FAKULTAT FUR
ELEKTROTECHNIK,

'L(‘ UNIVERSITAT PADERBORN INFORMATIK UND

Die Universitit der Informationsgesellschaft MATHEMATIK

Ressourceneffiziente Realisierung
Pulscodierter Neuronaler Netze

Zur Erlangung des akademischen Grades

DOKTORINGENIEUR (Dr.-Ing.)

der Fakultat fur Elektrotechnik, Informatik und Mathematik
der Universitat Paderborn
vorgelegte Dissertation
von

M. Sc. Tim Kaulmann

Paderborn
Referent: Prof. Dr.-Ing. U. Ruckert
Korreferent: Prof. Dr.-Ing. habil. R. Schiffny

Tag der mundlichen Prufung: 05.10.2009

Paderborn, den 28.10.2009

Diss. EIM-E/256






Inhaltsverzeichnis

Einleitung

1 Biologische Grundlagen neuronaler Netze

1.1 Anatomie des menschlichen Gehirns . . . . . . . . . . . . ... ... ...

1.2 Physiologische Grundlagen der Zelle . . . . . . . .. ... ... ... ...

1.2.1
1.2.2
1.2.3
1.24
1.2.5
1.2.6
1.2.7

Zelle und Zellkern . . . . . . . . ..o
Zellmembran und Ionenkanale . . . . . . . ... ... ... . ...
Energieumsatz in Nervenzellen, Natrium-Kalium-Pumpe . . . . .
Energiegewinnung in der Zelle . . . . . . . ... ... L.
Zelltypen: Purkinje Zelle und Kornerzelle . . . . . . . . ... . ..
Betrachtung der Membrankapazitét biologischer Neuronen . . . .

Membranpotential . . . . . . ... ...

1.3 Aktionspotential . . . . . ... ..

1.4 Reizweiterleitung . . . . . . . ..o

1.5 Diskussion . . . . . . ..

2 Stand der Technik pulsender Neurone

2.1 Technische Darstellungen von Neuronen . . . . . . ... ... .. ... ..

2.1.1
2.1.2

Spike Response Modell . . . . . . .. ... ... oL
Leaky Integrate and Fire Modell . . . . . . . ... . ... ... ..

2.2 Digitale Implementierungen . . . . . . . ... ... oL

2.2.1
2.2.2
223
224

Die Schrauwen-Implementierung . . . . . . . . .. ... .. ...
Die Upegui-Implementierung . . . . . . . . .. ... ... ... ..
Die Torres-Huitzil-Implementierung . . . . . . . . . .. .. .. ..

Die Johnston-Implementierung . . . . . ... ... ... ... ..

© g O O ot w W

10
11
13
14
16
17



2.2.5 Die Maya-Implementierung . . . . . . ... .. ... ... 31

2.2.6 Die Godin-Implementierung . . . . . . .. .. ... ... ... .. 31
2.3 Analoge Implementierungen . . . . . . .. ... ... L. 33
2.3.1 Die Matolin-Implementierung . . . . . . .. .. .. .. ... ... 34
2.3.2 Die van Schaik-Implementierung . . . . . . . .. .. .. ... ... 34
2.3.3 Die Indiveri-Implementierung . . . . . . ... ... ... ... 34
2.3.4 Die Chicca-Implementierung . . . . . . . .. .. .. ... ... .. 36
2.3.5 Die Wijekoon-Implementierung . . . . . .. .. .. ... ... .. 37
2.4 Vergleich bestehender Implementierungsvarianten . . . . . .. . .. . .. 38
3 Energetische Modellierung pulscodierter neuronaler Netze 41
3.1 Modellierung des Energieumsatzes: Biophysikalisches Grundmodell . . . . 42
3.1.1 Kanalstrome - passiver Transport . . . . . . ... ... ... ... 42
3.1.2 Linearisiertes System . . . . . .. ... 44
3.1.3  Pumpstrome - aktiver Transport . . . . . . . . . .. ... ... .. 47

3.1.4 Betrachtung der Natrium-Kalium-Pumpe als regelungstechnisches
Problem . . . . . . .. 48

3.1.5 Stabilitatspriifung des nichtlinearen, geregelten Systems mittels
Ljapunov-Verfahren . . . . . . . . ... ... o000 51

3.1.6  Erweiterung des Grundmodells zu einem Modell fiir Synapse und
Dendrit . . . . . . ..o 52
3.1.7  Modellierung eines Aktionspotentials . . . . . . . . .. ... ... 56
3.1.8 Simulation eines Minimalsystems . . . . . . . .. ... ... ... 58
3.2 Modellierung des Energieumsatzes mit elektrischen Schaltkreisen . . . . . 62

3.2.1  Abschatzungen zum Energiebedarf biologischer Neurone am Ersatz-

schaltbild im steady-state . . . . . .. ... ... ... ... ... 62
3.3 Modellierung eines LIAF Neurons mit elektrischen Ersatzschaltkreisen . . 63
3.3.1 Passives Entladen der Kapazitat iiber Leckstrome . . . . . . . .. 65

3.3.2 Aktives Laden der Kapazitat unter Berticksichtigung von Leckstrémen 65

3.4 Verlustleistung . . . . . . ... oo 66
3.4.1 Gleichstrombetrieb . . . . . . . ... 66
3.4.2 Herleitung der Ubertragungskennlinie . . . . . . . .. ... .. .. 68

3.5  Erweiterung der Betrachtung am LIAF Modell zum SRM . . . . . . . .. 72

3.6 Diskussion . . . . . .. 74

i



4

Ressourcenbedarf pulscodierter neuronaler Netze

4.1 Analoge Implementierungen . . . . . . . ... ... Lo
4.1.1 Leaky Integrate and Fire Neuron . . . . . ... ... ... .. ..
4.1.2  Statische Synapse . . . . . . .. ..o
4.1.3 Ermittlung der aquivalenten Wortbreite . . . . . . . . . . .. ...

4.2 Digitale Implementierungen . . . . . .. ..o oL
4.2.1 Bitserielle Multiplikation . . . . . . . . .. ... 0000
4.2.2  Digitale ultra-low-power Standardzellenbibliothek . . . . . . . ..
4.2.3 Leaky Integrate and Fire Neuron . . . . .. ... .. ... .. ..
4.2.4 Vergleich digitaler Implementierungsvarianten . . . . . . . . . ..

4.3 Analoger Testchip . . . . . . . . .. ..

Struktur und Funktion in pulscodierten neuronalen Netzen

5.1 Fehlertoleranz neuronaler Assoziativspeicher . . . . . . . ... ... ...
5.1.1  Struktur . . . . ...
5.1.2  Fehlertoleranz binarer neuronaler Assoziativspeicher . . . . . . . .

5.2  Einfluss der Pulscodierung auf die Funktion . . . . . ... .. ... ...

Zusammenfassung
A Mathematischer Anhang
A1 Herleitung von ug\}) und u%) ........................

B

C

A.2 Herleitung des maximalen Gewichts zum fehlerfreien Abruf . . . . . . ..

A.3 Variation des Storabstandes in einer 90 nm ULP Standardzellenbibliothek
Skalierungsregeln

Simulink Modelle

Verzeichnis der verwendeten Abkiirzungen und Formelzeichen

Abbildungsverzeichnis

Tabellenverzeichnis

Literaturverzeichnis

1ii

125
125
126
128
141

150

155
155
157
158

161

163

169

175

181

183



Eigene Publikationen 191

Index 193

v



Einleitung

Schon immer diente Wissenschaftlern die Natur mit ihren faszinierenden Losungen als
Vorbild fiir eigene technische Entwicklungen. Hierbei ziehen insbesondere Gehirne von
Lebewesen aufgrund ihrer enormen Leistungsfédhigkeit bei gleichzeitiger Robustheit die
Aufmerksamkeit auf sich und liefern den Ansporn fir die Entwicklung von technischen
Systemen mit dhnlichen Eigenschaften. Um dieses Ziel zu erreichen, werden bestimmte
Arbeitsprinzipien biologischer Gehirne mit sogenannten kiinstlichen neuronalen Netzen
nachgeahmt. Dies geschieht zum einen in Software. Zum anderen kann in der Hardwareum-
setzung insbesondere die moderne Mikro- und Nanoelektronik beziiglich der Robustheit
der Schaltungen profitieren und zuverléssige integrierte Schaltkreise ermoglichen.

Mit der zunehmenden Verkleinerung von Strukturen in integrierten Schaltkreisen in den
Bereich der Nanotechnologie bei gleichzeitiger Erhéhung der Anzahl von Bauelementen
entstehen neue Herausforderungen beim Entwurf und dem spéteren Betrieb von Mikro-
chips. Zum Einen nimmt die Wahrscheinlichkeit zu, dass Teile des Mikrochips durch
Toleranzen bei der Herstellung nicht oder nur eingeschriankt funktionieren. Zum Anderen
konnen schon geringe duflere Einfliisse im Betrieb des Mikrochips fiir Storungen seiner
Funktion sorgen. Daher werden in aktuellen Forschungsvorhaben Umsetzungen integrierter
Schaltkreise unter Nutzung von neuronalen Prinzipien untersucht, von denen man sich
eine hohere Robustheit der integrierten Schaltung bei einer gleichzeitigen Verringerung
des Energiebedarfs verspricht [107].

Besonders die Frage, wie sich Komponenten kiinstlicher neuronaler Netze ressourceneffizi-
ent, d. h. mit minimalem Energiebedarf und minimaler Chip-Fléache umsetzen lassen, ist fiir
die Akzeptanz der Anwendung neuronaler Prinzipien in mikroelektronischen Schaltungen
von grofiter Bedeutung. Dazu miissen neben der theoretischen Betrachtung elektrischer
Modelle von Neuronen auch Schaltungen in aktuellen Halbleitertechnologien entworfen
werden, mit denen die Funktion der Schaltungen und der Energiebedarf der einzelnen
Komponenten ermittelt werden konnen.

Viele mikroelektronische Umsetzungen kiinstlicher neuronaler Netze in analoger Schal-
tungstechnik werden aufgrund der vorteilhaften elektrischen Eigenschaften oft in Tech-
nologien mit relativ groflen Strukturgrofen von 350 nm umgesetzt. Die Eigenschaften
der betrachteten Schaltungen und ihre Umsetzbarkeit in Strukturgréfien von 130 nm und
darunter ist weitestgehend noch nicht betrachtet worden. Daher werden in dieser Arbeit
Losungen fiir die Hochstintegration neuronaler Netze fiir Technologien mit Strukturgréfen
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von 130 nm und kleiner erarbeitet, da sich damit Netze bisher unerreichter Komplexitat
realisieren lassen. In diesem Bereich miissen schaltungstechnische Losungen geschaffen
werden, die den besonderen physikalischen und elektrischen Eigenschaften modernster
Halbleiterprozesse gerecht werden.

Im Allgemeinen gelten der Standardzellenprozess und die digitale Schaltungstechnik in
Technologien mit Strukturgréfen von 130 nm bis hinunter in den Bereich von 22 nm als
beherrschbar, auch wenn fiir Strukturen von 90 nm und darunter zusétzliche Anforderun-
gen an die Herstellbarkeit der Schaltungen gestellt werden. Diese Bedingungen kénnen
allerdings durch Werkzeugunterstiitzung und erweiterte Layoutregeln sowie zuséatzliche
Priifschritte beim Schaltungsentwurf nach heutiger Einschatzung erfiillt werden. Aufgrund
der neu eingefiithrten Arbeitsschritte in der Entwurfs- und Verifikationsphase gilt die
digitale Schaltungstechnik auch bis weit unterhalb der Strukturgréfien von 130 nm als in
hohem Mafle zuverlédssig. Daher sollen in dieser Arbeit auch die Moglichkeit der Umsetzung
von Neuronen in digitaler Schaltungstechnik bewertet, und ressourceneffiziente Losungen
zur Implementierung von Neuronen aufgezeigt werden, welche die analogen Funktionen
emulieren konnen.

Eine interessante Frage, die hier beantwortet werden soll ist, ob die digitale Umsetzung
der Neuronen in kleineren CMOS-Technologien eine kleinere Fliache belegen wird, als ihr
analoges Pendant, und wie sich die fiir die Funktion benotigte Energie in Bezug auf die
benotigte Energie der analogen Variante verhalt. Im Hinblick auf die von digitalen Syste-
men umgesetzte Verlustleistung sollen in dieser Arbeit aus anderen Bereichen bewéhrte
Konzepte gepriift und neue Konzepte der schaltungstechnischen Umsetzung geschaffen
und genutzt werden. Besonders das Einsparpotential fiir die umgesetzte Leistung bei
der Nutzung von Standardzellenbibliotheken mit Elementen, die im Subschwellenbereich
(engl. Subthreshold oder Sub-Vry) arbeiten, soll an den digitalen Implementierungen der
Neurone ermittelt werden. Wahrend die Subschwellen-Schaltungstechnik im Bereich der
analogen Schaltungen seit Jahren bekannt, wenn auch wenig genutzt ist, entwickelt sich
dieser Arbeitsbereich zu einem aufstrebenden Forschungsgebiet im Bereich der digitalen
Standardzellen.



Kapitel 1

Biologische Grundlagen neuronaler
Netze

1.1 Anatomie des menschlichen Gehirns

Das menschliche Gehirn lasst sich in sechs Teile unterteilen [93]: Das Gro$- oder Endhirn,
das Kleinhirn, Zwischenhirn, Mittelhirn sowie die Briicke und daran anschlieBend das
verlangerte Mark. Die letzteren drei Teile werden zusammengefasst als Hirnstamm be-
zeichnet. Wahrend das Kleinhirn insbesondere fiir die motorischen Aufgaben zur Haltung
und Bewegung sowie der Blickmotorik zustdndig ist, hat das Gro3hirn weitreichende
kognitive Fahigkeiten entwickelt. Die multifunktionale Veranlagung lasst sich auch durch
seine komplexe Struktur erahnen. So ist jede Gehirnhélfte in vier Lappen zu unterteilen,
den Frontallappen, Parietallappen, Temporallappen und Okzipitallappen. Daneben exis-
tieren zwei Bereiche, welche keinem dieser Lappen zugeordnet werden kénnen und im
Weiteren vernachlassigt werden. Das Grofhirn beherbergt unter anderem das Kurzzeit-
und Langzeitgedachtnis. Wahrend das Kurzzeitgedachtnis nach heutigem Kenntnisstand
eine Leistung des préafrontalen Kortex zu sein scheint, erfolgt die Langzeitspeicherung von
Informationen unter Einbeziehung der Horrinde, Sehrinde und motorischen Rinde in der
gesamten GroBhirnrinde.

Einer der am besten untersuchten Bereiche der GroBhirnrinde ist das visuelle System der
priméren Sehrinde. In ihr werden die visuellen Informationen des Auges abgebildet und in
hoheren Schichten eine Auswertung der aufgenommenen Szenen vorgenommen. Bereits in
frithen Arbeiten wurden grundlegende Funktionen des visuellen Systems erklért, allerdings
nicht durch den Ansatz der direkten Beobachtung einzelner Zellen in vivo, sondern
durch den Abgleich von Antwortmustern technischer Filter mit den Antwortmustern
groferer visueller Areale im Gehirn von Affen [53] oder visuellen Arealen im Gehirn
von Katzen [58]. Die Struktur des Gehirns, insbesondere die Verbindungen zwischen
Neuronen komplexerer Areale konnen erst heute langsam neue bildgebende Verfahren und
Rekonstruktionsalgorithmen ermittelt werden [7, 37], so dass eine genaue Verifizierung
der Ergebnisse fritherer Veroffentlichungen moglich ist.
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4 Kapitel 1. Biologische Grundlagen neuronaler Netze

Wiéhrend also die Struktur der neuronalen Netze im menschlichen Gehirn noch immer
Gegenstand aktueller Forschung ist und Teile der Funktion begrenzter Areale verstanden
werden, ist die Beschreibung der grundlegenden Zellen, die die kognitive Leistung erst er-
moglichen, sehr weit fortgeschritten. Insbesondere die Struktur der verschiedenen Neurone,
ihre einzelne Funktion und die elektrochemischen Eigenschaften sowie die Eigenschaften
der Zellmembran wurden in vielen Veroffentlichungen behandelt und mit mathematischen
Modellen nachgebildet. Bereits 1949 beschrieben Hodgkin und Huxley das Verhalten eines
Neurons am Riesenaxon eines Tintenfischs ausfiihrlich und erstellten ein Neuronenmodell
auf Grundlage elektrischer Schaltkreise, das bis heute oft als Basis vieler weiterfithren-
der Arbeiten genutzt wird [48-52]. Neben den biologisch motivierten Modellen wurden
frith vereinfachte mathematische Modelle fiir Neurone entworfen, welche eine Simulation
groflerer neuronaler Netze mit Software-Simulatoren auf Computern oder unter Einsatz
spezialisierter Hardware erlauben. Die wichtigsten Modelle sollen in den Abschnitten zum
Stand der Technik (siehe Kap. 2) aufgegriffen und erldutert werden.

Neben den rein mathematischen oder elektrischen Modellen entstanden mit der immer
besseren Verfiigharkeit von Halbleitertechnologien und Entwurfswerkzeugen fiir Forschungs-
einrichtungen technische Realisierungen von Neuronen und Synapsen, um massiv parallele
Systeme neuronaler Netze in anwendungsspezifischen integrierten Schaltkreisen (engl.
Application Specific Integrated Circuis, ASIC) aufzubauen. Heute existieren technische
Neurone, welche zum Teil die mathematischen Modelle exakt nachbilden, zum anderen
Teil starke Vereinfachungen zur Beschleunigung der Schaltung vornehmen, aber die grund-
legenden phanomenologischen Eigenschaften der biologischen Neurone nachahmen. Beide
Varianten haben ihre Berechtigung wenn es um den Einsatz in spezialisierter Hardware
geht. Die einfacheren technischen Modelle haben vor allem dann einen Vorteil, wenn grofie
neuronale Netze und die sich in ihnen ausbildende Dynamik schnell simuliert werden sollen,
wobei die Eigenschaften der komplexen Modelle nur eine untergeordnete Rolle spielen
und durch die Vereinfachungen verloren gehen. Zum Zeitpunkt dieser Arbeit gibt es noch
immer keine Klarheit dartiber, welcher Anteil der Kommunikation zwischen Neuronen
zur Informationsverarbeitung beitragt [33]. Daher werden in System-Simulationen viele
verschiedene Kommunikationsarten gepriift, z. B. Puls-Triplets, geordnete Abfolgen von
Pulsen, und das time-to-first-spike Prinzip, also die zeitliche Korrelation zweier Pulse
zueinander.

Ein Aspekt, der in den publizierten Neuronenmodellen bislang praktisch nicht zu finden ist,
ist die Betrachtung des Energiebedarfs biologischer Neurone. Zwar existieren Publikationen,
welche sich mit dem Umsatz von Energie in Nervenzellen grundsétzlich beschéftigen [8, 67],
jedoch zielen diese eher auf Beschreibungen der chemischen Vorgénge ab, als auf die
Abschitzung des Energieumsatzes bei der Informationsverarbeitung. Eine Ubertragung der
Ergebnisse auf den Energieumsatz von technischen Neuronenmodellen ist daher schwierig.
Dass das Thema des Energieumsatzes bei der Betrachtung von Neuronenmodellen nicht
vernachlassigt werden sollte wird durch den Hinweis auf die Gréfle des Energieumsatzes
des menschlichen Gehirns in der aktuellen Literatur verstandlich. Ein grofler Teil der im
menschlichen Kérper umgesetzten Energie, die mit ungefahr 100 W angegeben wird, wird
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fiir das Gehirn aufgewandt. Die Leistungsaufnahme des menschlichen Gehirns mit seinen
ca. 10" Neuronen wird im Mittel mit 20 W Freizeitumsatz [86] angegeben. Schmidt und
Thews definieren bei ihrer Betrachtung des Energieumsatzes den Freizeitumsatz wie folgt:

,Der  Freizeitumsatz“ (Energieumsatz eines nicht korperlich arbeitenden
Menschen bei einer mehr kontemplativen Freizeitgestaltung) entspricht dem
taglichen Gesamtumsatz weiter Bevolkerungskreise, die als ,,Schreibtischar-
beiter* und ,Datenverwalter keine energetisch mafigeblichen koérperlichen
Aktivitaten entfalten.”

Diese Arbeit greift zur Abschatzung des Energieumsatzes biologischen Neurone das in
[69] entworfene biophysikalische Neuronenmodell auf und modifiziert die Sicht auf den
Ort des zentralen zelluldren Energieumsatzes, der Natrium-Kalium Pumpe, zu einer
regelungstechnischen Sicht. Das hier gewonnene biophysikalische Neuronenmodell erlaubt
die Abschétzung des Energieumsatzes einzelner Neurone in Abhéngigkeit von ihrer Er-
regung und der Informationsverarbeitung. Daneben beschéftigt sich diese Arbeit in der
Hauptsache mit der ressourceneffizienten Umsetzung von Neuronenmodellen und dem
Vergleich des Energiebedarfs sowie des Flachenbedarfs biologischer Nervenzellen und
ihren technischen Umsetzungen in feldprogrammierbaren Gatteranordnungen (engl. field
programmable gate array, FPGA) sowie anwendungsspezifischen integrierten Schaltkreisen
(engl. application specific integrated circuit, ASIC) mit aktuellen Halbleitertechnologien
mit StrukturgréBen von 130 nm und darunter.

Die Areale des menschlichen Gehirns bestehen aus verschiedenen Arten von Neuronen,
den Purkinje-Zellen, Astrozyten, Kornerzellen (Granularzellen) und Stiitzgewebe, wozu
vor allem die Gliazellen zéhlen. Alle aufgefiithrten Neuronenarten haben verschiedene
Ausprégungen ihrer Form, der Linge und dem Vorhandensein eines Axons und der Anzahl
der von ihnen eingegangenen Verbindungen mit weiteren Nervenzellen. Die Aufzéhlung der
Neurone in diesem Abschnitt kann keinen Anspruch auf Vollstédndigkeit erheben, da die
vollstandige Beschreibung einerseits nicht zum Verstédndnis oder zur Entwicklung der hier
gezeigten Modelle beitrdgt und andererseits viele der gezeigten Parameter der komplexen
Modelle stindigen Anderungen durch neue Erkenntnisse der neurobiologischen Forschung
unterliegen.

1.2 Physiologische Grundlagen der Zelle

In diesem Abschnitt wird der grundlegende Aufbau einer Warmbliiterzelle beschrieben.
Dabei teilt sich die Betrachtung in die Energietrager erzeugenden Bestandteile und die
Energie umsetzenden Bestandteile der Zelle auf. Obwohl sich Nervenzellen und Muskelzel-
len auf den ersten Blick in ihrer Struktur nicht unterscheiden, so existieren gerade bei den
Nervenzellen hochspezialisierte Kanéle in der Zellmembran, die nur fiir eine eingeschrankte
Gruppe von Nervenzellen giiltig sind und zur elektrischen Funktion der Zellen beitragen.
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Wihrend zu Beginn dieses Abschnitts daher allgemein auf Zellen und ihren Aufbau ein-
gegangen wird, werden im Laufe der Arbeit nur noch die speziellen Eigenschaften von
Nervenzellen betrachtet, auch wenn im Text von Zellen statt von Nervenzellen gesprochen
wird.

1.2.1 Zelle und Zellkern

Die Zellen von Warmbliitern sind in sich abgeschlossene Raume, die von einer Membran
aus Lipiden (Fetten) umgeben wird. In ihrem Inneren beherbergt eine Zelle das glatte
sowie das raue endoplasmatische Retikulum (ER), den Golgi-Apparat und die mit eigenen
Membranen vom Zellinneren abgeschlossenen Mitochondrien sowie den Zellkern. Das glatte
ER spielt je nach Zelltyp eine Rolle bei Kohlenhydratstoffwechsel (z. B. in Leberzellen) und
der Erzeugung von Fettsduren und Steroiden. Dagegen sorgt das raue ER fiir die Synthese
verschiedener Proteine [17]. Als weiterer Bestandteil der Zelle spielt das Mitochondrium
eine besondere Rolle bei der Zellatmung. Es synthetisiert u.a. aus der Oxydation von
Brenztraubensaure im Citrat-Zyklus den universellen Energietrager Adenosintriphosphat
(ATP) und liefert der Atmungskette notwendige Zwischenprodukte zur ATP-Synthese.

1.2.2 Zellmembran und Ionenkanale

Die Zellmembran aller Zellen besteht aus Lipiden (Fetten), Proteinen und Kohlehydraten
[17]. Thre Struktur wird durch die Lipide, insbesondere die Phospholipide erst ermoglicht.
Phospholipide bestehen aus zwei Teilen, dem hydrophilen (wasserliebenden) Kopf und
einem hydrophoben (wasserabweisenden) Rest. In wéssriger Losung besteht daher das
Bestreben, nur den hydrophilen Kopf mit Wasser in Kontakt zu bringen, weshalb sich auf
Wasseroberflachen eine kiinstliche Phospholipid-Einzelschicht erzeugen lasst [11, 28]. Sind
die Lipide jedoch vollstandig von Wasser umgeben, kann sich aus zwei Einzelschichten
eine Phospholipid-Doppelschicht wie in Abb. 1.1 gezeigt, von 4 bis 5 nm Dicke [86]
ausbilden. Diese bildet die Grundlage der heute verwendeten Modelle der Zellmembran,
dem Fliissig-Mosaik-Modell [90], in dem die ebenfalls nachgewiesenen Proteine, wie z. B.
die spannungsgesteuerten Ionenkanale, in eine fliisssige Doppelschicht aus Phospholipiden
eingebettet sind, und dem dynamisch strukturierte Mosaikmodell [98], welches das Fliissig-
Mosaik-Modell um eine Dynamik der Proteine innerhalb der fliissigen Lipiddoppelschicht
erweitert.

Die Zellmembran ist besonders fiir ungeladene, polare Molekiile (auch Wasser) durchléssig,
wogegen sie geladene Molekiile und Ionen nur schwer passieren ldsst. Dennoch finden
an der Zellmembran Ausgleichs- und Transportvorgédnge von Ionen statt. Der passive
Transport von Ionen durch die Zellmembran ist der erste Transportmechanismus. Dabei
diffundieren Ionen entlang ihres Konzentrationsgradienten vom extrazellularen Raum
durch die Lipiddoppelschicht in den intrazellularen Raum hinein oder vom intrazellularen
Raum in den extrazelluliren Raum heraus. Dieser Vorgang hélt so lange an, bis auf
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Abbildung 1.1: Schematische Darstellung einer ausgebildeten Zellmembran
(nach [17]).

beiden Seiten der Membran die gleiche Konzentration vorliegt. Dem Diffusionsvorgang
wirkt eine elektrische Kraft entgegen, die durch die Ladungstrennung an der Membran
bei der Diffusion entsteht. Es stellt sich ein Gleichgewicht ein, bei dem die Diffusionskraft
gleich der elektromotorischen Kraft der Teilchen im elektrischen Feld ist. Das elektrische
Feld iiber der Zellmembran wird durch die Potentialdifferenz zwischen intrazelluldrem
Raum und extrazellulirem Raum hervorgerufen. Das Potential der extrazellularen Seite
der Zellmembran in Bezug auf das Potential im Zellinneren wird als Membranpotential
bezeichnet und stellt eine wesentliche Grofie bei der Beschreibung von Funktionen an
Zellen dar.

Einen weiteren passiven Transportmechanismus fiir Ionen stellen gesteuerte Kanéle dar,
die in die Zellmembran eingelassen sind und welche spezifisch Tonen durch die Membran
passieren lassen konnen. Man unterscheidet spannungsgesteuerte Ionenkanéle und transmit-
tergesteuerte Ionenkanale. Insbesondere spannungsgesteuerte Natrium- und Kaliumkanéle
werden fur das Auslosen eines Aktionspotentials (vgl. Kapitel 3.1.7) verantwortlich ge-
macht. Die Ionenkanéle stellen einen erleichterten Transportweg fiir den Austausch von
Ionen durch die Zellmembran dar.

1.2.3 Energieumsatz in Nervenzellen, Natrium-Kalium-Pumpe

Der sténdige Einstrom von Natriumionen in das Zellinnere und der Ausstrom von Ka-
liumionen aus dem Zellinneren fithren zu einer Verédnderung des Zellvolumens. Damit
das Zellvolumen konstant bleibt und ein osmotisches Gleichgewicht hergestellt wird, wird
der Toneneinstrom und -ausstrom durch einen aktiven Transportmechanismus ausgegli-
chen [6]. Die Natrium-Kalium-Pumpe, auch NaK-ATPase genannt, beférdert in einem
Transportzyklus drei Natriumionen entgegen ihrem elektrochemischen Gradienten aus
dem Zellinneren auf die extrazellulare Seite und im Gegenzug zwei Kaliumionen von der
extrazelluldren Seite in das Zellinnere hinein. Dabei wird pro Pumpzyklus die Energie des
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extracellularer Raum
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Abbildung 1.2: Zellmembran mit aktiven und passiven Transportmechanismen
fiir die wichtigsten beteiligten Ionen.

Aufspaltens eines Molekiils Adenosintriphosphat (ATP) zu Adenosindiphosphat (ADP)
und einem Phosphatrest fiir den Transport genutzt.

—46 kJ/mol
_—

ATP ADP + P; (1.1)
Die Natrium-Kalium-Pumpe sorgt so unter Energieeinsatz fiir die Aufrechterhaltung des
Zellvolumens und des Membranpotentials. Die Natrium-Kalium-Pumpe ist mit einem
Anteil von 30% am Gesamtumsatz als grofiter an der Informationsverarbeitung beteiligter
Energieumsetzer der Zelle anzusehen [5] und wird daher in Kapitel 3 als Regler naher
betrachtet. Fiir den Erhalt des Ruhepotentials wird in [8] ein Wert von 3,42 - 10% ATP-
Molekiilen angegeben, die pro Sekunde ausgeglichen werden miissen. Dabei werden die
durch Diffusion in die Zelle einstrémenden und ausstromenden Ionen ausgeglichen, um das
Zellvolumen konstant zu halten. Der angegebene Wert entspricht einer Ruheleistung von
ca. 26 pW. Das entspricht bei einer angenommenen Zahl von 10'° Neuronen, wenn man den
Wert fiir den Freizeitumsatz von Schmidt und Thews [86] als ersten Anhaltspunkt fiir den
Energiebedarf nimmt, kaum mehr als 1% des Gesamtumsatzes. Weitaus bedeutender fir
den Energieumsatz sind die aktiven Vorgénge, auf die im Verlauf der Arbeit eingegangen
wird. Ein einfacher Querschnitt der Zellmembran mit den wichtigsten aktiven und passiven
Transportmechanismen fiir Natrium- und Kaliumionen ist in Abb. 1.2 dargestellt.

Die Energie fiir den aktiven Pumpvorgang liefert die Hydrolyse des ATP-Molekiils, das in
Abb. 1.3 abgebildet ist. Das ATP-Molekiil besteht aus einer Pentose, genauer der Ribose
als Zentralelement und einem Adenin-Rest auf der linken Seite dar Darstellung. Die drei
angehéngten Phosphatreste auf der rechten Seite der Darstellung bilden damit das Ade-
nosintriphosphat. Das ATP kann durch Hydrolyse, d.h. Abspaltung eines Phosphatrests
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Abbildung 1.3: Molekil Adenosintriphosphat.

unter Aufnahme von Wasser zu Adenosindiphosphat (ADP) und Adenosinmonophosphat
(AMP) abgebaut werden, welche den Energietriger gewinnenden Mechanismen wieder zur
Verfligung gestellt werden.

Neben dem Na™- und K™-Transport laufen durch die Konzentrationsgradienten aller im
fliissigen Medium anwesenden Ionen weitere Transportvorgénge ab. Der Verlust potentieller
Energie durch den Einstrom von 3 Na'-Ionen wird genutzt, um 1 Ca®*-Ion aus der Zelle
zu transportieren (Ca®t-Na®-Antiport). In gleicher Weise wird mit dem Einstrom eines
Na*-Ions ein Glucose-Molekiil zur Energiegewinnung durch die Glycolyse in die Zelle
transportiert (Glucose-Na*-Symport).

1.2.4 Energiegewinnung in der Zelle

Um die im Folgenden beschriebenen Vorgéange einzuleiten, betrachten wir zunachst die
Gewinnung der universellen zelluldren Energietrager Adenosintriphosphat (ATP) und
Nicotinamid-Adenin-Dinucleotid (NAD*, oxidierte Form) bzw. seine reduzierte Form
NADH. Wiahrend das ATP nur beim spéter betrachteten Energieumsatz an der Zell-
membran eine Rolle spielen wird, sind beide Energietréger an der Erzeugung von ATP
beteiligt.

Dabei wirken intrazellular drei Mechanismen:

o Glycolyse: Oxidation von Glucose zu Pyruvat unter Freisetzung von ATP.

o Citratzyklus: Zyklische Umformung von Acetyl-CoA, einem enzymatischen Umwand-
lungsprodukt aus Pyruvat unter Freisetzung von ATP.

o Atmungskette und oxydative Phosphorylierung: An der inneren Mitochondrien-
membran wird durch die ATP-Synthase aus ADP und einem Phosphatrest unter
Einstrom von H"-Ionen ATP synthetisiert. Die dort genutzten H"-Ionen werden
unter Oxidation von NADH zu NAD' + H™ gegen ihren Konzentrationsgradienten
durch die Membran bewegt und stehen fiir die Diffusion bei der ATP-Synthase
zur Verfiigung. Das genutzte NADH liefern Glycolyse und Citratzyklus. In der
Atmungskette entsteht der Hauptanteil des zellularen Energietragers ATP.
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Abbildung 1.4: Purkinje Zelle nach [38]. a) Axon b) Kollaterale (Verzweigung
des Axons im Zielgebiet) ¢) und d) Dendritenéste.

1.2.5 Zelltypen: Purkinje Zelle und Kornerzelle

Zu den grofiten Nervenzellen im menschlichen Gehirn gehéren die Purkinje-Zellen im
Cerebellum. Diese als pyramidenformig oder birnenférmig beschriebene Zelle liegt in
der mittleren Schicht der Kleinhirnrinde. Ihr Axon verlasst als einzige efferente Faser
die Kleinhirnrinde [4]. In Abb. 1.4 ist die Darstellung einer Purkinje-Zelle nach Cajal
[38] abgebildet. Diese Nervenzelle zeichnet sich durch ihre sehr groe Anzahl afferenter
(hinfiithrender), dichter dendritischer Verbindungen aus und weist alle weiteren typischen
Bestandteile einer Nervenzelle auf. So ist der grofie Zellkorper in der Mitte der Abbil-
dung mit einem fortfithrenden langen Axon und einer Verzweigung des Axons, der sog.
Kollaterale, zu sehen. Die Kollaterale ist eine Verzweigung des Axons in der Néhe eines
empfangenden Neurons und verbindet sich tiber die Synapsen mit den Dendriten des
empfangenden Axons.

Der Durchmesser des Zellkérpers der Purkinje-Zelle betragt etwa 80 pm. Bei einer einfachen
Modellvorstellung, dass der Zellkorper eine Kugel sei, ergibt sich so eine Zelloberfliache
von 4mr? ~ 20106 pm?. Driickt man die Zelle nun in der Modellvorstellung platt und
ignoriert das mit weiteren Komponenten gefiillte Volumen, so lasst sich die Zelle auf eine
Flache von ca. 142 ym x 142 ym bringen.

Die unter der Purkinje-Zellschicht (lat. Stratum purkinjense) liegende Schicht der Klein-
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hirnrinde zeichnet sich durch eine grofie Anzahl besonders kleiner Zellen, den Kornerzellen
oder Granularzellen (engl. granule cells), aus. Diese Schicht wird als Koérnerschicht (lat.
Stratum granulosum) bezeichnet und beinhaltet iiberwiegend kleine Kérnerzellen mit
einem Durchmesser von 4 ym bis 10 um sowie grofie Kornerzellen mit einem Durchmesser
von 11 pm bis 18 um. Die Kornerzellen besitzen drei bis vier Dendriten und erstrecken
ihr Axon in die dariiber liegende Purkinje-Zellschicht, wo sie die Dendriten der Purkinje-
Zellen kontaktieren [84]. Die Kornerzellen sind die einzigen erregenden Neurone der
Kleinhirnrinde [93].

1.2.6 Betrachtung der Membrankapazitiat biologischer Neuro-
nen

Um die Eigenschaften von biologischen Neuronen mit denen von technischen Implementie-
rungen spater vergleichen zu konnen, soll an dieser Stelle auf die Membrankapazitat eines
biologischen Neurons eingegangen werden. Die Betrachtung der Kapazitét ist natiirlich
eine sehr technische Sicht, kann aber aufgrund der Ladungstrennung an der Zellmem-
bran als Modell fiir die biologische Membran angenommen werden. Da die eingesetzten
Kapazitaten spéter einen wesentlichen Flachenanteil der Gesamtflache von technischen
Umsetzungen von Integrate-and-Fire Neuronen ausmachen, soll die durch die Zellmembran
gebildete Kapazitat ndher betrachtet werden. Aus der Literatur entnimmt man recht
ungenaue Angaben zur flichenbezogenen Kapazitit der Zellmembranen:

,Ein typischer Wert fiir die Membrankapazitit einer Nervenzelle ist 1 uF /cm?
Membranfléche.* [61]

,The generally agreed upon value for C,, is 1 uF/cm?* [65]

In [65] werden neben dem oben angegebenen Zitat allerdings auch weitere Angaben fir
die flichenbezogene Kapazitéit der Zellmembran zwischen 0, 65 uF /cm? und 0,90 uF /cm?
gemacht.

Aus der im vorhergehenden Abschnitt gemachten Annahme eines Durchmessers von 80 yum
fiir die Purkinje-Zelle und der Angabe tiber die Membrankapazitét ergibt sich eine Gesamt-
kapazitat von ca. 201 pF pro Neuron. Dies entspricht bei einem mittleren Ruhepotential
von —80mV — die Berechnung des Potentials erfolgt spater — einer Ladungstrennung von
16,1 -107'2C bzw. 100 - 10° Tonen.

Zum Vergleich: Eine Kapazitat der Grofle 1 pF braucht in einer 350 nm Technologie eine
Flache von ca. 300 um?. Der Nachbau der Membrankapazitit der Purkinje-Zelle braucht
in der gewihlten CMOS Technologie somit etwa 0.06 mm? Chipflache, die etwa dreifache
Fléche des biologischen Neurons. In einer aktuellen 130 nm CMOS Technologie braucht
man nur noch 75,5 um? fiir eine Kapazitit von 1 pF und damit etwa 0,017 um? Flache fiir
eine der Purkinje-Zelle aquivalente Kapazitat. Damit ist die Fléiche fiir die Kapazitéit des
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Tabelle 1.1: Intra- und extrazellulare Ionenkonzentrationen (aus [85]).

Ion Intrazellulér Extrazellular
Na* 12 mmol/1 145 mmol/1
K* 155 mmol/1 4 mmol/]
Ca®t 10=8 — 1077 mol/1 2 mmol/1

andere Kationen: 5 mmol/1
Cl™ 4 mmol/l 120 mmol/l
HCO3 8 mmol/1 27 mmol/1
A~ (grofBie Anionen) 155 mmol/1

technischen Neurons erstmals unter der Zelloberfliche der Purkinje-Zelle, wenn zusétzliche
Schaltkreise an dieser Stelle noch nicht beriicksichtigt werden.

Die Griinde fiir diesen Unterschied der Kapazitiat bei der 350 nm Technologie liegen zum
Einen in der Dicke der Zellmembran von ca. 2nm bis 5 nm Dicke gegentiber einer Dicke des
Gate-Oxids von etwa 7nm bis 8 nm, zum Anderen in der Beschaffenheit des Dielektrikums.
Die Dicke des Gate-Oxids aus Siliziumdioxid nimmt bis zur 130 nm Technologie mit
jedem Technologieschritt ab, wird aber in Zukunft durch andere Materialien mit besseren
Eigenschaften beziiglich Leckstromen ersetzt, wobei die Dicken nicht weiter abnehmen
wird. Fasst man die biologische Zellmembran als Dielektrikum auf, wird dieses durch
die Lipiddoppelschicht mit einer genaherten Dielektrizitétskonstante von e, pipiq = 2,1
gebildet [11], bei CMOS Gate-Kapazitédten durch das Gate-Oxid — iiblicherweise aus
Siliziumdioxid (SiO2) — mit etwa &, Gateoxid,si0, ~ 3, 9.

Einschub: Berechnung des ¢, 1ipiq

Die Kapazitat der Membran ist von der Dicke Ty, des Dielektrikums und den Material-
konstanten abhangig.
€0 &r
Tox =
© COX

(1.2)

Mit den aus [11] entnommenen Werten fiir die Dicke der Doppellipidschicht und die
spezifische Kapazitat ergibt sich mit

8,85 1072F/m - ¢,

1.10-6 F
1.10-4m?2

4-10°m

die mittlere Dielektrizitatskonstante der Zellmembran zu einem Wert von ¢, ~ 2, 1.
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1.2.7 Membranpotential

Das Membranpotential, also die Differenz der elektrischen Ladung zwischen dem intrazel-
luldren Raum und dem extrazellularen Raum wird durch aktive und passive Mechanismen
hervorgerufen. Die in der Zelle hoch konzentrierten K*-Ionen kénnen durch spezifische
K*-Kanile in der Zellmembran aus der Zelle hinaus diffundieren. Durch den Verlust
an positiver Ladung im Zellinnenraum wird das Zellinnere in Bezug auf das auflere Po-
tential negativ aufgeladen. Die Aufladung wirkt der Diffusion von K* entgegen, und es
wird ein Gleichgewicht erreicht, wenn die Kraft, die aus dem elektrischen Feld auf die
[onen wirkt, die Kraft durch den , Diffusionsdruck® gerade authebt. Dieses Potential wird
Gleichgewichtspotential genannt.

Das Gleichgewichtspotential eines bestimmten Ionentyps wird durch die Nernst-Gleichung
bestimmt:

RT [Ton]
E = 1 auflen 1.
F O [Ton] (1.3)

innen

Das Potential ist also von der Gaskonstante R, der absoluten Temperatur 7', der Ladungs-
zahl z des Ions (negativ fiir Anionen), der Faradaykonstante F und der Ionenkonzentration
[Ion] der betreffenden Ionen im Zellinnenraum und im extrazelluliren Raum abhéngig.

Bei Kérpertemperatur (7T=310 K) wird das K*-Gleichgewichtspotential Ex mit den
Werten aus Tab 1.1 zu

_ 8,314472-310 | [K ]augen
T 1-96485,3383  [K'inen

K = —97,7mV. (1.4)
Gleichzeitig diffundieren Natrium-Ionen aus dem extrazellularen Raum durch spezifische
TIonenkanile in das Zellinnere. Die Na*-Permeabilitéit der ruhenden Zellmembran ist gering.
In ihr sind nur wenige Na*-Kanile gedffnet. Durch den Konzentrationsgradienten und
das Ruhepotential begiinstigt, strémen jedoch Na*-Ionen in die Zelle ein und storen das
Gleichgewicht. Es ergibt sich ein Ruhepotential (engl. steady-state) aus den tiberlagerten
Gleichgewichtspotentialen der beteiligten Ionentypen, welches in spateren Kapiteln durch
die Goldmann-Gleichung beschrieben wird. Der Diffusion wirkt der aktive Mechanismus der
NaK-Pumpe entgegen, der bereits in vorhergehenden Abschnitten behandelt wurde. Der
aktive Pumpmechanismus verschiebt im ausgeregelten System den Gleichgewichtspunkt
der Ionenkonzentrationen um einen kleinen Anteil zu den Gleichgewichtskonzentrationen
ck,0 und cna -

Durch Injektion von Ionen in die Zelle z. B. bei Erregung durch eine synaptische Verbindung,
kann das Membranpotential vom Ruhepotential verschoben werden. Dabei spricht man
bei Anhebung des negativen Ruhepotentials von Depolarisation der Membran, im Fall
der weiteren Absenkung des Membranpotentials z. B. durch inhibitorischen Einfluss einer
Synapse von Hyperpolarisation. Der Ausgleich der Ionenkonzentrationen und die damit
verbundene Wiederherstellung des Ruhepotentials werden als Repolarisation bezeichnet.
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Abbildung 1.5: Zeitlicher Verlauf eines Aktionspotentials und der Permeabilitét
der Membran fiir bestimmte Ionentypen (nach [17]).

1.3 Aktionspotential

Wie bereits im vorhergehenden Abschnitt beschrieben, sind die Verteilung der Ionen und
die Diffusion durch passive Transportkanéle fiir das Membranpotential verantwortlich.
Daneben existieren weitere Arten von Ionenkanélen, z. B. die spannungsgesteuerten Kanéle.
Aus der Literatur sind tiber 30 Kalium-Kanale bekannt, welche an der Entstehung des
Membranpotentials beteiligt sind, aber die Erzeugung eines Aktionspotentials lésst sich
im Wesentlichen mit den potentialgesteuerten Natrium- und Kalium-Kanalen beschreiben
[85]. Spannungsabhéngige Kanéle wechseln Thren Zustand von geschlossen zu offen oder
umgekehrt in Abhéngigkeit vom bestehenden Membranpotential. Erst durch Thre Funktion
wird die Entstehung eines definierten Signals moglich.

In Abb. 1.5 ist der zeitliche Verlauf eines Aktionspotentials und der Permeabilitat der
Zellmembran fiir bestimmte Ionentypen dargestellt. Erreicht das Membranpotential durch
Einstrom von Natrium-Ionen in die Zelle einen bestimmten Wert, das sogenannte Schwellen-
potential (im spéteren Verlauf auch als Schwellenspannung oder Feuerschwelle bezeichnet),
o6ffnen sich schlagartig bis zu dem Zeitpunkt inaktive (geschlossene), spannungsgesteuerte
Natriumkanéle, welche fiir einen noch hoheren Einstrom von Natrium-Ionen in die Zelle
und fiir einen damit verbundenen abrupten Anstieg des Membranpotentials sorgen. Das
Membranpotential erreicht dabei einen Spannungshub von 90 mV bis 100 mV. Bei anhal-
tender Depolarisation der Zellmembran schliefen die Natrium-Ionenkanéle wieder und
gehen in einen refraktiaren Zustand tiber, d. h., dass sich die Ionenkanéle auch bei hoherer
Depolarisation nicht wieder 6ffnen konnen. Dieser Zustand wird erst wieder bei Erreichen
des Ruhemembranpotentials aufgehoben. Mit etwas Zeitversatz nach den Natriumkanélen
offnen spannungsinduziert auch die Kaliumkanile (verzogerte K™-Kanéle) und sorgen fiir
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einen Ausstrom von K'-Tonen. Dieses wirkt der Depolarisation des Membranpotentials
entgegen und fiihrt zur Repolarisation der Zellmembran. Da das Schlielen der Kalium-
kanéle langsam erfolgt, wird die Zellmembran nach Abbau des Aktionspotentials leicht
hyperpolarisiert und anschliefend durch den aktiven Transportmechanismus nach der
Wiederherstellung der Ruhe-Ionenkonzentrationen wieder auf das Ruhepotential gebracht.

Neben den passiven Ionenkanélen und den spannungsgesteuerten Ionenkanélen existieren
noch transmittergesteuerte Kanile, wie z. B. von Calcium-Ionen abhingige K*-Kaniile.
Hier ist Calcium als Steuerstoff im engeren Sinne aufzufassen, dessen Anwesenheit direkten
Einfluss auf die Permeabilitdt des jeweiligen Kanals hat. Diese lonenkanéle werden
hauptséichlich dafir verantwortlich gemacht, die Adaption der Pulsrate mit der Zeit an
einen gleichméfig erregten Eingang zu vollziehen (dieses zeigt sich in der Abnahme der
Héufigkeit des Auftretens von Aktionspotentialen an konstant erregten Neuronen), oder
ein Neuron mit schnellen und héufigen Aktionspotentialen (ein sog. Burst) nach einer
bestimmten Zeit abrupt aus diesem Zustand zu bringen, und eine Ruhepause zu erzwingen.

Calcium scheint aber im Besonderen an Synapsen eingesetzt zu werden, an denen es
nach verschiedenen Untersuchungen an Lernprozessen in der Langzeitpotenzierung (LTP)
beteiligt ist [18, 72].

Nach [6] sind mehrere unterschiedliche Ionenkanéle an der Entstehung und der speziellen
Ausprigung des Aktionspotentials beteiligt. Die fiir das Entstehen des Aktionspotentials
verantwortlichen Kanéle wurden weiter oben schon behandelt, daneben gibt es aber noch
weitere Typen von Kanélen, die die Eigenschaften der Aktionspotentiale beeinflussen. An
Zellmembranen von Nervenzellen kann beobachtet werden, dass eine dauerhafte Erregung
unterhalb einer bestimmten Schwelle nicht zum Auslésen eines Aktionspotentials fiihrt.
Dieses Verhalten, das sog. Unterschwellenverhalten, kann durch die oben beschriebenen
beiden Kanéle nicht hervorgerufen werden, vielmehr sorgen die sog. spannungsgesteuer-
ten frithen K*-Kanéle fiir einen Ausgleich an Ladungstrigern, sobald die Zellmembran
depolarisiert wird. Oberhalb einer bestimmten Schwelle werden die frithen K™-Kanéle
inaktiviert und die Na™-Kanéle und die verzogerten K-Kanéle kénnen wirken.

Eine weitere beobachtete Eigenschaft der Aktionspotentiale ist bei gleichbleibender Er-
regung der Membran die stetige Abnahme der Rate der Aktionspotentiale. Fir diesen
Vorgang der Adaption sind Ca*"-gesteuerte K™-Kanile im Zusammenspiel mit span-
nungsgesteuerten Ca®"-Kanilen verantwortlich. Bei der Depolarisation der Zellmembran
mit jedem Aktionspotential stromt Calcium in den Zellinnenraum, womit die Calcium-
Konzentration erhéht wird. Ca®*-gesteuerte Kalium-Kanéle 6ffnen in Abhéngigkeit von
der Calcium-Konzentration und wirken der Depolarisation der Zellmembran dauerhaft
entgegen. Der Abbau der Ca*"-Konzentration erfolgt mit einer ATPase, dhnlich zum
Transport bei der Natrium-Kalium-Pumpe.

In [8] wird der Energiebedarf fiir den Abbau eines Aktionspotentials mit 3,84 - 10% ATP-
Molekiilen angegeben. Dies entspricht einer aufzuwendenden Energie von ca. 29pJ pro
Aktionspotential.



