
Fakultät für Elektrotechnik, Informatik und Mathematik
Institut für Informatik

Fachgebiet Softwaretechnik
Warburger Straße 100

33098 Paderborn

Inkrementelle Modellsynchronisation

Schriftliche Arbeit
zur Erlangung des akademischen Grades

”
Doktor der Naturwissenschaften“

(Dr. rer. nat.)

vorgelegt von

Dipl.-Inform. Robert Wagner
Am Coesfeld 1

33334 Gütersloh

Paderborn, im Februar 2009

Zusammenfassung

Software wird immer komplexer. Gleichzeitig nehmen die Anforderungen an
die Leistungsfähigkeit und die Qualität von Software beständig zu. Die stei-
gende Komplexität der Software stellt die Softwareentwicklung, die durch die
Globalisierung der Märkte zudem unter einem hohen Kosten- und Zeitdruck
stattfindet, vor immer größere Probleme.

Die modellbasierte Softwareentwicklung ist ein viel versprechender An-
satz, um den Problemen, die mit der steigenden Komplexität bei der Soft-
wareentwicklung einhergehen, zu begegnen, die Softwarequalität zu erhöhen
und gleichzeitig den Entwicklungsaufwand signifikant zu reduzieren. Hierzu
wird ein Softwaresystem mit unterschiedlichen Modellen beschrieben. Die
unterschiedlichen Modelle sind notwendig, um verschiedene Gesichtspunkte
und Sichtweisen auf ein Softwaresystem adäquat zu beschreiben. Die ver-
wendeten Modelle beruhen zwar häufig auf verschiedenen Formalismen mit
unterschiedlichen Notationen und Konzepten, aber aufgrund der Tatsache,
dass sie ein und dasselbe Softwaresystem beschreiben, überlappen sie sich in
ihrem Informationsgehalt.

Ein Problem ist, dass diese Überlappungen zu widersprüchlichen Aussagen
über das Softwaresystem führen können. Um ein fehlerfreies Softwaresystem
zu erhalten, müssen die Widersprüche zwischen den Modellen beseitigt wer-
den, das heißt, die Modelle müssen miteinander abgeglichen werden. Insbe-
sondere bei großen und komplexen Modellen ist ein Abgleich von Hand aber
nicht nur mühsam und fehleranfällig, sondern zeitaufwändig und damit auch
unwirtschaftlich.

In dieser Arbeit wird ein Ansatz zur automatischen Modellsynchronisa-
tion vorgestellt. Die Modellsynchronisation gleicht in Beziehung stehende
Modelle miteinander ab und löst damit vorhandene Widersprüche zwischen
den Modellen auf. Die Modellsynchronisation kann dabei sowohl vollständig
in einem einzigen Schritt, d. h., batch-artig, als auch Schritt für Schritt, d. h.,
inkrementell, durchgeführt werden. Damit ist dieser Ansatz auch für große
Modelle geeignet.

Darüber hinaus werden in dieser Arbeit eine Methode und dazugehörige
Softwarewerkzeuge zur modellbasierten und automatisierten Entwicklung von

iii

Modellsynchronisationswerkzeugen vorgestellt. Der in dieser Arbeit vorge-
stellte Ansatz ist dabei nicht auf die Modellsynchronisation beschränkt. Er
eignet sich ebenso zur Modellintegration, Modelltransformation und Codege-
nerierung. Mit der prototypischen Realisierung der in dieser Arbeit darge-
stellten Konzepte konnte anhand verschiedener Beispiele und durchgeführter
Leistungsmessungen gezeigt werden, dass die inkrementelle Modellsynchro-
nisation auch bei großen Modellen effizient durchführbar ist.

iv

Danksagung

Diese Arbeit wäre wohl niemals ohne die Mitwirkung von vielen netten und
mir wohlgesonnenen Menschen entstanden. An dieser Stelle möchte ich mich
bei all den Menschen ganz herzlich bedanken, die mich bei der Erstellung
dieser Arbeit unterstützt haben.

Ich danke meinem Doktorvater Wilhelm Schäfer für das mir entgegen-
gebrachte Vertrauen, die damit verbundene Möglichkeit, in seiner Arbeits-
gruppe an spannenden Themen aus dem Bereich der Softwaretechnik zu
forschen, sowie dafür, dass er mir die Chance zur Promotion eröffnet hat.
Ich möchte mich insbesondere für die Förderung meiner wissenschaftlichen
und persönlichen Entwicklung in den Jahren meiner Mitarbeit in seiner Ar-
beitsgruppe bedanken. Die Arbeit unter seiner Leitung hat mir viel Freude
gemacht. Neben Wilhelm waren aber auch Ekkart Kindler und Holger Giese
an der wissenschaftlichen Betreuung meiner Arbeit beteiligt. Dafür bedanke
ich mich ganz herzlich auch bei ihnen.

Bei den Mitgliedern meiner Prüfungskommission Andy Schürr, Ekkart
Kindler, Gregor Engels und Heike Wehrheim bedanke ich mich dafür, dass
sie sich mit meiner Arbeit auseinandergesetzt haben. Insbesondere danke
ich Andy Schürr und Ekkart Kindler dafür, dass sie das Gutachten zu mei-
ner Dissertation übernommen haben. Ferner danke ich Andy Schürr für die
Entwicklung der Tripel-Graph-Grammatik, ohne die diese Dissertation ganz
anders ausgesehen hätte oder womöglich gar nicht erst zustande gekommen
wäre.

Ein ganz besonderer Dank gilt meinen Kollegen Björn Axenath, Matt-
hias Meyer, Vladimir Rubin und Lothar Wendehals, die durch ihre Ideen
sowie ihre hilfreiche und konstruktive Kritik zu der vorliegenden Disserta-
tion beigetragen haben. An dieser Stelle danke ich aber auch allen anderen
(ehemaligen) Kollegen, die sowohl mit wissenschaftlichen als auch mit priva-
ten Gesprächen zu einer angenehmen Arbeitsatmosphäre beigetragen haben:
Sven Burmester, Matthias Gehrke, Stefan Henkler, Martin Hirsch, Florian
Klein, Ahmet Mehic, Ulrich Nickel, Jörg Niere, Daniela Schilling, Matthias
Tichy, Dietrich Travkin und Jörg Wadsack.

Vielen Dank auch an Jutta Haupt für ihre Hilfe bei der Überwindung

v

manch einer bürokratischen Hürde, sowie an Jürgen Maniera für die techni-
sche Unterstützung. Danke auch an alle Studenten, die an der Umsetzung
meiner Ideen als studentische Hilfskräfte und/oder im Rahmen ihrer Studien-
und Diplomarbeiten mitgewirkt haben.

Schließlich möchte ich mich bei meinen Freunden und meiner Familie für
ihre Unterstützung bedanken. Meinen Eltern danke ich insbesondere dafür,
dass sie mir meine Ausbildung ermöglicht haben. Ein ganz besonderer und
lieber Dank gilt aber meiner Frau Martina für ihre Geduld und Nachsicht, die
sie während der Fertigstellung meiner Dissertation aufgebracht hat. Martina
hat mir immer den notwendigen Rückhalt gegeben und für die erforderlichen
Freiräume gesorgt, ohne die diese Arbeit wahrscheinlich immer noch nicht
fertig gestellt wäre. Danke!

vi

Inhalt

1 Einleitung 1
1.1 Modellbasierte Softwareentwicklung 1
1.2 Problembeschreibung . 3

1.2.1 Modelltransformation 5
1.2.2 Codegenerierung . 6
1.2.3 Nachverfolgbarkeit 7
1.2.4 Validierung und Verifikation 8

1.3 Ziele und Beiträge . 9
1.4 Aufbau der Arbeit . 11

2 Modellsynchronisation 15
2.1 Ein Beispiel . 15

2.1.1 Hintergrund zur Domäne 16
2.1.2 Das ISILEIT-Projekt 18
2.1.3 Synchronisationsbedarf 21
2.1.4 Synchronisationsszenarien 22

2.2 Begriffe und Definitionen . 31
2.2.1 Bedeutung der Modellsynchronisation 32
2.2.2 Zusammenhang zwischen Modellkonsistenz und Mo-

dellsynchronisation 34
2.2.3 Definition und Aufgabe der Modellsynchronisation . . 35

2.3 Kriterien der Modellsynchronisation 37
2.3.1 Synchronisationsaufgabe und -umgebung 37
2.3.2 Synchronisationsregeln 40
2.3.3 Synchronisationsverfahren 41

2.4 Methodischer Ansatz . 44
2.4.1 Ausgangslage und Anforderungen 44
2.4.2 Überblick über die Methode 47
2.4.3 Einordung . 50

2.5 Zusammenfassung . 53

vii

Inhalt

3 Spezifikation von Korrespondenzregeln 55
3.1 Grundlagen . 55

3.1.1 Modelle und Metamodelle 55
3.1.2 Graphgrammatiken 60

3.2 Tripel-Graph-Grammatiken 63
3.2.1 Syntax und Semantik 63
3.2.2 Erweiterungen . 70

3.3 Anwendungsszenarien . 86
3.3.1 Modelltransformation 86
3.3.2 Modellintegration . 92
3.3.3 Modellsynchronisation 92

3.4 Zusammenfassung . 92

4 Spezifikationsvarianten 99
4.1 Spezifikation von Modell-zu-Text Beziehungen 99

4.1.1 Existierende Techniken 100
4.1.2 Spezifikation mit Tripel-Graph-Grammatiken 105
4.1.3 Gegenüberstellung 117

4.2 Spezifikation durch Beispielzuordnungen 118
4.2.1 Idee und Lösungsprinzip 119
4.2.2 Regelsynthese . 123
4.2.3 Erweiterungen . 140
4.2.4 Reihenfolgeunabhängigkeit 145
4.2.5 Abschließende Betrachtungen zur Regelsynthese . . . 149

4.3 MOF 2.0 Query/View/Transformation 152
4.4 Zusammenfassung . 155

5 Synchronisationsmechanismus 157
5.1 Überblick . 157
5.2 Datenstruktur und Algorithmus 161

5.2.1 Datenstruktur . 161
5.2.2 Algorithmus . 164

5.3 Generierung operationaler Graphersetzungsregeln 170
5.3.1 Prinzip . 170
5.3.2 Storydiagramme . 173
5.3.3 Generierung . 175

5.4 Zusammenfassung . 192

viii

Inhalt

6 Validierung und Verifikation 195
6.1 Syntaktische Korrektheit . 195
6.2 Semantische Korrektheit . 199

6.2.1 Checker-Ansatz . 199
6.2.2 Regelbasierter Ansatz 201

6.3 Zusammenfassung . 206

7 Werkzeugunterstützung 209
7.1 Architektur . 209
7.2 Entwicklungsumgebung . 211

7.2.1 Spezifikation . 211
7.2.2 Generierung eines Regelkatalogs 214
7.2.3 Ausführung . 217

7.3 Werkzeug- und Modelladapter 221
7.4 Evaluation . 224

7.4.1 Spezifizierte Korrespondenzregeln 224
7.4.2 Leistungsmessungen 228

7.5 Zusammenfassung . 233

8 Verwandte Arbeiten 235
8.1 Modelltransformation und Modellintegration 235

8.1.1 Tripel-Graph-Grammatiken 236
8.1.2 Andere Ansätze zur Modelltransformation und Mo-

dellintegration . 240
8.2 Modellsynchronisation . 244
8.3 Ansätze zur Vereinfachung der Spezifikation 246

8.3.1 Kompakte Repräsentation von Modelltransformationen 247
8.3.2 Spezifikation durch Beispiele 247

8.4 Zusammenfassung . 249

9 Zusammenfassung und Ausblick 251
9.1 Zusammenfassung . 251
9.2 Ausblick . 254

Literatur 257

ix

Inhalt

A Beispielspezifikationen 275
A.1 Block- und Klassendiagramme 275
A.2 I/O-Atomaten und SPS-Code 284

B Document Type Definition der Konfigurationsdatei 289

Abbildungen 291

Index 297

x

Kapitel 1

Einleitung

Die Einsatzbereiche für Software reichen heutzutage von der klassisch be-
triebswirtschaftlichen Anwendung, über die Anwendung in der Steuerungs-
und Regelungstechnik im Maschinenbau und der Automobilindustrie, bis hin
zur Multimediaanwendung in der Unterhaltungsbranche. Mit dem steigen-
den Einsatz und der weiten Verbreitung von Software wachsen aber gleichzei-
tig auch die Qualitätsansprüche. Insbesondere in sicherheitskritischen An-
wendungen mit einem hohen Gefährdungspotenzial, wie zum Beispiel Werk-
zeugmaschinen, Produktionsanlagen oder Transportmitteln, muss die Kor-
rektheit und Fehlerfreiheit der Software zwingend gewährleistet werden. Die
steigende Komplexität der Software führt mit den zunehmenden Anforderun-
gen an die Qualität zu einem immer größeren Aufwand bei der Entwicklung
und damit auch zu höheren Entwicklungskosten. Einen Ansatz um der stei-
genden Komplexität und den damit einhergehenden Problemen zu begegnen,
sowie den hohen Anforderungen an die Qualität gerecht zu werden, stellt die
modellbasierte Softwareentwicklung dar.

1.1 Modellbasierte Softwareentwicklung

Die Grundlage der modellbasierten Softwareentwicklung bilden Modelle.
Modelle sind zu einem integralen Bestandteil vieler wissenschaftlicher Me-
thoden und Werkzeuge geworden. Im Allgemeinen ermöglichen Modelle eine

”
...vereinfachte Darstellung der Funktion eines Gegenstands oder

des Ablaufs eines Sachverhalts, die eine Untersuchung oder Er-
forschung erleichtert oder erst möglich macht.“ [Dud06].

Modelle werden in nahezu allen Bereichen genutzt, um auf relevante Ei-
genschaften eines betrachteten Systems zu fokussieren und von weniger wich-
tigen Details zu abstrahieren. Die Modelle helfen, die Komplexität des zu

1

Kapitel 1 Einleitung

Modell(e)
Analyse-

werkzeuge

Code-

generator

EingabeEingabe

Modifikation auf Grundlage

der Analyseresultate

Abbildung 1.1: Modellbasierte Softwareentwicklung

entwickelnden Softwaresystems zu beherrschen. Zusätzlich verbessern sie
die Kommunikation über das zu entwickelnde Softwaresystem und ermögli-
chen den Einsatz automatischer Analysetechniken, wie zum Beispiel Vali-
dierung durch Simulation, modellbasiertes Testen oder Verifikation durch
Model-Checking [CGP00].

Der Ansatz der modellbasierten Softwareentwicklung ist in der Abbil-
dung 1.1 schematisch dargestellt. Ausgangspunkt ist ein Modell1, das als
Eingabe für Analysewerkzeuge dient. Die Analysewerkzeuge überprüfen das
Modell auf zuvor festgelegte Eigenschaften, die unbedingt einzuhalten sind.
Wird eine Verletzung einer oder mehrerer dieser Eigenschaften bei der Ana-
lyse entdeckt, so muss das Modell korrigiert und die Überprüfung erneut
ausgeführt werden. Sind hingegen alle Eigenschaften erfüllt, so kann aus
dem Modell zumindest ein Teil der Implementierung mit Hilfe eines Code-
generators automatisch erzeugt werden.

Gegenüber der Implementierung von Hand besitzt die automatische Code-
generierung mehrere Vorteile [Her03]. Ein Vorteil gegenüber der manuellen
Implementierung ist die erhöhte Produktivität. So kann ein Codegenerator
den Code automatisch aus einem Modell erzeugen. Notwendige Änderungen
an dem zu entwickelnden Softwaresystem können im Modell vorgenommen
werden. Aufgrund der Abstraktion sind Änderungen im Modell deutlich ein-
facher durchzuführen als in der Implementierung. Diese Änderungen kann
der Codegenerator dann wieder automatisch in Code umsetzen. Zusätzlich
kann durch den Austausch des Codegenerators sehr einfach Code für eine
weitere Zielplattform erzeugt werden. Auf diese Weise ist eine Portierung
auf eine andere Zielplattform mit sehr geringem Aufwand möglich.

1Das (Gesamt-)Modell eines komplexen Softwaresystems setzt sich meistens aus mehre-
ren Modellen zusammen. Je nach Sichtweise können wir hier also von einem oder von
mehreren Modellen sprechen.

2

1.2 Problembeschreibung

Ein weiterer Vorteil ergibt sich aus der Tatsache, dass durch den Einsatz
eines Codegenerators die Softwarequalität gesteigert wird. Dies liegt daran,
dass die Qualität der Implementierung von der Qualität des eingesetzten Co-
degenerators abhängig ist. Verbessert man den Codegenerator, so verbessert
sich auch die Qualität des generierten Codes. Verwendet der Codegenerator
nur bereits getestete und bewährte Codefragmente, so sinkt die Wahrschein-
lichkeit für Softwarefehler.

Zusammenfassend kann man feststellen, dass die modellbasierte Softwa-
reentwicklung viele Vorteile bietet. Sie kann insbesondere zu einer höheren
Softwarequalität sowie Produktivität und damit zu geringeren Entwicklungs-
kosten beitragen. Für einen praktikablen Einsatz der modellbasierten Soft-
wareentwicklung muss allerdings zunächst ein Problem gelöst werden, das
den Ausgangspunkt dieser Arbeit bildet. Das Problem wird im folgenden
Abschnitt erläutert.

1.2 Problembeschreibung

Die Entwicklung eines komplexen Softwaresystems zeichnet sich dadurch aus,
dass verschiedene Gesichtspunkte des Systems berücksichtigt werden müssen.
Zur Beschreibung eines solchen Systems reicht daher nur selten ein einziges
Modell aus. Die unterschiedlichen Gesichtspunkte und Sichtweisen auf das
Softwaresystem erfordern den Einsatz verschiedener Modelle, denen typi-
scherweise unterschiedliche Notationen zugrunde liegen. So eignen sich zur
Beschreibung der statischen Struktur eines Softwaresystems andere Modelle
als zur Beschreibung der dynamischen Anteile.2

Dieser Umstand wird auch durch heutige Modellierungssprachen berück-
sichtigt. Ein prominentes Beispiel hierfür ist die Unified Modeling Language
(UML) [UML05]. Diese graphische Modellierungssprache definiert in der
aktuellen Version insgesamt dreizehn verschiedene Diagrammarten, die je-
weils als einzelne Modelle aufgefasst werden können. Sechs der Diagramm-
arten dienen zur Modellierung der statischen Struktur; die übrigen sieben
Diagrammarten werden zur Modellierung des Verhaltens benutzt. Zwar
müssen zur Beschreibung eines Softwaresystems nicht alle Diagrammarten
zwangsläufig eingesetzt werden – allerdings ergeben erst die eingesetzten Mo-
delle zusammen das Gesamtmodell des zu entwickelnden Softwaresystems.
Ein anderes Beispiel sind domänenspezifische Sprachen (engl. Domain Spe-

2Hinzu kommt, dass auch in den verschiedenen Phasen der Softwareentwicklung unter-
schiedliche Modelle eingesetzt werden können.

3

Kapitel 1 Einleitung

cific Languages, kurz DSL), in denen unterschiedliche Sprachen aufeinander
abgestimmt und zu einer einzigen Modellierungssprache integriert werden
[WR99].

Zusätzlich können Modelle auf unterschiedlichen Abstraktionsebenen exis-
tieren. Während auf höheren Abstraktionsebenen auf wesentliche Artefakte
eines Softwaresystems fokussiert wird, erfolgt in den darunter liegenden Ab-
straktionsebenen eine Verfeinerung dieser Artefakte. Die Modelle der un-
terschiedlichen Abstraktionsebenen sind somit voneinander abhängig, d. h.,
zwischen den Modellelementen der beteiligten Modelle existieren Beziehun-
gen, die eingehalten werden müssen, um ein fehlerfreies Softwaresystem zu
erhalten.

Hinzu kommt, dass an der Entwicklung großer und komplexer Software-
systeme häufig viele Entwickler aus zum Teil unterschiedlichen Domänen
beteiligt sind. Sie beschreiben das Softwaresystem aus unterschiedlichen
Sichten und setzen dafür verschiedene Werkzeuge ein. Dies liegt daran, dass
die heutzutage verfügbaren Modellierungswerkzeuge auf ein Anwendungs-
gebiet spezialisiert sind. Ein Werkzeug eignet sich damit für eine Aufgabe
besonders gut, ein anderes für eine andere Aufgabe. In den meisten Fällen
verwenden die Werkzeuge ein werkzeugspezifisches Modell, das inkompati-
bel zu allen anderen Werkzeugen ist. Damit muss für jedes Werkzeug ein
eigenes Modell erstellt werden, wodurch die Anzahl der eingesetzten Modelle
zusätzlich erhöht wird.

Das Problem stellen nicht die vielen Modelle an und für sich dar. Wie
zuvor dargestellt, ermöglicht häufig erst der Einsatz unterschiedlicher Mo-
delle die Beherrschung der Komplexität eines zu entwickelnden Softwaresy-
stems. Das Problem besteht vielmehr darin, dass die Modelle voneinander
abhängig sind. Die Modelle beschreiben ein und dasselbe Softwaresystem
aus unterschiedlichen Perspektiven. Daher enthalten die Modelle (zumin-
dest teilweise) gleiche Information über das zu entwickelnde Softwaresys-
tem. Wenn die gleiche Information in mehreren Modellen repräsentiert ist,
so sagt man, dass die Modelle sich überlappen. Durch die überlappenden
Teile stehen die Modelle zueinander in Beziehung. Diese Überlappung der
Information kann zu widersprüchlichen Aussagen über das zu entwickelnde
Softwaresystem führen. Ein Widerspruch zwischen zwei Modellen wird auch
Inkonsistenz genannt. Nuseibeh et al. definieren in [NER00] die Inkonsistenz
ganz allgemein als

”
...any situation in which a set of descriptions does not obey some

relationship that should hold between them“.

4

1.2 Problembeschreibung

Diese Definition ist sehr generisch. Beziehen wir jedoch die in der Defi-
nition genannten Beschreibungen auf einzelne Modellelemente, so liegt eine
Inkonsistenz vor, wenn die Modellelemente eine Beziehung verletzen, in der
sie zueinander stehen sollten. Wird also eine geforderte Beziehung zwischen
den Modellelementen zweier Modelle nicht eingehalten, so kann dies zu wi-
dersprüchlichen Aussagen über das Softwaresystem führen. Aufgrund der
Tatsache, dass die automatische Codegenerierung aus inkonsistenten Model-
len in fehlerhafter Software resultieren kann, sollten Inkonsistenzen zwischen
Modellen beseitigt werden.

Die Beseitigung der Inkonsistenzen kann durch eine manuelle Überprüfung
und Korrektur der beteiligten Modelle stattfinden. Bei großen und komple-
xen Softwaresystemen ist eine Überprüfung und Korrektur der Modelle von
Hand aber nicht nur mühsam und fehleranfällig, sondern auch zeitaufwändig
und damit unwirtschaftlich. Die manuelle Beseitigung der Inkonsistenzen er-
schwert somit den Entwicklungsprozess und macht die Vorzüge der modell-
basierten Softwareentwicklung wieder zunichte. Für einen erfolgreichen und
praktikablen Einsatz der modellbasierten Softwareentwicklung ist daher eine
geeignete Werkzeugunterstützung nicht nur wünschenswert, sondern unab-
dingbar.

1.2.1 Modelltransformation

Lange Zeit wurden automatische Modelltransformationen als Lösung des
Konsistenzproblems propagiert. Bei einer Modelltransformation wird auf
der Grundlage von Transformationsregeln ein Quellmodell automatisch in
ein Zielmodell übersetzt. Durch den automatischen Übersetzungsvorgang
entsteht ein Zielmodell, das zum Quellmodell konsistent ist.

In der heutigen Praxis haben sich zur Softwareentwicklung weitestgehend
iterativ-inkrementelle Entwicklungsprozesse durchgesetzt. Bei der iterativ-
inkrementellen Softwareentwicklung wird ein Softwaresystem in aufeinander
folgenden Ausbaustufen erstellt. In jeder Ausbaustufe wird das Softwaresys-
tem um weitere Funktionen erweitert, bis schließlich das gesamte Software-
system realisiert ist. Dabei müssen die Modelle häufig auch nach einer bereits
durchgeführten Modelltransformation angepasst und geändert werden, was
erneut zu Inkonsistenzen zwischen den Modellen führen kann.

Die geänderten Modelle können durch eine erneute Modelltransformation
wieder miteinander abgeglichen werden. Während am Anfang der iterativ-
inkrementellen Softwareentwicklung die Modelle meistens noch relativ klein
und überschaubar sind, werden die Modelle mit jedem Iterationszyklus im-

5

Kapitel 1 Einleitung

mer größer. Im fortgeschrittenen Stadium der Entwicklung können die Mo-
delle sogar so groß werden, dass eine Modelltransformation mehrere Stunden
dauert und damit für den Softwareentwickler – insbesondere nach geringfügi-
gen Änderungen – nicht mehr zumutbar ist.

Ein weiteres Problem entsteht dadurch, dass bei einer Modelltransforma-
tion ein bereits bestehendes Zielmodell verworfen und ein komplett neues
Zielmodell erzeugt wird. Häufig ist das Zielmodell jedoch mit zusätzlichen
Informationen angereichert, die im Quellmodell nicht vorhanden sind. Weil
die zu dem Zielmodell manuell hinzugefügten Informationen nicht automa-
tisch aus dem Quellmodell erzeugt werden können, gehen sie durch eine
erneute Modelltransformation unwiderruflich verloren.

Ein anderes Problem liegt vor, wenn beide Modelle unabhängig voneinan-
der erstellt worden sind. In diesem Fall sind beide Modelle bereits gegeben –
sie müssen lediglich auf Konsistenz überprüft und vorhandene Inkonsistenzen
durch einen Abgleich der Modelle beseitigt werden. Für ein solches Szenario
sind die meisten Ansätze zur Modelltransformation nicht ausgelegt.3

Heutige Ansätze zur Modelltransformation eignen sich somit zwar, um
ein Quellmodell in ein Zielmodell zu übersetzen, aber weniger, um die Mo-
delle miteinander abzugleichen und die Konsistenz zwischen ihnen über ihren
gesamten Lebenszyklus sicherzustellen. Sie können Änderungen an einem
bereits übersetzten Quellmodell nicht inkrementell an das Zielmodell wei-
terleiten (vergleiche Kapitel 8). Stattdessen erzeugen sie das Zielmodell bei
einer erneuten Übersetzung immer wieder komplett neu, was häufig zu In-
formationsverlusten im Zielmodell führt. Hinzu kommt, dass eine komplette
Übersetzung bei vielen Änderungen und großen Modellen ineffizient ist.

1.2.2 Codegenerierung

Ein Ziel der modellbasierten Softwareentwicklung besteht darin, die manu-
elle Programmierung überflüssig zu machen. Die heutige Praxis sieht aller-
dings anders aus. In den meisten Fällen müssen nach der Codegenerierung
noch Änderungen und Ergänzungen am Code durchgeführt werden. Dies
liegt daran, dass die Modelle aufgrund ihres hohen Abstraktionsniveaus nicht
genügend Informationen enthalten, um daraus automatisch eine vollständige
und lauffähige Implementierung zu generieren. Daher erzeugt der Codege-
nerator häufig nur ein Codegerüst, das weiter verfeinert werden muss.

3Einen Ansatz, mit dem sowohl dieses Szenario als auch die Modelltransformation rea-
lisiert werden können, lernen wir mit der in dieser Arbeit verwendeten Technik der
Tripel-Graph-Grammatik [Sch94] kennen.

6

1.2 Problembeschreibung

Hierbei ergeben sich Probleme, die wir auch schon bei der Modelltransfor-
mation identifiziert haben. So müssen Änderungen im Modell auch im Code
umgesetzt werden, ohne dass manuell hinzugefügte Codefragmente verloren
gehen. Umgekehrt müssen Änderungen im Code auch an das Modell propa-
giert werden. Genauso wie ein Abgleich zwischen zwei Modellen muss auch
ein Abgleich zwischen einem Modell und dem dazugehörigen Code stattfin-
den. Dies ist nicht weiter überraschend, wenn man bedenkt, dass Code auch
als ein Modell des zu entwickelnden Softwaresystems aufgefasst werden kann.

Natürlich gibt es bereits Werkzeuge, die eine Unterstützung zur Syn-
chronisation von Modell und Code anbieten (vergleiche dazu auch Ab-
schnitt 8.2). Diese Synchronisation wird in den meisten Werkzeugen mit
Hilfe von Forward-Engineering und Reverse-Engineering realisiert [CC90].
Beim Forward-Engineering wird Code aus einem Modell generiert. Beim
Reverse-Engineering wird ein Modell aus bereits vorhandenem Code er-
stellt. Dabei wird entweder der Code oder das Modell komplett neu erzeugt.
Abhängig von der Richtung ersetzt dieser Vorgang somit die alte Version
des Codes oder des Modells. Enthält der Code oder das Modell Informatio-
nen, die nicht in dem jeweils anderen Artefakt vorhanden sind, so führt ein
Forward- bzw. Reverse-Engineering zum Verlust dieser Informationen. Der
Ansatz ist somit nur für bijektive Abbildungen zwischen Modell und Code
praktikabel. Diese sind in der Praxis aber nur selten gegeben [SK04].

1.2.3 Nachverfolgbarkeit

Der Ansatz der modellbasierten Softwareentwicklung geht davon aus, dass
ein Softwaresystem nur noch mit Modellen beschrieben und die manuelle
Programmierung nicht notwendig sein wird. Viele Werkzeuge arbeiten aber
immer noch auf der Basis von Code. Ein Beispiel hierfür sind Debugger,
die den Code zur Fehlersuche in Einzelschritten ausführen. Wird ein Fehler
erkannt, so wird dieser im Code angezeigt. Aufgrund der fehlenden Zuord-
nung ist ein Übersetzungsvorgang nicht nachverfolgbar, das heißt, es ist nicht
sofort ersichtlich, aus welchen Modellelementen der fehlerhafte Code gene-
riert wurde. Es ist daher häufig einfacher, den Fehler direkt im Code zu
korrigieren als die Ursache für den Fehler im Modell zu beheben.

Die Nachverfolgbarkeit (engl. Traceability) solcher Übersetzungsvorgänge
ist nicht nur bei der Codegenerierung nützlich, sondern ganz allgemein bei
allen Modelltransformationen [ANRS06]. So ist es häufig notwendig, ein
Modell zum Zwecke der Analyse in den Formalismus des entsprechenden
Analysewerkzeugs zu übersetzen. Die Analyse wird somit nicht auf dem

7

Kapitel 1 Einleitung

Modell durchgeführt, das dem Entwickler vertraut ist, sondern auf einem se-
mantisch äquivalenten Modell, das dem Formalismus des Analysewerkzeugs
genügt. Das Analysewerkzeug untersucht dieses Modell und bezieht sich bei
der Präsentation der Analyseresultate natürlich nur auf dieses Modell. Folg-
lich muss der Softwareentwickler die Analyseresultate im Formalismus des
Analysewerkzeugs interpretieren. Hier wäre es von Vorteil, wenn die Ana-
lyseresultate im ursprünglichen Modell angezeigt werden könnten, da dieses
Modell dem Entwickler vertraut ist.

1.2.4 Validierung und Verifikation

In diesem Kontext stellt der Übersetzungsvorgang ein weiteres Problem dar.
Dieses Problem beruht auf der Tatsache, dass es zurzeit sehr schwierig ist,
eine Übersetzung formal zu verifizieren, um ihre Korrektheit nachzuweisen.
Insbesondere bei der Entwicklung sicherheitskritischer Softwaresysteme muss
aber sichergestellt werden, dass bei der Übersetzung eines Modells in ein
Modell des Analysewerkzeugs keine Fehler gemacht wurden. Ansonsten kann
nicht gewährleistet werden, dass das überprüfte Modell dem tatsächlich vom
Softwareentwickler erstellten Modell entspricht.

Dieses Problem gilt auch für die Codegenerierung. Der Nachweis von Ei-
genschaften in einem Modell ist nur dann wirklich nützlich, wenn garantiert
werden kann, dass der generierte Code korrekt ist, das heißt, dass die im
Modell überprüften Eigenschaften auch im Code eingehalten werden. Hierzu
muss gewährleistet sein, dass der generierte Code semantisch äquivalent zu
dem überprüften Modell ist.

Der formale Nachweis einer solchen Äquivalenz ist sehr aufwändig. Dies
liegt daran, dass heutige Codegeneratoren nicht formal und abstrakt genug
spezifiziert sind, sondern direkt in einer Programmiersprache implementiert
werden. Die vielen Details in der Implementierung eines Codegenerators
verhindern einen formalen Nachweis mit den heute verfügbaren Techniken.
Daher wird die Korrektheit heutiger Codegeneratoren meistens nur empi-
risch überprüft. Eine formale Spezifikation dieser Übersetzung könnte eine
geeignete Basis für einen solchen Korrektheitsnachweis darstellen und ihn
deutlich vereinfachen.

8

1.3 Ziele und Beiträge

1.3 Ziele und Beiträge

Ziel der vorliegenden Arbeit ist die Entwicklung einer Technik zur Modellsyn-
chronisation. Die Modellsynchronisation soll zwei zueinander in Beziehung
stehende Modelle automatisch miteinander abgleichen und dadurch Wider-
sprüche zwischen den Modellen auflösen. Mit der Technik soll insbesondere
eine inkrementelle Modellsynchronisation möglich sein, um auch sehr große
Modelle effizient miteinander abgleichen zu können.

Die Modellsynchronisation zwischen zwei Modellen soll in beide Rich-
tungen funktionieren, d. h., die Modellsynchronisation muss bidirektional
ausführbar sein. Dabei sollen auch die zur Modellsynchronisation benötig-
ten Spezialfälle der Modelltransformation und der Modellintegration berück-
sichtigt werden. Darüber hinaus soll es möglich sein, eine Synchronisation
zwischen einem Modell und dem daraus generierten Code durchzuführen.

Eine weitere Anforderung ist, dass Beziehungen zwischen zwei Modellen
explizit repräsentiert werden. Durch die explizite Angabe der Beziehungen
soll ein Nachweis der semantischen Äquivalenz der in Beziehung stehenden
Modelle ermöglicht werden. Beim Einsatz dieser Technik zur Synchroni-
sation eines Modells mit dem daraus generierten Code wird dadurch die
Möglichkeit geschaffen, die Korrektheit des generierten Codes einfacher zu
überprüfen oder sogar formal nachzuweisen.

Bei der zu entwickelnden Technik soll eine Modellsynchronisation aller-
dings nicht von Hand programmiert, sondern modellbasiert entwickelt wer-
den. Hierzu soll eine geeignete Methode entwickelt werden, mit der benötigte
Modellsynchronisationswerkzeuge automatisiert erstellt werden können, so
dass Softwareentwickler von der Komplexität einer manuellen Entwicklung
weitestgehend befreit werden.4

Diese Ziele erreichen wir auf der Grundlage von Tripel-Graph-Grammati-
ken (TGGs) [Sch94]. Diese visuelle, deklarative und formale Spezifikations-
technik ist nicht neu – sie wurde bereits zur Modelltransformation und zur
inkrementellen Modellintegration eingesetzt (z. B. in [Lef95, Bec07, Kön08],
vgl. Abschnitt 8.1.1). Allerdings nutzen die technischen Ansätze das Poten-
zial der TGGs bisher nicht aus: Die Modelltransformationen und Modellin-
tegrationen kann entweder batch-artig oder inkrementell ausgeführt werden.
Zudem muss bei der inkrementellen Modelltransformation bzw. Modellin-
tegration das gesamte Quell- und Korrespondenzmodell untersucht werden,

4Die hier nur überblicksartig dargestellten Anforderungen werden zusammen mit der
entwickelten Methode in Abschnitt 2.4 noch genauer erläutert.

9

Kapitel 1 Einleitung

d. h., die eingesetzten Algorithmen arbeiten nur im Zielmodell inkremen-
tell. In dieser Arbeit wurde hingegen ein Algorithmus entwickelt, der sowohl
batch-artig als auch inkrementell ausgeführt werden kann. Bei der inkremen-
tellen Ausführung wird nicht das gesamte Quell- und Korrespondenzmodell
untersucht, sondern nur die von den Änderungen tatsächlich betroffenen Mo-
dellelemente. Durch die lokale Arbeitsweise lassen sich daher selbst große
Modelle schnell und effizient miteinander synchronisieren.

Die in dieser Arbeit vorgestellte Technik ist nicht auf die Modellsynchro-
nisation beschränkt. Sie eignet sich ebenso zur Modelltransformation und
Codegenerierung. Damit können sowohl Modell-zu-Modell Beziehungen als
auch Modell-zu-Text Beziehungen durchgängig in einer Notation spezifiziert
werden, um auf dieser Grundlage eine Modelltransformation bzw. Codege-
nerierung automatisch auszuführen. Nach einer Codegenerierung erlaubt
die Modellsynchronisation, das Modell und den dazu in Beziehung stehen-
den Code miteinander abzugleichen, wenn diese nach der Codegenerierung
geändert wurden.

Bei sehr umfangreichen Metamodellen hat sich die Spezifikation von
Modell-zu-Modell und Modell-zu-Text Beziehungen als schwierig und zeit-
aufwändig erwiesen. Um die Spezifikation der Beziehungen zu vereinfachen,
haben wir daher einen Ansatz entwickelt, bei dem die Beziehungen durch die
Angabe von zueinander korrespondierenden Beispielen definiert werden. Da-
bei werden die Beispiele in der Notation der beteiligten Sprachen angegeben.
Aus den gegebenen Beispielen wird anschließend die zur Synchronisation
benötigte Tripel-Graph-Grammatik automatisch synthetisiert. Mit diesem
Ansatz konnte die Spezifikation einer Tripel-Graph-Grammatik signifikant
vereinfacht werden.

Die zur Modellsynchronisation benötigten Werkzeuge müssen nicht von
Hand programmiert sondern können automatisch generiert werden. Hierzu
wurden im Rahmen dieser Arbeit eine Methode und dazugehörige Softwa-
rewerkzeuge entwickelt. Bei der entwickelten Methode werden die Regeln
zur Modellsynchronisation nicht fest in einem Werkzeug codiert, sondern
aus der formalen Spezifikation mithilfe der realisierten Softwarewerkzeuge in
ausführbaren Code übersetzt. Dieser Code wird zur Parametrisierung eines
im Rahmen dieser Arbeit entwickelten Frameworks verwendet. Das Fra-
mework mit den ausführbaren Regeln ergibt ein Synchronisationswerkzeug,
dass in andere Modellierungswerkzeuge integriert werden kann. Damit wird
eine Modellsynchronisation in Anwendungsdomänen ermöglicht, die durch
heterogene Werkzeuglandschaften geprägt sind.

Mit der prototypischen Realisierung der in dieser Arbeit dargestellten

10

1.4 Aufbau der Arbeit

Konzepte konnte anhand verschiedener Beispiele und durchgeführter Lei-
stungsmessungen gezeigt werden, dass die inkrementelle Modellsynchronisa-
tion auch bei großen Modellen effizient durchführbar ist und somit kontinu-
ierlich, das heißt, sofort nach jeder Änderung der Modelle, stattfinden kann.
Zudem wurde gezeigt, dass mit der in dieser Arbeit vorgestellten Methode
Modellsynchronisationswerkzeuge mit sehr geringem Aufwand realisiert wer-
den können.

1.4 Aufbau der Arbeit

Die vorliegende Arbeit befasst sich mit einer Technik zur automatischen und
insbesondere inkrementellen Synchronisation von Modellen. Einen wesentli-
chen Schwerpunkt dabei bilden das erarbeitete Konzept zur Modellsynchro-
nisation und die Methodik, die zur weitestgehend automatischen Erstellung
von Modellsynchronisationswerkzeugen eingesetzt wird. Die hierzu benötig-
ten Grundlagen werden – sofern nötig – dem jeweiligen Kapitel vorangestellt,
so dass auf ein einführendes Grundlagenkapitel verzichtet wird. Die vorlie-
gende Dissertation besitzt daher den folgenden Aufbau:

Kapitel 2 enthält ein Beispiel, an dem die Modellsynchronisation motiviert
und die damit verbundenen Probleme näher vorgestellt werden. An-
schließend werden relevante Begriffe und Kriterien für die Modellsyn-
chronisation aufgestellt, anhand derer diese Arbeit eingeordnet wird.
Im letzten Teil dieses Kapitels werden die Anforderungen an die Mo-
dellsynchronisation aufgestellt. Das Ziel dieses Kapitels ist, den Leser
in das Thema der Modellsynchronisation und die damit verbundenen
Probleme einzuführen.

Kapitel 3 stellt die Technik der Tripel-Graph-Grammatiken (TGG) zur Spe-
zifikation von Korrespondenzregeln vor. Hierzu werden zunächst die
notwendigen Grundlagen erläutert. Anschließend wird die grundle-
gende Syntax und Semantik der TGGs vorgestellt, die dann um nütz-
liche Konzepte erweitert wird. Darauf aufbauend stellen wir typische
Anwendungsszenarien für TGGs vor, zu denen auch die Modellsyn-
chronisation gehört. Das Ziel dieses Kapitels ist es, den Leser mit der
Spezifikationstechnik vertraut zu machen und mögliche Anwendungs-
szenarien aufzuzeigen.

Kapitel 4 zeigt, wie die in dieser Arbeit verwendete Spezifikationstechnik
auch zur Beschreibung von Modell-zu-Text Beziehungen eingesetzt

11

Kapitel 1 Einleitung

werden kann. Diese Spezifikation gestaltet sich allerdings ohne eine
angemessene Werkzeugunterstützung als recht umständlich. Daher
präsentieren wir in diesem Kapitel zwei Spezifikationsvarianten mit
denen auch Modell-zu-Text Beziehungen einfach und dennoch formal
definiert werden können.

Kapitel 5 beschreibt den entwickelten Synchronisationsmechanismus. Der
Synchronisationsmechanismus arbeitet sowohl batch-artig als auch in-
krementell. Zunächst stellen wir die grundlegende Arbeitsweise vor.
Anschließend zeigen wir notwendige Erweiterungen, die zur inkremen-
tellen Modellsynchronisation benötigt werden. Die Realisierung mit
sogenannten Storydiagrammen wird im letzten Teil dieses Kapitels vor-
gestellt.

Kapitel 6 gibt einen Überblick über Möglichkeiten der Validierung und Veri-
fikation von Modelltransformationen. Dieser Forschungszweig ist noch
nicht sehr weit fortgeschritten. Daher stellen wir im ersten Teil die-
ses Kapitels einige existierende Ansätze zur Überprüfung der syntak-
tischen Korrektheit vor und untersuchen, inwiefern diese Ansätze auf
TGGs übertragbar sind. Im zweiten Teil dieses Kapitels beschäftigen
wir uns mit Ansätzen zur formalen Verifikation der semantischen Kor-
rektheit von Modelltransformationen.

Kapitel 7 präsentiert die im Rahmen dieser Arbeit entstandene Werkzeug-
unterstützung. Die prototypische Realisierung dieser Werkzeuge wurde
auf der Basis bereits existierender Entwicklungsumgebungen durch-
geführt. Daher werden diese Werkzeuge ebenfalls kurz vorgestellt.
Zusätzlich werden in diesem Kapitel die Ergebnisse der durchgeführ-
ten Evaluation der prototypischen Implementierung präsentiert. Die
Ergebnisse der Evaluation belegen, dass die inkrementelle Modellsyn-
chronisation effizient durchführbar ist.

Kapitel 8 untersucht verwandte Arbeiten und vergleicht sie mit dem in die-
ser Arbeit vorgestellten Ansatz. Hierzu stellen wir zunächst Arbeiten
vor, die TGGs bereits zur Modelltransformation und Modellintegration
genutzt haben. Anschließend betrachten wir andere Ansätze zur Mo-
delltransformation und Modellintegration und untersuchen, inwieweit
diese Ansätze zur Modellsynchronisation geeignet sind. Wir schließen
dieses Kapitel mit einigen Ansätzen, die sich mit der Vereinfachung von
Spezifikationen im Rahmen von Modelltransformationen beschäftigen.

12

1.4 Aufbau der Arbeit

Kapitel 9 fasst die Ergebnisse der Arbeit zusammen und schließt mit einen
Ausblick auf mögliche Erweiterungen die vorliegende Arbeit ab.

13

Kapitel 2

Modellsynchronisation

In der Literatur zur modellbasierten Softwareentwicklung wird hauptsächlich
die Notwendigkeit zur Modellsynchronisation betont – Anforderungen, mög-
liche Probleme sowie konkrete Ansätze und Vorschläge zur Umsetzung wer-
den jedoch nicht behandelt. Ziel dieses Kapitels ist es daher, dem Leser
einen ersten Überblick über das Thema der Modellsynchronisation zu ver-
mitteln, die damit verbundenen Probleme aufzuzeigen, sowie den in dieser
Arbeit entwickelten methodischen Ansatz zur Erstellung von Modellsynchro-
nisationswerkzeugen kurz vorzustellen. Hierzu betrachten wir zunächst ein
Beispiel zur Modellsynchronisation und zeigen anhand einiger Szenarien ty-
pische Probleme, die bei der Modellsynchronisation auftreten können. An-
schließend befassen wir uns mit Begriffen, die wir im Kontext der Modell-
synchronisation verwenden und die für das weitere Verständnis dieser Arbeit
hilfreich sind. In dem darauf folgenden Abschnitt stellen wir einige Kriterien
vor, die zu einer Klassifikation von Ansätzen zur Modellsynchronisation her-
angezogen werden können. Anschließend geben wir einen Überblick über den
in dieser Arbeit verfolgten Ansatz und klassifizieren ihn auf Grundlage der
zuvor festgelegten Kriterien. Im letzten Abschnitt fassen wir die Ergebnisse
dieses Kapitels zusammen.

2.1 Ein Beispiel

In diesem Abschnitt wird die Modellsynchronisation an einem Beispiel aus
der Domäne der automatisierten Fertigungssysteme vorgestellt. Hierzu ge-
ben wir zunächst einen Überblick über die Domäne und den damit verbunde-
nen Synchronisationsbedarf. Anschließend erläutern wir exemplarisch einige
Synchronisationsszenarien.

15

Kapitel 2 Modellsynchronisation

2.1.1 Hintergrund zur Domäne

In produzierenden Unternehmen werden seit geraumer Zeit automatisierte
Fertigungssysteme eingesetzt, um die Fertigung mit einer hohen Qualität
und mit niedrigen Kosten durchzuführen. Durch die Globalisierung der Ab-
satzmärkte ist allerdings ein Käufermarkt1 entstanden, der immer kürzere
Innovationszyklen und eine steigende Variantenvielfalt erwartet. In dieser
Marktsituation ist es für den Erfolg eines Unternehmens wichtig, schnell auf
Marktänderungen reagieren und ein bestehendes Fertigungssystem schnell
und kostengünstig an neue Anforderungen anpassen zu können.

In der Industrie werden daher immer häufiger Flexible Fertigungssysteme
eingesetzt. Ein flexibles Fertigungssystem ist modular aufgebaut und besteht
typischerweise aus mehreren Werkzeugmaschinen, die über ein automati-
sches Materialflusssystem miteinander verbunden sind. Zusätzlich können in
das Fertigungssystem Handarbeitsplätze sowie Material- und Werkstückla-
ger integriert sein. Die Handarbeitsplätze sind für Aufgaben vorgesehen, die
nicht automatisiert durchgeführt werden können. Die Lager sorgen für eine
unterbrechungsfreie Versorgung der Produktion mit den benötigten Roh-,
Halbfertig- und Fertigteilen.

Ein Beispiel für ein solches flexibel automatisiertes Fertigungssystem ist
das an der Universität Paderborn im Labor für Rechnerintegrierte Produk-
tion aufgebaute Fertigungssystem zur Produktion von Flaschenöffnern. Der
experimentelle Aufbau ist schematisch in der linken Hälfte der Abbildung 2.1
dargestellt. Das Fertigungssystem besteht aus vier Stationen, die über ein
automatisiertes Materialflusssystem miteinander verbunden sind. Bei dem
verwendeten Materialflusssystem handelt es sich um ein schienengebunde-
nes Transportsystem mit selbst fahrenden Förderfahrzeugen, die Shuttles
genannt werden. Zu den Grundelementen des Transportsystems gehören un-
terschiedliche Schienen, Weichen und Stationen. Aus diesen Grundelementen
können – je nach Anwendung und räumlichen Gegebenheiten – verschiedene
Topologien aufgebaut werden. In unserem Beispiel besteht die Topologie des
Materialflusssystems aus einer Haupt- und einer Nebenschleife. Die Neben-
schleife kann über Weichen erreicht und wieder verlassen werden. Für den
Transport der Werkstücke zwischen den einzelnen Stationen werden mehrere
Shuttles eingesetzt, deren Umlaufrichtung im Materialflusssystem fest vor-
gegeben ist. Dadurch wird gegenläufiger Verkehr auf der Schiene verhindert.

Zur Steuerung der Anlage wird zwischen der Betriebsleitebene, der Pro-

1Als Käufermarkt wird eine Marktsituation bezeichnet, in der sich der Käufer in einer
verhandlungstaktisch günstigeren Position als der Verkäufer befindet.

16

2.1 Ein Beispiel

Abbildung 2.1: Schematische Darstellung des Fertigungssystems und der ver-
wendeten Steuerungstechnik

zessleitebene, der Steuerungsebene und der Feldebene unterschieden (vgl.
Abbildung 2.1, rechts). Die Betriebs- und Prozessleitebene werden häufig
zusammengefasst und einfach nur als Leitebene bezeichnet. Die Leitebene
ist für übergeordnete Aufgaben zuständig, die insbesondere die Produkti-
onsplanung betreffen. Hierzu werden herkömmliche PCs eingesetzt. Die
Steuerungs- und Feldebene dient zur Steuerung lokaler Komponenten wie
zum Beispiel Stationen und Werkzeugmaschinen. Hierzu haben sich Spei-
cherprogrammierbare Steuerungen (SPS) durchgesetzt, die ihre Popularität
insbesondere ihrer Robustheit, ihrer hohen Verfügbarkeit und ihren niedri-
gen Anschaffungskosten verdanken. Die SPSen interagieren mit den Kompo-
nenten der Anlage über Sensoren und Aktoren (auch Aktuatoren genannt).
Hierzu sind sie entweder über ein Actuator-Sensor-Interface (ASI) oder einen
Profibus mit den SPSen verbunden. Die Kommunikation der SPSen mit
den PCs der Leitebene findet über ein Multi-Point-Interface (MPI) statt.
Zur Programmierung einer SPS werden in der Praxis verschiedene Sprachen
eingesetzt, die in der herstellerunabhängigen SPS-Programmiernorm IEC
61131-3 standardisiert sind [IEC03].

Die Flexibilität eines solchen Fertigungssystems ergibt sich daraus, dass
die Werkstücke sowohl an den einzelnen Werkzeugmaschinen mit unter-
schiedlichen Bearbeitungsverfahren gefertigt werden können als auch da-
durch, dass die Reihenfolge der Bearbeitungsschritte durch das eingesetzte

17

Kapitel 2 Modellsynchronisation

Materialflusssystem flexibel gestaltet werden kann. Daher können auf einem
Fertigungssystem verschiedene Produkte kostengünstig auch in kleiner Serie
gefertigt werden.

Ein weiterer Vorteil eines solchen Fertigungssystems besteht darin, dass in
kürzester Zeit weitere Stationen hinzugefügt werden können. Beispielsweise
kann durch eine Erweiterung des Materialflusssystems und eine Mehrfach-
auslegung von Stationen das Produktionsvolumen gesteigert werden. Ebenso
kann durch die Integration neuer Werkzeugmaschinen die Variantenvielfalt
der Produkte erhöht werden. Durch diese Maßnahmen kann die Produktion
an die Bedürfnisse des Marktes schnell angepasst werden.

Dem gegenüber steht allerdings die erhöhte Komplexität bei der Entwick-
lung der Steuerungssoftware. Diese muss insbesondere bei einer Erweiterung
eines solchen Fertigungssystems an die neuen Gegebenheiten angepasst wer-
den. Damit keine langen Ausfallzeiten bei der Produktion entstehen, sollten
auch die nötigen Softwareanpassungen möglichst schnell realisiert werden
können. Als ein besonderes Problem hat sich dabei allerdings das Fehlen
einer durchgängigen Methodik zur Spezifikation der Software für derartige
Systeme erwiesen.

2.1.2 Das ISILEIT-Projekt

Im Isileit2-Projekt wurde zur Verbesserung der zuvor beschriebenen Situa-
tion eine durchgängige Methode zur Erstellung von Steuerungssoftware für
flexibel automatisierte Fertigungssysteme entwickelt. In diesem Abschnitt
stellen wir den entwickelten Ansatz kurz vor. Für eine ausführlichere Dar-
stellung verweisen wir auf [SWGE04] und [NSZ03].

Um eine vollständige Spezifikation der Steuerungssoftware für flexible Fer-
tigungssysteme zu ermöglichen, wurden verschiedene Modellierungstechni-
ken, wie die Specification and Description Language (SDL) [ITU96] und die
Unified Modeling Language (UML) [UML05], zu einer durchgängigen Spe-
zifikationssprache integriert. Das Ziel der Integration ist, eine präzise und
konsistente Modellierung auf einer hohen Abstraktionsebene zu ermöglichen
und daraus ausführbaren Code zu generieren. Auf der Basis dieser Kon-
zepte wurde eine Methode entwickelt, die eine Möglichkeit zur Simulation
der spezifizierten Steuerungssoftware bietet und dadurch eine Analyse in

2Isileit ist ein Akronym für ’Integrative Spezifikation von verteilten Leitsystemen der
flexibel automatisierten Fertigung’. Das Projekt wurde im Rahmen des DFG Schwer-
punktprogramms Software-Spezifikation – Integration von Techniken der Softwarespe-
zifikation für ingenieurwissenschaftliche Anwendungen (SPP 1064) durchgeführt.

18

2.1 Ein Beispiel

Erweiterung

der Anlage

Modell des

Systems
Entwurfs-

fehler

Spezifikation Modellierung

Validierung Verifikation

Inbetriebnahme

und Wartung

Generierung

SPS-Code

Java-Code

Topologie und Hardware-

komponenten

ASM

Modell

Entwurf des Systemmodells

Simulation Model-Checking

Beobachtung und

Visualisierung durch

AR-Werkzeug

Codegenerierung

von ausführbarem

Code

Erstellung der

Systemspezifikation

Zustand

Produktion

Steuerung der

Anlage

Abbildung 2.2: Überblick zur Isileit-Methode

den frühen Entwicklungsphasen ermöglicht. Die entwickelte Methode um-
fasst die Bereiche Spezifikation und Modellierung, Generierung, Verifikation
und Validierung sowie Inbetriebnahme und Wartung. Die Methode ist in
Abbildung 2.2 schematisch dargestellt.

Die Spezifikation wird in der Regel durch Ingenieure durchgeführt. Die
Ingenieure legen die zu verwendenden Hardwarekomponenten und deren Ei-
genschaften fest. Zur Spezifikation der Hardwarekomponenten werden SDL-
Blockdiagramme verwendet. Die Blockdiagramme beschreiben den hierar-
chischen Aufbau der eingesetzten Hardwarekomponenten sowie notwendige
Kommunikationskanäle, die zur Steuerung dieser Komponenten benötigt
werden. Zusätzlich legen die Ingenieure die Topologie, also den statischen
Aufbau, des Fertigungssystem fest. Die Topologie stellt die Grundlage für
eine spätere Simulation des Fertigungssystems dar.

Zur Modellierung eines Fertigungssystems wird das SDL-Blockdiagramm
in ein UML-Klassendiagramm überführt. Dazu werden Blöcke und Pro-
zesse des Blockdiagramms auf Klassen eines Klassendiagramms abgebil-
det; die Kommunikationskanäle im Blockdiagramm werden zu Assozia-
tionen zwischen korrespondierenden Klassen im Klassendiagramm. Das
Klassendiagramm wird anschließend durch das Hinzufügen von Attribu-
ten und Methoden sowie zusätzlichen Klassen und Assoziationen ver-

19

Kapitel 2 Modellsynchronisation

feinert. Zur Verhaltensmodellierung wird hingegen eine Kombination
aus UML-Zustandsdiagrammen, UML-Aktivitätsdiagrammen und UML-
Kollaborationsdiagrammen verwendet, deren Semantik im Rahmen des
Isileit-Projekts formal mit Graphgrammatiken spezifiziert wurde. Auf-
grund der durchgeführten Formalisierung entstehen sowohl für die Hard-
warekomponenten als auch für die Steuerungssoftware ausführbare Modelle,
die zur automatischen Codegenerierung und zur Verifikation und Validierung
des Systems verwendet werden können.

Die formale Verifikation erfolgt aufgrund der Komplexität des Gesamt-
systems (Modell der Hardware und der Steuerungssoftware) nur für sicher-
heitskritische Teile des Fertigungssystems. Als Grundlage für die Verifika-
tion wurden Abstract State Machines (ASM) und die Abstract State Machine
Language (AsmL) in Kombination mit einem auf Model-Checking Techniken
basierenden Verifikationsverfahren verwendet [KR04].

Die automatische Generierung von ausführbarem Code dient der Validie-
rung und der anschließenden Steuerung der Anlage. Zur Validierung werden
die Modelle der Hardwarekomponenten und der Steuerungssoftware mithilfe
eines Codegenerators in Java-Code übersetzt. Der zur Steuerung des realen
Fertigungssystems benötigte SPS-Code wird durch einen SPS-Codegenerator
erzeugt.

Zur Überprüfung des Gesamtsystems wurde die Validierung durch Simu-
lation in die entwickelte Methode aufgenommen. Zur Simulation wird der
generierte Java-Code kompiliert und ausgeführt. Die Visualisierung dieser
Simulation erfolgt durch eine angekoppelte 3D-Software. Dadurch wird eine
Überprüfung und Analyse der entwickelten Steuerungssoftware in einem sehr
frühen Stadium der Entwicklung ermöglicht, so dass Fehler noch vor der In-
betriebnahme der Anlage beseitigt werden können.

Zur Unterstützung der Inbetriebnahme und Wartung wurde eine Augmen-
ted Reality (AR) Anwendung entwickelt, die sowohl die Zustände der Steue-
rungssoftware als auch die Zustände der realen Anlage beobachtet und visua-
lisiert. Hierdurch können Wirkzusammenhänge leichter identifiziert werden,
so dass Fehler, die bei der Validierung nicht erkannt wurden, nachvollzogen
werden können. Durch diese Unterstützung verkürzt sich die Zeit für die
Inbetriebnahme und Wartung der Anlage [Eck07].

Nach der Inbetriebnahme der Anlage wird der generierte und während
der Inbetriebnahme getestete SPS-Code zur Steuerung der Produktion ein-
gesetzt. Flexible Fertigungssysteme zeichnen sich dadurch aus, dass sie
schnell und einfach an neue Anforderungen angepasst werden können. Bei
einer Änderung der Anlage muss allerdings häufig auch die Steuerungssoft-

20

2.1 Ein Beispiel

ware erweitert werden. Daher ist die Isileit-Methode auf ein iterativ-
inkrementelles Vorgehen bei der Entwicklung der Steuerungssoftware aus-
gelegt. Dies erklärt die Zyklen in Abbildung 2.2.

2.1.3 Synchronisationsbedarf

Bei der Isileit-Methode findet an mehreren Stellen eine automatische Über-
setzung statt. Zum Beispiel wird das SDL-Blockdiagramm in ein initiales
UML-Klassendiagramm übersetzt, um dann das Verhalten von Klassen, die
einen SDL-Prozess repräsentieren, mit einem Zustandsdiagramm zu spezi-
fizieren. Eine weitere Übersetzung erfolgt bei der Codegenerierung. Hier
wird das Modell der Steuerungssoftware zur Validierung durch Simulation in
Java-Code und zur Steuerung der realen Anlage in SPS-Code übersetzt.

Bei einer Anpassung des Fertigungssystems an neue Anforderungen, die
zum Beispiel den Einsatz neuer Hardwarekomponenten und/oder eine Ände-
rung der Topologie der Anlage erfordern, muss in der Regel die Spezifikation
des Fertigungssystems geändert und der Entwurf der Steuerungssoftware an
die neue Spezifikation angepasst werden. Eine manuelle Anpassung des Ent-
wurfs an die neue Spezifikation kann insbesondere bei großen und komple-
xen Fertigungssystemen sehr zeitaufwändig sein. Eine erneute, automatische
Übersetzung der Spezifikation in einen initialen Entwurf führt dazu, dass die
bereits durchgeführten Verfeinerungen im Entwurf überschrieben und da-
durch verloren gehen – sie müssen dann erneut modelliert werden. Dies
erhöht den benötigten Zeitaufwand und die mit der Anpassung des Ferti-
gungssystems verbundenen Entwicklungskosten für die Steuerungssoftware.

Diese Problematik existiert auch bei der Codegenerierung. Beispielsweise
wird der generierte Java-Code zur Visualisierung der Simulation an eine 3D-
Software angebunden. Der hierzu benötigte Code muss manuell zu dem ge-
nerierten Code hinzugefügt werden. Erfolgt nach durchgeführten Änderun-
gen im Entwurfsmodell eine erneute Codegenerierung, so werden die manuell
hinzugefügten Codeergänzungen durch den Generierungsvorgang überschrie-
ben. Die notwendigen Ergänzungen zur Anbindung der 3D-Software müssen
daher erneut manuell durchgeführt werden.

Um den zusätzlichen Aufwand, der beim Überschreiben manueller Ände-
rungen entsteht, zu vermeiden, wird ein Werkzeug benötigt, das statt einer
einfachen Übersetzung eine Synchronisation durchführt. Eine solche Syn-
chronisation muss sowohl zwischen zwei Modellen als auch zwischen einem
Modell und dem daraus generierten Code möglich sein.

21

Kapitel 2 Modellsynchronisation

2.1.4 Synchronisationsszenarien

In diesem Abschnitt betrachten wir einige typische Szenarien der Mo-
dellsynchronisation an einem Beispiel. Als Beispiel dient uns die Mo-
dellsynchronisation zwischen einem SDL-Blockdiagramm und einem UML-
Klassendiagramm aus dem Isileit-Projekt.3

Ein SDL-Blockdiagramm dient der hierarchischen Strukturierung eines Sy-
stems. Ein Block auf der obersten Ebene stellt das spezifizierte System dar.
Ein System muss mindestens einen Block enthalten, wobei jeder Block aus
weiteren Blöcken bestehen kann. Hierdurch ergibt sich die hierarchische
Strukturierung des Systems. Blöcke können Prozesse enthalten. Allerdings
darf ein Block nie Prozesse und Blöcke gleichzeitig enthalten. Die Kom-
munikation zwischen den Elementen findet mithilfe von Signalen statt, die
über Kanäle zwischen den Elementen eines Blockdiagramms ausgetauscht
werden.4

In Abbildung 2.3(a) ist ein SDL-Blockdiagramm dargestellt. Der oberste
Block ist das System. In der graphischen Darstellung wird ein System durch
das Schlüsselwort System, ein Block durch das Schlüsselwort Block und ein
Prozess durch das Schlüsselwort Process gekennzeichnet. Systeme, Blöcke
und Prozesse besitzen eindeutige Namen. In unserem Beispiel heißt das
System ProSys (als Abkürzung für

”
Production System“). Es enthält die

beiden Blöcke Station und Switch. Der Block Station ist weiter unterteilt
in die Blöcke Interlock und Stopper. Der Block Switch enthält den Prozess
Control.

Die Blöcke sind untereinander über die Kanäle c1, c2 und c3 verbunden.
Zusätzlich besteht eine Verbindung zwischen dem Block Switch und dem
darin enthaltenen Prozess Control über den Kanal c4. Kanäle sind nur
zwischen Blöcken derselben Ebene erlaubt (vgl. Kanal c1 und c3) oder
zwischen einem übergeordneten Block und seinen direkt darin enthaltenen
Blöcken oder Prozessen (vgl. Kanäle c2 und c4).

In Abbildung 2.3(b) ist das zum Blockdiagramm korrespondierende Klas-
sendiagramm dargestellt. Es besteht aus Klassen, die mit unterschiedlichen
Stereotypen annotiert sind, sowie Assoziationen zwischen diesen Klassen.

3Ein Beispiel zur Synchronisation von Modell und Code geben wir in Kapitel 4.
4In SDL wird zwischen verzögernden und verzögerungsfreien Kanälen unterschieden.

Außerdem kommunizieren Prozesse über sogenannte Signalrouten. Um unser Beispiel
jedoch möglichst einfach zu halten, verzichten wir an dieser Stelle auf diese Unter-
scheidung und sprechen lediglich von Kanälen – auch wenn damit in einigen Fällen
Signalrouten gemeint sind. Zusätzlich verzichten wir auf Signale an Kanälen.

22

2.1 Ein Beispiel

System ProSys

Block Station

Block Interlock

Block Stopper

c1

Block Switch

c2 c3 Process

Control

c4

(a) SDL-Blockdiagramm

c1

<<system>>

ProSys

<<block>>

Station

<<block>>

Interlock

<<block>>

Switch

<<block>>

Stopper
<<process>>

Control

c2

c3

c4

cd ProSys

(b) UML-Klassendiagramm

Abbildung 2.3: Zwei zueinander korrespondierende Modelle

Eine spezielle Assoziation ist die Komposition. Die Komposition wird durch
eine ausgefüllte Raute an einem Ende einer Assoziation dargestellt. Sie wird
verwendet, um die hierarchische Struktur eines Blockdiagramms im Klassen-
diagramm wiederzugeben.

Die Zuordnung der Elemente eines Blockdiagramms zu einem korrespon-
dierenden Klassendiagramm ist informell in Abbildung 2.4 dargestellt. In
jeder der Zuordnungen 1–6 sehen wir auf der linken Seite die Elemente ei-
nes Blockdiagramms und auf der rechten Seite die dazu korrespondierenden
Elemente eines Klassendiagramms. Die gestrichelt dargestellten Elemente
geben den Kontext der von der Zuordnung betroffenen Elemente an.

Ein System wird auf eine Klasse im Klassendiagramm abgebildet (Zuord-
nung 1). In der Zuordnung sind sowohl das System als auch die Klasse mit
einem X benannt. Dies bedeutet, dass beide Elemente nur dann zueinander
korrespondieren, wenn die Namen dieser Elemente identisch sind. Zusätzlich
ist die Klasse mit dem Stereotyp �system� gekennzeichnet. Diese Kenn-
zeichnung ist nötig, um eine Klasse, die ein System repräsentiert, von einer
Klasse zu unterscheiden, die einem Block oder Prozess zugeordnet wurde.

Die Abbildung eines Blocks auf eine Klasse im Klassendiagramm wird
in den nachfolgenden beiden Zuordnungen dokumentiert (Zuordnungen 2
und 3). Auch hier heißen sowohl der Block als auch die Klasse gleich. Im
Gegensatz zur vorherigen Zuordnung wird die Klasse jedoch jetzt mit dem
Stereotyp �block� annotiert. Ist der betrachtete Block in einem System
enthalten, so existiert im Klassendiagramm zwischen der Klasse, die dem
Block zugeordnet ist, und der Klasse, die das System repräsentiert, eine
Kompositionsbeziehung (Zuordnung 2). Ist der Block hingegen in einem

23

Kapitel 2 Modellsynchronisation

6

System X

Block Y

2

Block X

Block Y

3

<<system>>

X
System X

1

5

4 Block X

Process Y

SDL UML

c c

<<block>>

X

<<process>>

Y

<<block>>

X

<<block>>

Y

<<system>>

X

<<block>>

Y

c

Abbildung 2.4: Informelle Zuordnung von Elementen eines Blockdiagramms
zu Elementen eines Klassendiagramms

24

2.1 Ein Beispiel

übergeordneten Block enthalten, so wird die Komposition zu der Klasse her-
gestellt, die den übergeordneten Block repräsentiert (Zuordnung 3).

Einem Prozess wird ebenfalls eine Klasse im Klassendiagramm zugeordnet
(Zuordnung 4). Der Prozess wird hier zu einer Klasse in Beziehung gesetzt,
die mit dem Stereotyp �process� gekennzeichnet ist. Die hierarchische
Struktur wird – wie in den vorangegangen Zuordnungen – wieder durch eine
Komposition abgebildet. Allerdings kann ein Prozess nur in einem Block
enthalten sein, so dass hier keine Fallunterscheidung nötig ist.

Ein Kanal eines Blockdiagramms wird im Klassendiagramm auf eine As-
soziation abgebildet (Zuordnungen 5 und 6). Bei den Elementen, die durch
den Kanal verbunden werden, kann es sich um ein System sowie Blöcke und
Prozesse handeln. Ein Kanal zwischen diesen Elementen kann auf der glei-
chen Hierarchieebene existieren (vgl. Zuordnung 5) oder zwischen Elementen
benachbarter Hierarchieebenen (vgl. Zuordnung 6). Die zueinander korres-
pondierenden Kanäle und Assoziationen müssen identisch benannt sein.

Die Zuordnungen können verwendet werden, um ein Blockdiagramm in
ein korrespondierendes Klassendiagramm zu übersetzen. Nach Änderun-
gen in den Diagrammen können diese Zuordnungen herangezogen werden,
um zu überprüfen, ob die beiden Diagramme weiterhin zueinander synchron
sind. Zusätzlich kann aus den Zuordnungen abgeleitet werden, wie die Dia-
gramme verändert werden müssen, damit sie wieder synchron zueinander
sind. Hierfür schauen wir uns einige Synchronisationsszenarien an.

Initiale Synchronisationsszenarien

In unserem ersten Synchronisationsszenario gehen wir davon aus, dass ein
Blockdiagramm bereits existiert und nun mit einem leeren Klassendiagramm
synchronisiert wird. Diese initiale Synchronisation kann durch eine Modell-
transformation erreicht werden. Eine Modelltransformation erhält ein Quell-
modell als Eingabe und erstellt auf der Grundlage von definierten Regeln aus
diesem Modell ein Zielmodell. In unserem Beispiel sind die Regeln durch die
informellen Zuordnungen gegeben. Als Quellmodell dient uns das Blockdia-
gramm aus Abbildung 2.3(a). Das Ergebnis der initialen Modellsynchronisa-
tion durch Modelltransformation ist das uns bereits aus der Abbildung 2.3(b)
bekannte Klassendiagramm.

Ein solches Synchronisationsszenario ist auch in der umgekehrten Rich-
tung denkbar. In diesem Fall ist ein Klassendiagramm vorhanden, aber kein
dazu korrespondierendes Blockdiagramm. Diese Situation kann zum Bei-
spiel dann eintreten, wenn die Spezifikation des Blockdiagramms abhanden

25

Kapitel 2 Modellsynchronisation

gekommen und nicht mehr verfügbar ist. Das zum Klassendiagramm korre-
spondierende Blockdiagramm kann wieder durch eine Modelltransformation
erzeugt werden, wobei jetzt die Eingabe ein Klassendiagramm und das Er-
gebnis der Modelltransformation ein Blockdiagramm ist.

Ein weiteres Synchronisationsszenario ergibt sich, wenn beide Modelle ge-
geben sind und der Benutzer überprüfen möchte, ob die beiden Modelle
zueinander synchron sind. Dazu müssen die zueinander korrespondieren-
den Modellelemente identifiziert und in Beziehung gesetzt werden. Falls alle
Modellelemente zu Modellelementen des jeweils anderen Modells zugeordnet
werden konnten, sind die beiden Modelle zueinander synchron. Ansonsten
müssen die Modelle geeignet miteinander synchronisiert werden.

Einfache Synchronisationsszenarien

Nach einer initialen Modellsynchronisation können die Modelle von einem
Entwickler geändert werden. Der Entwickler kann neue Modellelemente hin-
zufügen, bestehende Modellelemente verändern oder sie gänzlich aus einem
Modell löschen. Eine Modellsynchronisation kann sofort nach jeder dieser
Änderungen erfolgen oder erst nach einer gewissen Anzahl von durchgeführ-
ten Änderungen. Außerdem kann der Entwickler die Änderungen an beiden
Modellen durchführen, ohne dass er zwischendurch die Modelle miteinander
synchronisiert.

Abbildung 2.5 zeigt auf der linken Seite die beiden Diagramme aus den
Abbildungen 2.3(a) und 2.3(b), nachdem der Entwickler diese Diagramme
geändert hat. Zur besseren Übersicht sind die Änderungen farblich unter-
legt und durch die Begriffe created, modified und deleted gekennzeich-
net. Hinzugefügte Modellelemente sind grün unterlegt und mit dem Begriff
created annotiert, gelöschte Elemente sind rot unterlegt und mit deleted

gekennzeichnet.5 Änderungen an den Modellelementen sind orange unterlegt
und zusätzlich durch das Wort modified gekennzeichnet.

In unserem Beispiel hat der Entwickler im Blockdiagramm den Namen
des Blocks Switch in Robot geändert. Darüber hinaus hat er einen neuen
Block Storage angelegt und den Block Stopper sowie den dazugehörigen
Kanal c1 gelöscht. Im Klassendiagramm hingegen hat er die beiden Klassen
Storage und Loading erstellt. Die Klasse Storage wurde mit dem Stereo-
typ�block� gekennzeichnet und über eine Kompositionsbeziehung mit der

5Die als gelöscht markierten Modellelemente in Abbildung 2.5 sind nur aus Präsen-
tationsgründen noch vorhanden – sie sind als gelöscht und nicht mehr existent zu
betrachten.

26

2.1 Ein Beispiel

M
o
d
e
ll
s
y
n
c
h
ro
n
is
a
ti
o
n

System ProSys

Block Station

Block Interlock

Block Stopper

c1

Block Robot

c2 c3 Process

Control

c4

deleted
Block Storage

created

modified

c1

<<system>>

ProSys

<<block>>

Station

<<block>>

Interlock

<<block>>

Switch

<<block>>

Stopper
<<process>>

Control

c2

c3

c4

cd ProSys

<<block>>

Storage
<<process>>

Loading

c5

created

Änderungen durch Entwickler
- Hinzufügen
- Löschen
- Modifizieren

<<system>>

ProSys

<<process>>

Control

c2

c3

c4

cd ProSys

<<block>>

Storage
<<process>>

Loading

c5

System ProSys

Block Station

Block Interlock

Block Robot

c2 c3 Process

Control

c4

Block Storage

Änderungen durch Synchronisation
- Hinzufügen
- Löschen
- Modifizieren

modified

<<block>>

Robot

deleted

c1 <<block>>

Stopper

<<block>>

Station

<<block>>

Interlock

Process

Loading

c5

created

Abbildung 2.5: Diagramme vor (links) und nach (rechts) der Modellsynchro-
nisation

27

Kapitel 2 Modellsynchronisation

Klasse ProSys verbunden. Die Klasse Loading wurde hingegen mit dem Ste-
reotypen �process� versehen und durch eine Kompositionsbeziehung mit
der Klasse Storage verbunden. Zusätzlich enthält das Klassendiagramm
eine neue Assoziation c5 zwischen den Klassen Storage und Loading.

Die Änderungen an den beiden Diagrammen führen dazu, dass die Dia-
gramme nicht mehr zueinander synchron sind. Die Namensänderung des
Blocks Switch in Robot wurde nur im Blockdiagramm vorgenommen –
die dazu korrespondierende Klasse heißt immer noch Switch. Die zum
gelöschten Block Stopper korrespondierende Klasse Stopper ist immer noch
im Klassendiagramm vorhanden. Dies gilt auch für die Assoziation c1. Zu
dem Block Storage hingegen wurde eine korrespondierende Klasse Storage

mit dem Stereotyp�block� und einer dazugehörigen Komposition erstellt.
Diese Änderung ist also konsistent in beiden Diagrammen erfolgt. Aller-
dings wurde im Klassendiagramm die Klasse Loading mit einem Stereotypen
�process� angelegt, zu der keine Entsprechung im Blockdiagramm vorhan-
den ist. Dies gilt auch für die Assoziation c5 zwischen den Klassen Storage

und Loading.
Die einfachste Möglichkeit, beide Diagramme miteinander zu synchronisie-

ren besteht darin, alle inkonsistent durchgeführten Änderungen rückgängig
zu machen. Dadurch wären die Diagramme bezüglich der Korrespondenz-
regeln wieder zueinander synchron. Diese Art der Modellsynchronisation
entspricht allerdings nicht der Erwartungshaltung eines Entwicklers – ins-
besondere weil dadurch die von ihm gemachten Änderungen verloren gehen
würden. Außerdem würde dies bedeuten, dass einmal erstellte und synchro-
nisierte Modelle nur noch konsistent zueinander erweitert werden könnten,
was eine erhebliche Einschränkung des Entwicklers darstellen würde.

Zueinander synchrone Diagramme erhalten wir auch, wenn wir – wie im in-
itialen Synchronisationsszenario – eine Modelltransformation einsetzen. Al-
lerdings können in diesem Fall Änderungen in einem der Diagramme verloren
gehen. Transformieren wir zum Beispiel das Blockdiagramm in ein Klassen-
diagramm, so sind nach der Modelltransformation die Klasse Loading und
die Assoziation c5 nicht mehr im Klassendiagramm vorhanden. Überset-
zen wir hingegen das Klassendiagramm in ein Blockdiagramm, so wird die
Namensänderung des Blocks Switch in Robot und die Löschung des Blocks
Stopper nicht berücksichtigt. Sollen Änderungen in beiden Diagrammen
berücksichtigt werden, so ist eine Modelltransformation ungeeignet.

Um Änderungen in beiden Diagrammen zu berücksichtigen, wird eine in-
krementelle Modellsynchronisation benötigt, die geänderte Modellelemente
in beide Richtungen miteinander abgleicht. Dabei werden die Inkonsisten-

28

2.1 Ein Beispiel

zen zwischen den Diagrammen durch die Modellsynchronisation automatisch
aufgelöst, und zwar so, dass möglichst keine Änderungen eines Entwicklers
rückgängig gemacht werden müssen. Hierzu wird in unserem Beispiel zu-
erst im Klassendiagramm die Klasse Stopper, die dazugehörige Komposition
und die Assoziation c1 entfernt. Anschließend erfolgt eine Umbenennung
der Klasse Switch in Robot. Im Blockdiagramm ergänzen wir den Block
Storage um den Prozess Loading und einen Kanal c5 zwischen diesen Ele-
menten. Nach diesen Änderungen sind beide Diagramme wieder synchron
zueinander. Das Ergebnis der Modellsynchronisation ist auf der rechten Seite
der Abbildung 2.5 zu sehen, wobei auch hier die Änderungen wieder farb-
lich unterlegt sind – diesmal handelt es sich jedoch um Änderungen, die im
Rahmen der automatischen Modellsynchronisation durchgeführt wurden.

Problematische Synchronisationsszenarien

Im vorangegangenen Abschnitt konnten wir beide Diagramme ohne weitere
Probleme miteinander synchronisieren. Die Modellsynchronisation ist aber
nicht immer so problemlos möglich. In einigen Fällen bieten sich meh-
rere Möglichkeiten an, wie die Modelle miteinander synchronisiert werden
können. Einige dieser Synchronisationsszenarien stellen wir nun vor.

In unserem Beispiel wird ein SDL-Blockdiagramm in ein initiales UML-
Klassendiagramm mit dem Ziel übersetzt, das UML-Klassendiagramm an-
schließend zu verfeinern. Bei diesen Verfeinerungen kann der Entwickler
zu bestehenden Klassen verschiedene Attribute und Methoden hinzufügen,
aber auch neue Klassen und Assoziationen zwischen den Klassen im UML-
Klassendiagramm erstellen.

Eine problematische Situation entsteht zum Beispiel, wenn in einer zu ei-
nem Block korrespondierenden Klasse zuerst einige Attribute hinzugefügt
werden und anschließend der Block in einen anderen Block innerhalb des
Blockdiagramms verschoben wird. In dieser Situation könnte die Verschie-
bung so interpretiert werden, dass ein alter Block gelöscht und ein neuer
Block innerhalb eines anderen Blocks erstellt wurde. Bei dieser Interpreta-
tion könnte eine Modellsynchronisation – wie in dem vorangegangenen Ab-
schnitt beschrieben – so vorgehen, dass sie die zum gelöschten Block korre-
spondierende Klasse löscht und an der zur neuen Position im Blockdiagramm
korrespondierenden Stelle im Klassendiagramm eine neue Klasse erstellt. In
diesem Fall gehen allerdings die manuell hinzugefügten Attribute der alten
Klasse verloren.

Ein weiteres problematisches Synchronisationsszenario ergibt sich, wenn

29

Kapitel 2 Modellsynchronisation

der Entwickler im Klassendiagramm eine neue Klasse erzeugt. Falls die
Klasse mit einem Stereotyp gekennzeichnet ist und eine Kompositionsbe-
ziehung zu einer anderen Klasse besitzt, die ein System oder einen Block
repräsentiert, können wir – wie im Szenario des vorangegangenen Abschnitts
dargestellt – die beiden Diagramme miteinander synchronisieren, indem wir
ein entsprechendes Element im Blockdiagramm erzeugen. Hat der Entwick-
ler jedoch eine Klasse ohne Stereotyp und Kompositionsbeziehung erstellt, so
müsste diese Klasse vor einer Modellsynchronisation um die fehlenden Mo-
dellelemente ergänzt werden. Ist im SDL-Blockdiagramm aber kein Block
oder Prozess mit identischem Namen vorhanden, so wissen wir nicht, ob
diese Klasse mit einem�block� oder�process� Stereotyp vervollständigt
werden soll. Zusätzlich ergibt sich das Problem, dass nicht klar ist, zu wel-
cher Klasse die Kompositionsbeziehung erstellt werden soll. Diese Entschei-
dungen könnten durch Standardvorgaben festgelegt werden. Beispielsweise
könnte eine solche Klasse immer um einen �block� Stereotyp ergänzt und
eine Kompositionsbeziehung zum System erstellt werden. Allerdings könnte
es sich bei einer Klasse ohne Stereotyp und Kompositionsbeziehung ebenso
um eine Hilfsklasse handeln, die zwar im Entwurf benötigt wird aber nicht
mit dem Blockdiagramm synchronisiert werden soll. In diesem Fall sollte
diese Klasse von einer Synchronisation ausgeschlossen werden und die Mo-
dellsynchronisation nur partiell, das heißt, nur für einen Teil des Klassendia-
gramms, durchgeführt werden.

Eine Ergänzung gestaltet sich hingegen einfacher, wenn zu einer neu er-
stellten Klasse ein bereits korrespondierendes Element im Blockdiagramm
mit einem identischen Namen existiert. In diesem Fall wissen wir, um wel-
chen Stereotyp die Klasse erweitert und zu welchem Element die Komposi-
tionsbeziehung hergestellt werden muss. Allerdings ist hierbei zu beachten,
dass die neu erstellte Klasse nicht zwangsläufig in der Absicht erstellt wurde,
ein Element des Blockdiagramms zu repräsentieren. Hier kann ein einfacher
Namenskonflikt zwischen dem Block und der Klasse vorliegen, der zum Bei-
spiel durch eine Umbenennung eines der beiden Elemente aufgelöst werden
kann. Auch hier kann es besser sein, die Synchronisation nur partiell durch-
zuführen.

Einige weitere problematische Synchronisationsszenarien ergeben sich,
wenn zum Beispiel Assoziationen zwischen Klassen erstellt werden, die dazu
korrespondierenden Kanäle aber über die Hierarchieebenen des Blockdia-
gramms gehen würden. Sollen die beiden Diagramme immer vollständig
zueinander synchron sein, so müsste eine solche Assoziation gelöscht wer-
den. Häufig wird so eine Assoziation im Klassendiagramm benötigt, ohne

30

2.2 Begriffe und Definitionen

dass sie mit dem Blockdiagramm synchronisiert werden soll. Daher ist es
auch hier sinnvoll, die Assoziation von einer Synchronisation auszuschließen
und die Modellsynchronisation nur partiell durchzuführen.

