
Faculty of Electrical Engineering, Computer Science, and Mathematics
Department of Computer Science

Warburger Straße 100
D-33098 Paderborn

An Aspect-Oriented Model-Driven
Engineering Approach for Distributed

Embedded Real-Time Systems
by

Marco Aurélio Wehrmeister

A thesis submitted to the
Graduate Program in Computer Science (PPGC)

Federal University of Rio Grande do Sul
and to the

Faculty of Computer Science, Electrical Engineering and Mathematics
University of Paderborn

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Ph.D.)andDoctor of Natural Science (Dr. rer. nat.)

Paderborn, September 2009

Supervisors:
Prof. Dr.-Ing. Carlos E. Pereira, Federal University of RioGrande do Sul, Brazil
Prof. Dr. rer. nat. Franz J. Rammig, University of Paderborn, Germany

Public examination in Porto Alegre, Brazil
Additional members of examination committee:

Prof. Dr. Antônio Augusto Fröhlich
Prof. Dr. Leandro Buss Becker
Prof. Dr. Luigi Carro

Date: June 17th, 2009

Public examination in Paderborn, Germany
Additional members of examination committee:

Prof. Dr. Gregor Engels
Prof. Dr. Marco Platzner
Prof. Dr. Achim Rettberg

Date: September 17th, 2009

To Jo, my lovely wife, for her love, huge patience, support,
and understanding at the moments I was absent.

Acknowledgments

I have a noticeable improvement in my professional/personal life after these six years working
in the Embedded Systems Lab at the Federal University of Rio Grande do Sul. I have been with
many people that contributed directly or indirectly to thisimprovement. I would like to express
gratitude to all of them.

First of all, I would like to thank Dr. Carlos Eduardo Pereira. He is not only my advisor but
also a friend. His help along two years of master and four years of Ph.D. did strongly contribute
to several aspects of my professional and personal life in Porto Alegre. Our discussions have
been a fundamental piece for the accomplishment of this work. I tried to learn the maximum I
could from his example.

Other important part of my Ph.D. was my “sandwich” stage at the University of Paderborn,
Germany. For this, I would like to thank Dr. Franz Josef Rammig for accepting me as member in
his working group, for the discussions, critics and suggestions on my work, and more specially,
for the opportunity to do the bi-national Ph.D. I do not have words to describe how this stay in
Germany opened my horizons concerning personal and professional aspects.

From home, I would like to thank my wife, Josi, for her support, encouraging, and compre-
hension in the last six years. She was and still is a fundamental piece during all phases of my
life. I am also thankful to my parents, Nelson and Berta, my brothers Fernando and Leonardo,
and my sister-in-law Thaize for the encouragement and support. Specially, I would like to thank
my uncle Vendelino, aunt Janete, and cousins Rudolf, Priscilla, Bárbara, and Júlia for their sup-
port in Porto Alegre, decreasing the yearning for the familyof Blumenau. In special, I would
like to thank Bárbara for the English review of some chaptersof this thesis.

I would also like to acknowledge all professors and administrative staff of the Informatics
Institute, which somehow contributed for the conclusion ofmy Ph.D. Specially, I would like
to thank Dr. Flávio Rech Wagner, Dr. Luigi Carro, and Dr. Marcelo Soares Pimenta for the
valuable discussions, critics, and suggestions during allthis time.

I am thankful to all colleagues and friends from the EmbeddedSystems Lab who directly
or indirectly contributed to this work. I cannot name all of them because I will certainly forget
many names. However, I should mention those that provide remarkable contributions to this
work: Edison Pignaton Freitas, Marcio Oliveira, and Elias Teodoro da Silva Jr. Additionally, I
would like to thank two undergrad students: William Silva for the help with some case studies
in ORCOS platform; and Ronaldo Rodrigues Ferreira (a.k.a. Bixo) for the English review of

iii

this text’s first draft.

Considering my stay in Germany, I would like to express my gratitude to Marcelo Götz,
which actually came back to Brazil when I arrive at Paderborn, for all help and hints about the
life in Germany, and specially for letting me to “inherit” his house in Paderborn. From there, I
must also mention Vera Kühne for all help with the bureaucracy at the university, the colleagues
of the working group, and specially Tales and Carolina Heimfahrt, Dalimír Orfánus, Fahad Bin
Tariq for various moments we spend together.

Finally, I would like to thank the Conselho Nacional Científico e Tecnológico (CNPq) for
both regular and “sandwich” scholarships, and also the Deutscher Akademischer Austausch
Dienst (DAAD) for the financial support during part of the stay in Germany.

Contents

List of Figures viii

List of Tables xi

1. Introduction 3
1.1. Motivation. 3
1.2. Goals and Scope Delimitation. 6
1.3. Thesis Contributions. 8
1.4. Text Organization. 10

2. Theoretical Background 11
2.1. Introduction. 11
2.2. Distributed Embedded Real-Time Systems. 11

2.2.1. Introduction. 11
2.2.2. Real-Time Systems. 11
2.2.3. Embedded Systems. 13
2.2.4. Distributed Systems. 13

2.3. Requirements in Embedded Systems Domain. 14
2.4. Embedded Systems Design Approaches. 17

2.4.1. Introduction. 17
2.4.2. Object-Oriented Paradigm. 18
2.4.3. Aspect-Oriented Paradigm. 19
2.4.4. Evaluating the Design with Metrics. 21

2.4.4.1. Introduction . 21
2.4.4.2. C&K Metrics Suite . 22
2.4.4.3. Assessment Framework for AO systems. 23

2.5. Model-Driven Engineering. 25
2.5.1. Overview . 25
2.5.2. MARTE UML profile . 26

3. State of the Art Analysis 31
3.1. Introduction. 31
3.2. Design and Modeling Approaches. 32

3.2.1. Overview of Related-Work. 32
3.2.2. Discussion . 36

v

Contents

3.3. Separation of Concerns in Requirements Handling. 37
3.3.1. Introduction. 37
3.3.2. Separation of Concerns in General Systems Development 37
3.3.3. The Use of AOD in the Design of DERTS. 41
3.3.4. Discussion . 45

3.4. Code Generation. 46
3.4.1. Introduction. 46
3.4.2. Code Generation from UML Models. 47
3.4.3. Commercial Tools. 50
3.4.4. Discussion . 51

3.5. Discussion on the Open Problems. 52

4. MDE process for DERTS design 55
4.1. Introduction. 55
4.2. Aspect-Oriented Model-Driven Engineering for DERTS. 56
4.3. Adaptations in the SEEP design flow. 60

5. Specifying DERTS Using UML and Aspects 63
5.1. Introduction. 63
5.2. Functional Requirements Handling Elements. 64

5.2.1. Introduction. 64
5.2.2. Specification of System Expected Functionalities. 65
5.2.3. Specification of System Structure. 66

5.2.3.1. Class Diagram. 66
5.2.3.2. Composite Structure Diagram. 67
5.2.3.3. Deployment Diagram. 69

5.2.4. System Behavior Specification. 70
5.2.4.1. Sequence Diagram. 70
5.2.4.2. Activity Diagram . 75
5.2.4.3. State Diagram. 76

5.3. Non-Functional Requirements Handling Elements. 77
5.3.1. Introduction. 77
5.3.2. Distributed Embedded Real-time Aspects Framework. 79

5.3.2.1. Overview . 79
5.3.2.2. Timing Package. 80
5.3.2.3. Precision Package. 81
5.3.2.4. Synchronization Package. 82
5.3.2.5. Communication Package. 82
5.3.2.6. TaskAllocation Package. 83
5.3.2.7. Embedded Package. 83
5.3.2.8. Discussion. 84

5.3.3. Aspects Crosscutting Overview Diagram. 86
5.3.4. Join Points: Selecting Model Elements Affected by Aspects 88

5.4. Final Remarks. 91

vi

Contents

6. Tool Support for the Proposed Approach 93
6.1. Introduction. 93
6.2. A Platform Independent Model for Code Generation. 93
6.3. UML-to-DERCS Transformation. 98
6.4. Mapping Rules . 104

6.4.1. Overview . 104
6.4.2. Application Code. 105
6.4.3. Platform Configuration. 112

6.5. Code Generation Process. 113
6.6. Final Remarks. 116

7. Validation 119
7.1. Introduction. 119
7.2. Toolset Overview. 119

7.2.1. RT-FemtoJava Platform. 119
7.2.2. ORCOS Platform. 120
7.2.3. Case Studies Assessment. 122

7.3. Case Studies. 123
7.3.1. Unmanned Aerial Vehicle. 123

7.3.1.1. Object-Oriented Version. 124
7.3.1.2. Aspect-Oriented Version. 126
7.3.1.3. Results. 129

7.3.2. Industrial Packing System. 132
7.3.2.1. Object-Oriented Version. 133
7.3.2.2. Aspect-Oriented Version. 135
7.3.2.3. Results. 136

7.3.3. Wheelchair Automation. 138
7.4. Final Remarks. 140

8. Conclusions and Future Work 145

A. DERAF Detailed Description 149
A.1. Timing Package. 149
A.2. Precision Package. 151
A.3. Synchronization Package. 153
A.4. Communication Package. 154
A.5. TaskAllocation Package. 155
A.6. Embedded Package. 157

B. UML Models for the UAV Case Study 159

C. Mapping Rules 175
C.1. Application . 175
C.2. Platform Configuration. 188
C.3. Source Code Generated by GenERTiCA. 191

vii

Contents

Bibliography 195

List of Abbreviations 205

List of Publications 207

viii

List of Figures

1.1. Hardware and software design gap. 4
1.2. Using higher abstraction levels in embedded system design 4
1.3. Most important tools in embedded system design. 7

2.1. Non-Functional Requirements Classification. 16
2.2. Scattering: same code in multiple places. 20
2.3. Quality model proposed by Sant’Anna et al.. 24
2.4. Overall MARTE architecture. 28
2.5. Stereotypes of Time profile. 29
2.6. Stereotypes of GRM profile. 29

3.1. Methodology for Multimedia Systems available in Metropolis 34
3.2. SEEP design flow. 36
3.3. Aspects and join points modeling in AODM. 38
3.4. Examples of Theme/UML models. 39
3.5. CAM model represented as a class diagram. 40
3.6. (a) Aspects modeling; (b) Advice modeling; (c) Pointcut specification 41
3.7. Specification using atime aspect. 42
3.8. AO-related concepts modeling. 43

4.1. Overview of the AMoDE-RT design approach. 55
4.2. Overview of RT-Frida. 56
4.3. RT-FRIDA templates for requirements specification. 57
4.4. Other tools provided by RT-FRIDA. 58
4.5. Adaptations proposed to SEED design flow. 61

5.1. Graphical representation of system requirements. 66
5.2. Specification of the static structure. 67
5.3. Specification of the dynamic structure. 68
5.4. Specification of objects deployment. 69
5.5. Specification of the behavior in terms of actions performed by objects 70
5.6. Invalid behavior specification using sequence diagram. 71
5.7. System behavior overview specified using activity diagram 75
5.8. Behavior of classes specified using state diagrams. 77
5.9. Conceptual AO model. 78

ix

List of Figures

5.10. All aspects provided by DERAF. 80
5.11. Aspects specification using ACOD. 86
5.12. JPDD for structural elements selection. 90
5.13. JPDD for behavioral elements selection. 90

6.1. GenERTiCA mains features overview. 94
6.2. DERCS meta-model: structural elements. 95
6.3. DERCS meta-model: behavioral elements. 97
6.4. DERCS meta-model: AO-related elements. 98
6.5. Mapping rules XML organization. 106
6.6. Mapping rules:<SourceOptions>and<PrimaryElements>branches 107
6.7. Mapping rules:<Attributes> node . 108
6.8. Mapping rules:<SendMessage>node . 108
6.9. Mapping rules:PeriodicTimingaspect implementation. 110
6.10. Source code fragment with modifications performed by aspect adaptations. . . 111
6.11. Platform configuration XML structure. 113
6.12. GenERTiCA: application code generation flowchart. 115
6.13. GenERTiCA: platform configuration generation flowchart 116

7.1. Reusability quality model. 122
7.2. UAV movement control use case diagram. 124
7.3. UAV movement control class diagram. 125
7.4. Fragments of UAV movement control sequence diagram. 125
7.5. UAV non-functional requirements handling: (A) ACOD, and (B) JPDD 128
7.6. Calculated metrics for the UAV control system. 129
7.7. Comparison of UAV’sMovementController classes. 130
7.8. Industrial packing system use case diagram. 132
7.9. Industrial packing system class diagram. 133
7.10. Industrial packing system sequence diagram. 134
7.11. Industrial packing system: reused elements in (A) ACOD, and (B) JPDD. . . . 135
7.12. Calculated metrics for the industrial packing system. 136
7.13. Calculated metrics for the wheelchair movement control system 138

A.1. Timing Package:handling time non-functional requirements. 151
A.2. Precison Package:handling precision non-functional requirements. 152
A.3. Synchronization Package:handling synchronization non-functional requirements153
A.4. Communication Package:handling communication non-functional requirements154
A.5. TaskAllocation Package:handling tasks allocation non-functional requirements156
A.6. Embedded package:handling embedded non-functional requirements. 158

B.1. UAV movement control use case diagram. 159
B.2. UAV movement control class diagram. 160
B.3. Environment sensing. 161
B.4. Main and back rotors sensing. 162
B.5. Helicopter movement control. 163

x

List of Figures

B.6. Helicopter piloting . 164
B.7. Environment sensing subsystem initialization. 164
B.8. Movement sensing subsystem initialization. 165
B.9. Control subsystem initialization. 165
B.10.Other behavior:WindSensorDriver.getWindSpeed() 166
B.11.Other behavior:WindSensorDriver.getWindDirection() 166
B.12.Other behavior:MovementController.processInfo() 167
B.13.UAV movement control deployment diagram. 168
B.14.Aspects Crosscutting Overview Diagram. 169
B.15.JPDD: selection of active objects class. 170
B.16.JPDD: selection of shared passive objects. 170
B.17.JPDD: selection of passive class attributes. 170
B.18.JPDD: selection of passive class constructor. 171
B.19.JPDD: selection of sub systems classes. 171
B.20.JPDD: selection of sub systems constructor. 171
B.21.JPDD: selection of selection of active objects construction actions 171
B.22.JPDD: selection of active objects constructor behavior 172
B.23.JPDD: selection of active objects constructor. 172
B.24.JPDD: selection of messages whose name starts with “get” 172
B.25.JPDD: selection of messages whose name starts with “set” 173
B.26.JPDD: selection of messages whose name starts with “get” 173
B.27.JPDD: selection of messages whose name starts with “set” 173
B.28.JPDD: selection of passive objects contruction action 174
B.29.JPDD: selection of active objects periodic behavior. 174
B.30.JPDD: selection of message sending action to remote objects 174
B.31.JPDD: selection of sub systems constructor behavior. 174

xi

List of Figures

xii

List of Tables

2.1. Metrics influence in quality attributes. 23

5.1. Reserved words for actions specification. 73
5.2. Naming pattern for elements selection in JPDD. 89
5.3. Summary of MARTE stereotypes used in AMoDE-RT. 92

6.1. UML-to-DERCS mapping table. 99
6.2. UML-to-DERCS behavior elements relationships. 103

7.1. UAV: Statistics of the UML model of AO version. 130
7.2. UAV: Statistics of the generated source code. 131
7.3. Industrial packing system: Statistics of the UML modelof AO version 137
7.4. Industrial packing system: Statistics of the generated source code 137
7.5. Wheelchair: Statistics of the UML model of AO version. 139
7.6. Wheelchair: Statistics of the generated source code. 140
7.7. AO elements reused in the different case studies. 142

xiii

Abstract

Currently, the design of distributed embedded real-time systems is growing in complexity due
to the increasing amount of distinct functionalities that asingle system must perform, and also
to concerns related to designing different kinds of components. Industrial automation systems,
embedded electronics systems in automobiles or aerial vehicles, medical equipments and others
are examples of such systems, which includes distinct components (e.g. hardware and soft-
ware ones) that are usually designed concurrently using distinct models, tools, specification,
and implementation languages. Moreover, these systems have domain specific and important
requirements, which do not represent by themselves the expected functionalities, but can affect
both the way that the system performs its functionalities aswell as the overall design success.
The so-called non-functional requirements are difficult todeal with during the whole design
because usually a single non-functional requirement affects several distinct components.

This thesis proposes an automated integration of distributed embedded real-time systems
design phases focusing on automation systems. The proposedapproach uses Model-Driven
Engineering (MDE) techniques together with Aspect-Oriented Design (AOD) and previously
developed (or third party) hardware and software platformsto design the components of dis-
tributed embedded real-time systems. Additionally, AOD concepts allow a separate handling of
requirement with distinct natures (i.e. functional and non-functional requirements), improving
the produced artifacts modularization (e.g. specificationmodel, source code, etc.). In addition,
this thesis proposes a code generation tool, which supportsan automatic transition from the
initial specification phases to the following implementation phases. This tool uses a set of map-
ping rules, describing how elements at higher abstraction levels are mapped (or transformed)
into lower abstraction level elements. In other words, suchmapping rules allow an automatic
transformation of the initial specification, which is closer to the application domain, in source
code for software and hardware components that can be compiled or synthesized by other tools,
obtaining the realization/implementation of the distributed embedded real-time system.

Keywords: Model-Driven Engineering (MDE), Aspect Oriented Development (AOD),
UML, Code Generation, Aspects Weaving, Real-Time EmbeddedSystems

1

2

Chapter 1

Introduction

1.1. Motivation

The use of specialized electronic devices to assist in dailyactivities is increasing rapidly. The
so-called embedded systems are hardly perceived as computing systems. Currently, at least 20-
30 embedded systems can be found in a common household, e.g. cell phones, digital cameras,
DVD players, microwave ovens, car’s electronic systems andothers. On the other hand, the
same household has only 1 or 2 desktop computers or laptops [128]. Moreover, many of these
systems have several tasks distributed in multiple processing units (deployed either locally or
physically distant from each other) that must cooperate to accomplish a common goal, while re-
specting stringent application’s real-time requirements. For example, in a modern middle-range
car, it is possible to find over 50 embedded systems controlling several functions ranging from
anti-lock braking (ABS) and fuel injection systems to infotainment systems such as GPS navi-
gator or a music/video player [128]. To meet this high demandfrom industry, many researchers
propose/develop methodologies, standards, architectures and tools to assist the systematic de-
velopment of such special kind of distributed, cooperativeand real-time embedded systems.

As technology advances faster, there is an increasing demand for new embedded systems
capable of performing a large amount of complex functionalities, which impact strongly in their
design time and complexity. Such growing complexity is partially caused due to the distinct
nature of elements involved in the design of these systems, i.e. designers must produce, usu-
ally concurrently, hardware (HW) and software (SW) components. However, as one can see in
figure 1.1, there is a productivity gap between the software and hardware teams: the first one
needs 5 years to increase productivity twice, while the later improves it a little faster but still
not in the same rate as the increase in technology capabilities. In addition, the non-functional
nature of some important requirements have a great influencein design complexity. The embed-
ded systems domain has characteristics that constrain system design, such as fewer availability
of computational resources (e.g. memory and processing power), restrictions on low energy
consumption without performance degradation, and also a tight time-to-market [25].

To deal with the above mentioned problems, researchers and designers propose to raise the

3

1. Introduction

log

time

Moore’s Law

Additional SW required for HW

2x/10 months

Technology capabilities

2x/36 months

HW design productivity

Filling with IP and memory

HW design productivity

SW productivity

2x/5 years

1
9

8
1

1
9

8
5

1
9

8
9

1
9

9
3

1
9

9
7

2
0

0
1

2
0

0
5

2
0

0
9

2
0

1
7

2
0

1
3

LoC SW/Chip

Gates/Chip

Gates/Day

LoC/Day

HW including

SW design gap

HW

design

gap

Figure 1.1.: Hardware and software design gap [66]

abstraction level used during system design. Figure1.2shows a chart from a recent embedded
systems market survey [81], in which it can be seen that approximately 43% of embedded
systems designers use higher levels of abstraction, such asUML, Simulink or SystemC, in their
projects. In this context, the Object-Oriented (OO) paradigm appears as an interesting choice
due to some characteristics, such as abstraction and hierarchy, which are pointed since the 70’s
as key concepts to manage complexity growth and the increasing design effort [53]. Over the
last years, the use of OO in the design of distributed embedded real-time system is the focus
of several works, as can be seen in important conferences andpublications, as for example the
IEEE International Symposium on Object-oriented Real-time distributed Computing (ISORC),
[78], or [27]. However, not all issues involved in the designof distributed embedded real-time
systems are well handled only by using OO concepts. The crosscutting nature of some important
requirements impacts in different parts of a system (i.e. non-functional requirements crosscut
functional requirements), hindering the reuse of producedartifacts (e.g. models, source code,
IPs, etc.) [42].

Figure 1.2.: Using higher abstraction levels in embedded system design [81]

4

1.1. Motivation

In the literature there are some proposals, e.g. [119] and [124], that suggest the use of as-
pects to deal with the problem of crosscutting non-functional requirements in embedded systems
design. The Aspect-Oriented (AO) paradigm [42] allows a separated specification of system’s
functional and non-functional requirements. Additionally, it allows designers to concentrate
efforts on important concerns, such as the handling of real-time, performance and energy con-
sumption constraints. Additional AO helps in decoupling the produced artifact allowing their
reuse in the same or further projects. Thus, the achieved separation of concerns in requirements
handling can improve the design of distributed embedded real-time systems, opening room
for reusing the produced artifacts. Usually, non-functional requirements affect (i.e. crosscut)
functional requirements in different ways, in different design phases and/or in different system
modules [42]. Traditional OO approaches do not handle theserequirements in a satisfactory
form. To illustrate the this situation, let’s consider the control of concurrent access to a shared
resource. The code responsible for handling this requirement must be added each time some
task needs to use a shared resource, and hence, it is scattered within different modules.

Another way to decrease the gap between hardware and software designs, and also the de-
sign time, is the adoption of a common language to specify both the structure and behavior of a
distributed embedded real-time system [128]. Thus, the information exchange between design
teams (i.e. teams that develop hardware and software components) is facilitated, minimizing
possible misunderstandings in the specification [27]. In the last years, it can be observed the
increasing use of the Unified Modeling Language (UML) [92] inthe design of embedded sys-
tems. Such claim can be confirmed in the book “UML for SoC design” [78], which describes
different research works that proposed the use of UML to design Systems-on-Chip (SoC).

The idea of using models to design complex systems is becoming stronger because models
help in the understanding of complex problems and their potential solution through higher levels
of abstract in the specification [113]. Based on the fact thatmodels are essential for traditional
engineering projects (e.g. the construction of buildings,the aerodynamic design of an aircraft or
the construction of an electromechanical engine), severalresearchers and industry professionals
advocate that models produced during the design of computational systems must play the main
role during the whole design cycle [114].

The so-called Model-Driven Engineering (MDE) [113, 110] defines that the design should
mainly focus on the creation of graphical models instead of writing source code for computer
programs. Hence, models are the most important artifacts inthe design of computational sys-
tems because they are easier to specify, understand and maintain. Besides, they are less sensitive
to changes in the implementation technology, in other words, models are intended to be plat-
form and technology independent. To support this idea, a fundamental premise of MDE is
that system implementation (e.g. source code) must be automatically generated from models,
avoiding discrepancies among models and the actual system implementation. One example of
standardization for MDE is the Model-Driven Architecture (MDA) [87], which offers a con-
ceptual framework and a set of standards to be used in the development of general-purpose
systems, and proposes the use of UML for the specification modeling language. The transition
from a Platform Independent Model (PIM) to a Platform Specific Model (PSM) is performed
through standardized models transformations specified using the MOF Query/View/ Transfor-

5

1. Introduction

mation (QVT) language [93]. However, in spite of this infrastructure, UML and MDA do not
have elements to deal with functional and non-functional requirements in a separated manner
because they only use OO-based concepts.

Despite all work done in academy, the use of high-level models/languages is not a common
practice in current industry projects as can be seen in figure1.3 also from [81]. Analyzing
together figures1.2 and1.3, one can infer that designers want to use higher abstractions levels
during design, however the most important used tools are those that deal with low-level artifacts,
such as compilers or debuggers. One possible reason for thissituation is due to the fact that low
level tools, such as compilers and debuggers, are much more mature. Other relevant reason
for this situation might also be that current available tools and methodologies do not fulfill the
(critical) needs of actual designs. Therefore, it is clear that there is a need for improved tools
supporting high-level techniques. Tool support is key to allow the use of MDE to cope with the
complexity of the embedded systems design [114].

1.2. Goals and Scope Delimitation

Considering the mentioned shortcomings in the design of distributed embedded real-time sys-
tems, this research work has looked for solutions for the following problems:(i) manage the
complexity to handle requirement of distributed embedded real-time system;(ii) support for
separation of concerns in the handling of functional and non-functional requirements;(iii) the
use of a common language to describe the initial specification (i.e. model) of system struc-
ture and behavior; and(iv) productivity increasing through an automatic transition from initial
design phase, e.g. modeling, to further phases, e.g. implementation.

As embedded systems are used in very distinct application domains, applying systems with
a broad range of different characteristics and capabilities, this work restricts itself to distributed
embedded real-time systems applied to automation systems,such as industrial and home au-
tomation, or electronic control systems of vehicles and aircrafts. Thus, to overcome the men-
tioned problems in the design of such applications, this work advocate the increase of the ab-
straction level by using models as the main artifact used during the whole design. As a result,
the produced high-level models can be successively refined until a system implementation is
obtained.

To specify models for distributed embedded real-time systems, this work recommends the
use of a standard modeling language, such as UML. Its diagrams are used to describe func-
tional requirements, as well as those requirements relatedto the Quality of Service (QoS) re-
quired/offered from/by system elements, which are specified using stereotypes from the re-
cently approved UML Profile forModeling and Analysis of Real-time and Embedded Systems
(MARTE) [94]. Furthermore, it is proposed to handle non-functional requirements already in
earlier phases, separating these requirements handling from functional ones. Thus, to handle
non-functional requirements, this work proposes that AO concepts must be applied combined
with UML models. To achieve such goal, aspects must deal withreal-time, performance and
distribution requirements, as well as energy consumption,memory and area usage. It is impor-

6

1.2. Goals and Scope Delimitation

Figure 1.3.: Most important tools in embedded system design[81]

tant to highlight that there are other equally important requirements in the domain of distributed
embedded real-time systems, e.g. fault tolerance, which are complex enough (by themselves) to
be dealt within the scope of other thesis. Consequently, forscope delimitation, this work does
not consider them.

According to Selic [113], models can be considered only project’s documentation for re-
quirements (functional and non-functional) of distributed embedded real-time systems. In such
situation, designers might consider their real value too small because models may easily di-
verge from the system real implementation. To overcome thisproblem, a fundamental premise
of MDE is to have adequate tool support to allow automatic generation of system implementa-
tion from their high level models. Hence, other goal of this work is to provide a tool capable of
generating code from UML’s structural and behavioral diagrams. Moreover, it must be aware
of AO concepts specified within the model, i.e. it must identify the used aspects, as well as the
functional elements affected by them. The adaptation performed by the aspect must be woven
in the generated source code. Additionally, this code generation tool must be flexible, i.e. it
must not constraint the generated source code to a specific target language. To achieve these

7

1. Introduction

goals, the tool can use scripts to generate code fragments for each element in the UML model.

According to the motivations described until here, this work has the following goals:

• To propose a design flow, which allows the use of MDE and AOD techniques, improv-
ing and increasing the reuse of previously developed and tested artifacts (e.g. models,
libraries, mapping rules, code generation scripts, etc.);

• To advocate for the use of UML diagrams decorated with MARTE profile stereotypes
in combination with aspects (from a high-level aspects framework) for the specification
of the structure, behavior and non-functional requirements handling in the design of dis-
tributed embedded real-time systems. This will put together initial system specification
using a well-know and accepted standard, which helps in information exchange about
system characteristics and expected functionalities among design teams (i.e. hardware
and software teams);

• To improve separation of concerns in the handling of requirements, i.e. functional re-
quirements are handled apart from the non-functional ones;

• To propose modeling guidelines, as well as UML diagram interpretation semantics to
eliminate or at least decrease the ambiguity in diagrams interpretation. This allows the
transformation from the UML meta-model to a defined meta-model, whose semantics
is more suitable for code generation due to its accuracy in the specification of system
structure and behavior;

• To create a tool for code generation to support the automatictransition from specification
to implementation phases. The tool must support means for specifying mapping rules to
transform model elements into source code constructions inthe chosen target language.
The generated code must be as complete as possible, meaning that the code should not
contain only class skeletons;

• Mapping rules must allow their further reuse. In other words, they must be described
in such a way that it might be possible to create a repository of created mapping rules.
However, it is important to highlight that the definition of such repository is out of the
scope of this Ph.D. thesis;

• To evaluate - using software engineering metrics - if the proposed approach and, in par-
ticular, the use of AO positively impacts in the system specification, and also in the auto-
matic generation of source code.

1.3. Thesis Contributions

This work was developed within the context of the SEEP project (SEEP stands forPlatform-
based Embedded Systemsor “Sistemas Elerônicos Embarcados baseados em Plataformas”).
Following SEEP ideas, the main goal is to provide mechanismsto manage the increasing design
complexity by using MDE techniques and separation of concerns in the handling of functional

8

1.3. Thesis Contributions

and non-functional requirements. Therefore, this work’s contributions are as follow:

Use of MDE techniques in embedded systems design: The use of models to assist in
the development of software for general purpose computes isnot a new research topic. In addi-
tion, there are already some works on the “model-driven engineering” topic proposing solutions
to some problems. However, the employment of MDE in the design of distributed embedded
real-time systems can be considered a recent research topic, which still has several gaps to be
fulfilled. Thus, it can be stated that the study and assessment of model-driven methodologies
and techniques applied to the design of distributed embedded real-time systems is a relevant
contribution.

Platform independent modeling of embedded systems: This work suggests the use
of UML and the recently approved MARTE profile together with concepts of AOD. This can
also be considered a contribution in the design of distributed embedded real-time systems be-
cause they allow initial system description without considering its implementation. In other
words, it is possible to specify structure, behavior, as well as crosscutting non-functional re-
quirements without concerning if an element will be implemented as software or hardware,
allowing a unified system specification that can be understood by both software and hardware
design teams.

Handling of crosscutting non-functional requirements in e mbedded systems de-
sign: Other remarkable contribution is the aspect framework created to handle non-functional
requirements of distributed embedded real-time systems domain. To the best of our knowledge,
up to now there is no work in the literature reporting the creation/ development of a high-level
aspects framework that can be used in both modeling and implementation levels.

Tool support for the proposed design flow: The code generation tool proposed in this
work is also an important contribution because it provides an automatic transition from the
modeling phase to the implementation of distribution embedded real-time systems. Again, to
the best of our knowledge, there is no other tool providing the same flexibility allowed in the
specification of the mapping rules scripts. These small scripts concentrate only on one or few
model elements, which facilitates the specification of mapping rules. It is important to highlight
that it is expected that the tool could also generate HDL codefrom the UML model. Other
functionality provided by this tool is the generation of platform configuration, in term of either
configuration files, or platform source code tailoring. In other words, besides generating con-
figuration files, the target platform can be configured by means of removing source code lines
(related to unused platform services) from its source code files.

Tool support for aspects weaving: A very important contribution of the code generation
tool is the ability to weave aspects adaptations. It is possible to modify the generated code

9

1. Introduction

fragment using aspects (i.e. aspects weaving in the source code), as well as modify the high-
level model (i.e. aspects model weaving). Such feature was not found in any tool available
in industry or academy. Moreover, aspects specified within the UML model steer the platform
customization, meaning that platform services are included depending on which aspect have
been specified in the model.

1.4. Text Organization

The remainder of this text is structured as follows:Chapter 2presents an overview on the basic
concepts used in this text. It includes key concepts relatedto embedded real-time systems,
as well as requirements present in this domain; concepts of OO and AO paradigm; MDE and
platform-based approaches, and also a short overview of theMARTE UML profile.

In Chapter 3, the state of the art is discussed. Following topics are covered: design and
modeling approaches for embedded systems; handling of embedded systems requirements; and
code generation techniques.

Chapter 4presents the design flow proposed in this work, namedAspect-oriented Model-
Driven Engineering for Real-Time systems(AMoDE-RT), which supports activities from re-
quirements analysis to system realization using a target platform.

Chapter 5discusses guidelines for using UML to specify system structure and behavior. It
also introduces an aspects framework, namedDistributed Embedded Real-time Aspects Frame-
work (DERAF), which provides aspects with high-level semanticsto specify the handling of
crosscutting non-functional requirements within UML models.

Chapter 6introduces the code generation tool named GenERTiCA (Generation of Embed-
ded Real-Time Code based on Aspects) created to support the AMoDE-RT design flow. Further,
this chapter presents an intermediate PIM namedDistributed Embedded Real-time Compact
Specification(DERCS), discussing how to transform UML models into DERCS models. The
code generation and aspects weaving approaches used by GenERTiCA, as well as the specifica-
tion of mapping rules to produce source code from the UML model, are also discussed in this
chapter.

Three case studies, that illustrate the proposed approach and GenERTiCA usage, are pre-
sented inChapter 7. The case studies are: the movement control of an Unmanned Aerial Vehicle
(UAV), the movement control of a wheelchair, and the controlsystems for an automated packing
system. Additionally, this chapter provides an evaluationof the AMoDE-RT approach based on
a set of software engineering metrics.

Finalizing,Chapter 8presents the conclusions of this work, and also draws directions for
future work.

10

Chapter 2

Theoretical Background

2.1. Introduction

This chapter presents some concepts used within the contextof this text. The goal here is to
provide basic understanding and some references for relevant concepts addressed in this text.
For a more detailed discussion on them, interested readers are referred to text books and tutorials
such as: [24], [72], [25], [132], [115], [14], [42], [70], [122] and [117].

2.2. Distributed Embedded Real-Time Systems

2.2.1. Introduction

Distributed Embedded Real-Time Systems can be defined as systems that must precisely meet
time requirements in spite of their running tasks be distributed in different processing units,
having few available physical resources [122]. They must provide temporal predictability while
performing multiple concurrent and communicating tasks, which are deployed on different re-
source constrained processing units (sometimes physically distributed over different locations),
e.g. processing power, amount of available memory, or energy consumption restrictions. In the
sequence, details on each characteristic that defines a distributed embedded real-time system
are presented.

2.2.2. Real-Time Systems

Real-time systems are a special kind of computational systems on which the correct processing
of an algorithm is not enough to ensure correct system behavior, i.e. the algorithm worst case
execution time must be predictable, as well as algorithm results must be delivered in prede-
fined time instants, meeting the application’s time requirements. Thus, real-time systems are

11

2. Theoretical Background

considered deterministic systems [72]. The ability to process data in milliseconds or even in
nanoseconds does not define a computational system as a real-time system; what really mat-
ters is that system response times are limited and predictable. Stankovic [118] presents several
misconceptions and misunderstandings on real-time systems and their definition.

When considering the accomplishment of real-time requirements, real-time systems can be
classified in two categories:Hard Real-Time SystemandSoft Real-Time System. The former
represents systems that will have critical failures, whichcan cause catastrophic losses, if any
time constraint is not fulfilled [24]. On the other hand, the later represents systems that can
continue their execution, in a degraded operation mode, even when some time requirements are
missed. Hard real-time systems are commonly found interacting with the environment, such
as embedded control systems. For example, a car’s engine supervisory system is an embedded
hard real-time system because a late response can damage theengine and the passenger. Conse-
quently, such situation can lead to losses of car’s occupants’ lives. Other examples are medical
devices or industrial control systems, whose malfunctioning can cause, respectively, life and
monetary losses. Soft real-time systems are commonly applied in systems that receive data
streams that need to be processed. The processed result is than delivered to other components
or systems connected to the soft-real time system. As an example, entertainment audio/video
broadcast systems can be mentioned. In this system, the not fulfillment of time requirements
decreases the video and audio quality but the system remainsoperating.

Furthermore, real-time systems domain has some important concepts that should be high-
lighted [24]:

• Deadline is the maximal time instant at which a task must provide its results, i.e. the
system has to finish execution of a given algorithm within a maximal time limit. Deadlines
are key issues in hard real-time systems.

• Worst Case Execution Time(WCET) is the maximal time spent for an algorithm to
finish its execution and deliver the computed results.

• Period is the time interval between two consecutive executions of an activity.

• Predictability is a key characteristic for real-time systems because theirbehavior must
be know. Latency and jitter must be guaranteed within a knownmaximal time interval.
Latencyindicates the time spent from the stimulus detection until the execution of the
code responsible to handle such stimulus.Jitter is a random variation in the timing of a
signal, especially a clock.

• Exception handling can be performed to overcome the problems caused by deadlines
misses, or unexpected latency or jitter. Hence, correctiveactions are performed in order
to alleviate or even to eliminate the effects of a temporal failure.

12

2.2. Distributed Embedded Real-Time Systems

2.2.3. Embedded Systems

There are many definitions for embedded systems, some are contradictory while others are
complementary [128]. However, there is an important characteristic that is shared among all
definitions and allows separating embedded systems from general-purpose systems: the ability
to perform specialized tasks for specific purposes within the context of a larger system. Usually,
these specific purpose systems have less processing power than general-purpose systems [132].

The current processors market share indicates that more than 90% of the sold processors
are used in embedded systems [128]. Almost all modern electronic devices, from toys and cell
phones to vehicles or industrial embedded control systems,use microprocessors or microcon-
trollers to deliver their expected functionality. As can benoted, the proportion between the
usage of general-purpose processors and embedded processors is huge.

Usually, embedded systems should use processors with lowerenergy consumption, given
that in many application they impact in the processing powerdelivered to the software applica-
tion. Embedded systems are often built with limited memory resources due to other constraints
such as components cost, physical size, or energy consumption, requiring very optimized op-
erating systems or even their elimination. Hence such operating system must provide only the
amount of services required by the application software. Inspite of all these constraints, the
requirements of the target application lead the decision onwhich processor or memory amount
to use, or if the systems will use an operating system [25].

Many embedded systems are developed assuming they must be used for a long period of
time without maintenance. The fact is that the intention is to produce an embedded system for a
given application domain, letting it operate autonomouslyfor its entire expected lifetime [132].
For that reason, many embedded systems do not own mechanicalparts, e.g. fans, magnetic
disks, etc. These sorts of components are affected by natural harm caused by their use, thus
these components need to be replaced or fixed. Besides, thereare alternative components that
provide the same functionality, e.g. ROM and flash memory components can store both the
operating system and application software.

2.2.4. Distributed Systems

Distributed systems are systems composed by a collection ofprocessors with their own local
memory, i.e. they do not share memory. These processors are usually spatially distributed and
are connected through a communication infrastructure. In adistributed system, the goal is to
decentralize processing among the processors in a transparent way without given indications of
this split to the final user, for which the system does not appear to be distributed [122].

Besides providing cooperation among multiple processors aiming at increasing the whole
processing power, distributed systems are also applied in applications requiring decentralization
due to special needs, such as steer-by-wire systems, which have interconnected sensors and
actuators deployed in each wheel and also in the steering wheel in order to improve the overall
performance of the system.

13

2. Theoretical Background

The most remarkable characteristics of distributed systems are related to their technical
issues [111]:

• The architecture can adopt the following approaches:(i) client-server;(ii) publisher-
subscriber;(iii) peer-to-peer;

• There is a mechanism to control how, when and where concurrent processes should exe-
cute;

• There is a mechanism to control concurrent access to shared resources. In other words,
concurrent processes should synchronize their access to such shared resources in order to
guarantee data integrity; and

• As processes communicate with each other, there is a communication control mechanism.
It should allow correct messages delivery to their destinations.

2.3. Requirements in Embedded Systems Domain

In software industry, there is no common definition on what the termrequirementreally means
[115]. There are two extremes: on one hand, it represents high level and abstract statements of
services provided by the system or constraints that it must fulfill; on the other hand, it repre-
sents detailed, mathematically formal definition of systemfunctions. According to Sommerville
[115], there is different level of system specification, which are intended to different types of
readers:

• User requirementsare statements, usually in natural language, for client andcontract
managers that do not have a detailed technical knowledge;

• System requirementsare detailed statements on system services and constraints. The
system requirements document is intended to senior technical staff and project managers;

• Software design specificationis an abstract definition of the software design, which is
the base for the following design and implementation phases. Thus, it is intended to
software engineers who will, in fact, develop the system.

In this text, the termrequirementsis used to refer to system requirements. An important
sub-classification is the separation of system requirements in:

• Functional requirements specify services provided by a system, along with how it
should react to certain inputs, and how it should behave in particular situations. Func-
tional requirements specification must be complete (i.e. all services required by users
should be provided) and consistent (i.e. requirements should not have contradictions).
For large and complex systems, it is almost unfeasible to achieve functional requirements
consistency and completeness [115];

• Non-functional requirements, as the name suggests, are not concerned with functions
delivered by the system. Rather, they are constraints on theservices or functions, or

14

2.3. Requirements in Embedded Systems Domain

supporting elements that assist the execution of such services and functions [32];

• Domain requirementsare obtained from characteristics of the target domain rather than
user needs. They can be functional or non-functional, representing the fundamentals of
the application domain, e.g. a requirement for the deceleration of a train in an automated
train protection system.

Concerning the design of distributed embedded real-time systems, non-functional require-
ments are as important as functional requirements. In embedded systems domain, it is not
uncommon to have non-functional requirements that are (in some sense) contradictory, such as
for instance performance and energy consumption. Thus, non-functional requirements must be
classified in order to help in their handling during design. Even though not particularly intended
to distributed embedded real-time system, a good example ofnon-functional requirements clas-
sification is the one presented by Bertagnolli [10], which describes, in details, a classification
for non-functional requirements related to fault-tolerant systems. As one can suppose, some of
these requirements can be found in the distributed embeddedreal-time system domain. How-
ever, according to Freitas [37], there are other important non-functional requirements that are
commonly found in this domain, as follows:(i) time; (ii) performance;(iii) distribution; and
(iv) embedded issues. The classification of such requirements isshown in figure2.1.

Time issues, such as real-time constraints and characteristics, are depicted under thetime
branch, which was also divided in two sub-branches:

• Timing: in this branch, it can be seen typical elements of a real-timesystem such as
deadlines, activation period and cost (i.e. WCET); these were discussed in section2.2.2.
However, there are other important requirements:

– Release timerepresents the moment at which an activity is ready to be executed;
– Activation latencyis the delay to start an activity execution, i.e. differencebetween

the instant at which an activity became ready to execute and the instant of the be-
ginning of its real execution;

– Start is the time instant at which an activity begins its execution; and
– End is the time instant at which an activity finishes its execution.

• Precision:under this sub-branch, one can see requirements related to QoS in the accom-
plishment of real-time constraints, such as jitter that wasalso discussed in section2.2.2.
Following, there are other requirements:

– Tolerated delayrepresents the maximum latency the can be admitted;
– Laxity is obtained by calculating the deadline minus the WCET of an activity, rep-

resenting this activity’s maximum idleness.
– Freshnessis the time interval on which the associated data is considered valid;
– Resolutiondefines the lowest time granularity (e.g. nanoseconds, milliseconds, etc.)

in which the system can operate.
– Drift represents deviation of system’s logical time from physical time.

Non-functional requirements under theperformance branch represent constraints related
to both time and distribution non-functional requirements. For this reason, they received a

15

2. Theoretical Background

Non-Functional

Requirements

Generic Specific

Time

Timing

Deadline

Period

Cost

Release Time

Activation Latency

Start and End

Precision

Jitter

Tolerated Delay

Laxity

Freshness

Resolution

Drift

Performance
Response Time

Throughput

Distribution

Tasks Allocation

Hosts

Communication

Synchronization

Embedded

Area

Power Consumption

Total Energy

Memory Allocation

Figure 2.1.: Non-Functional Requirements Classification [37]

separated classification [37]. Basically,throughputrefers to the rate an element can deliver its
results, be them results from an algorithm execution or messages sent/received.Response time
represents the delay after which the system delivers a result, which depends on the execution of
both local and remote activities.

The classification related to distribution non-functionalrequirements is not complete. Fig-
ure2.1 show only the most relevant ones. As can be seen in thedistribution branch, there are
four most common non-functional requirements:

• Task allocationrefers to deployment of activities on different processingunits that com-
pose the distributed embedded real-time system. Associated with other non-functional
requirements, it is also related with allocation such activities in nodes with different ca-
pabilities, aiming at meeting real-time constraints;

• Hostsis related to node monitoring. The status of all nodes, whichparticipate in the ac-
complishment of system activities, need to be regularly checked, in oder to evaluate if they
are working as expected. Usually, it is associated with the task allocation requirement;

• Communicationis associated with communication features, such as networktopology,
connection type among nodes (e.g. connection-oriented, connectionless), if communica-
tion should use an acknowledgment mechanism or not, if messages should be encrypted
or not, among other communication characteristics;

• Synchronizationdefines policies for concurrent access to shared resources.This affects
the form concurrent activities perform their actions, which, depending on the adopted
policy, can affect the overall system performance.

16

2.4. Embedded Systems Design Approaches

The last branch is related toembedded non-functional requirements. These requirements
are closer related to design constraints, i.e. they represent constraints that can influence directly
in the performance, and hence, the fulfillment of other constraints. They were divided in three
features:

• Areaconstrains the system physical size and/or the amount of hardware.This requirement
can demand monitoring and management activities in order tooptimize the usage of sys-
tem hardware, or even migration of activities from softwareto hardware, and vice-versa;

• Energyrequirements constrain system runtime in terms of energy and power consump-
tion. Such constraints have more impact in distributed embedded real-time systems that
use batteries as power supply, due to the fact that the systemstops if batteries run out of
charge. Additionally, power dissipation can also be a problem in portable systems due to
devices overheating. Such issues must be carefully considered during design;

• Memorynon-functional requirements, similar to the previous ones, constrain the mem-
ory usage during system runtime. They can also demand monitoring and management
activities in order to improve their usage.

It is important to highlight that requirements in this classification are not independent from
each other, meaning they have conflicting aims, e.g. task migration vs. processing power or
remaining energy. Moreover, some of them are related to system-wide characteristics and con-
straints, while others have a more limited scope. A detaileddiscussion on requirements analysis
is out of the scope of this text. Interested readers can referto [37], in order to obtain a detailed
discussion.

2.4. Embedded Systems Design Approaches

2.4.1. Introduction

There are several approaches to design embedded systems. They vary from ad-hoc design flows
to more formal and rigorous methodologies. In the same way, there are several different abstrac-
tions used to specify system architecture and expected behavior. Looking at the literature, there
are approaches that see the system as a set of data structures, operations and functions, while
others try to encapsulate them in single elements. Some of them use rigorous mathematical
formulations while others use more informal specifications, which are most commonly found in
current industry practices, specially in initial design phases [27].

Current practices for designing distributed embedded real-time systems deal, in an accept-
able form, with some problems that appear during design. However, the increasing number of
stringent requirements (e.g. energy consumption, performance, portability, dependability, and
time-to-market) demands new methodologies, tools and abstractions to assist designer to cope
with the growing design complexity. According to Carro and Wagner [25], embedded systems
are becoming more software intensive, thus innovation depends more on software than on hard-
ware. The design of embedded software should essentially follow some of the principles of

17

2. Theoretical Background

hardware design, i.e. reuse of previously developed and validated/certified source code.

A design flow consists in capturing requirements at a well defined abstraction level that al-
lows several refinements towards an efficient realization ofthe specified system [7]. Sometimes,
these steps from requirements to implementation are not as smooth as designers expected. Re-
quirements must be translated to a system level architecture, which represents the conceptual
structure and expected system functional behavior. Following, this architecture is translated into
an implementation, defining the system logical organization. At the last step, implementation is
realized as the system physical structure [128].

Therefore, it is important to use a suitable abstraction when designing distributed embedded
real-time systems. As previously stated, software is becoming more important in such design.
Hence, it makes sense to use approaches from the software engineering domain, even though
the project of embedded systems comprehends hardware and software designs, in order to close
the gap presented in figure1.1. In this context, approaches such as Object-Orientation (OO)
and Aspect-Orientation (AO) appear as interesting options. The following sections will present
more details on each paradigm.

2.4.2. Object-Oriented Paradigm

The object-oriented paradigm allows designers to reason onthe problem in term of entities in-
stead of operations and functions. In fact, these entities in OO are calledobjects, which have
their own local state, and operations that can change this state. In other words, objects encap-
sulate data and behavior to manipulate these data [14]. Consequently, a system is composed of
several interacting objects that maintain their own local state, while providing operations on this
information. The direct access to object’s data is not allowed to other objects, i.e. there is no
external access to such information, only object’s operations can access it.

Using OO based system analysis, classes and objects are extracted from functional require-
ments and non-functional ones. Further, in OO design, theseobjects and classes are refined by
including additional details into them. If needed, new classes can be created. During modeling
design phase, designers must identify data types to represent object’s state as well as operations
that make objects behave as expected [115].

According to Armstrong [4], despite the fact that OO concepts were introduce in late 1960s
with Simula programming language [35], there is no thoroughly understanding on the funda-
mental concepts that define the OO approach. In that work, shehas identified the following
concepts as thequarks1 of object-oriented paradigm:

• Class is a description of structural characteristics (attributes) and behavior (methods)
shared by one or more similar objects;

• Object is an individual or identifiable element in a OO system. It canrepresent either a
real or abstract system element. As mentioned it contains data representing its state in a

1A quark is a fundamental particle that represents the smallest known unit of matter. Hence they are the basic
building blocks for everything in the universe [49].

18

2.4. Embedded Systems Design Approaches

given time instant;

• Inheritance is the mechanism that allows characteristics to be reused among classes, i.e.
attributes and behavior (methods) of one class can be included in other classes;

• Encapsulation is a technique to restrict the access to data and behavior of classes and
objects through a pre-defined set of messages that objects ofa given class can receive;

• Abstraction is the act of creating classes to simplify the problem(s) by means of using
different levels of details;

• Attribute is an remarkable characteristic of an elements class. The set of attributes rep-
resent a class’ structure;

• Method represents object’s behavior. It is a way to access, set or manipulate object’s
information;

• Message passingis the process through which objects can exchange information or trig-
ger the execution of a behavior of the message’s receiver object;

• Polymorphism is the ability of different classes (from the same hierarchy) to respond to
the same message through a different behavior, which is moreappropriate to each class;

• Instantiation is the act of creating objects from a given class;

• Relationship are associations2 among classes or objects. There are the following types
of relationships:

– Plain associationsindicate that classes or objects are related through message pass-
ing, i.e. they do not represent any structural characteristic, even though the imple-
mentation could require an attribute of the same type as the other association end,
in order to respect theencapsulation

– Aggregationsindicate that other classes or objects make part of the structure of the
aggregator class/object. Parts can exist without the aggregator element;

– Compositionsrepresents a stronger aggregation relationship, where theinvolved
classes or objects are dependent from each other, i.e. thereis no composite without
its parts and vice-versa.

2.4.3. Aspect-Oriented Paradigm

Before starting the description of concepts important in the aspect-oriented paradigm, it is im-
portant to highlight some more fundamental concepts from software engineering. Such concepts
were extracted mainly from [30], [64] and [115].

• Concerns, according to [64], are “. . . interests which pertain to the system’s develop-
ment, its operation or any other aspects that are critical orotherwise important to one
or mode stakeholders. . . ”. Concerns are related to both functional and non-functional

2It is important to mention thatinheritanceis also considered a relationship among classes.

19

2. Theoretical Background

requirements;

• Separation of concernsmeans to deal with each concern in isolation, in order to allow
the creation of modular artifacts that handle them. However, in the literature of embed-
ded systems, it is usual to find the termseparation of concernsmeaning the separation
of functional and architectural concerns, as well as the separation of computation and
communication. This text uses this term as the separation offunctional concerns from
non-functional ones;

• Modularization means the ability to group or partition artifacts into entities calledMod-
ules(i.e. an abstraction unit in the adopted language) that ideally must be loosely coupled
and highly cohesive;

• Composition is the ability of integrating several modular artifacts into a coherent whole;

• Decompositionis the division of a larger problem into smaller ones, which may be han-
dled apart from each other;

• Tangling indicates that multiple concerns are mixed together in one module;

• Scattering indicates that one concern is spread over multiple modules;

• Crosscutting represents the occurrence oftanglingandscatteringthat happens when the
selected decomposition is unable to modularize concerns effectively;

• Crosscutting concernsare concerns that cannot be mapped to unique modules, thus lead-
ing to tangling and scattering. Non-functional requirements can be viewed as crosscutting
concerns, because they are usually intermixed with functional requirements inside several
modules. Figure2.2 depict the crosscutting concerns related to transaction management
presented in [30].

Figure 2.2.: Scattering: same code in multiple places [30]

20

2.4. Embedded Systems Design Approaches

Some authors, such as [30], state that AO is the natural evolution of OO. Traditional ap-
proaches like OO do not deal with crosscutting concerns in a suitable way. In other words,
OO decomposition is unable to encapsulate crosscutting non-functional requirements, leading
to tangling and scattering in the handling of these requirements. AO analysis and design have
emerged from theaspect-oriented programming[67]. According to Clarke and Baniassad [30]
there are two different approaches in AO, which follow the software composition presented in
[56]: (i) asymmetric, which separates aspects from the core functionality; and(ii) symmetric,
which treats separated concerns at the same hierarchy level, i.e. aspects and base concerns have
the same importance. This work follows the asymmetric approach for AOD.

Following, the basic AO concepts, which are based in [109] and [126], are presented. These
concepts have a broader scope compared with those presentedin [67], which are closer to pro-
gramming languages than to general concepts. This work is based on the following AO con-
cepts:

• Aspects represent units of modularization for crosscutting concerns, i.e. they can en-
capsulate into a single entity all structural and/or behavioral element of a crosscutting
concern;

• Adaptations specify how concerns are adapted (i.e. enhanced, replaced,or even deleted)
when an aspect affects them. There are two kinds of adaptations:

– Structural adaptationsrepresent modifications in the structure of a concern, e.g.
adding a new attribute or method to a class, or modifying the formal parameters list
or the return type of a method;

– Behavioral adaptationsspecify changes in the behavior of a concern, e.g. inserting
a specific behavior before or after a message passing, or replacing an entire behavior
for another one;

• Aspects weavingis the composition process that spreads aspects adaptations in affected
concerns. In other words, aspect adaptations are applied atspecific join points of the
affected concerns;

• Join points are well-defined places in the structure or behavior of concerns where an
aspect can perform adaptations;

• Pointcuts are links between aspects adaptations and join points, i.e.they are specified
within an aspect to indicate the places where the aspect mustperform a given adaptation.
Usually, this relationship betweenadaptationandjoin pointsis one-to-many, that means,
oneadaptationto one or manyjoin points. In addition, pointcuts also specify arelative
positionthat indicates if the adaptation should be appliedbefore, after or aroundthe join
point.

21

2. Theoretical Background

2.4.4. Evaluating the Design with Metrics

2.4.4.1. Introduction

A high quality systems is the goal of all designs. Hence, it isimportant to have mechanisms to
allow the assessment of a design in order to verify its quality in terms of a given set of char-
acteristics. Such mechanisms should provide quantitativeinformation to permit a more pre-
cise evaluation [115]. Particularly, considering distributed embedded real-time systems design,
measurement mechanisms must derive numeric values for someattributes of both hardware and
software designs. As previously stated, the design of distributed embedded real-time systems
is becoming software dominated, shifting the costs in development, validation and test from
hardware to software. For this reason, despite the importance of metrics extraction for hardware
designs, this section will only discuss software metrics.

In the software engineering literature, there are several metrics and evaluation frameworks
to extract quantitative information from software. Each ofthese works aims at the evaluation
of different system characteristics. This text presents a brief description of two of these works:
(i) the C&K metrics suite; and(ii) the assessment framework for AO systems from Sant’anna et
al. [106].

2.4.4.2. C&K Metrics Suite

The C&K metrics suite [28] was proposed to measure the main factors affecting OO software
quality, i.e. abstraction, encapsulation, and inheritance. These metrics have been used in many
works, including the evaluation of software for NASA’s aerospace systems [101]. C&K metrics
are composed from six measurements:

• Weighted Methods per Class (WMC) counts the number of methods implemented
within a class;

• Depth of Inheritance Tree (DIT) indicates the maximum depth in the classes hierarchy
tree, i.e. the number of levels from a class to the inheritance tree top;

• Number of Children (NOC) represents the number of immediate sub-classes that have
the same parent class;

• Coupling Between Object Classes (CBO)counts the number of other classes associated
to a given class;

• Response for a Class (RFC)indicates the number of methods that can be potentially
invoked in response to a message received by an object of a given class;

• Lack of Cohesion in Methods (LCOM) uses the degree of similarity among method
pairs of a class. It uses the set of attributes, which are shared between two methods, to
calculate class cohesion. It counts the number of empty sets(i.e. the number of method
pairs that do not share the same attributes set) minus the number of non-empty sets (i.e.

22

2.4. Embedded Systems Design Approaches

number of method pairs that share at least one attribute).

Only the numbers provided by the measurement of system characteristics are not enough to
assess the quality of a design. These metrics should be related with each other in order to allow
their analysis, and hence, to determine design quality. Table 2.1 represents the relationship
among C&K metrics and quality attributes that are being evaluated. Marked cells indicate that
a metric influences the quality attribute.

