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Abstract

Automatic endless polarization controllers are important components for polarization di-
vision multiplex receivers, PMD (polarization-mode dispersion) compensators, coherent
optical receivers, optical fiber sensors and switches, as well as other optical interferomet-
ric solutions. High-speed polarization changes in the transmission fibers must be tracked,
without any interruption, in order to realize a near-perfect polarization matching. Thus,
fast polarization controllers typically use electro-optic polarization transformers which
currently offer the fastest response time.

In this work, a method to characterize commercial multistage polarization transform-
ers has been investigated. It has been developed based on a quaternion analysis of the
optical retarders. The polarization transformation of the retarder can be inferred ac-
curately using a quaternion-based optimization on series of polarimetric measurement
data. Based on the calibration result, the electro-optic polarization transformers can be
calibrated and operated as linear retarders or fractional waveplates with a high degree
of accuracy, already taking into account any of retarder’s non-ideal characteristics.

The electro-optic retarders have been used in a polarization control system. The
hardware for the system has been developed using affordable commercial off-the-shelf
components. The characteristics and the performance of two polarization control algo-
rithms have been extensively studied. An ultra-fast implementation of the linear retarder
algorithm, running on an FPGA (field programmable gate array), has been realized and
tested in a polarization tracking experiment. The retarder calibration data are stored
as look-up tables for very fast access. The implementation of the control algorithm has
been optimized, reaching a control iteration cycle of just 2 µs. In the tracking experi-
ments, it was found that the controller was able to track up to 15000 rad/s polarization
changes caused by rotating waveplates with the maximum polarization mismatch of only
0.14 rad, corresponding to a negligible intensity fluctuation of 0.02 dB. Truly endless op-
eration was confirmed in a long term experiment. This polarization controller is thus
suitable for polarization demultiplexing and PMD compensation.
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Zusammenfassung

Automatische, endlose Polarisationsregelung ist ein wichtiger Bestandteil in Empfängern
mit optischem Polarisationsdemultiplex, PMD-Kompensatoren (Polarisationsmodendis-
persion), kohärenten optischen Empfängern, faseroptischen Sensoren und Schaltern, sowie
in anderen optisch interferometrischen Lösungen. Schnelle Polarisationsänderungen in
der Übertragungsfaser müssen ohne Unterbrechungen nachverfolgt werden, um eine na-
hezu perfekte Übereinstimmung der Polarisationen zu erreichen. Typischerweise werden
zur Polarisationsregelung elektrooptische Polarisationstransformatoren verwendet, um
kurze Reaktionszeiten zu erreichen.

In dieser Arbeit wurde eine Methode zur Charakterisierung kommerzieller, mehrstu-
figer Polarisationstransformatoren auf Basis einer Quaternion-Analyse der optischen
Retarder entwickelt. Die Polarisationtransformation der Retarder kann mithilfe einer
Quaternion-Optimierung aus den gemessenen Polarisationsdaten gewonnen werden. Mit
den Ergebnissen dieser Kalibrierung lassen sich die elektrooptischen Polarisationstrans-
formatoren mit hoher Genauigkeit als lineare Retarder oder Wellenplatten betrieben,
wobei die nichtidealen Charakteristiken der Retarder schon berücksichtigt werden.

Die elektrooptischen Retarder wurden in einem Polarisationregelsystem verwendet.
Die Hardware dieses Systems wurde aus günstigen, kommerziellen Standardkomponen-
ten entwickelt. Die Eigenschaften und Leistungsmerkmale zweier Polarisationsregelal-
gorithmen wurden ausführlich untersucht. Eine sehr schnelle Implementierung eines
Regelalgorithmus für lineare Retarder wurde auf einem FPGA (field programmable
gate array) realisiert und in einem Experiment überprüft. Die Daten aus der Re-
tarderkalibrierung wurden für den schnellen Zugriff in Look-Up-Tabellen abgespeichert.
Die Implementierung des Regelalgorithmus wurde optimiert und eine Ausführungszeit
von nur 2 µs erreicht. Experimentell wurde herausgefunden, dass der Regler Polari-
sationsänderungen, die durch rotierende Wellenplatten verursacht wurden, bis zu einer
Geschwindigkeit von 15000 rad/s mit einer maximalen Polarisationsabweichung von nur
0,14 Radiant, entsprechend eines geringen Intensitätsverlustes von 0,02 dB, nachver-
folgen konnte. Echte endlose Regelung wurde durch ein Langzeitexperiment bestätigt.
Damit erreicht dieser Polarisationsregler die Anforderungen von Polarisationsdemulti-
plex und PMD-Kompensation.
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“Optical Endless Polarization Stabilization at 9 krad/s with FPGA-Based Con-
troller”, IEEE Photonics Technology Letters, Vol. 20, 2008, pp. 961-963

3. A. Hidayat, A. Fauzi Abas, D. Sandel, S. Bhandare, H. Zhang, F. Wüst, B.
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2.4 Transformation of horizontal polarization by a rotatable quarter-wave plate 8
2.5 Transformation of elliptical polarization by a rotatable half-wave plate . . 9
2.6 Transformation of circular polarization by a linear retarder . . . . . . . . 10
2.7 Structure of an x -cut z -propagation lithium niobate retarder . . . . . . . 12
2.8 Polarization transformation of a lithium niobate retarder . . . . . . . . . . 12
2.9 Picture of EOSPACE multistage electro-optic polarization transformer . 13
2.10 Contour of quaternion components of a linear retarder . . . . . . . . . . . 14
2.11 Experiment setup for retarder characterization . . . . . . . . . . . . . . . 15
2.12 Characterization result of a lithium-niobate retarder . . . . . . . . . . . . 17
2.13 Measured output of a linear retarder with pseudo-random input pulses . . 19
2.14 Output of the estimated state-space model . . . . . . . . . . . . . . . . . . 19
2.15 Calibrated retarder voltages for different retardation and eigenmode ori-

entation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.16 Retarder voltages for quarter-wave plate operation . . . . . . . . . . . . . 22
2.17 Circular polarization transformation by a calibrated quarter-wave plate . 22

3.1 Polarization stabilization configurations . . . . . . . . . . . . . . . . . . . 24
3.2 Photointensity as a function of the driving signals for horizontal (left) and

+45◦(right) target polarization . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Dithering effect at different operating points . . . . . . . . . . . . . . . . . 26
3.4 Contours of quaternion components of cascaded fiber squeezers . . . . . . 28
3.5 Worst-case tracking trajectory for a polarization controller using cascaded

fiber squeezers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Reset scheme for the linear retarder algorithm . . . . . . . . . . . . . . . . 30
3.7 Transformation of a circular polarization by three fractional waveplates . 31
3.8 Reset scheme for the cascaded fractional waveplates algorithm . . . . . . . 34
3.9 Schematic diagram of the hardware . . . . . . . . . . . . . . . . . . . . . . 36
3.10 Picture of the controller setup . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.11 Schematic diagram of the control software . . . . . . . . . . . . . . . . . . 37
3.12 Buffering to overcome SDRAM refresh . . . . . . . . . . . . . . . . . . . . 39
3.13 Screenshot of the status information . . . . . . . . . . . . . . . . . . . . . 39
3.14 Polarization scrambler using rotating waveplates . . . . . . . . . . . . . . 40
3.15 Distribution function (top) and complementary cumulative distribution

function (bottom) of the polarization changes . . . . . . . . . . . . . . . 41
3.16 Poincaré sphere with scrambling up to 100 rad/s (left) and 3600 rad/s

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.17 Polarization tracking experiment setup with varying output polarization

(top) and varying input polarization (bottom) . . . . . . . . . . . . . . . . 42
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Chapter 1

Introduction

Fiber-optic communication systems are now ubiquitous in the long-haul, metro and
access networks. The world’s current and future telecommunication structures rely on
the optical networks deployed world-wide. The increased usage and demand for Internet
multimedia rich applications certainly means a traffic growth in all network areas. The
next generation of optical communication system is expected to fulfill this demand by
pushing the performance to achieve a high capacity and highly efficient transmission.

In a wavelength-division multiplexing (WDM) system, more than one optical carrier
with different wavelengths is modulated and transmitted together in a single optical
fiber [1]. Using this technology, the transmission capacity is multiplied by the number of
the transmitted channels. Erbium-doped fiber amplifiers (EDFA) allow all these WDM
channels to be amplified optically and thereby eliminates the need for the expensive per-
channel regeneration. With a total of 273 channels, a transmission capacity of 10.92 Tb/s
has been demonstrated [2].

A further increase in the transmission capacity can be reached by using spectrally-
efficient modulation formats. With differential quadrature phase-shift keying (DQPSK),
two bits per symbol are transmitted resulting in the doubling of the channel capac-
ity [3, 4, 5]. A total capacity of 6 Tb/s in 151 DQPSK channels has been demon-
strated [6]. Further capacity doubling is possible by using polarization division multi-
plexing (PolDM) where two modulated signals are launched in two orthogonal polariza-
tions [7, 8]. The combination of both proves to be an effective way to quadruple the
bit rate [9, 10]. At 40 Gbaud, this corresponds to a 160 Gb/s channel capacity (Ap-
pendix C). A record-breaking 25.6 Tb/s capacity has been reported using 160 channels
of polarization multiplexed DQPSK signals [11]. Beside the potentials, there is also a
big challenge in implementing a receiver for polarization-multiplexed signals, namely to
properly perform the demultiplexing because the state of polarization of the signals likely
changes during the transmission. A fully automatic polarization demultiplexer therefore
needs to track any polarization fluctuations in the transmission fiber, ideally fast enough
so that the two polarization channels can be demodulated properly. Crosstalk between
the polarization channels occurs where there is a non-negligible polarization mismatch.

Coherent optical detection is attractive due to its better sensitivity compared to the
direct detection method. In a coherent receiver, the received signal and the local oscil-
lator signal are combined in an interferometer, which means that polarization matching
between the received signal and its local oscillator is critical [12]. One of the methods to
ensure polarization matching is to use a polarization controller [13] which continuously
adjusts the polarization state of the local oscillator signal to match that of the received
signal. Since the received signal is subject to polarization rotations along the fiber, the
speed requirement of the controller is high because it must be capable of tracking fast
polarization changes. Even a short period of polarization mismatch may cause a loss of
data. In addition, other optical components which rely on the interferometric method,
such as fiber sensors, photonic switches, and all-optical regenerators, also have the prob-
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lem of polarization dependence. This problem is solved either by using polarization
insensitive devices or an automatic polarization controller.

Faster modulation techniques may bring the bit rate further towards 100 Gb/s or
more [14]. At this very high bit rate, optical signal impairment due to the polarization-
mode dispersion (PMD) becomes one of the major obstacles [15, 16] and therefore ne-
cessitates the use of PMD compensators. A distributed PMD compensator comprises
a number of differential group delay (DGD) sections with a polarization transformer in
between [17]. The PMD is equalized when the PMD compensator “mirrors” the DGD
vectors of the fiber. Since PMD is a stochastic phenomenon, inherently instantaneous
DGD can change within a period of as short as few milliseconds to as long as a few
days. The PMD compensator must adjust the polarization transformers to track these
changes.

Fast, automatic endless polarization controllers are arguably important components
for future optical communication systems. Many polarization control experiments have
been reported in the last two decades. Earlier experiments made use of slow mechanical
(or electro-mechanical) polarization transformers which limit their actual applications.
Electro-optic retardation waveplates currently offer the best response time and hence
quickly become the natural choice as the control elements for fast polarization stabiliza-
tion. The control algorithm is generally implemented in a digital circuit for the fastest
possible execution. Ideally the polarization controller should be as fast, if not faster,
than the microsecond timescale polarization changes in the fiber trunk that have been
observed in field trials [18, 19].

The motivation behind this work is to realize an ultra-fast automatic polarization
controller suitable for polarization demultiplexing and PMD compensation. For practical
reasons, the controller employs commercial electro-optic polarization transformers and
other standard, off-the-shelf components. Its fast operation is achieved by implementing
the control algorithm in configurable hardware. The performance of the controller is
analyzed when it stabilizes rapidly varying random polarization states. Because it is
intended to be used for polarization demultiplexing, the polarization mismatch must be
as low as possible.

The rest of this dissertation is organized as follows. In Chapter 2, the working principle
of the electro-optic retarder, an important control element for a fast polarization control
system, is described. Non-ideal characteristics of such a retarder must be analyzed
and properly compensated, and a practical method to perform the characterization and
calibration is presented. In Chapter 3, a detailed mathematical analysis of important
endless polarization control algorithms is given. The architecture and implementation for
a hardware-based digital controller for polarization stabilization are investigated. The
performance of the controller is experimentally analyzed. Finally, Chapter 4 concludes
the dissertation.
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Chapter 2

Characterization of Electro-Optic Linear
Retarders

2.1 Polarization Transformers

A transverse monochromatic lightwave which propagates in the z direction, denoted as
E(z, t), can be represented as the vector sum of two perpendicular fields Ex(z, t) and
Ey(z, t), with

Ex(z, t) = x̂E0,xe
j(ωt−kz),

Ey(z, t) = ŷE0,ye
j(ωt−kz+ϕ), (2.1)

where k is the propagation constant, ω is the frequency, and ϕ is the relative phase
difference between the fields.

The state of polarization of the lightwave is described by the polarization ellipse (figure
2.1) which is the path traced by the end of real part of E(z, t), as seen by an observer
looking towards z = −∞ [20]. This ellipse is characterized by the angle of the major
axis of the ellipse to the x−axis, denoted as θ, and the ratio between the major axis
and minor axis, denoted as ε. They are often called the azimuth and ellipticity of the
polarization ellipse, respectively. If a and b are half of the length of the major axis and
minor axis of the polarization ellipse, then it holds

tan ε = ± b
a
, (2.2)

with the sign ± describes the direction of the movement (clockwise or counterclock-
wise) of the real part of E(z, t).