Zu Konflikten kommt es auch, wenn zusätzliche Kompositionsbeziehun-
gen zwischen Klassen im Klassendiagramm erstellt werden, die nicht im
Blockdiagramm abgebildet werden können. Ein Beispiel hierfür ist, wenn
eine Klasse, die einen Block repräsentiert, über eine Komposition mit einer
Klasse verbunden ist, die einen Prozess darstellt und einer weiteren Klasse,
die einen Block repräsentiert. Diese Situation ist im Blockdiagramm nicht
zulässig, da ein Block entweder nur Blöcke oder nur Prozesse enthalten darf,
aber niemals beide gleichzeitig.

Die Ursache für diese Art von Problemen ist, dass die Modelle im Regel-
fall nicht bijektiv aufeinander abbildbar sind. So ist in unserem Beispiel eine
isomorphe Abbildung zwischen einem Block- und einem Klassendiagramm
nicht möglich. Allerdings kann – wie bereits zu Anfang dieses Abschnitts
erwähnt wurde – eine vollständige Synchronisation zwischen zwei Model-
len immer dadurch erzwungen werden, dass die Modellelemente, die keine
Entsprechung in dem jeweils anderen Modell haben, oder die die Ursache
für Konflikte darstellen, einfach gelöscht werden. Aus Benutzersicht ist die-
ser Eingriff jedoch nicht immer vorteilhaft und erwünscht. Hier ist es häufig
besser, zueinander in Konflikt stehende Modellelemente und Modellelemente,
die nicht zugeordnet werden konnten, dem Benutzer zu präsentieren und ihm
die Entscheidung zu überlassen, wie mit diesen Elementen weiter verfahren
werden soll. Diese partielle Modellsynchronisation ermöglicht ein

”
Leben

mit Inkonsistenzen“ [Bal91, EC01].

2.2 Begriffe und Definitionen

Diese Arbeit beschäftigt sich mit dem Thema der
”
Modellsynchronisa-

tion“. Obwohl dieser Begriff in der Literatur häufig verwendet wird
[GSCK04, LTM+04, IK04a, KC05a, XLH+07], existieren bislang noch keine
standardisierten Begriffsdefinitionen, wie sie beispielsweise für viele Begriffe
der Softwaretechnik in der Norm [IEE90] zu finden sind. In diesem Abschnitt
wird daher zunächst geklärt, was wir in dieser Arbeit unter diesem Begriff
verstehen. Bevor wir eine Definition für die Modellsynchronisation angeben,
klären wir zunächst die allgemeine Bedeutung sowie die Verwendung des
Begriffs

”
Synchronisation“ im Kontext der Informatik.

31

Kapitel 2 Modellsynchronisation

2.2.1 Bedeutung der Modellsynchronisation

Das Wort
”
Modellsynchronisation“ setzt sich aus dem Wort

”
Modell“ und

”
Synchronisation“ zusammen. Während wir unter einem Modell eine ab-

strakte Beschreibung eines Systems verstehen, ist die allgemeine Bedeutung
des Wortes

”
Synchronisation“ nicht sofort ersichtlich.

Synchronisation im Allgemeinen Der Wortstamm des Wortes
”
Synchro-

nisation“ lautet
”
synchron“ und ist auf die beiden griechischen Begriffe

”
sýn“ (zusammen mit, gemeinsam, gleichartig) und

”
chrónos“ (Zeit) zurück-

zuführen. Im Fremdwörterbuch der Dudenredaktion [Dud06] wird die Be-
deutung des Wortes

”
synchron“ mit

”
gleichzeitig“ oder

”
mit gleicher Ge-

schwindigkeit [ab]laufend“ angegeben.

Synchronisation im Kontext der Informatik Im Duden der Informatik
[CS06] wird der Begriff der

”
Synchronisation“ (oder auch

”
Synchronisie-

rung“) mit
”
Abstimmung nebenläufiger Vorgänge aufeinander. [...]“ erklärt.

In der Informatik wird der Begriff unter anderem im Zusammenhang mit
(verteilten) Betriebssystemen und Datenbanken verwendet. Zu den Syn-
chronisationsproblemen in diesen Bereichen zählen beispielsweise die Uhren-
synchronisation, die Prozesssynchronisation und die Datensynchronisation
[Tan95, KE96].

Bei der Uhrensynchronisation geht es darum, logische und/oder physika-
lische Uhren untereinander abzugleichen. Insbesondere in Echtzeitsystemen,
die beispielsweise im Auto zur Steuerung eines Antiblockiersystems oder ei-
nes Airbags eingesetzt werden, spielt Zeit eine besonders große Rolle. Un-
genauigkeiten bei den Taktfrequenzen der Uhren können zu Abweichungen
der Uhren sowohl von der realen Zeit als auch zu Abweichungen der Uh-
ren untereinander führen und damit die fehlerfreie Funktion eines solchen
Systems gefährden. Diese Abweichungen werden durch die Uhrensynchroni-
sation wieder ausgeglichen.

Die Prozesssynchronisation wird zur Koordination zeitlicher Abläufe von
Prozessen eingesetzt. Die zeitliche Abstimmung nebenläufiger Prozesse
dient beispielsweise der Interprozesskommunikation, also dem Austausch von
Nachrichten zwischen den Prozessen. Als Prozesssynchronisation wird aber
auch die Koordination von Zugriffen auf ein gemeinsam genutztes Betriebs-
mittel, wie zum Beispiel eine Datei, bezeichnet. Hierbei gilt es, einen gleich-
zeitigen Zugriff auf das Betriebsmittel zu verhindern, beispielsweise um die
Konsistenz einer Datei sicherzustellen. Ein bekanntes Verfahren hierfür ist

32

2.2 Begriffe und Definitionen

der wechselseitige Ausschluss, bei dem eine Zugriffsreihenfolge für die kon-
kurrierenden Prozesse festgelegt wird.

Bei der Datensynchronisation hingegen geht es darum, Daten, die zum Bei-
spiel durch Replikation6 auf verschiedenen, voneinander unabhängigen Sy-
stemen hinterlegt und dort modifiziert wurden, wieder miteinander abzuglei-
chen [SS05]. Die Datensynchronisation kann auf der Datei-, der Datenbank-
oder der Applikationsebene stattfinden. Ein Beispiel für die Datensynchroni-
sation auf der Applikationsebene ist eine Anwendung zur Verwaltung eines
Terminkalenders. Hier möchte man häufig die Termine eines stationären
Geräts auf einem mobilen Endgerät verfügbar machen, damit der Benut-
zer auf dem mobilen Gerät einen lokalen Zugriff auf seine Termindaten hat.
Werden die Daten auf dem mobilen und/oder stationären Endgerät modifi-
ziert, entstehen unterschiedliche Datenbestände. Bei der Datensynchronisa-
tion werden diese Daten zu einem bestimmten Zeitpunkt wieder miteinan-
der abgeglichen, so dass die Daten auf den verschiedenen Systemen wieder
identisch sind. Die Datensynchronisation wird daher häufig auch als Daten-
abgleich bezeichnet.

An den drei hier vorgestellten Synchronisationsaufgaben ist ersichtlich,
dass mit

”
Synchronisation“ in den unterschiedlichen Bereichen unterschiedli-

che Ziele verfolgt werden, die nicht immer mit den oben genannten Definitio-
nen übereinstimmen. Während beispielsweise die Uhrensynchronisation der
ursprünglichen Definition von

”
Synchronisation“ ziemlich genau entspricht

und die Uhren tatsächlich
”
gleichzeitig“ voranschreiten beziehungsweise

”
mit

gleicher Geschwindigkeit laufen“ sollen, hat die Prozesssynchronisation mit

”
gleichzeitig“ wenig gemeinsam. Hier geht es sogar darum, eine bestimmte

Reihenfolge festzulegen um einen
”
gleichzeitigen“ Zugriff zu verhindern. Hier

passt eher die Definition aus [CS06], in der die Synchronisation eingesetzt
wird, um eine

”
Abstimmung nebenläufiger Vorgänge aufeinander“ zu errei-

chen. Die vorgestellten Definitionen treffen jedoch am wenigsten auf die
Datensynchronisation zu. Eine treffendere Definition liefert [Wik07]:

Data synchronization is the process of establishing consistency
among data on remote sources and the continuous harmonization
of the data over time. [...]

Letztlich sind Modelle auch Daten, so dass die Modellsynchronisation am
ehesten mit der Datensynchronisation vergleichbar ist. Daher wird die Mo-
dellsynchronisation umgangssprachlich auch als Modellabgleich bezeichnet.

6Replikation bezeichnet in der Datenverarbeitung die mehrfache Speicherung von Daten
an unterschiedlichen Orten.

33

Kapitel 2 Modellsynchronisation

Allerdings ist der Konsistenzbegriff der Datensynchronisation nicht so ein-
fach auf die Modellsynchronisation übertragbar. Bei der Datensynchronisa-
tion sind die Daten konsistent, wenn sie gleich sind. Bei der Modellsynchro-
nisation müssen die Modelle, die miteinander

”
abgeglichen“ werden, weder

vor noch nach der Synchronisation tatsächlich gleich sein.7 Das liegt daran,
dass in den meisten Fällen bereits die zugrundeliegenden Formalismen der
zu synchronisierenden Modelle voneinander verschieden sind.8 Daher un-
tersuchen wir zunächst, was Konsistenz im Zusammenhang mit Modellen
bedeutet.

2.2.2 Zusammenhang zwischen Modellkonsistenz und
Modellsynchronisation

Der Begriff der Konsistenz
”
[. . .] wird in verschiedenen Teilgebieten der In-

formatik unterschiedlich benutzt. Man bezeichnet Aussagen, Formeln, Mo-
delle oder Systeme als konsistent, wenn sie ’in sich stimmig’ sind, wenn sie
also keinen Unsinn ergeben, keine Widersprüche enthalten, mit der Realität
im Einklang stehen, bzw. keine undefinierten Zustände annehmen können.
[. . .]“ [CS06]. In der Logik bedeutet Konsistenz beispielsweise, dass ein zu-
grundeliegendes axiomatische System wiederspruchsfrei ist. Im Zusammen-
hang mit Datenbanken werden Daten als konsistent angesehen, wenn zuvor
definierte Konsistenzbedingungen (engl. constraints) eingehalten werden.

In der modellbasierten Softwareentwicklung sind Modelle konsistent, wenn
der Informationsgehalt der Modelle bezüglich des modellierten Softwaresy-
stems keine Widersprüche enthält. Dementsprechend wird ein Widerspruch
als Inkonsistenz und die Modelle als inkonsistent bezeichnet. Wird die Kon-
sistenz verletzt, so liegt ein Problem vor, das häufig auch als Konsistenzpro-
blem bezeichnet wird.

In der modellbasierten Softwareentwicklung existieren verschiedene Ar-
ten von Konsistenzproblemen, wie zum Beispiel syntaktische und semanti-
sche Konsistenzprobleme, Konsistenzprobleme innerhalb eines einzigen Mo-
dells sowie Konsistenzprobleme, die zwischen mehreren Modellen auftreten
können [EKHG01]. Für viele dieser Konsistenzprobleme existieren in der

7Allerdings ist eine Modellsynchronisation zur Herstellung identischer Modelle auch
denkbar, zum Beispiel im Kontext von Versions- und Konfigurationssystemen.

8Dies ist nicht zwangsläufig so. Ein Beispiel, in dem der zugrunde liegende Formalismus
für beide zu synchronisierenden Modelle gleich ist und nur die Modelle sich unterschei-
den, findet sich in der Diplomarbeit von Patrick Könemann [Kön07].

34

2.2 Begriffe und Definitionen

Literatur verschiedene Ansätze zur Überprüfung und Erhaltung der Konsi-
stenz. Die meisten dieser Ansätze betrachten aber nur ein Konsistenzpro-
blem und bieten nur hierfür eine Lösung an, d.h., es existiert weder eine
formale und allgemein gültige Definition der Modellkonsistenz, noch exis-
tiert ein Ansatz, der alle Konsistenzprobleme löst [Küs04a]. Auch in dieser
Arbeit werden wir weder eine Definition noch einen allgemeingültigen An-
satz zur Überprüfung und Gewährleistung der Modellkonsistenz angeben. In
dieser Arbeit gehen wir vielmehr von der Annahme aus, dass die Modelle für
sich betrachtet konsistent sind und fokussieren lediglich auf die Konsistenz
zwischen mehreren Modellen.

Eine notwendige Bedingung zur Entstehung von Inkonsistenzen zwischen
Modellen ist, dass die Modelle sich in ihrem Informationsgehalt überlappen.
Die Überlappungen setzen die Modellelemente zueinander in Beziehung. Im
Folgenden nennen wir diese Beziehung Korrespondenzbeziehung und eine Re-
gel, die beschreibt, welche Modellelemente und unter welchen Bedingungen
diese Modellelemente zueinander korrespondieren, bezeichnen wir als Korres-
pondenzregel. Eine Korrespondenzregeln beschreibt, welche Modellelemente
und unter welchen Bedingungen diese Modellelemente zueinander konsistent
sind, d. h., wir betrachten zwei Modelle bezüglich der spezifizierten Korres-
pondenzregeln als zueinander konsistent, wenn die Korrespondenzbeziehun-
gen eingehalten werden.

Während der Bearbeitung der Modelle können die Korrespondenzbezie-
hungen verletzt und die Modelle zueinander inkonsistent werden. In einigen
Fällen lässt sich eine verletzte Korrespondenzbeziehung automatisch wieder-
herstellen, so dass die damit verbundene Inkonsistenz zwischen den Modellen
behoben wird. Eine solche automatische Wiederherstellung der Konsistenz
zwischen den Modellen nennen wir Modellsynchronisation.

2.2.3 Definition und Aufgabe der Modellsynchronisation

Auf Grundlage der zuvor durchgeführten Betrachtungen können wir die Mo-
dellsynchronisation wie folgt definieren:

Definition 2.1 Die Modellsynchronisation beschäftigt sich
mit der Erkennung und der Aufrechterhaltung von Korrespon-
denzbeziehungen zwischen Modellen. Die Grundlage der Modell-
synchronisation bilden Korrespondenzregeln, mit denen eine Kor-
respondenzbeziehung formal beschrieben wird.

35

Kapitel 2 Modellsynchronisation

Die Modellsynchronisation heißt inkrementell, wenn nur die
von einer Änderung tatsächlich betroffenen Modellelemente be-
trachtet werden müssen, um sie miteinander zu synchronisieren.

Die Modellsynchronisation nennen wir partiell, wenn nicht das
gesamte Modell sondern nur ein Teil eines Modells synchroni-
siert wird, d. h., wenn Teile eines Modells von vornherein von
der Synchronisation ausgeschlossen werden.

Das Ziel der Modellsynchronisation besteht darin, zueinander in Bezie-
hung stehende Modelle während der Entwicklung miteinander abzugleichen,
so dass sie bezüglich der spezifizierten Korrespondenzregeln zueinander kon-
sistent bleiben. Aufgrund der Tatsache, dass heutige Softwareentwicklungs-
prozesse in den meisten Fällen ein inkrementell-iteratives Vorgehensmodell
aufweisen, ist es nur natürlich, dass auch Modelle oft geändert werden. Ände-
rungen an den Modellen können aber dazu führen, dass die Korrespondenz-
beziehungen zwischen den Modellen verletzt werden. Die Aufgabe der Mo-
dellsynchronisation ist daher die Erkennung und die Aufrechterhaltung der
zugrunde liegenden Korrespondenzbeziehungen.

Bei der Erkennung der Korrespondenzbeziehungen geht es in erster Li-
nie darum, zueinander korrespondierende Modellelemente auf der Grundlage
von Korrespondenzregeln zu identifizieren und die durch die Korrespondenz-
regeln spezifizierten Bedingungen zu überprüfen. Nachdem zueinander in
Beziehung stehende Modellelemente identifiziert worden sind, müssen diese
Korrespondenzbeziehungen aufrecht erhalten werden. Ziel der Aufrechter-
haltung ist es, erkannte Inkonsistenzen bezüglich der Korrespondenzregeln
durch geeignete Maßnahmen zu beseitigen, so dass die Modelle bezüglich der
definierten Korrespondenzregeln wieder zueinander konsistent sind.

Die Modellsynchronisation kann manuell oder automatisiert durchgeführt
werden. Bei großen Modellen ist eine manuelle Synchronisation der Mo-
delle sehr zeitaufwändig. Daher ist eine automatische Modellsynchronisation
durch geeignete Werkzeuge vorzuziehen. Die automatische Modellsynchro-
nisation kann batch-artig, das heißt, vollständig in einem Schritt, oder in-
krementell durchgeführt werden. Eine vollständige Modellsynchronisation in
einem Schritt kann beispielsweise durch Modelltransformationstechniken rea-
lisiert werden. Wie im vorangegangenen Abschnitt dargelegt wurde, dürfen
dabei die Modelle nicht gleichzeitig geändert werden. Außerdem müssen die
Modelle bijektiv aufeinander abbildbar sein. Dies ist jedoch selten gegeben.
Daher sollten zur Modellsynchronisation Techniken eingesetzt werden, die
Modelle sowohl inkrementell als auch partiell synchronisieren können.

36

2.3 Kriterien der Modellsynchronisation

Die hier angegebene Definition macht keine Aussage darüber, wie die Kor-
respondenzregeln formuliert werden oder wie die Modellsynchronisation tech-
nisch umgesetzt wird. Diese sehr allgemeine Form der Definition wurde be-
wusst so gewählt, um die Auswahl der Spezifikationstechniken für Korrespon-
denzregeln und der verwendeten Algorithmen nicht unnötig einzuschränken.

2.3 Kriterien der Modellsynchronisation

In diesem Abschnitt stellen wir einige allgemeine Kriterien vor, die zur Klas-
sifikation und Einordnung verschiedener Synchronisationsansätze verwendet
werden können. Das Ziel, das wir damit verfolgen, ist einerseits dem Leser
einen Überblick über charakteristische Merkmale einer Modellsynchronisa-
tion zu verschaffen. Andererseits verwenden wir diese Kriterien, um unseren
eigenen Ansatz im nächsten Abschnitt zu klassifizieren.

Ähnliche Kriterien sind zur Klassifikation von Ansätzen zur Modell-
transformation aufgestellt [CH03, MG05] und später aktualisiert worden
[CH06, MG06]. Einige dieser Kriterien wurden bereits in anderen Beiträgen
zur Modellsynchronisation aufgegriffen [IK04b, KC05a, AC07].

2.3.1 Synchronisationsaufgabe und -umgebung

Eine Modellsynchronisation kann aufgrund struktureller Eigenschaften, die
durch eine spezielle Synchronisationsaufgabe und Synchronisationsumge-
bung festgelegt sind, charakterisiert werden. Hierzu zählen die Anzahl und
Topologie der Modelle, die Synchronisationsrichtung, die Kardinalität von
Korrespondenzbeziehungen, die zugrundeliegende Modellrepräsentation und
Technologie sowie die Ebene der Synchronisation.

Anzahl und Topologie der Modelle Eine erste Unterscheidung der Modell-
synchronisation kann anhand der Anzahl der zu synchronisierenden Modelle
vorgenommen werden. Hier können wir unterscheiden, ob eine Synchroni-
sation zwischen genau zwei Modellen stattfindet oder ob weitere Modelle
an der Synchronisation beteiligt sind. Werden mehrere Modelle miteinander
synchronisiert, so kann die Topologie, das heißt, die Anordnung der Modelle,
zur Charakterisierung herangezogen werden. In der Abbildung 2.6 sind drei
Beispiele für mögliche Synchronisationsbeziehungen zwischen Modellen dar-
gestellt. Das erste Beispiel zeigt eine Modellsynchronisation zwischen genau

37

Kapitel 2 Modellsynchronisation

a

b1

b2

b3

bn

synca-b1

synca-b2

synca-b3

synca-bn

a

b

synca-b

a

b

synca-b

syncb-c

c

syncc-b

Binäre Synchronisation n-äre Synchronisation (mit n > 2)

Abbildung 2.6: Beispiele für verschiedene Topologien

zwei Modellen. Im zweiten Beispiel sind die Modelle sternförmig um ein Mo-
dell angeordnet, das seine Änderungen an alle anderen Modelle weitergibt
und somit diese Modelle zu sich selbst synchronisiert. Das dritte Beispiel
zeigt eine zyklische Anordnung der Modelle, in der jedes Modell seine Ände-
rungen an sein nachfolgendes Modell weitergibt.

Natürlich sind weitere Topologien denkbar. Hier kann allgemein unter-
schieden werden, ob ein Ansatz zur Modellsynchronisation nur binäre oder
auch n-äre Modellsynchronisationen (mit n > 2) unterstützt. Falls ein An-
satz eine n-äre Synchronisation unterstützt, ist weiterhin zu unterscheiden,
ob er mit Zyklen umgehen kann oder nur für eine Modellsynchronisation
ohne Zyklen geeignet ist.9

Synchronisationsrichtung Ein weiteres Unterscheidungskriterium ist die
Richtung der Synchronisation. Grundsätzlich können wir zwischen einer
unidirektionalen und einer bidirektionalen Modellsynchronisation unterschei-
den. Bei der unidirektionalen Synchronisation werden Änderungen in einem
Quellmodell beobachtet und an ein Zielmodell weitergeleitet. Dabei wird
während der Synchronisation das Quellmodell als nicht änderbar angesehen
und Änderungen nur im Zielmodell zugelassen. Bei einer bidirektionalen
Modellsynchronisation werden im Rahmen der Synchronisation Änderungen
in beiden Modellen berücksichtigt und in beide Richtungen propagiert.

9Bei einer zyklischen Anordnung der Modelle kann es vorkommen, dass eine Modell-
synchronisation wiederholt ausgeführt werden muss, um die Modelle miteinander zu
synchronisieren. Dabei kann es passieren, dass ein solcher Zyklus bzw. Kreislauf
nicht terminiert, sofern der zugrundeliegende Ansatz keine speziellen Maßnahmen zur
Erkennung und Auflösung solcher Zyklen bereitstellt.

38

2.3 Kriterien der Modellsynchronisation

Kardinalität von Korrespondenzbeziehungen Eine Modellsynchronisa-
tion findet zwischen zueinander korrespondierenden Elementen der Modelle
statt. Bei diesen Korrespondenzbeziehungen kann es sich um 1-zu-1, 1-zu-n,
oder n-zu-m Beziehungen handeln. Ein Beispiel für 1-zu-1 Beziehungen fin-
det sich in vielen UML-Modellierungswerkzeugen, die eine Modellsynchro-
nisation zwischen einem UML-Klassendiagramm und dazugehörigen Java-
Code anbieten. Ein Beispiel für eine 1-zu-n Modellsynchronisation wird in
[KC05a] vorgestellt, während zum Beispiel in [KW07] auch n-zu-m Bezie-
hungen verwendet werden.

Modellrepräsentation und Technologie Eine weitere Charakterisierung
kann auf Grundlage der Modellrepräsentation und der Technologie vorge-
nommen werden. Zunächst können wir unterscheiden, ob die zu synchroni-
sierenden Modelle durch einen gemeinsamen Formalismus beschrieben sind
oder eine Synchronisation zwischen Modellen stattfindet, denen unterschied-
liche Formalismen zugrunde liegen.

Zusätzlich können sich Modellsynchronisationsaufgaben darin unterschei-
den, dass nur Modelle synchronisiert werden, denen eine bestimmte Struktur
zugrunde liegt. Zum Beispiel ist es deutlich einfacher, baum-artige, hierar-
chische Datenstrukturen als graph-basierte Datenstrukturen zu synchroni-
sieren.

Schließlich ist noch zu unterscheiden, ob eine Modellsynchronisation nur
mit Modellen umgehen kann, die auf einer einzigen und fest vorgegebenen
Technologie basieren, oder auch eine Synchronisation zwischen Modellen ver-
schiedener Technologien möglich ist. Die Überbrückung verschiedener Tech-
nologien erlaubt die Synchronisation zwischen Modellen, die mit unterschied-
lichen Werkzeugen erzeugt und bearbeitet werden.

Ebene der Synchronisation Ein grundsätzliches Kriterium ist die Synchro-
nisationsebene. Hier kann zwischen einer horizontalen und einer vertikalen
Modellsynchronisation unterschieden werden.10 Mit einer horizontalen Mo-
dellsynchronisation bezeichnet man eine Synchronisation zwischen Modellen,
die sich auf derselben Abstraktionsebene befinden. Die vertikale Modellsyn-
chronisation bezeichnet eine Synchronisation zwischen Modellen unterschied-
licher Abstraktionsebenen. Dieses Kriterium steht in einem engen Zusam-

10Die Bezeichnung ”vertikale und horizontale Modellsynchronisation“ ist angelehnt an die
Begriffe der vertikalen und horizontalen Konsistenz aus [EKHG01] sowie der vertikalen
und horizontalen Modelltransformation aus [MG06].

39

Kapitel 2 Modellsynchronisation

menhang zu den Kriterien der Modellrepräsentation und Technologie, da bei
der horizontalen Modellsynchronisation meistens zwischen unterschiedlichen
Formalismen synchronisiert wird und bei der vertikalen Modellsynchronisa-
tion zwischen Modellen, die auf einem gemeinsamen Formalismus basieren,
sich aber auf unterschiedlichen Abstraktionsebenen befinden.

2.3.2 Synchronisationsregeln

Einige Kriterien betreffen die Synchronisationsregeln. Hierzu zählen die Pa-
rametrisierung der Synchronisation durch Regeln, die Spezifikation der Re-
geln und die Richtung der Regeln.

Parametrisierung der Synchronisation Ein wichtiges Unterscheidungs-
merkmal der Synchronisation bilden die Regeln der Synchronisation. Die
Regeln können fest vorgegeben oder frei spezifizierbar sein. Bei fest vorgege-
benen Regeln ist eine Anpassung der Synchronisation durch einen Benutzer
nicht möglich. Sind die Regeln hingegen frei spezifizierbar, so ist die Modell-
synchronisation parametrisierbar und kann an spezielle Anforderungen eines
Benutzers angepasst werden.

Spezifikation der Regeln Sind die Regeln einer Modellsynchronisation frei
spezifizierbar, so können zur Unterscheidung der Synchronisationsansätze Ei-
genschaften der zugrunde liegenden Spezifikation als weitere Kriterien her-
angezogen werden.

Zunächst können wir zwischen einer operationalen und einer deklarativen
Spezifikation der Regeln unterscheiden. Bei einer operationalen Spezifika-
tion wird beschrieben, wie eine Modellsynchronisation erreicht wird. Im Ge-
gensatz dazu beschreibt eine deklarative Spezifikation nur, was miteinander
synchronisiert werden soll.

Eine weitere Unterscheidung kann anhand der Notation getroffen werden.
Bei der Notation der Regeln kann es sich um eine textuelle oder um eine
graphische Notation handeln. Hybride Ansätze, die sich aus graphischen
und textuellen Bestandteilen zusammensetzen, sind ebenfalls denkbar.

Schließlich betrifft ein weiteres Kriterium die Korrespondenzbeziehungen
zwischen den Modellelementen. Bei einer Regelspezifikation kann die Fest-
legung von Korrespondenzbeziehungen entweder implizit oder explizit erfol-
gen. Bei einer impliziten Festlegung der Korrespondenzbeziehungen müssen
die Korrespondenzbeziehungen nicht weiter spezifiziert werden. Dadurch

40

2.3 Kriterien der Modellsynchronisation

entfällt zusätzlicher Aufwand für den Entwickler der Regeln. Bei einer ex-
pliziten Spezifikation der Korrespondenzbeziehungen ist der Aufwand zwar
höher, allerdings können dadurch die Korrespondenzbeziehungen genauer
festgelegt werden.

Richtung der Regeln Ein weiteres Kriterium betrifft die Richtung der spe-
zifizierten Synchronisationsregeln. Hierbei kann es ausreichend sein, eine
einzige Regel für alle Richtungen zu spezifizieren. Alternativ dazu kann aber
auch verlangt werden, jeweils eine eigene Regel für jede Synchronisations-
richtung zu erstellen. Dementsprechend unterschiedlich kann der Spezifika-
tionsaufwand ausfallen. Zusätzlich ist bei einer separaten Regelspezifikation
für jede Richtung die Gefahr groß, dass die Korrespondenzbeziehungen zu-
einander inkonsistent spezifiziert werden. Hier entsteht also eine potentielle
Fehlerquelle, die bei der Spezifikation einer einzigen Regel für alle Richtung
nicht gegeben ist.

2.3.3 Synchronisationsverfahren

Weitere Kriterien der Modellsynchronisation beziehen sich auf das zugrunde-
liegende Synchronisationsverfahren. Hierzu zählen der Grad der Automati-
sierung, die eingesetzte Synchronisationsstrategie, der Zeitpunkt und Häufig-
keit der Ausführung, der Umgang mit Änderungen und Konflikten sowie das
Verfahren zur bidirektionalen Synchronisation.

Grad der Automatisierung Ein grundsätzliches Kriterium der Modellsyn-
chronisation ist der Grad der Automatisierung. Hierbei ist zu unterscheiden,
ob eine Modellsynchronisation vollständig automatisch ausgeführt werden
kann oder Benutzerinteraktionen möglich sind. Damit eng verbunden ist
auch das Verfahren zur Konfliktresolution (siehe Umgang mit Änderungen
und Konflikten).

Synchronisationsstrategie Eine entscheidende Rolle bei der Modellsyn-
chronisation spielt die Synchronisationsstrategie. Hierzu zählen die Iden-
tifikation von Änderungen, die Skalierbarkeit und die Synchronisationsmodi.

Bei der Identifikation von Änderungen können wir zwischen einer ereignis-
orientierten und einer zustands-orientierten Modellsynchronisation unter-
scheiden. Bei einem ereignis-orientierten Verfahren wird die Modellsynchro-
nisation erreicht, indem Ereignisse, wie zum Beispiel Hinzufügen, Löschen

41

Kapitel 2 Modellsynchronisation

oder Ändern, im Quellmodell aufgezeichnet, in korrespondierende Ereig-
nisse des Zielmodells transformiert und dort ausgeführt werden. Bei einem
zustands-orientierten Verfahren wird der Zustand der Modelle vor und nach
durchgeführten Änderungen analysiert und die Modellsynchronisation auf
Grundlage der Analyseergebnisse durchgeführt.

Die Skalierbarkeit eines Synchronisationsverfahrens ist wichtig, um auch
große Modelle schnell oder zumindest mit einem vertretbaren zeitlichen Auf-
wand synchronisieren zu können. Eine Modellsynchronisation kann entweder
batch-artig oder inkrementell erfolgen. Eine batch-artige Modellsynchronisa-
tion kann beispielsweise durch eine Modelltransformation realisiert werden.
Dabei wird das Zielmodell verworfen und ein neues Zielmodell erstellt. Nach
der Modelltransformation sind beide Modelle wieder zueinander synchron.
Im Gegensatz dazu werden bei der inkrementellen Modellsynchronisation
nur Modellelemente betrachtet, die seit der letzten Modellsynchronisation
geändert wurden.

Die Modi der Modellsynchronisation haben einen Einfluss auf die mögli-
chen Anwendungsfälle aus der Sicht eines Benutzers. Hierbei können wir zwi-
schen einem Push- und einem Pull-Modus unterscheiden. Im Push-Modus
kann eine Modellsynchronisation durchgeführt werden, indem ein Modell
seine Änderungen an die anderen Modelle propagiert. Im Pull-Modus löst
ein Modell eine Modellsynchronisation aus, um andere Modelle explizit auf
Änderungen zu überprüfen und diese dann zu übernehmen.

Zeitpunkt und Häufigkeit der Ausführung Ein weiteres Unterscheidungs-
kriterium ist der Zeitpunkt und die Häufigkeit der Ausführung einer Mo-
dellsynchronisation. Grundsätzlich kann hier zwischen einer automatischen
Ausführung und einer Ausführung auf Anforderung unterschieden werden.

Bei einer automatischen Ausführung existieren mehrere Varianten, wann
die Synchronisation ausgelöst wird. Eine Möglichkeit besteht beispielsweise
darin, die Modellsynchronisation nach jeder Änderung in einem Modell
durchzuführen. Eine andere Möglichkeit ist, die Synchronisation in Zeitin-
tervallen auszulösen. Die Zeitintervalle können hierbei fest vorgegeben oder
variabel sein. Eine variable Synchronisationsauslösung könnte beispielsweise
immer dann erfolgen, wenn der Rechner gerade nicht ausgelastet ist. Hier
sind auch weitere Varianten oder Kombinationen denkbar, wie zum Beispiel
die Auslösung nach einer bestimmten (Anzahl von) Änderung(en) oder nach
bestimmten Ereignissen, wie zum Beispiel nach dem Speichern eines Modells.

Die automatische Ausführung einer Modellsynchronisation ist nicht immer

42

2.3 Kriterien der Modellsynchronisation

vorteilhaft. Insbesondere dann, wenn man inkonsistente Zustände in einem
Modell zulassen möchte, ist es oft besser, auf eine automatische Ausführung
der Modellsynchronisation zu verzichten und diese nur auf Anforderung
durch den Benutzer durchzuführen.

Umgang mit Änderungen und Konflikten Ein Unterscheidungskriterium
betrifft den Umgang mit manuellen Änderungen in den beteiligten Modellen.
Hierbei kann eine Modellsynchronisation Änderungen überschreiben oder er-
halten. Für Modellelemente, die automatisch im Rahmen einer Modellsyn-
chronisation erstellt worden sind, ist das Überschreiben der Modellelemente
nicht so problematisch. Sind die Modellelemente von einem Benutzer explizit
erstellt worden, so sollte eine Modellsynchronisation diese Modellelemente so
weit es geht erhalten. Dabei kann es von Vorteil sein, auf eine vollständige
Synchronisation zu verzichten und die Modellsynchronisation partiell, das
heißt, nur für ganz bestimmte Teile eines Modells, durchzuführen.

Wenn sich die zu synchronisierenden Modelle widersprechen und zur Syn-
chronisation der Modelle mehrere Alternativen vorhanden sind, entstehen
Konflikte. Bei der Behandlung der Konflikte spielt der Grad der Auto-
matisierung eine entscheidende Rolle. Aus der Sicht eines Benutzers sollte
eine Modellsynchronisation zumindest in allen zweifelsfreien Fällen automa-
tisch erfolgen. Treten hingegen Konflikte während einer Synchronisation auf,
so kann die Konfliktresolution automatisch, semi-automatisch oder manuell
durchgeführt werden.

Eine vollautomatische Modellsynchronisation kann zum Beispiel aus einer
der Alternativen wählen und die Synchronisation durchführen. Die Auswahl
kann dabei nicht-deterministisch erfolgen oder im Vorfeld – zum Beispiel
durch die Vergabe von Prioritäten – gesteuert werden.

Bei einer semi-automatischen Konfliktresolution könnten mögliche Alter-
nativen einem Benutzer vorgeschlagen werden, der daraus die aus seiner
Sicht beste Alternative auswählt. Die eigentliche Durchführung der Konflik-
tauflösung erfolgt aber automatisch.

Im Gegensatz dazu wird bei der manuellen Konfliktresolution nur die Stelle
markiert, an der ein Konflikt aufgetreten ist. Die Behebung dieses Konflikts
hingegen wird dem Benutzer überlassen.

Verfahren zur bidirektionalen Synchronisation Anhand des eingesetzten
Synchronisationsverfahrens zur bidirektionalen Modellsynchronisation kann
eine weitere Unterscheidung getroffen werden. Die bidirektionale Modell-

43

Kapitel 2 Modellsynchronisation

synchronisation kann durch zwei unidirektionale Modellsynchronisationen in
jeweils entgegengesetzter Synchronisationsrichtung realisiert werden.11 Eine
Alternative hierzu ist eine bidirektionale Synchronisation, die in einem ein-
zigen Durchlauf die beteiligten Modelle in beide Richtungen abgleicht.

2.4 Methodischer Ansatz

In diesem Abschnitt stellen wir den methodischen Ansatz der vorliegenden
Arbeit vor. Hierzu erläutern wir zunächst die Ausgangslage der Arbeit.
Anschließend präsentieren wir unseren Ansatz und die in dieser Arbeit ent-
wickelte Methode zur Erstellung von Werkzeugen zur Modellsynchronisation.
Anschließend ordnen wir unseren Ansatz gemäß der im vorangegangenen Ab-
schnitt entwickelten Kriterien ein.

2.4.1 Ausgangslage und Anforderungen

Am Fachgebiet für Softwaretechnik an der Universität Paderborn wurde
die modellbasierte Softwareentwicklungsumgebung Fujaba12 implementiert
[FNTZ98]. Seitdem wird Fujaba erfolgreich in verschiedenen modellge-
triebenen Softwareentwicklungsprojekten eingesetzt. Die formale Grundlage
von Fujaba bildet ein Graphersetzungssystem [Zün01], auf dessen Basis
ausführbarer Code aus Diagrammen der Unified Modeling Language (UML)
[UML05] automatisch erzeugt werden kann. Zusätzlich erlaubt Fujaba ein
sogenanntes

”
Round-Trip Engineering“ zwischen den Diagrammen und dem

generierten Code, so dass sowohl eine Bearbeitung der Modelle als auch eine
Bearbeitung des generierten Codes möglich ist.

Eine Besonderheit der Entwicklungsumgebung bildet ein Erweiterungsme-
chanismus, über den sogenannte Plug-ins dynamisch zu Fujaba hinzugefügt
werden können [BGN+04]. Dieser Erweiterungsmechanismus erlaubt es un-
ter anderem, verschiedene Modellierungssprachen nachträglich in Fujaba zu
integrieren und auf diese Art und Weise domänenspezifische Sprachen (engl.
Domain Specific Languages , kurz DSL) für unterschiedliche Anwendungs-
domänen zu realisieren.

11Im Rahmen der Datensynchronisation wird dieses Verfahren als Zwei-Wege-
Synchronisation bezeichnet. Eine unidirektionale Datensynchronisation hingegen wird
Ein-Wege-Synchronisation genannt.

12Fujaba ist ein Akronym für ”From UML to Java and Back Again“

44

2.4 Methodischer Ansatz

Das ursprüngliche Ziel dieser Arbeit bestand darin, einen Ansatz zur Mo-
delltransformation in Fujaba zu integrieren, um beispielsweise eine automa-
tische Übersetzung zwischen Blockdiagrammen und Klassendiagrammen zu
ermöglichen. Bereits während der Umsetzung hat sich jedoch gezeigt, dass
eine einfache Modelltransformation nur bedingt hilfreich ist. Schnell ent-
stand der Wunsch, die Konsistenz zwischen den Modellen auch nach durch-
geführten Änderungen an den Modellen und einer bereits erfolgten Modell-
transformation möglichst automatisch sicherzustellen. Die Modelle sollten
automatisch miteinander synchronisiert, also zueinander konsistent gehal-
ten werden, um eine unabhängige Bearbeitung der Modelle zu ermöglichen.
Aufgrund der Tatsache, dass auch Code als ein Modell des implementierten
Systems aufgefasst werden kann, lag es nahe, einen einzigen und durchgängi-
gen Ansatz zu erarbeiten, mit dem sowohl Modelle untereinander als auch
ein Modell mit dem daraus generierten Code synchronisiert werden kann.

Natürlich ist es prinzipiell möglich eine Modellsynchronisation zwischen
Modellen – oder wie im Fall des in Fujaba implementierten

”
Round-Trip

Engineering“ eine Synchronisation zwischen Modell und Code – von Hand
zu programmieren und fest in ein Werkzeug einzubauen. Allerdings hat die
manuelle Implementierung solcher Synchronisationswerkzeuge zwei wesentli-
che Nachteile. Zunächst sind die Korrespondenzregeln fest in das Werkzeug
codiert. Dadurch kann eine bereits umgesetzte Modellsynchronisation nur
mit einem hohen Aufwand um neue Korrespondenzregeln erweitert oder be-
reits vorhandene Korrespondenzregeln an neue Bedürfnisse angepasst wer-
den. Insbesondere bei einer Synchronisation von Modell und Code sind An-
passungen der Synchronisation an firmen-, domänen- oder projektspezifische
Vorgaben nicht unüblich. Der zweite wesentliche Nachteil einer manuellen
Implementierung ist durch die Komplexität der Aufgabe an und für sich
gegeben. Dazu tragen häufig die Größe und die Komplexität der zugrunde-
liegenden Metamodelle sowie die Korrespondenzbeziehungen bei. Zusammen
mit den benötigten Kenntnissen zu technischen und technologischen Details
muss man feststellen, dass die Entwicklung eines Werkzeugs zur Modellsyn-
chronisation an und für sich kompliziert und die Programmierung von Hand
sehr zeitaufwändig ist.

Die Zielsetzung dieser Arbeit besteht daher darin, eine Methode zu er-
arbeiten und entsprechende Werkzeuge zu entwickeln, die einen Software-
entwickler bei der Erstellung von Werkzeugen zur Modellsynchronisation
unterstützen. Die Unterstützung durch automatisierte Werkzeuge soll den
Softwareentwickler von der Komplexität einer manuellen Entwicklung der
Werkzeuge befreien, die zur Entwicklung benötigte Zeit reduzieren und da-

45

Kapitel 2 Modellsynchronisation

mit die Entwicklungskosten senken. Dabei sollte der methodische Ansatz die
folgenden Anforderungen erfüllen:

Funktionalität Neben einer bidirektionalen Modellsynchronisation soll der
Ansatz auch zur Modelltransformation geeignet sein. Aufgrund der
Annahme, dass Modelle unabhängig voneinander bearbeitet werden
können, ohne dass sie sofort und ständig miteinander synchronisiert
werden, muss es mit dem Ansatz zusätzlich möglich sein, Korrespon-
denzbeziehungen auch im Nachhinein zu überprüfen.

Anpassbarkeit Modelle können in verschiedenen Anwendungsdomänen oder
sogar in verschiedenen Projekten einer Anwendungsdomäne sehr unter-
schiedlich genutzt werden. Insbesondere die Abbildung eines Modells
auf andere Modelle kann – je nach späterem Verwendungszweck – sehr
unterschiedlich ausfallen. Daher ist es notwendig, dass die Korrespon-
denzbeziehungen zwischen den Modellen an verschiedene Bedürfnisse
leicht anpassbar sind. Dazu dürfen die Korrespondenzregeln nicht fest
im Werkzeug codiert sein. Stattdessen muss das Werkzeug zur Modell-
synchronisation durch Korrespondenzregeln parametrisierbar sein.

Skalierbarkeit Die modellbasierte Softwareentwicklung wird hauptsächlich
eingesetzt, um große und komplexe Softwaresysteme zu entwickeln.
Der Hauptnutzen der automatischen Modellsynchronisation liegt damit
bei der Synchronisation großer Modelle. Daher muss die automatische
Modellsynchronisation sehr gut skalieren und auch die Synchronisation
großer Modelle mit vertretbarem Aufwand ermöglichen.

Interoperabilität Die Modellsynchronisation soll nicht nur auf Fujaba be-
schränkt bleiben. Häufig ist es notwendig Modelle zu transformieren
oder zu synchronisieren, die mit anderen Werkzeugen bearbeitet wer-
den. Bei einer Erweiterung bereits existierender Modellierungswerk-
zeuge kann in der Regel kein Einfluss auf die verwendeten Technologien
genommen werden. Die vorhandenen Möglichkeiten und Schnittstellen
erfüllen nur selten alle Anforderungen an die gewünschten Eigenschaf-
ten der zu entwickelnden Modellsynchronisation, so dass hier häufig
Einschränkungen und Kompromisse gemacht werden müssen. Unser
Ansatz soll auch solche Umstände berücksichtigen und trotz eventuell
vorhandener Einschränkungen leicht in andere Werkzeuge integrierbar
sein.

46

2.4 Methodischer Ansatz

Spezifikation

Integration und
Ausführung

Modell B

Metamodell B

Korrespondenz-
metamodell

Metamodell A

Modell A

Korrespondenzmodell

<<instance of>> <<instance of>>

<<uses>> <<uses>>

<<read/write>>

<<uses>>

<<instance of>>

Synchronisationswerkzeug

<<read/write>>

<<read/write>>

Erzeugung ausführbarer
Korrespondenzregeln

TGG-RulesTGG-RulesKorrespondenzregeln

Codegenerierung &
Übersetzung

Ausführbare
Korrespondenzregeln

<<input>>

<<output>>

Abbildung 2.7: Überblick zur Methode

Bei den hier genannten Anforderungen handelt es sich um ganz wesentliche
Anforderungen, die der Ansatz erfüllen sollte. Wie wir im weiteren Verlauf
dieser Arbeit noch sehen werden, besitzt der in dieser Arbeit verfolgte Ansatz
darüber hinaus weitere Merkmale, die im Rahmen einer Modellsynchronisa-
tion besonders positiv auffallen.

2.4.2 Überblick über die Methode

Nachdem wir im vorangegangenen Abschnitt die Ausgangslage der vorlie-
genden Arbeit erläutert haben, geben wir in diesem Abschnitt einen Über-
blick über unseren Ansatz und die erarbeitete Methode, mit der Werk-
zeuge zur Modellsynchronisation weitestgehend automatisiert entwickelt wer-
den können. Die Methode ist in Abbildung 2.7 dargestellt. Im Folgenden
erläutern wir die einzelnen Schritte der Methode.

47

Kapitel 2 Modellsynchronisation

Spezifikation

Zur Spezifikation der Korrespondenzregeln verwenden wir den Ansatz der
Tripel-Graph-Grammatiken (TGGs) [Sch94]. Bei dieser formalen und dekla-
rativen Spezifikationstechnik handelt es sich um einen Ansatz, der bereits
erfolgreich zur Spezifikation einer Modelltransformation und Modellintegra-
tion eingesetzt wurde. Auf dieser Grundlage können Korrespondenzbezie-
hungen überprüft, hergestellt und aufrecht erhalten werden. Wie in dieser
Arbeit noch gezeigt wird, eignen sich die deklarativ spezifizierten Korrespon-
denzbeziehungen damit auch zur Realisierung von bidirektional und inkre-
mentell arbeitenden Modellsynchronisationswerkzeugen. Durch die graphi-
sche Notation dieser Spezifikationstechnik können die Korrespondenzregeln
verständlich beschrieben und später leicht an geänderte Anforderungen an-
gepasst werden. Eine detaillierte Beschreibung dieser Spezifikationstechnik
gibt Kapitel 3.

Der hier verwendete Ansatz kann auch zur Codegenerierung und der an-
schließenden Synchronisation eines Modells mit dem daraus generierten Code
verwendet werden. Allerdings kann aufgrund der Größe und Komplexität
der abstrakten Syntax einer textuellen Programmiersprache die Spezifika-
tion der benötigten Korrespondenzregeln sehr aufwändig werden. Daher
haben wir unsere Methode um eine weitere Möglichkeit zur Spezifikation
von Korrespondenzregeln erweitert. Bei diesem Ansatz gibt der Entwickler
zueinander korrespondierende Beispiele vor, aus denen dann TGG-Regeln
weitestgehend automatisch synthetisiert werden. Bei den Beispielen handelt
es sich um zueinander korrespondierende Modelle, die in ihrer konkreten
Syntax angegeben werden. Ebenso kann hier aber auch ein Modell und dazu
korrespondierender Code verwendet werden. Dieser Ansatz vereinfacht die
Spezifikation der benötigten Korrespondenzregeln signifikant – auch wenn in
einigen Fällen eine Nachbearbeitung von Hand noch nötig ist. Diesen Ansatz
sowie seine Einschränkungen erläutern wir in Kapitel 4.

Bevor die Korrespondenzregeln durch einen Entwickler spezifiziert werden
können, müssen zunächst die Metamodelle der beteiligten Modellierungs-
sprachen definiert werden. Zusätzlich muss ein Metamodell für ein sogenann-
tes Korrespondenzmodell spezifiziert werden. Das Korrespondenzmodell ver-
waltet explizit die in einer Korrespondenzbeziehung stehenden Modellele-
mente der zu synchronisierenden Modelle. In unserem Ansatz verwenden
wir zur Beschreibung der Metamodelle einfache UML-Klassendiagramme.
Die Spezifikation der Metamodelle und der Korrespondenzregeln erfolgt in
der Entwicklungsumgebung Fujaba, die in Kapitel 7 näher vorgestellt wird.

48

2.4 Methodischer Ansatz

Generierung

Um die spezifizierten TGG-Regeln im Rahmen einer Modellsynchronisation
nutzen zu können, werden die TGG-Regeln in ausführbaren Code übersetzt.
Alternativ hierzu können TGG-Regeln auch interpretativ ausgeführt werden.
In dieser Arbeit wird jedoch ein generativer Ansatz verfolgt. Einen TGG-
Interpreter haben wir in [KRW04, KW07] vorgestellt.

Bei dem generativen Ansatz dieser Arbeit werden die TGG-Regeln
zunächst in operationale Regeln übersetzt. Hierbei wird für jede Richtung
der Synchronisation eine eigene Regel erzeugt. Zusätzlich generieren wir
eine operationale Regel, die der Überprüfung von Korrespondenzbeziehun-
gen dient und lediglich korrespondierende Modellelemente zueinander zuord-
net. Nach der automatischen Übersetzung der TGG-Regeln in operationale
Regeln enthalten die operationalen Regeln die regelspezifischen Synchroni-
sationsoperationen.

Bei den in dieser Arbeit verwendeten operationalen Regeln handelt es
sich um sogenannte Storydiagramme [FNTZ98]. Storydiagramme sind eine
erweiterte Form von UML-Aktivitätsdiagrammen, die zur Beschreibung ei-
nes Kontrollflusses zwischen einzelnen Aktivitäten einer Methode verwendet
werden. In die Aktivitäten eines Storydiagramms können Graphgrammatik-
regeln eingebettet werden. Ebenso können die Aktivitäten aber auch Code
enthalten. Storydiagramme werden wir noch in Kapitel 5 genauer kennen
lernen. Nach der Übersetzung in Storydiagramme nutzen wir den in Fu-
jaba integrierten Codegenerator, um aus den Storydiagrammen ausführba-
ren Java-Code zu generieren.

Integration und Ausführung

Nachdem der Java-Code erstellt und kompiliert worden ist, kann er genutzt
werden, um eine Modellsynchronisation gemäß der spezifizierten Korrespon-
denzregeln durchzuführen. Zu diesem Zweck existiert eine Softwarebiblio-
thek, die die benötigten Algorithmen zur inkrementellen Modellsynchro-
nisation bereit stellt. Diese Bibliothek ist bereits in Fujaba integriert.
Sie kann mit Hilfe einer separaten Benutzerschnittstelle genutzt werden,
um verschiedene Modellsynchronisationsaufgaben durchzuführen. Sofern
es sich bei den zu synchronisierenden Modellen um Modelle der Fujaba-
Entwicklungsumgebung handelt, sind keine weiteren Schritte zur Integration
notwendig. Dies gilt insbesondere auch für Modellierungssprachen, die über
den Erweiterungsmechanismus nachträglich zu Fujaba hinzugefügt wurden.

49

Kapitel 2 Modellsynchronisation

Die in dieser Arbeit vorgestellte Methode kann auch verwendet werden,
um eine Modellsynchronisation in andere Modellierungswerkzeuge zu inte-
grieren. Bei einer Erweiterung bereits existierender Modellierungswerkzeuge
kann in der Regel kein Einfluss auf die verwendeten Technologien genom-
men werden. Daher müssen oft unterschiedliche, werkzeugspezifische Tech-
nologien überbrückt werden. Leider erfüllen die vorhandenen Möglichkeiten
und Schnittstellen häufig nicht alle Anforderungen an die gewünschten Ei-
genschaften der zu entwickelnden Modellsynchronisation, so dass hier in den
meisten Fällen Einschränkungen und Kompromisse gemacht werden müssen.

Bei unserem Ansatz werden solche Umstände berücksichtigt und auch in
diesen schwierigen Fällen eine Modellsynchronisation ermöglicht – auch wenn
dann nicht alle Vorteile des Ansatzes ausgeschöpft werden können. Die in
dieser Arbeit vorgestellte Methode ist somit nicht auf Fujaba beschränkt.
Vielmehr wird der in Fujaba umgesetzte Ansatz genutzt, um Synchroni-
sationswerkzeuge für andere Entwicklungsumgebungen mit Fujaba modell-
basiert zu entwickeln.

Hierzu sind im Wesentlichen zwei Schritte notwendig. Zunächst muss die
Softwarebibliothek mit den Algorithmen in das Modellierungswerkzeug in-
tegriert sowie eine werkzeugspezifische Benutzerschnittstelle erstellt werden.
Anschließend müssen für die spezifizierten Metamodelle entsprechende Mo-
delladapter implementiert werden. Diese sind notwendig, um auf die Modelle
im Werkzeug zugreifen zu können.

In einigen Fällen sind die werkzeugspezifischen Metamodelle nicht doku-
mentiert. Sie müssen dann zum Beispiel aus der API13-Dokumentation er-
mittelt werden. Daher sind häufig die Erstellung der Adapter und die Spe-
zifikation der Metamodelle eng miteinander verbunden. Auch hier kann Fu-
jaba, zum Beispiel durch das integrierte Reverse Engineering, behilflich sein.
Auf die Erstellung von Modelladaptern gehen wir in Kapitel 7 noch genauer
ein. Einige Besonderheiten für Adapter, die im Rahmen der Synchronisation
von Modell und Code benötigt werden, erläutern wir in Kapitel 4. Die in der
Softwarebibliothek implementierten Algorithmen zur Modellsynchronisation
hingegen werden in Kapitel 5 vorgestellt.

2.4.3 Einordung

In diesem Abschnitt ordnen wir unseren Ansatz anhand der zuvor vorgestell-
ten Kriterien ein. Die Einordnung ist in Tabelle 2.1 zusammengefasst.

13Application Programming Interface

50

2.4 Methodischer Ansatz

Synchronisationsaufgabe und -umgebung

Anzahl und Topologie der
Modelle

zwei Modelle
n-äre Synchronisation
ohne Zyklen

Synchronisationsrichtung bidirektional
Kardinalität von Korres-
pondenzbeziehungen

n-zu-m

Modellrepräsentation und
Technologie

unterschiedliche Formalismen
graph-basierte Strukturen
verschiedene Technologien

Ebene der Synchronisation vertikal und horizontal

Synchronisationsregeln

Parametrisierung der Syn-
chronisation

frei spezifizierbar

Spezifikation der Regeln
deklarativ
graphisch
explizit

Richtung der Regeln eine Regel für beide Richtungen

Synchronisationsverfahren

Grad der Automatisierung automatisch

Synchronisationsstrategie
zustands-orientiert
batch-artig und inkrementell
Push- und Pull-Modus

Zeitpunkt und Häufigkeit
der Ausführung

Ausführung auf Anforderung (automa-
tische Ausführung jedoch möglich)

Umgang mit Änderungen
und Konflikten

erhaltend
automatische Konfliktresolution

Verfahren zur bidirektiona-
len Synchronisation

zwei unidirektionale Modellsynchroni-
sationen

Tabelle 2.1: Einordnung anhand der Kriterien aus Abschnitt 2.3

51

Kapitel 2 Modellsynchronisation

Der Ansatz dieser Arbeit ist für Synchronisationsaufgaben geeignet, bei
denen zwei Modelle miteinander synchronisiert werden sollen. Allerdings
können einzelne Synchronisationsaufgaben zu n-ären Synchronisationstopo-
logien kombiniert werden. In diesem Fall ist unbedingt darauf zu achten, dass
die Synchronisationsregeln sich nicht widersprechen, da bei der Synchronisa-
tion auftretende Zyklen nicht automatisch erkannt werden, was dazu führen
kann, dass die Synchronisation nicht mehr terminiert.

Mit unserem Ansatz kann eine bidirektionale Modellsynchronisation
durchgeführt werden. Dies ist jedoch nicht zwingend notwendig. Ebenso
kann die Synchronisation in nur eine Richtung ausgeführt werden. Zusätzlich
erlaubt der Ansatz m-zu-n Korrespondenzbeziehungen zwischen den Modell-
elementen. Der Ansatz ist weder auf einen speziellen Formalismus spezia-
lisiert noch wird zwischen horizontalen und vertikalen Synchronisationsauf-
gaben unterschieden. Der in dieser Arbeit verwendete Ansatz unterstützt
graph-basierte Strukturen und kann damit auch mit baum-artig struktu-
rierten Modellen umgehen. Allerdings ist er nicht auf baum-artige Modelle
optimiert. Über Adapter werden unterschiedliche Technologien unterstützt.

Die Synchronisationsregeln werden deklarativ und explizit in einer gra-
phischen Notation spezifiziert. Mit diesen Regeln kann eine Synchronisation
parametrisiert werden. Dabei ist es für eine bidirektionale Modellsynchro-
nisation ausreichend, eine Korrespondenzbeziehung mit nur einer einzigen
Korrespondenzregel zu beschreiben – eine separate Regel für jede Richtung
ist nicht notwendig.

Das zugrundeliegende Synchronisationsverfahren arbeitet automatisch.
Es arbeitet zustands-orientiert und ist somit nicht auf Änderungsereig-
nisse angewiesen. Die Modellsynchronisation kann batch-artig, das heißt,
in einem Schritt, ausgeführt werden. Der Ansatz führt bei einer batch-
artigen Ausführung notwendige Änderungen im Zielmodell bereits inkremen-
tell durch. Werden außerdem Änderungen im Ausgangsmodell in Form von
Ereignissen gemeldet, so kann die Synchronisation direkt auf den geänder-
ten Modellelementen starten und vollständig inkrementell ablaufen. Die
benötigte Zeit für eine Modellsynchronisation wird dadurch stark reduziert,
so dass eine Synchronisation großer Modelle mit vertretbarem Aufwand
möglich ist.

Die Synchronisation kann automatisch nach jeder Änderung ausgeführt
werden. In einigen Fällen kann es sinnvoll sein, erst nach einer gewissen An-
zahl von Änderungen oder nach bestimmten Ereignissen eine Synchronisa-
tion zu starten. Eine automatische Ausführung kann allerdings zu Problemen
führen, wenn bei der Bearbeitung temporär Inkonsistenzen in den Modellen

52

2.5 Zusammenfassung

erlaubt sind. Aufgrund der Tatsache, dass keine allgemeingültige, optimale
Strategie für den Zeitpunkt und die Häufigkeit einer Synchronisation exis-
tiert und die Strategie von den eingesetzten Modellierungswerkzeugen und
dem Synchronisationsszenario abhängt, werden beide Ausführungsvarianten
in Fujaba unterstützt, wobei die Synchronisation dabei sowohl im Push-
als auch im Pull-Modus stattfinden kann.

Modellelemente, die manuell vom Benutzer geändert werden und nicht an
einer Korrespondenzbeziehung teilnehmen, werden nicht überschrieben, son-
dern bleiben erhalten. Hingegen werden Änderungen an Modellelementen,
die an einer Korrespondenzbeziehung beteiligt sind und in Konflikt zu ande-
ren Änderungen stehen, automatisch aufgelöst. Hierbei gibt die Richtung der
Synchronisation vor, welche Änderungen übernommen und welche Änderun-
gen überschrieben werden. Bei einer bidirektionalen Synchronisation, die in
unserem Ansatz durch zwei einzelne, unidirektionale Synchronisationen er-
reicht wird, ist hierfür die Richtung maßgeblich, mit der gestartet wird. In
dem Fall, dass zwei Regeln zueinander in Konflikt stehen, das heißt, beide
ausgeführt werden können, wird ein Konflikt dadurch aufgelöst, dass die
in der Konfigurationsdatei festgelegte Reihenfolge der Regeln beachtet wird
und die dort zuerst genannte Regel ausgeführt wird.

2.5 Zusammenfassung

In diesem Kapitel wurde ein Überblick zur Modellsynchronisation gegeben.
Hierzu haben wir in Abschnitt 2.1 eine Modellsynchronisation und die damit
verbundenen Probleme an einem Beispiel betrachtet. Das dort vorgestellte
Beispiel ist aus Präsentationsgründen recht übersichtlich gestaltet, so dass
eine manuelle Modellsynchronisation ohne Werkzeugunterstützung in diesem
konkreten Fall durchaus denkbar und vertretbar ist. Allerdings steigt mit der
Größe der Modelle auch der Bedarf für eine werkzeuggestützte, automatische
Modellsynchronisation.

In Abschnitt 2.2 haben wir uns mit dem Begriff der
”
Modellsynchronisa-

tion“ beschäftigt. Wir haben dort den Zusammenhang zu anderen Bereichen
der Informatik aufgezeigt, die sich ebenfalls mit Formen der

”
Synchronisa-

tion“ beschäftigen. Anschließend haben wir definiert, was wir in dieser Ar-
beit unter einer

”
Modellsynchronisation“ verstehen und die Aufgabe einer

”
Modellsynchronisation“ näher erläutert.

Der Abschnitt 2.3 hingegen war Kriterien der Modellsynchronisation ge-
widmet. Mit den dort aufgestellten Kriterien wurden drei Ziele verfolgt. Das

53

Kapitel 2 Modellsynchronisation

erste Ziel bestand darin, dem Leser unterschiedliche Möglichkeiten zur Mo-
dellsynchronisation und deren Eigenschaften aufzuzeigen. Das zweite Ziel
bestand darin, eine Grundlage zu schaffen, um verschiedene Ansätze zur
Modellsynchronisation besser miteinander vergleichen zu können. Das dritte
Ziel war, eine Einordnung unseres Ansatzes anhand der aufgestellten Krite-
rien zu ermöglichen und damit dem Leser einen besseren Überblick über die
Leistungsfähigkeit des in dieser Arbeit vorgestellten Ansatzes zu vermitteln.

Den Ansatz dieser Arbeit haben wir in Abschnitt 2.4 vorgestellt. Der An-
satz setzt sich aus einer formalen Technik zur Spezifikation von Korrespon-
denzregeln und einer Methode mit dazugehörigen Werkzeugen zusammen,
mit denen Modellsynchronisationswerkzeuge weitestgehend automatisch ent-
wickelt werden können. Im letzten Teil dieses Abschnitts haben wir den
Ansatz anhand der zuvor aufgestellten Kriterien eingeordnet.

Das Ziel dieses Kapitels bestand darin, dem Leser einen ersten Eindruck
und Überblick zur Modellsynchronisation ganz allgemein und zu dem in die-
ser Arbeit verfolgten Ansatz zu vermitteln. Die nachfolgenden Kapitel stellen
den Ansatz im Detail vor.

54

Kapitel 3

Spezifikation von
Korrespondenzregeln

In diesem Kapitel stellen wir die Spezifikation von Korrespondenzregeln vor.
Hierzu setzen wir Tripel-Graph-Grammatiken ein. Diese formale, deklarative
und graphische Spezifikationstechnik bildet die Basis der Modellsynchronisa-
tion. Bevor wir uns allerdings mit dieser Spezifikationstechnik beschäftigen,
gehen wir zunächst auf einige Grundlagen ein, die zum Verständnis benötigt
werden.

3.1 Grundlagen

In diesem Abschnitt befassen wir uns zuerst mit Modellen und Metamodel-
len. Anschließend stellen wir das Prinzip von Graphgrammatiken und die
damit verbundene Graphersetzung vor.

3.1.1 Modelle und Metamodelle

Die wichtigsten Artefakte der modellbasierten Softwareentwicklung sind Mo-
delle. Ein Modell basiert auf einem Formalismus, der die Syntax und die Se-
mantik der dem Modell zugrunde liegenden Modellierungssprache definiert.
Die Syntax einer Modellierungssprache setzt sich aus der konkreten Syntax
und der abstrakten Syntax zusammen. Die konkrete Syntax legt die Notation
der Sprache fest. Die abstrakte Syntax beschreibt die Struktur der Sprache.
Die Semantik hingegen definiert die Bedeutung der Sprache [HR00].

Sowohl die konkrete Syntax als auch die Semantik der meisten Model-
lierungssprachen werden häufig nur informell durch verbale Beschreibungen
und Beispiele angegeben - obwohl geeignete Mittel zur Verfügung stehen und
beide formal definiert werden könnten [HR00]. Im Gegensatz dazu wird die

55

Kapitel 3 Spezifikation von Korrespondenzregeln

abstrakte Syntax einer Modellierungssprache in den meisten Fällen formal
angegeben. Der Grund hierfür ist, dass die Formalisierung der abstrakten
Syntax einer Sprache eine notwendige Voraussetzung für eine automatisierte
Verarbeitung dieser Sprache durch Softwarewerkzeuge darstellt.

Die abstrakte Syntax einer textuellen Sprache wird im Regelfall durch
kontextfreie Grammatiken definiert. Zur Formalisierung einer visuellen Spra-
che, also einer Sprache mit einer graphischen konkreten Syntax, haben sich
in der modellbasierten Softwareentwicklung hingegen Modelle durchgesetzt.
Ein Modell, das die Elemente und die Struktur einer Sprache definiert, wird
als Metamodell (von

”
meta“, griech.

”
über“) bezeichnet. Ein Metamodell

definiert sowohl die Elemente der Sprache als auch ihre strukturellen Bezie-
hungen zueinander.1 Die Instanzen eines Metamodells stellen syntaktisch
gültige Modelle der Sprache dar.

Beispiel

In dieser Arbeit verwenden wir als durchgängiges Beispiel die in Abschnitt 2.1
beschriebene Modellsynchronisation zwischen einem Block- und einem Klas-
sendiagramm. Dort haben wir bereits beide Diagrammarten in ihrer graphi-
schen Notation – also der konkreten Syntax – kennen gelernt. Um die Korres-
pondenzbeziehungen zwischen beiden Modellen mithilfe von Korrespondenz-
regeln zu spezifizieren, müssen die Metamodelle der beiden Diagrammarten
vorliegen. An dieser Stelle betrachten wir daher die dazugehörigen Meta-
modelle, mit denen die abstrakte Syntax der beiden Diagramme definiert
ist, sowie die Darstellung der abstrakten Syntax am Beispiel eines Blockdia-
gramms. Auf der Grundlage der beiden Metamodelle und der Darstellung
der Modelle in abstrakten Syntax werden wir in Abschnitt 3.2 die Spezifika-
tion von Korrespondenzregeln erläutern.

Metamodell für Klassendiagramme In Abbildung 3.1 ist ein Ausschnitt
des in dieser Arbeit verwendeten Metamodells für UML-Klassendiagramme
dargestellt. Zur Darstellung von Metamodellen verwenden wir eine einge-
schränkte Form von UML-Klassendiagrammen, die auch in der Meta Ob-
ject Facility (MOF) enthalten ist – einem Standard der Object Management
Group (OMG) zur Metamodellierung.

1Die Angabe eines Metamodells alleine reicht in der Regel aber nicht aus. Häufig müssen
zusätzliche Einschränkungen definiert werden. In der UML wird dazu die Object
Constraint Language (OCL) verwendet, auf die wir an dieser Stelle jedoch nicht weiter
eingehen.

56

3.1 Grundlagen

0..*elements

source

target

0..* 1

10..*

 stereotypes 0..*

ClassAssociation

+ name : String

NamedElement

Stereotype

+ kind : String

ClassDiagram

Composition

Abbildung 3.1: Metamodell für Klassendiagramme

Ein Klassendiagramm (ClassDiagram) besteht aus einer Menge von Mo-
dellelementen (NamedElement), die sich aus Klassen (Class), Assoziationen
(Association) und Stereotypen (Stereotype) zusammensetzt. Ein Modell-
element kann mit unterschiedlichen Stereotypen annotiert werden. Die Art
eines Stereotyps wird dabei durch das Attribut kind:String in der Me-
taklasse Stereotype festgelegt. Eine Assoziation verbindet zwei Klassen
miteinander. Eine spezielle Assoziation ist die Komposition (Composition).

Das hier gezeigte Metamodell stellt nur einen Ausschnitt aus dem origina-
len Metamodell für UML-Klassendiagramme dar. Beispielsweise sind keine
Modellelemente für Attribute und Methoden in unserem Ausschnitt darge-
stellt. Ebenso wurde auf ein Metamodellelement für Generalisierungen ver-
zichtet. Um die später zu spezifizierenden Korrespondenzregeln in unserem
Beispiel möglichst übersichtlich zu halten, ist das hier gezeigte Metamodell
zudem stark vereinfacht dargestellt. So verfügen zum Beispiel im origina-
len UML-Metamodell Assoziationen über explizite Assoziationsenden. Diese
Assoziationsenden werden dort unter anderem verwendet, um zwischen ei-
ner gewöhnlichen Assoziation, einer Aggregation und einer Komposition zu
unterscheiden. In unserem vereinfachten Metamodell verzichten wir auf die
Assoziationsenden und verwenden lediglich eine Komposition, die durch eine
von Association abgeleitete Metaklasse Composition repräsentiert wird.
Anhang A enthält das vollständige Metamodell, das im Rahmen unserer
Evaluation verwendet wurde.

57

Kapitel 3 Spezifikation von Korrespondenzregeln

In unserem Beispiel synchronisieren wir Klassendiagramme mit Blockdia-
grammen. Daher benötigen wir noch ein Metamodell für Blockdiagramme.
Aufgrund der Tatsache, dass wir in unserem Beispiel bei den Blockdiagram-
men auf Signale und eine Unterscheidung der verschiedenen Verbindungsar-
ten verzichten, haben wir auch dieses Metamodell vereinfacht dargestellt.

Metamodell für Blockdiagramme Das Metamodell für Blockdiagramme
ist in der Abbildung 3.2 zu sehen. Sämtliche Modellelemente eines Blockdia-
gramms basieren auf der abstrakten Metaklasse Element, die ein Attribut
name:String enthält. Somit können alle Modellelemente benannt werden.

Connection

Process

 System

children

src

tgt

 Connectable

0..*1

1

Block

outgoing

incoming

0..*

0..*

Element

+ name : String

src

tgt

Abbildung 3.2: Metamodell für Blockdiagramme

Die hierarchische Struktur eines Blockdiagramms wird über die Komposi-
tionsbeziehung children zwischen den Metaklassen Block und Connectable

hergestellt. Der oberste Block in der Hierarchie eines Blockdiagramms stellt
das modellierte System dar. Dieser spezielle Block wird durch die Meta-
klasse System repräsentiert. Modellelemente eines Blockdiagramms, die mit-
einander verbunden werden können, erben von der abstrakten Metaklasse
Connectable. Hierzu zählen die Metaklassen Block, Process und die von
Block abgeleitete Metaklasse System. Eine Verbindung zwischen diesen Ele-
menten wird durch die Metaklasse Connection mit ihren Assoziationsbezie-
hungen (src und tgt) zur Metaklasse Connectable realisiert.

58

3.1 Grundlagen

Blockdiagramm in abstrakter Syntax In Abbildung 2.3 (siehe Seite 23)
haben wir ein SDL-Blockdiagramm in der graphischen konkreten Syntax
kennen gelernt. Abbildung 3.3 hingegen zeigt das SDL-Blockdiagramm als
UML-Objektdiagramm. Ein UML-Objektdiagramm besteht aus Objekten
und Beziehungen zwischen diesen Objekten. Ein Objekt wird als Rechteck
dargestellt und enthält im oberen Teil einen Bezeichner. Der Bezeichner
setzt sich aus einem optionalen Objektnamen und dem darauf folgenden,
durch einen Doppelpunkt getrennten, Klassennamen zusammen. Der untere
Teil enthält einen optionalen Bereich, in dem Attribute dargestellt werden
können. Eine Beziehung zwischen zwei Objekten wird durch eine Linie dar-
gestellt, die optional durch einen Namen annotiert werden kann. In der UML
wird eine Beziehung zwischen Objekten Link genannt.

name=“ProSys“

s:System

name=“Station“

b1:Block

name=“Interlock“

b2:Block

name=“Stopper“

b3:Block

children

children

children

name=“c1“

c1:Connection

src

tgt

name=“Switch“

b4:Block

name=“Control“

p1:Process

name=“c3“

c3:Connection

src tgt

name=“c2“

c2:Connection

name=“c4“

c4:Connection

children

children
src

tgt src

tgt

Abbildung 3.3: Blockdiagramm in abstrakter Syntax

Die in Abbildung 3.3 dargestellten Objekte und Links sind Instanzen der
im Metamodell spezifizierten Klassen und Assoziationsbeziehungen. Bei-
spielsweise stellen die Objekte b1 und b4 Instanzen der Klasse Block dar
und der Link zwischen b1 und c3 eine Instanz der Assoziationsbeziehung
src, die zwischen den Klassen Connectable und Connection in dem in Ab-
bildung 3.2 spezifizierten Metamodell definiert wurde.

59

Kapitel 3 Spezifikation von Korrespondenzregeln

Diese Art der Darstellung eines Modells nennt man ein Modell in abstrak-
ter Syntax. Diese Darstellung werden wir verwenden, wenn wir Korrespon-
denzbeziehungen zwischen Modellen mit Korrespondenzregeln spezifizieren.

Aufgrund der Darstellung der abstrakten Syntax in Form eines UML-
Objektdiagramms und der Tatsache, dass UML-Objektdiagramme als ge-
typte und attributierte Graphen interpretiert werden können [Zün01], liegt
es nahe, Graphgrammatiken und die Technik der Graphersetzung zur Spe-
zifikation und Ausführung von Änderungsoperationen zu nutzen. Im nun
folgenden Unterabschnitt gehen wir daher kurz auf Graphgrammatiken und
die damit verbundene Graphersetzung ein. Für eine detaillierte Beschrei-
bung verweisen wir auf [Roz97].

3.1.2 Graphgrammatiken

Analog zu klassischen Chomsky-Grammatiken, die – vereinfacht ausgedrückt
– aus einer Menge von Produktionsregeln bestehen, besteht eine Graphgram-
matik aus einer Menge von Graphgrammatikregeln. Beide Grammatiken de-
finieren die durch sie erzeugbaren Wörter einer Sprache. Während jedoch
bei einer klassischen Grammatik ein Wort durch eine Zeichenkette repräsen-
tiert wird, besteht ein Wort einer Graphgrammatik aus einem Graphen. Das
bedeutet, dass eine Graphgrammatik die durch sie erzeugbaren Graphen be-
schreibt.

Grundsätzlich besteht eine Graphgrammatikregel aus einer linken und ei-
ner rechten Regelseite, deren Elemente durch Knoten und Kanten repräsen-
tiert werden, also Graphen sind. In Abbildung 3.4 sehen wir ein Beispiel
für eine Graphgrammatikregel in zwei unterschiedlichen Notationen: Abbil-
dung 3.4(a) zeigt die Graphgrammatikregel in der traditionellen Darstellung
mit linker und rechter Regelseite; in der Abbildung 3.4(b) ist dieselbe Regel
in einer kompakteren Darstellung zu sehen, die aus nur einem einzigen Gra-
phen besteht. In beiden Fällen verwenden wir zur Darstellung der Graphen
UML-Objektdiagramme.

In der traditionellen Darstellung in Abbildung 3.4(a) sind die linke Re-
gelseite und die rechte Regelseite durch ein Zuweisungszeichen (

”
::=“) von-

einander getrennt. Das erste UML-Objektdiagramm repräsentiert die linke
Regelseite, die zwei Objekte enthält: ein Objekt x und ein Objekt y. Beide
Objekte sind vom Typ Connectable und tauchen auch auf der rechten Re-
gelseite unserer Graphgrammatikregel auf. Durch die Verwendung derselben
Namen x und y sowohl für Objekte der linken als auch der rechten Regel-
seite wird ausgedrückt, dass es sich hierbei um dieselben Objekte handelt.

60

3.1 Grundlagen

x:Connectable

y:Connectable

::=

x:Connectable

y:Connectable

z:Connection

src

tgt

(a) Traditionelle Notation

++

++

++

src

tgt

y:Connectable

x:Connectable

z:Connection

(b) Kompakte Notation

Abbildung 3.4: Graphgrammatikregel in unterschiedlichen Notationen

Die rechte Regelseite enthält allerdings ein zusätzliches Objekt z vom Typ
Connection, welches zwei Links (src und tgt) zu den Objekten x und y be-
sitzt. Dieses Objekt repräsentiert eine Verbindung zwischen zwei Elementen
eines Blockdiagramms.

In Abbildung 3.4(b) ist die kompaktere Regeldarstellung zu sehen. Dabei
repräsentieren die Objekte und Links, die nicht mit ++ annotiert sind, alle
Elemente, die sowohl auf der linken als auch auf der rechten Regelseite vor-
kommen. Die mit ++ annotierten Objekte und Links hingegen repräsentieren
Elemente, die nur auf der rechten Regelseite vorkommen. Diese Objekte und
Links sind zusätzlich grün dargestellt. In dieser Arbeit werden wir nur noch
diese Kurzschreibweise für Graphgrammatikregeln verwenden.

Die Semantik einer Graphgrammatikregel entspricht der Semantik klas-
sischer Grammatiken in formalen Sprachen. Die Anwendung einer Graph-
grammatikregel ändert ein Objektdiagramm ähnlich wie eine Textgrammati-
kregel eine Zeichenfolge ändert. Im Gegensatz zu einer Produktionsregel ei-
ner klassischen Grammatik wird eine Graphgrammatikregel jedoch auf einen
Graphen angewendet. Hierzu wird zuerst das Muster der linken Regelseite
im Graphen gesucht und anschließend das im Graphen gefundene Muster
durch das Muster der rechten Regelseite ersetzt. Tatsächlich werden bei der
Anwendung einer Graphgrammatikregel allerdings die Elemente, die sowohl
auf der linken als auch auf der rechten Regelseite vorkommen, nicht ersetzt,
sondern beibehalten und nur neue Elemente dem Graphen hinzugefügt.

Bei der kompakten Darstellung einer Graphgrammatikregel zeigt sich ein
besonderer Vorteil dieser Kurzschreibweise. Die Kennzeichnung mit ++ be-
tont in der kompakten Darstellung einer Graphgrammatikregel die Bedeu-

61

Kapitel 3 Spezifikation von Korrespondenzregeln

tung dieser Elemente: Diese Elemente werden zum UML-Objektdiagramm
hinzugefügt, sobald eine Zuordnung der Elemente der linke Regelseite im
UML-Objektdiagramm erfolgreich durchgeführt werden konnte.

In Abbildung 3.5 ist ein Beispiel für eine Anwendung einer Graphgram-
matikregel zu sehen. Dabei wenden wir die Graphgrammatikregel aus Ab-
bildung 3.4 auf das UML-Objektdiagramm aus Abbildung 3.3 an. Um die
Graphgrammatikregel an einer bestimmten Stelle im UML-Objektdiagramm
anwenden zu können, müssen zuerst die Objekte und Links der linken Regel-
seite auf Objekte und Links im UML-Objektdiagramm abgebildet werden.
Dieser Vorgang wird auch Binden genannt.

name=“ProSys“

s:System

name=“Station“

b1:Block

name=“Interlock“

b2:Block

name=“Stopper“

b3:Block

children

children

children

name=“c1“

c1:Connection

src

tgt

name=“Switch“

b4:Block

name=“Control“

p1:Process

name=“c3“

c3:Connection

src tgt

name=“c2“

c2:Connection

name=“c4“

c4:Connection

children

childrensrc

tgt src

tgt

c5:Connection

src

tgt

[1]

[3]

[2]

Abbildung 3.5: Blockdiagramm nach der Regelanwendung

In unserem Beispiel binden wir den Knoten x der Graphgrammatikregel an
das Objekt b4 (siehe gelb schattierter Bereich [1]) und den Knoten y an das
Objekt p1 (siehe gelb schattierter Bereich [2]). Diese Zuordnung ist möglich,
da sowohl Block als auch Process von der Metaklasse Connectable abge-
leitet sind. Durch diese Vererbung kann ein Objekt vom Typ Connectable

sowohl an Objekte des Typs Block als auch an Objekte des Typs Process

gebunden werden.

62

3.2 Tripel-Graph-Grammatiken

Wurde eine gültige Zuordnung gefunden, so kann die Graphgrammatik-
regel ausgeführt werden. Dies bedeutet, dass nun alle Objekte und Links
erzeugt werden, die zwar in der rechten Regelseite, aber nicht in der lin-
ken Regelseite vorkommen. Dabei wird die zuvor gefundene Zuordnung, das
heißt, die bereits gebundenen Objekte und Links, beibehalten und nur Ob-
jekte und Links erzeugt, die sich nur auf der rechten Regelseite befinden. In
unserem Beispiel wird daher ein Kanal c5 mit den dazugehörigen Links src
und tgt zwischen den Objekten b4 und p1 erzeugt, wie in Abbildung 3.5
zu sehen ist (siehe grün schattierter Bereich [3]). In unserem Beispiel haben
wir nur eine mögliche Regelanwendung gezeigt. Natürlich können wir die
Graphgrammatikregel immer wieder ausführen - auch wenn das nicht immer
einen Sinn ergibt.

Zusätzlich zu den hier dargestellten Konzepten verfügen Graphgramma-
tikregeln über weitere Konzepte, wie zum Beispiel negative Anwendungsbe-
dingungen, Attributbedingungen und -zuweisungen sowie Löschoperationen.
Diese Konzepte benötigen wir im Moment nicht. Wir werden uns daher mit
ihnen später an geeigneter Stelle beschäftigen.

3.2 Tripel-Graph-Grammatiken

Tripel-Graph-Grammtiken (TGGs) sind bereits 1994 von Andy Schürr
[Sch94] als Erweiterung von T. W. Pratts Pair-Grammatiken [Pra71] ein-
geführt und formal definiert worden. In diesem Abschnitt verzichten wir
daher auf eine formale Darstellung und stellen nur die Idee sowie die zu-
grundeliegenden Prinzipien der Tripel-Graph-Grammatiken vor.

3.2.1 Syntax und Semantik

Eine Tripel-Graph-Grammatik besteht – genau wie eine Graphgrammatik
– aus einer Menge von Graphgrammatikregeln. Die Graphgrammatikregeln
einer Tripel-Graph-Grammatik werden TGG-Regeln genannt. Sie stellen die
zur Modellsynchronisation benötigten Korrespondenzregeln dar und ermögli-
chen uns – wie noch später gezeigt wird – eine Modellsynchronisation durch-
zuführen. In diesem Abschnitt beschäftigen wir uns mit der Syntax und
Semantik solcher Korrespondenzregeln.

63

Kapitel 3 Spezifikation von Korrespondenzregeln

Syntax

Die Spezifikation von Korrespondenzregeln zeigen wir an unserem bereits
aus Abschnitt 2.1 bekannten Beispiel. Die zuvor nur informell beschriebene
Zuordnung der Elemente (siehe Abbildung 2.4, Seite 24) wird in diesem
Abschnitt mit TGG-Regeln formal definiert. Die Spezifikation einer TGG-
Regel erfolgt im Gegensatz zur informellen Zuordnung jedoch nicht in der
konkreten sondern in der abstrakten Syntax der Modelle.

