
University of Paderborn
Faculty of Electrical Engineering, Computer

Science, and Mathematics
Department of Computer Science

Warburger Straße 100
D-33098 Paderborn

A Model-Driven Approach to Multi-Agent System Design

by

Florian Stallmann
(né Klein)

PhD thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Natural Science (Dr. rer. nat.)

Schriftliche Arbeit
zur Erlangung des Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

Paderborn, April 2008

ii

Abstract

Software is finding its way into a growing number of applications and appliances. While the
resulting software-intensive systems offer unprecedented levels of functionality, efficiency, and
flexibility, their design is a challenging task. In order to manage the complexity of future systems
that will possess the capability to adapt and optimize their own behavior in reaction to their
environment, we will require enhanced methodologies.
Model-Driven Engineering (MDE) aims to improve quality and enable more efficient develop-
ment processes by means of modeling and code generation. Meanwhile, the multi-agent system
(MAS) paradigm promises a clearer and more intuitive understanding of complex systems by
viewing their behavior as the result of the interactions of autonomous agents. In this thesis, we
fuse these concepts into a model-driven approach to multi-agent system design. This allows
us to combine CURCUMA, an innovative approach for the analysis and design of complex co-
ordination architectures, with a solid theoretical and technical foundation that enables formal
verification and experimental validation.
CURCUMA is based on two principles: The idea of dynamic agent organizations that are respon-
sible for solving specific problems by adhering to a set of shared conventions, and the prominent
use of the agents’ environment as the frame of reference that such conventions require. The
conventions place minimal but precise limitations on agent behavior. For their specification, we
extend the Unified Modeling Language (UML) with a family of visual constraint languages capa-
ble of expressing structural and temporal constraints. Story Decision Diagrams (SDD) provide a
first-order logic for object-oriented systems, whereas Timed Story Scenario Diagrams (TSSD) of-
fer a unique way of describing their structural evolution. We provide formal semantics based on
the theory of graph grammars, which allows us to integrate our work with existing techniques for
modeling real-time component behavior and enables the application of verification techniques
such as compositional model checking. Moreover, we support code generation, simulation, and
monitoring, which are essential for an iterative development process relying on prototyping,
based on the Fujaba4Eclipse CASE tool.

II

Acknowledgments

First of all, I would like to express my thanks to Professor Dr. Wilhelm Schäfer, my supervisor,
for supporting me in my work and giving me the opportunity to work in a dynamic and chal-
lenging environment. I would also like to thank Professor Dr.-Ing. habil. Wilhelm Dangelmaier
and Professor Dr. Hans Kleine Büning for acting as my co-supervisors, and Professor Dr. Mauro
Pezzè and Prof. Dr. Gregor Engels for reviewing my thesis. I am truly grateful to Professor
Dr. Holger Giese for his guidance and our invaluable discussions – this thesis would not be the
same without him.
Thanks go out to my colleagues in the Software Engineering Group and the Special Research
Initiative 614 for making my time in Paderborn a positive and pleasant experience: To the B1
team, for all the deadlines we met together, to Matthias Tichy, for generous technical and moral
support, to Stefan Henkler, for integrity and comic relief, to Martin Hirsch, for smashing suc-
cesses, to Dr. Daniela Schilling, for model working hours, to Dr. Sven Burmester, for office and
aquarium sharing, to Vladimir Rubin, for office and plant sharing, to Matthias Meyer, Dietrich
Travkin, and Dr. Lothar Wendehals, for supporting my sudden enthusiasm for Fujaba develop-
ment, to Professor Dr. Ekkart Kindler, for discussions and fixed points, to Björn Axenath, for
expanded musical horizons, to Robert Wagner, Dr. Matthias Gehrke, and Ahmet Mehic, for
memorable seminars and excursions, to Benjamin Klöpper, for a great though ultimately futile
cooperation, to Henner Vöcking, Bernd Schulz, Kathrin Witting, and Christoph Romaus, for
practical interdisciplinary collaboration, to Jutta Haupt, for keeping us organized, to Sabrina
Clemens, for keeping us watered, and to Jürgen Maniera, for keeping us connected.
For their efforts and enthusiasm, I am indebted to the students who have worked with me:
Michael Spijkerman, Andreas Seibel, Holger Mense, Carsten Kröger, Basil Becker, Thomas Jan-
son, Michael Schwier, Stefan Neumann, Eike Rethemeier, Frank Nillies, Andrea Zschirnt, Maik
Anderka, Nedim Lipka, Jens Wenner, Timo Wiesemann, Tao Xie, and Sergej Tissen; Dietmar
Bielemeyer, Hendrik Renken, and Sven Luzar.
I should not like to forget Eckhard Steffen and his team, who have been working hard to establish
the Graduate School of Dynamic Intelligent Systems and the ideas it represents.
I am grateful for Thomas Hädrich and all the friends who have faithfully accompanied me
through the years.
Finally, I could not have succeeded without the love, encouragement, and support of my family.
Without my brother Bertram, always ready to lend an ear. Without Freia sharing my life, her
love and faith in me. Without my loving parents, to whom I am indebted in so many ways.

IV

Table of Contents

Abstract I

Acknowledgments III

Table of Contents VIII

1 Introduction 1
1.1 Motivation . 1

1.2 Objectives . 3

1.3 Approach . 6

1.4 Contribution . 11

1.5 Structure . 13

2 Foundations 15
2.1 Introduction . 15

2.1.1 Related Work . 15

2.1.2 Application Example . 17

2.2 Story-Driven Modeling . 19

2.2.1 Notations . 19

2.2.2 Formalization . 23

2.3 Coordination Patterns . 35

2.3.1 Notations . 35

2.3.2 Formalization . 39

2.3.3 Integration . 42

2.4 Conclusion . 47

3 Constraints 49

VI TABLE OF CONTENTS

3.1 Introduction . 49

3.1.1 Related Work . 51

3.1.2 Application Example . 53

3.2 Structural Properties . 55

3.2.1 Enhanced Story Patterns . 55

3.2.2 Story Decision Diagrams . 59

3.2.3 Formal Semantics . 71

3.2.4 Discussion . 88

3.3 Temporal Properties . 89

3.3.1 Timed Story Scenario Diagrams . 89

3.3.2 Formal Semantics . 107

3.3.3 Discussion . 125

3.4 Conclusion . 127

4 System Design 129
4.1 Introduction . 129

4.1.1 Application Example . 131

4.2 Conceptual Framework . 135

4.2.1 Approach . 135

4.2.2 Environment Specification . 137

4.2.3 Social Specification . 140

4.3 Formal model . 143

4.3.1 Environment Specification . 143

4.3.2 Culture Specification . 150

4.3.3 Community Specification . 161

4.3.4 Agent Specification . 163

4.3.5 System Specification . 168

4.4 Conclusion . 168

4.4.1 Related Work . 169

4.4.2 Discussion . 171

5 Verification and Validation 173
5.1 Introduction . 173

5.2 Verification . 176

5.2.1 Model Checking . 181

TABLE OF CONTENTS VII

5.2.2 Invariant Checking . 189

5.2.3 Behavior Verification . 193

5.2.4 Scenario-based Verification . 197

5.3 Validation . 207

5.3.1 Automation . 208

5.3.2 Simulation . 212

5.3.3 Analysis . 219

5.4 Conclusion . 223

5.4.1 Related Work . 224

5.4.2 Discussion . 225

6 Application 227
6.1 Introduction . 227

6.2 Tool support . 228

6.2.1 Tool Landscape . 228

6.2.2 Modeling . 230

6.2.3 Prototyping . 235

6.3 Deriving Constraint Specifications . 237

6.3.1 Specification Pattern System . 237

6.3.2 Deriving Properties from Textual Requirements 241

6.4 Application in Practice . 251

6.5 Conclusion . 257

7 Conclusion and Future Work 259
7.1 Conclusion . 259

7.2 Future Work . 260

List of Figures 268

Bibliography 292

Index 299

A Constraint Language Reference 299
A.1 SP Language Reference . 299

A.1.1 Objects . 299

VIII TABLE OF CONTENTS

A.1.2 Links . 301
A.1.3 Constraints . 301
A.1.4 Insets . 303

A.2 SDD Language Reference . 304
A.2.1 Node types . 304
A.2.2 Connector types . 306

A.3 TSSD Language Reference . 308
A.3.1 Situations . 308
A.3.2 Pseudostates . 308
A.3.3 Temporal connectors . 309
A.3.4 Constraints . 309
A.3.5 Scenarios . 310
A.3.6 Subscenarios . 310

B Recursion Semantics 313
B.1 Well-formedness of recursive SDDPs . 313
B.2 Alternative SDDP Semantics Definition . 315

C Invariant Checking Optimizations 321
C.1 Eliminating False Negatives . 321

D Specification Pattern System 327
D.1 Scopes . 327
D.2 Properties . 327
D.3 Derived patterns . 327

Chapter 1

Introduction

1.1 Motivation

Software-intensive systems. Software is increasingly permeating our everyday lives. In little
over two decades, it has found its way into our telephones, appliances, and hi-fi racks. It is
keeping planes in the air, cars on the road, and trains on schedule. It is powering the Internet,
providing an unprecedented degree of world-wide networking. Behind the scenes, it is quietly
coordinating the supply chains of a global economy.
These developments have been enabled by advances in electronics and computer science. The
available processing power and bandwidth have multiplied, while the cost, energy consumption,
weight and size of components have all decreased. This has not only allowed the construction of
more powerful and compact electronic devices, but has also led to the integration of significant
computing power into systems that had previously been purely mechanical. As a consequence,
systems as diverse as cars and washing machines have become safer, more efficient, and easier
to use. In order to reflect the increased importance of electronics and software, the label mecha-
tronic system [BSDB00] has been proposed for such systems. As wireless technology promises
to provide ubiquitous connectivity, ad-hoc networks of such systems are expected to exhibit even
more intelligent cooperative behavior in the future. The ultimate vision is to build self-optimizing
systems [FGK+04] that can reflect on their objectives and adapt their structure and behavior in
response to changes in the environment.
Meanwhile, improved software engineering techniques have been developed to address the addi-
tional complexity that is introduced by distribution, concurrency, heterogeneity, and requirements
concerning real-time behavior, safety, and reliability. These advances have benefited embedded
and large scale systems alike: In the enterprise application sector, they have allowed the con-
struction of complex networked information systems dealing with enterprise resource planning,
management information, or production planning and control.
The term software-intensive system [Sta00] has been introduced to characterize this wide range
of applications. Their common trait is that while they are situated in or interacting with the real

2 1. Introduction

world, software plays an essential part in the design, operation and evolution of the system.
While software has become a main driver of innovation in this sector, it still is, at the same time,
a critical bottleneck, as present design methodologies struggle with handling the ever increasing
complexity. The three main challenges in this context are coping with dynamic environments,
providing structural and behavioral adaptation, and managing the integration of heterogeneous
infrastructures. A fundamental problem in designing the large scale coordination of the system is
reconciling predictability and emergent behavior resulting from the distributed nature of control.

Model-Driven Engineering [Ken02] promises to boost both productivity and quality by facil-
itating communication between domain experts and software engineers, allowing the early val-
idation of requirements, providing a foundation for formal verification, and enabling automatic
code generation. Models reduce the complexity of a design by abstracting from details of the
implementation or the target platform, placing the focus on the domain-specific aspects of the
design instead. The more abstract representation facilitates the analysis of the design and reuse
in different contexts. However, the model needs to be sufficiently formal, detailed and free from
ambiguity in order to support verification activities and an automated operationalization.
Software-intensive systems typically need to meet strict requirements with respect to correctness
and reliability. Where software interfaces with mechanical systems, the potential for harm to
human beings or physical damage needs to be taken into consideration, subjecting the software
to the standards for safety-critical systems [Sto96, Lev95]. Even where safety is not an issue,
software that is controlling business processes is often mission-critical and therefore held to the
more general quality standards for high-integrity systems [BH99].
The verification of the system design is therefore indispensable. Due to the complexity of the
systems, simulating and testing alone are insufficient as a means of quality assurance, as the
achievable coverage is too low. Distribution, reconfiguration and time constraints lead to huge
state spaces that cannot be dealt with using brute force. They require formal methods that reduce
the complexity of the problem by intelligently decomposing it into units that are tractable using
automated verification techniques.
However, as for all model-based approaches, simulating and testing are nonetheless required to
ensure that the verified model actually represents a valid abstraction of reality. Moreover, formal
verification can usually only establish the safe bounds of complex emergent behavior, especially
where the specification allows non-deterministic choice to reflect a component’s autonomy. With
respect to efficiency, it is generally at best possible to make probabilistic guarantees so that
optimized performance has to be achieved through iterative refinements.
The Unified Modeling Language (UML) [Obj07] is the de-facto standard in software engineer-
ing, not least because its visual notations and flexibility make it accessible and useful for the
communication with stakeholders. While a certain laxness with respect to semantics is part of its
appeal in this context, this becomes a liability when the UML is used as a formal specification
language. In response to this problem, the expressiveness of many notations has been increased
in the UML 2.0 – however, a comprehensive formal semantics is still missing. In order to enable
code generation, the Model-Driven Architecture (MDA) [Obj03], the standard for model-driven
engineering proposed by the Object Management Group (OMG), uses the concept of an abstract

1.2 Objectives 3

platform-independent model (PIM), which is transformed into a concrete platform-specific model
(PSM) based on a platform model (PM) describing the characteristics of the target platform, com-
bined with unambiguous standards for the operationalization of modeling concepts. Code for a
target platform can then be generated from the platform-specific model.
Component-oriented software engineering [Szy98, Gri98, BRS+00] is a paradigm that is highly
relevant for the design of large and complex distributed systems. By strictly enforcing the princi-
ple of encapsulation and making all external dependencies explicit, components provide a more
adequate unit of reuse and deployment than traditionally offered by designs based on more fine-
grained object-oriented techniques. Using components promotes modular designs that make
systems more flexible and allow them to adapt to changing requirements, possibly even by per-
forming the necessary reconfiguration at runtime.
While components provide a clear separation between the different parts of a system, the indi-
vidual interactions between them are fundamentally deterministic and cooperative. For modeling
the behavior of independent actors whose reactions are not entirely predictable because they are
following their own agenda, agent-oriented software engineering [WJ95b] therefore introduces
the idea of autonomous agents as a better abstraction. The agent concept has a long tradition in
artificial intelligence and, somewhat more recently, distributed intelligence, but has only lately
garnered increased attention in the software engineering field. As a consequence, the predomi-
nant approaches are still rooted in modal logic, intentional models, and ontology and speech act
theory, which makes them difficult to reconcile with established software-engineering practices.
Their semantics are often based on a rather limited and idiosyncratic view on the world, which
is beneficial when modeling and reasoning about the agents in isolation, but becomes a liability
when integrating the agents into traditional software systems or designing a situated intelligence
that is capable of complex, unstructured interactions with its environment. Even though the
employed models are quite formal, it is therefore rarely possible to formally verify non-trivial
properties of the agents’ behavior, let alone prove that these results apply in practice.
A competing school of thought sees agent-orientation as an evolutionary extension of object-
orientation and takes a more pragmatic approach, primarily focusing on the required infrastruc-
ture for agent execution, communication, and mobility. In this context, attempts to establish
visual modeling languages that extend the UML with agent-specific concepts abound. However,
these approaches are often quite technical and get mired in low-level message passing between
agent objects, losing sight of the helpful abstractions that agent-orientation actually set out to
provide.

1.2 Objectives

The challenge in designing the coordination behavior of adaptive software-intensive systems
is therefore to find an approach that reconciles the perspectives of model-driven engineering
and agent-oriented software engineering. Together, they could enable an efficient model-driven
design process that provides specific support for dealing with the characteristic complexities of
these systems.

4 1. Introduction

The Special Research Initiative Self-optimizing Concepts and Structures in Mechanical Engi-
neering1 is developing novel concepts for adaptive mechatronic systems. One of its key innova-
tions is the Operator-Controller-Module (OCM) [HOG04, OHG04], a layered architecture that
decomposes each component into the Controller level, which is exclusively responsible for in-
teracting with the hardware, the Reflective Operator, which is handling real-time communication
and reconfiguration, and the Cognitive Operator, which encapsulates high-level functions such
as advanced coordination and optimization strategies.
In [FGK+04, p.20f], we differentiate between two types of structural adaptation: reconfigu-
ration, which modifies the relationships of a fixed set of components, and the more complex
compositional adaptation, which additionally allows the introduction and removal of compo-
nents. While a solution that enables safe reconfiguration at the Controller level has been pro-
posed (cf. [Bur06]), there is no approach that supports compositional adaptation. In particular,
there is a need for a systematic treatment of the dynamic instantiation of coordination behaviors.
While previous work has focused on the two lower levels of the OCM, a scalable concept for
dynamic coordination behaviors is even more important at the level of the Cognitive Operator. It
is a precondition for the coordination of large, open systems, which inherently involves compo-
sitional adaptation.
Designs that are based on flexible ad-hoc interactions between loosely coupled components are
furthermore only feasible if there are binding contracts that constrain the expected behavior,
which is evocative of the current trend towards service-based architectures. Contracts depend
on the ability to specify behavioral constraints in a form that is viable in practice, amenable to
formal analysis, and verifiable at run-time, which is an open issue shared by both domains.
The general objective of this thesis is therefore to provide a model-driven design approach that
systematically supports adaptive coordination behaviors in dynamic environments and is capable
of capturing precise behavioral constraints for interacting components. We mean to achieve this
by integrating agent-oriented concepts into a sound model-driven development process. For this
purpose, we take a pragmatic view on agents, which are seen as active components with a dedi-
cated thread of control that are striving to achieve certain objectives. This perspective makes ex-
isting component-oriented modeling, formal analysis and code generation techniques available.
At the same time, it provides a way to introduce the desired abstractions, based on the intuition
of describing multi-agent system behavior as social interactions driven by the agents’ intentions,
as extensions to established software-engineering modeling techniques, thus combining the best
of both worlds.
The principle of grounding all aspects of the system in the environment allows us to describe the
concrete aspects of a multi-agent system, i.e. agents sensing and acting in physical and virtual
environments, and its conceptual aspects, i.e. communication, coordination, relationships, and
dependencies, within a single coherent object-oriented framework. The framework is organized
in layers, from the concrete to the conceptual, and defines a set of architectural views which pro-
vide the context for applying specific design patterns that facilitate reuse or encode best practices

1DFG Special Research Initiative 614, Self-optimizing Concepts and Structures in Mechanical Engineering,
University of Paderborn. Website: http://www.sfb614.de

1.2 Objectives 5

in software engineering. For capturing advanced coordination behaviors, we extend the concept
of Coordination Patterns [GTB+03] with a set of well-defined social metaphors which add the
ability to discuss system structure and the agents’ intentions, resulting in cultures, a generic
coordination mechanism for governing agent communities.
Our focus is on the architectural modeling of complex adaptive systems comprising multiple
agents, capturing requirements, and the design of coordination mechanisms. The behavioral
contracts that are specified by cultures are meant to ensure safe and reliable interaction, not to
unduly constrain the implementation of the Cognitive Operator. They only define boundaries
for the observable coordination behavior, not the artificial intelligence itself, which is out of
the scope of this thesis. We only capture those internal aspects that directly affect coordina-
tion behavior such as objectives, which may e.g. determine the choice of basic design pattern
(cf. [FGK+04, p.37ff]).
Modeling the system, especially during the early phases when requirements are elicited, should
be intuitive enough to allow application domain experts to participate in the effort and fully
comprehend the resulting specification. Nonetheless, all employed notations need to be formal
in order to enable formal verification and code generation. In order to meet both requirements,
we need to improve on existing constraint languages.
Finally, we have to ensure that our designs are correct and robust. Although the verification of the
design is of central importance, the complexity of software-intensive systems poses an obstacle to
their thorough verification for many practical applications. While an agent-oriented approach is
well-suited to the problem domain’s actual characteristics, the verification of multi-agent systems
is notoriously difficult due to the agents’ autonomy. We make this problem tractable by requiring
agent behavior to be a valid refinement of the applicable culture specifications, which can then
in turn be verified. By applying compositional techniques (cf. [GTB+03]), results that hold for
the overall system can furthermore be obtained from the analysis of partial specifications.
This leads to two different verification problems: Is the specification internally consistent and
does it guarantee certain invariants? And is the implementation a valid refinement of the specifi-
cation?
In order to assert the internal consistency of the specification and prove safety properties, we
can build on results for the verification of Coordination Patterns [GTB+03, Bur06] and existing
techniques for invariant checking [Sch06, BBG+06] and graph-based model checking [RSV04].
If we want to support the capabilities of the employed constraint languages in full, however, we
need to adapt and extend them. In particular, the available approaches do not cover liveness
properties such as progress or fairness (cf. [Lam77, OL82, AAH+85]). The extended constraint
languages allow writing such properties; but there is a gap between what a specification can
express and what can be formally verified due to both practical limitations concerning the com-
putational complexity and theoretical limitations concerning the decidability of the verification
problem for a real-time temporal logic for object-based systems.
We therefore additionally need the ability to test and experimentally verify designs, which is also
a precondition for validating complex specifications against the underlying required properties.
Likewise, we would like to be able to validate arbitrary agent implementations conforming to all

6 1. Introduction

applicable culture specifications by monitoring their behavior at runtime. In order to achieve ei-
ther, we require adequate support for the prototyping of multi-agent systems and code generation
based on culture specifications.

1.3 Approach

The model-driven design approach that is proposed in this thesis is based on two main contri-
butions: A unifying object-oriented conceptual framework for discussing multi-agent systems,
provided by the Culture and Community-based Modeling Approach (CURCUMA), and a family
of visual specification languages for capturing structural and temporal constraints in a formal but
accessible manner. Together, they enable the verification and validation activities that constitute
the third main subject of this work.
In this introduction, we provide an overview of the proposed approach. We embed this presen-
tation into the discussion of the envisioned design process, which provides the context for the
specific concepts and solutions that are presented in detail in the subsequent chapters. We prefix
this discussion with a motivating application example that will be used throughout this thesis.

Figure 1.3.1: Shuttles as envisioned by the RailCab research project

Application example. The RailCab R&D project2 is developing a system of autonomous shuttles
that travel on a conventional railway network using an innovative linear drive (see Figure 1.3.1).
The concept strives to combine the advantages of railways and automobiles, providing fast, safe,
energy-efficient and convenient individual transportation. In order to achieve significant im-
provements over existing systems, the project combines traditional mechanical and electrical
engineering with software engineering techniques. The project is representative of a new class
of advanced mechatronic systems [BSDB00] using sophisticated control and coordination tech-
niques such as reconfiguration, structural adaptation, ad-hoc collaboration, or self-optimization
in complex real world situations. The shuttles constitute a multi-agent system which is character-
ized by both competition, as shuttles compete for resources and lucrative tasks, and cooperation,
as shuttles form convoys in order to reduce drag and increase energy efficiency. Each shuttle is
itself controlled by a network of agents which are responsible for specific functions or modules

2RailCab project site: http://www.railcab.de

1.3 Approach 7

such as energy management, the linear drive, or the active suspension and can be reconfigured in
accordance with the current situation and priorities.
The system provides a vivid illustration of many of the challenges that software engineers are
facing in their design: Decisions need to be made concurrently and in real-time, distributed
among many, possibly heterogeneous autonomous agents. These decisions need to be made in
the context of changing control structures and based on the state of a complex environment. As
they affect moving vehicles, most of them are safety-critical.
Throughout this thesis, we will use examples that are drawn from or inspired by the RailCab
project. In previous work, we have already used related examples to demonstrate the compo-
sitional verification of real-time coordination patterns [GTB+03], modular system coordination
using social structures [GBK+03], and the verification of safety properties that are inductive in-
variants of the system [BBG+06]. We will revisit and extend some of them, but additionally
discuss the large scale logistic coordination of the system and the internal design of the shuttles
in later chapters.

Process. The proposed approach does not impose a specific process model or methodology –
the CURCUMA framework was designed to reflect concepts from many different agent-oriented
approaches, and the constraint languages are general purpose tools. However, the principle of
grounding abstract concepts in observable behavior in the environment creates dependencies be-
tween the different views of the system that impose certain restrictions on the order in which
they can be considered. There are also certain patterns concerning verification, validation, and
code generation that are common to most model-driven approaches. Finally, the emergent na-
ture of certain behaviors in multi-agent systems inherently requires an iterative evaluation and
refinement based on prototypes when designing these aspects of the system.
The presented process is therefore one possible vision for a model-driven design process built
around prototyping and iteration that primarily serves to illustrate how the different parts of the
approach interconnect in order to address the overall design problem. As it focuses on the soft-
ware design, it will need to be embedded into a comprehensive methodology for the design of
software-intensive systems such as the process model for the design of self-optimizing mecha-
tronic systems proposed by the Special Research Initiative 614 (cf. [Ste07, Fra06]). The way the
contributions of the different disciplines interact in this process and the role of software engi-
neering in particular are discussed in previous work such as [BGM+08, GFG+05].
The process comprises four phases (see Figure 1.3.2):

1. In the analysis phase, the problem domain, in particular the environment, is modeled, and
requirements are elicited.

2. In the social design phase, the requirements are assigned to social structures; roles and
norms fulfilling them are defined; and the required services are added to the environment.
Formal verification and experimental validation using rapid prototyping techniques allow
the evaluation and step-wise improvement of the design at this early stage.

3. In the agent design phase, the agents themselves are designed, respecting all applicable
constraints imposed by the social design. The agents can then be evaluated and optimized

8 1. Introduction

Analysis Social Design Agent Design Deployment

CIM PIM PSM

Communities AgentsEnvironment

Requirements

Figure 1.3.2: The development process

for performance, again using generated prototypes and a simulated environment. If a com-
plete model of agent behavior is available, they can be formally verified against the social
specification.

4. In the deployment phase, the agents are tested in their production environment. This re-
quires replacing the implementations of those services, sensors and effectors directly in-
terfacing with the physical environment, but leaves all other aspects of the specification
unchanged.

With respect to the different viewpoints used by the Model-Driven Architecture (MDA), the
first phase is concerned with the Computation Independent Model (CIM), which describes the
problem domain and the requirements, the second and third phase deals with the creation of a
Platform Independent Model (PIM), and only the final phase uses a Platform Specific Model
(PSM).
Even though each phase deals with clearly defined aspects of the system and builds upon the
output of the previous phase, a linear progression through the phases should be seen as an ide-
alization. Within the later phases, prototyping is used to enable iterative improvement of the
specification. In practice, it will be necessary to revisit previous phases and make adjustments in
this context.

Analysis Phase. The analysis phase is mainly concerned with the specification of the environ-
ment specification. The structure and behavior of the environment are considered as fixed at this
stage. Using methods for the identification of classes from traditional object-oriented analysis,
the relevant entities from the system’s prospective environment can therefore be identified and
modeled. Likewise, the behavior of these entities may be observed and modeled through environ-
ment processes. If there already is preexisting infrastructure, e.g. some middleware platform, such
services as are provided by the environment are also recorded at this time. The result is a domain
model of the environment which forms the core of the ontology used in later phases.

1.3 Approach 9

As agents (as physical entities), sensors, and effectors are part of the environment specification, they
are included in the analysis phase. This is only logical, as any model is, by a common definition,
driven by a specific purpose, which in our case is to represent the environment as relevant to the
agents. Without at least a basic knowledge of their capabilities, the environment specification could
not fulfill this purpose. Nonetheless, it could be argued that the agent types and the sensors and
effectors available to them are design decisions that have no place in analysis. While it is true that
the addition of new agent types may become necessary in the subsequent social design phase,
and the exact capabilities of the sensors and effectors may not be fixed before the agent design
phase, we do, however, consider it an important part of analysis to identify prospective classes of
agents and establish a general idea of their (potential) capabilities with respect to the environment.
Especially when working with (mechanical) agents in physical environments, there are bound to
be limitations on the agents and their capabilities that are beyond the scope and control of the
design of the multi-agent system. The exact nature of the analysis phase will therefore be shaped
by the overall methodology and the input it provides.
The second concern of the analysis phase are the system requirements. Again, established require-
ments analysis techniques can be used to identify functional and non-functional requirements, as
there is nothing inherently agent-specific in the requirements – after all, agent-orientation is sup-
posed to be a solution, not part of the problem. The resulting requirements do not need to be
expressed using a specific notation, they can even be informally documented in textual form. If
a requirement is to be the subject of formal verification later on, it is however preferable to specify
it as a formal constraint that is expressed in terms of the environment specification directly. It is
furthermore desirable to structure the requirements by grouping and ranking or weighting them.
This will later allow us to apply advanced techniques for judging the quality of a solution with
respect to a set of requirements such as our work on selecting the ideal set of configurations for
reconfigurable mechatronic systems (cf. [AGKF06]).

Social Design Phase. The social design phase begins by taking these requirements, breaking them
further down into suitable subsets, and assigning them to agent communities. Each community is
then responsible for ensuring that the system meets the requirements in question.
For each set of requirements, a community type which is capable of dealing with this responsibility
is then designed. Each community type represents a distinct architectural view that defines a set of
roles and norms governing agent behavior. It may delegate specific tasks to subcommunities, which
ultimately leads to a hierarchy of community types whose bottom elements are basic interaction
patterns dealing with simple, manageable problems. At this time cultures, design patterns that
address a specific requirement, can be applied to the system. As cultures may themselves contain
more specific subcultures, instantiating a culture may create a whole hierarchy of community types.
When applying cultures or devising new solutions to problems, the designer will need to take the
agents’ capabilities (as expressed by their sensors and effectors) into account. It is not helpful to
require behaviors that agents are unable to enact, or specify norms that depend on something agents
cannot sense. If the physical design of the agent is under the designer’s control, it is possible to
add new capabilities through additional sensors and effectors at this point. Another common way
to provide agents with additional capabilities is adding appropriate services that supply them.

10 1. Introduction

Finally, as the idea behind communities is using interaction in order to achieve goals beyond the
reach of the individual agents, communities can themselves provide new capabilities that can be
used as a bootstrap by other communities. For example, in order to allow every shuttle in the
system to communicate with any other shuttle, one could introduce a network of local access
points capable of relaying messages and a community type for managing a distributed directory,
instead of upgrading the shuttles’ antennas.
Together, the community types need to result in a consistent specification. If the requirements are not
orthogonal, i.e., the norms of the community types constrain the same effectors or concern the same
entities, different community types might be in conflict. For the RailCab system, different concerns
such as task execution, efficient routing, or traffic safety quite naturally all affect a shuttle’s
movement and may suggest quite different ideal behaviors. At this point, we try to spot cases
where conforming with all norms is theoretically impossible. Other than that, we merely strive
to keep dependencies between community types as weak as possible and defer the task of actually
reconciling conflicts to the agent design phase.
Once all relevant community types have been specified, the model can be validated. Individual
community types can be formally verified: As both their norms and the behavior of the environment
can be modeled as a graph transformation system, we can apply the above-mentioned invariant
checking techniques [GS04] in order to prove certain required properties, e.g. the absence of
accidents or hazards. We can also use a model checker to systematically explore the state space
for specific initial configurations up to a certain size. Other aspects such as requirements con-
cerning efficiency and performance or emergent properties of complex systems that cannot be
assessed through formal methods require empirical validation by means of a prototype. Still, we
are able to generate a monitor from the social design that allows us to automate conformance
testing. It is also feasible to emulate the agents at this early stage by non-deterministically apply-
ing sensors and effectors that are not explicitly forbidden by some norm and observe the resulting
behavior, at least where the norms describe concrete behaviors – when the norms merely state
goals, complying with them requires additional strategic reasoning.

Agent Design Phase. Once the social specification addresses all pertinent requirements, the actual
control logic of the agents can be designed, i.e. specified or implemented. As the environment
specification only describes the agents’ external interfaces and the social design only operates at
the inter-agent level, any internal architecture producing the appropriate behavior is acceptable.
It is, however, convenient to use the abstractions used by the social design for guiding the internal
design where possible, as this makes the transformation conceptually simpler and facilitates the
use of automated techniques.
The agent specification can directly reuse those norms that specify simple reactive behavior, pos-
sibly augmenting them with additional strategies for intelligently choosing between the available
options where the social design leaves room for non-deterministic choice. Using techniques for
controller synthesis, such as our own work in [GKKW05] and [GKB05, GHHK06], it may even
be possible to generate a matching controller from norms that encode more complex scenarios.
Nonetheless, norms that are declarative in nature, e.g., a requirement to reach a destination by
a given deadline, require more elaborate strategies and algorithms that cannot be deduced, but

1.4 Contribution 11

need to be designed explicitly.
Reconciling the requirements of all pertinent community types may not be a trivial task. While it
is feasible to automatically compose non-orthogonal concerns (cf. [GV06]) in certain cases, this
step generally requires human intervention. While the solutions are often intuitive – e.g. when
incorporating the collision avoidance protocol with the controller that moves a shuttle on the
shortest path to its destination – the interactions may become arbitrarily complex if the commu-
nity types are poorly chosen or the problem domain necessarily implies strong dependencies –
e.g. when bidding on tasks, routing, and forming convoys are treated as different concerns but
computing the minimal bid for a task nonetheless requires information about the optimal route,
which in turn depends on the availability of suitable convoys.
Analyzing the complex interplay between different communities is facilitated by the ability to
test prototypes of the agents in a simulation of the environment that is based on the environment
specification. By generating behavioral monitors from the social design, we can even automatically
check the agents’ conformance with the specification. In [ABB+06], we present an integrated
prototyping environment for this purpose.

Deployment Phase. Once the agent design conforms to the social specification and has proven
itself in the simulated environment, it can be moved to its production environment for further
testing. An appealing feature of the proposed approach is that this mainly means replacing the
simulated parts of the system with their physical counterparts. Provided that it was modeled
correctly, the environment specification can simply be dropped. At the service level, the prototyping
middleware is replaced by the production middleware. The overall complexity of the software
system decreases, as physics, processes and physical constraints (e.g. context) no longer need
to be replicated in software; however, the middleware that processes sensor input and interprets
effector commands becomes significantly more complex internally.
The model of the actual agents remains unchanged, as their interfaces are unchanged. Depending
on the target platform, we may actually be able to reuse the exact same code for simulation and
hardware tests [BGK04]. It is nonetheless necessary to perform a sufficient number of tests in
order to ensure that there were no errors or oversimplifications in the environment specification that
lead to significant discrepancies between simulated and actual behavior (cf.[BN03]).

1.4 Contribution

An end-to-end process for the development of complex software systems, with all the required
methods and tools, is a rather broad topic. This thesis could not realize its ambitious objective of
offering a comprehensive model-driven approach to multi-agent system design without limiting
its scope in other directions and building on a wealth of previous work. It is naturally selective
in the topics that are treated in depth, devoting most space to the formalization of the visual
constraint languages and of the proposed conceptual framework, as this formalization serves as
the foundation for all subsequent activities, in particular formal verification. By the nature of our
application example, we also restrict the considered application domain to mechatronic systems.

12 1. Introduction

While there is no such limitation inherent in the employed concepts or methods, the designs
that we present in our case studies do benefit from certain properties of their physical environ-
ment, such as the ready availability of a (relatively unambiguous) concept of locality, so that the
question whether the approach might be extended to software-intensive systems in general must
remain open. Finally, the experimental validation of the approach remains fragmentary. While
it is complete in the sense that every major concept, notation, method, or tool has been imple-
mented and tried and tested using isolated examples of varying complexity, there is no real-world
problem to which the development process has been applied in its entirety. While we use a real
research and development project as our motivating example, none of the presented designs go
to a level of detail and comprehensiveness that would be sufficient to empirically confirm the
claim that the proposed development process and complexity reduction techniques provide tan-
gible benefits in practice. Our experiences during the work on the case study that was intended
for the validation of Intrapid, a large, one year student project, have made it abundantly clear that
developing an agent controller, let alone a system of agents, that consistently acts and interacts
in a complex and realistic physical environment would deserve a project in its own right.
Among the original contributions we make in this thesis, the CURCUMA framework and the
language for temporal properties stand out. The former started out as a descriptive metamodel
that attempted to synthesize as many approaches to multi-agent design as were then available
into a coherent whole in the fall of 2002. Inspired by the literature on mentalistic concepts
(cf. [WJ95b]) and the social system metaphor (cf. [JC97, Cas00]), but also in particular the
criticism of intentional stance (cf. [VO02]) and the communication semantics derived from it
(cf. [Sin98a]) and the confrontation with concepts that flatly deny the usefulness of mentalistic
concepts (cf. [Bro91]), the concept of legal stance took shape as a defining element of the ap-
proach. It is an original idea whose evident tendency to inspire skepticism in the proponents of
each of the contributing schools of thought may serve as a testament to its originality and innova-
tive hybrid nature. Combined with evolutionary extensions to the concept of agent organizations,
it enables a new level of dynamics in the coordination of agent systems.
The CURCUMA framework then goes beyond mere description and elevates these ideas to de-
sign principles. By underpinning them with a rigorous formalization, it firmly embeds them into
a systematic software engineering process. The ability to express complex properties in an acces-
sible way was essential for making the step from description to design and putting the framework
to practical use. It thus owes a lot to Story-Driven Modeling (cf. [FNTZ98]) and its precursors
(cf. [Zün95, SWZ95, SWZ99].
Our work on structural patterns represents an evolutionary enhancement of this previous work; it
focuses on pragmatic and notational aspects and providing a complete and unified semantics for
the notations. We nonetheless integrate some powerful, previously unavailable features such as
universal quantification and recursion into the languages. Our main innovation lies in the combi-
nation of structural patterns and temporal logic, however. While different aspects of the proposed
language have been inspired by existing languages and diagrams, the resulting combination of
scenarios, graph patterns, and real-time constraints provides an expressive visual notation that is
capable of succinctly stating complex combined structural and temporal properties that can only
be expressed with difficulty (or not at all) by existing languages.

1.5 Structure 13

We only sketch a rough concept for bridging the gap between the discrete, object-graph-based
perspective of Story-Driven Modeling and the continuous nature of an embedded system’s en-
vironment. In this area, we heavily rely on existing or parallel work in the Special Research
Initiative 614. The OCM [HOG04, OHG04] provides the architectural justification for treat-
ing agent coordination as a problem that can be decoupled from questions of hard real-time
control, while Coordination Patterns [GTB+03] for reliable inter-agent communication and the
approach for the safe reconfiguration at the controller level [Bur06] are indispensable for making
the implementation of the dynamic agent coordination mechanisms envisioned at the level of the
Cognitive Operator at all feasible at the lower levels.
In the same vein, our verification approach builds on the fact that compositional verification
is feasible for component designs built around Coordination Patterns [GTB+03], allowing us
to reduce the verification problem to the question of instantiating the right patterns at the right
times, which in turn can be tackled using existing approaches for the verification of graph-based
systems [Sch06, BBG+06]. In this area, we mostly apply existing techniques, adding a few
refinements where extensions in other places have made them necessary. However, our work
on the refinement of graph transformation systems and the monitoring of Timed Story Scenario
Diagrams is original.
For supporting the proposed iterative validation approach, significant effort has been invested in
the necessary tools, code generation and execution frameworks, and numerous evolutionary or
ground-breaking contributions to the Fujaba platform have been made in the process.

1.5 Structure

The organization of this thesis does not follow the phases of the design process, but rather pro-
ceeds from the theoretical to the pragmatic, starting with the formalization of the employed
notations, then introducing the CURCUMA framework as a means of structuring the system spe-
cification, and finally moving on to the discussion of verification and validation activities and
tool support.

Notations and semantics. In order to meet the requirement for accessible but formal nota-
tions, all aspects of the system are modeled using extended graphical notations based on the
Unified Modeling Language [Obj07]. Formal semantics for the notations, which are required for
formal verification and code generation, are provided based on the theory of graph grammars
(cf. [Roz97]).
The structural aspects of the system are modeled using UML Class Diagrams and UML Com-
ponent Diagrams. Story-Driven Modeling (SDM) is employed to define system behavior: Story
Diagrams [FNTZ98], an extension of UML Activity Diagrams, use Story Patterns, which are
graph rules written as extended UML Object Diagrams, as a formal representation of the effects
of each activity. Where real-time communication between components is concerned, Real-Time
Statecharts [Bur06], an extension of UML State Machines, are used to specify the protocols.
These notational and graph-theoretical foundations of our approach are presented in Chapter 2.

14 1. Introduction

In Chapter 3, we introduce the proposed family of visual constraint languages that will allow us
to graphically capture constraints on component behavior, such as the norms set by the social
specifications. Structural constraints are specified using Story Decision Diagrams, which extend
Story Patterns with quantification and a concept for modularity. Temporal constraints concern-
ing the structural evolution of the system are specified using Timed Story Scenario Diagrams,
which combine Story Decision Diagrams and temporal logic into an integrated graphical no-
tation. For each notation, we discuss its formal semantics, expressiveness, and relation to the
existing notations.

Model-driven multi-agent system design. Building on these foundations, we present our ap-
proach for designing the behavior of complex, adaptive systems in Chapter 4. We discuss our
notion of a multi-agent system and informally and formally introduce the CURCUMA conceptual
framework as a means of integrating agent-oriented concepts with traditional software engineer-
ing and decomposing a system into architectural views. We also present concrete examples to
show how the proposed notations are used to model norms.
In the subsequent Chapter 5, we follow up with a discussion of the verification and validation
activities that can be performed based on the resulting models. We present both what is possible
in theory and what is supported by the existing tools, and demonstrate how various types of
problems can be identified and resolved.
Practical aspects of using our approach, in particular the available tool support and the application
of the new notations and concepts, are discussed in Chapter 6, followed by the conclusion and
an outlook on future work in Chapter 7.

Chapter 2

Foundations

2.1 Introduction

This chapter lays the syntactic and semantic foundations for the remainder of the thesis. We be-
gin by presenting the concept of Story-Driven Modeling, which is at the heart of our approach for
modeling agent behavior and constraint specifications as it allows us to define formal semantics
for UML-based notations. We discuss the existing notations and define their formal semantics as
required for the definition of our extended constraint notations and the formal verification of the
model. We then look at Coordination Patterns, which are underlying the concept of cultures used
for the decomposition of the system, and give a short overview of the associated notations for
component-based modeling and the specification of real-time communication protocols. Finally,
we introduce a mapping between the two approaches that will allow us to interrelate message-
and state-based coordination behavior and the predominantly rule-based definition of agent be-
havior.

2.1.1 Related Work

Story-Driven Modeling is rooted in the theory of graph grammars (cf. [Roz97]). Using graphs
as the central concept, graph grammars provide a very natural way of specifying structures and
relationships between entities. Behavior can be expressed by graph transformation systems,
i.e. transformation systems where each state is represented by a graph. Graph grammars are very
useful for defining the syntax and semantics of diagrams and visual programming languages
as they allow transferring concepts from the term- and syntax tree-based description of textual
languages to the domain of visual modeling (cf. [HE00]).
There is a wealth of published literature on theorems, algorithms, languages, and applications
of graph grammars (cf. [EEKR99b, EEKR99a] for an overview). There are also tools such as
PROGRES [Zün95, SWZ95, SWZ99] or the Attributed Graph Grammar system (AGG) [AGG,
Rud97] that provide environments for specifying and evaluating graph rules.

16 2. Foundations

Story-Driven Modeling is the result of merging concepts from PROGRES and the Unified Mod-
eling Language (UML) [Obj07]. By using graph grammars to supply the formal semantics miss-
ing in the official specification, the UML thus becomes a formal specification language with
operational semantics. Story Patterns [KNNZ00, NSZ03] are an extension of UML Object Di-
agrams that allow expressing conditions and operations on instance structures. Story Diagrams
[FNTZ98] extend UML Activity Diagrams by embedding Story Patterns into activities in order
to provide them with operational semantics. The Fujaba Tool Suite1 implements these notations as
part of an open, extensible environment (cf. [BGN+03]).
While the complete operational semantics of both Story Patterns and Story Diagrams have been
defined (cf. [Zün01]), there is currently no complete formalization of Story Patterns, let alone
Story Diagrams, that is suitable for use in the context of formal verification, e.g. when deriving
the input for a model checker. In [Sch06], Story Patterns are used in such a context as part of
a formal system specification, but the employed formalization of Story Patterns as graph rules
abstracts from many of their advanced features. In this thesis, we extend this formalization by
adding support for attributes, inheritance, and cardinalities, thus reenabling the use of several
commonly employed elements of the syntax that stem from the UML and differentiate Story
Patterns from comparable notations based on graph grammars.

Coordination patterns [GTB+03] build on the UML 2.0’s notations for component modeling in
order to specify the (real-time) coordination and communication behavior of system components.
Components communicate via ports that need to conform to the role specifications imposed by
the Coordination Pattern in the form of protocol statecharts.
However, the notations for specifying protocol statecharts that are supplied by the UML are
insufficient for the comprehensive specification of real-time behavior. In the UML 1.x, real-time
properties could only be expressed using the UML Profile for Schedulability, Performance, and
Time Specification [OMG05]. It allows attaching specific schedulability or quality of service
characteristics to classes, but only provides insufficient support for the detailed specification of
real-time behavior.
Coordination Patterns therefore employ real-time statecharts (RTSC) [GB03, BGS05, BG03],
an extended statechart notation based on the Timed Automata formalism [DMY02]. An impor-
tant advantage of RTSC over other approaches, such as Statemate [HP98, PMS94], or Timed
Automata as used in UPPAAL [LPY97], is that transitions between states are not assumed to
be instantaneous, thus making their semantics implementable on an actual physical machine. A
detailed comparison of the characteristics of related approaches can be found in a recent com-
prehensive survey (cf. [GH06]).
In this thesis, we will provide a formalization of Coordination Patterns that allows us to reference
their elements in the context of Story-Driven Modeling in a formalized fashion. In order to
arrive at such a formalization, we will first need to consolidate two previous formal definitions
of Coordination Patterns and RTSC.

1Fujaba project site: http://www.fujaba.de

2.1 Introduction 17

2.1.2 Application Example

In order to present the notations, we use a simplified model of the RailCab system and specify
basic shuttle behaviors.

Structure. The railway network is modeled as a graph consisting of short track segments, each
not much longer than a single shuttle. Tracks are unidirectional, have either one or – in the case
of a branching junction – two successors, and are successor to one or – in the case of a joining
junction – two tracks. Shuttles are located on track segments, occupying one or – while passing
from one segment into another – at most two segments. This model is only intended for the
description of higher-level coordination mechanisms and safety properties, whereas it is unsuited
to lower-level control engineering problems as it abstracts from the shuttles’ exact position on
the tracks.

Figure 2.1.1: Base stations with overlapping controlled areas

Location. Each track segment is monitored by one or more base stations that are responsible
for keeping track of the position of each shuttle within their respective controlled areas. Each
shuttle needs to register with the responsible base stations and keep them informed about its
exact current position as computed based on GPS navigational data and the shuttle’s internal
sensor readings. In turn, the shuttle receives updates about the position of all other shuttles in the
base stations’ controlled areas in regular intervals. The specifics of these interactions are defined
by the registration pattern, a real-time Coordination Pattern. As can be seen in the schematic
representation of part of such a network in Figure 2.1.1, the controlled areas of different base
stations overlap in order to ensure that a shuttle never has to move ’blindly’ onto a track segment
that is not part of the controlled area of any of its base stations and might already be occupied by
another shuttle.

18 2. Foundations

Coordination. Another Coordination Pattern, the convoy pattern (cf. [GTB+03, BBG+06]), en-
sures that two shuttles in close proximity safely coordinate their behavior. While shuttles must
normally not occupy the same track segment at the same time in order to preclude collisions, the
convoy pattern provides shuttles with the ability to reduce drag by forming contact-free convoys
leaving much smaller gaps between the shuttles. The pattern’s task is to ensure that all shuttles in
the convoy model their behavior on consistent assumptions so that acceleration and braking ma-
neuvers are properly coordinated – the control algorithms actually performing these maneuvers
are out of the pattern’s scope. The convoy pattern illustrates the principle that complex behaviors
can often be realized by layering higher-level patterns on top of simpler ones. As the pattern can
only be implemented correctly if the positions of the other shuttles are known, the registration
patterns serve as a bootstrap by guaranteeing that the required information is provided.

2.2 Story-Driven Modeling 19

2.2 Story-Driven Modeling: A Graph-based Approach

The fundamental abstraction that Story-Driven Modeling (SDM) is based upon is the idea of
interpreting instance situations of an object-oriented system as graphs. Informally, this seems
intuitively plausible, as UML Object Diagrams as a common way of describing instance situa-
tions already have a graph-like structure. More specifically, we map each object to a node and
each attribute/association to an edge of a labeled graph. The formal semantics that are typically
missing from UML-based notations are then provided by the theory of graph transformation sys-
tems (cf. [Roz97]), which allows reasoning about states and behavior of object-oriented systems
modeled using a visual notation.

2.2.1 Notations

2.2.1.1 Class Diagrams

For structural modeling, we use standard UML Class Diagrams (cf. [Obj07, section 7.4]). Class
Diagrams are employed at different levels of abstraction: Firstly, they can be used to docu-
ment the results of an object-oriented analysis (OOA) (cf. [EJW95]), describing notable con-
cepts and entities of the problem domain and their relationships, thus serving as a basic ontology
(cf. e.g. [Gru93]). Secondly, they are used at the specification level for formally defining the
system entities that interact in the specified constraints and patterns. Finally, at an operational
level, they can be used to define the internal structures of individual components.
Figure 2.2.1 presents a specification level diagram of the application example. As this is a basic
example, it does not use all available features of Class Diagrams, such as the ability to define
subtyping relationships or assign stereotypes.

Shuttle

speed:Double

move ()

TrackBase Station

Registration Pattern Convoy Pattern

0..*1

supervises

1..2 0..*

on

1..2 1..2

adjacent
1

0..*

registry 1

1..*

entry

0..1

1

leader

0..1

1

follower

2..*

uses

Figure 2.2.1: Central entities and control structures of the application example

Class diagrams do not only define the elements of the system and their relationships, but char-
acterize the set of all possible system states, which is restricted by the specified associations,
cardinalities, and attribute types. However, this characterization is rather broad, as there is no
way restrict attribute values beyond the type level or place restrictions on combinations of prop-
erties, which would be required for defining conditional or instance-level restrictions.

20 2. Foundations

2.2.1.2 Story Patterns

UML Object Diagrams (cf. [Obj07, section 7.4]) can be used to depict specific configurations
of objects which are valid instances of a given Class Diagram. Story Patterns (cf. [KNNZ00,
NSZ03]) are an extension of UML Object Diagrams that allows expressing both properties and
transformations, in particular structural changes. A Story Pattern consists of two Object Dia-
grams representing a pre- and a postcondition, the left hand side (LHS) and the right hand side
(RHS). At runtime, the LHS is matched against the instance graph representing the current sys-
tem configuration, and the free elements of the pattern are bound to specific nodes and edges. If
a match is found, it is transformed in order to match the RHS by adding, modifying and deleting
the appropriate nodes and edges using the Single Push Out strategy (SPO).2 It is also possible to
query and set attribute values in this manner.

Notation. When writing a Story Pattern, the RHS and the LHS are integrated into a single dia-
gram in order to obtain a more compact representation. This is achieved by using the stereotypes
�create� for marking elements that are exclusively part of the RHS and need to be created, and
the �destroy� for denoting elements of the LHS which should be deleted as a side-effect of the
rule. Figure 2.2.2 shows the definition (Figure 2.2.2a) of a Story Pattern for moving a shuttle from
its current track onto the adjacent track and an instance graph representing a small fragment of the
system before (Figure 2.2.2b) and after (Figure 2.2.2c) the pattern is applied.

<<destroy>>
on

<<create>>
 on

s1 : Shuttle

t2 : Trackt1 : Track

LHS RHS

successor

on

s1 : Shuttle

t2 : Trackt1 : Track
successor

on

s1 : Shuttle

t2 : Trackt1 : Track
successor

a. Pattern specification (center) combining LHS (left) and RHS (right) in a single graph

on

sa : Shuttle

tc : Tracktb : Trackta : Track

successor

td : Track

successorsuccessor

b. Matching the precondition (LHS)

tc : Tracktb : Trackta : Track

successor

td : Track

successorsuccessor

on

sa : Shuttle

c. Applying the postcondition (RHS)

Figure 2.2.2: A shuttle moving to another track

Negation. Furthermore, it is possible to indicate forbidden elements in a Story Pattern by cross-
ing them out. Forbidden elements can be employed to specify patterns that are only applied when
no match for any one of their forbidden elements is found, enabling more differentiated rules.
E.g., Figure 2.2.3 encodes the default behavior (used while not running a convoy pattern) that

2For a thorough discussion of the respective theoretical and practical strengths and weaknesses of the Single
Push Out (SPO) and Double Push Out (DPO) strategies see [Roz97], Chapters 3 and 4. While DPO provides a
conceptually elegant solutions to problems such as the creation of dangling edges when deleting nodes, using SPO
greatly simplifies the operationalization of the graph rules.

2.2 Story-Driven Modeling 21

requires the track that a shuttle is moving into needs to be vacant. However, it is not possible to ex-
press that a combination of elements should be absent, as the forbidden elements are interpreted
as alternatives, i.e., the pattern application fails as soon as the first forbidden element is found.

s1: Shuttle

t2: Trackt1: Track

s2: Shuttle

on

adjacent

«create»
on

on

Figure 2.2.3: Forbidden element - default movement is only allowed into vacant tracks

For the same reason, it is not possible to specify forbidden elements that are characterized by
multiple associations. This poses a serious practical problem, as such a construct is needed to
encode many comparatively simple properties, e.g., ’no convoy pattern exists between shuttles
s1 and s2’.

s1: Shuttle s2: Shuttle

c1: Convoy Pattern

leader follower

a. Incorrect.

s1: Shuttle s2: Shuttle

c1: Convoy Pattern

leader follower

b. Incorrect.

s1: Shuttle

c1: Convoy Pattern c2: Convoy Pattern

s2: Shuttle

leader follower

c. Incorrect, equivalent to (a).

s1: Shuttle s2: Shuttle

c1: Convoy Pattern

leader follower

d. Brittle workaround.

Figure 2.2.4: Attempts to encode that s1 and s2 do not already share a pattern.

Figure 2.2.4 presents several common but incorrect approaches to specifying this property. The
pattern in Figure 2.2.4a will fail as soon as any of the shuttles has any pattern (false negative). The
pattern in Figure 2.2.4b is completely wrong, as it will not only fail to match if there is a pattern
belonging to either of the shuttles (false negative), but also if there is no pattern in the system
at all (false negative), and additionally also match if there is a pattern that is unrelated to either
shuttle, even though the shuttles share a pattern (false positive). Figure 2.2.4c is equivalent to
Figure 2.2.4a and thus equally incorrect. Finally, Figure 2.2.4d is a commonly used workaround
based on optional elements (read as ’s1 may or may not have a pattern, but if so, then not with

22 2. Foundations

s2’). While this works as long as s1 has at most one pattern, the solution is not robust and does not
convey the intended semantics. If s1 has two patterns, the property might hold or not depending
on which pattern is bound to c1. If the shared element in question is characterized by more than
two associations, this problem intensifies.

Invariant Story Patterns. When a Story Pattern contains no stereotypes, the LHS and the RHS
are identical and the pattern has no side effects. Such Story Patterns describe and allow testing
for structural system properties. The Story Pattern in Figure 2.2.5 matches whenever two shuttles
(partially) occupy the same segment, i.e. are on the same track. A translation into OCL is provided
below the figure.

t1: Track t2: Track t3: Track

s1: Shuttle s2: Shuttle

adjacent adjacent

on on on on

c o n t e x t s1: Shuttle inv
s1.on→ e x i s t s (t1, t2 |
t1.adjacent→ e x i s t s (ta | ta = t2)

and
t2.adjacent→ e x i s t s (t3 |
t2.on→ e x i s t s (s2 |

t3.on→ e x i s t s (sb | sb = s2))))

Figure 2.2.5: Story pattern describing an invariant

For the basic system without convoys, we would like this property to be a negative invariant
of the system that never matches for any two shuttles. However, there is no way to make this
explicit in the pattern. In [BBG+06], we used Story Patterns to specify invariants of the system
that represented forbidden states (accidents, hazards), whose absence could then be formally
verified. This required the implicit convention that all patterns represented negative invariants
of the system, which could not be indicated explicitly. The resulting restriction to negative
invariants entailed the use of unintuitive multiple negations, i.e. that a required element of a
positive invariant was translated into a forbidden element of a forbidden pattern. Combined with
the described limitations concerning negation, this significantly complicated modeling.

2.2.1.3 Story Diagrams

While Story Patterns confer the ability to specify almost arbitrary transformation steps on object
graph structures, they provide no facilities for specifying control flow, as is needed for more
complex preconditions and transformations. By embedding Story Patterns into UML Activity
Diagrams, the former acquire the ability to express complex multi-step transformations, whereas
the latter receive the benefit of operational activity semantics. The resulting Story Diagrams
[FNTZ98] are in fact expressive enough to represent a Turing-complete programming language.

2.2 Story-Driven Modeling 23

The Story Patterns interact with the control flow in multiple ways. Most importantly, transitions
are selected based on whether a pattern has matched (success) or has failed to match (failure).
It is also possible to indicate that the Story Pattern should not stop after matching the first valid
configuration, but actually match a set of objects, which can then be processed in a loop using
the foreach and end transition guards.

Shuttle::move(): Void

enter

t1: Track

this

t2: Track

base stations

this t2 b1: Base Sta...

register

this t2 b1

r1: Registration Pattern

adjacent

on
«create»
on

on supervises

[success]

on supervises

«create»
entry

«create»
registry

[end]

[each time]

[success]

Figure 2.2.6: A shuttle enters a track and registers with all attached base stations.

Figure 2.2.6 shows a Story Diagram implementing one of the move methods of a shuttle. The shut-
tle (partially) moves onto a track segment and then registers with each base station that supervises
it in turn. 3

While Story Diagrams are instrumental for the detailed design and the subsequent implemen-
tation of the system, they only play a marginal role in the proposed analysis, specification and
verification activities. We will therefore not discuss their semantics in detail, but refer the reader
to the original publications.

2.2.2 Formalization

The presented (extended) UML Diagrams provide a visual modeling language for the specifi-
cation and presentation of systems and their associated constraints which – apart from the men-
tioned limitations – is expressive and accessible to human users. However, in order to provide
them with the formal semantics that UML-based notations are typically lacking, we internally
map our notations to a formal graph-based model which, though less suitable for presentation,
can subsequently serve as the basis for theoretical analysis, formal verification, and code gen-
eration. We first introduce all required concepts and afterwards map the elements of the visual
modeling language to them.

3A realistic implementation would check whether the shuttle was already registered with the base station in
question, which is, however, non-trivial because of the syntactic limitations concerning negation discussed above.

24 2. Foundations

2.2.2.1 Graphs

As graphs are the foundation of our modeling language, we start by providing a formal definition
and a set of related properties and operators.

Basic definitions. Our formalization is based on sets and functions over these sets. In our
definitions, we use the following notations:
For a function f : A → B, we denote by f |C the function f ′ with domain A ∩ C for which for
all x ∈ A ∩ C holds f ′(x) = f(x).
We compose two functions f : A → B and g : C → A using the operator f ◦ g, resulting in a
function f ′ : C → B for which for all x ∈ C holds f ′(x) = f(g(x)).
Two functions f : A → B and g : C → D can be composed using the operator f ⊕ g if for all
x ∈ A ∩ C holds f(x) = g(x), resulting in a function h : A ∪ C → B ∪ D for which for all
x ∈ A holds h(x) = f(x) and for all x ∈ C holds h(x) = g(x).

Labeled graphs. Following the conventions used in [Roz97], we define a graph G as a directed
graph that can accommodate multiple edges between two nodes.

Definition 2.2.1 A graph is a tuple G = (NG, EG, srcG, tgtG), where NG is a finite set of nodes,
EG is finite set of edges, src : EG → NG is the source function, which assigns a source node to
each edge, and tgt : EG → NG is the target function, which assigns a target node to each edge.

We can then extend this definition into the definition of a labeled graph by adding a pair of
labeling functions:

Definition 2.2.2 A labeled graph is a pair (G,LG) of a graph G = (NG, EG, srcG, tgtG) and
an appropriate labeling LG = (ΩN

G ,Ω
E
G, l

N
G , l

E
G) where ΩN

G is a set of node labels, ΩE
G is a set of

edge labels, lNG : N → ΩN
G is a node labeling function that assigns a label to each node, and

lEG : E → ΩE
G is an edge labeling function that assigns a label to each edge.

Two graphs G1 and G2 are label compatible iff the labelings of both graphs are compatible, i.e.,
identical for all the elements that are shared by both graphs: lNG1

|(NG1
∩NG2

) = lNG2
|(NG1

∩NG2
) and

lEG1
|(EG1

∩EG2
) = lEG2

|(EG1
∩EG2

).
They are edge compatible iff the source and target functions are identical for shared edges
that are contained in both graphs: srcG1|(EG1

∩EG2
) = srcG2 |(EG1

∩EG2
) and tgtG1|(EG1

∩EG2
) =

tgtG2 |(EG1
∩EG2

)).
Two graphs that are both label and edge compatible are called compatible.
We use G∅ to denote the empty graph with NG∅ = EG∅ = ∅.

Graph Operators. For compatible graphs, we define the union, intersection and subtraction of
the graphs.
Given two compatible graphs G1 and G2, their union is built by combining their node and
edge sets and combining the labeling, source and target functions: G′ = G1 ∪ G2 with G′ :=

2.2 Story-Driven Modeling 25

(N ′, E ′, src′, tgt′,ΩN ′
,ΩE′

, lN
′
, lE

′
), where N ′ := NG1 ∪ NG2 , E ′ := EG1 ∪ EG2 , src′ :=

srcG1 ⊕ srcG2 , tgt := tgtG1 ⊕ tgtG2 , ΩN ′
:= ΩN

G1
∪ ΩN

G2
, ΩE′

:= ΩE
G1
∪ ΩE

G2
, lN ′

:= lNG1
⊕ lNG2

and l′E := lEG1
⊕ lEG2

. The union is commutative, G1 ∪G2 = G2 ∪G1 holds.
Their intersection of G1 and G2 is built by intersecting the node and edge sets of the two graphs
and restricting the labeling, source and target functions to the resulting subgraph: G′ = G1 ∩G2

with G′ := (N ′, E ′, src′, tgt′,ΩN ′
,ΩE′

, lN
′
, lE

′
), where N ′ := NG1 ∩ NG2 , E ′ := EG1 ∩ EG2 ,

src′ := srcG1|(EG1
∩EG2

), tgt := tgtG1 |(EG1
∩EG2

), ΩN ′
:= ΩN

G1
∩ ΩN

G2
, ΩE′

:= ΩE
G1
∩ ΩE

G2
, lN ′

:=

lNG1
|(NG1

∩NG2
) and l′E := lEG1

|(EG1
∩EG2

). The intersection is commutative, G1 ∩ G2 = G2 ∩ G1

holds.
The subtraction of the two graphs G1 and G2 is similar to intersection. The node and edge
sets of a graph are subtracted from the sets of the other graph, and the functions are restricted
accordingly: G′ = G1 \ G2 with G′ := (N ′, E ′, src′, tgt′,ΩN ′

,ΩE′
, lN

′
, lE

′
), where N ′ :=

NG1 \ NG2 , E ′ := {e ∈ EG1 \ EG2|srcG1(e) ∈ N ′ ∧ tgtG1(e) ∈ N ′}, src′ := srcG1|E′ ,
tgt := tgtG1|E′ , ΩN ′

:= ΩN
G1

, ΩE′
:= ΩE

G1
, lN ′

:= lNG1
|N ′ and l′E := lEG1

|E′ . For non-empty
graphs, subtraction is not commutative, G1 \ G2 6= G2 \ G1 holds. The definition of E ′ results
in the implicit deletion of dangling edges, i.e. edges whose source or target node is undefined.
Otherwise, the resulting tuple might not represent a graph, as the functions srcE′ and tgtE′ would
not necessarily be restricted to N ′.

Typed graphs. We now add the notion of types to our definition of a graph. In a type system
graph GT = (NT , ET , srcT , tgtT ,Ω

N
T ,Ω

E
T , l

N
T , l

E
T), nodes represent node types, edges represent

edge types, and labels are used to assign type names.
A typed graph G is then a labeled graph whose node and edge labels are the nodes and edges
of some type system graph GT , i.e. ΩN

G = NT and ΩE
G = ET .4 We call G type conformant for

GT if the labeling of G is compatible with GT , which means that if there is an edge labeled with
e1 ∈ ET between nodes labeled with n1 ∈ NT and n2 ∈ NT in G, e1 must be an edge connecting
nodes n1 and n2 in GT :

Definition 2.2.3 The labeling of a graph G = (NG, EG, srcG, tgtG,Ω
N
G ,Ω

E
G, l

N
G , l

E
G) is type con-

formant for the type system graph GT = (NT , ET , srcT , tgtT ,Ω
N
T ,Ω

E
T , l

N
T , l

E
T) iff ΩN

G ⊆ NT ,
ΩE

G ⊆ ET and ∀e ∈ EG : (∃eT ∈ ET : lEG(e) = eT ∧ lNG (srcG(e)) = srcT (eT) ∧ lNG (tgtG(e)) =
tgtT (eT)).

We denote the set of all type conformant labeled graphs for a type system graph GT by G[GT].
In order to accommodate subtyping, we need to extend our notion of a type system graph and of
type conformity. An inheritance type system graph GT is a type system graph whose edge label
alphabet ΩE

T contains a special element isa. If there is an edge labeled with isa from node nsub

to node nsuper, we say that nsub is a subtype of nsuper. We define subtype(nsub, nsuper) := ∃e ∈
4Note that we do not assign type names (strings) to objects, which we then would have to (string) compare with

the assigned type name of the corresponding type system graph node, but directly use the nodes of the type system
graph themselves to label the nodes of the instance graph, which simplifies checking type conformity. The labeling
function does not care whether its alphabet is letters or nodes.

26 2. Foundations

ET : lNT (e) = isa ∧ nsub = srcT (e) ∧ nsuper = tgtT (e). The transitive closure of subtype then
yields the set super(n) := {n′|(n, n′) ∈ subtype+}, while the reflexive-transitive closure yields
types(n) := super(n) ∪ n.
We can now extend our previous definition of type conformity to include subtyping:

Definition 2.2.4 The labeling of a graph G = (NG, EG, srcG, tgtG,Ω
N
G ,Ω

E
G, l

N
G , l

E
G) is type con-

formant for the inheritance type system graph GT = (NT , ET , srcT , tgtT ,Ω
N
T ,Ω

E
T , l

N
T , l

E
T) iff

ΩN
G ⊆ NT , ΩE

G ⊆ ET \ isa and ∀e ∈ EG : (∃eT ∈ ET : lEG(e) = eT ∧ srcT (eT) ∈
types(lNG (srcG(e))) ∧ tgtT (eT) ∈ types(lNG (tgtG(e)))).

As for simple type system graphs not containing isawe simply have types(n) = n, this definition
includes the basic notion of type conformity as specified by definition 2.2.3.

Attributed graphs. Finally, we introduce attributed graphs. Following [HKT02], we only allow
node attributes, but no edge attributes. Attributes are represented by nodes that are the target
of special edges whose source is the attributed node. To abstract from the data types of the at-
tributes, we describe them in terms of an algebra A over a many sorted signature Σ = 〈SΣ, OPΣ〉
consisting of sets of sort symbols SΣ and of operation symbols OPΣ.

Definition 2.2.5 An attributed graph is a pair (G,A) of a graph G and an algebra A over Σ,
where for |A| :=

⊎
s∈SΣ

As, the disjoint union of the carrier sets of A, we have |A| ⊆ NG and
∀e ∈ EG : srcG(e) /∈ |A|.

For an attributed graph G, we define attribute value nodes NA
G := |A| and instance nodes N I

G :=
NG \NA

G . We further differentiate between attributes EA
G := {e ∈ EG : tgt(e) ∈ |A|} and links

EI
G := EG \ EA

G .
The notion of type conformance is not affected by this extension. The only additional convention
is that when labeling a type system graph GT (which does not have to be an attributed graph
itself), we label nodes that represent attribute types (i.e. are later used to label nodes from NA

G)
with the appropriate sort symbol s ∈ SΣ.

2.2.2.2 Graph Patterns

In order to formalize the notion of matching and applying a pattern, we now formalize these
notions based on the above definitions.

Containment. We formalize the notion of containment of a labeled graph in another labeled
graph by comparing their defining functions: For two graphs SG and G we say that SG is a
subgraph of G (written as SG ≤ G) iff NSG ⊆ NG, ESG ⊆ EG, srcSG = srcG|ESG

, tgtSG =
tgtG|ESG

, ΩN
SG ⊆ ΩN

G , ΩE
SG ⊆ ΩE

G, lNSG = lNG |NSG
, and lESG = lEG|ESG

. Two graphs are equal iff
SG ≤ G and G ≤ SG.

Pattern matching. A pattern is supposed to be a generalized way of encoding a recurrent struc-
ture. When matching patterns against instance graphs, we only want to compare the graphs w.r.t.

2.2 Story-Driven Modeling 27

their structure, i.e. without considering the identity of the nodes and edges. Instead of the simple
subgraph relationship, we therefore need to use the more general concept of graph morphisms
(cf. [Roz97]).

Definition 2.2.6 A graph morphism m : G1 → G2 is a pair of functions m := 〈mN : NG1 →
NG2 ,m

E : EG1 → EG2〉 mapping the nodes and edges of G1 to the elements of G2 while
preserving sources, targets, and labels. m thus satisfies the properties mN ◦ tgtG1 = tgtG2 ◦mE ,
mN ◦ srcG1 = srcG2 ◦mE , lNG1

= lNG2
◦mN and lEG1

= lEG2
◦mE . A graph isomorphism m is a

graph morphism whose functions mN and mE are both bijective.

This definition can be extended to cover attributed graphs:

Definition 2.2.7 An attributed graph morphism m : (G1, A1) → (G2, A2) is a pair of a graph
morphism mG and a Σ-morphism mA : A1 → A2 mapping the elements of the carrier sets of A1

to A2 so that mA ⊆ mN
G .

If there is a graph isomorphism m : G1 → G2, we write G1 =m G2 or G1 ≈ G2 to abstract
from the specific morphism m. However, as a pattern will typically be smaller than the graph
against which we are matching it, the more relevant question is usually whether there is a graph
isomorphism from the pattern G1 to a subgraph SG2 of G2, i.e. m : G1 → SG2 with SG2 ≤ G2.
If such an isomorphism exists, we write G1 ≤m G2, respectively G1 - G2 to abstract from the
morphism.
In the literature on graph theory, graph homomorphisms, i.e., morphisms that are not necessarily
bijective, are commonly used instead of isomorphisms. As our definition of - eliminates the
surjectivity requirement from the matching process for all practical purposes, the decisive dif-
ference is that pattern matching using isomorphisms requires injectivity while matching using
homomorphisms does not. We have found that, in most cases, the principle that different pattern
elements map to different instances is closer to the intuitive interpretation of a pattern. Consider
a pattern encoding that two shuttles s1 and s2 are on the same track t1 (see Figure 3.2.11 in Section
3.2.2.1). For every single shuttle on a track in the system, there is a homomorphism for matching
that pattern by simply mapping both shuttles from the pattern to the same shuttle in the system.
The pattern then is basically flagging each shuttle as a collision with itself, which hardly reflects
the intended meaning. Though this can be prevented by adding an additional constraint s1 6= s2
requiring the two shuttles to be different, this is cumbersome. We therefore prefer using iso-
morphisms as the default matching strategy and only employ homomorphisms where explicitly
indicated.
Based on subgraph isomorphisms, we define simple graph patterns as follows:

Definition 2.2.8 A simple graph pattern [G] consists of a graph G. If there is a graph AG and
an isomorphism m with G ≤m AG, we write AG,m ` [G] and say that the graph AG fulfills the
pattern.

Negative Application Conditions (NAC) formalize the concept of forbidden elements. The
basic idea is that a pattern will only match if a forbidden second pattern does not match as well.
The semantics of forbidden elements are thus defined as follows:

28 2. Foundations

Definition 2.2.9 A negative application condition (NAC) over a graph G is a finite set Ĝ of
connected graphs with ∀Ĝi ∈ Ĝ : G ≤ Ĝi, called constraints. A constraint Ĝi is fulfilled by a
graph AG if ∃m : G ≤m AG but @m′ with m′|G = m and Ĝi ≤m′ AG, written AG,G,m′ ` Ĝi.
A graph AG and the isomorphism m satisfy a NAC Ĝ, written AG,G,m ` Ĝ, if it satisfies all
constraints Ĝi ∈ Ĝ, i.e ∀Ĝi ∈ Ĝ : AG,G,m ` Ĝi.

This leads to the general definition of a graph pattern and a match of such a pattern:

Definition 2.2.10 A graph pattern [G, Ĝ] consists of a graph G and a set of NACs Ĝ of G.5 It
characterizes the set of graphs that contain the graph G but do not contain any extension Ĝi of
G.

Definition 2.2.11 A matchm for a graph pattern [L, L̂] in some graphG with a subgraph SG ≤
G is a graph isomorphism m : L → SG with G,L,m ` L̂. We write G,m ` [L, L̂] or
G ` [L, L̂].

2.2.2.3 Graph Transformation Rules

Graph transformation rules describe modifications of a graph by means of two graph patterns, a
precondition and a postcondition. We define:

Definition 2.2.12 A graph transformation rule [L, L̂]→r[R] consists of r, the rule name, [L, L̂],
the left hand side (LHS), a graph pattern encoding the precondition, and [R], the right hand
side (RHS), a simple graph pattern encoding the postcondition, with L, all elements of L, and R
compatible and L ∩R 6= G∅.

A rule is type conformant to a type system graph GT if all graphs in the rule are type conformant
to GT .
When a rule r is applied to a graph G, G is called the application graph or source graph. The
resulting graph G′ is called the target graph.
In order to effect the graph transformation, we use the Single Pushout Approach (cf. [Roz97]):

Definition 2.2.13 The Single Pushout Approach defines the application of a graph transforma-
tion rule r to an application graph G as a direct transformation of the source graph G into
a compatible target graph G′. Given the rule [L, L̂]→r[R] and a match m for [L, L̂], such
a direct transformation is characterized by the occurrence o, which is a graph isomorphism
o : L ∪ R → G ∪ G′ with the following properties: o|L = m, i.e. o matches the left hand
side in accordance with m, L ≤o G ∧ R ≤o G

′ i.e. the left hand side of r is contained in G and
the right hand side of r is contained in G′, and o(L\R) = G\G′∧ o(R \L) = G′ \G, i.e. those
elements belonging to L but not to R are deleted, while those elements belonging to R but not
to L are created. We write G |=⇒r,o G

′ to denote such a transformation or G |=⇒r G
′ to abstract

from o.
5A simple graph pattern can be interpreted as a graph pattern with an empty set of NACs.

2.2 Story-Driven Modeling 29

Informally, when r is applied to G, all elements (nodes and edges) that are contained in both the
left and right hand side are preserved, elements that are only contained in the left hand side are
deleted, and elements that are only contained in the right hand side are added, using appropriate
morphisms.
If a sequence of direct graph transformations of the form G0 |=⇒r0,o0 G1 |=⇒r1,o1 . . . |=⇒rn−1,on−1

Gn exists, where r0, . . . , rn−1 are rules and o0, . . . , on−1 their occurrences, so that for 0 ≤ i < n
holds Gi |=⇒ri

Gi+1, we write G0 |=⇒∗
(r0,o0);...;(rn−1,on−1)

Gn, or shorter G0 |=⇒∗
r0;...;rn−1

Gn if the
occurrences are unambiguous or irrelevant in the given context. Even more compactly, G0 |=⇒∗

Gn denotes that some transformation sequence from G0 to Gn exists.

Rule composition. When verifying or monitoring systems, it is often relevant to consider the
interactions between individual rules. In the following, we introduce several concepts required
for the composition of two rules r = ([L, L̂], R) and r′ = ([L′, L̂′], R′) that are not disjoint.
The effect of simultaneously applying two rules to the same graph can be described by a single
equivalent rule that results from joining the two rules. This equivalent rule is defined as r′′ =
join(r, r′) := ([L ∪ L′, {L̂1 ∪ L′, . . . , L̂n ∪ L′, L̂′1 ∪ L, . . . , L̂′n ∪ L}], R ∪ R′), i.e., pre- and
postconditions including NACs are combined. If priorities prio(r) are assigned to the rules,
we set the priority of the combined rule to the level of the less privileged rule, i.e. prio(r′′) =
max(prio(r), prio(r′)). For dealing with sets of simultaneously applied rules in a convenient
fashion, we extend join on enumerations r1, . . . , rn of rules by defining setjoin(r1, . . . , rn) :=
join(r1, join(. . . , join(rn−1, rn)) . . .).
We are often interested in applying two sets of rules in parallel, e.g. for monitoring rule appli-
cations against a specification. Whenever a rule r from the monitored set is applied, the corre-
sponding rule r′ in the specification that r is supposed to refine should then equally be enabled.
Whenever r can be applied while r′ is not enabled, i.e., when r excluding r′ is enabled, r is in
violation of the specification. Such an event can be characterized by the set of graph patterns
exclude(r, r′) := {[L, {L̂1, . . . , L̂n, L

′ ∪ L}], [L ∪ L′ ∪ L̂′1, {L̂1 ∪ L′ ∪ L̂′1, . . . , L̂n ∪ L′ ∪ L̂′1}]
. . . [L ∪ L′ ∪ L̂′m, {L̂1 ∪ L′ ∪ L̂′m, . . . , L̂n ∪ L′ ∪ L̂′m}]}. Basically, this can either occur when
the LHS of r is less restrictive than the LHS of r′, or when the NACs of r′ are triggered by some
element that does not affect the NACs of r.
Another important question is in which ways two rules r and r′ can affect the same subgraph,
i.e., how their occurrences can overlap. We can identify such combinations by intersecting graph
isomorphisms of r into the domain of r′ with the rule r′ proper, computing all graph isomor-
phisms m with m(L ∪ R) ∩ (L′ ∪ R′) 6= G∅. We denote the set of these isomorphisms as
intersect(r, r′). We can then define a merging (or overlapping join) of the first rule with the
second rule as join(m(r), r′) for any m ∈ intersect(r, r′). Consequently, the set merge(r, r′) :=
{join(m(r), r′)|m ∈ intersect(r, r′)} contains all possible ways to merge the two rules. Denoting
the set of all enumerations of the elements of a multi-set or set R with enum(R), we analo-
gously define all ways to merge a multi-set or set of rules as setmerge(R) :=

⋃
r1,...,rn∈enum(R)

{setjoin(m1(r1), . . . ,mn(rn))| ∀1 ≤ i < n : mi ∈ intersect(ri, ri+1)}.

30 2. Foundations

2.2.2.4 Graph Transformation Systems

GTS. Using the concepts we have introduced above, we can now define graph transformation
systems (GTS), a type of state transition system where every state is represented by a graph and
every transition is described as a graph rewrite rule:

Definition 2.2.14 A typed graph transformation system (GTS) S is a tuple (TS,Gi
S,RS) with TS

a type system graph, Gi
S the set of all type conformant initial graphs of the system, and RS a

finite set of type conformant graph transformation rules.

For each system S = (TS,Gi
S,RS) and a graph G, the valid applications are denoted by |=S⇒r,o,

|=S⇒r, or |=S⇒∗
w respectively. We define the – potentially infinite – set of all reachable states as

REACH(S) := {G | G ∈ G[TS] ∧ ∃G0 ∈ Gi
S, w ∈ R∗

S : G0 |=S⇒∗
w G}.

Extended GTS. We can extend this definition in various ways:

Definition 2.2.15 A GTS S can be extended into a prioritized graph transformation system by
adding a priority function prioS : RS → Z assigning a priority prioS(r) to every r ∈ RS , with
lower numerical values having higher precedence.

For a prioritized system S = (TS,Gi
S,RS, prioS) and a graph G, we restrict valid rule appli-

cations G |=⇒r,o G′ to those cases where no preempting rule application G |=⇒r′,o′ G
′′ with

prioS(r′) < prioS(r) exists.

Definition 2.2.16 A GTS S can be extended into a constrained graph transformation system
(TS,Gi

S,RS,ΦS) by specifying a set of forbidden graph patterns ΦS which must never match the
system state at any time.

For a constrained system S = (TS,Gi
S,RS,ΦS) and a graph G, we define a violation as a rule

application G |=⇒r,o G
′ where ∃φ ∈ ΦS : G′ ` φ ∧ ¬G ` φ.

Definition 2.2.17 A GTS S can be extended into a labeled graph transformation system with
(multiple) rule labels from the label set B by providing a mapping lS : RS → ℘(B)

Parallel composition. When two graph transformation systems are executed concurrently, the
resulting system corresponds to their parallel composition. We define the parallel composition
S‖T of two graph transformation systems S = (TS,Gi

S,RS) and T = (TT ,Gi
T ,RT) as a GTS

U := (TU ,Gi
U ,RU) with TU := TS ∪ TT , Gi

U := Gi
S ∪ Gi

T ∪ {G ∪ G′|G ∈ Gi
S ∧ G′ ∈ Gi

T}, and
RU := RS ∪RT .
For the parallel composition U := (TU ,Gi

U ,RU ,ΦU) of two constrained graph transformation
systems S = (TS,Gi

S,RS,ΦS) and T = (TT ,Gi
T ,RT ,ΦT), we additionally define ΦU := ΦS ∪

ΦT . For prioritized graph transformation systems, we define prioU := prioS⊕prioT . For labeled
graph transformation systems, we likewise define lU := lS ⊕ lT .

2.2 Story-Driven Modeling 31

Paths. A path π := G0 |=S⇒r1,o1 G1 |=S⇒r2,o2 G2 . . . is an alternating sequence of states and
valid rule applications connecting these states. We denote the – potentially infinite – length of a
path by l(π). For i ∈ [0, l(π)), we refer to the state graph generated by the i-th rule application
(i.e., Gi) as π[i]. We use πi to denote the suffix of π starting with π[i].
The set of all finite or infinite possible paths π starting from G is defined as PATH(S,G) :=
{G0 |=S⇒r1,o1 G1 |=S⇒r2,o2 G2 . . . | G0 = G}. PATH(S) denotes all paths that can be generated
by S and is defined as the union of all sets PATH(S,G) with G ∈ Gi

S . We also write [[S]] for
PATH(S).
When we are considering time, we additionally use a function T (π, i) : [[S]] × [0, l(π)] → IR
to determine the time when each particular state of a path has been reached. Depending on the
notion of time that is available in the context where these concepts are applied, we may need to
substitute a discrete notion for the continuous notion of time.

2.2.2.5 Properties of Graph Transformation Systems

Using graph patterns as basic propositions, we can derive more complex graph properties. The
Computational Tree Logic CTL∗ (cf. [CGP00]) with its path quantifiers A (for all paths) and E
(for some path) and temporal operators X (next), F (eventually), G (always), U (until), and R
(release) can be used to embed these basic propositions to form an expressive notation for tempo-
ral conditions. In [GHK98], it is shown that a sound and complete general propositional temporal
calculus remains sound and complete when interpreted on graph transformation systems.
We then have the following syntax for state and path formulae:

• If φ is a graph pattern or the constant true or false, then φ is a state formula.
• If φ and ψ are state formulae, then ¬φ, φ ∨ ψ, and φ ∧ ψ are state formulae.
• If φ is a state formula, then φ is also a path formula.
• If p is a path formula, then Ep and Ap are state formulae.
• If p and p′ are path formulae, then ¬p, p∨ p′, p∧ p′, Xp, Fp, Gp, pUp′, and pRp′ are path

formulae.

We write S,G |= φ iff the CTL∗ formula φ holds for the state G and S, π |= φ iff the CTL∗

formula φ holds for the path π. We further write S |= φ to denote that ∀G ∈ Gi
S holds S,G |= φ.

The semantics of state and path formulae is then defined as follows for a GTS S,a graph G, and
a trace π:

• S,G |= φ iff φ is a graph pattern and G ` φ.
• S,G |= ¬φ iff S,G 6|= φ.
• S,G |= φ ∨ ψ iff S,G |= φ ∨ S,G |= φ.
• S,G |= φ ∧ ψ iff S,G |= φ ∧ S,G |= φ.
• S,G |= Eφ iff ∃π ∈ PATH(S,G) : S, π |= φ.
• S,G |= Aφ iff ∀π ∈ PATH(S,G) : S, π |= φ.
• S, π |= φ iff G = π[0] ∧ S,G |= φ.

32 2. Foundations

• S, π |= ¬φ iff S,G 6|= φ.
• S, π |= φ ∨ ψ iff S, π |= φ ∨ S, π |= φ.
• S, π |= φ ∧ ψ iff S, π |= φ ∧ S, π |= φ.
• S, π |= Xφ iff S, π1 |= φ.
• S, π |= Fφ iff ∃k, k ≥ 0 : S, πk |= φ.
• S, π |= Gφ iff ∀i, i ≥ 0 : S, πi |= φ.
• S, π |= φUψ iff ∃k, k ≥ 0 : S, πk |= ψ ∧ ∀j, 0 ≤ j < k : S, πk |= φ
• S, π |= φRψ iff ∀j, j ≥ 0 : (∀i, i < j : S, πi 6|= φ) ⇒ S, πj |= ψ

To describe, for example, that a given graph pattern [P, P̂] should never be matched in any
reachable configuration, we can then write:

S |= AG(¬[P, P̂]).

2.2.2.6 UML Models

We have now defined all the necessary preliminaries that will allow us to formalize the employed
visual notations.

UML Class and Object Diagrams. A Class Diagram can be represented as a type system graph
GT , where nodes represent classes, edges represent associations, and labels define their names.
An inheritance relationship in the diagram translates to an edge labeled with isa from the node
representing the subclass to the node representing the superclass.
If the diagram contains attributes, we define a signature Σ whose set of sort symbols comprises
the required value types, typically SΣ := {boolean, integer, real, string, . . . }, and add value
type nodes labeled with s ∈ SΣ. Attributes are then encoded as edges from class nodes to value
type nodes, labeled with the attribute name.
Cardinalities are not incorporated into the type system graph itself, but need to be translated into
appropriate constraints, i.e. graph patterns that are negative invariants of the system.
A maximum cardinality of ∗ or n requires no constraint. A maximum cardinality of k ∈ IN can
be encoded as a graph pattern containing k + 1 copies of the constrained element, which will
match any instance situation with i > k instances (see Figure 2.2.7b).
A minimum cardinality of 0 requires no constraint either. A minimum cardinality k > 0 can be
encoded by adding a pattern containing i copies of the constrained element plus one additional
forbidden copy of the element, which will therefore match a configuration containing i, but not
i + 1 copies of the element, for each 0 ≤ i < k. This is not practical for larger minimum
cardinalities, but poses no problems for typical values such as 1 (see Figure 2.2.7a) or 2 (see
Figures 2.2.8a and 2.2.8b). Note that the necessity to enumerate the undesired configurations
(not 0, not 1, not 2, not 3...) is a direct consequence of the restriction to negative invariants,
as a single positive invariant – (at least) 4 (or more) – would be sufficient to encode the same
minimum cardinality. When we lift this restriction in the following chapter, at most two patterns
will be sufficient to encode any cardinality range.

2.2 Story-Driven Modeling 33

s1: Shuttle

t1: Track

on

a. Not 0 tracks

s1: Shuttle

t1: Track

on

t2: Track t3: Track

onon

b. Not 3 or more tracks

Figure 2.2.7: Shuttle: Encoding the [1..2] cardinality for on

r1: Registration Pattern

c1: Convoy Pattern

uses

a. Not 0 patterns

c1: Convoy Pattern

uses

r1: Registration Pattern r2: Registration Pattern

uses

b. Not 1 pattern

Figure 2.2.8: Convoy Pattern: Encoding the [2..∗] cardinality for uses

An Object Diagram can be represented as a typed graph G that is type conformant for the (inher-
itance) type system graph GT representing the corresponding Class Diagram. Nodes represent
objects and edges represent links, each labeled with the respective class or association.
If the Class Diagram defines attributes, the Object Diagram needs to be an attributed graph.
Objects are then represented by instance nodes N I

G, links are represented by edges from EI
G,

attribute value nodes NA
G represent literals, and the edges EA

G represent attribute assignments.