For a linearly polarized wave, the phase difference between Ex(z, t) and Ey(z, t) is
2nπ where n = 0, 1, 2, 3, . . ., ε = 0 and the polarization ellipse is reduced to a line
with an angle of θ to the x−axis. Special cases of linear polarization are horizontal
polarization (θ = 0), vertical polarization (θ = π/2), +45◦polarization (θ = π/4), and
−45◦polarization (θ = −π/4).

For a circularly polarized wave, the phase difference between Ex(z, t) and Ey(z, t) is
±π/2 + 2nπ where n = 0, 1, 2, 3, . . .. In this case, the major axis and the minor axis of
the ellipse are of the same length and therefore the ellipse becomes a circle, regardless
of the azimuth θ. The two cases of circular polarizations are right circular polarization
(ϕ = −π/2 + 2nπ) and left circular polarization (ϕ = π/2 + 2nπ).
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Figure 2.1: Polarization ellipse

2.1.1 Representations of Polarization Transformations

Jones Vector and Stokes Vector

In equation 2.1, generally the factor ej(ωt−kz) describes the propagation of the wave and
therefore does not affect the shape of the polarization ellipse. Dropping this factor allows
the polarization state to be represented by the Jones vector [21]

E =
[
E0,x(t)ejϕx

E0,y(t)ejϕy

]
, (2.3)

where E0,x(t) and E0,y(t) are the instantaneous scalar components of E and ϕx and
ϕy are the phase of each x and y components. For polarization analysis, only the relative
magnitude and phase difference between x and y components are important. The Jones
vector can be normalized by dividing it with |E| ejϕ which yields

[
Ex Ey

]T with
|Ex|2 + |Ey|2 = 1. Sometimes the normalized Jones vector is written with the imaginary
part of Ex chosen to be 0.

General elliptical polarization with an azimuth of θ and an ellipticity of ε can be
described by the normalized Jones vector [20]

E =
[

cos θ cos ε+ j sin θ sin ε
sin θ cos ε− j cos θ sin ε

]
. (2.4)

Another way to represent the state of polarization is by using the Stokes vector [22].
A monochromatic lightwave with the Jones vector

[
Ex Ey

]T has the corresponding
Stokes vector

S =


S0

S1

S2

S3

 =


〈
|Ex|2 + |Ey|2

〉〈
|Ex|2 − |Ey|2

〉〈
2<(ExE∗y)

〉〈
2=(ExE∗y)

〉

 , (2.5)

where 〈·〉 denotes the averaging operator. The elements S0, S1, S2, S3 are also known
as the Stokes parameters. Dividing the Stokes parameters by S0 yields the normalized
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Stokes vector (S0 = 1 and is often dropped). Although a normalized Stokes vector
consists of three elements, it has only two degree-of-freedom because (for fully polarized
light) S2

1 + S2
2 + S2

3 = 1.
General elliptical polarization with an azimuth of θ and an ellipticity of ε can be

described by the normalized Stokes vector

S =

 cos 2ε cos 2θ
cos 2ε sin 2θ

sin 2ε

 . (2.6)

Jones Matrix and Mueller Matrix

If a lightwave passes a lossless optical medium, its state of polarization may change. The
polarization transformation can be described mathematically using Jones matrix [21] or
Mueller matrix [23].

Using a complex 2×2 Jones matrix J, an input polarization Ei is transformed into the
output state Eo according to

Eo = JEi. (2.7)

If the Stokes vectors for input polarization and output polarization are denoted as Si

and So, respectively, then using a real 4×4 Mueller matrix M, the polarization trans-
formation can be written as

So = MSi. (2.8)

For normalized Stokes vectors Si and So, the transformation matrix is simplified to a
real 3×3 reduced Mueller matrix G, where again

So = GSi. (2.9)

If the elements of Mueller matrix M and reduced Mueller matrix G are denoted as
mij (i, j = 0, 1, 2, 3) and gij (i, j = 0, 1, 2), then it holds

gij = mi+1,j+1. (2.10)

Generally, the reduced Mueller matrix G describes a rotation in the Stokes space. For
an optical medium which has an eigenmode of Ω = [ Ωx Ωy Ωz ]T and introduces
phase difference of ϕ between the two transmitted eigenmodes, the reduced Mueller
matrix G is obtained using Rodrigues’ rotation formula

G = I + Ω̃ sinϕ+ Ω̃2(1− cosϕ), (2.11)

with

Ω̃ =

 0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

 , (2.12)

which gives

G =

 Ω2
x + (Ω2

y + Ω2
z) cosϕ ΩxΩy(1− cosϕ)− Ωz sinϕ ΩxΩz(1− cosϕ) + Ωy sinϕ

ΩxΩy(1− cosϕ) + Ωz sinϕ Ω2
y + (Ω2

x + Ω2
z) cosϕ ΩyΩz(1− cosϕ)− Ωx sinϕ

ΩxΩz(1− cosϕ)− Ωy sinϕ ΩyΩz(1− cosϕ) + Ωx sinϕ Ω2
z + (Ω2

x + Ω2
y) cosϕ

 .
(2.13)
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Figure 2.2: Poincaré sphere

For N cascaded optical medium G1,G2,G3, · · · ,GN, the total polarization transfor-
mation G is

G = GN · · ·G3G2G1. (2.14)

Poincaré Sphere

The three normalized Stokes parameters for an elliptical polarization with an azimuth
of θ and an ellipticity of ε (equation 2.6) are the spherical coordinates of a point in
a unit sphere with an azimuth of 2θ and a zenith of π/2 − 2ε [24]. The spherical
surface occupied by elliptical polarization states is known as the Poincaré sphere (figure
2.2). Linear polarizations, such as horizontal polarization (H ), vertical polarization
(V ), +45◦ polarization (P), and −45◦ polarization (Q), reside on the S1S2 great circle
(“equator”) while circular polarizations, right (R) and left (L), reside on the intersections
of S1S3 and S2S3 great circles (“poles”).

On the Poincaré sphere, the polarization transformation by the reduced Mueller matrix
G can be visualized easily because geometrically it corresponds to a rotation. Figure 2.3
shows a transformation from polarization state A to B as a rotation ϕ around the axis
Ω (dashed arrow) with G, ϕ, and Ω as in equation 2.11.

Quaternion

There are several ways to represent a rotation mathematically: rotation angle and axis,
transformation matrix, Euler angles and Hamilton’s quaternion [25]. Throughout this
dissertation, quaternion is extensively used for rotation analysis because of its simple
representation and mathematical operations1. In addition, because polarization trans-

1Although, rather surprisingly, quaternion is hardly employed in literature on polarization analysis.
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Figure 2.3: Polarization transformation as a rotation on the Poincaré sphere

formation analysis is often depicted on the Poincaré sphere, quaternion has also the
advantage of a direct relation to the geometrical representation of the transformation.

Generalized polarization transformation which is equivalent to a rotation of ϕ around
the axis Ω on the Poincaré sphere can be described by the quaternion2

G = cos
ϕ

2
+ sin

ϕ

2
Ω. (2.15)

Using this quaternion, the input polarization with the normalized Stokes vector Si is
transformed to the output polarization with normalized Stokes vector So according to
(using equation A.13)

So = GSiG∗. (2.16)

2.1.2 Optical Retarders as Polarization Transformers

A waveplate, also known as retarder, has a fast and a slow axis. If a plane wave passes
through a waveplate, the electrical field component along the fast axis propagates with a
smaller refraction index compared to the component along the slow axis. This character-
istic is known as birefringence or double refraction [26]. At the output of the waveplate,
a relative phase (retardation) is introduced between the two components. It depends on
the thickness of the waveplate. In a fractional waveplate, this phase delay is set to a
fraction of the wavelength. The two most common fractional wave plates are quarter-
wave plate and half-wave plate. If the axis of the waveplate can be freely rotated, it is
often called a rotatable waveplate.

Quarter-wave plate

In a quarter-wave plate, the phase difference is (4n + 1)π/2 with n = 0, 1, 2, ..., which
corresponds to a delay of (4n + 1)λ/4 where λ is the wavelength. The minimum delay
is thus a quarter of the wavelength, hence the name. If γ denotes the angle between the
a fast axis of a rotatable quarter-wave plate and the x-component of the field, then on

2To distinguish quaternions from other symbols, quaternions are printed out in calligraphic typeface.
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Figure 2.4: Transformation of horizontal polarization by a rotatable quarter-wave plate

the Poincaré sphere, the waveplate can be represented by a π/2 rotation around the axis
[ cos 2γ sin 2γ 0 ]T or by the following unit quaternion

Q(γ) =
1
2

√
2(1 + i cos 2γ + j sin 2γ). (2.17)

A rotatable quarter-wave plate can be used to transform a linear polarization to a
circular polarization and vice versa. In addition, all elliptical polarization states can
also be reached by a quarter-wave plate having certain linear polarization at its input.
Figure 2.4 shows the trajectory of the result of horizontal polarization transformation
by a rotatable waveplate Q(γ) for γ = 0...π. For other linear polarization states at the
input, the trajectory is just rotated around the S3 axis.

Half-wave plate

In a half-wave plate, the phase difference is (2n + 1)π with n = 0, 1, 2, ..., which cor-
responds to a delay of (2n + 1)λ/2. The minimum delay is half of the wavelength.
If γ denotes the angle between the fast axis of a rotatable half-wave plate and the x-
component of the field then, on the Poincaré sphere, the waveplate can be represented by
a π rotation around the axis [ cos 2γ sin 2γ 0 ]T or by the following unit quaternion

H(γ) = i cos 2γ + j sin 2γ. (2.18)

A rotatable half-wave plate can be used to transform a right circular polarization
into a left circular or vice versa. Linear polarization states will remain linear when being
passed to a rotatable half-wave plate, however both its Stokes components S1 and S2 will
be changed. Figure 2.5 shows the trajectory of the transformation result of an elliptical
polarization, denoted by the small circle, by a rotatable waveplate H(γ) for γ = 0...π/5.

A half-wave plate can be realized by cascading two quarter-wave plates with the same
orientation axis. For Q(γ2)Q(γ1) where γ2 = γ1 = γ, then it holds

H(γ) = Q(γ)Q(γ). (2.19)
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Figure 2.5: Transformation of elliptical polarization by a rotatable half-wave plate

Linear retarder

A linear retarder is a generalized form of half- or quarter-wave plates. It is characterized
not only by the fast axis angle γ, but also by the retardation ϕ. On the Poincaré sphere,
polarization transformation by a linear retarder is equivalent to a rotation of ϕ around
the axis [ cos 2γ sin 2γ 0 ]T . Thus, like the two fractional waveplates, the rotation axis
of a linear retarder lies on the S1S2 plane. It also can be represented by the following
unit quaternion

L(γ, ϕ) = cos
ϕ

2
+ i sin

ϕ

2
cos 2γ + j sin

ϕ

2
sin 2γ. (2.20)

It can be seen that quarter-wave plate and half-wave plate are just linear retarders
with retardation of −π/2 and π respectively. This can be verified by substituting the
retardation ϕ = −π/2 (for quarter-wave plate) and ϕ = π (for half-wave plate) into the
above equation and comparing the result with equation 2.17 and 2.18.

A linear retarder with a retardation between 0 and π is always able to transform a
circular polarization to any elliptical polarization states and vice versa. This can be
analyzed as follows. When circular polarization, [ 0 0 ±1] T on the Stokes space or
unit quaternion ±k, is transformed by a linear retarder L(γ, ϕ), the rotation can be
written as

S′ = L(γ, ϕ)(±k)L∗(γ, ϕ). (2.21)

Substituting L(γ, ϕ) from equation 2.20 gives

S′ =

 sinϕ sin 2γ
− sinϕ cos 2γ

cosϕ

 . (2.22)

Comparing S′ with the Stokes vector of elliptical polarization with an azimuth of ϑ
and an ellipticity of ε (equation 2.6) yields
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Figure 2.6: Transformation of circular polarization by a linear retarder

ϕ = π/2− 2ε, (2.23)
γ = ±(π/2 + 2ϑ). (2.24)

On the Poincaré sphere, this transformation can be easily explained. As shown in fig-
ure 2.6, the axis Ω (dashed arrow) should be placed a quadrature farther than the double
azimuth (2ϑ) of the target elliptical polarization. The amount of retardation (π/2− 2ε)
corresponds to the necessary rotation (black thick arrow) to reach the target elliptical
polarization from right circular polarization. If the input is left circular polarization,
either the rotation axis must be moved additionally by π (or an odd multiple of π) or
the direction of the rotation must be reversed.

Babinet compensator [27] and Soleil-Babinet compensator [28] are other types of vari-
able retarders. They are called compensators due to earlier uses to compensate the phase
delay between two field components in orthogonal polarizations. To do this, the compen-
sators must be able to introduce a specific amount of positive and negative retardations.
A Babinet compensator is a cascade of a linear retarder and a fractional waveplate. The
fast axis of the linear retarder is orthogonal to the fast axis of the waveplate. When
the retardation of the linear retarder equals that of the fractional waveplate, the total
retardation is zero. By changing the linear retarder to have a less or more retardation,
the total retardation can be varied in the positive and negative range [29]. A Soleil-
Babinet compensator is another variant where two linear retarders (instead of only one)
are placed in front of the fractional waveplate.