Although the goal is usually to minimize metrics values, it should be highlighted that DIT
and NOC metrics do not follow this goal. A higher DIT increases complexity, however it im-
proves reuse. Likewise, a higher NOC leads to an increase in the effort for testing (because
more classes should be tested) but also improves reuse. Therefore, it is not useful to read metric
values or quality attributes in isolation. They should be analyzed along with other metrics or
quality attributes in order to assess which are more important to design goals, and consequently,
to make trade-offs to achieve the desired quality.

2.4.4.3. Assessment Framework for AO systems

Sant’anna et al. [106] have proposed an extension for C&K metrics to allow the evaluation
of OO and AO systems. Additionally, an assessment frameworkwas proposed to assist in the
analysis of metrics values extracted from the system. To allow the use of the same metrics
set to evaluate systems developed using different paradigms, it is necessary to homogenize the
way to obtain these metrics values in order to take into account abstractions provided by such
paradigms. Thus, Sant’anna et al. [106] treat aspects, classes and interfaces ascomponents,
while methods and aspects adaptations are calledoperations. Following, the metrics set is
presented:

• Separation of Concerns metricsmeasure the ability to encapsulate the handling of a
concern. They are divided in the following metrics:

– Concern Diffusion over Components (CDC)counts the number of components (i.e.
aspects or classes) engaged in the handling of a certain concern;

– Concern Diffusion over Operations (CDO)counts the number of operations (i.e.
methods or aspect adaptations) related to the handling of a concern;

– Concern Diffusion over LOC (CDLOC)counts the number of transition points for
each concern in the source code, i.e. code lines are divided in fragments (where each

Table 2.1.: Metrics influence in quality attributes

WMC DIT NOC CBO RFC LCOM
Comprehension X X X X
Maintainability X X X
Reusability X X X X X
Testability X X X X

23

2. Theoretical Background

fragment handles only one concern), thus transitions from one fragment to another
are counted;

• Coupling metrics measure how dependent an element is regarding other system’s ele-
ments. Two metrics compose this group:

– Coupling between Components (CBC)is an extension to CBO from C&K metrics.
It counts the number of other components that are coupled with a given component.
For classes, CBC is similar to CBO, however for aspects CBC counts other classes
that are specified within adaptations. If a component is coupled more than once with
other component, it is counted only once;

– Depth of Inheritance Tree (DIT)is an extension to DIT from C&K metrics by means
of including the aspects inheritance tree;

• Cohesion metrics. Cohesion is the closeness measure for the relationship of acomponent
with its internal elements. It is translated by the following metric:

– Lack of Cohesion in Operations (LCOO)is similar to LCOM of C&K metrics. The
difference is that, in addition to methods, adaptations arealso taken into account;

• Size metricsmeasure the size of the model:

– Vocabulary Size (VS)counts the number of system components, i.e. the amount of
classes and aspects;

– Lines of Code (LOC)counts the number of lines of code;
– Number of Attributes (NOA)counts the internal vocabulary of each component, i.e.

the number of attributes of each class or aspect;
– Weighted Operations per Component (WOC)measures the complexity of a compo-

nent in terms of its operations, i.e. the sum of complexity ofeach method and/or
adaptation. The measure for operation complexity is obtained by counting the num-
ber of parameters of the operation, assuming that an operation with more parameters
than another is likely to be more complex. WOC extends C&K metrics’ WMC be-
cause WMC considers the complexity for all method being equal to “1”;

In addition to the presented metrics set, Sant’anna et al. [106] define

relationships among metrics to assess the quality of reusability and maintainability for a
system. The assessment framework definesqualities that are divided infactors, which in turn
are split intointernal attributesassociated withmetrics. Figure2.3shows these relationships.

Reusability and maintainability qualities of a system can be defined by two factors: un-
derstandability and flexibility. The understandability factor is obtained through separation of
concerns, coupling, cohesion and size attributes. Separation of concerns directly affects the un-
derstandability of a system, because the more localized concerns are, the easier is to find and
to understand them. Cohesion and coupling indicate the level of independency of one element
regarding others. The more independent an element is, the easier is to understand it. Model
size impacts on understandability due to the amount of elements that should be understood. For
the flexibility factor, the key attributes are coupling, cohesion, and separation of concerns. A

24

2.5. Model-Driven Engineering

Quality Factors Internal Attributes Metrics

Reusability

Understandability

Flexibility

Size

Separation

of Concerns

Coupling

Cohesion

CBC

DIT

LCOO

CDC

CDO

CDLOC

VS

LOC

NOA

WOC

Maintainability

Figure 2.3.: Quality model proposed in [106]

component is flexible if it is independent or almost independent of the rest of the system, mean-
ing that it represents a specialized part of the system with aspecific and well-defined mission.
These characteristics are translated into low coupling andhigh cohesion (i.e. it has a low de-
pendence on other parts of the system) and a good separation of concerns (i.e. the component
is responsible for a well defined mission).

2.5. Model-Driven Engineering

2.5.1. Overview

To start the discussion on Model-Driven Engineering (MDE),it should be stated what “model”
means. According to Bézivin [12], there are many different,and also contradictory, definitions
for the word “model”, which depends on the context in which the term is used. For computing
related systems, a consensual definition of model was given by Rothenberg [102] as follows:

“. . . Modeling, in the broadest sense, is the cost-effectiveuse of some-
thing in place of something else for some cognitive purpose.It allows
us to use something that is simpler, safer or cheaper than reality for
some purpose. A model represents reality for the given purpose; the
model is an abstraction of reality in the sense that it cannotrepresent
all aspects of reality. This allows us to deal with the world in a sim-
plified manner, avoiding the complexity, danger and irreversibility of
reality. . . ”

MDE is an approach that proposes the use of generative and transformational techniques
for computing systems design where system implementationsare (semi-) automatically derived
from models or specifications. In such approach,modelsare used as primary engineering artifact
throughout the production lifecycle [113]. According to Schmidt [110], MDE is a promising
approach to deal with the complexity of platforms (which is not effectively decreased by using

25

2. Theoretical Background

third-generation languages), as well as express domain-specific concepts. Thus MDE combines:

• Domain-Specific Modeling Languages (DSML)formalize the application structure, be-
havior and requirements of a particular domain. Moreover, they define relationships
among concepts of the target domain, as well as specify key constraints and semantics
related to them. DSML are described in terms ofmeta-models, whose elements represent
concepts of the domain. Instances of meta-models representthe use of domain concepts
within a design;

• Transformation engines and generatorswhose purpose is to “understand” the infor-
mation contained in the model in order to produce (semi-)automatically other types of
artifacts, such as more detailed models, source code, simulation inputs, components con-
figuration files, and others. Such tools help ensure consistency between the specification
of the system and its implementation;

An already mentioned example of standard for MDE approachesis the Model-Driven Ar-
chitecture (MDA) [87], which was proposed by the Object Management Group (OMG). The set
of standards supporting MDA is:

• Meta-Objects Facility (MOF) [89], a standard for meta-models specification;

• Unified Modeling Language (UML) [92], a general purpose modeling language for sys-
tems specification. It was built upon MOF and represents ade factostandard for modeling
languages;

• MOF Query/View/Transformation (QVT) [93], a standard defining transformation lan-
guages requirements and operational mappings to allow transformations of source models
into other target models that should conform to MOF meta-models

• XML Metadata Interchange (XMI) [91], a standard for metadata information exchange,
specified using a XML dialect, to allow the information exchange on MOF-based speci-
fications, such as interchange of UML models among differenttools;

• Common Warehouse Meta-model (CWM)[86], which provides standard interfaces that
can be used to enable interchange of warehouse and business intelligence metadata be-
tween warehouse tools, warehouse platforms and warehouse metadata repositories in dis-
tributed heterogeneous environments.

The principle of MDA is to specify system functionality using a Platform-Independent
Model (PIM) using an appropriate DSML. PIM provides a system specification that is suit-
able for deriving system implementation for different target platforms. Further, this PIM is
translated to aPlatform-Specific Model(PSM), which, on the other hand, provides a platform
specific viewpoint of the system, i.e. it combines the specifications in the PIM with the details
specifying how that system uses a particular type of platform. In order to enable this trans-
formation (or mapping), aPlatform Model(PM) must be provided. The PM provides a set of
technical concepts, representing the different kinds of parts that make up a platform and the
services provided by that platform. It also provides concepts representing the different kinds of
elements to be used in the specification of how platform should be used by the application.

26

2.5. Model-Driven Engineering

2.5.2. MARTE UML profile

UML was created to be a general purpose modeling language forsoftware development. Its
wide acceptance makes it an interesting option also to design distributed embedded real-time
systems. However, UML lacks suitable constructions/abstractions to represent specific concepts
of embedded and also real-time systems domains. The first attempt to overcome such deficien-
cies was the UML profile for Schedulability, Performance, and Time (SPT) [88]. SPT provides
concepts to allow both model-based schedulability and performance analysis, and also a rich
framework to model time and time-related mechanisms. However, according to Gérard and
Selic [51], experiences in applying SPT revealed shortcomings within the profile in terms of
its expressiveness for modeling real-time and embedded phenomena. The amount of issues in
the SPT profile resulted in a Request for Proposals (RFP) for anew UML profile for specifying
embedded and real-time systems. Consequently, a new profilenamedModeling and Analysis of
Real-Time and Embedded systems(MARTE) [94] was proposed. It was accepted by OMG in
July 2007 and is in the finalization process.

The MARTE profile addresses:(i) new elements to UML 2.x are proposed;(ii) design
of both software and hardware aspects of embedded system;(iii) broader schedulability and
performance analysis capabilities;(iv) specification of embedded systems characteristics, such
as memory capacity and energy consumption;(v) support to component-based architectures;
(vi) other computational paradigms, such as asynchronous, synchronous, and timed; and(vii) com-
pliance with the UML profile for Quality of Service and Fault Tolerance [95]. An overview of
MARTE profile is presented in figure2.4.

As can be seen, MARTE profile is composed by four packages:(i) MARTE Foundation;
(ii) MARTE Design Model;(iii) Real-Time and Embedded Analysis; and(iv) MARTE Annexes.
The MARTE Foundationpackage provides a domain-specific meta-model for core concepts
MARTE, as well as their characteristics and relationships among such concepts, i.e. it defines
the semantics base for the DSML provided by the profile. Elements of this package are shared
among other packages.

In fact, MARTE is intended to cope with two concerns: modeling of real-time and em-
bedded systems features, and to support analysis of system properties.MARTE Design Model
package provides first-order language constructs to specify model expressing specific phenom-
ena of real-time and embedded systems. It allows platform modeling in terms of software (see
Software Resource Modeling(SRM) package) or hardware (seeHardware Resource Modeling
(HRM) package) platforms. According to Gérard and Selic [51], MARTE sees platforms as
a set of resources, possibly comprising finer-grained resources into a hierarchical manner, in
which each resource offers at least one service. A resource is seen as a service provider with
finite capacity, which usually comes from physical limitations of the underlying hardware (e.g.
memory capacity, bandwidth, processing power, etc.). Considering software platforms, SRM
package provides a model-based view for concepts provided by RTOS API, such as semaphores
and concurrent tasks (or processes). On the other hand, regarding hardware platforms, HRM
package provides concepts to assist software design and allocation by providing a high-level
hardware description model instead of using block diagrams. Additionally, concepts provided

27

2. Theoretical Background

MARTE Foundation

<<profile>>

Generic Resources
Modeling

(GRM)

<<profile>>

Non−Functional
Properties

(NFP)

<<profile>>

Time
<<profile>>

Allocation

MARTE Annexes

<<profile>>

Repetitive Structure
Modelin

(RSM)

<<profile>>

Value Specification
Language

(VSL)

<<modelLibrary>>

MARTE Library

Real−Time and Embedded Analysis

<<profile>>

Generic Quantitative Analysis Model
(GQAM)

<<profile>>

Schedulability
Analysis Modeling

(SAM)

<<profile>>

Performance
Analysis Modeling

(PAM)

MARTE Design Model

<<profile>>

High−Level
Application Modeling

(HLAM)

<<profile>>

Hardware Resource
Modeling

(HRM)

<<profile>>

Software Resource
Modeling

(SRM)

<<profile>>

Generic
Component Model

(GCM)
<<use>> <<use>>

<<use>>
<<use>>

Figure 2.4.: Overall MARTE architecture [94]

by HRM assist in the analysis of real-time and embedded properties, and also in hardware mod-
els simulation, which depends on the description detail level and simulation accuracy.

Model-based analysis is supported by theReal-Time and Embedded Analysispackage,
which provides a foundation for applying transformations from UML models into a wide vari-
ety of analysis models. According to OMG [94], theGeneric Quantitative Analysis Modeling
(GQAM) defines basic UML extensions needed to decorate UML models, in order to perform
any kind of analysis. Currently, two kinds of analysis packages are provided, namelySchedu-
lability Analysis Modeling(SAM) andPerformance Analysis Modeling(PAM) packages. The
former provides stereotypes to allow schedulability analysis, while the later provides stereotypes
for performance analysis.

Due to their importance to this work, two packages of theMARTE Foundationpackage
need to be detailed. The first one is theTimepackage, which provides a general framework for
representing time and time-related concepts. MARTE adoptstime models that rely on partial or-
dering of time instants. The temporal ordering of behavior activities can be represented in many
ways, depending on the level of precision required. There are three main classes of time ab-
straction: (i) causal/temporal, which concerns only about instruction precedence/dependency;
(ii) clocked/synchronous, which adds the notion of simultaneity and divides the time scale in
a discrete succession of instants;(iii) physical/real-time, which demands accurate modeling of
real-time duration values. Stereotypes available inTimepackage are shown in figure2.5.

A Clock exists in aTimeDomainand gives access to time at a certain resolution.Timed-
Constraint represents a constraint (instant or duration value) associated with a model ele-
ment bound to aClock, while TimedEvent represents an event whose occurrence is ex-

28

2.5. Model-Driven Engineering

package Time []

<<metaclass>>

UML Standard Profile::UML2 Metamodel::CommonBehaviors::Communications::

Event

<<metaclass>>

UML Standard Profile::UML2 Metamodel::Classes::Kernel::

ValueSpecification

<<stereotype>>

TimedValueSpecification

−interpretation : TimeInterpretationKind [0..1]

<<stereotype>>

TimedConstraints

−interpretation : TimeInterpretationKind [0..1]

<<stereotype>>

Clock

−standard : TimeStandardKind [0..1]

−nature : TimeNatureKind [1]
−unitType : Enumeration [0..1]
−isLogical : Boolean [1] = false
−resolAttr : Property [0..1]
−maxValAttr : Property [0..1]
−offsetAttr : Property [0..1]
−getTime : Operation [0..1]
−setTime1 : Operation [0..1]
−indexToValue : Operation [0..1]

<<stereotype>>

ClockType

<<stereotype>>

TimedDurationObservation

−obsKind : EventKind [0..2]

<<stereotype>>

MARTE_Profile::NFP::

NfpConstraint

−kind : ConstraintKind [0..1]

<<stereotype>>

TimedInstantObservation

−obsKind : EventKind [0..1]

<<stereotype>>

TimedEvent

−repetition : Integer [0..1]

<<stereotype>>

MARTE_Profile::NFP::

Unit

−convFactor : Real [0..1]
−confOffset : Real [0..1]
−baseUnit [0..1]

<<stereotype>>

TimedDomain

<<stereotype>>

TimedObservation<<stereotype>>

TimedProcessing<<stereotype>>

ClockConstraints

<<stereotype>>

TimedElement

−every

0..1

0..1

−Start
0..1 −Finish0..1

−On 1..*

−Unit

0..1

−Duration

0..1

0..1

Type
1

Figure 2.5.: Stereotypes of Time profile [94]

plicitly bound to aClock. Theevery property specifies the duration between successive
occurrences, thus indicating a periodic event.TimedProcessing represents activities hav-
ing known start and finish times, or a known duration, which are bound to aClock. For a
detailed description of the other stereotypes, readers arereferred to [94].

Another important package is theGeneric Resources Modeling(GRM), which offers con-
cepts to model a general platform for executing real-time embedded applications. According
to OMG [94], this package allows the modeling of executing platforms at different levels of
details. Figure2.6depicts the stereotypes available in GRM package.

The central concept of the GRM package is the notion of aResource, which represents
a physically or logically persistent entity that offers oneor more services. There are many
types of resources such as,TimingResource representing a hardware or software entity that
is capable of following and evidencing the pace of time.Concurrency Resource and
SchedulableResource represent protected active resources that can perform their activi-
ties concurrently with others. The former indicates resources, which take their processing ca-
pacity from a potentially differentComputing Resource enabling physical or logical con-
currency. On the other hand, the later only allow logical concurrency because it competes for
processing capacity of aProcessing Resource with otherSchedulableResource
elements. AScheduler coordinates the access to theProcessingResource from all
SchedulableResource elements associated to it. A resource makes use of a service from
other resource by means ofAcquire andRelease. The former represents the allocation of
or the access to some resource, while the later represents the de-allocation or liberation of the
allocated resources. The control of concurrent accesses tocommon resources at run-time is

29

2. Theoretical Background

Generic Resources Modeling (GRM)package []

<<stereotype>>

MutualExclusionResource

−protectKind : ProtectProtocolKind = PriorityInheritance
−ceiling : Integer
−otherProtectProtocol : String
−isProtected : Boolean = true{readOnly}

<<stereotype>>

Scheduler

−isPreemptible : Boolean = true
−schedPolicy : SchedPolicyKind = FixedPriority
−otherSchedPolicy : String
−schedule : OpaqueExpression

<<stereotype>>

ResourceUsage

−execTime : NFP_Duration [*]{ordered}
−msgSize : NFP_DataSize [*]{ordered}
−allocatedMemory : NFP_DataSize [*]{ordered}
−usedMemory : NFP_DataSize [*]{ordered}
−powerPeak : NFP_Power [*]{ordered}
 : NFP_Energy [*]{ordered}

<<stereotype>>

SchedulableResource

−schedParams : SchedParameters
−isActive : Boolean = true{readOnly}

<<stereotype>>

SynchronizationResource

−packetSize : Integer

<<stereotype>>

CommunicationEndPoint

<<stereotype>>

TimerResource

−duration : NFP_Duration
−isPeriodic : Boolean

<<stereotype>>

ProcessingResource

−speedFactor : NFP_Real

<<stereotype>>

GRService

−owner : Resource [0..1]

<<stereotype>>

Resource

−resMult : Integer [0..1]
−isProtected : Boolean
−isActive : Boolean

<<stereotype>>

CommunicationMedia

−elementSize : Integer

<<stereotype>>

ConcurrencyResource

<<stereotype>>

StorageResource

−elementSize : Integer

<<stereotype>>

ComputingResource

<<stereotype>>

SecondaryScheduler

<<stereotype>>

Acquire

−isBloking : Boolean

<<stereotype>>

Release

<<stereotype>>

DeviceResource

<<stereotype>>

ClockResource

<<stereotype>>

TimingResource

−protectedSharedResources
*

−Scheduler
0..1

−Virtual
Processing
Units

0..*

−Dependent
Scheduler

0..1

−mainScheduler

0..1

−ProcessingUnits

0..*

−UsedResources
*

−SchedulableResources
0..*

−Host
0..1

−Host

0..1

−SubUsages

*

Figure 2.6.: Stereotypes of GRM profile [94]

performed by aMutualExclusiveResource. Other kinds of resources can be represented
using the GRM package. For more details see [94]

30

Chapter 3

State of the Art Analysis

3.1. Introduction

According to Sangiovanni-Vicentelli [105], to raise the abstraction level used during design of
digital systems is fundamental to manage the increasing design complexity, leading to costs
decrease and designers productivity improvements. In embedded system projects, many lan-
guages considered as “high-level” languages (e.g. SystemCor System Verilog) cannot suitably
deal with important requirements such as temporal predictability of an application. To increase
designers’ productivity and also decrease the amount of eventual errors caused by inconsistent
specifications or requirements misunderstanding, projectfocus should move from intermediate
levels to higher levels of abstraction, as well as to separate the handling of functional require-
ments from non-functional ones.

Many researchers propose to rise the abstraction level by using models as first-class ele-
ments during whole design of distributed embedded real-time systems. However, only using
models does not assure an improvement on design or designersproductivity. Therefore, to
achieve the benefits from using model-driven techniques, a methodology is very important.
Hence, some side effects, such as lack of synchrony between models and implementation, can
be decreased or even avoided. Additionally, the methodology must provide a smooth transi-
tion from high level specification (i.e. model) to implementation of the distributed embedded
real-time system, and also allows the reuse of artifacts created and tested in previous designs.

This chapter discusses the state of the art in the design of distributed embedded real-time
systems. It presents methodologies and modeling techniques, as well as code generation ap-
proaches to produce source code from model, and the employment of separation of concerns in
the handling of requirements.

31

3. State of the Art Analysis

3.2. Design and Modeling Approaches

3.2.1. Overview of Related-Work

This section discusses traditional methodologies (i.e. those methodologies using OO) applied
to the design of distributed embedded real-time systems. The presented approaches use a higher
abstraction level in terms of UML models to produce the initial specification of the structure
and behavior of distributed embedded real-time systems.

Schattkowsky and Mueller [107] have proposed a MDA-based method to specify and ex-
ecute embedded real-time systems. Their approach supportssystem specification using class
diagrams, state diagrams, and sequence diagrams from UML 2.0. In the class diagram, design-
ers specify classes, as well as their attributes and operations. Each class’ operation is considered
a state machine. Different sequence diagrams are associated with different states of a state ma-
chine in order to describe the behavior (i.e. actions sequence) that must be executed within a
state of the state machine. The execution environment supports state machines composed of
simple or composite states, however, concurrent states arenot supported. Asynchronous calls
to methods lead to the instantiation of a new state machine, which executes its behavior concur-
rently with other state machines. Another remarkable feature of that work is that interruptions
and exceptions can be specified within state machines, i.e. external devices such as sensors can
generate external signals that are perceived by the runtimeenvironment. In order to execute
models, that work proposed theAbstract Execution Platform(AEP) [108], which is a stack-
based machine with instruction to manipulate OO constructions expressed in the UML model.
The produced models are “compiled”, generating a binary code that runs in the AEP. In fact,
according to the authors, AEP is a virtual machine that can beimplemented in both software
and hardware, similarly to a Java Virtual Machine.

Arpinen et al. [5] present a technique to execute embedded applications specified with
UML 2.0 in configurable multiprocessor systems. Application is specified using UML 2.0 di-
agrams, which are decorated with stereotype from the TUT-profile [69] providing concepts of
embedded real-time systems to support automatic transition from UML models to the SoC im-
plementation. The design flow starts with the application architectural description, specified
with class and composite structure diagrams, defining system elements in terms of components
interconnected by ports. System behavior is expressed in terms of state machines, which rep-
resent application tasks. The next step is the architectural exploration, which is responsible to
allocate, map and schedule tasks into different processors. Following, the design flow is split
into two branches: code generation of application softwareand platform synthesis. State ma-
chines are transformed intoExtended Finite State Machines(EFSM) in order to allow C code
generation. Composite structure and class diagrams are used to configure the platform, allowing
the needed VHDL code generation. Arpinen et al. [5] presentsa case study, which shows the
implementation of a MAC protocol for wireless networks. That application has been imple-
mented using four Altera’s Nios II processors and three hardware accelerators interconnected
through a HIBI communication architecture.

Other work that uses UML as modeling language is presented in[82]. That work presented

32

3.2. Design and Modeling Approaches

an approach to transform UML models into SystemC code, allowing system simulation. For
system description, class diagrams and state diagrams decorated with stereotypes indicating
SystemC constructions are used. According to Nguyen et al. [82], class diagrams represent
a system in terms of components, and how these components should be interconnected with
each other to provide system architecture. Thus, classes are used to describe computational
entities having a runtime state and an associated behavior that modifies their state. In this sense,
classes within a class diagram are decorated with stereotypes representing SystemC elements,
such as modules, interfaces, ports and channels. Each statediagram describes the behavior of
a single component (i.e. a class), in which composite states(with and-stateregions) are used
to model concurrency. Actions can be associated with the entry or exit of a state, as well as
with state transitions. That approach follows the semantics of the UML specification for state
machines, i.e. a state transition is triggered by an event only if all guard conditions are true.
As a consequence, within a system UML model, all actions and guard conditions are textual
descriptions using SystemC syntax.

Riccobene et al. [100] presented a proposal to modify the SoCdesign flow used by STMi-
croelectronics. The original design flow starts with requirements specification using natural
language. These requirements guide the specification of executable models, which capture all
expected behavior in a platform independent fashion. Afterthis step, the design flow is split into
two concurrent phases: hardware and software designs. Although their concurrent nature, these
separate designs must interact in some steps to achieve system final implementation. Riccobene
et al. [100] argue that, by using UML, it is possible to improve the process in the sense of stan-
dardizing executable PIMs, and hence, improving communication between designers teams,
which can share the knowledge about system functionalitiesand requirements. Therefore, from
the design flow splitting, each team can decorate the executable PIM with profiles suitable to its
domain: the hardware team use a SystemC profile proposed in [100] to map UML constructs
into synthesizable code; while the software team can use a profile more suitable to the pro-
gramming language used to implement functionalities that will run on hardware units created
by the hardware team. Adopting this approach, it is possibleto use code generation tools for
both designs. To model the system, the following UML diagrams are employed:(i) class di-
agram to describe components types, as well as their attributes and operations;(ii) composite
structure diagram to specify used components, their ports and interfaces;(iii) sequence diagram
to create testbenches; and(iv) state diagrams to represent the behavior of each operation.In
that paper, a small case study has been presented, consisting of a FIFO-based producer/con-
sumer, which is implemented as hardware using a UML 2.0 modeldecorated with stereotype of
authors’ SystemC profile.

Other interesting work is the Metropolis project [7], whichprovides an infrastructure, a
toolset, and a design method to allow a uniform representation for heterogeneous components
of an embedded system. In order to accomplish such approach,Balarin et al. [7] propose the
separation of computation and communication specification, by means of isolating computation
element from communication ones. Hence, elements reuse canbe improved. The infrastructure
core is a meta-model allowing the representation of severalcomputation and communication
semantics at different abstraction levels, using different computation models. In this way, a
meta-model represents a set of processes interconnected byinterfaces communicating through

33

3. State of the Art Analysis

Design Problem

Formulation
(Use Case Diagram)

Funtional Specification
(Class, State Machine,

Activity, Sequence Diagram)

Simulation

HW/SW

Synthesis

Platform Specification
(Class, Components,

Deployment Diagram)

Communication

Refinement

Mapping

Metropolis

Metamodel

Figure 3.1.: Methodology for Multimedia Systems availablein Metropolis [27]

different medias. Processes have their own properties and constraints. Their execution is con-
trolled by a scheduling policy. Furthermore, Metropolis methodology suggests an approach
that uses successive refinements, in which more details are incorporated, to depart from higher
abstraction levels until arrive to system implementation.According to [52], Metropolis project
has different methodologies applicable to different domains, which are concerned with special
characteristics of their own domain, being very different from other domains. By December
2008, there are five domains having their own methodology: fault tolerant data flows in au-
tomotive systems; multimedia; wireless communication andsensor networks; microprocessor
modeling and analog/mixed signal systems. In order to support such diversity of methodologies,
some principles must be followed:(i) functional decomposition, i.e. in the highest abstraction
level, the system is considered a single process, which is decomposed in a set of concurrent
processes;(ii) between two communicating processes, there is always an extra process, which
is responsible to transform (or adapt) the values from the output of one process to the input
of the other one;(iii) for each communicating process, a media, which defines communica-
tion semantics, is associated;(iv) in addition, each communicating process is enclosed by a
wrapper, connecting it to the media;(v) at each refinement step, a media is replaced by a set
of processes and medias, adding more details on the communication; (vi) finally, the specified
elements are mapped into architectural components (i.e. hardware or software components) of
the chosen platform. Figure3.1 shows the methodology used in the multimedia domain. In
such methodology, UML diagrams are decorated with stereotypes from UML platform profile
[27], which defines elements of Metropolis infrastructure and also some models of computa-
tion. Thus, model elements represent different concepts ofthe selected model of computation.
Further, model refinement is performed to map model element into platform elements that are
available in a repository. Recently, in [36], an extension named Metro II has been proposed. It
involves the improvement of Metropolis framework in terms of three features: heterogeneous
IP import, orthogonalization of performance from behavior, and design space exploration.

HASoC (Hardware and Software Objects on Chip) [41] is an OO methodology, which is
partially based on RUP [68] and provides an incremental and iterative design flow for embedded
real-time systems. It suggests the design must start with the specification of a UML model vali-
dated using anuncommitted model, which represents an abstract execution model where objects

34

3.2. Design and Modeling Approaches

are not associated with a given implementation, be it as hardware or software. Requirements
are specified by means of use case diagrams, in which each use case is associated with at least
one sequence diagram that indicates an execution scenario.Static and dynamic system struc-
tures are specified using, respectively, class and objects diagrams. Once system specification is
finished, the produced model is partitioned into hardware and software components producing
the so-calledcommitted model. These components are mapped into implementation platforms,
which are reused from a platforms repository previously developed and tested. Further, this
model is refined in order to include additional implementation details, which must respect de-
sign constraints. In this step, the following platforms areselected: interfaces between hardware
and software objects, i.e. device drivers; and available hardware components, e.g. processors,
memories, communication buses. At the end, selected components integration is performed,
leading to the final system implementation.

An iterative MDE method, which combines semi-formal and formal notations, for fault-
tolerant distributed embedded real-time systems, calledMethod C, is presented in [96]. The
aim of this method is to keep the development “continuum”, whose concept is defined as “. . . the
continuity between different software development lifecycle steps without any logic or semantic
break so that they are at an effective level of automation. . .. ” Method C proposes that gaps
between abstraction levels should be fulfilled by means of model transformations using meta-
models of the adopted languages. Languages supported in this method are UML and MARTE
profile, AADL [103], and +CAL [71]. UML diagrams decorated with MARTE profile stereo-
types are used to specify application elements that may alsobe related with real-time domain
concepts (e.g. tasks, timers, semaphores, etc.). On the other hand, behavior is specified us-
ing formal semantics (e.g. Petri Nets) provided by both AADLand +CAL. The former allows
the description of software and hardware parts of the system, while the later is a formal action
language to be used within state or activity diagrams.

The SEEP project (portuguese acronym forSistemas Eletrônicos Embarcados baseados em
Plataformas) [77] proposes a methodology that integrates design and test of embedded systems
considering a wide range of requirements. The proposed methodology encompasses the whole
design cycle, from system modeling using UML to the generation of embedded hardware and
software components. Figure3.2 shows the design flow proposed in SEEP. Design starts with
requirements specification as well as description of expected functions using high abstraction
level UML models. The next step is system exploration, in which designers can select different
algorithms to perform the expected functionalities meeting application and design requirements.
Following, an architectural space exploration phase takesplace. In this phase, designed func-
tions are mapped to different hardware components that mustalso respect requirements. The
automatic generation of hardware and software components,which is based on the functional-
ities partition performed in previous phases, happens in the next step. At the end of the design
cycle, the embedded real-time system, which performs the application for which it has been
designed, is obtained.

35

3. State of the Art Analysis

High-level Model

validation
Requirements

Specification

Functional

Specification

System

Exploration
Algorithms &

Models Library

Architectural

Exploration

Component

Library

Estimation Platform

Library
Macro-architecture

with Functional

Mapping

mapping
SW compilation

and RTOS

Generation

Communication

Synthesis
Micro-architecture

Synthesis

Software Micro-architecutre

validation

validation

Test

Planning

High-level Executable

Description validation

Figure 3.2.: SEEP design flow

3.2.2. Discussion

Works presented in this section advocate the use of standardlanguages as UML to specify the
structure and behavior of embedded systems. Using class diagram for specification of system
static structure is a well-established approach, as well asusing state diagrams to specify behav-
ior. Most of the presented works do use such diagrams. However, sometimes the use of state
machines is not a suitable form to specify behavior because it is not that easy, for example,
to understand concurrent activities or non-reactive system behavior. Furthermore, other issue,
which is not suitable to behavior specification in models, isthe use of textualaction languages
to describe actions performed within each state. This makesthe behavior description closer to
a computer program (written using a programming language) than to a graphical representation
that may be easier to understand.

Each of these approaches, excluding Perseil and Pautet [96], proposes their own profile to
decorate UML diagrams in order to provide specific semanticsto modeled elements. Such situ-
ation hinders the exchange of information on the modeled system between design teams, mainly
if one of the involved teams does not know the proprietary profile. This problem also happens
during code generation. Code generation tools must be awareof the profile semantics in order to
produce source code representing the profile’s stereotypessemantics. Semantics standardization
in terms of UML profiles is a good approach to deal with the mentioned problems.

As can be observed, most of the presented works do not deal specifically with the design
of distributed embedded real-time systems or separates thehandling of functional requirements
from non-functional ones. Although not clearly stated, thework proposed by Balarin et al.
[7] may deal with distributed functionalities due to their proposal for using higher abstraction

36

3.3. Separation of Concerns in Requirements Handling

levels to specify communication apart from computation. Additionally, considering the other
mentioned approaches, that work was the only approach separating requirements from distinct
natures, i.e. computation and communication.

As this work is inserted in the context of the SEEP project, one of its goals is to support
a mechanism for separation of concerns in the handling of requirements from initial design
phases, while in the same time supporting the distribution of functionalities over different pro-
cessing units. To accomplish this goal, this work proposes adaptations in SEEP design flow as
described in the Chapter 4.

3.3. Separation of Concerns in Requirements Handling

3.3.1. Introduction

This section discusses methods and techniques for modularization in requirements handling,
focusing on the separation of the handling of functional requirements from non-functional ones
during the whole development cycle. At the beginning, this section presents some proposals
applied to general-purpose systems, i.e. non-embedded systems. Afterwards, other approaches
that apply such separation of concern in the design of embedded real-time systems are also
discussed.

3.3.2. Separation of Concerns in General Systems Developme nt

Stein et al. [120] propose theAspect-Oriented Design Modeling(AODM) approach to repre-
sent concepts of AspectJ, an AO programming language proposed by Kiczales et al. [67], within
UML diagrams. Aspects are represented as classes annotatedwith «aspect» stereotype, as
shown in figure3.3a, and can specifyadvices, introductionsandpointcuts. Two kinds of adap-
tations are supported: structural and behavioral adaptations. Structural adaptations, which are
called introductionsin AspectJ terminology, are specified in the class diagram bymeans of at-
tributes or operations specification, which will be inserted in classes whose structure is affected
by the aspect. As can be seen in figure3.3b, anintroduction is specified, within the context of
an aspect, as a dashed ellipse decorated with«introduction» stereotype, e.g.BookCopy
inserts the methodgetState()in affected classes. On the other hand, behavioral adaptations,
which are calledadvicesin AspectJ terminology, are specified in sequence diagrams,which
shows how a given interaction is affected by the aspect, e.g.inserting a method call into another
object before or after the affected interaction. Anadviceis represented as a method decorated
with the«advice» stereotype (see figure3.3a). An important part is the specification of the
elements affected by aspects, i.e. the specification ofjoin points. This is done usingJoin Point
Designation Diagrams(JPDD) [121], which is a sequence diagram or a class diagram that in-
dicates model elements may be affected by aspects. Figure3.3c depicts an example of JPDD
that selects all method calls toDbServer.addUser()performed from any object after the user
registration in the authentication server. The link between aspect adaptations and the selection

37

3. State of the Art Analysis

of affected elements (JPDD) is described bypointcuts, which are specified as an attribute dec-
orated with the«pointcut» stereotype. In other words, apointcut indicates which model
elements (by means of JPDD) must be modified by which adaptation (advice) at which mo-
ment (before, after, or around). It is important to highlight that, as the AODM follows AspectJ
semantics, structural adaptations (introductions) are tightly coupled with the classes it affects,
hindering the reuse of such structural adaptations.

Theme/UML [31, 30] is an approach to support separation of concerns by means of con-
ceptual constructions calledthemes. According to Clarke and Baniassad [30], Theme/UML is
an AO approach that supportssymmetricseparation of concerns rather thanasymmetricsepa-
ration, which is supported by most of AO approaches (e.g. AODM, AspectJ, AspectC++, and
others). In this sense, athemeis more general than an aspect because it can represent fragments
of behavior and/or structure representing a concern. In other words, all elements related with the
handling of a concern are specified within only onetheme. One interesting characteristic of that
approach is that it is common to find different views of the same element in differentthemes,
i.e. certain elements and behaviors are shared among more than onetheme. To allow the rep-
resentation ofthemeswithin UML diagrams, the UML meta-model has been extended in[29].
That work proposes the concept ofcomposite patterns, which supports the composition/decom-
position ability required by symmetric separation of concerns. Making an analogy,composite
patternscan be compared to UML templates, which allow model elementsbe partially defined.
In Theme/UML,themesare specified as packages containing all concepts related toa concern

registerUser

(* : String,

* : String)

* : * * :

AuthServer

* : *

<?jp>:

addUser

(* : String,

* : String)

* :

DbServer

«execution»

 ?jp

remotePointcut

[0..*]

(a) (b)

(c)

Figure 3.3.: Aspects and join points modeling in AODM [120, 121]

38

3.3. Separation of Concerns in Requirements Handling

that are specified using class and sequence diagrams, as depicted in figure3.4a. In addition,
integration betweenthemesis defined by means of a binding, which indicates which elements
of a themeare affected by elements of othertheme. This integration is depicted in figure3.4b.
Comparing to the asymmetric approach, this is similar to therelation between functional ele-
ments that are affected by aspects. There are two kinds of integration (i.e. aspect weaving): to
override and to merge concepts. In the former approach, elements (structural and/or behavioral)
passed as parameters override associated elements in the affected theme. On the other hand,
in the later approach, concepts of the affectingthemeare merged with elements of the affected
themeat the points indicated as parameters.

The AO modeling approach proposed by France et al. [43] addresses concerns during mod-
eling step, aiming exploring different design alternatives in a platform-independent fashion.
Such approach produces Aspect-oriented Architecture Models (AAM), which consist in a base
architecture model namedprimary modelto specify the application model, and a set of aspect
models. Both kinds of elements are specified as UML diagrams.In this way, aspects models
describe how the primary model is affected by non-functional requirements. The composition
of aspects models in the primary model (i.e. aspect weaving)may cause conflicts of interests
leading to the emergence of undesired system properties. Such situation, according to France et
al. [43], can be minimized (or solved) by means of adapting the aspects model. Furthermore,
aspects provide structural and behavioral adaptations in the primary model specified with tem-
plates in class diagrams (for structural adaptations) and collaboration diagrams (for behavioral

«subject»

Observer

bind[<BookCopy, {meta:isQuery=false}>,

<BookManager, updateStatus()>]

+ name
+ author
+ ISBN

+ getISBN()

+ getAuthor()

+ getName()

Book

BookCopy

+ borrow()

+ return()

+ add(Book)
+ remove(Book)
+ search(Book)
+ addView(BookCopy)
+ removeView(BookCopy)
+ updateStatus(BookCopy)

BookManager

+ roomNumber

+ shelfNumber

+ addBook()

+ removeBook()

Location

<Subject, _aStateChange(..)>

<Observer, update()>

«subject»

Library

+ aStateChange()

_aStateChange()

− notify()

Subject
+ update()

Observer

Vector

<Subject, _aStateChange(..)>

<Observer, update()>

«subject»

Observer

subjects

observers

1

*

anObserver : Observer

update()

aSubject : Subject

aStateChange()

_aStateChange()

notify()

action aSubject.notify()

post all observers in aSubject::observers

 are sent updade() event(a) (b)

Figure 3.4.: Examples of Theme/UML models [31]

39

3. State of the Art Analysis

adaptations). It is important to highlight that, in that work, there is no mention about how ele-
ments of the primary model are selected (i.e. join points specification) to be adapted by aspects.

Pinto, Fuentes and Troya [98] propose an aspect- and component-based approach to sepa-
rate the handling of non-functional requirements from functional ones from early specification
to implementation phases during software development. This approach defines transformations
from UML models, which are decorated with stereotypes from theCom ponent-Aspect Model
(CAM) profile, to CAM models, which describes a system in terms of components, aspects,
and composition rules to weave aspect into components. According to Pinto, Fuentes and Troya
[98], behavior specification is realized using standard mechanisms of UML, i.e. state, activities,
and/or interaction diagrams. Although important, that work does not discuss how behavior is
represented in CAM models. Further, the information described in a CAM model is specified
with the DAOP-ADL language [97], which uses theeXtensible Markup Language(XML) [129]
format to describe components and aspects of a system, and also their relationships. An ex-
ample of such XML file is given in figure3.5. DAOP-ADL specifications are interpreted by a
middleware platform calledDynamic Aspect-Oriented Platform(DAOP) [97], which provides a
composition mechanism that performs aspects weaving dynamically at runtime, i.e. it performs
aspects adaptation in the affected components while running the application. In this sense, dur-
ing the weaving process, aspects see components as “black boxes”. Such approach constraints
aspects adaptations to modify component behavior by means of intercepting operation calls or
event occurrences, in other words, it is not possible to define join points, and hence, modify
internal behavior of a component.

An approach to specify Aspect-Oriented Executable Models (AOEM) has been proposed

<ApplicationArchitecture>
 <components>
 <component role="c1"> ... </component>
 </components>
 <aspects>
 <aspect role="trace"> ... </aspect>
 </aspects>
 <compositionConstraints>
 <componentCompositionRules>
 ...

 </componentCompositionRules>
 <aspectEvaluationRules>
 <sendMessage>
 <source-comp role="c1"/>
 <message name="foo"/>
 <BEFORE_SEND>
 <concurrent>
 <aspectList>trace</aspectList>
 </concurrent>
 </BEFORE_SEND>
 </sendMessage>

 </aspectEvaluationRules>
 </compositionConstraints>
</ApplicationArchitecture>

-joinpoint = ANY

TraceEvaluatedInterface

<<EvaluatedInterface>>

+foo()

<<ProvidedInterface>>

C1ProvidedInterface

<<Component>>

C1

-name = "trace"

<<Role>>

TraceRole

<<Message>>

foo

-name = "c1"

<<Role>>

C1Role

<<Aspect>>

Trace

<<sends>>

{join point=BEFORE_SEND}

<<applies to>>

fulfills

fulfills

<<provides>>

<<evaluates>>

Figure 3.5.: CAM model represented as a class diagram [98]

40

3.3. Separation of Concerns in Requirements Handling

in [47]. This work provides a UML profile to describe AO-related concept within UML models.
Three different models are produced:(i) a base modelspecifying system functional concerns;
(ii) an aspects modelspecifying crosscutting concerns, including their precise and complete
behavior, in terms of AO elements using the AOEM profile;(iii) a pointcut modeldescribing
(using the AOEM profile) how crosscutting concerns are composed in the base model in terms of
pointcuts. Further, a weaver is used to transform the produced models into a plain UML model,
which can be executed using Pópulo UML virtual machine [44].Additionally, the AOEM profile
provides stereotypes to specify the action language definedin the UML 2.x specification. To
allow the specification of AO-related actions, the AOEM profile extends the standard UML
action language by means of allowing, for example, getting the intercepted message name,
or target or source object. For more information on this AO extension for the UML actions
language, readers are referred to [46]. Furthermore, aspect advices are specified as activities
diagrams (see figure3.6b), whose actions are decorated with stereotypes of the AOEMprofile.
These advices are related to pointcuts, which are specified with sequence diagrams (see figure
3.6c), showing the link between the join point selection and theadvice. That work allows only
the interception of sent messages, i.e. only message-related events can be selected as join points.
However, Sánchez et al. [104] propose a modification in the specification of pointcuts and join
points by means of using JPDDs [121].

3.3.3. The Use of AOD in the Design of DERTS

Zhang and Liu [133] use UML diagrams and AO concepts to separate the handling of timing
requirements from other non-functional requirements in the design of real-time systems. That
work proposed the use of only one aspect, in which all timing information of a system is con-
tained. A UML profile is defined to decorate elements in a classdiagram in order to represent
both AO and real-time concepts. Such profile provides language level concepts of AO, e.g. as-
pects, advices, join points, crosscut, and control. However, it is important to highlight that the
last two concepts, i.e. crosscut and control, are not definedin AO languages.Crosscutis used to
model the weaving relationship between classes and aspects, while control models the weaving
relationship between behavior and aspects. Although system behavior is modeled with state

<<CallBehavior>>

GetReference

<<GetTarget>>

GetSettedComp

<<CallOperation>>

persist

object

target<<Literal>>

Persister

<<component>>

Persister

<<aspect>>

Persistence

<<advice>>+persist() IPersistence

add*(..)

<<pointcut>>

sd ShoppingCartUpdate

:ShoppingCart

<<joinpoint>> {point =RECEIVE,

time=AFTER}

{advice=Persistence .persist()}

(a)

(b) (c)

Figure 3.6.: AO modeling [47]: (a) aspects modeling; (b) advice modeling; (c) pointcut specifi-
cation

41

3. State of the Art Analysis

diagrams and also proposing the control relationship, thatwork does not show how the modifi-
cation in the base behavior will eventually happens, neither how to specify join point to select
element in the base classes and behavior. Figure3.7 depicts an example of timing handling
specification. As can be seen, time values description is done by means of notes (i.e. UML text
boxes) associated to a time aspect in the class diagram. Moreover, there are other stereotypes
representing real-time domain concepts, such as clocks andtimers. However, they are very
similar to stereotypes from the UML SPT profile [88]. Particularly, the approach presented in
[133] is not adequate to describe such key requirements as timing constraints and requirements
in real-time system design.

Noda and Kishi [84] have proposed an approach for using AO concept to model embedded
software. More specifically, they propose to use AO to model the context in which the em-
bedded system operates. That work uses the symmetric approach for aspects, similarly to [30].
Functional and non-functional concerns are modeled as aspects, which are related to each other
by means of two types of inter-aspect relations:(i) trigger and(ii) refer. The former indicates
that one aspect triggers the behavior of other aspect, whilethe later means that an aspect refers
to properties of another aspect to determine its behavior. Such relation can be seen in figure
3.8a. Aspects are modeled as a class diagram and one or more statediagrams, and thus, each
class in the class diagram has its behavior specified in a state diagram. Figure3.8b depicts an
aspect concerning the role of front doors in the vehicle illumination system that was used as
case study in [84]. In addition, to define details of inter-aspect relations, a rules-based language
has been proposed. Basically, this language describes inter-aspects relations in term of events,
transitions, and guard conditions for transition in state diagrams. Therefore, this can be seen as
a complement to system behavior specification. Figure3.8c shows a fragment of relation rules.

Lohmann et al. [74] propose the initial ideas for the CiAO operating system, which is the
successor in the operating systems family called PURE [11] for deeply embedded systems, i.e.
those embedded systems with very restricted processing power and memory availability. The

-t : Time

+set(time : TimeValue)

+get() : TimeValue

+reset()

+start()

+pause()

<<Aspect>>

TimeAspect

ElevatorButton

ControlSystem RequestQueue

DirectionLamp

Sensor

ElevatorLamp

FloorButton FloorLamp

Elevator

Floor

MotorDoor

1..*1..*

1

<<Crosscut>>

1..*

1

1..*

1

1..*

1

1..*1

1..*

1

1..*1..*

1

1

{[1] : ∀ i ∃ j @(↑door.open, j) = @(↓stop, i) ≥

OPEN_MIN_TIME ^ @(↓door.open, j) –

@(↓stop, i) ≤ OPEN_MAX_TIME

[2] :. ∀ i ∃ j(¬(@(↑button, j) - @(↓door.open, j) ≤

STAY_OPEN_NORMAL_TIME) → (@(↑door.close, i)

= @(↓door.open, i)+STAY_OPEN_MIN_TIME))

(@(↑door.close, i) = @(↓door.open, i) +

STAY_OPEN_NORMAL_TIME))

[3] :. ∀ i ∃ j(↑move, j) - @(↓door.close, i) ≥

OPEN_MIN_TIME ^ @(↑move, i) –

@(↓door.close, j) ≤ CLOSE_MAX_TIME}

Figure 3.7.: Specification using atime aspect[133]

42

3.3. Separation of Concerns in Requirements Handling

(a) (b) (c)

Figure 3.8.: AO modeling [84]: (a) functional and non-functional concerns; (b) aspects model;
(c) inter-aspects relations rules

main goal of CiAO is to provide a very fine grain configurable operating system. Such granu-
larity is obtained by using concepts of AO programming supported in the AspectC++ language
[116]. In this sense, CiAO separates non-functional handling code from application components
code by means of using aspects that are woven into the application code at the configuration
phase. According to Lohmann et al. [74], such separation improves the reusability of appli-
cation components. In [75], the authors reported their experience on using AO programming
to design and implement the interrupt synchronization as a configurable property in the CiAO
operating system.

AO concepts are used in theVirginia Embedded Systems Toolkit(VEST) [119] in order to
separate and check non-functional properties in the analysis and composition of component-
based embedded real-time systems. Two kinds of concepts were identified:prescriptive aspects
andaspects checks. Prescriptive aspectsare, in fact, advices (or adaptations) that modify the
information of model elements (e.g. tasks priority or the replication level of a component).
Such adaptations are described using a proprietary language calledVEST Prescriptive Aspect
Language(VPAL). On the other hand,aspect checksindicate the dependency check among
components of a embedded real-time system. Such checking isperformed using the information
from the system model. Sometimes, component characteristics can influence other components
behavior, e.g. tasks priorities and/or activation periodstogether with communication latency
may influence the end-to-end scheduling of activities. Hence, VEST provides automatic check
of components offered/required QoS that considers modifications in components performed
by the aspects weaving process. That work has performed two case studies that lead to the
conclusion that using aspects one can improve the analysis and composition of components in
the design of embedded real-time systems.

Tsang, Clarke and Baniassad [124] present an interesting work comparing two implemen-
tations of a traffic simulator, which represents vehicles equipped with speed sensors as well as
sensors capable to measure the distance from other surrounding vehicles, allowing vehicles be
self-driven through four track streets. The first version isimplemented using pure OO concepts
and the Real-Time Specification for Java (RTSJ) [13], while the second version uses AO con-

43

3. State of the Art Analysis

cepts and AspectJ [67] in order to refactor RTSJ constructions (e.g. the creation of threads,
memory management, synchronization, and others) that are encapsulated in aspects. The evalu-
ation was made using an adapted version of the C&K metrics [28] to deal with AO constructions.
That work has shown that using AO leads to the improvement of modularity because many RTSJ
elements and constructions can be encapsulated in separated entities (i.e. aspects). However,
according to [124], there are some metrics that are worse in AO compared to the OO version,
e.g. number of methods per class, which hinders the understandability and maintainability. As
conclusion, Tsang, Clarke and Baniassad [124] pointed thatone can achieve more benefits from
using AO if the relation aspect/application is broad and generic, meaning that maximizing en-
capsulation of redundant application code into aspects, one can have an overall improvement of
the application code. The more redundant code a applicationhas, better is the application code
modularity provided by aspects to encapsulate such redundant code.

The AspeCtual COmponent-based Real-time system Development(ACCORD) approach
[123] proposes the integration of component-based techniques with AO concepts for software
development of real-time systems. In that work, a Real-TimeCOmponent Model (RT-COM)
has been proposed. It supports the notion of time and temporal constraints, space and resource
management constraints, and composability semantics. Additionally, the RT-COM provides the
concept of gray box components that preserve some of the mainfeatures of a black box com-
ponent, such as well-defined interfaces as access points to the component, and they also allow
aspect weaving to change component behavior and internal state. Tesanovic et al. [123] define
three kinds of aspects:(i) application aspectscan change internal behavior of components, e.g.
security, synchronization, real-time policy handling, etc.; (ii) runtime aspectsrefer to concerns
related to system integration with the run time environment, e.g. resource demand, platforms to
which components are compatible, WCET of components behavior in each platform, and oth-
ers;(iii) composition aspectsdescribe with which components a component can be combined,
respecting component’s version and offered and demanded QoS. Although ACCORD provides a
component model that could allow the use of AO concepts at higher abstraction levels, that work
specifies both components and aspects using the AspectC++ programming language [116].

The SysWeaver approach [99] uses different tools to generate code from models. The pro-
posed approach separates functional requirements, which are modeled using Mathlab Simulink,
from requirements the authors have calledpara-functionalrequirements, e.g. timing, replica-
tion, security, jitter, and others. In fact,para-functionalrequirements have the same meaning
of non-functional requirements as used in this work.Para-functionalrequirements are modeled
using the SysWeaver tool, which interacts with other complementary tools to provide toolchain
integration, allowing domain-specific analysis such as schedulability or model checking of other
system properties. Moreover, according to Rajkumar [99], that approach uses the concept of
components, whose encapsulation mechanism combined with system properties model check-
ing enable the construction of “systems-of-systems” that are “correct by construction”. In [99],
the SysWeaver approach has been used to design an ABS system for vehicles.

Balasubramanian et al. [9] present an approach to address crosscutting concerns in component-
based MDE usingAspect-Oriented Domain Modeling(AODM). An AO model weaving tech-
nique is used to spread crosscutting concerns encapsulatedin aspects. The tool calledConstraint-

44

3.3. Separation of Concerns in Requirements Handling

Specification Aspect Weaver(C-SAW) performs this aspects weaving in the context ofPlatform-
Independent Component Modeling Language(PICML) [8], which is a DSML for developing
com- ponent-based systems that has been developed using theGeneric Modeling Environment
(GME) [1]. PICML provides a proprietary modeling syntax forcreating models of component-
based distributed systems, which includes information on interfaces, components properties and
system software building rules. C-SAW is a model transformation engine, which has been im-
plemented as a plug-in to the GME. It takes as input the created PICML model and a text file
describing aspects and transformations that must be performed in the PICML model. Such
model transformations are described using theEmbedded Constraint Language(ECL), which
is an extended subset of the OMG’s Object Constraint Language [90]. Particularly, ECL pro-
vides two important concepts:(i) modeling aspects, providing modular constructions to specify
crosscutting concerns; and(ii) strategies, specifying transformations logic that will be applied
in PICML model elements affected by modeling aspects. The approach proposed by Balasubra-
manian et al. [9] was intended to be applied in the development of large-scale component-based
distributed system, in order to improve model scalability,and also the handling of crosscutting
concerns. Thus, they presented a surveying system that usesmanyUnmanned Aerial Vehicles
(UAV) to help in disaster recovery efforts stemming from floods, earthquakes, or hurricanes.
UAV transmits videos from the surveyed area to a control center, where rescue teams can de-
cide rescue actions. C-SAW has been used to perform modifications in several components of
different modeled UAV.

3.3.4. Discussion

The use of AO paradigm in initial computing system design phases is recent and has not
achieved the maturity level of approaches using the OO paradigm. Such claim is supported
by the diversity of proposals for AO modeling that can be found in the literature, i.e. there are
several approaches to specify the same concepts using theirown form, repeating what happened
before the UML creation. However, the same cannot be said forAO implementation, which has
achieved a certain degree of maturity as can be seen by the wide use of languages, such as the
AspectJ or AspectC++. Although there are proposals to applyAO in early phases, there is no
standard form to separate functional requirements handling from non-functional requirements.
In particular, [120], [31], and [45] are the most remarkableworks. The first one is an approach
being refined to support other AO languages in addition to AspectJ. The second one proposes an
interesting approach, but the specification of how a theme affects other themes is not adequate
due to the lack of scalability, i.e. in systems with large amount of crosscutting themes, the spec-
ification of bind relationship to express weaving hinders model maintainability and evolution.
Finally, the third approach proposes extensions to UML in order to allow the specification of
AO concepts and also to perform AO model weaving.

To the best of our knowledge, the use of AO concepts in the domain of distributed embed-
ded systems is still low. There are few approaches suggesting their use in the implementation or
configuration of embedded software, and even fewer that try to apply these concepts in design
or modeling. For example, the approach proposed by Zhang andLiu [133] suggests the use of
only one aspect to deal with all time related non-functionalrequirements. The time require-

45

3. State of the Art Analysis

ments specification proposed by that approach is not appropriate because time requirements can
have different viewpoints (e.g. periodic activations, deadlines or WCET for algorithms execu-
tion, latency measurements, and others) that can be misunderstood by designers. In addition,
the use of UML notes to specify important information is not appropriate due to the lack of rep-
resentation in the UML meta-model. Besides, there are otherimportant requirements from the
domain of distributed embedded real-time systems whose handling can be improved if aspects
are used. The approach proposed by Noda and Kishi [84] uses only aspects to model all con-
cerns in embedded systems design. However, that work does not deal specifically with timing,
embedded, or distribution non-functional requirements. They can be handled separately from
functional requirements but this must be done specifically from design to design because of the
textual specification of aspects composition. Moreover, Tesanovic et al. [123], Rajkumar [99]
and Balasubramanian et al. [9] propose component-based design approaches that specify aspect
in terms of textual descriptions instead of graphically modeling them.

