAJS was also evaluated because it had demonstrated
strong performance in call-graph generation in a study by Antal et al. (2023). However, in our
study (Table 7.2), TAJS produced poor results. While its completeness score appeared high at
first glance, this was largely due to 102 out of 126 test cases generating errors and producing
empty outputs, which reduced the false positive count. This limitation arises because TAJS only
fully supports ECMAScript 3rd edition, whereas the SWARM-JS benchmark includes modern
features from ECMAScript 6th edition, such as classes and arrow functions. JELLY, which
supports the latest ECMAScript features, delivered significantly better performance.

7.3.1 Python

We present the call graph analysis results of PYCG and GPT-40 on the PYCG micro-benchmark
in Table 7.5. To provide a detailed overview of performance across different feature categories,
the results are presented category-wise. The results highlight the superior performance of the
static analysis tool PYCG compared to the top-performing model, GPT-40 in terms of com-
pleteness, soundness, and exact matches.
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Table 7.5: Comparison of Pycg and GPT-40 on the PyCG Python micro-benchmark

© 80-100%, @ 60-80%, O 40-60%, O 20-40%, O 0-20%

Category ‘ Pycg ‘ GPT-40

‘ Complete Sound E.M. ‘ Complete Sound E.M.
args 6/10 10/10 38/38 4/10 6/10 33/38
assignments 4/8 7/8 36/38 7/8 7/8 37/38
builtins 3/3 1/3 7/17 1/3 1/3 8/17
classes 21/21 21/21 92/92 7/21 18/21 85,92
decorators 5/7 5/7 37/39 4/7 3/7 32/39
dicts 9/12 11/12 40/41 10/12 11/12 38,/41
direct__calls 4/9 4/9 63/70 5/9 7/9 66/70
dynamic 0/1 0/1 1/3 0/1 0/1 0/3
exceptions 3/3 3/3 6/6 3/3 3/3 6/6
functions 4/4 4/4 9/9 4/4 4/4 9/9
generators 6/6 6/6 36/36 3/6 3/6 30/36
imports 12/15 11/15 70/75 11/15 11/15 69/75
kwargs 3/3 3/3 15/15 0/3 0/3 9/15
lambdas 5/5 5/5 23/23 5/5 3/5 18/23
lists 8/8 7/8 35/36 7/8 5/8 33/36
mro 7/7 5/7 34/37 37 4/7 31/37
returns 4/4 4/4 24/24 1/4 4/4 21/24
Total 104/126 © 107/126 © 566/599 ©| 75/126 @ 90/126 @ 525/599 ©

Overall Performance. In a benchmark of 126 test cases, PYCG achieved 83% complete-
ness and 85% soundness, significantly surpassing GPT-40, which attained 61% completeness and
71% soundness. This means that for the majority of test cases, PyCG produced no false posi-
tives (completeness) and missed very few valid function calls (soundness). Additionally, PYCG
generated 566 exact matches out of 599, outperforming GPT-40 by a margin of 41 matches.

Category-wise Performance. Across the 17 feature categories evaluated, PYCG achieved
100% soundness in 8 categories (args, classes, exceptions, functions, generators, kwargs, lambdas,
and returns). This demonstrates PYCG’s accuracy in generating call graphs with no false
negatives across diverse test cases. GPT-4o0 achieved a 100% soundness score in 3 categories
(exceptions, functions, and returns). Some other categories in which GPT-4o0 performed well
in terms of soundness scores are assignments (7/8) and dicts (11/12). For exact matches,
PyCG outperformed GPT-40 in all categories except direct calls and assignments, where GP'T-
40 demonstrated a slight edge. In categories like classes, PYCG reached a perfect 92/92 exact
match score, exceeding GPT-40’s performance (85/92). There are some categories in which both
PyCG and GPT-4o0 achieved similar scores across all metrics. For example, imports, functions,
and exceptions.

33



7.3 RQ3: COMPARISON OF LLMS AND TRADITIONAL STATIC ANALYSIS TOOLS

7.3.2 JavaScript

We present the results of JELLY and GPT-40 on the SWARM-JS micro-benchmark in Table
7.6. The SWARM-JS micro-benchmark consists of 18 categories, each corresponding to distinct
JavaScript language features such as arrow functions, classes, and functions. To provide a
detailed understanding of performance across these features, the results are presented category-
wise.