Phase Shifter

A phase shifter is a special case of a linear retarder where angle γ = 0. On the Poincaré
sphere, polarization transformation by a phase shifter is equivalent to a rotation of ϕ
around the axis S1. It can be represented by the following unit quaternion

P(ϕ) = cos
ϕ

2
+ i sin

ϕ

2
. (2.25)
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Mode Converter

A mode converter is a special case of a linear retarder where angle γ = π/4. On the
Poincaré sphere, polarization transformation by a phase shifter is equivalent to a rotation
of ϕ around the axis S2. It can be represented by the following unit quaternion

M(ϕ) = cos
ϕ

2
+ j sin

ϕ

2
. (2.26)

Circular Retarder

A circular retarder is a variable retarder which transforms an input polarization by
a rotation around the fixed axis S3 and retardation ϕ. It can be represented by the
following unit quaternion

C(ϕ) = cos
ϕ

2
+ k sin

ϕ

2
. (2.27)

A circular retarder can be realized by cascading two rotatable half-wave plates. If the
rotations of waveplates are denoted by H(γ1) and H(γ2), then the total rotation is

H(γ2)H(γ1) = cos(π − 2γ1 − 2γ2) + k sin(π − 2γ1 − 2γ2). (2.28)

which is, according to equation 2.27, a circular retarder C(ϕ) with ϕ = 4(γ1 + γ2) .

2.2 Electro-Optic Linear Retarders

Polarization transformers can be realized by mechanical constructions which apply con-
trolled changes to the properties of the fiber, for example by introducing squeezing [30] or
bending [31]. However, electro-optic polarization retarder [32, 33] is currently is the most
promising solution for a compact, reliable and responsive polarization transformer [34].
In the following section, a method to characterize electro-optic polarization retarders
is presented. Using the characterization result, it is possible to find the polarization
transformation of the device as a function of applied electrode voltages with a very high
degree of accuracy.

2.2.1 Operating Principle

The electro-optic polarization transformer using LiNbO3 (lithium niobate) crystals is
shown in figure 2.7 [32]. It comprises of z -propagated waveguide on an x -cut substrate
with three symmetrical electrodes (V1, V2, and V3). If the middle electrode is grounded
(V3 = 0), the horizontal field component Ey in the region of the waveguide is induced
by V1 − V2, while the vertical field component Ex is induced by V1 + V2.

The polarization transformation of the device depicted on the Poincaré sphere is shown
in figure 2.8. Its phase retardation ϕ and eigenmode orientation ψ are determined by

ϕ ∼
√
E2
x + E2

y , (2.29a)

tan(ψ − π/2) ∼ Ex
Ey

. (2.29b)

The polarization transformer is thus a linear retarder. The eigenmode of the device lies
in the S1S2 plane. From equation 2.29b, it can be seen that the eigenmode is endlessly
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Figure 2.7: Structure of an x -cut z -propagation lithium niobate retarder

Figure 2.8: Polarization transformation of a lithium niobate retarder
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Figure 2.9: Picture of EOSPACE multistage electro-optic polarization transformer

rotated even with a limited range of V1, V2. A circular polarization at the input of
the device can be transformed into any elliptical polarization provided that V1, V2 can
introduce a retardation in the range of 0...π.

Several stages of electro-optic polarization transformer can be cascaded. Figure 2.9
shows a picture of a commercial electro-optic polarization transformer from EOSPACE
which consists of 8 cascaded stages with a total insertion loss of < 3 dB.

2.2.2 Quaternion Model

A model of electro-optic polarization transformer can be used to determine its operation
as a function of electrode voltages, as well as to identify the electrode voltages needed
to achieve a specific polarization conversion [35]. Polarization transformation of any
retarders can be represented by a quaternion and thus, the model that is presented here
is basically the quaternion model as a function of the applied voltages.

Based on equations 2.29a and 2.29b, suppose that:

Ex = κx(V1 + V2 − Vo,x),
Ey = κy(−V1 + V2 − Vo,y),

ϕ =
π

Vπ

√
E2
x + E2

y .

,

then it follows

cosψ =
κx(V1 + V2 − Vo,x)√

κ2
x(V1 + V2 − Vo,x)2 + κ2

y(−V1 + V2 − Vo,y)2
, (2.30a)

sinψ =
κy(−V1 + V2 − Vo,y)√

κ2
x(V1 + V2−Vo,x)2 + κ2

y(−V1 + V2 − Vo,y)2
, (2.30b)

ϕ =
π

Vπ

√
κ2
x(V1 + V2 − Vo,x)2 + κ2

y(−V1 + V2 − Vo,y)2. (2.30c)

The quaternion model of a linear retarder is thus
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L(V1, V2) = cos
π

2Vπ

√
κ2
x(V1 + V2 − Vo,x)2 + κ2

y(−V1 + V2 − Vo,y)2 +

(i
κx(V1 + V2 − Vo,x)√

κ2
x(V1 + V2 − Vo,x)2 + κ2

y(−V1 + V2 − Vo,y)2
+

j
κy(−V1 + V2 − Vo,y)√

κ2
x(V1 + V2 − Vo,x)2 + κ2

y(−V1 + V2 − Vo,y)2
) ·

sin
π

2Vπ

√
κ2
x(V1 + V2 − Vo,x)2 + κ2

y(−V1 + V2 − Vo,y)2 (2.31)

If the quaternion components (except the k component) in the above equations are
denoted as L0, L1 and L2, where L(V1, V2) = L0(V1, V2) + iL1(V1, V2) + jL2(V1, V2),
then each of these components defines a parametric surface as a function of V1 and V2.
The contour plots for the quaternion components of an exemplary linear retarder with
κx = 1, κy = 0.8, Vπ = 75 V, Vo,x = 10 V, and Vo,y = −20 V are shown in figure 2.10.

Figure 2.10: Contour of quaternion components of a linear retarder

Several observations can be made from these contour plots:

1. The constants κx and κy define the ellipticity of the contour lines in the contour
plot for L0. For the case where κx = κy, the contour lines will form circles instead
of ellipses.

2. The offset voltages Vo,x = 10 V, and Vo,y = −20 V determine the center of the
ellipses formed by the contour lines in the contour plot for L0. This is because
L0(V1, V2) = 1 at the center of the ellipses which means zero retardation, which is
achieved when V1 + V2 = Vo,x and −V1 + V2 = Vo,y.

3. ∀V1 + V2 = Vo,x : L1(V1, V2) = 0.

4. ∀ − V1 + V2 = Vo,y : L2(V1, V2) = 0.

2.2.3 Characterization

Compared to other polarization transformer models [35], the quaternion model has the
advantage that it can be used to directly identify the eigenmode and the retardation
for specific electrode voltages. In addition, rather than applying elimination procedures
systematically (as in [35]) in order to get the model parameters, it is a simpler to charac-
terize the retarder so that the quaternion can be obtained for the whole operation range
of the electrode voltages [36].
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Figure 2.11: Experiment setup for retarder characterization

The experiment setup to perform characterization on an electro-optic retarder is shown
in figure 2.11. The state of polarization S after the laser is fixed but unknown. Retarder
R transforms this polarization for the Retarder Under Test (RUT). Additional polariza-
tion transformation after RUT, attributed among others to fiber connector, are unknown
as well. However, this is generally fixed, at least during the characterization process.
The Stokes parameters of polarization state S′ which is measured by the polarimeter is

S′ = QtSQ∗t , (2.32)

where Qt denotes the unit quaternion representing total polarization transformation,
defined as

Qt = QfL(V1, V2)QR, (2.33)

where Qf is arbitrary transformation after RUT, L(V1, V2) is the transfer function of
RUT, and QR is the rotation by retarder R.

First, the Stokes parameters Si is obtained by measuring the output polarization of
the RUT when setting the RUT electrodes to voltages Vb,1, Vb,2. If the polarization set at
the input of the RUT (which is unknown) is denoted as Si, its relation to Si is described
as

Si = QfQbSiQ∗bQ∗f , (2.34)

where Qb = L(Vb,1, Vb,2) and Qf accounts for arbitrary unknown rotation after the
RUT, attributed among others to the fiber pigtail, cable and connectors. Although Qf
is not known, generally it is constant, at least during the measurement.

When voltages V1, V2 are applied to the RUT, the polarization So(V1, V2) observed by
the polarimeter is:

So(V1, V2) = QfL(V1, V2)SiL(V1, V2)∗Q∗f . (2.35)

From So(V1, V2) and the reference set Si, it is possible to find Q̂k such as

So(V1, V2) = Q̂k(V1, V2)SiQ̂∗k(V1, V2). (2.36)

This is known as the absolute orientation problem for which non-iterative solutions
are available (Appendix B). More precisely, here only rotation needs to be considered as
the transformation because there is no translation. At least three data points for Si and
for So(V1, V2) are necessary to infer Q̂k(V1, V2). For convenience, retarder R is chosen
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to be another electro-optic retarder so that different Si and So(V1, V2) are obtained by
changing the electrode voltages V0,1, V0,2 applied to R.

Eliminating Si gives an alternative expression for So(V1, V2)

So(V1, V2) = Q̂k(V1, V2)QfQbSiQ∗bQ∗f Q̂∗k(V1, V2). (2.37)

Comparing the above equation with equation 2.35 gives

QfL(V1, V2)SiL(V1, V2)∗Q∗f = Q̂k(V1, V2)QfQbSiQ∗bQ∗f Q̂∗k(V1, V2), (2.38)

which is simplified to

QfL(V1, V2) = Q̂k(V1, V2)QfQb. (2.39)

Solving for L(V1, V2) yields

L(V1, V2) = Q−1
f Q̂k(V1, V2)QfQb. (2.40)

If the voltages Vb,1, Vb,2 are chosen so that Qb = L(Vb,1, Vb,2) = 1, then the above
equation is simplified to

L(V1, V2) = Q−1
f Q̂k(V1, V2)Qf . (2.41)

which means that L(V1, V2) is just Q̂k(V1, V2) with its coordinate system rotated by
Q−1
f . Arbitrary constant rotation of the coordinate system like this typically can be

ignored. However, it is useful to choose an estimate of Qf so that L(V1, V2) is as close
as possible to the birefringence model of a linear retarder (equation 2.31), since the
characterized device is a linear retarder anyway. If the estimates of Qf and L(V1, V2)
are denoted as Q̂f and L̂(V1, V2) respectively, then it follows

L̂(V1, V2) = Q̂−1
f Q̂k(V1, V2)Q̂f . (2.42)

Because Q̂f ,Q̂k, and L̂(V1, V2) are all quaternions, they can be written as

Q̂f = Q̂f,0 + iQ̂f,1 + jQ̂f,2 + kQ̂f,3,

Q̂k(V1, V2) = Q̂k,0(V1, V2) + iQ̂k,1(V1, V2) + jQ̂k,2(V1, V2) + kQ̂k,3(V1, V2),

L̂(V1, V2) = L̂0(V1, V2) + iL̂1(V1, V2) + jL̂2(V1, V2) + kL̂3(V1, V2), (2.43)

then using equation 2.42, the i, j, and k components of L̂(V1, V2) are

L̂1(V1, V2) = Q̂k,1(V1, V2)(Q̂2
f,0 + Q̂2

f,1 − Q̂2
f,2 − Q̂2

f,3) +

Q̂k,2(V1, V2)(2Q̂f,0Q̂f,3 + 2Q̂f,1Q̂f,2) +

Q̂k,3(V1, V2)(2Q̂f,1Q̂f,3 − 2Q̂f,0Q̂f,2), (2.44a)

L̂2(V1, V2) = Q̂k,1(V1, V2)(2Q̂f,1Q̂f,2 − 2Q̂f,0Q̂f,3) +

Q̂k,2(V1, V2)(Q̂2
f,0 − Q̂2

f,1 + Q̂2
f,2 − Q̂2

f,3) +

Q̂k,3(V1, V2)(2Q̂f,0Q̂f,1 + 2Q̂f,2Q̂f,3), (2.44b)

L̂3(V1, V2) = Q̂k,1(V1, V2)(2Q̂f,1Q̂f,3 + 2Q̂f,2Q̂f,0) +

Q̂k,2(V1, V2)(2Q̂f,2Q̂f,3 − 2Q̂f,1Q̂f,0) +

Q̂k,3(V1, V2)(Q̂2
f,0 − Q̂2

f,1 − Q̂2
f,2 + Q̂2

f,3), (2.44c)
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L̂0 L̂1

L̂2 L̂3

Figure 2.12: Characterization result of a lithium-niobate retarder

To have L̂(V1, V2) as a linear retarder, Q̂f must be chosen so that the characteristics
of the components L̂(V1, V2) match those of a linear retarder, based on observations of
figure 2.10 described previously.

By defining a cost function J(Q̂f ) as

J(Q̂f ) =
∑
i

L̂2
1(Vb,1 + i, Vb,2 − i) +∑

i

L̂2
2(Vb,1 + i, Vb,2 + i) +∑

i

∑
j

L̂2
3(Vi, Vj), (2.45)

then Q̂f can be obtained using iterative multidimensional optimization with J(Q̂f )
as the minimization criteria. For this particular optimization problem, particle swarm
optimization algorithm [37] was found to give accurate solutions with a satisfactory
convergence speed.

Figure 2.12 shows the characterization result of a lithium-niobate electro-optic re-
tarder. The electrode voltages are swept over the range (−56V, 56V ) with a voltage
quantization of 3.75V . It was found that Vb,1 = 1.73V and Vb,2 = −1.39V . The charac-
terization result matches with the birefringence model shown previously in figure 2.10.
As can be seen from the contour plot of L̂3, the k component of L̂(V1, V2) is not com-
pletely zero. However it is very close to zero especially in the vicinity of the centers of
the ellipses formed by the contour lines of L̂1 where the retardation is small.
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2.2.4 State-Space Model

The response of an x -cut, z -propagated waveguide lithium-niobate linear retarder is
increased by a finite buffer layer isolation [34]. The retarder therefore does not give
fully instantaneous response. If such a retarder is employed in an automatic polarization
control system, this non-rectangular step response may limit the tracking speed [38]. It
is thus interesting to analyze the transient-stage retarder response in order to find the
limitation of its operation in a polarization controller.

From the quaternion model of an electro-optic linear retarder, the retardation ϕ can be
described (using the time-invariant state-space form [39]) by the following linear system

dx(t)
dt

= Ax(t) + B
[
V1(t) V2(t)

]
, (2.46a)

ϕ(t) = Cx(t), (2.46b)

where x(t) is the state vector, A is the state matrix, B is the input matrix and C is
the output matrix.

