FAKULTAT FUR
ELEKTROTECHNIK,

'L(‘ UNIVERSITAT PADERBORN INFORMATIK UND

Die Universitit der Informationsgesellschaft MATHEMATIK

Behavior Adaptive and Real-Time Model of
Integrated Bottom-Up and Top-Down Visual Attention

Zur Erlangung des akademischen Grades

DOKTORINGENIEUR (Dr.-Ing.)

der Fakultat fur Elektrotechnik, Informatik und Mathematik
der Universitat Paderborn
vorgelegte Dissertation
von

MS. -CS. Muhammad Zaheer Aziz

Paderborn

Referentin: Prof. Dr.-Ing. Barbel Mertsching
Korreferent: Prof. Dr.-Ing. Reinhold Hab-Umbach

Tag der mindlichen Prifung: 03.09.2009
Paderborn, den 08.09.2009
Diss. EIM-E/259






Dedication

Dedicated to my wife Rabia and daughters Maryam and Fatima who went

through all the hardships during the time of this research very patiently.






Declaration

I hereby declare that I have completed the work on this PhD dissertation with
my own efforts and no part of this work or documentation has been copied from
any other source. It is also assured that this work is not submitted to any other

institution for award of any degree or certificate.

Paderborn, September 8, 2009

-

\

AT
T AL
A
-

AN

e

Muhammad Zaheer Aziz






Kurzfassung

Visuelle Aufmerksambkeit ist ein wichtiger Bestandteil des natiirlichen Sehens, der
dazu beitrigt, die Datenmenge, die das menschliche Gehirn erreicht, wesentlich
zu optimieren. Der Aufmerksamkeitsmechanismus beinhaltet einen Filterungsprozess
der visuellen Informationen, um nur relevante und wichtige Anteile der gese-
henen Szene fiir eine Analyse auf hheren Verarbeitungsebenen weiter zu leiten.
Computer-gestiitzte Aufmerksamkeitsmodelle versuchen diese Filterung fiir Ver-

fahren des kiinstlichen Sehens zu realisieren.

In dieser Dissertation wird ein gebietsbasierter Ansatz zu Modellierung visueller
Aufmerksamkeit vorgestellt, der eine Alternative zu existierenden Modellen darstellt.
Das vorgeschlagene Modell integriert bottom-up- und top-down Pfade der Aufmerk-
samkeit in einer einzelnen Architektur und nutzt beide Pfade unter Beriicksichti-
gung verschiedener visueller Verhalten. Eine derartige Integration ist bisher von

anderen Modellen noch nicht beriicksichtigt worden.

Um auf mobilen Seh-Systeme Ergebnisse in Echtzeit erzielen zu kénnen, wurden
schnellere Algorithmen zur Merkmalsextraktion und Salienzberechnung entwick-
elt. Diese Algorithmen berechnen den Kontrast in fiinf Merkmalskanilen sowohl
im Kontext lokaler Nachbarschaft, als auch im globalen Kontext des gesamten
Bildes.

Die Neuerung hinsichtlich der top-down Aufmerksamkeit ist die Erzeugung von
Salienz-Karten feiner Granularitdt, mit der die visuelle Suche eines gegebenen
Objektes durchgefiithrt wird. Diese Karten besitzen eine hohe Salienz fiir jene
Gebiete, die eine héhere Ahnlichkeit zu den Merkmalen des gesuchten Objekts
aufweisen. Jiingste Untersuchungen im Bereich biologischer Sehsysteme unter-
stiitzen die Annahme einer Top-Down Verarbeitung im Aufmerksamkeits-Kanal

des menschlichen Hirns. Andere existierende Ansitze nutzen zu diesem Zweck



bislang ausschliellich Bottom-Up Karten, wodurch die vorliegende Arbeit einen

signifikanten Beitrag zur aktuellen Forschung auf diesem Gebiet leistet.

Das vorgeschlagene Modell lieferte sinnvolle Ergebnisse und erzielte eine gute
Leistung im Vergleich zu anderen verfiigharen Aufmerksamkeitsmodellen. Diese
Arbeit zeigt neue Richtungen fiir die Untersuchungen in diesem Bereich auf, die
zum Erreichen des ultimative Ziels biologisch plausibler, kiinstlicher Sehsysteme

fiihren konnen.



Abstract

Visual attention is an important component of natural vision that helps it to
optimize the amount of data that reaches the brain for detailed processing. The
Attention mechanism applies a filtration process in the visual input that selects
only relevant and important portions from the viewed scene for high level anal-
ysis. Computational models of attention attempt to perform this filtration for

the machine vision systems.

The work presented in this dissertation proposes a region-based approach for
modeling visual attention as an alternative to the other existing paradigms. The
proposed model integrates bottom-up and top-down pathways of attention into
a single architecture and makes combined use of these pathways under different
visual behaviors. This was not done by any computational model of attention

before.

In order to obtain real-time results on mobile vision systems new faster algo-
rithms were developed for feature extraction and saliency computation. These
algorithms compute contrast in five feature channels in context of local neighbor-
hood as well as the global context of the whole view. The innovation in terms of
top-down attention is the creation of fine-grain saliency maps for visual search of
a given object. In the proposed maps high saliency is given to regions that have
more feature similarity with the search targets. Latest research on biological vi-
sion suggests that such fine-grain processing takes place in the top-down channel
of attention in the brain. Other existing models have used the bottom-up maps
for this purpose, hence the proposed approach makes a significant contribution
to the state-of-the-art.

The proposed model produced valid results and has shown good performance in

comparison to other available attention models hence this research has openned



new directions for investigations in this field that can lead to the ultimate target

of biologically plausible machine vision.
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1 Introduction

Visual attention is defined as the cognitive process of selectively concentrating on
significant aspects of the environment while filtering out unwanted information.
In context of computer vision the study and modeling of visual attention serves at
least two purposes. Firstly, building vision systems after the role model of natural
vision leads to efficiency, robustness, flexibility, and adaptivity in machine vision.
Secondly, performance of a computational model gives a feedback for the theory
and concepts developed for the natural vision that can help in progress towards
better understanding of nature. Amount of work on the computational models
of visual attention increased significantly during the last decade. These efforts
have not only established a firm working relation between the fields of machine
vision, neurobiology, and psychology but stimulated new directions of research

in these areas as well.

This chapter introduces the related areas of research in sections 1.1 and 1.2 and
then establishes the necessity of the investigations done under this project in
section 1.3. As the problem for which this work is carried out is a multidisci-
plinary topic and involves integration of many fields of sciences, there is a need
to explicitly formulate the problem and divide it into practicable steps. Section
1.4 presents this analysis of the requirements and section 1.5 highlights the con-
tributions of the presented work in advancement in the state of the art of the

attention modeling. Section 1.6 portrays an outline of this dissertation.

1.1 Natural Visual Attention

Visual attention enjoys a key position in the vision process in humans and ani-
mals with developed eyes. The amount of information flowing toward our brains
through eyes is quite large as compared to the capacity that can be processed at

a time. The count of units that can be sensed by a normal eye is depicted by
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the number of receptors in the retina. Anatomical studies, such as [Ost35] show
existence of 6.4 x 10° cones and 1.1 x 10® to 1.25x 10® rods in a human retina. On
the other hand the number of axions in the optic nerve has been reported to be
between 8 x 10° [Pol41] and 1.2 x 10° [QAGS82] [BRD'84]. This convergence in
numbers show that the information reaching the brain gets significantly filtered

at the early stages of vision.

A special mechanism of filtering the input is used by the human vision system
(HVS) to deal with this problem. Detailed tasks of recognition, classification, or
learning are applied only to a small portion of the viewed scene called focus of
attention (FOA). Within a fraction of a second, the FOA is shifted to another
location by a swift saccade of the eye. Apart from this overt attention by eye
movement an internal form of attention also exists that is called covert attention
[CMO1]. Overt attention does not involve movement of eyes (or head) rather the
selection is performed on different locations in the given scene. During an overt
or covert gaze towards some FOA, the rest of the scene remains excluded from
detailed processing unless some stimulus motivates the eye to shift attention to a
new location. Some identified visual features that stimulate the visual attention
include color contrast [LPA95], orientation [Ner04], motion (or a sudden change)
[Ita01], eccentricity [BFR84], and symmetry [OHO03]. A detailed review of the

features involved in the human attention mechanism can be seen in [WHO04].

According to history of the work on attention collected in [TIRO05], the first
recorded evidence of investigations to understand and describe the phenomenon
of attention dates back to 1649 [Des49], the earliest reported psychological ex-
periment on visual attention was in 1871 [Jav71], and the first information pro-
cessing model for attention was proposed in 1953 [Pou53]. Being a complex
process there is little concrete knowledge available about details of the involved
processes that take effect in natural visual attention. Theories and models are
formulated based upon psychophysical experiments and neurobiological study of
natural vision systems. These theories differ and sometimes even oppose each
other in many aspects hence it is difficult to identify hard facts with the current
state of the knowledge on natural attention. On the other hand, those concepts
on which most of the theories agree on can be considered as trustable. The most

commonly known components of visual attention include bottom-up feature anal-
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ysis [TG80] [WHO04], fusion of the contributing feature channels [Ner04] [Koc99]
for pop-out selection, inhibition of return (IOR) [PKK97] [SK00] [CT03], and
top-down influences of a given task [SMC103] [SHS01]. These conceptual models
provide cues for construction of computational models that can be implemented
on machine vision systems and their results can then be compared with those of
the natural attention in order to either evaluate the computational model or to

verify the theory of the natural model.

1.2 Visual Attention Modeling and Its Applications

Visual input is a major sensing modality to explore the environment with mobile
robots. With the availability of improved quality camera devices, it is possible
to obtain full color and high resolution images for machine vision. On the other
hand, processing time can exponentially increase when working on images of big
size. This raises the need of fast algorithms that are able to handle information

of complex scenes.

The problem of abundance of input data is even more crucial in artificial vision
systems because they do not possess a massively parallel computing power as
that of the biological systems. More intelligent and precise machine vision can
be performed on selected objects if the strategy of the natural eyes is followed.
Models of artificial visual attention are constructed keeping human or biological
vision as a role model. Their main objective is to locate those areas in a scene
that have certain significance in some respect hence they apply a filtration process
in order to select salient and important locations from the visual input so that

detailed processing could be restricted only to these locations.

Most of the feature-based models of visual attention have their foundations in the
feature integration theory [TG80] according to which features are automatically
registered in parallel across the visual field of the eye in an early stage before the
objects are identified. This theory proposes that separable feature dimensions
for color, orientation, spatial frequency, brightness, and direction of motion are
coded and combined to formulate a single object in the focus of attention (FOA).
Hence the typical procedure of finding the focus of attention by a majority of

attention models starts with computing of feature maps that highlights the salient
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areas from the visual input in terms of the related feature. Number and nature
of the feature channels are chosen in conformity with the knowledge of natural
vision. Then these channels are combined to obtain a master conspicuity map
in which peaks of saliency compete to win the focus of attention. The attended
peak(s) are suppressed in the succeeding attention attempts using the inhibition

of return mechanism in order to allow other salient locations to get attention.

Efforts have been made to apply visual attention to achieve lower computational
cost not only in areas of computer vision but in other fields like robotics and
computer graphics as well. Although the exact elucidation of the natural process
is yet a far target the enhancement in efficiency has been reported for many
vision related tasks such as visual search [IK00], image compression [BS03], video
compression [Itt04], scene rendering in 3D graphics [CCMO03], object tracking
[OHO03], automatic image cropping [Ste07], perceptual grouping [AMO07a], and
gesture recognition [HRB103] even with the current state of the art of attention

modeling.

1.3 Need of Region-Based Approach

Some of the existing models of visual attention apply linear center-surround op-
erations between fine and coarse scales of the input while others utilize frequency
domain filters. Such approaches yield saliency regions amid cloudy clusters that
are, though, sufficiently good for the purpose of visual attention but the actual
shapes of the attended objects get totally lost at end of the attention process. A
redundant procedure of feature extraction becomes necessary for shape analysis
and recognition of each FOA. Additionally, the feature computation methods of
the existing approaches are computationally heavy causing a further delay in the
overall output. Furthermore, due to the use of coarse scales of the input, many
small regions worth attending get faded away before reaching the final stages

hence remain unattended.

Early recognition or shape analysis of the candidates for attention is also neces-
sary for computing the contrast based upon identity of objects. For example, an
red colored ball surrounded by (red) apples will be a salient focus of attention

for the human attention. Hence an early pixel clustering needs to be investigated
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in attention modeling so that groundwork for such complex aspects of attention
gets established. Clustering of pixels, that belong together due to being compo-
nents of a single object, into regions reduces the number of units that have to be
processed by the attention procedures. As processes of attention are extensively
iterative, such reduction in the number of items can significantly reduce the pro-
cessing time. Hence the region-based approach can also be helpful in context of

improving the overall performance.

There is yet another aspect that demands determination and preservation of
object shapes within the early stages of attention. The recent trends in modeling
of visual attention are emphasizing on the combination of top-down and bottom-
up contexts [NIO6b] [FBRO5], which in turn need shape and feature signatures
associated with the objects for a rudimentary recognition in order to inhibit
already known objects. Catering for these requirements right from the early

stages of processing can lead to significant advantages.

The above mentioned issues may be of trivial importance when the consideration
is limited only to modeling of attention but the work presented in this dissertation
is an effort to integrate the attention procedure into a comprehensive biologically
inspired vision system. Hence not only the efficiency of each internal process of
attention has to be optimized but they need to be made compatible with the rest
of the vision system as well in order to bring visual attention into practical use

on mobile and static robot platforms.

1.4 Formulation of the Problem

The work under discussion is concerned with investigations on an alternative
architecture for attention modeling that involves early clustering of visual input,
improvement in inner processes for accelerating the attention procedure, extend-
ing the scope of attention modeling by integrating influence of vision behaviors
(such as exploration and search etc.) in internal steps of the model. Therefore
the issues addressed in this work span from fundamental image processing to a
complete architecture of the attention model. The following subsections analyze
the whole problem into its constituent steps and describe requirements of each

step in context of reaching a suitable solution.
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1.4.1 Segmentation

Segmentation is one of the most important steps in the point of view of ma-
chine vision systems. It clusters neighboring pixels into groups or regions using
some homogeneity criterion such as similarity of color. With emergence of new
and more complicated applications, requirements of good results from the seg-
mentation process have increased. Color segmentation has to follow a different
approach as compared to gray-scale segmentation. In gray-scale, only intensity
information is available for which the computer can discriminate 256 levels. On
the other hand colored images contain more complex structure comprising of at
least three components, leading to millions of colors per pixel. These components
have different meanings and roles in different color models, called color-spaces,
such as RGB, YUV, HIS, [,I>I3, and CIEL*a*b* etc. [CJSWO01]. Each space
has advantages and limitations in terms of segmentation hence a selection of the
best color space is one of the major issues in color image segmentation [TT96].
Light effects such as shades and shadows cause a major problem in achieving op-
timal regions because one region may either get over-split into many or different

regions may merge together.

The ability of the natural vision system to perform selection and inhibition on
objects [PKK97] [SF03] strongly indicates that the process of clustering, in which
individual points are grouped to formulate complete objects, is performed some-
where in the processing pipeline. Existing models of attention that do not agree
on explicit formulation of objects, for example [IKN98] and [TCW™'95], model
the clustering implicitly while constructing pyramid of low resolution copies of
the input. Only those regions survive in the layers near the summit of the pyra-
mid that occupy sufficiently large area in the original input. Hence a point in the
higher level of the pyramid represents a cluster of points in the lowest level that
were grouped based upon only their spatial connectivity. Hence it can be safely
argued that the process of clustering is an essential part of the attention mecha-
nism. The main question remains that clustering is performed at which level of
processing and how. In the work presented here, we investigate the possibility
of shifting the clustering to the earliest stage of attention processing using color

segmentation. Hence the segmentation will be a primary step in our model.
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The type of result required from segmentation differs from one application to
another. There are some applications such as shape-from-shading where different
color shades on an object are used for 3D reconstruction of a scene [TT92]. In
this case, retaining and distinguishing each different shade of color is important.
On the other hand for object recognition applications it is needed that effects of
illumination may be neglected in order to acquire more accurate object shapes.
Generally a segmented area or region has common features between its pixels
such as color value, intensity, and luminance etc. In some cases a combination
of two or more features is required to correctly segment a specific region. As the
segmentation in this work is meant for artificial visual attention, high tolerance
to light effects is required so that uniformly colored parts of objects do not get
split due to mere variation of illumination. Hence over-segmentation has to be
avoided along with minimization of under-segmentation in order to obtain good
input to support further steps of the attention process. HIS (Hue-Intensity-
Saturation) space, sometimes also called HSV (Hue-Saturation-Value) or HSL
(Hue-Saturation-Luminance) represent the psychophysical perception in humans
[CL94]. It separates illumination from the representation of the basic color and
has capability of dealing with highlights, shades, and shadows [TT96]. Keeping
in view these advantages, the work presented here uses HIS color space and
proposes an improved algorithm to obtain better results, especially in context of

the proposed region-based attention model (see section 3.1 for details).
1.4.2 Preattentive Feature Computation

Other models have been able to incorporate limited number of feature channels
mainly due to heavy computational cost of feature extraction functions. We
intend to increase the number of channels through acceleration in the feature
extraction procedures. As a high amount of accuracy in feature magnitudes is
not required at the pre-attentive stage because the main issue is to evaluate
the saliency rather than object recognition, feature extraction methods can be
optimized on time instead on accuracy for the purpose of visual attention. On
the other hand we are modeling top-down saliency in parallel with the usually
computed saliency along the bottom-up pathway hence we have separated the

feature extraction step from the saliency detection process. Due to this separa-
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tion the feature magnitudes become available for saliency processing in both of

the pathways.
1.4.3 Saliency Computation

All models of visual attention consider color as an important feature channel for
determining saliency. A majority of existing models have their foundations of
color saliency computation in the concept of opponent colors described in psychol-
ogy [HJ57]. During our search in the literature we found valuable information in
the work on color theory about the attributes of colors that contribute in making
an object visually prominent or receding. Artists practice these aspects for creat-
ing effects of contrast, visual advancement, and activeness in their illustrations.
Accordig to [For06], Johannes Itten was one of the first who formally described
methods for color combinations offering contrast. He has defined different sit-
uations in which the human vision finds contrast in colored scenes. According
to his research, the contrast can occur due to presence of objects posing high
difference of intensities, saturation, and/or hue. Other reported causes include
presence of opponent colors and co-occurrence of warm and cool colors [Itt61].
Another relatively modern source of theoretical concepts on colors is available
in [Mah96]. We combine the concepts from [Itt61] and [Mah96] of these resources
to formulate a set of computationally feasible premises for design of the proposed

methodology, see section 3.4 of chapter 3 for details.

An important requirement while computing saliency is the consideration of the
global context apart from the immediate neighborhood of individual objects.
Existing region-based methods for color saliency computation such as [BMBO1]
ignore the global context of contrast due to which such models tend to produce
false results in certain cases. For example, figure 1.1 (d) shows the output of
color contrast by [BMBO1] using an image where a red square is surrounded by
green squares on a black background as shown in figure 1.1 (a). Each square has a
high contrast with the background in local context but the red one supersedes the
others when global context is considered. It can be seen that the said model fails
to arbitrate the red square as salient because its inner methodology takes only
the local contrast into account. Some of the existing models of attention have

considered shape-based features such as orientation, eccentricity, and symmetry.
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A shortcoming in these approaches is ignoring of the aspect of rarity in terms
of these features. For example [BMBO1] applies a bias towards high magnitudes
of eccentricity and symmetry for computing prominence in these two feature
channels. Figure 1.1 (e) demonstrates construction of eccentricity map by this
model where neglecting the rarity criteria results into giving high saliency to
items appearing abundantly in the input given in figure 1.1 (b). Feature channel
of size is not explicitly included by any other model so far. For example the
inability of the well known model proposed in [IKN98] to assess saliency with

respect to size using the input given in figure 1.1 (c) can be seen in figure 1.1 (f).

Figure 1.1: Samples of drawbacks of not using global contrast, ignoring rarity
criteria, and using less feature channels. (a) Input with local color
contrast. (b) Input with contrast of eccentricity. (c) Input having
contrast of size. (d) Color saliency map by model of [BMBO01] showing
no saliency of the red box. (e) Eccentricity map by [BMBO01] showing
no saliency of the object having the rare eccentricity. (f) Saliency
map by the model of [IKN98] showing no saliency to the actually
salient object.
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1.4.4 Inhibition of Return

After attending a particular object or location in a given scene, the attention
mechanism should perform an inhibition process on the attended locations in
order to avoid frequent revisit of the same location. This process allows the
system to fixate on all of the important locations present in the scene. The
most commonly known inhibition is the spatial inhibition [PKK97] [CT03] in
which a specific area around the attended location gets inhibited for a certain
time [SK00]. There are also indications in literature on feature based inhibition as
well [PKK97] [LPA95] [GGS05]. We keep all of these factors in the requirements

list for the proposed method of inhibition of return.

1.4.5 Behavior Influence

Fixation points entirely depend on the active visual behavior or the task at a
hand, e.g the foci of attention while searching for a predefined object will be
entirely different from those under free viewing. Figure 1.2 shows the results
of experiments reported by [Yar67] in which the influence of task on the scan
path of human attention is clearly visible. The experiments reported in [DLDO04]
also propose that adapting the human vision to a particular task selectively
reduces sensory gain to a narrow range of the stimulus domain. Similarly the
work presented in [NCMS04] reconfirms the findings of [Yar67] using a new set

of experiments.

In order to make our model a more adequate model of human vision, we need
to integrate the influence of behavior at each individual step of the model where
the active task could play a part. It is not the peak selection only that has to
be performed dependant on the active behavior but other internal steps of the
attention have to be customized based upon the behavior also in order to make

it flexibly adaptable according to the active vision behavior.

The existing models of artificial visual attention have implemented mainly three
types of visual behaviors, namely explore, search, and detect changes (see section

2.8 of chapter 2 for references). In the proposed model we introduce ezamine
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(b) Free viewing (c) Estimate mate- (d) Give the ages of
rial circumstances of the people
the family

(e) Surmise what the (f) Remember the (g) Remember posi- (h) Estimate how
family had been do- clothes worn by the tions of people and long the visitor had

ing before arrival of people objects in the room been away from the
the unexpected visi- family
tor

Figure 1.2: Results of psychophysical experiments reported by [Yar67] in which
variation in attended locations and scanpaths on the same scene de-
pending upon different visual behaviors is observable.

or track besides the commonly known behaviors. A brief description of the

functionality of these behaviors is given in the following paragraphs.

Under the explore behavior the system performs attention under no influence
from any task. It may also be called free viewing. Interesting locations emerge
automatically due to their feature contrast compared to the background or neigh-
boring objects. The feature maps are, therefore, task independent and the top-
down pathway remains inactive during this behavior. On the other hand, the
system tries to locate occurrences of a pre-defined object when working under
search behavior. The definition of the search target is given to the system from
an external source as a set of top-down conditions. The bottom-up pathway

becomes primarily inactive under a search task. The behavior of detect changes
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requires the system to respond on visual changes occurring in a given scene with

respect to time.