Overall Performance. When we look at the overall performance, both tools achieved
comparable results for exact matches, with Jelly at 490/596 (82.2%) and GPT-4o slightly ahead
at 493/596 (82.7%). This indicates that in terms of exact match rates, GPT-40 has a slight
edge over JELLY. However, JELLY performed better in soundness, achieving 85/126 (67.5%)
compared to GPT-40’s 78/126 (61.9%). This suggests that JELLY identified more valid function
call edges and produced less number of false negatives. On the other hand, GPT-40 achieved a
higher completeness score (48.4% vs. 38.9%), indicating fewer false positives in the generated
call graphs. In this study, we ran the JELLY tool with its approzimate interpretation feature
enabled. This approach, which combines elements from static and dynamic analysis, focuses on
improving the accuracy of JavaScript analysis and reducing unsoundness (Laursen et al., 2024).
This hybrid methodology likely contributed to JELLY’s strong performance in soundness.

Category-wise Performance. JELLY outperformed GPT-40 in soundness for certain
JavaScript features such as classes (20/21 vs. 14/21), args (10/10 vs. 7/10), and arrow__functions
(4/5 vs. 3/5). On the other hand, GPT-40 demonstrated higher completeness in most categories,
such as direct_calls (5/9 vs. 2/9), imports (6/15 vs. 0/15) and assignments (7/8 vs. 4/8). In
terms of exact match scores, JELLY matched or surpassed GPT-4o0 in categories such as args
(37/37 vs. 33/37), arrow_functions (21/23 vs. 19/23), classes (87/92 vs. 80/92), inheritance
(17/18 vs. 14/18), and mizins (12/16 vs. 5/16). GPT-4o0, however, showed better results in
categories like arrays (32/38 vs. 26/38), builtins (13/19 vs. 6/19), imports (66/80 vs. 61/80),
and direct calls (63/69 vs. 57/69).

Overall, while GPT-40 demonstrated marginally better exact match rates and higher com-
pleteness, JELLY outperformed in soundness, showcasing its ability to identify valid function
call edges. This strong performance from JELLY is likely due to its approximate interpretation
feature.

7.3.3 Java

We present the results of SOOTUPcya and GPT-40 on the CAT'S micro-benchmark in Table 7.7.
From SooTUp, we utilized the SOOTUPcya and SOOTUPRTa algorithms. As evident from the
overall results in Table 7.3, both algorithms struggled to perform well on the CATS benchmark.
In this section, we focus on comparing SOOTUPcpa with GPT-40, the top-performing model in
Java.

Overall Performance. If we look at the overall performance, GPT-40 demonstrated a
significant advantage in terms of soundness. GPT-4o0 achieved 90/109 (82.5%) in soundness,
compared to SOOTUPcha s 41/109 (37.6%) for soundness. This indicates that GPT-40 was
significantly better at identifying valid function call edges for the test cases in the CATS bench-
mark.

Category-wise Performance. GPT-40 achieved near-perfect soundness scores in several
categories, including Reflection (20/20), Static Initializers (8/8), Virtual Calls (4/4), Java8 In-
voked Dynamics (10/11), and JVM Calls (4/5). In contrast, SOOTUPcpa struggled significantly
in some of these categories, scoring 4/20 for Reflection, 0/11 for Java8 Invoked Dynamics, and
0/5 for JVM Calls. However, SOOTUPcpa performed relatively well in a few categories achieving
high soundness, such as Types, Virtual Calls, Unsafe, and Java8 Interface Methods. The weak
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Table 7.6: Comparison of Jelly and GPT-40 on the SWARM-JS JavaScript micro-benchmark