The linear retarder can be operated with V1 = V2 (only the field component Ex is
applied) or V1 = −V2 (only the field component Ey is applied), where it acts like a mode
converter and a phase shifter, respectively [40]. Without a loss of generality, here only
the case V3 = 0 is considered. The state-space model is thus simplified and discretized
to

x1(k + 1) = A1x1(k) + B1V1(k), (2.47a)
ϕ1(k) = C1x1(k). (2.47b)

The model parameters A1, B1, and C1 can be estimated by system identification
methods [41]. It is common to measure the input and output sequences of the system
experimentally and then optimize the model parameters to fit the model’s dynamic to
the observations.

For this analysis, a pseudo-random binary sequence (PRBS) with the shortest pulse
width of 1 ms as the input excitation V1(t) was used to trigger the retarder and then
ϕ1(t) was recorded with a sampling rate of 10 MHz. The result is shown in figure 2.13
where the dotted line and the solid line denote the retarder input voltage and normalized
output retardation, respectively. In this figure, the response is shown only for about 30
ms, although it was actually measured and further analyzed for a duration of up to 250
ms.

From the measurement data, the N4SID subspace identification algorithm [42, 43] was
used to estimate the model parameters. The discrete state-space model was specified for
a sampling period of 10 µs and an order of 4. The optimal parameters were found as

A1 =


0.1349 −0.5721 0.5607 0.2577
−0.1765 0.8701 0.6144 0.1723

0.0112 0.0091 0.8156 −0.3929
0.0002 0 −0.0296 −0.3524

 , (2.48a)

B1 =


−0.8563
−0.1739

0.0115
0.0019

 , (2.48b)

C1 =
[
−0.9773 −0.2111 0.0177 0.0001

]
. (2.48c)
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Figure 2.13: Measured output of a linear retarder with pseudo-random input pulses
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Figure 2.14: Output of the estimated state-space model

Figure 2.14 shows the response of the estimated model, which is similar to the actual
retarder response shown in figure 2.13. Although the model is only of the fourth order,
the estimation error already reaches a mean and a standard deviation of 7.16 · 10−3 and
4.36 · 10−3, respectively. A more accurate estimation, if necessary, can be obtained by
increasing the order of the state-space model.

It has been suggested that the response of the electro-optic can be improved by elec-
trical equalization [38]. The state-space model that is presented here could be used to
synthesize an equalizer if this were necessary.

2.3 Calibrated Retarders

Using the quaternion model of a linear retarder (equation 2.20), the necessary voltages
which correspond to a specific retardation and eigenmode can be calculated. Graphically,
this is also clear from the contour plots of the quaternion components of the linear
retarder (figure 2.10 and 2.12). For example, since a contour line in the contour plot for
L0 is the locus for constant retardation, voltages that trace along this contour line rotate
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the eigenmode and thus operate the linear retarder like a rotating fractional waveplate.

2.3.1 Linear Retarder Operation

For an ideal linear retarder, the voltages which correspond to a certain rotation are
functions of the model parameters (κx, κy, Vπ, Vo,x, and Vo,y). For an electro-optic
linear retarder that has been characterized, these voltages can be inferred from the
characterization result. This can be formulated as follows. The unit quaternion of the
characterized linear retarder for electrode voltages V1, V2 must represent a retardation
of ϕ and the eigenmode of [ cosψ sinψ 0 ]T , written as

L̂(V1, V2) = cos
ϕ

2
+ i sin

ϕ

2
cosψ + j sin

ϕ

2
sinψ. (2.49)

L̂(V1, V2) is obtained from the optimization process in the characterization procedure
(equation 2.42). However, L̂(V1, V2) is not a continuous two-dimensional function of the
electrode voltages V1, V2 since V1, V2 are swept with a quantization of 3.75V . If there
exist integer values i1, i2, j1, j2 such as i1∆V < V1 < i2∆V and j1∆V < V2 < j2∆V
where ∆V denotes the voltage quantization, then L̂(V1, V2) can be approximated by
two-dimensional spherical linear interpolation (equation A.17) using the following set of
equations:

L̂(V1, j1∆V ) =
sin(i2 − V1/∆V )δ1

sin δ1
L̂(i1∆V, j1∆V ) +

sin(V1/∆V − i1)δ1
sin δ1

L̂(i2∆V, j1∆V ), (2.50a)

L̂(V1, j2∆V ) =
sin(i2 − V1/∆V )δ2

sin δ2
L̂(i1∆V, j2∆V ) +

sin(V1/∆V − i1)δ2
sin δ2

L̂(i2∆V, j2∆V ), (2.50b)

L̂(V1, V2) =
sin(j2 − V2/∆V )δ

sin δ
L̂(V1, j1∆V ) +

sin(V2/∆V − j1)δ
sin δ

L̂(V1, j2∆V ), (2.50c)

with

cos δ1 = L̂(i1∆V, j1∆V ) · L̂(i2∆V, j1∆V ), (2.51a)
cos δ2 = L̂(i1∆V, j2∆V ) · L̂(i2∆V, j2∆V ), (2.51b)
cos δ = L̂(V1, j1∆V ) · L̂(V1, j2∆V ). (2.51c)

By defining a cost function

J(V1, V2) = [L̂(V1, V2)−

(cos
ϕ

2
+ i sin

ϕ

2
cosψ + j sin

ϕ

2
sinψ)]2, (2.52)

V1, V2 can be obtained using two-dimensional optimization steps with J(V1, V2) as the
minimization criteria. With V1, V2 for a given rotation (retardation ϕ and eigenmode
orientation ψ) obtained from the characterization result, it is then possible to operate
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Figure 2.15: Calibrated retarder voltages for different retardation and eigenmode
orientation

the electro-optic retarder to realize a specific polarization transformation. This is also
sufficiently true even if the retarder inhibits a somewhat non-ideal behavior. Thus, using
these steps it can be said that the retarder is calibrated.

Figure 2.15 shows the surface plots of the voltages V1, V2 as functions of retardation
ϕ (0 . . . π/2) and eigenmode orientation ψ (0 . . . 2π) obtained using the above optimiza-
tion procedure for the electro-optic linear retarder for which the characterization result
is already shown in figure 2.12.

2.3.2 Fractional Waveplate Operation

To operate a linear retarder as a quarter-wave plate, the retardation ϕ is simply set
to π/2. This means, the cost function J(V1, V2) for the optimization procedure to find
V1, V2 is simplified to

J(V1, V2) = [L̂(V1, V2)− 1
2

√
2(1− i cosψ − j sinψ)]2. (2.53)

Figure 2.16 shows voltages V1, V2 for 32 different quarter-wave plate axis orientations
ψ (0 . . . π) again for the electro-optic linear retarder for which the characterization re-
sult is already shown in figure 2.12. If the quaternions L̂(V1, V2) for the different axis
orientation are used to transform a circular polarization, the result will be linear po-
larizations, as shown on the Poincaré sphere in figure 2.17. The resulting polarization
states mismatch between the transformed trajectory and linear polarization states has a
root mean square error of only 0.0176. It proves that V1, V2 in figure 2.16 really operate
the calibrated linear retarder as a quarter-wave plate with a high degree of accuracy.

For half-wave plate operation, the voltages will be suitably doubled because now the
retardation ϕ equals π.

21



0 1 2 3 4 5 6
−50

−40

−30

−20

−10

0

10

20

30

40

50

Axis orientation [rad]

V
ol

ta
ge

s 
[v

ol
t]

V
1

V
2

Figure 2.16: Retarder voltages for quarter-wave plate operation

Figure 2.17: Circular polarization transformation by a calibrated quarter-wave plate
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Chapter 3

FPGA-Based Polarization Control System

3.1 Polarization Control Algorithms

An automatic polarization controller has the task of transforming an input state of
polarization into an output state of polarization subject to certain conditions. In a
system where the optical signal needs to be coupled into a polarization sensitive device,
the polarization controller must perform the polarization transformation so that the
output polarization always matches the required polarization state for the device. If the
input polarization is time-variant, this implies a polarization tracking since the necessary
polarization transformation is also time-variant. This holds also for a varying output
polarization state. Thus, a common structure to implement an automatic polarization
controller is a feedback control system.

An early application of automatic polarization control is for optical coherent receivers.
In such a receiver, the received signal and the local oscillator signal are combined in an
interferometer and then detected with a photo detector. The photo intensity is

I ∝ cos2(ϕ/2), (3.1)

where ϕ denotes the angle (on the Poincaré sphere) between the polarization state
of the received signal and the polarization state of the local oscillator. The intensity
vanishes when the polarization states are orthogonal (ϕ = π). Maximum intensity is
obtained only when ϕ = 0 which occurs only when both polarization states match
perfectly. Intensity optimization can be achieved by using a polarization controller for
the local oscillator signal so that its polarization state match that of the received signal.
However, the polarization state of the received signal continuously changes due to the
temperature, vibration and other mechanical disturbances on the transmission fiber and
therefore necessitates the use of automatic polarization control.

The first attempts at polarization stabilization used a polarimeter to give a feedback
signal to the polarization transformer [44, 45]. The polarimeter measured the current
polarization state and delivered two error signals corresponding to the amount of re-
tardation corrections required to bring the input polarization to the target output po-
larization. Two independent proportional-integral controllers were driven by the error
signals in order to adjust the retardation of the two waveplates. Because a polarimeter
is needed, it can not be used in a system where the output polarization can not be
measured or is not available, for example in a coherent receiver. However, this can be
easily remedied since the intensity detected by the receiver (equation 3.1) serves as the
feedback signal [46, 47]. When this feedback signal is maximized, it indicates matched
polarization states.

Other common polarization stabilization configurations are illustrated in figure 3.1. A
varying input polarization is to be stabilized into a fixed output polarization, for example
if the signal is to be processed further by a polarization sensitive device. A polarizer
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Figure 3.1: Polarization stabilization configurations

which passes only one polarization state (which matches its transmission axis) can be
used to get a fixed polarization optical signal. The intensity at its output depends on the
polarization matching similar to the relation in equation 3.1 but now with ϕ denoting
the angle between the input polarization state and the polarizer axis. If the intensity is
maximized by the controller, the output of the polarizer will have a fixed polarization and
a maximum optical intensity. Another variant is by using a polarization beam splitter
that outputs two orthogonal polarizations. In this configuration, the intensity at one of
its output should be minimized so that the other output will have a maximum optical
intensity.

In a polarization division multiplex transmission, two modulated data streams in two
orthogonal polarizations are launched into the transmission fiber. At the receiver, the
two polarizations stay generally orthogonal. However, their absolute polarization states
are unknown due to random polarization changes in the fiber. A receiver must therefore
demultiplex the signal into two polarization channels before the data stream in each of
the channel can be correctly demodulated. Usually a setup similar to figure 3.1 (bottom)
is implemented, but with both outputs of the polarization beam splitter connected to the
subsequent demodulation circuit. In addition, since both polarization channels contain
data, the feedback signal can not continue to be obtained anymore from a simple photo
detector at only one optical output of the beam splitter. One solution is to electrically
mix the demodulated electrical signal and recovered clock and use the result as the
feedback signal since it is proportional to the optical intensity of the selected polarization
channel [48]. Another alternatives is to use correlation signal or interference signal
between the two polarization channels, each being inversely related to the degree of
polarization matching in the beam splitter [49, 50].
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3.1.1 Design Considerations

Polarization Transformers

An important factor that determines the performance of an automatic polarization con-
troller is the speed of the polarization transformer that is used as the control element.
In its early development, fiber squeezers with electromechanical driving were common
choices [44, 47, 51, 52]. A fiber squeezer can be treated as a retardation waveplate
with a fixed eigenmode and a variable retardation. Therefore a cascade of few fiber
squeezers (with unequal eigenmodes) is necessary to realize an arbitrary polarization
transformation. The same principle can be applied to electro-optic polarization trans-
formers with fixed axes [45, 53, 54] which can operate at a higher speed compared to
the fiber squeezers. Rotating fractional waveplates implemented as electro-optic devices
[55], liquid crystals [56, 57, 58] or magnetic Faraday rotators [59, 60] can also be used
as the polarization transformers. Nowadays, commercial automatic polarization con-
trollers typically use electro-optic polarization transformers [61, 62] because currently
electro-optic devices offer the fastest response time.

Figure 3.2 shows the photointensity in equation 3.1 as a function of polarization trans-
fomer driving signals, if the polarization transfomer has a circular polarization at its
input and the target polarization is horizontal (left) or +45◦(right). Since this intensity
is related to the polarization matching, the controller generally dithers or modulates the
driving signals and detects the changes in the feedback signal to infer the degree of polar-
ization state matching [63], similar to the principle of a lock-in amplifier. The amount of
dithering must be chosen to be small enough so that it does not introduce considerable
signal fluctuation but at the same time large enough so that the corresponding changes
in the feedback signal is still not submerged in noises. Figure 3.3 illustrates the different
changes in the feedback signal I(α) as a function of the operating point α when the
low-amplitude parasitic modulation is applied to α at different points. The controller
essentially obtains ∂I(α)/∂α (positive at point P, negative at point R) and uses it to
apply the necessary correction to bring α to the optimal value (point Q). Since only
(instantaneous) ∂I(α)/∂α is important, not the absolute value of I(α), the controller
tolerates slow fluctuations of the intensity.
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Figure 3.2: Photointensity as a function of the driving signals for horizontal (left) and
+45◦(right) target polarization
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Figure 3.3: Dithering effect at different operating points

For polarization transformers with finite retardation range (such as fiber squeezers
and linear electro-optic retarders), at some point the controller must be able to perform
unwinding whenever one of the polarization transformer reaches the retardation limit.
[51, 64]. This is carried out in order to bring the operating point back within its range.
On the other hand, polarization transformers like rotating fractional waveplates do not
need unwinding [55]. Therefore, the algorithm for automatic polarization control is
unsurprisingly related to the type of the polarization transformer used in the system.