Regel 1 (Zuordnung 2 und 3) In Abbildung 3.6 ist eine TGG-Regel dar-
gestellt. Auf den ersten Blick entspricht die TGG-Regel einer gewöhnlichen
Graphgrammatikregel. Sie besitzt eine linke sowie eine rechte Regelseite.
Der Unterschied zu einer Graphgrammatikregel ist die Aufteilung der TGG-
Regel in drei unterschiedliche Bereiche, die verschiedenen Domänen zuge-
ordnet sind. Im linken Bereich der TGG-Regel befindet sich die Domäne der
Blockdiagramme. Die Elemente der Klassendiagrammdomäne befinden sich
im rechten Bereich der TGG-Regel. Der mittlere Bereich hingegen enthält
Objekte, die eine explizite Korrespondenzbeziehung zwischen den Elementen
eines Block- und eines Klassendiagramms definieren. Diese Objekte werden
Korrespondenzobjekte genannt. Dementsprechend wird der mittlere Bereich
als Korrespondenzdomäne bezeichnet. Jeder der drei Bereiche kann als ei-
genständige Graphgrammtikregel aufgefasst werden – daher auch der Name

”
Tripel-Graph-Grammatik“.2

Die in Abbildung 3.6 gezeigte TGG-Regel Block2Class definiert eine Kor-
respondenzbeziehung zwischen einem Block eines Blockdiagramms und den
Elementen eines Klassendiagramms. Sie entspricht der informellen Zuord-
nung 3 aus Abbildung 2.4 (vergleiche Seite 24). Dabei stellen die Elemente
der linken Regelseite den Kontext der Regel dar. Das bedeutet, dass die Re-
gel nur dann ausgeführt wird, wenn diese Elemente gebunden werden können.
Die mit ++ annotierten Elemente sind die zu erzeugenden Elemente. Das
neue Korrespondenzobjekt zwischen den Elementen, das ebenfalls mit ++

gekennzeichnet ist, repräsentiert dabei explizit die Korrespondenzbeziehung
zwischen den Elementen der einzelnen Modelle.

Für die in Abbildung 2.4 dargestellte Zuordnung 2 ist keine eigene TGG-
Regel nötig, da die vorgestellte TGG-Regel Block2Class die Zuordnung eines
in einem System enthaltenen Blocks bereits abdeckt. Dies liegt daran, dass

2Die vertikal eingezeichneten Linien gehören nicht zur Syntax einer TGG-Regel. Sie
dienen lediglich zur besseren Darstellung der drei unterschiedlichen Domänen.

64

3.2 Tripel-Graph-Grammatiken

:Class

:Stereotype

elements

:ClassDiagram

:Bl2Cl

:Block

:Block

++

:Composition

:Class

source

target

stereotypes

:Bl2Cl

++

children

elements

elements
++

++

++

++

++

++

++

++

++ ++

++

++

++

Blockdiagramm-

domäne

Korrespondenz-

domäne

Klassendiagramm-

domäne

Abbildung 3.6: TGG-Regel Block2Class

im Metamodell für Blockdiagramme ein System von einem Block erbt und
damit auch ein Block ist (vergleiche Abbildung 3.2, Seite 58).

Regel 2 (Zuordnung 4) Die in Abbildung 2.4 dargestellte Zuordnung 4
eines in einem Block enthaltenen Prozesses wird in der TGG-Regel Pro-
cess2Class ausgedrückt. Diese TGG-Regel ist in Abbildung 3.7 zu sehen.
Die TGG-Regel ist sehr ähnlich zu der zuvor beschriebenen TGG-Regel
Block2Class aufgebaut. Der Unterschied ist hier, dass statt eines Blocks
nun ein Prozess zu einer Klasse in Beziehung gesetzt wird.

Regel 3 (Zuordnung 5 und 6) Die TGG-Regel für die Zuordnung von
Kanälen eines Blockdiagramms zu Assoziationen in einem Klassendiagramm
(vgl. Abbildung 2.4, Zuordnungen 5 und 6) ist hingegen ein wenig anders.
Sie ist in Abbildung 3.8 zu sehen. Die TGG-Regel drückt aus, dass ein
Kanal zwischen Elementen des Blockdiagramms zu einer Assoziation zwi-
schen zugehörigen Klassen des Klassendiagramms korrespondiert. Dabei ist
es unerheblich, ob der Kanal zwischen einem System und einem Block, zwi-
schen zwei Blöcken oder Prozessen, oder zwischen einem Block und einem
Prozess besteht, da in dieser TGG-Regel sowohl das Quell- als auch das

65

Kapitel 3 Spezifikation von Korrespondenzregeln

:Class

:Stereotype

elements

:ClassDiagram

:Bl2Cl

:Process

:Block

++

:Composition

:Class

source

target

stereotypes

:Pr2Cl

++

children

elements

elements
++

++

++

++

++

++

++

++

++ ++

++

++

++

Abbildung 3.7: TGG-Regel Process2Class

Zielelement der Verbindung als Connectable-Objekt spezifiziert wurde. Da
sowohl System, Block als auch Process von Connectable erben (vergleiche
Abbildung 3.2, Seite 58), ist diese Regel auf Kanäle zwischen allen Elemen-
ten anwendbar, die direkt oder indirekt von Connectable abgeleitet sind.
Statt also explizit verschiedene TGG-Regeln für die einzelnen Varianten an-
zugeben, reicht an dieser Stelle eine einzige TGG-Regel aus.3

:Class

elements

:ClassDiagram

:Co2Cl

:Connection

:Connectable

++

:Association

src

target

:Cn2As

elements
++

++

++

++

++ ++

++
source
++

:Class:Co2Cl:Connectable

tgt
++

Abbildung 3.8: TGG-Regel Connection2Association

3Hierbei wurde allerdings vereinfachend angenommen, dass Kanäle über die Grenzen
einer Hierarchiebene erlaubt sind.

66

3.2 Tripel-Graph-Grammatiken

Axiom (Zuordnung 1) Die initiale Zuordnung 1 eines Blockdiagramms
zu einem Klassendiagramm erfolgt durch das in Abbildung 3.9 dargestellte
Axiom. Das Axiom setzt ein System zu einem Klassendiagramm in Be-
ziehung, welches eine mit einem entsprechenden Stereotyp gekennzeichnete
Klasse enthält. Dies ist die Startsituation, auf die unsere TGG-Regeln an-
gewendet werden können.

:System :Class

:Stereotype

elements

:ClassDiagram

:Sy2Cl

stereotypes

Abbildung 3.9: TGG-Axiom System2Class

Korrespondenzmetamodell

Die Grundlage zur Spezifikation der TGG-Regeln bilden die in den Abbil-
dung 3.1 und 3.2 dargestellten Metamodelle. Zusätzlich muss jedoch noch ein
Korrespondenzmetamodell spezifiziert werden, welches die Typen der Kor-
respondenzobjekte definiert. Abbildung 3.10 zeigt das in unserem Beispiel
verwendete Korrespondenzmetamodell.

Das Metamodell definiert verschiedene Klassen und Assoziationen, mit
denen die Elemente der zwei Modelle zueinander in Beziehung gesetzt wer-
den können. Beispielsweise setzt eine Instanz der Klasse Cn2As ein Objekt
vom Typ Connection und Association zueinander in Beziehung. Hierzu
besitzt Cn2As eine Assoziation zur Klasse Connection und eine Assoziation
zur Klasse Association. Für eine gültige Zuordnung müssen beide Assozia-
tionsbeziehungen gesetzt sein. Daher ist die Kardinalität in beiden Fällen
jeweils mit 1 angegeben.

Die Klasse Co2Cl stellt eine Beziehung zwischen einer Instanz der
Klasse Connectable und Instanzen der Klassen Stereotype, Class und
Composition her. Aufgrund der Tatsache, dass Process und Block direkt
oder – wie im Fall von System – indirekt von Connectable abgeleitet sind,
erben die Klassen Pr2Cl und Bl2Cl von der Klasse Co2Cl und Sy2Cl von
der Klasse Bl2Cl.

67

Kapitel 3 Spezifikation von Korrespondenzregeln

blockdiagram

Connection

Process

System

 Connectable

Block

Cn2As

Pr2Cl

Sy2Cl

Co2Cl

Bl2Cl

Association

Composite

ClassDiagram

Class

Stereotype

1

1

1

0..1

1

1

correspondence classdiagram

1

Abbildung 3.10: Metamodell für die Korrespondenzobjekte

Mit Hilfe von Vererbungsbeziehungen können TGG-Regeln häufig allge-
meiner formuliert werden (vgl. Abbildung 3.8). Außerdem können zu den
Vererbungsbeziehungen zusätzliche Einschränkungen definiert werden, um
auf diese Art und Weise eine allgemein gültige Wiederverwendung von TGG-
Regeln zu ermöglichen [KKS07]. In der hier vorliegenden Arbeit werden
solche Einschränkungen jedoch nicht weiter berücksichtigt. In dieser Ar-
beit wird die Vererbung zwischen den Klassen im Korrespondenzmetamo-
dell hauptsächlich dazu genutzt, um Assoziationen wiederzuverwenden. Die
beiden Klassen Pr2Cl und Bl2Cl nutzen beispielsweise die durch die Klasse
Co2Cl vorgegebenen Assoziationen. Sie benötigen keine weiteren Assozia-
tionen, um die Beziehung zwischen den beteiligten Modellelementen herzu-
stellen. Die Klasse Sy2Cl hingegen wird verwendet, um eine Beziehung zwi-
schen Instanzen vom Typ System und dazu korrespondierenden Instanzen
vom Typ Class und ClassDiagram herzustellen. Hierzu wird eine zusätz-
liche Assoziation zur Klasse ClassDiagram benötigt. Allerdings benötigt
Sy2Cl keine Assoziation zur Klasse Composition, was die Kardinalität 0..1
der Assoziation zwischen Co2Cl und Composite erklärt.

68

3.2 Tripel-Graph-Grammatiken

Semantik

Die Semantik einer TGG-Regel stimmt mit der Semantik einer Graphgram-
matikregel überein. Der Unterschied besteht lediglich darin, dass die TGG-
Regel – zusammen mit weiteren TGG-Regeln – beschreibt, wie ein Block-
diagramm sowie ein dazu korrespondierendes Klassendiagramm gleichzeitig,
also simultan und konsistent zueinander, erzeugt werden können. Die zusätz-
lich eingeführten Korrespondenzobjekte definieren gültige Korrespondenz-
beziehungen zwischen den Elementen der unterschiedlichen Modelltypen, in
unserem Beispiel also zwischen einem Block- und einem Klassendiagramm.
Im Folgenden stellen wir die simultane Erzeugung beider Modelle an einem
Beispiel vor.

Beispiel für die Regelanwendung Die Anwendung der TGG-Regeln ist
in den Abbildungen 3.11–3.13 verdeutlicht. Wir beginnen mit der TGG-
Regel Block2Class aus Abbildung 3.6 und wenden diese TGG-Regel auf das
Axiom System2Class aus Abbildung 3.9 an. Die Abbildung 3.11 zeigt das
Ergebnis dieser Regelanwendung. Die TGG-Regel Block2Class konnte auf
die durch das Axiom angegebene Startsituation angewendet werden, da das
Objekt System von Block erbt und damit auch vom Typ Block ist. Aufgrund
der Vererbungsbeziehungen im Korrespondenzmetamodell können auch die
Korrespondenzobjekte gebunden werden, so dass die TGG-Regel ausgeführt
werden kann. Durch die Ausführung entsteht ein neuer Block mit einer dazu
korrespondierenden Klasse im Klassendiagramm, die über eine Komposition
und einen Stereotyp verfügt.

Die TGG-Regel Block2Class wird noch zweimal ausgeführt, nun jedoch
auf dem neu erzeugten Block und der zugehörigen Klasse. Das Ergebnis der
zweimaligen Regelanwendung ist in Abbildung 3.12 zu sehen. Hierbei wurden
zwei neue Blöcke erzeugt, die mit dem in Abbildung 3.11 erstellten Block
verbunden sind. Dementsprechend wurden im Klassendiagramm zwei dazu
korrespondierende Klassen mit Stereotypen und Kompositionen erzeugt.

Zuletzt wenden wir die TGG-Regel Connection2Association an. Diese
Regel erzeugt einen Kanal zwischen zwei Blöcken sowie eine dazu korrespon-
dierende Assoziation im Klassendiagramm. Das Ergebnis dieser Regelanwen-
dung ist in Abbildung 3.13 dargestellt. Das durch die Anwendung der TGG-
Regeln entstandene UML-Objektdiagramm repräsentiert einen Ausschnitt
aus dem Block- und Klassendiagramm der Abbildung 2.3 sowie einem UML-
Objektdiagramm, welches die Korrespondenzen zwischen den Diagrammen
darstellt. Die erzeugten Diagramme entsprechen dabei der Struktur, die

69

Kapitel 3 Spezifikation von Korrespondenzregeln

:System :Class

:Stereotype

elements

:ClassDiagram

:Sy2Cl

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

children

source

stereotypes

Abbildung 3.11: Anwendung der Regel Block2Class auf das Axiom

durch die Blöcke ProSys, Station, Interlock und Stopper vorgegeben
wird.

3.2.2 Erweiterungen

Im vorherigen Abschnitt wurde das zugrunde liegende Prinzip der TGGs
erläutert. Auf dieser Grundlage können beide Modelle simultan mit den
Regeln einer TGG aufgebaut und die Elemente der Modelle zueinander in
Beziehung gesetzt werden. Für einen Einsatz in der Praxis fehlen jedoch noch
einige wichtige Konzepte. So müssen häufig Attributwerte von einzelnen
Objekten abgefragt und gesetzt werden können. Ebenso muss es möglich
sein, zusätzliche Bedingungen, wie zum Beispiel die Abwesenheit bestimmter
Objekte4, zu überprüfen. Die hierzu notwendigen Erweiterungen werden in
diesem Abschnitt vorgestellt.

Attributbedingungen

In UML-Objektdiagrammen verfügen Objekte über Attribute, die mit einem
konkreten Wert belegt sein können. Wenn wir die Beziehungen zwischen den

4Solche Bedingungen werden Negative Anwendungsbedingungen genannt.

70

3.2 Tripel-Graph-Grammatiken

:System :Class

:Stereotype

elements

:ClassDiagram

:Sy2Cl

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

children

source

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

stereotypes

source

children

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

stereotypes

source

children

Abbildung 3.12: Zweimalige Anwendung der Regel Block2Class

71

Kapitel 3 Spezifikation von Korrespondenzregeln

:System :Class

:Stereotype

elements

:ClassDiagram

:Sy2Cl

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

children

source

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

stereotypes

source

children

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

stereotypes

source

children

:Association:Cn2As:Connection

src

tgt

source

target

Abbildung 3.13: Anwendung der Connection2Association Regel

72

3.2 Tripel-Graph-Grammatiken

Elementen der unterschiedlichen Modelle beschreiben, möchten wir häufig
Bedingungen an diese Objekte stellen, die über deren Attributwerte aus-
gedrückt werden. In unserem Beispiel sollen ein Block und eine Klasse nur
dann zueinander in Beziehung gesetzt werden, wenn sie einen identischen
Namen haben. Daher müssen wir in der Lage sein, die Attributwerte dieser
Objekte abzufragen und – insbesondere im Rahmen der noch später vorzu-
stellenden Modellsynchronisation – auch zu verändern.

Alte Notation Eine Möglichkeit ist, eine Attributbedingung direkt in dem
davon betroffenen Objekt anzugeben. Falls zur Formulierung der Bedingung
die Attributwerte unterschiedlicher Objekte verwendet werden müssen, kann
die Bedingung ausserhalb eines konkreten Objektes direkt in der TGG-Regel
spezifiziert werden. In Abbildung 3.14 ist die um Attributbedingungen
erweiterte TGG-Regel aus Abbildung 3.6 dargestellt. Um innerhalb der
Bedingungen die Attribute bestimmter Objekte referenzieren zu können,
erhalten die betroffenen Objekte einen eindeutigen Bezeichner, in diesem
Fall bl und cl. Im Gegensatz dazu muss im Fall des Stereotyps kein Objekt-
name vergeben werden, da die Zuweisung direkt in dem betroffenen Objekt
stattgefunden hat. Diese Art der Spezifikation von Attributbedingungen ist
hauptsächlich durch existierende Graphtransformationswerkzeuge, wie zum
Beispiel Progres [SWZ99] oder Fujaba [Fuj], motiviert.

:Class

:Stereotype

elements

:ClassDiagram

:Bl2Cl

bl:Block

:Block

++

:Composition

cl:Class

source

target

stereotypes

:Bl2Cl

++

children

elements

elements
++

++

++

++

++

++

++

++

++ ++

++

++

++

{bl.name = cl.name}

kind = „block“

Abbildung 3.14: Alte Notation für Attributwerte

73

Kapitel 3 Spezifikation von Korrespondenzregeln

Die Idee hierbei ist, dass Attributzuweisungen, wie sie beispielsweise bei
der Erzeugung neuer Objekte benötigt werden, prinzipiell aus den spezifizier-
ten Bedingungen abgeleitet werden können. Beispielsweise kann aus der Be-
dingung kind.name =

”
block“ die Zuweisung kind.name :=

”
block“ ab-

geleitet werden. Aus der Bedingung bl.name = cl.name kann für das Ob-
jekt bl die Attributzuweisung name := cl.name und für das Objekt cl die
Attributzuweisung name := bl.name abgeleitet werden.

Für komplexere Bedingungen kann der Aufwand zur automatischen Bere-
chung solcher Attributzuweisungen allerdings sehr hoch werden. Bereits bei
einer Bedingung wie zum Beispiel cl.name = bl.name.concat(’Block’)

ist nicht sofort ersichtlich, wie daraus automatisch eine Zuweisung an
bl.name abgeleitet werden kann.5 Daher müssen in den meisten TGG-
Implementierungen sowohl Attributbedingungen als auch Attributzuweisun-
gen direkt in den TGG-Regeln spezifiziert werden.

Dieser Ansatz funktioniert, insofern man die TGGs zur Modelltransfor-
mation, Modellintegration oder Modellsynchronisation einsetzt und darauf
achtet, dass die spezifizierten Attributzuweisungen nicht im Widerspruch zu
den spezifizierten Attributbedingungen stehen. Die eigentliche Semantik der
TGGs, das heißt, die simultane Erzeugung beider Modelle, wird damit al-
lerdings nicht unterstützt. Dies liegt daran, dass solche Bedingungen zwar
Aussagen über die Beziehung der Attribute zueinander machen, aber keine
Aussagen darüber, mit welchen Werten diese Attribute belegt werden sollen,
falls alle Objekte neu erzeugt werden. Das ist auch nicht weiter verwun-
derlich, da ein solches Szenario in der Praxis bisher keine Anwendung ge-
funden hat. Allerdings sollte dies zumindest konzeptionell durch eine TGG
unterstützt werden.6 Aus diesem Grund wird hier ein neues Konzept für At-
tribute eingeführt. Es beseitigt diesen Nachteil und ist dennoch kompatibel
zu den bereits existierenden TGG-Implementierungen.

Neue Notation Die Kernidee besteht aus der Einführung von Attributen
in den Korrespondenzobjekten. Die Einführung eines Korrespondenzattri-
butes geschieht allerdings nur dann, wenn Attributwerte zwischen Objekten
in Beziehung gesetzt werden. Bei der Erzeugung beider Modelle mit ei-
ner TGG können diese Attribute mit konkreten Werten belegt und daraus

5Die Zuweisung hierfür könnte beispielsweise bl.name := cl.name.substring(0,
cl.name.lastIndexOf(’Block’)) lauten. Die Operation lastIndexOf(s:String)
existiert in OCL allerdings nicht und müsste daher zunächst definiert werden. Eine
automatische Ableitung solcher Zuweisungen wird daher derzeit nicht unterstützt.

6vgl. auch die Arbeit von Alexander Königs [Kön08].

74

3.2 Tripel-Graph-Grammatiken

die Attributwerte für die Modellelemente abgeleitet werden. Hierzu wird
die Ableitungsvorschrift in Form einer Bedingung für jede Domäne einzeln
angegeben. Die neue Notation ist in Abbildung 3.15 angegeben. Die abge-
rundeten Rechtecke repräsentieren die Bedingungen. Jede Bedingung kann
auch als Zuweisung an das Objektattribut interpretiert werden, deren Wert
entweder direkt angegeben ist – wie im Fall der Bedingung für den Stereotyp
– oder aus dem Wert des Korrespondenzattributs berechnet wird.

:Class

:Stereotype

elements

:ClassDiagram

:Bl2Cl

:Block

:Block

++

:Composition

:Class

source

target

stereotypes

:Bl2Cl

++

children

elements

elements
++

++

++

++

++

++

++

++

++ ++

++

++

++

bl.name =

cn.name
++ ++

bl cn

cl.name =

cn.name

++ ++

cn cl

st.kind =

„block“

st

++
++

Abbildung 3.15: Neue Notation für Attributbedingungen

Für die Bedingungen existieren grundsätzlich keine Einschränkungen. Für
eine inkrementelle Modellsynchronisation müssen allerdings die in den Be-
dingungen referenzierten Objekte lokal erreichbar sein, d. h., Pfadausdrücke
zu Objekten, die nicht explizit in der TGG-Regel enthalten sind, dürfen in
diesem Fall nicht verwendet werden. Darüber hinaus ist es – wie schon bei
der alten Notation – vorteilhaft, wenn aus einer Bedingungen die Zuweisung
an das Attribut des Korrespondenzobjekts automatisch ableitbar ist. Für die
Fälle, in denen dies nicht möglich ist, sollte eine technische Realisierung die
Möglichkeit bereit stellen, mit der solche Zuweisungen manuell vom Benutzer
angegeben werden können.

Die Einführung von Attributen in Korrespondenzobjekten haben wir schon
in früheren Arbeiten dargestellt [KW07]. Ähnliche Überlegungen findet man
auch in der Arbeit von Alexander Königs [Kön08], wo zusätzliche Metain-

75

Kapitel 3 Spezifikation von Korrespondenzregeln

formationen, wie zum Beispiel die Benutzerkennung oder der Zeitpunkt der
Erstellung eines Korrespondenzobjekts, in attributierten Korrespondenzob-
jekten gespeichert werden. Im Unterschied zu unserem Vorschlag werden
dort die Bedingungen direkt in den Objekten spezifiziert. Darüber hinaus
können die Werte für die Attribute über Parameter, die an die TGG-Regeln
übergeben werden, vorgegeben werden. Eine solche Paramterisierung ist in
unserem Ansatz ebenfalls denkbar. Allerdings war sie für die hier vorge-
stellte Modellsynchronisation nicht notwendig, so dass sie in dieser Arbeit
nicht umgesetzt wurde.

Vorteile der neuen Notation Ein Vorteil der neuen Notation ist, dass da-
mit die simultane Erzeugung beider Modelle realisiert werden kann. Eine
Möglichkeit ist beispielsweise, im Korrespondenzmetamodell intiale Attri-
butwerte für die Korrespondenzobjekte zu definieren. Bei der Erzeugung
eines Korrespondenzobjekts werden dessen Attribute mit den definierten In-
tialwerten belegt, so dass sich die Attributwerte der übrigen Objekte aus den
Attributwerten der Korrespondenzobjekte berechnen lassen könnten. Eine
andere Möglichkeit ist, die Attribute der Korrespondenzobjekte über Para-
meter zu belegen, die einer TGG-Regel übergeben werden.

Ein weiterer Vorteil der Notation besteht darin, dass uns der Attribut-
wert im Korrespondenzobjekt Aufschluss darüber gibt, in welchem Modell
eine Attributwertänderung stattgefunden hat. Erlauben wir, dass beide Mo-
delle geändert werden, ohne dass zwischendurch eine Modellsynchronisation
stattfindet, so kann das Attribut außerdem zur Erkennung eines Konfliktes
herangezogen werden.

:Bl2Cl:Block

name=„Robot“ name=„Robot“

:Class

name=„Robot“

(a) Ausgangssituation

:Bl2Cl:Block

name=„Switch“ name=„Robot“

:Class

name=„Robot“

(b) Benutzer ändert Blocknamen

:Bl2Cl:Block

name=„Robot“ name=„Robot“

:Class

name=„Switch“

(c) Benutzer ändert Klassennamen

:Bl2Cl:Block

name=„Switch“ name=„Robot“

:Class

name=„Shuttle“

(d) Benutzer ändert Block- und Klassenna-
men

Abbildung 3.16: Erkennung von Änderungen und Konflikten

Zur Erläuterung sind in der Abbildung 3.16 verschiedene Situationen dar-
gestellt, bei denen ein Block zu einer Klasse in Beziehung steht. Die Bedin-
gung unserer Regel fordert, dass ein Block und die dazu korrespondierende

76

3.2 Tripel-Graph-Grammatiken

Klasse den gleichen Namen haben. In der Abbildung 3.16(a) wird diese Be-
dingung erfüllt. Sie stellt die Ausgangssituation dar. Ändert der Benutzer
den Namen des Blocks (vgl. Abbildung 3.16(b)), so stimmt der Attributwert
des Korrespondenzobjekts mit dem Namen der Klasse überein. Hat der Be-
nutzer hingegen den Namen der Klasse geändert (vgl. Abbildung 3.16(c)), so
sind der Attributwert des Korrespondenzobjekts und der Name des Blocks
identisch. Nach einem entsprechenden Vergleich kann nun der Blockname an
die Klasse oder der Klassenname an den Block propagiert werden. Ohne ein
solches Korrespondenzattribut ist diese Information nicht direkt verfügbar
und muss über andere Wege, wie zum Beispiel durch eine Aufzeichnung von
Änderungsereignissen, ermittelt werden. Erlauben wir hingegen, dass sowohl
der Name des Blocks als auch der Name der Klasse geändert werden dürfen,
ohne dass zwischendurch eine Modellsynchronisation stattfindet, so kann das
Korrespondenzattribut zur Erkennung dieses Konfliktes herangezogen wer-
den (vgl. Abbildung 3.16(d)).

Negative Anwendungsbedingungen

In dem vorangegangenen Abschnitt haben wir Attributbedingungen verwen-
det, um Korrespondenzbeziehungen zwischen Objekten einzuschränken. In
diesem Abschnitt wird das Konzept von Bedingungen weiter verallgemei-
nert. Dazu motivieren wir zuerst eine weitere Art von Bedingungen – die
sogenannten Negativen Anwendungsbedingungen – an einem Beispiel und dis-
kutieren die damit verbundenen Probleme im Kontext der TGGs. Am Ende
stellen wir unseren Ansatz vor, der sowohl mit Attributbedingungen als auch
mit Negativen Anwendungsbedingungen einheitlich umgeht.

Motivation Zur Motivation betrachten wir die TGG-Regel aus Abbil-
dung 3.7, in der ein Prozess zu einem übergeordneten Block hinzugefügt und
in Beziehung zu einer Klasse im Klassendiagramm gesetzt wird. Nun ist es
aber so, dass ein Prozess nur dann zu einem Block hinzugefügt werden darf,
wenn dieser Block keine Blöcke seinerseits enthält (vergleiche Beschreibung
auf Seite 22). Damit eine TGG nur korrekte Diagramme erzeugt, müssen
solche Bedingungen in den TGG-Regeln berücksichtigt werden.

Abbildung 3.17 zeigt die erweiterte TGG-Regel, die genau diese Zusatzbe-
dingung als OCL-Ausdruck enthält: in der Menge children darf kein Objekt
vom Typ Block enthalten sein. Obwohl die Bedeutung dieser Bedingung of-
fensichtlich und eindeutig zu sein scheint, können – je nach Zeitpuntk der
Überprüfung der Bedingung – unterschiedliche Ergebnisse entstehen. Bei-

77

Kapitel 3 Spezifikation von Korrespondenzregeln

:Class

:Stereotype

elements

:ClassDiagram

:Bl2Cl

:Process

++

:Composition

:Class

source

target

stereotypes

:Pr2Cl

++

children

elements

elements
++

++

++

++

++

++

++

++

++ ++

++

++

++

not b.children -> exists(x |

x.oclIsKindOf(Block))

b

++

++

st.kind =

„process“

st

++
++

pr.name =

cn.name
++ ++

pr cn

++

cl.name =

cn.name

++

cn cl

:Block

++ ++

Abbildung 3.17: Erweiterte TGG-Regel Process2Class

spielsweise können wir, wie in Abbildung 3.12 gezeigt, zuerst drei Blöcke
erzeugen. Wollen wir nun mit Hilfe der erweiterten TGG-Regel aus Abbil-
dung 3.17 einen Prozess zu dem Block hinzufügen, der bereits die anderen
zwei Blöcke enthält, so wird dies durch die Bedingung erfolgreich verhin-
dert. Erzeugen wir hingegen zuerst nur einen Block (vgl. Abbildung 3.11)
und wenden dann die TGG-Regel aus Abbildung 3.17 an, so ist die dort
spezifizierte Bedingung erfüllt. Daher wird ein neuer Prozess erzeugt. An-
schließend kann jedoch die TGG-Regel Block2Class angewendet werden, die
in demselben Block einen neuen Block hinzufügt. Damit wird die Bedingung
der erweiterten TGG-Regel Process2Class verletzt und letztendlich erhalten
wir einen Block, der sowohl einen Prozess als auch einen Block enthält. Die-
ses Beispiel zeigt, dass der Überprüfungszeitpunkt der Bedingungen einen
entscheidenden Einfluss auf das Ergebnis hat.

Das Ergebnis der Regelanwendung sollte unabhängig vom Zeitpunkt der
Überprüfung von Bedingungen sein. Aus diesem Grund führen wir hier ein
einheitliches und durchgängiges Konzept für alle Bedingungen ein und präzi-
sieren damit die Semantik der Korrespondenzregeln. Die Idee hinter dem
neuen Konzept ist einfach: Während der Anwendung von TGG-Regeln wer-
den die Bedingungen in Form von Annotationen zu den erzeugten Modellen

78

3.2 Tripel-Graph-Grammatiken

hinzugefügt.7 Nachdem das gesamte Modell konstruiert wurde, werden die
hinzugefügten Bedingungen evaluiert. Die Korrespondenzbeziehungen zwi-
schen zwei Modellen sind nur dann gültig, wenn alle Bedingungen auch nach
der Konstruktionsphase erfüllt sind.

Durch diese Definition wird eine a-posteriori Semantik für Bedingungen
festgelegt, sodass die Bedingungen einer Korrespondenzregel als Invarianten
aufgefasst werden können. In der Praxis kann natürlich der Überprüfungs-
zeitpunkt anders gewählt werden. Beispielsweise können Bedingungen be-
reits während der Anwendung von TGG-Regeln herangezogen werden, um
aus der Menge aller TGG-Regeln die anzuwendende TGG-Regel zu bestim-
men oder zwischen mehreren anwendbaren Regelalternativen zu wählen.
Wichtig hierbei ist aber, dass die oben beschriebene Definition erfüllt wird,
das heißt, dass die Bedingungen auch nach der Anwendung aller TGG-Regeln
erfüllt sind. Wie dies sichergestellt wird bleibt jeder TGG-Implementierung
überlassen.

Kurzschreibweise für Negative Anwendungsbedingungen Als graphi-
sche Notation negativer Anwendungsbedingungen wird in einigen Ansätzen
ein durchgestrichenes Objekt verwendet. Aufgrund der Tatsache, dass es
hierbei zu Mehrdeutigkeiten kommen kann (wenn z. B. nur das Objekt aber
nicht der dazu inzidente Link durchgestrichen dargestellt wird), erlauben wir
in unserer graphischen Notation lediglich das Durchstreichen von Links. In
Abbildung 3.18 sind drei negative Anwendungsbedingungen dargestellt. In
der linken Bildhälfte sind die Anwendungsbedingungen in ihrer graphischen
Kurzschreibweise zu sehen. In der rechten Bildhälfte ist die Semantik der
graphischen Kurzschreibweise in Form eines OCL-Ausdrucks definiert.

Die erste negative Anwendungsbedingung fordert, dass kein Link zwischen
zwei ganz konkreten Objekten existieren darf. Dies wird durch den durchge-
strichenen Link ausgedrückt. Zusätzlich ist der Link rot gefärbt. Dies wird
auch durch die Bedingung auf der rechten Seite der Abbildung ausgedrückt.
Die zweite negative Anwendungsbedingung unterscheidet sich zu der ersten
Anwendungsbedingung dadurch, dass nun eines der Objekte durch ein rot
gestricheltes Rechteck dargestellt wird. Dies bedeutet, dass es keinen Link
zu irgendeinem Objekt dieses Typs geben darf. Die dritte Anwendungsbe-
dingung schließlich fordert, dass zu gar keinem anderen Objekt ein solcher
Link existieren darf. In der Notation wird dafür der Typ des Objektes weg-
gelassen.

7Die Markierung einer Bedingung mit ++ betont dieses Konzept.

79

Kapitel 3 Spezifikation von Korrespondenzregeln

stereotypes

++

not cl.stereotypes ->

exists(x | x = st)

++

:Class :Stereotype

stereotypes

++

:Class :Stereotype

stereotypes

++

:Class

++ ++

:Class :Stereotype

++ ++
++cl st

not cl.stereotypes ->

exists(x | x.isKindOf(

Stereotype)

++

:Class ++

++

cl

cl.stereotypes ->

isEmpty()

++

:Class ++

++

cl

Abbildung 3.18: Negative Anwendungsbedingungen und ihre Übersetzung

Wiederverwendung von Objekten

Bisher verlangen TGGs, dass alle Elemente der zueinander in Beziehung ge-
setzten Modelle erzeugt werden. In einigen Fällen existieren allerdings Mo-
dellelemente, die während der TGG-Regelanwendung weder generiert noch
verändert werden sollen, aber trotzdem in Beziehung zu den generierten Mo-
dellelementen stehen und von diesen referenziert werden. Um dieses Problem
zu lösen, erweitern wir an dieser Stelle die TGGs um ein weiteres Konzept:
die Wiederverwendung von Objekten.

Beispiel Bisher wurde in unserem Beispiel zu jeder neu erzeugten Klasse
auch ein neuer Stereotyp erzeugt und mit dieser Klasse verbunden. Nun
ist es aber so, dass von jeder Stereotypart immer nur ein Stereotypobjekt
existieren soll. Ein solches Stereotypobjekt kann aber mehrfach referenziert
werden – es kann also wiederverwendet werden. In Abbildung 3.19 ist ein
erweitertes Metamodell für Klassendiagramme zu sehen, dass diesen Um-
stand berücksichtigt. Ein Stereotyp kann weiterhin von NamedElement über
die Assoziation stereotypes referenziert werden. Zusätzlich existiert jedoch
die Klasse Project, über die verschiedene Stereotypen verwaltet werden.

80

3.2 Tripel-Graph-Grammatiken

0..*elements

source

target

0..* 1

10..*

 stereotypes 0..*

ClassAssociation

+ name : String

NamedElement

Stereotype

+ kind : String

ClassDiagram

Composition

Project

diagrams managedStereotypes
0..* 0..*

0..*

Abbildung 3.19: Erweitertes Metamodell für Klassendiagramme

Die TGG-Regeln, in denen ein Stereotypobjekt verwendet wird, müssen
an dieses neue Metamodell angepasst werden. Diese Anpassungen schauen
wir uns am Beispiel der TGG-Regel Block2Class genauer an. Die modifi-
zierte TGG-Regel ist in Abbildung 3.20 dargestellt. Prinzipiell entspricht
die neue TGG-Regel der alten TGG-Regel. Der einzige Unterschied besteht
darin, dass nun zusätzlich – ausgehend von ClassDiagram – ein Objekt vom
Typ Project referenziert wird und der neu erstellte Stereotyp mit diesem
Objekt verbunden wird. Trotz dieser Veränderung wird weiterhin bei jeder
Anwendung der Regel ein jeweils neuer Stereotyp �block� erzeugt – auch
wenn bereits ein Stereotypobjekt dieser Art im Projekt existiert.

Lösungsvariante 1: Fallunterscheidung Eine naheliegende Idee zur
Lösung unseres Problems besteht darin, statt einer TGG-Regel zwei TGG-
Regeln zu spezifizieren, die mit Hilfe von Negativen Anwendungsbedingun-
gen eine Fallunterscheidung vornehmen. In Abbildung 3.21 sind die beiden
TGG-Regeln zu sehen. Im Vergleich zur TGG-Regel aus Abbildung 3.20
enthält die erste TGG-Regel sowohl den Stereotypen als auch den Link
managedStereotypes sowohl auf der linken als auch auf der rechten Re-

81

Kapitel 3 Spezifikation von Korrespondenzregeln

:Class

:Stereotype

elements

:ClassDiagram

:Bl2Cl

:Block

:Block

++

:Composition

:Class

source

target

stereotypes

:Bl2Cl

++

children

managedStereotypes

elements
++

++

++

++

++

++

++

++

++ ++

++

++

:Project

diagrams

st.kind =

„block“

st

++
++

++

bl.name =

cn.name
++ ++

bl cn

++

cl.name =

cn.name

++

cn cl

++ ++

Abbildung 3.20: Erweiterte TGG-Regel Block2Class

82

3.2 Tripel-Graph-Grammatiken

gelseite, das heißt, die Markierung des Stereotyps und des Links mit ++ ist
entfallen. Damit setzt diese TGG-Regel die Existenz eines entsprechenden
Stereotypobjekts voraus. Es wird lediglich eine Referenz zwischen der neu
erzeugten Klasse und dem Stereotyp erstellt. Die zweite Regel ist identisch
zu der TGG-Regel aus Abbildung 3.20, enthält aber noch eine zusätzliche
Bedingung, die überprüft, dass noch kein Stereotypobjekt �block� in dem
Projekt enthalten ist. Damit wird die zweite TGG-Regel nur ausgeführt,
wenn ein Block zum ersten Mal erzeugt wurde. Da bei der Erzeugung wei-
terer Blöcke dann ein Stereotyp �block� bereits vorhanden ist, greift die
Bedingung dieser Regel nicht mehr. Stattdessen ist dann aber die erste
TGG-Regel anwendbar.8

Mit der in dieser Arbeit eingeführten Semantik für Bedingungen ist diese
Idee jedoch nicht realisierbar. Dies liegt daran, dass die Bedingung der zwei-
ten TGG-Regel nach unserer Definition auch noch nach der Regelanwendung
gelten muss. Die Bedingung dieser TGG-Regel wird aber durch die Erzeu-
gung des Stereotyps in der TGG-Regel selbst immer falsifiziert, das heißt,
die TGG-Regel steht zu der in ihr enthaltenen Bedingung im Widerspruch.

Ein Ausweg aus diesem Dilemma ist möglich, wenn man eine weitere Form
von Bedingungen einführt. Die bisher eingeführten Bedingungen müssen auf-
grund unserer Definition insbesondere auch nach der Regelanwendung gelten.
Um das beschriebene Szenario zu ermöglichen, könnten aber Bedingungen
eingeführt werden, die nur vor der Regelanwendung gelten müssen. Zur Un-
terscheidung könnten diese Bedingungen ohne die ++ Markierungen notiert
werden, was die Semantik dieser Bedingungen betonen würde, da nun die Be-
dingungen nicht als Annotationen während der Regelanwendung hinzugefügt
werden würden. Würde man diese weitere Form von Bedingungen einführen,
würde dies aber die Semantik verkomplizieren. Daher sehen wir von dieser
Möglichkeit ab und führen stattdessen das Konzept der wiederverwendbaren
Objekte ein.

Lösungsvariante 2: Wiederverwendbare Objekte Wiederverwendbare
Objekte werden graphisch als graue Objekte dargestellt. Zur besseren Un-
terscheidung sind sie zusätzlich mit [] markiert. In Abbildung 3.22 ist die
TGG-Regel mit dem als wiederverwendbares Objekt markiertem Stereotyp

8Negative Anwendungsbedingungen werden häufig dazu eingesetzt, um die Anwendung
von TGG-Regeln einzuschränken. In der Dissertation von Alexander Königs [Kön08]
werden die damit verbundenen Probleme im Zusammenhang mit Modelltransformatio-
nen an einem Beispiel vorgestellt. Es wird gezeigt, dass bislang keine Lösung existiert,
die mit negativen Anwendungsbedingungen zufriedenstellend umgehen kann.

83

Kapitel 3 Spezifikation von Korrespondenzregeln

Regel 2

:Class

:Stereotype

elements

:ClassDiagram

:Bl2Cl

:Block

:Block

++

:Composition

:Class

source

target

stereotypes

:Bl2Cl

++

children

managedStereotypes

elements
++

++

++

++

++

++

++

++

++ ++

++

++

++

:Project

diagrams

not p.managedStereotypes -> exists(x |

x.oclIsTypeOf(Stereotype) and

x.kind = „block“)

++

p

++

st.kind =

„block“

st

++
++

bl.name =

cn.name
++ ++

bl cn

++

cl.name =

cn.name

++

cn cl

++ ++

Regel 1

:Class

:Stereotype

elements

:ClassDiagram

:Bl2Cl

:Block

:Block

++

:Composition

:Class

source

target

stereotypes

:Bl2Cl

++

children

managedStereotypes

elements
++

++

++

++

++

++

++ ++

++

++

++

:Project

diagrams

st.kind =

„block“

st

++
++

bl.name =

cn.name
++ ++

bl cn

++

cl.name =

cn.name

++

cn cl

++ ++

Abbildung 3.21: Fallunterscheidung mit zwei TGG-Regeln zur Wiederver-
wendung von Stereotypen

84

3.2 Tripel-Graph-Grammatiken

und den dazugehörigen Links dargestellt. Die Semantik der wiederverwend-
baren Objekte ist so festgelegt, dass es ausdrücklich erlaubt ist, ein bereits
vorhandenes Objekt wiederzuverwenden, sofern es den Eigenschaften (Typ
und evtl. geforderte Attributwerte) des spezifizierten Objektes entspricht.
Existiert ein solches Objekt nicht, so wird es neu erzeugt. Die graue Farbe
unterstreicht die Semantik eines solchen Objekts, da das Objekt entweder
als schwarzes Objekt (in diesem Fall ist das Objekt sowohl auf der linken als
auch auf der rechten Regelseite enthalten, d. h., es wird wiederverwendet)
oder als grünes Objekt (und mit ++ Annotationen versehen) interpretiert
werden kann (in diesem Fall ist das Objekt nur auf der rechten Seite der
Regel vorhanden, d. h., es wird erzeugt).

:Class

:Stereotype

elements

:ClassDiagram

:Bl2Cl

:Block

:Block

++

:Composition

:Class

source

target

stereotypes

:Bl2Cl

++

children

managedStereotypes

elements
++

++

++

++

++

++

++ ++

++

++

++

:Project

diagrams

st.kind =

„block“

st

++
++

bl.name =

cn.name
++ ++

bl cn

++

cl.name =

cn.name

++

cn cl

++ ++

[]

[]

Abbildung 3.22: TGG-Regel mit wiederverwendbarem Stereotyp

Im Gegensatz zu dem ersten Lösungsvorschlag hilft das Konzept der wie-
derverwendbaren Objekte die Anzahl der TGG-Regeln gering zu halten.
Darüber hinaus müssen keine zusätzlichen Bedingungen spezifiziert werden.
Dies verringert die Komplexität der Regeln. Ein zusätzlicher Vorteil ge-
genüber dem ersten Lösungsvorschlag besteht darin, dass die in dieser Arbeit
eingeführte Semantik für Bedingungen beibehalten werden kann. Zusam-

85

Kapitel 3 Spezifikation von Korrespondenzregeln

men mit dem Konzept der Bedingungen bilden wiederverwendbare Objekte
eine praxisrelevante Erweiterung, die uns erlaubt, sich auf die wesentlichen
Aspekte einer TGG zu konzentrieren.9

3.3 Anwendungsszenarien

Im vorangegangenen Abschnitt haben wir die Semantik der TGGs kennen-
gelernt. Diese ist so definiert, dass zwei zueinander in Beziehung gesetzte
Modelle simultan durch die Regeln der TGG aufgebaut werden. Dadurch
erhalten wir stets zueinander korrespondierende Modelle, bei denen die Kor-
respondenzbeziehungen zwischen den Modellelementen durch ein Korrespon-
denzmodell explizit verwaltet werden. Die Semantik einer TGG ist ver-
gleichbar zur Semantik einer klassischen Grammatik, die zur Erzeugung von
Wörtern einer Sprache verwendet wird. Im Fall einer TGG sind die Wörter
der Sprache allerdings zueinander korrespondierende Modelle.

In der Praxis werden Grammatiken aber nur selten dazu genutzt, um
Wörter einer Sprache zu erzeugen. Vielmehr werden Grammatiken dazu
verwendet, vorhandene Wörter darauf zu überprüfen, ob sie in der durch die
Grammatik definierten Sprache enthalten sind und das Wort in die Struk-
tur – in den meisten Fällen einen Syntaxbaum bzw. Ableitungsbaum – zu
parsen10. Ähnlich dazu wird auch eine TGG selten zur Konstruktion zweier
zueinander korrespondierender Modelle eingesetzt. In den folgenden Unter-
abschnitten betrachten wir einige typische Anwendungsszenarien für TGGs,
zu denen auch die Modellsynchronisation gehört.

3.3.1 Modelltransformation

Ein sehr offensichtliches Anwendungsszenario für TGGs ist die Transforma-
tion eines Modells in ein anderes Modell. Diese Anwendung wird als Mo-
delltransformation bezeichnet. In dem folgenden Beispiel wird ein Blockdia-
gramm in ein Klassendiagramm transformiert. Aufgrund der Tatsache, dass
in den spezifizierten TGG-Regeln die Domäne der Blockdiagramme auf der

9Mit Hilfe der wiederverwendbaren Objekte können zu dem in [Kön08] diskutierten Bei-
spiel TGG-Regeln angegeben werden, mit denen das Modell sowohl erzeugt als auch
transformiert werden kann. Die TGG-Regeln kommen dabei gänzlich ohne Negative
Anwendungsbedingungen aus.

10Genau genommen wird eine Grammatik dazu verwendet, um einen Parser automatisch
zu generieren.

86

3.3 Anwendungsszenarien

linken und die Domäne der Klassendiagramme auf der rechten Seite notiert
wurden, was mit unserer natürlichen Leserichtung übereinstimmt, wird diese
Transformationsrichtung häufig als Vorwärtstransformation bezeichnet. Da-
bei ist das Blockdiagramm das Quellmodell und das Klassendiagramm das
Zielmodell dieser Transformation.

Um diese Transformation durchzuführen, starten wir mit einem Block-
diagramm, das in Abbildung 3.23 in Form eines UML-Objektdiagramms
gegeben ist und um das TGG-Axiom erweitert wurde. Auf dieses Objekt-
diagramm wenden wir nun die TGG-Regeln an, um die fehlenden Objekte
im Klassendiagramm und Korrespondenzmodell zu erzeugen.

Abbildung 3.24 zeigt die Situation nach der Anwendung der TGG-Regel
für Blöcke (Block2Class, vergleiche Abbildung 3.6, Seite 65) auf unsere Aus-
gangssituation in Abbildung 3.23. In Abbildung 3.25 sehen wir das Ergebnis
der zweifachen Regelanwendung auf die in Abbildung 3.24 dargestellte Situa-
tion. Wurden alle möglichen Anwendungsstellen berücksichtigt, erhalten wir
durch die Regelanwendung für den Kanal, der die beiden Blöcke verbindet,
ein zu dem Blockdiagramm korrespondierendes Klassendiagramm wie es in
der Abbildung 3.26 zu sehen ist. Dieses Klassendiagramm – zusammen mit
dem Korrespondenzmodell – ist das Ergebnis der Modelltransformation.

Die Modelltransformation funktioniert mit denselben TGG-Regeln auch
in entgegen gesetzter Richtung, das heißt, wir können ein Klassendiagramm
in ein korrespondierendes Blockdiagramm übersetzen. Diese Form der Mo-
delltransformation wird aufgrund der vorherigen Festlegung Rückwärtstrans-
formation genannt – auch wenn hier nun genauso gut das Klassendiagramm
als Quell- und das Blockdiagramm als Zielmodell definiert werden kann.
Aus diesem Grund sprechen wir in dieser Arbeit von Domänen statt von
Quell- und Zielmodellen und legen für jede Modelltransformation fest, wel-
che Domäne das Quellmodell und welche Domäne das Zielmodell der Über-
setzung ist.

In unserem Beispiel funktioniert die Übersetzung problemlos, da die TGG-
Regeln eindeutig sind. Dies ist jedoch nicht immer der Fall. Andere Trans-
formationen können mehrdeutig und damit nicht-deterministisch sein (vgl.
z. B. [KW07]). Bei der Spezifikation der Korrespondenzbeziehungen stellt
die Mehrdeutigkeit kein Problem dar. Sie ist sogar häufig erwünscht [Bec07].
Für eine effiziente Ausführung der Modelltransformation wird aber eine Stra-
tegie benötigt, wie mit Nicht-Determinismus umgegangen werden soll. An
dieser Stelle wollen wir uns allerdings nicht im Detail damit befassen, da auf
dieses Problem noch später eingegangen wird.

87

Kapitel 3 Spezifikation von Korrespondenzregeln

:System :Class

:Stereotype

elements

:ClassDiagram

:Sy2Cl

stereotypes

:Block

children

source

:Block

children

:Block

children

:Connection

src

tgt

Abbildung 3.23: Modelltransformation: Initiale Startsituation

88

3.3 Anwendungsszenarien

:System :Class

:Stereotype

elements

:ClassDiagram

:Sy2Cl

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

children

source

stereotypes

:Block

children

:Block

children

:Connection

src

tgt

:System :Class

:ClassDiagram

:Sy2Cl

:Block

Abbildung 3.24: Modelltransformation: Anwendung der Regel Block2Class

89

Kapitel 3 Spezifikation von Korrespondenzregeln

:System :Class

:Stereotype

elements

:ClassDiagram

:Sy2Cl

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

children

source

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

stereotypes

source

children

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

stereotypes

source

children

:Connection

src

tgt

:ClassDiagram

:Class:Bl2Cl:Block

:Block

:Block

Abbildung 3.25: Modelltransformation: Zweifache Anwendung der Regel
Block2Class

90

3.3 Anwendungsszenarien

:System :Class

:Stereotype

elements

:ClassDiagram

:Sy2Cl

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

children

source

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

stereotypes

source

children

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

stereotypes

source

children

:Association:Cn2As:Channel

src

tgt

source

target

:ClassDiagram

:Class:Bl2Cl:Block

:Class:Bl2Cl:Block

:Connection

Abbildung 3.26: Modelltransformation: Anwendung der Regel Chan-
nel2Assoc

91

Kapitel 3 Spezifikation von Korrespondenzregeln

3.3.2 Modellintegration

Ein zweites Anwendungsszenario ergibt sich, wenn zwei Modelle gegeben sind
und wir die Korrespondenzobjekte zwischen den zueinander in Beziehung
stehenden Modellelementen erzeugen möchten. Dieses Szenario entspricht
technisch gesehen der Modelltransformation. Der einzige Unterschied ist,
dass nun beide Modelle gegeben sind. Diese Modelle können – wie in Ab-
bildung 3.23 dargestellt – mithilfe des TGG-Axioms erweitert werden. Auf
diese Anfangssituation können nun wiederum unsere TGG-Regeln angewen-
det werden. Diesmal suchen wir jedoch in beiden Domänen nach zueinander
korrespondierenden Elementen und erzeugen lediglich die Korrespondenz-
objekte zwischen zueinander in Beziehung stehenden Modellelementen. In
den Abbildungen 3.28-3.30 ist die Anwendung der TGG-Regeln illustriert.
Dieses Szenario wird als Modellintegration bezeichnet.

In dem in Abbildung 3.30 gezeigten Anwendungsszenario konnten alle Mo-
dellelemente der unterschiedlichen Modelle zueinander in Beziehung gesetzt
werden. Damit korrespondieren beide Modelle zueinander vollständig – sie
sind bezüglich der spezifizierten TGG-Regeln zueinander synchron. Aller-
dings kann es auch bei diesem Anwendungsszenario vorkommen, dass nicht
zwischen allen Modellelementen eine Korrespondenzbeziehung hergestellt
werden kann. In diesem Fall sind die Modelle nicht zueinander synchron.

3.3.3 Modellsynchronisation

Die Modellsynchronisation ist das umfassendste Anwendungsszenario. Aus-
gangspunkt dieses Szenarios sind zwei Modelle, zwischen denen bereits ein
entsprechendes Korrespondenzmodell existiert. Dieses Korrespondenzmodell
kann durch eine Modelltransformation oder eine Modellintegration entstan-
den sein. Werden die Modelle vom Benutzer geändert, so sorgt die Modell-
synchronisation dafür, dass die modifizierten Modelle wieder miteinander
abgeglichen werden. Hierbei wird – sofern notwendig – auch das Korrespon-
denzmodell aktualisiert. Ein Beispiel für die Modellsynchronisation haben
wir bereits in Kapitel 2 gesehen. Wie die Modellsynchronisation technisch
auf Grundlage der TGG-Regeln durchgeführt wird, erklärt Kapitel 5.

3.4 Zusammenfassung

In diesem Kapitel haben wir uns mit der Spezifikation von Modellbezie-
hungen beschäftigt. Hierzu haben wir TGGs eingesetzt. Die grundlegende

92

3.4 Zusammenfassung

:System :Class

:Stereotype

elements

:ClassDiagram

:Sy2Cl

stereotypes

:Class

target

:Composition

:Block

:Stereotype

children

source

stereotypes

:Class

target

:Composition

:Block

:Stereotype

stereotypes

source

children

:Class

target

:Composition

:Block

:Stereotype

stereotypes

source

children

:Association:Connection

src

tgt

source

target

Abbildung 3.27: Modellintegration: Initiale Startsituation

93

Kapitel 3 Spezifikation von Korrespondenzregeln

:System :Class

:Stereotype

elements

:ClassDiagram

:Sy2Cl

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

children

source

stereotypes

:Class

target

:Composition

:Block

:Stereotype

stereotypes

source

children

:Class

target

:Composition

:Block

:Stereotype

stereotypes

source

children

:Association:Connection

src

tgt

source

target

:System :Class

:ClassDiagram

:Sy2Cl

:Class

:Composition

:Block

:Stereotype

Abbildung 3.28: Modellintegration: Anwendung der Regel Block2Class

94

3.4 Zusammenfassung

:System :Class

:Stereotype

elements

:ClassDiagram

:Sy2Cl

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

children

source

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

stereotypes

source

children

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

stereotypes

source

children

:Association:Connection

src

tgt

source

target

:ClassDiagram

:Class:Bl2Cl:Block

:Class

:Composition

:Block

:Stereotype

:Class

:Composition

:Block

:Stereotype

Abbildung 3.29: Modellintegration: Zweifache Anwendung der Regel
Block2Class

95

Kapitel 3 Spezifikation von Korrespondenzregeln

:System :Class

:Stereotype

elements

:ClassDiagram

:Sy2Cl

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

children

source

stereotypes

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

stereotypes

source

children

:Class

target

:Composition

:Bl2Cl:Block

:Stereotype

stereotypes

source

children

:Association:Cn2As:Channel

src

tgt

source

target

:ClassDiagram

:Class:Bl2Cl:Block

:Class:Bl2Cl:Block

:Association:Connection

Abbildung 3.30: Modellintegration: Anwendung der Regel Channel2Assoc

96

3.4 Zusammenfassung

Idee und die dahinter stehenden Prinzipien haben wir an einem Beispiel be-
schrieben. Dabei definiert eine Menge von TGG-Regeln – zusammen mit
einem TGG-Axiom – die Korrespondenzbeziehungen zwischen den Elemen-
ten zweier Modelle. Die Spezifikation der Korrespondenzbeziehungen erfolgt
weiterhin in der abstrakten Syntax der beteiligten Modellierungssprachen.
Im Hinblick auf die noch vorzustellende Modellsynchronisation haben wir
jedoch die Notation und Semantik von Bedingungen geändert sowie ein Kon-
zept zur Wiederverwendung von Objekten eingeführt.

Grundsätzlich ist eine Spezifikation von Korrespondenzregeln nützlich, um
Korrespondenzbeziehungen zwischen Modellen explizit zu machen und da-
durch zu dokumentieren. In unserem Ansatz erfolgt die Spezifikation gra-
phisch. Die visuell erfassten Korrespondenzbeziehungen sind dadurch leich-
ter für Menschen nachvollziehbar als zum Beispiel Korrespondenzbeziehun-
gen, die nur in einer textuellen Spezifikationssprache hinterlegt sind (verglei-
che dazu Spezifikationen in der textuellen Syntax einiger Modelltransforma-
tionssprachen, wie zum Beispiel QVT–Relations [QVT08]).

Die Spezifikation von Korrespondenzregeln mit TGGs bietet jedoch noch
einige weitere Vorteile. Zunächst ist die Spezifikation der Korrespondenzre-
geln formal und erfolgt in einer lokalen und deklarativen Art und Weise. Auf
dieser Grundlage wird eine inkrementelle und bidirektionale Arbeitsweise der
noch später vorzustellenden Modellsynchronisation ermöglicht. Insbesondere
bedeutet dies, dass die TGG-Regeln operationalisiert und zur Parametrisie-
rung eines Synchronisationswerkzeugs herangezogen werden können. Zudem
hat die bidirektionale und damit richtungsunabhängige Regelspezifikation
gegenüber Ansätzen, bei denen für jede Richtung eine eigene Regel not-
wendig ist, den Vorteil, dass Inkonsistenzen zwischen den unterschiedlichen
Richtungen vermieden werden. Ein weiterer Vorteil ist, dass durch die forma-
len Eigenschaften einer TGG sich verschiedene Möglichkeiten und Ansätze
zur Validierung und formalen Verifikation der Korrespondenzbeziehungen
eröffnen. Einige dieser Möglichkeiten werden wir in Kapitel 6 aufzeigen. Be-
vor wir allerdings den Synchronisationsmechanismus sowie Möglichkeiten zur
Validierung und Verifikation vorstellen, betrachten wir in Kapitel 4 zuerst
einige auf TGGs basierende Spezifikationsvarianten, mit denen die Handha-
bung weiter vereinfacht wird.

97

Kapitel 4

Spezifikationsvarianten

Im vorangegangenen Kapitel haben wir die Technik der Tripel-Graph-
Grammatiken kennen gelernt, mit der wir Modell-zu-Modell Beziehungen
spezifiziert haben. Darauf aufbauend beschäftigen wir uns in diesem Kapitel
mit drei Spezifikationsvarianten. In Abschnitt 4.1 fokussieren wir auf die
Spezifikation von Modell-zu-Text Beziehungen und zeigen, wie diese Bezie-
hungen mit Tripel-Graph-Grammatiken spezifiziert werden. In Abschnitt 4.2
zeigen wir, wie Korrespondenzbeziehungen mit Hilfe von Beispielzuordnun-
gen definiert werden, um daraus die TGG-Regeln automatisch zu syntheti-
sieren. In Abschnitt 4.3 hingegen gehen wir auf den Transformationsansatz
MOF 2.0 Query/View/Transformation (QVT) ein.

4.1 Spezifikation von Modell-zu-Text
Beziehungen

Neben Modell-zu-Modell Beziehungen spielen in der modellbasierten Soft-
wareentwicklung Modell-zu-Text Beziehungen eine wichtige Rolle. In der
Literatur wird von Modell-zu-Text Beziehungen gesprochen, wenn statt ei-
nes graphischen Modells lediglich Textartefakte erzeugt werden [GSCK04,
GPR05, CH06]. Die Modell-zu-Text Beziehungen werden beispielsweise dazu
verwendet, um aus einem Modell eine textuelle Beschreibung zur Doku-
mentation des Softwaresystems oder textuelle Konfigurationsdateien auto-
matisch zu erstellen. Die am weitesten verbreitete Anwendung der Texter-
zeugung ist jedoch die Codegenerierung. Bei der Codegenerierung wird aus
einem spezifizierten Modell der zur Implementierung benötigte Code auto-
matisch aus dem Modell abgeleitet und in eine Textdatei geschrieben, so
dass bereits existierende Werkzeuge, die eine Textdatei als Eingabe erwar-
ten, weiterhin genutzt werden können.

99

Kapitel 4 Spezifikationsvarianten

Die Unterscheidung zwischen einer Modelltransformation und einer Code-
generierung findet überwiegend aufgrund der Art der Sprachdefinition statt,
die zur Beschreibung der Zielsprache verwendet wird [CH06]. Während sich
zur Sprachdefinition visueller Modellierungssprachen überwiegend Metamo-
delle durchgesetzt haben, werden Programmiersprachen im Regelfall durch
Grammatiken definiert. Ist die Zielsprache durch ein Metamodell definiert,
wird die Übersetzung als Modelltransformation bezeichnet. Handelt es sich
bei der Zielsprache hingegen um eine Programmiersprache, die durch eine
Grammatik definiert ist, wird von Codegenerierung oder auch Modell-zu-
Text Transformationen gesprochen [GPR05].

Die Unterscheidung auf Grundlage der Sprachdefinition ist jedoch ungeeig-
net, weil grundsätzlich sowohl für eine Programmiersprache ein Metamodell
angegeben1 als auch eine visuelle Modellierungssprache durch eine (Graph-)
Grammatik definiert werden kann [Roz97]. Daher sollte auf eine solche Un-
terscheidung verzichtet werden. Diese Haltung ist umso nachvollziehbarer,
wenn man bedenkt, dass Code ebenfalls als ein Modell des zu implemen-
tierenden Softwaresystems angesehen werden kann. Es wäre daher sinnvoll,
wenn keine Unterscheidung zwischen der Spezifikation von Modell-zu-Modell
und Modell-zu-Text Beziehungen gemacht würde und die Spezifikationen in
einer einheitlichen Notation durchgeführt werden könnten. Dies ist zurzeit
jedoch nicht der Fall.

4.1.1 Existierende Techniken

In diesem Abschnitt beschäftigen wir uns mit zwei weit verbreiteten Techni-
ken zur Spezifikation von Modell-zu-Text Beziehungen. Diese Ansätze wer-
den überwiegend zur Codegenerierung eingesetzt. Dabei handelt es sich um
sehr technisch orientierte Ansätze, die durch zahlreiche Rahmenwerke (engl.
Frameworks) unterstützt werden. An dieser Stelle gehen wir jedoch nicht
auf die Details der verschiedenen Rahmenwerke ein. Stattdessen stellen wir
nur die zugrunde liegenden Konzepte vor, um anschließend die damit ver-
bundenen Vor- und Nachteile zu diskutieren.

Direkte Programmierung

Eine Möglichkeit zur Realisierung einer automatischen Codegenerierung be-
steht darin, den benötigten Codegenerator direkt in einer Programmierspra-
che von Hand zu implementieren. Hierzu durchläuft der Codegenerator die

1siehe zum Beispiel das Eclipse Metamodell zur Programmiersprache Java

100

4.1 Spezifikation von Modell-zu-Text Beziehungen

interne Struktur eines Modells und erzeugt aus den Daten der traversierten
Modellartefakte den dazugehörigen Code. Die Erzeugung der Textartefakte
erfolgt zumeist durch einfache println-Anweisungen, deren Ausgabe in eine
Textdatei umgeleitet wird. Die auf diesem Ansatz basierenden Codegenera-
toren werden daher häufig auch als Line-Printer bezeichnet [GPR05].

Die Implementierung eines solchen Codegenerators kann durch den Einsatz
von Entwurfsmustern vereinfacht werden. Beispielsweise kann zur Traversie-
rung der Modelle das Visitor -Entwurfsmuster eingesetzt werden [GHJV94].
Dieses Entwurfsmuster erlaubt es, die Operationen zur Codegenerierung an
einer einzigen Stelle zu kapseln und erleichtert dadurch sowohl die Pro-
grammierung als auch die spätere Wartung des Codegenerators. Zusätzlich
können durch den Einsatz dieses Entwurfsmusters weitere Codegeneratoren
nachträglich hinzugefügt werden, ohne dazu die bestehende Implementierung
ändern zu müssen.

Zur Unterstützung der Implementierung können außerdem Rahmenwerke
verwendet werden, die auf die Codegenerierung – oder ganz allgemein auf
die Generierung von Textartefakten – spezialisiert sind. Die Rahmenwerke
bieten eine API an, um den Zugriff auf die interne Modellrepräsentation und
die damit verbundene Navigation im Modell zu vereinfachen, so dass dadurch
die Programmierung des Codegenerators insgesamt erleichtert wird. Ein
prominentes Beispiel für ein solches Rahmenwerk ist Jamda [Jam]. Dieses
Rahmenwerk ist auf die Entwicklung von Codegeneratoren spezialisiert, die
Code aus UML-Modellen erzeugen.

Die direkte Programmierung eines Codegenerators ist der flexibelste An-
satz. Allerdings ist mit der Programmierung von Hand ein sehr hoher Auf-
wand verbunden. Dieser Aufwand lässt sich zwar durch den Einsatz spezieller
Entwurfsmuster und Rahmenwerke reduzieren, die eigentliche Entwicklung
des Codegenerators findet aber weiterhin auf einem sehr niedrigen Abstrak-
tionsniveau statt. Zudem sind die Rahmenwerke auf ganz bestimmte Me-
tamodelle oder Technologien spezialisiert, wodurch ihre Verwendung nur in
einem bestimmten Kontext sinnvoll beziehungsweise möglich ist.

Die Anpassung und Wartung eines solchen Codegenerators erfolgt direkt
im Programmtext. Um die Zuordnung zwischen einem Modell und dem dar-
aus generierten Code zu verstehen, muss die Implementierung des Codege-
nerators analysiert werden. Der Zusammenhang zwischen einem Modell und
dem daraus zu generierenden Code ist dabei nur sehr schwer erkennbar, so
dass sich die Anpassung und Wartung der Codegenerierung als sehr schwie-
rig erweist. Eine Anpassung der Codegenerierung durch einen Benutzer ist
daher unrealistisch.

101

Kapitel 4 Spezifikationsvarianten

In einem engen Zusammenhang mit der Zuordnung von Modell-zu-Text
Beziehungen steht die Nachverfolgbarkeit (engl. Traceability). Wie wir be-
reits in Abschnitt 1.2.3 gesehen haben, ist die Nachverfolgbarkeit sehr nütz-
lich. Sofern die Zuordnung nicht explizit bei der Generierung gespeichert
wird, ist nach der Codegenerierung nicht direkt erkennbar, aus welchen Mo-
dellartefakten der Code erzeugt wurde. Insbesondere wird aufgrund der
fehlenden Zuordnung eine Synchronisation zwischen Modell und Code er-
schwert. Sofern eine solche Synchronisation benötigt wird, muss sie zusätz-
lich von Hand implementiert werden. Soll die Synchronisation nicht ganz
unabhängig vom generierten Code erfolgen, so erhöht dies die Komplexität
des Codegenerators. Eine vom Codegenerator unabhängige Implementierung
hingegen birgt die Gefahr, dass das Forward-Engineering – in diesem Fall also
die Codegenerierung – inkonsistent zum Reverse-Engineering implementiert
und die Synchronisation damit fehlerhaft ist. Die Komplexität dieser Auf-
gabe wird dadurch belegt, dass heutige Werkzeuge keine zufriedenstellende
Lösung zur Synchronisation von Modell und Code anbieten.

Zusammenfassend kann man sagen, dass die direkte Programmierung eines
Codegenerators nur dann empfehlenswert ist, wenn entweder die Codegene-
rierung extrem effizient sein muss oder wenn der Zusammenhang zwischen
den Modellen und dem daraus zu generierendem Code so komplex ist, dass
er durch andere Ansätze nicht abgebildet werden kann.

Textschablonen

Wegen der Nachteile der direkten Programmierung haben sich in der Praxis
Ansätze auf der Grundlage von Textschablonen zur Codegenerierung durch-
gesetzt. Zu den Rahmenwerken, die Textschablonen unterstützen, gehören
unter anderem Java Emitter Template (JET) [JET], AndroMDA [AMD],
Velocity Template Engine [VTE], openArchitectureWare [OAW], ArcStyler
[ARC], OptimalJ [OpJ] und Codagen Architect [CoG]. Mit der im Ja-
nuar 2008 veröffentlichten Spezifikation der MOF Model to Text Transfor-
mation Language (MOFM2T) liegt auch ein Standard der Object Mana-
gement Group (OMG) vor [MTT08], in dem eine Spezifikationssprache für
Modell-zu-Text Transformation auf der Grundlage von Textschablonen defi-
niert wird.

Abbildung 4.1 zeigt schematisch den Ansatz zur Codegenerierung mit
Textschablonen. Die Eingabe für die Codegenerierung ist – neben einer
Menge von vordefinierten Textschablonen – ein Modell, für das Code er-
zeugt werden soll. Die Anwendung der Textschablonen auf das Modell er-

102

4.1 Spezifikation von Modell-zu-Text Beziehungen

Model

Metamodel

input

instance of

Template

Engine

input

output

Code
(Textfile)
Code
(Textfile)
Code
(Textfile)

TemplateTemplateTemplate

Abbildung 4.1: Codegenerierung mit Textschablonen

folgt durch ein Rahmenwerk, das als Template Engine bezeichnet wird. Die
Ausgabe besteht in der Regel aus einer Menge von Textdateien, die den
erzeugten Code enthalten.

Bei einer Textschablone (engl. Template) handelt es sich um eine Text-
vorlage mit vordefinierten Textfragmenten, durch die ein Codegerüst vorge-
geben wird. Dieses Codegerüst wird im Rahmen der Codegenerierung mit
Daten aus dem Modell angereichert und in einer Textdatei gespeichert. In
der Abbildung 4.2 ist beispielhaft ein Auszug aus einer Textschablone der
Velocity Template Engine dargestellt [VTE]. Die vollständige Textschablone
ist in der Studienarbeit von Markus von Detten zu finden [Det06]. Sie wurde
im Rahmen des ISILEIT-Projektes zur Generierung von Code für Speicher-
programmierbare Steuerungen (SPSen) verwendet. Der hier gezeigte Aus-
schnitt der Textschablone besteht aus zu erzeugenden Textfragmenten der
SPS-Programmiersprache Strukturierter Text (ST) [IEC03], Platzhaltern so-
wie Anweisungen, die unter anderem zur Steuerung der Codegenerierung
verwendet werden.

Platzhalter sind durch ein vorangestelltes $-Zeichen zu erkennen. Sie wer-
den während der Codegenerierung durch konkrete Werte ersetzt. Aufgrund
der Tatsache, dass es sich hierbei um eine Java-basierte Template Engine
handelt, können auf einem Platzhalter, dem während der Ausführung ein
Java-Objekt zugeordnet wurde, Methoden aufgerufen werden. Nach dem
Aufruf wird der Rückgabewert der Methode für den Platzhalter eingesetzt
(vgl. zum Beispiel $state.getName()). Die Anweisungen hingegen sind
an einem vorangestellten #-Zeichen zu erkennen. Dabei kann es sich um
Anweisungen zur Steuerung der Codegenerierung handeln, wie zum Beispiel

103

Kapitel 4 Spezifikationsvarianten

...

CASE state OF

...

#foreach($state in $automaton)

#getId($state) (* $state.getName() *) :

#if($velocityCount == 1)

#foreach($transition in $state.getOutgoingTransitions())

IF #getMapping($transition.getTrigger())

THEN

#foreach($action in $transition.getActions())

#getMapping($action)

#end

state := #getId($transition.getTarget());

#end

...

#end

END_CASE;

...

Abbildung 4.2: Ausschnitt aus einer Textschablone

#foreach und #if, oder um benutzerdefinierte Direktiven, wie zum Beispiel
#getMapping und #getId, die in Form von Makros hinterlegt wurden.

Im Gegensatz zur direkten Programmierung ist eine Anpassung der Code-
generierung bei diesem Ansatz relativ einfach möglich. Hierzu reicht es
häufig aus, die Textfragmente der Textschablone zu verändern und an die
speziellen Bedürfnisse anzupassen. In einigen Fällen muss allerdings zusätz-
lich ein Algorithmus bereit gestellt werden, der die zur Codegenerierung
benötigten Informationen aus einem Modell extrahiert. Zwar existieren auch
Rahmenwerke, bei denen die Traversierung der Modelle bereits implemen-
tiert ist [JET, AMD], allerdings sind diese auf eine bestimmte Technologie,
wie zum Beispiel das Eclipse Modeling Framework (EMF) oder eine be-
stimmte Modellierungssprache, wie zum Beispiel die Unified Modeling Lan-
guage (UML), spezialisiert. Eine Codegenerierung für andere Technologien
oder Modellierungssprachen ist damit nicht realisierbar.

Die Zuordnung der Modell-zu-Text Beziehungen ist bei diesem Ansatz nur
schwer zu erkennen. Der Zusammenhang zwischen dem generierten Text

104

4.1 Spezifikation von Modell-zu-Text Beziehungen

und der dazu verwendeten Textschablone ist hingegen recht gut erkennbar,
auch wenn dies durch die zusätzlichen Anweisungen in der Textschablone
erschwert wird. Auffällig an dem Ansatz ist auch, dass zwar die Syntax
der Modelle durch ein Metamodell vorgegeben ist, der erzeugte Text aber
lediglich aus Textfragmenten besteht, die nicht typisiert sind. Damit kann
einerseits beliebiger Text erzeugt werden. Andererseits wird bei der Generie-
rung von Code der erzeugte Programmtext keiner syntaktischen Überprüfung
unterzogen. Somit ist es mit diesem Ansatz möglich syntaktisch fehlerhafte
Programme zu erzeugen.

Grundsätzlich lässt sich die Entwicklung eines Codegenerators durch den
Einsatz von Textschablonen vereinfachen. Wie schon bei der direkten
Programmierung werden bei diesem Ansatz allerdings nur unidirektionale
Modell-zu-Text Transformationen unterstützt, die weder eine Nachverfolg-
barkeit gewährleisten noch eine inkrementelle Synchronisation der Modell-
zu-Text Beziehungen ermöglichen.

4.1.2 Spezifikation mit Tripel-Graph-Grammatiken

Die Technik der Tripel-Graph-Grammatiken kann auch zur Spezifikation von
Modell-zu-Text Beziehungen eingesetzt werden. Wie schon bei der Spezifi-
kation von Modell-zu-Modell Beziehungen können auch hier die TGGs bi-
direktional ausgeführt werden. Durch das Korrespondenzmodell bleibt die
Zuordnung zwischen den Modell- und den Textartefakten nach einer Trans-
formation bestehen. Damit ist die Nachverfolgbarkeit einer Transformation
gegeben. Daher sind TGGs sowohl zur Codegenerierung als auch zur Syn-
chronisation von Modell und Code geeignet.

Im ersten Teil dieses Abschnitts stellen wir die Spezifikation und Synchro-
nisation von Modell-zu-Text Beziehungen mit TGGs vor. Die Spezifikation
unterscheidet sich nicht von der Spezifikation von Modell-zu-Modell Bezie-
hungen. Allerdings sind einige Besonderheiten bei der Ausführung zu beach-
ten, um eine Synchronisation zwischen einem Modell und dem dazugehörigen
Text durchführen zu können. Ist hingegen eine Synchronisation nicht not-
wendig, so kann der Spezifikationsaufwand reduziert werden, indem TGGs
mit Textschablonen kombiniert werden. Mit dieser Spezifikationsvariante
beschäftigen wir uns im zweiten Teil dieses Abschnitts.

105

Kapitel 4 Spezifikationsvarianten

Direkte Spezifikation

Die Spezifikation mit TGGs erfolgt auf der Grundlage von Metamodellen.
Bei der Spezifikation von Modell-zu-Modell Beziehungen sind die Metamo-
delle durch die beiden Modellierungssprachen gegeben. Handelt es sich hin-
gegen um Modell-zu-Text Beziehungen, so muss für den Text zunächst eine
geeignete Repräsentation gefunden werden, auf deren Basis eine solche Spezi-
fikation statt finden kann. Dies bedeutet, dass zur Spezifikation von Modell-
zu-Text Beziehungen neben dem Metamodell für die Modellierungssprache
auch ein Metamodell für den zu generierenden Text vorhanden sein muss.

Damit die Textartefakte einer Sprache oder einer Beschreibung maschinell
auswertbar sind, müssen sie in einer geeigneten internen Repräsentation vor-
liegen. Bei einem einfachen Text ist häufig eine anwendungsspezifische Da-
tenstruktur vorhanden, die zum Beispiel aus Kapiteln, Absätzen, Überschrif-
ten, Zeichen und Formatierungen bestehen kann. Diese Datenstruktur kann
bereits als ein Metamodell angesehen und zur Spezifikation der Modell-zu-
Text Beziehungen eingesetzt werden. Handelt es sich bei dem Text hingegen
um Code, so wird der Code in den meisten Fällen in Form eines abstrakten
Syntaxbaums (engl. Abstract Syntax Tree (AST)) repräsentiert.

Der Code liegt in der Regel zeilenweise als eine einfache Folge von Zei-
chen vor. Ein abstrakter Syntaxbaum hingegen repräsentiert die syntakti-
sche Struktur und ist allgemein betrachtet eine Zwischendarstellung (engl.
Intermediate Representation, (IR)) von Code [ASU86]. Diese Zwischen-
darstellung wird mithilfe eines Parsers erzeugt, der zur Erkennung und
Überprüfung der Syntax eines Programms eingesetzt wird.

Heutige Parser werden nicht von Hand programmiert, sondern mit einem
Parsergenerator erzeugt. Hierzu erhält der Parsergenerator als Eingabe die
Grammatik der Sprache, aus der er dann einen Parser für diese Sprache au-
tomatisch generiert. Neben der Erkennung und Prüfung der Syntax wird
durch den generierten Parser auch der abstrakte Syntaxbaum erzeugt. Die
hierfür notwendigen Klassen werden häufig durch den Parsergenerator selbst
(wie zum Beispiel im Fall des Parsergenerators ANTLR [Par07]) bereitge-
stellt oder durch ein externes Werkzeug erzeugt (wie zum Beispiel im Fall
des Java Tree Builders (JTB) für den Parsergenerator JavaCC [JTB, JCC]).
Aufgrund der Tatsache, dass die abstrakte Syntax einer Sprache gleichwertig
mit einem Metamodell zu setzen ist, können diese Klassen als Metamodell
der Sprache angesehen und zur Spezifikation der Modell-zu-Text Beziehun-
gen verwendet werden. Abbildung 4.3 zeigt beispielhaft einen Ausschnitt für
das Java-Metamodell von Eclipse [JDT]. Andere Beispiele für solche Meta-

106

4.1 Spezifikation von Modell-zu-Text Beziehungen

Type

modifiers :int

BodyDeclaration

FieldDeclaration

TypeDeclaration

interface : boolean

AbstractType

Declaration

Block

VariableDeclaration

Fragment

VariableDeclaration

name : String

PrimitiveType SimpleType Statement

Expression

SingleVariable

Declaration

statements

0..*

body 0..*

MethodDeclaration

name : String

constructor : boolean

0..* parameters
returnType

0..1

type

0..1

methods

0..*

types0..*

bodyDeclarations

0..*

superClassType

0..1

superInterfaceTypes

0..*

type

0..1

fragments 0..*

initializer 0..1

fields

0..*

Abbildung 4.3: Ausschnitt aus dem Eclipse Java-Metamodell

modelle sind die – wenn auch nicht vollständigen – Metamodelle für Java,
Cobol, PL/I, C und C++ der Object Management Group (OMG). Diese Me-
tamodelle wurden im Rahmen verschiedener OMG-Standards veröffentlicht
[OMG04, OMG04].

Ist ein Metamodell für eine textuelle Sprache gefunden, so kann die Spezi-
fikation der Modell-zu-Text Beziehungen mit Hilfe der TGGs stattfinden. In
Abbildung 4.4 ist eine Beispielregel dargestellt2. Diese TGG-Regel basiert
auf dem UML-Metamodell für Klassendiagramme aus Abbildung 3.1 sowie
dem Java-Metamodell von Eclipse aus Abbildung 4.3. Sie setzt Attribute
einer Klasse zu Fragmenten eines abstrakten Syntaxbaums für Java-Code in
Beziehung. Sind weitere TGG-Regeln definiert, so kann aus einem Modell
anhand dieser TGG-Regeln ein abstrakter Syntaxbaum erstellt und somit
eine Codegenerierung durchgeführt werden.

Abbildung 4.5 illustriert die prinzipielle Arbeitsweise der Codegenerie-

2Diese TGG-Regel ist recht übersichtlich. Aufgrund der sehr umfangreichen Syntax
bestehen die meisten TGG-Regeln aus 20-30 Knoten.

107

Kapitel 4 Spezifikationsvarianten

:TypeDeclaration

:PrimitiveType

:CL2TD

:UMLAttr

:UMLClass

++

:FieldDeclaration

:VariableDeclartion

Fragment

fields

fragments

type

:AT2FD

++

attrs

++

++

++

++

++
++

++ ++

++++

:UMLBaseType

bt.name =

cn.umlTypeName(cn.type)
++ ++

bt

cn

++

at.name =

cn.name

at

++ ++

++

attrType
++ ++

++

cn

vd.name =

cn.name
++

vdcn

++

pt.primitiveTypeCode =

cn.javaTypeCode(cn.type)

cn

pt

++ ++

Abbildung 4.4: Beispiel für die Spezifikation von Modell-zu-Text Beziehun-
gen mit einer TGG-Regel

rung sowie der Synchronisation auf Grundlage der mit TGGs spezifizier-
ten Modell-zu-Text Beziehungen. In unserem Beispiel nehmen wir an, dass
zunächst nur ein Modell gegeben ist. Nach der Ausführung der TGG-Regeln
auf dem Modell (Schritt 1) existiert sowohl ein abstrakter Syntaxbaum als
auch ein Korrespondenzmodell, welches die Zuordnung zwischen Elementen
des Modells und des abstakten Syntaxbaums explizit verwaltet. Der ab-
strakte Syntaxbaum repräsentiert die syntaktische Struktur des generierten
Codes. Für die weitere Verarbeitung durch Werkzeuge, wie zum Beispiel
Editoren und Compiler, wird der Code jedoch in seiner konkreten Syntax,
also seiner textuellen Darstellung, benötigt.

Um eine textuelle Darstellung aus einem abstrakten Syntaxbaum zu er-
halten, werden sogenannte Unparser 3 verwendet (Schritt 2) [ELI]. Ana-
log zu Parsern existieren auch für Unparser entsprechende Generatoren
[Kas94, ELI, TXL], die aus einer Spezifikation den Unparser automatisch
erstellen.

Für unser Beispiel müssen wir keinen Unparser explizit erstellen. Er
wird bereits durch die Java Development Tools (JDT) der Eclipse-
Entwicklungsumgebung zur Verfügung gestellt [JDT]. Dieser Unparser hat
die Eigenschaft, dass nach dem Parsen von Java-Code und einem soforti-

3Unparser werden beispielsweise sehr häufig im Rahmen der automatischen Codeforma-
tierung (engl. Pretty-Printer) eingesetzt.

108

4.1 Spezifikation von Modell-zu-Text Beziehungen

model ast new ast

unparse

compare &

update

parse

correspondence

model

synchronize/transform

synchronize/transform

code

1

2

modify3

4

5

6

Abbildung 4.5: Codegenerierung und Synchronisation von Modell-zu-Text
Beziehungen

109

Kapitel 4 Spezifikationsvarianten

gen Unparsen keine Änderungen an der textuellen Repräsentation des Co-
des entstehen. Dies wird durch entsprechende Annotationen im abstrakten
Syntaxbaum erreicht [KL03], so dass bestehende Einrückungen, Leerzeichen,
Kommentare sowie Klammerungen von Ausdrücken beim Unparsen berück-
sichtigt werden und die originale Formatierung des Codes nicht verloren geht.
Im Zusammenhang mit der Synchronisation von Modell und Code ist dies be-
sonders vorteilhaft, weil lokale Änderungen im abstrakten Syntaxbaum sich
ebenfalls nur lokal an den betroffenen Stellen im Code auswirken. Bei einem
einfachen abstrakten Syntaxbaum ohne Annotationen fehlen diese zusätzli-
chen Informationen, so dass auch von Änderungen nicht betroffene Teile des
Codes durch den Unparser umformatiert werden.