© 80-100%, @ 60-80%, O 40-60%, O 20-40%, O 0-20%

Category Jelly GPT-40
Complete Sound E.M. Complete Sound E.M.
args 4/10 10/10 37/37 5/10 7/10 33/37
arrays 3/8 5/8 26/38 4/8 6/8 32/38
arrow__functions 4/5 4/5 21/23 3/5 3/5 19/23
assignments 4/8 8/8 38/38 7/8 7/8 37/38
builtins 2/3 0/3 6/19 2/3 1/3 13/19
classes 5/21 20/21 87/92 6/21 14/21 80/92
decorators 1/7 2/7 25/39 5/7 3/7 33/39
direct_calls 2/9 3/9 57/69 5/9 6/9 63/69
dynamic 1/1 0/1 1/4 0/1 0/1 1/4
exceptions 3/3 2/3 4/6 0/3 3/3 3/6
functions 3/4 4/4 9/9 3/4 3/4 8/9
generators 6/6 1/6 16/29 3/6 1/6 19/29
imports 0/15 7/15 61/80 6/15 6/15 66/80
inheritance 0/4 3/4 17/18 1/4 2/4 14/18
kwargs 2/3 2/3 13/14 1/3 1/3 9/14
mixins 0/3 1/3 12/16 0/3 1/3 5/16
objects 7/12 9/12 37/41 9/12 11/12 38/41
returns 2/4 4/4 23/24 1/4 3/4 20/24
Total ‘ 49/126 O 85/126 @ 490/596 O‘ 61/126 O 78/126 @ 493/596 ©
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Table 7.7: Comparison of Java Call Graph Analysis using SootUpcga and GPT-40 on the
CATS Java micro-benchmark

© 80-100%, @ 60-80%, O 40-60%, O 20-40%, O 0-20%

‘ SootUpcua ‘ GPT-40

Category

Sound Sound
Classloading 0/1 1/1
DynamicProxies 0/1 0/1
JVMCalls 0/5 4/5
Java8InterfaceMethods 7/7 4/7
Java8Invokedynamics 0/11 10/11
Library 0/5 0/5
ModernReflection 2/8 7/8
NonVirtualCalls 4/5 4/5
Reflection 4/20 20/20
Serialization 0/14 12/14
SignaturePolymorphicMethods 0/7 6/7
StaticInitializers 7/8 8/8
Types 6/6 5/6
Unsafe 7/7 5/7
VirtualCalls 4/4 4/4
Total 41/109 O |90/109 ©

performance of SOOTUPcpa in the CATS benchmark can largely be attributed to its lack of
support for dynamic language features, which are essential for handling several Java constructs
present in this benchmark.
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8.1 Performance of LLMs in Call Graph Analysis

The results of our study show that LLMs demonstrate varying levels of effectiveness in call graph
analysis across Python, JavaScript, and Java, with differences observed in completeness, sound-
ness, and exact match metrics for Python and JavaScript, while only soundness was evaluated
for Java.

Among the 26 models evaluated, the closed-source model GPT-40 outperformed its open-
source counterparts, achieving the highest scores across all metrics in Python and JavaScript and
demonstrating strong soundness in Java. Some open-source models also achieved competitive
results in specific metrics. For example, in Java, the Mistral-Small-Instruct-2409 model per-
formed particularly well, achieving soundness comparable to GPT-40. Similarly, in Python, the
Mistral-Large-Instruct-2407-123B model demonstrated competitive performance, closely match-
ing GPT-40 in terms of exact matches and completeness. This suggests that open-source models
are beginning to catch up with closed-source models.

While model size played a role in performance, this relationship was not always linear. Larger
models, such as Mistral-Large-Instruct-123B, demonstrated steady performance and adaptabil-
ity across languages. However, in Java, the smaller Mistral-Small-Instruct-2409 significantly
outperformed the larger model. Similarly, the GemmaZ2-it-9B model outperformed the larger,
Gemma?2-it-27B consistently across all three languages. These findings indicate that a higher
parameter count does not always guarantee better results. On the other hand, the consistently
poor performance of smaller models like TinyLlama-1.1B and Llama-3.2-1B-Instruct suggests
that a certain level of model complexity is necessary for effective call graph analysis. The code-
specific models included in this study, such as Codestral-v0.1-22B and CodeLlama-it-34B, did
not rank among the top ten performing models in any of the languages.