3.4. Code Generation

3.4.1. Introduction

Code generation means to use a computer program to assist in production of source code, be it
application source code, HDL source code, code for platformconfiguration, and others. Com-
monly, a code generator program takes as input a high level specification in addition to a set of
templates in order to create one or more source code files as output. According to Herrington
[59], code generation is not constrained to be only a quick way to produce source code. Other
benefits can be achieved as follows:

• Quality: code generator tools use templates to produce code (for a target platform) from
elements specified in high level models. The more complete a set of templates is, the
better is the quality of the obtained generated source code.If the templates describe an
optimized code generation based on designers quality and optimization criteria, a quality
increase is reflected in the final generated source code;

• Consistency:the naming standardization for classes, methods, and attributes is fully con-
sistent in the generated code. Hence, the application of naming standardization facilitates
classes interfacing and use because such standards are defined within the templates;

• Productivity: code generation increases productivity gains due to their ability to adapt
quickly to changes during design. In other words, modifications in the specification can be
automatically propagated to system implementation. In addition, code generation allows
the inclusion or exclusion of big portions of source code;

• Abstraction: advantages in terms of design abstraction level can be achieved using code
generation tools that work with input specifications (e.g. models of the system structure
and behavior, database schemes, or user interface designs)in a neutral form, i.e. using
platform independent languages. In other words, it is possible to generate source code

46

3.4. Code Generation

for different programming languages (such as Java, Smalltalk, or C++) from the same
abstract model.

This section presents some proposals to generate code from UML models, as well as com-
mercial tools that implement such code generation. Additionally, some works that produce HDL
code from UML are also presented.

3.4.2. Code Generation from UML Models

Many different approaches to generate source code from UML models can be found in the
literature. Some of them use only one diagram (e.g. class diagram), while others use a combi-
nation of different diagrams (e.g. class diagrams with state, sequence and/or activities diagrams)
to generate code ranging from classes skeletons to code containing system elements behavior.
This subsection present the some approaches.

The work presented in [55] demonstrates the mapping from class diagrams to Java source
code. This approach allows the generation of high-level class skeletons, which allows abstrac-
tion of details on attributes implementation, i.e. attributes data type, from the class implemen-
tation point of view. In other words, the implementation does not need to know the attributes
existence because their stored values are accessed only through get/set methods. The code
generation process only considers classes from the UML model decorated with«Entity»
stereotype. Each entity is mapped to an interface and a pair of classes that implement this inter-
face, i.e. for each entityX, the following Java elements are generated:(i) an interface namedX;
(ii) an abstract class namedXAbst; and(iii) a concrete class namedXInst. The created interface
contains the operations defined in the UML model for the entity. The abstract class implements
the interface and specifies attributes, as well as their datatypes (e.g. integer or string attributes)
and auxiliary methods that access theses attributes, whichare generated automatically by the
code generator. Finally, the concrete class extends the abstract class by means of adding the
methods that must be implemented to support the operations from the entity interface. In fact,
the code generator produces empty methods that must be filledby the programmer in order to
provide the entity behavior. The concrete class accesses class attributes by means of the auxil-
iary get/set methods specified in the abstract class. Additionally, associations among classes in
the UML model are represented bycursors, which are entities encapsulating the complexity of
associations navigation and updates. The concept ofcursorshas been proposed to separate the
associations semantics from their real representation andimplementation.

Burmester, Giese and Schäfer [21] have presented a code generation approach that uses
the FUJABA (From UML to Java And Back Again) Real-Time Tool Suite [20] to generate
code for RTSJ applications. System structure is modeled using the components diagram from
UML, while behavior is specified with an extended version of the UML state diagram called
Real-Time Statechart. The PIM of the system is transformed into a PSM that uses the SPT
profile [88] to specify real-time concerns. Every Real-TimeStatechart is transformed into,
at least, one active object, which represents the main thread and is implemented as periodic
RealtimeThread. At each period, all transitions that can be triggered are checked, and those
that passed some conditions (see [21]) are executed. Orthogonal states are not implemented

47

3. State of the Art Analysis

as multiple concurrent periodic threads, but by exactly oneperiodic thread (the main thread)
and multiple concurrent aperiodic threads. It is importantto highlight that, depending on the
deployment information of Real-Time Statecharts, a JVM canhave multiple periodic threads,
i.e. one for each Real-Time Statechart deployed in the JVM.

Bordin and Vardanega [16] propose a source code generation strategy for multiple target
OO languages from HRT-UML models, i.e. UML models annotatedwith the FW profile [26]
that specifies HRT-HOOD [23] concepts. In that work, the RTSJhas been assessed in order to
check (regarding some requirements proposed by that authors) its potential to be used by code
generation tools. RTSJ source code with Java annotations has been generated from HRT-UML
models. Such annotations allow traceability of HRT-HOOD concepts (e.g. cyclic or sporadic
execution of methods, or protected or unprotected method execution) between model and source
code, and also, decreases the size of the generated code because it hides information from the
programmer [16]. Hence, a pre-processor, which converts these annotations into plain RTSJ
code, is required to be used before the generated source codecompilation.

A code generation approach based on MDA concepts was presented by Hausmann and Kent
[57]. In order to generate skeleton source code from class diagrams, the proposed approach
uses transformations based on meta-models. For each targetlanguage, a meta-model, as well
as the mapping rules from the PIM to the PSM, must be specified.The process of creating
mapping rules is based on pairs of elements, their relationships, domains and constraints. A
pair represents two elements, in different models, that arerelated through a relationship, which
specifies relation constraints, and in which domain elements are linked. The mapping between
PIM and PSM is specified in class diagrams, in which meta-model elements of different models
are linked by means of class diagram associations. Additional OCL constraints can be included
in the associations. Besides not showing the final generatedsource code, mapping rules from
UML to Java language has been depicted in [57]. It can be seen that this graphical approach
to describe mapping rules can assist in the overall visualization of the transformation, however,
it can hinder the creation of more complex mappings among meta-model elements of different
models.

Generation of AO source code is the focus of the work presented in [58]. The goal is to
allow automatic generation of AspectJ source code from extended UML diagrams by using the
Theme/UML approach. Theme/UML models are exported to XMI files which are taken as input
to a code generation tool developed with theeXtensible Stylesheet Language Transformations
(XSLT) [130]. The generated code is not complete, i.e. only skeletons of classes and aspects
are provided. However, for aspects, the code includes the pointcuts that link advices with join
points that were specified in the Theme/UML model. Furthermore, Hecht et al. [58] state that
it is possible to generate code for the body of advices, sincecreated Theme/UML diagrams
provide enough information on the modification of system elements, which will be executing
during the aspects weaving process.

Nitto et al. [83] use UML as a language to describe processes and also to validate modeled
processes. To allow the intended validation, UML models aretranslated toORCHESTRA Pro-
cess Support System(OPSS) models [33], which are executable models with formalsemantics.
In an OPSS description, one process is divided into activities performed by agents. Elements

48

3.4. Code Generation

in class, activities and state diagrams are transformed to OPSS elements. The application struc-
ture, which is specified in the class diagram, is translated directly in Java classes (skeleton
source code) of the OPSS framework. State diagrams represent the lifecycle of an object, and
are translated to Java code representing objects behavior.Finally, activities diagram describes
activities flow of a process, as well as associations among activities and agents. It is used to
produce Java code that represents the precedence relationship of activities execution.

The formalization of class and sequence diagrams has been proposed by Long et al. [76] in
order to allow code generation from UML 2.0 models. The proposed model semantics is based
on theRelational Calculus of Object Systems(rCOS) semantics, which was devised to design
OO systems. That work generates skeleton code from class diagrams, and code for methods
body from the sequence diagram. The code generation algorithm interprets sequence diagrams
as a composition of messages sequences, allowing its use forcreation of code from separated
fragments of sequence diagrams. Source code can be generated only if the model passes a
consistency checking. In that work, the code generation forrCOS language is demonstrated,
showing how class skeletons, containing attributes and empty methods, are created. Considering
the behavior, each message in sequence diagrams is transformed to a method call in rCOS.
Nested messages are mapped to method calls in the body of the parent method.

The generation of SystemC code from UML models is investigated in [2]. Initially, that
works assesses constructions of UML 2 and those of SystemC 2.2, comparing them in order
to create a mapping between concepts of both languages. Considering structural specifica-
tion, UML packages are mapped to SystemC name spaces, and UMLactive classes and classes
with ports are mapped to SystemC modules. However, other types of non-mentioned classes are
mapped to standard C++ classes. Ports in UML have a required and a provided interface. On the
other hand, in SystemC asc_port must have exactly one interface, which corresponds to the
required interface of UML port. Provided interface of UML ports is equivalent tosc_export
construct of a SystemC module. Regarding the specification of communication among ele-
ments, UML communication can be modeled as signals, i.e. asynchronous messages, that are
sent through ports. The destination is specified using connectors. At the receiving object, the
signal is stored in a queue and will eventually be consumed. In SystemC, ports are connected
through channels, whose reference is stored in the port during system initialization. Therefore,
to map the mentioned semantics from UML to SystemC, UML connectors are mapped to Sys-
temCsc_fifo channels that connectsc_export of a module tosc_port of another one.
Furthermore, to produce SystemC source code from UML models, the mapping process is com-
posed by three steps:(i) the initial UML description is manually annotated with the SystemC
profile; (ii) the model is automatically transformed into a new UML description that includes
direct representation of SystemC construction, e.g. statediagrams are translated to classes, in
which each method implements the behavior performed in a state. Additionally, UML con-
cepts without SystemC correspondence are removed from the model; and(iii) the UML model
produced in the previous step is transformed to the corresponding SystemC code. This trans-
formation is an one-to-one transformation. This SystemC code generation approach has been
implemented as a plugin to the Telelogic Tau tool [63], usingits the C++ code generation facil-
ities.

49

3. State of the Art Analysis

There is an interesting on-going research in the Embedded Systems Lab of the Federal Uni-
versity of Rio Grande do Sul, whose initial results were published in [39]. That work proposes
a meta-modeling infrastructure, calledModel-Driven Embedded System design(MoDES), to
represent distributed embedded real-time systems in higher level of abstraction. The goal of
MoDES is to provide a common infrastructure to various MDE tools, as for example, high-level
design space exploration or code generation tools. That approach suggests a methodology that
applies successive refinements from an initial specification, which is a PIM, to an implemen-
tation model of the system using a selected target platform.The initial PIM (which can be
specified using UML, Simulink, or other modeling language) is transformed into an application
model that is an instance of theInternal Application Meta-Model(IAMM), which represents
application functionalities in a uniform manner. Likewise, models of many implementation
platforms (e.g. SystemC, Java, VHDL, and others) are specified using a uniform platform rep-
resentation calledInternal Platform Meta-Model(IPMM). The set of mapping rules is described
using theMapping Meta-Model(MMM), which is used to guide the transformation of IAMM
and IPMM model in a system realization model namedImplementation Meta-ModelIMM. The
IMM represents the implementation of the initial model (i.e. the one specified using UML,
Simulink, etc.) using a selected target platform (e.g. Java, VHDL, SystemC, etc.). Hence, it is
possible to generate code from the IMM.

3.4.3. Commercial Tools

This section presents some commercial CASE tools that allowcode generation from UML di-
agrams. During the study of the state of the art in code generation, many tools with different
automatic code generation capabilities were found: from code skeleton for classes to tools that
are capable of generate configuration files for server of distributed components such as CORBA
or Enterprise Java Beans.

Rational Rose [61] CASE tool has many different versions with different code generation
capabilities. All of them work on the previous version of UML, i.e. the version 1.4. The
tool Rational Rose Technical Developer (previously calledRational Rose Realtime) allows the
automatic creation of Java, C and C++ source code. It generates code skeletons for classes.
However, if any code was informed in theCodetab of methods specification, this text is also
included in method’s body. Additionally, behavioral code can be generated from state diagrams.
This code generation follows the same approach, i.e. code istyped in theCodetab of states.

Rhapsody [62] and Tau [63] are modeling tools from Telelogic, which was recently ac-
quired by IBM. Both tools supported the specification of UML 2.1 models. In addition, Tau
also supports SysML. Rhapsody can generate code for Ada, C, C++ and Java, while Tau for C,
C#, C++ and Java. The approach to produce code is similar to the Rational Rose tool, i.e. both
Rhapsody and Tau generate code skeletons for classes, and the body of methods must be written
in a special field in methods specification.

Borland’s Together [17] CASE tool allows the generation of code skeletons for class, and
also methods body. It uses the last version of UML (version 2.1) to automatically create code for
Java, J2EE, C++ and C#. Code skeletons are generated from theclass diagram, while methods

50

3.4. Code Generation

body from the sequence diagram. The code generation can be customized by means of changing
the generation templates.

Artisan Studio [6] (previously called Artisan Real-time Studio) supports UML 2.0 and
SysML modeling, and also automatic generation of C, C++, C#,Java and Ada source code
using external tools. It also generates code skeletons fromclass diagrams. In addition, source
code for classes behavior is generated from state diagrams.Actions performed in each state
must be written (in the selected target language) in specialfields in states specification. To al-
low code generation, UML elements must be decorated with stereotypes of the target language,
and hence, external code generators can produce the right constructions in the selected target
language. Furthermore, C/C++ code generation tool uses templates allowing some customiza-
tion of the generated code.

Poseidon for UML [50] is a CASE tool that supports UML 2 modeling, and implements
a script-based code generation, which uses the Velocity Template Engine [3]. There are pre-
defined scripts for the following languages: C#, C++, CORBA IDL, Delphi, Perl, PHP4, SQL
DDL, and VB.net. The designer can create its own code generation script that accesses infor-
mation of the UML model to generate code for other target languages. However, only the class
diagram can be accessed, and thus only code skeletons can be created.

Other tool is the ObjectiF [80], which also uses a template-based code generation approach
to produce code skeletons from class diagrams. This tool uses stereotypes to assist in Java, C#
and C++ source code generation. ObjectiF can generate automatically get()andset()methods
(with the corresponding behavior) for attributes that are decorated with a specific stereotype.
Additionally, it generates attributes and methods representing composition, aggregation, and
plain associations among classes. Moreover, it can also create the implementation of unit tests
for classes using NUnit or JUnit.

The CodeGenie MDD toolset [40] provides a code generation tool that takes as input XMI
files from executable UML models. Three levels of code generation are supported:(i) code
skeletons for classesrepresenting only software static structure;(ii) code skeletons with ar-
chitectural mechanismincluding architectural mechanisms (e.g. event queues, stacks, circular
buffers, etc.) in addition to classes structure; and(iii) code skeletons with architectural mecha-
nism and behaviorcomplementing the previous level by adding behavioral codegenerated from
the state diagram.

3.4.4. Discussion

Code generation from UML model is not a new topic. As one can see, generation of code skele-
tons from class diagrams is a well-defined approach due to thelarge number of tools that can
generate this kind of code. Some of the presented works can generate behavioral code from
state diagrams. However, a drawback can be pointed: depending on the target application, state
machines are not the most suitable model of computation to describe the developed application
behavior. Besides, the specification of actions performed in state diagrams is neither standard-
ized nor a common consensus. It can be done using programminglanguages or more abstract

51

3. State of the Art Analysis

textual action languages. Thus, proposals that use other UML behavioral diagrams can be seen
as an interesting option to specify actions in an UML model. Although sequence diagrams are
used in some works, there is no mention on the use of new constructions available in the UML
2.x, such as those to specify “ifs”, “loops” and others. In other words, only method calls are
generated that is not sufficient to generate the complete code from the UML model.

Other open problem is the interpretation of UML diagrams andtheir combination. Different
viewpoints offered by different model elements provide remarkable information, which can be
combined to obtain the complete description of system structure and behavior. However, there
is no defined semantics for different diagrams integration.Therefore, interpretation rules must
be created to allow the extraction of a concise specificationwhich, for code generation purposes,
must be unambiguous and simple.

Finally, it was observed that most of the approaches proposethe mapping 1-to-1 between
model and source code, i.e. the more detailed a model is, bigger is the amount of code lines that
can be generated from it. However, the specification of excessive details in the model decreases
a key advantage of using models: the visualization facilityof the structure and behavior of the
modeled system. Including details in excess hinders model understandability, and also decreases
the reuse of its elements. In order to avoid unnecessary details in the model, a code generation
tool could infer missing information on model elements based on modeling guidelines. Hence,
using 1-to-N mapping rules between model elements and linesof code, this tool could generate
code as complete as the completeness of the mapping rules specification. Other way to keep
models without unnecessary details is the use of AO concepts. Details that are not directly
related to the desired functionalities can be encapsulatedin aspects. Crosscutting behavior can
also be represented in this way. Therefore, the code generation tool could be aware of the
adaptations performed by aspects, which would modify the generated code. In other words, the
code generation tool could also perform aspects weaving. Thus, using AO concepts at modeling
level allows the use of non-AO target languages.

3.5. Discussion on the Open Problems

This section discusses open problem identified in the works previously cited in this chapter.
UML is broadly used and well accepted in the domain of software engineering for modeling
“general purpose” computing systems. Such situation has been drawing the attention of profes-
sionals of other computing domains, such as embedded systems and hardware designers. One
feature that is desired by great part of designer, in all computing domains, is the capability of
automatic source code generation from high-level specifications, in order to decrease design
effort and avoid error prone manual coding activities.

Related work presented in section3.2 compared some approaches that use UML in the
design of systems whose functionalities are implemented ineither software of hardware. Every
approach uses different diagrams to structure and behaviorspecification. This shows that there
is no consensus on which diagrams must be used to specify a distributed embedded real-time
system. Additionally, it can be observed that many of these approaches, e.g. [5], [82], [100]

52

3.5. Discussion on the Open Problems

and [7], use proprietary profiles to extend UML semantics according to their needs. Given
that UML does provide mechanisms to extend its semantics, doing that with non-standard (i.e.
proprietary) profiles is not a good approach because this hinders the specification understanding
by stakeholders outside the design task. The use of standardized profiles, as in [96], overcomes
the mentioned problem. Thus using standard profiles provided by organizations such as OMG
(the group that maintains UML standard) is a very important issue that must be approached by
new modeling techniques. Besides, excluding the work presented by Balarin et al. [7], none of
the presented approaches separate the handling of crosscutting concerns, which decreases the
modularity of artifacts (e.g. models or source code) created in previous projects, hindering their
reuse in new projects.

Approaches that separate the handling of functional and non-functional requirements are
presented in section3.3. The majority of the cited work aims at the design of softwarefor “gen-
eral purpose” computing systems, i.e. not embedded software, whose developer do not have to
worry about constraints that are intrinsic to embedded real-time systems domains, such as tim-
ing constraints, restricted processing power, limited memory amount, or energy consumption.
The mentioned separation of concerns is becoming popular inthat domain by means of using
concepts of the AO paradigm. Using aspects to handle crosscutting non-functional requirements
improves the modularity and the encapsulation of concerns.There are many attempts to adapt
the UML for representing AO concepts in models. The main drawback of approaches, such
as [120], is that they propose changes in the UML graphical syntax instead of using the UML
extensibility mechanism as [45] and [98] propose. Such heavyweight extensions hinder the
language standardization. The use of lightweight extensions (i.e. UML profiles) is preferable,
since they allow the use of any modeling tool that supports the standard extensibility mecha-
nism of the UML specification. Furthermore, the use ofcomposite patterns, which is proposed
by Clarke and Walker [31], allows the use of UML standard graphical representation without
modifications. However, the problem of this approach is thatthe specification of the affected el-
ements is not scalable, i.e. it is not suitable to specify composition relationships of crosscutting
concerns that affect a huge amount of other concerns, leading to problems in the specification
of large systems.

Considering the design of distributed embedded real-time systems, there is little discussion
on the use of AO concepts. Few works can be found in the literature. Most of them are related
to the implementation phase of such systems instead of earlier design phases. [133] and [84]
are exceptions. Zhang and Liu [133] propose the use of a single aspect to specify the handling
of timing requirements within UML models. Other important non-functional requirements of
embedded systems domain are neglected. Additionally, the specification of timing properties
(as notes in the class diagram) is hard to understand and alsonot suitable due to the weak re-
lation with UML meta-model elements. Noda and Kishi [84] uses the symmetric approach for
modeling crosscutting concerns likewise [31]. Although itis an interesting approach, it suffers
the same drawback of [31] approach, i.e. the lack of scalability. Moreover, mixed specifica-
tion using graphical elements and textual descriptions is not desirable, because it is not easy to
visualize aspects composition, i.e. which aspect crosscuts other aspects. [123], [9], [99], and
[119] propose the use of AO in component-based MDE of embedded systems. The first three
approaches propose the specification of aspects and their adaptations in terms of proprietary

53

3. State of the Art Analysis

text-based languages. Moreover, [123] and [9] use proprietary modeling syntax to model sys-
tem components, while [99] uses Simulink syntax. Although the mentioned modeling syntaxes
provide DSML to specify embedded system components, they lack standardization for specifi-
cation. Going towards the approaches that use AO for implementing embedded systems, [119]
use aspects to check if there is a matching of required/offered information by components that
are related with each other. [74] and [124] are implementation related approaches, i.e. they use
AO programming languages to deal with crosscutting non-functional requirements. Analyzing
the results reported by both works, one could conclude that there are a lot of open issues that
can be investigated. Other crosscutting non-functional requirements, such as access synchro-
nization of shared resources, memory management, or communication issues, could be handled
with aspects at application implementation and target platform tailoring. Moreover, the cre-
ation of a set of aspects to deal with non-functional requirements from higher abstraction levels
(i.e. requirements specification and modeling) to more concrete levels (i.e. implementation and
platform tailoring) is a very interesting research topic.

Analyzing the mentioned code generation approaches, it canbe stated that there is no for-
malization or even consensus for UML diagrams interpretation or integration of different dia-
grams. Such problem hinders the generation of complete codefor computing systems. However,
one exception is the class diagram, for which there is a “well-defined interpretation”. All pre-
sented works can at least generate code skeleton for specified classes. Although useful, code
skeletons are a small fraction of all code that could be generated from the entire UML model.
The problem is that there is no consolidated approach to generate behavioral code from elements
of other diagrams. Some works propose the use of state diagrams, whose actions are specified
using the target programming language or any other kind of textual action language. Others
propose the use of sequence or activities diagrams but not all constructions can be translated
to code in a given platform. Anyway, the generation of code containing the behavior specified
in the UML model is still not well defined compared to the generation of code skeletons from
class diagrams.

Some directions for MDE of distributed embedded real-time system were pointed, however
there are many open problems that can be addressed from the research point of view. Those open
problems go from the formalization of models interpretation semantics to the empirical use of
mappings to transform models into source code. In addition,using AO concepts would allow a
better modularization and handling of crosscutting concerns and non-functional requirements.
Code generation approaches could consider AO concepts specified within UML models in order
to allow code generation for both AO and non-AO programming languages. Hence, besides
code generation, the tool could perform aspects weaving in the generated code, and also tailor
the target platform based on the aspects specified in the model. Additionally, optimization could
be performed while reading the UML model or generating code.

54

Chapter 4

MDE process for DERTS design

4.1. Introduction

One of the goals of this thesis is to propose a design flow that increases the abstraction level dur-
ing design of distributed embedded real-time systems, in order to address its complexity. The
proposed design flow must allow a smooth transition from initial specification phases to im-
plementation/coding phases. For that, theAspect-oriented Model-Driven Engineering for Real-
Time systems(AMoDE-RT) design flow has been created. AMoDE-RT uses MDE techniques
combined with AO concepts to accomplish the mentioned goals. It is important to highlight
that, to be effective, AMoDE-RT needs adequate tool support(which is also provided by this
work) in order to assist its use in the design of distributed embedded real-time systems. Figure
4.1depicts an overview of the AMoDE-RT design flow.

Libraries

Mapping Rules

(XML)

Sw/Hw Platforms

Aspects

Implementation

(8)

RT-UML Model

Transformation
(5)

DERCS

Model

(6)

Generated

Source Code

(9)

Code Compilation

and Synthesis
(10)

Distributed Embedded

Real-Time System
(11)

Modeling
(3)

Requirements
(2)

Requirements

Analysis (1)

(4)

RT-UML

Specification

(7)

Code

Generation

Aspects

Weaving
+

GenERTiCA

Figure 4.1.: Overview of the AMoDE-RT design approach

55

4. MDE process for DERTS design

4.2. Aspect-Oriented Model-Driven Engineering for DERTS

The first step in AMoDE-RT is gathering requirements and constraints of the distributed embed-
ded real-time system. This is performed using the RT-FRIDA approach, which is an extension
to the FRIDA [10] requirements analysis approach aiming at applying it into the distributed
embedded real-time systems domain. RT-FRIDA is the result of a cooperative work performed
together with the colleague Edison Pignaton de Freitas for his M.Sc. dissertation [37]. In ad-
dition to requirements analysis, the RT-FRIDA also shares the modeling step with AMoDE-RT.
A brief discussion of both steps is given in the following paragraphs, and an in depth discussion
on AMoDE-RT modeling approach is presented in the next chapter. For details on RT-FRIDA,
readers should refer to [37].

An overview of RT-FRIDA steps is depicted in figure4.2. The requirements identification
step is the first step and is divided in two activities that canbe performed in parallel:functional
requirementsspecification andnon-functional requirementsspecification. Firstly, a use case
diagram is created. It depicts all expected functionalities for the distributed embedded real
time system, and also the external elements that interact with these functionalities. For each
use case specified in this diagram, a functional requirements template (see figure4.3a) must be
filled. After that, the filled templates of functional requirements are analyzed regarding possible
conflicts. Thus a conflicts resolution matrix is created, in which the first row and first column are
filled with the IDs of functional requirements. If a functional requirement conflicts with other
one, a “X” is marked in the cell that intersects row and columnof conflicting requirements.

For non-functional requirements specification, additional steps are then performed. RT-
FRIDA provides checklists (see an example in figure4.4a) that assist in identifying the non-
functional requirements that have been presented in section 2.3. Answering these checklists’
questions helps in the identification on which non-functional requirements affect functional re-
quirements. As performed for functional requirements specification, a template must be filled
for each non-functional requirement (see figure4.3b). In addition to checklists, there is also a
parser that can be used to identify key words in documents written in natural language, indi-

Functional

Requirements
Specification

Non-Functional

Requirements
Specification

Automatic

Identification

Requirements Identification

Mapping

Mapping Table Construction

Concepts Modeling

UML Diagrams Drawing

Functional Non-Functional

Class / Object

Sequence / Activity
State Machine

 ACOD

 JPDD

DERAF
Functional Concepts

Extraction

Aspects

Extraction

Figure 4.2.: Overview of RT-Frida

56

4.2. Aspect-Oriented Model-Driven Engineering for DERTS

cating the presence of unspecified non-functional requirements [37]. After that, there is also a
conflicts resolution step similar to the one in functional requirements specification, i.e. design-
ers fill a conflicts resolution matrix indicating which non-functional requirements affect others.

The second step of RT-FRIDA approach is the mapping of requirements to (candidate) de-
sign elements. This is done using a mapping table as the one depicted in figure4.4b. As it can be
observed, rows indicate functional requirements, while columns non-functional requirements.
If any non-functional requirement affects any functional requirement, a “X” is marked in the
cell that intersects row and column of involved requirements. Furthermore, this mapping ta-
ble links requirements to (candidate) design elements, allowing requirements traceability from
requirements analysis to system design. Hence, the last column indicates which (candidate)
classes in the design model are responsible to handle functional requirement. Similarly, the last
row indicates which aspects are used to handle crosscuttingnon-functional requirements. As-
pects are provided by a predefined aspects framework namedDistributed Embedded Real-time
Aspects Framework(DERAF), which is discussed in details in the section5.2of the next chap-
ter. It is important to highlight that this table is initially filled with candidate handling element
and, during the whole design phase, it can be modified/updated with new elements that will be
included to the design model. Consequently, it is importantto keep this table updated in order
to maintain traceability of requirements to design elements and vice-versa.

At the end of these two steps, designers have produced a set ofdocuments specifying func-
tional and non-functional requirements that the system under development must deal with, and
also the relationships among these requirements.

Item Description

ID This identifier allows requirements traceability over the whole project.

Name Use case name.

Goal Description of the use case goals.

Author The person that is responsible for the use case description.

Pre-

condition
A condition that must hold before the execution of the use case.

Post-

condition
A condition that must hold after the execution of the use case.

Primary

Actor
Actors that are the source of the events for the main scenario stimuli

Secondary

Actor

Passive actors that interact with the use case, but do not execute

any action within its context.

Priority
Used to decide the relative importance among use cases. There are

three levels: Maximum, Medium, Minimum.

Situation

A requirement can be in one of the following situations:

0 - Identified;
1 - Analyzed; 3 - Approved;

Main

(Normal)

Describes the main flow of the use case, as well as its results,

without condiser error conditions.

Alternate Describes the alternate flow to the use case.

Exception Describes a exceptional situation in the use case flow.

Main Describes the main steps of the use case scenario.

Variations Describes steps that modify one or more steps within the scenario.

Paths

Scenario

G
e

n
e

ra
l

Id
e

n
ti

fi
c

a
ti

o
n

C
o

n
te

x
t

A
c

to
rs

D
e

c
is

io
n

a
n

d

E
v

o
lu

ti
o

n

2 - Specified; 4 - Canceled;
5 - Finished;

Item Description

ID
This identifier permits the requirement

traceability over the whole project.

Name Crosscutting concern's name.

Autor
The person that is responsible for the

corsscuting concern specification.

Classification Classification in which the concern belongs.

Description
Description of how the concern afect system

functionalities.

Afected Use

Cases
List of the use cases afected by the concern.

Context
Determines in which situation a use case is

affected by the concern.

Scope

(Global/Partial) The requirement is global if it

affects the whole system, and is partial if

afects only part(s) of the system.

Priority

Concern's importance regarding other non-

functional concerns. Higher numbers

represent higher importance.

Status

0 - Identifyed; 3 - Approved;

1 - Analysed; 4 - Canceled;

2 - Specifyed; 5 - Finished;

Id
e

n
ti

fi
c

a
ti

o
n

S
p

e
c

if
ic

a
ti

o
n

D
e

c
is

io
n

a

n
d

E
v

o
lu

ti
o

n

(a) Funtional requirements template (b) Non-funtional requirements template

Figure 4.3.: RT-FRIDA templates for requirements specification

57

4. MDE process for DERTS design

(a) Checklist example

(b) Requirements mapping table

Relevance Priority Restrictions / Conditions / Description

Time

 Timing

Is there any periodic activity or data sampling? X 8
Movement Control; Environment Sensing; Main

Rotor Sensing; Back Rotor Sensing;

Is there any sporadic activities?

Is there any aperiodic activity?

Is there any restriction in relation to the latency

to start an execution of a system activity?
X 9 Corrective Action

Is there any specific instant to start or finish an

execution of a system activity?

Was any WCET specified? Or at least, is there

any concern about this?
X 10

The smapled data of both rotors must be ready at a

maximum of 10 ms.

NFR-1 NFR-2 ... NFR-n

FR-1 Class1, Class3

FR-2 Class2

... ...

FR-n X ClassN

Aspect1
Aspect2

Aspect3
... AspectN

FR handling

elements

NFR handing

elements

Non-Functional Requirements

F
u

n
c

ti
o

n
a

l

R
e

q
u

ir
e

m
e

n
ts

ID

Figure 4.4.: Other tools provided by RT-FRIDA

These documents are then used in the next phase: system modeling. UML diagrams anno-
tated with the stereotype of the MARTE profile [94] are used tomodel the structure and behavior
of distributed embedded real-time systems. In this phase, UML models are created and succes-
sively refined up to achieve the desired level of detail, providing sufficient information to allow
system realization. In the initial UML model, elements describe concepts that are closer to the
target application domain, e.g. sensors, steering devices, turbines, speed and trajectory informa-
tion, robot arms, etc. These elements represent problem domain concepts, hiding details about
their implementation. Higher abstraction levels are easier to understand, and allow designer to
focus on applications foundations instead of concerning about implementation issues. Thus,
they represent the handling of functional requirements. Application elements can be reused
from previous designs, and hence, it is possible to create repositories of application domain el-
ements. Such elements can be made up of many different UML elements and/or diagrams. For
instance a robot arm can be compound of three joints and a gripper. To reuse this domain-level
element, at least five classes (three for the joints, one for the gripper, and the composite class for
the robot arm) are reused. Additionally, behavioral diagrams describing robot arm’s behavior
could also be reused.

The specification of non-functional requirements handlingis done with assistance of as-
pects provided by DERAF. They are used in two moments:(i) in modeling phase (see section
5.3.2); (ii) in implementation phase, more specifically, in code generation/aspects weaving step
(see chapter 6). During modeling phase, aspects are chosen based on their high level semantics
to handle crosscutting non-functional requirements. For instance, theConcurrentAccessControl
aspect deals with issues on concurrent access control of shared resources. Hence, if the system
has this non-functional requirement,ConcurrentAccessControlaspect is selected and specified
in the Aspects Crosscutting Overview Diagram(ACOD). Moreover, based on information of

58

4.2. Aspect-Oriented Model-Driven Engineering for DERTS

the mapping table created previously, designers must specify which UML model’s elements are
affected by this aspect. For that, designers createJoin Point Designation Diagrams(JPDD),
which are special diagrams that specify model elements selection. JPDD, which can be stored
in a repository and reused in further designs likewise DERAFaspects, are specified using com-
mon UML modeling tools with support to profiles. Details on modeling both functional and
non-functional requirements are given in the next chapter.

At the end of modeling phase, designers have created a UML model that specifies elements
to deal with the functional and non-functional requirements, using, respectively, OO and AO
concepts.

Although increasing abstraction level during design is good for managing complexity, the
higher the abstraction level is, more are the chances of ambiguous or even erroneous inter-
pretations of the same specification. Usually, high level specifications cannot be executed in
computational devices (e.g. microprocessors, integratedcircuits, or Programmable Logic Con-
trollers (PLC)) due to their incomplete semantics and/or lack of sufficient details. To overcome
these issues, specification ambiguities must be removed, and also computational elements (e.g.
FIFO queues, scheduler, synchronization mechanisms, and others) must be included into these
high-level specifications. A transformation of the initialmodel into a more concise one must
happen. AMoDE-RT’s third step performs the transformationof the UML model annotated
with MARTE profile stereotypes into an instance of theDistributed Embedded Real-time Com-
pact Specification(DERCS), which is a PIM suitable to code generation and modelexecution
purposes. By transforming UML into DERCS, the information on system structure, behavior
and non-functional requirements handling, which is spreadover different UML diagrams whose
information may overlap each other, is combined in fewer andconcise elements in DERCS rep-
resentation. For more information on UML to DERCS transformation see section6.2.

The next step is source code generation from the DERCS model.As mentioned, one of the
goals of this work is to provide a smooth transition from high-level models to the implementa-
tion of distributed embedded real-time systems. Thus, a code generation tool calledGeneration
of Embedded Real-Time Code based on Aspects(GenERTiCA) has been developed. In fact,
GenERTiCA performs not only code generation, but also aspects weaving. The code generation
process executes a set of scripts (mapping rules) to performmodel-to-text transformations from
DERCS elements to constructions in the target platform.

Mapping rules are specified as small scripts that create source code fragments (representing
target platform constructions) for elements in the DERCS model. Source code files are made
up of these generated code fragments. Scripts are stored andorganized in mapping rules files
specified using the eXtensible Markup Language (XML) [129] format. Therefore, it is possible
to create a repository to allow the reuse of previously created scripts and mapping rules for
platforms. The code generation process iterates all elements looking for the script that defines
the mapping from the element being evaluated into suitable construct(s) in the target platform.

Additionally, if the element under evaluation is affected by any DERAF aspect, the aspects
weaving process is performed after the generation of the code fragment. GenERTiCA uses
aspects implementations to modify code fragments, i.e. changes in generated code fragments are

59

4. MDE process for DERTS design

performed by implementations of aspects adaptations. There is also the possibility to perform
adaptations in DERCS model elements before generating code. Thus, GenERTiCA provides
code and model aspects weaving. It important to highlight that implementations of aspects
adaptations are scripts similar to “normal” mapping rules scripts. Hence, it is also possible to
create repositories of different implementations for the same aspect adaptation, depending on
the target platform. Moreover, DERAF aspects are also used to tailor platforms, in the sense
of configuring the selected target platform by adding only services that are required by the
application. More details on GenERTiCA, and also the code generation and aspects weaving
processes are given in chapter 6.

The last step of AMoDE-RT is the use of a third party tool to compile and synthesize the
generated application code. In addition, the generated platform configuration files are used
to configure the final platform that will be deployed. After that, the realization of distributed
embedded real-time system being designed is ready to be executed or tested.

4.3. Adaptations in the SEEP design flow

As already mentioned, this work was developed within the scope of the SEEP project. Thus
it proposes adaptations to the original SEEP design flow, in order to accommodate the pro-
posed AMoDE-RT design flow, as depicted in figure4.5. The start of SEEP flow has been
extended to incorporate steps 1, 2 and 3 of AMoDE-RT (see figure 4.5a). Thus, in the original
“High-level Model” step, “Requirements Specification” and“Functional Specification” were
substituted by, respectively, “Functional Requirements Specification” and “Non-Functional Re-
quirements Specification”. A “System Model Specification” step has been included after re-
quirements specification. In this step, designers can reuseapplication elements and DERAF
aspect in the UML model, as mentioned above. The result of this step is the “Complete System
Specification”, which is the created UML model whose diagrams are decorated with stereotypes
of the MARTE profile. After that, a “Remove Ambiguities from Model” step was added. It rep-
resents the transformation of the UML model created in the previous step into a DERCS model,
which is represented by the “Compact System Specification” box. It is important to highlight
that the DERCS model can be used as input to the system exploration activity, which incorpo-
rate the platform-independent computational elements mentioned in the previous section. Thus,
different implementation of these elements can be evaluated and the one that best fits system
requirements can be selected.

Other proposed extension to the original SEEP design flow is depicted in figure4.5b. After
the “Architectural Exploration”, a “Code Generation + Aspects Weaving” activity has been
included – it appears after the “Macro-Architecture with Functional mapping” box in figure
4.5. This code generation activity represents the forth step ofAMoDE-RT design flow, and is
performed by the GenERTiCA code generation tool. Repositories of mapping rules and DERAF
aspects implementations were included in SEEP design flow (see figure4.5c). Both mapping
rules and aspects implementation rely on the platforms available in the platforms library (see
figure4.5d). GenERTiCA reuses elements of these repositories to perform the code generation

60

4.3. Adaptations in the SEEP design flow

and aspects weaving processes. As result of this activity, source code files for both software and
hardware are created. Further, these source code files are used in the compilation and synthesis
step, and can also be tested using the SEEP test approach. Finally, real implementation of the
distributed embedded real-time system being designed is obtained.

validation

validation

validation

System

Exploration
Algorithms &

models Library

Architectural

Exploration
Estimation

Macro-architecture

with functional

mapping

SW and RTOS

compilation

Communication

synthesis

Micro-architecture

synthesis

Software Micro-architecture

Test

planning

High-level Executable

Description

HW Source

Code

validation

Mapping

Rules

DERAF
Implement.

Library

Code Generation +

Aspects Weaving

SW and RTOS

Source Code

Component

Library

Platform

Library

Non-Functional

Requirements

Specification

Remove Ambiguities

from Model

Compact System

Specification

High-Level Model

DERAF

High-Level

Aspects

Application

Elements

Functional

Requirements

Specification

System Model

Specification

Complete System

Specification

(a)

(c)

(b)

(d)

Figure 4.5.: Adaptations proposed to SEED design flow

61

4. MDE process for DERTS design

62

Chapter 5

Specifying DERTS Using UML and
Aspects

5.1. Introduction

This chapter discusses the distributed embedded real-timesystems specification, in terms of
modeling their structure, behavior, and non-functional requirements handling. The word “model”
has very different meanings, which are related to context inwhich it is used. In the context of
this work, models are simplified descriptions of computing elements that are being developed
to provide the expected functionalities for a computing system, which must cope with applica-
tion/domain requirements.

As stated in chapter 4, this work uses UML to specify models ofdistributed embedded
real-time systems. However, as UML lacks specific syntax and/or sufficient semantics to de-
scribe embedded and real-time system domain concepts [127], a subset of the MARTE profile
stereotypes is used to complement the system’s features specification.

This chapter discusses guidelines to create UML models, which must be followed to allow
the transformation of UML models into DERCS models for code generation purposes. In fact,
in addition to suggestions on the diagrams selection, thesemodeling guidelines define some
restrictions in modeling activities, allowing a correct system specification interpretation and
transformation. Hence, the information on structure, behavior and non-functional requirements
handling that is spread over different diagrams can be combined in the DERCS model. The
discussion is divided in two parts:(i) specification of functional requirements handling, which
approaches the use of some UML diagrams to specify the structure and behavior of systems;
and (ii) specification of non-functional requirements handling, which explains how to specify
AO concepts in UML models.

63

5. Specifying DERTS Using UML and Aspects

5.2. Functional Requirements Handling Elements

5.2.1. Introduction

The current version of UML specification, namely version 2.2[92], supports 14 diagrams,
whose brief description is given as follows:

• Structural Diagrams show a complete or partial view of system’s structure. Available
diagrams are:

– Class Diagramshows system static structure in terms of classes and interfaces, their
attributes and operations, as well as relationships among them;

– Composite Structure Diagramdepicts the system structure as hierarchically linked
blocks. The internal structure of a structured classifier isshown as parts intercon-
nected by ports, which are linked to interfaces;

– Component Diagramprovides a component view of system structure, i.e. it shows
classes and their instances as components. Relationships are represented as provid-
ed/required interfaces;

– Deployment Diagramdescribes the system architecture, by means of assigning ob-
jects onto execution platforms;

– Object Diagramdepicts the dynamic structure, i.e. class instances and their rela-
tionships, at a specific instant;

– Package Diagramshow the system as a set of packages that represent the logical
grouping of classifiers; and

– Profile Diagramis very similar to the class diagram, but instead of showing classes,
this diagram depicts stereotypes.

• Behavior Diagramsdepict complete or partial expected system behavior:

– Use Case Diagramshows system’s main functionalities in a very abstract fashion,
as well as external actors that interact with the system;

– State Machine Diagramdisplays hierarchical finite state machines, which are com-
posed of composite states with one or more orthogonal states. These states machines
are an extended version of Harel’s statecharts [54];

– Activity Diagramdepicts system behavior in terms of activities and control flow.
Activities use a Petri net-like semantic, i.e. its execution semantics is based on
tokens. Additionally, there are special kinds of nodes thatrepresent forks, joins,
branches, and others;

– Interaction Diagramsshows the communication among concurrent objects. There
are four kinds:

64

5.2. Functional Requirements Handling Elements

∗ Sequence Diagramshow multiple objects exchanging messages during their
lifetime. Objects are represented as lifelines. Messages,which can be syn-
chronous or asynchronous, are represented as horizontal lines from one life-
line to another one. There are also special constructions that represent loops,
branches, concurrent messages exchanges, and others;

∗ Communication Diagramis similar to the sequence diagram, but instead of
showing messages exchanged over time, it shows only the messages order with-
out any special control flow element;

∗ Interaction Overview Diagramis a special kind of activity diagram, in which
the nodes represent sequence diagrams instead of activities; and

∗ Timing Diagramrepresents discrete values or states changing while time passes.
It is similar to continuous waveforms.

For more details on UML diagrams, interested readers are referred to [15] and [92].

According to Vanderperren, Mueller and Dehaene [127], information captured in UML
models is often redundant and overlaps. Consequently, it isnot necessary to use all of these
diagrams to model a distributed embedded real-time system.Depending on the used design
method and project goals, only some of them are useful. Moreover, some diagrams are more
suitable (or clear) than others to specify system characteristics in a given target application
domain. For instance, although activity, state and sequence diagrams are behavior diagrams,
sequence diagrams show the behavior related to objects exchanging messages in a better way
than activity or state diagrams allow, in spite of all of themcould express such actions.

In this sense, AMoDE-RT modeling approach restricts UML usage to eight diagrams:
(i) use case diagram;(ii) class diagram;(iii) sequence diagram;(iv) composite structure dia-
gram;(v) deployment diagram;(vi) activity diagram;(vii) state diagram. However, only (i), (ii)
and (iii) are mandatory, the other diagrams are optional. Asmentioned, to allow information
contained in these diagrams to be correctly extracted, and transformed into a DERCS model, a
set of modeling guidelines for each diagram has been created, and must be followed. The fol-
lowing subsections discuss these guidelines, providing examples on how to create the supported
diagrams.

5.2.2. Specification of System Expected Functionalities

As mentioned in chapter 4, the use case diagram is used to showthe main functionalities of
the distributed embedded real-time system being designed.Figure5.1depicts a sketch showing
elements that are important in the AMoDE-RT approach. The “stick man” is the graphical
representation of an actor, which represents a role played by a user, thing, or any other system
that interacts with the system. Ellipses represent use cases, which indicate a set of actions
performed by the system that yields an observable result to associated actors. In other words, use
cases represent the main expected functionalities. It is important to highlight that crosscutting
non-functional requirements, which affect system functionality, are also represented in the use

65

5. Specifying DERTS Using UML and Aspects

case diagram. Therefore, the information of the mapping table, which has been created in the
requirements analysis (see chapter 4 and [37]), is used to decorate uses cases with stereotype
indicating the first-level of non-functional requirementsclassification presented in figure2.1of
section2.3. These stereotypes are shown in figure5.1 as«NFR_*» stereotypes. Hence, the
traceability between requirements and model elements is reinforced.

<<NFR_Timing>>

Control Wheelchair
Movement

<<NFR_Embedded>>

Sample Movement
Information

Left Wheel
Actuator

<<include>>

Figure 5.1.: Graphical representation of system requirements

5.2.3. Specification of System Structure

5.2.3.1. Class Diagram

The main diagram to describe system structure is the class diagram. As expected, this diagram
describes the static structure of the distributed embeddedreal-time system under design. It
shows all classes that are responsible or related to the handling of functional requirements.
Figure5.2shows an example of such diagram.

The proposed modeling approach assumes the common and wide use of this diagram, i.e.
classes are depicted with their attributes and method signatures, as well as their relationships
with other classes. Names of classes and attributes must be substantives to represent elements,
which are relevant to the system or their characteristics. On the other hand, method names must
be verbs to represent activities performed by objects of such classes. This naming convention
must be also followed in interfaces specification. Furthermore, class names are used to fill
the mapping table of RT-FRIDA in order to allow traceabilitybetween design elements and
requirements specification.

One important feature to be observed in figure5.2 is the use of stereotypes decorating
certain elements. As mentioned in section2.4.2, encapsulation restricts the access to class
attributed by means of providing access methods. Hence, if aclass needs to access an attribute
of other class, the designer must includegetand/orsetmethods for that purpose. Such methods
are specified as in the classMovementController, i.e. a«getter» or «setter» stereotype
must decorate, respectively,get and set methods. The attribute that is accessed by them is
specified using the tagged valueAttribute. Later, in the transformation of the UML model into
a DERCS model, this information is used to automatically generate the corresponding behavior
of such methods.

Taking into account the specification of concepts that are specific to the real-time domain,
the UML model can represent active and passive objects. Active objects are resources that are
able to perform actions concurrently with other active objects [24, 94]. Hence, the proposed
approach assumes that active objects include their own thread of control. Classes that repre-
sent active objects are decorated with the stereotype«SchedulableResource» from the

66

5.2. Functional Requirements Handling Elements

-newActuationValue : float

<<getter>>+getActuationValue(){Attribute = newActuationValue}

<<setter>>+setActuationValue(){Attribute = newActuationValue}

+run()

+savePreviousMode()

<<SchedulableResource>>

MovementController

#processInfo(speed : int, angle : int) : float

AbstractController

-Mode : int

+setMode(newMode : int) : void

+getSpeed() : float

+getMode() : int

+processDate(newData : int)

+storeDate(newData : int)

<<MutualExclusionResource>>

MovementInformation

+shutdown()

MovementControlSystem

+setActValue(value : float)

+getActValue() : float

Actuator

-movInfo

1 1

-info 1

1

-rightWheel

1 1

-leftWheel

1 1

-act *

1

-ctrl 1

1

Figure 5.2.: Specification of the static structure

MARTE profile, as the classMovementControllerin figure 5.2. On the other hand, passive
objects are resources that perform actions in response to stimuli of both active or passive ob-
jects, meaning that a passive object can eventually be accessed concurrently in the context of
more than one active object execution flow (i.e. thread). If the concurrent access of such ob-
jects needs to be synchronized, classes that represent thiskind of object must be annotated with
the«MutualExclusionResource» stereotype of the MARTE profile. TheMovementIn-
formationclass in figure5.2 is an example of controlled shared passive object class. Classes
without any stereotype or decorated with«Resource» stereotype are interpreted as passive
objects with concurrent access synchronization.

Multiple inheritance is not allowed, i.e. one class can haveonly one parent class as speci-
fied in the generalization relationship betweenMovementControllerandAbstractController. If
classes, which are children of different parent classes, need to share some features, an interface
specifying these features should be created. Then, those classes should be linked to this inter-
face by means of the interface realization relationship. Other three relationships are supported:
(i) association;(ii) composition; and(iii) aggregation. In all of these relationship at least one
association end must be1 (one), i.e. only the following cardinalities are allowed: 1-to-1, 1-to-n,
1-to-n..*, and 1-to-* (wheren is a positive natural number). Hence, many-to-many relationships
cannot be specified. Additionally, at least one associationend must have a name, and must be
navigable, indicating that objects of the class represented by one association end can commu-
nicate with objects of the class represented by the navigable association end, e.g. in figure5.2,
act indicates thatMovementController’s objects can interact withActuator’s objects. During
the transformation of the UML model, information of the navigable association end is used to
create an attribute in the class of the other association end. These constraints were imposed in
order to provide a precise interpretation of these relationships during the transformation of the
UML model into the DERCS model (for details see section6.2).

5.2.3.2. Composite Structure Diagram

Besides the specification of the static structure of the distributed embedded real-time system,
designers can also specify the dynamic structure (or part ofit) using the composite structure

67

5. Specifying DERTS Using UML and Aspects

diagram. In the context of this work, dynamic structure means the set of active and passive ob-
jects (i.e. class instances) that compose the system. As already mentioned, the use of composite
structure diagram is not mandatory. The information on system objects can also be extracted
from the sequence diagram by means of its lifelines. However, using this diagram is particularly
interesting in the design of systems that do not create new class instances after the initialization
phase, as usual in hard-real time control system, due to system constraint or application require-
ments. Thus, all objects required in the system execution phase could be specified in a single
composite structure diagram. Figure5.3shows an example of composite structure diagram.

As can be seen, the whole system under design is represented as a class (MovementCon-
trolSystem) that encloses its set of active and passive objects, which are depicted as rectangles
likewise classes in the class diagram, e.g.ctrl (active object),leftWheel, rightWheel, andmov-
Info (passive objects). The difference is the syntax for name specification in such classifiers:
“object_name : class_name [amount_of_objects]”. For objects that make up other objects,
object_namemust be the name of the navigable association end of the respective composite/ag-
gregation relationship in the class diagram, e.g. instances of Actuator insideMovementCon-
trolSystemthat refers to “leftWheel” and “rightWheel” compositions depicted in figure5.2.
Moreover,amount_of_objectsdefines the amount of instances of a given class, e.g. “movInfo
: MovementInformation [1]” represents one object of theMovementInformationclass. Two or
more instances of the same class can be indicated using numbers inside brackets, or different
rectangles (each one having a unique name) as demonstrated in “leftWheel” and “rightWheel”
objects.

As one can see in figure5.3, composite relationships are specified as solid lines rectangles,
and aggregation relationships as dashed lines, e.g. “info”object insideMovementController
that refers to “info” aggregation depicted in figure5.2. On the other hand, normal associations
are depicted as lines linking objects, e.g. “act[0]”, “act[1]” that represent the association with
the same name in figure5.2.

Composite structure diagrams also depict MARTE stereotypes, which were used in the
class diagram to refine classes’ semantics according to concepts of real-time and embedded
domains, facilitating the differentiation of active objects from passive ones. However, it is
important to highlight that, as this information is represented as instances of UML meta-model
elements, it does not need to be specified twice. Hence, thereis no need to re-annotate objects
with the same stereotypes used in the class diagram. During the transformation of the UML

<<MutualExclusionResource>>

info : MovementInformation [1]

<<SchedulableResource>>

ctrl : MovementController [1]

<<MutualExclusionResource>>

movInfo : MovementInformation [1]

leftWheel : Actuator [1]

rightWheel : Actuator [1]

MovementControlSystem

act[0]

act[1]

info

Figure 5.3.: Specification of the dynamic structure

68

5.2. Functional Requirements Handling Elements

model into the DERCS model, such information is obtained from the meta-model elements of
the class diagram.

5.2.3.3. Deployment Diagram

Other structural diagram used in AMoDE-RT modeling approach is the deployment diagram,
which specifies on which computing device (e.g. devices withprocessors and memory, ASIC or
FPGA hardware devices, or hybrid devices) objects execute their behavior, as well as in which
kind of platform they are implemented. Figure5.4shows an example of such diagram. Different
computing devices are specified asnodesin deployment diagrams, while different platforms as
artifacts placed inside these nodes, e.g.Node_1andNode_2are computing nodes, andJava
andC++ are platforms representing node’s implementation. Objects are specified as instances
linked with artifacts throughmanifest relationships. Therefore, objects are deployed in the node
(or computing device) that owns the artifact associated to them, e.g. ctrl is an active object
implemented as software using a Java platform; andleftWheelandrightWheelare implemented
in C++.

Objects that are linked with artifacts in the same node representlocal objects. On the other
hand, objects linked with artifacts residing in different nodes are consideredremote objects. At
modeling level, the semantics of the communication among local objects is the same as remote
objects, i.e. one object sends a message to another, waitingor not for a response. The same
is true for objects modelled as implemented as software and/or hardware. The differentiation
among messages sent to local or remote objects is done duringcode generation phase by Gen-
ERTiCA that evaluates nodes on which source and target objects (related to sending message
actions) are deployed. However, it is important to highlight that there are some non-functional
requirements related to distributed objects communication. They are handled by aspects of DE-
RAF, allowing designers to focus on concepts of the target application domain instead of on
implementation issues, as explained in the section5.3.

Node_2

<<artifact>>

C++

<<artifact>>

Java

MCS : MovementControlSystem

<<MutualExclusionResource>>

movInfo :
MovementInformation

<<SchedulableResource>>

ctrl :
MovementController

Node_1

<<artifact>>

Java

rightWheel :
Actuator

leftWheel :
Actuator

<<manifest>>

<<manifest>>

<<manifest>>
<<manifest>>

<<manifest>>

Figure 5.4.: Specification of objects deployment

69

5. Specifying DERTS Using UML and Aspects

5.2.4. System Behavior Specification

5.2.4.1. Sequence Diagram

System behavior is specified as a combination of different UML 2.2 behavior diagrams, i.e.
different diagrams of the same type, such as different sequence diagrams, as well as different
kinds of diagrams, such as a combination of different sequence diagrams with state and/or
activity diagrams. In AMoDE-RT modeling approach, the sequence diagram plays the main
role for describing the behavior of a distributed embedded real-time system. It was chosen due
to its intuitive syntax to depict objects communicating with each other (i.e. message exchanges),
as well as its capability of controlling the execution flow within the diagram. As explained in
the following paragraphs, a set of reserved words has been created to represent other kinds of
actions, such as value assignment to variables or object attributes, evaluation of expressions,
and objects state changes. Consequently, it is possible to specify most actions a distributed
embedded real-time system needs to perform as its behavior.

There are some modeling rules that must be followed in order to allow the combination
of the behavior information spread into different sequencediagrams. Figure5.5 depicts an
example of a valid behavior specification using a sequence diagram. All lifelines represent
active or passive objects, whose name must be either the nameof an attribute or a variable.

<<SchedulableResource>>

ctrl : MovementController

<<MutualExclusionResource>>

info : MovementInformation

<<Scheduler>>

sched : Scheduler

tmpAct : Actuator

act : Actuator

[speed > 100]

opt

[i = 0; i < 10]

[(i % 2) == 0]

[else]

alt

loop

setActValue(value="0")2:

processInfo(speed=, angle=)10:

setMode(newMode=10)11:

ASSIGN(int var1, angle*0.9)12:

getSpeed()13:

speed14:

<<TimedEvent>>

run()1:

{every = "(15,ms)”}

result5:

result8:

3:

getActValue()4:

getActValue()7:

setActValue(value=result)6:

ASSIGN(i, i+1)9:

Figure 5.5.: Specification of the behavior in terms of actions performed by objects

70

5.2. Functional Requirements Handling Elements

Therefore, an object that sends a message to other object must be related to it through either a
relationship between both class (specified in the class diagram), or the creation of this object
(as a local variable) within the context of its methods’ behavior. For example, the third lifeline
(from left to right) represents the association relationship betweenMovementControllerand
Actuatorclasses, whose association end has been named as “act” (see class diagram depicted
in figure5.2). As mentioned in the previous section, this association end represents an attribute
with the same name in theMovementController, allowing the communication between objects
of this class and objects of theActuatorclass.

However, there is an exception of this naming rule: the first lifeline does not need to rep-
resent any specific object. Hence, it can have any name (including the “*” wildcard charac-
ter, as depicted in figure5.6), and does not require any associated object. This is possible
because the transformation algorithm usually interprets messages departing from the first life-
line as the beginning of an actions’ execution flow. For example, in figure5.5, “message 1”
indicates the beginning of the behavior ofMovementController.run() method. The same is
valid for messages “1” and “6” in figure5.6 that represent start of, respectively,Movement-
Controller.processInfo()andMovementInformation.setMode()methods’ behavior Although the
relaxed naming rule, there is a pitfall in the specification of messages sent to the first lifeline: if
the message is sent from other lifeline to the first one, e.g. “message 5” in figure5.6, it means
a sending message action, and hence, the first lifeline must represent an object to allow the
correct interpretation of this action. The transformationalgorithm will try to find the method
associated with the message (in this case, the methodinvalid()), but will succeed due to the lack
of associated object. In other words, the situation presented in figure5.6 represents an invalid
message flow due to the lack of any object and/or class associated to the first lifeline, i.e. the
name “*” indicates that the lifeline can represent any object.