Endless Control

In addition, for practical applications, an automatic polarization must be able to con-
tinuously maintain polarization matching in the case of rapidly varying changes in the
input and/or output polarization states, even if the polarization states wander many or
possibly an infinite number of times around the Poincaré sphere. This is often referred to
as endless control. When the controller can not track the polarization changes, momen-
tary polarization mismatch will occur and this is unacceptable since such an interruption
may cause loss of data. If the controller employs polarization transformers with a finite
retardation range and one of the polarization transformers needs unwinding, the con-
troller must carry out the unwinding procedure without affecting the overall polarization
transformation and thus also polarization matching [47, 52]. Because polarization trans-
former unwinding essentially has the objective of moving back its operating point to the
retardation range, it is also called reset. Strictly speaking, reset generally refers to a
large change in the controller driving signals (for example, electrode voltages for lithium
niobate waveplate) to track an infinitesimal polarization change [65, 66].

The mathematical definition of an endless operation (similar to [66]) is described as
follows. Without loss of generality, it is assumed that the polarization transformers com-
prise N cascaded retarders Qi(αi), i = 1 . . . N with αi defines the physical parameters
of the retarder. The total polarization transformation is

QR(αN , αN−1, . . . , α2, α1) = QN (αN )QN−1(αN−1) · · · Q2(α2)Q1(α1). (3.2)

The controller is to transform a sequence of input polarization states Si,1, Si,2, · · · to a
sequence of output polarization states So,1, So,2, · · · . The conditions for an endless and
deterministically reset-free operation of the controller are:

1. There exist αi,n, i = 1 . . . N such that

So,n = Q∗R(αi,n)Si,nQR(αi,n) n = 0, 1, . . . (3.3)
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2. Parameters αi,n always lie within the operating limitations of the retarders

3. There is an absolute constant 0 < CQ <∞ such that

max
i=1...N

|αi,n − αi,n−1| ≤ CQ(‖Si,n − Si,n−1‖+ ‖So,n − So,n−1‖) n > 0. (3.4)

The last condition guarantees that the changes in the physical parameters of the po-
larization transformers when the controller responds to a certain change in the input
and/or output polarization will be well defined within a certain limit. The controller is
called reset-free only when this condition is fulfilled.

Tracking Speed Limit

To judge the performance of an automatic polarization control system, it is necessary
to know its worst-case tracking speed. Because the polarization transformer has limited
response time, the theoretical tracking speed limit can be analyzed by finding one or
more sequences in the input and/or output polarization states that put the highest load
on the controller. Put another way, the worst-case sequence causes the controller to
operate on its limit which mathematically means that maxi=1...N |αi,n − αi,n−1| reaches
its maximum value.

Assume the polarization transformer is a cascade of two fiber squeezers 1. The axes
of the fiber squeezers are inclined by π/4 rad to each other, this is equivalent to π/2
distance between the eigenmodes on the Poincaré sphere. The arrangement can also be
thought as a combination of a phase shifter P(VP ) followed by a mode converterM(VM )
with (according to equation 2.25 and 2.26)

P(VP ) = cos
1
2
VP
VP,π

+ i sin
1
2
VP
VP,π

, (3.5a)

M(VM ) = cos
1
2
VM
VM,π

+ j sin
1
2
VM
VM,π

, (3.5b)

where VP , VM are the normalized driving signals for the fiber squeezers and VP,π, VM,π

are the driving signals for π retardation. The total polarization transformation is

Q(VP , VM ) = M(VM )P(VP )

= cos
1
2
VM
VM,π

cos
1
2
VP
VP,π

+ i cos
1
2
VM
VM,π

sin
1
2
VP
VP,π

+

j sin
1
2
VM
VM,π

cos
1
2
VP
VP,π

− k sin
1
2
VM
VM,π

sin
1
2
VP
VP,π

. (3.6)

For ease of visualization, the quaternion components in the above equations are
denoted as Q0, Q1, Q2 and Q3, where Q(VP , VM ) = Q0(VP , VM ) + iQ1(VP , VM ) +
jQ2(VP , VM ) + kQ3(VP , VM ). The contour plots for these quaternion components are
shown in figure 3.4 with VP , VM in the operation range of 1 . . . 3, corresponding to a
retardation range (of the mode converter and phase shifter) of π . . . 3π.

From the contour plot of Q0, it is obvious that VP = 2, VM = 2 is the “center point”,
any contour lines will circle this center point. The contour line with the longest perimeter

1Two fiber squeezers do not permit endless control, this arrangement is only given as an illustration.
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Figure 3.4: Contours of quaternion components of cascaded fiber squeezers

is Q0 = 0 which is along the border of the contour plot. This particular contour line can
also be specified by the parametric equation (t = 0 . . . 1)

VP (t) = 2 + (1− |4t|+ |4t− 1|+ |4t− 2| − |4t− 3|), (3.7a)
VM (t) = 2 + (1− |4t− 1|+ |4t− 2|+ |4t− 3| − |4t− 4|). (3.7b)

This polarization transformer is then used in an automatic polarization control system
where the input polarization state is circular. The driving signals VP (t), VM (t) according
to the above equation will transform the circular input polarization into a trajectory
R− V −L−H −R−P −L−Q−R as depicted in figure 3.5. If this trajectory is to be
tracked by the controller (and assuming that the controller can track it perfectly), then
it is the worst-case polarization state sequence for this type of polarization transformer
since the accumulated driving signals (on the voltage plane VP ,VM ) reach the maximum
value.

3.1.2 Linear Retarder Algorithm

A linear retarder, as described in subsection 2.1.2, has two parameters: the axis angle γ
and the retardation ϕ. When using Poincaré sphere analysis, the double azimuth angle
ψ is often used instead of the axis angle γ, with ψ = 2γ. The unit quaternion that
represents a linear retarder is

L(ψ,ϕ) = cos
ϕ

2
+ i sin

ϕ

2
cosψ + j sin

ϕ

2
sinψ. (3.8)

Operation Principle

For polarization stabilization where either the input polarization or output polarization
is fixed, a linear retarder is a natural choice for the polarization transformer. As shown
geometrically in figure 2.6, a linear retarder with a retardation between 0 and π is
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Figure 3.5: Worst-case tracking trajectory for a polarization controller using cascaded
fiber squeezers

always able to transform a circular polarization to any elliptical polarization states and
vice versa.

The controller for a linear retarder must continuously adjust both ψ and ϕ to maximize
the feedback signal, typically using a gradient peak-search algorithm. In each iteration,
the controller determines the gradients for ψ and ϕ which bring the intensity to its peak
value [40, 67]. As described in Chapter 2, for a calibrated electro-optic linear retarder, ψ
and ϕ can be determined by the electrode voltages and vice versa. It is thus possible (but
not necessary) for the controller to directly dither (or modulate) the electrode voltages,
obtain the partial derivative of the feedback signal with respect to the electrode voltages
and then adjust the electrode voltages in the direction which maximizes the feedback
signal [67, 68].

Reset Mechanism

An electro-optic linear retarder which is operated with a finite range of electrode voltages
has a retardation limit, as previously mentioned in Chapter 2. If the retarder is used by
an automatic polarization controller, at certain conditions reset must be carried out so
that the electro voltages will not go out of range. This reset mechanism is illustrated
graphically in figure 3.6.

The trajectory formed by the normalized electrode voltages V1, V2 (left) corresponds
to the bold line on the Poincaré sphere (right), if the retarder has a right circular polar-
ization at its input. The section H−M1 brings the horizontal polarization into a state in
the vicinity of the right circular polarization. The arc M1−M2−M3, when compared to
the quaternion plots of a linear retarder (2.10), realizes a constant retardation of π−4ϕ
with 4ϕ ≈ 0 and can be represented as

L(ψ,4ϕ) ≈ 4ϕ/2 + i cosψ + j sinψ, (3.9)

with ψ = π/2 . . . 3π/2. This transforms a right circular polarization into polarization
states with the approximated Stokes parameters

[
4ϕ sinψ 4ϕ cosψ −1

]T . These
polarization states circle the left circular polarization with a radius of 4ϕ. The output
polarization continues to march to the vertical polarization state when the electrode
voltages move from M3 to V . In this last section, the electro voltages do not increase
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Figure 3.6: Reset scheme for the linear retarder algorithm

again and thus stay within the range.
For the case4ϕ = 0, the arc M1−M2−M3 corresponds to only one polarization state,

namely the left circular polarization. This is the key to performing the reset step. When
the controller must track the varying output polarization along the trajectory H−L−V ,
it must “rotate” the electro voltages along the half-circle arc so that the electro voltages
do not go outside the operating range. As long as the reset is carried out quickly and
the controller keeps the condition 4ϕ = 0, no polarization mismatch will occur because
the retarder maintains the polarization transformation during the reset period.

This analysis also shows that (excluding the above reset procedure) the polarization
states that circle the left circular polarization will be the worst-case tracking trajectory
for this algorithm. The electrode voltages necessary to track this trajectory can be
written parametrically (t = 0 . . . 1) as

V1(t) = cos(2πt)−4V, (3.10a)
V2(t) = sin(2πt)−4V, (3.10b)

where 4V ≈ 0 so that reset is not triggered yet. The tracking speed limit will be
determined by the time needed by the controller to track this particular trajectory.

Since reset can affect the control speed, it must be appropriately handled. A strategy
to speed up the reset procedure is by using two or more linear retarders in cascade. For
a two-retarder configuration, this approach could be as simple as using the first retarder
for transforming the input polarization as long as the retardation is within the limit and
then switching to the second retarder whenever the first retarder is being reset. The
controller will continue to use the second retarder until it needs reset and then the first
retarder takes the main role of polarization transformation again [68].

3.1.3 Cascaded Fractional Waveplates Algorithm

A variable retarder formed by cascading a quarter-wave plate, a half-wave plate and
a quarter-wave plate, all endlessly rotatable, is known to be able to perform arbitrary
polarization transformation [36, 69]. For optimal response speed, the fractional wave-
plates are typically realized as integrated optics [55]. They can also be implemented by
cascading simpler types of retarders [70, 71].
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Figure 3.7: Transformation of a circular polarization by three fractional waveplates

Operation Principle

If each waveplate is independently adjustable, it gives a total number of three degree-
of-freedom. Transformation from a static, arbitrary polarization into another static,
arbitrary polarization however can be specified using only two degree-of-freedom, for
example a rotation axis for a fixed non-zero rotation angle. Thus, there are many possible
combinations of the waveplate orientations that correspond to a specific polarization
transformation. The easiest is as follows: the first quarter-wave plate transforms the
elliptical input polarization into a linear polarization, the half-wave plate rotates this
linear polarization along the S1S2 great circle so that it can be transformed by the last
quarter-wave plate to reach the target polarization.

If the rotations of the first quarter-wave plate, the half-wave plate and the second
quarter-wave plate are denoted as Q(γ1), H(γ2), and Q(γ3), respectively, then based on
equation 2.17 and 2.18, the total transformation is

R(γ1, γ2, γ3) = Q(γ3)H(γ2)Q(γ1). (3.11)

Straightforward but lengthy quaternion multiplications yield

R(γ1, γ2, γ3) = i(cos 2γ2 − cos(2γ1 − 2γ2 + 2γ3))/2 +
j(sin 2γ2 − sin(2γ1 − 2γ2 + 2γ3))/2 +
k(sin(2γ1 − 2γ2) + sin(2γ2 − 2γ3))/2 +
(− cos(2γ3 − 2γ2)− cos(2γ2 − 2γ1))/2. (3.12)

Figure 3.7 shows an example of the polarization transformation by the waveplates
Q(γ1), H(γ2), Q(γ3), with γ1 = π, γ2 = 11π/32, and γ3 = 0.

In some experiments, the last quarter-wave plate is rotated synchronously with the
first quarter-wave plate so that γ3 = γ1 + π/2 [72, 73]. The whole arrangement now
has only two degree-of-freedom. In this case, the total transformation of the cascaded
wave-plates is simplified to

R(γ1, γ2) = i cos(2γ2 − 2γ1) cos 2γ1 +
j cos(2γ2 − 2γ1) sin 2γ1 +
−k sin(2γ2 − 2γ1). (3.13)
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The above unit quaternion represents a rotation of ϕ around the axis Ω according to

ϕ = π, (3.14a)

Ω =

 cos(2γ2 − 2γ1) cos 2γ1

cos(2γ2 − 2γ1) sin 2γ1

− sin(2γ2 − 2γ1)

 . (3.14b)

The retarder acts like a generalized half-wave plate. Its rotation axis Ω is endlessly
rotatable. It depends on γ1, γ2 which do not have any limit and hence require no un-
winding.

In another experiment, the quarter-wave plates are rotated simultaneously so that
γ3 = γ1 [69]. This simplifies the total transformation of the cascaded wave-plates to

R(γ1, γ2) = i sin(2γ2 − 2γ1) sin 2γ1 +
j sin(2γ2 − 2γ1) cos 2γ1 −
cos(2γ2 − 2γ1). (3.15)

The above unit quaternion represents a rotation of ϕ around the axis Ω according to

ϕ = 2π − (4γ1 − 4γ2), (3.16a)

Ω =

 sin 2γ1

− cos 2γ1

0

 . (3.16b)

Here, the retarder acts like a linear retarder with endlessly rotatable eigenmode. The
retardation is adjustable via γ1, γ2 in the whole range of 0 . . . 2π.

When the retarder is used in a polarization control system, each waveplate is typically
adjusted independently, either by an analog lock-in amplifier [72] or a digital feedback
controller [73, 69], to maximize (or minimize) the feedback signal. The digital controller
is preferred because it is much faster than the analog counterpart.