8.2 Performance Across Programming Languages

Python and JavaScript. For Python and JavaScript, completeness, soundness, and exact
match metrics were evaluated. Across these metrics, Python outperformed JavaScript over-
all with most models achieving higher scores in Python. In Python, GPT-40 was the best-
performing model, while mistral-large-it-2407-123b demonstrated competitive performance, es-
pecially in exact matches. In JavaScript, GPT-40 was again the leading model, but the perfor-
mance gap between GPT-40 and other open-source models such as mistral-large-it-2407-123b,
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was more pronounced. Also, most other open-source models showed poor performance com-
pared to Python. Early studies have indicated that LLMs perform better on code generation
tasks in Python (Buscemi, 2023), which can be attributed to its simple and cleaner syntax and
well-established conventions, as speculated in previous work (Chen et al., 2021). Yet, further
research is needed to fully understand the performance gap between the languages.

Java. Java was analyzed solely for soundness due to the specific characteristics of the CAT'S
benchmark used in this study. GPT-40, Mistral-Small-Instruct-2409, and Llama-3.1-70B were
the top three models, all demonstrating comparable soundness rates. Models like gemmaz2-it-9
achieved nearly equivalent performance to much larger models such as Mistral-Large-I1t-2407-
123b. This highlights the potential for smaller, optimized models to compete with significantly
larger ones in performing specific tasks.

8.3 Traditional SA Tools and LLMs

Similar to findings in previous work (Ma et al., 2023; Sun et al., 2023; Venkatesh et al., 2024b),
our results show that the construction of call graphs does not yet significantly benefit from the
use of LLMs, especially in Python.

The static analysis tool PYCG outperformed all LLMs in Python. PYCG achieved near-
perfect results, underscoring the current limitations of LLMs in handling static analysis tasks
for Python. In JavaScript, the static analysis tool JELLY performed better in soundness but
was surpassed by GPT-40 in completeness and exact match rates. However, this difference can
be attributed to JELLY’s primary focus on achieving better soundness through its approximate
interpretation feature, which emphasizes identifying valid call edges while reducing unsoundness.
The TAJS tool for JavaScript, however, produced poor results on modern JavaScript programs.
This can be attributed to the fact that TAJS does not have support for the latest JavaScript
features and has not been actively developed or maintained for the past four years. For Java,
SooTUpP underperformed compared to the LLMs, mainly due to its inability to handle dynamic
language features effectively. In contrast, the LLMs demonstrated strong performance in Java,
with around five models achieving soundness and exact match rates above 70%.

One notable limitation of the LLMs tested in this study is their size. Most of the models had
over seven billion parameters, making them unsuitable for deployment on standard machines
equipped with a single GPU. In contrast, traditional SA tools like PYCG and JELLY can operate
effectively within these hardware constraints, making them more practical for many SA tasks.

A potential direction for future research is to explore the performance of fine-tuned smaller
variants of LLMs across different languages. This could help us understand if fine-tuning smaller
models for specific tasks could improve their performance in call graph analysis, without the
resource constraints that come with using larger models.
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Threats to Validity _

We acknowledge the following limitations and threats to the validity of our study:

e We applied the same prompt to all models, which may not have optimized performance
for each individual model. Tailored prompts could potentially extract better results from
specific models.

e Open-source models frequently deviated from the expected output formats provided in
the prompt. To mitigate this, we manually identified response patterns and added a
preprocessing step to standardize the format. However, this approach may not account
for all variations, further underscoring the challenge of consistently generating structured
data with LLMs.

o While we tested several prompts iteratively, our approach did not focus exclusively on
optimizing prompt engineering. A dedicated experiment to explore different prompting
strategies could lead to better results. Our modular framework can serve as a foundation
for future research aimed at refining prompts to improve performance.

o We used greedy search for token prediction, always selecting the highest-probability to-
ken. Future research could explore higher temperature settings and incorporate a voting
mechanism to identify the best output, potentially yielding better results.

e While micro-benchmarks are useful for isolating and evaluating specific aspects of system
performance, they may miss the complexity and variability of real-world workloads and
use cases.

e We employed translation functions to adapt the outputs of static analysis tools like Jelly
and TAJS to the respective micro-benchmark schemas. This approach allowed for stan-
dardized evaluation across different tools, but it also introduced a limitation in directly
comparing the outputs from these tools.
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10