Story Patterns. Just as the UML Object Diagrams that they extend, Story Patterns can be for-
mally expressed using graphs. Again, objects and attribute values become nodes, while links and
attribute assignments become edges.
An Invariant Story Pattern without forbidden elements can thus be translated to a simple graph
pattern consisting of the corresponding graph. In the more general case including negative (for-
bidden) elements, a given Story Pattern can be translated to a graph pattern [G, Ĝ] by encoding
its positive objects, links and attributes as an attributed typed graph G and building the set of
NACs Ĝ by adding, for each negated link l, a labeled graph Ĝ consisting of G and the negated
link l with its source node src(l) and target node tgt(l). At least one of these nodes already is in
G – if l connects two positive nodes, both source and target are in G, whereas if l connects to a
negative node (as in Figure 2.2.3), that node only is in Ĝ.
Note that the problems with respect to negation that were discussed above are due to limitations
of the notation and its established semantics and not inherent in the underlying formalization. It
would be possible, instead, to add a NAC Ĝ (1) for every negative link between positive objects
and (2) for every negative object including all its links, thus making Figure 2.2.4a a correct
specification with the intended semantics. However, independently of the chosen semantics, the

34 2. Foundations

basic problem caused by the decision to integrate the NACs into the positive graph to allow
for more compact diagrams remains, namely that the relationships between multiple negated
elements (Which ones are alternatives? Which ones need to occur together?) are subtle.
The property encoded by an Invariant Story Pattern thus holds for a configuration represented
by an Object Diagram iff the attributed graph AG representing the object diagram fulfills the
corresponding graph pattern [P, P̂]: AG ` [P, P̂].
For Story Patterns with side effects, we can derive a graph transformation rule r := [L, L̂]→r[R].
We encode the LHS of the Story Pattern, which we obtain by disregarding all elements marked
with �create� and treating those marked with �destroy� as regular positive elements, as the
graph pattern [L, L̂]. The RHS, i.e. the unmarked and newly created elements, are encoded as
the simple graph pattern [R].
Applying the Story Pattern to a configuration represented by an Object Diagram AG then corre-
sponds to the rule application AG |=⇒r,o AG

′.

System Model. By means of the above definitions, we can now derive a representation of a
complete UML model as a constrained graph transformation system by combining the above
concepts. The underlying Class Diagram becomes the type system graph TS , the Story Patterns
with side effects become the rule set RS , the Invariant Story Patterns make up the constraint
set ΦS , and the set of initial graphs Gi

S is derived from the Object Diagrams representing initial
configurations. If there are forbidden patterns encoding the cardinalities of the Class Diagram,
these are also added to ΦS .

2.3 Coordination Patterns 35

2.3 Coordination Patterns

For modeling the real-time coordination and communication of a system, we use a component-
based approach that is built around the notion of Coordination Patterns [GTB+03]. The approach
is based on standard UML 2.0 component modeling techniques, but strives for a realistic and im-
plementable semantics by removing certain abstractions and implicit assumptions. For example,
communication channel behavior is modeled explicitly in order to provide details such as the
associated delay or the available buffer size. In the same vein, the approach replaces all us-
ages of regular UML State Machines with the more expressive Real-Time Statecharts (RTSC)
[GB03, BGS05, BG03].
Coordination Patterns suggest a compositional approach to system design where the overall sys-
tem is created by connecting components using the appropriate patterns. They are also the foun-
dation for the approach to compositional verification presented in [GTB+03], which requires the
verification of the individual patterns and the correctness of the composition at the component
level, but is then capable of inferring the semantic correctness of the system from the syntac-
tic correctness of the composition. By cleanly encapsulating the externally visible component
behavior, Coordination Patterns also provide a suitable abstraction for the discussion and verifi-
cation of online reconfiguration.
There are extensions of the approach that allow the modeling of continuous and hybrid compo-
nent behavior by integrating concepts from control engineering and complementing the discrete
event-based communication model with a continuous model using continuous ports and commu-
nication channels (cf. [Bur06]). The safe online reconfiguration of hybrid components further-
more requires dedicated analysis and implementation techniques in order to ensure stable and
valid continuous behavior. As these techniques are seamlessly integrated with the techniques for
discrete systems, however, we can safely abstract from these extensions within the context of this
thesis. This is desirable from a software engineering point of view because, as a general rule,
it would break encapsulation and greatly complicate the design process if low-level continuous
behavior featured prominently in the analysis and design of the multi-agent system responsible
for the high-level coordination between components.

2.3.1 Notations

We will now provide a short overview of the notations employed for the specification of Co-
ordination Patterns, i.e., the component model, the behavioral specifications, and the patterns
themselves.

2.3.1.1 Components

The concept of a component has greatly been refined and extended by the UML 2.0 (cf. [Obj07,
section 8.3]) with respect to the UML 1.x, where the use of components was mostly restricted
to the modeling of instance-level dependencies. In the UML 2.0, components are classifiers and

36 2. Foundations

thus closely related to classes, but exhibit stronger encapsulation and typically represent larger
units of composition. In contrast to classes, all external dependencies of components need to be
stated explicitly.
Components define their relationships by means of required and provided interfaces. The pro-
vided interfaces of a component are most commonly represented by circles (’plugs’), whereas
the required interfaces are presented as open semicircles (’sockets’), though it is possible to spec-
ify them by textually or graphically referencing the interface definitions, using the appropriate
stereotypes. As all required interfaces need to be connected to provided interfaces in a consistent
manner when composing components into a system, these interface sets constrain the set of valid
system configurations.
It is possible to group interfaces that are conceptually related by using ports, representing logical
interfaces. The assignment of interfaces to ports is non-disjunctive, i.e., it is possible to assign the
same interface to multiple ports. By allowing combinations of provided and required interfaces,
ports also provide a concept for modeling bidirectional communication. Ports are graphically
represented by squares.

<<component>>
Shuttle

configuration

registryEntry

management leader

location

scheduling

registrationService
follower

convoyLeader

convoyFollower

convoyFollower

convoyLeader

Figure 2.3.1: A basic component

Figure 2.3.1 shows a basic example, an external view on a shuttle with ports for communicating
with other shuttles and base stations. Though the emphasis on encapsulation suggests a black box
view on components, it is nonetheless possible to adopt a white box view. The internal structure
of a component can either be modeled by embedding other components into it or by specifying
an object-oriented implementation.

<<component>>
b1 : Base Station

<<component>>
s1 : Shuttle

registrationService

registryEntry

Figure 2.3.2: A system configuration with two interacting components

Components communicate using point-to-point connections between ports. We do not employ
multicast transmissions, even when a component such as a base station needs to broadcast an
update to many shuttles simultaneously, as we require reliable communication and need to ensure
that every single message is actually received. Connections are generally asynchronous and
introduce a non-zero delay, as message propagation is never instantaneous. Connections have a

2.3 Coordination Patterns 37

buffer that can only store a fixed number of messages and can thus overflow. Connections can
also fail altogether.
As with other UML classifiers, components can be used at the instance level in order to illustrate
specific deployments or system configurations, as in Figure 2.3.2.

2.3.1.2 State Machines

Interface, port, component, and connector behavior is specified using some form of state ma-
chine. The externally visible communication behavior is constrained by protocol state machines,
abstract specifications defining valid sequences of input and output signals but no control logic
or side effects. As bidirectional communication necessarily involves at least two interfaces, the
corresponding protocols are defined at the port level. The internal implementation of the visi-
ble behavior is defined by behavioral state machines, which include all required operations and
computations.

UML State Machines. UML State Machines (cf. [Obj07, section 15]) are based on the theory of
finite automata, but extend them with additional concepts such as concurrency and hierarchical
composite states offering a deep or shallow history. There is rudimentary support for temporal
restrictions on behavior by allowing triggers that are relative to a global clock (when) or to
the entry time into the current state (after). The UML Profile for Schedulability, Performance,
and Time Specification (SPT) (cf. [OMG05]) provides more refined means of specifying the
capabilities of real-time systems by defining deadlines, priorities, worst-case execution times
(WCET), and custom clocks, but is not tightly integrated with the behavioral semantics of UML
State Machines.

Real-Time Statecharts. Due to these limitations with respect to real-time modeling, we use
Real-Time Statecharts (RTSC) as a more expressive replacement for UML State Machines when
modeling protocols and behavior. They combine concepts and syntax from UML State Machines
(such as composite states and concurrency) and the SPT Profile (such as priorities and deadlines)
with formal semantics based on the Timed Automata formalism [DMY02].
RTSC allow the user to explicitly define and reset clocks. Using these clocks, state invariants,
transition guards, and deadlines can be defined as simple inequalities comparing clock values
with constants. Transitions may additionally be annotated with guard expressions, enabling
events, and priorities. Transitions are only enabled when all guards are fulfilled and all required
events are available. When multiple transitions are enabled, their priorities determine which one
is selected and preempts the others. By default, transitions are urgent and must fire as soon as
they are enabled. However, there is also support for non-urgent transitions, which are allowed to
delay firing within the specified time constraints.
The most significant feature of RTSC with respect to their implementation by actual systems,
however, is the fact that transitions are not instantaneous, but consume time. For each transition,
it is therefore mandatory to specify an interval which must allow for the sending of all signals,
performing all side effects, and entering the destination state.

38 2. Foundations

Operations. It is possible to specify actions that are performed once when entering (entry) or
leaving (exit) a state or, periodically, while in the state (do). Actions are typically operations that
are invoked on the associated object instance. Here, the component-based perspective interfaces
with the story-driven perspective, as these operations and the associated side-effects are specified
using Story-Driven Modeling, namely Story Diagrams.
When specifying software that is involved with time-critical control processes that need to respect
tight deadlines, the exact worst-case execution time (WCET) of operations becomes important.
In order to allow the theoretically sound computation of reliable WCET for Story Diagrams,
it becomes necessary to place restrictions on the maximum number of instances for classes and
associations as the WCET may otherwise, in theory, become unbounded (cf. [TGS06, BGST05]).
By employing techniques such as the layered architecture of the Operator-Controller-Module
(OCM) [HOG04, OHG04], it is possible to decouple the coordination behavior of agents from
low-level control processes. Though there are still time constraints at the multi-agent level, it is
therefore sufficient to apply less rigorous methods of WCET computation, such as appropriate
heuristics, in most cases.

unregistered

t0 <= 20

registered

t1 <= 15

waitingerror

Registration.entry

Initial State

[t1]

entry.update

[t0]

[t1 > 15][0 ; 2]

[0 ; 12]

[0 ; 5][0 ; 5]

[0 ; 12]

[t1 <= 15]

Raised events:
 registry.update

entry.registered

[t0]

Figure 2.3.3: A Real-Time Statechart

Figure 2.3.3 shows a RTSC specifying a shuttle’s communication with a base station.

2.3.1.3 Coordination Patterns

Coordination Patterns provide an elegant solution for reuse at the component level. A pattern
defines a set of roles, connectors between them, and a set of protocol state machines modeling
their respective required behavior. Additional restrictions may be imposed in the form of role
invariants. Finally, guarantees for the overall pattern may be stated as pattern constraints.

2.3 Coordination Patterns 39

Patterns are applied to a design by assigning pattern roles to ports of components. The state
machine of each port must then represent a valid refinement of the assigned role, i.e., must operate
within the specified bounds. Refinement typically consists of the reduction of non-determinism,
in particular the removal of choices or the tightening of time constraint intervals.

<<component>>
b1 : Base Station

<<component>>
s1 : Shuttle entry registry

Registration

Figure 2.3.4: Representation of a Coordination Pattern

Figure 2.3.4 shows the graphical representation of a Coordination Pattern, the registration pattern,
that is applied to two components, shuttle and base station.
The guarantees made by the pattern constraint can be formally verified based on the information
that is available in the abstract pattern. As the pattern is restricted to a small number of partic-
ipants, model checking is feasible with moderate effort. Due to the refinement relation, these
guarantees carry over to the concrete component. When a component implements multiple roles,
additional – local – checks that preclude detrimental interactions between the different roles are
required. A design that has been verified at this level will then, however, remain correct for any
syntactically correct combination of such components into a system structure (cf. [GTB+03]).
The way the convoy pattern builds upon the data provided by means of the registration pattern in the
application example illustrates an important principle: Coordination Patterns can build on the
guarantees made by other patterns in order to realize more complex behaviors. This ability to
bootstrap advanced behaviors starting from concrete and simple interaction patterns will be of
central importance for realizing the high-level coordination between agents below.

2.3.2 Formalization

In the following, we will provide a short introduction of the core of the semantics of Coordina-
tion Patterns. Due to the focus of this thesis, we will mostly concentrate on those aspects that
are relevant for the interaction between the story-driven and component-based perspectives on
system behavior.

2.3.2.1 State Machines

A formalization of state machines is required as the foundation of the formal definition of pat-
tern and component behavior. The discussed compositional verification approach presented in
[GTB+03] uses a class of I/O-automata for this purpose. The concept of refinement for these
automata is discussed in detail in [Gie03]. Meanwhile, the semantics of Real-Time Statecharts

40 2. Foundations

is defined by introducing Extended Hierarchical Timed Automata in [GB03]. While both are rel-
evant to Coordination Patterns, the two definitions are, however, incompatible. This situation is
remedied by [BGH05], which integrates and extends these definitions for hybrid automata that
exhibit continuous behavior. However, the integrated definition abstracts from certain aspects
such as hierarchical states or propositions, while devoting a significant amount of attention to the
continuous aspects, which play a prominent role throughout the formalization.
In the context of this thesis, we are only interested in modeling discrete behavior, but would like
to be able to cover all aspects of the notation. Due to this different focus, we choose a comple-
mentary approach: We derive a set of definitions that covers both RTSC and refinement in detail,
but is restricted to the discrete domain. While related to the definitions for hybrid automata, it
is simpler and tailored to the task of providing a consistent terminology for discussing discrete
behavior and central points of the semantics.

Automata. The concept of a finite automaton is fundamental for the discussion of state machines.
As we are mostly dealing with reactive behavior, we are more particularly interested in Mealy
automata whose output depends on both their current state and current input. Using the same
modular approach applied to the different flavors of graph transformation systems, we provide a
basic definition with a set of possible extensions:

Definition 2.3.1 An automaton M is defined by a 4-tuple (S, S0, A, T), where S is a finite set
of locations with S0 ⊆ S the subset of initial locations, A is a set of events which most notably
includes the set of input events I , the set of output events O, and the internal event τ , and
T ⊆ S × ℘(A)× S is a set of transitions connection two locations.

The important semantic point here is that firing a transition is divided into the phases entry, execu-
tion, and exit and may consequently consume as much time as the associated actions. The seman-
tic problems associated with the UML’s run-to-completion macro step semantics (cf. [LvdBC00])
are avoided by adopting a simplified semantics that takes advantage of the property that transi-
tions consume time, which makes the restriction to a single executed transaction per cycle con-
ceptually sound.

Definition 2.3.2 A hierarchical automaton M is an automaton which is extended by a tuple
(rt, δ, σ), where rt ∈ S is the root location, δ : S → ℘(S) is a function defining a tree struc-
ture of composite locations rooted in rt, and σ : S → TY PE is a function assigning types to
locations in order to identify special locations such as ENTRY, EXIT, or HISTORY states.

As hierarchical automata can be flattened into flat automata, they are not more expressive, only
more succinct than the simpler formalism. Their importance thus rather lies on the presentation
level, not in an enhanced formal analysis.

Definition 2.3.3 A timed automaton M is an automaton which is extended with a set of clocks
C, a set of time constraints Cc represented by expressions over clock values, and a set of clock
updates Cu setting or resetting clock values. Time constraints can be assigned as state invariants

2.3 Coordination Patterns 41

by a function inv : S → Cc and as transition guards by a function cg : T → Cc. Clock updates
can be assigned to states and transitions by a function cu : S ∪ T → Cu.

As stated above, RTSC restrict time constraints to comparisons of elementary clock values and
constants. State invariant expressions are naturally restricted to the specification of upper bounds.
When encoding RTSC, we additionally need labeling functions prio and urgent for assigning
priorities and urgency to transitions.

Definition 2.3.4 An extended automaton M is an automaton that includes a data model D, for
which queries Dc : D → {true, false} and updates Du : D → D can be formulated. Queries
can be assigned to transitions as guards using a function g : T → Dc. Model updates are
primarily used as actions ad ∈ A ∩Du and typically represent τ steps.

The data model D may be represented by a GTS D. Query expressions are then finite conjunc-
tions over arbitrary predicates of D, while model updates are transformations of D, which need
to be consistent and feasible within the limitations of potential time constraints.
Based on the data model, atomic propositions P can be assigned to locations by means of a
labeling function L : S → ℘(P). It is then possible to specify system properties as defined in
Section 2.2.2.5. By using Clocked Computational Tree Logic (CCTL) [RK99] instead of plain
CTL, such properties can even capture real-time aspects of the system.

Refinement (cf. [Gie03]) is an important concept for determining the correctness of realizations
of state machine specifications. Refinement defines a notion of behavioral equivalence that is
stronger than simulation (which is insufficient to exclude undesired additional behavior), but
weaker than bisimulation (which is overly restrictive and does not allow narrowing the specifi-
cation the way an implementation typically does).

Definition 2.3.5 An automaton M = (S, S0, A, T) is a refinement of an automaton M ′ =
(S ′, S ′0, A

′, T ′), denoted by M v M ′, iff there is a relation Ω ⊆ S × S ′ mapping locations
from M to M ′ so that ∀s0 ∈ S0 : (∃s′0 ∈ S ′0 : (s0, s

′
0) ∈ Ω), ∀(s1, s

′
1) ∈ Ω holds ∀(s1, At, s2) ∈

T : (∃(s′1, At, s
′
2) ∈ T ′ : (s2, s

′
2) ∈ Ω) (simulation), and ∀(s′1, A′

t, s
′
3) ∈ T ′ : (∃(s1, A

′
t, s3) ∈ T)

for some s3 ∈ S, s′3 ∈ S ′.

Several of the described extensions are affected by the concept of refinement. Most importantly,
time constraints and clock updates need to be respected in such a way that the refined behavior
only restricts the allowed time intervals (which implies not introducing additional clock updates
for mapped clocks). While some conditions such as the preservation of labels L(s1) = L′(s′1)
are straightforward, refinement at the level of the data model, i.e. GTS, is a problem in its own
right that is discussed in Chapter 4.
In practice, we are primarily interested in the notion of restricted refinement which only considers
the subset A′

t ⊆ At ∩ A′, thus allowing the refined automata to introduce arbitrary additional
internal actions.

42 2. Foundations

2.3.2.2 Coordination Patterns

Following [GTB+03], we can now define a Coordination Pattern as follows:

Definition 2.3.6 A Coordination Pattern CP is a 4-tuple (M,Ψ,MC , φ), where M is a set of
automata M1, . . . , Mk defining role behaviors with a set Ψ of associated role invariants ψ1, . . . ,
ψk, MC is an automaton modeling connector behavior, and φ is the pattern constraint.

2.3.2.3 Components

Definition 2.3.7 A component definition C is a tuple (Ip, Ir, P,m) where Ip is a set of provided
interfaces, Ir is a set of required interfaces, P is a set of ports, and m : P → ℘(Ip ∪ Ir) is a
function assigning interfaces to ports. Each port p is characterized by an automaton rp with the
associated set of supported input signals ISp, which must be the union of the input signals IS
of each interface in m(p). Additionally, an automaton rb may be specified which controls the
internal synchronization between the component’s ports.

We further characterize the relationship between a component and its internal structure as fol-
lows:

Definition 2.3.8 A component definitionC is implemented by a set of classifiers (i.e. components
or classes) C iff for each p ∈ PC there is a C ′ ∈ C for which ∃p′ ∈ PC′ that is a restricted
refinement of p, i.e., rp′ v rp and ISp ⊆ ISp′ . We then write C v C.

We finally define how components realize pattern roles:

Definition 2.3.9 A component C is a realization of a pattern CP if there is a port p ∈ PC whose
automaton rp is a valid restricted refinement of a role behavior Mi ∈ MCP and fulfills the
associated role invariant ψi ∈ ΨCP .

2.3.3 Integrating Story-Driven Modeling and Coordination Patterns

So far, we have treated Story-Driven Modeling and Coordination Patterns as two mostly indepen-
dent parallel universes, Coordination Patterns dealing with the external coordination and reactive
behavior of components, Story-Driven Modeling describing the structural evolution of the sys-
tem. While story-driven notations are referenced in the context of pattern definitions and used
for the specification of actions, there is a clear separation: Coordination Patterns describe the in-
teraction between components, Story Patterns describe internal side effects of operations within
components.
Previous work has focused on the formal treatment of behavior in the context of existing Co-
ordination Patterns, but has largely ignored the question of their instantiation. When describing

2.3 Coordination Patterns 43

reconfiguration behavior, a task for which Story-Driven Modeling is well suited, we would there-
fore like to be able to apply its techniques at the component or system level in order to model
when and how ports, connectors, and Coordination Pattern instances are created, connected, and
disconnected. Taking this approach a step farther, we could even model runtime modifications of
the state machines themselves. However, applying Story-Driven Modeling at this level requires
the ability to properly reference the core concepts of Coordination Patterns in the context of the
employed notations. We therefore introduce a lightweight metamodel and notational templates
which allow us to express such references. The basic idea is to derive a class structure from
component and state machine specifications and then simply treat the specification elements as
instances of this structure, an approach that already is applied in an informal manner in the ap-
plication example or previous work such as [BBG+06] where Coordination Pattern instances are
simply represented by objects.

Metamodel. Figure 2.3.5 provides an overview of the metamodel. All elements of the system
for which reactive behavior is specified are instances of the abstract class Stateful. Its subclasses
are Component, Port, Role, and Connector. Components provide Ports, which in turn are attached to
directed input and output Connectors. Ports may also realize Roles.

ComponentState

type:Integer

Connector

Port

Buffer

capacity:Integer

Role

Stateful

id:String

Signal

Message

Constraint Constrainable CoordinationPattern

n

1
provides

n
n

transition

initial active

n

1

substates

n

n

output n

n input
1

0..1

root

1

1

outputinput

0..11

0..11

1

1

realizes

0..1

tail

0..1

head

nn

constrains

n

1
defines

n

1

defines

1

1
input

output

n n

Figure 2.3.5: Coordination Pattern metamodel

State machines are encoded based on the class State, which is used to encode the different types
of locations. Each State may be a composition of substates and specifies transitions to possible
successor States.6 In a fashion similar to the state pattern as proposed by [GHJV94], the active

6For the purposes of this thesis, it is sufficient to model transitions as associations. In a more detailed model,
transitions would merit their own class, associated with source and target states.

44 2. Foundations

substates of a State are indicated by an association. Likewise, initial indicates the set of initial
states. A state machine is attached to a Stateful element by assigning it a root State, which is
implicitly active. The active States of the state machine are then those with an unbroken path
of activation links to the root, which provides a straightforward way of providing deep history
support. States may specify a method signature that indicates which Signals are accepted while
the Stateful element is in this particular State and allows attaching the specified side effects.
Communication across Component boundaries takes place using the Connectors. Each Connector
provides an input and an output Buffer with a limited capacity. The Port has access to the head
element of the output Buffer of an input Connector and may add a tail element into the input Buffer
of an output Connector. By using arbitrarily complex Message objects as Signals, it is possible
to provide a detailed object-oriented specifications of the resulting updates to the internal data
model.
Finally, Coordination Patterns may define a set of roles and connectors. Both Stateful and Coordina-
tion Pattern extend the abstract class Constrainable, which represents entities whose behavior is
constrained by a set of Constraints that they need to fulfill.

Derived class model. From a given Coordination Pattern specification, a concrete class model
can be derived automatically in a direct way, using the introduced metamodel and the formaliza-
tion of Coordination Patterns presented above.
The class model in Figure 2.3.6 comprises part of the Coordination Pattern from Figure 2.3.4 and
the associated Real-Time Statechart from Figure 2.3.3. It represents the central entities of the
pattern (component, port, connectors, states) as custom classes and encodes important structural
relationships such as the defined transitions as associations. The method signatures of the states
are derived from the signals on the transitions in the RTSC, documenting which incoming signals
the state will react to.
The concrete classes are marked up with stereotypes that refer to the elements of the metamodel,
which is an idiom we will use frequently throughout this thesis. Though technically at different
levels of (meta) model abstraction, the concrete classes implicitly ’inherit’ the associations and
attributes of the metamodel classes, which simplifies modeling and makes the diagrams more
compact. For example, a �message� has the implicit ability to be the �head� of a �buffer�
without there being an association between, e.g., Update and Queue. Such associations can, how-
ever, be made explicit, as is done with the (anonymous) association between Shuttle and Location
or with rcv between Waiting and Registered, if this helps to make the model more precise and better
convey the intended meaning.

Applications. The class model can then be used to reference the elements of the Coordination
Pattern in Story Patterns. Firstly, Story Patterns (or Object Diagrams) can be used to model the
initial instance situation in detail – i.e., which component, port, and connector instances exist,
and which states and transitions they provide.
Secondly, transformations of the internal data model can now make reference to received mes-
sages, which may contain complex data structures, in an object-oriented way. Figure 2.3.7 pro-
vides a basic example, with the Shuttle consuming the Update and adding the contained Position

2.3 Coordination Patterns 45

«component»

Shuttle

«role»

Entry

«port»

Location

«connector»

BaseToShuttle

«connector»

ShuttleToBase

«state»

Waiting

«state»

Registered «state»

Error

«state»

Active

Position

shuttle:Shuttle

position:Track

time:Integer

«buffer»

Queue

«message»

Update

1

1

«input»

1
1

«output»

1

1

«root»

1

1

«substate»

1 1« »substate

1

1

«substate»

1

1

«substate»
1

1

«transition»

1

1
«transition»

1

1

«transition»

1

1«transition»

1

1

«transition»

1 1

«initial»

1

1

«provides»
1

1 «output»

1

1

«input»

1
1

«input»

n

1

stores

n

1
contains

reg

urg

update

rcv

snd

err

update()

«state»

Unregistered

registered()

«pattern»

Registration 1 1« »defines

Figure 2.3.6: Partial class model for the shuttle component

information to its internal cache of stored shuttle positions, which allows it to reason about the
whereabouts of other nearby shuttles.

«component»

s1 : Shuttle

«port»

l1 : Location

«state»

e2 : Registered

«state»

e1 : Active

p1 : Position

«state»

e3 : Waiting

«message»

-- u1 : Update

«buffer»

q1 : Queue

«connector»

bs1 : BaseToShuttle

++ stores

« »provides

« »input

« »root

« »substate

++ « »active

« »transition

« »substate

-- active« »

-- contains

-- head« »

« »output

rcv

Figure 2.3.7: Processing an update from the base station

46 2. Foundations

Finally, Figure 2.3.7 also encodes how the port’s�state� changes from Waiting to Registered due
to the received Update, i.e., it reflects the changes in the externally visible state and behavior of
the component, not just the internal updates.
In this manner, Story Patterns (or, more appropriately, the extended constraint notations intro-
duced below) could be used to reproduce the complete Coordination Pattern specification in all
semantic detail. Story Diagrams, extended with a concept of time, could then be used to im-
plement this specification. The above Story Pattern in Figure 2.3.7 might, for example, become
part of the definition of the Waiting state’s update operation. While we will not pursue this idea
and its implications in more detail in this thesis, it suggests great potential for the specification
of advanced reconfiguration techniques featuring compositional adaptation. This could range
from the creation of new ports and connectors to the dynamic creation of states and transitions at
runtime.

2.4 Conclusion 47

2.4 Conclusion

With Story Driven Modeling and Coordination Patterns, we have presented the two fundamental
approaches on which this thesis is based in this chapter. We have provided an overview of
the employed notations and have laid the formal foundation on which our extended constraint
notations and, subsequently, the rigorous specification of multi-agent system behavior will be
based. While mostly relying on previously published definitions, we have extended them in
scope, e.g. by supporting inheritance in type graphs, and integrated and refined them in many
places.
Story-Driven Modeling is a very visual and accessible approach that excels at expressing struc-
tural properties and structural evolution. However, the current syntax, but also semantics, impose
limitations on the expression of more complex properties. Furthermore, there is neither a concept
of (real-)time nor an integrated approach for the specification of temporal properties.
Coordination Patterns are a powerful approach for the specification of reactive real-time be-
havior. They enable model-based reuse and the compositional verification of system properties.
However, they rely on (intermittently) static structures and provide no inherent support for struc-
tural evolution. While actions can be modeled using story-driven notations, these are limited in
scope to updates of the internal model, not the pattern.
With the proposed mapping, we provide a way to model reactive behavior, reconfiguration, and
structural evolution at the pattern level. Story-driven techniques can then be used to model in
detail when and how a pattern is instantiated and how it is implemented, and derive certain struc-
tural guarantees. Within this frame, the existing techniques for the compositional verification of
real-time behavior can then be applied to a set of static models.
In the following chapter, we shall address the indicated limitations of Story Patterns as a con-
straint notation and will introduce extended notations for the integrated specification of structural
and temporal properties.

48 2. Foundations

Chapter 3

Constraints

3.1 Introduction

The ability to express constraints is central to the specification of software, from the first elicita-
tion of requirements to the detailed design. Structural or behavioral constraints may merely serve
to document desired characteristics of a system, but may also take on the role of a binding and
verifiable contract that any acceptable design needs to fulfill. The use of invariants or pre- and
postconditions can even be extended down to the implementation level, as the Eiffel Language
(cf. [Mey92]) proves.
Constraints are an integral part of the definition of a Coordination Pattern, which defines both
role invariants and a pattern constraint. These constraints specify forbidden or required state con-
figurations for different combinations of stateful elements of the system and are expressed using
some restricted subset of CTL*. They are typically concerned with the safety of configurations,
but may also encode generic liveness properties such as the absence of deadlocks.
Story-Driven Modeling, on the other hand, does not make any provisions for modeling or assign-
ing constraints beyond the mechanism that is underlying Story Patterns, which basically consist
of a pre- and a postcondition after all. For all further needs, the approach relies on standard
object-oriented techniques as provided by the UML.
The UML’s popularity is arguably owed to the accessibility (and broadness) of its basic concepts,
which is particularly relevant for its acceptance by industry. In practice, the visual notations for
structural modeling remain the most widely used feature of the UML. However, these notations
only provide very limited support for constraint modeling, such as the specification of cardi-
nalities in Class Diagrams. For specifying more detailed structural properties, the UML only
provides a textual specification language, the OCL [Obj06].
When specifying OCL properties, developers are forced to translate their ideas about required
structural properties from the familiar structural view provided by UML Class and Object Di-
agrams to an intricate textual syntax. Interpreting the resulting OCL specifications involves a
complicated and error prone translation in the opposite direction. This mental translation pro-

50 3. Constraints

cess poses a significant barrier even in most standard software engineering environments where,
consequently, OCL is rarely employed. As a result, important structural properties remain undoc-
umented and are easily lost in the course of the development process. Informal natural language
descriptions are often seen as the only feasible way of capturing them to some degree.
For temporal logics such as LTL or CTL [CGP00], these problems are even more acute. As
reported in [DAC99], developers (even experts) have significant problems handling the intricate
nature of these logics. Even in projects with very well trained experts, employing them is of-
ten impossible, as the resulting property specifications will usually be unintelligible to domain
experts from other disciplines that need to participate in the effort. In the context of software-
intensive systems, this problem becomes a serious hindrance. When developing the software
for complex mechatronic systems, the software engineers have to work closely with experts in
control engineering, mechanical engineering, and electrical engineering.
Apart from the issue of interdisciplinary communication, developing the dynamic software ar-
chitectures that promise more intelligent, efficient, and flexible systems poses new challenges in
its on right. When systems adapt their structure at run-time in response to current needs, their
design and validation become much more complex than in the static case. In particular, structural
and temporal aspects become much more closely intertwined than before, as real-time behavior
can now involve structural adaptations.

Constraint notations. With the constraint notations we present in this chapter, we provide a
visual language that is capable of capturing constraints on the structural evolution of a system and
can facilitate the specification of structural adaptation processes. We have presented preliminary
versions of the notations in [GK06b, GK06a], and [GK06c], followed by syntactical refinements
and a redefined semantics in [KG07] and [KG06c].
For the modeling of structural properties, we introduce enhanced Story Patterns (eSP) and Story
Decision Diagrams (SDD). While enhanced Story Patterns represent an evolutionary extension
of Story Patterns [KNNZ00] and primarily focus on fixing the identified issues concerning their
syntax, Story Decision Diagrams extend their scope by introducing several original concepts
and expanding the notation into a full-fledged first-order logic for graphs. They combine the
concept of structural pattern matching with decision diagrams, which foster the decomposition
of complex properties into comprehensible simpler ones. Both notations are full replacements
for Story Patterns and may, for example, be used in Story Diagrams. As it is possible to freely
mix the two notations, the designer can choose the more appropriate dialect on a case-by-case
basis if desired.
Finally, Timed Story Scenario Diagrams (TSSD) extend Story Patterns into the temporal domain.
They define conditional timed scenarios describing the partial order of specific structural config-
urations. In this manner, they provide support for the specification of temporal properties that use
structural properties as the basic propositions. Their focus is thus on defining a temporal frame-
work into which the structural notations can be embedded. The notation was inspired by various
sources, most notably by the Visual Timed Event Scenario (VTS) approach [ABKO04, BKO05]
and certain features of Live Sequence Charts (LSC) [HM02] and Story Diagrams [FNTZ98].

3.1 Introduction 51

Chapter outline. After reviewing and discussing the state of the art in Subsection 3.1.1, we
extend our application example with a number of properties that we would like to encode in Sub-
section 3.1.2. In the following two main sections, we present the notations. In each section, we
first introduce the syntax, along with an informal description of the intended meaning, and then
provide a formal semantics definition. We also look into the expressiveness of the languages and
their potential uses for validation and verification purposes. Section 3.2 discusses the concepts
for modeling structural properties. Section 3.3 embeds the concepts for structural modeling into
our approach for modeling temporal properties.

3.1.1 Related Work

There is an abundance of formalisms for the specification of properties. Choosing from a plethora
of general purpose or task-specific first- or higher-order logics, virtually any relevant property
of software-intensive systems can be expressed. Many of them have been thoroughly analyzed
so that results concerning their expressiveness, decidability and computational complexity are
available. For many, such as CTL∗ (cf. [CGP00]) and its various extensions in the area of model
checking, there is wide-spread and highly optimized tool support.
While this necessarily is the foundation upon which any formal specification technique must
operate, we are mostly interested in the usability of a formalism, i.e., whether it can express a
property in a way that can be written, read, and managed by a human user, and how much training
is required for using it. As we have already discussed, many formalisms, such as temporal
logics, are designed with the requirements of theoretical analysis in mind and fail in this respect.
Dedicated specification languages, even though often closely based on some logic, tend to pay
much more attention to the users’ needs. For example, PSL/Sugar [Ace04], a language that is
popular in the telecommunications sector and a future IEEE standard, is closely based on an
embedding of predicate logic into a temporal logic, but already provides a much more intuitive
way of specifying sequences of events than either. Furthermore, we believe that, for certain
classes of properties, visual representations are inherently superior to textual representations as
they greatly reduce the effort required for parsing. To us, this seems to be particularly pertinent
for the representation of structure, i.e. the relationships between entities.
In our analysis of related work, we therefore restrict our attention to dedicated specification
techniques, with a heavy focus on visual formalisms.

Structural Properties. Constraint diagrams [KH99] visualize constraints as restrictions on sets
using Euler circles, spiders and arrows. To compensate for the decrease in expressive power
w.r.t. the OCL, constraint trees [KH02] combine them with the idea of parsing an OCL statement
into a tree, replacing only selected constraints with constraint diagrams. The downside of the
approach is that while quantification on sets is intuitive, structural constraints quickly result in
intricate, visually complex diagrams with little or no relation to the original UML specification.
VisualOCL [BKPPT01] is an approach that focuses on mapping OCL syntax to a visual format as
closely as possible, thus facilitating the parsing of complex, nested expressions. As we have seen,
Story Patterns (cf. [KNNZ00]) combine an accessible representation with a sound formalization

52 3. Constraints

based on graph grammars, but are not expressive enough to fully replace the OCL.
Alloy [Jac02] is a structural modeling language, partially motivated by the desire to overcome
the perceived deficiencies of the OCL. It is textual, not visual, and based on first order logic,
which makes it amenable to automatic analysis.

Temporal Properties. The approaches for the specification of temporal properties are more
varied than for the structural domain. However, all visual formalisms for the specification of
behavior can be traced either to automata theory or the concept of scenarios. The latter type has
the advantage that it is well suited to partial, incomplete specifications of the required behavior.
UML 1.x Sequence Diagrams or message sequence charts have been employed to specify and
check timed properties (cf. [LL99]). However, they are usually considered as not expressive
enough, as only a set of runs or one specific run of the system, but no conditional properties, can
be described. Therefore, the interpretation w.r.t. the system is usually unclear. This limitation
has been tackled by a number of approaches such as Live Sequence Charts (LSC) [HM02] or
Triggered Message Sequence Charts (TMSCs) [SC02], which add the ability to describe condi-
tional behavior in a sequence diagram style notation. To some extent, these enhancements have
found their way into UML 2.0 Sequence Diagrams (cf. [Obj07, section 14.4]).
In the UML 1.x, real-time properties could only be expressed using the UML Profile for Schedu-
lability, Performance, and Time Specification [OMG05]. It allows attaching specific schedulabil-
ity or quality of service characteristics to classes, but only provides rudimentary support for the
detailed specification of real-time behavior. UML 2.0 introduces only marginal improvements
w.r.t. real-time behavior in Sequence Diagrams.
Other approaches such as the Visual Timed Event Scenario approach [ABKO04, BKO05] focus
on scenarios for pure events rather than the interaction of predefined units. Therefore, they
provide a more intuitive notion of temporal ordering than Sequence Diagrams, which require
specifying a sequence of interactions that enforces this ordering.
In a similar vein, the Process Pattern Specification Language (PPSL) [FESS07, FSES06] extends
UML 2.0 Activity Diagrams with stereotypes that allow expressing process constraints. While
the specified process patterns constrain the temporal ordering of actions, the language is not
designed as a complete visual temporal logic, but rather specifically targets the modeling and
verification of business processes.
Specification patterns for temporal properties represent an attempt to alleviate the problem that
temporal logics are difficult to apply. As outlined in [DAC99], many useful temporal properties
can be constructed using a small set of elementary building blocks. This idea has been extended
and applied to real-time systems in [KC05]. However, while applying the patterns may be in-
tuitive, the resulting formulae themselves are no more transparent or readable than hand-written
ones. Once the context of the employed patterns is removed, using or updating them might even
be more difficult than before.
However, all these approaches focus exclusively on the temporal aspect of behavior, abstracting
from its structural aspects. Statements concerning the required temporal behavior of expressive
structural properties are not supported.

3.1 Introduction 53

Combined Structural and Temporal Properties. Most approaches which permit combining
structural and temporal properties are extensions of the OCL towards the description of dynam-
ics. Through the introduction of additional temporal logic operators into the OCL (e.g., eventu-
ally, always, or never), modelers are enabled to specify required behavior by means of temporal
restrictions among actions and events (e.g., c.f. [BKS02]). Temporal extensions of the OCL that
consider real-time issues have been proposed for events in OCL/RT [CK02] and for states in RT-
OCL [FM02]. As temporal logic is already difficult to apply by itself (cf. [DAC99]), integrating
the OCL and temporal logic concepts at the textual level yields a sufficiently expressive, but not
a sufficiently usable and comprehensible solution.
In [GHK00], an embedding of graph patterns into LTL formulae is proposed in order to allow
capturing structural properties. This approach tackles the theoretical aspects of the proposed
integration rather than the design of a practical specification language, which would suffer from
the intricate nature of the underlying LTL.
Though visually similar to TSSDs, Story Diagrams [FNTZ98] are a programming language
rather than a specification language. They are geared towards defining an executable, opera-
tional implementation rather than characterizing a set of acceptable behaviors.
The only notation that takes an approach similar to ours is a recent proposal [RS06] for writing
temporal graph queries. The approach extends Story Diagrams by annotating unary forward
or past operators from LTL with additional explicitly encoded time constraints. It requires the
explicit specification of an accepting automaton rather than employing the idea of scenarios. In
cases where only partial orders of events or time constraints between partially ordered situations
have to be specified, the encoding of the time constraints in the automaton will therefore become
rather complex.

3.1.2 Application Example

In this chapter, we will flesh out the basic structures we have described in Section 2.1.2 in more
detail.
We have already mentioned certain assumptions about the structure of the system, which we can
now state formally. Every track needs to be supervised by at least one base station. Additionally,
we require that there needs to be a common base station for any three consecutive tracks as the
supervised areas have to overlap in order to avoid gaps in the coverage when shuttles pass from
one area into another. We would furthermore like to encode that the track graph does not contain
any dead ends, which implies that any track is reachable from any other track.
Concerning the evolution of the system, we define both negative and positive invariants. The
most important safety property we are considering is the absence of collisions. As the control
engineering problems are encapsulated by the Coordination Patterns – at this level, we assume the
controller implementation to react correctly provided the input we supply accurately reflects the
current environment – we can abstract from the continuous behavior and the associated differen-
tial equations and reduce the problem to a discrete one, namely whether the correct Coordination
Patterns exist in all specific instance situations. A potential collision, which must never occur,

54 3. Constraints

is thus characterized by the fact that two shuttles are in close proximity without running a convoy
pattern. As the convoy pattern depends on the registration pattern, we require each shuttle to be
registered with all base stations supervising its current tracks at all times.
While structural properties are sufficient for the specification of safety properties, they only allow
a reduced, binary view on behavior. For example, a shuttle cannot realistically register instanta-
neously when entering a track – in order to fulfill the invariant, it will therefore have to instantiate
the required registration patterns well before actually reaching the track segment. A scenario with
real-time constraints provides a more fine-grained way to specify the desired behavior, indicating
exactly when the registration needs to be initiated and when it needs to be completed.
Finally, scenarios can be used to encode liveness properties such as progress, e.g. that a shuttle
may not block another shuttle indefinitely. In later chapters, we will also deal with an important
class of properties, the making and subsequent fulfillment of commitments, in more detail. When
introducing the notation for temporal constraints, we will use trivial examples from the logistic
domain to this effect, such as shuttles acquiring tasks and transporting cargo and passengers, in
an informal manner.

3.2 Structural Properties 55

3.2 Structural Properties

In this Section, we will introduce the two available dialects for specifying structural properties.
We first present enhanced Story Patterns, which are designed to be a simple and compact drop-in
replacement for classic Story Patterns, and then introduce the more general Story Decision Dia-
grams, which introduce additional concepts such as explicit quantifiers and recursion, enabling
them to express complex properties that are beyond the scope of (enhanced) Story Patterns. We
will finally discuss their formal semantics.

3.2.1 Enhanced Story Patterns

The design goal of enhanced Story Patterns (eSP) was to remedy the most immediate short-
comings of the Story Pattern notation while changing it as little as possible. As a result, eSPs
are visually closer to Story Patterns than Story Decision Diagrams and should be immediately
understandable to anyone familiar with Story-Driven Modeling.
The most important syntactical addition are insets, which are UML 2.0 boxes used for the spe-
cification of properties for groups of elements in the familiar fashion employed by many UML
2.0 diagrams. An inset qualifies all diagram nodes that lie completely within its bounds, and all
diagram edges whose label is completely contained within the inset. The inset may not intersect
other nodes or labels - partially overlapped elements are not part of the inset, but might give rise
to ambiguous interpretations as there are other intuitively plausible ways of defining when a link
is ’inside’ an inset.

Negation. The most pressing concern is the the negation of complex structures. eSPs solve this
problem by using negation or not insets, which are marked with the ¬ symbol. The inset is
required to also qualify all links leading to the enclosed objects in a well-formed pattern as it
does not make sense for a required link to be attached to a forbidden element.

s1 : Shuttle s2 : Shuttle

t1 : Track

c1 : Convoy Pattern

leader

on on

follower

�

Figure 3.2.1: Complex negation: no common convoy pattern

In a way that is directly analogous to a negative application condition (NAC) for a graph pattern,
the pattern will only match if all positive elements are found while the negated structure inside

56 3. Constraints

the inset is not found. Partial matches for the inset do not affect the validity of the pattern,
however.
Figure 3.2.1 therefore correctly captures the property we failed to specify in Figure 2.2.4: The
pattern only matches if there are two shuttles on the same track segment who are not engaged in a
common convoy pattern. Note that we still need to qualify that such a potential collision is supposed
to represent a negative invariant of the system, as this is not obvious from the diagram.
Negation insets could completely supersede negated (i.e. crossed out) elements as the means of
expressing negation. For the negation of isolated links, however, the notation is somewhat heavy-
handed. We therefore still allow directly negating individual elements, but discourage this in the
general case.

s1 : Shuttle

t1 : Track

s2 : Shuttle

c1 : Convoy Pattern

on on

leader follower

�

Figure 3.2.2: Direct negation of a link

As crossing out elements drastically reduces the readability of labels, negated elements are
marked with ¬ and drawn in a dotted blue line style. In Figure 3.2.2, we describe the situa-
tion that the follower in a convoy is not on the same track section as the leader with a negated
link.

Implication. The second common use case that is not supported by Story Patterns are impli-
cations or conditional properties, i.e. patterns that only need to match if another pattern is also
found. eSPs allow expressing such conditions by means of implication or if insets, which are
identified by the ∀ symbol. The pattern is fulfilled whenever the qualified elements are not found,
or if a match for the complete pattern is found for each occurrence of the qualified pattern.
The existing formal semantics can be used to express simple conditional properties by encoding
the condition as the graph pattern and the conditional expression as a NAC. The eSP is then
fulfilled whenever the graph pattern does not match.
The pattern in Figure 3.2.3 encodes the coverage condition, requiring that there is a shared base
station for any three adjacent tracks.

Conjunction and disjunction. The positive elements of a Story Pattern are all part of a conjunc-
tion: they all need to be present for the pattern to match. By again applying the inset concept,
eSPs provide a way to mark certain subgraphs as disjunctions by using disjunction or or insets,
identified by the ∨ symbol. The eSP is then fulfilled whenever at least one of the elements of the

3.2 Structural Properties 57

t1 : Track t2 : Track t3 : Track

bs1 : Base Station

adjacent

supervises

adjacent

supervises
supervises

�

Figure 3.2.3: Implication: consecutive tracks share a base station

inset is matched. The pattern in Figure 3.2.4 matches whenever a registration pattern or a convoy
pattern (or both) exists. This can easily be captured at the semantic level by representing the
pattern by a set of alternative graph patterns.

rp1 : Registration Pattern cp1 : Convoy Pattern

�

Figure 3.2.4: Disjunction: At least one of the patterns exits

Usability concerns and intuition suggest that when the inset contains only objects, it represents
the disjunction over all elements, but that when the inset contains links, it represents the disjunc-
tion over just the links. As a link cannot occur without its source and target objects, a link in a
mixed inset would otherwise never be evaluated as the connected object would already fulfill the
disjunction. The pattern in Figure 3.2.5 thus matches any shuttle that is the leader or the follower of
some convoy pattern.

s1 : Shuttle

c1 : Convoy Pattern c2 : Convoy Pattern

leader follower

�

Figure 3.2.5: A shuttle that is involved in some convoy pattern

Alternatives are frequently represented by subgraphs, not individual elements. The conjunction
or and inset, identified by the ∧ symbol, groups elements into a conjunction that can be used like
an atomic element inside a disjunction. Figure 3.2.6, which is semantically equivalent to Figure

58 3. Constraints

3.2.5, is a basic example that makes the fact that the convoy pattern and the leader or follower link
need to occur together explicit.

c1 : Convoy Pattern c2 : Convoy Pattern

s1 : Shuttle

leader follower

�

� �

Figure 3.2.6: Conjunction: grouping for alternative subgraphs

This brings up the question of nested insets. There is nothing that precludes arbitrary combina-
tions of negation, implication, disjunction, and conjunction insets – except that, above a certain
number of insets, the diagrams may become too visually complex and thus hard to read. For
these cases, using Story Decision Diagrams provides a less compact, but more straight-forward
alternative approach.
The semantics definition based on plain graph patterns we have used above does not scale to
support more complex eSPs. For a complete formalization of eSPs, we will therefore have to
rely on the more general semantics we will define for Story Decisions Diagrams. As any eSP
can be mapped to an equivalent SDD, we will simply use this relation to provide arbitrary eSPs
with a formal semantics.

Pattern references. Another useful feature is the ability to reference other patterns in a pattern
definition, which provides modularity and a way of hiding complex recurring definitions. eSPs
allow such references by means of pattern references, which are represented using the UML
Pattern syntax, i.e. a dashed ellipse. The eSP may also bind elements of the referenced patterns
to its own elements using roles, represented by dashed connectors labeled with the name of the
referenced element.
The eSP in Figure 3.2.7 references another pattern called registered, which contains a shuttle called
agent and a track called location and encodes that agent is registered with all base stations supervising
location. The eSP will then match for any s1 and t1 that fulfill the registered pattern when used as
agent and location.
While simple references merely function as a sort of macro for externalizing parts of a complex
pattern, they also allow recursive definitions which greatly expand the expressiveness of the lan-
guage. As we shall discuss when formally introducing this concept for SDDs, this significantly
increases the complexity of the semantics definition as well, though.

Transformations. Model transformations are specified in the same way as for Story Patterns
by marking elements as part of the LHS or RHS with the appropriate modifiers. eSPs provide

3.2 Structural Properties 59

s1 : Shuttle t1 : Track

registered

on

agent location

Figure 3.2.7: Reference: a shuttle which is correctly registered

several alternative ways of marking up added and removed elements: Users can choose between
using the�create� and�destroy� stereotypes as in Story Patterns, using ++ and−−, or using
∗ (’constructor’) and ∼ (’destructor’) as the most compact shorthands.

s1 : Shuttle bs1 : Base Station

t1 : Track

*rp1 : Registration Pattern

on supervises

*entry *registry

Figure 3.2.8: Adding an element: Instantiation of a convoy pattern

The eSP in Figure 3.2.8 is a (high-level) representation of a shuttle instantiating a registration
pattern.

s1 : Shuttle

t1 : Track t2 : Track

~on on

adjacent

Figure 3.2.9: Removing an element: Leaving a track

In Figure 3.2.9, the shuttle fully moves onto track t2, removing the on link to t1.

3.2.2 Story Decision Diagrams

Story Decision Diagrams (SDD) take a more radical approach to the extension of Story Patterns.
In order to increase the readability of complex properties, SDDs trade off compactness for a
clean concept for expressing arbitrary combinations of conjunctions, disjunctions and negations.
By making all quantifiers explicit, they also increase the expressiveness of the notation, finally

60 3. Constraints

allowing us to include the distinction between positive and negative invariants into the patterns.
Last but not least, they provide a formalization for modular and even recursive definitions, which
make defining transitive properties, such as reachability in graphs, possible. Nonetheless, their
visual representation is no more complex or less intuitive than the original notation.

3.2.2.1 Basic Principles

An SDD is a directed acyclic graph (DAG). Each node contains a simple Story Pattern (SP),
which basically corresponds to an invariant (enhanced) Story Pattern without forbidden elements,
insets, or modifiers. Each SP thus specifies some simple positive property. The SPs on the same
path through the SDD share the same variables; i.e., once a pattern element has been bound to an
instance, it remains bound in all subsequent nodes.
When evaluating the SDD, the nodes are processed starting from the root node with an empty
binding in which all variables are unbound. The progression through the diagram then depends
on the result of matching the SP of the current node. Each node in the SDD essentially represents
a local if-then-else decision, taken based on the current binding. If a match is found, we extend
the binding with the corresponding object and link assignments, thus propagating successfully
matched elements to subsequent nodes, and follow the solid then connector; if no match is found,
we leave the binding unchanged and follow the dashed else connector.
There are two special leaf nodes, (1) signifying true and (0) signifying false. When a binding
reaches a leaf node, it evaluates to true or false, respectively. SDDs are thus similar to deci-
sion trees. However, like reduced binary decision diagrams (RBDD), SDDs are not trees, but
allow sharing isomorphic subtrees and leaf nodes to reduce diagram size. As in decision dia-
grams, consecutive conditions correspond to logical conjunction, respectively implication. Both
interpretations are equivalent: The intuitive interpretation of the statement if a then b else c is
(a ⇒ b) ∧ (¬a ⇒ c), using two implications. Using the definition of implication, this can be
reduced to the simpler statement (a ∧ b) ∨ (¬a ∧ c), using two conjunctions. Unlike standard
decision diagrams, SDDs support alternatives by allowing multiple then or else connectors per
node. It is then sufficient for one of the available paths to reach (1) in order to evaluate the whole
branch as true.
The SDD in Figure 3.2.10 illustrates these principles. The root node S matches any two shuttles.
Node T then checks whether they occupy the same track segment. If they do, then node P veri-
fies whether there is a convoy pattern (yielding (1)) or not (yielding (0)); else there are no further
requirements ((1)). The pattern thus encodes our requirement that at all times two shuttles must
either not be close to each other or run a convoy pattern if they are.

Negation. Observe that there are only positive elements in the patterns. While there is no
technical or formal limitation that requires this – in fact, it would be possible to use negative
elements or even negation insets in a node – we believe that multiple negations, especially if
nested at different levels, tend to make diagrams harder to interpret. We therefore prefer encoding
all negations exclusively in the diagram structure.
Unless otherwise specified, a node is interpreted as a positive requirement: matching (then) re-

3.2 Structural Properties 61

s1 : Shuttle s2 : Shuttle

t1 : Track

T: t1

s1 : Shuttle s2 : Shuttle

c1 : Convoy Pattern

P: c1 1

1 0

s1 : Shuttle s2 : Shuttle

S: s1, s2

then

on on

then else

leader follower

then else

�

�

�

Figure 3.2.10: Basic SDD syntax: when is a convoy pattern required?

sults in success, i.e. (1), not matching (else) results in failure, i.e. (0). Negation can be expressed
by modeling a pattern matching the forbidden instance situation and switching the then and else
connectors. Matching then leads to failure, i.e. (0), while the inability to match leads to success,
i.e. (1). Figure 3.2.11 illustrates this principle, marking a collision (two shuttles occupying the same
two tracks would have to be in conflicting physical locations) as a forbidden instance situation.
This approach can be used to express arbitrarily complex negative conditions by decomposing
them into a sequence of chained nodes.

s2 : Shuttle

s1 : Shuttle

t2 : Trackt1 : Track

s1, s2, t1, t2

0 1

on on

on on

adjacent

then else

�

Figure 3.2.11: Negative invariant: collision between two shuttles

62 3. Constraints

As the example shows, the ability to negate entire patterns enables us to adopt the intuitive
convention that all invariants are positive, i.e. always need to evaluate to true, and still express
negative invariants by integrating this information directly into the pattern.

Presentation. Syntax highlighting is a standard feature of text editors for programming and spe-
cification languages that improves readability and helps to focus the user’s attention on relevant
details. All of our notations extensively use color for the exact same purpose. The coloring is
automatically deduced and thus never semantically relevant. Semantically relevant distinctions
are, often redundantly, encoded by labels and line styles and are not affected by stripping the
colors from a diagram.
In SDDs, (1) and connectors leading to (1) are green, (0) and connectors leading to (0) are red.
A connector’s sibling connectors of the opposite type use the inverse color. The remaining then
connectors are green, the remaining else connectors are red. Node frames share the color of their
then connector as a visual cue that makes negated properties stand out.
In SPs, element definitions are black. Differently from Story Diagrams, we prefer not to omit the
type of bound elements because the repeated type information helps in parsing larger diagrams.
Previously bound elements are drawn in slate blue instead.
All connector and leaf labels are optional. Leaf nodes can be omitted unless they are semantically
required, which is only the case when they are expressing negation.

3.2.2.2 Quantification

In Story Patterns, all elements are implicitly existentially quantified. In SDDs, we make all quan-
tifications explicit in order to increase the notation’s expressiveness. We therefore differentiate
between existential nodes, which require at least one of the bindings they generate to succeed, i.e.,
reach a (1) leaf node, and universal nodes, which require this of all generated bindings.

Existential nodes fall into two categories depending on the contained definitions:
Existentially quantified nodes contain free variables, which are bound to objects and links by
the node’s SP. When a binding reaches it, the node attempts to extend the binding with matches
for its free variables that are consistent with its SP definition. If such an extension or several
alternative extensions of this kind exist, they are propagated down the then connector. If no such
extension exists, the original binding is propagated down the else connector. If the node binds
explicitly named variables vari to objects or links, it is marked with [∃ var+

i]. If the node only
binds anonymous variables to links, it is marked with [∃].
Guard nodes do not contain free variables that could be bound and thus do not extend the bindings
that reach them. They merely act as a filter that decides whether a binding should be propagated
down the then or else connector, depending on whether it fulfills the node’s SP. Guard nodes are
marked with [•].
If an existential node only features a then connector, an else connector to (0) is implied. In the less
common case that the node only specifies an else connector, a then connector to (1) is implied.

3.2 Structural Properties 63

Universal nodes. There is only one type of universal node. A universally quantified node con-
taining the free variables vari is marked with [∀ var+

i]. It works like an existentially quantified
node, except that the extended bindings it generates are not alternatives, but all need to succeed.
If no extended binding matching the node’s SP exists in the first place, the standard semantics of
universal quantification requires that the expression evaluate to true – therefore, the node’s else
connector always implicitly leads to (1).

t2 : Track t3 : Trackt1 : Track

bs1 : Base Station
bs1

1 0

t1 : Track t3 : Trackt2 : Track

t1, t2, t3

adjacent adjacent

then

adjacent adjacent

then else

supervises
supervises

supervises

�

�

Figure 3.2.12: Connected tracks share a controller

Figure 3.2.12 encodes the coverage requirement that for any three consecutive tracks (∀), there
must be a controller (∃) supervising them all. It is thus equivalent to the eSP in Figure 3.2.3.

Cardinalities. It is possible to specify cardinalities for then connectors. These cardinalities
constrain the number of extensions that may be generated for each individual binding that reaches
a quantified node. If fewer alternatives than the minimum cardinality or more alternatives than
the maximum cardinality are generated from a binding, the extended bindings are discarded
and the original binding is propagated down the else connector. It is not possible to specify a
cardinality for the else connector as there is always exactly one propagated binding, the original
binding, when it is chosen. For the same reason, it does not make sense to place cardinalities on
either connector of a guard node, as there will always be one binding on the selected connector.
Figure 3.2.13 encodes one of the cardinalities specified in the underlying Class Diagram (see
Figure 2.2.1), namely that each convoy pattern requires at least two registration patterns. SDDs thus
eliminate the need to encode cardinalities by means of a set of graph patterns as presented in
Section 2.2.2.6. Moreover, SDDs are capable of expressing constraints that cannot be captured
by Class Diagrams, e.g., restricting the number of permitted concurrent object instances for each
class or imposing conditional cardinalities.

64 3. Constraints

r : Registration Pattern

c : Convoy Pattern
r

1 0

c : Convoy Pattern

c

then

then [2..n]

uses

else

�

�

Figure 3.2.13: A convoy pattern depends on at least two registration patterns

3.2.2.3 Pattern References

Formal specification languages often allow the composition of complex properties from simpler
properties. In the OCL, it is possible to reference more concrete properties in the definition of
a property, whereas most visual specification techniques lack this capability. SDDs provide the
ability to reference other SDDs as a means of abstracting from arbitrarily complex structural
relationships and constraints.
The composition of specifications is accomplished by using Story Decision Diagram References
(SDDR) to Story Decision Diagram Patterns (SDDP). An SDDP is an SDD encoding some
nontrivial property that can be reused in different contexts, while SDDRs are a more refined
version of the pattern references we have used in eSPs.
A pattern can explicitly declare a set of free variables, its roles, for which bindings have to be
supplied when referencing it. In a node containing a reference, a binding will only match the
node if it also fulfills the referenced pattern.

Basic patterns. An SDDP specification uses a special type of root node – a λ node [Name :
λ role1, role2, . . .] – that defines its name and the available roles, i.e., free variables. While node
labels are optional for other nodes, the λ node’s label is mandatory as it is required to identify
the pattern. When the SDDP is invoked in a given context, the λ node binds the local variables
in accordance with the provided context. The evaluation then proceeds based on this binding in
the regular way, eventually returning true or false. The pattern introduces a local scope, which
means that the generated bindings are not accessible from the referencing SDD and therefore
discarded as soon as a result has been obtained. By extension, any SDD can be used as a pattern,
albeit one without assignable roles.
In the host node containing the pattern reference, we again represent the SDDR by using the
UML pattern symbol, a dashed circle. Bound elements of the host node are assigned to pattern
roles by dashed lines labeled with the respective role name. By default, patterns support optional

3.2 Structural Properties 65

arguments: If a role is not explicitly bound by the host node, we implicitly add an element
definition of the required type to the host node.

vehicle : Shuttle bs : Base Station

p : Registration Pattern
p

1 0

bs : Base Station

location : Track

bs

vehicle : Shuttle location : Track

is registered: location, vehicle

then

supervises

then

registryentry

then else

�

�

�

a. Pattern definition: vehicle is registered
with all supervisors of location

t : Tracks : Shuttle

is registered

1 0

s : Shuttle t : Track

s, t

on

then

on

vehicle location

then else

�

�

b. Pattern reference: All shuttles are properly
registered for tracks they are on

Figure 3.2.14: Pattern definition and pattern reference

The pattern in Figure 3.2.14a defines the property that a given shuttle, vehicle, is registered with
all base stations that supervise a given track, location. The SDD in Figure 3.2.14b then requires that
this property holds for every shuttles and every track it is on .

Parametrized patterns. In addition to the role bindings, it is possible to pass primitive types to
patterns as parameters. It is, of course, possible to achieve this based on roles by using object
instances representing literals, but this solution is syntactically awkward.
Parameters with their types are declared in the header of the λ node: [Name : λ parameter1 :
type1, parameter2 : type2, . . .]. They can be used wherever using the corresponding primitive
type would be allowed, e.g. in constraints on attributes or guard expressions. Numeric parameters
can also be employed as cardinalities on then connectors.

Recursive patterns. As, like all SDDs, SDDPs may contain pattern references, it is possible to
nest definitions. This quite naturally leads to recursively defined patterns. As an example, the
pattern in Figure 3.2.15a recursively defines the property that track to is reachable from track from,
used to express that the system is connected in Figure 3.2.15b. The only restriction on recursive
definitions is that cardinalities are not allowed for the host node containing the recursive reference
as this can lead to logical paradoxa.

66 3. Constraints

from : Track to : Track

reachable: from, to

to : Track

from : Track

_

to : Trackfrom : Track

via : Track reachable

via

1 01 0

then

then

adjacent

adjacent to

from

then elsethen else

�

� �

a. Pattern definition: track to is reachable from track to

t2 : Trackt1 : Track

reachable

1 0

t1 : Track t2 : Track

Connected: t1, t2

then

tofrom

then else

�

�

b. Pattern reference: all tracks are
connected

Figure 3.2.15: Recursive pattern definition

Recursion raises the question of termination. As the only context is provided by the previous
application, a pattern could be applied to the same instances infinitely often. For reachable, the
evaluation would not terminate for tracks that are not connected if the graph contains at least one
cycle. On the other hand, we can assume that any instance graph consists of only a finite number
of elements. There is therefore only a finite number of distinct initial bindings that can be passed
to a pattern’s λ node. By adopting the restriction that, in any recursion, each initial binding is
evaluated at most once, we can thus guarantee termination.
In practice, invocation parameters can be used to limit the depth of the recursion, e.g. to tracks
that are at most 100 links apart. In theory, parameters complicate proving termination as there
may then be infinitely many distinct initial bindings. We then need to prove additional additional
termination conditions, e.g. that a parameter is strictly decreasing towards 0.

Scoped nodes are a syntactical feature based on pattern references. A scoped node, drawn as
a guard node with a bold border, contains a nested SDD, which inherits all the bindings of the
host SDD, but itself only creates bindings that have local scope. Internally, the nested SDD
is interpreted as a pattern definition, whereas the scoped node is replaced with a guard node
containing a reference to this pattern assigning each bound variable of the host SDD to the role
of the same name. The mechanism provides a lightweight notation for emulating parentheses.
Especially when there are several unrelated ∀ quantifiers, scoped nodes can group related nodes,
which makes computation more efficient.

3.2 Structural Properties 67

3.2.2.4 Transformations

Although the focus of SDDs is on enabling more complex (pre-)conditions (LHS), we do not
intend to remove the ability to express postconditions (RHS), i.e. transformations, from the no-
tation. However, as universal and existential nodes employ simple Story Patterns, which do not
contain any modifiers and therefore by definition never have side effects, such nodes alone can
only encode Invariant Story Patterns. As we do not want to change the way the LHS is written
by abandoning the principle of using simple graph patterns as elementary properties and encod-
ing their relationships in the node structure, we introduce a dedicated node type for encoding the
effects of a rule application. We do not adhere to the principle to the point of using dedicated
nodes for creating and destroying elements, however, but employ the established modifiers in
order to arrive at a more compact and usable solution.

Transformation nodes. The RHS of an SDD is specified by dedicated transformation nodes.
They are marked with →∼ var+

i ; ∗ var+
i , listing which elements are destroyed (∼) or created

(∗) by the node. All elements of the LHS need to be previously bound; the node only transforms
an existing match. Modifiers are specified using the same annotations and colors as in eSPs, i.e.,
∗, ++, or �create� in green and ∼, −−, or �destroy� in red.
Transformation nodes replace (1) leaf nodes. When the SDD is fulfilled, the transformations are
applied to a one set of bindings that fulfills the SDD. For existentially quantified properties, the
transformation is simply applied to the first binding to reach the node. Universally quantified
transformations are only applied when a binding for each required alternative has reached a
transformation (or (1)) node. Note the significant difference between iteration (over existentially
quantified properties), e.g., ’iterate over all tasks: if the task is completed, delete the task’, and
universal quantification, e.g., ’if all tasks are completed, delete all tasks’.
In the example in Figure 3.2.16, a shuttle instantiates a registration pattern with the supervisor of
an adjacent track segment onto which it might move next. Unlike the similar eSP in Figure 3.2.8,
however, the SDD verifies whether such a registration pattern exists (implicit then (1)) or not (else
transform).

Ensured conditions. Conditional transformations are a common idiom, as a pattern without such
a guard would generate arbitrarily many new instances in subsequent applications. We therefore
introduce a dedicated notation for specifying such a conditional transformation: An ensure node
guarantees that a given postcondition, such as the existence of a registration pattern, holds. The
node will ensure that all specified elements are present and only create those that are missing. In
a similar manner, the node can be used to ensure the absence of elements, deleting them if they
are present but otherwise ignoring them. If there are multiple qualified elements, the check is
performed independently for each element.
Ensure nodes are identified by dashed border and a header of the form ∃var+

i → ∃crv+
i , @dlv+

i .
Internally, the node is expanded in a way that maintains the separation of LHS and RHS. Figure
3.2.17 is thus a more compact equivalent to Figure 3.2.16.

68 3. Constraints

s : Shuttle bs : Base Station

t1 : Track t2 : Track

bs, s, t1, t2

s : Shuttle bs : Base Station

p : Registration Pattern
p

*r : Registration Pattern

bs : Base Stations : Shuttle

r

on

adjacent

supervises

then

else

registryentry

*entry *registry

�

�

�

�

Figure 3.2.16: Creating a registration pattern

s : Shuttle

t1 : Track t2 : Track

bs : Base Station

bs, s, t1, t2

s : Shuttle

*p : Registration Pattern

bs : Base Station

p

on

adjacent

supervises

*entry *registry

then

�

� �

Figure 3.2.17: Ensured transformation: only create the pattern if it does not exist.

3.2.2.5 Annotations

Beside the structural and type constraints expressed in the graph structure, it is possible to anno-
tate the patterns in SDDs and eSPs with additional guards.

3.2 Structural Properties 69

speed > 0

s1 : Shuttle

�

a. Attribute constraint:
a moving shuttle

s2 : Shuttles1 : Shuttle

t1 : Track

s1, s2, t1

{abs(s1.speed - s2.speed) > 10}

onon

�

b. Guard expression: speed difference

Figure 3.2.18: Guard expressions involving one or multiple objects

Expressions may contain literals, references to attributes using the object.attribute notation,
pattern parameters, and calls to queries as defined by the UML (i.e., functions without side
effects). Constraints on the attributes of a single object can be specified within the object (see
Figure 3.2.18a both for quantified and bound objects. In transformation nodes, new values can
be assigned using :=. Constraints that concern multiple objects can be placed freely within the
SP (see Figure 3.2.18b).

rp : RegistryPort ep : EntryPort

1. request()

2. update(position)

�

a. Collaboration: sending position updates

ep : EntryPortrp : RegistryPort

ep, rp
notify()

�

b. Signal guard: react to notifications

Figure 3.2.19: Collaboration statements

Collaboration statements appear in transformation nodes and encode a sequence of function calls,
just like in UML 1.x Collaboration Diagrams. Collaboration statements are placed on arrows in-
dicating which object is calling the function (see Figure 3.2.19a). When collaboration statements
appear in LHS nodes (see Figure 3.2.19b), the pattern will match when the corresponding signal
occurs, which is useful for describing temporal behavior.
In accordance with our formalization of Story Patterns, SDDs and eSPs are matched based on
graph isomorphisms. While isomorphisms are generally closer to the intuitive interpretation of
a pattern (see Section 2.2.2.2), there are cases where it is desirable to allow homomorphism,
i.e. different variables that refer to the same instance. Though a set of alternatives can always
emulate this using isomorphisms, this may be less intuitive and significantly more verbose. The
SDD in Figure 3.2.20, checks whether some destination is reachable from a shuttle’s current loca-
tion. This is the case when the destination is either reachable or simply identical to the location. The
fact that two instances may be identical is indicated by the special homomorphism constraint ∼=;

70 3. Constraints

shuttle : Shuttle

location : Track destination : Track

Valid destination: destination, location, shuttle

location : Track

destination : Tracklocation : Track destination : Track

reachable

then

then

on

==
from to

�

�

�

�

�

Figure 3.2.20: Explicitly permitted homomorphism

actual identity can then be verified using a guard expression or simply the identity constraint ==
as a shorthand.

3.2.2.6 Encoding enhanced Story Patterns

As indicated above, we map eSPs to equivalent SDDs for defining the formal semantics of arbi-
trarily complex inset structures:

• Basic patterns can be encoded by simply placing the pattern into an existential node. Ad-
ditional conditions expressed by insets are then chained to the node’s then connector.

• Negation can be expressed by placing the contents of the negation inset into an existential
node with inverted outgoing connectors.

• Implication can, as the chosen icon suggests, be expressed using universal nodes. The
implication inset becomes a universal node, while the rest of the pattern is placed in a
chained existential node (compare Figures 3.2.3 and 3.2.12).

• Disjunction is translated by placing each element of the disjunction inset into its own exis-
tential node, all chained to the base pattern using alternative then connectors. Conjunction
insets are directly turned into existential nodes and chained in the same way.

• Nested insets are simply unfolded using the above rules, resulting in a sequence of nodes
that are chained using then connectors, except where inversion due to negation insets turns
them in to else connectors.

• Transformations in patterns with side effects are placed inside a transformation node that
replaces all (1) nodes.

3.2 Structural Properties 71

• Pattern references are simply interpreted as SDD References. Into the λ node of the derived
SDD Pattern, we place exactly those roles that are actually used by invocations.

Due to the repeated elements, the resulting SDDs are much less compact, but also easier to
evaluate because the sequence of the performed checks is evident from the diagram structure.

3.2.3 Formal Semantics

Language definitions that focus on expressiveness and intuitive semantics often run into prob-
lems when it comes to defining the formal semantics, which the OCL itself illustrates. On the
other hand, languages that are constructed starting from a set of formally motivated operators
with precise semantics often suffer in terms of expressiveness and especially practical applica-
bility. We therefore now show that the informal control-flow-oriented semantics we have used
to introduce the specification techniques can be mapped to a formal graph-based semantics that
allows us to analyze and reason about the matching process. We will then be able to use SDDs
for the specification of positive invariants of the system that must hold in every reachable state of
the system, i.e., match every graph that is generated by the corresponding GTS. SDDs with side
effects can also be used to specify more complex graph transformation rules.

3.2.3.1 Variable Bindings

Story Pattern Semantics. For the patterns in each individual node, we can build on our for-
malization of the semantics of Story Patterns. As the SPs do not contain forbidden elements,
each SP can be encoded as a simple graph pattern [P], which can then be matched using standard
matching semantics. Likewise, the SPs of transformation nodes can be translated into graph rules
[L]→r[R], which can also be applied normally – with the exception that the occurrence of the
LHS o(L) is already determined by the preceding SDD nodes.
This is where a new aspect comes in: The SPs of an SDD are not independent of each other, but
may contain bound objects that have already been matched by preceding nodes. When matching
the pattern, we therefore have to respect these previous matchings. The straight-forward way to
achieve this would be to take the graph morphism m mapping a pattern P into an instance graph
G, pass it down to the subsequent pattern P ′, and merely extend it for the additional elements of
P ′. However, this would introduce the requirement that all SPs in an SDD are compatible, i.e.,
that the elements of P and P ′ are actually identical – otherwise, the morphisms for P could not
be applied to P ′. We therefore adopt a similar, but slightly more general solution.

Bindings. In order to relate the matches from different patterns in the same diagram to each
other, we introduce an additional labeling lvP := (V N

S , V E
S , v

N
P , v

E
P) for every graph P represent-

ing an SP of the SDD S. We label each node and edge with the corresponding variable from
the set of node variables V N

S and the set of edge variables V E
S of S. V N

S consists of all declared
object identifiers and V E

S consists of all declared link identifiers and, as most links are anony-
mous, generated unique link identifiers. As we are working with attributed graphs, attributes are

72 3. Constraints

represented by attribute edges – so that V A
S ⊆ V E

S – and attribute values are represented by value
nodes in V N

S . Finally, SDDP parameters are also represented by node variables V P
S ⊆ V N

S that
point to value nodes.
Based on this labeling, we can now share matched elements, attributes and parameters between
patterns in the same SDD. A variable binding ξ for the node and edge variables of S and an
attributed instance graph G is then a pair of functions ξ = (ξN , ξE) with ξN : V N → NG ∪ ⊥,
ξE : V E → EG ∪ ⊥, where NG is the set of nodes of G, EG is the set of edges of G, and ⊥ is
the undefined element. The binding functions are typically partial, as some variables may not be
bound yet or, in case of alternative paths through the SDD, may never be bound at the same time.
We write ξ1 ≤ ξ2 := ∀v ∈ dom(ξ1) : (ξ1(v) = ξ2(v)) ∨ (ξ1(v) = ⊥) if ξ2 is equal to or a more
restrictive extension of ξ1. We denote the empty binding that maps all variables to ⊥ by τ .

Pattern matching. We use var(P) to denote the pair of sets of node and edge variables that
occur in P , i.e. are in the range of the labeling functions vN

P and vE
P . In order to match the pattern

P in the instance graph G, we define P [ξ] as the graph which results from substituting all nodes
and edges of P with the elements assigned to the corresponding variables by ξ, i.e., we replace
each n ∈ NP with nP [ξ] := ξN(vN

P (n)) and each e ∈ EP with eP [ξ] := ξE(vE
P (e)), provided that

ξ is defined for all variables v ∈ var(P). Together, the variable labeling lvP of P and the binding
ξ define a graph morphism between P and P [ξ]. We call a binding ξ valid if P [ξ] is a correct
subgraph of G, i.e., P [ξ] ≤ G.
Given a pattern P and a binding ξ, we define the set of free variables of P as free(P, ξ) :=
{v | v ∈ var(P)∧ξ(v) = ⊥}. We then say that the pattern P constrained by the existing binding
ξ matches a graph G, written as P |ξ - G, if there is a binding ξ′ that extends ξ for the variables
in free(P, ξ) so that P [ξ′] ≤ G.
We use XS[G] respectively XS[NG, EG, V

N
S , V E

S] (for NG the set of all nodes of G, EG the set of
all edges of G, and variables V N

S and V E
S of S) to denote the set of all possible bindings of an

SDD S over a graph G.

3.2.3.2 Witness Sets

Diagram structure. For an SDD S, we defineNS as the set of its nodes. For each node n ∈ NS ,
we define Pn as the pattern contained by n, parent(n) as the set of parent nodes connected to
n by outgoing connectors, with its transitive closure parent∗(n), and then(n) and else(n) as the
set of nodes connected to n by then respectively else connectors. Cardinalities are represented by
two functions min : NS ×NS → INand max : NS ×NS → IN , where min(n, n′) respectively
max(n, n′) is the minimum respectively maximum cardinality for the connector from n to n′.
λS denotes the unique root node of the SDD S with parent(λS) = ∅. The set trueS contains all
(1) and transformation nodes of S, falseS contains all (0) nodes of S.
We further define var(n) := var(Pn) as the variables appearing inside n and free(n, ξ) :=
free(Pn, ξ) as the free variables of n that are not bound, i.e. mapped to ⊥, by ξ.

Witnesses. Only a subset of the possible bindings XS satisfies the SDD S, i.e. is valid for a set

3.2 Structural Properties 73

of patterns Pn on a path to a (1) node. We can immediately discard all those bindings that are
not valid for any pattern Pn, e.g. because they do not bind all required variables. However, even
those bindings that are valid for one pattern Pn might not be valid for some other pattern Pn′ on
the same path. When evaluating an SDD, we therefore need to consider a binding’s context, i.e.,
nodes and their connections.
We define an application ζ as a pair (n, ξ) of a node n and a binding ξ. We call a valid application
a witness. An application is valid if a path from λS to n exists so that ξ is valid for all nodes on
the path (excluding n) but binds no additional variables:

ω(n, ξ) :=∃(n1, . . . , nk) ∈ NS
∗ :

(n1 = λS ∧ nk = n ∧
∧

i=1..k−1

(ni ∈ parent(ni+1) ∧ Pni
[ξ] ≤ G) ∧

∀v : ξ(v) 6= ⊥ ⇒ v ∈
⋃

i=1..k−1

var(ni)). (3.2.1)

The set of possible witnesses for an SDD S is then

ZS := {(n, ξ) | n ∈ NS ∧ ξ ∈ XS ∧ ω(n, ξ)}. (3.2.2)

We further define the truth value eval(ζ) of a witness ζ = (n, ξ) as true if n is a (1) or transfor-
mation node, false if n is a (0) node, and else ⊥:

eval(ζ) :=


true | n ∈ trueS

false | n ∈ falseS

⊥ | otherwise.
(3.2.3)

As the truth value of a witness may thus be undefined, we use the convention that boolean op-
erators (∧, ∨ and ¬) applied to ⊥ also yield ⊥ in the following. A witness whose truth value is
defined is final, all other witnesses are intermediate and represent unfinished evaluations.

Candidate sets. When informally introducing the semantics of SDDs above, we used an op-
erational interpretation where we iteratively propagated individual bindings across the SDD. In
order to define the formal semantics using set-based logic, we need to consider sets of bindings.
For a witness ζ of a universal node n, each extension of the contained binding that the node
generates ultimately needs to satisfy the SDD S, or ζ will not satisfy the SDD. We group the
new witnesses that n generates out of ζ into a candidate set of witnesses that need to succeed
together. We define such a candidate set as C ∈ ℘(ZS). C only satisfies S if all witnesses ζ ∈ C
satisfy S. The truth value of C is thus defined as

eval(C) :=
∧
ζ∈C

eval(ζ). (3.2.4)

As for witnesses, a candidate set is final if its truth value is defined, i.e., it only contains final
witnesses.

74 3. Constraints

Alternative sets. An existential node or the presence of multiple then or else connectors can create
multiple alternative ways to extend the binding ξ of a witness ζ , only one of which needs to
satisfy S. The new witnesses that the node generates out of ζ thus form an alternative set of
witnesses.

Result sets. If, starting with a single initial binding for the root node, we naively applied these
definitions, we would end up with a nested structure of candidate and alternative sets. If the
witness we process is part of some candidate set, we would generate a new candidate set that
contains an alternative or candidate set in place of the witness – likewise for witnesses in alter-
native sets. Such a structure would greatly complicate the formalization. We therefore prefer a
flattened structure with only two levels, a set of alternative candidate sets A ∈ ℘(℘(ZS)). We
call such a set of candidate sets a result set.
We start the evaluation with a single candidate set containing the initial binding. For the root
node λS of an SDD, we define Aλ := {{(λS, τ)}}, i.e. there is one candidate set consisting of
the only witness, the empty binding τ at λS .
Now, whenever a node generates alternatives ζ i from a witness ζ , for each C containing ζ we add
a new candidate set Ci where ζ is replaced by ζ ito the result setA. As C is a set of witnesses, each
of which may have alternative extensions, the number of new candidate sets Cijk... generated from
C by a node depends on the Cartesian product of the extensions for each witness in C. Existential
nodes thus increase the number of candidate sets and thus the size of the result set.
When a universal node generates new interdependent witnesses from a witness ζ , we simply
create a new candidate set C ′ where ζ is replaced by the generated witnesses ζ1 . . . ζk in each C
containing ζ . Universal nodes thus increase the size of the candidate sets.
As the sets are alternatives, i.e., one valid candidate set is sufficient, the truth value of a result set
A is defined as

eval(A) :=
∨
C∈A

eval(C). (3.2.5)

The set of all witnesses occurring in a result set A is denoted by WA :=
⋃
Ci∈A Ci. A result set is

final if all witnesses in WA are final.

Propagation. We now formalize the computations on result sets that we have described above.
For each node n, we define the propagation function

applyn : G × ℘(℘(ZS)) → ℘(℘(ZS)), (3.2.6)

which basically removes obsolete candidates and adds appropriately extended versions. When
computing the updated result set A′ = applyn(G,A), we initialize A′ = A. For each witness
ζ = (nζ , ξζ) for n from WA′ (i.e. ζ ∈ WA′ ∧ nζ = n), the following steps are then performed by
applyn:

1. The possible extensions of the binding ξζ are computed. We define

X (t)
ζ := {ξ′ζ | Pn[ξ′ζ] ≤ G ∧

ξζ ≤ ξ′ζ ∧ ∀v : ξ′ζ(v) 6= ξζ(v) ⇒ v ∈ free(n, ξζ)}, (3.2.7)

3.2 Structural Properties 75

i.e., we select those ξ′ζ that are valid for Pn and extend ξζ with the variables introduced by
Pn. If no such ξ′ζ exists, i.e. X (t)

ζ := ∅, we have X (e)
ζ := {ξζ}, otherwise X (e)

ζ := ∅, i.e.

X (e)
ζ :=

{
∅ | X (t)

ζ 6= ∅
{ξζ} | X (t)

ζ = ∅.
(3.2.8)

Note that exactly one of the sets is thus always empty. The definition covers both quantified
and guard nodes. As guard nodes do not introduce any new variables, we have the special
case that ξ′ζ = ξζ so that ξζ is either placed in X (t)

ζ or X (e)
ζ depending on whether Pn[ξ′ζ] ≤

G holds.

2. The corresponding witnesses are computed, i.e., the generated bindings are propagated
along all applicable connectors – which are either the then or the else connectors.

If cardinalities are specified, we first need to verify whether the number of generated ex-
tended bindings satisfies the constraints of at least one then connector, i.e. ∃n′ ∈ then(n) :

min(n, n′) ≤ #X (t)
ζ ≤ max(n, n′). Otherwise, we need to discard the generated bindings

and send the original binding down the else connector by setting X (t)
ζ := ∅ and, accord-

ingly, X (e)
ζ := {ξζ}.

We then define the set of generated witnesses as

W+
ζ :={(n′, ξ′) | n′ ∈ then(n) ∧ ξ′ ∈ X (t)

ζ

∧min(n, n′) ≤ #X (t)
ζ ≤ max(n, n′)} ∪

{(n′, ξ′) | n′ ∈ else(n) ∧ ξ′ ∈ X (e)
ζ }. (3.2.9)

3. The result set A′ is updated. This implicitly removes ζ from WA′ and adds the new bind-
ings: WA′ := WA′ \ ζ ∪W+

ζ .

(a) If n is universal, we define

A′
∀ := {C ′ | ∃C ∈ A′ :(ζ ∈ C ∧ C ′ = C \ ζ ∪W+

ζ) ∨
(ζ /∈ C ∧ C ′ = C)}, (3.2.10)

i.e., we extend each candidate set with the new witnesses.

(b) If n is existential, we define

A′
∃ := {C ′ | ∃C ∈ A′ :(∃ζ ′ ∈ W+

ζ : (ζ ∈ C ∧ C ′ = C \ ζ ∪ ζ ′)) ∨
(ζ /∈ C ∧ C ′ = C)}, (3.2.11)

i.e., we add a new alternative candidate set for each new witness.

76 3. Constraints

3.2.3.3 Story Decision Diagram Semantics

In order to evaluate an SDD S, we start with a result set A containing a single candidate (con-
sisting of the initial binding) and successively apply the propagation function of each node of the
SDD (using a breadth-first or preorder depth-first traversal) to it, extending and modifying the
result set until it is final. The evaluation results in a unique final result set that serves to define
the semantics of S. Note that all nodes actually need to operate on the same instance of A as
candidate sets may contain witnesses for any node in the SDD so that simple recursion down any
particular branch could only return results for individual witnesses, but typically not candidate
sets.

Iteration function. In order to achieve the required evaluation order, i.e. that every node uses
the output of the previous node as its input, we define the iteration function

iterate(N ,A) :=

{
[[n]]Giterate(N\n,A) | n ∈ N | N 6= ∅
A | N = ∅, (3.2.12)

where [[n]]GA is the semantics of node n for graph G and set of alternative candidate sets A as
defined below. The iteration function passes the result set A through every node in the set of
sibling nodes N in turn.1

Semantics definition. We can now define the semantics of an SDD S. For leaf nodes, we have

[[(1)]]GA := A, (3.2.13)

[[(0)]]GA := A, (3.2.14)

i.e. they simply return the original result set.
For non-leaf nodes, we define

[[n]]GA := iterate(then(n) ∪ else(n), applyn(G,A)), (3.2.15)

i.e. we first apply n’s propagation function and then pass the result through all of n’s children.
Finally, we define for the whole SDD:

[[S]]G := {C | C ∈ [[λS]]G{{(λS ,τ)}} ∧ eval(C)}, (3.2.16)

i.e. the semantics of the SDD S are defined as the satisfying final candidate sets generated by
its root node λS , evaluated for the single candidate set consisting of the empty binding τ at λS .
Note that all candidate sets in [[λS]]G{{(λS ,τ)}} are final so that eval(C) is always defined.
The truth value of an SDD S is then

eval(S) := ([[S]]G 6= ∅). (3.2.17)
1Note that iterate is in fact a function in spite of the fact that n is chosen non-deterministically. As the nodes in

N are siblings, no node in N will generate new witnesses for any other node in N . For a fixed set of witnesses, we
have applyn(G, applyn′(G,A)) = applyn′(G, applyn(G,A)) as the invocations operate on disjunct subsets of the
witness set and their effects on the result set are orthogonal.

3.2 Structural Properties 77

Negation. We define the negation of an invariant SDD S, written as S, as the SDD that is satisfied
by all graphs G that do not satisfy S. S can be derived by inverting all leaf nodes and quantifiers
of S, i.e. turning all (explicitly specified and implied) (1) leaf nodes of S into (0) leaf nodes and
vice versa, and turning all existential quantifiers (∃) in S into universal quantifiers (∀) and vice
versa.

Examples. We now discuss three examples that illustrate the introduced semantics, especially
the relationship between candidate sets and witnesses.

: s1

: p1

s1 : Shuttle

p1 : Pattern

s1 : Shuttle

entry

then

1 0
then else

a. The SDD S

sa : Shuttle

sc : Shuttle

sb : Shuttle

pa : Pattern

pb : Pattern

pc : Pattern

entry

entry

entry
entry

b. An instance graph
G

0. [s1 , p1]0

c. (0) (i.e. τ) is the only witness
at root node α

1 2 1. [s1 sa, p1]3
2. [s1 sb, p1]

3. [s1 sc, p1]

0

d. applyα(G,A), ζ = (0):
extends the candidate set to
((1), (2), (3))

4 2 4. 1 [s1 sa, p1 pa]3
2. [s1 sb, p1]

3. [s1 sc, p1]

1

e. applyβ(G,A), ζ = (1): cre-
ates witness (4)

4 5 4. 1 [s1 sa, p1 pa]3

3. [s1 sc, p1]

5. 1 [s1 sb, p1 pb]

6. 1 [s1 sb, p1 pc]
4 6 3

2

f. applyβ(G,A), ζ = (2): cre-
ates witness (5) and (6), in-
troducing two new alternative
candidate sets

4 5 4. 1 [s1 sa, p1 pa]7

7. 1 [s1 sc, p1 pc]

5. 1 [s1 sb, p1 pb]

6. 1 [s1 sb, p1 pc]
4 6 7

3

g. applyβ(G,A), ζ = (3): cre-
ates witness (7). eval(S)
evaluates to true, both candi-
date sets satisfy S, even.

