'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Fakultat fiir Elektrotechnik, Informatik und Mathematik
Institut fiir Informatik
Fachgebiet Softwaretechnik
Warburger Strafle 100
33098 Paderborn

Inkrementelle Modellsynchronisation

Schriftliche Arbeit

zur Erlangung des akademischen Grades
,Doktor der Naturwissenschaften®
(Dr. rer. nat.)

vorgelegt von

Dipl.-Inform. Robert Wagner
Am Coesfeld 1
33334 Giitersloh

Paderborn, im Februar 2009

Zusammenfassung

Software wird immer komplexer. Gleichzeitig nehmen die Anforderungen an
die Leistungsfidhigkeit und die Qualitdt von Software besténdig zu. Die stei-
gende Komplexitat der Software stellt die Softwareentwicklung, die durch die
Globalisierung der Méarkte zudem unter einem hohen Kosten- und Zeitdruck
stattfindet, vor immer groflere Probleme.

Die modellbasierte Softwareentwicklung ist ein viel versprechender An-
satz, um den Problemen, die mit der steigenden Komplexitéit bei der Soft-
wareentwicklung einhergehen, zu begegnen, die Softwarequalitédt zu erhohen
und gleichzeitig den Entwicklungsaufwand signifikant zu reduzieren. Hierzu
wird ein Softwaresystem mit unterschiedlichen Modellen beschrieben. Die
unterschiedlichen Modelle sind notwendig, um verschiedene Gesichtspunkte
und Sichtweisen auf ein Softwaresystem addquat zu beschreiben. Die ver-
wendeten Modelle beruhen zwar haufig auf verschiedenen Formalismen mit
unterschiedlichen Notationen und Konzepten, aber aufgrund der Tatsache,
dass sie ein und dasselbe Softwaresystem beschreiben, iiberlappen sie sich in
ihrem Informationsgehalt.

Ein Problem ist, dass diese Uberlappungen zu widerspriichlichen Aussagen
iiber das Softwaresystem fithren kénnen. Um ein fehlerfreies Softwaresystem
zu erhalten, miissen die Widerspriiche zwischen den Modellen beseitigt wer-
den, das heifit, die Modelle miissen miteinander abgeglichen werden. Insbe-
sondere bei grofien und komplexen Modellen ist ein Abgleich von Hand aber
nicht nur mithsam und fehleranfillig, sondern zeitaufwéndig und damit auch
unwirtschaftlich.

In dieser Arbeit wird ein Ansatz zur automatischen Modellsynchronisa-
tion vorgestellt. Die Modellsynchronisation gleicht in Beziehung stehende
Modelle miteinander ab und 16st damit vorhandene Widerspriiche zwischen
den Modellen auf. Die Modellsynchronisation kann dabei sowohl vollstédndig
in einem einzigen Schritt, d. h., batch-artig, als auch Schritt fiir Schritt, d. h.,
inkrementell, durchgefiihrt werden. Damit ist dieser Ansatz auch fiir groffe
Modelle geeignet.

Dariiber hinaus werden in dieser Arbeit eine Methode und dazugehorige
Softwarewerkzeuge zur modellbasierten und automatisierten Entwicklung von

il

Modellsynchronisationswerkzeugen vorgestellt. Der in dieser Arbeit vorge-
stellte Ansatz ist dabei nicht auf die Modellsynchronisation beschrénkt. Er
eignet sich ebenso zur Modellintegration, Modelltransformation und Codege-
nerierung. Mit der prototypischen Realisierung der in dieser Arbeit darge-
stellten Konzepte konnte anhand verschiedener Beispiele und durchgefiihrter
Leistungsmessungen gezeigt werden, dass die inkrementelle Modellsynchro-
nisation auch bei groflen Modellen effizient durchfithrbar ist.

v

Danksagung

Diese Arbeit wére wohl niemals ohne die Mitwirkung von vielen netten und
mir wohlgesonnenen Menschen entstanden. An dieser Stelle mochte ich mich
bei all den Menschen ganz herzlich bedanken, die mich bei der Erstellung
dieser Arbeit unterstiitzt haben.

Ich danke meinem Doktorvater Wilhelm Schéfer fiir das mir entgegen-
gebrachte Vertrauen, die damit verbundene Moglichkeit, in seiner Arbeits-
gruppe an spannenden Themen aus dem Bereich der Softwaretechnik zu
forschen, sowie dafiir, dass er mir die Chance zur Promotion eroffnet hat.
Ich md&chte mich insbesondere fiir die Forderung meiner wissenschaftlichen
und personlichen Entwicklung in den Jahren meiner Mitarbeit in seiner Ar-
beitsgruppe bedanken. Die Arbeit unter seiner Leitung hat mir viel Freude
gemacht. Neben Wilhelm waren aber auch Ekkart Kindler und Holger Giese
an der wissenschaftlichen Betreuung meiner Arbeit beteiligt. Dafiir bedanke
ich mich ganz herzlich auch bei ihnen.

Bei den Mitgliedern meiner Priifungskommission Andy Schiirr, Ekkart
Kindler, Gregor Engels und Heike Wehrheim bedanke ich mich dafiir, dass
sie sich mit meiner Arbeit auseinandergesetzt haben. Insbesondere danke
ich Andy Schiirr und Ekkart Kindler dafiir, dass sie das Gutachten zu mei-
ner Dissertation iibernommen haben. Ferner danke ich Andy Schiirr fiir die
Entwicklung der Tripel-Graph-Grammatik, ohne die diese Dissertation ganz
anders ausgesehen hitte oder womdglich gar nicht erst zustande gekommen
ware.

Ein ganz besonderer Dank gilt meinen Kollegen Bjorn Axenath, Matt-
hias Meyer, Vladimir Rubin und Lothar Wendehals, die durch ihre Ideen
sowie ihre hilfreiche und konstruktive Kritik zu der vorliegenden Disserta-
tion beigetragen haben. An dieser Stelle danke ich aber auch allen anderen
(ehemaligen) Kollegen, die sowohl mit wissenschaftlichen als auch mit priva-
ten Gespréchen zu einer angenehmen Arbeitsatmosphére beigetragen haben:
Sven Burmester, Matthias Gehrke, Stefan Henkler, Martin Hirsch, Florian
Klein, Ahmet Mehic, Ulrich Nickel, Jorg Niere, Daniela Schilling, Matthias
Tichy, Dietrich Travkin und Jorg Wadsack.

Vielen Dank auch an Jutta Haupt fiir ihre Hilfe bei der Uberwindung

manch einer biirokratischen Hiirde, sowie an Jiirgen Maniera fiir die techni-
sche Unterstiitzung. Danke auch an alle Studenten, die an der Umsetzung
meiner Ideen als studentische Hilfskréfte und/oder im Rahmen ihrer Studien-
und Diplomarbeiten mitgewirkt haben.

Schliellich mochte ich mich bei meinen Freunden und meiner Familie fiir
ihre Unterstiitzung bedanken. Meinen Eltern danke ich insbesondere dafiir,
dass sie mir meine Ausbildung ermoglicht haben. Ein ganz besonderer und
lieber Dank gilt aber meiner Frau Martina fiir ihre Geduld und Nachsicht, die
sie wahrend der Fertigstellung meiner Dissertation aufgebracht hat. Martina
hat mir immer den notwendigen Riickhalt gegeben und fiir die erforderlichen
Freirdume gesorgt, ohne die diese Arbeit wahrscheinlich immer noch nicht
fertig gestellt wére. Danke!

vi

Inhalt

1 Einleitung 1
1.1 Modellbasierte Softwareentwicklung 1
1.2 Problembeschreibung 3

1.2.1 Modelltransformation 5
1.2.2 Codegenerierung 6
1.2.3 Nachverfolgbarkeit 7
1.2.4 Validierung und Verifikation 8
1.3 Ziele und Beitrage 9
1.4 Aufbau der Arbeit 11

2 Modellsynchronisation 15

2.1 Ein Beispiel 15
2.1.1 Hintergrund zur Doméne 16
2.1.2 Das ISILEIT-Projekt 18
2.1.3 Synchronisationsbedarf 21
2.1.4 Synchronisationsszenarien 22

2.2 Begriffe und Definitioneno 31
2.2.1 Bedeutung der Modellsynchronisation 32
2.2.2 Zusammenhang zwischen Modellkonsistenz und Mo-

dellsynchronisation 34
2.2.3 Definition und Aufgabe der Modellsynchronisation . . 35

2.3 Kriterien der Modellsynchronisation 37
2.3.1 Synchronisationsaufgabe und -umgebung 37
2.3.2 Synchronisationsregeln 40
2.3.3 Synchronisationsverfahren 41

2.4 Methodischer Ansatz 44
2.4.1 Ausgangslage und Anforderungen 44
2.4.2 Uberblick iiber die Methode 47
243 Einordung oo 50

2.5 Zusammenfassung 53

vil

Inhalt

3

viil

Spezifikation von Korrespondenzregeln

3.1 Grundlagen
3.1.1 Modelle und Metamodelle
3.1.2 Graphgrammatikeno 0L

3.2 Tripel-Graph-Grammatiken
3.2.1 Syntax und Semantik
3.2.2 Erweiterungen

3.3 Anwendungsszenarien
3.3.1 Modelltransformation
3.3.2 Modellintegration
3.3.3 Modellsynchronisation

3.4 Zusammenfassung

Spezifikationsvarianten

4.1 Sperzifikation von Modell-zu-Text Beziehungen |
4.1.1 Existierende Techniken
4.1.2 Spezifikation mit Tripel-Graph-Grammatiken
4.1.3 Gegeniiberstellung L.

4.2 Sperzifikation durch Beispielzuordnungen
4.2.1 Idee und Losungsprinzip
4.2.2 Regelsynthese L.
4.2.3 Erweiterungeno oL
4.2.4 Reihenfolgeunabhéngigkeit
4.2.5 Abschliefende Betrachtungen zur Regelsynthese . . .

4.3 MOF 2.0 Query/View/Transformation

4.4 Zusammenfassung

Synchronisationsmechanismus

51 Uberblick

5.2 Datenstruktur und Algorithmus
5.2.1 Datenstruktur
5.2.2 Algorithmus L.

5.3 Generierung operationaler Graphersetzungsregeln
5.3.1 Prinzip.
5.3.2 Storydiagramme
5.3.3 Generierung

5.4 Zusammenfassung

55
95
55
60
63
63
70
86
86
92
92
92

99

99
100
105
117
118
119
123
140
145
149
152
155

Inhalt

6 Validierung und Verifikation 195
6.1 Syntaktische Korrektheit 195
6.2 Semantische Korrektheit 199

6.2.1 Checker-Ansatz 199
6.2.2 Regelbasierter Ansatz. 201
6.3 Zusammenfassung 206

7 Werkzeugunterstiitzung 209
7.1 Architekturo 209
7.2 Entwicklungsumgebungo 211

7.2.1 Spezifikationo 211
7.2.2 Generierung eines Regelkatalogs 214
7.2.3 Ausfihrungo 217
7.3 Werkzeug- und Modelladapter 221
74 Evaluationo o 224
7.4.1 Sperzifizierte Korrespondenzregeln 224
7.4.2 Leistungsmessungen 228
7.5 Zusammenfassung 233

8 Verwandte Arbeiten 235

8.1 Modelltransformation und Modellintegration 235
8.1.1 Tripel-Graph-Grammatiken 236
8.1.2 Andere Ansitze zur Modelltransformation und Mo-

dellintegration 240

8.2 Modellsynchronisation 244

8.3 Ansétze zur Vereinfachung der Spezifikation 246
8.3.1 Kompakte Représentation von Modelltransformationen 247
8.3.2 Sperzifikation durch Beispiele 247

8.4 Zusammenfassung 249

9 Zusammenfassung und Ausblick 251
9.1 Zusammenfassung 251
9.2 Ausblick 254

Literatur 257

X

Inhalt

A Beispielspezifikationen
A.1 Block- und Klassendiagramme
A2 1/O-Atomaten und SPS-Code

B Document Type Definition der Konfigurationsdatei
Abbildungen

Index

275
275
284

289
291

297

Kapitel 1

Einleitung

Die Einsatzbereiche fiir Software reichen heutzutage von der klassisch be-
triebswirtschaftlichen Anwendung, iiber die Anwendung in der Steuerungs-
und Regelungstechnik im Maschinenbau und der Automobilindustrie, bis hin
zur Multimediaanwendung in der Unterhaltungsbranche. Mit dem steigen-
den Einsatz und der weiten Verbreitung von Software wachsen aber gleichzei-
tig auch die Qualitdtsanspriiche. Insbesondere in sicherheitskritischen An-
wendungen mit einem hohen Gefdhrdungspotenzial, wie zum Beispiel Werk-
zeugmaschinen, Produktionsanlagen oder Transportmitteln, muss die Kor-
rektheit und Fehlerfreiheit der Software zwingend gewéhrleistet werden. Die
steigende Komplexitét der Software fithrt mit den zunehmenden Anforderun-
gen an die Qualitdt zu einem immer grofleren Aufwand bei der Entwicklung
und damit auch zu héheren Entwicklungskosten. Einen Ansatz um der stei-
genden Komplexitdt und den damit einhergehenden Problemen zu begegnen,
sowie den hohen Anforderungen an die Qualitét gerecht zu werden, stellt die
modellbasierte Softwareentwicklung dar.

1.1 Modellbasierte Softwareentwicklung

Die Grundlage der modellbasierten Softwareentwicklung bilden Modelle.
Modelle sind zu einem integralen Bestandteil vieler wissenschaftlicher Me-
thoden und Werkzeuge geworden. Im Allgemeinen ermoglichen Modelle eine

,---vereinfachte Darstellung der Funktion eines Gegenstands oder
des Ablaufs eines Sachverhalts, die eine Untersuchung oder Er-
forschung erleichtert oder erst maéglich macht.“ [Dud06].

Modelle werden in nahezu allen Bereichen genutzt, um auf relevante Ei-
genschaften eines betrachteten Systems zu fokussieren und von weniger wich-
tigen Details zu abstrahieren. Die Modelle helfen, die Komplexitéit des zu

Kapitel 1 Einleitung

Modifikation auf Grundlage
der Analyseresultate

Analyse- « Modell(e) - Code-
werkzeuge generator

Eingabe Eingabe

Abbildung 1.1: Modellbasierte Softwareentwicklung

entwickelnden Softwaresystems zu beherrschen. Zusétzlich verbessern sie
die Kommunikation {iber das zu entwickelnde Softwaresystem und ermégli-
chen den Einsatz automatischer Analysetechniken, wie zum Beispiel Vali-
dierung durch Simulation, modellbasiertes Testen oder Verifikation durch
Model-Checking [CGP00].

Der Ansatz der modellbasierten Softwareentwicklung ist in der Abbil-
dung 1.1 schematisch dargestellt. Ausgangspunkt ist ein Modell!, das als
Eingabe fiir Analysewerkzeuge dient. Die Analysewerkzeuge iiberpriifen das
Modell auf zuvor festgelegte Eigenschaften, die unbedingt einzuhalten sind.
Wird eine Verletzung einer oder mehrerer dieser Eigenschaften bei der Ana-
lyse entdeckt, so muss das Modell korrigiert und die Uberpriifung erneut
ausgefithrt werden. Sind hingegen alle Eigenschaften erfiillt, so kann aus
dem Modell zumindest ein Teil der Implementierung mit Hilfe eines Code-
generators automatisch erzeugt werden.

Gegeniiber der Implementierung von Hand besitzt die automatische Code-
generierung mehrere Vorteile [Her03]. Ein Vorteil gegeniiber der manuellen
Implementierung ist die erhohte Produktivitdt. So kann ein Codegenerator
den Code automatisch aus einem Modell erzeugen. Notwendige Anderungen
an dem zu entwickelnden Softwaresystem konnen im Modell vorgenommen
werden. Aufgrund der Abstraktion sind Anderungen im Modell deutlich ein-
facher durchzufiihren als in der Implementierung. Diese Anderungen kann
der Codegenerator dann wieder automatisch in Code umsetzen. Zusétzlich
kann durch den Austausch des Codegenerators sehr einfach Code fiir eine
weitere Zielplattform erzeugt werden. Auf diese Weise ist eine Portierung
auf eine andere Zielplattform mit sehr geringem Aufwand moglich.

'Das (Gesamt-)Modell eines komplexen Softwaresystems setzt sich meistens aus mehre-
ren Modellen zusammen. Je nach Sichtweise kénnen wir hier also von einem oder von
mehreren Modellen sprechen.

1.2 Problembeschreibung

Ein weiterer Vorteil ergibt sich aus der Tatsache, dass durch den Einsatz
eines Codegenerators die Softwarequalitéit gesteigert wird. Dies liegt daran,
dass die Qualitat der Implementierung von der Qualitét des eingesetzten Co-
degenerators abhéngig ist. Verbessert man den Codegenerator, so verbessert
sich auch die Qualitét des generierten Codes. Verwendet der Codegenerator
nur bereits getestete und bewédhrte Codefragmente, so sinkt die Wahrschein-
lichkeit fiir Softwarefehler.

Zusammenfassend kann man feststellen, dass die modellbasierte Softwa-
reentwicklung viele Vorteile bietet. Sie kann insbesondere zu einer héheren
Softwarequalitéit sowie Produktivitdt und damit zu geringeren Entwicklungs-
kosten beitragen. Fiir einen praktikablen Einsatz der modellbasierten Soft-
wareentwicklung muss allerdings zunéchst ein Problem gelost werden, das
den Ausgangspunkt dieser Arbeit bildet. Das Problem wird im folgenden
Abschnitt erldutert.

1.2 Problembeschreibung

Die Entwicklung eines komplexen Softwaresystems zeichnet sich dadurch aus,
dass verschiedene Gesichtspunkte des Systems beriicksichtigt werden miissen.
Zur Beschreibung eines solchen Systems reicht daher nur selten ein einziges
Modell aus. Die unterschiedlichen Gesichtspunkte und Sichtweisen auf das
Softwaresystem erfordern den Einsatz verschiedener Modelle, denen typi-
scherweise unterschiedliche Notationen zugrunde liegen. So eignen sich zur
Beschreibung der statischen Struktur eines Softwaresystems andere Modelle
als zur Beschreibung der dynamischen Anteile.?

Dieser Umstand wird auch durch heutige Modellierungssprachen bertiick-
sichtigt. Ein prominentes Beispiel hierfiir ist die Unified Modeling Language
(UML) [UMLO5]. Diese graphische Modellierungssprache definiert in der
aktuellen Version insgesamt dreizehn verschiedene Diagrammarten, die je-
weils als einzelne Modelle aufgefasst werden konnen. Sechs der Diagramm-
arten dienen zur Modellierung der statischen Struktur; die {ibrigen sieben
Diagrammarten werden zur Modellierung des Verhaltens benutzt. Zwar
miissen zur Beschreibung eines Softwaresystems nicht alle Diagrammarten
zwangslaufig eingesetzt werden — allerdings ergeben erst die eingesetzten Mo-
delle zusammen das Gesamtmodell des zu entwickelnden Softwaresystems.
Ein anderes Beispiel sind domdnenspezifische Sprachen (engl. Domain Spe-

2Hinzu kommt, dass auch in den verschiedenen Phasen der Softwareentwicklung unter-
schiedliche Modelle eingesetzt werden kénnen.

Kapitel 1 Einleitung

cific Languages, kurz DSL), in denen unterschiedliche Sprachen aufeinander
abgestimmt und zu einer einzigen Modellierungssprache integriert werden
[WR99].

Zuséatzlich konnen Modelle auf unterschiedlichen Abstraktionsebenen exis-
tieren. Wéhrend auf hoheren Abstraktionsebenen auf wesentliche Artefakte
eines Softwaresystems fokussiert wird, erfolgt in den darunter liegenden Ab-
straktionsebenen eine Verfeinerung dieser Artefakte. Die Modelle der un-
terschiedlichen Abstraktionsebenen sind somit voneinander abhéngig, d. h.,
zwischen den Modellelementen der beteiligten Modelle existieren Beziehun-
gen, die eingehalten werden miissen, um ein fehlerfreies Softwaresystem zu
erhalten.

Hinzu kommt, dass an der Entwicklung grofler und komplexer Software-
systeme héaufig viele Entwickler aus zum Teil unterschiedlichen Doménen
beteiligt sind. Sie beschreiben das Softwaresystem aus unterschiedlichen
Sichten und setzen dafiir verschiedene Werkzeuge ein. Dies liegt daran, dass
die heutzutage verfiigbaren Modellierungswerkzeuge auf ein Anwendungs-
gebiet spezialisiert sind. Ein Werkzeug eignet sich damit fiir eine Aufgabe
besonders gut, ein anderes fiir eine andere Aufgabe. In den meisten Féllen
verwenden die Werkzeuge ein werkzeugspezifisches Modell, das inkompati-
bel zu allen anderen Werkzeugen ist. Damit muss fiir jedes Werkzeug ein
eigenes Modell erstellt werden, wodurch die Anzahl der eingesetzten Modelle
zusatzlich erhoht wird.

Das Problem stellen nicht die vielen Modelle an und fiir sich dar. Wie
zuvor dargestellt, ermoglicht héufig erst der Einsatz unterschiedlicher Mo-
delle die Beherrschung der Komplexitét eines zu entwickelnden Softwaresy-
stems. Das Problem besteht vielmehr darin, dass die Modelle voneinander
abhéngig sind. Die Modelle beschreiben ein und dasselbe Softwaresystem
aus unterschiedlichen Perspektiven. Daher enthalten die Modelle (zumin-
dest teilweise) gleiche Information iiber das zu entwickelnde Softwaresys-
tem. Wenn die gleiche Information in mehreren Modellen représentiert ist,
so sagt man, dass die Modelle sich berlappen. Durch die iiberlappenden
Teile stehen die Modelle zueinander in Beziehung. Diese Uberlappung der
Information kann zu widerspriichlichen Aussagen iiber das zu entwickelnde
Softwaresystem fithren. Ein Widerspruch zwischen zwei Modellen wird auch
Inkonsistenz genannt. Nuseibeh et al. definieren in [NER00] die Inkonsistenz
ganz allgemein als

,...any situation in which a set of descriptions does not obey some
relationship that should hold between them“.

1.2 Problembeschreibung

Diese Definition ist sehr generisch. Beziehen wir jedoch die in der Defi-
nition genannten Beschreibungen auf einzelne Modellelemente, so liegt eine
Inkonsistenz vor, wenn die Modellelemente eine Beziehung verletzen, in der
sie zueinander stehen sollten. Wird also eine geforderte Beziehung zwischen
den Modellelementen zweier Modelle nicht eingehalten, so kann dies zu wi-
derspriichlichen Aussagen iiber das Softwaresystem fithren. Aufgrund der
Tatsache, dass die automatische Codegenerierung aus inkonsistenten Model-
len in fehlerhafter Software resultieren kann, sollten Inkonsistenzen zwischen
Modellen beseitigt werden.

Die Beseitigung der Inkonsistenzen kann durch eine manuelle Uberpriifung
und Korrektur der beteiligten Modelle stattfinden. Bei groflen und komple-
xen Softwaresystemen ist eine Uberpriifung und Korrektur der Modelle von
Hand aber nicht nur miihsam und fehleranféllig, sondern auch zeitaufwandig
und damit unwirtschaftlich. Die manuelle Beseitigung der Inkonsistenzen er-
schwert somit den Entwicklungsprozess und macht die Vorziige der modell-
basierten Softwareentwicklung wieder zunichte. Fiir einen erfolgreichen und
praktikablen Einsatz der modellbasierten Softwareentwicklung ist daher eine
geeignete Werkzeugunterstiitzung nicht nur wiinschenswert, sondern unab-
dingbar.

1.2.1 Modelltransformation

Lange Zeit wurden automatische Modelltransformationen als Losung des
Konsistenzproblems propagiert. Bei einer Modelltransformation wird auf
der Grundlage von Transformationsregeln ein Quellmodell automatisch in
ein Zielmodell iibersetzt. Durch den automatischen Ubersetzungsvorgang
entsteht ein Zielmodell, das zum Quellmodell konsistent ist.

In der heutigen Praxis haben sich zur Softwareentwicklung weitestgehend
iterativ-inkrementelle Entwicklungsprozesse durchgesetzt. Bei der iterativ-
inkrementellen Softwareentwicklung wird ein Softwaresystem in aufeinander
folgenden Ausbaustufen erstellt. In jeder Ausbaustufe wird das Softwaresys-
tem um weitere Funktionen erweitert, bis schliellich das gesamte Software-
system realisiert ist. Dabei miissen die Modelle héiufig auch nach einer bereits
durchgefiithrten Modelltransformation angepasst und gedndert werden, was
erneut zu Inkonsistenzen zwischen den Modellen fiithren kann.

Die gednderten Modelle konnen durch eine erneute Modelltransformation
wieder miteinander abgeglichen werden. Wahrend am Anfang der iterativ-
inkrementellen Softwareentwicklung die Modelle meistens noch relativ klein
und iiberschaubar sind, werden die Modelle mit jedem Iterationszyklus im-

Kapitel 1 Einleitung

mer grofer. Im fortgeschrittenen Stadium der Entwicklung kénnen die Mo-
delle sogar so grofl werden, dass eine Modelltransformation mehrere Stunden
dauert und damit fiir den Softwareentwickler — insbesondere nach geringfiigi-
gen Anderungen — nicht mehr zumutbar ist.

Ein weiteres Problem entsteht dadurch, dass bei einer Modelltransforma-
tion ein bereits bestehendes Zielmodell verworfen und ein komplett neues
Zielmodell erzeugt wird. H&aufig ist das Zielmodell jedoch mit zusétzlichen
Informationen angereichert, die im Quellmodell nicht vorhanden sind. Weil
die zu dem Zielmodell manuell hinzugefiigten Informationen nicht automa-
tisch aus dem Quellmodell erzeugt werden koénnen, gehen sie durch eine
erneute Modelltransformation unwiderruflich verloren.

Ein anderes Problem liegt vor, wenn beide Modelle unabhéngig voneinan-
der erstellt worden sind. In diesem Fall sind beide Modelle bereits gegeben —
sie miissen lediglich auf Konsistenz iiberpriift und vorhandene Inkonsistenzen
durch einen Abgleich der Modelle beseitigt werden. Fiir ein solches Szenario
sind die meisten Ansitze zur Modelltransformation nicht ausgelegt.?

Heutige Ansétze zur Modelltransformation eignen sich somit zwar, um
ein Quellmodell in ein Zielmodell zu iibersetzen, aber weniger, um die Mo-
delle miteinander abzugleichen und die Konsistenz zwischen ihnen iiber ihren
gesamten Lebenszyklus sicherzustellen. Sie konnen Anderungen an einem
bereits iibersetzten Quellmodell nicht inkrementell an das Zielmodell wei-
terleiten (vergleiche Kapitel 8). Stattdessen erzeugen sie das Zielmodell bei
einer erneuten Ubersetzung immer wieder komplett neu, was hiufig zu In-
formationsverlusten im Zielmodell fithrt. Hinzu kommt, dass eine komplette
Ubersetzung bei vielen Anderungen und grofien Modellen ineffizient ist.

1.2.2 Codegenerierung

Ein Ziel der modellbasierten Softwareentwicklung besteht darin, die manu-
elle Programmierung iiberfliissig zu machen. Die heutige Praxis sieht aller-
dings anders aus. In den meisten Fallen miissen nach der Codegenerierung
noch Anderungen und Ergénzungen am Code durchgefithrt werden. Dies
liegt daran, dass die Modelle aufgrund ihres hohen Abstraktionsniveaus nicht
geniigend Informationen enthalten, um daraus automatisch eine vollstandige
und lauffihige Implementierung zu generieren. Daher erzeugt der Codege-
nerator haufig nur ein Codegeriist, das weiter verfeinert werden muss.

3Einen Ansatz, mit dem sowohl dieses Szenario als auch die Modelltransformation rea-
lisiert werden konnen, lernen wir mit der in dieser Arbeit verwendeten Technik der
Tripel-Graph-Grammatik [Sch94] kennen.

1.2 Problembeschreibung

Hierbei ergeben sich Probleme, die wir auch schon bei der Modelltransfor-
mation identifiziert haben. So miissen Anderungen im Modell auch im Code
umgesetzt werden, ohne dass manuell hinzugefiigte Codefragmente verloren
gehen. Umgekehrt miissen Anderungen im Code auch an das Modell propa-
giert werden. Genauso wie ein Abgleich zwischen zwei Modellen muss auch
ein Abgleich zwischen einem Modell und dem dazugehorigen Code stattfin-
den. Dies ist nicht weiter iiberraschend, wenn man bedenkt, dass Code auch
als ein Modell des zu entwickelnden Softwaresystems aufgefasst werden kann.

Natiirlich gibt es bereits Werkzeuge, die eine Unterstiitzung zur Syn-
chronisation von Modell und Code anbieten (vergleiche dazu auch Ab-
schnitt 8.2). Diese Synchronisation wird in den meisten Werkzeugen mit
Hilfe von Forward-Engineering und Reverse-Engineering realisiert [CC90].
Beim Forward-Engineering wird Code aus einem Modell generiert. Beim
Reverse-Engineering wird ein Modell aus bereits vorhandenem Code er-
stellt. Dabei wird entweder der Code oder das Modell komplett neu erzeugt.
Abhéngig von der Richtung ersetzt dieser Vorgang somit die alte Version
des Codes oder des Modells. Enthélt der Code oder das Modell Informatio-
nen, die nicht in dem jeweils anderen Artefakt vorhanden sind, so fiihrt ein
Forward- bzw. Reverse-Engineering zum Verlust dieser Informationen. Der
Ansatz ist somit nur fiir bijektive Abbildungen zwischen Modell und Code
praktikabel. Diese sind in der Praxis aber nur selten gegeben [SK04].

1.2.3 Nachverfolgbarkeit

Der Ansatz der modellbasierten Softwareentwicklung geht davon aus, dass
ein Softwaresystem nur noch mit Modellen beschrieben und die manuelle
Programmierung nicht notwendig sein wird. Viele Werkzeuge arbeiten aber
immer noch auf der Basis von Code. Ein Beispiel hierfiir sind Debugger,
die den Code zur Fehlersuche in Einzelschritten ausfiithren. Wird ein Fehler
erkannt, so wird dieser im Code angezeigt. Aufgrund der fehlenden Zuord-
nung ist ein Ubersetzungsvorgang nicht nachverfolgbar, das heifit, es ist nicht
sofort ersichtlich, aus welchen Modellelementen der fehlerhafte Code gene-
riert wurde. Es ist daher haufig einfacher, den Fehler direkt im Code zu
korrigieren als die Ursache fiir den Fehler im Modell zu beheben.

Die Nachverfolgbarkeit (engl. Traceability) solcher Ubersetzungsvorgénge
ist nicht nur bei der Codegenerierung niitzlich, sondern ganz allgemein bei
allen Modelltransformationen [ANRS06]. So ist es héufig notwendig, ein
Modell zum Zwecke der Analyse in den Formalismus des entsprechenden
Analysewerkzeugs zu iibersetzen. Die Analyse wird somit nicht auf dem

Kapitel 1 Einleitung

Modell durchgefiihrt, das dem Entwickler vertraut ist, sondern auf einem se-
mantisch dquivalenten Modell, das dem Formalismus des Analysewerkzeugs
geniigt. Das Analysewerkzeug untersucht dieses Modell und bezieht sich bei
der Prasentation der Analyseresultate natiirlich nur auf dieses Modell. Folg-
lich muss der Softwareentwickler die Analyseresultate im Formalismus des
Analysewerkzeugs interpretieren. Hier wére es von Vorteil, wenn die Ana-
lyseresultate im urspriinglichen Modell angezeigt werden kénnten, da dieses
Modell dem Entwickler vertraut ist.

1.2.4 Validierung und Verifikation

In diesem Kontext stellt der Ubersetzungsvorgang ein weiteres Problem dar.
Dieses Problem beruht auf der Tatsache, dass es zurzeit sehr schwierig ist,
eine Ubersetzung formal zu verifizieren, um ihre Korrektheit nachzuweisen.
Insbesondere bei der Entwicklung sicherheitskritischer Softwaresysteme muss
aber sichergestellt werden, dass bei der Ubersetzung eines Modells in ein
Modell des Analysewerkzeugs keine Fehler gemacht wurden. Ansonsten kann
nicht gewahrleistet werden, dass das iiberpriifte Modell dem tatséchlich vom
Softwareentwickler erstellten Modell entspricht.

Dieses Problem gilt auch fiir die Codegenerierung. Der Nachweis von Ei-
genschaften in einem Modell ist nur dann wirklich niitzlich, wenn garantiert
werden kann, dass der generierte Code korrekt ist, das heifit, dass die im
Modell {iberpriiften Eigenschaften auch im Code eingehalten werden. Hierzu
muss gewahrleistet sein, dass der generierte Code semantisch dquivalent zu
dem {iiberpriiften Modell ist.

Der formale Nachweis einer solchen Aquivalenz ist sehr aufwindig. Dies
liegt daran, dass heutige Codegeneratoren nicht formal und abstrakt genug
spezifiziert sind, sondern direkt in einer Programmiersprache implementiert
werden. Die vielen Details in der Implementierung eines Codegenerators
verhindern einen formalen Nachweis mit den heute verfiigharen Techniken.
Daher wird die Korrektheit heutiger Codegeneratoren meistens nur empi-
risch iiberpriift. Eine formale Spezifikation dieser Ubersetzung kinnte eine
geeignete Basis fiir einen solchen Korrektheitsnachweis darstellen und ihn
deutlich vereinfachen.

1.3 Ziele und Beitréage

1.3 Ziele und Beitrage

Ziel der vorliegenden Arbeit ist die Entwicklung einer Technik zur Modellsyn-
chronisation. Die Modellsynchronisation soll zwei zueinander in Beziehung
stehende Modelle automatisch miteinander abgleichen und dadurch Wider-
spriiche zwischen den Modellen auflésen. Mit der Technik soll insbesondere
eine inkrementelle Modellsynchronisation moglich sein, um auch sehr grofie
Modelle effizient miteinander abgleichen zu koénnen.

Die Modellsynchronisation zwischen zwei Modellen soll in beide Rich-
tungen funktionieren, d.h., die Modellsynchronisation muss bidirektional
ausfiithrbar sein. Dabei sollen auch die zur Modellsynchronisation benétig-
ten Spezialfille der Modelltransformation und der Modellintegration beriick-
sichtigt werden. Dariiber hinaus soll es moglich sein, eine Synchronisation
zwischen einem Modell und dem daraus generierten Code durchzufiihren.

Eine weitere Anforderung ist, dass Beziehungen zwischen zwei Modellen
explizit reprisentiert werden. Durch die explizite Angabe der Beziehungen
soll ein Nachweis der semantischen Aquivalenz der in Beziehung stehenden
Modelle ermoglicht werden. Beim FEinsatz dieser Technik zur Synchroni-
sation eines Modells mit dem daraus generierten Code wird dadurch die
Moglichkeit geschaffen, die Korrektheit des generierten Codes einfacher zu
iiberpriifen oder sogar formal nachzuweisen.

Bei der zu entwickelnden Technik soll eine Modellsynchronisation aller-
dings nicht von Hand programmiert, sondern modellbasiert entwickelt wer-
den. Hierzu soll eine geeignete Methode entwickelt werden, mit der benétigte
Modellsynchronisationswerkzeuge automatisiert erstellt werden konnen, so
dass Softwareentwickler von der Komplexitét einer manuellen Entwicklung
weitestgehend befreit werden.?

Diese Ziele erreichen wir auf der Grundlage von Tripel-Graph-Grammati-
ken (TGGs) [Sch94]. Diese visuelle, deklarative und formale Spezifikations-
technik ist nicht neu — sie wurde bereits zur Modelltransformation und zur
inkrementellen Modellintegration eingesetzt (z. B. in [Lef95, Bec07, Kén08],
vgl. Abschnitt 8.1.1). Allerdings nutzen die technischen Ansétze das Poten-
zial der TGGs bisher nicht aus: Die Modelltransformationen und Modellin-
tegrationen kann entweder batch-artig oder inkrementell ausgefithrt werden.
Zudem muss bei der inkrementellen Modelltransformation bzw. Modellin-
tegration das gesamte Quell- und Korrespondenzmodell untersucht werden,

4Die hier nur iiberblicksartig dargestellten Anforderungen werden zusammen mit der
entwickelten Methode in Abschnitt 2.4 noch genauer erldutert.

Kapitel 1 Einleitung

d.h., die eingesetzten Algorithmen arbeiten nur im Zielmodell inkremen-
tell. In dieser Arbeit wurde hingegen ein Algorithmus entwickelt, der sowohl
batch-artig als auch inkrementell ausgefiihrt werden kann. Bei der inkremen-
tellen Ausfithrung wird nicht das gesamte Quell- und Korrespondenzmodell
untersucht, sondern nur die von den Anderungen tatséchlich betroffenen Mo-
dellelemente. Durch die lokale Arbeitsweise lassen sich daher selbst grofie
Modelle schnell und effizient miteinander synchronisieren.

Die in dieser Arbeit vorgestellte Technik ist nicht auf die Modellsynchro-
nisation beschrénkt. Sie eignet sich ebenso zur Modelltransformation und
Codegenerierung. Damit kéonnen sowohl Modell-zu-Modell Beziehungen als
auch Modell-zu-Text Beziehungen durchgéngig in einer Notation spezifiziert
werden, um auf dieser Grundlage eine Modelltransformation bzw. Codege-
nerierung automatisch auszufithren. Nach einer Codegenerierung erlaubt
die Modellsynchronisation, das Modell und den dazu in Beziechung stehen-
den Code miteinander abzugleichen, wenn diese nach der Codegenerierung
gedndert wurden.

Bei sehr umfangreichen Metamodellen hat sich die Spezifikation von
Modell-zu-Modell und Modell-zu-Text Beziehungen als schwierig und zeit-
aufwindig erwiesen. Um die Spezifikation der Beziehungen zu vereinfachen,
haben wir daher einen Ansatz entwickelt, bei dem die Beziehungen durch die
Angabe von zueinander korrespondierenden Beispielen definiert werden. Da-
bei werden die Beispiele in der Notation der beteiligten Sprachen angegeben.
Aus den gegebenen Beispielen wird anschliefend die zur Synchronisation
benotigte Tripel-Graph-Grammatik automatisch synthetisiert. Mit diesem
Ansatz konnte die Spezifikation einer Tripel-Graph-Grammatik signifikant
vereinfacht werden.

Die zur Modellsynchronisation bendétigten Werkzeuge miissen nicht von
Hand programmiert sondern kénnen automatisch generiert werden. Hierzu
wurden im Rahmen dieser Arbeit eine Methode und dazugehérige Softwa-
rewerkzeuge entwickelt. Bei der entwickelten Methode werden die Regeln
zur Modellsynchronisation nicht fest in einem Werkzeug codiert, sondern
aus der formalen Spezifikation mithilfe der realisierten Softwarewerkzeuge in
ausfithrbaren Code iibersetzt. Dieser Code wird zur Parametrisierung eines
im Rahmen dieser Arbeit entwickelten Frameworks verwendet. Das Fra-
mework mit den ausfithrbaren Regeln ergibt ein Synchronisationswerkzeug,
dass in andere Modellierungswerkzeuge integriert werden kann. Damit wird
eine Modellsynchronisation in Anwendungsdoménen erméglicht, die durch
heterogene Werkzeuglandschaften gepragt sind.

Mit der prototypischen Realisierung der in dieser Arbeit dargestellten

10

1.4 Aufbau der Arbeit

Konzepte konnte anhand verschiedener Beispiele und durchgefiihrter Lei-
stungsmessungen gezeigt werden, dass die inkrementelle Modellsynchronisa-
tion auch bei groflen Modellen effizient durchfithrbar ist und somit kontinu-
ierlich, das heifit, sofort nach jeder Anderung der Modelle, stattfinden kann.
Zudem wurde gezeigt, dass mit der in dieser Arbeit vorgestellten Methode
Modellsynchronisationswerkzeuge mit sehr geringem Aufwand realisiert wer-
den kénnen.

1.4 Aufbau der Arbeit

Die vorliegende Arbeit befasst sich mit einer Technik zur automatischen und
insbesondere inkrementellen Synchronisation von Modellen. Einen wesentli-
chen Schwerpunkt dabei bilden das erarbeitete Konzept zur Modellsynchro-
nisation und die Methodik, die zur weitestgehend automatischen Erstellung
von Modellsynchronisationswerkzeugen eingesetzt wird. Die hierzu benotig-
ten Grundlagen werden — sofern nétig — dem jeweiligen Kapitel vorangestellt,
so dass auf ein einfithrendes Grundlagenkapitel verzichtet wird. Die vorlie-
gende Dissertation besitzt daher den folgenden Aufbau:

Kapitel 2 enthilt ein Beispiel, an dem die Modellsynchronisation motiviert
und die damit verbundenen Probleme n&her vorgestellt werden. An-
schlieBend werden relevante Begriffe und Kriterien fiir die Modellsyn-
chronisation aufgestellt, anhand derer diese Arbeit eingeordnet wird.
Im letzten Teil dieses Kapitels werden die Anforderungen an die Mo-
dellsynchronisation aufgestellt. Das Ziel dieses Kapitels ist, den Leser
in das Thema der Modellsynchronisation und die damit verbundenen
Probleme einzufiihren.

Kapitel 3 stellt die Technik der Tripel-Graph-Grammatiken (TGG) zur Spe-
zifikation von Korrespondenzregeln vor. Hierzu werden zunéchst die
notwendigen Grundlagen erldutert. Anschliefend wird die grundle-
gende Syntax und Semantik der TGGs vorgestellt, die dann um niitz-
liche Konzepte erweitert wird. Darauf aufbauend stellen wir typische
Anwendungsszenarien fiir TGGs vor, zu denen auch die Modellsyn-
chronisation gehort. Das Ziel dieses Kapitels ist es, den Leser mit der
Spezifikationstechnik vertraut zu machen und moégliche Anwendungs-
szenarien aufzuzeigen.

Kapitel 4 zeigt, wie die in dieser Arbeit verwendete Spezifikationstechnik
auch zur Beschreibung von Modell-zu-Text Beziehungen eingesetzt

11

Kapitel 1 Einleitung

werden kann. Diese Spezifikation gestaltet sich allerdings ohne eine
angemessene Werkzeugunterstiitzung als recht umsténdlich. Daher
préisentieren wir in diesem Kapitel zwei Spezifikationsvarianten mit
denen auch Modell-zu-Text Beziehungen einfach und dennoch formal
definiert werden konnen.

Kapitel 5 beschreibt den entwickelten Synchronisationsmechanismus. Der

Synchronisationsmechanismus arbeitet sowohl batch-artig als auch in-
krementell. Zunéchst stellen wir die grundlegende Arbeitsweise vor.
Anschlieflend zeigen wir notwendige Erweiterungen, die zur inkremen-
tellen Modellsynchronisation benotigt werden. Die Realisierung mit
sogenannten Storydiagrammen wird im letzten Teil dieses Kapitels vor-
gestellt.

Kapitel 6 gibt einen Uberblick iiber Moglichkeiten der Validierung und Veri-

fikation von Modelltransformationen. Dieser Forschungszweig ist noch
nicht sehr weit fortgeschritten. Daher stellen wir im ersten Teil die-
ses Kapitels einige existierende Ansitze zur Uberpriifung der syntak-
tischen Korrektheit vor und untersuchen, inwiefern diese Anséitze auf
TGGs iibertragbar sind. Im zweiten Teil dieses Kapitels beschéftigen
wir uns mit Ansédtzen zur formalen Verifikation der semantischen Kor-
rektheit von Modelltransformationen.

Kapitel 7 prisentiert die im Rahmen dieser Arbeit entstandene Werkzeug-

unterstiitzung. Die prototypische Realisierung dieser Werkzeuge wurde
auf der Basis bereits existierender Entwicklungsumgebungen durch-
gefithrt. Daher werden diese Werkzeuge ebenfalls kurz vorgestellt.
Zusatzlich werden in diesem Kapitel die Ergebnisse der durchgefiihr-
ten Evaluation der prototypischen Implementierung prisentiert. Die
Ergebnisse der Evaluation belegen, dass die inkrementelle Modellsyn-
chronisation effizient durchfiihrbar ist.

Kapitel 8 untersucht verwandte Arbeiten und vergleicht sie mit dem in die-

12

ser Arbeit vorgestellten Ansatz. Hierzu stellen wir zunéchst Arbeiten
vor, die TGGs bereits zur Modelltransformation und Modellintegration
genutzt haben. Anschlieend betrachten wir andere Ansétze zur Mo-
delltransformation und Modellintegration und untersuchen, inwieweit
diese Ansitze zur Modellsynchronisation geeignet sind. Wir schliefen
dieses Kapitel mit einigen Ansétzen, die sich mit der Vereinfachung von
Spezifikationen im Rahmen von Modelltransformationen beschéftigen.

1.4 Aufbau der Arbeit

Kapitel 9 fasst die Ergebnisse der Arbeit zusammen und schliefft mit einen
Ausblick auf mogliche Erweiterungen die vorliegende Arbeit ab.

13

Kapitel 2
Modellsynchronisation

In der Literatur zur modellbasierten Softwareentwicklung wird hauptséchlich
die Notwendigkeit zur Modellsynchronisation betont — Anforderungen, mog-
liche Probleme sowie konkrete Anséitze und Vorschlage zur Umsetzung wer-
den jedoch nicht behandelt. Ziel dieses Kapitels ist es daher, dem Leser
einen ersten Uberblick iiber das Thema der Modellsynchronisation zu ver-
mitteln, die damit verbundenen Probleme aufzuzeigen, sowie den in dieser
Arbeit entwickelten methodischen Ansatz zur Erstellung von Modellsynchro-
nisationswerkzeugen kurz vorzustellen. Hierzu betrachten wir zunéchst ein
Beispiel zur Modellsynchronisation und zeigen anhand einiger Szenarien ty-
pische Probleme, die bei der Modellsynchronisation auftreten kénnen. An-
schlieend befassen wir uns mit Begriffen, die wir im Kontext der Modell-
synchronisation verwenden und die fiir das weitere Verstandnis dieser Arbeit
hilfreich sind. In dem darauf folgenden Abschnitt stellen wir einige Kriterien
vor, die zu einer Klassifikation von Ansétzen zur Modellsynchronisation her-
angezogen werden konnen. Anschliefend geben wir einen Uberblick iiber den
in dieser Arbeit verfolgten Ansatz und klassifizieren ihn auf Grundlage der
zuvor festgelegten Kriterien. Im letzten Abschnitt fassen wir die Ergebnisse
dieses Kapitels zusammen.

2.1 Ein Beispiel

In diesem Abschnitt wird die Modellsynchronisation an einem Beispiel aus
der Doméne der automatisierten Fertigungssysteme vorgestellt. Hierzu ge-
ben wir zunéchst einen Uberblick iiber die Doméne und den damit verbunde-
nen Synchronisationsbedarf. Anschlieend erldutern wir exemplarisch einige
Synchronisationsszenarien.

15

Kapitel 2 Modellsynchronisation

2.1.1 Hintergrund zur Domane

In produzierenden Unternehmen werden seit geraumer Zeit automatisierte
Fertigungssysteme eingesetzt, um die Fertigung mit einer hohen Qualitét
und mit niedrigen Kosten durchzufithren. Durch die Globalisierung der Ab-
satzmérkte ist allerdings ein Kdufermarkt! entstanden, der immer kiirzere
Innovationszyklen und eine steigende Variantenvielfalt erwartet. In dieser
Marktsituation ist es fiir den Erfolg eines Unternehmens wichtig, schnell auf
Markténderungen reagieren und ein bestehendes Fertigungssystem schnell
und kostengiinstig an neue Anforderungen anpassen zu koénnen.

In der Industrie werden daher immer haufiger Flexible Fertigungssysteme
eingesetzt. Ein flexibles Fertigungssystem ist modular aufgebaut und besteht
typischerweise aus mehreren Werkzeugmaschinen, die iiber ein automati-
sches Materialflusssystem miteinander verbunden sind. Zusétzlich konnen in
das Fertigungssystem Handarbeitspléitze sowie Material- und Werkstiickla-
ger integriert sein. Die Handarbeitspliatze sind fiir Aufgaben vorgesehen, die
nicht automatisiert durchgefithrt werden kénnen. Die Lager sorgen fiir eine
unterbrechungsfreie Versorgung der Produktion mit den benétigten Roh-,
Halbfertig- und Fertigteilen.

Ein Beispiel fiir ein solches flexibel automatisiertes Fertigungssystem ist
das an der Universitdt Paderborn im Labor fiir Rechnerintegrierte Produk-
tion aufgebaute Fertigungssystem zur Produktion von Flaschenoffnern. Der
experimentelle Aufbau ist schematisch in der linken Hélfte der Abbildung 2.1
dargestellt. Das Fertigungssystem besteht aus vier Stationen, die iiber ein
automatisiertes Materialflusssystem miteinander verbunden sind. Bei dem
verwendeten Materialflusssystem handelt es sich um ein schienengebunde-
nes Transportsystem mit selbst fahrenden Forderfahrzeugen, die Shuttles
genannt werden. Zu den Grundelementen des Transportsystems gehoren un-
terschiedliche Schienen, Weichen und Stationen. Aus diesen Grundelementen
kénnen — je nach Anwendung und réaumlichen Gegebenheiten — verschiedene
Topologien aufgebaut werden. In unserem Beispiel besteht die Topologie des
Materialflusssystems aus einer Haupt- und einer Nebenschleife. Die Neben-
schleife kann iiber Weichen erreicht und wieder verlassen werden. Fiir den
Transport der Werkstiicke zwischen den einzelnen Stationen werden mehrere
Shuttles eingesetzt, deren Umlaufrichtung im Materialflusssystem fest vor-
gegeben ist. Dadurch wird gegenléufiger Verkehr auf der Schiene verhindert.

Zur Steuerung der Anlage wird zwischen der Betriebsleitebene, der Pro-

1Als Kdufermarkt wird eine Marktsituation bezeichnet, in der sich der K#ufer in einer
verhandlungstaktisch giinstigeren Position als der Verkéufer befindet.

16

2.1 Ein Beispiel

Ethernet
----------------------- L SCARA- | = | } |]
Roboter <_J| - __Jl PC __Jl PC

MPI

Profibus . { e
<

Ventil-
insel

Anschaltmodul
fur MOBY-F
Sensor g Sensor !

Abbildung 2.1: Schematische Darstellung des Fertigungssystems und der ver-
wendeten Steuerungstechnik

Aktor/Sensor-
Interface

Umlaufrichtung —»

Rundtaki-

Pufferlager mit Regalbediengerat

zessleitebene, der Steuerungsebene und der Feldebene unterschieden (vgl.
Abbildung 2.1, rechts). Die Betriebs- und Prozessleitebene werden héiufig
zusammengefasst und einfach nur als Leitebene bezeichnet. Die Leitebene
ist fiir iibergeordnete Aufgaben zustédndig, die insbesondere die Produkti-
onsplanung betreffen. Hierzu werden herkémmliche PCs eingesetzt. Die
Steuerungs- und Feldebene dient zur Steuerung lokaler Komponenten wie
zum Beispiel Stationen und Werkzeugmaschinen. Hierzu haben sich Spei-
cherprogrammierbare Steuerungen (SPS) durchgesetzt, die ihre Popularitét
insbesondere ihrer Robustheit, ihrer hohen Verfiigharkeit und ihren niedri-
gen Anschaffungskosten verdanken. Die SPSen interagieren mit den Kompo-
nenten der Anlage iiber Sensoren und Aktoren (auch Aktuatoren genannt).
Hierzu sind sie entweder iiber ein Actuator-Sensor-Interface (ASI) oder einen
Profibus mit den SPSen verbunden. Die Kommunikation der SPSen mit
den PCs der Leitebene findet iiber ein Multi-Point-Interface (MPI) statt.
Zur Programmierung einer SPS werden in der Praxis verschiedene Sprachen
eingesetzt, die in der herstellerunabhéngigen SPS-Programmiernorm [IEC
61131-3 standardisiert sind [IEC03].

Die Flexibilitidt eines solchen Fertigungssystems ergibt sich daraus, dass
die Werkstiicke sowohl an den einzelnen Werkzeugmaschinen mit unter-
schiedlichen Bearbeitungsverfahren gefertigt werden koénnen als auch da-
durch, dass die Reihenfolge der Bearbeitungsschritte durch das eingesetzte

17

Kapitel 2 Modellsynchronisation

Materialflusssystem flexibel gestaltet werden kann. Daher konnen auf einem
Fertigungssystem verschiedene Produkte kostengiinstig auch in kleiner Serie
gefertigt werden.

Ein weiterer Vorteil eines solchen Fertigungssystems besteht darin, dass in
kiirzester Zeit weitere Stationen hinzugefiigt werden kénnen. Beispielsweise
kann durch eine Erweiterung des Materialflusssystems und eine Mehrfach-
auslegung von Stationen das Produktionsvolumen gesteigert werden. Ebenso
kann durch die Integration neuer Werkzeugmaschinen die Variantenvielfalt
der Produkte erhoht werden. Durch diese Mafinahmen kann die Produktion
an die Bediirfnisse des Marktes schnell angepasst werden.

Dem gegeniiber steht allerdings die erhohte Komplexitét bei der Entwick-
lung der Steuerungssoftware. Diese muss insbesondere bei einer Erweiterung
eines solchen Fertigungssystems an die neuen Gegebenheiten angepasst wer-
den. Damit keine langen Ausfallzeiten bei der Produktion entstehen, sollten
auch die nétigen Softwareanpassungen moglichst schnell realisiert werden
konnen. Als ein besonderes Problem hat sich dabei allerdings das Fehlen
einer durchgingigen Methodik zur Spezifikation der Software fiir derartige
Systeme erwiesen.

2.1.2 Das ISILEIT-Projekt

Im ISILEIT?-Projekt wurde zur Verbesserung der zuvor beschriebenen Situa-
tion eine durchgéngige Methode zur Erstellung von Steuerungssoftware fiir
flexibel automatisierte Fertigungssysteme entwickelt. In diesem Abschnitt
stellen wir den entwickelten Ansatz kurz vor. Fiir eine ausfiihrlichere Dar-
stellung verweisen wir auf [SWGEO04] und [NSZ03].

Um eine vollsténdige Spezifikation der Steuerungssoftware fiir flexible Fer-
tigungssysteme zu ermoglichen, wurden verschiedene Modellierungstechni-
ken, wie die Specification and Description Language (SDL) [ITU96] und die
Unified Modeling Language (UML) [UMLO05], zu einer durchgéngigen Spe-
zifikationssprache integriert. Das Ziel der Integration ist, eine prézise und
konsistente Modellierung auf einer hohen Abstraktionsebene zu ermoglichen
und daraus ausfithrbaren Code zu generieren. Auf der Basis dieser Kon-
zepte wurde eine Methode entwickelt, die eine Moglichkeit zur Simulation
der spezifizierten Steuerungssoftware bietet und dadurch eine Analyse in

2ISILEIT ist ein Akronym fiir *Integrative Spezifikation von verteilten Leitsystemen der
flexibel automatisierten Fertigung’. Das Projekt wurde im Rahmen des DFG Schwer-
punktprogramms Software-Spezifikation — Integration von Techniken der Softwarespe-
zifikation fiir ingenieurwissenschaftliche Anwendungen (SPP 1064) durchgefiihrt.

18

2.1 Ein Beispiel

Spezifikation Modellierung
Topologie und Hardware-
komponenten

Erstellung der

Entwurf des Systemmodells

Systemspezifikation
Modell des ASM
Systems Modell
Generierung Validierung Verifikation

Codegenerierung Javagtode

Model-Checking

von ausfiihrbarem
Code

Erweiterung

der Anlage SPS-Code

Produktion Inbetriebnahme

und Wartung
Zustand Beobachtung und

Visualisierung durch
AR-Werkzeug

Steuerung der
Anlage

Abbildung 2.2: Uberblick zur ISILEIT-Methode

den frithen Entwicklungsphasen ermoglicht. Die entwickelte Methode um-
fasst die Bereiche Spezifikation und Modellierung, Generierung, Verifikation
und Validierung sowie Inbetriebnahme und Wartung. Die Methode ist in
Abbildung 2.2 schematisch dargestellt.

Die Spezifikation wird in der Regel durch Ingenieure durchgefiihrt. Die
Ingenieure legen die zu verwendenden Hardwarekomponenten und deren Ei-
genschaften fest. Zur Spezifikation der Hardwarekomponenten werden SDL-
Blockdiagramme verwendet. Die Blockdiagramme beschreiben den hierar-
chischen Aufbau der eingesetzten Hardwarekomponenten sowie notwendige
Kommunikationskanile, die zur Steuerung dieser Komponenten bendotigt
werden. Zusétzlich legen die Ingenieure die Topologie, also den statischen
Aufbau, des Fertigungssystem fest. Die Topologie stellt die Grundlage fiir
eine spatere Simulation des Fertigungssystems dar.

Zur Modellierung eines Fertigungssystems wird das SDL-Blockdiagramm
in ein UML-Klassendiagramm {iberfithrt. Dazu werden Blécke und Pro-
zesse des Blockdiagramms auf Klassen eines Klassendiagramms abgebil-
det; die Kommunikationskanéle im Blockdiagramm werden zu Assozia-
tionen zwischen korrespondierenden Klassen im Klassendiagramm. Das
Klassendiagramm wird anschliefend durch das Hinzufiigen von Attribu-
ten und Methoden sowie zusétzlichen Klassen und Assoziationen ver-

19

Kapitel 2 Modellsynchronisation

feinert. Zur Verhaltensmodellierung wird hingegen eine Kombination
aus UML-Zustandsdiagrammen, UML-Aktivitdtsdiagrammen und UML-
Kollaborationsdiagrammen verwendet, deren Semantik im Rahmen des
ISiLEIT-Projekts formal mit Graphgrammatiken spezifiziert wurde. Auf-
grund der durchgefiihrten Formalisierung entstehen sowohl fiir die Hard-
warekomponenten als auch fiir die Steuerungssoftware ausfithrbare Modelle,
die zur automatischen Codegenerierung und zur Verifikation und Validierung
des Systems verwendet werden konnen.

Die formale Verifikation erfolgt aufgrund der Komplexitit des Gesamt-
systems (Modell der Hardware und der Steuerungssoftware) nur fiir sicher-
heitskritische Teile des Fertigungssystems. Als Grundlage fiir die Verifika-
tion wurden Abstract State Machines (ASM) und die Abstract State Machine
Language (AsmL) in Kombination mit einem auf Model-Checking Techniken
basierenden Verifikationsverfahren verwendet [KRO04].

Die automatische Generierung von ausfithrbarem Code dient der Validie-
rung und der anschlieenden Steuerung der Anlage. Zur Validierung werden
die Modelle der Hardwarekomponenten und der Steuerungssoftware mithilfe
eines Codegenerators in Java-Code iibersetzt. Der zur Steuerung des realen
Fertigungssystems benotigte SPS-Code wird durch einen SPS-Codegenerator
erzeugt.

Zur Uberpriifung des Gesamtsystems wurde die Validierung durch Simu-
lation in die entwickelte Methode aufgenommen. Zur Simulation wird der
generierte Java-Code kompiliert und ausgefiihrt. Die Visualisierung dieser
Simulation erfolgt durch eine angekoppelte 3D-Software. Dadurch wird eine
Uberpriifung und Analyse der entwickelten Steuerungssoftware in einem sehr
frithen Stadium der Entwicklung ermoglicht, so dass Fehler noch vor der In-
betriebnahme der Anlage beseitigt werden kénnen.

Zur Unterstiitzung der Inbetriebnahme und Wartung wurde eine Augmen-
ted Reality (AR) Anwendung entwickelt, die sowohl die Zusténde der Steue-
rungssoftware als auch die Zustédnde der realen Anlage beobachtet und visua-
lisiert. Hierdurch kénnen Wirkzusammenhénge leichter identifiziert werden,
so dass Fehler, die bei der Validierung nicht erkannt wurden, nachvollzogen
werden konnen. Durch diese Unterstiitzung verkiirzt sich die Zeit fiir die
Inbetriebnahme und Wartung der Anlage [Eck07].

Nach der Inbetriebnahme der Anlage wird der generierte und wéahrend
der Inbetriebnahme getestete SPS-Code zur Steuerung der Produktion ein-
gesetzt. Flexible Fertigungssysteme zeichnen sich dadurch aus, dass sie
schnell und einfach an neue Anforderungen angepasst werden konnen. Bei
einer Anderung der Anlage muss allerdings hiufig auch die Steuerungssoft-

20

2.1 Ein Beispiel

ware erweitert werden. Daher ist die ISILEIT-Methode auf ein iterativ-
inkrementelles Vorgehen bei der Entwicklung der Steuerungssoftware aus-
gelegt. Dies erkléart die Zyklen in Abbildung 2.2.

2.1.3 Synchronisationsbedarf

Bei der ISILEIT-Methode findet an mehreren Stellen eine automatische Uber-
setzung statt. Zum Beispiel wird das SDL-Blockdiagramm in ein initiales
UML-Klassendiagramm iibersetzt, um dann das Verhalten von Klassen, die
einen SDL-Prozess représentieren, mit einem Zustandsdiagramm zu spezi-
fizieren. Eine weitere Ubersetzung erfolgt bei der Codegenerierung. Hier
wird das Modell der Steuerungssoftware zur Validierung durch Simulation in
Java-Code und zur Steuerung der realen Anlage in SPS-Code iibersetzt.

Bei einer Anpassung des Fertigungssystems an neue Anforderungen, die
zum Beispiel den Einsatz neuer Hardwarekomponenten und/oder eine Ande-
rung der Topologie der Anlage erfordern, muss in der Regel die Spezifikation
des Fertigungssystems gedndert und der Entwurf der Steuerungssoftware an
die neue Spezifikation angepasst werden. Eine manuelle Anpassung des Ent-
wurfs an die neue Spezifikation kann insbesondere bei groflen und komple-
xen Fertigungssystemen sehr zeitaufwéndig sein. Eine erneute, automatische
Ubersetzung der Spezifikation in einen initialen Entwurf fithrt dazu, dass die
bereits durchgefiithrten Verfeinerungen im Entwurf {iberschrieben und da-
durch verloren gehen — sie miissen dann erneut modelliert werden. Dies
erhoht den bendtigten Zeitaufwand und die mit der Anpassung des Ferti-
gungssystems verbundenen Entwicklungskosten fiir die Steuerungssoftware.

Diese Problematik existiert auch bei der Codegenerierung. Beispielsweise
wird der generierte Java-Code zur Visualisierung der Simulation an eine 3D-
Software angebunden. Der hierzu benétigte Code muss manuell zu dem ge-
nerierten Code hinzugefiigt werden. Erfolgt nach durchgefithrten Anderun-
gen im Entwurfsmodell eine erneute Codegenerierung, so werden die manuell
hinzugefiigten Codeergidnzungen durch den Generierungsvorgang iiberschrie-
ben. Die notwendigen Ergédnzungen zur Anbindung der 3D-Software miissen
daher erneut manuell durchgefiihrt werden.

Um den zusitzlichen Aufwand, der beim Uberschreiben manueller Ande-
rungen entsteht, zu vermeiden, wird ein Werkzeug benétigt, das statt einer
einfachen Ubersetzung eine Synchronisation durchfiihrt. Eine solche Syn-
chronisation muss sowohl zwischen zwei Modellen als auch zwischen einem
Modell und dem daraus generierten Code moglich sein.

21

Kapitel 2 Modellsynchronisation

2.1.4 Synchronisationsszenarien

In diesem Abschnitt betrachten wir einige typische Szenarien der Mo-
dellsynchronisation an einem Beispiel. Als Beispiel dient uns die Mo-
dellsynchronisation zwischen einem SDL-Blockdiagramm und einem UML-
Klassendiagramm aus dem ISILEIT-Projekt.?

Ein SDL-Blockdiagramm dient der hierarchischen Strukturierung eines Sy-
stems. Ein Block auf der obersten Ebene stellt das spezifizierte System dar.
Ein System muss mindestens einen Block enthalten, wobei jeder Block aus
weiteren Blocken bestehen kann. Hierdurch ergibt sich die hierarchische
Strukturierung des Systems. Blocke konnen Prozesse enthalten. Allerdings
darf ein Block nie Prozesse und Blocke gleichzeitig enthalten. Die Kom-
munikation zwischen den Elementen findet mithilfe von Signalen statt, die
iiber Kandle zwischen den Elementen eines Blockdiagramms ausgetauscht
werden.*

In Abbildung 2.3(a) ist ein SDL-Blockdiagramm dargestellt. Der oberste
Block ist das System. In der graphischen Darstellung wird ein System durch
das Schliisselwort System, ein Block durch das Schliisselwort Block und ein
Prozess durch das Schliisselwort Process gekennzeichnet. Systeme, Blocke
und Prozesse besitzen eindeutige Namen. In unserem Beispiel heifit das
System ProSys (als Abkiirzung fiir ,Production System®). Es enthélt die
beiden Blocke Station und Switch. Der Block Station ist weiter unterteilt
in die Blocke Interlock und Stopper. Der Block Switch enthilt den Prozess
Control.

Die Blocke sind untereinander iiber die Kanéle c1, ¢2 und ¢3 verbunden.
Zusétzlich besteht eine Verbindung zwischen dem Block Switch und dem
darin enthaltenen Prozess Control iiber den Kanal c4. Kanile sind nur
zwischen Blocken derselben Ebene erlaubt (vgl. Kanal c1 und ¢3) oder
zwischen einem iibergeordneten Block und seinen direkt darin enthaltenen
Blocken oder Prozessen (vgl. Kanéle c2 und c4).

In Abbildung 2.3(b) ist das zum Blockdiagramm korrespondierende Klas-
sendiagramm dargestellt. Es besteht aus Klassen, die mit unterschiedlichen
Stereotypen annotiert sind, sowie Assoziationen zwischen diesen Klassen.

3Ein Beispiel zur Synchronisation von Modell und Code geben wir in Kapitel 4.

4In SDL wird zwischen wverzégernden und verzégerungsfreien Kanilen unterschieden.
Auflerdem kommunizieren Prozesse {iber sogenannte Signalrouten. Um unser Beispiel
jedoch moglichst einfach zu halten, verzichten wir an dieser Stelle auf diese Unter-
scheidung und sprechen lediglich von Kanélen — auch wenn damit in einigen Féllen
Signalrouten gemeint sind. Zusétzlich verzichten wir auf Signale an Kanélen.

22

2.1 Ein Beispiel

System ProSys cd ProSys
Block Station Block Switch <<system>>
ProSys
2 3 4
Block Interlock ° ° ° Process
Control
[1
(] <<block>> c3 <<block>>
Station Switch
Block Stopper c2
c4
<<block>> cl <<block>> <<process>>
Interlock Stopper Control
(a) SDL-Blockdiagramm (b) UML-Klassendiagramm

Abbildung 2.3: Zwei zueinander korrespondierende Modelle

Eine spezielle Assoziation ist die Komposition. Die Komposition wird durch
eine ausgefiillte Raute an einem Ende einer Assoziation dargestellt. Sie wird
verwendet, um die hierarchische Struktur eines Blockdiagramms im Klassen-
diagramm wiederzugeben.

Die Zuordnung der Elemente eines Blockdiagramms zu einem korrespon-
dierenden Klassendiagramm ist informell in Abbildung 2.4 dargestellt. In
jeder der Zuordnungen 1-6 sehen wir auf der linken Seite die Elemente ei-
nes Blockdiagramms und auf der rechten Seite die dazu korrespondierenden
Elemente eines Klassendiagramms. Die gestrichelt dargestellten Elemente
geben den Kontext der von der Zuordnung betroffenen Elemente an.

Ein System wird auf eine Klasse im Klassendiagramm abgebildet (Zuord-
nung 1). In der Zuordnung sind sowohl das System als auch die Klasse mit
einem X benannt. Dies bedeutet, dass beide Elemente nur dann zueinander
korrespondieren, wenn die Namen dieser Elemente identisch sind. Zusétzlich
ist die Klasse mit dem Stereotyp <system>> gekennzeichnet. Diese Kenn-
zeichnung ist notig, um eine Klasse, die ein System représentiert, von einer
Klasse zu unterscheiden, die einem Block oder Prozess zugeordnet wurde.

Die Abbildung eines Blocks auf eine Klasse im Klassendiagramm wird
in den nachfolgenden beiden Zuordnungen dokumentiert (Zuordnungen 2
und 3). Auch hier heilen sowohl der Block als auch die Klasse gleich. Im
Gegensatz zur vorherigen Zuordnung wird die Klasse jedoch jetzt mit dem
Stereotyp <block>> annotiert. Ist der betrachtete Block in einem System
enthalten, so existiert im Klassendiagramm zwischen der Klasse, die dem
Block zugeordnet ist, und der Klasse, die das System représentiert, eine
Kompositionsbeziehung (Zuordnung 2). Ist der Block hingegen in einem

23

Kapitel 2 Modellsynchronisation

SDL UML
System X <<system>>
X
Cspoemx | | s
! | X !
| | R |
| I
| Block Y |
| I
[|
| | <<block>>
| Y
__________ |
MBlock X I I “<block>> 1|
| | X
| | (R —
|
i [Block Y :
| I
[|
| | <<block>>
L ! Y
I_BE)(:k;(______ I™ <blocks>]
X

|
|
|
|
| Process Y
|
|
|

L——

v

<<process>>

Abbildung 2.4:

24

Informelle Zuordnung von Elementen eines Blockdiagramms

zu Elementen eines Klassendiagramms

2.1 Ein Beispiel

iibergeordneten Block enthalten, so wird die Komposition zu der Klasse her-
gestellt, die den iibergeordneten Block reprisentiert (Zuordnung 3).

Einem Prozess wird ebenfalls eine Klasse im Klassendiagramm zugeordnet
(Zuordnung 4). Der Prozess wird hier zu einer Klasse in Beziehung gesetzt,
die mit dem Stereotyp <process>> gekennzeichnet ist. Die hierarchische
Struktur wird — wie in den vorangegangen Zuordnungen — wieder durch eine
Komposition abgebildet. Allerdings kann ein Prozess nur in einem Block
enthalten sein, so dass hier keine Fallunterscheidung notig ist.

Ein Kanal eines Blockdiagramms wird im Klassendiagramm auf eine As-
soziation abgebildet (Zuordnungen 5 und 6). Bei den Elementen, die durch
den Kanal verbunden werden, kann es sich um ein System sowie Blécke und
Prozesse handeln. Ein Kanal zwischen diesen Elementen kann auf der glei-
chen Hierarchieebene existieren (vgl. Zuordnung 5) oder zwischen Elementen
benachbarter Hierarchieebenen (vgl. Zuordnung 6). Die zueinander korres-
pondierenden Kanéle und Assoziationen miissen identisch benannt sein.

Die Zuordnungen kénnen verwendet werden, um ein Blockdiagramm in
ein korrespondierendes Klassendiagramm zu iibersetzen. Nach Anderun-
gen in den Diagrammen konnen diese Zuordnungen herangezogen werden,
um zu iiberpriifen, ob die beiden Diagramme weiterhin zueinander synchron
sind. Zusétzlich kann aus den Zuordnungen abgeleitet werden, wie die Dia-
gramme verdndert werden miissen, damit sie wieder synchron zueinander
sind. Hierfiir schauen wir uns einige Synchronisationsszenarien an.

Initiale Synchronisationsszenarien

In unserem ersten Synchronisationsszenario gehen wir davon aus, dass ein
Blockdiagramm bereits existiert und nun mit einem leeren Klassendiagramm
synchronisiert wird. Diese initiale Synchronisation kann durch eine Modell-
transformation erreicht werden. Eine Modelltransformation erhélt ein Quell-
modell als Eingabe und erstellt auf der Grundlage von definierten Regeln aus
diesem Modell ein Zielmodell. In unserem Beispiel sind die Regeln durch die
informellen Zuordnungen gegeben. Als Quellmodell dient uns das Blockdia-
gramm aus Abbildung 2.3(a). Das Ergebnis der initialen Modellsynchronisa-
tion durch Modelltransformation ist das uns bereits aus der Abbildung 2.3(b)
bekannte Klassendiagramm.

Ein solches Synchronisationsszenario ist auch in der umgekehrten Rich-
tung denkbar. In diesem Fall ist ein Klassendiagramm vorhanden, aber kein
dazu korrespondierendes Blockdiagramm. Diese Situation kann zum Bei-
spiel dann eintreten, wenn die Spezifikation des Blockdiagramms abhanden

25

Kapitel 2 Modellsynchronisation

gekommen und nicht mehr verfiighar ist. Das zum Klassendiagramm korre-
spondierende Blockdiagramm kann wieder durch eine Modelltransformation
erzeugt werden, wobei jetzt die Eingabe ein Klassendiagramm und das Er-
gebnis der Modelltransformation ein Blockdiagramm ist.

Ein weiteres Synchronisationsszenario ergibt sich, wenn beide Modelle ge-
geben sind und der Benutzer iiberpriifen mochte, ob die beiden Modelle
zueinander synchron sind. Dazu miissen die zueinander korrespondieren-
den Modellelemente identifiziert und in Beziehung gesetzt werden. Falls alle
Modellelemente zu Modellelementen des jeweils anderen Modells zugeordnet
werden konnten, sind die beiden Modelle zueinander synchron. Ansonsten
miissen die Modelle geeignet miteinander synchronisiert werden.

Einfache Synchronisationsszenarien

Nach einer initialen Modellsynchronisation kénnen die Modelle von einem
Entwickler gedindert werden. Der Entwickler kann neue Modellelemente hin-
zufiigen, bestehende Modellelemente verdndern oder sie gianzlich aus einem
Modell 16schen. Eine Modellsynchronisation kann sofort nach jeder dieser
Anderungen erfolgen oder erst nach einer gewissen Anzahl von durchgefiihr-
ten Anderungen. AuBerdem kann der Entwickler die Anderungen an beiden
Modellen durchfiihren, ohne dass er zwischendurch die Modelle miteinander
synchronisiert.

Abbildung 2.5 zeigt auf der linken Seite die beiden Diagramme aus den
Abbildungen 2.3(a) und 2.3(b), nachdem der Entwickler diese Diagramme
gedndert hat. Zur besseren Ubersicht sind die Anderungen farblich unter-
legt und durch die Begriffe created, modified und deleted gekennzeich-
net. Hinzugefiigte Modellelemente sind griin unterlegt und mit dem Begriff
created annotiert, geloschte Elemente sind rot unterlegt und mit deleted
gekennzeichnet.? Anderungen an den Modellelementen sind orange unterlegt
und zusétzlich durch das Wort modified gekennzeichnet.

In unserem Beispiel hat der Entwickler im Blockdiagramm den Namen
des Blocks Switch in Robot gedndert. Dariiber hinaus hat er einen neuen
Block Storage angelegt und den Block Stopper sowie den dazugehorigen
Kanal c1 geloscht. Im Klassendiagramm hingegen hat er die beiden Klassen
Storage und Loading erstellt. Die Klasse Storage wurde mit dem Stereo-
typ <block>> gekennzeichnet und iiber eine Kompositionsbeziehung mit der

°Die als geloscht markierten Modellelemente in Abbildung 2.5 sind nur aus Prisen-
tationsgriinden noch vorhanden — sie sind als geloscht und nicht mehr existent zu
betrachten.

26

2.1 Ein Beispiel

System ProSys System ProSys

modified

Block Station Block Robot

c2 c3 c4
Block Interlock Process
Control

Block Storage

created

Block Station Bloc!

c2| c3 |c4

Process
Control

Block Interlock

deleted created

Block Storage
Block Stopper

Process
Loading

4

Anderungen durch Synchronisation
- Hinzufiigen
- Léschen

- Modifizieren

cd ProSys J

Anderungen durch Entwickler

- Hinzufiigen
- Léschen
- Modifizieren

cd ProSys J

c
o
=
©
K]
c
(<
=
3]
c
>
0
)
T
(<]
=

=

created
<<block>> <<process>> <<block>> <<process>>
Storage Loading Storage Loading
c5
<<system>> <<system>>
ProSys ProSys
[1
<<block>> CS <<block>> <<block>> <<block>>
Station Switch Station
c2 c2
c4 c4
deleted
<<block>> @l <<block>> <<process>> <<block>> <<block>> <<process>>
Interlock Stopper Control Interlock Stopper Control

Abbildung 2.5: Diagramme vor (links) und nach (rechts) der Modellsynchro-
nisation

27

Kapitel 2 Modellsynchronisation

Klasse ProSys verbunden. Die Klasse Loading wurde hingegen mit dem Ste-
reotypen <<process>> verschen und durch eine Kompositionsbeziechung mit
der Klasse Storage verbunden. Zusétzlich enthélt das Klassendiagramm
eine neue Assoziation cb5 zwischen den Klassen Storage und Loading.

Die Anderungen an den beiden Diagrammen fithren dazu, dass die Dia-
gramme nicht mehr zueinander synchron sind. Die Namensénderung des
Blocks Switch in Robot wurde nur im Blockdiagramm vorgenommen —
die dazu korrespondierende Klasse heifft immer noch Switch. Die zum
geloschten Block Stopper korrespondierende Klasse Stopper ist immer noch
im Klassendiagramm vorhanden. Dies gilt auch fiir die Assoziation c1. Zu
dem Block Storage hingegen wurde eine korrespondierende Klasse Storage
mit dem Stereotyp <block>> und einer dazugehorigen Komposition erstellt.
Diese Anderung ist also konsistent in beiden Diagrammen erfolgt. Aller-
dings wurde im Klassendiagramm die Klasse Loading mit einem Stereotypen
< process>> angelegt, zu der keine Entsprechung im Blockdiagramm vorhan-
den ist. Dies gilt auch fiir die Assoziation ¢5 zwischen den Klassen Storage
und Loading.

Die einfachste Moglichkeit, beide Diagramme miteinander zu synchronisie-
ren besteht darin, alle inkonsistent durchgefithrten Anderungen riickgéngig
zu machen. Dadurch wéren die Diagramme beziiglich der Korrespondenz-
regeln wieder zueinander synchron. Diese Art der Modellsynchronisation
entspricht allerdings nicht der Erwartungshaltung eines Entwicklers — ins-
besondere weil dadurch die von ihm gemachten Anderungen verloren gehen
wiirden. Auflerdem wiirde dies bedeuten, dass einmal erstellte und synchro-
nisierte Modelle nur noch konsistent zueinander erweitert werden koénnten,
was eine erhebliche Einschriankung des Entwicklers darstellen wiirde.

Zueinander synchrone Diagramme erhalten wir auch, wenn wir — wie im in-
itialen Synchronisationsszenario — eine Modelltransformation einsetzen. Al-
lerdings kénnen in diesem Fall Anderungen in einem der Diagramme verloren
gehen. Transformieren wir zum Beispiel das Blockdiagramm in ein Klassen-
diagramm, so sind nach der Modelltransformation die Klasse Loading und
die Assoziation c¢5 nicht mehr im Klassendiagramm vorhanden. Uberset-
zen wir hingegen das Klassendiagramm in ein Blockdiagramm, so wird die
Namensédnderung des Blocks Switch in Robot und die Loschung des Blocks
Stopper nicht beriicksichtigt. Sollen Anderungen in beiden Diagrammen
beriicksichtigt werden, so ist eine Modelltransformation ungeeignet.

Um Anderungen in beiden Diagrammen zu beriicksichtigen, wird eine in-
krementelle Modellsynchronisation benétigt, die gednderte Modellelemente
in beide Richtungen miteinander abgleicht. Dabei werden die Inkonsisten-

28

2.1 Ein Beispiel

zen zwischen den Diagrammen durch die Modellsynchronisation automatisch
aufgelost, und zwar so, dass moglichst keine Anderungen eines Entwicklers
riickgdngig gemacht werden miissen. Hierzu wird in unserem Beispiel zu-
erst im Klassendiagramm die Klasse Stopper, die dazugehorige Komposition
und die Assoziation c1 entfernt. Anschlieflend erfolgt eine Umbenennung
der Klasse Switch in Robot. Im Blockdiagramm ergédnzen wir den Block
Storage um den Prozess Loading und einen Kanal c¢5 zwischen diesen Ele-
menten. Nach diesen Anderungen sind beide Diagramme wieder synchron
zueinander. Das FErgebnis der Modellsynchronisation ist auf der rechten Seite
der Abbildung 2.5 zu sehen, wobei auch hier die Anderungen wieder farb-
lich unterlegt sind — diesmal handelt es sich jedoch um Anderungen, die im
Rahmen der automatischen Modellsynchronisation durchgefiihrt wurden.

Problematische Synchronisationsszenarien

Im vorangegangenen Abschnitt konnten wir beide Diagramme ohne weitere
Probleme miteinander synchronisieren. Die Modellsynchronisation ist aber
nicht immer so problemlos moglich. In einigen Fiéllen bieten sich meh-
rere Moglichkeiten an, wie die Modelle miteinander synchronisiert werden
kénnen. Einige dieser Synchronisationsszenarien stellen wir nun vor.

In unserem Beispiel wird ein SDL-Blockdiagramm in ein initiales UML-
Klassendiagramm mit dem Ziel iibersetzt, das UML-Klassendiagramm an-
schlieBend zu verfeinern. Bei diesen Verfeinerungen kann der Entwickler
zu bestehenden Klassen verschiedene Attribute und Methoden hinzufiigen,
aber auch neue Klassen und Assoziationen zwischen den Klassen im UML-
Klassendiagramm erstellen.

Eine problematische Situation entsteht zum Beispiel, wenn in einer zu ei-
nem Block korrespondierenden Klasse zuerst einige Attribute hinzugefiigt
werden und anschliefend der Block in einen anderen Block innerhalb des
Blockdiagramms verschoben wird. In dieser Situation konnte die Verschie-
bung so interpretiert werden, dass ein alter Block geloscht und ein neuer
Block innerhalb eines anderen Blocks erstellt wurde. Bei dieser Interpreta-
tion konnte eine Modellsynchronisation — wie in dem vorangegangenen Ab-
schnitt beschrieben — so vorgehen, dass sie die zum geloschten Block korre-
spondierende Klasse 16scht und an der zur neuen Position im Blockdiagramm
korrespondierenden Stelle im Klassendiagramm eine neue Klasse erstellt. In
diesem Fall gehen allerdings die manuell hinzugefiigten Attribute der alten
Klasse verloren.

Ein weiteres problematisches Synchronisationsszenario ergibt sich, wenn

29

Kapitel 2 Modellsynchronisation

der Entwickler im Klassendiagramm eine neue Klasse erzeugt. Falls die
Klasse mit einem Stereotyp gekennzeichnet ist und eine Kompositionsbe-
ziehung zu einer anderen Klasse besitzt, die ein System oder einen Block
reprasentiert, konnen wir — wie im Szenario des vorangegangenen Abschnitts
dargestellt — die beiden Diagramme miteinander synchronisieren, indem wir
ein entsprechendes Element im Blockdiagramm erzeugen. Hat der Entwick-
ler jedoch eine Klasse ohne Stereotyp und Kompositionsbeziehung erstellt, so
miisste diese Klasse vor einer Modellsynchronisation um die fehlenden Mo-
dellelemente ergénzt werden. Ist im SDL-Blockdiagramm aber kein Block
oder Prozess mit identischem Namen vorhanden, so wissen wir nicht, ob
diese Klasse mit einem <block>> oder < process>> Stereotyp vervollstandigt
werden soll. Zusétzlich ergibt sich das Problem, dass nicht klar ist, zu wel-
cher Klasse die Kompositionsbeziehung erstellt werden soll. Diese Entschei-
dungen konnten durch Standardvorgaben festgelegt werden. Beispielsweise
konnte eine solche Klasse immer um einen <block>> Stereotyp ergénzt und
eine Kompositionsbeziehung zum System erstellt werden. Allerdings konnte
es sich bei einer Klasse ohne Stereotyp und Kompositionsbeziehung ebenso
um eine Hilfsklasse handeln, die zwar im Entwurf benttigt wird aber nicht
mit dem Blockdiagramm synchronisiert werden soll. In diesem Fall sollte
diese Klasse von einer Synchronisation ausgeschlossen werden und die Mo-
dellsynchronisation nur partiell, das heifit, nur fiir einen Teil des Klassendia-
gramms, durchgefiithrt werden.

Eine Erginzung gestaltet sich hingegen einfacher, wenn zu einer neu er-
stellten Klasse ein bereits korrespondierendes Element im Blockdiagramm
mit einem identischen Namen existiert. In diesem Fall wissen wir, um wel-
chen Stereotyp die Klasse erweitert und zu welchem Element die Komposi-
tionsbeziehung hergestellt werden muss. Allerdings ist hierbei zu beachten,
dass die neu erstellte Klasse nicht zwangsldufig in der Absicht erstellt wurde,
ein Element des Blockdiagramms zu représentieren. Hier kann ein einfacher
Namenskonflikt zwischen dem Block und der Klasse vorliegen, der zum Bei-
spiel durch eine Umbenennung eines der beiden Elemente aufgelost werden
kann. Auch hier kann es besser sein, die Synchronisation nur partiell durch-
zufiihren.