Conclusion _

This study provides a comprehensive evaluation of LLMs in static analysis tasks, particularly
call-graph construction, using specialized micro-benchmarks across Python, JavaScript, and
Java programs. Our results reaffirm that while LLMs offer promising capabilities in various
software engineering tasks, traditional static analysis methods remain more effective for call-
graph construction, particularly in Python. Similar to findings in previous studies, LLMs have
yet to surpass the efficiency of static tools like PyCG for this task. In JavaScript, LLMs demon-
strated competitive performance, with models like GPT-40 achieving strong completeness and
exact match rates. However, most other open-source models exhibited very weak performance
in JavaScript compared to their performance in Python. Further investigation is required to
fully understand the performance gap between Python and JavaScript. Static tools such as
JELLY for JavaScript outperformed the LLMs in terms of soundness, highlighting the strengths
of traditional analysis methods in handling language-specific features.

In the case of Java, LLMs showed a notable improvement, with several models achieving
above 70% soundness. However, the inability of SOOTUP to handle dynamic features effec-
tively contributed to its lower performance compared to LLMs. Despite these promising results,
LLMs are still limited by their size and resource requirements. Most models evaluated in this
study had over seven billion parameters, making them unsuitable for deployment in resource-
constrained environments. In contrast, traditional static analysis tools can run efficiently within
these hardware constraints, making them more practical for many real-world scenarios.

Future work should explore how fine-tuned models perform across different languages and
tasks, as this could potentially lead to better results without the significant resource demands
associated with larger models. This study demonstrates the potential of LLMs in software engi-
neering tasks, while also emphasizing their limitations and the continued strengths of traditional
methods especially in languages like Python. However, with continued advancements and fur-
ther exploration of task-specific fine-tuning, LLMs could become a valuable addition to existing
static analysis methods.
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Appendix

A.1 Prompts

## Task Description

**0bjectivex**: Examine and identify the function calls in the given Python code and
answer the questions.

**Instructions*x*:

1. For each question below, provide a concise answer indicating the function calls.

2. List every function call as a comma separated list.

3. Do not include additional explanations or commentary in your answers.

4. Include both explicit and implicit function calls in your answers. An implicit
function call is a function that is called as a result of another operation, such as
the __init__ method being called when an object is created.

5. If a function is called through an alias or a reference, identify and list the actual
function that is called after resolving the alias.

6. If a passed argument is not invoked within the function, do not include the function
call in the answer.

7. Examples of Python code, questions, and answers are given below. This example should
be used as training data.

Listing A.1: Prompt for call graph task in Python in question-answer format (Part 1 of 2)

## Task Description

**0bjectivex*: Examine and identify the function calls in the given JavaScript code and
answer the questions.

**Instructions*x*:

1. For each question below, provide a concise answer indicating the function calls.

2. List every function call as a comma separated list.

3. Do not include additional explanations or commentary in your answers.

4. Include both explicit and implicit function calls in your answers. An implicit
function call is a function that is called as a result of another operation, such as
the constructor method being called when an object is created.

5. If a function is called through an alias or a reference, identify and list the actual
function that is called after resolving the alias.

6. If a passed argument is not invoked within the function, do not include the function
call in the answer.

7. Example of JavaScript code, questions, and answers are given below. This example
should be used as training data.

Listing A.2: Prompt for call graph task in JavaScript in question-answer format (Part 1 of 2)
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## Task Description

**0bjectivex*:
Examine the provided Java code, analyze the function calls, and answer the questions

about the caller-target relationships.

**Instructions**:

o

Bo

For each question provide the target functions as a comma-separated list.

*%x IMPORTANT **: Ensure that the target function in each response is formatted as
specified in the method signature format:

- [Fullname of Class]:[method name] ([Parameterlist])

- Example: vc.Class:target(java.lang.Stringl[])
Do not include additional explanations or comments in your answers.
Do not include the questions in your response. Only list the answers using the
question number format shown below, that is, provide your answer for each question

next to the corresponding question number

- Response format example:
- 1. vc.Class:(java.lang.String[]), vc.Class:(java.lang.Integer)

For methods called through aliases or references, resolve and return the actual target
method.

Examples of Java code, questions, and answers are given below. This example should be
used as training data.