Beim heutigen Stand der modellbasierten Softwareentwicklung müssen
wir immer noch davon ausgehen, dass Änderungen nicht nur am Modell
durchgeführt werden, sondern dass auch der generierte Code bearbeitet wird
(Schritt 3). Beispielsweise muss ein Entwickler nach der initialen Codegene-
rierung häufig weitere Methoden hinzufügen, um zusätzliche Funktionalität
zu integrieren. In einem iterativ-inkrementellen Softwareentwicklungsprozess
ist darüber hinaus zu berücksichtigen, dass nach der Codegenerierung (und
den eventuell durchgeführten Änderungen im Code) ebenso Änderungen im
Modell vorgenommen werden. Änderungen im Modell können beispielsweise
durch neue Erkenntnisse aus der Analysetätigkeit notwendig werden. Im
Rahmen der Synchronisation müssen daher sowohl Änderungen im Modell
als auch im Code berücksichtigt werden.

Zur Bearbeitung von Code werden Texteditoren eingesetzt. Grundsätz-
lich kann hier in syntaxgesteuerte Texteditoren und konventionelle Texte-
ditoren unterschieden werden. Syntaxgesteuerte Texteditoren unterstützen
die korrekte Erstellung von Code gemäß der formalen Syntax der zugrun-
deliegenden Programmiersprache. Bei einem solchen Editor wird bei der
Bearbeitung des Codes die abstrakte Syntax des Programms direkt mani-
puliert. Zur Darstellung des Programmtextes gegenüber dem Benutzer wird
ein Unparser verwendet, der aus dem abstrakten Syntaxbaum die textuelle
Repräsentation des Codes erzeugt. Im Gegensatz dazu wird der Code in ei-
nem konventionellen Texteditor intern als eine Folge von Zeichen verwaltet,
die durch Benutzereingaben verändert wird. Damit hat die Bearbeitung des
Programmtextes in einem konventionellen Editor keinen direkten Einfluss
auf den abstrakten Syntaxbaum.

Bei der Synchronisation mit TGGs ist es notwendig, dass die durch das
Korrespondenzmodell hergestellte Zuordnung zwischen Modell und Code er-
halten bleibt. Daher ist ein syntaxgesteuerter Texteditor zur Manipulation

110

4.1 Spezifikation von Modell-zu-Text Beziehungen

des Codes vorzuziehen. Syntaxgesteuerte Texteditoren sind jedoch immer
nur auf eine bestimmte Programmiersprache spezialisiert. Darüber hinaus
legen sie dem Benutzer viele Restriktionen auf, so dass die Arbeit mit ihnen
gewöhnungsbedürftig ist. Hinzu kommt, dass sie aufwändiger zu implemen-
tieren sind. Aus diesen Gründen haben sich syntaxgesteuerte Texteditoren
in der Praxis nicht durchsetzen können – sie sind daher kaum verfügbar.

Im Gegensatz dazu existieren auf dem Markt sehr viele konventionelle Tex-
teditoren, die zumeist frei erhältlich sind. Aufgrund der Tatsache, dass ein
konventioneller Texteditor sich nicht an einer bestimmten Syntax orientie-
ren muss, ist er wesentlich flexibler und universeller einsetzbar. Allerdings
müssen zur Synchronisation die Änderungen im Texteditor in den abstrakten
Syntaxbaum übertragen werden. Hierzu kann, wie bereits beschrieben, ein
Parser eingesetzt werden. Um die Zuordnungen zum Modell nicht zu verlie-
ren und nur die tatsächlich von den Codeänderungen betroffenen Elemente
des abstrakten Syntaxbaums zu verändern, darf der bestehende abstrakte
Syntaxbaum jedoch nicht einfach durch einen neuen abstrakten Syntaxbaum
ersetzt werden. Stattdessen muss der bestehende abstrakte Syntaxbaum ak-
tualisiert werden, das heißt, ein inkrementeller Parser wäre hier von Vorteil.

Heutige Entwicklungsumgebungen kompilieren den Code bereits inkre-
mentell. Einen inkrementellen Parser besitzen sie meistens jedoch nicht.
Bei der inkrementellen Kompilierung werden, nachdem der Code in einer
Datei verändert wurde, die Abhängigkeiten zu anderen Dateien untersucht.
Anschließend werden die veränderte Datei und die mit ihr in Beziehung ste-
henden Dateien neu kompiliert. Alle anderen Dateien bleiben unberührt. Bei
dieser Art der inkrementellen Kompilierung wird ein inkrementeller Parser
gar nicht benötigt. Dies mag auch der Grund sein, warum erste Arbei-
ten zum inkrementellen Parsen erst in den 80er Jahren aufgenommen und
veröffentlicht wurden [GM80]. Seitdem wurden verschiedene Lösungen zum
inkrementellen Parsen vorgeschlagen, wie zum Beispiel in [WG98]. Praxis-
taugliche Parsergeneratoren, die inkrementell arbeitende Parser erzeugen,
gibt es zurzeit dennoch nicht.

Für batch-artig arbeitende Parser existieren hingegen sehr viele Parser-
generatoren, die zudem bereits mit fertigen Grammatiken für einige weit
verbreitete Programmiersprachen ausgeliefert werden. Um die damit er-
zeugten Parser bei der Synchronisation von Modell und Code nutzen zu
können, müssen wir dafür sorgen, dass der bestehende abstrakte Syntax-
baum beim wiederholten Parsen nicht immer wieder neu erzeugt wird, son-
dern die Änderungen in den bereits bestehenden abstrakten Syntaxbaum
inkrementell eingepflegt werden. Hierzu wird der Code zunächst mit ei-

111

Kapitel 4 Spezifikationsvarianten

nem batch-artig arbeitenden Parser geparst (Schritt 4). Anschließend wird
der dabei neu erzeugte abstrakte Syntaxbaum mit dem bereits existierenden
abstrakten Syntaxbaum verglichen. Die ermittelten Unterschiede zwischen
den beiden Syntaxbäumen werden dazu verwendet, um den bereits existie-
renden abstrakten Syntaxbaum zu aktualisieren und dadurch an den neuen
abstrakten Syntaxbaum anzugleichen (Schritt 5). Nach der Aktualisierung
des abstrakten Syntaxbaums erfolgt eine Synchronisation mit dem Modell
(Schritt 6), so dass Code und Modell wieder miteinander abgeglichen sind.
Nach diesem Prinzip kann eine Synchronisation in beide Richtungen erfolgen.

Kombinierte Spezifikation

Falls eine bidirektionale Synchronisation zwischen einem Modell und dem
daraus generierten Code nicht benötigt wird, kann der Aufwand zur Spezifi-
kation der Modell-zu-Text Beziehungen reduziert werden, indem die TGGs
mit Textschablonen kombiniert werden. Durch den Einsatz der Textschablo-
nen muss kein feingranulares Metamodell zur Repräsentation der abstrakten
Syntax der zugrundeliegenden textuellen Sprache erstellt werden. Stattdes-
sen wird ein Metamodell verwendet, das in den meisten Fällen nicht ganz so
umfangreich ausfällt wie das Metamodell der textuellen Sprache. Dadurch
sinkt sowohl die Anzahl der zu spezifizierenden TGG-Regeln als auch die
Anzahl der in einer TGG-Regel zu spezifizierenden Objekte, was insgesamt
den Aufwand zur Realisierung einer Codegenerierung signifikant reduziert.

Beispielautomat Die kombinierte Spezifikation aus TGGs und Textscha-
blonen betrachten wir an einem Beispiel. Bei dem Beispiel handelt es
sich um die Codegenerierung für Speicherprogrammierbare Steuerungen
(SPSen), die bereits in Abschnitt 2.1 erwähnt wurde. Hierbei wird die Steue-
rung der Hardwarekomponenten eines Fertigungssystems mit mehreren I/O-
Automaten [LT89] modelliert. Aus den I/O-Automaten wird anschließend
SPS-Code generiert. Die Implementierung der I/O-Automaten erfolgt in der
Sprache Strukturierter Text (ST) [IEC03], wobei wir in unserem Beispiel
davon ausgehen, dass die generierte Implementierung der I/O-Automaten
vollständig und damit eine Nachbearbeitung des ST-Codes nicht notwendig
ist. Somit ist eine Synchronisation in nur eine Richtung ausreichend.

Abbildung 4.6 zeigt einen einfachen I/O-Automaten, der zur Beschreibung
der Steuerung eines Startaktors verwendet wird. In dem Materialflusssystem
des ISILEIT-Projekts (vergleiche Abschnitt 2.1) sorgt ein solcher Startaktor
in jeder der vier Station dafür, dass Shuttles wieder gestartet werden können.

112

4.1 Spezifikation von Modell-zu-Text Beziehungen

example

retracted extended

start=true / extend:=true

shuttle=false / extend:=false

Abbildung 4.6: Beispielautomat in konkreter Syntax

Hierzu besitzt jeder Shuttle zwei Näherungssensoren. Der erste Näherungs-
sensor tastet die Schiene während der Fahrt ab und reagiert auf an den Schie-
nen angebrachte Steuernocken. Wird ein entsprechender Steuernocken vom
Näherungssensor detektiert, so unterbricht der Shuttle die Stromversorgung
zu seinem Niederspannungsmotor und der Shuttle hält an. Der zweite Nähe-
rungssensor reagiert hingegen auf einen an der Schiene montierten Start-
aktor. Dieser Startaktor fährt zum Starten eines Shuttles mit Hilfe eines
pneumatischen Zylinders einen Metallnocken aus. Wird dieser Metallnocken
vom zweiten Näherungssensor detektiert, so wird die Stromversorgung zum
Niederspannungsmotor wieder hergestellt und der Shuttle gestartet. Da-
mit nachfolgende Shuttles nach dem Anhalten nicht sofort wieder gestartet
werden, muss der Metallnocken des Startaktors wieder eingefahren werden,
sobald ein gestarteter Shuttle die Station verlassen hat. Der I/O-Automat
aus Abbildung 4.6 beschreibt die Steuerung dieses Metallnockens.

In unserem Beispiel besteht der I/O-Automat aus den beiden Zuständen
retracted und extended, die über zwei Transitionen miteinander verbun-
den sind. Der I/O-Automat befindet sich initial im Zustand retracted. In
diesem Zustand ist der Metallnocken des Startaktors eingefahren, so dass
vorbeifahrende Shuttles durch den ebenfalls an der Schiene angebrachten
Steuernocken zunächst angehalten werden. Soll ein Shuttle wieder gestar-
tet werden, so sendet die Umgebung das Signal start. Liegt das Signal
vor (start=true), so wechselt der I/O-Automat vom Zustand retracted in
den Zustand extended. Während dieses Zustandsübergangs signalisiert der
I/O-Automat dem Startaktor, dass der Metallnocken ausgefahren werden
soll (extend:=true). Sobald der Shuttle die Station verlassen hat, wird der
I/O-Automat darüber benachrichtigt (shuttle=false). Daraufhin wech-
selt der I/O-Automat zurück in den Zustand retracted. Während dieses
Zustandsübergangs wird der Metallnocken eingefahren (extend:=false), so
dass vorbeifahrende Shuttles angehalten werden.

113

Kapitel 4 Spezifikationsvarianten

:Automaton

name=“example“

:State

name=“retracted“

:Transition

trigger=“start=true“

:Action

expr=“extend:=true“

:Action

expr=“extend:=false“

:State

name=“extended“

:Transition

trigger=“shuttle=false“

inital

states

states

transitions

transitions

target source

source target

actions

actions

outgoing incoming

outgoingincoming

Abbildung 4.7: Beispielautomat in abstrakter Syntax (Objektdiagramm)

Der I/O-Automat in Abbildung 4.6 ist in seiner konkreten Syntax dar-
gestellt. Derselbe I/O-Automat ist in Abbildung 4.7 in seiner abstrakten
Syntax zu sehen. Diese beruht auf dem Metamodell für I/O-Automaten,
das im Anhang A abgebildet ist (siehe Abbildung A.12, Seite 284). Zur Spe-
zifikation der Modell-zu-Text Beziehungen mit TGGs und Textschablonen
werden des Weiteren ein Metamodell zur Repräsentation der Textschablo-
nen sowie ein Metamodell für das Korrespondenzmodell benötigt. Auch diese
Metamodelle befinden sich im Anhang A (siehe Abbildungen A.13 und A.14,
Seiten 284 ff.). Auf Grundlage dieser Metamodelle werden die entsprechen-
den TGG-Regeln zur Codegenerierung spezifiziert.

Beispielregel In Abbildung 4.8 ist eine Beispielregel dargestellt.
Grundsätzlich unterscheidet sich die Beispielregel von den bisherigen
TGG-Regeln nur durch die zusätzlich vorhandenen Textschablonen. In
der TGG-Regel werden die Objekte der beteiligten Sprachen weiterhin
durch Korrespondenzobjekte zueinander in Beziehung gesetzt. Allerdings
haben wir bei der Spezifikation auf Attribute in den Korrespondenzobjekten
verzichtet und die Attributbedingungen zwischen den Objekten direkt
spezifiziert.

114

4.1 Spezifikation von Modell-zu-Text Beziehungen

:TransitionBlock

header end

source

hd.trigger =

tr.triggerExpr

tr

++ ++

++

TransitionHeader.tpl

 IF %trigger THEN

TransitionEnd.tpl

 state := %target;

 END_IF;

:TR2TB

:ST2SB

transitions

hd

Transition

target

++ ++

++++

++
++ ++ ++

++

++

te.target=

getIndexOf(st)

te

st

++ ++

++

:StateBlock:State

:State :TransitionHeader :TransitionEnd

Abbildung 4.8: Beispiel für die Kombination einer TGG-Regel mit einer
Textschablone

Die Beispielregel beschreibt, welche ST-Codefragmente zu einer Transi-
tion des I/O-Automaten generiert werden sollen. Hierzu wird das Objekt
vom Typ Transition über das Korrespondenzobjekt vom Typ TR2TB zu
den drei Objekten vom Typ TransitionBlock, TransitionHeader und
TransitionEnd in Beziehung gesetzt. Den beiden Objekten vom Typ
TransitionHeader und TransitionEnd ist jeweils eine Textschablone zu-
geordnet. Die Textschablonen enthalten den zu generierenden ST-Code
sowie Platzhalter zur Parametrisierung der Textschablonen. Die Attribut-
bedingungen beschreiben den Zusammenhang zwischen den Attributwerten
der beiden Sprachen und werden letztendlich dazu verwendet, die Platz-
halter in den Textschablonen durch konkrete Werte aus dem Modell des
I/O-Automaten zu ersetzen.

In der hier gezeigten Beispielregel ist der ST-Code in der Textscha-
blone TransitionHeader.tpl für die Überprüfung der Triggerbedingung
zuständig. Die Textschablone TransitionEnd.tpl enthält den ST-Code, um
nach einem Zustandsübergang den aktuellen Zustand des I/O-Automaten,
der in der Variablen state gespeichert wird, zu aktualisieren. Zusätz-
lich wird in der Textschablone die bedingte Anweisung aus der vorheri-
gen Textschablone abgeschlossen. Um eine vollständige Implementierung
des hier vorgestellten I/O-Automaten generieren zu können, werden weitere
TGG-Regeln benötigt. Die zusätzlichen TGG-Regeln befinden sich im An-
hang A (siehe Seite 275 ff.).

115

Kapitel 4 Spezifikationsvarianten

 0 (* retracted *) :

 1 (* extended *) :

FUNCTION_BLOCK example

VAR

 state : INT = 0;

END_VAR

BEGIN

 CASE state OF

 IF shuttle=false THEN

 IF start=true THEN

 extend := true;

 extend := false;

 state := 1;

 END_IF;

 END_CASE;

END_FUNCTION_BLOCK

 state := 0;

 END_IF;

[2]

[3]

[5]

[6]

[7]

[8]

[10]

[12]

[13]

[11]

:ActionExpression

expr = „extend:=false“

[11]

:TransitionHeader

trigger = „shuttle=false“

[10]
:TransitionEnd

target = „0“

:TransitionBlock

[9]

:StateBlock

name = „extended“

index = „1“

[8]

:FunctionEnd

[13]

:CompilationUnit

[1]

:FunctionHeader

name = „example“

index = „0“

[2]

:StateBlock

name = „retracted“

index = „0“

[3]

:TransitionBlock

[4]

:TransitionHeader

trigger = „start=true“

[5]

:ActionExpression

expr = „extend:=true“

[6]

:TransitionEnd

target = „1“

[7]

[12]

Abbildung 4.9: Ergebnis der Übersetzung in Strukturierten Text

Ausführung Auf der Grundlage dieser TGG-Regeln und der dazugehörigen
Textschablonen wird die Codegenerierung in zwei Schritten durchgeführt.
Zunächst wird der I/O-Automat aus Abbildung 4.7 in die Repräsentation
für Textschablonen – wie bereits in Abschnitt 3.3.1 beschrieben – übersetzt.
Dabei werden auch die Attributbedingungen berücksichtigt. Der dabei ent-
standene abstrakte Syntaxbaum ist in der linken Hälfte der Abbildung 4.9
dargestellt (gelb unterlegter Bereich). Anschließend wird der Syntaxbaum
in preorder traversiert. Dabei wird die dem besuchten Objekt zugeordnete
Textschablone instanziiert und die darin enthaltenen Platzhalter durch die
Attributwerte aus dem besuchten Objekt ersetzt. Der durch die Instanziie-
rung der Textschablonen entstandene ST-Code wird in dieser Reihenfolge an-
einandergehängt und ergibt die Implementierung des I/O-Automaten. Das
Ergebnis dieses Schrittes ist in der rechten Hälfte der Abbildung 4.9 zu sehen
(grün unterlegter Bereich).

Die Zahlen an den Objekten sowie den instanziierten Textschablonen sind
in der Abbildung 4.9 lediglich aus Präsentationsgründen aufgeführt. Sie ge-

116

4.1 Spezifikation von Modell-zu-Text Beziehungen

ben einerseits die Traversierungsreihenfolge im abstrakten Syntaxbaum wie-
der. Andererseits setzen sie die Objekte des abstrakten Syntaxbaums zu den
instanziierten Textschablonen in Beziehung. Für diejenigen Objekte, denen
keine Textschablone in der dazugehörigen TGG-Regel zugeordnet wurde,
wird auch keine Textschablone instanziiert (vergleiche Wurzelobjekt vom
Typ CompilationUnit und TGG-Regel in Abbildung A.15, Seite 286). Dies
erklärt auch die lückenhafte Nummerierung der instanziierten Textschablo-
nen in der rechten Hälfte der Abbildung 4.9.

4.1.3 Gegenüberstellung

Die Codegenerierung auf der Grundlage einer Spezifikation von Modell-zu-
Text Beziehungen mit TGGs und Textschablonen bietet gegenüber ande-
ren Ansätzen zur Codegenerierung (vergleiche Abschnitt 4.1.1) sowohl einige
Vorteile als auch einen Nachteil.

Gegenüber der Codegenerierung durch direkte Programmierung und der
Codegenerierung mit Textschablonen hat der Einsatz von TGGs den Vor-
teil, dass die Zuordnung zwischen den Modellartefakten und dem aus ihnen
generierten Code formal spezifiziert ist. Diese Formalisierung kann beispiels-
weise herangezogen werden, um die Codegenerierung formal zu verifizieren
(vergleiche Kapitel 6). Zudem ist die Zuordnung zwischen Modellelementen
und den dazugehörigen Codefragmenten leichter nachvollziehbar. Gleichzei-
tig wird diese Zuordnung bei der Codegenerierung im Korrespondenzmodell
gespeichert, so dass die Nachverfolgbarkeit auch nach der Codegenerierung
sichergestellt ist. Dieser Mechanismus muss nicht erst aufwändig program-
miert oder zusätzlich spezifiziert werden – er ist bereits im Formalismus der
TGGs verankert und kann damit automatisch bereitgestellt werden.

Ein weiterer Vorteil wird deutlich, wenn man eine Codegenerierung mit
Textschablonen betrachtet, die ohne TGGs spezifiziert wurde (vergleiche Ab-
schnitt 4.1.1). Diese Textschablonen enthalten neben dem zu generierenden
Code zusätzliche Anweisungen, die der Steuerung der Codegenerierung und
der Abfrage von Modelleigenschaften dienen. Diese Anweisungen sind mit
dem zu generierenden Code vermischt und machen diese Textschablonen
schwer lesbar. Im Gegensatz dazu enthalten die Textschablonen im kom-
binierten Ansatz keine Anweisungen zur Steuerung der Codegenerierung.
Die Codegenerierung wird im kombinierten Ansatz implizit durch die TGG-
Regeln gesteuert. Die Textschablonen enthalten nur noch das Codegerüst
mit dazugehörigen Platzhaltern. Dadurch sind die Textschablonen aus dem
kombinierten Ansatz leichter lesbar.

117

Kapitel 4 Spezifikationsvarianten

Ein allgemeiner und nicht zu unterschätzender Vorteil beim Einsatz von
TGGs ist, dass sowohl die Spezifikation von Modell-zu-Modell als auch die
Spezifikation von Modell-zu-Text Beziehungen auf der Grundlage eines ein-
zigen Formalismus erfolgt. Auch wenn die Spezifikation der Modell-zu-Text
Beziehungen im kombinierten Ansatz um Textschablonen erweitert ist, so ist
die Notation zum größten Teil bereits bekannt und muss nicht grundlegend
neu erlernt werden.

Gegenüber der Spezifikation mit TGGs ohne Textschablonen hat der kom-
binierte Ansatz aus TGGs und Textschablonen den Vorteil, dass nur ein Me-
tamodell zur Repräsentation der Textschablonen spezifiziert werden muss.
Dieses Metamodell ist nicht so umfangreich wie ein vollständiges Metamo-
dell einer Programmiersprache. Damit sinkt auch der Spezifikationsaufwand.
Zusätzlich wird der zu generierende Code in den Textschablonen – bis auf
die zur Parametrisierung benötigten Platzhalter – in seiner konkreten Syn-
tax angegeben. Dies ist deutlich einfacher, als den zu generierenden Code in
seiner abstrakten Darstellung zu spezifizieren.

Ein Nachteil des kombinierten Ansatzes gegenüber der Spezifikation mit
TGGs ohne Textschablonen besteht jedoch darin, dass die Synchronisation
nur in eine Richtung ausgeführt werden kann. Damit können Änderungen
im Code nicht an das Modell weitergegeben werden, um das Modell an den
geänderten Code anzupassen. Dieser Nachteil ist jedoch bei der direkten
Programmierung und bei der Codegenerierung mit Textschablonen ebenfalls
vorhanden (vergleiche Abschnitt 4.1.1). Für eine Synchronisation in beide
Richtungen ist keiner dieser Ansätze geeignet. Falls eine bidirektionale Syn-
chronisation benötigt wird, müssen die TGG-Regeln ohne Textschablonen
auf der Grundlage eines feingranularen Metamodells der Programmierspra-
che – wie in Abschnitt 4.1.2 beschrieben – spezifiziert werden. Um den damit
verbundenen Aufwand zu reduzieren, kann der nachfolgend beschriebene An-
satz zur Spezifikation durch Beispielzuordnungen eingesetzt werden.

4.2 Spezifikation durch Beispielzuordnungen

Bisher wurden Korrespondenzbeziehungen zwischen zwei Modellen in der
abstrakten Syntax spezifiziert, die durch die Metamodelle der beteiligten
Modellierungssprachen definiert werden. Metamodelle sind allerdings nicht
immer so einfach wie in unserem Beispiel der vorangegangenen Kapitel. In
den meisten Fällen sind Metamodelle recht groß und enthalten viele Kon-
zepte, die nur schwer zu ihrer konkreten Repräsentation in der Modellie-

118

4.2 Spezifikation durch Beispielzuordnungen

rungssprache zugeordnet werden können. Ein gutes Beispiel hierfür stellt
die Unified Modelling Language(UML) [UML05] dar, in der die Metaklasse
Property sowohl zur Repräsentation von Attributen als auch zur Repräsen-
tation von Assoziationsenden herangezogen wird. Die Semantik und die
graphische Darstellung hängen somit vom Kontext ab, in dem eine Instanz
dieser Metaklasse verwendet wird. Insbesondere in solchen Fällen kann eine
auf Metamodellen basierende Spezifikation der Korrespondenzbeziehungen
kompliziert werden.

Um die Spezifikation der Korrespondenzbeziehungen zu vereinfachen, stel-
len wir in diesem Abschnitt einen Ansatz vor, in dem die Korrespondenz-
beziehungen durch Zuordnungen von Beispielen vorgenommen werden. Die
Beispiele werden dabei in der konkreten Syntax der Modelle angegeben. Han-
delt es sich dabei um eine visuelle Modellierungssprache, so entspricht die
konkrete Syntax der graphischen Darstellung dieser Modellierungssprache.
Bei einer textuellen Sprache wird die konkrete Syntax hingegen durch Text
repräsentiert. In beiden Fällen ist die konkrete Syntax meistens geläufiger
als die zugrundeliegende abstrakte Syntax der Sprachen. Dadurch ist es we-
sentlich einfacher, die Korrespondenzbeziehungen mit Beispielen in der kon-
kreten Syntax der Sprachen zu spezifizieren. Aus diesen Beispielen können
anschließend TGG-Regeln automatisch synthetisiert werden. Die Spezifika-
tion kann somit deutlich komfortabler durchgeführt werden.

Im folgenden Abschnitt präsentieren wir die grundlegende Idee und das
Lösungsprinzip, welches im Rahmen der Diplomarbeit von Alexander Ge-
burzi umgesetzt wurde [Geb06]. Anschließend stellen wir informell den Al-
gorithmus zur Regelsynthese an einem Beispiel vor. Danach gehen wir auf
notwendige Erweiterungen des Regelsynthesealgorithmus ein, damit die im
vorangegangenen Kapitel eingeführten Konzepte für Attribute, Bedingun-
gen und wiederverwendbare Objekte behandelt werden können. Wir schlie-
ßen diesen Abschnitt mit einigen Betrachtungen und Empfehlungen für den
Einsatz dieser Methode in der Praxis.

4.2.1 Idee und Lösungsprinzip

Die zugrundeliegende Idee unseres Ansatzes besteht darin, dass der Benutzer
die Korrespondenzbeziehungen zwischen zwei Modellen spezifiziert, indem
er eine Menge von Beispielzuordnungen angibt. Eine Beispielzuordnung be-
steht aus zwei zueinander korrespondieren Modellen. Über die Zuordnung
der Modelle wird die semantische Beziehung beziehungsweise Korrespondenz
zwischen diesen beiden Modellen ausgedrückt.

119

Kapitel 4 Spezifikationsvarianten

Abbildung 4.10 zeigt eine Beispielzuordnung, die eine Korrespondenz zwi-
schen einem Blockdiagramm und einem Klassendiagramm definiert. Die Bei-
spielzuordnung wird in der konkreten Syntax der beteiligten Modellierungs-
sprachen angegeben. In diesem Sinne haben wir bereits einige Beispielzu-
ordnungen auch in Abbildung 2.4 gezeigt.

set of synthesised rules

set of example pairs

automatic rule

synthesis

:Class

elements

:ClassDiagram

:CorrNode

:Connection

:Block

++

:Association

src

target

:CorrNode

elements
++

++

++

++

++ ++

++
source
++

:Class:CorrNode:Block

tgt
++

System ProSys

Block Station

Block Interlock

Block Stopper

c1

c1

<<system>>

ProSys

<<block>>

Station

<<block>>

Interlock
<<block>>

Stopper

Abbildung 4.10: Überblick zur Spezifikation mit Beispielzuordnungen

Um die so spezifizierten Beispielzuordnungen für die noch später vorzustel-
lende Modellsynchronisation nutzen zu können, werden daraus automatisch
TGG-Regeln synthetisiert. Dies wird erreicht, indem die Beispielzuordnun-

120

4.2 Spezifikation durch Beispielzuordnungen

gen analysiert und die Unterschiede zwischen den gegebenen Beispielzuord-
nungen identifiziert werden. Diese Unterschiede werden anschließend ge-
nutzt, um daraus entsprechende TGG-Regeln zu konstruieren. Für diese
Art der Regelsynthese werden daher mindestens zwei Beispielzuordnungen
benötigt, die sowohl einige Gemeinsamkeiten als auch Unterschiede in den
darin enthaltenen Konzepten aufweisen. Auch wenn bei diesem Ansatz einige
Einschränkungen und Anforderungen beachtet werden müssen, so bietet die-
ser Ansatz aus Sicht des Benutzers den Vorteil, dass detaillierte Kenntnisse
über den Aufbau der abstrakten Syntax der Modelle nicht nötig sind.

Für die automatische Regelsynthese müssen die Beispielzuordnungen in
einen gemeinsamen TGG-Formalismus übersetzt werden. In Abbildung 4.11
ist eine solche Übersetzung zu sehen. Die Beispielzuordnung setzt ein lee-
res System zu einer Klasse in Beziehung, die mit dem Stereotyp �system�
gekennzeichnet ist. Die Übersetzung dieser Beispielzuordnung beruht auf
der Tatsache, dass jedes Modell in konkreter Syntax auch eine abstrakte
Syntax besitzt, die auf einem dazugehörigen Metamodell basiert. In einem
Modellierungswerkzeug wird durch die Editieroperationen des Benutzers im
Hintergrund die Repräsentation des Modells in abstrakte Syntax aufgebaut.
Tatsächlich ist es sogar so, dass in einem Werkzeug die graphische Repräsen-
tation eines Modells auf Grundlage seiner abstrakten Syntax erzeugt wird.

Diese Tatsache kann ausgenutzt werden, um beide Modelle in den gemein-
samen TGG-Formalismus zu übersetzen. In Abbildung 4.11 werden zum
Beispiel die Objekte ClassDiagram, Class und Stereotype in Objekte des
Typs TGGObject übersetzt. Der Typ eines Objekts wird als Attributwert des
Objekts TGGObject hinterlegt. Die Links zwischen den Objekten werden in
Objekte des Typs TGGLink übersetzt. Auch hier wird der Typ der zugrun-
deliegenden Assoziation als Attributwert dieser Objekte gespeichert. In der
vorliegenden Implementierung erfolgt die Übersetzung mit einer fest defi-
nierten Modelltransformation, die ebenfalls auf TGGs basiert. Allerdings
hat sich gezeigt, dass die Übersetzungsregeln sehr allgemein sind, so dass
alternativ eine generische Übersetzung ebenfalls möglich ist [Geb06].

Vergleicht man in Abbildung 4.11 die graphische Repräsentation einer
TGG-Regel mit der graphischen Repräsentation der abstrakten Syntax ei-
nes Modells, so stellt man fest, dass beide Repräsentationen sehr ähnlich
zueinander sind. Zwischen beiden Repräsentationen existiert jedoch ein
fundamentaler Unterschied. Beispielsweise kann im TGG-Formalismus ein
TGGObject der linken und der rechten Regelseite oder nur der rechten Regel-
seite zugewiesen werden. Wird das Objekt nur der rechten Seite zugewiesen,
wird es mit ++ annotiert. Außerdem können im TGG-Formalismus die Ob-

121

Kapitel 4 Spezifikationsvarianten

B
e
is
p
ie
lz
u
o
rd
n
u
n
g
 i
n

k
o
n
k
re
te
r
S
y
n
ta
x

B
e
is
p
ie
lz
u
o
rd
n
u
n
g
 i
n

a
b
s
tr
a
k
te
r
S
y
n
ta
x

T
G
G
-F
o
rm
a
lis
m
u
s

in
 a
b
s
tr
a
k
te
r
S
y
n
ta
x

T
G
G
-F
o
rm
a
lis
m
u
s

in
 k
o
n
k
re
te
r
S
y
n
ta
x

translation translation

<<system>>

ProSys

System ProSys

:System

:ClassDiagram

stereotypes

elements

:Class

:Stereotype

:TGGObject

type=“System“

:TGGObject

type=“ClassDiagram“

:TGGObject

type=“Class“

:TGGLink

type=“elements“

:TGGLink

type=“stereotypes“

:TGGObject

type=“Stereotype“

:ClassDiagram

stereotypes

elements

:Class

:Stereotype

++

++

++

++

++

:System

++

Abbildung 4.11: Beispielzuordnung 1 (inklusive der Übersetzung in den
TGG-Formalismus)

122

4.2 Spezifikation durch Beispielzuordnungen

jekte verschiedenen Domänen zugeordnet werden. Nach der Übersetzung der
Beispielzuordnungen wird die Regelsynthese auf der abstrakten Syntax des
TGG-Formalismus durchgeführt.

Nachdem wir vorgestellt haben, wie die Beispielzuordnungen in einen ge-
meinsamen TGG-Formalismus überführt werden, stellen wir den grundlegen-
den Algorithmus der Regelsynthese an einem Beispiel vor. Aus didaktischen
Gründen werden wir hierzu aber nicht die abstrakte Syntax, sondern die ein-
fachere und benutzerfreundlichere, konkrete Syntax des TGG-Formalismus
verwenden.

4.2.2 Regelsynthese

Um den grundlegenden Algorithmus der Regelsynthese zu erklären, starten
wir mit einer leeren Menge von Beispielzuordnungen und erweitern diese
Menge Schritt für Schritt. Auch wenn wir hier aus Präsentationsgründen so
vorgehen, ist – wie wir später noch sehen werden – die Regelsynthese auch
in der Lage, eine gegebene Menge von Beispielzuordnungen auf einmal zu
verarbeiten. Der hier vorgestellte iterative Prozess ist keine Voraussetzung
für die Regelsynthese – auch wenn er dem Benutzer erlaubt, inkrementell
vorzugehen und für ihn dadurch sehr komfortabel ist. Wir veranschaulichen
den Algorithmus zur Regelsynthese mithilfe des bereits bekannten Beispiels
und beginnen mit einer sehr einfachen Beispielzuordnung.

Beispielzuordnung 1

Die erste Beispielzuordnung besteht aus einem leeren System und einer
Klasse mit dem Stereotyp �system�. Diese Zuordnung wurde bereits in
Abbildung 4.11 gezeigt. In einem ersten Schritt wird diese Beispielzuordnung
in den gemeinsamen TGG-Formalismus überführt. Entsprechend den Meta-
modellen wird ein System durch ein Objekt des Typs System repräsentiert.
Eine Klasse wird hingegen durch ein Objekt des Typs Class dargestellt und
durch ein Objekt des Typs ClassDiagram über den Link elements referen-
ziert. Die Kennzeichnung einer Klasse mit einem Stereotyp erfolgt durch ein
Objekt des Typs Stereotype, welches über den Link stereotypes an diese
Klasse gehängt wird (vergleiche dazu die Abbildungen 3.1 und 3.2 auf den
Seiten 57 und 58). Während der Übersetzung in den TGG-Formalismus wer-
den die Objekte den zugehörigen Domänen zugeordnet. Zusätzlich werden
alle Objekte und Links mit ++ gekennzeichnet, das heißt, alle Objekte und
Links werden der rechten Regelseite einer TGG-Regel zugeordnet.

123

Kapitel 4 Spezifikationsvarianten

Nach der Übersetzung der Beispielzuordnung in den gemeinsamen TGG-
Formalismus wird überprüft, ob bereits synthetisierte Regeln existieren, die
auf diese Struktur angewendet werden können. Aufgrund der Tatsache, dass
es sich hierbei um unsere erste Beispielzuordnung handelt, müssen keine
weiteren TGG-Regeln betrachtet werden. Daher wird einfach nur ein Kor-
respondenzobjekt vom Typ CorrNode zwischen den extrahierten Objekten
der beiden Domänen eingefügt. In Abbildung 4.12 ist das Ergebnis der Re-
gelsynthese aus der ersten Beispielzuordnung zu sehen.

:ClassDiagram

stereotypes

elements

:Class

:Stereotype

++

++

++

++

++

:System

++

:CorrNode

++
++ ++

++

++

Abbildung 4.12: Synthese des Axioms

Im Augenblick befinden sich alle Objekte und Links nur auf der rechten
Regelseite der synthetisierten TGG-Regel. Die linke Regelseite ist noch leer.
Daher entspricht die synthetisierte Regel noch nicht der Struktur, die wir für
TGG-Regeln kennen gelernt haben. Für die weitere Verarbeitung werden
wir diese Regel so lassen wie sie ist. Am Ende der Regelsynthese werden
allerdings die ++ Markierungen entfernt, das heißt, die Objekte und Links
werden auch der linken Regelseite zugeordnet. Dadurch erhalten wir das
bereits in Abbildung 3.9 vorgestellte Axiom. Dieser Schritt wird ausgeführt,
da unsere Beispielzuordnung nur ein Korrespondenzobjekt enthält und damit
zwangsläufig nur ein Axiom darstellen kann.

Beispielzuordnung 2

Wir setzen die Regelsynthese fort, indem wir eine zweite Beispielzuordnung
erstellen. Die zweite Beispielzuordnung beschreibt, wie ein Block innerhalb
eines Systems auf Elemente eines Klassendiagramms abgebildet wird. Die
Zuordnung ist in der oberen Hälfte der Abbildung 4.13 zu sehen. Die Regel-
synthese startet wiederum mit der Übersetzung der gegebenen Beispielzuord-
nung in den gemeinsamen TGG-Formalismus. Das Ergebnis der Übersetzung
ist in der unteren Hälfte der Abbildung 4.13 dargestellt. Die so erhaltene
Struktur ist Grundlage der nachfolgenden Schritte.

124

4.2 Spezifikation durch Beispielzuordnungen

B
e
is
p
ie
lz
u
o
rd
n
u
n
g
 i
n

k
o
n
k
re
te
r
S
y
n
ta
x

T
G
G
-F
o
rm
a
lis
m
u
s

in
 k
o
n
k
re
te
r
S
y
n
ta
x

translation translation

:System

++

:Block

++

++children

:ClassDiagram

stereotypes

elements

:Class

:Stereotype

++

++

++

++

++

:Composition

stereotypes

:Class

:Stereotype

++

++++

++

++

target

source

++
elements

++
elements

++

<<system>>

ProSys

<<block>>

Station

System ProSys

Block Station

Abbildung 4.13: Beispielzuordnung 2

125

Kapitel 4 Spezifikationsvarianten

Der Synthesealgorithmus überprüft nun, ob eine Regel existiert, die auf
die aus der Beispielzuordnung extrahierte Struktur angewendet werden kann.
In unserem Fall existiert bisher nur die Regel aus Abbildung 4.12. Daher
versucht die Regelsynthese die Objekte dieser Regel mit den Objekten der
neuen Struktur zu matchen. Aufgrund der Tatsache, dass das Korrespon-
denzobjekt der Regel noch mit ++ gekennzeichnet ist, wird es bei diesem
Matching nicht berücksichtig. Ein gültiges Matching ist in der oberen Hälfte
der Abbildung 4.14 zu sehen.

:ClassDiagram

stereotypes

elements

:Class

:Stereotype

++

++

++

++

++

:Composition

stereotypes

:Class

:Stereotype

++

++++

++

++

target

source

++
elements

++
elements

++

:System

++

:Block

++

++children

:ClassDiagram

:Class

:Stereotype

:System :CorrNode

:ClassDiagram

stereotypes

elements

:Class

:Stereotype

:Composition

stereotypes

:Class

:Stereotype

++

++++

++

++

target

source

++
elements

++
elements

++

:System

:Block

++

++children

:CorrNode

Abbildung 4.14: Regelsynthese aus Beispielzuordnung 2 – Schritte 1 und 2

Aufgrund dieses Matchings werden die übereinstimmenden Objekte der
Beispielzuordnung auch der linken Regelseite der neuen TGG-Regel zuge-
ordnet, das heißt, die Markierung mit ++ wird entfernt. Zusätzlich wird

126

4.2 Spezifikation durch Beispielzuordnungen

das fehlende aber durch die vorher synthetisierte Regel geforderte Korres-
pondenzobjekt hinzugefügt. Da das hinzugefügte Korrespondenzobjekt nun
Objekte verbindet, die sich sowohl auf der linken als auch auf der rechten
Seite der TGG-Regel befinden, wird dieses Objekt auf beiden Seiten der Re-
gel hinzugefügt. Das Ergebnis dieses Schrittes ist in der unteren Hälfte der
Abbildung 4.14 zu sehen.

Bei der Synthese wird versucht, eine Regel möglichst häufig anzuwenden.
In unserem Beispiel kann die bereits synthetisierte Regel aus Abbildung 4.12
aber nur einmal auf die extrahierte Struktur angewendet werden. Daher
wird der Synthesealgorithmus fortgesetzt. Aufgrund der Tatsache, dass bis-
her allerdings nur eine einzige Regel existiert und diese bereits angewendet
wurde, müssen keine weiteren Regeln überprüft werden.

:ClassDiagram

stereotypes

elements

:Class

:Stereotype

:Composition

stereotypes

:Class

:Stereotype

++

++++

++

++

target

source

++
elements

++
elements

++

:System

:Block

++

++children

:CorrNode

x

:ClassDiagram

source

:Composition

stereotypes

:Class

:Stereotype

++

++++

++

++

target

++
elements

++
elements

++

:Block

++

++children

:CorrNode :Class

elements

:System

++ ++

++

++

:CorrNode

++

Abbildung 4.15: Regelsynthese aus Beispielzuordnung 2 – Schritte 3 und 4

Die bisher synthetisierte Regelstruktur enthält noch ein Objekt vom Typ
Stereotype, welches in der Abbildung 4.15 mit einem x gekennzeichnet ist.

127

Kapitel 4 Spezifikationsvarianten

Die Anwesenheit dieses zusätzlichen Objekts wirkt sich für die Anwendbar-
keit der TGG-Regel nicht weiter störend aus, da aufgrund des angewendeten
Axioms sichergestellt ist, dass ein solches Objekt tatsächlich auch vorhanden
ist. Damit ist das Objekt aber auch redundant, das heißt, es könnte genauso
gut auch weggelassen werden. Bei der späteren Ausführung der TGG-Regeln
hängt die Ausführungsgeschwindigkeit insbesondere von der Anzahl der in
einer Regel enthaltenen Objekte und Links ab, da diese überprüft und ge-
bunden werden müssen. Daher ist es sinnvoll, redundante Objekte zu elimi-
nieren. Solche Objekte können daran erkannt werden, dass sie keine Links
zu neu erzeugten, das heißt, mit ++ markierten, Objekten haben. Der Syn-
thesealgorithmus löscht daher solche Objekte und die dazu inzidenten Links
aus der synthetisierten TGG-Regel.

Im letzten Schritt wird nun ein neues Korrespondenzobjekt erzeugt und
zu unserer Struktur hinzugefügt. Dieses Korrespondenzobjekt verbindet alle
verbliebenen Objekte, die noch mit ++ markiert sind. Daher wird dieses
Korrespondenzobjekt ebenfalls mit ++ markiert. Die daraus resultierende,
finale TGG-Regel ist in der unteren Hälfte der Abbildung 4.15 dargestellt.

Beispielzuordnung 3

Bisher haben wir durch die Beispielzuordnung definiert, wie ein System und
ein Block innerhalb dieses Systems auf Elemente eines Klassendiagramms ab-
gebildet werden. Diese beiden Fälle werden durch die synthetisierten TGG-
Regeln bereits abgedeckt. Allerdings fehlt noch eine Regel, die einen Block,
der innerhalb eines anderen Blocks enthalten ist, zu Elementen eines Klas-
sendiagramms zuordnet. Daher setzen wir die Regelsynthese fort, indem wir
eine weitere Beispielzuordnung angeben, die genau diesen Fall abdeckt. In
der oberen Hälfte der Abbildung 4.16 ist unsere dritte Beispielzuordnung dar-
gestellt. Die Beispielzuordnung wird ebenfalls für die Regelsynthese vorbe-
reitet, indem sie in den gemeinsamen TGG-Formalismus übersetzt wird. Die
übersetzte Beispielzuordnung ist in der unteren Hälfte der Abbildung 4.16
zu sehen.

Der Regelsynthesealgorithmus überprüft nun wieder, ob bereits synthe-
tisierte Regeln auf die neue Beispielzuordnung anwendbar sind. Aufgrund
der Tatsache, dass die neue Beispielzuordnung nur aus Objekten und Links
besteht, die mit ++ markiert sind, kann im Augenblick nur die Regel aus
Abbildung 4.12 angewendet werden. Abbildung 4.17 illustriert die Anwen-
dung dieser Regel durch die gestrichelt dargestellten Objekte und Links. Die
++ Markierung der gebundenen Objekte und Links wird entfernt und das

128

4.2 Spezifikation durch Beispielzuordnungen

B
e
is

p
ie

lz
u
o
rd

n
u
n
g
 i
n
 k

o
n
k
re

te
r

S
y
n
ta

x
T

G
G

-F
o
rm

a
lis

m
u
s

in
 k

o
n
k
re

te
r

S
y
n
ta

x

translation translation

System ProSys

Block Station

Block Interlock

<<system>>

ProSys

<<block>>

Station

<<block>>

Interlock

:System

:Block

children

:Block

children

++

++

++

++

++

:Class

:Stereotype

elements
:ClassDiagram

stereotypes

:Class

target

:Composition

:Stereotype

source

stereotypes

:Class

target

:Composition

:Stereotype

stereotypes

source

++++

++

++++

++

++

++

++

++

++

++

++

++

++

++

++

Abbildung 4.16: Beispielzuordnung 3

129

Kapitel 4 Spezifikationsvarianten

:System

:Block

children

:Block

children

++

++

++

++

++

:Class

:Stereotype

elements
:ClassDiagram

stereotypes

:Class

target

:Composition

:Stereotype

source

stereotypes

:Class

target

:Composition

:Stereotype

stereotypes

source

++++

++

++++

++

++

++

++

++

++

++

++

++

++

++

++
:ClassDiagram

:Class

:Stereotype

:System :CorrNode

:System

:Block

children

:Block

children

++

++

++

++

:Class

:Stereotype

elements

stereotypes

:Class

target

:Stereotype

source

stereotypes

:Class

target

:Composition

:Stereotype

stereotypes

source

++

++++

++

++

++

++

++

++

++

++

++

:CorrNode

elements

++

:ClassDiagram

:Composition

Abbildung 4.17: Regelsynthese aus Beispielzuordnung 3 – Schritte 1 und 2

130

4.2 Spezifikation durch Beispielzuordnungen

:System

:Block

children

:Block

children

++

++

++

++

:Class

:Stereotype

elements

stereotypes

:Class

target

:Stereotype

source

stereotypes

:Class

target

:Composition

:Stereotype

stereotypes

source

++

++++

++

++

++

++

++

++

++

++

++

:CorrNode1

elements

++

:ClassDiagram

:Composition

:ClassDiagram

:Composition

:Class

:Stereotype

:Block

:CorrNode :Class:System

++ ++

++

++

:CorrNode

++

:System

:Block

children

:Block

children

++

++

:Class

:Stereotype

elements

stereotypes

:Class

target

:Stereotype

source

stereotypes

:Class

target

:Composition

:Stereotype

stereotypes

source
++

++

++

++

++

++

:CorrNode

:ClassDiagram

:Composition

:CorrNode

elements

++

Abbildung 4.18: Regelsynthese aus Beispielzuordnung 3 – Schritte 3 und 4

131

Kapitel 4 Spezifikationsvarianten

:Block

:Block

children

++

++

elements

:Class

:Class

target

:Composition

:Stereotype

stereotypes

source
++

++

++

++

++

++

:ClassDiagram

:CorrNode

elements
++

elements
++

:CorrNode

++

++ ++

++

++

:System

children

:Block

children

++

++

:Class

:Stereotype

elements

stereotypes

:Class

target

:Stereotype

source

stereotypes

:Class

target

:Composition

:Stereotype

stereotypes

source
++

++

++

++

++

++

:CorrNode

:ClassDiagram

:Composition

:CorrNode

elements

++

xx x

x

x

x

:Block

Abbildung 4.19: Regelsynthese aus Beispielzuordnung 3 – Schritte 5 und 6

132

4.2 Spezifikation durch Beispielzuordnungen

fehlende Korrespondenzobjekt zwischen diesen Objekten eingefügt. Die aus
dieser Regelanwendung entstandene Struktur ist in Abbildung 4.17 zu sehen.

Die vorliegende Struktur besitzt nun einige Objekte und Links mit und
ohne ++ Markierungen. Daher kann nun auch die synthetisierte TGG-Regel
aus Abbildung 4.15 angewendet werden. In Abbildung 4.18 ist die Regelan-
wendung und das daraus hervorgegangene neue Korrespondenzobjekt zu se-
hen. Die ++ Markierungen der gebundenen Objekte und Links – sofern sie
vorhanden waren – wurden entfernt.

Aufgrund der durchgeführten Regelanwendung sind nur einige wenige mit
++ markierte Objekte und Links übrig geblieben. Da nun keine weiteren
bereits synthetisierten Regeln auf diese Objekte angewendet werden können,
werden die Objekte über ein neu hinzugefügtes Korrespondenzobjekt mit-
einander in Beziehung gesetzt. Auch hier wird wieder das neue Korrespon-
denzobjekt mit ++ markiert, da es nur Objekte mit einer ++ Markierung
miteinander verbindet und dies der Struktur von TGG-Regeln entspricht.

Die synthetisierte TGG-Regel entspricht bereits der Struktur von TGG-
Regeln. Allerdings sind hier – wie schon im vorherigen Fall – einige Objekte
vorhanden, die nicht direkt mit den mit ++ markierten Objekten verbunden
sind. Diese Objekte wurden in Abbildung 4.19 mit einem x gekennzeichnet.

Alle mit einem x markierten Objekte und die dazu inzidenten Links werden
aus der synthetisierten TGG-Regel entfernt. Dies betrifft auch alle Korres-
pondenzobjekte, die keine oder nur Links zu einer einzigen Domäne besitzen.
In unserem Beispiel betrifft dies das mit x gekennzeichnete Korrespondenz-
objekt, da nach dem Löschen des Objektes vom Typ System dieses Korres-
pondenzobjekt nur noch Links zu Elementen des Klassendiagramms besitzt.
Daher wird es ebenfalls gelöscht. Die endgültige TGG-Regel ist in Abbil-
dung 4.19 dargestellt.

Beispielzuordnung 4

Bisher waren die Beispielzuordnungen relativ einfach gehalten. Sie haben ei-
nige wenige Elemente eines Blockdiagramms zu Elementen eines Klassendia-
gramms in Beziehung gesetzt. Im Folgenden schauen wir uns eine etwas kom-
plexere Beispielzuordnung an, die in der oberen Hälfte der Abbildung 4.20 zu
sehen ist. Diese Beispielzuordnung zeigt auf der linken Seite zwei Blöcke, die
innerhalb eines Systems angeordnet und über einen Kanal miteinander ver-
bunden sind. Die korrespondierenden Elemente im Klassendiagramm sind
auf der rechten Seite der Abbildung 4.20 zu sehen.

Wie in den vorangegangenen Beispielzuordnungen wird auch diese Bei-

133

Kapitel 4 Spezifikationsvarianten

B
e
is

p
ie

lz
u
o
rd

n
u
n
g

 i
n
 k

o
n
k
re

te
r

S
y
n
ta

x

T
G

G
-F

o
rm

a
lis

m
u
s

in
 k

o
n
k
re

te
r

S
y
n
ta

x

translation

System ProSys

Block Station

Block Robot

c

c

<<system>>

ProSys

<<block>>

Station
<<block>>

Robot

translation

:System

:Block

children

:Block

children

:Connection

src

tgt

++

++

++

++

++

++

++

++

elements:ClassDiagram

:Class

target

:Stereotype

stereotypes

:Class

:Composition

:Stereotype

source

:Class

:Composition

:Stereotype

:Association

source

target

++

++

++

++

++
source

++

target
++

++

++

++

++

stereotypes
++

target
++

++

++

++

stereotypes
++

++

++

++

++

Abbildung 4.20: Beispielzuordnung 4

134

4.2 Spezifikation durch Beispielzuordnungen

spielzuordnung zunächst in den TGG-Formalismus übersetzt. Die aus der
Übersetzung resultierende Struktur ist in der unteren Hälfte der Abbil-
dung 4.20 dargestellt. Hierbei ist zu erkennen, dass der Kanal, der in der gra-
phischen Syntax als eine einfache Linie zwischen den beteiligten Blöcken dar-
gestellt wurde, nun durch ein eigenständiges Objekt vom Typ Connection

mit dazugehörigen Links zu den beiden Objekten des Typs Block repräsen-
tiert wird. Entsprechend wird auch die Assoziation zwischen den beiden
Klassen als ein eigenständiges Objekt vom Typ Association repräsentiert.

Die Regelsynthese verläuft nun nach dem bereits aus den anderen Bei-
spielzuordnungen bekannten Schema. Zunächst wird die erste Regel, das
heißt, das Axiom aus Abbildung 4.12, angewendet. Die Anwendung und das
Ergebnis sind in der Abbildung 4.21 zu sehen.

Nach diesem Syntheseschritt überprüft die Regelsynthese, ob die zuvor
synthetisierte Regel aus Abbildung 4.15 angewendet werden kann. Im Ge-
gensatz zu den zuvor vorgestellten Beispielzuordnungen kann diese Regel
sogar zwei Mal auf die vorliegende Struktur angewendet werden. Die erste
Anwendung der Regel ist in der Abbildung 4.22 dokumentiert. Die zweite
Regelanwendung wird in der Abbildung 4.23 illustriert.

In beiden Fällen werden ein Block und eine Klasse mit dazugehörigen
Modellelementen durch ein Korrespondenzobjekt vom Typ CorrNode zuein-
ander in Beziehung gesetzt. Dabei hat der Synthesealgorithmus, wie in den
Abbildungen 4.22 und 4.23 gezeigt, den oberen Block mit der weiter oben
dargestellten Klasse und den unteren Block mit der unteren Klasse in Bezie-
hung gesetzt. Ebenso hätte der Synthesealgorithmus den oberen Block mit
der unteren Klasse und den unteren Block mit der darüber liegenden Klasse
in Beziehung setzen können. Der Grund für diese Auswahl liegt an den
zusätzlichen Attributwerten der Objekte, die zum Beispiel den Namen eines
Blocks und den Namen einer Klasse enthalten. Diese Attributwerte können
zur Ermittlung einer Korrespondenzbeziehung herangezogen werden, indem
beispielsweise nur Objekte mit gleichen Attributwerten zueinander zugeord-
net werden. Auf die dazu notwendigen Erweiterungen unseres Syntheseal-
gorithmus gehen wir aber erst in Abschnitt 4.2.3 ein. Für den Augenblick
reicht uns die hier zunächst willkürlich erscheinende Zuordnung der Modell-
elemente.

Nach der zweimaligen Anwendung der Regel aus Abbildung 4.15 enthält
unsere Struktur zwei weitere Korrespondenzobjekte. Außerdem existieren
Objekte, die keine Links zu Objekten besitzen, die mit ++ gekennzeichnet
sind. Diese Objekte sind redundant. Die beschriebene Situation illustriert
Abbildung 4.24, in der die redundanten Objekte mit einem x markiert sind.

135

Kapitel 4 Spezifikationsvarianten

elements:ClassDiagram

:Class

elements

:Stereotype

stereotypes

:Class

:Composition

:Stereotype

source

:Class

:Composition

:Stereotype

:Association

source

target

++

++

++

++

++
source
++

target
++

++

++

++

++

stereotypes
++

target
++

++

++

++

stereotypes
++

++

++

++

++

:System

:Block

children

:Block

children

:Connection

src

tgt

++

++

++

++

++

++

++

++

:ClassDiagram

:Class

:Stereotype

:System :CorrNode

elements

:Class

elements

:Stereotype

stereotypes

:Class

:Composition

:Stereotype

source

:Class

:Composition

:Stereotype

:Association

source

target

++

++

source
++

target
++

++

++

stereotypes
++

target
++

++

++

++

stereotypes
++

++

++

++

++

:System

:Block

children

:Block

children

:Connection

src

tgt

++

++

++

++

++

++

++

:CorrNode

:ClassDiagram

Abbildung 4.21: Regelsynthese aus Beispielzuordnung 4 – Schritte 1 und 2

136

4.2 Spezifikation durch Beispielzuordnungen

elements

:Class

elements

:Stereotype

stereotypes

:Class

:Composition

:Stereotype

source

:Class

:Composition

:Stereotype

:Association

source

target

++

++

source
++

target
++

++

++

stereotypes
++

target
++

++

++

++

stereotypes
++

++

++

++

++

:System

:Block

children

:Block

children

:Connection

src

tgt

++

++

++

++

++

++

++

:CorrNode

:ClassDiagram

:Class

:Stereotype

:Class

:Composition

:Stereotype

:System

:Block

:CorrNode

:ClassDiagram

:CorrNode

++

++

++

++

++

elements

:Class

elements

:Stereotype

stereotypes

:Class

:Composition

:Stereotype

source

:Class

:Composition

:Stereotype

:Association

source

target

++

++

source

target

stereotypes

target
++

++

++

stereotypes
++

++

++

++

++

:System

:Block

children

:Block

children

:Connection

src

tgt

++

++

++

++

++

:CorrNode

:ClassDiagram

:CorrNode

elements

Abbildung 4.22: Regelsynthese aus Beispielzuordnung 4 – Schritte 3 und 4

137

Kapitel 4 Spezifikationsvarianten

elements

:Class

elements

:Stereotype

stereotypes

:Class

:Composition

:Stereotype

source

:Class

:Composition

:Stereotype

:Association

source

target

++

++

source

target

stereotypes

target
++

++

++

stereotypes
++ ++

++

++

++

:System

:Block

children

:Block

children

:Connection

src

tgt

++

++

++

++

++

:CorrNode

:ClassDiagram

:CorrNode

elements

:Class

:Class

:Composition

:Stereotype

:System

:Block

:CorrNode

:ClassDiagram

:CorrNode

elements

:Class

elements

:Stereotype

stereotypes

:Class

:Composition

:Stereotype

source

:Class

:Composition

:Stereotype

:Association

source

target

++

source

target

stereotypes

target

stereotypes

++

++

++

:System

:Block

children

:Block

children

:Connection

src

tgt

++

++

++

:CorrNode

:ClassDiagram

:CorrNode

elements

:CorrNode

Abbildung 4.23: Regelsynthese aus Beispielzuordnung 4 – Schritte 5 und 6

138

4.2 Spezifikation durch Beispielzuordnungen

elements

:Class

elements

:Stereotype

stereotypes

:Class

:Composition

:Stereotype

source

:Class

:Composition

:Stereotype

:Association

source

target

++

source

target

stereotypes

target

stereotypes

++

++

++

:System

:Block

children

:Block

children

:Connection

src

tgt

++

++

++

:CorrNode

:ClassDiagram

:CorrNode

elements

:CorrNode

x x

x

x

x

x

x

x

elements

:Class

:Association

source

++
elements

++

++

:Block

:Block

:Connection

src

tgt

++

++

++

:CorrNode

elements

:CorrNode

target
++

:ClassDiagram

:Class

:CorrNode

++

++ ++

Abbildung 4.24: Regelsynthese aus Beispielzuordnung 4 – Schritte 7 und 8

139

Kapitel 4 Spezifikationsvarianten

Aufgrund der Tatsache, dass keine weiteren bisher synthetisierten Regeln
auf diese Struktur angewendet werden können, entfernt der Regelsynthe-
sealgorithmus zunächst die redundanten Objekte und alle dazu inzidenten
Links. Anschließend fügt er ein neues Korrespondenzobjekt zwischen den
verbliebenen und mit ++ gekennzeichneten Objekten ein. Damit ist die Re-
gelsynthese für diese Beispielzuordnung abgeschlossen. Das Ergebnis ist in
der unteren Hälfte der Abbildung 4.24 dargestellt.

4.2.3 Erweiterungen

Bisher haben wir in unserem Synthesealgorithmus lediglich Objekte und
Links berücksichtigt. Attributbedingungen, negative Anwendungsbedingun-
gen sowie wiederverwendbare Objekte wurden nicht betrachtet. Im Folgen-
den beschreiben wir, wie diese Konzepte von der Regelsynthese unterstützt
werden.

Attributbedingungen

Die Modellelemente in den Beispielzuordnungen enthalten im Regelfall auch
Attribute, die mit konkreten Werten belegt sind. Beispielsweise besitzen das
System und die Klasse in der Beispielzuordnung aus Abbildung 4.11 einen
Namen, der in dem Attribut name gespeichert wird. Ebenso wird der Typ
des Stereotyps durch einen konkreten Attributwert repräsentiert. Um au-
tomatisch korrekte und sinnvolle TGG-Regeln zu synthetisieren, muss der
Algorithmus die Attribute in die Synthese mit einbeziehen. Dazu müssen
bereits bei der Übersetzung der Beispielzuordnungen in den gemeinsamen
TGG-Formalismus die Attributwerte der Objekte beachtet werden. Unter
Einbeziehung der Attribute führt dann eine Übersetzung der Beispielzuord-
nung aus Abbildung 4.11 zu dem Objektdiagramm in Abbildung 4.25. In
diesem Objektdiagramm besitzen sowohl das Objekt vom Typ System als
auch das Objekt vom Typ Class ein Attribut name vom Typ String, die
beide mit der Zeichenfolge ’ProSys’ belegt sind.

In unserem Ansatz verwenden wir eine sehr einfache Heuristik, die auf der
Gleichheit von Zeichenfolgen beziehungsweise Attributwerten im Allgemei-
nen basiert. Auf Grundlage dieser Heuristik können wir in unserem Beispiel
schlussfolgern, dass beide Attribute zueinander in Beziehung stehen. Das be-
deutet, dass ein System nur dann zu einer Klasse zugeordnet werden kann,
wenn sowohl das System als auch die Klasse den gleichen Namen aufweisen.

140

4.2 Spezifikation durch Beispielzuordnungen

:System

++

name=“ProSys“

:ClassDiagram

stereotypes

elements

:Class

:Stereotype

++

++

++

++

++

name=“ProSys“

kind=“system“

Abbildung 4.25: Beispielzuordnung mit Attributwerten

Folglich synthetisieren wir aus der Beispielzuordnung Attributbedingungen,
wie sie in Abbildung 4.26 zu sehen sind.

:ClassDiagram

stereotypes

elements

:Class

:Stereotype

++

++

++

++

++

:System

++

:CorrNode

++
++ ++

++

++

sys.name =

cn.name

cl.name =

cn.name

st.kind =

„system“

sys

++ ++

++

++ ++

++

++

cn cn
cl

st

Abbildung 4.26: Synthetisiertes Axiom mit Attributbedingungen

In den Fällen, in denen eine solche Relation zwischen Attributen nicht
hergestellt werden kann, synthetisieren wir eine einfache Attributbedingung
mit dem konkreten Attributwert der Beispielzuordnung. In unserem Beispiel
betrifft dies das Attribut kind, welches den Attributwert ’system’ im Objekt
des Typs Stereotype aufweist. Dieser Wert wird in keinem anderen Attribut
verwendet. Daher wird hierfür eine einfache Attributbedingung synthetisiert.
Sie ist ebenfalls in Abbildung 4.26 dargestellt.

In unserem Beispiel werden für das Attribut eines Stereotypen nur die
Werte ’system’, ’block’ und ’process’ verwendet. Diese Attributwerte wer-
den in den Beispielzuordnungen explizit eingesetzt. In einigen Fällen kann
aber der Wertebereich eines Attributes aus sehr vielen verschiedenen Werten
bestehen, so dass eine Aufzählung dieser konkreten Attributwerte durch die
Angabe verschiedener Beispielzuordnungen nicht mehr praktikabel ist. Ins-
besondere in den Fällen, wo in einer Beispielzuordnung mehrere Attribute

141

Kapitel 4 Spezifikationsvarianten

vorhanden sind, steigt auch die Anzahl möglicher Kombinationen. Die An-
gabe von Beispielzuordnungen, die all diese Kombinationen berücksichtigen,
ist zwar theoretisch möglich, aber in der Praxis nicht mehr zu bewältigen.
Zudem ist es häufig aus technischen Gründen notwendig, dass in einer Bei-
spielzuordnung ein Attribut mit einem Wert belegt ist, der Attributwert
selbst aber für eine korrekte Zuordnung der Modellelemente irrelevant ist.

Diesbezüglich kann die Attributsynthese und Heuristik in unserem Ansatz
noch verbessert werden. Beispielsweise könnte eine intelligentere Attribut-
synthese aufgrund von zwei Beispielzuordnungen, die sich nur durch einen
Attributwert in einem Objekt unterscheiden, entschließen, dieses Attribut
in der synthetisierten TGG-Regel zu ignorieren. Ebenso wäre es hilfreich,
wenn neben der Überprüfung von Zeichenketten auf Gleichheit auch Teil-
zeichenketten gesucht werden würden, um Präfixe beziehungsweise Suffixe
der Attributwerte bestimmen zu können. Diese Strategien sind in unserem
Ansatz noch nicht implementiert.

Im Augenblick werden diese Probleme in unserem Ansatz durch die Inter-
aktion mit dem Benutzer gelöst, das heißt, der Synthesealgorithmus macht
auf Grundlage der Heuristik Vorschläge für mögliche Attributbedingungen,
aber die endgültige Entscheidung muss vom Benutzer der Regelsynthese ge-
troffen werden. In diesem Sinne ist die hier beschriebene Regelsynthese nur
semi-automatisch. Allerdings waren bisher in den meisten unserer Beispiele
die Vorschläge korrekt und mussten nur noch durch die Benutzer bestätigt
werden.

Negative Anwendungsbedingungen

Neben einfachen Attributbedingungen können in TGG-Regeln auch Nega-
tive Anwendungsbedingungen nützlich sein. Diese Bedingungen haben wir in
Abschnitt 3.2.2 bereits vorgestellt. Hier wird nun gezeigt, wie solche Bedin-
gungen mit unserem Ansatz automatisch synthetisiert werden können.

Im Folgenden wollen wir eine Beispielzuordnung angeben, bei der ein Block
in einem System zu Elementen eines Klassendiagramms in Beziehung gesetzt
wird. Im Gegensatz zu der Beispielzuordnung aus Abbildung 4.13 darf al-
lerdings die neue Zuordnung nur dann stattfinden, wenn das System keinen
Prozess enthält.

Um eine TGG-Regel mit einer solchen Anwendungsbedingung synthetisie-
ren zu können, müssen wir zusätzlich zur Beispielzuordnung noch ein Bei-
spiel angeben, das ausdrückt, wann diese Zuordnung nicht stattfinden darf.
Diese Anwendungsbedingung geben wir in der konkreten Syntax der Block-

142

4.2 Spezifikation durch Beispielzuordnungen

:System

++

:Block

++

++children

:ClassDiagram

stereotypes

elements

:Class

:Stereotype

++

++

++

++

++

:Composition

stereotypes

:Class

:Stereotype

++

++++

++

++

target

source

++
elements

++
elements

++

:System

++

:Process

++

++children

Beispielzuordnung

Beispiel für eine negative Anwendungsbedingung

Abbildung 4.27: Beispielzuordnung mit Einschränkung

diagramme an, indem wir ein System mit einem darin enthaltenen Prozess
spezifizieren. Die Beispielzuordnung und die Anwendungsbedingung werden
nun in den gemeinsamen TGG-Formalismus übersetzt. Sie sind in Abbil-
dung 4.27 dargestellt.

Zur Synthese einer Anwendungbedingung versucht der Algorithmus eine
Beziehung zwischen den Objekten der Anwendungsbedingung und den Ob-
jekten im Blockdiagramm zu finden. Dabei wird eine Übereinstimmung zwi-
schen den beiden Objekten des Typs System festgestellt. Im weiteren Verlauf
der Synthese werden beide Objekte zusammengefasst (in Abbildung 4.27 ist
dies durch den gestrichelten Pfeil angedeutet). Das verbleibende Objekt und

143

Kapitel 4 Spezifikationsvarianten

:Process

children
:ClassDiagram

source

:Composition

stereotypes

:Class

:Stereotype

++

++++

++

++

target

++
elements

++
elements

++

:Block

++

++children

:CorrNode :Class

elements

:System

++ ++

++

++

:CorrNode

++

Abbildung 4.28: Synthetisierte Regel mit Negativer Anwendungsbedingung

der Link der Anwendungsbedingung werden als negative Anwendungsbedin-
gung gekennzeichnet. Die Regelsynthese wird wie vorher beschrieben fortge-
setzt und resultiert in der TGG-Regel, die in Abbildung 4.28 gezeigt wird.
Hierbei haben wir zur Darstellung der negativen Anwendungsbedingung die
Kurzschreibweise verwendet.

In unserem Beispiel wurde eine negative Anwendungsbedingung synthe-
tisiert, die besagt, dass kein Link zu einem Objekt des Typs Process exis-
tieren darf (vergleiche mittlere Anwendungsbedingung in Abbildung 3.18,
Seite 80). Um eine Bedingung zu synthetisieren, die fordert, dass kein Link
zwischen zwei ganz bestimmten Objekten existiert (vergleiche obere Bedin-
gung der Abbildung 3.18, Seite 80), hätte auch der Prozess an ein Objekt
der Beispielzuordnung gebunden werden müssen.

Wiederverwendbare Objekte

In Abschnitt 3.2.2 haben wir gezeigt, dass es durchaus Szenarien gibt, in
denen ein Modellelement nur dann erzeugt werden soll, wenn das Modell-
element in dieser Form noch nicht existiert. Dies kann kann beispielsweise
durch die Spezifikation von zwei TGG-Regeln erfolgen, bei der eine entspre-
chende Fallunterscheidung mit Hilfe von negativen Anwendungsbedingun-
gen ausgedrückt wird. Allerdings wird durch diese Art der Spezifikation die
Komplexität der einzelnen TGG-Regeln erhöht. Darüber hinaus leidet durch
die Fallunterscheidung, für die zwei separate TGG-Regeln spezifiziert wer-
den müssen, die Übersichtlichkeit und Verständlichkeit des gesamten TGG-
Regelsatzes.

144

4.2 Spezifikation durch Beispielzuordnungen

Um die Komplexität der TGG-Regeln gering zu halten und redundante
TGG-Regeln zu vermeiden, haben wir daher in Abschnitt 3.2.2 wiederver-
wendbare Objekte eingeführt. Während bei der direkten Spezifikation von
TGG-Regeln die Modellelemente einfach durch den Benutzer als wiederver-
wendbare Objekte markiert werden, müssen bei der automatischen Regelsyn-
these solche Modellelemente gesondert behandelt werden. Um bei der au-
tomatischen Regelsynthese zwischen herkömmlichen Modellelementen und
solchen, die wiederzuverwenden sind, unterscheiden zu können, muss der
Benutzer bereits im Vorfeld der Regelsynthese die Typen der wiederzuver-
wendenden Objekte zu einer hierfür speziell vorgesehenen Menge hinzufügen.
Dadurch werden während der automatischen Regelsynthese alle Instanzen,
deren Typ in dieser Menge enthalten ist, automatisch als wiederverwendbare
Objekte in den synthetisierten TGG-Regeln ausgewiesen.

4.2.4 Reihenfolgeunabhängigkeit

Bisher wurden die Beispielzuordnungen in einer sehr vorteilhaften Reihen-
folge angegeben – die zuvor synthetisierten TGG-Regeln konnten immer auf
die nachfolgende Beispielzuordnung angewendet werden. Aus diesem Grund
konnte der Regelsynthesealgorithmus TGG-Regeln synthetisieren, die sehr
ähnlich zu den von Hand spezifizierten TGG-Regeln sind. Falls die Reihen-
folge der Beispielzuordnungen nicht so vorteilhaft gewählt ist wie in unserem
Beispiel, kann der bisher präsentierte Algorithmus keine optimalen TGG-
Regeln erzeugen. Dies wird an dem folgenden Szenario kurz verdeutlicht.

Beispiel für Reihenfolgeabhängigkeit Für das folgende Beispiel nehmen
wir an, dass die Reihenfolge, in der die Beispielzuordnungen dem Synthe-
sealgorithmus zugeführt werden, geändert wird. Wir fangen wieder mit der
Beispielzuordnung an, die ein leeres System einer Klasse mit einem Stereo-
typen zuordnet (siehe Abbildung 4.11 auf Seite 122). Jetzt wird allerdings
zuerst die Beispielzuordnung aus Abbildung 4.20 angegeben und anschlie-
ßend die Beispielzuordnung aus Abbildung 4.13. Aus den in dieser Rei-
henfolge gegebenen Beispielzuordnungen erzeugt unser Synthesealgorithmus
wieder TGG-Regeln. Die erste Beispielzuordnung führt wie im vorherigen
Fall zu dem synthetisierten Axiom aus Abbildung 4.12. Aus der zweiten
Beispielzuordnung wird hingegen die in Abbildung 4.29 gezeigte TGG-Regel
synthetisiert, während aus der dritten Beispielzuordnung die in der unteren
Hälfte der Abbildung 4.15 dargestellte TGG-Regel entsteht.

145

Kapitel 4 Spezifikationsvarianten

elements

:Class

elements

:Stereotype

stereotypes

:Class

:Composition

:Stereotype

source

:Class

:Composition

:Stereotype

:Association

source

target

++

++

source
++

target
++

++

++

stereotypes
++

target
++

++

++

++

stereotypes
++

++

++

++

++

:System

:Block

children

:Block

children

:Connection

src

tgt

++

++

++

++

++

++

++

:CorrNode

:ClassDiagram

:CorrNode

++
++

++

++

++

++

++

++

++

++

++

Abbildung 4.29: TGG-Regel resultierend aus geänderter Reihenfolge der
Beispielzuordnungen

146

4.2 Spezifikation durch Beispielzuordnungen

Die in der unteren Hälfte der Abbildung 4.24 gezeigte TGG-Regel und die
TGG-Regel aus der Abbildung 4.29 wurden beide aus denselben Beispiel-
zuordnungen synthetisiert. Trotzdem sind die synthetisierten TGG-Regeln
verschieden. Dies liegt an der unterschiedlichen Reihenfolge, in der die Bei-
spielzuordnungen dem Synthesealgorithmus zugeführt werden. Aufgrund der
neuen Reihenfolge existiert zu dem Zeitpunkt, an dem die Regelsynthese aus
der zweiten Beispielzuordnung stattfindet, nur die synthetisierte Regel aus
Abbildung 4.12. Daher kann nur diese Regel auf die Struktur der zweiten Bei-
spielzuordnung angewendet werden. Im Gegensatz dazu lagen im ersten Fall
bereits zwei Regeln vor, die auf die neue Struktur angewendet werden konn-
ten. Bei der neuen Reihenfolge existiert zu diesem Zeitpunkt nur eine Regel,
so dass weniger Objekte gebunden werden, was wiederum dazu führt, dass
die daraus synthetisierte TGG-Regel mehr Objekte enthält und sich dadurch
von der TGG-Regel aus Abbildung 4.24 unterscheidet. Diese Abhängigkeit
von der Reihenfolge der gegebenen Beispielzuordnungen ist nicht gewünscht.
Die Regelsynthese sollte unabhängig von der Reihenfolge der gegebenen Bei-
spielzuordnungen immer zu identischen TGG-Regeln führen.

Reihenfolgeunabhängigkeit durch Algorithmuserweiterung Damit der
Synthesealgorithmus von der gegebenen Reihenfolge der Beispielzuordnun-
gen unabhängig wird, muss er erweitert werden. In der erweiterten Version
unserer Regelsynthese werden nicht nur bereits synthetisierte Regeln auf die
neue TGG-Regel angewendet, sondern auch die neu synthetisierte TGG-
Regel auf die Menge der bereits synthetisierten TGG-Regeln. Wenn dabei
eine Übereinstimmung der neuen TGG-Regel mit einer der bereits synthe-
tisierten TGG-Regeln festgestellt wird, verfährt der Algorithmus dabei wie
im gewöhnlichen Fall. Die ++ Markierungen der durch die Regelanwendung
gebundenen Objekte und Links werden entfernt, zusätzlich benötigte Kor-
respondenzobjekte hinzugefügt und Objekte, die keine direkte Verbindung
zu Objekten mit ++ Markierungen besitzen, gelöscht.

Aufgrund dieser Erweiterung wird in unserem Beispiel nach der Synthese
der dritten TGG-Regel (siehe Abbildung 4.15) versucht, diese TGG-Regel
auf die bereits zuvor synthetisierten TGG-Regeln anzuwenden. Dabei wird
festgestellt, dass die neue TGG-Regel auf die im zweiten Schritt syntheti-
sierte TGG-Regel aus Abbildung 4.29 anwendbar ist. Daher wird die ++
Markierung der gebundenen Objekte entfernt und ein neues Korrespondenz-
objekt hinzugefügt. Alle nicht benötigten Objekte werden entfernt. Dadurch
entsteht eine TGG-Regel, wie wir sie bereits aus Abbildung 4.24 kennen.

147

Kapitel 4 Spezifikationsvarianten

Die Erweiterung unseres Synthesealgorithmus hat einen weiteren Effekt.
Vergleichen wir die von Hand spezifizierten TGG-Regeln mit den bisher au-
tomatisch synthetisierten Regeln, so stellen wir fest, dass die TGG-Regel aus
Abbildung 4.15 in der von Hand spezifizierten Menge der TGG-Regeln nicht
vorkommt. Dies liegt daran, dass dieser Fall bereits durch die TGG-Regel
aus Abbildung 4.18 abgedeckt wird. Damit wird die automatisch synthe-
tisierte TGG-Regel aus Abbildung 4.15 nicht benötigt. Genau genommen
ist sogar die zuvor automatisch synthetisierte Regelmenge mehrdeutig, da
nun bei einem Objekt des Typs System sowohl die TGG-Regel aus Abbil-
dung 4.15 als auch die TGG-Regel aus Abbildung 4.18 anwendbar ist. Dies
liegt daran, dass im Metamodell für Blockdiagramme die Klasse System von
der Klasse Block erbt. Damit kann ein Objekt des Typs Block an ein Objekt
des Typs System gebunden werden. Diese Mehrdeutigkeit von TGG-Regeln
ist in den allermeisten Fällen nicht gewünscht und sollte nach Möglichkeit
vermieden werden, da dies bei der späteren Anwendung der TGG-Regeln zu
unterschiedlichen Ergebnissen führen kann.

Durch die Erweiterung unseres Synthesealgorithmus in der bereits be-
schriebenen Art und Weise werden solche mehrdeutigen TGG-Regeln er-
kannt und automatisch eliminiert. In unserem Beispiel wird die syntheti-
sierte TGG-Regel, wie sie in Abbildung 4.19 zu sehen ist, sofort als neue
TGG-Regel betrachtet und in die Synthese einbezogen. Daher versucht
der Regelsynthesealgorithmus diese TGG-Regel auf die bereits vorhandenen
TGG-Regeln anzuwenden. Dabei kann der Algorithmus das Objekt vom Typ
Block an das Objekt vom Typ System der TGG-Regel aus Abbildung 4.15
aus den bereits beschriebenen Gründen binden. Der Synthesealgorithmus
entfernt daher alle ++ Markierungen der gebundenen Objekte und Links.
Aufgrund der Tatsache, dass in diesem Fall aber alle Objekte und Links ge-
bunden werden konnten, bleiben keine Objekte mit ++ Markierungen übrig.
Damit existieren auch keine Objekte, die mit neu erzeugten Objekten di-
rekt verbunden sind. Somit werden alle Objekte gelöscht und damit diese
TGG-Regel eliminiert. Die automatisch synthetisierte TGG-Regeln stimmen
damit weitestgehend mit den von Hand spezifizierten TGG-Regeln überein.

Zusammenfassend kann festgehalten werden, dass durch die Erweiterung
unseres Synthesealgorithmus es nicht mehr nötig ist, die Beispielzuordnun-
gen Schritt für Schritt in einer bestimmten Reihenfolge anzugeben – der
Benutzer kann einfach eine Menge von Beispielzuordnungen als Eingabe an
den Synthesealgorithmus übergeben und erhält eine Menge von TGG-Regeln
als Ausgabe. Darüber hinaus ist der erweiterte Synthesealgorithmus in der
Lage, mehrdeutige TGG-Regeln zu erkennen und sie zu eliminieren, um eine

148

4.2 Spezifikation durch Beispielzuordnungen

möglichst kleine und optimale Regelmenge zu konstruieren.

4.2.5 Abschließende Betrachtungen zur Regelsynthese

In diesem Abschnitt haben wir einen Algorithmus präsentiert, der TGG-
Regeln aus zueinander korrespondierenden Beispielzuordnungen syntheti-
siert. Die Beispielzuordnungen werden in der konkreten Syntax der beteilig-
ten Modelle angegeben. Dadurch ist die Spezifikation dieser Beispielzuord-
nungen benutzerfreundlicher und die genaue Kenntnis der zugrundeliegenden
Metamodelle sowie des TGG-Formalismus wird nicht zwingend benötigt.

Der hier an einem Beispiel vorgestellte Synthesealgorithmus funktioniert
vollautomatisch, sofern keine Objektattribute betrachtet werden müssen.
Der Algorithmus ist unabhängig von der gegebenen Reihenfolge der Beispiel-
zuordnungen. Allerdings reicht eine einzige Beispielzuordnung nicht aus, um
eine allgemein gültige Menge von TGG-Regeln zu synthetisieren, die in der
Lage ist, unterschiedliche Modellinstanzen zueinander in Beziehung zu set-
zen. Vielmehr werden viele verschiedene Beispielzuordnungen benötigt. Da-
bei muss eine Beispielzuordnung eine Übereinstimmung mit mindestens ei-
ner anderen Beispielzuordnung besitzen und zusätzlich ein weiteres Konzept
der Modellierungssprache einführen. Diese Differenz zwischen den Beispiel-
zuordnungen wird durch den Synthesealgorithmus ausgenutzt, um daraus
entsprechende TGG-Regeln zu extrahieren. Falls ein Konzept der Model-
lierungssprache in keiner Beispielzuordnung auftaucht, wird dieses Konzept
auch in keiner der synthetisierten TGG-Regeln berücksichtigt. Auf der ande-
ren Seite können aus Beispielzuordnungen, die mehrere Konzepte auf einmal
enthalten nur TGG-Regeln synthetisiert werden, die diese Konzepte in dieser
Kombination abdecken. Daher muss bei der Anwendung der Regelsynthese
darauf geachtet werden, dass mit einer möglichst kleinen Beispielzuordnung
begonnen wird und sowohl die Menge der Beispielzuordnungen als auch die
Größe der Beispielzuordnungen selbst Schritt für Schritt erweitert werden.

Die Regelsynthese unterstützt einen iterativen Entwurfsprozess. Der itera-
tive Entwurfsprozess ist in Abbildung 4.30 dargestellt. Der Prozess beginnt
mit der Definition der Beispielzuordnungen. Aus diesen Beispielzuordnun-
gen werden TGG-Regeln synthetisiert. Die TGG-Regeln können durch den
Benutzer validiert werden, zum Beispiel indem sie auf einer definierten Ein-
gabe ausgeführt und das Ergebnis mit dem erwarteten Ergebnis verglichen
wird. Falls das Ergebnis der Validierung mit dem erwarteten Resultat nicht
übereinstimmt, können die Beispielzuordnungen solange modifiziert, verfei-
nert und um neue Beispielzuordnungen ergänzt werden, bis die Validierung

149

Kapitel 4 Spezifikationsvarianten

define
example pairs

synthesise
rules

refine
example pairs

refine
synthesised

rules

validate
rules

[valid]

[invalid]

Abbildung 4.30: Überblick zum Prozess

zufriedenstellende Ergebnisse liefert.

Der Regelsynthesealgorithmus funktioniert nur dann vollautomatisch, so-
lange keine Attribute berücksichtig werden müssen. Sind hingegen auch
Attribute zu berücksichtigen, arbeitet der Algorithmus interaktiv, das heißt,
der Algorithmus macht zwar automatisch Vorschläge für Attributbedingun-
gen, die endgültige Entscheidung, welche Attributbedingungen in der TGG-
Regel verwendet werden sollen, muss aber vom Benutzer getroffen werden.
Wie schon zuvor erwähnt, kann bei vielen Attributen bzw. Attributen mit
einem großen Wertebereich die Spezifikation mit Beispielzuordnungen sehr
umständlich werden, da für jeden möglichen Fall eine eigene Beispielzuord-
nung angegeben werden muss. Enthält ein Modell einer Beispielzuordnung
beispielsweise zwei Attribute, wobei das erste Attribut m verschiedene Werte
und das zweite Attribut n Werte annehmen kann, so sind insgesamt m*n
verschiedene Kombinationen möglich, für die jeweils eine eigene Beispielzu-
ordnung nötig wäre. Der Aufwand hierfür kann so groß werden, dass die
Vorteile dieses Ansatzes nicht mehr zu rechtfertigen sind.