Einige weitere problematische Synchronisationsszenarien ergeben sich,
wenn zum Beispiel Assoziationen zwischen Klassen erstellt werden, die dazu
korrespondierenden Kanéle aber iiber die Hierarchieebenen des Blockdia-
gramms gehen wiirden. Sollen die beiden Diagramme immer vollstindig
zueinander synchron sein, so miisste eine solche Assoziation geloscht wer-
den. Haufig wird so eine Assoziation im Klassendiagramm bendétigt, ohne

30

2.2 Begriffe und Definitionen

dass sie mit dem Blockdiagramm synchronisiert werden soll. Daher ist es
auch hier sinnvoll, die Assoziation von einer Synchronisation auszuschliefen
und die Modellsynchronisation nur partiell durchzufiihren.

Zu Konflikten kommt es auch, wenn zusétzliche Kompositionsbeziehun-
gen zwischen Klassen im Klassendiagramm erstellt werden, die nicht im
Blockdiagramm abgebildet werden kénnen. Ein Beispiel hierfiir ist, wenn
eine Klasse, die einen Block repréasentiert, iiber eine Komposition mit einer
Klasse verbunden ist, die einen Prozess darstellt und einer weiteren Klasse,
die einen Block représentiert. Diese Situation ist im Blockdiagramm nicht
zuléssig, da ein Block entweder nur Blocke oder nur Prozesse enthalten darf,
aber niemals beide gleichzeitig.

Die Ursache fiir diese Art von Problemen ist, dass die Modelle im Regel-
fall nicht bijektiv aufeinander abbildbar sind. So ist in unserem Beispiel eine
isomorphe Abbildung zwischen einem Block- und einem Klassendiagramm
nicht moglich. Allerdings kann — wie bereits zu Anfang dieses Abschnitts
erwahnt wurde — eine vollstdndige Synchronisation zwischen zwei Model-
len immer dadurch erzwungen werden, dass die Modellelemente, die keine
Entsprechung in dem jeweils anderen Modell haben, oder die die Ursache
fiir Konflikte darstellen, einfach geléscht werden. Aus Benutzersicht ist die-
ser Eingriff jedoch nicht immer vorteilhaft und erwiinscht. Hier ist es héufig
besser, zueinander in Konflikt stehende Modellelemente und Modellelemente,
die nicht zugeordnet werden konnten, dem Benutzer zu prasentieren und ihm
die Entscheidung zu iiberlassen, wie mit diesen Elementen weiter verfahren
werden soll. Diese partielle Modellsynchronisation erméglicht ein ,,Leben
mit Inkonsistenzen“ [Bal91l, EC01].

2.2 Begriffe und Definitionen

Diese Arbeit beschéaftigt sich mit dem Thema der ,,Modellsynchronisa-
tion“. Obwohl dieser Begriff in der Literatur haufig verwendet wird
[GSCK04, LTM 04, IK04a, KC05a, XLH"07], existieren bislang noch keine
standardisierten Begriffsdefinitionen, wie sie beispielsweise fiir viele Begriffe
der Softwaretechnik in der Norm [IEE90] zu finden sind. In diesem Abschnitt
wird daher zunéchst geklart, was wir in dieser Arbeit unter diesem Begriff
verstehen. Bevor wir eine Definition fiir die Modellsynchronisation angeben,
kldren wir zunédchst die allgemeine Bedeutung sowie die Verwendung des
Begriffs ,, Synchronisation® im Kontext der Informatik.

31

Kapitel 2 Modellsynchronisation

2.2.1 Bedeutung der Modellsynchronisation

Das Wort ,,Modellsynchronisation® setzt sich aus dem Wort ,,Modell* und
,oynchronisation® zusammen. Waihrend wir unter einem Modell eine ab-
strakte Beschreibung eines Systems verstehen, ist die allgemeine Bedeutung
des Wortes ,,Synchronisation“ nicht sofort ersichtlich.

Synchronisation im Allgemeinen Der Wortstamm des Wortes ,,Synchro-
nisation“ lautet ,synchron“ und ist auf die beiden griechischen Begriffe
,Syn‘ (zusammen mit, gemeinsam, gleichartig) und ,,chrénos® (Zeit) zuriick-
zufithren. Im Fremdworterbuch der Dudenredaktion [Dud06] wird die Be-
deutung des Wortes ,,synchron“ mit , gleichzeitig® oder ,,mit gleicher Ge-
schwindigkeit [ab]laufend* angegeben.

Synchronisation im Kontext der Informatik Im Duden der Informatik
[CS06] wird der Begriff der ,,Synchronisation“ (oder auch ,Synchronisie-
rung®) mit ,, Abstimmung nebenléufiger Vorgénge aufeinander. [...]“ erklért.
In der Informatik wird der Begriff unter anderem im Zusammenhang mit
(verteilten) Betriebssystemen und Datenbanken verwendet. Zu den Syn-
chronisationsproblemen in diesen Bereichen zéhlen beispielsweise die Uhren-
synchronisation, die Prozesssynchronisation und die Datensynchronisation
[Tan95, KE96].

Bei der Uhrensynchronisation geht es darum, logische und/oder physika-
lische Uhren untereinander abzugleichen. Insbesondere in Echtzeitsystemen,
die beispielsweise im Auto zur Steuerung eines Antiblockiersystems oder ei-
nes Airbags eingesetzt werden, spielt Zeit eine besonders grofie Rolle. Un-
genauigkeiten bei den Taktfrequenzen der Uhren kénnen zu Abweichungen
der Uhren sowohl von der realen Zeit als auch zu Abweichungen der Uh-
ren untereinander fithren und damit die fehlerfreie Funktion eines solchen
Systems gefihrden. Diese Abweichungen werden durch die Uhrensynchroni-
sation wieder ausgeglichen.

Die Prozesssynchronisation wird zur Koordination zeitlicher Abldufe von
Prozessen eingesetzt. Die zeitliche Abstimmung nebenldufiger Prozesse
dient beispielsweise der Interprozesskommunikation, also dem Austausch von
Nachrichten zwischen den Prozessen. Als Prozesssynchronisation wird aber
auch die Koordination von Zugriffen auf ein gemeinsam genutztes Betriebs-
mittel, wie zum Beispiel eine Datei, bezeichnet. Hierbei gilt es, einen gleich-
zeitigen Zugriff auf das Betriebsmittel zu verhindern, beispielsweise um die
Konsistenz einer Datei sicherzustellen. Ein bekanntes Verfahren hierfiir ist

32

2.2 Begriffe und Definitionen

der wechselseitige Ausschluss, bei dem eine Zugriffsreihenfolge fiir die kon-
kurrierenden Prozesse festgelegt wird.

Bei der Datensynchronisation hingegen geht es darum, Daten, die zum Bei-
spiel durch Replikation® auf verschiedenen, voneinander unabhingigen Sy-
stemen hinterlegt und dort modifiziert wurden, wieder miteinander abzuglei-
chen [SS05]. Die Datensynchronisation kann auf der Datei-, der Datenbank-
oder der Applikationsebene stattfinden. Ein Beispiel fiir die Datensynchroni-
sation auf der Applikationsebene ist eine Anwendung zur Verwaltung eines
Terminkalenders. Hier mochte man haufig die Termine eines stationéren
Geréts auf einem mobilen Endgerét verfiighar machen, damit der Benut-
zer auf dem mobilen Gerit einen lokalen Zugriff auf seine Termindaten hat.
Werden die Daten auf dem mobilen und/oder stationédren Endgeréit modifi-
ziert, entstehen unterschiedliche Datenbesténde. Bei der Datensynchronisa-
tion werden diese Daten zu einem bestimmten Zeitpunkt wieder miteinan-
der abgeglichen, so dass die Daten auf den verschiedenen Systemen wieder
identisch sind. Die Datensynchronisation wird daher hiufig auch als Daten-
abgleich bezeichnet.

An den drei hier vorgestellten Synchronisationsaufgaben ist ersichtlich,
dass mit ,,Synchronisation“ in den unterschiedlichen Bereichen unterschiedli-
che Ziele verfolgt werden, die nicht immer mit den oben genannten Definitio-
nen iibereinstimmen. Wéahrend beispielsweise die Uhrensynchronisation der
urspriinglichen Definition von ,,Synchronisation® ziemlich genau entspricht
und die Uhren tatséchlich ,,gleichzeitig® voranschreiten beziehungsweise ,,mit
gleicher Geschwindigkeit laufen“ sollen, hat die Prozesssynchronisation mit
»gleichzeitig” wenig gemeinsam. Hier geht es sogar darum, eine bestimmte
Reihenfolge festzulegen um einen ,,gleichzeitigen® Zugriff zu verhindern. Hier
passt eher die Definition aus [CS06], in der die Synchronisation eingesetzt
wird, um eine ,,Abstimmung nebenldufiger Vorginge aufeinander® zu errei-
chen. Die vorgestellten Definitionen treffen jedoch am wenigsten auf die
Datensynchronisation zu. Eine treffendere Definition liefert [Wik07]:

Data synchronization is the process of establishing consistency
among data on remote sources and the continuous harmonization
of the data over time. [...]

Letztlich sind Modelle auch Daten, so dass die Modellsynchronisation am
ehesten mit der Datensynchronisation vergleichbar ist. Daher wird die Mo-
dellsynchronisation umgangssprachlich auch als Modellabgleich bezeichnet.

6Replikation bezeichnet in der Datenverarbeitung die mehrfache Speicherung von Daten
an unterschiedlichen Orten.

33

Kapitel 2 Modellsynchronisation

Allerdings ist der Konsistenzbegriff der Datensynchronisation nicht so ein-
fach auf die Modellsynchronisation iibertragbar. Bei der Datensynchronisa-
tion sind die Daten konsistent, wenn sie gleich sind. Bei der Modellsynchro-
nisation miissen die Modelle, die miteinander ,,abgeglichen“ werden, weder
vor noch nach der Synchronisation tatséchlich gleich sein.” Das liegt daran,
dass in den meisten Féllen bereits die zugrundeliegenden Formalismen der
zu synchronisierenden Modelle voneinander verschieden sind.® Daher un-
tersuchen wir zunéchst, was Konsistenz im Zusammenhang mit Modellen
bedeutet.

2.2.2 Zusammenhang zwischen Modellkonsistenz und
Modellsynchronisation

Der Begriff der Konsistenz ,,[...] wird in verschiedenen Teilgebieten der In-
formatik unterschiedlich benutzt. Man bezeichnet Aussagen, Formeln, Mo-
delle oder Systeme als konsistent, wenn sie 'in sich stimmig’ sind, wenn sie
also keinen Unsinn ergeben, keine Widerspriiche enthalten, mit der Realitdt
im Einklang stehen, bzw. keine undefinierten Zustdnde annehmen konnen.
[...]* [CS06]. In der Logik bedeutet Konsistenz beispielsweise, dass ein zu-
grundeliegendes axiomatische System wiederspruchsfrei ist. Im Zusammen-
hang mit Datenbanken werden Daten als konsistent angesehen, wenn zuvor
definierte Konsistenzbedingungen (engl. constraints) eingehalten werden.

In der modellbasierten Softwareentwicklung sind Modelle konsistent, wenn
der Informationsgehalt der Modelle beziiglich des modellierten Softwaresy-
stems keine Widerspriiche enthélt. Dementsprechend wird ein Widerspruch
als Inkonsistenz und die Modelle als inkonsistent bezeichnet. Wird die Kon-
sistenz verletzt, so liegt ein Problem vor, das haufig auch als Konsistenzpro-
blem bezeichnet wird.

In der modellbasierten Softwareentwicklung existieren verschiedene Ar-
ten von Konsistenzproblemen, wie zum Beispiel syntaktische und semanti-
sche Konsistenzprobleme, Konsistenzprobleme innerhalb eines einzigen Mo-
dells sowie Konsistenzprobleme, die zwischen mehreren Modellen auftreten
konnen [EKHGO1]. Fiir viele dieser Konsistenzprobleme existieren in der

"Allerdings ist eine Modellsynchronisation zur Herstellung identischer Modelle auch
denkbar, zum Beispiel im Kontext von Versions- und Konfigurationssystemen.

8Dies ist nicht zwangsliufig so. Ein Beispiel, in dem der zugrunde liegende Formalismus
fiir beide zu synchronisierenden Modelle gleich ist und nur die Modelle sich unterschei-
den, findet sich in der Diplomarbeit von Patrick Kénemann [Koén07].

34

2.2 Begriffe und Definitionen

Literatur verschiedene Ansétze zur Uberpriifung und Erhaltung der Konsi-
stenz. Die meisten dieser Ansétze betrachten aber nur ein Konsistenzpro-
blem und bieten nur hierfiir eine Losung an, d.h., es existiert weder eine
formale und allgemein giiltige Definition der Modellkonsistenz, noch exis-
tiert ein Ansatz, der alle Konsistenzprobleme 16st [KiisO4a]. Auch in dieser
Arbeit werden wir weder eine Definition noch einen allgemeingiiltigen An-
satz zur Uberpriifung und Gewihrleistung der Modellkonsistenz angeben. In
dieser Arbeit gehen wir vielmehr von der Annahme aus, dass die Modelle fiir
sich betrachtet konsistent sind und fokussieren lediglich auf die Konsistenz
zwischen mehreren Modellen.

Eine notwendige Bedingung zur Entstehung von Inkonsistenzen zwischen
Modellen ist, dass die Modelle sich in ihrem Informationsgehalt iiberlappen.
Die Uberlappungen setzen die Modellelemente zueinander in Beziehung. Im
Folgenden nennen wir diese Beziehung Korrespondenzbeziehung und eine Re-
gel, die beschreibt, welche Modellelemente und unter welchen Bedingungen
diese Modellelemente zueinander korrespondieren, bezeichnen wir als Korres-
pondenzregel. Eine Korrespondenzregeln beschreibt, welche Modellelemente
und unter welchen Bedingungen diese Modellelemente zueinander konsistent
sind, d. h., wir betrachten zwei Modelle beziiglich der spezifizierten Korres-
pondenzregeln als zueinander konsistent, wenn die Korrespondenzbeziehun-
gen eingehalten werden.

Waéhrend der Bearbeitung der Modelle kénnen die Korrespondenzbezie-
hungen verletzt und die Modelle zueinander inkonsistent werden. In einigen
Féllen lésst sich eine verletzte Korrespondenzbeziehung automatisch wieder-
herstellen, so dass die damit verbundene Inkonsistenz zwischen den Modellen
behoben wird. Eine solche automatische Wiederherstellung der Konsistenz
zwischen den Modellen nennen wir Modellsynchronisation.

2.2.3 Definition und Aufgabe der Modellsynchronisation

Auf Grundlage der zuvor durchgefiihrten Betrachtungen kénnen wir die Mo-
dellsynchronisation wie folgt definieren:

Definition 2.1 Die Modellsynchronisation beschdftigt sich
mit der Erkennung und der Aufrechterhaltung von Korrespon-
denzbeziehungen zwischen Modellen. Die Grundlage der Modell-
synchronisation bilden Korrespondenzregeln, mit denen eine Kor-
respondenzbeziehung formal beschrieben wird.

35

Kapitel 2 Modellsynchronisation

Die Modellsynchronisation heifst inkrementell, wenn nur die
von einer Anderung tatsdchlich betroffenen Modellelemente be-
trachtet werden miissen, um sie miteinander zu synchronisieren.

Die Modellsynchronisation nennen wir partiell, wenn nicht das
gesamte Modell sondern nur ein Teil eines Modells synchroni-
stert wird, d.h., wenn Teile eines Modells von vornherein von
der Synchronisation ausgeschlossen werden.

Das Ziel der Modellsynchronisation besteht darin, zueinander in Bezie-
hung stehende Modelle wiahrend der Entwicklung miteinander abzugleichen,
so dass sie beziiglich der spezifizierten Korrespondenzregeln zueinander kon-
sistent bleiben. Aufgrund der Tatsache, dass heutige Softwareentwicklungs-
prozesse in den meisten Féllen ein inkrementell-iteratives Vorgehensmodell
aufweisen, ist es nur natiirlich, dass auch Modelle oft gesindert werden. Ande-
rungen an den Modellen kénnen aber dazu fithren, dass die Korrespondenz-
beziehungen zwischen den Modellen verletzt werden. Die Aufgabe der Mo-
dellsynchronisation ist daher die Erkennung und die Aufrechterhaltung der
zugrunde liegenden Korrespondenzbeziehungen.

Bei der Erkennung der Korrespondenzbeziehungen geht es in erster Li-
nie darum, zueinander korrespondierende Modellelemente auf der Grundlage
von Korrespondenzregeln zu identifizieren und die durch die Korrespondenz-
regeln spezifizierten Bedingungen zu iiberpriifen. Nachdem zueinander in
Beziehung stehende Modellelemente identifiziert worden sind, miissen diese
Korrespondenzbeziehungen aufrecht erhalten werden. Ziel der Aufrechter-
haltung ist es, erkannte Inkonsistenzen beziiglich der Korrespondenzregeln
durch geeignete Mafinahmen zu beseitigen, so dass die Modelle beziiglich der
definierten Korrespondenzregeln wieder zueinander konsistent sind.

Die Modellsynchronisation kann manuell oder automatisiert durchgefiihrt
werden. Bei groflen Modellen ist eine manuelle Synchronisation der Mo-
delle sehr zeitaufwéndig. Daher ist eine automatische Modellsynchronisation
durch geeignete Werkzeuge vorzuziehen. Die automatische Modellsynchro-
nisation kann batch-artig, das heif3t, vollstindig in einem Schritt, oder in-
krementell durchgefiihrt werden. Eine vollstdndige Modellsynchronisation in
einem Schritt kann beispielsweise durch Modelltransformationstechniken rea-
lisiert werden. Wie im vorangegangenen Abschnitt dargelegt wurde, diirfen
dabei die Modelle nicht gleichzeitig gedndert werden. Auflerdem miissen die
Modelle bijektiv aufeinander abbildbar sein. Dies ist jedoch selten gegeben.
Daher sollten zur Modellsynchronisation Techniken eingesetzt werden, die
Modelle sowohl inkrementell als auch partiell synchronisieren kénnen.

36

2.3 Kriterien der Modellsynchronisation

Die hier angegebene Definition macht keine Aussage dariiber, wie die Kor-
respondenzregeln formuliert werden oder wie die Modellsynchronisation tech-
nisch umgesetzt wird. Diese sehr allgemeine Form der Definition wurde be-
wusst so gewahlt, um die Auswahl der Spezifikationstechniken fiir Korrespon-
denzregeln und der verwendeten Algorithmen nicht unnétig einzuschranken.

2.3 Kriterien der Modellsynchronisation

In diesem Abschnitt stellen wir einige allgemeine Kriterien vor, die zur Klas-
sifikation und Einordnung verschiedener Synchronisationsansitze verwendet
werden konnen. Das Ziel, das wir damit verfolgen, ist einerseits dem Leser
einen Uberblick iiber charakteristische Merkmale einer Modellsynchronisa-
tion zu verschaffen. Andererseits verwenden wir diese Kriterien, um unseren
eigenen Ansatz im néchsten Abschnitt zu klassifizieren.

Ahnliche Kriterien sind zur Klassifikation von Ansétzen zur Modell-
transformation aufgestellt [CH03, MGO5] und spéter aktualisiert worden
[CHO6, MGO6]. Einige dieser Kriterien wurden bereits in anderen Beitréigen
zur Modellsynchronisation aufgegriffen [IK04b, KC05a, ACO7].

2.3.1 Synchronisationsaufgabe und -umgebung

Eine Modellsynchronisation kann aufgrund struktureller Eigenschaften, die
durch eine spezielle Synchronisationsaufgabe und Synchronisationsumge-
bung festgelegt sind, charakterisiert werden. Hierzu zéhlen die Anzahl und
Topologie der Modelle, die Synchronisationsrichtung, die Kardinalitit von
Korrespondenzbeziehungen, die zugrundeliegende Modellreprdsentation und
Technologie sowie die Ebene der Synchronisation.

Anzahl und Topologie der Modelle Eine erste Unterscheidung der Modell-
synchronisation kann anhand der Anzahl der zu synchronisierenden Modelle
vorgenommen werden. Hier konnen wir unterscheiden, ob eine Synchroni-
sation zwischen genau zwei Modellen stattfindet oder ob weitere Modelle
an der Synchronisation beteiligt sind. Werden mehrere Modelle miteinander
synchronisiert, so kann die Topologie, das heifit, die Anordnung der Modelle,
zur Charakterisierung herangezogen werden. In der Abbildung 2.6 sind drei
Beispiele fiir mégliche Synchronisationsbeziehungen zwischen Modellen dar-
gestellt. Das erste Beispiel zeigt eine Modellsynchronisation zwischen genau

37

Kapitel 2 Modellsynchronisation

Binare Synchronisation n-are Synchronisation (mit n > 2)

SYNCanz

SYNCat3 $YNCo.c

Abbildung 2.6: Beispiele fiir verschiedene Topologien

zwei Modellen. Im zweiten Beispiel sind die Modelle sternférmig um ein Mo-
dell angeordnet, das seine Anderungen an alle anderen Modelle weitergibt
und somit diese Modelle zu sich selbst synchronisiert. Das dritte Beispiel
zeigt eine zyklische Anordnung der Modelle, in der jedes Modell seine Ande-
rungen an sein nachfolgendes Modell weitergibt.

Natiirlich sind weitere Topologien denkbar. Hier kann allgemein unter-
schieden werden, ob ein Ansatz zur Modellsynchronisation nur bindre oder
auch n-dre Modellsynchronisationen (mit n > 2) unterstiitzt. Falls ein An-
satz eine n-dre Synchronisation unterstiitzt, ist weiterhin zu unterscheiden,
ob er mit Zyklen umgehen kann oder nur fiir eine Modellsynchronisation
ohne Zyklen geeignet ist.”

Synchronisationsrichtung Ein weiteres Unterscheidungskriterium ist die
Richtung der Synchronisation. Grundsétzlich konnen wir zwischen einer
unidirektionalen und einer bidirektionalen Modellsynchronisation unterschei-
den. Bei der unidirektionalen Synchronisation werden Anderungen in einem
Quellmodell beobachtet und an ein Zielmodell weitergeleitet. Dabei wird
wihrend der Synchronisation das Quellmodell als nicht énderbar angesehen
und Anderungen nur im Zielmodell zugelassen. Bei einer bidirektionalen
Modellsynchronisation werden im Rahmen der Synchronisation Anderungen
in beiden Modellen beriicksichtigt und in beide Richtungen propagiert.

9Bei einer zyklischen Anordnung der Modelle kann es vorkommen, dass eine Modell-
synchronisation wiederholt ausgefithrt werden muss, um die Modelle miteinander zu
synchronisieren. Dabei kann es passieren, dass ein solcher Zyklus bzw. Kreislauf
nicht terminiert, sofern der zugrundeliegende Ansatz keine speziellen Mafilnahmen zur
Erkennung und Auflésung solcher Zyklen bereitstellt.

38

2.3 Kriterien der Modellsynchronisation

Kardinalitat von Korrespondenzbeziehungen Eine Modellsynchronisa-
tion findet zwischen zueinander korrespondierenden Elementen der Modelle
statt. Bei diesen Korrespondenzbeziehungen kann es sich um 1-zu-1, 1-zu-n,
oder n-zu-m Beziehungen handeln. Ein Beispiel fiir 1-zu-1 Beziehungen fin-
det sich in vielen UML-Modellierungswerkzeugen, die eine Modellsynchro-
nisation zwischen einem UML-Klassendiagramm und dazugehorigen Java-
Code anbieten. Ein Beispiel fiir eine 1-zu-n Modellsynchronisation wird in
[KCO05a] vorgestellt, wihrend zum Beispiel in [KWO07] auch n-zu-m Bezie-
hungen verwendet werden.

Modellreprasentation und Technologie Eine weitere Charakterisierung
kann auf Grundlage der Modellrepriasentation und der Technologie vorge-
nommen werden. Zunéchst kénnen wir unterscheiden, ob die zu synchroni-
sierenden Modelle durch einen gemeinsamen Formalismus beschrieben sind
oder eine Synchronisation zwischen Modellen stattfindet, denen unterschied-
liche Formalismen zugrunde liegen.

Zusétzlich konnen sich Modellsynchronisationsaufgaben darin unterschei-
den, dass nur Modelle synchronisiert werden, denen eine bestimmte Struktur
zugrunde liegt. Zum Beispiel ist es deutlich einfacher, baum-artige, hierar-
chische Datenstrukturen als graph-basierte Datenstrukturen zu synchroni-
sieren.

Schliefflich ist noch zu unterscheiden, ob eine Modellsynchronisation nur
mit Modellen umgehen kann, die auf einer einzigen und fest vorgegebenen
Technologie basieren, oder auch eine Synchronisation zwischen Modellen ver-
schiedener Technologien moglich ist. Die Uberbriickung verschiedener Tech-
nologien erlaubt die Synchronisation zwischen Modellen, die mit unterschied-
lichen Werkzeugen erzeugt und bearbeitet werden.

Ebene der Synchronisation Ein grundsitzliches Kriterium ist die Synchro-
nisationsebene. Hier kann zwischen einer horizontalen und einer vertikalen
Modellsynchronisation unterschieden werden.'® Mit einer horizontalen Mo-
dellsynchronisation bezeichnet man eine Synchronisation zwischen Modellen,
die sich auf derselben Abstraktionsebene befinden. Die vertikale Modellsyn-
chronisation bezeichnet eine Synchronisation zwischen Modellen unterschied-
licher Abstraktionsebenen. Dieses Kriterium steht in einem engen Zusam-

0Djie Bezeichnung ,, vertikale und horizontale Modellsynchronisation® ist angelehnt an die
Begriffe der vertikalen und horizontalen Konsistenz aus [EKHGO01] sowie der vertikalen
und horizontalen Modelltransformation aus [MGO06].

39

Kapitel 2 Modellsynchronisation

menhang zu den Kriterien der Modellrepréasentation und Technologie, da bei
der horizontalen Modellsynchronisation meistens zwischen unterschiedlichen
Formalismen synchronisiert wird und bei der vertikalen Modellsynchronisa-
tion zwischen Modellen, die auf einem gemeinsamen Formalismus basieren,
sich aber auf unterschiedlichen Abstraktionsebenen befinden.

2.3.2 Synchronisationsregeln

Einige Kriterien betreffen die Synchronisationsregeln. Hierzu zéhlen die Pa-
rametrisierung der Synchronisation durch Regeln, die Spezifikation der Re-
geln und die Richtung der Regeln.

Parametrisierung der Synchronisation FEin wichtiges Unterscheidungs-
merkmal der Synchronisation bilden die Regeln der Synchronisation. Die
Regeln konnen fest vorgegeben oder frei spezifizierbar sein. Bei fest vorgege-
benen Regeln ist eine Anpassung der Synchronisation durch einen Benutzer
nicht moglich. Sind die Regeln hingegen frei spezifizierbar, so ist die Modell-
synchronisation parametrisierbar und kann an spezielle Anforderungen eines
Benutzers angepasst werden.

Spezifikation der Regeln Sind die Regeln einer Modellsynchronisation frei
spezifizierbar, so konnen zur Unterscheidung der Synchronisationsansétze Ei-
genschaften der zugrunde liegenden Spezifikation als weitere Kriterien her-
angezogen werden.

Zunéachst konnen wir zwischen einer operationalen und einer deklarativen
Spezifikation der Regeln unterscheiden. Bei einer operationalen Spezifika-
tion wird beschrieben, wie eine Modellsynchronisation erreicht wird. Im Ge-
gensatz dazu beschreibt eine deklarative Spezifikation nur, was miteinander
synchronisiert werden soll.

Eine weitere Unterscheidung kann anhand der Notation getroffen werden.
Bei der Notation der Regeln kann es sich um eine tezrtuelle oder um eine
graphische Notation handeln. Hybride Ansétze, die sich aus graphischen
und textuellen Bestandteilen zusammensetzen, sind ebenfalls denkbar.

Schlieflich betrifft ein weiteres Kriterium die Korrespondenzbeziehungen
zwischen den Modellelementen. Bei einer Regelspezifikation kann die Fest-
legung von Korrespondenzbeziehungen entweder implizit oder explizit erfol-
gen. Bei einer impliziten Festlegung der Korrespondenzbezichungen miissen
die Korrespondenzbeziehungen nicht weiter spezifiziert werden. Dadurch

40

2.3 Kriterien der Modellsynchronisation

entfillt zusdtzlicher Aufwand fiir den Entwickler der Regeln. Bei einer ex-
pliziten Spezifikation der Korrespondenzbeziehungen ist der Aufwand zwar
hoher, allerdings konnen dadurch die Korrespondenzbeziehungen genauer
festgelegt werden.

Richtung der Regeln Ein weiteres Kriterium betrifft die Richtung der spe-
zifizierten Synchronisationsregeln. Hierbei kann es ausreichend sein, eine
einzige Regel fiir alle Richtungen zu spezifizieren. Alternativ dazu kann aber
auch verlangt werden, jeweils eine eigene Regel fiir jede Synchronisations-
richtung zu erstellen. Dementsprechend unterschiedlich kann der Spezifika-
tionsaufwand ausfallen. Zusétzlich ist bei einer separaten Regelspezifikation
fiir jede Richtung die Gefahr grof}, dass die Korrespondenzbeziehungen zu-
einander inkonsistent spezifiziert werden. Hier entsteht also eine potentielle
Fehlerquelle, die bei der Spezifikation einer einzigen Regel fiir alle Richtung
nicht gegeben ist.

2.3.3 Synchronisationsverfahren

Weitere Kriterien der Modellsynchronisation beziehen sich auf das zugrunde-
liegende Synchronisationsverfahren. Hierzu zéhlen der Grad der Automati-
sierung, die eingesetzte Synchronisationsstrategie, der Zeitpunkt und Hdufig-
keit der Ausfihrung, der Umgang mit Anderungen und Konflikten sowie das
Verfahren zur bidirektionalen Synchronisation.

Grad der Automatisierung Ein grundsitzliches Kriterium der Modellsyn-
chronisation ist der Grad der Automatisierung. Hierbei ist zu unterscheiden,
ob eine Modellsynchronisation vollstdndig automatisch ausgefiihrt werden
kann oder Benutzerinteraktionen moglich sind. Damit eng verbunden ist

auch das Verfahren zur Konfliktresolution (siche Umgang mit Anderungen
und Konflikten).

Synchronisationsstrategie Eine entscheidende Rolle bei der Modellsyn-
chronisation spielt die Synchronisationsstrategie. Hierzu zdhlen die Iden-
tifikation von Anderungen, die Skalierbarkeit und die Synchronisationsmodi.

Bei der Identifikation von Anderungen koénnen wir zwischen einer ereignis-
orientierten und einer zustands-orientierten Modellsynchronisation unter-
scheiden. Bei einem ereignis-orientierten Verfahren wird die Modellsynchro-
nisation erreicht, indem Ereignisse, wie zum Beispiel Hinzufiigen, Loschen

41

Kapitel 2 Modellsynchronisation

oder Andern, im Quellmodell aufgezeichnet, in korrespondierende Ereig-
nisse des Zielmodells transformiert und dort ausgefiihrt werden. Bei einem
zustands-orientierten Verfahren wird der Zustand der Modelle vor und nach
durchgefithrten Anderungen analysiert und die Modellsynchronisation auf
Grundlage der Analyseergebnisse durchgefiihrt.

Die Skalierbarkeit eines Synchronisationsverfahrens ist wichtig, um auch
grofle Modelle schnell oder zumindest mit einem vertretbaren zeitlichen Auf-
wand synchronisieren zu kénnen. Eine Modellsynchronisation kann entweder
batch-artig oder inkrementell erfolgen. Eine batch-artige Modellsynchronisa-
tion kann beispielsweise durch eine Modelltransformation realisiert werden.
Dabei wird das Zielmodell verworfen und ein neues Zielmodell erstellt. Nach
der Modelltransformation sind beide Modelle wieder zueinander synchron.
Im Gegensatz dazu werden bei der inkrementellen Modellsynchronisation
nur Modellelemente betrachtet, die seit der letzten Modellsynchronisation
gedndert wurden.

Die Modi der Modellsynchronisation haben einen Einfluss auf die mogli-
chen Anwendungsfille aus der Sicht eines Benutzers. Hierbei konnen wir zwi-
schen einem Push- und einem Pull-Modus unterscheiden. Im Push-Modus
kann eine Modellsynchronisation durchgefithrt werden, indem ein Modell
seine Anderungen an die anderen Modelle propagiert. Im Pull-Modus 16st
ein Modell eine Modellsynchronisation aus, um andere Modelle explizit auf
Anderungen zu iiberpriifen und diese dann zu iibernehmen.

Zeitpunkt und Haufigkeit der Ausfiihrung Ein weiteres Unterscheidungs-
kriterium ist der Zeitpunkt und die H&aufigkeit der Ausfithrung einer Mo-
dellsynchronisation. Grundsétzlich kann hier zwischen einer automatischen
Ausfiihrung und einer Ausfiihrung auf Anforderung unterschieden werden.
Bei einer automatischen Ausfithrung existieren mehrere Varianten, wann
die Synchronisation ausgelost wird. Eine Moglichkeit besteht beispielsweise
darin, die Modellsynchronisation nach jeder Anderung in einem Modell
durchzufiihren. Eine andere Moglichkeit ist, die Synchronisation in Zeitin-
tervallen auszulosen. Die Zeitintervalle kénnen hierbei fest vorgegeben oder
variabel sein. Eine variable Synchronisationsauslosung konnte beispielsweise
immer dann erfolgen, wenn der Rechner gerade nicht ausgelastet ist. Hier
sind auch weitere Varianten oder Kombinationen denkbar, wie zum Beispiel
die Auslésung nach einer bestimmten (Anzahl von) Anderung(en) oder nach
bestimmten Ereignissen, wie zum Beispiel nach dem Speichern eines Modells.
Die automatische Ausfithrung einer Modellsynchronisation ist nicht immer

42

2.3 Kriterien der Modellsynchronisation

vorteilhaft. Insbesondere dann, wenn man inkonsistente Zustédnde in einem
Modell zulassen mochte, ist es oft besser, auf eine automatische Ausfithrung
der Modellsynchronisation zu verzichten und diese nur auf Anforderung
durch den Benutzer durchzufiihren.

Umgang mit Anderungen und Konflikten Ein Unterscheidungskriterium
betrifft den Umgang mit manuellen Anderungen in den beteiligten Modellen.
Hierbei kann eine Modellsynchronisation Anderungen iberschreiben oder er-
halten. Fiir Modellelemente, die automatisch im Rahmen einer Modellsyn-
chronisation erstellt worden sind, ist das Uberschreiben der Modellelemente
nicht so problematisch. Sind die Modellelemente von einem Benutzer explizit
erstellt worden, so sollte eine Modellsynchronisation diese Modellelemente so
weit es geht erhalten. Dabei kann es von Vorteil sein, auf eine vollstindige
Synchronisation zu verzichten und die Modellsynchronisation partiell, das
heifit, nur fiir ganz bestimmte Teile eines Modells, durchzufiihren.

Wenn sich die zu synchronisierenden Modelle widersprechen und zur Syn-
chronisation der Modelle mehrere Alternativen vorhanden sind, entstehen
Konflikte. Bei der Behandlung der Konflikte spielt der Grad der Auto-
matisierung eine entscheidende Rolle. Aus der Sicht eines Benutzers sollte
eine Modellsynchronisation zumindest in allen zweifelsfreien Féllen automa-
tisch erfolgen. Treten hingegen Konflikte wiahrend einer Synchronisation auf,
so kann die Konfliktresolution automatisch, semi-automatisch oder manuell
durchgefiihrt werden.

Eine vollautomatische Modellsynchronisation kann zum Beispiel aus einer
der Alternativen wihlen und die Synchronisation durchfithren. Die Auswahl
kann dabei nicht-deterministisch erfolgen oder im Vorfeld — zum Beispiel
durch die Vergabe von Prioritdten — gesteuert werden.

Bei einer semi-automatischen Konfliktresolution konnten mogliche Alter-
nativen einem Benutzer vorgeschlagen werden, der daraus die aus seiner
Sicht beste Alternative auswihlt. Die eigentliche Durchfiihrung der Konflik-
tauflosung erfolgt aber automatisch.

Im Gegensatz dazu wird bei der manuellen Konfliktresolution nur die Stelle
markiert, an der ein Konflikt aufgetreten ist. Die Behebung dieses Konflikts
hingegen wird dem Benutzer iiberlassen.

Verfahren zur bidirektionalen Synchronisation Anhand des eingesetzten
Synchronisationsverfahrens zur bidirektionalen Modellsynchronisation kann
eine weitere Unterscheidung getroffen werden. Die bidirektionale Modell-

43

Kapitel 2 Modellsynchronisation

synchronisation kann durch zwei unidirektionale Modellsynchronisationen in
jeweils entgegengesetzter Synchronisationsrichtung realisiert werden.!! Eine
Alternative hierzu ist eine bidirektionale Synchronisation, die in einem ein-
zigen Durchlauf die beteiligten Modelle in beide Richtungen abgleicht.

2.4 Methodischer Ansatz

In diesem Abschnitt stellen wir den methodischen Ansatz der vorliegenden
Arbeit vor. Hierzu erlautern wir zunéchst die Ausgangslage der Arbeit.
Anschlieflend présentieren wir unseren Ansatz und die in dieser Arbeit ent-
wickelte Methode zur Erstellung von Werkzeugen zur Modellsynchronisation.
Anschlieflend ordnen wir unseren Ansatz geméfl der im vorangegangenen Ab-
schnitt entwickelten Kriterien ein.

2.4.1 Ausgangslage und Anforderungen

Am Fachgebiet fiir Softwaretechnik an der Universitit Paderborn wurde
die modellbasierte Softwareentwicklungsumgebung FUJABA'? implementiert
[FNTZ98]. Seitdem wird FuJABA erfolgreich in verschiedenen modellge-
triebenen Softwareentwicklungsprojekten eingesetzt. Die formale Grundlage
von FUJABA bildet ein Graphersetzungssystem [Ziin01], auf dessen Basis
ausfiihrbarer Code aus Diagrammen der Unified Modeling Language (UML)
[UMLO05] automatisch erzeugt werden kann. Zusétzlich erlaubt FUJABA ein
sogenanntes ,,Round-Trip Engineering® zwischen den Diagrammen und dem
generierten Code, so dass sowohl eine Bearbeitung der Modelle als auch eine
Bearbeitung des generierten Codes moglich ist.

Eine Besonderheit der Entwicklungsumgebung bildet ein Erweiterungsme-
chanismus, iiber den sogenannte Plug-ins dynamisch zu FUJABA hinzugefiigt
werden konnen [BGNT04]. Dieser Erweiterungsmechanismus erlaubt es un-
ter anderem, verschiedene Modellierungssprachen nachtréglich in FUJABA zu
integrieren und auf diese Art und Weise doménenspezifische Sprachen (engl.
Domain Specific Languages , kurz DSL) fiir unterschiedliche Anwendungs-
doménen zu realisieren.

UIm Rahmen der Datensynchronisation wird dieses Verfahren als Zwei- Wege-
Synchronisation bezeichnet. Eine unidirektionale Datensynchronisation hingegen wird
Ein-Wege-Synchronisation genannt.

12FyuJABA ist ein Akronym fiir ,, From UML to Java and Back Again“

44

2.4 Methodischer Ansatz

Das urspriingliche Ziel dieser Arbeit bestand darin, einen Ansatz zur Mo-
delltransformation in FUJABA zu integrieren, um beispielsweise eine automa-
tische Ubersetzung zwischen Blockdiagrammen und Klassendiagrammen zu
ermoglichen. Bereits wihrend der Umsetzung hat sich jedoch gezeigt, dass
eine einfache Modelltransformation nur bedingt hilfreich ist. Schnell ent-
stand der Wunsch, die Konsistenz zwischen den Modellen auch nach durch-
gefiihrten Anderungen an den Modellen und einer bereits erfolgten Modell-
transformation moglichst automatisch sicherzustellen. Die Modelle sollten
automatisch miteinander synchronisiert, also zueinander konsistent gehal-
ten werden, um eine unabhéngige Bearbeitung der Modelle zu ermoglichen.
Aufgrund der Tatsache, dass auch Code als ein Modell des implementierten
Systems aufgefasst werden kann, lag es nahe, einen einzigen und durchgingi-
gen Ansatz zu erarbeiten, mit dem sowohl Modelle untereinander als auch
ein Modell mit dem daraus generierten Code synchronisiert werden kann.

Natiirlich ist es prinzipiell méglich eine Modellsynchronisation zwischen
Modellen — oder wie im Fall des in FUJABA implementierten ,, Round-Trip
Engineering“ eine Synchronisation zwischen Modell und Code — von Hand
zu programmieren und fest in ein Werkzeug einzubauen. Allerdings hat die
manuelle Implementierung solcher Synchronisationswerkzeuge zwei wesentli-
che Nachteile. Zunéchst sind die Korrespondenzregeln fest in das Werkzeug
codiert. Dadurch kann eine bereits umgesetzte Modellsynchronisation nur
mit einem hohen Aufwand um neue Korrespondenzregeln erweitert oder be-
reits vorhandene Korrespondenzregeln an neue Bediirfnisse angepasst wer-
den. Insbesondere bei einer Synchronisation von Modell und Code sind An-
passungen der Synchronisation an firmen-, doménen- oder projektspezifische
Vorgaben nicht uniiblich. Der zweite wesentliche Nachteil einer manuellen
Implementierung ist durch die Komplexitdt der Aufgabe an und fiir sich
gegeben. Dazu tragen haufig die Gréfle und die Komplexitéit der zugrunde-
liegenden Metamodelle sowie die Korrespondenzbeziehungen bei. Zusammen
mit den benotigten Kenntnissen zu technischen und technologischen Details
muss man feststellen, dass die Entwicklung eines Werkzeugs zur Modellsyn-
chronisation an und fiir sich kompliziert und die Programmierung von Hand
sehr zeitaufwandig ist.

Die Zielsetzung dieser Arbeit besteht daher darin, eine Methode zu er-
arbeiten und entsprechende Werkzeuge zu entwickeln, die einen Software-
entwickler bei der Erstellung von Werkzeugen zur Modellsynchronisation
unterstiitzen. Die Unterstiitzung durch automatisierte Werkzeuge soll den
Softwareentwickler von der Komplexitdt einer manuellen Entwicklung der
Werkzeuge befreien, die zur Entwicklung benétigte Zeit reduzieren und da-

45

Kapitel 2 Modellsynchronisation

mit die Entwicklungskosten senken. Dabei sollte der methodische Ansatz die
folgenden Anforderungen erfiillen:

Funktionalitat Neben einer bidirektionalen Modellsynchronisation soll der

Ansatz auch zur Modelltransformation geeignet sein. Aufgrund der
Annahme, dass Modelle unabhéngig voneinander bearbeitet werden
konnen, ohne dass sie sofort und sténdig miteinander synchronisiert
werden, muss es mit dem Ansatz zusatzlich moglich sein, Korrespon-
denzbeziehungen auch im Nachhinein zu iiberpriifen.

Anpassbarkeit Modelle konnen in verschiedenen Anwendungsdoménen oder

sogar in verschiedenen Projekten einer Anwendungsdoméne sehr unter-
schiedlich genutzt werden. Insbesondere die Abbildung eines Modells
auf andere Modelle kann — je nach spéaterem Verwendungszweck — sehr
unterschiedlich ausfallen. Daher ist es notwendig, dass die Korrespon-
denzbeziehungen zwischen den Modellen an verschiedene Bediirfnisse
leicht anpassbar sind. Dazu diirfen die Korrespondenzregeln nicht fest
im Werkzeug codiert sein. Stattdessen muss das Werkzeug zur Modell-
synchronisation durch Korrespondenzregeln parametrisierbar sein.

Skalierbarkeit Die modellbasierte Softwareentwicklung wird hauptséachlich

eingesetzt, um grofle und komplexe Softwaresysteme zu entwickeln.
Der Hauptnutzen der automatischen Modellsynchronisation liegt damit
bei der Synchronisation grofler Modelle. Daher muss die automatische
Modellsynchronisation sehr gut skalieren und auch die Synchronisation
grofler Modelle mit vertretbarem Aufwand ermoglichen.

Interoperabilitat Die Modellsynchronisation soll nicht nur auf FUJABA be-

46

schrinkt bleiben. Haufig ist es notwendig Modelle zu transformieren
oder zu synchronisieren, die mit anderen Werkzeugen bearbeitet wer-
den. Bei einer Erweiterung bereits existierender Modellierungswerk-
zeuge kann in der Regel kein Einfluss auf die verwendeten Technologien
genommen werden. Die vorhandenen Moglichkeiten und Schnittstellen
erfiillen nur selten alle Anforderungen an die gewiinschten Eigenschaf-
ten der zu entwickelnden Modellsynchronisation, so dass hier h&ufig
Einschrénkungen und Kompromisse gemacht werden miissen. Unser
Ansatz soll auch solche Umstéande beriicksichtigen und trotz eventuell
vorhandener Einschrankungen leicht in andere Werkzeuge integrierbar
sein.

2.4 Methodischer Ansatz

Spezifikation |

: P Korrespondenz- |
| metamodell <<instance of>> |
| o~ I
| | 1
I <<uses>> I |
| | |
| . | 1
I |
<<uses>> P I

: Metamodell A K————— — Korrespondenzregeln [||—————— 3 Metamodell B | |
l |

__ a
T Tt ot
:

| Erzeugung ausfihrbarer - I
Codegenerierung & |

|

|

| Korrespohdenzregeln

| Ubersetzung
'______________________# ______________________ !
e e Ssoupub>
! <<instance;of>> Ausfilhrbare <<instance;of>>
<<read/write>> Korrespondenzregeln <<read/write>>
Modell A -t P ¢ > Modell B

Synchronisationswerkzeug

|

|

|

|

|

|

|

|

) |
<<read/write>> |
|

|

[

|

Integration und Korrespondenzmodell

: Ausfiihrung

Abbildung 2.7: Uberblick zur Methode

Bei den hier genannten Anforderungen handelt es sich um ganz wesentliche
Anforderungen, die der Ansatz erfiillen sollte. Wie wir im weiteren Verlauf
dieser Arbeit noch sehen werden, besitzt der in dieser Arbeit verfolgte Ansatz
dariiber hinaus weitere Merkmale, die im Rahmen einer Modellsynchronisa-
tion besonders positiv auffallen.

2.4.2 Uberblick iiber die Methode

Nachdem wir im vorangegangenen Abschnitt die Ausgangslage der vorlie-
genden Arbeit erldutert haben, geben wir in diesem Abschnitt einen Uber-
blick iiber unseren Ansatz und die erarbeitete Methode, mit der Werk-
zeuge zur Modellsynchronisation weitestgehend automatisiert entwickelt wer-
den konnen. Die Methode ist in Abbildung 2.7 dargestellt. Im Folgenden
erldutern wir die einzelnen Schritte der Methode.

47

Kapitel 2 Modellsynchronisation

Spezifikation

Zur Spezifikation der Korrespondenzregeln verwenden wir den Ansatz der
Tripel-Graph-Grammatiken (TGGs) [Sch94]. Bei dieser formalen und dekla-
rativen Spezifikationstechnik handelt es sich um einen Ansatz, der bereits
erfolgreich zur Spezifikation einer Modelltransformation und Modellintegra-
tion eingesetzt wurde. Auf dieser Grundlage konnen Korrespondenzbezie-
hungen {iberpriift, hergestellt und aufrecht erhalten werden. Wie in dieser
Arbeit noch gezeigt wird, eignen sich die deklarativ spezifizierten Korrespon-
denzbeziehungen damit auch zur Realisierung von bidirektional und inkre-
mentell arbeitenden Modellsynchronisationswerkzeugen. Durch die graphi-
sche Notation dieser Spezifikationstechnik konnen die Korrespondenzregeln
versténdlich beschrieben und spéter leicht an gednderte Anforderungen an-
gepasst werden. Fine detaillierte Beschreibung dieser Spezifikationstechnik
gibt Kapitel 3.

Der hier verwendete Ansatz kann auch zur Codegenerierung und der an-
schlieBenden Synchronisation eines Modells mit dem daraus generierten Code
verwendet werden. Allerdings kann aufgrund der Grofle und Komplexitét
der abstrakten Syntax einer textuellen Programmiersprache die Spezifika-
tion der bendtigten Korrespondenzregeln sehr aufwindig werden. Daher
haben wir unsere Methode um eine weitere Moglichkeit zur Spezifikation
von Korrespondenzregeln erweitert. Bei diesem Ansatz gibt der Entwickler
zueinander korrespondierende Beispiele vor, aus denen dann TGG-Regeln
weitestgehend automatisch synthetisiert werden. Bei den Beispielen handelt
es sich um zueinander korrespondierende Modelle, die in ihrer konkreten
Syntax angegeben werden. Ebenso kann hier aber auch ein Modell und dazu
korrespondierender Code verwendet werden. Dieser Ansatz vereinfacht die
Spezifikation der benotigten Korrespondenzregeln signifikant — auch wenn in
einigen Fillen eine Nachbearbeitung von Hand noch nétig ist. Diesen Ansatz
sowie seine Einschrankungen erldutern wir in Kapitel 4.

Bevor die Korrespondenzregeln durch einen Entwickler spezifiziert werden
konnen, miissen zunédchst die Metamodelle der beteiligten Modellierungs-
sprachen definiert werden. Zusétzlich muss ein Metamodell fiir ein sogenann-
tes Korrespondenzmodell spezifiziert werden. Das Korrespondenzmodell ver-
waltet explizit die in einer Korrespondenzbeziehung stehenden Modellele-
mente der zu synchronisierenden Modelle. In unserem Ansatz verwenden
wir zur Beschreibung der Metamodelle einfache UML-Klassendiagramme.
Die Spezifikation der Metamodelle und der Korrespondenzregeln erfolgt in
der Entwicklungsumgebung FUJABA, die in Kapitel 7 ndher vorgestellt wird.

48

2.4 Methodischer Ansatz

Generierung

Um die spezifizierten TGG-Regeln im Rahmen einer Modellsynchronisation
nutzen zu kénnen, werden die TGG-Regeln in ausfithrbaren Code {ibersetzt.
Alternativ hierzu konnen TGG-Regeln auch interpretativ ausgefiithrt werden.
In dieser Arbeit wird jedoch ein generativer Ansatz verfolgt. Einen TGG-
Interpreter haben wir in [KRW04, KW07] vorgestellt.

Bei dem generativen Ansatz dieser Arbeit werden die TGG-Regeln
zundchst in operationale Regeln iibersetzt. Hierbei wird fiir jede Richtung
der Synchronisation eine eigene Regel erzeugt. Zusétzlich generieren wir
eine operationale Regel, die der Uberpriifung von Korrespondenzbeziehun-
gen dient und lediglich korrespondierende Modellelemente zueinander zuord-
net. Nach der automatischen Ubersetzung der TGG-Regeln in operationale
Regeln enthalten die operationalen Regeln die regelspezifischen Synchroni-
sationsoperationen.

Bei den in dieser Arbeit verwendeten operationalen Regeln handelt es
sich um sogenannte Storydiagramme [FNTZ98|. Storydiagramme sind eine
erweiterte Form von UML-Aktivitdtsdiagrammen, die zur Beschreibung ei-
nes Kontrollflusses zwischen einzelnen Aktivitdten einer Methode verwendet
werden. In die Aktivitdten eines Storydiagramms konnen Graphgrammatik-
regeln eingebettet werden. Ebenso kénnen die Aktivitédten aber auch Code
enthalten. Storydiagramme werden wir noch in Kapitel 5 genauer kennen
lernen. Nach der Ubersetzung in Storydiagramme nutzen wir den in Fu-
JABA integrierten Codegenerator, um aus den Storydiagrammen ausfiihrba-
ren Java-Code zu generieren.

Integration und Ausfithrung

Nachdem der Java-Code erstellt und kompiliert worden ist, kann er genutzt
werden, um eine Modellsynchronisation geméafl der spezifizierten Korrespon-
denzregeln durchzufiihren. Zu diesem Zweck existiert eine Softwarebiblio-
thek, die die benotigten Algorithmen zur inkrementellen Modellsynchro-
nisation bereit stellt. Diese Bibliothek ist bereits in FUJABA integriert.
Sie kann mit Hilfe einer separaten Benutzerschnittstelle genutzt werden,
um verschiedene Modellsynchronisationsaufgaben durchzufithren. Sofern
es sich bei den zu synchronisierenden Modellen um Modelle der FUJABA-
Entwicklungsumgebung handelt, sind keine weiteren Schritte zur Integration
notwendig. Dies gilt insbesondere auch fiir Modellierungssprachen, die iiber
den Erweiterungsmechanismus nachtréglich zu FUJABA hinzugefiigt wurden.

49

Kapitel 2 Modellsynchronisation

Die in dieser Arbeit vorgestellte Methode kann auch verwendet werden,
um eine Modellsynchronisation in andere Modellierungswerkzeuge zu inte-
grieren. Bei einer Erweiterung bereits existierender Modellierungswerkzeuge
kann in der Regel kein Einfluss auf die verwendeten Technologien genom-
men werden. Daher miissen oft unterschiedliche, werkzeugspezifische Tech-
nologien iiberbriickt werden. Leider erfiillen die vorhandenen Mé&glichkeiten
und Schnittstellen hédufig nicht alle Anforderungen an die gewiinschten Ei-
genschaften der zu entwickelnden Modellsynchronisation, so dass hier in den
meisten Féllen Einschrankungen und Kompromisse gemacht werden miissen.

Bei unserem Ansatz werden solche Umsténde beriicksichtigt und auch in
diesen schwierigen Fillen eine Modellsynchronisation ermdéglicht — auch wenn
dann nicht alle Vorteile des Ansatzes ausgeschépft werden konnen. Die in
dieser Arbeit vorgestellte Methode ist somit nicht auf FUJABA beschrankt.
Vielmehr wird der in FUJABA umgesetzte Ansatz genutzt, um Synchroni-
sationswerkzeuge fiir andere Entwicklungsumgebungen mit FUJABA modell-
basiert zu entwickeln.

Hierzu sind im Wesentlichen zwei Schritte notwendig. Zunéchst muss die
Softwarebibliothek mit den Algorithmen in das Modellierungswerkzeug in-
tegriert sowie eine werkzeugspezifische Benutzerschnittstelle erstellt werden.
Anschlieend miissen fiir die spezifizierten Metamodelle entsprechende Mo-
delladapter implementiert werden. Diese sind notwendig, um auf die Modelle
im Werkzeug zugreifen zu kénnen.

In einigen Féllen sind die werkzeugspezifischen Metamodelle nicht doku-
mentiert. Sie miissen dann zum Beispiel aus der API'3-Dokumentation er-
mittelt werden. Daher sind héufig die Erstellung der Adapter und die Spe-
zifikation der Metamodelle eng miteinander verbunden. Auch hier kann Fu-
JABA, zum Beispiel durch das integrierte Reverse Engineering, behilflich sein.
Auf die Erstellung von Modelladaptern gehen wir in Kapitel 7 noch genauer
ein. Einige Besonderheiten fiir Adapter, die im Rahmen der Synchronisation
von Modell und Code benétigt werden, erlautern wir in Kapitel 4. Die in der
Softwarebibliothek implementierten Algorithmen zur Modellsynchronisation
hingegen werden in Kapitel 5 vorgestellt.

2.4.3 Einordung

In diesem Abschnitt ordnen wir unseren Ansatz anhand der zuvor vorgestell-
ten Kriterien ein. Die Einordnung ist in Tabelle 2.1 zusammengefasst.

13 Application Programming Interface

20

2.4 Methodischer Ansatz

Synchronisationsaufgabe und -umgebung

Anzahl und Topologie der
Modelle

zwel Modelle

n-dre Synchronisation

ohne Zyklen

Synchronisationsrichtung

bidirektional

Kardinalitat von Korres-
pondenzbeziehungen

-7Zu-1m

Modellreprisentation und
Technologie

unterschiedliche Formalismen

graph-basierte Strukturen

verschiedene Technologien

Ebene der Synchronisation

vertikal und horizontal

|

Synchronisationsregeln

Parametrisierung der Syn-
chronisation

frei spezifizierbar

Spezifikation der Regeln

deklarativ

graphisch

explizit

Richtung der Regeln

eine Regel fiir beide Richtungen

|

Synchronisationsverfahren

Grad der Automatisierung

automatisch

Synchronisationsstrategie

zustands-orientiert

batch-artig und inkrementell

Push- und Pull-Modus

Zeitpunkt und Haufigkeit
der Ausfiihrung

Ausfithrung auf Anforderung (automa-
tische Ausfithrung jedoch moglich)

Umgang mit Anderungen
und Konflikten

erhaltend
automatische Konfliktresolution

Verfahren zur bidirektiona-
len Synchronisation

zwei unidirektionale Modellsynchroni-
sationen

Tabelle 2.1: Einordnung anhand der Kriterien aus Abschnitt 2.3

51

Kapitel 2 Modellsynchronisation

Der Ansatz dieser Arbeit ist fiir Synchronisationsaufgaben geeignet, bei
denen zwei Modelle miteinander synchronisiert werden sollen. Allerdings
kénnen einzelne Synchronisationsaufgaben zu n-édren Synchronisationstopo-
logien kombiniert werden. In diesem Fall ist unbedingt darauf zu achten, dass
die Synchronisationsregeln sich nicht widersprechen, da bei der Synchronisa-
tion auftretende Zyklen nicht automatisch erkannt werden, was dazu fithren
kann, dass die Synchronisation nicht mehr terminiert.

Mit unserem Ansatz kann eine bidirektionale Modellsynchronisation
durchgefiihrt werden. Dies ist jedoch nicht zwingend notwendig. Ebenso
kann die Synchronisation in nur eine Richtung ausgefiihrt werden. Zusétzlich
erlaubt der Ansatz m-zu-n Korrespondenzbeziehungen zwischen den Modell-
elementen. Der Ansatz ist weder auf einen speziellen Formalismus spezia-
lisiert noch wird zwischen horizontalen und vertikalen Synchronisationsauf-
gaben unterschieden. Der in dieser Arbeit verwendete Ansatz unterstiitzt
graph-basierte Strukturen und kann damit auch mit baum-artig struktu-
rierten Modellen umgehen. Allerdings ist er nicht auf baum-artige Modelle
optimiert. Uber Adapter werden unterschiedliche Technologien unterstiitzt.

Die Synchronisationsregeln werden deklarativ und explizit in einer gra-
phischen Notation spezifiziert. Mit diesen Regeln kann eine Synchronisation
parametrisiert werden. Dabei ist es fiir eine bidirektionale Modellsynchro-
nisation ausreichend, eine Korrespondenzbeziehung mit nur einer einzigen
Korrespondenzregel zu beschreiben — eine separate Regel fiir jede Richtung
ist nicht notwendig.

Das zugrundeliegende Synchronisationsverfahren arbeitet automatisch.
Es arbeitet zustands-orientiert und ist somit nicht auf Anderungsereig-
nisse angewiesen. Die Modellsynchronisation kann batch-artig, das heifit,
in einem Schritt, ausgefithrt werden. Der Ansatz fiihrt bei einer batch-
artigen Ausfithrung notwendige Anderungen im Zielmodell bereits inkremen-
tell durch. Werden auferdem Anderungen im Ausgangsmodell in Form von
Ereignissen gemeldet, so kann die Synchronisation direkt auf den geénder-
ten Modellelementen starten und vollstéindig inkrementell ablaufen. Die
benétigte Zeit fiir eine Modellsynchronisation wird dadurch stark reduziert,
so dass eine Synchronisation grofler Modelle mit vertretbarem Aufwand
moglich ist.

Die Synchronisation kann automatisch nach jeder Anderung ausgefiihrt
werden. In einigen Féllen kann es sinnvoll sein, erst nach einer gewissen An-
zahl von Anderungen oder nach bestimmten Ereignissen eine Synchronisa-
tion zu starten. Eine automatische Ausfithrung kann allerdings zu Problemen
fithren, wenn bei der Bearbeitung temporéar Inkonsistenzen in den Modellen

52

2.5 Zusammenfassung

erlaubt sind. Aufgrund der Tatsache, dass keine allgemeingiiltige, optimale
Strategie fiir den Zeitpunkt und die H#ufigkeit einer Synchronisation exis-
tiert und die Strategie von den eingesetzten Modellierungswerkzeugen und
dem Synchronisationsszenario abhéngt, werden beide Ausfithrungsvarianten
in FUJABA unterstiitzt, wobei die Synchronisation dabei sowohl im Push-
als auch im Pull-Modus stattfinden kann.

Modellelemente, die manuell vom Benutzer gedindert werden und nicht an
einer Korrespondenzbeziehung teilnehmen, werden nicht {iberschrieben, son-
dern bleiben erhalten. Hingegen werden Anderungen an Modellelementen,
die an einer Korrespondenzbeziehung beteiligt sind und in Konflikt zu ande-
ren Anderungen stehen, automatisch aufgelost. Hierbei gibt die Richtung der
Synchronisation vor, welche Anderungen iibernommen und welche Anderun-
gen iiberschrieben werden. Bei einer bidirektionalen Synchronisation, die in
unserem Ansatz durch zwei einzelne, unidirektionale Synchronisationen er-
reicht wird, ist hierfiir die Richtung mafigeblich, mit der gestartet wird. In
dem Fall, dass zwei Regeln zueinander in Konflikt stehen, das heifit, beide
ausgefithrt werden konnen, wird ein Konflikt dadurch aufgelost, dass die
in der Konfigurationsdatei festgelegte Reihenfolge der Regeln beachtet wird
und die dort zuerst genannte Regel ausgefiihrt wird.

2.5 Zusammenfassung

In diesem Kapitel wurde ein Uberblick zur Modellsynchronisation gegeben.
Hierzu haben wir in Abschnitt 2.1 eine Modellsynchronisation und die damit
verbundenen Probleme an einem Beispiel betrachtet. Das dort vorgestellte
Beispiel ist aus Présentationsgriinden recht iibersichtlich gestaltet, so dass
eine manuelle Modellsynchronisation ohne Werkzeugunterstiitzung in diesem
konkreten Fall durchaus denkbar und vertretbar ist. Allerdings steigt mit der
GroBe der Modelle auch der Bedarf fiir eine werkzeuggestiitzte, automatische
Modellsynchronisation.

In Abschnitt 2.2 haben wir uns mit dem Begriff der ,,Modellsynchronisa-
tion* beschéftigt. Wir haben dort den Zusammenhang zu anderen Bereichen
der Informatik aufgezeigt, die sich ebenfalls mit Formen der ,Synchronisa-
tion* beschéftigen. AnschlieBend haben wir definiert, was wir in dieser Ar-
beit unter einer ,Modellsynchronisation“ verstehen und die Aufgabe einer
,Modellsynchronisation“ naher erlautert.

Der Abschnitt 2.3 hingegen war Kriterien der Modellsynchronisation ge-
widmet. Mit den dort aufgestellten Kriterien wurden drei Ziele verfolgt. Das

93

Kapitel 2 Modellsynchronisation

erste Ziel bestand darin, dem Leser unterschiedliche Moglichkeiten zur Mo-
dellsynchronisation und deren Eigenschaften aufzuzeigen. Das zweite Ziel
bestand darin, eine Grundlage zu schaffen, um verschiedene Ansétze zur
Modellsynchronisation besser miteinander vergleichen zu kénnen. Das dritte
Ziel war, eine Einordnung unseres Ansatzes anhand der aufgestellten Krite-
rien zu erméoglichen und damit dem Leser einen besseren Uberblick iiber die
Leistungsfihigkeit des in dieser Arbeit vorgestellten Ansatzes zu vermitteln.

Den Ansatz dieser Arbeit haben wir in Abschnitt 2.4 vorgestellt. Der An-
satz setzt sich aus einer formalen Technik zur Spezifikation von Korrespon-
denzregeln und einer Methode mit dazugehorigen Werkzeugen zusammen,
mit denen Modellsynchronisationswerkzeuge weitestgehend automatisch ent-
wickelt werden konnen. Im letzten Teil dieses Abschnitts haben wir den
Ansatz anhand der zuvor aufgestellten Kriterien eingeordnet.

Das Ziel dieses Kapitels bestand darin, dem Leser einen ersten Eindruck
und Uberblick zur Modellsynchronisation ganz allgemein und zu dem in die-
ser Arbeit verfolgten Ansatz zu vermitteln. Die nachfolgenden Kapitel stellen
den Ansatz im Detail vor.

o4

Kapitel 3

Spezifikation von
Korrespondenzregeln

In diesem Kapitel stellen wir die Spezifikation von Korrespondenzregeln vor.
Hierzu setzen wir Tripel-Graph-Grammatiken ein. Diese formale, deklarative
und graphische Spezifikationstechnik bildet die Basis der Modellsynchronisa-
tion. Bevor wir uns allerdings mit dieser Spezifikationstechnik beschéftigen,
gehen wir zunéchst auf einige Grundlagen ein, die zum Versténdnis benotigt
werden.

3.1 Grundlagen

In diesem Abschnitt befassen wir uns zuerst mit Modellen und Metamodel-
len. Anschliefend stellen wir das Prinzip von Graphgrammatiken und die
damit verbundene Graphersetzung vor.

3.1.1 Modelle und Metamodelle

Die wichtigsten Artefakte der modellbasierten Softwareentwicklung sind Mo-
delle. Ein Modell basiert auf einem Formalismus, der die Syntax und die Se-
mantik der dem Modell zugrunde liegenden Modellierungssprache definiert.
Die Syntax einer Modellierungssprache setzt sich aus der konkreten Syntax
und der abstrakten Syntaxr zusammen. Die konkrete Syntax legt die Notation
der Sprache fest. Die abstrakte Syntax beschreibt die Struktur der Sprache.
Die Semantik hingegen definiert die Bedeutung der Sprache [HRO0].
Sowohl die konkrete Syntax als auch die Semantik der meisten Model-
lierungssprachen werden héufig nur informell durch verbale Beschreibungen
und Beispiele angegeben - obwohl geeignete Mittel zur Verfiigung stehen und
beide formal definiert werden konnten [HR00]. Im Gegensatz dazu wird die

95

Kapitel 3 Spezifikation von Korrespondenzregeln

abstrakte Syntax einer Modellierungssprache in den meisten Féllen formal
angegeben. Der Grund hierfiir ist, dass die Formalisierung der abstrakten
Syntax einer Sprache eine notwendige Voraussetzung fiir eine automatisierte
Verarbeitung dieser Sprache durch Softwarewerkzeuge darstellt.

Die abstrakte Syntax einer textuellen Sprache wird im Regelfall durch
kontextfreie Grammatiken definiert. Zur Formalisierung einer visuellen Spra-
che, also einer Sprache mit einer graphischen konkreten Syntax, haben sich
in der modellbasierten Softwareentwicklung hingegen Modelle durchgesetzt.
Ein Modell, das die Elemente und die Struktur einer Sprache definiert, wird
als Metamodell (von ,meta“, griech. ,iiber”) bezeichnet. Ein Metamodell
definiert sowohl die Elemente der Sprache als auch ihre strukturellen Bezie-
hungen zueinander.! Die Instanzen eines Metamodells stellen syntaktisch
giiltige Modelle der Sprache dar.

Beispiel

In dieser Arbeit verwenden wir als durchgéngiges Beispiel die in Abschnitt 2.1
beschriebene Modellsynchronisation zwischen einem Block- und einem Klas-
sendiagramm. Dort haben wir bereits beide Diagrammarten in ihrer graphi-
schen Notation — also der konkreten Syntax — kennen gelernt. Um die Korres-
pondenzbeziehungen zwischen beiden Modellen mithilfe von Korrespondenz-
regeln zu spezifizieren, miissen die Metamodelle der beiden Diagrammarten
vorliegen. An dieser Stelle betrachten wir daher die dazugehorigen Meta-
modelle, mit denen die abstrakte Syntax der beiden Diagramme definiert
ist, sowie die Darstellung der abstrakten Syntax am Beispiel eines Blockdia-
gramms. Auf der Grundlage der beiden Metamodelle und der Darstellung
der Modelle in abstrakten Syntax werden wir in Abschnitt 3.2 die Spezifika-
tion von Korrespondenzregeln erlautern.

Metamodell fiir Klassendiagramme In Abbildung 3.1 ist ein Ausschnitt
des in dieser Arbeit verwendeten Metamodells fiir UML-Klassendiagramme
dargestellt. Zur Darstellung von Metamodellen verwenden wir eine einge-
schrinkte Form von UML-Klassendiagrammen, die auch in der Meta Ob-
ject Facility (MOF) enthalten ist — einem Standard der Object Management
Group (OMG) zur Metamodellierung.

!Die Angabe eines Metamodells alleine reicht in der Regel aber nicht aus. Hiufig miissen
zuséitzliche Einschriankungen definiert werden. In der UML wird dazu die Object
Constraint Language (OCL) verwendet, auf die wir an dieser Stelle jedoch nicht weiter
eingehen.

o6

3.1 Grundlagen

ClassDiagram Stereotype

+ kind : String

stereotypes | 0..*
elements [0..*

NamedElement

+ name : String

T

| 0..* sources» 1
Association Class

0.* target» 1

Composition

Abbildung 3.1: Metamodell fiir Klassendiagramme

Ein Klassendiagramm (ClassDiagram) besteht aus einer Menge von Mo-
dellelementen (NamedElement), die sich aus Klassen (Class), Assoziationen
(Association) und Stereotypen (Stereotype) zusammensetzt. Ein Modell-
element kann mit unterschiedlichen Stereotypen annotiert werden. Die Art
eines Stereotyps wird dabei durch das Attribut kind:String in der Me-
taklasse Stereotype festgelegt. Eine Assoziation verbindet zwei Klassen
miteinander. Eine spezielle Assoziation ist die Komposition (Composition).

Das hier gezeigte Metamodell stellt nur einen Ausschnitt aus dem origina-
len Metamodell fiir UML-Klassendiagramme dar. Beispielsweise sind keine
Modellelemente fiir Attribute und Methoden in unserem Ausschnitt darge-
stellt. Ebenso wurde auf ein Metamodellelement fiir Generalisierungen ver-
zichtet. Um die spéter zu spezifizierenden Korrespondenzregeln in unserem
Beispiel moglichst iibersichtlich zu halten, ist das hier gezeigte Metamodell
zudem stark vereinfacht dargestellt. So verfiigen zum Beispiel im origina-
len UML-Metamodell Assoziationen iiber explizite Assoziationsenden. Diese
Assoziationsenden werden dort unter anderem verwendet, um zwischen ei-
ner gewohnlichen Assoziation, einer Aggregation und einer Komposition zu
unterscheiden. In unserem vereinfachten Metamodell verzichten wir auf die
Assoziationsenden und verwenden lediglich eine Komposition, die durch eine
von Association abgeleitete Metaklasse Composition représentiert wird.
Anhang A enthélt das vollstdndige Metamodell, das im Rahmen unserer
Evaluation verwendet wurde.

o7

Kapitel 3 Spezifikation von Korrespondenzregeln

In unserem Beispiel synchronisieren wir Klassendiagramme mit Blockdia-
grammen. Daher bendtigen wir noch ein Metamodell fiir Blockdiagramme.
Aufgrund der Tatsache, dass wir in unserem Beispiel bei den Blockdiagram-
men auf Signale und eine Unterscheidung der verschiedenen Verbindungsar-
ten verzichten, haben wir auch dieses Metamodell vereinfacht dargestellt.

Metamodell fiir Blockdiagramme Das Metamodell fiir Blockdiagramme
ist in der Abbildung 3.2 zu sehen. Sdmtliche Modellelemente eines Blockdia-
gramms basieren auf der abstrakten Metaklasse Element, die ein Attribut
name:String enthilt. Somit konnen alle Modellelemente benannt werden.

Element

+ name : String

| 1 src 0..*

0.* ;
- Connectable |5 °“t9°'"‘% Connection
children 1 tgt 0.
Zﬁ tgt incoming
Block Process
System

Abbildung 3.2: Metamodell fiir Blockdiagramme

Die hierarchische Struktur eines Blockdiagramms wird iiber die Komposi-
tionsbeziehung children zwischen den Metaklassen Block und Connectable
hergestellt. Der oberste Block in der Hierarchie eines Blockdiagramms stellt
das modellierte System dar. Dieser spezielle Block wird durch die Meta-
klasse System reprisentiert. Modellelemente eines Blockdiagramms, die mit-
einander verbunden werden koénnen, erben von der abstrakten Metaklasse
Connectable. Hierzu zidhlen die Metaklassen Block, Process und die von
Block abgeleitete Metaklasse System. Eine Verbindung zwischen diesen Ele-
menten wird durch die Metaklasse Connection mit ihren Assoziationsbezie-
hungen (src und tgt) zur Metaklasse Connectable realisiert.

o8

3.1 Grundlagen

Blockdiagramm in abstrakter Syntax In Abbildung 2.3 (siehe Seite 23)
haben wir ein SDL-Blockdiagramm in der graphischen konkreten Syntax
kennen gelernt. Abbildung 3.3 hingegen zeigt das SDL-Blockdiagramm als
UML-Objektdiagramm. Ein UML-Objektdiagramm besteht aus Objekten
und Beziehungen zwischen diesen Objekten. Ein Objekt wird als Rechteck
dargestellt und enthélt im oberen Teil einen Bezeichner. Der Bezeichner
setzt sich aus einem optionalen Objektnamen und dem darauf folgenden,
durch einen Doppelpunkt getrennten, Klassennamen zusammen. Der untere
Teil enthélt einen optionalen Bereich, in dem Attribute dargestellt werden
kénnen. Eine Beziehung zwischen zwei Objekten wird durch eine Linie dar-
gestellt, die optional durch einen Namen annotiert werden kann. In der UML
wird eine Beziehung zwischen Objekten Link genannt.

s:System
name="ProSys"
children children
b1:Block c3:Connection b4:Block
name="Station" src | name="c3" tgt | name="Switch"
tgt src
c2:Connection c4:Connection
name="c2* name="c4"
. src tgt
children children
b2:Block p1:Process
name="Interlock" name="Control*

src

c1:Connection
name="c1*

tgt

b3:Block
children | name="Stopper*

Abbildung 3.3: Blockdiagramm in abstrakter Syntax

Die in Abbildung 3.3 dargestellten Objekte und Links sind Instanzen der
im Metamodell spezifizierten Klassen und Assoziationsbeziehungen. Bei-
spielsweise stellen die Objekte bl und b4 Instanzen der Klasse Block dar
und der Link zwischen bl und c3 eine Instanz der Assoziationsbeziehung
src, die zwischen den Klassen Connectable und Connection in dem in Ab-
bildung 3.2 spezifizierten Metamodell definiert wurde.

29

Kapitel 3 Spezifikation von Korrespondenzregeln

Diese Art der Darstellung eines Modells nennt man ein Modell in abstrak-
ter Syntax. Diese Darstellung werden wir verwenden, wenn wir Korrespon-
denzbeziehungen zwischen Modellen mit Korrespondenzregeln spezifizieren.

Aufgrund der Darstellung der abstrakten Syntax in Form eines UML-
Objektdiagramms und der Tatsache, dass UML-Objektdiagramme als ge-
typte und attributierte Graphen interpretiert werden kénnen [Ziin01], liegt
es nahe, Graphgrammatiken und die Technik der Graphersetzung zur Spe-
zifikation und Ausfithrung von Anderungsoperationen zu nutzen. Im nun
folgenden Unterabschnitt gehen wir daher kurz auf Graphgrammatiken und
die damit verbundene Graphersetzung ein. Fiir eine detaillierte Beschrei-
bung verweisen wir auf [Roz97].

3.1.2 Graphgrammatiken

Analog zu klassischen Chomsky-Grammatiken, die — vereinfacht ausgedriickt
— aus einer Menge von Produktionsregeln bestehen, besteht eine Graphgram-
matik aus einer Menge von Graphgrammatikregeln. Beide Grammatiken de-
finieren die durch sie erzeugbaren Worter einer Sprache. Wiahrend jedoch
bei einer klassischen Grammatik ein Wort durch eine Zeichenkette représen-
tiert wird, besteht ein Wort einer Graphgrammatik aus einem Graphen. Das
bedeutet, dass eine Graphgrammatik die durch sie erzeugbaren Graphen be-
schreibt.

Grundsétzlich besteht eine Graphgrammatikregel aus einer linken und ei-
ner rechten Regelseite, deren Elemente durch Knoten und Kanten représen-
tiert werden, also Graphen sind. In Abbildung 3.4 sehen wir ein Beispiel
fiir eine Graphgrammatikregel in zwei unterschiedlichen Notationen: Abbil-
dung 3.4(a) zeigt die Graphgrammatikregel in der traditionellen Darstellung
mit linker und rechter Regelseite; in der Abbildung 3.4(b) ist dieselbe Regel
in einer kompakteren Darstellung zu sehen, die aus nur einem einzigen Gra-
phen besteht. In beiden Fillen verwenden wir zur Darstellung der Graphen
UML-Objektdiagramme.

In der traditionellen Darstellung in Abbildung 3.4(a) sind die linke Re-
gelseite und die rechte Regelseite durch ein Zuweisungszeichen (,,: :=*) von-
einander getrennt. Das erste UML-Objektdiagramm repréasentiert die linke
Regelseite, die zwei Objekte enthélt: ein Objekt x und ein Objekt y. Beide
Objekte sind vom Typ Connectable und tauchen auch auf der rechten Re-
gelseite unserer Graphgrammatikregel auf. Durch die Verwendung derselben
Namen x und y sowohl fiir Objekte der linken als auch der rechten Regel-
seite wird ausgedriickt, dass es sich hierbei um dieselben Objekte handelt.

60

3.1 Grundlagen

x:Connectable x:Connectable x:Connectable
src src
++
++
__ z:Connection z:Connection
++
tgt tgt
y:Connectable y:Connectable y:Connectable
(a) Traditionelle Notation (b) Kompakte Notation

Abbildung 3.4: Graphgrammatikregel in unterschiedlichen Notationen

Die rechte Regelseite enthélt allerdings ein zusétzliches Objekt z vom Typ
Connection, welches zwei Links (src und tgt) zu den Objekten x und y be-
sitzt. Dieses Objekt reprasentiert eine Verbindung zwischen zwei Elementen
eines Blockdiagramms.

In Abbildung 3.4(b) ist die kompaktere Regeldarstellung zu sehen. Dabei
repriasentieren die Objekte und Links, die nicht mit ++ annotiert sind, alle
Elemente, die sowohl auf der linken als auch auf der rechten Regelseite vor-
kommen. Die mit ++ annotierten Objekte und Links hingegen reprasentieren
Elemente, die nur auf der rechten Regelseite vorkommen. Diese Objekte und
Links sind zusétzlich griin dargestellt. In dieser Arbeit werden wir nur noch
diese Kurzschreibweise fiir Graphgrammatikregeln verwenden.

Die Semantik einer Graphgrammatikregel entspricht der Semantik klas-
sischer Grammatiken in formalen Sprachen. Die Anwendung einer Graph-
grammatikregel &ndert ein Objektdiagramm dhnlich wie eine Textgrammati-
kregel eine Zeichenfolge éndert. Im Gegensatz zu einer Produktionsregel ei-
ner klassischen Grammatik wird eine Graphgrammatikregel jedoch auf einen
Graphen angewendet. Hierzu wird zuerst das Muster der linken Regelseite
im Graphen gesucht und anschlieBend das im Graphen gefundene Muster
durch das Muster der rechten Regelseite ersetzt. Tatséchlich werden bei der
Anwendung einer Graphgrammatikregel allerdings die Elemente, die sowohl
auf der linken als auch auf der rechten Regelseite vorkommen, nicht ersetzt,
sondern beibehalten und nur neue Elemente dem Graphen hinzugefiigt.

Bei der kompakten Darstellung einer Graphgrammatikregel zeigt sich ein
besonderer Vorteil dieser Kurzschreibweise. Die Kennzeichnung mit ++ be-
tont in der kompakten Darstellung einer Graphgrammatikregel die Bedeu-

61

Kapitel 3 Spezifikation von Korrespondenzregeln

tung dieser Elemente: Diese Elemente werden zum UML-Objektdiagramm
hinzugefiigt, sobald eine Zuordnung der Elemente der linke Regelseite im
UML-Objektdiagramm erfolgreich durchgefiihrt werden konnte.

In Abbildung 3.5 ist ein Beispiel fiir eine Anwendung einer Graphgram-
matikregel zu sehen. Dabei wenden wir die Graphgrammatikregel aus Ab-
bildung 3.4 auf das UML-Objektdiagramm aus Abbildung 3.3 an. Um die
Graphgrammatikregel an einer bestimmten Stelle im UML-Objektdiagramm
anwenden zu konnen, miissen zuerst die Objekte und Links der linken Regel-
seite auf Objekte und Links im UML-Objektdiagramm abgebildet werden.
Dieser Vorgang wird auch Binden genannt.

s:System
name="ProSys"
children
children [1]-
b1:Block c3:Connection b4:Block
name="Station" src | name="c3" tgt i | name="Switch“
src
tgt src
IS, DTS 3}
c2:Connection c4:Connection i| cb:Connection
name="c2" name="c4"
src tgt children
children . [2]., |tat
name="Interlock" i | name="Control"

sSrc

c1:Connection
name="c1“

tgt

b3:Block
children | name="Stopper*

Abbildung 3.5: Blockdiagramm nach der Regelanwendung

In unserem Beispiel binden wir den Knoten x der Graphgrammatikregel an
das Objekt b4 (siehe gelb schattierter Bereich [1]) und den Knoten y an das
Objekt p1 (siche gelb schattierter Bereich [2]). Diese Zuordnung ist moglich,
da sowohl Block als auch Process von der Metaklasse Connectable abge-
leitet sind. Durch diese Vererbung kann ein Objekt vom Typ Connectable
sowohl an Objekte des Typs Block als auch an Objekte des Typs Process
gebunden werden.

62

3.2 Tripel-Graph-Grammatiken

Wurde eine giiltige Zuordnung gefunden, so kann die Graphgrammatik-
regel ausgefithrt werden. Dies bedeutet, dass nun alle Objekte und Links
erzeugt werden, die zwar in der rechten Regelseite, aber nicht in der lin-
ken Regelseite vorkommen. Dabei wird die zuvor gefundene Zuordnung, das
heifit, die bereits gebundenen Objekte und Links, beibehalten und nur Ob-
jekte und Links erzeugt, die sich nur auf der rechten Regelseite befinden. In
unserem Beispiel wird daher ein Kanal ¢5 mit den dazugehorigen Links src
und tgt zwischen den Objekten b4 und pl erzeugt, wie in Abbildung 3.5
zu sehen ist (siehe griin schattierter Bereich [3]). In unserem Beispiel haben
wir nur eine mogliche Regelanwendung gezeigt. Natiirlich konnen wir die
Graphgrammatikregel immer wieder ausfiihren - auch wenn das nicht immer
einen Sinn ergibt.

Zusétzlich zu den hier dargestellten Konzepten verfiigen Graphgramma-
tikregeln iiber weitere Konzepte, wie zum Beispiel negative Anwendungsbe-
dingungen, Attributbedingungen und -zuweisungen sowie Loschoperationen.
Diese Konzepte benétigen wir im Moment nicht. Wir werden uns daher mit
ihnen spéter an geeigneter Stelle beschéftigen.

3.2 Tripel-Graph-Grammatiken

Tripel-Graph-Grammtiken (TGGs) sind bereits 1994 von Andy Schiirr
[Sch94] als Erweiterung von T. W. Pratts Pair-Grammatiken [Pra71] ein-
gefiihrt und formal definiert worden. In diesem Abschnitt verzichten wir
daher auf eine formale Darstellung und stellen nur die Idee sowie die zu-
grundeliegenden Prinzipien der Tripel-Graph-Grammatiken vor.

3.2.1 Syntax und Semantik

Eine Tripel-Graph-Grammatik besteht — genau wie eine Graphgrammatik
— aus einer Menge von Graphgrammatikregeln. Die Graphgrammatikregeln
einer Tripel-Graph-Grammatik werden TGG-Regeln genannt. Sie stellen die
zur Modellsynchronisation benotigten Korrespondenzregeln dar und ermogli-
chen uns — wie noch spéter gezeigt wird — eine Modellsynchronisation durch-
zufithren. In diesem Abschnitt beschéftigen wir uns mit der Syntax und
Semantik solcher Korrespondenzregeln.

63

Kapitel 3 Spezifikation von Korrespondenzregeln

Syntax

Die Spezifikation von Korrespondenzregeln zeigen wir an unserem bereits
aus Abschnitt 2.1 bekannten Beispiel. Die zuvor nur informell beschriebene
Zuordnung der Elemente (siehe Abbildung 2.4, Seite 24) wird in diesem
Abschnitt mit TGG-Regeln formal definiert. Die Spezifikation einer TGG-
Regel erfolgt im Gegensatz zur informellen Zuordnung jedoch nicht in der
konkreten sondern in der abstrakten Syntax der Modelle.