16 Kapitel 1. Biologische Grundlagen neuronaler Netze

Myelinhdlle Ranvier-Schnlirring

O ) GD GlD GlD Gl

Axon

Verzweigung des Axons

Neuron und Dendriten im Zielgebiet

Abbildung 1.6: Neuron mit myelinisiertem Axon und Ranvier-Schniirringen
zur schnellen Signalfortleitung. Weiter ist die Verzweigung des
Axons im Zielgebiet anderer Neurone angedeutet.

1.4 Reizweiterleitung

Die Signaliibertragung im menschlichen Korper dient im Wesentlichen zur Beeinflussung
des Verhaltens von Zellen untereinander. So kénnen einzelne Zellen das Verhalten von
einzelnen bis ganzen Gruppen anderer, zum Teil weit entfernten Zellen steuern. Die
dabei beteiligten Mechanismen nutzen Molekiile zur Kommunikation, welche an der
empfangenden Zelle an auf der Zellmembran platzierten oder sich in der Zelle befindenden
Rezeptoren binden [59] und tber sekundire Transmitter bestimmte Aktionen in der
empfangenden Zelle auslosen kénnen.

Hier bildet die fiir die Ubertragung neuronaler Information (in Form des Aktionspotenti-
als) synaptische Ubertragung den wichtigsten Ubertragungsweg. Das am Axonhiigel des
sendenden Neurons ausgebildete Aktionspotential wird tiber das Axon an zum Teil bis zu
1 m weit entfernte Empféangerneurone geleitet (sieche Abb. 1.6). Eine Besonderheit dieses
Transports tritt bei myelinisierten, d.h. mit Myelin umbhiillten Axonen auf. Diese Art von
Axon weist regelméflige Einschntirungen iiber seine Lange auf, die Ranvier-Schniirringe.
Im myelinumhiillten Mark féllt das Potential mit der raumlichen Weiterleitung des Signals
wie in marklosen Nervenfasern ab. Das Aktionspotential wird wahrend seines passiven
Transports entlang des Axons durch kapazitive und resistive Einfliisse in seiner Auspragung
abgeschwécht und verrundet. In den Bereichen der Einschniirungen (Ranvier Schniirringe)
wird das Aktionspotential (AP) unter Energieumsatz regeneriert, da hier viele potenti-
alabhéngige Na® und K™ Kanile vorhanden sind. An den Ranvier-Schniirringen findet
also eine Rekonstruktion des Aktionspotentials statt, indem die gleichen Vorgénge wie an
der Zellmembran bei der Erzeugung des Aktionspotentials ablaufen. Myelinisierte Axone
leiten die Signale daher mit weit grofferer Geschwindigkeit zum Empfénger, als unmye-
linisierte Axone. Diese sehr schnelle, sprunghafte Weiterleitung des Aktionspotentials
wird saltatorische Erregungsleitung genannt und erreicht im Aa-Fasertyp eine mittlere
Leitungsgeschwindigkeit von 100 m/s (Klassifikation nach Erlanger und Gasser, [86]).

Die Bewertung der Aktionspotentiale am empfangenden Neuron findet an den Synapsen
statt, die sowohl exzitatorisch (erregend) als auch inhibitorisch (hemmend) am Neuron
wirken konnen. Die Synapsen wandeln den elektrischen Puls in ein chemisches Signal um,
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indem verschiedene Neurotransmitter, z. B. Acetylcholin, Glutamat, v-Aminobuttersaure
(GABA) und Glycin ausgeschiittet werden. Die erregenden Neurotransmitter Acetylcholin
und Glutamat binden an spezifische Rezeptoren der Zellmembran des Neurons und 6ffnen
transmittergesteuerte Natrium-Kanile, welches einen Einstrom von Na™ in die Zelle verur-
sacht und zur Depolarisation der Zellmembran bis zum Auslosen eines Aktionspotentials
fithren kann. Dem entgegen stehen die inhibitorischen Neurotransmitter GABA und
Glycin, welche an transmittergesteuerten Chlorid-Kanélen binden und diese 6ffnen, so
dass durch den Einstrom der Cl -Ionen die Membran repolarisiert oder hyperpolarisiert
wird. Durch das Auftreten des elektrischen Aktionspotentials wird also iiber den Umweg
der Ausschiittung chemischer Transmitter ein bestimmtes Potential auf der Zellmembran,
das sogenannte postsynaptische Potential (PSP) erzeugt, welches einen charakteristischen
Verlauf bei erregenden und hemmenden Signalen aufweist. In diesem Zusammenhang wird
von erregendem postsynaptischen Potential (EPSP) und inhibitorischem postsynaptischen
Potential (IPSP) gesprochen. Entlang des Dendriten des empfangenden Neurons kénnen
sich die PSP nicht nur rdumlich sondern auch zeitlich iiberlagern, wie am technischen
Modell in Kap. 2.1 fiir das dieses Verhalten nachbildende Spike-Response Modell noch
gezeigt wird.

Treten ein EPSP und IPSP zur gleichen Zeit am gleichen Ort auf, so ergibt die Uberlage-
rung beider Potentiale nicht die Summe der einzelnen PSP, sondern der geringere IPSP
hemmt den weitaus grofleren EPSP fast vollstandig. Dieses ist durch den Einfluss der
konzentrationsabhangig geoffneten Ionenkanéle zu erklaren, zu deren néherer Erlduterung
der Leser auf weiterfithrende Literatur [6] verwiesen wird.

1.5 Diskussion

In diesem Kapitel sind die Grundlagen der biologischen Zelle, insbesondere die Eigen-
schaften der Zellmembran und ihre Funktion an der Nervenzelle beschrieben worden. Es
gibt einen Uberblick iiber die grundlegenden Mechanismen, die in der Nervenzelle wirken,
insbesondere den Ort des Energieumsatzes. Das hier verwendete Modell der Zellmembran
ist Grundlage der spéteren Modellierung.
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Kapitel 1. Biologische Grundlagen neuronaler Netze




Kapitel 2

Stand der Technik pulsender
Neurone

Technische Umsetzungen von Neuronen- und Synapsenmodellen sowie komplexer neuro-
naler Netze wurden mit unterschiedlichen Methoden und Plattformen realisiert. So sind
im Bereich der pulscodierten neuronalen Netze vier Zweige entstanden, die im Folgenden
kurz gezeigt werden sollen. Auf die Besonderheiten einiger ausgewéhlter Umsetzungen der
fiir diese Arbeit relevanten Zweige wird im Anschluss detaillierter eingegangen, um die in
dieser Arbeit entwickelten Losungen einordnen zu kénnen.

Aufgrund des einfachen Zugangs sind viele Umsetzungen pulscodierter neuronaler Netze
(PCNN) gerade aus dem Bereich der Computational Intelligence und Teilen der Informatik
in Simulatoren auf herkémmlichen Personal Computern entstanden. Hier wurden auf
der einen Seite die Modelle einzelner Neuronen detailliert modelliert, um das Verhalten
biologisch plausibler Modelle statt in vivo oder in vitro zu untersuchen, direkt am PC
untersuchen zu kénnen [10]. Auf der anderen Seite wurden Simulatoren umgesetzt, die es
erlauben, komplexe Netzwerke mit unterschiedlichen Neuronen- und Synapsentypen zu
analysieren [12, 47]. Fiir eine ausfiihrliche Betrachtung der zurzeit verfiigbaren Simulatoren
und ihre Gegeniiberstellung wird an dieser Stelle auf eine aktuelle Veroffentlichung von
Brette et al. [14] verwiesen.

Da die Simulation von grofien neuronalen Netzen schnell an die Grenzen der vorhandenen
Rechenleistung stofit, wurden Teile der Simulation auf spezielle Hardware ausgelagert,
um die Rechenzeit zu verkiirzen. Da die Umsetzung von komplexen, biologisch plausiblen
Neuronen- und Synapsenmodellen auf analoge oder digitale Hardware schwierig ist, werden
flir diesen Zweck iiblicherweise einfache elektrische Modelle der Zellmembran verwendet,
die das Verhalten der biologischen Neurone nachahmen, detaillierte Vorgénge aber nicht
beriicksichtigen. Mit dem Argument, dass die kleinen Details das Systemverhalten nicht
wesentlich beeinflussen und unter der Annahme, dass allein das Auftreten eines Aktions-
potentials die Information in einem neuronalen Netz codiert, werden mit diesen Modellen
komplexe Netze mit der Hilfe von Hardware-Beschleunigern simuliert. Dabei werden unter
Anderem auch zeitliche und ortliche Zusammenhénge zwischen den Aktionspotentialen
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betrachtet. Erst seit wenigen Jahren bemiihen sich Forschergruppen um die detailliertere
Modellierung der Neuronen- und Synapsenmodelle in spezialisierter Hardware, um die in
langwierigen Simulationen ermittelten Ergebnisse schnell reproduzieren und nutzen zu
koénnen.

Die fiir die Simulation pulscodierter neuronaler Netze eingesetzte Hardware unterscheidet
sich hauptsachlich durch die Realisierung als digitaler, analoger oder gemischt analog-
digitaler Schaltkreis. Die digitalen Implementierungen wiederum teilen sich in Systeme,
die wenige Verarbeitungseinheiten mit schnellen Integratoren und einer schnellen Spei-
cheranbindung implementieren und es erlauben, eine groffe Anzahl virtueller Neurone
zu simulieren, und in Systeme, die fiir jedes Neuron eine eigene Verarbeitungseinheit
vorsehen, um alle Neurone zur gleichen Zeit verarbeiten zu konnen und das System in
Echtzeit zu betreiben. Erstere Systeme sind, sofern sie Echtzeitanforderungen erfiillen
sollen, durch ihre Speicherbandbreite, die Auslegung der Integratoren und der hinterlegten
Mechanismen sowie den maximalen Arbeitstakt in der Anzahl der simulierten Neurone
beschrénkt [31]. Die anderen Systeme sind im Wesentlichen durch die Chipfliche bzw. die
damit verbundenen Kosten oder die Anzahl an Logikzellen im FPGA begrenzt.

In den letzten Jahren sind vor allem durch vom Bundesministerium fiir Bildung und
Forschung und der Européischen Union geforderte Projekte aus Konsortien besetzt mit
Vertretern der Universitaten, Forschungseinrichtungen und der Industrie viele Varianten
von Neuronenmodellen entstanden, die sich mehr oder weniger fiir den Einsatz auf spezieller
Hardware eignen. Einige in dieser Arbeit zitierten Veréffentlichungen stammen zum Teil aus
den Projekten VisionlC [3], SpikeForce [2] und Facets [1], in denen pulscodierte neuronale
Netze zur Informationsverarbeitung zum Einsatz kommen, oder aber Forschungsergebnisse
der Neurobiologie durch Simulationen analysiert und verifiziert werden. Die aus diesen
Projekten hervorgegangenen Publikationen werden aber nicht separat kenntlich gemacht.

Neben den bereits erwdhnten softwaretechnischen Modellen und Simulatoren entstanden
viele Ansédtze zur Nutzung von reprogrammierbaren bzw. rekonfigurierbaren Bausteinen
z. B. Feldprogrammierbaren Gatteranordnungen (FPGA), welche zum Teil die speziellen
Bauelemente der FPGA ausnutzen, sich aber nur schwer oder mit hohen Kosten in einem
Standardzellenprozess auf einem anwendungsspezifischen Baustein (ASIC) realisieren las-
sen. Dagegen stehen die Ansétze aus dem Bereich der analogen Schaltungstechnik, welche
spezielle Implementierungen von Neuronenmodellen auf einem ASIC realisieren. Einige
von diesen Realisierungen nutzen dabei allerdings Spezialverfahren der Chipfertigung aus,
welche nicht in jedem Herstellungsprozess verfiigbar sind oder aber die Herstellung teuer
und somit fiir eine Massenproduktion unwirtschaftlich machen. In diesem Kapitel soll eine
Ubersicht iiber biologienahe, technisch realisierbare Neuronenmodelle gegeben werden.
Dieses bedeutet auch, dass sich diese Arbeit im Folgenden nur noch mit zeitbehafteten,
Pulse verarbeitenden Neuronen beschéftigt. Frithere Konzepte von zeitinvarianten, z. T.
wertekontinuierlichen Modellvorstellungen wie z. B. das Perzeptron nach McCulloch und
Pitts [75] oder nach Rosenblatt [81] sollen an dieser Stelle zur Vollstandigkeit zwar erwihnt
aber nicht im Detail diskutiert werden.
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2.1 Technische Darstellungen von Neuronen

Im Folgenden werden die gebrduchlichsten Modelle fiir technische Realisierungen von
Neuronen in pulscodierten neuronalen Netzen behandelt. Die Nomenklatur fiir die gezeig-
ten Modelle ist aus [70] entnommen. Grundlage fir diese Modelle bildet das (elektrisch)
beobachtbare Verhalten von Neuronen, insbesondere das Verhalten bei Erregung der
Neurone mittels konstanten Stroms oder mittels Pulsfolgen. Die Beobachtung des Zuriick-
setzens der gemessenen Spannung iiber der Membrankapazitiat und das Aussenden eines
eigenen Pulses, dem Aktionspotential, beim Erreichen einer bestimmten Spannung iiber
der Zellmembran, der sogenannten Feuerschwelle, wird hier ebenfalls beriicksichtigt.

2.1.1 Spike Response Modell

Das Spike Response Modell [32, 64] wird vor allem durch Antwortfunktionen auf bestimmte
Ereignisse beschrieben. So umfasst es eine zeitliche Antwort fiir die Erregung des Neurons
durch Pulse prasynaptischer Neurone und eine zeitliche Antwort auf das eigene ausgeloste
Aktionspotential. Der Zustand bzw. das Membranpotential des Neurons i zum Zeitpunkt
t wird mit der Zustandsvariablen u;(t) (2.1) beschrieben.

wt)= > m(t—t")+ > Y wyey (1) (2.1)
tPer, JelidDer,

Die Antwort des Neurons ¢ auf eine Erregung durch Pulse prasynaptischer Neurone j € T';

wird durch die Antwortfunktion €;;(¢) beschrieben. Diese enthélt die Postimpulsantwort

auf einen Reiz, der exzitatorisch (erregend) oder inhibitorisch (hemmend) wirken kann

gf ) € JF; auftritt. Dabei wird nicht die Form des eintreffenden

Pulses, sondern nur dessen Auftreten berticksichtigt. Die Pulsantwort wird als ezcitatory

und zum Zeitpunkt ¢

post-synaptic pulse (EPSP) bzw. inhibitory post-synaptic pulse (IPSP) bezeichnet. Ein
typischer Verlauf der Pulsantworten ist in Abb. 2.1 dargestellt, welcher dem ,verrunden“
des Aktionspotentials durch die Wandlung der Art des Signals (elektrisch — chemisch —
elektrisch) an der Synapse und dem Dendriten des empfangenden Neurons nachempfunden
ist und die Form einer a-Funktion beschreibt. Beide Pulsformen, die exzitatorische und
die inhibitorische, konnen unterschiedlich ausgepragt sein. Die zeitliche und raumliche
Uberlagerung aller mit der synaptischen Stirke w;; gewichteten Pulsantworten ergibt die
Doppelsumme des rechten Terms von (2.1), welcher dem Membranpotential des Neurons
ohne Erzeugung eines Aktionspotentials entspricht. Da das Neuron das Membranpotential
beim Auslésen eines Aktionspotentials auf einen Initialwert zurticksetzt, wird dieses durch
d(egl zusétzlichen Term, der Antwort 7;(t) auf das eigene Aktionspotential zum Zeitpunkt
t-f

;/ modelliert. Die Terme F; sowie F; bezeichnen alle Feuerzeitpunkte des betrachteten

Neurons 7 und aller seiner prasynaptischen Neurone j.

Treffen nacheinander mehrere Aktionspotentiale prasynaptischer Neurone j € I'; am
empfangenden Neuron ¢ ein, tiberlagern sich die Postimpulsantworten des empfangenden
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Abbildung 2.1: Beispielhafter Verlauf einer exzitatorischen und inhibitorischen
postsynaptischen Antwort. Die exzitatorische und inhibitori-
sche Antwort miissen nicht denselben Verlauf besitzen, sondern
konnen separat modelliert werden.

Aktionspotential

Feuerschwelle

U [mv]

£ |
Prasynaptische Pulse

Abbildung 2.2: Auslosen eines Aktionspotentials durch zeitliche und rdumliche

Uberlagerung exzitatorischer Pulse.

Neurons zeitlich zum Membranpotential u;(¢t) (Abb. 2.2). Erreicht das Membranpotential
die eingestellte Feuerschwelle, wird ein eigenes Aktionspotential erzeugt und ausgesendet
und das Membranpotential zuriickgesetzt.

2.1.2 Leaky Integrate and Fire Modell

Das Integrate and Fire (IAF) Modell ist durch die Sicht des Neurons als elektrischer
Ersatzschaltkreis geprégt. Das am biologischen Neuron beobachtbare elektrische Verhalten
hat zur Modellvorstellung der Membrankapazitat gefithrt, auf der einlaufende Strompulse
iiber der Zeit integriert werden und welche durch passive Verlustterme — und im Fall eines
Aktionspotentials — durch einen aktiven Mechanismus entladen wird. Die Betrachtung
passiver Entladung des Neuronenmodells fithrt zur Bezeichnung Leaky Integrate and Fire
Modell (LIAF oder LIF). Im Folgenden wird diese Unterscheidung in selbstentladende
und Ladung erhaltende Membrane nicht mehr getroffen sondern von einer sich passiv
entladenden Membran ausgegangen. Da die Bezeichnungen in der einschlégigen Literatur
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Abbildung 2.3: Modell eines Integrate and Fire Neurons aus der Modellvorstel-
lung eines RC-Schaltkreises fiir die Membran. Nicht eingezeich-
net sind zusatzliche notwendige Elemente fiir die Wandlung
des Spannungspulses am Ausgang in den Eingangsstrom der
néchsten Stufe (Synapse).

nicht konsistent gefiihrt werden, wird im Text dieser Arbeit daher nur die Bezeichnung
LIAF gefithrt. Ein einfaches Modell eines LIAF Neurons ist in Abb. 2.3 dargestellt. Es
enthélt die Membrankapazitat Ce, mit parallel geschaltetem Widerstand R, welcher die
passive Entladung der Membran modelliert. Daneben ist ein Vergleichselement dargestellt,
welches das Membranpotential mit einem Schwellwert vergleicht. Ubersteigt das Membran-
potential den Schwellwert, wird ein Spannungspuls definierter Lénge ausgesandt und das
Membranpotential wird aktiv tiber den eingezeichneten Schalter, hier als MOS-Transistor
ausgefiihrt, zuriickgesetzt (die Membrankapazitiat wird schlagartig entladen).

Das Membranpotential u(t) fir das LIAF Neuron ergibt sich aus den erregenden und
hemmenden Stromen Iy, und den parasitaren Effekten der Bauelemente der Schaltung,
so dass die Gleichung fiir den Fall der Aufladung bis zur Feuerschwelle mit

t du(t
I (t) = M + C’memM , wenn u(t) < Ury (2.2)
R dt
angegeben werden kann. Beim Erreichen der Feuerschwelle Ury wird das Membranpotential
zuriickgesetzt und von neuem mit der Integration einlaufender Strompulse begonnen.
Maass hat nachgewiesen [71], dass das Integrate and Fire Neuron ein Spezialfall des Spike

Response Modells ist.

2.2 Digitale Implementierungen

Die Verwendung von FPGAs als Plattform fiir die Implementierung von neuronalen Netzen
ist durch ihre Parallelitat, Rekonfigurierbarkeit, die schnelle Entwurfszeit und den damit
verbundenen geringen Kosten besonders geeignet. Fiir die Evaluierung von neuronalen
Netzen sind aus den genannten Griinden Implementierungen weit verbreitet, die primar
fiir das FPGA ausgelegt sind. Nachfolgend werden einige Implementierungen von digitalen
neuronalen Netzen vorgestellt.
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Die erste vorgestellte Implementierung von Schrauwen [87] beschéftigt sich mit der Reali-
sierung eines kleinen neuronalen Netzes, das auf die Struktur paralleler Rechenelemente
eines FPGAs abgebildet wird. Zusammen mit seriellen Verarbeitungseinheiten wird eine
Systemstruktur aufgebaut, die die Verschaltung der Elemente Synapse und Neuron aus
dem biologischen Vorbild nachahmt. Zudem erhoht die modulare Aufteilung des Systems
in Komponenten die Modellvielfalt fiir die Synapsenmodelle und Membranmodelle. Die
nachfolgende Arbeit von Upegui [96] stellt eine einfache Implementierung eines Neurons
vor. Der Entwurf der Architektur beriicksichtigt die dynamische Rekonfigurierbarkeit
eines FPGAs. Die dritte vorgestellte Implementierung von Torres-Huitzil [92] arbeitet
mit oszillierenden Neuronen in einer zweidimensionalen Verbindungsstruktur. Diese von
der Struktur des visuellen Kortex abgeleitete Architektur wird zur Bildsegmentierung
eingesetzt. Eine komparative Arbeit leistet Johnston [57] mit dem Vergleich von zwei
klassischen und zwei pulscodierten neuronalen Netzen. Der Entwurf der in [57] vorgestell-
ten Modelle erfolgt durchweg mit dem Xilinx System Generator. Eine Implementierung
mit stochastischem Ansatz wird von S. Maya [74] vorgestellt. Dabei werden reelle Werte
zwischen 0 und 1 durch eine zuféllige Bitfolge reprasentiert, deren Anzahl gesetzter Bits im
Verhéltnis zur Léange des Vektors der reellen Zahl entspricht. Eine ASIC-Implementierung
digitaler pulscodierter neuronaler Netze wird von Godin [35] vorgestellt, in der statische
Neuronenmodelle mit einem intern pulsend arbeitenden Modell emuliert werden.

2.2.1 Die Schrauwen-Implementierung

Die Systemarchitektur der Schrauwen-Implementierung [87] ist in Abbildung 2.4a darge-
stellt. Die seriellen Daten mehrerer Eingénge werden iiber parallele Signalpfade durch
Modelle der Synapsen und Dendriten nach und nach zusammengefiihrt und zum Modell
der Membran gefithrt. In den jeweiligen Systemkomponenten werden die Daten bitse-
riell verarbeitet. Zur Durchsatzoptimierung sind Pipelinestufen zwischen den einzelnen
Baumebenen eingefiigt.

Eine zeitbasierte Simulation wird einer ereignisorientierten Simulation, die gerade bei
kleinen Netzen einen hoheren Ressourcenbedarf (durch den Mehraufwand der Listenverwal-
tung etc.) besitzt, vorgezogen. Die ereignisorientierte Simulation eignet sich insbesondere
fiir die Simulation grofler neuronaler Netze, da sich hier der Aufwand auf die Listenver-
waltung der néchsten Ereignisse (z. B. die Erzeugung eines Aktionspotentials) beschrénkt.
Im zeitbasierten Simulator miissen alle Initialbedingungen aller Elemente eines Netzes
zu jedem Zeitpunkt vorgehalten werden und die Integrationsschritte so klein gewahlt
werden, dass der Fehler bei der Integration minimal wird. Fiir die in diesem Entwurf
betrachteten kleinen Netzwerke mit maximal 1000 Neuronen eignen sich daher zeitbasierte
Simulationen. Zudem kann mit einer zeitbasierten Simulation die Echtzeitfahigkeit des
Systems ohne Geschwindigkeitseinbuflen, wie sie bei ereignisorientierten Netzen entstehen,
garantiert werden. Voraussetzung ist natiirlich die Moglichkeit der Abbildung des Netzes
auf eine Hardware, welche die Echtzeitfahigkeit ermoglicht. Folgt man dem Signalpfad bis
zur Membran, wird die Baumstruktur des Ansatzes deutlich.
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Abbildung 2.4: Vereinfachte Darstellung der Systemarchitektur und System-
komponenten der Schrauwen-Implementierung (nach [87]).
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Die Synapsenkomponenten bilden dabei die Blétter des Baums. Préasynaptische Pulse
fithren zur Freigabe der synaptischen Gewichte, die in der Synapse in einem Schieberegister
gespeichert sind (Abb. 2.4b). Besitzen mehrere Synapsen dasselbe Modell, so bilden sie
einen Teilbaum mit der Synapsenmodellkomponente als Wurzel. Die Zusammenfiihrung
der parallelen Signalpfade wird iiber das Dendritenmodell erreicht, welches aus einem
Volladdierer (Abb. 2.4c) fir die bitseriellen Signale besteht. Fiir die Realisierung des Synap-
senmodells besteht die Synapsenmodellkomponente (Abb. 2.4d) aus einem Volladdierer mit
nachgeschaltetem Schieberegister. Der Ausgang des Schieberegisters ist mit dem Eingang
des Volladdierers verbunden. Mit dieser Verschaltung wird die Addition von einlaufenden
Synapsengewichten mit dem internen Potential durchgefithrt. Fiir den exponentiellen
Zerfall des internen Synapsenpotentials wird das um einen festen Faktor verschobene
Synapsenpotential als Subtrahend genutzt. Da die Werte im Zweierkomplement vorliegen,
kann diese Subtraktion mit einem geringen Mehraufwand mit dem vorhandenen Addierer
ausgefiihrt werden. Die Anzahl der Subtraktionen und die Verschiebungsanzahl des Sub-
trahenden konnen in diesem Modell frei gewéhlt werden. Diese Modellimplementierung
findet sich in der Membrankomponente (Abb. 2.4e) wieder, in der die Integration und der
Zerfall des Potentials in d&hnlicher Weise implementiert sind. Zusétzliche Logik tiberpriift
in der Membrankomponente das Erreichen der Potentialschwelle und generiert einen
Puls als Aktionspotential. Anschlieend wird das Membranpotential auf einen Initialwert
zuriickgesetzt und der Zustand des Neurons auf Refraktion gesetzt.

Die verdffentlichten Syntheseergebnisse der hier beschriebenen Struktur kénnen aus
der Tabelle 2.1 entnommen werden. Eine Besonderheit dieser Implementierung ist die
Gestaltungsmoglichkeit komplexerer Modelle durch den modularen Systemaufbau. Es
konnen Modelle, die sich aus der Kombination von exponentiellen Funktionen nachbilden
lassen, realisiert werden. Als Anwendung werden die Steuerung von autonomen Robotern,
Liquid-State-Machine-basierte Spracherkennung und eingebettete lernende Prozessoren
angegeben.

2.2.2 Die Upegui-Implementierung

Die digitale Implementierung von Upegui [96] besteht im Wesentlichen aus dem detail-
liert in [94, 95] beschriebenen Neuron fir die Implementierung auf rekonfigurierbaren
FPGA. Neben dem weiter unten beschriebenen typischen Aufbau eines parallel arbeiten-
den digitalen Neurons betrifft eine Besonderheit in dieser Umsetzung die Behandlung
von zwei simultan eintreffenden Pulsen an der Synapse. Im Gegensatz zu den SRM-
oder LIAF-Modellen findet keine lineare Superposition der postsynaptischen Antworten
statt, sondern eine einfache Addition der Synapsengewichte. Alle neuronalen Aktivitaten
finden in einer zentralen Komponente statt. Die Synapsengewichte sind in der Neuro-
nenkomponente gespeichert. Als Speicher dient eine Look-Up Table (LUT), deren Grofie
von der Anzahl der Synapseneingénge eines Neurons abhingig ist. Zuséatzlich sind die
Werte fiir die postsynaptische Antwort des Potentials und der Verlauf des Potentials
nach einem ausgelosten Aktionspotential in der LUT gespeichert. Ein Neuron mit 30
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Abbildung 2.5: Beispiel des Verlaufs eines Membranpotentials fiir die Imple-
mentierung nach Upegui [96].

Eingéngen und einer Datenbreite von 9 Bit benétigt eine 32 x 9 Bit grofle LUT, in der
zusatzlich zu den Gewichten der Eingénge des Neurons die Steilheit der Zunahme oder
des Abfalls des Membranpotentials festgehalten sind. Die zwei Zustinde des Neurons
operational und refractory werden mit einem Mooreschen Zustandsautomaten beschrieben.
Im Zustand operational werden die Synapsengewichte zum internen Membranpotenti-
al addiert, wenn ein préasynaptischer Puls den Eingang erreicht (siche Abb. 2.5). Bei
Erreichen der Feuerschwelle wird am Ausgang des Neurons ein Puls generiert und das
Neuron wechselt in den refractory Zustand, der das Verhalten eines Neurons wihrend der
Refraktéarzeit beschreibt. Dabei wird das Membranpotential auf ein Potential unterhalb
des Ruhepotentials zuriickgesetzt. Solange das Membranpotential das Ruhepotential nicht
wieder erreicht hat, werden Synapsengewichte nur stark gedampft zum internen Potential
addiert. Nach Erreichen des Ruhepotentials wechselt der Neuronenzustand wieder zum
Zustand operational. Die Systemarchitektur besteht aus zu Blocken gruppierten Neuro-
nen. Innerhalb eines Blocks sind alle Neuronen miteinander verbunden. Weiter besitzt
jedes Neuron Verbindungen zu den Neuronen im Vorganger- und im Nachfolgerblock.
Die Blockorganisation eignet sich fiir die dynamische Rekonfigurierung der Netzstruktur
auf FPGAs. Dedizierte Kommunikationspunkte zwischen den Blocken ermdéglichen das
einfache Hinzufiigen von Blocken in das bestehende Netzwerk zur Laufzeit.

Diese Implementierung zeichnet sich durch ihre kompakte Grofle aus, die abhéngig von der
Anzahl der Eingénge des Neurons ist. Durch ihre Architektur mit zu Blocken zusammenge-
fassten Neuronen erlaubt sie im Zusammenspiel mit der dynamischen Rekonfigurierbarkeit
der Zielplattform einen einfachen Austausch der Neuronen und eine Anpassung der
Netztopologie im Betrieb.
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2.2.3 Die Torres-Huitzil-Implementierung

Fir die Bildverarbeitung haben sich lokal verbundene Neuronenfelder als besonders geeig-
net herausgestellt [99]. Das LEGION (Locally Excitatory Globally Inhibitory Oscillator
Network) ist ein Feld mit oszillierenden Neuronen, in dem die Neuronen mit ihren unmittel-
baren Nachbarn tiber exzitatorische Synapsen miteinander verbunden sind. Neuronenfelder,
welche lokal exzitatorisch miteinander verbunden sind, zeigen Synchronisationseffekte und
eine wellenartige Ausbreitung der Aktionspotentiale iiber das Neuronenfeld [43].

In dieser Implementierung sorgt ein globaler Inhibitor fiir ein Abklingen der sich wellen-
formig im Neuronenfeld ausbreitenden Erregung (Desynchronisation der Neurone durch
inhibitorische Pulse). Der Bereich V1 des visuellen Kortex im menschlichen Gehirn dient
als biologisches Vorbild dieser Struktur. Bei Systemen dieser Art wird haufig ein auf-
genommenes Bild auf darunter liegende Neurone mit lokaler Verschaltung abgebildet.
Gemeinsame im Bild detektierte Merkmale, z. B. zusammenhéangende Flachen &hnlicher
Helligkeit oder Kanten mit bestimmter Ausrichtung werden durch eine synchrone Feu-
eraktivitat der beteiligten Neurone reprasentiert. Eine Beschreibung der Moglichkeiten
dieser Systeme, wenn auch am Beispiel eines analogen Entwurfs findet sich in [44, 45].

Die Implementierung eines LEGION auf einem FPGA wird in der Arbeit von Torres-Huitzil
[92] vorgestellt. Als Applikation wird in dieser Verdffentlichung die Bildsegmentierung auf-
genommener Kamerabilder fiir einen autonomen Roboter vorgestellt. Das Neuronenmodell
eines LEGION-Neurons wird mit der Differentialgleichung

JEN(i) ~*

beschrieben. Gleichung (2.3) beschreibt die Dynamik eines oszillierenden LIAF-Neurons
1 mit dem Membranpotential z;, einem externen Stimulus /; und mit der Summe der
Erregungspulse P;, die von der oszillierenden Nachbarschaft N (i) erzeugt werden. Die
Konstante «; beschreibt die Verbindungsstarke der Nachbarn von 4, welche durch die
Summe der Nachbarn Z; des Neurons geteilt wird. Das Neuron besteht aus vier Kom-
ponenten und besitzt Eingange fiir die benachbarten Bildpunkte und Erregungsimpulse,
einen Eingang fiir inhibitorische Pulse und weitere Eingénge zum Einstellen interner
Parameter. Zur Bildsegmentierung eines Graustufenbildes werden die Helligkeitswerte der
Bildpunkte als erregende externe Stimuli /; auf die Neurone des LEGION abgebildet.

Ein Pixeldifferenztest ermittelt den Homogenitétsgrad der Umgebung von Neuron i. Dazu
werden alle benachbarten Pixel j des aktuell ausgewahlten Bildpunkts respektive Neurons
betrachtet und die Differenz zum aktuellen Bildpunkt bestimmt. Sollte die Differenz
|pi — p;| des dem Neuron zugeordneten Bildpunktes p; und des benachbarten Bildpunktes
p; unterhalb einer definierten Schwelle liegen, ist der Pixeldifferenztest fiir die zwei
Bildpunktpaare bestanden. Die serielle Implementierung ist in Abbildung 2.6 dargestellt.
Mit Hilfe des Multiplexers wird der zu testende benachbarte Bildpunkt selektiert. Die
anschliefende Subtraktionseinheit und der Komparator bestimmen die Differenz und
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Abbildung 2.6: Pixeldifferenztestkomponente der Implementierung nach Torres-

Huitzil [92].
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Abbildung 2.7: Komponente zur Bestimmung der Erregung des Zentralneurons
in der Torres-Huitzil-Implementierung (nach [92]).

tiberpriifen die Homogenitéts-Bedingung. Der Zahler bestimmt die Anzahl der bestandenen
Tests. Fiir eine weitere Auswertung werden die Anzahl der Nachbarneuronen und die
Anzahl der bestandenen Tests an eine Komponente zur Bestimmung der Erregung des
Zentralneurons weitergegeben.

Die Komponente zur Bestimmung der Erregung des Zentralneurons (Abb. 2.7) erzeugt
exzitatorische Pulse fiir das Zentralneuron, indem der Beitrag der benachbarten Neurone
zum Membranpotential des Zentralneurons sowie das eigene Membranpotential des Zen-
tralneurons berticksichtigt werden. Weiter werden die externen Stimuli verarbeitet und der
Erregung des Zentralneurons hinzugefiigt, und das RESET-Signal fiir die Zuriicksetzung
des Membranpotentials erzeugt. Die Bedingung fiir die Erzeugung eines Erregungspul-
ses und der Erzeugung des RESET-Signals wird mit dem Komparator iiberprift. Die
Kontributionsstarke der Nachbarpulse ist abhéngig von der Anzahl der bestandenen
Tests und wird als Konstante aus einem angeschlossenen Speicher ausgelesen. Ist die
Anzahl der bestandenen Tests n grofer als die Halfte der Nachbaranzahl (n > 3|N(4)|),
wird der externe Stimulus auf das Zentralneuron mit I; = 1,25 festgesetzt. Wenn kein
Nachbarschaftstest erfolgreich war, ist I; = 0. Fiir alle anderen Féalle wird der externe
Stimulus mit I; = 0, 95 festgesetzt und das Membranpotential des Zentralneurons in die
Néahe der Feuerschwelle gebracht. In diesem Zustand reicht eine geringe Anzahl und Starke
an Pulsen von benachbarten Neuronen aus, um das Zentralneuron zum Feuern zu bringen.
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Abbildung 2.8: Arithmetikkomponente der Torres-Huitzil-Implementierung
(nach [92]).

Die Arithmetikkomponente (Abb. 2.8) berechnet das dynamische Verhalten des Neurons
nach Gleichung (2.3). Fiir die numerische Losung der Differentialgleichung wird die
Eulersche Methode mit einer Integrationsschrittweite von € = 0.25 genutzt. Der serielle
Addiererbaum berechnet den Beitrag der Nachbarimpulse zum Membranpotential des
Zentralneurons. Die Beitrage der inhibitorischen Pulse und des externen Stimulus werden
mit dem Subtrahiererbaum bestimmt und vom Membranpotential des Zentralneurons
abgezogen.

Die entstandene Implementierung nutzt die vom genutzten FPGA zur Verfiigung gestellten
Ressourcen und deren zweidimensionale Anordnung. Die Multiplikationen und Divisionen
wurden iiber Lookup-Tables realisiert. Fiir die Berechnung des Neuronenverhaltens wird
serielle Arithmetik mit einer 12 Bit Festkommadarstellung im Zweierkomplementsystem
verwendet. Zwei Bit kennzeichnen die Ganzzahlstellen und zehn Bit die Nachkommastellen.

2.2.4 Die Johnston-Implementierung

Eine Vorgehensweise mit einem auf FPGA abgestimmten Entwurfsablauf wird in [57]
vorgestellt. Im Rahmen eines Vergleichs von Neuronen zweier klassischer Neuronaler
Netze (Multilayer Perceptron und Radial Basis Function Network) und zwei pulscodier-
ten Neuronenmodellen (LIAF und SRM) werden einfache neuronale Netze nach einer
Evaluation in Matlab mit dem Xilinx System Generator (XSG) erzeugt. In der Evaluie-
rungsphase wurde die Netzstruktur im Rahmen der Anlernphase bestimmt. Anschlieend
wurden die Neuronenmodelle mit Hilfe der Systemblocke des XSG zusammengestellt.
Das LIAF-Synapsenmodell wird mit einem Addierer, der die Synapsengewichte zum
Membranpotential addiert, und einem Subtrahierer, der eine verschobene Version des
Membranpotentials vom Membranpotential abzieht, realisiert. Die hier gewahlte Sub-
traktion bildet den exponentiellen Abfall des Membranpotentials nach. Das SRM-Modell
bendtigt zusétzlich zu den Elementen des LIAF Neurons einen Multiplizierer, um die
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Abhéngigkeit der postsynaptischen Antwort von den préasynaptischen Pulsen zu realisieren.
Die Syntheseergebnisse fiir Neurone und Synapsen mit einer Auflésung von 16 Bit sind in
Tabelle 2.1 aufgefiihrt.

2.2.5 Die Maya-Implementierung

Ein Ansatz fiir ein bitserielles Neuron mit Verarbeitung stochastischer Pulsfolgen wird in
der Implementierung von Maya [74] vorgestellt. Dabei wird ein Wert x fiir das Gewicht
einer Synapse oder die Starke eines Pulses durch eine pseudo-zuféallige bindre Pulsfolge
x(n) dargestellt. Die Auftrittswahrscheinlichkeit einer 1 in z(n) entspricht dem normali-
sierten Wert z. Es gibt zwei Darstellungsformen fir stochastische Modelle [105]. In der
unipolaren Darstellungsform wird der reelle Wert z € [0, 1] durch eine Sequenz mit einer
Auftrittswahrscheinlichkeit einer 1 von p = = dargestellt. In dieser Darstellungsform wird
fiir die Multiplikation von zwei Sequenzen nur ein AND-Gatter benotigt, eine Addition
kann durch ein ODER-Gatter realisiert werden [15]. Die bipolare Darstellung bildet den
Bereich x € [—1, 1] mit der Auftrittswahrscheinlichkeit einer 1 von p = (x + 1)/2 in eine
Sequenz ab. Die Multiplikation kann in diesem Fall mit einem XOR-Gatter realisiert
werden.

Das Modell fir das in der Arbeit von Maya vorgestellte pulsende neuronale Netz besteht aus
einem Modul fiir das Synapsenmodell und einem Modul fiir die Summation der einlaufenden
Pulse sowie die Auswertung der Aktivierungsfunktion. Mit jedem eintreffenden Puls
wird das Gewicht der aktivierten Synapse im Synapsenmodul akkumuliert. Tritt ein
Uberlauf des Zihlers auf, wird abhingig vom Vorzeichen des Synapsengewichts ein
exzitatorischer oder ein inhibitorischer Puls erzeugt und an das Summations-Aktivierungs-
Modul iibergeben. Das Summations-Aktivierungsmodul besteht aus einem exzitatorischen
und einem inhibitorischen Schaltkreis, welche identisch aufgebaut sind. Die Schaltkreise
dienen zur Zahlung der eintreffenden exzitatorischen oder inhibitorischen Pulse. Ein
Komparator entscheidet, welcher der beiden Zéhlerstédnde iiberwiegt und erzeugt einen
ausgangsseitigen Puls, wenn der exzitatorische Anteil tiberwiegt.

2.2.6 Die Godin-Implementierung

Eine der wenigen digitalen ASIC-Implementierung wird in der Arbeit [35] vorgestellt.
Implementiert wurde ein vorwéartsgerichtetes neuronales Netz bestehend aus dem Neuronen-
modell SpikeCell. Das SpikeCell-Neuronenmodell erlaubt die Nachbildung von Neuronen
mit beliebiger Aktivierungsfunktion ¢(h;) mit Hilfe von pulsenden Neuronen. Der Eingang
h; der Aktivierungsfunktion muss linear vom Eingang x abhéngig sein. Bei der Emulation
wird der Pulscharakter der Implementierung selbst nicht aktiv fiir den Betrieb als pul-
sendes neuronales Netz genutzt. Zu den implementierten Modellen zéhlen Modelle mit
GaufBifunktionen und Sigmoidfunktionen als nichtlineare Aktivierungsfunktionen. Distanz-
berechnende Modelle, wie das Radial Basis Function (RBF) Modell, werden von SpikeCell
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nicht emuliert. Die Grundgleichungen eines statischen Neurons beschreiben den Ausgang
y; des Neurons ¢

yi = ¢(h;) (2.4)

und

hi =) wijz; (2.5)
j

mit ¢ als Aktivierungsfunktion und h; als gewichtete Summe der Eingangspulse z; der
prasynaptischen Neurone j mit den Verbindungsgewichten w;;. Fiir eine flicheneffiziente
Realisierung wurde die Multiplikation in Gleichung (2.5) durch die Beschrankung der
Feuermenge eines Neurons auf die Pulswerte {-1,0,1} unnétig. Das SpikeCell-Modell kann
stattdessen mit den Gleichungen

—1, falls gp(U'(t)) <0
5Z-(t+1) =40, falls @(U(t)) =0
1, falls gp(U(t)) >0

als Bedingung fiir den Ausgangsimpuls,

ot =6 4 doit (2.7)

K3 K3 3

zur Berechnung der dynamischen Potentialschwelle, und

U = U+ d 3 wys (2.8)
J

zur Berechnung des Membranpotentials beschrieben werden. Das neuronale Netz arbeitet
dabei in einem Zyklus bestehend aus zwei Zeitschritten. Im ersten Zeitschritt werden an-
hand der Fallunterscheidung (2.6) die zu sendenden Pulse (5i(t+1) fiir jedes Neuron ermittelt.
Dabei kennzeichnen Ui(t) das Membranpotential und 02@ die dynamische Potentialschwelle.
Fir die Kodierung der drei moglichen Pulswerte werden zwei Bit genutzt. Im zweiten Zeit-
schritt werden die Potentialschwelle (2.7) und das Membranpotential (2.8) des Neurons mit
den im ersten Zeitschritt bestimmten Pulsen berechnet. Die Diskretisierungsschrittweite
{d |0 < d <1} ist ein Parameter fir die Genauigkeit der Emulation und wird mit d =
gewahlt, wobei k die implementierte Wortbreite darstellt. Die Pulse vom prasynaptischen
Neuron j werden mit d; beschrieben.

Diese Implementierung stellt ein einfaches Neuronenmodell dar, mit dem statische Neu-
ronenmodelle emuliert werden koénnen. Als Resultat erhédlt man ein Neuron, das nur ein
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Tabelle 2.1: Ubersicht iiber die Syntheseergebnisse der vorgestellten Implemen-

tierungen.

Referenz Komponente Anzahl Slices Bemerkungen
Upegui [96] FPGA:(XC25200)

Neuron 17 14 Eingange

Neuron 23 30 Eingénge

Neuron 46 60 Eingange
Torres-Huitzil [92] FPGA:(XC2V1500)

Neuron 41 8 Nachbarneurone
Johnston [57] FPGA:(XC2V4000)

LIF Synapse 35

SRM Synapse 195

Soma 20
Maya [74] FPGA:(XV50)

Synapse 13

Neuron 47
Referenz Komponente Anzahl LUTs Bemerkungen
Schrauwen [87] FPGA:(XC35200)

und (XC4VLX100)
Neuron N(22+4-31+10S) N: Anzahl Neuronen
[: Anzahl Eingénge
S: Anzahl Synapsenmodelle

Torres-Huitzil [92] FPGA:(XC2V1500)

Neuron 64 8 Nachbarneurone
Implementierung ~ Anzahl Zellen GroBe(mm?) Bemerkungen
Godin [35] 10 0,14 0,25 pm SOI-Technologie

Zehntel der Flache eines mit Multiplizierern implementierten Neurons, aber eine sechsfache
Berechnungszeit pro Rechenschritt benotigt.

In Tabelle 2.1 sind die wesentlichen Merkmale der hier vorgestellten digitalen Implemen-
tierungsvarianten noch einmal zusammengefasst. Da sich in der Literatur praktisch keine
Angaben zur Leistungsaufnahme digitaler Neurone finden lassen, wurde in der Tabelle
nur die benétigte Flache in Form von Slices, Flipflops und Lookup-Tabellen angegeben.

2.3 Analoge Implementierungen

Neben der im letzten Abschnitt gezeigten Umsetzung der pulscodierten neuronalen Netze
mittels einer digitalen Standardzellenbibliothek auf einen ASIC werden PCNN auch als
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analoge Schaltkreise umgesetzt. Dabei kann eine im Vergleich zur digitalen Umsetzung
grofle Flachenersparnis erzielt werden. Dem gegeniiber stehen mit in kleiner werdenden
Halbleiter-Technologien zunehmende Leckstrome, die die ldngere Speicherung von Ladung
auf integrierten Kapazitaten erschweren bzw. zu kleinen Zeitkonstanten fiihren. Diese
Probleme miissen bei der Implementierung von PCNN in analoger Schaltungstechnik
mit aktuellen Strukturgréfien von 130 nm und darunter besonders betrachtet werden. Im
folgenden Abschnitt werden einige ausgewahlte, iberwiegend mit analoger Schaltungstech-
nik implementierte Neuronenmodelle gezeigt, um die spéater in dieser Arbeit entworfenen
Umsetzungen einordnen zu konnen.

2.3.1 Die Matolin-Implementierung

In [73] implementiert Matolin ein einfaches pulsendes LIAF-Neuron. Die Schwelleniiber-
schreitung des Membran-Potentials wird durch einen Schmitt-Trigger mit einstellbaren
Trigger-Schwellen detektiert, die Membran-Entladezeit ist tiber eine Referenzspannung an
einem als einstellbarer Leitwert genutzten Transistor festgelegt. In der Publikation wird
ein neuronales Netz mit 64 x 64 Neuronen in einer 0, 35 yum CMOS-Technologie realisiert,
wobei jeweils benachbarte Neurone durch eine Synapse verkniipft sind. Das gesamte
neuronale Netz zur Detektion zusammenhangender Flachen in einem aufgenommenen
Kamerabild benétigt eine Fliache von 4, 7mm x 5,4mm. Diese Arbeit ist im Rahmen des
Eingangs bereits angesprochenen VisionIC Projekts [3] entstanden.

2.3.2 Die van Schaik-Implementierung

Bei dem in [97] von A. van Schaik vorgestellten Neuron wird ein Differenzverstarker
zur Schwelleniiberschreitung des Membran-Potentials verwendet. Uber insgesamt sieben
Stromquellen kann das Verhalten des Neurons parametrisiert werden. Zwei der Strom-
quellen dienen dabei zur Nachbildung der Strome von Kalium- und Natrium-Ionen bei
biologischen Neuronen. Daneben sind weitere Parameter, wie die Refraktérzeit des Neurons
einstellbar. Die Umsetzung von 32 Neuronen auf einem ASIC benétigen nebst zuséatz-
licher Kommunikations-Schaltkreise eine Chipfliche von 1 mm x 2,5mm in einer 1 ym

CMOS-Technologie.

2.3.3 Die Indiveri-Implementierung

In [54] stellt G. Indiveri ein LIAF-Neuron vor, das in Anlehnung an biologische Neu-
rone eine Pulsraten-Adaption, eine einstellbare Refraktarphase sowie eine einstellbare
Feuerschwelle bietet. Die Pulsraten-Adaption dient dazu, die Pulsrate bei permanenter
starker eingangsseitiger Erregung zu drosseln. Bei biologischen Neuronen ist in diesem Fall
eine ansteigende Konzentration von Calcium-Ionen fiir eine Verringerung der Feuerrate
verantwortlich. Die Refraktarphase ist die Zeitspanne nach der Erzeugung eines Aus-
gangspulses, wihrend der kein erneutes Feuern des Neurons moglich ist. Diese Phase tritt
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Abbildung 2.9: Integrate-and-Fire Neuron nach Indiveri [54].

auch bei biologischen Neuronen auf. Die Uberschreitung der Feuerschwelle wird in dem
LIAF-Neuron durch einen Inverter (Transistoren M4 und M5) mit positiver Riickkopplung
iiber M7 auf das Membranpotential in Verbindung mit einem im Subschwellenbereich
arbeitenden Source-Folger (Transistoren M1 und M2) detektiert (siche Abb. 2.9). Durch
die positive Riickkopplung wird ein schnelles Schalten des Inverters erreicht und damit die
Verlustleistung der Schaltung minimiert. Diese Schaltung wurde angelehnt an den Axon-
hiigel eines Neurons als Azon-Hillock-Schaltung bekannt. Die Dauer der Refraktérphase
wird iiber die einstellbare Slew-Rate eines weiteren Inverters (M8-M11) gesteuert. Ein
Stromspiegel-Integrator (M15-M19) realisiert die Pulsraten-Adaption. Dabei wird von
dem in das Neuron injizierten Strom Ii,; ein Adaptionsstrom I,4,p subtrahiert, der mit
jedem erzeugten Ausgangspuls erhoht wird, so dass die durchschnittliche Pulsrate mit
der Zeit abnimmt und die Aktivitadt des Neurons begrenzt wird. Bei sich verringernder
Erregung des Neurons geht auch die Adaption aufgrund von Leckstrémen innerhalb des
Stromspiegel-Integrators zurtick. Fiir typische Betriebsbedingungen wird, bezogen auf eine
1,5 um CMOS-Technologie, eine mittlere Verlustleistung von 300 nW sowie eine maximale
Verlustleistung von 1,5 uW bei einer Feuerrate von 100 Hz angegeben. Dieses fithrt zu
einem umgerechneten Energiebedarf von 3nJ bis 15nJ pro Aktionspotential. Weitere
Untersuchungen der Eigenschaften, nicht jedoch Angaben tiber die Leistungsaufnahme
des Neurons sind in [82] angegeben.