Aus diesem Grund erlauben wir in unserem Ansatz, die synthetisierten
TGG-Regeln von Hand zu verfeinern. Dadurch können insbesondere auch
die Attributbedingungen von Hand angepasst und zum Beispiel durch eine
einfache Abbildungsfunktion realisiert werden. Dadurch wird der Ansatz
zwar semi-automatisch, allerdings reicht eine einzige Beispielzuordnung in
Verbindung mit einer von Hand spezifizierten Abbildungsfunktion, um ver-
schiedene Attributwerte in einer Beispielzuordnung abzudecken. Erlauben
wir manuelle Anpassungen und Verfeinerungen der synthetisierten TGG-
Regeln, so macht in diesem Fall auch die Validierung auf der Grundlage
der gegebenen Beispielzuordnungen wieder Sinn, da jetzt nicht nur die Kor-
rektheit des Synthesealgorithmus geprüft wird, sondern auch die manuell

150

4.2 Spezifikation durch Beispielzuordnungen

durchgeführten Änderungen validiert werden.4

In unserem Beispiel entsprechen die synthetisierten TGG-Regeln konzep-
tionell den von Hand spezifizierten TGG-Regeln. Beispielweise entspricht
die synthetisierte Regel in Abbildung 4.19 der von Hand spezifizierten
TGG-Regel aus Abbildung 3.6. Der einzige Unterschied besteht in dem
Typ der eingesetzten Korrespondenzobjekte. In der automatisch syntheti-
sierten TGG-Regel entsprechen alle Korrepondenzobjekte demselben Typ
CorrNode, während in der von Hand spezifizierten TGG-Regel die Korres-
pondenzobjekte unterschiedliche Typen aufweisen. Die Erstellung eines an-
gepassten Metamodells für Korrespondenztypen wird im Augenblick von der
automatischen Regelsynthese nicht unterstützt. Eine erste Möglichkeit für
die Erstellung eines angepassten Korrespondenzmetamodells haben wir in
[KW07] vorgestellt. Dabei wurden die eingesetzten Korrespondenztypen
während der Regelsynthese durchnummeriert. Damit haben diese Korres-
pondenztypen die Reihenfolge der synthetisierten TGG-Regeln wiedergege-
ben. Um automatisch ein Korrespondenzmetamodell ähnlich dem in Ab-
bildung 3.10 zu erhalten, muss dieses Verfahren jedoch noch erweitert und
verallgemeinert werden.

Ein weiterer Unterschied fällt auf, wenn wir die synthetisierte TGG-Regel
aus Abbildung 4.24 mit der manuell spezifizierten TGG-Regel aus Abbil-
dung 3.8 vergleichen. Der Unterschied besteht in dem zusätzlichen Link zwi-
schen dem Objekt des Typs ClassDiagram und der zum Block korrespondie-
renden Klasse Class. Tatsächlich besitzt ein Klassendiagramm immer einen
Link zu seinen Klassen. Damit ist die synthetisierte TGG-Regel auch kor-
rekt. In der manuell spezifizierten TGG-Regel fehlt dieser Link. Hier ist der
Spezifizierer flexibler und kann einige der Links – sofern sie nicht zwingend
notwendig sind – einfach weglassen. In unserem Beispiel muss er nur sicher-
stellen, dass das Objekt des Typs ClassDiagram über einen Link erreichbar
ist, das heißt, er muss sicherstellen, das eine zusammenhängende Struktur
vorhanden ist. Hierzu kann er beide Links angeben oder aber auch nur einen
der Links. Alle diese Varianten führen zu einer gültigen und ausführbaren
TGG-Regel.

4Mit den Möglichkeiten zur Validierung von TGG-Regeln werden wir uns noch in Kapi-
tel 6 beschäftigen.

151

Kapitel 4 Spezifikationsvarianten

4.3 MOF 2.0 Query/View/Transformation

Die in dieser Arbeit vorgestellte Technik zur Modellsynchronisation wurde
zeitgleich zum Query/View/Transformation (QVT) Standard der Object
Management Group (OMG) entwickelt [QVT08]. Das Hauptanwendungs-
gebiet dieses erst kürzlich in der finalen Version veröffentlichten QVT-
Standards stellen Modelltransformationen dar. Zur Spezifikation einer Mo-
delltransformation definiert der QVT-Standard sowohl einen delarativen als
auch einen imperativen Sprachanteil. Im deklarativen Sprachanteil wird die
Transformation durch Beziehungen zwischen einzelnen Mustern der Modelle
beschrieben. Der imperative Sprachanteil besteht hingegen aus operationa-
len Anweisungen, mit denen die Modelltransformation direkt gesteuert wird.

In Abbildung 4.31 ist die QVT-Spracharchitektur zu sehen. Der de-
klarative Sprachanteil wird durch die Sprachen QVT-Relations und QVT-
Core abgedeckt. Der operationale Sprachanteil setzt sich hingegen aus der
Sprache Operational Mappings Language und den sogenannten Black-Box-
Implementierungen zusammen. Die Black-Box-Implementierungen können
in beliebigen Sprachen programmiert und zusammen mit der Operational
Mappings Language eingesetzt werden, um die beiden deklarativen Sprachen
QVT-Relations und QVT-Core um komplexere Transformationsalgorithmen
zu ergänzen, die deklarativ gar nicht oder mit nur sehr viel Aufwand be-
schrieben werden können. Im Rahmen dieser Arbeit konzentrieren wir uns
allerdings nur auf die beiden deklarativen Sprachen.

Operational

Mappings

Black

Box

Relations

Core

RelationsToCore

Transformation

Abbildung 4.31: QVT-Spracharchitektur, entnommen aus [QVT08]

Die Spezifikation mit QVT-Relations kann sowohl in einer textuellen als
auch in einer graphischen Syntax erfolgen. In Abbildung 4.32 ist die Spezi-
fikation der TGG-Regel Block2Class aus Abschnitt 3.2 in der graphischen
Syntax von QVT-Relations dargestellt.

Gegenüber einer TGG-Regel fallen zwei wesentliche Unterschiede auf. Der

152

4.3 MOF 2.0 Query/View/Transformation

pc:Class

cd:ClassDiagram

co:Composition

cl:Class

name = n

st:Stereotype

kind = „block“

pb:Block

cb:Block

name = n

E E

bd : SDL cd : UML

«domain»

«domain»
BlockToClass

where

BlockToClass(cb, cd)

ProcessToClass(cb, cd)

Abbildung 4.32: Beispielregel BlockToClass in der graphischen Syntax von
QVT-Relations

erste Unterschied ist, dass keine Korrespondenzknoten zwischen den einzel-
nen Modellelementen spezifiziert werden. Der zweite Unterschied besteht
darin, dass in einer QVT-Regel andere QVT-Regeln mit Hilfe einer where-
Klausel5 referenziert werden können. Die referenzierten Regeln werden auf-
gerufen, falls die betrachtete Regel erfolgreich ausgeführt werden konnte. Im
Gegensatz zu QVT-Relations sind im TGG-Formalismus die Abhängigkei-
ten zwischen den TGG-Regeln nur implizit enthalten. Insgesamt sind beide
Notationen jedoch sehr ähnlich.

Die Sprache QVT-Core bildet den Kern der QVT-Spezifikation. Zur Spe-
zifikation einer Modelltransformation mit QVT-Core ist allerdings nur eine
textuelle Syntax verfügbar. Gegenüber QVT-Relations werden weniger Kon-
strukte bereitgestellt, so dass die Sprachdefinition von QVT-Core kompak-
ter ausfällt. Auf der einen Seite führt dies dazu, dass die Spezifikationen auf
Grundlage von QVT-Core aus vielen einfachen Ausdrücken zusammengesetzt
werden müssen. Auf der anderen Seite kann wegen des geringen Umfangs der
Sprache die Semantik einfacher definiert werden. Daher wird die Semantik

5Darüber hinaus existieren weitere Konzepte, wie z. B. when-Klauseln. Die Syntax und
Semantik von QVT-Relations ist in der QVT-Spezifikation beschrieben [QVT08].

153

Kapitel 4 Spezifikationsvarianten

von QVT-Relations mit einer Transformation definiert. Die hierzu notwen-
dige Relations2Core-Transformation (siehe Abbildung 4.31) ist Bestandteil
der QVT-Spezifikation.

Das Schema einer Regel in der Sprache QVT-Core haben wir in der Ab-
bildung 4.33 dargestellt. Diese Darstellung haben wir unverändert aus der
QVT-Spezifikation übernommen. Bei einem Vergleich zwischen dem Schema
einer Regel der Sprache QVT-Core und dem Schema einer TGG-Regel (siehe
dazu insbesondere auch Abbildung 5.6 auf Seite 171), fällt die Ähnlichkeit
zwischen den Ansätzen besonders deutlich auf.

guard domain (L)

pattern

guard middle

pattern

guard domain (R)

pattern

bottom domain (L)

pattern

bottom middle

pattern

bottom domain (R)

pattern

G
u
ar
d

B
o
tt
o
m

Domain L Middle Area Domain R

Abbildung 4.33: Schema einer QVT-Core-Regel, entnommen aus [QVT08]

Das in Abbildung 4.33 gezeigte Schema besteht aus drei Spalten, die in
der QVT-Spezifikation Bereiche (engl. Area) genannt werden. Der linke
Bereich (Domain L) und der rechte Bereich (Domain R) repräsentieren die
in Beziehung stehenden Modellierungsdomänen. Dazwischen existiert ein
mittlerer Bereich (Middle Area), der allerdings erst während einer Modell-
transformation hinzugefügt wird. Dieser Bereich enthält die sogenannten
Trace-Klassen, mit denen Beziehungen zwischen den Elementen der Model-
lierungsdomänen explizit verwaltet werden. Diese Trace-Klassen entspre-
chen weitestgehend den Korrespondenzknoten einer TGG-Regel. Weiterhin
ist jede der drei Spalten in zwei Muster – das sogenannte guard pattern und
das bottom pattern – unterteilt. Die Muster repräsentieren Objektstrukturen
und Bedingungen, wie wir sie bereits aus TGG-Regeln kennen.

Diese Übereinstimmungen wurden ausgenutzt, um eine Transformation
von QVT-Core in TGGs zu definieren [Gre06]. Zusammen mit der in
der QVT-Spezifikation angegebenen Transformation von QVT-Relations in
QVT-Core ist es somit möglich, die Beziehungen für eine Modelltransfor-
mation oder Modellsynchronisation in einer der beiden deklarativen QVT-

154

4.4 Zusammenfassung

Sprachen zu spezifizieren und diese Spezifikation mit Hilfe von TGGs aus-
zuführen. In Abbildung 4.34 wird das allgemeine Vorgehen verdeutlicht.

Relations

Core

CoreToTGG

Transformation

TGG

RelationsToCore

Transformation

Abbildung 4.34: Abbildung von QVT-Relations auf TGGs

Auf die Transformation von QVT in TGGs wird in dieser Arbeit allerdings
nicht weiter eingegangen. Der Grund hierfür ist, dass diese Transformation in
der Diplomarbeit von Joel Greenyer [Gre06] dokumentiert ist. Darüber hin-
aus wurden in der Dissertation von Alexander Königs bereits beide Ansätze
miteinander kombiniert, so dass die Akzeptanz für den TGG-Ansatz erhöht
und die Technik der TGGs für einen weiten Anwenderkreis zugänglich ge-
macht wurde [Kön08].

4.4 Zusammenfassung

In diesem Kapitel haben wir uns mit Alternativen zur Spezifikation von Kor-
respondenzbeziehungen beschäftigt. Zwei dieser Spezifikationsvarianten liegt
der Ansatz der Tripel-Graph-Grammatiken zugrunde, so dass beide Alterna-
tiven zu einer formalen Spezifikation der Korrespondenzbeziehungen führen.
Die dritte Spezifikationsvariante basiert auf dem erst kürzlich verabschiede-
ten Standard Query/View/Transformation (QVT) der Object Management
Group (OMG) [QVT08].

In Abschnitt 4.1 haben wir die erste Spezifikationsvariante vorgestellt.
Diese Spezifikationsvariante ist besonders gut geeignet, um Modell-zu-Text
Beziehungen, wie sie zum Beispiel bei der Codegenerierung benötigt werden,
zu definieren. Auch wenn die Spezifikation von Modell-zu-Text Beziehungen
bereits mit dem grundlegenden Ansatz der TGGs möglich ist, so stellt die in
diesem Abschnitt vorgestellte Kombination aus TGGs und Textschablonen
eine deutliche Vereinfachung für den Entwickler dar. Neben den Vorteilen

155

Kapitel 4 Spezifikationsvarianten

sind wir auch auf die Nachteile dieses Ansatzes eingegangen, die mit der
zweiten Spezifikationsvariante jedoch behoben werden.

Mit der zweiten Spezifikationsvariante haben wir uns in Abschnitt 4.2 be-
fasst. Bei diesem Ansatz werden die Korrespondenzbeziehungen in der Nota-
tion der beteiligten Sprachen durch eine Menge von jeweils zwei zueinander
korrespondierenden Beispielen angegeben, die wir als Beispielzuordnungen
bezeichnet haben. Aus einer Menge solcher Beispielzuordnungen konnten
die entsprechenden TGG-Regeln (semi-) automatisch synthetisiert werden.
Obwohl wir die Regelsynthese an unserem durchgängigen Beispiel von Block-
und Klassendiagrammen vorgestellt haben, eignet sich dieser Ansatz – wie
in der Diplomarbeit von Alexander Geburzi praktisch gezeigt wurde [Geb06]
– insbesondere auch zur Spezifikation von Modell-zu-Text Beziehungen, die
zur Codegenerierung und Synchronisation genutzt werden können.

In Abschnitt 4.3 sind wir auf die Spezifikation von Korrespondenzbezie-
hungen mit QVT eingegangen. Der QVT-Standard definiert zwei dekla-
rative Sprachen zur Modelltransformation, für die jedoch lange Zeit keine
Werkzeugunterstützung existiert hat. Im Rahmen dieser Arbeit wurden die
Konzepte des QVT- und des TGG-Ansatzes untersucht und miteinander
verglichen. Dabei wurden sehr viele Übereinstimmungen festgestellt, so dass
eine Abbildung zwischen QVT und TGG definiert werden konnte [Gre06].
Auf dieser Grundlage können QVT-Werkzeuge zur Modelltransformation auf
Basis von TGGs realisiert werden.

156

Kapitel 5

Synchronisationsmechanismus

In den vorangegangenen Kapiteln haben wir die Spezifikation von Korres-
pondenzregeln vorgestellt. In diesem Kapitel gehen wir nun der Frage nach,
wie wir auf Grundlage dieser Spezifikation eine inkrementelle Modellsynchro-
nisation durchführen können. Hierzu geben wir zunächst in Abschnitt 5.1
einen Überblick über unseren Synchronisationsmechanismus, der aus einem
veränderlichen und einem unveränderlichen Anteil mit einer gemeinsamen
Datenstruktur besteht. Der invariante Anteil unseres Synchronisationsme-
chanismus wird durch einen Algorithmus repräsentiert, der eine Steuerungs-
logik für die operationalen Graphersetzungsregeln implementiert. Diesen
Algorithmus stellen wir zusammen mit der zugrundeliegenden Datenstruk-
tur in Abschnitt 5.2 vor. Der veränderliche Anteil hingegen wird durch
operationale Graphersetzungsregeln repräsentiert, die automatisch aus den
deklarativ spezifizierten Korrespondenzregeln abgeleitet und zur Parametri-
sierung des invarianten Anteils eingesetzt werden. Mit der Generierung der
operationalen Graphersetzungsregeln beschäftigen wir uns in Abschnitt 5.3.
Die Ergebnisse dieses Kapitels fassen wir in Abschnitt 5.4 zusammen.

5.1 Überblick

Der von Andy Schürr in [Sch94] veröffentlichte Algorithmus zur Modelltrans-
formation basiert auf der Idee, ein Modell zunächst zu parsen, um den Ab-
leitungsbaum, d. h., die angewandten Produktionsregeln, durch die dieses
Modell erzeugt wurde, zu gewinnen. Anschließend wird durch die Anwen-
dung der dazu korrespondierenden Produktionsregeln, die durch die TGG
spezifiziert sind, das Zielmodell erzeugt. Der in [Sch94] veröffentlichte Al-
gorithmus verdeutlicht auf eine sehr elegante Art und Weise das Prinzip,
mit dem Modelltransformationen auf der Grundlage von TGGs ausgeführt
werden können.

157

Kapitel 5 Synchronisationsmechanismus

Allerdings wird der Algorithmus in dieser Form in der Praxis nicht einge-
setzt. Dies liegt daran, dass es sich bei einer TGG um eine kontextsensitive
Grammatik handelt – ein effizienter Algorithmus für das Parsen von Model-
len, denen eine kontextsensitive Grammatik zugrunde liegt, existiert bislang
nicht. Aus diesem Grund verwenden alle bisher veröffentlichten Algorith-
men einen Ansatz, bei dem operationale Graphersetzungsregeln mit einer
individuellen Steuerungslogik kombiniert werden [SK08].

Bei diesen Algorithmen traversiert die Steuerungslogik die Elemente ei-
nes Quellmodells nach einer zuvor festgelegten Strategie. Dabei wird nach
möglichen Anwendungsstellen für die operationalen Graphersetzungsregeln
gesucht. Ist eine solche Anwendungsstelle im Quellmodell gefunden, so
wird versucht, die operationalen Graphersetzungsregeln anzuwenden. Durch
die Anwendung der operationalen Graphersetzungsregeln entsteht ein zum
Quellmodell korrespondierendes Zielmodell. Darüber hinaus wird ein Kor-
respondenzmodell erzeugt, das die Elemente der beiden Modelle mit Hilfe
der Korrespondenzknoten zueinander in Beziehung setzt.

Die Strategie zur Traversierung der Modelle ist bei diesen Algorithmen un-
abhängig von den spezifizierten Regeln. Die Anwendung der operationalen
Graphersetzungsregel scheitert daher häufig daran, dass die von einer Regel
geforderten Korrespondenzknoten (noch) nicht existieren. Die Anwendung
der betrachteten Graphersetzungsregel muss in einem solchen Fall zurück-
gestellt und die Anwendungsstelle erneut überprüft werden, sobald durch
die Anwendung anderer Regeln neue Korrespondenzknoten hinzugekommen
sind. Das wiederholte Überprüfen einer Anwendungsstelle wirkt sich negativ
auf das Laufzeitverhalten dieser Algorithmen aus.

Der in dieser Arbeit entwickelte Algorithmus basiert ebenfalls auf opera-
tionalen Graphersetzungsregeln und einer Steuerungslogik. Im Gegensatz
zu den bereits bekannten Algorithmen arbeitet unsere Steuerungslogik al-
lerdings nicht auf dem Quellmodell sondern auf dem Korrespondenzmodell,
so dass nur bereits existierende Korrespondenzknoten besucht und die An-
wendung der operationalen Graphersetzungsregeln von diesen Korrespon-
denzknoten ausgehend überprüft wird. Ist eine Regel auf dem untersuchten
Korrespondenzknoten nicht anwendbar, so kann dies auf keinen Fall an ei-
nem fehlenden Korrespondenzknoten1 liegen. Eine erneute Überprüfung der
betrachteten Regel an dieser Anwendungsstelle ist daher im weiteren Ab-
lauf unseres Algorithmus nicht notwendig. Dieser Umstand führt zu einem
günstigeren Laufzeitverhalten unseres Synchronisationsmechanismus.

1Eine Ausnahmesituation und die dazugehörige Lösung erläutern wir in Abschnitt 5.3.

158

5.1 Überblick

Ein weiterer Vorteil unseres Synchronisationsmechanismus besteht darin,
dass auf der Grundlage eines erweiterten Korrespondenzmodells eine Modell-
synchronisation sowohl batch-artig, d. h., in einem einzigen Schritt, als auch
inkrementell, d. h., Schritt für Schritt, durchgeführt werden kann. Die hierzu
notwendige Erweiterung am Korrespondenzmodell beruht auf der folgen-
den Beobachtung (vgl. Abschnitt 3.2): Bei jeder erfolgreichen Regelanwen-
dung wird mindestens ein Korrespondenzknoten gebunden und mindestens
ein neuer Korrespondenzknoten erzeugt. Diese Beobachtung nutzen wir in
unserem Algorithmus aus, indem wir diese Abhängigkeit zwischen den Kor-
respondenzknoten explizit durch einen gerichteten Link repräsentieren und
während einer Modelltransformation, Modellintegration und Modellsynchro-
nisation ein Korrespondenzmodell aufbauen, das als gerichteter azyklischer
Graph (DAG2) interpretiert werden kann.

Abbildung 5.1: Prinzip der inkrementellen Modellsynchronisation auf einem
Korrespondenzmodell

In Abbildung 5.1 ist ein solches Korrespondenzmodell schematisch dar-
gestellt. Die schematische Darstellung haben wir insofern vereinfacht, als
das wir das Korrespondenzmodell nicht durch einen DAG sondern durch
eine Baumstruktur repräsentieren. Das Korrespondenzmodell ist allerdings
dennoch ein Graph und kein Baum, da jeder Korrespondenzknoten mehrere
Korrespondenzknoten als Vorgänger besitzen kann. Der Graph ist azyklisch,
weil während der Anwendung einer Regel niemals ein Link zwischen be-
reits gebundenen Korrespondenzknoten erzeugt wird – es werden immer nur
gerichtete Links von den gebundenen zu den neu erzeugten Korrespondenz-
knoten erstellt.

Bei einer initialen Modellsynchronisation wird das Korrespondenzmodell
durch eine Modelltransformation oder – sofern bereits beide Modelle exis-

2Abkürzung für ’Directed Acyclic Graph’

159

Kapitel 5 Synchronisationsmechanismus

tieren – durch eine Modellintegration aufgebaut. Hierbei wird der Algo-
rithmus auf dem Korrespondenzknoten gestartet, der durch das Axiom vor-
gegeben ist. Dieser Korrespondenzknoten stellt den Einstiegspunkt in den
DAG dar. Im Folgenden bezeichnen wir diesen Korrespondenzknoten – in
Anlehnung an die in Abbildung 5.1 dargestellte Baumstruktur – als Wur-
zel unseres Korrespondenzmodells. Ausgehend von der Wurzel werden alle
Regeln überprüft und – sofern sie anwendbar sind – ausgeführt. Durch die er-
folgreiche Ausführung von Regeln entstehen neue Korrespondenzknoten, auf
denen wiederum Regeln ausgeführt werden. Dieser Vorgang wird fortgesetzt,
so dass auf diese Art und Weise ein Korrespondenzmodell entsteht, das wir
sowohl zu batch-artigen als auch zur inkrementellen Modellsynchronisation
nutzen können.

Die batch-artige Modellsynchronisation wird durchgeführt, indem der Syn-
chronisationsalgorithmus auf der Wurzel gestartet wird. In diesem Fall be-
sucht der Algorithmus alle Korrespondenzknoten unseres DAG und versucht
– ausgehend von dem aktuell besuchten Korrespondenzknoten – die ope-
rationalen Graphersetzungsregeln anzuwenden. Eine inkrementelle Modell-
synchronisation hingegen erreichen wir, indem wir zunächst den Korrespon-
denzknoten ermitteln, der mit einem geänderten Modellelement im Zusam-
menhang steht. Die Modellsynchronisation beginnt dann nicht auf der Wur-
zel des Korrespondenzmodells, sondern auf dem zuvor identifizierten Kor-
respondenzknoten. In diesem Fall werden nur die direkten und indirekten
Nachfolger dieses Korrespondenzknotens besucht, was in der schematischen
Darstellung der Abbildung 5.1 durch die weiß unterlegten Teilbäume inner-
halb der Baumstruktur angedeutet ist. In dem Fall, dass sich Änderungen
nur lokal beziehungsweise nur bis zu einer bestimmten Tiefe eines Teilbaums
auswirken, kann die Modellsynchronisation – wie im mittleren Teilbaum der
Abbildung 5.1 durch die gestrichelten Linien angedeutet wird – sogar früher
abgeschlossen werden.

Der hier nur überblicksartig aufgezeigte Synchronisationsmechanismus
wird in den nachfolgenden Abschnitten genauer vorgestellt. Hierzu beschäfti-
gen wir uns zunächst in Abschnitt 5.2 mit der zugrundeliegenden Daten-
struktur sowie dem darauf basierenden Synchronisationsalgorithmus. Dieser
Synchronisationsalgorithmus repräsentiert die Steuerungslogik für operatio-
nale Graphersetzungsregeln, die aus TGG-Regeln generiert werden. Mit der
Generierung der operationalen Graphersetzungsregeln beschäftigen wir uns
erst in dem darauf folgenden Abschnitt 5.3.

160

5.2 Datenstruktur und Algorithmus

tasks0..*

TGGMapping

TGGTask

+ name : String

«singleton»

TGGManager
«enumeration»

Direction

forward

mapping

reverse
0..1selectedTask

engine

1

handled

0..*

root0..1

sources targets0..* 0..*

Object

nodes 0..*

pred

succ

0..*

0..*

TGGNode

+ depth : int

+ descend : Boolean = false

inputNode0..1

creator createdNodes

0..*0..1

rules0..*

PriorityQueue

enqueue(node : TGGNode)

dequeue() : TGGNode

isEmpty() : Boolean

1

queue

«interface»

PropertyChangeListener

+ propertyChange(event :

 PropertyChangeEvent)

TGGEngine

+ batchmode : Boolean

+ descend : Boolean = false

+ init(file : File) : Boolean

+ execute(rule : TGGRule,

 node : TGGNode, dir : Direction)

+ synchronize(dir : Direction)

+ deleteFwd(node : TGGNode)

+ deleteMap(node : TGGNode)

+ deleteRev(node : TGGNode)

TGGRule

+ executeFwd(node : TGGNode)

+ executeMap(node : TGGNode)

+ executeRev(node : TGGNode)

TGGAxiom

+ executeFwd(obj : Object)

+ executeMap(src : Object, tgt : Object)

+ executeRev(obj : Object)

Abbildung 5.2: Datenstruktur

5.2 Datenstruktur und Algorithmus

Die Datenstruktur wird sowohl in den operationalen Graphersetzungsregeln
als auch in der Steuerungslogik, d. h., dem invarianten Anteil unseres Syn-
chronisationsmechanismus, eingesetzt.

5.2.1 Datenstruktur

Das Klassendiagramm der Datenstruktur ist in Abbildung 5.2 zu se-
hen. Ein zentraler Bestandteil dieses Klassendiagramms ist die Klasse
TGGEngine, die den Synchronisationsalgorithmus repräsentiert. Darüber
hinaus enthält das Klassendiagramm Klassen, mit denen unterschiedliche
Modelltransformations-, Modellintegrations- sowie Modellsynchronisations-
aufgaben verwaltet werden, Klassen zur Repräsentation des Korrespondenz-
modells und der operationalen Graphersetzungsregeln sowie Klassen, die zur
effizienten Traversierung des Korrespondenzmodells beitragen.

161

Kapitel 5 Synchronisationsmechanismus

Für die Verwaltung der unterschiedlichen Aufgaben (Modelltransfor-
mation, Modellintegration und Modellsynchronisation) sind die Klassen
TGGManager und TGGTask verantwortlich. Die Klasse TGGManager imple-
mentiert das Singleton-Entwurfsmuster [GHJV94], so dass zur Laufzeit im-
mer nur eine Instanz dieser Klasse existiert. Diese Instanz kennt alle vom
Benutzer initiierten Aufgaben.

Die Aufgaben werden durch Instanzen der Klasse TGGTask repräsentiert.
Damit ein Benutzer zwischen den unterschiedlichen Aufgaben besser diffe-
renzieren kann, können die Aufgaben benannt werden. Jeder Aufgabe ist
eine eigene Instanz der Klasse TGGEngine zugeordnet, die durch einen Auf-
ruf der Methode init mit den für diese Aufgabe vorgesehenen Grapherset-
zungsregeln initialisiert wird. Hierzu muss der Methode eine Datei3 mit den
ausführbaren Graphersetzungsregeln übergeben werden.

Nach der Initialisierung können die operationalen Graphersetzungsregeln
über die Assoziation rules erreicht werden. Die operationalen Grapher-
setzungsregeln werden in Axiome und Regeln unterteilt. Hierzu erben die
Klassen TGGAxiom und TGGRule von der Klasse TGGMapping. Diese Untertei-
lung ist notwendig, weil im Gegensatz zu den Graphersetzungsregeln einer
TGG-Regel den Graphersetzungsregeln eines TGG-Axioms kein Korrespon-
denzknoten als Parameter übergeben werden kann. Dies liegt daran, dass
bei der initialen Zuordnung der Modelle noch gar kein Korrespondenzknoten
existiert – ein erster Korrespondenzknoten wird erst durch das Axiom selbst
erzeugt. Für den Synchronisationsalgorithmus ist dieser Korrespondenzkno-
ten daher erst nach der Initialisierung über die Assoziation root erreichbar.

Bei den Klassen TGGMapping, TGGRule und TGGAxiom handelt es sich um
abstrakte Klassen. Die konkreten Klassen, die bei einer Modellsynchroni-
sation zum Einsatz kommen, werden aus der Spezifikation automatisch ge-
neriert, kompiliert und in der zuvor erwähnten Datei gespeichert. Dabei
müssen die erzeugten Klassen entweder von der Klasse TGGRule oder der
Klasse TGGAxiom erben und die vererbten abstrakten Methoden implemen-
tieren.4 Erst diese Klassen – zusammen mit den darin implementierten Me-
thoden – ermöglichen unserem Synchronisationsalgorithmus den Zugriff auf
die operationalen Graphersetzungsregeln, mit deren Hilfe unter anderem das
Korrespondenzmodell aufgebaut wird.

3Bei der Datei handelt es sich um ein Jar-Archiv mit kompilierten und somit ausführba-
ren Klassen. Diese Klassen repräsentieren die operationalen Graphersetzungsregeln.

4Mit der Generierung dieser Klassen werden wir uns noch in Abschnitt 5.3 genauer
beschäftigen.

162

5.2 Datenstruktur und Algorithmus

Die Korrespondenzknoten eines Korrespondenzmodells werden durch In-
stanzen der Klasse TGGNode repräsentiert. Alle Korrespondenzknoten, die
im Metamodell für das Korrespondenzmodell spezifiziert werden, müssen
von dieser Klasse erben. Die Abhängigkeiten zwischen den Korrespondenz-
knoten werden über die Assoziation succ realisiert. Bei dieser Assoziation
handelt es sich um eine bidirektionale Assoziation, so dass jeder Korrespon-
denzknoten seine Vorgänger über pred erreichen kann. Ein Beispiel für eine
TGG-Regel, in der ein Korrespondenzknoten mehrere Korrespondenzkno-
ten als Vorgänger besitzt, haben wir in Abbildung 3.8 kennen gelernt (siehe
Seite 66).

Jeder Korrespondenzknoten merkt sich zusätzlich über die Referenz
inputNode, welcher Korrespondenzknoten der Graphersetzungsregel als Pa-
rameter übergeben wurde, d. h., auf welchem Korrespondenzknoten die An-
wendung der operationalen Graphersetzungsregel gestartet worden war. Die
Graphersetzungsregel, die den Korrespondenzknoten erzeugt hat, ist hinge-
gen über die Assoziation creator erreichbar. Da es sich hierbei ebenfalls
um eine bidirektionale Assoziation handelt, kann jede Graphersetzungsregel
über createdNodes alle Korrespondenzknoten erreichen, die sie erzeugt hat.

Der Zugriff auf das Korrespondenzmodell ist über die Assoziation root

der Klasse TGGEngine möglich. Zusätzlich werden alle neu erzeugten Kor-
respondenzknoten durch die Assoziation nodes mit der Instanz der Klasse
TGGEngine verlinkt. Diese Assoziation wird für einen schnelleren Zugriff
auf die Korrespondenzknoten des Korrespondenzmodells verwendet. Zur
Modellsynchronisation verwendet jede Instanz der Klasse TGGEngine eine
Prioritätswarteschlange, die durch die Klasse PriorityQueue repräsentiert
wird. Die Prioritätswarteschlange ist durch die Assoziation queue erreich-
bar. Sie verwaltet alle Korrespondenzknoten, die nach Modelländerungen
wieder überprüft werden müssen.

Bei der Anwendung einer Graphersetzungsregel muss sichergestellt wer-
den, dass es sich bei den neu zu bindenden Modellelementen um Elemente
handelt, die noch nicht an einer Beziehung beteiligt sind (siehe auch Ab-
schnitt 5.3). Dies wird über die Assoziation handled sichergestellt. Während
der Anwendung einer Graphersetzungsregel wird mit Hilfe dieser Assozia-
tion überprüft, ob das neu gebundene Objekt bereits verlinkt und damit
verbraucht ist. In dem Fall, dass das Objekt noch nicht verbraucht ist,
wird die Ausführung der Graphersetzungsregel fortgesetzt und das Objekt
anschließend über die Assoziation handled als verbraucht markiert. Anson-
sten wird die Ausführung der betrachteten Graphersetzungsregel mit dem
bereits verbrauchten Objekt nicht weiter verfolgt.

163

Kapitel 5 Synchronisationsmechanismus

Um die Objekte der beteiligten Modelle zueinander in Beziehung setzen
zu können, besitzt ein Korrespondenzknoten die Assoziationen sources und
targets, die Instanzen vom Typ Object referenzieren. Daher müssen alle
Metaklassen in den beteiligten Metamodellen – mit Ausnahme des Korre-
spondenzmetamodells – explizit oder implizit von dieser Klasse erben.5

5.2.2 Algorithmus

Der Algorithmus zur Modellsynchronisation ist in der Methode synchronize
der Klasse TGGEngine implementiert, die in der Abbildung 5.3 in
Pseudocode-Syntax zu sehen ist. Der Algorithmus ist für alle Regeln gleich,
so dass weder eine zusätzliche Spezifikation der Ausführungsreihenfolge noch
eine Programmierung der Steuerungslogik in Abhängigkeit der spezifizierten
Regeln notwendig ist.

1 : TGGEngine : : synchron i ze (d i r : D i r e c t i on)
2 : l et node : TGGNode := n u l l ;
3 : while (not se l f . queue−>isEmpty ()) do
4 : node := s e l f . queue−>dequeue () ;
5 : for each (r u l e : TGGRule in s e l f . r u l e s) do
6 : se l f−>execute (ru le , node , d i r) ;
7 : i f (s e l f . batchmode = true) then
8 : for each (c h i l d : TGGNode in node . succ) do
9 : s e l f . queue−>enqueue (c h i l d) ;

10 : else i f (s e l f . descend = true) then
11 : for each (c h i l d : TGGNode in node . succ) do
12 : i f (c h i l d . descend = true) then do
13 : s e l f . queue−>enqueue (c h i l d) ;
14 : c h i l d . descend := fa l se ;
15 : s e l f . descend := fa l se ;

Abbildung 5.3: Die Methode synchronize der Klasse TGGEngine

5Die prototypische Realisierung basiert auf der Programmiersprache Java. Darin erben
alle Klassen implizit von der Klasse Object. Bei einer Umsetzung in einer anderen
Programmiersprache muss an dieser Stelle eine Anpassung an die dort verfügbaren
Konzepte erfolgen. Um Referenzen auf beliebige Objekte beispielsweise in der Pro-
grammiersprache C++ zu realisieren, könnte dort auf anonyme Zeiger (void* ptr;)
zurückgegriffen werden.

164

5.2 Datenstruktur und Algorithmus

Beim Aufruf der Methode wird die Richtung der Synchronisation der Me-
thode als Parameter (Zeile 1) übergeben. Als Werte können hier forward,
mapping oder reverse der Aufzählung Direction verwendet werden. Da-
mit eine Modellsynchronisation durchgeführt wird, muss vor einem Aufruf
die Prioritätswarteschlange mindestens einen Korrespondenzknoten enthal-
ten, so dass die nachfolgende Schleife (Zeile 3) mindestens einmal durchlau-
fen wird. Ist die Warteschlange beim Aufruf der Methode hingegen leer,
terminiert die Modellsynchronisation ohne die Modelle miteinander zu syn-
chronisieren.

Für eine batch-artige Modellsynchronisation muss die Warteschlange
mit der Wurzel des Korrespondenzmodells initialisiert und das Attribut
batchmode auf den Wert true gesetzt werden. Im Falle einer inkrementel-
len Modellsynchronisation ist das Attribut batchmode auf den Wert false

zu setzen. Darüber hinaus müssen für eine inkrementelle Modellsynchronisa-
tion in der Warteschlange alle Korrespondenzknoten gespeichert sein, die mit
den geänderten Modellelementen in Beziehung stehen und erneut überprüft
werden sollen.6

Innerhalb der Schleife wird zunächst ein Korrespondenzknoten aus der
Prioritätswarteschlange entnommen (Zeile 4). Anschließend wird für jede
Regel (Zeile 5) die Methode execute aufgerufen, die neben der Regel den
Korrespondenzknoten und die Synchronisationsrichtung als Parameter erhält
(Zeile 6). In dieser Methode wird – abhängig von der Synchronisations-
richtung – eine entsprechende Graphersetzungsregel ausgeführt (siehe Ab-
bildung 5.4; vgl. auch Abschnitt 5.3). Sind alle Regeln behandelt worden,
so wird die Schleife (Zeilen 5 und 6) verlassen. Anschließend wird überprüft,
ob ein weiterer Abstieg in das Korrespondenzmodell notwendig ist (Zeilen 7
und 10).

Bei einer batch-artigen Modellsynchronisation (Zeile 7) müssen alle Kor-
respondenzknoten des Korrespondenzmodells besucht werden, so dass alle
direkten Nachfolger des gerade betrachteten Korrespondenzknotens zu der
Warteschlange hinzugefügt werden (Zeilen 8 und 9). Bei einer inkrementel-
len Modellsynchronisation hingegen steuert das Attribut descend der Klasse
TGGEngine den Abstieg in das Korrespondenzmodell (Zeile 10). Dazu setzt
jede Graphersetzungsregel dieses Attribut auf den Wert true, sobald sie
Änderungen an den Modellen vorgenommen hat.

6Eine inkrementelle Modellsynchronisation, die initial ausgeführt wird – also einer Mo-
delltransformation oder Modellintegration entspricht – kann nur auf der Wurzel des
Korrespondenzmodells gestartet werden. In diesem Fall verhält sich der Algorithmus
genauso wie bei einer batch-artigen Modellsynchronisation.

165

Kapitel 5 Synchronisationsmechanismus

1 : TGGEngine : : execute (r u l e : TGGRule , node :TGGNode,
d i r : D i r e c t i on)

2 : switch (d i r)
3 : case forward :
4 : ru l e−>executeFwd (node) ;
5 : break ;
6 : case mapping :
7 : ru l e−>executeMap (node) ;
8 : break ;
9 : case r e v e r s e :

10 : ru le−>executeRev (node) ;
11 : break ;
12 : default :
13 : ru l e−>executeMap (node) ;

Abbildung 5.4: Die Methode execute der Klasse TGGEngine

Damit nicht alle Nachfolger des betrachteten Korrespondenzknotens hin-
zugefügt werden, markiert jede Graphersetzungsregel zusätzlich die zu
überprüfenden Nachfolger, indem sie auch dort das Attribut descend auf
den Wert true setzt. Der Wert dieses Attributs wird innerhalb der Schleife
(Zeile 11) überprüft (Zeile 12), so dass nur die tatsächlich von Änderungen
betroffenen Nachfolger zur Warteschlange hinzugefügt werden (Zeile 13).

In dem Fall, dass ein Nachfolger des betrachteten Korrespondenzknotens
zur Warteschlange hinzugefügt worden ist, wird das Attribut descend die-
ses Nachfolgers wieder auf den Wert false gesetzt (Zeile 14). Nachdem
alle Nachfolger abgearbeitet worden sind, wird darüber hinaus das Attribut
descend für den Synchronisationsalgorithmus selbst wieder auf den Wert
false gesetzt (Zeile 15).7

Unabhängig davon, ob eine batch-artige oder eine inkrementelle Modell-
synchronisation durchgeführt wird, terminiert der Algorithmus, sobald alle
Korrespondenzknoten der Prioritätswarteschlange betrachtet worden sind,
d. h., die Prioritätswarteschlange leer ist (Zeile 3).

7Natürlich könnte auf dieses Attribut verzichtet werden und immer alle Nachfolger eines
Korrespondenzknoten überprüft werden. In den Fällen, in denen gar keine Änderungen
durch Graphersetzungsregeln vorgenommen worden sind, wäre dies jedoch ineffizient.

166

5.2 Datenstruktur und Algorithmus

Prioritätswarteschlage

Die Art der in unserem Algorithmus eingesetzten Warteschlange beeinflusst
die Reihenfolge, in der die Korrespondenzknoten während einer Modellsyn-
chronisation besucht werden. Beispielsweise könnten wir eine Warteschlange
verwenden, die nach dem FIFO8-Prinzip arbeitet. Diese Datenstruktur ist
zwar sowohl für die batch-artige als auch für die inkrementelle Modellsyn-
chronisation geeignet, allerdings kann es bei einer inkrementellen Modellsyn-
chronisation die Laufzeit des Algorithmus negativ beeinflussen.

Das Problem wird in Abbildung 5.5 anhand der schematischen Baum-
struktur unseres Korrespondenzmodells dargestellt. Das Problem taucht auf,
sofern sich die zu synchronisierenden Teilbäume überschneiden oder – wie
in Abbildung 5.5 gezeigt – ein Teilbaum vollständig innerhalb eines anderen
Teilbaums liegt. In der Abbildung sind die beiden Korrespondenzknoten mit
a und b gekennzeichnet. Die dazugehörigen Teilbäume wollen wir mit ta und
tb benennen. In diesem Beispiel gehen wir davon aus, dass die Änderungen
in den Modellen so beschaffen sind, dass auch bei der inkrementellen Mo-
dellsynchronisation beide Teilbäume vollständig traversiert werden müssen.
Außerdem liegt unserem Beispiel die Annahme zugrunde, dass nicht sofort
nach einer Modelländerung synchronisiert wird, sondern die Modelländerun-
gen akkumuliert und erst auf Anforderung durch den Benutzer überprüft
werden.

b

a

Abbildung 5.5: Zu überprüfende Korrespondenzknoten und ihre Teilbäume
im Korrespondenzmodell

Zur inkrementellen Modellsynchronisation wird die Warteschlange mit
Korrespondenzknoten gefüllt, die Korrespondenzbeziehungen zwischen
geänderten Modellelementen repräsentieren. In unserem Beispiel nehmen

8First In – First Out

167

Kapitel 5 Synchronisationsmechanismus

wir an, dass der Korrespondenzknoten b vor dem Korrespondenzknoten a in
die Warteschlange eingefügt wird und dann der Synchronisationsalgorithmus
gestartet wird. In diesem Fall würde im Rahmen der inkrementellen Modell-
synchronisation zunächst der Korrespondenzknoten b der Warteschlange ent-
nommen, mit Hilfe der Graphersetzungsregeln untersucht und dessen Nach-
folger in die Warteschlange eingefügt werden. Anschließend würde der Algo-
rithmus den Korrespondenzknoten a aus der Warteschlage entnehmen und
damit in gleicher Weise verfahren. Der Algorithmus würde somit abwech-
selnd Korrespondenzknoten der Teilbäume tb und ta überprüfen. Insgesamt
würde der Teilbaum tb jedoch vor dem Teilbaum ta abgearbeitet werden.9

Dabei sind zwei Fälle zu unterscheiden:

Fall 1 Die Synchronisation der Vorgänger von b im Teilbaum ta hat kei-
nen Einfluss auf die durch b hergestellte Korrespondenzbeziehung.
Weil diese Korrespondenzbeziehung bereits bei der Synchronisation des
Teilbaums tb überprüft und gegebenenfalls wieder hergestellt wurde,
würden im Rahmen der Synchronisation von Teilbaum ta beim Errei-
chen von b dessen Nachfolger nicht mehr in die Warteschlange eingefügt
werden. Somit würde in diesem Fall der Teilbaum tb nicht noch einmal
überprüft werden.

Fall 2 Während der Synchronisation des Teilbaums ta führt die Synchro-
nisation der Vorgänger von b dazu, dass die Korrespondenzbeziehung
des bereits zuvor synchronisierten Korrespondenzknoten b nicht mehr
gültig ist. Daher müssten und würden in diesem Fall die Nachfolger von
b wieder in die Warteschlange eingefügt werden, d. h., der Teilbaum tb
würde ein zweites Mal traversiert und überprüft werden.

Um den doppelten Aufwand, der durch den zweiten Fall entsteht, zu ver-
meiden, verwenden wir statt einer FIFO-Warteschlange eine Prioritätswarte-
schlange. In der Prioritätswarteschlange werden alle Korrespondenzknoten
beim Einfügen nach ihrer Tiefe im Korrespondenzmodell einsortiert. Hierzu
besitzt die Klasse TGGNode das Attribut depth, dessen Wert sich aus der
maximalen Tiefe seiner direkten Vorgänger errechnet und um eins erhöht
wird. Die Tiefe der Wurzel, d. h., des Korrespondenzknotens aus dem Axiom,
beträgt immer null.

9Dies trifft auch dann zu, wenn die Korrespondenzknoten in umgekehrter Reihenfolge in
die Warteschlange eingefügt worden wären.

168

5.2 Datenstruktur und Algorithmus

In der Prioritätswarteschlange besitzen Korrespondenzknoten mit einer
geringeren Tiefe eine höhere Priorität als tiefer angesiedelte Korrespondenz-
knoten. Daher beginnt die Synchronisation immer mit den Korrespondenz-
knoten, die der Wurzel am nächsten sind. Eine zusätzliche Sortierung der
Korrespondenzknoten mit derselben Tiefe ist nicht notwendig, weil diese
Korrespondenzknoten sich nicht gegenseitig beeinflussen.

Die Korrespondenzknoten werden auch beim mehrmaligen Einfügen nur
einmal in der Prioritätswarteschlange gespeichert. In unserem Beispiel würde
somit beim Synchronisieren von Teilbaum ta der Korrespondenzknoten b nur
einmal in der Warteschlange gespeichert werden. Bei der Ausführung der
Synchronisation würde dieser Knoten erst dann überprüft werden, wenn alle
Korrespondenzknoten geringerer Tiefe abgearbeitet wurden.

Durch den Einsatz der Prioritätswarteschlange und der damit verbun-
denen Priorisierung der Korrespondenzknoten erfolgt die Traversierung
des Korrespondenzmodells durch eine Breitensuche über die zu synchro-
nisierenden Teilbäume. Diese Vorgehensweise verhindert die mehrmalige
Überprüfung von Korrespondenzknoten und funktioniert insbesondere auch
dann, wenn die Teilbäume sich nur teilweise überlappen.

Ermittlung der Anwendungsstelle

Für eine batch-artige Modellsynchronisation muss nur die Wurzel des Korre-
spondenzmodells in die Prioritätswarteschlange eingefügt werden. Der Algo-
rithmus sorgt anschließend dafür, dass alle Korrespondenzknoten des Kor-
respondenzmodells traversiert und dabei die Modelle miteinander abgegli-
chen werden. Eine inkrementelle Modellsynchronisation hingegen erreichen
wir, indem wir nur die von Änderungen betroffenen Modellelemente inspi-
zieren. Dazu muss die Prioritätswarteschlange mit den zu überprüfenden
Korrespondenzknoten initialisiert werden, d. h., dass zunächst die potentiel-
len Anwendungsstellen identifiziert werden müssen.

Zur Identifizierung dieser Anwendungsstellen wird in unserem An-
satz ein Benachrichtigungsmechanismus auf Grundlage des Observer-
Entwurfsmusters [GHJV94] eingesetzt. Dieser Benachrichtigungsmechanis-
mus sorgt dafür, dass Änderungen im Modell an einen Beobachter gemeldet
werden, der darauf geeignet reagieren kann. Der Beobachter wird durch die
Klasse TGGEngine realisiert. Diese Klasse implementiert die in der Schnitt-
stelle PropertyChangeListener definierte Methode propertyChange, die
dafür sorgt, dass die mit dem gemeldeten Modellelement in Beziehung ste-
henden Korrespondenzknoten in die Prioritätswarteschlange eingefügt wer-

169

Kapitel 5 Synchronisationsmechanismus

den. Hierzu extrahiert die Methode zunächst aus dem ihr übergebenen
Parameter evt das geänderte Modellelement. Anschließend wird der Kor-
respondenzknoten identifiziert, der mit diesem Modellelement über eine
source- oder targets-Assoziation verlinkt ist. Da dieser Korrespondenz-
knoten auf der Grundlage seiner Vorgänger erstellt wurde, werden sowohl
seine Vorgänger als auch der Korrespondenzknoten selbst zur Prioritätswar-
teschlange hinzugefügt.

Wird ein solcher Benachrichtigungsmechanismus von den beteiligten Mo-
dellen unterstützt, so kann mit unserem Ansatz eine Modellsynchronisation
inkrementell durchgeführt werden. Ist ein solcher Benachrichtigungsme-
chanismus jedoch nicht vorhanden, so kann die Modellsynchronisation nur
batch-artig ausgeführt werden.

5.3 Generierung operationaler
Graphersetzungsregeln

Im vorangegangenen Abschnitt haben wir den unveränderlichen Anteil unse-
res Synchronisationsmechanismus kennen gelernt. In diesem Abschnitt stel-
len wir den veränderlichen Anteil vor. Dieser Anteil wird durch operationale
Graphersetzungsregeln repräsentiert, die automatisch aus den spezifizierten
TGG-Regeln generiert werden. Zusammen mit der im vorangegangenen
Abschnitt vorgestellten Steuerungslogik bestimmen die operationalen Gra-
phersetzungsregeln letztendlich, wie eine Modelltransformation, Modellinte-
gration oder Modellsynchronisation durchgeführt wird. Die automatische
Generierung der operationalen Regeln aus einer deklarativen Spezifikation
ermöglicht uns somit eine Parametrisierung unseres Synchronisationsmecha-
nismus.

5.3.1 Prinzip

Die Grundstruktur einer TGG-Regel ist in Abbildung 5.6 dargestellt. Wie
anhand der farblich unterlegten Bereiche zu sehen ist, kann eine TGG-Regel
grundsätzlich in bereits gebundene und neu zu erzeugende Elemente un-
terteilt werden. Darüber hinaus kann eine weitere Einteilung in die durch
die Regel in Beziehung gesetzten Modelle (Modell A, Modell B und Korres-
pondenzmodell) erfolgen. Diese Einteilung wird in Abbildung 5.6 durch die
vertikalen Linien zwischen den drei Modellen verdeutlicht.

170

5.3 Generierung operationaler Graphersetzungsregeln

++
++

++
++

++ ++

++

Gebundene

Elemente

Neu erzeugte

Elemente

Modell A Modell B
Korrespondenz -

modell

Abbildung 5.6: Grundstruktur einer TGG-Regel

In dem Beitrag von Andy Schürr [Sch94] wurde die Ableitung von ins-
gesamt drei operationalen Graphersetzungsregeln aus einer TGG-Regel vor-
geschlagen. Die drei Graphersetzungsregeln sind in Abbildung 5.7 schema-
tisch dargestellt. Mit Hilfe der abgeleiteten Graphersetzungsregeln lässt sich
sowohl eine Modelltransformation in Vorwärtsrichtung (Modell A nach Mo-
dell B) als auch eine Modelltransformation in Rückwärtsrichtung (Modell B
nach Modell A) realisieren. Darüber hinaus kann mit der dritten Grapher-
setzungsregel eine Modellintegration durchgeführt werden.

Die Regel aus Abbildung 5.7(a) wird zur Transformation eines Modells A
in ein Modell B eingesetzt. Bei der Anwendung dieser Regel werden daher
zunächst alle Elemente der Regel aus dem oberen, grau schattierten Bereich
gebunden. Anschließend wird überprüft, ob ein Element aus dem unteren
grau schattierten Bereich ebenfalls gebunden werden kann. Um die Seman-
tik der TGGs nicht zu verletzen, dürfen dabei nur noch nicht transformierte
Elemente berücksichtigt werden. In dem Fall, dass ein solches Element ge-
funden werden konnte, werden neue Elemente im Modell B erzeugt. Darüber
hinaus wird ein neuer Korrespondenzknoten erzeugt, der die Elemente der
beiden Modelle miteinander über die spezifizierten Links in Beziehung setzt.

Die Regel aus Abbildung 5.7(b) dient der Modellintegration. Diese Regel
funktioniert ähnlich zu der Modelltransformationsregel aus Abbildung 5.7(a).
Allerdings werden bei dieser Regel nicht nur Elemente im Modell A sondern
auch Elemente im Modell B gesucht. Auch hier dürfen die Elemente noch
nicht durch eine Modelltransformation oder eine Modellintegration zueinan-
der in Beziehung gesetzt worden sein. Konnten solche Elemente gefunden
werden, so wird in dieser Regel nur noch ein Korrespondenzknoten erzeugt,
der diese Elemente über Links miteinander in Beziehung setzt.

171

Kapitel 5 Synchronisationsmechanismus

++
++

++ ++

Gebundene

Elemente

Neu gefundene

Elemente

Neu erzeugte

Elemente

Modell A Modell B
Korrespondenz -

modell

++

(a) Grundstruktur der operationalen Graphersetzungsregel zur Mo-
delltransformation in Vorwärtsrichtung (Modell A nach Modell B)

++ ++

++

Gebundene

Elemente

Neu gefundene

Elemente

Neu gefundene

Elemente

Modell A Modell B
Korrespondenz -

modell

Neu erzeugte

Elemente

(b) Grundstruktur der operationalen Graphersetzungsregel zur Mo-
dellintegration (Modell A und Modell B)

++ ++

Gebundene

Elemente

Neu erzeugte

Elemente

Neu gefundene

Elemente

Modell A Modell B
Korrespondenz -

modell

++
++

++

(c) Grundstruktur der operationalen Graphersetzungsregel zur Mo-
delltransformation in Rückwärtsrichtung (Modell B nach Modell A)

Abbildung 5.7: Grundstruktur der aus einer TGG-Regel abgeleiteten opera-
tionalen Graphersetzungsregeln

172

5.3 Generierung operationaler Graphersetzungsregeln

Die dritte Regel ist in Abbildung 5.7(c) zu sehen. Diese Regel ist eine
Umkehrung der in Abbildung 5.7(a) gezeigten Regel und wird zur Transfor-
mation eines Modells B in ein Modell A verwendet. Die Ausführung dieser
Regel erfolgt analog zur Regel aus Abbildung 5.7(a), nur dass hier bei einer
erfolgreichen Anwendung keine Elemente in Modell A sondern in Modell B
erzeugt werden.

Der in dieser Arbeit realisierte Modellsynchronisationsmechanismus ba-
siert ebenfalls auf operationalen Graphersetzungsregeln, die vom Prinzip her
den in der Abbilung 5.7 gezeigten Regeln entsprechen. Zur inkrementellen
Modellsynchronisation werden jedoch komplexere Graphersetzungsschritte
benötigt, die durch geeignete Kontrollstrukturen gesteuert werden müssen.
Hierzu setzen wir Storydiagramme ein.

5.3.2 Storydiagramme

Bei Storydiagrammen handelt es sich um erweiterte UML-Aktivitätsdia-
gramme, mit denen das Verhalten einer Methode graphisch spezifiziert wer-
den kann [FNTZ98, Zün01]. Ein Storydiagramm setzt sich aus Aktivitäten
zusammen, die über Transitionen miteinander verbunden sind. Die Transi-
tionen steuern den Kontrollfluss innerhalb eines Storydiagramms.

Der Kontrollfluss eines Storydiagramms beginnt bei einer Startaktivität
und endet, wenn die Stoppaktivität erreicht wird. Die einzelnen Aktivitäten
innerhalb eines Storydiagramms können entweder durch Java-Codefragmente
oder durch sogenannte Story-Patterns spezifiziert sein. Bei den Story-
Patterns handelt es sich um operationale Graphersetzungsregeln. Wie wir
schon in Abschnitt 3.1.2 gesehen haben, besteht eine Graphersetzungsregel
aus einer linken und einer rechten Regelseite. Während die linke Regelseite
eine zu suchende Objektstruktur beschreibt, legt die rechte Regelseite fest,
wie diese Objektstruktur modifiziert werden soll, falls sie gefunden wird.

Abbildung 5.8 zeigt ein Beispiel für ein Storydiagramm. Das Storydia-
gramm besteht aus einer Startaktivität, einer Stoppaktivität, sowie zwei
Story-Pattern. Die Nummerierung in der linken oberen Ecke der Aktivität
gibt weder eine Ausführungsreihenfolge vor noch ist sie Bestandteil der Spe-
zifikation. Die Nummerierung dient uns in dieser Arbeit lediglich dazu, die
Verweise auf einzelne Aktivitäten im Text eindeutig zu machen.

Mit dem Storydiagramm wird das Verhalten der Methode connect der
Klasse Block spezifiziert. Damit kann die Methode auf Instanzen der Klasse
Block ausgeführt werden. Wie bei Methoden üblich, können Attributwerte
und Objekte als Parameter an ein Storydiagramm übergeben werden. Durch

173

Kapitel 5 Synchronisationsmechanismus

[foreach]

[end]

this

b
children

x:Block
children

c:Connection

src

tgt

1

b

x

c:Connection

src

tgt

«create»

«create»

«create»

2

Block :: connect (b : Block) : void

Abbildung 5.8: Beispiel für ein Storydiagramm

die Parameterobjekte werden Teile der Anwendungsstelle für die Grapherset-
zungsregeln, d. h., die Story-Pattern, vorgegeben. Dies reduziert die Anzahl
der möglichen Anwendungsstellen und verringert damit den Aufwand bei
der Anwendung der Graphersetzungsregel. In unserem Beispiel wird der
Methode ein Parameter b vom Typ Block übergeben. Ein Rückgabewert
wurde nicht spezifiziert.

Die Ausführung der Methode beginnt bei der Startaktivität, die durch
einen ausgefüllten Kreis dargestellt ist. Ausgehend von dieser Startaktivität
wechselt der Kontrollfluss zum ersten Story-Pattern (Aktivität 1). Dieses
Story-Pattern enthält die Objekte this und b, die beide ohne Typangaben
spezifiziert sind. Bei diesen Objekten handelt es sich daher um bereits ge-
bundene Objekte, d. h., diese Objekte sind bereits mit konkreten Instanzen
belegt. Das Objekt this repräsentiert eine Instanz, auf der die Methode auf-
gerufen wurde, also eine Instanz der Klasse Block. Das Objekt b repräsen-
tiert den an die Methode übergebenen Parameter.

Ausgehend von den gebundenen Objekten this und b wird zunächst
überprüft, ob ein children-Link zwischen diesen beiden Objekten existiert.
Anschließend wird versucht, eine Instanz vom Typ Block an das Object x

zu binden. Diese Instanz darf jedoch nicht über ein Objekt c vom Typ
Connection mit dem Objekt b verbunden sein, was durch das durchge-
strichene Objekt c:Connection repräsentiert wird. Bei dieser Bedingung
handelt es sich um eine negative Anwendungsbedingung.

174

5.3 Generierung operationaler Graphersetzungsregeln

Der doppelte Rahmen um die Aktivität 1 bedeutet, dass das darin enthal-
tene Story-Pattern auf alle Instanzen angewandt wird, die der spezifizierten
Graphersetzungsregel entsprechen. Aufgrund der bereits gebundenen Ob-
jekte this und b kann allerdings nur noch das Objekt x:Block frei gebun-
den werden. Für jede gefundene Instanz wird über die mit der Bedingung
foreach annotierte Transition zur Aktivität 2 gewechselt.

In der Aktivität 2 wird ein Objekt c:Connection mit entsprechenden
Links zu den Objekten b und x erzeugt.10 Anschließend wechselt der Kon-
trollfluss zurück zur Aktivität 1. Wird kein Objekt x:Block mehr gefunden,
das die negative Anwendungsbedingung erfüllt, wechselt der Kontrollfluss
zur Stoppaktivität, die durch einen doppelten Kreis dargestellt wird. Hier
endet die Ausführung der Methode.

Die hier nur in Auszügen dargestellte Syntax und Semantik der Storydia-
gramme wurde von Albert Zündorf entwickelt, formalisiert und in [Zün01]
vorgestellt. Auf der Grundlage dieser Formalisierung kann aus einem Story-
diagramm ausführbarer Code generiert werden [FNTZ98]. Diese Eigenschaft
nutzen wir in unserem Ansatz aus, um den veränderlichen Anteil unseres
Synchronisationsmechanismus automatisch zu generieren.

5.3.3 Generierung

Die Generierung von Storydiagrammen erläutern wir am Beispiel der TGG-
Regel Process2Class, mit der eine Korrespondenzbeziehung zwischen einem
Prozess im Blockdiagramm und einer Klasse im Klassendiagramm beschrie-
ben wird. Diese Regel haben wir bereits in Abbildung 3.7 kennen gelernt
(siehe Abschnitt 3.2, Seite 66).

Vor der Generierung der Storydiagramme wird zunächst zu jeder TGG-
Regel und zu jedem TGG-Axiom eine eigene Klasse erzeugt. Je nachdem,
ob die erzeugte Klasse eine TGG-Regel oder ein TGG-Axiom repräsentiert,
erbt die erzeugte Klasse entweder von der Klasse TGGRule oder von der
Klasse TGGAxiom und definiert die dort deklarierten Methoden executeFwd,
executeMap und executeRev mit den ensprechenden Methodensignaturen.
Aus der dazugehörigen TGG-Regel wird anschließend zu jeder Methode ein

10Die Erzeugung dieses Objekts hätte mit gleichbleibender Semantik ebenso in der Akti-
vität 1 spezifiziert werden können. Die Aufteilung auf zwei Aktivitäten ist in diesem
Beispiel erfolgt, um den Kontrollfluss aus einer foreach-Aktivität zu demonstrieren.
Dieser wird bei der Generierung von Storydiagrammen aus TGG-Regeln an mehreren
Stellen eingesetzt.

175

Kapitel 5 Synchronisationsmechanismus

check pattern

structure

undo

rule application

[foreach]

[success]

find previous rule

application
find previous

rule application

check attribute

values

[success]

propagate

attribute changes

[failure]

[success]

[failure]

[end]

find previous rule

application
find new

rule application

[foreach] [failure]

[end]

1 2

3

4

5

6

optional

apply

transformation rule

9

apply

 completion rule

8
apply

integration rule

7

[failure]

[success]

Process2Class :: executeFwd (node : TGGNode)

Abbildung 5.9: Grundstruktur der zu generierenden Storydiagramme

Storydiagramm erzeugt. In Abbildung 5.9 ist die Grundstruktur der zu
generierenden Storydiagramme dargestellt.

Der Ablauf des in Abbildung 5.9 gezeigten Storydiagramms kann in zwei
Phasen unterteilt werden. In der ersten Phase werden bereits etablierter
Korrespondenzbeziehungen überprüft und erkannte Inkonsistenzen beseitigt
(Aktivitäten 1–5). Die zweite Phase hingegen dient der Überprüfung und
Herstellung neuer Korrespondenzbeziehungen (Aktivitäten 6–9). Die einzel-
nen Aktivitäten werden im Folgenden detailliert vorgestellt.

Konsistenzprüfung

Die Überprüfung der Korrespondenzbeziehungen beginnt mit der Identifika-
tion von bereits angewandten Korrespondenzregeln (Aktivität 1). Das Story-
Pattern hierzu ist in Abbildung 5.10 dargestellt. In dem Story-Pattern wird
zunächst der als Parameter übergebene Korrespondenzknoten node an das
Objekt bc gebunden. Anschließend wird die aktuelle Regel, die durch das

176

5.3 Generierung operationaler Graphersetzungsregeln

Objekt this repräsentiert wird, sowie eine Instanz der Klasse TGGEngine ge-
bunden. Ausgehend von diesen beiden Objekten wird überprüft, ob bereits
ein Korrespodenenzknoten vom Typ Pr2Cl existiert, der durch diese Regel
erzeugt wurde. Hierbei muss der erzeugte Korrespondenzknoten einerseits
Nachfolger des Korrespondenzknotens bc sein (vgl. Link succ). Anderer-
seits muss dieser Korrespondenzknoten als Eingabeknoten für diese Korres-
pondenzregel fungiert haben (vgl. Link inputNode). In dem Fall, dass alle
spezifizierten Objekte gebunden und die spezifizierten Links zwischen die-
sen Objekten erfolgreich überprüft wurden, haben wir eine Regelanwendung
gefunden.

66

bc := (Bl2Cl) node

pc:Pr2Cl

engine:TGG

Engine

inputNode

succ
this

rules

engine

createdNodes

creator

nodes

nodes

1

[foreach]

[end]

2

...

..
.

...

Process2Class :: executeFwd (node : TGGNode)

pred

Abbildung 5.10: Hergestellte Korrespondenzbeziehung identifizieren

Für jede gefundene Regelanwendung wird überprüft, ob die bei der Re-
gelanwendung zugrundeliegende Objektstruktur immer noch gegeben ist
(Aktivität 2, Abbildung 5.11). Hierzu wird versucht, alle Objekte und Links
zu binden, die von den Korrespondenzknoten durch sources und targets-
Assoziationen erreichbar sind. Dabei handelt es sich um Objekte, die be-
reits durch die handled-Assoziation als verbraucht markiert worden sind. In
diesem Zusammenhang wird auch die negative Anwendungsbedingung der
TGG-Regel überprüft.

177

Kapitel 5 Synchronisationsmechanismus

blc:Class

st:Stereotype

elements

cd:ClassDiagram

bc

pr:Process

c:Composition

pcl:Class

source

target

stereotypes

pc

children

elements

elements

bl:Block

nb:Block

children

sources

sources targets

targets

targets

targets

targets

inputNode

succ

2

this
enginerules

nodes

createdNodes
creator

handled

hand
led

handled

engine

ha
nd
led

nodes

pred

Abbildung 5.11: Objektstruktur der Korrespondenzbeziehung überprüfen

Falls die negative Anwendungsbedingung nicht mehr erfüllt ist, oder falls
Objekte und/oder Links gelöscht wurden, so ist die Korrespondenzbeziehung
nicht mehr gültig. Sie wird daher wieder rückgängig gemacht (Aktivität 3).
In dem Fall, dass die Objektstrukturen dieses Story-Patterns in den Modellen
weiterhin gegeben sind, müssen nur noch die Attributwerte überprüft und
aktualisiert werden (Akitvitäten 4 und 5).

Inkonsistente Korrespondenzbeziehung auflösen

Eine bestehende Korrespondenzbeziehung wird durch einen Korrespondenz-
knoten repräsentiert. Somit kann eine Korrespondenzbeziehung am einfach-
sten aufgelöst werden, indem der Korrespondenzknoten und alle dazu inzi-
denten Links gelöscht werden. Das hierfür verantwortliche Story-Pattern ist
in Abbildung 5.12 dargestellt.

In diesem Story-Pattern wird auf dem Objekt engine die Methode
deleteFwd aufgerufen. Abbildung 5.13 zeigt die Methode in Pseudocode-
Syntax. Der Methode wird der zu löschende Korrespondenzknoten als Pa-
rameter übergeben. Weil dieser Korrespondenzknoten gelöscht werden soll,
werden automatisch alle von diesem Korrespondenzknoten abhängigen Re-
gelanwendungen ebenfalls ungültig – sie müssen daher ebenfalls zurück ge-
nommen werden. Daher wird die Methode rekursiv auf allen Nachfolgern
dieses Korrespondenzknotens ausgeführt (Zeilen 2 und 3). Falls keine Nach-

178

5.3 Generierung operationaler Graphersetzungsregeln

pcengine

3
1: deleteFwd(pc)

2

......

[failure]

Abbildung 5.12: Inkonsistente Korrespondenzbeziehung auflösen

folger mehr vorhanden sind, werden die handled-Links zu allen Objekten
im Blockdiagramm entfernt (Zeilen 4 und 5). Anschließend werden – da wir
die Modellsynchronisation in Vorwärtsrichtung durchführen – alle referen-
zierten Objekte im Klassendiagramm gelöscht (Zeilen 6 und 7). Schließlich
werden der betrachtete Korrespondenzknoten und alle dazu inzidenten Links
gelöscht (Zeile 8).

1 : TGGEngine : : deleteFwd (node : TGGNode)
2 : for each (s : TGGNode in node . succ) do
3 : se l f−>deleteFwd (s) ;
4 : for each (o : Object in node . s ou r c e s) do
5 : s e l f . handled−>remove (o) ;
6 : for each (o : Object in node . t a r g e t s) do
7 : d e l e t e o ;
8 : d e l e t e node ;

Abbildung 5.13: Die Methode deleteFwd

Natürlich sind beim Zurücknehmen einer Regelanwendung auch andere
Strategien denkbar. Beispielsweise könnten in beiden Modellen die referen-
zierten Objekte lediglich als unverbraucht markiert werden. In diesem Fall
würde allerdings nach dem Löschen eines Blocks eine Modellsynchronisation
in Rückwärtsrichtung dazu führen, dass ein solcher Block wieder erzeugt
werden würde. Eine andere Möglichkeit wäre, alle referenzierten Objekte
einfach zu löschen. In diesem Fall würde aber beispielsweise beim Entfer-
nen oder Ändern des Stereotyps die Klasse und die Kompositionsbeziehung

179

Kapitel 5 Synchronisationsmechanismus

im Rahmen der Modellsynchronisation automatisch gelöscht werden. Für
den Benutzer wäre ein solches Verhalten – insbesondere bei einer automa-
tischen Synchronisation nach jeder Änderung – nur schwer nachvollziehbar.
Aus diesem Grund haben wir uns für die richtungsabhängige Behandlung
ungültig gewordener Regelanwendungen in der hier vorgestellten Art und
Weise entschieden. Für andere Anwendungsszenarien ist es aber durchaus
denkbar, dass eine andere Strategie angemessener ist. Die alternativen Stra-
tegien können durch eine andere Implementierung der Methode deleteFwd

umgesetzt werden.

Attributaktualisierung

Nach einer erfolgreichen Überprüfung der Objektstruktur müssen zusätzlich
Attributbedingungen überprüft und gegebenenfalls aktualisiert werden (Ak-
tivitäten 4 und 5). Diese beiden Aktivitäten stellen ein Generierungsmuster
dar und werden nur dann generiert, wenn in der TGG-Regel mindestens eine
Attributbedingung spezifiziert worden ist. Sind mehrere Attributbedingun-
gen in der TGG-Regel spezifiziert, so werden nach diesem Muster für jede
Attributbedingung jeweils zwei separate Aktivitäten erzeugt. Falls jedoch
keine Attributbedingung spezifiziert wurde, wechselt der Kontrollfluss direkt
zur Aktivität 1. In der Abbildung 5.9 ist die Generierung der Aktivitäten 4
und 5 daher durch das grau schattierte Rechteck als optional gekennzeichnet.

Unsere Beispielregel Process2Class enthält zwei Attributbedingungen. Die
erste Attributbedingung fordert, dass der Prozess und die dazu korrespon-
dierende Klasse einen identischen Namen besitzen. Die zweite Bedingung
besagt, dass es sich bei dem Stereotyp der Klasse um einen Stereotyp der
Art

”
process“ handeln soll. Für diese beiden Attributbedingungen werden

daher auf der Grundlage des Generierungsmusters insgesamt vier Aktivitäten
erzeugt. Die erzeugten Aktivitäten sind in der Abbildung 5.14 zu sehen.

Die Überprüfung der ersten Bedingung findet in der Aktivität 4a statt.
Ist diese Bedingung verletzt, so wird der Name des Prozesses in der Ak-
tivität 5a an die Klasse propagiert. Infolge der durchgeführten Änderung
müssen alle Regelanwendungen, die auf dem Korrespondenzknoten pc basie-
ren, überprüft werden. Dies wird dem Synchronisationsalgorithmus signali-
siert, indem das Attribut descend der Objekte engine und pc auf den Wert
true gesetzt wird.

Unabhängig davon, ob eine Attributpropagation stattgefunden hat oder
nicht, führt der Kontrollfluss zur Aktivität 4b, in der die zweite Bedingung
überprüft wird. Ist diese Bedingung verletzt, so wird das Attribut kind in

180

5.3 Generierung operationaler Graphersetzungsregeln

5a

...

[failure]

4a
[success] [success]

2
[success]

3

[failure]
pcl

name := pr.name

engine

descend := true

pc

descend := true

pcl

name == pr.name

...

5b

[failure]

4b

st

kind := „process“

engine

descend := true

pc

descend := true

st

kind == „process“

Abbildung 5.14: Attributwerte überprüfen und aktualisieren

der Aktivität 5b aktualisiert. Auch hier wird die Aktualisierung mit Hilfe der
descend-Attribute dem Synchronisationsalgorithmus mitgeteilt. Da es sich
hierbei um die letzte zu überprüfende Attributbedingung handelt, wechselt
der Kontrollfluss anschließend wieder zur Aktivität 1.

Neue Anwendungsstelle suchen

Nach der Überprüfung und Aktualisierung aller bereits bestehenden Korres-
pondenzbeziehungen (Aktivitäten 1–5) wird die Aktivität 1 über die mit end
annotierte Bedingung verlassen, um nach neuen Korrespondenzbeziehungen
zu suchen (Aktivitäten 6–9). Neue Korrespondenzbeziehungen ergeben sich
insbesondere dann, wenn der Benutzer neue Objekte und/oder Links zu den
Modellen hinzufügt. Ebenso können aber neue Korrespondenzbeziehungen
entstehen, wenn Objekte geändert oder aus dem Modell gelöscht werden und
dadurch die geforderten (negative) Anwendungsbedingungen erfüllt sind.

In unserem Beispiel könnte ein Benutzer beispielsweise einen neuen Block
im Blockdiagramm erstellen. In diesem Fall müsste im Rahmen der Modell-
synchronisation im Klassendiagramm eine neue Klasse mit einem Stereotyp
und einer Komposition erzeugt werden. Hierzu wird zunächst im Block-
diagramm nach möglichen Anwendungsstellen für die Regeln gesucht. Für
unsere Beispielregel bedeutet dies, dass zunächst nur nach neuen Prozes-
sen gesucht wird. Das hierfür aus der TGG-Regel Process2Class generierte
Story-Pattern ist in Abbildung 5.15 dargestellt.

181

Kapitel 5 Synchronisationsmechanismus

blc:Class

elements

cd:ClassDiagram

bc

pr:Process

children

bl:Block

nb:Block

children

sources targets

targets

engine:TGG

Engine

6

handled this
enginerules

Abbildung 5.15: Neue Anwendungsstelle suchen

Ausgehend von dem betrachteten Korrespondenzknoten bc werden
zunächst die Objekte bl, cd und blc gebunden sowie die negative An-
wendungsbedingung nb überprüft. Diese Objekte bilden einen notwendigen
Kontext für eine erfolgreiche Regelanwendung. Bei der Ausführung dieses
Story-Patterns kann ausserdem nicht davon ausgegangen werden, dass das
Objekt engine bereits in der vorherigen Aktivtität 1 gebunden worden ist.
Daher wird dieses Objekt sicherheitshalber erneut gebunden.

Anschließend wird nach einem neuen Prozess pr gesucht. Damit nur un-
verbrauchte Prozesse berücksichtigt werden, darf der Prozess nicht durch
eine handled-Assoziation mit dem engine-Objekt verlinkt sein. Dies wird
durch den durchgestrichenen handled-Link spezifiziert, der damit eine ne-
gative Anwendungsbedingung darstellt und daher auch als negativer Link
bezeichnet wird. Für jeden Prozess, der gebunden werden kann und noch
nicht verbraucht ist, wird zur Aktivität 7 verzweigt.

Integration

Für jede gefundene Anwendungsstelle wird zunächst überprüft, ob dazu
korrespondierende Elemente bereits im Zielmodell existieren (Aktivität 7).
Prinzipiell wird hierfür die operationale Graphersetzungsregel zur Modellin-
tegration aus der Abbildung 5.7(b) ausgeführt. Die Anwendung dieser Inte-
grationsregel stellt sicher, dass Objekte im Zielmodell wiederverwendet und
nicht neu erzeugt werden.

Das entsprechende Story-Pattern zu unserer Beispielregel ist in Abbil-
dung 5.16 zu sehen. Alle bereits in der Aktivität 6 gebundenen Objekte

182

5.3 Generierung operationaler Graphersetzungsregeln

7

blc

elements

cd

pr

children

bl

nb

children

sources targets

targets

inputNode

succ

source

target

stereotypes

«create»

«create»

«create»

«create»

sources

targets

targets

targets

elements

elements

«create»

c:Composition

name == pr.name

pcl:Class

st:Stereotype

kind == „process“

«create» «create»

this
enginerules

«create»

nodes

createdNodes
«create»

creator

«create»

handled

«cre
ate
»

han
dled

«c
re
at
e»

ha
nd
le
d

«create»

handled

bc

pred

engine

descend := true

pc:Pr2Cl

descend := true

Abbildung 5.16: Integrationsregel anwenden

erscheinen jetzt ohne Typangabe. Im Gegensatz dazu sind die neu zu bin-
denden Objekte im Klassendiagramm mit einem Typ versehen. Analog zu
den Objekten im Blockdiagramm dürfen auch diese Objekte noch nicht ver-
braucht sein. Dies wird durch die negativen handled-Links ausgedrückt.
Auf die Überprüfung des negativen handled-Links zu dem Objekt pr kann
verzichtet werden, da diese Überprüfung bereits in der Aktivität 6 stattge-
funden hat.

Zur erfolgreichen Anwendung der Integrationsregel müssen die in der
TGG-Regel spezifizierten Attributbedingungen erfüllt sein. In unserem Bei-
spiel muss das Objekt pcl genauso benannt sein wie der Prozess. Darüber
hinaus muss das Attribut kind des Objekts st den Wert

”
process“ besitzen.

In dem Fall, dass die Objekte diese Bedingungen erfüllen, wird eine Kor-
respondenzbeziehung zwischen den Objekten hergestellt, indem ein neuer
Korrespondenzknoten pc erzeugt wird. Der neu erzeugte Korrespondenz-
knoten stellt die Korrespondenzbeziehung zwischen den Objekten über die
sources- und targets-Links her.

Im Rahmen der Modellsynchronisation werden der Prozess im Blockdia-
gramm sowie alle neu erstellten Objekte im Klassendiagramm durch die
neu erzeugten handled-Links als verbraucht markiert. Die für die Erstel-
lung des Korrespondenzknotens verantwortliche Regel wird mit Hilfe des
Links creator für eventuell nachfolgende Konsistenzprüfungen gespeichert.

183

Kapitel 5 Synchronisationsmechanismus

Für einen schnelleren Zugriff auf den erzeugten Korrespondenzknoten wird
ein nodes-Link erstellt. Zusätzlich werden ein succ und ein inputNode-
Link zwischen dem bereits gebundenen und dem neu erzeugten Korrespon-
denzknoten hinzugefügt, um ein gültiges Korrespondenzmodell aufzubauen.
Schließlich wird dem Synchronisationsalgorithmus durch das Setzen des At-
tributs descend auf den Wert true in den Objekten engine und pc signali-
siert, dass der neu erzeugte Korrespondenzknoten auf neue Regelanwendun-
gen überprüft werden muss.

Automatische Vervollständigung

Häufig ist eine Modellintegration nicht möglich, weil keine korrespondieren-
den Elemente im Zielmodell existieren. In diesen Fällen muss die Modell-
synchronisation – wie im nächsten Abschnitt beschrieben wird – durch eine
operationale Graphersetzungsregel zur Modelltransformation durchgeführt
werden. In einigen Fällen sind aber zumindest einige der geforderten Ob-
jekte vorhanden, so dass zur Modellsynchronisation nur die noch fehlenden
Objekte erzeugt werden müssen. Diesen Vorgang bezeichnen wir als auto-
matische Vervollständigung.

Bei der automatischen Vervollständigung wird zunächst untersucht, ob we-
nigstens einige Elemente im Zielmodell vorhanden sind, die wiederverwendet
werden können. In diesem Fall erfolgt eine automatische Vervollständigung
der noch fehlenden Elemente (Aktivität 8). Dabei existieren im Allgemeinen
mehrere Situationen, die zu überprüfen sind. In Abbildung 5.17 haben wir
für unsere Beispielregel zwei dieser Situationen dargestellt.

Die erste Möglichkeit zur automatischen Vervollständigung ist im Story-
Pattern der Abbildung 5.17(a) dargestellt. In diesem Story-Pattern wird
überprüft, ob eine Klasse existiert, die denselben Namen besitzt wie der
Prozess. Zusätzlich muss diese Klasse mit einem �process�-Stereotypen
versehen sein. Ist diese Situation im Klassendiagramm gegeben, so wird die
Objektstruktur um das noch fehlende Objekt c mit entsprechenden Links
zu den Objekten blc und pcl ergänzt, d. h., eine Komposition zwischen den
beiden Klassen erzeugt.

Die zweite Möglichkeit zur automatischen Vervollständigung ist in der Ab-
bildung 5.17(b) zu sehen. Auch in diesem Fall wird eine Klasse vorausgesetzt,
die denselben Namen besitzt wie der Prozess. Zusätzlich muss zwischen die-
ser Klasse und der Klasse, die den Block repräsentiert, eine Kompositionsbe-
ziehung vorhanden sein. Im Gegensatz zum vorherigen Story-Pattern wird
ein Stereotyp nicht gefordert.

184

5.3 Generierung operationaler Graphersetzungsregeln

8a

blc

elements

cd

pr

children

bl

nb

children

sources targets

targets

inputNode

succ

source

target

stereotypes

«create»

«create»

«create»

«create»

sources

targets

targets

targets

elements

e
le
m
e
n
ts

«create»

c:Composition

name == pr.name

pcl:Class

st:Stereotype

kind == „process“

«create» «create»

this
enginerules

«create»

nodes

createdNodes
«create»

creator

«create»

handled

«cr
eate

»

han
dled

«c
re
at
e»

ha
nd
le
d

«create»

handled

bc

«create»

«create»

«create»

«
c
re
a
te
»

pred

pc:Pr2Cl

descend := true

engine

descend := true

(a) Eine Möglichkeit der Autovervollständigung

8b

blc

elements

cd

pr

children

bl

nb

children

sources targets

targets

inputNode

succ

source

target

stereotypes

«create»

«create»

«create»

«create»

sources

targets

targets

targets

elements

elements

«create»

c:Composition

name == pr.name

pcl:Class

st:Stereotype

kind := „process“

«create» «create»

this
enginerules

«create»
nodes

createdNodes
«create»

creator

«create»

handled

«cre
ate
»

han
dled

«c
re
at
e»

ha
nd
le
d

«create»

handled

bc

«create»
«create»

pc:Pr2Cl

descend := true

engine

descend := true

pred

(b) Eine weitere Möglichkeit zur Autovervollständigung

Abbildung 5.17: Automatische Vervollständigung

185

Kapitel 5 Synchronisationsmechanismus

Natürlich existieren neben diesen beiden Möglichkeiten noch weitere
Möglichkeiten für unvollständige Objektstrukturen. Beispielsweise könnte
überprüft werden, ob lediglich eine Klasse vorhanden ist, die denselben
Namen besitzt wie der Prozess. Für eine gültige Korrespondenzbeziehung
müsste dann eine dazugehörige Kompositionsbeziehung und ein Stereotyp
erzeugt werden. Andere Möglichkeiten für eine automatische Vervollständi-
gung ergeben sich, wenn einfach nur noch fehlende Links zwischen den gefor-
derten Objekten erzeugt werden müssen. In einigen Fällen könnte es durch-
aus sinnvoll sein, Objekte wiederzuverwenden, obwohl deren Attributwerte
nicht die geforderten Bedingungen erfüllen. Dazu müsste die automatische
Vervollständigung die Attributwerte dementsprechend anpassen. Welche die-
ser Möglichkeiten tatsächlich in Betracht kommen, hängt jedoch häufig von
dem Anwendungsszenario und den damit verbundenen TGG-Regeln ab.