Figure 3.2.21: Example 1: Successful evaluation of a simple property

In Figure 3.2.21, we present a basic example. The SDD S in Figure 3.2.21a is evaluated on
graph G in Figure 3.2.21b. Figures 3.2.21c–g then list the witness ζ that is currently processed
by apply, the result set A, and the set of witnesses WA for each iteration of the propagation
functions. The result set A is marked by the outer (black) border, the candidate sets C in A are
symbolized by the inner (blue) border, and the witnesses are represented by numbers in (orange)
circles referencing the corresponding elements of WA. Final witnesses and candidate sets are
drawn in green or red, according to their truth value.
While the property holds for graph G, graph G′ in Figure 3.2.22a is not a correct match (as sc
is missing a pattern). Evaluation proceeds in an identical fashion to Figure 3.2.21, except for
witness (3) in Figure 3.2.22b. As no pattern is found, the witness proceeds to the (0) node.

78 3. Constraints

sa : Shuttle

sc : Shuttle

sb : Shuttle

pa : Pattern

pb : Pattern

pc : Pattern

entry

entry

entry

a. An incorrect
instance graph G′

4 5 4. 1 [s1 sa, p1 pa]7

7. 0 [s1 sc, p1]

5. 1 [s1 sb, p1 pb]

6. 1 [s1 sb, p1 pc]
4 6 7

3

b. applyβ(G′,A), ζ = (3): creates
witness (7). eval(S) evaluates to
false, no candidate set satisfies S.

Figure 3.2.22: Example 1’: For the incorrect graph G′, the last step differs

The second example in Figure 3.2.23 is more complex. Each A must have a B with a C, or a D.
There are multiple (1) nodes, and as a1 and a2 have a valid B but no D, whereas a3 only has a
valid D, the successful candidate set unites witnesses that are at different leaf nodes.
The third example is introduced in Figure 3.2.24 and evaluated in Figures 3.2.25 and 3.2.26.
The example contains two nested universal quantifiers and serves to illustrate how evaluation is
nonetheless based on a flattened data structure. In this example, we not only list the current result
set and the currently selected witness, but also which obsolete candidate sets are eliminated in
each step.

3.2 Structural Properties 79

 : c : d

1 0
then else

 : a

 : b

then

a : A

b : Ba : A

then

b : B

a : A c : C
a : A

d : D

else

1 0
then else

a. The SDD S

a1 : A a2 : A a3 : A

b1 : B b2 : B

c1 : C c2 : C

d1 : D

b3 : B

b. An instance
graph G

0. [a , b , c , d]0

c. (0) (τ) at the root node α

1 2 1. [a a1, b , c , d]3
2. [a a2, b , c , d]

3. [a a3, b , c , d]

0

d. applyα(G,A), ζ = (0)

4 2 4. [a a1, b b1, c , d]3
2. [a a2, b , c , d]

3. [a a3, b , c , d]

1

e. applyβ(G,A), ζ = (1)

4 5 4. [a a1, b b1, c , d]3

3. [a a3, b , c , d]

5. [a a2, b b2, c , d]

6. [a a2, b b3, c , d]
4 6 3

2

f. applyβ(G,A), ζ = (2)

4 5 4. [a a1, b b1, c , d]7

7. [a a3, b , c , d]

5. [a a2, b b2, c , d]

6. [a a2, b b3, c , d]
4 6 7

3

g. applyβ(G,A), ζ = (3)

8 5 8. 1 [a a1, b b1, c c1, d]7

7. [a a3, b , c , d]

5. [a a2, b b2, c , d]

6. [a a2, b b3, c , d]
8 6 7

4

h. applyγ(G,A), ζ = (4)

8 9 7

7. [a a3, b , c , d]

9. 1 [a a2, b b2, c c2, d]

6. [a a2, b b3, c , d]
8 6 7

8. 1 [a a1, b b1, c c1, d]5

i. applyγ(G,A), ζ = (5)

8 9 7

7. [a a3, b , c , d]

9. 1 [a a2, b b2, c c2, d]

A. 0 [a a2, b b3, c , d]
8 A 7

8. 1 [a a1, b b1, c c1, d]6

j. applyγ(G,A), ζ = (6)

8 9 B

B. 1 [a a3, b , c , d d1]

9. 1 [a a2, b b2, c c2, d]

A. 0 [a a2, b b3, c , d]
8 A B

8. 1 [a a1, b b1, c c1, d]7

k. applyδ(G,A), ζ = (7). eval(S)
evaluates to true as one of the
candidate sets is valid. Note that
the successful witnesses are at
different (1) nodes.

Figure 3.2.23: Example 2: Successful evaluation of a more complex property

80 3. Constraints

 : d

1 0
then else

 : a

 : b

then

a : A

b : Ba : A

then

 : c b : B

a : A c : C

b : B

a : A c : C

d : D

then

a. The SDD S

a1 : A a2 : A a3 : A

b1 : B b2 : B b3 : B b4 : B

c1 : C c2 : C c3 : C c4 : C

d1 : D d2 : D d3 : D d4 : D

b. An instance graph G

Figure 3.2.24: Example 3: Nested universally quantified nodes

1. [a a1, b , c , d]

2. [a a2, b , c , d]

3. [a a3, b , c , d]

0. [a , b , c , d]

4. [a a1, b b1, c , d]

5. [a a1, b b2, c , d]

6. [a a2, b b2, c , d]

7. [a a3, b b3, c , d]

8. [a a3, b b4, c , d]

a. Witnesses (0)-(8)

9. [a a1, b b1, c c1, d]

A. [a a1, b b2, c c2, d]

B. [a a2, b b2, c c2, d]

C. [a a3, b b3, c c2, d]

D. [a a3, b b3, c c3, d]

E. [a a3, b b4, c c3, d]

F. [a a3, b b4, c c4, d]

b. Witnesses (9)-(F)

G. 1 [a a1, b b1, c c1, d d1]

H. 1 [a a1, b b2, c c2, d d2]

I. 1 [a a2, b b2, c c2, d d2]

J. 1 [a a3, b b3, c c2, d d2]

K. 1 [a a3, b b3, c c3, d d3]

L. 1 [a a3, b b3, c c3, d d4]

M. 1 [a a3, b b4, c c3, d d3]

N. 1 [a a3, b b4, c c3, d d4]

O. 0 [a a3, b b4, c c4, d]

c. Final witness set WA

Figure 3.2.25: Example 3: Intermediate and final witnesses

3.2 Structural Properties 81

0

a. (0) (τ) at root node α

1 2 30 0

b. n = α, ζ = (0)

4 2 3

5 2 3

1 2 31

c. n = β, ζ = (1)

4 6 3

5 6 3

4 2 3

5 2 3

2

d. n = β, ζ = (2)

4 6 7

4 6 8

3 4 6 3

5 6 3

5 6 7

5 6 8

e. n = β, ζ = (3)

4 4 6 7 9 6 7

9 6 8

5 6 7

5 6 8

4 6 8

f. n = γ, ζ = (4)

5 5 6 7 9 6 7

9 6 8

A 6 7

A 6 8

5 6 8

g. n = γ, ζ = (5)

6 9 B 7

9 B 8

A B 7

A B 8

9 6 7

9 6 8

A 6 7

A 6 8

h. n = γ, ζ = (6)

7 9 B C

9 B 8

A B

A B 8

9 B 7

A B 7

D

C D

i. n = γ, ζ = (7)

8 9 B C

A B

9 B 8

A B 8

D

C D

A B E F

9 B E F

j. n = γ, ζ = (8)

9 G B C

A B

D

C D

A B E F

G B E F

9 B C D

9 B E F

k. n = δ, ζ = (9)

A G B C

H B

D

C D

H B E F

G B E F

A B C D

A B E F

l. n = δ, ζ = (A)

B G I C

H I

D

C D

H I E F

G I E F

G B C

H B

D

C D

H B E F

G B E F

m. n = δ, ζ = (B)

C G I J

H I

D

J D

H I E F

G I E F

G I C D

H I C D

n. n = δ, ζ = (C)

D G I J

H I

K

J K

H I E F

G I E F

G I J D

H I J D G I J L

H I J L

o. n = δ, ζ = (D)

E G I J

H I

K

J K

H I M F

G I M F

G I E F

H I E F G I J L

H I J L

G I N F

H I N F

p. n = δ, ζ = (E)

F G I J

H I

K

J K

H I M O

G I M O

G I J L

H I J L

G I N O

H I N O

H I M F

H I N F

G I M F

G I N F

q. n = δ, ζ = (F)

Figure 3.2.26: Example 3: Result sets. Evaluation succeeds

82 3. Constraints

3.2.3.4 Story Decision Diagram Pattern Semantics

In order to define the semantics of patterns and pattern references, we need to extend the seman-
tics of SDDs in three places: We need to define the way how a pattern’s λ node binds roles to
instances, we need to deal with pattern references in the host nodes containing them, and we
need to formalize the semantics of recursive patterns.

λ nodes. Differently from SDDs, SDDPs typically do not use τ as their initial binding, but define
roles in their λ node which are bound externally. The roles are defined as the elements of the
pattern Rλ. For each host node n containing a reference to an SDDP F , we define a partial graph
isomorphism mF from Pn to Rλ, mapping elements of the host SP to roles of F in accordance
with the dashed role connectors in the diagram.
The mapping function `Fn : XS → XF then performs the actual rebinding, binding F ’s variables
in accordance with the binding in the host node. For a binding ξP and variable labelings lvP :=
(V N

S , V E
S , v

N
P , v

E
P) for Pn and lvR := (V N

F , V E
F , v

N
R , v

E
R) for Rλ, we define

`Fn(ξP) := (ξN
F , ξ

E
F) | ξN

F ◦ vN
R ◦mN

F = ξN
P ◦ vN

P ∧ ξE
F ◦ vE

R ◦mE
F = ξE

P ◦ vE
P , (3.2.18)

i.e. each element of Rλ is bound to the same instance as the element of P that is matched onto it
by mF .

Candidate set evolution. For candidate sets, we define the evolved from relation C v C′ which
indicates that C ′ has evolved out of C. We have

C v C ′ := ∀(n, ξ) ∈ C : (∃(n′, ξ′) ∈ C ′ : ξ ≤ ξ′ ∧ n ∈ parent∗(n′)), (3.2.19)

i.e. for each witness in C ′, there needs to be a witness in C that is less or equally restrictive at a
possible parent node.
We extend this notation to result sets so that for a candidate set C and a result set A′, we have

C v A′ := ∃C′ ∈ A′ : C v C ′. (3.2.20)

Pattern references do not generate new bindings but merely act as an extended form of guard,
declaring a binding to be either valid or invalid. Accordingly, they are processed in step (1) of
the evaluation of the propagation function.

Let Fn be the set of SDDPs invoked in the SP of node n. When computing X (t)
ζ , we extend

Equation 3.2.7 and additionally require that each ξ′ζ ∈ X (t)
ζ fulfills every SDDP F ∈ Fn, i.e.,

there needs to be a candidate set in the result set generated by the SDDP that has evolved from
the rebound binding {`Fn(ξ′ζ)}. For brevity, we use F (ζ) to denote the witness (λF , `Fn(ξ)) with
ζ = (n, ξ). We then have:

X (t)
ζ := {ξ′ζ | Pn[ξ′ζ] ≤ G ∧ ∀F ∈ Fn : {F ((n, ξ′ζ))} v [[F]]G ∧

ξζ ≤ ξ′ζ ∧ ∀v : ξ′ζ(v) 6= ξζ(v) ⇒ v ∈ free(n, ξζ)}. (3.2.21)

3.2 Structural Properties 83

Non-recursive SDDP Semantics. Non-recursive SDDPs, i.e. pattern definitions not containing
direct or indirect references to themselves, can efficiently be computed like regular SDDs. As
the semantics of the SDDP F with λ node λF for a graph G and an initial binding ξP , we can
then define

[[F]]GξP
:= [[λF]]G{{(λF ,`F (ξP))}} (3.2.22)

and use the generated result set in place of [[F]]G in Equation 3.2.21.

Recursive SDDP Semantics. We require recursive SDDPs to be well-formed. A set of SDDPs
is well-formed if it does not contain vacuous cycles, i.e. it cannot recurse infinitely without
progressing or reaching a termination node. We provide a detailed definition of well-formedness
and illustrating examples in Section B.1 of Appendix B.
In order to define the semantics of a well-formed recursively defined SDDP F , we need to com-
pute a fixed point of F . If FI is a set of interdependent SDDPs Fi that are recursively invoking
each other, we need to compute their fixed points together.
The semantics [[Fi]]

G of an SDDP Fi should correspond to a result set containing all valid final
candidate sets that can evolve from any initial binding that could be passed to Fi for a given
graph G. In order to compute this result set, we extend Fi with an auxiliary existential node αFi

quantifying all roles of the SDDP Fi, which is added before the λ node λFi
and thus becomes the

new root node. The existential node will generate all possible combinations of bindings for the
roles and pass them on to the λ node.
The unconstrained semantics of non-recursive SDDPs can then be computed directly as

[[Fi]]
G := [[αFi

]]G{{(αFi
,τ)}}. (3.2.23)

However, this will not work for recursive SDDPs, as [[Fi]]
G is required in order to evaluate the

propagation function apply (see Equation 3.2.21).
We therefore introduce the fixed point operator −>>, which successively computes the semantics
using approximations [[f

(j)
i]]G of [[Fi]]

G. Instead of relying on the – undefined – semantics [[Fi]]
G,

−>> substitutes [[f
(j)
i]]G for [[Fi]]

G when computing the extended bindings. Furthermore, as [[f
(j)
i]]G

is only an approximation of the final semantics, we cannot just check whether there is a candidate
set in [[f

(j)
i]]G that has evolved from a given role binding, but have to differentiate between un-

successful and undefined invocations. We therefore do not use Equation 3.2.21, but the original
Equation 3.2.7

X ′

ζ := {ξ′ζ | Pn[ξ′ζ] ≤ G ∧
ξζ ≤ ξ′ζ ∧ ∀v : ξ′ζ(v) 6= ξζ(v) ⇒ v ∈ free(n, ξζ)}, (3.2.24)

and evaluate the constraints represented by SDDPs in a separate step. We compute the valid
extended bindings for which all invocations are successful as

X (t)
ζ := {ξ(t)

ζ | ξ(t)
ζ ∈ X ′

ζ ∧ ∀F ∈ Fn :

(∃C ∈ [[F]]G : eval(C) ∧ {F ((n, ξ
(t)
ζ))} v C)} (3.2.25)

84 3. Constraints

and the indeterminate bindings that are not valid, but not definitely invalid because there is no
invocation that is definitely unsuccessful as

X (⊥)
ζ := {ξ(⊥)

ζ | ξ(⊥)
ζ ∈ X ′

ζ \ X
(t)
ζ ∧ @F ∈ Fn :

(∀C ∈ [[F]]G | {F ((n, ξ′ζ))} v C : ¬eval(C))}. (3.2.26)

Consequently, we only follow the else branch if there are no valid or indeterminate bindings and
have

X (e)
ζ :=

{
∅ | (X (t)

ζ ∪ X (⊥)
ζ) 6= ∅

{ξζ} | (X (t)
ζ ∪ X (⊥)

ζ) = ∅.
(3.2.27)

If one of the SDDPs in Fn is recursively defined, we ignore the cardinalities and use a modified
version of Equation 3.2.9, defining the set of generated witnesses as

W+
ζ :={(n′, ξ′) | ξ′ ∈ X (t)

ζ ∧ n′ ∈ then(n)} ∪

{(n′, ξ′) | ξ′ ∈ X (e)
ζ ∧ n′ ∈ else(n)} ∪

{(⊥, ξ′) | ξ′ ∈ X (⊥)
ζ }. (3.2.28)

By adding the permanently intermediate witnesses (⊥, ξ′), we prevent premature negative results
— they basically indicate that ξ′ might or might not turn out to be a valid binding.

Starting with the initial result sets [[f
(0)
i]]G, we then apply−>> for all SDDPs Fi, in turn, to compute

[[f (j+1)]]G := −>>([[f
(j)
i]]G), (3.2.29)

where the actual fixed point operator is defined as

−>>([[f
(j)
i]]G) := [[αFi

]]G{{(αFi
,τ)}} | ∀Fi ∈ FI : [[Fi]]

G := [[f
(j)
i]]G. (3.2.30)

−>> is applied until −>>([[f
(j)
i]]G) = [[f

(j)
i]]G for all of the involved SDDPs Fi. We have then com-

puted a fixed point [[fi]]
G which allows us to define the semantics of the SDDPs Fi as

[[Fi]]
G := {C | C ∈ [[fi]]

G ∧ eval(C)}. (3.2.31)

We define two versions of−>>, the least fixed point operator−>>µ and the greatest fixed point operator
−>>ν . The standard semantics of SDDs are defined by means of −>>µ, i.e. using least fixed points.
The least fixed point operator −>>µ starts with empty initial result sets:

∀Fi ∈ FI : [[f
(0)
i]]G := ∅. (3.2.32)

The result set is then successively extended with additional valid candidate sets. [[f
(1)
i]]G con-

tains those candidate sets that succeed without recursive invocations, and [[f
(j)
i]]G contains those

candidate sets that succeed with a recursion depth of at most j − 1.

3.2 Structural Properties 85

All involved sets (especially the result sets [[f
(j)
i]]G) are finite. The intermediate witnesses (⊥, ξ′)

make sure that [[Fi]]
G grows monotonically, i.e. a candidate set that has been added to [[Fi]]

G is
never eliminated in subsequent iterations. −>>µ can thus only be applied to [[f

(j)
i]]G finitely often

before a fixed point is reached.
The greatest fixed point operator−>>ν starts by assuming that all SDDP invocations are successful.
This can be realized by using the set of all possible candidate sets as the initial result set:

∀Fi ∈ FI : [[f
(0)
i]]G := {C | C ∈ ℘(ZFi

)}. (3.2.33)

Successive applications will then eliminate those candidate sets that contain invalid witnesses.
As the fixed point operator −>>ν only changes [[Fi]]

G by eliminating, never adding, candidate sets,
it can again only be applied to [[f

(j)
i]]G finitely often before a fixed point is reached. We can

therefore guarantee that the fixed points exist and that their computation terminates for both
operators.
The effective difference between the two operators lies in their treatment of cyclic dependencies
between recursive invocations. −>>µ evaluates sets of mutually dependent invocations to false,
while −>>ν evaluates them to true. An example for such a cycle would be generated by reachable,
applied to a circle of tracks that is not connected to the destination tracks. In this case, the standard
semantics based on −>>µ provides the intuitively correct result (false). When the recursion is
existentially quantified, cycles only occur if G is not acyclic and the evaluation cannot reach
a termination condition at all. When the recursion is universally quantified, cycles may occur
whenever G is not acyclic. As we have so far encountered no actual practical examples that
required greatest fixed point semantics, there currently is no way to specify that −>>ν should be
used in place of −>>µ in the syntax.
For recursively defined parametrized SDDPs, which can accept and manipulate arbitrary pa-
rameters, we can guarantee the existence of a fixed point and termination based on the above
definitions if we restrict the domains of the parameters to a finite set represented by value nodes
in G and treat the parameters as roles that are bound to the corresponding value node. While
the restriction to a finite domain holds on any physical machine, the size of the potential result
set would prohibit explicitly computing the fixed point. Unsurprisingly, parametrized SDDPs
are thus in the same situation as regular recursive function definitions over infinite domains and
subject to conventional recursion theory. In particular, we require that F be monotonic as a
necessary condition for the existence of a fixed point, following the argument in [KS01].

3.2.3.5 Transformation Semantics

The semantics of transformation nodes are very closely related to standard Story Pattern semantics
as they do not contain any quantification or other advanced features, but merely apply are graph
rule to a single binding.

Selection. In the presence of transformation nodes, we randomly pick a final candidate set
C ∈ [[S]]G after the SDD S has been successfully matched. For each witness ζ = (n, ξ) ∈ C, we
then have n ∈ trueS , i.e. the witness is either at a (1) leaf node or at a transformation node.

86 3. Constraints

Application. If n is a transformation node, we interpret its SP as a graph transformation rule
[L]→r[R], where bound and destroyed elements make up the LHS and bound and created ele-
ments make up the RHS as defined in Section 2.2.2.6.
The rule is then applied using the standard semantics defined in Definition 2.2.13, using the
graph morphism from Pn to Pn[ξ] as determined by the binding ξ as the match m. However, in
order to avoid problems with destroyed elements that are part of several bindings in the selected
candidate set, we split the rule application into two parts: We first create the elements in o(R\L)
for all witnesses in C that are at transformation nodes in a first pass, and then delete the elements
in o(L \R) in a second pass.

Ensured conditions are split into the corresponding existential and transformation nodes. While
this is usually trivial, the expansion can be more complex than it may seem at first glance. If
the original node is supposed to ensure the presence of three elements, one of which is missing,
we do not want the transformation to create three elements, but reuse the two existing elements.
We therefore need to verify the presence of each element individually and only create the miss-
ing ones. This requires either a sequence of conditional transformations ensuring the presence
of each single element, or the generation of a dedicated transformation node for each possible
combination of missing elements, which may significantly blow up the size of the diagram.

3.2.3.6 Expressiveness

First-order predicate logic formulae ϕ with p ranging over a finite set of predicates P , sets X ,
and elements x ∈ X , are defined as

ϕ ::= p(x) | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x ∈ X : ϕ | ∀x ∈ X : ϕ. (3.2.34)

Predicate logic for graphs. Based on the definitions in Sections 2.2.2.1, we can encode a typed
graph by means of predicates 〈typename〉(n), 〈typename〉(n, e, n′), where n and n′ are graph
nodes, e is a graph edge, and 〈typename〉 represents some type name from the type system
graph. For a given graph G, these predicates can be derived based on the labeling, source and
target functions.
A predicate logic for graphs over a given graph G can then be derived by using the predicates
encodingG asP and the nodes and edges ofG as the domain of the predicates and the quantifiers.
Based on Section 3.2.3.1, the setXP [G] of possible bindings becomes the setX , and the elements
x are bindings ξ.

SDDs and first-order predicate logic. We can now compare the expressiveness of first-order
predicate logic for graphs and SDDs.

Theorem 3.2.1 Story Decision Diagrams over a given graph G are at least as expressive as
first-order predicate logic for graphs over G.

3.2 Structural Properties 87

Proof. We prove the theorem by showing that for every first-order predicate logic formula over
G, there is an equivalent SDD:

• p(x) : If p is a predicate encoding a node and x accordingly is a binding ξ for a node
variable, p(x) can be encoded as P |ξ - G where P is a graph pattern containing a single
node with type p. If p is a predicate encoding an edge and x accordingly is a binding ξ
for an edge and two node variables, p(x) can be encoded as P |ξ - G where P is a graph
pattern containing two nodes connected by an edge with type p. The formula can thus be
expressed as a guard node containing P as its SP.

• ¬ϕ : If ϕ is encoded by S, ¬ϕ is encoded by S’s negation S.
• ϕ ∧ ϕ : If two terms ϕ1 and ϕ2 are encoded by S1 and S2, ϕ1 ∧ ϕ2 is encoded by two

scoped nodes (S1) then (S2) then . . . (or two regular nodes if the terms have no common
variables).

• ϕ∨ϕ : If two terms ϕ1 and ϕ2 are encoded by S1 and S2, ϕ1∨ϕ2 can be encoded using two
scoped nodes as (S1) then . . . else ((S2) then . . .), or using two alternative then connectors
issuing from a trivially true scoped node ((1)) then ((S1) then . . .) ∨ then ((S2) then . . .).

• ∃x ∈ X : ϕ : If ϕ is encoded by S, ∃x ∈ X : ϕ can be encoded using an existential node
n containing only the type constraints for x as n then S.

• ∀x ∈ X : ϕ : If ϕ is encoded by S, ∀x ∈ X : ϕ can be encoded using a universal node n
containing only the type constraints for x as n then S. �

These encodings show that SDDs, though obviously less compact on paper, also are as succinct
as first-order predicate logic.

SDDs and the predicate µ-calculus. The predicate µ-calculus extends predicate logic with
variables V , the least fixed point operator µ, and the greatest fixed point operator ν:

ϕ ::= p(V) | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | V | µV (ϕ) | νV (ϕ). (3.2.35)

As SDDs provide recursion by means of SDDPs, formulae of the predicate µ-calculus for graphs
can be written as SDDs:

Theorem 3.2.2 Story Decision Diagrams over a given graph G are at least as expressive as the
predicate µ-calculus for graphs over G.

Proof. As we have already shown that any expression of first-order predicate logic can be written
as an SDD, we merely need to focus on variables and the µ-operator:

• V : If V is a variable, any expression containing V can be written as an SDDP with role
V .

• µV (ϕ) : If ϕ is a term containing V and ϕ is encoded by the SDDP F defining role V ,
µV (ϕ) is equivalent to [[F]]G using the least fixed point operator −>>µ.

• νV (ϕ) : If ϕ is a term containing V and ϕ is encoded by the SDDP F defining role V ,
νV (ϕ) is equivalent to [[F]]G using the greatest fixed point operator −>>ν . �

88 3. Constraints

3.2.4 Discussion

With Story Decision Diagrams and enhanced Story Patterns, we have introduced two expressive
notations for the specification of static properties of object-oriented systems. The notations could
be seen as two front-ends of a common semantic core, each tailored to different needs, the former
focusing on expressiveness, the latter on simplicity. As the notational styles are closely related
and can be used interchangeably, it is thus possible to choose the more appropriate one for each
property.
In the design process, the notations can serve as a means of documenting requirements and com-
municating about structural properties of a system. However, they are not merely a conceptual
tool but can be used in the formal verification, monitoring, and implementation of a system
thanks to their both formal and implementable semantics.
The formal semantics of the notations make the use of formal verification techniques possible,
building on existing techniques for the verification of graph transformation systems. These tech-
niques often directly benefit from the increased expressiveness of the language, e.g. in the guise
of more intuitive ways of specifying positive invariants, alternatives, recurring patterns, or tran-
sitive properties. Depending on the specific formalism that is employed by a technique, it may
be necessary to convert the specification to a compatible format first by transforming it into an
equivalent, more verbose version, e.g. by splitting one diagram into several simpler ones. While
such transformations could be performed automatically and thus be invisible to the user, using
complex properties such as transitive relationships will affect performance and increase the effort
that is required for verifying a given number of properties, which needs to be considered when
already operating at the limit of what is verifiable in practice.
When used at the implementation level, e.g. for defining activities in a Story Diagram, it is
possible to generate code which is based on an iterative evaluation strategy from the diagrams.
The resulting code is no less efficient than the code generated from Story Patterns, provided
that certain extended capabilities of the language such as recursively defined patterns are used
judiciously.

3.3 Temporal Properties 89

3.3 Temporal Properties

With the presented notations, we are able to specify arbitrarily complex structural properties.
However, they are restricted to the description of static structures (and atomic transformations)
and cannot describe the evolution of a system.
Story Decision Diagrams use graph patterns and one basic principle for composing them in order
to express complex static properties. It is tempting to apply the same idea to temporal properties
and use it to describe the structural evolution of a system.
The behavior of a system can be characterized by a sequence of states. When we model the
system as a graph transformation system (see Definition 2.2.14), each of these states corresponds
to a graph. Between states, the identity of nodes and edges is preserved.
When evaluating temporal properties, it is no longer sufficient to focus on the question whether
certain structural properties hold for a single state – we need to consider the duration and tempo-
ral ordering of the individual incidences of the properties.

3.3.1 Timed Story Scenario Diagrams

The idea behind Timed Story Scenario Diagrams (TSSD) is to use the ordering of incidences of
structural properties in order to specify temporal properties, expressed as sets of valid orderings.
The diagrams are thus directed acyclic graphs consisting of nodes, each containing an SDD
defining a structural property, and edges, constraining the ordering of incidences.

Shuttle approaching critical section

Registration pattern with base station

Inside critical section

_

t2 : Track

s1 : Shuttle_

[0..500)

on

�

���

r1

s1 : Shuttle b1 : Base Station

r1 : Registration Pattern
r1

entry registry

�

b1, s1, t1, t2

s1 : Shuttle

t1 : Track t2 : Track

b1 : Base Station
b1, s1, t1, t2

on

adjacent

supervises

�

Figure 3.3.1: TSSD: A Shuttle registers with a Registry

Figure 3.3.1 is a basic example presenting the key elements of a TSSD. When a shuttle is ap-
proaching a base station’s supervised area, they have between 0 and 500 milliseconds to instan-
tiate a registration pattern. In the mean time, the shuttle must not yet have entered the supervised
track segment, which is indicated by the (forbidden) state on the transition.

90 3. Constraints

3.3.1.1 Basic Principles

Situations. Each node of a TSSD represents a situation, which is characterized by the contained
structural property. As the employed properties are patterns, several valid occurrences of a situ-
ation may exist in the same system state. Furthermore, the use of patterns reduces the coupling
between the different situations, with the effect that a situation may still be incident, i.e. match the
system state, independently of the fact that the subsequent situation is already incident as well.
Though visually similar, a TSSD is therefore quite unlike a basic statechart, where states are
atomic and mutually exclusive. In a TSSD, different occurrences of multiple incident situations
can coexist at the same time, which will give rise to a set of concurrent, repeatedly branching
execution traces. We discuss this behavior in more detail in Section 3.3.1.3 below.
A situation may have a label, which can be used to reference the situation definition. When the
SDDs themselves already are quite large, it may be preferable to define the situations separately
and then draw the actual TSSD using such situation references – especially if the TSSD itself
is complex or the same situation appears multiple times. In general, however, it is preferable to
define situations in place in order to benefit from the visual nature of the pattern definitions.
All SDDs that appear on the same path through a TSSD are connected so that bindings are shared
between subsequent situations. If a variable is bound by a situation, it cannot be rebound later. If
bindings were not retained, it would be difficult to specify simple properties such as ’If a shuttle
accepts a task, it needs to complete it.’ because any shuttle fulfilling any task would complete
the scenario.

s : Shuttle b : Base Station
registered

Sa – Ba

Sb – Ba

Sb – Bb

Sc – Bb

Sa Sb Sc Ba Bb

Sa Sb Sc

Ba Bb

**

Sa Sb Sc

Ba Bb

* *

Sa Sb Sc

Ba Bb

~

Sa Sb Sc

Ba Bb

~

Sa Sb Sc

Ba Bb

*

1 2 3 4 5

Situation: Shuttles: Base Stations:

Sa Sb Sc

Ba Bb

Figure 3.3.2: The relationship between a situation and its observations

When matching a situation at a specific point in time, its SDD generates a result set. Each
valid candidate set in the result set is called an observation of the situation. However, as the
SDD encodes a structural property, whose incidence is typically not limited to a single point
in time but spans an interval, the situation could generate infinitely many observations for the
same candidate set. An observation is thus made only at the specific time when the concerned
structural configuration first occurs, or when it occurs again after being absent. For a given

3.3 Temporal Properties 91

situation encoding a property p and a given candidate set C, an observation is thus generated at
every time t where p(C) at t and there is a time u with u < t so that ¬p(C) at all times v with
u ≤ v < t. Figure 3.3.2 illustrates this for a situation encoding that a specific shuttle is registered
with a specific base station. As the truth value of this property changes over time for the different
pairs, observations (marked by small circles) are only generated where the truth value changes
from false to true. For the pair (Sa, Ba), two observations are generated, one a time 1 and one
at time 5.

Temporal connectors. The observations for a TSSD are then placed in relation to each other by
means of temporal connectors specifying the temporal ordering of situations.

• The eventually connector (A I B) denotes that an observation for situation A is made
before an observation for situation B. Note that this includes the case that the observations
for A and B occur simultaneously, i.e. t(oA) ≤ t(oB). Figure 3.3.3 shows an example of
such a connector: A task that is started needs to be completed at some future time.

Task started Task completed

sequence or

sequence and

Figure 3.3.3: Eventually connector: A ∧ FB

• The until connector (A IIB) denotes that an observation for situation A is made and
that the encoded structural property remains valid until a compatible observation for sit-
uation B is made. If no appropriate B is matched before the structural property ceases
to be valid, the observation for A is discarded. Figure 3.3.4 shows an example of such a
connector: The convoy pattern needs to remain active until the convoy is dissolved.

Execute Pattern Break Convoy

sequence or

sequence and

Figure 3.3.4: Until connector: A ∧ AUB

• The immediately connector (A B B) denotes that an observation for situation B is
made at the same time as the corresponding observation for situation A, i.e. in the same
state of the system. If no such observation of B exists, the observation for A is also
discarded. Figure 3.3.5 provides an example: When an additional task is accepted, the
schedule still needs to be consistent.

Task accepted Consistent Schedule

sequence or

sequence andFigure 3.3.5: Immediately connector: A ∧B

92 3. Constraints

Technically, only the eventually connector is actually fundamental. Both the immediately con-
nector, which can be emulated using an eventually connector and a time constraint of 0, and the
until connector, which can be emulated using an eventually connector and an appropriate tran-
sition guard, are redundant. They are included for convenience, to facilitate the application of
optimized evaluation strategies, and to reduce clutter in diagrams.

Traces. As situations generate sets of observations and as bindings are retained across situations,
the indicated temporal ordering only makes sense when applied to compatible pairs of observa-
tions, i.e. if the candidate set of the more recent observation actually evolved from the candidate
set of the earlier observation. For example, Figure 3.3.3 constrains the life-cycle of a single task,
whereas the behavior of separate tasks is completely independent. Moreover, this same argument
applies to multiple observations based on the same candidate set (such as the pair (Sa, Ca) in Fig-
ure 3.3.2) as well – a subsequent observation should not be invalidated just because the structure
matched by the antecedent reappears. A I B therefore does not imply that all compatible
A need to occur before B, but rather that a compatible A exists before B. Such a sequence of
correctly ordered compatible observations is called a trace. As there may be multiple antecedent
observations with identical candidate sets, a single observation can extend multiple traces. As a
candidate set may later be extended in multiple ways, each trace may furthermore be extended
by several concurrent observations, resulting in a set of alternative traces.

Pseudostates. The evaluation semantics of a TSSD are determined by the graph structure set up
by the situations, the connectors, and a set of pseudostates. The latter specify where evaluation
should start and terminate and provide a way to encode logical operators.
Evaluation always starts at the initial node •, which always matches exactly once at the earliest
time possible. The descriptive, sequential character of TSSDs implies the assumption that time
is bounded in the past so that this point in time is uniquely identified.
The termination node

⊙
• marks the end of a branch, i.e. sequence of connected situations, of

a TSSD. A
⊙
• node always matches as late as possible, i.e. the current state during runtime

monitoring or the last state of a finite system execution path π when analyzing a completed run.
When the path π is infinite, the

⊙
• node technically never matches at all.

A trace is completed once it has reached a termination node, i.e. when it could be extended with
an observation for the

⊙
• node. A system execution path π then fulfills a TSSD if a completed

trace to a
⊙
• node exists within a prefix of π.

The basic example in Figure 3.3.6 specifies that sometime during the system execution, a shuttle
selects a task and completes it. In conjunction with an II connector, a

⊙
• node can express

Acquire Task Complete Task

Figure 3.3.6: Some task is eventually completed

that a property, e.g. safety, should hold globally, as illustrated in Figure 3.3.7.

Branches. While TSSDs need to be acyclic, each situation may have multiple successors and

3.3 Temporal Properties 93

System Safe

Figure 3.3.7: The system is globally safe

predecessors. If the TSSD forks, both branches progress independently and in parallel. Obser-
vations are only partially ordered.
By using multiple

⊙
• nodes on independent branches, disjunction (logical ∨) can be expressed,

as a completed trace at any one of the
⊙
• nodes is sufficient. Figure 3.3.8 provides an example:

Once a shuttle has acquired a task, it must either complete or delegate it.

Acquire Task

Complete Task

Delegate Task

sequence or

sequence and

Figure 3.3.8: TSSD containing disjunction

If a situation has multiple incoming temporal ordering edges, observations for all situations di-
rectly preceding it need to exist. Multiple incoming connectors thus correspond to conjunction
(logical ∧). Figure 3.3.9 provides an example: A shuttle needs to notify the source storage facility
and reserve a route before it can pick up the cargo.

Acquire Task

Notify Source

Reserve Route

Pick up Task

sequence do-not-care
Figure 3.3.9: TSSD containing conjunction

In order to keep the notation based on a limited number of concepts, there are no specific ∧ or ∨
nodes (as exist e.g. in EPCs). This means that it is not trivially possible to ∨-join two branches,
which requires the use of scenario situations (see Section 3.3.1.4).2

A branch that does not end in a
⊙
• node is optional and has no effect on the satisfaction of a

TSSD as it can never generate a completed trace. Figure 3.3.10 provides an example: The shuttle
may stop for maintenance while executing a task.
More relevantly, it is possible in situations with multiple incoming connectors to have a branch
that does not lead back to an initial node in order to make statements about the past. While the

2It could be argued that ∨-joins are contra-intuitive anyway. If a customer can send a complaint by post or
email, what if she does both? Both traces continue to be live, and if there are no appropriate procedures in place,
the complaint may actually be processed twice. While using xor resolves this specific ambiguity, its use can easily
introduce subtle semantic issues of its own, as witnessed by EPCs (cf. [Kin06]).

94 3. Constraints

Acquire Task Complete Task

Maintenance

Pick up Task

Figure 3.3.10: TSSD with an optional branch

eventually connector then serves as the past operator, until can be used to emulate since as
time is assumed to be bounded in the past. In the example in Figure 3.3.11, the shuttle must have
been licensed for passenger transport sometime before picking up a passenger. Using references
to the past is mostly useful on the conceptual level in order to denote a property as a necessary
precondition to, but not an integral part of the specified sequence. Semantically, connecting all
branches to the initial node would yield the same result as time is bounded in the past.

Acquire Task Pick up Pasenger

Licensed

Figure 3.3.11: TSSD containing a reference to past events

Forbidden scenarios. As a way of expressing logical ¬ and negating whole scenarios, it is
possible to turn branches of a TSSD or the entire diagram into forbidden scenarios. In the style
of SDD connectors, required situations and connectors are drawn with solid green lines, while
forbidden situations and connectors use dashed red lines. In order to avoid visual confusion with
the contained SDDs, TSSDs use darker shades of green and red.
Forbidden scenarios are defined by means of inhibitors. Normally, a connector is disabled and
becomes enabled when it is reached by an appropriate trace. Inhibitors are enabled and become
disabled if a trace reaches them. Inhibitors mark the end of a forbidden scenario and thus are the
connectors leading from forbidden to required elements. This can either occur where a forbidden
scenario is joined with a required one or at the end of a branch in the

⊙
• node, which is considered

a required element. Normally, a situation is incident if all inbound connectors are enabled, i.e. a
compatible trace for each predecessor exists, and if its structural property can be matched. In the
presence of an inhibitor, the subsequent required situation is only enabled if no trace completing
the forbidden branch exists. The semantics of all other situations and connectors in a forbidden
scenario is unchanged.

Unregistered Collision

sequence not

sequence not joinFigure 3.3.12: A forbidden scenario

The TSSD in Figure 3.3.12 will thus immediately be fulfilled until a shuttle is not properly regis-
tered and then collides with another shuttle. As soon as this sequence of events occurs, the TSSD
is no longer satisfied.

3.3 Temporal Properties 95

Acquire Task

Execute Task

Unload Cargo

Complete Task

Figure 3.3.13: Forbidden during execution

Figure 3.3.13 encodes that a shuttle may not unload the cargo before the task is completed, i.e. the
shuttle has arrived at the proper destination. Complete Task will only match if Unload Cargo has not
been observed before.

Acquire Task

Complete Task

Collision

Figure 3.3.14: Forbidden during and after execution

The TSSD in Figure 3.3.14 is similar to the previous example, but as the join only takes place at
the

⊙
• node which will match as late as possible, any collision, even after the task is completed,

will invalidate the scenario.

On Standby

Receive Task

Receive Task

Complete Task

Figure 3.3.15: Forbidden scenario as an alternative

As multiple
⊙
• nodes represent alternatives, the example in Figure 3.3.15 is satisfied if the shuttle

on standby either receives a task and completes it, or never receives a task at all.

Parallel composition. If there are multiple initial nodes in a single diagram, evaluation starts at
all initial nodes simultaneously. The TSSD will then only be satisfied if a

⊙
• node is reached by

a trace from every initial node. In particular, this mechanism can be used to create the parallel
composition of multiple TSSDs. If the diagram graph is not connected because the branches have
no situations in common, a dotted constraint edge is drawn between the initial nodes in order to
indicate that the branches actually constitute a single diagram.
A particularly useful application of this construct is the specification of invariants. In Figure
3.3.16, parallel composition is used to specify that there must be no collision during task execu-
tion. The same effect could be achieved by inserting the forbidden scenario between the initial
node and both

⊙
• nodes of the constrained scenario, which would, however, result in a more

complex diagram.

96 3. Constraints

Acquire Task

Complete Task

Delegate Task

Unregistered Collision

Figure 3.3.16: Parallel composition of scenarios

3.3.1.2 Constraints

The valid scenarios recognized by a TSSD can be further restricted by specifying guards that
constrain the observations that are admissible between situations and introducing time bounds.
The notations we use for specifying constraints are specifically inspired by the Visual Timed
Event Scenario approach [ABKO04].

Constraint Edges. Constraints can appear directly on the temporal connectors defining the
ordering of situations or on dedicated constraint edges that may connect any two situations re-
gardless of their relative position in the diagram. Constraint edges are drawn as curved, dotted
connectors between situations. They have no direction.

Guards. Forbidden scenarios provide a generic notation for prohibiting certain observation se-
quences between any two situations of a required scenario. However, as subsequent situations
may be observed in the same system state, a forbidden scenario forbidding C between A and
B requires A ∧ (¬CU (B ∧ ¬C)), i.e. B will not match if C is observed at the same time.
While it would be possible to prohibit C only strictly before B is observed by placing a non-
zero time constraint on the inhibitor leading from C to B, this seemed unnecessarily complex,
particularly if the forbidden scenario consists of a single situation. In order to directly support
the common idiom that a situation is forbidden between two situations, we introduce guards as a
more lightweight notation. By annotating a connector from A to B with a situation C, written as
A ¬C I B, we forbid compatible observations for C between two compatible observations for
A and B, i.e. require A∧ (¬CUB). Additionally, it is possible to constrain the interval between
two observations on concurrent branches of the diagram using a constraint edge A · · · ¬C · · ·B,
which cannot be expressed using a single forbidden scenario as this would introduce an implied
temporal ordering.
When specifying a guard in a diagram, we link the forbidden situation to the connector with a
line. As the situation is forbidden, it is drawn in the style of forbidden scenarios, i.e. dark red
and dashed, albeit with a slightly bolder border. See Figure 3.3.17 for an example: While inside
the critical section, the shuttle must not be disconnected from the controller.
In Figure 3.3.18, we use a constraint edge in order to specify a constraint spanning multiple
situations.
As a natural extension, we also allow specifying required situations A C I B that define
invariants that always need to hold between the two situations in order to eliminate the need for

3.3 Temporal Properties 97

Enter Critical
Section

Leave Critical
Section

Disconnected

Figure 3.3.17: A forbidden guard

Acquire Task Execute Task Complete Task

Cancel Task

Figure 3.3.18: A forbidden guard spanning multiple situations

unintuitive double negations. Their border is drawn in the style for required elements, i.e. as a
dark green solid line. See Figure 3.3.19 for an example: The shuttle needs to be registered with
the controller while inside the critical section. As the example suggests, it is easy to convert the
two types of guards into each other by negating the contained SDD.

Enter Critical
Section

Leave Critical
Section

Registered

Figure 3.3.19: A required guard

Note that A A I B is different from A IIB – the former just requires that at any time
between the two observations, some instance of A can be observed, while the latter requires that
a specific observation of A remains valid. The example A A I B brings up an interesting
point: As variables may not be rebound and the same variables may thus not be quantified twice
in the same branch, the free variables of a situation reference’s contained SDD are implicitly
renamed to make their names unique. A A I B therefore actually corresponds to A A′

I B,
where A′ is the situation that is derived from A by renaming A’s free variables.

Strict situations. There are four commonly used idioms in connection with guards that are
supported by a logical extension of the syntax.

Select TaskReceive Requests Complete Task

Figure 3.3.20: Strictly next situation

The standard situation semantics only ensure that the same observation cannot be made earlier.
However, it is frequently desirable to require that a situation should not have matched at all
before it is observed. In the example in Figure 3.3.20, we would like to require that the task that is

98 3. Constraints

selected is actually the first one to be selected, i.e. that no other task has previously been selected
by the same shuttle (this also excludes that the same task is selected again later). Completion of
the scenario can thus only be achieved by completing the first selected task – the shuttle may select
and complete other tasks, but this is not recognized by the scenario. This effect can be achieved
by placing a situation on a connector leading to itself as a forbidden guard. As a more compact
notation, it is possible to ’bend’ the forbidden guard on top of the situation itself, which is then
drawn with an additional slightly bolder dashed dark red border. The situation is then marked as
strictly next.

Planned Route ReservationRequest Route

Figure 3.3.21: Strictly previous situation

The same concept can be applied in the other direction as well: If a situation is placed on one of its
outgoing connections as forbidden guard, the scenario will only accept the last observation that
is made for the situation. In the example in Figure 3.3.21, requests are superseded by subsequent
ones. Such a situation is marked as strictly previous. A situation may have multiple guard
constraint connectors and be marked strictly previous and strictly next at the same time.

Use ResourceAcquire Resource Release Resource

Figure 3.3.22: Strict situation

In LSCs, the message types that appear in a scenario are forbidden where they are not explicitly
allowed. This behavior, which is useful to enforce strict orderings between situations, can be
emulated by placing a forbidden guard for every situation on every connector within the scenario
that is not coming from or leading to a pseudostate. As explicitly specifying this would result in
an excessive number of guards, however, it is possible to express this property by simply placing
an additional slightly bolder dashed dark red border around the situation without connecting the
border to any connectors, which basically says ’required here, forbidden elsewhere’. Such a
situation is called strict. In the example in Figure 3.3.22, the resource may only be used, exactly
once, between acquiring and releasing it (for each acquisition).

Initialize System

Figure 3.3.23: Globally strict situation

Strict situations do not constrain the connectors from and to pseudostates in order to allow the
scenario to match repeatedly during the same run of the system, provided that the instances do
not overlap. If the intention is to actually express that the scenario appears only once, the scope

3.3 Temporal Properties 99

of a strict situation can be extended to the connectors either coming from initial nodes, leading
to

⊙
• nodes, or both, by placing the corresponding symbol on the node border. The situation

then becomes globally strict. Figure 3.3.23 encodes the requirement that the system is initialized
exactly once.
An important point to note for any strict situation is that situations are structural properties, not
events, and may depend on bindings from previous observations. The guards can therefore only
be violated on a connector where all the situation’s bound variables are already bound, as these
will otherwise be bound to ⊥ and never match. Implicitly quantifying these variables does not
yield the expected behavior, as the guards would then no longer differentiate between traces.
In the above example, only the first one among all the users who acquire resources would be
allowed to use a resource, which is hardly the intended behavior.

Time constraints. While the temporal connectors constrain the temporal ordering of observa-
tions, they place no restriction on the elapsed time, making it impossible to prove that a finite
trace will not eventually fulfill the scenario. While we can say that a required scenario has not
occurred yet, there is no specific point where we can stop waiting for eventual completion. In
particular, we lack a means of requiring a practically relevant notion of progress as any finite
period of inactivity would be acceptable.
However, by means of time constraints, we can specify an interval defining the permitted delay
between related observations for two situations A and B. The interval is defined by a lower
bound l and an upper bound u and may be either open or closed at both ends. A time constraint
can either be placed directly on a temporal connector (A [l...u]I B) or on a dedicated constraint
edge (A · · · [l . . . u] · · ·B). In connection with a constraint edge, the time constraint does not
imply an ordering, i.e. that A has to precede B or vice versa – the situations may even be on
different branches.

[5..10]
Acquire Task Complete Task

Figure 3.3.24: Basic time constraint

Figure 3.3.24 shows a simple time constraint bounding an eventually connector.

Acquire Task Execute Task Complete Task
(0..4] [5..∞)

[2..10]

Figure 3.3.25: Multiple time constraint edges

Figure 3.3.25 presents an example with multiple constraints. As all constraints need to hold, the
more restrictive bounds dominate the less restrictive ones. Time bounds need to be consistent,
i.e. not mutually exclusive and thus contradictory.

100 3. Constraints

Execute Task

Reached Destination

Notify Recipient

Complete Task [0..15]

Figure 3.3.26: Constraint across branches

In the example in Figure 3.3.26, the maximum delay between two parallel activities is con-
strained, but the situations do not have to occur in any particular order.

Acquire
Task

Execute
Subtask1

Execute
Subtask2

Complete
Subtask1

Complete
Subtask2

Complete
Task

[8..20]

Figure 3.3.27: Constraint on the first/last observation in a set

There are two dedicated pseudostates, the first of and the last of node. The former matches
when the first of the attached situations is observed, while the latter matches when the last of the
attached situations is observed. Using these nodes, it is possible to specify a constraint on the
time that elapses between the first observation for one set of situations and the last observation
for another set of situations. This is typically used on parallel branches indicating a partial
order between observations, as illustrated in Figure 3.3.27: The subtasks may not be executed
independently of each other, but need to respect a time constraint for the delay between the begin
of the first subtask and the end of the last subtask.

Homomorphism. If the same situation appears multiple times in the same TSSD by reference,
its quantified variables need to be renamed internally in order to avoid binding the same variable
twice. As graph isomorphisms are used for matching and different variables are thus not bound
to the same graph element, the second situation will not match the same subgraph as the first.
While homomorphism for the affected variables can be permitted at the SDD level, this defeats
the purpose of using situation references. We therefore allow placing a situation homomorphism
constraint at the TSSD level as a shortcut for the corresponding expansion at the level of the
contained SDDs.
Figure 3.3.28 provides an example: Two different services may be performed, but the same
service may also be performed twice (note the time constraint that prevents the second situation
from simply matching the same observation as the first).

3.3 Temporal Properties 101

Perform ServicePerform Service
(0..∞)

Figure 3.3.28: Allowing homomorphism across multiple instances of a situation

3.3.1.3 Quantification

TSSDs provide quantification on several different levels, both with respect to structure and time.
As observations are generated by SDDs, a situation can be observed as structurally equivalent but
distinct instances of the same pattern. This is quite different from typical event- or message-based
approaches that do not consider structure and cannot differentiate between multiple (concurrent)
instances of the same event.
Consider a scenario encoding a simplified undergraduate program where students are required
to sign up for, attend, and eventually complete at least one course, but may sign up for any
number of courses. When trying to recognize all conformant sequences, we have to relate the
correct observations to each other, i.e. keep track of which student is completing which course,
and that he or she had actually signed up for it. The example illustrates why TSSDs are unlike
statecharts: We do not only have to keep checking for new students, but also whether a student
who is already attending a course has signed up for another one, as we might otherwise miss
the one that is actually completed. A situation, once enabled, will keep generating additional
observations, which means that a TSSD can ’be’ in many states at once as it represents a set of
traces.

Situation level quantification. As we have seen, universal quantifiers in SDDs have made it
necessary to introduce candidate sets. Universal quantification can be used in TSSDs, even
though it is more common to use existential quantification or restrict universal quantification to
local scopes. When evaluating the TSSD, we have to propagate the generated candidate sets and
match all subsequent situations based on them, i.e. for every single witness, just like the child
nodes of universally quantified nodes in an SDD. Consider the property ’If all tasks are approved
(at the same time), then eventually all (these) tasks have to be completed (at the same time)’,
which could be written by universally quantifying over all approved tasks in the first situation.

Scenario level quantification. A more typical requirement would be ’Every individual task
that is approved eventually needs to be completed’. Here, the involved SDDs are existentially
quantified, describing a single task and its states. However, we want this scenario to hold every
single time an approved task is observed.

Triggers. This is achieved by means of trigger blocks. Whenever the sequence within the
trigger block has been observed in its entirety,3 the corresponding trace becomes a root trace.
The TSSD is then only fulfilled if an extension of every root trace successfully completes the

3In order to allow branches inside the trigger, the trigger is completed as soon as a situation inside the trigger
block that does not have a successor inside the trigger block is observed.

102 3. Constraints

triggered scenario. On the other hand, the TSSD is implicitly fulfilled and places no constraints
on the system behavior if the trigger is never completed.
Triggers perform a function similar to precharts in Live Sequence Charts [HM02]. Adopting the
corresponding terminology, we distinguish between universal TSSDs, which possess a trigger
and need to be fulfilled every time it matches, and existential TSSDs, which do not have a trigger
and need to match just once during the execution of the system. Existential TSSDs can be seen
as a special case of triggered TSSDs – they are implicitly triggered by their initial node, which
matches immediately, but only once.

Bid for Task Acquire Task Execute Task Complete Task

Figure 3.3.29: A complex trigger block

In Figure 3.3.1, we wanted the scenario to be triggered and successfully completed for all cases
when a matching shuttle-controller-pair is detected. Here, a trigger consisting of a single situation
is sufficient. However, arbitrarily long initial sections of a TSSD can be placed inside a trigger.
Figure 3.3.29 provides an example with a non-trivial trigger block containing a sequence of two
situations. A root trace is only created once the task is acquired.

Enter Service Receive Request Accept Task Complete Task

Figure 3.3.30: Multiple trigger blocks

It is possible to have multiple triggers in the same TSSD. In Figure 3.3.30, each shuttle entering
service needs to complete every task it accepts. Note that the scenario fails if a shuttle does not
accept any task at all because the first trigger has already created a root trace.

Acquire
Resource

Release
Resource

User
Authenticated

Figure 3.3.31: Antecedent triggered scenario

As a powerful feature, triggers can require the presence of antecedent observations. In Figure

3.3 Temporal Properties 103

3.3.31, we require that a user acquiring a resource eventually releases it and was previously
authenticated.

Plan Route Use Route

Reserve Route

Figure 3.3.32: Intervening triggered scenario

Likewise, the scenario that is defined in Figure 3.3.32 requires that a route was reserved sometime
between being planned and actually being used (but only if it is actually used).
The ability to express past and intervening triggered scenarios requires a slight extension of the
syntax. Without the trigger block, Acquire Resource would never match without a compatible
observation for User Authenticated, nor would Use Route ever match without Reserve Route. A
violation would thus not be recognized. We therefore define that when evaluating whether a
trigger block is completed, only those previous situations that are directly connected to an initial
node are considered as preconditions, not those without predecessors or only with predecessors
from the trigger block itself. When defining the formal semantics, we present a way to rewrite
past and intervening triggered scenarios in a way that makes this explicit.

1 Stable

Figure 3.3.33: Globally triggered scenario

A global trigger can be used to express properties that need to hold in every state (i.e. of the
form AG ϕ) such as fairness (i.e. AG(AFP)). The example in Figure 3.3.33 expresses the
requirement that the system always reaches a stable state again, which is expressed by means
of a trigger block containing a node marked with 1, which represents a trivial situation that is
trivially true and matches every time compatible traces for all its predecessors are present. The
trivially true situation thus generates a new root trace in every system state.

Sequence labels. We allow attaching labels to a sequence in a TSSD by connecting the first and
last element of the sequence with a special dotted blue arrow. This can be used to structure the
diagram and may be useful for monitoring, e.g. for listing all currently triggered instances of the
sequence. In Figure 3.3.34, the scenario is structured into a selection phase and an execution
phase.

104 3. Constraints

Bid for Task Acquire Task Execute Task Complete Task

Task ExecutionTask Selection

Figure 3.3.34: Sequence labels on a simple scenario

3.3.1.4 Subscenarios

Modularity is provided by the ability to invoke a previously defined subscenario as part of a
TSSD. Subscenarios perform a similar function as pattern references do in SDDs.

Definition. A subscenario definition begins with a λ situation which, just like an SDDP’s λ
node, binds roles and parameters, but is otherwise a regular TSSD. As in parametrized SDDPs,
the parameters in subscenarios may appear anywhere where constants would be allowed. A
subscenario may reference other subscenarios, which is the only way to specify loops as TSSDs
need to be acyclic. A subscenario can encode an∨-join by encapsulating the alternative branches.
In the subscenario in Figure 3.3.35a, a shuttle registers with a base station.

Invocation works is similar to pattern references, with one notable difference. In the context of
scenarios, we will often need to access the bindings that are created by the subscenario in subse-
quent situations of the invoking scenario. For structural properties, we can simply existentially
quantify the free parameter, letting the SDDP filter the invalid bindings. Using this approach for
subscenarios would not only be inefficient, but potentially impossible, as the bound element may
not yet exist at the time of invocation.
Therefore, the invocation itself takes place inside a λ-node that allows exporting arbitrary bind-
ings from the subscenario. In Figure 3.3.35b, the registration pattern is created in the subscenario
and exported to the main scenario by assigning pattern → r1.

Scenario situations are the equivalent of scoped nodes in SDDs. They are situations, drawn with
a bold border, that may contain a sequence of situations and pseudostates. They again serve as
parentheses and can be defined using the existing mechanism for modularity, i.e. subscenarios. A
typical example for their use is the explicit ∨-join (see Figure 3.3.36), which allows us to specify
the following suffix only once.
The embedded scenario is evaluated in the context set by the surrounding scenario. Its initial
node cannot match earlier than any situation preceding the scenario situation in the surrounding
scenario, and a

⊙
• node may and need not match later than any subsequent situation. Nonethe-

less, they still match as early respectively late as possible within the given constraints. A ’global’
property inside a scenario situation (see Figure 3.3.37) thus constrains exactly the interval be-
tween the surrounding situations (e.g. A and C (and is thus equivalent to a required guard). Choos-
ing a different semantics, i.e. interpreting the

⊙
• node inside the scenario situation as the end of

the surrounding scenario, would break the monotonicity of the scenario interpretation, i.e. a valid
observation for C could later be invalidated because B ceases to be valid.

3.3 Temporal Properties 105

... pattern created

pattern

entry : Shuttle

pattern : Registration Pattern

registry : Base Station

pattern

Registration

registry : Base Stationentry : Shuttle

Registration: entry, registry

entry registry

�

�

a. Definition of the subscenario

Shuttle needs to register

b1, s1

s1 : Shuttle b1 : Base Station

b1, s1

Registration pattern with base station

s1 : Shuttle

r1 : Registration Pattern

b1 : Base Station

Registration

b1 : Base Station

s1 : Shuttle

r1 : Registration Pattern

Registration

Registration: r1

entry registry

entryregistry

�

�

�

entrypattern
registry

b. Invocation of the subscenario

Figure 3.3.35: Subscenario

106 3. Constraints

A B
D

C
E

Figure 3.3.36: Explicit ∨-join

A B C

Figure 3.3.37: A globally required property inside a scenario situation is limited to the surround-
ing interval

Loops. For convenience, TSSDs provide a dedicated syntactical construct for specifying loops
based on scenario situations. Internally, these loops can be represented as recursively defined
subscenarios.

A
B

C

+

Figure 3.3.38: A loop that needs to match at least once

A loop is marked with � or �+ as in Figure 3.3.38. It needs to be observed at least once, but,
as enabled situations keep generating additional traces, also greedily matches any number of
iterations of the loop.

A
B

C

Figure 3.3.39: A loop that is matched zero or more times

An optional loop is marked with �∗ as in Figure 3.3.39. It is equivalent to a regular loop and
an additional connector bypassing the loop, i.e. does not need to be observed at all, but may be
observed any number of times.
Finally, a bounded loop is marked with � [l..u] as in Figure 3.3.40. It needs to be observed at
least l and at most u times. �+ is thus equivalent to � [1..∞], while �∗ is equivalent to � [0..∞].
Internally, the bounded loop can simply be unrolled or, more compactly, be represented by a
parametrized recursive subscenario that is decreasing the bounds in each iteration.

3.3 Temporal Properties 107

A
B

C
[1..3]

Figure 3.3.40: A loop that is matched a bounded number of times (1 to 3)

[0..5]

Use
Service

Figure 3.3.41: The user uses services, no more than 5 times altogether

Figure 3.3.41 illustrates two idioms that are relevant in connection with loops: An upper bound
is really only meaningful if the TSSD contains guards forbidding ’unobserved’ iterations, e.g. by
making one situation in the loop (globally) strict. Secondly, if the user does not have to use
five different services, but may use the same service several times, we need to include a self-
referential homomorphism constraint that is expanded when the loop is unrolled.

3.3.2 Formal Semantics

Clear and intuitive semantics are of central to the usability of a temporal logic, as the problems
in reading and writing non-trivial properties in LTL or CTL [CGP00] witness. Formalisms with
compact semantics based on very few basic operators are easier to implement and analyze, but
require large and complex formulae for encoding even simple real-world properties. TSSDs take
the opposite approach and sacrifice an elegant formalization for the ability to specify temporal
relations such as sequences, partial orders, or triggered reactions in an intuitive way. The notation
is not without its subtleties, but these concern the interaction of temporal and structural patterns
– a problem that is ignored by other formalisms, which simply treat propositional and temporal
logic as orthogonal aspects that need to be integrated by the modeler.
As TSSDs constrain the structural evolution of a system, we are not concerned with individual
states, but sequences of states. As the system is represented by a graph transformation system
(GTS) as defined in Definition 2.2.14, each state is represented as a graph, and propositions in
the form of state and path formula can be specified as discussed in Section 2.2.2.5.
We will first define the semantics of TSSDs, based on the formalization of GTS and of SDDs,
and then discuss how they relate to LTL and extensions of LTL with time constraints. In order to
facilitate formal analysis, many syntactic features such as the different connector types, required
guards, intervening or past triggered scenarios, and situation references are expressed using a
more compact semantic kernel.

108 3. Constraints

3.3.2.1 Definitions

System. The system the TSSD is monitoring or verifying is given as a typed GTS Y . While for
SDDs, we checked whether a particular state satisfied the specified structural property, we are
now interested in the question whether a particular path π (as defined in Section 2.2.2.4) that has
been generated by Y (or is currently being generated by Y) satisfies the TSSD. The states of the
path π are π[i] and occur at time T (π, i). Additionally, we define

T−1(π, t) := i | T (π, i) ≤ t < T (π, i+ 1) (3.3.1)

as the inverse of T that returns the index of the current state for a time t. We write π−1[t] as a
shortcut for π[T−1(π, t)].

Diagram structure. A TSSD D consists of a set of situations and pseudostates UD. A situation
U is characterized by its SDD SU . We have var(D) :=

⋃
U∈UD

var(SU) as the free variables
of the TSSD. For each situation U ∈ UD, we define predF (U), predI(U), and predU(U) as the
predecessor situations of U connected to it by F, I, and U connectors. pred(U) := predF (U) ∪
predI(U) ∪ predU(U) is then the set of all direct predecessors of U . prefix(U) is the transitive
closure over pred, i.e. all direct and indirect predecessors. Likewise, we define succ(U) with its
subsets succF (U), succI(U), and succU(U) and the transitive closure suffix(U) for the successors
of U based on pred(U).
The set initD contains the initial pseudostates αD of the TSSD. The set termD contains all

⊙
•

nodes of D.

Trigger Blocks. We encode trigger blocks by defining triggersD as the set of situations that
complete a trigger block of the TSSD, i.e. are inside a trigger block but have no successors
inside the trigger block. If D is universal, those are the situations U inside a trigger block for
which all successors U ′ ∈ succ(U) are not inside the trigger block. If D is existential, we have
triggersD := initD.
In order to be able to evaluate past and intervening triggered scenarios without having to change
the standard evaluation semantics (situations can only be observed when all predecessors have
been observed), such scenarios are internally encoded using additional trivially true situations.
The trivially true situation preceded or followed by an immediately connector represents a neutral
element that can be added between any two situations without changing the semantics. This is
used to move the references to past or intervening events outside of the trigger.

A B

P

a. Syntax

1

A B

P

b. Internal encoding

Figure 3.3.42: Past triggered scenario (end of trigger block)

3.3 Temporal Properties 109

Figure 3.3.42 illustrates how the past triggered scenario (Figure 3.3.42a) is rewritten (Figure
3.3.42b) so that A can match without P, but the scenario will not complete unless, immediately, a
P that was observed before A is found.

A B

P

C

a. Syntax

A B

P

C

1
b. Internal encoding

Figure 3.3.43: Past triggered scenario (inside trigger block)

Figure 3.3.43 illustrates that this also works if the past triggered scenario is connected to an
element of the trigger block other than the last.

A B

P

C

a. Syntax

A B

P

C

11

b. Internal encoding

Figure 3.3.44: Intervening triggered scenario

In Figure 3.3.44, an intervening triggered scenario is encoded. The first trivially true node is re-
dundant, but is useful because it provides a simple procedure for encoding any triggered scenario
(a sequence of trivially true situations, one for every situation inside the trigger block that has
outside connections), even if past and intermediate scenarios occur simultaneously as in Figure
3.3.45.

A B

Q

C

P

a. Syntax

A B

Q

C

1

P

1

b. Internal encoding

Figure 3.3.45: Intervening and past triggered scenario

SDD adaptation. The SDDs in a TSSD are not independent of each other, but extend the candi-
date sets generated by their predecessors. Given an SDD S and its predecessor S ′, we define

λS[CS′] := {(λS, ξ) | ∃(n, ξ) ∈ CS′ ∧ eval(CS′)} (3.3.2)

110 3. Constraints

which takes the bindings of a valid final candidate set CS′ for S ′ and creates a corresponding
candidate set at the initial node λS of S.

λS[AS′] := {λS[CS′] | CS′ ∈ AS′} (3.3.3)

performs this for a whole result set. We accordingly extend parent(n) so that the λ node of SU

has all the (1) (and transformation) nodes of the SDDs of all situations in pred(U) as parents in
order to make the evolved from relation C v C ′ applicable across situations.
Situation references allow reusing the same situation definition and, in particular, the same con-
tained SDD. In order to make sure that all quantified variable names are unique, we define a
relabeling function `U which, when applied to the SDD SU , relabels all variables in free(SU)
with globally unique variable names. `U is then also applied to the SDDs of all situations in
suffix(U) so that variable names on the same branch are consistent.
While this allows multiple references to the same situation definition to appear on the same
branch, the graph isomorphisms used for matching ensure that the subsequent instances will
never generate observations of an identical structure, even if the structure becomes invalid and
valid again and the first situation generates a new observation. If a different behavior is desired,
this has to be made explicit by using homomorphism constraints. Internally, this will add the
original variables to the SDD definitions of the subsequent situations and connect them to their
renamed counterparts with homomorphism links.

Forbidden Scenarios. Basically, there is no such thing as a forbidden scenario at the seman-
tical level, only inhibitors. Inhibitors are connectors that keep the situation they point to from
matching when they are enabled, whereas regular connectors need to be enabled in order to al-
low their target to match. For every situation U , we identify the inhibitors by means of the set
inhibit(U) ⊆ pred(U), consisting of the situations U ′ connected to U by inhibitors. Only the
last connector in a forbidden scenario is an inhibitor; all other situations and connectors of the
forbidden scenario are just normal elements of UD. The TSSD in Figure 3.3.46a is thus inter-
nally represented as Figure 3.3.46b. Only for convenience, situations from which all paths to a⊙
• node lead across an inhibitor, and the connectors leading to them, are displayed as forbidden

elements to make the undesirable parts of the scenario stand out.4

Given a situation U , UI ∈ inhibit(U), and UT as the last node in prefix(UI) that is not part of the
forbidden scenario, or αD, we add UT to predF (U), i.e. a connector as shown in Figure 3.3.46c.5

This expansion eliminates the need for a special treatment of TSSDs that only consist of forbid-
den elements. While the intended semantics are not obvious from Figure 3.3.47a respectively
3.3.47b, the expanded version in Figure 3.3.47c directly ensures that the TSSD succeeds unless
an A is found.

4In the – rather theoretical – case that we explicitly want to specify a forbidden scenario within a forbidden
scenario, the tool will automatically turn the coloring off so that the actual inhibitors can be identified.

5As an optimization to accelerate matching, we can also choose to add a trivially true situation U1 as padding
between UI and U as part of predI(U) and transfer all guards and constraints between UI and U to the connector
between UI and U1, as this will speed up evaluation of Equation 3.3.18.

3.3 Temporal Properties 111

A

B

D

C

E

D

a. Presentation

A

B

D

C

E

D

b. Syntax

A

B

D

C

E

D

c. Internal encoding

Figure 3.3.46: Encoding a forbidden scenario

A

a. Presentation

A

b. Syntax

A

c. Internal encod-
ing

Figure 3.3.47: Encoding of a forbidden property

SDD restriction. In order to verify the requirement imposed on a situation U with SDD SU by a
U connector, we need to derive an SDD S ′U that verifies for a valid candidate set C generated by
SU whether it continues to be valid in the present state. S ′U can be obtained by eliminating the
quantifiers for the free variables in free(SU) from SU .
We introduce S|V as notation for the SDD S ′ that removes the quantifiers for all variables V ∈ V
from S but is otherwise identical to S. We define

S|V := S ′ | NS′ = NS ∧ free(S ′) = free(S) \ V (3.3.4)
S|S′ := S|V | V = free(S ′) (3.3.5)
S|C := S|V | V = {V | ∃ξ | (n, ξ) ∈ C : ξ(V) 6= ⊥}. (3.3.6)

We can then define S ′U := SU |SU
.

Guards and strictness conditions are stored in a function guard : UD × UD → ℘(UD), mapping
pairs of situations to a set of situations that are forbidden between them. A required situation U
with SDD SU is treated as a forbidden situation with guard SU , the negation of the SDD, so that
all guards represent forbidden situations. No guard for a pair of situations may thus match for
any state between the observations for the pair (but may match in conjunction with the second
observation).
U connectors are reduced to F connectors with an additional guard ensuring that the generated
candidate set has not ceased to satisfy the structural constraint. We require that

∀U ′ ∈ predU(U) : ∃UG ∈ guard(U ′, U) : SUG
:= SU ′|SU′

). (3.3.7)

112 3. Constraints

Time constraints are encoded by a function

delay : ℘(UD)× ℘(UD) → I, (3.3.8)

where I is the set of all intervals [l, u], (l, u], [l, u), and (l, u) with l ∈ IR and u ∈ IR∪∞. delay
assigns an interval constraining the permitted delay between the earliest element of the first and
latest element of the second set. The function is total: Unless defined otherwise, delay returns
[0,∞). For simple time constraints, the two sets contain a single element. We further require
that

∀U ′ ∈ predI(U) : delay({U ′}, {U}) = [0, 0], (3.3.9)

thus reducing the I connectors to F connectors with time constraints.

Observations. Provided a TSSD D and a path π, we define an observation o as a tuple (U, C, t)
of a situation U , a candidate set C, and a time t. Note that this implies an extension of the
codomain of the binding functions ξ contained in C from the nodes and edges of a single graph
G to the nodes and edges of all type conformant graphs G[TY] for Y ’s type system graph TY . We
use OD(π) to denote the set of all possible observations for D and π with

OD(π) := {o = (U, C, t) | C ∈ [[SU]]π
−1[t]}. (3.3.10)

Traces. A trace ρ ∈ OD(π)∗ is a valid sequence of observations. The question whether or not a
sequence of observations is valid is central to the semantics of TSSDs and discussed in the next
subsection. Note the difference between a path and a trace: as the scenario defined by a TSSD
can occur multiple times during the same run of the system, i.e. in the same path, there can be
many traces within a single path.
In an analogous manner to our definitions for a path π, we define ρ[i] as the ith observation,
T (ρ, i) := t | ∃U, C : (U, C, t) = ρ[i] as the time of the ith observation, ρ−1[t] as the last observa-
tion before time t, and l(ρ) as the length of ρ. The set of all observations on a trace ρ is denoted
by Oρ. We write ρ[U] := (o = (Uo, Co, to) ∈ Oρ |Uo = U) for the unique observation for U in ρ.
For observations on a trace ρ, we define

pred(o) := {o′ | o = (U, C, t) ∈ Oρ∧
o′ = (U ′, C ′, t′) ∈ Oρ ∧ U ′ ∈ pred(U)} (3.3.11)

and, analogously, prefix(o), succ(o), and suffix(o).
For two traces ρ and ρ′, we write ρ v ρ′ if ρ is a prefix of ρ′.

Trace trees. The set of traces generated by a TSSDD for path π is stored in a trace treeR. Each
tree node represents an observation, every path from the root node represents a trace. The tree is
simply built from the set by reusing common prefixes; all set operations are thus defined for the
tree. The set of all observations in R is denoted by OR. If there are multiple initial nodes due to
a parallel composition, the trace tree becomes a trace forest.

3.3 Temporal Properties 113

The trace tree is a tree rather than a DAG because when the two branches of a TSSD reunite in
an ∧-join, we combine the traces for the branches into a new single trace. For that purpose, we
define the notion of observation compatible traces. We define

ρ1 � ρ2 := (∃ρ′ :ρ′ v ρ1 ∧ ρ′ v ρ2 ∧ ∀(U1, C1, t1) ∈ Oρ1 \ Oρ′ ,

(U2, C2, t2) ∈ Oρ2 \ Oρ′ : U1 6= U2), (3.3.12)

i.e. the two traces have a common prefix and afterwards contain no competing observations for
the same situation. We then define the combination of two compatible traces

ρ1 ∪ ρ2 := ρ′ | Oρ′ = Oρ1 ∪ Oρ2∧
∀i | 0 < i < l(ρ′) : T (ρ′, i− 1) ≤ T (ρ′, i). (3.3.13)

Comparing SDDs and TSSDs, an observation can be likened to a binding, whereas a trace cor-
responds to a witness. There is a small difference, however — a witness is a binding that has
arrived at a node, whereas a trace ends at the last situation that has already been matched. Trace
trees play the role of result sets.

3.3.2.2 Situation Semantics

We can now proceed to define the semantics [[U]]πt of a situation U at time t as the trace tree
generated by U until t, containing the valid traces. We can exploit the fact that a TSSD is a
directed acyclic graph to recursively derive this trace tree. A situation’s semantics depend on
the semantics of all previous situations that – both structurally and temporally – came before it,
i.e. ∀t′, U ′ : t′ < t, U ′ ∈ prefix(U).
As we use a continuous notion of time, there would be infinitely many points in time t′ for
which we would have to compute the semantics. However, as the states generated by a GTS are
discrete and there is only a finite number, namely i, of states that have occurred before π[i], we
can restrict our attention to a finite number of observation points in time. We therefore define
[[U]]πt := [[U]]πT−1(π,t), i.e. the semantics for the last state of π reached before t.

The semantics [[U]]πi are computed using a four step process:

1. Identify the sets of traces that satisfy all preconditions for U (structural recursion)
2. Match U for the candidate sets generated by those traces and compute a result set
3. Verify which elements of the result set represent original observations for state π[i]

(temporal recursion)
4. Generate the appropriate extended traces using the new observations.

Computing valid prefixes. Determining the sets of traces that satisfy all preconditions is the
most complex step as most syntactical features (connectors, guards, time constraints, forbidden
scenarios) are treated at this point.

114 3. Constraints

In the following, we treat D, U , π, i, and t = T (π, i) as given. In order to be able to match U ,
there first of all needs to be a set of compatible traces containing a valid trace for every situation
U ′ ∈ pred(U) \ inhibit(U). We combine each such set into a new combined trace. The unfiltered
set (I) of these combined traces is then

RU,i
(I) := {ρ | (ρ =

⋃
ρj∈R′

ρj) ∧ R′ ∈ {{ρ1, . . . , ρm} | (∀ 1 ≤ j, k ≤ m : ρj � ρk)

∧ ∀U ′ ∈ pred(U) \ inhibit(U) : (∃l : ρl ∈ [[U ′]]πi)}}. (3.3.14)

We first validate the time constraints of the TSSD. We consider the observations in the traces ρ,
plus the observation (U, ∅, t) serving as a placeholder for any new observation we might make
for U at time t to ensure that time constraints for the current situations are also considered. We
then require that the maximum time difference between any two subsets of this observation set
observes the bounds set by the delay function. The time-filtered set (II) is then

RU,i
(II) := {ρ | ρ ∈ RU,i

(I) ∧ ∀O1,O2 ∈ ℘(Oρ ∪ (U, ∅, t)) : ∆t ∈ delay(UO1 ,UO2)|
∆t := |max({t|(U, C, t)∈O2})−min({t|(U, C, t)∈O1})|}. (3.3.15)

We then check whether the traces respect all guards. First of all, we need to check whether any
guards involving U and any other Uo in the trace have matched before π[i]:

RU,i
(IIIa) := {ρ | ρ ∈ RU,i

(II)∧
∀(Uo, Co, to) ∈ Oρ : (∀UG ∈ guard(Uo, U) :

(∀j | T−1(π, to) ≤ j < i : [[SUG
]]
π[j]
λUG

[Co] = ∅))}. (3.3.16)

The guards for any two observations in the trace that are on the same branch have already been
verified earlier, before the second observation was generated. However, we need to check the
guards for observations that originate from separate branches that are joined at U , because these
have not previously been verified. The guard-filtered set (III) is then

RU,i
(III) := {ρ | ρ ∈ RU,i

(IIIa) ∧ ∀(U1, C1, t1), (U2, C2, t2) ∈ Oρ |
(suffix(U1) ∩ suffix(U2) ∩ prefix(U) = ∅) :

(∀UG ∈ guard(U1, U2) : (∀j | T−1(π,min(t1, t2)) ≤ j

< T−1(π,max(t1, t2)) : [[SUG
]]
π[j]
λUG

[Co] = ∅))}. (3.3.17)

Finally, we have check for fulfilled forbidden scenarios that could inhibit new observations. If
inhibit(U) 6= ∅, we define Û := U but set inhibit(Û) := ∅ and compute RÛ ,i

(III) using Equations

3.3.14–3.3.17. As we are not excluding the inhibitors this time, the traces in RÛ ,i
(III) also need

to extend the forbidden scenarios. If a trace is valid for Û , it therefore contains a forbidden

3.3 Temporal Properties 115

trace. The corresponding trace in RU,i
(III), which is the trace for Û without the observations for

the forbidden scenarios, is then not valid for U . The inhibition-filtered set (IV) is then

RU,i
(IV) := {ρ | ρ ∈ RU,i

(III) ∧ @ρ̂ ∈ RÛ ,i
(III) : Oρ ⊆ Oρ̂}. (3.3.18)

We then have RU,i
λ := RU,i

(IV) as the set of valid prefixes, i.e. traces for which an observation for
U and the ith state at time t might exist that is a valid extension of the trace.

Generating candidate sets. We now need to compute the observations for U in the ith state.
Each valid prefix ρ ∈ RU,i

λ defines a candidate set that an observation for U could extend. If U
has only one predecessor, this candidate set is just the candidate set of the latest observation in
ρ. However, if U is at an ∧-join, there are multiple observations with multiple candidate sets that
we need to combine. As we have already ensured that the traces for the different branches are
compatible, we already know that these candidate sets do not contain conflicting bindings. If the
situations in the branches contain only existential quantifiers, there is also just one candidate set
as there is just one way to combine the different extensions of each original witness into a new
witness (if {(a1), (a2)} was extended into {(a1, b3), (a2, b4)} and {(a1, c8), (a2, c9)}, the only
combination is {(a1, b3, c8), (a2, b4, c9)}). If there are universal quantifiers, the result is a set of
several alternatives that merely need to contain each required witness at least once in some com-
bination (if {(a1)} was extended into {(a1, d1), (a1, d2), (a1, d3)} and {(a1, e1), (a1, e2)}, one
possibility would be {(a1, d1, e2), (a1, d2, e1), (a1, d3, e1)}). We define the set of these combina-
tions as

combine+(ρ, U) := {C | ∀Ui ∈ pred(U) : ((Ui, Ci, ti) = ρ[Ui] ∧
(∀(n, ξ) ∈ C : ∃(ni, ξi) ∈ Ci : ξi ≤ ξ) ∧
(∀(ni, ξi) ∈ Ci : ∃(n, ξ) ∈ C : ξi ≤ ξ))}. (3.3.19)

This definition includes unnecessarily restrictive candidate sets (e.g. {(a1, d1, e2), (a1, d2, e1),
(a1, d3, e1), (a1, d3, e2)} containing a fourth required witness where three would be sufficient).
We thus remove those candidate sets for which there already is a less restrictive equivalent and
define

combine(ρ, U) := {C | C ∈ combine+(ρ, U)∧
@C′ ∈ combine+(ρ, U) : C ′ ⊂ C. (3.3.20)

We can now define the set of valid input candidate sets as

AU,i
λ :=

⋃
ρ∈RU,i

λ

combine(ρ, U). (3.3.21)

We can then evaluate the SDD SU and have

AU
i := {C | C ∈ [[SU]]

π[i]

AU,i
λ

} (3.3.22)

116 3. Constraints

as the result set containing those candidate sets that match U in π[i].

Generating observations. Classic events (like messages) occur at a particular time. Situations,
however, may have a duration that spans multiple states, which means that the same instance
of a situation could be observed multiple times. If we kept generating observations, this would
defeat the purpose of time constraints. We therefore use the convention that we generate only
one observation per distinct match and do so at the earliest possible time. Two matches are
either distinct if they are characterized by different candidate sets or if they first occurred at
different times — i.e., if a situation (e.g., constraining some attribute) matches, does not match,
and matches again, we generate a second observation. We therefore require that a candidate set
matches U in π[i], but did not match U in π[i− 1]:

AU+
i := AU

i \ AU
i−1. (3.3.23)

In state π[0], there can be no previous matches; we therefore define AU
−1 := ∅.

The generated observations are then

OU+
i := {(U, C, t) | C ∈ AU+

i }. (3.3.24)

Generating traces. We finally need to extend the prefix traces in RU,i
λ with the appropriate new

observations. As we treated all prefix traces together in the previous step (which was required
to be able to properly compare AU

i and AU
i−1), we now need to pick those observations for each

prefix trace which actually evolved from it. We thus have

RU+
i := {ρ.o | ρ ∈ RU,i

λ ∧ o = (U, C+, t) ∈ OU+
i ∧

∃C ∈ combine(ρ, U) : C v C+} (3.3.25)

as the new traces generated by U in π[i]. As the semantics of the situation, we can now define
the trace tree of all traces generated by U until T (π, i), which is

[[U]]πi := [[U]]πi−1 ∪RU+
i . (3.3.26)

We define [[U]]π−1 := ∅ so that [[U]]π0 is properly computed.

Special situations. Initial nodes match once and immediately and thus do not require complex
computations. As the semantics of an initial node αD of D, we define

[[αD]]πi := ((αD, {{((1), τ)}}, 0)) (3.3.27)

for any i.
For a

⊙
• node Ω, the result set AΩ

i computed in step (2) simply contains all candidate sets AΩ,i
λ

generated in step (1).
⊙
• nodes are special because they match as late as possible, which means

that they maintain no history and discard previously generated traces as no longer pertinent. This
entails two significant changes: The set of generated candidate sets is not filtered for

⊙
• nodes

so that
AΩ+

i := AΩ
i , (3.3.28)

3.3 Temporal Properties 117

and the semantics of a
⊙
• node are defined as the freshly generated traces only:

[[Ω]]πi := RΩ+
i . (3.3.29)

Unlike the semantics [[U]]πi of regular situations, the semantics [[Ω]]πi of a
⊙
• node can thus shrink,

e.g. because a forbidden scenario is completed or a guard is violated.
The trivially true situation is similar to

⊙
• nodes in that the result set contains all candidate sets

in A1,i
λ and that the result set is not filtered against the result set for the previous state, i.e. the

trivially true matches in every state where its preconditions are fulfilled. For the trivially false
situation, [[0]]πi is always empty.

3.3.2.3 Scenario Semantics

TSSD semantics. In SDDs, witnesses from the same candidate set can end up at different leaf
nodes. In TSSDs, there is no analogon to a candidate set, and the validity of each trace can be
decided independently.
As the semantics of a TSSD D, we can therefore simply define the union of the trace trees for all
situations of D, i.e.

[[D]]πi :=
⋃

U∈UD

[[U]]πi . (3.3.30)

Completeness and uniqueness. The semantics of a TSSD is defined for arbitrary finite prefixes
of any given path π. As the diagram only contains a finite number of nodes and thus the suffix of
any initial node is finite (suffix(αD) ⊂ UD), and as the number of states in the considered prefix
of π is, by definition, finite, the recursive definition of the semantics always has a natural end
point, both in the structural (at some αD) and temporal (at state i = 0) domain.
The semantics is also unambiguous and unique as there are no non-deterministic choices in the
definition. All possible alternative observations are explicitly considered and represented by
separate traces.

Root traces. Whenever we extend a trace with an observation for a situation in triggersD, i.e. a
situation that completes a trigger block of D, we add the extended trace to the set of root traces
Rrt[D]

i . We can thus define the set of root traces as

Rrt[D]
i :=

⋃
U∈triggersD

[[U]]πi .

TSSD satisfaction. We can now finally define satisfaction of a TSSD. A TSSD D is satisfied by
a path π at time t, i.e., we have eval(D, π, t) = true if

∀ρrt ∈ Rrt[D]
i : (∃ρs ∈ [[D]]πi : (ρrt v ρs ∧ ρ−1

s [t] = (Us, Cs, ts) ∧ Us ∈ termD)),

118 3. Constraints

i.e. for each trace in the set of root traces, there needs to be an extension reaching a
⊙
• node. This

definition covers both existential and universal TSSDs. For existential TSSDs, there will only
be one root trace – the root of the trace tree, generated by the initial pseudostate. For universal
TSSDs, there will be a root trace for every time a trigger block was completed.
Evaluation is focused on a specific state: When the satisfaction condition is not fulfilled, we have
eval(D, π, t) = false even if there are traces that still might be completed to satisfaction in the
future. When monitoring the ongoing execution of a system, this view is too pessimistic and will
lead to an overwhelming number of false positives. On the other hand, eval(D, π, t) = true
does not imply that the property cannot be invalidated in the next state. For model checking, it
may thus be too optimistic.
Using the satisfaction levels for finite-length traces as defined by PSL/Sugar [Ace04, Section
4.4.5], we can differentiate between holds strongly (i.e. now and forever), holds (now), pending
and fails. The result is pending if eval returns false but all root traces are still live and might be
completed; it only fails if there is at least one root trace for which there can be no further valid
extensions, e.g. because of a violated guard, time constraint, or invalidated binding. The result
holds strongly if there are no guards and no inhibitors on the connectors leading to the relevant
termination nodes, which is decidable based on the structure of the TSSD, and no new root traces
can be generated, which can only be decided based on an analysis of the underlying GTS. For
monitoring purposes, we therefore focus on the distinction between holds (true), pending (⊥)
and fails (false).

Negation. The negation D of a TSSD D can be computed by inverting (1) all triggers, (2) all
inhibitors, and (3) conjunction and disjunction. In order to deal with triggers (1), two preliminary
expansion steps are necessary: We have to add a new

⊙
• node, connect it directly to an initial

node, and add an inhibitor from each situation completing a trigger to pointing it. This makes the
semantics that the scenario is satisfied if no trigger is ever completed explicit. We also need to
add all trivial trigger blocks, which consist of (a) trigger blocks containing only a single situation
for which all U ′ ∈ succ(U) are

⊙
• nodes and (b) trigger blocks containing all elements of a

forbidden scenario except those that actually have outgoing inhibitors, to the diagram. We can
then simply invert the triggers by placing each consecutive sequence that is not inside a trigger
block into a trigger block and deleting the existing triggers.
Inverting the inhibitors (2) is effected by simply turning all regular connectors leading to

⊙
•

nodes into inhibitors and all inhibitors into regular connectors. Note that this has to be performed
on the internal, expanded representation.
To achieve (3), all

⊙
• nodes of the diagram are joined into a single node. All ∧ join points are

then split up by duplicating the suffix, creating new alternatives.
This algorithm for negation does not produce the minimal TSSD for expressing the negated
property. The negated scenario contains gratuitous trivial triggers,

⊙
• nodes connected to an

initial state by an inhibitor which can never match, and tautological statements, which can be
removed. Figure 3.3.48 iterates through an example.
Negation can also trivially be expressed by placing the whole scenario into a single forbidden
scenario node.

3.3 Temporal Properties 119

A B C D

a. D, the original TSSD

A B C D

b. D′, the equivalent expansion of D

A
B

C D

c. D′, the negation of D′

A B

C D

d. D, the equivalent reduction of D′, negation of
D

A
B

C D

e. D
′
, the equivalent expansion of D

A B
C D

f. D
′
, the negation of D

′

A B C D

g. D, reduction of D
′
, negation of D, equivalent to

D

Figure 3.3.48: Double negation of a universal TSSD

120 3. Constraints

Example. We now present a small example that illustrates the idea of traces, trace trees, and root
traces. Figure 3.3.49 specifies the property that any process that is ready, i.e. not waiting for any
external resources, must eventually be running until it is terminated. To keep the candidate sets
simple, there are no quantifiers in the SDDs — the bindings generated by the trigger block never
change, while the state is encoded as an attribute.