Eine der hier beschriebenen Schaltung dhnliche Schaltung wird in einer spéateren Ver-
offentlichung von Indiveri angegeben [55]. Gegentiber der Schaltung aus [54] wurde die
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Ausgangsschaltung so modifiziert, dass das Address-Event Representation-Protokoll (AER)
unterstiitzt wird. Hierzu kommuniziert das Neuron iiber asynchrone Request- sowie eine
Acknowledge-Leitung mit tibergeordneten Schaltungsteilen. Fiir ein Neuron, implementiert
in einem 0, 35 pm Prozess, wird fiir optimale Betriebsbedingungen eine Energie von 900 pJ
pro Ausgangspuls angegeben. Unter typischen Bedingungen betriagt die Verlustleistung je
nach gewahlter Triggerschwelle zwischen 10 uW und 120 4W. In einem 0, 8 pum CMOS-
Prozess benotigt eine Schaltung aus 32 Neuronen sowie 256 Synapsen eine Flache von
1,6 mm?. Fiir einen 0, 35 um Prozess wird fiir 32 Neuronen und 8000 Synapsen eine Fliche
von weniger als 10 mm? angegeben.

Ahnliche Eigenschaften wie die Schaltung aus [54] weist auch das Neuron nach Liu [68]
auf. Bei dieser Implementierung werden einzelne Module der Schaltung anders als bei
Indiveri realisiert. Statt des Einsatzes eines Inverters als Schwellenspannungselement wird
in der Arbeit von Liu ein Differenzverstéirker verwendet.

Eine weitere dhnliche Implementierung eines pulscodierten Neurons wurde von Schulz und
Jabri [88] publiziert. Die Besonderheit dieser Implementierung ist eine erste getrennte
Modellierung von Membranpotential und Aktionspotential. Hierdurch wurde es moglich,
das Aktionspotential, dessen Auftreten und dessen Form fiir die Anwendung physiologisch
motivierter synaptischer Lernverfahren notwendig sind, unabhéangig von der Behandlung
des Membranpotentials zu machen und schafft so die Moglichkeit, das Aktionspotential in
anderer Weise zu modellieren.

2.3.4 Die Chicca-Implementierung

In einer Publikation von Chicca, Badoni et al. [20] wird ebenfalls das Prinzip des Inverters
als Schwellenelement genutzt, bei dem ein zuséatzlicher Inverter und Koppelkapazitat
zuriick auf den Eingang des Schwellenelements fiir eine Hysterese sorgen (Axon-Hillock
Schaltung). Das Schaltbild des gesamten Neurons ist in Abb. 2.10 dargestellt und zeigt
zusétzlich den aktiven Entlade-Pfad tiber die Transistoren M5 und M6, der bei Aussenden
eines Aktionspotentials fiir eine schnelle Abnahme des Membranpotentials sorgt. Durch
eine Referenzspannung an Transistor M5 wird die Dauer des Aktionspotentials eingestellt.
Daneben existiert ein Zustands-Block, der in weiteren Schaltungsteilen ein Lernverfahren
steuert. Der Eingang des Neurons ist mit zwei Stromquellen modelliert, welche bei
Auftreten eines prasynaptischen Aktionspotentials fiir einen exzitatorischen oder einen
inhibitorischen Eingangsstrom am empfangenden Neuron sorgen kénnen.

In der Umsetzung eines Chips mit einer Flache von 3,16 mm x 3,16 mm wurden in der
0,6 pm Technologie 21 Neurone und 129 Synapsen aufgebaut. Trotzt detaillierter Beschrei-
bung der Architektur werden in dieser Publikation keine Angaben zur Leistungsaufnahme
des Neurons gemacht.
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Abbildung 2.11: Integrate-and-Fire Neuron nach Wijekoon et al. [102].

2.3.5 Die Wijekoon-Implementierung

Eines der kleinsten und flexibelsten Neuronen ist von Wijekoon und Dudek [102] publiziert
worden. Hier ist ein LIAF Neuron mit 14 Transistoren implementiert worden, welches auf
dem einfachen Modell von Izhikevich [56] basiert. Izhikevich veréffentlichte eine einfache
Beschreibung eines LIAF Neurons als zweidimensionales System, dessen Verhalten mit frei
wahlbaren Parametern gesteuert werden kann und verschiedene Klassen von Neuronen
abbilden kann. Die von Wijekoon veréffentlichte Implementierung nutzt einen 350 nm
Prozess und besteht aus einem Stromspiegel-Block (M1-M5) zur Bildung des Membranpo-
tentials, einem zusétzlichen Slow Variable-Schaltkreis (M6-M8), der zur Nachbildung des
in [56] beschriebenen Verhaltens notwendig ist, und einem Differenzverstérker (M9-M13)
als Schwellwertelement (Abb. 2.11). Durch die Verwendung von Transistoren mit grofien
Abmessungen und Kapazitiaten mit einer Kapazitat von 1 pF belegt ein einzelnes Neuron
eine Fliche von 2800 ym?. Diese Implementierung arbeitet in einem Zeitbereich von
Mikrosekunden fiir die Erzeugung eines Aktionspotentials (statt Millisekunden), welches
eine Folge des Umgangs mit den in kleineren Technologien zunehmenden Leckstromen
ist. Wijekoon bemerkt treffend, dass in der verfiigharen Literatur mit Ausnahme der
Veroffentlichung von Indiveri 2003 [54] praktisch keine Angabe zur Leistungsaufnahme
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der Neurone gemacht wird. Selbst gibt Wijekoon fiir die Implementierung des Neurons
eine Energie von 8,5pJ bis 9pJ pro Aktionspotential an und schlagt vor, diese Angabe
zum Vergleich verschiedener Neuronen-Implementierungen zu nutzen.

Tabelle 2.2 zeigt zusammengefasst die den aufgefiihrten Publikationen analoger Imple-
mentierungen von Neuronen entnommenen Daten. Eine Ubersicht iiber den Energiebedarf
der Implementierungen, normiert auf die Energie pro ausgesendetem Aktionspotential
sowie der Energiebedarf biologischer Neurone sind in Tabelle 2.3 gegeben.

2.4 Vergleich bestehender Implementierungsvarian-

ten

Die in diesem Kapitel betrachteten Realisierungsvarianten von digital und analog imple-
mentierten Neuronen stellen nur einen Ausschnitt der tatsachlich publizierten Varianten
dar. Dennoch gibt dieses Kapitel einen Uberblick und nennt die wichtigsten Referenzen. So
sind in den letzten Jahren die Arbeiten von Schrauwen, u. A. [87] als Stand der Dinge in
der Umsetzung digitaler pulscodierter neuronaler Netze zu sehen. Der in diesen Arbeiten
durch die parallele Verarbeitung entstehende Flachenbedarf kann durch die Einfithrung
von bitserieller Arbeitsweise, sei es ein stochastischer Ansatz, wie bei Maya [74], oder die
Nutzung von bitseriellen Addierern und Multiplizierern, die in Kapitel 4.2 noch einmal
aufgegriffen werden, stark reduziert werden. Durch die Nutzung von neuen Ansatzen wie
z. B. speziellen Standardzellen-Bibliotheken fiir die Implementierung von digitalen Schal-
tungen auf ASICs mit besonders niedriger Versorgungsspannung kann der Energiebedarf
der digitalen Neurone weiter gesenkt werden, was in spateren Kapiteln aufgegriffen wird.

Ein grofler Vorteil digitaler Umsetzungen als ASIC ist, dass diese nur wenig den Prozess-
Variationen wahrend der Chipfertigung unterworfen sind. Dieser Einfluss duflert sich nur
durch die Verlangsamung der Schaltungsteile, so dass die maximale Arbeitsfrequenz des
digitalen Systems herabgesetzt wird. Dieses lasst sich durch ausreichende Reserven im
Voraus bereits einplanen. Ein Nachteil der digitalen Umsetzungen ist jedoch, dass sie
relativ viel Fléche in der ASIC-Umsetzung bendtigen. Dieses wird auch noch in Kapitel 4
deutlich, in dem auch digitale Umsetzungen von LIAF Neuronen bewertet werden. Der
Vergleich des Energiebedarfs der hier vorgestellten Implementierungen erweist sich als
schwierig, da dieser unter anderem von der verwendeten Plattform (Typ des FPGAs oder
ASICs) abhéngig ist.

In Bereich der analogen Umsetzung pulscodierter Neurone in der CMOS-Technologie
wurden nur ausgewéhlte Publikationen in die Betrachtung in diesem Kapitel aufgenommen,
da der grofle Teil der Verdffentlichungen von Neuronen aus diesem Bereich élter als 10 Jahre
ist, oder Bipolartransistoren nutzt. Die richtungsweisenden Implementierungen stammen
von Indiveri [54, 55] mit der Axon-Hillock-Schaltung und Chicca [20], auch wenn hier nur
wenige Angaben zu Flachenbedarf und Energiebedarf der Schaltungen zu finden sind. Die
analogen Implementierungen beschrénken sich jedoch meist auf CMOS-Technologien mit
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Tabelle 2.3: Energieumsatz technischer und biologischer Neuronen.

Referenz Pulsrate [1/s]* Energie / Puls
Wijekoon [102] 109 8,5-9pJ
Kaulmann [112] 600 - 10° 1,13pJ
Indiveri [54] 100 3-1510J
Pyramidenzelle (Kortex) [§] 25,2-29,3nJP
Pyramidenzelle (Hippocampus) [§] 41,2nJP

2 Die maximal erreichbare Pulsrate wurde zur Berechnung der Energie pro Puls herangezogen.
Die Angaben der biologischen Neurone wurden ohne Beriicksichtigung der Pulsrate in den
angegebenen Publikationen ermittelt.

b Zur Erhaltung des Ruhepotentials wird eine aufzuwendende Energie von 26,1 pJ angegeben.

350 nm und dariiber, in denen die Leckstrome der heutigen Strukturgréfien von 130 nm
und kleiner noch keinen nennenswerten Einfluss auf die Funktion der Schaltung haben.
In Technologien von 90 nm und darunter wird sich dieser Trend weiter verstarken und
die Leckstrome durch neue Anteile, z. B. Gatestrome verstéarkt. Diese Einfliisse miissen
zukiinftig beim Entwurf der Schaltungen berticksichtigt werden. Die Umsetzung eines
oszillierenden Modells von Wijekoon [102] nach dem Modell von Izhikevich [56] ist das
derzeit flexibelste Modell eines LIAF Neurons und kann als Referenz fiir die weiteren
Betrachtungen in dieser Arbeit dienen.

Um die in dieser Arbeit entwickelten Neuronen beziiglich ihres Flachenbedarfs und ihrer
Leitungsaufnahme mit den referenzierten Publikationen vergleichen zu kdnnen, wurden die
verfiigharen Daten und Eigenschaften der implementierten Neurone aus der einschligigen
Literatur in Tabelle 2.2 zusammengetragen. Da nur selten alle notwendigen Angaben zu
Fliche und Verlustleistung verdffentlicht werden, ist die Ubersicht unvollstindig. Zum
Vergleich der entwickelten Neurone eignen sich lediglich die Publikationen von Indiveri [54]
und Wijekoon [102], auf deren Werte an geeigneter Stelle hingewiesen wird. Tabelle 2.3
enthélt die auf die Energie flir ein einzelnes Aktionspotential normierten Werte der
vergleichbaren Publikationen. Die Angabe des Energieumsatzes in der Einheit J (Energie
pro Puls), also bezogen auf die mittlere Pulsrate wird zum Vergleich in der gesamten
Arbeit herangezogen.



Kapitel 3

Energetische Modellierung
pulscodierter neuronaler Netze

In diesem Kapitel wird der Energiebedarf neuronaler Netze betrachtet. Dabei wird im
Folgenden insbesondere die in technischen Systemen betrachtete Verlustleistung als be-
schreibende Grofie verwendet. Ausgehend vom Umsatz biologischer Nervenzellen wird in
spateren Kapiteln ein Vergleich mit digitalen synchronen und asynchronen sowie analogen
Realisierungen pulscodierter neuronaler Netze moglich. Die in den technischen Realisie-
rungen verwendeten Modelle wurden bereits in Kapitel 2.1 vorgestellt, die Mechanismen
an der Zellmembran des biologischen Neurons wurden in Kap. 1.2 beschrieben und werden
im Folgenden mathematisch gefasst.

Die von einem System aufgewendete Leistung lasst sich in einer ersten Betrachtung in
zwei Teile trennen. Der erste Teil stellt die zur Aufrechterhaltung der grundlegenden
Funktionen eines Systems notwendige minimale Leistung dar, welche im Folgenden mit
dem Begrift Grundumsatz bezeichnet wird. Dieser betrifft in der biologischen Nervenzelle
die Leistung, welche vor allem [5] von der Natrium-Kalium-Pumpe zum Aufrechterhalten
des natiirlichen Konzentrationsgefilles und zur Stabilisierung des intrazelluldren Volumens
erzeugt wird. Obwohl weitere Pumpen, z. B. die Calcium-Pumpe, mit einem geringen
Energieumsatz an der Gesamtbilanz beteiligt sind, ldsst sich die Funktion des Neurons,
insbesondere das Aussenden eines Aktionspotentials, vollstdndig mit den Natrium- und
Kalium-Kanélen beschreiben. Daher werden in dem in diesem Kapitel entwickelten Modell
nur die wichtigsten Natrium- und Kalium-Kanéle betrachtet. Der Grundumsatz der
biologischen Zelle wurde bereits in Kapitel 1.2.3 behandelt. In technischen Systemen
kann der Grundumsatz als der Teil der Verlustleistung aufgefasst werden, der in digitalen
Realisierungen im Ruhezustand, d. h. ohne Signalverarbeitung, durch das Schalten der
Gatter in jedem Takt erzeugt wird. In analogen Realisierungen bezeichnet der Grundumsatz
diejenige Leistung, die durch den Ausgleich von Leckstromen und Subschwellenstromen
erzeugt wird (statische Verlustleistung).

Der zweite Teil der Leistung betrifft den Teil, der bei der Informationsverarbeitung und
Informationsiibertragung erzeugt wird. Dieser wird im Folgenden als Informationsum-
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satz bezeichnet. Der Informationsumsatz kennzeichnet in biologischen Nervenzellen die
Leistung, die durch das Erzeugen eines Aktionspotentials und den damit verbundenen
aktiven und passiven Ionen-Ausgleichsvorgingen der Zelle entsteht. In analogen sowie
digitalen Systemen beschreibt dieser Begriff die zusétzliche Verlustleistung, welche durch
die Signalverarbeitung und Erzeugung eines Pulses in der Zelle entsteht (dynamische
Verlustleistung).

P, Gesamt — P, Grundumsatz + A Informationsumsatz (31)

Die in technischen Realisierungen auftretende Verlustleistung durch Leckstrome und
Sperrstrome wird als Grundumsatz betrachtet. Da sie jedoch bei immer kleiner werdenden
Strukturen einen groflen Anteil an der gesamten Verlustleistung annehmen kann, wird an
entsprechender Stelle auf die jeweils abgeschétzte oder gemessene Grofle verwiesen.

3.1 Modellierung des Energieumsatzes: Biophysika-
lisches Grundmodell

Das in diesem Kapitel entworfene biophysikalische Grundmodell betrachtet den Energieum-
satz an der Membran einer Nervenzelle. Dabei spielen verschiedene Transportmechanismen
eine Rolle, deren Beitrag zum Energieumsatz in diesem Kapitel ermittelt werden soll.
Ursache fiir den Energieumsatz ist die Anderung der Konzentration vor allem der Kalium-
und Natrium-Ionen. Die Konzentrationsianderung wird im Ruhezustand des Neurons durch
einen passiven Transport der genannten Ionen durch ionenspezifische Kanéle hervorge-
rufen. Dem entstehenden Ungleichgewicht der Konzentration in Ruhe, vor allem aber
der Anderung des Zellvolumens wird durch einen aktiven Pump-Prozess entgegengewirkt.
Dieser Pump-Prozess arbeitet unter Umsatz von Energie. Wahrend der Erzeugung eines
Aktionspotentials wird das Gleichgewicht der Ionenkonzentrationen stark gestort und muss
unter erhohtem Energieumsatz wiederhergestellt werden. Im ersten Schritt werden der
passive Transport und die grundlegenden Eigenschaften der Zellmembran mathematisch
betrachtet. Anschliefend wird der zum Erhalt des Zellvolumens und zum Ausgleich der
Konzentration notwendige aktive Pumpmechanismus betrachtet und ein Grundmodell fiir
eine biologische Nervenzellmembran erstellt. Darauf aufbauend ist eine Betrachtung der
Erzeugung eines Aktionspotentials moglich, indem die Storung des geregelten Zell-Systems
durch weitere, spannungsabhangige lonenkanéle modelliert wird.

3.1.1 Kanalstrome - passiver Transport

Durch unterschiedliche Konzentrationen eines Typs von Ionen im Zellinnen- und Zellau-
Benraum, wird die Diffusion von Ionen durch die permeable Zellmembran ausgelost. Das
sich dabei einstellende elektrische Potential wird durch das Nernstpotential beschrieben:
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Abbildung 3.1: Elektrischer Ersatzschaltkreis fiir das Membranpotential im
steady-state (angelehnt an [61]).

v, — 2y, ( Cn ) (3.2)

Der Parameter z beschreibt die Anzahl der durch das Ion beigetragenen Ladungen und hat
im Folgenden bei der Betrachtung von K™ und Na® den Wert 1. Die iibrigen Konstanten
sind die universelle Gaskonstante R und die Faradaykonstante F. Daneben geht die
absolute Temperatur 7', sowie die Konzentration des jeweiligen Ions im Zellinnenraum c,
sowie im ZellauBenraum c,, , ein.

Die Uberlagerung der Einzelpotentiale fiir K™-Ionen und Na*-Ionen ergibt das Gesamt-
potential, bei dem zusétzlich die Permeabilitdt P der Zellmembran fiir den jeweiligen
Tonentypen beriicksichtigt werden muss (Goldman-Gleichung [36]).

U:

T B P,
_R'i In ( KCK + NaCNa ) (33)

F PKCK,a + PNaCNa,a

Fir die folgenden Rechnungen wird zur Vereinfachung die relative Permeabilitat P fiir
das Verhéltnis Py,/Px eingefiihrt:

U:

T P
_RT In <CK+CNE‘> (3.4)

F CK,a + PcNa,a

Betrachtet man die Kanéle und auftretende Kanalstrome als rein elektrische Vorgéange, so
lasst sich unter der Annahme der Kanéle als Ohmsche Widerstédnde R, folgende Gleichung
angeben, welche den Stromfluss fiir Na™ von der extrazelluldren zur intrazelluldren
Seite, sowie den Stromfluss von K™ von der intrazelluliren zur extrazelluliren Seite
angibt (siche Abb. 3.1). Im Folgenden wird die hier beschriebene Konvention fiir die
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Stromrichtung angenommen: Der Einstrom von Natrium-Ionen in das Zellinnere wird
durch einen positiven Strom Iy,, der Ausstrom von Kalium-Ionen aus dem Zellinneren in
den extrazellularen Raum wird als negativer Strom Ik beschrieben.

In = ARU” = g, (U~ U,) (3.5)

Dabei beschreibt der Parameter U das Gesamtpotential auf der Membrankapazitat, der
Parameter U,, das Gleichgewichtspotential des jeweiligen Ions n.

Der Strom kann elektrochemisch als Anderung der Anzahl der Ladungstriger mit der Zeit
bzw. als eine Konzentrationsinderung %cn in einem definierten Zellvolumen V; aufgefasst
werden, so dass sich

d
ergibt. Die Konzentrationsanderung kann nun in Abhéngigkeit von den durch die verschie-
denen Tonen hervorgerufenen Potentialen beschrieben werden:

d dn
—Cpy = — U-u, 3.7
dtc gNAV; ( ) ( )

3.1.2 Linearisiertes System

Im Folgenden soll das nichtlineare System (3.7) im Arbeitspunkt, d.h. um die Ruhekon-
zentrationen ck o und ¢, o linearisiert werden. Dazu werden die Nernstpotentiale nach
(3.2) mit Hilfe einer Taylorreihenentwicklung um den Konzentrationsarbeitspunkt ¢, o des
jeweiligen lons linearisiert.

B Cn — Cnpo d (Cn — Cno)? d?
Un(en) = Unlcno) + Td—cnUn(cn,o) + o1 2 Un(cno) + ... (3.8)
T
Un(np) = —RF In (Z:°> (3.9)
d RT 1
—U,(cho) = ——— 3.10
de, (cno) F cnp ( )

T T (c, —
Ulea) ~ — 1y <C"7°> _ BT (en = cno) (3.11)
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In einem weiteren Schritt wird das Gesamtpotential nach (3.4) mit Hilfe einer Taylorreihe
entwickelt:

U ~ —gln (CK,Q—FPCN&’O) RT 1

T F oo+ Pow o o P a a 312
F " \cka+ Pexaa F cxo+ Pxao [(ex — ex0) + P (ena — xao)] (3.12)

Zur Vereinfachung der Schreibweise werden im Folgenden die Taylorkoeffizienten angege-
ben:

Uk = Ukpo+ Uk - (ck — ckp)
Una = UNao + Una1 - (ENa — CNay0) (3.13)
U = U() + U1 . [(CK — CK70) + P (CNa — CNa,O)]

_ _Rry (CK,0> _ _RT 1
= —==In _ —
UK,O F K UK,I F cko
_ BT (e _ _RT_1 3.14
UNa,o F In (CNa,a) UNa,l F cnao ( )
_ _RT CK,0+PCNa,o) _ _RT 1
UO o F 1 (CK,a+PCNa,a Ul - F CK,O+PCNa,O

Dabei beschreibt der Koeffizient U, das Gleichgewichtspotential. Setzt man (3.13) und
(3.14) in (3.7) ein, so erhélt man die Differentialgleichungen fir den potentialabhéngigen
zeitlichen Konzentrationsverlauf der beteiligten Ionen:

d gK
— g =

o (U + U - [(ck — ko) + P (cNa — CNap)]

qNAV; (3.15)
— Uk + Uk - (ck — cko)])

d gNa
_ [ . _ P _
dtCNa qNAV; (Ug -+ U1 [(CK CK’O) -+ (CNa CNa,O)] (316)

— [UNa,o + UNaa * (€Na — ENap)])

T
Mit der Darstellung der Konzentrationen als Vektor ¢ = [CK cNa} lasst sich eine einfache
Darstellung des Gleichungssystems angeben:

d
P M- (c—co)+1Io (3.17)
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gK gK
— (U — Uk,) — (PUY)
gNa gNa
_ _ PU, —
gNAV; () gNAV; (PUL = Unas) ]
— Uy — U,
I, 1 g (Uo K.0) (3.19)

QNA‘[L —GNa (UO - UNa,O)

Der bislang noch offene Parameter P fiir die relative Permeabilitat kann anhand der
Bedingung fiir die Strome durch die Ionenkanéle im Ruhezustand des Systems bestimmt
werden. Das Verhaltnis des passiven lIonenstroms der Natrium-Ionen zum Ionenstrom
der Kalium-Ionen muss 3/2 betragen. Dieses ist das Verhéltnis, in dem die Natrium-
Kalium-Pumpe Ionen aktiv gegen die Flussrichtung der passiven Transportvorgéange durch
die Membran transportiert. Im Ruhezustand sollten sich aktive und passive Transporte
gerade ausgleichen. Aus der Bedingung fiir das Pumpverhéltnis von 3 Natriumionen zu 2
Kaliumionen erhalten wir die Stromgleichung

31k + 2Inap = 0. (3.20)

Mit (3.20) und (3.5) erhalten wir eine weitere Gleichung (3.21) zur Bestimmung des
Gleichgewichtspotentials Uy, dieses mal aus einer elektrischen Sicht.

 9xUko + 29xaUnag
9K + 29Na

Uo (3.21)

Beide Losungen fiir das Gleichgewichtspotential — (3.14) und (3.21) — kénnen gleichgesetzt
und nach dem Parameter der relativen Permeabilitat P aufgelost werden. Die relative
Permeabilitat ist damit hauptsachlich von den Leitwerten g, der Ionenkanale abhangig.
Dieses eroffnet die Moglichkeit, die Erzeugung eines Aktionspotentials durch Modulation
der Tonenkanal-Leitwerte zu modellieren und im weiteren Abschnitt spannungsgesteuerte
Ionenkanéle in das Modell einzubringen.

Zob 2 gNa
p gNa CK,0 — CKa ° exp(— [{gf) ] Uk, + g‘(;i UNa0
- vy Wit Up = o (3.22)
IK CNa,0 — CNaya * €XP(— 757 ) 1+2 s
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3.1.3 Pumpstrome - aktiver Transport

Durch den aktiven Transport von Ionen durch die Na™-K™-Pumpe unter Hydrolyse eines
ATP-Molekiils wird ebenfalls eine Konzentrationséanderung in der Zelle hervorgerufen.
Dabei werden aktiv 3 Na'-Ionen aus der Zelle heraus und 2 K*-Ionen in die Zelle
hinein transportiert. Dieses lasst sich durch eine Konzentrationsanderung mit dem Term
(3.23) beschreiben. Dabei ist auf die richtige Wahl der Vorzeichen zu achten. Der aktive
Ausstrom von Natrium-Ionen durch die Natrium-Kalium-Pumpe wird vorzeichenrichtig mit
negativem Vorzeichen beschrieben. Dieses ist durch die Abnahme der Na™-Konzentration
im Zellinneren gegeben.

d . k| -2 =2
P W - (¢ — ¢coNak) mit W = T [ 3 3 1 (3.23)

Die Anderung der Konzentration von Na™ und K™ erfolgt an dieser Stelle in Abhéngigkeit
von der Gesamtkonzentration beider Ionenarten, um einerseits einen gleichbleibenden
Austausch der Ionen im Verhéltnis 3/2 zu gewéhrleisten, andererseits um die NaK-ATPase
abhangig von der Konzentration der Ionen selbst zu machen. Diese Konzentrationsab-
héngigkeit wurde bereits in [6] beschrieben. Der zusétzliche Parameter ¢ nak ist noch in
Abhéngigkeit von der Gesamtbilanz zu wahlen und beschreibt die Konzentration, bei der
die NaK-ATPase beginnt zu arbeiten.

Berechnung der Konzentration cy nak

Im Ruhezustand (¢ = ¢p) muss der Ruhestrom Iy durch den aktiven Transport von Ionen
durch die Natrium-Kalium-Pumpe ausgeglichen werden. Dazu ist die Bedingung

d
ﬁc =0= Ig + W - (C - cO,NaK) (324)

zu erfullen.

Durch Summation aller in diesem Kapitel betrachteten Ausgleichsvorgénge ergibt sich die
Gesamtbilanz der Konzentrationsinderung zu

d
ac =M- (C — Co) + Io +W-. (C — cO,NaK) . (325)

Was vorerst offen bleibt, ist die Bestimmung der Pumpzyklen der Matrix W aus (3.25),
welche den Einfluss der Natrium-Kalium-Pumpe auf die Anderung der Gesamtkonzentra-
tion beschreibt. Im Weiteren soll dieser Teil durch Anwendung der Regelungstechnik auf
das stabilisierende Element der Zelle — die Natrium-Kalium-Pumpe — behandelt werden.
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3.1.4 Betrachtung der Natrium-Kalium-Pumpe als regelungs-
technisches Problem

Konzentrieren wir uns auf die Natrium-Kalium-Pumpe als priméren Mechanismus zur
Aufrechterhaltung des Membranpotentials, stellt sich die Frage, wie diese Pumpe so
modelliert werden kann, dass die Modellierung eine Aussage iiber den Energiebedarf von
Nervenzellen erlaubt. In [69] wurden Erweiterungen des oben hergeleiteten Modells fiir
ein Neuron vorgenommen, welche es erlauben, den aktiven Transport von Natrium- und
Kalium-Ionen durch die NaK-ATPase als zusétzlichen Term des Gleichungssystems (3.17)
zu beschreiben. Der zusétzliche Term unterliegt dabei besonderen Bedingungen, insbe-
sondere Einschrankungen und Vorkehrungen beziiglich der Stabilitat des Gesamtsystems.
Die in [69] vorgenommenen Berechnungen beziiglich Stabilitat des Systems beziehen sich
dabei ausschlieSlich auf das linearisierte System. Prinzipiell kann der zusatzliche Term
als Regler verstanden werden, der in dieser Arbeit mit Hilfe eines regelungstechnischen
Ansatzes modelliert werden soll. Im Folgenden wird die Natrium-Kalium-Pumpe als
Regler eines geschlossenen Systems (das Neuron) im klassischen Sinne betrachtet. Die
Nomenklatur diese Abschnitts orientiert sich an dem Standardwerk von Foéllinger [29]
mit dem Unterschied, dass die Matrix M hier als Systemmatrix und nicht als Vorfilter
genutzt wird (siehe Abb. 3.2). Das Neuron selbst weist dabei zwei Kontrollvariablen
auf, den Natrium-Ionen- und Kalium-Ionen-Fluss in Form der zeitlichen Anderung der
Ionenkonzentrationen. Das Mehrgrofensystem wird daher im Folgenden mit der Methode
der Polvorgabe stabilisiert.

Der Regel-Vektor R kann direkt aus den Eigenwerten und Eigenvektoren der Systemmatrix
M bestimmt werden:

R=V. (diag()\l, )\2) — diag()\Rl, )\Rg)) . V_l (326)

Dabei beschreiben V die Matrix der Eigenvektoren der Systemmatrix M und ), die
Eigenwerte von M. Um das System zu stabilisieren, werden die dominanten Pole des
Regelkreises durch im Allgemeinen freie Wahl der Eigenwerte des Regelvektors R in
die linke komplexe Halbebene bewegt. Fiir die Polvorgabe in Mehrgroflensystemen ist
die Wahl geeigneter Eigenwerte A\g,, nur bei Vorliegen der Regelungsnormalform intuitiv
moglich, fiir alle andere Falle werden in der Regel geeignete Werte durch numerische
Simulation bestimmt. Durch Simulation des Systems mit verschiedenen Werten fiir die
Eigenwerte g, wurde ein optimaler Wert von )\, = —5 - 10* ermittelt. Bei dieser Wahl
konvergiert die Ionenkozentration nach Auslenkung des Systems nach Auslosen eines
Aktionspotentials innerhalb der physiologisch sinnvollen Zeit von 1 ms wieder gegen die
jeweilige Ruhekonzentration.

Die Besonderheit an der hier gewahlten Vorgehensweise ist, dass der Regler zwar am
linearisierten System ausgelegt wird, spéater aber genauso das nichtlineare System aus-
regeln kann. Dieses wird in einem spéateren Abschnitt anhand von Simulationen und
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Abbildung 3.2: Nomenklatur zum Reglerentwurf fiir das geschlossene regelungs-
technische System.
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Abbildung 3.3: Trajektorien des Verlaufs der Ionenkonzentrationen im ein-
fachen nichtlinearen Neuronenmodell mit a) geschlossenem
Regelkreis und b) offenem Regelkreis bei verschiedenen An-
fangsbedingungen.
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der Darstellung der Eigenbewegungen des Systems, d. h. der Darstellung der zeitlichen
Verlaufe der Ionenkonzentrationen in einem Phasenplot, gezeigt (siche auch [111]).

In Abb. 3.3, sind die Eigenbewegungen des Neuronenmodells mit geschlossenem und
offenem Regelkreis in einem Phasenplot dargestellt. Dabei wird der zeitliche Verlauf der
Variablen des geregelten Systems, in diesem Fall der Natrium- und Kaliumionenkonzen-
tration (cn, und ck) aufgetragen. Ausgehend von verschiedenen Anfangskonzentrationen
eines physiologisch sinnvollen Konzentrationsbereiches stabilisiert der eingefithrte Regler
die Tonenkonzentrationen im Zellinneren des Neuronenmodells im physiologischen Ar-
beitspunkt cx o, cnao und lasst das System nach Auslenkung bzw. Start der Simulation
in diesen zuriickkehren. In Abb. 3.3a ist die Bewegung des Systems mit der Zeit bei
geschlossenem Regelkreis dargestellt. In der daneben dargestellten Abbildung 3.3b sind die
Eigenbewegungen des Systems nach Entfernung des Reglers dargestellt. Das ungeregelte
System strebt darin zu einer Ruhelage [ck a, CNaa), in der die Ionenkonzentrationen auf
beiden Seiten der Zellmembran ausgeglichen sind.

3.1.5 Stabilitatspriifung des nichtlinearen, geregelten Systems
mittels Ljapunov-Verfahren

Im Folgenden soll die durch numerische Betrachtungen gezeigte Stabilitat des geregelten,
nichtlinearen Systems mathematisch mit der Methode nach Ljapunov verifiziert werden.
Dazu wird das geregelte System in seiner zu erreichenden Ruhelage bei der Ruhekonzen-
tration ¢ = 0 betrachtet. Die Analyse der Stabilitdt nach dem Verfahren von Ljapunov
erfordert die Einfiithrung des Begriffs der Definitheit.

Definition 1 FEine stetige Funktion V (c) heifit positiv definit in einer Umgebung i, falls
qgilt
V(0)=0 und

V(c)>0 Vecell, c#0. (3.27)

FEine stetige Funktion V (c) ist negativ definit, wenn die Funktion —V (c) positiv definit ist.

Definition 2 Sei ¢ = f(c) ein dynamisches System mit Fixpunkt co = 0. Dann ist V
eine strenge Ljapunov-Funktion des Systems in einer Umgebung 3 von ¢y, falls gilt

o V ist positiv definit Vc e
e V ist negativ definit Vc e il

. V(c):%—‘é (c) Veced

Existiert in einer Umgebung ¢ = 0 der betrachteten Ruhelage des geregelten Systems eine
strenge Ljapunov-Funktion, ist diese Ruhelage asymptotisch stabil.
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Gegeben ist diesem Fall das nichtlineare geregelte System (Abb. 3.2) in Form eines
Differentialgleichungssystems in ¢ = f(c), dessen Ruhelage bei ¢y = [cko  cnao]” liegt.
Da die Priifung der Stabilitat nach Ljapunov eine Ruhelage in 0 fordert, wird das gesamte
System durch die Substitution von

ck = ¢k, + Ack und

3.28
CNa = CNa,0 + ACNaL ( )

verschoben, so dass die Ruhelage in den Ursprung gebracht wird. Abschlieend liegt das
System als Differentialgleichungssystem in den neuen Koordinaten Ac vor.

Aee 1 [ gx(U = Uk)

qNAV; | gxa(U = Una) ] ~ (R(c — o) + 1) (3.29)

Zur Vereinfachung der Schreibweise wird im Folgenden der Vektor Ac wieder durch ¢
ersetzt. Wir haben nun ein System gegeben, das die Bedingungen ¢ = f(c) und f(0) =0
erfilllt und suchen eine dazu gehorende Ljapunov-Funktion V' (c).

Als Ljapunov-Funktion wird V(c) = ¢'1c gewihlt, deren Eigenwerte positiv sind. Damit
wird V'(c) positiv definit.

Die Ableitung der Ljapunov-Funktion wird so zu:

dV (c)
Jdc

= 2[6}( CNa] (330)

Um die Ljapunov-Stabilitat nachweisen zu kénnen, muss das Produkt aus der Ableitung

und der Systembeschreibung um die Ruhelage negativ definit sein (V' (c) < 0).

] —(Re+1,)| <0 (3.31)

2ex cNa].l ! [QK(U—UK)

T aNAV; | gna(U = Una)

Nach numerischer Auswertung ist die in (3.31) gegebene Bedingung fir die gewahlten
Parameter des geregelten Systems innerhalb physiologisch sinnvoller Grenzen um die
Ruhelage erfiillt (siehe Abbildung 3.4) und das System damit stabil.

3.1.6 Erweiterung des Grundmodells zu einem Modell fiir Sy-
napse und Dendrit

Das in diesem Abschnitt vorgestellte Synapsenmodell beruht auf dem Grundmodell der
Nervenzelle, welches in Kapitel 3.1 bereits ausfithrlich hergeleitet wurde. Die Ausarbeitung
dieser Erweiterung wurde bereits von Loffler [69] vorgenommen und wird zum besseren
Verstandnis an dieser Stelle kurz wiederholt, da die Simulation des Minimalsystems aus
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Abbildung 3.4: Darstellung von V(c) fiir das geregelte System. In der Umge-
bung der Ruhelage ist die Funktion negativ definit und die
Ruhelage damit stabil.
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dem Modell fiir das Neuron mit Erzeugung eines Aktionspotentials sowie dem Modell fiir
die Synapse besteht.

Die Erregung der Synapse durch ein eintreffendes Aktionspotential ruft eine Erh6hung
der Neurotransmitterkonzentration an den Rezeptoren des empfangenden Neurons her-
vor. Dieses hat den Effekt, dass sich die Leitwerte der transmittergesteuerten Natrium-
und Kalium-Kanale zeitlich andern. Hier wird, statt einen Strom in das Neuron zu
injizieren und damit ein bestimmtes Membranpotential hervorzurufen, direkt an den
ionenspezifischen Leitwerten der Zellmembran angesetzt, wie in [13, 25] vorgeschlagen.
Das Membranpotential ergibt sich in der Folge aus den geédnderten Ionenkonzentrationen
die durch die Anderung der Leitwerte der Zellmembran hervorgerufen werden. In dem hier
vorliegenden Modell wird davon ausgegangen, dass die sich zuséatzlich 6ffnenden Kanéle io-
nenunspezifisch sind und die Zunahme des Leitwerts auf Natrium- und Kalium-Ionenkanal
den gleichen Einfluss hat. Diese Annahme kann mathematisch durch den Term

gx(t) = gk + G(1)
gNa(t) = 0gNa + G<t> (332)
G(t) = gcA(t)

ausgedriickt werden. Hier beschreibt der Parameter g. den Leitwert eines einzelnen Kanals
(im Sinne der Stérke der Synapse) und die Funktion A(t) den zeitbehafteten Verlauf
der Anzahl der zuséatzlich geotffneten Ionenkanéle. Die Anzahl der zuséatzlich geéffneten
(oder geschlossenen) Kanéle hangt von der Konzentration der gebundenen (oder freien)
Neurotransmitter ab. Die Dynamik der Transmitter(7")-Rezeptor(R)-Bindung kann mit
der chemischen Reaktionsgleichung

(freier Transmitter) R+7T = B % A= RT* (gebundener Transmitter)  (3.33)

beschrieben werden. Wir erhalten Differentialgleichungen fiir A und B, welche von den
Ubergangswahrscheinlichkeiten zwischen gebundenem oder freiem Transmitter abhingen:

d d

—A=aB—-pA, —B=p(A-aB 3.34
Die Ubergangswahrscheinlichkeit o wird nun mit einem zeitabhingigen Neurotransmitter-
Profil variiert. Dabei wird der Term « durch « - ¢(t) ersetzt, wobei ¢(t) den Zeitverlauf
des Transmitterprofils beschreibt.

d

%A =aq(t)(A+B—A)—pA (3.35)
Nach Multiplikation von (3.35) mit g. und Anwendung des Terms G(t) = g.A(t) erhalt
man eine Differentialgleichung mit zeitabhéngigen Koeffizienten fiir den Zusatzleitwert
G(t), der im Wesentlichen vom Neurotransmitter-Profil ¢(¢) abhéngig ist.
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Abbildung 3.5: Zeitabhéngige Leitwerte gk und gn. an der Synapse. Zum Zeit-
punkt t = 1 ms wird die starke Synapse erregt, zum Zeitpunkt
t = 3ms wird die schwache Synapse erregt.

6(1) = a(r) | g (A + B) ~ A1) | ~ 5 g:A() (3.36)

Gs G(t) G(t)

G ist ein Leitwert, der bei Sattigung auftritt, d. h. wenn alle lonenkanéle gedffnet sind.
Die Losung dieser Differentialgleichung ist

G(t) = [Go +aGg /0 t q(t") exp (ﬁt” +a /0 " q(t’)dt’> dt”]

- exp (— (ﬁt + oz/(fq(t’)dt’)) .

In den spéter gezeigten Simulationen wird die a-Funktion als Form des Neurotransmitter-
Profils ¢(t) genutzt. Fiir eine schnelle Synapse nach [19] werden in den Simulationen die
Parameter o = 2ms™! und 3 = 1 ms™! genutzt.

(3.37)

In Abb. 3.5 ist der Verlauf der zeitabhéngigen Leitwerte der Natrium- und Kaliumkanaéle bei
Erregung der Zellmembran mit zwei verschieden starken Synapsen zu zwei verschiedenen
Zeitpunkten dargestellt. Der Einfluss der Synapsen auf die Leitwerte der Zellmembran
wird jeweils mit einer a-Funktion modelliert.
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3.1.7 Modellierung eines Aktionspotentials

Um das Minimalmodell fiir eine Simulation zu komplettieren, muss an dieser Stelle
noch die Erzeugung eines Aktionspotentials modelliert werden. Auch hier kann auf das
Grundmodell zuriickgegriffen werden. Das Aktionspotential wird durch eine abrupte
Anderung der Leitfihigkeit erzeugt, welche vom Membranpotential durch die sogenannten
spannungsabhéngigen Kanéle (voltage-gated channels) abhéngig ist. Daher werden im
Folgenden zeitbehaftete ionenspezifische Leitwerte gk (¢) und gna(t) eingefithrt, welche
direkt aus einem Hodgkin-Huxley Modell [50] abgeleitet werden konnen. Tatséchlich
beschreibt die nachfolgende Darstellung nur eine Approximation des Hodgkin-Huxley
Modells, bewahrt jedoch dessen grundlegende Eigenschaften.

gk (t) = gk + Gk(t) mit  Gk(t) = gxn(t)*

A ' - (3.38)
na(t) = gna + Gra(t) mit G (t) = gnam(t)>h(t)

Die Zeitverlaufe der Koeffizienten m(t), n(t) und h(t) kénnen durch inhomogene Differenti-
algleichungen dargestellt werden, wie diese in der Arbeit von Loffler [69] hergeleitet wurden.
An dieser Stelle soll noch einmal beispielhaft die Losung fiir den Parameter m(t) gezeigt
werden. Wie schon im letzten Abschnitt wird bei der chemischen Reaktionsgleichung

am (U=U )
l—-me——m (3.39)

Bm(U—-Ury)
begonnen. Die Parameter o, und 3,, beschreiben die Wahrscheinlichkeit des Ubergangs
eines Ionenkanals vom offenen zum geschlossenen Zustand. Die Schwellenspannung ist
mit Ury angegeben, U beschreibt das Membranpotential. Diese Darstellung fithrt zu der

inhomogenen Differentialgleichung

CZm = ap, (U(t) = Urn) — m o, (U(t) = Urn) + B (U(t) — Urn)] (3.40)

mit ihren stiickweise definierten Koeffizienten a,, und (,, und der Losung

O

p— (3.41)

m(t) = moexp (— (i + Bm) t) +
Diese Gleichungen miissen partiell gelost werden, da die Parameter «,,, und (3,, spannungs-
abhéngig sind. Die Parameter, welche bendtigt werden um die Funktionen von m, n und
h zu bestimmen, wurden [24] entnommen. Ein typischer Zeitverlauf fiir die Funktionen
m(t), n(t), und h(t) ist in Abb. 3.6a dargestellt. Die daraus resultierende Leitfahigkeit der
Kalium- und Natrium-Kanéle wiahrend eines Aktionspotentials ist in Abb. 3.6b dargestellt.
Das Membranpotential bzw. Aktionspotential ergibt sich aus der verdnderten Konzen-
tration der Natrium- und Kalium-Ionen durch die zeitabhéngig zusétzlich geoffneten
Kanale.
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Abbildung 3.6: Zeitverlauf (a) der Koeffizienten m(t), n(t) und h(t) und (b)
der daraus resultierenden Leitwerte der Kalium- und Natrium-
Kanale fiir ein bei t=3,7 ms ausgelostes Aktionspotential.
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3.1.8 Simulation eines Minimalsystems

Das in den vorhergegangenen Kapiteln beschriebene biophysikalische Neuronenmodell
wurde als Modell in der MATLAB/Simulink-Umgebung aufgebaut. Dazu wurde das grund-
legende Zellmodell (Kapitel 3.1) mit dem vorgestellten Regler (Kapitel 3.1.4) als Modell
fiir die Natrium-Kalium-Pumpe als aktivem Transportmechanismus aufgebaut. Zusétzlich
wurden zwei Synapsen und ihre Antwort auf prasynaptische Aktionspotentiale integriert,
um die Auswirkungen der spannungsgesteuerten Ionenkanéle und die Aktionspotentialer-
zeugung dieses Modells zu zeigen. Beide Synapsen wurden mittels eines einfachen Modells
eines Dendrits an das postsynaptische Neuron angeschlossen. Die Stiarke der Synapse kann
durch den Leitwertparameter g, fiir jede einzelne Synapse separat voreingestellt werden,
so dass an dieser Stelle eine starke Synapse sowie eine schwache Synapse simuliert werden
konnen. Alle in MATLAB/Simulink aufgebauten Blocke basieren auf demselben Grund-
modell mit closed-loop Regler. Die schematischen Darstellungen der Simulink-Blocke des
Zellmembranmodells, Axonhiigels und der Aktionspotentialauslosung, sowie des Reglers
und eine Ubersicht des Minimalsystems sind im Anhang C aufgefithrt. Im Folgenden sollen
noch einmal die Eigenschaften des Grundmodells anhand von Simulationen iiberpriift
werden und es soll gezeigt werden, dass der am linearisierten System entworfene Regler
auch das nichtlineare System stabilisieren kann.

Der Phasenplot in Abbildung 3.7a zeigt die Trajektorie der Konzentrationen von Natrium
und Kalium eines simulierten Neurons bei einer erhohter Feuerschwelle. Bei der Erregung
des Neurons mit externen Stimuli wird in dieser Simulation kein Aktionspotential ausgelost
und die Ionenkonzentrationen werden nach einer Auslenkung wieder im Arbeitspunkt
stabilisiert. Dagegen zeigt der Phasenplot in Abb. 3.7b die Trajektorie der Konzentra-
tionen fiir ein Neuron mit normaler Feuerschwelle, bei dem ein Aktionspotential durch
spannungsinduzierte Konzentrationsanderung und das damit verbundene Uberschreiten
der Feuerschwelle ausgelost wird. Das Aktionspotential stellt eine starke nichtlineare
Storung des Systems dar, welche die Ionenkonzentrationen weiter auslenkt. Nach dem Ab-
klingen des Aktionspotentials wird das System durch den Regler wieder im Arbeitspunkt
stabilisiert.

In Abbildung 3.8a ist der Verlauf des Membranpotentials des simulierten Neuronenmodells
mit Axon und kleinem Dendriten fiir eine Simulationsdauer von 10 ms dargestellt. Das
Neuron wird tiber eine schwache Synapse und eine starke Synapse erregt. Dabei wird den
Synapsen eine a-Funktion zu den Zeitpunkten ¢; = 1 ms und ¢, = 3ms als Simulation
eines Aktionspotentials von prasynaptischen Neuronen eingepragt, welche den zeitlichen
Verlauf an zusétzlichen geoffneten Natrium und Kalium-Kanélen beschreibt. Die Starke
der Synapse wird durch die Amplitude der gewichteten a-Funktion bestimmt. Das Uber-
schreiten der Feuerschwelle am Neuron fiihrt zum Auslosen eines Aktionspotentials durch
die spannungsgesteuerten lonenkanéle, wie in Kapitel 3.1.7 beschrieben. In Abbildung 3.8b
ist die mit dem Potentialverlauf korrespondierende Leistungsaufnahme der NaK-ATPase
abgebildet, welche sich direkt aus der Anzahl der Pumpzyklen des eingesetzten Reglers
ergibt.
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Abbildung 3.7: Trajektorien der Natrium- und Kalium-Konzentration des simu-
lierten Neuronenmodells (a) ohne Aktionspotentialerzeugung
(iiberhohte Feuerschwelle) und (b) mit Aktionspotentialerzeu-
gung (normale Feuerschwelle).
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Abbildung 3.8: Simulationsergebnis des geregelten Systems mit zwei Synapsen

(eine schwache Synapse, eine starke Synapse). Die Erregung des
Neurons erfolgt zu den Zeitpunkten ¢; = 1 ms und t, = 3ms
iiber eine eingepragte a-Funktion an den Synapsen.
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Das Auslosen eines Aktionspotentials durch einen einzelnen Puls an einer einzelnen
Synapse mag biologisch nicht plausibel erscheinen, jedoch lassen sich die hier verwendeten
Beschreibungen der schwachen und starken Synapse auch als postsynaptisches Potential
einer Gruppe von zum gleichen Zeitpunkt erregten Synapsen auffassen. Dieses wahrt die
Konsistenz zu Beschreibungen aus den Neurowissenschaften.

Wie erwartet ergibt sich das Maximum des Energieumsatzes der NaK-ATPase zum
Zeitpunkt der Auslosung des Aktionspotentials am Neuron, wenn der abrupte spannungs-
induzierte Ioneneinstrom und Ionenausstrom von der Pumpe ausgeglichen werden muss.
In Ruhe wird in diesem Neuronenmodell eine Leistung von 2.4 fW erzeugt und steigt beim
Auslésen eines Aktionspotentials auf maximal 87.0nW an. Die ermittelten Ergebnisse
héngen allerdings direkt von den zu Grunde gelegten Leitwerten und den eingestellten
elektrischen Eigenschaften und den geometrischen Abmessungen der Nervenzelle im Modell
ab (z.B. Leitwerte und Zellvolumen, siehe (3.1.2)), und lassen sich somit leicht an neue
biologische Erkenntnisse anpassen. Die fiir die hier dargestellten Simulationen verwendeten
Parameter finden sich in Tab. 3.1.

Neben der dynamischen Erregung des Neurons iiber einzelne exzitatorische Aktionspoten-
tiale wird in der Literatur haufig das Verhalten eines Neurons bei Erregung mit einem
konstantem Eingangsstrom beschrieben. Dieses soll an dieser Stelle in einer Simulation
nachgebildet werden, um die Grundfunktionalitit des Modells zu zeigen. Fiir diesen
Fall wurde der injizierte Strom iiber einen konstanten Aufschlag auf die Leitwerte der
Ionenkanéle modelliert. Die Erregung des Neurons mit einem iiber langere Zeit konstanten
Eingangsstrom fiihrt zu einer in der Simulation beobachtbarer Aussendung von Aktionspo-
tentialfolgen. Der Verlauf des Eingangsstroms und das Membranpotential sind in Abb. 3.9
dargestellt.