Die Erzeugung der Story-Pattern zur automatischen Vervollständigung
kann automatisch erfolgen, indem alle möglichen Kombinationen der zu su-
chenden Objekte erzeugt werden. Wie in der Arbeit von Jörg Baksmeier
jedoch gezeigt wurde, führt dies zu automatischen Vervollständigungen, die
weder bei der Spezifikation der TGG-Regeln vorgesehen noch vom Benutzer
erwünscht waren [Bak06]. Zur Lösung des Problems wurde in der Arbeit da-
her vorgeschlagen, Objekte und Links zu Gruppen zusammenzufassen, die
als eine zusammengehörige Einheit betrachtet und nur gemeinsam gesucht
oder vervollständigt werden. Nach der zusätzlichen Spezifikation einer sol-
chen Gruppierung konnten viele problematische Fälle bei der Generierung
der Story-Pattern zur automatischen Vervollständigung vermieden werden.

Die automatische Generierung der Story-Pattern führt jedoch selbst unter
Einsatz der beschriebenen Gruppierung nicht immer zu sinnvollen Objekt-
strukturen, weil die Semantik der Objekte weder aus den gegebenen Meta-
modellen noch aus den spezifizierten TGG-Regeln hervorgeht. Zur automa-
tischen Generierung der Story-Pattern aus unserer Beispielregel müsste jede
erdenkliche Kombination der Objekte c, pcl und st berücksichtigt werden.
Dabei würde auch ein Story-Pattern entstehen, in dem nur die Kompositi-
onsbeziehung, d. h., das Objekt c, überprüft und anschließend um die noch
fehlende Klasse mit einem Stereotyp ergänzt wird. Diese Überprüfung und
Vervollständigung ist aber wenig sinnvoll, da eine Kompositionsbeziehung
immer eine Ursprungs- und Zielklasse besitzen muss.

Damit der Spezifizierer die zu generierenden Story-Pattern zur automati-
schen Vervollständigung direkt beeinflussen kann, müssen im Rahmen dieser
Arbeit die zu vervollständigenden Objektstrukturen zusätzlich vor der Ge-
nerierung der Story-Pattern angegeben werden. Dazu reicht es aus, die zu

186

5.3 Generierung operationaler Graphersetzungsregeln

suchende Objektstruktur zu spezifizieren. Bei der Generierung wird eine
solche Objektstruktur herangezogen, um die Unterschiede zur Objektstruk-
tur der TGG-Regel zu bestimmen und das entsprechende Story-Pattern zur
automatischen Vervollständigung zu erzeugen.

Existieren mehrere Möglichkeiten zur automatischen Vervollständigung,
werden die hierzu generierten Story-Pattern aneinandergereiht und durch
entsprechende Transitionen miteinander verbunden. Wurde ein Story-
Pattern erfolgreich ausgeführt, wird es über eine success-Transition ver-
lassen. Der Kontrollfluss wechselt infolge dessen wieder zur Aktivität 6.
Kann das Story-Pattern jedoch nicht angewendet werden, so wird über eine
failure-Transition zum nächsten Story-Pattern gewechselt, das eine weitere
Möglichkeit der automatischen Vervollständigung überprüft. In dem Fall,
dass gar keine automatische Vervollständigung ausgeführt werden kann, wird
die Modellsynchronisation durch eine operationale Graphersetzungsregel zur
Modelltransformation ausgeführt.

Transformation

Ist eine automatische Vervollständigung nicht gewünscht oder möglich, so
wird eine Modellsynchronisation durch Modelltransformation ausgeführt
(Aktivität 9). Das dazu erzeugte Story-Pattern entspricht der operationalen
Graphersetzungsregel aus Abbildung 5.7(a). Das aus unserer Beispielregel
generierte Story-Pattern zur Modellsynchronisation durch Modelltransfor-
mation ist in der Abbildung 5.18 zu sehen.

Die in dem Story-Pattern erzeugten Objektstrukturen entsprechen den
bereits beschriebenen Story-Pattern zur Modellintegration und der automa-
tischen Vervollständigung. Der einzige Unterschied besteht darin, dass zur
Herstellung der Korrespondenzbeziehung in dem Story-Pattern zur Modell-
transformation alle Objekte im Klassendiagramm neu erzeugt werden. Nach
der Anwendung dieses Story-Patterns wird wieder das Story-Pattern der Ak-
tivität 6 ausgeführt.

Falls in der Aktivität 6 kein unverbrauchter Prozess mehr gefunden wird,
wechselt der Kontrollfluss zur Stoppaktivität. Damit wird die Ausführung
dieser Regel auf dem als Parameter übergebenen Korrespondenzknoten been-
det. Der Synchronisationsalgorithmus sorgt anschließend dafür, dass entwe-
der weitere Regeln auf diesem Korrespondenzknoten überprüft werden oder
der nächste Korrespondenzknoten untersucht wird.

187

Kapitel 5 Synchronisationsmechanismus

9

blc

elements

cd

pr

children

bl

nb

children

sources targets

targets

inputNode

succ

source

target

stereotypes

«create»

«create»

«create»

«create»

sources

targets

targets

targets

e
le
m
e
n
ts

e
le
m
e
n
ts

«create»

c:Composition

name := pr.name

pcl:Class

st:Stereotype

kind := „process“

«create» «create»

this
enginerules

«create»
nodes

createdNodes
«create»

creator

«create»

handled

«cr
eat
e»

han
dled

«c
re
at
e»

ha
nd
le
d

«create»

handled

bc

«create»

«create»

«create»

«
c
re
a
te
»

«create»

«create»

«
c
re
a
te
»

pc:Pr2Cl

descend := true

engine

descend := true

pred

Abbildung 5.18: Modelltransformation ausführen

Sonderfälle

An dieser Stelle betrachten wir einige Sonderfälle, die bei der Generierung
von Storydiagrammen zu beachten sind.

Storydiagramme zur Modellintegration Während die Storydiagramme für
die Modellsynchronisation in Rückwärtsrichtung analog zu den zu-
vor beschriebenen Storydiagrammen für die Modellsynchronisation
in Vorwärtsrichtung generiert werden, müssen bei der Generierung
von Storydiagrammen für die Modellintegration einige Besonderheiten
berücksichtigt werden.

Bei der Modellintegration werden korrespondierende Modellelemente
identifiziert und zueinander in Beziehung gesetzt. Dabei findet neben
der Überprüfung der Objektstruktur auch eine Überprüfung der gefor-
derten Attributbedingungen statt. Allerdings werden bei der Modellin-
tegration keine Attribute aktualisiert, um Korrespondenzbeziehungen
aufrecht zu erhalten. Dies geschieht weiterhin durch die Ausführung
einer Modellsynchronisation in eine festgelegte Richtung.

Aus diesem Grund entfällt bei der Generierung der Storydiagramme
zur Modellintegration die Aktivität 5. Darüber hinaus werden die Ak-
tivitäten 2 und 4 zusammengelegt, so dass die Überprüfung der Attri-

188

5.3 Generierung operationaler Graphersetzungsregeln

butbedingungen zusammen mit der Überprüfung der Objektstruktur
stattfindet. In dem Fall, dass eine Inkonsistenz festgestellt wird, wird in
der Aktivität 3 die Methode deleteMap aufgerufen. In dieser Methode
werden die beteiligten Objekte sowohl im Quell- als auch im Zielmodell
als unverbraucht markiert und lediglich der Korrespondenzknoten mit
den dazu inzidenten Links gelöscht.

Zur Überprüfung und Herstellung neuer Korrespondenzbeziehungen
wird nur die Aktivität 6 benötigt, d. h., die Aktivitäten 7, 8 und 9
entfallen. In die Aktivität 6 wird ein Story-Pattern mit der Integra-
tionsregel eingebettet (vgl. Abbildungen 5.7(b) und 5.16), wobei hier
alle Objekte mit Typangaben versehen sein müssen, damit sie gebun-
den werden. Zusätzlich müssen die Attributbedingungen überprüft
und bei einer erfolgreichen Regelanwendung ein Korrespondenzknoten
mit all den notwendigen Links erstellt werden.

Storydiagramme für komplexere Regeln In einigen Fällen können TGG-
Regeln von der in Abbildung 5.6 gezeigten Grundstruktur abweichen
und mehrere Korrespondenzknoten für den zu erzeugenden Korrespon-
denzknoten voraussetzen. Ein Beispiel für eine solche TGG-Regel ha-
ben wir in Abbildung 3.8 gesehen (siehe Seite 66). Die Grundstruktur
einer solchen Regel ist in Abbildung 5.19 dargestellt, wobei wir hier
nur zwei Korrespondenzknoten voraussetzen. Diese Grundstruktur ist
jedoch auch auf mehr als zwei vorausgesetzte Korrespondenzknoten
verallgemeinerbar.

Zur Generierung eines Storydiagramms kann das Prinzip angewandt
werden, das wir bereits in Abschnitt 5.3.1 kennen gelernt haben. Der
in dieser Arbeit vorgestellte Synchronisationsmechanismus übergibt al-
lerdings an jedes Storydiagramm genau einen Korrespondenzknoten als
Eingabe, der dann den Ausgangspunkt für die Regelanwendung inner-
halb eines Storydiagramms bildet. Bei der Generierung eines Storydia-
gramms müsste daher einer der vorausgesetzten Korrespondenzknoten
als Eingabeknoten festgelegt werden.

Legt man einen der Korrespondenzknoten als Eingabe für die Regelan-
wendung fest, so kann es während einer Modellsynchronisation vor-
kommen, dass zu dem Zeitpunkt, an dem die Regel überprüft wird,
einer oder sogar mehrere der anderen zur Regelanwendung benötigten
Korrespondenzknoten noch nicht existieren. Damit würde die Regelan-
wendung erfolglos abgebrochen werden und müsste zu einem späteren

189

Kapitel 5 Synchronisationsmechanismus

++
++

++
++

++ ++

++

Gebundene

Elemente

Neu erzeugte

Elemente

Modell A Modell B
Korrespondenz -

modell

Gebundene

Elemente

++ ++

Abbildung 5.19: Grundstruktur einer komplexeren TGG-Regel

Zeitpunkt, d. h., wenn der oder die anderen Korrespondenzknoten er-
stellt worden sind, erneut ausgeführt werden. Hierfür müsste das Kor-
respondenzmodell ein zweites Mal durchlaufen werden.

Um die wiederholte Traversierung des Korrespondenzmodells zu ver-
meiden und die Synchronisation in einem Durchlauf zu ermöglichen,
muss die Regelanwendung von jedem der vorausgesetzten Korrespon-
denzknoten ausführbar sein, d. h., jeder Korrespondenzknoten muss
als Eingabeknoten und damit als Ausgangspunkt der Regelanwendung
im Storydiagramm akzeptiert werden. Dies wird realisiert, indem für
jeden vorausgesetzten Korrespondenzknoten die in Abbildung 5.9 ge-
zeigte Grundstruktur generiert wird und der entsprechende Korrespon-
denzknoten an den Parameter des Storydiagramms gebunden wird.
Zusätzlich werden bei einer erfolgreichen Regelanwendung entspre-
chende inputNode-Links zwischen diesem Korrespondenzknoten und
den neu erzeugten Korrespondenzknoten erstellt, so dass auch die Kor-
respondenzprüfung in den Aktivitäten 1–5 korrekt ausgeführt werden
kann. Die mehrfach erzeugten Grundstrukturen werden in einem Sto-
rydiagramm hintereinander gereiht.

Storydiagramme für Axiome Ein Axiom repräsentiert eine festgelegte Aus-
gangssituation und bildet damit eine Grundlage für die Anwendung
von Korrespondenzregeln. Daher besitzt ein Axiom einen Sondersta-

190

5.3 Generierung operationaler Graphersetzungsregeln

tus: der Korrespondenzknoten eines Axioms wird nur dann gelöscht,
wenn keine Synchronisation der Modelle mehr gewünscht ist.

Damit ein Benutzer die notwendige Ausgangssituation für eine Mo-
dellsynchronisation zwischen zwei Modellen möglichst einfach und au-
tomatisch herstellen kann, werden in dieser Arbeit auch aus einem
Axiom Storydiagramme generiert. Diese sind jedoch wesentlich einfa-
cher gehalten. Die aus einem Axiom generierten Storydiagramme für
die Methoden executeFwd, executeMap und executeRev bestehen je-
weils aus einem einzigen Story-Pattern mit dazugehöriger Start- und
Stoppaktivität. Die Story-Pattern selbst werden durch die Anwen-
dung des in Abschnitt 5.3.1 vorgestellten Prinzips erzeugt. In Abbil-
dung 5.20 ist das Storydiagramm der Methode executeFwd dargestellt,
das aus Axiom System2Class unseres Beispiels generiert wurde (vgl.
Abschnitt 3.2, Abbildung 3.9, Seite 67).

System2Class :: executeFwd (node : Object)

1

sys := (System)

node
cl:Class

st:Stereotype

elements

cd:ClassDiagram

sc:Sy2Cl

stereotypes

«create»

«create»

«create»

«create»

«create» «create»

«create»

«create»

«create»

«create»

targets

targets

targetsthis
enginerules

«create»
nodescreatedNodes

«create»

engine:TGG

Engine

creator
«create»
root

targets

Abbildung 5.20: Storydiagramm zum Axiom System2Class

Im Gegensatz zu Storydiagrammen, die aus TGG-Regeln generiert wer-
den, kann der Parameter für Storydiagramme, die aus Axiomen erstellt
wurden, nicht an einen Korrespondenzknoten gebunden werden, weil
zum Zeitpunkt der Ausführung noch kein Korrespondenzknoten exis-
tiert. Daher wird der Parameter an das Objekt sys gebunden, d. h.,
das übergebene Parameterobjekt muss vom Typ System sein. Zusätz-
lich zu der bereits aus den vorangegangenen Abschnitten bekannten
Objektstruktur, die aus den Objekten this und engine mit entspre-

191

Kapitel 5 Synchronisationsmechanismus

chenden Links besteht, wird in Story-Pattern, die aus einem Axiom
generiert werden, der Link root erzeugt. Mit Hilfe dieses Links wird
der Korrespondenzknoten referenziert, der die Wurzel des Korrespon-
denzmodells repräsentiert.

5.4 Zusammenfassung

In diesem Kapitel ist ein Synchronisationsmechanismus vorgestellt worden,
der auf der Grundlage einer Tripel-Graph-Grammatik eine Modellsynchro-
nisation zwischen zwei Modellen durchführt. Mit dem hier vorgestellten
Synchronisationsmechanismus kann eine Synchronisation sowohl batch-artig
als auch inkrementell erfolgen. Darüber hinaus kann derselbe Mechanismus
sowohl zur Modelltransformation als auch zur Modellintegration eingesetzt
werden, da diese Anwendungsszenarien ein grundlegender Bestandteil der in
dieser Arbeit vorgestellten Modellsynchronisation sind.

Dem vorgestellten Synchronisationsmechanismus liegt ein invarianter Al-
gorithmus zugrunde, der durch operationale Graphersetzungsregeln parame-
trisiert wird. Die operationalen Graphersetzungsregeln hingegen sind von
einer konkreten Spezifikation der Korrespondenzbeziehungen abhängig und
repräsentieren damit den veränderlichen Anteil unseres Modellsynchronisa-
tionsmechanismus. Der Algorithmus sowie die dafür notwendige Datenstruk-
tur wurden im ersten Teil dieses Kapitels vorgestellt. Im zweiten Teil haben
wir gezeigt, wie operationale Graphersetzungsregeln in Form von Storydia-
grammen aus einer Spezifikation generiert werden.

Die in dieser Arbeit vorgestellten Storydiagramme sowie der dazugehörige
Steuerungsmechanismus ermöglichen eine partielle Modellsynchronisation.
Diese ist jedoch nur möglich, wenn die ursprüngliche TGG-Semantik [Sch94]
aufgegeben wird. Die ursprüngliche TGG-Semantik haben wir bereits in
Abschnitt 3.2.1 vorgestellt: mit den TGG-Regeln wird beschrieben, wie
zwei Modelle simultan, vollständig und konsistent zueinander erzeugt werden
können. Dies bedeutet insbesondere, dass zu jedem Modellelement mindes-
tens ein Korrespondenzobjekt existiert, d.h., jedes Modellelement an min-
destens einer Korrespondenzbeziehung beteiligt ist. Diese Semantik steht je-
doch im Widerspruch zu einer partiellen Modellsynchronisation. Aus diesem
Grund wurde die ursprüngliche Semantik der TGG-Regeln in der vorliegen-
den Arbeit aufgegeben.

Ein weiterer Schwerpunkt dieser Arbeit lag auf der effizienten Ausführung
von Modellsynchronisationen. Dabei sollten die Algorithmen zur Modellsyn-

192

5.4 Zusammenfassung

chronisation möglichst so schnell sein, dass auch eine inkrementelle Modell-
synchronisation nach jeder Änderung ausgeführt werden kann, ohne dabei
den Benutzer bei seiner Arbeit zu stören. Um dieses Ziel zu erreichen, dürfen
allerdings keine mehrdeutigen TGG-Regeln verwendet werden, da ansonsten
ein aufwändiges Backtracking bei der Regelanwendung zu berücksichtigen
ist. Mit dieser Einschränkung ergibt sich allerdings eine weitere Änderung
an der ursprünglichen TGG-Semantik.

An dieser Stelle soll daher nicht unerwähnt bleiben, dass der von Andy
Schürr geführte Äquivalenzbeweis [Sch94] aufgrund dieser Änderungen nicht
mehr gültig ist. In dem Äquivalenzbeweis wurde gezeigt, dass bei der An-
wendung der operationalen Graphersetzungsregeln, d.h., in unserem Fall der
Storydiagramme, die Reihenfolge der Regelanwendungen unerheblich ist und
immer zu gültigen Korrespondenzbeziehungen zwischen den Modellen führt.
Dieser Nachweis gilt jedoch nur für die in [Sch94] eingeführten operationale
Graphersetzungsregeln. In unserem Fall kann eine geänderte Reihenfolge
von Regelanwendungen durchaus zu einem anderen Ergebniss führen.

Die in dieser Arbeit vorgestellte Generierung von operationalen Gra-
phersetzungsregeln, d.h., der Storydiagramme, stellt nur eine Möglichkeit
dar, wie eine Modellsynchronisation auf der Grundlage einer Tripel-Graph-
Grammatik durchgeführt werden kann. Für andere Anwendungsszenarien
können andere Storydiagramme durchaus besser geeignet sein. Gerade in ei-
nem solchen Fall zeigt sich ein großer Vorteil dieses Ansatzes: Die neuen Sto-
rydiagramme können durch eine Anpassung der hier vorgestellten Generie-
rung erzeugt werden, ohne dass die Spezifikation der TGG-Regeln geändert
werden muss.

193

Kapitel 6

Validierung und Verifikation

Die Modelltransformation ist ein Spezialfall der in dieser Arbeit vorgestell-
ten inkrementellen Modellsynchronisation. Damit eignet sich der hier vor-
gestellte Ansatz auch zur Spezifikation von Modelltransformationen. Die
Spezifikation komplexer Modelltransformationen ist fehleranfällig. Daher ist
im Rahmen der Qualitätssicherung häufig ein Nachweis der syntaktischen
und semantischen Korrektheit einer solchen Modelltransformation notwen-
dig. Die Validierung und Verifikation von Modelltransformationen ist zurzeit
noch Gegenstand der Forschung und nicht sehr weit fortgeschritten.

In diesem Kapitel geben wir daher nur einen Überblick zu ersten Ansätzen
der Validierung und Verifikation von Modelltransformationen. Dazu stellen
wir in Abschnitt 6.1 einige existierende Ansätze zur Validierung der syntak-
tischen Korrektheit vor und zeigen, wie diese Ansätze auf TGGs übertragbar
sind. Im darauf folgenden Abschnitt 6.2 beschäftigen wir uns mit dem for-
malen Nachweis der semantischen Korrektheit von Modelltransformationen.
Neben anderen existierenden Ansätzen stellen wir hierbei auch einen Ansatz
vor, der im Rahmen dieser Dissertation entstanden ist. Wir schließen dieses
Kapitel in Abschnitt 6.3 mit einer Zusammenfassung.

6.1 Syntaktische Korrektheit

Neben funktionalen Anforderungen wie der Terminierung, die für TGGs be-
reits in [Sch94] gezeigt wurde, sowie der Konfluenz, die für Graphtransforma-
tionsregeln mit Hilfe der kritischen Paaranalyse nachgewiesen werden kann
[KHE03, LEO08], ist die syntaktische Korrektheit eine weitere wichtige An-
forderung an Modelltransformationen. Hierbei kann zwischen zwei Formen
der syntaktischen Korrektheit unterschieden werden [Küs04b].

Eine Form der syntaktischen Korrektheit liegt vor, wenn die Modelltrans-
formation in einer formalen Transformationssprache spezifiziert wurde. In

195

Kapitel 6 Validierung und Verifikation

diesem Fall müssen die Regeln der Modelltransformation syntaktisch korrekt
in Bezug auf die vorliegende Transformationssprache sein.

Die syntaktische Korrektheit von Regeln kann statisch analysiert werden,
indem überprüft wird, ob die Regeln konform zum Formalismus der Transfor-
mationssprache spezifiziert worden sind und die dort verwendeten Elemente
konform zu den Metamodellen der Quell- und Zielsprache angegeben wur-
den. Häufig werden solche Überprüfungen – wie in unserem Ansatz auch –
bereits bei der Spezifikation in einem Regeleditor automatisch durchgeführt
und syntaktische Fehler dem Benutzer angezeigt bzw. durch Einschränkung
der Bearbeitungsmöglichkeiten in dem Regeleditor erst gar nicht zugelassen.

Allerdings ist es nicht ausreichend, die syntaktische Korrektheit der ein-
zelnen Regeln nachzuweisen. Dies liegt daran, dass Transformationsregeln
oft nur Modellfragmente enthalten, die zwar konform zu der Transforma-
tionssprache sind, aber einzeln betrachtet keine syntaktisch korrekten (Teil-
)Modelle bezüglich der Quell- und Zielsprache darstellen. Hier werden insbe-
sondere statische Integritätsbedingungen, die beispielsweise mit der Object
Constraint Language (OCL) formuliert werden, nur selten erfüllt.

Bei der anderen Form der syntaktischen Korrektheit wird daher verlangt,
dass eine Modelltransformation für jedes syntaktisch korrekte Quellmodell
ein syntaktisch korrektes Zielmodell bezüglich der Zielsprache erzeugt. Eine
probate und in der Industrie weit verbreitete Methode zur Überprüfung eines
Softwaresystems ist die Validierung durch Tests. Diese Methode kann sowohl
zur Überprüfung der funktionalen und nicht-funktionalen Anforderungen als
auch zur Überprüfung der syntaktischen Korrektheit von Modelltransforma-
tionen eingesetzt werden [FSB04].

Abbildung 6.1 zeigt einen allgemeinen Überblick zur Validierung von Mo-
delltransformationen durch Tests. Hierbei werden zunächst Testfälle defi-
niert. Ein Testfall besteht aus einem Quellmodell und einem erwarteten
Zielmodell. Anschließend wird die Modelltransformation auf dem Quellmo-
dell ausgeführt. Das Ergebnis dieser Modelltransformation ist ein Ausgabe-
modell. Dieses Ausgabemodell wird mit dem erwarteten Zielmodell des Test-
falls verglichen. Weicht das Ausgabemodell von dem erwarteten Zielmodell
ab, so kann daraus geschlussfolgert werden, dass die Modelltransformation
fehlerhaft ist. Hierbei ist zu unterscheiden, ob die Implementierung oder die
Spezifikation einen Fehler enthält.

In unserem Ansatz wird die Implementierung der Modelltransformation
automatisch aus der Spezifikation der TGG-Regeln abgeleitet. Für den Fall,
dass die Algorithmen zur automatischen Ableitung dieser Implementierung
hinreichend genau getestet wurden, können wir daher im Fehlerfall anneh-

196

6.1 Syntaktische Korrektheit

Quellmodell

Zielmodell Vergleich
ok

¬ok

Testfall

Überprüfung

Transformation

Korrespondenz-
regeln

Erwartetes
Zielmodell

Abbildung 6.1: Überblick zur Validierung durch Tests

men, dass der Fehler in der Spezifikation der TGG-Regeln zu finden ist.
Solange die Korrektheit der Algorithmen zur automatischen Ableitung der
Implementierung nicht formal bewiesen wurde, kann ein Fehler in der Im-
plementierung jedoch nicht gänzlich ausgeschlossen werden.

Die Methode der Validierung durch Tests kann – sofern eine ausführbare
Modelltransformation vorliegt – manuell durchgeführt werden. Hierzu muss
der Benutzer die Modelltransformation auf einem Quellmodell ausführen und
das Ergebnis der Modelltransformation mit dem erwarteten Zielmodell ma-
nuell vergleichen. Ein solcher Vergleich lässt sich allerdings auch automati-
siert durchführen. Eine mögliche Automatisierung wurde von Jeff Gray et
al. vorgestellt [LZG05]. Für die Modellvergleiche können mittlerweile gene-
rische Frameworks und Werkzeuge eingesetzt werden, wie z. B. das SiDiff-
Framework [TBWK07] oder EMF-Compare aus dem Eclipse Modeling Fra-
mework Technology Project [BGMT].

Im Fall der TGGs könnte eine solche Überprüfung sogar effizienter durch-
geführt werden, indem auf der Grundlage der spezifizierten TGG-Regeln eine
Modellintegration zwischen dem Quell- und dem erwarteten Zielmodell aus-
geführt wird. Anschließend muss überprüft werden, ob alle Modellelemente
durch ein Korrespondenzobjekt referenziert werden, d. h., eine vollständige
Überdeckung erreicht wurde. Falls das nicht der Fall ist, so ist davon auszu-
gehen, dass auch eine Modelltransformation diese Elemente unberücksichtigt
lässt und damit fehlerhaft ist.

Diese Methode kann jedoch nicht angewendet werden, falls eine partielle
Modelltransformation getestet werden soll. In einem solchen Transformati-
onsszenario sollen nur Teilmodelle übersetzt werden. Daher müssen einige
Modellelemente unberücksichtigt bleiben. Das oben beschriebene Kriterium

197

Kapitel 6 Validierung und Verifikation

der Überdeckung ist somit nicht anwendbar. Darüber hinaus könnte durch
die Integration nicht festgestellt werden, ob eine Modelltransformation Mo-
dellelemente im Quellmodell nicht doch in das Zielmodell übersetzt.

Um solche Szenarien dennoch automatisch testen zu können, ist eine an-
dere Form der Überprüfung denkbar. Hierzu müsste eine identische Abbil-
dung zwischen Modellen der Zielsprache definiert werden. Liegt eine solche
Abbildung vor, so müsste zunächst eine Transformation des Quellmodells
ausgeführt werden. Eine anschließende Integration zwischen dem resultieren-
den Ausgabemodell und dem erwarteten Zielmodell, die auf der Grundlage
der identischen Abbildung durchgeführt werden kann, würde darüber Auf-
schluss geben, ob die Modelle in der geforderten Art und Weise zueinander
korrespondieren.

Für eine vollständige Automatisierung müsste allerdings noch untersucht
werden, ob die identische Abbildung zwischen den Modellen der Zielsprache
automatisch erzeugt werden kann. Eine erste Idee hierzu ist, die identi-
sche Abbildung aus den spezifizierten TGG-Regeln zu synthetisieren. Auf-
grund der Tatsache, dass eine TGG-Spezifikation verschiedene Produktio-
nen enthält, mit denen der simultane Aufbau eines Quell- und eines Zielm-
odells beschrieben wird, ist es denkbar, die Produktionen des Zielmodells
aus der TGG-Spezifikation zu extrahieren. Daraus kann eine neue TGG-
Spezifikation erstellt werden, die eine identische Abbildung zwischen Model-
len der Zielsprache beschreibt. Diese TGG-Spezifikation könnte dann für
die notwendige Integration zwischen dem resultierenden Ausgabemodell und
dem erwarteten Zielmodell eingesetzt werden.

Neben dem Problem der automatischen Vergleiche zwischen einem er-
warteten und einem resultierenden Modell einer Modelltransformation be-
steht ein weiteres Problem darin, geeignete Eingabemodelle für Tests zu
finden [BDTM+06]. Im Allgemeinen können zu einem Metamodell unend-
lich viele Instanzen dieses Metamodells, d. h., Modelle, existieren. Damit
ist es unmöglich, alle Modelle zu testen. Einige Arbeiten beschäftigen sich
daher damit, relevante und kritische Grenzfälle einer Modelltransforma-
tion zu identifizieren und entsprechende Modelle automatisch zu erzeugen
[FSB04, BDTM+06, KA06, EKT08].

Mit den automatisch erzeugten Eingabemodellen entsteht allerdings ein
weiteres Problem, das für vollständig automatisierte Tests noch zu lösen ist.
Dieses Problem hängt damit zusammen, dass automatisch generierte Einga-
bemodelle nur schwer durch eine Testperson zu interpretieren sind. Wenn
eine Testperson ein solches Eingabemodell jedoch nicht vollständig versteht,
kann sie auch nicht das erwartete Zielmodell zu dem Eingabemodell defi-

198

6.2 Semantische Korrektheit

nieren. Baudry et al. schlagen daher vor, durch den Benutzer vorgegebene
Modelle auf solche Grenzfälle zu analysieren, um die Qualität der gegebenen
Testfälle zu bestimmen. Die Ergebnisse der Analyse können auch verwen-
det werden, um dem Benutzer Vorschläge für mögliche Erweiterungen der
Eingabemodelle zu unterbreiten und dadurch relevante Testfälle zu erstellen
[FBMT08]. In anderen Ansätzen wird auf die Spezifikation eines konkreten
Zielmodells ganz verzichtet und die resultierenden Zielmodelle lediglich auf
bestimmte Eigenschaften überprüft [BDTM+06, NK08b].

Zusammenfassend kann man feststellen, dass zwar bereits einige Ansätze
zur Validierung von Modelltransformationen durch Tests existieren, aber
nicht alle Probleme zufriedenstellend gelöst sind. Trotz der hohen Relevanz
der Validierung durch Tests darf man allerdings nicht vergessen, dass mit
Tests zwar die Anwesenheit von Fehlern überprüft, aber nie die Abwesenheit
von Fehlern nachgewiesen werden kann. Um die syntaktische Korrektheit
einer Modelltransformation zu beweisen, müssen andere, statische Analyse-
techniken, wie z. B. Model Checking oder Theorembeweiser, auf ihre Eignung
zum Nachweis der syntaktischen Korrektheit überprüft werden.

6.2 Semantische Korrektheit

Bei einer Modelltransformation ist es oft wichtig, dass die Transformation ei-
nes Modells in eine andere Darstellung bestimmte Eigenschaften dieses Mo-
dells erhält. Eine solche Modelltransformation wird als semantikerhaltend
bzw. semantisch korrekt bezeichnet, wenn das Quell- und das Zielmodell
bezüglich ihrer Semantik und eines festgelegten Äquivalenzbegriffs zueinan-
der äquivalent sind. Die semantische Korrektheit einer Modelltransformation
hängt somit von der Definition einer Äquivalenzrelation und der definierten
Semantik des Quell- und Zielmodells ab.

Zur Überprüfung der semantischen Korrektheit einer Modelltransforma-
tion existieren zwei grundsätzlich unterschiedliche Ansätze. Der erste An-
satz wird als Checker-Ansatz bezeichnet. Bei dem zweiten Ansatz handelt
es sich um einen regelbasierten Ansatz. Die beiden Ansätze werden in den
folgenden beiden Abschnitten kurz vorgestellt.

6.2.1 Checker-Ansatz

Der Checker-Ansatz kann auf die Arbeit von Pnueli et al. zurückgeführt
werden. In dieser Arbeit wird ein Ansatz zur automatischen Validierung

199

Kapitel 6 Validierung und Verifikation

von Übersetzern wie z. B. Compilern und Codegeneratoren vorgestellt. Die-
ser Ansatz ist auch als Translation Validation bekannt geworden [PSS98].
Bei diesem Ansatz werden für jede Ein- und Ausgabe des Übersetzers vor-
her festgelegte Kriterien automatisch überprüft. Sind die Kriterien erfüllt,
kann geschlussfolgert werden, dass die Übersetzung bezüglich der festgeleg-
ten Kriterien korrekt ist. Auf der Grundlage dieses Ansatzes wurden für
Modelltransformationen zwei Verfahren entwickelt, die in der Abbildung 6.2
zu sehen sind.

Bei dem ersten Verfahren, das in Abbildung 6.2(a) konzeptionell darge-
stellt ist, wird die Korrektheit mit Hilfe eines Model Checkers nachgewiesen
[VP03]. Dabei wird nicht die tatsächliche semantische Äquivalenz nachge-
wiesen, sondern bestimmte, durch den Benutzer festgelegte Korrektheits-
eigenschaften. Dazu wird ein Modell M der Quellsprache mit Hilfe einer
Modelltransformation T in ein Modell M’=T(M) einer Zielsprache automa-
tisch übersetzt. Anschließend wird die Semantik der beiden Modelle in Form
von Zustandsübergangssystemen berechnet. Sie dient als Eingabe für einen
Model Checker. Der Model Checker überprüft die Gültigkeit einer Korrekt-
heitseigenschaft P auf dem Zustandsübergangssystem von Modell M sowie
die Gültigkeit der transformierten Korrektheitseigenschaft P’=T(P) auf dem
Zustandsübergangssystem des Zielmodells M’=T(M). In dem Fall, dass beide
Korrektheitseigenschaften gültig sind, wird geschlussfolgert, dass auch die
Transformation T bezüglich des Prädikats P korrekt ist.

Ein wesentlicher Vorteil dieses Ansatzes liegt darin, dass die festgelegten
Kriterien automatisch überprüfbar sind, da sowohl die Berechnung der Zu-
standsübergangssysteme als auch die Transformation des Prädikats P’=T(P)
automatisch erfolgt. Allerdings muss in diesem Ansatz sichergestellt werden,
dass die Transformation T(P) korrekt ist, da bei fehlerhaften Transformati-
onsregeln auch die Transformation des Prädikats fehlerhaft verlaufen könnte.
Dies muss manuell durch einen Experten überprüft werden. Darüber hinaus
müssen geeignete Korrektheitsbedingungen für die Modelle gefunden wer-
den, was – wie die Autoren in ihrem Beitrag anmerken – durchaus keine
leichte Aufgabe darstellt.

Bei dem zweiten Ansatz, der in Abbildung 6.2(b) zu sehen ist, wird die
Korrektheit einer durchgeführten Modelltransformation mit Hilfe der Bisi-
mulation überprüft [NK08a]. Hierzu werden während einer Modelltransfor-
mation zwischen den Modellelementen des Quell- und des Zielmodells Verbin-
dungen erstellt, um aus den Modellelementen des Quellmodells hervorgegan-
gene Modellelemente des Zielmodells explizit in Beziehung zu setzen. Diese
Verbindungen werden anschließend dazu verwendet, um auf der Grundlage

200

6.2 Semantische Korrektheit

CheckerTransformation

Tool

Source

Model

Target

Model

Transformation

Model Checking

P

Transformation

P’=T(P)

Model Checking

P’

(a) Ansatz nach Varró et al. [VP03]

Source

Model

Target

Model

Checker

Transformation

Model Checking

P

Transformation

Tool

Links between

Model Elements

Bisimilarity

Checker

(b) Ansatz nach Karsai et al. [NK08a]

Abbildung 6.2: Zwei Checker-Ansätze zum Beweis der semantischen Kor-
rektheit von Transformationen

der Bisimulation nachzuweisen, dass sich das Quellmodell bezüglich einer
festgelegten Eigenschaft genauso verhält wie das Zielmodell.

In dem Beitrag wird der Ansatz mit dem Ziel verfolgt, ein Entwurfsmo-
dell in ein Analysemodell zu übersetzen, das dann bezüglich einer festge-
legten Eigenschaft verifiziert wird. Damit das Ergebnis der Verifikation auf
das Quellmodell übertragen werden kann, wird anschließend überprüft, ob
die beiden Modelle zueinander bisimular sind. Diese Überprüfung findet
automatisch statt und ist leichter, als der Nachweis der tatsächlichen se-
mantischen Äquivalenz. Allerdings muss – wie auch schon im vorherigen
Ansatz – die Überprüfung für jede konkrete Instanz der Ein- und Ausgabe
einer Modelltransformation stattfinden. Eine allgemeine Überprüfung der
Modelltransformationsregeln findet nicht statt.

6.2.2 Regelbasierter Ansatz

Im Gegensatz zum Checker-Ansatz liegen dem regelbasierten Ansatz die spe-
zifizierten Transformationsregeln zugrunde, so dass allgemein bewiesen wird,
dass die Transformationsregeln für jede gültige Eingabe eine semantisch äqui-
valente Ausgabe erzeugen. Der formale Beweis der semantischen Äquivalenz
muss daher nur einmalig für eine Menge von Transformationsregeln statt
finden und nicht – wie im Checker-Ansatz – auf jeder Ein- und Ausgabe.

In Kooperation mit dem Fachgebiet Programmierung eingebetteter Sys-

201

Kapitel 6 Validierung und Verifikation

Modeling Tool

Theorem

Prover
Target

Datatype

Target

Metamodel

Correspondence

Metamodel

Source

Metamodel

Source

Datatype

<<derived from>>

<<defined on>>

<<uses>> <<uses>>

<<uses>>

TGG-RulesTGG-RulesCorrespondence

Rules

TGG-RulesTGG-RulesModifier Pairs

<<derived from>> <<derived from>>

<<defined on>>

Source

Semantics

<<defined on>>

Target

Semantics

<<defined on>>

Semantic Equivalence

Relation

Congruence

Proof

Abbildung 6.3: Überblick zur formalen Verifikation der semantischen Äqui-
valenz mit einem Theorembeweiser

teme von Prof. Dr. Sabine Glesner wurden im Rahmen dieser Disserta-
tion erste Untersuchungen zu einem solchen Ansatz für TGGs durchgeführt
[GGL+06]. Dabei wurde auf der Grundlage des Theorembeweisers Isabel-
le/HOL1 ein generisches Beweisschema entwickelt, mit dem die semantische
Korrektheit einer Modelltransformation formal nachgewiesen werden kann
[Lei06]. Dieses Beweisschema wurde angewandt, um formal zu beweisen,
dass eine zuvor spezifizierte Transformation von Automaten in SPS-Code
semantikerhaltend ist.

In Abbildung 6.3 ist das generische Beweisschema dargestellt. Im Ver-
gleich zu der Abbildung 2.7 (siehe Seite 47) fehlen hier die Instanzen der
Metamodelle, d. h., die Modelle, sowie das Werkzeug zur Ausführung der
Modelltransformation, Modellintegration und Modellsynchronisation. Dies
liegt darin begründet, dass in diesem Ansatz die semantische Korrektheit
der zur Modelltransformation eingesetzten Korrespondenzregeln allgemein
bewiesen wird, so dass diese konkreten Modelle für den Beweis irrelevant
sind.

1Die Higher Order Logik (HOL) ist eine typisierte Prädikatenlogik höherer Ordnung.

202

6.2 Semantische Korrektheit

Um die semantische Korrektheit der TGG-Regeln in Isabelle/HOL
nachzuweisen, müssen zunächst die Metamodelle in eine für diesen Theorem-
beweiser geeignete Darstellung überführt werden. Aufgrund der Tatsache,
dass Metamodelle die Menge aller möglichen Instanzen dieses Metamodells
und damit eine Syntaxdefinition für gültige Modelle beschreiben, können
die Elemente eines Metamodells als Typen und Modelle als Elemente dieser
Typen definiert werden.

Bei den in Isabelle/HOL unterstützten Typen handelt es sich um alge-
braische Datentypen, die eine Baumstruktur besitzen. Die durch Metamo-
delle beschriebenen Modelle hingegen sind im Allgemeinen echte Graphen.
Zur Formalisierung von Metamodellen in Isabelle/HOL müssen die Me-
tamodelle daher zunächst auf ein leicht modifiziertes Metamodell abgebildet
werden, das eine Baumstruktur besitzt.

Zur Veranschaulichung ist in Abbildung 6.4(a) ein Ausschnitt aus dem
Metamodell für I/O-Automaten dargestellt. Das modifizierte Metamodell
ist in Abbildung 6.4(b) zu sehen. Das modifizierte Metamodell erhalten wir,
indem Kompositionsbeziehungen und Assoziationen, die zu Zyklen führen
können, als Referenzattribute dargestellt werden. Allerdings besteht keine
Notwendigkeit, das derartig modifizierte Metamodell tatsächlich zu erstellen,
da die Anpassungen direkt auf die notwendigen HOL-Datentypen abgebildet
werden können. Die Darstellung dient lediglich dazu, die Abbildung nach
Isabelle/HOL leichter nachvollziehbar zu machen.

Die aus dem modifizierten Metamodell entstandenen HOL-Datentypen
sind in der Abbildung 6.4(c) dargestellt. Bei den in Isabelle/HOL verwen-
deten Datentypen kann es sich um zusammengesetzte Datentypen (record),
Listen (list) oder andere primitive Datentypen (wie z. B. bool) handeln. Die
Abbildung auf die Datentypen in Isabelle/HOL ist zum Teil generisch
möglich und wird in [Lei06] genauer vorgestellt.

Für den Beweis der Korrektheit einer Modelltransformation müssen die
HOL-Datentypen für die Quell- und die Zielsprache mit einer formalen Se-
mantik belegt und eine Äquivalenzrelation definiert werden, mit welcher die
Semantik der Modelle verglichen werden kann. Bei der Definition der hierzu
benötigten formalen Semantik hat sich gezeigt, dass der übliche Äquivalenz-
begriff der Strukturell Operationalen Semantik 2 (SOS) nicht ausreichend ist.
Daher wurde ein stärkerer semantischer Äquivalenzbegriff eingeführt, der
auch die Äquivalenz unerreichbarer Zustände berücksichtigt [Lei06].

Neben der Formalisierung der Metamodelle ist es notwendig, auch die An-

2auch als small-step operational semantics bekannt

203

Kapitel 6 Validierung und Verifikation

Automaton

name : String

name : String

State

FinalState

outgoing

0..*

transitions

0..*

states

0..*

Transition

incoming

0..*0..1

0..1

(a) Ausschnitt aus dem Metamodell für I/O-
Automaten

Automaton

name : String

name : String

State

FinalState

outgoing

states {ordered}

0..*

Transition

targetName : String0..*

{ordered}

(b) Modifiziertes Metamodell

record Automaton =

 States :: State list
record State =

 Identity :: BaseType

 Outgoing :: Transition list

FinalState :: bool

record Transition =

 Target :: BaseType

(c) Abbildung auf Datentypen in Isabelle/HOL

Abbildung 6.4: Formalisierung von Metamodellen als induktive Datentypen

wendung der TGG-Regeln zu formalisieren. Aufgrund der Tatsache, dass
die TGG-Regeln zur Modelltransformation als einfache Graphersetzungsre-
geln aufgefasst werden können, wurde zunächst eine Formalisierung der Re-
gelanwendungen als Graphersetzung auf einem zusammenhängenden Gra-
phen durchgeführt. Dabei hat sich jedoch gezeigt, dass eine solche Forma-
lisierung nicht praktikabel ist [Lei06]. Daher wird zur Formalisierung eine
TGG-Regel nicht als Transformation auf einem Graphen interpretiert, son-
dern als Paar zusammengehöriger Produktionen, mit denen zwei Modelle
simultan erzeugt werden. Diese Interpretation der TGG-Regeln stimmt mit
der in Abschnitt 3.2.1 vorgestellten Semantik überein.

Zur Formalisierung der Produktionen wird für jede Produktion einer TGG-
Regel ein Operator – der sogenannte Modifikator – auf dem Quell- und Ziel-
modell definiert und die Anwendung der TGG-Regeln als simultane Anwen-
dung von zueinander korrespondierenden Modifikatoren formalisiert. Für
die in Abbildung 6.5 gezeigte TGG-Regel, in der ein Zustand zum Automa-
ten bzw. eine CASE-Anweisung zu einem SPS-Programm hinzugefügt wird,
können die Modifikatoren wie folgt definiert werden3:

3Der Isabelle/HOL-Operator L... := ...M wird verwendet, um ein Attribut eines zusam-

204

6.2 Semantische Korrektheit

::= ::=

:MainProgram:Automaton

:MainProgram:Automaton

:CaseStatement:State

::=

Abbildung 6.5: Interpretation einer TGG-Regel als zusammengehöriges Paar
zweier Produktionen

A⊕ s ≡ AL States := (States A) · s M (6.1)

P ⊕ c ≡ P L MainProgram := c · (MainProgram P) M (6.2)

Für den Nachweis der Korrektheit einer TGG-Regel genügt es zu beweisen,
dass die paarweise Anwendung der Modifikatoren die semantische Äquiva-
lenz der Modelle nicht zerstört. Für die Produktionen der TGG-Regel aus
Abbildung 6.5 beispielsweise muss also gezeigt werden, dass beim Hinzufügen
eines Zustands zu einem Automaten und einer CASE-Anweisung zu einem
SPS-Programm die semantische Äquivalenz zwischen dem Automaten und
dem SPS-Programm erhalten bleibt:

A ≈ P =⇒ (A⊕ s) ≈ (P ⊕ State2Case(s)) (6.3)

Bei dem angewandtem Beweisprinzip handelt es sich um einen Indukti-
onsbeweis, der mit Hilfe des Theorembeweisers Isabelle/HOL interaktiv
vom Benutzer durchgeführt wird. Eine wichtige Grundvoraussetzung ist die
Abbildung der Problemstellung in die formale Sprache von Isabelle/HOL.
Der Umfang dieser Formalisierung hängt von der Größe der gegebenen Me-
tamodelle, der zugrundeliegenden Semantik sowie der Anzahl der spezifi-
zierten TGG-Regeln ab. Zur Formalisierung der I/O-Automaten, des SPS-
Codes und der TGG-Regeln wurden zusammen mit der anschließenden Be-
weisführung ca. 1.500 Codezeilen in der Isabelle/HOL-Notation benötigt.

mengesetzten Record-Datentyps zu aktualisieren. Der Operator · fügt Elemente zu
einer Liste hinzu.

205

Kapitel 6 Validierung und Verifikation

Der Nachteil dieses Ansatzes gegenüber dem automatischen Checker-
Ansatz liegt aufgrund des hohen Beweisaufwands auf der Hand. Allerdings
wird im Gegensatz zum Checker-Ansatz die allgemeine semantische Kor-
rektheit von Transformationsregeln bewiesen. Wird ein solcher Beweis für
eine Menge von Transformationsregeln einmal durchgeführt, so gilt er für
jedes gültige Modell, das übersetzt wird. Für die Übersetzung eines I/O-
Automaten in SPS-Code beispielsweise bedeutet dies, dass durch die spe-
zifizierte Modelltransformation tatsächlich immer semantisch äquivalenter
SPS-Code erzeugt wird, der die spezifizierten Automaten implementiert. Ein
solcher Beweis ist insbesondere in sicherheitskritischen Anwendungen von ei-
nem sehr hohen Nutzen, da gewährleistet werden muss, dass der generierte
Code korrekt ist und die im Modell überprüften Eigenschaften auch im Code
eingehalten werden.

6.3 Zusammenfassung

Die Validierung und Verifikation von Modelltransformationen ist erst mit
dem Aufkommen und der Verfügbarkeit verschiedener Techniken stärker in
den Mittelpunkt der Forschung gerückt. Daher sind die hierzu notwendigen
Methoden derzeit noch Gegenstand der Forschung und nicht sehr weit fort-
geschritten. Wir haben uns auf die Modelltransformation beschränkt, da die
Modelltransformation ein wichtiger Bestandteil bzw. die Grundlage der in
dieser Arbeit vorgestellten Technik zur Modellsynchronisation ist.

Der erste Teil dieses Kaptitels war der Validierung gewidmet. Hierbei ha-
ben wir existierende Ansätze zur Überprüfung der syntaktischen Korrektheit
von Modelltransformationen vorgestellt. Dabei haben wir argumentiert, dass
sowohl die syntkatische Korrektheit einzelner Regeln als auch deren Zusam-
menspiel überprüft werden müssen. Während die syntaktische Korrektheit
bzw. einige hierzu notwendigen Kriterien häufig durch statische Analysen
der einzelnen Regeln überprüft werden können, kann das Zusammenspiel der
Regeln durch die Ausführung einer Modelltransformation validiert werden,
indem das Resultat der Modelltransformation mit dem erwarteten Ergebniss
verglichen wird. Ein solcher Test kann automatisiert durchgeführt werden.
Hierzu haben wir existierende Ansätze vorgestellt und diskutiert, wie diese
auf TGGs übertragen werden können.

Im zweiten Teil dieses Kapitels haben wir einige Ansätze zur formalen
Verifikation der semantischen Korrektheit von Modelltransformationen vor-
gestellt. Zusätzlich haben wir einen Ansatz präsentiert, mit dem allgemein

206

6.3 Zusammenfassung

bewiesen werden kann, dass die spezifizierten Transformationsregeln für jede
gültige Eingabe eine semantisch äquivalente Ausgabe erzeugen. Die formale
Beweistechnik wurde im Rahmen dieser Dissertation auf TGGs übertragen
und zum Nachweis der Korrektheit eines Codegenerators eingesetzt.

207

Kapitel 7

Werkzeugunterstützung

In diesem Kapitel wird die im Rahmen dieser Arbeit umgesetzte Werkzeug-
unterstützung vorgestellt. Mit Hilfe dieser Werkzeugunterstützung können
Werkzeuge zur Modelltransformation, Modellintegration und Modellsyn-
chronisation gemäß der zuvor vorgestellten Konzepte modellbasiert ent-
wickelt werden. Die Werkzeugunterstützung wurde auf Basis der Entwick-
lungsumgebungen Eclipse1 und Fujaba2 realisiert. Die Festlegung auf
Fujaba erfolgte aufgrund des dort bereits implementierten und bewährten
Graphersetzungssystems. Dabei handelt es sich um einen generativen An-
satz, bei dem aus erweiterten Graphersetzungsregeln, den sogenannten Sto-
rydiagrammen, Java-Code erzeugt wird. Die Umsetzung in Eclipse hat sich
insbesondere aufgrund der dort verfügbaren Entwicklungswerkzeuge für Java
angeboten. Durch die Integration von Fujaba und Eclipse zu dem Werk-
zeug Fujaba4Eclipse kann der generierte Java-Code direkt in Eclipse
übersetzt und ausgeführt werden.

7.1 Architektur

In diesem Abschnitt verschaffen wir uns zunächst einen Überblick über
die Architektur der entstandenen Werkzeugunterstützung. Die Werkzeug-
unterstützung wurde auf verschiedene Komponenten aufgeteilt und durch
Plug-ins realisiert. Einen Überblick über die wichtigsten Komponenten und
ihre Abhängigkeiten untereinander zeigt die Abbildung 7.1. Dabei kann zwi-
schen Komponenten zur Spezifikation (tggeditor, tggeditor4eclipse und
tgggeneration) und Komponenten zur Ausführung von TGG-Regeln (mote,
morten und morten4eclipse) unterschieden werden.

1http://www.eclipse.org
2http://www.fujaba.de

209

Kapitel 7 Werkzeugunterstützung

<<uses>>

<<component>>

morten4eclipse

<<component>>

morten

<<component>>

mote

<<component>>

fujaba

<<component>>

fujaba4eclipse

<<component>>

tggeditor

<<component>>

tgggenerator

<<component>>

tggeditor4eclipse

Abbildung 7.1: Komponenten der Werkzeugunterstützung

Die Basis der realisierten Werkzeugunterstützung bilden die beiden Kom-
ponenten fujaba und fujaba4eclipse. Die Komponente fujaba stellt die
zur Spezifikation von Metamodellen benötigten Klassendiagramme bereit.
Zusätzlich enthält sie die notwendigen Editoren zur Modellierung von Story-
diagrammen sowie einen Codegenerator, der aus Klassen- und Storydiagram-
men ausführbaren Java-Code erzeugt [FNT98, FNTZ98, NNZ00]. Die Kom-
ponente fujaba4eclipse integriert die Funktionalität von Fujaba in die
Eclipse-Entwicklungsumgebung, indem sie entsprechende Benutzerschnitt-
stellen (Menüs, Werkzeugleisten, Sichten, Editoren, etc.) bereitstellt.

Der Editor zur Spezifikation von TGG-Regeln wurde in der Komponente
tggeditor realisiert. Die Integration des Editors in Fujaba4Eclipse mit
den dafür notwendigen Benutzerschnittstellen erfolgt in der Komponente
tggeditor4eclipse. Die Generierung von Storydiagrammen aus TGG-
Regeln ist in der Komponente tgggenerator implementiert. Nach der auto-
matischen Generierung der Storydiagramme können diese weiter verfeinert
und beispielsweise um zusätzliche Abfragen und Aktionen erweitert werden.
Darüber hinaus ist die Komponente so aufgebaut, dass die Generierung von
Storydiagrammen austauschbar ist bzw. durch neue Generierungsvarianten
erweitert werden kann. Beim Ausführen der Entwicklungsumgebung erkennt
die Komponente neu hinzugefügte Generierungsvarianten und bietet diese
dem Benutzer zur Auswahl an.

210

7.2 Entwicklungsumgebung

Die Komponente mote3 enthält das Rahmenwerk mit den Algorithmen
zur Ausführung einer Modelltransformation, Modellintegration und Modell-
synchronisation. Dieses Rahmenwerk wird durch die Komponente morten4

in Fujaba integriert. Die Anbindung an Fujaba4Eclipse erfolgt hin-
gegen in der Komponente morten4eclipse, die eine entsprechende Benut-
zerschnittstelle zur Verfügung stellt. Die Benutzerschnittstelle der dadurch
entstandenen Entwicklungsumgebung für Modellsynchronisationen wird im
nachfolgenden Abschnitt genauer vorgestellt.

7.2 Entwicklungsumgebung

Abbildung 7.2 zeigt die Fujaba4Eclipse-Entwicklungsumgebung. Im Auf-
bau der Benutzeroberfläche ähnelt sie sehr vielen anderen herkömmlichen
Entwicklungsumgebungen. So enthält die Benutzeroberfläche im linken, obe-
ren Bereich einen Projektmanager und im rechten Teil des Anwendungsfen-
sters einen Arbeitsbereich zur Einbettung graphischer und textueller Edi-
toren. Darunter befindet sich auf der linken Seite eine Übersicht (Outline-
View) und auf der rechten Seite verschiedene andere Sichten, die über Kartei-
reiter (engl. Tabs) aktiviert und z. B. zur Anzeige von Warnung und Fehler-
meldungen (Problems-View) oder Eigenschaften der im Editor ausgewählten
Elemente (Properties-View) eingesetzt werden.

Die einzelnen Sichten und Editoren lassen sich innerhalb der Entwicklungs-
umgebung frei anordnen und zu sogenannten Perspektiven zusammenfassen.
Dadurch kann die Entwicklungsumgebung an die individuellen Bedürfnisse
eines Benutzers angepasst bzw. auf die Durchführung einer bestimmten
Aufgabe optimiert werden. In Abbildung 7.2 ist die Perspektive von Fu-
jaba4Eclipse dargestellt.

7.2.1 Spezifikation

Um mit den in dieser Arbeit vorgestellten Konzepten ein Werkzeug zur Mo-
dellsynchronisation zu entwickeln, müssen zunächst die beteiligten Metamo-
delle spezifiziert werden. Dies erfolgt in Fujaba4Eclipse mit Hilfe von

3Abkürzung für Model Transformation Engine. Der Name ist historisch dadurch ent-
standen, dass diese Komponente zunächst nur für die Modelltransformation vorgesehen
war und erst später um die Modellsynchronisation erweitert wurde.

4Abkürzung für Model Round-Trip Engineering

211

Kapitel 7 Werkzeugunterstützung

Abbildung 7.2: Die Entwicklungsumgebung Fujaba4Eclipse

UML-Klassendiagrammen. In Abbildung 7.2 ist das in Fujaba verwen-
dete Metamodell für Blockdiagramme aus dem Beispiel dieser Arbeit darge-
stellt. Neben diesem Metamodell werden – wie zuvor in Kapitel 3 erläutert
– noch ein Metamodell für Klassendiagramme und ein Metamodell für das
Korrespondenzmodell benötigt. Auch diese Metamodelle werden mit UML-
Klassendiagrammen spezifiziert.

Sind die Metamodelle erstellt, so können auf dieser Grundlage Korres-
pondenzregeln spezifiziert werden. Hierzu wird der graphische Editor für
Tripel-Graph-Grammatiken verwendet. Abbildung 7.3 zeigt den Editor mit
einer TGG-Regel aus unserem Beispiel zur Synchronisation von Block- und
Klassendiagrammen. Mit dem Editor können TGG-Regeln erstellt und be-
arbeitet werden. Hierzu befindet sich auf der rechten Seite des Editors eine
Werkzeugpalette, mit der vorhandene Elemente selektiert (Select und Mar-
que) oder neue Elemente (Object, Link, Constraint, Assertion) erzeugt wer-
den können. So können mit Hilfe der Werkzeugpalette zum Beispiel neue Ob-
jekte, Verbindungen, Bedingungen und Attributzuweisungen zu einer TGG-
Regel hinzugefügt werden. Nach der Erstellung der Elemente können die Ei-
genschaften eines im Editor selektierten Elements in der Properties-View an-

212

7.2 Entwicklungsumgebung

gezeigt und dort bearbeitet werden. Beispielsweise können in der Properties-
View sowohl der Typ als auch der Name eines Objektes modifiziert werden.

Abbildung 7.3: TGG-Editor

Zusätzlich zur Properties-View kann eine Outline-View eingeblendet wer-
den. Die Outline-View stellt den Inhalt des graphischen Editors verkleinert
dar und hilft, den Überblick bei sehr großen TGG-Regeln zu behalten. Um
die TGG-Regel in Abbildung 7.3 vollständig darzustellen, wurden sowohl
die Properties- als auch die Outline-View ausgeblendet und das Fenster des
Editors vergrößert. Die beiden Sichten entsprechen den bereits in der Abbil-
dung 7.2 gezeigten Sichten.

Der Editor ist als Plug-in implementiert und stellt die Konformität der
TGG-Regeln zu den zugrunde liegenden Metamodellen sicher. So ist es bei-
spielsweise nicht möglich, den Objekten einen Typ zuzuordnen, der nicht zu-
vor durch eine Klasse im Metamodell spezifiziert worden ist. Ebenso können
nur Verbindungen zwischen Objekten erstellt werden, wenn auch die zu-
geordneten Objekttypen über eine entsprechende Assoziation miteinander
verbunden sind.

Zusätzlich zu dem Editor existiert ein Plug-in, mit dem die in Abschnitt 4.2

213

Kapitel 7 Werkzeugunterstützung

beschriebene Regelsynthese durchgeführt werden kann. Die damit syntheti-
sierten TGG-Regeln können mit dem Editor bearbeitet und weiter verfeinert
werden. Sind alle TGG-Regeln erstellt, so müssen die TGG-Regeln zu einem
Katalog zusammengefasst werden. Der Katalog wird zur Parametrisierung
des Rahmenwerks verwendet, um auf dieser Grundlage die spezifizierte Mo-
dellsynchronisation auszuführen.

7.2.2 Generierung eines Regelkatalogs

Die Generierung eines Regelkatalogs erfolgt in mehreren Schritten. Zunächst
wird zu jeder TGG-Regel eine eigene Java-Klasse erzeugt. Dabei wird
der Klasse für jede Richtung der Modellsynchronisation eine eigene Me-
thode hinzugefügt. Zusätzlich generieren wir eine Methode, die lediglich
der Überprüfung der Korrespondenzbeziehungen dient und damit zur Mo-
dellintegration eingesetzt werden kann. Damit erhalten wir insgesamt drei
Methoden: zwei Methoden für die Modelltransformation und Modellsyn-
chronisation (eine Methode vom Quell- zum Zielmodell und eine Methode
für die umgekehrte Richtung) sowie eine Methode zur Modellintegration.
Das Verhalten dieser Methoden wird festgelegt, indem aus der zugehörige
TGG-Regel entsprechende Storydiagramme generiert werden.

Zur Generierung der Storydiagramme muss der Benutzer die TGG-Regeln
im Projektmanager selektieren. Auf dieser Auswahl ruft der Benutzer
über einen Rechtsklick ein Kontextmenü auf und selektiert dort den Ein-
trag Generate Story Diagrams. In dem sich daraufhin öffnenden Dialog
muss der Benutzer eine Generierungsstrategie wählen. Die im Rahmen die-
ser Arbeit umgesetzte Generierungsstrategie für Modelltransformation, Mo-
dellintegration und Modellsynchronisation ist unter dem Menüeintrag MoTE

(Advanced) zu finden (vgl. Abbildung 7.4). Nach der Generierung der
Storydiagramme können diese noch weiter verfeinert und beispielsweise um
zusätzliche Seiteneffekte erweitert werden – was aber in den meisten Fällen
nicht notwendig ist.

In einem zweiten Schritt muss aus den Storydiagrammen Java-Code gene-
riert werden. Hierzu wird der in Fujaba integrierte Codegenerator verwen-
det. Der Codegenerator wird in Fujaba4Eclipse ebenfalls über einen Ein-
trag im Kontextmenü gestartet (vgl. Abbildung 7.5). In dem dazugehörigen
Code-Export-Wizard wählt der Benutzer ein Klassendiagramm oder einzelne
Klassen, aus denen dann der Java-Code generiert wird. Zusätzlich muss der
Benutzer angeben, in welchem Projektverzeichnis der generierte Java-Code
gespeichert wird. Nach der Generierung wird der Code durch den Eclipse-

214

7.2 Entwicklungsumgebung

Abbildung 7.4: Generierung der Storydiagramme

Compiler automatisch in ausführbaren Bytecode übersetzt. Die kompilierten
Klassen repräsentieren die ausführbaren TGG-Regeln.

Abbildung 7.5: Start der Codegenerierung

Im letzten Schritt müssen die ausführbaren TGG-Regeln in einem Jar-
Archiv zu einem Katalog gebündelt werden. Hierzu wird der in Eclipse
integrierte Jar-Packager verwendet (vgl. Abbildung 7.6). Mit Hilfe dieses
Wizards kann der Benutzer die Dateien angeben, die in dem Jar-Archiv
enthalten sein sollen.

Zusätzlich zu den kompilierten Klassen muss das Jar-Archiv eine Konfigu-
rationsdatei enthalten, in der die verfügbaren TGG-Regeln sowie zusätzlich
benötigte Plug-ins und Bibliotheken aufgelistet sind. In Abbildung 7.7 ist ein
Ausschnitt einer solchen Konfigurationsdatei für unser Beispiel angegeben.

Bei der Konfigurationsdatei handelt es sich um eine XML-Datei, in der
unter anderem beschrieben ist, welche TGG-Regeln verfügbar sind und auf
welchen Typen von Korrespondenzknoten die TGG-Regeln ausgeführt wer-
den können. In der zuvor gezeigten Beispielkonfiguration werden unter dem

215

Kapitel 7 Werkzeugunterstützung

Abbildung 7.6: Wizard zur Erstellung des Jar-Archivs

<?xml version="1.0" standalone="yes"?>

<configuration>
<triggertable>
<entry trigger=""

rule="de.upb.mote.rules.SDL2UMLAxiom"/>
<entry trigger="de.upb.mote.tgg.CorrAxiom"

rule="de.upb.mote.rules.SDL2UMLSystemBlock"/>
<entry trigger="de.upb.mote.tgg.CorrSystem"

rule="de.upb.mote.rules.SDL2UMLBlock"/>
<entry trigger="de.upb.mote.tgg.CorrBlock"

rule="de.upb.mote.rules.SDL2UMLBlock"/>
...

</triggertable>
<dependencies>
<plugin id="de.uni_paderborn.example.blockdiagram4eclipse"/>

</dependencies>
</configuration>

Abbildung 7.7: Ausschnitt aus einer Konfigurationsdatei

216

7.2 Entwicklungsumgebung

Element triggertable die verfügbaren TGG-Regeln in separaten Einträgen
(entry) aufgelistet. Das Attribut trigger eines solchen Eintrags bezeich-
net den Typ des Korrespondenzknotens, auf dem die unter dem Attribut
rule genannte TGG-Regel potentiell angewendet werden kann. Hier sind
auch Mehrfachnennungen möglich, so dass eine TGG-Regel durchaus auf
verschiedene Typen von Korrespondenzknoten geprüft werden kann. Ist das
trigger Attribut hingegen nicht weiter spezifiziert, so handelt es sich bei
dem Eintrag um ein Axiom. Die Document Type Definition (DTD) der
Konfigurationsdatei ist im Anhang B angegeben.

Das Jar-Archiv repräsentiert einen Katalog mit ausführbaren Regeln einer
Tripel-Graph-Grammatik. Ist dieser Katalog erstellt und verfügbar, so kann
damit eine Modelltransformation, eine Modellintegration oder eine Modell-
synchronisation ausgeführt werden.

7.2.3 Ausführung

Damit eine Modelltransformation, eine Modellintegration oder eine Modell-
synchronisation in Fujaba4Eclipse ausgeführt werden kann, müssen die
beteiligten Modelle zunächst geladen werden. Dies geschieht automatisch, in-
dem das oder die Projekte, die diese Modelle enthalten, in Fujaba4Eclipse
geöffnet werden. Sobald die beteiligten Modelle geladen sind, kann der Be-
nutzer eine neue Synchronisationsaufgabe durch die Auswahl einer hierfür
vorgesehenen Schaltfläche der Werkzeugleiste anlegen. Die Werkzeugleiste
mit den Erklärungen zu den dort verfügbaren Schaltflächen ist in der Abbil-
dung 7.8 zu sehen.

add synchronization/

transformation task

delete synchronization/

transformation task

select concrete synchronization/

transformation task to execute

execute correspondence

mapping

synchronize/transform

in reverse direction

synchronize/transform

in forward direction

Abbildung 7.8: Werkzeugleiste zur Modellsynchronisation

Beim Anlegen einer neuen Synchronisationsaufgabe wird ein sogenann-
ter Model-Synchronization-Wizard gestartet. Der Model-Synchronization-
Wizard besteht aus zwei Dialogen, die nacheinander zusätzliche Eingaben

217

Kapitel 7 Werkzeugunterstützung

vom Benutzer abfragen, um die Modellsynchronisation erfolgreich initialisie-
ren zu können.

Abbildung 7.9: Synchronisierungs-Wizard

Die beiden Dialoge des Model-Synchronization-Wizards sind in Abbil-
dung 7.9 dargestellt. Im ersten Dialog muss der Benutzer zunächst einen
Namen für die Modellsynchronisation eingeben. Damit die hier vorge-
stellte Werkzeugunterstützung mehrere Synchronisationsaufgaben innerhalb
der Entwicklungsumgebung unterstützen kann, sollte dieser Name eindeutig
sein, da dieser Name in der Werkzeugleiste aus Abbildung 7.8 dem Benutzer
zur Auswahl angeboten wird. Die dort vom Benutzer durchgeführte Auswahl
bestimmt, welche Modellsynchronisation ausgeführt wird.

Anschließend muss der Benutzer die zu synchronisierenden Modelle
auswählen. Hat der Benutzer zwei Modelle angegeben, so können die Ele-
mente der Modelle durch eine Modellintegration zunächst zueinander in Be-
ziehung gesetzt werden. Ebenso ist es aber auch möglich, die beiden Modelle
in eine der beiden Richtungen sofort miteinander zu synchronisieren.

In dem Fall, dass zunächst nur ein Modell vorhanden ist und das zweite
Modell durch eine Modelltransformation erzeugt werden soll, reicht es jedoch
aus, nur das zu transformierende Modell anzugeben. Ist beispielsweise nur
das Quellmodell vorhanden, so wird das Zielmodell durch eine Vorwärts-
transformation erzeugt. Steht hingegen nur das Zielmodell zur Verfügung,
wird das Quellmodell durch eine Rückwärtstransformation aus dem Zielmo-
dell gewonnen. In beiden Fällen können nach der Transformation die Modelle
wie gewohnt miteinander synchronisiert werden.

218

7.2 Entwicklungsumgebung

Bevor eine Modelltransformation, Modellintegration oder Modellsynchro-
nisation ausgeführt werden kann, muss der Benutzer noch den Regelkatalog
angeben, d. h., das Jar-Archiv, in dem die ausführbaren TGG-Regeln hinter-
legt sind. Darüber hinaus kann der Benutzer die Richtung der Modellsyn-
chronisation einschränken und beispielsweise nur eine Modelltransformation
oder Modellsynchronisation in Vorwärtsrichtung erlauben. Zusätzlich kann
er einstellen, ob die Modellsynchronisation inkrementell oder batch-orientiert
und ob die Modellsynchronisation manuell angestoßen werden muss oder ob
sie automatisch nach jeder Modelländerung ausgeführt wird. Diese Einstel-
lungen können in dem zweiten Dialog vorgenommen werden, der auf der
rechten Seite der Abbildung 7.9 zu sehen ist.

Hat der Benutzer alle Eingaben vorgenommen, erfolgt eine Initialisierung
des Rahmenwerks mit dem Regelkatalog und dem (oder den) Modell(en). So-
fern der Benutzer keine automatische Modellsynchronisation eingestellt hat,
kann er die Modelltransformation, Modellintegration oder Modellsynchroni-
sation über die entsprechenden Schaltflächen der Werkzeugleiste (vgl. Abbil-
dung 7.8) manuell auslösen. Hierbei erfolgt eine Modelltransformation nur
in dem Fall, dass die Modellsynchronisation zum ersten Mal ausgeführt und
noch kein zweites Modell vorhanden ist. Sind beide Modelle gegeben, so wird
je nach gewählter Schaltfläche entweder nur eine Modellintegration oder eine
Modellsynchronisation durchgeführt (sofern keine automatische Synchroni-
sation gewählt wurde). In Abbildung 7.10 ist das Blockdiagramm sowie
das damit synchronisierte Klassendiagramm zu sehen. Jede nachfolgende
Ausführung in eine der Richtungen führt zu einer Modellsynchronisation.

Nach einer Modelltransformation, Modellintegration und Modellsynchro-
nisation kann der Benutzer die sogenannte MoRTEn-View aktivieren. In der
MoRTEn-View wird das Korrespondenzmodell in einer Baumstruktur darge-
stellt. In Abbildung 7.10 ist diese Sicht unter den Diagrammen zu sehen. Je-
der Eintrag in dieser Ansicht zeigt neben der angewendeten TGG-Regel den
bei der Anwendung erzeugten Korrespondenzknotentyp sowie seine Höhe in
der Hierarchie. Links und rechts von dem Korrespondenzmodell werden bei
einem selektierten Eintrag die mit dem Eintrag assoziierten Modellelemente
angezeigt. Diese Ansicht hat keine weitere Funktionalität und ist lediglich
beim Testen der Modellsynchronisation hilfreich, indem sie zueinander kor-
respondierende Modellelemente darstellt und damit eine Nachverfolgbarkeit
einer Modelltransformation, Modellintegration und Modellsynchronisation –
zumindest rudimentär – möglich macht. Um die Nachverfolgbarkeit einer
Modelltransformation, Modellintegration und Modellsynchronisation zu ver-
bessern, könnte dieser Ansicht weitere Funktionalität hinzugefügt werden.

219

Kapitel 7 Werkzeugunterstützung

Abbildung 7.10: Modellsynchronisation zwischen einem Block- und einem
Klassendiagramm

220

7.3 Werkzeug- und Modelladapter

Dies stand jedoch nicht im Fokus dieser Arbeit.

Die in dieser Arbeit umgesetzte Werkzeugunterstützung kann einerseits
dazu verwendet werden, um eine Modellsynchronisation zu spezifizieren und
sie direkt in Fujaba4Eclipse zu verwenden. Andererseits kann eine Spe-
zifikation mit Fujaba4Eclipse erstellt, getestet und der daraus generierte
Regelkatalog zusammen mit dem Rahmenwerk zur Modellsynchronisation in
ein beliebiges Java-basiertes Werkzeug integriert werden. Eine solche Inte-
gration wurde zum Beispiel im Rahmen des Projekts MATE durchgeführt
[GMW06]. In diesem Projekt wurden Matlab/Simulink-Modelle automatisch
in sogenannte Musterspezifikationen [NSW+02] mit der hier vorgestellten
Werkzeugunterstützung übersetzt. Aufgrund der Tatsache, dass die wenig-
sten Werkzeuge tatsächlich ein Fujaba-konformes Metamodell besitzen, mus-
sten hierzu geeignete Werkzeug- bzw. Modelladapter erstellt werden. Die
Werkzeug- und Modelladapter zur Integration in andere Werkzeuge werden
im nachfolgenden Abschnitt behandelt.

7.3 Werkzeug- und Modelladapter

Damit der in dieser Arbeit vorgestellte Ansatz korrekt funktionieren und
kompilierbarer Code aus den Storydiagrammen mit Fujaba erzeugt werden
kann, müssen die verwendeten Metamodelle Fujaba-konform implementiert
sein, das heißt, dass die Implementierung dieser Metamodelle sich an einige
von Fujaba vorgegebene Implementierungsregeln halten muss. Die Einhal-
tung dieser Vorgaben ist wichtig, um zwischen Modellelementen in einem Mo-
dell navigieren zu können, auf Modellelemente zugreifen und sie verändern
zu können, als auch um neue Modellelemente erstellen zu können. Diese
Operationen sind fundamental, damit die implementierten Algorithmen zur
Modelltransformation, Modellintegration und Modellsynchronisation korrekt
ausgeführt werden.

In den Fällen, in denen das Metamodell mit Fujaba spezifiziert und die
Implementierung automatisch generiert wurde, sind die Anforderungen au-
tomatisch erfüllt. Die meisten Modellierungswerkzeuge erfüllen diese Anfor-
derungen allerdings nicht und bieten kein Fujaba-konformes Metamodell an.
Leider ist es nicht möglich, die Metamodelle der Werkzeuge beziehungsweise
ihre Implementierungen einfach auszutauschen. In den meisten Fällen ist es
auch nicht möglich, die Codegenerierung aus den Storydiagrammen daran
anzupassen, da sich die Implementierungen der Metamodelle oft an keinen
Standard halten. Darüber hinaus sind die Metamodelle der Werkzeuge gar

221

Kapitel 7 Werkzeugunterstützung

Compliant Impl. Proprietary Impl.Adapter Impl.

TGG-Engine Model B’ Model B

Metamodel B’ Metamodel B

Correspondence
Metamodel

TGG-RulesTGG-RulesTGG-RulesMetamodel A

Model A

Correspondence
Model

<<instance of>> <<instance of>> <<instance of>>

<<uses>> <<uses>>

<<input>>

<<input>>

<<output>>

<<output>>

<<links to>>

<<links to>>

<<uses>>

<<instance of>>

<<references>>

<<adaptation>>

Abbildung 7.11: Überblick zu Werkzeug- und Modelladaptern

nicht oder nur schlecht dokumentiert. In Einzelfällen wird lediglich eine
einfache Schnittstelle (engl. Application Programming Interface, API) zur
Verfügung gestellt. Im schlimmsten Fall, das heißt, wenn die Metamodelle
nicht verfügbar sind, muss ein konzeptionelles Metamodell aus den verfügba-
ren Artefakten, wie zum Beispiel der API-Schnittstelle, manuell zurück ge-
wonnen werden.

Damit die in dieser Arbeit vorgestellten Anwendungen trotzdem in ande-
ren Werkzeugumgebungen durchgeführt werden können, verwenden wir das
sogenannten Adapter-Entwurfsmuster [GHJV94]. Dieses Muster erlaubt es,
eine bereits vorhandene Schnittstelle einer Klasse an eine andere Schnittstelle
anzupassen.

Abbildung 7.11 zeigt einen Überblick zu dem hier vorgeschlagenen Adap-
teransatz. In der oberen Hälfte der Abbildung ist die Beziehung zwischen
den spezifizierten TGG-Regeln und den beteiligten Metamodellen zu sehen.
Dabei wird in den Regeln jedoch nicht direkt das Metamodell B referenziert,
sondern ein dazwischen geschaltetes Metamodell B’. In der unteren Hälfte
wird daher eine Modelltransformation gezeigt, in der die TGG-Engine das
Modell A in das Modell B nur indirekt transformiert, indem sie das Modell B’
erzeugt.

In diesem Szenario besitzt das Metamodell A eine zu Fujaba konforme
Implementierung. Daher kann die TGG-Engine auf die Elemente des Mo-
dells A direkt zugreifen. Im Gegensatz dazu entspricht die Implementierung

222

7.3 Werkzeug- und Modelladapter

des Metamodells B nicht den Anforderungen. Um dennoch einen Zugriff der
TGG-Engine auf die Modellelemente zu ermöglichen, wurde ein Metamodell-
adapter B’ implementiert. Diese Implementierung ist konform zu Fujaba
und ermöglicht einen Zugriff auf die Modellelemente des Modells B.

Zur Implementierung eines Fujaba-konformen Modelladapters kann Fu-
jaba herangezogen werden. In einem ersten Schritt wird das Metamodell
als Klassendiagramm in Fujaba spezifiziert. Aus dieser Spezifikation kann
die Implementierung des Metamodells automatisch durch die in Fujaba
verfügbare Codegenerierung erzeugt werden. Durch die automatische Gene-
rierung besitzt die Implementierung bereits die nötigen Schnittstellen, um
mit der TGG-Engine zusammen arbeiten zu können. Allerdings wird noch
nicht auf das proprietäre Modell des Werkzeugs zugegriffen.

Um einen Zugriff auf das Werkzeugmodell zu ermöglichen, muss der ge-
nerierte Code manuell erweitert werden. Bei dieser Erweiterung müssen die
generierten Attribute aus dem Code entfernt und die Zugriffsoperationen
für diese Attribute so angepasst werden, dass sie die API-Schnittstelle des
proprietären Modells benutzen. Dadurch verändern wir zwar die Methoden-
implementierungen, aber nicht die Methodensignaturen. Damit bleibt die
Schnittstelle des Modelladapters weiterhin zu Fujaba konform und kann
durch die TGG-Engine genutzt werden. Die Zugriffe auf den Modelladapter
werden nun an das proprietäre Modell des Werkzeugs weiterdelegiert.

Der hier beschriebene Ansatz wurde in verschiedenen Projekten erfolgreich
angewendet, zum Beispiel zur Adaption eines Metamodells für Zustandsauto-
maten oder des Metamodells für Matlab/Simulink [GMW06]. Die Implemen-
tierungen der Modelladapter arbeiten zustandslos und mit einer verzögerten
Initialisierung, das heißt, die einzelnen Adapterobjekte werden erst bei Be-
darf erzeugt. Darüber hinaus werden einmal erzeugte Adapterobjekte in
einer Liste verwaltet, so dass sie wiederverwendet werden können, sobald
ein erneuter Zugriff auf das adaptierte Modellelement nötig ist. Dadurch
wird einerseits ein sehr schneller Zugriff auf die adaptierten Modellelemente
möglich, andererseits wird ein Modellelement immer nur durch ein und das-
selbe Adapterobjekt repräsentiert. Dies ist insbesondere für die TGGs von
Vorteil, da die Korrespondenzobjekte immer auch eine Referenz auf die Mo-
dellelemente besitzen. Bei einem adaptierten Modell werden hier die Modell-
adapter referenziert. Würden die Adapterobjekte ständig verworfen werden,
müsste zusätzlicher Aufwand betrieben werden, um diese Referenzen immer
aktuell zu halten.

Die Implementierung von Modelladaptern ist eine komfortable Möglichkeit
zur Überbrückung unterschiedlicher Techniken in den verschiedenen Werk-

223

Kapitel 7 Werkzeugunterstützung

zeugen und ihrer Metamodelle. Selbstverständlich kann die hier vorgestellte
Adapterimplementierung weiter optimiert werden, indem beispielsweise für
jeden Modellelementtyp nur ein einziges Adapterobjekt verwendet wird statt
einem Adapterobjekt pro Modellelement. Weiterhin könnte die Implemen-
tierung eines Adapters automatisiert werden, falls das zu adaptierende Me-
tamodell nach einem Standard oder einer dokumentierten Richtlinie imple-
mentiert wurde. Beispielsweise könnten Adapter für Metamodelle, die auf
dem Java Metadata Interface (JMI) basieren, vollautomatisch aus der Spe-
zifikation des Metamodells generiert werden. Allerdings könnte in solchen
Fällen ebenfalls die Codegenerierung aus den Storydiagrammen angepasst
werden, wie dies zum Beispiel für das Eclipse Modeling Framework (EMF)
geschehen ist.

7.4 Evaluation

Ein wichtiger Bestandteil der Evaluation ist die prototypische Implementie-
rung unseres Ansatzes. Die durch die prototypische Implementierung rea-
lisierte Werkzeugunterstützung haben wir bereits im vorherigen Abschnitt
kennen gelernt. Die verfügbare Werkzeugunterstützung eröffnet jedoch wei-
tere Möglichkeiten der praktischen Erprobung. So konnte auf der Grund-
lage der prototypischen Implementierung gezeigt werden, dass die Spezifika-
tion von Regeln zur Modelltransformation, Modellintegration und Modell-
synchronisation mit unserem Ansatz praktikabel und die Ausführung dieser
Regeln effizient ist. Mit diesem Teil der Evaluation beschäftigt sich dieser
Abschnitt. Hierbei werden zunächst überblicksartig verschiedene Spezifi-
kationen und anschließend die wichtigsten Ergebnisse der durchgeführten
Leistungsmessungen vorgestellt.

7.4.1 Spezifizierte Korrespondenzregeln

In dieser Arbeit haben wir den Ansatz zur Spezifikation von Korrespon-
denzbeziehungen am Beispiel von Block- und Klassendiagrammen darge-
stellt. Dieses Beispiel haben wir auch mit Hilfe der entwickelten Werkzeug-
unterstützung umgesetzt, um Modellsynchronisationen zwischen den beiden
Modellen durchzuführen. Neben diesem Beispiel wurden weitere Fallstudien
unterschiedlichen Umfangs durchgeführt:

• In der Diplomarbeit von Jörg Baksmeier wurde eine Modellsynchro-
nisation zwischen UML-Klassendiagrammen und Java-Code realisiert

224

7.4 Evaluation

[Bak06]. Zur Synchronisation wurden insgesamt 31 TGG-Regeln einge-
setzt. Diese TGG-Regeln sind zuvor im Rahmen der Diplomarbeit von
Alexander Geburzi aus Beispielzuordnungen mit der in Abschnitt 4.2
vorgestellten Technik automatisch synthetisiert worden [Geb06]. Die
eingesetzten TGG-Regeln berücksichtigen Klassen, Attribute, Metho-
den mit dazugehöriger Methodensignatur sowie unidirektionale Asso-
ziationen. Nicht berücksichtigt wurden hingegen Methodenrümpfe der
Zugriffsmethoden sowie bidirektionale Assoziationen. Zur Repräsenta-
tion des Java-Codes wurde dabei auf den abstrakten Syntaxbaum aus
dem JDT-Projekt5 von Eclipse zurückgegriffen, der über die in der
Projektgruppe Reclipse6 entwickelten Werkzeug- und Modelladapter
an Fujaba4Eclipse – wie in Abschnitt 7.3 beschrieben – angebun-
den wurde. Anhand dieser Fallstudie konnte erfolgreich gezeigt wer-
den, dass mit dem Lösungsansatz eine Synchronisation von Modell und
Code durchgeführt werden kann.