Furthermore, considering the execution flow depicted in sequence diagrams, messages must
be specified according a nesting constraint: it is expected that the next message departs either
from the lifeline that has received the previous message, orfrom one of the lifelines that had
sent any previous message. In this sense, the diagram presented in figure5.5 represents a valid
flow, because all messages have been specified according suchconstraint. Considering this se-
quence diagram, let’s assume a “imaginary” execution flow that passes a control token from the

<<MutualExclusionResource>>

info : MovementInformation

<<SchedulableResource>>

ctrl : MovementController

act : Actuator*

[proc_1]

[proc_2]

par

savePreviousMode()4:

savePreviousMode()7:

getMode()2:

invalid()5:

setActValue(value=150)8:

setMode(newMode=10)3:

processInfo(speed=, angle=)1:

setMode(newMode=)6:

Figure 5.6.: Invalid behavior specification using sequencediagram

71

5. Specifying DERTS Using UML and Aspects

sched : Schedulerlifeline to ctrl : MovementControllerlifeline in “message 1”. This token is
forwarded from this lifeline toact : Actuator (“message 2”), which, in turn, passes it to the
tmpAct : Actuatorlifeline (“message 3”). After the instantiation ofActuatorclass, the token is
returned to theact : Actuatorlifeline. Following, the token is passed again totmpAct : Actuator
in either “message 4” or “message 7”, returning back to the previous lifeline (i.e.act : Actu-
ator) after the execution of the behavior specified within the corresponding alternative in the
combined fragment. Finally, after the execution of the assignment action specified in “message
9” (explained in the following paragraphs), the token is returned toctrl : MovementController
lifeline. Further, “message 10” specifies a recursive message, which indicates the beginning
of MovementController.processInfo()method behavior (the darker part in the lifeline). Thus,
all messages sent from this lifeline part belong toprocessInfo()’s behavior. Likewise explained
previously, the execution token flows among lifelines respecting the message nesting order. In
this example, it is important to note that almost all messages (e.g. messages 1, 2, 4, 6, 7, 10, 11,
and 14) have been specified as synchronous call operation messages, meaning that the execu-
tion of the calling method’s behavior must be held until the called method returns the execution
control token.

On the other hand, figure5.6 shows an invalid behavior specification using sequence di-
agrams. It describes a broken execution flow due to “message 3”. Once reading this diagram
according to the mentioned messages nesting constraint, itis expected that “message 3” departs
from info : MovementInformation, ctrl : MovementController, or “*” lifelines rather than from
act : Actuator. Hence, the specified execution flow violates the expected messages nesting or-
der. Nevertheless, if “message 3” and “message 5” (as explained in previous paragraphs) are
removed, the sequence diagram depicted in figure5.6 becomes a valid behavior specification,
due to the compliance with the mentioned constraints.

As mentioned, sequence diagrams are key diagrams to system behavior specification. They
are intended to depict objects interactions in terms of messages exchanged among them. How-
ever, behavior of distributed embedded real-time systems cannot be fully specified using only
sending messages actions. There are other equally important actions:(i) values assignment to
object attributes or variables;(ii) evaluation (or execution) of mathematical or boolean expres-
sion; (iii) explicit changes in the object state1; (iv) array-related actions, such as insert/remove
elements, get/set element values, or get the array length. The problem is that there is no avail-
able construction in sequence diagrams to specify such actions. Thus a set of reserved words
was created to specify these actions. Table5.1 presents the created reserved words, which are
used in the specification of message names to represent the mentioned actions. In order to allow
the correct interpretation of such names during the transformation phase, the syntax depicted in
table5.1must be followed.

Other important feature in behavior specification is the control of execution flow using
constructions such as branches or loops. Since the approvalof UML 2.0 superstructure spec-
ification, sequence diagrams allow the specification of control constructions, namedcombined

1The term “state” in the context of OO can interpreted as two complementary definitions:(i) values of object’s
attributes at a given instant; and/or(ii) a explicit state, which is generally specified in a state machine. In this
work, “object state”, “state of the object”, or simple “state” refers to (ii).

72

5.2. Functional Requirements Handling Elements

Table 5.1.: Reserved words for actions specification

Syntax Description
ASSIGN([data type] target,
value)

Represent an assignment action of a value to a variable or object
attribute, where:
data type is optional, and indicates the variable data type;
target specifies the name of the target variable or attribute, in
which the value is stored. The naming constraint (i.e. lifeline
naming) must be respected;
value is the value to be assigned.

EXPRESSION([[data type]
target,] expr)

Represent the evaluation (or execution) action of a mathematical
or boolean expression, where:
data type is optional, and indicates the variable data type;
target is optional, and specifies the name of a variable or at-
tribute in which the expression result is stored. The namingcon-
straint (i.e. lifeline naming) must be respected;
expr is the expression to be evaluated.

MODIFY_STATE(newState) Represent the action that changes explicitly the object state,
where:
newState represent the new state in which the object will be
after the execution of this action.

INSERT_ELEMENT(target,
[pos,] value)

Represent the action of inserting a value in a given array, which
can be a variable or attribute:
target specifies the array name. The naming constraint (i.e.
lifeline naming) must be respected;
pos is optional, and specifies the array position after which the
value is inserted. If it is omitted, the element is added at array’s
end;
value is the value to be inserted.

REMOVE_ELEMENT(target,
pos)

Represent the action of removing a value from a given array,
which can be a variable or attribute.
target specifies the array name. The naming constraint (i.e.
lifeline naming) must be respected;
pos specifies the array position that must be removed.

ARRAY_LENGTH(target) Represent the action of reading the length of a given array, which
can be a variable or attribute.
target specifies the array name. The naming constraint (i.e.
lifeline naming) must be respected.

73

5. Specifying DERTS Using UML and Aspects

fragments, which operate on an interaction fragment. Thus it is possible to specify alternative
or optional execution of interaction fragments, parallel execution of interaction fragments, rep-
etition of interaction fragments execution, and others. The proposed modeling approach allows
using a subset of all combined fragments kinds:

• Alternatives (alt) designates different choices for execution of actions sequences. To
use this construction, designers must specify at least two alternatives. Each alternative
sequence is guarded by a boolean expression, which must holdin order to deviate the
execution flow to the alternative interaction fragment. If an alternative does not have
a guard expression, the actions sequence of this alternative is executed if and only if
guard conditions of all other alternatives do not hold. In the case of two or more guard
conditions hold, the action sequence specified within the first alternative (considering the
alternatives order depicted in the sequence diagram) is executed; other action sequences
are ignored. In other words, the actions specified in analt fragment are not concurrent.
Figure5.5depicts an example of such combined fragment;

• Option (opt) defines an optional sequence of action that are executed whether the guard
expression holds. It is similar toalt combined fragment, but it specifies only a single al-
ternative. Thereforeopt combined fragment must always have a guard condition. Figure
5.5shows an example of this combined fragment;

• Parallel (par) represents parallel execution of action sequences, whichexecute concur-
rently and independently from the other parallel parts. As sequences of actions could
terminate in different instants, designers must not specify any action after apar com-
bined fragment. Figure5.6also shows an example of this combined fragment;

• Loop combined fragment (loop) represents the repetition of the actions sequence exe-
cution. The actions sequence is repeated while the guard expression holds. Loops can
also have a fixed number of repetitions, which is specified using the syntax “var =
minNumber; var < maxNumber”, wherevar is the name of the repetition counter;
minNumber is the initialization value for the counter; andmaxNumber is the number
of repetitions. Figure5.5shows an example of a loop combine fragment that has a fixed
number of repetitions.

To conclude the discussion on behavior specification using sequence diagrams, it is im-
portant to consider the specification of real-time features. Similar to the specification of the
dynamic structure, stereotypes that decorate classes of active and passive objects are also de-
picted in sequence diagrams, due to the availability of thisinformation in instances of UML
meta-model element previously specified. In this sense, MARTE stereotypes do not need to be
specified twice for the description of same system element, e.g. «SchedulableResource»,
«MutualExclusionResource» and«Scheduler» stereotypes have already been used
in the class diagram, and could be depicted in sequence diagram elements of figure5.5.

An important view of system behavior is the specification of active objects’ concurrent
behavior that need to be periodically executed at a certain frequency. This kind of active object
must have only one periodic behavior, i.e. only one method can have its behavior triggered
periodically. Thus, designers must create at least one sequence diagram for each periodic active
object, showing the activation pattern for its periodic behavior. An example of such diagram is

74

5.2. Functional Requirements Handling Elements

presented in figure5.5. This diagram must always start with a message sent from the scheduler
object to the active object, indicating the start of the periodic behavior execution. Such message
must be decorated with MARTE’s«TimedEvent» stereotype. The time interval between two
consecutive executions of the behavior must be specified using theevery tag, whose value
must follow MARTE’sValue Specification Language(VSL) [94] syntax: “(n, timeUnit)”,
wheren is a number andtimeUnit is the time unit. For instance, in figure5.5, “message 1”
is annotated as “every = (15, ms)”, indicating that the interval between two consecutive
executions of this behavior is 15 milliseconds.

5.2.4.2. Activity Diagram

Another diagram to specify system behavior that is supported by AMoDE-RT modeling ap-
proach is the activity diagram. Although optional in the proposed modeling approach, this kind
of diagram may be used in combination with sequence diagramsto specify the overall view of
system behavior in terms of runtime phases.

Distributed embedded real-time system runtime can be divided in three distinct phases:
(i) initialization; (ii) execution; and(iii) shutdown. The activity diagram is used to specify these
phases as shown in figure5.7. Each activity is associated with a sequence diagram, whichdetails
actions performed in the activity. AMoDE-RT modeling approach uses sequence diagrams
rather than textual action languages [79] to specify complex behavior and/or actions sequence,
due to graphical specifications are considered easier to understand than textual descriptions.
Besides, diagrams are more intuitive and technology independent, facilitating the information
exchange among different design teams. Additionally, textual languages are considered very
similar to conventional programming languages (e.g. Java or C/C++), and hence, they are not
the most suitable form to specify system behavior in high-level models.

System initialization and shutdown activities describe all actions that need to be performed,
respectively, before and after the core functionalities provide by the system. As it can be seen
in figure 5.7, after the initialization activity the execution flow is split in several concurrent
activities. Usually, these activities indicate periodic behaviors executed by active objects. If this
overview of system behavior is provided, it is expected thatthe amount of sequence diagrams
provided in the UML model is at least equal to the amount of activities specified in the activity

<<TimedEvent>>
<<RTFeature>>

JoystickDriver.
run()

{every = "(10,ms)",

relDeadline = "(10,ms)",

wcet = "(3,ms)"}

<<TimedEvent>>
<<RTFeature>>

MovementController.
run()

{every = "(50,ms)",

relDeadline = "(50,ms)",

wcet = "(10,ms)"}

<<TimedEvent>>
<<RTFeature>>

MovementEncoder.
run()

{every = "(10,ms)",

relDeadline = "(10,ms)",

wcet = "(2,ms)"}

System
Initialization

System
Shutdown

Figure 5.7.: System behavior overview specified using activity diagram

75

5. Specifying DERTS Using UML and Aspects

diagram.

Activities’ timing information are specified by MARTE stereotypes and tagged values,
indicating the activation period (every tag of«TimedEvent»), deadline, and WCET (re-
spectively,relDeadline andwcet tags of«RealTimeFeature») for activities execu-
tion. Figure5.7 depicts three activities that are annotated with the mentioned MARTE stereo-
types and tagged values, e.g.JoystickDriver.run(), MovementController.run()andMovementEn-
coder.run(). As mentioned, this information is specified once, i.e. one or more instances of UML
meta-model elements related to system elements, and reusedin many different diagrams that de-
pict the same elements, such as class diagram, sequence diagram, activity diagram, and/or any
other diagram supported by AMoDE-RT modeling approach.

It is important to highlight that runtime phases can also be specified using state diagrams, in
which each state represents a phase. Although sequence diagrams could also be linked to states
(in a state diagram) to indicate the behavior executed when the system is in a given state, the
activity diagram is considered more suitable for depictingsuch viewpoint due to its sequential
execution flow semantics, and also to the clearer visualization of concurrent behavior. Further-
more, AMoDE-RT modeling approach binds state diagrams to classes to specify explicitly states
in which object can be during different system runtime. Consequently, using state diagrams to
specify system-level states may cause problems in the model’s information interpretation and
transformation.

5.2.4.3. State Diagram

Although sequence and activity diagram are considered sufficiently complete to specify the
distributed embedded real-time systems behavior, there are application domains in which this
view of system behavior is not the most suitable one. Usually, in reactive systems, behavior is
usually specified in term of events and actions performed in response to these events. To support
this specification viewpoint, AMoDE-RT modeling approach uses state diagrams, which are
associated with classes specified in the class diagram. In this sense, state diagrams represent
both explicit states, in which a class instance (i.e. object) can be at a given instant, and the
behavior performed while it stays in these states. It is important to highlight that one state
diagram is associated with only one class, and vice-versa. Figure5.8shows an example of state
diagram constructions, which are allowed in the proposed modeling approach.

State diagrams show behavior as states, transitions, and events. Actions are associated
with states indicating their execution in three moments:(i) on entering the state;(ii) during the
stay on that state; and(iii) on exiting the state. Similarly to activity diagrams, actions must be
specified using sequence diagrams, which are associated to states in the mentioned moments.
Moreover, state transitions are fired by events, which may beinternal or external. Internal events
are logical events from the application domain, e.g. the detection of a certain kind of threat in
a surveillance system. Other example of internal event is the instant in which a method call
action is performed,e.g. transitions from “Reading Joystick Position” to “Reading Movement
Information”, or from “Processing Data” to “Storing Processed Data” as depicted in figure5.8.
External events indicate remarkable occurrences, which happened in the external environment

76

5.3. Non-Functional Requirements Handling Elements

Reading Joystick
Position

Reading
Movement
Information Calculating

Actuation
Values

Applying
Actuation

Values

Triggering
Alarm

Stopping

Triggering
Alarm Stopping

Storing
Processed Data

Processing Data

Reading Speed
Sensor

Running

Initialization

Shutdown

low battery level

low battery level

low battery level

setActuationValue()

shutdown()

getSpeed() : float
processInfo(speed : int,

 angle : int)

low

battery

level

next activation

low battery level

next activation

low battery level

processDate(newData : int) storeDate(newData : int)

low battery level

shutdown()

Figure 5.8.: Behavior of classes specified using state diagrams

in which the system is embedded, e.g. signals issued by presence sensors. Such events are
specified as substantives in the transitions name, e.g. “lowbattery level” transitions in figure
5.8. Furthermore, deep and shallow history pseudo-states [92]are not supported by AMoDE-
RT modeling approach. Consequently, the only way to start/finish a state machine is passing
through, respectively, initial and final states.

Orthogonal states are also supported. Designers can specify one sub-state machine in each
orthogonal region, meaning that once entering in a orthogonal state, objects can be in several
AND-states[92] at the same time, e.g. “Running” state in figure5.8. A transition from these
orthogonal states to any other state is possible only if all sub-state machines arrive in their
final state. Hence, if the exit event (which triggers the exittransition from an orthogonal state)
happens, and one or more sub-state machine are not in their final state, the event is passed
to all sub-state machines which remain active. On the other hand, if there is no active sub-
state machine, the exit transition from the orthogonal state happens. For instance, let’s assume
that the state machine depicted in figure5.8 is in “Running” orthogonal state. The first sub-
state machine (upper orthogonal region) is in the final state, and the other one is in “Storing
Processed Data”. When a “shutdown” event occurs, it is passed only to the second sub-state
machine, causing the transition from “Storing Processed Data” to the final state, and thus, from
“Running” to “Shutdown”. It is also possible to specify a transition from orthogonal states
without triggering events, indicating that, once all sub-state machine arrive the final state, the
exit transition from the orthogonal state is triggered automatically.

5.3. Non-Functional Requirements Handling Elements

5.3.1. Introduction

As already mentioned, AMoDE-RT modeling approach uses aspects to specify non-functional
requirements handling in UML models. Given that UML does nothave constructions to depict
AO concepts in its diagrams, a lightweight extension to UML in terms of a UML profile has

77

5. Specifying DERTS Using UML and Aspects

been proposed. The concepts represented by the created profile stereotypes are based on the AO
concepts presented in section2.4.3, and also the AO conceptual model proposed by Schauerhu-
ber et al. [109] (see figure5.9). That model provides more general AO concepts compared to the
ones discussed in section3.3, which are simply adaptations of specific AO languages concepts.
From this model, the following stereotypes have been derived:

• «Aspect»: used in ACOD (see section5.3.3) to specify which DERAF aspects (see
next section) are selected in the current design. It must be used to decorate UML’s class
meta-model element, extending its semantics to represent aspects;

• «BehavioralAdaptation»: used in ACOD to decorate aspects “methods” to spec-
ify behavioral adaptations performed in system functionalelements. It must be used to
decorate UML’s operation meta-model element extending itssemantics to represent be-
havioral adaptations;

• «StructuralAdaptation»: used in ACOD to specify structural adaptations per-
formed in system functional elements. It is also used to decorate UML’s operation meta-
model element;

• «Crosscut»: used in ACOD to decorate associations between classes and aspects.
In ACOD, crosscut associationsdo not represent by themselves a relationship between
aspects and classes. Instead, they represent information that is inserted by aspects in
affected classes. Thus, this stereotype extends UML’s association relationship using the

{overlapping}

superaspect

subaspect

dynamicity

RelativePositionKind

before
around
after

representedElement1

1

ownedElement

1..*

*

fOstsisnocfOstsisnoc

ownedJP

inConflictWith

implementedBy

Poincut

*

formalizedBy

relPos[0..1]:RelativePositionKind

RelativePosition

selectedJP*

* selectedBy

1..*

owner

owner

composedOf

dynamicity

composedOf

1..*

implementedBy

<<enumeration>>

Figure 5.9.: Conceptual AO model [109]

78

5.3. Non-Functional Requirements Handling Elements

mentioned semantics;
• «Pointcut»: used in ACOD to decorate aspects “methods” to specify the link between

join points and aspect adaptations. It must be used to decorate UML’s operation meta-
model element extending its semantics to represent pointcuts. In the decorated methods,
parameters represent pointcut information as explained insection5.3.3;
• «JoinPoint»: used in JPPDs (see section5.3.4) to decorate the point in which aspects

can perform adaptations. It only indicates which (kind of) model element is affected by
aspect adaptations, instead of modifying their semantics;
• «JPDD»: used to decorate sequence or class diagrams indicating that they represent join

point selections rather than a functional diagram.

The following sections discuss how to use AO concepts to dealwith non-functional require-
ments in the distributed embedded real-time systems design. Firstly, an aspects framework to
handle the mentioned requirements is presented. These aspects are used in theAspects Cross-
cutting Overview Diagram(ACOD), which is proposed in this work and discussed in section
5.3.3. Finally, join point specification is presented in section5.3.4, which discusses the use of
Join Point Designation Diagrams(JPDD).

5.3.2. Distributed Embedded Real-time Aspects Framework

5.3.2.1. Overview

To provide modularized handling for non-functional requirements, a framework of aspects
namedDistributed Embedded Real-time Aspects Framework(DERAF) has been created. In
this sense, DERAF aspects encapsulate in a single element all issues related to the handling of
non-functional requirements.

Based on the AO conceptual model presented in the previous section, DERAF is an ex-
tensible high-level aspects framework to be used in earlierdesign, as well as implementation
phases. The main idea is to provide aspects that enhance the modeled system by means of
adding specific behavior and structure to specify non-functional requirements handling. These
“new” behavior and structure are independent from any specific implementation technology.

More specifically, DERAF was intended to be used together with UML and MARTE pro-
file. To achieve this goal, details about how to implement aspect adaptations have been ab-
stracted, i.e. designers choose which aspects are used to specify the non-functional requirements
handling based on aspects adaptations high-level semantics. Thus, in UML model, DERAF as-
pects are used as “black boxes”. In addition, designers mustindicate which functional elements
are affected by the selected aspects using join points specification, as discussed in section5.3.4

Considering the non-functional requirements presented insection2.3, each requirement
can be handled by one or more DERAF aspects. Figure5.10shows an overview of the DERAF
aspects. As it can be seen, DERAF provides six packages grouping aspect based on their goals.
The following sub-sections provide a brief discuss on the semantics of each available aspect. In
addition, a more comprehensive description of DERAF aspects is presented in appendixA.

79

5. Specifying DERTS Using UML and Aspects

<<Non−Functional>>

Embedded

<<Aspect>>

HwAreaMonitoring

<<Aspect>>

EnergyMonitoring

<<Aspect>>

HwAreaControl

<<Aspect>>

EnergyControl

<<Aspect>>

MemoryUsage
Control

<<Aspect>>

MemoryUsage
Monitoring

<<Non−Functional>>

Timing

<<Aspect>>

TimeBoundedActivity <<Aspect>>

SchedulingSupport

<<Aspect>>

TimingAttributes
<<Aspect>>

PeriodicTiming

<<Non−Functional>>

Communication

<<Aspect>>

MessageCompression

<<Aspect>>

MessageIntegrity

<<Aspect>>

MessageAck

<<Non−Functional>>

TaskAllocation

<<Aspect>>

NodeStatusRetrieval

<<Aspect>>

TaskMigration

<<Non−Functional>>

Precision

<<Aspect>>

ToleratedDelay

<<Aspect>>

DataFreshness

<<Aspect>>

ClockDrift

<<Aspect>>

Jitter

<<Non−Functional>>

Synchronization

<<Aspect>>

ConcurrentAccessControl

<<Aspect>>

MessageSynchronization

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>> <<use>>

<<use>>

<<use>><<use>>

<<use>>

Figure 5.10.: All aspects provided by DERAF

5.3.2.2. Timing Package

This package contains aspects to handle time-related requirements, such as deadlines for activ-
ities execution, WCET information, periodic tasks activation, and others.

TimingAttributesaspect is responsible to deal with active objects characteristics such dead-
line, priority, WCET, and absolute time instants on which their behavior must start and finish
the execution. Attributes representing the mentioned characteristics are inserted in the affected
active object classes, as well as methods and behavior to initialize and handle these attributes.
As mentioned, the handling of these timing issues is delegated to the target platform that must
provide support to this aspect semantics.

PeriodicTimingaspect provides means to trigger periodically an active object behavior ex-
ecution. Thus, besides adding an attribute indicating the execution frequency in the affected
active object class, this aspect must also enclose the affected behavior with a repetition mech-
anism, whose execution is controlled according the information stored in the mentioned new
attribute. In other words, this aspect is used to deal with the handling of periodic active objects

80

5.3. Non-Functional Requirements Handling Elements

(or threads).

SchedulingSupportaspect inserts a scheduler object in the affected computingnodes. This
object is responsible to control active objects execution,indicating instants at which they must
start performing their behavior.

TimeBoundedActivityaspect controls the execution time duration of an activity or action
by counting the time elapsed since the start time instant. Ifmaximum allowed duration is
surpassed, this aspect provides means to abort the affectedactivity/action execution. Examples
of this aspect use are: to restrict the maximum time a shared resource can be in exclusive access
mode, or the maximal time amount an active object can wait forthe reply of a remote objects.

5.3.2.3. Precision Package

Precision in meeting time requirements are handled by the aspects of this package, which con-
centrates efforts in features such as the maximum tolerateddelay in starting activities, variance
in activities timeliness, information’s validity duration, or the deviation of local clock reference
compared with the global one.

Jitter aspect measures the accuracy variance in activities performed by the system. This
aspect provides means to measure the time before (or after) an observed activity happen, storing
this information (the history must provide information of at least one time sample) to calculate
the variance among the observed time instants. This aspect can be used, for example, to calculate
the jitter in an periodic active object activation or execution, or to compute the time variance of
a periodic message sending.

ToleratedDelayaspect controls the maximum tolerated latency to the actualstart of a given
system activity. Thus, the time between the command and the execution of the observed activity
must be measured and calculated. If the observed duration isgreater than the maximum allowed
latency, this aspect provides means to handle this exception.

ClockDrift aspect controls the clock deviation between the local time source and the global
one. Assuming that the target platform provides means to allow clock synchronization, this
aspect uses the global clock as reference to calculate the local clock deviation. Thus, designers
must specify time instants (or system events, e.g. the starting of an behavior execution) at which
the local clock must be compared with the global clock reference in order to check if there is a
difference between the two measured values.

DataFreshnessaspect is responsible to deal with the validity duration (orutility) of different
system information [22]. For that, this aspect associates timestamps to affected data by adding
new attributes to representing such information, as well asinserting behavior to control these
data use. In other words, each time a controlled data needs tobe read, its validity must be
checked and, if it is out of validity, a corrective behavior must be performed, e.g. wait until the
date to be updated, read data directly from its source, decrease the frequency at which periodic
behaviors (which read the controlled data) are executed. Analogously, each time a controlled
data is updated, its validity duration must also be updated.

81

5. Specifying DERTS Using UML and Aspects

5.3.2.4. Synchronization Package

Synchronization and the concurrent access control to shared resources requirements are dealt
by this package’s aspects.

ConcurrentAccessControlaspect provides means to control the concurrent access to ob-
jects, which share their attributes information with otherobjects. The access to object’s different
elements can be controlled:(i) the object itself;(ii) their attributes; and/or(iii) their methods.
Therefore, depending on the controlled element, one or morearbiters (i.e. concurrency con-
troller instances) are created. Every time an (active or passive) object needs to access controlled
shared elements, it must request the access to them (i.e. request a lock) that are granted or not
by the arbiter. Depending on the arbiter implementation (e.g. mutex, semaphore, monitors), and
also to the number of objects that are accessing the shared resource at the moment, the access
request can be authorized or not. Similarly, after the use ofthe shared resource, the object that
had the access permission must notify the arbiter, indicating that it is leaving the shared resource
and does not need to use it anymore.

MessageSynchronizationaspect deals with holding behaviors execution until the arrival
of an acknowledgement message (or a reply message) indicating that the (remote) object has
received the message sent. It provides a waiting mechanism that could be implemented as either
(i) a busy wait, i.e. a loop that waits until the acknowledgementmessage arrives; or(ii) using
the system scheduler, which preempts the execution of the current active object, marking it as
blocked, and thus, opening room for other active objects execution. Later, when the expected
acknowledgement message arrives, the blocked active object is marked as ready to execute, and
its execution is resumed following the scheduler’s decision.

5.3.2.5. Communication Package

This package provides aspects to deal with objects communication in terms of messages send-
ing. The first intention was to cover the communication between objects that are located in
computing devices that are physically separated. However,depending on application require-
ments, this package’s aspects can also be used for specifying the communication of objects
located in the same computing device.

MessageAckaspect provides an acknowledgment mechanism to notify reception of a mes-
sage to its sender. In this sense, this aspect affects both sides of a message exchange: sender
and destination objects. On one side, the sender object sends a messages and waits for an ac-
knowledgement of message reception. On the other side, the receiver objects needs to send
an acknowledgement message after each received message.MessageAckis related withMes-
sageSynchronizationaspect.

MessageIntegrityaspect is responsible for handling messages integrity by providing check-
ing information within a message. Similarly toMessageAck, this aspect also affects both mes-
sage’s sender and receiver objects. Sender objects must generate integrity checking information,
appending it in the message to be sent, while receiver objects must generate checking informa-

82

5.3. Non-Functional Requirements Handling Elements

tion from the received message, comparing it with the information that came with the received
message. The acknowledgment mechanism must be notified whether the checking information
match or not.

MessageCompressionaspect is in charge to compress/decompress messages in order to
improve bandwidth utilization. Like the other aspects of this package, this aspect affects both
message’s sender and receiver objects. At sender side, the message is compressed using a
compression algorithm, while at receiver side the message is decompressed using the same
algorithm.

5.3.2.6. TaskAllocation Package

Aspects provided by this package handle non-functional requirements related to objects distribu-
tion on different computing devices at runtime. These aspects are typically related to distributed
system nodes that are physically separated.

NodeStatusRetrievalaspect includes a mechanism to gather information on the system dy-
namic characteristics, such as processing load, message sending and reception rates, and if the
computing device is running.

TaskMigrationaspect adds a migration mechanism to move active objects from one com-
puting device to another one. Therefore, active objects canmigrate from one node to another,
as well as from software to hardware, or vice-versa2.

5.3.2.7. Embedded Package

Non-functional requirements related to physical resources availability, which are very com-
mon concerns in embedded systems design, are handle by this package’s aspects. Energy con-
sumption, memory usage, and hardware reconfigurable area can be cited as examples of such
concerns. Basically, the available aspects are concerned in monitoring and controlling the men-
tioned physical resources. Thus, depending on the physicalresource being controlled, the con-
trol policy, and platform capabilities, different actionscan be performed by these aspects as, for
instance:(i) depending on the system requirements and runtime state, to remove objects related
to non-critical activities;(ii) active objects migration;(iii) to loosen timing constraints;(iv) to
decrease processor operation frequency;(v) to turn off unnecessary hardware components; It is
important to highlight that this aspects are dependent on target platform capabilities, meaning
that the platform must provide means to monitor and control system physical resources.

HwAreaMonitoringaspect is related to systems that use reconfigurable hardware devices,
such as FPGAs. It provides a mechanism to monitor the reconfigurable area by which the

2Objects migration between software and hardware (at runtime) is usually known as “reconfiguration”. However,
in embedded systems domain, “reconfiguration” usually means to upload a bitstream into a FPGA device. Thus,
in order to avoid misunderstandings, this text uses the term“reconfiguration” to refer to the later, while recon-
figuration between software and hardware are called “migration”

83

5. Specifying DERTS Using UML and Aspects

remaining reconfigurable area (in terms of configurable logic blocks) is (re)calculated at each
reconfiguration command.

HwAreaControlaspect controls the hardware reconfigurable device usage byadding an ar-
biter to allow or deny every reconfiguration based on the information of this package monitoring
aspects.

EnergyMonitoringaspect relies on the target platform to provide a mechanism to monitor
energy consumed by system activities. This mechanism must measure the remaining energy
level before the observed activities start, and after theircompletion. Further, it calculates the
amount of energy that was consumed by these activities.

EnergyControlaspect provides an object that uses information provided bythe monitoring
aspects to control the energy consumption. To accomplish such goal, this object could perform
the actions mentioned in the beginning of this subsection.

MemoryUsageMonitoringaspect is similar to the other two monitoring aspects but it is
related to software rather than to hardware. It provides a mechanism that must calculate the
overall memory usage of a computing device at every object allocation/deallocation.

MemoryControlaspect uses the information provided byMemoryUsageMonitoringand
HwAreaMonitoringaspects to control the memory allocation requests for objects allocation
following an adopted memory control policy.

5.3.2.8. Discussion

As one can conclude from the DERAF aspects description, someaspects deal with the same
non-functional requirements, such asMessageSynchronization, MessageAck, MessageIntegrity,
andMessageCompressionthat handle objects message sending; orMemoryUsageMonitoring
andMemoryUsageControlaspects that handle memory non-functional requirements. There are
aspects that access resources provided by other aspects, such as theSchedulingSupportaspect
that uses resources provided byTimingAttributesandPeriodicTimingaspects adaptations; or
control-related aspects that use information provided by monitoring aspects to control the use
of embedded system physical resources.

However, it is important to note the conflicting nature of some aspects adaptations. The
behavior that handles a non-functional requirement can affect the handling behavior of other
non-functional requirements, e.g. the energy controller (inserted by theEnergyControlaspect)
decides to migrate an active object from software to hardware to save energy, but the hardware
area controller (inserted by theHwAreaControl) aborts this migration activity due to insufficient
available reconfigurable area. These conflicts must be solved at design time. RT-FRIDA pro-
vides tools to enable requirements conflicts resolution by assigning an importance value to each
requirement [37]. Hence, this information must be taken into account in aspects implementa-
tion, so that, problems related to requirements conflicts can be minimized.

The key factor that motivated DERAF creation was to provide aset of high-level aspects,

84

5.3. Non-Functional Requirements Handling Elements

which offer well-defined adaptations semantics, to be used in UML models. However, to al-
low its practical use, it is also necessary to provide the realization of these aspects in terms of
application or platform source code, or platform configuration code. Additionally, aspects im-
plementation must follow the pre-defined semantics on “how”and “where” aspects adaptation
can be applied. Keeping the coherency between high-level adaptations semantics and their im-
plementation, it is possible to increase the reuse of aspects implementation previously created,
reducing the effort necessary to handle non-functional requirements in further projects.

In this sense, it is important to highlight that, although timing information is specified by
Timing Package’s aspects within ACOD context, specific details on how to handle timing are
delegated to the target platform, in order to keep DERAF aspects platform-independent. In other
words, the implementation of aspects adaptations defines exactly how to deal with each timing
feature using constructions available in the target platform, and respecting DERAF’s high-level
semantics as specified in UML model. An example of such aspectimplementation can be seen
in figure 6.9 of the Chapter 6 that shows how periodic timing is handled using constructions
available in an RT-Java based platform. Other timing issues(e.g. deadline, WCET, etc.) are
handled in a similar form: DERAF defines high-level semantics to these non-functional re-
quirements handling, which are further implemented using constructions and services available
in the target platform. Consequently, the exact handling oftiming features depends on the target
platform.

It should be stated that there are two kinds of possible implementations to aspect adap-
tations: (i) those that adapt application code; and(ii) adaptations that tailor platform source
code, or produce platform configuration files. The former represents modification in the appli-
cation code itself, e.g.PeriodicTimingaspect’sLoopMechanismadaptation,DataFreshnessas-
pect’sVerifyFreshnessadaptation, orConcurrentAccessControlaspect’sAcquireAccessadapta-
tion. On the other hand, the other kind enables or disables a feature in the target implementation
platform, e.g. MessageAck, MessageIntegrity, andMessageCompressionaspects adaptations.
The most important thing is to note that, to provide the expected aspects adaptations according
to the pre-defined semantics, the target platform must offerthe required services. It is not the
intention of the described DERAF semantics to provide a definitive solution for the handling of
each non-functional requirements addressed by its aspects, they are suggestions to address with
these requirements handling.

Finally, it is worth mentioning that the aspects set provided by DERAF does not cover all
non-functional requirements present in the distributed embedded systems domain. Currently,
non-functional requirements such as fault tolerance are not addressed by DERAF aspects. How-
ever, it is an extensible framework, meaning that it is not difficult to include other aspects. It is
only necessary to follow two rules:

1. High-level semantics, indicating “how” and “where” aspects adaptations are applied,
must be pre-defined; and

2. To respect aspects’ pre-defined semantics in their implementation using services and con-
structions of a given target platform.

85

5. Specifying DERTS Using UML and Aspects

5.3.3. Aspects Crosscutting Overview Diagram

As UML does not provide any meta-model element or graphical construction to represent as-
pects, this works has proposed theAspects Crosscutting Overview Diagram(ACOD), which is
an extended version of the standard class diagram. ACOD is based on the concepts presented
by Stein et al. [120] and Schauerhuber et al. [109], and showsDERAF aspects affecting or not
functional elements. There are two ACOD versions with different levels of detail:(i) overview
ACOD presents all aspects affecting classes without depicting details about aspects’ informa-
tion; and(ii) detailed ACOD depicts all aspects specified in the UML model along with their
adaptations and pointcuts, and all classes that receive newinformation from aspects. Detailed
ACOD is the main information source for aspects specification. Thus, designers must always
create this diagram to specify AO-related elements. Overview ACOD can be generated automat-
ically by evaluating all pointcuts specified in the detailedACOD (using the join points indicated
in these pointcuts) to discover which aspects affect which classes. Hence, overview ACOD is
considered an informative diagram rather than an aspects specification.

AO-related stereotypes proposed in this work are used to annotate UML meta-model el-
ements depicted in ACOD to represent AO concepts as presented in figure5.11. Aspectsare
represented as classes decorated with the«Aspect» stereotype. Aspect’sbehavioral adapta-
tionsare specified as methods decorated with the«BehavioralAdaptation» stereotype,
while structural adaptationsas methods decorated with the«Structural- Adaptation»
stereotype. Similarly,pointcutsare specified as methods decorated with«Pointcut» stereo-
type. As pointcuts specify the link between join points selection and aspect adaptations, this
information is specified as method parameters as follows:

• The first parameter represents the join point name, and indicates which model elements
are selected by these JPDD, e.g.JPDD_InfoAttributeReadin DataFreshness;

• The second parameter indicates which adaptations are performed in selected model el-
ements, e.g.Deadlineand SetTimingAttributesin TimingAttributes. If more than one
adaptation of the same aspect modify the same join point, adaptations names can be com-

<<Pointcut>>+pcActClass(JPDD_ActiveObjectClass, Deadline+Priority+WCET, ADD_NEW_FEATURE)
<<Pointcut>>+pcActObjInit(JPDD_ActiveObjectConstruction, SetTimingAttributes, AFTER)

. . .
<<StructuralAdaptation>>+Deadline()
<<BehavioralAdaptation>>+SetTimingAttributes()

. . .

<<Aspect>>

TimingAttributes

<<Pointcut>>+pcReadAttrValue(JPDD_InfoAttributeRead, VerifyFreshness, BEFORE)
. . .

<<BehavioralAdaptation>>+VerifyFreshness()
. . .

<<Aspect>>

DataFreshness

<<MutualExclusionResource>>

MovementInformation

<<SchedulableResource>>

MovementController

<<Crosscut>>

Angle

{Validity = "20ms"}

<<Crosscut>>

Speed

{Validity = "50ms"}

<<Crosscut>>

{Deadline = "20ms",
Priority = "1",
WCET = "8ms"}

Figure 5.11.: Aspects specification using ACOD

86

5.3. Non-Functional Requirements Handling Elements

bined in the same pointcut, using the “+” character to separate each adaptation name, e.g.
“Deadline+Priority+WCET”;
• The third parameter specifies position (related to the join point) at which associated adap-

tations are applied. For structural adaptations, this parameter is optional. The following
relative positions are supported:

– BEFORE: used for behavioral adaptations to indicate that they are applied before
join point occurrences, e.g.pcReadAttrValuein DataFreshness;

– AFTER: used for behavioral adaptations to indicate that they are applied after join
point occurrences, e.g.pcActObjInit in TimingAttributes;

– AROUND: used for behavioral adaptations to indicate that theyenclose(i.e. adapta-
tions are done before and after) join point occurrences;

– REPLACE: used for behavioral or structural adaptations to indicatethat join point
occurrencesare replacedby these adaptations;

– MODIFY_STRUCTURE: used for structural adaptations to indicate that theymodify
elements selected by join points;

– ADD_NEW_FEATURE: used for structural adaptations to indicate that new features
(e.g. attributes) are added in affected elements, e.g.pcActClassin TimingAttributes.

An important ACOD feature must be highlighted: associations between aspects and classes,
which are decorated with the«Crosscut» stereotype. If an aspect structural adaptation in-
serts new attributes in classes, the affected classes must be included in ACOD specification.
For each affected class, an unilateral one-to-one association decorated with the«Crosscut»
stereotype must be created from the aspect to the affected class. Values for the new attributes
are specified as tagged values in thecrosscut associationas depicted in figure5.11. As one can
see,TimingAttributesinserts three attributes (i.e.Deadline, Priority, andWCET) into Move-
mentController. The crosscut associationspecifies thatDeadlinemust be initialized with 20
ms,Priority with 1, andWCETwith 8 ms. Similarly,DataFreshnessaspect adds a new attribute
associated withMovementInformation’s SpeedandAngleattributes. A different value to each
attribute is specified incrosscut associations. However, it is important to highlight thatcrosscut
associationsare not “real” associations between aspects and classes in terms of UML associ-
ation semantics. Instead, they are interpreted as informative relationships that do not produce
any meta-model element in the associated elements.

Considering timing requirements handled by DERAF aspects,the form to specify such
information is demonstrated in figure5.11. For instance, deadlines are handled byTimingAt-
tributes, and thus, they are specified ascrosscut associationsbetween this aspect and the af-
fected active object classes. As DERAF defines high-level adaptation semantics (see Appendix
A), the exact handling of deadlines is delegated to the target platform, which implements the
pre-defined semantics of this aspect. In this sense, the UML model specifies that active ob-
jects behaviors are constrained by deadlines, which are dealt by TimingAttributes. However,
there is no definition if this handling must be performed using timers, special APIs, or other
programming abstractions. The target platform is responsible for this handling. Consequently,
aspects adaptations must be map to constructions in such platform, defining the mentioned non-
functional requirement handling. The same is valid to the other aspects that deal with timing
issues, e.g.PeriodicTiming, DataFreshness, and other.

87

5. Specifying DERTS Using UML and Aspects

Additional examples of ACOD specification are provided in the case studies presented in
Chapter 7, and also in Appendix B.

5.3.4. Join Points: Selecting Model Elements Affected by As pects

Although the aspects specification is an important part of non-functional handling specification,
equally important is the specification of which model elements are affected by aspects adap-
tations. Therefore, join points selection are specified using a subset ofJoin Point Designation
Diagrams(JPDD) [121]. The main reason for using JPDD is the possibility to specify join
points graphically, which facilitates the understanding about which element kind is selected.
Additionally, JPDDs are considered more suitable to use in UML models than join points tex-
tual descriptions.

JPDD can capture model elements based on three different models: (i) control flow;(ii) data
flow; and(iii) state. The first model allows elements selection based on theexecution control
flow depicted in sequence or activity diagrams, e.g. a JPDD selects actions performed in the
behavior of a given method “a”, which is called inside the behavior of a method “b”. The
second model allows the elements selection based on data passed from one method to other
one, e.g. a JPDD selects a method behavior that has received astring starting with “s” character
as parameter. The last model allows elements selection baseon their explicit state described in
a state diagram, e.g. a JPDD selects all objects that are in “state_A”. As one can infer, elements
selection can be performed statically or dynamically. The first model allows both dynamic and
static selection; the other two only dynamic. Additionally, JPDDs can select elements (e.g.
classes, attributes, and others) based their names rather than using the mentioned models.

AMoDE-RT modeling approach supports both control flow JPDDs, and elements selection
based on naming patterns. However, there is a constraint: control flow JPDDs cannot specify
multiple calling levels, i.e. only actions performed in themethod behavior context can be se-
lected. Furthermore, to specify which elements should be selected by JPDDs, this work follows
the naming patterns presented in Stein et al. [121], as shownin table5.2.

Elements selection is performed during the transformationof UML model into a DERCS
model. JPDDs are evaluated using elements’ static information, and hence, dynamic evalua-
tion of JPDD is not supported. In this sense, the following model elements can be selected:
(i) classes;(ii) attributes;(iii) methods;(iv) nodes;(v) sending message actions;(vi) object
creation actions;(vii) object destruction actions;(viii) method return actions; and(ix) methods
behavior. Structural elements (i–iv) are selected using the sort of JPDDs presented in figure
5.12; behavioral elements (v–ix) are selected by JPDDs depictedin figure5.13.

Sequence diagrams and class diagrams are decorated with the«JPDD» stereotype to indi-
cate that they are, in fact, the specification of join point selection rather than system specifica-
tion. Additionally, elements selected by the join point aredecorated with the«JoinPoint»
stereotype, which defines some tags to identify precisely which elements are considered. The
available tags are:(i) Classes; (ii) Object; (iii) Node; (iv) MessageDefinition; and
(v) Behavior.

88

5.3. Non-Functional Requirements Handling Elements

Table 5.2.: Naming pattern for elements selection in JPDD

Naming Pattern Description
* Indicate that any name matches with the pattern

*Ending Indicate that any name that ends with the character sequence
“Ending” matches with the pattern

Start* Indicate that any name that starts with the character sequence
“Start” matches with the pattern

mthName ’(’ [parName
[, parName]*] ’)’ ’:’
retTypeName

This special naming pattern is used in sending message actions
selection, where
mthNameis the message name pattern as described above;
parNameis the message parameter name pattern. It is an op-
tional part. If method parameters should not be considered,the
string “..” must be used. Otherwise, parameters naming pattern
follows the above mentioned patterns;
retTypeNameindicates the method return type name, as de-
scribed above.

[local. | remote.]
objName ’:’ className

This special naming pattern is used in objects, classes or nodes
selection. They are used to name lifelines in sequence diagram
JPDD, where
local or remoteis a reserved word to indicate if the element com-
municates with, respectively, local or remote elements;
objNameis the object name, as described above;classNameis
the class name, as described above.

To illustrate the specification of model elements selection, a brief discussion on which ele-
ments are selected by JPDDs depicted in figures5.12and5.13is provided. Structural elements
are selected by JPDDs presented in figure5.12:

• JPDDs in figures5.12a and5.12e select classes. The former selects all active object
classes, while the later selects all classes whose objects send messages to remote objects;
• Figure5.12b depicts the selection of all attributes, whose name startswith “sensor”, from

all passive objects that are accessed exclusively;
• The selection of all system nodes is shown in figure5.12c;
• Figure5.12d depicts a JPDD that selects all methods, whose name start with “set”;
• All constructors of all active object classes are selected by the JPDD presented in figure

5.12f.

Regarding the selection of behavioral elements, the following elements are gathered by
JPDDs depicted in figure5.13:

• All actions related to messages whose name starts with “set”, which are sent from any
object to any passive object, are selected by the JPDD presented in figure5.13a.
• JPDD presented in figure5.13b selects all actions representing messages, whose name

starts with “get”, and are sent to any remote object.
• Figure5.13c presents a JPDD that selects the periodic behavior («Join Point» stereo-

type’sBehavior tag) executed by any active object. Thus, this JPDD selects all mes-

89

5. Specifying DERTS Using UML and Aspects

<<MutualExclusionResource>>

*

<<JoinPoint>>−sensor* : *

*

<<JoinPoint>>+set*()

<<SchedulableResource>>

<<JoinPoint>>

*

<<JoinPoint>>

local.* : *

{Class}

remote.* : *

1: *(..):*

<<JoinPoint>>

.

<<SchedulableResource>>

* : *

* : *

<<JoinPoint>>

1:

{MessageDefinition}

(d)

(e) (f)

(a) (b)

(c)

Figure 5.12.: JPDD for structural elements selection

<<Scheduler>>

* : Scheduler

<<SchedulableResource>>

* : *

<<TimedEvent>>

<<JoinPoint>>

1: *(..): *

{ every = “”,

Behavior }

* : * * : *

<<JoinPoint>>

1:

<<Resource>>

* : *Information

*

<<JoinPoint>>

2:

1: * (..) : float

<<MutualExclusion

 Resource>>

* : *

* : *

<<JoinPoint>>

1:

local.* : * remote.* : *

<<JoinPoint>>

1: get*(..):*

<<MutualExclusionResource>>

* : *

* : *

<<JoinPoint>>

1: set*(..) : *

(a)

(c)

(b)

(d)

(f)(e)

Figure 5.13.: JPDD for behavioral elements selection

90

5.4. Final Remarks

sages sent from the scheduler to any active object, that are,in addition, are annotated with
«TimedEvent» stereotype andevery tagged value.
• All return actions from methods of all passive object classes whose name ends with “In-

formation” are selected by the JPDD shown in figure5.13d.
• Figure5.13e depicts the selection of all actions that create passive objects.
• JPDD presented in figure5.13f selects all actions that destroy any object.

5.4. Final Remarks

During the study to identify which diagrams are important tospecify structure and behavior
of distributed embedded real-time systems, the proposed modeling approach selects UML dia-
grams that have been considered more intuitive, in order to facilitate the interpretation of design
intentions performed by different design teams. In this sense, modeling guidelines are defined
(and must be followed) to enable system specification to be automatically extracted from UML
models. Other goal is to use UML diagrams in its standard form, i.e. using the standardized
graphical syntax without proposing any graphical extension. Hence, off-the-shelf UML model-
ing tools can be used to support AMoDE-RT modeling approach without any constraints.

In AMoDE-RT, the class diagram is the most important diagramto describe system’s static
structure. It provides all structural information for system objects. The activity diagram has
been chosen to depict an overall view of system runtime phases, in which active objects’ con-
current behavior can be seen with their timing constraints expressed using standard MARTE
stereotypes. However, in AMoDE-RT modeling approach, the most important behavior dia-
gram is the sequence diagram. Due to its intuitive graphicalsyntax, sequence diagram has been
chosen to specify actions sequence execution instead of a textual actions language. In this sense,
elements in activity and state diagrams are liked with sequence diagrams to indicate the behavior
executed by classes associated these elements. Considering the subset of MARTE stereotypes
used in AMoDE-RT modeling guidelines, table5.3 shows all stereotypes that can be used to
annotate UML diagrams’ elements, along with a brief description of their usage.

Also with regard to the specification of non-functional requirements handling , this work
does not propose any new UML graphical extensions to model AOconcepts. As mentioned,
the intention is to use UML standard diagrams, thus a lightweight extension in terms of a UML
profile has been proposed. Commercial off-the-shelf modeling tools are able to specify both
ACOD and JPDD diagrams. JPDD has been chosen due to its expressiveness to specify join
points selection, and also to the lack of a consolidated standard for AO concepts modeling.

Finally, although DERAF aspects’ pre-defined high-level semantics define non-func- tional
requirements handling, aspects realization must be provided in further design phases using ser-
vices provided by available platforms. Therefore, aspectsadaptations must be implemented
using constructions of a target platform, or reused from previous projects that had implemented
these adaptations using the target platform. In this sense,platform support is crucial to allow
the DERAF effective use. Although this is not the focus of this thesis, some DERAF aspects
implementations are provided using platforms available inour research group. Empirically, we

91

5. Specifying DERTS Using UML and Aspects

Table 5.3.: Summary of MARTE stereotypes used in AMoDE-RT

MARTE stereotypes UML elements Usage
«SchedulableResource» Class Specifies active object classes
«Resource» or
«MutualExclusionResource»

Class Specifies passive object classes

«Scheduler» Class Specifies the scheduler of a comput-
ing node

«TimedEvent» Operation,
Message,
Activity

Specifies behaviors that are trig-
gered periodically

every Indicates the time interval between
two consecutive executions of the
behavior

«RTFeature» Activity Specifies behaviors’ timing charac-
teristics

relDeadline Indicates behaviors’ relative dead-
line

wcet Indicates behaviors’ WCET

believe that all aspects are fully, or at least partially, implementable using platforms that are
already available in industry or academy.

92

Chapter 6

Tool Support for the Proposed
Approach

6.1. Introduction

Tool support is essential to improve a design method usage effectiveness. In MDE approaches,
one important tool is the code generation one, which uses theproduced models to create source
code respecting system specification. Therefore,Generation of Embedded Real-Time Code
based on Aspects(GenERTiCA) has been created to support the AMoDE-RT approach. As
stated in chapter 4, GenERTiCA is a script-based code generation tool, which executes small
scripts to produce code fragments that are merged to producethe expected source code files
for a target platform. Figure6.1 shows the three main features involved in the code generation
approach implemented by GenERTiCA:(i) transformation of system specification from UML
to DERCS model, which is more suitable than UML for code generation purposes;(ii) model-
to-text mapping rules definition; and(iii) code generation and aspects weaving algorithm.

This chapter discusses GenERTiCA’s features. Firstly, it will discuss the DERCS meta-
model, and heuristics created to transform UML model elements into DERCS elements. Next,
mapping rules specification is discussed, focusing on mapping rules file structure and scripts or-
ganization using the XML format. Additionally, mapping rules scripts are detailed. Finally, the
algorithm used to produce code from model elements is discussed. Aspects weaving performed
by GenERTiCA is also detailed.

6.2. A Platform Independent Model for Code Generation

UML is a complex modeling language, which allows system elements specification using differ-
ent views. In its version 2.2, UML provides thirteen different diagrams: six for system structure
specification, and seven for behavior specification. Although these different diagrams facilitate

93

6. Tool Support for the Proposed Approach

Code Generation
+

Aspects Weaving

Model

Transformation

XML

Mapping
Rules

DERCS

public class MovementControler

extends RealtimeThread {

...
 private static RelativeTime _Period

= new RelativeTime(0,0,0);

 private static PeriodicParameters

_PeriodicParams =

 new PeriodicParameters
(null, null, null, null, null);

...

 public void run() {

 // Variables

 int newMRRotation;
 ...

 // Actions

 while (isRunning()) {

 mrRotation =

MRInfo.getRotation();
 mrPace = MRInfo.getPace();

 ...

 waitForNextPeriod();

 }

 }
...

}

public class MovementControler

extends RealtimeThread {

...
 private static RelativeTime _Period

= new RelativeTime(0,0,0);

 private static PeriodicParameters

_PeriodicParams =

 new PeriodicParameters
(null, null, null, null, null);

...

 public void run() {

 // Variables

 int newMRRotation;
 ...

 // Actions

 while (isRunning()) {

 mrRotation =

MRInfo.getRotation();
 mrPace = MRInfo.getPace();

 ...

 waitForNextPeriod();

 }

 }
...

}

public class MovementControler

extends RealtimeThread {

...
 private static RelativeTime _Period

= new RelativeTime(0,0,0);

 private static PeriodicParameters

_PeriodicParams =

 new PeriodicParameters
(null, null, null, null, null);

...

 public void run() {

 // Variables

 int newMRRotation;
 ...

 // Actions

 while (isRunning()) {

 mrRotation =

MRInfo.getRotation();
 mrPace = MRInfo.getPace();

 ...

 waitForNextPeriod();

 }

 }
...

}

Source
Code

Figure 6.1.: GenERTiCA mains features overview

visualization of system features from different viewpoints, this diversity of diagrams may lead
to an ambiguous specification, due to information overlapping and duplication. Furthermore,
UML is considered a semi-formal language, due to the lack of formal semantics to define the
interpretation of system specification information, whichis usually spread in several diagrams.
Consequently, computers cannot perform UML models automatic interpretation (or execution).

A candidate solution to these problems is to transform UML diagrams elements, which
represent embedded system information, into elements of other model, providing the same ab-
straction level without binding system specification to anyimplementation platform. However,
this transformation makes sense only if this other model canprovide a more concise meta-model
compared to the UML one. Hence, this works proposes the use ofthe so-calledDistributed Em-
bedded Real-Time Compact Specification(DERCS), aiming at providing a PIM suitable for code
generation purposes. DERCS is based on a subset of both the UML meta-model and MARTE
profile meta-model, and also the AO conceptual model [109], providing a model that includes
OO and AO concepts. The main intention is to precisely and unambiguously represent the in-
formation on distributed embedded real-time system’s structure, behavior and non-functional
requirements handling.

DERCS meta-model defines a distributed embedded real-time system as set of communi-
cating objects, which interact among each other to provide the expected system functionality.
In other words, objects are the key elements in system specification, representing hardware and
software components. System behavior is represented by both actions performed sequentially
by objects, and objects interaction. There are two object types: active and passive. Active
objects are autonomous entities that have their own flow of control (i.e. a particular thread),
allowing concurrent actions to be executed in parallel withother active objects. Additionally,
these objects can be compared to concurrent processes in multitask operating system, having
characteristics, such as activation patterns (e.g. periodic, aperiodic, or sporadic), deadlines,

94

6.2. A Platform Independent Model for Code Generation

WCET, priorities, and others. On the other hand, passive objects are those that execute actions
sequentially in response to messages received from other objects (active or passive). Passive
objects can be seen as entities that provide useful information and services to active objects.

Likewise the UML meta-model, DERCS meta-model represents system structure elements
using OO concepts. Figure6.2 shows DERCS meta-model structural elements. Anobject is
a classinstance, which, in turn, represents elements structure interms of attributes and meth-
ods.Attributeshold values to represent objects’ state at a given instant, while methodsrepresent
messages signatures that can be received from other objects. Both can be inherited from the
so-called superclasses. Concerning thedata types, DERCS defines almost the same data types
as UML. It is important to mention that classes can also definea set of explicit possiblestates,
in which their instances can be during their lifetime. Classexplicit states are represented by
attributes whose data type isStateDataType. Each state is associated withtransitions, repre-
senting state changes. Further, more than one incoming/outgoing transitions can be associated
to the state. Concluding the discussion about system structure representation, as one can infer,
there is no major difference from DERCS structural meta-model elements to UML ones.

System behavior is represented by elements presented in figure 6.3. A behaviorconsists
of behavioral elements, which can be eitheractionsor other behaviors, andlocal variables.
Basically, behaviors can be triggered in response to messages received from other objects (i.e. a
behavior is associated to a method body of a given class). In other words, behaviors can be seen

FloatingPointDataTypesCharacterDataType

<<enumeration>>

ParameterKind

inout

out

in

<<enumeration>>

Visibility

protected

private

public

NamedElement

IntegerDataType

RuntimeElement

Class

StateTransition

ClassDataType

State

StateDataType

PassiveObject

Method

DataType

Enumeration

ActiveObject

Attribute

BaseElement

Object

Parameter

DateTime

Boolean

DoubleInteger String

Node

Char

Array

FloatLongByte Short

Void

−ReturnType

1

1

−DataType1

1

−InstanceOf

1

0..*

−ParameterKind

1

1

−DataType
1

1

−Methods

0..*

1

−Parameters

0..*

1

−Visibility1 1

−Represent

1..*

1

−Represent

1

1

−Attributes

0..*

1

−Deployed
 Objects

0..*

1

−FromState

1

1..*

−ToState

1

1..*

−Visibility

1

1

−DataType

1

1

1

−References *

−SuperClass

0..11

Figure 6.2.: DERCS meta-model: structural elements

95

6. Tool Support for the Proposed Approach

as the execution of actions sequences that start in responseto method calls. DERCS defines
its actions model based on the UML meta-model, providing platform independent actions as
follows:

• AssignmentAction represents a value assignment to an attribute or local variable;
• ExpressionAction represents mathematical or boolean expressions evaluation;
• SendMessageAction indicates the action of an object sending a message to another

object;
• ModifyStateAction represents the action of changing object’s explicit state;
• CreateObjectAction indicates an object creation, whileDestroyObjectAc-
tion an object destruction;

• ReturnAction represents a method value return action;
• InsertArrayAction represent the action of inserting a new element in an array,

while RemoveArrayAction represents the opposite, i.e. the action of removing an
element from an array. In addition,ArrayLengthAction represents the array size
information retrieval.