RDY: Process Ready

 p

- state = ready

p: Process

RUN: Process Running

- state = running

p: Process

TRM: Process Terminated

- state = terminated

p: Process

 Process Termination

Figure 3.3.49: Example 1: The TSSD D

- state = waiting

pa : Process

- state = waiting

pb : Process

a. π at t = 0

- state = ready

pa : Process

- state = waiting

pb : Process

b. π at t = 10

- state = running

pa : Process

- state = ready

pb : Process

c. π at t = 20

- state = waiting

pa : Process

- state = running

pb : Process

d. π at t = 30

- state = running

pa : Process

- state = term.

pb : Process

e. π at t = 40

- state = term.

pa : Process

- state = term.

pb : Process

f. π at t = 50

Figure 3.3.50: Example 1: The path π

Figure 3.3.50 shows the states of a path representing a run of the system that we would like to an-
alyze. As is apparent in state π[5], both processes eventually terminate. Figure 3.3.51 illustrates
the trace treesRt generated byD when evaluated on π. The nodes represent observations, a trace
is a path from the tree root to an observation. The root traces are marked by a bold border around
the triggering observation. Their border is drawn dotted and orange while they are pending, solid
green once they are satisfied (holds), and dashed red once they have failed. In the tree at t = 30,
the dashed red border indicates that this particular trace will never be extended again because the
UNTIL requirement was violated as pa had stopped running. Eventually, an extension of each
root trace reaches the

⊙
• node so that the TSSD whole is satisfied (holds).

3.3.2.4 Subscenario Semantics

Even though they play a similar role, subscenarios are conceptually simpler than SDDPs. The
three main differences are that trace trees are propagated in a linear fashion through the subsce-
nario, that TSSDs already have a mechanism for moving candidate sets between situations, and
that termination is not a practical issue.

3.3 Temporal Properties 121

t = 0

INIT

1 [p]

a. t = 0

t = 10

RDY

1 [p pa]

t = 0

INIT

1 [p]

b. t = 10

t = 10

RDY

1 [p pa]

t = 0

INIT

1 [p]

t = 20

RDY

1 [p pb]

t = 20

RUN

1 [p pa]

c. t = 20

t = 10

RDY

1 [p pa]

t = 0

INIT

1 [p]

t = 20

RDY

1 [p pb]

t = 20

RUN

1 [p pa]

t = 30

RUN

1 [p pb]

t = 30

! RUN

1 [p pa]

d. t = 30

t = 10

RDY

1 [p pa]

t = 0

INIT

1 [p]

t = 20

RDY

1 [p pb]

t = 20

RUN

1 [p pa]

t = 30

RUN

1 [p pb]

t = 30

! RUN

1 [p pa]

t = 40

RUN

1 [p pa]

t = 40

TRM

1 [p pb]

t = 40

OK

1 [p pb]

e. t = 40

t = 10

RDY

1 [p pa]

t = 0

INIT

1 [p]

t = 20

RDY

1 [p pb]

t = 20

RUN

1 [p pa]

t = 30

RUN

1 [p pb]

t = 30

! RUN

1 [p pa]

t = 40

RUN

1 [p pa]

t = 40

TRM

1 [p pb]

t = 40

OK

1 [p pb]

t = 50

TRM

1 [p pa]

t = 50

OK

1 [p pa]

f. t = 50

Figure 3.3.51: Example 1: The trace trees generated by D over π

122 3. Constraints

Invoking a subscenario. As a subscenario may export generated bindings, its invocation in the
host scenario D occurs in a specific λ situation UD. A subscenario B can basically be seen as a
macro that adds its situations between UD and its predecessors pred(UD). The subscenario’s λ
situation UB than extends the witnesses in the candidate sets AUB ,i

λ arriving at UB with bindings
for the roles of B. These bindings are generated from the existing bindings in accordance with
the specification of UD using a rebinding function `B (from var(D) to var(B)), which works
exactly like the rebinding function of the λ node of an SDDP. Likewise, subscenario parameters
are added to the bindings and can be used in constraint expressions.

Returning from a subscenario. The extended candidate sets then progress through B normally.
When they complete the subscenario and reach UD, another rebinding function `D (from var(B)
to var(D)) is used to extend the witnesses in the candidate sets in AUD,i

λ with the new bindings
that are exported from the subscenario. `D also erases the bindings for all variables v ∈ var(B)
from the candidate sets, i.e. resets them to ⊥.

Subscenario instances. When a subscenario is inserted into a TSSD, its situations and roles are
qualified with a unique identifier so that multiple instances of the same subscenario are distinct.
Qualifying the situations is necessary to ensure that there are no multiple observations for the
same situation in the same trace, and to avoid attempts to rebind variables. Qualifying the roles
allows a subscenario B to contain recursive references to itself. Recursive definitions can, of
course, not be expanded statically, but need to be expanded on the fly as required.

Loops, which represent the most frequent application of recursive subscenarios, can be expressed
as tail recursions. The

⊙
• node of an iteration is merged with the first situation of the next

iteration, while the initial node of a subsequent iteration is merged with the last situation of the
previous iteration. As a consequence, the guards on both corresponding connectors need to hold
between the two situations. Bounded loops can be realized by explicitly unrolling them (for
sufficiently small bounds) or by means of parameters that are decreased during each iteration
and used as guards in the appropriate situations.

Completeness and uniqueness. On any finite prefix of a given path π, the semantics of a TSSD
containing invocations of non-recursive subscenarios are uniquely defined as the number of con-
tained situations is guaranteed to be finite. The semantics of a TSSD containing an invocation
of a recursively defined subscenario are equally uniquely defined if the subscenario encodes any
kind of progress, i.e., if the definition requires a state change (e.g. because two of its situations
are mutually exclusive) or includes a time constraint with a non-zero lower bound, as the subsce-
nario can only be observed a finite number of times on a finite prefix of π. In order to ensure that
the semantics definition still holds for a subscenario definition that contains no such constraints
and could thus endlessly match the same state (e.g. by defining only a single non-λ situation), we
have to automatically insert such a non-zero time constraint between iterations that will prevent
the recursive definition of the semantics from evaluating the same state more than once. This
does not reduce the expressiveness of the notation, as the specified property is actually structural
if no progress is required and can therefore be specified using a single situation containing an
invocation of a recursive SDDP, for which we guarantee termination.

3.3 Temporal Properties 123

While such a semantics could be defined, we do not define a semantics for infinite paths on which
a recursive subscenario loops forever as the corresponding situations are actually observed over
and over infinitely often.6 As a trace is currently only considered valid if it has reached a

⊙
• node,

only finitely many iterations of any subscenario are possible in a valid trace. As a consequence,
a well-formed subscenario needs to contain at least one branch without a recursive invocation to
ensure that termination is at all possible.

3.3.2.5 Expressiveness

In Section 2.2.2.5, we have discussed how temporal properties of graph transformation systems
can be specified based on CTL∗. The discussion in [GHK98] proves that it is possible to de-
fine a sound propositional calculus whose elementary propositions are based on graph patterns.
However, in order to discuss the expressiveness of TSSDs, we additionally need a calculus that
includes a concept of time and, in particular, intervals.

Linear Temporal Logic (LTL). Linear Temporal Logic (LTL) is a subset of CTL∗ that is re-
stricted to a single path quantifier, an implied initial A. Given a GTS Y , a set of graph patterns
P and a set of possible bindings XP [G[TY]], with pattern P ∈ P , binding ξ ∈ XP [G[TY]], and
G ∈ G[TY], we define LTL for GTS as follows:

• A graph predicate P |ξ - G and the constants true and false are valid LTL formulae,
• if ϕ is a valid LTL formula, so is ¬ϕ,
• for two valid LTL formulae ϕ and ϕ′, ϕ ∧ ϕ′ is a valid LTL formula,
• for a valid LTL formula ϕ, X ϕ is a valid LTL formula,
• for two valid LTL formulae ϕ and ϕ′, ϕU ϕ′ is a valid LTL formula.
• For convenience, the derived operators F, G, and R are also provided so that for two valid

LTL formulae ϕ and ϕ′, F ϕ, G ϕ, and ϕR ϕ′ are valid LTL formulas.

The semantics of LTL for GTS are then defined as:

• Y,G |= ϕ iff ϕ is true.
• Y,G |= ϕ iff ϕ is a graph predicate and P |ξ - G.
• Y,G |= ¬ϕ iff Y,G 6|= ϕ.
• Y,G |= ϕ ∨ ψ iff Y,G |= ϕ ∨ Y,G |= ϕ.
• Y,G |= ϕ ∧ ψ iff Y,G |= ϕ ∧ Y,G |= ϕ.
• Y, π |= ϕ iff G = π[0] ∧ Y,G |= ϕ.
• Y, π |= ¬ϕ iff Y,G 6|= ϕ.
• Y, π |= ϕ ∨ ψ iff Y, π |= ϕ ∨ Y, π |= ϕ.
• Y, π |= ϕ ∧ ψ iff Y, π |= ϕ ∧ Y, π |= ϕ.
• Y, π |= Xϕ iff Y, π1 |= ϕ.
• Y, π |= ϕUψ iff ∃k | k ≥ 0 : Y, πk |= ψ ∧ ∀j | 0 ≤ j < k : Y, πk |= ϕ

6Note, however, that it is nonetheless possible to specify that some finite scenario should occur infinitely often
using appropriate triggers.

124 3. Constraints

• Y, π |= Fϕ iff Y, π |= trueUϕ.
• Y, π |= Gϕ iff ¬Y, π |= F¬ϕ.
• Y, π |= ϕRψ iff ¬Y, π |= ¬ϕU¬ψ.

TSSDs and LTL. We can now compare the expressiveness of LTL for GTS and TSSDs. 7

Theorem 3.3.1 Timed Story Scenario Diagrams over a given path π are at least as expressive
as Linear Temporal Logic for GTS over π.

Proof. We again prove this constructively by showing that for any LTL formula, there exists
an equivalent TSSD. This construction is mostly trivial, as there is an equivalent for each of
the fundamental concepts of LTL in TSSDs, with the exception of the X operator. As TSSDs
are based on a dense time model, for which the concept of a next state is not applicable, such
properties are only meaningful in conjunction with time constraints.

• P |ξ - G: As any graph predicate can be encoded by means of an SDD, P |ξ - G, true, or
false can be encoded as a situation containing the corresponding SDD.

• ¬ϕ: If ϕ is encoded by D, ¬ϕ is encoded by D.
• ϕ∧ϕ′: If ϕ1 and ϕ2 are encoded by D1 and D2, ϕ1 ∧ϕ2 can be written using two scenario

situations containing D1 and D2 that are connected to the same
⊙
• node.

• X ϕ: As the temporal operators are expressed as connectors in TSSDs, there are no unary
operators. However, if ϕ is encoded by D, X ϕ can be expressed by connecting a strictly
previous trivially true situation that serves as the first operand to D using an eventually
connector (which yields the classic encoding of X as falseU ϕ).

• ϕUϕ′: If ϕ1 and ϕ2 are encoded by D1 and D2, ϕ1 Uϕ2 can be written using two scenario
situations containing D1 and D2 that are connected by an until connector.

• F ϕ, G ϕ, and ϕR ϕ′: Using the above definitions, the derived operators can be defined
in the same way as for LTL. F ϕ does not need to be derived, as it is supported directly by
means of the eventually connector. G ϕ can also be written as B ϕ II

⊙
• . �

Metric Temporal Logic (MTL). An extension of LTL that allows time constraints in the form
of intervals for temporal operators is MTL (cf. [Koy90, AH93]). All temporal operators in MTL
are defined in terms of the U operator. The X operator is subsumed by the F operator as the
concept of a next state is not meaningful on dense time domains. MTL is very expressive and,
e.g., allows encoding the halting problem. Satisfiability of MTL formula is undecidable.

TSSDs and MTL. Any valid MTL formula can be written as an equivalent TSSD:
7As various theorems proving that any LTL formula can be expressed by first-order logic exist, we could conjec-

ture based on Section 3.2.3.6 that any LTL formula could already be expressed by a single SDD. However, this is not
possible because an SDD is limited to a single graph G as its argument, i.e. all nodes are implicitly evaluated on the
same graph. To overcome this, we could, for each state graph of a path, add an attribute indicating the corresponding
state to each node and join the state graphs into a single graph. However, such an abuse of notation would forfeit all
claims to intuitiveness.

3.3 Temporal Properties 125

Theorem 3.3.2 Timed Story Scenario Diagrams over a given path π are at least as expressive
as Metric Temporal Logic for GTS over π.

Proof. As any LTL formula can be written as a TSSD, we only need to show that the extensions
introduced by MTL, namely time constraints on operators, can be expressed using TSSDs. As
TSSDs directly support time constraints on the temporal connectors that encode the temporal
operators, this is trivial. �

Time Point Temporal Logic (TPTL). Another extension of LTL with time constraints is TPTL
(cf. [AH94]). TPTL introduces the concept of clocks which, in a given state, can be defined
(and set to 0) or compared with the a given interval. TPTL is strictly more expressive than MTL
(cf. [BCM05]).

TSSDs and TPTL. Any valid TPTL formula can be written as an equivalent TSSD:

Theorem 3.3.3 Timed Story Scenario Diagrams over a given path π are at least as expressive
as Time Point Temporal Logic for GTS over π.

Proof. Again, we only need to show that the extensions introduced by TPTL can be expressed
using TSSDs. TPTL can only compare times for temporally ordered states, which corresponds
to situations on the same branch in a TSSD. Defining a clock in a state can then be represented
by attaching one end of a constraint edge to the corresponding situation, while a reference to the
clock in a subsequent situation is encoded by attaching the other end of the constraint edge to it.
The interval for comparison is than placed on the constraint edge as a time constraint. �

Conclusion. We have shown that TSSDs are very expressive in the temporal domain. They also
meet the criteria for a temporal logic for real-time system specification proposed in [BMN00]:
They are based on first-order logic, prohibit quantification on time variables, have a metric for
time, use the interval as the fundamental time entity, support a time model that is based on relative
time (though absolute time is also available as the time relative to the initial node), and provide a
limited number of basic operators that can be composed into reusable specialized building blocks
by means of subscenarios.
Finally, with their integrated support for structural properties and their quantification, TSSDs go
beyond the scope of other existing temporal logics in this respect.

3.3.3 Discussion

With Timed Story Scenario Diagrams, we have presented a notation that is very expressive in the
temporal domain, with the added benefit of integrated support for structural properties. Thanks
to the fact that the basic propositions are patterns, the notation can describe and differentiate
between multiple instances of the same event or configuration and even deal with dynamic sys-
tems with a previously unknown, unbounded number of instances. While this can be emulated
in other logics, there is no inherent support and users will have to devise often cumbersome

126 3. Constraints

auxiliary constructions by themselves. Especially in the context of Story-Driven Modeling, the
notation is a natural extension for the specification of behavioral constraints. Again, the nota-
tion is useful both for the documentation and communication of requirements that could only be
captured informally before, and as part of a model-driven design process.
Unlike SDDs, TSSDs are not an implementation level formalism. While it would be possible
to generate operational behavior satisfying a TSSD from a sufficiently detailed specification, the
focus of the notation is on what should be achieved, not how it should be achieved. However, a
TSSD can provide a good starting point for deriving Story Diagrams that ’fill in the blanks’.
When using TSSDs for formal verification, we have to be aware of the theoretical limitations
concerning the verification of time constraints over dense domains and triggered behavior. As
there are undecidability results for formalisms such as Metric Temporal Logic (MTL), which we
have shown to be less expressive than TSSDs, or some of the related advanced features of Visual
Time Event Systems (VTS), it is obvious that many properties that can be specified using TSSDs
will not be decidable. Given the complexity that can result from the inclusion of (dynamic)
structural aspects, even fewer properties will be verifiable in practice. Nonetheless, there are
subsets of the language that are useful while being decidable. For diagrams that are restricted to
the subset of the TSSD syntax that can be mapped to LTL, it would be an option to transform the
specification to the input format of existing LTL model checkers, although this is complicated by
the fact that the atomic propositions in TSSDs are graph patterns, a concept which is not natively
supported by standard tools.
Graph patterns make it simple to describe systems with large or even infinite state spaces. The
support for dense time domains further increases the size of the search space. Instead of a single
path consisting of a countable number of discrete states as for runtime monitoring, verification
needs to account for infinitely many possible different timings for the same sequence of states
unless some discretized approximation is employed. On the other hand, time constraints help
to limit the size of the problem. While an unconstrained enabled situation or subscenario may
keep generating infinitely many new alternative observations, time constraints can define a limit
after which no new observations are possible. Certain problems, such as progress, only become
decidable using finite resources when the scenario is bounded in such a way.
While a complete verification of TSSDs is therefore often not possible, we always have the op-
tion of generating behavioral monitors that verify the correctness of a specific execution trace.
Their implementation can build closely on the formal semantics definition, but needs to intro-
duce suitable optimizations to make the evaluation efficient, especially if online monitoring is
required.

3.4 Conclusion 127

3.4 Conclusion

In this chapter, we have presented a novel visual approach for the specification of temporal
and structural properties. We have shown how UML Object Diagrams as a widely accepted
type of visual diagram can be extended into Story Decision Diagrams for the description of
complex structural conditions. We have also presented enhanced Story Patterns as a lightweight
notation that can act as a replacement for Story Patterns in the context of Story-Driven Modeling.
Story Decision Diagrams have moreover been employed in the context of Timed Story Scenario
Diagrams, timed scenarios which provide a natural way of specifying temporal orderings of
states and events as sequences of observations. The presented constraint notations thus support
both the specification of detailed structural properties and of requirements concerning structural
dynamics in a coherent visual notation.
We have defined formal semantics for all notations, which confirms their theoretical soundness
and provides the required solid foundation for their use in a model-driven design process. We
have compared the notations to related formalisms and have shown that they are very expressive
in their respective domains. In spite of their expressive power, applying them is comparatively
straight-forward. This aspect is studied in more detail in Chapter 6, where we also present the
available tool support. While some of their advanced features necessarily place limits on their
decidability, the notations are nonetheless a suitable foundation for model-driven verification and
validation activities. We discuss the relevant methods in more detail in Chapter 5.

128 3. Constraints

Chapter 4

System Design

4.1 Introduction

In the preceding chapters, we have presented and integrated techniques for the specification of
component behavior, structural adaptation, and real-time communication protocols and have in-
troduced powerful notations for expressing constraints on all of these aspects. We now turn to the
discussion of the conceptual and architectural principles that will allow us to apply these tech-
niques to the problem of designing adaptive behaviors for software-intensive systems situated in
complex dynamic environments.
Software-intensive systems are typically distributed with multiple loci of control. Particularly
when the interacting components are heterogeneous or represent independent entities (e.g. com-
panies), it is therefore plausible to view the different components as autonomous actors whose
behavior is only partially known and cannot be deterministically predicted. This is especially
true of self-optimizing systems (cf. [FGK+04, p.22]), which are capable of reflecting on their
own objectives and evolving their strategies and behaviors in response to their environment.

Agents. It is consequently a common interpretation to view the components as agents. While a
universally accepted definition of this term has been the subject of much debate (e.g. cf. [Kle03]
for an exhaustive discussion), we believe that it is helpful to apply the label to any independent
component pursuing some form of objectives. This broad definition is compatible with the preva-
lent view in pragmatic approaches to agent-oriented software engineering, which is based on a
weak notion of agency [WJ95a, Woo00] which requires autonomy, proactivity, reactivity, and
interaction, but no artificial intelligence.
Because agent-oriented abstractions are designed to describe loosely coupled interactions be-
tween autonomous entities, they are a good fit for describing the considered class of software-
intensive systems. While agents are often styled as a revolutionary paradigm shift, they should
rather be seen as an evolutionary extension that can build on a wealth of experience concerning
the design of distributed information systems. After all, the adoption of agents can only hide
some of the complexity arising from distribution and concurrency, not eliminate it.

130 4. System Design

Coordination. Most methodologies for multi-agent system design focus on the specification
of complex agent interactions using a social system metaphor, which is intuitive to apply but
difficult to formalize. From a software engineering point of view, the key challenge is to constrain
and coordinate these interactions in accordance with the given requirements.
Traditional approaches for the design of safety-critical systems impose tight restrictions in order
to achieve a maximum degree of predictability. This is apparently at odds with concepts such
as autonomous agents or self-optimization, which necessarily make a system less predictable
– an effect which is multiplied in networks of such systems. Suppressing or overly restricting
these effects would be self-defeating, however, because much of the power of networked systems
stems from the interactions of their elements and the complex behaviors that emerge from them.
The fact that seemingly chaotic interactions can yield purposeful large scale behavior is har-
nessed in different fields: Swarm intelligence (cf. [KE01]) uses random interactions based on
sets of basic rules in order to solve complex optimization and coordination problems. Probabilis-
tic protocols (cf. [Gup04]) achieve significant increases in efficiency for the price of only a slight
reduction in reliability. In [KT06], we even use swarms of selfish agents to actually increase the
reliability of a system. While there are established patterns that can be reused for solving specific
problems, the overall design process for emergent behaviors is driven by experimentation result-
ing in iterative refinements, which leads to less predictable results than conventional analytical
approaches.
In order to reconcile these perspectives, we build on our work towards a separation of concerns
in multi-agent systems (cf. [KG05]). By introducing dedicated architectural views for differ-
ent aspects of the system, we can, to some extent, study each concern in isolation and reduce
the complexity of the design. We can moreover target the use of more restrictive techniques
for safety-critical systems to the affected views only. Conflicts that arise between views are
resolved locally in each agent, which can be achieved by building on the compositional tech-
niques for component design that were discussed in Section 2.3. Layered architectures like
the Operator-Controller-Module that cleanly separate critical control and coordination processes
from advanced functionality can moreover help to prevent many conflicts by default.

Environment. For software-intensive systems, the context in which they are situated is of central
importance. While agents are often defined relative to some environment they sense and act
on,1 the environment per se has traditionally received little attention. Most approaches focus
on agent design and treat the environment as a mere stage for the agents’ behavior which can
be delegated to the realm of agent frameworks, middleware, and other implementation level
constructs. They abstract from the environment by defining interfaces through which it can be
perceived and manipulated.
We believe that building on an environment specification with expressive semantics is instrumen-
tal in designing situated agents that are capable of flexible and complex interactions with their
surroundings. By applying object-oriented specification techniques, in particular Story-Driven

1Wooldridge and Jennings, for example, propose the following as the most basic definition of an agent: ’An
agent is a computer system that is situated in some environment, and that is capable of autonomous action in this
environment in order to meet its design objectives.’ (emphasis theirs) [WJ95b].

4.1 Introduction 131

Modeling, at this level, we can create a detailed and seamless model of the interactions between
an agent and its environment.

Design. For structuring the design of multi-agent systems, we propose CURCUMA, the Culture
and Community-based Modeling Approach. A central contribution of this approach is the ability
to describe the concrete aspects of a multi-agent system, i.e. sensing and acting in physical and
virtual environments, and its conceptual aspects, i.e. communication, coordination and social
structure, within a single coherent conceptual framework. By grounding all concepts in the ob-
servable behavior of agents, we can consistently apply our specification techniques to all aspects
of the system and provide a unified model for analysis and verification.
We distinguish between the environment specification and the social specification. The former
defines an essentially object-oriented model of the entities with which the agents can interact
through sensors and effectors and the services that the environment provides to agents. The latter
is a set of models defining social structures and coordination mechanisms. The different concerns
are handled through a separation into agent communities, whose behavior is governed by cultures,
high-level patterns encoding permitted or required behavior.
By introducing the concept of legal stance, which enables reasoning about an agent’s intentions
based on shared conventions for the interpretation of observed behavior, we ensure that social
rules are both realizable and enforceable. This grounded approach allows the seamless integra-
tion of otherwise abstract concepts such as objectives or commitments into the concrete, object-
oriented model of the system.

Chapter outline. In the following subsection, we further develop our running example and
introduce additional requirements.
In Section 4.2, we present the elements of our conceptual model, extending our previous work
on the analysis and design of multi-agent systems (cf. [KG05, KG06a, KG06b]).
In order to make them amenable to formal analysis, we provide a rigorous formalization of
all employed concepts in Section 4.3. Employing our proposed constraint notations allows the
formalization to go significantly beyond a previously published version (cf. [GK07]), which was
limited by its reliance on plain Story Patterns.
Section 4.4 concludes the chapter with an overview of related work and a discussion.

4.1.1 Application Example

In this chapter, we extend and refine our running example in two directions. Firstly, we organize
the previously discussed coordination behaviors that are responsible for ensuring the safety of
the system, i.e. the registration and convoy patterns, into a coherent model which will allow us to
define and verify important safety properties. In particular, this requires a complete set of rules
controlling their instantiation.
Secondly, we consider an additional aspect of the system that is more closely related to its pri-
mary purpose. The shuttles are meant to provide on-demand, point-to-point transportation for
passengers and cargo. In order to achieve this, we need mechanisms for distributing tasks among

132 4. System Design

shuttles, controlling access to scarce resources like terminals, and optimizing the large scale
logistics. We also need rules that control the orderly execution and completion of tasks and
a scheme for compensating the carriers. We have documented a selection of these problems,
which has been used as a case study in various contexts, in [GK05].
A guiding principle of the design philosophy that we apply to the application example is the
reliance on decentralized structures and distributed control. Another recurrent theme is the use
of market mechanisms for the allocation of resources. Combining these principles, we introduce
dedicated agents for controlling scarce resources that auction off their services to the interested
shuttle agents. Following the laws of supply and demand, the price for using a specific resource
will then be dependent on its utilization, which may make it rational to avoid certain spots even
if this requires taking a detour or foregoing an attractive task. Shuttles that already have accepted
one task headed for a popular terminal will be able to offer more competitive prices for other
tasks with the same destination than other shuttles due to the resulting synergies, which favors
the bundling of related tasks and has the desired effect of reducing the saturation of the terminal.
Resource agents and shuttle agents enter into a binding contract concerning the use of a resource.
If a shuttle agent fails to use a resource within the agreed time frame, a penalty that progresses
with the size of the deviation becomes due. Beyond a certain window, the shuttle is no longer
entitled to using the resource at all. Conversely, the resource agent has to pay a very steep penalty
to its client if it fails to deliver on its promise in order to discourage overbooking.

� 101

� 220� 323

� 480

� 255

� 243

� 305 � 440

Figure 4.1.1: Broker agent matching up requests and shuttles

4.1 Introduction 133

Transportation tasks are assigned in a similar manner. Figure 4.1.1 illustrates how passengers
can indicate when and where they would like to depart (black icons/labels) and arrive (blue
icons/labels) to a broker agent, which will then relay this information to the available shuttles.
The shuttles may then decide to bid on certain tasks or bundles of tasks. The broker matches the
bids with the requests and assigns tasks to the winning bidders, forming a binding contract.
There are broker agents, as opposed to only resource agents for each task, in order to enable
more sophisticated auctioning strategies involving task bundles. There also needs to be some
sort of directory that allows shuttle agents to browse through the open tasks. However, there
may be multiple local broker agents, each of which is responsible for assigning the tasks under
its responsibility. A task will nonetheless be listed by all brokers whose area is touched by the
prospective route(s) in order to avoid the overhead that would result if every shuttle had to query
every broker individually.
In the following sections, we focus on the problem of strategically coordinating the movement of
the shuttles in a way that promotes the creation of energy-efficient convoys. This new concern is
separate from, but not completely independent of the safety-related parts of the system, as both
affect the shuttles’ movements. Again, we apply a similar concept that does without a central
coordinator.
The formation of convoys is of central importance for the economics of the shuttle concept and
cannot be left to chance. In a typical sparsely populated system where shuttles travel with similar
velocities, it is even quite unlikely that two shuttles will ever meet outside of a terminal. A viable
solution for the logistics problem therefore needs two ingredients: An incentive that provides a
motivation for forming convoys, and an infrastructure that enables shuttles to actually do so.
The former is provided by another system of monetary exchange where shuttles are paid for
socially desirable behavior. Contrary to intuition, it is not necessarily the leading shuttle that
needs to expend the most energy in a convoy due to the complexity of the involved air flows and
the idiosyncrasies of the shuttles’ linear motor and energy supply, which needs to be factored
into the formula for computing the transfer payments. There are also other aspects that need
to be considered, e.g. whether the shuttle with the tightest deadline might not choose to pay the
preceding shuttles in the convoy to speed up. The resulting requirements are bundled and handled
by the convoy arbitration culture.
The latter is provided by the positioning culture, which forces shuttles to publish their projected
routes in order to give other shuttles the chance to plan their routes based on this information.
This is accomplished in a decentralized manner by means of virtual markers with the estimated
arrival time (or time interval) that are placed at the respective track segments.
In Figure 4.1.2, we see two situations: At time t = 848, shuttle 1 is traveling slowly and will
pass the intersection well behind the other shuttles. Shuttle 2 has come from the same direction
as shuttle 1, but has made a left turn at the intersection. Shuttle 3, arriving on the other branch at
high speed, will go straight across the intersection and catch up with shuttle 2 at time t = 878.
The deadlines marked in green are in the past and have already been met successfully.
Shuttle 2 realizes that it will block shuttle 3 and has entered into negotiations to work out an
agreement concerning the speed of the future convoy, as proscribed by the convoy arbitration culture.

134 4. System Design

1
2

3

1 836

1 860

1 884

1 906

1 929

2 818

2 798

2 838

2 858

2 878

3 830

3 842

3 854

3 866

3 878

a. Situation at time t = 848

1
2

3

1 836

1 860

1 884

1 906

1 929

2 818

2 798

2 838

2 856

2 877

3 830

3 842

3 854

3 866

3 878

b. Situation at time t = 850

Figure 4.1.2: Shuttles marking their projected routes with estimated arrival times.

At time t = 850, shuttle 2 has updated its plan (marked in yellow) by accelerating slightly, which
will allow it to match shuttle 3’s current speed by the time the two join up.
Again, shuttles are penalized for deviating from their announced plans, depending on the size of
the deviation and how much advance notice they provide. On the other hand, the above exam-
ple already shows that a certain amount of flexibility is indispensable for achieving the desired
effects. The culture therefore needs to strike a balance between the reliability of predictions and
the overall efficiency of the system.

4.2 Conceptual Framework 135

4.2 Conceptual Framework

In this section, we present the principles that shape CURCUMA, the conceptual framework we
use for designing agent coordination, along with informal descriptions of its elements. We also
provide an overview of the associated design process.

4.2.1 Approach

Our modeling approach mixes established concepts from agent research with model-driven and
pattern-based software engineering techniques. The result is a conceptual framework that, on the
one hand, is intentionally sufficiently generic so that many existing approaches could be mapped
to it. On the other hand, it has quite specific semantics and design principles. Where conceptual
differences warrant it, we therefore consider it justified to define proprietary terminology in order
to avoid confusion with similar but distinct existing concepts.

Concept. The notion of agents interacting with an environment through sensors and effectors is
fundamental to our approach. However, this should not be interpreted as a limitation to mechani-
cal systems, but rather as a design philosophy: Environments may be simulated or purely digital,
and sensors and effectors may be function calls. Nonetheless, it is this attention to the system
around an agent that makes the approach relevant to software-intensive systems and allows us to
apply software-engineering techniques to social system specifications.
There is consequently a clear distinction between concrete entities that agents can perceive and
manipulate directly and conceptual entities that only exist virtually. Conceptual entities have to
be explicitly derived from concrete entities by means of conventions. The concrete part of the
model is predominantly descriptive in nature. Of course, design decisions do have a profound
impact on the model, as the choice of sensors and effectors provided to the agents constrains
what can be expressed. However, agents in the implemented system can immediately interact
with concrete entities, even in heterogeneous open systems. The conceptual part of the model,
on the other hand, is engineered deliberately, with the system’s design objectives in mind. The
way that conceptual entities are grounded in the concrete entities is not immediately visible to
the agents. In order to allow an agent to interact with the system, this knowledge needs to be
made explicitly available to the agents or implied in their implementation. This problem is also
touched on by [WPM+04], who distinguish between natural and arbitrary protocols and observe
that the more natural protocols are, the easier ensuring interoperability becomes.

Structure. Based on this distinction, the conceptual framework is divided into two parts that are
layered on top of each other.
The environment specification defines the (physical or virtual) environment, containing agents that
use sensors and effectors to interact with the entities surrounding them. Services describe the infras-
tructure that the environment provides to the agents. The level of abstraction of the specification
is chosen according to the requirements of the envisioned coordination design. Besides, services
can be employed to perform further discretization and abstraction steps on top of the basic model.

136 4. System Design

The design of the coordination mechanisms is contained in the social specifications: The culture
specification defines cultures, generic organization and interaction patterns employing such social
system concepts as roles and intentions. They abstract from the domain of a concrete environment by
means of template types. By mapping the template types of a culture to the elements of an environment
in a community specification, we obtain a concrete community type.
The organization and coordination in the system is managed by instances of such community types.
Communities are dynamically formed groups of agents. They frequently overlap, i.e. an agent can
be a member of several communities simultaneously. Agents in the same community are able to
interact in meaningful ways because they share the same rules governing valid role behavior and
the same conventions for deriving a socially agreed interpretation of an action or message. The
ability to attribute intentions to agents based on observable behavior is essential for reasoning
about the agents’ behavior while abstracting from their implementation.

Process. In the requirements engineering phase, we decompose complex systems into simpler
architectural views by assigning requirements to dedicated communities. The complete system
specification is therefore the composition of all relevant communities.
In the end, concrete agent designs that implement the system specification have to be derived.
Role behavior can be refined and may allow non-deterministic choice; but ultimately, the agent
needs to stay within the boundaries set by the culture specification. We believe that even though
a top down approach to agent design is necessary in order to obtain predictable and verifiable
results, it is nonetheless possible to design systems supporting flexible ad-hoc interaction, adap-
tation and emergent behavior in this way.

At a glance. Figure 4.2.1 gives a rough impression of the development process and positions the
most important concepts.

Culture Specification

Environment Specification

Community Specification Agent SpecificationComposition
Entities

Agent
Sensor

Effector

Role

Interaction

Pattern

Figure 4.2.1: Overview of the approach

In our case study, the environment specification defines passive entities such as railroad tracks and
active agent entities such as shuttles and base stations. As the case study focuses on agent coor-
dination, it is sufficient to use a rough approximation of the system’s actual physics, abstracting
from the exact shapes and differential equations. Shuttles and base stations possess effectors and

4.2 Conceptual Framework 137

sensors, e.g. radio transmitters that allow them to send and receive messages. In order to sim-
plify the agent designs, we define services for handling the details of transmissions or calculating
shuttle positions.
The culture specification captures and structures the requirements of the system, such as safety,
timeliness, or efficiency. Each culture defines roles, e.g. client and server, and requires certain inter-
actions, e.g. that clients have to publish their position on the available servers, that are sufficient
to ensure the assigned subset of these requirements.
In the community specification, agents and roles are matched up, in this case by designating the
shuttles as the clients and the base stations as the servers.
The agent specifications are then derived from the composition of the community specifications repre-
senting different concerns such as positioning, convoy coordination, or task assignment. As these
concerns may be non-orthogonal, it is necessary to carefully reconcile the imposed constraints
within each agent. For example, a shuttle needs to strike a balance between timeliness and safety,
as these goals call for quite contrary strategies.
The final product of this process is a set of agent controller specifications which, when imple-
mented and run together, will interact in such a way as to fulfill all of the stated requirements.
As the resulting system operates in a highly decentralized manner, without a central location of
control, the underlying culture and community specifications are only implicitly relevant at runtime.

4.2.2 Environment Specification

In the environment specification, we want to describe all concrete entities, environment processes,
and infrastructure services as they are relevant to the agents.

Entity specification. However, we try to model the entities as ’objectively’ as possible, i.e. as
they are, not as the different agents perceive them. Concrete entities can be physical – these entities
need to be simulated while prototyping and are later provided by the physical environment – or
digital – which means they need to be implemented in software both in the prototypes and the
production system.
Each agent is itself an entity that interacts with other entities through its sensors and effectors. A
passive entity, i.e. one that is not an agent, is called an item.
Both sensors and effectors can only be applied to a specific context, i.e. the subset of all entities that
is, e.g., of the right type and physically close enough to the agent.
A sensor transforms concrete entities into perceptions. When generating perceptions, the sensor
usually only retains a subset of an entity’s attributes, may transform and aggregate them, may
introduce random errors with a specific probability distribution, or may even fail to produce a
perception with a given failure probability.
An effector creates, manipulates, or destroys entities, their attributes and associations. Unlike typi-
cal AI-centric agent specifications that provide an agent with a set of named actions or performa-
tives, the semantics of the effector actions we specify are fully transparent both for the agent and
any formal method we would like to employ at the agent level; i.e. we can seamlessly integrate

138 4. System Design

the environment into our analysis of an agent’s behavior. When using story-driven techniques
for the effector specifications, we are capable of specifying any conceivable state transition of
the specified environment and thus the effects of any effector, no matter how complex.

Process specification. It is a common practice to require all activity and change in the system to
be attributable to some agent, in particular in many formal approaches. For applications that are
situated in a complex environment, this solution is not viable and leads to both methodological
and conceptual problems. We therefore introduce environment processes as a way of capturing
behavior that is not attributable to an agent. They describe laws of nature (e.g. gravity), the
behavior of simple machines (e.g. a conveyor belt) or components, and non-deterministic external
influences on the system (e.g. an entity arriving in the environment). They are useful both for
simulating the system and reasoning about its expected behavior at the agent level. Processes can
be specified using the same story-driven techniques as for effectors.
Obviously, the specified effects need to stay within the limits of what is reasonable and physi-
cally possible in order to obtain a valid model. Generally, the validity of any results obtained
by means of simulation and formal verification of the model largely depends on the quality of
the environment specification, i.e., whether it is a correct and appropriate representation of the pro-
duction system. This is less of a problem for digital entities, as – due to the reliance on proven
object oriented formalisms – they can be represented by their actual design. It is somewhat more
problematic for physical entities, where we can only strive to provide as good an approximation
as possible. As software engineering techniques are designed for use with discrete models, our
approach is better suited to describing structural modifications than continuous changes. Differ-
ence equations can provide an approximation of continuous processes that is sufficient for most
purposes because of the agents’ layered architecture that separates direct control functions from
higher-level functions. If an in-depth treatment of the mechanical engineering aspects of the sys-
tem is essential, it is possible to additionally apply techniques for the design of hybrid systems
[Bur06].

Service specification. As we have already suggested with the introduction of environment pro-
cesses, entities are not limited to being inert, monolithic objects, even if entities in the environment
specification are limited to rather simple behavior. In principle, entities may be complex and have
extensive internal machinery that performs complex actions. The essential distinction is that item
entities are never autonomous and do not possess internal motivation, i.e. they are passive unless
activated by an agent or an environment process.
The service specification basically describes the infrastructure used by the agents. This infrastruc-
ture is implemented as a set of services that may be provided through dedicated entities called
facilities. Services can fall into various classes, e.g. life cycle management, resource allocation,
scheduling, communication, directory services, persistence, access control, authentication, or
application-specific functions. They can reach a high level of sophistication, e.g. a distributed
blackboard with consistency management.
Services represent functionality that is traditionally associated with middleware. Indeed, services
will often be implemented using some type of middleware. We can differentiate between pro-
duction middleware that will be present in the final system, providing lookup, messaging and

4.2 Conceptual Framework 139

other higher level functions, and prototyping middleware that is concerned with emulating the
production environment, providing services that will later be implicitly performed by the physi-
cal environment (e.g. computation of the available physical context) or the production hardware
(e.g. scheduling of multiple agents). While the service model thus generally becomes less com-
plex when moving to the production environment, there are also services that perform tasks that
are trivial in a simulation but complex in a physical environment. This is especially true of
services whose purpose is to provide agents with a virtual discretized representation of the envi-
ronment, i.e. make it appear more like a simulation, such as the virtual spaces used in [WSHL05].
As services are specified in terms of entities, we can apply the same object-oriented modeling
techniques as for entity behavior and effectors. As services can be standardized to some degree,
they offer obvious potential for reuse. Specifying the same services from scratch over and over
again would be tedious and inefficient. Templates encoding recurring design patterns for reuse
offer a solution to this problem. Such templates may range from simple patterns describing the
functionality of a single facility to complex systems of connected facilities representing a whole
agent platform, component framework or distributed computing library. This means that after a
service description for a particular solution has been modeled once, it can be reused, adapted and
combined with other building blocks in a modular manner.

Entity Agent

Item

Process

Service

Environment

Sensor

Effector

Context

n

n
implements

n
n

structure

n

n

affects

n

n
perceives

n n

consists of

11

contains

n

1

owns

n

1

owns

n 1

in

n

n
implements

n

n

composition

n

n

runs

n

n

composition

n

n

offers

n
n

structure

n
1

hierarchy

1

0..1

defines

1

0..1

defines

Figure 4.2.2: Key elements of the environment specification

Figure 4.2.2 provides an overview of the introduced elements and their relationships. The overall
environment specification is a complete specification of the environment, encompassing type system,
behavior, and constraints. If story-driven techniques are employed, this specification corresponds
to a constrained graph transformation system. The type system is made up of instances of all
classes of the metamodel, whereas only certain classes such as sensors, effectors, processes, and
services contribute behavior and constraints.

140 4. System Design

4.2.3 Social Specification

What about agents, organizations, roles, and communication languages? Frequently, agent-
oriented methodologies that closely build on object-oriented software engineering techniques are
criticized for focusing on the technical aspects of multi-agent systems and neglecting advanced
agent-oriented abstractions, thus providing poor support for the coordination of multi-agent sys-
tems and essentially limiting their scope to simple reactive agents. We, however, believe that
such abstractions can in fact be supported based on an object-oriented design.
Mentalistic concepts have proven useful for reasoning about autonomous, cognitive agents. It is
mainstream in agent-oriented research to assume that agents have intentional stance, assigning
beliefs, goals and intentions to them [RG95]. Despite its unquestionable appeal, formalisms
based on intentional stance face some well-documented problems, notably when used in the
context of agent communication and communication languages. Such formalisms often assume
a specific implementation of the agents’ internals, which severely limits their applicability to
real-world scenarios. As the semantics of messages depend on the state of an agent’s mind,
they may not be decidable from an outside perspective (cf. [Sin98a]). Besides, the resulting
specifications are notoriously complex, and proving the conformance of an implementation may
be impossible (cf. [Woo98]). One solution that was proposed to solve these problem is to model
agents as observable sources that expose a well-defined part of their internals in order to allow
other agents to reason about their beliefs and intentions (cf. [VO02]).

Legal Stance. We propose using the environment to a similar effect, thus providing a generic
mechanism that is completely independent of the agents’ implementations. Instead of reasoning
about what an agent actually intends or believes, we base our specifications on what an external
observer, or more specifically other agents in the system, can know or reasonably assume the
other agent to believe or intend. It is inspired by the way human interaction, or more specif-
ically human laws, work. Courts frequently infer beliefs and intentions from situations, acts,
and speech. Legal codes (in the continental tradition) devote significant effort to fixing the ex-
act modalities of how and when a person can profess an intention. In criminal codes, intent
is a defining characteristic of various crimes, and the punishment of attempted crimes hinges
on establishing the intention (e.g., an unauthorized person breaking into and hot-wiring a car
could clearly be supposed to intend to steal it). In civil law, what a person should have known
(e.g. caveat emptor) and seems to have intended based on the given evidence is a common ques-
tion. We therefore call this view that is concerned with the professed intentions (and professed
beliefs) that can be deduced from the environment legal stance.
Conventions for interpreting the environment can be attached to any entity type. This specifically
includes messages, allowing the specification of agent communication languages, the predomi-
nant kind of social convention in current multi-agent systems. The implied professed intentions can
be used to reason about the system at a higher level of abstraction. Concepts such as assertions
for professing beliefs, directives, permissions, and interdictions as a means of soliciting, allowing,
and forbidding specific behavior, or commitments for making behavioral guarantees (cf. [Sin98b])
help to structure and guide agent behavior.

4.2 Conceptual Framework 141

Just like laws, professed intentions are artificial constructs that are only valid in a specific social
context. A group of agents needs to agree on a set of conventions before it can become useful
for governing their interactions. In the context of such an agreement, however, professed intentions
become as real as concrete entities and can be referred to in subsequent rules and constraints.

Community specification. The required social context is provided by communities, which are
– possibly overlapping – groups of agents sharing the same conventions. Research into agent
organizations has shown that social structure is essential for designing complex, heterogeneous
systems (cf. [FG98]). While our ideas are conceptually close to established work on organiza-
tions, we chose the term community in order to avoid confusion because we felt that organization
suggests a greater degree of institutionalization, persistence, and complexity than exhibited by
many of the communities we have in mind, and, on the other hand, we did not want to try to
change established concepts by making additions that are specific to our modeling approach to
them.
The conventions used by a community are set down in the corresponding community type. The
specification of a community type again encompasses the aspects type system, behavior, and con-
straints. Their description requires no more esoteric concepts than used in the specification of the
environment above. When story-driven techniques are used, the employed objects and links are
merely marked up with stereotypes in order to indicate their specific semantics. It is then possible
to describe a community type as a graph transformation system which can be seamlessly integrated
with the graph transformation system of the environment specification to yield a comprehensive
specification of the system’s physical and social behavior.
The specific type system of a community type consists of its roles and professed intentions. Its be-
havior is controlled by a set of rules, which are organized according to their scope as different
types of norms. Invariants are used to express additional constraints. Both norms and invariants are
expressed in terms of observable physical and social entities.
In detail, a community type defines the following:

• a set of roles that can be assumed by agents,
• a set of professed intentions that can be attributed to agents,
• a set of existential norms, which create social structures by instantiating community instances

(instantiation norm) and control how agents join and leave the community or assume and relin-
quish roles (affiliation norm),

• a set of social norms, which govern the interactions inside communities by defining so-
cial conventions for generating professed intentions from observations (conventional norm) and
specifying allowed or required behavior (behavioral norm),

• a set of invariants that document properties that are guaranteed to hold for the community at
all times, and

• a set of community types that can be used to form subcommunities contained in the community.

Community types can specify complex organizations, but may as well describe the ad-hoc interac-
tion between a pair of agents. In general, a community type deals with a particular problem, which
usually grows in complexity in proportion to the community type’s position in the hierarchy.

142 4. System Design

Community TypeCulture

Agent

Assertion

Professed Intention

Commitment Directive Interdiction PermissionDeclaration

Norm

Existential Norm

Social Norm

Role Invariant

n 1

states
1

1
member

1 n

specializes

n 1

defines

n

1

defines

n

1
defines

n

1
defines

nn

derives

nn

instantiates

n

n instantiates

Figure 4.2.3: Key elements of the social specification

Figure 4.2.3 provides a summary of the discussed main elements of a community specification,
but also introduces a new concept: a culture.

Culture specification. As there may be commonly recurring subproblems (e.g., collision avoid-
ance, job assignment, coordinating distributed problem solving), we propose the use of templates
or design patterns. We call these patterns cultures. Cultures extract the essence of a community type
by abstracting from the concrete environment. This is done by replacing the concrete agent and
entity types used in norms (e.g. ’motorist’, ’car salesman’, ’car’) with more generic agent (’buyer’,
’seller’) and item (’merchandise’) template types. The culture otherwise has exactly the same ele-
ments as a community type, i.e. roles, professed intentions, norms, invariants, and subtypes, which are
called subcultures.
The culture can then be reused in future systems, deriving new community types from it simply by
assigning appropriate concrete types or sets of types from the system’s environment specification to
its abstract template types. The new community types are said to specialize the culture.

Agent Culture NormRole

Coordination Pattern

ConstrainableStateful

Component Pattern Role Constraint

Invariant

n 1

defines

n

n
constrains

nn

realizes

Figure 4.2.4: Relating cultures to coordination patterns

Cultures can be interpreted as an extension of Coordination Patterns as introduced in Section 2.3.
Figure 4.2.4 relates concepts from both, showing how agents, roles, and norms can be seen as
extensions of components, pattern roles, and constraints.

4.3 Formal model 143

Among other advantages, this allows us to build on or even directly reuse the results concerning
the verification of Coordination Patterns (cf. [GTB+03]) and apply similar compositional tech-
niques to the verification of cultures. In practice, this means that once it has been proven by formal
verification that a culture satisfies a given set of requirements and correctly solves a problem, all
correctly derived community types inherit these properties.
When describing community and culture specifications, we primarily use a story-driven approach
and the associated notations. However, it is possible to refer to the elements of a Coordination
Pattern in norms based on the mapping presented in Section 2.3.3. It is also possible to directly
reuse existing Coordination Patterns as subcultures.

Agent specification. Even though community types impose requirements and limitations on the
capabilities and behavior of agents, they do not restrict the specifics of the implementation of
agents in any way, making the approach agnostic with respect to their internal architecture. As
the specification is only concerned with observable behavior, correctly implementing it comes
down to behaving correctly in the environment.
The legal stance is not to be confused with a purely behavioral perspective: achieving correct
behavior may require a limited theory of mind, i.e. keeping track of other agents’ intentions as
professed in accordance with the pertinent conventions, as the correct reaction may depend on the
(social) state of the interacting agents. Nonetheless, as all mentalistic notions are only attributed
to agents in the context of a community, there is no requirement that these correspond to an
agent’s internal model (or current state) in any way. It is generally easier to use an internal model
that is roughly compatible with the socially attributed model, even more so if the requirements
imposed by the specification are intricate so that finding an equivalent alternative representation
may be non-trivial.

4.3 Formal model

We now formalize the presented conceptual framework of CURCUMAand show how it can be
used for the specification of coordination behavior. We also discuss how the presented specifi-
cation languages and notations can be applied to its various elements.
While we use numerous specific concepts that allow writing expressive, high-level specifications,
all elements of the model are described using story-driven techniques that ultimately map down
to plain graphs or graph rules. The fact that the specification can be reduced to a GTS allows us
to apply generic analysis and verification techniques.

4.3.1 Environment Specification

Entities. On the level of the environment, the entity specification specifies the types of observable
entities that make up the environment. Entities can either be passive items or the physical manifes-
tation of agents. Agents may have a set of sensors and effectors that they can use to interact with

144 4. System Design

their environment, i.e. manipulate entities or communicate with other agents.

Definition 4.3.1 An entity specification O consist of a type system graph TO. The types of the
type system graph can be classified into disjoint subsets so that NTO

= AO ∪ SO ∪EO ∪ IO with
agent types AO, sensor types SO, effector types EO, and item types IO. The entity types NO are
AO ∪ IO.

«item»

Block

length:Double

«agent»

Shuttle

position:Double

speed:Double

length:Double

«item»

Connection

«agent»

Base Station

«item»

Switch

«item»

Antenna

position:Double

«agent»

Terminal

1 n

using

11

at

1 1..2

begins

1 1..2ends

1 0..1

at

n

1..n

connected to

Figure 4.3.1: Entities of the application example

The entity model provides the basic ontology of the system. As discussed in previous chapters,
it can be modeled using Class Diagrams. Figure 4.3.1 presents a basic entity model for the
application example: The track network is modeled as a graph consisting of switches connected
by connections. There are also terminals for unloading passengers and cargo, and antennas that are
placed alongside the tracks in order to provide wireless communication with the base stations.
Finally, there are the shuttles, with an exact relative position on the block they are currently using.
Obviously, this model is not particularly detailed, e.g. presenting shuttles as monolithic entities,
but it is accurate and sufficient for our purposes. In comparison with the model used in the
previous chapters, we have eliminated the patterns, which are virtual, and the track segments,
which are logical, not physical units.

Sensors and effectors. A sensor or effector specification specifies which types can be part of a
sensor’s perceptive or an effector’s operative context, i.e. which entity types it can perceive or
act on. A set of rules describes the effects of using an effector or which entities and attributes
can be perceived, optionally indicating details like delay, precision and accuracy. Additionally,
constraints on the simultaneous application of these rules are imposed.

Definition 4.3.2 A sensor specification S is a tuple (sS, aS, TS,RS,RRS) where sS ∈ SO is a
sensor type, aS ∈ AO an agent type, TS a type system graph,RS a set of rules determining effects
containing exactly one sensor node of type sS , and RRS a set of multi-sets over RS denoting how
many instances of the rules are applicable in parallel.

4.3 Formal model 145

Definition 4.3.3 An effector specification E is a tuple (eE, aE, TE,RE,RRE) where eE ∈ EO is
an effector type, aE ∈ AO an agent type, TE a type system graph, RE a set of rules determining
effects containing exactly one effector node of type eE , and RRE a set of multi-sets over RE

denoting how many instances of the rules are applicable in parallel.

For specifying effector and sensor rules, we have multiple options. Most sensors and many
effectors can be specified using a single eSP/SDD, which facilitates translation into a plain GTS
for subsequent analysis. If effectors perform more complex operations that consist of more
than one transformation, we can use Story Diagrams, which may make model checking more
complicated, but nonetheless allow the direct generation of prototypes. Finally, if timing is
relevant for the operation, the behavior of an effector may by constrained by a TSSD. Executing
a prototype then requires first deriving a concrete realization of this specification.

«item»

Block

length:Double

«agent»

Shuttle

position:Double

speed:Double

length:Double

«sensor»

Sonar

«perception»

Shuttle

distance:Double

1

n

using

2 1

owns

n

1

generates

n

n

perceives

Figure 4.3.2: Sensor-specific type system

The specific type system graph contains the sensor, the agent, the relevant entities, and types
representing the perceptions that can be generated by the sensor. In the example, shuttles have a
short range sensor that allows them to measure the distance to the preceding shuttle. In Figure
4.3.2, we present the corresponding type system. The perceived shuttle – the class is defined in a
dedicated internal package and thus distinct from the shuttle entity – only has a distance attribute,
indicating that the original attributes speed, length, and position are not available to the perceiving
agent (at least not directly, in the last case).
In Figure 4.3.3, we specify how the sensor generates a perception. We would need additional
rules (or use an SDD) in order to support the case where the shuttles are on adjacent blocks,
e.g. when one of the shuttles is passing a switch.
For effectors, there is typically no need to introduce additional classes (such as perceptions). In the
example, we are mostly interested in the shuttles’ linear motor, which allows them to accelerate and
decelerate (see Figure 4.3.4). As the ability to compose and break up convoys on-the-fly requires
a new system of passive switches where the vehicles can actively control onto which branch they
want to proceed, the shuttles also have an effector for determining which connection they will be

146 4. System Design

«agent»

s2 : Shuttle

«perception»

*p2 : Shuttle

distance := s2.position - s2.length - s1.position

«sensor»

this : Sonar

«agent»

s1 : Shuttle

«item»

b1 : Block

using

perceives

*generates

owns

using

Figure 4.3.3: Sensor for measuring the distance to a preceding shuttle

«agent»

s1 : Shuttle

speed := speed + acceleration

«effector»

this : Linear Motor

owns

{-5 < acceleration < 3}

Figure 4.3.4: Specifying the effects of the linear motor

using next. Finally, shuttles have an effector for wirelessly transmitting information to antennas that
are sufficiently close.
As there may be multiple rules for the same sensor and effector, there are restrictions on which
ones may be applied in parallel. While the sonar can perceive any number of shuttles in various
positions in parallel, the linear motor can only be applied once and either accelerate or decelerate
at any one time.

Processes. The process specification describes changes in environment that are not caused by agents,
e.g. by laws of nature or external influences. The model consists of a set of processes, but addi-
tionally allows specifying invariants of the environment.
Processes can be used to describe laws of nature, mechanical reactive behavior (which is merely a
more complex form of applying the laws of nature), or non-deterministic changes in the system.
In their effects, they are thus similar to effectors, meaning that they can be specified using a set of
eSP/SDDs, Story Diagrams or TSSDs.
Unlike effectors, which are applied deliberately, processes run continuously, i.e. the rules are ap-
plied in every time step as the system is only quasi-continuous. This is particularly true of
processes representing laws of nature. While process rules are always evaluated, they may con-
tain activation conditions so that certain effects are only produced if the corresponding trigger is
matched.
Processes that describe external influences on the environment are special because they are sup-
posed to be inherently non-deterministic, at least to some degree. They can either be specified

4.3 Formal model 147

by means of eSP/SDDs or Story Diagrams that are applied at random or, if more specific infor-
mation about the frequency of the external process is available, TSSDs that encode the expected
intervals between occurrences.
The process model may impose certain structural and behavioral constraints on the environment
and limit its possible states. In physical environments, these may be implied by the laws of
nature, but they may also represent fundamental restrictions of a virtual environment (e.g. only
a single active thread per processor core). These restrictions are encoded by invariants that are
guaranteed to hold at all times.

Definition 4.3.4 A process specification P is a tuple (TP ,RE
P ,ΦP) where TP is a type system

graph, RP a set of rules determining the effects of processes, and ΦP a set of constraints repre-
senting invariants of the environment.

In the example, shuttles are moved by a process (simulating inertia) in accordance with their
current speed. This is more realistic than providing shuttles with an effector for explicitly moving
the shuttle and also provides a more convincing model for explaining why two shuttles might
collide.
External processes are very useful for abstracting from parts of the system. For example, we
could define a process that is spawning transportation tasks at random terminals based on some
statistical model if we were only interested in the way the shuttles deal with a certain task distri-
bution, not the tasks themselves.2

«agent»

*s1 : Shuttle

position := 0

«item»

c1 : Connection

«item»

w1 : Switch

*using

begins

a. Shuttle entering

«item»

w1 : Switch

«item»

c1 : Connection

«agent»

~s1 : Shuttle

position == c1.length

ends

~using

b. Shuttle exiting

Figure 4.3.5: Modeling a part of the network as an open system

This is not merely useful for hiding aspects of the system entirely, but also for restricting the
size of the system we have to analyze. Instead of considering the whole track network at once,
we could focus on a limited section which we treat as an open system that shuttles can enter (see
Figure 4.3.5a) and leave (see Figure 4.3.5b). As we shall discuss below for the purpose of veri-
fication, an advanced idea that is based on this technique would be to use a carefully controlled

2This was, in fact, used in a student project, where a central process generated tasks based on a combined
exponential (controlling frequency) and multinomial (controlling endpoints) distribution.

148 4. System Design

process which moves the considered section along with an agent, generating and destroying its
relevant context as it moves through the environment.
Invariants of the environment include the fact that two shuttles can never be in the exact same
position on a block and, by extension, that no shuttle can pass another shuttle on the same block.
It is also a law of nature that a collision occurs whenever the positions of two shuttles are too
physically close to each other.

Services. The service specification introduces additional entities and processes into the environment,
but no fundamentally new concepts. Formally, each service specification is equivalent to an
additional process specification and can be treated as such.
In the example, there are two primary production level services. The first one is a messaging
service that provides communication protocols. Using the antenna infrastructure and the shuttles’
effector for communicating with it as the physical link layer, it allows shuttles to send message
entities to other shuttles or base stations asynchronously. The exact behavior of the communication
channels, such as the introduced delays, the available buffer sizes, and the probability of failure
are all modeled as rules using a class model that is based on the model we used for connections in
Section 2.3.3.
Like all services, this service depends on the underlying facilities, i.e. the entities that implement it.
Here, these are primarily the antennas and the shuttles (respectively their unspecified communica-
tions hardware). When either of these elements fail, the service (partially) fails as well, which is
why the design should provide a certain amount of redundancy.

«item»

Block

length:Double

«agent»

Shuttle

position:Double

speed:Double

length:Double

«agent»

Base Station

«item»

Track Segment

length:Double

position:Double

«entity»

Token

entry:Double

n

1

subdivisioned

1 n

using

1..2

n
on

n1..n

supervises
1..2

1..2

adjacent

1

n

vehicle

1 n

location

exit:Double

Figure 4.3.6: Location services provide track segments and tokens

Secondly, we define a discretization service that makes abstract reasoning about the shuttles’ cur-
rent and future positions easier and which is similar in function to the above-mentioned virtual
environment from [WSHL05]. It provides the logical segmentation of track blocks into track
segments (see Figure 4.3.6) that we used in previous chapters without explaining where the infor-
mation encoded by the on links actually came from. The service does not only define a normative

4.3 Formal model 149

segmentation scheme that is identical for all agents, but also computes the on links from the shut-
tles’ physical position on the respective block and makes this information available to the agents.
Within the limits of a specified maximum delay that is required for updating the model, the ser-
vice will ensure that the discrete model of the system is synchronized with and thus a reliable
and accurate representation of the (physical) reality of the environment.
Additionally, the same service allows placing tokens at the (virtual) track segments, which docu-
ment a shuttle’s projected position at some (future) point in time. The service ensures that all
shuttles can perceive the tokens and that the token model is kept consistent and up-to-date. For
its implementation, the service relies on the messaging service as the means of sending updates
to the shuttles. The base stations serve as the facilities managing the model. The service therefore
(partially) fails if either of the required entities breaks down.

Environment specifications combine such partial specifications into a consistent overall speci-
fication. Completed by a set of instance graphs representing the initial state of the system, these
specifications form a GTS that models the possible behavior of the physical environment. In
the example, the initial state consists of a topology, i.e. the track and infrastructure layout, and
the configuration and initial states of the agents, i.e. the shuttles. As the number of conceiv-
able different topologies is infinite, we characterize the initial state set by means of a generating
GTS instead. In the example, it contains rules for generating correct track layouts by appending
switches and connections to existing ones, and rules concerning shuttle placement.

Definition 4.3.5 A environment specification W is a tuple (ST , O,S, E ,P) with ST a GTS gen-
erating all valid initial states, O an entity specification, S a set of sensor specifications, E a set
of effector specifications, and P a set of process specifications.

For a given specification, we can then derive a GTS describing the behavior of the entire en-
vironment. In order to achieve the desired result, we need to use prioritized, constrained GTS
(see Section 2.2.2.4). The prioritization of the rules is essential for achieving realistic behavior -
otherwise, it would, for example, be possible to keep applying an effector (’move forward’) an
arbitrary number of times without also applying the effects of the relevant processes (’gravity’),
yielding distorted results (unless the objective is to actually simulate the classic ’cartoon char-
acter walking off a cliff’ behavior). To each of the defined rules, we therefore assign a priority,
with processes preempting sensor and effector applications.
While priorities solve the theoretical problem, additional considerations are necessary to make
the GTS, which does not have an inherent concept of time, conform to reality, which does. In
practice, it is not only relevant which rule is applied next, but also when. In practice, the idea of
a preempting rule can only reasonably be interpreted as meaning that this rule is activated first,
implying immediately – as opposed to all agents consciously suspending all effector use and
waiting for some enabled preempting rule to be actually applied. On the other hand, sensor and
effector use is supposed to be deliberate, not compulsory: The agents are not only free to choose
which effector they intend to use, but also when they intend to use it. Immediately applying one
of the enabled rules does not properly reflect this freedom.

150 4. System Design

We therefore adopt the convention that negative priorities signal urgent rules which have to be
applied immediately, while 0 marks a rule as discretionary or non-urgent. It is feasible to assign
positive priorities to rules, but this may only be used as a means of indicating the precedence of
different discretionary choices of the same agent – not preemption across entities! – and needs
to be recognized as such by the employed tools and methods.
In the environment specification, we assign a priority of 0 to rules describing sensor and effector
effects, and priorities from the highest priority group V , e.g. ranging from−1024 to−768, to the
rules describing processes. This brings us back to a previous point: The rules defining the effects
of continuous processes need to contain provisions that ensure that they are only applied once
per discrete time step in order to preclude the equally undesired inverse effect that an enabled
effector is infinitely preempted by a process.
When deriving the GTS, we can either consider the closed system behavior, which only includes
processes and services, or the open system behavior, which includes the behavior of the agents as
manifested in their sensor and effector applications, which is non-deterministic from the point of
view of the environment.
Given an environment specification W = (ST , O,S, E ,P), the corresponding open environment
behavior MOW (i.e. the behavior of the environment including agents) is specified by the con-
strained GTS (TOW ,Gi

OW ,ROW ,ΦOW) as follows:

• TOW = TO ∪
⋃

S∈S TS ∪
⋃

E∈E TE ∪
⋃

P∈P TP ,
• Gi

OW = REACH(ST),
• ROW =

⋃
S∈S RS ∪

⋃
E∈E RE ∪

⋃
P∈P RP , and

• ΦOW =
⋃

P∈P ΦP .

Analogously, the corresponding closed environment behavior MCW (i.e. the behavior excluding
agents) is defined by the constrained GTS (TCW ,Gi

CW ,RCW ,ΦCW) as follows:

• TCW = TO ∪
⋃

S∈S TS ∪
⋃

E∈E TE ∪
⋃

P∈P TP ,
• Gi

CW = REACH(ST),
• RCW =

⋃
P∈P RP , and

• ΦCW =
⋃

P∈P ΦP .

In the example, the closed system is fairly static (unless shuttles are moving initially) as almost
all activities in the system are triggered by agents. In the open system, shuttles will accelerate
and move around, but will do so without purpose and cause many collisions. In order to achieve
behavior that is both meaningful and safe, it will be necessary to add appropriate coordination
mechanisms.

4.3.2 Culture Specification

We begin our discussion of social level specifications with cultures as the more fundamental con-
cept from which community types are derived.

4.3 Formal model 151

Culture. Coordination mechanisms are encoded by reusable patterns that govern the interaction
between agents and their environment and form a hierarchy of cultures. Each culture specifies a type
system consisting of a set of template types, a set of roles, and a set of professed intentions, a set of
norms, partitioned into existential norms and social norms, and a set of subcultures.

Definition 4.3.6 A culture U is a tuple (TU ,NX
U ,N S

U , CU) where TU is a type system graph defin-
ing template types, roles and professed intentions, NX

U a set of existential norms, N S
U a set of

social norms, ΦS
U a set of invariants, and CU a set of (sub)cultures.

Any well-formed culture needs at least one template type and one existential norm, whereas roles,
professed intentions, social norms and subcultures are optional. A culture that does not either define
social norms or subcultures will have no effect on the system, though.
In the example, there is a variety of cultures: Starting from the positioning culture, via the traffic
safety and the traffic routing culture, down to the update and distance coordination cultures, which
encode only simple interaction patterns that correspond to the registration and convoy patterns
from previous chapters.

Type system. A culture defines roles that help reasoning about an agent’s status and responsibili-
ties, and professed intentions, which allow reasoning about an agent’s intentions from an external,
social perspective. Besides these entities representing social system concepts, the culture’s rules
also need to refer to physical entities. To enable reuse in different environments, the culture abstracts
from concrete entity types by means of template types, i.e. an abstract type system that is specific
to the culture.

Definition 4.3.7 Given a culture U with type system graph TU , NTU
= TU ∪RU ∪ PU where TU

is a set of template types (consisting of TA
U , the set of agent template types, and T I

U , the set of item
template types), RU is a set of roles, and PU is a set of professed intentions, all of them disjoint.

The type system for the positioning culture of the application example is displayed in Figure 4.3.7.
When comparing this diagram with the location service model in Figure 4.3.6, there is a striking
similarity between the subsets shuttle, base station, track segment, and token and vehicle, registry,
location, and marker. As the latter are in fact the template types of the culture’s type system, this
similarity is intentional – it will later allow us to directly substitute the corresponding types.
Designing for reuse is a deliberate decision and requires additional thought and effort. As long
as a culture is only used in one place in a single environment (as in our application example),
there is no benefit to be gained from inventing a new, more abstract type system. It is perfectly
acceptable to simply use the existing entity types such as shuttle at the culture level in this case.
While this does not technically reduce the reusability of the culture, applying the pattern to a
related domain, e.g. automobiles crossing an intersection, would become more difficult and less
intuitive. Stripping unnecessary detail from the model also makes formal verification simpler
and faster.
Apart from the template types and the culture itself, there are two roles and a professed intention (a
commitment) in the example. There is a static and a dynamic aspect to a role: On the one hand, a

152 4. System Design

«states»

client
«role»

server
«role»

«agent»

Vehicle

«item»

Marker

earliest:Double

«agent»

Registry

«culture»

Positioning

«item»

Location

«commitment»

Schedule

«role»

Server

«role»

Client

1..2

1..2

at

n

n

1

n

for

1

at

1 1

as

n

n

supervises

n

n

1 n nn

n

1

1

1next

«member» «member»

n

latest:Double

Figure 4.3.7: Type system of the positioning culture

role is like an interface that defines certain relationships, attributes, and possibly behaviors that
an agent that wants to assume this role needs to support, which explains why the relationship
between the agent and the role is modeled as a generalization. On the other hand, there is the
dynamic aspect concerning the roles an agent currently has in a given community (in the context
of some culture), which is represented by an association between the agent (respectively the role it
implements) and the community.

«role»

Front

«role»

Rear

«culture»

Distance Coordination

«agent»

Vehicle

1 n

front

1n

rear

2

n

«member»

«role» «role»

Figure 4.3.8: Type system of the distance coordination culture

The type system can be simple. Figure 4.3.8 shows the type system of the distance coordination
culture, which is little more than a plain Coordination Pattern.

Norms. The norms and invariants of a culture are again encoded as graph rules. While invariants and
many of the simpler norms can be encoded using eSP/SDDs, the modeling of social norms greatly
benefits from the advanced capabilities that are provided by TSSDs.

Existential norms control the creation of social structures, i.e. community instantiation (instantia-
tion norms) and community membership and role assignment (affiliation norms). The instantiation norms
and affiliation norms of a culture need not be disjunct sets. Especially when a community is created

4.3 Formal model 153

dynamically in reaction to the interaction of two agents, separating these two aspects would be
unnatural.
Instantiation norms define when and how a community should be instantiated. At the culture level,
the culture class and its instances serve as a placeholder representing the community (type) – when a
concrete community type is derived, these are replaced by the community type, along with the template
types. As a culture is abstract, it is never actually instantiated at runtime.
Affiliation norms create and destroy associations between agents, communities, and roles. They allow
agents to dynamically join and leave communities and, at the same time, assume and resign roles.
As mentioned above, the ability to assume a role is a static property that depends on whether
the agent implements the associated interfaces and protocols. Assuming a role is modeled by
creating the appropriate link between the agent and the community. An agent may play the same
role multiple times, also in different communities.
Different types of communities may have different life cycles. A community may be tied to a specific
persistent entity, or may even be singleton that exists a priori. However, a community may also be
short-lived and only exist while a specific entity configuration occurs.
In the application example, the positioning cultures are persistent, as they depend on the registries,
which are in turn part of the static infrastructure. They are thus created only once, during initial-
ization, as defined by the existential norm in Figure 4.3.9. In this context, SDD ensure nodes will
be used frequently to ensure the correct cardinality. The distance coordination culture, on the other
hand, is created in an ad-hoc fashion whenever two vehicles come close (as defined by the exis-
tential norm in Figure 4.3.10) and dissolved once they move apart. As in this case the community is
characterized by the two participating agents and the roles they assume, it would not make sense
to separate the instantiation and affiliation aspects of the norm.

«agent»

r1 : Registry

r1

«agent»

r1 : Registry

«culture»

*p1 : Positioning

i1

then

«role»
*service

�

� �

Figure 4.3.9: Instantiating an positioning culture

For roles, the situation is similar. Often, an agent assumes a role upon joining a community and never
resigns it again until the agent leaves the community or the community is dissolved. While there is
a �member� association between matching community and agent types in the type system, there
is often no need to use it in norms, as it is immediately superseded by a more specific role (as in
Figure 4.3.10). Only in the opposite case, when an agent joins a community and then successively
assumes and resigns various roles, it may be better to explicitly create the membership link.

154 4. System Design

«agent»

v1 : Vehicle

«agent»

v2 : Vehicle

«item»

l1 : Location

«item»

l2 : Location

«item»

l3 : Location

l1, l2, l3, v1, v2

«agent»

v1 : Vehicle

«agent»

v2 : Vehicle

«culture»

*dc1 : Distance Coordination

dc1

then

at at

nextnext

«role»
*front

«role»
*rear

�

� �

Figure 4.3.10: Instantiating a distance coordination culture

«agent»

v1 : Vehicle

«item»

l1 : Location

«item»

l2 : Location

«agent»

r1 : Registry

l1, l2, r1, v1

«agent»

r1 : Registry

«agent»

v1 : Vehicle

«culture»

u1 : Update

u1

«item»

l2 : Location

«agent»

v1 : Vehicle

_

at supervises

next

at

«role»
entry

«role»
directory

���

�

�

�

Figure 4.3.11: Joining an update culture

When using TSSDs, such as for the existential norm in Figure 4.3.11, we can not only describe
what triggers the instantiation and how it is performed in more detail, but also describe the whole
life cycle of a role or community in a single norm.

Social norms govern the interactions within the created social structures. For each role, they de-
fine acceptable behavior (behavioral norms) and socially agreed interpretations of behavior (conven-
tional norms). Again, the two subtypes are not mutually exclusive: a behavioral norm may addition-
ally contain conventions as it is often convenient to specify the physical and social consequences
of an action together.

4.3 Formal model 155

Conventional norms encode conventions defining how agents can affect the state of the social sys-
tem, i.e. manipulate conceptual entities such as roles and professed intentions. Most importantly,
they generate and revoke professed intentions, which represent socially agreed assumptions about
an agent’s intentions. By providing a normative interpretation of observable behavior, conven-
tions allow agents using the same culture to react to each other’s actions and messages (as any
language is based on conventions) in an adequate way.
In order to allow more expressive conventions, we distinguish different types of professed inten-
tions (based on the categorization of speech acts proposed in [Sin98a]), most importantly asser-
tion, encoding a factual statement that was explicitly or implicitly made by an agent, commitment,
a promise concerning future behavior, permission, directive and interdiction, allowing, ordering or
disallowing a particular behavior, and declaration, a classic speech act of the ’I now declare...’
kind.
These categories are only defined informally – every professed intention could be modeled as an
assertion, which would however go against the original motivation for introducing the categories,
namely providing a more differentiated view on agent interactions. The formal semantics of a
professed intention depend only on the structure of the graph rules encoding the corresponding
norms. A required permission becomes a precondition, while an interdiction inhibiting a certain
behavior becomes a negative application condition. A directive may appear as a precondition, in
particular in the trigger of a TSSD. A commitment may be similar in effect to the above (e.g. corre-
spond to an interdiction an agent places on itself if it is a commitment to abstain from some action).
However, the typical commitment promises to bring about a certain configuration in the future.
Encoding this using structural patterns requires at least two conventional norms: One for creating
the commitment (e.g. when an agent enters into a contract), a second one for removing it once the
promise has been fulfilled (e.g. when the agent has paid). TSSDs are very helpful in this context,
as they allow encoding the entire life cycle of a commitment in a single norm.
In the example in Figure 4.3.12, the vehicle commits to not occupying its current location indefi-
nitely, but eventually moving on.
Formally, this meaning is only supplied by the second conventional norm in Figure 4.3.13, which
removes the commitment after the vehicle has moved.
Behavioral norms restrict or require certain agent behavior. They primarily deal with modifications
of template entities representing physical entities. However, they may be constrained by the state
of the social system and, e.g., require the presence of a directive or the absence of a particular
interdiction as part of their precondition.
When they are modeled using the structural notations, they only describe a single transformation
step and proscribe which sensors or effectors an agent may or must use in a given situation. Typi-
cally, such a behavioral norm extends a single effector rule with additional (physical or social) pre-
and postconditions. The communities, roles, and professed intentions that are created by existential
respectively conventional norms in reaction to the defined behaviors are the only way of relating
different behavioral norms to each other. When encoding a complex scenario in this manner, it is
thus split up into a large number of norms, which has proved to be not very intuitive and may
make maintaining consistency between the norms a daunting task. Nonetheless, the approach

156 4. System Design

«agent»

v1 : Vehicle

«item»

l1 : Location

«culture»

i1 : Traffic Safety

i1, l1, v1

«agent»

v1 : Vehicle

«commitment»

*m1 : Move on

«item»

l1 : Location

m1

at

«role»
mobile

then

*states

at

*from

�

�

�

Figure 4.3.12: Making a commitment

«agent»

v1 : Vehicle

«commitment»

~m1 : Move on

«item»

l1 : Location

~states

at

~from

�

Figure 4.3.13: Fulfilling a commitment

has its merits, as it allows the direct application of existing formal verification techniques such
as the discussed invariant checking approach, which relies on single step semantics.
From the point of view of both usability and expressiveness, however, behavioral norms are the
domain of TSSDs, whose creation was initially motivated by this very use case. When using
the temporal notation, the norms may encode a complex sequence of events and describe the
interaction between multiple agents and the environment. They are also the only way of capturing
time constraints without the aid of auxiliary constructs. As a TSSD is declarative, the norm can
describe either a concrete sequence of effector applications or merely a broad requirement which
needs to be implemented by the agents. While there need not be a direct mapping to effector
applications, a norm is only implementable if its required effects can be brought about in the
allowed time frame by a combination of the available effectors and environment processes.
In the application example, many parts of the system depend on the requirement that the vehicles
declare which locations they will move to in the future. In the short term, this is used to avoid
collisions and manage convoys. In the longer term, this is the basis for achieving efficient routing.

4.3 Formal model 157

Vehicles publish their plans by means of markers which are attached to specific locations and specify
an earliest entry and a latest exit time for the vehicle (In the concrete system, this is realized by the
distributed token infrastructure that is provided by the location service). There is a conventional norm
that interprets each marker as a commitment to a specific schedule (as defined by the type system in
Figure 4.3.7).

«agent»

v : Vehicle

«item»

l1 : Location

«item»

l2 : Location

«commitment»

s : Schedule

«item»

m : Marker

l1, l2, m, s, v

«item»

l2 : Location

«item»

l1 : Location

«agent»

v : Vehicle

then

at

next

«states»

as

at

for

next

at
*at

�

�

Figure 4.3.14: Only authorized movement is allowed

The most fundamental norm is that no unannounced movement is allowed (see Figure 4.3.14):
There needs to be a marker that is currently valid for the vehicle in question.
Unless the vehicles have additional arrangements (such as a convoy of shuttles), there may only be
one vehicle per location at the same time. There is therefore a norm that enforces that vehicles must
not make conflicting announcements.
The norm in Figure 4.3.16 finally illustrates the life cycle of a schedule commitment, from its
creation to its fulfillment.
In order to promote socially desirable behavior and yet allow a certain flexibility, there is a system
of ’monetary’ incentives in place that promotes timely, concise and reliable announcements. If
a marker is placed early and the specified interval is small, the agent is rewarded, if the interval
is large and the marker is placed on short notice, the agent is punished. If an agent updates
the marker with more concise bounds, it is rewarded; if it moves or expands the interval, it is
punished. However, an agent is punished even more severely if it fails to fulfill the commitment
altogether and forfeits its reservation.
Invariants can be specified for specific roles or the whole culture. They are used for representing
design goals of the culture, e.g. important safety properties that may never be violated. Invariants
may be concerned with the state of the environment or the violation of professed intentions, e.g. an

158 4. System Design

«item»

l : Location

«agent»

v : Vehicle

«item»

*mn : Marker

earliest := min

latest := max

mn

«agent»

v : Vehicle

«item»

l : Location

l, v

«item»

l : Location

«item»

mx : Marker

«agent»

v : Vehicle

mx

0

then

elsethen

at

*for *at

�

�

� �

(min < mx.earliest &&
mx.earliest < max) ||

(min < mx.latest &&
mx.latest < max)

Figure 4.3.15: Schedules need to be compatible

agent making conflicting commitments. In the example, we can guarantee that all vehicles are
properly registered with a registry at all times based on the corresponding instantiation norms.

Norm system. For any culture U = (TU ,NX
U ,N S

U , CU), we distinguish the norms NX
U = N I

U ∪
NA

U whereN I
U are instantiation norms andNA

U are affiliation norms,N S
U = ∪R∈RU

NB,R
U ∪NC

U ∪
ΦS

U where NC
U are conventional norms, NB,R

U are the behavioral norms of role R ∈ RU , and ΦS
U

are invariants. Every norm N ∈ NX
U ∪N S

U is based on the type system graph TU .
When implementing a culture, we can break the specification down according to the affected
entities and roles. Social norms typically only affect those specific roles that appear in the corre-
sponding graph rules, and even then, these may not be actively involved in the required behavior.
For structural patterns that refer to a single effector application, the active agent is easy to identify,
which may not be the case in complex scenarios, though.
When reasoning about norm systems, we need to consider the dependencies between the different
norms. All norms depend on the existence of a specific community that provides their context,
but furthermore, some may also depend on the presence of additional roles and professed intentions.
The norms are therefore dependent on the set of those norms that are capable of creating the
required social entities. This can be statically analyzed by checking which types are instantiated
or referenced by a norm. The result is a dependency graph that organizes the norms into a
hierarchy. As the analysis takes place at the type level, the graph does not necessarily have to be
acyclic in order to represent a consistent system. However, it is safest to strive to avoid cyclic

4.3 Formal model 159

Posted marker

«agent»

v : Vehicle

«item»

l : Location

«item»

m : Marker

l, m, v

Moved according to schedule

«item»

l : Location

«agent»

v : Vehicle

Schedule: Made commitment

«commitment»

s : Schedule

«agent»

v : Vehicle

«item»

m : Marker

Schedule: Fulfilled commitment

«item»

m : Marker

«agent»

v : Vehicle

«agent»

v : Vehicle

«commitment»

s : Schedule

«item»

m : Marker

0 1

for at

for

as«states»

[m.earliest..m.latest]

at

for

then

for

«states» as

then else

�

�

s�

���

_�

�

Figure 4.3.16: Markers as commitments: TSSD combining two conventional norms and a behavioral
norm.

«agent»

v1 : Vehicle

«agent»

r1 : Registry

«culture»

u1 : Update

u1

«item»

l1 : Location

«agent»

v1 : Vehicle

«agent»

r1 : Registry

l1, r1, v1

then

at supervises

«role»
entry

«role»
directory

�

�

Figure 4.3.17: Invariant: all vehicles are properly registered.

160 4. System Design

dependencies. This can be achieved easily by assigning a level to each professed intention and
requiring that it may only depend on professed intentions with lower levels.
This also has an impact on the assigned priorities, which are crucial for correctness of the norm
system. Instantiation norms (priority group IV) preempt affiliation norms (priority group III), which
are processed before conventional norms (II) and behavioral norms (I / 0), with number ranges for
the individual groups chosen as needed, provided that V < IV < III < II < I < 0. A
combined existential norm is treated as an instantiation norm, whereas a combined social norm is
ranked as a behavioral norm. While the other norm types are always urgent, behavioral norms can
either be urgent or discretionary. The priority serves to indicate whether the described behavior is
required (I) or merely permitted (0), which cannot be expressed in the graph rule itself.

Subcultures. A culture may contain subcultures that extend and depend on it. By definition, a
culture’s norms only apply to its members. This means that it cannot instantiate itself – there
needs to be a superculture whose members agree to respect its instantiation norms. Likewise, an
agent can only join a culture if it is already member of a superculture where the corresponding
affiliation norms are accepted. There is therefore a connected hierarchy of cultures. At the top of
this hierarchy, the global default culture implicitly contains all agents and serves a the parent of
all cultures without an explicitly defined superculture. In order to be able to bootstrap the system
starting from the default culture, each superculture incorporates the existential norms of its immediate
subcultures. As membership is transitive, agents implementing a subculture are bound by all norms
of all supercultures containing it, but not vice versa.

Definition 4.3.8 For a culture C and its subculture S with S ∈ CC , we have T R
C ⊆ T R

S , NX
C ⊆

NX
S , N S

C ⊆ N S
S (subcultures import their superculture), and N ′X

S ⊆ NX
C (subcultures export

N ′X
S , their original existential norms).

In this context, a coordination pattern can be seen as a special restricted type of culture that may not
define its own existential norms, professed intentions or subcultures.

«role»

Client

«culture»

«agent»

Registry

«role»

Server

«agent»

Vehicle

«role»

Entry

«culture»

Update

«role»

Directory

n n

client

n

n

1n

service

n

n

1 n

entry

1n

directory

n

«subculture»

1

n

1

n

«role»

«role» «role»

«role»

«member» «member»

«member»«member»

Positioning

Figure 4.3.18: Culture and subculture

In the application example, most cultures are subcultures of the positioning culture. In Figure 4.3.18,
we define the type system of the update culture and its relationship to its superculture. Often,

4.3 Formal model 161

only agents that already have a specific role in the superculture can join the subculture in certain
capacities, which is why the new entry and directory roles inherit from the client and server roles.

GTS. For a given culture Ui = (TU ,NX
U ,N S

U , CU) with NX
S = ∪R∈RU

NB,R
U ∪ NC

U ∪ ΦS
U where

NB,R
U are the behavioral norms of the role R ∈ RU , NC

U are conventional norms, and ΦS
U are

invariants, we can derive the constrained GTS MS
i = (TSi

,Gi
Si
,RSi

,ΦSi
) with

• TSi
= TU ,

• Gi
Si

= ∅,

• RSi
= NX

U ∪ (∪R∈RU
NB,R

U) ∪NC
U , and

• ΦSi
= ΦS

U .

The GTS provides a complete model of the culture. It is at the a level of abstraction that is
comparable to typical formal agent specification techniques. We can therefore derive certain
invariants and verify the internal consistency of the norm system. However, as there is no model
of the environment and all transformations originate from the confines of the culture’s norms, this
model is only an incomplete representation of the actual system and therefore insufficient for a
complete validation of the design.

4.3.3 Community Specification

Community type. Before we can actually instantiate a culture, we need to derive a concrete
realization that is adapted to a specific environment. Such a community type needs to map all tem-
plate types to entity types from the environment specification. This mapping is more than a simple
renaming of types, associations and attributes, but an actual model transformation that is ex-
pressed by graph rules. For one, a single template type instance may be replaced by a structure
consisting of multiple entities where the environment specification is more detailed. However, we
currently do not allow mapping multiple template types to the same entity type as this might lead to
the invalidation of analysis results from the culture level.
For the included agent types, the community type needs to specify which sensor and effector types
are constrained by the culture’s roles and mark them as implementations of the pertinent social
norms. This results in a modified type system graph and transformed norms using the types of the
concrete underlying entity specification.
As the transformed social norms are now expressed in terms of physical entities, every agent type
that is constrained by a norm requires a sensor capable of perceiving these entities or will be unable
to evaluate it. Likewise, the agent types need effectors which are capable of producing the required
effects, i.e. the postcondition of effector’s graph rule must satisfy the (physical) postcondition of
the behavioral norm. If a norm specifies a scenario, this mapping is non-trivial and may also depend
on the chosen implementation.

162 4. System Design

A social norm constrains the effectors used to implement it. A role constrains all effectors that are
constrained by any of its social norms, plus all that are explicitly declared constrained. If an effector
is not constrained, an agent assuming the role may use it at will.

«agent»

v : Vehicle

«item»

l1 : Location

«item»

l2 : Location

«commitment»

s : Schedule

«item»

m : Marker

l1, l2, m, s, v

«item»

l2 : Location

«item»

l1 : Location

«agent»

v : Vehicle

then

at

next

«states»

as

at

for

next

at
*at

�

�

«agent»

v : Shuttle
«item»

m : Token

«commitment»

s : Schedule

«item»

l2 : Track Segment

«item»

l1 : Track Segment

l1, l2, m, s, v

«item»

l2 : Track Segment

«item»

l1 : Track Segment

«agent»

v : Shuttle

then

*on

states

as

on

adjacent

location

vehicle

on

adjacent

�

�

Figure 4.3.19: Transforming a behavioral norm

In the application example, there are indirect restrictions on the way shuttles may accelerate
using their motor effector. In Figure 4.3.19, we map the behavioral norm from Figure 4.3.14 from
the domain of the positioning culture to the concrete environment of the shuttle system.

Definition 4.3.9 A community type C is a tuple (WC , UC ,MAPC , cnstC , CC) consisting of an
environment specification WC = (ST

W , OW ,SW , EW ,PW), a culture UC = (TU ,NX
U ,N S

U , CU)
defining roles and professed intentions RU , PU ⊂ NTU

, a set of graph isomorphisms MAPC :
TU → TOW

∪ TU that replace template types and associations with (sets of) entity types and
associations, a mapping function cnstC : (RU×AOW

) 7→ ℘(EW∪SW) that assigns the permitted
sensors and effectors to each valid pair of a role and agent, and a set of community types CC that
are compatible realizations of the subcultures from CU .

The mapping in cnstC must only assign sets of sensors and effectors that are available to the
agent and sufficient for implementing all applicable norms. Formally, this means that for all
roles R ∈ RU and for every agent a ∈ AOW

assigned to a template type by MAPC holds that only
sensors and effectors for the corresponding agent are assigned:

∀(t1, a1, T1,R1,RR1) ∈ cnstC(R, a) : a = a1.

4.3 Formal model 163

Furthermore, for every role R ∈ RU with norms n ∈ NB,R
U and all agent types a ∈ AOW

that
MAPC assigns to a template type attached to R holds that the physical part of each behavioral
norm n can be constructed as a combination of the available sensors and effectors cnstC(R, a) =
{(t1, a1, T1,R1,RR1), . . . , (tm, am, Tm,Rm,RRm)}. There must exist a R ∈ (RR1 ⊗ · · · ⊗ RRm)
(for X ⊗ Y := {x ∪ y|x ∈ X ∧ y ∈ Y }) and r1, . . . , rn ∈ enum(R) with:

∃r ∈ setmerge(r1, . . . , rn) : r = n|TO
.