In the work under discussion a new behavior has been introduced in which the
system examines a set of similar looking objects to extract high level information,
for example detecting the circle after observing the similar looking stars in the
European Union flag, therefore we call it ezamine behavior. Top-down conditions
do not come from an external source in this situation; rather they are generated
from features of the previously attended object that are used as a basis in the
forthcoming attempts of attention. These top-down conditions are used as a
seed unit for extracting a bigger pattern formulated by these units. In case of
dynamic scenarios with moving objects this type of task turns into track behavior
as the system has to locate the identical features within the near vicinity of
the previously focused object. Top-down and bottom-up pathways may work
simultaneously as a highly bottom-up salient object will be allowed to distract
the examine or track operations, although such distraction has to be minimized

to make this behavior successful.

1.4.6 Dynamic Scenes and Overt Attention

Dynamic scenes consist of moving objects and shifting view due to movement
of visual sensors with the mobile vision system. The sensors also have to rotate
in order to bring the salient objects into center of view (overt attention). Such
dynamic situation introduces new challenges to attention models especially in
maintaining a correspondence between the subsequent frames of input. The
locations already attended by the system get displaced due to motion of either
the objects or the sensor leading to difficulty in applying location based inhibition
of return. A dynamic memory based mechanism has to be designed in order to
deal with this issue so that the inhibition in the succeeding frames of input is
applied on the translated positions of locations attended in the previous frame.
Moreover, the world locations of objects have to be involved in computations
rather than locations in image frame so that objects could be localized even

after movement of sensors.
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1.4.7 Fine-Grain Top-Down Visual Search

Most of the models of visual attention have incorporated visual search by using
the bottom-up feature saliency. Their methodology keeps the main focus on
contrast detection during bottom-up map construction and no facility exists for
highlighting a particular feature value under search. Models dedicated to visual
search under top-down influence, such as [FBR05] and [NIO5], also utilize the
process of feature map construction given in [IKN98]. They apply adjustments
to the weights of the whole feature channels rather than considering a particular
magnitude (or a range of values) for locating the search target. Such adjustments
in the map weights under top-down influence are somewhat helpful in allowing a
quick popout of the target, due to excitation on the channel that makes the search
target prominent among its environment, but the results can lack robustness and
efficiency in situations where many other locations exist that possess a bottom-up

saliency in the same feature channel.

The top-down pathway of attention has become an important topic of discussion
in the recent research on visual attention as it is useful in solutions for many task
driven attention behaviors such as visual search [NIO5], tracking [BMBO1], ex-
amining [AMO07a], and loop closing in visual SLAM [FBRO05]. We argue that the
method of applying the top-down influence by adjusting weights of the bottom-up
features channels, as most of the existing models do it, is not only inefficient but
does not match with the natural process as well. Consider as example a search
task in which an object with a special color is to be searched in a scene. According
to the existing techniques, a very high weight will be assigned to the color chan-
nel if color is found to be the most prominent feature that would distinguish the
object from the scene. As a result, the attention system will fixate on locations
that are color-wise salient while suppressing other features. On the other hand,
the human vision would excite the particular color associated with the target
while suppressing other colors rather than exciting the whole feature channel of
color in order to quickly locate a target. This concept is supported by the recent
experiments that reveal fine grain nature of top-down selection [NIO6b]. Other
literature that establish ground for fine-grain top-down attention is discussed in

section 2.2.4 of chapter 2. The proposed model has constructed the top-down
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pathway using independent fine grain feature maps apart from the bottom-up

saliency maps.

1.5 Contributions of this Work

A complete model for artificial visual attention has been designed and imple-
mented that uses early clustering of input pixels through a color segmentation
process. Such early clustering brings several advantages to the attention model.
The clustered pixel groups act as substitutes for individual pixels not only at the
original high-resolution scale of the input image but at lower resolution scales
as well. At the high-resolution level, a cluster behaves as a representative of all
the pixels included in it. For the low resolution requirement, the whole blob
can be treated as representative unit of a bigger area of the input as done by a
pixel in low resolution edition of the input. A major advantage of the segmented
regions over the down-scaled pixels is that the regions represent clusters of homo-
geneously colored pixels that facilitate in finding contrast with respect to their
neighbors. On the other hand, the down-scaled pixels group heterogeneously col-
ored pixels the suppress the sharpness of contrast in the neighborhood. Hence,
the segmented regions preserve more visual information especially for the saliency
computation. Early segmentation has allowed obtaining the functionality of the
pixel-based attention models with less computational complexity due to reduc-
tion of number of units being processed and simplification in feature extraction

procedures on already grouped pixels.

Apart from the proposal of a new type of attention model, the work under dis-
cussion includes design of efficient and robust algorithms to obtain feature mag-
nitudes and then saliency with respect to these features using clustered regions
rather than individual pixels or frequency domain filters. The proposed feature
extraction algorithms have not only enhanced the working efficiency of the pro-
posed model but have made it feasible to include higher number of feature chan-
nels into the model as compared to other models. Another contribution is the
implementation of the concepts from color theory while constructing a saliency
map for the feature channel of color contrast. None of the existing models have

investigated this option in their processing.
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The region based approach has made it possible to retain the original shape of
attended regions such that the regions could be sent directly to the pattern anal-
ysis or machine vision routines, hence a harmony can be established between
the modules of visual attention and object recognition so that the attention phe-
nomenon could become an integral and beneficial component of artificial vision
systems. The retention of shape-based features also helps in tracking the at-
tended objects in a sequence of frames in which the object alters their positions,

using the feature signatures associated with the regions.

In terms of theoretical advancements, the influence of attention behavior is ex-
plicitly included into the internal steps of the proposed model. This was not
done by any other existing model. Due to inclusion of the behavior influence
in internal procedures of the model it was possible to integrate the bottom-up
and top-down attention pathways into a single architecture. Such integrated
model did not exist earlier. Another innovation in the proposed model is the
implementation of fine-grain aspect of top-down attention. The existing models
of attention use the bottom-up maps of attention for the purpose of top-down
pathway which is a contradiction to the recent discoveries in the research on
natural (human) attention that suggest fine-grain nature of this pathway. Un-
til the time of writing this dissertation no other attention model published so
far had proposed construction of fine grain feature maps for top-down pathway.
Hence this aspect is also a new contribution into the research on visual attention.
Another contribution is the design of a memory based inhibition mechanism in
which world locations and features of the attended items are stored with a de-
caying inhibition factor age of the memory item increases. Such mechanism has
facilitated working of the attention mechanism in dynamic scenarios where the

vision system moves and its camera rotates to look around in the environment.

1.6 Thesis Outline

The work done on the project under discussion has multiple facets. The main
focus is on the modeling of visual attention but some topics of low level im-

age processing and pattern analysis also come under consideration because the
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new model has a significantly different nature as compared to the existing ap-
proaches. These subtopics include color image segmentation, extraction of fea-
ture magnitudes for color contrast, eccentricity, orientation, symmetry, and size,
construction of saliency maps for each of these feature channels, fusion of these
maps, pop-out identification, inhibition of return, and dealing with attention in
dynamic scenes. Effort has been made to organize this multi-disciplinary theme
such that the concepts and existing literature on these issues, proposed method-
ology for each of the individual stages, and results are presented in a stepwise

manner in order to make the presentation clearly comprehensible.

A thorough review of the literature from different areas of knowledge involved in
the work on this project is provided in Chapter 2 where the demarcation of the
concerned areas is done through different sections and subsections each dedicated
to an individual issue. The methods for the basic image processing stage of
the proposed attention model are presented in chapter 3 in which the newly
designed algorithms for the foundation steps of segmentation, feature extraction,
and saliency map construction have been described. Architecture and high-
level processes of the proposed region-based visual attention model is explained
in chapter 4 and results of experiments carried out using the developed model
under different visual behaviors are presented in chapter 5. Chapter 6 evaluates
the output of the proposed model and compares its results with some of the
available models while chapter 7 summarizes the achievements and indicates the

issues that requires further work in this direction of research.
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This chapter reviews the state-of-the-art related to the proposed work in one
context or the other. At first a brief overview of the human vision system is
provided and then the theories on natural visual attention are considered that
provide a basis for the models of artificial attention. Then the conceptual models
of natural attention are touched that provide a guideline for designing the com-
putational procedures of the visual attention models. As the main focus of the
dissertation is design of an artificial attention system hence literature on existing
computational models is referred in detail in context of their overall architecture,
processes of saliency computation, popout detection, and inhibition of return.
Due to involvement of pixel clustering in the design of the proposed model, a
review of literature on color segmentation is also provided. The proposed model
also integrates the top-down pathway of attention into the bottom-up mecha-
nism; hence publications in this regard are also referred in context of natural

vision as well as modeling perspective.

Presentation of the literature is made by arranging methods and models under
related categories. One model may be viewed under more than one perspectives
especially when considering its constituting components in detail because one
component of a model may fall under one category while another component
may belong to a different one. Hence, repetition of references to models and
methods may be found in the following sections but it was necessary do to this

in order to review all aspects of the existing methods.
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2.1 Human Vision System

Figure 2.1 shows the structure of eye along with a section of retina showing
different types of cells in it. A circular field of approximately 6 mm around
the fovea is considered the central retina while beyond this is peripheral retina
stretching to the ora serrata, 21 mm from the center of the optic disc. The total
retina is a circular disc of approximately 42 mm diameter [Pol41] [Kol91]. The
optic nerve contains the ganglion cell axons running to the brain. The ganglion
cells (the output neurons of the retina) lie innermost in the retina closest to the
lens and front of the eye, and the photosensors (the rods and cones) lie outermost
in the retina against the pigment epithelium and choroid. Light must travel
through the thickness of the retina before striking and activating the rods and
cones. The retinal message concerning the photic input and some preliminary
organization of the visual image into several forms of sensation are transmitted

to the brain from the spiking discharge pattern of the ganglion cells.

Bipolar cell
ipolar cells

Gangleon cells

Amacrine cells.

Horizontal cells

(b)

Figure 2.1: (a) A sketch of the human eye with its major parts labelled. (b)
Details of a retina section pointed by the arrow shown in subfigure.

Two basic types of photoreceptors exist in the vertebrate retina, namely rods
and cones. The rods are sensitive to blue-green light and are used for vision
under dark-dim conditions at night. There are three types of cones that are the
basis of color perception depending upon their sensitivity to a particular range
of wavelength of light. L-cones (red) are known to be maximally sensitive to
wavelengths peaking at 564nm, M-cones (green) at 533nm and S-cones (blue) at

437nm respectively [Gou84].
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Photoreceptors are organized in a mosaic that is a hexagonal packing of cones.
Outside the fovea, the rods break up the close hexagonal packing of the cones but
still allow an organized architecture with cones rather evenly spaced surrounded
by rings of rods. The cone density is highest in the foveal pit and falls rapidly
outside the fovea to a fairly even density into the peripheral retina as shown in
figure 2.2. There is a peak of the rod photoreceptors in a ring around the fovea
at about 4.5 mm or 18 degrees from the foveal pit. The region where the optic

nerve begins (blind spot) has no photoreceptors.
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Figure 2.2: (a) Graphs showing rod and cone densities along horizontal meridian
of human eye [Ost35]. (b) Cone densities in differenet periphery areas
of the human retina (in thousands) [CSP87]. (c) Cone densities in
fovea area of the human retina (in thousands) [CSP187].

Ganglion cells are the major information processing units in the vertebrate retina.
Ganglion cells collect information about the viewed scene from bipolar cells and
amacrine cells and their final output goes to the brain visual centers through
the optic nerve. Each ganglion cell has a fixel receptive field in which a high
response is generated when the signal is incident on its center while a weaker
response near the boundaries [Har68]. Three types of responses to light through
optic nerve fibres attached to the gangleon cells has been reported. ‘ON’ type
fibers respond when light turns from off to on and sustain an elevated discharge
rate while the light signal remain on. ‘ON-OFF’ fibers respond when the light
signal turns either from on to off or from off to on. ‘OFF”’ fibers remain quiet
until the stimulus light is turned off and remain active as long as the signal re-
mains off in the receptive field. Using these three types of threads the gangleon

can perform center-surround processing [MG75]. The ON-Center cells respond
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when there exists a high light intensity at center of receptive field while a low
light intensity in its surround. The OFF-Center cells respond when exactly
the opposite conditions exists. For center-surround in terms of colors there ex-
ist tonic ganglion cells with green ON-center and red OFF-surround responses.
Similarly Blue OFF-center and Yellow ON-surround type cells are also present.
Including the opposite of these combinations a total of 12 spectral categories of
center-surround combinations have been reported. The net impact of the center-
surround receptive-field structure is that ganglion cells prefer small spots to large
spots to drive visual attention. Different gangleon cells become selectively tuned
to detect particular features of the visual scene, including color, size, and direc-
tion and speed of motion [LMMP59]. Interpretation of these signals is done by
the brain in the context of events detected by other ganglion cells. Ganglion cell
axons are directed to specific visual centers depending on the visual features they

encode.

The ganglion cell have a characteristic of ‘spatial tuning’ of receptive fields is
reflected. Each vertebrate ganglion cell is tuned to respond best for objects of
a different size. Among the population of ganglion cells, a wide range of sizes
is covered, perhaps corresponding to the wide range of object sizes in the visual
image. This tuning reflects in part the variable dendritic span in ganglion cells.
Dendritic span is one of the factors allowing ganglion cells to collect visual signals
over a broad reach of visual space. Receptive field centers and dendritic fields
can be similar in size [YM92] [YM94].

The part of brain responsible for visual activities is called visual cortex and is
divided into further portions depending upon the neuron types and funtionality.
Figure 2.3 displays these areas of the human visual cortex named as V1, V2, V3,
V4, and IT. The optic nerves coming in from the eyes brings signals from the

gangleon cells of the two retinas to the V1 area.

V1 transmits information to two primary pathways, called the dorsal (also called
the “where”) stream and the ventral (also named as “what”) stream. The di-
chotomy of the dorsal/ventral pathways was first defined in [UMS82]. The dorsal
stream begins with V1, goes through visual area V2, then to the dorsomedial

area and visual area V5 (sometime called MT) and to the posterior parietal
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Figure 2.3: Human brain with its different parts of visual cortex labelled.

cortex. The dorsal stream is associated with motion, representation of object
locations, and control of the eyes and arms, especially when visual information
is used to guide saccades of visual attention or reaching objects by hands. On
the other hand, the ventral stream begins with V1, goes through visual area V2,
then through visual area V4, and to the inferior temporal cortex. The ventral
stream is associated with form recognition and object representation. It is also

associated with storage of long-term memory [GM92].

2.2 Models of Natural Visual Attention

This section reviews the concepts and theories that have influenced the compu-
tation models of visual attention existing today. There are some theories, like
the feature integration theory and guided search theory, that have a large fol-
lowing in the community of computational modeling. The proposed model also

combines concepts from these two theories.

2.2.1 Feature Integration Theory

The feature integration theory was proposed by Treisman and Gelade [TGS80]
in 1980. It has been one of the most influential psychological models of human
visual attention. It suggests that the human vision system can detect and iden-
tify separable features in parallel across a display and this early, parallel process

of feature registration mediates between texture segregation and figure-ground
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grouping. They further conclude from their experiments that locating any indi-
vidual feature or performing their conjunctions requires attention to be diverted

to each relevant location.

According to this theory several primary visual features are processed and rep-
resented with separate feature maps in an early step of visual processing. These
maps are later integrated in a saliency map that can be accessed in order to direct
attention to the most conspicuous areas. Efforts can be found in experimental
psychology to identify the features that stimulate the visual attention mecha-
nism. Some of identified features in this regard include color contrast [LPA95],
orientation [Ner04], motion (or a sudden change) [Ita01], eccentricity [BFR84],
and symmetry [OHO03]. A detailed review of the features involved in the hu-
man attention can be seen in [WHO04]. Models regarding combination of the
feature channels in the pre-attention phase are proposed in [Koc99] and [Ner04].
The operation is modeled as square of sum in [Koc99] while [Ner04] proposes
that the features are combined in the visual cortex using a multiplication-style

operation.

A search task is categorized into two kinds according to this theory, namely,
feature search and conjunction search. Feature search can be performed fast and
pre-attentively for targets defined by primitive features. Conjunction search is
the serial search for targets defined by a conjunction of primitive features. It is
much slower and requires conscious attention. Color, orientation, and intensity

are proposed as primitive features for which feature search can be performed.

2.2.2 Spotlight Model

The attention spotlight is one of the metaphors used by researcher of this field
becuase the attended location is considered to be under a spotlight while the
rest of the scene being in darkness [FDJ99]. The issues on which debate has
been carried out include the size, shape, and type of movement of the spotlight.
Another question is whether the spotlight is splittable or not. The concept of
an attention focus having similarity to a spotlight was given by LaBerge [LaB83]

during an effort to find the relationship between the size of attentional focus and
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the time taken to process the contents of the focused items. A formal spotlight
model was first proposed by Eriksen and Yeh [EY85] in 1985. As the spotlight
wa criticized due to its fixed size therefore the model was modified into a zoom-
lense model [EJ86]. These models assume that while looking at a view the visual
attention works like an internal spotlight that moves across the scene by which
certain parts of the scene are illuminated. This hypothesis is taken from the
overt attention performed by the eye in which the eye focuses on only selected
locations of the whole view. The remaining portions of the view remain in dark
or ignored area. There has been a debate in this paradigm about the movement
of the spotlight that whether it moves continuously or jumps from one location
to the next [LCWB97]. A later experimental work belonging to this category
suggested that the beam of attention could be splitted leading to tracking of
multiple objects at a time [KH95]. This theory of attention does not have much
of following in computational modeling presumably because they do not propose

any methodology about the internal working of attention.

2.2.3 Guided Search

The guided search model was introduced by Wolfe and colleagues in 1989 [WCF89]
and then its revised version was presented in [Wol94]. This model is related to
the process of visual search in which the main objective is reduction in response
time to identify presence of a search target in a given scene. The model suggests
that a number of features like color and orientation are computed and stored
in maps in each of which presence of these features is encoded. The top-down
influence of the target features controls the construction of these maps to apply
bias to a particular category of feature values. A weighted summation method
is used to integrate these maps together into a combined activation map. Peaks
in this activation map are visited serially as targets of attention. Locations once
visited are marked in an inhibition map that is used to avoid rapid revisiting
of the same locations. This model, especially its part of map construction, has
been an inspiration for many computational models of attention as its processes

are clearly explained making them feasible for conversion into algorithms.
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2.2.4 Fine-Grain Top-Down Attention

A majority of the existing attention models have demonstrated visual search as
a primary area of application for their models. Most of these models have uti-
lized manipulation on bottom-up saliency maps in order to let the search target
pop-out quickly. Although such processing demonstrates visual search as an at-
tentional behavior but in practical sense these models lag behind the performance
of natural visual search significantly. This suggests that the top-down tasks of at-
tention have a different nature and require a separate mechanism for computing
saliency. There is another school of thought about the top-down influences that
leads to fine-grain nature of this attentional pathway in natural vision, which
appeals better than the strategy mostly followed by the contemporary attention

models.

The models of human vision such as [LD04] suggest target related feature pro-
cessing in the V4 area of brain. Similarly the models on feature and conjunction
search, for example [LHG97], also presume excitation and inhibitions on partic-
ular feature magnitudes rather than whole channels. Results of psychophysical
experiments reported by [HamO05], [Dec05], and [NIO6b] also support the con-
cept of search on particular feature values rather than excitation on a whole
feature channel. The work of [Ham05] has shown that a population of neurons
encoding the target color and/or orientation gets a gain while others get sup-
pressed. According to [Dec05], each feature channel can adopt many values that

are evaluated by a specialized layer of neurons in the human brain.

Recent psychologial models of attention such as [HT06] and [Knu07] agree on
the concept that top-down modulations of neural responsiveness are precise for
the features upon which attention is to be diverted. Apart from the excitation
of the neurons concerned with the stimulus, it has been reported that neurons
tuned for non-target stimulus parameters exhibit a decrease in sensivity [RDO03].
The experiments reported by [NIO6b] explicitly declare fine-grain nature of top-
down attention. These findings suggest that the top-down saliency mechanism
constructs task dependant maps to allow quick pop-out of the target rather than
using the bottom-up saliency maps. The model proposed here follows this newly

discovered strategy in its top-down pathway.
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2.2.5 Inhibition and Facilitation of Return

After focusing one one salient object/location, the next important component of
attention that gets activated is inhibition of return (IOR). This process enables
the vision system to fixate on a variety of locations (or objects) in the scene,
otherwise the gaze would stay fixed to one salient location. It is worth mentioning
here that there has been a contunuing debate on early selection and late selection.
In the early selection models, such as [Bro], [Tre60], and [TG67], attention is
diverted to a location without forming a semantic meaning to the contents. Hence
attention and IOR work only on location basis. On the other hand, according
to late selection [DD63] the contents of sensory data are analyzed semantically
before attending, therefore objects may be identified and used as units to perform
attention processes. In the work presented in this dissertation the object based

attention is taken into consideration.

It has been established by experiments in psychophysics that inhibition takes
place in terms of both location and object features [GE94] [WLW9S8]. Evidence
is provided for inhibition in the immediate vicinity of the attended location and
a U-shaped function has been reported which strongly suppresses the immediate
surroundings of the attended location and gradually fades to no suppression after
a limited diameter [CT03]. The work of [LPA95] discovers the idea of feature
based inhibition in which inhibition on color of the recently attended object has
been reported in human vision. It was further confirmed by experiments reported
in [PKK97] that inhibition takes place in terms of object identity apart from
the spatial inhibition of return. The psychological model of attention proposed
in [Knu07] defines an explicit role of a working memory while processing for

bottom-up as well as top-down visual attention.

Under some visual behaviors, such as search and track, bias has to be given to
certain features and/or locations so that the next fixations are driven towards
similar looking features or nearby positions. This component of the attention
mechanism is called facilitation of return (FOR) [OMY05] [CCO6].
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2.3 Computational Models of Attention

This section reviews the existing computational models of attention in a catego-
rized arrangement. Categorization is made based upon the basic principle used
for computing the focus of attention. Existing models could be classified into
four types of approaches, namely, connectionist, saliency based, rarity based,
and object based. The proposed model cobines attributes of the last three types
of approaches in its current status. This review will also provide a basis to

understand the innovations suggested in the proposed attention model.

2.3.1 Connectionist Models

A model of attention-based object recognition was proposed in [OAE93] in which
a heirarchical system of connected layers for selection of attention window was
introduced. It uses dynamic routing circuits and a pyramid with varying res-
olutions of the input. The attended region is mapped to the centers of the
higher layers in the pyramid in order to sustain the spatial relations. The in-
formation flow between the pyramid layers is guided by control neurons. IOR
is implemented by inhibiting control neurons connected to the attended pattern

routing.