Moreover, DERCS defines that behaviors have pre- and post-conditions that must hold,
respectively, before and after actions sequence execution. Pre-conditionsindicate that behaviors
start their actions execution only if the boolean expression holds. Likewise,post-conditions
indicate that behaviors repeat actions sequence executionuntil the boolean expression become
valid.

Behaviors can also be executed in response to events occurrences. In fact, an event is asso-
ciated with an object that contains methods capable of handling this event. Thus, when an event
occurs, it triggers a sending message action to one of the associated object’s methods. DERCS
defines two event types: internal and external.Internal eventsare detectable occurrences during
system runtime, such asmessages sending/reception, enteringin an explicit state, andexiting
from an explicit state. On the other hand,external eventsare occurrences which happened in the
external environment in which the system is embedded. Furthermore, events specifysequential
andparallel triggers. The former indicates that the triggered object’sbehavior must hold the
execution until the executing behavior finishes. On the other hand, the later indicates that the
associated object’s behavior can start its execution concurrently with other executing behaviors.

Other important DERCS feature is objects distribution. Objects reside in computing de-
vices (e.g. devices with general purpose processors and memory, or dedicates hardware de-
vices), upon which their behavior is performed.Node element represents such devices, whose
implementation represents either software or hardware platforms. Additionally, it can represent
physically separated computing devices, making objects tobe considered as local or remote
objects (depending on the objects/device reference). However, it is important to highlight that,
independently of objects implementation (i.e. software orhardware) or their deployment (i.e.
local or remote), behavior semantics proposed in DERCS remain the same. Thus, actions are
executed (behavior) in response to either messages received from other objects, or event occur-
rences. In other words, messages exchanged by objects implemented as software or hardware
and/or deployed in different devices, at DERCS abstractionlevel, have the same semantics.
The implementation of these different message exchange types is defined in the chosen target

96

6.2. A Platform Independent Model for Code Generation

ReceiveMessageEvent

DestroyObjectAction

RemoveArrayAction

SendMessageActionCreateObjectAction

SendMessageEvent

BehavioralElement

SEQUENTIAL

PARALLEL

<<enumeration>>

TriggerKind

ArrayLengthAction

AssignmentAction

ModifyStateAction

ActionWithOutput

InterruptionEvent

InsertArrayAction

ExpressionAction

RuntimeElement

EntryStateEvent

StateTransition

NamedElement

MessageEvent

ExitStateEvent

LocalVariable

DataType

ReturnAction

ObjectAction

BaseElement

ArrayAction

Behavior

Object

Method

StateEvent

Event

Attribute

Action

−ReturnType1

1

#TriggeredBehavior1

1

1

1

−AssociatedObject

1..*

1

−TriggeredAction

1..*

1

#RelatedObject1

1

−fromElement

1

1

−toElement1

1

1

1

−Related
Transition

1

1
1 1

1

1

−DestinationVariable

1

1

−ResultOfAction

11

11

0..*

1

0..*

1

−DestinationAttribute

1

1

1

Figure 6.3.: DERCS meta-model: behavioral elements

platform that will realize the distributed embedded real-time system elements.

The most noticeable difference between DERCS and UML meta-models is the capability
of representing AO concepts, as depicted in figure6.4. Aspectsconsist of anaspect adaptations
set, which contain bothstructuralor behavioral adaptations, and a set ofpointcuts. In essence,
DERCS represents DERAF aspects specified in the ACOD (as discussed section5.3.3); sim-
ilarly, aspect adaptations represent specified adaptations provided by the selected DERAF as-
pects. In addition, thecrosscutting informationspecified in ACOD’s crosscut associations (be-
tween aspects and classes) is represented byCrosscutting andCrosscuttingInfor-
mation elements.Pointcutsrepresent the link betweenAspectAdaptations andJoin-
point elements, indicating therelative positionin which adaptations must be performed.
RelativePosition enumeration specifies one of the following options:

• BEFORE indicates that adaptations are performedbeforejoin point occurrences. It is used
in pointcuts that link join points representing behavioralelement (e.g. actions) selection
with aspect adaptations;
• AFTER indicates that adaptations are performedafter join point occurrences. It is also

used in pointcuts related to behavioral join points;
• AROUND specifies that adaptations are performed in bothbeforeandafter join point oc-

currences. It is used in pointcuts that link join points thatselect behavioral elements (e.g.
actions or behaviors) with aspect’s behavioral adaptations;

97

6. Tool Support for the Proposed Approach

BehavioralAdaptationStructuralAdaptation

<<enumeration>>

RelativePosition

MODIFY_STRUCTURE

ADD_NEW_FEATURE

AROUND

BEFORE

AFTER

AspectAdaptation

NamedElement

Crosscutting

Aspect

Crosscutting
Information

BaseElement

Pointcut

Joinpoint

−StructuralAdaptations

0..*

1

−BehavioralAdaptations

0..*

1

−SelectedElements
0..*

1

−AffectedElement

1

0..*

−RelativePosition

11

−Crosscuting

0..*

−Pointcuts

0..*

1

−AspectAdaptation

1

1

−CrosscutingInfo

1

0..*

1..*

1

Figure 6.4.: DERCS meta-model: AO-related elements

• ADD_NEW_FEATURE specifies that new features (e.g. an attribute in a class, or aparam-
eter in a method) are included by the aspect adaptation in thestructural elements selected
by the join point;

• MODIFY_STRUCTURE indicates that structural features of the selected elements are
modified by the aspect adaptation. Likewise the previous relative position, this is used
in pointcuts related to join points selecting structural elements.

Join pointsare represented by theJoinpoint element, which contains a list of selected
base elements, i.e. those elements that extend theBaseElement class. In other words, the se-
lected elements list consists of: instances ofClass, Attribute,Method, andNode, in ad-
dition to all behavior-related elements, i.e. instances ofall Action subclasses, andBehavior
class. As it will be explained in the next section, the selection query specified in JPDD is eval-
uated, and all DERCS elements instances that match with the selection criteria are included in
theJoinpoint’s elements selection list.

6.3. UML-to-DERCS Transformation

Based on the information provided in the previous section, it can be claimed that DERCS meta-
model can represent structure and behavior in a more conciseway than UML meta-model.
DERCS uses fewer meta-model elements to represent the same information (i.e. system struc-
ture and behavior) compared to UML, which, in turn, has different element to represent similar
features. In this sense, there is no direct one-to-one relationship among many DERCS elements
and their similar counterpart in UML meta-model. Hence, to transform a UML model into a

98

6.3. UML-to-DERCS Transformation

DERCS model, some transformation heuristics had to be defined.

Considering the structural elements, the majority of them have a direct counterpart in the
UML meta-model, as show in table6.1. Thus, when GenERTiCA’s transformation engine reads
the UML model, and one of these elements is found, it does not need to interpret the UML
meta-model element semantic regarding any transformationheuristic, i.e. it just creates the
DERCS element that matches with the UML one. However, there are two exceptions:(i) method
signatures; and(ii) associations between classes. An UML’sKernel.Operation element
decorated with«getter» or «setter» stereotypes indicates an access method to a given
attribute. Thus, the transformation heuristic understands such role, and creates not only one
DERCS’Method element, but also its associatedBehavior element, in which actions corre-
sponding to the specified semantics (i.e. get/set attributes values) are inserted.

Associations among classes have also a special transformation heuristic. As stated in chap-
ter 5, all associations must have at least one end specifyingmultiplicity equals to “1”, and the
navigable property set to true; the class representing thisassociation end will receive elements
related to the association. For “normal” associations, thetransformation engine inserts a new
Attribute element (related to the other association end), along with aParameter element
in class constructor, and anAssignmentAction to represent this new attribute initialization.
Access methods, i.e. get/set methods, for the new attributeare also created as described in the
previous paragraph. For aggregation relationships, the same transformation heuristic is applied.
However, for composition relationships, the class receives two additional methods instead of the
new parameter and its assignment action:(i) one method to create composite class parts; and
(ii) another one to remove (or destroy) composite class parts. For both methods, the correspond-
ing behavior is also created. To illustrate the mentioned heuristics, let’s consider theleftWheel

Table 6.1.: UML-to-DERCS mapping table

UML meta-model DERCS meta-model
Kernel.Class Class
Kernel.Property Attribute
Kernel.Type or
Kernel.PrimaryType

DataType subclass

Kernel.Operation Method
decorated with«getter» Method, Behavior, ReturnAction
decorated with«setter» Method, Parameter, Behavior, AssignmentAction

Kernel.Parameter Parameter
Kernel.ParameterDirectionKind ParameterKind
Kernel.Association Attribute, Method, Parameter, Behavior,

AssignmentAction, ReturnAction
if any association end defines
AggregationKind as composite

Attribute, Method, Parameter, Behavior,
AssignmentAction, ReturnAction,
CreateObjectAction,DestroyObjectAction

Kernel.InstanceSpecification or
BasicInteractions.Lifeline

related to class decorated with
«SchedulableResource»

ActiveObject

related to class decorated with
«MutualExclusionResource»
or «Resource»

PassiveObject

99

6. Tool Support for the Proposed Approach

composite relationship betweenMovementControlSystemandActuatordepicted in figure5.2.
As one can see,Actuator association end is the navigable end (indicated by the arrowhead).
Consequently,MovementControlSystemreceives a new attribute, whose name isleftWheeland
the type is theActuator class and, as this association is a composition, the mentioned meth-
ods are also added inMovementControlSysteminstead of the new parameter and its assignment
action inMovementControlSystem’s contructor.

As mentioned, UML has very different ways to specify system behavior. DERCS proposes
a more simplified form for behavior representation (compared to UML meta-model elements).
For that reason, there is no direct one-to-one mapping from UML behavior-related elements to
DERCS ones. Thus some UML behavior diagrams interpretationheuristics have been created.

In AMoDE-RT approach, sequence diagram is the most important diagram to specify ob-
jects behavior, due to its capability of showing objects interactions, execution flow control (us-
ing combined fragments[92]), and also actions (using the reserved words presentedin section
5.2, table5.1). The whole behavior of a distributed embedded real-time system is specified using
different sequence diagrams, i.e. behavior information must be extracted from more than one
diagram. Additionally, there is no one-to-one relation between sequence diagrams meta-model
elements and DERCS behavioral ones. Thus, to accomplish theUML-to-DERCS transforma-
tion, an interpretation heuristic has been defined. Sequence diagram messages are statically
analyzed using a stack-based algorithm, which pushes messages (i.e. method calls) on the top
of a “call stack” to discover which messages (i.e. actions) are nested inside the behavior of other
methods. Algorithm1 shows this static analysis.

For each message, a tuplem = (Sender, Target, Behavior)is created, whereSenderis the
message’s sender lifeline1; Targetis the message’s target lifeline; andBehavioris the behavior
associated to the method represented by the message. The algorithm analyzes all messages (re-
specting messages order depicted in the sequence diagram) to create the corresponding action,
e.g. sending message, assignment, expression, etc. If the message represents a sending message
action, this message’s tuple is pushed on top of the call stack. If the following messages are
sent from the same lifeline (i.e. same object) as tuple’s target on stack’s top, these messages
represent actions performed within the context of the calling message’s behavior.

It is important to highlight that combined fragments are also considered in sequence dia-
grams analysis. Combined fragments represent execution control flow in objects interactions,
i.e. they can specify both conditional, or repeating interactions (as described in section5.2.4).
For each combined fragment, a behavior with pre-conditions(for combined fragments whose
interactionOperator property is set toalt or opt), or post-conditions (for those spec-
ified with loop operator) is created. Therefore, messages enclosed by combined fragments
represent actions performed within the context of branches(i.e. “ifs”) or loops. When a com-
bined fragment is detected, a new behavior is created, and inserted in the tuple’s behavior on
stack’s top. Hence, actions created from messages enclosedby this combined fragment are
inserted into theBehavior element related to the combined fragment.

1Lifelines are vertical lines depicted in sequence diagramsthat represent objects and/or classes. The proposed
transformation heuristics interprets lifelines as system’s objects.

100

6.3. UML-to-DERCS Transformation

Algorithm 1 Extract behavioral information from sequence diagrams
1: stack ← ∅

2:

3: for all m = message in Sequence Diagramdo
4: if stack = ∅ then
5: PUSH(stack, m)
6: else
7: if stack.Top.Target= m.Senderthen
8: // Action must be inserted into the method’s behavior on the stack’s top
9: action← create an action fromm

10: else
11: // Action must be inserted into other method’s behavior.
12: POP(stack)
13:

14: // Looking for the “right” method’s behavior according the call stack. . .
15: while (stack 6= ∅) ∧ (stack.Top.Target6= m.Sender) do
16: POP(stack)
17: end while
18:

19: if stack 6= ∅ then
20: // The “right” method behavior could be found
21: action← create an action fromm
22: else
23: // Message order violates call stack order, i.e. it is sent bya lifeline
24: // (i.e. object) that have not sent any message before, breaking the
25: // execution flow
26: throw an exception
27: end if
28: end if
29:

30: insertaction in stack.Top.behavior
31:

32: // Potentially, all send message actions (including messages to the lifeline itself)
33: // trigger different behaviors, and hence, they must be pushed on the stack
34: if ((action is a send message action) ∧ (m.Sender6= m.Target))

∨ (m is a recursive message) then
35: PUSH(stack, m)
36: end if
37: end if
38: end for

101

6. Tool Support for the Proposed Approach

The behavior transformation heuristic allows merging information from different sequence
diagrams. For a given messagem, if the following messages are nested messages (i.e. de-
parting fromm’s target lifeline), a DERCSBehavior element is created, and associated with
the method represented bym. To illustrate this heuristic, let’s consider the sequencediagram
depicted in figure5.5. MovementController.run()method has two nested messagesActua-
tor.setActValueandMovementController.processInfo. Hence, aBehavior element contain-
ing two SendMessageActions is created and associated withMovementController.run()
method. Similarly,Actuator.setActValue()method has five nested messages (e.g. messages 3,
4, 6, 7, 8, and 9), and also two combined fragments enclosing its nested messages. Thus,Ac-
tuator.setActValue()’s Behavior contains oneBehavior representing the “loop” combined
fragment, which, in turn, contains aCreateObjectAction and aAssignmentAction
(related to message 3), anotherBehavior2 (related to the “alt” combined fragment), and other
AssignmentAction (related to message 9).MovementController.processInfo()method’s
behavior is extracted using the same heuristics.

As one case see, from a single sequence diagrams it is possible to extract different method
behaviors, eliminating the need of creating one sequence diagram to each method behavior.
However, if not carefully used, such approach can produce duplicated specification, e.g. the
same method behavior specified twice, leading to ambiguities in behavior specification. To
overcome this problem, a simple ambiguity detection heuristic has been created: if there is
already aBehavior element associated with am method (created from other sequence di-
agram), and there are messages nested tom in the current sequence diagram, this situation
indicates thatm’s behavior was specified twice. When this situation occurs,the transforma-
tion engine reports the detected ambiguity to system designers. To illustrate this situation, let’s
consider that sequence diagrams of figures5.5 and5.6 are specified in the same UML model.
MovementController.processInfo()method has nested messages in both diagrams. The trans-
formation engine will create aBehavior element to this method during the interpretation of
figure 5.5’s sequence diagram and, when the transformation engine tries interpret figure5.6’s
sequence diagram, it will discover that there is already aBehavior element associated to
MovementController.processInfo(). Consequently, the ambiguity is detected.

To summarize sequence diagram to DERCS elements transformation, table6.2presents the
relationships among UML meta-model elements with DERCS ones.

State diagrams are used in AMoDE-RT modeling approach, and thus, need also transfor-
mation heuristics to derive DERCS behavioral elements fromthem. Two heuristics have been
defined:(i) straightforward state machine mapping; and(ii) applying theobjects for statesde-
sign pattern [48]. The first heuristic producesif-then-elsestate machine implementations. More
specifically, DERCSStateDataType elements are created to each state machine. Every
UML BehaviorStateMachines. State element in the state machine is transformed to
a DERCSState element, which is associated with the createdStateDataType. Similarly,
BehaviorStateMachines. Transition elements are transformed intoStateTran-
sition elements, whose guard condition, and from/to states are also obtained fromBehav-
iorStateMachines. Moreover, the same transformation heuristics are appliedto orthogo-

2ThisBehavior element contains actions related to messages 4–8

102

6.3. UML-to-DERCS Transformation

Table 6.2.: UML-to-DERCS behavior elements relationships

UML meta-model DERCS meta-model
BasicInteractions.Lifeline,
BasicInteractions.Message,
BasicInteractions.MessageOccurrenceSpecification,
Kernel.Operation

Behavior,
AssignmentAction,
ExpressionAction,
InsertArrayAction,
RemoveArrayAction,
ModifyStateAction

BasicInteractions.CallEvent, SendMessageAction,
BasicInteractions.CreationEvent, CreateObjectAction
BasicInteractions.DestructionEvent, DestroyObjectAction
BasicInteractions.Lifeline,
BasicInteractions.CombinedFragment,
BasicInteractions.InteractionFragment

Behavior

nal state: oneStateDataType element is created to each orthogonal state region, and thus,
DERCSState elements are created to eachAND-states(i.e. concurrent sub-state).

According to AMoDE-RT guidelines, one state diagram is associated with only one class.
Hence, an attribute (whose type is this state diagram’sStateDataType element) and a
method (which is responsible to execute different actions depending on the actual state) are
created and added to the associated class. It is important tohighlight that it is assumed that
associations between state diagrams and classes representthe following execution semantics:
instances of this class are active objects that execute the method related to the state machine.
This method is triggered periodically, and its behavior executes concurrently with other active
objects’ behaviors. In this sense, the behavior related to this method performs a “common”
if-then-elsestate machine implementation. Considering the state machines with orthogonal
AND-states, additional attributes are created to each sub-state machine. However, instead of
representingStateDataType elements, they represent sub-state machines’ active objects.
Therefore, when an object enters in a orthogonal state, sub-state machine active objects start to
execute their behavior.

On the other hand, the second heuristic implements theobjects for statesdesign pattern
[48], in which each state is represented as an object that implements behavior related to the state.
Objects for statesdesign pattern involves the following elements:context; state; andconcrete
state subclasses. To summarize, the context object has an attribute representing the state object,
which is an instance of one state’s subclass. The context delegates its methods execution to
the state object. In the proposed transformation heuristic, the class associated with the state
diagram is thecontext. This class receives a method representing the state diagram execution,
and an attribute representing its state object, similarly to the first transformation heuristic. This
method behavior has only oneSendMessageAction action, representing the delegation of
this method execution to the state object.

An abstract class is created to represent the state machine,and is used as the new attribute’s
type. This abstract class also has a method representing state machine execution, which is over-
ridden by states’ concrete subclasses. For each state, aClass element is created to represent
the state’s concrete subclass. This class extends the statediagram’s abstract class, overriding

103

6. Tool Support for the Proposed Approach

its abstract method using the behavior extracted from the sequence diagram associated with the
state. At the end of this method behavior, additionalBehavior elements with pre-conditions
(representing theif-then-elsestatements) are inserted to represent state’s outgoing transitions.
Actions executed in these behaviors represent the destruction of context’s current state object,
and the creation of the next state object. For orthogonalAND-state, this heuristic follows the
same approach as the first one: creates active object classesfor each sub-state machine as ex-
plained earlier.

Both approaches have pros and cons. For example, (i) allows less memory usage but leads
to extra runtime overhead because objects need to discover which actions must be performed in
the actual state, by means of comparing all state machine’s possible states (in the worst-case),
in order to execute the correct actions for the current state. On the other hand, (ii) uses more
memory because states are themselves objects (not only attributes representing states as enu-
merations or integer numbers), but allows less runtime overhead caused by the search for the
correct actions to be executed when the object is in a specificstate. The decision on which
heuristic is applied depends on system constraints, and is made by designers before the UML-
to-DERCS transformation process. Although important, none of these state diagrams transfor-
mation heuristics are implemented in the initial version ofGenERTiCA’s transformation engine
prototype. In fact their implementation was not consideredone of this thesis’ main contribu-
tions, and thus, it was left to future work.

6.4. Mapping Rules

6.4.1. Overview

To generate code from the UML model, GenERTiCA adopts a script-based approach, in which
small scripts define how to map model elements into target platform constructions, generating
source code fragments that are merged to produce source codefiles. The proposed script-based
code generation improves separation of concerns in mappingrules specification, because each
script is concerned with the transformation of a single model element (or few of them) into
source code fragment.

Mapping rules are described as XML [129] files, whose format is portable, and allows the
specification of self-described content organized in a treestructure. These characteristics, and
also because XML is ade-factostandard, have influenced its choice as the language used to
describe GenERTiCA mapping rules. Furthermore, XML tree organization facilitates scripts
storage in terms of platform mapping rules repositories, allowing scripts to be reused in further
projects that use the same target platform. Hence, the design effort to derive system implemen-
tation from an UML model is decreased.

Leaf nodes of the mapping rules’ tree contain scripts executed to generate code from a spe-
cific DERCS element (representing the correlated UML element). As mentioned, each script
concentrates on generating a source code fragment related to a single DERCS element. The
correct script is selected based on which element is being accessed by the code generation algo-

104

6.4. Mapping Rules

rithm (see next section), i.e. the leaf node must match with the DERCS element. These scripts
have complete access to DERCS model information, in order tobe able to generate source code
as complete as possible. Consequently, the more complete code generation scripts are, more
source code is generated, and less effort is required to manually write additional code. One of
GenERTiCA’s aims is to allow code generation as complete as possible, decreasing (or even
eliminating) the need of manual coding. However, this work does not define a new script lan-
guage or script execution engine. It rather uses a well-known open source scripting framework
calledVelocity[3], which defines theVelocity Template Language(VTL) that provides all func-
tionalities required to assist the GenERTiCA code generation approach implementation. VTL
is a Java-like scripting language, which returns a string asresult of script execution. Thus, the
generated source code fragment is obtained by means of accessing model information through
DERCS API.

Considering the mapping rules organization, one can see in figure6.5that the XML file root
is divided into a set of different target platforms, whose child trees represent mapping rules for
constructions in the target platform. There are two source code categories defined in a platform
mapping rules:(i) application code; and(ii) platform code. Both are divided in software and
hardware source code. In theapplication branch, software and hardware sub-trees have the
same structure, i.e. they have the same script types to generate code from DERCS elements; in
platform configurationbranch the difference is that platform software elements provide services
instead of components as in the hardware ones.

6.4.2. Application Code

Application branch is subdivided in:(i) source code options;(ii) primary elements scripts;
(iii) scripts for class-related elements;(iv) scripts for behavior-related elements; and(v) script
specifying DERAF aspects implementation. Considering (i), figure 6.6 lines 01-29 show an
excerpt from a XML file with mapping rules to Java. The<SourceOptions>node manages
issues related to source code files creation, defining the source code file naming convention
(<FileNameConvention>node) and organization (<SourceOrganization>node). GenERTiCA
assumes that a target language may have both a declaration and an implementation file, such
as in C/C++ which defines header and implementation source code files. Thus,<SourceOr-
ganization> node defines how each of them is structured. If there are dependencies among
source code files, the<SourceReference>node indicates target language constructions to spec-
ify source code file references. It is important to note two attributes in<SourceOrganization>
node: isAspectLanguageandhasClassesDeclaration. The former indicates if the target lan-
guage is an AO-language or not. GenERTiCA will not perform aspects weaving if the attribute
value is “yes”. It will interpret scripts in theAspectbranch as aspects constructions in the target
AO-language.hasClassesDeclarationattribute indicates if the target language requires a class
declaration before describing class implementation, suchas in C/C++ languages.

Taking into account (ii), the<PrimaryElements>node (figure6.6 lines 30-59) provides
scripts representing straightforward mappings from DERCSelements to primary elements con-
structions in the target language. On the other hand, considering (iii), theclassbranch provides

105

6. Tool Support for the Proposed Approach

Software

Hardware

Aspect1
Declaration

Adaptations
Structural

Behavioral

Class

Attributes

Messages

Assigment

Expression

Stage Change

Message Sending

Object

Same organization as Software

Declaration

Platforms

Platform1

Platformn

Application

Platform Configuration

Source Options

Primary Elements

Behavior

File Name Convention

Package

Source References

Source Organization

Declaration File

Implementation File

Data Types

Visibilities

Parameter Kind

Implementation

Declaration

Implementation

Variable Declaration

Branch

Loop

Destruction

Return

To Local Object

To Remote Object

Aspectn

Aspects

Software

Hardware

Component1

Creation

Array Remove Element

Insert Element

Array Length

…

…

Servicen

Service1

…

Componentn

…

Figure 6.5.: Mapping rules XML organization

106

6.4. Mapping Rules

more complex scripts, which need to retrieve information onthe DERCS element being evalu-
ated, in order to generate the correct code fragment for thatelement.<Class> node defines, in
the<Implementation>node, how to use target language constructions to describe the class im-
plementation, in terms of attributes and methods. Additionally, if the target languages requires
a class declaration construction, this node also provides means to specify this in the<Declara-
tion> node.

However, <Class> node’s most important children nodes are<Attributes> and <Mes-
sages>nodes. The later provides scripts to generate methods declaration and implementation
based on information contained in a DERCSMethod element. The former provides a script
to transform a DERCSAttribute element into an attribute construction in the target plat-
form language. A script to generate attribute declarationsfor a Java target platform is presented
in figure 6.7. The code fragment produced by this script is shown in this figure’s lower part.
As one can see, this script is highly cohesive because it deals with only one element, i.e. the
attribute, from which information is obtained by accessingcontext variables (those identifiers
starting with a “$” character), or directly calling one of DERCS API methods of theAttribute
element (e.g. line 03). It is important to note here that all methods (of all elements) available in
the DERCS API can be used within the context of script.

Behaviorbranch (iv) provides key scripts to map DERCS behavioral elements into con-

01 <SourceOptions
02 isAspectLanguage="no"
03 ClassesPerFile="1"
04 hasClassesDeclaration="no"
05 Indentation="5"
06 BlockStart="{" BlockEnd="}">
07 <FileNameConvention>
08 $Class.Name
09 </FileNameConvention>
10 <Package>
11 package $Class.Package;
12 </Package>
13 <SourceReference>
14 import $ReferencedClass.Package
15 .$ReferencedClass.Name;
16 </SourceReference>
17 <SourceOrganization>
18 <DeclarationFile
19 FileExtension="">
20 $SourceCode.ClassesDeclaration
21 </DeclarationFile>
22 <ImplementationFile
23 FileExtension=".java">
24 $SourceCode.PackagesDeclaration
25 $SourceCode.ReferencesDeclaration
26 $SourceCode.ClassesImplementation
27 </ImplementationFile>
28 </SourceOrganization>
29 </SourceOptions>

30 <PrimaryElements>
31 <DataTypes>
32 <Array>$DataType.DataType[]</Array>
33 <Boolean>boolean</Boolean>
34 <Byte>byte</Byte>
35 <Char>char</Char>
36 <Class>
37 $DataType.Represent.Name
38 </Class>
39 <DateTime>DateTime</DateTime>
40 <Enumeration></Enumeration>
41 <Integer>int</Integer>
42 <Long>long</Long>
43 <Short>short</Short>
44 <String>String</String>
45 <Void>void</Void>
46 <Double>double</Double>
47 <Float>float</Float>
48 </DataTypes>
49 <Visibilities>
50 <Private>private</Private>
51 <Protected>protected</Protected>
52 <Public>public</Public>
53 </Visibilities>
54 <ParameterKinds>
55 <In></In>
56 <Out></Out>
57 <InOut></InOut>
58 </ParameterKinds>
59 </PrimaryElements>

Figure 6.6.: Mapping rules:<SourceOptions>and<PrimaryElements>branches

107

6. Tool Support for the Proposed Approach

01 <Attributes>
02 $VisibilityStr
03 #if ($Attribute.isStatic()) static #end
04 $DataTypeStr $Attribute.Name;
05 </Attributes>

private int windSpeed;

Figure 6.7.: Mapping rules:<Attributes> node

01 <SendMessage>
02 <ToLocal>
03 <Software>
04 #if ($Action.ToObject !=
05 $Action.FromObject)
06 $Action.ToObject.Name.
07 #end
08 $Action.RelatedMethod.Name(
09 #if($Action.ParametersValuesCount >
10 0)
11 #foreach($param in
12 $Action.ParametersValues)
13 #if ($velocityCount > 1), #end
14 #set($x = $velocityCount - 1)
15 #if($Action.isParameterValue($x))
16 $param
17 #else
18 $param.Name
19 #end
20 #end
21 #end
22);
23 </Software>
24 <Hardware></Hardware>
25 </ToLocal>

26 <ToRemote>
27 <Software>
28 #set($x=$Action.ParametersValuesCount
29 + 1)
30 myMsg.setNrBytes($x);
31 myMsg.addByte(
32 $Action.RelatedMethod.ID);
33 #foreach($v in
34 $action.getParametersValues())
35 myMsg.AddByte((byte)$v);
36 #end
37 localTp.sendMsg(conectionNumber,
38 myMsg,
39 timeOutParam.getmsgSendTime());
40 </Software>
41 <Hardware></Hardware>
42 </ToRemote>
43 </SendMessage>

envInfo.getWindSpeed()
myMsg.setNrBytes(1);
myMsg.addByte(49);
localTp.sendMsg(conectionNumber, myMsg,
timeOutParam.getmsgSendTime());

Figure 6.8.: Mapping rules:<SendMessage>node

108

6.4. Mapping Rules

structions in the target language. There is one node to specify a script to each action available in
the DERCS actions model, and also to behaviors with pre- (branch) and post-conditions (loop).
Designers must only specify how to map individual DERCS actions into equivalent construc-
tions in the target language. Code fragments related to actions are generated by these scripts,
and merged to compose a behavior. This approach facilitatesthe specification of behavior map-
ping rules, because designers do not need to specify complexscripts that deal with all action
types in the same script. Scripts have full access to actionsinformation, as well as the behav-
ior containing them. Thus, it is possible to create very specialized and elaborated scripts, as
the mapping rules forSendMessageAction elements shown in figure6.8. As mentioned,
DERCS sending message semantics is the same for any kind of target object, i.e. local or remote
objects, and/or objects implemented as software or hardware. The target platform is in charge
to implement these sending message variations. In figure6.8, lines 04-22 (left column) show
the script to map actions that send messages to local objectsin a Java platform. On the other
hand, lines 28-39 (right side) depict the mapping of actionsthat send messages to remote objects
using a communication API [34] in the same Java platform. GenERTiCA decides which script
should be executed based on the information contained in theSendMessageAction, i.e.
GenERTiCA compare theNode in which both sender and target objects have been deployed.
If the Node is the same, GenERTiCA executes the script related to local messages, otherwise it
executes the script related to remote messages. Examples ofcode fragments generated by both
scripts are presented in the lower part of this figure6.8.

The most important part of the application mapping rules specification is the set of scripts
to describe DERAF aspects implementations. As stated in section 5.3.2, DERAF aspects high-
level semantics do not define how to implement aspect adaptations; it must be done in imple-
mentation phase considering the target platform. Thus, in the proposed code generation and
aspects weaving approach, DERAF aspects implementation isspecified via scripts within the
aspectsbranch (v). For each aspect, scripts representing its structural and behavioral adapta-
tions are defined. GenERTiCA executes aspect adaptation scripts upon elements selected by
the join points. More specifically, information contained in aspects’ pointcuts specification is
used to select which adaptations scripts must be executed tomodify the elements gathered by
join points. In other words, when the code generation algorithm analyzes a DERCS element
(e.g. class, attribute, behavior, action, etc.) to generate its source code fragment, it also checks
if this element is selected by any JPDD. If it is the case, scripts of aspects adaptations related
to these JPDDs (as indicated in aspects’ pointcuts specification) are executed, modifying either
the generated code fragment, or the element itself. Thus, besides code generation, GenERTiCA
also performs aspects weaving in both generated code fragments and DERCS elements.

There are two kinds of aspect adaptation implementations: one that modifies the generated
code fragment; and one that modifies the selected element. The former is executed after the
script defined in<Class> of <Behavior> branches for the selected element, modifying the
generated code fragment to include changes promoted by the aspect adaptation. The later is
executed before the mentioned branches’ scripts, modifying the selected element at model level,
i.e. the input DERCS model element is modified. Thereby, GenERTiCA is able to perform
aspects model weaving. To illustrate these two types of aspect adaptation implementations,
figure6.9 presents the implementation of thePeriodicTimingaspect (see section5.3.2) for the

109

6. Tool Support for the Proposed Approach

RT-FemtoJava platform [65, 131].

In this example, six adaptations have been created: the firstfour modifying the generated
source code fragment, and the two last modifying directly the affected element (indicated by
theModelLevel attribute). PeriodicTimingaspect affects active object classes that need to
execute its behavior cyclically at a given frequency. Hence, adaptations affected these classes’
attributes and behavior.Period structural adaptation adds two attributes in affected classes, as
depicted in figure6.10lines 07-09; initialization code for these attributes is inserted in the class
constructor bySetPeriodbehavioral adaptation, as shown in lines 19-21.FrequencyControl
appends code (after the last action) that controls the execution frequency of active objects’ pe-
riodic behavior using RT-FemtoJava platform constructions, as presented in line 33. Similarly,
LoopMechanismadaptation encloses the periodic behavior (and the code inserted byFrequen-
cyControl) in a while construction, as depicted in lines 27 and 36. It is importantto note that,
to enable the expected behavior,FrequencyControladaptation must be performed beforeLoop-
Mechanism. GenERTiCA uses theOrder attribute to control the execution order of adaptations
scripts (lower numbers have higher execution priority). Inthis example,FrequencyControlor-
der is 3 andLoopMechanismis 4, causingFrequencyControlscript to be executed beforeLoop-
Mechanismone, forcing the code inserted by the first script (line 33) tobe enclosed by thewhile
construction inserted byLoopMechanismscript (lines 27 and 36).

01 <PeriodicTiming>
02 <Declaration></Declaration>
03 <Adaptations>
04 <Structural Name="Period" Order="1" ModelLevel="no">
05 private static RelativeTime _Period = new RelativeTime(0,0,0);
06 private static PeriodicParameters _PeriodicParams =
07 new PeriodicParameters(null, null, null, null, null);
08 </Structural>
09 <Behavioral Name="SetPeriod" Order="2" ModelLevel="no">
10 _Period.set(0,pPeriod,0);
11 _PeriodicParams.setPeriod(_Period);
12 setReleaseParameters(_PeriodicParams);
13 </Behavioral>
14 <Behavioral Name="FrequencyControl" Order="3" ModelLevel="no">
15 waitForNextPeriod();
16 </Behavioral>
17 <Behavioral Name="LoopMechanism" Order="4" ModelLevel="no">
18 while (isRunning()) $Options.BlockStart
19 $CodeGenerator.getGeneratedCodeFragment(1)
20 $Options.BlockEnd
21 </Behavioral>
22 <Structural Name="ModifyConstructor" Order="1" ModelLevel="yes">
23 $Message.addParameter("pPeriod", $DERCSFactory.newInteger(false),
24 $DERCSFactory.getParameterIn());
25 </Structural>
26 <Behavioral Name="AdaptObjectConstruction" Order="1"
27 ModelLevel="yes">
28 $Action.addParameterValue($Crosscutting.getValueOf("Period"))
29 </Behavioral>
30 </Adaptations>
31 </PeriodicTiming>

Figure 6.9.: Mapping rules:PeriodicTimingaspect implementation

110

6.4. Mapping Rules

Moreover, as one can see, source code fragments inserted by the mentioned adaptations are
exactly equal to their script in the mapping rules XML file, indicating that these adaptations
are independent of affected elements information. However, although these scripts do not use
any information of affected elements, designers need to be aware that both scripts could be ap-
plied only to behavior-related elements (e.g.Behavior or Action subclass). However, if
these adaptations need to be applied to other DERCS elements(e.g. Class, Method, etc.),
their script must be changed to provide additional modifications. On the other hand, there are
adaptations scripts that are close related to affected elements, e.g.ModifyConstructoror Adap-
tObjectConstruction. These adaptations modify affected elements’ DERCS specification rather
than their generated source code fragment. Adaptations changing model elements are always
executed before any other aspect adaptation, allowing model-level modifications to be visible
for the non-aspect scripts (i.e. “normal” code generation scripts). Consequently, aspects model
weaving occurs prior to code generation, and also aspects weaving in the generated fragments.

01 public class MovementControler extends RealtimeThread {
02 ...
03 protected EnviromentInformation envInfo;
04 protected int windSpeed;
05 ...
06 // PeriodicTiming.Period - Begin
07 private static RelativeTime _Period = new RelativeTime(0,0,0);
08 private static PeriodicParameters _PeriodicParams =
09 new PeriodicParameters(null, null, null, null, null);
10 // PeriodicTiming.Period - End
11 public void MovementControler(EnviromentInformation new_envInfo,
12 MovementInformation new_mMovInfo, MovementInformation new_bMovInfo,
13 MainRotorActuator new_mRAct, BackRotorActuator new_bRAct, int pDeadline,
14 // PeriodicTiming.ModifyConstructor - Begin
15 int pPeriod) {
16 // PeriodicTiming.ModifyConstructor - End
17 ...
18 // PeriodicTiming.SetPeriod - Begin
19 _Period.set(0,pPeriod,0);
20 _PeriodicParams.setPeriod(_Period);
21 setReleaseParameters(_PeriodicParams);
22 // PeriodicTiming.SetPeriod - End
23 }
24 ...
25 public void run() {
26 // PeriodicTiming.LoopMechanism (1) - Begin
27 while (isRunning()) {
28 // PeriodicTiming.LoopMechanism (1) - End
29 ...
30 windSpeed = envInfo.getWindSpeed();
31 ...
32 // PeriodicTiming.FrequencyControl - Begin
33 waitForNextPeriod();
34 // PeriodicTiming.FrequencyControl - End
35 // PeriodicTiming.LoopMechanism (2) - Begin
36 }
37 // PeriodicTiming.LoopMechanism (2) - End
38 }
39 }

Figure 6.10.: Source code fragment with modifications performed by aspect adaptations

111

6. Tool Support for the Proposed Approach

Considering model level aspect adaptations,ModifyConstructorstructural adaptation uses
DERCS API to modify the constructor of affected classes to include a new parameter that rep-
resents initialization value of theperiod attribute inserted byPeriod adaptation. Moreover,
SetPeriodadaptation adds the code in selected constructors’ behavior to assign this new param-
eter’s value to theperiod attribute. As aspects model weaving occur before code generation,
the code generation script is able to include the new parameter in affected constructors’ code
fragment, as shown in line 15 of figure6.10. Similarly, as the constructor of affected classes has
been modified, actions that create objects from these classes must also be modified. Therefore,
AdaptObjectConstructionadaptation script performs a model level adaptation in the mentioned
actions. This adaptation uses the period information specified in ACOD’scrosscuttingrelation-
ships to include the correct information in the right objectcreation action.

As one can infer, this difference in aspect adaptation typesallows flexibility in aspect imple-
mentation specification. Designers can choose the most suitable manner to implement DERAF
aspects adaptations, taking into account the target platform. Additionally, the combination of
aspects model and source code weaving opens room for new forms to describe aspects imple-
mentation, as well as allows new ways to explore how aspects modifications (performed on
system functional (or base) elements) are implemented.

6.4.3. Platform Configuration

Platform configurationbranch provides script to generate platform configuration files, or tai-
lored source code files of frameworks, libraries, or APIs, which are generated based on services
or components needed by application source code. GenERTiCAassumes that the target plat-
form provides means (i.e. software services and hardware components) to support platform
constructions described in application scripts. Considering the usually constrained execution
environment of embedded systems, it makes sense to tailor the target platform, in order to pro-
vide only services and components required by the embedded application. In this sense, it is
essential that target platforms provide means to allow their configuration in one of the following
alternatives:

• Configuration files, which turn on/off services or compomponents. GenERTiCA can
generate configuration files, allowing platform-specific tools to configure them, e.g. re-
moving unused elements, or optimizing provided services;

• Source codeavailability. GenERTiCA can generate tailored source codebased on the
original code, optimizing the final target platform in termsof required footprint.

GenERTiCA platform configuration approach integrates DERAF aspects with platform
configuration. More specifically, DERAF aspects are relatedto platform services and/or com-
ponents, and thus, if an aspect is specified in the model, the service(s) and component(s) related
to this aspect must be included in the final platform. The platform configuration specification is
very pragmatic:softwareor hardwarebranches are divided in several files, which, in turn, are
divided in parts (or fragments), as depicted in the example in figure6.11. Platform configuration
or source code files are, in fact, specified as a sequence of text fragments within<Part> nodes.

112

6.5. Code Generation Process

01 <PlatformConfiguration>
02 <Software>
03 <General OutputDirectory="./platform"></General>
04 <File Name="PlatFile_1.java" OutputDirectory="realtime"
05 Aspects="SchedulingSupport">
06 <Part>
07 ...
08 Configuration statements or source code fragment
09 ...
10 </Part>
11 <Part Aspects="TimingAttributes, PeriodicTiming">
12 ...
13 Configuration statements or source code fragment
14 ...
15 </Part>
16 </File>
17 <File> ... </File>
18 ...
19 </Software>
20 </PlatformConfiguration>

Figure 6.11.: Platform configuration XML structure

Hence, GenERTiCA creates platform configuration files from these fragments. Both<File>
and<Part> nodes have anAspects attribute indicating which DERAF aspects are related to,
respectively, platform configuration (or source code) filesand/or its text fragments. They are
included in the generated platform configuration only if themodel specifies any aspect in the
list. On the other hand, if any<File> and/or<Part> node do not specify theAspects attribute
(or its value is an empty string), it means that the node’s content must always be included in the
generated configuration file.

6.5. Code Generation Process

As mentioned in the previous section, GenERTiCA adopts a script-based approach to produce
source code and/or configuration files, for both applicationand target platform. Besides code
generation, GenERTiCA also performs aspects weaving usingaspects specified in the UML
model, as well as their adaptations’ implementation in formof scripts described in the mapping
rules XML file.

Therefore, GenERTiCA’s generation process involves two main phases: code generation/as-
pects weaving of application level elements, and configuration files generation or source code
tailoring of the target platform. The former analyzes all elements in the model, trying to find the
script in the mapping rules XML file that matches with each of them. On the other hand, the later
reads all XML nodes related to platform configuration, checking if the associated aspects have
been specified in the model, to generate the configuration fileaccording to the specification.

To provide more details on the process followed by GenERTiCAto generated application
code, figure6.12depicts the activity diagram representing this process. Source code is directly
generated from the DERCS model, which is obtained from the original UML model via model

113

6. Tool Support for the Proposed Approach

transformations, due to its capability of representing structure, behavior, and non-functional
requirements handling in a more precise and unambiguous fashion than compared to UML.
Thus, as can be seen, there are some DERCS key elements driving the code generation process:
(i) Class; (ii) Attribute; (iii) Method; (iv) Behavior; (v) Action; (vi) Aspects; and
(vii) Joinpoint.

Classes are the main elements in the code generation/aspects weaving process, due to their
importance to the distributed embedded real-time system specification itself i.e. they represent
structure and behavior of system objects, which, in turn, represent system elements. Therefore,
GenERTiCA applies the code generation/aspects weaving algorithm to each class in the DERCS
model classes list. For each class, its attributes, methods, as well as their associated behavior
and actions list, are also used by the algorithm. As one can see, an activities execution pattern
can be extracted (for each of these elements), representingthis algorithm’s kernel as follows:

1. Check if the element is affected by any model-level aspectadaptation, using pointcut and
join points information. If it is the case, the adaptation isperformed.

2. Try to find and execute the script that matches with the element being evaluated, e.g.
if the element is aAssignmentAction the script in the<Assignment>is found and
executed.

3. Check if the element is affected by any other aspect adaptation (i.e. those that modify the
generated code fragment), and if so, execute all associatedadaptations.

On the other hand, the platform configuration generation takes an inverse path, as shown
in figure6.13: the<PlatformConfiguration>branch drives the generation process, and the in-
formation on DERAF aspects is obtained from the model. Thus,for each<File> and<Path>
node in this branch, at least one aspect in the associated aspects list must be found in the model
to allow the generation of the file or the inclusion any of its parts.

114

6.5. Code Generation Process

Is

Class affected by any
Aspect?

Is it affected

by model level aspect

adaptations?

Is it affected

by model level aspect

adaptations?

Is it affected

by model level aspect

adaptations?

Is it affected
by model level aspect

adaptations?

Is there
any Class to

analyse?

Search mapping
rule that fits with the

selected Class

Select next Message

Is there

any Attibute to

analyse?

Select next Attribute

Is there
any Message to

analyse?

Is it

Aspect?

Select next Action

Is there
any Action to

analyse?

Select next Class Combine source
code fragments

Generate
source code file

Execute script

Execute script

Search script
to execute

Search script
to execute

Search script
to execute

Initialization

Apply
adaptations

Apply
adaptations Apply

adaptations

Apply
adaptations

Apply
adaptations

Apply
adaptations

Apply
adaptations

Apply
adaptations

No

No

No

Yes

Yes

No

No

No

No

No

Yes Yes

No

No

Yes

Yes

Yes
No

No

Yes

Yes

Yes

Yes Yes

affected by any
Is it

Aspect?
affected by any

Execute script

Is it

Aspect?
affected by any

selected

Figure 6.12.: GenERTiCA: application code generation flowchart

115

6. Tool Support for the Proposed Approach

Read Aspects List

Is any
Aspect found in

model?

Is there
any Part to
analyse?

Select Part Node
Is any

Aspect found in
model?

Is
there any File
 to analyse?

Read Aspects
List

Has
associated
Aspects?

Has
associated
Aspects?

Include Part
in File

Initialization
Select File

Node

No

No

No

No

No

Yes

No

Yes

Yes

Yes Yes

Yes

Figure 6.13.: GenERTiCA: platform configuration generation flowchart

6.6. Final Remarks

UML is not the most suitable modeling language to allow complete code generation, due to its
various intentional semantic variation points. Therefore, GenERTiCA code generation approach
transforms UML into the proposed DERCS model, trying to simplify the access to system spec-
ification information. Moreover, DERCS meta-model allows the same specification level as
UML for describing structure and behavior, but using fewer meta-model elements, facilitating
the mapping of model elements into constructions in the target platform language. However,
more important is the separation of concerns in requirements handling specification provided
by DERCS. DERCS AO concepts allow using AO-related elementsat modeling level that can
be further realized in both AO and non-AO target languages.

Regarding mapping rules description, the main reason for the choice of XML is because
it represents a well-structured and self-described specification for organizing code generation
scripts. Thus, other tools can use the mapping rules files forother purposes, such as evaluat-
ing different target platform constructions mapping rulesto represent the same model element.
Additionally, the XML format facilitates the creation of mapping rules repositories, from which
tools can read their information to decide which file (or fragment) should be selected and reused.

GenERTiCA approach of using small scripts improves separation of concern in mapping
rules specification because designers need only to take intoaccount few elements for transform-
ing a concepts in the model into constructions in the target language. Moreover, scripts allow
aspects weaving at two levels: model and source code. In other words, aspects adaptations can
modify both model elements and the source code fragment generated from them. Designers
can choose the implementation form that better fits their needs. To the best of our knowledge,
there is no other aspect weaving approach that allows both model and source code level aspects
weaving.

Furthermore, aspect adaptation implementations are highly dependent on the target plat-
form, i.e. the target platform must provide means to allow DERAF aspects semantics realiza-
tion. However, it must be stated that this work does not intend to provide implementations for
all aspects available in DERAF. Even so, the ones provided represent good examples on how

116

6.6. Final Remarks

to implement other DERAF aspects. Besides, the proposed code generation/aspects weaving
approach enables the use of both AO and non-AO languages as the target language in scripts
specification, enabling more flexibility in the target platform selection.

Finally, it is important to highlight that, after code generation/aspects weaving process,
separation in the handling of functional from non-functional requirements is missed, i.e. code
representing non-functional requirements is intermixed with the code related to functional ones.
However, it is not a problem since the RT-FRIDA approach (used in requirements specification)
and also the mapping rules structure organization allow traceability in handling elements/con-
struction from requirements to code, and vice-versa.

117

6. Tool Support for the Proposed Approach

118

Chapter 7

Validation

7.1. Introduction

This chapter presents three case studies to illustrate and validate the AMoDE-RT approach, as
well as the GenERTiCA code generation and aspects weaving tool. The first case study presents
the movement control system of an unmanned aerial vehicle; the second one the control system
of an industrial packing system; finally, the third one the movement control of an automated
wheelchair. For each case study, two versions have been created: object-oriented and aspect-
oriented. In addition, they have been compared using a subset of the software engineering
metrics for AO systems presented in section2.4.4.3. Mapping rules for two different platforms,
namely the RT-FemtoJava and ORCOS platforms, have been specified to generate source code
from the AO version of these systems examples.

7.2. Toolset Overview

In order to facilitate the understanding of the presented case studies, a brief description on the
technologies used in implementation is presented. RT-FemtoJava and ORCOS platforms, which
have been used to implement the AO version of these case studies, are presented. Thereafter,
the assessment framework used to evaluate both versions of each case study is also presented.

7.2.1. RT-FemtoJava Platform

RT-FemtoJava platform is composed by a customizable Java processor [65], and a set of APIs
to support real-time applications [131]. RT-FemtoJava processor implements a Java execution
engine as hardware by means of a stack-based machine compatible with the Java Virtual Ma-
chine (JVM) specification [73]. Moreover, it adopts the Harvard organization, i.e. different
memories for code (ROM) and data (RAM). There are different versions available for the RT-
FemtoJava processor: 8, 16, 32-bits with different architectures (multicycle, pipeline, VLIW).

119

7. Validation

The choice of which version should be selected is made according to application requirements
and constraints.

As RT-FemtoJava is a customizable processor, it is generated by the SASHIMI environment
[65], which takes the compiled Javabytecodesas input to produce a VHDL description of the
customized RT-FemtoJava, optimized for that Java binary code. In other words, SASHIMI anal-
yses the compiled Java code, and automatically synthesizesanApplication Specific Instruction
Processor(ASIP), using only the instructions subset used by the target application. Hence, the
synthesized processor control unit size is directly proportional to the number of different Java
opcodesneeded by the application software, optimizing the final footprint based on application
requirements.

In addition to RT-FemtoJava processor, an API [131] based ontheReal-Time Specification
for Java (RTSJ) [13] was developed to facilitate application software development by raising
the abstraction level of programming constructs. Thereby programmers do not have to worry
about low-level details. This API covers the most importantaspects of real-time programming
like multithreading, real-time scheduling, and specification of timing issues. To clearly express
timing and other constraints in the real-time application source code, this API introduces the
concept of schedulable objects (i.e. active object), whichare instances of classes that imple-
ment the RTSJSchedulableinterface (asRealtimeThreadclass). It also specifies a set of classes
to store parameters that represent particular resource demands from one or more schedulable
objects. For example, theReleaseParametersclass (super class fromAperiodicParametersand
PeriodicParameters) includes several useful parameters for the specification of real-time re-
quirements, e.g. deadlines, activation period, and others. Moreover, it supports the expression
of the following elements:(i) time values (absolute and relative time);(ii) clocks;(iii) periodic,
sporadic and aperiodic tasks;(iv) scheduling policies;(v) timers;(vi) asynchronous events and
their handlers; and(vii) pooling servers to minimize the disturbance caused by asynchronous
events handlers execution. For details on the RTSJ-based API, interested readers are referred to
[131]

As mentioned, RT-FemtoJava platform also has a communication API [34] that allows the
establishment of a communication channel upon a network, inwhich objects residing in dif-
ferent processing nodes can exchange messages. Two communication models are supported
by the communication API: client-server and publisher-subscriber. The former allows connec-
tion oriented and point-to-point communication, while thelater connectionless and multicast
communication. Additionally, distinct priorities and timing constraints can be associated with
messages, improving the real-time constraints management. Moreover, the communication API
is divided in transport, network, and data link layers, following the OSI/ISO reference model.
In the current version, it implements a communication infrastructure following the CAN-bus
[18] communication protocol.

7.2.2. ORCOS Platform

Organic Reconfigurable Operating System(ORCOS) platform provides a customizable RTOS,
whose aim is to run it upon any kind of embedded hardware [125]. ORCOS implements a

120

7.2. Toolset Overview

fully object-oriented hybrid kernel (using C++ language),representing the evolution of theDis-
tRibuted Extensible Application Management System(DREAMS) [38], a library-based con-
struction set for operating system services. A remarkable feature of ORCOS/DREAMS is the
ability to separate mandatory operating systems source code parts from optional ones by using
a configuration mechanism. Thus, ORCOS can achieve small binary footprint using a configu-
ration mechanism that uses an XML-based configuration language, namedSkeleton Customiza-
tion Language(SCL).

ORCOS kernel is divided in several independent modules, which are selected and integrated
by means of the SCL. The following services are provided by ORCOS:

• Memory managementis one of the most important modules, and is mandatory in any
system configuration. There are separated memory spaces foreach application task, and
also for the ORCOS kernel. In addition, each task has its own memory manager, which
is responsible for task’s memory management strategy. Moreover, if the embedded hard-
ware supports virtual memory, ORCOS is able to use it;

• System callsprovide a manner for applications task to communicate with the ORCOS
kernel. Thus, when a task needs to use any kernel functionality, it must usesyscallAPI
functions to trigger a hardware interrupt, which, in turn, is recognized by the kernel that
executes the desired kernel functionality;

• File systemuses the same approach as the Unix file system, i.e. all file system entries
can be accessed through a unique path. Resources are registered inside the file system
structure, and accessed through a POSIX-like set of kernel functions;

• Processes, in ORCOS, represent tasks and their set of executing threads. Real-time sup-
port is provided by ORCOS through real-time threads and real-time schedulers. More-
over, there are special kernel tasks/thread calledworkerthreadsto support asynchronous
interrupts for hardware devices I/O, timed functions calls, or periodic functions calls (like-
wise periodic threads but with the option of stopping function execution to allocate the
workerthreadto other purpose);

• Schedulingis other important module in ORCOS, and is divided in two steps: dispatching
and scheduling. The later comprehends the set of rules to determine the order in which
threads are executed, while the former executes instructions to allocate CPU to the thread
selected to execute. The following scheduling policies areavailable:Earliest Deadline
First (EDF),Rate Monotonic(RM), Round Robin(RR), and a priority-based scheduler;

• Hardware Abstraction Layer (HAL) provides an abstraction layer to access the real
hardware, avoiding the ORCOS kernel to access it directly;

• Power managementallows energy savings. The current ORCOS version allows only to
halt the CPU execution every time the idle task is going to execute;

• Communication module allows inter-node and inter-process communication, defining
a socket communication interface that uses different protocols to communicate. Each
socket can be explicitly configured (at runtime) to define which protocol stack (OSI/ISO

121

7. Validation

reference model’s transport and network layers) need to be used.

A detailed discussion on ORCOS is beyond the scope of this text. Thus, interested readers
are addressed to [125] and [38].

7.2.3. Case Studies Assessment

Case studies presented in this chapter aim at assessing design improvements achieved by using
the proposed AMoDE-RT design flow. Thus, for each case study,two versions have been de-
signed: one using only OO concepts to specify both functional and non-functional requirements
handling, and another one applying AO concepts to deal with non-functional requirements.

To compare the suitability of OO and AO concepts for distributed embedded real-time
systems development, a set of quality metrics is calculatedfor each version. This work uses
the assessment framework presented Sant’Anna et al. by [106] (see section2.4.4.3) to infer the
reusability quality of the produced UML models. Not all available metrics have been used to
provide the qualitative assessment of both models. A subsetof metrics had to be chosen and
adapted based on their suitability for modeling instead of coding phase. Hence, implementation
related metrics, such asLines of Code, have not been used. Additionally, it is important to
highlight that this assessment concentrates only on “reusability” instead of “reusability and
maintainability” as proposed in the original assessment framework [106]. Figure7.1 shows
the selected metrics and their relations to provide the reusability quality assessment. For more
details on each metric, readers are referred to section2.4.4.3. In addition, to assist in metrics
extraction, a plug-in for the MagicDraw modeling tool [85] has been developed and used to
automatically calculate the metrics set.

Moreover, in order to be able to do a fair comparison between OO and AO models, the
development of these models were done by two different persons, one person has modeled the
OO version of all case studies, while the other one has modeled the AO version. The intention
of this approach is to decrease the occurrence of any bias that may happen if the same person
designs both versions of the same system.

