Close
Publizieren
Besondere Sammlungen
Digitalisierungsservice
Hilfe
Impressum
Datenschutz
jump to main content
Search Details
Quicksearch:
OK
Result-List
Title
Title
Content
Content
Page
Page
Search Book
Learning and imitation in heterogeneous robot groups / Wilhelm Richert. 2009
Content
1 Introduction
1.1 Objectives and contributions
1.2 Thesis outline
2 State of the art
2.1 Learning
2.1.1 Supervised
2.1.2 Unsupervised
2.1.3 Reward-based
2.2 Imitation
2.2.1 Biological background
2.2.1.1 Categorizing imitation
2.2.1.2 Imitation and memetics
2.2.1.3 Imitation in biology
2.2.2 Imitation in robotics
2.2.2.1 Challenges in robot imitation
2.2.2.2 Programming by demonstration
2.2.2.3 Imitation in multi-robot systems
2.2.3 Contrasting the thesis to the state of the art approaches
3 Architecture for learning and imitating in groups
3.1 Architectural overview
3.1.1 Motivation layer
3.1.2 Strategy layer
3.1.3 Skill layer
3.2 Layer interaction
3.3 Imitation in robot groups
3.4 Choice of the imitatee
3.5 Scenarios
4 Motivation layer
4.1 Background
4.1.1 Motivation in biological autonomous systems
4.1.2 Use of motivation in robots
4.2 Design of a robotic motivation system
4.2.1 Excitation
4.2.2 Prioritizing goals
4.3 Conclusion
5 Strategy layer
5.1 Background
5.1.1 Markov decision processes
5.1.1.1 Policy
5.1.1.2 Solving Markov decision processes
5.1.2 Semi-Markov decision processes
5.2 State of the art
5.2.1 Model-free approaches
5.2.2 Model-based approaches
5.2.3 Discussion
5.3 Policy
5.4 State abstraction
5.5 Model
5.5.1 Transition heuristic
5.5.2 Failure heuristic
5.5.3 Reward heuristic
5.5.4 Simplification heuristic
5.5.5 Experience heuristic
5.6 Sample frequency
5.7 Exploration
5.8 Example
6 Skill layer
6.1 Two modes of operation
6.1.1 Exploration mode
6.1.2 Exploitation mode
6.1.3 Interface with the environment
6.2 Component description
6.2.1 Skill manager
6.2.1.1 Skill generation
6.2.1.2 Skill ranking
6.2.1.3 Skill notification
6.2.2 Model manager
6.2.2.1 Creating and updating models
6.2.2.2 Scoring models
6.2.3 Error minimizer
6.3 Configuration
6.4 Conclusion
7 An integrative example
7.1 Implementation of the motivation layer
7.2 Implementation of the strategy layer
7.3 Implementation of the skill layer
7.4 Evaluation
8 Imitation in robot groups
8.1 Related work
8.2 Overview of the multi-robot imitation approach
8.3 Transforming observations
8.4 Understanding observed behavior
8.4.1 Viterbi
8.4.2 Interpreting observed behavior
8.4.3 Example
8.5 Integrating recognized behavior
8.6 Evaluation
8.6.1 CTF with three bases
8.6.2 CTF with five bases
8.7 Conclusion
9 Choice of the imitatee
9.1 Related work
9.2 Background
9.2.1 Bayesian networks and how to learn them
9.2.2 Affordances
9.3 Overview of the demonstrator choice process
9.4 Affordance detection
9.5 Affordance network generation
9.6 Comparing affordance networks
9.6.1 Structural difference of affordance networks
9.6.2 Parameter difference of affordance networks
9.6.3 Affordance network distance metric
9.7 Evaluation
9.7.1 Experimental setup
9.7.1.1 Parameterization of the environment
9.7.1.2 Affordances and their validation
9.7.1.3 Imitated behavior and how to measure its success
9.7.2 Selection experiment
9.7.2.1 Scenario
9.7.2.2 Procedure
9.7.2.3 Result
9.7.3 Robustness experiment
9.7.3.1 Scenario
9.7.3.2 Procedure
9.7.3.3 Result
9.7.4 Clustering experiment
9.7.4.1 Scenario
9.7.4.2 Procedure
9.7.4.3 Results
9.8 Conclusion
10 Summary and outlook
10.1 Summary
10.2 Contributions
10.3 Outlook
A Notation
B Algorithms
List of Figures
List of Tables
Own publications
Bibliography
The search-operation requires javascript to be activated.