Communities are instances of community types, created in accordance with instantiation norms.
They are a conceptual representation of a culture and the group of agents realizing it. Constrained
by the limits of the (sub)culture hierarchy, communities can overlap or be subsets of each other.
There is an implicit default community containing all agents that implements the default culture.
As discussed, communities can be persistent, e.g. when tied to a persistent entity, but may also
be short-lived and created in an ad-hoc fashion, which is common for communities implementing
coordination patterns.

GTS. Given a community type C = (WC , UC ,MAPC , cnstC , CC) with environment specifi-
cation WC = (ST

W , OW ,SW , EW ,PW) and culture UC = (TU ,NX
U ,N S

U , CU) with GTS MS =
(TS,Gi

S,RS,ΦS), we can derive the corresponding constrained GTS MC = (TC ,Gi
C ,RC ,ΦC)

with

• TC = TOW
∪

⋃
m∈MAPC

m(TU),
• Gi

C = ∅,
• RC = {m(r)|r ∈ RS,m ∈ MAPC}, and
• ΦC = {m(φ)|φ ∈ ΦS,m ∈ MAPC}.

4.3.4 Agent Specification

Agent. Ultimately, cultures need to be implemented by agents. An agent may have an internal
state, which is expressed as an instance graph that it is free to define and modify as it sees fit, but
can only interact with the environment using its defined sensors and effectors. As we have ensured
that, in principle, agents are capable of the required actions and perceptions when deriving the
concrete community types, an agent should be able to conform to the cultures’ norms, provided they
are internally consistent. However, an agent may be a member of multiple communities (possibly of
different types) at once and thus needs to reconcile their various requirements. This corresponds
to the problem of role composition as discussed in [GV06].

Definition 4.3.10 An agent specification A is a tuple (aA,WA, CA, TA,RI
A,RE

A,mapA) where
aA is an agent type, WA = (ST

W , OW ,SW , EW ,PW) is an environment specification, CA the set
of community types which assign roles to aA, TA is a type system graph defining the agent’s
internal type system, RI

A is set of rules that describe internal state transitions, RE
A is set of rules

164 4. System Design

that describe transitions with external effects, and mapA : RE
A 7→ ℘(

⋃
C∈CA

NB
C) maps external

transitions to social norms of different communities. We require TA ∩ TOW
= aA, that ∀r ∈ RI

A

holds that r is type conformant w.r.t. TA, and that ∀r′ ∈ RE
A holds that r′ is type conformant

w.r.t. TOW
∪ TA.

An agent is expected to be able to bootstrap its internal state starting from just an instance of
the agent type using only rules in RI

A. Internal and external transitions are typically discretionary
(priority 0), but may also be urgent (priority group I). The external transitions of an agent may
freely use sensors and effectors not constrained by a role and refine available social norms of the
assigned roles. For any r ∈ RE

A and an enumeration of available sensor and effector rules r1, . . . , rn

with permitted multiple occurrences must hold:

∃r′ ∈ setmerge(r1, . . . , rn) : r|TO
= r′|TO

.

GTS. Given an agent specification Aj = (aA,WA, CA, TA,RI
A,RE

A,mapA) with an environment
specification WA = (ST

W , OW ,SW , EW ,PW), and a set of community types Ck = (WCk
, UCk

,
MAPCk

, cnstCk
, CCk

) with GTS MC
k = (TCk

, Gi
Ck
, RCk

, ΦCk
), we can derive the corresponding

constrained GTS MA
j = (TAj

, Gi
Aj
,RAj

, ΦAj
) with

• TAj
= TOW

∪
⋃

Ck∈CA TCk
∪ TA,

• Gi
Aj

= ∅,

• RAj
= RI

A ∪RE
A, and

• ΦAj
= ∅.

The formal model emphasizes what was discussed informally in the previous section: Agents do
not need to keep an explicit internal representation of the social system state as long as their
behavior is consistent with their role obligations. This raises another related issue: How can
we formalize the concept of consistent behavior? This question leads us back to the problem of
GTS refinement, which was already hinted at during our discussion of refinement for automata in
Chapter 2.

GTS Refinement. When defining behavioral refinement, be it for automata [Gie03] or objects
[Sek94], the central idea is the same: Allow only behavior that is allowed by the specification,
remove ambiguities, do not eliminate any required behavior. Adopting this view, a GTS is a
refinement of another GTS if it contains all of its required but none of its forbidden transitions.
One of the desirable properties of this definition is that it preserves important characteristics of
the original GTS: If it guarantees certain invariants, these will hold for every refinement. After
all, each refinement can only remove reachable states from the domain of the defining GTS,
i.e. the relevant part of the state space.
Unfortunately, comparing two GTS is more difficult than comparing two automata. For one, their
states are only defined implicitly, which means that there may be an infinite number of them. This

4.3 Formal model 165

also entails that what appears as two distinct states to one GTS may be indistinguishable from the
point of view of another, leading to different sets of enabled transitions and divergent behavior.
Furthermore, the transitions with which the definition is concerned are also only defined implic-
itly by means of graph rules. Refinement is therefore not limited to simply eliminating graph
rules, but may change the definitions of the rules themselves. The most fundamental question is
therefore how we can recognize corresponding transitions when the rule sets are not identical.

Corresponding transitions can only be identified by looking at the underlying graph rules,
which means that the fundamental problem is actually the analysis of graph rule correspondence:
Which rules are enabled at the same time and have comparable effects? In order to determine
this, we need to analyze the pre- and postconditions that define the rules, ergo consider graph
patterns again.
When comparing patterns, we only need to compare their structure, i.e. check for isomorphisms
between them, as the relevant rule applications abstract from the identities of elements of the
patterns anyway. This leads to the following notion of equivalence between graph patterns:

Definition 4.3.11 Two graph patterns P := [P, P̂] and Q := [Q, Q̂] are equivalent, written as
P ∼= Q, iff P ≈ Q, ∀P̂ ∈ P̂ : ∃Q̂ ∈ Q̂ so that P̂ ≈ Q̂, and, vice versa, ∀Q̂ ∈ Q̂ : ∃P̂ ∈ P̂ so
that P̂ ≈ Q̂.

Given a graph rule [L, L̂]→r[R], let L be [L, L̂] andR be [R, R̂], where each R̂ ∈ R results from
adding an element from L \ R, i.e. the set of elements deleted by the rule application, to R. R
thus makes the deletions an explicit part of the postcondition. Using Definition 4.3.11, we then
define:

Definition 4.3.12 Two graph rules [L, L̂]→r[R, R̂] and [L′, L̂′]→r′ [R
′, R̂′] are equivalent, writ-

ten as r ∼= r′, iff L ∼= L′ and R ∼= R′.

For each individual rule, extending the postcondition into R does not result in additional con-
straints, as R holds by definition after r has been applied using standard graph rule semantics.
The difference is, however, relevant when comparing distinct graph rules that represent varia-
tions of each other. As a refinement relation may be the result of additional restrictions at the
pattern level, we need criteria for deciding when a graph pattern is a restriction or relaxation of
another pattern.
A pattern Q is a restriction of a pattern P if P matches whenever Q matches. This entails two
requirements: Naturally, P , the positive part of P , needs to be less specific, i.e. contained in Q,
so that a match for Q guarantees a match for P . But at the same time, any one of the negative
application conditions (NACs) P̂ needs to be more specific, i.e. contain at least one NAC of Q,
in order to ensure that a forbidden pattern preventing P from matching will also prevent Q. We
define:

Definition 4.3.13 Let P := [P, P̂] and Q := [Q, Q̂] be two graph patterns. P is then called a
subpattern of Q, written as P ⊆ Q, iff P - Q and ∀Q̂ ∈ Q̂ : ∃P̂ ∈ P̂ so that Q̂ - P̂ .

166 4. System Design

If P ⊆ Q, we can say that P is a relaxation of Q, or that Q is a restriction of P .
Let us now consider a GTS S and its refinement S ′, written as S ′ v S. For every rule r′ of
S ′, there needs to be a rule r in S allowing it. This implies that L ⊆ L′, as the precondition
of r′ needs to be at least as restrictive as the precondition of r to prevent the former from being
enabled when the latter is not. For the postcondition, the inverse is true: We require thatR′ ⊆ R
(ignoring the elements in L′ \ L) so that r′ deletes nothing not deleted by r and adds nothing
not added by r. This permissive interpretation is, however, too weak in those cases where only
partially applying a transformation leads to an inconsistent state, which are rather the norm than
the exception. If r only describes a valid transition if all of its effects are applied, we need to use
a strict interpretation requiring R′ to be equivalent to R, except for the elements in L′ \ L that
are not and must not be affected by the transformation and thus also appear in R′. This means
that both rule applications only differ w.r.t. their preconditions but have exactly identical effects.
For every required (i.e., urgent) rule q of S, there needs to be some (urgent) rule q′ of S ′ imple-
menting it. This entails that L′ ⊆ L so that q′ has the less specific precondition and is therefore
enabled whenever q is enabled. The effects of the refining rule need to at least include the effects
of the original defining rule, leading to the permissive interpretation R ⊆ R′. Whether doing
more than required is acceptable cannot be encoded as part of the defining rule and depends on
the specific context, which might again make the strict interpretation of R ∼= R′ the preferable
and more natural choice.
The symmetry between the two cases is not accidental: In order to be allowed, a rule from S ′

requires a corresponding rule in S, making these relationships dual. This symmetry is, however,
broken by the fact that any rule q′ implementing a required rule q nonetheless needs to be allowed
as well. Consequently, we have both L ⊆ L′ ∧ L′ ⊆ L and R′ ⊆ R ∧ R ⊆ R′, resulting in
q′ ∼= q, for urgent rules of S.
Taken together, this yields the following definition of corresponding rules:

Definition 4.3.14 Given two GTS S and S ′, we call a rule [L, L̂]→q[R, R̂] ∈ S and a refining
rule [L′, L̂′]→q′ [R

′, R̂′] ∈ S ′ corresponding, written as q ≡ q′, iff prio(q) < 0 (urgent) and q ∼= q′

or prio(q) ≥ 0 (discretionary) and L ⊆ L′ ∧R′ \ (L′ \ L) ∼= R.

Based on this definition, we can then define the refinement relationship for GTS as follows:

Definition 4.3.15 A GTS S ′ is a refinement of a GTS S, denoted by S ′ v S, iff ∀r ∈ S |prio(r) <
0 (urgent) : ∀G : ∃r′ ∈ S ′ : r′ ≡ r ∧G ` r ⇒ G ` r′ and ∀r′ ∈ S ′ : ∀G : ∃r ∈ S : r′ ≡ r ∧G `
r′ ⇒ G ` r.

Simply put, this means that whenever an urgent rule in S is enabled for some graph G, some
corresponding rule in S ′ needs to be enabled, and whenever any rule in S ′ is enabled for some
G, some corresponding rule in S needs to be enabled.
An advantage of this definition is that it can be verified statically by comparing and matching
up the two sets of graph rules, which can be done very efficiently. S ′ v S under a strict in-
terpretation means that S ′ contains all urgent rules of S, and otherwise only contains rules that

4.3 Formal model 167

are derived from discretionary rules of S by, optionally, restricting their preconditions. Under a
permissive interpretation, S ′ might additionally relax the postconditions of discretionary rules. If
the necessary rules are present in either GTS, the refinement relationship holds by definition.
The definition’s downside is that it is too limiting for our purposes. Ultimately, we are interested
in comparing community types, whose norms include social entities, with agent definitions, whose
rules are likely to contain references to the agents’ internal state, but are only interested in their
effects on a common core that is represented by the environment. We therefore introduce the
concept of restricted GTS refinement.

Restricted GTS refinement restricts the refinement relationship to a common domain that is
shared by both GTS, allowing them to perform modifications in their private domains without
restrictions. While these domains could be defined using arbitrary graph patterns (e.g. defining
the internal state space of each individual agent as private), the simplest way to do this is at
the type level by explicitly defining the common type system TC . For two GTS S and S ′, we
typically define TC := TS ∩ TS′ as the intersection of the two type systems.
We then modify the above definition of refinement by replacing all involved graph patterns with
their respective restricted versions L|TC

and R|TC
when computing the sets of corresponding

rules. Using r ≡ |TC
r′ as a shorthand for r|TC

≡ r′|TC
, we define:

Definition 4.3.16 A GTS S ′ is the restricted refinement of a GTS S for the shared domain TC ,
written as S ′ v |TC

S, iff ∀r ∈ S | prio(r) < 0 (urgent) : ∀G : ∃r′ ∈ S ′ : r′ ≡ |TC
r ∧ G ` r ⇒

G ` r′ and ∀r′ ∈ S ′ : ∀G : ∃r ∈ S : r′ ≡ |TC
r ∧G ` r′ ⇒ G ` r.

Effectively, this means that S ′ and S act like two GTS S ′|TC
v S|TC

as far as the shared domain
TC is concerned. Nonetheless, they still affect and are affected by their private domains. As the
correspondence between rules is computed based on their restricted versions whereas rule appli-
cations are computed using the original versions, we can now no longer statically guarantee that
corresponding rules are always enabled together. Due to the influence of the private domains, the
refinement relationship can no longer be verified without considering the context of the rule ap-
plication – we may even have to consult the entire previous execution path in order to determine
whether a corresponding rule would be enabled.
While this definition exactly captures the desired relationship by allowing us to define refinement
based on the observable behavior in the environment, it significantly complicates analysis. As
long as an agent is only concerned with community types that are independent of each other, finding
a valid refinement is trivial because it is sufficient to simply imitate their GTS definitions and
apply the available discretionary rules at random. Once the agent starts constraining the original
GTS in order to make its behavior goal-directed or to reconcile multiple community types, however,
a more sophisticated verification approach is required, as required behavior may now be blocked
by internal constraints that are not obvious to an outside observer.

168 4. System Design

4.3.5 System Specification

We now combine the elements we have defined into the overall system. Figure 4.3.20 provides
an overview: The environment, the community types and, indirectly, the cultures specify the desired
system behavior, the agent designs need to respect the boundaries set by this specification.

M C
1

M
A

M
A
n

M C

M C
m

M
CW

M
A
1

M S
1 ...

...

...

M S
m

C
ul

tu
re

s
C

om
m

un
ity

Ty
pe

s

Agents

E
nv

iro
nm

en
t

M S

Figure 4.3.20: The integrated specification

Definition 4.3.17 A consistent system specification Y is a tuple (WY , CY ,AY) where WY is an
environment specification, CY is a set of community types using WY , and AY is a set of agent
specifications using WY where holds ∀A ∈ AY : CA ⊆ CY .

The corresponding GTS M is then the parallel composition of the agents described by the GTS
MA

1 , . . . ,M
A
n , and the closed behavior of the physical world, described by the GTS MCW .

M := (MA
1 ‖ . . .MA

n ‖MCW). (4.3.1)

The system model now provides a complete representation of both the environment and the
coordination architecture. Within the limits of the quality and precision of the employed model,
it is therefore a suitable foundation for both verification and validation activities.

4.4 Conclusion

Now that we have presented our concept in more detail, we can compare it to related approaches
before summing up the discussion.

4.4 Conclusion 169

4.4.1 Related Work

Separation of concerns. The principle of separation of concerns [Par72, Dij76] has recently
come back into focus due to new approaches inspired by aspect-oriented programming (AOP)
[KLM+97] and its support for crosscutting concerns. Similar ideas have been put forward as
subject-oriented programming (SOP) [HO93] or, more abstractly, a viewpoint framework using
multiple perspectives on the same engineering artifacts [NF92]. Their common principle is the
separation into aspects or views on the system which can be considered in isolation and only
be composed into a coherent design or implementation at the end of the process. Development
efforts can then focus on specific problems, and the individual parts of the solution become easier
to analyze. Cross-cutting concerns like persistence, logging or error handling are frequently
presented as suitable targets for this type of treatment. However, most approaches assume that
concerns are orthogonal and start to break down when the number of interactions between views
increases. In contrast, we also consider the systematic composition of non-orthogonal functional
concerns as discussed by [GV06].
Our approach uses model-based composition that is performed at the specification level, whereas
aspect composition usually operates at the source code level. Notable exceptions include subject-
oriented design [CHOT99], which synthesizes object-oriented design models from individual
design subjects, or role-based modeling [RWL96]. In [MGF02], a tool for aspect weaving based
on UML role models annotated with OCL constraints is sketched, combining the idea of aspects
at the design level with role modeling. However, these approaches focus on the composition of
structural features and method bodies, not on the behavioral composition of reactive behavior.
In the context of multi-agent systems, current proposals focus on exploiting the principle of
separation of concerns within individual agents as an implementation technique (cf. [GSCL02]),
whereas we apply it at the system level to design the overall coordination behavior.

Environment. For software-intensive systems and agents alike, the concept of situatedness is
very important. The system’s context is relevant both at the physical and the knowledge or
social level [Jen00]. While most approaches are based on a strict separation between physical
and metaphysical context (cf. [BBB01]), our conceptual framework provides a unifying view on
both.
Context has been studied intensely in the field of Artificial Intelligence: [SB04] compares the two
dominant formal theories of context, Propositional Logic of Context [BBM95] and Local Models
Semantics [GG01]. While these provide important insights on the epistemological aspects and
theoretical limitations of context, they have gained, as [Edm02] notes, little practical relevance
for the design of multi-agent systems. In the vein of [SBG99], various more pragmatic context
classification schemata have been proposed (see [KO04] for a survey), often geared towards
a specific aspect like human interaction or tied to a particular middleware or implementation
technique.
Research in the area of reactive agents follows the quite different philosophy that ’the world is
its own best model’ [Bro91], which basically places an agent’s environment outside the scope
of explicit modeling. While this approach emphasizes the close relationship between agent and

170 4. System Design

environment and provides a pragmatic way to design how agents perceive and affect it, it delib-
erately rejects cognition and explicitly reasoning about the environment.
Viewing the environment as a first-order abstraction [WPM+04] has only recently begun to gain
acceptance in the agent community, notably after work on stigmergy [Bon99, FKR95, PBS05]
had drawn attention to the environment’s potential for the efficient coordination and control of
multi-agent systems. As our approach prominently uses the grounding of social interactions in
the observable environment, there are parallels with other research in this domain:
Weyns et al. [WPM+04] discuss several functions of environments that are also important to our
approach, namely structuring the system, providing a shared state, providing service support,
enabling coordination, and acting as a regulating entity. We support the systematic model-driven
development of these aspects.
Recent work by Omicini et al. [ORV+04] proposes artifacts as a general way to structure the in-
teraction between agents and the environment. While this is similar to the way the environment
provides services, our approach is rooted in software engineering practices and can furnish com-
plete behavioral specifications, whereas artifacts come from an AI background and only provide
abstract message-based interfaces, which makes analysis of the provided services harder.

Agent coordination. The concept of social structure was established by Ferber’s organizational
models [FG98]. We see strong relationships between the concept of communities and current
work on organization-centered multi-agent systems (OCMAS) based on the agent, group, role
(AGR) model [FGM03]. Common points include the predominance of inter-agent aspects and
the abstraction from agents’ cognitive abilities. However, we apply dynamic, intersecting groups
as a more general, implementation-agnostic modeling concept.
Bridging the gap between the social and the individual perspective is a problem that all method-
ologies that begin designing at the social level (e.g. MESSAGE [CCG+02]) face. The idea of
the legal stance is both related to work on intentional stance (cf. [WJ95b]), the social level [JC97]
and social order [Cas00]. It was inspired by Viroli and Omicini’s idea of agents as observable
sources [VO02], but goes beyond it by basing observations on the environment model. This
provides a more flexible, general mechanism, at the cost of diminishing the ability to formally
reason about the observations from an AI perspective.
Law-governed interaction [MU00], though similar in name, takes a fundamentally different ap-
proach. Instead of checking the observed behavior against a specification, it works by restricting
an agent’s interactions with the system in such a way that, a priori, only socially acceptable
actions are possible.

Agent modeling. In the field of agent-oriented software engineering, there are numerous ap-
proaches that use UML dialects which extend the standard with agent-specific concepts (cf.
[BM03] for a survey). In contrast, our approach is based on powerful general purpose notations
which allow modeling multi-agent system concepts, but are not limited to a specific view. As
certain notations suggest themselves for specific tasks, there are superficial similarities to other
approaches: [KG97] uses class diagrams for ontology modeling, object diagrams to describe sys-
tem states, and state charts for control structures. [BO05] discusses a component-based model

4.4 Conclusion 171

of agent interactions. None of them offers the expressiveness and complete formalization our
notations provide, however.
While the approach presented in [KK07a, KKK02] does not propose a general purpose modeling
language per se, it is notable for its use of graph transformations for the description of the actions
of autonomous agents in their environment.
The TROPOS methodology focuses on the initial analysis of requirements (cf. [BGG+04]). The
proposed notation for modeling dependencies between agents, tasks, goals, and soft goals is
intentionally informal. The resulting diagrams are visually complex due to a lack of structuring
elements and provide only limited guidance for the subsequent design process.
The Agent Modeling Language (AML) [CT07], a UML-based modeling language, is the result
of a promising initiative that has tried to distill a common core from a selection of popular
methodologies. Our own research (cf. [Kle03]) that laid the groundwork for the CURCUMA
framework had followed a comparable objective based on a similar set of methodologies. It is
thus quite informative to note the parallels and dissimilarities between our independently derived
results. While the AML metamodel seems like a sound compromise, we nonetheless detect the
exact same issues that motivated our move away from the smallest common denominator and
the adoption of behavioral semantics based on Story-Driven Modeling, the principle of physical
grounding, the legal stance, and the dynamic organization into communities in CURCUMA.

4.4.2 Discussion

In this chapter, we have presented an approach for designing a coordination architecture for
complex software-intensive systems. We have motivated the use of the multi-agent paradigm
and shown how ’soft’ agent-oriented abstractions can be integrated into an object-oriented design
approach using our CURCUMAframework. The framework also provides the unique ability to
use these abstractions in a way that is fully rooted in the environment. We have also provided a
rigorous formalization of the framework.
We have also discussed how cultures and communities seamlessly integrate with existing concepts
such as Coordination Patterns. In previous publications, we have already successfully applied the
community concept in order to explain and formalize the dynamic instantiation of such patterns.
In the next chapter, we will explore how this approach integrates into the overall design process
for software-intensive systems and supports the verification and validation of the design.

172 4. System Design

Chapter 5

Verification and Validation

5.1 Introduction

There is no such thing as a flawless design. A system can at best strive to faithfully implement its
specification, which in turn is based on an approximation of the real requirements and assump-
tions about the expected environment and operation conditions. However, it is not realistic to
expect the first iteration of a design to achieve even this limited level of perfection.
Verification and validation activities, and by extension iteration, must therefore be part of any
systematic software engineering process. In some domains, there even are legal requirements that
mandate certain verification techniques for safety-critical technical systems. Practical experience
shows that activities such as debugging, testing, and verification consume significant amounts of
time and account for up to three quarters of the total cost of development in a typical commercial
development organization (cf. [HS02]).
The terms verification and validation carry a certain ambiguity – they are not used consistently
throughout the literature, sometimes even interchangeably. In this work, we use the common
distinction that validation is concerned with the question whether the system meets customer
needs and expectations (building the right system), whereas verification answers the question
whether the system is correct with respect to some specification (building the system right). The
former is based on the original requirements, the latter typically refers to the result of a previous
phase of the development process.
The techniques that are employed for verification and validation range from various forms of
testing with different subjects, scopes, and levels of detail, automation, coverage, and formality
to formal methods such as model checking or theorem proving [CW96]. When discussing veri-
fication in this work, we are primarily concerned with formal verification, i.e. the formal proof
that a model is correct with respect to a formal specification [Int95]. However, as our approach
as discussed in the previous chapter yields specifications of agent behavior that are both rigorous
and comprehensive, we are able to provide support for an appropriate blend of formal verifica-
tion and conformance testing in a simulation of the environment according to each application’s
needs and requirements.

174 5. Verification and Validation

Multi-agent system verification. Most well-known approaches to multi-agent system devel-
opment (cf. [BDKJT97, WJK99, WD01, BG02, BM03]) focus on the design phase and do not
provide specific support for verification. Verifying multi-agent coordination and flexible interac-
tion is notoriously difficult due to their concurrent nature, the agents’ autonomy, and the effects
of learning and adaptation. Those approaches that do exist focus on the verification of interaction
protocols, ignoring structural adaptation or interactions with the environment. They usually yield
incomplete results, achieving a level of coverage that is far below what is common for traditional
technical systems.
The CURCUMA framework allows us to describe multi-agent systems that use the social sys-
tem metaphor for coordinating and structuring interactions and are embedded in and interacting
with a complex environment in a way that can support both formal and empirical verification
techniques. This allows us to consider the verification problem starting from the early phases
of the development process. The importance of the principle of explicit grounding cannot be
overemphasized in this context: As all instances of abstract concepts such as communities or
commitments can be traced back to entities from the system’s environment model, it is possible
to observe and thus reason about all aspects of the system from an external perspective. Due
to our use of legal stance, the focus on concrete elements of the system that can be expressed
using standard software engineering techniques does not impair our ability to include the agents’
beliefs and intentions in our considerations.
As both the environment and the social interactions between agents are typically complex even by
themselves, the resulting state space of the overall system tends to be huge. As Graph Transfor-
mation Systems give us the ability to describe open systems, the state space may even be infinite.
It is therefore indispensable to apply complexity reduction techniques, such as the separation of
the specification into more tractable subsets. The decomposition into architectural views that was
used to attack the design problem again proves useful in the context of verification, as it lends
itself to the application of compositional verification techniques.
Our formal verification efforts therefore focus on the community as a useful unit of consideration
that is limited in both size and scope. As discussed, its member agents need to respect the
behavioral specification that is provided by the community type, but are free to implement it in any
way that represents a valid refinement. This leads to two different verification problems: Is the
specification internally consistent and sufficient for guaranteeing the desired properties? And
does the implementation conform to the specification?
The first question concerns the culture or community type in question and its system of roles, norms
and professed intentions. As there is no fundamental difference between the verification of cultures
and community types, except perhaps concerning their degree of specificity and level of detail, we
will focus on the verification of cultures in our discussion.
The second question concerns the agent themselves. In order to answer it, we need to extend
our concept of refinement from automata to GTS. As the agents need to conform to all relevant
cultures at once, this is also the point where conflicts between different views are identified and
resolved, which may cause repercussions for the social design if two cultures are found to be
mutually exclusive. The consistency of the employed ontologies that is achieved by basing ev-

5.1 Introduction 175

erything on the environment helps when identifying potential conflicts between different views,
as it makes it easier to spot where their domains overlap.
Where possible, we try to answer both questions using formal verification. As the semantics of
our specification is based on GTS and Coordination Patterns, we are able to apply the existing
techniques and optimizations. Still, there are limits to what can be formally verified, even when
dealing with a single culture. Brute-force model checking will only work for select properties of
specifications of moderate size. The approach for invariant checking [BBG+06] is only designed
to deal with safety properties and not applicable to liveness properties. Finally, chaotic behavior
of the environment is completely beyond the reach of verification techniques. Understanding
emergent properties of a physical system would require detailed differential and probabilistic
analysis. What we strive for is hence the complete formal verification of those properties that are
relevant to the safety of the system, while falling back on less reliable means of verification if
necessary where only the efficiency of the system is concerned. This will allow us to prove that
the system is never unsafe and can reasonably be expected to perform well in the general case.

Multi-agent system validation. In an ideal process, validation would only need to establish
that the documented requirements are concise, complete, and correct, and everything else would
verifiably follow from there. In the real world however, neither the requirements nor the process
should be expected to achieve such perfection. The requirements are bound to be incomplete
and may use inappropriate or oversimplifying abstractions. Non-functional requirements often
prove difficult to formalize. The specifications that are created in later phases may amplify the
inaccuracies in the underlying specifications or introduce errors of their own.
We can therefore follow two avenues towards a better approximation of an ideal process, which
are both rooted in Model-Driven Engineering: We can improve the process and reduce human
error by automating transformation steps; and we can improve the requirements and subsequent
specifications by subjecting them to validation as early as possible. Both approaches benefit from
techniques such as behavioral synthesis, model transformations, and code generation, which
eliminate menial tasks and greatly facilitate the creation of simulations or prototypes which can
be used to check whether the current specification remains true to the original intent.
It is again thanks to the CURCUMA framework and its emphasis on concrete entities that we
are able to apply model-driven techniques to the system in its entirety and enable the rapid
prototyping and iterative refinement of multi-agent system specifications. As all elements of
the specification are testable, i.e. can be evaluated on the environment model, and most of them
are even executable due to the operational semantics that exists for the employed formalisms,
it is possible to put all key elements of a design to the test directly. Experimental validation
can therefore be used even for partial specifications, such as cultures or community types. In
later phases, increasingly detailed environment models can be used to test agent designs and,
ultimately, the overall system. As emergent behavior, i.e. order resulting from seemingly random
interactions, can usually only be observed at the system level, the ability to generate, try, and
tweak prototypes is invaluable for its design.
A rapid prototyping approach with rapid cycles of experimental evaluation and subsequent re-
finement of the design specification does not only require appropriate tool support for the above-

176 5. Verification and Validation

mentioned model-driven techniques, but also an infrastructure for executing, monitoring, test-
ing, and evaluating the prototypes. Basic services that are used by the agents themselves, such
as communication or persistence, also need to be made available. While it is conceivable to
generate these services from the service model, the more common approach is to rely on existing
runtime libraries and only model their interfaces or appropriate adapters explicitly. Finally, if the
agents are embedded and a detailed simulation of the environment is required that goes beyond
the discrete approximation that is provided by the environment model, a dedicated simulation ker-
nel needs to be used. The challenge in this context is to integrate these components in a manner
that is sufficiently generic to support a wide range of applications.
The systematic experimental exploration of a design is greatly facilitated if appropriate direct
feedback is provided by the system. Again, the concise and operational nature of the specifi-
cation proves useful, as it allows us to generate behavioral monitors from the specified constraint
diagrams that are able to observe the behavior of a simulation or, with proper instrumentation,
even the production system. Structural constraints (based on eSP/SDDs) can be used to flag vio-
lations of invariants or warn if the required preconditions for an action are not fulfilled (e.g. when
an effector application is physically possible but the agent ignores that it is not permitted at the
social level). Temporal constraints (based on TSSDs) describe entire scenarios and can be used
to ascertain that required behavior actually occurs. The monitors can also be used to generate
and store partial traces, which can then be used to display counterexamples at the model level.
Likewise, the collected information can be used to provide a high level overview of the current
state of the system, e.g. a list of open commitments.

Chapter outline. In this chapter, we do not expand our example in scope, but only add detail
as required. We begin the following Section 5.2 with a discussion of the formal verification
techniques that can be applied to the specification. We then delve into the question to which
aspects and which properties of the system these techniques can be applied in theory and in
practice. In Section 5.3, we look at the support for prototyping and experimental validation. The
available tool support for both verification and validation is discussed separately in the following
chapter. Related work is discussed in the concluding Section 5.4.

5.2 Verification

Every verification problem has the same basic structure: A model, a formal description of the be-
havior of a system that makes it amenable to analysis by representing it at a more abstract level, is
checked against a specification, a set of requirements constraining that behavior. However, there
is a large spectrum of formalisms for expressing models and specifications and, by extension, of
verification techniques that can be applied to them.
Formal verification is a hard problem; it is complex and computationally expensive. In order
to enable it for non-trivial cases, it is important to select the right abstractions for describing
a particular system – and still, highly optimized implementations will be required for making
verification feasible in practice. Popular model checkers such as SPIN (cf. [Hol97, Hol03]),

5.2 Verification 177

NuSMV (cf. [CCGR99]), or Bogor (cf. [RDH03]) therefore use dedicated modeling languages and
contain many optimizations and heuristics that are tailored to certain types of models or even
specific use cases. While there are attempts to achieve greater standardization in order to reduce
the lock-in to a specific tool, such as the framework for integrating different model checkers that
is proposed in [Kat06], it remains to be seen whether such a solution will gain general acceptance.
Researchers often work at the limits of current technology and may therefore resent the inevitable
loss in features and performance, whereas more widespread use outside of academia is likely to
go hand in hand with a push for greater standardization.
There is no model checker that is dedicated to the presented modeling and specification approach,
in particular not to the constraint specification languages that are proposed in Chapter 3. Fortu-
nately, there is previous work that covers significant parts of the approach such as Coordination
Patterns (cf. [Hir04]) or aspects of Story-Driven Modeling (cf. [BBG+06, Sch06]). Even though
there is a great variety of tools and languages, there is only a limited number of basic classes
of models and specifications so that it is often possible to transform a specification and map it
to the input format of an existing tool of the appropriate class or, with greater conceptual effort,
a related class. We therefore provide an overview of common formalisms and methods before
discussing several solutions that are suited for use with our approach in more detail.

Models. The elementary mathematical model underlying most formalisms is the Labeled Tran-
sition System (LTS), consisting of states, transitions, and labeling functions for either transitions
or states. Many common types of deterministic and non-deterministic finite automata can be in-
terpreted as LTS with transition labels, such as the Mealy automata used to define state machine
behavior in Definition 2.3.1 in Section 2.3.2.1 or Büchi automata, the extension of finite automata
to input words of infinite length. Kripke structures, minimalist LTS whose states are labeled with
sets of valid propositions, are commonly used as the basic structure for model checking the
behavior of reactive systems.
More expressive formalisms extend LTS with concepts such as real time or probabilistic behavior.
Timed Automata (cf. [AD94, Yov96, BY03]) introduce the concept of clocks, which are used to
define constraints on transitions. In turn, they form the basis of Hierarchical Timed Automata
(cf. [DMY02]) and the Extended Automaton of Definition 2.3.4. Stochastic Timed Automata
[BDHK06] use probability distributions in order to compute minimum time bounds for each
transition, thus making it subject to chance which one is actually triggered first. In a similar vein,
models based on Markov Chains (cf. [ASSB00]) use a memoryless probability distribution in
order to compute the subsequent state.
Petri Nets (cf. [Pet62, Rei85]) are an alternative approach for the description of event-driven,
parallel behavior. Their mathematical foundation permits the direct analysis of many interesting
properties such as reachability, liveness, and absence of deadlocks [Mur89, RR98]. They are
bipartite directed graphs, typically consisting of place and transition nodes, and a set of tokens
marking places in order to indicate the active state. As for automata, there are extensions for
handling time (Timed Petri Nets) and probability (Stochastic Petri Nets).
In Chapter 2, we have already introduced Graph Transformation Systems (see Definitions 2.2.14
through 2.2.17 in Section 2.2.2.4) as transition systems whose states are graphs. GTS are dif-

178 5. Verification and Validation

ferent from other types of transition systems because they describe the system at the meta-level,
defining only classes of valid states (by means of the type system) and transitions (by means of
graph patterns) (cf. [RSV04]). An important effect of this characteristic is that a GTS may have
infinitely many states, and, more importantly, infinitely many reachable states, as graph rules are
capable of generating new graph elements.
Of these formalisms, Timed Automata, which were used to define the Real-Time Statechart se-
mantics, and GTS, which are the formal foundation of all story-driven modeling techniques, have
the highest direct relevance for our approach. However, most model checking tools are not based
on the mathematical formalism directly, but use custom input languages that sacrifice concep-
tual simplicity but provide better scalability through higher level abstractions (such as classes,
processes or channels), e.g. Promela (SPIN) [Hol97, Hol03], NuSMV (NuSMV) [CCGR99], and the
Bandera intermediate language (Bogor) [RDH03] for the above-mentioned model checkers. Unfortu-
nately, the semantics of user-oriented specification languages tend to be complex, an observation
of which Chapter 3 bears ample proof. It is therefore non-trivial to export a given model to a
specific tool, even if both are rooted in the same formalism.

Specifications. The basic building block of a specification is the atomic proposition. Any prop-
erty whose truth value is well-defined for each state of the system can be used as such. In some
formalisms such as Kripke structures, states are explicitly labeled with the propositions that hold
in them. In the context of GTS, we use graph patterns for defining elementary properties (see
Section 2.2.2.5). In our extended automaton (see Definition 2.3.4 in Section 2.3.2.1), atomic
propositions are elementary queries on the data model, which is represented by a GTS.
An invariant of a model is a formula of propositional logic, i.e. an expression combining atomic
propositions and logical operators, that is required to hold for every state. Invariants are sufficient
to express the important safety property that some proposition p is always false (¬p holds),
e.g. that a certain hazard never occurs. They are an integral part of our approach, down to
the definition of constrained GTS (see Definition 2.2.16). In the specification of processes (see
Definition 4.3.4) and cultures (see Definition 4.3.6), we use invariants to express constraints and
requirements. These are typically written as SDDs, which allow expressing negation explicitly
and remove the restriction to implicitly negative invariants. For Coordination Patterns, we allow
defining role invariants (see Definition 2.3.6).
However, invariants are unable to deal with more complex properties connected to a system’s
dynamics as they do not distinguish between states and indiscriminately apply to the entire sys-
tem. In order to describe dynamic properties, we need to use temporal logic. In the context of
verification, most popular temporal logics are in some way related to the Computational Tree
Logic CTL∗ (see Section 2.2.2.5). Its two most important subsets are CTL, which is restricted
to state formulae, and LTL, which is restricted to path formulae. CTL allows making statements
about all possible execution paths of a system (branching time), whereas LTL focuses on a single
execution path at a time (linear time).
For both variants, there are timed extensions available: Clocked Computational Tree Logic
(CCTL) [RK99] extends CTL, Metric Temporal Logic (MTL) [Koy90, AH93] and Time Point
Temporal Logic (TPTL) [AH94], which were discussed in Section 3.3.2.5, extend LTL. As for

5.2 Verification 179

models, there also are several probabilistic extensions: Probabilistic CTL (PCTL) only replaces
the standard quantifiers with probabilistic quantifiers, while the Continuous Stochastic Logic
(CSL, for use with Markov models) and the Probabilistic Timed CTL (PTCTL, for use with
Probabilistic Timed Automata) additionally support continuous time (cf. [Kwi03]).
In our approach, the primary means of expressing temporal constraints are TSSDs. As we have
shown in Section 3.3.2.5, they are related to temporal logics such as LTL, MTL, and TPTL.
However, mapping TSSDs to temporal logic is non-trivial. TSSDs are also much more succinct
when in comes to describing certain aspects of a process, e.g. partially ordered parallel sequences.
On the other hand, TSSDs are restricted to a single execution path, i.e. linear time, and do
not allow encoding arbitrary CTL formulae. For some purposes, e.g. when defining pattern
constraints for Coordination Patterns, we directly use temporal logic formulae as well.

Methods. The applicable methods depend both on the model and the specification. The specified
properties in particular determine how we can verify them and how complex this will be. Safety
properties are defined as properties that can be disproven by a finite counterexample. For a tran-
sition system with a finite number of states, verifying safety and its dual reachability is therefore
straight-forward. Liveness properties such as progress or fairness (cf. [Lam77, OL82, AAH+85])
cannot be decided on a finite path because future states could always, potentially, fulfill or inval-
idate them – a problem we have already encountered when discussing the semantics of TSSDs.
Verifying liveness properties is significantly more complex, which has even prompted attempts
to reduce this problem to the checking of safety properties for certain cases [Sch05].
The most elegant way to verify a property is to prove that it can be deduced directly from the
model. However, this task requires specialized skills and, e.g. when proving an invariant using
some formal calculus, demands a significant effort. Most importantly, it is near impossible to
automate for the general case. It can be useful in specific cases, however, e.g. when dealing with
certain properties of Petri nets for which general proofs exist.
Quite contrary to this, model checking is all about automation. It is essentially a brute force
approach that verifies properties by means of an exhaustive search of the state space. For state
formulae, as in CTL, this can be done quite efficiently. For path formulae, as in LTL or CTL*, it
is not sufficient to merely consider every possible state, but necessary to consider every possible
sequence of states, which requires more elaborate procedures. The key problem in both cases is
the size of the search space.
The two basic approaches are explicit state model checking and symbolic model checking. Ex-
plicit state model checkers represent and process every state explicitly, using optimized algo-
rithms to improve performance. Symbolic model checkers focus on finding an optimized encod-
ing of the state space, typically based on reduced ordered binary decision diagrams (ROBDDs).
This makes it feasible to apply less elaborate algorithms because the representation makes com-
putations more efficient and allows applying operations to sets of states.
Model checking real-time systems requires dedicated methods and tools, such as the model
checker UPPAAL (cf. [LPY97]). The introduction of clocks further blows up the state space,
even though time constraints introduce bounds that may make it possible to decide liveness
properties on a finite trace. The additional complexity of the model therefore entails further

180 5. Verification and Validation

restrictions for the types of properties that may be verified. Probabilistic models, which likewise
require specific probabilistic model checking techniques, suffer a similar fate.

Approach. Settling on a single comprehensive solution is indeed desirable when dealing with a
specific problem, and alluring in its clarity and elegance. However, the theoretical and practical
problems that we are dealing with are too hard and varied to allow such simplicity.
A toolkit deserves to be as diverse as the problems it solves. We can distinguish three main
dimensions for classifying these problems in our case: The subject progresses from cultures,
community types (i.e. cultures with an environment), and agents (i.e. a composition of community
types) to the overall system (i.e. the combination of multiple agents), each more extensive and
complex than the last. The properties that are of interest are expressed by specifications that
range from invariants to real-time temporal logic. Finally, the result that we strive to achieve
can lie between a complete verification, i.e. ensuring the absence of errors, and exploration, for
which stumbling upon a single counterexample might be sufficient. The latter points are closely
related as the significance of the obtainable results generally decreases the more expressive the
employed formalisms become.

Culture
Community
Type

Agent System

Safety properties

Lifeness properties

Time constraints

Invariants

GTS Model CheckingInvariant Checking Scenario-based VerificationBehavior Verification

Subjects

Complexity

Properties

C
om

pl
ex

ity

Figure 5.2.1: Overview of the employed verification techniques

Figure 5.2.1 provides an overview of the techniques we employ below. The table indicates for
which types of problems the different approaches are recommended (solid icons) or applicable
in theory (hatched icons).
GTS model checking can be employed for all subjects and a wide range of properties, for which it
provides complete verification. In practice, it is often relegated to the early phases by the size and

5.2 Verification 181

complexity of the overall system. In this work, we adapt the existing approaches to our notations
and methodology.
Invariant checking is restricted to inductive invariants, which allows it to provide complete ver-
ification for all subjects regardless of the size of the system. We adapt the approach to our
notations and methodology and additionally propose optimizations for increasing the relevance
and reliability of the generated counterexamples.
Behavior verification uses an original approach that is closely related to the concept of GTS
refinement. Its specific focus is the conformance between the behavior of an agent and the norms
to which it is required to adhere. The verification is efficient, but not guaranteed to be complete.
Scenario-based verification is proposed as a way to bring the full expressive power of TSSDs to
bear. The approach is applicable to all subjects, but most at home in later phases of the process.
The ability to discuss properties of execution paths and real-time constraints make it powerful,
but also make complete verification impossible.
The different methods are bound together by the use of graphs as a common formal foundation.
Besides, the CURCUMA framework serves as a unifying principle. As the approach promotes a
clean decomposition into specialized communities, it invites the use of compositional verification
techniques to keep the size of the analyzed models small. It even makes it possible to use different
approaches for different communities, according to their specific purpose.

5.2.1 Model Checking

When modeling the system, we have stressed the conceptual and architectural separation between
the state-based perspective of Coordination Patterns and the graph-based perspective of Story-
Driven Modeling; the former dealing with real-time and continuous behavior, the latter using the
provided abstractions and focusing on reconfiguration and compositional adaptation. This clear
separation also serves us when verifying the system.
Model checking Coordination Patterns is well understood. The underlying real-time statecharts
can be exported as Hierarchical Timed Automata, which can then be flattened into plain Timed
Automata that can be processed by the model checker UPPAAL (cf. [LPY97]). The tool is then
able to verify certain important properties of a protocol, for instance its freedom from deadlock
(see [Hir04]). If the pattern contains continuous or hybrid components [Bur06, BGH05], its
verification poses additional challenges that are the object of current research activities.
The operative aspect is, however, that for our purposes the Coordination Pattern can be seen as an
atomic element whose correctness can be established independently from the rest of the system
in either case. A compositional approach like this does not miraculously eliminate complexity,
but relies on the additional requirement that, within each agent, the composition of the patterns
preserves the role protocols and invariants of each of them, which may be non-trivial if the
patterns are interdependent or affect intersecting sets of entities. Yet from the point of view of
the multi-agent system, this means that the verification problem can be reduced to the question
whether each required pattern is present at the right times.

182 5. Verification and Validation

5.2.1.1 GTS model checking

The model describing the structural evolution of the system and the norms governing the instan-
tiation of communities and, as a special case thereof, coordination patterns are both graph-based.
In this context, the mapping that was presented in Section 2.3.3 allows us to seamlessly inte-
grate Coordination Patterns into the graph-based structural model of the system, instantiating,
destroying, or manipulating (e.g. disabling as a consequence of a failure) the patterns and their
elements such as ports or communication channels just as any other graph node. The verification
problem can thus be represented as a constrained GTS.
There are two prominent tools for the verification of GTS, CheckVMS (cf. [Var02, Var04, Var03,
SV03]) and GROOVE (cf. [Ren03]). In [RSV04], the two authors provide a comparison of their
respective approaches.
GROOVE implements a custom kernel, which is specifically designed for efficiently handling
graphs, and provides explicit state CTL model checking with a focus on reachability. The kernel
itself is written in Java and not highly optimized, but contains specific optimizations for recog-
nizing and capitalizing on symmetries in the graph, which are capable of reducing both space
and time requirements drastically.
CheckVMS, on the other hand, translates the specification to a Promela specification and relies on
the symbolic model checker SPIN for performing the actual model checking. Consequently, the
focus is on LTL model checking. As SPIN is highly optimized, this gives CheckVMS an edge in
certain scenarios, but precludes most graph-specific optimizations. Most importantly, SPIN runs
afoul of a defining characteristic of GTS, their ability to generate new elements and thus new
states. In order to simulate this effect, CheckVMS explicitly captures those elements that might be
dynamically created or destroyed, at the cost of greatly increasing the size and complexity of the
specification. Object-based Graph Grammars [DFRdS03], a superficially related graph-based
approach, likewise use SPIN for verification, but focus on message interchanges between objects
instead of structural adaptation and therefore avoid this problem.

GROOVE. Due to the nature of the considered models and properties, GROOVE is the obvious
choice for the verification of safety-related properties of our model. However, differences con-
cerning syntax, semantics, and supported features make several transformations necessary before
either the model or the specification can be exported to the tool.
Firstly, GROOVE matches graph patterns based on graph homomorphisms, meaning that all pat-
tern elements of the same type might be matched to the same instance. In order to suppress this
behavior, it is necessary to specify isomorphism constraints between nodes, forcing the matching
algorithm to map them to distinct instances. The chosen approach is diametrically opposed to
the one used by Story Driven Modeling, where all instances are implicitly assumed to be dis-
tinct unless this restriction is lifted by a homomorphism constraint. When exporting patterns to
GROOVE, it is therefore necessary to add inequality constraints between all pairs of nodes of the
same type to reproduce the original semantics. As the necessary number of constraints grows
quadratically with the number of nodes for each type, the resulting graph patterns may quickly
become very unwieldy for larger patterns.

5.2 Verification 183

b1 : Block b2 : Block

bs1 : Base Station

a1 : Antenna a2 : Antenna

connected to connected to

at at

a. Specified pattern: two blocks

b2 : Connection

a2 : Antenna

bs1 : Base Station

a1 : Antenna

b1 : Connection

at

connected toconnected to

at

b. Two connections

b2 : Switch

a2 : Antenna

bs1 : Base Station

a1 : Antenna

b1 : Connection

at

connected toconnected to

at

c. A connection and a switch

bs1 : Base Station

a1 : Antenna

b1 : Switch

a2 : Antenna

b2 : Connection

connected to

at

connected to

at

d. A switch and a connection

a2 : Antenna

b1 : Switch b2 : Switch

a1 : Antenna

bs1 : Base Station

connected to

at

connected to

at

e. Two switches

Figure 5.2.2: Expanding a pattern containing abstract types to simulate inheritance

Secondly, GROOVE does not provide support for the additional features that we have introduced in
Chapter 2 in order to enable a more direct mapping from the employed UML-based notations to
our formalization of GTS. Most importantly, there is no support for inheritance (see Definition
2.2.3). As GROOVE does not use a type system at all, there is no straight-forward way to add
such a concept to the engine either. In order to emulate the effect of inheritance, it is therefore
necessary to generate sets of alternative patterns where each instance of a type is in turn replaced
with each concrete subtype. Figure 5.2.2 illustrates this for a pattern encoding that two blocks
are connected to the same base station. As block is abstract, we only need to check for switches
and connections here. As the expansion results in jn different type combinations for a pattern
with n nodes of a type with j − 1 subtypes, combinatorial explosion quickly becomes a problem
when the patterns or type hierarchies are large or abstract base types are used frequently. This
is partially counteracted by the fact that GROOVE does not distinguish instance names, which
means that symmetrical expansions such as Figures 5.2.2c and 5.2.2d are treated as one. If
the patterns mostly operate on concrete types, this approach is viable, though. In a similar
manner, cardinalities have to be encoded as a set of forbidden pattern as described in Section
2.2.2.6, which is less problematic as one to three patterns are sufficient to encode most common
cardinalities.

184 5. Verification and Validation

Finally, there is quite naturally no support for the proposed extended constraint languages. As
GROOVE relies on forbidden elements instead of negative application conditions for negation and
does not provide explicit quantification, matching an SDD (or even eSP) requires a more elabo-
rate approach that splits a single diagram into a sequence of interlocking graph rule applications.
In [KG06c], we provide a detailed presentation of an algorithm for generating a set of graph
rules that are able to determine whether an SDD holds for a given instance situation. This rule
set consists of specific pattern rules that encode the graph patterns of the SDD and a carefully
orchestrated set of generic auxiliary rules that emulate the effects of quantification, then and
else connectors, and (1) and (0) nodes. The rules generate a tree of auxiliary marker nodes that
double both as a means of guiding the control flow of the rule applications and of storing the
generated bindings. By means of their relative position in the marker tree structure, they indicate
which nodes have already been processed, while appropriately named edges from the marker to
the corresponding nodes indicate which instances are part of a binding. The rules heavily rely
on GROOVE’s ability to assign rule priorities in order to ensure that all patterns are matched in
the right order, the result is propagated back to the root marker, and all markers are cleaned up
afterwards.

Figure 5.2.3: Graph rule encoding the implication

Figure 5.2.3 provides an example of a pattern rule encoding the second part of the supervised
property as defined in Figure 3.2.12. For three consecutive tracks, the pattern tries to identify a
base station bs1 that is supervising them. Figure 5.2.4 shows an augmented instance graph during
evaluation. The marker structure indicates that the property has just been confirmed for the first
three tracks. A binding’s validity is undetermined by default, but it is marked as either success or
failure using a result node once it is completed. While all of the paths from the root marker to a leaf
marker represent bindings, only this particular binding is final in the example.
While the required number of auxiliary rules is high – in the dozens for a typical SDD – eval-
uation is nonetheless efficient because the individual rules are small and their priorities ensure
that only a subset of them is applicable at any one time. Checking a set of static properties of
an instance situation is therefore no problem. However, a sequence of rule applications is neces-
sarily less efficient than a single rule application, which means that the size of the most complex
systems that can realistically be verified using GROOVE is significantly reduced by the use of
elaborate SDDs.

5.2 Verification 185

Figure 5.2.4: Markers while processing

In theory, it is possible to extend the marker concept to the temporal domain and use it to guide
the evaluation of TSSDs, an idea that is also sketched in [KG06c]. At the cost of further increas-
ing the computational complexity, it is in fact suitable for monitoring a single execution trace.
Unfortunately, it is not only inefficient but conceptually impossible to perform model checking
based on TSSDs with GROOVE. TSSDs encode path formulae and therefore do not merely con-
sider the current state, but rely on history information about previous states which would have
to be encoded by markers. GROOVE, on the other hand, is built for checking reachability. While
only considering states, it is consequently concerned with computing all possible successors of
a state. As states that would be indistinguishable from GROOVE’s point of view suddenly be-
come distinct due to the additional history information, the state space explodes and the tool’s
fundamental approach for recognizing and unifying recurring states is defeated.

CheckVMS. As the comparative analysis in Section 3.3.2.5 already suggests, an LTL model
checker is thus indispensable for the verification of TSSDs. Putting aside the above-mentioned
scalability problems, CheckVMS could be used for the verification of the subset of TSSDs whose
temporal structure can be expressed as an LTL formula. Regrettably, typical scenarios combine
non-trivial graph patterns with inherently dynamic models, often containing significant structural
adaptation or the potential for unbounded instance creation, thus touching upon the weak spots of
the approach. A complete formal verification of even restricted TSSD specifications is therefore
not feasible in the foreseeable future.

186 5. Verification and Validation

5.2.1.2 Usage

Which aspects of the designed component behavior can be checked using GTS model checking?
As cultures, community types, the environment, and agent coordination are all specified using graph
patterns, we can apply the technique to a variety of subjects – basically, any one of the constrained
GTS we have defined in the previous chapter’s formalization could provide a suitable model and
specification.
We first turn our attention to the verification of cultures, encoded as GTS MS

i . The abstraction
from a specific domain that cultures introduce was motivated by reuse, but is also helpful for
stripping away unnecessary details during verification. Furthermore, each culture is normally
limited in size. For initially developing and improving a social design, they are therefore well
suited.

Cultures. When using GTS model checking on an isolated culture, we can establish whether it
is internally consistent, i.e. whether its norms taken by themselves do not allow violations of the
specified invariants. As this is a necessary condition for a culture’s usefulness, negative results
at this point are very helpful for the iterative improvement of the design. The verification is
comparatively cheap and quite transparent, especially when using GROOVE’s visualization com-
ponent for stepping through the counterexamples. However, positive results are not indicative for
the overall system. For cultures focusing on agent communication and coordination, the results
may be directly applicable to concrete communities implementing them, but for cultures involving
physical entities, this requires including the environment into the consideration.

Environment. Verifying the environment by itself is typically trivial. If the closed environment
behavior MCW , i.e. just the processes without agents, is capable of violating the environment’s in-
variants, or rather the laws of nature, this is indicative of a modeling error. The open environment
behavior MOW , on the other hand, allows arbitrary agent behavior and is almost certain to yield
chaotic, undesirable results.

Communities. We therefore need to look at the community type MC that results from mapping
a culture to a specific environment and combine it with the behavior of the environment in order to
verify that the specified norms lead to the desired result in a concrete environment as well. If
we use the closed environment behavior MCW , the GTS will resemble the previously checked
system for the culture, but additionally include the effects of environment processes. However,
the behavior of agents that are not a member of a community of the studied type may also have
an effect, which points us to the open environment behavior MOW additionally including all
available sensors and effectors. However, as the very idea of a community type is to restrict behavior,
we need to keep in mind that roles of MC restrict the use of the concerned effectors, which we
make explicit in the restricted environment behavior MRW by extending the effector definitions
of MOW as to require the absence of all applicable roles as a precondition.
An important point, which we touched upon when discussing sensors and effectors, is the dif-
ference between the intended and actual effects of an action, which cannot be expected to be
identical in a complex environment. If our model is too abstract, we might conclude that no
invariants are violated because the agents do not intend to violate them. In our case study in the

5.2 Verification 187

previous chapter, shuttles use their effectors to accelerate and decelerate, not for explicitly moving
to the next block, which provides a more realistic view on the limited control physical bodies have
over their movement.
The concrete effect this has on the correctness of cultures and community types can be seen in an
example that we have presented in detail in [GK07]. Two semaphores control the exclusive ac-
cess to an intersection. Only one semaphore may be open at a time, and vehicles may only pass
open semaphores. Finally, a closed semaphore may only open when there is currently no vehicle
in the intersection. When only studying the involved cultures (one controlling vehicle movement,
one coordinating the semaphores) and using an abstract, or perhaps naive, model of intentional
movement, the system seems safe. However, when including the environment and using a model
of implicit inertial movement, the model checker (GROOVE) finds a counterexample: Two vehi-
cles approach the intersection. The first one ensures that its semaphore is open and decides to
enter the intersection, but has not passed the semaphore yet when it closes. As the intersection
is empty, the second semaphore is now allowed to open immediately. If the second vehicle now
decides to also keep going and pass it, both vehicles collide in the intersection. While common
sense might have been enough to spot this specific problem – after all, the traffic lights at an
intersection do not all change simultaneously either, and there is a yellow phase to account for
the fact that vehicles have inertia and may not be able to stop anymore – it is easy enough to get
caught up in the perspective of the employed model, especially if it is more complex, and lose
track of the underlying assumptions, which underlines the importance of verifying and validating
a model in a way that is actually pertinent.

Composition. Checking individual cultures or community types is convenient, but may not be suf-
ficient. As an agent may be the member of multiple communities dealing with non-orthogonal
concerns, there may be undesired interaction effects that we have to consider. The global proper-
ties of the system may be different from the sum of the local properties, which rules out a purely
compositional approach.
However, compositional verification is possible if we include an abstraction of the relevant effects
of other communities into the model as another external process (cf. [EDK89]). Where another
community type merely affects the same entities, we can nondeterministically apply its respective
behavioral norms as an overapproximation of its possible effects. If both types constrain the same
effector, each use must be sanctioned by both. In a manner similar to the previously mentioned
approach for the compositional verification of component behavior (see [GTB+03]), we delegate
this reconciliation problem to the level of the agent, as only the agent is aware of all relevant rule
sets. We can, however, statically determine whether it is possible for the communities to contain
contradictory norms, simultaneously requiring and forbidding the use of the same effector. While
this approach works for the verification of safety properties, it is unable to deal with complex
interdependencies, such as a shuttle missing a deadline in one community because of restrictive
traffic laws in another. Such issues can only be recognized at the system level, and resolving them
may require fine tuning all involved community types. Mostly, however, we are able to simply layer
the different community behaviors on top of each other, with safety-related communities typically
not affecting goal-driven behavior but vetoing unsafe actions where necessary – not unlike the

188 5. Verification and Validation

classic subsumption architecture (cf. [Bro91]), where higher-level strategies (drive-to-destination)
are temporarily overruled by lower-level strategies (avoid-obstacle).

System. By studying M , the parallel composition of the agent GTS MA
1 , . . . ,M

A
n and the en-

vironment GTS MCW , we can finally verify the overall system behavior against our original
requirements. This verification problem may, however, become arbitrarily large.
The more comprehensive our perspective gets, the more meaningful the results become. Un-
fortunately, these results also become harder and harder to obtain. One aspect that has a strong
influence on the problem size is the start graph on which we base the evaluation. In the environ-
ment specification W in the previous chapter, we used a GTS ST that characterized all possible
start graphs. While this is very useful in theory because it allows us to actually let GROOVE
check all imaginable systems at once, ST can be expected to generate infinitely many differ-
ent start graphs, making the problem intractable before we have even begun to consider agent
behavior.
Selecting suitable, representative start graphs is therefore important. A technique that we have
successfully used for limiting the required size of the graph was focusing on a section of the
instance graph, hiding its interactions with the rest of the system, which only occur at specific
interface points, behind processes emulating their effects. In this way, we could for example
treat a part of a closed system as an open system that agents leave and enter. When we are
more interested in the evolution and behavior of a specific agent, we can turn this idea around
and dynamically generate the environment around the agent as it is relevant to it. This requires
defining a new process that is based on rules from the GTS ST . How much environment should
be generated is primarily dependent on the agent’s sensors, as these provide a first approximation
of what could have an effect on the agent’s decisions. Additionally, we need to consider the
defined physical and social invariants and norms to ensure that the process only creates consistent
extensions. Basically, this approach allows verifying that an agent behaves correctly in the face
of an arbitrary correct environment.

Case Study. Of the cultures in our case study in the previous chapter, we are able to verify the
positioning and traffic safety cultures with their update and distance coordination subcultures. The
latter exclusively deal with communication between agents and can therefore be verified at the
culture level. The former are also verified at the community type level because they are more tightly
coupled with the physical environment. Due to the described limitations, we can only verify
them for a small number of shuttles on a selection of track layouts that we consider characteristic.
The main limitation of this approach is that the cultures whose focus is on the fulfillment of com-
mitments cannot be verified as the corresponding LTL properties are not supported by GROOVE.
We can obtain limited results, e.g. by creating a start graph containing a commitment and checking
if it is fulfilled in the future, which represents a reachability problem again, but this is insufficient
for obtaining a definite confirmation.

5.2 Verification 189

5.2.2 Invariant Checking

As discussed, invariants are an important element of our specification, used to describe structural
and safety requirements. While they are more limited than generic temporal logic properties,
their simpler structure makes it possible to apply efficient algorithms that allow us to check
systems that would be too large or complex to handle for a GTS model checker.
Constrained GTS (see Definition 2.2.16) define a set of constraints that represent operational
invariants of the system. This means that, starting from the set of initial states, there is no
sequence of rule applications that leads to a state where one of the invariants is violated. The
required computations for the verification of this property basically correspond to the reachability
analysis that is performed by GROOVE, with all the associated limitations.
In order to overcome these restrictions, the approach presented in [Sch06, GS04] relies on induc-
tive invariants instead. In principle, inductive invariants are stronger than operational invariants
because they require that in any valid state there are only transitions leading to other valid states,
which implies the corresponding operational invariant – provided the initial states are valid – but
also extends to states which may not be reachable from the set of initial states at all.
However, instead of dealing with the state space of the GTS directly, it is possible to treat the
problem at the pattern level, i.e. reason about classes of states containing occurrences of the same
graph pattern. While each class may represent infinitely many states, there is only a finite number
of relevant classes. In particular, it is possible to characterize all states where an invariant has
just been invalidated due to a rule application by means of a set of patterns. The central idea is
that an invariant can only become invalid because either a forbidden element has been added or
a required element has been deleted in the instance graph. As all invariants are represented by
graph patterns of finite size, there is only a finite number of (partial) mappings from the elements
of each graph rule to corresponding elements of the invariant and consequently only a finite
number of different rule applications that might create or delete the critical elements. For each
such mapping or target graph pattern, the algorithm then has to compute the source graph pattern
characterizing the preceding states by reverting the effects of the rule application. If the computed
source pattern does not itself violate an invariant and no preempting transformation rules with
higher priority are enabled in it, the mapping represents a (class of) counterexample(s), i.e. an
enabled transition from a valid to an invalid state. An important detail will be of interest below:
As the source graph SGP is a pattern representing a class of instances, a forbidden pattern or
a precondition of a preempting rule P is only relevant if it matches all possible instances of the
pattern, which is only the case if P is less restrictive than SGP . This means that P needs to be
a subpattern of SGP (P ⊆ SGP) as defined in Definition 4.3.13, i.e. have a less strict positive
part but stricter negative application conditions (NACs).
Figure 5.2.5 presents an almost minimal example: Two shuttles may not share the same track
(collision in Figure 5.2.5a), but can move forward freely (unchecked move in Figure 5.2.5b). In the
generated target graph pattern (see Figure 5.2.5c), s1-sa has (just) crashed into s2, which is an
invalid state. As the corresponding source graph pattern (see Figure 5.2.5d) is valid, this is a
counterexample, proving that, unsurprisingly, the system is not safe.

190 5. Verification and Validation

s1 : Shuttle s2 : Shuttle

t1 : Track

on on

a. Negative invariant collision

sa : Shuttle

ta : Track tb : Track
adjacent

~on
*on

b. Rule unchecked move

t1-tb : Track

s2 : Shuttles1-sa : Shuttle

ta : Track

on on

adjacent

c. Target graph pattern TG

s2 : Shuttle

t1-tb : Trackta : Track

s1-sa : Shuttle

on

adjacent

on

d. Source graph pattern SG

Figure 5.2.5: Example generating a counterexample

Strengths and limitations. The main advantage of the method is that it is capable of dealing
with systems with an infinite state space because it combines model checking with an additional
abstraction step. The effort for enumerating and checking all mappings using a brute force ap-
proach only depends on the number of ways to combine rules and invariants, which is in turn
determined by their size and number. For heterogeneous patterns that contain many different
types but only a few elements, this number is typically small. However, for patterns with homo-
geneous type structures containing n and k elements of the same type, there may be up to

(
n
k

)
distinct mappings for these elements alone, which may result in a prohibitive number of relevant
cases. The limiting factor for the method is therefore not the size of the state space, but the size
of the specified graph rules and invariants.
In [BBG+06], we have presented a concept for using the relational calculator CrocoPat [BNL05]
for performing the checks. While this approach incurs a certain overhead that may outweigh
its benefits when applied to smaller patterns, the symbolic encoding can help to reduce the im-
pact of larger patterns that generate a large number of mappings when processed using explicit
enumeration.
A drawback of the method is that it tends to produce a potentially large number of false neg-
atives because it overapproximates the original operational invariant. In practice, many of the
generated counterexamples do not correspond to feasible topologies and violate explicit or im-
plicit assumptions about the system structure. A related problem is that the employed subpattern
check is actually too strong (whereas a simple isomorphism check would be too weak): There
are source graph patterns for which no valid instance exists even though none of the forbidden
patterns is a subpattern. The corresponding counterexamples are thus false negatives.

5.2.2.1 Constraint languages

The desire to be able to express positive invariants in order to avoid the need for double negations
first arose when working with the invariant checking method. As it was one of the motivating
use cases for the extension of the existing constraint languages, it is unsurprising that eSPs and

5.2 Verification 191

SDDs can be used in conjunction with it. As TSSDs go far beyond invariants, they are out of the
scope of the method by design.
When using the two structural languages for invariant and rule specification, some restrictions
and considerations apply, however. As we have chosen to use positive or required invariants
to improve usability whereas the invariant checking approach is based on negative or forbidden
invariants, we need to internally convert all specified invariants to implicitly negative invariants
by simply negating the respective SDDs. p and ¬q thus become ¬p and ¬¬q, respectively q.
The most significant restrictions stem from the central assumption that the changes that affect an
invariant are always local, i.e. operate on elements that are directly matched by the corresponding
pattern. Universal quantification and the generated candidate sets violate the locality assumption
because the size of a candidate set is not bounded a priori and may comprise the entire instance
graph. It is therefore necessary to internally replace the universal quantifier with its dual, the
existential quantifier, i.e. converting ∀x : P (x) to ¬∃x : ¬P (x).
While SDD References to SDD Patterns are not a problem per se – although they directly con-
tribute to the size of the graph pattern – it is not possible to use recursively defined SDDPs.
Transitive properties such as reachability might be invalidated by changes anywhere in the in-
stance graph, which completely breaks the locality assumption.
As SDDs allow expressing complex properties consisting of a hierarchy of nested required and
forbidden patterns, the algorithm that is used for performing the actual pattern matching needs
to be upgraded from plain graph patterns, which is straight-forward due to the applied transfor-
mations and imposed restrictions. The crucial question, however, is whether the algorithms for
computing the target graph pattern and the backwards step still work. Fortunately, the restriction
to existential quantification entails that every SDD produces only candidate sets consisting of a
single binding (or no candidate sets at all). Therefore, though a diagram may produce a wide
range of candidate sets due to the quantification or possible alternative branches, each individ-
ual binding results from a unique sequence of successful or unsuccessful attempts to match the
various patterns of the nodes of the SDD. By merging the matching patterns P+

n into a pattern
P+ and collecting the failed patterns P−

n in a set P− for each alternative, we can derive graph
patterns [P+,P−] representing the different alternatives which can then be used for the compu-
tation of target and source graph patterns in the usual fashion. In a manner of speaking, the SDD
is expanded into a set of alternative graph patterns which are then processed in its place.
The inclusion of attributes into rules or invariants is not problematic for discrete models. In
[Bec07], the approach is even extended towards hybrid models that support continuously chang-
ing attributes, although this requires significant extensions to the underlying model.
In Figure 5.2.6, the invariant collision is expressed as a positive invariant using an SDD. Internally,
it is converted to the negative invariant in Figure 5.2.5a above. The invariant connected states that
each track must have a predecessor and a successor. It is given as a positive invariant using uni-
versal quantification in Figure 5.2.6b. Internally, it is converted to a negative invariant containing
a NAC, expressing the requirement by means of a double negation (see Figure 5.2.6c).

192 5. Verification and Validation

s1 : Shuttle s2 : Shuttle

t1 : Track

s1, s2, t1

0 1

on on

then else

�

a. Positive invariant collision

ty : Track

tz : Tracktx : Track

tx, tz

ty : Track
ty

then

adjacent adjacent

�

�

b. Positive invariant connected

ty : Track

tz : Tracktx : Track

adjacent adjacent
�

c. Transformed negative invariant

Figure 5.2.6: Converting positive and negative invariants

5.2.2.2 Optimizations

Thanks to the described transformations, the algorithms for target graph pattern generation,
backwards application of rules, and handling the dangling edge problem that were presented
in [GS04] and [Sch06] can be applied without modifications when using SDDs as part of the
specification. However, the greater number of relevant invariants, combined with the negations
introduced by the conversion into negative invariants and the removal of the universal quantifiers,
lead to an increased number of interrelated rules and invariants with NACs, which acerbates the
discussed problem of false negatives. In order to improve the method’s usability in the context of
our modeling approach, we therefore propose several refinements that help to reduce the number
of false negatives.
A measure that is simple but essential for the verification of non-trivial specifications is the inclu-
sion of additional soundness conditions in the set of considered invariants. Based on the scheme
presented in Chapter 2 that was also used for exporting the specification to GROOVE, the cardi-
nalities of the type system can automatically be translated into invariants, which is indispensable
for eliminating a multitude of obviously false counterexamples. Furthermore, it is also advisable
to encode relevant assumptions about the structure of the system that go beyond simple cardinal-
ities. For example, two track segments (see Figure 4.3.6 in the previous chapter) will never form a
cycle in any sane initial graph, which will be true for any instance graph as the structure is never
modified by subsequent rule applications. As the invariant checking algorithm does not consider
initial graph structures, this particular pattern might however occur in hundreds of purely theo-
retical counterexamples. To mark these cases as irrelevant a priori, such a structure should be
encoded as an explicitly forbidden pattern.
It is furthermore possible to reduce the number of generated false negatives by modifying the
employed algorithm itself. We propose a set of extensions to this effect that work by demon-
strating that a forbidden pattern that matches the source graph pattern but is not a subpattern may
in fact invalidate the source graph pattern if there is no valid way to complete one of its NACs,
and by deriving additional implied forbidden patterns. The extensions are presented in detail in
Appendix C.

5.2 Verification 193

5.2.2.3 Usage

Most of the points that were made above for GTS model checking also apply to the use of
invariant checking, as both have a similar scope. We are again able to check the positioning
and traffic safety cultures, as all relevant properties are specified as invariants. With respect to
professed intentions, the restriction to invariants only allows asserting static consistency properties
(no contradictory statements) and completely removes temporal aspects such as the fulfillment
of commitments from the scope.
Now, however, we are not just able to guarantee safety for a limited number of shuttles on spe-
cific track layouts, but obtain a universal result applying to any valid topology. Concerning the
proposed optimizations, we turn to the environment specification in order to obtain the relevant
cardinalities and structural assumptions, which can be deduced from the generating GTS ST .
In [BBG+06], we have published benchmarks for checking a system consisting of 8 rules and 19
invariants of small to medium size that was quite similar to the traffic safety culture. Verification
of the overall system took around 5 minutes, a figure that has since been further reduced by
optimizations in the employed algorithms.

5.2.3 Behavior Verification

The previously presented techniques focus on the reachability of forbidden states, which is suf-
ficient to prove many important properties of a system, in particular concerning its safety. How-
ever, other aspects of the modeling approach from the previous chapter that rather have a tempo-
ral character, such as the fulfillment of commitments, are not covered by them. By focusing on
forbidden states, we have largely ignored the behavioral dimension of the model so far. After all,
cultures do not only state what an agent should (or should not) achieve, but may also suggest or
require how it should or should not go about this in more detail. Their behavioral norms shift the
focus to actions, or behaviors corresponding to sequences of actions.
A basic behavioral norm simply forbids or requires specific effector applications. On the GTS
level, this boosts the importance of transitions because it is now possible to have forbidden
transitions connecting two states each of which is valid taken by itself: If, for example, we
introduce traffic lights with the goal of excluding collisions, running a red light is still forbidden
(for good reasons!) even when the intersection is empty.
As we shall see, adding transitions to the equation does have benefits in other areas, both with
respect to expressiveness and state-space reduction, although it makes things more complex con-
ceptually. After all, we can now detect illegal behavior immediately instead of recognizing it
only indirectly by deducing it from subsequent constraint violations.
But how can we verify this type of property? This question is closely related to the concept of
restricted GTS refinement, which we have defined in Definition 4.3.16 in the preceding chapter.

194 5. Verification and Validation

5.2.3.1 Refinement Verification

The main challenge that is posed by the verification of a restricted refinement relation between
two GTS lies in the restriction to a shared domain that is also its main motivation. Because the
private domains are invisible to the other GTS, their effects on the selection of the applied rules
are intransparent and the problem that apparently identical states result in different behavior is
intensified. As both GTS basically are black boxes to each other whose future behavior might
depend on the complete history in some unknown way, the only way to determine whether the
refining GTS will act in accordance with the defining GTS is to actually execute the two GTS in
parallel.
Formal conformance checking nonetheless requires dynamically testing the same conditions that
can be used for static analysis in the unrestricted case: Is the transition in the refined GTS al-
lowed? And is every required transition present? As the refining GTS takes the lead in deciding
which discretionary rules it applies, whereas the defining GTS sets the standard for urgent rules,
the GTS cannot simply be run side by side. Ideally, the ’leading’ GTS would announce the next
transition, and the ’reflecting’ GTS would check whether it could match it. In the absence of such
an announcement, the ’reflecting’ GTS would have to perform this check after the fact, which
would require caching the previous state for precondition checks. The best solution is therefore
to combine the two systems into a single GTS that implicitly performs the desired checks.
In the combined GTS, we have to ensure that the leading (i.e. refining respectively required) rule
is never executed without its reflecting (i.e. allowing respectively implementing) rule. A static
analysis of the rule sets allows us to identify these rule pairs and mark them with an identical
label. When using restricted refinement, the structural mapping between the rules is merely a
necessary, but no longer a sufficient condition, meaning that we can only obtain negative results
from static analysis, e.g. whether an agent is lacking or never using an effector that is needed to
implement some urgent behavioral norm of a community type.
For defining the synchronous execution of the two rules, we can finally put our elaborations
on rule composition from Section 2.2.2.3 to use: The combination of a leading rule r with its
reflecting rule r′ can be defined as the joining of the rules join(r, r′). Simply replacing all rules
with their joined counterparts would merely block all non-conforming behavior, however. We
explicitly need to retain the option of executing a leading rule r although the reflecting rule r′ is
not enabled where it was present in the original rules. Formally, these cases are characterized by
the composition exclude(r, r′), characterizing a set of forbidden states where a violation is about
to occur. Using these definitions, we can arrive at a first approximation of the desired GTS:

Definition 5.2.1 The labeled parallel composition of two constrained, labeled GTS S := (TS, Gi
S,

RS, ΦS, lS) and T := (TT , Gi
T , RT , ΦT , lT) is defined as the GTS U := (TU ,Gi

U ,RU ,ΦU , lU),
where TU := TS ∪ TT , Gi

U := Gi
S ∪ Gi

T ∪ {G ∪ G′|G ∈ Gi
S ∧ G′ ∈ Gi

T}, RU := RS ∪
RT ∪ {join(r, r′)|r ∈ RS ∧ r′ ∈ RT ∧ lS(r) ∩ lT (r′) 6= ∅}, the constraint set ΦU consists of
ΦS ∪ ΦT ∪ {v|r ∈ RS ∧ r′ ∈ RT ∧ lS(r) ∩ lT (r′) 6= ∅ ∧ v ∈ exclude(r, r′)}, and ∀r ∈ RS holds
lU(r) = lS(r), ∀r ∈ RT holds lU(r) = lT (r), and if r ∈ join(r′, r′′) with r′ ∈ RS and r′′ ∈ RT ,
we have lU(r) = (lS(r′) \ lT (r′′)) ∪ (lT (r′′) \ lS(r′)) or τ if this set is empty.

5.2 Verification 195

The labeled parallel composition of two GTS is denoted by S‖lT .
As a final preliminary, we define the restriction of a constrained, labeled GTS U := (TU , Gi

U ,RU ,
ΦU , lU) to a label set B, denoted by U |B, as the GTS (TU ,Gi

U , {r ∈ RU |lU(r) ⊆ B},ΦU , lU).
The desired combined GTS can then be defined as labeled parallel composition of the two origi-
nal GTS S and T , restricted to (BS∪BT)\ (BS∩BT) so that all original rule pairs are eliminated
and only the joined versions remain. The resulting GTS can then be used either as the basis for
graph model checking or testing the system.
Even if the number of possible execution paths was finite or at least reducible to a finite number
due to symmetries, the cost of checking every possible execution path can be expected to be
forbidding. In practice, this means that we will have to content ourselves with verifying a selec-
tion of representative execution paths, e.g. by simulating the system and verifying the exhibited
behavior.

5.2.3.2 Usage

Cultures are supposed to set boundaries that restrict agent behavior enough to meet the assigned
requirements, but without unduly limiting the agents’ autonomy. Once a culture, respectively
community type, has been shown to be correct, this should be sufficient to ensure the correctness
of any conformant agent implementation.

Conformance. Given a verified community type and an agent specification, the question is there-
fore whether the agent actually conforms to the community type. If the agent specification is
available as a GTS, we could apply the same techniques that were applied to the community type
to prove the desired properties again, but this would neither prove conformance at the behavioral
level (as different sets of norms can guarantee the same invariants), nor be efficient due to the the
greater complexity of the agent specifications.
We therefore employ the concept of restricted GTS refinement to ensure that the externally visible
behavior of an agent conforms to the behavior specified by a community type. In this case, the com-
mon domain is the environment, whereas the internal data structures of the agent are inaccessible
from the outside and all social entities are private to the community type.
The structural checks ensure that the agent possesses all the effectors that are required by an
urgent behavioral norm. But we can go beyond that: Does the agent have sufficient sensors for
perceiving all entities appearing in norms that affect it? This may not be a hard criterion in all
cases, as the agent may be able to compensate for a missing sensor by behaving defensively, but
always indicates a point that deserves special attention. If we can show that certain inevitable
commitments can only be fulfilled in a certain way, there may also be effectors that are indispensable
for conforming even though they are not required by a urgent behavioral norm.
For performing the dynamic part of the conformance checks, we need to construct the labeled
parallel composition of the agent behavior and the community type behavior. As a result of the
static analysis, we have already labeled all norms of the GTS MC and the corresponding rules
of the GTS MA with the scoped name of the norm. The rules describing the agent’s internal

196 5. Verification and Validation

processes are labeled with τ . The environment is represented by MRW , consisting of processes
and those agent behaviors that remain unrestricted, all labeled with τ . The resulting labeled GTS
are denoted by M̃C , M̃A, and M̃RW .
This can also be performed for multiple community types MC

1 , . . . ,M
C
m or agents MA

1 , . . . ,M
A
n at

once. As the individual community types are independent of each other, as are the individual agents,
we use plain parallel composition to construct M̃C = M̃C

1 ‖ . . . ‖M̃C
m and M̃A = M̃A

1 ‖ . . . ‖M̃A
n

in this case.
The overall model M̃ is then derived by combining M̃C and M̃A with M̃RW using labeled
parallel composition and restricting the result to τ in order to eliminate the original rules and
norms:

M̃ := (M̃A‖lM̃
C‖lM̃

RW)|{τ}. (5.2.1)

Based on M̃ , we can then detect violations of norms by checking whether any of the invariants
in ΦM̃ does not hold. As the original invariants ΦW and ΦC

i are also included in M̃ , we can also
detect violations of the original requirements, which should not occur however if the community
types themselves are correct.

Commitments. Professed intentions, and in particular commitments and their fulfillment, are im-
portant for the more complex coordination mechanisms of a multi-agent system. Apart from
urgent norms that can require reactive behaviors, social rules compelling agents to achieve some
long term goal are the only way to force an agent, which is supposed to have a certain degree of
autonomy, to do anything at all. However, this aspect can usually not be treated abstractly at the
level of community types or cultures without considering the concrete agent specifications: While
safety properties can be ensured by simply restricting certain behaviors, designing the norms in
such a way that the fulfillment of all commitments is guaranteed would typically result in a speci-
fication that is much more restrictive than a culture is expected to be. After all, there are usually
multiple strategies to fulfill a commitment, and the specification should not unduly exclude any of
them. A comprehensive specification that nonetheless enforced a step by step fulfillment would
correspond to a characterization of all possible strategies at a detailed level, which is not feasible
in general.
Most cultures only state that a commitment has to be fulfilled, but make no or only limited pre-
scriptions as to how exactly this should be done. We can therefore only detect in certain cases
if the culture itself makes it impossible to fulfill a commitment. In general, we can observe that an
agent has fulfilled its commitments, thus proving that the culture allows this, but we cannot draw
conclusions about the validity of the culture from the fact that the agent has failed, as this might
merely be due to the fact that the strategy implemented by the agent was insufficient.
When formally verifying the fulfillment of commitments, we need a precise definition of what
exactly we require of the agents. The strongest property that could be hold for a commitment ci
would be that every time it is made and the corresponding professed intention is created (c+i), it is
also eventually fulfilled and removed (c∼i), regardless of the behavior of the agent’s environment,
i.e. AG(c+i ⇒ (AFc∼i). This unconditional or strong notion of commitment is too strong for
most practical purposes, as it is only realistic if the agent has complete control over all aspects of

5.2 Verification 197

the commitment. At the other end of the spectrum, the cooperative or weak notion of commitment
AG(c+i ⇒ (EFc∼i) only requires that there is at least one path where the agent fulfills its
commitment, which may however depend on the correct behavior of the environment and require
the goodwill of other agents, as well as the agent itself.
The most realistic option is to require agents to fulfill all their commitments provided that all other
agents behave correctly and fulfill their commitments as well. The dependency graph relating the
different norms of a culture to each other helps us determine which commitment depends on others
and accordingly assign levels lv(ci) to them. If multiple commitments are not fulfilled, we can
determine which ones of them were dependent on other unfulfilled commitments and place the
blame at the agent with the lowest-level commitment in each group of unfulfilled commitments.
Using ci to denote G(c+i ⇒ (Fc∼i), the social notion of commitment then corresponds to

M̃ |= A((∧i:lv(ci)<lv(cn)ci) ⇒ cn). (5.2.2)

As the above conditions cannot be translated to either CTL or invariants, using GROOVE or in-
variant checking is out of the question for theoretical reasons, whereas using CheckVML is likely
to be impossible in practice due to the size of the problem. By running simulations based on
M̃ , we can verify each generated execution path and ascertain that correct behavior is possible
or generate counterexamples, which are important insights, but we cannot decide that no correct
behavior exists or that no incorrect behavior is possible.

5.2.4 Scenario-based Verification

Thinking in individual rule applications is well suited to many problems, in particular those con-
cerning safety. Allowing, forbidding, or requiring specific actions based on the current context
offers a natural way of achieving behavior that is adapted to the immediate requirements of a
situation. It is less helpful when considering goal-directed, strategic behavior in the longer term
or complex interactions between agents.
Scenarios allow thinking in larger, logical arcs encompassing multiple steps of a process. TSSDs,
the supplied scenario language, describe sequences of actions rather than individual actions.
While they are defined using sequences of states, the intended focus is on the flow, just as movies
are made up by static frames. TSSDs therefore conserve the ability to fail immediately due to
a forbidden action that was touted in the previous section. Unfortunately, they also more than
match previous methods in computational complexity. As we have discussed, exhaustive formal
verification is only feasible for restricted subsets of the language. For the complete language,
we will again have to make do with monitoring selected runs of the system, verifying individual
execution traces.

Monitoring can be performed either online or offline. By dissociating the evaluation of the
constraints from the execution of the system, the latter eliminates performance issues but also
increases space consumption, as the execution path (i.e. system states with time stamps) needs to
be stored. Monitoring in real-time eliminates the need to cache the complete history and provides

198 5. Verification and Validation

immediate feedback, but requires sufficient processing power. When monitoring a simulation
whose execution speed can be controlled, even this requirement is eased.
In order to evaluate the graph patterns, we require direct access to the complete system state,
which the runtime environment needs to make available using appropriate data structures. In a
simulated environment, the simulation itself can provide these structures, whereas in a physi-
cal environment (or a software environment that cannot be instrumented), they need to be con-
structed through observation. This may be a complex task requiring a variety of sensors, ideally
deployed redundantly – after all, the verification result is only as reliable as the underlying data.
Regardless, the ability to perform agent verification based on such observations at all, which is
due to the employed principle of physical grounding, is an asset in itself. When working with
embedded systems, it is a significant advantage that we do not need to run the monitor on the
embedded hardware itself, but can use a separate system that observes the common environment.
As the environment is the only link between the two systems, this does not only avoid the usual
resource issues, but also eliminates the distorting effect that the insertion of monitoring code into
a real-time system potentially has on its timing.
A final issue is the evaluation frequency, which is of central importance for monitoring real-
time scenarios. While time is dense, we can only observe the system in discrete intervals ∆t in
practice, limiting the achievable sampling rate and making the evaluation only an approximation
of the formal semantics. The ideal solution would be to perform the evaluation only on demand,
which exactly reproduces the formal semantics. For simulations, this is actually feasible because
we have the ability to instrument the monitored system so that change events are generated. If
we lack such additional information, however, we have to explicitly set the evaluation frequency.
If ∆t is too large, there might be intermediate states that are missed by the monitor, whereas a
small ∆t increases the computational effort by triggering more evaluations. As a general rule,
an appropriate compromise for ∆t should be adapted to the shortest expected interval between
two situations. If a high resolution is only needed in specific areas, it would be possible to
dynamically change the evaluation frequency, decreasing ∆twhen a critical situation is observed.

5.2.4.1 Story Decision Diagram Evaluation

Based on the semantics that we have defined in Chapter 3 and the requirements described above,
we can realize a property monitor that is able to decide whether the specified property holds
in the current state. In the context of scenario monitoring, the traditional operationalization of
Story Patterns that halts at the first valid match is insufficient because all valid candidate sets
are potentially relevant and might spawn new alternative traces. The monitor therefore needs
an efficient way of generating and storing bindings, candidate sets and result sets as defined in
Section 3.2.3.

Evaluating the decision diagram. The evaluation of SDDs closely follows the formal defi-
nitions, but is probably best characterized by the procedure used in our examples in Figures
3.2.21–3.2.26. The progress through the diagram is driven by individual bindings: Either start-
ing from the empty binding or a given binding or candidate set, each binding is passed to the

5.2 Verification 199

root node and subsequently traverses the diagram structure in a depth-first recursion following
the respective then and else connectors. When multiple extensions for a binding are generated by
a node, it iterates over all of them, passing each of them down the then connector; when no valid
match is found, the original binding is passed down the else connector. Likewise, nodes loop
over all alternatives when there are multiple connectors of the same type.
The fulfillment of the overall SDD is not determined by individual bindings, but sets thereof. The
relationships between the generated bindings are handled in the background by a result manager,
a separate data structure that is independent of the recursion dealing with the individual bind-
ings. This is best explained by the illustrations for our last exemplary evaluation: The recursion
generates all relevant bindings, as listed in Figure 3.2.25, whereas the result manager generates
and stores candidate sets that only contain references to these bindings, as seen in Figure 3.2.26.
When a binding is extended into a set of new bindings, the result manager merely needs to be
informed whether this occurred in the context of a universal or an existential node in order to
decide whether all candidate sets containing the binding need to be expanded or split into new
alternatives, respectively. When a binding reaches a (0) node, all candidate sets containing it are
eliminated; a (1) node requires no action at all. The result set of the SDD evaluation is then sim-
ply the set of all candidate sets remaining in the result manager after the recursion has finished.
The relationship is not entirely unidirectional, though: As an optimization during the recursion,
we can query the result manager whether there still is some candidate set containing the current
binding, allowing us to discard bindings generated by a universally quantified node as soon as
the first one of them fails.
By basing the evaluation primarily on bindings instead of candidate sets, we avoid multiple
evaluations of the same condition and can minimize the number of performed pattern evaluations.
It also allows us to concentrate most of the implementation effort within the generic parts of the
monitor, reducing the specific parts of the diagram implementation to invoking the correct Story
Pattern, passing bindings to the correct child nodes, and signaling the correct quantifier type to
the result manager.