The prominent model belonging to this category was introduced by Tsotsos and
colleagues, which was called Selective Tuning Model [TCW*95]. It consists of
a layered network with an input pattern on the lowest layer. The top layer
calculates a global winner for focusing attention. On the lower layers signals
converge layer-by-layer to select regions of interest in a feed-forward fashion.
The final winner activates stimuli below it as a trace-back mechanism. This
feed-forward and trace-back system is named attentional beam that links the
layers with its sharp tip in the top layer and wider base in the bottom layer.
The already attended area is completely inhibited and internal representations

are computed again to find the next FOA.

The model presented in [PHH97] is known as Postma’s SCAN that consists of

more than one hierarchical layers named gating lattices, each of which contains
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many overlapping sublattices. Only the winning sublattice can route its pattern
to the higher layer of hierarchy after a WTA process. This selected pattern is sent
to a classification network. Another model in this category [HBSH07] names its
attention system SAIM. It consists of two networks, called content and selection,
interacting with each other. Each unit in the contents network represents a
correspondence between the input and the FOA; the selection network determines
which correspondences are instantiated. The system acts to map retinal input

into the FOA, based on competition between units in the selection network.

2.3.2 Saliency-Based Models

The saliency-based models have their foundations in the feature integration the-
ory. A prominent model of this category was presented in [IKN98] and then
refined in [IK00]. It builds saliency maps for three features, namely, color chan-
nels, intensity, and orientations. Each feature is computed by a set of linear
center-surround operations between fine and coarse scales analogous to visual
receptive fields. These feature maps are combined into three conspicuity maps
for intensity, color, and orientation through across-scale addition. At any given
time, the maximum in the resultant of saliency maps defines the most significant
image location to which the focus of attention should be directed. This is done
by a 2D layer of leaky integrate-and-fire neurons. This layer feeds into a bio-
logically plausible winner-take-all (WTA) neural network. Shift of attention to
the winner location causes a global inhibition of all WTA neurons and transient

activation of local inhibition.

Many flavors of the above model can be found with different variations in method-
ology. The model described in [PSL02| uses the opponent color theory for con-
structing the feature map of color contrast using a computation scheme very
similar to [IKN98]. It introduces new feature maps for edges and symmetry. It
computes two color maps and the center-surround is implemented as the differ-
ence between fine and coarse scales of a Gaussian pyramid images. A total of
24 maps are computed and combined into four conspicuity maps. Unsupervised

learning is used to determine the relative importance on different bases to gen-
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erate a suitable salient region. The IOR process is implemented by masking the

currently attended focus of attention for the next attention cycle.

The model presented in [MCBT06] implements the opponent color theory by
computing the color distance in Krauskop’s color space. Contrast sensitivity
functions are applied on the three color components in the frequency domain.
The saliency of an achromatic structure is enhanced if this structure is surrounded

by a high contrast in chromatic channels.

2.3.3 Rarity-Based Models

Models of this category concentrate on finding locations in the visual input that
contain rarity with respect to a considered feature. The method of [Ste01] for
color saliency picks a selected set of neighborhood pixels around a target pixel
and compares it with a similar pattern of neighborhood at several test locations.
The exclusiveness is computed by subtraction of color components of every cor-
responding pixel in the neighborhood patterns around the target and each test
location. A large value of this exclusiveness adds a score of saliency to the target.
The sum of these scores after checking a number of test locations decides the final
saliency value for the target. Another work presented in [Ahu96] generates the
color contrast map according to rareness criteria on feature maps of intensity
contrast, saturation contrast, and hue contrast. Intensity and saturation is con-
volved with a Laplacian of Gaussian kernel at each point. The circular nature
of hue is normalized before applying the convolution. The orientation map is
constructed using a rareness criteria using a Gabor kernel of four different angles
on intensity, saturation, and hue and then picking the maximum as the resultant.
The model of [ALO6] also takes rarity in terms of visual features into account to

identify salient regions in the scene.

2.3.4 Object-Based Models

In this category of attention modeling the computation of saliency is done on

basis of higher level units instead of individual pixels. Objects are formulated by
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combination of features and clustering of points that belong together due to sim-
ilarity of some attribute. The model presented in [SF03] computes object-based
saliency depending on groupings. A grouping is considered to be a hierarchical
structure of “objects and space”; hence it may be a point, an object, a region,
or a structure of other groupings. The primary features are extracted exactly
as done in [IKN98], but it constructs the intensity, color (red, green, blue, and
yellow), and orientation pyramids after applying a Gaussian filter and then a
Gabor steerable filter on the five feature channels of intensity, red, green, blue,
and yellow. The shift of attention is carried out by using an algorithmic approach

with a coarse to fine strategy.

Some models have partially region-based components in their strategy. The at-
tention model of [BMBO01] uses a region-based approach for construction of maps
for color and eccentricity. The conspicuity of a region in terms of color is calcu-
lated as the mean gradient along its boundary to the neighbor regions. The color
gradient between the two regions is defined as the Euclidian distance between
mean values of the color components in MTM color space. The eccentricity
map is constructed using moments of segmented regions. The model proposed
by [LLY*05] also utilizes a region-based method for the feature of color contrast
and texture contrast. They include skin color and face existence as cognitive fea-
tures for attention. A three step approach is used for color contrast in which the
image is first clustered using a k-means algorithm. The biggest cluster having a
large enough size is considered as background and then color difference of each
cluster is computed in contrast to the background. The resultant map is scaled

and truncated to remain within prescribed limits.

Formation of objects from raw pixel data is a signicantly complex task. The
model proposed in [SF03] remained till a theoretical proposition without going
into details of implementing formation of the so-called groupings. Other mod-
els in this category used the early clustering approach but suffered from the
computational complexity resulting in fairly long response time. The approach
proposed in this dissertation is an effort to make advancements and innovations in
the methodology of the early clustering paradigm in order to make object-based

approach usable in real-time attention systems.
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2.4 Feature Extraction and Saliency Map Construction

This section discusses the methods of feature map construction used by different
existing models of visual attention. A quick review of some literature other than
attention modeling is also provided in order to have a glimpse of the contempo-
rary trends for extraction of the concerned features. We may roughly categorize
the feature computation methods in the attention models into three classes. First
is the group that processes individual pixels at single or multiple scales of the
input and then applies some sort of clustering for formation of objects under
attention. We may name them as pixel-based methods. The second category
of methods carries out its processing in the frequency domain by mostly apply-
ing Gabor filters. The third group performs a clustering first (such as region

segmentation) and then computes features using these clusters.

2.4.1 Pixel-Based Approaches

Color contrast computation using pixel-based category of algorithms includes
methods by [IKN98], [SF03], [PSL02], [Ahu96], and [Ste01]. For the feature map
of color contrast, the model of [IKN98|, and most of the other existing models, use
the concept of opponent colors that was first introduced by Hering in 1872 [Her64]
and further established by efforts such as [De 60] and [EZW97]. The attention
models compute chromatic opponent colors of red-green and blue-yellow along
with the achromatic opponent pair of white-black. Six maps are constructed
for intensity feature by computing the absolute difference between intensities
of the considered pixel and its surround at six different scales. For chromatic
colors, each of red, green, and blue channels are normalized by the intensity
channel and then double-opponency is determined by center-surround differences
across scales. Six maps each are created for red/green and blue/yellow. A single
conspicuity map for color is created after running an iterative lateral inhibition

scheme on each feature map.

The model of [SF03] uses a similar basic concept for the color contrast compu-
tation. The nature and number of maps are also same as that of [IKN98] but
a different calculation method is applied. The model presented in [PSL02| also

uses the opponent color theory for constructing the feature map of color contrast
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using a similar computation scheme as that of [IKN98]. They have introduced a

feature map for edges that highlights strong boundaries in the input.

Another recent work presented in [Ats07] generates the color contrast map ac-
cording to rareness criteria on feature maps of intensity contrast, saturation
contrast, and hue contrast. They convolve intensity and saturation with Lapla-
cian of Gaussian kernel at each point. The circular nature of hue is normalized
before applying the convolution. The method of [Ste01] for color saliency picks
a selected set of neighborhood pixels around a target pixel and compares it with
a similar pattern of neighborhood at several test locations. The exclusiveness is
computed by subtraction of color components of every corresponding pixel in the
neighborhood patterns around the target and each test location. A large value
of this exclusiveness adds a score of saliency to the target. Sum of these scores
after checking a number of test locations decides upon the final saliency value
for the target. A similar technique has been applied to detect facial symmetry

in images containing already separated faces [Ste05].

Algorithms using pixel-based approaches for computing symmetry in visual in-
put can be found in [PSL02], [OMO02], [KG98], and [FS06]. The attention model
in [PSLO02] computes a symmetry map using a noise tolerant generalized symme-
try transform algorithm on edge information of the input. The method of sym-
metry detection proposed by [OMO02] uses a network of globally coupled maps
associated with each pixel for finding reflection symmetry around it. It has
shown success in images containing mainly one foreground object. The method
of [KG98] considers a circular Gaussian window for local symmetry and deter-
mines the 2D symmetry as a resultant of 1D symmetry functions along line
segments parallel to the examined axis. Although this method has a similar-
ity with the basic idea of the proposed method (see section 3.5.1 in chapter 3)
but the calculations involved in this method are mathematically complex making
them computationally expensive. The work in [FS06] proposes a set of invariants

based on complex moments to determine N-fold rotation symmetry.

The pixel-based approach applied for orientation map given in [SF03] computes
the angle differences between centers and surround for the four angles of 0, 45,

90, and 135 degrees and then obtain the saliency value as product of Gaussian
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distance between the considered pixels and the trigonometric sine of the angle

difference between the center and its surround.

The selective tuning model mainly works with motion features [RT06] but other
features such as color and orientation have also been utilized in some of their im-
plementations such as [Zah04]. Depth as a feature can also be seen as mentioned
in [BTO05]. Although it is hard to find clear details of the methods for extraction
of feature maps from literature on this school of attention modeling but they
process individual pixels at different scales of the input hence their approaches

belong to the pixel-based category.

2.4.2 Frequency Domain Methods

Frequency domain methods for color contrast computation have been applied
by some attention models, for example [MCBTO6]. It implements the opponent
color theory by computing the color distance in Krauskop’s color space. Contrast
sensitivity functions are applied on the three color components in the frequency
domain. The saliency of an achromatic structure is enhanced if this structure is

surrounded by a high contrast in chromatic channels.

Orientation maps are constructed using frequency domain techniques by most of
the attention models. The model of IKN98] computes the local orientation in
different scales of the image through creation of oriented Gabor pyramids from
the intensity channel. They encode the magnitude of difference in orientation
between a point and its surround for four angles of 0, 45 , 90, and 135 degrees
using absolute center-surround differences between these channels. [Ats07] con-
structs the orientation map using a rareness criteria by applying a Gabor kernel
of four different angles on intensity, saturation, and hue and then picking the

maximum as the resultant.

Frequency domain operations for computing symmetry are also available, for ex-
ample, [BMBO01] constructs symmetry map for monocular images by applying
Gabor filters in twelve orientations on edge image of the input. Their depth
map is also computed in frequency domain through disparity in results of Gabor

filtering. One of the recent methods presented in [KS06] utilizes angular corre-
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lation computed by a pseudo polar Fourier transform to determine the center of

symmetry.

2.4.3 Region-Based Techniques

The attention model of [BMBO01] uses a region-based approach for construction
of maps for color and eccentricity. The conspicuity of a region in terms of color
is calculated as the mean gradient along its boundary to the neighbor regions.
The color gradient between the two regions is defined as the Euclidian distance
between mean values of the color components in MTM color space. The ec-
centricity map is constructed using moments of segmented regions. The model
proposed by [LLY105] also utilizes a region-based method for the feature of color
contrast and texture contrast. They include skin color and face existence as cog-
nitive features for attention. A three step approach is used for color contrast in
which the image is first clustered using a k-means algorithm. The biggest cluster
having a large enough size is considered as background and then color difference
of each cluster is computed in contrast to the background. The resulting map is

scaled and truncated to remain within prescribed limits.

Saliency with respect to size is also an important factor that contributes in
natural visual attention, especially when other factors do not formulate a deci-
sive focus of attention [SF03], but it is rarely implemented in existing attention
models. The approaches used for this purpose are usually region-based. The
method in [RCO04] uses the Coherence Theory of Rensink [Ren00] to separate
small foreground regions from the large background. The consideration of size
in [Wol00] is also limited to discriminating between large and small objects in a
given scene. [SF03] has mentioned the importance of a size contrast map but no

proposal has been made to model it.

2.5 Feature Map Combination and Popout

In this section we review the methods adopted by different attention models to
combine the feature maps to determine a focus of attention and then applying

inhibition on the attended locations in order to shift the attention focus to a
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different location. The model presented in [IKN98] and [IKO00] first normalize
the feature maps of color contrast C, intensity I, and orientation O using a
normalization function N and then apply a simple weighted sum to obtain the

input S for the resultant saliency map as follows:
S=[N{I)+N(C)+N(O)]/3

The saliency map is implemented as a 2D layer of leaky integrate-and-fire neurons
that takes S as input and feeds into a Winner Take All (WTA) neural network.
The WTA network ensures only one occurrence of most active location at a time.
In this model the inhibition of return is implemented by spatially suppressing
an area in the saliency map around the current focus of attention while feature-
based inhibition is not considered. Another recent effort [NIO5] by the same group
includes the task driven top-down influence during the bottom-up saliency map
construction. The elementary units of computation are pixels or small image

neighborhoods arranged in a hierarchical structure.

The model proposed in [PSL02] uses a weighted sum of feature maps to obtain a
combined saliency map. They use Independent Component Analysis algorithm
for unsupervised learning to determine relative importance of features and to
reduce redundancy. An adaptive mask is used to suppress the recently attended
object for performing the inhibition of return. The model of [HRB03] also
computes a weighted sum of individual feature maps for obtaining an integrated
attention map but introduce a manipulator map which is multiplied to the sum.
The output conspicuity map C™ is obtained by applying a threshold function 6 on
the weighted sum of the feature maps M; and multiplying it to the manipulator

map M,,. Hence

N 1

Clay) = Zﬁ(wi X Mia,y)) X H M (a,y)

=1 m=1
The maximum in C™ is taken as the point of attention. No inhibition function

was used as it was not needed in their application.

The model presented in [BMBO1] includes the aspect of tracking multiple objects

while focusing attention in a dynamic scene. They first determine the features
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that lead to activation of the neural fields that are in turn responsible for de-
termination of pop-out. Then they adapt the weights of these feature maps so
that a pop-out emerging due to a specific feature receives the main support from
that particular feature map. A separate map is used for IOR where the visited
location is marked as highly active. This activity inhibits the master map of
attention to avoid immediate revisiting of the attended location. The activity of
the inhibition map decays slowly in order to allow revisiting of the location after

some time.

The method proposed in [SF03] implements a hierarchical selectivity process
using a winner-take-all neural network. They apply a top-down influence to
increase or decrease the baseline of neural activity of the most prominent feature
channel. As their model deals with so called ‘groupings’ of pixels, the IOR process
works on siblings of the current focus of attention in the hierarchy of groupings
and sub-groupings. Another recent model in [MCBTO6] uses the direct sum of the
feature channels to compute a two-dimensional saliency map but they introduce
an anisotropic Gaussian as the weighting function centered at the middle of the

image.

2.6 Models for Inhibition of Return

Inhibition of return is an important aspect of attention that has to be modeled
in artificial vision systems in order to avoid continuous attention to only one
location or object. The commonly used approach by the existing models is to
make a 2D inhibition map that contains suppression factors for one or more spots
that were recently attended. The models of [IKN98], [FBRO05|, and [DBZ07] are
examples where such an approach is utilized. Although this type of map can also
serve in case of dynamic scenes but they are not able to handle the situations
where inhibited objects change their locations or when the vision system itself is
in motion. The model of [BMBO1] relates the inhibitions to features of activity
clusters (named as object files) hence inhibition can track an object while the
later changes its location. As the information contained by object files are related

to activity clusters rather than objects themselves hence the scope of dynamic



36 2 Related Literature

inhibition becomes very limited. The model of [Ats07] utilizes a queue of inhib-
ited points to maintain inhibition in dynamic scenes. The information stored in
the queue is pixel oriented data rather than object/region features hence it may
be considered conceptually similar to the approach proposed in this dissertation

but structures of the two approaches are totally different.

2.7 Modeling of Top-Down Attention

Early computational models of visual attention such as [IKN98] and [IK00] have
proposed a comprehensive mechanism for determining bottom-up saliency using
some feature channels and they use the same bottom-up saliency maps for search
task as well. They apply high weight to the feature channel that facilitates
highlighting the search target. Even the recent developments by the same group
in this context, such as [NI05] and [NIO6a], apply a similar strategy. The model
of [FBRO5] determines weights for the feature maps that would highlight the
target in a learning stage and applies them in the searching stage. Although
[MGS™04] has separate components for bottom-up and top-down pathways in
the model the same saliency maps are used to deal with the top-down pathway.
The model presented in [HWO06] also applies attentional bias towards the target
by learning weights for the conspicuity maps that would make the required object
prominent. Such approaches are likely to show inefficiency when distractors are

also salient in the same feature channel.

The work presented in [TTWO01] has provided a search mechanism to detect the
target by looking for its constituent parts. This approach can be considered sim-
ilar to fine-grain search but the methodology is inclined towards pure machine
vision rather than following a biologically inspired approach. Using gist of the
whole view to apply a top-down influence to restrict search locations as proposed
by [PI07] is also a useful concept that can accelerate biologically plausible visual
search. This concept deals with signature of the whole image rather than indi-
vidual items. These signatures are used for estimating the identity of scene in
order to bias the saliency on the locations that have high probability of existence
of the target, for example probability of finding people in a beach scene is higher

along the coast line.
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2.8 Visual Behaviors in Attention Models

Some of the existing models have considered the affect of active visual behavior
on the output of visual attention. A brief introduction of some of the commonly
known visual behaviors was already provided in chapter 1 section 1.4.5. Here we
recapitulate the behaviors implemented by the existing models. The well-known
model discussed in [IKN98] and [IK00] mainly deals with search behavior but
uses bottom-up procedure for this purpose. The selective tuning model [RT06]
remains in a behavior resembling explore as it does not apply top-down conditions
to excite the target of search and lets the salient items pop-out during a process
of bottom-up saliency and inhibitions. The models of [PSL02] and [MCBTO06]
are restricted only to explore while the model given in [SF03] discusses both
explore and search behavior by integrating bottom-up and top-down biasing in
the process of hierarchical selectivity. The model of [BMBO01] considers three be-
haviors of explore, search, and detect changes while [FBR05] implements explore

and search for dynamic scenes.

2.9 Segmentation

We include a review of color segmentation approaches here because an innovative
method for clustering is also developed during the course of this project. This
review will help in developing an awareness about the existing techniques and
judging the novelness of the proposed segmentation approach presented in section
3.1 of chapter 3.

Work on color segmentation has a history of almost three decades. The tech-
niques proposed for this purpose may be categorized in four groups namely
pixel-based, edge-based, region-based, and model-based [IPV00]. Pixel-based
techniques group pixels into regions only on the basis of their color features
without using the spatial context. Edge-based methods find region boundaries
by locating discontinuities of segments in the image. Region-based algorithms
take into account both color features and spatial constraints for construction of
regions. In model-based schemes image regions are modeled as random fields and

the segmentation problem is posed as a statistical optimization problem.
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Early publications on color segmentation such as [OKS80] discussed color features
that could be used for pixel comparison in segmentation. Histogram based tech-
niques such as [FHO04], divide the image into regions by applying thresholds on
peaks of color histograms. The method of applying a quantization first and then
segmenting spatially, as in [DMO1], has been a common practice. In [CMKGO03],
a similar approach has been proposed involving color clustering and then merg-
ing clusters based on color similarity and spatial adjacency. The technique given
in [LT04] constructs coarse regions first using a threshold on color distance in
RGB space and then detailed segmentation using an irregular pyramid structure.
Edge based techniques such as [HB90] and [Sin99] have a common problem that
they fail to take into account the correlation among the color channels and miss
certain crucial information revealed by color [IPV00]. Region-based techniques
work best on images with an obvious homogeneity criterion and tend to be less
sensitive to noise [CJSWO01]. There are two typical approaches available under
this category. One is to use region split-and-merge as in [OPR78] and other is
region-growing, for example [TB97|. The later usually applies a merging step to

combine segments having further similarity of color features.

Under the model-based category, the Markov Random Field model has been
applied as in [DCO04] and [Muk02] achieving a good quality of color and texture
based segmentation. In [SSA04] a color-based segmentation approach is given for
extracting regions of human skin from scenes. They use a second order Markov
model on a HSV histogram. Model-based techniques forgo computation time for
the quality hence are usable only in those cases where computational complexity

is not an issue.

Region-based techniques are considered better when processing speed is a major
issue as they provide acceptable quality within a reasonable computation time
[CIJSWO01] [IPV00]. Region-growing methodology has a natural computational
advantage over its split-and-merge counterpart in the same category. In terms
of color quantization for segmentation, HSI space is considered most appropriate
[LBO1] and it has provision of overcoming the illumination effects such as shades

and shadows.
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Graph-based techniques, such as [FH04], can also produce good results. These
techniques arrange regions as vertices of a graph where an edge between two
vertices reflects the difference of color attributes between them. The idea of
integrating the checks for boundary crossing and region expandability, as per-
formed by the proposed approach, can also be found in [TA97] and [FYEAO1].
In [TA97] a nonlinear transform is used for finding the attraction force on pixels
that is exerted on them by the neighboring regions. This extracts structures
from the given image at multiple scales and detects regions and edges in the
transformed domain. This technique is able to handle only grey scale images
and make use of computationally heavy processes. In [FYEAO1] color edges in
YUV space are obtained to get the major geometric structures in an image and
the centroids between these adjacent edge regions are taken as the initial seeds

for seeded region growing.

The concept of categorizing the whole color spectrum into a few classes, as also
done in the proposed segmentation method (see section 3.1 of chapter 3), has been
used in [BKV05] for developing a query-by-color method that takes into account
the human cognition capabilities. Their concept is based upon the psychological
findings that humans can perceive colors in so called focal color categories labeled
after the colors that humans consider while thinking and speaking, namely, red,
green, blue, yellow, orange, brown, pink, purple, black, white, and gray. They
also segment the hue-intensity plane into eight regions representing the chromatic
colors from the said list. Color categorization in normalized RGB space was done
in [LBO1] for segmenting objects in a RoboCup soccer field. They propose to put
the possible variations of the colors into a lookup table and decide the class of
input pixels by comparison to these values. The scope of this approach is limited

to distinguishing regions with one of the three colors: blue, yellow, and orange.