Um den aus den Simulationen ermittelten Energieumsatz des biophysikalische Neuronen-
modells mit Natrium-Kalium-Regler mit den Angaben zum Energiebedarf biologischer
Neurone aus der Literatur und dem Energiebedarf technischer Implementierungen ver-
gleichen zu konnen, wurde die durch den Regler umgesetzte Energie wahrend eines 1 ms
dauernden Aktionspotentials sowie die Energie zur Erhaltung des Ruhepotentials ermittelt.
Die Integration der momentanen Verlustleistung des Modells wahrend der Erzeugung und
des anschliefenden Abbaus eines Aktionspotentials fithrt zu einem Wert von 34 pJ/Puls.
Der ermittelte Wert liegt leicht iiber der Angabe in [8], welche den Zellkérper und das
Axon getrennt mit unterschiedlichen Parametern betrachten, aber nur ein Gesamtergebnis
angeben. Der in der Simulation mit einer Spitzenleistung von 84 nW auftretende starke
Puls des Aktionspotentials benotigt nur einen Bruchteil der Zeit des gesamten Aktionspo-
tentials von ca. 1 ms. Dagegen betragt die fiir das Ruhepotential aufgewandte Energie
des Grundmodells ohne Einbringen einer Stérung je Sekunde lediglich 2,4 fJ. Gegeniiber
der Ruheleistung ist die pro Aktionspotential aufgewandte Energie grof8, jedoch wird die
wahrend des Aktionspotentials umgesetzte Energie durch den Abbau der weiter laufenden
synaptischen Erregung tiberlagert, so dass das der angegebene Wert die Summe aus beiden
Prozessen darstellt. Beide Prozesse lassen sich natiirlich nicht trennen, so dass in den
weiteren Betrachtungen auf den angegebenen Wert zurtickgegriffen wird.
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Abbildung 3.9: Erregung des Neurons mit konstantem Strom.

3.2 Modellierung des Energieumsatzes mit elektri-
schen Schaltkreisen

Im nachfolgenden Abschnitt wird vom Modell der Ionenpumpe des biologischen Neurons
auf den Energieumsatz eines in CMOS-Technologie umgesetzten Neurons iibergegangen.
Dazu wird zuerst der Energiebedarf des biologischen Pendants im Ruhezustand betrachtet
und anschlieend das elektrische Modell eines LIAF-Neurons eingefiihrt. Durch Betrach-
tung der Vorgénge im elektrischen Modell des LIAF-Neurons wird eine Gleichung fiir das
Ubertragungsverhalten von in das einlaufenden Strompulsen auf den Ausgang des Neurons
hergeleitet. Diese wird im Anschluss fiir die allgemeine Form des SRM-Neurons erweitert
und wird im folgenden Kapitel zur Abschatzung der Verlustleistung des implementierten
LIAF-Neurons genutzt.

3.2.1 Abschiatzungen zum Energiebedarf biologischer Neurone
am Ersatzschaltbild im steady-state

Im Folgenden wird der Energieumsatz einer Granularzelle und einer Purkinje-Zelle des
menschlichen Gehirns im steady-state, dem Gleichgewichtsfall des Membranpotentials
abgeschéatzt. Der steady-state liegt dann vor, wenn der aktive Transportmechanismus
der NaK-ATPase die passiven Ionenstrome durch die Membran ausgleichen und so einen
metastabilen Zustand schaffen. Wie im Abschnitt iiber die NaK-ATPase bereits diskutiert,
erfolgt hier der Transport von 3 Na'-Ionen aus dem intrazelluliren Raum zum extrazel-
luldren Raum und der Transport von 2 K™-Ionen aus dem extrazelluliren Raum in den
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intrazelluldren Raum unter Hydrolyse von ATP zu ADP und einem Phosphatrest. Im
steady-state wird so der Einstrom von Natrium im Verhéltnis von 3/2 zu Kalium durch
die NaK-ATPase ausgeglichen. Damit gilt die Beziehung:

. 3
INao = —f - Ixo mit f=

5 (3.42)

Nun kann mit den Beziehungen

Ina = —YNa (Umem - UNa) , Ik = —9K (Umem - UK) (343>

und den Nernst-Potentialen Unao = % In zg—*: und Uk g = % In ZE—; die Gleichgewichtsbe-
dingung zum Ruhemembranpotential unter Beriicksichtigung der NaK-ATPase umgestellt
werden:

gNa (Umem — Unayo) + [+ 9k - (Umem — Uk o) =0 (3.44)

U INaUnao + f - 9xUxk o
mem gNa —"_ f . gK

(3.45)

Mit diesem Ruhemembranpotential wird der Natrium-Strom berechnet, der durch die
NaK-ATPase ausgeglichen wird. Die durchschnittliche Leistungsaufnahme eines einzelnen
Neurons im Ruhezustand errechnet sich zu

A gna
PNeuron,steadystate — _46 kJ/IIlOl . F . gg

wobei der hinzugekommene Parameter A die Mantelfliche der Zelle beschreibt.

: (Umem - UNa,O)a (346>

Daraus ergibt sich fiir eine einzelne Granularzelle mit den Parametern nach Tabelle 3.1
eine Leistung von 1,08 pW und fiir eine Purkinje-Zelle eine durchschnittliche Leistung
von 69, 3 pW.

Diese Ergebnisse liegen in der GroBenordnung der Angaben aus [8] fiir den Grundumsatz
einer Zelle zur Erhaltung des Ruhepotentials.

3.3 Modellierung eines LIAF Neurons mit elektri-
schen Ersatzschaltkreisen
Gegeben sei das in Abb. 3.10 dargestellte Modell der Zellmembran eines LIAF Neurons.

Dieser Schaltkreis modelliert — wenn er auch auf den ersten Blick einfach erscheint — die
Zellmembran mit ihren passiven elektrischen Eigenschaften gut. Der im Eingangspfad
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Tabelle 3.1: Tonenkonzentrationen, Nernst-Potentiale und Leitwerte fiir ver-
schiedene Ionenarten in Zellen im steady-state [86].

Parameter Wert Beschreibung
CNa,0 12mmol/l intrazellulare Natriumkonzentration
CNa,a 145mmol/1  extrazellulare Natriumkonzentration
CK,0 155 mmol/l intrazellulire Kaliumkonzentration
CKa 4mmol/l extrazellulire Kaliumkonzentration
UNa.0 64,42mV  Nernst-Potential fir Natrium (T=300K)
Uk o —95,54mV  Nernst-Potential fiir Kalium (T=300K)
9Na 14,32 uS/cm?  Natriumleitwert im steady-state
K 170,90 uS/cm?  Kaliumleitwert im steady-state
dGranular 10 um  Durchmesser einer Granularzelle (Kornerzelle)
dpurkinje 80 um  Durchmesser einer Purkinje-Zelle
Umem —89,97mV  Gleichgewichtspotential nach (3.45) (T=300K™")

liegende Widerstand beschreibt den Vorgang, der beim Eintreffen eines Aktionspotentials
an der Synapse passiert, an welcher der Spannungshub des Aktionspotentials iiber die
Freisetzung chemischer Botenstoffe zu einer Konformationsianderung der Ionenkanéle und
damit zu einem Einstrom von lonen in die Zelle fithrt. Genauso kann der Widerstand
als sehr einfaches Modell des Dendriten aufgefasst werden, wobei fiir eine genauere
Beschreibung des Dendriten auf die Losung der Kabelgleichungen zuriickgegriffen werden
sollte.

Die in Abb. 3.10 eingezeichnete Kapazitat mit parallel geschaltetem Leitwert beschreibt
im ersten Schritt die passive Zellmembran, die durch den Einstrom von Ionen und dem
damit verbundenen Ladungsunterschied zwischen intra- und extrazellularem Raum auf
ein bestimmtes Membranpotential aufgeladen wird. Gleichzeitig sorgt der Leitwert fiir
eine Abnahme des Ladungsunterschieds und einen effektiven Ausstrom von lonen mit 4je.
durch die Natrium-Kalium-Pumpe und modelliert so praktisch einen aktiven Mechanismus
der Zellmembran. Obwohl durch diesen Leitwert praktisch nur der Natrium-Austausch an
der Zellmembran betrachtet wird, zeigt dieses elektrische Modell die Eigenschaften eines
Neurons, da in erster Naherung angenommen werden kann, dass das Austauschverhéltnis
von Natrium und Kalium aneinander gekoppelt ist.

Weiterhin wird durch den Leitwert das Unterschwellenverhalten der Zellmembran (vgl.
Kapitel 1.3) durch spannungsgesteuerte Kaliumkanéle nachgebildet, welche dafiir sorgen,
dass erst ein starker Eingangsstrom die Zellmembran stark depolarisieren und zum
Auslosen eines Aktionspotentials fiihren kann. Dieses Verhalten wird auch in Kap. 3.4.2
aus dem einfachen elektrischen Modell abgeleitet.
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Abbildung 3.10: Vereinfachtes Modell der Zellmembran mit Berticksichtigung
des Leckstroms.

3.3.1 Passives Entladen der Kapazitit iiber Leckstrome

Der Leitwert gieq fir die Entladung durch Leckstrome wird durch die Abschétzung der
ITRS fiir die obere Grenze der Leckstrome jeax, max bei der maximal auf der Kapazitat
auftretenden Spannung ¢ max bestimmt.

ileak, max ileak t=20

Jleak = = ( ) (347)
U, max Udd

Der so von der Spannung auf der Kapazitit abhiangige Leckstrom wird im ersten Schritt

als alleiniger Grund fiir die Entladung der Kapazitéit betrachtet. Zum Zeitpunkt ¢ = 0 sei

die Kapazitat auf einen Wert ., max aufgeladen.

C' du.(t)
Jleak dt

ue(t) + =0, Ue(t = 0) = Ue, max (3.48)

Die Losung der Differentialgleichung (3.48) lautet:

(3.49)

_t .
Ue(t) = Ue, max - € 7 mit 7= p
leak

3.3.2 Aktives Laden der Kapazitiat unter Beriicksichtigung von
Leckstromen

Dem aktiven Aufladen der Kapazitiat C' durch die hier idealisierte Spannungsquelle u,
wirken die Leckstrome, berticksichtigt durch den Leitwert gieak, entgegen. Als mathemati-
sche Beschreibung des Aufladevorgangs folgt mit der Randbedingung u.(t = 0) = u. aus
der Differentialgleichung

uc(t) (1 + R- gleak) + Rcduc;t(t) = Ue (350)
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die Losung

U RC
——  mit = 3.51
1+R'gleak ’ ]-+R'gleak ( )

e

u(t) = Uep — —— ) emF 4
7 1+R'gleak

Im Folgenden wird angenommen, der Eingang des Neurons sei mit einer idealen Stromquelle
mit konstanten Strom [ beschaltet. Dadurch reduziert sich die Differentialgleichung unter
Vernachléassigung des Leitungswiderstands zu der Form

C duc(t) I
Gleak dt gleak.

ue(t) + (3.52)
Die Loésung dieses Terms ist unter der Bedingung u.(t = 0) = u.o in (3.53) gegeben.

1

Jleak

ue(t) = ucp - e T 4 : (1 - e_ﬁ) mit 7= (3.53)

Jleak

3.4 Verlustleistung

Die Verlustleistung des hier beschriebenen Modells der Membrankapazitat ergibt sich
durch Integration des Konstantstroms und der Spannung tiber der Kapazitét tiber der Zeit,
die bis zum Erreichen der Feuerschwelle Ury vergeht. Der zweite Anteil der Verlustleistung
wird durch die aktive Entladung der Kapazitat iiber einen Schalttransistor erzeugt und
separat betrachtet.

3.4.1 Gleichstrombetrieb

Bei Erregung des Neurons mit einem konstanten Strom der Starke [ lasst sich die Zeit
zu Erreichen der Feuerschwelle leicht aus der Losung der Differentialgleichung (3.52)
ermitteln. Die Zeit bis zum ersten Puls ¢, ergibt sich aus (3.53) zu:

U I
tPulse =—In ( - gl]eak) - T (354)

/LL J—
<0 Jleak

Aus (3.53) ergibt sich eine notwendige direkte Forderung an den minimalen Eingangsstrom
zum Erreichen der Feuerschwelle fiir ¢ — oo. Dieser minimale notwendige Eingangsstrom
ist von den Leckstromen, représentiert durch die Leitfahigkeit gjeax, und der Feuerschwelle
Uty abhéangig:

I > UTH * Qleak (355)
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Die wahrend des Ladens der Kapazitit erbrachte Arbeit lasst sich nun mit

t:tpulse t:tpulse

1 t t
Wicaa = / I’ <1—exp (—))dt—i— / I ucp-exp (—) dt
Gleak T T

t=0 t=

I? toulse .
- |:tpulse +T (exp (—pUI ) — 1)] (3.56)
Jleak T

tuse
+1 Uy T (1 — exp (—pl>>
-

angeben. Wéhrend des Feuerns, d. h. dem Aussenden eines Pulses durch das Neuron wird

die Kapazitit aktiv entladen, so dass hier zuséatzliche Arbeit entsteht. Dabei wird der
passive Leitwert gieax durch das Offnen von Kanélen stark vergroBert. Der zusétzliche
Leitwert wird in den folgenden Gleichungen mit gj,, = Gieak + Gdischarge Deschrieben.

t=tfire

t
Wreset = gl/eak ' U’%H / eXp2 <_7_/> dt

t=0
/
_ s T 2t fire (3.57)
= e Vb 5 (10 (=55 )
. , C
mit 7 = ;
gleak

Dieses ergibt fiir tg, — oo die Gesamtenergie auf einer Kapazitat von %CU 2,

Da die Realisierung des Neurons in der Weise gewahlt wurde, dass die Dauer des Pulses
durch die aktive Entladung der Membrankapazitat bestimmt wird, ist die Dauer der
Entladung der Kapazitat niemals kiirzer als ¢4, und der Term (3.57) immer gultig.

Da der erste Term von (3.56) durch einlaufende Pulse présynaptischer Neurone verursacht
wird, kann ein Teil der Arbeit dem Informationsumsatz zugerechnet werden, der Teil, der
durch Leckstrome verursacht wird, kann dem Grundumsatz zugerechnet werden.

Im Abb. 3.11 ist die Verlustleistung eines Neurons ohne Erzeugung eines Aktionspotentials
und ohne Beschréankung der Spannung tiber der Membrankapazitiat dargestellt. Es zeigt
den Verlauf der Verlustleistung, welche maximal durch das Umladen der Kapazitat entsteht,
die zusatzliche Verlustleistung durch den Leaky-Term sowie die Summe der Verlustleistung
der gesamten Schaltung in Abhangigkeit von der Eingangspulsrate. Die Lange der Pulse
wurde hier mit 1 us angenommen, der Strom mit I = 200nA, der Leakage-Leitwert
mit geax = 10S und die Kapazitat mit C' = 200{F. Es zeigt sich, dass das Maximum
der auf der Kapazitat umgesetzten Verlustleistung bei einer Eingangspulsrate von etwa
650.000 Pulsen/s liegt. Oberhalb dieser Eingangspulsrate nimmt der Anteil der auf der
Kapazitat umgesetzten Energie, der dem Informationsumsatz zugerechnet wird, wieder ab.
Daraus kann geschlossen werden, dass es sinnvoll ist, die Eingangspulsrate von Neuronen zu
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Abbildung 3.11: Verlustleistung eines Neurons ohne Erzeugung eines Aktions-
potentials (Feuerschwelle heraufgesetzt) und ohne Beschran-
kung der Spannung tiber der Membrankapazitét.

begrenzen, um den Anteil der umgesetzten Energie fir den Informationsumsatz moglichst
grofl werden zu lassen.

Fiir eine Feuerrate am Eingang des empfangenden Neurons, welche sich der Grenze
der Inversen der Feuerdauer eines Neurons annéhert (hier: 1-10%s™1), nahert sich die
gesamte Verlustleistung der Verlustleistung an, welche nur noch durch einen konstanten
Eingangsstrom und den Leitwert gie.x hervorgerufen wird (hier: 40 uW). Auf der Kapazitat
wird in diesem Fall keine Energie mehr umgesetzt.

3.4.2 Herleitung der Ubertragungskennlinie

Im folgenden Abschnitt soll die Ubertragungskennlinie des LIAF Neurons unter Beriicksich-
tigung der Eingangsulsrate, passiver Entladung und einstellbarer Feuerschwelle hergeleitet
werden. Diese wurde von Maass [70] anhand von numerischen Betrachtungen beschrieben.

Der Grenzwert der Aufladung der Membrankapazitit wird durch den Wert der Kapazitét,
den Leitwert der passiven Entladung sowie den Eingangsstrom und das Puls-Pausen
Verhaltnis der Eingangspulsrate bestimmt. Dabei konnen langsam einlaufende Pulse am
Eingang des Neurons kein Aktionspotential auslosen, da die Feuerschwelle in diesem Fall
niemals erreicht wird. Es ergibt sich das sog. Unterschwellenverhalten des LIAF Neurons
(vgl. Kap. 1.3). Mathematisch lésst sich dieses nachweisen, indem eine Reihe fiir die Auf-
und Entladevorgéinge entwickelt wird.
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Betrachtet wird ein Neuron mit der Dynamik nach (3.48) und (3.52), welches durch eine
konstante Pulsrate der Frequenz f = 1/T erregt wird. Die Periodendauer T setzt sich
aus den Anteilen der Feuerdauer eines priasynaptischen Neurons tg,. und der Pausenzeit
trelax zusammen. Zunédchst wird die Gleichung fiir das Aufladen des Neurons durch eine
Konstantstromquelle betrachtet. Die Membrankapazitat des Neurons sei zu Beginn der
Betrachtung auf einen Wert g aufgeladen. Nach (3.53) ergibt sich fiir die erste Aufladung
der Membrankapazitét

T mit 7=
Jleak Jleak

I _ tire I C
ugl} = U(t = thire) = <u0 - ) S :

3.58
Jleak ( )

In der Pulspause klingt das Membranpotential nach (3.49) ab und erreicht nach einer
gesamten Periode T' den Wert

treax ] -[ treax
ulh) = ufh) et :(uo_ ).e—f+ ot (3.59)
’ ’ Gleak Gleak

welches die Initialbedingung fiir die nichste Aufladung uf} ist.

Da nur wéhrend einer Aufladung die Feuerschwelle des Neurons von unten tiberschritten
werden kann, ist zur Beantwortung der Frage, ob eine bestimmte Eingangspulsrate zum
Auslosen eines Aktionspotentials ausreicht, die N-te Aufladung zu betrachten. Dazu wird
der Wert ug\;) bestimmt, der sich durch sukzessives Einsetzen der oben beschriebenen
Auflade- und Entladevorgéange ergibt. Es ergibt sich ein Term (Herleitung siehe Anhang
A.1), der nach Summenbildung iiber die einzelnen Glieder den Ausdruck fiir die Spannung

ug\}) auf der Membrankapazitat nach der N-ten Aufladung ergibt:

(N—1)T+tgp0 I thire N
ug) —ug-eT T4 : <1 - e_ﬁr) >3 e (3.60)
' Jleak n=0

Fiir N — oo konvergiert die Laurent-Reihe gegen die Losung einer geometrischen Reihe.
Mit der Annahme, dass die Kapazitiat zu Beginn auf ug = 0V aufgeladen ist, vereinfacht
sich (3.60) zu:

Rl

(OO) o ] ( _tﬁre) (&
U, p = 1l —e"7 | 3.61
of Jleak eg -1 ( )

Nun wird (3.61) gerade so gewéhlt, dass die Feuerschwelle Ury nicht tiberschritten wird.
Es ergibt sich die Ungleichung (3.62), welche eine Aussage dartiber erlaubt, bei welcher
Eingangspulsrate die Feuerschwelle gerade noch nicht erreicht wird.

I tfire ei
(1= e_f) . < U 3.62
Jleak < T 1 TH ( )
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Abbildung 3.12: Maximale Eingangspulsrate, die ohne Auslosen eines Aktions-
potentials moglich ist. Parameter C' = 200fF, I = 200 nA,
Urn = 2V, thre = 1MS

Bei gegebenen Groflen fiir die Membrankapazitat, den Leitwert fiir die passive Entla-
dung sowie den gepulsten Eingangsstrom lasst sich die Eingangspulsrate, bei der die
Feuerschwelle gerade nicht erreicht wird ausdriicken als:

-1

U
n T (3.63)

Urg — L (1—67%%)

Gleak

f<|In

Diese Ungleichung ist fiir ausgewéhlte Leitwerte giea in Abb. 3.12 dargestellt. Unter den
hier angenommenen Bedingungen von tg.. = 1 us kann eine Pulsrate von 10°s™! jedoch
niemals erreicht werden, da bei T' = 1 us der Gleichstrombetrieb des Neurons beginnt.
Damit die oben angegebene Gleichung Giiltigkeit hat, muss zusétzlich die Bedingung

I Urn
< tire
Gleak 1—e 7+

(3.64)

erfullt sein.

Es stellt sich die Frage, wie das Ausgangsverhalten des pulsenden Neurons in Abhéngigkeit
von der Eingangspulsrate beschrieben werden kann. Dazu wird (3.60) bis zum N-ten Glied
betrachtet um festzustellen, ob der (N — 1)-te prasynaptische Puls ein Aktionspotential

o . —1 _nT . . . .
auslésen kann. Die Summe 7" 'e™"= kann zu einer geometrischen Reihe mit N — 1
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Gliedern umgeformt werden, deren Ergebnis

_NZI
e VT —1
e —1

ist.

Durch Grenzwertbetrachtung des Ergebnisses nach A}lm Sy_1 =  und Vergleich mit
dem Ergebnis der Entwicklung der unendlichen Reihe lasst sich die Korrekthe1t der obigen
Rechnung nachweisen. Die in (3.66) angegebene Ungleichung stellt die Bedingung fir das
Uberschreiten der Feuerschwelle und das Auslosen eines Aktionspotentials beim N-ten

prasynaptischen Puls dar

(N_ )T re .[ re —N% - 1
I (1 - etﬁT) TS U (3.66)
Jleak e r —1

und kann nach der Anzahl der prasynaptischen Pulse N aufgelost werden, bei dem ein
Aktionspotential ausgelost wird:

I- (1 - e_tﬁ:e) + UTH * Jleak * (€_£ - 1)

T UO'gleak-etﬁrm -(1—e§>+[.(1_e,tﬁ;c)

In

(3.67)

NI~

Damit lasst sich das Verhéltnis von Eingangs- und Ausgangspulsrate beschreiben. Damit
diese Gleichung Giiltigkeit besitzt, darf das Neuron nicht im Unterschwellenbetrieb gehalten
werden, und (3.63) darf gerade nicht gelten. Durch Wahl der Eingangspulsrate kann
sichergestellt werden, dass das Neuron nach einer bestimmten Anzahl von prasynaptischen
Pulsen feuert. Die Ubertragungsfunktion des LIAF Neurons ergibt sich so zu

1
fout - N . fin- (368)

Abbildung 3.13 zeigt das theoretische Maximum der Ausgangspulsrate eines LIAF Neurons
bei Erregung mit einer konstanten Eingangspulsrate bei verschiedenen Leckstromen. Dabei
zeigt sich, dass mit abnehmenden Leckstromen das Eingangs-Ausgangs Verhalten des
Neurons nahezu linear wird, wahrend bei hohen Leckstromen eine starke Nichtlinearitat
knapp iiber dem Uberschreiten der Feuerschwelle zu beobachten ist. Hier wurde vorausge-
setzt, dass die Feuerzeit tg,.. am Eingang des Neurons die gleiche Zeit ist, wie am Ausgang
des Neurons. Ist der Ausgangspuls kiirzer, so ist zu erwarten, dass die Ausgangspulsra-
te im Vergleich zum oben angegebenen Zusammenhang ansteigt, wahrend eine ldngere
Pulsdauer am Ausgang zu einer Verringerung der berechneten Pulsrate fihrt. In der
entwickelten Gleichung wurde ebenfalls nicht explizit die mogliche Uberschneidung von
Eingangs- und Ausgangspuls beriicksichtigt. Diese sollte aber durch die Wahl eines reellen
Ergebnisses (z. B. Auslosen eines Aktionspotentials nach 1,4 Pulsen) kompensiert werden.
Die hier gewonnenen theoretischen Ergebnisse fiir das Eingangs-Ausgangs-Verhalten von
LIAF Neuronen sind konsistent mit den Ergebnissen aus numerischer Integration der
Modellgleichungen eines Hodgkin-Huxley-Modells (siehe ,,gain function®, Kapitel 1.2.4.1
in [70]).
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Abbildung 3.13: Darstellung der theoretisch erzielbaren Ausgangspulsrate ei-
nes Neurons gegentiber der Eingangspulsrate bei verschieden
groflen Leckstromen. Uty = 2,0V, [, = 200nA, tge = 1 us

3.5 Erweiterung der Betrachtung am LIAF Modell

zur allgemeinen Form des Spike-Response Mo-
dells

Da das LIAF Modell als Sonderfall des Spike-Response Modells (SRM) angesehen werden
kann [32, 70], soll an dieser Stelle eine Verkniipfung der gewonnenen Ergebnisse mit dem
SRM geschaffen werden. Das SRM beschreibt die zeitliche Verdnderung des Membranpo-
tentials u(t) eines Neurons aus der Summe zweier entscheidender Ereignisse (siehe (3.69).
Der erste Term beschreibt mit 7); die Eigenantwort des Membranpotentials auf ein von sich

) ausgelostes Aktionspotentials. Die Doppelsumme im zweiten

selbst zum Zeitpunkt tl(-f
Term beschreibt die Post-Impuls-Antwort ¢;; des Membranpotentials beim Eintreffen von
mit w;; gewichteten Pulsen anderer Neurone zum Zeitpunkt tg»f ). Dabei beschreibt die
Menge F; die Menge aller Feuerzeitpunkte des Neurons selbst und Fj die Menge aller

Feuerzeitpunkte von mit diesem Neuron verbundenen Neuronen der Menge I';.

(3.69)

u®)= 37 (b =t")+ 30 3T wyey (1 - 1)

tl(f)EFi Jely t;f)GFj

Betrachtet wird im Folgenden der einfache Fall, in dem ein einzelnes Neuron mit dem
empfangenden Neuron verbunden ist (j = 1). Mit einem kurzen Strompuls ¢ der Dauer tg,,
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des sendenden Neurons wird das Membranpotential des empfangenden Neurons erhéht und
es stellt sich durch den zuséatzlich wirkenden Verlustleitwert gie.x €in Membranpotential
von

(3.70)

ein.

Mit jedem eintreffenden Puls wird das Membranpotential des empfangenden Neurons um
den zweitem Term aus (3.70) erhoht, wahrend das Membranpotential stdndig exponentiell
mit dem ersten Term zerféllt. Daraus lassen sich fiir das SRM unter der Annahme, dass die
Dauer des Aktionspotentials tg,, klein gegentiber der Zeit zwischen zwei Aktionspotentialen
T ist, die folgenden Zuordnungen finden:

i tﬁre . C
W = (1 — exp ( )) mit 7=
Jleak T Jleak

€ij(t) = exp (—j_>

Die Frage aus dem letzten Abschnitt wird an dieser Stelle wiederholt und lautet: Wann be-

(3.71)

ginnt das empfangende Neuron zu feuern? Durch diese Betrachtung kann die Eigenantwort
7n; vernachlassigt werden und das Membranpotential wird zu:

_ 4N
= Y wwexp( (i ) (3.72)

t(f)eF

Mit Annahme einer konstanten Eingangspulsrate tgf ) = nT mit n € N*, kann das

Membranpotential nach dem m-ten Eingangspuls bestimmt werden:

T —nT
waexp< m n > mit n € NTundt > nT (3.73)

Mit der Substitution £ = m — n kann die Gleichung umgeschrieben werden. Die Vertau-
schung der Grenzen der Summe verandert das Ergebnis nicht und fithrt zur Form

Foen(2)

<_(m+71)T> _q (3.74)

exp (—%) —1
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Die Anwendung der Bedingung
u(mT) >0,

dass das Membranpotential die Feuerschwelle erreicht, fithrt zu einer &hnlichen Uber-
tragungsfunktion des SRM, wie schon durch die rein elektrische Betrachtung am LIAF
ermittelt wurde.

3.6 Diskussion

In diesem Kapitel wurden der Energieumsatz und das Verhalten von pulsenden Neuro-
nen auf verschiedene Weise betrachtet. Die Modellierung der biologischen Zellmembran
iiber ein mathematisches Modell der Ionenkanéle und der passiven Ausgleichsvorgan-
ge wurde durch ein regelungstechnisches Modell des aktiven Ausgleichsvorgangs, der
Natrium-Kalium-Pumpe erweitert. Die Natrium-Kalium-Pumpe ist dabei der zentrale
Ort des Energieumsatzes, bei dem unter Freisetzung von Energie aus dem universellen
Energietrager ATP die passiv durch die Zellmembran gedrungenen Ionen ausgeglichen
werden. Durch den Ansatz des lonen-Pumpmechanismus als Zustandsregler kann der
Energiebedarf des Neurons sowohl in Ruhe als auch wéhrend des Aussendens von Aktions-
potentialen beobachtet werden. Abschatzungen fiir den Energieumsatz sind hierfiir bereits
von Daut [23] und vor allem Attwell und Lauglin [8] anhand von einfachen Uberlegungen
der Ladungstrennung an der einer Zellmembran verdffentlicht worden. Zusétzlich ist mit
dem in dieser Arbeit entwickelten Ansatz der Energieumsatz eines Neurons bei Erre-
gung des Neurons im Unterschwellenbereich, also ohne Auslosung eines Aktionspotentials,
moglich. Fir diesen Bereich gibt es in der Literatur praktisch keine Angaben. Die im
ersten Teil des Kapitels ermittelten Werte fiir den Energieumsatz des biologischen Neurons
decken sich fiir die Erzeugung des Aktionspotentials mit den abgeschétzten Werten aus
der einschlégigen Literatur. Die Abschéitzung des Ruhepotentials ist dagegen zu niedrig.

Im zweiten Teil des Kapitels wurde das Verhalten des LIAF Neurons durch elektrische
Schaltkreise beschrieben. Vor allem die Darstellung der Zellmembran als RC-Schaltung
wurde fiir die Ermittlung des Energieumsatzes sowie der Beschreibung der Ubertragungs-
funktion von LIAF Neuronen genutzt. Durch Ermittlung der analytischen Losung der
Ubertragungsfunktion ist es méglich, grofere Systeme pulsender Neurone schnell zu simu-
lieren, in dem das Eingangs-Ausgangs-Verhalten nachgebildet wird. Eine Abschéatzung der
dabei in diesen Systemen benotigten Energie ist durch die Anwendung der Ergebnisse
dieses Kapitels moglich. Die Uberpriifung der in diesem Kapitel theoretisch ermittelten
Ergebnisse soll im folgenden Kapitel durch die Implementierung eines analogen LIAF
Neurons vorgenommen werden. Der Vergleich der Implementierung mit den theoretischen
Ergebnissen wird daher an geeigneter Stelle im folgenden Kapitel vorgenommen.



Kapitel 4

Ressourcenbedarf pulscodierter
neuronaler Netze

Der Ressourcenbedarf pulscodierter neuronaler Netze (PCNN) ist einer der wesentlichen
einschrankenden Faktoren bei der Umsetzung der Strukturen des biologischen Vorbilds in
hochintegrierte mikroelektronische Schaltungen. Die Wahl, ob das PCNN in analoger oder
digitaler Schaltungstechnik umgesetzt wird, hat direkten Einfluss auf den Flachenbedarf
sowie die Verarbeitungsgeschwindigkeit und die Verlustleistung der Implementierung.

Rein digital umgesetzte Varianten von pulscodierten neuronalen Netzen konnen dabei in
zwei Arten unterschieden werden:

o Auf FPGA-Strukturen optimierte Modelle, welche die auf heutigen FPGAs bereitge-
stellten Einheiten wie z. B. Multiplizierer oder DSP Blocke optimal ausnutzen, aber
bei der Synthese auf eine ASIC Technologie eine grofie Fléche erzeugen.

o Auf ASIC-Strukturen optimierte Modelle, welche typischerweise bitseriell umgesetzt
werden, um eine kleine Fléache zu erzielen.

Letztere lassen bei Umsetzung auf FPGA die dort vorhandenen optimierten Blocke
weitgehend ungenutzt.

Rein analoge Schaltungen existieren in einer Chip-Umsetzung praktisch nicht. Haufig
werden Mized-Signal Systeme aufgebaut, in denen einzelne Komponenten des Systems,
z. B. Neurone und Synapsen, analog implementiert werden und mit digitalen Ubertragungs-
systemen kombiniert werden. Die digitalen Kommunikationssysteme werden dabei oft
asynchron betrieben, was zu einer erheblichen Senkung des Energiebedarfs fithrt. Beispiele
fiir beide Arten der Implementierung von Neuronen sind im Kapitel 2 zum Stand der
Technik aufgefithrt und diskutiert worden.

Der gemischt analog-digitale (Mized-Signal) Entwurfs-Ansatz wirft in aktuellen CMOS-
Technologien jedoch neue Fragen auf. Die Festlegung auf eine bestimmte Halbleiter-
Technologie bestimmt die Randbedingungen fiir alle in ihr umgesetzten Schaltungen.

5
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Wiéhrend Standardzellen einer digitalen Standardzellenbibliothek in aktuellen CMOS-
Technologien in der Regel' die minimale Strukturgréfe ausnutzen kénnen, sieht der
klassische Entwurf von analogen Schaltungen wie z. B. einem LIAF Neuron oder des-
sen Elementen, einem Verstarker, Komparator etc. den Einsatz grofl dimensionierter
Schaltungsteile vor, um die Schaltung gegeniiber internen und externen Einfliissen ro-
bust zu machen. Fiir die Hochstintegration eines pulscodierten neuronalen Netzes ist der
iiberwiegend analoge Anteil pulscodierter neuronaler Netze damit storend.

Aus dieser Voriiberlegung ergeben sich Fragen, die in diesem Kapitel untersucht und
beantwortet werden sollen:

o Welche Halbleiter-Technologie ist geeignet, um Mixed-Signal Schaltungen fiir puls-
codierte neuronale Netze zu entwerfen?

« Konnen Schaltungen fiir LIAF Neurone in aktuellen CMOS-Technologien (130 nm
und darunter) entworfen und gefertigt werden?

o Wie klein kénnen analoge LIAF Neurone implementiert werden?

o Welche Schwierigkeiten treten beim Entwurf von gemischt analog-digitalen pulsco-
dierten Systemen auf einem Chip (PCSoC) auf?

o Welche Schlussfolgerungen kénnen aus dem Entwurf von PCSoC fiir die weitere
technologische Entwicklung gezogen werden?

Um viele neuronale Elemente auf einem Mized-Signal Chip unterbringen zu koénnen,
miissen die Neurone und Synapsen moglichst klein gehalten werden. Im Folgenden soll in
diesem Kapitel der Flachenbedarf der verschiedenen Varianten (digital und analog) néher
untersucht werden. Dazu werden im ersten Schritt die Details verschiedener Implementie-
rungen vorgestellt und anschliefiend die Flacheninformationen aus Syntheseschritten (bei
digitalen Implementierungen) bzw. der Fldchenbedarf bei einem analogen Handentwurf
ermittelt.

4.1 Analoge Implementierungen

Die analogen Implementierungen pulscodierter neuronaler Netze und ihrer Bauelemente,
den pulsenden Neuronen und verschiedensten Arten von Synapsen, basieren auf einer
Reihe von dhnlichen Bibliothekselementen, welche in fast jeder Realisierung wiederzufinden
sind. Die fiir die in dieser Arbeit verwendeten Bauelemente sollen im Folgenden kurz
vorgestellt und charakterisiert werden. An Stellen wo mehrere Losungen moglich sind,
werden die gewahlten Losungen mit den Alternativen verglichen und die Wahl begriindet.

IStandardzellen werden unter Beriicksichtigung der gewiinschten Treiberleistung flichenoptimal ausge-
legt. Spezielle Anwendungen, z. B. die spéater gezeigte Standardzellenbibliothek fiir den Subschwellenbereich
koénnen hiervon abweichen und auf andere Optimierungsziele hin ausgerichtet sein.
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Die CMOS-Technologien, die fiir die folgenden Untersuchungen und Implementierungen
zu Grunde gelegt wurden, sind zum einen eine im klassischen Entwurf analoger Schal-
tungen héufig genutzte 350 nm Technologie mit doppeltem Polysilizium, zum Anderen
eine CMOS-Technologie mit einer minimalen Strukturgréfie von 130 nm, welche bis auf
spezielle Schritte fiir geschichtete Metall-Kapazitéten (Metal-Stack) keine besonderen
Herstellungsoptionen bietet und somit als Prototyp fiir eine CMOS-Technologie dient.
Die im Folgenden vorgestellten analogen Implementierungen zielen auf diese letztere
Standard-CMOS-Technologie ab und bedienen sich keiner besonderen Prozessoptionen,
um die Moglichkeit einer spateren Abbildung der Layouts auf CMOS-Technologien mit
kleineren Strukturgrofen oder die Moglichkeit der Integration der analogen Elemente
in einem Mized-Signal SoC mit einem digitalen Standard-Prozess zu wahren. In der
130 nm-Technologie wurde daher auf die speziellen Metall-Kapazitaten verzichtet.

4.1.1 Leaky Integrate and Fire Neuron

Um das vorgestellte LIAF Neuron in einem spéateren Abschnitt mit anderen Arbeiten
vergleichen zu konnen, seien hier noch einmal kurz die relevanten verwandten Arbeiten
von in analoger Schaltungstechnik implementierten Neuronen angegeben. Eine ausfiihr-
liche Ubersicht iiber fiir diese Arbeit relevante Implementierungen und Methoden ist
bereits in Kap. 2 gegeben worden. Matolin [73] beschreibt ein Leaky Integrate and Fire
(LIAF) Neuron mit einstellbaren Schaltschwellen fiir einen integrierten Schmitt-Trigger
als Schwellenelement in einem System von 64 x 64 Neuronen, welche miteinander in einer
néchster Nachbar-Beziechung verbunden sind. Indiveri [55] beschreibt ein LIAF Neuron
mit Pulsratenadaption, einstellbarer Refraktarzeit und veranderlicher Feuerschwelle. Die
Implementierung des Schwellenelements wurde durch einen Inverter mit positiver Riick-
kopplung iiber einen Source-Folger implementiert, welcher im Subschwellenbereich arbeitet.
Durch die positive Riickkopplung wird eine besonders niedrige Verlustleistung des Neurons
vor allem beim Schaltvorgang erreicht. Die Veroffentlichung von Indiveri [55] aufgreifend,
ersetzt Liu [68] das Schwellenelement des Neurons durch einen Differenzverstéarker.

In Abb. 4.1 ist der Schaltplan des in dieser Arbeit in einer 130 nm CMOS-Technologie
implementierten LIAF Neurons dargestellt. Das Neuron besteht aus einem Komparator
(Transistoren M4-M11) mit positiver Riickkopplung auf den Eingang, welche durch einen
Koppelkondensator Ch,q realisiert wurde. Diese Riickkopplung wurde der bekannten
Axon-Hillock-Schaltung [76] entlehnt. Der Komparator vergleicht den Wert des Membran-
potentials mit der am Referenzeingang angelegten Feuerschwelle Ury und erzeugt bei
Uberschreiten der Spannung am Referenzeingang ein Aktionspotential, d.h. der Ausgang
des Komparators wird auf eine Spannung von Upp gelegt. Das Membranpotential wird bis
zu diesem Zeitpunkt durch die Integration einlaufender Stréome am Eingang V;, auf der
Membrankapazitdat Clhen erzeugt und durch den Leckstrom tiber Transistor M16, welcher
den Leckleitwert gjearc des technischen LIAF Neurons modelliert, begrenzt. Transistor M16
sorgt fiir die passive Abnahme des Membranpotentials mit der Zeit, wenn keine oder nur
wenige Strompulse am Eingang einlaufen, und modelliert das Unterschwellenverhalten
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Vpulse

Abbildung 4.1: Schaltplan des LIAF Neurons in 130 nm Technologie.

des biologischen Neurons (vgl. Kap. 1.3). Wenn das Membranpotential die Feuerschwelle,
dargestellt durch die Schwellenspannung Ury, von unten kommend tibersteigt, wird durch
den Komparator ein Spannungspuls erzeugt, welcher dem Aktionspotential des biologi-
schen Neurons entspricht. Der Komparator erzeugt eine Spannung von Upp am Knoten
Vpuise Und sorgt durch die positive Riickkopplung iiber Chpack flir ein sicheres Schalten,
indem die Spannung am Eingang des Komparators (Gate des Transistors M6) durch
Ladungsverschiebung zwischen beiden Kapazitdaten iiberhoht wird. Es stellt sich eine
Membranspannung von

C1back
(Cmem + Cback)

Umem = UTH + ’ UDD

ein. Die invertierende Treiberstufe aus M14 und M15 sorgt fiir eine Entkopplung der
kapazitiven Schaltung zur Erzeugung des Aktionspotentials von weiteren Stufen des
Systems und erzeugt ein definiertes (wenn auch invertiertes) digitales Puls-Signal am
Ausgang des Neurons.

Die Pulsbreite des Ausgangspulses wird hauptséachlich durch den Leitwert des Transistors
M3 bestimmt, welcher durch externe Referenzspannung Viecay am Gate des Transistors
eingestellt werden kann. In erster Naherung ist der Leitwert des Transistors M2 im
Sattigungsbereich konstant und kann so einfach in die Betrachtung des aktiven Entlade-
vorgangs tiber die Transistoren M2 und M3 einbezogen werden. Wahrend der Erzeugung
des Aktionspotentials wird der Eingang des Neurons durch den zusétzlichen im Eingangs-
pfad liegenden PMOS-Transistor hochohmig geschaltet, um eine weitere Aufladung des
Membranpotentials wihrend der aktiven Entladung der Kapazitat Cpem zu verhindern.
Diese Mafinahme soll eine gleich bleibende Zeit fiir jedes Aktionspotential gewahrleisten.

Wenn das Membranpotential wihrend der Erzeugung des Aktionspotentials die Schwellen-
spannung Ury durch aktive Entladung von oben kommend wieder unterschreitet, schaltet
der Komparator erneut und legt an den Ausgang V,use das Massepotential an. Durch
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die positive Riickkopplung iiber die Kapazitat Cp.q auf die Membrankapazitat wird das
Membranpotential schlagartig auf den Wert

C'bauzk
(Crnem + Cback)

Umem = UTH - ’ UDD

unterhalb der Schwellenspannung vermindert und sorgt so wieder fiir sicheres Schalten.

Beim Layout des Neurons in der 130 nm Technologie wurde besonders auf eine geringe
benotigte Flache Wert gelegt. Das Neuron sollte moglichst klein und kompakt aufgebaut
werden, um eine sehr hohe Packungsdichte auf einem Chip erzielen zu kénnen. Um das
Layout moglichst kompakt zu halten, und um auf eine Standard-CMOS-Technologie ohne
zusatzliche Prozess-Schritte abbilden zu konnen, werden in der hier gezeigten Variante
die Kapazitaten nicht durch besondere Elemente der jeweiligen Technologie, wie doppelte
Polysilizium-Lagen oder geschichtete Metall-Lagen realisiert, sondern durch das Gate-
Oxid von MOS-Transistoren. Als Besonderheit dieses Entwurfs ist die Implementierung
der Koppelkapazitat als MOS-Kapazitat eines PMOS-Transistors in einer n-Wanne mit
gesteuertem Substratanschluss zu nennen, wodurch die bendtigte Flache im Vergleich
zu einer Implementierung mit einer Metall-Metall Kapazitat stark reduziert werden
konnte. Durch Beschalten des Substratanschlusses mit dem Aktionspotential des Neurons
bildet sich durch den Substratsteuereffekt und das niedrigere Potential am Gate des
PMOS-Transistors eine Inversionsschicht aus, so dass die Kapagzitat iiber die gesamte
Gatefliche ausgebildet ist. Die Nichtlinearitat von MOS-Kapazititen im Ubergang zum
Subschwellbereich der Transistoren kann in dieser Implementierung vernachléssigt werden,
da die Elemente nach einer Initialisierungsphase alle in einem Arbeitsbereich oberhalb
der Schwellenspannung arbeiten. In Abb. 4.2 ist das entstandene Layout zu sehen, in dem
die gestreckten Kapazitaten zu einer insgesamt rechteckigen Struktur auf einer Flache
von 76,37 pum fithren. Diese Anordnung erlaubt es, sehr leicht zusétzliche Synapsen um
das Neuron anzuordnen, um grofiere Systeme und Netze aufzubauen.

Ein einschréankender Faktor fiir die Implementierung und weitere Verkleinerung dieses
Neurons in zukiinftigen Technologien ist die Zunahme der Leckstrome der Transistoren
und Tunnelstréme durch diinne Gate-Oxide [89, Kapitel Process Integration, Devices,
and Structures|, welche sich bereits in der 130nm Technologie zu insgesamt 100 pA
aufsummieren. Diese Leckstrome fithren mit abnehmenden Strukturgréfien zu einer immer
schnelleren Entladung der gefertigten Kapazititen. In dieser Technologie erhéalt man fiir
das Neuron bereits Zeitkonstanten von 7 =~ 0.1s fiir die Entladung der Kapazitét, so dass
Pulsraten im biologisch plausiblen Zeitbereich von Milliseskunden kaum mehr verarbeitet
werden konnen, da die gesamte eingelaufene Information schnell wieder ,vergessen®, d. h.
der Einfluss einzelner Pulse auf das Membranpotential abgebaut ist. Abhilfe schafft hier
derzeit nur das Ausweichen auf einen Zeitskalenbereich, der mehrere Gréflenordnungen
schneller ist, also die Nutzung von Pulsraten im Bereich von kHz bis MHz mit Anpassung
der Pulsbreite des Aktionspotentials auf den Mikrosekundenbereich. Dieses Vorgehen
hat Auswirkungen auf alle weiteren Elemente des neuronalen Netzes, deren Dynamik
an die neue Zeitskala angepasst werden muss. Von einer Beschleunigung der Simulation
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Abbildung 4.3: Ausgangspulsrate fo,; (durchgezogene Linie) und Verlustleis-
tung (gestrichelte Linie) aufgetragen iiber dem Eingangsstrom.

neuronaler Netze als Eigenschaft der vorgestellten Neuronenimplementierung kann in
diesem Zusammenhang allerdings noch nicht gesprochen werden, der Wechsel der Zeitskala
ist eher als Versuch anzusehen, die negativen Eigenschaften der Technologie fiir diese
Schaltung zu umgehen.

Simulationen am RC-extrahierten Layout des beschriebenen LIAF Neurons zeigen eine
zu erwartende Verlustleistung von 650 nW bis 675nW iiber einen Pulsratenbereich des
Ausgangs von 0 Pulsen/s bis 500-10% Pulsen/s (siche Abb. 4.3). Dabei nimmt die ermittelte
statische Verlustleistung des Komparators mit 650 nW den groiten Teil der Verlustleistung
ein. Fir diese Simulationen wurde dem Neuron ein Strom von OnA bis 50 nA iiber einen
einfachen p-Kanal Stromspiegel injiziert und die sich ergebende Ausgangspulsrate tiber
den dem Stromspiegel eingepriagten Strom aufgetragen. Dieser Stromspiegel ist auch
Hauptbestandteil der Implementierung statischer Synapsen. Die statische Verlustleistung
des Neurons kann direkt nur durch die Wahl eines anderen Arbeitspunktes verringert
werden. Gleichzeitig ist zu erwégen, ob alternative Vergleichselemente, z. B. Schmitt-
Trigger bessere Figenschaften beziiglich statischer Verlustleistung aufweisen. Da der
einfache Stromspiegel den Referenzstrom in der Praxis nicht ideal gespiegelt in das Neuron
injizieren kann, ist in Abb. 4.4 die Ausgangspulsrate des Neurons tiber dem korrigierten
tatsdchlichen Eingangsstrom fiir verschiedene Betriebsfille (typical, best analog (FFA),
worst analog (SSA)) aufgetragen. Es ergibt sich ein linearer Zusammenhang zwischen dem
Eingangsstrom und der Ausgangspulsrate, wie bei kleinen passiven Leckleitwerten, die
in dieser Simulation eingestellt waren, aus den theoretischen Uberlegungen in Kap. 3.4.2
erwartet wird.

Abbildung 4.5a zeigt noch einmal das in Kapitel 3.3 ermittelte theoretische Maximum
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Abbildung 4.4: Ausgangspulsrate des Neurons in Abhangigkeit des Eingangs-
stroms fiir verschiedene Betriebsfille.

der Ausgangspulsrate f,,; in Abhéngigkeit von der Eingangspulsrate bei verschieden
groflen Leckleitwerten. Gleichzeitig ist das Ergebnis der Simulation am RC-extrahierten
Layout des implementierten Neurons dariiber gelegt. Im Eingang wurde sowohl in der
theoretischen Betrachtung als auch in der Simulation eine konstante Pulsrate mit gleich-
bleibender Amplitude angelegt. Als Ergebnis lédsst sich aus der Darstellung schlieflen,
dass das Ubertragungsverhalten (und damit die Ubertragungsfunktion) des Neurons fiir
geringe Leitwerte nahezu linear wird. Dieses lasst sich durch die Simulation der Schaltung
verifizieren. Fiir grofiere Leitwerte wird die Ubertragungsfunktion des Neurons hochgradig
nichtlinear und néhert sich der bekannten , gain-function“ [71] mit dem charakteristischen
Subschwellenverhalten eines biologischen Neurons an, wie in Kap. 3.4.2 gezeigt wurde.

Die Ausgangspulsrate des simulierten Neurons liegt oberhalb des abgeschétzten Wertes,
welches sich auf eine unvollstédndige Entladung der Membrankapazitat in der Simulation
zuriickfithren lésst. Dadurch erreicht das Neuron in der Simulation die Feuerschwelle schnel-
ler, als das in den theoretischen Betrachtungen zugrunde gelegte vollstandig entladene
Neuron. Damit wird die Ubertragungskennlinie steiler.