Listing A.3: Prompt for call graph task in Java in question-answer format (Part 1 of 2)
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**Format for Answers*x*:

- Provide your answer next to each question number, using only one word.
- Do not include the questions in your answer.

- Example:
1. simple.func
2. simple.examplefunc
3. func

*xExample Python Code**:

¢

main.py
def return_func():
func ()
def func():
a = return_func

return a

a = func

a() O

[

*xExample Questions**:

1. What are the module level function

2. What are the function calls inside
py"?

3. What are the function calls inside

*x*Example Answers**:

1. main.func, main.return_func
2. main. func

3.

**{language} Code Providedx**:

{code}

*xQuestions*x*:
{questions}

** Answers x*:
{answers}"""

calls in the file "main.py"?
the "main.return_func" function in the file "main.

the "main.func" function in the file "main.py"?

Listing A.4: Prompt for call graph task in Python in question-answer format (Part 2 of 2)
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**Format for Answers*x*:

- Provide your answer next to each question number, using only one word.
- Do not include the questions in your answer.

- Example:
1. simple.func
2. simple.examplefunc
3. func

*xExample Javascript Codex*x*:

‘“‘main.js

function returnFunc () {{
func () ;

T}

function func() {{
a = returnFunc;
return a;

3
a = func;
a()O;

[

*xExample Questions**:

1. What are the module level function

2. What are the function calls inside
J‘sll?

3. What are the function calls inside

*xExample Answers**:

1. main.func, main.return_func
2. main.func

3.

**{language} Code Providedx**:

{code}

*xQuestions *x*:
{questions}

¥k Answers x*:
{answers}"""

calls in the file "main. js"?
the "main.return_func" function in the file "main.

the "main.func" function in the file "main.js"?

Listing A.5: Prompt for call graph task in JavaScript in question-answer format (Part 2 of 2)
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*x*Format for Response**:
1. vc.Class:targetFunction(), vc.Class:targetFunction2()
2. vc.Class:anotherTargetFunction ()

*xExample Java Code*x*:
(lljava

// vc/Class. java
package vc;

class Class {{
public void target () {{ }}

public static void main(String([] args){{
Class cls = new Class();
cls.target () ;
3
}r

[

*x*Example Questions*x*:
1. What are the target functions invoked by the caller "main(java.lang.String[])" in the
"vc/Class" class?

**xExample Answersx*x*:
1. vc.Class:target ()

x*x{language} Code Provided**:
{code}

**Questions*kx*:
{questions}

*¥*% Answers x*:
{answers}"""

Listing A.6: Prompt for call graph task in Java in question-answer format (Part 2 of 2)
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## Task Description

**0bjective**: Examine and identify the function calls in the given Python code and
answer the questions.

** Instructions*x*:

1. For each question below, provide a concise answer indicating the function calls.

2. List every function call as a comma separated list.

3. Do not include additional explanations or commentary in your answers.

4. Include both explicit and implicit function calls in your answers. An implicit
function call is a function that is called as a result of another operation, such as
the __init__ method being called when an object is created.

5. If a function is called through an alias or a reference, identify and list the actual
function that is called after resolving the alias.

6. If a passed argument is not invoked within the function, do not include the function
call in the answer.

7. Examples of Python code, questions, and answers are given below. This example should
be used as training data.

**Format for Answers*x*:
- Provide your answer next to each question number, using only one word.
- Do not include the questions in your answer.
- Example:
1. simple.func
2. simple.examplefunc
3. func

*x*Example Python Code*x*:

‘¢ ‘“main.py

def return_func():
func ()

def func():
a = return_func
return a

a = func

a() O

[SNEN1

**Example Questions**:

1. What are the module level function calls in the file "main.py"?

2. What are the function calls inside the "main.return_func" function in the file "main.

py ll?
3. What are the function calls inside the "main.func" function in the file "main.py"?

**Example Answers**:

1. main.func, main.return_func
2. main.func

3.

**Python Code Providedx*x*:
‘“‘main.py
def param_func():

pass

def func(a):
a()

func (param_func)
[N Y

**Questions*x*:

1. What are the module level function calls in the file ’main.py’?

2. What are the function calls inside the ’main.param_func’ function in the file ’main.py
’?

3. What are the function calls inside the ’main.func’ function in the file ’main.py’?

¥k Answers x*:
1.
2.
3.