Evaluating the patterns. The evaluation of the Story Patterns themselves differs from the eval-
uation in other contexts, e.g. Story Diagrams, in two important points: We need to find all
occurrences, and there is no fixed element this. As a logical consequence of the ability to specify
properties for all entities of a type or about the existence of some specific entity, the evaluation
always has to consider the system as a whole. This makes the required runtime environment
more complex, but also opens up new opportunities for optimizations.
In classic Story Patterns, the order in which the elements are bound is static and fixed in the
source code by the code generation, which may try to optimize this order based on the specified
cardinalities. As the starting point is necessarily the this element and additional elements always
need to be connected to previously bound elements, there are only few choices to be made in
any case. In contrast, our access to the complete system graph gives us the freedom to bind the
elements in any order we choose, apart from the evident restriction that edges cannot be bound
independently of the nodes they connect. Though fixing an order based on the specified cardi-
nalities during code generation may already accelerate the matching process, this only makes

200 5. Verification and Validation

partial use of the flexibility afforded to us by the runtime environment. As it is possible to de-
cide at runtime where we can reach a negative result by checking the fewest alternatives, we can
significantly improve performance by using dynamically determined evaluation orders.
Finding the optimal order is not trivial. On the surface, the problem seems similar to finding a
minimum spanning tree for the graph pattern, but the relevant algorithms are not applicable. For
one, the cumulation of the edge weights is multiplicative, not additive, since we need to check
all potential occurrences by backtracking through the graph pattern, and the overall cost not only
depends on the chosen edges, but also the starting node. Besides, the cost of an edge is only
known after the adjacent node has been bound, as it depends on the number of links the specific
object has for the corresponding association. This means that the order needs to be context-
sensitive and dynamically computed, which prohibits the use of complex algorithms that would
nullify the intended performance gains.
As it turns out, there is a straight-forward greedy algorithm that yields near-optimal results. For
typical sparse instance graphs as appear in our examples, it even produces the ideal solution,
whereas deviations from the optimum have only been shown for heavily connected synthetic
graphs. The approach is based on the assumption that the actual cardinalities are available at
runtime: The number of links for a given association type between instances is generally avail-
able directly from the objects themselves as the size of the corresponding collection, and the
number of instances for each type can be provided by the runtime environment, as an appropriate
index is required for making available the entire system state anyway.
When applying a pattern, each of its elements needs to be confirmed as a match at least once. If
a variable is already bound in the supplied initial binding, the corresponding element needs to
be asserted, whereas elements representing free variables need to be bound. For confirming an
element, multiple approaches are usually available. Nodes can either be bound in the traditional
way by traversing an edge from a previously bound node, or by iterating over the list of instances
provided by the runtime environment. Edges can be bound by traversing them in either direction,
starting from a previously bound node. Asserting elements is simpler, as we merely have to
check whether the object assigned to a node still exists and whether traversing an edge still leads
to the expected result. In either case, it is obvious that following to-one associations entails
fewer comparisons and less backtracking than iterating over to-many associations. A similar
rationale applies to nodes: Starting with a type for which only a few instances exist allows
quickly reducing the search space, whereas iterating over thousands of instances only to find that
no relevant context exists for most of them is rarely productive. Based on these assessments,
we arrive at the very straight-forward solution of always choosing the unprocessed element for
which the approach with the least local weight, i.e. number of alternatives to consider, exists in
the context of the current binding for processing.
Consider the pattern in Figure 5.2.7, which recognizes the fact that passengers and dangerous
goods are in close proximity to each other, and a system consisting of 10000 tracks and 50 base
stations. On a weekday morning, there might be 100 shuttles, 225 passengers, and 5 dangerous
goods. In this case, we begin by binding d (5 alternatives), look for a suitable shuttle sd (0..1),
proceed to track td (1..2) and its supervisor bs (1..4). As base stations supervise hundreds of tracks
in this example, it is then cheaper not to bind tp (∼ 300), but to jump to p (225) and continue

5.2 Verification 201

sp : Shuttle

tp : Track

sd : Shuttle

td : Track

bs : BaseStation

p : Passenger d : DangerousGoods

carries carries

supervises supervises onon

�

Figure 5.2.7: Pattern: passengers and dangerous goods in the same area

down to shuttle sp (0..1) and its tracks tp (1..2), finally checking whether tp is also supervised by
bs. In all, the algorithm will have performed at most 5∗1∗2∗4∗225∗1∗2∗4 = 72, 000 checks,
out of a total of 5.625 ∗ 1016 possible bindings and compared to 1, 280, 000 comparisons when
starting with the shuttles. In the early morning hours, there might be only 88 shuttles, carrying
10 passengers and 450 units of dangerous goods, changing the order to p, p-sp, sp-tp, tp-bs, sd, sd-td,
sd-d, and td-bs. Note that these are only typical orders: If some base station is supervising only
a small number of tracks, the algorithm would proceed via the base station, i.e. shuttle, track, base
station, track, shuttle.

Storing the results. As the number of generated valid bindings may be quite large for complex
system graphs, we also require an efficient way of storing them. As most bindings are only minor
variations on other bindings, we can save much space by eliminating redundancies between
them, storing the common part only once. One way of achieving this is to place them into a tree
structure where each leaf represents a binding. While there will still be identical suffixes that are
repeated throughout the tree and cannot be merged, the dynamic binding algorithm will have the
positive side effect of pushing down elements with many alternatives, i.e a large fan out, towards
the leaves of the tree, limiting the length of theses suffixes.
For most use cases, it is sufficient to only store the valid candidate sets and discard all interme-
diary results. When analyzing a specification, it may however be of interest to make information
about failed attempts available, e.g. to show which specific element caused a universally quan-
tified node to fail, as counterexamples are often the most direct way to identify the cause of a
problem.

5.2.4.2 Timed Story Scenario Diagram Evaluation

Using property monitors for recognizing the intermediate states of a scenario, we can now realize
a behavior monitor that is able to verify exhibited agent behavior against a TSSD. While we
focused on a formally correct characterization, not approaches for their efficient evaluation, when
defining their semantics in Chapter 3, we cannot do without optimized algorithms when using
TSSDs in practice. TSSDs combine graph patterns with path formulae, with the consequence that
each system state may correspond to multiple observations and each observation may belong

202 5. Verification and Validation

to multiple traces with different histories, leading to huge search spaces. Depending on the
domain and the situation definitions of a TSSD, it is often possible to construct a worst case
scenario which causes the number of traces to increase exponentially over time. In spite of
this, typical TSSDs generate large, but reasonably limited trace trees. This is especially true
of TSSDs describing sequential scenarios or closely following the actions of a specific agent,
as observations (’turned left’, ’rejected task X’) are often final and exclude future alternative
observations (’turned right’, ’accepted task X’) for the same agent in this case. Time constraints,
which may be one of the motivations for using TSSDs in the first place, also limit the number
of active traces by assigning a predetermined time to live to each incomplete trace after which it
becomes irrelevant. Nonetheless, evaluation needs to be economic on all levels.

Storing the trace graph. The set of generated traces is stored in a bipartite graph consisting of
observation and transition nodes. As in the formal definition, each trace is a sequence of related
observations, starting at the root element. Similar to the technique used for storing bindings, the
graph structure allows sharing common prefixes between traces. Common suffixes again have to
be stored redundantly, as the concerned traces might diverge in the future due to their different
histories, which would force us to separate the common segments again to avoid confounding
the respective prefixes. Unlike the trace tree used in the formal definition, we allow observations
with multiple direct predecessors, however, if the corresponding situation has multiple incoming
connectors, i.e. is the result of an ∧-join. This is different from the common suffix case because
the branches of the TSSD do not represent alternatives, but parallel strands of the same process.

Evaluating scenarios. The formal semantics of TSSDs are defined recursively, both in terms
of situations and time. In practice, this is too computationally expensive and besides would
require caching the complete state history. For monitoring, it is preferable to recognize events
as they happen and record their effect on the evaluation state immediately. We therefore need a
modified algorithm that is designed for working in real-time, using a minimized history. We can,
however, reuse all of the reductions that we used for transforming advanced syntactical features
to a simplified core syntax above.
Two concepts aid us in building efficient monitors: Annotating situations and connectors with
static properties derived by a preparatory analysis, and annotating observation and particularly
transition nodes in the trace graph with state information for guiding the evaluation.
For each situation, we compute its depth, i.e. the length of the longest path from the initial node,
and determine its domain, i.e. the names and types of its bound and unbound variables, by drilling
down into its internal definition. The inbound connectors of a situation are partitioned according
to their latest common ancestor, and each partition is marked as a branch group by annotating
it with this ancestor. Each connector is annotated with the upper and lower bounds of the time
constraints that come due at its destination and its contributions, i.e. the names and types of the
bound elements it is expected to provide to its destination. We then perform a back-propagation
of constraints. Branch group annotations are propagated up to the indicated ancestor. Upper
bounds of time constraints and required contributions are passed backwards up to the earliest
exclusive predecessor, which is the connector right after the last situation with an alternative
outgoing branch not belonging to the same branch group.

5.2 Verification 203

At runtime, transition nodes represent instances of a connector, just as observation nodes belong
to a specific situation. Our goal is to invalidate these instance nodes as early as possible so that
we can eliminate them from the trace graph again. We only use a less aggressive deletion strategy
if we intend to display counterexamples or successful completions in detail.
Every time an evaluation step is triggered either by an event or due to a fixed evaluation fre-
quency, the situations and connections of the diagram are visited using a breadth-first traversal
respecting situation depth. If change events providing the delta between the current and the previ-
ous state are available, we can use our knowledge about the situation’s domain to decide whether
it may at all have been affected by the change at the type level. As validity may be affected by
non-local changes, making such a decision at the instance level is only possible for specific cases
and requires a more detailed analysis of the patterns.

Processing situations. For each potentially affected situation, we first iterate over the exist-
ing observations and assert whether the elements they have bound to variables still exist in the
current system state. In this case, using updates about deletions is straight-forward. If variable
bindings have become invalid, the enclosing observation is obsolete and eliminated, and the af-
fected variable names are propagated forward to all reachable observation and transition nodes.
Any observation whose domain contains the name (necessarily as a bound element) is eliminated
using the same rationale, while any transition whose required contributions include the name is
also eliminated because its branch leads to a situation which requires the invalidated binding and
can therefore never be satisfied again.
Secondly, we check for valid transition nodes for the incoming connectors. If there is more than
one precondition, transition nodes with compatible ancestors for each of their respective branch
groups are required for every connector (excluding inhibitors), and the transported candidate sets
need to be merged. For every candidate set, we then invoke the embedded structural diagram
for identifying potential observations. The candidate sets of the generated result set needs to
be explicitly checked against the existing observations ex post, as this is the only way of distin-
guishing new, persisting, and invalidated observations. Observations for pseudo states are special
as, like the trivially true node, they match for any state graph. Furthermore, observations for

⊙
•

nodes are eliminated after each evaluation. Each new observation is stored in a node containing
its candidate set and time stamp. If the observation is completing a trigger, it is also assigned a
unique root trace marker, which is registered in an index.

Processing connectors. When creating an observation, we simultaneously generate a new transi-
tion node for each outgoing connector. Each transition node stores a reference to the transported
candidate set. If the connection is part of a split, the transition is annotated with the observa-
tion and the corresponding branch group. If a time constraint originates from the situation, the
transition is furthermore marked with the earliest and latest permissible time derived from the
constraint and the time stamp. If there is a time constraint between partially ordered elements,
i.e. situations on parallel branches, the transition is marked with the time window into which the
other observation must fall. Finally, root trace markers are passed on to subsequent transitions
and observations.
When the breadth-first traversal visits a connector, all associated transitions are processed. We

204 5. Verification and Validation

begin by checking their time constraints because this is the least expensive operation. If the
connector is annotated with a lower bound time constraint, but the transition’s earliest permissible
time is in the future, it is marked as (currently) invalid. If the latest permissible time is in the
past, the transition node is eliminated.
Secondly, if the transition is part of a branch group, but no transitions from a parallel branch are
left in the group, the whole group can be eliminated. If there are time constraints between the
branches, we can also eliminate transitions for which we can find no compatible observations
after the time window has passed.
Finally, we evaluate any guards that are attached to the connector. As a guard is similar to a
situation, the same filtering logic can be applied in order to decide whether the current update
might have had an effect on the guard’s domain, making it necessary to evaluate it. If the guard
matches, the transition is eliminated. If a bound element from the guard’s domain becomes
invalid, the guard is permanently false and need not be evaluated again.
When a new observation is created, the annotations from the incoming transition nodes are copied
to the generated outgoing transition nodes, albeit with some exceptions. Situations at the end of
a time constraint consume the annotation and do not pass it on. Likewise, information about
branch groups is stripped at the corresponding join.
The scenario then holds if there is an appropriately marked observation for a

⊙
• node for every

root trace marker in the index at the end of an evaluation step. If the index contains a root trace
marker without any associated transition nodes left, the scenario fails. Otherwise, it is pending.
In the common case that there are no guards on the connector leading to the

⊙
• node, the root

trace marker and all associated nodes are eliminated as soon as the node is observed, as this
particular trace then holds strongly. The overall scenario only holds strongly if no transition
nodes are left in the trace graph.

Example. We walk through a small example to illustrate the procedure. A shuttle receives a
request to perform a task, sends an acknowledgment, then checks whether the task fits into the
existing planning (feasible) and is sufficiently well remunerated (lucrative), and finally sends a
reply containing its decision, unless the task has been canceled in the mean time.

 q, s, t

s : Shuttle

q : Request

t : Task

«in» for

 a a : ACK

s : Shuttle q : Request

«out» message

 f

t : Task

f : Feasible

evaluation

 l

t : Task

l : lucrative

evaluation

 r r : Reply

t : Tasks : Shuttle

«out» for

[0..10]

[25..100]

 c

t : Task

c : Cancellation

for

U1
> + q, s, t
[t1, t2]
{ }

U2
> q, s + a
[] t1
{ b1 }

U3
> t + f
[]
{ }

U4
> t + l
[]
{ }

U5
> t + f
[] t2
{ } b1

G1
> t + c

C1 / G1
> q, s, t
l: t1 u: t1, t2
{ }

C2 / G1
> s, t
l: u: t2
{ b1 }

C3 / G1
> s, t
l: u: t2
{ b1 }

C4 / G1
> s, t
l: t2 u: t2
{ b1 }

C5 / G1
> s, t
l: t2 u: t2
{ b1 }

C6 /
>
l: u:
{ }

C0 /
>
l: u:
{ }

U0
> +
[]
{ }

Figure 5.2.8: Scenario: A shuttle evaluates and replies to a query

5.2 Verification 205

In the annotated diagram (see Figure 5.2.8), the situations are named U0–U6 and the connectors
are named C0–C6. For situations, > marks the bound and + the unbound elements of the
domain, [the begin and] the end of a time constraint, and { the begin and } the end of a branch
group. For connectors, / prefixes the relevant guards, > marks the contributions, l and u the
active bounds of time constraints, and {. . . } the branch groups.
Connectors C1–C5 are constrained by guard G1. Branch group b1 includes connectors C2–C5.
There are time constraints between U1 and U2 and between U1 and U5. Most bindings are only
required locally; only s and t are preserved throughout the whole scenario.

C0U0 O0 [0]

Figure 5.2.9: The evaluation at time 199

Initially, only U0 may be observed, as it is the only situation without preconditions. At time 0,
observation O0 is generated, along with a transition for C0 (see Figure 5.2.9).

C0

C2 r O1
b1 O3
t2 [225..300]
s sx,t taU0 O0 [0]

U1 O1 [200]
s sx,q qa,t ta

U1 O2 [200]
s sy,q qa,t ta

U2 O3 [202]
s sx,q qa,t ta,a ao

C1 r O1
t1 [0..210], t2 [225..300]
s sx,q qa,t ta

C1 r O2
t1 [0..210], t2 [225..300]
s sy,q qa,t ta

C3 r O1
b1 O3
t2 [225..300]
s sx,t ta

O1 O2

Figure 5.2.10: The evaluation at time 204

At time 200, a request qa for task ta is received by shuttles sx and sy, leading to observations O1
and O2 for U1. Two transitions for C1 are created, one for each observation, and marked with
the bindings and absolute time bounds. As the observations complete the scenario’s trigger, the
transitions also belong to the root traces r → O1, respectively r → O2.
At time 202, shuttle sx has sent the required acknowledgment, which is observed as O3 for U2. The
outgoing transitions for C2 and C3 belong to the branch group b1 → O3 and may later only
be joined with other transitions stemming from O3. The irrelevant bindings for q and a are not
propagated, the time bound t1 has been consumed by O3 (see Figure 5.2.10).

C0U0 O0 [0]

U1 O1 [200]
s sx,q qa,t ta

U1 O2 [200]
s sy,q qa,t ta

C2 r O1
b1 O3
t2 [225..300]
s sx,t ta

U2 O3 [202]
s sx,q qa,t ta,a ao

C3 r O1
b1 O3
t2 [225..300]
s sx,t ta

O1 O2

Figure 5.2.11: The evaluation at time 211

206 5. Verification and Validation

At time 211, the two transitions for C1 have been eliminated because their upper time bound 210
has been reached. As a result, there are now no active transitions for the root trace r → O2 left
(see Figure 5.2.11). While, formally, the scenario has failed now and we could simply stop the
evaluation, it is more appropriate from an agent monitoring perspective to say that shuttle sy has
violated the specification, but continue the monitoring of sx.

C0U0 O0 [0]

C2 r O1
b1 O3
t2 [225..300]
s sx,t ta

C3 r O1
b1 O3
t2 [225..300]
s sx,t ta

U3 O4 [212]
s sx,t ta,f fa

U4 O5 [253]
s sx,t ta,l la

C4 r O1
b1 O3
t2 [225..300]
s sx,t ta

C5 r O1
b1 O3
t2 [225..300]
s sx,t ta

O1 O2

Figure 5.2.12: The evaluation at time 287

At time 212, O4 is observed for U3. As the annotations in the diagram indicate, C2 only pas-
sively transmits the lower bound of 225. For the newly created transition for C4, it becomes
active though.
At time 222, the message qa is garbage collected. The observations O1, O2, and O3 containing
references to it are eliminated, but as the corresponding transitions for C1 have already been
eliminated and no other transitions carry qa as a contribution, no transitions are affected.
At time 253, O5 is observed for U4, and a transition for C5 is created (see Figure 5.2.12). The
guard G1, which can be evaluated for all transitions at once in this case, continues not to match.

C0U0 O0 [0]

C2 r O1
b1 O3
t2 [225..300]
s sx,t ta

C3 r O1
b1 O3
t2 [225..300]
s sx,t ta

U3 O4 [212]
s sx,t ta,f fa

U4 O5 [253]
s sx,t ta,l la

C4 r O1
b1 O3
t2 [225..300]
s sx,t ta

C5 r O1
b1 O3
t2 [225..300]
s sx,t ta

U5 O6 [288]
s sx,t ta,r ra

C6 r O1

O1 O2

Figure 5.2.13: The evaluation at time 288

At time 288, two transitions for C4 and C5 from the branch group b1 → O3 are available,
and O6 for U5 can be observed. The branch group b1 is reunited, and the time constraint t2 is
consumed. The resulting transition for C6 is therefore unconstrained, i.e. carries time constraints
or branch information, but also no contributions or guards (see Figure 5.2.13), and will now and
forever reach the

⊙
• node.

All nodes belonging to the completed root trace can now be eliminated, leading back to the state
in Figure 5.2.9, except for the additional information that r → O2 for sy has failed and r → O1
for sx has succeeded.
The example illustrates our point about the size and complexity of the evaluation problem: Struc-
tural symmetries increase the problem size. Had the request been sent to one hundred shuttles, the

5.3 Validation 207

trace would have been proportionally bigger. Meanwhile, the size of the trace for each shuttle
was limited due to the fact that the agent can be expected not to send the same message multi-
ple times, leading to a linear progression through the scenario. Such effects are neither rare nor
random. In fact, we can systematically enforce less ramified trace trees by adding norms express-
ing suitable constraints, e.g. limiting an agent to a maximum number of concurrent commitments.
Due to the resource restrictions that are typical of embedded systems, such constraints are often
required to make the specification implementable in the first place.

5.2.4.3 Usage

Continuing the evolution from techniques with a limited scope but full coverage to techniques
with broader scope but weaker obtainable results, the use of TSSDs allows us to consider all of
the properties that were previously discussed in this section, but definitely limits us to partial
verification based on simulation or monitoring.
Using scenario-based verification, we can finally include the multi-agent system specification in
its entirety in our considerations. As graph rules can be encoded as a TSSD consisting of two
situations and a trigger, it is possible to freely combine both specification types in a culture and
still use the above definition of GTS refinement for monitoring. As TSSDs are more expressive
than graph rules, it is also possible to make further aspects such as the dependencies between
commitments explicit by explicitly making the fulfillment of the lower-level commitment part of the
scenario.
In the case study, we now also include the traffic routing culture in our analysis. While its central
mechanism – vehicles have to reserve locations they want to use and commit to doing so at the
indicated time – is inherently safe, developing the strategy used by the vehicles requires some
care, as the agents need to carefully plan ahead in order to only make commitments they are
actually able to keep. Although we have quickly found a working solution for which the system
behaves correctly, thinking about this problem leads to the question whether the specified culture
actually promotes an efficient solution and is not actually hampering the system.

5.3 Validation

Scenario-based verification allowed us to think about processes in the system at a larger scale
and provides insights into the way different aspects of the system are interrelated. As the last
example witnesses, the step from the question whether the system is behaving correctly to the
question whether it actually achieves what we intend it to achieve is not a large one at this level.
In this chapter’s introduction, we have discussed how Model-Driven Engineering can improve the
development process and identified three main strategies for facilitating validation: Automation,
reducing clerical errors and development times, simulation, allowing an inexpensive and early
validation of a design, and iteration, based on meaningful feedback that is provided as early as
possible. In the following sections, we will delve into each of these points.

208 5. Verification and Validation

Their common theme is the focus on timely and frequently repeated validation based on pro-
totypes. The use of prototypes has a long tradition in software engineering, as evidenced by
Fredrick Brooks’ 1975 advice to ’plan to throw one away’ [Bro95]. Since then, building pro-
totypes has evolved from being considered as a painful but necessary learning experience into
a methodology in its own right. This change is in part due to the fact that the tools and lan-
guages that are available today make the creation and later reuse of prototypes much easier. For
object-oriented systems, methodologies based on rapid prototyping (cf. [Mul90, CS95]) have
been proposed early on. In agent research, the importance of prototypes for testing emergent
behavior appears evident. However, even though the training and evolving of designs is known
from neural networks or genetic algorithms, rapid prototyping as a technique is not commonly
cited, possibly because stressing the engineering aspect of agent-oriented software engineering
is still a fairly recent trend.
We discuss these topics in the order in which they occur in the prototyping process. Synthesis
is an optional step that may help to reduce development times, followed by the indispensable
code generation. The essential phase is the experimental evaluation of the generated system
by means of simulation. In order to validate that the system achieves its actual purpose, as
opposed to the elicited requirements only, the ability to experience the system in action is crucial.
The more complex and chaotic the system is, the more depends on the correct and intuitively
accessible presentation of its behavior. If a simple visual inspection is insufficient to validate all
requirements, the simulation environment may provide assistance in identifying and recording
all relevant events, which can finally be subjected to a systematic in-depth analysis.

5.3.1 Automation

The two main motivations for automating parts of the development process are quality and speed.
Where a step does not require creative input and can be performed by an algorithm, it is often
more efficient to delegate it to an appropriate tool. If it is complex but systematic or simply
tedious, automation can also help to avoid human errors.
There are two related, but distinct types of steps that can be automated: A transformation between
models, deriving one specification from another, and code generation, deriving executable code
from a model.

5.3.1.1 Synthesis

There is a school of thought claiming that if we were only able to state our requirements pre-
cisely enough, it would be possible to automatically derive everything else from there. However,
besides being a hard problem, behavioral synthesis is no magical silver bullet. The claim has
thus prompted the rebuttal that this would result in simply shifting much of the original effort
from implementation to meticulous requirements engineering – which need not be a bad idea in
itself (cf. [Jac01]).

5.3 Validation 209

Basic synthesis. We follow more modest goals and simply aim to provide prototypical or partial
agent implementations that can be refined or completed by the developer. In a first approxima-
tion, this may not even be difficult – we have actually already applied similar reasoning when
performing verification. Given a community type specification, we can synthesize an agent repre-
senting a valid refinement by making all urgent norms mandatory in the agent implementation and
otherwise letting it randomly apply the discretionary norms. This can be achieved using a quite
simple controller design that tries to apply each rule in a round-robin fashion, which has the
additional advantage of making the agent’s behavior reproducible in subsequent tests.
The design of the agent introduces some additional complexity in comparison to the theoretical
model because we cannot directly apply norms, but need to differentiate between the parts that
correspond to effector and sensor applications and modifications to the agent’s internal representa-
tion of the physical and social state of the environment. This can be achieved automatically based
on the available mapping between behavioral norms and effectors.
The resulting agent is certainly not intelligent, but sufficient for testing many safety properties.
It is also a convenient starting point for developing advanced designs that replace the random
rule applications with more deliberate choices. The basic agent can also serve to provide a
backdrop for testing these designs in their interactions with correct but otherwise unpredictable
other implementations. When studying emergent effects with a probabilistic component, such as
swarming behavior, it may even be as intelligent as it needs to be already.

Goal-oriented behavior. The basic synthesized agent will never exhibit strategic behavior,
i.e. consciously pursue objectives as is characteristic of agents. Though acting in good faith,
the agent is likely to break all of its commitments that cannot be fulfilled through direct action or
inaction.
The strategies required for planning behavior that fulfills all requirements can be arbitrarily com-
plex. The requirement itself may call for complex mathematical calculations or a semantic analy-
sis of the context, and the interference of the environment and other agents can further complicate
planning. Developing appropriate strategies is therefore often a creative process that cannot be
automated, and synthesis is not possible unless the necessary creative input is provided by the
requirements.
However, an algorithm may be able to guess the correct strategy without a deeper understanding
of the problem if correct behavior can be achieved by merely applying effectors in the right order.
If a shuttle commits to transporting a task to a destination, it may be able to reach the destination
on time without understanding routing or shortest paths. The underlying idea is related to Live
Sequence Chart (LSC) synthesis as performed in the Smart Playout approach (cf. [HM03]): Substi-
tuting brute force for problem-specific reasoning, the Play Engine uses model checking techniques
for ensuring that the next message does not inevitably lead to constraint violations in the future.
Likewise, an agent prototype could employ GROOVE in order to play out future execution paths
and determine whether paths to a desirable outcome (destination reached on time) exist, choos-
ing the shortest or most promising, i.e. least risky, one. As the search is not directed or guided
by domain knowledge, such an implementation is much less computationally efficient than any
specific one (a simple strategy ’move towards the destination’ might achieve the same effect in

210 5. Verification and Validation

the example), but its ’unsemantic’ behavior might incidentally provide inspiration for innovative
strategies in later designs.
If the requirements are given as TSSDs, the required computations may become less prohibitive.
If the diagrams already provide a blueprint of the intended behavior, expressed as a sequence
of snapshots that are not spaced too far apart, guessing the right actions for reaching the next
’checkpoint’ requires a much shorter horizon because it can be decided whether certain behavior
leads to a violation without looking very far into the future. The situation is reminiscent of
interpolating missing frames in a movie – the more frames are available, the less potential for
error there is. On the other hand, a more detailed specification also means that the developer has
already put more effort into designing the desired behavior and has left less room for flexibility
for the agents.

Community type composition. A second problem that surfaces when trying to synthesize agents
that act as members of multiple community types is that the requirements of each may not be or-
thogonal, but affect each other. We have previously encountered this problem during verification
and can, in fact, approach it in a similar way. As before, every action needs to be valid in all of
an agent’s communities, which means that where multiple constraint apply the most restrictive one
needs to be respected. As a result of the verification, we know that there are no constraints that
directly contradict each other, e.g. by not allowing an urgent action. It is therefore always possible
to select an action that is locally valid. Nonetheless, there can be more subtle interactions be-
tween the community types at a larger scale, which can make determining the correct strategy even
more difficult. For example, safety regulations might make a shorter route much slower than an
apparent detour, causing a shuttle to constantly miss its delivery deadlines. As these effects may
not be local or may spontaneously result from the interaction of multiple agents, synthesizing
an agent may be hard, even though the basic algorithm still applies. We can still consider all
possible actions and eliminate invalid behaviors until only valid options remain – but it may have
become much more expensive to decide whether a behavior is ultimately valid.

Coordination Patterns. Synthesis can be extended to the coordination pattern level where agents
interact by exchanging messages. Unlike synthesis from specifications based on GTS, the syn-
thesis of automata from other types of specifications such scenarios has been studied intensively.
While a program is ultimately an automaton, characterizing the desired behavior by means of
expected scenarios is believed to be a more intuitive approach in many cases (cf. [HM03]).
However, it is generally easier to describe the desired behavior than to prevent undesired be-
havior in this way. The need to add additional constraints in order to avoid implied scenarios
that unexpectedly result from the interaction of specified scenarios may therefore partially dilute
their advantages. Regardless, scenarios are useful for understanding, visualizing, and monitor-
ing behavior, even when they do not provide a complete specification but are combined with
conventional specifications (cf. [GKKW05]).
While Message Sequence Charts are generally considered as too semantically weak for this pur-
pose, there are approaches for controller synthesis based on Live Sequence Charts (LSC) and
the related UML 2.0 Sequence Diagrams (cf. [HK02, BH04]). When implementing a coordination
pattern, scenarios may be especially useful for choosing the right timing constraints based on

5.3 Validation 211

the required message flow. For this use case, we have proposed an approach for synthesizing
parametrized Real-Time Statecharts from scenarios that are annotated with concrete or symbolic
time constraints (cf. [GKB05]), which can then be used to test and iteratively refine the design
(cf. [GHHK06]).
The problem that an agent has to fulfill multiple specifications may also occur at the pattern level.
The approach presented in [GV06] describes an approach for handling non-orthogonal concerns
that is applicable to the resulting composition problem.

5.3.1.2 Code Generation

The ability to generate code that actually implements the verified models is crucial for the va-
lidity of a model-driven approach. Code generation may appear more straight-forward than syn-
thesis and arguably is the more mechanical task. However, the move from the abstract platform-
independent model (PIM) to code that runs on a specific platform also entails modifications and
design decisions that need to be made. We need a detailed understanding of our target platform,
expressed as a platform model (PM), which explains why code generation is closely linked to
our discussion of frameworks in the next section.

Story-Driven Modeling. In the context of Story-Driven Modeling, we can reuse or build on a
wide selection of previous experiences and tools. When discussing the semantics of the associ-
ated notations, we have stressed their suitability for operationalization – starting with the original
Story Diagrams (cf. [FNTZ98]), the ability to generate code from the diagrams has always been
an essential quality of the notations. This is also true of the introduced extensions, as reflected
by their use in the context of monitoring.
TSSDs cannot be used directly as the basis of an agent implementation but would require an ad-
ditional synthesis step for deriving an implementable Story Diagram. SDDs, on the other hand,
can serve as an implementation level technique that is able to act as a replacement for Story
Patterns. When used in this way, e.g. for defining activities in a Story Diagram, we can switch
to a simpler evaluation strategy because it suffices to identify a single valid occurrence to which
the pattern can be applied – as opposed to all valid occurrences as required for monitoring. Oth-
erwise, we can apply the same strategies and optimizations as above, in particular the dynamic
determination of the binding order. Even though the diagrams have become more complex and
expressive, the resulting code is therefore no less efficient than the code traditionally generated
from Story Patterns.
There are some caveats to observe: Universal quantification may entail checks for a large number
of elements. A single quantifier has the potential to replace an entire loop in a Story Diagram,
which may be a more concise way of expressing the desired property, but may at the same time
make the associated computational complexity less obvious. This is even more true of pattern
references, which have to be used with some caution. The computational complexity of transitive
conditions that are expressed using recursion depends on both the property and the size of the
system and may be quite high. This complexity is, of course, not specific to the SDD, but would
apply to any recursive definition of the property. For real-time applications where the WCET

212 5. Verification and Validation

needs to be known, both recursion and universal quantification need to be used very judiciously
and require tight upper bounds for the possible number of instances of the affected types.
Unlike their monitoring counterparts, SDDs that are used for implementation purposes may have
side effects. In order to avoid problems when creating and deleting multiple elements, SDDs use
a two-pass strategy: The code adds all created elements to the selected occurrences in the first
pass, and only then performs all deletions in the second pass.

Coordination patterns. Code generation is also available for Coordination Patterns. As timing
is usually critical, platform-specific technical aspects play a larger role for the generation process
in this area. For a detailed discussion of code generation from Real-Time Statecharts, refer to
[Bur06].

5.3.2 Simulation

Accelerating the creation of prototypes is only part of what is required for an effective iterative
development process. Such a process is only possible if it is also possible to try out the generated
prototypes.
It is hardly ever acceptable to start testing an embedded application by placing an early prototype
into its production environment. Especially for safety-critical or mission-critical applications,
this would be too risky, if not actually illegal. For physical systems, such a strategy might
furthermore not scale because certain system-level effects resulting from interactions might only
be observable once a minimum number of agents is present, and the time and cost required
for building sufficiently many prototypes would be prohibitive. Even for purely virtual agents,
setting up a large network may be costly.
Besides, the production environment may be difficult to control, in particular if it is distributed.
Apart from introducing new sources of errors, physical distribution makes it much more difficult
to obtain a consistent reading of the current system state for deciding correctness or analyzing
the cause of identified errors.
Simulation is therefore a valuable approach for the evaluation of designs. Whether the results
that are obtained by means of simulation are relevant to the production environment depends on
the quality of the simulation. For an early design, even a crude simulation may provide valuable
feedback, whereas fine tuning or the preparation for a release to the production environment
require a sufficiently accurate representation. Like the models used for designing the system,
any simulation will introduce a certain number of abstractions, and it is important to be aware of
what they are and how they might affect the validity of the obtained results.

5.3.2.1 Mechatronic Systems

Finding an appropriate compromise between the complexity and validity of a simulation is
difficult for mechatronic multi-agent systems. However, the layered design of the Operator-
Controller-Module (OCM) [HOG04, OHG04] that we use as the basic architecture of mecha-

5.3 Validation 213

tronic agents alleviates this problem. By separating the different concerns real-time control (Con-
troller), real-time communication and coordination (Reflective Operator), and strategic planning
and reasoning (Cognitive Operator), we do not only achieve a cleaner and more flexible de-
sign, but also gain the ability to study the layers in isolation. A simulation may thus focus on
one layer and (partially or completely) abstract from the others. Typical aspects of interest are
control engineering (Controller only), real-time reactive adaptive behavior and coordination (Re-
flective Operator and Controller), and deliberate agent behavior and communication (Cognitive
and Reflective Operators).
The first aspect is the easiest to isolate, as control engineering is a discipline in its own right. It
also enjoys the support of commercial Computer-Aided Engineering (CAE) tools such as Matlab
Simulink 1 or CAMeL 2.
The Reflective Operator is the domain of Coordination Patterns. The Fujaba Real-Time Tool Suite3

provides CASE tool support for the employed UML-based notations, i.e. Component Diagrams
and Real-Time Statecharts. Based on a framework for component-based real-time communica-
tion (cf. [Hen05]), we are then able to execute and analyze the generated components.
However, in the design of self-optimizing systems that are able to adapt their control strategies,
the separation between the lower levels is less clear-cut, and the Reflective Operator may need
to react to the consequences of the Controller’s behavior. Using a unified component concept,
we have therefore integrated Fujaba and CAMeL at the model level and employed the real-time
runtime environment IPANEMA (cf. [Hon98]) as a common framework for running discrete,
continuous and hybrid components on the same platform (cf. [BGK04]). This approach has
since been refined and extended (cf. [Bur06, BGH+07]).
If the Cognitive Operator’s function is merely to record, analyze, and learn from past behavior or
to perform numerical optimizations, it is possible to directly extend this approach to the cognitive
level. If, on the other hand, the OCM is used to implement an agent that is supposed to exhibit
deliberate goal-driven behavior based on its analysis of its environment, the Cognitive Opera-
tor may have completely different requirements concerning the simulated environment than the
other two levels. Typically, a mathematically less precise but more expansive, more semantically
differentiated representation is necessary or preferred. This is true of all the application examples
we have discussed thus far, which underlines the importance of this use case for our approach to
multi-agent system design.

5.3.2.2 Multi-Agent Systems

At the University of Paderborn, a kernel for running a simulated shuttle system has been em-
ployed for educational purposes, in various student projects, and as part of a case study used in
several workshops (cf. [GK05]). Another kernel was later written in the context of a bachelor’s
thesis studying the effects of different convoy formation strategies on the system’s overall energy

1Publisher’s website: http://www.mathworks.de
2Publisher’s website: http://www.ixtronics.de
3Fujaba project site: http://www.fujaba.de

214 5. Verification and Validation

consumption (cf. [Bie04]). While dealing with related aspects of the same domain, both kernels
were custom-built: The former focused on managing the execution and interaction of a set of
concurrent shuttle agents as fairly as possible; the latter used a more detailed and physically cor-
rect model of shuttle movement and was optimized for simulating large numbers of shuttles and
operating as fast as possible.

Rapid Prototyping and Simulation Framework. In [KG04], we have first discussed the neces-
sity of a modular prototyping framework that combines an environment model with a set of libraries
that provide a simulation infrastructure. Its purpose is to allow the generation of problem-
adequate simulation environments while requiring minimal developer intervention. Instead of
reimplementing a kernel for each new domain, a developer would simply generate domain-
specific classes for use with a general purpose kernel. Likewise, different levels of detail would
be achieved by replacing or reconfiguring the employed libraries. While certain use cases might
still require dedicated coding, a wide spectrum of simulations could thus be created using a
declarative approach. This basic idea is sketched in Figure 5.3.1.

Virtual Testing Environment

T
o

o
l
S

u
it

e

F
A

B
A

U
J

AgentsEnvironment

F
ra

m
ew

or
k

Figure 5.3.1: Rapid Prototyping Framework

The Intrapid project (cf. [ABB+06]), a large one-year student project, set out to implement such a
framework consisting of a set of libraries with matching tool support. It is built around the princi-
ples of the CURCUMA framework from the ground up, but also integrates existing technologies
from the context of Story-Driven Modeling and real-time Coordination Patterns.

Core components. The core of the framework is the Simulation Kernel, whose task is to manage
the simulated environment. Its main functions are to store and expose a set of entities represent-
ing the current state of the environment model, to define a system clock, to provide a generic event
mechanism based on the observer pattern, and to control the concurrent access to the environ-
ment. The kernel is the central component that connects and coordinates a set of specialized
components that are built around it, which allows deploying and configuring the system in a
modular fashion.

5.3 Validation 215

The representation of the entities follows the theoretical model and divides them into active agents
and passive items. We also distinguish logical and physical entities, the latter of which have a phys-
ical shape, a mass, and a position, orientation, and velocity in three-dimensional space. For
physical entities, the modeled composition and aggregation relationships also carry additional
semantics, determining how the entities are connected.
This is especially relevant to the Physics Engine, the component that needs the tightest integra-
tion with the kernel. The Physics Engine is implementing one of the most important aspects of
the process model, the laws of nature that operate on the entities. There are two implementations:
A rudimentary engine that provides basic movement and collision detection, and a more sophis-
ticated engine based on the Open Dynamics Engine (ODE)4, an open source library for simulating
rigid body dynamics. ODE provides a realistic model based on the forces and torques acting on
objects, including friction as determined by the integrated collision detection. It also supports
various types of joints for connecting entities, which greatly facilitates the simulation of ma-
chines, such as vehicles. The library achieves a high level of realism and provides several mature
and stable numerical methods for solving the associated differential equations, albeit its focus
is on enabling large simulations in an efficient and user-friendly way, not providing the level of
precision that is needed for CAE applications.
The most visible part of the framework is the Visualization Component that displays representa-
tions of the physical and logical entities of the model and allows interacting with the simulation.
While there are also interesting use cases for two-dimensional visualizations, even if the simu-
lation itself works with three dimensions, both of the frontends that were created by the project
use three-dimensional graphics. They are based on the open source graphics engines OGRE 5 re-
spectively Irrlicht 6. The visualization primarily displays the physical entities using the positional
information that is provided by the kernel, but may additionally display logical entities (e.g. a
contract) that are associated with them. During the simulation, the observer can freely navigate
through the virtual environment. In the more advanced version, it is also possible to manipulate
the simulation at run-time by adding, moving, or removing entities and agents, which turns the
Visualization Component into a visual scenario editor. Furthermore, the state of selected agents
can be inspected. In order to enable the display of custom information, e.g. about an agent’s
internal reasoning processes, the windowed user interface provides generic interfaces and is con-
figurable using XML.

Agent infrastructure. On top of this generic infrastructure, we provide dedicated interfaces and
services to agents. Their purpose is both to facilitate agent implementations and to hide the un-
derlying platform. Ideally, the nature of their environment should be completely transparent to
the agents, making it possible to move a tested design over to the production environment with
minimal changes simply by replacing the sensor and effector implementations and dropping the
kernel. In order to make this vision achievable, the agents are based on the same real-time com-
ponent framework (cf. [Hen05]) that is used in the context of the Fujaba Real-Time Tool Suite. They

4Open Dynamics Engine project site: http://www.ode.org
5OGRE project site: http://www.ogre3d.org
6Irrlicht project site: http://irrlicht.sourceforge.net

216 5. Verification and Validation

use it for communicating with each other, but also for interacting with their sensors and effectors,
which are realized as dedicated components. This makes it particularly easy to replace the simu-
lated version with the real ones later on. The platform offers services for instantiating, managing,
and scheduling these components. It also offers basic support for deliberately introducing faults
into the system by disabling components or communication channels.
From the point of view of Story-Driven Modeling, the perhaps most important service is pro-
vided by a module that adds an additional abstraction layer between the environment model and the
agents. In a physical environment, there are very few associations besides composition relation-
ships, which in turn only result from the deliberate conceptual decomposition of an entity (shuttle)
into subentities (chassis and wheels). Most relationships in a physical environment are actually
positional, i.e. concerned with objects’ relative positions. This is most inconvenient when using
a formalism for modeling that is based on the assumption that a system can be represented as a
graph, as opposed to a set of isolated nodes whose relationships are implicit in their attributes.
The Discretization Service therefore performs a domain-specific translation from positional rela-
tionships into the semantic associations of the specified entity model. This is not only less tedious
than doing this in the application code (although this advantage only carries over to the produc-
tion system if a comparable service, such as the one presented in [SH04], is made available), but
also more efficient, as it only needs to be done once for all agents.
In our application example in the previous chapter, we subdivided track blocks into track segments
to allow making statements about a shuttle’s location that are more precise than a simple using as-
sociation to the track would be, but easier to interpret than the (quasi-)continuous relative position
of the shuttle. As this is a common use case, the Discretization Service offers the rasterization
of physical space, subdividing larger entities into a grid of smaller virtual entities. The service
can then efficiently determine which cell an entity currently intersects and make this information
available by means of the corresponding association.
The Discretization Service is also the foundation on which the Monitoring Component operates.
Based on the defined community type specifications, it monitors the entities of the simulated en-
vironment and creates the appropriate social structures and entities, i.e. communities, roles, and
professed intentions, in a separate internal model. As the Simulation Kernel provides access to the
entire environment, and is even able to provide lists of all entities of a given type without over-
head, the Monitoring Component acts as an omniscient observer that captures all theoretically
indicated norm applications.
As both the size of the environment and the number of norms may be large, the Monitoring Com-
ponent subscribes to change events from the kernel that allow it to narrow its focus down to
those norms that might have been affected by the most recent update. For behavioral norms that
are expressed as Story Patterns, there is the additional problem that the monitor would have to
continuously check every one of their preconditions and cache the resulting occurrences in order
to decide whether a rule application was valid once the corresponding postcondition is observed.
In the framework, we therefore instrument the effector components in such a way that an event
is raised before the effector is actually applied, which makes a much leaner monitor that only
performs the minimally necessary checks possible.

5.3 Validation 217

The Monitoring Component is itself a source of events, which a raised whenever a norm matches
or a community, role, or professed intention is created or destroyed. The advanced Visualization
Component listens for these events and is able to visualize the social state of the system by
means of overlays that annotate the involved entities.

Prototyping. Beside its modular design, what most differentiates the framework from custom-
built solutions is its tool integration. The ability to generate code that is designed to work with
the framework and its features drastically reduces the need to write tedious boilerplate code.
This is especially true of the environment model. It is possible to describe the entities, their phys-
ical shape and attributes, their composition relationships with other entities, including the joint
types that link them, and their visual representation in a completely declarative way, making the
configuration of the framework’s core components fully automatic.
The same holds for the social model, as the code for each community type is completely determined
by the specification.
For the agents, the basic infrastructure for each type and the external interfaces, i.e., the sensors
and effectors, can be generated, as these parts are specified as diagrams.
For the implementations of the agents’ internals, there is a library of building blocks that provide
common functionality such as managing perceptions or running and switching between different
strategies, but no full tool integration to allow full flexibility concerning the employed libraries
or techniques. With an appropriate adapted Controller, it would, for example, be possible to
integrate an existing OCM implementation.

Experiences. In the course of the project, two application examples where implemented. Figure
5.3.2 shows screenshots from the two prototypes, a simulation of the behavior of a swarm of fish
and a logistics scenario.

a. Fish swarm behavior b. Logistics scenario

Figure 5.3.2: Visualization Engine

218 5. Verification and Validation

The swarming simulation was mainly designed as a proof of concept for the framework’s core
components. The scenario consists of an aquarium containing a swarm of fish hunted by sharks.
The available sensors and effectors are quite basic: The sharks are faster and have greater long
range vision, the prey is more agile and has a larger field of vision. User interaction is limited to
dynamically adding obstacles to the simulation.
The prey fish emulate natural swarming behavior based on the boid paradigm [Rey87], three
rules that cause fish to move towards the center of the swarm, to keep their distance from fish
in close proximity and obstacles, and to align their velocities. They also avoid the sharks and
the corners of the aquarium. As the visibility relation between fish is not symmetric, the overall
shoal community is composed of subcommunities each consisting of one fish and its perceived
neighbors, which govern the actual behavior. While these communities may appear like degener-
ate cases due to the asymmetry of the interaction, they illustrate an important design principle:
Basing the required behavior on observable actions and states only works as intended if the con-
cerned agents are actually able to make the observations that are supposed to trigger it. As the
rules are operational and deterministic, it was trivial to use the community type specification itself
as the prototypical agent controller.
The sharks are based on similar principles, with the notable difference that they are supposed
to cooperate with the goal of cornering the prey. They were implemented explicitly in order to
prove that it is possible to correctly implement a community type by implicitly considering it in the
coding.
The prototype allowed experimenting on the emergent properties of the system. By changing
sensor and effector parameters and varying the thresholds and intensities for the behavioral norms,
the balance of the system could be shifted towards either party and diverse behavioral patterns
could be induced.
The logistics scenario simulates a port with warehouses where forklifts load and unload cargo that is
transported by trucks and ships. Its goal is to organize the transport of cargo from a source ware-
house to a destination warehouse in a decentralized fashion. A broker publishes transportation
tasks, for which trucks then bid. Where necessary, the trucks delegate the task to ships or other
trucks as subcontractors, which is also organized via auctions. At the endpoints of each leg, the
transporters need to procure the services of the local forklifts.
As this scenario is rather complex, designing coordination mechanisms that guarantee the effi-
cient and timely execution of all or a high percentage of transportation tasks is far from trivial.
As each case involves at least three different agent types, and as subcontracting can lead to com-
plex, deeply nested community structures, designing the necessary cultures require the creation of
many interrelated, carefully orchestrated norms. Since TSSDs were not yet invented, describing
complex sequences of events was also unnecessarily tedious at times.
However, there was a sobering lesson to be learned from this case study: While building a
sufficiently realistic simulation environment for mechatronic systems is hard, the framework
does an excellent job making this easy for the developer. And while the coordination problem is
sufficiently complex, the modeling approach was adequate for designing a solution that seemed
sound. It was bringing the two together that caused the most problems.

5.3 Validation 219

In spite of the simplification that the Discretization Service offers, getting agents to behave cor-
rectly in an environment offering six degrees of freedom and a realistic physics model is very
difficult. Even a basic task like picking up a crate poses many problems. Provided that the crate
is still on the shelf where it was last recorded (it might have fallen down), the forklift needs to
be positioned exactly to be able to reach it. If it turns out that the crate is slightly displaced or
rotated with respect to its theoretical position (which is the norm), the forklift needs to align its
position by maneuvering, in a limited space, which requires an algorithm that is able to dictate
the correct sequence of movements. The agents also need an awareness of their own shape and
the space around them and incorporate it in their decisions, as it is all too easy to inadvertently
knock one crate from the shelf while retrieving another.
This is in itself not a surprising realization, as designing autonomous robots is a discipline in
its own right into which much research was invested before the first moderate successes were
obtained. After all, using a realistic simulation as the environment does not and should not
eliminate all of the problems encountered in practice. However, the pretension to maximize the
practical applicability of the obtained results incurs a steep initial penalty that is absent when us-
ing a much more abstract model, as is common in work on comparable application scenarios (see
e.g. [KK07b]). The framework may indeed be well-suited to the problem of designing coordina-
tion mechanisms for autonomous mechatronic systems, but complicates the agent development
because it requires diverting some attention to their mechanical aspects from the start. If the
coordination between the agents depends on the exact physical characteristics of a situation, this
may in fact be unavoidable. However, if these aspects can be separated to a certain degree, pre-
maturely mixing them unduly complicates the design and evaluation of the agent coordination
mechanisms.
In many cases, we find that it is more economical to use a higher level of abstraction, as in the
application examples we have used throughout this thesis. When designing coordination mecha-
nisms, every detail that is not strictly related to the agents’ interaction introduces an unnecessary
distraction. After migrating to the proposed extended language, we have therefore performed our
evaluations based on a much simpler, completely ontology-driven kernel that drops the physics
engine and all of the associated data structures and translation steps. We believe that developers
should be free to decide which level of detail will actually be helpful for a specific task or phase.
If a low level of abstraction is used, the developer, or rather team of developers, creating the
agents needs to be willing and able to invest the additional effort that is required. This can be
expected to be the case in later phases of the development process, as the specifics of the envi-
ronment need to be accounted for before deploying an agent, but is not advisable for the initial
design.

5.3.3 Analysis

The last, but not least important part of an experimental evaluation is to observe the system in
action and obtain data which can then be analyzed. Meaningful feedback is indispensable for an
efficient iterative process leading to incremental improvements.

220 5. Verification and Validation

5.3.3.1 Process Monitoring

When running a simulation, we are able to use the same code that was used earlier in the context
of scenario-based verification for monitoring the system. For one, this allows us to keep verifying
the system, as we are only able to achieve partial coverage during the initial verification and
violations might, in principle, still surface in additional tests. But besides, TSSD monitoring can
also help to make the system more transparent when analyzing it.
The sum of the trace trees that are currently active already gives a good impression of what is
happening in the system. However, scanning through a large number of observations may still
be impractical. If sequence labels have been defined in the scenarios, a more aggregated view
can therefore be derived that abstracts from individual situations and only shows which phase of
which scenarios an agent is currently in. If the sequence labels are defined in a way that, e.g.,
mirrors the commitments that are made and fulfilled, this list gives an immediate overview of an
agent’s open commitments.
When an in-depth analysis of some aspect of the system is needed, the trace tree of a TSSD pro-
vides a large repository of interesting data that can be mined. All process flows with all involved
entities and exact time stamps are implicitly contained in it and can be extracted and processed. If
our goal is to optimize the performance of the system, obtaining key performance indicators such
as the minimum, average, or maximum time required to complete a certain scenario, the average
time that passes between two specific situations, or the percentage of cases that corresponds to
a specific variation of a branching scenario is quite helpful for spotting inefficiencies, focusing
the further analysis, or simply gaining a better understanding of the events in the system. Even
the most basic statistics such as the number of times a specific constraint has been violated may
already be very helpful for pinpointing the problem.

5.3.3.2 Statistical Analysis

For some applications, we are less interested in the processes, but rather domain-specific indica-
tors that need to be captured explicitly in order to enable their statistical analysis.

Cooperative learning. In [DGK+04], we have proposed a cooperative algorithm that allows
shuttles to learn track usage profiles more quickly than would be possible in isolation. These
profiles are then used for inferring the most efficient route from past utilization patterns. The al-
gorithm was successively refined in a series of experiments that used the accumulated estimation
error as a measure of profile quality. The resulting algorithm learned new patterns very quickly,
was robust in the face of minor variations in the input data, but adapted quickly if the pattern
was actually changed. In a second step, this algorithm was then used in an actual simulation of
a shuttle system. In a bachelor’s thesis ([Ren04]), shuttles using cooperative learning, individ-
ual learning, and no learning at all were compared and judged on the efficiency of their routing
decisions, respectively the average generated profit, which was expected to be correlated to this.

Convoy formation. In the context of another bachelor’s thesis ([Bie04]), we set out to validate
one of the central assumptions of the RailCab project, namely the claim that the ability to form

5.3 Validation 221

convoys makes small shuttles competitive with larger trains in terms of energy consumption. For
this purpose, the above-mentioned special-purpose simulation kernel which abstracts from most
aspects of the system but uses a detailed model of the shuttles’ relative positions and energy con-
sumption was built. Actual technical data from the project was used except for the air resistance
of shuttles in a convoy, for which an (optimistic) estimate had to be used because no experimental
data is available thus far.
The shuttles were coordinated using a precursor of the positioning culture that was presented in
the previous chapter. Shuttles placed marker objects at track junctions that indicated when they
intended to pass or had passed that point. This information was then used by other shuttles for
adapting their behavior, with the goal of determining the most energy-efficient schedule that their
task list would allow. The approach was inspired by work on stigmergy, i.e. self-organization
through indirect communication, which is best known in the guise of ant-type routing based on
pheromones (cf. e.g. [PBS05, Bon99]).
Different synthetic and realistic track layouts with different numbers of shuttles were used for
evaluating a set of possible strategies. The performance indicators that were recorded in the ex-
periments included the expended energy, convoy sizes, the absolute and relative distance traveled
in convoys, and the accumulated delay that was incurred while completing a predetermined task
list.
The obtained results were quite intriguing. Most importantly, shuttle density is crucial, as the
effect of convoys becomes negligible if the system is too sparsely populated. This means that for
inter-city travel, where distances are large, the minimum number of shuttles that is required for
achieving any effect at all is high, i.e. in the hundreds or thousands depending on the exact size
and structure of the network. Even then, the chances of a random encounter between two shuttles,
let alone at a junction, are low to infinitesimal, even more so if shuttle speeds are uniform.
Shuttles have to actively seek out other shuttles if a significant number of convoys is to be formed.
The second, quite surprising result was that most advanced strategies performed worse in terms
of energy consumption than a naive strategy that only forms convoys opportunistically when a
shuttle with a tighter deadline catches up with a slower shuttle. Accepting a detour for joining
up with other shuttles hardly ever seems to pay off. Even more importantly, all strategies that
actively accelerated the shuttle in order to catch up with other shuttles out of visual range incurred
moderate to large penalties. The only approach using strategic planning that was consistently
beneficial was to scan the traffic behind the shuttle and actively wait for other shuttles by slowing
down as much as the schedule permitted.
Most advanced strategies lead to more kilometers traveled in convoys, but meanwhile also in-
creased the overall energy consumption because the additional effort expended for reaching con-
voys was not worthwhile. These results do not only stress the importance of empirical evaluation
– especially when dealing with emergent phenomena in complex systems, which often contradict
our intuition – but also underline how crucial it is to choose the right performance indicators.

System reliability. In another project, we studied strategies for achieving emergent fault-tole-
rance based on the behavior of communities of self-interested agents (cf. [KT06]). In order to
make a signal processing (or production) network, in which agents can perform different func-

222 5. Verification and Validation

tions, reliable without introducing a central authority or dedicated backup systems, our approach
uses a market model where agents are paid (or pay) for performing a specific function and for
reconfiguring, depending on the perceived social benefit of the action. The norms need to be
designed in such a way as to make the desired fault-tolerant behavior the economically rational
choice. The employed reward and reconfiguration cost functions tend to discourage gratuitous
reconfiguration due to the associated downtime, but use strong incentives to steer agents towards
functions where demand threatens to exceed supply in the near future.
The problem possesses two notable properties: Firstly, the quality of a solution can neatly be
summed up in two related key figures, availability (percentage of successfully processed packets)
and reliability (probability of a sequence of successfully processed packets). Secondly, there is an
abundance of parameters that can be modified, including the structure of the network, the number
of agents, the agent failure rate, the agent respawn rate, the packet arrival frequency, the size of
the available buffers, the time required for reconfiguring an agent to the agents’ strategy, and the
shape and exact parametrization of the employed reward and reconfiguration cost functions. This
predestines the problem for automated testing.
We consequently created a scriptable test driver for automatically running different variants of the
simulation and recording the results. This allowed us to explore a wide spectrum of combinations
of parameter settings. As random events play an important role for the evaluation, repeated
runs with different seeds were performed for each set of parameters. After interesting cases
and promising strategies had been identified in several thousand experiments, successively more
detailed tests were performed to fine tune the cost functions. Ultimately, this lead to a system
that operated close to the theoretical optimum.
While not all multi-agent systems may lend themselves to a differential analysis based on slightly
varied repetitions of the same experiment in this way – e.g. because each run would take too long,
because the conditions cannot be controlled as exactly, because results are not reproducible, or
because the quality of a result cannot be judged or ranked automatically – our experiences suggest
that the usefulness of the ability to quickly generate different prototypes is strongly linked to our
ability to evaluate them.

Strategy selection. How can we evaluate a system when there are multiple, possibly conflicting
criteria? And what if different solutions perform best under different environment conditions?
When designing agents that are supposed to function in a variety of environments, this question
almost invariably surfaces.
Any decision must then necessarily be a compromise that is shaped by our preferences and
assumptions. Nonetheless, there should be an explicit, clearly defined procedure for performing
the evaluation of a solution. As there is a loss of information whenever we aggregate values,
such transformations should be selected consciously.
The quality of a result should depend on measurable indicators. If there are multiple criteria,
these have to be weighted or ranked, which then allows computing some form of weighted av-
erage from the indicators. After this quality value has been measured for different environment
conditions, a quality profile can be created (see Figure 5.3.3a for a diagram plotting quality values
against two variable environmental parameters).

5.4 Conclusion 223

We could simply compute an average quality value from our measurements. However, not all en-
vironmental conditions may be equally probable. Where this is possible, we specify probability
distributions for the environmental parameters, which can be combined into a probability profile
(see Figure 5.3.3b). This profile is used to weight the quality profile. If a single overall quality
value is required, it can be obtained by integrating over the weighted profile.

@ @ @ D @ DD 8< 8 <D

0

0.25

0.5

0.75

1

Frequency

0

0.25

0.5

0.75

1

Data Quality

0

0.25

0.5

0.75

1

Comfort

0

0.25

0.5

0.75Frequency

a. Quality function

88 < 8 < 8 <<
8 < D

0

0.25

0.5

0.75

1

Frequency

0

0.25

0.5

0.75

1

Data Quality

0

1

2

3

4

Density

0

0.25

0.5

0.75Frequency

b. Probability distribution
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

c. Switching criteria

Figure 5.3.3: Comparing and combining different strategies

In [AGKF06], we applied this idea in the context of a methodology for the design of self-
optimizing mechatronic systems (see e.g. [GFG+05]). When designing systems that are expected
to be more flexible and versatile than traditional systems, a method for systematically choosing
a design pattern or building block that is more differentiated than traditional scoring systems
provides significant benefits.
In the specific case of adaptive systems, their very nature provides us with an additional option:
not choosing at all. An adaptive system is characterized by its ability to modify its behavior - so
why not simply use the optimal strategy at all times? If supporting several alternative solutions
is possible technically, the differences are large enough to justify the more complex design, and
robust criteria for switching between the strategies can be established, this results in a system
that outperforms both original solutions. Based on the combined weighted quality profiles, both
the achievable benefit and the switching criteria can be computed (see Figure 5.3.3c).
For situated multi-agent systems in general, what is considered a good solution depends on the
environment to a large degree. However, the best solutions are those that are flexible enough
to perform well under many different conditions, using the conceptual advantages of a loosely
coupled system of autonomous actors to their best effect.

5.4 Conclusion

Throughout this chapter, numerous related publications that provided fundamental concepts or
were closely related to a specific method were already presented. In the following section, we
will take a more general look at agent verification and validation that is not limited to GTS.

224 5. Verification and Validation

5.4.1 Related Work

Approaches for the formal verification of multi-agent systems mostly focus on interaction proto-
cols and the agents’ mental state. In this vein, [BC03] applies conventional CTL model checking
to specifically adapted models of the beliefs, desires and intentions of interacting agents. For
systems modeled using the DESIRE methodology, [BCG+04] proposes a compositional verifi-
cation approach that introduces a hierarchy of levels of abstraction for decomposing the problem
into manageable subproblems. Due to their focus on cognitive agents and direct agent com-
munication, these approaches are not suited for dealing with complex interactions based on the
environment or ad-hoc cooperation as they lack support for the description and verification of
structural adaptation.
Proposals such as [vdHRW05] are oriented towards games of a closed set of agents and answer
the question whether a group of agents can achieve a specific goal, assuming that their coordina-
tion is perfect. Their premise is quite different from the one of our approach, which is concerned
with the more pragmatic problem whether a given coordination mechanism is sufficient for guar-
anteeing the completion of the goal within the confines and limitations of the given environment.
Another approach that uses model checking in order to decide whether a set of social rules
is effective is proposed in [vdHRW07]. The employed logic is notable for providing explicit
support for considering the autonomy of the agents’ decisions, but limits the approach to very
restricted use cases.
Our work on GTS refinement and monitoring shows some similarities with the debugging support
presented in [PWP05], where the agents’ behavior is validated against Petri Net specifications,
but explicitly factors in the agents’ situatedness in the environment.
With respect to the problem of structural adaptation in software architectures, [BHTV03] par-
allels our approach in proposing the use of graph transformation systems for the verification of
such systems. However, there is no explicit support for agents or higher-level control structures.
Rapid prototyping is in wide-spread use in many different areas. For embedded systems, a proto-
typing phase is actually considered an integral part of a proper development process (cf. [BN03]).
In the specific context of mechatronic systems, it is often concerned with the design and incre-
mental improvement of control laws (cf. [DRZH01]). For this purpose, it is combined with
virtual prototyping (cf. [SJ99]) or, more frequently, dedicated prototyping hardware (e.g. FP-
GAs) that allows a quick implementation and reconfiguration. Here, the control structures and
dataflow are usually rather static, however.
Software engineering, especially with proper CASE tool support, lends itself to rapid prototyping
(cf. [Mul90]). Specifically, the use of Story-Driven Modeling for prototyping purposes has first
been studied in the context of the ISILEIT project (cf. [GSEW05, SWGE04]), whose application
area was the design of production control systems. While prototyping is generally seen as a
useful method for early validation, as recently popularized by approaches like the test-driven
Extreme Programming [Bec99], it is frequently not combined with a formal process. Where
applied systematically, it is often primarily seen as a tool for requirements engineering [CS95].

5.4 Conclusion 225

5.4.2 Discussion

In this chapter, we have presented a wide spectrum of approaches for the verification and valida-
tion of multi-agent systems. The scope of the verification techniques we have discussed ranges
from the verification of invariants over the model checking of generic safety properties and the
analysis of agent behavior to the monitoring of complex scenarios. All of them have their mer-
its due to the trade-off between expressiveness and computability that they offer: Do we need
a basic but definite result for the entire system, or are we content with identifying and fixing
counterexamples based on a complex specification until we consider it sufficiently probable that
the agents will behave correctly?
Bound together by a common formal foundation and the principles of the CURCUMA frame-
work, this collection of approaches constitutes a coherent method that is able to address a wide
range of needs. The previously existing methods have been adapted and extended in this direc-
tion, while our original contributions were designed with the corresponding concepts in mind.
The inherent support for decomposition that communities provide then turns an apparent weakness
into a strength: Because we can assign different aspects of the problem to different communities,
we can use the most appropriate method for each of them. The different methods have been
applied to the application example and have proven effective at exposing even subtle flaws in the
design in their respective domains.
When moving from models to concrete implementations, which are subject to additional prob-
lems and influences, the diversity of the applicable techniques further increases. With our focus
on code generation and reusable modular frameworks that provide a basic infrastructure, we
have however developed a concept that can cover a wide range of applications and offers great
potential for future extensions in different directions. The spotlights on previous experiments
have given a glimpse of the type of fascinating and practically relevant results that can be gained
from multi-agent systems. Together, the extension of the infrastructure and the design of more
complex or realistic application examples offer promising avenues for future research.

226 5. Verification and Validation

Chapter 6

Application

6.1 Introduction

One of the main motivations for using a model-driven approach is the expectation that it will
boost productivity, either by making complex problems more manageable or by making the de-
velopment process itself more efficient. In this thesis, we have presented the key ingredients of
such an approach, namely a concept for structuring the models, a language for writing them,
and a set of methods for improving and exploiting them. We have focused our discussion on the
precise definition and illustration of our concepts and their formalizations, not pragmatic issues,
thus far. Our running example and the projects that we have outlined in the previous chapter
provide evidence that our approach is applicable to a wide range of domains and problems – but
is it practical?
Experience teaches that usability is key for the success of a methodology, unless its adoption is
forced by external constraints or sheer necessity. The practical value of a model-driven approach
is directly correlated to the quality of the guidelines and the tool support that it provides to
developers. In this chapter, we will therefore look into these topics and show how we support the
application of our approach in practice.

Chapter outline. In the following section, we discuss the available tool support. We give an
overview of the tool landscape and our specific contributions and then detail in what manner the
different aspects of the approach are supported.
We then delve into questions concerning the usage of the proposed constraint languages in Sec-
tion 6.3. We compare Timed Story Scenario Diagrams with a design pattern-based approach to
the specification of temporal properties and discuss how the notations can provide support for
deriving a formal model from textual requirements, using a self-contained example.
Finally, we discuss the possibilities of applying our approach in the context of the RailCab project,
thus wrapping up our running application example.

228 6. Application

6.2 Tool support

Many of the benefits of a model-driven approach are tied to proper tool support, and many emi-
nent features such as formal verification or code generation directly depend on it. We therefore
provide full end-to-end tool support for our constraint notations, from an advanced modeling
environment to code generation for both the verification and the simulation use case. With re-
spect to verification and validation, we do not provide the same level of support for the entire
spectrum of approaches that were presented. In particular, the extended modeling tools are not
fully integrated with all of the previously existing tools for verification and real-time modeling,
which makes additional manual steps necessary for certain use cases. There is furthermore no
support for automatic agent synthesis. In the following, we give a short overview of the different
tool implementations before presenting our contributions in detail.

6.2.1 Tool Landscape

The centerpiece of the tool landscape is Fujaba1, which provides an extensible platform for visual
modeling, verification and code generation. Fujaba natively supports the key elements of Story-
Driven Modeling, namely Class Diagrams and Story Diagrams, i.e. Activity Diagrams whose
activities can be defined by means of Story Patterns.
The work on this thesis coincided with three major developments concerning Fujaba: The kernel
underwent a major revision upgrade from version 4 to version 5, a new template-based code
generation engine was introduced, and Fujaba was integrated into the open, plug-in-based Eclipse
platform2 as the Fujaba4Eclipse plug-in, which required a reimplementation of the graphical user
interface. As Fujaba is currently used and developed at multiple universities and by projects with
different priorities, not all of the available plug-ins are compatible with each other as a result of
these changes.

Related work. In several areas, in particular in connection with Coordination Patterns and for
purposes of verification and validation, we have referenced previous work for which tool support
is available.
As mentioned in the previous chapter, Coordination Patterns can be modeled using the Fujaba
Real-Time Suite, which provides support for Component Diagrams and Real-Time Statecharts
(RTSC) with Java and C++ code generation for the employed component and runtime frame-
works. The described synthesis of RTSC from annotated scenarios is implemented by a plug-in
(cf. [GT05]). Another plug-in integrates the model checker UPPAAL (cf. [LPY97]) and thus
enables the automatic verification of Coordination Patterns (cf. [Hir04]).
The verification of GTS is likewise supported through plug-ins. The GTS Model Checking plug-in
(cf. [Neu06]) provides an interface to the model checker GROOVE (cf. [Ren03]). Specifications
are augmented with the constraints that are required to simulate the use of graph isomorphisms

1Fujaba project site: http://www.fujaba.de
2Eclipse project site: http://www.eclipse.org

6.2 Tool support 229

and transformed to GROOVE’s input format, the external tool is invoked, and the results and possi-
ble identified counterexamples are visualized in Fujaba. The Invariant Checking plug-in implements
the algorithm for verifying invariants of systems with infinite state spaces and is also capable
of displaying the generated counterexamples inside Fujaba. Finally, we have implemented the
conversions that are required for exporting a specification to the relational calculator CrocoPat
(cf. [BNL05]) for symbolic evaluation as a plug-in (cf. [BBG+06]).

Intrapid Tools. The concepts of the CURCUMA framework were first implemented and exper-
imentally evaluated within the Intrapid project. A significant part of the implementation effort in
that project went into the realization of the runtime framework that was described in the previ-
ous chapter. The implementation of the core components and the agent infrastructure consists
of more than 300 classes containing several ten thousands of lines of C++ code. Nonetheless,
matching tool support for modeling and generating environments, agents, and community types was
also implemented in the form of four plug-ins consisting of more than 200 Java classes. The
tool implementation is integrated into Fujaba4Eclipse, but uses the Fujaba 4 kernel and the original
code generation engine.
The tool provides explicit support for many of the concepts of the CURCUMA framework in
the form of specialized diagram types. These diagram types are based on the notations that
were already supported by Fujaba4Eclipse, namely Class Diagrams and Story Diagrams, but not
the extended constraint notations, as these had not been invented yet at the time. There are entity
diagrams for modeling entities and their physical properties, agent-, sensor-, and effector type diagrams
for defining the generated outer shell of the agent implementations, culture and norm diagrams for
defining cultures, template types, roles, and professed intentions, with Story Patterns defining the
different norms, and community type diagrams, which allow mapping template types to concrete entity
types from the entity diagrams.
In order to enable the generation of C++ code from these diagrams, it was necessary to adapt the
existing C++ code generation facilities, which had been designed for generating specific flavors
of embedded applications. The specific semantics of the different diagram types also needed to
be reflected in the generated code. This required the incorporation of a transformation engine
which performed the corresponding modifications and substitutions before passing the derived
model to the code generation engine.

SDMX Tools. This approach to code generation proved unnecessarily complex and inflexible.
There were also limitations in the basic design of the employed diagrams. Notably, Story Patterns
were only supported inside Activities as part of a Story Diagram, which was in turn required to
be attached to some Method of a Class as its implementation. For the verification plug-ins, which
called for stand-alone Story Patterns, this required workarounds based on conventions the user
had to adhere to. The Intrapid tools hid this problem from the user by means of the dedicated
diagram types, but did not solve the underlying problem, which again increased complexity.
When we implemented the extended constraint notations, we therefore chose to do so on a more
solid foundation and switched to a new metamodel using the Fujaba 5 kernel and the revised code
generation engine. We have also invested considerable effort into the Fujaba4Eclipse infrastructure
in order to increase the flexibility and usability of the user interface. This has resulted in a set of

230 6. Application

Eclipse plug-ins, the Story-Driven Modeling Extensions (SDMX), which make up the current version
of the tool. Not counting the generic contributions to the Fujaba4Eclipse infrastructure, the SDMX
plug-ins consist of some 600 Java classes. Besides the above-mentioned end-to-end support for
the new notations, there is a generic mechanism for attaching constraints to models and model
entities, which, together with the extensive use of stereotypes, enables a much more light-weight
implementation of the CURCUMA concepts.

6.2.2 Modeling

We now describe the features of the revised tool implementation and the extensions in the tool
infrastructure they required in more detail. The new metamodel provides greater flexibility and
does away with several assumptions that underlie previous versions, e.g. that a Story Pattern
always occurs in the context of an Activity. This has consequences in many places, making it
necessary to provide more generic implementations of features that were hard-coded before.

Fujaba4Eclipse infrastructure. The navigation tree that was used by Fujaba4Eclipse was imple-
mented as a custom view. It also enforced a true tree structure, allowing each model element
to appear at most once. Adding a new model element required implementing a custom adapter
and registering it in the configuration files. The new Fujaba Explorer integrates the model outline
into the Project Explorer that is provided by Eclipse. What is displayed is defined declaratively so
that plug-ins only need to provide the desired configuration, but no custom adapters. The new
navigator supports all of the features of the old one, but additionally allows displaying the same
model element in multiple places and with different icons, labels, and children, depending on
the context of the occurrence. As is customary in Eclipse, the status of a model element can be
indicated by overlay icons or additional labels. Finally, the new Explorer allows modifying the
model directly in the outline by dragging and dropping elements. The Explorer supports different
view profiles that control what is displayed. The default view arranges the classes of a model
according to the package structure, similar to the way this is done in the Eclipse Java IDE.
The wizards for creating new diagrams or model elements have been remodeled to use the Fujaba
Explorer tree view for selections. During this modification, we have also introduced a new wiz-
ard framework which allows defining labels, input fields, filters, selection criteria, and validity
checks with only few lines of code, which drastically reduces the effort needed for implementing
a custom wizard.
Another major improvement concerns the property editor that is used for viewing and modifying
the properties of model elements. Originally, Eclipse only provided a table view with text input
fields and drop-down selections for this purpose. While later versions introduced greater flex-
ibility and allowed developing custom property pages, this required a custom implementation
for every type of model element. We have therefore again realized a declarative solution that
allows creating sophisticated, user-friendly property pages by means of simple annotations to
the existing property definitions. Besides the standard text input and drop-down selection fields,
the implementation offers modifiable drop-down selection fields that allow adding and remov-
ing entries, list fields that allow editing multi-valued properties, multiple selections fields that

6.2 Tool support 231

allow moving elements between a list of available elements and a list of selected elements, and
nested fields that are populated depending on the selection in their master drop-down selection
field. The property editors now also implement full undo support. Additionally, the design of
the property adapters that handle the interaction between property editors and model elements
was simplified by means of a new base class that offers a cleaner API hiding the complexity of
providing input for the different field types that is compatible with Eclipse from the developer.
There are other less visible enhancements throughout the platform. The way model files are
handled was changed, tying the loading and unloading of the model to the life cycle of the main
editor. Loading and saving are now executed as background tasks. Utility methods for per-
forming common tasks such as opening a diagram editor, managing the state of a model file, or
displaying a selected model element in the editor have been added to the central infrastructure.
An infrastructure for managing preferences based on the Eclipse preference mechanism with ac-
companying tool classes was put into place, and several pages with settings for Fujaba4Eclipse
were added to the Eclipse preference dialog. The tool palettes of the diagram editors are now no
longer hard-coded, but configured declaratively.
We have furthermore contributed to the graphics library that is used for laying out and displaying
the diagrams by implementing Bezier curves that support static and interactive routing, a basic
set of shapes whose visual style can be controlled in a unified manner, including the characteristic
UML 2.0 box, support for shadows and decorations, and advanced label locators that keep labels
from overlapping the connections which they annotate.

Figure 6.2.1: Screenshot showcasing several of the enhancements

232 6. Application

Figure 6.2.1 shows several of the enhancements, particularly the new Fujaba Explorer and the new
property editor.

Constraint modeling. In order to provide a unified solution for attaching constraints to a model,
we have created a constraint plug-in that provides the corresponding infrastructure. A constraint
specifies a restriction on a set of model elements or the entire model. Its definition may be textual
or of any supported diagram type. A constraint set aggregates a set of constraints. Constraint
sets may contain other constraint sets, and each constraint may be included in multiple sets.
Figure 6.2.2 shows the fully expanded constraint tree of a small example containing 6 constraints
(expressed as SDDs) and 5 constraint sets.

Figure 6.2.2: Constraints in Fujaba4Eclipse

By turning constraints into first class objects, there is now a clean way to mark the part of
the model that represents the specification and persist this information in the model itself. This
eliminates the need for the workarounds used by the existing verification plug-ins. The constraint
sets make it convenient to restrict verification to part of a specification by exporting only the
selected set to the verification tools, which makes it possible to explicitly maintain and compare
different alternative solutions or to focus the evaluation on a specific concern.

SDMX infrastructure. SDDs and TSSDs make additional demands on the underlying infras-
tructure due to the syntax highlighting that is an integral part of their visual design. In order to
correctly mark up bound and unbound pattern elements or forbidden scenarios, the tool needs
a deeper understanding of the diagram and the underlying metamodel than is required for, e.g.,

6.2 Tool support 233

Story Diagrams. Particularly deciding whether an element is bound or not is not trivial, as this
depends both on the pattern itself and its context, which is different for a standalone pattern and
one in a Story Diagram or TSSD.
This problem is solved by introducing three concepts: All named model elements are declared
elements which may contain a reference to a definition of the same name and category. Elements
without such a reference are themselves definitions and therefore unbound. The references are
managed by each diagram’s namespace, which processes and propagates all additions, deletions,
and modifications. The namespace’s relationship to other namespaces is made fully transparent
by the diagram’s context, which abstracts from the different surroundings and thus allows using
the same diagram type both as a diagram in its own right and inside TSSD situations, scoped
SDD nodes, or Story Diagram activities. The specific context implementations need to know how
to traverse transitions in a Story Diagram respectively connectors in a TSSD, but the interface
used by the namespace is identical in all cases. When an element is added, the namespace asks the
context for the preceding namespaces and then queries its predecessors for an existing definition
of the same name and category. Changes in the structure of the host diagram trigger a complete
reevaluation.
The infrastructure provides support for copying, pasting, and cloning elements, with fine-grained
control over which elements should be copied by value or by reference, respectively whether a
clone should be a deep or shallow copy. It also integrates the model elements with the Eclipse
task and problem infrastructure. As in the Eclipse Java IDE, errors, warnings, and notices are
displayed in a central problem view, as an overlay icon on the navigation tree, and in the editor,
i.e. as an icon decorating the element in the diagram. Problem markers are persisted even when
the referenced model file is unloaded and allow navigating to the diagram containing the marked
element directly from the problem view.

SDMX diagrams. Based on this infrastructure, the three introduced diagram types were imple-
mented. The SDD editor reuses the eSP editor for node definitions, and the TSSD editor in turn
reuses the SDD editor for situation definitions. The TSSD editor was implemented as part of
a master’s thesis (cf. [Spi07]). The eSP and SDD editors also integrate into the existing Story
Diagram editor.
The editors implement various features that are intended to increase productivity. Besides the
generic mechanism for copying and pasting, common use cases such as propagating a pattern
to a subsequent node in an SDD are supported explicitly. Leaf nodes are added and removed
automatically as nodes and connectors are added. It is possible to change the type of a node in
place, i.e. preserving its connections and content, using its context menu. Entire branches of the
diagram can be moved together when laying out the diagram.
In eSPs, insets look and work similar to the way nodes operate in SDDs, but there is a notable
difference: SDD nodes are created as empty containers to be later filled with content, whereas
insets are added into an existing pattern, acquiring their content from what is already there. An
inset does not own the enclosed elements, although they behave and move as parts of the inset.
Unlike for nodes, elements can be removed from insets by resizing the inset or simply moving
them outside of the box, and the contained elements are not deleted when the inset is deleted.

234 6. Application

Insets also support nesting. TSSD triggers are implemented in a similar way.
Along with the syntax highlighting, the editors perform various syntactic and semantic checks
that generate error and warning annotations. They recognize incorrect graph structures, e.g.
SDDs with multiple roots, disconnected TSSDs, and paradoxical or tautological statements,
e.g. when all outgoing connectors of an SDD node lead to (1) nodes. They also warn when a
node with multiple predecessors references a potentially unbound element. Ambiguous or inter-
secting insets are flagged, as are problematic trigger blocks in TSSDs.
In the preferences, the visual appearance of the diagrams can be tuned. Several options control
the level of detail and redundant information, such as additional labels, that is displayed. The
strategies for displaying leaf nodes in SDDs range from the bare semantically required minimum,
over an adaptive strategy ensuring balanced layouts, to displaying all of them. In eSPs, it is
possible to choose between �create�/�destroy�, ++/−−, and ∗/∼ for indicating modified
elements.

Figure 6.2.3: A Timed Story Scenario Diagram in Fujaba4Eclipse

Figure 6.2.3 shows the diagram from Figure 4.3.16 in the context of the editor. Note the error
annotation and the corresponding problem view. All of the application example diagrams that
have appeared in the preceding chapters were created using the described editors.

6.2 Tool support 235

6.2.3 Prototyping

The tool implementation supports the validation of models by enabling the generation, execution,
and evaluation of prototypes. The corresponding functionality is provided by the SDMX Code
Generation plug-in and the SDMX Runtime library.

Code generation. The code generation engine is based on the CodeGen2 plug-in (cf. [GSR05]),
which in turn uses the Velocity template engine3 for actually writing the code. The code generation
engine works by creating tokens for all relevant model elements, reordering and modifying them,
and then using them for populating the assigned Velocity templates, all based on the chain of
responsibility pattern. This approach provides improved transparency and makes it straight-
forward to modify the result of the code generation by adapting the templates.
The SDMX Code Generation engine again introduces certain enhancements that have enabled us to
quickly and efficiently implement the code generation support for the concrete diagram types and
model elements. The engine needs to register with the CodeGen2 infrastructure and declare itself
responsible for the model root element, as the standard implementation would merely traverse
all classes and ignore constraints or standalone diagrams. The engine furthermore overrides the
regular chain of responsibility mechanism in order to deal with another difference: The standard
implementation assumes that the model corresponds to a tree structure, which implicitly ensures
that every element is processed at most once. In our case, this is neither true of the overall model
nor of the individual diagrams. To prevent the generation of superfluous tokens and infinite
cycles, we therefore cache each generated token and reuse it when the corresponding model
element is passed to the engine for processing again.
When formalizing the constraint languages, we have repeatedly handled syntactic features by
mapping them to other constructs. This is particularly true of TSSDs, but also affects the other
diagram types, e.g. when rewriting a scoped node as a SDD Pattern/Reference pair. Unfortu-
nately, actually creating these auxiliary constructs as model elements incurs an undesirable over-
head, requires a greater effort to ensure consistency, and may inadvertently pollute the model.
We therefore only create tokens representing these virtual model elements and annotate them
with the desired properties. While it is generally possible to access a model element through
its token and directly query its methods from a template, this would fail for tokens representing
virtual elements. In order to avoid having to write dedicated templates for the two cases, the
corresponding properties of real model elements are also automatically added to their tokens as
annotations by means of reflection. In this way, templates can access both types of elements in a
unified fashion.
As the new notations introduce a multitude of new element types, we have made sure that only the
token creators are specific to element types, but the same token type and code writer are reused
for all element types. We also make it simple to control the generated file and folder structure
and invoke dedicated special-purpose templates, e.g. for generating a basic infrastructure.
Both eSP and SDD code generation cover all introduced features of the notations. Code genera-
tion for TSSDs was again implemented in the context of a master’s thesis (cf. [Spi07, GHH+07]).

3Velocity project site: http://velocity.apache.org

236 6. Application

The semantic kernel of the language is fully supported, with the exception of subscenarios.
The generated code heavily relies on abstract base classes, which has the advantage that the spe-
cific code for a diagram is much leaner than it would be otherwise. The diagram implementation
only overrides certain hook methods that characterize the diagram and are called at the appro-
priate time by the base class. The base class, or rather framework of base classes, encapsulates
the matching algorithm and all of the optimizations that are applied to it. In this manner, eSP
matching is performed using the dynamic algorithm that was presented in the previous chapter.
The SDD matching algorithm supports the adapted evaluation strategies for implementation or
verification purposes, generating either at most one or all valid bindings.

Runtime Framework. The code generation works hand in hand with a matching runtime frame-
work. The code generation instruments all entities in such a way that every new instance is reg-
istered with a central model directory, which is indispensable for matching patterns that do not
contain a fixed this element that can serve as a starting point. Furthermore, the model directory
listens for modifications in the model, which are invariably signaled by property change events.
All changes that occur at the same point in time are collected into a single update, which is sent
as soon as the system clock is advanced.
The selected constraint sets make up the specification that is used for monitoring the system.
The generated specification is passed to an evaluator, which also receives the aggregated updates.
Based on the update and the meta-information that has been added to each constraint by the
code generator, the evaluator decides which of the available constraints have to be reevaluated, as
described in the previous chapter. The evaluator records all constraint violations that are reported
back to it and is thus able to provide the final verdict after an evaluation run.
The framework provides a system clock and a basic scheduler that allows running multiple agents
or processes in parallel in simulated real-time. Each active process is queried for the action it
would like to perform next. As graph transformations are instantaneous, whereas actions typ-
ically consume time, the invoked actions are queued and executed once the time required for
completing them has passed. The actions that an agent performs can either be scripted or de-
termined based on a state machine representing the agent’s internal state. Besides templates for
these two cases, the framework also provides support for the rudimentary synthesis strategy of
randomly applying one of the permitted effectors.

6.3 Deriving Constraint Specifications 237

6.3 Deriving Constraint Specifications

In previous chapters, we have defined the syntax and semantics of visual languages for the de-
scription of structural and temporal properties, discussed their expressiveness, and used them in
the specification of multi-agent systems. While we have repeatedly emphasized that accessibility
and intuitive ways of expressing real world properties were central design objectives of our con-
straint notations, we have so far not focused on the question of how such property specifications
can be derived from informal requirements.
We first look at an approach that is based on design patterns that have been inspired by common
temporal properties found in real-world applications. The patterns represent a cross-section of
typical problems and can serve as a benchmark for gauging the applicability of TSSDs. We also
consider whether the approach itself is helpful for the specification of TSSDs.
In the following section, we discuss how informal textual requirements can be translated into a set
of formal constraints. We propose a systematic approach that is built around a set of basic prin-
ciples and guided by the occurrence of certain keywords and apply it to a small, self-contained
example.

6.3.1 Specification Pattern System

The Property Specification Pattern System presented in [DAC98] and extended in [DAC99] was
proposed to address the problem of making formal specification techniques and thus formal
verification accessible to practitioners, as even experts face problems when trying to encode
moderately complex real-life properties using temporal logics such as LTL. The intention behind
the Specification Pattern System is to enable users to construct more complex properties from
basic, assuredly correct building blocks by providing generic specification patterns encoding
certain elementary properties (existence, absence, universality, bounded existence, precedence
(chains), and response (chains)), each specialized for a set of different scopes (globally, before
R, after Q, between Q and R, after Q until R).
In the following, we demonstrate how the patterns of the Specification Pattern System can be
encoded using Timed Story Scenario Diagrams. A convenient quality of TSSDs is that they
allow us to define scopes and properties separately as orthogonal concepts and then simply plug
the appropriate property into the desired scope.

Scopes. In Figure 6.3.1, we define the scopes as TSSDs. The original textual specification of
the patterns is somewhat ambiguous – ϕ exists before R could be interpreted in two ways: ϕ
needs to exist before (possibly) R is observed (putting the emphasis on exists ϕ), or ϕ needs to
exist whenever R is observed afterwards (emphasizing before R). The latter is the interpretation
that is encoded by the provided LTL pattern. The scopes before, after, between, and until are
thus encoded using trigger blocks where ϕ is the triggered scenario. As the table shows, all
definitions except the definition of until are very compact. The last case requires an additional⊙
• node because TSSDs provide no direct encoding of for the operator Ũ (weak until) so that the

property that R may occur or not needs to be encoded explicitly. This omission is intentional as

238 6. Application

�

�

�

�

�

a. globally

R

�

�

�

�

�

b. before R

Q

�

�

�

�

�

c. after Q

Q R

�

�

�

�

�

d. between Q and R

Q

R

�

�

�

�

�

e. after Q until R

Figure 6.3.1: The scopes encoded as TSSDs (for a property ϕ)

we believe that, in the context of a scenario notation, it is more intuitive to explicitly specify that
the scenario might be successfully completed in an earlier situation using the standard syntax for
completion (

⊙
•) instead of introducing a dedicated syntax for a Ũ connector.

P

a. exists P

P

b. no P

P

c. always P

P P

d. at most 2 P

S

P

e. S precedes P

P

S T

f. P precedes S, T

T

P

S

g. S, T precedes P

P S

h. S responds to P

P S T

i. S, T responds to P

S T P

j. P responds to S, T

Figure 6.3.2: The properties ϕ encoded as TSSDs)

Properties. In Figure 6.3.2, we define the ten different properties listed by the Specification
Pattern System. Inbound connectors link to possible preconditions, outbound connectors encode
success and lead to possible postconditions. Existence, absence, and universality are trivially
encoded using the standard syntax for required and forbidden scenarios. Bounded existence is
encoded by enumerating the acceptable sequences, i.e. 0, 1, or 2 occurrences. As the number
of occurrences is relevant, all situations are strict so that no additional occurrences are permitted
between the observations of a trace. Again, the weak progress (no occurrence of P is also

6.3 Deriving Constraint Specifications 239

acceptable) is encoded by additional outbound connectors. When it comes to encoding response
and precedence chains, the notation excels – quite unsurprisingly, as this is the use case for which
it was designed. Triggers are designed for expressing response (and its dual, precedence), while
sequences such as S, T are the basic concept in TSSDs.