Regel 1 (Zuordnung 2 und 3) In Abbildung 3.6 ist eine TGG-Regel dar-
gestellt. Auf den ersten Blick entspricht die TGG-Regel einer gewchnlichen
Graphgrammatikregel. Sie besitzt eine linke sowie eine rechte Regelseite.
Der Unterschied zu einer Graphgrammatikregel ist die Aufteilung der TGG-
Regel in drei unterschiedliche Bereiche, die verschiedenen Domdnen zuge-
ordnet sind. Im linken Bereich der TGG-Regel befindet sich die Doméne der
Blockdiagramme. Die Elemente der Klassendiagrammdoméne befinden sich
im rechten Bereich der TGG-Regel. Der mittlere Bereich hingegen enthalt
Objekte, die eine explizite Korrespondenzbeziehung zwischen den Elementen
eines Block- und eines Klassendiagramms definieren. Diese Objekte werden
Korrespondenzobjekte genannt. Dementsprechend wird der mittlere Bereich
als Korrespondenzdomdne bezeichnet. Jeder der drei Bereiche kann als ei-
genstiandige Graphgrammtikregel aufgefasst werden — daher auch der Name
, Tripel-Graph-Grammatik*“.?

Die in Abbildung 3.6 gezeigte TGG-Regel Block2Class definiert eine Kor-
respondenzbeziehung zwischen einem Block eines Blockdiagramms und den
Elementen eines Klassendiagramms. Sie entspricht der informellen Zuord-
nung 3 aus Abbildung 2.4 (vergleiche Seite 24). Dabei stellen die Elemente
der linken Regelseite den Kontext der Regel dar. Das bedeutet, dass die Re-
gel nur dann ausgefiihrt wird, wenn diese Elemente gebunden werden konnen.
Die mit ++ annotierten Elemente sind die zu erzeugenden Elemente. Das
neue Korrespondenzobjekt zwischen den Elementen, das ebenfalls mit ++
gekennzeichnet ist, reprisentiert dabei explizit die Korrespondenzbeziehung
zwischen den Elementen der einzelnen Modelle.

Fiir die in Abbildung 2.4 dargestellte Zuordnung 2 ist keine eigene TGG-
Regel notig, da die vorgestellte TGG-Regel Block2Class die Zuordnung eines
in einem System enthaltenen Blocks bereits abdeckt. Dies liegt daran, dass

’Die vertikal eingezeichneten Linien gehdren nicht zur Syntax einer TGG-Regel. Sie
dienen lediglich zur besseren Darstellung der drei unterschiedlichen Doménen.

64

3.2 Tripel-Graph-Grammatiken

:ClassDiagram

++
elements elements

:Block

:Class

source
++

++
children

:Composition

++
elements
++

++ ++
target

++

++ ++

:Class

:Block

|
|
|
|
|
|
| ++
|
|
|
|
|
|
|

++
stereotypes
++ ++

:Stereotype

Blockdiagramm-
doméne

Korrespondenz-
domane

Klassendiagramm-
domane

Abbildung 3.6: TGG-Regel Block2Class

im Metamodell fiir Blockdiagramme ein System von einem Block erbt und
damit auch ein Block ist (vergleiche Abbildung 3.2, Seite 58).

Regel 2 (Zuordnung 4) Die in Abbildung 2.4 dargestellte Zuordnung 4
eines in einem Block enthaltenen Prozesses wird in der TGG-Regel Pro-
cess2Class ausgedriickt. Diese TGG-Regel ist in Abbildung 3.7 zu sehen.
Die TGG-Regel ist sehr &dhnlich zu der zuvor beschriebenen TGG-Regel
Block2Class aufgebaut. Der Unterschied ist hier, dass statt eines Blocks
nun ein Prozess zu einer Klasse in Beziechung gesetzt wird.

Regel 3 (Zuordnung 5 und 6) Die TGG-Regel fiir die Zuordnung von
Kanélen eines Blockdiagramms zu Assoziationen in einem Klassendiagramm
(vgl. Abbildung 2.4, Zuordnungen 5 und 6) ist hingegen ein wenig anders.
Sie ist in Abbildung 3.8 zu sehen. Die TGG-Regel driickt aus, dass ein
Kanal zwischen Elementen des Blockdiagramms zu einer Assoziation zwi-
schen zugehorigen Klassen des Klassendiagramms korrespondiert. Dabei ist
es unerheblich, ob der Kanal zwischen einem System und einem Block, zwi-
schen zwei Blocken oder Prozessen, oder zwischen einem Block und einem
Prozess besteht, da in dieser TGG-Regel sowohl das Quell- als auch das

65

Kapitel 3 Spezifikation von Korrespondenzregeln

:ClassDiagram

++
elements elements

:Block :BI2CI :Class

++
source
++

++

children :Composition

++
++ ++ elements
target

++ ++ ++

:Process b :Pr2Cl + :Class

++
stereotypes
++ ++

:Stereotype

Abbildung 3.7: TGG-Regel Process2Class

Zielelement der Verbindung als Connectable-Objekt spezifiziert wurde. Da
sowohl System, Block als auch Process von Connectable erben (vergleiche
Abbildung 3.2, Seite 58), ist diese Regel auf Kanile zwischen allen Elemen-
ten anwendbar, die direkt oder indirekt von Connectable abgeleitet sind.
Statt also explizit verschiedene TGG-Regeln fiir die einzelnen Varianten an-
zugeben, reicht an dieser Stelle eine einzige TGG-Regel aus.?

:ClassDiagram
elements
:Connectable :Co2ClI :Class
++
++ ++ elements
src source
++ ++ ++
. ++ ++ i
:Connection :Cn2As :Association
++ ++
tgt target
:Connectable :Co2ClI :Class

Abbildung 3.8: TGG-Regel Connection2Association

3Hierbei wurde allerdings vereinfachend angenommen, dass Kanile iiber die Grenzen
einer Hierarchiebene erlaubt sind.

66

3.2 Tripel-Graph-Grammatiken

Axiom (Zuordnung 1) Die initiale Zuordnung 1 eines Blockdiagramms
zu einem Klassendiagramm erfolgt durch das in Abbildung 3.9 dargestellte
Axiom. Das Axiom setzt ein System zu einem Klassendiagramm in Be-
ziehung, welches eine mit einem entsprechenden Stereotyp gekennzeichnete
Klasse enthélt. Dies ist die Startsituation, auf die unsere TGG-Regeln an-
gewendet werden konnen.

:ClassDiagram

elements

:System :Sy2Cl :Class
stereotypes
:Stereotype

Abbildung 3.9: TGG-Axiom System2Class

Korrespondenzmetamodell

Die Grundlage zur Spezifikation der TGG-Regeln bilden die in den Abbil-
dung 3.1 und 3.2 dargestellten Metamodelle. Zusétzlich muss jedoch noch ein
Korrespondenzmetamodell spezifiziert werden, welches die Typen der Kor-
respondenzobjekte definiert. Abbildung 3.10 zeigt das in unserem Beispiel
verwendete Korrespondenzmetamodell.

Das Metamodell definiert verschiedene Klassen und Assoziationen, mit
denen die Elemente der zwei Modelle zueinander in Beziehung gesetzt wer-
den kénnen. Beispielsweise setzt eine Instanz der Klasse Cn2As ein Objekt
vom Typ Connection und Association zueinander in Beziehung. Hierzu
besitzt Cn2As eine Assoziation zur Klasse Connection und eine Assoziation
zur Klasse Association. Fiir eine giiltige Zuordnung miissen beide Assozia-
tionsbeziehungen gesetzt sein. Daher ist die Kardinalitdt in beiden Féllen
jeweils mit 1 angegeben.

Die Klasse Co2Cl stellt eine Beziehung zwischen einer Instanz der
Klasse Connectable und Instanzen der Klassen Stereotype, Class und
Composition her. Aufgrund der Tatsache, dass Process und Block direkt
oder — wie im Fall von System — indirekt von Connectable abgeleitet sind,
erben die Klassen Pr2C1 und B12C1 von der Klasse Co2C1 und Sy2Cl von
der Klasse B12C1.

67

Kapitel 3 Spezifikation von Korrespondenzregeln

blockdiagram correspondence | classdiagram

1

System Sy2Cl ClassDiagram
v v
Block BI2CI 1 Stereotype
v v
Connectable ! Co2Cl L Class
T 1
Process Pr2Cl 0\1 Composite
v
Connection 1 Cn2As L Association

Abbildung 3.10: Metamodell fiir die Korrespondenzobjekte

Mit Hilfe von Vererbungsbeziehungen kénnen TGG-Regeln haufig allge-
meiner formuliert werden (vgl. Abbildung 3.8). Auflerdem konnen zu den
Vererbungsbeziehungen zusétzliche Einschrénkungen definiert werden, um
auf diese Art und Weise eine allgemein giiltige Wiederverwendung von TGG-
Regeln zu ermoglichen [KKS07]. In der hier vorliegenden Arbeit werden
solche Einschréankungen jedoch nicht weiter beriicksichtigt. In dieser Ar-
beit wird die Vererbung zwischen den Klassen im Korrespondenzmetamo-
dell hauptsichlich dazu genutzt, um Assoziationen wiederzuverwenden. Die
beiden Klassen Pr2C1 und B12C1 nutzen beispielsweise die durch die Klasse
Co2C1 vorgegebenen Assoziationen. Sie bendtigen keine weiteren Assozia-
tionen, um die Beziehung zwischen den beteiligten Modellelementen herzu-
stellen. Die Klasse Sy2C1 hingegen wird verwendet, um eine Beziehung zwi-
schen Instanzen vom Typ System und dazu korrespondierenden Instanzen
vom Typ Class und ClassDiagram herzustellen. Hierzu wird eine zusétz-
liche Assoziation zur Klasse ClassDiagram benotigt. Allerdings benotigt
Sy2C1 keine Assoziation zur Klasse Composition, was die Kardinalitat 0. .1
der Assoziation zwischen Co2C1 und Composite erklért.

68

3.2 Tripel-Graph-Grammatiken

Semantik

Die Semantik einer TGG-Regel stimmt mit der Semantik einer Graphgram-
matikregel iiberein. Der Unterschied besteht lediglich darin, dass die TGG-
Regel — zusammen mit weiteren TGG-Regeln — beschreibt, wie ein Block-
diagramm sowie ein dazu korrespondierendes Klassendiagramm gleichzeitig,
also simultan und konsistent zueinander, erzeugt werden kénnen. Die zusétz-
lich eingefiithrten Korrespondenzobjekte definieren giiltige Korrespondenz-
beziehungen zwischen den Elementen der unterschiedlichen Modelltypen, in
unserem Beispiel also zwischen einem Block- und einem Klassendiagramm.
Im Folgenden stellen wir die simultane Erzeugung beider Modelle an einem
Beispiel vor.

Beispiel fiir die Regelanwendung Die Anwendung der TGG-Regeln ist
in den Abbildungen 3.11-3.13 verdeutlicht. Wir beginnen mit der TGG-
Regel Block2Class aus Abbildung 3.6 und wenden diese TGG-Regel auf das
Axiom System2Class aus Abbildung 3.9 an. Die Abbildung 3.11 zeigt das
Ergebnis dieser Regelanwendung. Die TGG-Regel Block2Class konnte auf
die durch das Axiom angegebene Startsituation angewendet werden, da das
Objekt System von Block erbt und damit auch vom Typ Block ist. Aufgrund
der Vererbungsbeziechungen im Korrespondenzmetamodell konnen auch die
Korrespondenzobjekte gebunden werden, so dass die TGG-Regel ausgefiihrt
werden kann. Durch die Ausfiihrung entsteht ein neuer Block mit einer dazu
korrespondierenden Klasse im Klassendiagramm, die iiber eine Komposition
und einen Stereotyp verfiigt.

Die TGG-Regel Block2Class wird noch zweimal ausgefiihrt, nun jedoch
auf dem neu erzeugten Block und der zugehorigen Klasse. Das Ergebnis der
zweimaligen Regelanwendung ist in Abbildung 3.12 zu sehen. Hierbei wurden
zwei neue Blocke erzeugt, die mit dem in Abbildung 3.11 erstellten Block
verbunden sind. Dementsprechend wurden im Klassendiagramm zwei dazu
korrespondierende Klassen mit Stereotypen und Kompositionen erzeugt.

Zuletzt wenden wir die TGG-Regel Connection2Association an. Diese
Regel erzeugt einen Kanal zwischen zwei Blocken sowie eine dazu korrespon-
dierende Assoziation im Klassendiagramm. Das Ergebnis dieser Regelanwen-
dung ist in Abbildung 3.13 dargestellt. Das durch die Anwendung der TGG-
Regeln entstandene UML-Objektdiagramm représentiert einen Ausschnitt
aus dem Block- und Klassendiagramm der Abbildung 2.3 sowie einem UML-
Objektdiagramm, welches die Korrespondenzen zwischen den Diagrammen
darstellt. Die erzeugten Diagramme entsprechen dabei der Struktur, die

69

Kapitel 3 Spezifikation von Korrespondenzregeln

:ClassDiagram

elements

:System :Sy2CI :Class

stereotypes source

:Stereotype

children

:Composition

target

:Block :BI2CI :Class

stereotypes

:Stereotype

Abbildung 3.11: Anwendung der Regel Block2Class auf das Axiom

durch die Blocke ProSys, Station, Interlock und Stopper vorgegeben
wird.

3.2.2 Erweiterungen

Im vorherigen Abschnitt wurde das zugrunde liegende Prinzip der TGGs
erldautert. Auf dieser Grundlage konnen beide Modelle simultan mit den
Regeln einer TGG aufgebaut und die Elemente der Modelle zueinander in
Beziehung gesetzt werden. Fiir einen Einsatz in der Praxis fehlen jedoch noch
einige wichtige Konzepte. So miissen héufig Attributwerte von einzelnen
Objekten abgefragt und gesetzt werden kénnen. Ebenso muss es mdoglich
sein, zusétzliche Bedingungen, wie zum Beispiel die Abwesenheit bestimmter
Objekte?, zu iiberpriifen. Die hierzu notwendigen Erweiterungen werden in
diesem Abschnitt vorgestellt.

Attributbedingungen

In UML-Objektdiagrammen verfiigen Objekte iiber Attribute, die mit einem
konkreten Wert belegt sein konnen. Wenn wir die Beziehungen zwischen den

4Solche Bedingungen werden Negative Anwendungsbedingungen genannt.

70

3.2 Tripel-Graph-Grammatiken

:ClassDiagram

elements

:System :Sy2Cl :C|

[
7]
7]

-

stereotypes | source

:Stereotype

children

:

:Composition

target

] :Block :BI2CI :Class

]

stereotypes source | source

:Stereotype

children

:

:Composition | f |

target

:Block :BI2CI :Class

D2lel GO9 —"

stereotypes

:Stereotype

——

:Composition

children target

L | :Block :BI2CI :Class

stereotypes

:Stereotype

Abbildung 3.12: Zweimalige Anwendung der Regel Block2Class

71

Kapitel 3 Spezifikation von Korrespondenzregeln

72

:System

children

:ClassDiagram

elements

:Block

children

stere

otypes | source

:Stereotype

—

:Composition

target

:Block

src

:Class

stereotypes source | source

:Stereotype

—

:Composition | f |

target

:Connection

source

:Class

Adieise) —

stereotypes

I

:Stereotype

children

tgt

:Cn2As

:Association

|

:Composition

-

target

target

:Class

stereotypes

:Stereotype

Abbildung 3.13: Anwendung der Connection2Association Regel

3.2 Tripel-Graph-Grammatiken

Elementen der unterschiedlichen Modelle beschreiben, moéchten wir haufig
Bedingungen an diese Objekte stellen, die iiber deren Attributwerte aus-
gedriickt werden. In unserem Beispiel sollen ein Block und eine Klasse nur
dann zueinander in Beziehung gesetzt werden, wenn sie einen identischen
Namen haben. Daher miissen wir in der Lage sein, die Attributwerte dieser
Objekte abzufragen und — insbesondere im Rahmen der noch spéter vorzu-
stellenden Modellsynchronisation — auch zu verandern.

Alte Notation FEine Moglichkeit ist, eine Attributbedingung direkt in dem
davon betroffenen Objekt anzugeben. Falls zur Formulierung der Bedingung
die Attributwerte unterschiedlicher Objekte verwendet werden miissen, kann
die Bedingung ausserhalb eines konkreten Objektes direkt in der TGG-Regel
spezifiziert werden. In Abbildung 3.14 ist die um Attributbedingungen
erweiterte TGG-Regel aus Abbildung 3.6 dargestellt. Um innerhalb der
Bedingungen die Attribute bestimmter Objekte referenzieren zu koénnen,
erhalten die betroffenen Objekte einen eindeutigen Bezeichner, in diesem
Fall bl und c1. Im Gegensatz dazu muss im Fall des Stereotyps kein Objekt-
name vergeben werden, da die Zuweisung direkt in dem betroffenen Objekt
stattgefunden hat. Diese Art der Spezifikation von Attributbedingungen ist
hauptséchlich durch existierende Graphtransformationswerkzeuge, wie zum
Beispiel Progres [SWZ99] oder Fujaba [Fuj|, motiviert.

:ClassDiagram

++
elements elements

:Block :BI2CI :Class

++
source
++

++
children

:Composition

++
++ ++ elements
target

++ ++ ++

++ ++

cl:Class

++
stereotypes
++ ++

:Stereotype
{bl.name = cl.name}

kind = ,block"

Abbildung 3.14: Alte Notation fiir Attributwerte

73

Kapitel 3 Spezifikation von Korrespondenzregeln

Die Idee hierbei ist, dass Attributzuweisungen, wie sie beispielsweise bei
der Erzeugung neuer Objekte bendtigt werden, prinzipiell aus den spezifizier-
ten Bedingungen abgeleitet werden kénnen. Beispielsweise kann aus der Be-
dingung kind.name = ,block® die Zuweisung kind.name := ,block® ab-
geleitet werden. Aus der Bedingung bl.name = cl.name kann fiir das Ob-
jekt bl die Attributzuweisung name := cl.name und fiir das Objekt cl die
Attributzuweisung name := bl.name abgeleitet werden.

Fiir komplexere Bedingungen kann der Aufwand zur automatischen Bere-
chung solcher Attributzuweisungen allerdings sehr hoch werden. Bereits bei
einer Bedingung wie zum Beispiel cl.name = bl.name.concat(’Block’)
ist nicht sofort ersichtlich, wie daraus automatisch eine Zuweisung an
bl.name abgeleitet werden kann.® Daher miissen in den meisten TGG-
Implementierungen sowohl Attributbedingungen als auch Attributzuweisun-
gen direkt in den TGG-Regeln spezifiziert werden.

Dieser Ansatz funktioniert, insofern man die TGGs zur Modelltransfor-
mation, Modellintegration oder Modellsynchronisation einsetzt und darauf
achtet, dass die spezifizierten Attributzuweisungen nicht im Widerspruch zu
den spezifizierten Attributbedingungen stehen. Die eigentliche Semantik der
TGGs, das heifit, die simultane Erzeugung beider Modelle, wird damit al-
lerdings nicht unterstiitzt. Dies liegt daran, dass solche Bedingungen zwar
Aussagen iiber die Beziehung der Attribute zueinander machen, aber keine
Aussagen dariiber, mit welchen Werten diese Attribute belegt werden sollen,
falls alle Objekte neu erzeugt werden. Das ist auch nicht weiter verwun-
derlich, da ein solches Szenario in der Praxis bisher keine Anwendung ge-
funden hat. Allerdings sollte dies zumindest konzeptionell durch eine TGG
unterstiitzt werden.® Aus diesem Grund wird hier ein neues Konzept fiir At-
tribute eingefiihrt. Es beseitigt diesen Nachteil und ist dennoch kompatibel
zu den bereits existierenden TGG-Implementierungen.

Neue Notation Die Kernidee besteht aus der Einfithrung von Attributen
in den Korrespondenzobjekten. Die Einfithrung eines Korrespondenzattri-
butes geschieht allerdings nur dann, wenn Attributwerte zwischen Objekten
in Beziehung gesetzt werden. Bei der Erzeugung beider Modelle mit ei-
ner TGG konnen diese Attribute mit konkreten Werten belegt und daraus

®Die Zuweisung hierfiir konnte beispielsweise bl.name := cl.name.substring(0,
cl.name.lastIndex0f (’Block’)) lauten. Die Operation lastIndex0f (s:String)
existiert in OCL allerdings nicht und miisste daher zuniichst definiert werden. Eine
automatische Ableitung solcher Zuweisungen wird daher derzeit nicht unterstiitzt.
bvgl. auch die Arbeit von Alexander Kénigs [K6n08].

74

3.2 Tripel-Graph-Grammatiken

die Attributwerte fiir die Modellelemente abgeleitet werden. Hierzu wird
die Ableitungsvorschrift in Form einer Bedingung fiir jede Doméne einzeln
angegeben. Die neue Notation ist in Abbildung 3.15 angegeben. Die abge-
rundeten Rechtecke représentieren die Bedingungen. Jede Bedingung kann
auch als Zuweisung an das Objektattribut interpretiert werden, deren Wert
entweder direkt angegeben ist — wie im Fall der Bedingung fiir den Stereotyp
— oder aus dem Wert des Korrespondenzattributs berechnet wird.

:ClassDiagram
++
elements elements
:Block :BI2CI :Class
++
source
++
++ . e
children :Composition
++
++ elements
target
++ ++ ++ ++
++ ++
:Block :BI2CI :Class
++
bl cn cn g ++
stereotypes
++ ++ ++
++ bl.name = ++ ﬂ:l.name = :Stereotype
cn.name cn.name
st
++
++

st.kind =
block*
Abbildung 3.15: Neue Notation fiir Attributbedingungen

Fiir die Bedingungen existieren grundsétzlich keine Einschréankungen. Fiir
eine inkrementelle Modellsynchronisation miissen allerdings die in den Be-
dingungen referenzierten Objekte lokal erreichbar sein, d.h., Pfadausdriicke
zu Objekten, die nicht explizit in der TGG-Regel enthalten sind, diirfen in
diesem Fall nicht verwendet werden. Dariiber hinaus ist es — wie schon bei
der alten Notation — vorteilhaft, wenn aus einer Bedingungen die Zuweisung
an das Attribut des Korrespondenzobjekts automatisch ableitbar ist. Fiir die
Félle, in denen dies nicht moglich ist, sollte eine technische Realisierung die
Moglichkeit bereit stellen, mit der solche Zuweisungen manuell vom Benutzer
angegeben werden konnen.

Die Einfiihrung von Attributen in Korrespondenzobjekten haben wir schon
in fritheren Arbeiten dargestellt [KW07]. Ahnliche Uberlegungen findet man
auch in der Arbeit von Alexander Konigs [K6n08], wo zusitzliche Metain-

75

Kapitel 3 Spezifikation von Korrespondenzregeln

formationen, wie zum Beispiel die Benutzerkennung oder der Zeitpunkt der
Erstellung eines Korrespondenzobjekts, in attributierten Korrespondenzob-
jekten gespeichert werden. Im Unterschied zu unserem Vorschlag werden
dort die Bedingungen direkt in den Objekten spezifiziert. Dariiber hinaus
konnen die Werte fiir die Attribute iiber Parameter, die an die TGG-Regeln
iibergeben werden, vorgegeben werden. Eine solche Paramterisierung ist in
unserem Ansatz ebenfalls denkbar. Allerdings war sie fiir die hier vorge-
stellte Modellsynchronisation nicht notwendig, so dass sie in dieser Arbeit
nicht umgesetzt wurde.

Vorteile der neuen Notation FEin Vorteil der neuen Notation ist, dass da-
mit die simultane Erzeugung beider Modelle realisiert werden kann. Eine
Moglichkeit ist beispielsweise, im Korrespondenzmetamodell intiale Attri-
butwerte fiir die Korrespondenzobjekte zu definieren. Bei der Erzeugung
eines Korrespondenzobjekts werden dessen Attribute mit den definierten In-
tialwerten belegt, so dass sich die Attributwerte der iibrigen Objekte aus den
Attributwerten der Korrespondenzobjekte berechnen lassen konnten. Eine
andere Moglichkeit ist, die Attribute der Korrespondenzobjekte iiber Para-
meter zu belegen, die einer TGG-Regel {ibergeben werden.

Ein weiterer Vorteil der Notation besteht darin, dass uns der Attribut-
wert im Korrespondenzobjekt Aufschluss dariiber gibt, in welchem Modell
eine Attributwertédnderung stattgefunden hat. Erlauben wir, dass beide Mo-
delle geéindert werden, ohne dass zwischendurch eine Modellsynchronisation
stattfindet, so kann das Attribut aulerdem zur Erkennung eines Konfliktes
herangezogen werden.

:BI2CI

:Block

:BI2CI

:Block — L :Class — L :Class
name=,Robot" name=,Robot" name=,Robot" name=,Switch* name=,Robot" name=,Robot"

(a) Ausgangssituation (b) Benutzer #indert Blocknamen

:Block a— :BI2CI N :Class :Block K— :BI2CI — :Class
name=,Robot" name=,Robot" name=,Switch" name=,Switch* name=,Robot" name=,Shuttle"

(¢) Benutzer dndert Klassennamen (d) Benutzer dndert Block- und Klassenna-

men

Abbildung 3.16: Erkennung von Anderungen und Konflikten
Zur Erlauterung sind in der Abbildung 3.16 verschiedene Situationen dar-

gestellt, bei denen ein Block zu einer Klasse in Beziehung steht. Die Bedin-
gung unserer Regel fordert, dass ein Block und die dazu korrespondierende

76

3.2 Tripel-Graph-Grammatiken

Klasse den gleichen Namen haben. In der Abbildung 3.16(a) wird diese Be-
dingung erfiillt. Sie stellt die Ausgangssituation dar. Andert der Benutzer
den Namen des Blocks (vgl. Abbildung 3.16(b)), so stimmt der Attributwert
des Korrespondenzobjekts mit dem Namen der Klasse iiberein. Hat der Be-
nutzer hingegen den Namen der Klasse gedndert (vgl. Abbildung 3.16(c)), so
sind der Attributwert des Korrespondenzobjekts und der Name des Blocks
identisch. Nach einem entsprechenden Vergleich kann nun der Blockname an
die Klasse oder der Klassenname an den Block propagiert werden. Ohne ein
solches Korrespondenzattribut ist diese Information nicht direkt verfiigbar
und muss iiber andere Wege, wie zum Beispiel durch eine Aufzeichnung von
Anderungsereignissen, ermittelt werden. Erlauben wir hingegen, dass sowohl
der Name des Blocks als auch der Name der Klasse gedindert werden diirfen,
ohne dass zwischendurch eine Modellsynchronisation stattfindet, so kann das

Korrespondenzattribut zur Erkennung dieses Konfliktes herangezogen wer-
den (vgl. Abbildung 3.16(d)).

Negative Anwendungsbedingungen

In dem vorangegangenen Abschnitt haben wir Attributbedingungen verwen-
det, um Korrespondenzbeziehungen zwischen Objekten einzuschrinken. In
diesem Abschnitt wird das Konzept von Bedingungen weiter verallgemei-
nert. Dazu motivieren wir zuerst eine weitere Art von Bedingungen — die
sogenannten Negativen Anwendungsbedingungen — an einem Beispiel und dis-
kutieren die damit verbundenen Probleme im Kontext der TGGs. Am Ende
stellen wir unseren Ansatz vor, der sowohl mit Attributbedingungen als auch
mit Negativen Anwendungsbedingungen einheitlich umgeht.

Motivation Zur Motivation betrachten wir die TGG-Regel aus Abbil-
dung 3.7, in der ein Prozess zu einem iibergeordneten Block hinzugefiigt und
in Beziehung zu einer Klasse im Klassendiagramm gesetzt wird. Nun ist es
aber so, dass ein Prozess nur dann zu einem Block hinzugefiigt werden darf,
wenn dieser Block keine Blocke seinerseits enthélt (vergleiche Beschreibung
auf Seite 22). Damit eine TGG nur korrekte Diagramme erzeugt, miissen
solche Bedingungen in den TGG-Regeln beriicksichtigt werden.

Abbildung 3.17 zeigt die erweiterte TGG-Regel, die genau diese Zusatzbe-
dingung als OCL-Ausdruck enthélt: in der Menge children darf kein Objekt
vom Typ Block enthalten sein. Obwohl die Bedeutung dieser Bedingung of-
fensichtlich und eindeutig zu sein scheint, konnen — je nach Zeitpuntk der
Uberpriifung der Bedingung — unterschiedliche Ergebnisse entstehen. Bei-

77

Kapitel 3 Spezifikation von Korrespondenzregeln

++

not b.children -> exists(x |
x.oclIsKindOf(Block)) :ClassDiagram

++ ++
b elements elements

:Block :BI2CI :Class

++
source
++

++

children :Composition

++
elements

++ ++
target
++ ++ ++

:Pr2Cl

++ ++

:Class

:Process

++
pr cn cn cl ++
stereotypes

++ ++ ++

++ pr.name = ++ ++ cl.name = |++ :Stereotype
cn.name cn.name

st
++

++
st.kind =
Lprocess”

Abbildung 3.17: Erweiterte TGG-Regel Process2Class

spielsweise konnen wir, wie in Abbildung 3.12 gezeigt, zuerst drei Blocke
erzeugen. Wollen wir nun mit Hilfe der erweiterten TGG-Regel aus Abbil-
dung 3.17 einen Prozess zu dem Block hinzufiigen, der bereits die anderen
zwei Blocke enthilt, so wird dies durch die Bedingung erfolgreich verhin-
dert. Erzeugen wir hingegen zuerst nur einen Block (vgl. Abbildung 3.11)
und wenden dann die TGG-Regel aus Abbildung 3.17 an, so ist die dort
spezifizierte Bedingung erfiillt. Daher wird ein neuer Prozess erzeugt. An-
schliefend kann jedoch die TGG-Regel Block2Class angewendet werden, die
in demselben Block einen neuen Block hinzufiigt. Damit wird die Bedingung
der erweiterten TGG-Regel Process2Class verletzt und letztendlich erhalten
wir einen Block, der sowohl einen Prozess als auch einen Block enthélt. Die-
ses Beispiel zeigt, dass der Uberpriifungszeitpunkt der Bedingungen einen
entscheidenden Einfluss auf das Ergebnis hat.

Das Ergebnis der Regelanwendung sollte unabhéngig vom Zeitpunkt der
Uberpriifung von Bedingungen sein. Aus diesem Grund fithren wir hier ein
einheitliches und durchgéngiges Konzept fiir alle Bedingungen ein und prézi-
sieren damit die Semantik der Korrespondenzregeln. Die Idee hinter dem
neuen Konzept ist einfach: Wéahrend der Anwendung von TGG-Regeln wer-
den die Bedingungen in Form von Annotationen zu den erzeugten Modellen

78

3.2 Tripel-Graph-Grammatiken

hinzugefiigt.” Nachdem das gesamte Modell konstruiert wurde, werden die
hinzugefiigten Bedingungen evaluiert. Die Korrespondenzbeziehungen zwi-
schen zwei Modellen sind nur dann giiltig, wenn alle Bedingungen auch nach
der Konstruktionsphase erfiillt sind.

Durch diese Definition wird eine a-posteriori Semantik fiir Bedingungen
festgelegt, sodass die Bedingungen einer Korrespondenzregel als Invarianten
aufgefasst werden konnen. In der Praxis kann natiirlich der Uberpriifungs-
zeitpunkt anders gewahlt werden. Beispielsweise kénnen Bedingungen be-
reits wihrend der Anwendung von TGG-Regeln herangezogen werden, um
aus der Menge aller TGG-Regeln die anzuwendende TGG-Regel zu bestim-
men oder zwischen mehreren anwendbaren Regelalternativen zu wéhlen.
Wichtig hierbei ist aber, dass die oben beschriebene Definition erfiillt wird,
das heif3t, dass die Bedingungen auch nach der Anwendung aller TGG-Regeln
erfiillt sind. Wie dies sichergestellt wird bleibt jeder TGG-Implementierung
iiberlassen.

Kurzschreibweise fiir Negative Anwendungsbedingungen Als graphi-
sche Notation negativer Anwendungsbedingungen wird in einigen Ansétzen
ein durchgestrichenes Objekt verwendet. Aufgrund der Tatsache, dass es
hierbei zu Mehrdeutigkeiten kommen kann (wenn z. B. nur das Objekt aber
nicht der dazu inzidente Link durchgestrichen dargestellt wird), erlauben wir
in unserer graphischen Notation lediglich das Durchstreichen von Links. In
Abbildung 3.18 sind drei negative Anwendungsbedingungen dargestellt. In
der linken Bildhélfte sind die Anwendungsbedingungen in ihrer graphischen
Kurzschreibweise zu sehen. In der rechten Bildhalfte ist die Semantik der
graphischen Kurzschreibweise in Form eines OCL-Ausdrucks definiert.

Die erste negative Anwendungsbedingung fordert, dass kein Link zwischen
zwei ganz konkreten Objekten existieren darf. Dies wird durch den durchge-
strichenen Link ausgedriickt. Zusétzlich ist der Link rot gefiarbt. Dies wird
auch durch die Bedingung auf der rechten Seite der Abbildung ausgedriickt.
Die zweite negative Anwendungsbedingung unterscheidet sich zu der ersten
Anwendungsbedingung dadurch, dass nun eines der Objekte durch ein rot
gestricheltes Rechteck dargestellt wird. Dies bedeutet, dass es keinen Link
zu irgendeinem Objekt dieses Typs geben darf. Die dritte Anwendungsbe-
dingung schlieBlich fordert, dass zu gar keinem anderen Objekt ein solcher
Link existieren darf. In der Notation wird dafiir der Typ des Objektes weg-
gelassen.

"Die Markierung einer Bedingung mit ++ betont dieses Konzept.

79

Kapitel 3 Spezifikation von Korrespondenzregeln

|

[' : cl Stereotype)
|
|

| ++ ++ : ++ ++ |
|
! Class R :Stereotype | Class :Stereotype |
| stereotypes | |
: | cl —+ st |
	++ ++	
	not cl.stereotypes ->	
	exists(x	x =st)

|
T ;|

|

++	++ ++
T ‘] not cl.stereotypes ->	
:Class ———N\— :Stereotype :Class exists(x	x.isKindOf(
stereotypes	

|
|
++ | ++
|
|

! |
! |
! it |
| :Class N | -Class ++ pl.stereotypes -> |
| stereotypes | | ¢l isEmpty() |
I | |
! |
! |
! |

Abbildung 3.18: Negative Anwendungsbedingungen und ihre Ubersetzung

Wiederverwendung von Objekten

Bisher verlangen TGGs, dass alle Elemente der zueinander in Beziehung ge-
setzten Modelle erzeugt werden. In einigen Féllen existieren allerdings Mo-
dellelemente, die wiahrend der TGG-Regelanwendung weder generiert noch
verdndert werden sollen, aber trotzdem in Beziehung zu den generierten Mo-
dellelementen stehen und von diesen referenziert werden. Um dieses Problem
zu 16sen, erweitern wir an dieser Stelle die TGGs um ein weiteres Konzept:
die Wiederverwendung von Objekten.

Beispiel Bisher wurde in unserem Beispiel zu jeder neu erzeugten Klasse
auch ein neuer Stereotyp erzeugt und mit dieser Klasse verbunden. Nun
ist es aber so, dass von jeder Stereotypart immer nur ein Stereotypobjekt
existieren soll. Ein solches Stereotypobjekt kann aber mehrfach referenziert
werden — es kann also wiederverwendet werden. In Abbildung 3.19 ist ein
erweitertes Metamodell fiir Klassendiagramme zu sehen, dass diesen Um-
stand beriicksichtigt. Ein Stereotyp kann weiterhin von NamedElement iiber
die Assoziation stereotypes referenziert werden. Zusétzlich existiert jedoch
die Klasse Project, iiber die verschiedene Stereotypen verwaltet werden.

80

3.2 Tripel-Graph-Grammatiken

Project

diagrams o managedStereotypes

ClassDiagram Stereotype

+ kind : String

stereotypes | 0..*
elements [0. 0..*

NamedElement

o

+ name : String

T

| 0..* sources 1
Association Class

0.* target» 1

Composition

Abbildung 3.19: Erweitertes Metamodell fiir Klassendiagramme

Die TGG-Regeln, in denen ein Stereotypobjekt verwendet wird, miissen
an dieses neue Metamodell angepasst werden. Diese Anpassungen schauen
wir uns am Beispiel der TGG-Regel Block2Class genauer an. Die modifi-
zierte TGG-Regel ist in Abbildung 3.20 dargestellt. Prinzipiell entspricht
die neue TGG-Regel der alten TGG-Regel. Der einzige Unterschied besteht
darin, dass nun zusatzlich — ausgehend von ClassDiagram — ein Objekt vom
Typ Project referenziert wird und der neu erstellte Stereotyp mit diesem
Objekt verbunden wird. Trotz dieser Verdnderung wird weiterhin bei jeder
Anwendung der Regel ein jeweils neuer Stereotyp <blocks> erzeugt — auch
wenn bereits ein Stereotypobjekt dieser Art im Projekt existiert.

Losungsvariante 1: Fallunterscheidung Eine naheliegende Idee zur
Losung unseres Problems besteht darin, statt einer TGG-Regel zwei TGG-
Regeln zu spezifizieren, die mit Hilfe von Negativen Anwendungsbedingun-
gen eine Fallunterscheidung vornehmen. In Abbildung 3.21 sind die beiden
TGG-Regeln zu sehen. Im Vergleich zur TGG-Regel aus Abbildung 3.20
enthélt die erste TGG-Regel sowohl den Stereotypen als auch den Link
managedStereotypes sowohl auf der linken als auch auf der rechten Re-

81

Kapitel 3 Spezifikation von Korrespondenzregeln

82

++
children

++

:Block R

:Project

diagrams

:ClassDiagram

++
elements elements

++

++

:Class

++
source
++

:Composition

++
target
++

bl

++

++ bl.name = ++

cn

cn

++

++

:Class

S

++ ++
tereotypes managedStereotypes
++

++ ﬂ:l.name =

cn.name

cn.name

:Stereotype

st
++

++

stkind =
Lblock*

Abbildung 3.20: Erweiterte TGG-Regel Block2Class

3.2 Tripel-Graph-Grammatiken

gelseite, das heifit, die Markierung des Stereotyps und des Links mit ++ ist
entfallen. Damit setzt diese TGG-Regel die Existenz eines entsprechenden
Stereotypobjekts voraus. Es wird lediglich eine Referenz zwischen der neu
erzeugten Klasse und dem Stereotyp erstellt. Die zweite Regel ist identisch
zu der TGG-Regel aus Abbildung 3.20, enthélt aber noch eine zusétzliche
Bedingung, die iiberpriift, dass noch kein Stereotypobjekt <block> in dem
Projekt enthalten ist. Damit wird die zweite TGG-Regel nur ausgefiihrt,
wenn ein Block zum ersten Mal erzeugt wurde. Da bei der Erzeugung wei-
terer Blocke dann ein Stereotyp <blocks bereits vorhanden ist, greift die
Bedingung dieser Regel nicht mehr. Stattdessen ist dann aber die erste
TGG-Regel anwendbar.®

Mit der in dieser Arbeit eingefithrten Semantik fiir Bedingungen ist diese
Idee jedoch nicht realisierbar. Dies liegt daran, dass die Bedingung der zwei-
ten TGG-Regel nach unserer Definition auch noch nach der Regelanwendung
gelten muss. Die Bedingung dieser TGG-Regel wird aber durch die Erzeu-
gung des Stereotyps in der TGG-Regel selbst immer falsifiziert, das heifit,
die TGG-Regel steht zu der in ihr enthaltenen Bedingung im Widerspruch.

Ein Ausweg aus diesem Dilemma ist méglich, wenn man eine weitere Form
von Bedingungen einfiihrt. Die bisher eingefiihrten Bedingungen miissen auf-
grund unserer Definition insbesondere auch nach der Regelanwendung gelten.
Um das beschriebene Szenario zu erméglichen, kénnten aber Bedingungen
eingefithrt werden, die nur vor der Regelanwendung gelten miissen. Zur Un-
terscheidung kénnten diese Bedingungen ohne die ++ Markierungen notiert
werden, was die Semantik dieser Bedingungen betonen wiirde, da nun die Be-
dingungen nicht als Annotationen wahrend der Regelanwendung hinzugefiigt
werden wiirden. Wiirde man diese weitere Form von Bedingungen einfiihren,
wiirde dies aber die Semantik verkomplizieren. Daher sehen wir von dieser
Moglichkeit ab und fithren stattdessen das Konzept der wiederverwendbaren
Objekte ein.

Losungsvariante 2: Wiederverwendbare Objekte Wiederverwendbare
Objekte werden graphisch als graue Objekte dargestellt. Zur besseren Un-
terscheidung sind sie zusétzlich mit [] markiert. In Abbildung 3.22 ist die
TGG-Regel mit dem als wiederverwendbares Objekt markiertem Stereotyp

8Negative Anwendungsbedingungen werden hiufig dazu eingesetzt, um die Anwendung
von TGG-Regeln einzuschrinken. In der Dissertation von Alexander Kénigs [Kon08]
werden die damit verbundenen Probleme im Zusammenhang mit Modelltransformatio-
nen an einem Beispiel vorgestellt. Es wird gezeigt, dass bislang keine Losung existiert,
die mit negativen Anwendungsbedingungen zufriedenstellend umgehen kann.

83

Kapitel 3 Spezifikation von Korrespondenzregeln

diagrams

:ClassDiagram

++
elements elements

:Block :BI2CI :Class

++
source
++

++

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|] o
| children :Composition
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

++ ++
target
++ ++ ++

++

:Block :BI2CI b :Class

cf

bl +r ++
stereotypes managedStereotypes

cn cn
++ ++

++ bl.name = ++ ++ ﬂ:l.name =
cn.name cn.name

:Stereotype

++

r--r-r————~"~""~"""~"""~"""“""“""""7/"7/7/" 7/ "/ T T T T T -7
Regel 2 ++ Den:
not p.managedStereotypes -> exists(x | 3 :Project

x.ocllsTypeOf(Stereotype) and _
x.kind = ,block*) diagrams

:ClassDiagram

++
elements elements

:Block :BI2CI :Class

++
source
++

++

| |
I |
| |
l |
l |
l |
I |
| |
l |
l |
l |
I |
| |
i .

|
: children :Composition :
| |
l |
l |
l |
I |
| |
l |
l |
l |
I |
| |
l |
l |
l |
I |
l |

++
target
++ ++ ++

:Block s :BI2CI i Class

++ f ++ ++
bl cn cn stereotypes managedStereotypes

++ ++

++
++ bl.name = ++ ++ ﬂ:l.name = :Stereotype
cn.name cn.name

st
++

++
st.kind =
L,block”

Abbildung 3.21: Fallunterscheidung mit zwei TGG-Regeln zur Wiederver-
wendung von Stereotypen

84

3.2 Tripel-Graph-Grammatiken

und den dazugehorigen Links dargestellt. Die Semantik der wiederverwend-
baren Objekte ist so festgelegt, dass es ausdriicklich erlaubt ist, ein bereits
vorhandenes Objekt wiederzuverwenden, sofern es den Eigenschaften (Typ
und evtl. geforderte Attributwerte) des spezifizierten Objektes entspricht.
Existiert ein solches Objekt nicht, so wird es neu erzeugt. Die graue Farbe
unterstreicht die Semantik eines solchen Objekts, da das Objekt entweder
als schwarzes Objekt (in diesem Fall ist das Objekt sowohl auf der linken als
auch auf der rechten Regelseite enthalten, d.h., es wird wiederverwendet)
oder als griines Objekt (und mit ++ Annotationen versehen) interpretiert
werden kann (in diesem Fall ist das Objekt nur auf der rechten Seite der
Regel vorhanden, d. h., es wird erzeugt).

:Project

diagrams

:ClassDiagram

++
elements elements

:Block :BI2CI :Class

+4+
source
++

++

children :Composition

++ ++
target
++ ++ ++

:Block s :BI2ClI i :Class

++ ++ I}
stereotypes managedStereotypes

bl cn cn
++ ++
++ bl.name = ++ ++ ﬂ;l.name = :Stereotype
cn.name cn.name

st
++

st.kind =
Lblock®
Abbildung 3.22: TGG-Regel mit wiederverwendbarem Stereotyp

Im Gegensatz zu dem ersten Losungsvorschlag hilft das Konzept der wie-
derverwendbaren Objekte die Anzahl der TGG-Regeln gering zu halten.
Dariiber hinaus miissen keine zusétzlichen Bedingungen spezifiziert werden.
Dies verringert die Komplexitéit der Regeln. FKEin zusétzlicher Vorteil ge-
geniiber dem ersten Losungsvorschlag besteht darin, dass die in dieser Arbeit
eingefithrte Semantik fiir Bedingungen beibehalten werden kann. Zusam-

85

Kapitel 3 Spezifikation von Korrespondenzregeln

men mit dem Konzept der Bedingungen bilden wiederverwendbare Objekte
eine praxisrelevante Erweiterung, die uns erlaubt, sich auf die wesentlichen
Aspekte einer TGG zu konzentrieren.’

3.3 Anwendungsszenarien

Im vorangegangenen Abschnitt haben wir die Semantik der TGGs kennen-
gelernt. Diese ist so definiert, dass zwei zueinander in Beziehung gesetzte
Modelle simultan durch die Regeln der TGG aufgebaut werden. Dadurch
erhalten wir stets zueinander korrespondierende Modelle, bei denen die Kor-
respondenzbeziehungen zwischen den Modellelementen durch ein Korrespon-
denzmodell explizit verwaltet werden. Die Semantik einer TGG ist ver-
gleichbar zur Semantik einer klassischen Grammatik, die zur Erzeugung von
Wortern einer Sprache verwendet wird. Im Fall einer TGG sind die Worter
der Sprache allerdings zueinander korrespondierende Modelle.

In der Praxis werden Grammatiken aber nur selten dazu genutzt, um
Worter einer Sprache zu erzeugen. Vielmehr werden Grammatiken dazu
verwendet, vorhandene Worter darauf zu iiberpriifen, ob sie in der durch die
Grammatik definierten Sprache enthalten sind und das Wort in die Struk-
tur — in den meisten Féllen einen Syntaxbaum bzw. Ableitungsbaum — zu
parsen'®. Ahnlich dazu wird auch eine TGG selten zur Konstruktion zweier
zueinander korrespondierender Modelle eingesetzt. In den folgenden Unter-
abschnitten betrachten wir einige typische Anwendungsszenarien fiir TGGs,
zu denen auch die Modellsynchronisation gehort.

3.3.1 Modelltransformation

Ein sehr offensichtliches Anwendungsszenario fiir TGGs ist die Transforma-
tion eines Modells in ein anderes Modell. Diese Anwendung wird als Mo-
delltransformation bezeichnet. In dem folgenden Beispiel wird ein Blockdia-
gramm in ein Klassendiagramm transformiert. Aufgrund der Tatsache, dass
in den spezifizierten TGG-Regeln die Doméne der Blockdiagramme auf der

9Mit Hilfe der wiederverwendbaren Objekte kénnen zu dem in [Kén08] diskutierten Bei-
spiel TGG-Regeln angegeben werden, mit denen das Modell sowohl erzeugt als auch
transformiert werden kann. Die TGG-Regeln kommen dabei gédnzlich ohne Negative
Anwendungsbedingungen aus.

10Genau genommen wird eine Grammatik dazu verwendet, um einen Parser automatisch
ZUu generieren.

86

3.3 Anwendungsszenarien

linken und die Doméne der Klassendiagramme auf der rechten Seite notiert
wurden, was mit unserer natiirlichen Leserichtung iibereinstimmt, wird diese
Transformationsrichtung héufig als Vorwdartstransformation bezeichnet. Da-
bei ist das Blockdiagramm das Quellmodell und das Klassendiagramm das
Zielmodell dieser Transformation.

Um diese Transformation durchzufiithren, starten wir mit einem Block-
diagramm, das in Abbildung 3.23 in Form eines UML-Objektdiagramms
gegeben ist und um das TGG-Axiom erweitert wurde. Auf dieses Objekt-
diagramm wenden wir nun die TGG-Regeln an, um die fehlenden Objekte
im Klassendiagramm und Korrespondenzmodell zu erzeugen.

Abbildung 3.24 zeigt die Situation nach der Anwendung der TGG-Regel
fiir Blocke (Block2Class, vergleiche Abbildung 3.6, Seite 65) auf unsere Aus-
gangssituation in Abbildung 3.23. In Abbildung 3.25 sehen wir das Ergebnis
der zweifachen Regelanwendung auf die in Abbildung 3.24 dargestellte Situa-
tion. Wurden alle moglichen Anwendungsstellen beriicksichtigt, erhalten wir
durch die Regelanwendung fiir den Kanal, der die beiden Blécke verbindet,
ein zu dem Blockdiagramm korrespondierendes Klassendiagramm wie es in
der Abbildung 3.26 zu sehen ist. Dieses Klassendiagramm — zusammen mit
dem Korrespondenzmodell — ist das Ergebnis der Modelltransformation.

Die Modelltransformation funktioniert mit denselben TGG-Regeln auch
in entgegen gesetzter Richtung, das heifit, wir konnen ein Klassendiagramm
in ein korrespondierendes Blockdiagramm iibersetzen. Diese Form der Mo-
delltransformation wird aufgrund der vorherigen Festlegung Riickwdrtstrans-
formation genannt — auch wenn hier nun genauso gut das Klassendiagramm
als Quell- und das Blockdiagramm als Zielmodell definiert werden kann.
Aus diesem Grund sprechen wir in dieser Arbeit von Doménen statt von
Quell- und Zielmodellen und legen fiir jede Modelltransformation fest, wel-
che Domine das Quellmodell und welche Domiéne das Zielmodell der Uber-
setzung ist.

In unserem Beispiel funktioniert die Ubersetzung problemlos, da die TGG-
Regeln eindeutig sind. Dies ist jedoch nicht immer der Fall. Andere Trans-
formationen kénnen mehrdeutig und damit nicht-deterministisch sein (vgl.
z.B. [KWO07]). Bei der Spezifikation der Korrespondenzbeziehungen stellt
die Mehrdeutigkeit kein Problem dar. Sie ist sogar hiufig erwiinscht [Bec07].
Fiir eine effiziente Ausfithrung der Modelltransformation wird aber eine Stra-
tegie benotigt, wie mit Nicht-Determinismus umgegangen werden soll. An
dieser Stelle wollen wir uns allerdings nicht im Detail damit befassen, da auf
dieses Problem noch spéter eingegangen wird.

87

Kapitel 3 Spezifikation von Korrespondenzregeln

88

:ClassDiagram

elements

:System :Sy2Cl :Class
stereotypes | source
:Stereotype
children
:Block
children
:Block
src
:Connection
tgt
children
:Block

Abbildung 3.23: Modelltransformation: Initiale Startsituation

3.3 Anwendungsszenarien

| :ClassDiagram

elements
:System :Sy2CI :Class
stereotypes source
:Stereotype
children
:Composition
target
Block :BI2CI :Class
stereotypes
:Stereotype
children
:Block
src
:Connection
tgt
children
:Block

Abbildung 3.24: Modelltransformation: Anwendung der Regel Block2Class

89

Kapitel 3 Spezifikation von Korrespondenzregeln

:ClassDiagram

elements

:System :Sy2CI :Class
stereotypes source

:Stereotype

children

target

:Block :BI2CI :Class

stereotypes source | source

:Stereotype

children

:Composition | f |

target

:Block ‘BI2CI :Class

stereotypes

src

:Stereotype

:Connection

tgt

children target

L | :Block :BI2CI :Class

stereotypes

:Stereotype

Abbildung 3.25: Modelltransformation: Zweifache Anwendung der Regel
Block2Class

90

3.3 Anwendungsszenarien

:ClassDiagram

elements
:System :Sy2Cl :Class
stereotypes | source
:Stereotype
children

:

:Composition

target

:Block :BI2CI :Class

L

stereotypes | source source

:Stereotype

children

:Composition | [|

target

:Block :BI2CI :Class YN
source
stereotypes

src \
:Stereotype
:Connection :Cn2As :Association ,IZ

:Composition

tgt

children target

target
:Block :BI2CI :Class

stereotypes

:Stereotype

Abbildung 3.26: Modelltransformation: ~ Anwendung der Regel Chan-
nel2Assoc

91

Kapitel 3 Spezifikation von Korrespondenzregeln

3.3.2 Modellintegration

Ein zweites Anwendungsszenario ergibt sich, wenn zwei Modelle gegeben sind
und wir die Korrespondenzobjekte zwischen den zueinander in Beziehung
stehenden Modellelementen erzeugen mochten. Dieses Szenario entspricht
technisch gesehen der Modelltransformation. Der einzige Unterschied ist,
dass nun beide Modelle gegeben sind. Diese Modelle kénnen — wie in Ab-
bildung 3.23 dargestellt — mithilfe des TGG-Axioms erweitert werden. Auf
diese Anfangssituation kénnen nun wiederum unsere TGG-Regeln angewen-
det werden. Diesmal suchen wir jedoch in beiden Doménen nach zueinander
korrespondierenden Elementen und erzeugen lediglich die Korrespondenz-
objekte zwischen zueinander in Beziehung stehenden Modellelementen. In
den Abbildungen 3.28-3.30 ist die Anwendung der TGG-Regeln illustriert.
Dieses Szenario wird als Modellintegration bezeichnet.

In dem in Abbildung 3.30 gezeigten Anwendungsszenario konnten alle Mo-
dellelemente der unterschiedlichen Modelle zueinander in Beziechung gesetzt
werden. Damit korrespondieren beide Modelle zueinander vollsténdig — sie
sind beziiglich der spezifizierten TGG-Regeln zueinander synchron. Aller-
dings kann es auch bei diesem Anwendungsszenario vorkommen, dass nicht
zwischen allen Modellelementen eine Korrespondenzbeziehung hergestellt
werden kann. In diesem Fall sind die Modelle nicht zueinander synchron.

3.3.3 Modellsynchronisation

Die Modellsynchronisation ist das umfassendste Anwendungsszenario. Aus-
gangspunkt dieses Szenarios sind zwei Modelle, zwischen denen bereits ein
entsprechendes Korrespondenzmodell existiert. Dieses Korrespondenzmodell
kann durch eine Modelltransformation oder eine Modellintegration entstan-
den sein. Werden die Modelle vom Benutzer geéndert, so sorgt die Modell-
synchronisation dafiir, dass die modifizierten Modelle wieder miteinander
abgeglichen werden. Hierbei wird — sofern notwendig — auch das Korrespon-
denzmodell aktualisiert. Ein Beispiel fiir die Modellsynchronisation haben
wir bereits in Kapitel 2 gesehen. Wie die Modellsynchronisation technisch
auf Grundlage der TGG-Regeln durchgefiihrt wird, erklart Kapitel 5.

3.4 Zusammenfassung

In diesem Kapitel haben wir uns mit der Spezifikation von Modellbezie-
hungen beschéftigt. Hierzu haben wir TGGs eingesetzt. Die grundlegende

92

3.4 Zusammenfassung

:ClassDiagram

elements

:System :Sy2Cl

-

stereotypes | source

:Stereotype

children

|

:Composition

target

:Block

:Class

]

stereotypes | source | sourci

:Stereotype

children

]

:Composition | |} |

target

:Block :Class

22ldoo —

source

stereotypes
src

:Stereotype

:Association f

:Composition

:Connection

tgt

children target

target

L :Block :Class

stereotypes

:Stereotype

Abbildung 3.27: Modellintegration: Initiale Startsituation

93

Kapitel 3 Spezifikation von Korrespondenzregeln

J| :ClassDiagram

lements

[oR

:System :Sy2Cl

stereotypes | source

:Stereotype

children I.%

:Composition

target

] Block :BI2CI >" Class
o
stereotypes || source | source

:Stereotype

children

:Composition | [|

target

:Block :Class A
source

stereotypes

src

:Stereotype

:Connection :Association f

:Composition

tgt

children target

target
:Block :Class

stereotypes

:Stereotype

Abbildung 3.28: Modellintegration: Anwendung der Regel Block2Class

94

3.4 Zusammenfassung

:ClassDiagram

elements

:System :Sy2Cl :Class
stereotypes source

:Stereotype

children

:Composition

target

:Block :BI2CI :Class
It
stereotypes source LsuumP_

:Stereotype

children

:Composition

target

:Block ‘BI2CI :Class

21l - —
source

I

stereotypes

src

:Stereotype

:Connection :Association ,H

:Composition

tgt

children target

target
L :Block -BI2CI :Class

stereotypes

:Stereotype

Abbildung 3.29: Modellintegration: = Zweifache Anwendung der Regel
Block2Class

95

Kapitel 3 Spezifikation von Korrespondenzregeln

:ClassDiagram
elements
:System :Sy2Cl :Class
stereotypes | source
:Stereotype
children
:Composition
target
| :Block :BI2CI :Class
stereotypes source source
:Stereotype
children
:Composition | [|
target
:Block :BI2CI :Class L
source
stereotypes
src
:Stereotype
:Connection -Cn2As H" :Association i.\———
:Composition
tgt /

children target
target
L :Block :BI2CI % :Class

stereotypes

:Stereotype

Abbildung 3.30: Modellintegration: Anwendung der Regel Channel2Assoc

96

3.4 Zusammenfassung

Idee und die dahinter stehenden Prinzipien haben wir an einem Beispiel be-
schrieben. Dabei definiert eine Menge von TGG-Regeln — zusammen mit
einem TGG-Axiom — die Korrespondenzbeziehungen zwischen den Elemen-
ten zweier Modelle. Die Spezifikation der Korrespondenzbeziehungen erfolgt
weiterhin in der abstrakten Syntax der beteiligten Modellierungssprachen.
Im Hinblick auf die noch vorzustellende Modellsynchronisation haben wir
jedoch die Notation und Semantik von Bedingungen gedndert sowie ein Kon-
zept zur Wiederverwendung von Objekten eingefiihrt.

Grundsatzlich ist eine Spezifikation von Korrespondenzregeln niitzlich, um
Korrespondenzbeziechungen zwischen Modellen explizit zu machen und da-
durch zu dokumentieren. In unserem Ansatz erfolgt die Spezifikation gra-
phisch. Die visuell erfassten Korrespondenzbeziehungen sind dadurch leich-
ter fiir Menschen nachvollziehbar als zum Beispiel Korrespondenzbeziehun-
gen, die nur in einer textuellen Spezifikationssprache hinterlegt sind (verglei-
che dazu Spezifikationen in der textuellen Syntax einiger Modelltransforma-
tionssprachen, wie zum Beispiel QVT-Relations [QVTO08]).

Die Spezifikation von Korrespondenzregeln mit TGGs bietet jedoch noch
einige weitere Vorteile. Zunéchst ist die Spezifikation der Korrespondenzre-
geln formal und erfolgt in einer lokalen und deklarativen Art und Weise. Auf
dieser Grundlage wird eine inkrementelle und bidirektionale Arbeitsweise der
noch spéter vorzustellenden Modellsynchronisation ermoglicht. Insbesondere
bedeutet dies, dass die TGG-Regeln operationalisiert und zur Parametrisie-
rung eines Synchronisationswerkzeugs herangezogen werden kénnen. Zudem
hat die bidirektionale und damit richtungsunabhéngige Regelspezifikation
gegeniiber Ansétzen, bei denen fiir jede Richtung eine eigene Regel not-
wendig ist, den Vorteil, dass Inkonsistenzen zwischen den unterschiedlichen
Richtungen vermieden werden. Ein weiterer Vorteil ist, dass durch die forma-
len Eigenschaften einer TGG sich verschiedene Moglichkeiten und Ansétze
zur Validierung und formalen Verifikation der Korrespondenzbeziehungen
erdffnen. Finige dieser Moglichkeiten werden wir in Kapitel 6 aufzeigen. Be-
vor wir allerdings den Synchronisationsmechanismus sowie Moglichkeiten zur
Validierung und Verifikation vorstellen, betrachten wir in Kapitel 4 zuerst
einige auf TGGs basierende Spezifikationsvarianten, mit denen die Handha-
bung weiter vereinfacht wird.

97

Kapitel 4

Spezifikationsvarianten

Im vorangegangenen Kapitel haben wir die Technik der Tripel-Graph-
Grammatiken kennen gelernt, mit der wir Modell-zu-Modell Beziehungen
spezifiziert haben. Darauf aufbauend beschéftigen wir uns in diesem Kapitel
mit drei Spezifikationsvarianten. In Abschnitt 4.1 fokussieren wir auf die
Spezifikation von Modell-zu-Text Beziehungen und zeigen, wie diese Bezie-
hungen mit Tripel-Graph-Grammatiken spezifiziert werden. In Abschnitt 4.2
zeigen wir, wie Korrespondenzbeziehungen mit Hilfe von Beispielzuordnun-
gen definiert werden, um daraus die TGG-Regeln automatisch zu syntheti-

sieren. In Abschnitt 4.3 hingegen gehen wir auf den Transformationsansatz
MOF 2.0 Query/View/Transformation (QVT) ein.

4.1 Spezifikation von Modell-zu-Text
Beziehungen

Neben Modell-zu-Modell Beziechungen spielen in der modellbasierten Soft-
wareentwicklung Modell-zu-Text Beziehungen eine wichtige Rolle. In der
Literatur wird von Modell-zu-Text Beziehungen gesprochen, wenn statt ei-
nes graphischen Modells lediglich Textartefakte erzeugt werden [GSCKO04,
GPRO05, CH06]. Die Modell-zu-Text Beziehungen werden beispielsweise dazu
verwendet, um aus einem Modell eine textuelle Beschreibung zur Doku-
mentation des Softwaresystems oder textuelle Konfigurationsdateien auto-
matisch zu erstellen. Die am weitesten verbreitete Anwendung der Texter-
zeugung ist jedoch die Codegenerierung. Bei der Codegenerierung wird aus
einem spezifizierten Modell der zur Implementierung benétigte Code auto-
matisch aus dem Modell abgeleitet und in eine Textdatei geschrieben, so
dass bereits existierende Werkzeuge, die eine Textdatei als Eingabe erwar-
ten, weiterhin genutzt werden kénnen.

99

Kapitel 4 Spezifikationsvarianten

Die Unterscheidung zwischen einer Modelltransformation und einer Code-
generierung findet iiberwiegend aufgrund der Art der Sprachdefinition statt,
die zur Beschreibung der Zielsprache verwendet wird [CH06]. W&hrend sich
zur Sprachdefinition visueller Modellierungssprachen iiberwiegend Metamo-
delle durchgesetzt haben, werden Programmiersprachen im Regelfall durch
Grammatiken definiert. Ist die Zielsprache durch ein Metamodell definiert,
wird die Ubersetzung als Modelltransformation bezeichnet. Handelt es sich
bei der Zielsprache hingegen um eine Programmiersprache, die durch eine
Grammatik definiert ist, wird von Codegenerierung oder auch Modell-zu-
Text Transformationen gesprochen [GPRO5].

Die Unterscheidung auf Grundlage der Sprachdefinition ist jedoch ungeeig-
net, weil grundsétzlich sowohl fiir eine Programmiersprache ein Metamodell
angegeben® als auch eine visuelle Modellierungssprache durch eine (Graph-)
Grammatik definiert werden kann [Roz97]. Daher sollte auf eine solche Un-
terscheidung verzichtet werden. Diese Haltung ist umso nachvollziehbarer,
wenn man bedenkt, dass Code ebenfalls als ein Modell des zu implemen-
tierenden Softwaresystems angesehen werden kann. Es wére daher sinnvoll,
wenn keine Unterscheidung zwischen der Spezifikation von Modell-zu-Modell
und Modell-zu-Text Beziehungen gemacht wiirde und die Spezifikationen in

einer einheitlichen Notation durchgefiihrt werden konnten. Dies ist zurzeit
jedoch nicht der Fall.

4.1.1 Existierende Techniken

In diesem Abschnitt beschéftigen wir uns mit zwei weit verbreiteten Techni-
ken zur Spezifikation von Modell-zu-Text Beziehungen. Diese Ansétze wer-
den iiberwiegend zur Codegenerierung eingesetzt. Dabei handelt es sich um
sehr technisch orientierte Ansétze, die durch zahlreiche Rahmenwerke (engl.
Frameworks) unterstiitzt werden. An dieser Stelle gehen wir jedoch nicht
auf die Details der verschiedenen Rahmenwerke ein. Stattdessen stellen wir
nur die zugrunde liegenden Konzepte vor, um anschliefend die damit ver-
bundenen Vor- und Nachteile zu diskutieren.

Direkte Programmierung

Eine Moglichkeit zur Realisierung einer automatischen Codegenerierung be-
steht darin, den benétigten Codegenerator direkt in einer Programmierspra-
che von Hand zu implementieren. Hierzu durchlauft der Codegenerator die

siehe zum Beispiel das Eclipse Metamodell zur Programmiersprache Java

100

4.1 Spezitikation von Modell-zu-Text Beziehungen

interne Struktur eines Modells und erzeugt aus den Daten der traversierten
Modellartefakte den dazugehorigen Code. Die Erzeugung der Textartefakte
erfolgt zumeist durch einfache println-Anweisungen, deren Ausgabe in eine
Textdatei umgeleitet wird. Die auf diesem Ansatz basierenden Codegenera-
toren werden daher haufig auch als Line-Printer bezeichnet [GPRO5].

Die Implementierung eines solchen Codegenerators kann durch den Einsatz
von Entwurfsmustern vereinfacht werden. Beispielsweise kann zur Traversie-
rung der Modelle das Visitor-Entwurfsmuster eingesetzt werden [GHJV94].
Dieses Entwurfsmuster erlaubt es, die Operationen zur Codegenerierung an
einer einzigen Stelle zu kapseln und erleichtert dadurch sowohl die Pro-
grammierung als auch die spiatere Wartung des Codegenerators. Zusétzlich
konnen durch den Einsatz dieses Entwurfsmusters weitere Codegeneratoren
nachtréglich hinzugefiigt werden, ohne dazu die bestehende Implementierung
dndern zu miissen.

Zur Unterstiitzung der Implementierung konnen aulerdem Rahmenwerke
verwendet werden, die auf die Codegenerierung — oder ganz allgemein auf
die Generierung von Textartefakten — spezialisiert sind. Die Rahmenwerke
bieten eine API an, um den Zugriff auf die interne Modellreprésentation und
die damit verbundene Navigation im Modell zu vereinfachen, so dass dadurch
die Programmierung des Codegenerators insgesamt erleichtert wird. Ein
prominentes Beispiel fiir ein solches Rahmenwerk ist Jamda [Jam]. Dieses
Rahmenwerk ist auf die Entwicklung von Codegeneratoren spezialisiert, die
Code aus UML-Modellen erzeugen.

Die direkte Programmierung eines Codegenerators ist der flexibelste An-
satz. Allerdings ist mit der Programmierung von Hand ein sehr hoher Auf-
wand verbunden. Dieser Aufwand l&sst sich zwar durch den Einsatz spezieller
Entwurfsmuster und Rahmenwerke reduzieren, die eigentliche Entwicklung
des Codegenerators findet aber weiterhin auf einem sehr niedrigen Abstrak-
tionsniveau statt. Zudem sind die Rahmenwerke auf ganz bestimmte Me-
tamodelle oder Technologien spezialisiert, wodurch ihre Verwendung nur in
einem bestimmten Kontext sinnvoll beziehungsweise moglich ist.

Die Anpassung und Wartung eines solchen Codegenerators erfolgt direkt
im Programmtext. Um die Zuordnung zwischen einem Modell und dem dar-
aus generierten Code zu verstehen, muss die Implementierung des Codege-
nerators analysiert werden. Der Zusammenhang zwischen einem Modell und
dem daraus zu generierenden Code ist dabei nur sehr schwer erkennbar, so
dass sich die Anpassung und Wartung der Codegenerierung als sehr schwie-
rig erweist. Eine Anpassung der Codegenerierung durch einen Benutzer ist
daher unrealistisch.

101

Kapitel 4 Spezifikationsvarianten

In einem engen Zusammenhang mit der Zuordnung von Modell-zu-Text
Beziehungen steht die Nachverfolgbarkeit (engl. Traceability). Wie wir be-
reits in Abschnitt 1.2.3 gesehen haben, ist die Nachverfolgbarkeit sehr niitz-
lich. Sofern die Zuordnung nicht explizit bei der Generierung gespeichert
wird, ist nach der Codegenerierung nicht direkt erkennbar, aus welchen Mo-
dellartefakten der Code erzeugt wurde. Insbesondere wird aufgrund der
fehlenden Zuordnung eine Synchronisation zwischen Modell und Code er-
schwert. Sofern eine solche Synchronisation benétigt wird, muss sie zusétz-
lich von Hand implementiert werden. Soll die Synchronisation nicht ganz
unabhéngig vom generierten Code erfolgen, so erhoht dies die Komplexitét
des Codegenerators. Eine vom Codegenerator unabhéngige Implementierung
hingegen birgt die Gefahr, dass das Forward-Engineering — in diesem Fall also
die Codegenerierung — inkonsistent zum Reverse-Engineering implementiert
und die Synchronisation damit fehlerhaft ist. Die Komplexitét dieser Auf-
gabe wird dadurch belegt, dass heutige Werkzeuge keine zufriedenstellende
Losung zur Synchronisation von Modell und Code anbieten.

Zusammenfassend kann man sagen, dass die direkte Programmierung eines
Codegenerators nur dann empfehlenswert ist, wenn entweder die Codegene-
rierung extrem effizient sein muss oder wenn der Zusammenhang zwischen
den Modellen und dem daraus zu generierendem Code so komplex ist, dass
er durch andere Ansétze nicht abgebildet werden kann.

Textschablonen

Wegen der Nachteile der direkten Programmierung haben sich in der Praxis
Ansétze auf der Grundlage von Textschablonen zur Codegenerierung durch-
gesetzt. Zu den Rahmenwerken, die Textschablonen unterstiitzen, gehoren
unter anderem Java Emitter Template (JET) [JET|, AndroMDA [AMD],
Velocity Template Engine [VTE], openArchitecture Ware [OAW], ArcStyler
[ARC], OptimalJ [OpJ] und Codagen Architect [CoG]. Mit der im Ja-
nuar 2008 verdffentlichten Spezifikation der MOF Model to Text Transfor-
mation Language (MOFM2T) liegt auch ein Standard der Object Mana-
gement Group (OMG) vor [MTTO08], in dem eine Spezifikationssprache fiir
Modell-zu-Text Transformation auf der Grundlage von Textschablonen defi-
niert wird.

Abbildung 4.1 zeigt schematisch den Ansatz zur Codegenerierung mit
Textschablonen. Die Eingabe fiir die Codegenerierung ist — neben einer
Menge von vordefinierten Textschablonen — ein Modell, fiir das Code er-
zeugt werden soll. Die Anwendung der Textschablonen auf das Modell er-

102

4.1 Spezitikation von Modell-zu-Text Beziehungen

Metamodel Template

/i\
|
|
: instance of ‘ input
|
l
Template Code
Model - Engine - (Textfile)

input output

ll

Abbildung 4.1: Codegenerierung mit Textschablonen

folgt durch ein Rahmenwerk, das als Template Engine bezeichnet wird. Die
Ausgabe besteht in der Regel aus einer Menge von Textdateien, die den
erzeugten Code enthalten.

Bei einer Textschablone (engl. Template) handelt es sich um eine Text-
vorlage mit vordefinierten Textfragmenten, durch die ein Codegeriist vorge-
geben wird. Dieses Codegeriist wird im Rahmen der Codegenerierung mit
Daten aus dem Modell angereichert und in einer Textdatei gespeichert. In
der Abbildung 4.2 ist beispielhaft ein Auszug aus einer Textschablone der
Velocity Template Engine dargestellt [VTE]. Die vollstandige Textschablone
ist in der Studienarbeit von Markus von Detten zu finden [Det06]. Sie wurde
im Rahmen des ISILEIT-Projektes zur Generierung von Code fiir Speicher-
programmierbare Steuerungen (SPSen) verwendet. Der hier gezeigte Aus-
schnitt der Textschablone besteht aus zu erzeugenden Textfragmenten der
SPS-Programmiersprache Strukturierter Text (ST) [IECO03], Platzhaltern so-
wie Anweisungen, die unter anderem zur Steuerung der Codegenerierung
verwendet werden.

Platzhalter sind durch ein vorangestelltes $-Zeichen zu erkennen. Sie wer-
den wahrend der Codegenerierung durch konkrete Werte ersetzt. Aufgrund
der Tatsache, dass es sich hierbei um eine Java-basierte Template Engine
handelt, konnen auf einem Platzhalter, dem wéhrend der Ausfithrung ein
Java-Objekt zugeordnet wurde, Methoden aufgerufen werden. Nach dem
Aufruf wird der Riickgabewert der Methode fiir den Platzhalter eingesetzt
(vgl. zum Beispiel $state.getName()). Die Anweisungen hingegen sind
an einem vorangestellten #-Zeichen zu erkennen. Dabei kann es sich um
Anweisungen zur Steuerung der Codegenerierung handeln, wie zum Beispiel

103

Kapitel 4 Spezifikationsvarianten

CASE state OF

#foreach($state in $automaton)
#getIld($state) (* $state.getName() *)
#if ($velocityCount == 1)
#foreach($transition in $state.getOutgoingTransitions())
IF #getMapping($transition.getTrigger())
THEN
#foreach($action in $transition.getActions())
#getMapping($action)
#end

state := #getId($transition.getTarget());
#end

#end
END_CASE;

Abbildung 4.2: Ausschnitt aus einer Textschablone

#foreach und #if, oder um benutzerdefinierte Direktiven, wie zum Beispiel
#getMapping und #getId, die in Form von Makros hinterlegt wurden.

Im Gegensatz zur direkten Programmierung ist eine Anpassung der Code-
generierung bei diesem Ansatz relativ einfach moglich. Hierzu reicht es
héufig aus, die Textfragmente der Textschablone zu verdndern und an die
speziellen Bediirfnisse anzupassen. In einigen Fallen muss allerdings zusétz-
lich ein Algorithmus bereit gestellt werden, der die zur Codegenerierung
benotigten Informationen aus einem Modell extrahiert. Zwar existieren auch
Rahmenwerke, bei denen die Traversierung der Modelle bereits implemen-
tiert ist [JET, AMD], allerdings sind diese auf eine bestimmte Technologie,
wie zum Beispiel das Eclipse Modeling Framework (EMF) oder eine be-
stimmte Modellierungssprache, wie zum Beispiel die Unified Modeling Lan-
guage (UML), spezialisiert. Eine Codegenerierung fiir andere Technologien
oder Modellierungssprachen ist damit nicht realisierbar.

Die Zuordnung der Modell-zu-Text Beziehungen ist bei diesem Ansatz nur
schwer zu erkennen. Der Zusammenhang zwischen dem generierten Text

104

4.1 Spezitikation von Modell-zu-Text Beziehungen

und der dazu verwendeten Textschablone ist hingegen recht gut erkennbar,
auch wenn dies durch die zusétzlichen Anweisungen in der Textschablone
erschwert wird. Aufféllig an dem Ansatz ist auch, dass zwar die Syntax
der Modelle durch ein Metamodell vorgegeben ist, der erzeugte Text aber
lediglich aus Textfragmenten besteht, die nicht typisiert sind. Damit kann
einerseits beliebiger Text erzeugt werden. Andererseits wird bei der Generie-
rung von Code der erzeugte Programmtext keiner syntaktischen Uberpriifung
unterzogen. Somit ist es mit diesem Ansatz moglich syntaktisch fehlerhafte
Programme zu erzeugen.

Grundsétzlich lasst sich die Entwicklung eines Codegenerators durch den
Einsatz von Textschablonen vereinfachen. Wie schon bei der direkten
Programmierung werden bei diesem Ansatz allerdings nur unidirektionale
Modell-zu-Text Transformationen unterstiitzt, die weder eine Nachverfolg-
barkeit gewahrleisten noch eine inkrementelle Synchronisation der Modell-
zu-Text Beziehungen ermdoglichen.

4.1.2 Spezifikation mit Tripel-Graph-Grammatiken

Die Technik der Tripel-Graph-Grammatiken kann auch zur Spezifikation von
Modell-zu-Text Beziehungen eingesetzt werden. Wie schon bei der Spezifi-
kation von Modell-zu-Modell Beziehungen kénnen auch hier die TGGs bi-
direktional ausgefiithrt werden. Durch das Korrespondenzmodell bleibt die
Zuordnung zwischen den Modell- und den Textartefakten nach einer Trans-
formation bestehen. Damit ist die Nachverfolgbarkeit einer Transformation
gegeben. Daher sind TGGs sowohl zur Codegenerierung als auch zur Syn-
chronisation von Modell und Code geeignet.

Im ersten Teil dieses Abschnitts stellen wir die Spezifikation und Synchro-
nisation von Modell-zu-Text Beziehungen mit TGGs vor. Die Spezifikation
unterscheidet sich nicht von der Spezifikation von Modell-zu-Modell Bezie-
hungen. Allerdings sind einige Besonderheiten bei der Ausfithrung zu beach-
ten, um eine Synchronisation zwischen einem Modell und dem dazugehorigen
Text durchfithren zu konnen. Ist hingegen eine Synchronisation nicht not-
wendig, so kann der Spezifikationsaufwand reduziert werden, indem TGGs
mit Textschablonen kombiniert werden. Mit dieser Spezifikationsvariante
beschéftigen wir uns im zweiten Teil dieses Abschnitts.

105

Kapitel 4 Spezifikationsvarianten

Direkte Spezifikation

Die Spezifikation mit TGGs erfolgt auf der Grundlage von Metamodellen.
Bei der Spezifikation von Modell-zu-Modell Beziehungen sind die Metamo-
delle durch die beiden Modellierungssprachen gegeben. Handelt es sich hin-
gegen um Modell-zu-Text Beziehungen, so muss fiir den Text zunéchst eine
geeignete Reprisentation gefunden werden, auf deren Basis eine solche Spezi-
fikation statt finden kann. Dies bedeutet, dass zur Spezifikation von Modell-
zu-Text Beziechungen neben dem Metamodell fiir die Modellierungssprache
auch ein Metamodell fiir den zu generierenden Text vorhanden sein muss.

Damit die Textartefakte einer Sprache oder einer Beschreibung maschinell
auswertbar sind, miissen sie in einer geeigneten internen Représentation vor-
liegen. Bei einem einfachen Text ist haufig eine anwendungsspezifische Da-
tenstruktur vorhanden, die zum Beispiel aus Kapiteln, Absitzen, Uberschrif-
ten, Zeichen und Formatierungen bestehen kann. Diese Datenstruktur kann
bereits als ein Metamodell angesehen und zur Spezifikation der Modell-zu-
Text Beziehungen eingesetzt werden. Handelt es sich bei dem Text hingegen
um Code, so wird der Code in den meisten Fallen in Form eines abstrakten
Syntaxbaums (engl. Abstract Syntax Tree (AST)) représentiert.

Der Code liegt in der Regel zeilenweise als eine einfache Folge von Zei-
chen vor. Ein abstrakter Syntaxbaum hingegen reprisentiert die syntakti-
sche Struktur und ist allgemein betrachtet eine Zwischendarstellung (engl.
Intermediate Representation, (IR)) von Code [ASU86]. Diese Zwischen-
darstellung wird mithilfe eines Parsers erzeugt, der zur Erkennung und
Uberpriifung der Syntax eines Programms eingesetzt wird.

Heutige Parser werden nicht von Hand programmiert, sondern mit einem
Parsergenerator erzeugt. Hierzu erhélt der Parsergenerator als Eingabe die
Grammatik der Sprache, aus der er dann einen Parser fiir diese Sprache au-
tomatisch generiert. Neben der Erkennung und Priifung der Syntax wird
durch den generierten Parser auch der abstrakte Syntaxbaum erzeugt. Die
hierfiir notwendigen Klassen werden héaufig durch den Parsergenerator selbst
(wie zum Beispiel im Fall des Parsergenerators ANTLR [Par07]) bereitge-
stellt oder durch ein externes Werkzeug erzeugt (wie zum Beispiel im Fall
des Java Tree Builders (JTB) fiir den Parsergenerator JavaCC [JTB, JCC]).
Aufgrund der Tatsache, dass die abstrakte Syntax einer Sprache gleichwertig
mit einem Metamodell zu setzen ist, konnen diese Klassen als Metamodell
der Sprache angesehen und zur Spezifikation der Modell-zu-Text Beziehun-
gen verwendet werden. Abbildung 4.3 zeigt beispielhaft einen Ausschnitt fiir
das Java-Metamodell von Eclipse [JDT]. Andere Beispiele fiir solche Meta-

106

4.1 Spezitikation von Modell-zu-Text Beziehungen

FieldDeclaration
fields
0.* J7
Abstracﬂjy pe ———{> BodyDeclaration Expression
Declaration)
bodyDeclarations — -
o modifiers :int
0..*" types N initializer | 0..1
methods
TypeDeclaration 0.+] MethodDeclaration VariableDeclaration
interface : boolean name : String name : String
constructor : boolean
superintgrfaceTypes supgrClassType
0.* 0.1 wurnT 0..* | parameters fragments | 0..*
. Tvoe reurntype SingleVariable VariableDeclaration
ype yp 0.1 h—] Declaration Fragment
0.1 type
0.1
ZF ZF body | 0..*
PrimitiveType SimpleType Block > Statement
Statements]
0..*

Abbildung 4.3: Ausschnitt aus dem Eclipse Java-Metamodell

modelle sind die — wenn auch nicht vollstdndigen — Metamodelle fiir Java,
Cobol, PL/I, C und C++ der Object Management Group (OMG). Diese Me-
tamodelle wurden im Rahmen verschiedener OMG-Standards veroffentlicht
[OMG04, OMGO04].

Ist ein Metamodell fiir eine textuelle Sprache gefunden, so kann die Spezi-
fikation der Modell-zu-Text Beziehungen mit Hilfe der TGGs stattfinden. In
Abbildung 4.4 ist eine Beispielregel dargestellt?. Diese TGG-Regel basiert
auf dem UML-Metamodell fiir Klassendiagramme aus Abbildung 3.1 sowie
dem Java-Metamodell von Eclipse aus Abbildung 4.3. Sie setzt Attribute
einer Klasse zu Fragmenten eines abstrakten Syntaxbaums fiir Java-Code in
Beziehung. Sind weitere TGG-Regeln definiert, so kann aus einem Modell
anhand dieser TGG-Regeln ein abstrakter Syntaxbaum erstellt und somit
eine Codegenerierung durchgefiihrt werden.

Abbildung 4.5 illustriert die prinzipielle Arbeitsweise der Codegenerie-

’Diese TGG-Regel ist recht iibersichtlich. Aufgrund der sehr umfangreichen Syntax
bestehen die meisten TGG-Regeln aus 20-30 Knoten.

107

Kapitel 4 Spezifikationsvarianten

:UMLClass :CL2TD :TypeDeclaration
++
fields
++ ++
ars —tt_fatname=] ++ ++ (v name = ‘FieldDeclaration
cn.name cn.name
++
at cn cn vd fragments
++ ++ ++
:UMLAttr ++ :AT2FD ++ :VariableDeclartion
Fragment
++ ++ ++
attrType cn cn Jp-; T+
:UMLBaseType :PrimitiveType
bt pt
++

++ [bt.name = ++ ++ | pt.primitiveTypeCode = ++
cn.umlTypeName(cn.type) cn.javaTypeCode(cn.type)

Abbildung 4.4: Beispiel fiir die Spezifikation von Modell-zu-Text Beziehun-
gen mit einer TGG-Regel

rung sowie der Synchronisation auf Grundlage der mit TGGs spezifizier-
ten Modell-zu-Text Beziehungen. In unserem Beispiel nehmen wir an, dass
zunédchst nur ein Modell gegeben ist. Nach der Ausfithrung der TGG-Regeln
auf dem Modell (Schritt 1) existiert sowohl ein abstrakter Syntaxbaum als
auch ein Korrespondenzmodell, welches die Zuordnung zwischen Elementen
des Modells und des abstakten Syntaxbaums explizit verwaltet. Der ab-
strakte Syntaxbaum représentiert die syntaktische Struktur des generierten
Codes. Fiir die weitere Verarbeitung durch Werkzeuge, wie zum Beispiel
Editoren und Compiler, wird der Code jedoch in seiner konkreten Syntax,
also seiner textuellen Darstellung, benotigt.

Um eine textuelle Darstellung aus einem abstrakten Syntaxbaum zu er-
halten, werden sogenannte Unparser® verwendet (Schritt 2) [ELI]. Ana-
log zu Parsern existieren auch fiir Unparser entsprechende Generatoren
[Kas94, ELI, TXL], die aus einer Spezifikation den Unparser automatisch
erstellen.

Fiir unser Beispiel miissen wir keinen Unparser explizit erstellen. FEr
wird bereits durch die Java Development Tools (JDT) der Eclipse-
Entwicklungsumgebung zur Verfiigung gestellt [JDT]. Dieser Unparser hat
die Eigenschaft, dass nach dem Parsen von Java-Code und einem soforti-

3Unparser werden beispielsweise sehr hiufig im Rahmen der automatischen Codeforma-
tierung (engl. Pretty-Printer) eingesetzt.