2.10 Analysis

Existing literature on artificial visual attention focuses on mimicking the natural
attention mechanism by modeling the theories from research in human vision,
neurobiology, psychology, and other related disciplines. The procedures proposed

by these models are mostly computationally expensive as the correlated processes
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carried out in the brain are significantly complex. Such efforts do provide a good
representation of the natural organisms but the requirement of computational
resources needed for these modeled procedures may turn into an overhead for
the vision system instead of enhancement in the overall efficiency through uti-
lization of attention. Hence, there is a need to investigate ways to reduce the
complexity of the computational model of attention and enable it to integrate
with other vision algorithms so that the output of attention may become an
effective contributor for improving performance of the vision system. In this
chapter, literature on the theoretical and computational models of attention has
been reviewed in order to have a picture of the state-of-the-art in this field. This
review will also help in critical evaluation of the innovations proposed in the new

model designed in the work under discussion.

This review has provided sufficient experience towards development of an atten-
tive vision system able to operate in real time, which is the main objective of
the work under discussion. The target robotic vision system will need to process
more feature channels as input will be dynamic leading to variations in acquired
features due to changing illumination conditions, motion blurr, and occlusions
of objects. Having more channels in hand will reduce dependancy on certain
features. A mobile system will need to deliver results of visual processing at a
rate of multiple frames per second, therefore the feature processing and atten-
tion mechanism needs to be optimized for computation time. In order to make
the attention process reliable, the future strategy of model design would be to
incorporate all attributes of the existing paradigms discussed in section 2.3 be-
cause the required attention system should be able to perform feature processing
as in saliency based models, determine rarity in terms of individual features as
well as conjunctions to formulate objects (as done in rarity based and object
based groups respectively), and construct a hierarchical connectivity as done by
the connectionist models. After having a look into the fundamental procedures
in sections 2.4 and 2.5 ranging from feature computations, through saliency de-
tection up to inhibition of return, the option of early clustering seems to be a
suitable direction that should be investigated to advance towards the ultimate

goal of this research. The literature on theory of top-down attention reviewed in
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2.2.4 clearly indicates that this pathway should be modeled based upon fine-grain

feature maps in order to make it efficient and effective.

The aspect that the existing attention models generally lack is the integration of
the involved attention pathways and adaptation of a unified attention system to a
certain visual behavior. The biological attention system, on the other hand, has
an integrated mechanism that activates the top-down and bottom-up pathways
in required configurations to adapt the same system to the active visual behavior.
Secondly, natural visual attention is able to perform inhibition of return in three
dimensional world despite its perception of a two dimensional projection on the
retina. This ability to handle objects in three dimensions is evident from its
ability to fixate upon and track objects in space that undergo overlaps while
moving. Also, the inhibition or facilitation of return remains effective even the
previously focused object changes its position in the recent view frame. This
capability of IOR can not be managed with the two dimensional inhibition maps
as used by the contemporary models of attention. The pixel based processing, as
done by most of the existing models, requires longer computation time and does
not support shape-based feature extraction at the pre-attention stage. Clustering
of pixels prior to attention processing not only accelerates the computation due
to significant reduction of data to be processed but preserves shape features as
well in order to enable involvement of more feature channels. In context of top-
down attention, the trend of models is shifting towards fine-grain search but
contruction of purely fine-grain saliency maps has not been considered by the
models until the time of writing of this documentation. The work presented here
makes advancements in the state-of-art by proposing solutions for the said issues
along with the innovations in the design of attention system in order to make it

fast and robust for use in mobile vision systems.
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3 Proposed Region-Based Saliency Maps

Focus of this research is to investigate the early clustering approach for the pur-
pose of visual attention hence the basic unit to be processed by the attention
procedures will be regions constructed through a segmentation process. In order
to optimize the clustering step according to needs of the attention model a new
segmentation algorithm has been developed that produces regions in accordance
with human perception and provides the output in form of a data structure that
facilitates further procedures of the model. This chapter explains the procedure
designed to obtain a list of regions from the raw input, extract the feature magni-
tudes, and compute the saliency of each region in terms of five different features,

namely, size, color, eccentricity, orientation, and symmetry.

3.1 Transformation into Region List

An obvious target of a model of artificial attention is to produce results compa-
rable to human (or natural) behavior. In order to remain close to the natural
domain the basic step of region construction has to be done in accordance with
the human perception as well. Segments that represent regions as perceived by
human vision will be useful for a robust and faster artificial attention system.
The first objective for such a segmentation is to construct regions that largely
correspond to the shapes of actual objects in the image. This can be achieved
with optimal tolerance to illumination effects so that neither too many regions
are produced for a single object having variations of a uniform color nor dis-
tinct regions get merged into one. Secondly, in many situations objects with
similar colors overlap each other and create a challenge of discriminating them
without going into over-segmentation. The third objective is to complete the
segmentation step in a minimum possible time so that enough time is left for

the other procedures of visual attention and recognition etc. For this reason we
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avoid using the existing model-based statistical techniques that produce quite
good results, especially on textures, but require significantly long time to com-
plete their processing. Another requirement is to be able to process a variety of
input images without needing to tune the parameters in the meantime because
a mobile vision system is expected to wander in unknown scenarios undergoing
illumination variations where parameter adjustment will not be possible for each
situation. The method provided here has emerged as evolutionary development
from its experimental versions presented in [ASMMO5], [ASMO05a], and [AMO6].

3.1.1 Selection of Color Space

Segmentation of color images has to follow a more complex approach as compared
to gray-scale segmentation. In gray-scale, only intensity information is available
for which the computer can discriminate 256 levels. On the other hand colored
images contain compound structure comprising of at least three components,
leading to millions of colors per pixel. These components have different meanings
and roles in different models, called color-spaces, such as RGB, CYMK, YUV,
HSI, and CIELAB etc. Each space has advantages and limitations in terms of
segmentation and selection of the best color space is one of the major difficulties
in color image segmentation and the decision is mostly made depending upon
the requirements of target application. A survey of color spaces and their role in

region segmentation can be seen in [CJSWO1].

The RGB color space is used for display devices where colors are produced by
emission of light whereas CYMK is utilized in printing systems where colors are
produced by inks that absorb certain wavelengths while reflecting some other.
These spaces are suitable for synthesis but not appropriate for analysis of col-
ors as some shade of the same color may have a fairly distant representation
making it difficult to consider them as similar. YUV space is meant for tele-
vision devices and is hardly used for image processing purposes. HSI (Hue-
Saturation-Intensity) space, sometimes also called HSV (Hue-Saturation-Value)
or HSL (Hue-Saturation-Luminance), has a good representation of the colors of
human perception [CL94] and has good capability of dealing with highlights,
shades, and shadows [TT92]. The CIELAB space is a peceptually uniform rep-

resentation of color but its values do not define absolute colors unless a reference
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white point is specified whose definition is assumed to follow a standard and is
not explicitly stated [LJBV05].

The main objective of the segmentation step for the purpose of visual attention is
to obtain regions from colored images such that the regions may have minimum
influence of shades and shadows so that a uniformly colored surface does not
get split into many segments. Similarly colored regions in a neighborhood can
lead to incorrect results of color contrast and loss of actual object shape would
cause errors in computation of shape-based feature maps. As features of the HSI
space suite the requirements of our application area hence it is selected for the

proposed segmentation algorithm.

3.1.2 Technique Foundation and Innovations

As the target application of our segmentation routine is a biologically inspired
attention system, the factor of human perception will have a prominent influence
on each step of the process. We would like to build homogeneous segments in
a given scene that are potentially distinct regions for humans. Surveys on the
color segmentation techniques, for example [SK94] and [CJSWO01] show that the
area-based segmentation gives a good optimization of segmentation quality and
processing time. In the area-based category, the region growing procedure has
the advantage of computational simplicity over the split-and-merge strategy. The
same surveys establish the advantage of using hue for discounting illumination
effects like shading, shadowing, and highlights according to human perception
over its other counterparts. As our problem domain has a severe restriction of
computation time, we infer to select a region growing method using HIS (hue, in-
tensity, saturation) color space in the proposed segmentation technique. However
we suggest introduction of some innovative enhancements in order to improve the

quality of output without causing much escalation in the computation time.

A typical region growing procedure compares the color of the region seed with the
expected members of the region. This homogeneity criterion allows high degree
of tolerance to color variations when a large threshold is applied on the allowed
color difference. Although this is effective for obtaining fine segmentation quality,
especially in real-life images, but this way under-segmentation is likely to occur.

For example objects separated by a small fluctuation of color, for instance an
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object overlapping another similarly colored object, cannot be distinguished. On
the other hand, reducing the said threshold in order to deal with such situations
leads to over-segmentation of smooth sections of the given input. We propose
to include a continuity criterion between adjacently neighboring members of the
considered region along with testing the homogeneity condition between the seed
and the neighborhood. The other proposition is to have different sets of thresh-
olds to deal with different ranges of colors. We discuss these factors in detail in

the following subsections.

3.1.3 Color Dependant Thresholds

Segmentation algorithms depend on the values of thresholds or parameters that
are used for their optimum functioning. Normally, these parameters have to be
tuned, manually or automatically, according to the nature of the given input.
The general practice is to have a single set of thresholds that deals with all types
of objects existing in the given input but we argue that it is advantageous to

adapt the thresholds according to nature of the seed color.

The human vision has diverse abilities of percieving different color categories.
This phenomenon was reported in psychological experiments by MacAdams [Mac42]
[Mac49] on the chromaticity diagram that represents hue and saturation at-
tributes of colors. Ellipses were drawn on this diagram in order to represent the
range of variations that are accepted as a single color by human observers, as
shown in figure 3.1(a). It is easily noticeable that the ellipses in the area for
green (tip in the top region) are larger in size as compared to those in other ar-
eas such as red (corner region at right) and blue (corner region at left-bottom).
Hence the human vision tolerates greater variations in color components on a
green object as compared those on a red or blue object. A similar discrimination
in the nature of color perception have been reported in [BKV05]. Hue-Intensity
is plotted and then segmented into regions representing the eight focal colors
of human perception as shown in figure 3.1(b). It is again apparent that green
covers a larger area than all other colors. The disparity of size for blue in the
two experiments is due to the difference of color space and the level of saturation

used by the two analysts. The conclusion that can clearly be derived is the fact
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Figure 3.1: (a) Chromaticity diagram with MacAdam’s ellipses. The horizon-
tal and vertical axes represent the x and y components of the CIE
XYZ color space respectively. Wavelengths, in nanometers, of the
saturated colors are specified on the boundary of the horseshoe (b)
A visualization of the results of experiments as reported in [BKV05]
on categorization of HSI color space into 9 named colors percieved by
humans. The figure is included here with permission of the respective
authors.

that each color range from the whole spectrum needs a different set of thresholds

in order to optimize the separation of regions.

The next question is to limit the number of color categories for each of which
an independent set of thresholds is to be formulated. We prefer performing
categorization based upon the hue component of the seed color because it is
computationally feasible. A usual division of the hue cycle is done by making
six chunks of 60 degrees each and naming them according to the primary colors:
red, yellow, green, cyan, blue, and magenta respectively, starting the red at zero
degree, as shown in figure 3.2(a). Another division of the hue circle into ten
named color categories has been done in [HE96] where the groups of hue angles
are made under the names red, red-yellow, yellow, green-yellow, green, blue-
green, blue, purple-blue, purple, and red-purple after experiments on human
subjects as shown in figure 3.2(b). Their division also shows bigger pie slices
for green (and its derivatives) and purple with smaller slices of different sizes

for other colors. Combining these divisions and naming conventions with the
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Figure 3.2: (a) The hue circle with angles of basic colors. (b) Hue cycle divided
as done in [HE96] (c) Hue-saturation circle divided into nine slices of
chromatic colors

focal color categories of [BKVO05], we decide to categorize the hue angles of the
chromatic colors into nine groups under the names red, orange, yellow, green,
cyan, blue, purple, magenta, and pink, each having a different size of span in
the hue circle. Figure 3.2(c) shows the ranges of hue angles during which the
color remains under the same name for a human observer, represented by pie
slices of different sizes for each group. It may be noted that we do not intend
to segment objects possessing only these colors; rather we want to pick a set of
thresholds that suits the nature of the related color. If, for example, the color of
a seed pixel lies at an angle at boundary of two categories then the thresholds
may allow construction of a region that has a mixture of the two colors residing

at both sides of this boundary angle.

Keeping in view the the sensitivity of human vision to different saturations of
the named colors as visible in McAdam’s ellipses and the sensitivity to different
intensities as reported by [BKV05] we summarize our conclusion in table 3.1,
where high sensitivity means that a small variation in the concerned color channel
will make a different color for the eye and low sensitivity means that it will seem
consistent for human perception even with a high variation in that channel. The
main purpose of this analysis is to get a good estimate about the tolerance to
variations in intensity and saturation as a nature of each color in order select

appropriate general-purpose thresholds that would work on a vast variety of
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scenes. For the colors having a high sensitivity to a color component we will have
to assign a small threshold to that particular component because regions having
these colors should be split even by a small fluctuation in that component. On the
other hand, a high threshold value is to be given to a component of a particular
color that has low sensitivity in that component. For example, the threshold for
tolerating intensity variations in green has to be kept high because a green region
will still be counted as green even with lots of variation in its intensity (green
has low sensitivity in intensity channel). Otherwise if a green region is treated
with a low threshold in intensity it would lead to over segmentation splitting
straightforward single regions into many. On the other hand a red region should
be allowed to split even with a small variation of intensity because human vision
considers red regions as separate even when small fluctuation of intensity exists

between them (red is highly sensitive in intensity channel).

Table 3.1: Summary of sensitivity of human vision to intensity and saturation
variations in named chromatic colors extracted from MaAdam’s el-
lipses and the analysis done in [BKV05].

Color Intensity | Saturation
Red high high
Orange high high
Yellow medium low

Green low low

Cyan medium medium
Blue high low

Purple high low
Magenta | high low

Pink high medium

There are six thresholds for each color considered here that need to be adjusted
depending on the nature of seed color. Three of them control the allowed amount
of color difference between the seed and the other members of a region. The rest
of the three are related to the allowed color fluctuation at the border of a region.
I'" denotes the maximum hue difference that can occur between the seed and
other pixels of a region while 7" is the maximum amount of hue difference that

can be tolerated between two adjacent neighbors of a region before declaring
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that they belong to different regions separated by an edge. Similarly, I'* is the
maximum intensity difference that a region pixel can have from the seed while the
intensity difference above 7* between two adjacent pixels of a region will mean
that we have reached the edge of that region. Likewise I'* and 7° are thresholds
for allowed saturation differences from the seed and at the edge respectively.
I'" gets a high value for colors that have a larger span in the hue cycle and a
smaller value for the colors with the shorter intervals. Giving half of the value
of T" to 7" has shown success in determining hue boundaries. The values of I'*
and T, are set to high, medium, or low amounts for colors having low, medium,
or high sensitivity to saturation and intensity, respectively. It is evident from
experimentation that it is sufficient to give 7° and 7° values equal to one third

of T* and I'* respectively.
3.1.4 Seed classification and two phase operation

The proposed segmentation algorithm works in two phases of operation. In
the first phase, chromatic pixels are picked as seeds for region growing that
have high amount of saturation and intensity. This condition is limited only to
high intensity for achromatic seeds. It facilitates to begin the region growing
from prominent portions of objects and helps to position the seeds at central
locations so that areas of their corresponding regions are evenly spread around
them. Another advantage of this step is that it allows those regions to grow
first that have a potential probability of attracting visual attention otherwise
there are chances that such regions get merged into other unattractive segments
and get neglected in the attention process. In the second phase, the restrictions
on saturation and intensity of the seeds are lowered in order to allow the left
over areas to get segmented. Values of all concerned thresholds are also relaxed
in such a way that the remaining pixels get a higher chance of joining some
segmented region. Seeds with black color are not allowed to grow in the first
phase due to convergence of all hues and unpredictable behavior of saturation
at extremely low intensity. Similarly gray seeds are avoided in the first phase
because each color turns into gray at low saturations. Hence they can swallow
major parts of neighboring regions with chromatic colors due to overlap of hues
at this saturation level. These two colors get their opportunity in the second

phase.
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The color of seed pixel is classified at two stages. In the first stage, the purpose
is to select an appropriate procedure according to the nature of the seed color.
At this point the seed is evaluated to see if it is white, black, gray, or with a
chromatic color because the process of region growing will be different for each
of these seeds. The second stage categorization is needed only for the seeds with
chromatic colors where class of the seed’s hue has to be determined in order
to activate a suitable set of thresholds as discussed in the previous subsection.
Hence we define two classification functions C1(P) and C2(P) for the two stages
where P is the color of a given pixel having the components of hue, saturation,
and intensity. C1(P) classifies the given color as black if the intensity of the
given color is below the low intensity for black i, as white if the given intensity
is above the high intensity for white i, as gray when given saturation is below
the low saturation sy where every color turns to gray, and as a chromatic color
otherwise. Ca(P) assigns a category to the given hue angle from the previously
defined nine classes of chromatic colors according to the value of hue in the given

color P.

Let S be the set of categorized seed pixels in the two phases of operation. A
pixel P(z,y) of the input image I will be selected as a seed S,(x,y) € S in the
first phase (p = 1) if ¢ = C1(P) is either white or chromatic. A further condition
for a chromatic seed in the first phase is that its saturation should be above the
high threshold for seed saturation seeds and its intensity should be higher than
the high threshold for seed intensity seed;. In the second phase (p = 2), P(z,y)
belonging to all four color categories determined by Cp(P) are entitled to be
region seeds. The values of seed; and seeds are also decreased so that almost all

P(z,y) get the opportunity to begin a region.

Another difference between the two phases is that the values of thresholds related
to the allowed hue, saturation, and intensity differences set after the color cate-
gorization done by Ca(P) are increased in the second phase. In the first phase,
the minimum allowed region size is kept higher so that small regions get deleted
in order to allow their pixels to join some other region if possible. The value of
the allowed size is reduced in the second phase so that even small regions may

survive, ultimately minimizing the unprocessed spots in the final output.
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3.1.5 Integrated Edge and Region Homogeneity Check

The proposed algorithm integrates the testing of the color homogeneity between
the seed and rest of the region pixels with the check to determine if the region
border has been reached. This strategy allows the regions to grow with suitable
tolerance to illumination and other colors variations and, at the same time, dis-
tinguishes the fine edges between them. In order to achieve this we establish
four different sets of checks K¢ one of which will be activated according to the

category of region seed determined by the classification function C4(P).

For growing a region around a black seed all we need to examine is that the
neighborhood should be black. Being a condition to test only one color, there
is no need to perform a boundary check. Hence, given the color of the neighbor
pixel as N* and a function INT() that extracts the intensity component of the

given color, the set of checks K¢ for black seeds is defined as:
K¢ = {INT(N') <iy}, (3.1)
¢ = black

Around a gray seed, we need to construct a region that has a gray shade closely
matching the shade of the seed. Therefore, firstly the neighbor pixel being tested
should be gray, i. e., its saturation has to be below the saturation for gray sg.
The second test is on the intensity difference between the seed color S and the
neighbor color N*, which should be under a threshold value Fé, the allowed
intensity difference between the seed and other pixels of a gray region. Thirdly,
let N*~! be the color of a pixel adjacent to N* that was made member of the
same region before N* then N'~' and N should not form an edge for this
region. Hence the intensity difference between N'~! and N! should be below
the allowed gradient at edge 7.. So, having a function SAT() to extract the
saturation component from a given color, the set of checks K¢ for gray seeds can
be defined as:

K¢ = {SAT(N')< sy, INT(N') —INT(S) < T}, (3.2)

INT(N') = INT(N"™ ") < 71},

c=gray
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For white seeds, the situation is similar to that of black seeds except for the
difference in condition in the intensity check that the neighborhood should have

an intensity above a high threshold value .:
K¢ = {INT(N')>iuw}, (3.3)

c = white

The set K¢ for a seed having a chromatic color consists of nine checks. The
first three are meant for stopping the growth of a region if the neighboring pixel
N* is black, gray or white. These checks are important as the gray areas can
have arbitrary values in their hue channel while the white and the black regions
may contain subjective values for both hue and saturation, hence gray pixels can
easily get swallowed when a neighboring chromatic region is growing. The next
three checks are to allow small differences between hue, saturation, and intensity
components of the seed color S and those of the neighbor N*. Then the last
three checks inspect if two adjacent neighbor pixels in the given region form an
edge in terms of hue, saturation, or intensity. Hence, with a function HU E()

that extracts the hue component of the given color, this set can be defined as :

K¢ = {INT(N') < iy, INT(N") > iy, SAT(N") > s, (3.4)
HUE(N') — HUE(S) <T" INT(N') — INT(S) <T*,
SAT(N') — SAT(S) <T°, HUE(N') — HUE(N'™") < 7",
INT(N') = INT(N'™") < 7', SAT(N*) — SAT(N*™") < 7°},

¢ = chromatic

Before starting the region growing process, the first stage seed categorization
C1(I) is performed that decides the basic class of the seed color. A proper set of
checks K¢ is activated based upon this classification and in case of ¢ = chromatic
the second stage categorization C2(I) is executed that decides the chromatic
color class to which the given hue angle belongs. An appropriate set of values
are loaded into the thresholds I'*, I', T'*, 7", 7¢, and 7° based upon the found

category.
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3.1.6 Region Construction

Region construction is carried out using a usual region growing procedure in
which all pixels found eligible to join the region in an 8-connected neighborhood
are labeled with the region identity and pushed in a stack. Later the stack
is popped and the same procedure is repeated for the popped pixel considered
as part of the region. This process continues until the stack gets empty. In
order to determine the eligibility of the neighbor N to become a member of the
current region, a set of attributes A°(N*) is constructed for N* according to the
category c of the seed Sy(z,y). Having a relation ® (® € {>, <,=,<,>}) that
can exist between comparable color components of two pixels, depending upon
the seed category ¢ an appropriate condition A°(N*) with a matching value of
c is activated from those given below. A°(N') can have one of the following

structures according to the value of c.

A°(N*Y) = {INT(N")®1ip}, for c = black (3.5)

A(N") = {SAT(N')® sy, INT(N*) — INT(S) ® gi, (3.6)
INT(N') = INT(N'"") ® g;}, for ¢ = gray

A°(NY) = {INT(N')®iy}, for ¢ = white (3.7)

A°(N*Y) = {INT(N")®iy, INT(N') ® iy, SAT(N*) ® s, (3.8)

HUE(N') — HUE(S) ® ", INT(N') — INT(S) @ I"",
SAT(N') — SAT(S) ® I'*, HUE(N'") — HUE(N" ") @ 7",
INT(N") — INT(N*" ") @ 7", SAT(N") — SAT(N"" ") @ 7°},
for ¢ = chromatic

where ® € {>,<,=,<,>}
Region constructed around a seed Sy (x,y) will be a set of pixels I(x,y) defined

as follows:

Ri = {I(z,y)|(z,y) € N'(R;) and A°(N*) = K°,V(z,y) €I} (3.9)
Ri=Sp(z,y)att =0
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where N*(R;) is the neighborhood pixels of R; at time ¢. The final output of
the segmentation procedure is a list of regions $ consisting of n regions each
represented as R;. Each R; is coupled with data regarding location, bounding
rectangle, and magnitudes of each feature qﬁif (f € ®). As five channels of color,
orientation, eccentricity, symmetry and size are considered in the current status

of our model hence we have ® = {c,0,¢,s, z}.