Besides model assessment, other point evaluated in these case studies is the source code

Quality Factors Internal Attributes Metrics

Reusability

Understandability

Flexibility

Size

Separation

of Concerns

Coupling

Cohesion

VS

NOA

CDC

CDO

CBC

DIT

LCOO

Figure 7.1.: Reusability quality model

122

7.3. Case Studies

generated from UML models. Statics about the amount of source code files, as well as generated
lines of code, for each mentioned target platform are presented.

7.3. Case Studies

7.3.1. Unmanned Aerial Vehicle

Unmanned Aerial Vehicle(UAV) is an aircraft that flies without having an onboard pilot, and
is used in activities where the human presence is avoided dueto inherited risks, or simply to
decrease operational costs. UAVs can fly a pre-programmed route or be remotely operated by
a ground station. Reconnaissance support in natural disasters, monitoring and defect detection
of transmission lines located in inhospitable places, and area surveillance and vigilance are
some examples of UAV applications. An UAV is compounded of several subsystems, such as
video recording and transmission, navigation, mission management, collision avoidance, self-
diagnostic, and movement control.

This work focuses on the movement control subsystem of an unmanned helicopter, mod-
ifying the UAV movement control case study presented in [37]by means of providing a more
detailed design. Summarizing, the helicopter control system is divided three different modules:

• Sampling subsystemis responsible to sample helicopter information (e.g. mainand tail
rotors pace), as well as environmental information (e.g. humidity, temperature, wind
speed and direction). Sampled data have different utility lifetimes depending on the in-
formation kind, operation mode, and/or mission;

• Control subsystemuses the sampled data to control both helicopter main and tail ro-
tors, allowing helicopter guidance and piloting. Basically, it implements a control system
based on the method proposed by Seibel [112];

• Actuation subsystemtakes the control values produced by the control subsystem,apply-
ing them in helicopter rotor engines.

Further, the helicopter control system has two interconnected real-time processing nodes:
one is located close to the main rotor and the other one close to the back rotor. In other words,
the designed control system is distributed over these two communicating nodes, employing both
remote and local objects. For a complete description on thissystem’s requirements, interested
readers should refer to [37].

Figure7.2 shows functionalities expected from the mentioned subsystem. According to
AMoDE-RT modeling guidelines, functionalities affected by non-functional requirements (e.g.
“Helicopter Movement Control”) are decorated with non-functional stereotype annotations, e.g.
such as«NFR_Timing». The following subsections provide more details on the modeled
subsystem using AO and OO concepts.

123

7. Validation

<<NFR_Timing>>

<<NFR_Embedded>>

<<NFR_Distribution>>

Helicopter

Movement Control

extension points

UAV in danger

<<NFR_Timing>>

<<NFR_Embedded>>

<<NFR_Distribution>>
Rotor

Sensing

<<NFR_Timing>>

<<NFR_Embedded>>

Enviroment

Sensing

<<NFR_Distribution>>
Back Rotor

Sensing

<<NFR_Distribution>>
Piloting

Special Condition

Movement Control

Temperature

Sensing

Control Alarm

Humidity Sensor

Main Rotor

Sensing

Maintenance

System

Wind

Sensing

Guidance

Humidity

Sensing

Temperature

Sensor

DataTransfer

System

Wind Sensor

Main Rotor

Sensor

Main Rotor

Actuator

Back Rotor

Actuator

Back Rotor

Sensor

Navigation

Control

<<extend>>

(UAV in danger)

<<include>>

<<include>>

<<include>> <<include>>

Figure 7.2.: UAV movement control use case diagram

7.3.1.1. Object-Oriented Version

The static structure of UAV movement control system is depicted with a class diagram. This
diagram shows classes, their attributes and methods, and the relationships among classes. Figure
7.3-A depicts the UML class diagram created for the OO version. As suggested in AMoDE-RT
modeling guidelines, classes representing active objectsare decorated with the«Schedula-
bleResource» stereotype from the MARTE profile, and passive objects with«Mutual-
ExclusionResource» stereotype.

Some classes depicted in figure7.3-A (those with different filling color) are responsible
to handle non-functional requirements as, for example,Semaphore class that is responsible
to control the simultaneous access to shared passive objects, Timer that deals with timing
requirements, orEnergyController that deals with energy consumption.

UAV control system’s behavior was specified using only sequence diagrams, showing the
behavior in terms of interactions among objects. Thirteen different sequence diagrams were
created:(i) Helicopter movement control;(ii) Back rotor control;(iii) Main rotor movement
encoder;(iv) Back rotor movement encoder;(v) Environment data acquisition;(vi) General Be-
havior(vii) General Behavior 2(viii) General Behavior 3(ix) Control Sub-System Initialization
(x) Environment Sub-System Initialization(xi) Movement Sensing Sub-System Initialization
(xii) Energy control; and(xiii) Task migration. Figure7.4-A shows two fragments of the he-
licopter movement control sequence diagram: (A1) the startof MovementController’s
periodic behavior responsible for controlling the helicopter movement, and (A2) the end of this
active object method behavior.

In this diagram, theScheduler object sends periodically an activation message (each 20
ms), which is annotated with the«TimedEvent» stereotype, to theMovementControl-

124

7.3. Case Studies

(A) Object-Oriented Version

SpecialConditionMovementControl

<<MutualExclusionResource>>

MovementInformation

<<MutualExclusionResource>>

EnviromentInformation

EnviromentSensingSubSystem

EnergyMonitoringSubSystem

<<SchedulableResource>>

MovementEncoder

<<SchedulableResource>>

BackRotorSensorDriver

<<SchedulableResource>>

EnergyControler

<<SchedulableResource>>

EnviromentDataSampler

<<SchedulableResource>>

Alarm
<<SchedulableResource>>

BackRotorActuator

<<SchedulableResource>>

MovementControler

TemperatureSensorDriver

EnviromentSensorDriverMainRotorSensorDriver

MovementSensorDriver

HumiditySensorDriver

CommunicationDriver

MainRotorActuator

MovementSensing
SubSystem

WindSensorDriver

ControlSubSystem

<<Scheduler>>

Scheduler

RotorActuator

<<RTclock>>

Timer

TaskMigrator
SensorDriver

RemoteTask

Semaphore

Observer

Message

Subject

1..*

1

−rotors

1..2

1

1

1

1 1

1..2

1

1

1

1

1

11 1

<<MutualExclusionResource>>

EnviromentInformation

<<MutualExclusionResource>>

MovementInformation

TemperatureSensorDriver

<<SchedulableResource>>

MovementEncoder

<<SchedulableResource>>

BackRotorSensorDriver

<<SchedulableResource>>

EnviromentDataSampler

<<SchedulableResource>>

Alarm

<<SchedulableResource>>

MovementControler

<<SchedulableResource>>

BackRotorActuator

EnviromentSensorDriver

MovementSensorDriver

HumiditySensorDriver

MainRotorActuator

EnviromentSensing
SubSystem

ControlSubSystem

WindSensorDriver

SpecialCondition
MovementControl

MovementSensing
SubSystem

RotorActuator

SensorDriver

MainRotor
SensorDriver

1

1

1

1

1..*

1

1

1

1

1..*

1

1..*

1

11

(B) Aspect-Oriented Version

Figure 7.3.: UAV movement control class diagram

<<Acquire>>
11: acquire()

<<MutualExclusionresource

MRInfo:MovementIn

(A) Object-Oriented Version

..
.

(A1)

(A2)

2: getRotation()

3: mrRotation

4: getPace()

5: mrPace

<<Scheduler>>

sched:Scheduler

<<SchedulableResource>>

mCtrl:MovementController

<<TimedEvent>>
1: run()

loop
<<TimerResource>>

freq : Timer

2:

3: setDelay(delay=20)

4: start()
<<Acquire>>
5: acquire()

10:

34: send()

35:

36: setPace(”newValue=newMRPace”)

37: setRotation(”newValue=newMRRotation”)

38: applyParameters()

39: decreaseEnergyLevel()

40: waitForTimeout(timer=freqCtrl)

41:

20: setRotation(”newValue=newM

19: setPace(”newValue=newMRPact

16: getTemperature()

25:applyPa

BRAct:BackRotorActuator

(B) Aspect-Oriented Version

<<Scheduler>>

sched:Scheduler

<<SchedulableResource>>

mCtrl:MovementController

<<MutualExclusionResource>>

MRInfo:MovementInformation

<<SchedulableResourc

par <<TimeEvent>>
{every = (20,ms)}

1: run()

<<TimedEvent>>
{every = (20,ms)}

24: run()

[]

[]

2: getRotation()

3: mrRotation

4: getPace()

5: mrPace

6: getRotation()

7: brRotation

8: getPace()

9: brPace

10: getWindSpeed()

11: windSpeed

12: getWindDir()

13: windDirection

14: getHumidity()

15: humidity

17: temperature

18: processMovementInfo()

21: applyParameters()

22: setPace(”newValue=newBRPace”)

23: setRotation(”newValue=newBRRotation”)

Figure 7.4.: Fragments of UAV movement control sequence diagram

125

7. Validation

ler object. A loop combined fragment, indicating the repetitive nature of the control task,
encloses all performed actions. Timing and distribution requirements handling is performed
by, respectivelyTimer andSemaphore classes (see figure7.4-A1). Timer’s timeout value
is the value of the activation period assigned toMovementController object. At the end
of the controller method (figure7.4-A2), the execution is held until the timeout occurrence
(message 40) to control the execution frequency. Figure7.4-A1 also depicts the synchro-
nized access (using a semaphore, as depicted in message 11) to MovementInformation
object, whose attributes values are written byMovementEncoder active object, and read by
MovementControlleractive object. Therefore, before every access to theMovementIn-
formation object, an permission must be requested, and after its use, the exclusive access
must be released.

As stated before, the control system has one processing nodeat the main rotor and another
one at the back rotor. The control task runs in the main rotor node while the back rotor actuation
task runs in its own node. Thus, the movement control task must send the calculated actuation
values to the back rotor node. Figure7.4-A2 shows the handling of this communication non-
functional requirement (messages 34 and 35), and also the application of calculated actuation
values to the main rotor actuator. Furthermore, this diagram also shows other method related to
control energy consumption (message 39).

7.3.1.2. Aspect-Oriented Version

The AO version uses DERAF aspects to specify the handling of non-functional requirements,
i.e. the handling of each non-functional requirement is enclosed within the scope of a single
element instead of being spread over several different elements.

Figure7.3-B depicts the class diagram for the AO version. As can be observed, this di-
agram is simpler to visualize compared to the one in OO version, due to the elimination of
classes that are not related with the application itself (i.e. classes that handle non-functional
requirements). In other words, in AO version the handling ofnon-functional requirements is
done using aspects from DERAF, which are specified in the ACOD. One may argue that the
same visual simplification is achieved by means of separating functional from non-functional
requirements handling classes into two different class diagrams. This claim is true, however, the
use of aspects brings other advantages, such as a decrease incoupling among classes, reduction
in the amount of model elements related to non-functional requirements handling, and others.

Considering the behavior specification, the number of required sequence diagrams was
also reduced to nine. In AO version the following sequence diagrams of OO version have been
eliminated:(i) Back rotor actuation;(ii) Back rotor movement encoder;(iii) Energy control; and
(iv) Task migration. The last two diagrams (iii and iv) are not necessary anymore because the
handling of energy control and task migration requirementshave been delegated to, respectively,
EnergyControl andTaskMigration aspects of DERAF (see section5.3.2). Actions in
the other two eliminated diagrams, i.e. (i) and (ii), were merged with, respectively, “Helicopter
Movement Control” and “Main Rotor Movement Encoder” sequence diagrams. Figure7.4-B
shows the movement control diagram, which is equivalent to the same diagram in OO version.

126

7.3. Case Studies

As can be observed, all non-functional requirements handling elements have been removed,
reducing considerably the size of diagrams in terms of number of messages (40% reduction)
and lifelines.

Additionally, figure7.4-B also shows the union of “Helicopter Movement Control” and
“Back Rotor Actuation” sequence diagrams, which is represented by the parallel combined frag-
ment (“par”), meaning that both interactions occur concurrently. Due to elimination of messages
related to non-functional handling, only two messages remained from the original “Back Rotor
Actuation”. Thus, these messages were included into the “Helicopter Movement Control” se-
quence diagram (see messages 24 and 25) and, consequently, the “Back Rotor Actuation” could
be eliminated in the AO version.

According to AMoDE-RT, DERAF aspects and join points are specified using a combina-
tion of ACOD and JPDD (see section5.3). Figure7.5-A shows a fragment of the UAV’s ACOD,
showing three aspects:TimingAttributes, PeriodicTiming andConcurrency-
Control. The first two aspects insert new attributes to active objects classes (those annotated
with «SchedulableResource» stereotype). Attributes related to deadline, priority and
WCET are inserted byTimingAttributes, and the activation period byPeriodicTiming
aspect. Values for this new attributes are specified in crosscut associations. It is important to
emphasize that crosscutting associations do not insert by themselves new attributes into partic-
ipating elements (class or aspect) as normal associations.Hence, they do not bind classes with
aspects, and vice-versa.

As mentioned, the real link between aspects adaptations andaffected elements (whose se-
lection is specified with JPDDs) is specified by pointcuts description within aspects. Figure
7.5-B shows five examples of all JPDDs created in this case study:

1. ActiveClass join point (B1) represents the selection of all classes annotated with
«SchedulableResource» stereotype;

2. ActObjContructor join point (B2) selects all actions that construct all active objects;

3. PeriodicActivation join point (B3) represents the selection of all messages, which
are annotated with«TimedEvent» stereotype, sent by the scheduler to any active ob-
ject;

4. InfoObjCreation join point (B4) selects all actions that construct passive objects (i.e.
classes annotated with«MutualExclusionResource»),whose name ends with “In-
formation”;

5. SetInfoValue join point (B5) selects all messages with name starting with“set”,
which are sent to passive objects whose name ends with “Information”.

As shown in figure7.5-A, PeriodicTiming aspect uses JPDDs numbers 1–3, while
TimingAttributes aspect uses only JPDDs numbers 1 and 2.

ConcurrencyControl aspect affects passive objects, which store information that can
be simultaneously accessed by more than one active object. It assigns a concurrency control
mechanism to each affected object during their instantiation, whose join point is captured by

127

7. Validation

(A) (B)

(B1)

(B2)

(B3)

(B4)

(B5)

<<Aspect>>

<<Aspect>>

<<Aspect>>

<<NFR_Timing>>

<<NFR_Timing>>

<<NFR_Distribution>>

TimingAttributes

PeridicTiming

ConcurrencyControl

<<Pointcut>>+pcActClass(ActiveClass, Deadline+Priority+WCET)

<<Pointcut>>+pcActObjInit(ActObjConstructor,SetupTimingAttributes,AFTER)

<<StructuralAdaptation>>+Deadline()

<<StructuralAdaptation>>+Priority()

<<StructuralAdaptation>>+WCET()

<<BehavioralAdaptation>>+SetupTimingAttributes()

<<Pointcut>>+pcActClass(ActiveClass, Period)

<<Pointcut>>+pcActObjInit(ActObjConstructor, SetupPeriod, AFTER)

<<Pointcut>>+pcLoop(PeriodicActivation, LoopMechanism, AROUND)

<<Pointcut>>+pcFreqCtrl(PeriodicActivation, FrequencyControl, AFTER)

<<StructuralAdaptation>>+Period()

<<BehavioralAdaptation>>+SetupPeriod()

<<BehavioralAdaptation>>+LoopMechanism()

<<BehavioralAdaptation>>+FrequencyControl()

<<Pointcut>>+pcInfoClass(InfoObjCreation, ConcurrencyControlMechanism)

<<Pointcut>>+pcBeforeWriteInfo(SetInfoValue, AcquireAccess, BEFORE)

<<Pointcut>>+pcAfterWriteInfo(SetInfoValue, ReleaseAccess, AFTER)

<<StructuralAdaptation>>+ConcurrencyControlMechanism()

<<BehavioralAdaptation>>+AcquireAccess()

<<BehavioralAdaptation>>+ReleaseAccess()

<<Crosscut>>

{Period = “15ms”}
<<Crosscut>>

{Period = “10ms”}

<<Crosscut>>
{Period = “20ms”}

<<Crosscut>>
{Period = “15ms”}

<<Schedulable

 Resource>>

MovementController

MovementEncoder

EnvironmentDataSampler
BackRotorActuator

Alarm

<<Crosscut>>

<<Crosscut>>

<<Crosscut>>

<<Crosscut>>

<<Crosscut>>
{Dealine = “15ms”,

 Priority = “1”,

 WCET = “8ms”}

{Dealine = “10ms”,

 Priority = “1”,

 WCET = “5ms”}

{Dealine = “20ms”,

 Priority = “1”,

 WCET = “7ms”}

{Dealine = “5ms”,

 Priority = “1”,

 WCET = “2ms”}

{Dealine = “15ms”,

 Priority = “1”,

 WCET = “8ms”}

{Name = “ActiveClass”}

*

* : *
<<JoinPoint>>

{Name = “ActObjConstructor”}

* : *
1: *(..):*

* : *

<<Scheduler>>

* : Scheduler

<<TimedEvent>>

<<JoinPoint>>

{Name = “periodicActivation”}

1: *(..):*

* : *
<<JoinPoint>>

{Name = “InfoObjCreation”}

1: *(..):* * : *Information

<<MutexExclusion

 Resource>>
* : *Information* : *

<<JoinPoint>>

{Name = “setInfoValue”}

1: set*(..):*

<<JoinPoint>>

<<Schedulable

 Resource>>

<<SchedulableResource>>

<<Schedulable

 Resource>>

<<Schedulable

 Resource>>

<<SchedulableResource>>

<<Schedulable

 Resource>>

<<SchedulableResource>>

<<Schedulable

 Resource>>

<<MutexExclusion

 Resource>>

Figure 7.5.: UAV non-functional requirements handling: (A) ACOD, and (B) JPDD

theInfoObjCreationJPDD. Additionally, before every access (read or write) to aprotected
object, an access permission must be requested to this control mechanism. Similarly, the control
mechanism should be informed that the object is no longer in use. Writing accesses are captured
by SetInfoValue JPDD. It is important to highlight that according to DERAF premises of
high-level aspects, at modeling level, it does not matter ifthis inserted control mechanism is a
new attribute for each affected classes or simply an new global object, which is associated with
the protected shared object. These are implementation specific issues, which should be decided
at implementation phase.

As a first impression, one can think that the specification of ACOD and JPDD seems to
require more effort but it is not true. The generic nature of JPDDs allows their re-use from
previous modeled projects, as demonstrated in these case studies. Hence, many JPDDs have
been simply reused without modification in the other case studies.

128

7.3. Case Studies

7.3.1.3. Results

Considering separation of concerns metrics, figure7.6-A shows how effective was the applica-
tion of DERAF aspects to handle time, distribution and embedded concerns. All non-functional
requirements have better handling separation in the AO model compared to the OO one, i.e.
the smaller amount of elements (classes and/or aspects) handling a concern, better separation
of concerns is achieved, leading to a decrease in the scattering problem. The numbers pre-
sented confirm the simplification observed in the diagrams ofAO version. The reduction ranges
from 55% to 83% for the CDC and from 75% to 92% for the CDO metric. CDC/CDO be-
came smaller in AO version because the way they are calculated (see section2.4.4.3). For in-
stance, in AO version, CDC for timing non-functional requirements considers only the follow-
ing DERAF aspects:PeriodicTiming, SchedulingSupport, TimingAtributes
andTimePa- rametersAdapter. On the other hand, in OO version, CDC takes into ac-
count classes specifically related to timing non-functional requirements handling (Scheduler
andTimer) plus those related to functional requirements, which alsodeal with time issues
(MovementController, MovementEncoder, EnvironmentDataSampler, Back-
RotorSensorDriver,BackRotorActuator,Alarm andEnergyController).
Consequently, in OO model, functional and non-functional requirements handling intermixing
cause the inclusion of some functional elements/methods asnon-functional elements/methods.

Considering the other metrics, figure7.6-B depicts the results obtained. Analyzing coupling
metrics, DIT results show that the use of aspect did not modified the inheritance tree. CBC
results show, again, a decrease of more than 55% in the AO model. CBC takes into account
each reference (e.g. attribute, method call, parameter) toother classes/aspects. Consequently,
classes/aspects in AO version are more modular than in OO version, mainly, due also to the
intermixed treatment of functional and non-functional requirements that happens in OO version.
Observing the size metric, VS did not change, while NOA has a decrease of 52%. This happened
because several non-functional-related attributes were moved from classes to aspects, which are
woven into all affected classes in implementation phase.

9

59

14

29

12

38

4

12

4
7

2 3

0

10

20

30

40

50

60

70

CDC CDO CDC CDO CDC CDO

Timing Distribution Embedded

OO AO

164

2

614

217

32

105
72

2
53 53 32 50

0

100

200

300

400

500

600

700

CBC DIT LCOO LCOO* VS NOA

Coupling Cohesion Size

OO AO

(A) Separation of concerns metrics (B) Coupling, Cohesion and Size metrics

Figure 7.6.: Calculated metrics for the UAV control system

129

7. Validation

+getPriority()
+setPriority()
+getDeadline()
+setDeadline()
+getPeriod()
+setPeriod()
+getWCET()
+setWCET()
+getEnergyLevel()
+decreaseEnergyLevel()
+resetEnergyLevel()
+waitForTimeout(timer)
+changeControlPolicy()
+run() : void
+processInfo(r1:int, p1:int, r2:int, p2:int, ws:float, wd:float, h:float, t:float) : void
+getLastValidComputation()

<<SchedulableResource>>

MovementController_OO

. . .

+run() : void
+processInfo(r1:int, p1:int, r2:int, p2:int, ws:float, wd:float, h:float, t:float) : void
+getLastValidComputation()

<<SchedulableResource>>

MovementController_AO

. . .

Figure 7.7.: Comparison of UAV’sMovementController classes

Regarding cohesion, the difference of LCOO between AO and OOmodels is more than
91%. This decrease is primarily caused by elimination ofget/setmethods for attributes re-
lated to non-functional requirements handling. To illustrate this difference, figure7.7 presents
MovementController class for OO and AO versions. Moreover, LCOO metric does not
distinguish the two kinds ofget/setmethods: (i) “raw” which have minimum impact on real
cohesion; (ii) with computations, which have significant impact on real cohesion. As one can
see, OO version’sMovementController has nine “raw”get/setmethods related to non-
functional requirements. Therefore, to provide a fair assessment, LCOO for OO has been re-
calculated excluding “raw”get/setmethods (LCOO* in figure7.6-B). Even in this situation,
LCOO decrease is 75% in AO model. The obtained results show that using aspects improves
model cohesion.

Besides the modeling approach, AMoDE-RT also supports codegeneration using the pro-
duced UML model as input. Mapping rules for two different platforms, i.e. RT-FemtoJava and
ORCOS, have been created and used to produce the system source code in Java and C++. Tables
7.1and7.2present some statistics about, respectively, the UAV movement control UML model
and the generated source code.

Table 7.1.: UAV: Statistics of the UML model of AO version

Diagrams Amount
Structural 2
Behavioral 10
ACOD 1
JPDD 16

DERAF aspects 10
Structural adaptations 15
Behavioral adaptations 18

130

7.3. Case Studies

The size of mapping rules XML files, in terms of code lines, is 803 lines for the RT-
FemtoJava, and 749 lines for ORCOS platform. However, if thelines related to XML markup
are not considered, the amount of lines for the mapping rulesscript is 388 and 332, respectively.
These scripts represent theApplicationbranch. ORCOS mapping rules file is smaller than the
RT-FemtoJava one due to the later has more aspect adaptations scripts than the former. In fact, in
ORCOS platform, several expected behaviors of aspect adaptations (e.g.PeriodicTiming’s
LoopMechanism andFrequencyControl) are implicitly executed within platform con-
text, and hence, they do not need extra lines of code in application code, only the correct con-
figuration to enable such behavior. Furthermore, as some aspects used in the UML model are
not supported by both target platforms, their adaptations insert only a comment (one line) indi-
cating that aspects have performed adaptations in generated source code fragments. Despite not
implementing real code, these scripts serve as demonstration of aspects weaving performed by
GenERTiCA.

Considering generated platform configuration, the difference in amount of lines is even
greater. RT-FemtoJava configuration has 2931 lines, and ORCOS 480 lines. This happened
because ORCOS has already a configuration mechanism, and RT-FemtoJava none. Hence, on
one hand, a configuration file is generated for ORCOS, and on the other hand, the entire RT-
FemtoJava API code is tailored to include only lines that provide services required by aspects.
In other words, by using this RT-FemtoJava configuration approach, GenERTiCA provides a
preprocessor mechanism to Java, likewise the one natively supported in C/C++.

Regarding the generated source code for the UAV movement control system, all behav-
iors/actions specified with sequence diagrams have been mapped to source code constructions.
Thus, for the RT-FemtoJava platform, the amount of application code lines is almost 3.3 times
the amount of mapping rules scripts lines. For ORCOS, the rate is almost 4.2 times, demon-
strating the effort reduction in application coding, and the importance of code generation tools
in MDE approaches. In the other case studies, the mapping rules have been used without modi-
fication, and hence, the effort to obtain system implementation was even lower than in this case

Table 7.2.: UAV: Statistics of the generated source code

RT-FemtoJava+ ORCOS
Mapping Rules (lines) 388/803 332/749
Application

Source code files 21 42
Lines of Code 1264 1385
Binary Size (Kb) 5.41 (32) 147

Platform
Source code files 21/38* 01/01
Lines of Code 2931* 480
Binary Size (Kb) 5.93 (50) 462

+ Numbers inside parentheses represent the bytecodes size generated by java compiler

* Considering RTSJ API [131] + API COM [34]

131

7. Validation

study.

Considering the size of compiled source code, a considerable difference between both plat-
forms can be perceived. This is caused by the difference between instructions size of both target
processors. ORCOS code has been compiled to a 32-bits PowerPC processor, whose instruc-
tions size is 4 bytes. On the other hand, RT-FemtoJava is a hardware implementation of the
JVM specification and, according to Lindholm and Yellin [73], the size of JVM instructions is
1, 2 or 3 bytes. Consequently, PowerPC’s binary size could be(in the worst-case) almost four
times greater than RT-FemtoJava’s binary size.

7.3.2. Industrial Packing System

This case study was inspired on the packing system presentedin [60] and [19]. The system is
composed of a robotic arm with a gripper, two conveyors, a storage unit and several sensors.
The input conveyor brings individual parts, which are combined to form products. The conveyor
stops when the sensor detects the presence of a part. Then therobotic arm will either put it in the
storage unit or use it to assembly a product. The second conveyor brings empty boxes into which
parts are inserted. This conveyor remains operating until its sensor detects an empty box at the
expected position. When the product is completely assembled, the controller sends a command
to the conveyor and it starts to move forward again. The controller is a periodic active object
that verifies whether there are products to be assembly and/or parts to be place into the storage
unit. When the new product requires a part, which is physically located at the parts conveyor,
this part is taken from there, and used to mount the product; otherwise, the part is taken from the
storage unit. This system was intended to be distributed, i.e. there are four different processing
nodes: one responsible to control the products assembly process and the robotic arm; two nodes
to control, respectively, the input parts conveyor and the assembled products output conveyor;
and one to control the amount of parts in the storage unit.

The discussion starts exactly as in the UAV case study: firstly, the packing system func-

<<include>>

<<include>>
<<include>>

<<include>>

<<NFR_Timing>>

<<NFR_Timing>>

<<NFR_Timing>>

<<NFR_Timing>>

<<NFR_Timing>>

<<NFR_Timing>>

<<NFR_Timing>>
<<NFR_Distribution>>

<<NFR_Distribution>>

<<NFR_Distribution>>

<<NFR_Distribution>>

<<NFR_Embedded>>

<<NFR_Embedded>>

Robot Arm

Storage Unit

Input Parts

Conveyor

Output

Products

Conveyor

Item Reader

Robotic Arm

Control

Gripper Control

Arm Joints

Control

Assembly Cell

Control

Conveyor Movement

Control

Items Detection

Parts Detection
Empty Boxes

DetectionStorage Unit

Control

Figure 7.8.: Industrial packing system use case diagram

132

7.3. Case Studies

tionalities are specified with an use case diagram, as depicted in figure7.8. Once again, one
can see that several use cases are annotated with stereotypes related to non-functional require-
ments. Although this case study has more use cases decoratedwith “NFR_” stereotypes, it has
fewer non-functional requirements. More specifically, there are fewer embedded non-functional
requirements (if compared to the UAV case study), due to system size and absence of energy
constraints in products packing system.

This case study have been performed as previous the previousone: i.e. object- and aspect-
oriented modeling approaches are shown and compared with the assessment framework. Source
code have also been generated for the two mentioned platforms, and their statistics are pre-
sented.

7.3.2.1. Object-Oriented Version

Following the approach adopted in the UAV case study, the static structure of the packing system
is specified using the class diagram, as depicted in figure7.9-A. The same MARTE profile
stereotypes have been used, i.e.«SchedulableResource» and«MutualExclusion-
Resource», to specify, respectively, active and passive objects. Non-functional requirements
related classes are also emphasized with different colors.

(A) Object-Oriented Version (B) Aspect-Oriented Version

<<SchedulableResource>>

RobotArmJoint

WristJoint ShoulderJoint RotaryShoulderJoint ArmJoint

RobotArm AssemblyCellController

Gripper

Conveyor

<<MutualExclusion

 Resource>>

ItemReader

RFIDReader

StorageUnit

StoagerCompartment

RobotArmPosition

Item

Recipe

ProductPart

Product

1

0..*

1..*
0..*

1 1

1

1

1 4

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

1

1

1

111

1 1

1

1

1

1

1

Recipe
ProductPart Product

Item

StoagerCompartment

StorageUnit

RobotArmPosition
Conveyor

RFIDReader

ItemReader

Gripper AssemblyCellController

RobotArm

WristJoint ShoulderJoint RotaryShoulderJoint ArmJoint

RobotArmJoint

1 1

0..*
1..*1

0..*

1

1 4

1

1 1

1

11

1

1

1
1

1

1
1

1

1

1

1

1

1

1

1
1

1 1

1

1

1

1

1

1 1

1

1

1

1

1

1
1

11
1

1

1

1

1

1

1

1

1

1

1 1

1

1 1

1 1

1

1

<<Scheduler>>

TaskMigration
MemoryController MemoryManager

Scheduler
Semaphore

Timer

CommunicationInterface Message

<<TimerSource>>

<<SchedulableResource>>

<<Schedulable

 Resource>>

<<Schedulable

 Resource>>

<<Schedulable

 Resource>>

<<SchedulableResource>>

<<MutualExclusion

 Resource>>

<<MutualExclusion

 Resource>>

<<MutualExclusion

 Resource>>

<<MutualExclusion

 Resource>>

<<MutualExclusion

 Resource>>

<<SchedulableResource>>

<<SchedulableResource>>

<<SchedulableResource>>
<<Schedulable

 Resource>>

<<Schedulable

 Resource>>
<<Schedulable

 Resource>>

<<SchedulableResource>>

<<MutualExclusion

 Resource>>

<<MutualExclusion

 Resource>>

<<Mutual

 Exclusion

 Resource>>

<<MutualExclusion

 Resource>>
<<MutualExclusion

 Resource>>

<<MutualExclusion

 Resource>>

Figure 7.9.: Industrial packing system class diagram

133

7. Validation

For behavior specification, eleven sequence diagrams have been created:(i) Products as-
sembly control;(ii) Conveyor control;(iii) Item detection;(iv) Robotic arm joints control;
(v) Gripper control;(vi) Robotic arm movements control;(vii) Storage unit control;(viii) Con-
troller sub-system initialization;(ix) Conveyor sub-system initialization;(x) Storage unit sub-
system initialization; and(xi) Memory management and tasks migration. Figure7.10-A shows
two fragments of (i), as in the UAV case study: (a) the start ofproducts assembly control
execution, and (b) the end of this behavior. Repeating the UAV case study modeling pat-
tern, the scheduler object sends a periodic message (annotated with«TimedEvent») to the
AssemblyCellController active object, triggering its behavior execution at each 5 sec-
onds. Classes specifying non-functional requirements handling can also be seen in these frag-
ments, e.g.Timer andMessage classes.

As stated before, active objects are spread into four nodes.The main control task (i.e.
AssemblyCellController object) runs in the main node, and must access information
from conveyors and storage objects located in other nodes. Thus, this object must send messages
to these other objects, in order to collaborate with them to proceed with the products assembly
and parts storage. For instance, figure7.10-A shows the message sending that requests the
position of the storage unit, into which a part should be placed (messages 45-48). Additionally,
other messages related to other non-functional requirements handling, e.g. the memory control
(message 51 and 55), are also depicted.

55: free(amount=Msg.size())

6: allocate(amount-Msg

2: allocate(amount=Tim

8: getRecipe(

11: part

(A) Object-Oriented Version

(A1)

(A2)

<<Scheduler>>

sched:Scheduler
acc:AssemblyCellController

<<SchedulableResource>> robotArm:RobotArm

<<NFR_Timing>>

<<TimedEvent>>
1: run()

loop

loop

alt

<<TimerResource>>

freq:Timer

<<NFR_Timing>>
3:

4: setTimeout(t=Period)

5: start()

7: <<NFR_Distribution

Msg:Message

[(hasProductsToBuild() == True) &&

 (MixedPartsOut.isItemDetected() == TRUE)]

[i=0; i < receita.getPartsCount()]

9: recipe

10: getPart(index=i)

45: clear()

46: set(Value=GET_ITEM_POSITION)

47: sendSync(msg=Msg)

48: Msg

49: moveTo(newPos=Msg.get(1))

50: openGripper()

51:

52: free(amount=Msg.size())

53: waitForTimeout()

54:

32: getPosition(part=)

[else]

ProdToAssembly:Product

<<MutualExclusionReso

(B) Aspect-Oriented Version

(B2)

(B1)

<<Scheduler>>

sched:Scheduler acc:AssemblyCellController

<<SchedulableResource>> robotArm:RobotArm

<<TimedEvent>>
{every = (5,s)}

1: run()

alt

loop

alt

[(hasProductsToBuild() == True) &&

 (MixedPartsOut.isItemDetected() == TRUE)]

[i=0; i < receita.getPartsCount()]

[(ProductsIn.isItemDetected() == TRUE) &&

 (part == Productsin.getItem())]

2: getRecipe()

3: recipe

4: getPart(index=i)

5: part

6: getPosition()

7: pos

8: openGripper()

9: moveTo(newPos=pos)

10: closeGripper()

11: getPosition()

12: pos

13: moveTo(newPos=pos)

14: openGripper()

27: openGripper()

28: moveTo(newPos=pos)

29: closeGripper()

30: getItem()

31: item

33: pos

34: moveTo(newPos=pos)

35: openGripper()

..
.

Figure 7.10.: Industrial packing system sequence diagram

134

7.3. Case Studies

7.3.2.2. Aspect-Oriented Version

DERAF was also used in the AO version of the industrial packing system to specify non-
functional requirements handling. Figure7.9-B shows the class diagram specifying the static
structure. Again, the amount of classes, as well as the relations among them, have decreased.
Thus the complexity of this diagram decreases in AO version,just like in the previous case
study. Hence, the same statements made in the previous section hold in this case study.

In AO version, system behavior has been specified using less diagrams than the OO ver-
sion, however, for the industrial packing system case study, the decrease happened only in one
case: “Memory control and tasks migration” was removed due to the handling of memory con-
trol and task migration requirements to be delegated to, respectively,MemoryUsageControl
andTaskMigration aspects. Figure7.10-B shows two fragments of the products assembler
control diagram, which are equivalent to those presented infigure7.10-A. The amount of mes-
sages in this diagram is 36% smaller than the OO version one. As happened in the UAV case
study, the complexity decrease for describing the same system features can be clearly perceived.

Considering the specification of non-functional requirements handling, figure7.11shows
a fragment of ACOD, showing the reuse ofTimingParameters andPeriodicParame-
ters aspects. Not only aspects have been reused. As one can see, join points (i.e. JPDD)

(B)

(B1)

(B2)

(B3)

{Name = “ActiveClass”}

*

* : *
<<JoinPoint>>

{Name = “ActObjConstructor”}

* : *
1: *(..):*

* : *

<<Scheduler>>

* : Scheduler

<<TimedEvent>>

<<JoinPoint>>

{Name = “periodicActivation”}

1: *(..):*

<<JoinPoint>>
<<SchedulableResource>>

<<Schedulable

 Resource>>

<<SchedulableResource>>

<<Aspect>>

<<NFR_Timing>>

PeridicTiming

<<Pointcut>>+pcActClass(ActiveClass, Period)

<<Pointcut>>+pcActObjInit(ActObjConstructor,SetupPeriod,AFTER)

<<Pointcut>>+pcLoop(PeriodicActivation, LoopMechanism, AROUND)

<<Pointcut>>+pcFreqCtrl(PeriodicActivation,FrequencyControl,AFTER)

<<StructuralAdaptation>>+Period()

<<BehavioralAdaptation>>+SetupPeriod()

<<BehavioralAdaptation>>+LoopMechanism()

<<BehavioralAdaptation>>+FrequencyControl()

<<Aspect>>
<<NFR_Timing>>

TimingAttributes

<<Pointcut>>+pcActClass(ActiveClass, Deadline+Priority+WCET)

<<Pointcut>>+pcActObjInit(ActObjConstructor,SetupTimingAttributes,AFTER)

<<StructuralAdaptation>>+Deadline()

<<StructuralAdaptation>>+Priority()

<<StructuralAdaptation>>+WCET()

<<BehavioralAdaptation>>+SetupTimingAttributes()

<<Crosscut>>

{Period = “500ms”}

<<Crosscut>>
{Period = “350ms”}

<<Crosscut>>
{Period = “300ms”}

<<Crosscut>>

{Period = “500ms”}

<<Crosscut>>

{Period = “500ms”}

<<Crosscut>>

{Period = “5s”}

<<Crosscut>>

{Dealine=500ms,

 Priority=5,

 WCET=100ms}

<<Crosscut>>

{Dealine=350ms,

 Priority=5,

 WCET=150ms}

<<Crosscut>>

{Dealine=500ms,

 Priority=5,

 WCET=100ms}

<<Crosscut>>

{Dealine=500ms,

 Priority=5,

 WCET=100ms}

<<Crosscut>>
{Dealine=5s,

 Priority=5,

 WCET=3.5s}

<<Crosscut>>
{Dealine=300ms,

 Priority=5,

 WCET=150ms}

<<SAschedRes>>
<<SAresource>>

Conveyor

<<SAschedRes>>

RobotArmJoint

<<SAschedRes>>

ItemReader

<<SAschedRes>>

StorageCompartment

<<SAschedRes>>

Gripper

<<SAschedRes>>

AssemblyCellController

(A)

Figure 7.11.: Industrial packing system: reused elements in (A) ACOD, and (B) JPDD

135

7. Validation

used in pointcuts specification are also reused from the UAV case study. This shows the gen-
erality of DERAF and the AMoDE-RT approach, demonstrating that aspects can be reused at
modeling level in different distributed embedded systems designs, due to their high-level se-
mantics. It is important to highlight that, for aspects implementation, the mapping rules have
also been reused without modifications, due to the fact that the target platform is the same, and
the implementation follows the high-level pre-defined semantics of each aspect.

7.3.2.3. Results

Separation of concerns metrics depicted in figure7.12-A shows that the same improvement
achieved in UAV case study is obtained in the AO version of theindustrial packing system.
CDC metrics have been reduced at least 66% up to 81%, while CDOfrom 16% up to 75%.
Although there is an improvement of concerns separation, itwas not in the same degree as
in the UAV case study, due to the amount of timing non-functional requirements present in
both systems, as for example freshness requirements in UAV case study that do not exist in the
industrial packing system.

The other metrics exhibit similar improvements.:(i) DIT did not change, i.e. aspects do not
modify classes hierarchy;(ii) AO model is again more cohesive, as pointed by the decrease of
47% in CBC metric;(iii) VS in AO version indicates a small increase (i.e. one element), because
in this version memory requirements are handled by two elements (MemoryUsageControl
andMemoryUsageMonitoring aspects) instead of one element as specified in OO version;
(iv) NOA, on the other hand, decrease almost 46% in AO version, showing that in spite of
the increase in VS metric, the number of classes’ internal elements has decreased. Regarding
model cohesion, in AO version, LCOO decreases 58% when considering all kinds of methods,
and 16% if “raw”get/setmethods are excluded, showing that, in spite of the good cohesion in
the OO version, the use of AO concepts improve system cohesion.

Considering the created UML model, and the implementation generated from it, tables7.3

9

12
13

19

11
12

3

10

4

10

2
3

0

5

10

15

20

25

CDC CDO CDC CDO CDC CDO

Time Distribution Embedded

OO AO

203

1

193

96

27

89
108

1

80 80

28
48

0

40

80

120

160

200

240

CBC DIT LCOO LCOO* VS NOA

Coupling Cohesion Size

OO AO

(A) Separation of concerns metrics (B) Coupling, Cohesion and Size metrics

Figure 7.12.: Calculated metrics for the industrial packing system

136

7.3. Case Studies

Table 7.3.: Industrial packing system: Statistics of the UML model of AO version

Diagrams Amount
Structural 2
Behavioral 12
ACOD 1
JPDD 13*

DERAF aspects 9
Structural adaptations 14
Behavioral adaptations 15

* 11 JPDDs have been reused from UAV

Table 7.4.: Industrial packing system: Statistics of the generated source code

RT-FemtoJava+ ORCOS
Mapping Rules (lines) 388/803 332/749
Application

Source code files 22 42
Lines of Code 1144 1343
Binary Size (Kb) 4.64 (29) 139

Platform
Source code files 21/38* 01/01
Lines of Code 2931* 480
Binary Size (Kb) 6.12 (50) 462

+ Numbers inside parentheses represent the bytecodes size generated by java compiler

* Considering RTSJ API [131] + API COM [34]

137

7. Validation

and7.4show the statistics on the produced artifacts. In this case study, the reuse of previously
created artifacts is highlighted in both AO-related elements specification and mapping rules.
Considering the former, in addition to DERAF aspects reuse,JPDDs also have been reused.
From the 13 JPDDs used in this case study, 11 have been reused from the UAV case study
without any modification. The same happened with the mappingrules specification. Thus,
none effort was necessary to generate 1144 and 1343 source code lines for, respectively, RT-
FemtoJava and ORCOS platforms.

7.3.3. Wheelchair Automation

The third case study was an automation system for an electric-actuated wheelchair. Therefore,
AMoDE-RT approach has been applied in the wheelchair’s movement control system. Summa-
rizing, the wheelchair movement control includes two engines (one for each wheel), a joystick
to steer the wheelchair in terms of speed and direction, and two sensors to sample wheel rotation
speed. Therefore, the system must perform the following concurrent activities:

• To sample the wheel sensors every 10 milliseconds to determine the movement speed and
direction;

• To sample the current joystick position at the same period, i.e. 10 ms;

• To perform the wheelchair control algorithm every 50 ms, applying the calculated actua-
tion value to left and right wheel engines;

• To monitor changes in the operation mode. The operation modeinfluences in the way of
deadlines misses are treated:(i) signal the occurrence of missed deadlines;(ii) signal the
occurrence of missed deadlines, and apply the last valid actuation value; or(iii) signal the
occurrence of missed deadlines, and stop the wheelchair movement.

UML models of this case study have already been presented, aswell as discussed, in [131]
(OO version) and [37] (AO version). Thus, in this text, the goal of this case study is to discuss

(A) Separation of concerns metrics (B) Coupling, Cohesion and Size metrics

10

23

8

17

7 8
5

8

4
7

2 3

0

5

10

15

20

25

CDC CDO CDC CDO CDC CDO

Timing Distribution Embedded

OO AO

39

1

87

18

48

35

1

62

23 25

0

20

40

60

80

100

CBC DIT LCOO VS NOA

Coupling Cohesion Size

OO AO

Figure 7.13.: Calculated metrics for the wheelchair movement control system

138

7.3. Case Studies

the calculated metrics for both version, and in addition, present results concerning the generated
source code from the UML model of AO version. Moreover, this case study is slightly different
from the one presented in [37] because AMoDE-RT modeling guidelines require some small
modifications in diagrams, in order to allow code generationfrom the produced UML model.

Figure7.13 shows the calculated metrics for the wheelchair case study.As occurred in
the other cases studies, AO version has increased the separation of concern: CDC decreased
50% for timing and distribution and 71% for embedded non-functional requirements, and CDO
from 58% to 65%. As it can be noted, comparing with the other case studies, the improvement
obtained for CDC metric in this case study is not the same one obtained in UAV and industrial
packing system. This situation happens due to the fewer amount of non-functional requirements
that exist in wheelchair case study compared to the ones present in the other case studies. This
can be also confirmed by CBC metric that decreased only 10%. Inaddition, the lower CBC
absolute value in both versions indicates that the wheelchair movement control case study has
a good degree of decoupling. Combining the later metric value with the lower LCOO absolute
value, it can be stated that both OO and AO versions are well designed, due to, mainly, its
small size in comparison with the other case studies. Moreover, one can see that, although NOA
decreases almost 48%, the VS metric increases 27% in the AO version. As in the industrial
packing system, the reason for this increase is that there are no one-to-one relation between
non-functional requirements handling classes in OO version and aspects in AO version. Hence,
as the system size is small, the relative impact of extra elements is greater than in the other
case studies. However, as the other metrics have a significant improvement, this increase in
vocabulary size is still acceptable.

Compared to the wheelchair case study presented in [37], thereal contribution of this case
study is the generation of source code. As the other two case studies, two tables presents some
statistics: table7.5 considers the produced UML model for the AO version; and table 7.6con-
siders the source code generated for the RT-FemtoJava and ORCOS platform.

Again, this case study emphasizes the reuse of previously created artifacts. In this case
study, 100% of JPDDs could be reused from the UAV case study. Considering that both DERAF
aspects and JPDDs have been reused, one can state that, by using AMoDE-RT, designers need

Table 7.5.: Wheelchair: Statistics of the UML model of AO version

Diagrams Amount
Structural 1
Behavioral 6
ACOD 1
JPDD 14*

DERAF aspects 5
Structural adaptations 10
Behavioral adaptations 12

* all JPDDs have been reused from UAV

139

7. Validation

Table 7.6.: Wheelchair: Statistics of the generated sourcecode

RT-FemtoJava+ ORCOS
Mapping Rules (lines) 388/803 332/749
Application

Source code files 12 24
Lines of Code 672 712
Binary Size (Kb) 2.81 (19) 133

Platform
Source code files 13/30* 01/01
Lines of Code 1021* 480
Binary Size (Kb) 3.00 (28) 462

+ Numbers inside parentheses represent the bytecodes size generated by java compiler

* only RTSJ API [131]

only to concern with functional requirements specification, letting non-functional requirements
handling specification to be composed by already created elements. Moreover, as experience is
acquired in the development of others projects, the model elements repository grows in amount
of elements, increasing the possibility of reusing more elements.

Considering the wheelchair control system implementationin this case study, GenERTiCA
has generated 672 and 712 source code lines for, respectively, RT-FemtoJava and ORCOS plat-
forms. Rates of generated source code lines per mapping rules scripts lines are 1.73 and 2.14,
respectively. As one can conclude, implementation gains inthis case study are not the same as
the other cases studies mainly due to its size, i.e. wheelchair case study has 12 classes while
the UAV and the industrial packing system have 22 classes each. In the same sense, this case
study specified 6 behavioral diagrams, while the other ones 10 and 12 different diagrams each.
However, in wheelchair case study, no additional mapping rules had to be defined, i.e. as the
mapping rules files have already been specified in the first case study, it was necessary only to
reuse them without modifications to obtain the mentioned amount of source code files.

7.4. Final Remarks

Taking into account the results obtained for all case studies, it can be stated that the use of AO
concepts improves the reusability quality, even for small embedded real-time systems, as the
case of the wheelchair movement control system. Almost all metrics have better values for AO
model compared to OO one, ranging from 37% to 66% in average. Considering the under-
standability factor, key issues such as separation of concerns, cohesion and coupling improved
around 45% in average. Although the number of components hasincreased a little bit (10% in
average), the number of attributes decreased ca. 48%. For flexibility factor, AO model elements
are more cohesive and decoupled compared to OO model. Separations of concerns results show
that elements in AO model have more specific and well-defined roles than in OO model.

140

7.4. Final Remarks

The difference in the absolute metrics values leads to the conclusion that improvements
achieved with the use of AO concepts increase with the numberof crosscutting non-functional
requirements. Additionally, these case studies’ metrics confirm that, using AO, the same ben-
efits achieved in traditional information systems can be obtained in the design of distributed
embedded real-time systems.

Further, as one can see in table7.7, using DERAF aspects at modeling level allows their
reuse in different designs. If the implementation follows the aspect adaptations high-level se-
mantics, the aspects implementation can also be reused, as occurred in all presented the case
studies. AMoDE-RT approach to specify join points selection also allows the reuse of JPDD
(52% of all created JPDDs have been used in all case studies).However, it is worth to comment
that JPDDs must specify generic selection of elements (e.g.JPDD_ActiveObjectClass
or JPDD_PeriodicBehavior) to allow their reuse. Usually, JPDDs selecting specific el-
ements (e.g.JPDD_InfoAttributeRead) are harder to reuse, due to their close relation
with application specific elements (the mentioned JPDD, select attributes of classes whose name
ends with “Information”).

Considering the use of GenERTiCA, it must be stated that the amount of generated code
is directly proportional to mapping rules scripts and diagrams specification completeness. In
other words, if the UML model can provide complete information about system structure and
behavior (following AMoDE-RT modeling guidelines), and mapping rules specification can
map all elements available in the model into constructions available in a given target platform,
it is likely that GenERTiCA can generate a large amount of source code. Considering the source
code generated in presented case studies, one can see that itis possible to generate an amount
of source code lines from 1.73 to 4.2 times the amount of mapping rules scripts lines1.

Regarding the generated source code, source code files obtained after the code generation
process are more complete than the ones obtained using available commercial or academic code
generation tools, which usually only provide class skeletons and/or simple state machine related
code. In addition, the aspects weaving performed by GenERTiCA allows the use of aspect
adaptations in non-AO languages. Even considering these advantages, it must be highlighted
that the generated code is not complete. There are several small issues that are highly dependent
on the target platform, which cannot be solved using generalapproaches like GenERTiCA’s one.
For example, in all case studies, there is a need of filling thegap between the software objects
representing hardware components (e.g.WindSensorDriver in UAV case study) and the
real hardware. This kind of code is too specific to be specifiedin UML models or mapping rules,
implying unnecessary details for a single element. Thus, programmers must code manually the
corresponding methods in the generated source code files. Other example of platform-specific
problems is the circular cross-reference problem in C++ source code files. This situation has
occurred in the performed case studies, due to GenERTiCA’s approach to specify references,
which is strongly based on the Java language. A solution for this problem would be to pre-
declare referenced classes inside class source code files. Thus, GenERTiCA code generation

1Mapping rules script’s amount of lines for RT-FemtoJava andORCOS platforms are, respectively, 388 and 332
lines. These numbers only represent script lines without considering XML marks, which, in fact, do not influence
code generation

141

7. Validation

Table 7.7.: AO elements reused in the different case studies

UAV IPS* Wheelchair
DERAF aspects
TimingAttributes X X X
PeriodicTiming X X X
TimeBoundedActivity
SchedulingSupport X X X
Jitter
DataFreshness X X
ToleratedDelay
ClockDrift
ConcurrentAccessControl X X X
MessageSynchronization X X
MessageAck X X
MessageIntegrity
MessageCompression
TaskMigration X X
NodeStatusRetrieval
HwAreaMonitoring
HwAreaControl
EnergyMonitoring X
EnergyControl X
MemoryUsageMonitoring X
MemoryUsageControl X
JPDD
JPDD_ActiveObjectClass X X X
JPDD_ActiveObjectConstruction X X X
JPDD_ActiveObjectConstruction_Action X X X
JPDD_ActiveObjectConstructor X X X
JPDD_ExclusiveGet X X X
JPDD_ExclusiveObjectClass X X X
JPDD_ExclusiveSet X X X
JPDD_InfoAttributeRead X X
JPDD_InfoAttributeWrite X X
JPDD_InfoClassAttribute X X
JPDD_InfoObjectConstruction_2 X
JPDD_InfoObjectConstruction_Action X X
JPDD_ObjectConstruction_Action X
JPDD_ObjectDestruction_Action X
JPDD_PeriodicBehavior X X X
JPDD_SendMsgToRemoteObject X X
JPDD_SubSystemClass X X X
JPDD_SubSystemConstruction
JPDD_SubSystemConstruction_2 X X X
* Industrial Packing System

142

7.4. Final Remarks

algorithm must be extended to include this option.

There is another small technical problem in the code generation process implemented in the
initial version of GenERTiCA: the expressions used inside the UML model must be specified
using the target platform syntax. In other words, GenERTiCAreads expressions in the model,
using them as they are (i.e. a text fragment) in the generatedcode. Consequently, if the target
language changes, and the expressions syntax is not the same, expressions in the model must
be fixed, otherwise the generated code incur to compilation errors. A solution to this problem
would be to parse expressions specified in the UML model, converting them to the target plat-
form syntax. A generic expressions language must be used forspecifying expressions in UML
diagrams. In this sense, OCL could be a reasonable option, but its characteristics and suitability
for this purpose need to be evaluated before choosing it as this generic expressions language.

To conclude this chapter, it is worth to mention that the UAV case study is completely
provided in the appendices. Interested readers can see the complete UML model, along with
mapping rules files for the RT-FemtoJava platform.

143

7. Validation

144

Chapter 8

Conclusions and Future Work

This work has proposed an approach to design distributed embedded real-time systems using
MDE techniques along with concepts of AO paradigm to cope with the increasing complex-
ity associated with the design of modern systems. More specifically, the proposed approach
has addressed the following topics:(i) manage the complexity of functional and non-functional
requirements handling;(ii) support for separation of concerns;(iii) specification of system struc-
ture and behavior using a common language;(iv) improvement in design phases transition by
providing adequate tool support. All ideas and elements involved in the proposed approach have
been presented throughout this text.

AMoDE-RT design flow proposes solutions for all these issues, supporting a smooth tran-
sition from requirements specification to source code implementation, in order to fulfill gaps
usually found in the design flow. Such quest is achieved usinga combination of elements:
(i) RT-FRIDA for requirements analysis;(ii) UML as specification language;(iii) DERAF as-
pects to handle non-functional requirements;(iv) modeling guidelines to homogenize the spec-
ification of system structure, behavior, and non-functional requirements handling;(v) DERCS
as intermediate representation of such modeled information; (vi) transformation heuristics to
convert UML model elements into DERCS elements; and(vii) GenERTiCA code generation
tool to support the AMoDE-RT approach.

Besides requirements gathering, RT-FRIDA assists in linking requirements specification
with design elements, improving requirements traceability. Further, traceability is still preserved
in implementation, due to GenERTiCA approach that uses mapping rules to generated code
fragments from model elemets. In other words, it is possibleto compare generated source
code lines with code generation/aspect adaptation scripts, relating them with model elements,
to discover which requirements are handled by these code lines. In this sense, the effort to check
if the system meets the requirements can be decreased.

This work has shown that UML and MARTE profile can be used to specify system expected
functionalities in terms of structure, behavior, and also non-functional requirements handling.
As MARTE provides stereotypes with standard semantics to express real-time and embedded
systems features, its usage is preferable rather than “home-made” profiles, due to its already

145

8. Conclusions and Future Work

accepted concepts and constructions that passed through a rigorous review process. Using a
common and standard specification language facilitates thecommunication of design intention,
reducing possible misunderstandings in specification interpretation. Further, UML raises the
abstraction level used in design by shifting the focus from expected functions to system elements
and their roles to accomplish the desired functionalities,representing abstractions closer to real
world elements.

However, as UML has many variation semantic points, it is also important to define mod-
eling guidelines and also interpretation semantics to minimize (or even remove) model spec-
ification ambiguities. AMoDE-RT modeling guidelines intend to provide flexibility in UML
diagrams creation, but defining, at the same time, an interpretation semantic for modeled ele-
ments, allowing the integration of information specified indistinct diagrams (mainly in behavior
diagrams).

UML sequence diagrams have been successfully used to describe actions performed within
behaviors, eliminating the need of using textual action languages as current approaches suggest.
AMoDE-RT transformation heuristics allow actions sequence extraction from several differ-
ent sequence diagrams, enabling their association with other behavior diagrams, such as state
diagrams, to provide graphical behavior specification.

Furthermore, this work results have shown that using AO concept in distributed embed-
ded real-time systems design improves separation of concerns in the handling of functional and
non-functional requirements. In this sense, DERAF is a remarkable contribution due to the lack
of aspects with platform independent adaptation semanticscreated specifically to real-time and
embedded systems domain. Due to its well-defined semantics,DERAF has been successfully
used at both modeling and implementation levels. Moreover,the assessment presented in chap-
ter 7 indicates improvements in design understandability and flexibility, and also in the reuse
of previously developed artifacts (i.e. model and/or code). It was demonstrated that DERAF
aspects and JPDDs can easily be reused in different designs.

Despite the lack of support for AO concepts in official UML specification, AMoDE-RT pro-
poses to specify them using DERAF, ACOD and a set of JPDDs. Instead of proposing invasive
extensions to UML meta-model elements, AMoDE-RT proposes alightweight extension using
UML’s extensibility mechanism, i.e. a profile, allowing theuse of off-the-self UML modeling
tool to create AO elements with ACOD and JPDDs.