108

4.1 Spezitikation von Modell-zu-Text Beziehungen

synchronlze/transform

ast new ast
@ synchronize/transform

&

compare &
update

correspondence
model

@ unparse parse @

@ modify

Abbildung 4.5: Codegenerierung und Synchronisation von Modell-zu-Text
Beziehungen

109

Kapitel 4 Spezifikationsvarianten

gen Unparsen keine Anderungen an der textuellen Reprisentation des Co-
des entstehen. Dies wird durch entsprechende Annotationen im abstrakten
Syntaxbaum erreicht [KLO03], so dass bestehende Einriickungen, Leerzeichen,
Kommentare sowie Klammerungen von Ausdriicken beim Unparsen beriick-
sichtigt werden und die originale Formatierung des Codes nicht verloren geht.
Im Zusammenhang mit der Synchronisation von Modell und Code ist dies be-
sonders vorteilhaft, weil lokale Anderungen im abstrakten Syntaxbaum sich
ebenfalls nur lokal an den betroffenen Stellen im Code auswirken. Bei einem
einfachen abstrakten Syntaxbaum ohne Annotationen fehlen diese zusétzli-
chen Informationen, so dass auch von Anderungen nicht betroffene Teile des
Codes durch den Unparser umformatiert werden.

Beim heutigen Stand der modellbasierten Softwareentwicklung miissen
wir immer noch davon ausgehen, dass Anderungen nicht nur am Modell
durchgefiihrt werden, sondern dass auch der generierte Code bearbeitet wird
(Schritt 3). Beispielsweise muss ein Entwickler nach der initialen Codegene-
rierung haufig weitere Methoden hinzufiigen, um zusétzliche Funktionalitit
zu integrieren. In einem iterativ-inkrementellen Softwareentwicklungsprozess
ist dartiber hinaus zu beriicksichtigen, dass nach der Codegenerierung (und
den eventuell durchgefithrten Anderungen im Code) ebenso Anderungen im
Modell vorgenommen werden. Anderungen im Modell kénnen beispielsweise
durch neue Erkenntnisse aus der Analysetitigkeit notwendig werden. Im
Rahmen der Synchronisation miissen daher sowohl Anderungen im Modell
als auch im Code beriicksichtigt werden.

Zur Bearbeitung von Code werden Texteditoren eingesetzt. Grundséitz-
lich kann hier in syntaxgesteuerte Texteditoren und konventionelle Texte-
ditoren unterschieden werden. Syntaxgesteuerte Texteditoren unterstiitzen
die korrekte Erstellung von Code geméfl der formalen Syntax der zugrun-
deliegenden Programmiersprache. Bei einem solchen Editor wird bei der
Bearbeitung des Codes die abstrakte Syntax des Programms direkt mani-
puliert. Zur Darstellung des Programmtextes gegeniiber dem Benutzer wird
ein Unparser verwendet, der aus dem abstrakten Syntaxbaum die textuelle
Représentation des Codes erzeugt. Im Gegensatz dazu wird der Code in ei-
nem konventionellen Texteditor intern als eine Folge von Zeichen verwaltet,
die durch Benutzereingaben verdndert wird. Damit hat die Bearbeitung des
Programmtextes in einem konventionellen Editor keinen direkten Einfluss
auf den abstrakten Syntaxbaum.

Bei der Synchronisation mit TGGs ist es notwendig, dass die durch das
Korrespondenzmodell hergestellte Zuordnung zwischen Modell und Code er-
halten bleibt. Daher ist ein syntaxgesteuerter Texteditor zur Manipulation

110

4.1 Spezitikation von Modell-zu-Text Beziehungen

des Codes vorzuziehen. Syntaxgesteuerte Texteditoren sind jedoch immer
nur auf eine bestimmte Programmiersprache spezialisiert. Dariiber hinaus
legen sie dem Benutzer viele Restriktionen auf, so dass die Arbeit mit ihnen
gewohnungsbediirftig ist. Hinzu kommt, dass sie aufwéndiger zu implemen-
tieren sind. Aus diesen Griinden haben sich syntaxgesteuerte Texteditoren
in der Praxis nicht durchsetzen konnen — sie sind daher kaum verfiighar.

Im Gegensatz dazu existieren auf dem Markt sehr viele konventionelle Tex-
teditoren, die zumeist frei erhéltlich sind. Aufgrund der Tatsache, dass ein
konventioneller Texteditor sich nicht an einer bestimmten Syntax orientie-
ren muss, ist er wesentlich flexibler und universeller einsetzbar. Allerdings
miissen zur Synchronisation die Anderungen im Texteditor in den abstrakten
Syntaxbaum iibertragen werden. Hierzu kann, wie bereits beschrieben, ein
Parser eingesetzt werden. Um die Zuordnungen zum Modell nicht zu verlie-
ren und nur die tatséchlich von den Codeénderungen betroffenen Elemente
des abstrakten Syntaxbaums zu verdndern, darf der bestehende abstrakte
Syntaxbaum jedoch nicht einfach durch einen neuen abstrakten Syntaxbaum
ersetzt werden. Stattdessen muss der bestehende abstrakte Syntaxbaum ak-
tualisiert werden, das heifit, ein inkrementeller Parser wére hier von Vorteil.

Heutige Entwicklungsumgebungen kompilieren den Code bereits inkre-
mentell. FEinen inkrementellen Parser besitzen sie meistens jedoch nicht.
Bei der inkrementellen Kompilierung werden, nachdem der Code in einer
Datei verdndert wurde, die Abhéngigkeiten zu anderen Dateien untersucht.
Anschlieflend werden die verénderte Datei und die mit ihr in Beziehung ste-
henden Dateien neu kompiliert. Alle anderen Dateien bleiben unberiihrt. Bei
dieser Art der inkrementellen Kompilierung wird ein inkrementeller Parser
gar nicht benétigt. Dies mag auch der Grund sein, warum erste Arbei-
ten zum inkrementellen Parsen erst in den 80er Jahren aufgenommen und
veroffentlicht wurden [GM80]. Seitdem wurden verschiedene Losungen zum
inkrementellen Parsen vorgeschlagen, wie zum Beispiel in [WG98]. Praxis-
taugliche Parsergeneratoren, die inkrementell arbeitende Parser erzeugen,
gibt es zurzeit dennoch nicht.

Fiir batch-artig arbeitende Parser existieren hingegen sehr viele Parser-
generatoren, die zudem bereits mit fertigen Grammatiken fiir einige weit
verbreitete Programmiersprachen ausgeliefert werden. Um die damit er-
zeugten Parser bei der Synchronisation von Modell und Code nutzen zu
kénnen, miissen wir dafiir sorgen, dass der bestehende abstrakte Syntax-
baum beim wiederholten Parsen nicht immer wieder neu erzeugt wird, son-
dern die Anderungen in den bereits bestehenden abstrakten Syntaxbaum
inkrementell eingepflegt werden. Hierzu wird der Code zunéchst mit ei-

111

Kapitel 4 Spezifikationsvarianten

nem batch-artig arbeitenden Parser geparst (Schritt 4). AnschlieBend wird
der dabei neu erzeugte abstrakte Syntaxbaum mit dem bereits existierenden
abstrakten Syntaxbaum verglichen. Die ermittelten Unterschiede zwischen
den beiden Syntaxbdumen werden dazu verwendet, um den bereits existie-
renden abstrakten Syntaxbaum zu aktualisieren und dadurch an den neuen
abstrakten Syntaxbaum anzugleichen (Schritt 5). Nach der Aktualisierung
des abstrakten Syntaxbaums erfolgt eine Synchronisation mit dem Modell
(Schritt 6), so dass Code und Modell wieder miteinander abgeglichen sind.
Nach diesem Prinzip kann eine Synchronisation in beide Richtungen erfolgen.

Kombinierte Spezifikation

Falls eine bidirektionale Synchronisation zwischen einem Modell und dem
daraus generierten Code nicht benotigt wird, kann der Aufwand zur Spezifi-
kation der Modell-zu-Text Beziehungen reduziert werden, indem die TGGs
mit Textschablonen kombiniert werden. Durch den Einsatz der Textschablo-
nen muss kein feingranulares Metamodell zur Représentation der abstrakten
Syntax der zugrundeliegenden textuellen Sprache erstellt werden. Stattdes-
sen wird ein Metamodell verwendet, das in den meisten Féllen nicht ganz so
umfangreich ausféllt wie das Metamodell der textuellen Sprache. Dadurch
sinkt sowohl die Anzahl der zu spezifizierenden TGG-Regeln als auch die
Anzahl der in einer TGG-Regel zu spezifizierenden Objekte, was insgesamt
den Aufwand zur Realisierung einer Codegenerierung signifikant reduziert.

Beispielautomat Die kombinierte Spezifikation aus TGGs und Textscha-
blonen betrachten wir an einem Beispiel. Bei dem Beispiel handelt es
sich um die Codegenerierung fiir Speicherprogrammierbare Steuerungen
(SPSen), die bereits in Abschnitt 2.1 erwdhnt wurde. Hierbei wird die Steue-
rung der Hardwarekomponenten eines Fertigungssystems mit mehreren 1/0-
Automaten [LT89] modelliert. Aus den I/O-Automaten wird anschlieBend
SPS-Code generiert. Die Implementierung der I/O-Automaten erfolgt in der
Sprache Strukturierter Text (ST) [IEC03], wobei wir in unserem Beispiel
davon ausgehen, dass die generierte Implementierung der I/O-Automaten
vollstdndig und damit eine Nachbearbeitung des ST-Codes nicht notwendig
ist. Somit ist eine Synchronisation in nur eine Richtung ausreichend.
Abbildung 4.6 zeigt einen einfachen I/O-Automaten, der zur Beschreibung
der Steuerung eines Startaktors verwendet wird. In dem Materialflusssystem
des ISILEIT-Projekts (vergleiche Abschnitt 2.1) sorgt ein solcher Startaktor
in jeder der vier Station dafiir, dass Shuttles wieder gestartet werden kénnen.

112

4.1 Spezitikation von Modell-zu-Text Beziehungen

example /

start=true / extend:=true

shuttle=false / extend:=false

Abbildung 4.6: Beispielautomat in konkreter Syntax

Hierzu besitzt jeder Shuttle zwei Ndherungssensoren. Der erste Ndherungs-
sensor tastet die Schiene wiahrend der Fahrt ab und reagiert auf an den Schie-
nen angebrachte Steuernocken. Wird ein entsprechender Steuernocken vom
Néaherungssensor detektiert, so unterbricht der Shuttle die Stromversorgung
zu seinem Niederspannungsmotor und der Shuttle hélt an. Der zweite Néhe-
rungssensor reagiert hingegen auf einen an der Schiene montierten Start-
aktor. Dieser Startaktor fahrt zum Starten eines Shuttles mit Hilfe eines
pneumatischen Zylinders einen Metallnocken aus. Wird dieser Metallnocken
vom zweiten Naherungssensor detektiert, so wird die Stromversorgung zum
Niederspannungsmotor wieder hergestellt und der Shuttle gestartet. Da-
mit nachfolgende Shuttles nach dem Anhalten nicht sofort wieder gestartet
werden, muss der Metallnocken des Startaktors wieder eingefahren werden,
sobald ein gestarteter Shuttle die Station verlassen hat. Der I/O-Automat
aus Abbildung 4.6 beschreibt die Steuerung dieses Metallnockens.

In unserem Beispiel besteht der I/O-Automat aus den beiden Zustdnden
retracted und extended, die iiber zwei Transitionen miteinander verbun-
den sind. Der I/O-Automat befindet sich initial im Zustand retracted. In
diesem Zustand ist der Metallnocken des Startaktors eingefahren, so dass
vorbeifahrende Shuttles durch den ebenfalls an der Schiene angebrachten
Steuernocken zunéchst angehalten werden. Soll ein Shuttle wieder gestar-
tet werden, so sendet die Umgebung das Signal start. Liegt das Signal
vor (start=true), so wechselt der I/O-Automat vom Zustand retracted in
den Zustand extended. Wihrend dieses Zustandsiibergangs signalisiert der
I/O-Automat dem Startaktor, dass der Metallnocken ausgefahren werden
soll (extend:=true). Sobald der Shuttle die Station verlassen hat, wird der
[/O-Automat dartiber benachrichtigt (shuttle=false). Darauthin wech-
selt der I/O-Automat zuriick in den Zustand retracted. Wihrend dieses
Zustandsiibergangs wird der Metallnocken eingefahren (extend:=false), so
dass vorbeifahrende Shuttles angehalten werden.

113

Kapitel 4 Spezifikationsvarianten

:Action
expr="extend:=true”
actions
:Transition
outgoing | trigger="start=true* incoming
transitions
source target
inital
:State :Automaton states :State
states
name="retracted” name="example* name="extended"
target source
transitions
incoming ‘Transition outgoing

trigger="shuttle=false”

actions

:Action

expr="extend:=false"

Abbildung 4.7: Beispielautomat in abstrakter Syntax (Objektdiagramm)

Der 1/O-Automat in Abbildung 4.6 ist in seiner konkreten Syntax dar-
gestellt. Derselbe I/O-Automat ist in Abbildung 4.7 in seiner abstrakten
Syntax zu sehen. Diese beruht auf dem Metamodell fiir I/O-Automaten,
das im Anhang A abgebildet ist (siche Abbildung A.12, Seite 284). Zur Spe-
zifikation der Modell-zu-Text Beziehungen mit TGGs und Textschablonen
werden des Weiteren ein Metamodell zur Reprasentation der Textschablo-
nen sowie ein Metamodell fiir das Korrespondenzmodell beno6tigt. Auch diese
Metamodelle befinden sich im Anhang A (siehe Abbildungen A.13 und A.14,
Seiten 284 ff.). Auf Grundlage dieser Metamodelle werden die entsprechen-
den TGG-Regeln zur Codegenerierung spezifiziert.

Beispielregel In Abbildung 4.8 ist eine Beispielregel dargestellt.
Grundsétzlich unterscheidet sich die Beispielregel von den bisherigen
TGG-Regeln nur durch die zusétzlich vorhandenen Textschablonen. In
der TGG-Regel werden die Objekte der beteiligten Sprachen weiterhin
durch Korrespondenzobjekte zueinander in Beziehung gesetzt. Allerdings
haben wir bei der Spezifikation auf Attribute in den Korrespondenzobjekten
verzichtet und die Attributbedingungen zwischen den Objekten direkt
spezifiziert.

114

4.1 Spezitikation von Modell-zu-Text Beziehungen

:State :ST2SB :StateBlock
++ | source ++ | transitions
++ ++ ++
. ++ ++ .
Transition :-TR2TB :TransitionBlock
tr ++ ++
++ | target ++ header end
** [hd.trigger = +t
:State tr.triggerExpr | ng :TransitionHeader :TransitionEnd
te
st
TransitionHeader.tpl/ TransitionEnd.tpl /
++ IF %trigger THEN state := %target;
++ | te.target= ++ END_IF;
getlndexOf(st)

Abbildung 4.8: Beispiel fiir die Kombination einer TGG-Regel mit einer
Textschablone

Die Beispielregel beschreibt, welche ST-Codefragmente zu einer Transi-
tion des I/O-Automaten generiert werden sollen. Hierzu wird das Objekt
vom Typ Transition iiber das Korrespondenzobjekt vom Typ TR2TB zu
den drei Objekten vom Typ TransitionBlock, TransitionHeader und
TransitionEnd in Beziehung gesetzt. Den beiden Objekten vom Typ
TransitionHeader und TransitionEnd ist jeweils eine Textschablone zu-
geordnet. Die Textschablonen enthalten den zu generierenden ST-Code
sowie Platzhalter zur Parametrisierung der Textschablonen. Die Attribut-
bedingungen beschreiben den Zusammenhang zwischen den Attributwerten
der beiden Sprachen und werden letztendlich dazu verwendet, die Platz-
halter in den Textschablonen durch konkrete Werte aus dem Modell des
I/O-Automaten zu ersetzen.

In der hier gezeigten Beispielregel ist der ST-Code in der Textscha-
blone TransitionHeader.tpl fiir die Uberpriifung der Triggerbedingung
zustdandig. Die Textschablone TransitionEnd.tpl enthélt den ST-Code, um
nach einem Zustandsiibergang den aktuellen Zustand des I/O-Automaten,
der in der Variablen state gespeichert wird, zu aktualisieren. Zusétz-
lich wird in der Textschablone die bedingte Anweisung aus der vorheri-
gen Textschablone abgeschlossen. Um eine vollstdndige Implementierung
des hier vorgestellten 1/O-Automaten generieren zu kénnen, werden weitere
TGG-Regeln benotigt. Die zusétzlichen TGG-Regeln befinden sich im An-
hang A (siehe Seite 275 ff.).

115

Kapitel 4 Spezifikationsvarianten

1 {2hH
FUNCTION_BLOCK example
:CompilationUnit
VAR
state : INT = 0;
i2) (3 :
:FunctionHeader I END_VAR
name = ,example runctonend
index = ,0° BEGIN
13] CASE state OF

’ :StateBlock |

name = retracted”

{3
0 (* retracted *) :

index =,0" {5
14 8 | IF start=true THEN]—|

{8l
. :StateBlock {6
TransitionBlock mame = extonded” | extend := true;
index = ,1" 17
state := 1;
A5} A7l 19k END_IF;
TransitionHeader TransitionEnd =
:TransitionBlock {8
trigger = ,start=true” target = 1 | 1 (* extended *) :

P H10] [12L | || IF shuttle=false THEN [10]_|
:ActionExpression TransitionHeader :TransitionEnd P
expr = extend:=true” trigger = ,shuttle=false” target = ,0° | extend := false; h]—I

{12
1 1]_|— state := 0; 112h
:ActionExpression END_IF;
expr = ,extend:=false" END CASE. {13
END_F_UNCTION_BLOCK

Abbildung 4.9: Ergebnis der Ubersetzung in Strukturierten Text

Ausfithrung Auf der Grundlage dieser TGG-Regeln und der dazugehorigen
Textschablonen wird die Codegenerierung in zwei Schritten durchgefiihrt.
Zunichst wird der I/O-Automat aus Abbildung 4.7 in die Représentation
fiir Textschablonen — wie bereits in Abschnitt 3.3.1 beschrieben — iibersetzt.
Dabei werden auch die Attributbedingungen beriicksichtigt. Der dabei ent-
standene abstrakte Syntaxbaum ist in der linken Hélfte der Abbildung 4.9
dargestellt (gelb unterlegter Bereich). AnschlieBend wird der Syntaxbaum
in preorder traversiert. Dabei wird die dem besuchten Objekt zugeordnete
Textschablone instanziiert und die darin enthaltenen Platzhalter durch die
Attributwerte aus dem besuchten Objekt ersetzt. Der durch die Instanziie-
rung der Textschablonen entstandene ST-Code wird in dieser Reihenfolge an-
einandergehéngt und ergibt die Implementierung des I/O-Automaten. Das
Ergebnis dieses Schrittes ist in der rechten Hélfte der Abbildung 4.9 zu sehen
(griin unterlegter Bereich).

Die Zahlen an den Objekten sowie den instanziierten Textschablonen sind
in der Abbildung 4.9 lediglich aus Préasentationsgriinden aufgefiihrt. Sie ge-

116

4.1 Spezitikation von Modell-zu-Text Beziehungen

ben einerseits die Traversierungsreihenfolge im abstrakten Syntaxbaum wie-
der. Andererseits setzen sie die Objekte des abstrakten Syntaxbaums zu den
instanziierten Textschablonen in Beziehung. Fiir diejenigen Objekte, denen
keine Textschablone in der dazugehorigen TGG-Regel zugeordnet wurde,
wird auch keine Textschablone instanziiert (vergleiche Wurzelobjekt vom
Typ CompilationUnit und TGG-Regel in Abbildung A.15, Seite 286). Dies
erklart auch die liickenhafte Nummerierung der instanziierten Textschablo-
nen in der rechten Hélfte der Abbildung 4.9.

4.1.3 Gegeniiberstellung

Die Codegenerierung auf der Grundlage einer Spezifikation von Modell-zu-
Text Beziehungen mit TGGs und Textschablonen bietet gegeniiber ande-
ren Ansétzen zur Codegenerierung (vergleiche Abschnitt 4.1.1) sowohl einige
Vorteile als auch einen Nachteil.

Gegeniiber der Codegenerierung durch direkte Programmierung und der
Codegenerierung mit Textschablonen hat der Einsatz von TGGs den Vor-
teil, dass die Zuordnung zwischen den Modellartefakten und dem aus ihnen
generierten Code formal spezifiziert ist. Diese Formalisierung kann beispiels-
weise herangezogen werden, um die Codegenerierung formal zu verifizieren
(vergleiche Kapitel 6). Zudem ist die Zuordnung zwischen Modellelementen
und den dazugehorigen Codefragmenten leichter nachvollziehbar. Gleichzei-
tig wird diese Zuordnung bei der Codegenerierung im Korrespondenzmodell
gespeichert, so dass die Nachverfolgbarkeit auch nach der Codegenerierung
sichergestellt ist. Dieser Mechanismus muss nicht erst aufwéndig program-
miert oder zusétzlich spezifiziert werden — er ist bereits im Formalismus der
TGGs verankert und kann damit automatisch bereitgestellt werden.

Ein weiterer Vorteil wird deutlich, wenn man eine Codegenerierung mit
Textschablonen betrachtet, die ohne TGGs spezifiziert wurde (vergleiche Ab-
schnitt 4.1.1). Diese Textschablonen enthalten neben dem zu generierenden
Code zusitzliche Anweisungen, die der Steuerung der Codegenerierung und
der Abfrage von Modelleigenschaften dienen. Diese Anweisungen sind mit
dem zu generierenden Code vermischt und machen diese Textschablonen
schwer lesbar. Im Gegensatz dazu enthalten die Textschablonen im kom-
binierten Ansatz keine Anweisungen zur Steuerung der Codegenerierung.
Die Codegenerierung wird im kombinierten Ansatz implizit durch die TGG-
Regeln gesteuert. Die Textschablonen enthalten nur noch das Codegeriist
mit dazugehorigen Platzhaltern. Dadurch sind die Textschablonen aus dem
kombinierten Ansatz leichter lesbar.

117

Kapitel 4 Spezifikationsvarianten

Ein allgemeiner und nicht zu unterschéitzender Vorteil beim Einsatz von
TGGs ist, dass sowohl die Spezifikation von Modell-zu-Modell als auch die
Spezifikation von Modell-zu-Text Beziehungen auf der Grundlage eines ein-
zigen Formalismus erfolgt. Auch wenn die Spezifikation der Modell-zu-Text
Beziehungen im kombinierten Ansatz um Textschablonen erweitert ist, so ist
die Notation zum grofiten Teil bereits bekannt und muss nicht grundlegend
neu erlernt werden.

Gegeniiber der Spezifikation mit TGGs ohne Textschablonen hat der kom-
binierte Ansatz aus TGGs und Textschablonen den Vorteil, dass nur ein Me-
tamodell zur Repréasentation der Textschablonen spezifiziert werden muss.
Dieses Metamodell ist nicht so umfangreich wie ein vollstdndiges Metamo-
dell einer Programmiersprache. Damit sinkt auch der Spezifikationsaufwand.
Zusétzlich wird der zu generierende Code in den Textschablonen — bis auf
die zur Parametrisierung benétigten Platzhalter — in seiner konkreten Syn-
tax angegeben. Dies ist deutlich einfacher, als den zu generierenden Code in
seiner abstrakten Darstellung zu spezifizieren.

Ein Nachteil des kombinierten Ansatzes gegeniiber der Spezifikation mit
TGGs ohne Textschablonen besteht jedoch darin, dass die Synchronisation
nur in eine Richtung ausgefiihrt werden kann. Damit kénnen Anderungen
im Code nicht an das Modell weitergegeben werden, um das Modell an den
gednderten Code anzupassen. Dieser Nachteil ist jedoch bei der direkten
Programmierung und bei der Codegenerierung mit Textschablonen ebenfalls
vorhanden (vergleiche Abschnitt 4.1.1). Fiir eine Synchronisation in beide
Richtungen ist keiner dieser Ansétze geeignet. Falls eine bidirektionale Syn-
chronisation benotigt wird, miissen die TGG-Regeln ohne Textschablonen
auf der Grundlage eines feingranularen Metamodells der Programmierspra-
che — wie in Abschnitt 4.1.2 beschrieben — spezifiziert werden. Um den damit
verbundenen Aufwand zu reduzieren, kann der nachfolgend beschriebene An-
satz zur Spezifikation durch Beispielzuordnungen eingesetzt werden.

4.2 Spezifikation durch Beispielzuordnungen

Bisher wurden Korrespondenzbeziehungen zwischen zwei Modellen in der
abstrakten Syntax spezifiziert, die durch die Metamodelle der beteiligten
Modellierungssprachen definiert werden. Metamodelle sind allerdings nicht
immer so einfach wie in unserem Beispiel der vorangegangenen Kapitel. In
den meisten Fillen sind Metamodelle recht grofl und enthalten viele Kon-
zepte, die nur schwer zu ihrer konkreten Représentation in der Modellie-

118

4.2 Spezifikation durch Beispielzuordnungen

rungssprache zugeordnet werden konnen. FEin gutes Beispiel hierfiir stellt
die Unified Modelling Language(UML) [UMLO5] dar, in der die Metaklasse
Property sowohl zur Représentation von Attributen als auch zur Représen-
tation von Assoziationsenden herangezogen wird. Die Semantik und die
graphische Darstellung hangen somit vom Kontext ab, in dem eine Instanz
dieser Metaklasse verwendet wird. Insbesondere in solchen Fiéllen kann eine
auf Metamodellen basierende Spezifikation der Korrespondenzbeziehungen
kompliziert werden.

Um die Spezifikation der Korrespondenzbeziehungen zu vereinfachen, stel-
len wir in diesem Abschnitt einen Ansatz vor, in dem die Korrespondenz-
beziehungen durch Zuordnungen von Beispielen vorgenommen werden. Die
Beispiele werden dabei in der konkreten Syntax der Modelle angegeben. Han-
delt es sich dabei um eine visuelle Modellierungssprache, so entspricht die
konkrete Syntax der graphischen Darstellung dieser Modellierungssprache.
Bei einer textuellen Sprache wird die konkrete Syntax hingegen durch Text
repréasentiert. In beiden Fillen ist die konkrete Syntax meistens geldufiger
als die zugrundeliegende abstrakte Syntax der Sprachen. Dadurch ist es we-
sentlich einfacher, die Korrespondenzbeziehungen mit Beispielen in der kon-
kreten Syntax der Sprachen zu spezifizieren. Aus diesen Beispielen kénnen
anschlieBend TGG-Regeln automatisch synthetisiert werden. Die Spezifika-
tion kann somit deutlich komfortabler durchgefiithrt werden.

Im folgenden Abschnitt prisentieren wir die grundlegende Idee und das
Losungsprinzip, welches im Rahmen der Diplomarbeit von Alexander Ge-
burzi umgesetzt wurde [Geb06]. Anschlieflend stellen wir informell den Al-
gorithmus zur Regelsynthese an einem Beispiel vor. Danach gehen wir auf
notwendige Erweiterungen des Regelsynthesealgorithmus ein, damit die im
vorangegangenen Kapitel eingefithrten Konzepte fiir Attribute, Bedingun-
gen und wiederverwendbare Objekte behandelt werden konnen. Wir schlie-
Ben diesen Abschnitt mit einigen Betrachtungen und Empfehlungen fiir den
Einsatz dieser Methode in der Praxis.

4.2.1 Idee und Losungsprinzip

Die zugrundeliegende Idee unseres Ansatzes besteht darin, dass der Benutzer
die Korrespondenzbezichungen zwischen zwei Modellen spezifiziert, indem
er eine Menge von Beispielzuordnungen angibt. Eine Beispielzuordnung be-
steht aus zwei zueinander korrespondieren Modellen. Uber die Zuordnung
der Modelle wird die semantische Beziehung beziehungsweise Korrespondenz
zwischen diesen beiden Modellen ausgedriickt.

119

Kapitel 4 Spezifikationsvarianten

Abbildung 4.10 zeigt eine Beispielzuordnung, die eine Korrespondenz zwi-
schen einem Blockdiagramm und einem Klassendiagramm definiert. Die Bei-
spielzuordnung wird in der konkreten Syntax der beteiligten Modellierungs-
sprachen angegeben. In diesem Sinne haben wir bereits einige Beispielzu-
ordnungen auch in Abbildung 2.4 gezeigt.

set of example pairs

System ProSys <<system>>
ProSys
Block Station T
Block Interlock
<<block>>
Station
cl
Block Stopper T T
<<block>> ct <<block>>
Interlock Stopper

automatic rule
synthesis

set of synthesised rules

:ClassDiagram

elements
:Block r :CorrNode
++
—+ src -+ source
:Connection I. rt :CorrNode s \l
++ ++
tgt target
:Block |’ :CorrNode ‘l :Class

Abbildung 4.10: Uberblick zur Spezifikation mit Beispielzuordnungen
Um die so spezifizierten Beispielzuordnungen fiir die noch spéter vorzustel-

lende Modellsynchronisation nutzen zu kénnen, werden daraus automatisch
TGG-Regeln synthetisiert. Dies wird erreicht, indem die Beispielzuordnun-

120

4.2 Spezifikation durch Beispielzuordnungen

gen analysiert und die Unterschiede zwischen den gegebenen Beispielzuord-
nungen identifiziert werden. Diese Unterschiede werden anschliefend ge-
nutzt, um daraus entsprechende TGG-Regeln zu konstruieren. Fiir diese
Art der Regelsynthese werden daher mindestens zwei Beispielzuordnungen
benotigt, die sowohl einige Gemeinsamkeiten als auch Unterschiede in den
darin enthaltenen Konzepten aufweisen. Auch wenn bei diesem Ansatz einige
Einschrankungen und Anforderungen beachtet werden miissen, so bietet die-
ser Ansatz aus Sicht des Benutzers den Vorteil, dass detaillierte Kenntnisse
iiber den Aufbau der abstrakten Syntax der Modelle nicht nétig sind.

Fiir die automatische Regelsynthese miissen die Beispielzuordnungen in
einen gemeinsamen TGG-Formalismus iibersetzt werden. In Abbildung 4.11
ist eine solche Ubersetzung zu sehen. Die Beispielzuordnung setzt ein lee-
res System zu einer Klasse in Beziehung, die mit dem Stereotyp <system>>
gekennzeichnet ist. Die Ubersetzung dieser Beispielzuordnung beruht auf
der Tatsache, dass jedes Modell in konkreter Syntax auch eine abstrakte
Syntax besitzt, die auf einem dazugehorigen Metamodell basiert. In einem
Modellierungswerkzeug wird durch die Editieroperationen des Benutzers im
Hintergrund die Repréasentation des Modells in abstrakte Syntax aufgebaut.
Tatséchlich ist es sogar so, dass in einem Werkzeug die graphische Représen-
tation eines Modells auf Grundlage seiner abstrakten Syntax erzeugt wird.

Diese Tatsache kann ausgenutzt werden, um beide Modelle in den gemein-
samen TGG-Formalismus zu {ibersetzen. In Abbildung 4.11 werden zum
Beispiel die Objekte ClassDiagram, Class und Stereotype in Objekte des
Typs TGGObject iibersetzt. Der Typ eines Objekts wird als Attributwert des
Objekts TGGObject hinterlegt. Die Links zwischen den Objekten werden in
Objekte des Typs TGGLink iibersetzt. Auch hier wird der Typ der zugrun-
deliegenden Assoziation als Attributwert dieser Objekte gespeichert. In der
vorliegenden Implementierung erfolgt die Ubersetzung mit einer fest defi-
nierten Modelltransformation, die ebenfalls auf TGGs basiert. Allerdings
hat sich gezeigt, dass die Ubersetzungsregeln sehr allgemein sind, so dass
alternativ eine generische Ubersetzung ebenfalls moglich ist [Geb06].

Vergleicht man in Abbildung 4.11 die graphische Reprisentation einer
TGG-Regel mit der graphischen Reprisentation der abstrakten Syntax ei-
nes Modells, so stellt man fest, dass beide Repréisentationen sehr dhnlich
zueinander sind. Zwischen beiden Représentationen existiert jedoch ein
fundamentaler Unterschied. Beispielsweise kann im TGG-Formalismus ein
TGGObject der linken und der rechten Regelseite oder nur der rechten Regel-
seite zugewiesen werden. Wird das Objekt nur der rechten Seite zugewiesen,
wird es mit ++ annotiert. Auflerdem kénnen im TGG-Formalismus die Ob-

121

Kapitel 4 Spezifikationsvarianten

Abbildung 4.11: Beispielzuordnung 1 (inklusive der Ubersetzung in den

122

£
23
3 C
53 System ProSys
S = <<system>>
o~
Q C
» O
29
m
£ :ClassDiagram
28
2 E- elements
- n
N X
o8
2‘ E stereotypes
o ©
@ :Stereotype
translation translation
:TGGObject
type="“ClassDiagram“
:TGGLink
o X type="elements"”
S8
EiE! |
2 @ TGGObject -
€35 abject :-TGGObject
U‘O: © type="System* type=“Class"
o2 |
O ®
e :TGGLink
type="stereotypes"”
:TGGObject
type="Stereotype*
++
o % :ClassDiagram
28
£ c
B >
s 2 =
EQ
5 0
L 2
8 o stereotypes | ++
[

++
e

:Stereotyp

TGG-Formalismus)

4.2 Spezifikation durch Beispielzuordnungen

jekte verschiedenen Doménen zugeordnet werden. Nach der Ubersetzung der
Beispielzuordnungen wird die Regelsynthese auf der abstrakten Syntax des
TGG-Formalismus durchgefiihrt.

Nachdem wir vorgestellt haben, wie die Beispielzuordnungen in einen ge-
meinsamen TGG-Formalismus {iberfiihrt werden, stellen wir den grundlegen-
den Algorithmus der Regelsynthese an einem Beispiel vor. Aus didaktischen
Griinden werden wir hierzu aber nicht die abstrakte Syntax, sondern die ein-
fachere und benutzerfreundlichere, konkrete Syntax des TGG-Formalismus
verwenden.

4.2.2 Regelsynthese

Um den grundlegenden Algorithmus der Regelsynthese zu erklidren, starten
wir mit einer leeren Menge von Beispielzuordnungen und erweitern diese
Menge Schritt fiir Schritt. Auch wenn wir hier aus Présentationsgriinden so
vorgehen, ist — wie wir spéter noch sehen werden — die Regelsynthese auch
in der Lage, eine gegebene Menge von Beispielzuordnungen auf einmal zu
verarbeiten. Der hier vorgestellte iterative Prozess ist keine Voraussetzung
fiir die Regelsynthese — auch wenn er dem Benutzer erlaubt, inkrementell
vorzugehen und fiir ihn dadurch sehr komfortabel ist. Wir veranschaulichen
den Algorithmus zur Regelsynthese mithilfe des bereits bekannten Beispiels
und beginnen mit einer sehr einfachen Beispielzuordnung.

Beispielzuordnung 1

Die erste Beispielzuordnung besteht aus einem leeren System und einer
Klasse mit dem Stereotyp <system>>. Diese Zuordnung wurde bereits in
Abbildung 4.11 gezeigt. In einem ersten Schritt wird diese Beispielzuordnung
in den gemeinsamen TGG-Formalismus iiberfithrt. Entsprechend den Meta-
modellen wird ein System durch ein Objekt des Typs System représentiert.
Eine Klasse wird hingegen durch ein Objekt des Typs Class dargestellt und
durch ein Objekt des Typs ClassDiagram iiber den Link elements referen-
ziert. Die Kennzeichnung einer Klasse mit einem Stereotyp erfolgt durch ein
Objekt des Typs Stereotype, welches iiber den Link stereotypes an diese
Klasse gehingt wird (vergleiche dazu die Abbildungen 3.1 und 3.2 auf den
Seiten 57 und 58). Wihrend der Ubersetzung in den TGG-Formalismus wer-
den die Objekte den zugehorigen Doménen zugeordnet. Zusétzlich werden
alle Objekte und Links mit +4 gekennzeichnet, das heifit, alle Objekte und
Links werden der rechten Regelseite einer TGG-Regel zugeordnet.

123

Kapitel 4 Spezifikationsvarianten

Nach der Ubersetzung der Beispielzuordnung in den gemeinsamen TGG-
Formalismus wird iiberpriift, ob bereits synthetisierte Regeln existieren, die
auf diese Struktur angewendet werden kénnen. Aufgrund der Tatsache, dass
es sich hierbei um unsere erste Beispielzuordnung handelt, miissen keine
weiteren TGG-Regeln betrachtet werden. Daher wird einfach nur ein Kor-
respondenzobjekt vom Typ CorrNode zwischen den extrahierten Objekten
der beiden Doménen eingefiigt. In Abbildung 4.12 ist das Ergebnis der Re-
gelsynthese aus der ersten Beispielzuordnung zu sehen.

++

:ClassDiagram

elements | ++

++ ++ ++
:System ||(S :CorrNode

stereotypes | ++

++ ++

:Stereotype

Abbildung 4.12: Synthese des Axioms

Im Augenblick befinden sich alle Objekte und Links nur auf der rechten
Regelseite der synthetisierten TGG-Regel. Die linke Regelseite ist noch leer.
Daher entspricht die synthetisierte Regel noch nicht der Struktur, die wir fiir
TGG-Regeln kennen gelernt haben. Fiir die weitere Verarbeitung werden
wir diese Regel so lassen wie sie ist. Am Ende der Regelsynthese werden
allerdings die ++ Markierungen entfernt, das heifit, die Objekte und Links
werden auch der linken Regelseite zugeordnet. Dadurch erhalten wir das
bereits in Abbildung 3.9 vorgestellte Axiom. Dieser Schritt wird ausgefiihrt,
da unsere Beispielzuordnung nur ein Korrespondenzobjekt enthélt und damit
zwangslaufig nur ein Axiom darstellen kann.

Beispielzuordnung 2

Wir setzen die Regelsynthese fort, indem wir eine zweite Beispielzuordnung
erstellen. Die zweite Beispielzuordnung beschreibt, wie ein Block innerhalb
eines Systems auf Elemente eines Klassendiagramms abgebildet wird. Die
Zuordnung ist in der oberen Hélfte der Abbildung 4.13 zu sehen. Die Regel-
synthese startet wiederum mit der Ubersetzung der gegebenen Beispielzuord-
nung in den gemeinsamen TGG-Formalismus. Das Ergebnis der Ubersetzung
ist in der unteren Hélfte der Abbildung 4.13 dargestellt. Die so erhaltene
Struktur ist Grundlage der nachfolgenden Schritte.

124

4.2 Spezitikation durch Beispielzuordnungen

i3 <<system>>
o3 System ProSys ProSys

]
3 c
§6
S 5 Block Station
e
QL
% _‘i’ <<block>>
[.
2 Station

translation translation
++
:ClassDiagram
++
:System

x
23
ETE
23
TEu s

[5]
5

X
8‘ é children | ++
it~ \ "

++ elements

++
elements

stereotypes | ++ ++
e

:Stereotyp

Abbildung 4.13: Beispielzuordnung 2

125

Kapitel 4 Spezifikationsvarianten

Der Synthesealgorithmus iiberpriift nun, ob eine Regel existiert, die auf
die aus der Beispielzuordnung extrahierte Struktur angewendet werden kann.
In unserem Fall existiert bisher nur die Regel aus Abbildung 4.12. Daher
versucht die Regelsynthese die Objekte dieser Regel mit den Objekten der
neuen Struktur zu matchen. Aufgrund der Tatsache, dass das Korrespon-
denzobjekt der Regel noch mit +4 gekennzeichnet ist, wird es bei diesem
Matching nicht beriicksichtig. Ein giiltiges Matching ist in der oberen Hélfte
der Abbildung 4.14 zu sehen.

++
source

++

++ ++

++
elements

++
elements

stereotypes | ++

++
:Stereotype

:ClassDiagram
elements
:System r :CorrNode
stereotypes
++
:Stereotype soutce
++
children | ++ :Composition
++
elements
++ target | ++ T+
++
Block elements

stereotypes | ++

++
:Stereotype

Abbildung 4.14: Regelsynthese aus Beispielzuordnung 2 — Schritte 1 und 2

Aufgrund dieses Matchings werden die iibereinstimmenden Objekte der
Beispielzuordnung auch der linken Regelseite der neuen TGG-Regel zuge-
ordnet, das heifit, die Markierung mit ++ wird entfernt. Zusétzlich wird

126

4.2 Spezifikation durch Beispielzuordnungen

das fehlende aber durch die vorher synthetisierte Regel geforderte Korres-
pondenzobjekt hinzugefiigt. Da das hinzugefiigte Korrespondenzobjekt nun
Objekte verbindet, die sich sowohl auf der linken als auch auf der rechten
Seite der TGG-Regel befinden, wird dieses Objekt auf beiden Seiten der Re-
gel hinzugefiigt. Das Ergebnis dieses Schrittes ist in der unteren Hilfte der
Abbildung 4.14 zu sehen.

Bei der Synthese wird versucht, eine Regel moglichst haufig anzuwenden.
In unserem Beispiel kann die bereits synthetisierte Regel aus Abbildung 4.12
aber nur einmal auf die extrahierte Struktur angewendet werden. Daher
wird der Synthesealgorithmus fortgesetzt. Aufgrund der Tatsache, dass bis-
her allerdings nur eine einzige Regel existiert und diese bereits angewendet
wurde, miissen keine weiteren Regeln iiberpriift werden.

:ClassDiagram
elements
:System I\ :CorrNode
ce
children | ++
elements
++
++
-Block elements
stereotypes | ++ ++
:Stereotype
:System f :CorrNode
source | ++ ++
children | ++ :Composition
T+ T+ target | ++ T+
L ++]
:Block :CorrNode s
elements
stereotypes | ++
++ L
T
:

Abbildung 4.15: Regelsynthese aus Beispielzuordnung 2 — Schritte 3 und 4

Die bisher synthetisierte Regelstruktur enthélt noch ein Objekt vom Typ
Stereotype, welches in der Abbildung 4.15 mit einem x gekennzeichnet ist.

127

Kapitel 4 Spezifikationsvarianten

Die Anwesenheit dieses zusétzlichen Objekts wirkt sich fiir die Anwendbar-
keit der TGG-Regel nicht weiter stérend aus, da aufgrund des angewendeten
Axioms sichergestellt ist, dass ein solches Objekt tatséchlich auch vorhanden
ist. Damit ist das Objekt aber auch redundant, das heifit, es kénnte genauso
gut auch weggelassen werden. Bei der spateren Ausfithrung der TGG-Regeln
héngt die Ausfiihrungsgeschwindigkeit insbesondere von der Anzahl der in
einer Regel enthaltenen Objekte und Links ab, da diese iiberpriift und ge-
bunden werden miissen. Daher ist es sinnvoll, redundante Objekte zu elimi-
nieren. Solche Objekte konnen daran erkannt werden, dass sie keine Links
zu neu erzeugten, das heifit, mit ++ markierten, Objekten haben. Der Syn-
thesealgorithmus 16scht daher solche Objekte und die dazu inzidenten Links
aus der synthetisierten TGG-Regel.

Im letzten Schritt wird nun ein neues Korrespondenzobjekt erzeugt und
zu unserer Struktur hinzugefiigt. Dieses Korrespondenzobjekt verbindet alle
verbliebenen Objekte, die noch mit ++ markiert sind. Daher wird dieses
Korrespondenzobjekt ebenfalls mit ++ markiert. Die daraus resultierende,
finale TGG-Regel ist in der unteren Hélfte der Abbildung 4.15 dargestellt.

Beispielzuordnung 3

Bisher haben wir durch die Beispielzuordnung definiert, wie ein System und
ein Block innerhalb dieses Systems auf Elemente eines Klassendiagramms ab-
gebildet werden. Diese beiden Fille werden durch die synthetisierten TGG-
Regeln bereits abgedeckt. Allerdings fehlt noch eine Regel, die einen Block,
der innerhalb eines anderen Blocks enthalten ist, zu Elementen eines Klas-
sendiagramms zuordnet. Daher setzen wir die Regelsynthese fort, indem wir
eine weitere Beispielzuordnung angeben, die genau diesen Fall abdeckt. In
der oberen Halfte der Abbildung 4.16 ist unsere dritte Beispielzuordnung dar-
gestellt. Die Beispielzuordnung wird ebenfalls fiir die Regelsynthese vorbe-
reitet, indem sie in den gemeinsamen TGG-Formalismus iibersetzt wird. Die
iibersetzte Beispielzuordnung ist in der unteren Héalfte der Abbildung 4.16
zu sehen.

Der Regelsynthesealgorithmus iiberpriift nun wieder, ob bereits synthe-
tisierte Regeln auf die neue Beispielzuordnung anwendbar sind. Aufgrund
der Tatsache, dass die neue Beispielzuordnung nur aus Objekten und Links
besteht, die mit ++ markiert sind, kann im Augenblick nur die Regel aus
Abbildung 4.12 angewendet werden. Abbildung 4.17 illustriert die Anwen-
dung dieser Regel durch die gestrichelt dargestellten Objekte und Links. Die
++4 Markierung der gebundenen Objekte und Links wird entfernt und das

128

4.2 Spezitikation durch Beispielzuordnungen

Beispielzuordnung in konkreter Syntax

System ProSys

Block Station

Block Interlock

<<system>>

ProSys

!

<<block>>
Station

!

<<block>>
Interlock

translation

translation

TGG-Formalismus

in konkreter Syntax

++

:System

children | ++

++

e

children | ++

++

++

et

. it

:ClassDiagram | "
++

++
:Composition
++ i

stereotypes | ++ 4
e

:Stereotyp

Abbildung 4.16: Beispielzuordnung 3

129

Kapitel 4 Spezifikationsvarianten

:CorrNode

children | ++

target | ++

++
:Block
stereotypes source
:Stereotype
children | ++
++
:Composition
++ target | ++

:Block

stereotypes

++
elements

:ClassDiagram

elements

:CorrNode

:System I\

stereotypes source

target | ++

children | ++

++

e

children | ++

stereotypes source

target | ++

++

stereotypes

Abbildung 4.17: Regelsynthese aus Beispielzuordnung 3 — Schritte 1 und 2

130

4.2 Spezitikation durch Beispielzuordnungen

T
stereotypes | source

:Stereotype

children |i++ :Composition

______________ B
++ H ++
:CorrNode
LS

children | ++

++
:Block

stereotypes | ++

++
:Stereotype

++

:CorrNode

:System
m—

stereotypes | source

:Stereotype

target

children

:Block
=

:CorrNode

T+
source

stereotypes

:Stereotype

++
children | ++
:Composition
4 target | ++ ++
:Block

stereotypes | ++

++
:Stereotype

Abbildung 4.18: Regelsynthese aus Beispielzuordnung 3 — Schritte 3 und 4

131

Kapitel 4 Spezifikationsvarianten

++
elements

:ClassDiagram

elements
:System r :CorrNode
children
:Block I\I’ :CorrNode

children | ++

++
:Block
:Block f :CorrNode
++
children
++
elements
++ ++
:Block k A :CorrNode

stereotypes

:Stereotype

Abbildung 4.19: Regelsynthese aus Beispielzuordnung 3 — Schritte 5 und 6

132

4.2 Spezifikation durch Beispielzuordnungen

fehlende Korrespondenzobjekt zwischen diesen Objekten eingefiigt. Die aus
dieser Regelanwendung entstandene Struktur ist in Abbildung 4.17 zu sehen.

Die vorliegende Struktur besitzt nun einige Objekte und Links mit und
ohne ++ Markierungen. Daher kann nun auch die synthetisierte TGG-Regel
aus Abbildung 4.15 angewendet werden. In Abbildung 4.18 ist die Regelan-
wendung und das daraus hervorgegangene neue Korrespondenzobjekt zu se-
hen. Die +4 Markierungen der gebundenen Objekte und Links — sofern sie
vorhanden waren — wurden entfernt.

Aufgrund der durchgefiithrten Regelanwendung sind nur einige wenige mit
++ markierte Objekte und Links iibrig geblieben. Da nun keine weiteren
bereits synthetisierten Regeln auf diese Objekte angewendet werden konnen,
werden die Objekte iiber ein neu hinzugefiigtes Korrespondenzobjekt mit-
einander in Beziehung gesetzt. Auch hier wird wieder das neue Korrespon-
denzobjekt mit ++ markiert, da es nur Objekte mit einer ++ Markierung
miteinander verbindet und dies der Struktur von TGG-Regeln entspricht.

Die synthetisierte TGG-Regel entspricht bereits der Struktur von TGG-
Regeln. Allerdings sind hier — wie schon im vorherigen Fall — einige Objekte
vorhanden, die nicht direkt mit den mit ++ markierten Objekten verbunden
sind. Diese Objekte wurden in Abbildung 4.19 mit einem x gekennzeichnet.

Alle mit einem x markierten Objekte und die dazu inzidenten Links werden
aus der synthetisierten TGG-Regel entfernt. Dies betrifft auch alle Korres-
pondenzobjekte, die keine oder nur Links zu einer einzigen Doméne besitzen.
In unserem Beispiel betrifft dies das mit x gekennzeichnete Korrespondenz-
objekt, da nach dem Loschen des Objektes vom Typ System dieses Korres-
pondenzobjekt nur noch Links zu Elementen des Klassendiagramms besitzt.
Daher wird es ebenfalls geloscht. Die endgiiltige TGG-Regel ist in Abbil-
dung 4.19 dargestellt.

Beispielzuordnung 4

Bisher waren die Beispielzuordnungen relativ einfach gehalten. Sie haben ei-
nige wenige Elemente eines Blockdiagramms zu Elementen eines Klassendia-
gramms in Beziehung gesetzt. Im Folgenden schauen wir uns eine etwas kom-
plexere Beispielzuordnung an, die in der oberen Hélfte der Abbildung 4.20 zu
sehen ist. Diese Beispielzuordnung zeigt auf der linken Seite zwei Blocke, die
innerhalb eines Systems angeordnet und iiber einen Kanal miteinander ver-
bunden sind. Die korrespondierenden Elemente im Klassendiagramm sind
auf der rechten Seite der Abbildung 4.20 zu sehen.

Wie in den vorangegangenen Beispielzuordnungen wird auch diese Bei-

133

Kapitel 4 Spezifikationsvarianten

Beispielzuordnung in konkreter
Syntax

System ProSys

Block Station

Block Robot

]
==

<<system>>

ProSys

<<block>>
Station

c <<block>>

Robot

translation

translation

++
children

TGG-Formalismus
in konkreter Syntax

:System

++
children

:Block
++
:Connection

Ul

+
stereotypes | source

source

++

++
elements

:ClassDiagram

target | ++

++
++
+ ++ source

++
:Stereotype

++
+

++

target +:

++
stereotypes

:Stereotype

:Association |
|

—

| ++

target

:Composition

++
stereotypes

:Stereotype

134

Abbildung 4.20: Beispielzuordnung 4

4.2 Spezifikation durch Beispielzuordnungen

spielzuordnung zunéchst in den TGG-Formalismus iibersetzt. Die aus der
Ubersetzung resultierende Struktur ist in der unteren Hilfte der Abbil-
dung 4.20 dargestellt. Hierbei ist zu erkennen, dass der Kanal, der in der gra-
phischen Syntax als eine einfache Linie zwischen den beteiligten Blocken dar-
gestellt wurde, nun durch ein eigenstindiges Objekt vom Typ Connection
mit dazugehorigen Links zu den beiden Objekten des Typs Block reprisen-
tiert wird. Entsprechend wird auch die Assoziation zwischen den beiden
Klassen als ein eigensténdiges Objekt vom Typ Association représentiert.

Die Regelsynthese verlduft nun nach dem bereits aus den anderen Bei-
spielzuordnungen bekannten Schema. Zunéchst wird die erste Regel, das
heifit, das Axiom aus Abbildung 4.12, angewendet. Die Anwendung und das
Ergebnis sind in der Abbildung 4.21 zu sehen.

Nach diesem Syntheseschritt iiberpriift die Regelsynthese, ob die zuvor
synthetisierte Regel aus Abbildung 4.15 angewendet werden kann. Im Ge-
gensatz zu den zuvor vorgestellten Beispielzuordnungen kann diese Regel
sogar zwei Mal auf die vorliegende Struktur angewendet werden. Die erste
Anwendung der Regel ist in der Abbildung 4.22 dokumentiert. Die zweite
Regelanwendung wird in der Abbildung 4.23 illustriert.

In beiden Fillen werden ein Block und eine Klasse mit dazugehérigen
Modellelementen durch ein Korrespondenzobjekt vom Typ CorrNode zuein-
ander in Beziehung gesetzt. Dabei hat der Synthesealgorithmus, wie in den
Abbildungen 4.22 und 4.23 gezeigt, den oberen Block mit der weiter oben
dargestellten Klasse und den unteren Block mit der unteren Klasse in Bezie-
hung gesetzt. Ebenso hétte der Synthesealgorithmus den oberen Block mit
der unteren Klasse und den unteren Block mit der dariiber liegenden Klasse
in Beziehung setzen kénnen. Der Grund fiir diese Auswahl liegt an den
zusitzlichen Attributwerten der Objekte, die zum Beispiel den Namen eines
Blocks und den Namen einer Klasse enthalten. Diese Attributwerte kénnen
zur Ermittlung einer Korrespondenzbeziehung herangezogen werden, indem
beispielsweise nur Objekte mit gleichen Attributwerten zueinander zugeord-
net werden. Auf die dazu notwendigen Erweiterungen unseres Syntheseal-
gorithmus gehen wir aber erst in Abschnitt 4.2.3 ein. Fiir den Augenblick
reicht uns die hier zunéchst willkiirlich erscheinende Zuordnung der Modell-
elemente.

Nach der zweimaligen Anwendung der Regel aus Abbildung 4.15 enthélt
unsere Struktur zwei weitere Korrespondenzobjekte. Auflerdem existieren
Objekte, die keine Links zu Objekten besitzen, die mit ++ gekennzeichnet
sind. Diese Objekte sind redundant. Die beschriebene Situation illustriert
Abbildung 4.24, in der die redundanten Objekte mit einem x markiert sind.

135

Kapitel 4 Spezifikationsvarianten

. ++
:ClassDiagram : gements
CorrNode i
Pt
T+ source
s(ereotypes
++ -
children
++ . 4
children :Composition L]
++
++ target
:Block ++ q
source
++
++ stereotypes
src
:Stereotype
++ ++
:Connection | :Association Y
| | ++
4+ :Composition
tot
++
:Block
stereot, es
:Stereotype
- ++
:ClassDiagram nts
elements
:System r :CorrNode
++
stereotypes source
++
children :Stereotype
++
++ . i
children :Composition L]
++
++
:Block |
source
++ stereotypes
src
:Stereotype
+ ++
nnection | :Association | I\ -
| | ++
i :Composition
tot
++
Block target

++
stereotypes

:Stereotype

Abbildung 4.21: Regelsynthese aus Beispielzuordnung 4 — Schritte 1 und 2

136

4.2 Spezitikation durch Beispielzuordnungen

++
children

++
children

:Block |\
++

++

source
++

e
| :Association £
| | ++

target

++
tgt
++
:Block
:System I\
++
children
children

src

:Connection

E==
source
stereotypes

:Stereotype

++

stereotypes

:Stereotype

Abbildung 4.22: Regelsynthese aus Beispielzuordnung 4 — Schritte 3 und 4

137

Kapitel 4 Spezifikationsvarianten

:CorrNode

++
children

children

source
stereotypes

T+
stereotypes |:

:Stereotype

:ClassDiagram

elements elements

++
elements

:System
—

source

stereotypes source

:Stereotype

children

children

o
<3
o
z-J
O]
=]
=
]
1
©

N
source
++ stereotypes
src
++

Connection | :Association | X

|
++
tgt

stereotypes

:Stereotype

Abbildung 4.23: Regelsynthese aus Beispielzuordnung 4 — Schritte 5 und 6

138

4.2 Spezitikation durch Beispielzuordnungen

++
elements

:ClassDiagram

elements elements

:System

:

children

:CorrNode

source

stereotypes | source

:Stereotype

B

children

fJ

src

:Connection

++
tgt

]

@
o

++

:CorrNode
source

stereotypes

:Stereotype

++
| :Association | I
| | X
:Composition

stereotypes

:Stereotype
:ClassDiagram

elements

++
elements

[corNode |

%
i

i

:Connection

++

:CorrNode

+
+

o +

s+

++
tgt

I

@
o
Q
=

++
source
++ ++
++ N L
:CorrNode ,I :Association
(ar‘g;t elements

1

[comode |
:CorrNode :Class

Abbildung 4.24: Regelsynthese aus Beispielzuordnung 4 — Schritte 7 und 8

139

Kapitel 4 Spezifikationsvarianten

Aufgrund der Tatsache, dass keine weiteren bisher synthetisierten Regeln
auf diese Struktur angewendet werden konnen, entfernt der Regelsynthe-
sealgorithmus zunéchst die redundanten Objekte und alle dazu inzidenten
Links. Anschliefend fiigt er ein neues Korrespondenzobjekt zwischen den
verbliebenen und mit ++ gekennzeichneten Objekten ein. Damit ist die Re-
gelsynthese fiir diese Beispielzuordnung abgeschlossen. Das Ergebnis ist in
der unteren Hilfte der Abbildung 4.24 dargestellt.

4.2.3 Erweiterungen

Bisher haben wir in unserem Synthesealgorithmus lediglich Objekte und
Links beriicksichtigt. Attributbedingungen, negative Anwendungsbedingun-
gen sowie wiederverwendbare Objekte wurden nicht betrachtet. Im Folgen-
den beschreiben wir, wie diese Konzepte von der Regelsynthese unterstiitzt
werden.

Attributbedingungen

Die Modellelemente in den Beispielzuordnungen enthalten im Regelfall auch
Attribute, die mit konkreten Werten belegt sind. Beispielsweise besitzen das
System und die Klasse in der Beispielzuordnung aus Abbildung 4.11 einen
Namen, der in dem Attribut name gespeichert wird. Ebenso wird der Typ
des Stereotyps durch einen konkreten Attributwert reprasentiert. Um au-
tomatisch korrekte und sinnvolle TGG-Regeln zu synthetisieren, muss der
Algorithmus die Attribute in die Synthese mit einbeziehen. Dazu miissen
bereits bei der Ubersetzung der Beispielzuordnungen in den gemeinsamen
TGG-Formalismus die Attributwerte der Objekte beachtet werden. Unter
Einbeziehung der Attribute fithrt dann eine Ubersetzung der Beispielzuord-
nung aus Abbildung 4.11 zu dem Objektdiagramm in Abbildung 4.25. In
diesem Objektdiagramm besitzen sowohl das Objekt vom Typ System als
auch das Objekt vom Typ Class ein Attribut name vom Typ String, die
beide mit der Zeichenfolge 'ProSys’ belegt sind.

In unserem Ansatz verwenden wir eine sehr einfache Heuristik, die auf der
Gleichheit von Zeichenfolgen beziehungsweise Attributwerten im Allgemei-
nen basiert. Auf Grundlage dieser Heuristik kénnen wir in unserem Beispiel
schlussfolgern, dass beide Attribute zueinander in Beziehung stehen. Das be-
deutet, dass ein System nur dann zu einer Klasse zugeordnet werden kann,
wenn sowohl das System als auch die Klasse den gleichen Namen aufweisen.

140

4.2 Spezifikation durch Beispielzuordnungen

++

:ClassDiagram

elements | ++

++ ++

:System :Class

name="ProSys" name="ProSys"

stereotypes | ++

:Stereotype
kind="system"

++

Abbildung 4.25: Beispielzuordnung mit Attributwerten

Folglich synthetisieren wir aus der Beispielzuordnung Attributbedingungen,
wie sie in Abbildung 4.26 zu sehen sind.

++

:ClassDiagram
++
++ ++ elements | ++ i+
++ ++
:System :CorrNode :Class
++ cl
sys cn cn
Y stereotypes | ++ ++
++ ++
:Stereotype
++ sys.name = ++ ++ cl.name = |++
cn.name cn.name st

st.kind =
,System*
Abbildung 4.26: Synthetisiertes Axiom mit Attributbedingungen

In den Féllen, in denen eine solche Relation zwischen Attributen nicht
hergestellt werden kann, synthetisieren wir eine einfache Attributbedingung
mit dem konkreten Attributwert der Beispielzuordnung. In unserem Beispiel
betrifft dies das Attribut kind, welches den Attributwert ’system’ im Objekt
des Typs Stereotype aufweist. Dieser Wert wird in keinem anderen Attribut
verwendet. Daher wird hierfiir eine einfache Attributbedingung synthetisiert.
Sie ist ebenfalls in Abbildung 4.26 dargestellt.

In unserem Beispiel werden fiir das Attribut eines Stereotypen nur die
Werte ’system’; ’block’ und 'process’ verwendet. Diese Attributwerte wer-
den in den Beispielzuordnungen explizit eingesetzt. In einigen Féllen kann
aber der Wertebereich eines Attributes aus sehr vielen verschiedenen Werten
bestehen, so dass eine Aufzihlung dieser konkreten Attributwerte durch die
Angabe verschiedener Beispielzuordnungen nicht mehr praktikabel ist. Ins-
besondere in den Fiéllen, wo in einer Beispielzuordnung mehrere Attribute

141

Kapitel 4 Spezifikationsvarianten

vorhanden sind, steigt auch die Anzahl moglicher Kombinationen. Die An-
gabe von Beispielzuordnungen, die all diese Kombinationen beriicksichtigen,
ist zwar theoretisch moglich, aber in der Praxis nicht mehr zu bewéltigen.
Zudem ist es hdufig aus technischen Griinden notwendig, dass in einer Bei-
spielzuordnung ein Attribut mit einem Wert belegt ist, der Attributwert
selbst aber fiir eine korrekte Zuordnung der Modellelemente irrelevant ist.

Diesbeziiglich kann die Attributsynthese und Heuristik in unserem Ansatz
noch verbessert werden. Beispielsweise kénnte eine intelligentere Attribut-
synthese aufgrund von zwei Beispielzuordnungen, die sich nur durch einen
Attributwert in einem Objekt unterscheiden, entschliefen, dieses Attribut
in der synthetisierten TGG-Regel zu ignorieren. Ebenso wire es hilfreich,
wenn neben der Uberpriifung von Zeichenketten auf Gleichheit auch Teil-
zeichenketten gesucht werden wiirden, um Préfixe beziehungsweise Suffixe
der Attributwerte bestimmen zu koénnen. Diese Strategien sind in unserem
Ansatz noch nicht implementiert.

Im Augenblick werden diese Probleme in unserem Ansatz durch die Inter-
aktion mit dem Benutzer gelost, das heifit, der Synthesealgorithmus macht
auf Grundlage der Heuristik Vorschlédge fiir mogliche Attributbedingungen,
aber die endgiiltige Entscheidung muss vom Benutzer der Regelsynthese ge-
troffen werden. In diesem Sinne ist die hier beschriebene Regelsynthese nur
semi-automatisch. Allerdings waren bisher in den meisten unserer Beispiele
die Vorschlidge korrekt und mussten nur noch durch die Benutzer bestétigt
werden.

Negative Anwendungsbedingungen

Neben einfachen Attributbedingungen konnen in TGG-Regeln auch Nega-
tive Anwendungsbedingungen niitzlich sein. Diese Bedingungen haben wir in
Abschnitt 3.2.2 bereits vorgestellt. Hier wird nun gezeigt, wie solche Bedin-
gungen mit unserem Ansatz automatisch synthetisiert werden kénnen.

Im Folgenden wollen wir eine Beispielzuordnung angeben, bei der ein Block
in einem System zu Elementen eines Klassendiagramms in Beziehung gesetzt
wird. Im Gegensatz zu der Beispielzuordnung aus Abbildung 4.13 darf al-
lerdings die neue Zuordnung nur dann stattfinden, wenn das System keinen
Prozess enthélt.

Um eine TGG-Regel mit einer solchen Anwendungsbedingung synthetisie-
ren zu konnen, miissen wir zusétzlich zur Beispielzuordnung noch ein Bei-
spiel angeben, das ausdriickt, wann diese Zuordnung nicht stattfinden darf.
Diese Anwendungsbedingung geben wir in der konkreten Syntax der Block-

142

4.2 Spezifikation durch Beispielzuordnungen

Beispiel firr eine negative Anwendungsbedingung

++

:System

children | ++

:Process

:

Beispielzuordnung

++
++ ++
:System
stereotypes | ++ T+
:Stereotype
children | ++

++

target | ++

++
:Class

stereotypes | ++

++
:Stereotype

++
elements

++
elements

Abbildung 4.27: Beispielzuordnung mit Einschréinkung

diagramme an, indem wir ein System mit einem darin enthaltenen Prozess
spezifizieren. Die Beispielzuordnung und die Anwendungsbedingung werden
nun in den gemeinsamen TGG-Formalismus {ibersetzt. Sie sind in Abbil-
dung 4.27 dargestellt.

Zur Synthese einer Anwendungbedingung versucht der Algorithmus eine
Beziehung zwischen den Objekten der Anwendungsbedingung und den Ob-
jekten im Blockdiagramm zu finden. Dabei wird eine Ubereinstimmung zwi-
schen den beiden Objekten des Typs System festgestellt. Im weiteren Verlauf
der Synthese werden beide Objekte zusammengefasst (in Abbildung 4.27 ist
dies durch den gestrichelten Pfeil angedeutet). Das verbleibende Objekt und

143

Kapitel 4 Spezifikationsvarianten

I_ :Process]
= — — —
:ClassDiagram
children
elements
:System I\L :CorrNode
children | ++
++ ++

. |/ ++ .

:Block :CorrNode oy
elements
++
elements

:Stereotype

Abbildung 4.28: Synthetisierte Regel mit Negativer Anwendungsbedingung

der Link der Anwendungsbedingung werden als negative Anwendungsbedin-
gung gekennzeichnet. Die Regelsynthese wird wie vorher beschrieben fortge-
setzt und resultiert in der TGG-Regel, die in Abbildung 4.28 gezeigt wird.
Hierbei haben wir zur Darstellung der negativen Anwendungsbedingung die
Kurzschreibweise verwendet.

In unserem Beispiel wurde eine negative Anwendungsbedingung synthe-
tisiert, die besagt, dass kein Link zu einem Objekt des Typs Process exis-
tieren darf (vergleiche mittlere Anwendungsbedingung in Abbildung 3.18,
Seite 80). Um eine Bedingung zu synthetisieren, die fordert, dass kein Link
zwischen zwei ganz bestimmten Objekten existiert (vergleiche obere Bedin-
gung der Abbildung 3.18, Seite 80), hétte auch der Prozess an ein Objekt
der Beispielzuordnung gebunden werden miissen.

Wiederverwendbare Objekte

In Abschnitt 3.2.2 haben wir gezeigt, dass es durchaus Szenarien gibt, in
denen ein Modellelement nur dann erzeugt werden soll, wenn das Modell-
element in dieser Form noch nicht existiert. Dies kann kann beispielsweise
durch die Spezifikation von zwei TGG-Regeln erfolgen, bei der eine entspre-
chende Fallunterscheidung mit Hilfe von negativen Anwendungsbedingun-
gen ausgedriickt wird. Allerdings wird durch diese Art der Spezifikation die
Komplexitat der einzelnen TGG-Regeln erhoht. Dariiber hinaus leidet durch
die Fallunterscheidung, fiir die zwei separate TGG-Regeln spezifiziert wer-
den miissen, die Ubersichtlichkeit und Versténdlichkeit des gesamten TGG-
Regelsatzes.

144

4.2 Spezifikation durch Beispielzuordnungen

Um die Komplexitat der TGG-Regeln gering zu halten und redundante
TGG-Regeln zu vermeiden, haben wir daher in Abschnitt 3.2.2 wiederver-
wendbare Objekte eingefithrt. Wihrend bei der direkten Spezifikation von
TGG-Regeln die Modellelemente einfach durch den Benutzer als wiederver-
wendbare Objekte markiert werden, miissen bei der automatischen Regelsyn-
these solche Modellelemente gesondert behandelt werden. Um bei der au-
tomatischen Regelsynthese zwischen herkémmlichen Modellelementen und
solchen, die wiederzuverwenden sind, unterscheiden zu koénnen, muss der
Benutzer bereits im Vorfeld der Regelsynthese die Typen der wiederzuver-
wendenden Objekte zu einer hierfiir speziell vorgesehenen Menge hinzufiigen.
Dadurch werden wéhrend der automatischen Regelsynthese alle Instanzen,
deren Typ in dieser Menge enthalten ist, automatisch als wiederverwendbare
Objekte in den synthetisierten TGG-Regeln ausgewiesen.

4.2.4 Reihenfolgeunabhangigkeit

Bisher wurden die Beispielzuordnungen in einer sehr vorteilhaften Reihen-
folge angegeben — die zuvor synthetisierten TGG-Regeln konnten immer auf
die nachfolgende Beispielzuordnung angewendet werden. Aus diesem Grund
konnte der Regelsynthesealgorithmus TGG-Regeln synthetisieren, die sehr
ghnlich zu den von Hand spezifizierten TGG-Regeln sind. Falls die Reihen-
folge der Beispielzuordnungen nicht so vorteilhaft gewéhlt ist wie in unserem
Beispiel, kann der bisher présentierte Algorithmus keine optimalen TGG-
Regeln erzeugen. Dies wird an dem folgenden Szenario kurz verdeutlicht.

Beispiel fiir Reihenfolgeabhdngigkeit Fiir das folgende Beispiel nehmen
wir an, dass die Reihenfolge, in der die Beispielzuordnungen dem Synthe-
sealgorithmus zugefithrt werden, gedndert wird. Wir fangen wieder mit der
Beispielzuordnung an, die ein leeres System einer Klasse mit einem Stereo-
typen zuordnet (siche Abbildung 4.11 auf Seite 122). Jetzt wird allerdings
zuerst die Beispielzuordnung aus Abbildung 4.20 angegeben und anschlie-
Bend die Beispielzuordnung aus Abbildung 4.13. Aus den in dieser Rei-
henfolge gegebenen Beispielzuordnungen erzeugt unser Synthesealgorithmus
wieder TGG-Regeln. Die erste Beispielzuordnung fiihrt wie im vorherigen
Fall zu dem synthetisierten Axiom aus Abbildung 4.12. Aus der zweiten
Beispielzuordnung wird hingegen die in Abbildung 4.29 gezeigte TGG-Regel
synthetisiert, wiahrend aus der dritten Beispielzuordnung die in der unteren
Hélfte der Abbildung 4.15 dargestellte TGG-Regel entsteht.

145

Kapitel 4 Spezifikationsvarianten

++
ents

:ClassDiagram

elements

:System r :CorrNode

++
source

++
children

++ X
children Block i
++

src
++
:Connection Lr S :CorrNode

source ++
stereotypes

+

:Stereotype

Abbildung 4.29: TGG-Regel resultierend aus geénderter Reihenfolge der
Beispielzuordnungen

146

4.2 Spezifikation durch Beispielzuordnungen

Die in der unteren Halfte der Abbildung 4.24 gezeigte TGG-Regel und die
TGG-Regel aus der Abbildung 4.29 wurden beide aus denselben Beispiel-
zuordnungen synthetisiert. Trotzdem sind die synthetisierten TGG-Regeln
verschieden. Dies liegt an der unterschiedlichen Reihenfolge, in der die Bei-
spielzuordnungen dem Synthesealgorithmus zugefithrt werden. Aufgrund der
neuen Reihenfolge existiert zu dem Zeitpunkt, an dem die Regelsynthese aus
der zweiten Beispielzuordnung stattfindet, nur die synthetisierte Regel aus
Abbildung 4.12. Daher kann nur diese Regel auf die Struktur der zweiten Bei-
spielzuordnung angewendet werden. Im Gegensatz dazu lagen im ersten Fall
bereits zwei Regeln vor, die auf die neue Struktur angewendet werden konn-
ten. Bei der neuen Reihenfolge existiert zu diesem Zeitpunkt nur eine Regel,
so dass weniger Objekte gebunden werden, was wiederum dazu fiihrt, dass
die daraus synthetisierte TGG-Regel mehr Objekte enthélt und sich dadurch
von der TGG-Regel aus Abbildung 4.24 unterscheidet. Diese Abhéngigkeit
von der Reihenfolge der gegebenen Beispielzuordnungen ist nicht gewiinscht.
Die Regelsynthese sollte unabhéngig von der Reihenfolge der gegebenen Bei-
spielzuordnungen immer zu identischen TGG-Regeln fiihren.

Reihenfolgeunabhidngigkeit durch Algorithmuserweiterung Damit der
Synthesealgorithmus von der gegebenen Reihenfolge der Beispielzuordnun-
gen unabhéingig wird, muss er erweitert werden. In der erweiterten Version
unserer Regelsynthese werden nicht nur bereits synthetisierte Regeln auf die
neue TGG-Regel angewendet, sondern auch die neu synthetisierte TGG-
Regel auf die Menge der bereits synthetisierten TGG-Regeln. Wenn dabei
eine Ubereinstimmung der neuen TGG-Regel mit einer der bereits synthe-
tisierten TGG-Regeln festgestellt wird, verfahrt der Algorithmus dabei wie
im gewohnlichen Fall. Die ++ Markierungen der durch die Regelanwendung
gebundenen Objekte und Links werden entfernt, zusétzlich benotigte Kor-
respondenzobjekte hinzugefiigt und Objekte, die keine direkte Verbindung
zu Objekten mit ++ Markierungen besitzen, geldscht.

Aufgrund dieser Erweiterung wird in unserem Beispiel nach der Synthese
der dritten TGG-Regel (siehe Abbildung 4.15) versucht, diese TGG-Regel
auf die bereits zuvor synthetisierten TGG-Regeln anzuwenden. Dabei wird
festgestellt, dass die neue TGG-Regel auf die im zweiten Schritt syntheti-
sierte TGG-Regel aus Abbildung 4.29 anwendbar ist. Daher wird die ++
Markierung der gebundenen Objekte entfernt und ein neues Korrespondenz-
objekt hinzugefiigt. Alle nicht benttigten Objekte werden entfernt. Dadurch
entsteht eine TGG-Regel, wie wir sie bereits aus Abbildung 4.24 kennen.

147

Kapitel 4 Spezifikationsvarianten

Die Erweiterung unseres Synthesealgorithmus hat einen weiteren Effekt.
Vergleichen wir die von Hand spezifizierten TGG-Regeln mit den bisher au-
tomatisch synthetisierten Regeln, so stellen wir fest, dass die TGG-Regel aus
Abbildung 4.15 in der von Hand spezifizierten Menge der TGG-Regeln nicht
vorkommt. Dies liegt daran, dass dieser Fall bereits durch die TGG-Regel
aus Abbildung 4.18 abgedeckt wird. Damit wird die automatisch synthe-
tisierte TGG-Regel aus Abbildung 4.15 nicht benotigt. Genau genommen
ist sogar die zuvor automatisch synthetisierte Regelmenge mehrdeutig, da
nun bei einem Objekt des Typs System sowohl die TGG-Regel aus Abbil-
dung 4.15 als auch die TGG-Regel aus Abbildung 4.18 anwendbar ist. Dies
liegt daran, dass im Metamodell fiir Blockdiagramme die Klasse System von
der Klasse Block erbt. Damit kann ein Objekt des Typs Block an ein Objekt
des Typs System gebunden werden. Diese Mehrdeutigkeit von TGG-Regeln
ist in den allermeisten Féllen nicht gewiinscht und sollte nach Moglichkeit
vermieden werden, da dies bei der spéateren Anwendung der TGG-Regeln zu
unterschiedlichen Ergebnissen fiihren kann.

Durch die Erweiterung unseres Synthesealgorithmus in der bereits be-
schriebenen Art und Weise werden solche mehrdeutigen TGG-Regeln er-
kannt und automatisch eliminiert. In unserem Beispiel wird die syntheti-
sierte TGG-Regel, wie sie in Abbildung 4.19 zu sehen ist, sofort als neue
TGG-Regel betrachtet und in die Synthese einbezogen. Daher versucht
der Regelsynthesealgorithmus diese TGG-Regel auf die bereits vorhandenen
TGG-Regeln anzuwenden. Dabei kann der Algorithmus das Objekt vom Typ
Block an das Objekt vom Typ System der TGG-Regel aus Abbildung 4.15
aus den bereits beschriebenen Griinden binden. Der Synthesealgorithmus
entfernt daher alle ++ Markierungen der gebundenen Objekte und Links.
Aufgrund der Tatsache, dass in diesem Fall aber alle Objekte und Links ge-
bunden werden konnten, bleiben keine Objekte mit ++ Markierungen iibrig.
Damit existieren auch keine Objekte, die mit neu erzeugten Objekten di-
rekt verbunden sind. Somit werden alle Objekte geloscht und damit diese
TGG-Regel eliminiert. Die automatisch synthetisierte TGG-Regeln stimmen
damit weitestgehend mit den von Hand spezifizierten TGG-Regeln iiberein.

Zusammenfassend kann festgehalten werden, dass durch die Erweiterung
unseres Synthesealgorithmus es nicht mehr nétig ist, die Beispielzuordnun-
gen Schritt fiir Schritt in einer bestimmten Reihenfolge anzugeben — der
Benutzer kann einfach eine Menge von Beispielzuordnungen als Eingabe an
den Synthesealgorithmus iibergeben und erhélt eine Menge von TGG-Regeln
als Ausgabe. Dariiber hinaus ist der erweiterte Synthesealgorithmus in der
Lage, mehrdeutige TGG-Regeln zu erkennen und sie zu eliminieren, um eine

148

4.2 Spezifikation durch Beispielzuordnungen

moglichst kleine und optimale Regelmenge zu konstruieren.

4.2.5 AbschlieBende Betrachtungen zur Regelsynthese

In diesem Abschnitt haben wir einen Algorithmus préasentiert, der TGG-
Regeln aus zueinander korrespondierenden Beispielzuordnungen syntheti-
siert. Die Beispielzuordnungen werden in der konkreten Syntax der beteilig-
ten Modelle angegeben. Dadurch ist die Spezifikation dieser Beispielzuord-
nungen benutzerfreundlicher und die genaue Kenntnis der zugrundeliegenden
Metamodelle sowie des TGG-Formalismus wird nicht zwingend benétigt.
Der hier an einem Beispiel vorgestellte Synthesealgorithmus funktioniert
vollautomatisch, sofern keine Objektattribute betrachtet werden miissen.
Der Algorithmus ist unabhéngig von der gegebenen Reihenfolge der Beispiel-
zuordnungen. Allerdings reicht eine einzige Beispielzuordnung nicht aus, um
eine allgemein giiltige Menge von TGG-Regeln zu synthetisieren, die in der
Lage ist, unterschiedliche Modellinstanzen zueinander in Beziehung zu set-
zen. Vielmehr werden viele verschiedene Beispielzuordnungen benétigt. Da-
bei muss eine Beispielzuordnung eine Ubereinstimmung mit mindestens ei-
ner anderen Beispielzuordnung besitzen und zusétzlich ein weiteres Konzept
der Modellierungssprache einfiithren. Diese Differenz zwischen den Beispiel-
zuordnungen wird durch den Synthesealgorithmus ausgenutzt, um daraus
entsprechende TGG-Regeln zu extrahieren. Falls ein Konzept der Model-
lierungssprache in keiner Beispielzuordnung auftaucht, wird dieses Konzept
auch in keiner der synthetisierten TGG-Regeln beriicksichtigt. Auf der ande-
ren Seite konnen aus Beispielzuordnungen, die mehrere Konzepte auf einmal
enthalten nur TGG-Regeln synthetisiert werden, die diese Konzepte in dieser
Kombination abdecken. Daher muss bei der Anwendung der Regelsynthese
darauf geachtet werden, dass mit einer moglichst kleinen Beispielzuordnung
begonnen wird und sowohl die Menge der Beispielzuordnungen als auch die
Grofle der Beispielzuordnungen selbst Schritt fiir Schritt erweitert werden.
Die Regelsynthese unterstiitzt einen iterativen Entwurfsprozess. Der itera-
tive Entwurfsprozess ist in Abbildung 4.30 dargestellt. Der Prozess beginnt
mit der Definition der Beispielzuordnungen. Aus diesen Beispielzuordnun-
gen werden TGG-Regeln synthetisiert. Die TGG-Regeln kénnen durch den
Benutzer validiert werden, zum Beispiel indem sie auf einer definierten Ein-
gabe ausgefithrt und das Ergebnis mit dem erwarteten Ergebnis verglichen
wird. Falls das Ergebnis der Validierung mit dem erwarteten Resultat nicht
iibereinstimmt, konnen die Beispielzuordnungen solange modifiziert, verfei-
nert und um neue Beispielzuordnungen ergénzt werden, bis die Validierung

149

Kapitel 4 Spezifikationsvarianten

refine
example pairs

define synthesise
example pairs rules

Abbildung 4.30: Uberblick zum Prozess

refine

synthesised
l rules l
O &

[invalid]

validate
rules

zufriedenstellende Ergebnisse liefert.

Der Regelsynthesealgorithmus funktioniert nur dann vollautomatisch, so-
lange keine Attribute beriicksichtig werden miissen. Sind hingegen auch
Attribute zu berticksichtigen, arbeitet der Algorithmus interaktiv, das heifit,
der Algorithmus macht zwar automatisch Vorschléage fiir Attributbedingun-
gen, die endgiiltige Entscheidung, welche Attributbedingungen in der TGG-
Regel verwendet werden sollen, muss aber vom Benutzer getroffen werden.
Wie schon zuvor erwdhnt, kann bei vielen Attributen bzw. Attributen mit
einem groflen Wertebereich die Spezifikation mit Beispielzuordnungen sehr
umstandlich werden, da fiir jeden moglichen Fall eine eigene Beispielzuord-
nung angegeben werden muss. Enthélt ein Modell einer Beispielzuordnung
beispielsweise zwei Attribute, wobei das erste Attribut m verschiedene Werte
und das zweite Attribut n Werte annehmen kann, so sind insgesamt m*n
verschiedene Kombinationen moglich, fiir die jeweils eine eigene Beispielzu-
ordnung nétig wire. Der Aufwand hierfiir kann so groff werden, dass die
Vorteile dieses Ansatzes nicht mehr zu rechtfertigen sind.

Aus diesem Grund erlauben wir in unserem Ansatz, die synthetisierten
TGG-Regeln von Hand zu verfeinern. Dadurch konnen insbesondere auch
die Attributbedingungen von Hand angepasst und zum Beispiel durch eine
einfache Abbildungsfunktion realisiert werden. Dadurch wird der Ansatz
zwar semi-automatisch, allerdings reicht eine einzige Beispielzuordnung in
Verbindung mit einer von Hand spezifizierten Abbildungsfunktion, um ver-
schiedene Attributwerte in einer Beispielzuordnung abzudecken. FErlauben
wir manuelle Anpassungen und Verfeinerungen der synthetisierten TGG-
Regeln, so macht in diesem Fall auch die Validierung auf der Grundlage
der gegebenen Beispielzuordnungen wieder Sinn, da jetzt nicht nur die Kor-
rektheit des Synthesealgorithmus gepriift wird, sondern auch die manuell

150

4.2 Spezifikation durch Beispielzuordnungen

durchgefithrten Anderungen validiert werden.*

In unserem Beispiel entsprechen die synthetisierten TGG-Regeln konzep-
tionell den von Hand spezifizierten TGG-Regeln. Beispielweise entspricht
die synthetisierte Regel in Abbildung 4.19 der von Hand spezifizierten
TGG-Regel aus Abbildung 3.6. Der einzige Unterschied besteht in dem
Typ der eingesetzten Korrespondenzobjekte. In der automatisch syntheti-
sierten TGG-Regel entsprechen alle Korrepondenzobjekte demselben Typ
CorrNode, wiahrend in der von Hand spezifizierten TGG-Regel die Korres-
pondenzobjekte unterschiedliche Typen aufweisen. Die Erstellung eines an-
gepassten Metamodells fiir Korrespondenztypen wird im Augenblick von der
automatischen Regelsynthese nicht unterstiitzt. Eine erste Moglichkeit fiir
die Erstellung eines angepassten Korrespondenzmetamodells haben wir in
[KWO07] vorgestellt. Dabei wurden die eingesetzten Korrespondenztypen
wéhrend der Regelsynthese durchnummeriert. Damit haben diese Korres-
pondenztypen die Reihenfolge der synthetisierten TGG-Regeln wiedergege-
ben. Um automatisch ein Korrespondenzmetamodell dhnlich dem in Ab-
bildung 3.10 zu erhalten, muss dieses Verfahren jedoch noch erweitert und
verallgemeinert werden.

Ein weiterer Unterschied fillt auf, wenn wir die synthetisierte TGG-Regel
aus Abbildung 4.24 mit der manuell spezifizierten TGG-Regel aus Abbil-
dung 3.8 vergleichen. Der Unterschied besteht in dem zusétzlichen Link zwi-
schen dem Objekt des Typs ClassDiagram und der zum Block korrespondie-
renden Klasse Class. Tatsdchlich besitzt ein Klassendiagramm immer einen
Link zu seinen Klassen. Damit ist die synthetisierte TGG-Regel auch kor-
rekt. In der manuell spezifizierten TGG-Regel fehlt dieser Link. Hier ist der
Spezifizierer flexibler und kann einige der Links — sofern sie nicht zwingend
notwendig sind — einfach weglassen. In unserem Beispiel muss er nur sicher-
stellen, dass das Objekt des Typs ClassDiagram iiber einen Link erreichbar
ist, das heifit, er muss sicherstellen, das eine zusammenhéngende Struktur
vorhanden ist. Hierzu kann er beide Links angeben oder aber auch nur einen
der Links. Alle diese Varianten fithren zu einer giiltigen und ausfithrbaren

TGG-Regel.