3.1.7 Segmentation Results

As the segmentation process was not the main topic of this research hence results
of this module are provided here separately from the output of visual attention
presented in chapter 5. The proposed approach of color segmentation was tested
using many artificial and real life images. The results are very encouraging and
the segmentation output was found suitable according to the requirements of
the region-based attention model. We have also compared our results with some
existing segmentation methods that use computationally heavy statistical meth-
ods and produced fairly good results for general-purpose segmentation. Figure
3.3 presents results of the proposed and two existing segmentation methods. A
qualitative comparison can be done by observing these results. The graph-based
method [FHO04] has performed very well with the chromatic colors but has flaws
in the achromatic areas. For example, it splits the uniform black background
of the image in the second column into many regions while it merges the white
border line of the road into the gray road in the traffic scene. On the other hand
the scale space method [DNO04] handles these situations in a better way but it
is over segmenting in chromatic regions. Both of the competitive methods are
unable to separate the yellow colored melon overlapping the similarly colored
banana in the fruit image. The proposed method has shown a good balance
in separating distinct regions while tolerating illumination effects on uniformly
colored objects. The ability of the proposed method in performing well both for
chromatic and achromatic color can be very useful in situations when the mobile
vision system goes through low light areas where color distinction based upon

hue becomes difficult.
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(n)

Figure 3.3: Results of segmentation by the proposed segmentation routine and
two other segmentation methods. Top row: input images. Second
row: segmentation results of a graph-based method [FHO04]. Third
row: results of a scale space method [DN04]. Bottom row: results of
the proposed method.
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3.2 Filtration of Useless Regions

Before processing the regions with the saliency computation methods, a filtration
process removes those regions from the region list R that are useless in the later
procedures. The main criterion for this filtration is size of the region relative to
the whole image. Regions having very small size are assumed to be result of noise
or segmentation error. Similarly large regions covering a significant portion of the
image are considered as background. We introduce a factor of region perimeter
/7 for this purpose that will gain a high value (equal to 1) for regions with
moderate size while a small value for very small and very large regions. Scaling
the saliency values using this factor will eliminate noise and background from
the resulting feature maps. The perimeter of the bounding rectangle of a given
region is used instead of the area in order to deal with large porous regions. Such
regions would have a large bounding rectangle but a small area covered under

their pixels.

Let P% be the perimeter of the bounding rectangle of R;, Pr be the perimeter of

p
man

which a region should be neglected, and k%,,, be the maximum percentage of

the input image, k be the minimum percentage of the image perimeter below

the image above which a region should be regarded as background then f}, the

unclipped value of perimeter factor, will be computed as

f‘t — kP (Pli?_kzn‘npl)(kfnaxpf _P}%)
K2 scale (PI/2 + k.P PI _ k’rp;LazPI)2

min

(3.10)

where k?

tcale 18 @ scaling constant to bring the highest value obtained from the

rest of the expression equal to 1. The resulting values are clipped between 0 and

1 to obtain the final value of f? as follows

1 for ff>1
fP=¢ 0 for fI <0 (3.11)

fi otherwise

Using the constant definitions as given in Table-3.2 the curve of f7 for P}, ranging
between 1% to 100% of P; is shown in figure 3.4.
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Figure 3.4: Values of perimeter factor fP for regions with perimeters covering
different percentages of the image.

3.3 Size Map Construction

Although prominence due to size may be suppressed in presence of high contrast
in other visual attributes such as color, saliency in terms of area can play a
useful role in situations where a target of attention does not surface due to other
features. The size based saliency mainly contributes in suppressing large sized
background regions and unnoticeable small sized regions. The contrast of size
with respect to the neighborhood needs to be computed to find objects having
exclusive size. Figure 3.5 provides examples of two scenarios where the only
obvious feature to determine saliency is the size of objects and such uniquely

sized objects are the obvious attractors of attention.

Figure 3.5: Examples of obvious size saliency due to uniqueness in region area.




3.3 Size Map Construction 59

The exclusiveness of size with respect to the neighborhood and the global context

is determined using a voting style mechanism. A given region R; with a size

similar to R; will not contribute to the size saliency of R;, one with significantly

different size will give a partial supporting vote, and if such R; surrounds R;

then the contribution is a full support because a situation similar to accent color
s

is developed. Hence V;j, the vote of R; to the size saliency of R; may be defined

as follows:

1 when R]' ® R; and a(Ri)/a(R]—) < k)i"
0.5 when a(R;)/a(R;) < kf
Y ) 05  when a(R;)/a(R;) > kS

0 otherwise

(3.12)

where k{ and k5 are threshold constants, R; ® R; means R; surrounds R;, and
a(R;) extracts area covered by the given region. For R; € n;, the contributions
will have a higher weight as compared to the non-neighbor regions. The contri-
butions from R; € 7; is accumulated into X} and those from the global context

are summed up into Y7. Now

J=Pi

Xi = Z Vi, VR; € mi (3.13)
Jj=1
l=n

i = Zv;/z VR € R+ (3.14)
=1

Now, having the maximum amount of saliency value that can be assigned to
a region due to a single feature as S™%", p; as the count of neighbors in the
neighborhood list 7; of R; and n as the count of regions in R, the final value of

area saliency S’ for a region R; will be computed as:

Xi4+Yy

SZL _ Fsmaz
i pi+(n—1)

(3.15)
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3.4 Color Saliency

3.4.1 Color Contrast in Color Theory

Apart from psychology, valuable information can also be found in the literature
on color theory about the attributes of colors that contribute in making an object
visually prominent or receding. In terms of color saliency, other methods of
artificial visual attention have concentrated only on those attributes of colors
that were reported in psychology and many important aspects described for
this purpose in the color theory have been neglected. Artists practice these
aspects for creating effects of contrast, visual advancement, and activeness in
their illustrations. Johannes Itten was one of the first experts of color theory
who described methods for color combinations offering contrast. He has defined
different situations in which the human vision finds contrast in a colored scene.
According to his research, the contrast can occur due to presence of objects
posing high difference of intensities, saturation, and/or hue. Other reported
causes include presence of opponent colors and co-occurrence of warm and cool
colors [Itt61].

Another relatively modern source of theoretical concepts on colors is available
in [Mah96]. We combine these concepts with those of Itten’s and formulate a set
of points that are feasible for computation. Another important issue is to decide
that which color will receive the benefit of saliency in presence of a contrast.
The summarized points with the mention of the saliency winning color in each

situation are listed below:

1. Contrast of Saturation: A contrast is produced by low and highly saturated
colors. The value of contrast is directly proportional to the magnitude of
the saturation difference. Highly saturated colors tend to attract attention
in such situations unless a low saturated region is surrounded by highly

saturated one.

2. Contrast of Intensity: A contrast will be visible when dark and bright
colors co-exist. The greater is the difference in intensity the higher is the
effect of contrast. Bright colors catch the eye in this situation unless the

dark one is totally surrounded by the bright one.
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3. Contrast of Hue: The difference of hue angles on the color wheel contributes
to creation of contrast. High difference will obviously cause a more effective
contrast. Due to the circular nature of hue, the highest difference between

two hue values can be 180°.

4. Contrast of Opponents: The colors that reside on the opposite sides of the
hue circle produce a high amount of contrast. This naturally means that
the difference of the hue angles should be close to 180. The colors residing
in the first half of the hue circle, known as the active color range, will

dominate on the rest of the passive ones.

5. Contrast of Warm and Cool: The warm colors namely red, yellow, and
orange are visually advanced. These colors are present in the first 45° of
the hue circle. Warm and cold colors create a contrast in which warm colors

remain dominant.

6. Accent Colors: The color of the object covering a large area of the scene
will become the ground color (trivial for attention). Colors covering a small
relative area, but offering a contrast, are called accent colors. Accent colors

get the benefit of contrast in terms of attracting visual attention.

7. Dominance of Warm Colors: The warm colors dominate their surrounding

whether or not a contrast in the environment exists.

8. Dominance of Brightness and Saturation: Highly bright and saturated col-
ors are considered as active regardless of their hue values. Such colors have

more chances of attracting attention.

The effect of contrast is controlled by the saturation value of both of the involved
colors in the situations mentioned in points 2 to 5. Highly saturated colors will
offer stronger contrast. The attention models of [IKN98], [SF03] and [PSL02]
mainly concentrate on points 2 and 4 from the above list by computing feature
maps for achromatic opponent colors of black and white while working on chro-
matic opponents of red-green and blue-yellow. The rest of the existing models
compute only the relative difference between the color of current pixel (or region)
and their neighborhood. We build our model for determining color saliency of

regions by covering all of the facts gathered above.
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3.4.2 Color Map Construction

We divide the procedure of color saliency computation into seven steps each of
which adds to the saliency magnitude of a region R; in a voting style mechanism.
The sixth point from the above list is concerned with the decision of dominance
in context of relative size of differently colored objects, hence it is used within
other steps rather than implementing it as a separate one. The first version of

this technique was presented in [AMOT7b].

The first five steps of the algorithm use one or more of the factors of saturation
fij, intensity ffj and area f7; in their calculations. The subscript of each factor
denotes that it is effective between regions R; and R; whereas R; will actually
use the factor. The first part of the factor of saturation f;; is modeled as the
mean of the saturation components of R; and R; so that higher effect takes place
when both regions possess high amount of saturation and vice versa. The second
part depends upon only the saturation of R; and holds a minimum value equal
t0 Kmin in order to let the regions with near zero saturation survive. The rest
of the second part comes from the saturation of the region color scaled by /255
where kK = 1 — Kmin. The factor for intensity fibj is computed in a similar fashion
using intensity component of the region color instead of saturation. For the area
factor f;; we use the concept of accent color according to which a small region
surrounded by a large one will receive the benefit of color contrast in terms of
becoming visually attractive. Hence a region R; should get the full support of
saliency only if it is sufficiently smaller than the neighbor region R; and is sur-
rounded by the later. The value of each factor is kept to lie between 0 and 1
so that it could play its role as a multiplicative factor in further computations.
Having the maximum level of saturation and intensity at 255, £(R;) as the sat-
uration component of the color of R;, S(R;) as the intensity component, and
a(R;) as the area covered by the pixels of R;, these three factors are defined

as:

oo EBR)+ER))2 (Wn N n€<Ri>) (3.16)

255 255

(S(Ri) +S(Ry))/2 S (Ri)
i 5o <l€mm 5eE ) (3.17)
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1 for a(R;)/a(R;) < kf and R; ® R;
o= 0  for a(Ri)/a(R;) > k§ and R; O R; (3.18)

0.5 otherwise

where k{ and k3 are constants used as thresholds. The ® operator indicates that
the region mentioned at its left surrounds the one at its right. Two contexts are
considered for comparison of color values in the first five steps. First is the local
neighborhood in which regions having a common boundary with R; (members of
n; counted as p;) are considered. The second is the global context in which all
regions in R except R; are used. For each vote VZ for the region R; in the step
(s € {2..6}), the part of vote due to the local context is stored into X! and the

part coming in from the global context is stored into Y.

The first step collects votes for each R; from other regions that possess opponent
hues. Two hues are said to be opponent if they lie at the opposite sides on the
color wheel. In other words the hue difference should be close to 180 degrees. It
is a generalization of the red-green and blue-yellow opponents as used by existing
methods. Due to the circular nature of the hue we calculate the hue difference

between two regions R; and R; as:

- { A¥ for A% <180 (3.19)

360 — Afj otherwise

where A}, = |u(R;) — p(R;)], p(R;i) being the hue angle of the color of R;. A
region R; contributes a unit value scaled by the three factors of area, saturation,
and intensity to the vote of this step if R; possesses a color with an opponent
hue to the color of R;. Let Aff be the minimum hue difference for two colors to
be opponents then Xé and Yg for ¢ = 2 are computed as
J=pi
Xy = Y F5f5f YRy € ny when Aly > AL (3.20)
j=1
l=n
Y = Zf;;fflff; VR, € ® when Al > Al 144 (3.21)

=1
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For exact opponents the value of A" should be 180 but in order to give a re-
laxation of 10 degrees at both sides we set A? = 170. The second step collects
votes from regions that are at large hue distances from R;. The computation of

X% and Y7 is performed as follows:

J=pi

X = Z TE S AL /180 YR, € n; (3.22)
j=1
l=n

Yio= ) fAfafhAl/180 VR € R0 #£ (3.23)
=1

The division by 180 is performed to normalize the hue difference to be between
0 and 1. Neighborhood with a high hue difference will contribute more weight

to this vote.

In the third step we extend the contrast of warm and cool to contrast of active
and passive colors. A color is considered as active if its hue is in the first half
of the color wheel. Hence, when R; has an active color then a region R; with a
passive color will contribute to the saliency of R;. Higher difference in the hue
will obviously make this contrast more prominent. Hence we can model this step
as

J=pi

Xi = ) SSSLALVR; €, (3.24)
j=1

when p(R;) < 180 and p(R;) > 180

l=n

Y] = Z fRfsfAARYR e R £ (3.25)
=1
when p(R;) < 180 and p(R;) > 180
The fourth step conducts voting for contrast of saturation. Regions possessing

highly different saturations in local and global context will add to the saliency
of R; as

J=p;

X5 = G5 15A5/255 YR, €y (3.26)
j=1
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l=n

Vi = S5 AL/255 YR € R L# i (3.27)
=1

where Aj; is the difference of saturation between regions R; and R;. The value
of Aj; is divided by 255 to bring the effect of saturation difference between 0 and

1 to keep the contribution from each region within a unit amount.

The fifth step collects votes for R; from regions having highly different intensity
(contrast of intensity). The computations have a similar format as the fourth

step, hence

J=pi

X = Z Fo s AL /255 VR, € (3.28)
j=1
l=n

Yo = ) S 1GAL/255 VR € R L # i (3:29)

1=1
where A?j is the difference of intensity (brightness) between regions R; and R;.

Keeping in view that p; regions have given votes in the local context and n — 1
regions have contributed in the global context of the first five steps, the resultant
magnitude of each vote V! to R; in these steps will be

i X+ Y

[y e VAL {2..6} (3.30)

The warm colors consisting of the red, orange, and yellow ranges are given an
extra vote to strengthen their color saliency in the sixth step. These ranges reside

in the first 45 degrees of the color wheel. Hence

(3.31)

o { S(R)E(R:)/(255)%  for 0 < pu(R:) < 45
otherwise

Finally, the seventh step supports saliency of highly bright and saturated colors.

These color components of R; are scaled to a unit value to determine the weight

of the seventh vote

Vi = S(Ri)E(Rq)/(255) (3.32)
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Let § be the part of full weight vote that a step can contribute to the color
saliency of R;, then having restricted the maximum value of feature saliency to
S™ the value of ¢ turns out to be S™* /7. Hence the resultant color saliency

St of R; is computed as

8
Se=fry ov! (3.33)
<=2

3.5 Shape Based Saliency

3.5.1 Symmetry Magnitude

Computing local as well as global symmetry is a computationally expensive pro-
cess. An efficient solution is needed in order to bring this feature into the atten-
tion pipeline while keeping the overall processing time within the rate of multiple
frames per second. The proposed algorithm accelerates the computation by its
innovative simplified design and determines the value of symmetry for a given
region with a reasonable accuracy. A further speed up is obtained for the pur-
pose of attention by limiting the amount of precision to the level required by
this application. In this subsection we present the novel method of determining
symmetry magnitude of each region and the procedure to construct the saliency

map using these values will be discussed later.

Let W(L, Ps) be a scanning function that counts the symmetric points around
a given point P, along a line L by investigating pairs of points each denoted
as {a’,b'} on it (see figure 3.6). L is one of the line segments perpendicular
to the axis Ay around which symmetry is being evaluated. L intersects Ay at
P, and the points a' and b' are equidistant on opposite sides of Ps. The scan
starts with a’ and b' at unit distance from Ps and continues with an increment
of one in the distance. The scan stops when anyone of a' and b’ touches the
bounding rectangle of the region being scanned. The count of symmetric points

is incremented when both a' and b® belong to the same region.

The set of lines and points that provide input to ¥(L, P;) is generated by first

taking a desired number of reference lines Ag by calculating their end points
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incident on the bounding rectangle of R;. Here 6 reflects the angle of the line and
in a typical case § € T where T' = {0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165}
to examine symmetry of a given pattern around twelve axes. Figure 3.6 shows
four axes around which symmetry is computed for the attention purpose. Each

point on every Ay is parsed as Ps and the end points of the line L on the bounding

rectangle of R, are generated for each Ps.

Als A% A,

Figure 3.6: (Left) Four of the scan axes around which symmetry is computed for
purpose of attention. (Right) Scan method to find symmetric points
on the region along a line perpendicular to the axis of symmetry.

Having the count of symmetric points along one scan line as W(L, P;), the mea-

sure of symmetry around an axis Ay is computed as

l
M = W(L, P,)/a(R;) (3.34)
s=1
where [ is the length of the investigated axis Ag. Division by the area of given
region is performed to normalize the result between 0 and 1. The total measure

of symmetry for R; with respect to all considered axes will be

voeT
M= M g (3.35)

where nr is the count of members in 7'

The method described so far can be useful for computing local symmetry and
can be generalized to evaluate global symmetry if the complete image is taken
as input and similarity criterion is set to color similarity of a* and b*. Although
gain in computation speed is achieved due to the simple structure of the proposed

algorithm but a further decrease in time consumption can be achieved for the
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purpose of attention as only an approximation of symmetry values is needed.
This can be done by reducing the iterations by taking a small subset of T for the
computations. We use a set T C T by picking only four angles for symmetry
axes. The members of T} include angles starting from the inclination angle of
the major axis (orientation) of R; and three other angles each at an increment of
45, 90, and 135 degrees respectively from the first. Hence, for example, a region
inclined at approximately 30 degrees will have Ti = {30,75,120,165}. This
estimation of symmetry against four selected angles is sufficient to construct a
feature map of symmetry in the attention model. As the orientation of R; comes
as a byproduct during construction of the orientation feature map (discussed
later), hence it poses no overhead on the overall performance of the attention

model.

3.5.2 Region Angle and Eccentricity Magnitudes

We use a traditional technique involving moments for finding the orientation and
eccentricity of regions. Later the feature values are used to determine saliency
with respect to these features. Three types of discrete two dimensional moments

mi 1, M5, and mg o are computed for each R; as follows

miy = ) (@-7)(y-7) V(z,y) € R (3.36)
mho = Y (z-7)° V(z,y) € R (3.37)
mo, = » (y—79)°Vwy) R (3.38)

where (Z,7) is the center of R;. Now the orientation ¢* and eccentricity ¢ are

computed as

i
2m1v1

¢ = Stan! () (3.39)
2 My o = Mg 2
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i i 2 i

. - 4

¢ o= (Mao—mos) +4mi, (3.40)
(mé,o + m6,2)2

3.5.3 Shape Based Feature Maps

After having computed the values of feature magnitudes for the rest of the three
features, the remaining task in building the saliency maps is to determine exclu-
siveness with respect to these features in local as well as global context. As the
prominence of a region mainly arises from the rarity of its feature values [Ner04],
hence the saliency of an object with respect to a particular feature decays strongly
when another object with a similar value of that feature exists is the near sur-
rounding. A weaker decline of saliency occurs in case of similarity existing outside

a certain radius r7°vee.

We adopt an incremental approach for saliency with respect to orientation S
as we model no bias to any particular angle, hence S! initializes with a zero
for every region and increments when other regions differ in orientation. On
the other hand, an adversative approach is adopted for the other two features
because high amount of symmetry and eccentricity are attractors of attention
[WHO04] [BMBO01]. Hence, a head start is given to regions having high amount of
symmetry or eccentricity and their saliency is decremented when similarly fea-
tured regions are found in the neighborhood. S? and S%, the saliencies of R; with
respect to eccentricity and symmetry, are initialized with the feature magnitudes
€' and ¢’ respectively (both range between 0 and 1). A multiplicative decay is
given to these saliency values when a neighbor has similarity of attributes. We
iojv Ufj,
terms of orientation, eccentricity, and symmetry respectively as:

define v and v;;, the contributions of region R; to the saliency of R; in

AL/90 VAL > kg, [|[RiRy|| < rlovee

vl = S BoAL /90 VAL > kg, ||RiRy|| > rove (3.41)
0 otherwise
pe  for Af; < ke & ||RiRj| < pfovea

'Uf] = s fOI‘ Afj < ke & ||R1R]H 2 rfovea (342)

1 otherwise
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o Bs for Af; < ks (3.43)
Y 1 otherwise ’

where Afj is absolute difference of orientation between R; and R; and it is
divided by 90 to bring the outcome within a unit amount. This is done so
because equation (3.39) always gives ¢; between 0°and 180°which means that the
maximum difference of orientation between two regions can be 90°(the smaller
angle between two straight lines). ||R;Rj;|| is the distance between the centers
of R; and R;. Aj;

symmetry of the two considered regions while kg, ke, and ks are thresholds and

and Aj; are absolute differences between eccentricity and

Bo, Bs, ﬁé and BZ are constants having values less than 1. See Table 3.2 for values
of these constants used in our experiments. Now S%, S¢, and S® are obtained

as:

Si=Y vy, Si=€]v, S —MlH vl (3.44)

3.6 Top-Down Saliency Maps

As mentioned in section 2.2.4, the findings from experiments on human vision
by [LDO04], [LHG97], [Ham05], [Dec05], and [NIO6b] suggest that the top-down
saliency mechanism constructs task dependant maps to allow quick pop-out of
the target rather than using the bottom-up saliency maps, hence we propose
to model the top-down pathway independent of the bottom-up process. The
top-down pathway uses the magnitudes of the same features (f)lf associated with
each region R; regarding color components (hue, intensity, and saturation), size,
angle of orientation, eccentricity, and symmetry which were computed during the

bottom-up processes (f € ® = {c, 0,¢,s, 2}).

For the construction of fine-grain saliency maps for each feature channel f con-
sidered in the model, the search target is defined as a set of top-down feature
values F}iq in which the individual features are referred as th;. For constructing
the saliency map with respect to color (f = {c}), we define D" as the differ-

ence of hue that can be tolerated in order to consider two colors as similar, D®
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as the tolerable saturation difference, D! as the allowed intensity difference for
equivalent colors, and ¢§ as the magnitude of the color feature for R;. Now, the

top-down color saliency ~; of each region R; is determined as follows:

a(Dh— AR s_AS (DI —AT )
(DDh,AJ + b<DDSA1> + (DDIAJ for A < D" & chromatic ¢§, Ff;
I_ AT
i = W’“Ef?% for Al < D' & achromatic ¢, Ff,
0 otherwise

(3.45)
where a, b, and ¢ are weighting constants to adjust the contribution of each color
component into this process. AP, Af, and A! are magnitudes of the difference
between ¢; and F},; in terms of hue, saturation, and intensity respectively. We
take a = 100, b = 55, and ¢ = 100 because the saliency values of a region lie
between the range of 0 and 255 in our model. The value of b is kept smaller
in order to keep more emphasis on the hue and intensity components. Hence a

perfect match would result in a saliency value equal to 255.