Simplification for Polarization Tracking with Fixed Input

For polarization tracking with either a fixed input polarization or a fixed output polar-
ization, two quarter-wave plates are sufficient to perform the necessary endless transfor-
mation. For example, a quarter-wave plate followed by a half-wave plate can transform
a varying input polarization into a fixed linear output polarization [46, 74]. Here it is
shown that with a circular input polarization, an arbitrary output polarization can be
reached by a cascade of only two quarter-wave plates. Transformation of a circular po-
larization by a quarter-wave plate and a half-wave plate is always a linear polarization,
described as

H(γ2)Q(γ1)kQ∗(γ1)H∗(γ2) =

 − sin(4γ2 − 2γ1)
cos(4γ2 − 2γ1)

0

 . (3.17)

Therefore, the cascaded waveplates H(γ2)Q(γ1) can be replaced by just a single
quarter-wave plate Q(γ̃1) where
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γ̃1 = π + 2γ2 − γ1. (3.18)

The arrangement Q(γ1), H(γ2), and Q(γ3) is now simplified to Q(γ̃1) and Q(γ3) only.
The total transformation is

R(γ̃1, γ3) =
1
2
− 1

2
cos(2γ̃1 − 2γ3) +

1
2
i(cos 2γ̃1 − cos 2γ3) +

1
2
j(sin 2γ̃1 − sin 2γ3) +

1
2
k sin(2γ̃1 − 2γ3). (3.19)

Controller Dead Lock

The use of fractional waveplates with one control loop for each waveplate however present
a practical problem. There are always polarization states where the feedback signal is
insensitive or less sensitive to the dithering of one control variable [75]. Such polarization
states are often called “dead spots”.

For the retarder as described by equation 3.13, when γ2 = γ1 −4γ/2 with 4γ ≈ 0,
the transformation of the retarder is approximated as

R(γ2, dγ) ≈ i cos 2γ2 + j sin2γ2 + k4γ. (3.20)

The rotation axis of the retarder lies on the S1S2 great circle, its azimuth depends on
γ2 . A right circular polarization is rotated by the retarder to

R(γ2,4γ)kR∗(γ2,4γ) =

 24γ cos 2γ2

24γ sin 2γ2

4γ2 − 1

 . (3.21)

It is very close to the left circular polarization. The controller is to track an elliptical
polarization with azimuth θ = 0 and ellipticity ε = −π/4+4ε/2 with 4ε ≈ 0, which has
the corresponding (approximated) Stokes vector

[
4ε 0 4ε2/2− 1

]T . The feedback
signal is thus

I(γ2) = (1 +
[
4ε 0 4ε2/2− 1

]  24γ cos 2γ2

24γ sin 2γ2

4γ2 − 1

)/2

= 1 +4ε4γ cos 2γ2 + (4ε24γ2/2−4γ2 −4ε2/2)/2. (3.22)

Dithering the orientation axis of the half-wave plate (γ2, together with γ1) has the
purpose of getting the derivative of the feedback signal with respect to γ2. This can be
found from the above equation as

∂I(γ2)
∂γ2

= − 4ε4γ sin 2γ2. (3.23)

In this case, because 4γ ≈ 0 and 4ε ≈ 0, dithering γ2 produced very little change in
the feedback signal which possibly can not be detected properly by the electronic circuit.
In addition, the controller may cease to work (“dead lock”) as ∂I(γ2)/∂γ2 approaches
zero. The worst case is when γ2 is orthogonal to the optimal orientation axis but can not
be corrected by the controller because the factor sin 2γ2 vanishes and ∂I(γ2)/∂γ2 = 0.
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Figure 3.8: Reset scheme for the cascaded fractional waveplates algorithm

Reset Mechanism

The arrangement of fractional waveplates is often claimed to be reset-free [69, 72, 73].
This stems from the fact that not a single waveplate needs any unwinding. However, ac-
cording to the definition of reset described previously, the algorithm that uses this wave-
plates arrangement is not necessarily reset-free [38, 65]. Abrupt changes in waveplates
parameters are still possible under certain circumstances. One example is illustrated
graphically in figure 3.8. The trajectory formed by the retarder parameters γ1, γ2 (left)
corresponds to the bold line on the Poincaré sphere (right), if the waveplates has a left
circular polarization at its input and γ3 = γ1 +π/2. When the controller must track the
varying output polarization along the trajectory H−R−V and initially γ1 = 0, γ2=7π/4,
it must rapidly change γ2 by π/2 just when the output polarization passes the right cir-
cular. This proves that the waveplates arrangement is not reset-free. It could be shown
that the same condition applies for the simplified arrangement of waveplates as described
in equation 3.19.

For the case γ3 = γ1, the retarder becomes a linear retarder (equation 3.15). Therefore,
it subjects to the same limitation and reset mechanism as in the linear retarder algorithm.
Again, it means that this arrangement of waveplates (γ3 = γ1) is also not reset-free.

Tracking Speed Limit

For the case γ3 = γ1 + π/2, reset is necessary when the input polarization needs to be
rotated into target polarization states in the vicinity of its orthogonal. Without loss
of generality, the input polarization can be assumed to be right circular and the target
polarization states reside on a very small circle with a radius of 4ε ≈ 0 centered at the
left circular polarization. Such polarization states have an ellipticity ε = −π/4 +4ε/2
and can be represented by the Stokes vector

[
4ε cosα 4ε sinα 4ε2/2− 1

]T for α =
0 . . . 2π. For the retarder as described in equation 3.20, at the points where 4ε/2 ≈ 4γ,
the optimal control variables should be set to

γ1 ≈ α/2, (3.24a)
γ2 ≈ α/2. (3.24b)

The controller must rotate γ1, γ2 in the range of 0 . . . π for α = 0 . . . 2π. As shown in
the previous chapter, rotating the axis of a calibrated electro-optic quarter-wave plate
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by π (by 2π on the Poincaré sphere) means driving the electrode voltages up to ±30V .
For a half-wave plate, the necessary driving voltages are doubled. This is the case even
for an infinitesimal 4ε. A similar problem arises for γ3 = γ1 configuration.

3.2 FPGA-Based Controller Implementation

Because of their complexity, polarization control algorithms are typically implemented
in digital circuits. There have been reports on digital realization of polarization sta-
bilization using a microprocessor [67], a combination of basic digital blocks [73] and a
dedicated digital signal processor [61]. In this dissertation, an implementation of polar-
ization control algorithm in a field programmable gate array (FPGA) is described. An
FPGA is chosen because it allows a very fast execution of the control algorithm. In
addition, it also offers a high degree of parallelism, a feature which can be utilized to
implement the tracking algorithm efficiently.

3.2.1 Hardware Components

Several hardware components are needed to implement a polarization controller digi-
tally. The feedback signal (that is, the photo intensity) must be detected by a photo
detection circuit and then converted using an analog-to-digital converter (ADC) to the
discrete binary representation. The driving signal from the controller must be converted
using a digital-to-analog converter (DAC) so that it can drive the lithium-niobate lin-
ear retarder. For faster operation, more than one retarder is used and therefore several
DACs are required. For an ultra-fast polarization tracking, the conversion speed and the
performance of the ADC and the DACs play an important role.

The controller is implemented in a Xilinx Spartan-3 XC3S1000 FPGA [76]. It com-
prises 1920 configurable logic blocks (CLBs). One block has 8 logic cells, each cell can
be flexibly programmed to perform combinational and sequential logic. In total, the
logic capability of the Spartan-3 XC3S1000 is equivalent to approximately a million
logic gates. For a limited amount of data storage, the Spartan-3 also offers two types
of random access memory (RAM): distributed RAM [77] and block RAM [78]. In a
Spartan-3 XC3S1000 chip, up to 120 Kbits of distributed RAM and 432 Kbits of block
RAM are available. In addition, Spartan-3 XC3S1000 has 24 dedicated single-cycle 18-bit
hardware multipliers [79] which are useful to carry out complicated calculations.

For development convenience, a prototyping board XSA-3S1000 [80] is used. The
prototyping board is equipped with a Spartan-3 XC3S1000 FPGA and two external
memory chips: 32 Mbyte synchronous dynamic RAM (Samsung K4S561632ETC75 [81])
and 2 MB Flash RAM (Spansion S29AL016M10TAI020[82, 83]). A video connector and
a parallel port are also available on the prototyping board.

The setup for the hardware of the polarization controller is shown schematically in
figure 3.9. The ADC and the DACs are connected to the input/output pins of the
Spartan-3 FPGA. For troubleshooting and debugging, a video graphics array (VGA)
monitor and a computer (or a notebook) are connected to the XSA-3S1000 board through
the video connector and parallel port, respectively. The monitor is used to display
the status of the controller wheres the computer is important to retrieve additional
information and changing the operation of the controller.

The hardware of this polarization controller consists of affordable commercial, off-the-
shelf components only. This reduces both the development time and cost. Figure 3.10
shows the picture of the actual controller setup.
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Figure 3.9: Schematic diagram of the hardware

Figure 3.10: Picture of the controller setup
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Figure 3.11: Schematic diagram of the control software

3.2.2 Software Modules

The polarization stabilization is implemented in software running on the Spartan-3
FPGA. Figure 3.11 shows the simplified architecture of the software. It is designed
to be modular for ease of development and maintenance. Hardware interfacing to the
ADC, the DACs and VGA monitor are separated into different modules which allows
abstractions and simplification of the main program. Each module is programmed in
VHDL (VHSIC2 hardware description language).

Gradient Descent Controller

The controller implements the linear retarder algorithm (subsection 3.1.2). For the
gradient descent method, the controller dithers the driving signals (electrode voltages of
the retarders) and measures the intensity to infer the gradient. To reach a maximum
performance, the code to perform the gradient algorithm is optimized to get the shortest
possible execution time and thus is clocked at 50 MHz (20 ns cycle period). As the result,
one control iteration can be carried out in just 7 µs. A later improved version of the
code even cuts the iteration time down to 3.5 µs. An even more optimized version brings
the iteration time to only 2 µs. This corresponds to polarization tracking up to 140000
iterations/second, 285000 iterations/second, and 500000 iterations/second, respectively.
Each iteration is designed to correct ≤1 rad of polarization mismatch.

Look-Up Tables

The electro-optic linear retarders used in the controller are characterized and calibrated
using the method described in Chapter 2. The calibration data are important for the
controller since it allows the control algorithm to treat the utilized retarders as one ideal
linear retarder. In this implementation, the calibration data are stored in the memory,
not hard-coded in the program. It makes it easy to substitute the electro-optic retarders
without the need to modify the program. Because of the size of the data, the program
makes use of all types of memory available on the prototyping board: Flash, SDRAM,
Block RAM. Flash is important because it is non-volatile and hence it retains the written
data even when the system is not powered. SDRAM is slow but it has a big capacity,
whereas Block RAM can store only a very limited amount of data but is nevertheless
very fast. A combination of these three memory types allows the controller to manage
the calibration data effectively.

2Very-High-Speed Integrated Circuits
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The calibration data is stored in the form of look-up tables [84]. Because the memory
capacity is finite, each look-up table has a coarse resolution (granularity). A fast two-
dimensional interpolation is carried out to improve the accuracy. For a two dimensional
function f(x, y), the look-up table is in the form of f(xn, yn) where xn, yn = 1, 2, 3, ...N
and the linear interpolation is

f(x, y) ≈ (1− y + yn)(1− x+ xn)f(xn, yn) +
(1− y + yn)(x− xn)f(xn + 1, yn) +
(y − yn)(1− x+ xn)f(xn, yn + 1) +
(y − yn)(x− xn)f(xn + 1, yn + 1), (3.25)

with xn ≤ x < xn + 1 and yn ≤ y < yn + 1. If xu = x − xn and because xn is an
integer, xu is simply the fractional part of x. If xv = 1 − x + xn, then xv is obtained
by using the relation xu + xv = 1. Thus, this approximation is implemented by using
the most significant bits of x, y as indices to the table and the rest of the bits for the
interpolation.

A less accurate but faster version

f(x, y) ≈ f(xn, yn) + (x− xn)
∂f(x, y)
∂x

+ (y − yn)
∂f(x, y)
∂y

, (3.26)

where ∂f(x, y)/∂x, ∂f(x, y)/∂y are precomputed off-line, is also used under certain
circumstances.

Photointensity Analysis

The photodetection circuit and the corresponding ADC deliver the feedback signal to the
control algorithm. To reduce the effect of the measurement noise, the ADC is clocked at
a frequency 50 MHz that is faster than the dithering in the gradient descent controller.
The measured photointensity is downsampled before being processed by the controller.

To analyze the tracking performance of the controller, the photointensity is analyzed
in a histogram module. The histogram module counts the “occurrences” for various
photointensities. The result can be retrieved from a computer/notebook. If this is carried
out during a continuous polarization tracking, the amount of polarization mismatch can
be concluded by the probability density function of the intensity.

For the characterization purpose (as described in subsection 2.2.4), it is necessary
to record the photointensity at the highest possible sampling frequency. When this is
performed for a duration of several milliseconds, the amount of the sampled data is quite
large. Thus, the data can be saved only to the SDRAM which has a massive total capacity
of 32 MB. This however presents a challenge because the SDRAM can not continuously
be written due to its intermittent refresh procedure. The refresh of the SDRAM can be
as long as 120 ns and occurs at least every 8 µs. The solution is to use a cache buffer [85]
between the ADC and the SDRAM, as depicted in figure 3.12. The RAM controller
always tries to fill the SDRAM as fast as possible but whenever the SDRAM is in the
“busy” state (while performing the refresh), the samples are temporarily stored in the
buffer. This buffer will be quickly emptied as soon as the SDRAM finishes with the
refresh. This caching technique allows storing the photointensity (from the ADC) to the
SDRAM at a constant rate of up to 25 MHz.
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Figure 3.12: Buffering to overcome SDRAM refresh

Figure 3.13: Screenshot of the status information

Troubleshooting

Two means for troubleshooting are built in the control program: remote debugging and
status information. For remote debugging, the program can communicate to a client tool
running on a computer/notebook connected to the controller hardware using a parallel
port. This is useful in the early stage of development, for example to verify the result
of the calculation performed on the FPGA (programmed in VHDL) and compare it
against the reference version (written as MATLAB script). Data transfer is done using a
compact and error-tolerant protocol. However, the speed is limited by the parallel port
interface so it does not permit real-time monitoring.