Um die dynamische Leistungsaufnahme des Neurons abzuschétzen, wurde ein Simulink-
Modell der Schaltung erstellt, in welchem die gleichen Leitwerte wie in den implementierten
Neuronen eingestellt wurden. In Abb. 4.5b sind die mit dem Modell ermittelte und die
durch Simulationen am RC-extrahierten Layout ermittelte Verlustleistung tibereinander
gelegt. Das Ergebnis des Simulink-Modells stimmt mit dem Ergebnis aus der Simulation
am RC-extrahierten Layout gut iiberein und kann somit als Modell fiir die Untersuchung
an grofleren Systemen dienen, welche bei Simulation der RC-extrahierten Layouts sehr
zeitaufwéndig werden.
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Tabelle 4.1: Flachenbedarf und Verlustleistung fiir Neuron und Synapsen in einer 130 nm
CMOS-Technologie.

Neuron [pm?] Block [um?] Pulsrate [1/s] LeistungdnW] Referenz
76,37 772,70% 0 — 600 -10° 675
854,84° Matolin et. al. [73]°
1473 Indiveri et. al. [55]°
757,12 109 1190 Wijekoon et. al. [102]°

2 Ein Block besteht aus einem Neuron und 5 Synapsen.

b Die angegebene Flache wird von einem Neuron und 4 Synapsen belegt.

¢ StrukturgroBen skaliert auf 130 nm Technologie mit 1,2V Versorgungsspannung.
d Teistung bei maximaler Pulsrate.

Das vorgestellte Neuron soll im Folgenden mit den zuvor erwahnten Modellen aus der
Literatur verglichen werden. Dabei ergibt sich als besondere Schwierigkeit, dass die
vorgestellten Implementierungen einerseits in anderen Technologien gefertigt wurden,
andererseits auch fiir leicht unterschiedliche Funktionen optimiert wurden. Der folgende
Vergleich ist daher moglicherweise nicht ganz fair — insbesondere was die Flachenangaben
angeht, da ein Wechsel der Technologie immer Einfluss auf die Struktur der analogen
Schaltung hat — zeigt aber das Gesamtergebnis tendenziell auf. Eine vergleichbare Angabe
zum Flachenbedarf eines pulsenden Neurons ist nur in der Verdffentlichung von Wijekoon
[102] zu finden. Diese ist nach Skalierung auf die CMOS-Technologie des in dieser Arbeit
entwickelten analogen Neurons fast zehn mal grofier. Das in [102] vorgestellte Neuron
erlaubt dagegen die Emulation eine grofferen Klasse von Neuronen. Die Verlustleistung
des hier vorgestellten Neurons und des Neurons von Wijekoon sind dagegen praktisch
gleich. In Tabelle 4.1 sind die Angaben fir den Flachenbedarf und die Leistungsaufnahme
des hier gezeigten Neurons angegeben. Daneben enthélt die Tabelle auch auf eine 130 nm
CMOS-Technologie und eine Versorgungsspannung von 1,2V skalierte Versionen der
vom Funktionsprinzip vergleichbaren Strukturen. Zur Skalierung der Strukturen auf
eine gemeinsame Basis wurden die allgemeinen Skalierungsregeln aus Anhang B fiir
CMOS-Schaltungen verwendet.

4.1.2 Statische Synapse

Die Synapse stellt das Bindeglied zwischen einzelnen Neuronen dar. Diese wandeln das
digitale Signal des Aktionspotentials eines sendenden Neurons in einen postsynaptischen
Strom fiir das empfangende Neuron um. Durch die Stérke des Stroms wird der Wert
eines von einem priasynaptischen Neuron ausgesandten Aktionspotentials gewichtet. In
der einfachsten Form der Informationsverarbeitung bedeutet ein hoher Strom eine grofie
Relevanz des préasynaptischen Neurons fiir das postsynaptische Neuron. Der Begrift der
statischen Synapse trifft die Eigenschaft der in dieser Arbeit entworfenen Schaltung nicht
vollstandig, da die Synapse einerseits wahrend des Betriebs eine Konstantstromquelle
darstellt, andererseits zu jeder Zeit von auflen in ihrem Wert in diskreten Schritten
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Abbildung 4.6: Schaltplan einer wahlweise exzitatorischen oder inhibitorischen
n Bit Synapse in Stromschaltungstechnik.

verdndert werden kann. Zur Abgrenzung vom Begriff der dynamischen Synapse seien die
folgenden Definitionen gebraucht:

Definition 3 Fine statische Synapse andert den ihr zugewiesenen Wert nur durch externe
Festlegung des Wertes (Benutzereingriff) und nicht durch eine Eigendynamik, also durch
interne Zustdnde oder durch das Empfangen von Aktionspotentialen.

Definition 4 FEine dynamische Synapse andert den ihr zugewiesenen Wert hauptsdachlich
durch eine gegebene Eigendynamik, welche sowohl den internen Zustand der Synapse als
auch die empfangenen Aktionspotentiale beriicksichtigen kann. Daneben kann durch externe
Festlegung des Wertes (Benutzereingriff) ein initiales Gewicht voreingestellt werden.

Die Untersuchung und Implementierung biologienaher dynamischer Synapsen ist eng ver-
kniipft mit der Erforschung von Lernvorgéngen um das Thema der Spike-Time Dependend
Plasticity (STDP) und wird in dieser Arbeit nicht weiter behandelt. Eine Implementie-
rungsvariante dynamischer Synapsen ist in [110] vorgestellt. Da sich diese Arbeit auf die
Modellierung und Implementierung von LIAF Neuronen in PCNN beschréinkt, ist der
Einsatz von statischen Synapsen als Eingangselement fiir die Neurone an dieser Stelle
ausreichend.

Schaltungstechnisch lasst sich eine statische Synapse effizient als Anordnung geschalteter
Stromquellen realisieren. In Abb. 4.6 ist eine Realisierung der statischen Synapse mit
Stromspiegeln dargestellt, bei denen die Weite eines Spiegeltransistors in jeder Stufe
verdoppelt wird. Die Stromspiegel im unteren Teil der Synapse spiegeln den eingeprégten
Referenzstrom I,.f abhéngig von ihrer Dimensionierung zu einem Spiegelstrom der Stérke
2™ - Ier. Dabei beschreibt n die Bitstelle der jeweils ausgewahlten Stufe. Durch die
Schalttransistoren B0 bis Bn kénnen die Strome zu einem binar codierten Gesamtstrom
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zusammengefasst werden. Der so gebildete Strom wird wiederum gespiegelt und als
Referenzstrom fiir je eine Stromquelle und eine Stromsenke genutzt. Durch Wahl des Signals
fur das Vorzeichen ( VZ) kann ein exzitatorischer (positiver) bzw. inhibitorischer (negativer)
Strom I, erzeugt werden. Der Strom I, wird mit Eintreffen eines Aktionspotentials
freigegeben. In der abgebildeten Synapse wird dazu aufgrund der Implementierung des
Neurons das negierte Aktionspotential NOTVPULSE ausgewertet.

Abb. 4.7 zeigt das Layout einer statischen exzitatorischen Synapse mit 5 Bit Auflésung
in einer 130 nm CMOS-Technologie auf einer Fliche von 143 um?. Die Synapse besteht
aus b SRAM-Speicherzellen, die den Wert der Synapse lokal fiir die Anordnung der
Stromquellen bereitstellen und deren Wert durch externe Beschaltung verdandert werden
kann. Die SRAM-Zellen wurden in der schematischen Darstellung der Synapse ausge-
lassen und stellen dort den Wert BO bis Bn zur Verfiigung. Daneben sind im Layout
die unterschiedlich dimensionierten Transistoren fiir die Skalierung des Stroms sowie die
Schalttransistoren mit minimalen Abmessungen zu sehen. Die Abmessungen der Tran-
sistoren der Stromquellen wurden so angepasst, dass jede Stufe der Stromquellen den
doppelten Strom der vorhergehenden Stufe bereitstellt. Die idealen Skalierungsregeln
groBerer CMOS-Technologien greifen an dieser Stelle durch die in der 130 nm CMOS-
Technologie auftretenden short-channel und narrow-channel Effekte nicht mehr. Das hier
gezeigte Layout der statischen Synapse ist fiir die Anordnung von 4 Synapsen um ein
zentrales Neuron optimiert, eine Struktur, die bei der lokalen Verschaltung von Neuronen
mit ihren nachsten Nachbarn haufig gewahlt wird. In diesem Layout ist der Stromausgang
It separat gekennzeichnet, der den exzitatorischen Strom bei angelegtem Massepotential
am Gate des Schalttransistors den folgenden Neuronen zur Verfiigung stellt. Fiir eine
Beschaltung mit 5 Synapsen, bei der 4 Synapsen fiir den Aufbau einer Nachste-Nachbar
Beziehung und eine Synapse fiir die Gewichtung externer Pulse vorgesehen ist, wurde ein
optimiertes Layout entworfen, bei dem die SRAM-Zellen des Synapsenblocks an weitere
Synapsenblocke anreihbar sind.

Die fiir die Synapse verwendete statische Speicherzelle ist eine modifizierte 6-Transistor
SRAM-Zelle. In Abb. 4.8a ist der schematische Aufbau der SRAM-Zelle mit 5 Transistoren
dargestellt. Bei dieser Implementierung wurde im Gegensatz zur 6T-SRAM Zelle ein
Auswahltransistor entfernt und der Knoten U2 stattdessen direkt an die Gate-Kapazitét
eines Auswahltransistors des Stromspiegels der in Abb. 4.6 gezeigten Synapse angeschlos-
sen. Diese MaBlnahme fithrt zu einer Flacheneinsparung in der Zelle. Gleichzeitig entfallt
die Notwendigkeit der Bereitstellung eines invertierten Signals an Knoten U2 bei der
Programmierung der Speicherzelle. Zur Programmierung der Zelle muss das invertierte
Signal an Eingang BL bereitgestellt werden, der Knoten U2 bleibt vom Dateneingang
entkoppelt, so dass die Kapazitat keinen direkten Einfluss auf das Umladen des ersten
Inverters der SRAM-Zelle hat. Die Langen und Weiten der Transistoren wurden tiberwie-
gend auf minimalen Maflen der 130 nm CMOS-Technologie belassen. Um die Robustheit
der SRAM-Zelle gegeniiber Storungen auf dem Knoten BL zu maximieren, wurde die
Weite des Auswahltransistors M0 durch Simulation optimiert. Dabei wurde der statische
Storabstand (engl. static Noise-Margin, SNM) aus der Ubertragungskennlinie der SRAM-
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Abbildung 4.7: Layout einer exzitatorischen 5 Bit Synapse in einer 130 nm
CMOS-Technologie.
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Abbildung 4.8: Modifizierte SRAM-Zelle fiir lokale Gewichtsspeicherung.

Zelle durch Wahl der Transistorweite maximiert (siche Abb. 4.8b zur Definition des SNM).
Fiir ein maximales SNM wurde hier numerisch eine Weite von 0, 6 um ermittelt, womit

Upp Ubp
1{U2= — ) = —
v (v2=52) =5

auch die Forderung

fir einen maximalen Storabstand anndhernd erfillt wird.

4.1.3 Ermittlung der dquivalenten Wortbreite

Um in der weiteren Arbeit die Flichenverhéltnisse sowie die umgesetzte Leistung der
digitalen Implementierungen mit den Werten der analogen Implementierungen vergleichen
zu koénnen, wird in diesem Abschnitt die benotigte Wortbreite fiir den Vergleich der
digitalen Implementierungen ermittelt. Diese ergibt sich aus dem Auflésungsvermogen
analoger Schaltungen, insbesondere der Fahigkeit, zwei Signale gerade eben noch von-
einander unterscheiden zu konnen. Als unterste Grenze zur Unterscheidung von zwei
Spannungs-Signalen gilt das Spannungs-Rauschen, auf dessen Auswirkungen im Folgenden
eingegangen wird.

Zur Ermittlung der dquivalenten Wortbreite wird vom wichtigsten rauschbehafteten
Element eines Neurons ausgegangen, dem Entscheidungselement. Dieses bestimmt im
pulsenden Neuron, ob ein Aktionspotential generiert werden soll. Der zu diesem Zweck
haufig eingesetzte Komparator besteht im Wesentlichen aus einem Differenzverstarker mit
hoher Verstarkung; Dieser soll im Folgenden untersucht werden.

Der in Abb. 4.9 dargestellte Differenzverstéirker besteht aus einer Stromquelle, die im
Arbeitspunkt den Strom Iss/2 durch den linken und den rechten Zweig der Schaltung
erzwingt. Dazu sind beide Zweige der Schaltung symmetrisch ausgelegt. Die Transistoren
M3 und M4 werden durch die Bias-Spannung Ug im Séttigungsbereich betrieben und
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Abbildung 4.9: Differenzverstirker-Paar aus MOS-Transistoren und korrespon-
dierende Ubertragungskennlinie.

bilden so eine aktive Last fiir den Verstarker. Das Differenzpaar aus Transistoren M1
und M2 bildet die Differenz aus den angelegten Spannungen Uy, 1 und U, 2 und verstérkt
diese zur differentiellen Ausgangsspannung aus Ugyy1 und Uy 2. Der Verstarkungsfaktor
A, des gezeigten Differenzverstéirkers ergibt sich aus der Betrachtung des Kleinsignaler-
satzschaltbildes im gewéhlten Arbeitspunkt (AP) der oben gezeigetn Schaltung mit der
Nomenklatur nach [80] zu

o AU'out Uout,? - Uout,l

A, = = ———————| = —gm(ralre) (4.1)
A in |Ap Uin,2 - Uin,l AP

mit der Gatesteilheit g,,; und dem Ausgangswiderstand r,; des Transistors M1 und dem
Ausgangswiderstand r,3 des Transistors M3.

Alle mikroelektronischen Schaltungen sind dem Einfluss von Rauschen unterworfen. Elek-
trisches Rauschen wird als ,,ungewollte Spannung oder &quivalent als ,ungewollter®
Strom betrachtet, der zusétzlich zum Nutzsignal in Schaltungen auftritt [9]. Das Rauschen
stellt die untere Grenze eines Signals dar, das von einer Schaltung sinnvoll verarbeitet
werden kann und limitiert so das Auflésungsvermogen elektrischer Schaltungen [80]. Fiir
eine Diskussion der Eigenschaften der verschiedenen Arten des Rauschens wird an dieser
Stelle verzichtet und auf die bereits zitierten Quellen [9, 80] verwiesen, welche das Thema
ausfithrlich behandeln.

Durch die verwendeten MOS-Transistoren treten in der Schaltung sowohl thermische
Rauschquellen als auch 1/f-Rauschen (engl. Flicker-Noise) auf. Beide Rausch-Arten werden
in der theoretischen Betrachtung verwendet und kénnen als zuséatzliche Spannungs- oder

Stromquellen zwischen Gate und Source oder Drain und Source jedes einzelnen Transistors
M1 bis M4 modelliert werden.

Um das Auflésungsvermogen des Differenzverstéirkers zu bestimmen, muss das Signal-
Rausch-Verhéltnis (SNR) am Eingang der Schaltung bestimmt werden. Dazu wird im
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ersten Schritt das Rauschleistungsdichtespektrum im Ausgang des Verstérkers bestimmt
und anschlieflend daraus die Rauschspannung am Eingang ermittelt. Es wird angenommen,
dass der Verstarker in seinen Elementen des linken und rechten Zweiges symmetrisch ist.
Damit kann die Rauschspannung V2 am Eingang der Schaltung in Abhingigkeit von den
Rauschquellen der Transistoren M1 und M3 (V% und V,3) bestimmt werden:

2
W _ 2@_'_ 29m3(7“01‘|7’03) vV

2
A2 n3 — V ng V (4.2)

ml

Nach Einsetzen der Terme fiir die Rauschquellen und Integration iiber den betrachteten
Frequenzbereich ergibt sich das Ergebnis fiir die Gesamtrauschspannung von

2 2g 3 2KN 2Kp g
V2w = /8kT< 1 F = >+ 52d 4.3
total — 3g ! 3gm1 COX(WL)lf COX(WL)3f gml f ( )

Die hier eingefiihrten Parameter K und Kp beschreiben den Einfluss des 1/f-Rauschens
und sind technologieabhéngige Konstanten [80].

Die Rauschspannung am Eingang kann tiber den Zusammenhang

‘/signal

n,total

in ein aquivalentes Signal-Rausch-Verhaltnis umgerechnet werden, aus dem sich tiber die
Umformung

aus dem Signal-Rausch-Verhaltnis die Auflésung in Bit (n) ermitteln lasst.

In der Praxis wird der Frequenzbereich bei Rechnungen nach oben begrenzt, da auch das
Rauschen in Verstérkern bandbegrenzt ist. Im Fall des im LIAF Neuron implementierten
Verstérkers wird die obere Integrationsgrenze mit fr = 7 fsap = 53 MHz festgelegt. Die
Grenze von F f3qp schliefit das Rauschen in Einpolsystemen vollstédndig ein [80]. Obwohl
es sich in diesem Fall tatsédchlich um ein Mehrpolsystem handelt, stellt die Annahme eines
Einpolsystems aufgrund des dominierenden ersten Pols und dem Unterschreiten der 0 dB
Grenze vor Erreichen des zweiten Pols eine gute Naherung dar. Die Serienwiderstande der
Quelle sowie des Eingangs an M1 sind unbekannt, daher wurde die 3 dB-Grenzfrequenz
durch Simulation der Schaltung ermittelt. Mit den aus der betrachteten 130 nm Technologie
entnommenen Werten fiir ¢,,; und g,,3 lésst sich fiir die Rauschspannung am Eingang ein
Wert von Vi, = 412,76 uV errechnen. Durch Simulation der Schaltung wurde ein Wert
von Viy, Simulation = 965,22 1V ermittelt. Unter der Annahme, dass das Nutzsignal einen
Signalhub von maximal der Schwellenspannung Uryg = 730 mV aufweist, lasst sich eine
aquivalente Auflosung von n = 10 Bit fiir das analog implementierte Vergleichselement
angeben (vgl. [106]).
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In dieser Betrachtung spielt die herstellungsabhéangige Abweichung (Mismatch) von Bau-
elementen in einer Schaltung noch keine Rolle. Da die Bauteilabweichung mit kleiner
werdenden Strukturen zunimmt, soll an dieser Stelle der Einfluss der Herstellungsabwei-
chungen auf das Auflosungsvermogen des Komparators ermittelt werden. Angaben zur sta-
tistischen Abweichung der Bauelemente unterliegen in diesem Fall dem Betriebsgeheimnis
des Technologieanbieters, so dass an dieser Stelle der Einfluss auf das Auflésungsvermégen
durch Monte-Carlo Simulation mit Mismatch-behafteten Bauelement-Modellen untersucht
wird.

Der Komparator wird in der Simulation mit einer Referenzspannung von Uty = 730 mV
betrieben, der Mess-Eingang fiir das Membranpotential wird von 0V bis 1,2 V durchfahren.
Dabei wird die Eingangsspannung Uy, ermittelt, bei der der Komparator-Ausgang von
0V kommend den Wert von Upp/2 erreicht. Im Idealfall ohne Bauteil-Streuung ergibt
sich ein Wert von Uy, = Urg. Durch 100 Monte-Carlo Simulationen der implementierten
Schaltung, in denen nur lokale Abweichungen der Schaltung betrachtet werden, wurden
ein Mittelwert von Uy, = 726,5mV und eine Standardabweichung von S, = 11,0 mV
fiir den Komparator des analog implementierten Neurons ermittelt. Wird nun der Wert
der Standardabweichung als minimal zu unterscheidende Spannung bzw. als der Wert des
LSB aufgefasst, so ergibt sich daraus eine dquivalente Auflosung des Komparators von
maximal [log, (Usip/Strip) | = 6 Bit.

4.2 Digitale Implementierungen

Digitale Umsetzungen von neuronalen Netzen werden durch verschiedene Anforderungen
getrieben. Auf der einen Seite gibt es hochgenaue, detaillierte Modelle biologischer neuro-
naler Komponenten, welche klassisch in Rechnersystemen simuliert werden. Diese Modelle
sollen durch eine teilweise Umsetzung des Software-Modells auf digitale Hardware in Form
von Coprozessoren oder spezialisierten Erweiterungskarten fiir PCs die Simulation grofler
neuronaler Netze beschleunigen (z. B. [46]). Auf der anderen Seite werden Modelle bei der
Umsetzung in digitale Hardware moglichst einfach gehalten, um die Einzelkomponenten
zu grofleren, komplexeren Modellen verschalten zu konnen oder in Form von einem massiv
parallelen Rechenfeld mit kleinen spezialisierten Verarbeitungseinheiten zu grofien Netzen
verschalten zu konnen. Fiir die erstere Form sei der Leser auf die Diskussion der vorge-
stellten digitalen Modelle in Kap. 2 verwiesen, die Umsetzung von einfachen Modellen
fiir den Aufbau grofler, paralleler Felder ist Gegenstand des folgenden Abschnitts, in dem
ein einfaches LIAF Neuronenmodell auf die digitalen Zieltechnologien FPGA und ASIC
abgebildet wird.

Da die jeweils gewéhlte Zieltechnologie charakteristische Eigenschaften und Einschréan-
kungen aufweist, lassen sich digitale Implementierungen, welche speziell fir ein FPGA
entworfen wurden, nicht ohne weiteres direkt auf die ASIC Technologie abbilden. Dieses
ist zwar eingeschrankt moglich, fithrt aber in vielen Féllen zu Ergebnissen, die weit unter
dem optimalen Ergebnis eines speziell angepassten Entwurfs liegen. Anders herum lassen
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sich speziell auf ASIC zugeschnittene digitale Systeme nicht einfach auf FPGAs umsetzen,
da die vom FPGA zur Verfiigung gestellten komplexeren Elemente, z. B. Multiplizierer
und DSP-Blocke, oft nicht optimal genutzt werden koénnen?.

Aus diesem Grund werden im Folgenden zwei alternative Implementierungen eines digitalen
LIAF Neurons vorgestellt, bei der die erste auf typische FPGA-Strukturen zugeschnitten
ist, wihrend die zweite Implementierungsvariante als bitseriell arbeitendes Neuron speziell
auf die ASIC-Synthese zugeschnitten ist. Die Auswirkungen der Synthese der gewéhlten
Variante auf die jeweils andere Technologie werden an den entsprechenden Stellen vermerkt.

Um den Ressourcenbedarf der digitalen Implementierungen zu reduzieren, werden verschie-
dene Methoden genutzt. Fiir die Reduktion der Flache hat sich, sofern ein Gesamtsystem
oder Teile eines Systems langsam arbeiten konnen, die Implementierung von Teilen der
Schaltung als bitserielle Schaltung bewéahrt. Dabei werden Rechenoperationen nicht in
einem Schritt mit bitparallelen Operanden durchgefiihrt, sondern in mehrere Operationen
mit Operanden kleinerer Wortbreite aufgeteilt und nacheinander durchgefiihrt. Im ein-
fachsten Fall wird beispielsweise bei der Addition zweier binédrer Zahlen aquivalent zur
Handrechnung verfahren, indem von den niederwertigsten Bits der Operanden ausgehend
die beiden Operanden stellenweise unter Beriicksichtigung eines Ubertrags zur nichsthéhe-
ren Bitstelle addiert werden. Bei zwei Operanden mit n Bitstellen ergibt sich aus diesem
Verfahren eine Latenz von n Takten bzw. n + 1 Takten, wenn der Uberlauf der héchsten
Bitstelle mit ausgegeben werden soll. Im Gegensatz zur einfachen bitparallelen Addition
mit n Volladdierern, werden fiir die bitserielle Umsetzung nur ein Volladdierer und ein
zusatzliches Register benotigt. Ein Element, welches einen besonders hohen Flachenbedarf
bei der bitparallelen Umsetzung aufweist, ist der Multiplizierer. Daher sollen im nachsten
Abschnitt der bitserielle Multiplizierer und seine verschiedenen Implementierungsvarianten
vorgestellt werden.

Die Reduktion der Verlustleistung ist ein weiteres Problem zukiinftiger Implementierungen
in CMOS-Technologien mit Strukturgréfien von 90 nm und darunter. Durch sehr kleine
Abmessungen der Transistorgeometrie sowie diinne Isolationsschichten nimmt der Anteil
der statischen Verlustleistung durch den Anstieg der Leckstrome und Subschwellenstrome
zu. Zur Kompensation bieten sich verschiedene Verfahren an, z.B. die Nutzung von
Silicon-On-Insulator (SOI) Technologie, bei der die Transistoren der Schaltung auf iso-
liertem Silizium-Substrat aufgebracht werden. Eine andere Mdoglichkeit zur Reduktion
von Leck- und Tunnelstromen ist die Verwendung von dickeren Isolationsschichten aus
neuartigen Materialien [103] mit hoher Dielektrizitétskonstante (sog. high-k Dielektri-
ka). Neben diesen Herangehensweisen kann die Verlustleistung direkt durch Skalieren
der Versorgungsspannung beeinflusst werden. In digitalen Systemen haben sich daher
Methoden des Clock-Gatings, dem Anhalten des Taktes einzelner Schaltungsteile, des
Power-Gatings, dem Abschalten von Schaltungsteilen, und erweiterter, zum Teil kombi-
nierter Mechanismen, wie z. B. dem Absenken der Versorgungsspannung bei Anhalten des
Takts, etabliert. Die Absenkung der Versorgungsspannung soll im iibernéchsten Abschnitt

?Die optimale Ausnutzung von Ressourcen auf FPGA und ASIC ist Gegenstand anhaltender Forschung
und Entwicklung im Bereich der Synthesewerkzeuge.
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Tabelle 4.2: Flachenbedarf und Verzogerungszeit paralleler
Multiplizierer-Varianten (aus [79]).

Iteratives Array 5-Counter
Transistoren® 30n? 30 (n? 4+ 3n — 2)
Gatter” 13n? 13 (n% +3n — 2)
Verzogerungszeit (2n — 1) Tga (n+1)t°
Booth-Algorithmus Pekmestzi
Transistoren® 21n? + 52n + 31 21n2 + 89n — 73
Gatter” 10n%2 +23n+13  8.5n% +40.5n — 34
Verzogerungszeit (% + n) Tra (n+ 1) Tya

2 Die Umrechnung der Gatter in eine dquivalente Anzahl an Transistoren erfolgt
auf Grundlage von [101].

b NAND2-Aquivalente.

¢ t ist die Verzogerungszeit einer 5-Counter Zelle.

verfolgt werden, in welchem eine digitale Standardzellenbibliothek vorgestellt wird, bei
der die Versorgungsspannung im laufenden Betrieb bis in den Bereich um 200 mV, den
sogenannten Subschwellenbereich, abgesenkt werden kann.

4.2.1 Bitserielle Multiplikation

Ein grundlegendes Bauelement der digitalen LIAF Neurone ist der Multiplizierer, der
oft zur Berechnung des zeitlichen Verlaufs des Membranpotentials oder zur Bewertung
der Aktionspotentiale in Synapsen eingesetzt wird. Parallele Implementierungen des
Multiplizierers konnen die Rechenoperation zwar in kiirzester Zeit ausfithren, belegen
aber nach der Synthese eine grofle Fliche. Der Fliachenbedarf und die Verzégerungszeit
ausgewahlter Umsetzungen von Multiplizierern mit n Bit Wortbreite sind in Tab. 4.2
angegeben. Dabei wird die Verzogerungszeit in Vielfachen der Verzogerungszeit Tra eines
einzelnen Volladdierers angegeben. Zur besseren Vergleichbarkeit wurde die Fléche bei
allen Varianten auf die Anzahl an Transistoren umgerechnet. Diese Angabe gibt die Grofie
der Schaltung mit einem bestimmten Fehler an, da unterschiedlich dimensionierte Gatter
gleichen Typs und unterschiedlich grofle Transistoren hier nicht beriicksichtigt werden.
Innerhalb der gleichen CMOS-Technologie ist der Fehler bei allen Schaltungsvarianten
gleich, so dass sich die Grolen der einzelnen Implementierungen vergleichen lassen.

Wéhrend FPGAs zum grofien Teil heute feste Multiplizierer-Blocke bereitstellen, und
durch Auslassen dieser Elemente kein Flachenvorteil entsteht, sollten diese Elemente
aufgrund der Verzogerungszeit und angebotenen Wortbreiten von bis zu 18 Bit bei einer
Umsetzung von digitalen LIAF Neuronen auf FPGAs genutzt werden.

Dagegen lasst sich durch den Einsatz bitserieller Multiplizierer bei der Umsetzung von
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Tabelle 4.3: Flachenbedarf und Verzogerungszeit bitserieller
Multiplizierer-Varianten (aus [60]).

[enne Kalivas Typ I Kalivas Typ II

Transistoren 146n + 10 116m + 36 144n + 60
Gatter? —
Verzogerungszeit® 2, 5Tpa Tavux + Tra Thiux + Tra

& Keine Angaben zu NAND2-Aquivalenten.
b Verzégerungszeit pro Bit.

LIAF Neuronen auf einem ASIC eine grofie Flache einsparen. Bitserielle Multiplizierer
arbeiten héufig nach dem Prinzip der Zerlegung zweier Faktoren

A =(ap+...+a1+a); a,€{0,2"} und
B =(b,+...4+ b +b); b, € {0,2"}

in einen parallelen Multiplikator und einen seriell zugefithrten Multiplikanden, so dass
sich die Rechenvorschrift

(an+...+ar+ag) (bp+...+b1+b) =(an+...+a+ag) by,
+...
+(an .—|—a1+a0)-b1

4.6
+.. (4.6)
+ (an+ ...+ a1+ ag) - bo

ergibt, bei der sich jede dargestellte Addition seriell ausfithren lésst. Fiir die Implementie-
rung der Rechenvorschrift ist zu beachten, dass der Summand nach jedem Rechenschritt
um eine Bitstelle nach links verschoben werden muss. Anschliefend wird der mit dem
Inhalt der jeweiligen Bitstelle UND-verkniipfte Multiplikator zum Zwischenergebnis ad-
diert. Es ergibt sich eine Schaltung mit n Volladdierern und einem n Bit Register zur
Speicherung des Zwischenergebnisses in jedem Rechenschritt. Zusétzlich benétigt der
bitserielle Multiplizierer ein weiteres n Bit Register zum Vorhalten des parallel zugefiihrten
Operanden.

Literaturangaben zu benoétigter Flache und der Verzogerungszeit pro berechneter Bitstelle
von Umsetzungen bitserieller Multiplizierer sind in Tab. 4.3 zusammengefasst. Die beno-
tigte Flache wurde hier auf die Anzahl der Transistoren umgerechnet, um den Vergleich zu
parallelen Implementierungen ziehen zu kénnen. Die Verzogerungszeit bis zum Erscheinen
der ersten Bitstelle am Ausgang setzt sich aus der Verzogerungszeit Tra eines Volladdierers
und der Verzogerung Tyux der eingesetzten Multiplexer zusammen. Zusatzlich wird in
diesen Umsetzungen Zeit fiir das bitserielle Zufiihren der Operanden benétigt. Die in der
Zahl benétigter Transistoren angegebene Fliache in Abhéngigkeit von der Wortbreite ist
in Abb. 4.10 dargestellt. Beim Vergleich des Flachenbedarfs der parallelen Varianten mit
den bitseriellen Varianten der Multiplizierer ergibt sich ein Flachenvorteil der kleinsten
parallelen Implementierung gegentiber der kleinsten bitseriellen Implementierung bis zu
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Abbildung 4.10: Flédchenbedarf ausgewéhlter bitparalleler und bitserieller Mul-
tiplizierervarianten tiber der Wortbreite.

einer Wortbreite von 5 Bit. Da das hier betrachtete System jedoch eine Auflésung von
mindestens 6 Bit aufweisen soll (vgl. Berechnung der dquivalenten Wortbreite), wurde die
Entscheidung fiir die Untersuchung einer ASIC-Implementierung mit bitseriellen Multipli-
zierern getroffen. Die spater vorgestellte FPGA-Umsetzung nutzt im Gegensatz dazu die
von der Zielplattform bereitgestellten parallelen Multiplizierer.

4.2.2 Digitale ultra-low-power Standardzellenbibliothek

Bei der Integration von digitalen Systemen mit CMOS-Technologien, die eine Struktur-
grofe von 130 nm in Richtung der Nanoelektronik unterschreiten, wird die Betrachtung
sowohl der steigenden statischen Verlustleistung als auch der Robustheit gegeniiber Va-
riation von Prozess-Parametern wiahrend der Herstellung einer Schaltung zunehmend
wichtiger. Wahrend bisher auf einem Chip vor allem weit auseinander liegende, gleiche
Schaltungsteile voneinander abwichen, erreicht die Abweichung in CMOS-Technologien
von 90nm und darunter den lokalen Bereich um einen Transistor. In diesem Fall sind
die klassischen Methoden des analogen Layouts, das Matching und Common-Centroid
Layout-Technik [9, 41], fur die Gewéhrleistung der Robustheit einer Schaltung nicht mehr
ausreichend. Fur digitale Gatter bedeutet dies, dass bereits zwei gleiche, nebeneinan-
der liegende Gatter unterschiedliche Verzogerungs- und Schaltzeiten aufweisen konnen.
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Diese negative Eigenschaft muss fiir zukiinftige digitale Schaltungen beriicksichtigt und
kompensiert werden. Mit der zunehmenden Verkleinerung der Strukturgréfen geht auch
die Zunahme der statischen Verlustleistung einher, wie spéater noch in den Randnotizen
der Syntheseergebnisse anhand einer 350 nm Technologie und einer 130 nm Technolo-
gie gesehen werden kann. Ursache hierfiir ist vor allem die Abnahme der Schichtdicken
der Dielektrika, hohere Dotierungen sowie die kleinen geometrischen Abmessungen der
Transistoren, die fiir erhohte Leckstrome, Unterschwellenstrome und Tunnelstrome ver-
antwortlich sind. Die Kompensation der Tunnelstrome erfordert neue Materialien, die
als Dielektrikum eingesetzt werden kénnen und eine héhere Schichtdicke bei Erhalt des
elektrischen Feldes erlauben (high-k Dielektrika). Dieser Ansatz ist jedoch zur Redukti-
on der statischen Verlustleistung in bestehenden Technologien ungeeignet. Eine direkte
Moéglichkeit, die statische und dynamische Verlustleistung von Implementierungen in be-
stehenden CMOS-Technologien zu senken, ist das Herabsetzen der Versorgungsspannung
der Standardzellenbibliothek. Die Methoden des Clock-Gating und des Power-Gating sind
heute Stand der Technik und werden bereits von vielen Halbleiterherstellern unterstiitzt.
Eine Reduktion der Verlustleistung um Groflenordnungen ist mit dem Absenken der
Versorgungsspannung in den Bereich der Subschwellenspannung moglich, in dem der
Stromtransport im MOS-Transistor durch Diffusion (dhnlich dem Transport im Bipolar-
Transistor) statt durch freie Ladungstriager in der Inversionsschicht erfolgt. Dabei zeigt
sich die typische exponentielle Abhéangigkeit des Stroms von der Drain-Source-Spannung,
die bereits seit einiger Zeit in analogen Subschwellen-Schaltungen genutzt wird [76]. Im
Folgenden wird das EKV-Modell [27] fiir die Beschreibung des Drainstroms eines nMOS-
und eines pMOS-Transistors im Subschwellenbereich genutzt:

Ip o= ZnHU%unCC’)XK exp (UG_UTHOH> (exp (US) — exp (—UD)> (4.7)

LW UT

Ip = an(j%ﬂqu)xw exp <_UG_UTHOP> (eXp <_US) — exp (UD» (4.8)
npUT UT

Dabei beschreibt W die Kanalweite des Transistors, L die Kanallinge, Ug das Potential am
Gate, Us das Potential an Source und Up das Potential am Drainanschluss des Transistors.
Das Substrat ist der Bezugspunkt fiir alle Potentiale. Die Schwellenspannungen der
Transistoren sind mit Uryy beschrieben, die Ladungstriagerbeweglichkeiten mit p. Die
Temperaturspannung Ur = kgT/q wird mit 26 mV bei Raumtemperatur angenommen.
Der Parameter C!_ beschreibt die spezifische Kapazitat des Gate-Oxids, Parameter n den
Slope-Faktor (exponentieller Zusammenhang zwischen Ip und Ug im Subschwellenbereich).

Die Elemente der Subschwellenbibliothek wurden auf eine Versorgungsspannung von
200 mV ausgelegt. Dieser Wert erweist sich als eine gute Wahl beziiglich des relativen
Fehlers oy /Ny bei der Betrachtung der Streuung des Stérabstands einzelner Gatter in
Monte-Carlo Simulationen [113]. Unterhalb der Versorgungsspannung von 200 mV steigt
der relative Fehler des Storabstands stark an.
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Um die Zellen auf Robustheit zu optimieren, muss der Storabstand der Gatter maximiert
werden. Dieses kann durch eine symmetrische Ubertragungskennlinie erreicht werden,
wenn gilt:

Usut (Uin = Upp/2) = Upp /2 (4.9)

Die folgenden Betrachtungen werden fiir den Fall eines CMOS-Inverters durchgefiihrt.
Komplexere Gatter in CMOS-Technik lassen sich fiir eine dhnliche Betrachtung auf diese
Struktur zuriickfiihren.

Aus der Gleichheit der Drainstrome (4.7) und (4.8) eines Inverters mit den Transistoren
M1 und M2 im obigen Arbeitspunkt folgt, dass die Bedingung (4.9) erfiillt werden kann,
wenn gilt:

Upp/2—UrHon
Wy Wao o Tapmexp (T
L o L o Upp/2+UthHo,p \
p n Tiptp €XP (=PRI TR

Da die Prozessparameter der verwendeten CMOS-Technologie dem Betriebsgeheimnis des
Herstellers unterliegen, wurde der Faktor s anhand von Simulationen mit s &~ 2,3 ermittelt.
Daraus lasst sich die Dimensionierung jedes einzelnen Gatters unter Beriicksichtigung der
Symmetriebedingung und der einzuhaltenden Schaltzeiten ableiten.

Eine weitere Anforderung an die Dimensionierung der Transistoren ergibt sich aus der
Minimierung der Streuung der Schaltungsparameter. Die Streuung der Schwellenspannung
ist nach [22] umgekehrt proportional zur Wurzel aus der Gateflache

1

o (UTH) (0.8 m,

so dass durch eine Vergroflerung der Transistorabmessungen die Parameterstreuung ver-
mindert werden kann. Durch Verdoppelung der Transistorfliche wird die Streuung der
Schwellenspannung halbiert. Um ein moglichst flicheneffizientes Layout zu erreichen,
bietet es sich an, statt nur der Weite der Transistoren gleichzeitig auch die Lénge der
Transistoren in ungenutzten Bereichen der Standardzellen und damit auch die Robustheit
zu erhohen. Es kann gezeigt werden, dass mit der Variation der Schwellenspannung der
Storabstand eines Gatters im gleichen Mafle abnimmt, wie bei herkémmlichen Standard-
zellen (siche Anhang A.3). Positiv wirkt an dieser Stelle der reverse short-channel effect,
ein sekundirer Kurzkanaleffekt, der bei Verlangerung des Gates fiir eine Absenkung
der Schwellenspannung und eine damit verbundene Erhohung des Drainstroms sorgt.
Damit nimmt neben der Robustheit des Gatters bei Verldngerung des Transistorgates
gleichzeitig auch die Treiberstéirke des Gatters in begrenzem Mafle zu. Es ergibt sich ein
Optimum fiir die Lénge von Transistoren in Bezug auf die Treiberstiarke von Gattern im
Subschwellbereich, das bereits von Kim [63] beschrieben wurde.
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Unter Berticksichtigung der genannten Bedingungen wurde eine Standardzellenbibliothek
fir die Synthese und das Platzieren und Verdrahten (engl. Place and Route) (PAR)
von robusten digitalen Schaltungen im Subschwellenbereich entworfen. Die Bibliothek
umfasst 11 Zellen mit verschiedenen Treiberstiarken: Inverter, Treiber, Tristate-Treiber,
NAND, NOR, AND-OR-INVERT, D-Flipflop, D-Latch, sowie Aufwarts-Level-Shifter von
0,2V auf 1,0V und Abwarts-Level-Shifter von 1,0V auf 0,2V als Interface zu Padzellen
der verwendeten 90 nm CMOS-Technologie. Dieser Satz von Standardzellen umfasst die
Minimalanforderung des Synthesewerkzeugs Synopsys Design Compiler, erweitert um ein
NAND mit 3 Eingéngen zur Implementierung von robusten Flipflops. Zuséatzlich wurde
eine AND-OR-INVERT Zelle bereitgestellt, welche die hiufig auftretenden logischen
Ausdriicke in disjunktiver Normalform

FXONV Az

]

abbilden kann. Die Entscheidung fiir die Umsetzung des Terms als AND-OR-INVERT
Gatter in der Form

7 =—(AB + CD)

resultiert aus Betrachtungen zur Optimierung des Umfangs der Synthesebibliothek und
der Analyse héufig in digitalen Schaltungen auftretender Gatterkombinationen. Die
Bibliotheken fiir Synthese und Layout wurden manuell anhand von Simulationen an
aus den erstellten Layouts extrahierten Netzlisten charakterisiert. Zur Verifikation der
Ergebnisse wurde ein Testchip mit vier 32 Bit ALUs zur Analyse eines kleinen Systems,
einzelnen Gattern zur Priifung der grundlegenden Funktionalitat und einem Ringoszillator
zur Bestimmung des maximalen Takts automatisiert aufgebaut. Der Chip soll nach der
Charakterisierung der Bibliothek mit einer Versorgungsspannung von mindestens 200 mV
bis zu einer Versorgungsspannung von 1,0V fehlerfrei funktionieren.

In Abb. 4.11 ist das auf einer Fliche von 1 mm? gefertigte Layout des Chips mit den
groBen 10-Pad-Zellen zu sehen. Der Chip besteht aus den vier eingezeichneten 32 Bit ALUs.
Jede ALU besitzt zwei 32 Bit breite Register, den Akkumulator A und den Operanden B,
der durch die angelegte Instruktion auf den Akkumulator abgebildet wird. Die einzelnen
Register wurden als Scan-Register-Kette aufgebaut. Der Eingang der 4 Scan-Register-
Ketten ist auf ein gemeinsames Eingangs-Pad des Chips gefiihrt, um allen ALUs denselben
Wert fiir nachfolgende Tests einzupragen. Die Ausgénge der 4 Scan-Register-Ketten
wurden auf eigene Ausgangs-Pads gefithrt, um den Ausfall einzelner ALUs im Test
feststellen zu kénnen. Im besten Fall entspricht das Ausgangssignal aller vier ALUs dem
gleichen, korrekten Wert. Die ALU unterstiitzt 8 verschiedene Operationen: NOP, bitweises
NAND, NOR und XOR, ADD, SUB, SHL (shift left) und ROL (rotate left). Fir einen
einfachen Test der grundlegenden Elemente des Chips wurden die Grundgatter NAND2,
NOR2 und AND-OR-INVERT iiber eine eigene 4 Bit lange Scan-Register-Kette aufgebaut.
Die Ausginge der Grundgatter wurden tiiber Level-Shifter direkt auf Ausgangs-Pads
gelegt und erlauben eine direkte Beurteilung der Funktionsfahigkeit dieser Gatter. Zur
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Abbildung 4.11: Layout des Testchips mit 4 ALUs in einer 90 nm CMOS-
Technologie mit Versorgungsspannung im Subschwellenbe-
reich.

ersten Bestimmung des maximalen Takts, mit dem die Schaltung arbeiten kann, wurde
unterhalb der ALU Nr. 3 ein Ringoszillator mit 33 Stufen und einem Teiler aus Flipflops
im Verhéltnis von fiax/256 = fosc implementiert. Der maximal mogliche Takt lasst sich so
durch Messung des erzeugten Takts am Ausgang fos. bestimmen. Der Takt-Teiler wurde
notwendig, da die eingesetzten 10-Zellen nur fir Signale mit einer Bandbreite von 80 MHz
spezifiziert sind. Als Besonderheit ist anzumerken, dass auf Seiten des Chips an den
Eingangs- und Ausgangs-Pads Level-Shifter zur Umsetzung der Signale auf dem Chip von
einem Spannungswert von 200mV bis 1,0 V auf eine Spannung fiir die I0-Pads von 1,0V
eingebracht wurden. Durch diese Mafinahme ist der exakte Verlauf der Spannungen der
einzelnen Gatter zwar nicht mehr direkt ermittelbar, da keine Moglichkeit der Messung auf
dem Chip besteht, jedoch wird erwartet, dass ein Betrieb des Chips mit Eingangssignalen
von 1,0 V zu einer deutlich hoheren Robustheit des Gesamtsystems fiihrt, da sich Storungen
durch Rauschen auf 1,0 V Signale weniger auswirken, als auf Signale mit einem Hub von
200 mV. Gleichzeitig wird angenommen, dass die Rauschquellen auf dem Chip selbst
deutlich schwéacher ausgepragt sind als in der Testumgebung, so dass ein fehlerfreier
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Abbildung 4.12: Maximaler Takt der ALUs tiber der Versorgungsspannung.

Betrieb mit 200 mV Versorgungsspannung fiir den Kernbereich des Chips begiinstigt wird.
Als Versorgungsspannungen fiir den Chip wurde die Spannung fiir die IO-Pads VDD von
der Versorgungsspannung fiir den Low-Power Bereich VDD, getrennt. Zur Reduktion
des Rauschens wurden auch die Masse-Anschliisse des 10-Bereichs und des Low-Power
Bereichs voneinander getrennt und erst extern zusammengefiihrt.

Fiir den Test der ALU wurden zwei 32 Bit Worter mit einem festen, niedrigen Takt in
die Register der vier ALUs geschrieben. An dieser Stelle wurde ein relativ niedriger Takt
gewahlt, da nicht die maximale Arbeitsfrequenz der Level-Shifter getestet werden sollte,
sondern der maximal mogliche Takt der ALUs. Der Scan-Modus der Register wurde
anschlieBend abgeschaltet, und die ALUs wurden fiir 10° Zyklen mit frei einstellbarem
Takt betrieben. Wahrend der Ausfithrung wurde die Operation ADD durchgefiihrt, bei
der alle 32 Bit des Akkumulators ihren Zustand wechselten und mehrfache Uberlaufe des
Akkumulators auftraten. Wahrend der Addition wird der langste Pfad in der ALU genutzt,
welcher den maximal moglichen Takt des Systems bestimmt. Nach Durchfithrung der
Additionen wurde das Ergebnis aus Akkumulator A und Register B mit niedrigem Takt
ausgegeben und verifiziert. Der Testdurchlauf startete mit einer Versorgungsspannung
fir den Kern von VDD¢y.e =400mV und einem Takt von CLK,,., = 62,5 MHz. Der Takt
wurde verringert, bis alle ALUs korrekte Ergebnisse fiir die Berechnung zuriicklieferten. Im
nachsten Schritt wurde die Versorgungsspannung des Kerns herabgesetzt und wieder die
maximale Frequenz bestimmt. Im Subschwellbereich unter 250 mV wurden die Abstufungen
der Versorgungsspannung feiner gewahlt, da erwartet wurde, dass die Prozessvariation
unterhalb dieser Spannung stéarker in der Funktion der Schaltung sichtbar wird.
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Abbildung 4.13: Energieumsatz der ALU pro Instruktion iiber der Versorgungs-
spannung.

In Abb. 4.12 ist der maximal erreichte Takt der ALUs iiber der Versorgungsspannung der
ALUs aufgetragen. Als Kriterium fiir eine funktionierende ALU wurde aus dem vorherigen
Syntheseergebnis die zu iiberschreitende Grenze von 1,5 MHz bei einer Versorgungsspan-
nung von 200 mV gewahlt. ALUs, die diese Grenze nicht iiberschreiten, wurden in der
Abbildung mit gestrichelter Linie dargestellt und fallen aus den weiteren Betrachtungen
heraus. Es gibt wenige Muster, die das Auswahlkriterium erfiillen, kurz darunter jedoch
schnell in der Funktion nachlassen. Die zwei Exemplare wurden ebenfalls fiir die weitere
Betrachtung der Energieaufnahme vernachlassigt. Unter Berticksichtigung des Ausbeute-
kriteriums ergibt sich eine Ausbeute von funktionierenden ALUs von 88,3%. Die ALUs
wurden bis zu einer Versorgungsspannung von 110 mV getestet, wobei die zu erzielende
Versorgungsspannung von 200 mV von nur einer ALU nicht erreicht werden konnte. Der
durchschnittlich zu erreichende Takt bei der Zielgrofle einer Versorgungsspannung von
200mV liegt bei 2,5 MHz. Unabhéngig vom maximal moglichen Takt konnten 75% aller
gefertigten ALUs bei 120 mV Versorgungsspannung betrieben werden. Die ALU mit der
niedrigsten Versorgungsspannung funktionierte noch bei 115mV [113]. Im einleitenden
Abschnitt zur Standardzellenbibliothek mit Subschwellenspannung als Versorgungsspan-
nung wurde bereits auf die Moglichkeit der Reduktion der Verlustleistung hingewiesen.
Um vergleichbar zu aktuellen relevanten Verdffentlichungen zu sein, wird im Folgenden
die pro Instruktion umgesetzte Energie betrachtet. Die Energieaufnahme wurde sowohl
in Ruhe (statische Verlustleistung) als auch bei maximal moglichem Takt (dynamische
Verlustleistung) fir die ALUs ermittelt und auf eine einzelne Instruktion normiert.
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Abbildung 4.13 zeigt die aufgenommene Energie fiir die als funktionierend klassifizierten
ALUs iiber einen Versorgungsspanungsbereich von 120 mV bis 400 mV. Die einzelnen Mess-
ergebnisse sind als Sterne dargestellt. Dartibergelegt ist die durchschnittlich aufgenommene
Energie der betrachteten ALUs mit einem klaren Minimum bei einer Versorgungsspannung
von VDD¢qe = 210mV, sehr nahe der Versorgungsspannung, auf die wihrend des Layouts
der Bibliothek optimiert wurde. Unterhalb von 150 mV wurde die Streuung der Messwerte
aufgrund des abnehmenden Stichprobenumfangs sehr grof3, so dass an dieser Stelle die
Auswertung abgebrochen wurde. Alle Messungen wurden bei einer Raumtemperatur von
25°C durchgefithrt. Das beobachtete Minimum des Energieumsatzes pro Instruktion liegt
bei 0,45 pJ bei einer Versorgungsspannung von VDD = 210 mV und einem Takt von
3MHz. Als Vergleich des erreichten Werts werden an dieser Stelle relevante Veroffent-
lichungen der letzten Jahre herangezogen. In [16] zeigen Calhoun und Chandrakasan
einen 32 Bit Kogge-Stone Addierer in einer 90 nm CMOS-Technologie mit einer minimalen
Energie von 0,1 pJ pro Addition bei einer Versorgungsspannung von VDD = 330 mV und
einem maximalen Takt von 50 kHz. In [39] wird ein 8 Bit Sub-Threshold Prozessor in einer
130nm CMOS-Technologie mit 3,5 pJ pro Instruktion bei einer Versorgungsspannung von
VDD = 350 mV und einem maximalen Takt von 354 kHz gezeigt. Zhai beschreibt in [104]
einen 8 Bit CISC-Prozessor mit 0,85 pJ pro Instruktion bei einer Versorgungsspannung
von VDD = 280mV in einer 130 nm CMOS-Technologie. Eine Angabe zum maximal
moglichen Takt gibt es in dieser Veroffentlichung nur fiir eine Versorgungsspannung von
260 mV und wird mit 84,7 kHz angegeben.