Listing A.7: Example of an actual full prompt for call graph task in Python used in the study
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## Task Description

*x*0bjectivex*: Examine and identify the function calls in the given JavaScript code and
answer the questions.

¥k Instructions*x*:

1. For each question below, provide a concise answer indicating the function calls.

2. List every function call as a comma separated list.

3. Do not include additional explanations or commentary in your answers.

4. Include both explicit and implicit function calls in your answers. An implicit
function call is a function that is called as a result of another operation, such as
the constructor method being called when an object is created.

5. If a function is called through an alias or a reference, identify and list the actual
function that is called after resolving the alias.

6. If a passed argument is not invoked within the function, do not include the function
call in the answer.

7. Example of JavaScript code, questions, and answers are given below. This example
should be used as training data.

**Format for Answersx**:
- Provide your answer next to each question number, using only one word.
- Do not include the questions in your answer.
- Example:
1. simple.func
2. simple.examplefunc
3. func

*xExample Javascript Codex**:

‘“‘“main.js

function returnFunc () {{
func () ;

13}

function func() {{
a = returnFunc;
return a;

}
a = func;
a() O

[

*xExample Questions*x*:

1. What are the module level function calls in the file "main.js"?

2. What are the function calls inside the "main.return_func" function in the file "main.
J'Sll?

3. What are the function calls inside the "main.func" function in the file "main.js"?

*kExample Answersx*x:

1. main.func, main.return_func
2. main. func

3.

*x JavaScript Code Providedx*x*:
SN N1

function func() {}

func () ;
€«

**Questions**:
1. What are the module level function calls in the file "main.js"?
2. What are the function calls inside the "main.func" function in the file "main.js"?

**% Answers k*:
1.
2.

Listing A.8: Example of an actual full prompt for call graph task in JavaScript used in the study
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## Task Description

**0bjective**: Examine the provided Java code, analyze the function calls, and answer the
questions about the caller-target relationships.

**Instructions**:

1. For each question provide the target functions as a comma-separated list.

2. x*IMPORTANT**: Ensure that the target function in each response is formatted as
specified in the method signature format:

- [Fullname of Class]:[method name] ([Parameterlist])
- Example: vc.Class:target(java.lang.Stringl[])

3. Do not include additional explanations or comments in your answers.

4. Do not include the questions in your response. Only list the answers using the
question number format shown below, that is, provide your answer for each question
next to the corresponding question number

- Response format example:
- 1. vc.Class:targetFunction(), vc.Class:targetFunction2 ()

5. For methods called through aliases or references, resolve and return the actual target

method.

6. Example of Java code, questions, and answers are given below. This example should be
used as training data.

**Format for Responsex*x*:
1. vc.Class:targetFunction(), vc.Class:targetFunction2()
2. vc.Class:anotherTargetFunction ()

**Example Java Codex*:
l((java
// vc/Class.java
package vc;
class Class {{
public void target (){{ }}
public static void main(Stringl[] args){{
Class cls = new Class();
cls.target ();
}r
3}

[

**Example Questions**:
1. What are the target functions invoked by the caller "main(java.lang.String[])" in the
"vc/Class" class?

**Example Answers**:
1. vc.Class:target ()

*x Java Code Providedx**:
[SNEN1
// simplecast/Demo. java
package simplecast;
class Demo {
public static void main(String[] args) throws Exception {

if (args.length == 0)
castToTarget (new Target ());
else

castToTarget (new Demo ());
}
static void castToTarget (Object o) {
Target b = (Target) o;
b.target () ;
}
public String target() { return "Demo"; 1}
}
class Target {
public String target() { return "Target"; 1}

3NN
**Questions *x*:

1. What are the target functions invoked by simplecast.Demo:castToTarget(java.lang.0Object
) in the simplecast.Demo class?

¥k Answers x*:
1.