The color map had specific requirements being a composite quantity whereas
the other feature channels consist of single-valued quantities; hence they can be
processed using a simpler procedure. Having ©7 as the normalized ratio of the
feature magnitudes ¢! and F/, (for f # {c}) defined as

¢if/thd for¢{<thd

ol =
Fl,/¢!  otherwise

(3.46)

which always keeps 1 > ©f > 0, the top-down saliency yif of a region R; with
respect to a feature f (f € @, f # {c}) will be computed as
ke for © > D®

f
e 3.47
h 0 otherwise ( )

where k is a scaling constant and D® is the ratio above which the two involved
quantities may be considered equivalent. Values of constants introduced in these

equations that were used in our experiments are provided in table 3.2.
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3.7 Chapter Summary

The prominent contributions of the work presented in this chapter are the in-
novations in the computation schemes of feature maps for color contrast and
symmetry, proposal for determining size contrast as a formal feature map, and
inclusion of eccentricity map together with orientation map as feature chan-
nels in the process of visual attention. Hence, efficient algorithms for construc-
tion of five feature maps are proposed that are able to be integrated into a
region-based model of visual attention and, in turn, into other intelligent vi-
sion systems. The color contrast map is generated based upon the extended
findings from the color theory, the symmetry map is constructed using a novel
scanning based method, and a new algorithm is proposed to compute a size
contrast map as a formal feature channel. Eccentricity and orientation are com-
puted using the moments of obtained regions and then saliency is evaluated
keeping rarity criteria into consideration. Evolutionary steps of the feature ex-
traction and saliency detection algorithms presented in this chapter can be seen
in [ASMO5b], [AMSS06], [AMO07b], [AMO07c|, and [AMO08a].

The efficient design of the proposed algorithms allows incorporating five feature
channels while maintaining a processing rate of multiple frames per second. A
salient advantage over the existing techniques is the reusability of the salient
regions in the high level machine vision procedures due to preservation of their
shapes and precise information about locations. Results of implementation of the
methods presented in this chapter are given in chapter 5. The values that were
used in our experiments for the constants introduced in the proposed methodol-

ogy are listed in table 3.2.
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Table 3.2: Values of constants used in experiments

S.No | Constant | Value

1 kP o 0.6

2 . 0.005 (0.5%)
3 [ 0.79 (79%)
4 Kmin 0.21

5 K 0.79

6 a 0.5

7 kg 2.0

8 gmaz 255

9 kg 25

10 ke 0.21

11 ks 0.17

12 Bo 0.75

13 Bs 0.7

14 1 0.7

15 2 0.9

16 pfovea 51

17 k 255

18 D® 0.91
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4 Proposed Region-Based Attention Model

This chapter presents the proposed attention model in perspective of its overall
architecture and high level procedures. The proposed model is designed to be
behavior adaptive such that the same architecture could operate diversely under
different visual behaviors. This allows to incorporate integration of bottom-up
and top-down pathways of attention into a single architecture. The structural
design of the proposed model is described in section 4.1. The low level image pro-
cessing procedures including feature computation and feature saliency detection
are already described in chapter 3 hence the discussion proceeds here with the
high level procedures involved for attention processing. As most of these proce-
dures are influenced by the visual behaviors of attention, hence a description of
the behaviors implemented so far in the system is provided in section 4.2 before
explaining the model components. Description of behavior dependant process-
ing for feature map fusion for bottom-up and top-down pathways is provided in
sections 4.3 and 4.4 respectively followed by the procedure for popout detection
in section 4.5. As we apply a mechanism based upon saccadic memory for inhi-
bition of return (IOR) therefore the working of the said memory is explained in

section 4.6 before presenting the IOR module in section 4.7.

4.1 Model Architecture

The proposed model separates the steps of feature magnitude computation and
saliency evaluation as shown in figure 4.1. The primary feature extraction func-
tion F' produces a set of regions R as explained in section 3.1 of chapter 3.
Computation of the bottom-up saliency using the rarity criteria is performed by
the group of processes S, which were discussed in detail in sections 3.4 to 3.5 in

chapter 3. Output of S is combined by the procedure W that applies weighted
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fusion of these maps according to the active visual behavior to formulate a re-
sultant bottom-up map. Details of this procedure are given in section 4.3. The
function G considers the given top-down conditions to produce fine grain saliency
maps as already explained in chapter 3 section 3.6. Behavior dependant combi-
nation of these maps is performed by the function C' that results into a resultant

top-down map as explained ahead in section 4.4.

Behavior
Influence

Top-Down [ _
Conditions

v

Top-Down
Feature Maps

Bottom-tp Top-Lowrn
Sanency Sanerncy
Mao Map

A

Figure 4.1: Architecture of the proposed region-based attention model.

The function P combines the resultant saliency maps into a master conspicuity
map and applies a peak selection mechanism to choose one pop-out at a time.
Details of this process are coming in section 4.5. The focus of attention at a
particular time ¢ is stored in the inhibition memory using which the process of
IOR, denoted as R in the architecture diagram, suppresses the already attended
location(s) at time ¢ + 1 in order to avoid frequent revisiting of the same loca-
tion(s). The operational visual behavior strongly affects this process hence the

proposed design of this module explicitly incorporates this aspect (see section 4.7
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for details). The memory management function M decides whether to place the
recent focus of attention in inhibition segment or excitation segment of the sac-
cadic memory according to the active behavior. Functioning of this component
is described in section 4.6. One of the main focuses of this work is to establish
the capability of demonstrating various visual behaviors in the attention system
such that the same model may operate adaptively under different visual behav-
iors without requiring to make any architectural changes therefore the behavior
influence is embedded in the major four internal functions for bottom-up map
combination (W), top-down map summation (C), inhibition of return (R), and

memory management (M).

4.2 Visual Behaviors

Locations and order of eye fixations are largely dependant on the active visual
behavior or the task given to the vision system. This concept was introduced in
chapter 1 section 1.4.5 with the support of psychophysical experiments reported
by [Yar67]. We implement the influence of active visual behavior using a set
of behavior-dependant weights for each individual behavior in which every set
member is associated to a specific feature channel f € ® where ® = {c,0,¢, s, 2}
is the set of visual features considered in the model introduced in chapter 3
section 3.1.6. We may denote these sets of weights as W2, (f) and W&, (f) where
b represents the behavior while td and bu indicate the relation of the weights
to the top-down and bottom-up pathways respectively. Having explore, search,
examine, and track as the so far considered behaviors for our model, b can be a
member of the set of behaviors = where E = {e, s,z,t}. Functionality of these

behaviors in natural vision has been discussed in section 1.4.5 of chapter 1.

Until sufficient knowledge about details on the context of behavior-based pro-
cessing in the natural attention becomes available, we use a set of quantized
values for populating behavior-dependant weights W2, (f) and Wg,(f). We use
four categories, namely inactive, low, medium, and high for this purpose. For
an inactive channel the weight has to be set such that the concerned channel
becomes totally non-contributing hence the inactive has a value of zero. We as-

sign low= 1 meaning that no extra emphasis will be given on the related channel
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when computing the resultant saliency. The value medium is taken equal to the
sum of all low weights at that particular time in order to make influence of the
involved channel higher than the others. If some channel has to be given higher
weight in presence of a channel with a medium importance then the category
high will be used in which the weight will be again sum of all weights counting
the involved channel as a medium one. Hence, for our model with five chan-
nels in hand, we can have medium= 5 and high= 13 (when we have one other
channel with medium weight while the rest having low). At time of initialization
all weights are set to low and then updates are made only in the set of weights

concerned with the active behavior as described in the following subsections.

4.2.1 Search Behavior

For the visual behavior of search the top-down channel plays the main role hence
the manipulations of behavior dependant weights will be focused on W;;(f). The
bottom-up feature maps have trivial importance in the search task hence they
are blocked by setting Wy, (f) = inactive Vf € ®. In this top-down pathway
the color channel is given more emphasis over the other four channels because
color is the most stable feature while searching an object whereas other features
like size, eccentricity, symmetry, and orientation can significantly vary when a
vision system goes around in the environment or the objects themselves rotate
and translate in three dimensions. Therefore color will have a medium weight

while other channels will be given low weights under search behavior. Hence

medium  for f =c¢

We(f) = (4.1)

low otherwise

4.2.2 Examine and Track Behaviors

For an examine or track task, the subsequent fixation is supposed to be on the
nearest and very similar occurrence of the previously attended object (or, when
tracking, the target is the object itself that has gone through a minor translation
during the time between successive frames). Hence the top-down size channel

is expected to be the most stable after color. In rest of the top-down channels
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there are chances to obtain fluctuations because of the alterations in shades and
shadows due to change in object location can vary the eccentricity, symmetry,
and orientation of the region(s) associated with the object. Therefore for the
examine and track behaviors we keep high weight for the color channel while
medium for size in the top-down pathway. Other channels remain at low in
these two behaviors. The bottom-up channels are kept active but without any
discrimination of any channel, hence W, (f) = low and W{, (f) = low Vf € ®.
The top-down weights for these behaviors may be summarized as

high for f=c
forb=xand b=t Wl(f) = medium for f=s (4.2)
low otherwise

4.2.3 Explore Behavior

When the system works under ezplore, the bottom-up channels become the major
players and all top-down channels are hindered from participating in further
steps, hence W, (f) = inactive Vf € ®. Under this behavior the bottom-up
feature channels have to be assigned optimal weights that facilitate automatic
pop-out of the visually salient object in the given scene. The mechanism of

assigning the optimal bottom-up weights to W, (f) is explained below.

Earlier to the process of finding the weights for the involved feature channels,
weight of each feature channel f, Wy, (f), is first initialized (at ¢ = 0) such that
the color map gets the highest weight because it plays a major role in attention
and the size map gets the lowest weight because it is effective only when other
channels do not contain significant bottom-up saliency. The orientation channel
is reported as one of the confirmed feature channels and the other shape-based
features like eccentricity and symmetry are listed as probable channels (a level
below the confirmed channels) in human vision [WHO04], hence we assign them

medium weights. Thus at time of initialization:

high for f=c
Wi (f) =< medium for f =s,e,0 (4.3)

low for f=s
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Later, the weights are adjusted such that the feature map offering the sharpest
peak of saliency contributes more in the accumulated saliency map. It is done
by finding the distance Ay between the maximum and the average saliency value
in each map. The feature map with the highest Ay is considered as most active

and its weight is increased by a multiplicative factor § (we take § = 2).

4.3 Bottom-Up Map Fusion

The function W of the model, sketched in figure 4.1, performs a combination of
the bottom-up feature maps under the influence of the active visual behavior.
Figure 4.2 presents its working in an architectural perspective. This function
takes the raw feature maps for the very first frame of visual input while for the
rest of the frames (or successive attention attempts) it uses the maps that have
gone through the inhibition process R (explained in section 4.7). The resultant
bottom-up saliency map is obtained by summation of all feature maps of this
pathway after applying the weights related to the active behavior of attention
obtained from the procedure explained in the previous section for this purpose.

Computation of the total bottom-up saliency 3;(t) of a region R; at time ¢ can

now be modelled as:

fZ (We (£)S5(t)
Bi(t) = L2 (4.4)
> W (f)

fe®

where W, (f) are weights of the feature maps for the active visual behavior.
S}(t) represents the bottom-up saliency at time ¢ in feature channel f for a

region R;.

4.4 Top-Down Map Fusion

The top-down feature maps are combined by the function C' of the model (see
figure 4.1) in accordance with the influence of the active visual behavior. Working

of this module is presented pictorially in figure 4.3. Similar to the bottom-up
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Figure 4.2: The module W for behavior dependant combination of bottom-up
feature maps.

function W described above, this function also takes the raw feature maps for
the first frame of visual input and then the maps processed by the inhibition

function R for the rest of the input.

The resultant top-down saliency map is constructed through summation after
applying the weights related to the top-down pathway. The resultant top-down

saliency 7;(t) of a region R; at time ¢ is computed as

fZ (W ()L @)
(1) = =2 (4.5)
! > (Wa )

fe®

where WS (f) are weights of the active top-down visual behavior obtained through
the process discussed in section 4.2.1 and ’yif (t) are the top-down feature maps

at a given time t.
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Figure 4.3: The module C for behavior dependant combination of top-down fea-
ture maps.

4.5 Pop-out Selection

The function P in the proposed model combines the bottom-up and top-down
saliency maps 8;(¢t) and 7;(¢) for the current frame to produce the final conspicu-
ity map and selects one region on which attention should be focused for this
moment of time. As the influence of behavior is already applied during the steps
that sum up the feature maps therefore here a simple combination is required.
Each region possesses a quantity for its saliency in terms of bottom-up as well as
top-down aspect to compete for attention in the final step. We propose to model
the step of finding the combination of saliency in bottom-up and top-down chan-
nels for given region R; as a function that picks the maximum saliency value from
the two pathways as its final conspicuity value. Therefore the final conspicuity

value a;(t) of a region R; at a given instance ¢ will be computed as

ai(t) = maz(Bi(t), 7i(t)) (4.6)
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Having processed all the important steps at the lower stages of the model, the
popout selection at time ¢ remains as simply picking an R; that possesses the
maximum amount of «;(t). An important component of attention that con-
tributes in computation of the final saliency of regions, namely inhibition of
return, is yet to be discussed in the next sections but we have elaborated pop-
out selection after the methods for saliency map fusion to establish a sequence of
presentation. Pop-out for the first cycle of attention will be selected before the
influence of IOR but for the later cycles this step will receive input processed by
the IOR routine.

4.6 The Saccadic Memory

In order to deal with dynamic visual input the process of inhibition of return
is applied using a saccadic memory consisting of two main segments, namely
inhibition and excitation. The inhibition memory M7 is designed to remember
the locations and features of the last m foci of attention because a series of

recently attended locations have to be inhibited. Hence:

M" = {M}}, k€ {1,2,.m} (4.7)

where k denotes the age of the memory item M; and m represents the maximum
number of items that this memory can store. According to [CCSP03] the average
period for which a location remains inhibited is about 1500 ms (ranging from 50
to 3000 ms). Keeping in view the average processing rate of our model equal to
10 frames per second (a single frame is processed in 100 ms), which is similar to
the frame rate of human eye according to the, now abandoned, classical theory of
persistence in vision, the number of items m that should be remembered in the
inhibition memory turns out to be approximately 15. Hence, we keep m = 15.
For the most recent item M| stored in M7, the value of k is set to 1. k increases
with the age of M/ in the memory. When a fresh item arrives, it replaces the
stored item with k = m and its k is reset to 1. All other items stored in the

memory get an increment in their values of k, i.e. their age.
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Under certain visual behaviors a process of facilitation of return (FOR) is also
performed in which bias is given to certain features and/or locations while focus-
ing attention in the successive frame of visual input [OMYO05] [CCO06]. In order
to handle the behavior dependant facilitation of return (FOR), we use the exci-
tation memory MP designed to remember the location and features of the last
attended region. This location and features will be preferred while determining
the next FOA under examine and track behaviors. The size of this memory is
set to a single item because it possible to excite only one set of features and/or

location while deciding a focus of attention.

Figure 4.4 shows the working of the saccadic memory unit under different visual
behaviors. Under every type of behavior the last few attended locations have to
be inhibited hence they are stored in the inhibition memory in all cases. In case
of explore, we are implementing the feature based inhibition also (see section 4.7
for details) hence features of the recently attended regions are also stored under
this behavior. While working under examine and track behaviors, facilitation
of return is needed on the features and location of the recently attended object
hence these informations are saved in relevant portion of the saccadic memory.
The search behavior requires only inhibition of the recently attended locations

hence memory management for this process is simpler than others.
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Figure 4.4: The module M for behavior dependant management of storing re-
cently attended items.
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4.7 Inhibition and Facilitation of Return

After having attended a region at time ¢, the mechanism of inhibition of return
(IOR) prevents the system from keeping continuous attention on the same point
in order to allow exploration of other relatively less salient locations in the scene
also. For this purpose the focus of attention at time t is inhibited while finding
pop-out at time t+1. In the proposed model, we consider three types of inhibition
mechanisms namely spatial, feature based, and feature-map based. Most of the
existing models of attention implement either the spatial inhibition in which
a specific area around the point of attention is inhibited or the feature-map
based inhibition in which the weight of the wanted feature channel is adjusted
to obtain required results. In some recent studies in psychophysics the feature
based inhibition has also been reported [WLW98]. For example, according to
[LPA95], the color of the focus of attention is ignored in the successive attempts

of attention. The proposed approach models this feature-based inhibition also.

Figure 4.5 draws the mechanism of the inhibition and facilitation (or excitation)
processes in the proposed model under different active visual behaviors. The
inhibition process is common in all behaviors but the excitation process denotes
the facilitation of return under certain visual behaviors (ezamine and track from

the currently implemented behaviors).

For applying the IOR and FOR, the locations and features of the salient regions
attended in the last few saccades are stored in the saccadic memory and salient
locations from the current frame are compared with them. Under the explore
behavior the current salient regions are inhibited in two ways. Firstly, when
their locations match with one of the locations stored in the inhibition segment
of the saccadic memory M?T and, secondly, if they have features similar to one
of the stored regions M. Stronger inhibition is applied if the current region
matches a recently attended region (a memory item with young age) and weaker
inhibition takes place in case of a match with an older item in memory. In
case of search behavior only location based inhibition occurs using the saccadic
memory of many previous FOAs. The top-down conditions to excite the searched
features related to the search target come from a source external to the attention

mechanism and are used in fine-grain feature map construction rather than in
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applying facilitation of return, hence features of the previously attended objects
do not play any part in search behavior. While having the track or examine
behavior active, the module R applies inhibition as well as facilitation of return.
For examining a bigger pattern made up of small individual patterns features
of the last attended region are to be excited in the next coming frame and the
locations nearby the last FOA also need to be excited in order to maintain good
sequence of fixations. The inhibition process applies spatial inhibition as done
in other behaviors. Under t¢rack behavior the inhibition/facilitation process will
be identical to examine because occurrence of a moving object in the successive
frame will be close to its position in the last frame and the features will of course
be the same. As both bottom-up and top-down channels work together in the
last two behaviors, maps of the both pathways are updated by the module R
whereas in case of the first two behaviors maps of only the concerned pathway
is updated. We describe details of the internal functionality of different modes

of the module R in the following subsections.
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4.7.1 Feature-based and Spatial Inhibition

In the functions W and C, shown in the architecture diagram in figure 4.1, the
inhibition process influences the raw (un-inhibited) saliency maps obtained from
the current frame (let us call this instant ¢') using the foci of attention stored
in the saccadic memory up to the time ¢ — 1 before production of the current
conspicuity maps at time ¢t. In other words, the bottom-up feature maps ﬁif(t’)
and the top-down feature maps fyif (t') are updated by R to obtain Bif (t) and
7{ (t), in W and C respectively, before summing them into master conspicuity
maps for bottom-up and topdown pathways §;(t) and ~;(t) respectively. Hence
at time ¢, the updated saliency of a region in bottom-up and top-down context

can be written as

Bl (t) B (t)S* (Ri, MI, k)ST (Ri, ML LK)V k € {1,2,.m}  (4.8)
) = A () (Ri, M, k) ¥ k€ {1,2,.m} (4.9)

The inhibition function $°(R;, M}, k) performs the spatial inhibition whereas
feature-based inhibition is applied by S (R, M}, k) around all m locations stored
in MT. These two functions are designed in such a way that a decreasing sup-
pression will be applied with the increasing value of k, i. e. less suppression
when the age of the memory item becomes higher. The spatial inhibition factor
S*°(R;, M], k) is modeled as:
sLps (T crasl
(R M K) = 5°kD* (L°(R:), L°(M})) (410)

mrinh

where §° is the spatial inhibition factor such that 0 < 6° < 1, L°(.) extracts
the midpoint of provided region, D*(L°(R;), L°(M})) is the spatial distance be-
tween centers of the considered region R; and the region in the memory location
M}, and ™" is the radius within which inhibition takes effect. The value of
D*(L°(R;), L¢(M})) is clipped to 7™ when it rises above ™" in order to main-
tain S°(R;, MF, k) < 1. S°(R;, M{, k) has the lowest magnitude when a region
is at a small distance from the previous focus of attention and it gradually grows
to 1 while approaching the radius #*™*. In other words, the decay is strongest

near the center and it weakens to no decay as the boundary of inhibition circle
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is approached. The spatial distance D*(Pi, P») is calculated using a simplified
approximation in order to keep it computationally inexpensive. Hence for any
two points Pi(x1,y1) and P (y1, y2)

D*(P1, P2) = |x1 — 22| + [y1 — 2| (4.11)

Inhibition is performed on world coordinates in order to tackle attention in dy-
namic scenarios, therefore a location in space is inhibited rather than a location
in the view frame. This involves head angles of the vision system along with the
position within the view frame, in which the top corner of the view frame is con-
sidered as origin. The x-coordinates grow towards right whereas y-coordinates
grow downward following the convention of computer graphics systems. Hence,
taking P as center of the considered region R; and P» as the inhibited location
stored in memory location M}, the coordinates x1, x2, 31, and y2 for equation

(4.11) are computed as follows:

z1 = 0°0%(R:) + LE(Ry) (4.12)
T2 = 699“(M)+LC(Mk) (4.13)
i = 0,0,(Ri) + Ly(Ri) (4.14)
Y2 = 66@"(Mk )+ LS (M) (4.15)

where 87 is the number of pixels in the view frame that are covered after rotating
the camera head through one degree in horizontal direction, ©F(R;) is the head
angle of the vision system while looking at the region R, and L (R;) gives the
x-coordinate of the center of R; inside the view frame. Figure 4.6 shows a situa-
tion where the horizontal world coordinates for a region are computed using the
horizontal camera angle of the robot and the x-coordinate of the attended region
in the view frame. ©3%(Mj) and LS(Mj), respectively, are the horizontal head
angle and the x-coordinate of the inhibited region stored at k" location in the
inhibition memory. 59, ©Y(R;), L;(R;), ©4(M}), and LS (M) are similar quan-
tities for the vertical direction. This arrangement can yield sufficient accuracy
either for stationary vision systems able to rotate their camera head or indoor
robots that move for short distances with a moderate speed. This simple method

is not expected to be accurate for systems that undergo complex and fast move-
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ments such as sharp turns or driving on uneven roads. Such situations demand
an integrated localization and mapping system able to tackle object positions in

three dimensional space.

Robot 1 Object projection on

direction| View frame @

T,

Figure 4.6: Computation of horizontal world coordinates with respect to the
robot for a region using the horizontal camera angle of the robot
and the x-coordinate of the attended region in the view frame.