To display the important status of the controller, a video controller module has been
developed. This module sends VGA-compatible signals to an external monitor. The
photointensity and the electrode voltages of the retarders can be observed on the monitor,
as shown in figure 3.13.

3.3 Tracking Experiments

3.3.1 Experiment Setup

The speed of a polarization controller can be objectively measured when the controller
is stabilizing rapidly varying polarization states. Random changes to polarization state
are possible to realize by passing a fixed polarization through a polarization scrambler.

Figure 3.14 shows the structure of a simple polarization scrambler using cascaded
rotating fractional waveplates. The quarter-wave plates were made from endlessly ro-
tatable fiber loops. A stepper motor was used to drive each fiber loop, the speed and
direction were determined by the microcontroller-based driving circuit. The quarter-
wave plates run at different rates between –6 Hz and +6 Hz. The half-wave plate was
made from a commercial bulk optic waveplate and rotated by a DC motor. It can reach
a maximum speed of 23000 rotations per minute.

The maximal polarization rotation speed is obtained when a linear polarization passes
the half-wave plate. Without loss of generality, assuming this linear polarization is a

39



Figure 3.14: Polarization scrambler using rotating waveplates

horizontal polarization, after rotated by the half-wave plate it becomes (obtained using
equation 2.18)

H(γ)iH∗(γ) =

 cos 4γ
sin 4γ

0

 . (3.27)

Within one revolution of the half-wave plate, γ changes from 0 to 2π and the horizontal
input polarization is transformed into a linear polarization that traces the S1S2 great
circle (on the Poincaré sphere) with an azimuth angle from 0 to 4(2π). This means, when
the half-wave plate is rotated at the rate of 280 Hz, it causes a maximal polarization
change of 7000 rad/s on the Poincaré sphere. Practically, the polarization change does
not always reach the maximal speed at all times since the polarization state at the input
of the half-wave plate is not always linear. The quarter-wave plates in front of the
half-wave plate distribute the polarization states on the Poincaré sphere and thus vary
the total polarization rotation speed. The additional quarter-wave plates after the half-
wave plate ensure that the rotation trajectories seen by the polarization controller are
randomly reoriented. Figure 3.15 shows the result of the rotating waveplates simulation.
The polarization changes distribution function (top) and its complementary cumulative
distribution function (bottom) indicate that the mean of the polarization changes is
indeed about 5500 rad/s and most of the time almost maximum polarization changes
are generated by rotating waveplates.

Figure 3.16 shows the scrambling result on the Poincaré sphere, taken with a polarime-
ter in a time period of 5 minutes. With polarization changes up to 100 rad/s (left), the
trajectories are still visible. However, with very fast scrambling up to 3600 rad/s (right),
the Poincaré sphere is filled only with points because the sampling rate of the polarime-
ter is too slow compared to the scrambling speed. This validates the operation of the
polarization scrambler.

The performance of the polarization controller was analyzed using the setup shown in
figure 3.17 (top). An optical signal from a laser at 1551 nm was passed through the
polarizer, the polarization controller and then the polarization scrambler. The feedback
signal for the controller was obtained after the polarization beam splitter (PBS) and an
optical attenuator. The controller was set to minimize this feedback signal. Here a PBS
was used instead of a polarizer so that the maximized optical signal was available at the
other output of the PBS as well. The attenuator was inserted because the photodetector
circuit was able to work with a maximum of -11 dB optical power. Instead of an atten-
uator, an optical coupler (5% or 10%) could also be used if both outputs of the PBS are
needed, for example in a polarization demultiplex system.

To verify the gradient algorithm in the digital controller, first the scrambler was turned
off and its waveplates were manually adjusted until a maximum feedback signal was
obtained. The output of the PBS was connected to a polarimeter for monitoring purpose.
The polarization controller was deliberately modified until its control speed was only one
iteration per second. The controller was then enabled and it automatically transformed
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Figure 3.15: Distribution function (top) and complementary cumulative distribution
function (bottom) of the polarization changes

Figure 3.16: Poincaré sphere with scrambling up to 100 rad/s (left) and 3600 rad/s
(right)
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Figure 3.17: Polarization tracking experiment setup with varying output polarization
(top) and varying input polarization (bottom)

the polarization until the feedback signal reached its minimum point. Due to the slow
control speed of the controller, the changes of the control voltages could be observed
clearly and this is used to confirm the tracking of the controller [84].

The controller was brought back to its maximum control speed. The scrambler was
switched on and set to produce polarization rotation up to 3600 rad/s on the Poincaré
sphere. The performance of the controller was checked on the polarimeter. Figure 3.18
shows the difference in the polarization changes on Poincaré sphere when the controller
is inactive (left) and active (right), taken in a time period of 5 minutes. Without any
control, the Poincaré sphere was randomly filled with points. With automatic control,
the polarization states were successfully confined in a circle with an approximate radius
of only 0.1 rad.

The experiment setup was modified to check the controller for stabilizing a varying
output polarization, as in figure 3.17 (bottom). With polarization scrambling and active
control, essentially identical result was obtained. That is, the stabilized polarization
states were within a 0.1 rad radius circle on the Poincaré sphere.

3.3.2 Tracking Results

The experiment setup was used to test the performance of the FPGA-based polarization
controller, for the “slow” version (7 µs iteration time), the “fast” version (3.5 µs iteration
time), and the “ultrafast” version (2 µs iteration time), for different scrambling speeds.
The maximum tracking error could not be determined using the polarimeter because the
polarimeter was too slow to catch the fastest glitches. Therefore, the feedback signal
received by the digital controller was recorded every 1.4 µs and then analyzed. For
each scrambling configuration, the intensity analysis was carried out for a 30 minutes’
continuous tracking. The maximum tracking speed was determined by the scrambling
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Figure 3.18: Poincaré sphere when controller is inactive (left) and active (right)

speed for which the intensity error did not exceed 1%.

5000 rad/s Tracking Experiment [86, 87]

With 7 µs control iteration time, the test was conducted with a rotation rate of the
half-wave plate up to 200 Hz. Figure 3.19 shows the cumulative density function F (I)
of the intensity, that is, the time-averaged probability that the intensity becomes worse
than the value given in the abscissa. The intensity measurement error was not excluded,
as shown by the reference measurement without light (optical signal), which indicated
that the true results were likely to be better. For a half-wave plate (HWP) rotation rate
of 200 Hz (polarization changes up to 5000 rad/s), the controller was able to perform
tracking with a maximum intensity error of <1%. The probability that the intensity error
was larger than 0.73% was only 1%. Even with a half-wave plate rotation rate of 280
Hz (polarization changes up to 5000 rad/s) the controller can still perform the tracking
although the maximum intensity error >1% was reached. In figure 3.20, the intensity
error (right scale) and the corresponding calculated polarization error (left scale) are
displayed as a function of the maximum polarization changes. The mean polarization
error was always <0.063 rad. At 5000 rad/s, the maximum polarization and intensity
errors were 0.17 rad and 0.73%, respectively. For the maximized signal exiting at the
other PBS output, this corresponds to a loss of −10 · log(1− (< 0.0073)) =< 0.032 dB.

9000 rad/s Tracking Experiment [88]

A faster version of the software, with 3.5 µs iteration time, was also tested using the
experiment setup. Since now the controller is twice as fast, the maximum rotation rate
of the half-wave plate was doubled as well.

Figure 3.21 shows the cumulative density function F (I). For a half-wave rotation
of 360 Hz (polarization changes up to 9000 rad/s), the controller was able to perform
tracking with a maximum intensity error of <0.5%. The probability that the intensity
error was larger than 0.25% was only 1%. In figure 3.22, the intensity error (right
scale) and the corresponding calculated polarization error (left scale) are displayed as a
function of the maximum polarization changes. The mean polarization error was always
< 0.06 rad. At 9000 rad/s, the maximum polarization and intensity errors were 0.13 rad
and 0.43%, respectively. For the maximized signal exiting at the other PBS output, this
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Figure 3.19: Cumulative intensity distribution function during polarization tracking with
7 µs iteration time

Figure 3.20: Tracking error for different polarization changes (with 7 µs control iteration
time)
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Figure 3.21: Cumulative intensity distribution function during polarization tracking with
3.5 µs iteration time

corresponds to a loss of −10 · log(1− (< 0.0043)) =< 0.019 dB.

15000 rad/s Tracking Experiment [89]

The fastest version of the software, with only 2 µs iteration time, was tested using
the experiment setup. The maximum rotation rate of the half-wave plate was suitable
increased to 600 Hz.

Figure 3.23 shows the cumulative density function F (I). For a half-wave rotation of
600 Hz (polarization changes up to 15000 rad/s), again the controller was able to per-
form tracking with a maximum intensity error of <0.5%. During this 30-minute period,
the total accumulated polarization changes is > 20 Mrad. Figure 3.22 shows the inten-
sity error (right scale) and the corresponding calculated polarization error (left scale)
displayed as a function of the maximum polarization changes. The mean polarization
error was always < 0.061 rad. At 15000 rad/s, the maximum polarization and intensity
errors were 0.14 rad and 0.48%, respectively. For the maximized signal exiting at the
other PBS output, this corresponds to a loss of −10 · log(1− (< 0.0048)) =< 0.021 dB.

45



Figure 3.22: Tracking error for different polarization changes (with 3.5 µs control itera-
tion time)

Figure 3.23: Cumulative intensity distribution function during polarization tracking with
2 µs iteration time
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Figure 3.24: Tracking error for different polarization changes (with 2 µs control iteration
time)
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Chapter 4

Summary

An ultra-fast automatic polarization controller designed for polarization demultiplex-
ing and PMD compensation has been developed in this work. The controller employs
commercial electro-optic retarders, runs on an FPGA, tracks the polarization changes
endlessly and reaches the control speed of 15000 rad/s.

Retarder Characterization

In Chapter 2, the operating principle of optical retarders is analyzed using quaternion
algebra. Specifically, a quaternion model for an electro-optic lithium niobate linear
retarder is then formulated. Since commercial retarders might exhibit non-ideal char-
acteristics, a thorough characterization of the retarders is more useful than just a para-
metric model. During the characterization procedure, a polarimeter is used to record
the Stokes parameters for different driving voltages applied to the linear retarder. Using
a quaternion-based optimization, the polarization transformation of the retarder can be
inferred accurately.

Based on the characterization result, a retarder can be calibrated so that it can be
operated as a linear retarder or a fractional waveplate, already taking into account any of
retarder’s non-ideal characteristics. Later in the polarization controller, the calibration
data are entered as look-up tables for very fast access. Because such an electro-optic
retarder has a finite response time, a state-space model of the retarder is presented as
well. The model parameters are estimated using the subspace identification algorithm.

The extensive use of quaternion analysis for electro-optic retarder characterization and
calibration has never been reported before. The state-space modeling and identification
have never been attempted either.

Endless Polarization Controller

Chapter 3 starts with a detailed description of the two common polarization control
algorithms: the linear retarder algorithm and the cascaded fractional waveplates algo-
rithm. Again, quaternion is used as the tool to analyze the general performance of both
algorithms.

Because the aim of this work is to realize the fastest possible polarization controller, a
hardware-based digital controller is designed and implemented. The hardware comprises
an FPGA with a million gates of logic capability, a high-speed ADC to sample the
feedback signal and several DACs to drive the electro-optic retarders. The software is
programmed with VHDL, it relies also on the calibration data stored in the memory.
The linear retarder algorithm is chosen for the controller. The implementation is highly
optimized, achieving a control iteration cycle of only 7 µs. Two faster versions can
even run with a control iteration cycle of 3.5 µs and 2 µs. All versions are tested in
polarization tracking experiments. A maximum tracking speed of 15000 rad/s is reached.
With faster hardware, the tracking speed can be further increased. From the retarder
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characterization procedure, non-ideal behavior of the linear retarder was found to be
minimum, which made the good experiment results possible.

Compared to any other polarization tracking reports that have been published before,
the results presented in this work clearly show that this FPGA-based digital controller
is able to track faster polarization changes with much better performance (maximum
and mean tracking errors) and guaranteed endless operation. The tracking is recorded
and verified for 30 minutes, which is the longest endless polarization control experiment
reported to date. The controller only gives a polarization mismatch of at most 0.14 rad
on the Poincaré sphere corresponding to a negligible intensity error of only 0.02 dB.
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Appendix A

Basic Quaternion Algebra

Quaternion, first devised by Sir William Rowan Hamilton in 1843 [25], is a hyper-complex
number of rank 4. The set of all quaternions is a vector space with the dimension of 4
and contains the complex numbers.

A quaternion Q is represented the scalar part q0 and the vector part Q = iq1+jq2+kq3

Q = q0 + Q = q0 + iq1 + jq2 + kq3 (A.1)

with q0, q1, q2, q3 are all real numbers and i, j,k satisfy

i2 = j2 = k2 = ijk = −1 (A.2)

Furthermore, the following Hamilton’s rules must hold for multiplications of i, j,k

ij = k ji = −k (A.3a)
jk = i kj = −i (A.3b)
ki = j ik = −j (A.3c)

The Pauli spin matrices = σ = (σ1, σ2, σ3) = (
[

1 0
0 −1

]
,

[
0 1
1 0

] [
0 −i
i 0

]
)

are related to the quaternion elements i, j,k by [90]

i = −iσ1 (A.4a)
j = −iσ2 (A.4b)
k = −iσ3 (A.4c)

A pure quaternion is a quaternion whose q0 = 0. A vector v ∈ R3, where v = (x, y, z),
can be represented by the pure quaternion Q= ix+ jy + kz.