Similarly to other MDE approaches, the effectiveness of AMoDE-RT approach usage is
highly dependent on tool support. Therefore, GenERTiCA hasbeen created to assist in the
automatic transformation of UML models into source code fordifferent target platforms. Al-
though UML and MARTE provide adequate constructions to specify features of distributed
embedded real-time systems, they do not allow an unambiguous specification targeting source
code generation. Consequently, the intermediate PIM called DERCS has been proposed to sup-
port code generation tools construction. The most remarkable difference between UML and
DERCS is the representation of AO concepts, whose related elements stand for information
specified in ACOD and JPDD. AMoDE-RT transformation heuristics extract information from
ACOD and JPDD, allowing the creation of DERCS elements. In addition, it interprets JPDD

146

semantics gathering selected elements, associating theseelements with the DERCS join points
representation.

GenERTiCA code generation approach is different from the majority of code generation
tools available; it allows the separation of concerns in mapping rules description by using small
scripts responsible to generate source code fragments for structural and/or behavioral elements.
It can be state empirically that this approach improves cohesion and reinforces designers focus
on individual elements instead of the whole model. Besides not clearly demonstrated by case
studies, we believe empirically that, using GenERTiCA approach, it is easy to reuse parts of
mapping rules files in different designs, or using these parts as base to extend the mapping rule
scripts with other constructions in the target platform.

A remarkable contribution of GenERTiCA is its ability to perform aspects weaving in gen-
erated code fragments, and also in the input DERCS model. This capability, along with the use
of model-level aspects, allow to apply AO concept with non-AO target platforms, as demon-
strated in case studies. Furthermore, model weaving provided by GenERTiCA could be also
used in other tools, such as design exploration tools, to evaluate the impact of a given aspect
implementation. In this sense, in spite of allowing different implementations, DERAF aspect
semantics must be preserved to allow their high-level (re)use, i.e. the same platform can pro-
vide different forms to implement aspect adaptations, but this implementation must respect the
pre-defined high-level semantics.

MDE, AOD, and code generation topics have still more issues to be investigated. This
work development has leaded to other open problems regarding the mentioned topics. Thus, to
conclude this text, a discussion on directions for future investigation are provided:

• Sequence diagram is not the most adequate diagram, in essence, to specify algorithmic
behavior that do not represent object interactions. In behavior specifications, there are
algorithms having more mathematical expressions calculation than object interactions. In
these situations, activity diagrams are more suitable thansequence diagrams. Hence, a
modification in AMoDE-RT modeling guidelines and transformation heuristics (to pro-
vide support for both sequence and activity diagrams to specify actions performed within
a behavior) would allow designers to choose the one the better fits with the behavior
characteristics;

• MARTE profile has a bunch of other stereotype to describe real-time features, e.g.Re-
sourceUsage, GRService, TimingResource, and others. To investigate how to
combine them with the AMoDE-RT approach is other research direction;

• To support other JPDD types would allow other advanced options for elements selec-
tion instead of only direct elements selection. This extension is very challenging due
to expressiveness power of JPDD that would need elements evaluation considering, for
example, execution flows, state machines, or indirect classes associations;

• To implement UML state diagrams transformation into DERCS elements according to
AMoDE-RT transformation heuristics, as explained in chapter 6;

• MDE assumes that system implementation is obtained directly from models. To assure

147

8. Conclusions and Future Work

that the automatically generated source code is functionally correct, the source model
must also be correct. Thus, it is an interesting topic to investigate how to execute models.
DERCS could be used as the base for a UML virtual machine that simulates the behavior
specified in UML models, allowing early evaluation of systembehavior;

• Following the model execution thread, it is also interesting to provide means for automatic
UML model testing, likewise implementation-level approaches such as JUnit. Automatic
model testing could allow automatic evaluation of model changes against expected be-
havior results;

• To extend GenERTiCA’s code generation approach to overcomethe problem of circular
cross-reference, as mentioned in chapter 7;

• To investigate the use of OCL to support the specification of expressions in a program-
ming language independent fashion and, in addition, to makeGenERTiCA fully platform
independent;

• To create mapping rules for other platforms, such VHDL, Verilog, and others;

• To apply AMoDE-RT approach in other application domains of embedded systems.

148

Appendix A

DERAF Detailed Description

This appendix provides a more exhaustive discussion on the high level semantics of DERAF
aspects, representing the initial proposal for the handling of non-functional requirements pre-
sented in chapter 2.

A.1. Timing Package

As depicted in figureA.1, this package contains aspects to handle time-related requirements,
such as deadlines for activities execution, WCET information, periodic tasks activation, and
others.

TimingAttributes aspect is responsible to deal with active objects characteristics such dead-
line, priority, WCET, and absolute time instants on which their behavior must start and finish
the execution. Attributes representing the mentioned characteristics are inserted in the affected
active object classes, as well as methods and behavior to initialize and handle these attributes.
It provides the following adaptations:

• Deadline inserts an attribute representing the active objects behavior deadline, i.e. an
active object has only one main behavior, to which the deadline is related;
• WCETadds attributes to represent the WCET of active objects behaviors;
• StartTimeinserts an attribute to specify the absolute time instant inwhich an active object

can start their main behavior execution;
• EndTimeinserts an attribute to represent the absolute time instantin which the execution

of the active object main behavior is not allowed to execute.For instance, a periodic
active object cannot be triggered to execute its behavior after its end time;
• Priority adds an attribute to represent the priority that an active object have to execute

their behavior;
• SetTimingAttributesinserts the behavior responsible to initialize the inserted attributes

values;

149

A. DERAF Detailed Description

• AddAccessMethodsadds access methods to the inserted attributes;

PeriodicTiming aspect provides means to trigger periodically an active object behavior ex-
ecution. Thus, besides adding an attribute indicating the execution frequency in the affected
active object class, this aspect must also enclose the affected behavior with a repetition mech-
anism, whose execution is controlled according the information stored in the mentioned new
attribute. In other words, this aspect is used to deal with the handling of periodic active objects
(or threads). It provides the following adaptations:

• Period inserts an attribute representing the activation period ofperiodic active objects
behavior that is used to control the behavior execution frequency;

• SetPeriodinserts all code responsible to initialize the period attribute values, as well as
the get/set methods responsible to access it;

• LoopMechanismencloses periodic active objects behavior with a mechanism, and hence,
behavior’s actions sequence is executed repeatedly;

• FrequencyControladds a mechanism to control the execution frequency of periodic active
object behavior. This mechanism is responsible to hold active object’s behavior execution.
One solution would be to inform the scheduler that the activeobject has executed its
behavior, and can be suspended. Other implementation couldbe a busy wait.

SchedulingSupport aspect inserts a scheduler object in the affected computingnodes. This
object is responsible to control active objects execution,indicating instants at which they must
start performing their behavior. It provides the followingadaptations:

• Scheduleradds a scheduling mechanism that follows a given schedulingpolicy;
• SetupConcurrentActivitiesinserts the behavior responsible to add active objects in the

scheduling list, in order to perform the execution schedule.

TimeBoundedActivity aspect controls the execution time duration of an activity or action
by counting the time elapsed since the start time instant. Ifmaximum allowed duration is
surpassed, this aspect provides means to abort the affectedactivity/action execution. Examples
of this aspect use are: to restrict the maximum time a shared resource can be in exclusive access
mode, or the maximal time amount an active object can wait forthe reply of a remote objects.
It provides the following adaptations:

• TimeCountInfrastructureadds a time counting mechanism (e.g. timer) associated with
the affected element, which can be a new class attribute or a local variable in a method
behavior;

• StartCountinginserts behavior to setup and start the time counting mechanism at the
starting time the controlled action/activity;

• StopCountingadds behavior to stop the time counting mechanism right after the con-
trolled action/activity is finished.

150

A.2. Precision Package

<<Non−Functional>>

Timing

<<Aspect>>

SchedulingSupport

<<StructuralAdaptation>>+Scheduler()

<<BehavioralAdaptation>>+SetupConcurrentActivities()

<<Aspect>>

TimeBoundedActivity

<<StructuralAdaptation>>+TimeCountInfrastructure()

<<BehavioralAdaptation>>+StartCounting()

<<BehavioralAdaptation>>+StopCounting()

<<Aspect>>

TimingAttributes

<<StructuralAdaptation>>+Deadline()

<<StructuralAdaptation>>+Priority()

<<StructuralAdaptation>>+WCET()

<<StructuralAdaptation>>+StartTime()

<<StructuralAdaptation>>+EndTime()

<<BehavioralAdaptation>>+SetupTimingAttributes()

<<BehavioralAdaptation>>+AddAccessMethods()

<<Aspect>>

PeriodicTiming

<<StructuralAdaptation>>+Period()

<<BehavioralAdaptation>>+SetupPeriod()

<<BehavioralAdaptation>>+LoopMechanism()

<<BehavioralAdaptation>>+FrequencyControl()

<<use>>

<<use>>

<<use>>

Figure A.1.:Timing Package:handling time non-functional requirements

A.2. Precision Package

Precision in meeting time requirements are handled by the aspects of this package, which con-
centrates efforts in features such as the maximum tolerateddelay in starting activities, variance
in activities timeliness, information’s validity duration, or the deviation of local clock reference
compared with the global one. Precision package aspects aredepicted in figureA.2.

Jitter aspect measures the accuracy variance in activities performed by the system. This
aspect provides means to measure the time before (or after) an observed activity happen, storing
this information (the history must provide information of at least one time sample) to calculate
the variance among the observed time instants. This aspect can be used, for example, to calculate
the jitter in an periodic active object activation or execution, or to compute the time variance of
a periodic message sending. It provides the following adaptations:

• StartTimeadds, as the name indicates, behavior to measure the time point on which an
activity starts;
• VerifyToleratedJitterinserts a behavior to calculate the variance in two consecutive time

measurements of the same activity, comparing the result with the instant at which this
activity is expected to be performed. If the variance violates the tolerated threshold, a
corrective behavior can be executed.

ToleratedDelay aspect controls the maximum tolerated latency to the actualstart of a given
system activity. Thus, the time between the command and the execution of the observed ac-
tivity must be measured and calculated. If the observed duration is greater than the maximum
allowed latency, this aspect provides means to handle this exception. It provides the following
adaptations:

• StartTimeinserts behavior to measure the time instant at which an activity is commanded

151

A. DERAF Detailed Description

<<Non−Functional>>

Precision

<<Aspect>>

ToleratedDelay

<<BehavioralAdaptation>>+StartTime()

<<BehavioralAdaptation>>+VerifyToleratedDelay()

<<Aspect>>

Jitter

<<BehavioralAdaptation>>+StartTime()

<<BehavioralAdaptation>>+VerifyToleratedJitter()

<<Aspect>>

DataFreshness

<<StructuralAdaptation>>+ValidityInformation()

<<BehavioralAdaptation>>+VerifyFreshness()

<<BehavioralAdaptation>>+UpdateValidity()

<<Aspect>>

ClockDrift

<<BehavioralAdaptation>>+CorrectClock()

<<BehavioralAdaptation>>+SetupValidity()

Figure A.2.:Precison Package:handling precision non-functional requirements

to start;
• VerifyToleratedDelayadds a behavior to measure the time point at which the observed

activity actually starts. The time interval (i.e. delay) between command and execution
starting instants is calculated and compared with the expected delay. If the threshold is
violated, a corrective behavior can be executed.

ClockDrift aspect controls the clock deviation between the local time source and the global
one. Assuming that the target platform provides means to allow clock synchronization, this
aspect uses the global clock as reference to calculate the local clock deviation. Thus, designers
must specify time instants (or system events, e.g. the starting of an behavior execution) at which
the local clock must be compared with the global clock reference in order to check if there is a
difference between the two measured values. It provides thefollowing adaptation:

• CheckClockDriftreads the current time from both global and local clocks, andcompares
the time obtained from them. If the perceived different is outside the accepted threshold
range, any corrective action (e.g. update the local clock reference) can be performed.

DataFreshness aspect is responsible to deal with the validity duration (orutility) of dif-
ferent system information [22]. For that, this aspect associates timestamps to affected data by
adding new attributes to representing such information, aswell as inserting behavior to control
these data use. In other words, each time a controlled data needs to be read, its validity must be
checked and, if it is out of validity, a corrective behavior must be performed, e.g. wait until the
date to be updated, read data directly from its source, decrease the frequency at which periodic
behaviors (which read the controlled data) are executed. Analogously, each time a controlled
data is updated, its validity duration must also be updated.It provides the following adaptations:

• ValidityInformationadds an attribute indicating the validity period of the controlled at-
tribute or object;

• SetValidityinserts the behavior that is responsible for initializing the validity period in-
formation;

152

A.3. Synchronization Package

• VerifyFreshnessinserts a behavior to check data validity before all readingactions that
access the controlled data;
• UpdateValidityadds the corresponding behavior that updates data validityafter all actions

that write/modify the controlled data.

A.3. Synchronization Package

This package provides aspects to deal with non-functional requirements related to the synchro-
nization and the concurrent access control to shared resources. FigureA.3 depicts the available
aspects.

ConcurrentAccessControl aspect provides means to control the concurrent access to ob-
jects, which share their attributes information with otherobjects. The access to object’s different
elements can be controlled:(i) the object itself;(ii) their attributes; and/or(iii) their methods.
Therefore, depending on the controlled element, one or morearbiters (i.e. concurrency con-
troller instances) are created. Every time an (active or passive) object needs to access controlled
shared elements, it must request the access to them (i.e. request a lock) that are granted or not
by the arbiter. Depending on the arbiter implementation (e.g. mutex, semaphore, monitors), and
also to the number of objects that are accessing the shared resource at the moment, the access
request can be authorized or not. Similarly, after the use ofthe shared resource, the object that
had the access permission must notify the arbiter, indicating that it is leaving the shared resource
and does not need to use it anymore. It provides the followingadaptations:

• ConcurrentControlMechanisminserts an arbiter to control the access to shared resources;
• AcquireAccessadds the behavior that is responsible for requesting the access to shared

resources before reading or writing information from/to the shared resource;
• ReleaseAccessinserts a behavior to notify the arbiter that the access to the share resource

<<Non−Functional>>

Synchronization

<<Aspect>>

ConcurrentAccessControl

<<StructuralAdaptation>>+ConcorrencyControlMechanism()

<<BehavioralAdaptation>>+AcquireAccess()

<<BehavioralAdaptation>>+ReleaseAccess()

<<Aspect>>

MessageSynchronization

<<BehavioralAdaptation>>+WaitForAcknowledge()

<<StructuralAdaptation>>+WaitingMechanism()

Figure A.3.:Synchronization Package:handling synchronization non-functional requirements

153

A. DERAF Detailed Description

can be released;

MessageSynchronization aspect deals with holding behaviors execution until the arrival of
an acknowledgement message (or a reply message) indicatingthat the (remote) object has re-
ceived the message sent. It provides a waiting mechanism that could be implemented as either
(i) a busy wait, i.e. a loop that waits until the acknowledgementmessage arrives; or(ii) using
the system scheduler, which preempts the execution of the current active object, marking it as
blocked, and thus, opening room for other active objects execution. Later, when the expected ac-
knowledgement message arrives, the blocked active object is marked as ready to execute, and its
execution is resumed following the scheduler’s decision. It provides the following adaptations:

• WaitingMechanisminserts the acknowledgement waiting mechanism. In fact this adapta-
tion makes more sense within the context of (ii), because thescheduler must be modified
in order to realize this implementation;

• WaitForAcknowledgementadds the behavior that is responsible for waiting for the ex-
pected acknowledgement message;

A.4. Communication Package

This package provides aspects to deal with objects communication in terms of messages send-
ing. The first intention was to cover the communication between objects that are located in
computing devices that are physically separated. However,depending on application require-
ments, this package’s aspects can also be used for specifying the communication of objects
located in the same computing device. The available aspectsare show in figureA.4.

MessageAck aspect provides an acknowledgment mechanism to notify reception of a mes-
sage to its sender. In this sense, this aspect affects both sides of a message exchange: sender
and destination objects. On one side, the sender object sends a messages and waits for an ac-

<<Non−Functional>>

Communication

<<Aspect>>

MessageAck

<<StructuralAdaptation>>+AcknowledgeMechanism()

<<BehavioralAdaptation>>+SinalAcknowledgeMechanism()

<<BehavioralAdaptation>>+SendAcknowledge()

<<Aspect>>

MessageIntegrity

<<BehavioralAdaptation>>+GenerateIntegrityInfo()

<<BehavioralAdaptation>>+VerifyIntegrityInfo()

<<Aspect>>

MessageCompression

<<BehavioralAdaptation>>+Compress()

<<BehavioralAdaptation>>+Decompress()

<<use>>

Figure A.4.:Communication Package:handling communication non-functional requirements

154

A.5. TaskAllocation Package

knowledgement of message reception. On the other side, the receiver objects needs to send
an acknowledgement message after each received message.MessageAckis related withMes-
sageSynchronizationaspect. It provides the following adaptations:

• AcknowledgeMechanismadds the acknowledge mechanism. After a message reception,
this mechanism must be notified about this arrival, and send an acknowledgement mes-
sage to this message sender;
• SignalAcknowledgeMechanismadds the behavior, at the sender object side, that is re-

sponsible for notifying the acknowledge mechanism that a message has been sent and an
acknowledge message must be received;
• SendAcknowledgeinserts a behavior, at the receiver object side, that sends an acknowl-

edge message, after an message reception, informing its sender that the message has been
delivered to the destination object;

MessageIntegrity aspect is responsible for handling messages integrity by providing check-
ing information within a message. Similarly toMessageAck, this aspect also affects both mes-
sage’s sender and receiver objects. Sender objects must generate integrity checking information,
appending it in the message to be sent, while receiver objects must generate checking informa-
tion from the received message, comparing it with the information that came with the received
message. The acknowledgment mechanism must be notified whether the checking information
match or not. It provides the following adaptations:

• GenerateIntegrityInfoinserts behavior, at the message sender side, before the message
sending action, that executes a algorithm to generate checking information that is ap-
pended in the message being sent;
• VerifyIntegrityInfoadds behavior, at the message receiver side after the message recep-

tion, that executes an algorithm (the same performed at message sender side) to generate
checking information of the received message, comparing the generated information with
the one received in the message. If it matches, the acknowledge mechanism is notified,
otherwise any other corrective behavior can be performed;

MessageCompression spect is in charge to compress/decompress messages in orderto im-
prove bandwidth utilization. Like the other aspects of thispackage, this aspect affects both
message’s sender and receiver objects. At sender side, the message is compressed using a
compression algorithm, while at receiver side the message is decompressed using the same
algorithm. It provides the following adaptations:

• Compressadds a behavior to compress the message being sent before sending it;
• Decompressadds a behavior to decompress the compressed message received before ac-

tually delivering it;

A.5. TaskAllocation Package

Aspects provided by this package handle non-functional requirements related to objects distribu-
tion on different computing devices at runtime. These aspects are typically related to distributed

155

A. DERAF Detailed Description

system nodes that are physically separated. FigureA.6 depicts the available aspects.

NodeStatusRetrieval aspect includes a mechanism to gather information on the system
dynamic characteristics, such as processing load, messagesending and reception rates, and if
the computing device is running. It provides the following adaptations:

• ProcessingLoadinserts a behavior to calculate the device’s processing load, updating this
information at every start/end of an active object behavior;

• MessageThroughputadds a behavior to calculate the sent messages rate, as well as the
ratio for the received ones. This information is updated at every message sending/recep-
tion;

• Alive includes a new object in the computing device that is responsible to broadcast an
“I’m alive” message to the other devices in the distributed system;

TaskMigration aspect adds a migration mechanism to move active objects from one com-
puting device to another one. Therefore, active objects canmigrate from one node to another, as
well as from software to hardware, or vice-versa1. To accomplish this mission, the migration
mechanism must provide means for saving/restoring the execution context of active objects, as
well as for objects serialization and object’s informationsending. In fact, the decision on which
objects must migrate is made by the aspects responsible to control embedded systems physi-
cal resources, such asEnergyControl, MemoryUsageControl, andHwAreaControl. Basically
TaskMigration aspectprovides only one adaptation, i.e.Migrate behavioral one, which adds
the mentioned behavior related to the migration mechanism.

1Objects migration between software and hardware (at runtime) is usually known as “reconfiguration”. However,
in embedded systems domain, “reconfiguration” usually means to upload a bitstream into a FPGA device. Thus,
in order to avoid misunderstandings, this text uses the term“reconfiguration” to refer to the later, while objects
software-to-hardware and/or hardware-to-software reconfiguration are also called “migration”

<<Non−Functional>>

TaskAllocation

<<Aspect>>

NodeStatusRetrieval

<<BehavioralAdaptation>>+ProcessingLoad()

<<BehavioralAdaptation>>+MessageThroughput()

<<BehavioralAdaptation>>+Alive()

<<Aspect>>

TaskMigration

<<BehavioralAdaptation>>+Migrate()

Figure A.5.:TaskAllocation Package:handling tasks allocation non-functional requirements

156

A.6. Embedded Package

A.6. Embedded Package

Non-functional requirements related to physical resources availability, which are very common
concerns in embedded systems design, are handle by this package’s aspects. Energy consump-
tion, memory usage, and hardware reconfigurable area can be cited as examples of such con-
cerns. As depicted inA.6, the available aspects are concerned in monitoring and controlling
the mentioned physical resources. Thus, depending on the physical resource being controlled,
the control policy, and platform capabilities, different actions can be performed by these as-
pects as, for instance:(i) depending on the system requirements and runtime state, to remove
objects related to non-critical activities;(ii) active objects migration;(iii) to loosen timing con-
straints;(iv) to decrease processor operation frequency;(v) to turn off unnecessary hardware
components; It is important to highlight that this aspects are dependent on target platform capa-
bilities, meaning that the platform must provide means to monitor and control system physical
resources.

HwAreaMonitoring aspect is related to systems that use reconfigurable hardware devices,
such as FPGAs. It provides a mechanism to monitor the reconfigurable area by which the
remaining reconfigurable area (in terms of configurable logic blocks) is (re)calculated at each
reconfiguration command. It provides the following adaptations:

• IncreaseAreaUsageinserts a behavior that increases the reconfigurable area usage amount,
before all hardware reconfiguration actions, based on area required by the new hardware
active objects;
• DecreaseAreaUsageadds a behavior that decreases the reconfigurable area usageamount,

before all hardware reconfiguration actions, based on size information of the hardware
active objects that are leaving the reconfigurable hardwaredevice;

HwAreaControl aspect controls the hardware reconfigurable device usage byadding an ar-
biter to allow or deny every reconfiguration based on the information of this package monitoring
aspects. In fact it provides only one adaptation: the inclusion of a new active object that accesses
the information produced by theHwAreaMonitoringaspect to control the reconfigurable area
use, taken actions as described earlier in this sub-section.

EnergyMonitoring aspect relies on the target platform to provide a mechanism to monitor
energy consumed by system activities. This mechanism must measure the remaining energy
level before the observed activities start, and after theircompletion. Further, it calculates the
amount of energy that was consumed by these activities. It provides the following adaptations:

• EnergyMonitoringMechanismadds the energy monitoring mechanism;
• InitialEnergyMeasurementinserts a behavior responsible to measure the energy level be-

fore any activity execution;
• CalculateEnergyConsumptionadds a behavior that also measures the energy level right

after the execution of observed activity is finished, calculating the energy consumed by
this activity, and also by the overall system;

EnergyControl aspect provides an object that uses information provided bythe monitoring

157

A. DERAF Detailed Description

<<Non−Functional>>

Embedded

<<Aspect>>

EnergyMonitoring

<<StructuralAdaptation>>+EnergyMonitoringMechanism()

<<BehavioralAdaptation>>+StartingEnergyAmount()

<<BehavioralAdaptation>>+CalculateEnergyConsumption()

<<Aspect>>

MemoryUsageControl

<<BehavioralAdaptation>>+MemoryUsageControlPolicy()

<<Aspect>>

EnergyControl

<<BehavioralAdaptation>>+EnergyConsumptionPolicy()

<<Aspect>>

MemoryUsageMonitoring

<<BehavioralAdaptation>>+IncriaseMemoryUsage()

<<BehavioralAdaptation>>+DecreaseMemoryUsage()

<<Aspect>>

HwAreaControl

<<BehavioralAdaptation>>+HwAreaControlPolicy()

<<Aspect>>

HwAreaMonitoring

<<BehavioralAdaptation>>+IncreaseAreaUsage()

<<BehavioralAdaptation>>+DecreaseAreaUsage()

<<use>>

<<use>>

<<use>>

Figure A.6.:Embedded package:handling embedded non-functional requirements

aspects to control the energy consumption. To accomplish such goal, this object could per-
form the actions mentioned in the beginning of this subsection. This aspect provides only one
adaptation,EnergyConsumptionPolicy, that includes an energy controller element in the system.

MemoryUsageMonitoring aspect is similar to the other two monitoring aspects but it is
related to software rather than to hardware. It provides a mechanism that must calculate the
overall memory usage of a computing device at every object allocation/deallocation. It provides
the following adaptations:

• IncreaseMemoryUsageinserts a behavior to increase the monitoring element information
on used memory amount before every action that allocates memory;

• DecreaseMemoryUsageinserts a behavior to decrease the used memory amount informa-
tion before every action that allocates memory;

MemoryControl aspect uses the information provided byMemoryUsageMonitoringand
HwAreaMonitoringaspects to control the memory allocation requests for objects allocation
following an adopted memory control policy. Thus theMemoryUsageControlPolicyadaptation
inserts this controller element in the system.

158

Appendix B

UML Models for the UAV Case Study

extension points
UAV in danger

<<NFR_Timing>>
<<NFR_Embedded>>
<<NFR_Distribution>>

Helicopter
Movement Control

<<NFR_Timing>>
<<NFR_Distribution>>

Environment
Sensing

<<NFR_Distribution>>

Back Rotor
Sensing

<<NFR_Timing>>
<<NFR_Embedded>>

Alarm Control

<<NFR_Distribution>>

Piloting

Special Condition
Movement Control <<NFR_Timing>>

Rotor
Sensing

Temperature
Sensing

Main Rotor
Sensing

Humidity
Sensing

Guidance

Wind
Sensing

Data Transfer
System

Temperature
Sensor

Maintenance
System Wind

Sensor

Back Rotor
Sensor

Back Rotor
Actuator

Main Rotor
Actuator

Main Rotor
Sensor

Navigation
Control

Humidity
Sensor

<<extend>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Figure B.1.: UAV movement control use case diagram

159

B
.

U
M

L
M

od
el

s
fo

r
th

e
U

AV
C

as
e

S
tu

dy

<<getter>>+getEnvironmentInfo() : EnvironmentInformation{getter/setter for attribute = envInfo}

EnvironmentSensingSubSystem

-Humidity : float
-WindSpeed : float
-WindDirection : float
-Temperature : float

<<setter>>+setHumidity(humidity : float){getter/setter for attribute = Humidity}
<<getter>>+getHumidity() : float{getter/setter for attribute = Humidity}
<<setter>>+setWindSpeed(windSpeed : float){getter/setter for attribute = WindSpeed}
<<getter>>+getWindSpeed() : float{getter/setter for attribute = WindSpeed}
<<setter>>+setWindDirection(windDirection : float){getter/setter for attribute = WindDirection}
<<getter>>+getWindDirection() : float{getter/setter for attribute = WindDirection}
<<setter>>+setTemperature(temperature : float){getter/setter for attribute = Temperature}
<<getter>>+getTemperature() : float{getter/setter for attribute = Temperature}

<<MutualExclusionResource>>

EnvironmentInformation

<<getter>>+getMainRototInfo() : MovementInformation{getter/setter for attribute = mrInfo}
<<getter>>+getBackRotorInfo() : MovementInformation{getter/setter for attribute = brInfo}

MovementSensingSubSystem

-newMRRotation : int
-newMRPace : int
-newBRRotation : int
-newBRPace : int

+run() : void
+processInfo(r1 : int, p1 : int, r2 : int, p2 : int, ws : float, wd : float, h : float, t : float) : void

<<SchedulableResource>>

MovementController

-Rotation : int
-Pace : int

<<setter>>+setRotation(rotation : int){getter/setter for attribute = Rotation}
<<getter>>+getRotation() : int{query,getter/setter for attribute = Rotation}
<<setter>>+setPace(pace : int){getter/setter for attribute = Pace}
<<getter>>+getPace() : int{query,getter/setter for attribute = Pace}
+applyParameters() : void

RotorActuator

-Rotation : int
-Pace : int

<<setter>>+setRotation(rotation : int){getter/setter for attribute = Rotation}
<<getter>>+getRotation() : int{getter/setter for attribute = Rotation}
<<setter>>+setPace(pace : int){getter/setter for attribute = Pace}
<<getter>>+getPace() : int{getter/setter for attribute = Pace}

<<MutualExclusionResource>>

MovementInformation

-Value : float

<<setter>>+setValue(value : float){getter/setter for attribute = Value}
<<getter>>+getValue() : float{getter/setter for attribute = Value}

<<MutualExclusionResource>>

SensorDriver

-newHumidity : int
-newTemperature : int
-newWindSpeed : int
-newWindDirection : int

+run() : void
+encodeHumidity(value : float) : void
+encodeTemperature(value : float) : void
+encodeWindInfo(wSpeed : float, wDirection : float)

<<SchedulableResource>>

EnvironmentDataSampler

#issueAlarm() : boolean
+triggerLowFuelAlarm() : boolean
+triggerHostileEnvironmentAlarm() : boolean
+triggerUnderAttackAlarm() : boolean

<<SchedulableResource>>

Alarm

-Mode : MovementControlMode

SpecialConditionMovementControl

-newRotation : int
-newPace : int

+run() : void
+encodeRotation(value : int) : void
+encodePace(value : int) : void

<<SchedulableResource>>

MovementEncoder

TemperatureSensorDriver

EnvironmentSensorDriver

BackRotorSensorDriver

+getRotation() : int
+getPace() : int

MovementSensorDriver

MainRotorSensorDriver

HOSTILE_ENVIRONMENT

UNDER_ATTACK
LOW_FUEL

NORMAL

<<enumeration>>

MovementControlMode

+run() : void

<<SchedulableResource>>

BackRotorActuator

HumiditySensorDriver

+getWindSpeed() : float
+getWindDirection() : float

WindSensorDriver

MainRotorActuator
ControlSubSystem

-alarm

1

1

-alarm

1

1

-mrAct

1

1

-sHumidity 1

1

-sHumidity 1

1

-sWind

1

1

-brSensor 1

1

-sTemperature

1

1

-mrSensor

1

1

-envSampler 1

1

-ctrlMode 1

1

-movEncoder 1

1

-brAct

1

1

-brInfo 1

1

-mrInfo 1

1

-sWind

1

1

-envInfo 1

1

-mrSensor 1

1

-brSensor 1

1

-mrAct

11-movCtrl

1

1

-envInfo 1

1

+mrInfo 1

1

+brInfo 1

1

-brAct 1

1

-sTemperature 1

1

-envInfo
1

1

-brInfo 1

1

-mrInfo 1

1

Figure B.2.: UAV movement control class diagram

16
0

Environment Sensing Environment Sensinginteraction []

sTemperature : TemperatureSensorDriver<<SchedulableResource>>

envSampler : EnvironmentDataSampler

sHumidity : HumiditySensorDriver<<MutualExclusionResource>>

envInfo : EnvironmentInformation

sWind : WindSensorDriver<<Scheduler>>

 : Scheduler

temperature7:

getValue()2:

encodeHumidity(value="humidity")4:

getValue()6:

encodeTemperature(value="temperature")8:

setHumidity(humidity=newHumidity)5:

setTemperature(temperature=newTemperature)9:

getWindSpeed()10:

getWindDirection()12:

encodeWindInfo(wSpeed=windSpeed, wDirection=windDirection)14:

setWindSpeed(windSpeed=newWindSpeed)15:

setWindDirection(windDirection=newWindDirection)16:

humidity3:

windSpeed11:

windDirection13:

<<TimedEvent>>

run()1:

{every = "(20, ms)"}

Figure B.3.: Environment sensing161

B
.

U
M

L
M

od
el

s
fo

r
th

e
U

AV
C

as
e

S
tu

dy

Movement Encode Movement Encodeinteraction []

mrSensor : MainRotorSensorDriver brSensor : BackRotorSensorDriver<<SchedulableResource>>

movEncoder : MovementEncoder

<<MutualExclusionResource>>

mrInfo : MovementInformation

<<MutualExclusionResource>>

brInfo : MovementInformation

<<Scheduler>>

 : Scheduler

rotation3:

pace6:

rotation11:

pace14:

getRotation()2:

encodeRotation(value=rotation)4:

getPace()5:

encodePace(value="pace")7:

setRotation(rotation=newRotation)8:

setPace(pace=newPace)9:

getRotation()10:

encodeRotation(value=rotation)12:

getPace()13:

encodePace(value=pace)15:

setRotation(rotation=newRotation)16:

setPace(pace=newPace)17:

<<TimedEvent>>

run():""1:

{every = "(10, ms)"}

Figure B.4.: Main and back rotors sensing

16
2

Movement Control Movement Controlinteraction []

<<MutualExclusionResource>>

envInfo : EnvironmentInformation

<<SchedulableResource>>

movCtrl : MovementController

<<MutualExclusionResource>>

mrInfo : MovementInformation

<<MutualExclusionResource>>

brInfo : MovementInformation

mrAct : MainRotorActuator<<SchedulableResource>>

brAct : BackRotorActuator

<<Scheduler>>

 : Scheduler

windSpeed11:

windDirection13:

humidity15:

temperature17:

getRotation()2:

getPace()4:

getRotation()6:

getPace()8:

getWindSpeed()10:

getWindDirection()12:

getHumidity()14:

getTemperature()16:

processInfo(r1="mrRotation", p1="mrPace", r2="brRotation", p2="brPace", ws="windSpeed", wd="windDirection", h="humidity", t="temperature")18:

setRotation(rotation=newMRRotation)19:

setPace(pace=newMRPace)20:

setRotation(rotation=newBRRotation)21:

setPace(pace=newBRPace)22:

applyParameters()23:

applyParameters()24:

mrRotation7:

mrPace9:

brRotation3:

brPace5:

<<TimedEvent>>

run()1:

{every = "(20, ms)"}

Figure B.5.: Helicopter movement control

163

B. UML Models for the UAV Case Study

Back Rotor Control Back Rotor Controlinteraction []

<<SchedulableResource>>

brAct : BackRotorActuator

<<Scheduler>>

 : Scheduler

applyParameters()2: <<TimedEvent>>

run()1:

{every = "(10, ms)"}

Figure B.6.: Helicopter piloting

Initialization_EnvironmentSensingSubSystem Initialization_EnvironmentSensingSubSysteminteraction []

<<SchedulableResource>>

envSampler : EnvironmentDataSampler

 : EnvironmentSensingSubSystem

*

(sHumidity, sWind, sTemperature, envInfo)2:

1:

Figure B.7.: Environment sensing subsystem initialization

164

Initialization_MovementSensingSubSystem Initialization_MovementSensingSubSysteminteraction []

<<SchedulableResource>>

movEncoder : MovementEncoder

 : MovementSensingSubSystem

*

(mrInfo, mrSensor, brInfo, brSensor)2:

1:

Figure B.8.: Movement sensing subsystem initialization

Initialization_ControlSubSystem Initialization_ControlSubSysteminteraction []

 : EnvironmentSensingSubSystem : MovementSensingSubSystem

<<SchedulableResource>>

movCtrl : MovementController

 : ControlSubSystem

*

env3:

5: mr

7: br

("env", "mr", mrAct, "br", brAct, alarm)8:

getEnvironmentInfo():""2:

getMainRototInfo():""4:

getBackRotorInfo():""6:

1:

Figure B.9.: Control subsystem initialization

165

B. UML Models for the UAV Case Study

General Behaviors General Behaviorsinteraction []

sWind : WindSensorDriver*

[int i = 0; i < 5]

loop

ASSIGN(x, x+i*3)3:

ASSIGN(i, i+1)4:

RETURN(x)5:

ASSIGN(int x, 100)2:

getWindSpeed()1:

Figure B.10.: Other behavior:WindSensorDriver.getWindSpeed()

General Behaviors 2 General Behaviors 2interaction []

sWind : WindSensorDriver*

[x < 0]

[x == 0]

[else]

alt

loop

ASSIGN(int x, 0)2:

ASSIGN(x, x - 10)4:

ASSIGN(x, x*5)3:

RETURN(x)5:

getWindDirection()1:

Figure B.11.: Other behavior:WindSensorDriver.getWindDirection()

166

General Behaviors 3 General Behaviors 3interaction []

ctrlMode : SpecialConditionMovementControl<<SchedulableResource>>

 : MovementController

<<SchedulableResource>>

alarm : Alarm

*

[ctrlMode.getMode() == MovementControlMode.NORMAL]

[ctrlMode.getMode() == MovementControlMode.HOSTILE_ENVIRONMENT]

[ctrlMode.getMode() == MovementControlMode.LOW_FUEL]

[ctrlMode.getMode() == MovementControlMode.UNDER_ATTACK]

alt

[(ws > 15) || (h > 85) || (t > 40)]

opt

EXPRESSION(newMRRotation, newMRRotation/r1*p1)3:

ASSIGN(newMRPace, (newMRPace+p1)/r1)4:

EXPRESSION(newBRRotation, newBRRotation/r2*p2)5:

ASSIGN(newBRPace, (newBRPace+p2)/r2)6:

triggerHostileEnvironmentAlarm()7:

triggerLowFuelAlarm()8:

triggerUnderAttackAlarm()9:

setMode(mode=MovementControlMode.HOSTILE_ENVIRONMENT)2:

processInfo(r1=, p1=, r2=, p2=, ws=, wd=, h=, t=)1:

Figure B.12.: Other behavior:MovementController.processInfo()

167

B
.

U
M

L
M

od
el

s
fo

r
th

e
U

AV
C

as
e

S
tu

dy

System_Deploymentpackage FR[]

MainRotor

<<artifact>>

RT-FemtoJava.MainRotor_Node

BackRotor

<<artifact>>

RT-FemtoJava.BackRotor_Node

sTemperature :
TemperatureSensorDriver

<<SchedulableResource>>

envSampler :
EnvironmentDataSampler

<<MutualExclusionResource>>

mrInfo :
MovementInformation

<<MutualExclusionResource>>

brInfo :
MovementInformation

<<MutualExclusionResource>>

envInfo :
EnvironmentInformation

mrSensor :
MainRotorSensorDriver

brSensor :
BackRotorSensorDriver

sHumidity :
HumiditySensorDriver

<<SchedulableResource>>

movCtrl :
MovementController

<<SchedulableResource>>

movEncoder :
MovementEncoder

<<SchedulableResource>>

alarm : Alarm

<<SchedulableResource>>

brAct :
BackRotorActuator

mrAct :
MainRotorActuator

sWind :
WindSensorDriver

<<manifest>>

<<manifest>>

<<manifest>>

<<manifest>>

<<manifest>>

<<manifest>>

<<manifest>> <<manifest>>

<<manifest>> <<manifest>>

<<manifest>>

<<manifest>>

<<manifest>>
<<manifest>>

Figure B.13.: UAV movement control deployment diagram

16
8

<<Pointcut>>+pcSharedObjClass(JPDD_ExclusiveObjectClass, ConcurrencyControlMechanism, ADD_NEW_FEATURE)
<<Pointcut>>+pcBeforeRead(JPDD_ExclusiveGet, AcquireAccess, BEFORE)
<<Pointcut>>+pcAfterRead(JPDD_ExclusiveGet, ReleaseAccess, AFTER)
<<Pointcut>>+pcBeforeWrite(JPDD_ExclusiveSet, AcquireAccess, BEFORE)
<<Pointcut>>+pcAfterWrite(JPDD_ExclusiveSet, ReleaseAccess, AFTER)
<<StructuralAdaptation>>+ConcurrencyControlMechanism()
<<BehavioralAdaptation>>+AcquireAccess()
<<BehavioralAdaptation>>+ReleaseAccess()

<<Aspect>>

ConcurrentAccessControl

<<Pointcut>>+pcActClass(JPDD_ActiveObjectClass, Period, ADD_NEW_FEATURE)
<<Pointcut>>+pcActObjConstructor(JPDD_ActiveObjectConstructor, ModifyConstructor, MODIFY_STRUCTURE)
<<Pointcut>>+pcActObjInit(JPDD_ActiveObjectConstruction, SetPeriod, AFTER)
<<Pointcut>>+pcActObjInit2(JPDD_ActiveObjectConstruction_Action, AdaptObjectConstruction, MODIFY_STRUCTURE)
<<Pointcut>>+pcLoop(JPDD_PeriodicBehavior, LoopMechanism, AROUND)
<<Pointcut>>+pcFreqCtrl(JPDD_PeriodicBehavior, FrequencyControl, AFTER)
<<StructuralAdaptation>>+Period()
<<StructuralAdaptation>>+ModifyConstructor()
<<BehavioralAdaptation>>+SetPeriod()
<<BehavioralAdaptation>>+LoopMechanism()
<<BehavioralAdaptation>>+FrequencyControl()
<<BehavioralAdaptation>>+AdaptObjectConstruction()

<<Aspect>>

PeriodicTiming

<<Pointcut>>+pcActClass(JPDD_ActiveObjectClass, Deadline+Priority+WCET, ADD_NEW_FEATURE)
<<Pointcut>>+pcActClass2(JPDD_ActiveObjectClass, ModityClassStructure, MODIFY_STRUCTURE)
<<Pointcut>>+pcActObjInit(JPDD_ActiveObjectConstruction, SetTimingAttributes, AFTER)
<<Pointcut>>+pcActObjInit2(JPDD_ActiveObjectConstruction_Action, AdaptObjectConstruction, MODIFY_STRUCTURE)
<<Pointcut>>+pcActObjContructor(JPDD_ActiveObjectConstructor, ModifyConstructor, MODIFY_STRUCTURE)
<<StructuralAdaptation>>+Deadline()
<<StructuralAdaptation>>+Priority()
<<StructuralAdaptation>>+WCET()
<<StructuralAdaptation>>+ModifyConstructor()
<<StructuralAdaptation>>+ModityClassStructure()
<<BehavioralAdaptation>>+SetTimingAttributes()
<<BehavioralAdaptation>>+AdaptObjectConstruction()

<<Aspect>>

TimingAttributes

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, EnergyMonitoringMechanism, ADD_NEW_FEATURE)
<<Pointcut>>+pcGetStartingEnergy(JPDD_PeriodicBehavior, StartingEnergyAmount, BEFORE)
<<Pointcut>>+pcCalcEnergy(JPDD_PeriodicBehavior, CalculateEnergyConsumption, AFTER)
<<StructuralAdaptation>>+EnergyMonitoringMechanism()
<<BehavioralAdaptation>>+StartingEnergyAmount()
<<BehavioralAdaptation>>+CalculateEnergyConsumption()

<<Aspect>>

EnergyMonitoring

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, AcknowledgmentMechanism, ADD_NEW_FEATURE)
<<StructuralAdaptation>>+AcknowledgmentMechanism()
<<BehavioralAdaptation>>+SendAcknowledgment)()
<<BehavioralAdaptation>>+SinalAcknowledgmentMechanism()

<<Aspect>>

MessageAck

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, Scheduler, ADD_NEW_FEATURE)
<<Pointcut>>+pcSubSystemConstruction(JPDD_SubSystemConstruction_2, SetupConcurrentActivities, AFTER)
<<StructuralAdaptation>>+Scheduler()
<<BehavioralAdaptation>>+SetupConcurrentActivities()

<<Aspect>>

SchedulingSupport

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, EnergyConsumptionPolicy, ADD_NEW_FEATURE)
<<StructuralAdaptation>>+EnergyConsumptionPolicy()

<<Aspect>>

EnergyControl

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, MigrationMechanism, ADD_NEW_FEATURE)
<<StructuralAdaptation>>+MigrationMechanism()
<<BehavioralAdaptation>>+Migrate()

<<Aspect>>

TaskMigration

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, WaitingMechanism, ADD_NEW_FEATURE)
<<Pointcut>>+pcRemoteMsgSending(JPDD_SendMsgToRemoteObject, WaitForAcknowledge, AFTER)
<<StructuralAdaptation>>+WaitingMechanism()
<<BehavioralAdaptation>>+WaitForAcknowledge()

<<Aspect>>

MessageSynchronization

<<Pointcut>>+pcInfoClassAttr(JPDD_InfoClassAttribute, ValidityInformation, ADD_NEW_FEATURE)
<<Pointcut>>+pcInfoClassObjInit(JPDD_InfoObjectConstruction_Action, SetValidity, AFTER)
<<Pointcut>>+pcReadAttrValue(JPDD_InfoAttributeRead, VerifyFreshness, BEFORE)
<<Pointcut>>+pcWriteAttrValue(JPDD_InfoAttributeWrite, UpdateFreshness, AFTER)
<<StructuralAdaptation>>+ValidityInformation()
<<BehavioralAdaptation>>+SetValidity()
<<BehavioralAdaptation>>+VerifyFreshness()
<<BehavioralAdaptation>>+UpdateFreshness()

<<Aspect>>

DataFreshness

<<MutualExclusionResource>>

EnvironmentInformation

<<MutualExclusionResource>>

MovementInformation

<<SchedulableResource>>

EnvironmentDataSampler

<<SchedulableResource>>

Alarm

<<SchedulableResource>>

BackRotorActuator

<<SchedulableResource>>

MovementEncoder

<<SchedulableResource>>

MovementController

<<Crosscut>>

{Deadline = "10ms" ,
Priority = "1",
WCET = "3ms"}

<<Crosscut>>

{Deadline = "10ms" ,
Priority = "2",
WCET = "5ms"}

<<Crosscut>>

{Period = "20ms"}

<<Crosscut>>

{Period = "20ms"}

<<Crosscut>>

{Deadline = "20ms" ,
Priority = "2",
WCET = "7ms"}

<<Crosscut>>

{Deadline = "5ms" ,
Priority = "0",
WCET = "2ms"}

<<Crosscut>>

{Deadline = "20ms" ,
Priority = "1",
WCET = "8ms"}

WindSpeed, WindDirection

<<Crosscut>>

{Validity = "25ms"}

Humidity, Temperature

<<Crosscut>>

{Validity = "100ms"}
<<Crosscut>>

{Validity = "25ms"}

<<Crosscut>>

{Period = "10ms"}

<<Crosscut>>

{Period = "10ms"}

Figure B.14.: Aspects Crosscutting Overview Diagram

169

B. UML Models for the UAV Case Study

JPDD_ActiveObjectClasspackage NFR[]

<<SchedulableResource>>
<<JoinPoint>>

 *

Figure B.15.: JPDD: selection of active objects class

JPDD_ExclusiveObjectClasspackage NFR[]

<<JoinPoint>>
<<MutualExclusionResource>>

 *

Figure B.16.: JPDD: selection of shared passive objects

JPDD_InfoClassAttributepackage NFR[]

<<JoinPoint>>-* : *

*Information

Figure B.17.: JPDD: selection of passive class attributes

170

JPDD_InfoObjectConstruction_2package NFR[]

<<JoinPoint>>+*Information(..) : *{Behavior}

*Information

Figure B.18.: JPDD: selection of passive class constructor

JPDD_SubSystemClasspackage NFR[]

<<JoinPoint>>

*SubSystem

Figure B.19.: JPDD: selection of sub systems classes

JPDD_SubSystemConstruction_2package NFR []

<<JoinPoint>>+*SubSystem(..):*(){Behavior}

*SubSystem

Figure B.20.: JPDD: selection of sub systems constructor

JPDD_ActiveObjectConstruction_Action JPDD_ActiveObjectConstruction_Actioninteraction []

<<SchedulableResource>>

* : *

 * : *

<<JoinPoint>>

1:

Figure B.21.: JPDD: selection of selection of active objects construction actions

171

B. UML Models for the UAV Case Study

JPDD_ActiveObjectConstruction JPDD_ActiveObjectConstructioninteraction []

<<SchedulableResource>>

* : *

 * : *

<<JoinPoint>>

1:

{Behavior}

Figure B.22.: JPDD: selection of active objects constructor behavior

JPDD_ActiveObjectConstructor JPDD_ActiveObjectConstructorinteraction []

<<SchedulableResource>>

* : *

 * : *

<<JoinPoint>>

1:

{MessageDefinition}

Figure B.23.: JPDD: selection of active objects constructor

JPDD_ExclusiveGet JPDD_ExclusiveGetinteraction []

<<MutualExclusionResource>>

* : *

 * : *

<<JoinPoint>>

get*(..):*1:

Figure B.24.: JPDD: selection of messages whose name startswith “get”

172

JPDD_ExclusiveSet JPDD_ExclusiveSetinteraction []

<<MutualExclusionResource>>

* : *

 * : *

<<JoinPoint>>

set*(..):*1:

Figure B.25.: JPDD: selection of messages whose name startswith “set”

JPDD_InfoAttributeRead JPDD_InfoAttributeReadinteraction []

* : *Information * : *

<<JoinPoint>>

get*(..):*1:

{Behavior}

Figure B.26.: JPDD: selection of messages whose name startswith “get”

JPDD_InfoAttributeWrite JPDD_InfoAttributeWriteinteraction []

* : *Information * : *

<<JoinPoint>>

set*(..):*1:

{Behavior}

Figure B.27.: JPDD: selection of messages whose name startswith “set”

173

B. UML Models for the UAV Case Study

JPDD_InfoObjectConstruction_Action JPDD_InfoObjectConstruction_Actioninteraction []

* : *Information

 * : *

<<JoinPoint>>

1:

Figure B.28.: JPDD: selection of passive objects contruction action

JPDD_PeriodicBehavior JPDD_PeriodicBehaviorinteraction []

<<SchedulableResource>>

* : *

<<Scheduler>>

 * : Scheduler

<<TimedEvent>>
<<JoinPoint>>

*(..):*1:

{Behavior,
every = "*"}

Figure B.29.: JPDD: selection of active objects periodic behavior

JPDD_SendMsgToRemoteObject JPDD_SendMsgToRemoteObjectinteraction []

remote.* : *local.* : *

<<JoinPoint>>

*(..):*1:

Figure B.30.: JPDD: selection of message sending action to remote objects

JPDD_SubSystemConstruction JPDD_SubSystemConstructioninteraction []

* : *SubSystem

* : *

<<JoinPoint>>

1:

{Behavior}

Figure B.31.: JPDD: selection of sub systems constructor behavior

174

Appendix C

Mapping Rules

C.1. Application

<?xml version="1.0" encoding="utf-8"?>
<Platforms>

<!--**-->
<!--* Configuration for RT-FemtoJava Platform *-->
<!--**-->
<RT-FemtoJava>

<!-- Mapping rules for APPLICATION CODE -->
<Application>
<Software>

<!-- Source code generation options -->
<SourceOptions isAspectLanguage="no" ClassesPerFile="1"

hasClassesDeclaration="no" Identation="5"
BlockStart="{" BlockEnd="}">

<FileNameConvention>$Class.Name</FileNameConvention>
<Package>package $Class.Package;</Package>
<SourceReference>
import $ReferencedClass.Package\.$ReferencedClass.Name;

</SourceReference>
<SourceOrganization>
<DeclarationFile FileExtension="">

$SourceCode.ClassesDeclaration
</DeclarationFile>
<ImplementationFile FileExtension=".java">

$SourceCode.PackagesDeclaration
\n$SourceCode.ReferencesDeclaration
\n$SourceCode.ClassesImplementation

</ImplementationFile>
</SourceOrganization>

</SourceOptions>

<!-- Mapping rules for PRIMARY ELEMENTS -->
<PrimaryElementsMapping>

<DataTypes>
<Array>

#set($n = $DataType.getSize())
#set($s = $CodeGenerator.getDataTypeStr($DataType.DataType))
#if ($n > 0)

175

C. Mapping Rules

$s[]
#else

ArrayList<$s>
#end

</Array>
<Boolean>boolean</Boolean>
<Byte>byte</Byte>
<Char>char</Char>
<Class>$DataType.Represent.Name</Class>
<DateTime>Date</DateTime>
<EnumerationDefinition>

public enum $DataType.Name
$Options.BlockStart
#foreach ($v in $DataType.Values)
#if ($velocityCount > 1) , #end
\n$v

#end
\n$Option.BlockEnd

</EnumerationDefinition>
<Enumeration>

${DataType.Name}
</Enumeration>
<Integer>int</Integer>
<Long>long</Long>
<Short>short</Short>
<String>String</String>
<Void>void</Void>
<Double>double</Double>
<Float>float</Float>

</DataTypes>
<DataTypeDefaultValues>

<Array>null</Array>
<Boolean>true</Boolean>
<Byte>0</Byte>
<Char>’’</Char>
<Class>null</Class>
<DateTime>new Date(2000, 01, 01, 0, 0, 0)</DateTime>
<Enumeration></Enumeration>
<Integer>0</Integer>
<Long>0</Long>
<Short>0</Short>
<String>""</String>
<Void></Void>
<Double>0.0</Double>
<Float>0.0</Float>

</DataTypeDefaultValues>
<Visibilities>

<Private>private</Private>
<Protected>protected</Protected>
<Public>public</Public>

</Visibilities>
<ParameterKinds>

<In></In>
<Out></Out>
<InOut></InOut>

</ParameterKinds>
</PrimaryElementsMapping>

<!-- Mapping rules for CLASSES -->
<Classes>
<Declaration></Declaration>

176

C.1. Application

<Implementation>
import saito.sashimi.realtime.*;
\n
public
#if ($Class.isAbstract())

abstract
#end
class $Class.Name
#if ($Class.SuperClass)

extends $Class.SuperClass.Name
#end
\n$Options.BlockStart
\n$CodeGenerator.getAttributesDeclaration(1)
\n
\n$CodeGenerator.getMessagesImplementation(1)
\n$Options.BlockEnd

</Implementation>

<Attributes>
$VisibilityStr
#if ($Attribute.isStatic())

static
#end
$DataTypeStr $Attribute.Name;

</Attributes>

<Messages>
<Declaration></Declaration>
<Implementation>

#if ($DERCSHelper.isDestructor($Message) == false)
$VisibilityStr
#if ($Message.isStatic())
static

#end
#if ($Message.isAbstract())
abstract

#end
#if ($DERCSHelper.isNormalMethod($Message))
$ReturnTypeStr

#end
${Message.Name}(
#if ($Message.ParametersCount > 0)
#foreach($param in $Message.Parameters)

#if ($velocityCount > 1), #end
$CodeGenerator.getDataTypeStr($param.DataType) $param.Name

#end
#end
)
#if (!$Message.isAbstract())
$Options.BlockStart

\n// Variables
\n$CodeGenerator.getVariablesDeclaration(1)
\n// Actions
\n$CodeGenerator.getActionsCode(1)

\n$Options.BlockEnd
#else
;

#end
#else

\n// *****************************
\n// destructor was ignored!
\n// *****************************

#end

177

C. Mapping Rules

</Implementation>
</Messages>

</Classes>

<!-- Mapping rules for BEHAVIOR, i.e. sequence of actions -->
<Behavior>
<VariableDeclaration>

$DataTypeStr $Variable.Name;
</VariableDeclaration>

<Branch>
if ($Branch.EnterCondition) $Options.BlockStart

#set($ident = $IdentationLevel + 0)
\n$CodeGenerator.getVariablesDeclaration($ident)
\n$CodeGenerator.getActionsCode($ident)

\n$Options.BlockEnd
#if ($Branch.hasAlternativeBehavior())

\n else $Options.BlockStart
\n$CodeGenerator.getVariablesDeclaration($Branch.AlternativeBehavior,

$ident)
\n$CodeGenerator.getActionsCode($Branch.AlternativeBehavior, $ident)

\n$Options.BlockEnd
#end

</Branch>

<Loop>
#if ($Loop.NumberOfRepetitions > 0)

for(int $IndexVariableName = 0; $IndexVariableName <
$Loop.NumberOfRepetitions; $IndexVariableName++)

#elseif ($Loop.ExitCondition)
#if ($Loop.EnterCondition)

${Loop.EnterCondition};
#end
\n while ($Loop.ExitCondition)

#end
$Options.BlockStart

\n$CodeGenerator.getVariablesDeclaration(1)
\n$CodeGenerator.getActionsCode(1)

\n$Options.BlockEnd
</Loop>

<Assignment>
#if ($Action.isVariableAssignment())

$Action.Variable.Name
#else

#if ($Action.Object)
${Action.Object.Name}.${Action.Attribute.Name}

#else
${Action.Attribute.Name}

#end
#end
=
#if ($Action.isAssignmentOfValue())

$Action.Value;
#else

$CodeGenerator.getActionCode($Action.Action)
#end

</Assignment>

<Object>
<Creation>

#set($x = ’nada’)

178

C.1. Application

new ${Action.Object.InstanceOf.Name}(
#if ($Action.ParametersValuesCount > 0)

#foreach($x in $Action.ParametersValues)
#if ($velocityCount > 1), #end
$x

#end
#end
);

</Creation>

<Destruction></Destruction>
</Object>

<Expression>
#if ($DERCSHelper.isNormalMethod($Message))

${Action.Action.Expression}
#else

${Action.Expression}
#end
;

</Expression>

<Return>
return
#if ($Action.isAssignmentOfValue())

${Action.Value}
#elseif ($Action.isAttributeAssignment())

${Action.Attribute.Name}
#else

$CodeGenerator.getActionCode($Action.Action)
#end
;

</Return>

<StateChange></StateChange>

<SendMessage>
<ToLocal>

<Software>
#if ($Action.getToObject() != $Action.getFromObject())
#if ($Action.RelatedMethod.isStatic())

${Action.RelatedMethod.OwnerClass.Name}.
#else

${Action.ToObject.Name}.
#end

#end
${Action.RelatedMethod.Name}(
#if ($Action.ParametersValuesCount > 0)
#foreach($param in $Action.getParametersValues())

#if ($velocityCount > 1), #end
#set($x = $velocityCount - 1)
#if ($Action.isParameterValue($x))

${param}
#else

${param.Name}
#end

#end
#end
);

</Software>
<Hardware></Hardware>

</ToLocal>

179

C. Mapping Rules

<ToRemote>
<Software>
#if ($Action.getToObject() != $Action.getFromObject())

#if ($Action.RelatedMethod.isStatic())
${Action.RelatedMethod.OwnerClass.Name}.