4Mit den Méglichkeiten zur Validierung von TGG-Regeln werden wir uns noch in Kapi-
tel 6 beschiftigen.

151

Kapitel 4 Spezifikationsvarianten

4.3 MOF 2.0 Query/View/Transformation

Die in dieser Arbeit vorgestellte Technik zur Modellsynchronisation wurde
zeitgleich zum Query/View/Transformation (QVT) Standard der Object
Management Group (OMG) entwickelt [QVTO08]. Das Hauptanwendungs-
gebiet dieses erst kiirzlich in der finalen Version veroffentlichten QVT-
Standards stellen Modelltransformationen dar. Zur Spezifikation einer Mo-
delltransformation definiert der QV'T-Standard sowohl einen delarativen als
auch einen imperativen Sprachanteil. Im deklarativen Sprachanteil wird die
Transformation durch Beziehungen zwischen einzelnen Mustern der Modelle
beschrieben. Der imperative Sprachanteil besteht hingegen aus operationa-
len Anweisungen, mit denen die Modelltransformation direkt gesteuert wird.

In Abbildung 4.31 ist die QVT-Spracharchitektur zu sehen. Der de-
klarative Sprachanteil wird durch die Sprachen QVT-Relations und QVT-
Core abgedeckt. Der operationale Sprachanteil setzt sich hingegen aus der
Sprache Operational Mappings Language und den sogenannten Black-Boz-
Implementierungen zusammen. Die Black-Box-Implementierungen kénnen
in beliebigen Sprachen programmiert und zusammen mit der Operational
Mappings Language eingesetzt werden, um die beiden deklarativen Sprachen
QVT-Relations und QVT-Core um komplexere Transformationsalgorithmen
zu erginzen, die deklarativ gar nicht oder mit nur sehr viel Aufwand be-
schrieben werden konnen. Im Rahmen dieser Arbeit konzentrieren wir uns
allerdings nur auf die beiden deklarativen Sprachen.

> Relations

RelationsToCore

Operational Transformation
Mappings {}
> Core

Abbildung 4.31: QVT-Spracharchitektur, entnommen aus [QVTO08]

Die Sperzifikation mit QVT-Relations kann sowohl in einer textuellen als
auch in einer graphischen Syntax erfolgen. In Abbildung 4.32 ist die Spezi-
fikation der TGG-Regel Block2Class aus Abschnitt 3.2 in der graphischen
Syntax von QVT-Relations dargestellt.

Gegeniiber einer TGG-Regel fallen zwei wesentliche Unterschiede auf. Der

152

4.3 MOF 2.0 Query/View/Transformation

BlockToClass _
«domain»
cd:ClassDiagram
«domain» |
pb:Block pc:Class
bd : SDL od : UML co:Composition
N £
cb:Block cl:Class
name =n name =n
st:Stereotype
kind = ,block”
— where
BlockToClass(cb, cd)
ProcessToClass(cb, cd)

Abbildung 4.32: Beispielregel BlockToClass in der graphischen Syntax von
QVT-Relations

erste Unterschied ist, dass keine Korrespondenzknoten zwischen den einzel-
nen Modellelementen spezifiziert werden. Der zweite Unterschied besteht
darin, dass in einer QVT-Regel andere QVT-Regeln mit Hilfe einer where-
Klausel® referenziert werden konnen. Die referenzierten Regeln werden auf-
gerufen, falls die betrachtete Regel erfolgreich ausgefiihrt werden konnte. Im
Gegensatz zu QVT-Relations sind im TGG-Formalismus die Abhéngigkei-
ten zwischen den TGG-Regeln nur implizit enthalten. Insgesamt sind beide
Notationen jedoch sehr dhnlich.

Die Sprache QVT-Core bildet den Kern der QVT-Spezifikation. Zur Spe-
zifikation einer Modelltransformation mit QVT-Core ist allerdings nur eine
textuelle Syntax verfiighar. Gegeniiber QVT-Relations werden weniger Kon-
strukte bereitgestellt, so dass die Sprachdefinition von QVT-Core kompak-
ter ausfallt. Auf der einen Seite fiihrt dies dazu, dass die Spezifikationen auf
Grundlage von QVT-Core aus vielen einfachen Ausdriicken zusammengesetzt
werden miissen. Auf der anderen Seite kann wegen des geringen Umfangs der
Sprache die Semantik einfacher definiert werden. Daher wird die Semantik

Dariiber hinaus existieren weitere Konzepte, wie z. B. when-Klauseln. Die Syntax und
Semantik von QVT-Relations ist in der QVT-Spezifikation beschrieben [QVTO08].

153

Kapitel 4 Spezifikationsvarianten

von QVT-Relations mit einer Transformation definiert. Die hierzu notwen-
dige Relations2Core-Transformation (siehe Abbildung 4.31) ist Bestandteil
der QVT-Spezifikation.

Das Schema einer Regel in der Sprache QVT-Core haben wir in der Ab-
bildung 4.33 dargestellt. Diese Darstellung haben wir unverdndert aus der
QVT-Sperzifikation iibernommen. Bei einem Vergleich zwischen dem Schema
einer Regel der Sprache QVT-Core und dem Schema einer TGG-Regel (siehe
dazu insbesondere auch Abbildung 5.6 auf Seite 171), fillt die Ahnlichkeit
zwischen den Ansétzen besonders deutlich auf.

Domain L Middle Area Domain R
r A N\ A N\ A N
guard domain (L) guard middle guard domain (R) =]
pattern pattern pattern 6
A A A
bottom (.iomain (LS< bottom'middle >bottom d(')main (R) g
pattern pattern pattern g

Abbildung 4.33: Schema einer QVT-Core-Regel, entnommen aus [QVT0S]

Das in Abbildung 4.33 gezeigte Schema besteht aus drei Spalten, die in
der QVT-Spezifikation Bereiche (engl. Area) genannt werden. Der linke
Bereich (Domain L) und der rechte Bereich (Domain R) reprisentieren die
in Beziehung stehenden Modellierungsdoménen. Dazwischen existiert ein
mittlerer Bereich (Middle Area), der allerdings erst wéihrend einer Modell-
transformation hinzugefiigt wird. Dieser Bereich enthélt die sogenannten
Trace-Klassen, mit denen Beziehungen zwischen den Elementen der Model-
lierungsdoménen explizit verwaltet werden. Diese Trace-Klassen entspre-
chen weitestgehend den Korrespondenzknoten einer TGG-Regel. Weiterhin
ist jede der drei Spalten in zwei Muster — das sogenannte guard pattern und
das bottom pattern — unterteilt. Die Muster repréasentieren Objektstrukturen
und Bedingungen, wie wir sie bereits aus TGG-Regeln kennen.

Diese Ubereinstimmungen wurden ausgenutzt, um eine Transformation
von QVT-Core in TGGs zu definieren [Gre06]. Zusammen mit der in
der QVT-Spezifikation angegebenen Transformation von QVT-Relations in
QVT-Core ist es somit moglich, die Beziehungen fiir eine Modelltransfor-
mation oder Modellsynchronisation in einer der beiden deklarativen QVT-

154

4.4 Zusammenfassung

Sprachen zu spezifizieren und diese Spezifikation mit Hilfe von TGGs aus-
zufithren. In Abbildung 4.34 wird das allgemeine Vorgehen verdeutlicht.

Relations

TGG
RelationsToCore
Transformation
CoreToTGG
Transformation

Core

Abbildung 4.34: Abbildung von QVT-Relations auf TGGs

Auf die Transformation von QVT in TGGs wird in dieser Arbeit allerdings
nicht weiter eingegangen. Der Grund hierfiir ist, dass diese Transformation in
der Diplomarbeit von Joel Greenyer [Gre06] dokumentiert ist. Dariiber hin-
aus wurden in der Dissertation von Alexander Konigs bereits beide Ansétze
miteinander kombiniert, so dass die Akzeptanz fiir den TGG-Ansatz erhoht
und die Technik der TGGs fiir einen weiten Anwenderkreis zugénglich ge-
macht wurde [Kén08].

4.4 Zusammenfassung

In diesem Kapitel haben wir uns mit Alternativen zur Spezifikation von Kor-
respondenzbeziehungen beschéftigt. Zwei dieser Spezifikationsvarianten liegt
der Ansatz der Tripel-Graph-Grammatiken zugrunde, so dass beide Alterna-
tiven zu einer formalen Spezifikation der Korrespondenzbeziehungen fiihren.
Die dritte Spezifikationsvariante basiert auf dem erst kiirzlich verabschiede-
ten Standard Query/View/Transformation (QVT) der Object Management
Group (OMG) [QVTO08].

In Abschnitt 4.1 haben wir die erste Spezifikationsvariante vorgestellt.
Diese Sperzifikationsvariante ist besonders gut geeignet, um Modell-zu-Text
Beziehungen, wie sie zum Beispiel bei der Codegenerierung benotigt werden,
zu definieren. Auch wenn die Spezifikation von Modell-zu-Text Beziehungen
bereits mit dem grundlegenden Ansatz der TGGs moglich ist, so stellt die in
diesem Abschnitt vorgestellte Kombination aus TGGs und Textschablonen
eine deutliche Vereinfachung fiir den Entwickler dar. Neben den Vorteilen

155

Kapitel 4 Spezifikationsvarianten

sind wir auch auf die Nachteile dieses Ansatzes eingegangen, die mit der
zweiten Spezifikationsvariante jedoch behoben werden.

Mit der zweiten Spezifikationsvariante haben wir uns in Abschnitt 4.2 be-
fasst. Bei diesem Ansatz werden die Korrespondenzbeziehungen in der Nota-
tion der beteiligten Sprachen durch eine Menge von jeweils zwei zueinander
korrespondierenden Beispielen angegeben, die wir als Beispielzuordnungen
bezeichnet haben. Aus einer Menge solcher Beispielzuordnungen konnten
die entsprechenden TGG-Regeln (semi-) automatisch synthetisiert werden.
Obwohl wir die Regelsynthese an unserem durchgéngigen Beispiel von Block-
und Klassendiagrammen vorgestellt haben, eignet sich dieser Ansatz — wie
in der Diplomarbeit von Alexander Geburzi praktisch gezeigt wurde [Geb06]
— insbesondere auch zur Spezifikation von Modell-zu-Text Beziehungen, die
zur Codegenerierung und Synchronisation genutzt werden kénnen.

In Abschnitt 4.3 sind wir auf die Spezifikation von Korrespondenzbezie-
hungen mit QVT eingegangen. Der QV'T-Standard definiert zwei dekla-
rative Sprachen zur Modelltransformation, fiir die jedoch lange Zeit keine
Werkzeugunterstiitzung existiert hat. Im Rahmen dieser Arbeit wurden die
Konzepte des QVT- und des TGG-Ansatzes untersucht und miteinander
verglichen. Dabei wurden sehr viele Ubereinstimmungen festgestellt, so dass
eine Abbildung zwischen QVT und TGG definiert werden konnte [Gre06].
Auf dieser Grundlage konnen QVT-Werkzeuge zur Modelltransformation auf
Basis von TGGs realisiert werden.

156

Kapitel 5

Synchronisationsmechanismus

In den vorangegangenen Kapiteln haben wir die Spezifikation von Korres-
pondenzregeln vorgestellt. In diesem Kapitel gehen wir nun der Frage nach,
wie wir auf Grundlage dieser Spezifikation eine inkrementelle Modellsynchro-
nisation durchfithren konnen. Hierzu geben wir zunédchst in Abschnitt 5.1
einen Uberblick iiber unseren Synchronisationsmechanismus, der aus einem
verdnderlichen und einem unverédnderlichen Anteil mit einer gemeinsamen
Datenstruktur besteht. Der invariante Anteil unseres Synchronisationsme-
chanismus wird durch einen Algorithmus représentiert, der eine Steuerungs-
logik fiir die operationalen Graphersetzungsregeln implementiert. Diesen
Algorithmus stellen wir zusammen mit der zugrundeliegenden Datenstruk-
tur in Abschnitt 5.2 vor. Der verdnderliche Anteil hingegen wird durch
operationale Graphersetzungsregeln reprasentiert, die automatisch aus den
deklarativ spezifizierten Korrespondenzregeln abgeleitet und zur Parametri-
sierung des invarianten Anteils eingesetzt werden. Mit der Generierung der
operationalen Graphersetzungsregeln beschéftigen wir uns in Abschnitt 5.3.
Die Ergebnisse dieses Kapitels fassen wir in Abschnitt 5.4 zusammen.

5.1 Uberblick

Der von Andy Schiirr in [Sch94] veréffentlichte Algorithmus zur Modelltrans-
formation basiert auf der Idee, ein Modell zunéchst zu parsen, um den Ab-
leitungsbaum, d.h., die angewandten Produktionsregeln, durch die dieses
Modell erzeugt wurde, zu gewinnen. Anschliefend wird durch die Anwen-
dung der dazu korrespondierenden Produktionsregeln, die durch die TGG
spezifiziert sind, das Zielmodell erzeugt. Der in [Sch94] verdffentlichte Al-
gorithmus verdeutlicht auf eine sehr elegante Art und Weise das Prinzip,
mit dem Modelltransformationen auf der Grundlage von TGGs ausgefiihrt
werden kénnen.

157

Kapitel 5 Synchronisationsmechanismus

Allerdings wird der Algorithmus in dieser Form in der Praxis nicht einge-
setzt. Dies liegt daran, dass es sich bei einer TGG um eine kontextsensitive
Grammatik handelt — ein effizienter Algorithmus fiir das Parsen von Model-
len, denen eine kontextsensitive Grammatik zugrunde liegt, existiert bislang
nicht. Aus diesem Grund verwenden alle bisher veroffentlichten Algorith-
men einen Ansatz, bei dem operationale Graphersetzungsregeln mit einer
individuellen Steuerungslogik kombiniert werden [SKO08].

Bei diesen Algorithmen traversiert die Steuerungslogik die Elemente ei-
nes Quellmodells nach einer zuvor festgelegten Strategie. Dabei wird nach
moglichen Anwendungsstellen fiir die operationalen Graphersetzungsregeln
gesucht. Ist eine solche Anwendungsstelle im Quellmodell gefunden, so
wird versucht, die operationalen Graphersetzungsregeln anzuwenden. Durch
die Anwendung der operationalen Graphersetzungsregeln entsteht ein zum
Quellmodell korrespondierendes Zielmodell. Dariiber hinaus wird ein Kor-
respondenzmodell erzeugt, das die Elemente der beiden Modelle mit Hilfe
der Korrespondenzknoten zueinander in Beziehung setzt.

Die Strategie zur Traversierung der Modelle ist bei diesen Algorithmen un-
abhéngig von den spezifizierten Regeln. Die Anwendung der operationalen
Graphersetzungsregel scheitert daher hdufig daran, dass die von einer Regel
geforderten Korrespondenzknoten (noch) nicht existieren. Die Anwendung
der betrachteten Graphersetzungsregel muss in einem solchen Fall zuriick-
gestellt und die Anwendungsstelle erneut iiberpriift werden, sobald durch
die Anwendung anderer Regeln neue Korrespondenzknoten hinzugekommen
sind. Das wiederholte Uberpriifen einer Anwendungsstelle wirkt sich negativ
auf das Laufzeitverhalten dieser Algorithmen aus.

Der in dieser Arbeit entwickelte Algorithmus basiert ebenfalls auf opera-
tionalen Graphersetzungsregeln und einer Steuerungslogik. Im Gegensatz
zu den bereits bekannten Algorithmen arbeitet unsere Steuerungslogik al-
lerdings nicht auf dem Quellmodell sondern auf dem Korrespondenzmodell,
so dass nur bereits existierende Korrespondenzknoten besucht und die An-
wendung der operationalen Graphersetzungsregeln von diesen Korrespon-
denzknoten ausgehend iiberpriift wird. Ist eine Regel auf dem untersuchten
Korrespondenzknoten nicht anwendbar, so kann dies auf keinen Fall an ei-
nem fehlenden Korrespondenzknoten® liegen. Eine erneute Uberpriifung der
betrachteten Regel an dieser Anwendungsstelle ist daher im weiteren Ab-
lauf unseres Algorithmus nicht notwendig. Dieser Umstand fiihrt zu einem
giinstigeren Laufzeitverhalten unseres Synchronisationsmechanismus.

!Eine Ausnahmesituation und die dazugehérige Losung erldutern wir in Abschnitt 5.3.

158

5.1 Uberblick

Ein weiterer Vorteil unseres Synchronisationsmechanismus besteht darin,
dass auf der Grundlage eines erweiterten Korrespondenzmodells eine Modell-
synchronisation sowohl batch-artig, d. h., in einem einzigen Schritt, als auch
inkrementell, d. h., Schritt fiir Schritt, durchgefiihrt werden kann. Die hierzu
notwendige Erweiterung am Korrespondenzmodell beruht auf der folgen-
den Beobachtung (vgl. Abschnitt 3.2): Bei jeder erfolgreichen Regelanwen-
dung wird mindestens ein Korrespondenzknoten gebunden und mindestens
ein neuer Korrespondenzknoten erzeugt. Diese Beobachtung nutzen wir in
unserem Algorithmus aus, indem wir diese Abhéngigkeit zwischen den Kor-
respondenzknoten explizit durch einen gerichteten Link représentieren und
wéhrend einer Modelltransformation, Modellintegration und Modellsynchro-
nisation ein Korrespondenzmodell aufbauen, das als gerichteter azyklischer
Graph (DAG?) interpretiert werden kann.

Abbildung 5.1: Prinzip der inkrementellen Modellsynchronisation auf einem
Korrespondenzmodell

In Abbildung 5.1 ist ein solches Korrespondenzmodell schematisch dar-
gestellt. Die schematische Darstellung haben wir insofern vereinfacht, als
das wir das Korrespondenzmodell nicht durch einen DAG sondern durch
eine Baumstruktur représentieren. Das Korrespondenzmodell ist allerdings
dennoch ein Graph und kein Baum, da jeder Korrespondenzknoten mehrere
Korrespondenzknoten als Vorgénger besitzen kann. Der Graph ist azyklisch,
weil wahrend der Anwendung einer Regel niemals ein Link zwischen be-
reits gebundenen Korrespondenzknoten erzeugt wird — es werden immer nur
gerichtete Links von den gebundenen zu den neu erzeugten Korrespondenz-
knoten erstellt.

Bei einer initialen Modellsynchronisation wird das Korrespondenzmodell
durch eine Modelltransformation oder — sofern bereits beide Modelle exis-

2 Abkiirzung fiir 'Directed Acyclic Graph’

159

Kapitel 5 Synchronisationsmechanismus

tieren — durch eine Modellintegration aufgebaut. Hierbei wird der Algo-
rithmus auf dem Korrespondenzknoten gestartet, der durch das Axiom vor-
gegeben ist. Dieser Korrespondenzknoten stellt den Einstiegspunkt in den
DAG dar. Im Folgenden bezeichnen wir diesen Korrespondenzknoten — in
Anlehnung an die in Abbildung 5.1 dargestellte Baumstruktur — als Wur-
zel unseres Korrespondenzmodells. Ausgehend von der Wurzel werden alle
Regeln iiberpriift und — sofern sie anwendbar sind — ausgefiihrt. Durch die er-
folgreiche Ausfithrung von Regeln entstehen neue Korrespondenzknoten, auf
denen wiederum Regeln ausgefiihrt werden. Dieser Vorgang wird fortgesetzt,
so dass auf diese Art und Weise ein Korrespondenzmodell entsteht, das wir
sowohl zu batch-artigen als auch zur inkrementellen Modellsynchronisation
nutzen kénnen.

Die batch-artige Modellsynchronisation wird durchgefiihrt, indem der Syn-
chronisationsalgorithmus auf der Wurzel gestartet wird. In diesem Fall be-
sucht der Algorithmus alle Korrespondenzknoten unseres DAG und versucht
— ausgehend von dem aktuell besuchten Korrespondenzknoten — die ope-
rationalen Graphersetzungsregeln anzuwenden. Eine inkrementelle Modell-
synchronisation hingegen erreichen wir, indem wir zunéchst den Korrespon-
denzknoten ermitteln, der mit einem geédnderten Modellelement im Zusam-
menhang steht. Die Modellsynchronisation beginnt dann nicht auf der Wur-
zel des Korrespondenzmodells, sondern auf dem zuvor identifizierten Kor-
respondenzknoten. In diesem Fall werden nur die direkten und indirekten
Nachfolger dieses Korrespondenzknotens besucht, was in der schematischen
Darstellung der Abbildung 5.1 durch die weifl unterlegten Teilbdume inner-
halb der Baumstruktur angedeutet ist. In dem Fall, dass sich Anderungen
nur lokal beziehungsweise nur bis zu einer bestimmten Tiefe eines Teilbaums
auswirken, kann die Modellsynchronisation — wie im mittleren Teilbaum der
Abbildung 5.1 durch die gestrichelten Linien angedeutet wird — sogar friiher
abgeschlossen werden.

Der hier nur {iberblicksartig aufgezeigte Synchronisationsmechanismus
wird in den nachfolgenden Abschnitten genauer vorgestellt. Hierzu beschéfti-
gen wir uns zunéchst in Abschnitt 5.2 mit der zugrundeliegenden Daten-
struktur sowie dem darauf basierenden Synchronisationsalgorithmus. Dieser
Synchronisationsalgorithmus représentiert die Steuerungslogik fiir operatio-
nale Graphersetzungsregeln, die aus TGG-Regeln generiert werden. Mit der
Generierung der operationalen Graphersetzungsregeln beschéftigen wir uns
erst in dem darauf folgenden Abschnitt 5.3.

160

5.2 Datenstruktur und Algorithmus

«enumeration» «interface» «singleton»
Direction PropertyChangeListener TGGManager
forward + propertyChange(event :
mapping PropertyChangeEvent)
reverse A
| selectedTask | 0.1 0.* [tasks
PriorityQueue TGGEngine engine TGGTask
queue —

enqueue(node : TGGNode) + batchmode : Boolean 1 + name : String
dequeue() : TGGNode 1 + descend : Boolean = false
isEmpty() : Boolean + init(file : File) : Boolean

+ execute(rule : TGGRule,
node : TGGNode, dir : Direction)

TGGRule + synchronize(dir : Direction) handled Object
+ deleteFwd(node : TGGNode) 0.*
. + deleteMap(node : TGGNode)
: :i:zﬂ::rllwag((zgz: X -lr-gguzz:)) + deleteRev(node : TGGNode) sources [0..* 0..* | targets
+ executeRev(node : TGGNode)
%7 0..* [rules nodes | 0..* 0..1]| root
TGGMapping creator ~ createdNodes TGGNode
0..*
0.1 + depth : int pred
Zﬁ + descend : Boolean = false 0.*
0..1 [inputNode succ | 0..*
TGGAxiom
+ executeFwd(obj : Object)
+ executeMap(src : Object, tgt : Object)
+ executeRev(obj : Object)

Abbildung 5.2: Datenstruktur

5.2 Datenstruktur und Algorithmus

Die Datenstruktur wird sowohl in den operationalen Graphersetzungsregeln
als auch in der Steuerungslogik, d.h., dem invarianten Anteil unseres Syn-
chronisationsmechanismus, eingesetzt.

5.2.1 Datenstruktur

Das Klassendiagramm der Datenstruktur ist in Abbildung 5.2 zu se-
hen. Ein zentraler Bestandteil dieses Klassendiagramms ist die Klasse
TGGEngine, die den Synchronisationsalgorithmus représentiert. Dariiber
hinaus enthélt das Klassendiagramm Klassen, mit denen unterschiedliche
Modelltransformations-, Modellintegrations- sowie Modellsynchronisations-
aufgaben verwaltet werden, Klassen zur Repréisentation des Korrespondenz-
modells und der operationalen Graphersetzungsregeln sowie Klassen, die zur
effizienten Traversierung des Korrespondenzmodells beitragen.

161

Kapitel 5 Synchronisationsmechanismus

Fiir die Verwaltung der unterschiedlichen Aufgaben (Modelltransfor-
mation, Modellintegration und Modellsynchronisation) sind die Klassen
TGGManager und TGGTask verantwortlich. Die Klasse TGGManager imple-
mentiert das Singleton- Entwurfsmuster [GHIV94], so dass zur Laufzeit im-
mer nur eine Instanz dieser Klasse existiert. Diese Instanz kennt alle vom
Benutzer initiierten Aufgaben.

Die Aufgaben werden durch Instanzen der Klasse TGGTask représentiert.
Damit ein Benutzer zwischen den unterschiedlichen Aufgaben besser diffe-
renzieren kann, konnen die Aufgaben benannt werden. Jeder Aufgabe ist
eine eigene Instanz der Klasse TGGEngine zugeordnet, die durch einen Auf-
ruf der Methode init mit den fiir diese Aufgabe vorgesehenen Grapherset-
zungsregeln initialisiert wird. Hierzu muss der Methode eine Datei® mit den
ausfithrbaren Graphersetzungsregeln iibergeben werden.

Nach der Initialisierung kénnen die operationalen Graphersetzungsregeln
iiber die Assoziation rules erreicht werden. Die operationalen Grapher-
setzungsregeln werden in Axiome und Regeln unterteilt. Hierzu erben die
Klassen TGGAxiom und TGGRule von der Klasse TGGMapping. Diese Untertei-
lung ist notwendig, weil im Gegensatz zu den Graphersetzungsregeln einer
TGG-Regel den Graphersetzungsregeln eines TGG-Axioms kein Korrespon-
denzknoten als Parameter iibergeben werden kann. Dies liegt daran, dass
bei der initialen Zuordnung der Modelle noch gar kein Korrespondenzknoten
existiert — ein erster Korrespondenzknoten wird erst durch das Axiom selbst
erzeugt. Fiir den Synchronisationsalgorithmus ist dieser Korrespondenzkno-
ten daher erst nach der Initialisierung iiber die Assoziation root erreichbar.

Bei den Klassen TGGMapping, TGGRule und TGGAxiom handelt es sich um
abstrakte Klassen. Die konkreten Klassen, die bei einer Modellsynchroni-
sation zum Einsatz kommen, werden aus der Spezifikation automatisch ge-
neriert, kompiliert und in der zuvor erwidhnten Datei gespeichert. Dabei
miissen die erzeugten Klassen entweder von der Klasse TGGRule oder der
Klasse TGGAxiom erben und die vererbten abstrakten Methoden implemen-
tieren.? Erst diese Klassen — zusammen mit den darin implementierten Me-
thoden — ermdglichen unserem Synchronisationsalgorithmus den Zugriff auf
die operationalen Graphersetzungsregeln, mit deren Hilfe unter anderem das
Korrespondenzmodell aufgebaut wird.

3Bei der Datei handelt es sich um ein Jar-Archiv mit kompilierten und somit ausfiihrba-
ren Klassen. Diese Klassen reprisentieren die operationalen Graphersetzungsregeln.

4Mit der Generierung dieser Klassen werden wir uns noch in Abschnitt 5.3 genauer
beschéftigen.

162

5.2 Datenstruktur und Algorithmus

Die Korrespondenzknoten eines Korrespondenzmodells werden durch In-
stanzen der Klasse TGGNode repréasentiert. Alle Korrespondenzknoten, die
im Metamodell fiir das Korrespondenzmodell spezifiziert werden, miissen
von dieser Klasse erben. Die Abhéngigkeiten zwischen den Korrespondenz-
knoten werden iiber die Assoziation succ realisiert. Bei dieser Assoziation
handelt es sich um eine bidirektionale Assoziation, so dass jeder Korrespon-
denzknoten seine Vorgénger iiber pred erreichen kann. Ein Beispiel fiir eine
TGG-Regel, in der ein Korrespondenzknoten mehrere Korrespondenzkno-
ten als Vorgénger besitzt, haben wir in Abbildung 3.8 kennen gelernt (siehe
Seite 66).

Jeder Korrespondenzknoten merkt sich zusétzlich iiber die Referenz
inputNode, welcher Korrespondenzknoten der Graphersetzungsregel als Pa-
rameter iibergeben wurde, d. h., auf welchem Korrespondenzknoten die An-
wendung der operationalen Graphersetzungsregel gestartet worden war. Die
Graphersetzungsregel, die den Korrespondenzknoten erzeugt hat, ist hinge-
gen fiiber die Assoziation creator erreichbar. Da es sich hierbei ebenfalls
um eine bidirektionale Assoziation handelt, kann jede Graphersetzungsregel
iiber createdNodes alle Korrespondenzknoten erreichen, die sie erzeugt hat.

Der Zugriff auf das Korrespondenzmodell ist iiber die Assoziation root
der Klasse TGGEngine moglich. Zusétzlich werden alle neu erzeugten Kor-
respondenzknoten durch die Assoziation nodes mit der Instanz der Klasse
TGGEngine verlinkt. Diese Assoziation wird fiir einen schnelleren Zugriff
auf die Korrespondenzknoten des Korrespondenzmodells verwendet. Zur
Modellsynchronisation verwendet jede Instanz der Klasse TGGEngine eine
Prioritdtswarteschlange, die durch die Klasse PriorityQueue représentiert
wird. Die Prioritdtswarteschlange ist durch die Assoziation queue erreich-
bar. Sie verwaltet alle Korrespondenzknoten, die nach Modellinderungen
wieder iiberpriift werden miissen.

Bei der Anwendung einer Graphersetzungsregel muss sichergestellt wer-
den, dass es sich bei den neu zu bindenden Modellelementen um Elemente
handelt, die noch nicht an einer Bezichung beteiligt sind (siche auch Ab-
schnitt 5.3). Dies wird {iber die Assoziation handled sichergestellt. Wéhrend
der Anwendung einer Graphersetzungsregel wird mit Hilfe dieser Assozia-
tion iiberpriift, ob das neu gebundene Objekt bereits verlinkt und damit
verbraucht ist. In dem Fall, dass das Objekt noch nicht verbraucht ist,
wird die Ausfithrung der Graphersetzungsregel fortgesetzt und das Objekt
anschlieffend iiber die Assoziation handled als verbraucht markiert. Anson-
sten wird die Ausfiithrung der betrachteten Graphersetzungsregel mit dem
bereits verbrauchten Objekt nicht weiter verfolgt.

163

Kapitel 5 Synchronisationsmechanismus

Um die Objekte der beteiligten Modelle zueinander in Beziehung setzen
zu konnen, besitzt ein Korrespondenzknoten die Assoziationen sources und
targets, die Instanzen vom Typ Object referenzieren. Daher miissen alle
Metaklassen in den beteiligten Metamodellen — mit Ausnahme des Korre-
spondenzmetamodells — explizit oder implizit von dieser Klasse erben.’

5.2.2 Algorithmus

Der Algorithmus zur Modellsynchronisation ist in der Methode synchronize
der Klasse TGGEngine implementiert, die in der Abbildung 5.3 in
Pseudocode-Syntax zu sehen ist. Der Algorithmus ist fiir alle Regeln gleich,
so dass weder eine zusétzliche Spezifikation der Ausfithrungsreihenfolge noch
eine Programmierung der Steuerungslogik in Abhéngigkeit der spezifizierten
Regeln notwendig ist.

1: TGGEngine:: synchronize (dir: Direction)

2: let node : TGGNode := null;

3: while (not self.queue—isEmpty()) do

4: node := self.queue—>dequeue ();

5: for each (rule : TGGRule in self.rules) do
6: self —>execute (rule , node, dir);

7: if (self.batchmode = true) then

8: for each (child : TGGNode in node.succ) do
9: self.queue—>enqueue (child);

10: else if (self.descend = true) then

11: for each (child : TGGNode in node.succ) do
12: if (child.descend = true) then do

13: self.queue—>enqueue (child);

14: child . descend := false;

15: self.descend := false;

Abbildung 5.3: Die Methode synchronize der Klasse TGGEngine

5Die prototypische Realisierung basiert auf der Programmiersprache Java. Darin erben
alle Klassen implizit von der Klasse Object. Bei einer Umsetzung in einer anderen
Programmiersprache muss an dieser Stelle eine Anpassung an die dort verfiigbaren
Konzepte erfolgen. Um Referenzen auf beliebige Objekte beispielsweise in der Pro-
grammiersprache C++ zu realisieren, konnte dort auf anonyme Zeiger (void* ptr;)
zuriickgegriffen werden.

164

5.2 Datenstruktur und Algorithmus

Beim Aufruf der Methode wird die Richtung der Synchronisation der Me-
thode als Parameter (Zeile 1) iibergeben. Als Werte konnen hier forward,
mapping oder reverse der Aufzéhlung Direction verwendet werden. Da-
mit eine Modellsynchronisation durchgefithrt wird, muss vor einem Aufruf
die Prioritatswarteschlange mindestens einen Korrespondenzknoten enthal-
ten, so dass die nachfolgende Schleife (Zeile 3) mindestens einmal durchlau-
fen wird. Ist die Warteschlange beim Aufruf der Methode hingegen leer,
terminiert die Modellsynchronisation ohne die Modelle miteinander zu syn-
chronisieren.

Fiir eine batch-artige Modellsynchronisation muss die Warteschlange
mit der Wurzel des Korrespondenzmodells initialisiert und das Attribut
batchmode auf den Wert true gesetzt werden. Im Falle einer inkrementel-
len Modellsynchronisation ist das Attribut batchmode auf den Wert false
zu setzen. Dariiber hinaus miissen fiir eine inkrementelle Modellsynchronisa-
tion in der Warteschlange alle Korrespondenzknoten gespeichert sein, die mit
den gednderten Modellelementen in Beziehung stehen und erneut iiberpriift
werden sollen.

Innerhalb der Schleife wird zunéchst ein Korrespondenzknoten aus der
Prioritatswarteschlange entnommen (Zeile 4). AnschlieBend wird fiir jede
Regel (Zeile 5) die Methode execute aufgerufen, die neben der Regel den
Korrespondenzknoten und die Synchronisationsrichtung als Parameter erhélt
(Zeile 6). In dieser Methode wird — abhéingig von der Synchronisations-
richtung — eine entsprechende Graphersetzungsregel ausgefiihrt (siehe Ab-
bildung 5.4; vgl. auch Abschnitt 5.3). Sind alle Regeln behandelt worden,
so wird die Schleife (Zeilen 5 und 6) verlassen. Anschlieend wird iiberpriift,
ob ein weiterer Abstieg in das Korrespondenzmodell notwendig ist (Zeilen 7
und 10).

Bei einer batch-artigen Modellsynchronisation (Zeile 7) miissen alle Kor-
respondenzknoten des Korrespondenzmodells besucht werden, so dass alle
direkten Nachfolger des gerade betrachteten Korrespondenzknotens zu der
Warteschlange hinzugefiigt werden (Zeilen 8 und 9). Bei einer inkrementel-
len Modellsynchronisation hingegen steuert das Attribut descend der Klasse
TGGEngine den Abstieg in das Korrespondenzmodell (Zeile 10). Dazu setzt
jede Graphersetzungsregel dieses Attribut auf den Wert true, sobald sie
Anderungen an den Modellen vorgenommen hat.

SEine inkrementelle Modellsynchronisation, die initial ausgefiihrt wird — also einer Mo-
delltransformation oder Modellintegration entspricht — kann nur auf der Wurzel des
Korrespondenzmodells gestartet werden. In diesem Fall verhélt sich der Algorithmus
genauso wie bei einer batch-artigen Modellsynchronisation.

165

Kapitel 5 Synchronisationsmechanismus

1: TGGEngine:: execute (rule : TGGRule, node:TGGNode,
dir: Direction)

2: switch (dir)
3: case forward:
4: rule —executeFwd (node) ;
5: break;
6: case mapping:
7: rule —executeMap (node);
8: break ;
9: case reverse:
10: rule —executeRev (node);
11: break;
12: default:
13: rule —executeMap (node);

Abbildung 5.4: Die Methode execute der Klasse TGGEngine

Damit nicht alle Nachfolger des betrachteten Korrespondenzknotens hin-
zugefiigt werden, markiert jede Graphersetzungsregel zusétzlich die zu
iiberpriifenden Nachfolger, indem sie auch dort das Attribut descend auf
den Wert true setzt. Der Wert dieses Attributs wird innerhalb der Schleife
(Zeile 11) iiberpriift (Zeile 12), so dass nur die tatséichlich von Anderungen
betroffenen Nachfolger zur Warteschlange hinzugefiigt werden (Zeile 13).

In dem Fall, dass ein Nachfolger des betrachteten Korrespondenzknotens
zur Warteschlange hinzugefiigt worden ist, wird das Attribut descend die-
ses Nachfolgers wieder auf den Wert false gesetzt (Zeile 14). Nachdem
alle Nachfolger abgearbeitet worden sind, wird dariiber hinaus das Attribut
descend fiir den Synchronisationsalgorithmus selbst wieder auf den Wert
false gesetzt (Zeile 15).7

Unabhéngig davon, ob eine batch-artige oder eine inkrementelle Modell-
synchronisation durchgefiithrt wird, terminiert der Algorithmus, sobald alle
Korrespondenzknoten der Prioritdtswarteschlange betrachtet worden sind,
d. h., die Prioritdtswarteschlange leer ist (Zeile 3).

"Natiirlich kénnte auf dieses Attribut verzichtet werden und immer alle Nachfolger eines
Korrespondenzknoten iiberpriift werden. In den Féllen, in denen gar keine Anderungen
durch Graphersetzungsregeln vorgenommen worden sind, wére dies jedoch ineffizient.

166

5.2 Datenstruktur und Algorithmus

Prioritatswarteschlage

Die Art der in unserem Algorithmus eingesetzten Warteschlange beeinflusst
die Reihenfolge, in der die Korrespondenzknoten wihrend einer Modellsyn-
chronisation besucht werden. Beispielsweise kdnnten wir eine Warteschlange
verwenden, die nach dem FIFOS-Prinzip arbeitet. Diese Datenstruktur ist
zwar sowohl fiir die batch-artige als auch fiir die inkrementelle Modellsyn-
chronisation geeignet, allerdings kann es bei einer inkrementellen Modellsyn-
chronisation die Laufzeit des Algorithmus negativ beeinflussen.

Das Problem wird in Abbildung 5.5 anhand der schematischen Baum-
struktur unseres Korrespondenzmodells dargestellt. Das Problem taucht auf,
sofern sich die zu synchronisierenden Teilbdume iiberschneiden oder — wie
in Abbildung 5.5 gezeigt — ein Teilbaum vollstdndig innerhalb eines anderen
Teilbaums liegt. In der Abbildung sind die beiden Korrespondenzknoten mit
a und b gekennzeichnet. Die dazugehdrigen Teilbdume wollen wir mit ¢, und
t, benennen. In diesem Beispiel gehen wir davon aus, dass die Anderungen
in den Modellen so beschaffen sind, dass auch bei der inkrementellen Mo-
dellsynchronisation beide Teilbdume vollstédndig traversiert werden miissen.
Auflerdem liegt unserem Beispiel die Annahme zugrunde, dass nicht sofort
nach einer Modelldnderung synchronisiert wird, sondern die Modellénderun-
gen akkumuliert und erst auf Anforderung durch den Benutzer iiberpriift
werden.

Abbildung 5.5: Zu {iberpriifende Korrespondenzknoten und ihre Teilbdume
im Korrespondenzmodell

Zur inkrementellen Modellsynchronisation wird die Warteschlange mit
Korrespondenzknoten gefiillt, die Korrespondenzbeziehungen zwischen
gednderten Modellelementen représentieren. In unserem Beispiel nehmen

8First In — First Out

167

Kapitel 5 Synchronisationsmechanismus

wir an, dass der Korrespondenzknoten b vor dem Korrespondenzknoten a in
die Warteschlange eingefiigt wird und dann der Synchronisationsalgorithmus
gestartet wird. In diesem Fall wiirde im Rahmen der inkrementellen Modell-
synchronisation zunéchst der Korrespondenzknoten b der Warteschlange ent-
nommen, mit Hilfe der Graphersetzungsregeln untersucht und dessen Nach-
folger in die Warteschlange eingefiigt werden. AnschlieSend wiirde der Algo-
rithmus den Korrespondenzknoten a aus der Warteschlage entnehmen und
damit in gleicher Weise verfahren. Der Algorithmus wiirde somit abwech-
selnd Korrespondenzknoten der Teilbdume ¢, und ¢, iiberpriifen. Insgesamt
wiirde der Teilbaum ¢, jedoch vor dem Teilbaum t, abgearbeitet werden.”
Dabei sind zwei Fille zu unterscheiden:

Fall 1 Die Synchronisation der Vorgénger von b im Teilbaum ¢, hat kei-
nen Einfluss auf die durch b hergestellte Korrespondenzbeziehung.
WEeil diese Korrespondenzbeziehung bereits bei der Synchronisation des
Teilbaums t;, iiberpriift und gegebenenfalls wieder hergestellt wurde,
wiirden im Rahmen der Synchronisation von Teilbaum ¢, beim Errei-
chen von b dessen Nachfolger nicht mehr in die Warteschlange eingefiigt
werden. Somit wiirde in diesem Fall der Teilbaum ¢, nicht noch einmal
iiberpriift werden.

Fall 2 Wihrend der Synchronisation des Teilbaums t, fithrt die Synchro-
nisation der Vorginger von b dazu, dass die Korrespondenzbeziehung
des bereits zuvor synchronisierten Korrespondenzknoten b nicht mehr
giiltig ist. Daher miissten und wiirden in diesem Fall die Nachfolger von
b wieder in die Warteschlange eingefiigt werden, d. h., der Teilbaum ¢,
wiirde ein zweites Mal traversiert und {iberpriift werden.

Um den doppelten Aufwand, der durch den zweiten Fall entsteht, zu ver-
meiden, verwenden wir statt einer FIFO-Warteschlange eine Prioritdtswarte-
schlange. In der Prioritdtswarteschlange werden alle Korrespondenzknoten
beim Einfiigen nach ihrer Tiefe im Korrespondenzmodell einsortiert. Hierzu
besitzt die Klasse TGGNode das Attribut depth, dessen Wert sich aus der
maximalen Tiefe seiner direkten Vorgédnger errechnet und um eins erhéht
wird. Die Tiefe der Wurzel, d. h., des Korrespondenzknotens aus dem Axiom,
betrdgt immer null.

9Dies trifft auch dann zu, wenn die Korrespondenzknoten in umgekehrter Reihenfolge in
die Warteschlange eingefiigt worden wéren.

168

5.2 Datenstruktur und Algorithmus

In der Prioritdatswarteschlange besitzen Korrespondenzknoten mit einer
geringeren Tiefe eine hohere Prioritét als tiefer angesiedelte Korrespondenz-
knoten. Daher beginnt die Synchronisation immer mit den Korrespondenz-
knoten, die der Wurzel am néchsten sind. Eine zusétzliche Sortierung der
Korrespondenzknoten mit derselben Tiefe ist nicht notwendig, weil diese
Korrespondenzknoten sich nicht gegenseitig beeinflussen.

Die Korrespondenzknoten werden auch beim mehrmaligen Einfiigen nur
einmal in der Prioritdtswarteschlange gespeichert. In unserem Beispiel wiirde
somit beim Synchronisieren von Teilbaum ¢, der Korrespondenzknoten b nur
einmal in der Warteschlange gespeichert werden. Bei der Ausfithrung der
Synchronisation wiirde dieser Knoten erst dann {iberpriift werden, wenn alle
Korrespondenzknoten geringerer Tiefe abgearbeitet wurden.

Durch den Einsatz der Prioritdtswarteschlange und der damit verbun-
denen Priorisierung der Korrespondenzknoten erfolgt die Traversierung
des Korrespondenzmodells durch eine Breitensuche iiber die zu synchro-
nisierenden Teilbdume. Diese Vorgehensweise verhindert die mehrmalige
Uberpriifung von Korrespondenzknoten und funktioniert insbesondere auch
dann, wenn die Teilbdume sich nur teilweise iiberlappen.

Ermittlung der Anwendungsstelle

Fiir eine batch-artige Modellsynchronisation muss nur die Wurzel des Korre-
spondenzmodells in die Prioritatswarteschlange eingefiigt werden. Der Algo-
rithmus sorgt anschliefend dafiir, dass alle Korrespondenzknoten des Kor-
respondenzmodells traversiert und dabei die Modelle miteinander abgegli-
chen werden. Eine inkrementelle Modellsynchronisation hingegen erreichen
wir, indem wir nur die von Anderungen betroffenen Modellelemente inspi-
zieren. Dazu muss die Prioritdtswarteschlange mit den zu iiberpriifenden
Korrespondenzknoten initialisiert werden, d. h., dass zunéchst die potentiel-
len Anwendungsstellen identifiziert werden miissen.

Zur Identifizierung dieser Anwendungsstellen wird in unserem An-
satz ein Benachrichtigungsmechanismus auf Grundlage des Observer-
Entwurfsmusters [GHJV94] eingesetzt. Dieser Benachrichtigungsmechanis-
mus sorgt dafiir, dass Anderungen im Modell an einen Beobachter gemeldet
werden, der darauf geeignet reagieren kann. Der Beobachter wird durch die
Klasse TGGEngine realisiert. Diese Klasse implementiert die in der Schnitt-
stelle PropertyChangeListener definierte Methode propertyChange, die
dafiir sorgt, dass die mit dem gemeldeten Modellelement in Beziehung ste-
henden Korrespondenzknoten in die Prioritdtswarteschlange eingefiigt wer-

169

Kapitel 5 Synchronisationsmechanismus

den. Hierzu extrahiert die Methode zunéchst aus dem ihr iibergebenen
Parameter evt das gednderte Modellelement. Anschlieend wird der Kor-
respondenzknoten identifiziert, der mit diesem Modellelement iiber eine
source- oder targets-Assoziation verlinkt ist. Da dieser Korrespondenz-
knoten auf der Grundlage seiner Vorgénger erstellt wurde, werden sowohl
seine Vorgénger als auch der Korrespondenzknoten selbst zur Prioritdtswar-
teschlange hinzugefiigt.

Wird ein solcher Benachrichtigungsmechanismus von den beteiligten Mo-
dellen unterstiitzt, so kann mit unserem Ansatz eine Modellsynchronisation
inkrementell durchgefithrt werden. Ist ein solcher Benachrichtigungsme-
chanismus jedoch nicht vorhanden, so kann die Modellsynchronisation nur
batch-artig ausgefiithrt werden.

5.3 Generierung operationaler
Graphersetzungsregeln

Im vorangegangenen Abschnitt haben wir den unverdnderlichen Anteil unse-
res Synchronisationsmechanismus kennen gelernt. In diesem Abschnitt stel-
len wir den verénderlichen Anteil vor. Dieser Anteil wird durch operationale
Graphersetzungsregeln repréisentiert, die automatisch aus den spezifizierten
TGG-Regeln generiert werden. Zusammen mit der im vorangegangenen
Abschnitt vorgestellten Steuerungslogik bestimmen die operationalen Gra-
phersetzungsregeln letztendlich, wie eine Modelltransformation, Modellinte-
gration oder Modellsynchronisation durchgefithrt wird. Die automatische
Generierung der operationalen Regeln aus einer deklarativen Spezifikation
ermoglicht uns somit eine Parametrisierung unseres Synchronisationsmecha-
nismus.

5.3.1 Prinzip

Die Grundstruktur einer TGG-Regel ist in Abbildung 5.6 dargestellt. Wie
anhand der farblich unterlegten Bereiche zu sehen ist, kann eine TGG-Regel
grundsétzlich in bereits gebundene und neu zu erzeugende Elemente un-
terteilt werden. Dariiber hinaus kann eine weitere Einteilung in die durch
die Regel in Beziehung gesetzten Modelle (Modell A, Modell B und Korres-
pondenzmodell) erfolgen. Diese Einteilung wird in Abbildung 5.6 durch die
vertikalen Linien zwischen den drei Modellen verdeutlicht.

170

5.3 Generierung operationaler Graphersetzungsregeln

Korrespondenz -

Modell A modell

Modell B

Gebundene
Elemente

Neu erzeugte

++ ++ ++
Elemente

++ ++

Abbildung 5.6: Grundstruktur einer TGG-Regel

In dem Beitrag von Andy Schiirr [Sch94] wurde die Ableitung von ins-
gesamt drei operationalen Graphersetzungsregeln aus einer TGG-Regel vor-
geschlagen. Die drei Graphersetzungsregeln sind in Abbildung 5.7 schema-
tisch dargestellt. Mit Hilfe der abgeleiteten Graphersetzungsregeln lésst sich
sowohl eine Modelltransformation in Vorwértsrichtung (Modell A nach Mo-
dell B) als auch eine Modelltransformation in Riickwértsrichtung (Modell B
nach Modell A) realisieren. Dariiber hinaus kann mit der dritten Grapher-
setzungsregel eine Modellintegration durchgefiithrt werden.

Die Regel aus Abbildung 5.7(a) wird zur Transformation eines Modells A
in ein Modell B eingesetzt. Bei der Anwendung dieser Regel werden daher
zunéchst alle Elemente der Regel aus dem oberen, grau schattierten Bereich
gebunden. Anschlieend wird {iberpriift, ob ein Element aus dem unteren
grau schattierten Bereich ebenfalls gebunden werden kann. Um die Seman-
tik der TGGs nicht zu verletzen, diirfen dabei nur noch nicht transformierte
Elemente beriicksichtigt werden. In dem Fall, dass ein solches Element ge-
funden werden konnte, werden neue Elemente im Modell B erzeugt. Dariiber
hinaus wird ein neuer Korrespondenzknoten erzeugt, der die Elemente der
beiden Modelle miteinander iiber die spezifizierten Links in Beziehung setzt.

Die Regel aus Abbildung 5.7(b) dient der Modellintegration. Diese Regel
funktioniert &hnlich zu der Modelltransformationsregel aus Abbildung 5.7(a).
Allerdings werden bei dieser Regel nicht nur Elemente im Modell A sondern
auch Elemente im Modell B gesucht. Auch hier diirfen die Elemente noch
nicht durch eine Modelltransformation oder eine Modellintegration zueinan-
der in Beziehung gesetzt worden sein. Konnten solche Elemente gefunden
werden, so wird in dieser Regel nur noch ein Korrespondenzknoten erzeugt,
der diese Elemente iiber Links miteinander in Beziehung setzt.

171

Kapitel 5 Synchronisationsmechanismus

Korrespondenz -
Modell A Modell B
ode modell ode

Gebundene

Elemente

Neu gefundene 4 R + Neu erzeugte
Elemente Elemente

++ ++

(a) Grundstruktur der operationalen Graphersetzungsregel zur Mo-
delltransformation in Vorwirtsrichtung (Modell A nach Modell B)

Korrespondenz -
Modell A modell Modell B

Gebundene

Elemente

Neu gefundene Neu gefundene

++
Elemente Elemente
++ ++
Neu erzeugte
Elemente

(b) Grundstruktur der operationalen Graphersetzungsregel zur Mo-
dellintegration (Modell A und Modell B)

Korrespondenz -
Modell A modell Modell B
Gebundene
Elemente
N o Neu gefund
eu erzeugte | | Pl eu gefundene
Elemente Elemente
++ ++

(¢) Grundstruktur der operationalen Graphersetzungsregel zur Mo-
delltransformation in Riickwirtsrichtung (Modell B nach Modell A)

Abbildung 5.7: Grundstruktur der aus einer TGG-Regel abgeleiteten opera-
tionalen Graphersetzungsregeln

172

5.3 Generierung operationaler Graphersetzungsregeln

Die dritte Regel ist in Abbildung 5.7(c) zu sehen. Diese Regel ist eine
Umkehrung der in Abbildung 5.7(a) gezeigten Regel und wird zur Transfor-
mation eines Modells B in ein Modell A verwendet. Die Ausfithrung dieser
Regel erfolgt analog zur Regel aus Abbildung 5.7(a), nur dass hier bei einer
erfolgreichen Anwendung keine Elemente in Modell A sondern in Modell B
erzeugt werden.

Der in dieser Arbeit realisierte Modellsynchronisationsmechanismus ba-
siert ebenfalls auf operationalen Graphersetzungsregeln, die vom Prinzip her
den in der Abbilung 5.7 gezeigten Regeln entsprechen. Zur inkrementellen
Modellsynchronisation werden jedoch komplexere Graphersetzungsschritte
benotigt, die durch geeignete Kontrollstrukturen gesteuert werden miissen.
Hierzu setzen wir Storydiagramme ein.

5.3.2 Storydiagramme

Bei Storydiagrammen handelt es sich um erweiterte UML-Aktivitédtsdia-
gramme, mit denen das Verhalten einer Methode graphisch spezifiziert wer-
den kann [FNTZ98, Ziin01]. Ein Storydiagramm setzt sich aus Aktivitéten
zusammen, die iiber Transitionen miteinander verbunden sind. Die Transi-
tionen steuern den Kontrollfluss innerhalb eines Storydiagramms.

Der Kontrollfluss eines Storydiagramms beginnt bei einer Startaktivitat
und endet, wenn die Stoppaktivitit erreicht wird. Die einzelnen Aktivitdten
innerhalb eines Storydiagramms kénnen entweder durch Java-Codefragmente
oder durch sogenannte Story-Patterns spezifiziert sein. Bei den Story-
Patterns handelt es sich um operationale Graphersetzungsregeln. Wie wir
schon in Abschnitt 3.1.2 gesehen haben, besteht eine Graphersetzungsregel
aus einer linken und einer rechten Regelseite. Wahrend die linke Regelseite
eine zu suchende Objektstruktur beschreibt, legt die rechte Regelseite fest,
wie diese Objektstruktur modifiziert werden soll, falls sie gefunden wird.

Abbildung 5.8 zeigt ein Beispiel fiir ein Storydiagramm. Das Storydia-
gramm besteht aus einer Startaktivitéit, einer Stoppaktivitit, sowie zwei
Story-Pattern. Die Nummerierung in der linken oberen Ecke der Aktivitét
gibt weder eine Ausfithrungsreihenfolge vor noch ist sie Bestandteil der Spe-
zifikation. Die Nummerierung dient uns in dieser Arbeit lediglich dazu, die
Verweise auf einzelne Aktivitdten im Text eindeutig zu machen.

Mit dem Storydiagramm wird das Verhalten der Methode connect der
Klasse Block sperzifiziert. Damit kann die Methode auf Instanzen der Klasse
Block ausgefiihrt werden. Wie bei Methoden iiblich, kénnen Attributwerte
und Objekte als Parameter an ein Storydiagramm iibergeben werden. Durch

173

Kapitel 5 Synchronisationsmechanismus

Block :: connect (b : Block) : void

!

f(N\ (. N\
(1] 2]
children
b [foreach] b
src
src «create»
«createy
this c:Conrection c:Connection
«create»
tgt tgt
children x:Block X
L/
& J & J

gg[end]

Abbildung 5.8: Beispiel fiir ein Storydiagramm

die Parameterobjekte werden Teile der Anwendungsstelle fiir die Grapherset-
zungsregeln, d. h., die Story-Pattern, vorgegeben. Dies reduziert die Anzahl
der moglichen Anwendungsstellen und verringert damit den Aufwand bei
der Anwendung der Graphersetzungsregel. In unserem Beispiel wird der
Methode ein Parameter b vom Typ Block iibergeben. Ein Riickgabewert
wurde nicht spezifiziert.

Die Ausfithrung der Methode beginnt bei der Startaktivitdt, die durch
einen ausgefiillten Kreis dargestellt ist. Ausgehend von dieser Startaktivitét
wechselt der Kontrollfluss zum ersten Story-Pattern (Aktivitdt 1). Dieses
Story-Pattern enthélt die Objekte this und b, die beide ohne Typangaben
spezifiziert sind. Bei diesen Objekten handelt es sich daher um bereits ge-
bundene Objekte, d.h., diese Objekte sind bereits mit konkreten Instanzen
belegt. Das Objekt this repréisentiert eine Instanz, auf der die Methode auf-
gerufen wurde, also eine Instanz der Klasse Block. Das Objekt b représen-
tiert den an die Methode {ibergebenen Parameter.

Ausgehend von den gebundenen Objekten this und b wird zunéchst
iiberpriift, ob ein children-Link zwischen diesen beiden Objekten existiert.
Anschlieend wird versucht, eine Instanz vom Typ Block an das Object x
zu binden. Diese Instanz darf jedoch nicht iiber ein Objekt ¢ vom Typ
Connection mit dem Objekt b verbunden sein, was durch das durchge-
strichene Objekt c:Connection représentiert wird. Bei dieser Bedingung
handelt es sich um eine negative Anwendungsbedingung.

174

5.3 Generierung operationaler Graphersetzungsregeln

Der doppelte Rahmen um die Aktivitdt 1 bedeutet, dass das darin enthal-
tene Story-Pattern auf alle Instanzen angewandt wird, die der spezifizierten
Graphersetzungsregel entsprechen. Aufgrund der bereits gebundenen Ob-
jekte this und b kann allerdings nur noch das Objekt x:Block frei gebun-
den werden. Fiir jede gefundene Instanz wird iiber die mit der Bedingung
foreach annotierte Transition zur Aktivitat 2 gewechselt.

In der Aktivitdt 2 wird ein Objekt c:Connection mit entsprechenden
Links zu den Objekten b und x erzeugt.!® AnschlieBend wechselt der Kon-
trollfluss zuriick zur Aktivitdt 1. Wird kein Objekt x:Block mehr gefunden,
das die negative Anwendungsbedingung erfiillt, wechselt der Kontrollfluss
zur Stoppaktivitit, die durch einen doppelten Kreis dargestellt wird. Hier
endet die Ausfithrung der Methode.

Die hier nur in Ausziigen dargestellte Syntax und Semantik der Storydia-
gramme wurde von Albert Ziindorf entwickelt, formalisiert und in [Ziin01]
vorgestellt. Auf der Grundlage dieser Formalisierung kann aus einem Story-
diagramm ausfithrbarer Code generiert werden [FNTZ98]. Diese Eigenschaft
nutzen wir in unserem Ansatz aus, um den verdnderlichen Anteil unseres
Synchronisationsmechanismus automatisch zu generieren.

5.3.3 Generierung

Die Generierung von Storydiagrammen erldutern wir am Beispiel der TGG-
Regel Process2Class, mit der eine Korrespondenzbeziehung zwischen einem
Prozess im Blockdiagramm und einer Klasse im Klassendiagramm beschrie-
ben wird. Diese Regel haben wir bereits in Abbildung 3.7 kennen gelernt
(siehe Abschnitt 3.2, Seite 66).

Vor der Generierung der Storydiagramme wird zunéchst zu jeder TGG-
Regel und zu jedem TGG-Axiom eine eigene Klasse erzeugt. Je nachdem,
ob die erzeugte Klasse eine TGG-Regel oder ein TGG-Axiom reprisentiert,
erbt die erzeugte Klasse entweder von der Klasse TGGRule oder von der
Klasse TGGAxiom und definiert die dort deklarierten Methoden executeFwd,
executeMap und executeRev mit den ensprechenden Methodensignaturen.
Aus der dazugehorigen TGG-Regel wird anschlieend zu jeder Methode ein

Die Erzeugung dieses Objekts hitte mit gleichbleibender Semantik ebenso in der Akti-
vitéit 1 spezifiziert werden kénnen. Die Aufteilung auf zwei Aktivitdten ist in diesem
Beispiel erfolgt, um den Kontrollfluss aus einer foreach-Aktivitit zu demonstrieren.
Dieser wird bei der Generierung von Storydiagrammen aus TGG-Regeln an mehreren
Stellen eingesetzt.

175

Kapitel 5 Synchronisationsmechanismus

Process2Class :: executeFwd (node : TGGNode)

foponal :
| |
| |
| |
| |
| |
3 | 5 |
undo | propagate |
rule application : attribute changes :
- I N — |
|
[failure] : [failure] |
| |
))
2 | 4 |
find previous [foreach] check pattern [success]] check attribute [sucdess]
rule application structure ; values X
— o~— :
[end] : |
————\ | |
6 7 I (8 '
find new [foreach] apply [failure] ! apply [suct%ess]
rule application integration rule | completion rule |
4 [D
[end] [success] IL ________ [f_ail_urg]_ o :
9

transformation rule

k-

Abbildung 5.9: Grundstruktur der zu generierenden Storydiagramme

Storydiagramm erzeugt. In Abbildung 5.9 ist die Grundstruktur der zu
generierenden Storydiagramme dargestellt.

Der Ablauf des in Abbildung 5.9 gezeigten Storydiagramms kann in zwei
Phasen unterteilt werden. In der ersten Phase werden bereits etablierter
Korrespondenzbeziehungen iiberpriift und erkannte Inkonsistenzen beseitigt
(Aktivitaten 1-5). Die zweite Phase hingegen dient der Uberpriifung und
Herstellung neuer Korrespondenzbezichungen (Aktivitdten 6-9). Die einzel-
nen Aktivitdten werden im Folgenden detailliert vorgestellt.

Konsistenzpriifung

Die Uberpriifung der Korrespondenzbeziehungen beginnt mit der Identifika-
tion von bereits angewandten Korrespondenzregeln (Aktivitat 1). Das Story-
Pattern hierzu ist in Abbildung 5.10 dargestellt. In dem Story-Pattern wird
zundchst der als Parameter iibergebene Korrespondenzknoten node an das
Objekt bc gebunden. Anschliefend wird die aktuelle Regel, die durch das

176

5.3 Generierung operationaler Graphersetzungsregeln

Objekt this représentiert wird, sowie eine Instanz der Klasse TGGEngine ge-
bunden. Ausgehend von diesen beiden Objekten wird iiberpriift, ob bereits
ein Korrespodenenzknoten vom Typ Pr2Cl existiert, der durch diese Regel
erzeugt wurde. Hierbei muss der erzeugte Korrespondenzknoten einerseits
Nachfolger des Korrespondenzknotens bc sein (vgl. Link succ). Anderer-
seits muss dieser Korrespondenzknoten als Eingabeknoten fiir diese Korres-
pondenzregel fungiert haben (vgl. Link inputNode). In dem Fall, dass alle
spezifizierten Objekte gebunden und die spezifizierten Links zwischen die-
sen Objekten erfolgreich {iberpriift wurden, haben wir eine Regelanwendung
gefunden.

Process2Class :: executeFwd (node : TGGNode)

nodes | pe := (BI2CI) node

inputNod
engine | €ngine:TGG pred npuode
Engine [foreach]
rules 2

this

L

succ

nodes

creator

pc:Pr2Cl

createdNodes

[end]

)

Abbildung 5.10: Hergestellte Korrespondenzbeziehung identifizieren

Fiir jede gefundene Regelanwendung wird iiberpriift, ob die bei der Re-
gelanwendung zugrundeliegende Objektstruktur immer noch gegeben ist
(Aktivitat 2, Abbildung 5.11). Hierzu wird versucht, alle Objekte und Links
zu binden, die von den Korrespondenzknoten durch sources und targets-
Assoziationen erreichbar sind. Dabei handelt es sich um Objekte, die be-
reits durch die handled-Assoziation als verbraucht markiert worden sind. In
diesem Zusammenhang wird auch die negative Anwendungsbedingung der
TGG-Regel iiberpriift.

177

Kapitel 5 Synchronisationsmechanismus

E N

n k targels) od:ClassDiagram |
children
elements
bl:Block sources be WS targets blc:Class

pred source

inputNode

target: | |
c:Composition [elemefts
succ
children target

r-Process ~ources pc targets QC|ZC|aSS elements
des
" r_____________________J no
creator createdNodes \ed
’a“é stereotypes
this - ’ =)
rles engine | engine nand® targets”| st:Stereotype
handled handled
L J/

Abbildung 5.11: Objektstruktur der Korrespondenzbeziehung iiberpriifen

Falls die negative Anwendungsbedingung nicht mehr erfiillt ist, oder falls
Objekte und /oder Links geloscht wurden, so ist die Korrespondenzbeziehung
nicht mehr giiltig. Sie wird daher wieder riickgingig gemacht (Aktivitdt 3).
In dem Fall, dass die Objektstrukturen dieses Story-Patterns in den Modellen
weiterhin gegeben sind, miissen nur noch die Attributwerte {iberpriift und
aktualisiert werden (Akitvitaten 4 und 5).

Inkonsistente Korrespondenzbeziehung auflésen

Eine bestehende Korrespondenzbeziehung wird durch einen Korrespondenz-
knoten représentiert. Somit kann eine Korrespondenzbeziehung am einfach-
sten aufgelost werden, indem der Korrespondenzknoten und alle dazu inzi-
denten Links geloscht werden. Das hierfiir verantwortliche Story-Pattern ist
in Abbildung 5.12 dargestellt.

In diesem Story-Pattern wird auf dem Objekt engine die Methode
deleteFwd aufgerufen. Abbildung 5.13 zeigt die Methode in Pseudocode-
Syntax. Der Methode wird der zu 16schende Korrespondenzknoten als Pa-
rameter {ibergeben. Weil dieser Korrespondenzknoten geloscht werden soll,
werden automatisch alle von diesem Korrespondenzknoten abhingigen Re-
gelanwendungen ebenfalls ungiiltig — sie miissen daher ebenfalls zuriick ge-
nommen werden. Daher wird die Methode rekursiv auf allen Nachfolgern
dieses Korrespondenzknotens ausgefiihrt (Zeilen 2 und 3). Falls keine Nach-

178

5.3 Generierung operationaler Graphersetzungsregeln

+ 1: deleteFwd(pc)

engine pc

[failure]
2]
Abbildung 5.12: Inkonsistente Korrespondenzbeziehung auflésen

folger mehr vorhanden sind, werden die handled-Links zu allen Objekten
im Blockdiagramm entfernt (Zeilen 4 und 5). Anschlieend werden — da wir
die Modellsynchronisation in Vorwiartsrichtung durchfithren — alle referen-
zierten Objekte im Klassendiagramm geloscht (Zeilen 6 und 7). Schliefllich
werden der betrachtete Korrespondenzknoten und alle dazu inzidenten Links
geloscht (Zeile 8).

TGGEngine : : deleteFwd (node : TGGNode)

for each (s : TGGNode in node.succ) do
self—deleteFwd (s);

for each (o : Object in node.sources) do
self . handled—remove(o0);

for each (o : Object in node.targets) do
delete o;

delete node;

CO 1 O Ul W N -

Abbildung 5.13: Die Methode deleteFwd

Natiirlich sind beim Zuriicknehmen einer Regelanwendung auch andere
Strategien denkbar. Beispielsweise konnten in beiden Modellen die referen-
zierten Objekte lediglich als unverbraucht markiert werden. In diesem Fall
wiirde allerdings nach dem Lo&schen eines Blocks eine Modellsynchronisation
in Riickwértsrichtung dazu fiithren, dass ein solcher Block wieder erzeugt
werden wiirde. FEine andere Moglichkeit wire, alle referenzierten Objekte
einfach zu 16schen. In diesem Fall wiirde aber beispielsweise beim Entfer-
nen oder Andern des Stereotyps die Klasse und die Kompositionsbeziehung

179

Kapitel 5 Synchronisationsmechanismus

im Rahmen der Modellsynchronisation automatisch geléscht werden. Fiir
den Benutzer wére ein solches Verhalten — insbesondere bei einer automa-
tischen Synchronisation nach jeder Anderung — nur schwer nachvollziehbar.
Aus diesem Grund haben wir uns fiir die richtungsabhéngige Behandlung
ungiiltig gewordener Regelanwendungen in der hier vorgestellten Art und
Weise entschieden. Fiir andere Anwendungsszenarien ist es aber durchaus
denkbar, dass eine andere Strategie angemessener ist. Die alternativen Stra-
tegien kénnen durch eine andere Implementierung der Methode deleteFwd
umgesetzt werden.

Attributaktualisierung

Nach einer erfolgreichen Uberpriifung der Objektstruktur miissen zusétzlich
Attributbedingungen iiberpriift und gegebenenfalls aktualisiert werden (Ak-
tivitdten 4 und 5). Diese beiden Aktivitaten stellen ein Generierungsmuster
dar und werden nur dann generiert, wenn in der TGG-Regel mindestens eine
Attributbedingung spezifiziert worden ist. Sind mehrere Attributbedingun-
gen in der TGG-Regel spezifiziert, so werden nach diesem Muster fiir jede
Attributbedingung jeweils zwei separate Aktivitdten erzeugt. Falls jedoch
keine Attributbedingung spezifiziert wurde, wechselt der Kontrollfluss direkt
zur Aktivitdt 1. In der Abbildung 5.9 ist die Generierung der Aktivitidten 4
und 5 daher durch das grau schattierte Rechteck als optional gekennzeichnet.

Unsere Beispielregel Process2Class enthilt zwei Attributbedingungen. Die
erste Attributbedingung fordert, dass der Prozess und die dazu korrespon-
dierende Klasse einen identischen Namen besitzen. Die zweite Bedingung
besagt, dass es sich bei dem Stereotyp der Klasse um einen Stereotyp der
Art ,process“ handeln soll. Fiir diese beiden Attributbedingungen werden
daher auf der Grundlage des Generierungsmusters insgesamt vier Aktivitaten
erzeugt. Die erzeugten Aktivitdten sind in der Abbildung 5.14 zu sehen.

Die Uberpriifung der ersten Bedingung findet in der Aktivitit 4a statt.
Ist diese Bedingung verletzt, so wird der Name des Prozesses in der Ak-
tivitit 5a an die Klasse propagiert. Infolge der durchgefithrten Anderung
miissen alle Regelanwendungen, die auf dem Korrespondenzknoten pc basie-
ren, iiberpriift werden. Dies wird dem Synchronisationsalgorithmus signali-
siert, indem das Attribut descend der Objekte engine und pc auf den Wert
true gesetzt wird.

Unabhéngig davon, ob eine Attributpropagation stattgefunden hat oder
nicht, fithrt der Kontrollfluss zur Aktivitdat 4b, in der die zweite Bedingung
iiberpriift wird. Ist diese Bedingung verletzt, so wird das Attribut kind in

180

5.3 Generierung operationaler Graphersetzungsregeln

(5a N (50 N
pc pc
descend := true descend := true
3 engine engine
descend := true descend := true
pel st
[failure] name := pr.name kind := process"
& J/ \ J/
[failure] [failure]
(4a) (4b)
2 [success [success] [success]
v pel st
name == pr.name kind == ,process"”
- J g J

Abbildung 5.14: Attributwerte iiberpriifen und aktualisieren

der Aktivitat 5b aktualisiert. Auch hier wird die Aktualisierung mit Hilfe der
descend-Attribute dem Synchronisationsalgorithmus mitgeteilt. Da es sich
hierbei um die letzte zu iiberpriifende Attributbedingung handelt, wechselt
der Kontrollfluss anschlieBend wieder zur Aktivitét 1.

Neue Anwendungsstelle suchen

Nach der Uberpriifung und Aktualisierung aller bereits bestehenden Korres-
pondenzbeziehungen (Aktivitdten 1-5) wird die Aktivitat 1 iiber die mit end
annotierte Bedingung verlassen, um nach neuen Korrespondenzbeziehungen
zu suchen (Aktivitdten 6-9). Neue Korrespondenzbezichungen ergeben sich
insbesondere dann, wenn der Benutzer neue Objekte und/oder Links zu den
Modellen hinzufiigt. Ebenso kénnen aber neue Korrespondenzbeziehungen
entstehen, wenn Objekte gedndert oder aus dem Modell gelscht werden und
dadurch die geforderten (negative) Anwendungsbedingungen erfiillt sind.

In unserem Beispiel kénnte ein Benutzer beispielsweise einen neuen Block
im Blockdiagramm erstellen. In diesem Fall miisste im Rahmen der Modell-
synchronisation im Klassendiagramm eine neue Klasse mit einem Stereotyp
und einer Komposition erzeugt werden. Hierzu wird zunéchst im Block-
diagramm nach moglichen Anwendungsstellen fiir die Regeln gesucht. Fiir
unsere Beispielregel bedeutet dies, dass zunéchst nur nach neuen Prozes-
sen gesucht wird. Das hierfiir aus der TGG-Regel Process2Class generierte
Story-Pattern ist in Abbildung 5.15 dargestellt.

181

Kapitel 5 Synchronisationsmechanismus

ﬂ N

) K targets,

cd:ClassDiagram

children

elements

bl:Block be blc:Class

sources targets

children

r:Process

rules engine

—
=2

handled tnis

engine:TGG
Engine

Abbildung 5.15: Neue Anwendungsstelle suchen

Ausgehend von dem betrachteten Korrespondenzknoten bc werden
zundchst die Objekte bl, cd und blc gebunden sowie die negative An-
wendungsbedingung nb iiberpriift. Diese Objekte bilden einen notwendigen
Kontext fiir eine erfolgreiche Regelanwendung. Bei der Ausfiihrung dieses
Story-Patterns kann ausserdem nicht davon ausgegangen werden, dass das
Objekt engine bereits in der vorherigen Aktivtitdt 1 gebunden worden ist.
Daher wird dieses Objekt sicherheitshalber erneut gebunden.

Anschliefend wird nach einem neuen Prozess pr gesucht. Damit nur un-
verbrauchte Prozesse beriicksichtigt werden, darf der Prozess nicht durch
eine handled-Assoziation mit dem engine-Objekt verlinkt sein. Dies wird
durch den durchgestrichenen handled-Link spezifiziert, der damit eine ne-
gative Anwendungsbedingung darstellt und daher auch als negativer Link
bezeichnet wird. Fiir jeden Prozess, der gebunden werden kann und noch
nicht verbraucht ist, wird zur Aktivitdt 7 verzweigt.

Integration

Fiir jede gefundene Anwendungsstelle wird zunéchst iiberpriift, ob dazu
korrespondierende Elemente bereits im Zielmodell existieren (Aktivitdt 7).
Prinzipiell wird hierfiir die operationale Graphersetzungsregel zur Modellin-
tegration aus der Abbildung 5.7(b) ausgefiihrt. Die Anwendung dieser Inte-
grationsregel stellt sicher, dass Objekte im Zielmodell wiederverwendet und
nicht neu erzeugt werden.

Das entsprechende Story-Pattern zu unserer Beispielregel ist in Abbil-
dung 5.16 zu sehen. Alle bereits in der Aktivitdt 6 gebundenen Objekte

182

5.3 Generierung operationaler Graphersetzungsregeln

targets,

children

elements

=
4

blc

= sources

targets

pred source
inputNode

c:Composition [giemehts

«create» «create»

«create»

target
children succ «create» g

«create» pc:Pr2Cl - > «create» cl:Class elements
r
pr sources descend := true (S targets —
createdNodes S| name == pr.name
«create»
«create» creator nodes stereotypes
handled «create» d\ed
this rules engine, - e “gealey™] st:Stereotype
engine «crqa/le» — "
descend := true handied kind == ,process
- J

Abbildung 5.16: Integrationsregel anwenden

erscheinen jetzt ohne Typangabe. Im Gegensatz dazu sind die neu zu bin-
denden Objekte im Klassendiagramm mit einem Typ versehen. Analog zu
den Objekten im Blockdiagramm diirfen auch diese Objekte noch nicht ver-
braucht sein. Dies wird durch die negativen handled-Links ausgedriickt.
Auf die Uberpriifung des negativen handled-Links zu dem Objekt pr kann
verzichtet werden, da diese Uberpriifung bereits in der Aktivitit 6 stattge-
funden hat.

Zur erfolgreichen Anwendung der Integrationsregel miissen die in der
TGG-Regel spezifizierten Attributbedingungen erfiillt sein. In unserem Bei-
spiel muss das Objekt pcl genauso benannt sein wie der Prozess. Dariiber
hinaus muss das Attribut kind des Objekts st den Wert ,,process“ besitzen.
In dem Fall, dass die Objekte diese Bedingungen erfiillen, wird eine Kor-
respondenzbeziehung zwischen den Objekten hergestellt, indem ein neuer
Korrespondenzknoten pc erzeugt wird. Der neu erzeugte Korrespondenz-
knoten stellt die Korrespondenzbeziehung zwischen den Objekten iiber die
sources- und targets-Links her.

Im Rahmen der Modellsynchronisation werden der Prozess im Blockdia-
gramm sowie alle neu erstellten Objekte im Klassendiagramm durch die
neu erzeugten handled-Links als verbraucht markiert. Die fiir die Erstel-
lung des Korrespondenzknotens verantwortliche Regel wird mit Hilfe des
Links creator fiir eventuell nachfolgende Konsistenzpriifungen gespeichert.

183

Kapitel 5 Synchronisationsmechanismus

Fiir einen schnelleren Zugriff auf den erzeugten Korrespondenzknoten wird
ein nodes-Link erstellt. Zusétzlich werden ein succ und ein inputNode-
Link zwischen dem bereits gebundenen und dem neu erzeugten Korrespon-
denzknoten hinzugefiigt, um ein giiltiges Korrespondenzmodell aufzubauen.
Schliellich wird dem Synchronisationsalgorithmus durch das Setzen des At-
tributs descend auf den Wert true in den Objekten engine und pc signali-
siert, dass der neu erzeugte Korrespondenzknoten auf neue Regelanwendun-
gen {iberpriift werden muss.

Automatische Vervollstandigung

Héufig ist eine Modellintegration nicht méglich, weil keine korrespondieren-
den Elemente im Zielmodell existieren. In diesen Féllen muss die Modell-
synchronisation — wie im néchsten Abschnitt beschrieben wird — durch eine
operationale Graphersetzungsregel zur Modelltransformation durchgefiihrt
werden. In einigen Féllen sind aber zumindest einige der geforderten Ob-
jekte vorhanden, so dass zur Modellsynchronisation nur die noch fehlenden
Objekte erzeugt werden miissen. Diesen Vorgang bezeichnen wir als auto-
matische Vervollstdndigung.

Bei der automatischen Vervollsténdigung wird zunéchst untersucht, ob we-
nigstens einige Elemente im Zielmodell vorhanden sind, die wiederverwendet
werden konnen. In diesem Fall erfolgt eine automatische Vervollstindigung
der noch fehlenden Elemente (Aktivitéit 8). Dabei existieren im Allgemeinen
mehrere Situationen, die zu iiberpriifen sind. In Abbildung 5.17 haben wir
fiir unsere Beispielregel zwei dieser Situationen dargestellt.

Die erste Moglichkeit zur automatischen Vervollstindigung ist im Story-
Pattern der Abbildung 5.17(a) dargestellt. In diesem Story-Pattern wird
iiberpriift, ob eine Klasse existiert, die denselben Namen besitzt wie der
Prozess. Zusétzlich muss diese Klasse mit einem << process>>-Stereotypen
versehen sein. Ist diese Situation im Klassendiagramm gegeben, so wird die
Objektstruktur um das noch fehlende Objekt ¢ mit entsprechenden Links
zu den Objekten blc und pcl ergénzt, d. h., eine Komposition zwischen den
beiden Klassen erzeugt.

Die zweite Moglichkeit zur automatischen Vervollstandigung ist in der Ab-
bildung 5.17(b) zu sehen. Auch in diesem Fall wird eine Klasse vorausgesetzt,
die denselben Namen besitzt wie der Prozess. Zusétzlich muss zwischen die-
ser Klasse und der Klasse, die den Block représentiert, eine Kompositionsbe-
ziehung vorhanden sein. Im Gegensatz zum vorherigen Story-Pattern wird
ein Stereotyp nicht gefordert.

184

5.3 Generierung operationaler Graphersetzungsregeln

(N
8a
RIS targets, od
children
elements
ale
ole
bl bc blc %|e
sources = targets Do g;
<o
pred inputNode source
«create»
«create» «createn
targets . I,
«create» «create» c:Composition
e,
évz?;\ &Q,b «cn"eate?
children SUCC | «create» b & arge
«create» c:Pr2Cl «create» cl:Class elements
r
or sources descend := true targets:
createdNodes name == pr.name
«create»
«create» creator nodes = stereotypes
handled «create» &)
f rules engine d t
this Y o et IRl st:Stereotype
engine «crqz}le» -
kind ==, process”
descend := true handled
- J
(a) Eine Moglichkeit der Autovervollstdndigung
(N
8b
P targets, od
children
elements
bl be blc
sources targets
pred inputNode source
«create»
targets . e
«create» «create» c:Composition elemets
target
children suee «create» 9
«create» c:Pr2Cl «create, cl:Class elements
r
or sources descend := true targets
createdNodes name == pr.name
«create»
d «create»
«create» creator <?§eztse» stereotypes «create»
handled ' X n
. rules engine create
this ! o engine “Hirgete | st:Stereotype
3 a4 «create» B
escend := true p—— kind := ,process”
andle
- J

(b) Eine weitere Méglichkeit zur Autovervollstdndigung

Abbildung 5.17: Automatische Vervollstéindigung

185

Kapitel 5 Synchronisationsmechanismus

Natiirlich existieren neben diesen beiden Moglichkeiten noch weitere
Moglichkeiten fiir unvollstdndige Objektstrukturen. Beispielsweise kénnte
iiberpriift werden, ob lediglich eine Klasse vorhanden ist, die denselben
Namen besitzt wie der Prozess. Fiir eine giiltige Korrespondenzbeziehung
miisste dann eine dazugehorige Kompositionsbeziehung und ein Stereotyp
erzeugt werden. Andere Moglichkeiten fiir eine automatische Vervollstindi-
gung ergeben sich, wenn einfach nur noch fehlende Links zwischen den gefor-
derten Objekten erzeugt werden miissen. In einigen Féllen kénnte es durch-
aus sinnvoll sein, Objekte wiederzuverwenden, obwohl deren Attributwerte
nicht die geforderten Bedingungen erfiillen. Dazu miisste die automatische
Vervollstandigung die Attributwerte dementsprechend anpassen. Welche die-
ser Moglichkeiten tatsichlich in Betracht kommen, héingt jedoch héufig von
dem Anwendungsszenario und den damit verbundenen TGG-Regeln ab.

Die Erzeugung der Story-Pattern zur automatischen Vervollstandigung
kann automatisch erfolgen, indem alle méglichen Kombinationen der zu su-
chenden Objekte erzeugt werden. Wie in der Arbeit von Jorg Baksmeier
jedoch gezeigt wurde, fithrt dies zu automatischen Vervollstdndigungen, die
weder bei der Spezifikation der TGG-Regeln vorgesehen noch vom Benutzer
erwiinscht waren [Bak06]. Zur Losung des Problems wurde in der Arbeit da-
her vorgeschlagen, Objekte und Links zu Gruppen zusammenzufassen, die
als eine zusammengehorige Einheit betrachtet und nur gemeinsam gesucht
oder vervollstandigt werden. Nach der zusétzlichen Spezifikation einer sol-
chen Gruppierung konnten viele problematische Félle bei der Generierung
der Story-Pattern zur automatischen Vervollstédndigung vermieden werden.

Die automatische Generierung der Story-Pattern fiihrt jedoch selbst unter
Einsatz der beschriebenen Gruppierung nicht immer zu sinnvollen Objekt-
strukturen, weil die Semantik der Objekte weder aus den gegebenen Meta-
modellen noch aus den spezifizierten TGG-Regeln hervorgeht. Zur automa-
tischen Generierung der Story-Pattern aus unserer Beispielregel miisste jede
erdenkliche Kombination der Objekte c, pcl und st beriicksichtigt werden.
Dabei wiirde auch ein Story-Pattern entstehen, in dem nur die Kompositi-
onsbeziehung, d. h., das Objekt c, {iberpriift und anschlieBend um die noch
fehlende Klasse mit einem Stereotyp ergénzt wird. Diese Uberpriifung und
Vervollstandigung ist aber wenig sinnvoll, da eine Kompositionsbeziehung
immer eine Ursprungs- und Zielklasse besitzen muss.

Damit der Sperzifizierer die zu generierenden Story-Pattern zur automati-
schen Vervollstandigung direkt beeinflussen kann, miissen im Rahmen dieser
Arbeit die zu vervollstiandigenden Objektstrukturen zusétzlich vor der Ge-
nerierung der Story-Pattern angegeben werden. Dazu reicht es aus, die zu

186

5.3 Generierung operationaler Graphersetzungsregeln

suchende Objektstruktur zu spezifizieren. Bei der Generierung wird eine
solche Objektstruktur herangezogen, um die Unterschiede zur Objektstruk-
tur der TGG-Regel zu bestimmen und das entsprechende Story-Pattern zur
automatischen Vervollstdndigung zu erzeugen.

Existieren mehrere Moglichkeiten zur automatischen Vervollstédndigung,
werden die hierzu generierten Story-Pattern aneinandergereiht und durch
entsprechende Transitionen miteinander verbunden. Wurde ein Story-
Pattern erfolgreich ausgefiihrt, wird es {iber eine success-Transition ver-
lassen. Der Kontrollfluss wechselt infolge dessen wieder zur Aktivitit 6.
Kann das Story-Pattern jedoch nicht angewendet werden, so wird iiber eine
failure-Transition zum néchsten Story-Pattern gewechselt, das eine weitere
Moglichkeit der automatischen Vervollstédndigung iiberpriift. In dem Fall,
dass gar keine automatische Vervollstandigung ausgefiihrt werden kann, wird
die Modellsynchronisation durch eine operationale Graphersetzungsregel zur
Modelltransformation ausgefiihrt.

Transformation

Ist eine automatische Vervollstédndigung nicht gewiinscht oder moglich, so
wird eine Modellsynchronisation durch Modelltransformation ausgefiihrt
(Aktivitédt 9). Das dazu erzeugte Story-Pattern entspricht der operationalen
Graphersetzungsregel aus Abbildung 5.7(a). Das aus unserer Beispielregel
generierte Story-Pattern zur Modellsynchronisation durch Modelltransfor-
mation ist in der Abbildung 5.18 zu sehen.