4.2.3 Leaky Integrate and Fire Neuron

Integrate and Fire Neurone konnen in digitalen Systemen auf unterschiedliche Weise
umgesetzt werden. Fiir die Umsetzung auf FPGAs wird ein Ansatz gewahlt, der auf
viele gleiche Elemente setzt, die durch die Verbindungs-Struktur des FPGAs flexibel
miteinander verschaltet werden kénnen und so groflere komplexe Modelle abbilden kénnen.
Dieses wird am Beispiel eines in [21] verdffentlichten LIAF Modells gezeigt.

FPGA optimierter Entwurf (SIRENS)
Die Dynamik des Membranpotentials eines LIAF Neurons kann nach [21] mit

l

grVae, 0<t<A

Al) = { —C(Vp = Vo + Van)d(t—A), A<t (411)

ausgedriickt werden. Diese Darstellung entspricht der bekannten Struktur fir LTAF Neuro-
ne (vgl. Kap. 2.1.2), erweitert um die Beschreibung des Verhaltens des Membranpotentials
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bei der Aktionspotentialerzeugung. Dabei beschreibt der Parameter C' die Membranka-
pazitat des Zellkorpers, I den postsynaptischen Strom prasynaptisch feuernder Neurone,
von denen das empfangende Neuron die Eingangssignale erhélt. Der Parameter g, ist der
Leitwert, der die passiven Leckstrome und aktiven Transportstrome durch die Zellmem-
bran modelliert, A(t) beschreibt das Verhalten des Neurons, wenn das Membranpotential
die Feuerschwelle Vi iiberschreitet.

Die Parameter & und V4 beschreiben die Geschwindigkeit des Anstiegs und das Maximum
des Aktionspotentials, welches vom Neuron nach dem Uberschreiten der Feuerschwelle
erzeugt wird. Der Parameter A beschreibt die Dauer des Aktionspotentials. V), ist das
Maximum des Aktionspotentials, nach dessen Erreichen das Membranpotential auf ein
Ruhepotential von V; zuriickgesetzt wird. Mit 6(+) ist der Dirac-Impuls bezeichnet, mit
dem das Membranpotential zurtickgesetzt wird.

Dieses Modell ist zwar ein zeitkontinuierlicher Entwurf eines LIAF Neurons, soll aber der
Ausgangspunkt fiir das im Folgenden vorgestellte zeitdiskrete digitale Modell sein, welches
aus vielen gleichen Untereinheiten zusammengesetzt werden kann.

Im Folgenden Abschnitt wird die Implementierung einer digitalen Struktur zum Aufbau
pulscodierter neuronale Netze vorgestellt. Das umgesetzte Neuronenmodell basiert auf
einem LIAF Modell, dessen Funktion in Kapitel 2.1.2 beschrieben wurde. Das digitale
Neuron stellt eine Approximation der Gleichung (4.10) mittels eines spezialisierten Re-
chenelements, der Prozesseinheit (PE) dar. Die Auflésung der PE betragt im folgenden
Beispiel 16 Bit in Festkommadarstellung, von denen 13 Bit fiir die Nachkommastellen,
2 fiir die Vorkommastellen und ein Bit fiir das Vorzeichen vorgesehen sind. In einem
fritheren Abschnitt ist zum Vergleich mit analogen Neuronen die minimale Wortbreite fiir
diese Architektur bereits hergeleitet worden. Die Erweiterung der Wortbreite von 6 Bit
auf 16 Bit wird durch die fiir die Funktion des Neurons wichtigen einzustellenden Werte
notwendig.

Aufbau

Die Basis der SIRENS Einheit (Simple Reconfigurable Neural Hardware Structure) [108]
bildet die Prozesseinheit, deren Aufbau in Abb. 4.14a dargestellt ist. Die PE besteht aus
zwei Multiplexern, welche den Multipliziererblock, einen Addierer und einen Vergleichsele-
ment mit vorgeschaltetem Register zu unterschiedlichen Strukturen verschalten kénnen.
Die abgebildete Struktur stellt klassisch eine multiply-and-accumulate (MAC) Einheit dar,
welche sich ideal auf heutige FPGA bzw. Digitale Signalprozessor-Blocke (DSP) abbilden
lasst. Der Ausgang des Registers ist tiber einen Multiplexer auf das Register zurtickgefiihrt,
um die Funktionalitat der Integration schon in der Prozesseinheit zu implementieren. Die
Wahl dieser Struktur erlaubt es, die PE sowohl als klassischen Funktionsapproximator zu
nutzen, wie in [26] detailliert beschrieben wird, als auch durch die Erweiterung um das
Vergleichselement zum Aufbau von pulsenden LIAF Neuronen zu nutzen. Dazu werden
drei gleiche Prozesseinheiten in der in Abb. 4.14b gezeigten Weise verschaltet und bilden
so ein komplexeres zeitdiskretes, pulsendes Neuron.
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Abbildung 4.14: Grundelement eines einzelnen Neurons zur zeitdiskreten Ap-
proximation kontinuierlicher Funktionen (a) und Verschaltung
dreier Grundelemente zur Funktion eines Leaky Integrate-and-
Fire Neurons (b).

Diskrete Gleichung und Ubertragungsfunktion

Das in Abb. 4.14a dargestellte digitale System ist durch die Moglichkeit der unterschiedli-
chen Beschaltung der Multiplexer S1 und S2 durch die in (4.12) bis (4.15) aufgefiithrten
Gleichungen gegeben. Im Folgenden wird zunéchst nur der verzogerte Ausgang o (k)
betrachtet. Zur Vollstédndigkeit ist der unverzégerte Ausgang vy, (k) aufgefiihrt, welchem
erst bei der Erweiterung des IAF Neurons zum LIAF Neuron eine Bedeutung zukommt.

yo1(k) =a+bx(k—1) falls S1=1 A S2=0 (4.12)
Yo2(k) = yoo(k — 1) + bax(k — 1) falls S1=0 A S2=0 (4.13)
yos(k) =c falls S2=1 (4.14)

2(k) = sign(yz,a,2,3) (k) — ©) (4.15)

Fir die Funktion als IAF Neuron ist die Nutzung von (4.13) und (4.14) notwendig,
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alternativ kann auch eine Kombination aus (4.12) und (4.13) genutzt werden. Fur die
erste Variante wird Ausgang z(k) an den Eingang des Multiplexers S1 angeschlossen.

In den folgenden Betrachtungen wird aus Griinden der Ubersichtlichkeit nur noch der
verzogerte Ausgang y»(k) angegeben und wird als Ausgang des Grundelements mit y(k)
bezeichnet.

Ein System mit der oben beschriebenen Riickkopplung des Ausgangs z(k) auf den Multi-
plexer S2 ergibt eine Differenzengleichung von:

y(k) =bx(k—1)4+y(k—1)
+(c—y(k—1))-6(k—n)
+(c—y(k —1))-6(k —2n) (4.16)
+ ...
+(c—y(k—1))-0(k—mn)

Der neu eingefithrte Parameter n bestimmt den Zeitpunkt, zu dem das System auf einen
Wert ¢ (oder in der zweiten moglichen Variante auf den Wert a) zuriickgesetzt wird. Der
Zeitpunkt n berechnet sich aus der Feuerschwelle © nach der Vorschrift

o ([] 1) e arn

Dabei wird durch den Parameter Vi, das mittlere Puls-Perioden-Verhéltnis einer einlau-
fenden Bitfolge beschrieben (z. B. 1 Puls alle 2 Takte — Vi, = %)

Zusammengefasst ergibt sich die Funktion des Ausgangs zu

y(k) =bx(k—1)+yk—1)+c- Z(Sk mn) — y(k iék mn).  (4.18)

m=1

Eine einzelne Prozesseinheit kann bereits ein IAF Neuron nachbilden, wenn der Leaky-
Term des nachzubildenden Neuronenmodells vernachlassigt werden kann. Fiir die Bertick-
sichtigung des Leaky-Terms miissen mehrere PE verschaltet werden, wie in Abb. 4.14b
dargestellt ist. Der Ausgang y(k) der Struktur aus drei Grundelementen weist in der
angegebenen Konfiguration zum Zeitpunkt k& den Wert

y(k) = y(k = 1) + ba(k) — guy(k — 1) (4.19)

auf, solange die Feuerschwelle © nicht erreicht wird. Bei Uberschreiten der Feuerschwel-
le wird y(k) auf den Wert von Vj zuriickgesetzt. Die Uberfiihrung der Parameter des
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Tabelle 4.4: Relativer Diskretisierungsfehler der Parameter des diskreten Sys-
tems.

Auflésung [Bit] 11 12 13 14 15 16

Relativer Fehler b 159% 15,9% 54% 0,1% 01% 0,1%
Relativer Fehler g;, 8,9% 8,9% 89% 8,9% 3.3% 0,4%

kontinuierlichen Modells in die Parameter des diskreten Modells wird durch einen Koeffi-
zientenvergleich von (4.10) und (4.19) unter Beriicksichtigung der Integrationsschrittweite
des diskreten Systems von Ty = 1/ fax und einem zum Wert 1 gewahlten Eingang I
ermittelt. Fiir die Parameter des diskreten Systems ergeben sich die Koeffizienten zu

N I A
b= STy (4.20)
5, = %LTWC (4.21)

Die Erweiterung der Wortbreite von 6 Bit auf 16 Bit liegt in der Minimierung des
Fehlers bei der Uberfithrung der Parameter des kontinuierlichen Systems in das diskrete
System. Bei der Darstellung des Wertes fiir b reichen an dieser Stelle erst 11 binire
Nachkommastellen aus, um den relativen Diskretisierungsfehler unter 1% zu bringen, fur
den Wert von g, werden dazu 13 Nachkommastellen benotigt (siehe Tab. 4.4).

Mit den in (4.20) und (4.21) tberfithrten Werten wurde eine Simulation des digitalen
Systems mit einem Systemtakt von 100 Hz durchgefithrt und die Ausgabe der Simulation
dem zeitkontinuierlichen Modell gegeniibergestellt. Das Simulationsergebnis des pulsenden
LIAF Neurons ist in Abb. 4.15 dargestellt und emuliert das zeitkontinuierliche Neuro-

nenmodell in ausreichender Weise. Fiir die Nachbildung des exponentiellen Anstiegs des
t’ﬂ

Aktionspotentials sind weitere PE notwendig, welche die Exponentialreihe exp(t) = >

approximieren. Fiir die Nutzung der vorgestellten Struktur als Funktionsapproximator sei
an dieser Stelle auf die Arbeit [26] verwiesen.

Das vorgestellte flexible Konzept eines Neurons fiir Approximationsaufgaben sowie der
Moéglichkeit, komplexere Modelle wie z. B. ein LIAF Neuron zu erzeugen, wurde mit ver-
schiedenen Synthesewerkzeugen auf unterschiedliche Zielplattformen synthetisiert. Dabei
wurden Abschatzungen fiir die durchschnittliche Leistungsaufnahme der Schaltung sowie
fiir den Fléachenbedarf ermittelt. Zu den Ergebnissen der Synthese auf eine ASIC Zielplatt-
form lasst sich anmerken, dass die Synthese nur der erste Schritt in der Implementierung
der beschriebenen Schaltung auf dem ASIC ist. Die wihrend der Synthese ermittelten
Groflen geben nur — wenn auch relativ gute — Richtwerte fiir die tatsachlichen Groflen
wieder. Die endgtltigen Ergebnisse lassen sich erst nach dem Platzieren und Verdrahten
(PAR) ermitteln und liegen iiblicherweise leicht héher, als die in der Synthese ermittelten
Werte.
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Abbildung 4.15: Approximation der Funktion des kontinuierlichen pulscodier-
ten Neurons nach (4.10) mit der SIRENS Struktur. Der Ver-
lauf des Membranpotentials des kontinuierlichen LIAF Neu-
rons wurde mit den Modellparametern & = 50; A = 0,1;v4 =
1,1 =1.3;g, =0,6;C =14 erzeugt, das Simulationsergebnis
des digitalen pulscodierten Neurons aus drei Grundelementen
mit den Parametern: [ = 1,0; b= 0,929-1072; g, = 0,429-102.

In Tabelle 4.5 sind die Syntheseergebnisse fiir den Fléchenbedarf der vorgestellten SIRENS
Struktur in verschiedenen CMOS-Technologien dargestellt. Diese wurden in allen fol-
genden Synthesen fiir drei Arbeitsbereiche der Schaltungen analysiert, welche mit den
Bezeichnungen best, typical und worst gekennzeichnet werden und sich in den Parametern
fiir Versorgungsspannung, Temperatur und Skalierung der Strukturen unterscheiden. Eine
Ubersicht der relevanten Parameter der verschiedenen Arbeitsbereiche sind in Tabelle B.2
im Anhang zu finden. Die Synthese wurde fiir eine Taktfrequenz von 1 MHz mit Optimie-
rung auf geringe dynamische Verlustleistung mit einer anschlieenden Optimierung der
Chipflache durchgefiihrt. Die vorliegende Implementierung nutzt 16 Bit breite Register
zur Verarbeitung von vorzeichenbehafteten Fixpunkt-Zahlen mit 2 Bit fiir den ganzzahli-
gen Anteil und einem zusétzlichem Vorzeichen-Bit. Diese Wortbreiten sind notwendig,
um die Berechnungen des Neurons mit ausreichender Genauigkeit (verglichen mit dem
mathematischen Modell) durchfithren zu kénnen. Obwohl es sich bei dieser Struktur
um eine sehr flexible und kompakte Variante fiir digitale Neurone handelt, machen sich
Nachteile durch den Einsatz von Addierer- und Multiplizierer-Strukturen, welche das
Ergebnis in einem Taktzyklus bereitstellen konnen, bemerkbar. Diese Tatsache fiihrt
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Tabelle 4.5: Flachenbedarf und dynamische Verlustleistung der SIRENS
Struktur mit 16 Bit Wortbreite bei Synthese auf 1 MHz Takt.

Technologie Fliche [um?]  Verlustleistung [W]
best typical worst

350 nm Technologie 265.390,6 363,5 349,2 353.3
130 nm Technologie B 25.647,7 13,7 10,0* 8,0%
130 nm Technologie A 25.755,6 19,6* 14,8* 12,4*

16.851,7° 177> 134> 11,3°
90 nm Sub-Vry 25.258,0b 0,283P«
Xilinx FPGA 41 Slices 580,04
Virtex2 Pro (130 nm) 3 MULT18X18

2 Der zusatzliche Anteil der Verlustleistung durch Leckstrome bewegt sich mindestens in der
GroBenordnung der hier angegebenen dynamischen Verlustleistung.

P Die Hierarchie der Implementierung wurde aufgelést. Ungenutzte Elemente (z.B. konstante
beschaltete Blocke) wurden wéahrend der Synthese identifiziert und entfernt. Dieses Syntheseer-
gebnis ist daher nur noch als LIAF Neuron einsetzbar.

¢ Maximale dynamische Verlustleistung nach Abbildung auf eine handentworfene Standardzellen-
bibliothek mit 200 mV Versorgungsspannung. Angaben zur verwendeten Bibliothek finden sich
unter Kapitel 4.2.2. Das Sub-Vy System wurde auf einen Takt von 500 kHz synthetisiert. Die
statische Verlustleistung liegt in der GroéBenordnung der dynamischen Verlustleistung.

d Xilinx ISE 9.2i gibt in der Power-Analyse 206,72 mW statische Verlustleistung an.

zu dem FErgebnis, dass die digitale Schaltung zwar mit einer niedrigen Taktrate von
bis zu 1 MHz betrieben werden kann, jedoch eine grofle Flache belegt. Es wird ersicht-
lich, dass diese Struktur fiir den Einsatz auf FPGA mit speziellen full-custom Blocken
(Multiplizierereinheit, Volladdierer, DSP) optimiert ist. Die in der ersten Synthese und
in Tabelle 4.5 gezeigten Werte fiir die Verlustleistung beruhen auf der Annahme von
Schaltwahrscheinlichkeiten der einzelnen Gatter, welche von der Taktfrequenz abgeleitet
werden. Da die genauen Werte fiir die Schaltwahrscheinlichkeiten aufwendig zu ermitteln
sind, wurde im néchsten Schritt die Verlustleistung anhand von Simulationen und daraus
gewonnenen Schalthéufigkeiten (im Backannotation-Verfahren) der einzelnen Gatter in
Abhéangigkeit von der Ausgangstaktrate des Neurons fiir einen 130 nm Prozess ermittelt.
Das digitale System wurde mit Synopsys Design Compiler Z-2007.03-SP4 synthetisiert.
Beim Ubergang der Synthese von der 350 nm Techologie auf die 130 nm Technologien zeigt
sich, dass die allgemeinen Skalierungsregeln der CMOS-Technologie (sieche Anhang B)
greifen. Die Abnahme der Verlustleistung um einen Faktor von ungefihr 23 ergibt sich
aus dem Quadrat des Verhéltnisses der minimalen Strukturgréfien von 130 nm zu 350 nm,
dem Quadrat des Verhéltnisses der Versorgungsspannung von 3,3V zu 1,2V und der
Reduktion des Gateoxids um einen Faktor von ca. 130/350. Gleichzeitig wird deutlich, dass
die Ergebnisse fiir die Verlustleistung stark vom jeweiligen Technologieanbieter abhéngen.
So liegt die Verlustleistung bei Technologie A je nach Betriebsfall zwischen 40% und
50% hoher, als bei Technologie B eines anderen Anbieters. Durch die Auflésung der
flexiblen Struktur der SIRENS Implementierung und die Festlegung auf die Funktion
von jeweils drei Funktionsblocken zu einem LIAF Neuron lasst sich die Flache um fast
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Abbildung 4.16: Dynamische Verlustleistung (durchgezogene Linien) und Ver-
lustleistung durch statische Leckstrome (gestrichelte Linie)
der SIRENS-Struktur in einem 130 nm Prozess.

35% verringern. Die Verlustleistung verringert sich dabei aber um weniger als 30% im
typischen Betriebsfall, in den Randbereichen um weniger als 10%.

Die Synthese der SIRENS Struktur auf eine Standardzellenbibliothek fiir den Subschwel-
lenbetrieb in einer 90 nm CMOS-Technologie ergibt fast die gleiche benotigte Fléche fiir
einen flexiblen Block aus drei SIRENS Elementen, wie die Synthese auf eine 130 nm
Technologie. Dieses wird durch den erhohten Flachenbedarf der Elemente der Standard-
zellenbibliothek fiir den Subschwellenbetrieb hervorgerufen. Die Elemente wurden zur
Steigerung der Robustheit der Bibliothek nicht mit minimalen Maflen ausgelegt sondern
vergrofert. Zudem enthélt diese Bibliothek nur grundlegende Gatter und verzichtet auf
Gatter mit mehr als 3 in Reihe geschalteten Transistoren. Die angegebene Verlustleistung
wurde fiir eine Versorgungsspannung von 200 mV und einem Takt von 500 kHz ermittelt.
Bei dieser Versorgungsspannung erreicht die Schaltung die vorgegebene Geschwindigkeit
von 1 MHz nicht mehr.

In Abb. 4.16 ist die Verlustleistung des Neurons basierend auf der SIRENS-Struktur
in Abhéngigkeit von der Ausgangstaktrate des Neurons dargestellt. Es existieren zwei
reproduzierbare Syntheseergebnisse fiir die dynamische Verlustleistung, bei denen die
hohere Verlustleistung (Kreise) moglicherweise durch die Simulation des Clock-Netzwerkes
als nicht ideales Netz zustande kommt und im Gegensatz dazu die niedrigere Verlustleistung
(Quadrate) durch die Simulation des Clock-Netzwerkes als ideales Netzwerk (welches selbst
keine Stromaufnahme hat). Auffillig ist der grofie Anteil der statischen Verlustleistung
durch Leckstrome, welche sich im Bereich von 10 yW bewegt und damit bei niedrigen
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Pulsraten hoher ist, als die Verlustleistung durch die Funktion der Schaltung selbst. Mit der
Verlustleistung im Bereich von 5 pW bis 13 uW und der zusatzlichen Verlustleistung durch
die Leckstrome liegt die digitale Implementierung bei d&hnlichen Eigenschaften fiir das
Erreichen der Ausgangspulsrate mit in der Summe bis zu 25 uW Leistungsaufnahme etwa
37 mal hoher als die vorgestellte analoge Variante des LIAF Neurons. Der Fldchenbedarf
des Neurons ist etwa 450 mal grofer, als das in analoger Schaltungstechnik implementierte
Gegenstiick. Ein interessanter Punkt ist die Abschéatzung der ersten Synthese ohne
Backannotation-Schritt, welche die dynamische Verlustleistung mit 14 W abgeschatzt hat.
Dieses Ergebnis wird fiir eine hohe Ausgangspulsrate des Neurons mit den Backannotation-
Daten fast erreicht und kann somit als Abschatzung nach oben dienen. Die Abbildung
der bitparallel arbeitenden SIRENS-Struktur auf eine ASIC-Technologie ohne speziell
dafiir angefertigte Logikblocke fithrt nach Tab. 4.5 zu einem relativ hohen Flédchenbedarf.
Aus diesem Grund wurden weitere Strukturen entworfen, welche einerseits auf FPGAs
synthetisierbar, speziell aber auf die Synthese in einer ASIC-Technologie zugeschnitten
sind. Fiir die Implementierung als ASIC wurde das Neuron in vollstéindig bitserieller
Arbeitsweise umgesetzt.

ASIC optimierter Entwurf, bitseriell

Fiir den Entwurf von digitalen Systemen, welche auf einem ASIC integriert werden sollen,
sind besondere Randbedingungen zu beachten. Da es im Entwurfsprozess durchaus tiblich
ist, die in einer Hardware-Beschreibungs-Sprache beschriebene Schaltung in einem FPGA-
Baustein zu testen, ist darauf zu achten, bei der Beschreibung des Systems spezielle
FPGA-Blocke oder vom FPGA-Anbieter zur Verfiigung gestellte Hardware-Beschleuniger
nicht zu benutzen. Die Synthesewerkzeuge konnen die beschriebene Schaltung wéhrend
der Synthese auf die angegebene Zieltechnologie durchaus so optimieren, dass sie auf
spezielle Blocke der FPGAs abgebildet werden. Werden diese Blocke aber héindisch in der
Hardware-Beschreibungs-Sprache instanziert, so ist eine Synthese der Schaltung auf einen
ASIC-Prozess oft schwierig, wenn die entsprechenden Makros dort vom jeweiligen Anbieter
nicht vorliegen. Ebenso léasst sich aus der auf einem FPGA funktionierenden Schaltung nicht
ableiten, dass die Schaltung auch auf einem ASIC fehlerfrei arbeitet, da jeder Technologie-
Prozess eigene Besonderheiten aufweist, auf die bei der Synthese der Schaltung speziell
eingegangen werden muss. Daher ist die Vorgehensweise bei der Implementierung einer
Schaltung auf einem ASIC, dass alle Schaltungsteile unter Ausschluss von Makros wie
z. B. mit Hilfe des XILINX CORE Generator oder des ALTERA MegaWizard aufgebaut
werden.

Die im vorhergehenden Abschnitt beschriebene Architektur eines digitalen Neurons ist
fiir die Umsetzung auf einen ASIC aufgrund der in jedem Block verwendeten parallelen
Multiplizierer in Hinblick auf die benétigte Chipflache ungeeignet, zumal die Multiplizierer
fiir die Berechnung des Ergebnisses in einem Takt ausgelegt wurden, was zu einem sehr
hohen Flachenbedarf fithrt (siche Tabelle 4.5). Handentworfene Multipliziererblécke bzw.
optimierte IP-Cores, wie auch im FPGA vorhanden sind, verringern den Flachenaufwand
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Tabelle 4.6: Flachenbedarf und dynamische Verlustleistung der SIRENS
Struktur mit bitseriellen 16 Bit Multiplizierern bei Synthese
auf 20 MHz Takt.

Technologie Fléche [pm?] Verlustleistung [puW]
best  typical worst
350 nm Technologie 174.668,8 24222 2.333,8 2.264,2
130 nm Technologie B 18.140,8 122.8% 92,72 63,6%
130 nm Technologie A 17.567,8 179,8*  131,2*  109,5*
15.385,2P 174,6> 127,4%> 106,7°
90 nm Sub-Vry 9.914,65¢ 0,077>¢

2 Der zuséatzliche Anteil der Verlustleistung durch Leckstrome bewegt sich mindestens in der Gro-
Benordnung der hier angegebenen dynamischen Verlustleistung.

b Die Hierarchie der Implementierung wurde aufgelst. Ungenutzte Elemente (z. B. konstante be-
schaltete Blocke) wurden wéahrend der Synthese identifiziert und entfernt. Dieses Syntheseergebnis
ist daher nur noch als LIAF Neuron einsetzbar.

Maximale dynamische Verlustleistung nach Abbildung auf eine handentworfene Standardzellen-
bibliothek mit 200 mV Versorgungsspannung. Angaben zur verwendeten Bibliothek finden sich
unter Kapitel 4.2.2. Das Sub-Vpyg System wurde auf einen Takt von 1 MHz synthetisiert. Die
statische Verlustleistung liegt in der GréBenordnung der dynamischen Verlustleistung.

zwar, brauchen aber auf einem ASIC immer noch eine grofie Flache. Das vorrangige Ziel ist
daher, eine Umsetzung eines digitalen Neurons mit moglichst kleinem Flachenbedarf auf
einem ASIC zu finden. Die Vorgehensweise beim Entwurf eines bitseriellen Multiplizierers
wurde bereits in einem vorangegangenen Kapitel behandelt.

Nach der Identifikation des Multiplizierers als Element mit dem grofiten Flachenbedarf
wurde das vorgestellte SIRENS Modell mit Hilfe von bitseriellen Multiplizierern aufgebaut.
Dazu wurde nach der Analyse verschiedener bitseriell arbeitender Varianten ein optimierter
Block aus den ,,DesignWare-Komponenten* des Synopsys Design Compilers genutzt. Dieser
lasst sich sowohl fiir die Synthese auf einem ASIC nutzen, als auch fiir die Synthese
auf eine FPGA Plattform. Im Vergleich mit den theoretisch ermittelten Werten aus
Abb. 4.10 unterschreitet die Flache der bitseriellen Implementierung des LIAF Neurons
aus SIRENS Blocken erst ab einer Wortbreite von 9 Bit statt 6 Bit die Fléche der parallelen
Implementierung (siehe auch Abb. 4.20). Dieses wird durch den zu Grunde liegenden
Addierer hervorgerufen, der vor allem auf eine hohe Verarbeitungsgeschwindigkeit ausgelegt
ist. Zusétzlich erhohen die mit Registern versehenen Ein- und Ausgénge des bitseriellen
Multiplizierers im Vergleich mit den theoretischen Ergebnissen den Flachenbedarf. Die
gesamte Schaltung mit bitseriellem Multiplizierer der Wortbreite n muss zum Erreichen der
gleichen Ubertragungsfunktion wie die parallele Implementierung mit einem Takt von (n +
4) MHz betrieben werden. Fiir die Verlustleistung wurde im Fall n = 16 aus der Synthese
eine Verlustleistung von ca. 130 uW ermittelt. Die Zunahme der Verlustleistung bei der
Verwendung der bitseriellen DesignWare Komponenten ist durch den notwendigen hoheren
Takt von 20 MHz zu begriinden. Aus Tab. 4.6 wird ersichtlich, dass die Verlustleistung
letztlich von der verwendeten Zieltechnologie bzw. dem Technologieanbieter abhéngig ist.
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Abbildung 4.17: Blockschaltbild eines auf Zahlern basierenden LIAF Neuro-
nenmodells.

Die fiir die SIRENS Struktur benotigte Flache sinkt durch den Einsatz bitserieller Multipli-
zierer um mehr als 30%. Gleichzeitig wird ersichtlich, dass die Auflosung der drei SIRENS
Funktionseinheiten zu einem gemeinsamen LIAF Neuron unter Verlust der Flexibilitat
nur noch eine Flachenabnahme von 12,5% bringt, wiahrend sich die Verlustleistung kaum
verdandert. Im Vergleich mit der bitparallelen Implementierung muss die bitserielle Struktur
zum FErreichen der gleichen Ausgangscharakteristik um den Faktor 20 schneller getaktet
werden. Dabei steigt die Verlustleistung nur um den Faktor 8 an. Die Synthese auf die
Standardzellenbibliothek fiir den Subschwellenbereich mit einer Versorgungsspannung
von 200 mV konnte an dieser Stelle nur noch auf einen Takt von 1 MHz statt 20 MHz
durchgefithrt werden. Dadurch ergibt sich eine deutlich kleinere Fliche und eine geringe
Verlustleistung. Wird der fiir die Synthese gewahlte Takt maximiert, erhoht sich die Fléche
auf ungefdhr den Wert der Implementierungen in der 130 nm CMOS-Technologie, da fast
ausschlieBlich Zellen mit hoher Treiberleistung und damit grofler Flache genutzt werden.

ASIC optimierter Entwurf, zihlerbasiert

Aus der beobachteten hohen Energieaufnahme des Systems mit bitseriellen Multiplizierern
wird als zweite Moglichkeit fiir einen auf einen ASIC optimierten Entwurf eine auf Zahlern
basierende Umsetzung gewahlt, die im Folgenden detailliert beschrieben wird. Trotz der
moglichen Flacheneinsparung durch die Nutzung von bitseriellen Multiplizierern (siehe
Tab. 4.3) wurde versucht, in diesem Ansatz vollstdndig auf Multiplikationen zu verzichten
und die phénomenologisch beobachtbaren Eigenschaften eines LIAF Neurons iiber andere
Mechanismen zu emulieren. Grundlage des digitalen Neurons ist ein Block, der im nachfol-
genden Text als Soma (Zellkorper) bezeichnet wird. Dieser Block emuliert die Integration
von Pulsen auf der Zellmembran sowie die Abnahme des Membranpotentials tiber der Zeit.
Die in Abb. 4.17 dargestellte Soma [109] besteht aus einem synchronen n Bit Aufwérts-
und Abwiérts-Zahler fir das Membranpotential, der in jedem Takt durch ein gesetztes Bit
am Plus Eingang um ein Bit erhoht oder durch ein gesetztes Bit am Minus Eingang um
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Abbildung 4.18: Schaltungen zur Priorisierung eines Eingangs.

ein Bit vermindert werden kann. Liegt gleichzeitig an beiden Eingdngen ein gesetztes Bit
an, heben sich das exzitatorische und das inhibitorische Signal auf und der Zahlerstand
bleibt unveréndert. Eine alternative Implementierung, bei der das exzitatorische oder das
inhibitorische Signal priorisiert wird, ist ebenfalls denkbar. Die fiir beide Méglichkeiten der
Priorisierung verwendeten Schaltungen (Abb. 4.18) benétigen den gleichen Flachenbedarf.
Die an den Plus- und Minus-Eingéngen verarbeiteten Informationen werden mit einem
schnellen Takt CLKfast verarbeitet. Hier laufen Informationen tiber ein Aktionspotential
von vier Synapsen im Zeitmultiplexverfahren ein. Die Pulsrate in jedem einer Synapse zu-
geteilten Zeitschlitz entspricht einem durch die Synapse gewichteten Aktionspotential. Der
Ausgang des hochstwertigen Flip-Flops des Zéhlers kann zur Detektion der Uberschreitung
der Feuerschwelle genutzt werden, wenn der hochste Wert, den der Zahler annehmen kann,
als Feuerschwelle angenommen wird. Daneben kann an jedem Bit des Zahlers abgegriffen
werden oder — unter Nutzung zuséatzlicher Flache — ein Komparator zum Vergleich des
Zéahlerstandes mit einem gespeicherten Wert implementiert werden. Fiir den Zerfall des
Membranpotentials sorgt ein weiterer n Bit Zéhler. Dieser Takt-Zéahler genannte Schal-
tungsteil ist ein Abwérts-Zahler, der beginnend mit dem Wert der Feuerschwelle mit
jedem Takt um eins vermindert wird. Der dargestellte Komparator aus UND-Gattern
vergleicht die Zahlerstdnde beider Zahler bitweise miteinander und erzeugt bei Gleichheit
beider Zéahler ein Steuersignal fiir einen Schaltungsteil, der inhibitorische Pulse erzeugt,
welche auf den Minus-Eingang des Membranpotential-Zéahlers zurtickgefithrt werden. Diese
Implementierung fithrt zu einer hohen Rate von im Neuron erzeugten inhibitorischen
Pulsen, wenn sich das Membranpotential in der Nahe der Feuerschwelle befindet. Je weiter
das Membranpotential unterhalb der Feuerschwelle liegt, umso weniger inhibitorische
Pulse werden erzeugt. Fiir das Membranpotential bedeutet dieses einen exponentiellen
Zerfall mit der Zeit, wenn das Neuron nicht erregt wird.

Das Gesamtsystem arbeitet mit Pulsraten zur Beschreibung der Signalstéarke eines Aktions-
potentials. Dazu werden einzelne vom Neuron ausgesandte Aktionspotentiale durch eine
Synapse in einen mit dem Wert der Synapse korrespondierenden Ratencode umgewandelt.
Der Ratencode wird in einem der Synapse zugeteilten Zeitschlitz an das Neuron tibertragen.
Das hier beschriebene Neuron erhoht oder vermindert mit jedem ihn erreichenden Puls
den Zéhler fiir das Membranpotential und sendet bei Erreichen der Feuerschwelle einen
einzelnen Puls der Lange eines Taktes aus. AnschlieBend wird der Membranzahler auf
einen Initialwert zuriickgesetzt.
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Abbildung 4.19: Dynamische Verlustleistung (durchgezogene Linie) und Ver-
lustleistung durch statische Leckstrome (gestrichelte Linie)
eines bitseriellen, zahlerbasierten Neurons mit 6 Bit Auflésung
und 250 kHz Takt in einem 130 nm CMOS-Prozess.

In Tabelle 4.7 sind die Syntheseergebnisse fiir den Fléchenbedarf und die zu erwartende
Verlustleistung der hier mit einem Takt von 250 kHz beschriebenen Schaltung angegeben.
Das synthetisierte bitserielle Neuron bendotigt in der 6 Bit Variante (6 Bit ist die 4quivalente
Auflésung des analog implementierten Neurons) eine um den Faktor 4 kleinere Fliache
in der verwendeten 130 nm CMOS-Technologie, als eine bitparallele Implementierung
mit 6 Bit Wortbreite. Gleichzeitig konnte die Verlustleistung gesenkt werden, was vor
allem durch den niedrigen Takt des Systems ermdglicht wird. Die Verlustleistung tiber
der Ausgangspulsrate ist in Abb. 4.19 dargestellt und zeigt einen nahezu konstanten
statischen Anteil der Verlustleistung von 1,15 pW, wéahrend die dynamische Verlustleistung
ein Maximum von 154nW bei einer Ausgangspulsrate von etwa 3850 Pulsen/s erreicht.
Umgerechnet ergibt sich so eine Energie von 40 pJ pro ausgesandtem Aktionspotential.

Bereits im vorangegangenen Abschnitt konnte gezeigt werden, dass der Flachenbedarf
eines Neurons durch den Einsatz eines bitseriellen Arbeitsprinzips stark reduziert werden
kann. Dieser Flachengewinn wird dabei jedoch durch den Betrieb mit einem schnelleren
Takt als dem der bitparallelen Implementierung durch eine auf die belegte Flache bezogene,
hohe dynamische Verlustleistung erkauft. In der hier vorgestellten zahlerbasierten Variante
konnen die Flache und die Verlustleistung weiter reduziert werden. Es ergibt sich eine
Verlustleistung im Bereich von 100 nW bei einer Ausgangspulsrate von bis zu 4000 Pulsen/s.
Das Verhéltnis von erreichter Ausgangspulsrate und Verlustleistung kommt dem Verhéltnis
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Tabelle 4.7: Flachenbedarf und dynamische Verlustleistung der zahlerba-
sierten bitseriellen Struktur mit 6 Bit Auflosung bei 250 kHz

Takt.
Technologie Fléche [pm?] Verlustleistung [nW]
best  typical worst
350 nm Technologie 15.002,6 2.478,3* 2.479,6* 2.580,7*
130 nm Technologie B 1.429.0 132,8>  99,7° 69,5P
130nm Technologie A 1.397.9 152,9*  111,9> 935
90 nm Sub-Vryg 1.564,1 2,5¢

2 Die zuséatzliche statische Verlustleistung durch Leckstréome liegt mit ca. 10 nW mehrere Grofien-
ordnungen unter der dynamischen Verlustleistung.

b Die zusitzliche statische Verlustleistung durch Leckstréme liegt mit 1-2 uW um eine GroBenord-
nung iber der dynamischen Verlustleistung. Die Synthese wurde auf eine geringe statische und
dynamische Verlustleistung hin optimiert.

¢ Maximale dynamische Verlustleistung nach Abbildung auf eine handentworfene Standardzellen-
bibliothek mit 200 mV Versorgungsspannung. Angaben zur verwendeten Bibliothek finden sich
unter Kapitel 4.2.2. Die statische Verlustleistung liegt mit ca. 32nW um eine Groflenordnung
iiber der dynamischen Verlustleistung.

der bitparallelen STRENS Implementierung sehr nahe und lasst den Schluss zu, dass die
zéahlerbasierte Implementierung eine sehr gute Umsetzung ist, wenn besonders wenig
Flache genutzt werden soll. Die dynamische Verlustleistung der bitseriellen zéhlerbasierten
Variante betragt im Fall der Umsetzung in einer 130 nm Technologie etwa den Wert der
analogen Variante des LIAF Neurons in gleicher Technologie, dagegen ist die statische
Verlustleistung mit 1 uW bis 2 uW fast doppelt so hoch wie die statische Verlustleistung der
analogen Implementierung mit 650 nW. Durch die hohere Ausgangspulsrate des analogen
Neurons ergibt sich eine bessere Energiebilanz fiir die analoge Implementierung. Die
Flache des bitseriellen Neurons belegt dabei etwa das 15-fache der Flache des analog
implementierten Neurons.

Eine weitere Absenkung des Energiebedarfs des zahlerbasierten Neurons kann durch
den Einsatz spezialisierter Standardzellenbibliotheken, wie der spéter noch vorgestellten
Bibliothek in Subschwellen-Schaltungstechnik mit 200 mV Versorgungsspannung erreicht
werden. Diese Bibliothek beinhaltet Standardzellen, die besonders auf Robustheit ge-
geniiber Parameter-Variation im Herstellungsprozess ausgelegt sind und eine grofiere
Flache belegen, als vergleichbare Standardzellen, die mit hoheren Versorgungsspannungen
arbeiten. Obwohl die Subschwellenbibliothek eine 90 nm CMOS-Technologie nutzt, ergibt
sich aus der Optimierung auf hohe Robustheit der in Tab. 4.7 angegebene leicht héhere
Flachenbedarf im Vergleich mit der bisher verwendeten 130 nm CMOS-Technologie. Durch
den Einsatz der Subschwellen-Bibliothek kann in der vorliegenden Implementierung die
dynamische Verlustleistung im Vergleich mit der Synthese auf eine 130 nm Standardzel-
lenbibliothek um den Faktor 32 verringert werden, wahrend die statische Verlustleistung
um den Faktor 34 abnimmt.
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Abbildung 4.20: Flachenbedarf digitaler Implementierungsvarianten iiber der
Wortbreite.

4.2.4 Vergleich digitaler Implementierungsvarianten

Der Einsatz von digitalen Umsetzungen pulsender Neurone hangt im Wesentlichen von den
Anforderungen an die Verarbeitungsgeschwindigkeit und die belegte Flache ab. Wéahrend
die bitparallele Umsetzung des LIAF Neurons in Form der SIRENS Struktur Pulsraten
im Bereich bis 1 MHz erlaubt, wird durch die bitparallele Implementierung der Multi-
plizierer auf einen ASIC dabei eine grofie Flache belegt. Die Umsetzung ist, wenn eine
FPGA-Plattform eingebettete Multiplizierer bietet, vor allem fiir die Umsetzung auf ein
FPGA geeignet. Der Wechsel zu einer bitseriellen Arbeitsweise kann die benotigte Flache
besonders fiir hohe Wortbreiten reduzieren, erhoht aber in gleichem Mafle die Latenz jeder
einzelnen Stufe der SIRENS Struktur. Zum Erhalt der gleichen Ubertragungsfunktion
muss das bitserielle System daher mit deutlich hoherem Takt betrieben werden, was zu
einer Erhohung der Verlustleistung fiithrt. Der experimentell ermittelten Erhéhung der
Verlustleistung um den Faktor 10 steht eine Flachenabnahme von etwa 1/3 gegentiber.
In Abb. 4.20 ist der Flachenbedarf der einzelnen Varianten des LIAF Neurons in einer
130 nm CMOS-Technologie dargestellt. Die bitseriellen Varianten sind durch die charak-
teristische lineare Zunahme der Flache mit der Wortbreite zu sehen. Diese schneiden
die quadratisch wachsende Flache der bitparallel umgesetzten Varianten frithestens ab
einer Wortbreite von etwa 9 Bit. Im Abschnitt iber die bitparallele SIRENS Struktur
wurde jedoch deutlich, dass fiir das gewahlte Neuronenmodell eine Umsetzung mit 16 Bit
erforderlich ist. Bei den als optimierte Implementierungen bezeichneten Umsetzungen
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wurde die flexible SIRENS Struktur durch das Synthese-Werkzeug aufgelost und zusam-
mengefasst. Es ergibt sich daher ein geringerer Flachenbedarf aufgrund der Entnahme
ungenutzter Elemente der SIRENS Struktur. Diese Einheiten aus drei SIRENS-Blocken
kénnen nur noch fir die Funktion eines LIAF Neurons genutzt werden und haben ihre
Flexibilitat verloren. Im Gegensatz zu den SIRENS Varianten erlaubt eine auf Zahlern ba-
sierende Umsetzung die flichenminimale Implementierung eines LIAF Neurons in digitaler
Schaltungstechnik. Neben der linearen Skalierung der Flache mit der Wortbreite bietet
diese Umsetzung ein dhnliches Verhéltnis zwischen Verlustleistung und Ausgangspulsrate
wie die bitparallele STRENS Struktur. Fiir eine Implementierung von LIAF Neuronen in
digitaler Schaltungstechnik ist wegen der kleinen belegten Fliche und der im Vergleich mit
der bitseriellen Umsetzung relativ geringen Verlustleistung die zéhlerbasierte Schaltung
besonders geeignet.

4.3 Analoger Testchip

Zur Verifikation der in den vorigen Abschnitten dieses Kapitels erarbeiteten Eigenschaften
von in analoger Schaltungstechnik integrierten pulsenden Neuronen wurde ein Testchip
in einer 130 nm CMOS-Technologie entworfen, der die in Kapitel 4.1 entworfenen LIAF
Neurone, deren Layout in Abbildung 4.2 dargestellt ist, enthélt. Insbesondere die Frage,
welches Verhalten diese Neurone mit Minimal-Layout nach der Fertigung aufweisen, ist nur
durch die Messung an gefertigten Chips zu klaren, da diese allen Prozess-Schwankungen
wéhrend der Herstellung unterworfen sind. Diese Vorgehensweise soll Aufschluss tiber
notwendige Modifikationen der vorgeschlagenen Implementierungsvariante geben. Der
in dem implementierten Neuron genutzte Strombereich ist mit Stromen von wenigen
Nanoampere schwer zu handhaben, da die Strome in diesem Bereich stark von der
Umgebungstemperatur — auch der lokalen Umgebungstemperatur anderer Elemente auf
dem Chip — beeinflusst werden konnen.

Um den Messbereich der aufgenommenen Leistung sowie den in die Schaltung zu injizieren-
den Strom auf handhabbare Werte zu erhohen, wurden viele Kopien des gleichen Neurons
auf dem Testchip vorgesehen, welche parallel betrieben werden. In vier identischen Arealen
wurden jeweils 260 LIAF Neurone in der Weise verschaltet, dass sie zur gleichen Zeit mit
dem gleichen Eingangsstrom getrieben werden. Das Betreiben der Neurone eines Areals
mit dem gleichen Strom sollte bei enger Nachbarschaft, auf die im Areal ausdriicklich
hin gearbeitet wurde, zum Auslosen der gleichen Ausgangspulsrate in allen Neuronen
fithren. Dadurch sind Riickschliisse auf das Verhalten und die Leistungsaufnahme eines
einzelnen Neurons des Areals moglich, wenn man voraussetzt, dass alle Neurone bei
gleichem Stimulus dasselbe Verhalten aufweisen. Neben der Erhoéhung der Mess- und
Betriebsbereiche kommt die homogene Struktur der Neuronen-Felder der Robustheit der
Schaltung entgegen, indem durch die durch das Layout erzwungene homogene Struktur
Einfliisse auf die Schaltung wiahrend der Herstellung (z. B. kleinste GeometrieAinderungen)
gleichméaBig auf das homogene Feld verteilt und so minimiert werden.
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Tabelle 4.8: Versorgungs- und Referenzspannungen des Testchips

Spannung ~ Wert

VDD1-4 1,2V
VDDamp 1,2V
VDDring 1,2V
VREF1U 0,351V

Vleak 0,0V
Vdecay 0,240V
VTH 0,730V

Zur Messung des Membranpotentials und der ausgelosten Aktionspotentiale wurden aus
jeweils einem Areal aus 260 Neuronen der Ausgang eines einzelnen Neurons im Randbereich
des Feldes beobachtbar gemacht und nach auflen auf einen Anschluss-Pin gefiihrt. Die
zusétzliche Lastkapazitit von ca. 100 pF, die durch den Anschluss-Pin am Ausgang des
Neurons eingebracht wurde, und welche zuséatzlich vom Neuron umgeladen werden muss,
tragt nur unwesentlich zur erwarteten Leistungsaufnahme des gesamten Neuronen-Feldes
von 176 4W bei und kann mit einem Anteil von wenigen Nanowatt vernachlassigt werden.
Neben der Beobachtung des Aktionspotentials kann an zwei Arealen (Areal 1 und Areal 3)
auch das Membranpotential wihrend des Betriebs beobachtet werden. Da die Lastkapazitat
der analogen Pad-Zellen im Vergleich zur als Membrankapazitéit genutzten MOS-Kapazitat
von 100 fF erheblich grofler ist, wurde an diesen Arealen zusétzlich ein Verstéarker als
Impedanzwandler vorgesehen, da die Funktion des Neurons durch die verédnderte Kapazitat
stark verdndert oder zerstort worden wéare. Mit Hilfe der anhand von Simulationen am RC-
extrahierten Layout des Verstirkers ermittelten Ubertragungskennline des implementierten
invertierenden Verstarkers kann das Membranpotential aus dem gemessenen analogen
Spannungspegel der Pad-Zelle rekonstruiert werden.

Die Stromversorgung der Verstarker wird iiber separate Pad-Zellen fiir die Versorgungs-
spannung gewahrleistet, um die Leistungsaufnahme der einzelnen Areale messen zu
konnen. Die aus Simulationen entnommenen Versorgungs- und Referenzspannungen sind
in Tab. 4.8 aufgefiihrt. Fiir die separate Versorgung des Pad-Rings und der Verstéarker sind
die Versorgungsspannungen VDDring und VDDpad separat herausgefiihrt. Die Spannungs-
versorgung der einzelnen Areale wird iiber VDD1 bis VDD4 vorgenommen. Die Spannung
VREF1U ist eine Referenzspannung fiir den Komparator der Neurone. Alle Neurone
werden global parametriert, indem die Stéarke des Abklingterms iiber Vleak, die Dauer
eines Aktionspotentials iiber Vdecay und die Feuerschwelle mit VTH eingestellt werden.
Mit den in der Tabelle angegebenen Parametern wirkt nur der Subschwellenstrom der
130 nm Technologie als passiver Abklingterm, die Dauer eines Aktionspotentials wurde auf
1 ms festgelegt. In Abbildung 4.21 ist das zur Fertigung gegebene Chiplayout des Testchips
mit den beschriebenen vier Arealen und dem Pad-Zellen-Ring zu sehen. Fiir das Layout
des Chips wurde die minimale zu fertigende Fliche von 1 um? vollstindig ausgenutzt.
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Abbildung 4.21: Layout eines Testchips mit 1040 LIAF Neuronen in einer
130 nm Technologie. Erkennbar sind vier separate ansteuerba-
re Felder mit je 260 Neuronen des vorgestellten LIAF-Modells
und der Anschluss-Pad-Ring im &ufleren Bereich.

Im Folgenden sind die gefertigten Areale mit ihren Nummern benannt. Das erste Areal
befindet sich oben links in der Abbildung, die weiteren Areale werden im Uhrzeigersinn
nummeriert. Zusétzlich zu den Pad-Zellen fiir die Versorgungsspannung und die Masse
des Pad-Zellen-Rings selbst sind die Versorgungs-Pad-Zellen der Verstarker sowie die
Pad-Zellen fiir die Referenzspannungen zu sehen. Daneben sind fiir jedes Areal eine unab-
héngige, separate Spannungsversorgung und ein Eingang fiir den zu injizierenden Strom
vorgesehen. Alle vier Areale besitzen einen eigenen digitalen Ausgang, an dem die Erzeu-
gung eines Aktionspotentials beobachtet werden kann. Zuséatzlich besitzen Areal 1 und
Areal 3 eine analoge Ausgangs-Pad-Zelle fiir die Messung des Membranpotential-Verlaufs.