Derivation. These property definitions can now simply be substituted for ϕ by completing them
with an initial node as their precondition and

⊙
• nodes as their postcondition(s). While the

trivial form of each combined pattern obtained using this mechanistic approach already yields
usable results, simplified versions can be derived using two simple transformations that basically
correspond to the elimination of redundant parentheses in mathematical expressions.

Q P

a. Trivial version

Q P

b. Simplified version

Figure 6.3.3: Always P after Q

A scenario situation with a single
⊙
• node can be eliminated by connecting each situation inside

the scope whose predecessor is the scope’s initial node to each of the scope’s predecessor nodes,
and by connecting each situation inside the scope whose successor is the scope’s

⊙
• node to each

of the scope’s successor nodes (see Figure 6.3.3).

R

S

P

a. Trivial version

R

S

P

b. Simplified version

Figure 6.3.4: Always S precedes P before R

Secondly, if both the surrounding scenario and the scenario situation contain trigger blocks, these
blocks are merged (see Figure 6.3.4).
Figure 6.3.5 lists all simplified variants of the (1,2) response chain pattern. For comparison, these
are the corresponding LTL encodings as listed by the Specification Pattern System:

a. G(P ⇒ F(S ∧X F T))

b. FR⇒ (P ⇒ (¬RU(S ∧ ¬R ∧X(¬RU T)))) UR

c. G(Q⇒ G(P ⇒ (S ∧X F T)))

d. G((Q ∧ FR) ⇒ (P ⇒ (¬RU(S ∧ ¬R ∧X(¬RU T))))UR)

240 6. Application

P S T

a. globally

RP

S T

b. before R

Q P S T

c. after Q

Q RP

S T

d. between Q and R

Q

R

P TS

e. after Q until R

Figure 6.3.5: Response (1,2), simplified versions

e. G(Q⇒ (P ⇒ (¬RU(S ∧ ¬R ∧X(¬RU T))))U(R ∨G(P ⇒ (S ∧X F T))))

In Appendix D, we list the trivial and simplified TSSD encodings for all combinations of scopes
and properties.

Discussion. For response and precedence, the simplified forms are quite natural expressions of
the original requirements. Disregarding the Specification Pattern System’s distinction between
scopes and properties, e.g. S, T responds to P after Q actually translates to ’after the sequence
Q,P , there needs to follow S, T ’, which is exactly what the TSSD expresses. In general, the
resulting diagrams are compact and can be interpreted in a straight-forward manner without the
context of the original specification pattern. TSSDs thus avoid the problem faced by the LTL that
a correct formula may be derived using the appropriate patterns, but is still very hard to parse for
any reader who does not know how it was originally derived.
While TSSDs provide a suitable way of encoding the patterns of the Specification Pattern System,
we believe that TSSDs would not greatly benefit from using the Specification Pattern System in
order to derive them. This is not due to any flaw or lack of usefulness in the pattern system itself,
but to the fact that the intuitions it provides to designers are already directly integrated into the
TSSD language.

6.3 Deriving Constraint Specifications 241

6.3.2 Deriving Properties from Textual Requirements

We now discuss how structural and temporal property specifications can be derived from informal
textual requirements in a systematic manner. We deliberately deviate from our running example
in favor of a small, self-contained example: As our case study, we use an elevator system, which
is in part inspired by the example property used in the motivation of [DAC99] and in part a
reference to a classic example used for demonstrating Story-Driven Modeling with Fujaba. We
extend both scenarios, however, from a house with a single elevator to a large building with
an arbitrary number of floors and elevators. This flexibility illustrates one of the advantages of
the approach in comparison with other logics: The ability to scale properties to any number of
instances is implicitly provided as this is inherent in the patterns.
The following requirements are provided for the system:

1. Safety: Whenever an elevator is not at a floor, its doors may not be open.
2. Responsive: Every request for an elevator is assigned to exactly one elevator by the central

dispatcher.
3. Progress: An elevator may not stay between floors for more than 30 seconds.
4. Progress: If requests have been assigned to an elevator, it may not be idle for more than

22 seconds.
5. Purposeful: An elevator may only move towards some assigned request.
6. Fairness: Concurrent requests must be fulfilled within 300 seconds of each other.
7. Fairness: When a request for a specific floor has been assigned to an elevator, it may only

arrive at this floor at most twice before opening its doors.

Elevator

doors : {open|closed}

BuildingDispatcher

Floor

number : Integer

Request

1 1

has

1..n

1

has

2..n

1

has

0..n

1

manages

0..1

0..1next

is at

1

0..n

for

0..1

0..n
assigned

0..1 0..n

Figure 6.3.6: Elevator class diagram

Using standard object-oriented analysis techniques, we extract the classes elevator, floor, and re-
quest, and infer the existence of a building as the root of the composition hierarchy and a dispatcher,

242 6. Application

which is in charge of assigning requests to elevators. We also identify the dynamic associations is
at, assigned, and for, and arrive at the class diagram in Figure 6.3.6 from the requirements.
We can now encode the constraints. The first step is to classify the type of requirement the
constraint expresses and choose the appropriate notation. While constraints concerning the static
structure (’there must always be at least one...’) or safety properties (’there must never be...’) can
be expressed using SDDs, most behavioral constraints (such as requirements describing changes,
sequences of events, or containing time constraints) require TSSDs.

(1) Whenever an elevator is not at a floor, its doors may not be open. Even though the require-
ment (1) appears to contain a temporal element (whenever), it is a static safety property and
can therefore be encoded as a structural requirement. In order to derive the SDD structure, we
decompose the textual specification: whenever or an initial if indicate universal quantification,
as the property applies to any elevator at any time. We furthermore extract the basic, positive
properties at a floor and its doors are open, noting but ignoring the negations expressed by not
for now. These elements can now directly be translated into SDD nodes | ∀ elevator e |, | ∃ e is at
a floor | and | • e’s door = open |.

Doors safe: e

0 1

 f

1

then

then

then else

else

e : Elevator

e : Elevator

f : Floor is at

- doors = open

e : Elevator

Figure 6.3.7: Property (1) encoded as an SDD

When connecting the nodes into a decision diagram, we reintroduce the negations: As the doors
must not be open, we invert the outgoing connectors of the third node. Furthermore, as this
condition only needs to hold if the elevator is not at a floor, we attach the third node to the second
node’s else connector. After adding the standard implied leaf nodes, this results in the SDD in
Figure 6.3.7.

(2) Every request for an elevator is assigned to exactly one elevator by the central dispatcher.
Property (2) could be interpreted as a structural constraint which could easily be encoded as a
simple SDD or even eSP | ∀ requests | ⇒ | ∃ assigned elevator |. However, requests would have
to be assigned upon creation to fulfill this property. We therefore conclude that the requirement
actually describes the outcome of a process and interpret it as Every time there is a request, it is
eventually assigned to exactly one elevator.

6.3 Deriving Constraint Specifications 243

The temporal keyword eventually separates the two relevant structural properties: | ∃ request |
(Figure 6.3.8a) and | ∃ elevator that is assigned to the request | (Figure 6.3.8b). Keywords such as
exactly, at least, more than, at most, and less than are indicators for a cardinality, in this case for
the cardinality [1..1].

 r r : Request

a. Request created

 e r : Request

e : Elevator assigned

1 0
then
[1..1]

else

b. Request assigned

Request created Request assigned

c. Scenario Structure

Figure 6.3.8: Deriving Property (2)

The basic structure of the TSSD follows naturally from the requirement: There are two situations
connected by an eventually connector. The qualifier every time is a certain sign for a trigger block
around the qualified property, in this case the first situation. Finally, we can also interpret the
requirement that the request is assigned to exactly one elevator as a temporal constraint, namely
that it can only be assigned exactly once. Whenever observations are counted (once, twice) or
required to be the first, last, next, or preceding one in a scenario, this is indicative of strict
situations. As the same request can never be reassigned, the second situation becomes globally
strict, resulting in the temporal property in Figure 6.3.8c.

 e r : Request

e : Elevator assigned

1 0
then
[1..1]

else

 r r : Request

Figure 6.3.9: Property (2) encoded as a TSSD

Inserting the structural properties into the temporal constraint yields the final TSSD in Figure
6.3.9. Note that in this case, the cardinality is actually made redundant by the stronger strictness
requirement.

(3) An elevator may not stay between floors for more than 30 seconds. Property (3) is clearly a
temporal property. But what are the contained structural properties? Keywords such as stay that

244 6. Application

describe the persistence of a state indicate a situation with an until connector, or two situations
with the second one expressing the negation of the original property. In this case, the properties
are that the elevator is between floors (i.e. not at a floor) but afterwards not between floors (i.e. at
a floor). We thus have | ∃ elevator e | so that not | ∃ e is at a floor | (Figure 6.3.10a) and | ∃ e is at
a floor | (Figure 6.3.10b). At the temporal level, we need to add the time constraint no more than

then

0
then else

1

 f e : Elevator

f : Floor is at

 e e : Elevator

a. Elevator not at floor

 f e : Elevator

f : Floor is at

b. Elevator at floor

- doors = open

e : Elevator

c. Doors open

Elevator
not at floor

Elevator
at floor

Doors open

(0..30]

d. Scenario Structure

Figure 6.3.10: Deriving Property (3)

30 seconds, which can be directly translated into the constraint [0..30] between the two situations
(Figure 6.3.10d). Textual time constraints typically have the form less than t ([0..t)), no more
than t or at most t ([0..t]), no less than t or at least t ([t..∞)), more than t ((t..∞)), or between a
and b ([a..b]). As the property needs to hold every time an elevator is not at a floor, we again have
to add a trigger block.

(0..30]

 f e : Elevator

f : Floor is at

- doors = open

e : Elevator

then

0
then else

1

 f e : Elevator

f : Floor is at

 e e : Elevator

Figure 6.3.11: Property (3) encoded as a TSSD

We can easily integrate requirement (1) into our encoding of requirement (3) by adding a simple
guard (Figure 6.3.10c) enforcing that the doors are not open, as the interval between the situa-

6.3 Deriving Constraint Specifications 245

tions corresponds exactly to the scope of that requirement (whenever...). However, the structural
encoding is useful because it is easier to verify. Combining the temporal and structural encodings
yields Figure 6.3.11.

(4) If requests have been assigned to an elevator, it may not be idle for more than 22 seconds.
Property (4) is again temporal. The first property (whether an elevator is requested) can be derived
directly: Is there some request that is assigned to the elevator? As this property will appear again
in subsequent properties, we encode it in an SDDP (Figure 6.3.12) that we reference in the
first situation (Figure 6.3.13a). The question what idleness means requires more creativity. A

requested: to, agent

 b, r

to : Floor agent : Elevator

agent : Elevatorr : Request

b : Buildingcontains

for has

then

assigned

to : Floor

Figure 6.3.12: SDDP definition: Was the elevator requested on the floor?

straight-forward interpretation would be that elevator is idle if it is not moving, i.e. staying at a
floor. We can thus use familiar definitions for an elevator that is at a floor (Figure 6.3.13b) and an
elevator that has left that floor (Figure 6.3.13c). The temporal structure (Figure 6.3.13d) is simple:

 e, f

e : Elevatorf : Floor

requested
to agent

a. Elevator requested

 k e : Elevator

k : Floor is at

b. Elevator at floor

e : Elevator

k : Floor is at

0
then else

1
c. Elevator not at

floor

Elevator
requested

(0..22] Elevator
not at floor

Elevator
at floor

d. Scenario Structure

Figure 6.3.13: Deriving Property (4)

There is a request, the elevator arrives at a floor, the elevator has left the floor. There is furthermore a
time constraint (0..22] between the latter situations. Writing [0..22] would have been equivalent
as the elevator cannot possibly be at and not at the floor at the same time.
The only interesting aspect is the trigger block, which includes the first two situations as the
property needs to hold every time there are requests and the elevator is idle. We could merge

246 6. Application

 e, f

e : Elevatorf : Floor

requested
to agent

 k e : Elevator

k : Floor is at

e : Elevator

k : Floor is at

0
then else

1

(0..22]

Figure 6.3.14: Property (4) encoded as a TSSD

the two situations into one, but as the two conditions are conceptually independent, the diagram
seems clearer if we do not. Combined, the properties yield the TSSD in Figure 6.3.14.

(5) An elevator may only move towards some assigned request. If the direction of movement
of an elevator was encoded by a state variable (e.g. for display to the users as commonly done),
property (5) could be encoded as a structural property. Based on the chosen model, we will have
to detect movement as a sequence of states and thus use a temporal property.

move up e, f

then then

move up
e f

n : Floor

next

f : Floor e : Elevator

e : Elevator

f : Floor

e : Elevatorf : Floor

to agent
requested n

a. Upwards

move down e, f

then then

move down
e f

n : Floor
next

f : Floor e : Elevator

e : Elevator

f : Floor

e : Elevatorf : Floor

to agent
requested n

b. Downwards

Figure 6.3.15: SDDP definitions: is there a request in the indicated direction?

We begin by encoding the condition towards some assigned request. For a given elevator, floor,
and direction, there either is a matching request for the current floor (determined using the SDDP
in Figure 6.3.12), or there is a request for some other floor in the indicated direction. As this
is a transitive property, the corresponding SDD Patterns for the two possible directions (Figure
6.3.15a and 6.3.15b) are defined recursively, traversing the floors in the indicated direction until
they find a request or fail.
We detect the direction of the movement by means of a sequence of situations in the trigger.

6.3 Deriving Constraint Specifications 247

 e, f e : Elevator

f : Floor is at

a. Elevator at floor

 h e : Elevator

h : Floor

is atf : Floor

next

b. Elevator at higher
floor

move up
e f

h : Floore : Elevator

c. Purposeful to move up

 l e : Elevator

l : Floor

is atf : Floor

next

d. Elevator at lower
floor

move down
e f

l : Floore : Elevator

e. Purposeful to move
down

Elevator
at floor

Elevator at
lower floor

Elevator at
higher floor

Moving down
is purposeful

Moving up
is purposeful

f. Scenario Structure

Figure 6.3.16: Deriving Property (5)

The elevator initially is at floor (Figure 6.3.16a), but eventually either arrives at the next floor when
moving up (Figure 6.3.16b) or the previous floor when moving down (Figure 6.3.16d). These two
branches make up the trigger of the scenario (Figure 6.3.16f).

 e, f e : Elevator

f : Floor is at

 h e : Elevator

h : Floor

is atf : Floor

next

 l e : Elevator

l : Floor

is atf : Floor

next

move down
e f

l : Floore : Elevator

move up
e f

h : Floore : Elevator

Figure 6.3.17: Property (5) encoded as a TSSD

As the central requirement (valid direction) is actually structural, it immediately needs to be
acceptable for the elevator to move in the given direction once the trigger is completed. The two
situations in Figure 6.3.16c and 6.3.16e reference the corresponding pattern, checking whether

248 6. Application

the movement was justified by a request. Together, this results in the TSSD in Figure 6.3.17.

(6) Concurrent requests must be fulfilled within 300 seconds of each other. Property (6), which
is obviously temporal, can mostly be encoded reusing previous definitions. Concurrent requests
are simply encoded as two simultaneous matches for the requested pattern (Figure 6.3.12), as
shown in Figure 6.3.18a. If we do not want to assume that the dispatcher groups requests for
the same floor, we would need a homomorphism constraint between a and b – on the other hand,
property (6) is trivially true for requests for the same floor anyway. A request is considered fulfilled

 e, a, b

e : Elevatora : Floor

requested

to agent

requested

b : Floor
toagent

a. Concurrent requests a and b

a : Floor is at

- doors = open

e : Elevator

b. Completed request a

b : Floor is at

- doors = open

e : Elevator

c. Completed request b

Concurrent
Requests A, B

Request A
fulfilled

Request B
fulfilled

[0..300]

d. Scenario Structure

Figure 6.3.18: Deriving Property (6)

when the elevator opens it doors at the requested floor. This is recognized by the SDDs in Figures
6.3.18b and 6.3.18c, respectively.

[0..300]

 e, a, b

e : Elevatora : Floor

requested

to agent

requested

b : Floor
toagent

a : Floor is at

- doors = open

e : Elevator

b : Floor is at

- doors = open

e : Elevator

Figure 6.3.19: Property (6) encoded as a TSSD

In the temporal domain, the property implies the requirement that every time there are (concur-
rent) requests, they must eventually be fulfilled. There is no enforced order (e.g. first come, first
served) in which the requests need to be fulfilled. Whenever there are only partially ordered con-
current processes, this induces a branch in the diagram (see Figure 6.3.18d). As the requests need
to be completed every time a pair is found, there is a trigger block around the first situation. As

6.3 Deriving Constraint Specifications 249

both requests need to be completed to fulfill the requirement, the two branches are merged in an
and-join.
The time constraint within limits the time that may elapse between the two observations. The fact
that the situations are on two different branches is immaterial – we can simply add the constraint
[0..300] to a constraint edge between them. Combined, this yields the TSSD in Figure 6.3.19.

(7) When a request for a specific floor has been assigned to an elevator, it may only arrive at this
floor at most twice before opening its doors. Property (7) is a well-known example (cf. [DAC99])
that results in a rather impressive LTL formula:

G ((requested ∧ F doorsOpen) ⇒
((¬atF loor ∧ ¬doorsOpen) U

(doorsOpen ∨ ((atF loor ∧ ¬doorsOpen) U

(doorsOpen ∨ ((¬atF loor ∧ ¬doorsOpen) U

(doorsOpen ∨ ((atF loor ∧ ¬doorsOpen) U

(doorsOpen ∨ (¬atF loorU doorsOpen))))))))))

The exact equivalent of that formula can be expressed using the bounded-existence/between
Specification Pattern (see Appendix D for different available TSSD encodings of this pattern).
However, we believe that a slightly stronger interpretation of the requirement better reflects what
is expected of an elevator, namely that it eventually does open its doors at the floor where it was
requested, which is not implied in the above formula.

 e, f

e : Elevatorf : Floor

requested
to agent

a. The elevator was re-
quested at floor f

 _ e : Elevator

f : Floor is at

b. The elevator is at
floor f

- doors = open

e : Elevator

f : Floor

is at

c. The elevator’s doors are
open at floor f

Concurrent
Requests A, B

Request A
fulfilled

Request B
fulfilled

[0..300]

 e, a, b

e : Elevatora : Floor

requested

to agent

requested

b : Floor
toagent

[0..300]

 e, a, b

e : Elevatora : Floor

requested

to agent

requested

b : Floor
toagent

a : Floor is at

- doors = open

e : Elevator

a : Floor is at

- doors = open

e : Elevator

b : Floor is at

- doors = open

e : Elevator

b : Floor is at

- doors = open

e : Elevator

- doors = open

e : Elevator

f : Floor

is at _ e : Elevator

f : Floor is at

 e, f

e : Elevatorf : Floor

requested
to agent

- doors = open

e : Elevator

f : Floor

is at _ e : Elevator

f : Floor is at

- doors = open

e : Elevator

f : Floor

is at _ e : Elevator

f : Floor is at

 e, f

e : Elevatorf : Floor

requested
to agent

Elevator at
floor f

Elevator at
floor f

Request for
elevator at floor f

Doors open
at floor f

Doors open
at floor f

d. Scenario Structure

Figure 6.3.20: Deriving Property (7)

The structural properties have all been defined before: The elevator is requested for a floor (Figure
6.3.20a), it arrives at that floor (Figure 6.3.20b), and it opens its doors at that floor (Figure 6.3.20c).
As before, when... induces a trigger block around the first situation. For deriving the rest of
the structure (Figure 6.3.20d), we can simply play out the possible scenarios: The elevator can

250 6. Application

- doors = open

e : Elevator

f : Floor

is at a1 e : Elevator

f : Floor a1 : is at

 e, f

e : Elevatorf : Floor

requested
to agent

- doors = open

e : Elevator

f : Floor

is at a2 e : Elevator

f : Floor a2 : is at

Figure 6.3.21: Property (7) encoded as a TSSD

arrive for the first time and then open its doors. Alternatively, it can leave, arrive again, and then
open its doors. As the number of observations is obviously relevant, we follow the guideline we
have introduced when discussing property (2) and make the corresponding situations strict so
that no additional intermediate arrivals are accepted by the TSSD. Property (7) is then encoded
by the TSSD in Figure 6.3.21. When composing the diagram, we have explicitly labeled the is at
links with the variables a1 and a2 to underline the fact that the situations will only match distinct
arrivals.
The case that the elevator is at the floor, which is allowed by the last term of the LTL formula
(¬atF loor U doorsOpen), is omitted in the TSSD because being at the floor is a logical pre-
condition for opening the doors there. The encoding in the contained SDDs clearly indicates
this property as the floor needs to be bound in the first pattern as a precondition for matching the
second pattern. This illustrates the fact that the ability to integrate the modeling of structural
properties into a scenario definition helps to make the dependencies between different properties
explicit, which are lost when simply abstracting them by means of propositions such as atF loor
and doorsOpen.

Discussion. The presented examples illustrate that the notations allow expressing requirements
in a formal format that provides support for many features that are commonly occurring in natural
language specifications. It is therefore not as far removed from the informal requirements as
many other formal techniques and allows a fairly direct translation. The examples, though limited
in size and complexity, also show that the notations produce compact and readable specifications
for non-trivial properties that are significantly harder to express using traditional temporal logic,
even more so if the definitions of the structural properties and the unlimited size of the system
are included in the consideration.
Practical experiences with students suggest that the general idea of the notations can be grasped
quickly. They generally proved easy to use, although certain advanced features such as universal
quantification in TSSDs are not without subtleties. While this is beyond the scope of this work,
a systematic empirical evaluation of the notations’ usability would be feasible by training ran-
domly selected groups of students in the use of SDD/TSSD and OCL/LTL, presenting them with
identical specification problems, and comparing the required effort and the quality (completeness
and correctness) of the produced specifications. In the absence of such a study, we believe that
our qualitative argument for the notations’ usefulness stands.

6.4 Application in Practice 251

6.4 Application in Practice

As stated in the introduction, the present work was created in the context of the Special Research
Initiative 614 Self-optimizing Concepts and Structures in Mechanical Engineering. After pre-
senting our approach in detail, we would like to use the following short section to take a step
back and position our contributions in the context of the overall project. As the RailCab R&D
project, from which our running application example was drawn, serves as a main motivating
example to the Special Research Initiative, we wrap up our application example in doing so.

An interdisciplinary problem. Software-intensive systems embed software into real-world ap-
plications from different domains, which makes their development an interdisciplinary task al-
most by definition. In the case of mechatronic systems, many disciplines including mechanics,
electronics, control engineering, software engineering, and operations research are involved. Tra-
ditionally, the development process for such systems follows a type of waterfall model with each
discipline handing its finished design to the next, which makes iterations difficult and costly. As
the design of the hardware is subject to the more rigid constraints, it typically takes precedence
over the software design, at the expense of potential synergies to be gained from a holistic ap-
proach. But even between control and software engineering, which would appear to be more
closely related, the different specific methodologies and terminologies that are employed create
a gap.

Operator-Controller-Module
M

o
to

r
L

o
o

p
R

e
fl

e
c

ti
v

e
L

o
o

p
C

o
g

n
it

iv
e

L
o

o
p

Plant

Cognitive Operator

Reflective Operator

Controller

P
la

n
n

in
g

S
o

ft
 R

e
a

l-
T

im
e

A
c

ti
o

n
H

a
rd

 R
e

a
l-

T
im

e

Figure 6.4.1: The Operator-Controller-Module architecture

One of the main objectives of the Special Research Initiative 614 is to propose an integrated
design methodology that promotes interdisciplinary cooperation. As discussed before, the Ope-
rator-Controller-Module (OCM) [HOG04, OHG04] is a cornerstone of the concept that is being

252 6. Application

developed, as it provides a common architecture for software and control engineers and thus
contributes to a solution of that particular issue.
The abstract architecture of an OCM is depicted in Figure 6.4.1. The Controller on the lowest
level directly interacts with the hardware, the plant, in the Motor Loop. The Reflective Operator
monitors the Controller and parametrizes or reconfigures it as necessary in reaction to changes in
the environment or its internal priorities in the Reflective Loop. Finally, the Cognitive Operator
performs complex planning and optimization tasks and considers user preferences. The resulting
strategies and priorities are then passed down to the Reflective Operator in the Cognitive Loop.
This distribution of tasks within a clearly structured architecture makes it possible to design an
appropriate solution for each subproblem, while the defined interfaces ensure that these solutions
integrate in order to solve the overall problem. The Motor Loop and the Reflective Loop are in
charge of operative aspects and need to run in hard real-time, whereas the Cognitive Loop deals
with planning aspects and only needs to meet soft real-time requirements.
Our definition of an agent makes it natural to consider each OCM as an agent. While the reverse
does not follow, it is certainly an option to design each agent as an OCM, in particular if it is
involved in real-time interactions.
When applying the CURCUMA framework, the focus is on the Cognitive Operator, as the co-
ordination and planning level benefits most from the advanced concepts that are provided by
cultures. The currently active roles and the professed intentions of users or other agents provide a
context for adapting and evolving strategies that are passed down to the operative level.
Nonetheless, the approach also extends into the Reflective Operator, as there are cultures that
require real-time communication, such as the update subculture of the positioning culture in our
application example. Thanks to our efforts to integrate Coordination Patterns into a unified
metamodel in Section 2.3, we are able to describe both operator levels in a single seamless model.
Conversely, there is no reason why the design of the Reflective Operator should not benefit from
the advanced concepts of our approach. After all, constructs such as professed intentions primarily
serve to aid the understanding of the designer and may correspond to something as simple as the
reception of a signal in the implementation.
Even though the environment model covers certain aspects of the mechanical and control design of
the system, the Controller level and those parts of the Reflective Operator that interface with it
are out of the scope of the approach as their design requires dedicated methods. However, if the
pertinent hybrid techniques of the Special Research Initiative 614 are employed, the conceptual
alignment of the approaches allows their tight integration within the proposed architecture.
The pretension of our environment models is to provide domain knowledge to the software engi-
neers at a level of abstraction that is appropriate for their design task, the creation of the coordi-
nation and control architecture. To some degree, this operates in the opposite direction as well:
Combined with the high level concepts of the CURCUMA framework and our reliance on visual
specification languages, the incorporation of the domain model facilitates the communication
with domain experts in a way that is accessible to them.
In the following, we revisit our example. As the shuttle system is quite complex, it can actually be
decomposed into multiple perspectives that represent problems in their own right. Two possible

6.4 Application in Practice 253

views are the design of the system logistics, which concerns a network of agents, and the design
of a single shuttle, which in itself can be conceived as a multi-agent system.

Networked Mechatronic System: Logistics. Thus far, our examples have focused on the inter-
action between multiple shuttles and the coordination of their movements. At this macroscopic
level, the design is driven by our choice among the various coordination mechanisms that have
been developed by logistics, economics, operations research, game theory, or agent research.
After identifying the essential elements such as shuttles, terminals, the track network, and passen-
ger or cargo transportation tasks, we can collect an initial set of requirements and organize them
using tentative cultures. In this, we may choose to build on existing analyses (e.g. cf. [Fah04]).
Major objectives would be safety, i.e. avoiding excessive acceleration, derailments, collisions,
and other accidents, effectiveness, i.e. the ability to achieve high throughput, low latency, and
punctuality, and economy, i.e. minimizing energy consumption and maintenance cost. Subse-
quent design decisions or political or commercial considerations may add additional require-
ments, for example to ensure fairness if the shuttles are to be operated by multiple competing
carriers.
We then apply suitable coordination mechanisms. As discussed in Section 4.1.1, we preferen-
tially use decentralized designs, such as the described cooperative reasoning [DGK+04, Ren04]
and routing [Bie04] strategies, and market-based mechanisms. We can design the control soft-
ware for the system quite freely, within the limits of the available bandwidth and computing
power. The mechanics of the system only matter to the degree that the physical capabilities of
the shuttles constrain possible solutions. Nonetheless, the ability to model the environment is
crucial, as the physical design of the system and the logistic concept should influence each other.
For example, the ability to overtake other shuttles in and between terminals is decisive for the
system’s capacity and the optimal routing algorithm. A terminal design with many parallel plat-
forms (cf. [Fah04, Figure 64, p. 246]) decouples the stopover times of individual shuttles and
provides greater planning flexibility, but is more costly than more basic designs. As this makes
mixed infrastructures probable, the concept should provide support for both.
The design pattern that we employ most prominently is that of an agent economy, where services
and resources are traded using (combinatorial) auctions or fixed pricing schemes. Transactions
are mainly based on three types of professed intentions, as communicated by messages or actions:
assertions about states and capabilities, declarations of intent, and commitments representing a mu-
tually binding contract.
In the schematic in Figure 6.4.2, the key agents of the system design and their connections
are listed. Task agents, brokers, and resource agents only need interactions in soft real-time and
can do without the lower levels of the OCM. Strategic coordination between shuttles also takes
place at the cognitive level. On the other hand, the interactions concerning the coordination of
movements, especially in a convoy, need to happen in hard real-time, as does the communication
with the base stations. They are consequently the responsibility of the Reflective Operator.
In the design, we may specify that a certain signal is a directive from the leading shuttle to initiate
emergency braking procedures. The Reflective Operator will reflexively respond to this signal,
switching to the corresponding state and triggering the required actions, without reasoning or

254 6. Application

Shuttle OCM

CO

RO

C

Broker OCM

CO

RO

C

Task Agent OCM

CO

RO

C

Shuttle OCM

CO

RO

C

Shuttle OCM

CO

RO

C

Resource Agent OCM

CO

RO

C

Base Station OCM

CO

RO

C

Hard Real-Time

Soft Real-Time

Figure 6.4.2: Schematic of the OCM network coordinating the overall system

caring about this. On the other hand, the periodical position updates that the Reflective Operator
sends out correspond to assertions, which the Cognitive Operator will interpret as such and store
for future reference, e.g. when computing whether a strategy adaptation will lead to a violation
of previously asserted statements.
As the design contains many safety-related aspects, a formal verification of certain parts such as
the Reflective Operators is in order. On the other hand, the network of Cognitive Operators is
more concerned with the efficiency of the system and primarily requires validation by means of
simulation and statistical analysis, although the basic interaction protocols should of course also
be verified.

Autonomous Mechatronic System: Shuttle. Thus far, the shuttles have always played the part
of agents in our examples. However, an agent need not be a monolithic structure – in fact, it
may even be composed of other agents itself. The design of the shuttle and its control systems
is obviously much more directly driven by mechanical, electrical, and electronic concerns than
the design of the system coordination, mandating the adoption of a slightly different approach to
engineering the software. Nonetheless, there are striking conceptual similarities in spite of the
differences.
Figure 6.4.3 shows the simplified OCM hierarchy of a shuttle. There is the energy management
subsystem that is in control of the energy supply stored in the shuttle’s batteries and capacitors,
and a long list of consumers: Processors and transmitters as needed by the shuttle OCM that
handles external interactions or the motion control module coordinating its children, the suspension
tilt module that ensures a smooth ride, the critical track control module that keeps the shuttle’s

6.4 Application in Practice 255

Shuttle OCM

CO

RO

C

Energy Management OCM

CO

RO

C

Motion Control OCM

CO

RO

C

Suspension Tilt OCM

CO

RO

C

Linear Drive OCM

CO

RO

C

Track Control OCM

CO

RO

C

OCM Hierarchy

Soft Real-Time

Figure 6.4.3: The OCM hierarchy of a shuttle

individually suspended wheels from derailing and steers the shuttle across junctions, and the
linear drive module that is in charge of the propulsion system. The latter is exceptional because
the linear drive is also the shuttle’s sole energy source, drawing energy from the track’s stator by
means of induction when performing work, i.e. during acceleration and deceleration phases.
Energy management in the shuttle is a complex problem. There are two main circuits, a 680
volt loop for the main consumers and a 24 volt loop. In the prototype, the former powers the six
large hydraulics cylinders of the suspension tilt module, four smaller cylinders for track control
(2.5 kW peak consumption), and the linear drive (2.0 kW minimum, 2.2 kW peak consumption).
The latter supplies 1.8 kW peak power, mainly to the valve control for the cylinders (1 kW peak
consumption), but also to the main processing unit (400 W), the pneumatics compressor (140
W), and all other devices such as lights or, in the future, air conditioning. These consumers have
very different requirements: The processor and compressor need to run at all times; the linear
drive requires a steady supply within a narrow range when running; the hydraulics require high
but short energy bursts. On the other side, the linear drive generates up to 4.0 kW, depending
on speed, exerted force, and a complex equation involving rotor current, rotor frequency, and
stator current. While the optimal combination of these can be computed, the only way to transfer
energy into a shuttle moving steadily, e.g. down a slight slope, would be to waste energy through
gratuitous acceleration cycles. Storing energy is therefore indispensable. The batteries store large
amounts of energy, but prefer long discharge cycles, whereas the capacitors can only generate
short but strong bursts, which requires sophisticated load balancing. We therefore face a resource

256 6. Application

allocation problem with many constraints, affecting the efficiency, safety, longevity, and comfort
of the shuttle. It is clear that these goals are contradictory, and that whatever is locally optimal
may be unacceptable for the overall shuttle.
Did we not face a similar resource allocation problem at the system level as well? Might we
even apply the same culture? The problem is probably too specific for that, but we can apply the
same design pattern and even reuse some of the pertinent subcultures. There is no replacement for
the specialized algorithms needed in the local operations of energy management and linear drive,
but the coordination between the components could work market-based, basically as a miniature
version of the European Energy Exchange. The linear drive would offer energy cheaply while
accelerating and raise the price while coasting. Energy management would be willing to pay
high prices only if energy levels were critically low. On the consumer side, optional components
like the active suspension might be powered down if energy prices are high. As the passive
suspension is sufficient to protect the payload from shocks, this would only reduce the perceived
comfort. The same goes for air conditioning, with the crucial difference that it is still effective
when run intermittently, whereas an active suspension only has an effect when working in real-
time. This approach has the additional advantage that the preferences of passengers that are
willing to pay for a higher level of comfort can be considered directly by increasing the budget
of the respective components. However, the system needs to include provisions for ensuring that
the power supply for critical base functions is guaranteed at all times.
This problem is a showcase for the OCM architecture: The trading needs to be performed by
the Reflective Operator, as balancing peak demands and reacting to fluctuations is only possible
in real-time. On the other hand, the unique characteristics of the available energy sources make
long term planning necessary. For example, the Cognitive Operator of the energy management
module might query the shuttle for the upcoming track profile and direct the lower levels to invest
in sufficient reserves when a long downward slope is approaching.
Such a design again calls for a mix of formal verification, guaranteeing that the system works
reliably and predictably, and simulation, ascertaining that it is efficient.

6.5 Conclusion 257

6.5 Conclusion

In this chapter, we have discussed issues concerning the practical application of our approach. We
have presented the implemented modeling and prototyping tools, comprising implementations of
the new constraint notations, a constraint infrastructure, code generation facilities, and a runtime
environment. We have also shown how our enhancements to the Fujaba4Eclipse infrastructure and
user interface have improved usability.
We have then looked at the issue of whether the proposed notations are usable from a content
perspective, i.e. whether they are comprehensible to the intended audience. We have shown
that TSSDs provide clear benefits when writing and especially reading a catalog of patterns that
is considered representative of the properties that occur most commonly in practice. We have
demonstrated how both notations support the direct translation of informal requirements into a
formal specification.
Finally, we have wrapped up our application example. In doing so, we have explained how our
approach integrates into the overall vision of the Special Research Initiative 614, and have pro-
vided additional examples showing that it is applicable to a wide range of problems at different
levels of granularity.

258 6. Application

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this work, we have presented a comprehensive approach for the model-driven design of soft-
ware intensive systems that integrates component-oriented software engineering with Story-
Driven Modeling and concepts from agent-oriented software engineering. The CURCUMA
framework, with communities, cultures, and legal stance as its key concepts, is the central innovation
that has allowed us to build a bridge between two fields with quite different perspectives: On one
side, software engineering for software intensive systems, which requires reliability, predictabil-
ity, and verifiability; on the other, multi-agent system design, which takes inspiration from social
or biological systems in order to create dynamic, flexible solutions, albeit often with an element
of the chaotic. The resulting method combines desirable properties from both worlds: It pro-
vides abstractions for managing the complexity of design problems which are widely applicable
and, in part even intuitively, accessible, but it is also formal and rigorous so that it supports the
verification and validation of the design. It is capable of describing physical and social behavior
and different types of behavioral and compositional adaptation by means of a system of con-
tracts that make them predictable while leaving room for optimizations, autonomy, and artificial
intelligence.
While the CURCUMA framework has provided the leverage for the conceptual integration, the
formal integration at the metamodel level is achieved by using graph grammars as a common
foundation. We propose a complete formalization of both Story Patterns and discrete real-time
Coordination Patterns, which we then use to describe how the two perspectives interact both at
the operational level (when Story Patterns are used to specify the side effects of a transition)
and the meta level (when Story Patterns are used to instantiate Coordination Patterns or change
control structures). Moreover, graph grammars are the foundation of the other key innovation of
this thesis, the family of graphical constraint languages that we have developed. As a solution
for modeling structural properties, Story Decision Diagrams (SDD) provide a first-order logic
for graphs by embedding graph patterns into decision diagrams. Some of their enhancements
are made available using a less revolutionary approach in the form of enhanced Story Patterns.

260 7. Conclusion and Future Work

For modeling temporal properties, Timed Story Scenario Diagrams (TSSD) combine graph pat-
terns with temporal logic into a highly expressive scenario language. Beside using the notations
extensively throughout this thesis, we have explicitly studied their usability and expressiveness
in comparison to related formalisms. Our tool implementation based on Fujaba4Eclipse offers
advanced editors and code generation for all three notations.
The integration at the conceptual, formal, and tool level enables a wide range of verification and
validation activities. We have adapted various techniques such as graph model checking, in-
variant checking, and different forms of monitoring to our modeling approach, which makes the
formal analysis of a choice of properties from simple structural guarantees to complex scenarios
with timing constraints possible. We have further strived to enable the iterative refinement of
CURCUMA designs through rapid cycles of development, consisting of modeling, code genera-
tion, simulation, and analysis. Taken together, we provide the concepts that are needed to devise
designs that solve complex coordination problems, with the instruments for vetting and evolving
them using both formal analysis and practical experimentation.

7.2 Future Work

While this thesis has the ambition of providing a comprehensive approach to model-driven multi-
agent system design, including specifications for conceptual framework, process, notations, for-
mal methods, and infrastructure, it has no pretension of being complete. Although we have tried
to be as thorough as possible in solving the involved theoretical issues, enough open questions
remain, as answers have a tendency to bring up new questions. Besides, transcending its original
context and inspiring new use cases is the mark of a good idea.
The coherent and comprehensive formalization of the different modeling techniques provides a
starting point for various interesting extensions. In particular, the integration between compo-
nent-based and story-driven techniques seems worth exploring: Taking inspiration from the way
agents interact with their environment, do we increase the expressiveness of protocols by using
graph patterns as conditions and actions? And to what extent can we reconfigure a component
internally at runtime using structural patterns without descending into unpredictable chaos?
While we hope that all of the new notations will be found useful and manage to get adopted
for other applications, it is the scenario notation that is the most innovative and promising for
future research. Theoretical work on the analysis of TSSDs might make their verification and
evaluation more efficient or point to possible limitations.
In the area of verification and validation, the composition of cultures poses a hard, but interesting
problem that is relevant for both the compositional verification of designs and the agent synthesis
problem. Is it perhaps possible to identify a set of design patterns that we can employ to make
the reconciliation of multiple cultures easier for certain recurring types of interactions? To which
degree can we automate these processes?
In the same area, there are also many opportunities for extending the available implementations.
The tools that we have created support the core concepts of our approach and provide a solid

7.2 Future Work 261

infrastructure for extensions. The current set of verification tools would benefit from the new
environment, e.g. by using the new constraint modeling infrastructure. At the same time, they
should be extended to include all of the proposed features and optimizations.
Realizing fully integrated support for the envisioned iterative development model will still re-
quire a significant implementation effort, even though a proof of concept exists. For example,
the Java framework lacks the service library and specific tool integration that would be required
for supporting a realistic project involving mechatronic agents. The existing C++ simulation
framework could act as a blueprint, but could also be put to use in its own right.
The CURCUMA framework itself is born out of a set of guiding principles that have been refined
over the years. While the presented version can therefore be considered quite mature, it is likely
to keep evolving in the future. However, the vital challenge is not theoretical, but practical in
nature. As the approach is designed to deal with large, complex, dynamic, and heterogeneous
systems, it cannot be conclusively evaluated using small, isolated examples, but needs to be
applied to a real project with a suitable profile by a team of developers in order to prove that it
actually delivers the benefits it promises. In these pages, we hope to have made a convincing
argument that it would.

262 7. Conclusion and Future Work

List of Figures

1.3.1 Shuttles as envisioned by the RailCab research project 6

1.3.2 The development process . 8

2.1.1 Base stations with overlapping controlled areas 17

2.2.1 Central entities and control structures of the application example 19

2.2.2 A shuttle moving to another track . 20

2.2.3 Forbidden element - default movement is only allowed into vacant tracks . . 21

2.2.4 Attempts to encode that s1 and s2 do not already share a pattern. 21

2.2.5 Story pattern describing an invariant . 22

2.2.6 A shuttle enters a track and registers with all attached base stations. 23

2.2.7 Shuttle: Encoding the [1..2] cardinality for on 33

2.2.8 Convoy Pattern: Encoding the [2..∗] cardinality for uses 33

2.3.1 A basic component . 36

2.3.2 A system configuration with two interacting components 36

2.3.3 A Real-Time Statechart . 38

2.3.4 Representation of a Coordination Pattern 39

2.3.5 Coordination Pattern metamodel . 43

2.3.6 Partial class model for the shuttle component 45

2.3.7 Processing an update from the base station 45

3.2.1 Complex negation: no common convoy pattern 55

3.2.2 Direct negation of a link . 56

3.2.3 Implication: consecutive tracks share a base station 57

3.2.4 Disjunction: At least one of the patterns exits 57

3.2.5 A shuttle that is involved in some convoy pattern 57

3.2.6 Conjunction: grouping for alternative subgraphs 58

3.2.7 Reference: a shuttle which is correctly registered 59

264 LIST OF FIGURES

3.2.8 Adding an element: Instantiation of a convoy pattern 59

3.2.9 Removing an element: Leaving a track . 59

3.2.10 Basic SDD syntax: when is a convoy pattern required? 61

3.2.11 Negative invariant: collision between two shuttles 61

3.2.12 Connected tracks share a controller . 63

3.2.13 A convoy pattern depends on at least two registration patterns 64

3.2.14 Pattern definition and pattern reference . 65

3.2.15 Recursive pattern definition . 66

3.2.16 Creating a registration pattern . 68

3.2.17 Ensured transformation: only create the pattern if it does not exist. 68

3.2.18 Guard expressions involving one or multiple objects 69

3.2.19 Collaboration statements . 69

3.2.20 Explicitly permitted homomorphism . 70

3.2.21 Example 1: Successful evaluation of a simple property 77

3.2.22 Example 1’: For the incorrect graph G′, the last step differs 78

3.2.23 Example 2: Successful evaluation of a more complex property 79

3.2.24 Example 3: Nested universally quantified nodes 80

3.2.25 Example 3: Intermediate and final witnesses 80

3.2.26 Example 3: Result sets. Evaluation succeeds 81

3.3.1 TSSD: A Shuttle registers with a Registry . 89

3.3.2 The relationship between a situation and its observations 90

3.3.3 Eventually connector: A ∧ FB . 91

3.3.4 Until connector: A ∧ AUB . 91

3.3.5 Immediately connector: A ∧B . 91

3.3.6 Some task is eventually completed . 92

3.3.7 The system is globally safe . 93

3.3.8 TSSD containing disjunction . 93

3.3.9 TSSD containing conjunction . 93

3.3.10 TSSD with an optional branch . 94

3.3.11 TSSD containing a reference to past events 94

3.3.12 A forbidden scenario . 94

3.3.13 Forbidden during execution . 95

3.3.14 Forbidden during and after execution . 95

3.3.15 Forbidden scenario as an alternative . 95

LIST OF FIGURES 265

3.3.16 Parallel composition of scenarios . 96

3.3.17 A forbidden guard . 97

3.3.18 A forbidden guard spanning multiple situations 97

3.3.19 A required guard . 97

3.3.20 Strictly next situation . 97

3.3.21 Strictly previous situation . 98

3.3.22 Strict situation . 98

3.3.23 Globally strict situation . 98

3.3.24 Basic time constraint . 99

3.3.25 Multiple time constraint edges . 99

3.3.26 Constraint across branches . 100

3.3.27 Constraint on the first/last observation in a set 100

3.3.28 Allowing homomorphism across multiple instances of a situation 101

3.3.29 A complex trigger block . 102

3.3.30 Multiple trigger blocks . 102

3.3.31 Antecedent triggered scenario . 102

3.3.32 Intervening triggered scenario . 103

3.3.33 Globally triggered scenario . 103

3.3.34 Sequence labels on a simple scenario . 104

3.3.35 Subscenario . 105

3.3.36 Explicit ∨-join . 106

3.3.37 A globally required property inside a scenario situation is limited to the
surrounding interval . 106

3.3.38 A loop that needs to match at least once . 106

3.3.39 A loop that is matched zero or more times 106

3.3.40 A loop that is matched a bounded number of times (1 to 3) 107

3.3.41 The user uses services, no more than 5 times altogether 107

3.3.42 Past triggered scenario (end of trigger block) 108

3.3.43 Past triggered scenario (inside trigger block) 109

3.3.44 Intervening triggered scenario . 109

3.3.45 Intervening and past triggered scenario . 109

3.3.46 Encoding a forbidden scenario . 111

3.3.47 Encoding of a forbidden property . 111

3.3.48 Double negation of a universal TSSD . 119

266 LIST OF FIGURES

3.3.49 Example 1: The TSSD D . 120

3.3.50 Example 1: The path π . 120

3.3.51 Example 1: The trace trees generated by D over π 121

4.1.1 Broker agent matching up requests and shuttles 132

4.1.2 Shuttles marking their projected routes with estimated arrival times. 134

4.2.1 Overview of the approach . 136

4.2.2 Key elements of the environment specification 139

4.2.3 Key elements of the social specification . 142

4.2.4 Relating cultures to coordination patterns . 142

4.3.1 Entities of the application example . 144

4.3.2 Sensor-specific type system . 145

4.3.3 Sensor for measuring the distance to a preceding shuttle 146

4.3.4 Specifying the effects of the linear motor 146

4.3.5 Modeling a part of the network as an open system 147

4.3.6 Location services provide track segments and tokens 148

4.3.7 Type system of the positioning culture . 152

4.3.8 Type system of the distance coordination culture 152

4.3.9 Instantiating an positioning culture . 153

4.3.10 Instantiating a distance coordination culture 154

4.3.11 Joining an update culture . 154

4.3.12 Making a commitment . 156

4.3.13 Fulfilling a commitment . 156

4.3.14 Only authorized movement is allowed . 157

4.3.15 Schedules need to be compatible . 158

4.3.16 Markers as commitments: TSSD combining two conventional norms and a
behavioral norm. 159

4.3.17 Invariant: all vehicles are properly registered. 159

4.3.18 Culture and subculture . 160

4.3.19 Transforming a behavioral norm . 162

4.3.20 The integrated specification . 168

5.2.1 Overview of the employed verification techniques 180

5.2.2 Expanding a pattern containing abstract types to simulate inheritance 183

5.2.3 Graph rule encoding the implication . 184

LIST OF FIGURES 267

5.2.4 Markers while processing . 185

5.2.5 Example generating a counterexample . 190

5.2.6 Converting positive and negative invariants 192

5.2.7 Pattern: passengers and dangerous goods in the same area 201

5.2.8 Scenario: A shuttle evaluates and replies to a query 204

5.2.9 The evaluation at time 199 . 205

5.2.10 The evaluation at time 204 . 205

5.2.11 The evaluation at time 211 . 205

5.2.12 The evaluation at time 287 . 206

5.2.13 The evaluation at time 288 . 206

5.3.1 Rapid Prototyping Framework . 214

5.3.2 Visualization Engine . 217

5.3.3 Comparing and combining different strategies 223

6.2.1 Screenshot showcasing several of the enhancements 231

6.2.2 Constraints in Fujaba4Eclipse . 232

6.2.3 A Timed Story Scenario Diagram in Fujaba4Eclipse 234

6.3.1 The scopes encoded as TSSDs (for a property ϕ) 238

6.3.2 The properties ϕ encoded as TSSDs) . 238

6.3.3 Always P after Q . 239

6.3.4 Always S precedes P before R . 239

6.3.5 Response (1,2), simplified versions . 240

6.3.6 Elevator class diagram . 241

6.3.7 Property (1) encoded as an SDD . 242

6.3.8 Deriving Property (2) . 243

6.3.9 Property (2) encoded as a TSSD . 243

6.3.10 Deriving Property (3) . 244

6.3.11 Property (3) encoded as a TSSD . 244

6.3.12 SDDP definition: Was the elevator requested on the floor? 245

6.3.13 Deriving Property (4) . 245

6.3.14 Property (4) encoded as a TSSD . 246

6.3.15 SDDP definitions: is there a request in the indicated direction? 246

6.3.16 Deriving Property (5) . 247

6.3.17 Property (5) encoded as a TSSD . 247

6.3.18 Deriving Property (6) . 248

268 LIST OF FIGURES

6.3.19 Property (6) encoded as a TSSD . 248
6.3.20 Deriving Property (7) . 249
6.3.21 Property (7) encoded as a TSSD . 250
6.4.1 The Operator-Controller-Module architecture 251
6.4.2 Schematic of the OCM network coordinating the overall system 254
6.4.3 The OCM hierarchy of a shuttle . 255

B.1.1 Invocation graphs for recursive SDDPs . 314
B.1.2 Example for indirect recursion . 315
B.1.3 Invocation graphs for recursive SDDPs . 315

C.1.1 Deriving simpler patterns: Q2′ replaces P and Q1′ 322
C.1.2 Deriving new related patterns . 323
C.1.3 The evolution for the invalidating pattern B 324
C.1.4 The evolution for the invalidating pattern A 324
C.1.5 Evolving a pattern with cyclic dependencies 325
C.1.6 There is no valid graph for the given SGP 326

Bibliography

[AAH+85] Mack W. Alford, Jean-Pierre Ansart, Günter Hommel, Leslie Lamport, Barbara
Liskov, Geoff P. Mullery, and Fred B. Schneider. Distributed systems: Methods
and tools for specification. In Advanced Course: Distributed Systems, volume 190
of Lecture Notes in Computer Science (LNCS). Springer Verlag, Berlin, Heidelberg,
Germany, 1985.

[ABB+06] Maik Anderka, Basil Becker, Thomas Bremes, Thomas Janson, Carsten Kröger,
Nedim Lipka, Holger Mense, Stefan Neumann, Frank Nillies, Eike Rethmeier,
Michael Schwier, Andreas Seibel, Sergej Tissen, Michael Spijkerman, Jens Wen-
ner, Timo Wiesemann, Tao Xie, and Andrea Zschirnt. Abschlussbericht der Pro-
jektgruppe Intrapid: Iterativer Entwurf verteilter Multiagentensysteme, July 2006.
(In German).

[ABKO04] Alejandra Alfonso, Victor Braberman, Nicolas Kicillof, and Alfredo Olivero. Vi-
sual Timed Event Scenarios. In ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering, pages 168–177, Washington, DC, USA,
2004. IEEE Computer Society.

[Ace04] Acellera Organization, Napa, CA, USA. Property Specification Language: Refer-
ence Manual V 1.1, June 2004. Document formal/06-05-01.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[AGG] Technical University of Berlin. AGG, the Attributed Graph Grammar system. On-
line at http://www.tfs.cs.tu-berlin.de/agg (last visited March 2008).

[AGKF06] Björn Axenath, Holger Giese, Florian Klein, and Ursula Frank. Systematic
requirements-driven evaluation and synthesis of alternative principle solutions for
advanced mechatronic systems. In Proceedings of the 14th IEEE International
Requirements Engineering Conference (RE’06), Minneapolis/St. Paul, Minnesota,
USA, September 11-15, 2006, pages 156–165. IEEE Computer Society, September
2006.

[AH93] Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expres-
siveness. Information and Computation, 104(1):35–77, 1993.

270 BIBLIOGRAPHY

[AH94] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. Journal of the
ACM, 41(1):181–204, 1994.

[ASSB00] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Model-
checking continuous-time markov chains. ACMTCL: ACM Transactions on Com-
putational Logic, 1:162–170, 2000.

[BBB01] Massimo Benerecetti, Paolo Bouquet, and Matteo Bonifacio. Distributed context-
aware systems. Human-Computer Interaction, 16:213–228, 2001.

[BBG+06] Basil Becker, Dirk Beyer, Holger Giese, Florian Klein, and Daniela Schilling. Sym-
bolic Invariant Verification for Systems with Dynamic Structural Adaptation. In
Proceedings of the 28th International Conference on Software Engineering (ICSE),
Shanghai, China, pages 72–81. ACM Press, 2006.

[BBM95] Saša Buvač, Vanja Buvač, and Ian Mason. Metamathematics of con-
texts. Fundamenta Mathematicae, 23(3), 1995. Available from http://www-
formal.stanford.edu/buvac.

[BC03] Massimo Benerecetti and Alessandro Cimattis. Validation of multiagent systems by
symbolic model checking. In Fausto Giunchiglia, James Odell, and Gerhard Weiß,
editors, Agent-Oriented Software Engineering III: Third International Workshop,
AOSE 2002, Bologna, Italy, July 2002, volume 2585 of Lecture Notes in Computer
Science (LNCS), pages 32–46. Springer Verlag, Berlin, Heidelberg, Germany, July
2003.

[BCG+04] Frances M. T. Brazier, Frank Cornelissen, Rune Gustavsson, Catholijn M. Jonker,
Olle Lindeberg, Bianca Polak, and Jan Treur. Compositional Verification of a
Multi-Agent System for One-to-Many Negotiation. Applied Intelligence, 20(2):95–
117, 2004.

[BCM05] Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness
of TPTL and MTL. Technical Report Research report LSV-2005-05, Laboratoire
Spécification et Vérification, École Normale Supérieure de Cachan, May 2005.

[BDHK06] Henrik C. Bohnenkamp, Pedro R. D’Argenio, Holger Hermanns, and Joost-Pieter
Katoen. MODEST: A compositional modeling formalism for hard and softly timed
systems. IEEE Transactions on Software Engineering (TSE), 32(10):812–830,
2006.

[BDKJT97] Frances M. T. Brazier, Barbara M. Dunin-Keplicz, Nicholas R. Jennings, and
Jan Treur. DESIRE: Modelling Multi-Agent Systems in a Compositional Formal
Framework. International Journal of Cooperative Information Systems, 6(1):67–
94, 1997.

BIBLIOGRAPHY 271

[Bec99] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, Reading, 1999.

[Bec07] Basil Becker. Verifikation induktiver Invarianten in hybriden Graphtransforma-
tionssystemen. Master’s thesis, University of Paderborn, Department of Computer
Science, Paderborn, Germany, July 2007.

[BG02] Paolo Bresciani and Paolo Giorgini. The TROPOS Analysis Process as Graph
Transformation System. In OOPSLA 2002 Workshop on Agent-Oriented Method-
ologies. COTAR (2002). ACM Press, 2002.

[BG03] Sven Burmester and Holger Giese. The Fujaba Real-Time Statechart PlugIn. In
Holger Giese and Albert Zündorf, editors, Proceedings of the 1st International
Fujaba Days 2003, Kassel, Germany, volume tr-ri-04-247 of Technical Reports
of the Department of Computer Science, pages 12–17. University of Paderborn,
October 2003.

[BGG+04] Paolo Bresciani, Paolo Giorgini, Fausto Giunchiglia, John Mylopoulos, and Anna
Perini. TROPOS: An Agent-Oriented Software Development Methodology. Jour-
nal of Autonomous Agents and Multiagent Systems, 8(3):203–236, May 2004.

[BGH05] Sven Burmester, Holger Giese, and Martin Hirsch. Syntax and Semantics of Hybrid
Components. Technical Report tr-ri-05-264, Department of Computer Science,
University of Paderborn, October 2005.

[BGH+07] Sven Burmester, Holger Giese, Stefan Henkler, Martin Hirsch, Matthias Tichy,
Alfonso Gambuzza, Eckehard Müch, and Henner Vöcking. Tool Support for De-
veloping Advanced Mechatronic Systems: Integrating the Fujaba Real-Time Tool
Suite with CAMeL-View. In Proceedings of the 29th International Conference
on Software Engineering (ICSE), Minneapolis, MN, USA, pages 801–804. IEEE
Computer Society Press, May 2007.

[BGK04] Sven Burmester, Holger Giese, and Florian Klein. Design and Simulation of Self-
Optimizing Mechatronic Systems with Fujaba and CAMeL. In Andy Schürr and
Albert Zündorf, editors, Proceedings of the 2nd International Fujaba Days 2004,
Darmstadt, Germany, volume tr-ri-04-253 of Technical Reports of the Department
of Computer Science, pages 19–22. University of Paderborn, September 2004.

[BGM+08] Sven Burmester, Holger Giese, Eckehard Münch, Oliver Oberschelp, Florian Klein,
and Peter Scheideler. Tool Support for the Design of Self-Optimizing Mechatronic
Multi-Agent Systems. International Journal on Software Tools for Technology
Transfer (STTT), 8(4):1–16, February 2008.

[BGN+03] Sven Burmester, Holger Giese, Jörg Niere, Matthias Tichy, Jörg P. Wadsack, Robert
Wagner, Lothar Wendehals, and Albert Zündorf. Tool Integration at the Meta-
Model Level within the FUJABA Tool Suite. In Proceedings of the Workshop

272 BIBLIOGRAPHY

on Tool-Integration in System Development (TIS), Helsinki, Finland, (ESEC / FSE
2003 Workshop 3). ACM Press, September 2003.

[BGS05] Sven Burmester, Holger Giese, and Wilhelm Schäfer. Model-driven architecture
for hard real-time systems: From platform independent models to code. In Pro-
ceedings of the European Conference on Model Driven Architecture - Foundations
and Applications (ECMDA-FA’05), Nürnberg, Germany, volume 3748 of Lecture
Notes in Computer Science (LNCS), pages 25–40. Springer Verlag, Berlin, Heidel-
berg, Germany, November 2005.

[BGST05] Sven Burmester, Holger Giese, Andreas Seibel, and Matthias Tichy. Story-Patterns
for Hard Real-Time Systems. In Holger Giese and Albert Zündorf, editors, Pro-
ceedings of the 3rd International Fujaba Days 2005, Paderborn, Germany, Tech-
nical Reports of the Department of Computer Science, pages 1–8. University of
Paderborn, September 2005.

[BH99] Jonathan Bowen and Mike Hinchey. High-Integrity System Specification and De-
sign. Springer Verlag, Berlin, Heidelberg, Germany, 1999.

[BH04] Yves Bontemps and Patrick Heymans. As fast as sound (lightweight formal sce-
nario synthesis and verification). In Holger Giese and Ingolf Krüger, editors, Pro-
ceedings of the 3rd Int. Workshop on “Scenarios and State Machines: Models,
Algorithms and Tools” (SCESM’04), Edinburgh, pages 27–34. IEEE Computer So-
ciety Press, May 2004.

[BHTV03] Luciano Baresi, Reiko Heckel, Sebastian Thöne, and Daniel Varro. Modeling and
validation of service-oriented architectures: Aapplication vs. style. In Proceedings
of the 9th European software engineering conference held jointly with 10th ACM
SIGSOFT international symposium on Foundations of software engineering, pages
68–77. ACM Press, 2003.

[Bie04] Dietmar Bielemeyer. Entwurf und Evaluation skalierbarer Algorithmen zur Kon-
voibildung für schienengebundene Shuttlesysteme. Bachelor’s thesis, University
of Paderborn, Department of Computer Science, Paderborn, Germany, 2004. (In
German).

[BKO05] Victor Braberman, Nicolas Kicillof, and Alfredo Olivero. A scenario-matching
approach to the description and model checking of real-time properties. IEEE
Transactions on Software Engineering (TSE), 31(12):1028–1041, December 2005.

[BKPPT01] Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer. A
visualization of OCL using collaborations. In Martin Gogolla and Cris Kobryn,
editors, Proceedings of the 4th International Conference on the Unified Model-
ing Language (UML’2001), volume 2185 of Lecture Notes in Computer Science
(LNCS), pages 257–271. Springer Verlag, Berlin, Heidelberg, Germany, 2001.

BIBLIOGRAPHY 273

[BKS02] Julian Bradfield, Juliana Kuester Filipe, and Perdita Stevens. Enriching OCL Us-
ing Observational mu-Calculus. In Ralf-Detlef Kutsche and Herbert Weber, edi-
tors, Fundamental Approaches to Software Engineering (FASE 2002), Grenoble,
France, volume 2306 of Lecture Notes in Computer Science (LNCS), pages 50–76.
Springer Verlag, Berlin, Heidelberg, Germany, April 2002.

[BM03] Bernhard Bauer and Jörg P. Müller. Using UML in the Context of Agent-Oriented
Software Engineering: State of the Art. In Agent-Oriented Software Engineering
IV, volume 2935 of Lecture Notes in Computer Science (LNCS), pages 291–325.
Springer Verlag, Berlin, Heidelberg, Germany, 2003.

[BMN00] Pierfrancesco Bellini, Riccardo Mattolini, and Paolo Nesi. Temporal logics for
real-time system specification. ACM Computing Surveys, 32(1):12–42, 2000.

[BN03] Bart Broekman and Edwin Notenboom. Testing Embedded Software. Addison-
Wesley, 2003.

[BNL05] Dirk Beyer, Andreas Noack, and Claus Lewerentz. Efficient Relational Calcula-
tion for Software Analysis. IEEE Transactions on Software Engineering (TSE),
31(2):137–149, February 2005.

[BO05] Bernhard Bauer and James Odell. UML 2.0 and agents: how to build agent-based
systems with the new UML standard. Engineering Applications of Artificial Intel-
ligence, 18:141–157, March 2005.

[Bon99] Eric Bonabeau. Editor’s introduction: Stigmergy. Artificial Life, 5(2):95–96, 1999.

[Bro91] Rodney A. Brooks. Intelligence Without Reason. In John Myopoulos and Ray
Reiter, editors, Proceedings of the 12th International Joint Conference on Artificial
Intelligence (IJCAI-91), pages 569–595, Sydney, Australia, August 1991. Morgan
Kaufmann publishers Inc.: San Mateo, CA, USA.

[Bro95] Fredrick P. Brooks. The Mythical Man-Month: Essays on Software Engineering,
20th Anniversary Edition. Addison Wesley, Reading, MA, USA, second edition,
1995.

[BRS+00] Klaus Bergner, Andreas Rausch, Marc Sihling, Alexander Vilbig, and Manfred
Broy. A Formal Model for Componentware. In Gary T. Leavens and Murali Sitara-
man, editors, Foundations of Component-Based Systems, chapter 9, pages 189–210.
Cambridge University Press, New York, NY, USA, 2000.

[BSDB00] David Bradley, Derek Seward, David Dawson, and Stuart Burge. Mechatronics.
Stanley Thornes, Cheltenham, UK, 2000.

[Bur06] Sven Burmester. Model-Driven Engineering of Reconfigurable Mechatronic Sys-
tems. Logos Verlag, Berlin, Germany, 2006.

274 BIBLIOGRAPHY

[BY03] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on
Concurrency and Petri Nets, volume 3098 of Lecture Notes in Computer Science,
pages 87–124. Springer Verlag, Berlin, Heidelberg, Germany, 2003.

[Cas00] Cristiano Castelfranchi. Engineering social order. In Engineering Societies in the
Agent World, First International Workshop, ESAW 2000, Berlin, Germany, August
21, 2000, Revised Papers, volume 1972 of Lecture Notes in Computer Science
(LNCS), pages 1–18. Springer Verlag, Berlin, Heidelberg, Germany, 2000.

[CCG+02] Giovanni Caire, Wim Coulier, Francisco J. Garijo, Jorge Gomez, Juan Pavon, Fran-
cisco Leal, Paulo Chainho, Paul E. Kearney, Jamie Stark, Richard Evans, and
Philippe Massonet. Agent Oriented Analysis Using Message/UML. In Proceedings
of the AOSE, 2001, volume 2222 of Lecture Notes in Computer Science (LNCS),
pages 119–135. Springer Verlag, Berlin, Heidelberg, Germany, 2002.

[CCGR99] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.
NuSMV: A new symbolic model verifier. In Proceedings of the 11th International
Computer Aided Verification Conference, volume 1633 of Lecture Notes in Com-
puter Science (LNCS), pages 495–499. Springer Verlag, Berlin, Heidelberg, Ger-
many, 1999.

[CGP00] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, Cambridge, MA, USA, January 2000.

[CHOT99] Siobhan Clarke, William Harrison, Harold Ossher, and Peri Tarr. Subject-Oriented
Design: Towards Improved Alignment of Requirements, Design and Code. In Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
November 1-5, 1999, Denver, Colerado, USA, pages 325–339. ACM SIGPLAN
Notices, 1999.

[CK02] Marı́a Victoria Cengarle and Alexander Knapp. Towards OCL/RT. In Lars-Henrik
Eriksson and Peter A. Lindsay, editors, Formal Methods – Getting IT Right, Inter-
national Symposium of Formal Methods Europe, Copenhagen, Denmark, volume
2391 of Lecture Notes in Computer Science (LNCS), pages 389–408. Springer Ver-
lag, Berlin, Heidelberg, Germany, 2002.

[CS95] John Connell and Linda Shafer. Object-Oriented Rapid Prototyping. Yourdon
Press, Englewood Cliffs, NJ, USA, 1995.

[CT07] Radovan Cervenka and Ivan Trencansky. The Agent Modeling Language - AML.
A Comprehensive Approach to Modeling Multi-Agent Systems. Birkhäuser, Basel,
Switzerland, July 2007.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods: state of the art and
future directions. ACM Computing Surveys, 28(4):626–643, December 1996.

BIBLIOGRAPHY 275

[DAC98] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property Specifi-
cation Patterns for Finite-state Verification. In 2nd Workshop on Formal Methods
in Software Practice. ACM Press, March 1998.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In ICSE ’99: Proceedings of the 21st
international conference on Software engineering, pages 411–420, Los Alamitos,
CA, USA, 1999. IEEE Computer Society Press.

[DFRdS03] Fernando Luı́s Dotti, Luciana Foss, Leila Ribeiro, and Osmar Marchi dos Santos.
Verification of distributed object-based systems. In Elie Najm, Uwe Nestmann, and
Perdita Stevens, editors, Formal Methods for Open Object-Based Distributed Sys-
tems, 6th IFIP WG 6.1 International Conference, FMOODS 2003, Paris, France,
November 19.21, 2003, Proceedings, volume 2884 of Lecture Notes in Computer
Science (LNCS), pages 261–275. Springer Verlag, Berlin, Heidelberg, Germany,
2003.

[DGK+04] Wilhelm Dangelmaier, Holger Giese, Florian Klein, Hendrik Renken, and Pe-
ter Scheideler. Shared Experiences In Intelligent Transportation Systems. In
M. Ribeiro and J. Santos-Victor, editors, Proceedings of the IAV 2004 - The 5th
Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, pages 231–236.
Elsevier Science Publishers B.V, Amsterdam, The Netherlands, July 2004.

[Dij76] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall, Englewood
Cliffs, NJ, USA, 1976.

[DMY02] Alexandre David, Oliver Möller, and Wang Yi. Formal Verification of UML Stat-
echarts with Real-Time Extensions. In Ralf-Detler Kutsche and Herbert Weber,
editors, Proceedings of 5th International Conference on Fundamental Approaches
to Software Engineering (FASE 2002), Grenoble, France, volume 2306 of Lecture
Notes in Computer Science (LNCS), pages 218–232. Springer Verlag, Berlin, Hei-
delberg, Germany, 2002.

[DRZH01] Markus Deppe, Michael Robrecht, Mauro Zanella, and Wolfram Hardt. Rapid
prototyping of real-time control laws for complex mechatronic systems. In Pro-
ceedings of the 12th IEEE International Workshop on Rapid System Prototyping
(RSP 2001), 25-27 June 2001, Monterey, CA, USA, pages 188–193. IEEE Com-
puter Society Press, 2001.

[EDK89] Edmund M. Clarke, David E. Long, and Kenneth L. McMillan. Compositional
Model Checking. In Proceedings of the Fourth Annual Symposium on Logic in
Computer Science, pages 353–361, Washington D.C., June 1989. IEEE Computer
Society Press.

276 BIBLIOGRAPHY

[Edm02] Bruce Edmonds. Learning and exploiting context in agents. In Proceedings of the
first international joint conference on Autonomous agents and multiagent systems
(AAMAS 2002), pages 1231–1238. ACM Press, 2002.

[EEKR99a] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, ed-
itors. Handbook of Graph Grammars and Computing by Graph Transformation:
Applications, Languages and Tools. World Scientific Publishing Corporation, Sin-
gapore, Singapore, October 1999. Volume 2.

[EEKR99b] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, ed-
itors. Handbook of Graph Grammars and Computing by Graph Transformations:
Concurrency, Parallelism, and Distribution. World Scientific Publishing Corpora-
tion, Singapore, Singapore, October 1999. Volume 3.

[EJW95] David W. Embley, Robert B. Jackson, and Scott N. Woodfield. OO systems analy-
sis: is it or isn’t it? IEEE Software, 12(4):19–33, July 1995.

[Fah04] Markus Fahrentholz. Konzeption eines Betriebskonzepts für ein bedarfsgesteuertes
schienengebundenes Shuttlesystem. Dissertation, Universität Paderborn, Heinz
Nixdorf Institut, Wirtschaftsinformatik, insbesondere CIM, 2004. Volume 157 of
HNI-Verlagsschriftenreihe. Bonifatius GmbH, Paderborn, Germany, first edition,
2004.(In German).

[FESS07] Alexander Förster, Gregor Engels, Tim Schattkowsky, and Ragnhild Van Der
Straeten. Verification of Business Process Quality Constraints Based on Visual
Process Patterns. In Proceedings of the 1st IEEE International Symposium on The-
oretical Aspects of Stoftware Engineering (TASE) 2007, Shanghai, China, pages
1–10. IEEE Computer Society Press, June 2007.

[FG98] Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis and design
of organizations in multi-agent systems. In Proceedings of the 3rd International
Conference on Multi Agent Systems (ICMAS98), Paris , France, pages 128–135.
IEEE Computer Society Press, 1998.

[FGK+04] Ursula Frank, Holger Giese, Florian Klein, Oliver Oberschelp, Andreas Schmidt,
Bernd Schulz, Henner Vöcking, and Katrin Witting. Selbstoptimierende Sys-
teme des Maschinenbaus - Definitionen und Konzepte, volume 155 of HNI-
Verlagsschriftenreihe. Bonifatius GmbH, Paderborn, Germany, first edition,
November 2004. (In German).

[FGM03] Jacques Ferber, Olivier Gutknecht, and Fabien Michel. From Agents to Organiza-
tions: An Organizational View of Multi-agent Systems. In Agent-Oriented Soft-
ware Engineering IV, 4th International Workshop, AOSE 2003, Melbourne, Aus-
tralia, July 15, 2003, Revised Papers, volume 2935 of Lecture Notes in Computer
Science (LNCS), pages 214–230. Springer Verlag, Berlin, Heidelberg, Germany,
September 2003.

BIBLIOGRAPHY 277

[FKR95] Maier Fenster, Sarit Kraus, and Jeffrey S. Rosenschein. Coordination without com-
munication: Experimental validation of focal point techniques. In Proceedings of
the 1st Int. Conf. on Multiagent Systems (ICMAS), San Francisco, CA, USA, pages
102–108. MIT Press, Cambridge, MA, USA, 1995.

[FM02] Stephan Flake and Wolfgang Mueller. An OCL Extension for Real-Time Con-
straints. In Object Modeling with the OCL: The Rationale behind the Object Con-
straint Language, volume 2263 of Lecture Notes in Computer Science (LNCS),
pages 150–171. Springer Verlag, Berlin, Heidelberg, Germany, February 2002.

[FNTZ98] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story Diagrams:
A new Graph Rewrite Language based on the Unified Modeling Language. In
Gregor Engels and Grzegorz Rozenberg, editors, Theory and Application of Graph
Transformations 6, volume 1764 of Lecture Notes in Computer Science (LNCS).
Springer Verlag, Berlin, Heidelberg, Germany, 1998.

[Fra06] Ursula Frank. Spezifikationstechnik zur Beschreibung der Prinziplösung selbstop-
timierender Systeme. PhD thesis, Universität Paderborn, Heinz Nixdorf Institut,
Rechnerintegrierte Produktion, 2006. Volume 175 of HNI-Verlagsschriftenreihe.
Bonifatius GmbH, Paderborn, Germany, first edition, 2006.(In German).

[FSES06] Alexander Förster, Tim Schattkowsky, Gregor Engels, and Ragnhild Van Der
Straeten. A Pattern-driven Development Process for Quality Standard-conforming
Business Process Models. In Proceedings of the IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC), Brighton 2006, pages 135–142.
IEEE Computer Society Press, September 2006.

[GB03] Holger Giese and Sven Burmester. Real-Time Statechart Semantics. Technical
Report tr-ri-03-239, Department of Computer Science, University of Paderborn,
Paderborn, Germany, June 2003.

[GBK+03] Holger Giese, Sven Burmester, Florian Klein, Daniela Schilling, and Matthias
Tichy. Multi-Agent System Design for Safety-Critical Self-Optimizing Mecha-
tronic Systems with UML. In OOPSLA 2003 - Second International Workshop
on Agent-Oriented Methodologies, Anaheim, CA, USA, pages 21–32. ACM Press,
October 2003.

[GFG+05] Jürgen Gausemeier, Ursula Frank, Holger Giese, Florian Klein, Andreas Schmidt,
Daniel Steffen, and Matthias Tichy. A design methodology for self-optimizing
systems. In Gesamtzentrum für Verkehr Braunschweig e.V., editor, Contributions
to the 6th Braunschweig conference of Automation, Assistance and Embedded Real
Time Platforms for Transportation - Air-planes, Vehicles, Trains - (AAET2005),
volume II, pages 456–479. GZVB, February 2005.

[GG01] Chiara Ghidini and Fausto Giunchiglia. Local models semantics, or contextual
reasoning = locality + compatibility. Artificial Intelligence, 127(2):221–259, 2001.

278 BIBLIOGRAPHY

[GH06] Holger Giese and Stefan Henkler. A survey of approaches for the visual model-
driven development of next generation software-intensive systems. Journal of Vi-
sual Languages and Computing, 17(6):528–550, December 2006.

[GHH+07] Holger Giese, Stefan Henkler, Martin Hirsch, Florian Klein, and Michael Spijk-
erman. Monitoring of Structural and Temporal Properties. In Holger Giese and
Albert Zündorf, editors, Proceedings of the Fujaba Days 2007, Kassel, Germany,
Technical Reports of the Department of Computer Science. University of Pader-
born, October 2007.

[GHHK06] Holger Giese, Stefan Henkler, Martin Hirsch, and Florian Klein. Nobody’s perfect:
Interactive Synthesis from Parametrized Real-Time Scenarios. In Proceedings of
the 5th ICSE 2006 Workshop on Scenarios and State Machines: Models, Algo-
rithms and Tools (SCESM’06),Shanghai, China, pages 67–74. ACM Press, May
2006.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns,
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,
USA, 1994.

[GHK98] Fabio Gadducci, Reiko Heckel, and Manuel Koch. A fully abstract model for
graph-interpreted temporal logic. In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kre-
owski, and Grzegorz Rozenberg, editors, Theory and Application of Graph Trans-
formations, volume 1764 of Lecture Notes in Computer Science (LNCS), pages
310–322. Springer Verlag, Berlin, Heidelberg, Germany, 1998.

[GHK00] Fabio Gadducci, Reiko Heckel, and Manuel Koch. A fully abstract model for
graph-interpreted temporal logic. In Proceedings of the Theory and Application
of Graph Transformations, volume 1764 of Lecture Notes in Computer Science
(LNCS), pages 310–322. Springer Verlag, Berlin, Heidelberg, Germany, 2000.

[Gie03] Holger Giese. A Formal Calculus for the Compositional Pattern-Based Design of
Correct Real-Time Systems. Technical Report tr-ri-03-240, Department of Com-
puter Science, University of Paderborn, Paderborn, Germany, July 2003.

[GK05] Holger Giese and Florian Klein. Autonomous Shuttle System Case Study. In Stefan
Leue and Tarja Systä, editors, Scenarios: Models, Algorithms and Tools, volume
3466 of Lecture Notes in Computer Science (LNCS), pages 90–94. Springer Verlag,
Berlin, Heidelberg, Germany, April 2005.

[GK06a] Holger Giese and Florian Klein. Beyond Story Patterns: Story Decision Diagrams.
In Holger Giese and Bernhard Westfechtel, editors, Proceedings of the 4th Inter-
national Fujaba Days 2006, Bayreuth, Germany, volume tr-ri-06-275 of Technical
Reports of the Department of Computer Science, pages 2–9. University of Pader-
born, September 2006.

BIBLIOGRAPHY 279

[GK06b] Holger Giese and Florian Klein. Visual Specification of Structural and Tempo-
ral Properties. Technical Report tr-ri-06-276, Department of Computer Science,
University of Paderborn, April 2006.

[GK06c] Holger Giese and Florian Klein. Visual Specification of Structural and Temporal
Properties. In Holger Giese and Bernhard Westfechtel, editors, Proceedings of the
4th International Fujaba Days 2006, Bayreuth, Germany, volume tr-ri-06-275 of
Technical Reports of the Department of Computer Science, pages 23–30. University
of Paderborn, September 2006.

[GK07] Holger Giese and Florian Klein. Systematic Verification of Multi-Agent Systems
based on Rigorous Executable Specifications. International Journal on Agent-
Oriented Software Engineering (IJAOSE), 1(1):28–62, April 2007.

[GKB05] Holger Giese, Florian Klein, and Sven Burmester. Pattern Synthesis from Multiple
Scenarios for Parameterized Real-Timed UML models. In Stefan Leue and Tarja
Systä, editors, Scenarios: Models, Algorithms and Tools, volume 3466 of Lecture
Notes in Computer Science (LNCS), pages 193–211. Springer Verlag, Berlin, Hei-
delberg, Germany, April 2005.

[GKKW05] Holger Giese, Ekkart Kindler, Florian Klein, and Robert Wagner. Reconciling
Scenario-Centered Controller Design with State-Based System Models. In Yves
Bontemps and Alexander Egyed, editors, Proceedings of the 4th Workshop on Sce-
narios and State Machines: Models, Algorithms, and Tools (in Conjunction with
the International Conference on Software Engineering), St. Louis, MO, USA, pages
1–5. ACM Press, May 2005.

[Gri98] Frank Griffel. Componentware: Konzepte und Techniken eines Softwareparadig-
mas. dpunkt-Verlag, Heidelberg, Germany, 1998.

[Gru93] Thomas Gruber. A Translation Approach to Portable Ontology Specifications.
Knowledge Aquisition, 5:199–220, 1993.

[GS04] Holger Giese and Daniela Schilling. Towards the Automatic Verification of In-
ductive Invariants for Infinite State UML Models. Technical Report tr-ri-04-252,
Department of Computer Science, University of Paderborn, Paderborn, Germany,
2004.

[GSCL02] Alessandro Garcia, Viviane Silva, Christina Chavez, and Carlos Lucena. Engi-
neering multi-agent systems with aspects and patterns. Journal of the Brazilian
Computer Society, 8(1):57–72, July 2002.

[GSEW05] Jürgen Gausemeier, Wilhelm Schäfer, Raimund Eckes, and Robert Wagner. Ramp-
Up and Maintenance with Augmented Reality in Development of Flexible Pro-
duction Control Systems. In Proceedings of the 1st International Conference on

280 BIBLIOGRAPHY

Changeable, Agile, Reconfigurable and Virtual Production (CARV05), Septem-
ber 22-23, Technical University of Munich, Germany, pages 201–206, München,
September 2005. Herbert Utz Verlag GmbH.

[GSR05] Leif Geiger, Christian Schneider, and Carsten Reckord. Template- and model based
code generation for MDA-tools. In Holger Giese and Albert Zündorf, editors, Pro-
ceedings of the 3rd International Fujaba Days 2005, Paderborn, Germany, Tech-
nical Reports of the Department of Computer Science, pages 9–14. University of
Paderborn, September 2005.

[GT05] Holger Giese and Sergej Tissen. The SceBaSy PlugIn for the Scenario-Based Syn-
thesis of Real-Time Coordination Patterns for Mechatronic UML. In Holger Giese
and Albert Zündorf, editors, Proceedings of the 3rd International Fujaba Days
2005, Paderborn, Germany, Technical Reports of the Department of Computer
Science, pages 67–70. University of Paderborn, September 2005.

[GTB+03] Holger Giese, Matthias Tichy, Sven Burmester, Wilhelm Schäfer, and Stefan Flake.
Towards the Compositional Verification of Real-Time UML Designs. In Proceed-
ings of the European Software Engineering Conference (ESEC), Helsinki, Finland,
pages 38–47. ACM Press, September 2003.

[Gup04] Indranil Gupta. Building scalable solutions to distributed computing problems us-
ing probabilistic components. PhD thesis, Cornell University, 2004. Adviser-Ken
Birman.

[GV06] Holger Giese and Alexander Vilbig. Separation of Non-Orthogonal Concerns
in Software Architecture and Design. Software and System Modeling (SoSyM),
5(2):136–169, June 2006.

[HE00] Reiko Heckel and Gregor Engels. Graph Transformation and Visual Modeling
Techniques. Bulletin of the European Association for Theoretical Computer Sci-
ence (EATACS), (71), June 2000.

[Hen05] Stefan Henkler. Laufzeitunterstützung für Test, überwachung und Diagnose bei der
modellbasierten Entwicklung mit Mechatronic UML. Master’s thesis, University
of Paderborn, June 2005.

[Hir04] Martin Hirsch. Effizientes Model Checking von UML-RT Modellen und Realtime
Statecharts mit UPPAAL. Master’s thesis, University of Paderborn, June 2004.

[HK02] David Harel and Hillel Kugler. Synthesizing state-based object systems from LSC
specifications. International Journal of Foundations of Computer Science, 13(1):5–
51, 2002.

BIBLIOGRAPHY 281

[HKT02] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence of Typed
Attributed Graph Transformation Systems. In Graph Transformation: First Inter-
national Conference, ICGT 2002, Barcelona, Spain, October 7-12, 2002, volume
2505 of Lecture Notes in Computer Science (LNCS), pages 161–176. Springer Ver-
lag, Berlin, Heidelberg, Germany, 2002.

[HM02] David Harel and Rami Marelly. Playing with Time: On the Specification and
Execution of Time-Enriched LSCs. In Proceedings of the 10th IEEE/ACM In-
ternational Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS 2002), Fort Worth, Texas, USA, 2002.
IEEE Computer Society Press. Invited paper.

[HM03] David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based Programming
Using LSCs and the Play-Engine. Springer Verlag, Berlin, Heidelberg, Germany,
2003.

[HO93] William Harrison and Harold Ossher. Subject-oriented programming (a critique of
pure objects). In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’93), Washington, D.C., USA, vol-
ume 28 of ACM SIGPLAN Notices, pages 411–428, 1993.

[HOG04] Thorsten Hestermeyer, Oliver Oberschelp, and Holger Giese. Structured Infor-
mation Processing For Self-optimizing Mechatronic Systems. In Proceedings of
1st International Conference on Informatics in Control, Automation and Robotics
(ICINCO 2004), Setubal, Portugal. IEEE Computer Society Press, August 2004.

[Hol97] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering (TSE), 23(5):279–295, May 1997.

[Hol03] Gerard J. Holzmann. The SPIN Model Checker, Primer and Reference Manual.
Addison-Wesley, Reading, Massachusetts, 2003.

[Hon98] Uwe Honekamp. IPANEMA - Verteilte Echtzeit-Informationsverarbeitung in
mechatronischen Systemen. PhD thesis, University of Paderborn, 1998.

[HP98] David Harel and Michal Politi. Modeling Reactive Systems with Statecharts: The
Statemate Approach. McGraw-Hill Companies, Inc., New York, first edition, 1998.

[HS02] Brent Hailpern and Padmanabhan Santhanam. Software debugging, testing, and
verification. IBM Systems Journal, 41(1), 2002.

[Int95] International Organization for Standardization. ISO 12207 Information Technology
Software Life Cycle Process, 1995.

[Jac01] Michael Jackson. Problem Frames : Analysing and structuring software develop-
ment problems. ACM Press, 2001.

282 BIBLIOGRAPHY

[Jac02] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions
on Software Engineering and Methodology, 11(2):256–290, 2002.

[JC97] Nicholas R. Jennings and Jose R. Campos. Towards a social level characterisa-
tion of socially responsible agents. IEEE Proceedings on Software Engineering,
144(1):11–25, 1997.

[Jen00] Nicholas R. Jennings. On agent-based software engineering. Artificial Intelligence,
117(2000):277–296, 2000.

[Kat06] Mark Kattenbelt. Towards an explicit-state model checking framework. Master’s
thesis, Faculty of EEMCS, University of Twente, Enschede, The Netherlands, Au-
gust 2006.

[KC05] Sascha Konrad and Betty H. C. Cheng. Real-time specification patterns. In
Proceedings of the 27th international conference on Software engineering (ICSE
2005), pages 372–381, New York, NY, USA, 2005. ACM Press.

[KE01] James Kennedy and Russell C. Eberhardt. Swarm Intelligence. Morgan Kaufmann
publishers Inc.: San Mateo, CA, USA, 2001.

[Ken02] Stuart Kent. Model Driven Engineering. In Michael Butler, Luigia Petre, and Kaisa
Sere, editors, Proceedings of the Third International Conference on Integrated For-
mal Methods (IFM 2002), Turku, Finland, volume 2335 of Lecture Notes in Com-
puter Science (LNCS), pages 286 – 298. Springer Verlag, Berlin, Heidelberg, Ger-
many, May 2002.

[KG97] David Kinny and Michael P. Georgeff. Modelling and Design of Multi-Agent Sys-
tems. In Jörg P. Müller, Michael Wooldridge, and Nicholas R. Jennings, editors,
Intelligent Agents III, Agent Theories, Architectures, and Languages, ECAI ’96
Workshop (ATAL), Budapest, Hungary, August 12-13, 1996, Proceedings, volume
1193 of Lecture Notes in Computer Science (LNCS). Springer Verlag, Berlin, Hei-
delberg, Germany, 1997.

[KG04] Florian Klein and Holger Giese. Ontologiebasiertes Rapid Prototyping für kogni-
tive Multiagentensysteme. In Modellierung 2004 - Praktischer Einsatz von Mod-
ellen, Workshop W4: Ontologien in der und für die Softwaretechnik, Marburg,
Germany, 2004, pages 33–42. Conradin Verlag, Marburg, Germany, March 2004.
(In German).

[KG05] Florian Klein and Holger Giese. Separation of concerns for mechatronic multi-
agent systems through dynamic communities. In Ricardo Choren, Alessandro Gar-
cia, Carlos Lucena, and Alexander Romanovsky, editors, Software Engineering for
Multi-Agent Systems III: Research Issues and Practical Applications, volume 3390
of Lecture Notes in Computer Science (LNCS), pages 272–289. Springer Verlag,
Berlin, Heidelberg, Germany, February 2005.

BIBLIOGRAPHY 283

[KG06a] Florian Klein and Holger Giese. Analysis and Design of Physical and Social Con-
texts in MultiAgent Systems using UML. In Ricardo Choren, Alessandro Garcia,
Carlos Lucena, Alexander Romanovsky, Tom Holvoet, and Paolo Giorgini, editors,
Proceedings of the 4th Workshop on Software Engineering for Large-Scale Multi-
Agent Systems (in Conjunction with the International Conference on Software En-
gineering), St. Louis, MO, USA, volume 3914 of Lecture Notes in Computer Sci-
ence (LNCS), pages 91–108. Springer Verlag, Berlin, Heidelberg, Germany, Febru-
ary 2006.