Die in dem Story-Pattern erzeugten Objektstrukturen entsprechen den
bereits beschriebenen Story-Pattern zur Modellintegration und der automa-
tischen Vervollstandigung. Der einzige Unterschied besteht darin, dass zur
Herstellung der Korrespondenzbeziehung in dem Story-Pattern zur Modell-
transformation alle Objekte im Klassendiagramm neu erzeugt werden. Nach
der Anwendung dieses Story-Patterns wird wieder das Story-Pattern der Ak-
tivitdt 6 ausgefiihrt.

Falls in der Aktivitat 6 kein unverbrauchter Prozess mehr gefunden wird,
wechselt der Kontrollfluss zur Stoppaktivitat. Damit wird die Ausfiihrung
dieser Regel auf dem als Parameter iibergebenen Korrespondenzknoten been-
det. Der Synchronisationsalgorithmus sorgt anschlieend dafiir, dass entwe-
der weitere Regeln auf diesem Korrespondenzknoten iiberpriift werden oder
der néchste Korrespondenzknoten untersucht wird.

187

Kapitel 5 Synchronisationsmechanismus

(9])

targets,

children

elements

=
o
e}

blc

«create»
elements

= sources = targets

source

pred inputNode «create»

«create»

targets

c:Composition

«create» «create»

«create»
«createy

«create»
elements

2 target create
children SUCC | (createn @’b@ \rab J < i
«© cb .
«create» c:Pr2Cl @ «create», pcl:Class
r
or sources descend := true targets -
createdNodes name = prname
«create»
d «create»
«create» creator <<ncoregfe» stereotypes
handled " .
. rules engin| " .
this 9 engine Hrese”| st:Stereotype
descend := true «create» kind := ,process"
handled
- J/

Abbildung 5.18: Modelltransformation ausfithren

Sonderfille

An dieser Stelle betrachten wir einige Sonderfille, die bei der Generierung
von Storydiagrammen zu beachten sind.

Storydiagramme zur Modellintegration Wihrend die Storydiagramme fiir
die Modellsynchronisation in Riickwirtsrichtung analog zu den zu-
vor beschriebenen Storydiagrammen fiir die Modellsynchronisation
in Vorwiértsrichtung generiert werden, miissen bei der Generierung
von Storydiagrammen fiir die Modellintegration einige Besonderheiten
beriicksichtigt werden.

Bei der Modellintegration werden korrespondierende Modellelemente
identifiziert und zueinander in Beziehung gesetzt. Dabei findet neben
der Uberpriifung der Objektstruktur auch eine Uberpriifung der gefor-
derten Attributbedingungen statt. Allerdings werden bei der Modellin-
tegration keine Attribute aktualisiert, um Korrespondenzbeziehungen
aufrecht zu erhalten. Dies geschieht weiterhin durch die Ausfithrung
einer Modellsynchronisation in eine festgelegte Richtung.

Aus diesem Grund entfillt bei der Generierung der Storydiagramme
zur Modellintegration die Aktivitdt 5. Dariiber hinaus werden die Ak-
tivitdten 2 und 4 zusammengelegt, so dass die Uberpriifung der Attri-

188

5.3 Generierung operationaler Graphersetzungsregeln

butbedingungen zusammen mit der Uberpriifung der Objektstruktur
stattfindet. In dem Fall, dass eine Inkonsistenz festgestellt wird, wird in
der Aktivitét 3 die Methode deleteMap aufgerufen. In dieser Methode
werden die beteiligten Objekte sowohl im Quell- als auch im Zielmodell
als unverbraucht markiert und lediglich der Korrespondenzknoten mit
den dazu inzidenten Links gel6scht.

Zur Uberpriifung und Herstellung neuer Korrespondenzbeziehungen
wird nur die Aktivitdt 6 benétigt, d.h., die Aktivitdten 7, 8 und 9
entfallen. In die Aktivitdt 6 wird ein Story-Pattern mit der Integra-
tionsregel eingebettet (vgl. Abbildungen 5.7(b) und 5.16), wobei hier
alle Objekte mit Typangaben versehen sein miissen, damit sie gebun-
den werden. Zusétzlich miissen die Attributbedingungen iiberpriift
und bei einer erfolgreichen Regelanwendung ein Korrespondenzknoten
mit all den notwendigen Links erstellt werden.

Storydiagramme fiir komplexere Regeln In einigen Féllen konnen TGG-
Regeln von der in Abbildung 5.6 gezeigten Grundstruktur abweichen
und mehrere Korrespondenzknoten fiir den zu erzeugenden Korrespon-
denzknoten voraussetzen. Ein Beispiel fiir eine solche TGG-Regel ha-
ben wir in Abbildung 3.8 gesehen (siehe Seite 66). Die Grundstruktur
einer solchen Regel ist in Abbildung 5.19 dargestellt, wobei wir hier
nur zwei Korrespondenzknoten voraussetzen. Diese Grundstruktur ist
jedoch auch auf mehr als zwei vorausgesetzte Korrespondenzknoten
verallgemeinerbar.

Zur Generierung eines Storydiagramms kann das Prinzip angewandt
werden, das wir bereits in Abschnitt 5.3.1 kennen gelernt haben. Der
in dieser Arbeit vorgestellte Synchronisationsmechanismus iibergibt al-
lerdings an jedes Storydiagramm genau einen Korrespondenzknoten als
Eingabe, der dann den Ausgangspunkt fiir die Regelanwendung inner-
halb eines Storydiagramms bildet. Bei der Generierung eines Storydia-
gramms miisste daher einer der vorausgesetzten Korrespondenzknoten
als Eingabeknoten festgelegt werden.

Legt man einen der Korrespondenzknoten als Eingabe fiir die Regelan-
wendung fest, so kann es wihrend einer Modellsynchronisation vor-
kommen, dass zu dem Zeitpunkt, an dem die Regel iiberpriift wird,
einer oder sogar mehrere der anderen zur Regelanwendung benétigten
Korrespondenzknoten noch nicht existieren. Damit wiirde die Regelan-
wendung erfolglos abgebrochen werden und miisste zu einem spéteren

189

Kapitel 5 Synchronisationsmechanismus

Korrespondenz -
Modell A modell Modell B
Gebundene
Elemente
N t ++ arar
eu erzeugte + +
Elemente
++ ++

++ arar
Gebundene
Elemente

Abbildung 5.19: Grundstruktur einer komplexeren TGG-Regel

Zeitpunkt, d. h., wenn der oder die anderen Korrespondenzknoten er-
stellt worden sind, erneut ausgefithrt werden. Hierfiir miisste das Kor-
respondenzmodell ein zweites Mal durchlaufen werden.

Um die wiederholte Traversierung des Korrespondenzmodells zu ver-
meiden und die Synchronisation in einem Durchlauf zu ermdéglichen,
muss die Regelanwendung von jedem der vorausgesetzten Korrespon-
denzknoten ausfithrbar sein, d.h., jeder Korrespondenzknoten muss
als Eingabeknoten und damit als Ausgangspunkt der Regelanwendung
im Storydiagramm akzeptiert werden. Dies wird realisiert, indem fiir
jeden vorausgesetzten Korrespondenzknoten die in Abbildung 5.9 ge-
zeigte Grundstruktur generiert wird und der entsprechende Korrespon-
denzknoten an den Parameter des Storydiagramms gebunden wird.
Zusétzlich werden bei einer erfolgreichen Regelanwendung entspre-
chende inputNode-Links zwischen diesem Korrespondenzknoten und
den neu erzeugten Korrespondenzknoten erstellt, so dass auch die Kor-
respondenzpriifung in den Aktivitdten 1-5 korrekt ausgefiihrt werden
kann. Die mehrfach erzeugten Grundstrukturen werden in einem Sto-
rydiagramm hintereinander gereiht.

Storydiagramme fiir Axiome Ein Axiom reprisentiert eine festgelegte Aus-
gangssituation und bildet damit eine Grundlage fiir die Anwendung
von Korrespondenzregeln. Daher besitzt ein Axiom einen Sondersta-

190

5.3 Generierung operationaler Graphersetzungsregeln

tus: der Korrespondenzknoten eines Axioms wird nur dann geloscht,
wenn keine Synchronisation der Modelle mehr gewiinscht ist.

Damit ein Benutzer die notwendige Ausgangssituation fiir eine Mo-
dellsynchronisation zwischen zwei Modellen moglichst einfach und au-
tomatisch herstellen kann, werden in dieser Arbeit auch aus einem
Axiom Storydiagramme generiert. Diese sind jedoch wesentlich einfa-
cher gehalten. Die aus einem Axiom generierten Storydiagramme fiir
die Methoden executeFwd, executeMap und executeRev bestehen je-
weils aus einem einzigen Story-Pattern mit dazugehoriger Start- und
Stoppaktivitit. Die Story-Pattern selbst werden durch die Anwen-
dung des in Abschnitt 5.3.1 vorgestellten Prinzips erzeugt. In Abbil-
dung 5.20 ist das Storydiagramm der Methode executeFwd dargestellt,
das aus Axiom System2Class unseres Beispiels generiert wurde (vgl.
Abschnitt 3.2, Abbildung 3.9, Seite 67).

3 System2Class :: executeFwd (node : Object)

Vs
1 «create»
targets_| cd:ClassDiagram
«create»
«create»
elements
«create» «create»
sys := (System) «create» «create»
sc:Sy2C| cl:Class
node targets targets
createdNodes nodes root «create»
«create» «create» | «create» stereotypes
creator «create» «create»
. rules engine | engine:TGG
this 9 . targets | St:Stereotype
Engine
\§ J

®

Abbildung 5.20: Storydiagramm zum Axiom System2Class

Im Gegensatz zu Storydiagrammen, die aus TGG-Regeln generiert wer-
den, kann der Parameter fiir Storydiagramme, die aus Axiomen erstellt
wurden, nicht an einen Korrespondenzknoten gebunden werden, weil
zum Zeitpunkt der Ausfithrung noch kein Korrespondenzknoten exis-
tiert. Daher wird der Parameter an das Objekt sys gebunden, d.h.,
das iibergebene Parameterobjekt muss vom Typ System sein. Zusétz-
lich zu der bereits aus den vorangegangenen Abschnitten bekannten
Objektstruktur, die aus den Objekten this und engine mit entspre-

191

Kapitel 5 Synchronisationsmechanismus

chenden Links besteht, wird in Story-Pattern, die aus einem Axiom
generiert werden, der Link root erzeugt. Mit Hilfe dieses Links wird
der Korrespondenzknoten referenziert, der die Wurzel des Korrespon-
denzmodells reprasentiert.

5.4 Zusammenfassung

In diesem Kapitel ist ein Synchronisationsmechanismus vorgestellt worden,
der auf der Grundlage einer Tripel-Graph-Grammatik eine Modellsynchro-
nisation zwischen zwei Modellen durchfithrt. Mit dem hier vorgestellten
Synchronisationsmechanismus kann eine Synchronisation sowohl batch-artig
als auch inkrementell erfolgen. Dariiber hinaus kann derselbe Mechanismus
sowohl zur Modelltransformation als auch zur Modellintegration eingesetzt
werden, da diese Anwendungsszenarien ein grundlegender Bestandteil der in
dieser Arbeit vorgestellten Modellsynchronisation sind.

Dem vorgestellten Synchronisationsmechanismus liegt ein invarianter Al-
gorithmus zugrunde, der durch operationale Graphersetzungsregeln parame-
trisiert wird. Die operationalen Graphersetzungsregeln hingegen sind von
einer konkreten Spezifikation der Korrespondenzbeziehungen abhéngig und
repréisentieren damit den verdnderlichen Anteil unseres Modellsynchronisa-
tionsmechanismus. Der Algorithmus sowie die dafiir notwendige Datenstruk-
tur wurden im ersten Teil dieses Kapitels vorgestellt. Im zweiten Teil haben
wir gezeigt, wie operationale Graphersetzungsregeln in Form von Storydia-
grammen aus einer Spezifikation generiert werden.

Die in dieser Arbeit vorgestellten Storydiagramme sowie der dazugehorige
Steuerungsmechanismus ermoglichen eine partielle Modellsynchronisation.
Diese ist jedoch nur méglich, wenn die urspriingliche TGG-Semantik [Sch94]
aufgegeben wird. Die urspriingliche TGG-Semantik haben wir bereits in
Abschnitt 3.2.1 vorgestellt: mit den TGG-Regeln wird beschrieben, wie
zwei Modelle simultan, vollstandig und konsistent zueinander erzeugt werden
konnen. Dies bedeutet insbesondere, dass zu jedem Modellelement mindes-
tens ein Korrespondenzobjekt existiert, d.h., jedes Modellelement an min-
destens einer Korrespondenzbeziehung beteiligt ist. Diese Semantik steht je-
doch im Widerspruch zu einer partiellen Modellsynchronisation. Aus diesem
Grund wurde die urspriingliche Semantik der TGG-Regeln in der vorliegen-
den Arbeit aufgegeben.

Ein weiterer Schwerpunkt dieser Arbeit lag auf der effizienten Ausfithrung
von Modellsynchronisationen. Dabei sollten die Algorithmen zur Modellsyn-

192

5.4 Zusammenfassung

chronisation moglichst so schnell sein, dass auch eine inkrementelle Modell-
synchronisation nach jeder Anderung ausgefiihrt werden kann, ohne dabei
den Benutzer bei seiner Arbeit zu stéren. Um dieses Ziel zu erreichen, diirfen
allerdings keine mehrdeutigen TGG-Regeln verwendet werden, da ansonsten
ein aufwéndiges Backtracking bei der Regelanwendung zu beriicksichtigen
ist. Mit dieser Einschrinkung ergibt sich allerdings eine weitere Anderung
an der urspriinglichen TGG-Semantik.

An dieser Stelle soll daher nicht unerwéhnt bleiben, dass der von Andy
Schiirr gefiihrte Aquivalenzbeweis [Sch94] aufgrund dieser Anderungen nicht
mehr giiltig ist. In dem Aquivalenzbeweis wurde gezeigt, dass bei der An-
wendung der operationalen Graphersetzungsregeln, d.h., in unserem Fall der
Storydiagramme, die Reihenfolge der Regelanwendungen unerheblich ist und
immer zu giiltigen Korrespondenzbeziehungen zwischen den Modellen fiihrt.
Dieser Nachweis gilt jedoch nur fiir die in [Sch94] eingefiihrten operationale
Graphersetzungsregeln. In unserem Fall kann eine geéinderte Reihenfolge
von Regelanwendungen durchaus zu einem anderen Ergebniss fiihren.

Die in dieser Arbeit vorgestellte Generierung von operationalen Gra-
phersetzungsregeln, d.h., der Storydiagramme, stellt nur eine Moglichkeit
dar, wie eine Modellsynchronisation auf der Grundlage einer Tripel-Graph-
Grammatik durchgefithrt werden kann. Fiir andere Anwendungsszenarien
kénnen andere Storydiagramme durchaus besser geeignet sein. Gerade in ei-
nem solchen Fall zeigt sich ein grofier Vorteil dieses Ansatzes: Die neuen Sto-
rydiagramme konnen durch eine Anpassung der hier vorgestellten Generie-
rung erzeugt werden, ohne dass die Spezifikation der TGG-Regeln gedndert
werden muss.

193

Kapitel 6

Validierung und Verifikation

Die Modelltransformation ist ein Spezialfall der in dieser Arbeit vorgestell-
ten inkrementellen Modellsynchronisation. Damit eignet sich der hier vor-
gestellte Ansatz auch zur Spezifikation von Modelltransformationen. Die
Spezifikation komplexer Modelltransformationen ist fehleranfallig. Daher ist
im Rahmen der Qualitétssicherung héufig ein Nachweis der syntaktischen
und semantischen Korrektheit einer solchen Modelltransformation notwen-
dig. Die Validierung und Verifikation von Modelltransformationen ist zurzeit
noch Gegenstand der Forschung und nicht sehr weit fortgeschritten.

In diesem Kapitel geben wir daher nur einen Uberblick zu ersten Ansitzen
der Validierung und Verifikation von Modelltransformationen. Dazu stellen
wir in Abschnitt 6.1 einige existierende Ansétze zur Validierung der syntak-
tischen Korrektheit vor und zeigen, wie diese Ansétze auf TGGs iibertragbar
sind. Im darauf folgenden Abschnitt 6.2 beschéftigen wir uns mit dem for-
malen Nachweis der semantischen Korrektheit von Modelltransformationen.
Neben anderen existierenden Ansétzen stellen wir hierbei auch einen Ansatz
vor, der im Rahmen dieser Dissertation entstanden ist. Wir schlieflen dieses
Kapitel in Abschnitt 6.3 mit einer Zusammenfassung.

6.1 Syntaktische Korrektheit

Neben funktionalen Anforderungen wie der Terminierung, die fiir TGGs be-
reits in [Sch94] gezeigt wurde, sowie der Konfluenz, die fiir Graphtransforma-
tionsregeln mit Hilfe der kritischen Paaranalyse nachgewiesen werden kann
[KHEO03, LEOO08], ist die syntaktische Korrektheit eine weitere wichtige An-
forderung an Modelltransformationen. Hierbei kann zwischen zwei Formen
der syntaktischen Korrektheit unterschieden werden [Kiis04b].

Eine Form der syntaktischen Korrektheit liegt vor, wenn die Modelltrans-
formation in einer formalen Transformationssprache spezifiziert wurde. In

195

Kapitel 6 Validierung und Verifikation

diesem Fall miissen die Regeln der Modelltransformation syntaktisch korrekt
in Bezug auf die vorliegende Transformationssprache sein.

Die syntaktische Korrektheit von Regeln kann statisch analysiert werden,
indem iiberpriift wird, ob die Regeln konform zum Formalismus der Transfor-
mationssprache spezifiziert worden sind und die dort verwendeten Elemente
konform zu den Metamodellen der Quell- und Zielsprache angegeben wur-
den. Hiufig werden solche Uberpriifungen — wie in unserem Ansatz auch —
bereits bei der Spezifikation in einem Regeleditor automatisch durchgefiihrt
und syntaktische Fehler dem Benutzer angezeigt bzw. durch Einschriankung
der Bearbeitungsmoglichkeiten in dem Regeleditor erst gar nicht zugelassen.

Allerdings ist es nicht ausreichend, die syntaktische Korrektheit der ein-
zelnen Regeln nachzuweisen. Dies liegt daran, dass Transformationsregeln
oft nur Modellfragmente enthalten, die zwar konform zu der Transforma-
tionssprache sind, aber einzeln betrachtet keine syntaktisch korrekten (Teil-
)Modelle beziiglich der Quell- und Zielsprache darstellen. Hier werden insbe-
sondere statische Integritédtsbedingungen, die beispielsweise mit der Object
Constraint Language (OCL) formuliert werden, nur selten erfiillt.

Bei der anderen Form der syntaktischen Korrektheit wird daher verlangt,
dass eine Modelltransformation fiir jedes syntaktisch korrekte Quellmodell
ein syntaktisch korrektes Zielmodell beziiglich der Zielsprache erzeugt. Eine
probate und in der Industrie weit verbreitete Methode zur Uberpriifung eines
Softwaresystems ist die Validierung durch Tests. Diese Methode kann sowohl
zur Uberpriifung der funktionalen und nicht-funktionalen Anforderungen als
auch zur Uberpriifung der syntaktischen Korrektheit von Modelltransforma-
tionen eingesetzt werden [FSB04].

Abbildung 6.1 zeigt einen allgemeinen Uberblick zur Validierung von Mo-
delltransformationen durch Tests. Hierbei werden zunéchst Testfille defi-
niert. Ein Testfall besteht aus einem Quellmodell und einem erwarteten
Zielmodell. Anschliefend wird die Modelltransformation auf dem Quellmo-
dell ausgefithrt. Das Ergebnis dieser Modelltransformation ist ein Ausgabe-
modell. Dieses Ausgabemodell wird mit dem erwarteten Zielmodell des Test-
falls verglichen. Weicht das Ausgabemodell von dem erwarteten Zielmodell
ab, so kann daraus geschlussfolgert werden, dass die Modelltransformation
fehlerhaft ist. Hierbei ist zu unterscheiden, ob die Implementierung oder die
Spezifikation einen Fehler enthélt.

In unserem Ansatz wird die Implementierung der Modelltransformation
automatisch aus der Spezifikation der TGG-Regeln abgeleitet. Fiir den Fall,
dass die Algorithmen zur automatischen Ableitung dieser Implementierung
hinreichend genau getestet wurden, kénnen wir daher im Fehlerfall anneh-

196

6.1 Syntaktische Korrektheit

| |
| |
| |
| |
| Korrespondenz- Erwartetes |
| Quelimodell regeln Zielmodell |
| |
| |

I
I I
|) .) I ok
I (Transformation Zielmodell Vergleich T K
| | 0
I I

I

|

Abbildung 6.1: Uberblick zur Validierung durch Tests

men, dass der Fehler in der Spezifikation der TGG-Regeln zu finden ist.
Solange die Korrektheit der Algorithmen zur automatischen Ableitung der
Implementierung nicht formal bewiesen wurde, kann ein Fehler in der Im-
plementierung jedoch nicht génzlich ausgeschlossen werden.

Die Methode der Validierung durch Tests kann — sofern eine ausfithrbare
Modelltransformation vorliegt — manuell durchgefiihrt werden. Hierzu muss
der Benutzer die Modelltransformation auf einem Quellmodell ausfithren und
das Ergebnis der Modelltransformation mit dem erwarteten Zielmodell ma-
nuell vergleichen. Ein solcher Vergleich lésst sich allerdings auch automati-
siert durchfithren. Eine mogliche Automatisierung wurde von Jeff Gray et
al. vorgestellt [LZGO05]. Fiir die Modellvergleiche kénnen mittlerweile gene-
rische Frameworks und Werkzeuge eingesetzt werden, wie z. B. das SiDiff-
Framework [TBWKO07] oder EMF-Compare aus dem Eclipse Modeling Fra-
mework Technology Project [BGMT].

Im Fall der TGGs kénnte eine solche Uberpriifung sogar effizienter durch-
gefiihrt werden, indem auf der Grundlage der spezifizierten TGG-Regeln eine
Modellintegration zwischen dem Quell- und dem erwarteten Zielmodell aus-
gefithrt wird. Anschliefend muss iiberpriift werden, ob alle Modellelemente
durch ein Korrespondenzobjekt referenziert werden, d. h., eine vollstandige
Uberdeckung erreicht wurde. Falls das nicht der Fall ist, so ist davon auszu-
gehen, dass auch eine Modelltransformation diese Elemente unberiicksichtigt
ldsst und damit fehlerhaft ist.

Diese Methode kann jedoch nicht angewendet werden, falls eine partielle
Modelltransformation getestet werden soll. In einem solchen Transformati-
onsszenario sollen nur Teilmodelle iibersetzt werden. Daher miissen einige
Modellelemente unberiicksichtigt bleiben. Das oben beschriebene Kriterium

197

Kapitel 6 Validierung und Verifikation

der Uberdeckung ist somit nicht anwendbar. Dariiber hinaus kénnte durch
die Integration nicht festgestellt werden, ob eine Modelltransformation Mo-
dellelemente im Quellmodell nicht doch in das Zielmodell iibersetzt.

Um solche Szenarien dennoch automatisch testen zu konnen, ist eine an-
dere Form der Uberpriifung denkbar. Hierzu miisste eine identische Abbil-
dung zwischen Modellen der Zielsprache definiert werden. Liegt eine solche
Abbildung vor, so miisste zundchst eine Transformation des Quellmodells
ausgefithrt werden. Eine anschliefende Integration zwischen dem resultieren-
den Ausgabemodell und dem erwarteten Zielmodell, die auf der Grundlage
der identischen Abbildung durchgefiihrt werden kann, wiirde dariiber Auf-
schluss geben, ob die Modelle in der geforderten Art und Weise zueinander
korrespondieren.

Fiir eine vollstéandige Automatisierung miisste allerdings noch untersucht
werden, ob die identische Abbildung zwischen den Modellen der Zielsprache
automatisch erzeugt werden kann. FEine erste Idee hierzu ist, die identi-
sche Abbildung aus den spezifizierten TGG-Regeln zu synthetisieren. Auf-
grund der Tatsache, dass eine TGG-Spezifikation verschiedene Produktio-
nen enthalt, mit denen der simultane Aufbau eines Quell- und eines Zielm-
odells beschrieben wird, ist es denkbar, die Produktionen des Zielmodells
aus der TGG-Spezifikation zu extrahieren. Daraus kann eine neue TGG-
Spezifikation erstellt werden, die eine identische Abbildung zwischen Model-
len der Zielsprache beschreibt. Diese TGG-Spezifikation konnte dann fiir
die notwendige Integration zwischen dem resultierenden Ausgabemodell und
dem erwarteten Zielmodell eingesetzt werden.

Neben dem Problem der automatischen Vergleiche zwischen einem er-
warteten und einem resultierenden Modell einer Modelltransformation be-
steht ein weiteres Problem darin, geeignete Eingabemodelle fiir Tests zu
finden [BDTM'06]. Im Allgemeinen kénnen zu einem Metamodell unend-
lich viele Instanzen dieses Metamodells, d.h., Modelle, existieren. Damit
ist es unmoglich, alle Modelle zu testen. Einige Arbeiten beschéftigen sich
daher damit, relevante und kritische Grenzfille einer Modelltransforma-
tion zu identifizieren und entsprechende Modelle automatisch zu erzeugen
[FSB04, BDTM*06, KA06, EKTO08].

Mit den automatisch erzeugten Eingabemodellen entsteht allerdings ein
weiteres Problem, das fiir vollstdndig automatisierte Tests noch zu 16sen ist.
Dieses Problem hingt damit zusammen, dass automatisch generierte Einga-
bemodelle nur schwer durch eine Testperson zu interpretieren sind. Wenn
eine Testperson ein solches Eingabemodell jedoch nicht vollstdndig versteht,
kann sie auch nicht das erwartete Zielmodell zu dem Eingabemodell defi-

198

6.2 Semantische Korrektheit

nieren. Baudry et al. schlagen daher vor, durch den Benutzer vorgegebene
Modelle auf solche Grenzfille zu analysieren, um die Qualitdt der gegebenen
Testfdlle zu bestimmen. Die Ergebnisse der Analyse kénnen auch verwen-
det werden, um dem Benutzer Vorschldge fiir mogliche Erweiterungen der
Eingabemodelle zu unterbreiten und dadurch relevante Testfille zu erstellen
[FBMTO08]. In anderen Ansitzen wird auf die Spezifikation eines konkreten
Zielmodells ganz verzichtet und die resultierenden Zielmodelle lediglich auf
bestimmte Eigenschaften iiberpriift [BDTM*06, NK08b].

Zusammenfassend kann man feststellen, dass zwar bereits einige Ansétze
zur Validierung von Modelltransformationen durch Tests existieren, aber
nicht alle Probleme zufriedenstellend geltst sind. Trotz der hohen Relevanz
der Validierung durch Tests darf man allerdings nicht vergessen, dass mit
Tests zwar die Anwesenheit von Fehlern iiberpriift, aber nie die Abwesenheit
von Fehlern nachgewiesen werden kann. Um die syntaktische Korrektheit
einer Modelltransformation zu beweisen, miissen andere, statische Analyse-
techniken, wie z. B. Model Checking oder Theorembeweiser, auf ihre Eignung
zum Nachweis der syntaktischen Korrektheit iiberpriift werden.

6.2 Semantische Korrektheit

Bei einer Modelltransformation ist es oft wichtig, dass die Transformation ei-
nes Modells in eine andere Darstellung bestimmte Eigenschaften dieses Mo-
dells erhélt. FEine solche Modelltransformation wird als semantikerhaltend
bzw. semantisch korrekt bezeichnet, wenn das Quell- und das Zielmodell
beziiglich ihrer Semantik und eines festgelegten Aquivalenzbegriffs zueinan-
der dquivalent sind. Die semantische Korrektheit einer Modelltransformation
héngt somit von der Definition einer Aquivalenzrelation und der definierten
Semantik des Quell- und Zielmodells ab.

Zur Uberpriifung der semantischen Korrektheit einer Modelltransforma-
tion existieren zwei grundsétzlich unterschiedliche Ansétze. Der erste An-
satz wird als Checker-Ansatz bezeichnet. Bei dem zweiten Ansatz handelt
es sich um einen regelbasierten Ansatz. Die beiden Ansétze werden in den
folgenden beiden Abschnitten kurz vorgestellt.

6.2.1 Checker-Ansatz

Der Checker-Ansatz kann auf die Arbeit von Pnueli et al. zuriickgefiihrt
werden. In dieser Arbeit wird ein Ansatz zur automatischen Validierung

199

Kapitel 6 Validierung und Verifikation

von Ubersetzern wie z. B. Compilern und Codegeneratoren vorgestellt. Die-
ser Ansatz ist auch als Translation Validation bekannt geworden [PSS98].
Bei diesem Ansatz werden fiir jede Ein- und Ausgabe des Ubersetzers vor-
her festgelegte Kriterien automatisch iiberpriift. Sind die Kriterien erfiillt,
kann geschlussfolgert werden, dass die Ubersetzung beziiglich der festgeleg-
ten Kriterien korrekt ist. Auf der Grundlage dieses Ansatzes wurden fiir
Modelltransformationen zwei Verfahren entwickelt, die in der Abbildung 6.2
zu sehen sind.

Bei dem ersten Verfahren, das in Abbildung 6.2(a) konzeptionell darge-
stellt ist, wird die Korrektheit mit Hilfe eines Model Checkers nachgewiesen
[VP03]. Dabei wird nicht die tatséichliche semantische Aquivalenz nachge-
wiesen, sondern bestimmte, durch den Benutzer festgelegte Korrektheits-
eigenschaften. Dazu wird ein Modell M der Quellsprache mit Hilfe einer
Modelltransformation T in ein Modell M’=T(M) einer Zielsprache automa-
tisch iibersetzt. Anschliefend wird die Semantik der beiden Modelle in Form
von Zustandsiibergangssystemen berechnet. Sie dient als Eingabe fiir einen
Model Checker. Der Model Checker iiberpriift die Giiltigkeit einer Korrekt-
heitseigenschaft P auf dem Zustandsiibergangssystem von Modell M sowie
die Giiltigkeit der transformierten Korrektheitseigenschaft P’=T(P) auf dem
Zustandsiibergangssystem des Zielmodells M’=T(M). In dem Fall, dass beide
Korrektheitseigenschaften giiltig sind, wird geschlussfolgert, dass auch die
Transformation T beziiglich des Pradikats P korrekt ist.

Ein wesentlicher Vorteil dieses Ansatzes liegt darin, dass die festgelegten
Kriterien automatisch iiberpriifbar sind, da sowohl die Berechnung der Zu-
standsiibergangssysteme als auch die Transformation des Pradikats P’=T(P)
automatisch erfolgt. Allerdings muss in diesem Ansatz sichergestellt werden,
dass die Transformation T(P) korrekt ist, da bei fehlerhaften Transformati-
onsregeln auch die Transformation des Pradikats fehlerhaft verlaufen konnte.
Dies muss manuell durch einen Experten iiberpriift werden. Dartiber hinaus
miissen geeignete Korrektheitsbedingungen fiir die Modelle gefunden wer-
den, was — wie die Autoren in ihrem Beitrag anmerken — durchaus keine
leichte Aufgabe darstellt.

Bei dem zweiten Ansatz, der in Abbildung 6.2(b) zu sehen ist, wird die
Korrektheit einer durchgefithrten Modelltransformation mit Hilfe der Bisi-
mulation tiberpriift [NK08a]. Hierzu werden wéhrend einer Modelltransfor-
mation zwischen den Modellelementen des Quell- und des Zielmodells Verbin-
dungen erstellt, um aus den Modellelementen des Quellmodells hervorgegan-
gene Modellelemente des Zielmodells explizit in Beziehung zu setzen. Diese
Verbindungen werden anschlieBend dazu verwendet, um auf der Grundlage

200

6.2 Semantische Korrektheit

[-————————
|

[m————————
|

Transformation : Checker Transformation : | Checker
| Tool | | Tool ;1
| | | ||
Source Model Checking Source)
Model | =) Model
|

Target
Model

Target
Model

! I
I o I		
' (-		
.		

Transformation . Links between

: QT(PD : : Transformation | Model Elements :
| | | | |
' . I |
| | | |
| | | |
| ;o |

. L . o — — — — — — — — — —

(b) Ansatz nach Karsai et al. [NKO08a]

. L . — — — — — — — — — — —

(a) Ansatz nach Varré et al. [VP03]

Abbildung 6.2: Zwei Checker-Ansétze zum Beweis der semantischen Kor-
rektheit von Transformationen

der Bisimulation nachzuweisen, dass sich das Quellmodell beziiglich einer
festgelegten Eigenschaft genauso verhélt wie das Zielmodell.

In dem Beitrag wird der Ansatz mit dem Ziel verfolgt, ein Entwurfsmo-
dell in ein Analysemodell zu iibersetzen, das dann beziiglich einer festge-
legten Eigenschaft verifiziert wird. Damit das Ergebnis der Verifikation auf
das Quellmodell iibertragen werden kann, wird anschlieBend {iberpriift, ob
die beiden Modelle zueinander bisimular sind. Diese Uberpriifung findet
automatisch statt und ist leichter, als der Nachweis der tatsdchlichen se-
mantischen Aquivalenz. Allerdings muss — wie auch schon im vorherigen
Ansatz — die Uberpriifung fiir jede konkrete Instanz der Ein- und Ausgabe
einer Modelltransformation stattfinden. Eine allgemeine Uberpriifung der
Modelltransformationsregeln findet nicht statt.

6.2.2 Regelbasierter Ansatz

Im Gegensatz zum Checker-Ansatz liegen dem regelbasierten Ansatz die spe-
zifizierten Transformationsregeln zugrunde, so dass allgemein bewiesen wird,
dass die Transformationsregeln fiir jede giiltige Eingabe eine semantisch dqui-
valente Ausgabe erzeugen. Der formale Beweis der semantischen Aquivalenz
muss daher nur einmalig fiir eine Menge von Transformationsregeln statt
finden und nicht — wie im Checker-Ansatz — auf jeder Ein- und Ausgabe.
In Kooperation mit dem Fachgebiet Programmierung eingebetteter Sys-

201

Kapitel 6 Validierung und Verifikation

r--r- -~ _~ -~ -~"~"~""~""~“"~“""~*>"~*"~"*""*~"~“"—~" -~ -~ °~"7/7 "~ oo T T T T T T T T T T T T T T T j
| Modeling Tool I
| Correspondence |
| Metamodel |
| 7 |
| I I
| <<uses>> | |
| |
I L |
| |
| Source Scuses>>] Correspondence ___S<uses>> Target |
| Metamodel Rules Metamodel :
o _me o> ____ i
{ Theorem <<derived§from>> <<derived:from>> <<derived§from>> :
| Prover i : |
| Source <<defined on>> o . defined Target
| Modifier Pairs e 9 !
| Datatype Datatype :
| I
| I
| Congruence |
: <<defined|on>> Proof <<defined|on>> |
|
| I
| - - I
| Source | Semantic Equivalence |, | Target |
: Semantics Relation Semantics |
|

Abbildung 6.3: Uberblick zur formalen Verifikation der semantischen Aqui-
valenz mit einem Theorembeweiser

teme von Prof. Dr. Sabine Glesner wurden im Rahmen dieser Disserta-
tion erste Untersuchungen zu einem solchen Ansatz fiir TGGs durchgefiihrt
[GGL106]. Dabei wurde auf der Grundlage des Theorembeweisers ISABEL-
LE/HOL! ein generisches Beweisschema entwickelt, mit dem die semantische
Korrektheit einer Modelltransformation formal nachgewiesen werden kann
[Lei06]. Dieses Beweisschema wurde angewandt, um formal zu beweisen,
dass eine zuvor spezifizierte Transformation von Automaten in SPS-Code
semantikerhaltend ist.

In Abbildung 6.3 ist das generische Beweisschema dargestellt. Im Ver-
gleich zu der Abbildung 2.7 (sieche Seite 47) fehlen hier die Instanzen der
Metamodelle, d.h., die Modelle, sowie das Werkzeug zur Ausfithrung der
Modelltransformation, Modellintegration und Modellsynchronisation. Dies
liegt darin begriindet, dass in diesem Ansatz die semantische Korrektheit
der zur Modelltransformation eingesetzten Korrespondenzregeln allgemein
bewiesen wird, so dass diese konkreten Modelle fiir den Beweis irrelevant
sind.

'Die Higher Order Logik (HOL) ist eine typisierte Pridikatenlogik héherer Ordnung.

202

6.2 Semantische Korrektheit

Um die semantische Korrektheit der TGG-Regeln in ISABELLE/HOL
nachzuweisen, miissen zunéichst die Metamodelle in eine fiir diesen Theorem-
beweiser geeignete Darstellung iiberfithrt werden. Aufgrund der Tatsache,
dass Metamodelle die Menge aller moglichen Instanzen dieses Metamodells
und damit eine Syntaxdefinition fiir giiltige Modelle beschreiben, kénnen
die Elemente eines Metamodells als Typen und Modelle als Elemente dieser
Typen definiert werden.

Bei den in ISABELLE/HOL unterstiitzten Typen handelt es sich um alge-
braische Datentypen, die eine Baumstruktur besitzen. Die durch Metamo-
delle beschriebenen Modelle hingegen sind im Allgemeinen echte Graphen.
Zur Formalisierung von Metamodellen in ISABELLE/HOL miissen die Me-
tamodelle daher zunéchst auf ein leicht modifiziertes Metamodell abgebildet
werden, das eine Baumstruktur besitzt.

Zur Veranschaulichung ist in Abbildung 6.4(a) ein Ausschnitt aus dem
Metamodell fiir [/O-Automaten dargestellt. Das modifizierte Metamodell
ist in Abbildung 6.4(b) zu sehen. Das modifizierte Metamodell erhalten wir,
indem Kompositionsbeziehungen und Assoziationen, die zu Zyklen fithren
konnen, als Referenzattribute dargestellt werden. Allerdings besteht keine
Notwendigkeit, das derartig modifizierte Metamodell tatsdchlich zu erstellen,
da die Anpassungen direkt auf die notwendigen HOL-Datentypen abgebildet
werden konnen. Die Darstellung dient lediglich dazu, die Abbildung nach
ISABELLE/HOL leichter nachvollziehbar zu machen.

Die aus dem modifizierten Metamodell entstandenen HOL-Datentypen
sind in der Abbildung 6.4(c) dargestellt. Bei den in ISABELLE/HOL verwen-
deten Datentypen kann es sich um zusammengesetzte Datentypen (record),
Listen (list) oder andere primitive Datentypen (wie z. B. bool) handeln. Die
Abbildung auf die Datentypen in ISABELLE/HOL ist zum Teil generisch
moglich und wird in [Lei06] genauer vorgestellt.

Fiir den Beweis der Korrektheit einer Modelltransformation miissen die
HOL-Datentypen fiir die Quell- und die Zielsprache mit einer formalen Se-
mantik belegt und eine Aquivalenzrelation definiert werden, mit welcher die
Semantik der Modelle verglichen werden kann. Bei der Definition der hierzu
benétigten formalen Semantik hat sich gezeigt, dass der iibliche Aquivalenz-
begriff der Strukturell Operationalen Semantik?® (SOS) nicht ausreichend ist.
Daher wurde ein stirkerer semantischer Aquivalenzbegriff eingefiihrt, der
auch die Aquivalenz unerreichbarer Zusténde beriicksichtigt [Lei06].

Neben der Formalisierung der Metamodelle ist es notwendig, auch die An-

2auch als small-step operational semantics bekannt

203

Kapitel 6 Validierung und Verifikation

Automaton
- < Automaton
name : String —
states ¥ ¥ transitions name : String
0..* 0..* v states {ordered}
incoming » 0..*
State ~ | Transition .
0.1 outgoing » 0. State outgoing » Transition
name : String

0..* | targetName : String

0.1 0..* name : String .
Zﬁ Zﬁ {ordered}

FinalState FinalState
(a) Ausschnitt aus dem Metamodell fiir I/O- (b) Modifiziertes Metamodell
Automaten
record Automaton = record State = record Transition =
States :: State list Identity :: BaseType Target :: BaseType

Outgoing :: Transition list
FinalState :: bool

(¢) Abbildung auf Datentypen in ISABELLE/HOL

Abbildung 6.4: Formalisierung von Metamodellen als induktive Datentypen

wendung der TGG-Regeln zu formalisieren. Aufgrund der Tatsache, dass
die TGG-Regeln zur Modelltransformation als einfache Graphersetzungsre-
geln aufgefasst werden konnen, wurde zunéchst eine Formalisierung der Re-
gelanwendungen als Graphersetzung auf einem zusammenhéngenden Gra-
phen durchgefiihrt. Dabei hat sich jedoch gezeigt, dass eine solche Forma-
lisierung nicht praktikabel ist [Lei06]. Daher wird zur Formalisierung eine
TGG-Regel nicht als Transformation auf einem Graphen interpretiert, son-
dern als Paar zusammengehoriger Produktionen, mit denen zwei Modelle
simultan erzeugt werden. Diese Interpretation der TGG-Regeln stimmt mit
der in Abschnitt 3.2.1 vorgestellten Semantik iiberein.

Zur Formalisierung der Produktionen wird fiir jede Produktion einer TGG-
Regel ein Operator — der sogenannte Modifikator — auf dem Quell- und Ziel-
modell definiert und die Anwendung der TGG-Regeln als simultane Anwen-
dung von zueinander korrespondierenden Modifikatoren formalisiert. Fiir
die in Abbildung 6.5 gezeigte TGG-Regel, in der ein Zustand zum Automa-
ten bzw. eine CASE-Anweisung zu einem SPS-Programm hinzugefiigt wird,
kénnen die Modifikatoren wie folgt definiert werden?:

3Der ISABELLE/HOL-Operator (... := ...) wird verwendet, um ein Attribut eines zusam-

204

6.2 Semantische Korrektheit

:Automaton :MainProgram
:Automaton :MainProgram
:State :CaseStatement

Abbildung 6.5: Interpretation einer TGG-Regel als zusammengehoriges Paar
zweier Produktionen

Ads = A(States := (States A)-s) (6.1)
P& c¢ = P(MainProgram := c-(MainProgram P)) (6.2)

Fiir den Nachweis der Korrektheit einer TGG-Regel geniigt es zu beweisen,
dass die paarweise Anwendung der Modifikatoren die semantische Aquiva-
lenz der Modelle nicht zerstort. Fiir die Produktionen der TGG-Regel aus
Abbildung 6.5 beispielsweise muss also gezeigt werden, dass beim Hinzufiigen
eines Zustands zu einem Automaten und einer CASE-Anweisung zu einem
SPS-Programm die semantische Aquivalenz zwischen dem Automaten und
dem SPS-Programm erhalten bleibt:

A~P = (A®s) = (P®State2Case(s)) (6.3)

Bei dem angewandtem Beweisprinzip handelt es sich um einen Indukti-
onsbeweis, der mit Hilfe des Theorembeweisers ISABELLE/HOL interaktiv
vom Benutzer durchgefiihrt wird. Eine wichtige Grundvoraussetzung ist die
Abbildung der Problemstellung in die formale Sprache von ISABELLE/HOL.
Der Umfang dieser Formalisierung hiangt von der Grofle der gegebenen Me-
tamodelle, der zugrundeliegenden Semantik sowie der Anzahl der spezifi-
zierten TGG-Regeln ab. Zur Formalisierung der I/O-Automaten, des SPS-
Codes und der TGG-Regeln wurden zusammen mit der anschlieBenden Be-
weisfithrung ca. 1.500 Codezeilen in der ISABELLE/HOL-Notation benotigt.

mengesetzten Record-Datentyps zu aktualisieren. Der Operator - fiigt Elemente zu
einer Liste hinzu.

205

Kapitel 6 Validierung und Verifikation

Der Nachteil dieses Ansatzes gegeniiber dem automatischen Checker-
Ansatz liegt aufgrund des hohen Beweisaufwands auf der Hand. Allerdings
wird im Gegensatz zum Checker-Ansatz die allgemeine semantische Kor-
rektheit von Transformationsregeln bewiesen. Wird ein solcher Beweis fiir
eine Menge von Transformationsregeln einmal durchgefiihrt, so gilt er fiir
jedes giiltige Modell, das iibersetzt wird. Fiir die Ubersetzung eines 1/0-
Automaten in SPS-Code beispielsweise bedeutet dies, dass durch die spe-
zifizierte Modelltransformation tatsidchlich immer semantisch dquivalenter
SPS-Code erzeugt wird, der die spezifizierten Automaten implementiert. Ein
solcher Beweis ist insbesondere in sicherheitskritischen Anwendungen von ei-
nem sehr hohen Nutzen, da gewihrleistet werden muss, dass der generierte
Code korrekt ist und die im Modell iiberpriiften Eigenschaften auch im Code
eingehalten werden.

6.3 Zusammenfassung

Die Validierung und Verifikation von Modelltransformationen ist erst mit
dem Aufkommen und der Verfiigbarkeit verschiedener Techniken stérker in
den Mittelpunkt der Forschung geriickt. Daher sind die hierzu notwendigen
Methoden derzeit noch Gegenstand der Forschung und nicht sehr weit fort-
geschritten. Wir haben uns auf die Modelltransformation beschréinkt, da die
Modelltransformation ein wichtiger Bestandteil bzw. die Grundlage der in
dieser Arbeit vorgestellten Technik zur Modellsynchronisation ist.

Der erste Teil dieses Kaptitels war der Validierung gewidmet. Hierbei ha-
ben wir existierende Ansiitze zur Uberpriifung der syntaktischen Korrektheit
von Modelltransformationen vorgestellt. Dabei haben wir argumentiert, dass
sowohl die syntkatische Korrektheit einzelner Regeln als auch deren Zusam-
menspiel iiberpriift werden miissen. Wéahrend die syntaktische Korrektheit
bzw. einige hierzu notwendigen Kriterien hiufig durch statische Analysen
der einzelnen Regeln iiberpriift werden konnen, kann das Zusammenspiel der
Regeln durch die Ausfithrung einer Modelltransformation validiert werden,
indem das Resultat der Modelltransformation mit dem erwarteten Ergebniss
verglichen wird. Ein solcher Test kann automatisiert durchgefithrt werden.
Hierzu haben wir existierende Ansétze vorgestellt und diskutiert, wie diese
auf TGGs iibertragen werden kénnen.

Im zweiten Teil dieses Kapitels haben wir einige Ansétze zur formalen
Verifikation der semantischen Korrektheit von Modelltransformationen vor-
gestellt. Zusétzlich haben wir einen Ansatz présentiert, mit dem allgemein

206

6.3 Zusammenfassung

bewiesen werden kann, dass die spezifizierten Transformationsregeln fiir jede
giiltige Eingabe eine semantisch dquivalente Ausgabe erzeugen. Die formale
Beweistechnik wurde im Rahmen dieser Dissertation auf TGGs iibertragen
und zum Nachweis der Korrektheit eines Codegenerators eingesetzt.

207

Kapitel 7

Werkzeugunterstiitzung

In diesem Kapitel wird die im Rahmen dieser Arbeit umgesetzte Werkzeug-
unterstiitzung vorgestellt. Mit Hilfe dieser Werkzeugunterstiitzung kénnen
Werkzeuge zur Modelltransformation, Modellintegration und Modellsyn-
chronisation geméfl der zuvor vorgestellten Konzepte modellbasiert ent-
wickelt werden. Die Werkzeugunterstiitzung wurde auf Basis der Entwick-
lungsumgebungen EcCLIPSE! und FUJABA? realisiert. Die Festlegung auf
FuiaBa erfolgte aufgrund des dort bereits implementierten und bewéhrten
Graphersetzungssystems. Dabei handelt es sich um einen generativen An-
satz, bei dem aus erweiterten Graphersetzungsregeln, den sogenannten Sto-
rydiagrammen, Java-Code erzeugt wird. Die Umsetzung in ECLIPSE hat sich
insbesondere aufgrund der dort verfiigharen Entwicklungswerkzeuge fiir Java
angeboten. Durch die Integration von FuJABA und ECLIPSE zu dem Werk-
zeug FUJABA4ECLIPSE kann der generierte Java-Code direkt in ECLIPSE
iibersetzt und ausgefiihrt werden.

7.1 Architektur

In diesem Abschnitt verschaffen wir uns zunichst einen Uberblick iiber
die Architektur der entstandenen Werkzeugunterstiitzung. Die Werkzeug-
unterstiitzung wurde auf verschiedene Komponenten aufgeteilt und durch
Plug-ins realisiert. Einen Uberblick iiber die wichtigsten Komponenten und
ihre Abhéangigkeiten untereinander zeigt die Abbildung 7.1. Dabei kann zwi-
schen Komponenten zur Spezifikation (tggeditor, tggeditordeclipse und
tgggeneration) und Komponenten zur Ausfithrung von TGG-Regeln (mote,
morten und mortendeclipse) unterschieden werden.

Thttp://www.eclipse.org
http://www.fujaba.de

209

Kapitel 7 Werkzeugunterstiitzung

<<component>> {I <<component>> $:| 77777 <<component>> $:|

mortendeclipse tggeditordeclipse tgggenerator

T
|
|
|
|
|
<<component>> {I |
|
|
|
|
|
|
|
|

T
|
|
|
|
|
| <<component>> {I
|
|
|
|
|
|
|
|

morten tggeditor

1 1 !

|
| | |
| | |
: ‘ :
| <<component>> {I <<component>> {I |
| I . . |
; mote fujabadeclipse !
| T T |
‘ ‘ :		
<<component>> {I !		

fujaba ———> <<uses>>

Abbildung 7.1: Komponenten der Werkzeugunterstiitzung

Die Basis der realisierten Werkzeugunterstiitzung bilden die beiden Kom-
ponenten fujaba und fujabadeclipse. Die Komponente fujaba stellt die
zur Spezifikation von Metamodellen benotigten Klassendiagramme bereit.
Zusétzlich enthilt sie die notwendigen Editoren zur Modellierung von Story-
diagrammen sowie einen Codegenerator, der aus Klassen- und Storydiagram-
men ausfithrbaren Java-Code erzeugt [FNT98, FNTZ98, NNZ00]. Die Kom-
ponente fujabadeclipse integriert die Funktionalitit von FUJABA in die
Ecripse-Entwicklungsumgebung, indem sie entsprechende Benutzerschnitt-
stellen (Meniis, Werkzeugleisten, Sichten, Editoren, etc.) bereitstellt.

Der Editor zur Spezifikation von TGG-Regeln wurde in der Komponente
tggeditor realisiert. Die Integration des Editors in FUJABA4ECLIPSE mit
den dafiir notwendigen Benutzerschnittstellen erfolgt in der Komponente
tggeditordeclipse. Die Generierung von Storydiagrammen aus TGG-
Regeln ist in der Komponente tgggenerator implementiert. Nach der auto-
matischen Generierung der Storydiagramme konnen diese weiter verfeinert
und beispielsweise um zusétzliche Abfragen und Aktionen erweitert werden.
Dariiber hinaus ist die Komponente so aufgebaut, dass die Generierung von
Storydiagrammen austauschbar ist bzw. durch neue Generierungsvarianten
erweitert werden kann. Beim Ausfiithren der Entwicklungsumgebung erkennt
die Komponente neu hinzugefiigte Generierungsvarianten und bietet diese
dem Benutzer zur Auswahl an.

210

7.2 Entwicklungsumgebung

Die Komponente mote® enthilt das Rahmenwerk mit den Algorithmen
zur Ausfithrung einer Modelltransformation, Modellintegration und Modell-
synchronisation. Dieses Rahmenwerk wird durch die Komponente morten*
in FuJABA integriert. Die Anbindung an FUJABA4ECLIPSE erfolgt hin-
gegen in der Komponente mortendeclipse, die eine entsprechende Benut-
zerschnittstelle zur Verfiigung stellt. Die Benutzerschnittstelle der dadurch
entstandenen Entwicklungsumgebung fiir Modellsynchronisationen wird im
nachfolgenden Abschnitt genauer vorgestellt.

7.2 Entwicklungsumgebung

Abbildung 7.2 zeigt die FusaBA4EcLIPSE-Entwicklungsumgebung. Im Auf-
bau der Benutzeroberfliche &hnelt sie sehr vielen anderen herkémmlichen
Entwicklungsumgebungen. So enthélt die Benutzeroberfliche im linken, obe-
ren Bereich einen Projektmanager und im rechten Teil des Anwendungsfen-
sters einen Arbeitsbereich zur Einbettung graphischer und textueller Edi-
toren. Darunter befindet sich auf der linken Seite eine Ubersicht (Qutline-
View) und auf der rechten Seite verschiedene andere Sichten, die {iber Kartei-
reiter (engl. Tabs) aktiviert und z. B. zur Anzeige von Warnung und Fehler-
meldungen (Problems-View) oder Eigenschaften der im Editor ausgewéhlten
Elemente (Properties-View) eingesetzt werden.

Die einzelnen Sichten und Editoren lassen sich innerhalb der Entwicklungs-
umgebung frei anordnen und zu sogenannten Perspektiven zusammenfassen.
Dadurch kann die Entwicklungsumgebung an die individuellen Bediirfnisse
eines Benutzers angepasst bzw. auf die Durchfithrung einer bestimmten
Aufgabe optimiert werden. In Abbildung 7.2 ist die Perspektive von FuU-
JABA4ECLIPSE dargestellt.

7.2.1 Spezifikation

Um mit den in dieser Arbeit vorgestellten Konzepten ein Werkzeug zur Mo-
dellsynchronisation zu entwickeln, miissen zunéchst die beteiligten Metamo-
delle spezifiziert werden. Dies erfolgt in FUJABA4ECLIPSE mit Hilfe von

3 Abkiirzung fiir Model Transformation Engine. Der Name ist historisch dadurch ent-
standen, dass diese Komponente zunéichst nur fiir die Modelltransformation vorgesehen
war und erst spater um die Modellsynchronisation erweitert wurde.

4 Abkiirzung fiir Model Round-Trip Engineering

211

Kapitel 7 Werkzeugunterstiitzung

2 FujabadEclipse - de.uni_paderborn.synchronization.block2 fpr.gz - Eclipse Platform = |G S|
File Edit Navigate Project Fujaba Window Help
NS e S Y wmw - X leg o =1]
[2 Project Explorer 52 = B | & *Medel Synchrenization Example & =8
= 5| & 7 [cdBlockdiagram M del “ | 55 Palette b
12 deuni_paderborn.activitydiagram + Element Iy Select
4 © namestring
= deuni_paderborn.synchronization.k i
{7 Marquee
=, JRE System Library [JavaSE-1 6] e e
8 sre 0.” (& Method @
= Plug-in Dependencies o ';”fE‘E‘E"‘E"“ % Parameter
(= META-INF 5
= model BlockDiagram (= Class o
%) block2class.fpr.gz [Madel Sy & Attribute
% Model Synchronization £ & Method
(5 Diagrams
(£ Activity Diagrams S e e e
5 Class Diagrams @ Class

Connection

7% Blockdiagram| = W Association

o
% e
7 MoTE Metam
2 MoTE Rules
[TGG Diagrams
% Model
(% Structure
(5@ build.properties
12 de.uni_paderborn.synchronization.c
12 de.uni_paderborn.synchronization.¢
=4 de.uni_paderborn.synchronization.e

L 1|

12 deuni_paderborn Il = -
2 e s maclarhen trancformation e S5
‘ n 7" || Project | £ Blockdiagram Metamodel £%
2 Outline 52 ¥ = B[Properties 11 ¥ Tasks| €] Error Log =0
Element T Class =
Details Name: Block

Package: de.upb.blockdiagram.metamodel il

=

Abbildung 7.2: Die Entwicklungsumgebung FUJABA4ECLIPSE

UML-Klassendiagrammen. In Abbildung 7.2 ist das in FUJABA verwen-
dete Metamodell fiir Blockdiagramme aus dem Beispiel dieser Arbeit darge-
stellt. Neben diesem Metamodell werden — wie zuvor in Kapitel 3 erlautert
— noch ein Metamodell fiir Klassendiagramme und ein Metamodell fiir das
Korrespondenzmodell benotigt. Auch diese Metamodelle werden mit UML-
Klassendiagrammen spezifiziert.

Sind die Metamodelle erstellt, so konnen auf dieser Grundlage Korres-
pondenzregeln spezifiziert werden. Hierzu wird der graphische Editor fiir
Tripel-Graph-Grammatiken verwendet. Abbildung 7.3 zeigt den Editor mit
einer TGG-Regel aus unserem Beispiel zur Synchronisation von Block- und
Klassendiagrammen. Mit dem Editor konnen TGG-Regeln erstellt und be-
arbeitet werden. Hierzu befindet sich auf der rechten Seite des Editors eine
Werkzeugpalette, mit der vorhandene Elemente selektiert (Select und Mar-
que) oder neue Elemente (Object, Link, Constraint, Assertion) erzeugt wer-
den konnen. So kénnen mit Hilfe der Werkzeugpalette zum Beispiel neue Ob-
jekte, Verbindungen, Bedingungen und Attributzuweisungen zu einer TGG-
Regel hinzugefiigt werden. Nach der Erstellung der Elemente kénnen die Ei-
genschaften eines im Editor selektierten Elements in der Properties-View an-

212

7.2 Entwicklungsumgebung

gezeigt und dort bearbeitet werden. Beispielsweise kénnen in der Properties-
View sowohl der Typ als auch der Name eines Objektes modifiziert werden.

= FujabadEclipse - de.uni_paderbor — for.gz - Eclipse Platform = | 5 |

File Edit MNavigate Project Fujsba Window Help
B e o~ id I we ~ 4 x| leg D =&
¥ *Medel Synchrenizatien Example &2 =8

ot classdiagram: UMLClassDiagram

elements ¥

2 sources targets

By parent: Block = corrParent: CorrBlock wcrgate parentClazz: UMLClass
targets

o | screates
e

acreates acreates wcreates

sourceRole: UMLRole card
ladornment := UMLRole COMPOSITION -
adornment == UMLRole.COMPQOSITION

«creates
elements

«creates
IeftRole
createx

acreates v composition: UMLAssoc
modelElements

4

creates
elements

«creates
rightRole

wcreates =Creates «creates
| targetRole:UMIRole | card targetCard: UMLCardinality
adornment == UMLRaleNONE » |cardString == "0.1"
ladornment := UMLRole.NONE leardstring := "0.1"
e

<crétigels

¥
Target 4|

«creates ecreates
sources

blockcBlock | % wcreates clazz: UMLClass
- corrBlock: CorrBlock - Iname = block getName(

«creates

«creates targets

Irame = clazz getName)

«creates

stereotypes | 7

{ block.getName.equals(clazz.getName0) }

ecreates
stereotype: UMLStereotype

ext == "block”

ext = "block”

Project | 2 SDL2UMLBlock 2

e

Abbildung 7.3: TGG-Editor

Zusétzlich zur Properties-View kann eine Outline-View eingeblendet wer-
den. Die Outline-View stellt den Inhalt des graphischen Editors verkleinert
dar und hilft, den Uberblick bei sehr grofen TGG-Regeln zu behalten. Um
die TGG-Regel in Abbildung 7.3 vollstandig darzustellen, wurden sowohl
die Properties- als auch die Outline-View ausgeblendet und das Fenster des
Editors vergréflert. Die beiden Sichten entsprechen den bereits in der Abbil-
dung 7.2 gezeigten Sichten.

Der Editor ist als Plug-in implementiert und stellt die Konformitét der
TGG-Regeln zu den zugrunde liegenden Metamodellen sicher. So ist es bei-
spielsweise nicht moglich, den Objekten einen Typ zuzuordnen, der nicht zu-
vor durch eine Klasse im Metamodell spezifiziert worden ist. Ebenso kénnen
nur Verbindungen zwischen Objekten erstellt werden, wenn auch die zu-
geordneten Objekttypen iiber eine entsprechende Assoziation miteinander
verbunden sind.

Zusétzlich zu dem Editor existiert ein Plug-in, mit dem die in Abschnitt 4.2

213

Kapitel 7 Werkzeugunterstiitzung

beschriebene Regelsynthese durchgefiithrt werden kann. Die damit syntheti-
sierten TGG-Regeln konnen mit dem Editor bearbeitet und weiter verfeinert
werden. Sind alle TGG-Regeln erstellt, so miissen die TGG-Regeln zu einem
Katalog zusammengefasst werden. Der Katalog wird zur Parametrisierung
des Rahmenwerks verwendet, um auf dieser Grundlage die spezifizierte Mo-
dellsynchronisation auszufiihren.

7.2.2 Generierung eines Regelkatalogs

Die Generierung eines Regelkatalogs erfolgt in mehreren Schritten. Zunéchst
wird zu jeder TGG-Regel eine eigene Java-Klasse erzeugt. Dabei wird
der Klasse fiir jede Richtung der Modellsynchronisation eine eigene Me-
thode hinzugefiigt. Zusétzlich generieren wir eine Methode, die lediglich
der Uberpriifung der Korrespondenzbeziehungen dient und damit zur Mo-
dellintegration eingesetzt werden kann. Damit erhalten wir insgesamt drei
Methoden: zwei Methoden fiir die Modelltransformation und Modellsyn-
chronisation (eine Methode vom Quell- zum Zielmodell und eine Methode
fiir die umgekehrte Richtung) sowie eine Methode zur Modellintegration.
Das Verhalten dieser Methoden wird festgelegt, indem aus der zugehorige
TGG-Regel entsprechende Storydiagramme generiert werden.

Zur Generierung der Storydiagramme muss der Benutzer die TGG-Regeln
im Projektmanager selektieren. Auf dieser Auswahl ruft der Benutzer
iiber einen Rechtsklick ein Kontextmenii auf und selektiert dort den Ein-
trag Generate Story Diagrams. In dem sich daraufhin éffnenden Dialog
muss der Benutzer eine Generierungsstrategie wahlen. Die im Rahmen die-
ser Arbeit umgesetzte Generierungsstrategie fiir Modelltransformation, Mo-
dellintegration und Modellsynchronisation ist unter dem Meniieintrag MoTE
(Advanced) zu finden (vgl. Abbildung 7.4). Nach der Generierung der
Storydiagramme konnen diese noch weiter verfeinert und beispielsweise um
zusitzliche Seiteneffekte erweitert werden — was aber in den meisten Féllen
nicht notwendig ist.

In einem zweiten Schritt muss aus den Storydiagrammen Java-Code gene-
riert werden. Hierzu wird der in FUJABA integrierte Codegenerator verwen-
det. Der Codegenerator wird in FUJIABA4ECLIPSE ebenfalls iiber einen Ein-
trag im Kontextmenii gestartet (vgl. Abbildung 7.5). In dem dazugehorigen
Code-Export-Wizard wahlt der Benutzer ein Klassendiagramm oder einzelne
Klassen, aus denen dann der Java-Code generiert wird. Zusétzlich muss der
Benutzer angeben, in welchem Projektverzeichnis der generierte Java-Code
gespeichert wird. Nach der Generierung wird der Code durch den ECLIPSE-

214

7.2 Entwicklungsumgebung

a [
4 (& deuni_paderborn.synchronization.blockZclass o e
» B JRE System Library [JavaSE-1.6] New 5 Generate Story Diagrams
- sre Select the generator strateqy to be used to create operational rules from the triple
= Plug-in Dependencies £ Open Diagram graph grammer rules.
e <) GemlEgeneEug e P
4 T block2class.fpr.gz [Medel Sync| 3¢ Delete Diagram MoTE (Simple)
4 % Model Synchronization Exar —
a [Diagrams g2y Import.
(5 Activity Diagrams | gy Export...
(2 Class Diagrams
+ & TGG Disgrams Generate Stary Diagrams ...
@ SDL2UMLAxiom | «* Refresh)
SDL2UMLElock @
@ SDL2UMLConne pm“mi

Abbildung 7.4: Generierung der Storydiagramme

Compiler automatisch in ausfithrbaren Bytecode iibersetzt. Die kompilierten
Klassen représentieren die ausfithrbaren TGG-Regeln.

4 % Model Synchronization Example
4 (Diagrams
(2 Activity Disgrams
4 (2 Class Diagrams

SDL2UMILBlock

¥ Blockd Metamodel
25 Cloesdimram Metamodel © reverse (comTGGNode)} TGGNode 4u>’m‘<)—
e J @ mapping (corrTGGNode)} TGGNode TGGRule

7’ Correspondence Metzmodel

5 MoTE Metamode! © forward (comTGGNode):TGGNode
7 Mo amodel
4 7 MoTE Rules
- @ so2y New 4
® spLay

i

® spLa & OpenDisgram SDL2UMIProcess
® spLay | Open Diagram with Swing & forward (cornTGGNode :TGGNode
. @ soL2l & reverse(cornTGGNode) TGGNode
© spioy % DeleteDagiam © mapping (corrTGGNede) TGGNode

© SDL2 jxy Import...
@TGGA@ e

© TGGR SDL2UMLSystemBlock

[TGG Diagram «* Refresh @ mapping (corrTGGMNode): TGGNode
(2 Model @ forward (cor:TGGNode):TGGNode
5 Structure Properties @ reverse (corrTGGNode :TGGNode

Abbildung 7.5: Start der Codegenerierung

Im letzten Schritt miissen die ausfithrbaren TGG-Regeln in einem Jar-
Archiv zu einem Katalog gebiindelt werden. Hierzu wird der in ECLIPSE
integrierte Jar-Packager verwendet (vgl. Abbildung 7.6). Mit Hilfe dieses
Wizards kann der Benutzer die Dateien angeben, die in dem Jar-Archiv
enthalten sein sollen.

Zusétzlich zu den kompilierten Klassen muss das Jar-Archiv eine Konfigu-
rationsdatei enthalten, in der die verfiigharen TGG-Regeln sowie zusétzlich
benétigte Plug-ins und Bibliotheken aufgelistet sind. In Abbildung 7.7 ist ein
Ausschnitt einer solchen Konfigurationsdatei fiir unser Beispiel angegeben.

Bei der Konfigurationsdatei handelt es sich um eine XML-Datei, in der
unter anderem beschrieben ist, welche TGG-Regeln verfiigbar sind und auf
welchen Typen von Korrespondenzknoten die TGG-Regeln ausgefiihrt wer-
den koénnen. In der zuvor gezeigten Beispielkonfiguration werden unter dem

215

Kapitel 7 Werkzeugunterstiitzung

2 JAR Export = | B ot

JAR File Specification
Define which reseurces should be exported into the JAR,

Select the resources to export:

52 de.uni_paderborn.activitydiagram » [1) SDL2UMLAxiom java
4 [B = de.uni_paderborn.synchronization 1) SDL2UMI Black java
a4 [sic = [1) SDL2UMLConnectionVariantl java
£ de.upb.mote.rules [1) SDL2UMLCennectionVariant2 java
£ deupb.moteitgg [1] SDL2UMLC onnectionVariant3 java
[&= settings [3] SDL2UMLProcess.java
> E & libs 1] SDLZUMLSystemBlock java
- [METAINF il
4 — lfl‘ : »

Export generated class files and resources
[] Export all output folders for checked projects
[7] Export Java source files and resources

[7] Export refactorings for checked projects. Select refactorings...

Select the export destination:

JARfile CA\Users\rabert\Desktoptsdi2uml-advanced.jar -

Options:
Compress the contents of the JAR file
[T Add directory entries

[] Overwrite existing files without warning

@ < Back Nei> | [Fnsh | [Concel

Abbildung 7.6: Wizard zur Erstellung des Jar-Archivs
<?xml version="1.0" standalone="yes"7>

<configuration>
<triggertable>
<entry trigger=""
rule="de.upb.mote.rules.SDL2UMLAxiom" />
<entry trigger="de.upb.mote.tgg.CorrAxiom"
rule="de.upb.mote.rules.SDL2UMLSystemBlock" />
<entry trigger="de.upb.mote.tgg.CorrSystem"
rule="de.upb.mote.rules.SDL2UMLBlock" />
<entry trigger="de.upb.mote.tgg.CorrBlock"
rule="de.upb.mote.rules.SDL2UMLBlock" />

</triggertable>
<dependencies>

<plugin id="de.uni_paderborn.example.blockdiagramé4eclipse"/>
</dependencies>

</configuration>

Abbildung 7.7: Ausschnitt aus einer Konfigurationsdatei

216

7.2 Entwicklungsumgebung

Element triggertable die verfiigharen TGG-Regeln in separaten Eintragen
(entry) aufgelistet. Das Attribut trigger eines solchen Eintrags bezeich-
net den Typ des Korrespondenzknotens, auf dem die unter dem Attribut
rule genannte TGG-Regel potentiell angewendet werden kann. Hier sind
auch Mehrfachnennungen moglich, so dass eine TGG-Regel durchaus auf
verschiedene Typen von Korrespondenzknoten gepriift werden kann. Ist das
trigger Attribut hingegen nicht weiter spezifiziert, so handelt es sich bei
dem Eintrag um ein Axiom. Die Document Type Definition (DTD) der
Konfigurationsdatei ist im Anhang B angegeben.

Das Jar-Archiv représentiert einen Katalog mit ausfithrbaren Regeln einer
Tripel-Graph-Grammatik. Ist dieser Katalog erstellt und verfiighar, so kann
damit eine Modelltransformation, eine Modellintegration oder eine Modell-
synchronisation ausgefiihrt werden.

7.2.3 Ausfithrung

Damit eine Modelltransformation, eine Modellintegration oder eine Modell-
synchronisation in FUJABA4ECLIPSE ausgefiihrt werden kann, miissen die
beteiligten Modelle zunéchst geladen werden. Dies geschieht automatisch, in-
dem das oder die Projekte, die diese Modelle enthalten, in FUJABA4ECLIPSE
gebdffnet werden. Sobald die beteiligten Modelle geladen sind, kann der Be-
nutzer eine neue Synchronisationsaufgabe durch die Auswahl einer hierfiir
vorgesehenen Schaltfliche der Werkzeugleiste anlegen. Die Werkzeugleiste
mit den Erkldrungen zu den dort verfiigharen Schaltflichen ist in der Abbil-
dung 7.8 zu sehen.

add synchronization/ || select concrete synchronization/ | | execute correspondence
transformation task transformation task to execute mapping

—— —_—mPl— ——
&
=

9 X | block2class |)

— —_— =

(e

delete synchronization/ | | synchronize/transform | | synchronize/transform
transformation task in reverse direction in forward direction

Abbildung 7.8: Werkzeugleiste zur Modellsynchronisation

Beim Anlegen einer neuen Synchronisationsaufgabe wird ein sogenann-
ter Model-Synchronization- Wizard gestartet. Der Model-Synchronization-
Wizard besteht aus zwei Dialogen, die nacheinander zusétzliche Eingaben

217

Kapitel 7 Werkzeugunterstiitzung

vom Benutzer abfragen, um die Modellsynchronisation erfolgreich initialisie-
ren zu kénnen.

= Create New Synchronization Task = | B = Create New Synchronization Task (=E |
Model Synchronization Model Synchronization

Create a new model synchronization task. Create a new medel synchronization task

Identifier Catalog

Enter a unique identifier for the model synchronization task: Select a compiled tgg catalog:

Name: plock2elass Location: ¢:/Users/robert/Desktop/sdl2uml-advanced.jar

Models Direction Mode

Select a source and/or a target model: [#forward @ source and target incremental

Source: examplefpr.gz/blockdiagram [#] mapping ") target incremental only

(] reverse [] automatic execution
Target: example.fpr.gz/classdiagram

Abbildung 7.9: Synchronisierungs-Wizard

Die beiden Dialoge des Model-Synchronization-Wizards sind in Abbil-
dung 7.9 dargestellt. Im ersten Dialog muss der Benutzer zunichst einen
Namen fiir die Modellsynchronisation eingeben. Damit die hier vorge-
stellte Werkzeugunterstiitzung mehrere Synchronisationsaufgaben innerhalb
der Entwicklungsumgebung unterstiitzen kann, sollte dieser Name eindeutig
sein, da dieser Name in der Werkzeugleiste aus Abbildung 7.8 dem Benutzer
zur Auswahl angeboten wird. Die dort vom Benutzer durchgefiihrte Auswahl
bestimmt, welche Modellsynchronisation ausgefiihrt wird.

Anschliefend muss der Benutzer die zu synchronisierenden Modelle
auswahlen. Hat der Benutzer zwei Modelle angegeben, so konnen die Ele-
mente der Modelle durch eine Modellintegration zunéchst zueinander in Be-
ziehung gesetzt werden. Ebenso ist es aber auch moglich, die beiden Modelle
in eine der beiden Richtungen sofort miteinander zu synchronisieren.

In dem Fall, dass zunéchst nur ein Modell vorhanden ist und das zweite
Modell durch eine Modelltransformation erzeugt werden soll, reicht es jedoch
aus, nur das zu transformierende Modell anzugeben. Ist beispielsweise nur
das Quellmodell vorhanden, so wird das Zielmodell durch eine Vorwérts-
transformation erzeugt. Steht hingegen nur das Zielmodell zur Verfiigung,
wird das Quellmodell durch eine Riickwartstransformation aus dem Zielmo-
dell gewonnen. In beiden Fillen konnen nach der Transformation die Modelle
wie gewohnt miteinander synchronisiert werden.

218

7.2 Entwicklungsumgebung

Bevor eine Modelltransformation, Modellintegration oder Modellsynchro-
nisation ausgefiihrt werden kann, muss der Benutzer noch den Regelkatalog
angeben, d. h., das Jar-Archiv, in dem die ausfithrbaren TGG-Regeln hinter-
legt sind. Dariiber hinaus kann der Benutzer die Richtung der Modellsyn-
chronisation einschranken und beispielsweise nur eine Modelltransformation
oder Modellsynchronisation in Vorwartsrichtung erlauben. Zusétzlich kann
er einstellen, ob die Modellsynchronisation inkrementell oder batch-orientiert
und ob die Modellsynchronisation manuell angestofien werden muss oder ob
sie automatisch nach jeder Modellainderung ausgefiithrt wird. Diese Einstel-
lungen konnen in dem zweiten Dialog vorgenommen werden, der auf der
rechten Seite der Abbildung 7.9 zu sehen ist.

Hat der Benutzer alle Eingaben vorgenommen, erfolgt eine Initialisierung
des Rahmenwerks mit dem Regelkatalog und dem (oder den) Modell(en). So-
fern der Benutzer keine automatische Modellsynchronisation eingestellt hat,
kann er die Modelltransformation, Modellintegration oder Modellsynchroni-
sation iiber die entsprechenden Schaltflichen der Werkzeugleiste (vgl. Abbil-
dung 7.8) manuell auslosen. Hierbei erfolgt eine Modelltransformation nur
in dem Fall, dass die Modellsynchronisation zum ersten Mal ausgefiihrt und
noch kein zweites Modell vorhanden ist. Sind beide Modelle gegeben, so wird
je nach gewihlter Schaltfliche entweder nur eine Modellintegration oder eine
Modellsynchronisation durchgefiihrt (sofern keine automatische Synchroni-
sation gewahlt wurde). In Abbildung 7.10 ist das Blockdiagramm sowie
das damit synchronisierte Klassendiagramm zu sehen. Jede nachfolgende
Ausfiithrung in eine der Richtungen fithrt zu einer Modellsynchronisation.

Nach einer Modelltransformation, Modellintegration und Modellsynchro-
nisation kann der Benutzer die sogenannte MoRTEn-View aktivieren. In der
MoRTEn-View wird das Korrespondenzmodell in einer Baumstruktur darge-
stellt. In Abbildung 7.10 ist diese Sicht unter den Diagrammen zu sehen. Je-
der Eintrag in dieser Ansicht zeigt neben der angewendeten TGG-Regel den
bei der Anwendung erzeugten Korrespondenzknotentyp sowie seine Hohe in
der Hierarchie. Links und rechts von dem Korrespondenzmodell werden bei
einem selektierten Eintrag die mit dem Eintrag assoziierten Modellelemente
angezeigt. Diese Ansicht hat keine weitere Funktionalitdt und ist lediglich
beim Testen der Modellsynchronisation hilfreich, indem sie zueinander kor-
respondierende Modellelemente darstellt und damit eine Nachverfolgbarkeit
einer Modelltransformation, Modellintegration und Modellsynchronisation —
zumindest rudimentdr — moéglich macht. Um die Nachverfolgbarkeit einer
Modelltransformation, Modellintegration und Modellsynchronisation zu ver-
bessern, konnte dieser Ansicht weitere Funktionalitét hinzugefiigt werden.

219

Kapitel 7 Werkzeugunterstiitzung

= FujebadEclipse - de.uni_paderb: Je.bl Kacla: le.fpr.gz - Eclipse Platform SR
i

le Edit Navigate Search Project Fujsba Run Window Help

& ik io e B < o v | 100% v g | blockechss v | & o
(7 Project Explorer &2 = O | # blockclass example.fpr.gz % =0
=R-YC | 45 Palette
1
i deuni_paderborn tgg.spec.example +
ﬁdeum p e t99 P Iﬂ‘ System Prodsys [;; Select
B2 _paderborn.tgg.spec.example]] Marquee
4 =¥ deuni_paderborn tgg.sync.example) b
=), JRE System Library [JavaSE-1 (= Block Diagram
@ sre Block Station Block
i), Plug-in Dependencies
(& METAINE BlockInterlock Bireces
4 (= model Block Switch T Connection
4 T8 block2class_example.fpr.gz [
4 & block2class_examplefpr.) Process
4 (2 Diagrams) © Control
s (2 Block Disgrams ©
Prodsys
4 (% Class Diagrams BlockStopper
4 7 ProdSys
@ Control
© Interlock
@ Prodsys
© station
@ Stopper
© switch
(2 Model i
@ Structure || ’
« i » Project | 3, ProdSys 5% | 7" ProdSys
95 Outline 2 & ¥ = O|[E Properties asks | £ Console [) MoRTEn 12 i = ¥ =0
Station [SDL2UMLAxiom:CorrAxiom [0] UMLRole[id=1-Ufd#7A2,name= prodsys,target=Prod
[SDL2UMLSystem::CorSystem [1] UMLAssoc[name= containsStation,leftRole=UMLRol
[s=USDI2UM) Blocie Gaplackq2) UMLRole[id=I-Ufd=642, names= station,target=Statio
[3] SDL2UMLBlock:ConBlock 3] station
= [%] SDL2UMLBIock: ConBlock [3]
%] SDL2UMLBlock: CorrBlock [2]
[#] SDL2UMLProcess::CorrProcess [3]
“ i '

. jabadEclipse - de.uni_paderb bl K2dla: Je.fpr.gz - Eclipse Platform =)

File Edit Navigate Search Project Fujsba Run Window Help

- Q- io P Tl m e UG 4 % | blodaclass v | & B =]
(7 Project Explorer &% = O # blockaclass_eamplefprgz 52 =0

B & | & 7||[cdProdsys = | 4% Palette [
5= de.uni_paderborn tgg.spec.example ~ s Select
1
1 deuni_paderborn tgg.spec.exampl
1 deani_paderborntgg spec.cample 1 Marquee
4 12 deni_paderborn tgg.sync.cxample|

=), JRE System Library [J2vaSe-1 (> Method)
(& src & Parameter
I =4 Plug-in Dependencies EAEFEEIT containsSwitch
(= METAINF (= Class ©
4 (& model & Attribute
4 78] bleck2class_example.fpr.gz [& Method

4 & block2class_examplefpr.
4 (£ Diagrams =
4 (% Block Diagrams
@ Prodsys
4 (% Class Diagrams
2 7 ProdSys

(> Class Diagram &
(@ Class
3R Association
¥ Generalization

containsControl

© Control
@ Interlock (il
@ Prodsys
© station
© Stopper
© Sswitch
(& Model >
(E Structure | G
) —— B Project| A ProdSys |2 ProdSys 12
B Outline 52 & 7 = B|[E Properties |) Tasks | & Console |#) MoRTEn 2 i = 7 =8
= Station (35 SDL2UMLAxiom: CorrAxiom [0] UMLRolefid=1-Ufd#7A2,name= prodsys target=Prod
[SDL2UMLSystem::CorrSystem [1] UMLAssoc[name=containsStation,leftRole=UMLRol
[SDL2UMLBIock: CorrBlock [2] UMLRole[id=I-Ufd#6A2,names= station, target=Statio

[5] SDL2UMLBlock:ComBlock 3] station
[l SDL2UMLBlock: ConBlock [3]

[SDL2UMLBIocks CorBlock (2]
[%2] SDL2UMLProcess::CorrProcess [3]

7 Class Diagram

Abbildung 7.10: Modellsynchronisation zwischen einem Block- und einem
Klassendiagramm

220

7.3 Werkzeug- und Modelladapter

Dies stand jedoch nicht im Fokus dieser Arbeit.

Die in dieser Arbeit umgesetzte Werkzeugunterstiitzung kann einerseits
dazu verwendet werden, um eine Modellsynchronisation zu spezifizieren und
sie direkt in FUJABA4ECLIPSE zu verwenden. Andererseits kann eine Spe-
zifikation mit FUIABA4ECLIPSE erstellt, getestet und der daraus generierte
Regelkatalog zusammen mit dem Rahmenwerk zur Modellsynchronisation in
ein beliebiges Java-basiertes Werkzeug integriert werden. Eine solche Inte-
gration wurde zum Beispiel im Rahmen des Projekts MATE durchgefiihrt
[GMWO06]. In diesem Projekt wurden Matlab/Simulink-Modelle automatisch
in sogenannte Musterspezifikationen [NSWT02] mit der hier vorgestellten
Werkzeugunterstiitzung iibersetzt. Aufgrund der Tatsache, dass die wenig-
sten Werkzeuge tatséchlich ein Fujaba-konformes Metamodell besitzen, mus-
sten hierzu geeignete Werkzeug- bzw. Modelladapter erstellt werden. Die
Werkzeug- und Modelladapter zur Integration in andere Werkzeuge werden
im nachfolgenden Abschnitt behandelt.

7.3 Werkzeug- und Modelladapter

Damit der in dieser Arbeit vorgestellte Ansatz korrekt funktionieren und
kompilierbarer Code aus den Storydiagrammen mit FUJABA erzeugt werden
kann, miissen die verwendeten Metamodelle Fujaba-konform implementiert
sein, das heifit, dass die Implementierung dieser Metamodelle sich an einige
von FUJABA vorgegebene Implementierungsregeln halten muss. Die Einhal-
tung dieser Vorgaben ist wichtig, um zwischen Modellelementen in einem Mo-
dell navigieren zu konnen, auf Modellelemente zugreifen und sie verdandern
zu konnen, als auch um neue Modellelemente erstellen zu kénnen. Diese
Operationen sind fundamental, damit die implementierten Algorithmen zur
Modelltransformation, Modellintegration und Modellsynchronisation korrekt
ausgefiihrt werden.

In den Féllen, in denen das Metamodell mit FUJABA spezifiziert und die
Implementierung automatisch generiert wurde, sind die Anforderungen au-
tomatisch erfiillt. Die meisten Modellierungswerkzeuge erfiillen diese Anfor-
derungen allerdings nicht und bieten kein Fujaba-konformes Metamodell an.
Leider ist es nicht moglich, die Metamodelle der Werkzeuge beziehungsweise
ihre Implementierungen einfach auszutauschen. In den meisten Féllen ist es
auch nicht moéglich, die Codegenerierung aus den Storydiagrammen daran
anzupassen, da sich die Implementierungen der Metamodelle oft an keinen
Standard halten. Dariiber hinaus sind die Metamodelle der Werkzeuge gar

221

Kapitel 7 Werkzeugunterstiitzung

<<instance of>> Correspondence
Metamodel
N
|

[A <<uses>>I oo ———= A [————— A
| Compliant Impl. | ! | Adapter Impl. | | Proprietary Impl. |

| ,.I: | |
| | |
| | ccuses>> <<uses>> | , |<<adaptauon>>| l
| | Metamodel A K4 ———- TGG-Rules {———p) Metamodel B’® K | Metamodel B | |
I ! | I ! I '
I ! I ! | '
I ! I ! I '
| <<instance|of>> | <<input>> | <<instance|of>> | | <<instance|of>> |
| ! I ! I '
| | V | | | |
| : <<input>> . <<output>>! :<<reference5>>| :
| Model A | | TGG-Engine > Model B | | Model B |
| | |
i I I | [

<<output>>
<<links to>> V
Correspondence <<links to>>
Model

Abbildung 7.11: Uberblick zu Werkzeug- und Modelladaptern

nicht oder nur schlecht dokumentiert. In Einzelfillen wird lediglich eine
einfache Schnittstelle (engl. Application Programming Interface, API) zur
Verfiigung gestellt. Im schlimmsten Fall, das heifit, wenn die Metamodelle
nicht verfiigbar sind, muss ein konzeptionelles Metamodell aus den verfiigba-
ren Artefakten, wie zum Beispiel der API-Schnittstelle, manuell zuriick ge-
wonnen werden.

Damit die in dieser Arbeit vorgestellten Anwendungen trotzdem in ande-
ren Werkzeugumgebungen durchgefithrt werden kénnen, verwenden wir das
sogenannten Adapter-Entwurfsmuster [GHJV94]. Dieses Muster erlaubt es,
eine bereits vorhandene Schnittstelle einer Klasse an eine andere Schnittstelle
anzupassen.