• Im Rahmen des ISILEIT-Projekts (vgl. Abschnitt 2.1.2) wurden zwei
auf TGGs basierende Spezifikationsvarianten zur SPS-Codegenerierung
untersucht. Dabei wurde in beiden Fällen aus einem I/O-Automaten
SPS-Code in der Sprache Strukturierter Text (ST) erzeugt. Bei der
ersten Spezifikationsvariante wurden TGG-Regeln auf der Grundlage
des Metamodells des I/O-Automaten und der abstrakten Syntax der
Sprache ST erstellt. Diese TGG-Regeln wurden zur formalen Verifika-
tion der semantischen Äquivalenz der beteiligten Sprachen eingesetzt
(vgl. Abschnitt 6.2). Die zweite Spezifikation erfolgte mit TGGs und
Textschablonen und hatte den Zweck, den praktischen Nutzen einer
solchen Kombination zu überprüfen. Wie bereits in Abschnitt 4.1.2 be-
schrieben, eignet sich der kombinierte Ansatz aus TGGs und Textscha-
blonen jedoch lediglich zur Modelltransformation, oder genauer gesagt,
zur Codegenerierung. Eine bidirektionale Synchronisation zwischen ei-
nem Modell und Code auf der Grundlage von Textschablonen ist damit
bisher nicht möglich.

• Eine weitere Evaluation des TGG-Ansatzes wurde an der Hochschule
Darmstadt im Rahmen der Masterarbeit von Arpad Vasarhelyi durch-
geführt [Vas06]. Die Evaluation erfolgte an einer Fallstudie, bei der
plattformspezifische mit plattformunabhängigen Modellen synchroni-

5Java Development Tools, siehe auch http://www.eclipse.org/jdt/
6A Reverse Engineering Framework for Eclipse

225

http://www.eclipse.org/jdt/

Kapitel 7 Werkzeugunterstützung

siert wurden. Die plattformunabhängigen Modelle wurden durch UML-
Klassendiagramme repräsentiert. Die plattformspezifischen Modelle
hingegen durch EJB7-Komponentenmodelle, denen ebenfalls UML-
Klassendiagramme zugrunde liegen. Zur Spezifikation der benötigten
Korrespondenzbeziehungen reichten bereits 5 TGG-Regeln. Die zen-
trale Frage dieser Fallstudie, ob bei der Modellsynchronisation auch
Änderungen berücksichtigt werden können ohne dabei Verfeinerungen
im Zielmodell zu überschreiben, konnte positiv beantwortet werden.

• An der Technischen Universität Wien erfolgte im Rahmen der Magi-
sterarbeit von Güzide Selin Altan eine weitere Evaluation anhand einer
Fallstudie [Alt08]. Bei der betrachteten Fallstudie wurden TGGs zur
Modelltransformation und -synchronisation von Geschäftsprozessmo-
dellen eingesetzt. Dabei wurden Ereignisgesteuerte Prozessketten
(EPKs) in UML-Aktivitätsdiagramme transformiert und nach durch-
geführten Modelländerungen wieder miteinander synchronisiert. Die
Korrespondenzbeziehungen wurden mit insgesamt 21 TGG-Regeln spe-
zifiziert, wobei viele dieser TGG-Regeln lediglich verschiedene Varian-
ten einer TGG-Regel repräsentieren. Hier hat sich gezeigt, dass eine
Möglichkeit zur Wiederverwendung von TGG-Regeln mit einem dazu-
gehörigen Verfeinerungskonzept durchaus sinnvoll und hilfreich wäre.

• Der in dieser Arbeit vorgestelle Lösungsansatz wurde in der Studien-
arbeit von Oliver Rohe eingesetzt, um eine Modelltransformation zu
spezifizieren und auszuführen [Roh06]. Die dabei spezifizierten TGG-
Regeln dienen der Übersetzung von TGG-Regeln selbst. Hintergrund
der Übersetzung von TGG-Regeln ist, dass an der Universität Pader-
born neben dem hier vorgestellten, generativen Ansatz zur Ausführung
von TGG-Regeln ein interpretativer Ansatz, der sogenannte TGG-
Interpreter, entwickelt wurde [KRW04]. Dieser TGG-Interpreter ba-
siert auf denselben Konzepten wie wir sie in dieser Arbeit vorgestellt
haben. Allerdings werden diese Konzepte im TGG-Interpreter durch
ein abweichendes Metamodell repräsentiert. Um die mit dem TGG-
Editor des generativen Ansatzes spezifizierten TGG-Regeln im TGG-
Interpreter nutzen zu können, müssen die TGG-Regeln in den For-
malismus des TGG-Interpreters übersetzt werden. Die Spezifikation
der zur Modelltransformation benötigten Korrespondenzbeziehungen
besteht aus insgesamt 20 TGG-Regeln, die in [Roh06] angegeben sind.

7Enterprise JavaBeans, siehe auch http://java.sun.com/products/ejb/

226

http://java.sun.com/products/ejb/

7.4 Evaluation

• Weitere Korrespondenzregeln wurden im Rahmen des MATE-Projekts
spezifiziert [GMW06]. Bei diesem Projekt werden Matlab/Simulink-
Modelle erstellt, die im Rahmen einer Analyse als Muster dienen. Diese
Muster beschreiben Situationen, die in einem Matlab/Simulink-Modell
vermieden werden sollen. Im Rahmen einer automatischen Analyse
wird nach diesen Mustern gesucht und erkannte Muster dem Benutzer
gemeldet. Damit das in dem Projekt eingesetzte Analysewerkzeug nach
diesen Mustern suchen kann, müssen die in Matlab/Simulink spezifi-
zierten Muster in die Repräsentation des Analysewerkzeugs übersetzt
werden. Hierfür wurde der in dieser Arbeit beschriebene Ansatz mit
der dazugehörigen Werkzeugunterstützung eingesetzt.

• In der Studienarbeit von Yascha Cebeci wurden TGGs eingesetzt, um
Java-Codebeispiele in Objektstrukturen von Graphtransformationsre-
geln zu übersetzen [Ceb07]. Aus jeweils zwei solchen Objektstruk-
turen konnte anschließend mit den in der Studienarbeit entwickelten
Algorithmen eine Graphtransformationsregel automatisch synthetisiert
werden. Dadurch wurde – ähnlich zu der in Abschnitt 4.2 vorgestell-
ten Spezifikation von Korrespondenzregeln durch Beispielzuordnungen
– eine Spezifikation von Codetransformationen anhand konkreter Bei-
spiele realisiert. Die Spezifikation der Modelltransformation besteht
aus 7 TGG-Regeln.

Bei den hier erwähnten Fallstudien ist zu berücksichtigen, dass sie zum Teil
unterschiedliche Ziele verfolgten. In einigen Fallstudien wurden die Korres-
pondenzbeziehungen spezifiziert, um mit der in dieser Arbeit entwickelten
Werkzeugunterstützung eine Modelltransformation durchzuführen. In eini-
gen anderen Fällen wurde jedoch auch die Modellsynchronisation untersucht.
Wichtig ist, dass anhand dieser Fallstudien gezeigt werden konnte, dass der
Ansatz der TGGs durchaus geeignet ist, um Korrespondenzbeziehungen zwi-
schen unterschiedlichen Modellen zu spezifizieren. Natürlich heißt das nicht,
dass die Technik der TGGs und die hier vorgestellte Modellsynchronisation
für alle Arten von Modellen gleich gut geeignet sind. Für eine vollständige
Evaluation sind viele weitere Beispiele aus der Praxis notwendig, die auf-
grund des dafür erforderlichen zeitlichen Aufwands im Rahmen dieser Arbeit
aber nicht mehr durchgeführt werden konnten.

227

Kapitel 7 Werkzeugunterstützung

7.4.2 Leistungsmessungen

In diesem Abschnitt präsentieren wir Leistungsmessungen, die wir durch-
geführt haben, um eine Einschätzung der Geschwindigkeit unseres Ansatzes
im Vergleich zu anderen Ansätzen zu erhalten. Leider existieren nur sehr
wenige Werkzeuge, die eine Modellsynchronisation, wie wir sie hier kennen-
gelernt haben, unterstützen (siehe Abschnitt 8.2). Diese Werkzeuge sind
zumeist auf spezielle Modelle festgelegt und zudem nicht frei zugänglich.
Dadurch konnte ein Leistungsvergleich mit diesen Werkzeugen nicht durch-
geführt werden.

Um dennoch eine Einschätzung des Laufzeitverhaltens zu erhalten, haben
wir das in dieser Arbeit erstellte Werkzeug mit Werkzeugen zur Modelltrans-
formation verglichen. Die Modelltransformation stellt in unserem Ansatz
einen Spezialfall der Modellsynchronisation dar. Hier sind in den letzten
Jahren – aufgrund der Aktualität und Relevanz dieses Themas – sehr viele
Ansätze und Werkzeuge entwickelt worden. Die Werkzeuge unterscheiden
sich hauptsächlich durch die Art, wie die Transformationsregeln spezifiziert
und ausgeführt werden. Für unsere Leistungsmessungen haben wir uns auf
zwei Vertreter dieser Werkzeuge festgelegt. Bei dem ersten Werkzeug han-
delt es sich um medini QVT der Firma ikv++ technologies ag [IKV], das
die Sprache QVT-Relations der OMG unterstützt. Das zweite Werkzeug
gehört zum M2M-Projekt der Eclipse Foundation [M2M] und implementiert
die Sprache QVT-Operational.

Durchführung

Die Leistungsmessungen werden auf einem Rechner mit einem Intel R©
CoreTM 2 Duo E6300 Prozessor mit 1,86 GHz und 2048 MB Arbeitsspei-
cher durchgeführt. Als Betriebssystem wird Microsoft R© Windows Vista –
Home Premium mit installiertem Service Pack 1 eingesetzt. Bei der Java-
Laufzeitumgebung handelt es sich um die JavaTM SE Runtime Environment
in der Version 1.6.0 07, auf deren Grundlage auch das eingesetzte Eclipse
3.4.1 (Ganymede) ausgeführt wird. Die Modelltransformationswerkzeuge
sind als Plug-ins für Eclipse realisiert. Das Werkzeug medini QVT wird
in der Version 1.6.0.25263 verwendet. Das Eclipse Operational QVT liegt
in der Version 1.0.1 vor. Für die Übersetzung verwenden wir die aus dieser
Arbeit bereits bekannten Korrespondenzbeziehungen zwischen Block- und
Klassendiagrammen, die wir in der jeweiligen Beschreibungssprache des zu-
grundeliegenden Werkzeugs spezifiziert haben.

228

7.4 Evaluation

Für die Leistungsmessungen haben wir drei Plug-ins erstellt, wobei jedes
Plug-in für die Leistungsmessung eines Werkzeugs verantwortlich ist. Hierzu
erstellt ein Plug-in zunächst ein Blockdiagramm, welches als Quellmodell
dient. Die Anzahl der Blöcke in einem Blockdiagramm kann vom Benutzer
durch einen Parameter festgelegt werden. Darüber hinaus kann über einen
weiteren Parameter die Anzahl der Blöcke, die ein Block enthalten soll, de-
finiert werden. Die Anzahl der Blöcke legt die Modellgröße fest. Die Anzahl
von Blöcken in einem Block bestimmt den Verzweigungsgrad und damit die
hierarchische Struktur des Blockdiagramms. Ein geringer Verzweigungsgrad
bewirkt, dass die hierarchische Struktur des Blockdiagramms schmal und
tief ist. Im Gegensatz dazu führt ein hoher Verzweigungsgrad zu einer brei-
ten und flachen hierarchischen Struktur. Die hierarchische Struktur eines
Blockdiagramms spiegelt sich direkt in dem dazugehörigen Korrespondenz-
modell wieder, so dass darüber die Struktur des Korrespondenzmodells be-
einflusst und das Laufzeitverhalten unseres Algorithmus für unterschiedliche
Ausprägungen des Korrespondenzmodells untersucht werden kann.

Nach der Erstellung eines Blockdiagramms mit den gegebenen Parame-
tern wird das jeweilige Werkzeug zur Modelltransformation initialisiert und
dabei die entsprechenden Transformationsregeln geladen. Die Leistungsmes-
sung der Modelltransformation beginnt erst nach der Initialisierung, so dass
weder die Initialisierung noch die Erstellung eines Blockdiagramms in die
Zeitmessung einfließen. Zur Zeitmessung wird die Systemzeit vor und nach
der Modelltransformation ermittelt und daraus die benötigte Zeit für die
Modelltransformation berechnet. Über einen weiteren Parameter kann die
Anzahl der durchzuführenden Leistungsmessungen für die eingestellte Mo-
dellgröße festgelegt werden. Hierbei wird für jede Messung das Transforma-
tionswerkzeug neu initialisiert sowie ein neues und damit noch nicht trans-
formiertes Blockdiagramm erstellt. Dieser Vorgang fließt ebenfalls nicht in
die Zeiterfassung ein.

Die Leistungsmessungen werden mit Blockdiagrammen unterschiedlicher
Größe durchgeführt, wobei wir den Verzweigungsgrad für die hier beschrie-
bene Leistungsmessung auf zwei Blöcke festgelegt haben. Bei den ersten
Leistungsmessungen werden Blockdiagramme mit 100–1.000 Blöcken über-
setzt. In den nachfolgenden Leistungsmessungen wird die Modellgröße auf
1.000 Blöcke festgelegt und in jeder nachfolgenden Leistungsmessung um je-
weils 1.000 weitere Blöcke erhöht. Die letzte Leistungsmessung erfolgt mit
einem Blockdiagramm mit 25.000 Blöcken. Für jedes Blockdiagramm einer
Größe wurde die Leistungsmessung 10 Mal wiederholt und der Mittelwert
über die einzelnen Ergebnisse gebildet.

229

Kapitel 7 Werkzeugunterstützung

0

100

200

300

400

500

600

100 200 300 400 500 600 700 800 900 1000

Modellgröße (Anzahl der Elemente im Quellmodell)

Z
e
it

 f
ü

r
M

o
d

e
ll
tr

a
n

s
fo

rm
a
ti

o
n

 (
m

s
)

Fujaba TGG Medini QVT Relational Eclipse QVT Operational

Abbildung 7.12: Leistungsmessung bei der Transformation kleiner Modelle

Ergebnisse

Das Diagramm in Abbildung 7.12 zeigt die ermittelten Zeiten der Leistungs-
messungen für kleine Modelle (Blockdiagramme mit bis zu 1.000 Blöcken).
Hierbei hat sich gezeigt, dass die Modelltransformation mit medini QVT am
längsten dauert. Für ein Blockdiagramm mit 100 Blöcken wurden 74 ms
und für ein Blockdiagramm mit 1.000 Blöcken bereits 550 ms benötigt.
Die Modelltransformation mit Eclipse Operational QVT ist zwar schneller,
kommt jedoch nicht an die Geschwindigkeit der Modelltransformation mit
dem TGG-Ansatz von Fujaba heran. Der TGG-Ansatz benötigt für die Mo-
delltransformation eines Blockdiagramms mit 1.000 Blöcken lediglich 33 ms.
Die Transformation von 100 Blöcken dauert sogar nur 5 ms.

Für kleine Modelle mit maximal 1.000 Elementen liegen die ermittelten
Zeiten zur Modelltransformation bei allen untersuchten Werkzeugen unter
600 ms und sind damit sehr niedrig. Aufgrund der niedrigen Zeiten sind die
Unterschiede zwischen den einzelnen Werkzeugen für einen Benutzer kaum
wahrnehmbar. Daher ist eine Modellsynchronisation durch Modelltransfor-
mation auch nach kleinen Änderungen mit allen diesen Werkzeugen durchaus
denkbar.

230

7.4 Evaluation

0

20000

40000

60000

80000

100000

120000

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

19
00

0

20
00

0

21
00

0

22
00

0

23
00

0

24
00

0

25
00

0

Modellgröße (Anzahl der Elemente im Quellmodell)

Z
e
it

 f
ü

r
M

o
d

e
ll
tr

a
n

s
fo

rm
a
ti

o
n

 (
m

s
)

Fujaba TGG Medini QVT Relational Eclipse QVT Operational

Abbildung 7.13: Leistungsmessung bei der Transformation größerer Modelle

Anders verhält es sich jedoch, wenn große Modelle (Blockdiagramme mit
1.000 - 25.000 Blöcken) transformiert werden. Die Ergebnisse dieser Lei-
stungsmessungen sind in der Abbildung 7.13 dargestellt.

Die Leistungsmessungen bei der Transformation großer Modelle machen
die Unterschiede beim Laufzeitverhalten zwischen den Werkzeugen deutlich.
Dabei zeigt sich, dass Eclipse Operational QVT bei großen Modellen am
langsamsten ist und sehr viel Zeit für die Modelltransformation benötigt. Die
ermittelten Zeiten deuten darauf hin, dass hier ein polynomieller Algorith-
mus zur Modelltransformation verwendet wird. Im Gegensatz dazu verläuft
die Modelltransformation mit medini QVT linear mit steigender Anzahl von
Blöcken – die Transformation eines Blockdiagramms mit 25.000 Blöcken
dauert hier daher nur ca. 29 sec. Am schnellsten ist wieder der TGG-
Algorithmus. Dieser benötigt für die Transformation des größten Blockdia-
gramms lediglich 2050 ms. Bei dem Leistungsvergleich konnten zwei wesent-
liche Beobachtungen gemacht werden.

Zunächst kann festgestellt werden, dass kleine Modelle mit den beiden
untersuchten QVT-Werkzeugen in vertretbarer Zeit transformiert werden
können. Dies ist insofern interessant, da es sich hierbei um interpretative
Umsetzungen des QVT-Standards handelt. Im Allgemeinen sind Interpreter

231

Kapitel 7 Werkzeugunterstützung

bei der Ausführung langsamer als generative Ansätze. Dies hat sich einer-
seits durch die durchgeführte Leistungsmessung bestätigt. Andererseits hat
sich aber auch gezeigt, dass insbesondere für kleinere Modelle dieser Nachteil
von nicht allzu großer Bedeutung ist, da die Zeiten bei einer Modellgröße von
1.000 Elementen unter 600 ms liegen.

Die zweite Beobachtung betrifft unseren eigenen Ansatz zur Modelltrans-
formation und Modellsynchronisation. Dieser Ansatz basiert auf Tripel-
Graph-Grammatiken, aus denen operationale Graphtransformationsregeln
abgeleitet werden. Zur Ausführung einer Graphtransformationsregel muss
eine Teilgraphensuche durchgeführt werden, die im Allgemeinen ein NP-
vollständiges Problem darstellt. Aus diesem Grund werden in der Praxis
häufig Ansätze gemieden, die auf Graphgrammatiken basieren. Mit den
durchgeführten Leistungsmessungen konnte jedoch bestätigt werden, dass
durch eine geschickte Einschränkung der Anwendungsstelle und die Angabe
eines Anwendungskontextes, die in unserem Ansatz auf der Grundlage des
Korrespondenzmodells erfolgt, die Regelanwendungen auf polynomielle bzw.
sogar lineare Laufzeiten reduziert werden können. Natürlich hängt die Lauf-
zeit für eine Modelltransformation nicht nur von der Größe der Modelle ab,
sondern auch von der Komplexität der verwendeten Regeln. Dies gilt jedoch
für alle Transformationsansätze, in denen zunächst Muster gesucht werden
und erst anschließend in Muster eines anderen Modells übersetzt werden.

Allerdings hat sich gezeigt, dass selbst mit unserem Ansatz eine Modell-
transformation eines Blockdiagramms mit 25.000 Blöcken ca. 2 sec dau-
ert. Damit ist eine Modellsynchronisation durch Modelltransformation bei
großen Modellen nicht vertretbar – insbesondere dann nicht, wenn eine Syn-
chronisation nach jeder Änderung durchgeführt werden soll. Aus diesem
Grund haben wir in dieser Arbeit den Algorithmus erweitert, um auch inkre-
mentelle Modellsynchronisationen ausführen zu können. Zur Überprüfung
der erreichten Performanzsteigerungen wurden Leistungsmessungen und Lei-
stungsvergleiche zwischen den verschiedenen Versionen unseres inkrementel-
len Algorithmus durchgeführt. Hierbei hat sich gezeigt, dass der zusätzliche
Aufwand zur Überprüfung der Korrespondenzbeziehungen relativ gering ist
und lokale Änderungen in nur wenigen Millisekunden synchronisiert werden
können. Die genauen Ergebnisse dieser Leistungsmessungen, bei denen auch
unterschiedliche Verzweigungsgrade betrachtet worden sind, wurden bereits
publiziert [GW09]. Darauf aufbauende Optimierungen sowie dazugehörige
Leistungsmessungen wurden in der Diplomarbeit von Stephan Hildebrandt
dokumentiert [Hil07] und in [GH08] veröffentlicht, so dass auf eine detaillierte
Darstellung an dieser Stelle verzichtet wird.

232

7.5 Zusammenfassung

7.5 Zusammenfassung

In diesem Kapitel haben wir die im Rahmen dieser Arbeit entstandene Werk-
zeugunterstützung vorgestellt, die zur Modelltransformation, Modellintegra-
tion und Modellsynchronisation eingesetzt werden kann. Die Werkzeuge
wurden in die Entwicklungsumgebung Fujaba4Eclipse integriert und un-
terstützen die in Abschnitt 2.4 vorgestellte Methode. Durch den Einsatz von
Werkzeug- und Modelladaptern ist die entwickelte Werkzeugunterstützung
nicht auf Fujaba4Eclipse eingeschränkt – die entwickelten Werkzeuge
können leicht in andere Java-basierte Entwicklungsumgebungen integriert
werden. Mit den durchgeführten Leistungsmessungen konnte darüber hin-
aus gezeigt werden, dass der hier vorgestellte Ansatz sehr schnell arbeitet
und daher auch zur Synchronisation großer Modelle sehr gut geeignet ist.
Die Anforderungen aus Abschnitt 2.4 konnten somit umgesetzt werden.

Bei der entwickelten Werkzeugunterstützung handelt es sich natürlich nur
um einen Forschungsprototypen – für einen Einsatz in der Praxis wäre es
sinnvoll, die Benutzerschnittstelle weiter zu verbessern. Bei der prototypi-
schen Implementierung sind wir pragmatisch vorgegangen und haben das in
Fujaba4Eclipse verfügbare Graphersetzungssystem mit der dazugehöri-
gen Werkzeugunterstützung verwendet. Dieser Umstand hat die Entwick-
lungszeit reduziert und die Umsetzung erst möglicht gemacht. Allerdings
sind nicht alle Konzepte aus Kapitel 3 implementiert worden. So können in
der aktuellen Implementierung beispielsweise Bedingungen nicht mit OCL
spezifiziert werden. Aufgrund der Tatsache, dass eine Integration von OCL
in Fujaba4Eclipse sehr aufwändig wäre, haben wir stattdessen die in Fu-
jaba4Eclipse verfügbaren Ausdrücke für Bedingungen verwendet. Trotz
dieser Einschränkung konnte durch die prototypische Implementierung die
Umsetzbarkeit unseres Ansatzes erfolgreich gezeigt werden.

233

Kapitel 8

Verwandte Arbeiten

In den vorangegangenen Kapiteln haben wir die Konzepte zur automatischen
Modellsynchronisation sowie deren Realisierung kennen gelernt. In diesem
Kapitel vergleichen wir unseren Ansatz mit verwandten Arbeiten. Hierbei
werden wir insbesondere die Unterschiede zu unserer Arbeit hervorheben und
zeigen, dass derzeit kein durchgängiger Ansatz zur Spezifikation von Mo-
dellbeziehungen existiert, auf dessen Grundlage eine Modelltransformation,
eine Modellintegration sowie eine Modellsynchronisation ausgeführt werden
kann. Sowohl die Modelltransformation als auch die Modellintegration sind
Spezialfälle der in dieser Arbeit vorgestellten Modellsynchronisation. Daher
stellen wir zunächst in Abschnitt 8.1 einige Arbeiten zur Modelltransforma-
tion und Modellintegration vor. Anschließen behandeln wir in Abschnitt 8.2
existierende Ansätze zur Modellsynchronisation. Im darauf folgenden Ab-
schnitt 8.3 diskutieren wir einige wenige vorhandene Ansätze zur Verein-
fachung der Spezifikation von Modelltransformationen. Wir schließen das
Kapitel mit einer Zusammenfassung in Abschnitt 8.4.

8.1 Modelltransformation und Modellintegration

In dieser Arbeit haben wir eine Technik zur Modellsynchronisation auf der
Grundlage von Tripel-Graph-Grammatiken vorgestellt. TGGs sind nicht
neu. Sie wurden bereits in einigen Arbeiten zur Modelltransformation und
Modellintegration eingesetzt. In diesem Abschnitt stellen wir daher zunächst
diese Arbeiten vor. Aufgrund der Tatsache, dass wir zur Modellsynchronisa-
tion einen Ansatz zur Modelltransformation und Modellintegration verwen-
den, betrachten wir anschließend andere Arbeiten in diesem Themenbereich
und untersuchen dabei, inwieweit diese Ansätze zur Modellsynchronisation
geeignet sind.

235

Kapitel 8 Verwandte Arbeiten

8.1.1 Tripel-Graph-Grammatiken

Tripel-Graph-Grammatiken sind bereits 1994 von Andy Schürr [Sch94] als
Erweiterung von T. W. Pratts Pair-Graph-Grammatiken [Pra71] eingeführt
und von Martin Lefering im Rahmen des IPSEN-Projekts zur Entwicklung
von Integrationswerkzeugen in einer integrierten Entwicklungsumgebung ein-
gesetzt worden [Lef95, LS96].

In einer solchen Entwicklungsumgebung hat ein Integrationswerkzeug die
Aufgabe, zueinander in Beziehung stehende Elemente zweier Modelle zu
identifizieren, um diese Korrespondenzbeziehungen über den gesamten Le-
benszyklus der Modelle zu überwachen und auf Konsistenz zu prüfen. Hierzu
werden im Rahmen einer Modelltransformation oder Modellintegration Kor-
respondenzobjekte erstellt, die dann auf Anforderung durch den Benutzer
einer Konsistenzprüfung unterzogen werden können.

Die in der Arbeit von Martin Lefering entwickelten Integrationswerkzeuge
arbeiten in einer zuvor festgelegten Hauptintegrationsrichtung. Für eine
bidirektionale Modelltransformation oder Modellintegration müssen daher
zwei separate Integrationswerkzeuge erstellt werden, wohingegen mit unse-
rer Technik nur ein Werkzeug für beide Richtungen benötigt wird. Darüber
hinaus müssen in dem Ansatz von Martin Lefering die für die Integrati-
onswerkzeuge notwendigen operationalen Graphersetzungsregeln noch von
Hand aus einer TGG abgeleitet werden. Eine Automatisierung, wie wir sie
in dieser Arbeit vorgestellt haben, wurde nicht umgesetzt.

Bei der Konsistenzprüfung wird untersucht, ob die durch die Korrespon-
denzobjekte annotierten Beziehungen noch gültig sind. Zusätzlich werden
während der Konsistenzprüfung neue Korrespondenzbeziehungen identifi-
ziert. Aufgrund der festgelegten Hauptintegrationsrichtung werden dabei
nur Modellelemente im Quellmodell berücksichtigt.

Im Gegensatz zu der in dieser Arbeit vorgestellten Konsistenzerhaltung
durch Modellsynchronisation findet in einem Integrationswerkzeug eine au-
tomatische Behebung von Inkonsistenzen nur dann statt, falls ein neues Ele-
ment im Quellmodell erstellt oder ein existierendes Modellelement gelöscht
wurde. Attributwerte werden zwar bei der Modelltransformation, Modellin-
tegration und den nachfolgenden Konsistenzprüfungen berücksichtigt, aber
eine automatische Aktualisierung der Attributwerte zur Konsistenzwieder-
herstellung wird nicht unterstützt. Ebenso ist eine automatische Ver-
vollständigung der Modelle, wie wir sie in dieser Arbeit kennen gelernt haben,
nicht vorgesehen. Die Behebung von Inkonsistenzen findet daher überwie-
gend manuell, d. h., durch den Benutzer, statt.

236

8.1 Modelltransformation und Modellintegration

Im Ansatz von Martin Lefering muss in jeder TGG-Regel ein Modellele-
ment speziell gekennzeichnet werden. Diese Modellelemente werden domi-
nante Quellinkremente genannt. Alle übrigen Modellelemente werden als
Kontextinkremente bezeichnet. Die dominanten Quellinkremente dienen als
Ausgangspunkt der zur Regelanwendung benötigten Mustersuche, so dass
zur Ausführung einer Modelltransformation, Modellintegration oder Kon-
sistenzprüfung zunächst alle dominanten Quellinkremente in einem Modell
identifiziert und eingesammelt werden müssen.

Hier liegt der Hauptunterschied zu unserem Ansatz. Im Ansatz von Mar-
tin Lefering wird eine inkrementelle Nachintegration, d. h., eine Überprüfung
und Behebung von Inkonsistenzen, nur im Zielmodell inkrementell durch-
geführt. Dazu werden zunächst alle bereits existierenden Korrespondenz-
objekte betrachtet. Anschließend muss zur Identifikation der neu hinzu-
gefügten, dominanten Quellinkremente das gesamte Quellmodell analysiert
werden.1 Im Gegensatz dazu kann die in dieser Arbeit vorgestellte Mo-
dellsynchronisation als vollständig inkrementell bezeichnet werden, da die
Inkonsistenzen lokal ermittelt und behoben werden.

In diesem Zusammenhang besteht ein weiterer Unterschied zwischen den
beiden Ansätzen. So muss in dem Ansatz von Martin Lefering bei jeder Kon-
sistenzprüfung ein Abhängigkeitsgraph von anwendbaren Regeln berechnet
werden, mit dem eine günstige Reihenfolge für die Regelanwendungen be-
stimmt wird. Hierzu müssen die Kontextinkremente wiederholt geprüft wer-
den, was zu Effizienzproblemen führt [Bec07]. In unserem Ansatz hingegen
wird die Reihenfolge unmittelbar bei der Ausführung durch das Korrespon-
denzmodell vorgegeben. Hierzu werden die Abhängigkeiten zwischen den
Regeln ausgenutzt, die bereits in den Regeln implizit enthalten sind. Eine
zusätzliche Spezifikation oder Berechnung dieser Abhängigkeiten ist daher
nicht notwendig.

Die Arbeit von Martin Lefering wurde von Simon Becker fortgesetzt
[BLW04, Bec07]. Daher gelten die meisten der bereits genannten Eigen-
schaften auch für die dort erstellten Integrationswerkzeuge. Dies betrifft
insbesondere die Algorithmen zur inkrementellen Modelltransformation und
Modellintegration. Allerdings wurde der Ansatz dahingehend erweitert, dass
nun eine bidirektionale Modelltransformation, Modellintegration und Kon-
sistenzprüfung mit nur einem Integrationswerkzeug möglich ist.

1In Ansätzen zur Modelltransformation wird dieses Vorgehen als ”target incremental“
bezeichnet. Modelltransformationen, in denen zur Identifikation der Inkonsistenzen
nur ein kleiner Ausschnitt eines Modells betrachtet werden muss, werden hingegen

”source incremental“ genannt [CH06].

237

Kapitel 8 Verwandte Arbeiten

In der Arbeit von Simon Becker wurde der Schwerpunkt auf Benutzerin-
teraktionen gelegt, da in dem betrachteten Anwendungsbereich die Korres-
pondenzbeziehungen häufig nicht eindeutig sind, so dass prinzipiell mehrere
Regeln an einer Anwendungsstelle ausgeführt werden können. Aufgrund der
potentiellen Konflikte zwischen Regeln und den zur Auflösung notwendigen
Benutzerinteraktionen werden die Regeln aufgeteilt in Regeln zur Mustersu-
che und Musterersetzung, die dann in zwei Phasen ausgeführt werden. In
der ersten Phase werden zunächst auf Grundlage der Mustersuche potentielle
Regelanwendungsstellen identifiziert sowie Beziehungen und Konflikte zwi-
schen diesen Anwendungsstellen bestimmt. In der zweiten Phase wird unter
Einbeziehung von Benutzerinteraktionen die Musterersetzung und damit die
Transformation bzw. Integration durchgeführt.

Bei der Ausführung der Regeln entscheidet der Benutzer, welche der po-
tenziell an einer Anwendungsstelle möglichen Regeln tatsächlich angewendet
wird. Dazu unterbricht der Algorithmus die Arbeit und wartet auf eine Be-
nutzereingabe. Für große Modelle kann dies allerdings bedeuten, dass der
Benutzer während einer ersten Übersetzung sehr viele Benutzereingaben täti-
gen muss. Inwieweit dieser Ansatz auch für große Modelle geeignet ist, muss
sich daher in der Praxis noch zeigen.

Der Ansatz von Simon Becker ist im Gegensatz zur Arbeit von Martin
Lefering stark automatisiert, so dass eine Programmierung der notwendi-
gen Integrationswerkzeuge von Hand nicht notwendig ist. Wie in unserem
Ansatz werden auch hier die operationalen Regeln automatisch aus der Spe-
zifikation generiert. Während in unserer Arbeit die Algorithmen auf eine
effiziente Modelltransformation und Modellsynchronisation optimiert sind,
liegt in der Arbeit von Simon Becker der Schwerpunkt auf der Erkennung
und Behandlung von Regeln, die zueinander in einem Konflikt stehen. In
diesem Zusammenhang wäre eine Kombination beider Ansätze sehr vorteil-
haft [Bec07], um solche Konflikte bei der Modellsynchronisation zu erkennen
und durch Benutzerinteraktionen aufzulösen. Derzeit werden Konflikte bei
mehreren möglichen Regelanwendungen in unserem Ansatz ignoriert – es
wird einfach die erste Regel ausgeführt, die anwendbar ist.2

Parallel zu der Arbeit von Simon Becker hat Alexander Königs in sei-
ner Arbeit untersucht, wie der MOF 2.0 QVT-Standard der OMG mit Hilfe
der TGGs implementiert werden kann [Kön08]. Durch die Übertragung der

2Allerdings kann in unserem Ansatz die Reihenfolge der Regeln durch die in Ab-
schnitt 7.2.2 beschriebene Konfigurationsdatei beeinflusst werden. Dies entspricht
weitestgehend einer Priorisierung von Regelanwendungen.

238

8.1 Modelltransformation und Modellintegration

Metamodellierungstechniken des MOF-Standards auf die TGGs konnten die
Vorteile beider Spezifikationstechniken in einer einzigen Technik zusammen-
gefasst und die jeweiligen Nachteile beseitigt werden. Eine entsprechende
Abbildung wurde bereits in der Diplomarbeit von Joel Greenyer vorgestellt
[Gre06], die im Rahmen dieser Dissertation entstanden ist und überblicksar-
tig in Abschnitt 4.3 skizziert wurde.

Zur Implementierung des QVT-Standards hat Alexander Königs einen
Transformationsalgorithmus für TGGs entworfen, der von der hierarchischen
Struktur der beteiligten Modelle ausgeht [KS06, Kön08]. Der Vorteil ist,
dass die Transformation an einer beliebigen Stelle im Modell begonnen wer-
den kann. Die Anwendung eines initialen Axioms ist damit nicht notwendig.
Ein Nachteil ist jedoch, dass aus den zugrundeliegenden Metamodellen be-
reits eine hierarchische Struktur erkennbar sein muss. Diese Voraussetzung
erfüllen jedoch beispielsweise nur MOF- oder EMF-Metamodelle. Im Ge-
gensatz dazu wird eine solche Struktur in unserem Ansatz nicht gefordert,
so dass der Ansatz nicht auf MOF- oder EMF-Modelle eingeschränkt ist.

Ein anderer Nachteil betrifft die Performanz des entwickelten Algorithmus,
da zuerst eine Mustersuche im Modell durchgeführt und erst anschließend
überprüft wird, ob eine Regel bereits zu diesem Zeitpunkt angewendet wer-
den kann. Dies wird aber anhand von Korrespondenzobjekten überprüft.
Ist ein notwendiges Korrespondenzobjekt nicht vorhanden, so ist diese Be-
dingung nicht erfüllt und die Regel muss für diese Anwendungsstelle zurück-
gestellt werden. Die dadurch zusätzlich notwendigen Überprüfungen wirken
sich damit negativ auf die Performanz des Algorithmus aus. Eine entspre-
chende Weiterentwicklung dieses Algorithmus, die diesen Nachteil aufhebt,
wurde von Andy Schürr und Felix Klar in dem Beitrag [SK08] vorgestellt.
Allerdings unterstützt dieser Algorithmus – wie auch der Algorithmus von
Alexander Königs – keine inkrementelle Modellsynchronisation.

Neben den hier vorgestellten Arbeiten existieren weitere Arbeiten, die
TGGs zu unterschiedlichen Zwecken einsetzen. Beispielweise verwendet
Katja Cremer in ihrem Ansatz Tripel-Graph-Grammatiken zur Spezifikation
von Transformationsregeln zwischen einem Strukturdokument und einem Ar-
chitekturdokument. Jede Regel muss dabei durch den Benutzer explizit an-
gestoßen werden, das heißt, es erfolgt keine automatische Transformation
des gesamten Strukturmodells in das Architekturmodell. Stattdessen muss
der Benutzer sowohl die Anwendungsstelle als auch die auszuführende Regel
von Hand vorgeben. Eine Konsistenzprüfung oder Modellsynchronisation,
wie wir sie in dieser Arbeit vorgestellt haben, war nicht das Ziel der Arbeit
und wurde daher nicht umgesetzt.

239

Kapitel 8 Verwandte Arbeiten

Juan de Lara verwendet TGGs zur Synchronisation eines Modells mit den
daraus abgeleiteten Sichten, die in verschiedenen Editoren dargestellt wer-
den [GL04]. Hierbei werden die TGG-Regeln aber nur zur Erzeugung und
Verwaltung der Korrespondenzbeziehungen eingesetzt. Die Synchronisation
arbeitet ereignis-orientiert, das heißt, eine Änderungsoperation auf dem Mo-
dell wird aufgezeichnet, eine äquivalente Änderungsoperation für das Ziel-
modell berechnet, über die Korrespondenzbeziehung die Anwendungsstelle
im Zielmodell identifiziert und dann die berechnete Änderungsoperation im
Zielmodell ausgeführt.3 Der inkrementelle Transformationsalgorithmus wird
somit durch verschiedene Bearbeitungsaktionen, wie zum Beispiel Erstellen,
Ändern oder Löschen von Modellelementen, ausgelöst. Hierzu müssen alle
möglichen Bearbeitungsaktionen und Aktualisierungsaktivitäten sowohl im
Quell- als auch im Zielmodell spezifiziert werden. Obwohl die Spezifikation
der Bearbeitungsaktionen und Aktualisierungsaktivitäten visuell erfolgt und
damit komfortabler als eine ad-hoc Programmierung ist, nimmt der Aufwand
mit der Anzahl und Granularität der möglichen Bearbeitungsaktionen zu.
Darüber hinaus ist eine vollständige Modelltransformation in einem Schritt
mit diesem Ansatz nicht möglich. Im Gegensatz dazu deckt der in dieser
Arbeit vorgestellte Ansatz beide Fälle ab.

8.1.2 Andere Ansätze zur Modelltransformation und
Modellintegration

In diesem Abschnitt beschäftigen wir uns mit anderen Ansätzen zur Modell-
transformation und Modellintegration und diskutieren, ob diese zur Modell-
synchronisation geeignet sind.

Modelltransformation

Motiviert durch die Einführung der Model Driven Architecture (MDA) und
der Ausschreibung zu dem neuen Standard Query/View/Transformation
(QVT) [RFP03] für Modelltransformation durch die Object Management
Group (OMG) sind Modelltransformationen in den Fokus vieler Forschungs-
aktivitäten gerückt. Mittlerweile ist eine finale Version der Spezifikation
dieses Standards veröffentlicht [QVT08]. In dieser Spezifikation spielen in-
krementelle Modelltransformationen, die auch zur Modellsynchronisation

3Die Nachteile und grundsätzlichen Probleme einer ereignis-orientierten Modellsynchro-
nisation werden von Jack Greenfield et al. in [GSCK04] diskutiert (Kapitel 14, Seiten
471–473), so dass wir an dieser Stelle nicht weiter darauf eingehen wollen.

240

8.1 Modelltransformation und Modellintegration

beitragen können, eine wichtige Rolle. Bisher existieren zwei Werkzeuge,
die den operationalen Teil dieses Standards implementieren [Bor06, Fra06].
Inkrementelle Modelltransformationen, wie sie zur Modellsynchronisation
benötigt werden, sind mit diesen Werkzeugen jedoch nicht möglich. Im Ge-
gensatz dazu unterstützen zwei kommerzielle Werkzeuge [IKV, Mor], die den
deklarativen Teil der Sprache verwenden, inkrementelle Modelltransforma-
tionen. Allerdings müssen diese Werkzeuge hierzu jedes Mal die Modelle
vor der Übersetzung aus der dazugehörigen Dateirepräsentation laden, so
dass eine schnelle und sofortige Modellsynchronisation nach durchgeführten
Änderungen nicht möglich ist. Im Gegensatz dazu arbeitet der in dieser Ar-
beit vorgestellte Ansatz direkt auf den Modellrepräsentationen im Speicher,
so dass eine Modellsynchronisation sofort nach jeder Änderung vorgenom-
men werden kann.

Eine prototypische Implementierung, die in einer Vorstudie zum QVT-
Standard realisiert wurde, ist das von IBM entwickelte Model Transformation
Framework (MTF) [Gri04]. Der Prototyp verwendet nicht die im Standard
vorgeschlagene deklarative Spezifikationssprache, ist aber in der Lage, hin-
zugefügte oder gelöschte Modellelemente in einem Quellmodell zu identifizie-
ren und das Zielmodell nachträglich zu aktualisieren. Leider ist es in MTF
nicht möglich, zusätzliche Bedingungen an die Modellelemente zu formulie-
ren. Daher ist eine vollständige Modellsynchronisation mit diesem Ansatz
nicht möglich [DGS05, KC05b]. Darüber hinaus existieren keine Veröffentli-
chungen, die den verwendeten Ansatz oder Leistungsmessungen beschreiben.

Neben QVT existieren viele weitere Ansätze zur Modelltransformation –
jeder Ansatz ist für einen speziellen Zweck und eine bestimmte Anwendungs-
domäne mit verschiedenen Anforderungen unterschiedlich gut geeignet. Im
Folgenden stellen wir einige der bekanntesten Modelltransformationsansätze
vor. Für eine Klassifikation und Übersicht der Ansätze verweisen wir auf
[CH03, CH06].

Ein bekannter Ansatz zur Modelltransformation ist Extensible Stylesheet
Language Transformation (XSLT) [W3C99]. Die Spezifikation erfolgt auf
Basis der Extensible Markup Language (XML) beziehungsweise XML Me-
tadata Interchange (XMI). Zur Modelltransformation wird das Modell als
XML/XMI-Dokument exportiert. Dieses Dokument wird dann in einem
Schritt in das Zielmodell übersetzt. Eine inkrementelle Modelltransforma-
tion zur Propagation von Änderungen im Quellmodell an das Zielmodell wird
nicht unterstützt. Die Spezifikation der Modelltransformationsregeln erfolgt
auf Basis von XML und XSLT und ist sehr komplex, unleserlich und damit
schwer zu verstehen.

241

Kapitel 8 Verwandte Arbeiten

Eine andere Kategorie von Modelltransformationsansätzen umfasst visu-
elle Transformationssprachen, die auf Graphgrammatiken und Graphtrans-
formationssystemen basieren. Bei diesen Ansätzen werden die Modelle als
Graphen interpretiert. Eine Modelltransformation wird durch Techniken der
Graphersetzung erreicht. Beispiele für Ansätze, die in diese Kategorie fallen,
sind VIATRA [VVP02], GreAT [VAS04], UMLX [Wil03], ATOM3 [LVA04]
und BOTL [MB03]. Einige dieser Ansätze werden im Folgenden kurz vorge-
stellt. Eine vollständige Übersicht enthält [CH06].

VIATRA ist ein Ansatz zur Validierung und Verifikation von Model-
len. Dabei werden Modelltransformationen eingesetzt, um ein Modell in
einen verifizierbaren Formalismus zu übersetzen. Die Modelltransformation
wird visuell in einer UML-ähnlichen Notation spezifiziert. Zur Ausführung
der Modelltransformation wird die Spezifikation in Graphtransformationsre-
geln übersetzt und mit Abstract State Machines (ASM) kombiniert, indem
die Graphtransformationsregeln in Kontrollstrukturen der ASMs eingebettet
werden. Die Einbettung der Graphersetzungsregeln in Kontrollstrukturen
ermöglicht die Ausführungsreihenfolge der Graphtransformationsregeln fest-
zulegen und damit die einzelnen Graphtransformationsregeln zu komplexeren
Modelltransformationen zusammen zu setzen.

In einem weiteren Schritt wird eine Implementierung der Modelltrans-
formation generiert. Zur Ausführung der Modelltransformation muss das
Modell in einer XMI-Repräsentation vorliegen. Das Ergebnis der Trans-
formation ist wiederum ein XMI-Dokument, welches das erzeugte Zielmo-
dell der Transformation enthält. Eine direkte Transformation von Model-
len, wie sie in [KRW04] beschrieben wurde, ist mit diesem Ansatz nicht
möglich. Ebenso existiert weder eine Möglichkeit zur Nachverfolgbarkeit der
Modelltransformation, noch werden bidirektionale Modelltransformationen
unterstützt. Damit ist dieser Ansatz nicht zur Realisierung einer Modellsyn-
chronisation geeignet.

Die Graph Rewriting and Transformation Language (GReAT) [VVP02]
verfügt über eine operationale Spezifikationstechnik, die ebenfalls auf Graph-
transformationen basiert. Durch zusätzliche Konstrukte kann ein Kon-
trollfluss mit Ein- und Ausgabeparametern spezifiziert und damit die
Ausführungsreihenfolge der Graphtransformationsregeln festgelegt werden.
Wie in VIATRA, existieren keine weiteren Informationen zur Nachverfolg-
barkeit der Modelltransformation. Ebenso kann die Modelltransformation
nur unidirektional und in einem Durchlauf ausgeführt werden. Inkremen-
telle Modelltransformationen nach durchgeführten Änderungen im Quellmo-
dell der Transformation sind damit nicht möglich.

242

8.1 Modelltransformation und Modellintegration

In den bisher vorgestellten Ansätzen muss für jede Transformationsrich-
tung eine eigene Spezifikation erstellt werden. Für bidirektionale Modell-
transformationen sind diese Ansätze daher weniger geeignet. Ein Ansatz,
der bidirektionale Modelltransformationen unterstützt ist BOTL [MB03].
Die Spezifikation erfolgt in einer UML-ähnlichen Notation. Die Modell-
transformation basiert auf Graphtransformationsregeln, die für die entgegen
gesetzte Richtung aus der Spezifikation abgeleitet wird. Hierfür muss die
Modelltransformation jedoch bijektiv sein. Diese Voraussetzung ist jedoch
nur selten erfüllt [SK04]. Wie bei den zuvor genannten Ansätzen erfolgt die
Modelltransformation in einem Schritt und ist nicht inkrementell.

Die bisher diskutierten Ansätze sehen keine Mechanismen zur Nachverfolg-
barkeit der Modelltransformation vor. Dies verhindert eine inkrementelle
Modelltransformation bzw. Modellsynchronisation, die zum Abgleich der
Modelle nach einer erfolgten Modelltransformation und anschließend durch-
geführten Änderungen am Quellmodell notwendig ist. Im Gegensatz dazu
sind Tripel-Graph-Grammatiken (TGGs) eine spezielle Technik, die eine Spe-
zifikation und Ausführung von bidirektionalen und inkrementellen Modell-
transformationen ermöglicht.

Modellintegration

Die Modellintegration kann für unterschiedliche Menschen unterschiedliche
Dinge bedeuten. Beispielsweise wird die Modellintegration häufig als ein
Prozess angesehen, in dem aus zwei oder mehreren Modellen ein einziges
gemeinsames Modell erstellt wird. In der Domäne des Modellmanagements
wird diese Art der Modellintegration häufig als Modellverschmelzung (engl.
model merging) bezeichnet [BHP00, SZK04]. Hierbei entsteht ein Modell
in einem bestimmten Formalismus. Im Gegensatz dazu verstehen wir un-
ter Modellintegration nicht die Verschmelzung mehrerer Modelle zu einem
einzigen Modell, sondern die Zuordnung von Modellelementen zweier oder
mehrerer Modelle zueinander, die durchaus auch in unterschiedlichen Forma-
lismen gegeben sein können. In der Domäne des Modellmanagements wird
diese Art der Modellintegration durch eine sogenannte Matching-Operation
definiert: Zu zwei gegebenen Modellen wird eine Abbildung berechnet und
als Ausgabe zurückgegeben [BHP00, SZK04].

Ein prominentes Werkzeug zur Modellintegration stellt der ATLAS Model
Weaver (AMW) [FBV06] dar. Die Idee hinter AMW besteht darin, zwei
Modelle miteinander zu

”
vernetzen“, allerdings nicht indem die Beziehun-

gen a-priori spezifiziert, sondern manuell durch den Benutzer zwischen den

243

Kapitel 8 Verwandte Arbeiten

gegebenen Modellen hergestellt werden.4 Im Gegensatz dazu werden in un-
serer Arbeit die Beziehungen zwischen Modellelementen explizit spezifiziert,
um daraus automatisch Operationen, beispielsweise zur Modellintegration,
abzuleiten.

Die Arbeiten zur Werkzeugintegration [Lef95, BLW04, Bec07] entsprechen
am ehesten unserem Verständnis von Modellintegration. Dies ist damit zu
begründen, dass die dort durchgeführte Werkzeugintegration stark auf der
Integration von Dokumenten beruht, die als Modelle gesehen werden können.
Die Integration erfolgt dort – wie in unserer Arbeit auch – auf der Basis von
TGGs.

8.2 Modellsynchronisation

Eine erste Klassifikation und Kategorisierung der Modellsynchronisation so-
wie ein Ansatz zur Modellsynchronisation zwischen einem so genannten Fea-
ture Modell und seiner Spezialisierung wurde von Kim und Czarnecki in
[KC05b] gegeben. In dem dort vorgestellten Ansatz basiert die Modell-
synchronisation auf Verknüpfungen (engl. traceability links) zwischen Mo-
dellelementen der in Beziehung stehenden Modelle. Diese Verknüpfungen
werden erstellt, während das ursprüngliche Modell geklont wird, um ein in-
itiales Modell für die nachfolgende Spezialisierung zu erhalten. Nach der
Erstellung der Verknüpfungen dienen die Verknüpfungen dazu, Änderungen
an dem ursprünglichen Modell an die dazugehörige Spezialisierung weiter zu
propagieren. Die Modellsynchronisation wird in diesem Anwendungsfall in
nur eine Richtung durchgeführt. Der Anwendungsfall führt auch dazu, dass
nur 1-zu-n Beziehungen erstellt werden. Die Autoren bestätigen, dass diese
Art der Beziehungen einfacher zu implementieren und zu verwalten ist als
n-zu-m Beziehungen, wie sie in unserem Ansatz eingesetzt werden können.
Der Ansatz in [KC05b] ist für die dort gestellten Anforderungen ausreichend.
Im allgemeinen Fall, in dem auch n-zu-m Beziehungen benötigt werden, die
darüber hinaus in beide Richtungen gepflegt werden müssen, ist der Ansatz
jedoch nicht einsetzbar.

Ivkovic and Kontogiannis haben einen Ansatz zur Modellsynchronisa-
tion entwickelt, der auf impliziten Nachverfolgbarkeitsrelationen basiert, das
heißt, die Relationen zwischen Modellelementen werden nur im Metamodell
definiert und implementiert, aber nicht zwischen den in Beziehung stehen-

4In einigen darauf aufbauenden Arbeiten wird versucht, die Vernetzung der Modelle mit
Hilfe von Heuristiken automatisch durchzuführen [FBV06, RKRS05].

244

8.2 Modellsynchronisation

den Modellen, also nicht auf den Metamodellinstanzen [IK04a, IK04b]. In
ihrem Ansatz müssen zur Modellsynchronisation spezielle Graphen aus den
Metamodellen abgeleitet werden. Zusätzlich müssen atomare Änderungsope-
rationen auf den Knoten und Kanten dieses Graphen wie z. B. Hinzufügen,
Löschen, Ändern, etc. spezifiziert und implementiert werden. Um zwei Mo-
delle zu synchronisieren, werden diese Änderungsoperationen aufgezeichnet
und in entsprechende Operationen auf dem Zielmodell transformiert. An-
schließend werden diese Transformationen auf dem Zielmodell ausgeführt.
In einem finalen Schritt überprüft eine zuvor definierte Äquivalenzrelation,
ob die so durchgeführte Modellsynchronisation erfolgreich, in diesem Fall
also äquivalenzerhaltend, ausgeführt werden konnte. Zur Erstellung einer
Modellsynchronisation zwischen zwei Modellen müssen in dem dort vorge-
stellten Ansatz insgesamt sieben verschiedene Schritte durchgeführt werden.
Soll eine Modellsynchronisation von den Benutzern an spezielle Bedürfnisse
einfach anpassbar sein, dann ist dies sicherlich zu komplex. Wie die Autoren
selbst anmerken, kann eine implizite Modellsynchronisation in der Praxis
nicht alle Synchronisationsszenarien abdecken.

Hearnden et al. erweitern in ihrer Arbeit einen deklarativen, auf Lo-
gik basierenden Transformationsansatz, um Änderungen in einem Quellmo-
dell inkrementell an ein Zielmodell weiter zu propagieren und damit eine
Modellsynchronisation durchzuführen [HLR06]. Der Ansatz zeichnet die
Ausführung einer Modelltransformation auf und speichert diese Aufzeich-
nung in einem so genannten Execution-Record. Änderungen im Quellmodell
werden anschließend dem Execution-Record zugeordnet, so dass eine Berech-
nung von Aktualisierungen im Zielmodell ermöglicht wird. Diese Aktuali-
sierungen synchronisieren das Zielmodell mit dem geänderten Quellmodell.
Die vorgestellte Lösung hat den Nachteil, dass der Execution-Record sehr
viel Speicherplatz benötigt, so dass zur Synchronisation größerer Modelle
weitere Optimierungen des Execution-Records notwendig sind. Darüber hin-
aus ist nicht ersichtlich, ob zur bidirektionalen Modellsynchronisation ein
Execution-Record ausreichend ist, oder ob für jede Synchronisationsrichtung
ein eigener Execution-Record benötigt wird.

Ein anderer Zweig der Forschungsaktivitäten beschäftigt sich mit der Syn-
chronisation von Modellen mit dem daraus generierten Code. Es existieren
viele Werkzeugumgebungen, die zum Beispiel ein Codegerüst aus Klassen-
diagrammen generieren, oder die ein Klassendiagramm aus Code wiederge-
winnen und anschließend versuchen, beide miteinander synchron zu halten
[Bor06, IBM]. In den meisten Werkzeugen ist diese Synchronisation hart co-
diert. Häufig existiert nur ein gemeinsames Implementierungsmodell und

245

Kapitel 8 Verwandte Arbeiten

beide, das heißt, sowohl der Code als auch das eigentliche Modell, sind
nur spezielle Sichten auf dieses gemeinsame Implementierungsmodell. Die
Synchronisation wird dann häufig auf Grundlage des Model-View-Controller
Paradigmas [PMD05] realisiert, in der dann die Sichten aktualisiert werden
sobald das Implementierungsmodell geändert wurde. Dieser Ansatz erlaubt
jedoch nicht die Anpassung der Abbildung zwischen dem Modell und dem
Code an benutzer- oder firmenspezifische Bedürfnisse.

Andere Ansätze zur automatischen Synchronisation von Modellen und
Code schlagen eine Kombination von Forward- und Reverse-Engineering-
Techniken vor. Diese Vorgehensweise wird auch als Round-Trip-Engineering
bezeichnet [Aßm03, HL03]. Der Nachteil dieses Ansatzes ist, dass zu ei-
ner Forward-Engineering-Funktion eine inverse Funktion für das Reverse-
Engineering berechnet werden muss. Dies ist allerdings nur dann möglich,
wenn es sich bei den Modell-zu-Code Abbildungen um bijektive Funktionen
handelt. Dies ist jedoch selten der Fall [SK04]. Erschwerend kommt hinzu,
dass der Ansatz versagt, falls ein Entwickler die Implementierung verfei-
nert und beispielsweise ein generiertes Codeskelett vervollständigt. Werden
anschließend auch Änderungen am Modell vorgenommen, so führt ein erneu-
tes Forward-Engineering dazu, dass die Änderungen im Code überschrieben
werden.

8.3 Ansätze zur Vereinfachung der Spezifikation

In den meisten visuellen Ansätzen erfolgt die Spezifikation in der abstrak-
ten Syntax der beteiligten Modellierungssprachen, die durch entsprechende
Metamodelle definiert sind (z. B. [VVP02, VAS04, MB03]). Die graphische
Spezifikation ist gegenüber der rein textuellen Spezifikation viel übersichtli-
cher und leichter zu verstehen, da die korrespondierenden Teile der Modellie-
rungssprachen in einem Diagramm zueinander in Beziehung gesetzt werden.
Bei großen und komplexen Metamodellen kann aber auch diese Art der Spe-
zifikation groß und unübersichtlich werden. Dieses Problem wurde lange Zeit
ignoriert. Daher existieren bisher nur wenige Lösungsansätze, die das Ziel
verfolgen, die Spezifikationstechnik zu vereinfachen und übersichtlicher zu
machen. In diesem Abschnitt werden diese Arbeiten kurz vorgestellt.

246

8.3 Ansätze zur Vereinfachung der Spezifikation

8.3.1 Kompakte Repräsentation von
Modelltransformationen

Um unübersichtliche Spezifikationen zu vermeiden, stellt Bettin einige Ideen
für eine kompaktere Repräsentation von Metamodellen vor [Bet03]. Ein Vor-
schlag ist beispielsweise, eine Komposition zwischen Klassen nicht mit einer
Kompositionsassoziation zwischen diesen Klassen darzustellen, sondern die
komponierte Klasse direkt eingebettet in der übergeordneten Klasse dar-
zustellen. Auf Grundlage dieser kompakteren und übersichtlicheren5 Dar-
stellung von Metamodellen schlägt der Autor eine mögliche Notation für
Modelltransformationen vor. Die Arbeit stellt allerdings nur einige wenige
sehr grobe Ideen vor, die darüber hinaus nur an einem sehr einfachen Bei-
spiel präsentiert werden. Aufgrund der Tatsache, dass die vorgeschlagene
Notation nicht an größeren und komplexeren Beispielen evaluiert wurde und
daher auch keine praktischen Erfahrungen mit dieser Notation gemacht wer-
den konnten, ist diese Arbeit eher als Weckruf für die bestehende Problema-
tik zu verstehen und weniger als eine praktikable Lösung des vorliegenden
Problems.

Baar und Whittle haben untersucht, inwieweit die konkrete Syntax der
zugrundeliegenden Modellierungssprachen geeignet ist, um Modelltransfor-
mationsregeln zu spezifizieren [BW06]. Dabei sind die Autoren schnell an
Grenzen gestoßen, da beispielsweise zu abstrakten Klassen in den meisten
Fällen keine graphische Repräsentation in der konkreten Syntax der Sprache
existiert, aber Instanzen dieser Klassen in Mustern der Transformationsre-
geln sehr wohl vorkommen können. Um die Transformationsregeln dennoch
in der konkreten Syntax der beteiligten Modellierungssprachen spezifizieren
zu können, schlagen die Autoren vor, die Metamodelle zu diesem Zweck
anzupassen und eine neue, speziell für die Spezifikation der Transformati-
onsregeln geeignete konkrete Syntax zu entwickeln. Dies ist mit einem sehr
hohen Aufwand verbunden und stellt – wie die Autoren anmerken – den
Flaschenhals ihres Ansatzes dar.

8.3.2 Spezifikation durch Beispiele

Wimmer et al. haben einen Ansatz vorgeschlagen, bei dem die Korrespon-
denzbeziehungen zwischen Modellen in der konkreten Syntax der Modelle

5Die Entscheidung, ob diese Art der Darstellung tatsächlich kompakter und damit über-
sichtlicher ist, muss jeder Leser alleine für sich treffen, da dies rein subjektiv und daher
nicht bewertbar ist.

247

Kapitel 8 Verwandte Arbeiten

mit Hilfe von Beispielen definiert wird. Anschließend werden die Transfor-
mationsregeln nahezu automatisch aus den definierten Korrespondenzbezie-
hungen abgeleitet [WSKK07]. Zu diesem Zweck muss der Entwickler der
Modelltransformation zuerst semantisch zueinander korrespondierende Mo-
delle liefern, die alle Konzepte der beteiligten Modellierungssprachen enthal-
ten. In einem zweiten Schritt werden die Korrespondenzbeziehungen zwi-
schen den einzelnen Modellelementen spezifiziert. Aus dieser Spezifikation
und einer zuvor gegebenen Abbildung zwischen der abstrakten und konkre-
ten Syntax der Modellierungssprachen werden in einem dritten Schritt die
Transformationsregeln synthetisiert.

Der Ansatz unterscheidet sich von unserem Ansatz (vergleiche Ab-
schnitt 4.2) in der Art wie die Beispiele zu entwickeln sind. In dem Ansatz
von Wimmer werden (1) ein Beispiel, das alle Konzepte der beteiligten Mo-
dellierungssprachen enthält, (2) benutzerdefinierte Korrespondenzbeziehun-
gen zwischen den Modellelementen des Beispiels, sowie (3) eine Abbildung
zwischen der abstrakten und der konkreten Syntax der beteiligten Modellie-
rungssprachen benötigt, um die Transformationsregeln zu synthetisieren.

In unserem Ansatz reicht es aus, verschiedene kleinere Beispiele anzu-
geben, um daraus Transformationsregeln zu synthetisieren. Auch wenn in
dem Ansatz von Wimmer ebenso mehrere kleine Beispiele angegeben werden
können und dies sogar von den Autoren empfohlen wird, muss der Entwickler
weiterhin die Korrespondenzbeziehungen in diesen Beispielen manuell hin-
zufügen. Im Gegensatz dazu reicht in unserem Ansatz die Angabe der zuein-
ander korrespondierenden Beispiele aus. Außerdem wird in unserem Ansatz
keine explizite Zuordnung der konkreten zur abstrakten Syntax benötigt -
die Synthese findet ausschließlich auf der abstrakten Repräsentation der Bei-
spiele statt, auch wenn die Beispiel selbst in der konkreten Syntax angegeben
werden.

Der in [WSKK07] präsentierte Ansatz funktioniert nur zum Teil auto-
matisch, da bei Mehrdeutigkeiten der Benutzer in den Synthesealgorithmus
eingreifen und diese manuell auflösen muss. Darüber hinaus existiert zu dem
vorgestellten Ansatz noch keine Implementierung, so dass nicht klar ist, ob
die vorgestellte Idee zur Spezifikation mit Beispielen auch auf größere Mo-
delltransformationen anwendbar und praktikabel durchführbar ist.

Ein anderer Ansatz zur Spezifikation von Modelltransformationen mit Bei-
spielen stellt Varró vor [Var06]. Die Zielsetzung des Ansatzes ist vergleichbar
zu unserem Ansatz und dem Ansatz von Wimmer et al., allerdings existie-
ren deutliche Unterschiede in den zugrundeliegenden Konzepten. In [Var06]
werden die Beispiele weiterhin in der abstrakten Syntax angegeben. In unse-

248

8.4 Zusammenfassung

rem Ansatz wird hierfür die konkrete Syntax verwendet. Zusätzlich muss in
[Var06] vom Benutzer eine initiale Abbildung zwischen den Modellelementen
erstellt werden. Diese initiale Abbildung beschreibt kritische Situationen bei
der Modelltransformation. Eine Schwierigkeit ist, diese kritischen Situatio-
nen im Vorfeld zu identifizieren. Darüber hinaus können die Abbildungen
nur mit Hilfe von 1-zu-1 Beziehungen definiert werden. Um die Transfor-
mationsregeln aus der initialen Abbildung zu generieren, müssen zusätzliche
Benutzerinteraktionen durchgeführt werden. Beispielsweise müssen weitere
Abbildungen zwischen den Modellelementen vom Benutzer definiert wer-
den, bevor weitere Regeln abgeleitet werden können. Auch muss der Be-
nutzer die generierten Transformationsregeln von Hand verfeinern, um die
Anzahl der generierten Regeln zu reduzieren. Dies bedeutet insbesondere,
dass die Transformationsregeln in [Var06] iterativ entwickelt werden müssen,
während in unserem Ansatz die iterative Spezifikation von Transformations-
regeln ermöglicht, aber nicht zwingend vorausgesetzt wird.

8.4 Zusammenfassung

In diesem Kapitel haben wir uns mit den verwandten Arbeiten beschäftigt.
Dabei sind wir zunächst auf Ansätze zur Modelltransformation und Mo-
dellintegration eingegangen, die ebenfalls auf der Technik der TGGs basieren.
Hierbei mussten wir feststellen, dass keiner dieser Ansätze eine vollständig
inkrementelle Modelltransformation, Modellintegration oder Modellsynchro-
nisation unterstützt, wie wir sie in dieser Arbeit kennen gelernt haben. An-
dere Ansätze zur Modelltransformation, die nicht auf der Grundlage von
TGGs beruhen, fokussieren auf eine batch-artige Ausführung. Sie sind mei-
stens auf eine einzige Transformationsrichtung festgelegt und unterstützen
keine Konzepte, um eine Modelltransformation für den Benutzer nachver-
folgbar zu machen. Daher sind sie zur Realisierung einer inkrementellen
Modellsynchronisation ungeeignet.

Mit der Modellsynchronisation haben sich bisher nur sehr wenige Arbeiten
beschäftigt. Dabei wurden die Modellsynchronisationen meistens nur für ein
spezielles Synchronisationsszenario und in nur eine zuvor festgelegte Syn-
chronisationsrichtung betrachtet. Eine allgemeine Methode zur modellba-
sierten Entwicklung von bidirektionalen Modellsynchronisationen zwischen
zwei beliebigen Modellen wurde in diesen Ansätzen nicht berücksichtigt. Ins-
besondere zur Synchronisation von Modell und Code wird heutzutage immer
noch auf von Hand programmierte und damit hart codierte Algorithmen

249

Kapitel 8 Verwandte Arbeiten

zurückgegriffen. Eine einfache Parametrisierung und Anpassung einer so
umgesetzten Modellsynchronisation ist damit nicht möglich – die Modellsyn-
chronisation kann nur durch eine erneute Programmierung bzw. Anpassung
der Algorithmen erfolgen.

Im letzten Teil dieses Kapitels haben wir Ansätze vorgestellt, die sich der
Vereinfachung von Spezifikationen zur Modelltransformation widmen. Zwei
der vorgestellten Ansätze schlagen hierzu eine neue bzw. angepasste Nota-
tion zur kompakten Repräsentation der Modelle vor. Wie die Autoren selbst
anmerken, ist diese Vorgehensweise mit einigen Nachteilen verbunden. Die
anderen Ansätze basieren auf der Spezifikation von Beispielen, die entweder
in der konkreten oder der abstrakten Syntax angegeben werden. Im Ge-
gensatz zu unserem Ansatz sind die Techniken jedoch entweder noch nicht
evaluiert worden oder schränken den Benutzer durch viele Restriktionen bei
der Entwicklung stark ein.

250

Kapitel 9

Zusammenfassung und Ausblick

In diesem Kapitel fassen wir die Ergebnisse dieser Arbeit zusammen und
bewerten die erreichten Ziele. Anschließend geben wir einen Ausblick über
mögliche Erweiterungen des hier vorgestellten Ansatzes.

9.1 Zusammenfassung

In dieser Arbeit wurde eine Technik zur inkrementellen Modellsynchroni-
sation vorgestellt. Die Modellsynchronisation gleicht zwei zueinander in
Beziehung stehende Modelle automatischen miteinander ab und löst damit
eventuell vorhandene Inkonsistenzen zwischen den Modellen auf. Die vorge-
stellte Modellsynchronisation kann sowohl inkrementell als auch batch-artig
ausgeführt werden. Darüber hinaus eignet sich der Ansatz zur Modellinte-
gration, Modelltransformation und zur Codegenerierung.

Die Grundlage der vorgestellten Technik zur Modellsynchronisation bilden
Tripel-Graph-Grammatiken (TGGs). Diese deklarative, formale und visuelle
Spezifikationstechnik ist nicht neu – sie wurde bereits im Rahmen einiger an-
derer Arbeiten eingesetzt, um Modelle zu transformieren oder miteinander
zu integrieren. Einige dieser Ansätze können Änderungen an einem Quellmo-
dell inkrementell an ein dazugehöriges Zielmodell propagieren. Im Gegensatz
zu dem hier vorgestellten Ansatz bezieht sich die inkrementelle Ausführung
allerdings nur auf das Zielmodell. Zur Identifikation der Änderungen muss
immer noch das gesamte Quell- sowie Korrespondenzmodell traversiert und
analysiert werden. In dieser Arbeit hingegen wird die Analyse des Quellmo-
dells lokal an den von Änderungen betroffenen Stellen durchgeführt. Eine
Traversierung und Analyse des gesamten Quell- und Korrespondenzmodells
ist nicht notwendig. Daher kann die in dieser Arbeit vorgestellte Technik als
vollständig inkrementell bezeichnet werden.

251

Kapitel 9 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurden eine Methode und dazugehörige Softwa-
rewerkzeuge zur modellbasierten Entwicklung von Modellsynchronisationen
vorgestellt. Hierzu haben wir in einem ersten Schritt das Problem der Mo-
dellsynchronisation untersucht und daraus Anforderungen an eine Modell-
synchronisation formuliert.

Die wichtigste funktionale Anforderung ist die bidirektionale und inkre-
mentelle Modellsynchronisation. Der entwickelte Algorithmus ist allerdings
auch in der Lage, eine Modellintegration und Modelltransformation durch-
zuführen. Diese Eigenschaften sind hauptsächlich auf die eingesetzte Spezi-
fikationstechnik der TGGs zurückzuführen. Die Modellsynchronisation kann
sowohl batch-artig als auch inkrementell erfolgen, was hingegen dem ent-
wickelten Algorithmus zuzurechnen ist. Die batch-artige Arbeitsweise wird
hauptsächlich dazu eingesetzt, um eine Modellsynchronisation durch Mo-
delltransformation auszuführen, bei der initial nur ein Modell vorhanden ist,
oder um eine Modellintegration zwischen zwei bereits bestehenden aber noch
nicht synchronisierten Modellen durchzuführen.

Die Anpassbarkeit der Modellsynchronisation wurde erreicht, indem die
Spezifikation der Korrespondenzregeln von dem Ausführungsalgorithmus
entkoppelt wurde. Dadurch ist ein Rahmenwerk entstanden, das mit den
spezifizierten Korrespondenzregeln parametrisierbar ist. Zur Parametrisie-
rung werden aus einer TGG-Spezifikation operationale Graphersetzungsre-
geln abgeleitet, aus denen wiederum ausführbarer Code generiert wird. Die-
ser Code wird dynamisch zum Ausführungsalgorithmus gebunden und sorgt
so für eine individuelle Parametrisierung der Modellsynchronisation.

Bei der Evaluierung einiger Beispielspezifikationen hat sich gezeigt, dass
bei (Modellierungs-) Sprachen mit komplexen Metamodellen sehr viele und
auch sehr umfangreiche Korrespondenzregeln benötigt werden. Die Spezifi-
kation dieser Regeln kann daher sehr aufwändig werden. Aus diesem Grund
wurden in dieser Arbeit verschiedene Ansätze erarbeitet, die eine Spezifika-
tion erleichtern.

Bei einem dieser Ansätze werden die Korrespondenzbeziehungen zwischen
Modellen mit Hilfe von Beispielpaaren angegeben. Hierzu müssen zunächst
Beispiele der zueinander in Beziehung stehenden Modelle entworfen werden.
Die entsprechenden Korrespondenzregeln werden anschließend automatisch
aus diesen Beispielpaaren synthetisiert. Der Synthesealgorithmus erlaubt
jederzeit eine manuelle Anpassung der synthetisierten Regeln durch den Be-
nutzer und berücksichtigt diese Änderungen in den darauf folgenden Schrit-
ten. Der in dieser Arbeit vorgestellte Synthesealgorithmus ermöglicht somit
eine iterative und inkrementelle Synthese der Korrespondenzregeln.

252

9.1 Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurde zusätzlich der Einsatz von
TGGs zur Spezifikation von Modell-zu-Text Beziehungen untersucht. Diese
Beziehungen können beispielsweise zur Codegenerierung verwendet werden.
Dabei wurden zwei Möglichkeiten in Betracht gezogen. Die erste Variante
besteht darin, den Text bzw. den Code als Modell zu interpretieren und
die Spezifikation auf der Grundlage eines Metamodells der Sprache durch-
zuführen. Dieses Metamodell kann aus der Grammatik der Sprache abge-
leitet werden. Die zweite Variante kombiniert TGGs mit Textschablonen.
Dabei wird die TGG zur Abbildung der Modellstruktur auf einzelne Code-
fragmente genutzt. Die Codefragmente selbst werden mit Hilfe von Textscha-
blonen beschrieben. Die Spezifikation eines feingranularen Metamodells der
Sprache ist damit nicht nötig. Dies trägt signifikant zur Senkung des benötig-
ten Spezifikationsaufwands bei.

Die vorliegende Arbeit wurde zeitgleich zum aufkommenden Standard
Query/View/Transformation (QVT) der Object Management Group (OMG)
erstellt. Der Standard definiert neben einer operationalen auch eine deklara-
tive Transformationssprache, für die lange Zeit keine Werkzeugunterstützung
existiert hat. Im Rahmen dieser Arbeit wurde gezeigt, wie der QVT-
Standard mit Hilfe der TGGs formalisiert und realisiert werden kann. Da-
durch werden TGGs für einen weiten Anwenderkreis zugänglich, der zuneh-
mend auf die OMG-Standards setzt.

Zur Erprobung der inkrementellen Modellsynchronisation wurden mehrere
Werkzeuge für Fujaba4Eclipse prototypisch entwickelt. Die umgesetzte
Werkzeugunterstützung wurde anhand einiger Beispiele auf ihre Praktika-
bilität evaluiert. Dabei konnte gezeigt werden, dass die entwickelte Modell-
synchronisation nicht auf Fujaba und Eclipse beschränkt ist, sondern sich
leicht in andere Werkzeuge integrieren lässt. Durch diese Integration kann
eine Interoperabilität dieser Werkzeuge erreicht werden, die beim Aufbau
heterogener Werkzeuglandschaften von großem Nutzen ist.

Das Hauptanwendungsgebiet für Modellsynchronisationen sind große Mo-
delle. Auf der Grundlage der prototypisch erstellten Werkzeuge wurden Lei-
stungsmessungen durchgeführt. Die Leistungsmessungen belegen, dass die
Modellsynchronisation mit dem hier vorgestellten Ansatz effizient durchführ-
bar ist und auch bei großen Modellen sehr gut skaliert. Damit konnte gezeigt
werden, dass die Synchronisation großer Modelle mit vertretbarem Aufwand
möglich ist.

Insgesamt haben wir in dieser Arbeit – aufbauend auf dem Ansatz der
Tripel-Graph-Grammatiken – eine Technik zur Modellsynchronisation vor-
geschlagen, mit der inkrementelle Modellsynchronisationen durchgängig mo-

253

Kapitel 9 Zusammenfassung und Ausblick

dellbasiert entwickelt und realisiert werden können. Mit der Bereitstellung
und Anwendung verschiedener Methoden, Notationen und Werkzeuge konnte
daher belegt werden, dass die Entwicklung von Werkzeugen zur inkrementel-
len Modellsynchronisation mit relativ geringem Aufwand möglich und prak-
tikabel ist.

9.2 Ausblick

Am Ende einer Arbeit bleiben immer Wünsche und Ideen übrig, die nicht
berücksichtigt werden konnten. So können beispielsweise sowohl der be-
schriebene Algorithmus zur Modellsynchronisation als auch die verwendete
Spezifikationstechnik in verschiedener Hinsicht erweitert und verbessert wer-
den. Einige dieser Ideen werden nachfolgend kurz vorgestellt.

Der in dieser Arbeit vorgestellte Algorithmus zur Modellsynchronisation
arbeit vollständig inkrementell und kann entweder automatisch nach jeder
Änderung oder auf Anforderung durch den Benutzer ausgeführt werden.
Darüber hinaus kann eine Modellsynchronisation bidirektional stattfinden.
Allerdings werden hierfür zwei unidirektionale Modellsynchronisationen in
entgegengesetzter Richtung ausgeführt, d. h., der Algorithmus wird für jede
Richtung separat ausgeführt. Hier wäre es jedoch wünschenswert, dass der
Algorithmus in der Lage ist, eine bidirektionale Modellsynchronisation in ei-
nem einzigen Schritt durchzuführen. Ein Problem hierbei entsteht jedoch,
wenn nicht sofort nach jeder Änderung synchronisiert wird, sondern ein Be-
nutzer Änderungen an beiden Modellen vornehmen kann, ohne dass er zwi-
schendurch die Modelle miteinander synchronisiert. In diesem Fall können
die vom Benutzer durchgeführten Änderungen zueinander in Konflikt stehen.
Hier ist zu untersuchen, wie solche Konflikte während einer Modellsynchro-
nisation erkannt und wie mit ihnen umgegangen wird. Die in dieser Arbeit
eingeführte Notation für Bedingungen ermöglicht bereits eine Erkennung von
Konflikten zwischen

”
parallel“ geänderten Attributwerten. In der Arbeit von

Simon Becker wurde ein Algorithmus mit Benutzerinteraktionen vorgestellt,
der mit Konflikten zwischen Regelanwendungen umgehen kann [Bec07]. Hier
wäre zu untersuchen, wie die beiden Ansätze miteinander kombiniert werden
könnten, um auch strukturelle Konflikte während eines einzigen Durchlaufs
einer Modellsynchronisation erkennen und beheben zu können.

Ein anderer möglicher Anknüpfpunkt für weiter gehende Untersuchun-
gen bildet die Spezifikationssprache selbst. In dieser Arbeit wurden TGGs
eingesetzt, um Beziehungen zwischen Modellen zu beschreiben, die in ihrer

254

9.2 Ausblick

Struktur sehr ähnlich sind. Für Modelle, die strukturell voneinander stark
abweichen, sind TGGs nicht so gut geeignet. Hier wäre zu untersuchen, wie
TGGs erweitert und mit anderen Ansätzen, wie z. B. operationalen Spezifi-
kationstechniken, zu einem hybriden Ansatz kombiniert werden können, um
die Ausdrucksstärke der TGGs zu erhöhen.

Bisher wurden TGGs in der abstrakten Syntax formuliert. Dadurch
können die TGG-Regeln – verglichen mit den zugehörigen Modellen in ih-
rer konkreten Syntax – sehr groß und unübersichtlich werden. Um diesem
Problem zu begegnen, haben wir in dieser Arbeit einen Ansatz zur Spezifika-
tion durch Beispielpaare vorgestellt, aus denen die TGG-Regeln automatisch
synthetisiert werden.

Als eine echte Alternative hierzu könnte sich eine direkte Spezifikation von
TGG-Regeln in der konkreten Syntax der beteiligten Modelle herausstellen.
Bisher war ein solcher Ansatz allerdings nicht praktikabel, da in Abhängig-
keit der beteiligten Modelle ein spezieller Regeleditor entwickelt werden mus-
ste, der die konkrete Syntax beider Modelle gleichzeitig unterstützt. Die ma-
nuelle Entwicklung eines solchen Editors ist mit erheblichem Aufwand ver-
bunden. Mit dem Aufkommen von Rahmenwerken wie z. B. EMF oder GMF
wird eine nahezu automatische Erzeugung graphischer Editoren ermöglicht.
Hier wäre zu untersuchen, inwieweit ein solcher – an die beteiligten Modelle
speziell angepasster – Regeleditor automatisch generiert werden kann. Dies
würde den Aufwand signifikant verringern und diesen Ansatz praktikabel
machen. Dies ist jedoch noch zu erforschen.

Ein weiteres, offenes Forschungsgebiet stellt die Validierung und Verifika-
tion von Modellsynchronisationen dar. Mit der Technik der TGGs werden
Korrespondenzbeziehungen zwischen zwei Modellen in einer lokalen Art und
Weise definiert, so dass auf dieser Grundlage beispielsweise ein Nachweis
der semantischen Korrektheit möglich ist. Ein erster Ansatz hierzu wurde
im Rahmen dieser Arbeit an einem Beispiel vorgestellt, bei dem ein I/O-
Automat in SPS-Code übersetzt wurde. Für umfangreichere Spezifikationen
und Szenarien, in denen alle hier vorgestellten Konzepte vorkommen, sind
jedoch weitere Untersuchungen notwendig. Dies gilt auch für Techniken zur
Validierung durch Tests.

255

Literatur

[AC07] Antkiewicz, Michal ; Czarnecki, Krzysztof: Design Space
of Heterogeneous Synchronization. In: Proceedings of 2nd Sum-
mer School on Generative and Transformational Techniques in
Software Engineering (GTTSE07), 2007, S. 1–41. – Draft sub-
mitted to post-proceedings.