[KG06b] Florian Klein and Holger Giese. Grounding Social Interactions in the Environment.
In Danny Weyns, Van Parunak, and Fabien Michel, editors, Environments for Mul-
tiagent Systems II, volume 3830 of Lecture Notes in Artificial Intelligence (LNAI),
pages 139–162. Springer Verlag, Berlin, Heidelberg, Germany, March 2006.

[KG06c] Florian Klein and Holger Giese. Integrated Visual Specification of Structural and
Temporal Properties. Technical Report tr-ri-06-277, Department of Computer Sci-
ence, University of Paderborn, October 2006.

[KG07] Florian Klein and Holger Giese. Joint Structural and Temporal Property Specifi-
cation using Timed Story Sequence Diagrams. In Matt Dwyer and Antónia Lopes,
editors, Proceedings of 10th International Conference on Fundamental Approaches
to Software Engineering (FASE) 2007, held as part of ETAPS 2007, Lisboa, Portu-
gal, March 24-April 1, 2007, volume 4422 of Lecture Notes in Computer Science
(LNCS), pages 185–199. Springer Verlag, Berlin, Heidelberg, Germany, March
2007.

[KH99] Stuart Kent and John Howse. Mixing visual and textual constraint languages. In
Robert France and Bernhard Rumpe, editors, UML’99, Fort Collins, CO, USA,
October 28-30. 1999, Proceedings, volume 1723 of Lecture Notes in Computer
Science (LNCS), pages 384–398. Springer Verlag, Berlin, Heidelberg, Germany,
1999.

[KH02] Stuart Kent and John Howse. Constraint trees. In Tony Clark and Jos Warmer,
editors, Object Modeling with the OCL, pages 228–249. Springer Verlag, Berlin,
Heidelberg, Germany, 2002.

[Kin06] Ekkart Kindler. On the semantics of EPCs: Resolving the vicious circle. Data and
Knowledge Engineering, 56(1):23–40, January 2006.

[KK07a] Hans-Jörg Kreowski and Sabine Kuske. Autonomous Units and Their Semantics
- The Parallel Case. In José Luiz Fiadeiro and Pierre-Yves Schobbens, editors,
Recent Trends in Algebraic Development Techniques, 18th International Workshop,
WADT 2006, volume 4409 of Lecture Notes in Computer Science (LNCS), pages
56–73, 2007.

284 BIBLIOGRAPHY

[KK07b] Hans-Jörg Kreowski and Sabine Kuske. Communities of Autonomous Units for
Pickup and Delivery Vehicle Routing. In Manfred Nagl and Andy Schürr, editors,
Proceedings of the third International Workshop and Symposium on Applications
of Graph Transformation with Industrial Relevance (AGTIVE 2007), Kassel, 2007,
pages 1–16, 2007.

[KKK02] Renate Klempien-Hinrichs, Peter Knirsch, and Sabine Kuske. Modeling the
Pickup-and-Delivery Problem with Structured Graph Transformation. In Hans-Jörg
Kreowski and Peter Knirsch, editors, Proceedings of the APPLIGRAPH Workshop
on Applied Graph Transformation (Satellite Event of ETAPS 2002), pages 119–130,
2002.

[Kle03] Florian Klein. Entwicklung eines Metamodells zur Agentenorientierten Softwa-
reentwicklung. Master’s thesis, University of Münster, Department of Information
Systems, Münster, Germany, March 2003. (In German).

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Christina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented
Programming. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), Jyväskylä, Finland, June 9-13, 1997, volume 1241 of
Lecture Notes in Computer Science (LNCS), pages 220–242. Springer Verlag,
Berlin, Heidelberg, Germany, 1997.

[KNNZ00] Hans J. Köhler, Ulrich Nickel, Jörg Niere, and Albert Zündorf. Integrating UML
Diagrams for Production Control Systems. In Proceedings of the 22nd Interna-
tional Conference on Software Engineering (ICSE), Limerick, Irland, pages 241–
251. ACM Press, 2000.

[KO04] Manasawee Kaenampornpan and Eamonn O’Neill. Modelling context: An ac-
tivity theory approach. In Proceedings of the Second European Symposium on
Ambient Intelligence (EUSAI 2004), Eindhoven, The Netherlands, November 8-11,
2004, volume 3295 of Lecture Notes in Computer Science (LNCS), pages 367–375.
Springer Verlag, Berlin, Heidelberg, Germany, 2004.

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-
Time Systems, 2(4):255–299, 1990.

[KS01] Reinhard Kahle and Thomas Studer. Formalizing non-termination of recursive pro-
grams. JLAP, 49(1-2):1–14, 2001.

[KT06] Florian Klein and Matthias Tichy. Building reliable systems based on self-
organizing multi-agent systems. In Ricardo Choren, Alessandro F. Garcia, Hol-
ger Giese, Ho fung Leung, Carlos José Pereira de Lucena, and Alexander B. Ro-
manovsky, editors, Proceedings of the 5th ICSE 2006 Workshop on Software En-
gineering for Large-scale Multi-Agent Systems (SELMAS’06), Shanghai, China.
ACM Press, May 2006.

BIBLIOGRAPHY 285

[Kwi03] Marta Z. Kwiatkowska. Model checking for probability and time: From theory to
practice. In Proceedings of the 18th Annual IEEE Syposium on Logic in Computer
Science (LICS-03), June 22–25, 2003, Los Alamitos, CA, USA, pages 351–360.
IEEE Computer Society Press, June 2003. Invited paper.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transac-
tions on Software Engineering, SE–3(2):125–143, 1977.

[Lev95] Nancy G. Leveson. Safeware: system safety and computers. Addison-Wesley,
Reading, MA, USA, 1995.

[LL99] Xuandong Li and Johan Lilius. Timing Analysis of UML Sequence Diagrams. In
Robert France and Bernhard Rumpe, editors, UML’99 - The Second International
Conference on The Unified Modeling Language Fort Collins, Colorado, USA, vol-
ume 1723 of Lecture Notes in Computer Science (LNCS). Springer Verlag, Berlin,
Heidelberg, Germany, October 1999.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. Springer In-
ternational Journal of Software Tools for Technology, 1(1):134–152, October 1997.

[LvdBC00] Gerald Lüttgen, Michael von der Beeck, and Rance Cleaveland. A Compositional
Approach to Statecharts Semantics. In Proceedings of the Eighth International
Symposium on Foundations of Software Engineering for Twenty-first Century Ap-
plications, November 2000, San Diego, CA, USA, pages 120–129. ACM SIGSOFT
Software Engineering Notes, November 2000.

[Mey92] Bertrand Meyer. Eiffel: The Language. Prentice Hall, Englewood Cliffs, NJ, USA,
1992.

[MGF02] François Mekerke, Geri Georg, and Robert Franc. Tool Support for Aspect-
Oriented Design. In Proceedings of the Workshops on Advances in Object-Oriented
Information Systems (OOIS 2002), Montpellier, France, volume 2426 of Lecture
Notes in Computer Science (LNCS), pages 280 – 289. Springer Verlag, Berlin, Hei-
delberg, Germany, 2002.

[MU00] Naftaly H. Minsky and Victoria Ungureanu. Law-governed interaction: a coordi-
nation and control mechanism for heterogeneous distributed systems. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 9(3):273–305, 2000.

[Mul90] Mark Mullin. Rapid prototyping for object oriented systems. Addison-Wesley,
Reading, MA, USA, 1990.

[Mur89] Tadahiko Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–574, April 1989.

286 BIBLIOGRAPHY

[Neu06] Victor Neumann. Model Checking von Storypattern. Bachelor’s thesis, University
of Paderborn, Department of Computer Science, Paderborn, Germany, May 2006.
(In German).

[NF92] Bashar Nuseibeh and Anthony Finkelstein. Viewpoints: A vehicle for method and
tool integration. In Proceedings of 5th International Workshop on Computer-Aided
Software Engineering, pages 50–60. IEEE Computer Society Press, 1992.

[NSZ03] Ulrich Nickel, Wilhelm Schäfer, and Albert Zündorf. Integrative Specification
of Distributed Production Control Systems for Flexible Automated Manufactur-
ing. In Manfred Nagl and Bernhard Westfechtel, editors, DFG Workshop: Mod-
elle, Werkzeuge und Infrastrukturen zur Unterstützung von Entwicklungsprozessen,
pages 179–195. Wiley-VCH Verlag GmbH and Co. KGaA, 2003.

[Obj03] Object Management Group, Needham, MA, USA. MDA Guide Version 1.0.1, June
2003. Document omg/03-06-01.

[Obj06] Object Management Group, Needham, MA, USA. UML 2.0 Object Constraint
Language, May 2006. Document formal/06-05-01.

[Obj07] Object Management Group, Needham, MA, USA. UML 2.1.1 Superstructure Spe-
cification, February 2007. Document formal/07-02-05.

[OHG04] Oliver Oberschelp, Thorsten Hestermeyer, and Holger Giese. Strukturierte In-
formationsverarbeitung für selbstoptimierende mechatronische Systeme. In Pro-
ceedings of the Second Paderborner Workshop Intelligente Mechatronische Sys-
teme, number 145 in HNI-Verlagsschriftenreihe, pages 43–56, Paderborn, Ger-
many, 2004. (In German).

[OL82] Susan S. Owicki and Leslie Lamport. Proving liveness properties of concurrent
programs. TOPLAS, 4(3):455–495, 1982.

[OMG05] OMG. UML Profile for Schedulability, Performance, and Time Specification.
Object Management Group, Needham, MA, USA, January 2005. Document
formal/05-01-02.

[ORV+04] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castelfranchi, and Luca
Tummolini. Coordination artifacts: Environment-based coordination for intelligent
agents. In Proceedings of the 3rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), 19-23 August 2004, New York, NY,
USA, pages 286–293. IEEE Computer Society Press, August 2004.

[Par72] David L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053–1058, 1972.

BIBLIOGRAPHY 287

[PBS05] H. Van Dyke Parunak, Sven Brueckner, and John A. Sauter. Digital pheromones for
coordination of unmanned vehicles. In Danny Weyns, H. Van Dyke Parunak, and
Fabien Michel, editors, Environments for Multi-Agent Systems, First International
Workshop, New York, NY, USA, 2004, volume 3374 of Lecture Notes in Computer
Science (LNCS), pages 246–263. Springer Verlag, Berlin, Heidelberg, Germany,
2005.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, University of Bonn,
Bonn, Germany, 1962. (In German).

[PMS94] Adriano Peron and Andrea Maggiolo-Schettini. Transitions as Interrupts: A New
Semantics for Timed Statecharts. In Masami Hagiya and John C. Mitchell, editors,
Theoretical Aspects of Computer Software, International Conference TACS ’94,
Sendai, Japan, April 19-22, 1994, Proceedings, volume 789 of Lecture Notes in
Computer Science (LNCS). Springer Verlag, Berlin, Heidelberg, Germany, 1994.

[PWP05] Lin Padgham, Michael Winikoff, and David Poutakidis. Adding debugging sup-
port to the prometheus methodology. Engineering Applications of Artificial Intel-
ligence, 18:173–190, March 2005.

[RDH03] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: an extensible and highly-
modular software model checking framework. In Proceedings of the European
Software Engineering Conference (ESEC), Helsinki, Finland, pages 267–276,
2003.

[Rei85] Wolfgang Reisig. Petri nets. An Introduction. In Wilfried Brauer, Grzegorz Rozen-
berg, and Arto Salomaa, editors, EATCS Monographs on Theoretical Compute Sci-
ence, volume 4. Springer Verlag, Berlin, Heidelberg, Germany, 1985.

[Ren03] Arend Rensink. Towards model checking graph grammars. In Michael Leuschel,
Stefan Gruner, and Stephane Lo Presti, editors, Workshop on Automated Verifi-
cation of Critical Systems (AVoCS), Technical Report DSSE–TR–2003–2, pages
150–160. University of Southampton, 2003.

[Ren04] Hendrik Renken. Cooperative Learning for Autonomous Shuttle Systems. Bache-
lor’s thesis, Universität Paderborn, 2004.

[Rey87] Craig Reynolds. Flocks, herds, and schools: A distributed behavioral model. Com-
puter Graphics, 21(4), July 1987.

[RG95] Anand S. Rao and Michael P. Georgeff. BDI Agents: From Theory to Practice.
In Proceedings of the 1st International Conference On Multi Agent Systems, San
Francisco, USA, 1995.

[RK99] Jürgen Ruf and Thomas Kropf. Modeling and Checking Networks of Communi-
cating Real-Time Systems. In Correct Hardware Design and Verification Methods

288 BIBLIOGRAPHY

(CHARME’99), pages 265–279. IFIP WG 10.5, Springer Verlag, Berlin, Heidel-
berg, Germany, September 1999.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation: Foundations. World Scientific Publishing Corporation,
Singapore, Singapore, February 1997. Volume 1.

[RR98] Wolfgang Reisig and Grzegorz Rozenberg, editors. Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets 1998. Number 1491 in Lecture Notes in Computer
Science (LNCS). Springer Verlag, Berlin, Heidelberg, Germany, 1998.

[RS06] Tobias Rötschke and Andy Schürr. Temporal Graph Queries to Support Software
Evolution. In Graph Transformation: 5th International Conference, ICGT 2006,
Rio Grande do Norte, Brazil, September 17-23, 2006, volume 4178 of LNCS, pages
1–15. Springer Verlag, Berlin, Heidelberg, Germany, 2006.

[RSV04] Arend Rensink, Ákos Schmidt, and Dániel Varró. Model Checking Graph Trans-
formations: A Comparison of Two Approaches. In Hartmut Ehrig, Gregor En-
gels, Francesco Parisi-Presicce, and Grzegorz Rozenberg, editors, International
Conference on Graph Transformations (ICGT), volume 3256 of Lecture Notes in
Computer Science (LNCS), pages 226–241. Springer Verlag, Berlin, Heidelberg,
Germany, 2004.

[Rud97] Michael Rudolf. Concepts and Implementation of an Interpreter for Attributed
Graph Transformation. Master’s thesis, Technical University Berlin, 1997. (In
German).

[RWL96] Trygve Reenskaug, Per Wold, and Odd Arild Lehene. Working with Objects:
The OOram Software Engineering Method. Addison-Wesley, Reading, MA, USA/
Manning Publications, Sound View, CT, USA, 1996.

[SB04] Luciano Serafini and Paolo Bouquet. Comparing formal theories of context in ai.
Artificial Intelligence, 155(1-2):41–67, 2004.

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-Werner Gellersen. There is more to
context than location. Computers & Graphics, 23(6):893–901, 1999.

[SC02] Bikram Sengupta and Rance Cleaveland. Triggered Message Sequence Charts. In
William G. Griswold, editor, Proceedings of the Tenth ACM SIGSOFT Symposium
on the Foundations of Softare Engineering (FSE-10), Charleston, South Carolina,
USA, November 2002. ACM Press.

[Sch05] Viktor Schuppan. Liveness Checking as Safety Checking to Find Shortest Coun-
terexamples to Linear Time Properties. PhD thesis, Swiss Federal Institute Of
Technology Zurich (ETH Zürich), 2005.

BIBLIOGRAPHY 289

[Sch06] Daniela Schilling. Kompositionale Softwareverifikation mechatronischer Systeme.
University of Paderborn, 2006. (In German).

[Sek94] Emil Sekerinski. Object Refinement. PhD thesis, University of Karlsruhe, 1994.

[SH04] Kurt Schelfthout and Tom Holvoet. Objectplaces: An environment for situated
multi-agent systems. In Proceedings of the 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), 19-23 August 2004,
New York, NY, USA, pages 1500–1501. IEEE Computer Society Press, August
2004.

[Sin98a] M. P. Singh. Agent communication languages: Rethinking the principles. IEEE
Computer, 31(12):40–47, December 1998.

[Sin98b] Munindar P. Singh. The intentions of teams: Team structure, endodeixis, and ex-
odeixis. In Henri Prade, editor, Proceedings of the 13th European Conference on
Artificial Intelligence, Brighton, UK, August 23-28 1998, pages 303–307. John Wi-
ley and Sons, Chichester, 1998.

[SJ99] Gunter Schupp and Alfred Jaschinksi. Virtual prototyping: the future way of de-
signing railway vehicles. International Journal of Vehicle Design, 22(1-2):93–115,
1999.

[Spi07] Michael Spijkerman. Monitoring gemischt struktureller und temporaler Eigen-
schaften von UML Modellen. Master’s thesis, University of Paderborn, Depart-
ment of Computer Science, Paderborn, Germany, September 2007. (In German).

[Sta00] Standards Coordinating Committee of the IEEE Computer Society, The Institute
of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York,
NY 10017-2394, USA. Recommended Practice for Architectural Description of
Software-Intensive Systems, IEEE-Std-1471-2000, 2000.

[Ste07] Daniel Steffen. Ein Verfahren zur Produktstrukturierung für fortgeschrit-
tene mechatronische Systeme. Dissertation, Universität Paderborn, Heinz Nix-
dorf Institut, Rechnerintegrierte Produktion, April 2007. Volume 207 of
HNI-Verlagsschriftenreihe. Bonifatius GmbH, Paderborn, Germany, first edition,
2007.(In German).

[Sto96] Neil Storey. Safety-Critical Computer Systems. Addison-Wesley, Reading, MA,
USA, 1996.

[SV03] Ákos Schmidt and Dániel Varró. CheckVML: A Tool for Model Checking Vi-
sual Modeling Languages. In Proceedings of the 6th International Conference on
the Unified Modeling Language, UML2003, volume 2863 of Lecture Notes in Com-
puter Science (LNCS), pages 92–95. Springer Verlag, Berlin, Heidelberg, Germany,
2003.

290 BIBLIOGRAPHY

[SWGE04] Wilhelm Schäfer, Robert Wagner, Jürgen Gausemeier, and Raimund Eckes. An
Engineer’s Workstation to support Integrated Development of Flexible Production
Control Systems. In Hartmut Ehrig, Werner Damm, Jörg Desel, Martin Gros̈e-
Rhode, Wolfgang Reif, Eckehard Schnieder, and Engelbert Westkämper, editors,
Integration of Software Specification Techniques for Applications in Engineering,
volume 3147 of Lecture Notes in Computer Science (LNCS), pages 48–68. Springer
Verlag, Berlin, Heidelberg, Germany, September 2004.

[SWZ95] Andy Schürr, Andreas J. Winter, and Albert Zündorf. Graph Grammar Engineering
with PROGRES. In Wilhelm Schäfer, editor, Proceedings of European Software
Engineering Conference (ESEC/FSE), volume 989 of Lecture Notes in Computer
Science (LNCS). Springer Verlag, Berlin, Heidelberg, Germany, 1995.

[SWZ99] Andy Schürr, Andreas J. Winter, and Albert Zündorf. The PROGRES Approach:
Language and Environment. In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kre-
owski, and Grzegorz Rozenberg, editors, Handbook of Graph Grammars and Com-
puting by Graph Transformation, volume 2 - Application, Languages and tools.,
pages 487–546. World Scientific Publishing Corporation, Singapore, Singapore,
1999.

[Szy98] Clemens Szyperski. Component Software, Beyond Object-Oriented Programming.
Addison-Wesley, Reading, MA, USA, 1998.

[TGS06] Matthias Tichy, Holger Giese, and Andreas Seibel. Story Diagrams in Real-Time
Software. In Holger Giese and Bernhard Westfechtel, editors, Proceedings of the
4th International Fujaba Days 2006, Bayreuth, Germany, volume tr-ri-06-275 of
Technical Reports of the Department of Computer Science, pages 15–22. University
of Paderborn, September 2006.

[Var02] Dániel Varró. Towards Symbolic Analysis of Visual Modelling Languages. In
Paolo Bottoni and Mark Minas, editors, Proceedings of the GT-VMT 2002: In-
ternational Workshop on Graph Transformation and Visual Modelling Techniques,
Barcelona, Spain, October 11-12, 2002, volume 72 of ENTCS, pages 57–70. Else-
vier Science Publishers B.V, Amsterdam, The Netherlands, October 2002.

[Var03] Dániel Varró. Automated Formal Verification of Visual Modeling Languages by
Model Checking. Journal of Software and Systems Modelling, 2003.

[Var04] Dániel Varró. Automated formal verification of visual modeling languages by
model checking. Software and System Modeling, 3(2):85–113, May 2004.

[vdHRW05] Wiebe van der Hoek, Mark Roberts, and Michael Wooldridge. Knowledge and
Social Laws. In Frank Dignum, Virginia Dignum, Sven Koenig, Sarit Kraus, Mu-
nidar P. Singh, and Michael Wooldridge, editors, Proceedings of the Fourth Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2005), Utrecht, The Netherlands, pages 674–681. ACM Press, July 2005.

BIBLIOGRAPHY 291

[vdHRW07] Wiebe van der Hoek, Mark Roberts, and Michael Wooldridge. Social laws in alter-
nating time: Effectiveness, feasibility, and synthesis. Synthese, 156(1):1–19, May
2007.

[VO02] Mirko Viroli and Andrea Omicini. A specification language for agents observable
behavior. In Proceedings of the International Conference on Artificial Intelligence
(ICAI) 2002 (Las Vegas, US), pages 321–327. CSREA Press, 2002.

[WD01] Mark F. Wood and Scott A. DeLoach. An Overview of the Multiagent Systems
Engineering Methodology. In Agent-Oriented Software Engineering: First Inter-
national Workshop, AOSE 2000, Limerick, Ireland, volume 1957 of Lecture Notes
in Computer Science (LNCS), pages 207–221. Springer Verlag, Berlin, Heidelberg,
Germany, September 2001.

[WJ95a] Michael Wooldridge and Nicholas R. Jennings. Agent theories, architectures, and
languages: a survey. In Michael Wooldridge and Nicholas R. Jennings, editors,
Intelligent Agents, volume 890 of Lecture Notes in Artificial Intelligence (LNAI),
pages 1–39. Springer Verlag, Berlin, Heidelberg, Germany, 1995.

[WJ95b] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and
practice. Knowledge Engineering Review, 10(2):115–152, 1995.

[WJK99] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. A methodology for
agent-oriented analysis and design. In Michael Wooldridge and Nicholas R. Jen-
nings, editors, Proceedings of the third annual conference on Autonomous Agents,
Seattle, WA, USA, May 1999, pages 69–76. ACM Press, 1999.

[Woo98] Michael Wooldridge. Verifiable semantics for agent communication languages.
In Proceedings of the 3rd International Conference on Multi Agent Systems (IC-
MAS98), Paris , France, pages 349–356. IEEE Computer Society Press, 1998.

[Woo00] Michael J. Wooldridge. Reasoning About Rational Agents (Intelligent Robotics and
Autonomous Agents). MIT Press, Cambridge, MA, USA, 1 edition, January 2000.

[WPM+04] Danny Weyns, H. Van Dyke Parunak, Fabien Michel, Tom Holvoet, and Jacques
Ferber. Environments for multiagent systems state-of-the-art and research chal-
lenges. In Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors, En-
vironment for multi-agent systems: first international workshop, 2004, New York,
NY, USA, volume 3374 of Lecture Notes in Computer Science (LNCS), pages 1–47.
Springer Verlag, Berlin, Heidelberg, Germany, 2004.

[WSHL05] Danny Weyns, Kurt Schelfthout, Tom Holvoet, and Tom Lefever. Decentralized
control of E’GV transportation systems. In Michal Pechoucek, Donald Steiner, and
Simon Thompson, editors, Proceedings of the 4rd International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2005), July 25-29, 2005,
Utrecht, The Netherlands, pages 67–74. ACM Press, July 2005.

292 BIBLIOGRAPHY

[Yov96] Sergio Yovine. Model checking timed automata. In Grzegorz Rozenberg and
Frits W. Vaandrager, editors, School on Embedded Systems, volume 1494 of Lec-
ture Notes in Computer Science (LNCS), pages 114–152. Springer Verlag, Berlin,
Heidelberg, Germany, 1996.

[Zün95] Albert Zündorf. PROgrammierte GRaphErsetzungsSysteme. PhD thesis, RWTH
Aachen, 1995.

[Zün01] Albert Zündorf. Rigorous Object Oriented Software Development. University of
Paderborn, 2001.

Index

A

affiliation norm, 141, 153
agent, 4, 129, 135, 137, 143, 163, 252
agent design phase, 7
agent specification, 137, 143, 163
alternative set, 74
analysis phase, 7
and inset, 57
application graph, 28
assertion, 140, 155
atomic proposition, 178
attributed graph, 26
attributed graph morphism, 27
automaton, 40

extended, 41
hierarchical, 40
timed, 40, 177

X
B

behavior monitor, 201
behavioral norm, 141, 155
behavioral state machines, 37
binding, 72

valid, 72
X
C

candidate set, 73

cardinalities, 63
Class Diagram, 32
Cognitive Loop, 252
Cognitive Operator, 4, 213, 252
commitment, 140, 155
community, 5, 9, 131, 136, 141, 163
community specification, 136, 137, 141,

161
community type, 9, 136, 141, 141, 161
component, 35, 42
conjunction inset, 57
connector

else, 60, 306, 307
merge, 307
then, 60, 306

constraint, 232
attribute, 301
collaboration, 301
edge, 96, 309
forbidden guard, 309
homomorphism, 69, 302
identity, 70, 302
required guard, 309
situation homomorphism, 100, 310
time bound, 99, 310

constraint set, 232
context, 137, 144
Controller, 4, 213, 252

294 INDEX

conventional norm, 141, 155
coordination pattern, 5, 15, 35, 38, 42,

160
pattern constraint, 38
role, 38
role invariant, 38

corresponding, 166
culture, 5, 9, 131, 136, 142, 151
culture specification, 136, 137, 142, 150
CURCUMA, 6, 131
X
D

declaration, 155
deployment phase, 8
design process, 7
direct transformation, 28
directive, 140, 155
discretionary, 150, 166
disjunction inset, 56
X
E

effector, 9, 135, 137, 144
effector specification, 144
enhanced Story Pattern, 55
entity, 8, 135, 137, 143, 161
entity specification, 137, 143
environment, 8, 135, 143
environment specification, 8, 135, 136,

137, 143, 149
equivalent, 165
evolved from, 82
excluding, 29
existential, 102

existential norm, 141, 151, 152
extended automaton, 41
X
F

facility, 138
X
G

globally strict, 99, 309
graph, 15, 24, 24

attributed, 26
compatible, 24
edge compatible, 24
inheritance type system, 25
intersection, 25
label compatible, 24
labeled, 24
subtraction, 25
type conformant, 25
type system, 25
typed, 25
union, 24

graph grammar, 15
graph isomorphism, 27
graph morphism, 27
graph pattern, 28, 33

match, 28
simple, 27

graph transformation rule, 28
graph transformation system, 15, 30, 89,

177
constrained, 30
labeled, 30
prioritized, 30

INDEX 295

typed, 30
GTS refinement, 164
guards, 96
X
H

hierarchical automaton, 40
X
I

if inset, 56
implication inset, 56
inheritance type system graph, 25
inhibitors, 94, 110
inset

and, 57, 303
if, 56, 303
not, 55, 303
or, 56, 303

instantiation norm, 141, 153
interdiction, 140, 155
interface

provided, 36
required, 36

intersecting, 29
invariant, 141, 178

inductive, 189
operational, 189

Invariant Story Pattern, 33, 67
invocation graph, 313
item, 137, 143
X
J

joining, 29

X

L

labeled parallel composition, 194
Labeled Transition System, 177
legal stance, 131, 140
link

bound, 301
created, 301
destroyed, 301
negated, 301
optional, 301
quantified, 301

loop, 310
bounded, 311
optional, 310

X
M

mechatronic system, 1
merging, 29
model, 176
Motor Loop, 252
X
N

negation inset, 55
negative application condition, 28
node

ensure, 67, 305
existential guard, 62, 304
existential quantified, 62, 304
lambda, 64, 305
leaf, 60

false, 306
true, 306

scoped, 66, 305

296 INDEX

transformation, 67, 305
universal quantified, 63, 304

norm, 9, 141, 151, 152
affiliation, 141, 153
behavioral, 141, 155
conventional, 141, 155
existential, 141, 151, 152
instantiation, 141, 153
social, 141, 151, 154

not inset, 55
X
O

object
bound, 299
created, 300
destroyed, 300
optional, 300
quantified, 299

Object Diagram, 33
observation, 90, 112
observation compatible, 113
occurrence, 28
OCM, 4, 251
Operator-Controller-Module, 251
Operator-Controller-Module, 4, 212
or inset, 56
X
P

parallel composition, 30
pattern references, 58
perception, 137
permission, 140, 155
port, 36

process, 8, 138, 146
process specification, 138, 146
professed intention, 136, 140, 141, 151
professed intentions, 155
propagation function, 74
property monitor, 198, 201
protocol state machines, 37
pseudostate

first of, 100, 308
initial, 92, 308
last of, 100, 308
termination, 92, 308

X
R

Real-Time Statecharts, 37
realization, 42
refinement, 5, 41, 166
Reflective Loop, 252
Reflective Operator, 4, 213, 252
requirement, 136
requirements, 9
restricted GTS refinement, 167, 193
restricted refinement, 41
result set, 74
role, 9, 136, 141, 151, 151, 153, 302
root trace, 101, 117
RTSC, 37
X
S

satisfaction
SDD, 72
TSSD, 117

SDD, 59

INDEX 297

SDDP, 64
SDDR, 64, 302
self-optimizing, 1, 129
sensor, 9, 135, 137, 144
sensor specification, 144
sequence label, 310
service, 8, 135, 138, 148
service specification, 138, 148
shuttles, 6
simple graph pattern, 33
simple Story Pattern, 60, 67
Single Pushout Approach, 28
situation, 90, 108, 308

reference, 308
scenario, 308
scenario reference, 308
trivial, 103, 308

social design phase, 7
social norm, 141, 151, 154
social specification, 136, 140, 150
software-intensive system, 1
source graph, 28
SP, 60
specification, 176

agent, 137, 143, 163
community, 136, 137, 141, 161
culture, 136, 137, 142, 150
effector, 144
entity, 137, 143
environment, 135, 136, 137
process, 138, 146
sensor, 144
service, 138, 148
social, 136, 140, 150

system, 136, 168
Story Decision Diagram, 59

Pattern, 64
Reference, 64

Story Pattern, 20, 34
enhanced, 55

Story-Driven Modeling, 15
strict, 98, 309
strictly next, 98, 309
strictly previous, 98, 309
subcommunity, 9, 141
subculture, 151, 160
subgraph, 26
subpattern, 165
subscenario, 104, 120

parameters, 310
role, 310
situation, 310
situation reference, 310

subtype, 25
system specification, 136, 168
X
T

target graph, 28
target graph pattern, 189
template type, 136, 142, 151, 151, 161
temporal connector

eventually, 91, 309
immediately, 91, 309
until, 91, 309

timed automaton, 40, 177
Timed Story Scenario Diagram, 89
trace, 90, 92, 112
trace tree, 112

298 INDEX

trigger, 101, 310
TSSD, 89
type, 25
type conformant, 25, 33
type system graph, 25, 32, 33
typed graph, 25, 33
X
U

UML State Machine, 37
universal, 102
urgent, 150, 166
X
V

validation, 173
verification, 173
violation, 30
X
W

well-formed, 83, 313

Appendix A

Constraint Language Reference

In Chapter 3, we have introduced a family of visual constraint languages consisting of enhanced
Story Patterns (eSP), Story Decision Diagrams (SDD), and Timed Story Scenario Diagrams
(TSSD) and defined their syntax and semantics. In order to make a more condensed description
of the languages available for use as a reference, we provide brief summaries in this appendix.
In the following three sections, we list the complete syntax of each language and explain the
purpose and use of each notational element.

A.1 SP Language Reference

The basic pattern notation that is used by enhanced Story Patterns (eSP) and for the patterns
inside of SDD nodes extends and modifies the existing Story Pattern (SP) syntax. In spite of
certain differences, we present both flavors of the notation in a single integrated section. eSPs
may contain objects, links between objects, constraints, SDD References, and insets; SDD nodes
do not contain insets and exclude certain qualifiers. For each element, we present the abstract
syntax (top) and a basic application example (bottom).

A.1.1 Objects

object : Class

o1 : A

Quantified object. An unbound object that, if possible, is bound
by the SP is drawn in black.a The object identifier and class name
are both mandatory. A quantified object may also specify constraints
concerning its attributes; the pattern will then backtrack over all can-
didates if the selected object does not fulfill the requirements.

aAs black, we define 100% black or rgb(0, 0, 0).

300 A. Constraint Language Reference

object [: Class]

o1 : A

Bound object. An object that has been bound by a previously eval-
uated SP in the same SDD or Story Diagram, i.e. was previously
present as a quantified object with the same object identifier, is auto-
matically drawn in slate blue.b The class name is optional, but unlike
in Story Diagrams, where omitting the class name indicates that an
object is previously bound, it is not omitted by default. It is there-
fore not possible to rebind an object identifier or even reassign it a
different class – we believe, however, that providing this capability
would only lead to confusing diagrams. On the other hand, type in-
formation is essential and should be made explicitly available if the
user desires it. A bound object may introduce additional constraints
(drawn in black) concerning its attributes. The constraints act as a
filter; if the bound object does not meet the requirements, the SP
does not match.

bAs slate blue, we define rgb(90, 140, 180).

object : Class

o1 : A

Optional object. An unbound object that optionally may or may not
be bound by the SP is drawn in grey.c The object identifier and class
name are both mandatory. Optional elements are not used inside
SDDs.

cAs grey, we define 60% black or rgb(95, 95, 95).

(*|++|<<create>>)
object : Class

* o1 : A

Created object. In SPs with side effects, newly created objects are
marked with ∗ (’constructor’), ++, or the stereotype �create� and
are drawn in green.d The class name is mandatory. They may also
specify attribute values that will be used to initialize the new object.
In SDDs, SPs with side effects may only appear in transformation
nodes.

dAs green, we define rgb(108, 206, 48).

(~|--|<<destroy>>)
object [: Class]

~ o1 : A

Destroyed object. In SPs with side effects, objects that are deleted
are marked with ∼ (’destructor’), −−, or the stereotype �destroy�
and are drawn in red.e As transformation nodes do not contain quan-
tifiers, all destroyed objects need to be previously bound and the class
name is thus optional.

eAs red, we define 100% red or rgb(255, 0, 0).

A.1 SP Language Reference 301

A.1.2 Links

[link :] association

has

Quantified link. Previously unbound links are drawn in black. The
association type is mandatory. As an extension of normal object di-
agram syntax, it is possible to assign a link identifier to a link, just
like to an object. This is useful only in connection with quantifica-
tion, mostly in case the modeler wants to universally quantify over a
set of links between two unique objects.

[link :] association

has

Bound link. Previously bound links are drawn in slate blue. The
association type is mandatory, the link identifier is optional even if
the quantified link that introduced the binding used one.

[link :] association

has

Optional link. A previously unbound link that optionally may or
may not be bound by the SP is drawn in gray. The association type is
mandatory, the link identifier is optional. Optional elements are not
used inside SDDs.

[link :] association

has

Negated link. A forbidden link that must not be bound by the SP
is drawn dotted and in blue, emulating the traditional syntax. The
association type is mandatory, the link identifier is optional. Exists
as a lightweight alternative to negation insets. Negated links are not
used inside SDDs.

(*|++|<<create>>)
[link :] association

* has

Create link. In SPs with side effects, newly created links are marked
with ∗ (’constructor’), ++, or the stereotype �create� and are
drawn in green. The association type is mandatory, the link iden-
tifier is optional.

(~|--|<<destroy>>)
[link :] association

~ has

Destroy link. In SPs with side effects, links that are deleted are
marked with ∼ (’destructor’), −−, or the stereotype �destroy� and
are drawn in red. The association type is mandatory, the link identi-
fier is optional even if the quantified link that introduced the binding
used one.

A.1.3 Constraints

o1.a > o2.b{o1.a + o2.b limit}

{o1.size() + o2.size()

limit}

{o1.size() + o2.size() limit}

1. o1.method()

Constraint (attributes). Besides constraints concerning only a sin-
gle attribute of an object, which can be specified inside the object
itself, it is also possible to specify constraints that are expressions
over multiple attributes of an object or different objects, literals, and
queries. It is also possible to use built-in operators, e.g. arithmetic,
on attributes. The restriction to UML query functions, i.e. predicates
or functions without side effects, is not a technical requirement, but
a precondition for reasonable matching semantics with predictable
results.

302 A. Constraint Language Reference

limit}

1. o1.method()

1. o1.method()

Constraint (collaboration). In RHS nodes, collaboration state-
ments enable SPs to call methods on bound objects, just as in UML
Collaboration Diagrams. The leading number allows determining
the order of the sequence of invocations in case of multiple state-
ments. Preferably, the interacting objects are marked with a dashed
arrow indicating the direction of the call. If used in existential nodes,
collaboration statements serve as guards, i.e. the SP only matches
when the corresponding method is called. While this feature is
not included in the standard matching semantics, it might be useful
for specific applications, e.g. translating Message Sequence Charts
(MSC) into SDD-based scenarios.

o1 : A o2 : A

Homomorphism link. SPs are matched using graph isomorphism
by default, i.e. different identifiers in the pattern are mapped to differ-
ent objects in the instance graph. However, it is sometimes desirable
to specify that two objects may or may not be the same. This kind
of ambiguity is provided by non-injective graph homomorphisms.
Story Patterns support this by means of textual maybe-annotations.
SPs introduce a dashed red line with the label ∼= as a graphical no-
tation. The link is automatically carried over into subsequent SPs in
the same SDD.

o1 : A o2 : A

Identity constraint. In connection with homomorphism links, one
might later on in the SDD want to address the case where both ob-
jects are actually identical. This can, of course, simply be expressed
by a regular constraint, but as the homomorphism link is there any-
way, SPs support the == label as a special syntax for expressing
this.

A.1.3.1 SDD References

[match :]
label [(par)]

linked(2)
head tail

SDDR. An SDD Reference is represented by a dashed circle (the
notation for a pattern in the UML), with its name in bold face. Op-
tionally, the SDDR may also have an instance identifier that differ-
entiates multiple patterns in the same SP. Besides the role bindings
that are assigned to it, an SDDR can also accept a list of parameters,
usually primitive types such as numeric values, as a more economic
alternative to assigning roles to value objects.

role

sender

Role for SDDR. A role of an SDD Reference is assigned to a quan-
tified or bound object by a dashed black line, with the role name in
italics.

A.1 SP Language Reference 303

A.1.4 Insets

 SDDP o1 : A o2 : B
has

NOT Inset. An inset that negates its contents,
i.e. the enclosing SP only matches if the con-
tents of the inset do not match.

 SDDP o1 : A o2 : B
has

IF Inset. An inset that makes its contents a
precondition for the rest of the enclosing SP,
i.e. the overall SP matches if either the inset
does not match or if the inset and the rest of
the SP match.

 SDDP o1 : A o2 : B
has

OR Inset. An inset that expresses a disjunc-
tion over its contents. This means that the
whole inset matches if at least one of the con-
tained links, or one of the contained objects if
there are no links, matches. This modifies the
default semantics, which require all elements
to match.

 SDDP o1 : A o2 : B
has

AND Inset. An inset that expresses a con-
junction over its contents. As this corre-
sponds to the default semantics of SPs, this
is only useful inside an OR-inset that has al-
tered these semantics.

304 A. Constraint Language Reference

A.2 SDD Language Reference

In this section, we list the complete syntax of Story Decision Diagrams (SDD). For specifying
the patterns in the nodes, the eSP syntax is reused, although negation and insets are not required
and therefore discouraged. SDDs provide five classes of nodes and three types of connectors.
For each element, we present the abstract syntax (top) and a basic application example (bottom).

A.2.1 Node types

All non-leaf nodes use UML 2.0 boxes with a header field. Except for transformation nodes,
which are always black, these boxes are typically green, but may automatically turn red if they
are used to model forbidden properties.

[label :] name+

 SDDP

[objects, links, guards]

safe : o1, o2

o1 : A
o2 : B

has

{o1.a > o2.b}

Quantified universal node. A quantified universal node con-
tains at least one quantified object or link. It creates a set of
required bindings, each of which needs to successfully match
the overall SDD, i.e. reach a (1) leaf node, at some point. Op-
erationally, the node causes the iteration over a set of bindings,
AND joining the results. The quantor expression in the header
can be computed automatically from the SP. The node label
is optional. A quantified universal nodes may have (multiple)
then connectors. The implied else connector always leads to a
(1) leaf node, as any for all expression is true over the empty
set.

[label :] name+

 SDDP

[objects, links, guards]

[label :] _

 SDDP

[objects, links, guards]

linked : o1, o2, r1

o1 : A o2 : B
r1 : has

{o1.a > o2.b}

related : _

o1 : A o2 : Bhas

{o1.a > o2.b+1}

Quantified existential node. An existential node that contains
at least one quantified name element, e.g. a quantified object or
a named quantified link, becomes a quantified existential node.
Quantified existential nodes can introduce new possible bind-
ings, i.e. increase the number of alternatives to be considered.
Operationally, they create one possible binding at a time and,
if it does not manage to reach a (1) leaf node, backtrack and
try the next alternative, i.e. OR joining the results. The list of
quantified elements in the header can be computed automat-
ically from the SP. If the node contains no named quantified
elements but only anonymous quantified links, the header con-
tains an existential quantor followed by an underscore. The
node label is only used for documentation and better readabil-
ity and is thus optional. Like all existential nodes, quantified
existential nodes can have (multiple) then and else connectors.

A.2 SDD Language Reference 305

[label :]

 SDDP

[objects, links, guards]

good :

- p < 4

o1 : A
has

- q = 8

o2 : B

{o1.a/3 > o2.b/2}

Guard existential node. An existential node that contains
only bound elements and introduces additional constraints con-
cerning their attributes becomes a guard node. A guard node
acts as a filter and can only reduce the number of eligible alter-
native bindings. In the header, it is marked by a bold dot. The
node label is optional.

[label :]

 SDD

available :

free : o1, o2

o1 : A o2 : B
has

Scoped node. A scoped node is a guard existential node con-
taining a nested SDD. It matches if the nested SDD matches,
i.e. acts as a filter. The node introduces a local scope; all quan-
tified objects and links inside the block node are thus only lo-
cally bound. However, all previous bindings remain valid in-
side the block node. A scoped node can always be replaced by
a reference to an equivalent SDDP, but offers a more compact
representation if reuse is not an objective. A scoped node is
particularly useful when an SDD contains two unrelated con-
ditions, the first of which is universally quantified. By plac-
ing the first condition inside a block, the independent second
condition is not evaluated for each of the additional bindings
created by the first condition. The node label is optional.

label : par+, role+

 SDDP

[objects]

linked : limit : int, head, tail

head : E tail : E

Lambda node. A lambda node is the initial node of an SDDP
definition. The node label is required, as it defines the name
of the SDDP by which it can later be referenced. The lambda
node contains an SP which only contains bound objects (as
there is no quantor creating new bindings, but only one bind-
ing that is passed in) which define the types of the SDDP’s
roles. The lambda expression in the header can be computed
from these roles. Additionally, it may contain a list of typed
parameters. The parameters, usually primitive numeric values,
are useful for simple customizations and controlling recursion.
A more verbose alternative to parameters is simply assigning
roles to value objects.

[bound, create, destroy]

 SDDP

name name

~ o2 : B

o1 : A

~ rel

++ rel ++ o3 : B o2; o3

Transformation node. Transformation nodes are marked with
→. They may only contain bound, create and destroy objects
and links, and destroy objects and links must be previously
bound. Transformation nodes do not add or filter, but only pro-
cess bindings. Transformation nodes appear in place of (1) leaf
nodes. When a binding reaches the node, it is stored, and when
the SDD evaluates to true, the transformations are applied to a
randomly selected sufficient set of bindings.

306 A. Constraint Language Reference

[quantified, bound, create, destroy]

 SDDP

name name name

o2; o3

~ o2 : B

o1 : A

~ rel

++ rel ++ o3 : B

Ensure node. Conditional transformation or ensure nodes ex-
pand to a set of existential and transformation nodes and pro-
vide a more efficient syntax for certain idioms. If they create
elements, they check whether matching elements already exist,
indicated by → ∃. For backwards compatibility with Story
Patterns, they also allow existentially quantified objects (∃ →)
and destroying previously unbound objects (→ @) – if they can
be bound.

[true]

1

1

True leaf node. The (1) leaf node indicates that a binding has
successfully satisfied this branch of the SDD. Whether this al-
ready means that the whole SDD matches depends on the pre-
ceding quantifiers. The label is optional.

[false]

0

0

False leaf node. The (0) leaf node indicates that a binding
has failed to satisfy this particular branch of the SDD. How-
ever, there are two possibilities how the SDD might still be
fulfilled: Either there is a preceding quantified existential node
which can provide an alternative binding that succeeds, or there
previously was a node with multiple exiting connectors (OR-
branches), one of which might evaluate to true. The label is
optional.

A.2.2 Connector types

[then] [[min..max]]

then

Then connector. The then connector connects a node to the
condition that must follow if the node’s SP matches at all. Op-
tionally, it is possible to specify a cardinality, i.e. a restriction
on how many different alternative bindings fulfilling the SP
there may or must be per original binding. It is possible to
specify more than one then connector; the multiple connectors
then specify alternatives. The then connector is drawn as a solid
green line. The label is optional, but typically included.

[then] [[min..max]]

then

Then connector. There is a red variant of the then connector.
It solely exists to make the modeler’s intent more obvious –
its semantics are identical to those of the green then connector.
The then connector automatically turns red when it is connected
to a (0) leaf node, or if the node’s else connector is green. All
node borders always share the color of the attached then con-
nector; therefore, node borders turn red whenever the red then
connector is used.

A.2 SDD Language Reference 307

[else]

else

Else connector. The else connector connects a node to the con-
dition that must follow if the node’s SP does not match at all.
This means that a specific binding arriving at a node either goes
on down the then or the else connector, but never both. Specifi-
cally, those newly created bindings that fail to match the SP are
not passed down the else connector. It is therefore pointless to
specify a cardinality for the else connector, as only the original
binding, i.e. exactly one binding, is ever propagated down the
connector. The else connector is drawn as a dashed red line.
The label is optional, but typically included.

[else]

else

Else connector. There also is a green variant of the else con-
nector, corresponding to the red then connector. It solely exists
to make the modeler’s intent more obvious – its semantics are
identical to those of the red else connector. The else connec-
tor automatically turns green when it is connected to a (1) leaf
node, or if the node’s then connector is red.

[and]

Merge connector. The merge connector is a solid black arrow
with a massive tip. It is used to connect multiple transformation
nodes. It exists for convenience and enables reusing transfor-
mation nodes. The condition ’IF a and not b THEN DO A,
IF a and b THEN DO A AND B’ can then be rendered using
two transformation nodes, one specifying ’A’ and one speci-
fying ’B’, and connecting ’B’ to ’A’ using a merge connector,
instead of a transformation node specifying ’A AND B’ (thus
redundantly repeating ’A’). The label is optional.

308 A. Constraint Language Reference

A.3 TSSD Language Reference

In this section, we summarize the syntax of Timed Story Scenario Diagrams (TSSD). Inside
situation definitions, the regular SDD syntax is used. We only present the abstract syntax for
each element.

A.3.1 Situations

[Label]

[TSSD]

[SDD]

[Label]

[SDD]

Situation. Defines a situation, i.e. a set of states, by means of an
SDD. The label is optional. As most elements, situations can be re-
quired or forbidden. Required elements are drawn with dark greena

solid lines, forbidden elements are drawn with dark redb dashed
lines.

aAs dark green, we define rgb(64, 140, 36).
bAs dark red, we define rgb(164, 0, 0).

Label Label Situation reference. References a previously defined situation in
order to save space. The label is required.

[Label]

[TSSD]

[SDD]

[TSSD]

[SDD]

[Label]

[TSSD]
Scenario situation. Defines a scope that may contain other states
and situations. Marked by a bold border.

Label Label

Scenario situation reference. References a previously defined sce-
nario situation in order to save space. Marked by a bold border. The
label is required.

1 0
Trivial situation. Defines a situation that trivially matches when-
ever its preconditions are fulfilled, respectively never matches. Rep-
resented as a 1 or 0 inside a situation with a bold border.

A.3.2 Pseudostates

Initial node. Marks the starting point(s) of the evaluation. Repre-
sented as a solid black circle.

Initial State Success Failure

Termination node. Marks the (successful) end of a trace. Repre-
sented as a solid black circle with an additional black ring around
it.

Situation

Situation

First of node. Matches when the first one of the attached situations
is observed. Represented as a white circle with a black border and
a stylized outgoing arrow. Connected to the attached situations by
dotted black lines.

A.3 TSSD Language Reference 309

Situation

Situation

Last of node. Matches when the last one of the attached situations is
observed. Represented as a simple white circle with a black border.
Connected to the attached situations by dotted black lines.

A.3.3 Temporal connectors

Eventually connector. Points to a situation that must follow eventu-
ally or finally. Represented by an arrow with a solid tip.

Immediately connector. Points to a situation that must follow im-
mediately, i.e in the same system state. Exists for convenience,
equivalent to a [0..0] time constraint. Represented by an arrow with
a hollow tip.

Until connector. The source situation must match until the target
situation matches. Represented by an arrow with a double solid tip.

A.3.4 Constraints

Constraint edge. Allows specifying constraints between arbitrary
situations of a diagram. Represented by a dotted line.

[TSSD]

[SDD]

[TSSD]

[TSSD]

Label Label
Forbidden situation. The forbidden situation must not match be-
tween the source and target situation of the attached connector.
Drawn using dark red dashed lines.

[TSSD]

[SDD]

[TSSD]

[TSSD]

Label

[TSSD]

[SDD]

[TSSD]

[TSSD]

Label
Required situation. The required situation must match between the
source and target situation of the attached connector. Drawn using
dark green solid lines.

Label Label

Strictly next situation. The situation only accepts the first matching
observation (per distinct trace). Represented by an additional dashed
red line around the situation that is connected to the qualified con-
nector.

Label Label

Strictly previous situation. The situation only accepts the last
matching observation (per distinct trace). Represented by an addi-
tional dashed red line around the situation that is connected to the
qualified connector.

Label Label

Strict situation. The situation is part of a branch, but an identical
observation must not appear elsewhere between any two situations
of the scenario. As all bindings that are reused by the strict situation
need to be previously bound, the restriction only operates per dis-
tinct trace. Represented by an additional dashed red line around the
situation.

310 A. Constraint Language Reference

U U U

Globally strict situation. While strict situations only constrain con-
nectors between situations, placing the corresponding notational el-
ement on the border of the strict situation indicates that the situation
is equally forbidden on connectors either from initial nodes, to ter-
mination nodes, or both.

Situation Situation

[lower..upper]

Situation Situation
[lower..upper]

Time bound. Constrains the time that may pass between observa-
tions of the connected situations. The situations do not have to be on
the same branch.

Situation
Situation

Situation

Homomorphism constraint. Allows several situation references in
the same TSSD to match the exact same instances by adding the
appropriate elements and homomorphism constraints in the corre-
sponding SDDs. The self reference is only meaningful in loop defi-
nitions. Drawn in red, as the constraint refers to the SDD level.

A.3.5 Scenarios

[TSSD]

[SDD]

[TSSD]

[Label:]

[TSSD]

Trigger. The dashed grey box marked with >>> designates a set of
situations as the trigger of a universal TSSD. The trigger ∀-quantifies
over the indicated variables.

Name Sequence label. Used to label a set of situations as a logical unit.
Represented by a dotted blue line.

A.3.6 Subscenarios

Subsequence

[SDD]

Subscenario situation. Represents the initial situation of a subsce-
nario definition, corresponds to an SDDP’s λ node. Likewise ac-
cepts roles and parameters. Represented as a situation with a black
shadow.

Subsequence

Subscenario reference. Used to invoke a subscenario in the invok-
ing λ situation of a scenario. Represented as a situation reference
with a black shadow.

role
Role rebinding. Used to rebind roles to variables in the invoking λ
situation of a scenario. Represented by a black arrow with a solid
tip.

Label (par+)

Parametrized reference. Used to invoke a subscenario with param-
eters as defined by the λ situation of the subscenario. Represented as
a situation reference with a black shadow.

+

[1..∞]

Loop. The subscenario in the qualified scenario situation is matched
at least once. Internally translated into a recursive subscenario defi-
nition. Represented by a loop symbol marked with +.

A.3 TSSD Language Reference 311

[0..∞]

Optional loop. The subscenario in the qualified scenario situation
is matched zero or more times. Internally translated into a recursive
subscenario definition. Represented by a loop symbol marked with
∗.

[l..u]

Bounded loop. The subscenario in the qualified scenario situation
is matched at least l and at most u times. Internally translated into a
parametrized recursive subscenario definition or unrolled explicitly.
Represented by a loop symbol with an attached cardinality.

312 A. Constraint Language Reference

Appendix B

Recursion Semantics

This appendix contains supplements to the formalization of recursive SDDPs in Section 3.2.3.4.
In the first section, we provide the definition of well-formedness for recursive SDDPs. In the
second section, we present an alternative method for computing the fixed points that is more
complex, but also more efficient than the basic method presented in Chapter 3.

B.1 Well-formedness of recursive SDDPs

We require recursive SDDPs to be well-formed. A well-formed SDDP does not contain vacuous
cycles, i.e. there always needs to exist a potential path to a termination condition from any node.
Whether a set of SDDPs is well-formed can be analyzed using the invocation graph of the SD-
DPs. The invocation graph is a reduced representation of the diagrams’ structure that focuses
on the aspects that are relevant for recursion. We are only interested in λ nodes, leaf nodes,
nodes containing SDDP invocations, and the paths connecting them. Starting from the λ node,
we connect it to all leaf nodes that are reachable without invoking another SDDP first. For each
invocation, we add an invocation node and connect it to the λ node of the invoked SDDP. We
also need to note whether the invocation arguments are all unmodified roles and parameters of
the preceding λ node.
An SDDP is then well-formed if (a) it is satisfiable, i.e. a (1) leaf node is reachable from its λ
node in the invocation graph, and (b) it is progressing, i.e. on every cycle through the invocation
graph, there is at least one quantifier affecting an element that is used as an argument for an
SDDP invocation, or a parameter is modified from the previous invocation.
Figure B.1.1a presents the invocation graph for our definition of reachable in Figure 3.2.15a. From
the λ node, we can reach the (1) node on the left branch if the termination condition holds. If
the termination condition does not hold, we will have to evaluate the recursive invocation as the
branches represent alternatives, hence the connection back to λR. However, the invoking node
is quantified, and if we fail to bind some intermediate track, the right branch will evaluate to (0)
without recursion.

314 B. Recursion Semantics

R

1

0
a. WF: Basic existential di-

rect recursion

R

0
b. ¬WF: Trivially false di-

rect recursion

R

1
c. WF: Basic universal

direct recursion

0

G

1

F

1

d. WF: Indirect recursion

G’

1
e. ¬WF: Non-progressing

direct recursion

Figure B.1.1: Invocation graphs for recursive SDDPs

Now imagine the same definition without the left branch. The recursion could still terminate once
it reaches tracks without successors that could be bound to intermediate, but the property could
never be fulfilled and would thus be trivially false. Figure B.1.1b presents the corresponding
invocation graph.
If the invoking node was universally quantified instead, a track without successors would fulfill
the right branch, which results in the minimal invocation graph in Figure B.1.1c.
In Figure B.1.1d, we present the invocation graph for the example in Figure B.1.2 below. F
invokes G, and G invokes F . F can terminate in two ways: If there is no epsilon, evaluation
reaches (1) while if there is no delta, it reaches (0). G can reach (1) without further recursion if
beta has the required label.
G does not contain any quantifiers, but passes beta straight on to F , which is indicated by the
dashed border around the invoking node. If G invoked itself instead of F , there would be a
non-progressing cycle as shown in Figure B.1.1e.
Finally, we present synthetic examples where an SDDP L depends on both M and N , which in
turn reference L. If the two invocations are alternatives, the invocation graph in Figure B.1.3a
results. As all nodes form a single cycle, reaching one of the (1) nodes is sufficient. If the the
invocation of N follows on the then branch of M , the invocation of N is added in place of the

B.2 Alternative SDDP Semantics Definition 315

F: alpha

 delta

 epsilon

alpha : N

alpha : N

epsilon : E

src

epsilon : E

G beta

delta : N

tgt

a. F invokes G

G: beta

beta : N

F
alpha

beta : N- label = blue

beta : N

b. G invokes F

Figure B.1.2: Example for indirect recursion

N

1

L

M

1
a. WF: Disjunctive recursions

N

1

L

M

b. WF: Conjunctive recursions

Figure B.1.3: Invocation graphs for recursive SDDPs

(1) node in the subgraph representing M as in Figure B.1.3b, thus ensuring that, for the same
binding, first M and then N is fulfilled.

B.2 Alternative SDDP Semantics Definition

In this section, we present a different though equivalent approach to defining the semantics of
recursive SDDPs. The approach differs from the definition in Section 3.2.3.4 in the way the
fixed point is computed: The SDDP is evaluated only once and the fixed point is computed
on the derived result set, as opposed to computing a new result set in every step. While the
alternative definition is more complex and may consume more memory during computation, it
should take significantly less time to compute, which prompted its inclusion in this appendix.

316 B. Recursion Semantics

We compute the fixed point in two steps: First, we compute the potential result set of F using
function fapply, which is an extension of the regular apply function. In a second step, we then
use the fixed point operator −>> to derive the actual result set of F , defining its semantics.
In order to compute the potential result set, an existential node αF quantifying all roles of the
SDDP F is added before the λ node λF . The existential node will then generate all possible
combinations of bindings for the roles and pass them on as input to the λ node.
The modified propagation functions fapplyn will not try to evaluate recursive SDDP invocations,
but basically considers both possible results of the invocation at the same time. If the two ex-
tended bindings ξ′a and ξ′b have been generated for ξζ in the existential node n containing an invo-
cation of the recursive SDDP F , we would send two candidate sets containing {(n′, ξ′a), F (ξ′a)}
and {(n′, ξ′b), F (ξ′b)} down the then connector and a candidate set {(n′′, ξζ), F (ξ′a), F (ξ′b)} down
the else connector, where ζ is a forbidden witness, i.e., eval(ζ) := ¬eval(ζ). The additional wit-
nesses ensure that each of the candidate sets will only satisfy the diagram if the SDDP invocation
has the appropriate result.
Recursive and non-recursive SDDPs can be distinguished by means of their invocation graphs.
We accordingly divide Fn into the non-recursive SDDPs FNR

n and the recursive SDDPs FR
n with

Fn := FNR
n] FR

n .
For each node n where FR

n = ∅, fapplyn is identical to applyn. For nodes where FR
n 6= ∅, the

modified propagation function fapplyn performs the following steps on each selected witness ζ:

1. The possible extensions of the binding ξζ are computed as above, but considering only the
non-recursive SDDP invocations:

X (t)
ζ := {ξ′ζ | Pn[ξ′ζ] ≤ G ∧ ∀F ∈ FNR

n : {F ((n, ξ′ζ))} v [[F]]G ∧
ξζ ≤ ξ′ζ ∧ ∀v : ξ′ζ(v) 6= ξζ(v) ⇒ v ∈ free(n, ξζ)}. (B.2.1)

Differently from above, X (e)
ζ is never empty:

X (e)
ζ := {ξζ}. (B.2.2)

2. We now compute two sets of corresponding witnesses, one for the new bindings travelling
down the then connector and one for the original binding, travelling down the else connec-
tor. Cardinalities are not allowed on nodes containing recursive invocations as they can
lead to paradoxical statements and thus do not need to be considered. We then have:

W(t)
ζ :={(n′, ξ′) | n′ ∈ then(n) ∧ ξ′ ∈ X (t)

ζ (B.2.3)

W(e)
ζ :={(n′, ξ′) | n′ ∈ else(n) ∧ ξ′ ∈ X (e)

ζ . (B.2.4)

B.2 Alternative SDDP Semantics Definition 317

3. The result set A′ is updated, adding additional required and forbidden witnesses repre-
senting the result of the recursive SDDP invocation. Again, we write F (ζ) and F (ζ) as
abbreviations for required and forbidden witnesses at F ’s λ node. Note that FR

n will typi-
cally only have one element, greatly simplifying many of the following expressions.

The following definitions are declarative, as opposed to the constructive definitions in
Equations 3.2.10 and 3.2.11. We therefore additionally require the generated result sets
to be minimal, i.e.

∀C ∈ A� : (@C′ ∈ A� : C ⊆ C ′). (B.2.5)

For the then branch of existential nodes, we generate a set of candidate sets, each contain-
ing one of the generated extensions and all its required witnesses representing successful
recursive invocations:

A(t)
∃ := {C ′ | ∃C ∈ A′ : ζ ∈ C ∧ (∀ζη ∈ C \ ζ : ζη ∈ C ′) ∧

(∃ζ(t) ∈ W(t)
ζ : (ζ(t) ∈ C ′ ∧ ∀F ∈ FR

n : F (ζ(t)) ∈ C ′))}. (B.2.6)

For the then branch of universal nodes, we also generate a set of alternative candidate sets,
as each generated extension must either be in the extended candidate set along with all
its required invocation witnesses or may ’excuse itself’ by means of a forbidden witness
representing a failed invocation. However, to justify following the then branch, there has
to be at least one valid candidate. We have:

A(t)
∀ := {C ′ | ∃C ∈ A′ : ζ ∈ C ∧ (∀ζη ∈ C \ ζ : ζη ∈ C ′) ∧

(∃ζ(t) ∈ W(t)
ζ : (ζ(t) ∈ C ′)) ∧

(∀ζ(t) ∈ W(t)
ζ : (ζ(t) ∈ C ′ ∧ ∀F ∈ FR

n : F (ζ(t)) ∈ C ′) ∨

(ζ(t) /∈ C ′ ∧ ∃F ∈ FR
n : F (ζ(t)) ∈ C ′))}. (B.2.7)

For the else branch, we extend a candidate set with the single witness from W(e)
ζ and a

forbidden invocation witness for every extended binding in W(t)
ζ :

A(e) := {C ′ | ∃C ∈ A′ : ζ ∈ C ∧ (∀ζη ∈ C \ ζ : ζη ∈ C ′) ∧ (∃ζ(e) ∈ W(e)
ζ :

(ζ(e) ∈ C ′ ∧ ∀ζ(t) ∈ W(t)
ζ : ∃F ∈ FR

n : F (ζ(t)) ∈ C ′))}. (B.2.8)

(B.2.9)

Finally, those candidate sets not containing ζ are left unchanged:

318 B. Recursion Semantics

Aη := {C ′ | ∃C ∈ A′ : (ζ /∈ C ∧ C ′ = C)}. (B.2.10)

If n is existential, we then have

A′
∀ := A(t)

∀ ∪ A(e) ∪ Aη. (B.2.11)

If n is universal, we have

A′
∃ := A(t)

∃ ∪ A(e) ∪ Aη. (B.2.12)

The result set for the auxiliary existential node αF is then computed in the usual fashion using
Equations 3.2.13 – 3.2.16. We define [[f (0)]]G := [[αF]]G{{(fF ,τ)}} as the first appoximation of the
semantics [[F]]G of F . The computed result set contains candidate sets that are final except for
invocation witnesses Fi(ζ) or Fi(ζ), whose truth value is ⊥.
For all SDDPs Fi that are part of the same invocation graph, we then apply the fixed point
operator −>> to [[f

(0)
i]]G. We keep applying it, in turn, to compute

[[f (j+1)]]G := −>>([[f
(j)
i]]G) (B.2.13)

until we have −>>([[f
(j)
i]]G) = [[f

(j)
i]]G for all of the involved SDDPs Fi. We have then computed a

fixed point [[fi]]
G which allows us to define the SDDP semantics as

[[Fi]]
G := {C | C ∈ [[fi]]

G ∧ eval(C)}. (B.2.14)

We define two versions of−>>, the least fixed point operator−>>µ and the greatest fixed point operator
−>>ν . The standard semantics of SDDs are defined by means of −>>µ, i.e. using least fixed points.
The least fixed point operator −>>µ works by eliminating those invocation witnesses which evolve
into valid final candidate sets from the candidate sets in [[f

(j)
i]]G. As more and more undefined in-

vocation witnesses disappear, the number of valid final candidate sets making up [[Fi]]
G increases

until no more such invocation witnesses are left. We define:

−>>µ([[f
(j)
i]]G) :=



⋃
C∈[[f

(j)
i]]G

C\F (ζ)

∣∣∣∣∣ ∃F (ζ) ∈ W
[[f

(j)
i]]G

:

∃C ∈ [[f
(j)
i]]G : {F (ζ)} v C ∧ eval(C)⋃

C∈[[f
(j)
i]]G

C|F (ζ) /∈ C

∣∣∣∣∣ ∃F (ζ) ∈ W
[[f

(j)
i]]G

:

∀C ∈ [[f
(j)
i]]G|{F (ζ)} v C :¬eval(C)

[[f
(j)
i]]G | otherwise.

(B.2.15)

B.2 Alternative SDDP Semantics Definition 319

The greatest fixed point operator −>>ν , on the other hand, initially assumes that all invocation
witnesses evaluate to true and then successively eliminates those candidate sets that are definitely
invalid from [[f

(j)
i]]G.

To keep the definition of −>>ν compact, we define the truth value of an invocation witness in
W

[[f
(j)
i]]G

as

eval(F (ζ)) :=

{
false | @C ∈ [[f

(j)
i]]G : {F (ζ)} v C

true | otherwise, (B.2.16)

i.e. an invocation witness is only false if there are no candidate sets left that evolved from it. −>>ν

then eliminates all candidate sets that contain at least one invalid witness:

−>>ν([[f
(j)
i]]G) :=

{
[[f

(j)
i]]G \ C | ∃C ∈ [[f

(j)
i]]G : ∃ζ ∈ C : ¬eval(ζ)

[[f
(j)
i]]G | otherwise.

(B.2.17)

As all involved sets (especially the result sets [[f
(j)
i]]G) are finite and the fixed point operators only

change the result sets by eliminating, never adding, witnesses and candidate sets, they can only
be applied to [[f

(j)
i]]G finitely often before a fixed point is reached. We can therefore guarantee

that the fixed points exist and that their computation terminates.

320 B. Recursion Semantics

Appendix C

Invariant Checking Optimizations

C.1 Eliminating False Negatives

In Section 5.2.2 of Chapter 5, we have discussed a method for checking invariants of graph
transformation systems. In our discussion, we have shown how many purely theoretical coun-
terexamples can be eliminated by consciously introducing additional forbidden patterns encoding
assumptions about the system’s structure.
In order to deal with the overapproximation that is due to our use of the subpattern relationship
for pattern matching in a generic way, a more complex approach is required. If, for a given
source graph pattern SGP , there is an invalidating pattern (i.e. a forbidden pattern or the LHS
of a preempting rule) P so that P ⊆ SGP , SGP is certainly not a counterexample, whereas if
there is no P with P - SGP , SGP is a definite counterexample. The critical, indeterminate
cases are those where there is a P with P - SGP but not P ⊆ SGP . These cases need to be
inspected by a human operator, in a process that is tedious and error-prone. We will therefore try
to automate the classification of indeterminate cases into counterexamples and false negatives.
The former is easier and less problematic, the latter requires special care and has to be performed
conservatively, as false positives have to be avoided at all cost.
The problem in indeterminate cases is this: P matches and thus seems to invalidate SGP , but
there is at least one NAC P̂ that is not forbidden by a NAC ˆSGP . An occurrence sgp of SGP
might therefore be embedded in an instance graph sgp′ that also contains the missing elements
of P̂ , which would mean that sgp′ would be matched by SGP , but not [P, P̂], making it a valid
instance and thus a counterexample. However, there might be another invalidating pattern P ′

that in turn invalidates sgp′, which is not recognized by the basic verification algorithm. The
question we have to answer is therefore whether there is any instance graph that is matched by
SGP and valid.
While the number of candidate instance graphs is typically infinite, it is fortunately again possible
to treat this problem at the pattern level by considering possible extensions of SGP . Moreover,
we only need to perform calculations on a finite subset of these extensions, most of which even
need to be performed only once for each set of invalidating patterns P and can be reused for the

322 C. Invariant Checking Optimizations

analysis of all considered source graph patterns.
The calculations comprise three steps: The computation of derived invalidating patterns I∗ us-
ing modus tollendo tollens, the computation of pattern evolutions for each P ∈ I∗ using modus
ponendo ponens, and the validation against a given SGP . In our calculations, it helps to think
of ourselves as an adversary who is trying to construct a valid instance graph (and thus a coun-
terexample). For invalidating patterns, this provides the intuition of interpreting a pattern P with
NACs P1, P2, . . . as a conditional pattern: if (there is an occurrence of) P then (we also need
to add) P1 ∨ P2 ∨ As this is more understandable than double negations, we will also use
this interpretation in the subsequent illustrations. A pattern P without NACs then becomes if
P then false, i.e. simply a forbidden pattern ¬P . In the following, we use synthetic examples
as it would be difficult to find convincing illustrations of each subtlety of the algorithm in our
application example.

1. The initial set of derived patterns I∗ is the set of invalidating patterns I. If I contains
RHS of preempting rules, a separate I∗ including only the rules with higher priorities will
have to be computed for each priority level.

Given some invalidating pattern P (see Figure C.1.1a) and some conditional pattern
[Q, Q̂] with a NAC Q̂1 (see Figure C.1.1b) from I, if there is a pattern [Q′, Q̂′] (see Figure
C.1.1c) so that P - Q′∪ Q̂1, Q - Q′, P̂ ∪ Q̂\ Q̂1 ⊆ Q̂′, and not Q̂1 - Q′, the new pattern
Q′ is added to I∗. The reasoning behind this is that if P is forbidden and P follows from
Q′ by mediation of Q, then Q′ must also be forbidden. By ’backwards chaining’ several
such derivations, we can potentially arrive at much simpler forbidden patterns (see Figures
C.1.1d and C.1.1e). If Q′ ⊆ P , as in the example, we can even eliminate P from further
analysis.

a0 : A b0 : B c0 : Cx0 : X
link linklink

a. The invalidating pattern P

b2 : B c2 : C
link

�

b. The conditional pattern Q1

b0' : Ba0' : Ax0' : X
link link

�

c. The derived pattern Q1′

a1 : A b1 : B
link�

d. The conditional pattern Q2

a0'' : Ax0'' : X
link�

e. The derived pattern Q2′

Figure C.1.1: Deriving simpler patterns: Q2′ replaces P and Q1′

However,Q′ need not necessarily be smaller than P , it might just be different. In the exam-
ple in Figure C.1.2, the derived pattern is not contained in either of the original patterns. It

C.1 Eliminating False Negatives 323

basically states that the conditional patternQ is already forbidden in a given context (’c2’),
as completing the condition would complete P . This will be very helpful in the next step.

a2 : A

b2 : B c2 : C

link link

�

a. The invalidating pattern P

a1 : A

x1 : X

b1 : B

link

link

�

b. The conditional pattern Q

c2' : C

a3' : A

x1' : X

link

link

�

c. The derived pattern Q′

Figure C.1.2: Deriving new related patterns

A final complication, which will also become more clear in the next step, occurs if Q̂1 \
Q contains nodes that could be mapped to nodes in Q′ \ Q, which requires adding the
associated edges in Q̂1 as a NAC to Q′. Otherwise, Q̂1 could be fulfilled by adding these
edges instead of completing P .

The number of patterns that can be derived by such backwards reasoning may be large,
especially if I contains many similar patterns, but is necessarily finite.

2. For each conditional pattern [P, P̂] in I∗, we now imagine a source graph pattern SGP :=
P and try to complete one of its NACs P̂ . If we can do this without again triggering some
other pattern from I∗, it is trivial to create a counterexample and we can strike [P, P̂] from
the list of potentially ambiguous patterns (see Figure C.1.3). The important point here
is that we are able to focus on the pattern itself and ignore its context. Might not some
additional element in the source graph trigger another invalidating pattern then? Yes, but
this would already be covered by a derived pattern from the previous step. The calculation
of I∗ is thus a necessary precondition for the justification of our way of reasoning in the
second step.

As the adversary, we can, without loss of generality, begin by trying to simply add one
of the required NACs to the pattern. If the additions result in a forbidden pattern, this
particular evolution is a dead end. If the additions result in a conditional pattern, we
continue by trying to fulfill the new pattern. While we cannot directly reuse the results
of its own evolution, we can apply dynamic programming techniques in order to avoid
repeatedly computing identical extension. If the additions result in a valid pattern, we can

324 C. Invariant Checking Optimizations

b1 : B c1 : C
link

�

a. The invalidating pattern B

ba : B

b. The positive part of the pattern

ba : B ca : C
link

c. The condition is completed successfully

Figure C.1.3: The evolution for the invalidating pattern B

terminate the search (see Figure C.1.4). As the initial pattern is finite and there is only a
finite number of patterns in I∗, there can only be a finite number of extensions before we
succeed or the same patterns occur again. As the context is irrelevant, this means that we
have found a cyclic dependency that could be repeated ad infinitum.

a1 : A b1 : B
link

�

a. The invalidating pattern A

aa : A

b. The positive part of the pattern

aa : A ba : B
link

c. The first extension triggers B

aa : A ba : B
link lin

bc : C
k

d. ... which we already know how to satisfy

Figure C.1.4: The evolution for the invalidating pattern A

Adding new elements to complete NACs is a good default strategy as it minimizes the risk
of interactions with the preexisting context. However it is not sufficient, particularly in the
face of cycles. Take the basic requirement ’every track must have a successor’ (see Figure
C.1.5a). This can only be fulfilled by a finite structure if it contains at least one cycle,
i.e. some track reuses an existing track as its successor (see Figure C.1.5h). For completing a
NAC, we may have a (finite) number of opportunities to reuse an existing element, which
requires some additional considerations.

Whenever simply adding new elements does not lead to immediate success, we attempt
whether reuse is possible. If reusing the preexisting element(s) does not trigger another
pattern, we have again found a valid graph. If pattern(s) are completed by the reuse, we
can again ignore their context and consult the evolution(s) we have computed for them in
order to determine whether we will be able to construct a valid instance. If there is some
pattern that precludes a successful construction, reusing the selected elements is a dead
end.

In the context of cyclic dependencies, we have two cases to consider: Reusing an element is
achieved by adding an edge, which necessarily introduces a cycle into the evolved pattern.
If the invalidating pattern also contains this cycle or elements that are not part of the pat-
terns belonging to the cyclic dependency (e.g. a pattern forbidding a loop of length 1 as in

C.1 Eliminating False Negatives 325

Figure C.1.5b), it only invalidates this particular iteration (see Figure C.1.5f), whereas later
iterations might be allowed (see Figure C.1.5h). If the invalidating pattern only contains
elements that are part of the patterns belonging to the cyclic dependency (e.g. a cardinality
constraint as in Figure C.1.5c), it will invalidate any iteration. A cyclic dependency thus
invalidates a pattern if all of its iterations can be proven to be invalid.

t2 : Trackt1 : Track

successor�

a. T1: Requiring a successor

t6 : Track t7 : Track
successor

successor

�

b. T2: Forbidding cycles of length 2

t4 : Track

t5 : Track

t3 : Track
successor

successor

�

c. T3: Forbidding two predecessors

ta : Track

d. The positive part of the
pattern

tb : Trackta : Track

successor

e. The NAC again contains the
pattern itself

ta : Track tb : Track

successor

successor

f. Reusing ta is forbidden by pattern
T2

tb : Trackta : Track tc : Track
successor successor

g. We therefore try another iteration...

tb : Track

ta : Track tc : Track

successor successor

successor

h. ... and find a valid extension

Figure C.1.5: Evolving a pattern with cyclic dependencies

As a result of this step, all invalidating patterns will be classified as either trivial to com-
plete, impossible to complete, or requiring reuse in order to complete.

3. When applying the verification algorithm, we then use the sets I∗ instead of I to validate
source graph patterns. This will already reduce the number of indeterminate cases thanks
to the derived patterns. For each indeterminate case SGP , we then check whether the
evolution of the pattern P in question has shown it to be trivial to complete, which makes
SGP a counterexample, or impossible to complete, which makes SGP a false negative

326 C. Invariant Checking Optimizations

which can be eliminated. If P requires reuse in order to complete, this is not entirely
independent of the concrete context, which means that we need to apply the computed
evolution to SGP and verify whether this will trigger some other invalidating pattern
that was not present in the context-free evolution. If there is no such pattern, SGP is a
counterexample; otherwise this depends on the evolution of that pattern, which needs to be
consulted in turn. In the example in Figure C.1.6), SGP is a false negative after all as the
loop from Figure C.1.5h is invalidated by T3 (see Figure C.1.5c) and ta′s extra successor
edge.

ta : Track tb : Track tc : Track

successor successor

successor

a. The given SGP

ta : Track

tb : Track

tc : Track

successor successor

successor

successor

b. The established solution...

tb : Track

tc : Trackta : Track

td : Track

successor successor

successorsuccessor

successor

c. ...and any extension are invalidated by T3

Figure C.1.6: There is no valid graph for the given SGP

Together, these steps allow eliminating a great number of false negatives. While the validity of
derived patterns can be checked easily, the reasoning required in the following steps is complex.
As we do not provide a formal proof of the algorithm’s correctness, it is advisable to record
counterexamples that are identified as false negatives in the third step and inspect them after all
other counterexamples have been eliminated.
While these extensions make the method less elegant and more computationally expensive, it
should be stressed that its central advantage, i.e. the ability to verify systems with infinite state
spaces, is unaffected. It is also greatly preferable to have an algorithm carry out these considera-
tions instead of performing them manually.

Appendix D

Specification Pattern System

In Section 6.3.1, we have discussed the the Specification Pattern System (cf. [DAC98]) and its
encoding as Timed Story Scenario Diagrams. We have, however, only presented the basic pat-
terns and a few combinations of them. In this appendix, we list the complete expanded encoding
of all patterns as TSSDs.

D.1 Scopes

In Table D.1.1, we encode the scopes globally, before, after, between, and until, using ϕ as a
placeholder for the scoped property.

D.2 Properties

In Table D.2.1, we define the ten different properties listed by the Specification Pattern System.
Inbound connectors link to possible preconditions, outbound connectors encode success and lead
to possible postconditions.

D.3 Derived patterns

By substituting the properties for ϕ, we can derive the encoding for scoped properties. The
following tables list the trivial form of each combined pattern, whose size and complexity is
already at an acceptable level, in the center column in order to prove that this very systematic
and mechanistic approach already yields useable results. In the right column, we also provide a
simplified version that can be derived using the two direct simplification steps we have presented.

Existence. Table D.3.1 contains the encodings for existence.

Absence. Table D.3.2 contains the encodings for absence.

328 D. Specification Pattern System

Scopes

globally

�

�

�

�

�

before R

R

�

�

�

�

�

after Q
Q

�

�

�

�

�

between Q and R

Q R

�

�

�

�

�after Q until R

Q

R

�

�

�

�

�

Table D.1.1: The scopes encoded as TSSDs (for a property ϕ)

D.3 Derived patterns 329

Properties

Existence exists P P

Absence no P P

Universality always P
P

Bounded Existence exist at most 2 P
P P

Precedence S precedes P S

P

Precendence Chain 1 → 2 P precedes S, T
P

S T

Precedence Chain 2 → 1 S, T precedes P
T

P

S

Response S responds to P
P S

Response Chain 1 → 2 S, T responds to P
P S T

Response Chain 2 → 1 P responds to S, T
S T P

Table D.2.1: The properties ϕ encoded as TSSDs)

330 D. Specification Pattern System

Existence

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

P
P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

R

P
P

R

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q P Q P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q R

P

Q R

P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q

R

P Q P

R

Table D.3.1: Existence, trivial and simplified patterns

Absence

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

P
P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

R

P
P

R

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q P Q P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q R

P

Q R

P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q

R

P Q P

R

Table D.3.2: Absence, trivial and simplified patterns

D.3 Derived patterns 331

Universality. Table D.3.3 contains the encodings for universality. The scenario situation in the
before case cannot be eliminated (unless the past triggered scenario is rewritten using the less
elegant internal encoding) as the immediately connector is required to indicate that P should
hold from the very beginning, but there is no predecessor of the scenario situation to connect it
to (connecting it to the scenario’s initial node would turn P from a triggered past scenario into a
precondition of R).

Universality
aft

er
 Q

un

til
R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

P P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

R

P P

R

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q P Q P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q R

P

Q R

P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q

R

P Q P

R

Table D.3.3: Universality, trivial and simplified patterns

Bounded existence. Table D.3.4 contains the encodings for bounded existence. As we actually
want to constrain the total number of occurences of P , the strict situations of the property need
to be globally strict so that the interval before the first and after the last occurence is also con-
strained. Eliminating the scenario situations is not trivial in this case as they contain alternative⊙
• nodes. For the subsequent scenario, this corresponds to an ∨-join, which is not directly sup-

ported by the syntax. The only trivial way to eliminate the scenario situation is thus to replicate
the suffix. There is an alternative, however. While we generally believe that writing positive
scenarios (what should be) comes more naturally than writing forbidden scenarios (what should
not be) for most properties, it is rather straight-forward to encode ’at most two instances’ as ’not
three or more instances’. Using this approach (which again employs a very direct encoding of
what should not be, namely three times P in a row), we can obtain more compact encodings.
Another option that does not eliminate the scenario situation but may greatly reduce the size of
the diagram, in particular for bounds larger than 2, is to place the bounded property inside a
bounded loop with constraints [0..2]. Table D.3.5 lists the corresponding encodings.

Precedence. Table D.3.6 contains the encodings for precedence. Table D.3.7 contains the en-
codings for precedence (1,2), i.e. a sequence S, T preceded by P . Table D.3.8 contains the

332 D. Specification Pattern System

Bounded Existence

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly P P

P P P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

R

P P R

P P P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q
P P

Q P P P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q R

P P Q R

P P P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

P P
Q

R

Q

R

P P P

Table D.3.4: Bounded Existence, trivial and simplified patterns

encodings for precedence (2,1), i.e. P preceded by a sequence S,T .

Response. Table D.3.9 contains the encodings for response, i.e. S responds to P . Table D.3.10
contains the encodings for response (1,2), i.e. the sequence S, T responds to P . Table D.3.11
contains the encodings for response (2,1), i.e. P responds to the sequence S,T .

D.3 Derived patterns 333

Bounded Existence (Loop)

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

P

[0..2]

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

R

P

[0..2]

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q
P

[0..2]

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q R

P

[0..2]

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q

R

P

[0..2]

Table D.3.5: Bounded Existence expressed using a loop

334 D. Specification Pattern System

Precedence

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

S

P

S

P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

R

S

P R

S

P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q

S

P Q P

S

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q R

S

P
P

S

Q R

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q

R
S

P
Q

R

P

S

Table D.3.6: Precedence, trivial and simplified patterns

D.3 Derived patterns 335

Precedence (1,2)

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

P

S T

P

S T

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

R

P

S T R

P

S T

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q

P

S T Q S

P

T

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q R

P

S T
S

P

Q RT

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q

R
P

S T
Q

R

S

P

T

Table D.3.7: Precedence (1,2), trivial and simplified patterns

336 D. Specification Pattern System

Precedence (2,1)

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

T

P

S
T

P

S

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

R

T

P

S

R

T

P

S

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q

T

P

S

Q P

TS

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q R

T

P

S

P

T

Q R

S

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q

RT

P

S

Q

R

P

TS

Table D.3.8: Precedence (2,1), trivial and simplified patterns

D.3 Derived patterns 337

Response

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly P S

P S

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

R

P S
RP

S

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q
P S

Q P S

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q R

P S
P

S

Q R

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q

R

P S
Q

R

P S

Table D.3.9: Response, trivial and simplified patterns

338 D. Specification Pattern System

Response (1,2)

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

P S T
P S T

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

R

P S T

RP

S T

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q
P S T Q P S T

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q R

P S T

Q RP

S T

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q

R

P S T

Q

R

P TS

Table D.3.10: Response (1,2), trivial and simplified patterns

Response (2,1)

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

S T P
S T P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

R

S T P

RS T

P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q
S T P

Q S T P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q R

S T P

Q RS T

P

aft
er

 Q

un
til

R

be
tw

ee
n

Q
an

d R

aft
er

 Q

be
for

e R

glo
ba

lly

Q

R

S T P

Q

R

S PT

Table D.3.11: Response (2,1), trivial and simplified patterns

Zusammenfassung

Beim Einsatz von Software in immer mehr Lebensbereichen entstehen softwareintensive Sys-
teme, die eine vorher unbekannte Funktionsvielfalt, Effizienz und Flexibilität bieten. Jedoch
stellt die Entwicklung insbesondere einer zukünftigen Generation von Systemen, die in der Lage
sein werden, ihr eigenes Verhalten zu analysieren und an ihre Umgebung anzupassen, eine Her-
ausforderung dar, die neue Ansätze erfordert.
Model-Driven Engineering (MDE) soll durch Modellierung und Codegenerierung Qualität und
Effizienz des Entwicklungsprozesses verbessern. Das Agentenparadigma verspricht dagegen,
komplexe Systeme dadurch besser und intuitiver verständlich zu machen, dass ihr Verhalten als
Ergebnis der Interaktionen autonomer Agenten verstanden wird. Wir vereinigen diese Ansätze
in dieser Arbeit zu einer modellgetriebenen Methode zum Entwurf von Multiagentensystemen.
Dadurch gelingt es uns, CURCUMA, einen innovativen Ansatz zur Analyse und Entwurf kom-
plexer Koordinationsarchitekturen, auf eine solide theoretische und technische Grundlage zu
stellen, die eine formale Verifikation und experimentelle Validierung ermöglicht.
CURCUMA basiert auf zwei Prinzipien: Der Verwendung dynamischer Agentenorganisationen,
die durch Einhaltung vereinbarter Konventionen die Probleme lösen, für die sie verantwortlich
sind; und der zentralen Rolle der Umwelt der Agenten als der erforderliche Bezugsrahmen für
diese Konventionen. Die Konventionen bestimmen die Grenzen erlaubten Agentenverhaltens.
Um sie präzise ausdrücken zu können, haben wir die Unified Modeling Language (UML) um
eine Familie von Spezifikationssprachen für strukturelle und temporale Eigenschaften erweit-
ert. Story Decision Diagrams (SDD) stellen eine Prädikatenlogik für objektoriente Systeme dar,
während Timed Story Scenario Diagrams (TSSD) ihre strukturelle Entwicklung beschreiben.
Wir definieren ihre Semantik formal auf Basis der Theorie der Graphgrammatiken, was uns
erlaubt, eine Verbindung zu bestehenden Techniken zur Modellierung des Echtzeitverhaltens
von Komponenten herzustellen und Verifikationstechniken wie kompositionales Modelchecking
anzuwenden. Wir unterstützen weiterhin die für einen iterativen Entwicklungsprozess wesentli-
chen Aspekte Codegenerierung, Simulation, und Überwachung und bieten eine Implementierung
auf Basis des Werkzeugs Fujaba4Eclipse.

	Abstract
	Acknowledgments
	Table of Contents
	Introduction
	Motivation
	Objectives
	Approach
	Contribution
	Structure

	Foundations
	Introduction
	Related Work
	Application Example

	Story-Driven Modeling
	Notations
	Formalization

	Coordination Patterns
	Notations
	Formalization
	Integration

	Conclusion

	Constraints
	Introduction
	Related Work
	Application Example

	Structural Properties
	Enhanced Story Patterns
	Story Decision Diagrams
	Formal Semantics
	Discussion

	Temporal Properties
	Timed Story Scenario Diagrams
	Formal Semantics
	Discussion

	Conclusion

	System Design
	Introduction
	Application Example

	Conceptual Framework
	Approach
	Environment Specification
	Social Specification

	Formal model
	Environment Specification
	Culture Specification
	Community Specification
	Agent Specification
	System Specification

	Conclusion
	Related Work
	Discussion

	Verification and Validation
	Introduction
	Verification
	Model Checking
	Invariant Checking
	Behavior Verification
	Scenario-based Verification

	Validation
	Automation
	Simulation
	Analysis

	Conclusion
	Related Work
	Discussion

	Application
	Introduction
	Tool support
	Tool Landscape
	Modeling
	Prototyping

	Deriving Constraint Specifications
	Specification Pattern System
	Deriving Properties from Textual Requirements

	Application in Practice
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	Bibliography
	Index
	Constraint Language Reference
	SP Language Reference
	Objects
	Links
	Constraints
	Insets

	SDD Language Reference
	Node types
	Connector types

	TSSD Language Reference
	Situations
	Pseudostates
	Temporal connectors
	Constraints
	Scenarios
	Subscenarios

	Recursion Semantics
	Well-formedness of recursive SDDPs
	Alternative SDDP Semantics Definition

	Invariant Checking Optimizations
	Eliminating False Negatives

	Specification Pattern System
	Scopes
	Properties
	Derived patterns