The second inhibition factor 3/ (R;, M}, k) in the equation (4.8) inhibits in con-
text of feature similarity with respect to each feature channel f. Regions having
feature similarity with the inhibited regions get a suppression in saliency while
the system looks for next interesting locations. This inhibition step is modeled

as:
3k for DY (R, M) < +7F
S (R, M k)= ™ ( o M) <7 (4.16)
1 otherwise
where 8/ is the inhibition constant such that 0 < 6/ < 1 and DY(R;, M})
determines the difference between feature values of the given region R; and the
inhibited one stored in M}. Two regions should have a feature difference below

the threshold 77 in order to be considered similar.
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It may be noted that the inhibition of return has to decay with time in order
to allow attention to the same or similar objects after a certain period of time.
This decay is automatically managed in the proposed mechanism by use of the
age in memory. The strenght of inhibition decays as the age of inhibited item
increases in the memory leading to no decay when the item gets old enough to

be replaced by a new entry.

4.7.2 Feature Map Based Inhibition

The feature-map based inhibition is modeled for preventing a feature map from
gaining extraordinary weight so that other features do not get excluded from the
competition. When a weight W2, (f) becomes equal to maz(WE(f)Vf € ®) then
it is set back to its original value that was assigned to it during the initialization
step. This mechanism keeps the weights of feature maps in a cycle because
the map weights keep rising when the concerned feature map contains a sharp
peak until this peak gets attended or gets inhibited due to attention to some
neighboring region. The system iterates back to the feature fusion step mentioned
in equation 4.4 after applying these inhibition procedures to reach the next focus

of attention.

4.7.3 Facilitation of Return

Here we describe the process for excitation or facilitation of return. Excitation
has to be performed in context of location as well as in terms of features. Func-
tionality of facilitation of return will be similar to the inhibition of return except
that excitation will be applied on saliency instead of suppression using the last
FOA stored in the excitation segment M% of the saccadic memory. As in the
current status of the attention model such excitation is included only in the mod-
ule C, which is responsible for the top-down pathway, this process will affect only

the top-down feature maps +; (t) as follows:

7 (1) =~ ()0 (Ri, MP)Q (R, M7) (4.17)
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Q% (R;, M?) and Qf(R;, M*) are functions for spatial and feature similarity
based excitation respectively. The previous FOA stored in the excitation seg-
ment M¥ of the saccadic memory is used for comparison with the considered
region R;. These two functions are defined as
8¢D* (L°(R;), LS(MP
Q*(R;, M") = (L°(7), L(M")) (4.18)

prinh

Qf (R, M) = (4.19)

6¢  for D (R;, MF) < 77
1 otherwise

where 0° is the excitation factor such that 6° > 1, D* (L°(R;), L°(MEg)) computes
the distance between center of the considered region L°(R;) and center of the
region stored in the excitation memory L¢(M¥) , and D?(R;, M¥) computes
the difference between R; and M¥ in terms of the considered feature f. Due
to this design of these two functions, a region having feature similarities with
the previous FOA and closest distance from it will get the highest amount of

excitation.

4.8 Chapter Summary

This chapter has presented the core of the research work being discussed in
this dissertation. The overall architecture of the proposed attention model has
been sketched with description of its constituting building blocks. The main
advancement as compared to the existing attention models is the integration of
bottom-up and top-down pathways into a single architecture and inclusion of
explicit influence of visual behaviors in internal steps of the model. The behav-
ior dependant functionality of different modules have been explained in detail.
Further advancements in the state-of-the-art through this model is inclusion of
facilitation of return (FOR) besides the normally implemented inhibition of re-
turn (IOR) and consideration of attention in three dimensional space apart from
the commonly used two dimensional image planes. Intermediate milestones of
the steps presented in this chapter can be seen in [AMO07d], [AMO07c|, [AMO07e],
[AMOT7b], [AMOTa], and [AMOSc].
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5 Experiments and Results

The proposed attention model is implemented as a complete software using ob-
ject oriented programming techniques with C++. This chapter presents the
output generated by the model on various test cases selected to judge its perfor-
mance. The experiments with the model were carried out for three attentional
behaviors, namely ezplore, search, and examine, for which details are described
in sections 5.2, 5.3 and 5.4 respectively. Being conceptually similar, results on
examine behavior also cover the testing of track. Results were obtained using
three different experimentation platforms, described in section 5.1, for testing the
model’s performance on static snapshot images, controlled virtual environments
in a simulation framework, and real-life scenarios using a camera head mounted

on a mobile robot with pan and tilt capability.

5.1 Experimentation Platforms

Experiments were performed to test the capabilities of the proposed model for
different visual behaviors using three experimentation platforms. The first plat-
form is an evaluation framework for single images. Images can be loaded as input
for the model and a behavior can be activated through the options provided in
a graphical user interface. Using this software the saliency maps can be seen
at each attempt of attention and the fixated regions get marked by prominently
colored rectangles. The sequence numbers of fixations are also displayed within
the rectangles to keep record of the previously selected regions for the given in-
put. Figure 5.1 shows a screenshot of the graphical user interface of this system
in which saliency maps and fixated locations for a sample image are also visi-
ble. Computation time taken to process the given input is also displayed in a

prescribed part of the window.
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Figure 5.1: Graphical user interface of the implementation of the proposed at-
tention model. Processing on a sample input is shown with the inter-
mediate results.

The second platform is a robot simulation framework, SIMORE, developed in
our group [KHSMOS8]. It has the capability of assimilating 3D models of envi-
ronments, simulated robots, individual sensors and actors created with virtual
reality modeling software into an integrated test scenario [Sim09]. The robots
can be manipulated at the level of their individual components, such as rotat-
able wheels and sensor head, using different means including control by manual
input devices and a graphical user interface. The interface functions of SIMORE
can be called from another application (such as the attention model) in order
to manuever the modeled robot autonomously in the virtual reality scene based

upon the data retrieved from the simulated sensors.

In addition to the 3D graphics engine the simulator has a physics engine to guar-
antee a correct physical behavior of the simulated objects. The input from the
sensors, for example continuous image stream from the simulated camera head

for the requirement of the work under discussion, is provided to the control-
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ling program as it would be done by a real sensor wandering inside the given
environment [Hil08]. This platform helps in testing the algorithms in a three
dimensional world with the ability of maneuvering the sensor head as well as the
whole robot to experiment with active vision. The test scenes can be created with
scalable complexity and they are utterly reproducible as illumination conditions
remain stable and the arrangement of objects remains intact for an arbitrarily
long period of time. Moreover, experiments can be conducted uninterruptedly
without disturbances from hardware failures and emptying of batteries. Hence
the core functionality of the algorithms can be verified and validated through
this system. Figure 5.2 presents a sample virtual environment with a simulated
robot maneuvering inside it. The visual input seen through the cameras are also

shown.

Figure 5.2: User interface of the simulation framework SIMORE. Global view
with the robot controlled through the attention model is shown in
the right window. The views through the simulated robot’s left and
right cameras are visible in the smaller windows at left side. In the
left camera view the current focus of attention is marked by a yel-
low rectangle while a previously attended (now inhibited) region is
marked by a blue one.

The third experimentation platform consists of actual mobile robots available

in our laboratory. One of them is a teleoperated rover robot (TSR) built in
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our laboratory [BDST04]. The TSR is equipped with a stereo camera head and
a wide range of sensors like electronic compass, GPS device, infrared sensor,
and motion detector. It can be remotely controlled by input devices such as
joystick, force-feedback steering wheel, and head mounted display with tracking
device for head motion, or through computer programs running either on the
on-board computer or on a remote machine connected to the robot via wireless
network. Another rover robot is based upon the commercial Pioneer 3AT system.
Sensors for visual input, laser range detection, ultra sound range detection, heat
detection, and inertial measurement unit (IMU) have been installed on it to
enable its autonomous wandering. Yet another system is a commercial flying
robot (quadrocopter) which can be controlled through wireless network and can
be used to obtain visual data from top of scenes. Work is underway to extend
the capabilities of this platform and install new sensors on it. Figure 5.3 shows

pictures of these three robotic systems.

Figure 5.3: Robotic platforms currently available in our laboratory for experi-
mentation (a) The teleoperated robot system TSR with its stereo
camera head shown at top corner of the image (b) Pioneer based
system GETBOT (c) Flying robot (quadrocopter).

5.2 Exploration Results

Under the explore visual behavior the vision system performs free viewing with
no top-down task given to it. The requirement is to identify those locations

in the given scene that would be salient for the natural/human vision. The
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developed attention model was tested with static images to verify its ability to
locate salient regions and then its capability to work in dynamic environments
was tested using the robot simulation framework SIMORE. The experiments on
overt attention were also carried out using the camera head of the actual robot.
We arrange these results in form of subsections with each subsection dedicated

to results from an experimental platform.

5.2.1 Static Scene Exploration

A variety of visual scenes including snapshots taken from camera of robot head,
synthetic environment of the simulation framework, and other images collected
from image databases on internet were used to experiment with the proposed
attention model. Figure 5.4 presents results of attention on images having con-
junction of different features in synthetic and natural scenes: The image in sub-
figure (a) contains one object possessing saliency due to conjunction of multiple
features while other objects have saliency due to contrast of only one feature.
The synthetic scene in subfigure (b) offers rendered 3D objects having saliency
with respect to different features with a very simple background. The picture
in part (c) is a real life scene offering one foreground object (a dog) composed
of different regions (head, body, tail, colliding water, etc) with complex combi-
nations of feature saliencies. The input image in part (d) is a traffic scene in
which the traffic signs offer a high bottom-up saliency in presence of a fairly
distracting background. It may be observed in the output of the proposed model
(subfigures (e) to (h) ) that the fixated locations are mostly over regions where
some visually salient object exists. In subfigure (f) the fixation in the middle of
the image (boundary of the upper and lower background) may seem to be an
error but this occurred because of the strong feature-based and spatial inhibition
of return that motivated the system to explore new regions of interest even with
lower bottom-up saliency. Similarly the fixation on the dark region between the
trees in subfigure (h) may appear to be an error but that region gained saliency
because of its strong contrast of brightness with its surrounding. A formal eval-
uation of the results to judge robustness and efficiency of the proposed approach

is provided in the next chapter.
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(b)

(e) (2) (h)

Figure 5.4: (a) - (d): Input images containing regions with conjunction of differ-
ent features. (e) to (h) are results of attention on the corresponding
input with the first five fixations marked by the proposed attention
model.

Figure 5.5 presents the results of step by step inhibition of return by showing the
saliency maps during the first three selections in a given input image. Subfigure
(a) shows the input sample, the original status of saliency at time ¢ can be seen
in its subfigure (b), and the first four fixated locations (time ¢ to t + 3) are
shown in subfigure (c). Subfigure (d) shows inhibition in the spatial domain only
after the first cycle of inhibition (¢ + 1) while subfigure (e) contains the saliency
map after the first inhibition on regions possessing features similar to the last
attended region. The combined effect of both inhibition functions in the first
cycle is shown in subfigure (f). Subfigures (g) to (i) demonstrate the results after
the second inhibition cycle (¢ + 2) and subfigures (j) to (1) contain the output
after the third inhibition (¢+43). In each case the brightness of the region with the
highest saliency is raised to white in order to indicate the next pop-out region.

The brightness of the rest of the regions is also scaled up accordingly.
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) (k) O]

Figure 5.5: (a) Input image. (b) Saliency map at time ¢. (c) First four foci of
attention representing time t to ¢t + 3. (d) Saliency map after only
spatial inhibition (see equation 4.10) at time ¢ + 1. (e) Saliency map
after only feature inhibition (see equation (4.16)) at time ¢ 4+ 1. (f)
Saliency map after combination of both inhibitions. (g) - (i) Spatially
inhibited, feature-wise inhibited, and resultant saliency maps at time
t+2. (j) - (1) Spatially inhibited, feature-wise inhibited, and resultant
maps at time ¢ + 3.



100 5 Experiments and Results

5.2.2 Exploration in Simulated 3D Environments

Figure 5.6 demonstrates results of exploration performed by the proposed system
in a dynamic scenario experimented in a virtual environment using the robot
simulation framework SIMORE. Subfigure (a) shows the environment in which
the simulated robot drives on the path marked by the red arrow while subfigure
(b) shows the scene viewed through one camera of the stereo camera head of the
robot. Subfigures (c) to (g) present the output of bottom-up attention for five
selected frames each picked after equal intervals of time. The current focus of
attention is marked by a yellow rectangle whereas blue ones mark the inhibited
locations. It may be noted that the vision system was able to inhibit previously

attended locations while being in motion in the 3D world.

(a)
(c) (d) (e) (8)

Figure 5.6: Results in dynamic scenario using a simulated mobile vision system.
(a) Simulated robot moving in virtual environment. (b) Scene viewed
through left camera of the robot. (c) to (g) Fixated locations are
indicated by yellow marks and inhibited locations are indicated by
blue marks while the robot moves along the path marked by the red
arrow.

(b)

Figure 5.7 presents results of overt attention performed by the simulated robot in

the environment shown in subfigure (a). The parts (b) and (c), respectively, show
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the scene viewed through the camera head and the first two locations selected
to be attended. Subfigures (d) and (e) demonstrate status of the camera head
and the current view seen through it after automatically bringing the first FOA
into center of frame. Similarly subfigures (f) and (g) demonstrate the situation

for the second focus of attention.

Figure 5.7: Results of overt attention performed by simulated robot. (a) The
virtual environment including the simulated robot. (b) Scene viewed
through the left camera of the robot. (¢) Top two salient locations
to be overtly attended. (d) Camera head rotated to bring the first
FOA into center of view frame. (e) Scene viewed through the left
camera after overt attention shift. (f) and (g) Status of camera and
the camera view after overt attention to second FOA.

5.2.3 Exploration Using Robotic Camera

The developed model was integrated with the control system of the robot plat-
form in order to perform overt attention using its camera head to identify visually
salient items in the environment and bring them into center of view using the
pan-tilt camera. In the exploration mode the system was required to rotate the

camera in a scanning manner from one end (e. g. right) to the other (left) and
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focus at items that offer high visual contrast. Figure 5.8 demonstrates a sample
from the situations in which the robot identifies salient objects and brings them

into the center of camera view one by one.

(c)

Figure 5.8: Results of overt attention performed by the robotic camera head
under ezplore behavior. (a) Scene viewed through the camera of
the robot with the cross hair indicating center of view frame. (b)
Top three salient locations to be overtly attended. (c) Scene viewed
through the camera after overt attention shift to first FOA. (d) and
(e) Scenes viewed through the camera after overt attention shifts to
second and third FOAs respectively.

5.3 Search Results

For experiments to test functioning of the proposed model under the visual be-
havior of search, description of the objects to be searched is given to the attention
model in form of images containing the isolated targets over a blank background.
Such descriptions of the target may be considered as the top-down conditions for
the attention mechanism. In the current status, the system is able to work with
single regions at a time rather than composite objects hence the system picks

the largest foreground region from the given image of the search target. Similar
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to the arrangement of the previous section, the results under this visual behav-
ior are also presented in subsections each related to the used experimentation

platform.

5.3.1 Search in Static Scenes

The first scenario of experiments was the search in static scenes in which the
attention mechanism was allowed to mark as many occurrences of the target as
possible. These experiments tested the ability of the system to select all relevant
locations. Figure 5.9 reflects this scenario with the search field as a still scene
having four occurrences of the target (a dull blue box with some texture) in the
scene. Results of the first five fixations (¢t = 1 to t = 5) by the attention system
are reported in figure 5.10. The current focus of attention is marked with a black
rectangle while blue rectangles are drawn at the inhibited locations. It may be
noted that the four target locations are marked in the first five fixations in which
the extra fixation is due to a repeated saccade on an object instance that had
such a high top-down saliency that, even after inhibition, it still remained higher
than the fourth object, which has relatively less similarity with the target. This
aspect can be noticed in the saliency maps provided in the second column of
figure 5.10.

Figure 5.9: A sample from visual input used in experiments on visual search using
top-down visual attention. Left image is the search field and the right
one is the target to be searched.
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Figure 5.10: Results of covert attention under search behavior. Left column:
Fixated locations marked by black rectangles and inhibited locations
represented by blue rectangles in the scenario given in figure 5.9.
Right column: Top-down saliency maps at time of each fixation.
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5.3.2 Search in Dynamic Virtual Scenes

In the second scenario, a simulated vision system was set into motion that was
required to mark the locations matching the search target using one fixation
per frame. Figure 5.11(a) represents this scenario in the simulation framework
SIMORE in which the target specified by the small image at the right side
is to be searched in the 3D environment shown at left. On the other hand,
subfigure (b) is a scenario in which the simulated robot performs overt attention
on the searched locations by rotating its simulated camera head. Results of
search without moving the camera head in the scenario given in figure 5.11(a)
are provided in figure 5.12. After covertly fixating on the best matches, the
system tries to pick target locations even when they have less similarity with the
target, for example, the later fixations are done based only upon color similarity.
Figure 5.13 presents results of overt attention performed on instances of the

search target in the scenario shown in figure 5.11(b).

5.3.3 Search With Robot Camera Head

In the third scenario, involving real robot platform, the attention mechanism was
required to perform overt attention to the best matching location by bringing the
target into center of camera view with rotation of the robot camera head in two
degrees of freedom. The search target was provided in form of a picture of the
search object and the system was required to mark its presence in a given scene
in the first glance of viewing. Then overt attention shift was made by pointing
the camera head towards the found target that brought the target locations into
center of view frame one after the other. These experiments tested the ability
of the system to locate the (estimated) position of the search target in three
dimensional space. The top-down conditions (or the search target) provided to
the system is shown in figure 5.14(a). Figure 5.14(b) shows the left camera view
in which a given search target is to be searched. The system computed the top-
down saliency and marked two locations in the scene as visible in figure 5.14(c).
Figures 5.14(d) and (e) show the camera view after the covert attention shift

that brought the search target into center of camera view. The head angles at
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(2) (b)

Figure 5.11: Scenarios to test attentive search in 3D environments of SIMORE.
(a) A simple indoor scenario. Left image is the search field whereas
the right one is the search target. (b) Another scenario in which
search with overt attention shift was experimented.

Figure 5.12: Fixated locations marked by yellow rectangles while searching for the
target using simulated mobile robot scenario given in figure 5.11(a).
Inhibited locations are marked with blue rectangles.
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(a)

Figure 5.13: Results of overt attention while searching in the scenario presented
in figure 5.11(b). (a) Instances of the target found by the system
marked by green rectangles. (b) - (d) First three instances of the
search target brought into center of view by overt camera movement.
Current FOA is marked by yellow rectangle, the inhibited regions
are marked by blue rectangles, and the remaining target instances
to be attended are marked by green rectangles.

this status provide sufficient information for other sensors in order to perform
some further processing, for example marking the object location in the map
of the environment. It is observable that the best matching target location is
marked even when it has a different orientation as compared to the given picture
in figure 5.14 (a). The second fixation is of course a less matching object marked

after inhibition of the best matching case.

5.4 Perceptual Grouping

Grouping of visually similar regions, which are distributed in a given scene,
into a perceptible pattern is performed by the attention system while working
in examine mode. Experiments on this aspect were performed using images
in which high level patterns composed of small objects were present. The left
column of figure 5.15 demonstrates some of these test cases. The model was first
executed in exploration mode until it fixated on one of the components of the
macro-level pattern and then the behavior was switched to examine in order to
highlight this pattern in the subsequent saccades. Exploration of reasons and
mechanism of autonomous switching between behaviors is a topic for vast future

research. In the current status of the model the switching between behaviors
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Figure 5.14: Results of attentive search using camera head of the mobile robot
platform. (a) Picture of the search target provided to the system.
(b) View through the camera of robot. (c) Regions with highest
top-down saliency marked by the system. (d) and (e) Camera view
after overt attention to the found targets.

was done manually. Output of examine behavior is presented in the middle
column of figure 5.15. The images of the European Union flag, the night drive
scene, and the image with a hidden rectangle were among the samples in which
a few saccades had to be made before entering the required pattern as visible in
subfigure (b), (k), and (n) where the first focus of attention (marked as 1 in the
small rectangle) is outside the main pattern. It is observable in the output that
the model has successfully selected the components of the global pattern in a
suitable sequence that follows a scan path reflecting the shape of the respective
pattern. This can be seen in the scan paths followed for these images given
in the rightmost column of figure 5.15. The circle of stars is picked with fair
accuracy, the formation of airplanes is also picked but the scan path needs to
be corrected to form a triangle, the letters on the sign board are attended in a

suitable sequence that can facilitate reading of the message, and the road side
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marked by cat eyes is also followed correctly. Due to the attentional nature of the
method, the sequence of fixations is highly dependant on the visual saliency of
the individual items in comparison to their neighborhood that may pull attention
of the system before the other items. Hence the scan path may not always draw
the concerned shape but this problem can be tackled by normalizing the curve

using the points of fixation as guiding information.

Output of the system using the test image given in figure 5.15(m) very clearly
demonstrates the ability of the attention model to maintain its focus on the
pattern under examination even in presence of distractors that possess saliency
higher than the components of the pattern. For example, the rectangles with or-
ange and red colors have higher color saliency than the green ones but the system

continues to examine the pattern due to excitation of the examined features.

5.5 Chapter Summary

This chapter has presented results obtained from the attention model after run-
ning it on three different experimentation platforms. The software to work with
static images allows viewing the results along with the intermediate processing
being carried out. The results for visual behaviors of explore, search, and examine
has been obtained on this platform. Working of attention in explore and search
behaviors has been experimented using the simulation framework SIMORE and
the camera head mounted on mobile robot also. The output under all scenar-
ios is promising and shows success of the proposed methodology in advancing
the state of the art in this area of research. A formal evaluation of the results
and comparison with other existing attention models is performed in the next

chapter.
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(n) (0)

Figure 5.15: Output of the attention system working in ezamine mode. The
leftmost column contains the input images, the middle one shows
the fixated locations under examine behavior, and the rightmost
column sketches the scan path followed by the fixations.
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This chapter presents results of those experiments that were meant specifically
for evaluating the performance of the proposed attention model. Currently a
standardized set of benchmark images and ground truth data is not available
for visual attention. Creation of such a resource is part of the extended work
on the research presented in this dissertation. For evaluating validity of the
results from the proposed attention system, it was tested using a set of self-
created benchmark samples in order to verify the ability of the model to identify
saliency with respect to different visual features. Output of the proposed model is
evaluated using experiments related to bottom-up as well as top-down aspects of
attention. The second context of evaluation was to test robustness of the model
under different situations that could degrade its performance. For this purpose
experiments were performed using transformed and noisy visual input. Output of
the proposed model is compared with the attention models of [IKN98], [ALOG],
and [BMBO1] in order to quantify the achievements gained through the new
model. The software of the models of [IKN98] and [AL06] was obtained from
their websites, [Itt09] and [Avr09] respectively, while the model of [BMBO1] was
developed by a former member of our research group, hence its code was available.
The chapter is arranged in three main subsections related to evaluation in terms
of validity of output, robustness, efficiency, and effectiveness of the model for use

in attentive vision applications.