Mit der Inbetriebnahme der Testchips wird gepriift, welche der gefertigten Chips eine
Funktion aufweisen. Dabei sollen méogliche schwerwiegende Layout- oder Herstellungsfehler
erkannt und die funktionierenden Chips identifiziert werden. Mit Anlegen der in den
Simulationen bestimmten Referenzspannungen werden die Chips auf die Erzeugung von
Aktionspotentialen getestet. Dazu werden im ersten Schritt die Schwellenspannung VTH
und die Referenzspannung fiir den Leaky-Term Vleak niedrig gehalten und ein Strom
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in die Schaltung injiziert. Da der Leaky-Term klein und somit der Abfluss der Ladung
von der Membrankapazitat gering ist, ist zu erwarten, dass ein funktionierendes Neuron
nach kurzer Zeit feuert, wenn der injizierte Strom grofler ist als in der verwendeten
Halbleitertechnologie auftretende Subschwellenstrome. Durch diese Vorgehensweise wer-
den die aktiven Aktionspotential-Ausgange und die funktionierenden Areale bestimmt.
Anschliefend werden alle Referenzspannungen an die aus Simulationen ermittelten Werte
angeglichen und die Ubertragungsfunktionen der Neurone durch automatisierte Mess-
Schritte ermittelt. Bei den durchgefithrten Messungen konnte festgestellt werden, dass die
Ausgangspulsrate der Areale der einzelnen Chips grofieren Schwankungen von Testchip
zu Testchip unterworfen war. Weiter konnte ermittelt werden, dass die vier Areale eines
Chips untereinander leicht abweichende Ausgangspulsraten aufwiesen und dass Areal 1
und Areal 4 nahezu identische Messergebnisse liefern. Von diesen weichen Areal 2 und
Areal 3 leicht ab, sind in ihrem Verhalten zueinander aber wieder dhnlich. Die starke
Streuung der Ausgangspulsraten der einzelnen Chips im Bereich von 90.000 Pulsen/s bis
160.000 Pulsen/s am unteren Messbereich ist auf die Produktion auf einem Multi-Project-
Wafer (MPW) zuriickzufithren, bei der mehrere verschiedene Layouts unterschiedlicher
Entwickler auf einem Wafer gleichzeitig gefertigt werden. Dieses Vorgehen fiihrt zu inho-
mogenen Strukturen auf dem MPW, welche fiir die einzelnen Bearbeitungsschritte des
Chips zu grofleren Streuungen fithren konnen. Zuséatzlich kann es durch die Anordnung
der Layouts auf einem MPW zu relativ groffen Abstéinden zwischen den Layouts der
gleichen Chips auf einem Wafer kommen. Diese Bedingungen erkléren die Schwankungen
der gemessenen Ausgangspulsraten, die von Chip zu Chip festgestellt werden konnten,
wahrend die vier auf einem Chip angeordneten Areale aufgrund ihrer rdumlichen Nédhe
ahnliche Ausgangspulsraten liefern. An dieser Stelle machen sich zuséatzlich die kleinen
Strukturgrofen stark bemerkbar, insbesondere die Grofle des Minimal-Neuronen-Layouts,
welche zu grofien Streuungen bei der Fertigung der Chips fithren. Der Hersteller kann bei
den MPW Projekten keine Aussage iiber die Lage der einzelnen Chips machen, was fiir
eine Beurteilung des Einflusses der Herstellung und der Lage des Layouts auf die Funktion
eines einzelnen Chips notwendig gewesen ware. Als bester Chip der 15 gefertigten Muster
wurde Chip Nr. 5 identifiziert, auf den sich die folgenden Betrachtungen beziehen.

Die Funktion des implementierten LIAF-Neurons konnte mit der Messung der ausgesand-
ten Aktionspotentiale sowie der Aufnahme des Membranpotentials gezeigt werden (siehe
Abb. 4.22 der Messergebnisse von Chip Nr. 5). In der Abbildung ist das Aussenden eines
Aktionspotentials zum Zeitpunkt 2,5 us zu sehen (Low-Pegel des digitalen Ausgangs),
welches durch das Membranpotential, das in diesem Moment die Feuerschwelle iiberschrei-
tet, ausgelost wird. Am Verlauf des Membranpotentials wird deutlich, dass die erwartete
Hysterese tiber die eingebrachte Koppelkapazitat funktioniert, da eine Spannungsiiber-
hohung beim Aussenden des Aktionspotentials auf dem Membranpotential stattfindet.
Wiéhrend des Aussendens eines Aktionspotentials wird die Membrankapazitit entladen
und die Koppelkapazitat sorgt fiir eine weitere Absenkung des Membranpotentials beim
Zuriickschalten des Ausgangsinverters des Neurons, der das ausgesandte Aktionspotential
anzeigt.
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Abbildung 4.22: Gemessene Aussendung eines Aktionspotentials an Upyse
(negiertes Signal) und rekonstruiertes, korrespondierendes
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Abbildung 4.23: Ubertragungskennlinie eines HW LIAF Neurons.
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Abbildung 4.24: Leistungsaufnahme eines LIAF Neurons.

Der Komparator zeigte auch bei dem in den Messungen festgestellten Rauschen des
Membranpotentials eine robuste Funktion, ist aber empfindlich gegeniiber Anderungen an
der Referenzspannung seiner Stromquelle, so dass fiir eine Erhohung der Robustheit dieses
Elements tiber alternative Vergleichselemente, z. B. den Einsatz eines Schmitt-Triggers,
nachgedacht werden muss. In Abb. 4.23 ist die ermittelte Ubertragungsfunktion eines
Neurons aus Areal 1 des Testchips Nr. 5 dargestellt, bei der die erzeugte Ausgangspulsrate
iiber dem injizierten erregenden Strom aufgetragen ist. Der injizierte Strom kann ebenfalls
als mittlerer Strom, der durch eine angelegte konstante Eingangspulsrate erzeugt wird,
aufgefasst werden. Dieses erlaubt den Vergleich der Messung mit den theoretischen Ergeb-
nissen fiir die Ubertragungsfunktion des LIAF Neurons aus Kapitel 3.3. In der Abbildung
sind zu jedem injizierten erregenden Strom die Ergebnisse aus jeweils 100 Einzelmessungen
aufgetragen. Die sichtbare Streuung der Messergebnisse lasst sich durch verschiedene
Einfliisse wahrend der Messung erklaren. Zum Einen ist die Pulsrate der gemessenen
Neurone nicht konstant sondern ist einer leichten zeitlichen Variation unterworfen, so
dass zu unterschiedlichen Zeitpunkten leicht unterschiedliche Periodendauern ermittelt
wurden. Zum Anderen wurde wéhrend der Messung die Umgebungstemperatur nicht
konstant gehalten, so dass dieser Einfluss direkte Auswirkungen auf das Messergebnis
hatte. Ein weiterer Einflussfaktor ist die Verwendung von Konstantspannungsquellen,
deren Ausgangsspannungen leichten, aber messbaren Schwankungen unterworfen waren.

Neben der Ausgangspulsrate wurde tber die Konstantstromquelle wahrend der Messung
der von den Neuronen eines Areals aufgenommene Strom integriert und daraus die
mittlere aufgenommene Leistung ermittelt. Aus den aufgenommenen Werten kann der
zum Vergleich des Neurons mit anderen Implementierungen oft gebrauchte Graph der
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Abbildung 4.25: Auf eine robuste Funktion hin modifiziertes Neuron in 130 nm
CMOS-Technologie.

Leistungsaufnahme iiber dem injizierten Strom aufgetragen werden. In Abb. 4.24 ist
die von einem Neuron in Areal 1 des Chips Nr. 5 aufgenommene Leistung dargestellt.
Diese liegt mit einem Bereich von 2 uW bis 3 uW, deutlich iiber der in der Simulation
ermittelten Leistungsaufnahme von 650 nW bis 750 nW, zeigt aber den fiir LIAF Neurone
typischen abflachenden Verlauf bei grofleren erregenden Stromen.

Wiéhrend der Messungen fiel auf, dass mit zunehmender Starke des Eingangsstroms die
Dauer des Aktionspotentials zunahm. Dieser Effekt kann darauf zuriickgefithrt werden,
dass Transistor M1 (siehe Abb. 4.1) wahrend des Aussendens eines Aktionspotentials
nicht ideal sperrt. Durch die Beschaltung des Eingangs mit einer Konstantstromquelle
wird trotz gesperrtem Transistor M1 weiter Strom auf die Membrankapazitat aufgebracht,
so dass die Entladedauer der Kapazitit iiber die Transistoren M2 und M3 zunimmt. Der
Einfluss des injizierten Stroms muss bei einem neuen Entwurf des Neurons bedacht werden
und es miussen schaltungstechnische Mafinahmen getroffen werden, um den injizierten
Strom bereits vor M1 abzuleiten. Eine mogliche Variante des beschriebenen Neurons,
welches alle zuvor angeregten Anderungen einbezieht, ist in Abb. 4.25 dargestellt. Es
enthélt einen Schmitt-Trigger als Schwellenelement, wobei in der vorliegenden Form
keine Einstellung der Feuerschwelle mehr moglich ist. Zusatzlich wurden die Transistoren
M14 bis M16 hinzugefiigt. Transistor M14 implementiert eine Diode, die als optional
anzusehen ist. Durch M14 wird der Abfluss von Ladung von der Membrankapazitéat
iiber den zuséatzlichen Pfad durch M15 und M16 verringert, wenn M1 nicht ideal sperrt.
Wiéhrend des Aussendens eines Aktionspotentials kann von der Quelle injizierter Strom
iiber den Pfad M15 und M16 abflielen, so dass kein zusétzlicher Strom wahrend der
Entladephase der Membrankapazitat von auflen auf die Kapazitat aufgebracht wird und
die Entladezeit, respektive die Dauer eines Aktionspotentials erhoht.
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Kapitel 5

Struktur und Funktion in
pulscodierten neuronalen Netzen

In diesem Kapitel soll die Anwendung von pulsenden Neuronen am Beispiel eines asso-
ziativen Speichers gezeigt werden. Die klassisch mit kontinuierlich anliegenden Werten
arbeitenden Schaltungen werden hier mit pulsenden Neuronen betrieben. Die durch den
Pulsbetrieb veranderten Eigenschaften und die notwendige Anpassung des assoziativen
Speichers werden diskutiert und anhand von Simulationen verifiziert.

5.1 Fehlertoleranz neuronaler Assoziativspeicher

Fiir die Datenspeicherung in integrierten Schaltungen sind verschiedene Konzepte im-
plementiert worden. So existieren neben herkémmlichen statischen und dynamischen
Speichern, in denen Daten wahlfrei geschrieben und gelesen werden kénnen auch solche
Varianten, die zusétzliche Eigenschaften aufweisen. Dazu gehoren Speicher, die eine Adres-
sierung tber den Inhalt — Content Addressable Memory (CAM) — erlauben, indem tber
Abbildungsregeln von einem angelegten Eingangsvektor (Schliissel), der auch fehlerbehaf-
tet sein kann, ein zugehoriger Ausgangsvektor (Daten) abgerufen wird. Eine Erweiterung
des CAM stellen die Assoziativspeicher dar, welche unter den Namen Lernmatrix [91],
Correlation Matrix [66], Sparse Distributed Memory [78] oder Associative Neural Memory
[40, 62] veroffentlicht wurden. Wahrend im CAM zu jeder Adresse genau ein Datensatz
gespeichert werden kann und so ein fehlerfreier Abruf jedes gespeicherten Datensatzes
moglich ist,, konnen im Assoziativspeicher auch Daten abgelegt werden, bei denen eine
Speicherstelle mehrfach benutzt wird. Dieses Verfahren erlaubt die Speicherung einer
groBeren Anzahl von Daten, fiithrt jedoch, je nach Fiillgrad des Speichers, zu einem Anstieg
der Fehler beim Abruf der Daten, der kompensiert werden muss.

Im Allgemeinen kann man Assoziativspeicher nach der Art der Musterabbildung in zwei
Klassen unterscheiden: autoassoziativ und heteroassoziativ abbildende Speicher. Wird
wahrend der Programmierphase ein Eingangsvektor x auf einen davon verschiedenen Aus-
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gangsvektor y abgebildet (x — y), so nennt man diese Musterabbildung heteroassoziativ.
Bildet man stattdessen in der Programmierphase einen Eingangsvektor x auf sich selbst
ab (x — x), wird die Speicherung autoassoziativ genannt.

Wird nach der Programmierphase ein zum Eingangsvektor x geniigend ahnlicher Ein-
gangsvektor x' an den Assoziativspeicher angelegt, ruft dieser bei der Heteroassoziation
wieder den Ausgangsvektor y ab, bei der Autoassoziation wird der Originalvektor x am
Ausgang rekonstruiert.

5.1.1 Struktur

Im Folgenden wird der spezielle Typ des neuronalen Assoziativspeichers, der binére
neuronale Assoziativspeicher (engl. binary neural associative memory) (BiNAM) betrachtet.
Beim BiNAM handelt es sich um einen Assoziativspeicher, dessen Eingangsvektor x iiber
eine Gewichtsmatrix W mit dem Ausgangsvektor y des Speichers assoziiert wird. Diese
Gewichtsmatrix W speichert mit den Gewichten w;; € [0;1] an den Schnittpunkten von
Eingang z; und Ausgang y; eine bindre Relation zwischen zwei bindren Vektoren. Eine
schematische Darstellung eines Assoziativspeichers ist in Abb. 5.1 dargestellt.

Um die Assoziationsfahigkeit des Speichers zu erreichen, muss die leere Gewichtsmatrix
des Assoziativspeichers programmiert werden. Dazu konnen verschiedene Lernregeln wie
z. B. die Hebb-Regel [42] genutzt werden:

Der Parameter 7 stellt hier eine konstante Lernrate dar, x; reprasentiert den Wert des
Eingangs j und y; représentiert den Wert des Ausgangs .

Da der hier betrachtete bindre neuronale Assoziativspeicher nur Eingédnge und Gewichte
mit den diskreten Werten 0 und 1 verarbeitet, muss die Lernregel (5.1) zur geklippten
Hebb-Regel [70] modifiziert werden. Dabei wird in (5.1) n = 1 gesetzt. Bei dieser Lernregel
gibt es im BiNAM entweder nur positive Gewichtsverianderungen oder keine.

Beim binaren Assoziativspeicher der Form m X n seien x = (xg, 1, ..., Tpy_1) € [0; 1] und
Yy = (Yo, Y1, s Yn—1) € [0;1]. Die Gewichtsmatrix W mit w;; € [0;1] sei zu Beginn des
Lernvorgangs eine Null-Matrix. Der Vorgang des Speicherns einer Assoziation verandert
die Elemente w;; der Gewichtsmatrix nach

Die Gewichtsmatrix W wird durch die geklippte Hebb-Regel in (5.2) programmiert. Die
Matrix wird an den Schnittpunkten gleichzeitig aktivierter Eingdnge und Ausgéinge auf
Eins gesetzt. Ein einmal auf Eins gesetztes Gewicht kann nicht wieder zuriickgesetzt
werden.
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Abbildung 5.1: Allgemeine Struktur eines Assoziativspeichers.

Je mehr Muster gespeichert werden und je groBer die Anzahl aktiver Elemente in den zu
lernenden Mustern ist, umso stérker wird die Matrix mit Einsen besetzt. Dieses kann bei
einer grofen Anzahl gespeicherter Abbildungen zur ,, Uberbesetzung® der Assoziativspei-
chermatrix und zu Fehlern bei der spateren Assoziation fiihren.

Die in Abb. 5.1 dargestellte Aktivierungs- bzw. Bewertungsfunktion g; kann durch Sigmoide
oder eine Schwellwertfunktion mit der Schwelle © beschrieben werden. Im Folgenden wird
fiir die Aktivierungsfunktion ein Schwellwertentscheider mit

1 L fallss; > ©
9i(si) = { 0 ,sonst (5.3)

angenommen.

Die Bewertung des Musters v am Eingang erfolgt spaltenweise durch die Gewichtsmatrix
w;j. Der Eingangsvektor wird mit den korrespondierenden Elementen der Gewichtsmatrix
gewichtet und aufsummiert, so dass fiir die Schwellwertfunktion die Summe

S; = Zwijvj (54)
J

sichtbar wird. Der Term (5.3) beschreibt hier die Funktion eines zu jeder Spalte i geho-
renden Neurons: Die durch den Eingangsvektors ausgewahlten Spalten werden durch die
Synapsen bewertet. Die bewerteten Eingédnge werden summiert und einem Entscheidungs-
element zugefiihrt.
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Tabelle 5.1: Fehlerklassen im Assoziativspeicher. Der Fehler wird als Variation
des Originalwerts mit (1 + J) betrachtet.

Fehlerort / Fehlerklasse — Parameter

Eingangsmuster v} vf (14 6vj)

Gewicht w;; wij (14 5wij)
Schwellenelement ©; O; (1 + de,)
Summation s; si (14 4s,)

5.1.2 Fehlertoleranz binirer neuronaler Assoziativspeicher

Im folgenden Abschnitt soll die Fehlertoleranz neuronaler Assoziativspeicher ermittelt
werden. Dabei wird zuerst die Fehlertoleranz eines einzelnen Neurons der Spalte ¢ des
Speichers betrachtet. Im Anschluss werden die Ergebnisse zur Fehlertoleranz der einzelnen
Spalte auf den gesamten Speicher erweitert.

Beim Assoziativspeicher konnen an verschiedenen Stellen Fehler auftreten, welche im
Folgenden als Fehlerklassen aufgefasst werden. Tabelle 5.1 gibt die hier betrachteten
Fehlerklassen und den Einflussort des Fehlers an. Einige von diesen Fehlerklassen wei-
sen eine ahnliche Verteilung auf und kénnen zusammengefasst werden. Darauf wird an
den entsprechenden Stellen hingewiesen. Im Anschluss werden mogliche Kombinationen
auftretender Fehler analysiert.

Fir die Berechnung der Fehlertoleranz wird zunéchst der Fall der bindren Gewichte und
Muster w;;, v; € [—1; 1] betrachtet. Der Spezialfall fiir Gewichte und Muster w;;, v; € [0;1]
wird anschliefend daraus abgeleitet.

Fehler im Eingabevektor Nimmt man einen Fehler ¢; in den Zeilen des Eingabemus-
ters v an, so erzeugt dieser einen Fehler im Summenvektor s des Assoziativspeichers. Die
fehlerhafte Spaltensumme der Spalte ¢ ergibt sich unter Beriicksichtigung von d; zu

Serror,i = Zwijvj (1+9;)=s;+ sz‘jvj(sj (5.5)
J J

Ein in der Summe auftretender Fehler ist von den im Speicher gespeicherten Mustern
abhangig und dann tolerierbar, wenn dieser kleiner ist, als der kleinste geometrische
Abstand aller Muster zu einer trennenden Hyperebene im Darstellungsraum. Dieses
wird in Abb. 5.2 durch Reduktion auf den zweidimensionalen Fall und eine Trennlinie
zwischen zwei Klassen veranschaulicht. Der kleinste geometrische Abstand der Muster
zur Trennlinie ist A, ,. Jeder Fehler im Eingabevektor, der groler ist als A; , fiihrt zur
falschen Klassifizierung des fehlerhaften Musters.

Der maximal erlaubte Fehler lasst sich also als minimaler Abstand aller Muster v#* zum
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Abbildung 5.2: Geometrische Interpretation der Mustertrennung durch einen
Schwellwert. Der minimale Abstand zum néchsten Element
eines Musters ist mit A; , dargestellt.

Schwellwert auffassen. Dieses wird durch den minimalen Abstand der Summe s; der
ausgewahlten Zeile zum Schwellwert © ausgedriickt.

Aiv/i = HEH |S7; - (")| (56)

Der rechte Teil von Gleichung (5.5) muss danach kleiner als A; , sein.

Ay > (5.7)

m
> wivld;
7

Im ,worst case”, d. h. die Fehler in jedem Element des Eingabemusters wirken sich gleich
aus (d. h. alle Fehler haben entweder ein positives oder ein negatives Vorzeichen), verandert
sich diese Bedingung zu

Ai7/~" > Z ‘UJUU;L’ ’(5]’ . (58)
J

Nimmt man an, dass der Fehler in allen Eingéngen gleich gemacht wird, z. B. hervorgerufen
durch Prozessvariation bei der Herstellung oder einen Offset beim Anlegen des Musters,
kann man den Fehler zu

6:=10; ¥V

umschreiben.
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Unter Einbeziehung von 5.6 kann man nach dem Fehler ¢ auflosen:

o) o

§ < min 2 Voow, v e [—1;1 5.9

m Z wijvﬂ J 7 [ ] ( )
j

Fiir den Spezialfall, dass alle Werte positiv sind und im Intervall [0; 1] liegen ergibt sich

©

— Voowy, vf € [0;1]. (5.10)
]

0 <min|l —
m

2

d

Fehler in der Gewichtsmatrix Nimmt man einen Fehler ¢; in den Gewichten w;; der
i-ten Spalte der Gewichtsmatrix M an, so erzeugt dieser einen Fehler im Summenvektor s
des Assoziativspeichers. Die fehlerhafte Spaltensumme ergibt sich unter Berticksichtigung

von ¢; zu

Serrori = O Wi (L+0;)vj = s, + > w;;0;0; (5.11)

J J

Dieses entspricht der Form der fehlerhaften Summe, die bei der Betrachtung des Fehlers
im Eingangsvektor ermittelt wurde. Fiir diesen Fall lasst sich mit der Verallgemeinerung
0 := 0,V j die Losung direkt angeben:

)0
’ Voowy, v € [—11] (5.12)

o
wijvj ’

0 < min

g 2

J

Fehler im Schwellenelement Der Summenterm, der den Fehler des Schwellenelements
beinhaltet, ldsst sich mit

S + @error,i = Zwijvj -0 (1 + 51)
j (5.13)
= (Si - @) - @52

beschreiben. Die in diesem Abschnitt 6fter angewandte Ungleichung fiir die untere Schranke
des Fehlers ergibt in diesem Fall

A > |—66;].
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Mit der Verallgemeinerung, dass der Fehler ¢; in allen Schwellenelementen in gleicher
Weise auftritt,

lasst sich der maximal zu tolerierende Fehler umschreiben zu:

o)

0 < min
m

Fehler in der Summenbildung
Serror,i — Z wz’jvé'L (1 + 51)
J

= 5+ 0; ) wijoi™
J

Ny, > 6iZva;”“ (5.16)
J
Im ,,worst case® ergibt sich fiir den maximalen Fehler die Forderung:
A > 04 Z w;v™ (5.17)
J
Mit der Annahme
d:=16 V i

lasst sich der maximal erlaubte Fehler ¢ fiir eine korrekte Entscheidung abschéatzen:

o) o

§ < min 7 Voow, vf e [—1;1 5.18

I > wijﬂﬂ Jr Yy [ ] ( )
j

Kombinationsfehler

Kombinationsfehler treten immer dann auf, wenn in mehreren Schaltungsteilen Fehler in
gleicher Weise auftreten. Dieses kann z. B. durch Parametervariationen in der Herstellung
einer integrierten Schaltung hervorgerufen werden.
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Fehler im Eingangsvektor und in der Gewichtsmatrix Nimmt man einen Fehler
(L,j in den Zeilen des Eingabemusters v, sowie einen weiteren Fehler (5wj in den Zeilen der
Spalte ¢ der Gewichtsmatrix an, so erzeugt dieser einen Fehler im Summenvektor s des
Assoziativspeichers. Die fehlerhafte Spaltensumme ergibt sich zu

Serror,i = Z Wi (1 + 5wj> Uy (1 + 6vj)
J
=D wi;v; (5%5%' + Ow; + 0y, + 1) (5.19)
J

=s; + Z WiV <5wj5vj + 5%' + 5”]‘)
J

Der hier auftretende Fehler ist in Abschnitt 5.1.2 bereits diskutiert worden und dann
tolerierbar, wenn der er kleiner ist, als der kleinste geometrische Abstand aller Muster zur
trennenden Hyperebene im Darstellungsraum.

A, = mﬂin |s; — O] (5.20)

Der rechte Teil von Gleichung (5.19) muss danach kleiner als A; , sein.

Nip > S wigvh (8,00, + Gu, + 0y, ) (5.21)
J

Im ,worst case® verandert sich diese Bedingung zu:

+ |0, | +

b,

Dip >3 \wijvﬂ (](Schx,j ) (5.22)
J

Die Annahme, die im Folgenden getroffen wird, muss mit Bedacht gewéhlt werden. Fiir eine
Abhéngigkeit zwischen dem Fehler des Eingangs und einem Fehler in der Gewichtsmatrix
miissen diese praktisch dicht nebeneinander liegen und &hnlichen Prozessvariationen
ausgesetzt sein. Dieses sei hier vorausgesetzt.

5= |bu,| = |00 ¥ J (5.23)
Die Ungleichung kann zu 0 umgestellt werden:
Ai,,u > Z 'LUij’U;-L‘ (52 + 2(5) (524)
J
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ZQUZ']'U? -0
6% +20 < min 2———— (5.25)
B fwet |
J
Zwijvﬁ-‘ -0
(64 1)* <+ |min -2 +1 (5.26)
1Y Z wz‘jUH’
Zw,-jvé‘ -0
§<+ |mnt———+1-1 V wy, o' € [-1;1] (5.27)
DS w“v-’
- L

J

Fehler in der Gewichtsmatrix und im Schwellwertelement Wir nehmen an, dass
wir eine einzelne Spalte i des Speichers betrachten, welche durch ein Eingabemuster v*
erregt wird. Wenn die Parameter dieser Einheit, d. h. die Gewichte, die Ubertragungsfunk-
tion oder die Amplitude der angelegten Signale fehlerhaft sind, kann die Entscheidung des
Neurons fehlerhaft sein. Griinde fiir Abweichungen in den Parametern konnen temporare
Storungen durch Rauschen oder permanente Einfliisse aus der Herstellung der Schaltung
sein.

Wir betrachten wieder den maximalen Fehler, unter dessen Einfluss das Neuron noch eine
richtige Entscheidung treffen kann (5.8). Die Parameter ¢;,d¢ € [—1;1] C R seien geringe
Abweichungen von wijv;‘ sowie dem Schwellenwert ©. Damit erhalten wir die gestorte
Ubertragungsfunktion:

Serror,i + @error = Z wijvy (1 + 5]) -0 (1 + 5@)
J

5.28
= (Si — @) -+ Zwijvj“dj — @(5@ ( )
J
Das Neuron wird die korrekte Entscheidung treffen, wenn die Bedingung
A@M > Z'LUUU;L(SJ' — @5@ (529)
J

erfiillt ist. Wie bereits beschrieben tritt der grofite Fehler auf, wenn die rechte Seite von
(5.29) maximiert wird:

Nip >

J

wigt] 161 + O] e (5.30)
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Mit der Annahme ¢ := |J;;| = |do| oder § := max (|0, |do|) fir alle j, ergibt sich:

)
§ < min =7 Vo owgy, i € [-1;1]CR (5.31)
DY wijvﬂ + |9

J

Fehlertoleranz gegeniiber stuck-at-Fehlern

Stuck-at-Fehler treten haufig als Erscheinung von Prozessparametervariationen bei der
Fertigung integrierter Schaltungen auf, z. B. durch Kurzschluss benachbarter Leitungen.
Genauso konnen sie durch Elektromigration hervorgerufen werden, bei der Leitungen im
besten Fall hochohmig werden. Kennzeichen dieser Art von Fehlern bei Speicherstrukturen
ist das Verweilen eines Speicherelements auf dem logischen Null-Wert (Stuck-at-0, STO)
oder dem logischen Eins-Wert (Stuck-at-1, ST1). Die Auswirkung des Auftretens dieser
Fehler in der Assoziativspeichermatrix auf den Informationsgehalt des Speichers soll an
dieser Stelle rekapituliert und prézisiert werden, da diese Betrachtungen bereits in [83]
durchgefiithrt und anhand von Simulationen verifiziert wurden.

Zunéchst werden fiir die folgende Rechnung die grundlegenden Ereignisse angegeben:

Es sei A das Ereignis ,Matrixgewicht besetzt“. Die Wahrscheinlichkeit fiir das Eintreten
dieses Ereignisses steigt mit der Anzahl aktivierter Elemente [ im Eingangsvektor der
Grole m und der Anzahl aktivierter Elemente k£ im Ausgangsvektor der Grofie n sowie
der Anzahl trainierter Muster z und ergibt sich nach [77] zu:

P(A) =pon =1 - (1 — kl) (5.32)

mn

Die Gegenwahrscheinlichkeit fiir das Ereignis A , Matrixgewicht unbesetzt® ist dement-

sprechend p(A) = por = 1 — pon. Palm [78] gibt auch die Speichereffizienz I}, fir heteroas-
soziative Abbildungen in Assoziativspeichern an.

=Y [logz ( i ) ~ log, < k +ka1 )1 (5.33)

pn=1
Dabei ist die Zahl Ny, die Anzahl zusitzlicher Einsen im Ausgabevektor y*, die filschlich
durch Uberlagerung von gespeicherten Mustern im Speicher hervorgerufen werden. Der
Binomialkoeffizient ( Z > stellt die Anzahl der Moglichkeiten dar, mit der k aktivier-
te Ausgange (Einsen) an n moglichen Positionen im Ausgabevektor auftreten kénnen.

Daher ist log, Z der maximal mogliche Informationsgehalt eines Ausgabevektors
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unter der Annahme, dass alle Muster dieselbe Wahrscheinlichkeit des Auftretens ha-
ben. Der Binomialkoeffizient ( bt Nia ) beschreibt die Anzahl der Moglichkeiten, die

k korrekt aktivierten Ausgénge in den k + Ny aktivierten Ausgéngen unterzubringen.
k 4+ Npp

log, k‘ ist der Informationsgehalt, der durch das Auftreten der zuséatzlichen

Einsen im Ausgabevektor verloren geht. Der gesamte Informationsgehalt setzt sich aus
der Summe aller gespeicherten Muster x* — y* und dem Verlust durch zusétzlichen
Codierungsaufwand zur Eliminierung der zusétzlichen aktivierten Ausginge zusammen.

Mit der Annahme, dass
E(Nu) = (n— k) - P, (5.34)
eine gute Approximation des Erwartungswerts fiir Ny, ist, sowie der Voraussetzung, dass

die Einsen in der Gewichtsmatrix zuféllig verteilt sind, erhélt man einen Erwartungswert
fir 1 h [77]

(5.35)

k—1 _Z
B(l) > ~z+ Y log, (E(Nm) k )

n—1

Stuck-at-1 Fehler

Nun sei B das Ereignis ,Matrixgewicht ist stuck-at-1 (ST1)“ mit der Wahrscheinlichkeit
p(B) = pg1. Die Wahrscheinlichkeit p., dass bei zufélliger Auswahl eines Elements der
Gewichtsmatrix dieses durch ein programmiertes Muster oder einen stuck-at-1 Fehler
besetzt ist, ergibt sich zu:

Pow = DAV BA)
= Pon + (1 - pon) Dst1

kl\® kl\~®
SR A )
mn mn

= (1 - (1 - ni)) (1 = pstr) + psur

Mit einem Anstieg fiir die Wahrscheinlichkeit p;n, dass ein Matrixgewicht gesetzt ist,
steigt auch der Erwartungswert fir zusétzliche Einsen nach (5.35). In Abb. 5.3a sind
der Informationsgehalt einer Gewichtsmatrix sowie die Anzahl zusétzlicher fehlerhafter
Einsen aufgetragen. Die Ergebnisse wurden durch numerische Auswertung von (5.34) und
(5.35) fiir eine Speichermatrix der Grofle 4096 x 4096 Gewichten mit & = 13 aktivierten
Eingéngen und [ = 3 aktivierten Ausgidngen ermittelt. Diese theoretisch gewonnenen
Ergebnisse kénnen durch Simulationsergebnisse aus [83] untermauert werden.
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Die Annahme von 1% defekten Gewichtselementen scheint fiir heutige VLSI Technologie-
Prozesse sehr hoch gewéhlt zu sein, vor allem da die ITRS Roadmap [89] fiir heutige
Prozesse eine Defekt-Rate von 3500 Fehlern pro m? angibt. Es ist jedoch zu erwarten, dass
diese Defekt-Rate mit Einfiihrung zukiinftiger nanoelektronischer Architekturen wieder
zunimmt und daher fehlertolerante Systeme zum Einsatz kommen miissen.

Stuck-at-0 Fehler

Stuck-at-0 Fehler in der Gewichtsmatrix fithren zu fehlenden Einsen im Ausgabevektor.
Die fehlenden Einsen kénnen durch den Term N.q beschrieben werden. Zur gleichen Zeit
sinkt die Anzahl der fehlerhaften zusatzlichen Einsen Nj;.

Wir vereinfachen die folgenden Rechnungen durch die Annahme eines bekannten Nyy. Der
Informationsgehalt I;, eines Speichers ist dann durch

z n Nk1+k—Nk0> (n—Nkl—k+ng>‘|
I, = lo —lo —lo 5.37
h ;;l &2 < k‘) g2< k— Ny &2 Ny ( )

gegeben. Der Informationsgehalt eines einzelnen gespeicherten Musters log, < Z > wird

durch den Informationsgehalt reduziert, der zur Bestimmung der zusétzlichen Einsen in
Ni1 + k — Ny
k — Nko
durch die Bestimmung der fehlenden Einsen Ny in den n — Ni; — k + Njo Nullen
n— N, k1l — k+ N k0
Nio

Ausgangsvektor notig ist log, ( ) Zusatzlich wird der Informationsgehalt

des Ausgangsvektors reduziert. Daher muss noch log, ( ) abgezogen

werden.

Eine Konsequenz der spérlichen Codierung ist die groffe Anzahl an Nullen verglichen mit der
Anzahl an Einsen im Ausgabevektor. Daher hat der dritte Term von (5.37) groBen Einfluss
auf die Reduktion des Informationsgehalts der Speichermatrix. Um die Wahrscheinlichkeit
zu vermindern, dass Einsen fehlen, kann daher die Schwelle © herabgesetzt werden.

In Abbildung 5.3b stellt die gepunktete Linie mit pyo = 0,01, = 12 das theoretische
Maximum des Informationsgehalts mit abgesenkter Feuerschwelle dar. Der minimale
Informationsgehalt liegt zwischen dieser Kurve und der Kurve mit pgo = 0,01, © = 13. Das
Bedeutet, dass obwohl man erst einmal durch die abgesenkte Schwelle eine groflere Anzahl
an Fehlern im Ausgang in Kauf nimmt, der Nutzen durch die auf dem Wert 0 festsitzenden
Gewichte wieder zunimmt und man am Ende einen hoheren Informationsgehalt der
Speichermatrix erhélt.

Berechnungen beziiglich Ny, and Ny

Um die Anzahl der aktivierten Ausgiange zu bestimmen, die auftritt, wenn die Feuerschwelle
zur Kompensation der stuck-at-0 Fehler abgesenkt wird, nehmen wir die Wahrscheinlich-
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(a) Auswirkung von Stuck-at-1 Fehlern bei pg; = 0; 0,01; 0,02.
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(b) Auswirkung von Stuck-at-0 Fehlern mit pgo = 0; 0,01; N, = Nypo + Ng1 und mit
psto = 0,01 und abgesenkter Schwelle © (gepunktete Linie).

Abbildung 5.3: Auswirkung der stuck-at Fehler auf den Informationsgehalt
I,/mn des Assoziativspeichers (n, m = 4096; 1 = 13; k = 3).
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keit, dass ein Gewicht auf Eins gesetzt ist und multiplizieren diese mit der Grofle des

Eingangsvektors. Diese Abschatzung gibt an, wie viele Elemente in einer Spalte nach dem

(110 Pon |
S}

Eins gesetztes Gewicht mit einem Eingangsmuster mit © aktiven Elementen zu treffen.

Programmieren von z Mustern gesetzt sind. Es gibt < Moglichkeiten, ein auf

Da die Anzahl aktivierter Elemente k grofler ist als die Feuerschwelle ©, die abgesenkt
wurde, betrdgt die Wahrscheinlichkeit mindestens © gesetzte Gewichte zu treffen (unter
Summation aller Méglichkeiten zwischen © und k aktivierten Eingdngen)

() ()

Pout1 = (5.38)
=0 m
(¥)
Letztendlich ist der Erwartungswert fiir zuséitzliche Einsen E(Nyq):
E(Nk1> =T+ Poutl (539)
Weiter wird der Erwartungswert fiir fehlende Einsen E/(Nyg) nach
E(Nyo) =k - psto (5.40)

abgeschétzt, wobei pgo die Wahrscheinlichkeit fiir einen stuck-at-0 Fehler ist.

Fehlertoleranz gegeniiber Eingabefehlern

Eingabefehler zeichnen sich dadurch aus, dass nur ein Teil des trainierten Musters korrekt
angelegt wird. Der Rest ist durch zusétzliche aktivierte Elemente (zusatzliche Einsen im
Muster) oder deaktivierte Elemente (fehlende Einsen im Muster) verfalscht. Die folgenden
Betrachtungen werden vor der iiblichen Wahl der Schwelle © gemacht, welche anhand der
Zahl der aktivierten Elemente im Eingangsvektor gewahlt wird. Es sei nicht verschwiegen,
dass es andere Moglichkeiten der Schwellenwahl gibt. Der Einfluss anderer Schwellen auf
den Informationsgehalt der Speichermatrix wird spéter diskutiert.

Fehlende Einsen im Eingabevektor Es sei der Parameter I’ die Anzahl der Einsen im
Eingabevektor v#. Weiterhin gelte die Bedingung, dass die Anzahl aktivierter Elemente im
Eingabevektor kleiner der Anzahl aktivierter Elemente der Trainingsvektoren sei (I < [).
Da die Schwelle © nach der Anzahl vorhandener Einsen im Eingabevektor gewéhlt wird
(0 2 ), wird durch die aktivierten Zeilen das gespeicherte Muster — fehlerfreie Speicherung
vorausgesetzt — weiterhin korrekt abgerufen. In den Spalten, die nicht zum gespeicherten
Muster gehoren, konnen mit der Besetzungswahrscheinlichkeit p,, auch Einsen gespeichert
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sein, welche zu zusatzlichen Einsen im Ausgabevektor fithren konnen. Der Erwartungswert
E(Ny,) fir die Anzahl zusétzlicher Einsen ergibt sich mit der kleineren Anzahl I Einsen
im Eingabevektor zu:

E(Na) = (n—k) - ply (5.41)

Mit abnehmender Anzahl durch den Eingabevektor aktivierter Zeilen steigt die Anzahl zu-
satzlicher Einsen im Ausgabevektor, so dass der Informationsgehalt I;, der Speichermatrix
nach (5.42) sinkt (Abb. 5.4a).

I = ; llogQ ( i ) ~ log, < k +ka1 )1 (5.42)

Zusitzliche Einsen im Eingabevektor Neben den fehlenden Einsen im Eingabe-
muster konnen auch zuséatzliche Einsen im Eingabemuster auftreten. Es ist iiblich, die
Schwelle © so zu wéhlen, dass sie der Anzahl Einsen im Eingabemuster entspricht. Diese
Vorgehensweise fiihrt jedoch zu einer starken Abnahme der Informationskapazitiat der As-
soziativspeichermatrix, sobald nur ein Bitfehler zugelassen wird. Dieses soll im Folgenden
verdeutlicht werden.

Es sei [ die Anzahl Einsen in den fehlerfreien Trainingsvektoren. Fiir den Abruf betrachten
wir I’ > [ Einsen, so dass sich | — I’ zusétzliche Einsen im Eingang ergeben. Die Wahl der
Schwelle wird mit © = I/ getroffen.

Ein Effekt, den man allein aus Uberlegungen zur Wahl der Schwelle vorhersagen kann,
ist, dass bei wenigen gespeicherten Mustern im Assoziativspeicher und zusatzlichen
Einsen im Eingabemuster keines der gespeicherten Muster abgerufen werden kann, da
ohne eine bestimmte Belegung der Matrix die Schwelle © nicht erreicht werden kann.
Neben zusétzlichen Einsen im Ausgangsvektor miissen nun also auch fehlende Einsen des
Originalmusters in die Berechnung des Informationsgehalts mit einbezogen werden.

Der Erwartungswert fiir zusatzliche Einsen im Ausgabevektor ist wie im Falle fehlender
Einsen:

E(Ni) = (n— k) 'pf)/n (5.43)

Die Berechnung der fehlenden Einsen des abzurufenden Musters berechnet sich etwas
aufwéindiger. Zunéchst muss bestimmt werden, wie hoch die Wahrscheinlichkeit ist, dass
neben den [ bereits ausgewéhlten Zeilen des richtigen Musters mit den I’ — [ zusétzlichen
Einsen im Eingabemuster ein gesetztes Matrixgewicht getroffen wird.

Pon =T — [
U . 5.44
pzubatzll h, 1 m — l ( )
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(a) Informationsgehalt des Speichers bei fehlenden Einsen im Eingabevektor (I’ =
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(b) Informationsgehalt des Speichers bei zusétzlichen Einsen im Eingabevektor (I’ =
13, 14, 15; N = Nio +Nk1).

Abbildung 5.4: Auswirkung von fehlenden Einsen und zusétzlichen Einsen im
Eingabemuster auf den Informationsgehalt I, /mn der Assozia-
tivspeichermatrix (m, n = 4096; [ = 13; k = 3; © = [').
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Der Erwartungswert fiir fehlende Einsen der k erwarteten Einsen im Ausgabevektor kann
nun mit

-
Pon - T — [
E(Nyw)=k-|1—|——— 5.45
(Vi) ((m_l>) (5.45
abgeschétzt werden und dient als Grundlage fiir die Berechnung des Informationsgehalts
der Assoziativspeichermatrix:

z n Nk1+k5—Nk0> (n—Nkl—k+Nk0>‘|
I, = lo —lo —lo 5.46
h l;[ g2 < k > g2< k_Nk() g2 Nko ( )

Die Abnahme des Informationsgehalts I;, bei zusétzlichen Einsen im Eingabevektor ist
in Abb. 5.4b dargestellt. Es wird deutlich, dass bei Wahl der Schwelle in Abhéangigkeit
von der Aktivitdt des Eingangs zusitzliche Einsen im Eingabevektor einen sehr viel
grofleren Einfluss auf die Speicherkapazitéit des Assoziativspeichers besitzen, als fehlende
Einsen. Dieses Ergebnis ist entgegengesetzt zu den Ergebnissen der Analyse von stuck-at
Fehlern, bei denen stuck-at-0 Fehler in der Gewichtsmatrix grofferen Einfluss auf die
Speicherkapazitat hatten, als stuck-at-1 Fehler.

5.2 Einfluss der Pulscodierung auf die Funktion

Im Folgenden soll der bisher betrachtete Assoziativspeicher um die Eigenschaft der Verar-
beitung von pulscodierten Eingangsdaten erweitert werden. Zusétzlich zu den bekannten
fehlerkorrigierenden Eigenschaften aus den vorherigen Abschnitten stellt die Verarbeitung
von pulscodierten Mustern weitere Anforderungen an den Speicher.

Am grundlegenden Verhalten des Assoziativspeichers édndert sich bei der Umstellung auf
die Verarbeitung von Pulsen nichts, jedoch wird das statische Schwellenelement durch
ein LIAF Neuron mit statischer Schwelle ersetzt. Diese Ersetzung fiihrt dazu, dass nach
Abschluss der Lernschritte die Gewichte der Gewichtsmatrix in einer Weise angepasst
werden miissen, dass nur ein korrekt angelegtes Pulsmuster das Membranpotential der
erregten Neurone iiber die Feuerschwelle anheben kann.

Es kann gezeigt werden, dass die bisherigen Betrachtungen fiir den statischen Asso-
ziativspeicher auch fir einen mit pulsenden Neuronen aufgebauten Assoziativspeicher
(PCNN-AM) giiltig sind. Dazu muss vorausgesetzt werden, dass auch beim PCNN-AM
sperfekte“, d.h. fehlerfreie Muster anliegen und die Schwelle (hier die Feuerschwelle)
geeignet gewéhlt ist. Dieses kann analog zum statischen Speicher erfolgen. Weiter sei
festgelegt, dass ein Abruf eines Musters aus dem PCNN-AM mit dem ersten Auftreten
eines Pulsmusters am Eingang erfolgt. Wahrend im klassischen, statischen AM die Schwelle
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Abbildung 5.5: Arten von Synchronisationszustéinden angelegter Muster.

in Abhangigkeit von der Anzahl der aktiven Elemente des Eingangs © = [’ gewahlt wird,
gilt fiir die Wahl der Feuerschwelle des PCNN-AM unter Zuhilfenahme von (3.54)

1 —exp — thre
Urg =1"- [z " (k i )] (5.47)

mit den in Kapitel 3.3 beschriebenen Parametern und einem frei wéhlbaren Grundstrom
1, der von einem einzelnen Gewicht verstarkt wird.

Die lineare Abhéngigkeit der Feuerschwelle des PCNN-AM fiihrt zu den gleichen Zu-
sammenhéingen in Bezug auf das Verhalten bei allen bisher betrachteten Fehlern des
Assoziativspeichers.

Wenn im Folgenden von einem korrekt angelegten Muster gesprochen wird, bedeutet
dieses, dass das Muster korrekt, d.h. ohne fehlende oder zusatzliche Information, auf
den zuvor trainierten Eingédngen angelegt wird. Die Korrektheit bezieht sich hier also
auf die ortliche Verteilung der Pulse. Dagegen kann ein angelegtes Muster durchaus eine
bestimmte zeitliche Verteilung annehmen, im besten Fall laufen allerdings alle Pulse zur
exakt gleichen Zeit ein.

In Abb. 5.5 sind verschiedene zeitliche Verlaufe eines einlaufenden Pulsmusters dargestellt.
Die fiinf ibereinander liegenden Pulse miissen nicht ortlich beieinander liegen, sondern
stellen beliebige, aber zu einem Muster gehorende Eingénge dar, welche in einer bestimmten
Zeit erregt werden missen, um ein Aktionspotential am Ausgang zu erzeugen und ein
Muster aus dem Speicher abzurufen. Der erste Fall (Abb. 5.5a) zeigt das synchrone
Einlaufen eines vollstdndigen Pulsmusters. Dieser Fall ist in Bezug auf die Wahl der
Parameter des Speichers leicht zu l6sen und beschrankt sich auf eine einfache Wahl der
Gewichte w, um die Feuerschwelle der LIAF Neurone zu erreichen. Wir wéahlen [ als
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Anzahl der aktiven Eingidnge im Eingangsvektor x der Gréfle m. Grundsatzlich muss
zum Erreichen der Feuerschwelle eine Bedingung erfiillt sein, welche von der Anzahl der
aktiven Eingénge [ in einem korrekten Muster, dem dadurch erzeugten Ladestrom (w - )
und dem Verlustterm durch Leckstrome g,k im LIAF Neuron abhéngt (5.48).

wli

> Urg wobei [ € N* (5.48)
Gleak

Dabei beschreibt ¢ den Grundstrom, den jede Synapse erzeugen kann und w die Strom-
verstarkung in der Synapse, die zum Erreichen der Feuerschwelle im empfangenden LIAF
Neuron gewéhlt werden muss. Eine weitere Bedingung stellt die zeitliche Auspriagung der
Pulse: Die Feuerschwelle muss innerhalb der Feuerzeit tg,.. des Eingangs erreicht werden.
Um dieses zu erreichen, muss der Verstarkungsfaktor w, der im Folgenden als Gewicht
bezeichnet wird, der Bedingung

UTH — Ueo * eXp<_tﬁ%) Gleak . C
. mit T =

1 — exp(—tie) li Jleak

T

(5.49)

geniigen. Der Parameter u. stellt das zu Beginn der Betrachtung vorhandene Membran-
potential dar, welches bei gentigend groflen zeitlichen Absténden zwischen einlaufenden
Pulsmustern gegen den Wert 0V tendiert.

Der zweite Fall eines einlaufenden Pulsmusters (Abb. 5.5b)zeigt eine leichte Asynchro-
nitat, bei der die Pulse mit einer Verzogerung von maximal At bezogen auf den ersten
einlaufenden Puls bzw. die erste einlaufende Pulsgruppe am Eingang einlaufen, sich aber
zeitlich noch tiberlagern. Das zum Erreichen der Feuerschwelle notwendige Gewicht wird
im folgenden Abschnitt ermittelt. Dabei bezeichnet der Parameter | die Anzahl aller zu
einem Muster gehorenden ausgewahlten Eingénge. Der Parameter [5 beschreibt die Anzahl
Eingénge, die in Bezug auf die erste eintreffende Pulsgruppe [; eines Musters um die Zeit
At verzogert sind. Dabei sind zwei Falle zu unterscheiden: Im ersten Fall iiberlagern die
eintreffenden verspéteten Pulse die zuerst einlaufenden Pulse um die Zeit tg,. — At und es
existiert ein Zeitraum, in dem das empfangende Neuron durch alle Eingénge gleichzeitig
erregt wird. Im zweiten Fall ist die Verzégerung der verspéteten Pulsgruppe grofler als die
Feuerzeit der ersten Pulsgruppe, so dass hier bereits eine Entladung des empfangenden
Neurons zwischen dem Eintreffen der beiden Pulsgruppen stattfinden kann.

Zunéchst ist zu priifen, ob ein Aktionspotential von nur ly verspiteten Elementen aus
[ aktiven Eingéngen ausgelost werden kann. Ist dieses der Fall, muss die gesamte Zeit
tare + At des Einlaufens aller Pulse betrachtet werden. Die Integration des Eingangsstroms
iiber die Zeit von t = 0. .. At fiir die ersten [; Pulse, tiber t = At ... tg. fiir das gemeinsam
feuernde Muster und t = g . . - the + At fiir die [ einlaufenden verspateten Pulse ergibt
eine Bestimmungsgleichung fir w:
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w > Upy - . [(z 1) (1 — exp (—f)) . exp (—tﬁ;e)
+1y- (1 — exp (—f)) (5.50)
s () ()

Dieses stellt das minimal einzustellende Gewicht fiir den besten Fall, die eine Verzogerung
annehmen sollte, dar. Kann jedoch mit den verzégerten Pulsen alleine kein Aktionspotential
ausgelost werden, muss die moglicherweise sehr kurze Zeit, in der das gesamte Muster
anliegt ausreichen, um die Feuerschwelle des Neurons zu erreichen. Daher wird das Gewicht
nach der Integration iiber den Zeitraum von t = 0...tg,. bestimmt. Fiir den zweiten
genannten Fall ergibt sich ein Gewicht, das grofler ist, als das eben hergeleitete Gewicht

(5.50).

w > Upy - 22k [(l —1y) - (1 — exp (—At>> - exp <_tﬁre_At>
7 T -
- A -1
. (1 e (—”M
T

Diese Betrachtung ist giiltig, solange die verzogerten Pulse allein schon ein Aktionspotential

(5.51)

auslosen konnen. Im allgemeinen Fall ergibt sich diese Eigenschaft erst nach der Wahl
der Gewichte, so dass die gesamte Betrachtung mit den ermittelten Gewichten erneut
durchgefiithrt werden muss, und man sich schrittweise der Losung néhert. Es hat sich
allerdings gezeigt, dass es ausreichend ist, fiir den allgemeinen Fall das Gewicht fiir beide
Falle zu ermitteln und das Gewicht zu wéhlen, das am kleinsten ist.