The complex conjugate of quaternion Q, denoted Q∗, is given as

Q∗ = q0 −Q = q0 − (iq1 + jq2 + kq3) (A.5)

The inverse of quaternion Q, denoted Q−1, is the complex conjugate

Q−1 = Q∗ (A.6)

If c is a scalar, then

cQ = cq0 + cQ = cq0 + icq1 + jcq + kcq3 (A.7)
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Let quaternions P and Q

P = p0 + P = p0 + ip1 + jp2 + kp3

Q = q0 + Q = q0 + iq1 + jq2 + kq3

then the binary operations of P and Q are given as

P +Q = (p0 + q0) + (P + Q) (A.8)
P −Q = (p0 − q0) + (P−Q) (A.9)
PQ = p0q0 −P ·Q + p0Q + q0P + P×Q (A.10)

The norm of quaternion Q, denoted |Q|, is

|Q| =
√
Q∗Q (A.11)

|Q|2 = q20 + q21 + q22 + q23 (A.12)

Quaternion Q is called a unit quaternion if |Q| = 1. The product of two or more unit
quaternions is always a unit quaternion.

A rotation of θ about the axis presented by the vector u can be represented by the
quaternion

Q = cos
θ

2
+ sin

θ

2
u (A.13)

Rotation of a vector v ∈ R3 by the unit quaternion Q gives a vector w according to

w = QvQ∗ (A.14)

The orthogonal matrix corresponding to a rotation by the quaternion Q is given by

G =

 q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q0q3 + q1q2) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q0q1 + q2q3) q20 − q21 − q22 + q23

 (A.15)

The 2×2 complex matrix corresponding to a rotation by the unit quaternion Q is
given by

J =
[

q0 + iq1 q2 + iq3
−q2 + iq3 q0 − iq1

]
(A.16)

Spherical linear interpolation (slerp) between Q1 to Q2 with a parameter u = 0 . . . 1
can be obtained as [91]

slerp(Q1,Q2;u) =
sin(1− u)δ

sin δ
Q1 +

sinuδ
sin δ

Q2 (A.17)

where

cos δ = Q1 · Q2

The result of spherical linear interpolation inherently is always a quaternion, unlike
interpolation of two rotation matrices by linear interpolation of the elements which
possibly yields a non-orthogonal matrix.
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Appendix B

Non-Iterative Solutions for Absolute
Orientation Problem

Given two corresponded point sets {xi} and {yi}, i = 1..N , which are N vectors in R3

arranged in 3×N matrices, such that they are related by:

yi = Rxi + T + Vi (B.1)

where R is a rotation, T is a translation and Vi is a noise vector, then the optimal
rotation R̂ and translation T̂ can be found by minimizing the least square error criterion:

Σ2 =
N∑
i=1

∣∣∣yi − R̂xi − T̂
∣∣∣2 (B.2)

This problem is known as the absolute orientation problem. It can be solved using
iterative methods or non-iterative methods. Two non-iterative closed-form methods,
using unit quaternion and matrix analysis, are described below. The unit quaternion
method is faster and simpler than the matrix analysis method.

Both of these methods make use the 3× 3 correlation matrix defined by:

H =
N∑
i=1

xc,iy
T
c,i (B.3)

with

xc,i = xi −
1
N

N∑
i=1

xi (B.4)

yc,i = yi −
1
N

N∑
i=1

yi (B.5)

Unit Quaternion Method

This method was developed by Horn [92]. Using this method, the rotation and the
translation are represented by the unit quaternion Q̂ and the vector T respectively.

Let the correlation matrix H be written as:

H =

 H00 H01 H02

H10 H11 H12

H20 H21 H22


A new 4× 4 matrix is first constructed from the correlation matrix H as:
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P =


H00 +H11 +H22 H12 −H21 H20 −H02 H01 −H10

H12 −H21 H00 −H11 −H22 H01 +H10 H20 +H02

H20 −H02 H01 +H10 H11 −H00 −H22 H12 +H21

H01 −H10 H20 +H02 H12 +H21 H22 −H11 −H00


(B.6)

The optimal rotation Q̂ is given as the eigenvector corresponding to the largest positive
eigenvalue of P.

The optimal translation vector is given as:

T̂ =
1
N

N∑
i=1

yi − Q̂
1
N

N∑
i=1

xiQ̂∗ (B.7)

Matrix Analysis Method

This method was developed by Arun, Huang, and Blostein [93]. Using this method, the
rotation and the translation are represented by the 3× 3 orthonormal matrix R̂ and the
vector T respectively.

From the correlation matrix H, singular value decomposition yields:

H = U ∧V (B.8)

The optimal rotation matrix is given as:

R̂ = UVT (B.9)

The optimal translation vector is given as:

T̂ =
1
N

N∑
i=1

yi − R̂
1
N

N∑
i=1

xi (B.10)
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Appendix C

Multichannel Polarization Division
Multiplexing Transmissions

The need for an automatic, ultra-fast polarization controller arose from the experiments
to push the transmission capacity in an optical communication system. The combination
of differential quadrature phase-shift keying (DQPSK) and polarization division multi-
plexing (PolDM) proves to be an effective way to quadruple the bit rate. At 40 Gbaud,
this corresponds to a 160 Gb/s channel capacity. For this modulation format, an auto-
matic polarization demultiplexer at the receiver is necessary. With wavelength division
multiplexing (WDM), the total capacity is further multiplied by the number of transmit-
ted channels. Some recent experiments using DQPSK and PolDM that were conducted
in a multichannel WDM transmission system are described in this appendix.

Experiment Setup

Figure C.1 shows the transmitter setup. N signals from lasers with 100 GHz frequency
spacing are combined with equal polarizations in an optical multiplexer. These WDM
channels are modulated together in a dual-drive differential phase-shift keying (DPSK)
modulator. The transmitted bits are a non return-to-zero (NRZ) pseudo-random binary
sequence (PRBS) data with a periodic bit length of 127. A DQPSK signal is generated by
combining the DPSK signal in a fiber-based Mach-Zender delay interferometer (MZDI)
with a differential delay of 75 ps (3-symbol durations). The laser frequencies are fine-
tuned to an integer multiple of the interferometer delay in order to achieve a proper
DQPSK signal in each channel. The return-to-zero (RZ) signal is generated using another
dual-drive modulator clocked at 20 GHz that acts as a pulse carver. The PolDM signal is
realized by combining two RZ-DQPSK signals with orthogonal polarization. To ensure
decorrelation between the two polarization channels, one channel is delayed by 2.8 ns
(112-symbol durations) before being recombined with the other one. The optical signal
is then amplified and launched to the transmission line.

Figure C.2 shows the receiver setup. The received optical signal from the transmission
line is preamplified and then one of the channels is selected using an optical demultiplexer
and an optical switch. Per-channel chromatic dispersion compensation is applied before
the signal is polarization demultiplexed in a lithium niobate polarization transformer
driven by a controller that minimizes the broadband interference between the two polar-
ization channels. The DQPSK signal is demodulated using a fiber-based Mach-Zender
interferometer. For proper decoding of in-phase and quadrature data channels, the dif-
ferential delay of the interferometer is set to π/4 or 3π/4. The interferometer outputs
are connected to the clock and data recovery circuit. The decoded data are analyzed in a
bit error rate (BER) tester which is suitably programmed with the expected bit pattern.
This receiver setup allows only a measurement of one polarization and one quadrature
at a time. Thus, four separate measurements are needed for each WDM channel.
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Figure C.1: Setup for the WDM transmitter

Figure C.2: Setup for the WDM receiver
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Figure C.3: Picture of the experiment setup

To allow semi-automatic measurement, almost all equipments and instruments are
connected to a desktop computer running a control software specifically developed to
carry out the following tasks:

� to switch on and off all lasers

� to continuously monitor and adjust the laser frequencies

� to choose one specific WDM channel to measure

� to adjust dispersion compensation applied to the selected WDM channel

� to trigger the clock and data recovery

� to load the received pattern into the BER tester

� to get the BER from the BER tester

� to perform automatic Q-factor and sensitivity measurement

In all cases, polarization control was slow and thus it limits the practical uses of the
transmission system outside the laboratory experiments. This shows the need for a a
fast automatic polarization controller so that any polarization fluctuations along the
transmission line due to the temperature, vibration and other mechanical disturbances
on the transmission fiber can be tracked.

Figure C.3 shows the picture of the experiment setup.
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Measurement Results

In each experiment, bit error rate (BER) at the receiver was measured for each in-phase/
quadrature and two polarizations data channels, denoted as I/Q and X/Y in the figure.
The corresponding Q factor is calculated from the BER with the relation

Q =
√

2 · erf−1(1− 2 ·BER) (C.1)

In commercially available transmission systems, Forward Error Correcting (FEC) is
employed to improve the system performance [94]. In the following experiments, an
FEC decoder was assumed to process the raw demodulated data. The net error-free
transmission capacity was thus calculated by excluding the FEC overhead. Using the
latest generation FEC with 7% redundancy, a corrected BER of < 10−13 would be
reached with a raw BER of < 3.9 ·10−3 [6]. The BER of 3.9 ·10−3 hereby will be referred
as the FEC limit.

16 Channels over 273 km Experiment

In this experiment, 16 WDM channels in the range of 192.2 THz to 193.7 THz were
launched into a transmission line that comprised 4 fiber spans: 81 km, 69 km, 60 km,
and 63 km. Each span had mixed standard single mode fiber (SSMF) and non-zero
dispersion shifted fiber (NZDSF). An Erbium-doped fiber amplifier (EDFA) and a dis-
persion compensating fiber (DCF) were inserted before each span. Figure C.4 shows the
measured BERs at the receiver, and the corresponding Q factors, for in-phase/ quadra-
ture at both polarizations. After 273 km a BER < 8 · 10−4 (exceeding the FEC limit)
was observed in all cases. The total raw transmission capacity was 2.56 Tb/s. A net
error-free transmission capacity of 2.38 Tb/s was reached [95].
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Figure C.4: Measured BER and the corresponding Q-factor as a function of frequency
for 16 channels over 273 km experiment

16 Channels over 292 km Experiment

In this experiment, 16 WDM channels in the range of 192.2 THz to 193.7 THz were
launched into a transmission line that comprised 3 fiber spans: 101 km, 98 km, and 92
km. DCF and EDFA were inserted before each span. No Raman amplifier was inserted
in the fiber span at all. Figure C.5 shows the measured BERs at the receiver, and the
corresponding Q factors, for in-phase/ quadrature at both polarizations. After 292 km
a BER < 3 · 10−3 (exceeding the FEC limit) was observed in all cases. The total raw
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transmission capacity was 2.56 Tb/s. A net error-free transmission capacity of 2.38 Tb/s
was again reached [96].
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Figure C.5: Measured BER and the corresponding Q-factor as a function of frequency
for 16 channels over 292 experiment

32 Channels over 323 km Experiment

In this experiment, 32 WDM channels in the range of 192.1 THz to 195.3 THz were
launched into a transmission line that comprised 4 fiber spans: 81 km, 80 km, 82 km
and 80 km. DCF and EDFA were inserted in each span. No Raman amplification was
used inside the span. Figure C.6 shows the measured BERs at the receiver, and the
corresponding Q factors, for in-phase/ quadrature at both polarizations. After 323 km
a BER < 9 · 10−4 (exceeding the FEC limit) was observed in all cases. The total raw
transmission capacity was 5.12 Tb/s. A net error-free transmission capacity of 4.76 Tb/s
was reached [97].
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Figure C.6: Measured BER and the corresponding Q-factor as a function of frequency
for 32 channels experiment

40 Channels over 324 km Experiment

In this experiment, 40 WDM channels in the range of 192.1 THz to 196.0 THz were were
launched into a transmission line that comprised 4 fiber spans: 81 km, 80 km, 82 km
and 81 km. DCF was inserted in the span right before EDFA. Additionally, a backward-
pumped Raman amplifier in each span was used to reduce the span loss. Figure C.7
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shows the measured BERs at the receiver, and the corresponding Q factors, for in-
phase/ quadrature at both polarizations. After 324 km a BER < 8 · 10−4 (exceeding the
FEC limit) was observed in all cases. The total raw transmission capacity was 6.4 Tb/s.
A net error-free transmission capacity of 5.94 Tb/s was reached. The same setup was
also successfully used to test a commercial fiber Bragg grating multichannel dispersion
compensator [98, 99].
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Figure C.7: Measured BER and the corresponding Q-factor as a function of frequency
for 40 channels experiment
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[51] R. Noé, “Endless polarisation control experiment with three elements of limited
birefringence range,” Electronics Letters, vol. 22, no. 25, pp. 1341–1343, 1986.

[52] N. G. Walker and G. R. Walker,“Endless polarization control using four fibre squeez-
ers,” Electronics Letters, vol. 23, no. 6, pp. 290–292, 1987.

[53] M. Kubota, T. Oohara, K. Furuya, and Y. Suematsu, “Electro-optical polarisation
control on single-mode optical fibres,” Electronics Letters, vol. 16, no. 15, p. 573,
1980.

[54] F. Heismann and R. C. Alferness, “Wavelength-tunable electrooptic polarization
conversion in birefrigent waveguides,”Journal of Quantum Electronics, vol. 24, no. 1,
pp. 83–93.

[55] F. Heismann, “Integrated-optic polarization transformer for reset-free endless po-
larization control,” Journal of Quantum Electronics, vol. 25, no. 8, pp. 1898–1906.

[56] S. H. Rumbaugh, M. D. Jones, and L. W. Casperson, “Polarization control for
coherent fiber-optic systems using nematic liquid crystals,” Journal of Lightwave
Technology, vol. 8, no. 3, pp. 459–465, 1990.

64



[57] D. Sandel, S. Hinz, M. Yoshida-Dierolf, J. Gräser, R. Noé, L. Beresnev,
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