6.1 Validity of Results

The first step of validation of results is to check whether the model creates cor-
rect saliency maps for a given input and if the locations fixated by the system

are acceptably correct. As the proposed model works for both bottom-up and
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top-down pathways, evaluation is needed for both types of maps. For a bet-
ter organization of presentation, these two facets of assessment are divided into

separate subsections given below.

6.1.1 Validation of Bottom-up Attention

In order to verify the ability of the proposed model to determine saliency with
respect to the individual features, benchmark images each containing salient
objects in context of only one feature were used as input for the model. Figure
6.1 presents results of these evaluation experiments. The first row of figure 6.1
shows the benchmark images each consisting of objects having saliency with
respect to only one feature, namely, color, eccentricity, orientation, symmetry,
and size. The second row displays the corresponding saliency maps and the third
row shows the foci of attention on which the proposed system fixated. It can be
clearly seen that the outstanding object due to each feature was marked by the
proposed system in the first attempt hence the system’s response to individual

features is valid.

Results of bottom-up attention produced by some other models of attention using
the images shown in figure 6.1(a) to (e) are given in figure 6.2 in order to assess
the comparative performance of the proposed model. The first row of figure
6.2 presents output of the previous model developed in our group [BMBO01], the
second row shows output of the extended-saliency method proposed by [ALO6],
while the third row contains results of the method proposed in [IKN9§]. It
is observable that the model of [BMBO01] is not successful in identifying color
saliency when the regions are separated by some other regions (black background
between the colored boxes in figure 6.1(a)) because it computes contrast on
the region edges only and ignores the global context. The contrasts due to
orientation and size are also not considered in this model, hence, it could not
identify the saliency correctly for the image given in figures 6.1(d) and (e). The
model proposed in [ALO6] does not perform well in the benchmark images because
it concentrates mainly on global rarity while ignoring local feature-based saliency.

The model of [IKN98] does not compute the feature channels of eccentricity,
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(a) (b)

() (2)
n

() O]

Figure 6.1: Evaluation of response to individual feature channels. Row 1: (a)
to (e) are benchmark samples having salient objects due to only one
feature, namely, color contrast, eccentricity, orientation, symmetry,
and size respectively. Row 2: Corresponding saliency maps produced
by the proposed model. Row 3: Fixated locations.
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symmetry, and size hence it was unable to pick the correct objects from the

input samples given in figures 6.1 (b), (d), and (e).

For a quantitative performance evaluation of the proposed model and comparing
it with other existing models, we use the criteria of detection rate o% and error
rate o from the list of different evaluation metrics mentioned in [AMO08b]. The
readings to be noted for these metrics while running a model over an input are
the number of salient locations marked by human subjects in that image N,
the count of erroneous fixations falling outside the salient locations N., and the

number of fixations taken by the model to cover all salient locations N,. Having
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Figure 6.2: Results of three other existing attention models on static scenes given
in figure 6.1 (a) to (¢). Row 1: Locations fixated by the model of
[BMBO1]. Row 2: Locations fixated by the model of [AL06]. Row 3:
Locations fixated by the model of [IKN98§].

these values available the said two performance metrics o¢ and ¢© are computed

as follows

o = Ny/N, (6.1)
o¢ = N./N, (6.2)
Some input images were selected to perform the experiments for this quantitative

evaluation, which are shown in figure 6.3. The number of salient locations Ny as

marked by human subjects are given in the second row of table 6.1.
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The proposed model and the models given in [BMBO01], [ALO6], and [IKN98] were
allowed to run until all manually marked salient locations were detected, hence
N, was obtained for each image by each model. In order to avoid running of a
model for indefinite period of time, in case marking all salient location is beyond
the model’s capability, the maximum limit for N, is kept as N2 for N, > 3 and
it is set to 10 for 1 < Ng < 3. The recorded readings of Ns, N,, and N, for the
compared attention models using the input images shown in figure 6.3 are listed
in table 6.1.

Comparison of the four models under discussion in terms of detection rate ¢
and error rate o in graphical format is provided in figures 6.8 and 6.9. Results
of experiments from which data for the said metrics was extracted are shown in
figures 6.4 to 6.7. Graphs for the computed values % and o® are presented in
figures 6.8 and 6.9 respectively. It is noticeable in figure 6.8 that the average
detection rate of the proposed model is higher than the other models while the
average error rate is equivalent to the lowest rate from the other models as visible
in figure 6.9. This analysis shows that the results of the proposed model are valid
in context of the state of the art as it performs equally good or a little better in

comparison to the existing models in terms of correctness of output.

6.1.2 Validation of Top-Down Attention

The main measure of success for visual search is the number of fixations before
the system finds the best match to the target. The top-down pathway of the
proposed model has shown 100 percent success rate with detection of the all n
best matching targets in first n fixations in almost all experiments. Therefore,
instead of discussing this pathway in terms of success and error rate we examine
the validity of results in two other aspects. Firstly, we demonstrate construction
of fine-grain saliency maps for a test image with different search targets. Under
the fine-grain paradigm the maps should be different when the search target is
different. Secondly, the natural system inhibits the already attended locations
and the gaze is shifted to other locations having even less similarity with the

searched object as fixation on the search target does not remain for a long time.
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(e) ()

Figure 6.3: Input images used for performing quantitative evaluation of proposed
and other attention models. Image codes: (top row) conj, 03d, ball,
sim, (bottom row) obj, off, boat, bln

(a) (b)

(e) ¢)) (2)

Figure 6.4: Fixations performed by the proposed model (N,) to cover all salient
locations (N) on images given in figure 6.3.



6.1 Validity of Results 117

(e) () () (h)

Figure 6.5: Fixations performed by the model of [BMBO1] (IV,) to cover all salient
locations (N;) on images given in figure 6.3.

(h)

Figure 6.6: Fixations performed by the model of [ALO6] (Ng) to cover all salient
locations (N) on images given in figure 6.3.
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(g)

Figure 6.7: Fixations performed by the model of [IKN98] (N, ) to cover all salient
locations (NN,) on images given in figure 6.3.
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Figure 6.8: Comparison of the proposed model with the models by [BMBO01]
(Backer), [ALO6] (Esal), and [IKN98](Itti) in terms of detection rate
d
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Figure 6.9: Comparison of proposed model with the existing models of [BMBO01]
(Backer), [ALO6] (Esal), and [IKN98](Itti) in terms of error rate o°.

Hence for the second aspect we observe the role of inhibition of return using which

the system locates less probable targets after detecting the best matches.

Figure 6.10 demonstrates one of the test cases in which two search targets and
a search area are shown. Figure 6.11 presents the result of search on the target
given in figure 6.10(b) which is fixated as the first FOA as visible in figure 6.11(a).
The top-down saliency map causing this FOA is shown in figure 6.11(d) in which
the region matching the search target has the highest saliency reflected by its
bright color. In the subsequent saccades the system tries to ignore the already
attended object by applying an inhibition in order to explore other possible
occurrences of the search target in the scene. The suppression on saliency of the
first FOA can be seen in figure 6.11(e). In this test case there are no more good
matches to the target hence the subsequent FOAs, such as the one in 6.11(f),
have decreasing similarity with the target. Figure 6.12 demonstrates results of
search on the target given in figure 6.10(c) in the same search area. It can be seen
that this time the top-down saliency maps are built totally different as compared
to the previous case. These two advantages are achieved due to the fine-grain
nature of the proposed methodology. The other approaches of attentional search
have not applied this concept yet hence the search targets pop out after several

iterations, especially in complex real-life situations.
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(a) (b) (c)

Figure 6.10: Input images for evaluation of top-down attention. (a) Image used
as search area. (b) First search target. (c) Second search target.

Figure 6.11: Search results for finding the target given in figure 6.10(b) into the
figure 6.10(a). (a) to (c) are foci of attention and (d) to (f) are
saliency maps each corresponding to the FOA above it.
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(€]

Figure 6.12: Search results for finding the target given in figure 6.10(c) in the
figure 6.10(a). (a) to (c) are foci of attention and (d) to (f) are
saliency maps each corresponding to the FOA above it.

6.2 Efficiency

We take the computation time taken by a model to process a single image as a
metric for measuring the efficiency. The compared models were allowed to fixate
for five FOAs and the CPU time taken by the models was noted on the same
machine and operating system. For these experiments three models, namely the
proposed one, model of [BMBO01], and the model of IKN98] were included. The
CPU time of the model by [ALO6] could not be noted because its software does
not provide this information. The obtained readings are shown graphically in
figure 6.13. It is observable that the proposed model is faster than the existing

models in most of the cases.

The drop of time curve by Itti’s model below the proposed model’s curve at
the right hand side of figure 6.13 is needed to be investigated. One possible
explanation is that the pixel based models use downsized copies of the input
hence their reaction time does not rise linearly or exponentially with increase

of image resolution. To confirm this aspect, run time of the models using a
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set of images containing identical contents with growing resolutions (64x64 to
512x512) was recorded. This data is shown graphically in figure 6.14. A curve for
segmentation time alone is also plotted for the proposed method. It is observable
that the response of other two models against rise of resolution is nonlinear while
the time taken by the proposed method grows steadily with increasing size of
images. It is worth mentioning that the model of [IKN98] takes this much time
for two feature maps while the proposed method computes five maps including

the heavy map of symmetry.

6.3 Effectiveness

In order to evaluate the effectiveness of a model in showing useful attention
behavior, we choose to apply the metrics of success rate oj in context of a given
phenomenon ¢ and explorative capability e from the list of evaluation metrics
proposed in [AMO8b]. The purpose of the measure o is to see how many out of
the N salient locations does the system mark in its first N fixations. Hence the
model is allowed to fixate only for N, times and the number of salient objects
found by the model is counted as Ny. Using the readings obtained for N, and
Ny, oy is computed as
o4 = Nf/Ng

The metric e* quantifies the capability of a model to explore new locations while
attending to a scene rather than repeating fixations on already attended objects.
For a total Ny salient locations in a scene, if a model fixates on Np distinct
objects out of its N, fixations then the degree of exploration capability ¥ will
be computed as

e =1— (N, — Np)/N,

It may be noted that a fixation will be counted in Np even if it falls on different
parts of a large object or region that may be considered as distinct from each
other in terms of spatial distance or visual characteristics (such as shade of light

or shape of corner).
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Figure 6.13: Comparison of computation time of the proposed method with
[IKN98] and [BMBO01] using images shown in figure 6.3.
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Figure 6.14: Comparison of computation time of the proposed method with
[IKN98] and [BMBO01] using images with different resolutions but
having same contents.
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During the experiments that produced the output shown in figures 6.4 to 6.7
the readings of Ny and Np required for ¢, and € were also recoded and are
listed in table 6.1. Comparison of the proposed model with the models given
in [BMBO1], [AL06], and [IKN98]) in terms of these two metrics is presented in
figure 6.15. It is observable in figure 6.15(a) that the rate of success in quickly
identifying salient objects, i. e. finding the salient locations within the first n
fixations when n main salient objects exist in the given input, shown by the
proposed model is higher than the existing models. The explorative potential of
the proposed model is also highest in the compared models as apparent in figure
6.15(b).
Table 6.1: Readings from evaluation experiments using the images given in figure
6.3. For each model the recorded values are actual salient regions N,
fixations taken by the model to cover them N,, error fixations on non-

salient regions Ne, targets found in first Vs fixations Ny, and distinct
regions Np fixated out of N, fixation.

Input | conj | 03d | ball | sim | obj | off | boat | bln

Ns; | 6 5 4 8 4 5 1 5

Ng | 6 7 14 15 6 8 1 10
Proposed Ne | 0 1 3 1 0 3 0 2
Ny | 6 4 3 5 3 3 1 4
Np | 5 6 8 9 6 8 1 9
N, | 36 25 5 64 5 25 | 10 8
N. | 23 0 0 0 0 14 | 10 0
[BMBO1] Ny | 2 4 3 4 3 3 0 3
Np | 27 6 5 4 5 9 2 8

N, | 36 11 6 64 16 |9 10 14
Ne | 8 0 1 30 8 3 10 3
[ALOG] Ny | 3 4 2 6 2 2 0 2
Np | 9 7 5 50 14 |9 8 8
N, | 36 10 4 11 16 | 25 | 2 7
Ne. | O 0 0 1 0 10 | 1 0
[TKN98] Ny | 4 3 4 7 2 3 0 4
Np | 6 8 4 9 6 11 | 2 7
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Comparison of effectiveness of the proposed model with the existing
models by [BMBO01], [AL06], and [IKN98]. Comparison in terms of
success rate oy, in context of quickly identifying salient objects is
shown in (a) and exploration capability €” is compared in (b).
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6.4 Robustness

The first criterion that can be considered in context of testing robustness of an
attention model is its ability to perform equally well on transformed images as
mentioned in [DLO03]. For this purpose the input images given in figure 6.3 were
rotated at 90°, 180°, and 270° and response of the models under comparison
was noted to see how many out of N, fixations on the rotated input matched
with those on the untransformed image. Figure 6.16 shows samples from the
results out of these experiments. Response of the proposed model and the models
of [BMBO1], [AL06], and [IKN98] is shown on one of the input images at different

angles of rotation.

The robustness of a model against a transformation may be measured using
the metric o, which is defined as the ratio between the number of matching
fixations N.. between the first N, fixations on the untransformed input and the

N, fixations on the transformed image. Hence o/ may be computed as
o = N} /N

where T' may be replaced by a symbol for the related transformation, for example
0Rroo May be used to represent robustness of the model against rotations along
90 degree rotations. Figure 6.17 shows comparison of the four considered models
in terms of 6Rg9, OR1s0, a0d ORarg. It is evident from the bars of average (AVG)
in figures 6.17(a), (b) and (c) that the proposed model performs fairly well as

compared to the existing ones in all considered cases of rotations.

In addition to the robustness of performance on transformed images, we incor-
porate the robustness on distorted input as an extended criterion for evaluating
attention models because in many situations the vision systems get fairly dis-
torted input because of digitization and transmission errors. For this purpose
a selected image was distorted for levels between 0 and 100 using a jpeg com-
pression software, in which 0 denotes no distortion and 100 is the maximum
level of distortion that the software could produce. Figure 6.18 shows response
of the four models under discussion on the original version of the input and its

distorted version at level 100. Results of these experiments using the complete
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Figure 6.16: Top row: Untransformed input image and its rotated versions at
90°, 180°, and 270°. Second row: Foci of attention marked by
the proposed system. Third to fifth rows: Fixations by models of
[BMBO1], [ALO6] and [IKN98] respectively.
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(c)

Comparison of robustness of the proposed model with the existing
models by [BMBO01], [AL06], and [IKN98] against rotation of input
at 90, 180, and 270 degrees. Comparison in terms of ofg is given
in (a), for oR1g0 in (b), and for oRarg in ().
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set of distorted images are plotted in figure 6.19. The average of the readings
for all distortion levels (AVG) shows moderate robustness of the proposed model
on distorted input while Itti’s model shows the highest robustness. The reason
for this is naturally the region-based nature of the proposed model in which seg-
mentation errors on distorted input causes errors in the results of higher stages

of the model also.

6.5 Chapter Summary

In this chapter an extensive evaluation of results produced by the proposed at-
tention model has been discussed along with a comparison with other existing
models for which software is pubically available. Quantitative metrics have been
applied to judge the validity of results, efficiency of model performance, effectiv-
ity in attending required locations, and robustness against transformations and
distortions in the input. The evaluation has shown that the proposed model
has shown not only valid results but has better performance in many aspects as

compared to the contemporary attention models.
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(e) (0 (2) (h)

Figure 6.18: (a) to (d) Output of the proposed model, [BMBO01], [AL06], and
[IKNO98] respectively on distortion level 0 of a sample input. (e) to
(h) Output of the four models on distortion level 100.
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Figure 6.19: Comparison of the proposed model with models of [BMBO01], [AL06],
and [IKN98] in terms of response on distorted input.
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This chapter first summarizes the contributions of the new model discussed in
this dissertation and then reviews the achievements made in the field of visual at-
tention modeling. After that a critical discussion on the theoretical aspects of the
proposed early clustering verses the commonly used late clustering is presented.
After completion of the work presented here many directions have become visible
that need to be investigated further for reaching an ultimate model of attention
that could perform like the human vision system. The dissertation is concluded

with indications of such directions.

7.1 Scientific Contributions

The main objective of this work was to develop a model of visual attention that
could perform fast enough such that it could be used as a building block for a real-
time robotic vision system. Another objective, which was rather contradicting
with the first goal, was to increase the number of feature channels so that the
scope of saliency detection may be expanded to more complex features apart from
the basic ones. For this purpose an approach to apply an early clustering on the
visual data was investigated. This clustering reduced the amount of data for the
subsequent steps of the model while sufficiently preserving the visual information.
Owing to the acceleration in the processing speed, five feature channels could be
included into the attention process maintaining the ability to process multiple
input frames per second. These many features have not been considered in any
of the known attention models. The formal inclusion of the feature channel of

size contrast for the first time is also an innovative contribution in this area.
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The first milestone of this work was to develop a suitable method to convert
the visual input into its constituent clusters while optimizing computation time
and quality of segmentation. A new algorithm was developed for the segmenta-
tion part that kept human visual perception into consideration and, hence, the
clusters obtained by this technique were mostly biologically plausible [AMO6].
The other milestone of this work was developing a fast and robust algorithms
for extracting features involved in visual attention from segmented regions. For
the bottom-up pathway, new methods were developed to compute saliency maps
using channels of color [AM07b] and other features including eccentricity, orien-
tation, symmetry, and size [AMO08a]. Methods for applying inhibition of return
and determining pop-out in the region-based paradigm were also specially devel-
oped [AMO7d]. As this model was meant for mobile vision systems, a solution for
handling attention and IOR in dynamic scenarios was needed. A memory-based
design for the inhibition mechanism was developed to tackle with this prob-
lem that also incorporated capability of handling attention in three dimensional
space [AMO7c]. Another major contribution of this work is the introduction of
fine-grain saliency computation in the modeling of top-down attention pathway.
Groundwork for using fine-grain saliency using color channel was established
in [AMO7e] and it was extended to work with other feature channels with design
of methods for top-down map fusion and IOR on both top-down and bottom-
up saliency maps [AMO08c]. The proposed model integrates the bottom-up and
top-down pathways in a single architecture which was also not done before by
any other model. As a byproduct of this work an application of visual atten-
tion in perceptual grouping [AMOT7a] and a proposal for metrics and methods
for quantitative evaluation of visual attention models [AMO8b] also came into

being.

7.2 Discussion

Early segmentation has shown some advantages in terms of increasing efficiency,
handling the global contrast, helping in finding shape based features, and precise
localization of the salient objects. On the other hand it lags behind the pixel

based approaches in context of robustness because output of segmentation is sig-
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nificantly affected when the visual input gets noisy, distorted, or transformed.
The work presented in this dissertation has shown that the early clustering ap-
proach can yield substantial advantages over the pixel based approaches but the
technique or format of clustering may be improved in order to get more biologi-
cally plausible clusters rather than simple segmentation. The use of downscaled
copies of the visual input as used by pixel based approaches may also be consid-
ered as very crude form of clustering but it results in loss of visual data while
converting a block containing pixels of different colors into a singled downscaled
unit. Hence, development of a clustering approach that would lead to splitting
of the given input into logical visual components with optimization between data

reduction and data loss would be a significant step forward.

Region-based techniques have shown more explorative capability as visible in
results given in figure 6.15 in chapter 6. The proposed model and the region-
based model by [ALO6] have a higher average of fixating on new locations as
compared to the other two pixel-based techniques. The reason behind is that the
units of processing are bigger clusters in the region-based approaches that allow
computation of contrast at a broader (or global) level leading to a large jump
while making a saccade. On the other hand, pixel based approaches may remain
on a close vicinity of the last fixated point because the unit of processing is a

single pixel or a small cluster in the down-sized version of the input.

In context of top-down attention, the proposed region-based methodology with
the innovation of constructing the fine-grain saliency maps separate from the
bottom-up maps is an efficient and robust alternative to the existing approaches.
The early clustering or segmentation allowed associating more shape-based fea-
tures to the salient locations and also using these features while performing visual
search. The proposed method is also immune to bottom-up saliency of distrac-
tors in every feature channel and does not require any tuning of parameters or
adjusting of weights. The memory based inhibition mechanism has also shown

success in static as well as dynamic scenarios.

Evaluation of the proposed technique as presented in chapter 6 shows that the
early clustering approach is a competitive alternative for the pixel-based ap-

proaches. Its performance is better than the existing techniques in many as-
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pects. Although due to dependency on the output of segmentation results from
the region based attention lag behind in robustness against distortions and noise
in the input. Further improvement can be achieved if research is done in this

direction.

7.3 Outlook

Investigations on the proposal of early clustering have shown a significant poten-
tial in this concept as evident from the promising results demonstrated by the
proposed model. The main questionable item is the format of clustering because
the region segmentation is a solution for computer processing of images and de-
tails of clustering in human vision are not clearly understood yet. A study leading
to a computational model of clustering mechanism in human vision, that formu-
lates objects from point and color information, will be a substantial contribution
into this field. The research will involve understanding of the role of neuron hier-
archy starting from receptors, through the Gangleon cells, up to the visual cortex.
A mixture of pyramid techniques as used by [IK00] and [TCW195] and segmen-
tation may be required that would treat regions in multiple resolutions rather
than a single high resolution layer. The part of multi-resolution nature of the
visual input, as suggested by the literature such as [JSN92|, [FFLB85], [EW02],
and [RRO3] etc., has to be kept in consideration also.

Some investigations in the human visual attention, such as [MI99], are suggesting
an active role of object recognition in attention. A further step in this direction
will be applying the top-down influence of knowledge (or memory) on the cluster-
ing process that helps in filling up the missing pieces of information, for example
vision in the blind spot of human eye. Involvement of knowledge in the atten-
tion processing may also lead to obtaining saliency in terms contrast of known
and unknown objects and attention based upon nature of objects, e. g. a ball
between oranges will be attended by a human observer even when both types of

objects have similar visual attributes.

Computation of symmetry as a feature channel is a computationally heavy pro-

cess, at least with the currently available state of the technology and paradigm of
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algorithms. Hence it is suggested to replace the symmetry channel with a simpler
channel such as closure to further improve computational efficiency. Symmetry
is counted as a doubted channel in natural visual attention [WHO04] hence its
exclusion will not have a major affect on validity aspect of results. Computation
of other important feature channels including texture, motion, and depth from

stereo using region-based approaches are also further steps to be investigated.

As an ultimate target, the attention mechanism should be implemented in au-
tonomous robotic machines that should be able to perform all required visual
behaviors without human intervention. The system should be able to switch be-
tween behaviors autonomously depending upon the situation and requirements of
the active task. In real-world scenarios, attention is performed in a three dimen-
sional space. An improvement in the current state of the art will be to determine
saliency in 3D rather than two dimensional maps. This aspect needs merging
of map information and localization of objects in 3D environment because items

will have to be overtly attended and inhibited in a three dimensional world.
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