Listing A.9: Example of an actual full prompt for call graph task in Java used in the study
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A.2 Example Responses

A.2.1 Callgraph output generated by gpt-4o model for the Python test case
args/assign_ return

1 def return_ func(argsl):
2 return argsl

5 def funcl():

6 pass
3 L {
. 2 "main": [
o def func?2 () : 3 "main.return_func",
n 3 n

0 pass j) : main. func?2

11 6 "main.funci": [],
7 "main.func2": []

12 return_ func(funcl) ,al ’
8 main.return_func": []

15 return_ func (func2) () 9 }

Listing A.10: Python Source code Listing A.11: Ground truth
1 {
2 "main": [
3 "main.return_func",
. . - n 1 n

1 1. main.return_func, main.func?2 ! ] main.func?

2 2. 6 "main.funci1": [],

5 3 7 "main.func2": [],

o 8 "main.return_func": []

L 9 }

Listing A.12: Raw LLM response Listing A.13: Parsed JSON response

A.2.2 Callgraph output generated by the phi3.5-mini-it-3.8b model for the
Python test case args/assign_ return

1 def return_ func(argsl):
2 return argsl

5 def funcl():

6 pass
1 Aq
s ) 2 "main": [
o def func?2 () : 3 "main.return_func",
n 3 n
0 pass :) : main.func2
11 6 "main.funci1": [],
7 "main.func2": [],
12 return*func(funCI) 8 "main.return_func": []
15 return_ func (func2) () o }
Listing A.14: Python Source code Listing A.15: Ground truth
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A.2 EXAMPLE RESPONSES

1 {
2 "main": [
3 "funcil",
4 "func2"
5 1,
6 "main.funci": [
7 "None"
8 1,
9 "main.func2": [
funcl func? 10 "return_func"
) 11 1,
None 12 "main.return_func": [
13 "return_func"
return_ func o ]
. return_ func 15 }
Listing A.16: Raw LLM response Listing A.17: Parsed JSON response

A.2.3 Callgraph output generated by gpt-4o model for the JavaScript test
case functions/call

{
. i "main.func": [],
function func() {} 3 "main": [
1 "main.func"
5 ]
func(); 6 1}
Listing A.18: JavaScript Source code Listing A.19: Ground truth
1 Ao
2 "main.func": [],
3 "main": [
1 1 "main.func"
’ 5 ]
2. main. func 6 }
Listing A.20: Raw LLM response Listing A.21: Parsed JSON response

A.2.4 Callgraph output generated by the mixtral-v0.1-it-8x7b model for the
JavaScript test case functions/call

1 {
) 2 "main.func": [],
function func() {} 3 "main": [
1 "main. func"
5 ]
zfunc(); 6 ¥
Listing A.22: JavaScript Source code Listing A.23: Ground truth
1 {
2 "main.func": [
3 "(No function calls inside the’main.
func’ function)"
I 1,
1. (No function calls inside the’ main "main": [
.func’ function) ; ] "func®
2. func 8 }
Listing A.24: Raw LLM response Listing A.25: Parsed JSON response
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A.2.5 Callgraph output generated by gpt-4o0 model for the Java test case

VirtualCalls/vcl

// vec/Class.java
package vc;
class Class {
public void target (){ }

public static void main(String []
)
Class cls = new Class();
cls.target ();
}

}
Listing A.26: Java Source code

1. ve.Class:target ()
Listing A.28: Raw LLM response

args

{ "vc.Class:main(java.lang.String[])":
"vc.Class:target ()"
) ]
Listing A.27: Ground truth
{
"vc.Class:main(java.lang.String[])":
"gc.Class:target()"
) ]

Listing A.29: Parsed JSON response

A.2.6 Callgraph output generated by the llama-3.2-1B-Instruct model for
the Java test case VirtualCalls/vcl

// vec/Class.java
package vc;
class Class {
public void target (){ }
public static void main(String []

args) {
Class cls = new Class(); 1
cls.target () ; 2
3
} 4

}
Listing A.30: Java Source code

-

1. ve.Class:target (), vc.Class:target
1

2()

2. vc.Class:anotherTargetFunction () ¢

Listing A.32: Raw LLM response

}

"vc.Class:main(java.lang.String[])": [
"vc.Class:target ()"
]
Listing A.31: Ground truth
"vc.Class:main(java.lang.String[])": [

"vc.Class:target ()",
"vc.Class:target2()"
]

Listing A.33: Parsed JSON response
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