[Alt08] Altan, Güzide S.: On the Usability of Triple Graph Gram-
mars for the Transformation of Business Process Models - An
Evaluation based on FUJABA, Technische Universität Wien,
Magisterarbeit, Januar 2008

[AMD] AndroMDA. http://www.andromda.org/. : AndroMDA.
http://www.andromda.org/. – Stand: Mai 2008

[ANRS06] Aizenbud-Reshef, N. ; Nolan, B. T. ; Rubin, J. ; Shaham-
Gafni, Y.: Model traceability. In: IBM System Journal 45
(2006), Juli, Nr. 3, S. 515–526

[ARC] Interactive Objects (Hrsg.): ArcStyler. http://www.

interactive-objects.com/. Interactive Objects. – Stand:
Mai 2008

[Aßm03] Aßmann, Uwe: Automatic Roundtrip Engineering. In: Elec-
tronic Notes in Theoretical Computer Science 82 (2003), April,
Nr. 5, S. 1–9

[ASU86] Aho, Alfred V. ; Sethi, Ravi ; Ullman, Jeffrey D.: Com-
pilers: Principles, Techniques, and Tools. Reading, MA :
Addison-Wesley, 1986

[Bak06] Baksmeier, Jörg: Inkrementelle Modellsynchronisation mit
Tripel-Graph-Grammatiken, Universität Paderborn, Diplomar-
beit, November 2006

257

http://www.andromda.org/
http://www.andromda.org/
http://www.interactive-objects.com/
http://www.interactive-objects.com/

Literatur

[Bal91] Balzer, Robert: Tolerating inconsistency. In: Proceedings
of the 13th international conference on Software engineering
(ICSE). Los Alamitos, CA, USA : IEEE Computer Society
Press, 1991, S. 158–165

[BDTM+06] Baudry, Benoit ; Dinh-Trong, Trung ; Mottu, Jean-Marie
; Simmonds, Devon ; France, Robert ; Ghosh, Sudipto ;
Fleurey, Franck ; Le Traon, Yves: Model transformation
testing challenges. In: Proceedings of ECMDA Workshop on
Integration of Model Driven Development and Model Driven
Testing, 2006

[Bec07] Becker, Simon M.: Integratoren zur Konsistenzsicherung von
Dokumenten in Entwicklungsprozessen, RWTH Aachen, Disser-
tation, 2007

[Bet03] Bettin, Jorn: Ideas for a Concrete Visual Syntax for Model-
to-Model Transformation. In: OOPSLA’03 Workshop on Gene-
rative Techniques in the Context of Model-Driven Architecture,
2003

[BGMT] Brun, Cedric ; Goubet, Laurent ; Musset, Jona-
than ; Toulme, Antoine ; The Eclipse Foundation
(Hrsg.): Eclipse Modeling Framework Technology Project -
EMF Compare. http://www.eclipse.org/modeling/emft/.
The Eclipse Foundation. – Stand: Mai 2008

[BGN+04] Burmester, Sven ; Giese, Holger ; Niere, Jörg ; Tichy,
Matthias ; Wadsack, Jörg P. ; Wagner, Robert ; Wende-
hals, Lothar ; Zündorf, Albert: Tool Integration at the
Meta-Model Level within the FUJABA Tool Suite. In: In-
ternational Journal on Software Tools for Technology Transfer
(STTT) 6 (2004), August, Nr. 3, S. 203–218

[BHP00] Bernstein, Phillip A. ; Halevy, Alon Y. ; Pottinger, Ra-
chel A.: A vision for management of complex models. In: SIG-
MOD Record (ACM Special Interest Group on Management of
Data) 29 (2000), Nr. 4, S. 55–63

[BLW04] Becker, Simon ; Lohmann, Sebastian ; Westfechtel,
Bernhard: Rule Execution in Graph-Based Incremental In-
teractive Integration Tools. In: Proc. Intl. Conf. on Graph

258

http://www.eclipse.org/modeling/emft/

Literatur

Transformations (ICGT 2004) Bd. 3256. Berlin/Heidelberg :
Springer-Verlag, 2004 (LNCS), S. 22–38

[Bor06] Borland GmbH (Hrsg.): Together Architect. http://www.

borland.com/us/products/together/. Borland GmbH, 2006.
– Stand: März 2007

[BW06] Baar, Thomas ; Whittle, Jon: On the Usage of Concrete
Syntax in Model Transformation Rules. In: 6th International
Andrei Ershov Memorial Conference Perspectives of System In-
formatics Bd. 4378. Berlin/Heidelberg : Springer-Verlag, Juni
2006 (Lecture Notes in Computer Science (LNCS)), S. 84–97

[CC90] Chikofsky, Elliot J. ; Cross II, James H.: Reverse Enginee-
ring and Design Recovery: A Taxonomy. In: IEEE Software 7
(1990), Januar, Nr. 1, S. 13–17

[Ceb07] Cebeci, Yascha: Spezifikation von Codetransformationen an-
hand konkreter Beispiele, Universität Paderborn, Studienar-
beit, August 2007

[CGP00] Clarke, Edmund M. ; Grumberg, Orna ; Peled, Doron A.:
Model Checking. The MIT Press, 2000

[CH03] Czarnecki, Krzysztof ; Helsen, Simon: Classification of Mo-
del Transformation Approaches. In: OOPSLA’03 Workshop on
Generative Techniques in the Context of Model-Driven Archi-
tecture, 2003

[CH06] Czarnecki, Krzysztof ; Helsen, Simon: Feature-based sur-
vey of model transformation approaches. In: IBM System Jour-
nal 45 (2006), July, Nr. 3

[CoG] Manyeta Informatics (Hrsg.): Codagen Architect.
http://www.manyeta.com/en/Technology/codagen_

architect_v3.2. Manyeta Informatics. – Stand: Mai
2008

[CS06] Claus, Volker ; Schwill, Andreas: Duden: Informatik A-Z.
Fachlexikon für Studium, Ausbildung und Beruf. 4. Auflage.
Mannheim, Leipzig, Wien, Zürich : Dudenverlag, 2006

259

http://www.borland.com/us/products/together/
http://www.borland.com/us/products/together/
http://www.manyeta.com/en/Technology/codagen_architect_v3.2
http://www.manyeta.com/en/Technology/codagen_architect_v3.2

Literatur

[Det06] Detten, Markus von: Template-basierte Codegenerierung für
Speicherprogrammierbare Steuerungen, Universität Paderborn,
Studienarbeit, April 2006

[DGS05] Demathieu, S. ; Griffin, C. ; Sendall, S.: Model Transfor-
mation with the IBM Model Transformation Framework. In:
developerWorks. IBM’s resource for developers. http://www.

ibm.com/developerworks/ (2005), Mai

[Dud06] Dudenredaktion (Hrsg.): Duden: Das Fremdwörterbuch.
Bd. 5. 9., aktualisierte Auflage. Mannheim, Leipzig, Wien,
Zürich : Dudenverlag, 2006

[EC01] Easterbrook, Steve ; Chechik, Marsha: 2nd international
workshop on living with inconsistency (IWLWI01). In: SIGS-
OFT Softw. Eng. Notes 26 (2001), Nr. 6, S. 76–78

[Eck07] Eckes, Raimund: Augmented Reality – basiertes Verfah-
ren zur Unterstützung des Anlaufprozesses von automatisierten
Fertigungssystemen, Universität Paderborn, Dissertation, April
2007

[EKHG01] Engels, Gregor ; Küster, Jochem M. ; Heckel, Reiko ;
Groenewegen, Luuk: A methodology for specifying and
analyzing consistency of object-oriented behavioral models. In:
SIGSOFT Softw. Eng. Notes 26 (2001), September, Nr. 5, S.
186–195

[EKT08] Ehrig, Karsten ; Küster, Jochen ; Taentzer, Gabriele: Ge-
nerating instance models from meta models. In: Software and
Systems Modeling (2008), Juli, S. 1–22. – Online First. DOI:
http://dx.doi.org/10.1007/s10270-008-0095-y

[ELI] Abstract Syntax Tree Unparsing. Eli Online Documents Version
4.4. http://eli-project.sourceforge.net/elionline/

idem_toc.html. : Abstract Syntax Tree Unparsing. Eli Online
Documents Version 4.4. http://eli-project.sourceforge.
net/elionline/idem_toc.html. – Stand: Mai 2008

[FBMT08] Fleurey, Franck ; Baudry, Benoit ; Muller, Pierre A. ;
Traon, Yves: Qualifying input test data for model transfor-
mations. In: Software and Systems Modeling (2008), Juli, S.

260

http://www.ibm.com/developerworks/
http://www.ibm.com/developerworks/
http://eli-project.sourceforge.net/elionline/idem_toc.html
http://eli-project.sourceforge.net/elionline/idem_toc.html
http://eli-project.sourceforge.net/elionline/idem_toc.html
http://eli-project.sourceforge.net/elionline/idem_toc.html

Literatur

1–19. – Online First. DOI: http://dx.doi.org/10.1007/s10270-
007-0074-8

[FBV06] Fabro, Marcos Didonet D. ; Bézivin, Jean ; Valduriez, Pa-
trick: Weaving Models with the Eclipse AMW plugin. In:
Eclipse Modeling Symposium, Eclipse Summit Europe 2006, Es-
slingen, Germany, 2006

[FNT98] Fischer, Thorsten ; Niere, Jörg ; Torunski, Lars: Konzep-
tion und Realisierung einer integrierten Entwicklungsumgebung
für UML, Java und Story-Driven-Modeling, Universität Pader-
born, Diplomarbeit, Juli 1998

[FNTZ98] Fischer, Thorsten ; Niere, Jörg ; Torunski, Lars ;
Zündorf, Albert: Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language. In: En-
gels, G. (Hrsg.) ; Rozenberg, G. (Hrsg.): Proceedings of
the 6th International Workshop on Theory and Application of
Graph Transformation (TAGT), Paderborn, Germany. Ber-
lin/Heidelberg : Springer-Verlag, November 1998 (LNCS 1764),
S. 296–309

[Fra06] France Telecom (Hrsg.): SmartQVT: An open
source model transformation tool implementing the MOF
2.0 QVT-Operational language. http://smartqvt.elibel.

tm.fr/. France Telecom, 2006. – Stand: März 2007)

[FSB04] Fleurey, Franck ; Steel, Jim ; Baudry, Benoit: Validation
in Model-Driven Engineering: Testing Model Transformations.
In: Proceedings of the First International Workshop on Model,
Design and Validation., 2004, S. 29–40

[Fuj] University of Paderborn, Germany (Hrsg.): Fujaba Tool
Suite. http://www.fujaba.de/. University of Paderborn, Ger-
many. – Stand: November 2007

[Geb06] Geburzi, Alexander: Synthese von Modelltransformations-
regeln aus Übersetzungsbeispielen, Universität Paderborn, Di-
plomarbeit, November 2006

261

http://smartqvt.elibel.tm.fr/
http://smartqvt.elibel.tm.fr/
http://www.fujaba.de/

Literatur

[GGL+06] Giese, Holger ; Glesner, Sabine ; Leitner, Johannes ;
Schäfer, Wilhelm ; Wagner, Robert: Towards Verified Mo-
del Transformations. In: Hearnden, David (Hrsg.) ; Süß,
Jörn Guy (Hrsg.) ; Baudry, Benôıt (Hrsg.) ; Rapin, Nico-
las (Hrsg.): Proceedings of the 3rd International Workshop on
Model Development, Validation and Verification (MoDeV2a),
Genova, Italy, Le Commissariat à l’Energie Atomique - CEA,
October 2006, S. 78–93

[GH08] Giese, Holger ; Hildebrandt, Stephan: Incremental model
synchronization for multiple updates. In: International Work-
shop on Graph and Model Transformations (GRaMoT). New
York, NY, USA : ACM, 2008, S. 1–8

[GHJV94] Gamma, Erich ; Helm, Richard ; Johnson, Ralph ; Vlis-
sides, John: Design Patterns, Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994

[GL04] Guerra, Esther ; Lara, Juan de: Event-Driven Grammars:
Towards the Integration of Meta-Modelling and Graph Trans-
formation. In: International Conference on Graph Transfor-
mation (ICGT’2004) Bd. 3265. Berlin/Heidelberg : Springer-
Verlag, 2004 (LNCS), S. 54–69

[GM80] Ghezzi, Carlo ; Mandrioli, Dino: Augmenting Parsers to
Support Incrementality. In: Journal of the ACM 27 (1980),
Juli, Nr. 3, S. 564–579

[GMW06] Giese, Holger ; Meyer, Matthias ; Wagner, Robert: A
Prototype for Guideline Checking and Model Transformation in
Matlab/Simulink. In: Giese, Holger (Hrsg.) ; Westfechtel,
Bernhard (Hrsg.): Proceedings of the 4th International Fujaba
Days 2006, Bayreuth, Germany Bd. tr-ri-06-275, University of
Paderborn, September 2006 (Technical Report)

[GPR05] Gruhn, Volker ; Pieper, Daniel ; Röttgers, Carsten: MDA
- Effektives Siftware-Engineering mit UML 2 und Eclipse. Ber-
lin/Heidelberg : Springer-Verlag, 2005

[Gre06] Greenyer, Joel: A Study of Model Transformation Techno-
logies: Reconciling TGGs with QVT, Universität Paderborn,
Diplomarbeit, July 2006

262

Literatur

[Gri04] Griffin, Catherine ; IBM alphaWorks (Hrsg.): Model
Transformation Framework (MTF). http://www.alphaworks.
ibm.com/tech/mtf/. IBM alphaWorks, 2004. – Stand: Mai
2008

[GSCK04] Greenfield, Jack ; Short, Keith ; Cook, Steve ; Kent,
Stuart: Software Factories: Assembling Applications with Pat-
terns, Models, Frameworks, and Tools. Wiley, 2004

[GW09] Giese, Holger ; Wagner, Robert: From model transforma-
tion to incremental bidirectional model synchronization. In:
Software and Systems Modeling 8 (2009), Februar, Nr. 1, S.
21–43. – Online First. DOI: http://dx.doi.org/10.1007/

s10270-008-0089-9

[Her03] Herrington, Jack: Code Generation in Action. Manning
Publications, 2003

[Hil07] Hildebrandt, Stephan: Effiziente Modellsynchronisation
mit Tripel-Graph-Grammatiken durch Wiederverwendung von
Transformationsergebnissen, Hasso-Plattner-Institut für Soft-
waresystemtechnik GmbH, Masterarbeit, Oktober 2007

[HL03] Henriksson, Anders ; Larsson, Henrik: A definition of
round-trip engineering / Universität Linkopings. 2003. – For-
schungsbericht

[HLR06] Hearnden, David ; Lawley, Michael ; Raymond, Kerry:
Incremental Model Transformation for the Evolution of Model-
Driven Systems. In: Nierstrasz, Oscar (Hrsg.) ; Whittle,
Jon (Hrsg.) ; Harel, David (Hrsg.) ; Reggio, Gianna (Hrsg.):
Model Driven Engineering Languages and Systems, 9th Inter-
national Conference, MoDELS 2006, Genova, Italy, October
1-6, 2006, Proceedings Bd. 4199. Berlin/Heidelberg : Springer-
Verlag, Oktober 2006 (Lecture Notes in Computer Science), S.
321–335

[HR00] Harel, David ; Rumpe, Bernhard: Modeling Languages: Syn-
tax, Semantics and All That Stuff, Part I: The Basic Stuff /
The Weizmann Institute of Science. Weizmann Science Press
of Israel, August 2000 (MCS00-16). – Forschungsbericht

263

http://www.alphaworks.ibm.com/tech/mtf/
http://www.alphaworks.ibm.com/tech/mtf/
http://dx.doi.org/10.1007/s10270-008-0089-9
http://dx.doi.org/10.1007/s10270-008-0089-9

Literatur

[IBM] IBM (Hrsg.): Rational Rose Developer for Java.
http://www-306.ibm.com/software/awdtools/developer/

rose/java/. IBM. – Stand: März 2007

[IEC03] International Electrotechnical Commission (IEC)
(Hrsg.): Speicherprogrammierbare Steuerungen, Teil 3: Pro-
grammiersprachen. (IEC 61131-3:2003) Deutsche Fassung DIN
EN 61131-3:2003. International Electrotechnical Commission
(IEC), 2003

[IEE90] IEEE Computer Society (Hrsg.): Standard Glossary of
Software Engineering Terminology. IEEE Computer Society,
1990. – IEEE 610.12-1990

[IK04a] Ivkovic, Igor ; Kontogiannis, Kostas: Model synchroni-
zation as a problem of maximizing model dependencies. In:
OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages,
and applications. New York, NY, USA : ACM Press, 2004, S.
222–223

[IK04b] Ivkovic, Igor ; Kontogiannis, Kostas: Tracing Evolution
Changes of Software Artifacts through Model Synchronization.
In: ICSM ’04: Proceedings of the 20th IEEE International
Conference on Software Maintenance. Washington, DC, USA :
IEEE Computer Society, 2004, S. 252–261

[IKV] ikv++ technologies ag (Hrsg.): medini QVT. http://

www.ikv.de/. ikv++ technologies ag. – Stand: Dezember 2008

[ITU96] International Telecommunication Union (ITU), Ge-
neva (Hrsg.): ITU-T Recommendation Z.100: Specification
and Description Language (SDL). International Telecommuni-
cation Union (ITU), Geneva, 1994 + Addendum 1996

[Jam] The Jamda Project. http://jamda.sourceforge.net/. : The
Jamda Project. http://jamda.sourceforge.net/. – Stand:
Mai 2008

[JCC] Java Compiler Compiler - The Java Parser Generator. https:
//javacc.dev.java.net/doc/. : Java Compiler Compiler -

264

http://www-306.ibm.com/software/awdtools/developer/rose/java/
http://www-306.ibm.com/software/awdtools/developer/rose/java/
http://www.ikv.de/
http://www.ikv.de/
http://jamda.sourceforge.net/
http://jamda.sourceforge.net/
https://javacc.dev.java.net/doc/
https://javacc.dev.java.net/doc/

Literatur

The Java Parser Generator. https://javacc.dev.java.net/
doc/. – Stand: Mai 2008

[JDT] The Eclipse Foundation (Hrsg.): Java Development Tools.
http://www.eclipse.org/jdt/. The Eclipse Foundation. –
Stand: Mai 2008

[JET] The Eclipse Foundation (Hrsg.): Java Emitter Templa-
tes. http://www.eclipse.org/modeling/m2t/. The Eclipse
Foundation. – Stand: Mai 2008

[JTB] UCLA Compilers Group (Hrsg.): Java TreeBuilder. http:
//compilers.cs.ucla.edu/jtb/. UCLA Compilers Group. –
Stand: Mai 2008

[KA06] Küster, Jochen M. ; Abd-El-Razik, Mohamed: Validation
of Model Transformations - First Experiences using a White
Box Approach. In: Proceedings of the 3rd Workshop on Model
Design and Validation (MoDeV2a), 2006, S. 62–77

[Kas94] Kastens, Uwe: Construction of application generators using
Eli / Universität Paderborn. 1994 (Reihe Informatik tr-ri-94-
143). – Forschungsbericht

[KC05a] Kim, Chang Hwan P. ; Czarnecki, Krzysztof: Synchroni-
zing Cardinality-Based Feature Models and Their Specializati-
ons. In: Hartman, Alan (Hrsg.) ; Kreische, David (Hrsg.):
Proceedings of the First European Conference on Model Dri-
ven Architecture - Foundations and Applications (ECMDA-
FA), Nuremberg, Germany, November 7-10 Bd. 3748, Springer-
Verlag, November 2005 (Lecture Notes in Computer Science),
S. 331–348

[KC05b] Kim, Chang Hwan P. ; Czarnecki, Krzysztof: Synchronizing
Cardinality-Based Feature Models and Their Specializations.
In: Hartman, Alan (Hrsg.) ; Kreische, David (Hrsg.): Model
Driven Architecture - Foundations and Applications, First Eu-
ropean Conference, ECMDA-FA 2005, Nuremberg, Germany,
November 7-10, 2005, Proceedings Bd. 3748. Berlin/Heidelberg
: Springer-Verlag, November 2005 (Lecture Notes in Computer
Science), S. 331–348

265

https://javacc.dev.java.net/doc/
https://javacc.dev.java.net/doc/
http://www.eclipse.org/jdt/
http://www.eclipse.org/modeling/m2t/
http://compilers.cs.ucla.edu/jtb/
http://compilers.cs.ucla.edu/jtb/

Literatur

[KE96] Kemper, Alfons ; Eickler, André: Datenbanksysteme: Eine
Einführung. München, Wien : Oldenbourg, 1996

[KHE03] Küster, J. M. ; Heckel, R. ; Engels, G.: Defining and
validating transformations of UML models. In: Proceedings
of the 2003 IEEE Symposium on Human Centric Computing
Languages and Environments (HCC). Washington, DC, USA :
IEEE Computer Society, 2003, S. 145–152

[KKS07] Klar, Felix ; Königs, Alexander ; Schürr, Andy: Model
Transformation in the Large. In: Proceedings of the the 6th joint
meeting of the European software engineering conference and
the ACM SIGSOFT symposium on the foundations of software
engineering. New York, NY, USA : ACM Press, 2007, S. 285–
294

[KL03] Kort, Jan ; Lammel, Ralf: Parse-Tree Annotations Meet Re-
Engineering Concerns. In: Proceedings of the 3rd IEEE Inter-
national Workshop on Source Code Analysis and Manipulation
(SCAM) (2003), S. 161–171

[Kön08] Königs, Alexander: Model Integration and Transformation –
A Triple Graph Grammar-based QVT Implementation, Techni-
sche Universität Darmstadt, Dissertation, 2008

[Kön07] Könemann, Patrick: Verbesserung eines modellbasierten Soft-
wareentwicklungsprozesses mit Hilfe von Modellsynchronisa-
tion, Universität Paderborn,Diplomarbeit, Diplomarbeit, März
2007

[KR04] Kardos, Martin ; Rammig, Franz J.: Model Based Formal
Verification of Distributed Production Control Systems. In:
Ehrig, H. (Hrsg.) ; Damm, W. (Hrsg.) ; Desel, J. (Hrsg.) ;
Gros̈e-Rhode, M. (Hrsg.) ; Reif, W. (Hrsg.) ; Schnieder,
E. (Hrsg.) ; Westkämper, E. (Hrsg.): Integration of Software
Specification Techniques for Applications in Engineering Bd.
3147. Berlin/Heidelberg : Springer-Verlag, September 2004, S.
451–473

[KRW04] Kindler, Ekkart ; Rubin, Vladimir ; Wagner, Robert: An
Adaptable TGG Interpreter for In-Memory Model Transfor-

266

Literatur

mation. In: Proceedings of the Fujaba Days 2004. Darmstadt,
Germany, September 2004, S. 35–38

[KS06] Königs, A. ; Schürr, A.: Tool Integration with Triple Graph
Grammars - A Survey. In: Heckel, R. (Hrsg.): Proceedings of
the SegraVis School on Foundations of Visual Modelling Tech-
niques Bd. 148. Amsterdam : Elsevier Science Publ., 2006
(Electronic Notes in Theoretical Computer Science 1), S. 113–
150

[Küs04a] Küster, Jochen M.: Consistency Management of Object-
Oriented Behavioral Models, Universität Paderborn, Disserta-
tion, März 2004

[Küs04b] Küster, Jochen M.: Systematic Validation of Model Transfor-
mations. In: Proceedings of the 3rd UML Workshop in Software
Model Engineering (WiSME 2004), 2004

[KW07] Kindler, Ekkart ; Wagner, Robert: Triple Graph Gram-
mars: Concepts, Extensions, Implementations, and Application
Scenarios / Universität Paderborn. 2007 (Reihe Informatik tr-
ri-07-284). – Forschungsbericht. – 75 S.

[Lef95] Lefering, Martin: Integrationswerkzeuge in einer Software-
entwicklungsumgebung, RWTH Aachen, Dissertation, 1995

[Lei06] Leitner, Johannes: Verifikation von Modelltransformationen
basierend auf Triple Graph Grammatiken, Universität Karls-
ruhe, Diplomarbeit, März 2006

[LEO08] Lambers, Leen ; Ehrig, Hartmut ; Orejas, Fernando: Effi-
cient Conflict Detection in Graph Transformation Systems by
Essential Critical Pairs. In: Electr. Notes Theor. Comput. Sci.
211 (2008), S. 17–26

[LS96] Lefering, Martin ; Schürr, Andy: Specification of Inte-
gration Tools. In: Nagl, Manfred (Hrsg.): Building Thightly-
Integrated (Software) Development Environments: The IPSEN
Approach Bd. 1170. Berlin/Heidelberg : Springer-Verlag, 1996
(Lecture Notes in Computer Science), S. 324–334

267

Literatur

[LT89] Lynch, Nancy A. ; Tuttle, Mark R.: An Introduction to
Input/Output Automata. In: CWI Quarterly 2 (1989), Nr. 3,
S. 219–249

[LTM+04] Lau, Terence C. ; Tong, Tack ; Mckegney, Ross ; Konto-
giannis, Kostas ; Ivkovic, Igor ; Liew, Philip ; Zou, Ying ;
Zhang, Qi ; Hung, Maokeng: Model synchronization for effi-
cient software application maintenance. In: Proceedings of the
20th IEEE International Conference on Software Maintenance,
11-14 September, 2004 (2004), S. 1

[LVA04] Lara, Juan de ; Vangheluwe, Hans ; Alfonseca, Manuel:
Meta-modelling and graph grammars for multi-paradigm mo-
delling in AToM3. In: Software and Systems Modeling 3 (2004),
Nr. 3, S. 194–209

[LZG05] Lin, Yuehua ; Zhang, Jing ; Gray, Jeff: A Testing Fra-
mework for Model Transformations. In: Beydeda, Sami
(Hrsg.) ; Book, Matthias (Hrsg.) ; Gruhn, Volker (Hrsg.):
Model-Driven Software Development, Springer-Verlag, Dezem-
ber 2005, S. 219–236

[M2M] The Eclipse Foundation (Hrsg.): M2M-Projekt: Operatio-
nal QVT. http://www.eclipse.org/m2m/. The Eclipse Foun-
dation. – Stand: Dezember 2008

[MB03] Marschall, Frank ; Braun, Peter: Model Transformations
for the MDA with BOTL. In: Proceedings of the Workshop
on Model Driven Architecture: Foundations and Applications.
Univeristy of Twente, June 2003 (CTIT Technical Report TR-
CTIT-03-27)

[MG05] Mens, Tom ; Gorp, Pieter V.: A Taxonomy of Model Trans-
formation. In: International Workshop on Graph and Model
Transformation (GraMoT). Tallinn, Estonia, September 2005

[MG06] Mens, Tom ; Gorp, Pieter V.: A Taxonomy of Model
Transformation. In: Electronic Notes in Theoretical Compu-
ter Science 152 (2006), März, S. 125–142

268

http://www.eclipse.org/m2m/

Literatur

[Mor] Tata Consultancy Services (Hrsg.): ModelMorf. http://
www.tcs-trddc.com/ModelMorf/. Tata Consultancy Services.
– Stand: Mai 2008

[MTT08] Object Management Group (Hrsg.): MOF Model to
Text Transformation Language 1.0 (MOFM2T). 140 Kend-
rick Street, Needham, MA 02494, USA: Object Management
Group, Januar 2008. – Document formal/2008-01-16

[NER00] Nuseibeh, Bashar ; Easterbrook, Steve ; Russo, Alessan-
dra: Leveraging Inconsistency in Software Development. In:
Computer 33 (2000), Nr. 4, S. 24–29

[NK08a] Narayanan, Anantha ; Karsai, Gabor: Towards Verifying
Model Transformations. 211 (2008), April, S. 191–200

[NK08b] Narayanan, Anantha ; Karsai, Gabor: Verifying Model
Transformations by Structural Correspondence. In: Electronic
Communications of the EASST 10 (2008), S. 1–14

[NNZ00] Nickel, Ulrich A. ; Niere, Jörg ; Zündorf, Albert: Tool de-
monstration: The FUJABA environment. In: Proc. of the 22nd

International Conference on Software Engineering (ICSE), Li-
merick, Ireland, ACM Press, 2000, S. 742–745

[NSW+02] Niere, Jörg ; Schäfer, Wilhelm ; Wadsack, Jörg P. ; Wen-
dehals, Lothar ; Welsh, Jim: Towards Pattern-Based Design
Recovery. In: Proceedings of the 24th International Conference
on Software Engineering (ICSE), Orlando, Florida, USA, ACM
Press, Mai 2002, S. 338–348

[NSZ03] Nickel, Ulrich A. ; Schäfer, Wilhelm ; Zündorf, Al-
bert: Integrative Specification of Distributed Production
Control Systems for Flexible Automated Manufacturing. In:
Nagl, Manfred (Hrsg.) ; Westfechtel, Bernhard (Hrsg.):
DFG Workshop: Modelle, Werkzeuge und Infrastrukturen zur
Unterstützung von Entwicklungsprozessen, Wiley-VCH Verlag
GmbH and Co. KGaA, 2003, S. 179–195

[OAW] openArchitectureWare Generator Framework (oAW). http:

//www.openarchitectureware.org/. : openArchi-

269

http://www.tcs-trddc.com/ModelMorf/
http://www.tcs-trddc.com/ModelMorf/
http://www.openarchitectureware.org/
http://www.openarchitectureware.org/

Literatur

tectureWare Generator Framework (oAW). http://www.

openarchitectureware.org/. – Stand: Mai 2008

[OMG04] Object Management Group (Hrsg.): UML Profile for
enterprise distributed Object Computing (EDOC) - Metamodel
and UML Profile for Java and EJB, v1.0. 140 Kendrick Street,
Needham, MA 02494, USA: Object Management Group, Fe-
bruar 2004. – Document formal/04-02-02

[OpJ] Compuware (Hrsg.): OptimalJ. http://www.compuware.de/
products/optimalj/. Compuware. – Stand: Mai 2008

[Par07] Parr, Terence: The Definitive ANTLR Reference: Building
Domain-Specific Languages. Raleigh, North Carolina : The
Pragmatic Bookshelf, 2007

[PMD05] Paesschen, Ellen V. ; Meuter, Wolfgang D. ; D’Hondt,
Maja: SelfSync: A Dynamic Round-Trip Engineering Environ-
ment. In: Briand, Lionel C. (Hrsg.) ; Williams, Clay (Hrsg.):
Model Driven Engineering Languages and Systems, 8th Inter-
national Conference, MoDELS 2005, Montego Bay, Jamaica,
October 2-7, 2005, Proceedings Bd. 3713. Berlin/Heidelberg :
Springer-Verlag, 2005 (Lecture Notes in Computer Science), S.
633–647

[Pra71] Pratt, Terrence W.: Pair Grammars, Graph Languages, and
String-to-Graph-Translations. In: Journal of Computer and
System Sciences 5 (1971), S. 560–595

[PSS98] Pnueli, A. ; Siegel, M. ; Singerman, E.: Translation va-
lidation. In: Steffen, B. (Hrsg.): Proceedings of Tools and
Algorithms for the Construction and Analysis of Systems Bd.
1384. Berlin/Heidelberg : Springer-Verlag, April 1998 (Lecture
Notes in Computer Science (LNCS)), S. 151–166

[QVT08] Object Management Group (Hrsg.): Meta Object Facility
(MOF) 2.0 Query/View/Transformation Specification, Version
1.0. 140 Kendrick Street, Needham, MA 02494, USA: Object
Management Group, April 2008. – Document formal/2008-04-
03

270

http://www.openarchitectureware.org/
http://www.openarchitectureware.org/
http://www.compuware.de/products/optimalj/
http://www.compuware.de/products/optimalj/

Literatur

[RFP03] Object Management Group (Hrsg.): OMG/RFP/QVT
MOF 2.0 Query/Views/Transformations RFP. http://www.

omg.org/mda/. Object Management Group, 2003

[RKRS05] Reiter, Th. ; Kapsammer, E. ; Retschitzegger, W. ;
Schwinger, W.: Model Integration Through Mega Operati-
ons. In: Workshop on Model-driven Web Engineering (2005)
(2005)

[Roh06] Rohe, Oliver: Model Transformation by Interpreting Triple
Graph Grammars: Evaluation and Case Study, Universität Pa-
derborn, Studienarbeit, Januar 2006

[Roz97] Rozenberg, Grzegorz (Hrsg.): Handbook of Graph Grammars
and Computing by Graph Transformation. Bd. 1. Singapore :
World Scientific, 1997

[Sch94] Schürr, Andy: Specification of Graph Translators with Triple
Graph Grammars. In: Tinhofer, G. (Hrsg.): Proceedings of
the 20th International Workshop on Graph-Theoretic Concepts
in Computer Science Bd. 903. Heidelberg : Spinger-Verlag,
Juni 1994 (Lecture Notes in Computer Science (LNCS)), S.
151–163

[SK04] Sendall, Shane ; Küster, Jochen: Taming Model Round-
Trip Engineering. In: Proceedings of Workshop on Best Practi-
ces for Model-Driven Software Development (part of 19th An-
nual ACM Conference on Object-Oriented Programming, Sy-
stems, Languages, and Applications), Vancouver, Canada, 2004

[SK08] Schürr, Andy ; Klar, Felix: 15 Years of Triple Graph Gram-
mars - Research Challenges, New Contributions, Open Pro-
blems. In: Ehrig, Hartmut (Hrsg.) ; Heckel, Reiko (Hrsg.) ;
Rozenberg, Grzegorz (Hrsg.) ; Taentzer, Gabriele (Hrsg.):
Proc. of the 4th International Conference on Graph Transfor-
mations (ICGT), Leicester, United Kingdom Bd. 5214. Ber-
lin/Heidelberg : Springer-Verlag, September 2008 (Lecture No-
tes in Computer Science (LNCS)), S. 411–425

[SS05] Saito, Yasushi ; Shapiro, Marc: Optimistic replication. In:
ACM Comput. Surv. 37 (2005), March, Nr. 1, S. 42–81

271

http://www.omg.org/mda/
http://www.omg.org/mda/

Literatur

[SWGE04] Schäfer, Wilhelm ; Wagner, Robert ; Gausemeier, Jürgen
; Eckes, Raimund: An Engineer’s Workstation to support In-
tegrated Development of Flexible Production Control Systems.
In: Ehrig, H. (Hrsg.) ; Damm, W. (Hrsg.) ; Desel, J. (Hrsg.)
; Gros̈e-Rhode, M. (Hrsg.) ; Reif, W. (Hrsg.) ; Schnieder,
E. (Hrsg.) ; Westkämper, E. (Hrsg.): Integration of Software
Specification Techniques for Applications in Engineering Bd.
3147. Berlin/Heidelberg : Springer-Verlag, September 2004, S.
48–68

[SWZ99] Schürr, A. ; Winter, A. J. ; Zündorf, A.: The PROGRES
approach: language and environment. (1999), S. 487–550

[SZK04] Song, Guanglei ; Zhang, Kang ; Kong, Jun: Model Ma-
nagement Through Graph Transformation. In: VLHCC ’04:
Proceedings of the 2004 IEEE Symposium on Visual Languages
- Human Centric Computing (VLHCC’04). Washington, DC,
USA : IEEE Computer Society, 2004, S. 75–82

[Tan95] Tanenbaum, Andrew S.: Moderne Betriebssysteme. 2. Auf-
lage. München, Wien, London : Carl Hanser und Prentice-Hall
International, 1995

[TBWK07] Treude, Christoph ; Berlik, Stefan ; Wenzel, Sven ; Kel-
ter, Udo: Difference computation of large models. In: ESEC-
FSE ’07: Proceedings of the the 6th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. New
York, NY, USA : ACM, 2007, S. 295–304

[TXL] The TXL Programming Language http://www.txl.ca/. : The
TXL Programming Language http://www.txl.ca/. – Stand:
Mai 2008

[UML05] Object Management Group (OMG) (Hrsg.): Unified Mo-
deling Language: Superstructure Version 2.0. 140 Kendrick
Street, Needham, MA 02494, USA: Object Management Group
(OMG), August 2005. – Document formal/05-07-04

[Var06] Varró, Dániel: Model Transformation by Example. In: Nier-
strasz, Oscar (Hrsg.) ; Whittle, Jon (Hrsg.) ; Harel, Da-
vid (Hrsg.) ; Reggio, Gianna (Hrsg.): Proc. 9th International

272

http://www.txl.ca/
http://www.txl.ca/

Literatur

Conference on Model Driven Engineering Languages and Sy-
stems, MoDELS 2006, Genova, Italy, October 1-6, 2006. Bd.
4199. Berlin/Heidelberg : Springer-Verlag, Oktober 2006 (Lec-
ture Notes in Computer Science), S. 410–424

[VAS04] Vizhanyo, Attila ; Agrawal, Aditya ; Shi, Feng: Towards
Generation of Efficient Transformations. In: Karsai, Gabor
(Hrsg.) ; Visser, Eelco (Hrsg.): Generative Programming and
Component Engineering: Proceedings of the Third Internatio-
nal Conference (GPCE), Vancouver, Canada Bd. 3286. Ber-
lin/Heidelberg : Springer-Verlag, Oktober 2004 (Lecture Notes
in Computer Science (LNCS)), S. 298–316

[Vas06] Vasarhelyi, Arpad: Lösungsansätze für Modelltransformatio-
nen in einem Softwareentwicklungsprozess auf Basis des opPro-
zesses, Hochschule Darmstadt, Masterarbeit, April 2006

[VP03] Varró, Dániel ; Pataricza, András: Automated Formal Ve-
rification of Model Transformations. In: Jürjens, Jan (Hrsg.)
; Rumpe, Bernhard (Hrsg.) ; France, Robert (Hrsg.) ; Fern-
andez, Eduardo B. (Hrsg.): CSDUML 2003: Critical Systems
Development in UML; Proceedings of the UML’03 Workshop,
Technische Universität München, September 2003 (Technical
Report TUM-I0323), S. 63–78

[VTE] Apache Software Foundation (Hrsg.): The Apache Ve-
locity Project. http://velocity.apache.org/. Apache Soft-
ware Foundation. – Stand: Mai 2008

[VVP02] Varró, Dániel ; Varró, Gergely ; Pataricza, András: Desi-
gning the Automatic Transformation of Visual Languages. In:
Science of Computer Programming 44 (2002), August, Nr. 2,
S. 205–227

[W3C99] W3C (Hrsg.): XSL Transformations (XSLT) Version 1.0.
http://www.w3.org/TR/xslt/. W3C, November 1999. –
Stand: November 2007

[WG98] Wagner, Tim A. ; Graham, Susan L.: Efficient and flexible
incremental parsing. In: Transactions on Programming Lan-
guages and Systems 20 (1998), Nr. 5, S. 980–1013

273

http://velocity.apache.org/
http://www.w3.org/TR/xslt/

Literatur

[Wik07] Wikipedia (Hrsg.): Wikipedia - The Free Encyclopedia. http:
//en.wikipedia.org/. Wikipedia, 2007. – Stand: Dezember
2007

[Wil03] Willink, Edward D.: UMLX: A graphical transformation
language for MDA. In: MDAFA’03. Entschede, Netherlands,
September 2003, S. 13–24

[WR99] Wile, David S. ; Ramming, J. C.: Guest Editorial: In-
troduction to the Special Section “Domain-Specfic Languages
(DSL)”. In: IEEE Transactions on Software Engineering 25
(1999), Mai/Juni, Nr. 3, S. 289–290

[WSKK07] Wimmer, Manuel ; Strommer, Michael ; Kargl, Horst ;
Kramler, Gerhard: Towards Model Transformation Genera-
tion By-Example. In: Proc. of 40th Hawaii International Con-
ference on System Sciences (HICSS’07), Hawaii, USA. Los
Alamitos, CA, USA : IEEE Computer Society, Januar 2007
(System Sciences, 2007. HICSS 2007.), S. 285

[XLH+07] Xiong, Yingfei ; Liu, Dongxi ; Hu, Zhenjiang ; Zhao, Haiyan
; Takeichi, Masato ; Mei, Hong: Towards automatic mo-
del synchronization from model transformations. In: ASE
’07: Proceedings of the twenty-second IEEE/ACM internatio-
nal conference on Automated software engineering. New York,
NY, USA : ACM, 2007, S. 164–173

[Zün01] Zündorf, Albert: Rigorous Object Oriented Software Deve-
lopment. University of Paderborn, 2001. – Habilitation

274

http://en.wikipedia.org/
http://en.wikipedia.org/

Anhang A

Beispielspezifikationen

An dieser Stelle sind einige ausgewählte Beispielspezifikationen aufgeführt.
Diese Spezifikationen wurden bereits in Ausschnitten in den vorangegange-
nen Kapiteln zur Illustration der TGGs verwendet. Hier sind die Beispiele
vollständig aufgeführt.

A.1 Block- und Klassendiagramme

Die zur Spezifikation der Korrespondezregeln benötigten Metamodelle sind
in den Abbildungen A.1-A.4 abgebildet. Die zur Modellsynchronisation
benötigten Korrespondenzregeln werden in den Abbildungen A.5-A.11 dar-
gestellt.

0..*

elements

0..*

0..1

Process

0..*

target

source

BlockDiagram ASGDiagram

ASGElement

+ name : String

0..*

Object

Connectable Connection
0..1

Block System

Abbildung A.1: Metamodell für Blockdiagramme

275

Anhang A Beispielspezifikationen

0
..
1

e
le
m
e
n
ts

0
..
*

0
..
1

U
M
L
D
e
c
la
ra
ti
o
n

+
 v
is
ib
ili
ty
 :
 I
n
te
g
e
r

0
..
1

ri
g
h
tR
o
le

le
ft
R
o
le

A
S
G
D
ia
g
ra
m

A
S
G
E
le
m
e
n
t

+
 n
a
m
e
 :
 S
tr
in
g

0
..
*

O
b
je
c
t

U
M
L
D
ia
g
ra
m
It
e
m

U
M
L
In
c
re
m
e
n
t

0
..
1

U
M
L
C
o
n
n
e
c
ti
o
n

U
M
L
C
la
s
s
D
ia
g
ra
m

U
M
L
G
e
n
e
ra
li
z
a
ti
o
n

U
M
L
R
o
le

+
 a
d
o
rn
m
e
n
t
:
In
te
g
e
r

U
M
L
A
tt
r

+
 s
ta
ti
c
 :
 B
o
o
le
a
n

U
M
L
P
a
ra
m

U
M
L
C
la
s
s

+
 a
b
s
tr
a
c
t
:
B
o
o
le
a
n0
..
*

0
..
*

0
..
1s
u
b
c
la
s
s

s
u
p
e
rc
la
s
s 0
..
1

ta
rg
e
t

0
..
1

0
..
1

0
..
*

0
..
1

p
a
ra
m

U
M
L
A
s
s
o
c

+
 d
ir
e
c
ti
o
n
 :
 I
n
te
g
e
r

U
M
L
C
a
rd
in
a
li
ty

+
 c
a
rd
S
tr
in
g
 :
 S
tr
in
g

c
a
rd

0
..
1

0
..
*

U
M
L
S
te
re
o
ty
p
e

n
a
m
e

s
te
re
o
ty
p
e
s

0
..
*

0
..
1

a
tt
rs

0
..
*

0
..
1

m
e
th
o
d
s

0
..
*

0
..
1

<
<
in
te
rf
a
c
e
>
>

U
M
L
T
y
p
e

re
s
u
lt
T
y
p
e

0
..
1

U
M
L
M
e
th
o
d

+
 a
b
s
tr
a
c
t
:
B
o
o
le
a
n

p
a
ra
m
T
y
p
e

0
..
1

0
..
1

a
tt
rT
y
p
e

Abbildung A.2: Metamodell für Klassendiagramme

276

A.1 Block- und Klassendiagramme

TGGNode Object

CorrConnectableCorrAxiom

CorrBlock CorrProcess

CorrSystem

CorrConnection

sources

targets

0..*

0..*

Abbildung A.3: Technisches Korrespondenzmetamodell

Connection

BlockDiagram

Block

System

UMLClassDiagram

UMLAssoc

UMLRole

CorrConnection

CorrAxiom

CorrBlock

CorrSystem

blockdiagram classdiagramcorrespondence

UMLClass

Process CorrProcess UMLClass

UMLAssoc

UMLRole

1

1

1

2

2

2

1

1

11

1

1

1

1

1

Abbildung A.4: Konzeptionelles Korrespondenzmetamodell

277

Anhang A Beispielspezifikationen

corrAxiom:CorrAxiom

«create» «create»
«create»«create»

sources

«create»

targets

{blockdiagram.getName().equals(classdiagram.getName())}

blockdiagram:BlockDiagram

name := classdiagram.getName()

classdiagram:UMLClassDiagram

name := blockdiagram.getName()

Abbildung A.5: TGG-Axiom: BlockdiagramToClassdiagram

corrAxiom:CorrAxiom
sources targets

blockdiagram:BlockDiagram classdiagram:UMLClassDiagram

corrSystem:CorrSystem

«create» «create»
«create»«create»

sources

«create»

targets

{system.getName().equals(clazz.getName())}

system:System

name := clazz.getName()

clazz:UMLClass

name := system.getName()

«create»

elements

«create»

elements

stereotype:UMLStereotype

name == „system“

«create»

stereotypes

Abbildung A.6: TGG-Regel: SystemToClass

278

A.1 Block- und Klassendiagramme

c
o
rr
P

a
re

n
t:
C

o
rr

B
lo

c
k

s
o
u
rc

e
s

ta
rg

e
ts

p
a
re

n
t:
B

lo
c
k

p
a
re

n
tC

la
z
z
:U

M
L
C

la
s
s

c
o
rr
B

lo
c
k
:C

o
rr
B

lo
c
k

«
c
re

a
te

»
«
c
re

a
te

»
«
c
re

a
te

»
«
c
re

a
te

»

s
o
u
rc

e
s

«
c
re

a
te

»

ta
rg

e
ts

{b
lo

c
k
.g

e
tN

a
m

e
()
.e

q
u
a
ls

(c
la

z
z
.g

e
tN

a
m

e
()

)}

b
lo

c
k
:B

lo
c
k

n
a
m

e
 :
=
 c

la
z
z
.g

e
tN

a
m

e
()

c
la

z
z
:U

M
L
C

la
s
s

n
a
m

e
 :
=
 b

lo
c
k
.g

e
tN

a
m

e
()

«
c
re

a
te

»

e
le

m
e
n
ts

«
c
re

a
te

»

ta
rg

e
t

s
te

re
o
ty

p
e
:U

M
L
S
te

re
o
ty

p
e

n
a
m

e
 =

=
 „
b
lo

c
k
“

«
c
re

a
te

»

s
te

re
o
ty

p
e
s

c
la

s
s
d
ia

g
ra

m
:U

M
L
C

la
s
s
D

ia
g
ra

m

«
c
re

a
te

»

«
c
re

a
te

»

ta
rg

e
t

s
o
u
rc

e
R

o
le

:U
M

L
R

o
le

a
d
o
rn

m
e
n
t
:=

 C
O

M
P

O
S

IT
IO

N

a
d
o
rn

m
e
n
t=

=
 C

O
M

P
O

S
IT

IO
N

e
le

m
e
n
ts

c
o
m

p
o
s
it
io

n
:U

M
L
A

s
s
o
c

n
a
m

e
 :
=
 „
c
o
n
ta

in
s
“+

b
lo

c
k
.g

e
tN

a
m

e
()

«
c
re

a
te

»

le
ft
R

o
le

ta
rg

e
tR

o
le

:U
M

L
R

o
le

a
d
o
rn

m
e
n
t
:=

 N
O

N
E

a
d
o
rn

m
e
n
t=

=
 N

O
N

E

«
c
re

a
te

»

ri
g
h
tR

o
le

«
c
re

a
te

»

«
c
re

a
te

»

«
c
re

a
te

»

c
a
rd

:U
M

L
C

a
rd

in
a
lit

y

c
a
rd

S
tr
in

g
 =

=
 C

A
R

D
_
0
_
1

«
c
re

a
te

»

c
a
rd

«
c
re

a
te

»

c
a
rd

«
c
re

a
te

»

e
le

m
e
n
ts

«
c
re

a
te

»

e
le

m
e
n
ts

«
c
re

a
te

»

«
c
re

a
te

»

ta
rg

e
ts

«
c
re

a
te

»

ta
rg

e
ts

«
c
re

a
te

»

ta
rg

e
ts

Abbildung A.7: TGG-Regel: BlockToClass

279

Anhang A Beispielspezifikationen

c
o
rr
B
lo
c
k
:C
o
rr
B
lo
c
k

s
o
u
rc
e
s

ta
rg
e
ts

b
lo
c
k
:B
lo
c
k

b
lo
c
k
C
la
z
z
:U
M
L
C
la
s
s

c
o
rr
P
ro
c
e
s
s
:C
o
rr
P
ro
c
e
s
s

«
c
re
a
te
»

«
c
re
a
te
»

«
c
re
a
te
»

«
c
re
a
te
»

s
o
u
rc
e
s

«
c
re
a
te
»

ta
rg
e
ts

{p
ro
c
e
s
s
.g
e
tN
a
m
e
()
.e
q
u
a
ls
(c
la
z
z
.g
e
tN
a
m
e
()
)}

p
ro
c
e
s
s
:P
ro
c
e
s
s

n
a
m
e
 :
=
 c
la
z
z
.g
e
tN
a
m
e
()

c
la
z
z
:U
M
L
C
la
s
s

n
a
m
e
 :
=
 p
ro
c
e
s
s
.g
e
tN
a
m
e
()

«
c
re
a
te
»

e
le
m
e
n
ts

«
c
re
a
te
»

ta
rg
e
t

s
te
re
o
ty
p
e
:U
M
L
S
te
re
o
ty
p
e

n
a
m
e
 =
=
 „
p
ro
c
e
s
s
“

«
c
re
a
te
»

s
te
re
o
ty
p
e
s

c
la
s
s
d
ia
g
ra
m
:U
M
L
C
la
s
s
D
ia
g
ra
m

«
c
re
a
te
»

«
c
re
a
te
»

ta
rg
e
t

s
o
u
rc
e
R
o
le
:U
M
L
R
o
le

a
d
o
rn
m
e
n
t
:=
 C
O
M
P
O
S
IT
IO
N

a
d
o
rn
m
e
n
t=
=
 C
O
M
P
O
S
IT
IO
N

e
le
m
e
n
ts

c
o
m
p
o
s
it
io
n
:U
M
L
A
s
s
o
c

n
a
m
e
:=
„c
o
n
ta
in
s
“+
p
ro
c
e
s
s
.g
e
tN
a
m
e
()

«
c
re
a
te
»

le
ft
R
o
le

ta
rg
e
tR
o
le
:U
M
L
R
o
le

a
d
o
rn
m
e
n
t
:=
 N
O
N
E

a
d
o
rn
m
e
n
t=
=
 N
O
N
E

«
c
re
a
te
»

ri
g
h
tR
o
le

«
c
re
a
te
»

«
c
re
a
te
»

«
c
re
a
te
»

c
a
rd
:U
M
L
C
a
rd
in
a
lit
y

c
a
rd
S
tr
in
g
 =
=
 C
A
R
D
_
0
_
1

«
c
re
a
te
»

c
a
rd

«
c
re
a
te
»

c
a
rd

«
c
re
a
te
»

e
le
m
e
n
ts

«
c
re
a
te
»

e
le
m
e
n
ts

«
c
re
a
te
»

«
c
re
a
te
»

ta
rg
e
ts

«
c
re
a
te
»

ta
rg
e
ts

«
c
re
a
te
»

ta
rg
e
ts

Abbildung A.8: TGG-Regel: ProcessToClass

280

A.1 Block- und Klassendiagramme

s
c
:C
o
rr
C
o
n
n
e
c
ta
b
le

s
o
u
rc
e
s

ta
rg
e
ts

s
o
u
rc
e
:C
o
n
n
e
c
ta
b
le

s
o
u
rc
e
C
la
z
z
:U
M
L
C
la
s
s

tc
:C
o
rr
C
o
n
n
e
c
ta
b
le

«
c
re
a
te
»

ta
rg
e
t

{c
o
n
n
.g
e
tN
a
m
e
()
.e
q
u
a
ls
(a
s
s
o
c
.g
e
tN
a
m
e
()
)}

«
c
re
a
te
»

e
le
m
e
n
ts

«
c
re
a
te
»

ta
rg
e
t

c
d
:U
M
L
C
la
s
s
D
ia
g
ra
m

«
c
re
a
te
»

«
c
re
a
te
»

ta
rg
e
t

s
o
u
rc
e
R
o
le
:U
M
L
R
o
le

a
d
o
rn
m
e
n
t
:=
 N
O
N
E

a
d
o
rn
m
e
n
t=
=
 N
O
N
E

e
le
m
e
n
ts

a
s
s
o
c
:U
M
L
A
s
s
o
c

n
a
m
e
:=
c
o
n
n
.g
e
tN
a
m
e
()

«
c
re
a
te
»

le
ft
R
o
le

ta
rg
e
tR
o
le
:U
M
L
R
o
le

a
d
o
rn
m
e
n
t
:=
 N
O
N
E

a
d
o
rn
m
e
n
t=
=
 N
O
N
E

«
c
re
a
te
»

ri
g
h
tR
o
le

«
c
re
a
te
»

«
c
re
a
te
»

c
a
rd
:U
M
L
C
a
rd
in
a
lit
y

c
a
rd
S
tr
in
g
=
=
C
A
R
D
_
0
_
1

«
c
re
a
te
»

c
a
rd

«
c
re
a
te
»

c
a
rd

«
c
re
a
te
»

e
le
m
e
n
ts

e
le
m
e
n
ts

«
c
re
a
te
»

«
c
re
a
te
»

ta
rg
e
ts

«
c
re
a
te
»

ta
rg
e
ts

«
c
re
a
te
»

ta
rg
e
ts

ta
rg
e
t:
C
o
n
n
e
c
ta
b
le

p
a
re
n
t:
B
lo
c
k

e
le
m
e
n
ts

e
le
m
e
n
ts

c
o
n
n
:C
o
n
n
e
c
ti
o
n

n
a
m
e
:=
a
s
s
o
c
.g
e
tN
a
m
e
()

s
o
u
rc
e
s

ta
rg
e
ts

«
c
re
a
te
»

«
c
re
a
te
»

s
o
u
rc
e

ta
rg
e
tC
la
z
z
:U
M
L
C
la
s
s

c
c
:C
o
rr
C
o
n
n
e
c
ti
o
n

«
c
re
a
te
»

«
c
re
a
te
»

s
o
u
rc
e
s

Abbildung A.9: TGG-Regel: ConnectionToAssoc (Variante 1)

281

Anhang A Beispielspezifikationen

s
c
:C
o
rr
C
o
n
n
e
c
ta
b
le

s
o
u
rc
e
s

ta
rg
e
ts

s
o
u
rc
e
:C
o
n
n
e
c
ta
b
le

s
o
u
rc
e
C
la
z
z
:U
M
L
C
la
s
s

tc
:C
o
rr
C
o
n
n
e
c
ta
b
le

«
c
re
a
te
»

ta
rg
e
t

{c
o
n
n
.g
e
tN
a
m
e
()
.e
q
u
a
ls
(a
s
s
o
c
.g
e
tN
a
m
e
()
)}

«
c
re
a
te
»

e
le
m
e
n
ts

«
c
re
a
te
»

ta
rg
e
t

c
d
:U
M
L
C
la
s
s
D
ia
g
ra
m

«
c
re
a
te
»

«
c
re
a
te
»

ta
rg
e
t

s
o
u
rc
e
R
o
le
:U
M
L
R
o
le

a
d
o
rn
m
e
n
t
:=
 N
O
N
E

a
d
o
rn
m
e
n
t=
=
 N
O
N
E

e
le
m
e
n
ts

a
s
s
o
c
:U
M
L
A
s
s
o
c

n
a
m
e
:=
c
o
n
n
.g
e
tN
a
m
e
()

«
c
re
a
te
»

le
ft
R
o
le

ta
rg
e
tR
o
le
:U
M
L
R
o
le

a
d
o
rn
m
e
n
t
:=
 N
O
N
E

a
d
o
rn
m
e
n
t=
=
 N
O
N
E

«
c
re
a
te
»

ri
g
h
tR
o
le

«
c
re
a
te
»

«
c
re
a
te
»

c
a
rd
:U
M
L
C
a
rd
in
a
lit
y

c
a
rd
S
tr
in
g
=
=
C
A
R
D
_
0
_
1

«
c
re
a
te
»

c
a
rd

«
c
re
a
te
»

c
a
rd

«
c
re
a
te
»

e
le
m
e
n
ts

e
le
m
e
n
ts

«
c
re
a
te
»

«
c
re
a
te
»

ta
rg
e
ts

«
c
re
a
te
»

ta
rg
e
ts

«
c
re
a
te
»

ta
rg
e
ts

ta
rg
e
t:
C
o
n
n
e
c
ta
b
le

e
le
m
e
n
ts

c
o
n
n
:C
o
n
n
e
c
ti
o
n

n
a
m
e
:=
a
s
s
o
c
.g
e
tN
a
m
e
()

s
o
u
rc
e
s

ta
rg
e
ts

«
c
re
a
te
»

«
c
re
a
te
»

s
o
u
rc
e

ta
rg
e
tC
la
z
z
:U
M
L
C
la
s
s

c
c
:C
o
rr
C
o
n
n
e
c
ti
o
n

«
c
re
a
te
»

«
c
re
a
te
»

s
o
u
rc
e
s

Abbildung A.10: TGG-Regel: ConnectionToAssoc (Variante 2)

282

A.1 Block- und Klassendiagramme

s
c
:C
o
rr
C
o
n
n
e
c
ta
b
le

s
o
u
rc
e
s

ta
rg
e
ts

s
o
u
rc
e
:C
o
n
n
e
c
ta
b
le

s
o
u
rc
e
C
la
z
z
:U
M
L
C
la
s
s

tc
:C
o
rr
C
o
n
n
e
c
ta
b
le

«
c
re
a
te
»

ta
rg
e
t

{c
o
n
n
.g
e
tN
a
m
e
()
.e
q
u
a
ls
(a
s
s
o
c
.g
e
tN
a
m
e
()
)}

«
c
re
a
te
»

e
le
m
e
n
ts

«
c
re
a
te
»

ta
rg
e
t

c
d
:U
M
L
C
la
s
s
D
ia
g
ra
m

«
c
re
a
te
»

«
c
re
a
te
»

ta
rg
e
t

s
o
u
rc
e
R
o
le
:U
M
L
R
o
le

a
d
o
rn
m
e
n
t
:=
 N
O
N
E

a
d
o
rn
m
e
n
t=
=
 N
O
N
E

e
le
m
e
n
ts

a
s
s
o
c
:U
M
L
A
s
s
o
c

n
a
m
e
:=
c
o
n
n
.g
e
tN
a
m
e
()

«
c
re
a
te
»

le
ft
R
o
le

ta
rg
e
tR
o
le
:U
M
L
R
o
le

a
d
o
rn
m
e
n
t
:=
 N
O
N
E

a
d
o
rn
m
e
n
t=
=
 N
O
N
E

«
c
re
a
te
»

ri
g
h
tR
o
le

«
c
re
a
te
»

«
c
re
a
te
»

c
a
rd
:U
M
L
C
a
rd
in
a
lit
y

c
a
rd
S
tr
in
g
=
=
C
A
R
D
_
0
_
1

«
c
re
a
te
»

c
a
rd

«
c
re
a
te
»

c
a
rd

«
c
re
a
te
»

e
le
m
e
n
ts

e
le
m
e
n
ts

«
c
re
a
te
»

«
c
re
a
te
»

ta
rg
e
ts

«
c
re
a
te
»

ta
rg
e
ts

«
c
re
a
te
»

ta
rg
e
ts

ta
rg
e
t:
C
o
n
n
e
c
ta
b
le

e
le
m
e
n
ts

c
o
n
n
:C
o
n
n
e
c
ti
o
n

n
a
m
e
:=
a
s
s
o
c
.g
e
tN
a
m
e
()

s
o
u
rc
e
s

ta
rg
e
ts

«
c
re
a
te
»

«
c
re
a
te
»

s
o
u
rc
e

ta
rg
e
tC
la
z
z
:U
M
L
C
la
s
s

c
c
:C
o
rr
C
o
n
n
e
c
ti
o
n

«
c
re
a
te
»

«
c
re
a
te
»

s
o
u
rc
e
s

Abbildung A.11: TGG-Regel: ConnectionToAssoc (Variante 3)

283

Anhang A Beispielspezifikationen

A.2 I/O-Atomaten und SPS-Code

Nachfolgend ist die vollständige Spezifikation der Metamodelle und Kor-
respondenzregeln zur SPS-Codegenerierung aus I/O-Automaten aufgeführt.
Die Metamodelle sind in den Abbildungen A.12-A.14 zu sehen, die spezifi-
zierten TGG-Regeln hingegen in den Abbildungen A.15-A.18.

Automaton

name : String

name : String

State

Action

expr : String

initial

outgoing

0..*

transitions0..*

actions {ordered}0..1

states {ordered}1 1..*

Transition

trigger : String

incoming

0..*

target

1

1

source

Abbildung A.12: Metamodell für Automaten

CompilationUnit

end

0..1

states0..*

header

0..1 FunctionEnd

StateBlock

name : String

index : String

0..*

transitions

TransitionBlock

actions

{ordered}

0..*

header1 end1

TransitionHeader

triggerExpr : String

TransitionEnd

target : String

ActionExpression

expr : String

name : String

index : String

FunctionHeader

Abbildung A.13: Metamodell für SPS-Code

284

A.2 I/O-Atomaten und SPS-Code

Automaton

State

Transition

Action

CompilationUnit

FunctionHeader

FunctionEnd

StateBlock

TransitionBlock

TransitionHeader

TransitionEnd

ActionExpression

AM2CU

ST2SB

TR2TB

AC2AE

automaton templatecorrespondence

Abbildung A.14: Korrespondenzmetamodell

285

Anhang A Beispielspezifikationen

:CompilationUnit

:FunctionEnd:State

:Automaton

:FunctionHeader

header endinitial

hd.index =

getIndexOf(st)

st

++ ++

hd

++

++hd.name =

at.name
++

at

FunctionHeader.tpl

FUNCTION_BLOCK %name

VAR

 state : INT = %index;

END_VAR

BEGIN

 CASE state OF

FunctionEnd.tpl

 END_CASE;

END_FUNCTION_BLOCK

:AM2CU

hd

++

Abbildung A.15: TGG-Axiom: Automaton2CompilationUnit

:State :StateBlock

statesstates

sb.index =

getIndexOf(st)

st

++ ++

sb

++

++sb.name=

st.name

++

st

:AM2CU

++

:ST2SB

StateBlock.tpl

 %index (* %name *) :

++

++ ++

++ ++

++

++

:FunctionHeader:Automaton

sb

Abbildung A.16: TGG-Regel: State2StateBlock

286

A.2 I/O-Atomaten und SPS-Code

:TransitionBlock

header end

source

hd.trigger =

tr.triggerExpr

tr

++ ++

++

TransitionHeader.tpl

 IF %trigger THEN

TransitionEnd.tpl

 state := %target;

 END_IF;

:TR2TB

:ST2SB

transitions

hd

Transition

target

++ ++

++++

++
++ ++ ++

++

++

te.target=

getIndexOf(st)

te

st

++ ++

++

:StateBlock:State

:State :TransitionHeader :TransitionEnd

Abbildung A.17: TGG-Regel: Transition2TransitionBlock

:Action :ActionExpression

actionsactions
++ae.expr=

ac.expr

++

ac

:TR2TB

++

:AC2AE

ActionExpr.tpl

 %expr;

++

++ ++

++ ++

++

++
ae

:TransitionHeader:Transition

Abbildung A.18: TGG-Regel: Action2ActionBlock

287

Anhang B

Document Type Definition der
Konfigurationsdatei

Im Folgenden ist das Datenformat der im Abschnitt 7.2.2 beschriebenen
Konfigurationsdatei zu sehen.

<!ELEMENT configuration (triggertable,dependencies?)>

<!ELEMENT triggertable (entry)*>

<!ELEMENT dependencies (plugin|lib)*>

<!ELEMENT entry EMPTY>

<!ATTLIST entry trigger CDATA #REQUIRED

rule CDATA #REQUIRED>

<!ELEMENT plugin EMPTY >

<!ATTLIST plugin id CDATA #REQUIRED>

<!ELEMENT lib EMPTY>

<!ATTLIST lib path CDATA #REQUIRED>

Eine Konfigurationsdatei besteht aus einer Tabelle (triggertable) und
einer optionalen Auflistung zusätzlich benötigter Plug-ins und Bibliotheken
(dependencies). Ein Tabelleneintrag (entry) setzt sich aus den Attribu-
ten trigger und rule zusammen. Das Attribut trigger enthält einen
vollqualifizierten Klassennamen, der den Typ eines Korrespondenzobjekts
identifiziert, bei dem die Überprüfung einer TGG-Regel ausgelöst wird. Die
TGG-Regel selbst wird durch das Attribut rule festgelegt. Die Auflistung
von Plug-Ins erfolgt durch die Angabe eines Plug-in-Identifikators (Attribut
id). Die Auflistung der zusätzlich benötigten Bibliotheken erfolgt hingegen
durch die Angabe eines Dateipfades (Attribut path).

289

Abbildungen

1.1 Modellbasierte Softwareentwicklung 2

2.1 Schematische Darstellung des Fertigungssystems und der ver-
wendeten Steuerungstechnik 17

2.2 Überblick zur Isileit-Methode 19
2.3 Zwei zueinander korrespondierende Modelle 23
2.4 Informelle Zuordnung von Elementen eines Blockdiagramms

zu Elementen eines Klassendiagramms 24
2.5 Diagramme vor (links) und nach (rechts) der Modellsynchro-

nisation . 27
2.6 Beispiele für verschiedene Topologien 38
2.7 Überblick zur Methode . 47

3.1 Metamodell für Klassendiagramme 57
3.2 Metamodell für Blockdiagramme 58
3.3 Blockdiagramm in abstrakter Syntax 59
3.4 Graphgrammatikregel in unterschiedlichen Notationen 61
3.5 Blockdiagramm nach der Regelanwendung 62
3.6 TGG-Regel Block2Class . 65
3.7 TGG-Regel Process2Class 66
3.8 TGG-Regel Connection2Association 66
3.9 TGG-Axiom System2Class 67
3.10 Metamodell für die Korrespondenzobjekte 68
3.11 Anwendung der Regel Block2Class auf das Axiom 70
3.12 Zweimalige Anwendung der Regel Block2Class 71
3.13 Anwendung der Connection2Association Regel 72
3.14 Alte Notation für Attributwerte 73
3.15 Neue Notation für Attributbedingungen 75
3.16 Erkennung von Änderungen und Konflikten 76
3.17 Erweiterte TGG-Regel Process2Class 78
3.18 Negative Anwendungsbedingungen und ihre Übersetzung . . 80
3.19 Erweitertes Metamodell für Klassendiagramme 81

291

Abbildungen

3.20 Erweiterte TGG-Regel Block2Class 82
3.21 Fallunterscheidung mit zwei TGG-Regeln zur Wiederverwen-

dung von Stereotypen . 84
3.22 TGG-Regel mit wiederverwendbarem Stereotyp 85
3.23 Modelltransformation: Initiale Startsituation 88
3.24 Modelltransformation: Anwendung der Regel Block2Class . . 89
3.25 Modelltransformation: Zweifache Anwendung der Regel

Block2Class . 90
3.26 Modelltransformation: Anwendung der Regel Channel2Assoc 91
3.27 Modellintegration: Initiale Startsituation 93
3.28 Modellintegration: Anwendung der Regel Block2Class 94
3.29 Modellintegration: Zweifache Anwendung der Regel

Block2Class . 95
3.30 Modellintegration: Anwendung der Regel Channel2Assoc . . 96

4.1 Codegenerierung mit Textschablonen 103
4.2 Ausschnitt aus einer Textschablone 104
4.3 Ausschnitt aus dem Eclipse Java-Metamodell 107
4.4 Beispiel für die Spezifikation von Modell-zu-Text Beziehungen

mit einer TGG-Regel . 108
4.5 Codegenerierung und Synchronisation von Modell-zu-Text

Beziehungen . 109
4.6 Beispielautomat in konkreter Syntax 113
4.7 Beispielautomat in abstrakter Syntax (Objektdiagramm) . . 114
4.8 Beispiel für die Kombination einer TGG-Regel mit einer

Textschablone . 115
4.9 Ergebnis der Übersetzung in Strukturierten Text 116
4.10 Überblick zur Spezifikation mit Beispielzuordnungen 120
4.11 Beispielzuordnung 1 (inklusive der Übersetzung in den TGG-

Formalismus) . 122
4.12 Synthese des Axioms . 124
4.13 Beispielzuordnung 2 . 125
4.14 Regelsynthese aus Beispielzuordnung 2 – Schritte 1 und 2 . . 126
4.15 Regelsynthese aus Beispielzuordnung 2 – Schritte 3 und 4 . . 127
4.16 Beispielzuordnung 3 . 129
4.17 Regelsynthese aus Beispielzuordnung 3 – Schritte 1 und 2 . . 130
4.18 Regelsynthese aus Beispielzuordnung 3 – Schritte 3 und 4 . . 131
4.19 Regelsynthese aus Beispielzuordnung 3 – Schritte 5 und 6 . . 132
4.20 Beispielzuordnung 4 . 134

292

Abbildungen

4.21 Regelsynthese aus Beispielzuordnung 4 – Schritte 1 und 2 . . 136
4.22 Regelsynthese aus Beispielzuordnung 4 – Schritte 3 und 4 . . 137
4.23 Regelsynthese aus Beispielzuordnung 4 – Schritte 5 und 6 . . 138
4.24 Regelsynthese aus Beispielzuordnung 4 – Schritte 7 und 8 . . 139
4.25 Beispielzuordnung mit Attributwerten 141
4.26 Synthetisiertes Axiom mit Attributbedingungen 141
4.27 Beispielzuordnung mit Einschränkung 143
4.28 Synthetisierte Regel mit Negativer Anwendungsbedingung . 144
4.29 TGG-Regel resultierend aus geänderter Reihenfolge der Bei-

spielzuordnungen . 146
4.30 Überblick zum Prozess . 150
4.31 QVT-Spracharchitektur, entnommen aus [QVT08] 152
4.32 Beispielregel BlockToClass in der graphischen Syntax von

QVT-Relations . 153
4.33 Schema einer QVT-Core-Regel, entnommen aus [QVT08] . . 154
4.34 Abbildung von QVT-Relations auf TGGs 155

5.1 Prinzip der inkrementellen Modellsynchronisation auf einem
Korrespondenzmodell . 159

5.2 Datenstruktur . 161
5.3 Die Methode synchronize der Klasse TGGEngine 164
5.4 Die Methode execute der Klasse TGGEngine 166
5.5 Zu überprüfende Korrespondenzknoten und ihre Teilbäume

im Korrespondenzmodell . 167
5.6 Grundstruktur einer TGG-Regel 171
5.7 Grundstruktur der aus einer TGG-Regel abgeleiteten opera-

tionalen Graphersetzungsregeln 172
5.8 Beispiel für ein Storydiagramm 174
5.9 Grundstruktur der zu generierenden Storydiagramme 176
5.10 Hergestellte Korrespondenzbeziehung identifizieren 177
5.11 Objektstruktur der Korrespondenzbeziehung überprüfen . . 178
5.12 Inkonsistente Korrespondenzbeziehung auflösen 179
5.13 Die Methode deleteFwd . 179
5.14 Attributwerte überprüfen und aktualisieren 181
5.15 Neue Anwendungsstelle suchen 182
5.16 Integrationsregel anwenden 183
5.17 Automatische Vervollständigung 185
5.18 Modelltransformation ausführen 188
5.19 Grundstruktur einer komplexeren TGG-Regel 190

293

Abbildungen

5.20 Storydiagramm zum Axiom System2Class 191

6.1 Überblick zur Validierung durch Tests 197
6.2 Zwei Checker-Ansätze zum Beweis der semantischen Korrekt-

heit von Transformationen 201
6.3 Überblick zur formalen Verifikation der semantischen Äquiva-

lenz mit einem Theorembeweiser 202
6.4 Formalisierung von Metamodellen als induktive Datentypen 204
6.5 Interpretation einer TGG-Regel als zusammengehöriges Paar

zweier Produktionen . 205

7.1 Komponenten der Werkzeugunterstützung 210
7.2 Die Entwicklungsumgebung Fujaba4Eclipse 212
7.3 TGG-Editor . 213
7.4 Generierung der Storydiagramme 215
7.5 Start der Codegenerierung 215
7.6 Wizard zur Erstellung des Jar-Archivs 216
7.7 Ausschnitt aus einer Konfigurationsdatei 216
7.8 Werkzeugleiste zur Modellsynchronisation 217
7.9 Synchronisierungs-Wizard 218
7.10 Modellsynchronisation zwischen einem Block- und einem

Klassendiagramm . 220
7.11 Überblick zu Werkzeug- und Modelladaptern 222
7.12 Leistungsmessung bei der Transformation kleiner Modelle . . 230
7.13 Leistungsmessung bei der Transformation größerer Modelle . 231

A.1 Metamodell für Blockdiagramme 275
A.2 Metamodell für Klassendiagramme 276
A.3 Technisches Korrespondenzmetamodell 277
A.4 Konzeptionelles Korrespondenzmetamodell 277
A.5 TGG-Axiom: BlockdiagramToClassdiagram 278
A.6 TGG-Regel: SystemToClass 278
A.7 TGG-Regel: BlockToClass 279
A.8 TGG-Regel: ProcessToClass 280
A.9 TGG-Regel: ConnectionToAssoc (Variante 1) 281
A.10 TGG-Regel: ConnectionToAssoc (Variante 2) 282
A.11 TGG-Regel: ConnectionToAssoc (Variante 3) 283
A.12 Metamodell für Automaten 284
A.13 Metamodell für SPS-Code 284

294

Abbildungen

A.14 Korrespondenzmetamodell 285
A.15 TGG-Axiom: Automaton2CompilationUnit 286
A.16 TGG-Regel: State2StateBlock 286
A.17 TGG-Regel: Transition2TransitionBlock 287
A.18 TGG-Regel: Action2ActionBlock 287

295

Index

A

Abgleich . 6
Ableitungsbaum 157
Abstract State Machine 20
Abstract Syntax Tree 106
Abstrakter Syntaxbaum 106
Abstraktionsebene 4, 39
Actuator-Sensor-Interface 16
Adapter 52, 222
Algorithmus 164
Analysewerkzeug.7
Anforderungen.45
Anwendungsdomäne 15, 44
Anwendungsstelle181
Äquivalenz 8, 200
Äquivalenzrelation 199
Architektur 209
Artefakte . 4
Attributaktualisierung 180
Attributbedingungen.73
Augmented Reality 20
Ausführung 49, 52

Häufigkeit der 42
Zeitpunkt der 42

Automatisierung
durch Fertigungssystem 16
Grad der.41

Axiom . 66, 190

B

Baumstruktur 158
Bedingungen 70, 77, 79
Beispielzuordnung 118
Beziehungen

Modell-zu-Modell 10, 99
Modell-zu-Text 10, 99

Bisimulation 200
Black-Box-Implementierung. . .152

C

Checker-Ansatz 199
Chomsky-Grammatiken 60
Codegenerierung . . . 6, 10, 99, 102,

112

D

Datenabgleich siehe
Datensynchronisation

Datenstruktur 161
Datensynchronisation 33
Debugger . 7
Directed Acyclic Graph 158
Direkte Programmierung 100
Document Type Definition. . . .215
Domain Specific Language. . .3, 44

E

Eclipse .209

297

Index

Eclipse Modeling Framework . 104,
223

Entwicklungsumgebung 211
Entwurfsmuster 100, 169, 222
Entwurfsprozess 149
Ereignissgesteuerte Prozesskette

226
Evaluation.224

F

Fallstudie .224
Fertigungssystem

automatisiertes 16
flexibles 16, 18

FIFO-Prinzip 167
Formalismus 39, 55
Forward-Engineering 7
Fujaba . 44
Fujaba4Eclipse 209

G

Geschäftsprozessmodell 226
Grammatik

kontextfreie 56
kontextsensitive.157

Graphersetzungsregel 157, 170
Graphgrammatik 19, 49, 60

H

Higher Order Logik 201

I

I/O-Automaten.112
IEC 61131-3 16
Inbetriebnahme 18, 20
Inkonsistenz 4, 28, 34
Integration.49, 182

Integrationswerkzeug 236
Integritätsbedingung.196
Intermediate Representation . . 106
Invariante . 79
IPSEN-Projekt 236
Isabelle/HOL 201
ISILEIT-Projekt 18, 103, 112, 225

J

Java Development Tools 108
Java Metadata Interface 223
Java-Code 21, 49, 224, 227

K

Kardinalität 37, 39
Klassifikation 37
Komplexität 9, 45
Konfigurationsdatei 53, 215
Konflikte 31, 41, 43, 53
Konflikterkennung 76
Konfliktresolution 43, 53
Konfluenz . 195
Konsistenz .34
Konsistenzprüfung 176
Konsistenzproblem. 5
Korrektheit . 8

semantische 195, 201
syntaktische 195

Korrespondenzbeziehung 63
explizite 40
implizite 40

Korrespondenzmodell 48, 158
Korrespondenzregeln . . . 48, 55, 63

Richtung der41
Spezifikation der 40

L

Laufzeitverhalten 158, 228

298

Index

Lebenszyklus 6
Leistungsmessung.228
Line-Printer 100

M

MATE-Projekt 226
Materialflusssystem 16
Matlab/Simulink 226
Meta Object Facility 56
Metamodelle56
Metamodellierung 56
Methode 10, 47
Model Checking.20, 199
Model Driven Architecture. . . .240
Modellabgleich.33
Modelladapter 221
Modelle . 1, 55

plattformspezifische 225
plattformunabhängige.225

Modellierung 19
Modellierungssprache 3

Semantik einer 55
Syntax einer 55

Modellintegration . .9, 92, 182, 188
Modellkonsistenz 34
Modellrepräsentation 37, 39
Modellsynchronisation . 15, 31, 35,

52, 92
Algorithmus zur 164
automatische 9, 36, 52
batch-artige 42, 52, 160
bidirektionale 9, 41, 43, 52
ereignis-orientierte 41
horizontale39
initiale 25, 159
inkrementelle 9, 28, 36, 42, 52,

160
Kriterien der37

manuelle 36
partielle 30, 36
Szenarien der 22, 86
unidirektionale 43
vertikale 39
zustands-orientierte 41

Modelltransformation . . . 5, 86, 99,
187, 197, 199

Modifikator 204
Multi-Point-Interface 16

N

Nachverfolgbarkeit 7, 101
Negative Anwendungsbedingung

77, 79
Notation 40, 60, 74

O

Object Constraint Language . . 56,
196

Object Management Group 56
Observer . 169

P

Pair-Grammatik 63
Pair-Graph-Grammatik 236
Parametrisierung 10, 40
Parser 106, 111
Parsergenerator106
Plug-ins . 44
Prädikatenlogik 201
Pretty-Printer 108
Prioritäten. .43
Prioritätswarteschlange 167
Produktionen 157
Programmiersprache 100
Prozesssynchronisation.32

299

Index

Q

Quellmodell .5
Query/View/Transformation . 152,

240
QVT-Core . 152
QVT-Operational152
QVT-Relations 152
QVT-Standard 152

R

Rückwärtstransformation 87
Regelkatalog 214
Reihenfolgeunabhängigkeit145
Replikation . 33
Reverse-Engineering 7
Round-Trip-Engineering 44

S

SDL-Blockdiagramme . . 19, 22, 58
Semantik . 55

einer Graphgrammatik 61
einer Tripel-Graph-

Grammatik 63
Simulation . 18
Skalierbarkeit 41
Softwareentwicklung

iterativ-inkrementelle . . .5, 110
modellbasierte 1

Specification and Description Lan-
guage 18

Speicherprogrammierbare Steue-
rung 16, 103,
112

Spezifikation 19, 48, 55, 63
deklarative.40
direkte.106
graphische 40

kombinierte 112
operationale 40
textuelle 40

Spezifikationsvarianten . . . 99, 105,
112, 118

Sprachdefinition 100
SPS-Code . 20
Steuerungslogik 157, 164
Steuerungssoftware 18
Story-Pattern.173
Storydiagramme 49, 173
Strukturell Operationale Semantik

203
Strukturierter Text 103, 112
Synchronisation

von Modell und Code . . 7, 101,
105

Synchronisationsaufgabe 37
Synchronisationsebene 37, 39
Synchronisationsmechanismus.158
Synchronisationsmodus 41

Pull-Modus 42, 52
Push-Modus 42, 52

Synchronisationsregel 40, 52
Synchronisationsrichtung.38
Synchronisationsstrategie. . .41, 52
Synchronisationsumgebung 37
Synchronisationsverfahren 41
Syntax

abstrakte 55
konkrete 55, 119

Synthese. .119
von Attributbedingungen . 140
von negativen Anwendungsbe-

dingungen 142
von TGG-Regeln 123
von wiederverwendbaren Ob-

jekten 144

300

Index

T

Technologie 37, 39
Terminierung 166, 195
Testfall . 196
Textartefakte 99, 106
Texteditor

konventioneller 110
syntaxgesteuerter 110

Textschablone 102, 112
TGG-Interpreter 49, 226
TGG-Regel . 63
Theorembeweiser 199
Topologie 37, 39, 50
Traceability siehe

Nachverfolgbarkeit, 101
Transformation 187
Transformationsregel 5
Tripel-Graph-Grammatik . . . 9, 48,

55, 63, 105

U

Übersetzung . 5
Uhrensynchronisation 32
UML-Aktivitätsdiagramme 49,

173, 226
UML-Klassendiagramme19, 22, 56
UML-Objektdiagramme.60
Unified Modeling Language . 3, 18,

44, 104, 118
Unparser . 108

V

Validierung 8, 18, 149, 195
durch Simulation 1, 20
durch Tests 1, 196

Varianten der Spezifikation 99
Verifikation . .1, 8, 18, 20, 195, 201

Vervollständigung 184
Visitor. .100
Visualisierung 21
Vorwärtstransformation 86

W

Warteschlange 167
Wartung 18, 20, 101
Wechselseitiger Ausschluss 32
Werkzeugadapter 221
Werkzeugunterstützung 209
Wiederverwendung 80, 83

Z

Zielmodell . 5
Zwischendarstellung 106
Zyklen . 50

301

	Einleitung
	Modellbasierte Softwareentwicklung
	Problembeschreibung
	Modelltransformation
	Codegenerierung
	Nachverfolgbarkeit
	Validierung und Verifikation

	Ziele und Beiträge
	Aufbau der Arbeit

	Modellsynchronisation
	Ein Beispiel
	Hintergrund zur Domäne
	Das ISILEIT-Projekt
	Synchronisationsbedarf
	Synchronisationsszenarien

	Begriffe und Definitionen
	Bedeutung der Modellsynchronisation
	Zusammenhang zwischen Modellkonsistenz und Modellsynchronisation
	Definition und Aufgabe der Modellsynchronisation

	Kriterien der Modellsynchronisation
	Synchronisationsaufgabe und -umgebung
	Synchronisationsregeln
	Synchronisationsverfahren

	Methodischer Ansatz
	Ausgangslage und Anforderungen
	Überblick über die Methode
	Einordung

	Zusammenfassung

	Spezifikation von Korrespondenzregeln
	Grundlagen
	Modelle und Metamodelle
	Graphgrammatiken

	Tripel-Graph-Grammatiken
	Syntax und Semantik
	Erweiterungen

	Anwendungsszenarien
	Modelltransformation
	Modellintegration
	Modellsynchronisation

	Zusammenfassung

	Spezifikationsvarianten
	Spezifikation von Modell-zu-Text Beziehungen
	Existierende Techniken
	Spezifikation mit Tripel-Graph-Grammatiken
	Gegenüberstellung

	Spezifikation durch Beispielzuordnungen
	Idee und Lösungsprinzip
	Regelsynthese
	Erweiterungen
	Reihenfolgeunabhängigkeit
	Abschließende Betrachtungen zur Regelsynthese

	MOF 2.0 Query/View/Transformation
	Zusammenfassung

	Synchronisationsmechanismus
	Überblick
	Datenstruktur und Algorithmus
	Datenstruktur
	Algorithmus

	Generierung operationaler Graphersetzungsregeln
	Prinzip
	Storydiagramme
	Generierung

	Zusammenfassung

	Validierung und Verifikation
	Syntaktische Korrektheit
	Semantische Korrektheit
	Checker-Ansatz
	Regelbasierter Ansatz

	Zusammenfassung

	Werkzeugunterstützung
	Architektur
	Entwicklungsumgebung
	Spezifikation
	Generierung eines Regelkatalogs
	Ausführung

	Werkzeug- und Modelladapter
	Evaluation
	Spezifizierte Korrespondenzregeln
	Leistungsmessungen

	Zusammenfassung

	Verwandte Arbeiten
	Modelltransformation und Modellintegration
	Tripel-Graph-Grammatiken
	Andere Ansätze zur Modelltransformation und Modellintegration

	Modellsynchronisation
	Ansätze zur Vereinfachung der Spezifikation
	Kompakte Repräsentation von Modelltransformationen
	Spezifikation durch Beispiele

	Zusammenfassung

	Zusammenfassung und Ausblick
	Zusammenfassung
	Ausblick

	Literatur
	Beispielspezifikationen
	Block- und Klassendiagramme
	I/O-Atomaten und SPS-Code

	Document Type Definition der Konfigurationsdatei
	Abbildungen
	Index