Abbildung 7.11 zeigt einen Uberblick zu dem hier vorgeschlagenen Adap-
teransatz. In der oberen Hélfte der Abbildung ist die Beziehung zwischen
den spezifizierten TGG-Regeln und den beteiligten Metamodellen zu sehen.
Dabei wird in den Regeln jedoch nicht direkt das Metamodell B referenziert,
sondern ein dazwischen geschaltetes Metamodell B’. In der unteren Halfte
wird daher eine Modelltransformation gezeigt, in der die TGG-Engine das
Modell A in das Modell B nur indirekt transformiert, indem sie das Modell B’
erzeugt.

In diesem Szenario besitzt das Metamodell A eine zu FUJABA konforme
Implementierung. Daher kann die TGG-Engine auf die Elemente des Mo-
dells A direkt zugreifen. Im Gegensatz dazu entspricht die Implementierung

222

7.3 Werkzeug- und Modelladapter

des Metamodells B nicht den Anforderungen. Um dennoch einen Zugriff der
TGG-Engine auf die Modellelemente zu ermoglichen, wurde ein Metamodell-
adapter B’ implementiert. Diese Implementierung ist konform zu FUJABA
und ermoglicht einen Zugriff auf die Modellelemente des Modells B.

Zur Implementierung eines Fujaba-konformen Modelladapters kann FuU-
JABA herangezogen werden. In einem ersten Schritt wird das Metamodell
als Klassendiagramm in FUJABA spezifiziert. Aus dieser Spezifikation kann
die Implementierung des Metamodells automatisch durch die in FUJABA
verfiighare Codegenerierung erzeugt werden. Durch die automatische Gene-
rierung besitzt die Implementierung bereits die nétigen Schnittstellen, um
mit der TGG-Engine zusammen arbeiten zu kénnen. Allerdings wird noch
nicht auf das proprietiare Modell des Werkzeugs zugegriffen.

Um einen Zugriff auf das Werkzeugmodell zu ermdoglichen, muss der ge-
nerierte Code manuell erweitert werden. Bei dieser Erweiterung miissen die
generierten Attribute aus dem Code entfernt und die Zugriffsoperationen
fiir diese Attribute so angepasst werden, dass sie die API-Schnittstelle des
proprietiren Modells benutzen. Dadurch verdndern wir zwar die Methoden-
implementierungen, aber nicht die Methodensignaturen. Damit bleibt die
Schnittstelle des Modelladapters weiterhin zu FUJABA konform und kann
durch die TGG-Engine genutzt werden. Die Zugriffe auf den Modelladapter
werden nun an das proprietdre Modell des Werkzeugs weiterdelegiert.

Der hier beschriebene Ansatz wurde in verschiedenen Projekten erfolgreich
angewendet, zum Beispiel zur Adaption eines Metamodells fiir Zustandsauto-
maten oder des Metamodells fiir Matlab/Simulink [GMWO06]. Die Implemen-
tierungen der Modelladapter arbeiten zustandslos und mit einer verzoégerten
Initialisierung, das heifit, die einzelnen Adapterobjekte werden erst bei Be-
darf erzeugt. Dariiber hinaus werden einmal erzeugte Adapterobjekte in
einer Liste verwaltet, so dass sie wiederverwendet werden konnen, sobald
ein erneuter Zugriff auf das adaptierte Modellelement nétig ist. Dadurch
wird einerseits ein sehr schneller Zugriff auf die adaptierten Modellelemente
moglich, andererseits wird ein Modellelement immer nur durch ein und das-
selbe Adapterobjekt reprasentiert. Dies ist insbesondere fiir die TGGs von
Vorteil, da die Korrespondenzobjekte immer auch eine Referenz auf die Mo-
dellelemente besitzen. Bei einem adaptierten Modell werden hier die Modell-
adapter referenziert. Wiirden die Adapterobjekte sténdig verworfen werden,
miisste zusétzlicher Aufwand betrieben werden, um diese Referenzen immer
aktuell zu halten.

Die Implementierung von Modelladaptern ist eine komfortable M&glichkeit
zur Uberbriickung unterschiedlicher Techniken in den verschiedenen Werk-

223

Kapitel 7 Werkzeugunterstiitzung

zeugen und ihrer Metamodelle. Selbstverstandlich kann die hier vorgestellte
Adapterimplementierung weiter optimiert werden, indem beispielsweise fiir
jeden Modellelementtyp nur ein einziges Adapterobjekt verwendet wird statt
einem Adapterobjekt pro Modellelement. Weiterhin kénnte die Implemen-
tierung eines Adapters automatisiert werden, falls das zu adaptierende Me-
tamodell nach einem Standard oder einer dokumentierten Richtlinie imple-
mentiert wurde. Beispielsweise konnten Adapter fiir Metamodelle, die auf
dem Java Metadata Interface (JMI) basieren, vollautomatisch aus der Spe-
zifikation des Metamodells generiert werden. Allerdings konnte in solchen
Fillen ebenfalls die Codegenerierung aus den Storydiagrammen angepasst
werden, wie dies zum Beispiel fiir das Eclipse Modeling Framework (EMF)
geschehen ist.

7.4 Evaluation

Ein wichtiger Bestandteil der Evaluation ist die prototypische Implementie-
rung unseres Ansatzes. Die durch die prototypische Implementierung rea-
lisierte Werkzeugunterstiitzung haben wir bereits im vorherigen Abschnitt
kennen gelernt. Die verfiighare Werkzeugunterstiitzung eroffnet jedoch wei-
tere Moglichkeiten der praktischen Erprobung. So konnte auf der Grund-
lage der prototypischen Implementierung gezeigt werden, dass die Spezifika-
tion von Regeln zur Modelltransformation, Modellintegration und Modell-
synchronisation mit unserem Ansatz praktikabel und die Ausfithrung dieser
Regeln effizient ist. Mit diesem Teil der Evaluation beschéftigt sich dieser
Abschnitt. Hierbei werden zunéchst iiberblicksartig verschiedene Spezifi-
kationen und anschlieffend die wichtigsten Ergebnisse der durchgefiihrten
Leistungsmessungen vorgestellt.

7.4.1 Spezifizierte Korrespondenzregeln

In dieser Arbeit haben wir den Ansatz zur Spezifikation von Korrespon-
denzbeziehungen am Beispiel von Block- und Klassendiagrammen darge-
stellt. Dieses Beispiel haben wir auch mit Hilfe der entwickelten Werkzeug-
unterstiitzung umgesetzt, um Modellsynchronisationen zwischen den beiden
Modellen durchzufiithren. Neben diesem Beispiel wurden weitere Fallstudien
unterschiedlichen Umfangs durchgefiihrt:

e In der Diplomarbeit von Jorg Baksmeier wurde eine Modellsynchro-
nisation zwischen UML-Klassendiagrammen und Java-Code realisiert

224

7.4 Evaluation

[Bak06]. Zur Synchronisation wurden insgesamt 31 TGG-Regeln einge-
setzt. Diese TGG-Regeln sind zuvor im Rahmen der Diplomarbeit von
Alexander Geburzi aus Beispielzuordnungen mit der in Abschnitt 4.2
vorgestellten Technik automatisch synthetisiert worden [Geb06]. Die
eingesetzten TGG-Regeln berticksichtigen Klassen, Attribute, Metho-
den mit dazugehoriger Methodensignatur sowie unidirektionale Asso-
ziationen. Nicht beriicksichtigt wurden hingegen Methodenriimpfe der
Zugriffsmethoden sowie bidirektionale Assoziationen. Zur Représenta-
tion des Java-Codes wurde dabei auf den abstrakten Syntaxbaum aus
dem JDT-Projekt® von ECLIPSE zuriickgegriffen, der iiber die in der
Projektgruppe RECLIPSE® entwickelten Werkzeug- und Modelladapter
an FUJABA4ECLIPSE — wie in Abschnitt 7.3 beschrieben — angebun-
den wurde. Anhand dieser Fallstudie konnte erfolgreich gezeigt wer-
den, dass mit dem Losungsansatz eine Synchronisation von Modell und
Code durchgefiihrt werden kann.

e Im Rahmen des ISILEIT-Projekts (vgl. Abschnitt 2.1.2) wurden zwei
auf TGGs basierende Spezifikationsvarianten zur SPS-Codegenerierung
untersucht. Dabei wurde in beiden Féllen aus einem 1/O-Automaten
SPS-Code in der Sprache Strukturierter Text (ST) erzeugt. Bei der
ersten Spezifikationsvariante wurden TGG-Regeln auf der Grundlage
des Metamodells des I/O-Automaten und der abstrakten Syntax der
Sprache ST erstellt. Diese TGG-Regeln wurden zur formalen Verifika-
tion der semantischen Aquivalenz der beteiligten Sprachen eingesetzt
(vgl. Abschnitt 6.2). Die zweite Spezifikation erfolgte mit TGGs und
Textschablonen und hatte den Zweck, den praktischen Nutzen einer
solchen Kombination zu iiberpriifen. Wie bereits in Abschnitt 4.1.2 be-
schrieben, eignet sich der kombinierte Ansatz aus TGGs und Textscha-
blonen jedoch lediglich zur Modelltransformation, oder genauer gesagt,
zur Codegenerierung. Eine bidirektionale Synchronisation zwischen ei-
nem Modell und Code auf der Grundlage von Textschablonen ist damit
bisher nicht moglich.

e Eine weitere Evaluation des TGG-Ansatzes wurde an der Hochschule
Darmstadt im Rahmen der Masterarbeit von Arpad Vasarhelyi durch-
gefithrt [Vas06]. Die Evaluation erfolgte an einer Fallstudie, bei der
plattformspezifische mit plattformunabhéngigen Modellen synchroni-

5Java Development Tools, siehe auch http://www.eclipse.org/jdt/
6A Reverse Engineering Framework for Eclipse

225

http://www.eclipse.org/jdt/

Kapitel 7 Werkzeugunterstiitzung

siert wurden. Die plattformunabhéngigen Modelle wurden durch UML-
Klassendiagramme reprisentiert. Die plattformspezifischen Modelle
hingegen durch EJB"-Komponentenmodelle, denen ebenfalls UML-
Klassendiagramme zugrunde liegen. Zur Spezifikation der benotigten
Korrespondenzbeziehungen reichten bereits 5 TGG-Regeln. Die zen-
trale Frage dieser Fallstudie, ob bei der Modellsynchronisation auch
Anderungen berticksichtigt werden kénnen ohne dabei Verfeinerungen
im Zielmodell zu iiberschreiben, konnte positiv beantwortet werden.

An der Technischen Universitdt Wien erfolgte im Rahmen der Magi-
sterarbeit von Giizide Selin Altan eine weitere Evaluation anhand einer
Fallstudie [Alt08]. Bei der betrachteten Fallstudie wurden TGGs zur
Modelltransformation und -synchronisation von Geschéftsprozessmo-
dellen eingesetzt. Dabei wurden FEreignisgesteuerte Prozessketten
(EPKs) in UML-Aktivitatsdiagramme transformiert und nach durch-
gefithrten Modellanderungen wieder miteinander synchronisiert. Die
Korrespondenzbeziehungen wurden mit insgesamt 21 TGG-Regeln spe-
zifiziert, wobei viele dieser TGG-Regeln lediglich verschiedene Varian-
ten einer TGG-Regel reprisentieren. Hier hat sich gezeigt, dass eine
Moglichkeit zur Wiederverwendung von TGG-Regeln mit einem dazu-
gehorigen Verfeinerungskonzept durchaus sinnvoll und hilfreich wire.

Der in dieser Arbeit vorgestelle Losungsansatz wurde in der Studien-
arbeit von Oliver Rohe eingesetzt, um eine Modelltransformation zu
spezifizieren und auszufithren [Roh06]. Die dabei spezifizierten TGG-
Regeln dienen der Ubersetzung von TGG-Regeln selbst. Hintergrund
der Ubersetzung von TGG-Regeln ist, dass an der Universitit Pader-
born neben dem hier vorgestellten, generativen Ansatz zur Ausfiihrung
von TGG-Regeln ein interpretativer Ansatz, der sogenannte TGG-
Interpreter, entwickelt wurde [KRWO04]. Dieser TGG-Interpreter ba-
siert auf denselben Konzepten wie wir sie in dieser Arbeit vorgestellt
haben. Allerdings werden diese Konzepte im TGG-Interpreter durch
ein abweichendes Metamodell repréasentiert. Um die mit dem TGG-
Editor des generativen Ansatzes spezifizierten TGG-Regeln im TGG-
Interpreter nutzen zu kénnen, miissen die TGG-Regeln in den For-
malismus des TGG-Interpreters iibersetzt werden. Die Spezifikation
der zur Modelltransformation benétigten Korrespondenzbeziehungen
besteht aus insgesamt 20 TGG-Regeln, die in [Roh06] angegeben sind.

"Enterprise JavaBeans, sieche auch http://java.sun.com/products/ejb/

226

http://java.sun.com/products/ejb/

7.4 Evaluation

e Weitere Korrespondenzregeln wurden im Rahmen des MATE-Projekts
spezifiziert [GMWO06]. Bei diesem Projekt werden Matlab/Simulink-
Modelle erstellt, die im Rahmen einer Analyse als Muster dienen. Diese
Muster beschreiben Situationen, die in einem Matlab/Simulink-Modell
vermieden werden sollen. Im Rahmen einer automatischen Analyse
wird nach diesen Mustern gesucht und erkannte Muster dem Benutzer
gemeldet. Damit das in dem Projekt eingesetzte Analysewerkzeug nach
diesen Mustern suchen kann, miissen die in Matlab/Simulink spezifi-
zierten Muster in die Repréisentation des Analysewerkzeugs iibersetzt
werden. Hierfiir wurde der in dieser Arbeit beschriebene Ansatz mit
der dazugehorigen Werkzeugunterstiitzung eingesetzt.

e In der Studienarbeit von Yascha Cebeci wurden TGGs eingesetzt, um
Java-Codebeispiele in Objektstrukturen von Graphtransformationsre-
geln zu iibersetzen [Ceb07]. Aus jeweils zwei solchen Objektstruk-
turen konnte anschliefend mit den in der Studienarbeit entwickelten
Algorithmen eine Graphtransformationsregel automatisch synthetisiert
werden. Dadurch wurde — &hnlich zu der in Abschnitt 4.2 vorgestell-
ten Spezifikation von Korrespondenzregeln durch Beispielzuordnungen
— eine Spezifikation von Codetransformationen anhand konkreter Bei-
spiele realisiert. Die Spezifikation der Modelltransformation besteht

aus 7 TGG-Regeln.

Bei den hier erwdhnten Fallstudien ist zu beriicksichtigen, dass sie zum Teil
unterschiedliche Ziele verfolgten. In einigen Fallstudien wurden die Korres-
pondenzbeziehungen spezifiziert, um mit der in dieser Arbeit entwickelten
Werkzeugunterstiitzung eine Modelltransformation durchzufiithren. In eini-
gen anderen Féllen wurde jedoch auch die Modellsynchronisation untersucht.
Wichtig ist, dass anhand dieser Fallstudien gezeigt werden konnte, dass der
Ansatz der TGGs durchaus geeignet ist, um Korrespondenzbeziehungen zwi-
schen unterschiedlichen Modellen zu spezifizieren. Natiirlich heifit das nicht,
dass die Technik der TGGs und die hier vorgestellte Modellsynchronisation
fiir alle Arten von Modellen gleich gut geeignet sind. Fiir eine vollstdndige
Evaluation sind viele weitere Beispiele aus der Praxis notwendig, die auf-
grund des dafiir erforderlichen zeitlichen Aufwands im Rahmen dieser Arbeit
aber nicht mehr durchgefiihrt werden konnten.

227

Kapitel 7 Werkzeugunterstiitzung

7.4.2 Leistungsmessungen

In diesem Abschnitt présentieren wir Leistungsmessungen, die wir durch-
gefithrt haben, um eine Finschitzung der Geschwindigkeit unseres Ansatzes
im Vergleich zu anderen Ansétzen zu erhalten. Leider existieren nur sehr
wenige Werkzeuge, die eine Modellsynchronisation, wie wir sie hier kennen-
gelernt haben, unterstiitzen (siche Abschnitt 8.2). Diese Werkzeuge sind
zumeist auf spezielle Modelle festgelegt und zudem nicht frei zugénglich.
Dadurch konnte ein Leistungsvergleich mit diesen Werkzeugen nicht durch-
gefiithrt werden.

Um dennoch eine Einschétzung des Laufzeitverhaltens zu erhalten, haben
wir das in dieser Arbeit erstellte Werkzeug mit Werkzeugen zur Modelltrans-
formation verglichen. Die Modelltransformation stellt in unserem Ansatz
einen Spezialfall der Modellsynchronisation dar. Hier sind in den letzten
Jahren — aufgrund der Aktualitdt und Relevanz dieses Themas — sehr viele
Ansétze und Werkzeuge entwickelt worden. Die Werkzeuge unterscheiden
sich hauptséchlich durch die Art, wie die Transformationsregeln spezifiziert
und ausgefiihrt werden. Fiir unsere Leistungsmessungen haben wir uns auf
zwei Vertreter dieser Werkzeuge festgelegt. Bei dem ersten Werkzeug han-
delt es sich um medini QVT der Firma tkv++ technologies ag [IKV], das
die Sprache QVT-Relations der OMG unterstiitzt. Das zweite Werkzeug
gehort zum M2M-Projekt der Eclipse Foundation [M2M] und implementiert
die Sprache QVT-Operational.

Durchfiihrung

Die Leistungsmessungen werden auf einem Rechner mit einem Intel®)
Core™ 2 Duo E6300 Prozessor mit 1,86 GHz und 2048 MB Arbeitsspei-
cher durchgefiihrt. Als Betriebssystem wird Microsoft@® Windows Vista —
Home Premium mit installiertem Service Pack 1 eingesetzt. Bei der Java-
Laufzeitumgebung handelt es sich um die Java™ SE Runtime Environment
in der Version 1.6.0_.07, auf deren Grundlage auch das eingesetzte Eclipse
3.4.1 (Ganymede) ausgefithrt wird. Die Modelltransformationswerkzeuge
sind als Plug-ins fiir Eclipse realisiert. Das Werkzeug medini QVT wird
in der Version 1.6.0.25263 verwendet. Das Eclipse Operational QVT liegt
in der Version 1.0.1 vor. Fiir die Ubersetzung verwenden wir die aus dieser
Arbeit bereits bekannten Korrespondenzbeziehungen zwischen Block- und
Klassendiagrammen, die wir in der jeweiligen Beschreibungssprache des zu-
grundeliegenden Werkzeugs spezifiziert haben.

228

7.4 Evaluation

Fiir die Leistungsmessungen haben wir drei Plug-ins erstellt, wobei jedes
Plug-in fiir die Leistungsmessung eines Werkzeugs verantwortlich ist. Hierzu
erstellt ein Plug-in zunéchst ein Blockdiagramm, welches als Quellmodell
dient. Die Anzahl der Blocke in einem Blockdiagramm kann vom Benutzer
durch einen Parameter festgelegt werden. Dariiber hinaus kann iiber einen
weiteren Parameter die Anzahl der Blocke, die ein Block enthalten soll, de-
finiert werden. Die Anzahl der Blocke legt die Modellgrofle fest. Die Anzahl
von Blocken in einem Block bestimmt den Verzweigungsgrad und damit die
hierarchische Struktur des Blockdiagramms. Ein geringer Verzweigungsgrad
bewirkt, dass die hierarchische Struktur des Blockdiagramms schmal und
tief ist. Im Gegensatz dazu fithrt ein hoher Verzweigungsgrad zu einer brei-
ten und flachen hierarchischen Struktur. Die hierarchische Struktur eines
Blockdiagramms spiegelt sich direkt in dem dazugehérigen Korrespondenz-
modell wieder, so dass dariiber die Struktur des Korrespondenzmodells be-
einflusst und das Laufzeitverhalten unseres Algorithmus fiir unterschiedliche
Auspriagungen des Korrespondenzmodells untersucht werden kann.

Nach der Erstellung eines Blockdiagramms mit den gegebenen Parame-
tern wird das jeweilige Werkzeug zur Modelltransformation initialisiert und
dabei die entsprechenden Transformationsregeln geladen. Die Leistungsmes-
sung der Modelltransformation beginnt erst nach der Initialisierung, so dass
weder die Initialisierung noch die Erstellung eines Blockdiagramms in die
Zeitmessung einfliefen. Zur Zeitmessung wird die Systemzeit vor und nach
der Modelltransformation ermittelt und daraus die benétigte Zeit fiir die
Modelltransformation berechnet. Uber einen weiteren Parameter kann die
Anzahl der durchzufithrenden Leistungsmessungen fiir die eingestellte Mo-
dellgrofle festgelegt werden. Hierbei wird fiir jede Messung das Transforma-
tionswerkzeug neu initialisiert sowie ein neues und damit noch nicht trans-
formiertes Blockdiagramm erstellt. Dieser Vorgang fliefit ebenfalls nicht in
die Zeiterfassung ein.

Die Leistungsmessungen werden mit Blockdiagrammen unterschiedlicher
Grofle durchgefiihrt, wobei wir den Verzweigungsgrad fiir die hier beschrie-
bene Leistungsmessung auf zwei Blocke festgelegt haben. Bei den ersten
Leistungsmessungen werden Blockdiagramme mit 100-1.000 Blécken iiber-
setzt. In den nachfolgenden Leistungsmessungen wird die Modellgréfle auf
1.000 Blocke festgelegt und in jeder nachfolgenden Leistungsmessung um je-
weils 1.000 weitere Blocke erhoht. Die letzte Leistungsmessung erfolgt mit
einem Blockdiagramm mit 25.000 Blocken. Fiir jedes Blockdiagramm einer
Groe wurde die Leistungsmessung 10 Mal wiederholt und der Mittelwert
iiber die einzelnen Ergebnisse gebildet.

229

Kapitel 7 Werkzeugunterstiitzung

600

500 -

I
o
S

Zeit fiir Modelltransformation (ms)
n w
o o
o o

100 A

_ e 22w a1

100 200 300 400 500 600 700 800 900 1000
ModellgroBe (Anzahl der Elemente im Quellmodell)

- . —=

[—=—Fujaba TGG Medini QVT Relational Eclipse QVT Operational |

Abbildung 7.12: Leistungsmessung bei der Transformation kleiner Modelle

Ergebnisse

Das Diagramm in Abbildung 7.12 zeigt die ermittelten Zeiten der Leistungs-
messungen fiir kleine Modelle (Blockdiagramme mit bis zu 1.000 Blocken).
Hierbei hat sich gezeigt, dass die Modelltransformation mit medini QV'T am
léngsten dauert. Fiir ein Blockdiagramm mit 100 Blocken wurden 74 ms
und fiir ein Blockdiagramm mit 1.000 Blécken bereits 550 ms benétigt.
Die Modelltransformation mit Eclipse Operational QVT ist zwar schneller,
kommt jedoch nicht an die Geschwindigkeit der Modelltransformation mit
dem TGG-Ansatz von Fujaba heran. Der TGG-Ansatz benétigt fiir die Mo-
delltransformation eines Blockdiagramms mit 1.000 Blécken lediglich 33 ms.
Die Transformation von 100 Blocken dauert sogar nur 5 ms.

Fiir kleine Modelle mit maximal 1.000 Elementen liegen die ermittelten
Zeiten zur Modelltransformation bei allen untersuchten Werkzeugen unter
600 ms und sind damit sehr niedrig. Aufgrund der niedrigen Zeiten sind die
Unterschiede zwischen den einzelnen Werkzeugen fiir einen Benutzer kaum
wahrnehmbar. Daher ist eine Modellsynchronisation durch Modelltransfor-
mation auch nach kleinen Anderungen mit allen diesen Werkzeugen durchaus
denkbar.

230

7.4 Evaluation

120000

100000

80000 -

60000

40000

Zeit fiir Modelltransformation (ms)

20000 -

ModellgréBe (Anzahl der Elemente im Quellmodell)

‘+ Fujaba TGG Medini QVT Relational Eclipse QVT Operational ‘

Abbildung 7.13: Leistungsmessung bei der Transformation grofierer Modelle

Anders verhilt es sich jedoch, wenn grofie Modelle (Blockdiagramme mit
1.000 - 25.000 Blocken) transformiert werden. Die Ergebnisse dieser Lei-
stungsmessungen sind in der Abbildung 7.13 dargestellt.

Die Leistungsmessungen bei der Transformation grofler Modelle machen
die Unterschiede beim Laufzeitverhalten zwischen den Werkzeugen deutlich.
Dabei zeigt sich, dass Eclipse Operational QVT bei groflien Modellen am
langsamsten ist und sehr viel Zeit fiir die Modelltransformation benotigt. Die
ermittelten Zeiten deuten darauf hin, dass hier ein polynomieller Algorith-
mus zur Modelltransformation verwendet wird. Im Gegensatz dazu verlduft
die Modelltransformation mit medini QVT linear mit steigender Anzahl von
Blocken — die Transformation eines Blockdiagramms mit 25.000 Blécken
dauert hier daher nur ca. 29 sec. Am schnellsten ist wieder der TGG-
Algorithmus. Dieser benotigt fiir die Transformation des gréfiten Blockdia-
gramms lediglich 2050 ms. Bei dem Leistungsvergleich konnten zwei wesent-
liche Beobachtungen gemacht werden.

Zunéchst kann festgestellt werden, dass kleine Modelle mit den beiden
untersuchten QVT-Werkzeugen in vertretbarer Zeit transformiert werden
konnen. Dies ist insofern interessant, da es sich hierbei um interpretative
Umsetzungen des QVT-Standards handelt. Im Allgemeinen sind Interpreter

231

Kapitel 7 Werkzeugunterstiitzung

bei der Ausfithrung langsamer als generative Ansétze. Dies hat sich einer-
seits durch die durchgefiihrte Leistungsmessung bestétigt. Andererseits hat
sich aber auch gezeigt, dass insbesondere fiir kleinere Modelle dieser Nachteil
von nicht allzu grofler Bedeutung ist, da die Zeiten bei einer Modellgrofie von
1.000 Elementen unter 600 ms liegen.

Die zweite Beobachtung betrifft unseren eigenen Ansatz zur Modelltrans-
formation und Modellsynchronisation. Dieser Ansatz basiert auf Tripel-
Graph-Grammatiken, aus denen operationale Graphtransformationsregeln
abgeleitet werden. Zur Ausfithrung einer Graphtransformationsregel muss
eine Teilgraphensuche durchgefiihrt werden, die im Allgemeinen ein NP-
vollstdndiges Problem darstellt. Aus diesem Grund werden in der Praxis
héufig Ansidtze gemieden, die auf Graphgrammatiken basieren. Mit den
durchgefiihrten Leistungsmessungen konnte jedoch bestétigt werden, dass
durch eine geschickte Einschriankung der Anwendungsstelle und die Angabe
eines Anwendungskontextes, die in unserem Ansatz auf der Grundlage des
Korrespondenzmodells erfolgt, die Regelanwendungen auf polynomielle bzw.
sogar lineare Laufzeiten reduziert werden konnen. Natiirlich hdngt die Lauf-
zeit fiir eine Modelltransformation nicht nur von der Grofie der Modelle ab,
sondern auch von der Komplexitét der verwendeten Regeln. Dies gilt jedoch
fiir alle Transformationsansétze, in denen zunéchst Muster gesucht werden
und erst anschlieBend in Muster eines anderen Modells iibersetzt werden.

Allerdings hat sich gezeigt, dass selbst mit unserem Ansatz eine Modell-
transformation eines Blockdiagramms mit 25.000 Blocken ca. 2 sec dau-
ert. Damit ist eine Modellsynchronisation durch Modelltransformation bei
groffen Modellen nicht vertretbar — insbesondere dann nicht, wenn eine Syn-
chronisation nach jeder Anderung durchgefithrt werden soll. Aus diesem
Grund haben wir in dieser Arbeit den Algorithmus erweitert, um auch inkre-
mentelle Modellsynchronisationen ausfithren zu kénnen. Zur Uberpriifung
der erreichten Performanzsteigerungen wurden Leistungsmessungen und Lei-
stungsvergleiche zwischen den verschiedenen Versionen unseres inkrementel-
len Algorithmus durchgefiihrt. Hierbei hat sich gezeigt, dass der zusétzliche
Aufwand zur Uberpriifung der Korrespondenzbeziechungen relativ gering ist
und lokale Anderungen in nur wenigen Millisekunden synchronisiert werden
kénnen. Die genauen Ergebnisse dieser Leistungsmessungen, bei denen auch
unterschiedliche Verzweigungsgrade betrachtet worden sind, wurden bereits
publiziert [GW09]. Darauf aufbauende Optimierungen sowie dazugehorige
Leistungsmessungen wurden in der Diplomarbeit von Stephan Hildebrandt
dokumentiert [Hil07] und in [GHO8] veroffentlicht, so dass auf eine detaillierte
Darstellung an dieser Stelle verzichtet wird.

232

7.5 Zusammenfassung

7.5 Zusammenfassung

In diesem Kapitel haben wir die im Rahmen dieser Arbeit entstandene Werk-
zeugunterstiitzung vorgestellt, die zur Modelltransformation, Modellintegra-
tion und Modellsynchronisation eingesetzt werden kann. Die Werkzeuge
wurden in die Entwicklungsumgebung FUJABA4ECLIPSE integriert und un-
terstiitzen die in Abschnitt 2.4 vorgestellte Methode. Durch den Einsatz von
Werkzeug- und Modelladaptern ist die entwickelte Werkzeugunterstiitzung
nicht auf FUJABA4ECLIPSE eingeschrankt — die entwickelten Werkzeuge
kénnen leicht in andere Java-basierte Entwicklungsumgebungen integriert
werden. Mit den durchgefiihrten Leistungsmessungen konnte dariiber hin-
aus gezeigt werden, dass der hier vorgestellte Ansatz sehr schnell arbeitet
und daher auch zur Synchronisation grofler Modelle sehr gut geeignet ist.
Die Anforderungen aus Abschnitt 2.4 konnten somit umgesetzt werden.

Bei der entwickelten Werkzeugunterstiitzung handelt es sich natiirlich nur
um einen Forschungsprototypen — fiir einen Einsatz in der Praxis wére es
sinnvoll, die Benutzerschnittstelle weiter zu verbessern. Bei der prototypi-
schen Implementierung sind wir pragmatisch vorgegangen und haben das in
FuiABA4ECLIPSE verfiighare Graphersetzungssystem mit der dazugehori-
gen Werkzeugunterstiitzung verwendet. Dieser Umstand hat die Entwick-
lungszeit reduziert und die Umsetzung erst moglicht gemacht. Allerdings
sind nicht alle Konzepte aus Kapitel 3 implementiert worden. So kénnen in
der aktuellen Implementierung beispielsweise Bedingungen nicht mit OCL
spezifiziert werden. Aufgrund der Tatsache, dass eine Integration von OCL
in FUJABA4ECLIPSE sehr aufwéndig wére, haben wir stattdessen die in FU-
JABA4ECLIPSE verfiigharen Ausdriicke fiir Bedingungen verwendet. Trotz
dieser Einschrankung konnte durch die prototypische Implementierung die
Umsetzbarkeit unseres Ansatzes erfolgreich gezeigt werden.

233

Kapitel 8

Verwandte Arbeiten

In den vorangegangenen Kapiteln haben wir die Konzepte zur automatischen
Modellsynchronisation sowie deren Realisierung kennen gelernt. In diesem
Kapitel vergleichen wir unseren Ansatz mit verwandten Arbeiten. Hierbei
werden wir insbesondere die Unterschiede zu unserer Arbeit hervorheben und
zeigen, dass derzeit kein durchgéngiger Ansatz zur Spezifikation von Mo-
dellbeziehungen existiert, auf dessen Grundlage eine Modelltransformation,
eine Modellintegration sowie eine Modellsynchronisation ausgefiihrt werden
kann. Sowohl die Modelltransformation als auch die Modellintegration sind
Spezialfille der in dieser Arbeit vorgestellten Modellsynchronisation. Daher
stellen wir zunéchst in Abschnitt 8.1 einige Arbeiten zur Modelltransforma-
tion und Modellintegration vor. Anschliefen behandeln wir in Abschnitt 8.2
existierende Ansédtze zur Modellsynchronisation. Im darauf folgenden Ab-
schnitt 8.3 diskutieren wir einige wenige vorhandene Ansétze zur Verein-
fachung der Spezifikation von Modelltransformationen. Wir schlieen das
Kapitel mit einer Zusammenfassung in Abschnitt 8.4.

8.1 Modelltransformation und Modellintegration

In dieser Arbeit haben wir eine Technik zur Modellsynchronisation auf der
Grundlage von Tripel-Graph-Grammatiken vorgestellt. TGGs sind nicht
neu. Sie wurden bereits in einigen Arbeiten zur Modelltransformation und
Modellintegration eingesetzt. In diesem Abschnitt stellen wir daher zunéchst
diese Arbeiten vor. Aufgrund der Tatsache, dass wir zur Modellsynchronisa-
tion einen Ansatz zur Modelltransformation und Modellintegration verwen-
den, betrachten wir anschliefend andere Arbeiten in diesem Themenbereich
und untersuchen dabei, inwieweit diese Ansédtze zur Modellsynchronisation
geeignet sind.

235

Kapitel 8 Verwandte Arbeiten

8.1.1 Tripel-Graph-Grammatiken

Tripel-Graph-Grammatiken sind bereits 1994 von Andy Schiirr [Sch94| als
Erweiterung von T. W. Pratts Pair-Graph-Grammatiken [Pra71] eingefiihrt
und von Martin Lefering im Rahmen des IPSEN-Projekts zur Entwicklung
von Integrationswerkzeugen in einer integrierten Entwicklungsumgebung ein-
gesetzt worden [Lef95, LS96].

In einer solchen Entwicklungsumgebung hat ein Integrationswerkzeug die
Aufgabe, zueinander in Beziehung stehende Elemente zweier Modelle zu
identifizieren, um diese Korrespondenzbeziehungen iiber den gesamten Le-
benszyklus der Modelle zu iiberwachen und auf Konsistenz zu priifen. Hierzu
werden im Rahmen einer Modelltransformation oder Modellintegration Kor-
respondenzobjekte erstellt, die dann auf Anforderung durch den Benutzer
einer Konsistenzpriifung unterzogen werden kénnen.

Die in der Arbeit von Martin Lefering entwickelten Integrationswerkzeuge
arbeiten in einer zuvor festgelegten Hauptintegrationsrichtung. Fiir eine
bidirektionale Modelltransformation oder Modellintegration miissen daher
zwet separate Integrationswerkzeuge erstellt werden, wohingegen mit unse-
rer Technik nur ein Werkzeug fiir beide Richtungen benotigt wird. Dariiber
hinaus miissen in dem Ansatz von Martin Lefering die fiir die Integrati-
onswerkzeuge notwendigen operationalen Graphersetzungsregeln noch von
Hand aus einer TGG abgeleitet werden. Eine Automatisierung, wie wir sie
in dieser Arbeit vorgestellt haben, wurde nicht umgesetzt.

Bei der Konsistenzpriifung wird untersucht, ob die durch die Korrespon-
denzobjekte annotierten Beziehungen noch giiltig sind. Zusétzlich werden
wihrend der Konsistenzpriifung neue Korrespondenzbeziehungen identifi-
ziert. Aufgrund der festgelegten Hauptintegrationsrichtung werden dabei
nur Modellelemente im Quellmodell beriicksichtigt.

Im Gegensatz zu der in dieser Arbeit vorgestellten Konsistenzerhaltung
durch Modellsynchronisation findet in einem Integrationswerkzeug eine au-
tomatische Behebung von Inkonsistenzen nur dann statt, falls ein neues Ele-
ment im Quellmodell erstellt oder ein existierendes Modellelement geldscht
wurde. Attributwerte werden zwar bei der Modelltransformation, Modellin-
tegration und den nachfolgenden Konsistenzpriifungen beriicksichtigt, aber
eine automatische Aktualisierung der Attributwerte zur Konsistenzwieder-
herstellung wird nicht unterstiitzt. Ebenso ist eine automatische Ver-
vollstdndigung der Modelle, wie wir sie in dieser Arbeit kennen gelernt haben,
nicht vorgesehen. Die Behebung von Inkonsistenzen findet daher tberwie-
gend manuell, d.h., durch den Benutzer, statt.

236

8.1 Modelltransformation und Modellintegration

Im Ansatz von Martin Lefering muss in jeder TGG-Regel ein Modellele-
ment speziell gekennzeichnet werden. Diese Modellelemente werden doms-
nante Quellinkremente genannt. Alle iibrigen Modellelemente werden als
Konteztinkremente bezeichnet. Die dominanten Quellinkremente dienen als
Ausgangspunkt der zur Regelanwendung benotigten Mustersuche, so dass
zur Ausfithrung einer Modelltransformation, Modellintegration oder Kon-
sistenzpriifung zunéchst alle dominanten Quellinkremente in einem Modell
identifiziert und eingesammelt werden miissen.

Hier liegt der Hauptunterschied zu unserem Ansatz. Im Ansatz von Mar-
tin Lefering wird eine inkrementelle Nachintegration, d.h., eine Uberpriifung
und Behebung von Inkonsistenzen, nur im Zielmodell inkrementell durch-
gefithrt. Dazu werden zunéchst alle bereits existierenden Korrespondenz-
objekte betrachtet. AnschlieBend muss zur Identifikation der neu hinzu-
gefiigten, dominanten Quellinkremente das gesamte Quellmodell analysiert
werden.! Im Gegensatz dazu kann die in dieser Arbeit vorgestellte Mo-
dellsynchronisation als wvollstindig inkrementell bezeichnet werden, da die
Inkonsistenzen lokal ermittelt und behoben werden.

In diesem Zusammenhang besteht ein weiterer Unterschied zwischen den
beiden Ansétzen. So muss in dem Ansatz von Martin Lefering bei jeder Kon-
sistenzpriifung ein Abhéngigkeitsgraph von anwendbaren Regeln berechnet
werden, mit dem eine giinstige Reihenfolge fiir die Regelanwendungen be-
stimmt wird. Hierzu miissen die Kontextinkremente wiederholt gepriift wer-
den, was zu Effizienzproblemen fiihrt [Bec0O7]. In unserem Ansatz hingegen
wird die Reihenfolge unmittelbar bei der Ausfithrung durch das Korrespon-
denzmodell vorgegeben. Hierzu werden die Abhéngigkeiten zwischen den
Regeln ausgenutzt, die bereits in den Regeln implizit enthalten sind. Eine
zusétzliche Spezifikation oder Berechnung dieser Abhéngigkeiten ist daher
nicht notwendig.

Die Arbeit von Martin Lefering wurde von Simon Becker fortgesetzt
[BLWO04, Bec07]. Daher gelten die meisten der bereits genannten Eigen-
schaften auch fiir die dort erstellten Integrationswerkzeuge. Dies betrifft
insbesondere die Algorithmen zur inkrementellen Modelltransformation und
Modellintegration. Allerdings wurde der Ansatz dahingehend erweitert, dass
nun eine bidirektionale Modelltransformation, Modellintegration und Kon-
sistenzpriifung mit nur einem Integrationswerkzeug moglich ist.

In Ansiitzen zur Modelltransformation wird dieses Vorgehen als ,target incremental®
bezeichnet. Modelltransformationen, in denen zur Identifikation der Inkonsistenzen
nur ein kleiner Ausschnitt eines Modells betrachtet werden muss, werden hingegen
ssource incremental® genannt [CHOG).

237

Kapitel 8 Verwandte Arbeiten

In der Arbeit von Simon Becker wurde der Schwerpunkt auf Benutzerin-
teraktionen gelegt, da in dem betrachteten Anwendungsbereich die Korres-
pondenzbeziehungen héufig nicht eindeutig sind, so dass prinzipiell mehrere
Regeln an einer Anwendungsstelle ausgefithrt werden kénnen. Aufgrund der
potentiellen Konflikte zwischen Regeln und den zur Auflésung notwendigen
Benutzerinteraktionen werden die Regeln aufgeteilt in Regeln zur Mustersu-
che und Musterersetzung, die dann in zwei Phasen ausgefiihrt werden. In
der ersten Phase werden zunéchst auf Grundlage der Mustersuche potentielle
Regelanwendungsstellen identifiziert sowie Beziehungen und Konflikte zwi-
schen diesen Anwendungsstellen bestimmt. In der zweiten Phase wird unter
Einbeziehung von Benutzerinteraktionen die Musterersetzung und damit die
Transformation bzw. Integration durchgefiihrt.

Bei der Ausfithrung der Regeln entscheidet der Benutzer, welche der po-
tenziell an einer Anwendungsstelle moglichen Regeln tatséchlich angewendet
wird. Dazu unterbricht der Algorithmus die Arbeit und wartet auf eine Be-
nutzereingabe. Fiir grole Modelle kann dies allerdings bedeuten, dass der
Benutzer wihrend einer ersten Ubersetzung sehr viele Benutzereingaben titi-
gen muss. Inwieweit dieser Ansatz auch fiir grole Modelle geeignet ist, muss
sich daher in der Praxis noch zeigen.

Der Ansatz von Simon Becker ist im Gegensatz zur Arbeit von Martin
Lefering stark automatisiert, so dass eine Programmierung der notwendi-
gen Integrationswerkzeuge von Hand nicht notwendig ist. Wie in unserem
Ansatz werden auch hier die operationalen Regeln automatisch aus der Spe-
zifikation generiert. Wihrend in unserer Arbeit die Algorithmen auf eine
effiziente Modelltransformation und Modellsynchronisation optimiert sind,
liegt in der Arbeit von Simon Becker der Schwerpunkt auf der Erkennung
und Behandlung von Regeln, die zueinander in einem Konflikt stehen. In
diesem Zusammenhang wére eine Kombination beider Ansétze sehr vorteil-
haft [Bec07], um solche Konflikte bei der Modellsynchronisation zu erkennen
und durch Benutzerinteraktionen aufzulésen. Derzeit werden Konflikte bei
mehreren moglichen Regelanwendungen in unserem Ansatz ignoriert — es
wird einfach die erste Regel ausgefiihrt, die anwendbar ist.?

Parallel zu der Arbeit von Simon Becker hat Alexander Koénigs in sei-
ner Arbeit untersucht, wie der MOF 2.0 QVT-Standard der OMG mit Hilfe
der TGGs implementiert werden kann [K6n08]. Durch die Ubertragung der

2Allerdings kann in unserem Ansatz die Reihenfolge der Regeln durch die in Ab-
schnitt 7.2.2 beschriebene Konfigurationsdatei beeinflusst werden. Dies entspricht
weitestgehend einer Priorisierung von Regelanwendungen.

238

8.1 Modelltransformation und Modellintegration

Metamodellierungstechniken des MOF-Standards auf die TGGs konnten die
Vorteile beider Spezifikationstechniken in einer einzigen Technik zusammen-
gefasst und die jeweiligen Nachteile beseitigt werden. Eine entsprechende
Abbildung wurde bereits in der Diplomarbeit von Joel Greenyer vorgestellt
[Gre06], die im Rahmen dieser Dissertation entstanden ist und iiberblicksar-
tig in Abschnitt 4.3 skizziert wurde.

Zur Implementierung des QVT-Standards hat Alexander Konigs einen
Transformationsalgorithmus fiir TGGs entworfen, der von der hierarchischen
Struktur der beteiligten Modelle ausgeht [KS06, Koén08]. Der Vorteil ist,
dass die Transformation an einer beliebigen Stelle im Modell begonnen wer-
den kann. Die Anwendung eines initialen Axioms ist damit nicht notwendig.
Ein Nachteil ist jedoch, dass aus den zugrundeliegenden Metamodellen be-
reits eine hierarchische Struktur erkennbar sein muss. Diese Voraussetzung
erfiillen jedoch beispielsweise nur MOF- oder EMF-Metamodelle. Im Ge-
gensatz dazu wird eine solche Struktur in unserem Ansatz nicht gefordert,
so dass der Ansatz nicht auf MOF- oder EMF-Modelle eingeschrénkt ist.

Ein anderer Nachteil betrifft die Performanz des entwickelten Algorithmus,
da zuerst eine Mustersuche im Modell durchgefiithrt und erst anschliefend
iiberpriift wird, ob eine Regel bereits zu diesem Zeitpunkt angewendet wer-
den kann. Dies wird aber anhand von Korrespondenzobjekten iiberpriift.
Ist ein notwendiges Korrespondenzobjekt nicht vorhanden, so ist diese Be-
dingung nicht erfiillt und die Regel muss fiir diese Anwendungsstelle zuriick-
gestellt werden. Die dadurch zusitzlich notwendigen Uberpriifungen wirken
sich damit negativ auf die Performanz des Algorithmus aus. Eine entspre-
chende Weiterentwicklung dieses Algorithmus, die diesen Nachteil authebt,
wurde von Andy Schiirr und Felix Klar in dem Beitrag [SKO08] vorgestellt.
Allerdings unterstiitzt dieser Algorithmus — wie auch der Algorithmus von
Alexander Konigs — keine inkrementelle Modellsynchronisation.

Neben den hier vorgestellten Arbeiten existieren weitere Arbeiten, die
TGGs zu unterschiedlichen Zwecken einsetzen. Beispielweise verwendet
Katja Cremer in ihrem Ansatz Tripel-Graph-Grammatiken zur Spezifikation
von Transformationsregeln zwischen einem Strukturdokument und einem Ar-
chitekturdokument. Jede Regel muss dabei durch den Benutzer explizit an-
gestoflen werden, das heifit, es erfolgt keine automatische Transformation
des gesamten Strukturmodells in das Architekturmodell. Stattdessen muss
der Benutzer sowohl die Anwendungsstelle als auch die auszufithrende Regel
von Hand vorgeben. FEine Konsistenzpriifung oder Modellsynchronisation,
wie wir sie in dieser Arbeit vorgestellt haben, war nicht das Ziel der Arbeit
und wurde daher nicht umgesetzt.

239

Kapitel 8 Verwandte Arbeiten

Juan de Lara verwendet TGGs zur Synchronisation eines Modells mit den
daraus abgeleiteten Sichten, die in verschiedenen Editoren dargestellt wer-
den [GLO4]. Hierbei werden die TGG-Regeln aber nur zur Erzeugung und
Verwaltung der Korrespondenzbeziehungen eingesetzt. Die Synchronisation
arbeitet ereignis-orientiert, das heit, eine Anderungsoperation auf dem Mo-
dell wird aufgezeichnet, eine dquivalente Anderungsoperation fiir das Ziel-
modell berechnet, {iber die Korrespondenzbeziehung die Anwendungsstelle
im Zielmodell identifiziert und dann die berechnete Anderungsoperation im
Zielmodell ausgefiihrt.® Der inkrementelle Transformationsalgorithmus wird
somit durch verschiedene Bearbeitungsaktionen, wie zum Beispiel Erstellen,
Andern oder Loschen von Modellelementen, ausgelost. Hierzu miissen alle
moglichen Bearbeitungsaktionen und Aktualisierungsaktivitdten sowohl im
Quell- als auch im Zielmodell spezifiziert werden. Obwohl die Spezifikation
der Bearbeitungsaktionen und Aktualisierungsaktivititen visuell erfolgt und
damit komfortabler als eine ad-hoc Programmierung ist, nimmt der Aufwand
mit der Anzahl und Granularitdt der moglichen Bearbeitungsaktionen zu.
Dariiber hinaus ist eine vollstdndige Modelltransformation in einem Schritt
mit diesem Ansatz nicht moglich. Im Gegensatz dazu deckt der in dieser
Arbeit vorgestellte Ansatz beide Fille ab.

8.1.2 Andere Ansatze zur Modelltransformation und
Modellintegration

In diesem Abschnitt beschéftigen wir uns mit anderen Anséitzen zur Modell-
transformation und Modellintegration und diskutieren, ob diese zur Modell-
synchronisation geeignet sind.

Modelltransformation

Motiviert durch die Einfithrung der Model Driven Architecture (MDA) und
der Ausschreibung zu dem neuen Standard Query/View/Transformation
(QVT) [RFPO3] fiir Modelltransformation durch die Object Management
Group (OMG) sind Modelltransformationen in den Fokus vieler Forschungs-
aktivitdten geriickt. Mittlerweile ist eine finale Version der Spezifikation
dieses Standards verdffentlicht [QVTO08]. In dieser Spezifikation spielen in-
krementelle Modelltransformationen, die auch zur Modellsynchronisation

3Die Nachteile und grundsitzlichen Probleme einer ereignis-orientierten Modellsynchro-
nisation werden von Jack Greenfield et al. in [GSCKO04] diskutiert (Kapitel 14, Seiten
471-473), so dass wir an dieser Stelle nicht weiter darauf eingehen wollen.

240

8.1 Modelltransformation und Modellintegration

beitragen konnen, eine wichtige Rolle. Bisher existieren zwei Werkzeuge,
die den operationalen Teil dieses Standards implementieren [Bor06, Fra06].
Inkrementelle Modelltransformationen, wie sie zur Modellsynchronisation
benotigt werden, sind mit diesen Werkzeugen jedoch nicht moglich. Im Ge-
gensatz dazu unterstiitzen zwei kommerzielle Werkzeuge [IKV, Mor], die den
deklarativen Teil der Sprache verwenden, inkrementelle Modelltransforma-
tionen. Allerdings miissen diese Werkzeuge hierzu jedes Mal die Modelle
vor der Ubersetzung aus der dazugehorigen Dateireprisentation laden, so
dass eine schnelle und sofortige Modellsynchronisation nach durchgefiihrten
Anderungen nicht moglich ist. Im Gegensatz dazu arbeitet der in dieser Ar-
beit vorgestellte Ansatz direkt auf den Modellreprésentationen im Speicher,
so dass eine Modellsynchronisation sofort nach jeder Anderung vorgenom-
men werden kann.

Eine prototypische Implementierung, die in einer Vorstudie zum QVT-
Standard realisiert wurde, ist das von IBM entwickelte Model Transformation
Framework (MTF) [Gri04]. Der Prototyp verwendet nicht die im Standard
vorgeschlagene deklarative Spezifikationssprache, ist aber in der Lage, hin-
zugefiigte oder geloschte Modellelemente in einem Quellmodell zu identifizie-
ren und das Zielmodell nachtraglich zu aktualisieren. Leider ist es in MTF
nicht moglich, zuséitzliche Bedingungen an die Modellelemente zu formulie-
ren. Daher ist eine vollstiandige Modellsynchronisation mit diesem Ansatz
nicht moglich [DGS05, KC05b]. Dariiber hinaus existieren keine Veroffentli-
chungen, die den verwendeten Ansatz oder Leistungsmessungen beschreiben.

Neben QV'T existieren viele weitere Anséitze zur Modelltransformation —
jeder Ansatz ist fiir einen speziellen Zweck und eine bestimmte Anwendungs-
doméne mit verschiedenen Anforderungen unterschiedlich gut geeignet. Im
Folgenden stellen wir einige der bekanntesten Modelltransformationsansétze
vor. Fiir eine Klassifikation und Ubersicht der Ansiitze verweisen wir auf
[CHO03, CHO6].

Ein bekannter Ansatz zur Modelltransformation ist Fztensible Stylesheet
Language Transformation (XSLT) [W3C99]. Die Spezifikation erfolgt auf
Basis der Extensible Markup Language (XML) beziehungsweise XML Me-
tadata Interchange (XMI). Zur Modelltransformation wird das Modell als
XML/XMI-Dokument exportiert. Dieses Dokument wird dann in einem
Schritt in das Zielmodell iibersetzt. Eine inkrementelle Modelltransforma-
tion zur Propagation von Anderungen im Quellmodell an das Zielmodell wird
nicht unterstiitzt. Die Spezifikation der Modelltransformationsregeln erfolgt
auf Basis von XML und XSLT und ist sehr komplex, unleserlich und damit
schwer zu verstehen.

241

Kapitel 8 Verwandte Arbeiten

Eine andere Kategorie von Modelltransformationsansidtzen umfasst visu-
elle Transformationssprachen, die auf Graphgrammatiken und Graphtrans-
formationssystemen basieren. Bei diesen Ansétzen werden die Modelle als
Graphen interpretiert. Eine Modelltransformation wird durch Techniken der
Graphersetzung erreicht. Beispiele fiir Ansétze, die in diese Kategorie fallen,
sind VIATRA [VVP02], GreAT [VAS04], UMLX [Wil03], ATOM3 [LVA04]
und BOTL [MBO03]. Einige dieser Ansétze werden im Folgenden kurz vorge-
stellt. Eine vollstindige Ubersicht enthilt [CHOG).

VIATRA ist ein Ansatz zur Validierung und Verifikation von Model-
len. Dabei werden Modelltransformationen eingesetzt, um ein Modell in
einen verifizierbaren Formalismus zu iibersetzen. Die Modelltransformation
wird visuell in einer UML-&hnlichen Notation spezifiziert. Zur Ausfiihrung
der Modelltransformation wird die Spezifikation in Graphtransformationsre-
geln iibersetzt und mit Abstract State Machines (ASM) kombiniert, indem
die Graphtransformationsregeln in Kontrollstrukturen der ASMs eingebettet
werden. Die Einbettung der Graphersetzungsregeln in Kontrollstrukturen
ermoglicht die Ausfithrungsreihenfolge der Graphtransformationsregeln fest-
zulegen und damit die einzelnen Graphtransformationsregeln zu komplexeren
Modelltransformationen zusammen zu setzen.

In einem weiteren Schritt wird eine Implementierung der Modelltrans-
formation generiert. Zur Ausfithrung der Modelltransformation muss das
Modell in einer XMI-Repréasentation vorliegen. Das Ergebnis der Trans-
formation ist wiederum ein XMI-Dokument, welches das erzeugte Zielmo-
dell der Transformation enthélt. Eine direkte Transformation von Model-
len, wie sie in [KRWO04] beschrieben wurde, ist mit diesem Ansatz nicht
moglich. Ebenso existiert weder eine Moglichkeit zur Nachverfolgbarkeit der
Modelltransformation, noch werden bidirektionale Modelltransformationen
unterstiitzt. Damit ist dieser Ansatz nicht zur Realisierung einer Modellsyn-
chronisation geeignet.

Die Graph Rewriting and Transformation Language (GReAT) [VVPO02]
verfiigt iiber eine operationale Spezifikationstechnik, die ebenfalls auf Graph-
transformationen basiert. Durch zusétzliche Konstrukte kann ein Kon-
trollfluss mit Ein- und Ausgabeparametern spezifiziert und damit die
Ausfithrungsreihenfolge der Graphtransformationsregeln festgelegt werden.
Wie in VIATRA, existieren keine weiteren Informationen zur Nachverfolg-
barkeit der Modelltransformation. Ebenso kann die Modelltransformation
nur unidirektional und in einem Durchlauf ausgefiihrt werden. Inkremen-
telle Modelltransformationen nach durchgefithrten Anderungen im Quellmo-
dell der Transformation sind damit nicht moglich.

242

8.1 Modelltransformation und Modellintegration

In den bisher vorgestellten Ansdtzen muss fiir jede Transformationsrich-
tung eine eigene Spezifikation erstellt werden. Fiir bidirektionale Modell-
transformationen sind diese Ansétze daher weniger geeignet. Ein Ansatz,
der bidirektionale Modelltransformationen unterstiitzt ist BOTL [MBO03].
Die Spezifikation erfolgt in einer UML-dhnlichen Notation. Die Modell-
transformation basiert auf Graphtransformationsregeln, die fiir die entgegen
gesetzte Richtung aus der Sperzifikation abgeleitet wird. Hierfiir muss die
Modelltransformation jedoch bijektiv sein. Diese Voraussetzung ist jedoch
nur selten erfiillt [SK04]. Wie bei den zuvor genannten Ansétzen erfolgt die
Modelltransformation in einem Schritt und ist nicht inkrementell.

Die bisher diskutierten Ansétze sehen keine Mechanismen zur Nachverfolg-
barkeit der Modelltransformation vor. Dies verhindert eine inkrementelle
Modelltransformation bzw. Modellsynchronisation, die zum Abgleich der
Modelle nach einer erfolgten Modelltransformation und anschlieend durch-
gefithrten Anderungen am Quellmodell notwendig ist. Im Gegensatz dazu
sind Tripel-Graph-Grammatiken (TGGs) eine spezielle Technik, die eine Spe-
zifikation und Ausfithrung von bidirektionalen und inkrementellen Modell-
transformationen ermdoglicht.

Modellintegration

Die Modellintegration kann fiir unterschiedliche Menschen unterschiedliche
Dinge bedeuten. Beispielsweise wird die Modellintegration haufig als ein
Prozess angesehen, in dem aus zwei oder mehreren Modellen ein einziges
gemeinsames Modell erstellt wird. In der Doméne des Modellmanagements
wird diese Art der Modellintegration haufig als Modellverschmelzung (engl.
model merging) bezeichnet [BHP00, SZK04]. Hierbei entsteht ein Modell
in einem bestimmten Formalismus. Im Gegensatz dazu verstehen wir un-
ter Modellintegration nicht die Verschmelzung mehrerer Modelle zu einem
einzigen Modell, sondern die Zuordnung von Modellelementen zweier oder
mehrerer Modelle zueinander, die durchaus auch in unterschiedlichen Forma-
lismen gegeben sein kénnen. In der Doméne des Modellmanagements wird
diese Art der Modellintegration durch eine sogenannte Matching-Operation
definiert: Zu zwei gegebenen Modellen wird eine Abbildung berechnet und
als Ausgabe zuriickgegeben [BHP00, SZK04].

Ein prominentes Werkzeug zur Modellintegration stellt der ATLAS Model
Weaver (AMW) [FBV06] dar. Die Idee hinter AMW besteht darin, zwei
Modelle miteinander zu ,,vernetzen“, allerdings nicht indem die Beziehun-
gen a-priori spezifiziert, sondern manuell durch den Benutzer zwischen den

243

Kapitel 8 Verwandte Arbeiten

gegebenen Modellen hergestellt werden.* Im Gegensatz dazu werden in un-
serer Arbeit die Beziehungen zwischen Modellelementen explizit spezifiziert,
um daraus automatisch Operationen, beispielsweise zur Modellintegration,
abzuleiten.

Die Arbeiten zur Werkzeugintegration [Lef95, BLW04, Bec07] entsprechen
am ehesten unserem Verstédndnis von Modellintegration. Dies ist damit zu
begriinden, dass die dort durchgefiihrte Werkzeugintegration stark auf der
Integration von Dokumenten beruht, die als Modelle gesehen werden koénnen.
Die Integration erfolgt dort — wie in unserer Arbeit auch — auf der Basis von
TGGs.

8.2 Modellsynchronisation

Eine erste Klassifikation und Kategorisierung der Modellsynchronisation so-
wie ein Ansatz zur Modellsynchronisation zwischen einem so genannten Fea-
ture Modell und seiner Spezialisierung wurde von Kim und Czarnecki in
[KCO5b] gegeben. In dem dort vorgestellten Ansatz basiert die Modell-
synchronisation auf Verkniipfungen (engl. traceability links) zwischen Mo-
dellelementen der in Beziehung stehenden Modelle. Diese Verkniipfungen
werden erstellt, wihrend das urspriingliche Modell geklont wird, um ein in-
itiales Modell fiir die nachfolgende Spezialisierung zu erhalten. Nach der
Erstellung der Verkniipfungen dienen die Verkniipfungen dazu, Anderungen
an dem urspriinglichen Modell an die dazugehorige Spezialisierung weiter zu
propagieren. Die Modellsynchronisation wird in diesem Anwendungsfall in
nur eine Richtung durchgefiihrt. Der Anwendungsfall fithrt auch dazu, dass
nur 1-zu-n Beziehungen erstellt werden. Die Autoren bestétigen, dass diese
Art der Beziehungen einfacher zu implementieren und zu verwalten ist als
n-zu-m Beziehungen, wie sie in unserem Ansatz eingesetzt werden konnen.
Der Ansatz in [KCO05b] ist fiir die dort gestellten Anforderungen ausreichend.
Im allgemeinen Fall, in dem auch n-zu-m Beziehungen benétigt werden, die
dariiber hinaus in beide Richtungen gepflegt werden miissen, ist der Ansatz
jedoch nicht einsetzbar.

Ivkovic and Kontogiannis haben einen Ansatz zur Modellsynchronisa-
tion entwickelt, der auf impliziten Nachverfolgbarkeitsrelationen basiert, das
heifit, die Relationen zwischen Modellelementen werden nur im Metamodell
definiert und implementiert, aber nicht zwischen den in Beziehung stehen-

4In einigen darauf aufbauenden Arbeiten wird versucht, die Vernetzung der Modelle mit
Hilfe von Heuristiken automatisch durchzufithren [FBV06, RKRS05].

244

8.2 Modellsynchronisation

den Modellen, also nicht auf den Metamodellinstanzen [IK04a, IK04b]. In
ihrem Ansatz miissen zur Modellsynchronisation spezielle Graphen aus den
Metamodellen abgeleitet werden. Zusétzlich miissen atomare Anderungsope-
rationen auf den Knoten und Kanten dieses Graphen wie z. B. Hinzufiigen,
Loschen, Andern, etc. spezifiziert und implementiert werden. Um zwei Mo-
delle zu synchronisieren, werden diese Anderungsoperationen aufgezeichnet
und in entsprechende Operationen auf dem Zielmodell transformiert. An-
schlieend werden diese Transformationen auf dem Zielmodell ausgefiihrt.
In einem finalen Schritt iiberpriift eine zuvor definierte Aquivalenzrelation,
ob die so durchgefithrte Modellsynchronisation erfolgreich, in diesem Fall
also dquivalenzerhaltend, ausgefiithrt werden konnte. Zur Erstellung einer
Modellsynchronisation zwischen zwei Modellen miissen in dem dort vorge-
stellten Ansatz insgesamt sieben verschiedene Schritte durchgefiihrt werden.
Soll eine Modellsynchronisation von den Benutzern an spezielle Bediirfnisse
einfach anpassbar sein, dann ist dies sicherlich zu komplex. Wie die Autoren
selbst anmerken, kann eine implizite Modellsynchronisation in der Praxis
nicht alle Synchronisationsszenarien abdecken.

Hearnden et al. erweitern in ihrer Arbeit einen deklarativen, auf Lo-
gik basierenden Transformationsansatz, um Anderungen in einem Quellmo-
dell inkrementell an ein Zielmodell weiter zu propagieren und damit eine
Modellsynchronisation durchzufithren [HLRO6]. Der Ansatz zeichnet die
Ausfiihrung einer Modelltransformation auf und speichert diese Aufzeich-
nung in einem so genannten Ezecution-Record. Anderungen im Quellmodell
werden anschliefend dem Execution-Record zugeordnet, so dass eine Berech-
nung von Aktualisierungen im Zielmodell ermoglicht wird. Diese Aktuali-
sierungen synchronisieren das Zielmodell mit dem gednderten Quellmodell.
Die vorgestellte Losung hat den Nachteil, dass der Execution-Record sehr
viel Speicherplatz benétigt, so dass zur Synchronisation groflerer Modelle
weitere Optimierungen des Execution-Records notwendig sind. Dariiber hin-
aus ist nicht ersichtlich, ob zur bidirektionalen Modellsynchronisation ein
Execution-Record ausreichend ist, oder ob fiir jede Synchronisationsrichtung
ein eigener Execution-Record benotigt wird.

Ein anderer Zweig der Forschungsaktivitdten beschéftigt sich mit der Syn-
chronisation von Modellen mit dem daraus generierten Code. Es existieren
viele Werkzeugumgebungen, die zum Beispiel ein Codegeriist aus Klassen-
diagrammen generieren, oder die ein Klassendiagramm aus Code wiederge-
winnen und anschlieBend versuchen, beide miteinander synchron zu halten
[Bor06, IBM]. In den meisten Werkzeugen ist diese Synchronisation hart co-
diert. Haufig existiert nur ein gemeinsames Implementierungsmodell und

245

Kapitel 8 Verwandte Arbeiten

beide, das heifit, sowohl der Code als auch das eigentliche Modell, sind
nur spezielle Sichten auf dieses gemeinsame Implementierungsmodell. Die
Synchronisation wird dann haufig auf Grundlage des Model-View-Controller
Paradigmas [PMDO5] realisiert, in der dann die Sichten aktualisiert werden
sobald das Implementierungsmodell gedndert wurde. Dieser Ansatz erlaubt
jedoch nicht die Anpassung der Abbildung zwischen dem Modell und dem
Code an benutzer- oder firmenspezifische Bediirfnisse.

Andere Ansitze zur automatischen Synchronisation von Modellen und
Code schlagen eine Kombination von Forward- und Reverse-Engineering-
Techniken vor. Diese Vorgehensweise wird auch als Round-Trip-Engineering
bezeichnet [ABm03, HL03]. Der Nachteil dieses Ansatzes ist, dass zu ei-
ner Forward-Engineering-Funktion eine inverse Funktion fiir das Reverse-
Engineering berechnet werden muss. Dies ist allerdings nur dann méglich,
wenn es sich bei den Modell-zu-Code Abbildungen um bijektive Funktionen
handelt. Dies ist jedoch selten der Fall [SK04]. Erschwerend kommt hinzu,
dass der Ansatz versagt, falls ein Entwickler die Implementierung verfei-
nert und beispielsweise ein generiertes Codeskelett vervollstindigt. Werden
anschlieBend auch Anderungen am Modell vorgenommen, so fiihrt ein erneu-
tes Forward-Engineering dazu, dass die Anderungen im Code iiberschrieben
werden.

8.3 Ansatze zur Vereinfachung der Spezifikation

In den meisten visuellen Ansédtzen erfolgt die Spezifikation in der abstrak-
ten Syntax der beteiligten Modellierungssprachen, die durch entsprechende
Metamodelle definiert sind (z. B. [VVP02, VAS04, MB03]). Die graphische
Spezifikation ist gegeniiber der rein textuellen Spezifikation viel iibersichtli-
cher und leichter zu verstehen, da die korrespondierenden Teile der Modellie-
rungssprachen in einem Diagramm zueinander in Beziehung gesetzt werden.
Bei groflen und komplexen Metamodellen kann aber auch diese Art der Spe-
zifikation grofl und uniibersichtlich werden. Dieses Problem wurde lange Zeit
ignoriert. Daher existieren bisher nur wenige Losungsansitze, die das Ziel
verfolgen, die Spezifikationstechnik zu vereinfachen und {ibersichtlicher zu
machen. In diesem Abschnitt werden diese Arbeiten kurz vorgestellt.

246

8.3 Ansiétze zur Vereinfachung der Spezifikation

8.3.1 Kompakte Reprdsentation von
Modelltransformationen

Um uniibersichtliche Spezifikationen zu vermeiden, stellt Bettin einige Ideen
fiir eine kompaktere Repréasentation von Metamodellen vor [Bet03]. Ein Vor-
schlag ist beispielsweise, eine Komposition zwischen Klassen nicht mit einer
Kompositionsassoziation zwischen diesen Klassen darzustellen, sondern die
komponierte Klasse direkt eingebettet in der iibergeordneten Klasse dar-
zustellen. Auf Grundlage dieser kompakteren und iibersichtlicheren® Dar-
stellung von Metamodellen schldgt der Autor eine mogliche Notation fiir
Modelltransformationen vor. Die Arbeit stellt allerdings nur einige wenige
sehr grobe Ideen vor, die dariiber hinaus nur an einem sehr einfachen Bei-
spiel prasentiert werden. Aufgrund der Tatsache, dass die vorgeschlagene
Notation nicht an gréBeren und komplexeren Beispielen evaluiert wurde und
daher auch keine praktischen Erfahrungen mit dieser Notation gemacht wer-
den konnten, ist diese Arbeit eher als Weckruf fiir die bestehende Problema-
tik zu verstehen und weniger als eine praktikable Losung des vorliegenden
Problems.

Baar und Whittle haben untersucht, inwieweit die konkrete Syntax der
zugrundeliegenden Modellierungssprachen geeignet ist, um Modelltransfor-
mationsregeln zu spezifizieren [BW06]. Dabei sind die Autoren schnell an
Grenzen gestoflen, da beispielsweise zu abstrakten Klassen in den meisten
Féllen keine graphische Représentation in der konkreten Syntax der Sprache
existiert, aber Instanzen dieser Klassen in Mustern der Transformationsre-
geln sehr wohl vorkommen kénnen. Um die Transformationsregeln dennoch
in der konkreten Syntax der beteiligten Modellierungssprachen spezifizieren
zu konnen, schlagen die Autoren vor, die Metamodelle zu diesem Zweck
anzupassen und eine neue, speziell fiir die Spezifikation der Transformati-
onsregeln geeignete konkrete Syntax zu entwickeln. Dies ist mit einem sehr
hohen Aufwand verbunden und stellt — wie die Autoren anmerken — den
Flaschenhals ihres Ansatzes dar.

8.3.2 Spezifikation durch Beispiele

Wimmer et al. haben einen Ansatz vorgeschlagen, bei dem die Korrespon-
denzbeziehungen zwischen Modellen in der konkreten Syntax der Modelle

5Die Entscheidung, ob diese Art der Darstellung tatsichlich kompakter und damit iiber-
sichtlicher ist, muss jeder Leser alleine fiir sich treffen, da dies rein subjektiv und daher
nicht bewertbar ist.

247

Kapitel 8 Verwandte Arbeiten

mit Hilfe von Beispielen definiert wird. Anschliefend werden die Transfor-
mationsregeln nahezu automatisch aus den definierten Korrespondenzbezie-
hungen abgeleitet [WSKKO07]. Zu diesem Zweck muss der Entwickler der
Modelltransformation zuerst semantisch zueinander korrespondierende Mo-
delle liefern, die alle Konzepte der beteiligten Modellierungssprachen enthal-
ten. In einem zweiten Schritt werden die Korrespondenzbeziechungen zwi-
schen den einzelnen Modellelementen spezifiziert. Aus dieser Spezifikation
und einer zuvor gegebenen Abbildung zwischen der abstrakten und konkre-
ten Syntax der Modellierungssprachen werden in einem dritten Schritt die
Transformationsregeln synthetisiert.

Der Ansatz unterscheidet sich von unserem Ansatz (vergleiche Ab-
schnitt 4.2) in der Art wie die Beispiele zu entwickeln sind. In dem Ansatz
von Wimmer werden (1) ein Beispiel, das alle Konzepte der beteiligten Mo-
dellierungssprachen enthélt, (2) benutzerdefinierte Korrespondenzbeziehun-
gen zwischen den Modellelementen des Beispiels, sowie (3) eine Abbildung
zwischen der abstrakten und der konkreten Syntax der beteiligten Modellie-
rungssprachen bendétigt, um die Transformationsregeln zu synthetisieren.

In unserem Ansatz reicht es aus, verschiedene kleinere Beispiele anzu-
geben, um daraus Transformationsregeln zu synthetisieren. Auch wenn in
dem Ansatz von Wimmer ebenso mehrere kleine Beispiele angegeben werden
konnen und dies sogar von den Autoren empfohlen wird, muss der Entwickler
weiterhin die Korrespondenzbeziehungen in diesen Beispielen manuell hin-
zufiigen. Im Gegensatz dazu reicht in unserem Ansatz die Angabe der zuein-
ander korrespondierenden Beispiele aus. Auflerdem wird in unserem Ansatz
keine explizite Zuordnung der konkreten zur abstrakten Syntax bendtigt -
die Synthese findet ausschliellich auf der abstrakten Reprisentation der Bei-
spiele statt, auch wenn die Beispiel selbst in der konkreten Syntax angegeben
werden.

Der in [WSKKO7] prasentierte Ansatz funktioniert nur zum Teil auto-
matisch, da bei Mehrdeutigkeiten der Benutzer in den Synthesealgorithmus
eingreifen und diese manuell auflésen muss. Dariiber hinaus existiert zu dem
vorgestellten Ansatz noch keine Implementierung, so dass nicht klar ist, ob
die vorgestellte Idee zur Spezifikation mit Beispielen auch auf groflere Mo-
delltransformationen anwendbar und praktikabel durchfiithrbar ist.

Ein anderer Ansatz zur Spezifikation von Modelltransformationen mit Bei-
spielen stellt Varré vor [Var06]. Die Zielsetzung des Ansatzes ist vergleichbar
zu unserem Ansatz und dem Ansatz von Wimmer et al., allerdings existie-
ren deutliche Unterschiede in den zugrundeliegenden Konzepten. In [Var06]
werden die Beispiele weiterhin in der abstrakten Syntax angegeben. In unse-

248

8.4 Zusammenfassung

rem Ansatz wird hierfiir die konkrete Syntax verwendet. Zusétzlich muss in
[Var06] vom Benutzer eine initiale Abbildung zwischen den Modellelementen
erstellt werden. Diese initiale Abbildung beschreibt kritische Situationen bei
der Modelltransformation. Eine Schwierigkeit ist, diese kritischen Situatio-
nen im Vorfeld zu identifizieren. Dariiber hinaus koénnen die Abbildungen
nur mit Hilfe von 1-zu-1 Beziehungen definiert werden. Um die Transfor-
mationsregeln aus der initialen Abbildung zu generieren, miissen zusétzliche
Benutzerinteraktionen durchgefithrt werden. Beispielsweise miissen weitere
Abbildungen zwischen den Modellelementen vom Benutzer definiert wer-
den, bevor weitere Regeln abgeleitet werden konnen. Auch muss der Be-
nutzer die generierten Transformationsregeln von Hand verfeinern, um die
Anzahl der generierten Regeln zu reduzieren. Dies bedeutet insbesondere,
dass die Transformationsregeln in [Var06] iterativ entwickelt werden miissen,
wéhrend in unserem Ansatz die iterative Spezifikation von Transformations-
regeln ermoglicht, aber nicht zwingend vorausgesetzt wird.

8.4 Zusammenfassung

In diesem Kapitel haben wir uns mit den verwandten Arbeiten beschéftigt.
Dabei sind wir zunéchst auf Ansédtze zur Modelltransformation und Mo-
dellintegration eingegangen, die ebenfalls auf der Technik der TGGs basieren.
Hierbei mussten wir feststellen, dass keiner dieser Ansétze eine vollstandig
inkrementelle Modelltransformation, Modellintegration oder Modellsynchro-
nisation unterstiitzt, wie wir sie in dieser Arbeit kennen gelernt haben. An-
dere Ansitze zur Modelltransformation, die nicht auf der Grundlage von
TGGs beruhen, fokussieren auf eine batch-artige Ausfithrung. Sie sind mei-
stens auf eine einzige Transformationsrichtung festgelegt und unterstiitzen
keine Konzepte, um eine Modelltransformation fiir den Benutzer nachver-
folgbar zu machen. Daher sind sie zur Realisierung einer inkrementellen
Modellsynchronisation ungeeignet.

Mit der Modellsynchronisation haben sich bisher nur sehr wenige Arbeiten
beschéftigt. Dabei wurden die Modellsynchronisationen meistens nur fiir ein
spezielles Synchronisationsszenario und in nur eine zuvor festgelegte Syn-
chronisationsrichtung betrachtet. Eine allgemeine Methode zur modellba-
sierten Entwicklung von bidirektionalen Modellsynchronisationen zwischen
zwei beliebigen Modellen wurde in diesen Ansétzen nicht beriicksichtigt. Ins-
besondere zur Synchronisation von Modell und Code wird heutzutage immer
noch auf von Hand programmierte und damit hart codierte Algorithmen

249

Kapitel 8 Verwandte Arbeiten

zuriickgegriffen. Eine einfache Parametrisierung und Anpassung einer so
umgesetzten Modellsynchronisation ist damit nicht méglich — die Modellsyn-
chronisation kann nur durch eine erneute Programmierung bzw. Anpassung
der Algorithmen erfolgen.

Im letzten Teil dieses Kapitels haben wir Ansétze vorgestellt, die sich der
Vereinfachung von Spezifikationen zur Modelltransformation widmen. Zwei
der vorgestellten Ansétze schlagen hierzu eine neue bzw. angepasste Nota-
tion zur kompakten Reprisentation der Modelle vor. Wie die Autoren selbst
anmerken, ist diese Vorgehensweise mit einigen Nachteilen verbunden. Die
anderen Ansétze basieren auf der Spezifikation von Beispielen, die entweder
in der konkreten oder der abstrakten Syntax angegeben werden. Im Ge-
gensatz zu unserem Ansatz sind die Techniken jedoch entweder noch nicht
evaluiert worden oder schrinken den Benutzer durch viele Restriktionen bei
der Entwicklung stark ein.

250

Kapitel 9

Zusammenfassung und Ausblick

In diesem Kapitel fassen wir die Ergebnisse dieser Arbeit zusammen und
bewerten die erreichten Ziele. AnschlieBend geben wir einen Ausblick iiber
mogliche Erweiterungen des hier vorgestellten Ansatzes.

9.1 Zusammenfassung

In dieser Arbeit wurde eine Technik zur inkrementellen Modellsynchroni-
sation vorgestellt. Die Modellsynchronisation gleicht zwei zueinander in
Beziehung stehende Modelle automatischen miteinander ab und 16st damit
eventuell vorhandene Inkonsistenzen zwischen den Modellen auf. Die vorge-
stellte Modellsynchronisation kann sowohl inkrementell als auch batch-artig
ausgefithrt werden. Dariiber hinaus eignet sich der Ansatz zur Modellinte-
gration, Modelltransformation und zur Codegenerierung.

Die Grundlage der vorgestellten Technik zur Modellsynchronisation bilden
Tripel-Graph-Grammatiken (TGGs). Diese deklarative, formale und visuelle
Spezifikationstechnik ist nicht neu — sie wurde bereits im Rahmen einiger an-
derer Arbeiten eingesetzt, um Modelle zu transformieren oder miteinander
zu integrieren. Binige dieser Ansitze konnen Anderungen an einem Quellmo-
dell inkrementell an ein dazugehoriges Zielmodell propagieren. Im Gegensatz
zu dem hier vorgestellten Ansatz bezieht sich die inkrementelle Ausfithrung
allerdings nur auf das Zielmodell. Zur Identifikation der Anderungen muss
immer noch das gesamte Quell- sowie Korrespondenzmodell traversiert und
analysiert werden. In dieser Arbeit hingegen wird die Analyse des Quellmo-
dells lokal an den von Anderungen betroffenen Stellen durchgefithrt. Eine
Traversierung und Analyse des gesamten Quell- und Korrespondenzmodells
ist nicht notwendig. Daher kann die in dieser Arbeit vorgestellte Technik als
vollstéandig inkrementell bezeichnet werden.

251

Kapitel 9 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurden eine Methode und dazugehorige Softwa-
rewerkzeuge zur modellbasierten Entwicklung von Modellsynchronisationen
vorgestellt. Hierzu haben wir in einem ersten Schritt das Problem der Mo-
dellsynchronisation untersucht und daraus Anforderungen an eine Modell-
synchronisation formuliert.

Die wichtigste funktionale Anforderung ist die bidirektionale und inkre-
mentelle Modellsynchronisation. Der entwickelte Algorithmus ist allerdings
auch in der Lage, eine Modellintegration und Modelltransformation durch-
zufithren. Diese Eigenschaften sind hauptséichlich auf die eingesetzte Spezi-
fikationstechnik der TGGs zuriickzufiihren. Die Modellsynchronisation kann
sowohl batch-artig als auch inkrementell erfolgen, was hingegen dem ent-
wickelten Algorithmus zuzurechnen ist. Die batch-artige Arbeitsweise wird
hauptséichlich dazu eingesetzt, um eine Modellsynchronisation durch Mo-
delltransformation auszufiihren, bei der initial nur ein Modell vorhanden ist,
oder um eine Modellintegration zwischen zwei bereits bestehenden aber noch
nicht synchronisierten Modellen durchzufiihren.

Die Anpassbarkeit der Modellsynchronisation wurde erreicht, indem die
Spezifikation der Korrespondenzregeln von dem Ausfithrungsalgorithmus
entkoppelt wurde. Dadurch ist ein Rahmenwerk entstanden, das mit den
spezifizierten Korrespondenzregeln parametrisierbar ist. Zur Parametrisie-
rung werden aus einer TGG-Spezifikation operationale Graphersetzungsre-
geln abgeleitet, aus denen wiederum austfithrbarer Code generiert wird. Die-
ser Code wird dynamisch zum Ausfithrungsalgorithmus gebunden und sorgt
so fiir eine individuelle Parametrisierung der Modellsynchronisation.

Bei der Evaluierung einiger Beispielspezifikationen hat sich gezeigt, dass
bei (Modellierungs-) Sprachen mit komplexen Metamodellen sehr viele und
auch sehr umfangreiche Korrespondenzregeln benétigt werden. Die Spezifi-
kation dieser Regeln kann daher sehr aufwéndig werden. Aus diesem Grund
wurden in dieser Arbeit verschiedene Ansétze erarbeitet, die eine Spezifika-
tion erleichtern.

Bei einem dieser Ansétze werden die Korrespondenzbeziehungen zwischen
Modellen mit Hilfe von Beispielpaaren angegeben. Hierzu miissen zunéchst
Beispiele der zueinander in Beziehung stehenden Modelle entworfen werden.
Die entsprechenden Korrespondenzregeln werden anschliefend automatisch
aus diesen Beispielpaaren synthetisiert. Der Synthesealgorithmus erlaubt
jederzeit eine manuelle Anpassung der synthetisierten Regeln durch den Be-
nutzer und beriicksichtigt diese Anderungen in den darauf folgenden Schrit-
ten. Der in dieser Arbeit vorgestellte Synthesealgorithmus ermaoglicht somit
eine iterative und inkrementelle Synthese der Korrespondenzregeln.

252

9.1 Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurde zusétzlich der Einsatz von
TGGs zur Spezifikation von Modell-zu-Text Beziehungen untersucht. Diese
Beziehungen konnen beispielsweise zur Codegenerierung verwendet werden.
Dabei wurden zwei Moglichkeiten in Betracht gezogen. Die erste Variante
besteht darin, den Text bzw. den Code als Modell zu interpretieren und
die Spezifikation auf der Grundlage eines Metamodells der Sprache durch-
zufithren. Dieses Metamodell kann aus der Grammatik der Sprache abge-
leitet werden. Die zweite Variante kombiniert TGGs mit Textschablonen.
Dabei wird die TGG zur Abbildung der Modellstruktur auf einzelne Code-
fragmente genutzt. Die Codefragmente selbst werden mit Hilfe von Textscha-
blonen beschrieben. Die Spezifikation eines feingranularen Metamodells der
Sprache ist damit nicht nétig. Dies tragt signifikant zur Senkung des benotig-
ten Spezifikationsaufwands bei.

Die vorliegende Arbeit wurde zeitgleich zum aufkommenden Standard
Query/View/Transformation (QVT) der Object Management Group (OMG)
erstellt. Der Standard definiert neben einer operationalen auch eine deklara-
tive Transformationssprache, fiir die lange Zeit keine Werkzeugunterstiitzung
existiert hat. Im Rahmen dieser Arbeit wurde gezeigt, wie der QVT-
Standard mit Hilfe der TGGs formalisiert und realisiert werden kann. Da-
durch werden TGGs fiir einen weiten Anwenderkreis zugénglich, der zuneh-
mend auf die OMG-Standards setzt.

Zur Erprobung der inkrementellen Modellsynchronisation wurden mehrere
Werkzeuge fiir FUIABA4AECLIPSE prototypisch entwickelt. Die umgesetzte
Werkzeugunterstiitzung wurde anhand einiger Beispiele auf ihre Praktika-
bilitdt evaluiert. Dabei konnte gezeigt werden, dass die entwickelte Modell-
synchronisation nicht auf FuJABA und ECLIPSE beschréankt ist, sondern sich
leicht in andere Werkzeuge integrieren lasst. Durch diese Integration kann
eine Interoperabilitit dieser Werkzeuge erreicht werden, die beim Aufbau
heterogener Werkzeuglandschaften von grofiem Nutzen ist.

Das Hauptanwendungsgebiet fiir Modellsynchronisationen sind grofie Mo-
delle. Auf der Grundlage der prototypisch erstellten Werkzeuge wurden Lei-
stungsmessungen durchgefiithrt. Die Leistungsmessungen belegen, dass die
Modellsynchronisation mit dem hier vorgestellten Ansatz effizient durchfiihr-
bar ist und auch bei groflen Modellen sehr gut skaliert. Damit konnte gezeigt
werden, dass die Synchronisation grofler Modelle mit vertretbarem Aufwand
moglich ist.

Insgesamt haben wir in dieser Arbeit — aufbauend auf dem Ansatz der
Tripel-Graph-Grammatiken — eine Technik zur Modellsynchronisation vor-
geschlagen, mit der inkrementelle Modellsynchronisationen durchgéingig mo-

253

Kapitel 9 Zusammenfassung und Ausblick

dellbasiert entwickelt und realisiert werden kénnen. Mit der Bereitstellung
und Anwendung verschiedener Methoden, Notationen und Werkzeuge konnte
daher belegt werden, dass die Entwicklung von Werkzeugen zur inkrementel-
len Modellsynchronisation mit relativ geringem Aufwand mdoglich und prak-
tikabel ist.

9.2 Ausblick

Am Ende einer Arbeit bleiben immer Wiinsche und Ideen iibrig, die nicht
beriicksichtigt werden konnten. So koénnen beispielsweise sowohl der be-
schriebene Algorithmus zur Modellsynchronisation als auch die verwendete
Spezifikationstechnik in verschiedener Hinsicht erweitert und verbessert wer-
den. Einige dieser Ideen werden nachfolgend kurz vorgestellt.

