Learning and imitation in heterogeneous robot groups / Wilhelm Richert. 2009
Inhalt
- 1 Introduction
- 2 State of the art
- 2.1 Learning
- 2.2 Imitation
- 3 Architecture for learning and imitating in groups
- 3.1 Architectural overview
- 3.2 Layer interaction
- 3.3 Imitation in robot groups
- 3.4 Choice of the imitatee
- 3.5 Scenarios
- 4 Motivation layer
- 5 Strategy layer
- 5.1 Background
- 5.2 State of the art
- 5.3 Policy
- 5.4 State abstraction
- 5.5 Model
- 5.5.1 Transition heuristic
- 5.5.2 Failure heuristic
- 5.5.3 Reward heuristic
- 5.5.4 Simplification heuristic
- 5.5.5 Experience heuristic
- 5.6 Sample frequency
- 5.7 Exploration
- 5.8 Example
- 6 Skill layer
- 6.1 Two modes of operation
- 6.2 Component description
- 6.3 Configuration
- 6.4 Conclusion
- 7 An integrative example
- 7.1 Implementation of the motivation layer
- 7.2 Implementation of the strategy layer
- 7.3 Implementation of the skill layer
- 7.4 Evaluation
- 8 Imitation in robot groups
- 8.1 Related work
- 8.2 Overview of the multi-robot imitation approach
- 8.3 Transforming observations
- 8.4 Understanding observed behavior
- 8.5 Integrating recognized behavior
- 8.6 Evaluation
- 8.7 Conclusion
- 9 Choice of the imitatee
- 9.1 Related work
- 9.2 Background
- 9.3 Overview of the demonstrator choice process
- 9.4 Affordance detection
- 9.5 Affordance network generation
- 9.6 Comparing affordance networks
- 9.6.1 Structural difference of affordance networks
- 9.6.2 Parameter difference of affordance networks
- 9.6.3 Affordance network distance metric
- 9.7 Evaluation
- 9.7.1 Experimental setup
- 9.7.1.1 Parameterization of the environment
- 9.7.1.2 Affordances and their validation
- 9.7.1.3 Imitated behavior and how to measure its success
- 9.7.2 Selection experiment
- 9.7.3 Robustness experiment
- 9.7.4 Clustering experiment
- 9.8 Conclusion
- 10 Summary and outlook
- A Notation
- B Algorithms
- List of Figures
- List of Tables
- Own publications
- Bibliography