Die erh6hte Robustheit gegeniiber asynchron einlaufenden Mustern wird mit einer er-
hohten Fehleranfalligkeit bei synchron einlaufenden gestorten Mustern mit zusétzlichen
aktiven Eingéngen erkauft. Dagegen wird aber die Assoziationsleistung bei unvollstandig
anliegenden Mustern erhoht.

In Abb. 5.6 sind die Konturlinien fiir die Wahl des minimalen Gewichts in Abhangigkeit
von der Anzahl verzogerter Pulse eines Eingangsmusters mit fiinf aktiven Eingéngen und
einer Verzogerung zwischen 0,1 us und 1 us dargestellt. Dabei entspricht die Verzogerung
von fiinf Pulsen einem ungestorten Pulsmuster. Das Gewicht w muss nur leicht nach oben
angepasst werden, um asynchron einlaufende Pulsmuster zu berticksichtigen. Fir den
Fall, dass die verzogerten Pulse alleine ein Aktionspotential auslosen konnen (dieses ist
gegeben, wenn der Grundstrom i hoch genug und der Verlustterm gieay niedrig genug ist),
zeigt sich eine besondere Eigenschaft der Gewichte. Die Beriicksichtigung von wenigen
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Abbildung 5.6: Konturlinien zur Wahl des minimalen Gewichts fiir asynchrone
Eingangsmuster. Angelegt wurde ein Muster mit finf aktiven
Eingingen. Parameter: gieax = 107 S, tge = 1 us, C = 100 {F,
1 =10nA, Uprg = 730 mV

verzogerten Pulsen erfordert hier ein héheres Gewicht, als die Beriicksichtigung von
mehreren verzogerten Pulsen.

Problematisch ist ein erhohtes Gewicht, wenn statt asynchroner Muster nun perfekte
Muster einlaufen. Im Folgenden soll das maximal einstellbare Gewicht ermittelt werden,
so dass gerade kein Muster fehlerhaft abgerufen wird, wenn ein korrektes Eingangsmuster
synchron anliegt. Aus der Bedingung, dass mit [ aktivierten Eingdngen und [ — 1 besetzten
Gewichten gerade kein Neuron zum Feuern gebracht wird, kann das maximale Gewicht
Wmax Mit

Wmax S UTH : gle'ak ' ! )) (552>

oo (1-1) (1—exp (—tﬁT

ermittelt werden.

Es kann gezeigt werden, dass das Gewicht nach (5.51) in allen Fallen kleiner ist, als
das maximal erlaubte Gewicht wy,,. Fir das Gewicht nach (5.50) ergibt sich daraus die
Forderung

1
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Abbildung 5.7: Konturlinien zur Wahl des minimalen Gewichts fiir asynchrone
Eingangsmuster. Angelegt wurde ein Muster mit finf aktiven
Eingéngen und einer Verzogerung der verspateten Pulse von
At > tge. Parameter: gieax = 107 S, tge = 1 pus, C = 100fF,
1 =10nA, Uy = 730 mV

an die Verzogerungszeit, die in Anhang A.2 hergeleitet wird.

Grofle Verzogerungen im Eingangsmuster Wird die Verzogerung zwischen den
ersten einlaufenden Pulsen [; und der verzogerten Menge [, iiber die Dauer eines Aktions-
potentials hinaus erh6ht (At > tg,), muss der in der Pulspause entstehende Abklingterm
des Membranpotentials beriicksichtigt werden. Um das Aktionspotential nicht mit den
ersten einlaufenden Pulsen auszultsen, sondern erst mit der zweiten Welle, darf das
gewahlte Gewicht nicht zu grofl sein. Es gilt:

w < Ury - glzak , {(Z — 1) - (1 — exp (—t{ie)ﬂ_l (5.54)

Gleichzeitig muss das Gewicht so grofl gewahlt werden, dass mit dem FKEinlaufen der
zweiten Welle von Pulsen das Aktionspotential im empfangenden Neuron iiberschritten
wird. Voraussetzung ist natiirlich, dass die zweite einlaufende Menge an Pulsen ein
Aktionspotential auslésen kann, d. h. % > Uy erfiillt ist. Es gilt:
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w > Upy - 525 Kl — exp (_’E» . [z - exp (‘A:)
()]

Beide Bedingungen fiir das Gewicht sind zu erfiillen und ergeben eine Anforderung an die

(5.55)

Anzahl der ,verspéteten® Pulse o, welche von der Verzogerung At abhéngig ist. In der
Praxis sollte die Verzogerung At nicht groer als tg,e + 27 sein, da das Membranpotential
in dieser Zeit bereits wieder auf weniger als 1/7 des maximal erreichbaren Wertes (der
Feuerschwelle) zerfallen ist. In diesem Fall kann man nicht mehr von einer Bindung der
spater einlaufenden Pulse an die ersten eingelaufenen Pulse sprechen, sondern sie sollten
als eigenstiandiges, fehlerbehaftetes Muster angesehen werden. Die betrachteten Neurone
besitzen also ein zeitbehaftetes Gedachtnis des letzten Pulses, welches bereits von Gerstner
[34] als short-term memory beschrieben wurde.

Die notwendige Bedingung fiir das Auslésen eines Aktionspotentials ergibt sich aus (5.54)
und (5.55):

ly >

(e (-2))
(2w <—M )

In Abb. 5.7 ist das minimal zu wahlenden Gewicht fiir 5 Bit-Pulsmuster mit um mehr

als eine Zeit von tg,. verzogerten Elementen dargestellt. Fiir grofle Leckleitwerte, z. B.
Gieax = 107 S ergibt sich der Fall, dass die Anpassung der Gewichte nicht mehr ausreicht
und das asynchrone Muster nicht synchronisiert werden kann. Gleichung 5.48 muss in
jedem Fall erfiillt werden. Auch ohne Beachtung dieser Bedingung ist sofort klar, dass —
wenn eine bestimmte Anzahl von Pulsen kein Aktionspotential auslosen konnte — eine
geringere Anzahl von spéter auftretenden Pulsen ebenfalls kein Aktionspotential auslésen
wird. Daher ist fiir diesen Fall die Anzahl der ,verspéteten® Pulse mit mindestens [[/2]
zu wahlen, um zu einer Losung zu kommen.

Abb. 5.8 zeigt den theoretischen Informationsgehalt des BINAM sowie den Erwartungswert
zusétzlicher, im Ausgangsmuster auftretender Einsen, die den Informationsgehalt nach
oben begrenzen. Demgegeniiber ist der aus Simulation eines BINAM mit pulsenden LIAF
Neuronen ermittelte Informationsgehalt sowie die auftretenden zusétzlichen Einsen tiber
der Anzahl gespeicherter Muster fiir ein System mit 100 x 100 Gewichten und 5 aktiven
Eingéngen, sowie 2 aktiven Ausgingen dargestellt. Die Wahl der Feuerschwelle wird
anhand der Anzahl aktiver Eingdnge mit 5 festgelegt. Es wird ersichtlich, dass sich der
Informationsgehalt des LIAF-BiNAM dem theoretischen Informationsgehalt bei zufélligen
gespeicherten Mustern annéhert. Durch die relativ geringe Grofle des betrachteten Systems
und der pseudo-zufilligen Erzeugung der Eingangsmuster liegt der durch Simulation
ermittelte Informationsgehalt unterhalb des theoretischen Ergebnisses, bei dem von
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Abbildung 5.8: Vergleich des theoretischen Informationsgehalts des BINAM
und dem durch Simulation ermittelten Informationsgehalts des
PCNN-BiNAM mit perfekten Mustern im Abruf (m, n = 100;
l=5k=2,0=1).

zufillig verteilten Mustern ausgegangen wird. Es kann gezeigt werden, dass sich das am
PCNN-BiNAM ermittelte Ergebnis fiir den Informationsgehalt bei Betrieb mit perfekten
Mustern fiir grole Systeme dem theoretischen Ergebnis des statischen BINAM annéhert.
Dazu muss die Wahl der Gewichte der Gleichung (5.49) entsprechen und es miissen
perfekte Muster fiir den Abruf vorausgesetzt werden. Mit der vorangegangenen Wahl der
Gewichte ergibt sich nach Einlaufen eines Musters gerade ein Membranpotential, das der
Feuerschwelle des Neurons entspricht, wenn alle durch den Eingangsvektor ausgewéhlten
Zeilen einer Spalte (vgl. Abb. 5.1) mit einem nach (5.49) gewéhlten Gewicht ungleich
0 besetzt sind. Entscheidend fiir die Aktivierung eines Ausgangs sind in diesem Fall
nur noch die Anzahl der ausgewahlten Zeilen und die Besetzungswahrscheinlichkeit der
Speichermatrix, so dass die Gleichungen zum des statischen Speichers auf den pulsenden
Assoziativspeicher anwendbar werden. Dazu ist noch eine weitere Bedingung zu erfiillen.
Die Neurone, die nicht zum Feuern gebracht werden, und somit nicht zu einem Muster
gehoren, bestimmen die maximal mdogliche Frequenz des Musterabrufs. Ein Neuron, das
nicht zum Feuern angeregt wurde, muss vor der erneuten Erregung das Membranpotential
von

[—1
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Abbildung 5.9: Informationsgehalt des PCNN-BiNAM ohne Korrekturfaktor
und mit Korrekturfaktor bei perfekten Mustern (m, n = 100; [
=5 k=2,0=1).

abbauen, um im néchsten Abruf keinen Fehlerhaften Abruf zu erzeugen. Ein Zerfall auf
1% der Feuerschwelle ist an dieser Stelle ausreichend, so dass sich eine minimale Zeit
zwischen zwei abgerufenen Mustern von

l
tpause = —7ln (O, 01- l_1>

ergibt.

Zuletzt soll der Einfluss der in den vorhergegangenen Abschnitten ermittelten notwendigen
Korrektur der Gewichte zur Verarbeitung von asynchronen Mustern betrachtet werden.
Als Beispiel sei hier wieder ein System mit 100 Eingdngen und 100 Ausgingen zu Grunde
gelegt, bei welchem Muster mit 5 aktiven Eingdngen und 2 aktiven Ausgéngen betrachtet
werden. Aus Abb. 5.6 wird fiir ein Pulsmuster mit einem maximal 250 ns verzogertem
Anteil von 3 Pulsen bei 1 pus Pulsdauer der einlaufenden Pulse ein minimal fiir jedes
Gewicht einzustellender Wert von 1,47 ermittelt. Der maximale Wert, der eingestellt
werden kann, ohne zusétzliche Fehler beim Abruf zu erzeugen, liegt nach (5.52) bei einem
Wert von 1,8341. Praktisch kann man sich die Korrektur als Einbringen zusatzlicher
Einsen in die Gewichtsmatrix vorstellen, jedoch mit der Schwierigkeit, dass die zuséatz-
lichen Einsen nicht in jeder Spalte auftreten, wie bei der Betrachtung des stuck-at-1
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Fehlers modelliert, sondern vielmehr bereits stark mit Einsen besetzte Spalten durch
zusatzliche Einsen weiter gefiillt werden. Im schlimmsten Fall treffen nun alle Pulse
eines Musters zur gleichen Zeit ein, welches bei schwach besetzter Gewichtsmatrix zum
korrekten Abruf fithrt. Bei einer stark mit Einsen besetzter Gewichtsmatrix werden jedoch
auch die Neurone aktiviert, deren korrespondierende Spalte schwécher besetzt ist. Der
Vorgang ist in seiner Auswirkung vergleichbar mit der Anpassung der Feuerschwelle in
vorangegangenen Abschnitten, jedoch wirken hier durch die Gewichte und das zuséatzlich
betrachtete Zeitverhalten des Systems andere Mechanismen. In Abb. 5.9 ist dargestellt,
wie sich der Informationsgehalt des Assoziativspeichers bei Anpassung der Gewichte
zur Kompensation von asynchron einlaufenden Mustern reduziert. Die Reduktion des
Informationsgehalts erfolgt bei Uberschreiten eines durch (5.52) gegebenen Grenzwerts fiir
die Verstarkung sprunghaft. Die Simulation wurde mit einem System der Grofle 100 x 100
mit 5 aktiven Eingédngen und 2 aktiven Ausgéngen durchgefithrt. Die dabei zu Grunde
liegenden Neurone wurden mit den Parametern gjeax = 107°S, tge = 1 s, C = 1001F,
1 = 10nA, Uy = 730 mV wie schon fiir die Berechnung fiir Abbildung 5.6 gewahlt. Die
Gewichte des ungestorten System wurden aus dieser Betrachtung nach (5.49) mit einem
Wert von w=1,4673 versehen. Der maximal einstellbare Wert fiir eine Synapse fiir einen
fehlerfreien Abruf von Mustern ergibt sich mit den angegebenen Parametern nach (5.52)
ZU Whax =1,8341. Dartiber ergeben sich Fehler im Abruf, welche den Informationsgehalt
des Speichers reduzieren. Fiir die weiteren Simulationen wurde der Gewichtswert des
ungestorten Systems mit einem um einen Faktor von 1,249 und 1,25 verstérken Gewicht
durchgefiihrt, um sich der Grenze der Informationsgehaltsreduktion zu nahern. Die um
den Faktor von 1,25 verstiarkten Gewichte tiberschreiten den Maximalwert, der nach
(5.52) bestimmt wurde. Nach der Programmierung der Speichermatrix wurden die zuvor
gespeicherten zufalligen Muster mit gespeicherten, perfekten Mustern abgerufen, was
den schlechtesten Fall fiir das System mit verstiarkten Gewichten darstellt. Bis zu einer
Verstarkung des Gewichts um einen Wert von knapp unter 1,25 (w/wmax < 1,0) veréndert
sich der Informationsgehalt des Speichers nicht. Oberhalb dieses Werts (w/wpax > 1,0)
geht der maximale Informationsgehalt fiir dieses System sprungartig auf fast die Hélfte
zuriick. Das bedeutet, dass es eine maximale zeitliche Ausdehnung der Muster gibt, die
ohne Fehler bzw. ohne Reduktion des Informationsgehalts des Assoziativspeichers mit
pulsenden Neuronen durch Adaption der Gewichte kompensiert werden kann.



Zusammenfassung

Diese Arbeit befasst sich mit der ressourceneffizienten Implementierung pulscodierter
neuronaler Netze, insbesondere der Umsetzung der einzelnen Komponenten von PCNN
in aktuellen CMOS-Technologien. Als Ressourcen wurden hier die durch das Layout
festgelegte Fliache in einem ASIC bzw. Logikzellen auf einem FPGA sowie die im Betrieb
auftretende Verlustleistung in Form von statischer Verlustleistung, die der Ruheleistung
zugeordnet wurde, und der dynamischen Verlustleistung, die zur umgesetzten Energie pro
Puls umgerechnet wurde, betrachtet. Ausgangspunkt ist die Betrachtung der Leistung des
menschlichen Gehirns, das mit seinen vielen Verarbeitungseinheiten unter dem Einsatz
von vergleichsweise wenig Energie komplexe Probleme losen kann. Besonders die hohe
Robustheit von Teilen des Gehirns, das trotz Ausfall von kleineren Teilbereichen eine
weiterhin korrekte Funktion bietet, ist ein Vorbild fiir die Integration von robusten
mikroelektronischen Schaltungen in immer kleiner werdenden CMOS-Technologien.

Ausgehend von der Motivation des Einsatzes neuronaler Prinzipien in mikroelektronischen
Schaltungen wurde in dieser Arbeit eine Einfithrung in die Grundlagen der biologischen
Zelle, insbesondere der Zellmembran und der dort wirkenden Transportmechanismen
von lonen gegeben und der Ort des mafigeblichen Energicumsatzes in einer Nervenzelle
beschrieben. Der Ausgleichsmechanismus der Natrium-Kalium-Pumpe zum Erhalt des
intrazelluldren Volumens wurde besonders betrachtet. Hier wird der Hauptteil der Ener-
gie aus dem universellen Energietrager ATP zum Transport von Ionen aus der Zelle
heraus und in die Zelle hinein genutzt, um ein auftretendes Ungleichgewicht der Ionenkon-
zentrationen beteiligter Ionen auszugleichen und das Zellvolumen stabil zu halten. Um
den Energieumsatz eines biologischen Neurons abschatzen zu konnen, wurde in Kap. 3
ein mathematisches Modell des Tonentransports an der Zellmembran aufgegriffen und
um eine regelungstechnische Beschreibung der Natrium-Kalium-Pumpe als klassischer
Zustands-Regler erweitert. Mit Hilfe des Reglers und der Anwendung der Methode der
Polvorgabe konnten die passiven Ausgleichsvorgéange, die durch das mathematische Modell
der Zellmembran beschrieben werden, ausgeregelt werden und ein stabiler Arbeitspunkt
bei biologisch plausiblen Konzentrationen erreicht werden. Aus den Angaben des Reglers
zu den notwendigen Pumpzyklen zum Ausgleich des passiven Ionentransports kann die
umgesetzte Energie direkt errechnet werden, so dass diese Modellierung es erlaubt, den
Energieumsatz einzelner Neurone und groflerer Systeme durch Simulation zu ermitteln.
Weiter ist es moglich, auch den Energieumsatz der Ausgleichsvorgénge im Unterschwellen-
verhalten, also vor dem Auslosen eines Aktionspotentials einzelner Neurone zu ermitteln.
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In der Literatur finden sich zum Energieumsatz im Unterschwellenverhalten des Neurons
keine Angaben, dort wird vereinzelt die Energie fiir ein einzelnes Aktionspotential ab-
geschatzt. Die Stabilitat des geregelten nichtlinearen Systems der Zellmembran wurde
anhand von Simulationen verifiziert und durch die Betrachtung der Stabilitdtsbedingung
nach Ljapunov nachgewiesen.

Die Akzeptanz und die Anwendung neuronaler Prinzipien in mikroelektronischen Schal-
tungen ist direkt von der Moglichkeit abhéngig, die Komponenten ressourcenschonend,
d. h. mit einer moglichst geringen Flache und einer moglichst geringen Verlustleistung
im Betrieb in CMOS-Technologien von 130nm und darunter zu implementieren. Die
grundsétzlich zu klarenden Fragen, welche Zielplattform, FPGA oder ASIC, und welche
Technologie zum Einsatz kommen soll, wurden durch theoretische Betrachtungen, Analyse
von Syntheseergebnissen und durch die Implementierung der in dieser Arbeit vorgestellten
Strukturen beantwortet. Zur Hinfiihrung in die unterschiedlichen Implementierungsvari-
anten wurden in Kap. 2 veréffentlichte Umsetzungen fiir digitale Systeme auf FPGAs,
vereinzelt ASICs sowie Beispiele fiir die in dieser Arbeit verwendeten Techniken (bitparal-
lel und bitseriell) diskutiert. Die relevanten Implementierungen analoger LIAF Neurone
wurden gezeigt und analysiert. Bei der Recherche wurde deutlich, dass Vergleichswerte
fiir Flachenbedarf und Verlustleistung nur in den seltensten Féllen angegeben werden, so
dass ein Vergleich der erreichten Werte mit bestehenden Systemen schwierig ist.

In Kap. 4 dieser Arbeit konnte gezeigt werden, dass analog implementierte Neurone
in einer aktuellen 130 nm CMOS-Technologie fiir eine flacheneffiziente Umsetzung von
pulsenden Neuronen geeigneter sind, als ihre digitalen Pendants. Das Auflésungsvermogen
des Entscheidungselements der analogen Umsetzung wurde durch Betrachtung der Prozess-
variation im 130 nm CMOS-Prozess mit maximal 6 Bit ermittelt. Davon ausgehend wurden
die digitalen Systeme, sofern mdoglich, bei einer dquivalenten Auflésung von 6 Bit betrach-
tet und der analogen Implementierung gegeniibergestellt. Um die Skalierung der digital
implementierten Neurone zu iiberpriifen, wurden zusatzliche Synthesen auf Wortbreiten
von 3 Bit bis 16 Bit durchgefiihrt. Die vorgestellte analoge Umsetzung benétigt gegeniiber
der kleinsten digitalen Umsetzung nur etwa 1/18 der Flache, womit sich die analoge
Umsetzung fiir die Integration sehr vieler LIAF Neurone auf einem ASIC anbietet. Die
im analogen Neuron durch Messung an gefertigten Chips ermittelte umgesetzte Energie
pro Puls von 17 pJ steht der umgesetzten Energie von 40 pJ des zahlerbasierten digitalen
Neurons gegeniiber. Die statische Verlustleistung bei beiden Implementierungen liegt mit
1,9 uW beim analogen Neuron iiber der statischen Verlustleistung von ca. 1,1 uW des
digitalen zahlerbasierten Neurons. Der Hauptunterschied bei beiden Implementierungen
liegt in der zu erreichenden Ausgangspulsrate. Durch die Normierung auf die Energie pro
Puls wurde dieser Unterschied berticksichtigt. Durch die in Kapitel 4.3 vorgeschlagenen
Anpassungen des analogen LIAF Neurons kann die Verlustleistung weiter abgesenkt und
die Robustheit der Schaltung erhéht werden.

Die digitalen Neurone zeichnen sich gegeniiber den analogen LIAF Neuronen, in denen
immer wiederkehrende Komponenten zu finden sind, durch einen erh6éhten Variantenreich-
tum in der Umsetzung aus. Die Umsetzung von bitparallel arbeitenden Elementen fiir ein
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Tabelle 5.2: Energie-, Flachenbedarf und Eigenschaften der Varianten der Neurone

Implementierung Energie pro AP Ruheleistung Flache
Biologisches Neuron (Purkinje Zelle)*  25pJ — 40 pJ 26 pW 20.196 pm?
Biophysikalisches Neuronenmodell 34pJ 2,4fWP

Digitales Neuron (parallel, 130 nm) 49pJ 10 uW 25.756 pm?
Digitales Neuron (bitseriell, 130 nm) 386 pJ 5,5 uW 17.568 pm?
Digitales Neuron (Zéhler, 130 nm) 40pJ 1,1 uW 1.398 pum?
Analoges Neuron (130 nm) 17pJ 1,9 uW 76 pm?

@ Als Flache wird die Oberfliche einer kugelférmigen Zelle angenommen. Diese Grofle dient nur dem ungeféhren
Vergleich und ist stellt keine Angabe iiber die tatsichliche Oberfliche der Purkinje Zelle dar.
b Die angegebene Ruheleistung liegt im Vergleich mit der Energie pro Aktionspotential zu niedrig.

LIAF Neuron kann zwar gut auf die Strukturen eines FPGAs abgebildet werden, ist jedoch
fir die Umsetzung auf einem ASIC durch den hohen Fléchenbedarf bitparalleler Multi-
plizierer ungeeignet. Die Verringerung der Flache durch das Einbringen von bitseriellen
Elementen, vor allem dem Ersatz der Multiplizierer, kann bei den vorgestellten Implemen-
tierungen praktisch erst ab einer Wortbreite von 6 Bit erreicht werden. Darunter bendtigt
der bitparallele Multiplizierer eine kleinere Fléche. Gleichzeitig muss fiir die bitserielle
Umsetzung der Takt der Schaltung erhoht werden, um die gleiche Ausgangscharakteristik,
vor allem eine gleiche Ausgangspulsrate zu erreichen, wie die bitparallele Umsetzung. Der
Energiebedarf der verschiedenen Implementierungen im Vergleich mit der biologischen
Zelle ist in Tab. 5.2 zusammengefasst. Vor allem die analoge Implementierung erlaubt
aufgrund ihrer kleinen Fléache die Integration vieler LIAF Neurone auf einem Chip. Die
angegebene umgesetzte Energie pro Aktionspotential unterschreitet in fast allen Fallen
die vom biologischen Neuron bendtigte Energie. Die besonders niedrige Ruheleistung des
biologischen Vorbilds kann jedoch von den vorgestellten Implementierungen nicht erreicht
werden. Die weitere Absenkung der Verlustleistung konnte durch den Aufbau und die
Verwendung einer speziellen Synthesebibliothek erreicht werden, die mit Versorgungs-
spannungen im Subschwellenbereich von 200 mV bis hinauf zu 1V arbeiten kann. Die
Bibliothek wurde in Kap. 4.2.2 kurz vorgestellt, und die einzelnen Systeme wurden zum
Vergleich darauf abgebildet.

Abschlieend wurde der Einsatz von pulsenden Neuronen am Beispiel eines robusten
Speichers gezeigt. Die Verwendung des binéren neuronalen Assoziativspeichers als feh-
lerkorrigierender Speicher fiir zukiinftige Implementierungen von Speichern in CMOS-
Technologien mit Strukturen von 130 nm und darunter wurde durch Betrachtung seiner
Eigenschaften und seiner Robustheit gegentiber Parameterschwankungen und Fehlern
motiviert. Ein Wechsel vom kontinuierlich betriebenen Speicher zu einem Speicher mit
pulsenden Neuronen stellt neue Herausforderungen an den Speicher. Der Abruf der Daten
wird durch nicht vollstéandig synchron einlaufende Pulse am Eingang des Speichers er-
schwert. Es wurde untersucht, welchen Einfluss asynchron einlaufende Pulse auf den Abruf
von Daten aus dem Speicher haben, und wie die Gewichte des Speichers angepasst werden
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miissen, um eine korrekte Funktion des Speichers zu gewéhrleisten. Unter Beriicksichtigung
der in Kap. 5.2 angegebenen unteren Grenzen der Gewichte ist die Anwendung der zuvor
fiir den statischen Speicher ermittelten Abschétzungen fiir den Informationsgehalt des
Speichers moglich. Da die in Kap. 5 gezeigte Anpassung der Gewichte Einfluss auf den
Informationsgehalt des Speichers hat, wurde der Einfluss der Gewichtsanpassung zur
Verarbeitung von asynchronen Pulsen anhand von Simulationen ermittelt und dargestellt.
Gleichzeitig wurde eine obere Grenze fiir die Gewichtsanpassung hergeleitet, unterhalb
deren Wert der Informationsgehalt des Speichers nicht verringert wird. Die Eignung von
pulsenden Neuronen fiir die Implementierung eines BINAM konnte in diesem letzten
Kapitel erfolgreich gezeigt werden.



Anhang A

Mathematischer Anhang

In diesem Anhang sind Rechnungen aufgefiihrt, welche den Lesefluss der vorliegenden
Arbeit unnotig unterbrochen héatten. Sie sind zur Darstellung der gewonnenen Ergebnisse
im Hauptteil dieser Arbeit nicht zwingend erforderlich, tragen aber zum Versténdnis und
zur Nachvollziehbarkeit der angegebenen Gleichungen bei. An den entsprechenden Stellen
im Text wurde auf den jeweiligen Anhang referenziert.

A.1 Herleitung von ug;) und u(%)

Grundlage fiir die Berechnung des Potentials einer Membrankapazitat nach unendlich
vielen Aufladungen bilden die Differentialgleichungen eines IAF Neurons mit der Dynamik
nach (3.48) und (3.52). Mit der Annahme, dass dieses Neuron mit einer konstanten Pulsrate
der Frequenz f = 1/T erregt wird, lasst sich die nachfolgende Rechnung ausfithren. Diese
Bedingung ist vor dem Hintergrund der prasynaptischen Erregung des empfangenden
Neurons dann erfiillt, wenn vorausgesetzt wird, dass die priasynaptischen Neurone uniform,
d.h. gleichméBig feuern, und nur eine Pulsfolge mit mittlerer Pulsrate zum Auslosen
eines Aktionspotentials am postsynaptischen Neuron fithren kann. Die Periodendauer
T der Pulse setzt sich aus den zwei Anteilen der Pulsrate zusammen, der Feuerdauer
eines prasynaptischen Neurons tg.. und der Pausenzeit ... An dieser Stelle wird die
Aufladung einer Membrankapazitit durch einen konstanten Strom betrachtet, welcher
im Falle eines priasynaptischen Aktionspotentials in das postsynaptische Neuron injiziert
wird. Die Membrankapazitat des Neurons sei zu Beginn der Betrachtung auf einen
Wert u.(t = 0) = up aufgeladen. Nach (3.53) ergibt sich nach dem ersten Puls auf der
Membrankapazitat ein Potential von:

] re -[ C
uil} = Uc(t = thre) = <u0 - ) ey mit 7= (A.1)
’ Jleak Jleak Jleak

In der Pause zwischen konsekutiven préasynaptischen Pulsen klingt das Membranpotential
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nach (3.49) durch passive Entladevorgénge ab und erreicht nach einer gesamten Periode
T den Wert:

[ [ tre ax
) e 4 e (A.2)
Jleak Jleak

(W) _ (1) =l
Uep =Upp-€ 7 = |Uy—

Dieser Wert ist nun wieder als Startwert fiir ug)c einzusetzen. Nach dem zweiten Puls

ergibt sich also:

2) I _r I toax I _the I
uqu Ug — e T + .e T — e T 4+

Gleak Gleak Gleak Gleak (A3)
] _T+tﬁre .[ T ] _tﬁi
= | % — e T+ e T+ (1—6 T>
Jleak Gleak Jleak
Dieses Ergebnis ist nun wieder fiir uf% einzusetzen, usw.
I T+t re [ I t re tre ax
= ((w ) Loty L (1)) e
Gleak Gleak Gleak (A4)
I _or I Tyl I _ tire _ trelax.
= | Uo — e T+ e b + (1—e r)-e ™
Gleak Gleak Gleak
3) ( ] ) _ 2T+thre _ 2T ] tfire _T
Upr = | U — e 7 e (1—6 T) e T
Gleak Gleak Gleak (A5)
I thre I
J— . e T —|—
Gleak Jleak

Dieser Term lasst sich nun zusammenfassen, so dass im Folgenden die Reihenentwicklung
deutlich wird:

I re
+ . (1 — e_tﬁf )
Jleak

Nur wéhrend einer Aufladung kann die Feuerschwelle von unten tiberschritten werden,
deshalb wird an dieser Stelle nur die Aufladung nach dem N-ten prasynaptischen Puls
betrachtet. Dazu wird der Wert ug) bestimmt, der sich durch sukzessives Einsetzen der
oben beschriebenen Auflade- und Entladevorginge ergibt. Die Exponentialterme lassen
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sich zu einer Summe zusammenfassen, so dass sich fir das Potential nach dem N-ten
prasynaptischen Aktionspotential ein Membranpotential von

(N—1)T+tgr0 I thire N
ug) —up-e 7 4 : <1 — e_ﬁf) >3 e (A.7)
' Jleak n=0

ergibt.

Fir N — oo lasst sich diese Summe in den Grenzwert fiir eine geometrische Reihe
T

entwickeln, welcher sich mit —&~— angeben lisst. Der erste Term der Gleichung A.7

T —1
verschwindet in diesem Fall fur endliche Werte von wy.

In gleicher Weise lasst sich der Wert fiir ugj\}) ermitteln, der sich wie folgt ergibt:

I . N—
/U/SV) = Ug - e T + . (e+tﬁq— — 1) . E e7<7 -,—1)

A.2 Herleitung des maximalen Gewichts zum fehler-
freien Abruf

Gleichung 5.50 kann umgeschrieben werden zu:

w > Ury - gl‘;ak . [(Z —1y) - (1 — exp <—tﬁTre)> + 1y - <1 — exp <_tﬁre;At>>]_l (A.9)

Gleichung 5.51 kann umgeschrieben werden zu:

A A -1
ozt B e () oo () v (1o (1))
1 T T T

(A.10)
Gleichzeitig muss das Gewicht der Bedingung (5.52) geniigen:

Winaxe < Urrpt - gk;ak : {(z —1) (1 — exp (—tﬁf))}l (A.11)

In Kapitel 5.2 wurde bereits darauf eingegangen, dass mit der Wahl von [, = 1 das
maximale Gewicht ermittelt wird. Durch direkten Vergleich der Ungleichungen (A.9) und
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(A.11) ergibt sich, dass w < wpax durch den zusétzlichen Term I - (1 — exp (—@))
in der Ungleichung (A.10) fiir alle At gegeben ist.

Fiir das Gewicht nach (A.9) muss ausgewertet werden, ob die Bedingung

- (- () s (e (2
0 (1o () |

Diese Ungleichung kann nach

erfullt ist.

At < —7ln <1 — l—ll) (A.13)

aufgelost werden.

A.3 Variation des Storabstands in einer 90 nm ultra-
low-power Standardzellenbibliothek

Da MOS-Transistoren im Subschwellenbereich und in kleinen Strukturgréfien hoheren
Prozessvariationen unterliegen, soll im Folgenden der Einfluss der Variation auf die
Bibliothekszellen untersucht werden. Die Betrachtung wird beispielhaft am Inverter
durchgefiihrt, lasst sich aber direkt auf andere Zellen tibertragen.

Die Robustheit der Standardzellenbibliothek soll maximiert werden. Als Maf§ fiir die
Robustheit eines Gatters und die Analyse der Ausbeute einer Schaltung kommt der
Storabstand (Noise Margin, NM) zum Einsatz. Als Grenze fir die Ausbeute wird ein
erlaubter Storabstand von 20% Upp angenommen.

Die Berechnungen in diesem Abschnitt erfolgen nach dem EKV Modell [27], durch das die
Drainstrome eines nMOS-Transistors und eines pMOS-Transistors durch die Gleichungen

Ipn = 27"LHU%,unC'(/)XK exp (UG;ZTHOH> (exp (US> — exp (—?)) (A.14)
nYT T

W Uc — Urno Us Up
b = 2t e (0= Vs (o (L5 (D)) g

beschrieben werden.

Der Drainstrom des nMOS-Transistors ist durch die physikalischen Parameter W,, und L,,
(Weite und Léange) des Transistors, die Technologiekonstanten n, und die Ladungstragerbe-
weglichkeit p,, die Temperaturspannung Ur = kgT'/q, die Schwellenspannung Urp,, und
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die Drain-, Source- und Gate-Potentiale gegeniiber dem Substratpotential gegeben. Der
Drainstrom des pMOS-Transistors ist tiber die korrespondierenden Technologieparameter
gegeben.

Nimmt man an, dass die Kanallinge des nMOS-Transistors und des pMOS-Transistors
gleich gewéhlt wird, kann der Skalierungsfaktor s fiir die Weite des pMOS-Transistors
aus der Forderung nach einer symmetrischen Ubertragungskennlinie bestimmt werden:

Wp = S- Wn ,dass Uout(Uin = UDD) = UDD/2

Es kann gezeigt werden, dass eine symmetrische Kennlinie zu einem maximalen Storab-
stand fiihrt. Der Faktor s hangt von den Technologieparametern ab und ergibt sich
zu

Upp/2—Urnon
T Un €XP (77%] Ur

S = .
Upp/24+UtHo,p
mpftp exp (SR

(A.16)

Wir nehmen an, dass die Weite des pMOS-Transistors entsprechend dieses Zusammenhangs
gewahlt, und so der Storabstand maximiert wurde. Nun wird ermittelt, welchen Einfluss
eine Anderung der Schwellenspannung AUty auf den Stérabstand hat. Mit (A.14) und
(A.15) kann die Ubertragungsfunktion Uy, (Ui,) bestimmt werden:

Ugut = % —Urn2+Urln (exp (g’%)

—exp <3UDD—4;J;JU+4AUTH
T
+ {exp (UULf) — 2exp (2(UDD—(§;+AUTH)) .
+exp (3UDD*4?}D+4AUTH)
T
+4 exp (UDD*2U51+2AUTH )} 1/2)
T

Der Storabstand dieses Inverters ist durch die charakteristischen Punkte der Funktion

dUin T
dUout B .

gegeben. Die Losung dieser Gleichung fithrt zu den Punkten Ui,; and Ui, fir die
Eingangsspannung (A.18), an denen die Ubertragungskennlinie des Inverters Richtung
Masse mit einer Steigung von -1 abfallt:

(A.18)
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Abbildung A.1: Stérabstand in Abhéngigkeit des AUry.

Daraus ergibt sich der Storabstand fiir den High-Level NMy und fiir den Low-Level NMy,
durch Auswertung der Ubertragungsfunktion an den Punkten Uiny and Uiy p:

Uout,h = Uout(UinJ) und Uout,l = Uout<Uin,h)7

NML = Uin,l - Uout,l und NMH = Uout,h - Uin,h-

Aus (A.18) wird eine lineare Abhéngigkeit von der Schwellenspannung AUrg ersichtlich.
Unter der Voraussetzung, dass sich die Versorgungsspannung Upp nicht andert, sind die
logarithmischen Ausdriicke konstant, und der Einfluss von Uiy, j/n auf Usyenn kann ermittelt
werden. Damit wird auch der Einfluss von AUty auf den Stérabstand bestimmbar. Die
Auswertung von (A.17) an der Stelle U, 1/, ergibt, dass AUpy in den Exponentialtermen
immer eliminiert wird, und diese keinen Einfluss auf den Storabstand haben. Dies bedeutet,
dass sich die Form der Ubertragungsfunktion mit AUry nicht dndert, und wir immer den
selben Wert fiir die Auswertung der Ubertragungsfunktion an der Stelle Uin,/n erhalten.
Vielmehr wird die Ubertragungsfunktion nur um AUry auf der Ordinate verschoben.
Damit variiert der Storabstand ebenfalls nur um AUry:

Zur Verifikation des Ergebnisses wurden Monte-Carlo Simulationen an einem Inverter mit
Versorgungsspannung im Subschwellbereich durchgefithrt. Um eine technologieunabhéngige
Auswertung vorzunehmen, wurden dazu predictive technology models (PTM) [100] genutzt,
die mit einer Normalverteilung mit einem Sigma von 30 mV fiir die Schwellenspannung
Ury versehen wurden. Das Simulationsergebnis des Storabstands in Abhangigkeit von der
Abweichung der Schwellenspannung vom Nominalwert ist in Abb. A.1 dargestellt. Hier
wird die lineare Abhéngigkeit von NMy und NMj, von AUty direkt ersichtlich.
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Skalierungsregeln

Zum Vergleich von Implementierungen mit verschiedenen CMOS-Technologien und zur
Abschatzung des Ressourcenbedarfs von bestehenden Implementierungen in anderen
CMOS-Technologien werden Skalierungsregeln fiir die Veranderung charakteristischer
Groflen herangezogen. In Tabelle B.1 sind die in dieser Arbeit genutzten Regeln ange-
geben (abgeleitet von [30]), wobei sich die Faktoren o fir die Gatelange, «, fiir die
Versorgungsspannung sowie o, fiir die Dicke des Gate-Dielektrikums aus der Anderung
dieser Werte zwischen zwei Technologieschritten ergeben. Andern sich die Gate-Lénge,
die Dicke des Dielektrikums und die Versorgungsspannung in gleichem Mafle, spricht
man vom ,constant-field scaling, mit einem gemeinsamen Skalierungsfaktor « fiir alle
Skalierungsfaktoren.

Als Beispiel wird der Skalierungsfaktor (SF) fiir die Gatelange oy fir den Wechsel von
einer 350 nm Technologie zu einer 130 nm Technologie zu

o LGate, min, 350nm _ 350 nm

al ~ 2,6923.

LGate, min, 130 nm 130 nm

In dieser Arbeit werden die Begriffe worst case, typical case und best case im Zusam-
menhang mit Arbeitsbereichen von in CMOS-Technologien entworfenen Schaltungen

Tabelle B.1: Allgemeine Skalierungsregeln fiir MOS-Technologie (abgeleitet

von [30]).

GroBe Skalierungsfaktor Konstant-Feld Skalierung
Gatelange 1/ 1/«
Gatekapazitit ar,, /o 1/a

Spannung 1/ 1/

Frequenz Qo «

Fléche 1/a? 1/a?

Leistung (oo, ) / (af0r) 1/a?
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Tabelle B.2: Parameter der Arbeitsbereiche verwendeter CMOS-Technologien.

Technologie best typical worst
350 nm 3,60V, 0°C, SF 0,64 3,30V, 25°C, SF 1,00 3,00V, 75°C, SF 1,4
130 nm 1,32V, 0°C, SF 0,80 1,20V, 25°C, SF 1,00 1,08V, 85°C, SF 1,2

verwendet. Die Tabelle B.2 gibt die wichtigsten Parameter der Arbeitsbereiche, die Versor-
gungsspannung, die Temperatur und den Skalierungsfaktor fiir die verwendete Technologie
und den jeweiligen Arbeitsbereich an. Der Skalierungsfaktor gibt an, wie die geometrischen
Strukturen des Layouts einer Schaltung von den entworfenen Strukturen abweichen. Dieses
hat direkten Einfluss auf die entstehenden parasitaren Kapazitéiten.



Anhang C

Simulink Modelle

In diesem Kapitel sind die fiir die Simulation des Minimalsystems eines Neurons verwen-
deten Simulink Modelle aufgefiihrt. Die Modelle umfassen das Modell der Zellmembran
mit dem passiven Transport von Ionen durch die Tonenkanéle (Abb. C.2). Daneben sind
die Natrium-Kalium-Pumpe in Abb. C.1 sowie das Modell des Axonhiigels in Abb. C.3
dargestellt. Die Auslosung des Aktionspotentials wurde mit dem Modell nach Hodgkin und
Huxley in Abb. C.4 nachgebildet. Das Gesamtsystem zur Simulation des Minimalmodells
ist in Abb. C.5 zur Ubersicht gegeben.

[I_K_01_Na_0]

c_K, c_Na [mol /dm *3] o
- » dc_K/dt, dc_Na/dt [mol /(dm ~3/s)]

[c_K_0c_Na_0]

Abbildung C.1: Simulink Modell des Zustandsreglers der Natrium-Kalium-
Pumpe.
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Abbildung C.5: Gesamtmodell von Neuron und zwei unterschiedlich starken

Synapsen, verbunden tiber eine dendritische Verbindung.



168 Anhang C. Simulink Modelle




Verzeichnis der verwendeten

Abkiirzungen und Formelzeichen

Abkiirzungen

cAMP Cyclisches AdenosinMonoPhosphat

ALU Arithmetic Logic Unit

AM Associative Memory — Assoziativspeicher (Eine Form des CAM)
AMP AdenosinMonoPhosphat

ADP AdenosinDiPhosphat

AER Address Event Representation (Protocol)

AP AktionsPotential

ASIC Application Specific Integrated Circuit

ATP AdenosinTriPhosphat

BINAM Blnary Neural Associative Memory

CAM Content Addressable Memory — inhaltsadressierbarer Speicher
CNN Cellular Neural Network

DSP Digital Signal Processor

EPSC Excitatory PostSynaptic Current

EPSP Excitatory PostSynaptic Potential

ER Endoplasmatisches Retikulum

FPGA Field Programmable Gate Array

GABA ~v-Aminobuttersiure

IPSC Inhibitory PostSynaptic Current

IPSP Inhibitory PostSynaptic Potential

IAF Integrate And Fire Neuron

LEGION Locally Excitatory Globally Inhibitory Oscillator Network
LIAF Leaky Integrate And Fire Neuron

LIF Leaky Integrate and Fire Neuron

LUT Look-Up Table
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170 Verzeichnis der verwendeten Abkiirzungen und Formelzeichen

LSB Least Significant Bit

MAC Multiply and ACcumulate

MSB Most Significant Bit

PCNN Pulse Coded Neural Network

PE ProzessElement

PAR Place And Route

PSP PostSynaptic Potential

SNR Signal Noise Ratio

STO Stuck-at Zero

ST1 Stuck-at One

SRM Spike Response Model

Konstanten

F Faradaykonstante (F = 96485,3383 C/mol)

R Gaskonstante (R = 8,314472 J /mol K)

kg Boltzmann-Konstante (kg = 1,3806505-10723 J /K)
Na Avogadrozahl, Anzahl der Teilchen in einer Stoffmenge von 1mol

(Nx = 6,0221415-10%)

Lateinische Buchstaben

A Zelloberfléche eines Neurons

A(t) Zeitbehafteter Verlauf der Anzahl zusétzlich gedffneter Ionenkanéle
A, Spannungsverstarkung

Chack Koppelkapazitiat des analogen LIAF Neurons

Clnem Membrankapazitat der Zellmembran eines Neurons

Cox Spezifische Kapazitat von Siliziumdioxid

G(t) Erhohung der Membranleitwerte durch synaptische Ubertragung
Iy Vektor der Ruhestrome des biophysikalischen Grundmodells
VY normierter Informationsgehalt einer Assoziativspeichermatrix

Ip Drainstrom eines MOS-Transistors

Iy, Informationsgehalt eines Assoziativspeichers

Ik Kalium-Ionenstrom

Ina Natrium-Ionenstrom

I(W) Informationsgehalt einer Assoziativspeichermatrix

I(y) Informationsgehalt eines Ausgangsvektors

Kp Parameter des 1/f-Rauschens bei MOS-Transistoren
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Ky Parameter des 1/f-Rauschens bei MOS-Transistoren

M Systemmatrix des ungeregelten Systems des biophysikalischen Grundmodells

Nio Erwartungswert fiir fehlerhafte, fehlende Einsen im Abrufvektor eines Asso-
ziativspeichers

Nit Erwartungswert fiir fehlerhafte, zusétzliche Einsen im Abrufvektor eines
Assoziativspeichers

NMy Noise-Margin High-Pegel

NMyp, Noise-Margin Low-Pegel

P Relative Permeabilitat

Pk Permeabilitat von Kalium-Ionen

Pxa Permeabilitat von Natrium-Ionen

R Allgemeiner (ohmscher) Widerstand

R Regel-Vektor des biophysikalischen Grundmodells

RT™ Rezeptor-Transmitter Bindung

R+T Rezeptor und Transmitter

T Periodendauer wiederkehrender Feuerereignisse

Toye Periodendauer eines Taktsignals bei digitalen Systemen

Tra Verzogerungszeit eines Volladdierers

Tyviux Verzogerungszeit eines Multiplexers

Uy, Uy Potentiale des linearisierten Zellmembranmodells

Up Drain-Potential eines MOS-Transistors

Ug Gate-Potential eines MOS-Transistors

Uk Nernst-Potential von Kalium

Una Nernst-Potential von Natrium

Uxk.o Nernst-Potential von Kalium im steady-state

Unao Nernst-Potential von Natrium im steady-state

Us Source-Potential eines MOS-Transistors

Ur Temperaturspannung

Urn Feuerschwelle eines LIAF Neurons

Utrip Schaltspannung eines Komparators

\% Eigenvektoren der Systemmatrix M

Vo Ruhepotential der SIRENS Implementierung

Vi Zellvolumen eines Neurons

V2 Rauschspannung

Viast Tastverhéltnis der Eingangspulsrate der SIRENS Implementierung

\%% Matrix der Pumpzyklen des biophysikalischen Grundmodells in Kap. 3.1.3

\%\% Assoziativspeichermatrix in Kapitel 5
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Wioad Arbeit beim Aufladen einer Zellmembran

W reset Arbeit beim aktiven Entladen einer Zellmembran

C Vektor der Tonenkonzentrationen

CK Konzentration von Kalium-Ionen

CNa Konzentration von Natrium-Ionen

CK 0 Konzentration von Kalium-Ionen im steady-state

CNa,0 Konzentration von Natrium-Ionen im steady-state

CK.a Konzentration von Kalium-Ionen im extrazellularen Raum

CNaa Konzentration von Natrium-Ionen im extrazellularen Raum

f Pumpverhéltnis von Natriumionen zu Kaliumionen (typ. 3/2)

J3dB 3dB Grenzfrequenz

fex Frequenz des Takteingangs bei digitalen Neuronen

fin Eingangspulsrate

fosc Frequenz des Ringoszillators des ultra-low-power Chips

Jout Ausgangspulsrate

Jdischarge Leitwert bei aktiven Entladestréomen

Gleak Leitwert bei passiven Leckstromen

Im Gatesteilheit eines MOS-Transistors

IK Leitwert der Kalium-Ionenkanéle

INa Leitwert der Natrium-Ionenkanéle

h(t) Funktion des Hodgkin-Huxley Modells

lsyn Synaptischer Strom

Tleak Strom bei passiver Entladung

k Anzahl an Einsen im Ausgangsvektor der Grofie n

K Anzahl fehlerhafter Einsen im Ausgangsvektor der Grofie n

l Anzahl an Einsen im Eingangsvektor der Grofle m

m Grofle eines Eingangsmusters in Bit

m(t)3 Funktion des Hodgkin-Huxley Modells

n Grofe eines Ausgangsmusters in Bit

n(t)* Funktion des Hodgkin-Huxley Modells

Don Wahrscheinlichkeit, dass ein Matrixelement eines Assoziativspeichers auf
FEins gesetzt ist

Doft Wahrscheinlichkeit, dass ein Matrixelement eines Assoziativspeichers auf
Null gesetzt ist

Dst0 Wahrscheinlichkeit fiir einen Stuck-at 0 Fehler

Pst1 Wahrscheinlichkeit fiir einen Stuck-at 1 Fehler

q(t)

Zeitbehaftetes Neurotransmitterprofil, z. B. eine a-Funktion
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To
Lfire
tpulse
trelax
Ue, f
Ue, T

A%

Wi
wmax

Wrnin

z(k)

Ausgangswiderstand eines MOS-Transistors

Dauer eines Aktionspotentials eines LIAF Neurons

Zeit bis zum Auslosen eines Aktionspotentials

Relaxionszeit eines Neurons mit Leaky-Term in einer Feuerpause
Membranpotential nach Aufladung der Zeit tg,.
Membranpotential nach Entladung der Zeit t,cjax

Abrufvektor (Eingangsvektor) in einen Assoziativspeicher, auch fehlerbehaf-
tet

Gewicht einer synaptischen Verbindung

Maximum eines Gewichts einer synaptischen Verbindung
Minimum eines Gewichts einer synaptischen Verbindung
Eingangsvektor in einen Assoziativspeicher
Ausgangsvektor aus einem Assoziativspeicher

Anzahl gespeicherter Muster im Assoziativspeicher

Pulsausgang (AP) der SIRENS Implementierung

Griechische Buchstaben

(7

L,
Hp

Feuerschwelle eines Neurons
a-Funktion

Ubergangswahrscheinlichkeit des freien Transmitter zum gebundenen Trans-
mitter

Ubergangswahrscheinlichkeit des gebundenen Transmitter zum freien Trans-
mitter

Fehler in einer Zeile j einer Spalte des Assoziativspeichers

Geometrischer Abstand eines Musters p zur idealen Trennlinie des Hyper-
raums

Lernrate der allg. Hebb-Regel
Ladungstragerbeweglichkeit eines nMOS-Transistors
Ladungstragerbeweglichkeit eines pMOS-Transistors

Zeitkonstante
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