Der in dieser Arbeit vorgestellte Algorithmus zur Modellsynchronisation
arbeit vollsténdig inkrementell und kann entweder automatisch nach jeder
Anderung oder auf Anforderung durch den Benutzer ausgefithrt werden.
Dariiber hinaus kann eine Modellsynchronisation bidirektional stattfinden.
Allerdings werden hierfiir zwei unidirektionale Modellsynchronisationen in
entgegengesetzter Richtung ausgefiihrt, d. h., der Algorithmus wird fiir jede
Richtung separat ausgefithrt. Hier wére es jedoch wiinschenswert, dass der
Algorithmus in der Lage ist, eine bidirektionale Modellsynchronisation in ei-
nem einzigen Schritt durchzufiithren. Ein Problem hierbei entsteht jedoch,
wenn nicht sofort nach jeder Anderung synchronisiert wird, sondern ein Be-
nutzer Anderungen an beiden Modellen vornehmen kann, ohne dass er zwi-
schendurch die Modelle miteinander synchronisiert. In diesem Fall konnen
die vom Benutzer durchgefiithrten Anderungen zueinander in Konflikt stehen.
Hier ist zu untersuchen, wie solche Konflikte wéhrend einer Modellsynchro-
nisation erkannt und wie mit ihnen umgegangen wird. Die in dieser Arbeit
eingefiithrte Notation fiir Bedingungen ermdoglicht bereits eine Erkennung von
Konflikten zwischen , parallel“ gednderten Attributwerten. In der Arbeit von
Simon Becker wurde ein Algorithmus mit Benutzerinteraktionen vorgestellt,
der mit Konflikten zwischen Regelanwendungen umgehen kann [Bec07]. Hier
wiére zu untersuchen, wie die beiden Ansétze miteinander kombiniert werden
kénnten, um auch strukturelle Konflikte wihrend eines einzigen Durchlaufs
einer Modellsynchronisation erkennen und beheben zu kénnen.

Ein anderer moglicher Ankniipfpunkt fiir weiter gehende Untersuchun-
gen bildet die Spezifikationssprache selbst. In dieser Arbeit wurden TGGs
eingesetzt, um Beziehungen zwischen Modellen zu beschreiben, die in ihrer

254

9.2 Ausblick

Struktur sehr dhnlich sind. Fiir Modelle, die strukturell voneinander stark
abweichen, sind TGGs nicht so gut geeignet. Hier wéire zu untersuchen, wie
TGGs erweitert und mit anderen Anséitzen, wie z. B. operationalen Spezifi-
kationstechniken, zu einem hybriden Ansatz kombiniert werden kénnen, um
die Ausdrucksstirke der TGGs zu erhchen.

Bisher wurden TGGs in der abstrakten Syntax formuliert. Dadurch
kénnen die TGG-Regeln — verglichen mit den zugehorigen Modellen in ih-
rer konkreten Syntax — sehr grofi und uniibersichtlich werden. Um diesem
Problem zu begegnen, haben wir in dieser Arbeit einen Ansatz zur Spezifika-
tion durch Beispielpaare vorgestellt, aus denen die TGG-Regeln automatisch
synthetisiert werden.

Als eine echte Alternative hierzu konnte sich eine direkte Spezifikation von
TGG-Regeln in der konkreten Syntax der beteiligten Modelle herausstellen.
Bisher war ein solcher Ansatz allerdings nicht praktikabel, da in Abhéngig-
keit der beteiligten Modelle ein spezieller Regeleditor entwickelt werden mus-
ste, der die konkrete Syntax beider Modelle gleichzeitig unterstiitzt. Die ma-
nuelle Entwicklung eines solchen Editors ist mit erheblichem Aufwand ver-
bunden. Mit dem Aufkommen von Rahmenwerken wie z. B. EMF oder GMF
wird eine nahezu automatische Erzeugung graphischer Editoren ermoglicht.
Hier wére zu untersuchen, inwieweit ein solcher — an die beteiligten Modelle
speziell angepasster — Regeleditor automatisch generiert werden kann. Dies
wiirde den Aufwand signifikant verringern und diesen Ansatz praktikabel
machen. Dies ist jedoch noch zu erforschen.

Ein weiteres, offenes Forschungsgebiet stellt die Validierung und Verifika-
tion von Modellsynchronisationen dar. Mit der Technik der TGGs werden
Korrespondenzbeziehungen zwischen zwei Modellen in einer lokalen Art und
Weise definiert, so dass auf dieser Grundlage beispielsweise ein Nachweis
der semantischen Korrektheit moglich ist. Ein erster Ansatz hierzu wurde
im Rahmen dieser Arbeit an einem Beispiel vorgestellt, bei dem ein 1/O-
Automat in SPS-Code iibersetzt wurde. Fiir umfangreichere Spezifikationen
und Szenarien, in denen alle hier vorgestellten Konzepte vorkommen, sind
jedoch weitere Untersuchungen notwendig. Dies gilt auch fiir Techniken zur
Validierung durch Tests.

255

Literatur

[ACO7]

[A108]

[AMD)]

[ANRS06]

[ARC]

[ABmO3]

[ASUS6]

[Bak06]

ANTKIEWICZ, Michal ; CZARNECKI, Krzysztof: Design Space
of Heterogeneous Synchronization. In: Proceedings of 2nd Sum-
mer School on Generative and Transformational Techniques in
Software Engineering (GTTSEO07), 2007, S. 1-41. — Draft sub-
mitted to post-proceedings.

ALTAN, Gilizide S.: On the Usability of Triple Graph Gram-
mars for the Transformation of Business Process Models - An
Evaluation based on FUJABA, Technische Universitiat Wien,
Magisterarbeit, Januar 2008

AndroMDA. http://www.andromda.org/. : AndroMDA.
http://www.andromda.org/. — Stand: Mai 2008

A1ZENBUD-RESHEF, N. ; NOLAN, B. T. ; RUBIN, J. ; SHAHAM-
GAFNI, Y.: Model traceability. In: IBM System Journal 45
(2006), Juli, Nr. 3, S. 515-526

INTERACTIVE OBJECTS (Hrsg.): ArcStyler. http://www.

interactive-objects.com/. Interactive Objects. — Stand:
Mai 2008

AssMANN, Uwe: Automatic Roundtrip Engineering. In: Flec-

tronic Notes in Theoretical Computer Science 82 (2003), April,
Nr. 5, S. 1-9

AHo, Alfred V. ; SETHI, Ravi ; ULLMAN, Jeffrey D.: Com-
pilers: Principles, Techniques, and Tools. Reading, MA :
Addison-Wesley, 1986

BAKSMEIER, Jorg: Inkrementelle Modellsynchronisation mit

Tripel-Graph-Grammatiken, Universitiat Paderborn, Diplomar-
beit, November 2006

257

http://www.andromda.org/
http://www.andromda.org/
http://www.interactive-objects.com/
http://www.interactive-objects.com/

Literatur

[Bal91]

[BDTM+06]

[Bec07]

[Bet03]

[BGMT]

[BGN*+04]

[BHP0O]

[BLWO04]

258

BALZER, Robert: Tolerating inconsistency. In: Proceedings
of the 13th international conference on Software engineering
(ICSE). Los Alamitos, CA, USA : IEEE Computer Society
Press, 1991, S. 158-165

BAUDRY, Benoit ; DINH-TRONG, Trung ; MOTTU, Jean-Marie
; SIMMONDS, Devon ; FRANCE, Robert ; GHOSH, Sudipto ;
FLEUREY, Franck ; LE TRAON, Yves: Model transformation
testing challenges. In: Proceedings of ECMDA Workshop on
Integration of Model Driven Development and Model Driven
Testing, 2006

BECKER, Simon M.: Integratoren zur Konsistenzsicherung von
Dokumenten in Entwicklungsprozessen, RWTH Aachen, Disser-
tation, 2007

BETTIN, Jorn: Ideas for a Concrete Visual Syntax for Model-
to-Model Transformation. In: OOPSLA 03 Workshop on Gene-
rative Techniques in the Context of Model-Driven Architecture,
2003

BruN, Cedric ; GOUBET, Laurent ; MUSSET, Jona-
than ; TOULME, Antoine ; THE ECLIPSE FOUNDATION
(Hrsg.): Eclipse Modeling Framework Technology Project -
EMF Compare. http://www.eclipse.org/modeling/emft/.
The Eclipse Foundation. — Stand: Mai 2008

BURMESTER, Sven ; GIESE, Holger ; NIERE, Jorg ; TICHY,
Matthias ; WADSACK, Jorg P. ; WAGNER, Robert ; WENDE-
HALS, Lothar ; ZUNDORF, Albert: Tool Integration at the
Meta-Model Level within the FUJABA Tool Suite. In: In-
ternational Journal on Software Tools for Technology Transfer
(STTT) 6 (2004), August, Nr. 3, S. 203-218

BERNSTEIN, Phillip A. ; HALEVY, Alon Y. ; POTTINGER, Ra-
chel A.: A vision for management of complex models. In: SIG-
MOD Record (ACM Special Interest Group on Management of
Data) 29 (2000), Nr. 4, S. 55-63

BECKER, Simon ; LOHMANN, Sebastian ; WESTFECHTEL,
Bernhard: Rule Execution in Graph-Based Incremental In-
teractive Integration Tools. In: Proc. Intl. Conf. on Graph

http://www.eclipse.org/modeling/emft/

Literatur

[Bor06]

[BWO6]

[CC0]

[Ceb07]

[CGPOO]

[CHO3]

[CHO6]

[CoG]

[CS06]

Transformations (ICGT 2004) Bd. 3256. Berlin/Heidelberg :
Springer-Verlag, 2004 (LNCS), S. 22-38

BorrLAND GMBH (Hrsg.): Together Architect. http://www.
borland.com/us/products/together/. Borland GmbH, 2006.
— Stand: Maérz 2007

BAAR, Thomas ; WHITTLE, Jon: On the Usage of Concrete
Syntax in Model Transformation Rules. In: 6th International
Andrei Ershov Memorial Conference Perspectives of System In-
formatics Bd. 4378. Berlin/Heidelberg : Springer-Verlag, Juni
2006 (Lecture Notes in Computer Science (LNCS)), S. 84-97

CHIKOFSKY, Elliot J. ; Cross II, James H.: Reverse Enginee-
ring and Design Recovery: A Taxonomy. In: IEEE Software 7
(1990), Januar, Nr. 1, S. 13-17

CEBECI, Yascha: Spezifikation von Codetransformationen an-
hand konkreter Beispiele, Universitiat Paderborn, Studienar-
beit, August 2007

CLARKE, Edmund M. ; GRUMBERG, Orna ; PELED, Doron A.:
Model Checking. The MIT Press, 2000

CzARNECKI, Krzysztof ; HELSEN, Simon: Classification of Mo-
del Transformation Approaches. In: OOPSLA’03 Workshop on
Generative Techniques in the Context of Model-Driven Archi-
tecture, 2003

CzARNECKI, Krzysztof ; HELSEN, Simon: Feature-based sur-
vey of model transformation approaches. In: IBM System Jour-

nal 45 (2006), July, Nr. 3

MANYETA INFORMATICS (Hrsg.): Codagen Architect.
http://www.manyeta.com/en/Technology/codagen_
architect_v3.2. Manyeta Informatics. — Stand: Mai
2008

CrLAus, Volker ; SCHWILL, Andreas: Duden: Informatik A-Z.
Fachlexikon fiir Studium, Ausbildung und Beruf. 4. Auflage.
Mannheim, Leipzig, Wien, Ziirich : Dudenverlag, 2006

259

http://www.borland.com/us/products/together/
http://www.borland.com/us/products/together/
http://www.manyeta.com/en/Technology/codagen_architect_v3.2
http://www.manyeta.com/en/Technology/codagen_architect_v3.2

Literatur

[Det06]

[DGS05]

[Dud06]

[ECO1]

[Eck07]

[EKHGO1]

[EKTOS8]

[ELI]

[FBMTOS]

260

DETTEN, Markus von: Template-basierte Codegenerierung fiir
Speicherprogrammierbare Steuerungen, Universitdt Paderborn,
Studienarbeit, April 2006

DEMATHIEU, S. ; GRIFFIN, C. ; SENDALL, S.: Model Transfor-
mation with the IBM Model Transformation Framework. In:
developerWorks. IBM’s resource for developers. http://www.
ibm.com/developerworks/ (2005), Mai

DUDENREDAKTION (Hrsg.): Duden: Das Fremdwdrterbuch.
Bd. 5. 9., aktualisierte Auflage. Mannheim, Leipzig, Wien,
Ziirich : Dudenverlag, 2006

EASTERBROOK, Steve ; CHECHIK, Marsha: 2nd international
workshop on living with inconsistency (IWLWIO01). In: SIGS-
OFT Softw. Eng. Notes 26 (2001), Nr. 6, S. 76-78

Eckes, Raimund: Augmented Reality — basiertes Verfah-
ren zur Unterstitzung des Anlaufprozesses von automatisierten
Fertigungssystemen, Universitéit Paderborn, Dissertation, April
2007

ENGELS, Gregor ; KUSTER, Jochem M. ; HECKEL, Reiko ;
GROENEWEGEN, Luuk: A methodology for specifying and
analyzing consistency of object-oriented behavioral models. In:
SIGSOFT Softw. Eng. Notes 26 (2001), September, Nr. 5, S.
186-195

EHRIG, Karsten ; KUSTER, Jochen ; TAENTZER, Gabriele: Ge-
nerating instance models from meta models. In: Software and
Systems Modeling (2008), Juli, S. 1-22. — Online First. DOL:
http://dx.doi.org/10.1007 /s10270-008-0095-y

Abstract Syntax Tree Unparsing. Eli Online Documents Version
4.4. http://eli-project.sourceforge.net/elionline/
idem_toc.html. : Abstract Syntax Tree Unparsing. Eli Online
Documents Version 4.4. http://eli-project.sourceforge.
net/elionline/idem_toc.html. — Stand: Mai 2008

FLEUREY, Franck ; BAUDRY, Benoit ; MULLER, Pierre A. ;
TRAON, Yves: Qualifying input test data for model transfor-
mations. In: Software and Systems Modeling (2008), Juli, S.

http://www.ibm.com/developerworks/
http://www.ibm.com/developerworks/
http://eli-project.sourceforge.net/elionline/idem_toc.html
http://eli-project.sourceforge.net/elionline/idem_toc.html
http://eli-project.sourceforge.net/elionline/idem_toc.html
http://eli-project.sourceforge.net/elionline/idem_toc.html

Literatur

[FBV06]

[FNTOg]

[FNTZ98]

[Fra06]

[FSBO4|

1-19. — Online First. DOI: http://dx.doi.org/10.1007/s10270-
007-0074-8

FABRO, Marcos Didonet D. ; BEZIVIN, Jean ; VALDURIEZ, Pa-
trick: Weaving Models with the Eclipse AMW plugin. In:
Eclipse Modeling Symposium, Eclipse Summit Europe 2006, Es-
slingen, Germany, 2006

F1scHER, Thorsten ; NIERE, Jorg ; TORUNSKI, Lars: Konzep-
tion und Realisierung einer integrierten Entwicklungsumgebung
fir UML, Java und Story-Driven-Modeling, Universitéit Pader-
born, Diplomarbeit, Juli 1998

FiscHER, Thorsten ; NIERE, Jorg ; TORUNSKI, Lars ;
ZUNDORF, Albert: Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language. In: EN-
GeLS, G. (Hrsg.) ; ROZENBERG, G. (Hrsg.): Proceedings of
the 6" International Workshop on Theory and Application of
Graph Transformation (TAGT), Paderborn, Germany. Ber-
lin/Heidelberg : Springer-Verlag, November 1998 (LNCS 1764),
S. 296-309

FRANCE TELECOM (Hrsg.): SmartQVT: An open
source model transformation tool implementing the MOF
2.0 QVT-Operational language. http://smartqvt.elibel.
tm.fr/. France Telecom, 2006. — Stand: Mérz 2007)

FLEUREY, Franck ; STEEL, Jim ; BAUDRY, Benoit: Validation
in Model-Driven Engineering: Testing Model Transformations.
In: Proceedings of the First International Workshop on Model,
Design and Validation., 2004, S. 29-40

UNIVERSITY OF PADERBORN, GERMANY (Hrsg.): Fujaba Tool
Suite. http://www.fujaba.de/. University of Paderborn, Ger-
many. — Stand: November 2007

GEBURZI, Alexander: Synthese von Modelltransformations-

regeln aus Ubersetzungsbeispielen, Universitit Paderborn, Di-
plomarbeit, November 2006

261

http://smartqvt.elibel.tm.fr/
http://smartqvt.elibel.tm.fr/
http://www.fujaba.de/

Literatur

[GGL*06]

[GHOS]

[GHIV94]

[GLOA]

[GMS0]

[GMWO6]

[GPROS]

[Gre06]

262

GIESE, Holger ; GLESNER, Sabine ; LEITNER, Johannes ;
SCHAFER, Wilhelm ; WAGNER, Robert: Towards Verified Mo-
del Transformations. In: HEARNDEN, David (Hrsg.) ; SUSS,
Jorn Guy (Hrsg.) ; BAUDRY, Benoit (Hrsg.) ; RAPIN, Nico-
las (Hrsg.): Proceedings of the 3" International Workshop on
Model Development, Validation and Verification (MoDeV?a),
Genowva, Italy, Le Commissariat a I’Energie Atomique - CEA,
October 2006, S. 78-93

GIESE, Holger ; HILDEBRANDT, Stephan: Incremental model
synchronization for multiple updates. In: International Work-
shop on Graph and Model Transformations (GRaMoT). New
York, NY, USA : ACM, 2008, S. 1-8

GAMMA, Erich ; HELM, Richard ; JOHNSON, Ralph ; VLIis-
SIDES, John: Design Patterns, Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994

GUERRA, Esther ; LARA, Juan de: Event-Driven Grammars:
Towards the Integration of Meta-Modelling and Graph Trans-
formation. In: International Conference on Graph Transfor-
mation (ICGT’2004) Bd. 3265. Berlin/Heidelberg : Springer-
Verlag, 2004 (LNCS), S. 54-69

GHEzzI, Carlo ; MANDRIOLI, Dino: Augmenting Parsers to
Support Incrementality. In: Journal of the ACM 27 (1980),
Juli, Nr. 3, S. 564-579

GIESE, Holger ; MEYER, Matthias ; WAGNER, Robert: A
Prototype for Guideline Checking and Model Transformation in
Matlab/Simulink. In: GIESE, Holger (Hrsg.) ; WESTFECHTEL,
Bernhard (Hrsg.): Proceedings of the 4 International Fujaba
Days 2006, Bayreuth, Germany Bd. tr-ri-06-275, University of
Paderborn, September 2006 (Technical Report)

GRUHN, Volker ; PIEPER, Daniel ; ROTTGERS, Carsten: MDA
- Effektives Siftware- Engineering mit UML 2 und Eclipse. Ber-
lin/Heidelberg : Springer-Verlag, 2005

GREENYER, Joel: A Study of Model Transformation Techno-
logies: Reconciling TGGs with QV'T, Universitidt Paderborn,
Diplomarbeit, July 2006

Literatur

[Gri04]

[GSCKO04]

[GWO09]

[Her03]

[Hil07]

[HLO3]

[HLRO6]

[HR00]

GRIFFIN, Catherine ; IBM ALPHAWORKS (Hrsg.): Model
Transformation Framework (MTF). http://www.alphaworks.
ibm.com/tech/mtf/. IBM alphaWorks, 2004. — Stand: Mai
2008

GREENFIELD, Jack ; SHORT, Keith ; COOK, Steve ; KENT,
Stuart: Software Factories: Assembling Applications with Pat-
terns, Models, Frameworks, and Tools. Wiley, 2004

GIESE, Holger ; WAGNER, Robert: From model transforma-
tion to incremental bidirectional model synchronization. In:
Software and Systems Modeling 8 (2009), Februar, Nr. 1, S.
21-43. — Online First. DOI: http://dx.doi.org/10.1007/
510270-008-0089-9

HERRINGTON, Jack: Code Generation in Action. Manning
Publications, 2003

HILDEBRANDT, Stephan: Effiziente Modellsynchronisation
mit Tripel-Graph-Grammatiken durch Wiederverwendung von
Transformationsergebnissen, Hasso-Plattner-Institut fiir Soft-
waresystemtechnik GmbH, Masterarbeit, Oktober 2007

HENRIKSSON, Anders ; LARSSON, Henrik: A definition of
round-trip engineering / Universitdt Linkopings. 2003. — For-
schungsbericht

HEARNDEN, David ; LAWLEY, Michael ; RAYMOND, Kerry:
Incremental Model Transformation for the Evolution of Model-
Driven Systems. In: NIERSTRASZ, Oscar (Hrsg.) ; WHITTLE,
Jon (Hrsg.) ; HAREL, David (Hrsg.) ; REGGIO, Gianna (Hrsg.):
Model Driven Engineering Languages and Systems, 9th Inter-
national Conference, MoDFELS 2006, Genova, Italy, October
1-6, 20006, Proceedings Bd. 4199. Berlin/Heidelberg : Springer-
Verlag, Oktober 2006 (Lecture Notes in Computer Science), S.
321-335

HAREL, David ; RUMPE, Bernhard: Modeling Languages: Syn-
tax, Semantics and All That Stuff, Part I: The Basic Stuff /
The Weizmann Institute of Science. Weizmann Science Press
of Israel, August 2000 (MCS00-16). — Forschungsbericht

263

http://www.alphaworks.ibm.com/tech/mtf/
http://www.alphaworks.ibm.com/tech/mtf/
http://dx.doi.org/10.1007/s10270-008-0089-9
http://dx.doi.org/10.1007/s10270-008-0089-9

Literatur

[IBM]

[IECO3]

[IEE90]

[TK04a)

[IKO04D)

[IKV]

[ITU96]

[Jam]

[JCC]

264

IBM (Hrsg.): Rational Rose Developer for Java.
http://www-306.1ibm.com/software/awdtools/developer/
rose/java/. IBM. — Stand: Mérz 2007

INTERNATIONAL ELECTROTECHNICAL CoOMMISSION (IEC)
(Hrsg.): Speicherprogrammierbare Steuerungen, Teil 3: Pro-
grammiersprachen. (IEC 61131-3:2003) Deutsche Fassung DIN
EN 61131-3:2003. International Electrotechnical Commission
(IEC), 2003

IEEE COMPUTER SOCIETY (Hrsg.): Standard Glossary of

Software Engineering Terminology. IEEE Computer Society,
1990. — IEEE 610.12-1990

Ivkovic, Igor ; KONTOGIANNIS, Kostas: Model synchroni-
zation as a problem of maximizing model dependencies. In:
OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages,
and applications. New York, NY, USA : ACM Press, 2004, S.
222-223

Ivkovic, Igor ; KONTOGIANNIS, Kostas: Tracing Evolution
Changes of Software Artifacts through Model Synchronization.
In: ICSM ’04: Proceedings of the 20th IEEE International
Conference on Software Maintenance. Washington, DC, USA :
IEEE Computer Society, 2004, S. 252-261

IKV+-+ TECHNOLOGIES AG (Hrsg.): medini QVT. http://
www.ikv.de/. ikv++ technologies ag. — Stand: Dezember 2008

INTERNATIONAL TELECOMMUNICATION UNION (ITU), GE-
NEVA (Hrsg.): ITU-T Recommendation Z.100: Specification
and Description Language (SDL). International Telecommuni-
cation Union (ITU), Geneva, 1994 + Addendum 1996

The Jamda Project. http://jamda.sourceforge.net/. : The
Jamda Project. http://jamda.sourceforge.net/. — Stand:
Mai 2008

Java Compiler Compiler - The Java Parser Generator. https:
//javacc.dev. java.net/doc/. : Java Compiler Compiler -

http://www-306.ibm.com/software/awdtools/developer/rose/java/
http://www-306.ibm.com/software/awdtools/developer/rose/java/
http://www.ikv.de/
http://www.ikv.de/
http://jamda.sourceforge.net/
http://jamda.sourceforge.net/
https://javacc.dev.java.net/doc/
https://javacc.dev.java.net/doc/

Literatur

[JDT]

[JET]

[JTB]

[KA06]

[Kas94|

[KCO05a

[KCO5b)

The Java Parser Generator. https://javacc.dev. java.net/
doc/. — Stand: Mai 2008

THE EcLIPSE FOUNDATION (Hrsg.): Java Development Tools.
http://www.eclipse.org/jdt/. The Eclipse Foundation. —
Stand: Mai 2008

THE EcLipsE FOUNDATION (Hrsg.): Java Emitter Templa-
tes. http://www.eclipse.org/modeling/m2t/. The Eclipse
Foundation. — Stand: Mai 2008

UCLA CoMPILERS GROUP (Hrsg.): Java TreeBuilder. http:
//compilers.cs.ucla.edu/jtb/. UCLA Compilers Group. —
Stand: Mai 2008

KUSTER, Jochen M. ; ABD-EL-RAZzIK, Mohamed: Validation
of Model Transformations - First Experiences using a White
Box Approach. In: Proceedings of the 3rd Workshop on Model
Design and Validation (MoDeV2a), 2006, S. 62-77

KAsTENS, Uwe: Construction of application generators using
Eli / Universitdt Paderborn. 1994 (Reihe Informatik tr-ri-94-
143). — Forschungsbericht

Kim, Chang Hwan P. ; CZARNECKI, Krzysztof: Synchroni-
zing Cardinality-Based Feature Models and Their Specializati-
ons. In: HARTMAN, Alan (Hrsg.) ; KREISCHE, David (Hrsg.):
Proceedings of the First FEuropean Conference on Model Dri-
ven Architecture - Foundations and Applications (ECMDA-
FA), Nuremberg, Germany, November 7-10 Bd. 3748, Springer-
Verlag, November 2005 (Lecture Notes in Computer Science),
S. 331-348

K, Chang Hwan P. ; CZARNECKI, Krzysztof: Synchronizing
Cardinality-Based Feature Models and Their Specializations.
In: HARTMAN, Alan (Hrsg.) ; KREISCHE, David (Hrsg.): Model
Driven Architecture - Foundations and Applications, First Fu-
ropean Conference, ECMDA-FA 2005, Nuremberg, Germany,
November 7-10, 2005, Proceedings Bd. 3748. Berlin/Heidelberg
: Springer-Verlag, November 2005 (Lecture Notes in Computer
Science), S. 331-348

265

https://javacc.dev.java.net/doc/
https://javacc.dev.java.net/doc/
http://www.eclipse.org/jdt/
http://www.eclipse.org/modeling/m2t/
http://compilers.cs.ucla.edu/jtb/
http://compilers.cs.ucla.edu/jtb/

Literatur

[KE96]

[KHEO03]

[KKS07]

[KLO3]

[K6nog]

[Kén07]

[KRO04]

[KRWO04]

266

KEMPER, Alfons ; EICKLER, André: Datenbanksysteme: Eine
Einfiihrung. Miinchen, Wien : Oldenbourg, 1996

KUSTER, J. M. ; HECKEL, R. ; ENGELS, G.: Defining and
validating transformations of UML models. In: Proceedings
of the 2003 IEEE Symposium on Human Centric Computing
Languages and Environments (HCC). Washington, DC, USA :
IEEE Computer Society, 2003, S. 145-152

KLAR, Felix ; KONIGS, Alexander ; SCHURR, Andy: Model
Transformation in the Large. In: Proceedings of the the 6th joint
meeting of the European software engineering conference and
the ACM SIGSOFT symposium on the foundations of software
engineering. New York, NY, USA : ACM Press, 2007, S. 285—
294

Korr, Jan ; LAMMEL, Ralf: Parse-Tree Annotations Meet Re-
Engineering Concerns. In: Proceedings of the 3" IEEE Inter-

national Workshop on Source Code Analysis and Manipulation
(SCAM) (2003), S. 161-171

KoOnNi1Gs, Alexander: Model Integration and Transformation —
A Triple Graph Grammar-based QV'T Implementation, Techni-
sche Universitdt Darmstadt, Dissertation, 2008

KONEMANN, Patrick: Verbesserung eines modellbasierten Soft-
wareentwicklungsprozesses mit Hilfe von Modellsynchronisa-
tion, Universitdt Paderborn,Diplomarbeit, Diplomarbeit, Mérz

2007

KARDOS, Martin ; RAMMIG, Franz J.: Model Based Formal
Verification of Distributed Production Control Systems. In:
Enric, H. (Hrsg.) ; DamMm, W. (Hrsg.) ; DESEL, J. (Hrsg.) ;
GROSE-RHODE, M. (Hrsg.) ; REIF, W. (Hrsg.) ; SCHNIEDER,
E. (Hrsg.) ; WESTKAMPER, E. (Hrsg.): Integration of Software
Specification Techniques for Applications in Engineering Bd.
3147. Berlin/Heidelberg : Springer-Verlag, September 2004, S.
451-473

KINDLER, Ekkart ; RUBIN, Vladimir ; WAGNER, Robert: An
Adaptable TGG Interpreter for In-Memory Model Transfor-

Literatur

[KSO06]

[Kiis04a]

[Kiis04b]

[KWO7]

[Lef9s]

[Lei06]

[LEOOS]

[LS96]

mation. In: Proceedings of the Fujaba Days 2004. Darmstadt,
Germany, September 2004, S. 35-38

KONIGS, A. ; SCHURR, A.: Tool Integration with Triple Graph
Grammars - A Survey. In: HECKEL, R. (Hrsg.): Proceedings of
the SegraVis School on Foundations of Visual Modelling Tech-
niques Bd. 148. Amsterdam : Elsevier Science Publ., 2006
(Electronic Notes in Theoretical Computer Science 1), S. 113—
150

KUSTER, Jochen M.. Consistency Management of Object-
Oriented Behavioral Models, Universitit Paderborn, Disserta-
tion, Marz 2004

KUSTER, Jochen M.: Systematic Validation of Model Transfor-
mations. In: Proceedings of the 3rd UML Workshop in Software
Model Engineering (WiSME 2004), 2004

KINDLER, Ekkart ; WAGNER, Robert: Triple Graph Gram-
mars: Concepts, Extensions, Implementations, and Application
Scenarios / Universitédt Paderborn. 2007 (Reihe Informatik tr-
ri-07-284). — Forschungsbericht. — 75 S.

LEFERING, Martin: Integrationswerkzeuge in einer Software-
entwicklungsumgebung, RWTH Aachen, Dissertation, 1995

LEITNER, Johannes: Verifikation von Modelltransformationen

basierend auf Triple Graph Grammatiken, Universitat Karls-
ruhe, Diplomarbeit, Mérz 2006

LAMBERS, Leen ; EHRIG, Hartmut ; OREJAS, Fernando: Effi-
cient Conflict Detection in Graph Transformation Systems by
Essential Critical Pairs. In: Electr. Notes Theor. Comput. Sci.
211 (2008), S. 17-26

LEFERING, Martin ; SCHURR, Andy: Specification of Inte-
gration Tools. In: NAGL, Manfred (Hrsg.): Building Thightly-
Integrated (Software) Development Environments: The IPSEN
Approach Bd. 1170. Berlin/Heidelberg : Springer-Verlag, 1996
(Lecture Notes in Computer Science), S. 324-334

267

Literatur

[LT89]

[LTM*04]

[LVA04]

[LZGO5)

[M2M]

[MBO03]

[MGO5]

[MGO6]

268

LyncH, Nancy A. ; TurTLE, Mark R.: An Introduction to
Input/Output Automata. In: CWI Quarterly 2 (1989), Nr. 3,
S. 219-249

LAu, Terence C. ; TONG, Tack ; MCKEGNEY, Ross ; KONTO-
GIANNIS, Kostas ; IVKovic, Igor ; LiIEw, Philip ; Zou, Ying ;
ZHANG, Qi ; HUNG, Maokeng: Model synchronization for effi-
cient software application maintenance. In: Proceedings of the
20th IEEE International Conference on Software Maintenance,
11-14 September, 2004 (2004), S. 1

LARA, Juan de ; VANGHELUWE, Hans ; ALFONSECA, Manuel:
Meta-modelling and graph grammars for multi-paradigm mo-
delling in AToM3. In: Software and Systems Modeling 3 (2004),
Nr. 3, S. 194-209

LiN, Yuehua ; ZHANG, Jing ; GRAY, Jeff: A Testing Fra-
mework for Model Transformations. In: BEYDEDA, Sami
(Hrsg.) ; Book, Matthias (Hrsg.) ; GRUHN, Volker (Hrsg.):
Model-Driven Software Development, Springer-Verlag, Dezem-
ber 2005, S. 219-236

THE EcLIPSE FOUNDATION (Hrsg.): M2M-Projekt: Operatio-
nal QVT. http://wuw.eclipse.org/m2m/. The Eclipse Foun-
dation. — Stand: Dezember 2008

MARSCHALL, Frank ; BRAUN, Peter: Model Transformations
for the MDA with BOTL. In: Proceedings of the Workshop
on Model Driven Architecture: Foundations and Applications.
Univeristy of Twente, June 2003 (CTIT Technical Report TR-
CTIT-03-27)

MENs, Tom ; GORP, Pieter V.: A Taxonomy of Model Trans-
formation. In: International Workshop on Graph and Model
Transformation (GraMoT). Tallinn, Estonia, September 2005

MENs, Tom ; GORP, Pieter V.: A Taxonomy of Model
Transformation. In: Electronic Notes in Theoretical Compu-
ter Science 152 (2006), Méarz, S. 125-142

http://www.eclipse.org/m2m/

Literatur

[Mor]

[MTTOS]

[NEROO]

[NK08a

[NKO8b)]

[NNZ0O]

[INSW+02]

[NSZ03]

[OAW]

TATA CONSULTANCY SERVICES (Hrsg.): ModelMorf. http://
www.tcs-trddc. com/ModelMorf/. Tata Consultancy Services.

— Stand: Mai 2008

OBJECT MANAGEMENT GROUP (Hrsg.): MOF Model to
Text Transformation Language 1.0 (MOFM2T). 140 Kend-
rick Street, Needham, MA 02494, USA: Object Management
Group, Januar 2008. — Document formal/2008-01-16

NUSEIBEH, Bashar ; EASTERBROOK, Steve ; RUSSO, Alessan-

dra: Leveraging Inconsistency in Software Development. In:
Computer 33 (2000), Nr. 4, S. 24-29

NARAYANAN, Anantha ; KARSAI, Gabor: Towards Verifying
Model Transformations. 211 (2008), April, S. 191-200

NARAYANAN, Anantha ; KARSAI, Gabor: Verifying Model

Transformations by Structural Correspondence. In: FElectronic
Communications of the EASST 10 (2008), S. 1-14

Ni1cKEL, Ulrich A. ; NIERE, Jorg ; ZUNDORF, Albert: Tool de-
monstration: The FUJABA environment. In: Proc. of the 22"
International Conference on Software Engineering (ICSE), Li-
merick, Ireland, ACM Press, 2000, S. 742-745

NIERE, Jorg ; SCHAFER, Wilhelm ; WADSACK, Jorg P. ; WEN-
DEHALS, Lothar ; WELSH, Jim: Towards Pattern-Based Design
Recovery. In: Proceedings of the 24" International Conference
on Software Engineering (ICSE), Orlando, Florida, USA, ACM
Press, Mai 2002, S. 338-348

NickeL, Ulrich A. ; SCHAFER, Wilhelm ; ZUNDORF, Al-
bert: Integrative Specification of Distributed Production
Control Systems for Flexible Automated Manufacturing. In:
NAGL, Manfred (Hrsg.) ; WESTFECHTEL, Bernhard (Hrsg.):
DFG Workshop: Modelle, Werkzeuge und Infrastrukturen zur
Unterstiitzung von Entwicklungsprozessen, Wiley-VCH Verlag
GmbH and Co. KGaA, 2003, S. 179-195

openArchitecture Ware Generator Framework (oAW). http:
//www.openarchitectureware.org/. : openArchi-

269

http://www.tcs-trddc.com/ModelMorf/
http://www.tcs-trddc.com/ModelMorf/
http://www.openarchitectureware.org/
http://www.openarchitectureware.org/

Literatur

[OMGO4]

[Pra71]

[PSS98]

[QVTO8]

270

tecture Ware Generator Framework (0AW). http://www.
openarchitectureware.org/. — Stand: Mai 2008

OBJECT MANAGEMENT GROUP (Hrsg.): UML Profile for
enterprise distributed Object Computing (EDOC) - Metamodel
and UML Profile for Java and EJB, v1.0. 140 Kendrick Street,
Needham, MA 02494, USA: Object Management Group, Fe-
bruar 2004. — Document formal/04-02-02

COMPUWARE (Hrsg.): OptimalJ. http://www.compuware.de/
products/optimalj/. Compuware. — Stand: Mai 2008

PARR, Terence: The Definitive ANTLR Reference: Building
Domain-Specific Languages. Raleigh, North Carolina : The
Pragmatic Bookshelf, 2007

PAESSCHEN, Ellen V. ; MEUTER, Wolfgang D. ; D’HONDT,
Maja: SelfSync: A Dynamic Round-Trip Engineering Environ-
ment. In: BRIAND, Lionel C. (Hrsg.) ; WiLL1AMS, Clay (Hrsg.):
Model Driven Engineering Languages and Systems, 8th Inter-
national Conference, MoDELS 2005, Montego Bay, Jamaica,
October 2-7, 2005, Proceedings Bd. 3713. Berlin/Heidelberg :
Springer-Verlag, 2005 (Lecture Notes in Computer Science), S.
633-647

PrATT, Terrence W.: Pair Grammars, Graph Languages, and
String-to-Graph-Translations. In: Journal of Computer and
System Sciences 5 (1971), S. 560-595

PNUELL, A. ; SIEGEL, M. ; SINGERMAN, E.: Translation va-
lidation. In: STEFFEN, B. (Hrsg.): Proceedings of Tools and
Algorithms for the Construction and Analysis of Systems Bd.
1384. Berlin/Heidelberg : Springer-Verlag, April 1998 (Lecture
Notes in Computer Science (LNCS)), S. 151-166

OBJECT MANAGEMENT GROUP (Hrsg.): Meta Object Facility
(MOF) 2.0 Query/View/Transformation Specification, Version
1.0. 140 Kendrick Street, Needham, MA 02494, USA: Object
Management Group, April 2008. — Document formal/2008-04-
03

http://www.openarchitectureware.org/
http://www.openarchitectureware.org/
http://www.compuware.de/products/optimalj/
http://www.compuware.de/products/optimalj/

Literatur

[REPO3]

[RKRS05]

[Roh06]

[Roz97]

[Sch94]

[SK04]

[SKO8]

SS05]

OBJECT MANAGEMENT GRoOuUP (Hrsg.): OMG/RFP/QVT
MOF 2.0 Query/Views/Transformations RFP. http://www.
omg.org/mda/. Object Management Group, 2003

REITER, Th. ; KAPSAMMER, E. ; RETSCHITZEGGER, W. ;
SCHWINGER, W.: Model Integration Through Mega Operati-
ons. In: Workshop on Model-driven Web Engineering (2005)
(2005)

ROHE, Oliver: Model Transformation by Interpreting Triple
Graph Grammars: Fvaluation and Case Study, Universitéit Pa-
derborn, Studienarbeit, Januar 2006

ROZENBERG, Grzegorz (Hrsg.): Handbook of Graph Grammars
and Computing by Graph Transformation. Bd. 1. Singapore :
World Scientific, 1997

SCHURR, Andy: Specification of Graph Translators with Triple
Graph Grammars. In: TINHOFER, G. (Hrsg.): Proceedings of
the 20" International Workshop on Graph-Theoretic Concepts
in Computer Science Bd. 903. Heidelberg : Spinger-Verlag,
Juni 1994 (Lecture Notes in Computer Science (LNCS)), S.
151-163

SENDALL, Shane ; KUSTER, Jochen: Taming Model Round-
Trip Engineering. In: Proceedings of Workshop on Best Practi-
ces for Model-Driven Software Development (part of 19th An-
nual ACM Conference on Object-Oriented Programming, Sy-
stems, Languages, and Applications), Vancouver, Canada, 2004

SCHURR, Andy ; KLAR, Felix: 15 Years of Triple Graph Gram-
mars - Research Challenges, New Contributions, Open Pro-
blems. In: ExriG, Hartmut (Hrsg.) ; HECKEL, Reiko (Hrsg.) ;
ROZENBERG, Grzegorz (Hrsg.) ; TAENTZER, Gabriele (Hrsg.):
Proc. of the 4" International Conference on Graph Transfor-
mations (ICGT), Leicester, United Kingdom Bd. 5214. Ber-
lin/Heidelberg : Springer-Verlag, September 2008 (Lecture No-
tes in Computer Science (LNCS)), S. 411-425

SAITO, Yasushi ; SHAPIRO, Marc: Optimistic replication. In:
ACM Comput. Surv. 37 (2005), March, Nr. 1, S. 42-81

271

http://www.omg.org/mda/
http://www.omg.org/mda/

Literatur

[SWGE04]

[SWZ99]

[SZK04]

[Tan95]

[TBWKO07]

[TXL]

[UMLO5]

[Var06]

272

SCHAFER, Wilhelm ; WAGNER, Robert ; GAUSEMEIER, Jiirgen
; ECKES, Raimund: An Engineer’s Workstation to support In-
tegrated Development of Flexible Production Control Systems.
In: EHRIG, H. (Hrsg.) ; Damm, W. (Hrsg.) ; DESEL, J. (Hrsg.)
; GROSE-RHODE, M. (Hrsg.) ; REIF, W. (Hrsg.) ; SCHNIEDER,
E. (Hrsg.) ; WESTKAMPER, E. (Hrsg.): Integration of Software
Specification Techniques for Applications in Engineering Bd.
3147. Berlin/Heidelberg : Springer-Verlag, September 2004, S.
48-68

SCHURR, A. ; WINTER, A. J. ; ZUNDORF, A.: The PROGRES
approach: language and environment. (1999), S. 487-550

SONG, Guanglei ; ZHANG, Kang ; KONG, Jun: Model Ma-
nagement Through Graph Transformation. In: VLHCC °04:
Proceedings of the 2004 IEEE Symposium on Visual Languages
- Human Centric Computing (VLHCC"04). Washington, DC,
USA : IEEE Computer Society, 2004, S. 75-82

TANENBAUM, Andrew S.: Moderne Betriebssysteme. 2. Auf-
lage. Miinchen, Wien, London : Carl Hanser und Prentice-Hall
International, 1995

TREUDE, Christoph ; BERLIK, Stefan ; WENZEL, Sven ; KEL-
TER, Udo: Difference computation of large models. In: ESEC-
FSE °07: Proceedings of the the 6th joint meeting of the Furo-
pean software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. New
York, NY, USA : ACM, 2007, S. 295-304

The TXL Programming Language http://www.txl.ca/.: The

TXL Programming Language http://wuw.tx1l.ca/. — Stand:
Mai 2008

OBJECT MANAGEMENT GROUP (OMG) (Hrsg.): Unified Mo-
deling Language: Superstructure Version 2.0. 140 Kendrick
Street, Needham, MA 02494, USA: Object Management Group
(OMG), August 2005. — Document formal/05-07-04

VARRO, Déniel: Model Transformation by Example. In: NIER-
STRASZ, Oscar (Hrsg.) ; WHITTLE, Jon (Hrsg.) ; HAREL, Da-
vid (Hrsg.) ; REGGIO, Gianna (Hrsg.): Proc. 9th International

http://www.txl.ca/
http://www.txl.ca/

Literatur

[VAS04]

[Vas06]

[VPO3]

[VTE]

[VVP02]

[W3C99]

[WGOS]

Conference on Model Driven Engineering Languages and Sy-
stems, MoDELS 2006, Genova, Italy, October 1-6, 2006. Bd.
4199. Berlin/Heidelberg : Springer-Verlag, Oktober 2006 (Lec-
ture Notes in Computer Science), S. 410-424

VIZHANYO, Attila ; AGRAWAL, Aditya ; SHI, Feng: Towards
Generation of Efficient Transformations. In: KARSsAI, Gabor
(Hrsg.) ; VISSER, Eelco (Hrsg.): Generative Programming and
Component Engineering: Proceedings of the Third Internatio-
nal Conference (GPCE), Vancouver, Canada Bd. 3286. Ber-
lin/Heidelberg : Springer-Verlag, Oktober 2004 (Lecture Notes
in Computer Science (LNCS)), S. 298-316

VASARHELYI, Arpad: Losungsansdtze fiir Modelltransformatio-
nen in einem Softwareentwicklungsprozess auf Basis des opPro-
zesses, Hochschule Darmstadt, Masterarbeit, April 2006

VARRO, Déniel ; PATARICZA, Andrés: Automated Formal Ve-
rification of Model Transformations. In: JURJENS, Jan (Hrsg.)
; RumMPE, Bernhard (Hrsg.) ; FRANCE, Robert (Hrsg.) ; FERN-
ANDEZ, Eduardo B. (Hrsg.): CSDUML 2003: Critical Systems
Development in UML; Proceedings of the UML’03 Workshop,
Technische Universitdt Miinchen, September 2003 (Technical
Report TUM-10323), S. 63-78

APACHE SOFTWARE FOUNDATION (Hrsg.): The Apache Ve-
locity Project. http://velocity.apache.org/. Apache Soft-
ware Foundation. — Stand: Mai 2008

VARRO, Déniel ; VARRO, Gergely ; PATARICZA, Andrés: Desi-
gning the Automatic Transformation of Visual Languages. In:
Science of Computer Programming 44 (2002), August, Nr. 2,
S. 205227

W3C (Hrsg.): XSL Transformations (XSLT) Version 1.0.
http://www.w3.org/TR/xs1lt/. W3C, November 1999. —
Stand: November 2007

WAGNER, Tim A. ; GRAHAM, Susan L.: Efficient and flexible

incremental parsing. In: Transactions on Programming Lan-
guages and Systems 20 (1998), Nr. 5, S. 980-1013

273

http://velocity.apache.org/
http://www.w3.org/TR/xslt/

Literatur

[Wik07]

[Wil03]

[WR99]

[WSKKO07]

[XLH*07]

[Ziin01]

274

WIKIPEDIA (Hrsg.): Wikipedia - The Free Encyclopedia. http:
//en.wikipedia.org/. Wikipedia, 2007. — Stand: Dezember
2007

WILLINK, Edward D.: UMLX: A graphical transformation
language for MDA. In: MDAFA’03. Entschede, Netherlands,
September 2003, S. 1324

WILE, David S. ; RAMMING, J. C.: Guest Editorial: In-
troduction to the Special Section “Domain-Specfic Languages
(DSL)”. In: IEEE Transactions on Software Engineering 25
(1999), Mai/Juni, Nr. 3, S. 289-290

WIMMER, Manuel ; STROMMER, Michael ; KARGL, Horst ;
KRAMLER, Gerhard: Towards Model Transformation Genera-
tion By-Example. In: Proc. of 40th Hawaii International Con-
ference on System Sciences (HICSS’07), Hawaii, USA. Los
Alamitos, CA, USA : IEEE Computer Society, Januar 2007
(System Sciences, 2007. HICSS 2007.), S. 285

XIONG, Yingfei ; L1u, Dongxi ; HU, Zhenjiang ; ZHAO, Haiyan
; TAKEICHI, Masato ; MEI, Hong: Towards automatic mo-
del synchronization from model transformations. In: ASE
'07: Proceedings of the twenty-second IEEE/ACM internatio-
nal conference on Automated software engineering. New York,
NY, USA : ACM, 2007, S. 164-173

ZUNDORF, Albert: Rigorous Object Oriented Software Deve-
lopment. University of Paderborn, 2001. — Habilitation

http://en.wikipedia.org/
http://en.wikipedia.org/

Anhang A

Beispielspezifikationen

An dieser Stelle sind einige ausgewéhlte Beispielspezifikationen aufgefiihrt.
Diese Spezifikationen wurden bereits in Ausschnitten in den vorangegange-
nen Kapiteln zur Illustration der TGGs verwendet. Hier sind die Beispiele
vollstandig aufgefiihrt.

A.1 Block- und Klassendiagramme

Die zur Spezifikation der Korrespondezregeln bendtigten Metamodelle sind
in den Abbildungen A.1-A.4 abgebildet. Die zur Modellsynchronisation
bendtigten Korrespondenzregeln werden in den Abbildungen A.5-A.11 dar-
gestellt.

BlockDiagram > ASGDiagram

Zf 0.1 <« source O0.*

Connectable Connection D ASGElement
0.1 « target 0.~

+ name : String

— !

Process Block < System Object

Abbildung A.1: Metamodell fiir Blockdiagramme

275

Anhang A Beispielspezifikationen

adAlipe »

1969y : ANQISIA +

uone.seP8@INN
JAN
adfjoa191STAN
|
sadAjoalals A bus : Buygpies + ues|oog : JNe)s + ues|oog : Joeljsqe +
170 70
Ayjeuipsed NN IRVINN POYIBINITINN wesed p | WEIBATAN
170 %0 %0 X ak d
pieo A sije A spoyjow | A VoedALynsal Vv o0ALWelE
woyjwelbelgIaN _V JuawdIdUITAIN 0 10 170 L0
J1968)U] : JUBWIUIOPE + ues|oog : JoeJISqE. + Lo
170 170
adALINN K—
Q_OMJS_: ..Om‘_mu [3 WWN_OJED ||||||||| Iv <<d2BLI9)UI>> 170
Bug : sweu + 170 170 170 170
wesbeigosSy |.V Juawd|goSy A9j0ybu ADOMYd| SSepgns A Asseoiadns
«0 %0 L0 170 « 0 0

sjuswala »

J9B8)u| : uonoBIIp +

20ssYIAN

uopezijessusn AN

wesbeigsse|dTNN

jo0lqo

v

uonR23aUUOYTAIN

Abbildung A.2: Metamodell fiir Klassendiagramme

276

A.1 Block- und Klassendiagramme

0.~
TGGNode S°”“§“E Object
Zﬁ targets
CorrAxiom CorrConnectable CorrConnection
CorrBlock CorrProcess
CorrSystem

Abbildung A.3: Technisches Korrespondenzmetamodell

blockdiagram correspondence classdiagram
1 1
BlockDiagram CorrAxiom UMLClassDiagram
! 1
System CorrSystem UMLClass
A
1 1
Block CorrBlock UMLAssoc
N
UMLRole
2
1 1
Process CorrProcess UMLClass
N
UMLAssoc
L
1
Connection CorrConnection <
~d 2
™~
UMLRole

Abbildung A .4: Konzeptionelles Korrespondenzmetamodell

277

Anhang A Beispielspezifikationen

«create» «create»
«createx «create» «create»
blockdiagram:BlockDiagram sources K] targets classdiagram:UML ClassDiagram
corrAxiom:CorrAxiom >
name := classdiagram.getName() name := blockdiagram.getName()

{blockdiagram.getName().equals(classdiagram.getName())}

Abbildung A.5: TGG-Axiom: BlockdiagramToClassdiagram

sources targets
blockdiagram:BlockDiagram P corrAxiom:CorrAxiom > classdiagram:UMLClassDiagram
«create» v «create»
elements elements
«create» «create»
«create» «create» «create»
system:System sources targets clazz:UMLClass
P corrSystem:CorrSystem -
name := clazz.getName() name := system.getName()
{system.getName().equals(clazz.getName())} «create»
v stereotypes

stereotype:UML Stereotype

name == ,system"”

Abbildung A.6: TGG-Regel: SystemToClass

278

A.1 Block- und Klassendiagramme

M00|q“ == sweu

«d)ealon sadAjoalals

A «o)ealo»

()aweN3ebyo0|q =: sweu

SSEID TN ZZeP

<

{(()oweN}abzze|0)s|enba’()aweNiab300|q}

«3)ealo» Jobugy

sjuswa|d
«8)ealon

«8)eslo»

A

|

JINON ==juswiuiope
INON =: Juswuiope

S[0g TANS[0g1ebIe]

pieo

Y| «eresion «2)8alIo» a10eyBU

Y | ereaion

[SEIE
«B)eaIon

IS
sjeble)
«8}ealo»

>
s)ébie)
B1ea1on

170 ¥y == buygpies ()aweN}ab%00|q+,SuUleluU0D” =: aweu

MEUPIED TANPIES -

50SSY NN UoHSOdwod

«3)eald» «3ajeald»

v EQSHE
pieo «8}e8I0»

«3)eald»
NOILISOdNOD ==juswuiope

NOILISOdINOD =: juswuiope

BOY TN 2]0g90IN0s

«o)ealon 1obuey

v «a)ealon

SSE[D NN ZZe|D1usIe

b
syebiey
«3)ealdon

_ S00[g1100) 001100

| >

()oweNjeb-zzejp =: sweu

| $90IN0S

REEETON

«a)eslo»

< _

SUENET
A A | Sluswsaje
«a)eslo»

|IA WeIbeIgSSe[) NN WeIDeIPSSED

sjebiey

_ SIO0[gII00) JUBIEJ1I00

390194909

[SUETITETE]
«a)eslo»

«3)ealo»

| >
_

$82IN0S

—\

Soojg-juared

: BlockToClass

TGG-Regel

Abbildung A.7

279

Anhang A Beispielspezifikationen

[SUEETE]
«o)ealon

,8s9001d“ == sweu

«o)eslon

sadAjosisls

Al coreaion

()oweNyeb ssao0id =: aweu

SSEID TN ZZeP

<

{(()aweNab-zzeo)s|enba()aweN)ab ssaoo.d}

| >

()oweNyebzzed =: sweu

«a)eslon

>

1061e)

A cepeaion

JINON ==}uswulope
JNON =: Juswuliope

pJeo
«8)eslon

5[09 TN -oI0L18b1E]

PO

a|oMyBuY

v «3)ealo»

SEIE

«a)esIon

I3
SEIE]
«d)ealon

»>
s)ébiey
18810

170 ayvO == Bumspies

()oweN}ebssa001d+,suleju0d“=:aWeu

TBUIPIED TN PIEd

«a)e8.0»

pJeo
«9)ealon

JEOEETON

9|03l

v «o)ealo»

NOILISOdINOD ==juswuiope
NOILISOdINOD = juswulope

|I_ WEIDEIgSSE[D TN WeIbeIpSsed

S[0Y TAIN-3[0g32IN0s

«o)eason 1eb1e)

v «o)ealo»

SSEIOTAN 228105001

I3
sjebiey
«8)ealo»

<

| ssvoiqmoy eI
oo d | $90IN0S

«o)e8I0»

«8)eslo»

SS800.:SS820.

syuewale

sjuswiale
«8)eaIo» Afs _

SElE

}00|gH107) 500]g 1100 7VJ_
$90IN0S

«8)ealon

syuswsle | 4
«o)eaId»

SO0Tg300[q

: ProcessToClass

TGG-Regel

Abbildung A.8

280

{(()oaweN)ab-00sse)s|enba’()aweN}ab-uuod}

>
|_ SSE[D NN ZZeDyobie) 3]qeaUU0) 1100}
sjebiey $92IN0S

106481
sjuswle (A «8)eald»

—N

>

JINON ==juswuiope
INON =: Juswulope

A.1 Block- und Klassendiagramme

6 1ebuey | A | sjuswsjp
sjebue;
B|0YTINN-8]0Y18ebie] am«wmmbuz «8je8.0»
pieo
MEEET «a)eaIo» ajo041ybL v
Y| «oreaio»
170 ayvD==buspies ()eweN}eb uuoo=:aweu ()sweNyeb-oosse=:aweu

TeuIpIen TN pIed — 50SSY NN 00SSe

e > <
U0[j08uUU0)110):00 " [NV IoHI[V[e}s] Sooigyuared
$90IN0S [SUETETE]

sjebiey
«a)ealo» «o)eao» slouol «8)ea.10» [EEET Y «9)eaId» «8)ealo» «a)1ealo»
a| PiEO v «a)ealon A
«ejeaio» JINON ==}juswuiope sjeble) 80Inos
T [SUENETE)
JNON =: Juswulope | «ajealo» «oyeomny | v I
U—\
S0 TN:9[04992IN0S
«8)eslo» 1ebuey
v «o)ealon
e — JE— > J
SSEIDT1INN-ZZ.|J824n0s 3|qejoauu0) 11008
sjebiey $90In0s _
sjuswiele
A A| sjusweye
«o)esIo»

WeIbeIgSSery TN PO

te 1)
281

lan

ConnectionToAssoc (Vari

TGG-Regel

Abbildung A.9

Anhang A Beispielspezifikationen

|_ SSED NN ZZe|0rebIe]

{(()oweN}ob-00ssE)S|ENba()aweNab uuoo}

3Iqe10suU0D 100}
[SElIE

a 106.e)
sjuswsle (A «a)ealon
JNON ==juswulope
JNON =: Juswuiope
i [SElIE
pieo SI0YTAIN:I0H1bE} «8)eald»
v «)ealon «a)esaldn v sjoM1ybL \ 4
«a)ealon
170 ayvo==buusp.ed ()oweNyeb-uuoo=:aweu
JeupIen AN pied — 30SSY TINN:00SSe mGM‘_S UONOaUU0)I0)0I
«a1ealo» «a)ealo» sjoya| «9)edlo» «a)ealo»
REES v «8)e8I0» A
«a)ealion
JNON ==juswulope sjebley
JNON =: JUSWUIOpE | «8)ealon
U—\
S[0YTAN-3[0g3dIN0s
«a)ealon 1obuey
v «d)e8I0»
SSEID NN ZZ8|D92IN0s 3]qe0auu0)II0):0S
sjebiey
a| Stuewsyp
A| sjuswaje
«8)BaIon

sjuswsle

> N
$80IN0S 1
1obuey N a
«a)eald»
()oweNjeb-oosse=:aweu
> J—
[[e]IEV Ve IoHI[V[e}s]
$80IN0S
«8)ealon «a)ealion
swewelp |, 20In0S
«eje8IoN «a)eaIon
> N
3]qejoauu0)):90IN0S
$80IN0S 1

te 2)

ConnectionToAssoc (Varian

TGG-Regel

Abbildung A.10

282

A.1 Block- und Klassendiagramme

SSED NN ZZe|01ebIe]

|_

a 106.e)

Sjuswg|o | A «3)ealon
JNON ==juswulope
JNON =: Juswuiope

SI0Y TNIN-8|0Y1ebie}

pJeo
v «9)ealon «9)ealo» ajoyybu
v «8)ealon

170 ayvO==Buspres

NEUIPIED TN-PIED

()oweNjeb uuoo=:aweu

0SSV NN 00SSE

«8je8I0» «oyeeI0» sjouual
a| PiE0 Y| «oreoion
«8jeaId»
JINON ==luswuiope
INON =: Juswulope
U—\
BOY TN 2[0g82N0S
«oyeeI0» 1ob61e)
Y| «ereoson
SSEID NN ZZeD82IN0S
sjuewale
Al Y I Al sjuswoje
«8)esalon

WeIbeIgsSerD NN po

sjebiey
«3)ealo»

sjebiey
«3)ealo»

[SEEE
«8)ealon

{(()oweN3ab-00sse)s|enba()aweN}ab-uuos}

B[qe1euu0) 11000}

sjebiey

UOI08UU0D 110000

«o)eslo»

B[qe10eUU0DII0) 08

sjebiey

sjuswale

> J
$90IN0S 1
sewepR | ¢ 10b.e)
«d)ealon «3)eaIon
()oweNjeboosse=:aweu
> I
[[e]IEN Ve IoHI[V[e}s]
$80IN0S
«8)ealon «8)ealon
92In0S
«eyeason | ¥ v
> J
$20IN0S 1

te 3)

lan

ConnectionToAssoc (Vari

TGG-Regel

Abbildung A.11

283

Anhang A Beispielspezifikationen

A.2 1/0-Atomaten und SPS-Code

Nachfolgend ist die vollsténdige Spezifikation der Metamodelle und Kor-
respondenzregeln zur SPS-Codegenerierung aus [/O-Automaten aufgefiihrt.
Die Metamodelle sind in den Abbildungen A.12-A.14 zu sehen, die spezifi-
zierten TGG-Regeln hingegen in den Abbildungen A.15-A.18.

Automaton

name : String

initial | 1 1..* | states {ordered} 0..* [transitions
1 0.* —
State target incoming Transition
name : String L 0 trigger : String
source outgoing
0..1 | actions {ordered}
Action
expr : String
Abbildung A.12: Metamodell fiir Automaten
FunctionHeader 0.1 CompilationUnit o0.1| FunctionEnd
name : String header " end
index : String
0..* | states
StateBlock 9-"| TransitionBlock
- transitions
name : String
index : String
1 | header 1|end
ActionExpression 0.” TransitionHeader TransitionEnd
actions
expr : String {ordered} triggerExpr : String target : String

Abbildung A.13: Metamodell fiir SPS-Code

284

A.2 1/O-Atomaten und SPS-Code

automaton correspondence template
CompilationUnit
/
/
Automaton AM2CU FunctionHeader
\\
FunctionEnd
State ST2SB StateBlock
TransitionBlock
/
/
Transition TR2TB TransitionHeader
\\
TransitionEnd
Action AC2AE ActionExpression

Abbildung A.14: Korrespondenzmetamodell

285

Anhang A Beispielspezifikationen

:CompilationUnit

++
++ hd.name = ++
at.name
at
:Automaton :AM2CU
initial
:State :FunctionHeader

st

hd.index =

getindexOf(st)

hd header‘\ end
hd

:FunctionEnd

FunctionHeader.tpl /

FUNCTION_BLOCK %name

VAR
state : INT = %index;
END_VAR

BEGIN
CASE state OF

FunctionEnd.tpl /

END_CASE;
END_FUNCTION_BLOCK

Abbildung A.15: TGG-Axiom: Automaton2CompilationUnit

:Automaton :AM2CU :FunctionHeader
++
states | ++ A sb.name= + ++ | states
st.name
++ st ++ sb ++
‘State s :ST2SB t ‘StateBlock
b
st +4+ y
sb.index = StateBlocktpl /
etindexOf(st
AN (=) o %index (* Y%oname *) :
Abbildung A.16: TGG-Regel: State2StateBlock

286

A.2 I/O-Atomaten und SPS-Code

:State :ST2SB :StateBlock
++ | source ++ | transitions
++ ++ ++
Transition o :TR2TB A :TransitionBlock
tr ++ ++
++ | target ++ header
** [hd.trigger = +
:State tr.triggerExpr | g ‘TransitionHeader
te

st

++

++ | te.target=

end

:TransitionEnd

TransitionHeader.tpl /

IF %trigger THEN

Tran:

sitionEnd.tpl

/

getIndexOf(st)

state := %target;

END_IF;

Abbildung A.17: TGG-Regel: Transition2TransitionBlock

:Transition TR2TB :TransitionHeader
++
actions | ++ t ae.expr= i ++ | actions
ac.expr
++ ac ++ ae ++
:Action i :AC2AE s :ActionExpression

ActionExpr.tpl /

%expr;

Abbildung A.18: TGG-Regel: Action2ActionBlock

287

Anhang B

Document Type Definition der
Konfigurationsdatei

Im Folgenden ist das Datenformat der im Abschnitt 7.2.2 beschriebenen
Konfigurationsdatei zu sehen.

<!ELEMENT configuration (triggertable,dependencies?)>
<!ELEMENT triggertable (entry)*>
<!ELEMENT dependencies (plugin|lib)*>

<!ELEMENT entry EMPTY>
<!ATTLIST entry trigger CDATA #REQUIRED
rule CDATA #REQUIRED>

<!ELEMENT plugin EMPTY >
<!ATTLIST plugin id CDATA #REQUIRED>

<IELEMENT 1ib EMPTY>
<IATTLIST 1ib path CDATA #REQUIRED>

Eine Konfigurationsdatei besteht aus einer Tabelle (triggertable) und
einer optionalen Auflistung zusétzlich benétigter Plug-ins und Bibliotheken
(dependencies). Ein Tabelleneintrag (entry) setzt sich aus den Attribu-
ten trigger und rule zusammen. Das Attribut trigger enthélt einen
vollqualifizierten Klassennamen, der den Typ eines Korrespondenzobjekts
identifiziert, bei dem die Uberpriifung einer TGG-Regel ausgelost wird. Die
TGG-Regel selbst wird durch das Attribut rule festgelegt. Die Auflistung
von Plug-Ins erfolgt durch die Angabe eines Plug-in-Identifikators (Attribut
id). Die Auflistung der zusatzlich benétigten Bibliotheken erfolgt hingegen
durch die Angabe eines Dateipfades (Attribut path).

289

Abbildungen

1.1

2.1

2.2
2.3
24

2.5

2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

Modellbasierte Softwareentwicklung 2
Schematische Darstellung des Fertigungssystems und der ver-

wendeten Steuerungstechnik00 0L 17
Uberblick zur ISILEIT-Methode 19
Zwei zueinander korrespondierende Modelle 23
Informelle Zuordnung von Elementen eines Blockdiagramms

zu Elementen eines Klassendiagramms 24
Diagramme vor (links) und nach (rechts) der Modellsynchro-

nisation 27
Beispiele fiir verschiedene Topologien 38
Uberblick zur Methode 47
Metamodell fiir Klassendiagramme Y
Metamodell fiir Blockdiagramme 58
Blockdiagramm in abstrakter Syntax 59
Graphgrammatikregel in unterschiedlichen Notationen 61
Blockdiagramm nach der Regelanwendung 62
TGG-Regel Block2Class 65
TGG-Regel Process2Class 66
TGG-Regel Connection2Association 66
TGG-Axiom System2Class 67
Metamodell fiir die Korrespondenzobjekte 68
Anwendung der Regel Block2Class auf das Axiom 70
Zweimalige Anwendung der Regel Block2Class 71
Anwendung der Connection2Association Regel 72
Alte Notation fiir Attributwerte 73
Neue Notation fiir Attributbedingungen 75
Erkennung von Anderungen und Konflikten 76
Erweiterte TGG-Regel Process2Class 78
Negative Anwendungsbedingungen und ihre Ubersetzung . . 80
Erweitertes Metamodell fiir Klassendiagramme 81

291

Abbildungen

292

3.20
3.21

3.22
3.23
3.24
3.25

3.26
3.27
3.28
3.29

3.30

4.1
4.2
4.3
4.4

4.5

4.6
4.7
4.8

4.9
4.10
4.11

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

Erweiterte TGG-Regel Block2Class
Fallunterscheidung mit zwei TGG-Regeln zur Wiederverwen-
dung von Stereotypen.
TGG-Regel mit wiederverwendbarem Stereotyp
Modelltransformation: Initiale Startsituation
Modelltransformation: Anwendung der Regel Block2Class . .
Modelltransformation: ~ Zweifache Anwendung der Regel
Block2Class
Modelltransformation: Anwendung der Regel Channel2Assoc
Modellintegration: Initiale Startsituation
Modellintegration: Anwendung der Regel Block2Class
Modellintegration: Zweifache Anwendung der Regel
Block2Class
Modellintegration: Anwendung der Regel Channel2Assoc . .

Codegenerierung mit Textschablonen
Ausschnitt aus einer Textschablone
Ausschnitt aus dem Eclipse Java-Metamodell
Beispiel fiir die Spezifikation von Modell-zu-Text Beziehungen
mit einer TGG-Regel
Codegenerierung und Synchronisation von Modell-zu-Text
Beziehungen oo
Beispielautomat in konkreter Syntax
Beispielautomat in abstrakter Syntax (Objektdiagramm) . .
Beispiel fiir die Kombination einer TGG-Regel mit einer
Textschablone L.
Ergebnis der Ubersetzung in Strukturierten Text
Uberblick zur Spezifikation mit Beispielzuordnungen
Beispielzuordnung 1 (inklusive der Ubersetzung in den TGG-
Formalismus)
Synthese des Axioms
Beispielzuordnung 2.o
Regelsynthese aus Beispielzuordnung 2 — Schritte 1 und 2 . .
Regelsynthese aus Beispielzuordnung 2 — Schritte 3 und 4 . .
Beispielzuordnung 3.o
Regelsynthese aus Beispielzuordnung 3 — Schritte 1 und 2 . .
Regelsynthese aus Beispielzuordnung 3 — Schritte 3 und 4 . .
Regelsynthese aus Beispielzuordnung 3 — Schritte 5 und 6 . .
Beispielzuordnung 4o

84
85
38
89

90
91
93
94

95
96

103
104
107

108

109
113
114

115
116
120

Abbildungen

4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29

4.30
4.31
4.32

4.33
4.34

5.1

2.2
5.3
5.4
2.5

2.6
5.7

0.8

5.9

5.10
5.11
0.12
5.13
5.14
5.15
5.16
0.17
2.18
5.19

Regelsynthese aus Beispielzuordnung 4 — Schritte 1 und 2 . . 136
Regelsynthese aus Beispielzuordnung 4 — Schritte 3 und 4 . . 137
Regelsynthese aus Beispielzuordnung 4 — Schritte 5 und 6 . . 138
Regelsynthese aus Beispielzuordnung 4 — Schritte 7 und 8 . . 139
Beispielzuordnung mit Attributwerten. 141
Synthetisiertes Axiom mit Attributbedingungen 141
Beispielzuordnung mit Einschrénkung 143

Synthetisierte Regel mit Negativer Anwendungsbedingung . 144
TGG-Regel resultierend aus geédnderter Reihenfolge der Bei-

spielzuordnungen 146
Uberblick zum Prozess 150
QVT-Spracharchitektur, entnommen aus [QVTO08] 152
Beispielregel BlockToClass in der graphischen Syntax von

QVT-Relations oL 153
Schema einer QVT-Core-Regel, entnommen aus [QVTO08] . . 154
Abbildung von QVT-Relations auf TGGs 155
Prinzip der inkrementellen Modellsynchronisation auf einem

Korrespondenzmodell 159
Datenstrukturo 161
Die Methode synchronize der Klasse TGGEngine 164
Die Methode execute der Klasse TGGEngine 166
Zu fiiberpriifende Korrespondenzknoten und ihre Teilbdume

im Korrespondenzmodell 167
Grundstruktur einer TGG-Regel 171
Grundstruktur der aus einer TGG-Regel abgeleiteten opera-

tionalen Graphersetzungsregeln 172
Beispiel fiir ein Storydiagramm 174
Grundstruktur der zu generierenden Storydiagramme 176
Hergestellte Korrespondenzbeziehung identifizieren 177
Objektstruktur der Korrespondenzbeziehung {iberpriifen . . 178
Inkonsistente Korrespondenzbezichung auflésen 179
Die Methode deleteFwd 179
Attributwerte iiberpriifen und aktualisieren 181
Neue Anwendungsstelle suchen 182
Integrationsregel anwenden 183
Automatische Vervollstandigung 185
Modelltransformation ausfithren 188
Grundstruktur einer komplexeren TGG-Regel 190

293

Abbildungen

294

5.20 Storydiagramm zum Axiom System2Class 191
6.1 Uberblick zur Validierung durch Tests 197
6.2 Zwei Checker-Anséitze zum Beweis der semantischen Korrekt-

heit von Transformationen 201
6.3 Uberblick zur formalen Verifikation der semantischen Aquiva-

lenz mit einem Theorembeweiser 202

6.4 Formalisierung von Metamodellen als induktive Datentypen 204
6.5 Interpretation einer TGG-Regel als zusammengehoriges Paar

zweier Produktioneno o000 205
7.1 Komponenten der Werkzeugunterstiitzung 210
7.2 Die Entwicklungsumgebung FUIABA4ECLIPSE 212
7.3 TGG-Editor 213
7.4 Generierung der Storydiagramme 215
7.5 Start der Codegenerierung 215
7.6 Wizard zur Erstellung des Jar-Archivs 216
7.7 Ausschnitt aus einer Konfigurationsdatei 216
7.8 Werkzeugleiste zur Modellsynchronisation 217
7.9 Synchronisierungs-Wizard 218
7.10 Modellsynchronisation zwischen einem Block- und einem

Klassendiagramm 220
7.11 Uberblick zu Werkzeug- und Modelladaptern 222
7.12 Leistungsmessung bei der Transformation kleiner Modelle . . 230
7.13 Leistungsmessung bei der Transformation gréfSerer Modelle . 231
A.1 Metamodell fiir Blockdiagramme 275
A.2 Metamodell fiir Klassendiagramme 276
A.3 Technisches Korrespondenzmetamodell 277
A.4 Konzeptionelles Korrespondenzmetamodell 277
A.5 TGG-Axiom: BlockdiagramToClassdiagram 278
A.6 TGG-Regel: SystemToClass 278
A.7 TGG-Regel: BlockToClass 279
A.8 TGG-Regel: ProcessToClass 280
A9 TGG-Regel: ConnectionToAssoc (Variante 1) 281
A.10 TGG-Regel: ConnectionToAssoc (Variante 2) 282
A.11 TGG-Regel: ConnectionToAssoc (Variante 3) 283
A.12 Metamodell fiir Automaten 284
A.13 Metamodell fiir SPS-Code 284

Abbildungen

A.14 Korrespondenzmetamodell 285
A.15 TGG-Axiom: Automaton2CompilationUnit 286
A.16 TGG-Regel: State2StateBlock, 286
A.17 TGG-Regel: Transition2TransitionBlock 287
A.18 TGG-Regel: Action2ActionBlock 287

295

Index

A
Abgleich........................ 6
Ableitungsbaum 157
Abstract State Machine........ 20
Abstract Syntax Tree......... 106
Abstrakter Syntaxbaum 106
Abstraktionsebene 4, 39
Actuator-Sensor-Interface. 16
Adapter 52, 222
Algorithmus.................. 164
Analysewerkzeug................ 7
Anforderungen................. 45
Anwendungsdoméne 15, 44
Anwendungsstelle............. 181
Aquivalenz................. 8, 200
Aquivalenzrelation............ 199
Architektur................... 209
Artefakte 4
Attributaktualisierung 180
Attributbedingungen........... 73
Augmented Reality 20
Ausfihrung 49, 52
Héaufigkeit der 42
Zeitpunkt der.............. 42
Automatisierung
durch Fertigungssystem. ... 16
Gradder................... 41
AXIOM . oo 66, 190

B
Baumstruktur................ 158
Bedingungen 70, 77,79
Beispielzuordnung 118
Beziehungen
Modell-zu-Modell 10, 99
Modell-zu-Text 10, 99
Bisimulation.................. 200

Black-Box-Implementierung. . . 152
C

Checker-Ansatz............... 199
Chomsky-Grammatiken. 60
Codegenerierung . .. 6, 10, 99, 102,
112
D
Datenabgleich............... siehe
Datensynchronisation
Datenstruktur................ 161
Datensynchronisation.......... 33
Debugger 7
Directed Acyclic Graph....... 158
Direkte Programmierung 100

297

Index

Eclipse Modeling Framework . 104,

223
Entwicklungsumgebung. 211
Entwurfsmuster. 100, 169, 222
Entwurfsprozess 149
Ereignissgesteuerte Prozesskette

226
Evaluation.................... 224
F
Fallstudie..................... 224
Fertigungssystem

automatisiertes 16
flexibles................ 16, 18
FIFO-Prinzip................. 167
Formalismus 39, 55
Forward-Engineering............ 7
FusABA ... oL 44
FUJABA4ECLIPSE............ 209
G
Geschéaftsprozessmodell 226
Grammatik
kontextfreie................ 56
kontextsensitive........... 157
Graphersetzungsregel 157, 170
Graphgrammatik....... 19, 49, 60
H
Higher Order Logik........... 201
I
[/O-Automaten............... 112
IEC61131-3 ...t 16
Inbetriebnahme 18, 20
Inkonsistenz............. 4, 28, 34
Integration................ 49, 182

298

Integrationswerkzeug 236
Integritatsbedingung.......... 196
Intermediate Representation .. 106
Invariante 79
IPSEN-Projekt 236
ISABELLE/HOL.............. 201
ISILEIT-Projekt 18, 103, 112, 225
J
Java Development Tools. 108
Java Metadata Interface...... 223
Java-Code........ 21, 49, 224, 227
K
Kardinalitat 37, 39
Klassifikation.................. 37
Komplexitat 9, 45
Konfigurationsdatei. 53, 215
Konflikte 31, 41, 43, 53
Konflikterkennung 76
Konfliktresolution.......... 43, 53
Konfluenz 195
Konsistenz. 34
Konsistenzpriifung............ 176
Konsistenzproblem.............. 5t
Korrektheit 8
semantische.......... 195, 201
syntaktische 195
Korrespondenzbeziehung. 63
explizite 40
implizite................... 40

Korrespondenzmodell 48, 158
Korrespondenzregeln . .. 48, 55, 63

Richtung der............... 41
Spezifikation der........... 40
L
Laufzeitverhalten 158, 228

Lebenszyklus 6
Leistungsmessung............. 228
Line-Printer 100
M
MATE-Projekt 226
Materialflusssystem............ 16
Matlab/Simulink 226
Meta Object Facility........... 56
Metamodelle................... 56
Metamodellierung 56
Methode 10, 47
Model Checking........... 20, 199
Model Driven Architecture. . ..240
Modellabgleich................. 33
Modelladapter................ 221
Modelle..................... 1, 55
plattformspezifische. 225
plattformunabhéngige. 225
Modellierung 19
Modellierungssprache 3
Semantik einer............. 55
Syntax einer............... 55
Modellintegration..9, 92, 182, 188
Modellkonsistenz 34
Modellreprasentation. 37, 39
Modellsynchronisation . 15, 31, 35,
52, 92
Algorithmus zur 164
automatische 9, 36, 52
batch-artige....... 42, 52, 160
bidirektionale 9, 41, 43, 52
ereignis-orientierte 41
horizontale................. 39
initiale................ 25, 159
inkrementelle 9, 28, 36, 42, 52,
160
Kriteriender............... 37

manuelle................... 36
partielle................ 30, 36
Szenarien der 22, 86
unidirektionale............. 43
vertikale 39
zustands-orientierte........ 41
Modelltransformation . .. 5, 86, 99,
187, 197, 199
Modifikator................... 204
Multi-Point-Interface 16
N
Nachverfolgbarkeit 7, 101
Negative Anwendungsbedingung
77,79
Notation 40, 60, 74
O
Object Constraint Language .. 56,
196
Object Management Group....56
Observer 169
P
Pair-Grammatik 63
Pair-Graph-Grammatik. 236
Parametrisierung........... 10, 40
Parser................... 106, 111
Parsergenerator............... 106
Plug-ins 44
Pradikatenlogik............... 201
Pretty-Printer 108
Prioritdten..................... 43
Prioritatswarteschlange....... 167
Produktionen................. 157
Programmiersprache.......... 100
Prozesssynchronisation......... 32

299

Index

Q
Quellmodell..................... 5
Query/View/Transformation . 152,
240
QVT-Core............oooiat. 152
QVT-Operational............. 152
QVT-Relations 152
QVT-Standard 152
R
Riickwértstransformation 87
Regelkatalog.................. 214
Reihenfolgeunabhéngigkeit 145
Replikation 33
Reverse-Engineering 7
Round-Trip-Engineering 44
S
SDL-Blockdiagramme .. 19, 22, 58
Semantik 55
einer Graphgrammatik.. ... 61
einer Tripel-Graph-
Grammatik 63
Simulation..................... 18
Skalierbarkeit.................. 41
Softwareentwicklung
iterativ-inkrementelle. . .5, 110
modellbasierte 1
Specification and Description Lan-
GUAZE . i 18
Speicherprogrammierbare Steue-
TUNZ . oo ve e e e eeee e 16, 103,
112
Spezifikation........ 19, 48, 55, 63
deklarative................. 40
direkte.................... 106
graphische 40

300

kombinierte............... 112
operationale 40
textuelle............. 40
Spezifikationsvarianten . .. 99, 105,
112, 118
Sprachdefinition 100
SPS-Codeoo.. 20
Steuerungslogik.......... 157, 164
Steuerungssoftware 18
Story-Pattern................. 173
Storydiagramme 49, 173
Strukturell Operationale Semantik
203
Strukturierter Text 103, 112
Synchronisation
von Modell und Code. .7, 101,
105
Synchronisationsaufgabe 37
Synchronisationsebene 37, 39
Synchronisationsmechanismus. 158
Synchronisationsmodus 41
Pull-Modus 42, 52
Push-Modus 42, 52
Synchronisationsregel 40, 52
Synchronisationsrichtung. 38
Synchronisationsstrategie. ..41, 52
Synchronisationsumgebung 37
Synchronisationsverfahren 41
Syntax
abstrakte 95
konkrete 55, 119
Synthese...................... 119

von Attributbedingungen . 140
von negativen Anwendungsbe-

dingungen 142
von TGG-Regeln 123
von wiederverwendbaren Ob-

jekten 144

T
Technologie 37, 39
Terminierung 166, 195
Testfall 196
Textartefakte 99, 106
Texteditor
konventioneller 110
syntaxgesteuerter......... 110
Textschablone 102, 112
TGG-Interpreter.......... 49, 226
TGG-Regel 63
Theorembeweiser 199
Topologie 37, 39, 50
Traceability siehe
Nachverfolgbarkeit, 101
Transformation............... 187
Transformationsregel............ 5t
Tripel-Graph-Grammatik . .. 9, 48,
55, 63, 105
U
Ubersetzung 5
Uhrensynchronisation.......... 32
UML-Aktivitdatsdiagramme. . . .49,
173, 226
UML-Klassendiagramme19, 22, 56
UML-Objektdiagramme.. 60
Unified Modeling Language . 3, 18,
44, 104, 118
Unparser..................... 108
\%
Validierung 8, 18, 149, 195
durch Simulation........ 1, 20
durch Tests 1, 196

Varianten der Spezifikation 99
Verifikation. .1, 8, 18, 20, 195, 201

Vervollstandigung 184
Visitor. ... 100
Visualisierung 21
Vorwértstransformation. 86
\)\%

Warteschlange 167
Wartung 18, 20, 101
Wechselseitiger Ausschluss. 32
Werkzeugadapter............. 221
Werkzeugunterstiitzung. 209
Wiederverwendung. 80, 83
Z

Zielmodell 5
Zwischendarstellung 106
Zyklen........... 50

301

	Einleitung
	Modellbasierte Softwareentwicklung
	Problembeschreibung
	Modelltransformation
	Codegenerierung
	Nachverfolgbarkeit
	Validierung und Verifikation

	Ziele und Beiträge
	Aufbau der Arbeit

	Modellsynchronisation
	Ein Beispiel
	Hintergrund zur Domäne
	Das ISILEIT-Projekt
	Synchronisationsbedarf
	Synchronisationsszenarien

	Begriffe und Definitionen
	Bedeutung der Modellsynchronisation
	Zusammenhang zwischen Modellkonsistenz und Modellsynchronisation
	Definition und Aufgabe der Modellsynchronisation

	Kriterien der Modellsynchronisation
	Synchronisationsaufgabe und -umgebung
	Synchronisationsregeln
	Synchronisationsverfahren

	Methodischer Ansatz
	Ausgangslage und Anforderungen
	Überblick über die Methode
	Einordung

	Zusammenfassung

	Spezifikation von Korrespondenzregeln
	Grundlagen
	Modelle und Metamodelle
	Graphgrammatiken

	Tripel-Graph-Grammatiken
	Syntax und Semantik
	Erweiterungen

	Anwendungsszenarien
	Modelltransformation
	Modellintegration
	Modellsynchronisation

	Zusammenfassung

	Spezifikationsvarianten
	Spezifikation von Modell-zu-Text Beziehungen
	Existierende Techniken
	Spezifikation mit Tripel-Graph-Grammatiken
	Gegenüberstellung

	Spezifikation durch Beispielzuordnungen
	Idee und Lösungsprinzip
	Regelsynthese
	Erweiterungen
	Reihenfolgeunabhängigkeit
	Abschließende Betrachtungen zur Regelsynthese

	MOF 2.0 Query/View/Transformation
	Zusammenfassung

	Synchronisationsmechanismus
	Überblick
	Datenstruktur und Algorithmus
	Datenstruktur
	Algorithmus

	Generierung operationaler Graphersetzungsregeln
	Prinzip
	Storydiagramme
	Generierung

	Zusammenfassung

	Validierung und Verifikation
	Syntaktische Korrektheit
	Semantische Korrektheit
	Checker-Ansatz
	Regelbasierter Ansatz

	Zusammenfassung

	Werkzeugunterstützung
	Architektur
	Entwicklungsumgebung
	Spezifikation
	Generierung eines Regelkatalogs
	Ausführung

	Werkzeug- und Modelladapter
	Evaluation
	Spezifizierte Korrespondenzregeln
	Leistungsmessungen

	Zusammenfassung

	Verwandte Arbeiten
	Modelltransformation und Modellintegration
	Tripel-Graph-Grammatiken
	Andere Ansätze zur Modelltransformation und Modellintegration

	Modellsynchronisation
	Ansätze zur Vereinfachung der Spezifikation
	Kompakte Repräsentation von Modelltransformationen
	Spezifikation durch Beispiele

	Zusammenfassung

	Zusammenfassung und Ausblick
	Zusammenfassung
	Ausblick

	Literatur
	Beispielspezifikationen
	Block- und Klassendiagramme
	I/O-Atomaten und SPS-Code

	Document Type Definition der Konfigurationsdatei
	Abbildungen
	Index