#else
${Action.ToObject.Name}.

#end
#end
${Action.RelatedMethod.Name}(
#if ($Action.ParametersValuesCount > 0)

#foreach($param in $Action.getParametersValues())
#if ($velocityCount > 1), #end
#set($x = $velocityCount - 1)
#if ($Action.isParameterValue($x))
${param}

#else
${param.Name}

#end
#end

#end
); // ** REMOTE **

</Software>
<Hardware></Hardware>

</ToRemote>
</SendMessage>

<InsertArrayElement>
#if ($Action.isVariableAssignment())

$Action.Variable.Name
#else

#if ($Action.Object)
${Action.Object.Name}.${Action.Attribute.Name}

#else
${Action.Attribute.Name}

#end
#end
.add(${Action.Element});

</InsertArrayElement>

<RemoveArrayElement>
#if ($Action.isVariableAssignment())

$Action.Variable.Name
#else

#if ($Action.Object)
${Action.Object.Name}.${Action.Attribute.Name}

#else
${Action.Attribute.Name}

#end
#end
.remove(${Action.Element});

</RemoveArrayElement>

<GetArrayElement>
#if ($Action.isVariableAssignment())

$Action.Variable.Name
#else

#if ($Action.Object)
${Action.Object.Name}.${Action.Attribute.Name}

#else
${Action.Attribute.Name}

#end
#end

180

C.1. Application

.get(${Action.Element});
</GetArrayElement>

<SetArrayElement>
#if ($Action.isVariableAssignment())

$Action.Variable.Name
#else

#if ($Action.Object)
${Action.Object.Name}.${Action.Attribute.Name}

#else
${Action.Attribute.Name}

#end
#end
.set(${Action.Element});

</SetArrayElement>

<ArrayLength>
#if ($Action.isVariableAssignment())

$Action.Variable.Name
#else

#if ($Action.Object)
${Action.Object.Name}.${Action.Attribute.Name}

#else
${Action.Attribute.Name}

#end
#end
.size();

</ArrayLength>
</Behavior>

<!-- Mapping rules for INTERRUPT HANDLING code -->
<InterruptHandling>
</InterruptHandling>

<!-- Mapping rules for DERAF ASPECTS -->
<Aspects>

<!--**-->
<!--* Timing Package *-->
<!--**-->
<TimingAttributes>
<Declaration></Declaration>
<Adaptations>

<Structural Name="Deadline" Order="3" ModelLevel="no">
private static RelativeTime _Deadline = new RelativeTime(0,0,0);
\n
\npublic void exceptionTask() {}
\nprotected void initializeStack() {}
\npublic void mainTask() {}

</Structural>
<Structural Name="Priority" Order="3">
</Structural>
<Structural Name="WCET" Order="3" ModelLevel="no">

private static RelativeTime _Cost = new RelativeTime(0,0,0);
</Structural>
<Structural Name="ModityClassStructure" Order="0" ModelLevel="yes">

$DERCSHelper.changeSuperClass($Class,
$DERCSFactory.newClass("RealtimeThread", null, true), true)

</Structural>
<Structural Name="ModifyConstructor" Order="0" ModelLevel="yes">

$Message.addParameter("pDeadline", $DERCSFactory.newInteger(false),
$DERCSFactory.getParameterIn());

181

C. Mapping Rules

$Message.addParameter("pCost", $DERCSFactory.newInteger(false),
$DERCSFactory.getParameterIn());

</Structural>
<Behavioral Name="SetTimingAttributes" Order="2" ModelLevel="no">
\n_Deadline.set(0,pDeadline,0);
\n_Cost.set(0,pCost,0);
\ngetReleaseParameters().setDeadline(_Deadline);
\ngetReleaseParameters().setCost(_Cost);

</Behavioral>
<Behavioral Name="AdaptObjectConstruction" Order="0" ModelLevel="yes">
$Action.addParameterValue($DERCSHelper.strTimeToInteger(

$Crosscutting.getValueOf("Deadline"), "ms"))
$Action.addParameterValue($DERCSHelper.strTimeToInteger(

$Crosscutting.getValueOf("WCET"), "ms"))
</Behavioral>
<Structural Name="AddAccessMethods" Order="3" ModelLevel="no">
// TimingAttributes.AddAccessMethods

</Structural>
<Structural Name="StartTime" Order="3" ModelLevel="no">
// TimingAttributes.StartTime

</Structural>
<Structural Name="EndTime" Order="3" ModelLevel="no">
// TimingAttributes.EndTime

</Structural>
</Adaptations>

</TimingAttributes>

<PeriodicTiming>
<Declaration></Declaration>
<Adaptations>

<Structural Name="Period" Order="1" ModelLevel="no">
\nprivate static RelativeTime _Period = new RelativeTime(0,0,0);
\nprivate static PeriodicParameters _PeriodicParams =

new PeriodicParameters(null, null, null, null, null);
</Structural>
<Structural Name="ModifyConstructor" Order="1" ModelLevel="yes">
$Message.addParameter("pPeriod", $DERCSFactory.newInteger(false),

$DERCSFactory.getParameterIn());
</Structural>
<Behavioral Name="SetPeriod" Order="2" ModelLevel="no">
\n_Period.set(0,pPeriod,0);
\n_PeriodicParams.setPeriod(_Period);
\nsetReleaseParameters(_PeriodicParams);

</Behavioral>
<Behavioral Name="FrequencyControl" Order="3" ModelLevel="no">
waitForNextPeriod();

</Behavioral>
<Behavioral Name="LoopMechanism" Order="4" ModelLevel="no">
while (isRunning()) $Options.BlockStart

\n$CodeGenerator.getGeneratedCodeFragment(1)
\n$Options.BlockEnd

</Behavioral>
<Behavioral Name="AdaptObjectConstruction" Order="1" ModelLevel="yes">
$Action.addParameterValue($DERCSHelper.strTimeToInteger(

$Crosscutting.getValueOf("Period"), "ms"))
</Behavioral>

</Adaptations>
</PeriodicTiming>

<SchedulingSupport>
<Declaration></Declaration>
<Adaptations>

<Structural Name="Scheduler" Order="0" ModelLevel="no">

182

C.1. Application

// SchedulingSupport.Begin
\npublic static EDFScheduler scheduler = new EDFScheduler();
\npublic void idleTask() {}
\n// SchedulingSupport.End

</Structural>
<Behavioral Name="SetupConcurrentActivities" Order="0" ModelLevel="no">

\n // SchedulingSupport
\nScheduler.setDefaultScheduler(scheduler);
\n
#foreach($Obj in $Message.TriggeredBehavior.BeharioralElements)

#if ($DERCSHelper.isAssignmentOfActiveObject($Obj))
#if ($Action.isVariableAssignment())

#set($ObjName = $Obj.Variable.Name)
#elseif ($Obj.Object)

#set($ObjName = $Obj.Object.Name + ’.’ + $Obj.Attribute.Name)
#else

#set($ObjName = $Obj.Attribute.Name)
#end
\n
\n${ObjName}.addToFeasibility();
\n${ObjName}.start();
\n

#end
#end
\n
\nscheduler.setupTimer();
\nidleTask();

</Behavioral>
</Adaptations>

</SchedulingSupport>

<TimeBoundedActivity>
<Adaptations>

<Structural Name="TimeCountInfrastructure" Order="0" ModelLevel="no">
// TimeBoundedActivity.TimeCountInfrastructure

</Structural>
<Behavioral Name="StartCounting" Order="0" ModelLevel="no">

// TimeBoundedActivity.StartCounting
</Behavioral>
<Behavioral Name="StopCounting" Order="0" ModelLevel="no">

// TimeBoundedActivity.StopCounting
</Behavioral>

</Adaptations>
</TimeBoundedActivity>

<!--**-->
<!--* Precision Package *-->
<!--**-->
<Jitter>
<Adaptations>

<Behavioral Name="StartTime" Order="0" ModelLevel="no">
// Jitter.StartTime

</Behavioral>
<Behavioral Name="VerifyToleratedJitter" Order="0" ModelLevel="no">

// Jitter.VerifyToleratedJitter
</Behavioral>

</Adaptations>
</Jitter>

<ToleratedDelay>
<Adaptations>

<Behavioral Name="StartTime" Order="0" ModelLevel="no">
// ToleratedDelay.StartTime

183

C. Mapping Rules

</Behavioral>
<Behavioral Name="VerifyToleratedDelay" Order="0" ModelLevel="no">
// ToleratedDelay.VerifyToleratedDelay

</Behavioral>
</Adaptations>

</ToleratedDelay>

<ClockDrift>
<Adaptations>

<Behavioral Name="CheckClockDrift" Order="0" ModelLevel="no">
// ClockDrift.CheckClockDrift

</Behavioral>
</Adaptations>

</ClockDrift>

<DataFreshness>
<Declaration></Declaration>
<Adaptations>

<Structural Name="ValidityInformation" Order="0" ModelLevel="no">
// freshness: ${Attribute.Name}
\nprivate static AbsoluteTime ${Attribute.Name}_Validity =

new AbsoluteTime(0,0,0);
\nprivate static AbsoluteTime ${Attribute.Name}_NextValidity =

new AbsoluteTime(0,0,0);
\n
\npublic void set${Attribute.Name}Validity(int newValidity)

$Options.BlockStart
\n ${Attribute.Name}_Validity.set(0,newValidity,0);
\n$Options.BlockEnd
\n//freshness: ${Attribute.Name}
\n

</Structural>
<Structural Name="SetValidity" Order="0" ModelLevel="no">
#set($ObjName = ’---’)
#if ($Action.isVariableAssignment())

#set($ObjName = $Action.Variable.Name)
#elseif ($Action.Object)

#set($ObjName = $Action.Object.Name + ’.’ + $Action.Attribute.Name)
#else

#set($ObjName = $Action.Attribute.Name)
#end
// begin of freshness setup
\n

#foreach($NFR in ${Crosscutting.CrosscutingInformations})
#if ($NFR.Name == "Validity")

#if ($NFR.ElementName == $NFR.Name)
#foreach ($Attr in

$Crosscutting.getAffectedElement().getAttributes())
\n${ObjName}.set${Attr.Name}Validity(
$DERCSHelper.strTimeToInteger($NFR.Value, "ms"));
// freshness

\n
#end

#else
\n${ObjName}.set${NFR.getElementName()}Validity(

$DERCSHelper.strTimeToInteger($NFR.Value, "ms"));
// freshness

\n
#end

#end
#end

\n // end of freshness setup
</Structural>

184

C.1. Application

<Behavioral Name="VerifyFreshness" Order="0" ModelLevel="no">
#if ($Message.AssociatedAttribute)
if (${Message.AssociatedAttribute.Name}_NextValidity.compareTo(

Clock.getTime()) >= 0) $Options.BlockStart
\n$CodeGenerator.getGeneratedCodeFragment(1)

\n$Options.BlockEnd
\nelse $Options.BlockStart
\n ${Message.AssociatedAttribute.Name} =

${Message.AssociatedAttribute.Name} * 90 / 100;
\n$Options.BlockEnd

#end
</Behavioral>
<Behavioral Name="UpdateFreshness" Order="0" ModelLevel="no">

\n${Message.AssociatedAttribute.Name}_NextValidity.set(
Clock.getTime());

\n${Message.AssociatedAttribute.Name}_NextValidity.add(
${Message.AssociatedAttribute.Name}_Validity);

</Behavioral>
</Adaptations>

</DataFreshness>

<!--**-->
<!--* Synchronization Package *-->
<!--**-->
<ConcurrentAccessControl>
<Declaration></Declaration>
<Adaptations>

<Structural Name="ConcurrencyControlMechanism" Order="0" ModelLevel="no">
// ConcurrentAccessControl.ConcurrencyControlMechanism

</Structural>
<Behavioral Name="AcquireAccess" Order="0" ModelLevel="no">

// ConcurrentAccessControl.AquireAccess
</Behavioral>
<Behavioral Name="ReleaseAccess" Order="0" ModelLevel="no">

// ConcurrentAccessControl.ReleaseAccess
</Behavioral>

</Adaptations>
</ConcurrentAccessControl>

<MessageSynchronization>
<Declaration></Declaration>
<Adaptations>

<Structural Name="WaitingMechanism" Order="0" ModelLevel="no">
// MessageSynchronization.WaitingMechanism

</Structural>
<Behavioral Name="WaitForAcknowledge" Order="0" ModelLevel="no">

// MessageSynchronization.WaitForAcknowledge
</Behavioral>

</Adaptations>
</MessageSynchronization>

<!--**-->
<!--* Communication Package *-->
<!--**-->
<MessageAck>
<Declaration></Declaration>
<Adaptations>

<Structural Name="AcknowledgmentMechanism" Order="0" ModelLevel="no">
// MessageAck.AcknowledgeMechanism

</Structural>
<Behavioral Name="SignalAcknowledgmentMechanism" Order="0"

ModelLevel="no">
// MessageAck.SignalAcknowledgeMechanism

185

C. Mapping Rules

</Behavioral>
<Behavioral Name="SendAcknowledgment" Order="0" ModelLevel="no">
// MessageAck.SendAcknowledge

</Behavioral>
</Adaptations>

</MessageAck>

<MessageIntegrity>
<Declaration></Declaration>
<Adaptations>

<Behavioral Name="GenerateIntegrityInfo" Order="0" ModelLevel="no">
// MessageIntegrity.GenerateIntegrityInfo

</Behavioral>
<Behavioral Name="VerifyIntegrityInfo" Order="0" ModelLevel="no">
// MessageIntegrity.VerifyIntegrityInfo

</Behavioral>
</Adaptations>

</MessageIntegrity>

<MessageCompression>
<Declaration></Declaration>
<Adaptations>

<Behavioral Name="Compress" Order="0" ModelLevel="no">
// MessageCompression.Compress

</Behavioral>
<Behavioral Name="Decompress" Order="0" ModelLevel="no">
// MessageCompression.Decompress

</Behavioral>
</Adaptations>

</MessageCompression>

<!--**-->
<!--* TaskAllocation Package *-->
<!--**-->
<NodeStatusRetrieval>

<Declaration></Declaration>
<Adaptations>

<Structural Name="Alive" Order="0" ModelLevel="no">
// NodeStatusRetrieval.Alive

</Structural>
<Behavioral Name="ProcessingLoad" Order="0" ModelLevel="no">
// NodeStatusRetrieval.ProcessingLoad

</Behavioral>
<Behavioral Name="MessageThroughput" Order="0" ModelLevel="no">
// NodeStatusRetrieval.MessageThroughput

</Behavioral>
</Adaptations>

</NodeStatusRetrieval>

<TaskMigration>
<Declaration></Declaration>
<Adaptations>

<Behavioral Name="Migrate" Order="0" ModelLevel="no">
// TaskMigration.Migrate

</Behavioral>
<Structural Name="MigrationMechanism" Order="0" ModelLevel="no">
// TaskMigration.MigrationMechanism

</Structural>
</Adaptations>

</TaskMigration>

<!--**-->
<!--* Embedded Package *-->

186

C.1. Application

<!--**-->
<HwAreaMonitoring>
<Declaration></Declaration>
<Adaptations>

<Structural Name="HwAreMonitoringMechanism" Order="0" ModelLevel="no">
// HwAreaMonitoring.HwAreMonitoringMechanism

</Structural>
<Behavioral Name="IncreaseAreaUsage" Order="0" ModelLevel="no">

// HwAreaMonitoring.IncreaseAreaUsage
</Behavioral>
<Behavioral Name="DecreaseAreaUsage" Order="0" ModelLevel="no">

// HwAreaMonitoring.DecreaseAreaUsage
</Behavioral>

</Adaptations>
</HwAreaMonitoring>

<HwAreaControl>
<Declaration></Declaration>
<Adaptations>

<Structural Name="HwAreaControlPolicy" Order="0" ModelLevel="no">
// HwAreaControl.InsertControlMechanism

</Structural>
</Adaptations>

</HwAreaControl>

<EnergyMonitoring>
<Declaration></Declaration>
<Adaptations>

<Structural Name="EnergyMonitoringMechanism" Order="0" ModelLevel="no">
// EnergyMonitoring.EnergyMonitoringMechanism

</Structural>
<Behavioral Name="StartingEnergyAmount" Order="0" ModelLevel="no">

// EnergyMonitoring.StartingEnergyAmount
</Behavioral>
<Behavioral Name="CalculateEnergyConsumption" Order="0" ModelLevel="no">

// EnergyMonitoring.CalculateEnergyConsumption
</Behavioral>

</Adaptations>
</EnergyMonitoring>

<EnergyControl>
<Declaration></Declaration>
<Adaptations>

<Structural Name="EnergyConsumptionPolicy" Order="0" ModelLevel="no">
// EnergyControl.EnergyConsumptionPolicy

</Structural>
</Adaptations>

</EnergyControl>

<MemoryUsageMonitoring>
<Declaration></Declaration>
<Adaptations>

<Structural Name="MemoryMonitoringMechanism" Order="0" ModelLevel="no">
// MemoryUsageMonitoring.MemoryMonitoringMechanism

</Structural>
<Behavioral Name="IncreaseMemoryUsage" Order="0" ModelLevel="no">

// MemoryUsageMonitoring.IncreaseMemoryUsage
</Behavioral>
<Behavioral Name="DecreaseMemoryUsage" Order="0" ModelLevel="no">

// MemoryUsageMonitoring.DecreaseMemoryUsage
</Behavioral>

</Adaptations>
</MemoryUsageMonitoring>

187

C. Mapping Rules

<MemoryControl>
<Declaration></Declaration>
<Adaptations>

<Structural Name="MemoryUsageControlPolicy" Order="0" ModelLevel="no">
// MemoryControl.MemoryUsageControlPolicy

</Structural>
</Adaptations>

</MemoryControl>
</Aspects>

</Software>

<Hardware></Hardware>
</Application>

<!-- Mapping rules for PLATFORM CODE -->
<PlatformConfiguration>

<Software>
<SourceOptions OutputDirectory="platform"></SourceOptions>
<Files xmlns:xi="http://www.w3.org/2001/XInclude">
<xi:include href="./platform_RT-FemtoJava/AbsoluteTime.xml"/>
<xi:include href="./platform_RT-FemtoJava/AbstractPoolingServer.xml"/>
<xi:include href="./platform_RT-FemtoJava/AperiodicParameters.xml"/>
<xi:include href="./platform_RT-FemtoJava/AsyncEvent.xml"/>
<xi:include href="./platform_RT-FemtoJava/AsyncEventHandler.xml"/>
<xi:include href="./platform_RT-FemtoJava/AsyncEventsMechanism.xml"/>
<xi:include href="./platform_RT-FemtoJava/Clock.xml"/>
<xi:include href="./platform_RT-FemtoJava/EDFScheduler.xml"/>
<xi:include href="./platform_RT-FemtoJava/FixedPriorityHWScheduler.xml"/>
<xi:include href="./platform_RT-FemtoJava/HighResolutionTime.xml"/>
<xi:include href="./platform_RT-FemtoJava/HWRealtimeThread.xml"/>
<xi:include href="./platform_RT-FemtoJava/InterruptPoolingMechanism.xml"/>
<xi:include href="./platform_RT-FemtoJava/OneShotTimer.xml"/>
<xi:include href="./platform_RT-FemtoJava/PeriodicParameters.xml"/>
<xi:include href="./platform_RT-FemtoJava/PeriodicTimer.xml"/>
<xi:include href="./platform_RT-FemtoJava/PoolingServer2.xml"/>
<xi:include href="./platform_RT-FemtoJava/PoolingServer1.xml"/>
<xi:include href="./platform_RT-FemtoJava/PriorityParameters.xml"/>
<xi:include href="./platform_RT-FemtoJava/PriorityScheduler.xml"/>
<xi:include href="./platform_RT-FemtoJava/PriorityScheduler2.xml"/>
<xi:include href="./platform_RT-FemtoJava/RateMonotonicScheduler.xml"/>
<xi:include href="./platform_RT-FemtoJava/RealtimeThread.xml"/>
<xi:include href="./platform_RT-FemtoJava/RelativeTime.xml"/>
<xi:include href="./platform_RT-FemtoJava/ReleaseParameters.xml"/>
<xi:include href="./platform_RT-FemtoJava/Scheduler.xml"/>
<xi:include href="./platform_RT-FemtoJava/SchedulingParameters.xml"/>
<xi:include href="./platform_RT-FemtoJava/SporadicParameters.xml"/>
<xi:include href="./platform_RT-FemtoJava/Timer.xml"/>
<xi:include href="./platform_RT-FemtoJava/TimeTriggeredRealtimeThread.xml"/>
<xi:include href="./platform_RT-FemtoJava/TimeTriggeredScheduler.xml"/>

</Files>
</Software>
<Hardware></Hardware>

</PlatformConfiguration>
</RT-FemtoJava>

</Platforms>

C.2. Platform Configuration

<File Name="Scheduler.java" OutputDirectory="saito.sashimi.realtime"

188

C.2. Platform Configuration

Aspects="SchedulingSupport">
<Fragment>

package saito.sashimi.realtime;
import saito.sashimi.*;

public abstract class Scheduler implements TimerInterface {
protected static Scheduler c_defaultScheduler = null;
protected static int m_MainBaseStackPointer = 0xFFFF;

protected int m_currentTask = -1;
protected boolean m_Processing = false;

</Fragment>
<Fragment Aspects="TimingAttributes">

public final static int MAX_APERIODIC_TASKS = 16;
protected static RealtimeThread m_AperiodicTaskList[] =

{null, null, null, null, null, null, null, null,
null, null, null, null, null, null, null, null};

protected int m_AperiodicListCount = 0;
</Fragment>
<Fragment Aspects="PeriodicTiming">

public final static int MAX_PERIODIC_TASKS = 16;
protected static RealtimeThread m_PeriodicTaskList[] =

{null, null, null, null, null, null, null, null,
null, null, null, null, null, null, null, null};

protected int m_PeriodicListCount = 0;
</Fragment>
<Fragment>

public abstract boolean isFeasible();
public abstract void runScheduler();
protected abstract int getContextOffsetForStaticMethod();
protected abstract int getContextOffsetForVirtualMethod();

protected static int indexOf(RealtimeThread list[], int listCount,
RealtimeThread schedulable) {

int i = 0;
for (; (i < listCount) && (list[i] != schedulable); i++);
if (i < listCount)
return i;

else
return -1;

}

protected static void addToListOrderByPriority(RealtimeThread list[],
int listCount, RealtimeThread schedulable, int priority) {

int i = 0;
for(; (i < listCount) && (priority <=
((PriorityParameters)list[i].getSchedulingParameters()).getPriority());
i++);
if (i < listCount) {
for(int j = listCount; j > i; j--)

list[j] = list[j-1];
}
list[i] = schedulable;

}

protected boolean addToFeasibility(RealtimeThread schedulable) {
</Fragment>
<Fragment Aspects="PeriodicTiming">

if ((m_PeriodicListCount < (MAX_PERIODIC_TASKS-1)) &&
(indexOf(schedulable) == -1)) {

m_PeriodicTaskList[m_PeriodicListCount] = schedulable;
m_PeriodicListCount++;
return true;

189

C. Mapping Rules

}
else

</Fragment>
<Fragment>

return false;
}

protected boolean removeFromFeasibility(RealtimeThread schedulable) {
</Fragment>
<Fragment Aspects="PeriodicTiming">

if (m_PeriodicListCount > 0) {
int i = 0;
for(; (i < m_PeriodicListCount) &&

(m_PeriodicTaskList[i] != schedulable); i++);
if (i < m_PeriodicListCount) {

m_PeriodicTaskList[i] = null;
m_PeriodicListCount--;
if (i < m_PeriodicListCount) {
int j = i;
for(; (j <= m_PeriodicListCount); j++)

m_PeriodicTaskList[j] = m_PeriodicTaskList[j+1];
m_PeriodicTaskList[j] = null;

}
return true;

}
else

return false;
}
else

</Fragment>
<Fragment>

return false;
}

public static Scheduler getDefaultScheduler() {
return c_defaultScheduler;

}

protected int indexOf(RealtimeThread schedulable) {
</Fragment>
<Fragment Aspects="PeriodicTiming">

int i = 0;
for (; (i < MAX_PERIODIC_TASKS) &&

(m_PeriodicTaskList[i] != schedulable); i++);
if (i < MAX_PERIODIC_TASKS)

return i;
else

</Fragment>
<Fragment>

return -1;
}

public boolean isAddedToFeasibility(RealtimeThread schedulable) {
return (indexOf(schedulable) != -1);

}

public static void setDefaultScheduler(Scheduler scheduler) {
c_defaultScheduler = scheduler;

}

public static void saveMainContext() {
m_MainBaseStackPointer = FemtoJavaSO.saveCTX() +

getDefaultScheduler().getContextOffsetForStaticMethod();

190

C.3. Source Code Generated by GenERTiCA

}

public static void restoreMainContext() {
c_defaultScheduler.m_Processing = false;
FemtoJavaSO.restoreCTX(m_MainBaseStackPointer);

}

public boolean isAllTasksFinished() {
boolean result = true;

</Fragment>
<Fragment Aspects="PeriodicTiming">

for (int i=0; (i < m_PeriodicListCount) && result; i++)
result &= m_PeriodicTaskList[i].isFinished();

</Fragment>
<Fragment>

return result;
}

public void setupTimer() {
FemtoJavaInterruptSystem.setEnable(0x2F);
FemtoJavaTimer.setTimer0(100);
FemtoJavaTimer.startTimer0();

}

public void tf0Method() {
FemtoJavaInterruptSystem.setEnable(0x6F);
FemtoJavaTimer.stopTimer0();
if (!c_defaultScheduler.m_Processing) {
c_defaultScheduler.m_Processing = true;
FemtoJavaInterruptSystem.setEnable(0x2F);
c_defaultScheduler.runScheduler();
c_defaultScheduler.m_Processing = false;

}
}

public void tf1Method() {} // not used ! Used in Timer objects
}

</Fragment>
</File>

C.3. Source Code Generated by GenERTiCA

import saito.sashimi.realtime.*;
public class MovementController extends RealtimeThread {

private SpecialConditionMovementControl ctrlMode;
private EnvironmentInformation envInfo;
private MovementInformation mrInfo;
private MainRotorActuator mrAct;
private MovementInformation brInfo;
private BackRotorActuator brAct;
private int newMRRotation;
private int newMRPace;
private int newBRRotation;
private int newBRPace;
private Alarm alarm;

private static RelativeTime _Cost = new RelativeTime(0,0,0);
private static RelativeTime _Deadline = new RelativeTime(0,0,0);

public void exceptionTask() {}
protected void initializeStack() {}

191

C. Mapping Rules

public void mainTask() {}

private static RelativeTime _Period = new RelativeTime(0,0,0);
private static PeriodicParameters _PeriodicParams =

new PeriodicParameters(null, null, null, null, null);

public MovementController(EnvironmentInformation _envInfo ,
MovementInformation _mrInfo ,
MainRotorActuator _mrAct ,
MovementInformation _brInfo ,
BackRotorActuator _brAct ,
Alarm _alarm , int pDeadline ,
int pCost , int pPeriod) {

// Variables
// Actions

ctrlMode = new SpecialConditionMovementControl();
envInfo = _envInfo;
mrInfo = _mrInfo;
mrAct = _mrAct;
brInfo = _brInfo;
brAct = _brAct;
alarm = _alarm;

_Deadline.set(0,pDeadline,0);
_Cost.set(0,pCost,0);
getReleaseParameters().setDeadline(_Deadline);
getReleaseParameters().setCost(_Cost);

_Period.set(0,pPeriod,0);
_PeriodicParams.setPeriod(_Period);
setReleaseParameters(_PeriodicParams);

}
public EnvironmentInformation getenvInfo() {

// Variables
// Actions

return envInfo ;
}
public void setenvInfo(EnvironmentInformation _envInfo) {

// Variables
// Actions

envInfo = _envInfo;
}
public MovementInformation getmrInfo() {

// Variables
// Actions

return mrInfo ;
}
public void setmrInfo(MovementInformation _mrInfo) {

// Variables
// Actions

mrInfo = _mrInfo;
}
public MainRotorActuator getmrAct() {

// Variables
// Actions

return mrAct ;
}
public void setmrAct(MainRotorActuator _mrAct) {

// Variables
// Actions

mrAct = _mrAct;
}
public MovementInformation getbrInfo() {

192

C.3. Source Code Generated by GenERTiCA

// Variables
// Actions

return brInfo ;
}
public void setbrInfo(MovementInformation _brInfo) {

// Variables
// Actions

brInfo = _brInfo;
}
public BackRotorActuator getbrAct() {

// Variables
// Actions

return brAct ;
}
public void setbrAct(BackRotorActuator _brAct) {

// Variables
// Actions

brAct = _brAct;
}
public Alarm getalarm() {

// Variables
// Actions

return alarm ;
}
public void setalarm(Alarm _alarm) {

// Variables
// Actions

alarm = _alarm;
}
public void run() {

// Variables
int brRotation;
int brPace;
int mrRotation;
int mrPace;
float windSpeed;
float windDirection;
float humidity;
float temperature;

// Actions
while (isRunning()) {

// EnergyMonitoring.StartingEnergyAmount
brRotation = brInfo.getRotation(); // ** REMOTE **
// MessageSynchronization.WaitForAcknowledge
brPace = brInfo.getPace(); // ** REMOTE **
// MessageSynchronization.WaitForAcknowledge
// ConcurrentAccessControl.AquireAccess
mrRotation = mrInfo.getRotation();
// ConcurrentAccessControl.ReleaseAccess
// ConcurrentAccessControl.AquireAccess
mrPace = mrInfo.getPace();
// ConcurrentAccessControl.ReleaseAccess
// ConcurrentAccessControl.AquireAccess
windSpeed = envInfo.getWindSpeed();
// ConcurrentAccessControl.ReleaseAccess
// ConcurrentAccessControl.AquireAccess
windDirection = envInfo.getWindDirection();
// ConcurrentAccessControl.ReleaseAccess
// ConcurrentAccessControl.AquireAccess
humidity = envInfo.getHumidity();
// ConcurrentAccessControl.ReleaseAccess
// ConcurrentAccessControl.AquireAccess
temperature = envInfo.getTemperature();

193

C. Mapping Rules

// ConcurrentAccessControl.ReleaseAccess
processInfo(mrRotation, mrPace, brRotation, brPace, windSpeed,

windDirection, humidity, temperature);
mrAct.setRotation(newMRRotation);
mrAct.setPace(newMRPace);
brAct.setRotation(newBRRotation); // ** REMOTE **
// MessageSynchronization.WaitForAcknowledge
brAct.setPace(newBRPace); // ** REMOTE **
// MessageSynchronization.WaitForAcknowledge
mrAct.applyParameters();
brAct.applyParameters(); // ** REMOTE **
// MessageSynchronization.WaitForAcknowledge
// EnergyMonitoring.CalculateEnergyConsumption
waitForNextPeriod();

}
}
public void processInfo(int r1 , int p1 , int r2 , int p2 ,

float ws , float wd , float h , float t) {
// Variables
// Actions

if ((((int)ws) > 15) || (((int)h) > 85) || (((int)t) > 40)) {
ctrlMode.setMode(SpecialConditionMovementControl.HOSTILE_ENVIRONMENT);

}
if (ctrlMode.getMode() == SpecialConditionMovementControl.NORMAL) {

newMRRotation = newMRRotation/r1*p1 ;
newMRPace = (newMRPace+p1)/r1;
newBRRotation = newBRRotation/r2*p2 ;
newBRPace = (newBRPace+p2)/r2;

} else {

if (ctrlMode.getMode() ==
SpecialConditionMovementControl.HOSTILE_ENVIRONMENT) {

alarm.triggerHostileEnvironmentAlarm();
} else {

if (ctrlMode.getMode() ==
SpecialConditionMovementControl.LOW_FUEL) {

alarm.triggerLowFuelAlarm();
} else {

if (ctrlMode.getMode() ==
SpecialConditionMovementControl.UNDER_ATTACK) {

alarm.triggerUnderAttackAlarm();
}

}
}

}
}

}

194

Bibliography

[1] Ákos Lédeczi et al. Composing domain-specific design environments.IEEE Computer,
34(11):44–51, 2001.

[2] Per Andersson and Martin Höst. Uml and systemc: A comparison and mapping rules for
automatic code generation. In Eugenio Villar, editor,Embedded Systems Specification
and Design Languages, pages 199–209. Springer Netherlands, 2008.

[3] Apache. Apache velocity project, 2008. http://velocity.apache.org/.

[4] Deborah J. Armstrong. The quarks of object-oriented development.Communication of
the ACM, 49(2):123–128, 2006.

[5] Tero Arpinen et al. Configurable multiprocessor platform with rtos for distributed exe-
cution of uml 2.0 designed applications. InProceedings of the Design, Automation and
Test in Europe Conference and Exhibition, pages 1324–1329, Leuven, 2006. European
Design and Automation Association.

[6] Artisan. Artisan real-time studio, 2008. http://www.artisansoftwaretools.com/products/ar
tisan-studio/.

[7] Felice Balarin et al. Metropolis: An integrated electronic system design environment.
Computer, 36(4):45–52, 2003.

[8] Krishnakumar Balasubramanian et al. A platform-independent component modeling
language for distributed real-time and embedded systems. In Proceedings of the IEEE
Real-Time and Embedded Technology and Applications Symposium, pages 190–199, Los
Alamitos, 2005. IEEE Computer Society.

[9] Krishnakumar Balasubramanian et al. Weaving deployment aspects into domain-specific
models. International Journal of Software Engineering and Knowledge Engineering,
16(3):403–424, 2006.

[10] Silvia Castro Bertagnolli.FRIDA: um método para elicitação e modelagem de RNFs.
PhD thesis, Programa de Pós-Graduação em Computação, Universidade Federal do Rio
Grande do Sul, Porto Alegre, 2004.

[11] Danilo Beuche et al. The pure family of object-orientedoperating systems for deeply
embedded systems. InProceedings of the 2nd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, pages 45–53, Washington, 1999. IEEE
Computer Society.

195

Bibliography

[12] Jean Bézivin. On the unification power of models.Software and Systems Modeling,
4(2):171–188, May 2005.

[13] Gregory Bollella et al. The Real-Time Specification for Java, version 1.0.2. Addison
Wesley Longman, second edition, 2001.

[14] Grady Booch.Object-Oriented Analysis and Design with Applications. Addison-Wesley,
Massachusetts, 1994.

[15] Grady Booch, James Rumbaugh, and Ivar Jacobson.Unified Modeling Language User
Guide, The (2nd Edition). Addison-Wesley, 2005.

[16] Matteo Bordin and Tullio Vardanega. Real-time java from an automated code generation
perspective. InProceedings of the 5th International Workshop on Java Technologies for
Real-Time and Embedded Systems, pages 63–72, New York, 2007. ACM.

[17] Borland. Borland together, 2008. http://www.borland.com/us/products/together/.

[18] BOSCH. Can 2.0 protocol specification, 1991. http://www.can-cia.org/index.php?
id=164.

[19] James Brusey et al. Auto-id based control demonstration - phase 2: Pick
and place packing with holonic control. Technical report, Cambridge Univer-
sity, 2003. http://www.ifm.eng.cam.ac.uk/automation/publications/documents/CAM-
AUTOID-WH011.pdf.

[20] Sven Burmester et al. The fujaba real-time tool suite: Model-driven development of
safety-critical, real-time systems. InProceedings of the 27th International Conference
on Software Engineering, pages 670–671, New York, 2005. ACM.

[21] Sven Burmester, Holger Giese, and Wilhelm Schäfer. Model-driven architecture for hard
real-time systems: From platform independent models to code. In Proceedings of the
European Conference on Model Driven Architecture - Foundations and Applications,
pages 25–40, Berlin, 2005. Springer.

[22] A. Burns et al. The meaning and role of value in scheduling flexible real-time systems.
Journal of Systems Architecture, 46(4):305–325, 2000.

[23] Alan Burns and Andrew J. Wellings. Hrt-hood: a structured design method for hard
real-time systems.Real-Time Systems, 6(1):73–114, 1994.

[24] Alan Burns and Andrew J. Wellings.Real-Time Systems and Programming Languages.
Addison-Wesley, Harlow, second edition, 1997.

[25] Luigi Carro and Flavio Rech Wagner. Sistemas computacionais embarcados. InJornadas
de Atualização em Informática, number 22, pages 45–94. SBC, Campinas, 2003.

[26] Vaclav Cechticky et al. A uml2 profile for reusable and verifiable software components
for real-time applications. InProceedings of the 9th International Conference on Soft-
ware Reuse, pages 312–325, Berlin, 2006. Springer.

196

Bibliography

[27] Rong Chen et al. Uml and platform-based design. In Luciano Lavagno, Grant Martin,
and Bran Selic, editors,UML for Real: Design of Embedded Real-Time Systems, pages
107–126. Kluwer Academic Publishers, Norwell, 2003.

[28] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.IEEE
Transactions on Software Engineering, 20(6):476–493, 1994.

[29] Siobhán Clarke. Extending standard uml with model composition semantics.Science of
Computer Programming: Special issue on Unified Modeling Language, 44(1):71–100,
2002.

[30] Siobhàn Clarke and Elisa Baniassad.Aspect-Oriented Analysis and Design. Addison-
Wesley Professional, Upper Sadde River, 2005.

[31] Siobhán Clarke and Robert J. Walker. Towards a standarddesign language for aosd. In
Proceedings of the 1st International Conference on Aspect-Oriented Software Develop-
ment, pages 113–119, New York, 2002. ACM.

[32] Edmund H. Conrow and Patricia S. Shishido. Implementing risk management on soft-
ware intensive projects.IEEE Software, 14(3):83–89, 1997.

[33] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The jedi event-based in-
frastructure and its application to the development of the opss wfms.IEEE Transactions
on Software Engineering, 27(9):827–850, 2001.

[34] Elias Teodoro da Silva Jr.Middleware Adaptativo para Sistemas Embarcados e de
Tempo-Real. PhD thesis, Programa de Pós-Graduação em Computação, Universidade
Federal do Rio Grande do Sul, Porto Alegre, 2008.

[35] Ole-Johan Dahl and Kristen Nygaard. Simula: an algol-based simulation language.Com-
mununication of the ACM, 9(9):671–678, 1966.

[36] Abhijit Davare et al. A next-generation design framework for platform-based design. In
Proceedings of the Conference on Using Hardware Design and Verification Languages,
2007.

[37] Edison Pignaton de Freitas. Metodologia orientada a aspectos para a especificação
de sistemas tempo-real embarcados e distribuídos. Master’s thesis, Programa de Pós-
Graduação em Computação, Universidade Federal do Rio Grande do Sul, Porto Alegre,
2007.

[38] Carsten Ditze.Towards Operating System Synthesis. PhD thesis, Department of Mathe-
matics and Computer Science, University of Paderborn, Paderborn, 2000.

[39] Francisco A. M. do Nascimento, Marcio F. da S. Oliveira,Marco A. Wehrmeister, Car-
los E. Pereira, and Flávio R. Wagner. Mda-based approach forembedded software gen-
eration from a uml/mof repository. InProceedings of the 19th annual Symposium on
Integrated Circuits and Systems Design, pages 143–148, New York, 2006. ACM.

[40] DomainSolutions. Codegenie mdd, 2008. http://www.domainsolutions.co.uk/.

197

Bibliography

[41] Martyn Edwards and Peter Green. Uml for hardware and software object modeling.
In Luciano Lavagno, Grant Martin, and Bran Selic, editors,UML for Real: Design of
Embedded Real-Time Systems, pages 127–147. Kluwer Academic Publishers, Norwell,
2003.

[42] Robert E. Filman et al., editors.Aspect-Oriented Software Development. Addison-
Wesley, Boston, 2005.

[43] Robert France et al. Aspect-oriented approach to earlydesign modelling.IEE Proceed-
ings - Software, 151(4):173–185, Aug. 2004.

[44] Lidia Fuentes, Jorge Manrique, and Pablo Sánchez. Pópulo: a tool for debugging uml
models. InProceedings of the 30th International Conference on Software Engineering,
pages 955–956, New York, 2008. ACM.

[45] Lidia Fuentes, Mónica Pinto, and José María Troya. Supporting the development of cam-
daop applications: an integrated development process.Software-Practice & Experience,
37(1):21–64, 2007.

[46] Lidia Fuentes and Pablo Sánchez. Elaborating uml 2.0 profiles for ao design. InPro-
ceedings of the 8th Workshop on Aspect-Oriented Modelling (AOM), 2006.

[47] Lidia Fuentes and Pablo Sánchez. Designing and weavingaspect-oriented executable
uml models.Journal of Object Technology, 6(7):109–136, 2007.

[48] Erich Gamma et al.Design patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing, Boston, 1995.

[49] Murray Gell-Mann.The quark and the jaguar: adventures in the simple and the complex.
W. H. Freeman & Co., New York, 1995.

[50] Gentleware. Poseidon for uml, 2008. http://www.gentleware.com/uml-software-pe.html.

[51] Sébastien Gérard and Bran Selic. The uml – marte standardized profile. InProceedings
of the 17th World Congress of the International Federation of Automatic Control, pages
6909–6913, 2008.

[52] GSRC. Metropolis: Design environment for heterogeneous systems, 2002.
http://www.gigascale.org/metropolis/index.html.

[53] A. N. Habermann, Lawrence Flon, and Lee Cooprider. Modularization and hierarchy in
a family of operating systems.Communications of the ACM, 19(5):266–272, 1976.

[54] David Harel. Statecharts: A visual formalism for complex systems.Science of Computer
Programming, 8(3):231–274, 1987.

[55] William H. Harrison, Charles Barton, and Mukund Raghavachari. Mapping uml de-
signs to java. InProceedings of the 15th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 178–187, New York, 2000.
ACM.

198

Bibliography

[56] William H. Harrison, Harold L. Ossher, and Peri L. Tarr.Asymmetrically vs sym-
metrically organized paradigms for software composition.Technical report, IBM Wat-
son Research Center, 2002. http://domino.watson.ibm.com/library/cyberdig.nsf/papers/
2A4097E93456D0CF85256CA9006DAC29/$File/RC22685.pdf.

[57] Jan Hendrik Hausmann and Stuart Kent. Visualizing model mappings in uml. InPro-
ceedings of the ACM Symposium on Software Visualization, pages 169–178, New York,
2003. ACM.

[58] Marcelo Victora Hecht, Eduardo Piveta, Marcelo Pimenta, and Roberto T. Price. Aspect-
oriented code generation. InAnais do XX Simpósio Brasileiro de Engenharia de Software,
pages 209–223, Porto Alegre, 2006. Sociedade Brasileira daComputação.

[59] Jack Herrington.Code Generation in Action. Manning Publications Co., Greenwich,
2003.

[60] Steve Hodges et al. Auto-id based control demonstration - phase 1: Pick and
place packing with conventional control. Technical report, Cambridge Univer-
sity, 2003. http://www.ifm.eng.cam.ac.uk/automation/publications/documents/CAM-
AUTOID-WH-006.pdf.

[61] IBM. Ibm rational rose technical developer, 2008. http://www.ibm.com/software/awd
tools/developer/rose/.

[62] IBM. Ibm telelogic rhapsody, 2008. http://modeling.telelogic.com/products/rhapsody/
software/developer/index.cfm.

[63] IBM. Ibm telelogic tau, 2008. http://www.telelogic.com/products/tau/tau/index.cfm.

[64] ISO/IEC. Systems and software engineering - recommended practice for architectural
description of software-intensive systems.ISO/IEC 42010 IEEE Std 1471-2000 First
edition 2007-07-15, pages c1–24, Jul. 2007.

[65] Sergio Akira Ito et al. Making java work for microcontroller applications.IEEE Design
and Test of Computers, 18(5):100–110, 2001.

[66] ITRS. International technology roadmap for semiconductors 2007 edition: De-
sign. Technical report, International Technology Roadmapfor Semiconductors, 2007.
http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Design.pdf.

[67] Gregor Kiczales et al. Aspect-oriented programming. In Proceedings of European
Conference on Object-Oriented Programming, pages 220–242, Berlin, 1997. Springer-
Verlag.

[68] Philippe Kruchten. The Rational Unified Process: An Introduction, Second Edition.
Addison-Wesley, Boston, 2000.

[69] Petri Kukkala et al. Uml 2.0 profile for embedded system design. InProceedings of
the Design, Automation and Test in Europe Conference and Exhibition, pages 710–715,
Washington, DC, USA, 2005. IEEE Computer Society.

199

Bibliography

[70] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.Com-
munications of the ACM, 21(7):558–565, 1978.

[71] Leslie Lamport. The +cal algorithm language. Technical report, Microsoft Research,
2007. http://research.microsoft.com/users/lamport/pubs/pluscal.pdf.

[72] Phillip A. Laplante.Real-Time Systems Design and Analysis : an Engineer’s Handbook.
IEEE Press, New York, second edition, 1997.

[73] Tim Lindholm and Frank Yellin.Java Virtual Machine Specification. Addison-Wesley,
Boston, 1999.

[74] Daniel Lohmann et al. Pure embedded operating systems -ciao. In Proceedings of
the International Workshop on Operating System Platforms for Embedded Real-Time
Applications, 2006.

[75] Daniel Lohmann et al. Interrupt synchronization in theciao operating system: Experi-
ences from implementing low-level system policies by aop. In Proceedings of the 6th
Workshop on Aspects, Components, and Patterns for Infrastructure Software, New York,
2007. ACM.

[76] Quan Long et al. Consistent code generation from uml models. InProceedings of the
Australian Software Engineering Conference, pages 23–30, Los Alamitos, 2005. IEEE
Computer Society.

[77] LSE. Sistemas eletrônicos embarcados baseados em plataformas, 2003.
http://www.inf.ufrgs. br/̃lse/pag_projeto.php?cod_projeto=1.

[78] Grant Martin and Wolfgang MÜller, editors.UML for SOC Design. Springer-Verlag,
Netherlands, 2005.

[79] Stephen J. Mellor et al. An action language for uml: Proposal for a precise execution
semantics. InProceedings of the First International Workshop on The Unified Model-
ing Language. UML’98: Beyond the Notation, pages 307–318, London, 1999. Springer-
Verlag.

[80] MicroTool. objectif – the tool for model-driven development with uml, 2008.
http://www.microtool.de/objectif/en/index.asp.

[81] Richard Nass. An insider’s view of the 2008 embedded market study.Embedded Systems
Design, 21(9), September 2008. http://www.embedded.com/design/testissue/210200580.

[82] Kathy Dang Nguyen, Zhenxin Sun, P. S. Thiagarajan, and Weng-Fai Wong. Model-driven
soc design via executable uml to systemc. InProceedings of the 25th IEEE International
Real-Time Systems Symposium, pages 459–468, Washington, 2004. IEEE Computer So-
ciety.

[83] Elisabetta Di Nitto et al. Deriving executable processdescriptions from uml. InProceed-
ings of the 24th International Conference on Software Engineering, pages 155–165, New
York, 2002. ACM.

200

Bibliography

[84] Natsuko Noda and Tomoji Kishi. Aspect-oriented modeling for embedded software de-
sign. InProceedings of the 14th Asia-Pacific Software Engineering Conference, pages
342–349, Washington, 2007. IEEE Computer Society.

[85] NoMagic. Introducing magicdraw, 2008. http://www.magicdraw.com/.

[86] OMG. Common warehouse metamodel (cwm), 2003. http://www.omg.org/spec/
CWM/1.1/.

[87] OMG. Model-driven architecture, 2004. http://www.omg.org/mda.

[88] OMG. Uml profile for schedulability, performance, and time, version 1.1, 2005b.
http://www.omg.org/technology/documents/formal/schedulability.htm.

[89] OMG. Meta object facility (mof) 2.0, 2006. http://www.omg.org/spec/MOF/2.0.

[90] OMG. Object constraint language (ocl) 2.0, 2006. http://www.omg.org/spec/OCL/2.0/.

[91] OMG. Xml metadata interchange (xmi) 2.1.1, 2007. http://www.omg.org/spec/
XMI/2.1.1/.

[92] OMG. Unified modeling language (uml), version 2.2, 2008. http://www.omg.org/spec/
UML/2.2/Beta1/Superstructure/PDF.

[93] OMG. Mof query/views/transformations, 2008a. http://www.omg.org/spec/QVT/1.0.

[94] OMG. Uml profile for modeling and analysis of real-time and embedded systems (marte),
2008b. http://www.omg.org/cgi-bin/doc?ptc/2008-06-08.

[95] OMG. Uml profile for for modeling quality of service and fault tolerance characteristics
and mechanisms, v1.1, 2008c. http://www.omg.org/spec/QFTP/1.1/.

[96] Isabelle Perseil and Laurent Pautet. Foundations of a new software engineering method
for real-time systems.Innovations in Systems and Software Engineering, 4(3):195–202,
Oct. 2008.

[97] Mónica Pinto, Lidia Fuentes, and Jose María Troya. Daop-adl: an architecture descrip-
tion language for dynamic component and aspect-based development. InProceedings
of the 2nd International Conference on Generative Programming and Component Engi-
neering, pages 118–137, New York, 2003. Springer-Verlag.

[98] Mónica Pinto, Lidia Fuentes, and José María Troya. A dynamic component and aspect-
oriented platform.The Computer Journal, 48(4):401–420, 2005.

[99] Raj Rajkumar. Model-based development of embedded systems: The sysweaver ap-
proach. In S. Ramesh and Prahladavaradan Sampath, editors,Next Generation Design
and Verification Methodologies for Distributed Embedded Control Systems, pages 35–46.
Springer Netherlands, 2007.

201

Bibliography

[100] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. Asoc design methodology involv-
ing a uml 2.0 profile for systemc. InProceedings of theDesign, Automation and Test in
Europe Conference and Exhibition, pages 704–709, Washington, 2005. IEEE Computer
Society.

[101] Linda H. Rosenberg. Applying and interpreting objectoriented metrics.
Technical report, NASA Software Assurance Technology Center, 2003.
http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply.pdf.

[102] J. Rothenberg. The nature of modeling. In Lawrence E. Widman, Kenneth A. Loparo,
and Norman R. Nielsen, editors,Artificial Intelligence, Simulation & Modeling, pages
75–92. John Wiley & Sons, New York, 1989.

[103] SAE. Architecture analysis & design language, 2006. http://www.sae.org/technical/stan
dards/AS5506.

[104] Pablo Sánchez et al. Aspect-oriented model weaving beyond model composition and
model transformation. InProceedings of the 11th International Conference on Model
Driven Engineering Languages and Systems, pages 766–781, Berlin, 2008. Springer-
Verlag.

[105] Alberto Sangiovanni-Vincentelli. The tides of eda.IEEE Design & Test of Computers,
20(6):59–75, Nov. 2003.

[106] Claudio Sant’anna et al. On the reuse and maintenance of aspect-oriented software: An
assessment framework. InProceedings XVII Brazilian Symposium on Software Engi-
neering, number 17, pages 19–24, 2003.

[107] Tim Schattkowsky and Wolfgang Mueller. Model-based specification and execution of
embedded real-time systems. InProceedings of Design, Automation and Test in Eu-
rope Conference and Exhibition, volume 2, pages 1392–1393, Los Alamitos, 2004. IEEE
Computer Society.

[108] Tim Schattkowsky, Wolfgang Mueller, and Achim Rettberg. A model-based approach
for executable specifications on reconfigurable hardware. In Proceedings of Design, Au-
tomation and Test in Europe Conference and Exhibition, pages 692–697, Washington,
2005. IEEE Computer Society.

[109] Andrea Schauerhuber et al. Towards a common referencearchitecture for
aspect-oriented modeling. InProceedings of the 8th International Work-
shop on Aspect-Oriented Modeling, number 3rd, 2006. http://dawis2.icb.uni-
due.de/events/AOM_AOSD2006/Schauerhuber.pdf.

[110] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering.IEEE Com-
puter, 39(2):25–31, Feb. 2006.

[111] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The design of the tao
real-time object request broker.Computer Communications, 21:294–324, 1998.

202

Bibliography

[112] Conrado Werner Seibel.Uma metodologia Formal para o Planejamento e Controle
de Missões de Aeronaves Não-Tripuladas. PhD thesis, Departamento de Engenharia
Elétrica, Universidade Federal de Santa Catarina, Florianopólis, 2001.

[113] Bran Selic. The pragmatics of model-driven development. IEEE Software, 20(5):19–25,
2003a.

[114] Bran Selic and Leo Motus. Using models in real-time software design.IEEE Control
Systems Magazine, 23(3):31–42, June 2003b.

[115] Ian Sommerville.Software Engineering. Addison-Wesley, Harlow, sixth edition, 2001.

[116] Olaf Spinczyk and Daniel Lohmann. The design and implementation of aspectc++.
Knowledge-Based Systems: Special Issue on Creative Software Design, 20(7):636–651,
2007.

[117] Thomas Stahl and Markus Voelter.Model-Driven Software Development: Technology,
Engineering, Management. Willey, 2006.

[118] John A. Stankovic. Misconceptions about real-time computing: A serious problem for
next-generation systems.Computer, 21(10):10–19, 1988.

[119] John A. Stankovic et al. Vest: An aspect-based composition tool for real-time systems.
Real-Time and Embedded Technology and Applications Symposium, IEEE, 0:58, 2003.

[120] Dominik Stein et al. A uml-based aspect-oriented design notation for aspectj. InPro-
ceedings of the 1st International Conference on Aspect-Oriented Software Development,
pages 106–112, New York, 2002. ACM Press.

[121] Dominik Stein et al. Expressing different conceptualmodels of join point selections in
aspect-oriented design. InProceedings of the 5th international conference on Aspect-
oriented software development, pages 15–26, New York, 2006. ACM.

[122] Andrew S. Tanenbaum and Maarten van Steen.Distributed Systems: Principles and
Paradigms. Prentice-Hall, Upper Saddle River, second edition, 2007.

[123] Aleksandra Tesanovic et al. Aspects and components inreal-time system develop-
ment: Towards reconfigurable and reusable software.Journal of Embedded Computing,
1(1/2005):17–37, Jan. 2005.

[124] Shiu Lun Tsang, Siobhán Clarke, and Elisa L. A. Baniassad. An evaluation of aspect-
oriented programming for java-based real-time systems development. InProceedings of
the 7th IEEE International Symposium on Object-Oriented Real-Time Distributed Com-
puting (ISORC 2004), number 7, pages 291–300, Los Alamitos, 2004. IEEE Computer
Society.

[125] UPB. Organic reconfigurable operating system, 2008. https://orcos.cs.uni-paderborn.
de/orcos/.

203

Bibliography

[126] Klaas van den Berg, Jose Maria Conejero, and Ruzanna Chitchyan. Aosd ontology 1.0:
Public ontology of aspect-orientation. Technical report,AOSD-Europe, 2005. AOSD-
Europe-UT-01.

[127] Yves Vanderperren, Wolfgang Mueller, and Wim Dehaene. Uml for electronic sys-
tems design: a comprehensive overview.Design Automation for Embedded Systems,
12(4):261–292, 2008.

[128] Stamatis Vassiliadis et al. The hipeac roadmap on embedded systems. Technical re-
port, European Network of Excellence on High-Performance Embedded Architecture
and Compilation, 2005. http://www.hipeac.net/roadmap.

[129] W3C. extensible markup language (xml) 1.0 (fourth edition), 2006. http://www.w3.org/
TR/2006/REC-xml-20060816.

[130] W3C. Xsl transformation (xslt) 2.0 - candidate recomendation, 2006. http://www.w3.org/
TR/xslt20.

[131] Marco Aurélio Wehrmeister. Framework orientado a objetos para projeto de hardware
e software embarcados para sistemas tempo-real. Master’s thesis, Programa de Pós-
Graduação em Computação, Universidade Federal do Rio Grande do Sul, Porto Alegre,
2005.

[132] Wayne Hendrix Wolf.Computers as Components : Principles of Embedded Computing
System Design. Morgan Kaufmann, San Francisco, 2001.

[133] Lichen Zhang and Ruicheng Liu. Aspect-oriented real-time system modeling method
based on uml. InProceedings of the 11th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pages 373–376, Washington, 2005.
IEEE Computer Society.

204

List of Abbreviations

AAM Aspect-oriented Architecture Model

ABS Anti-lock Bracking System

AMoDE-RT Aspect-oriented Model-Driven Engineering for Real-Time systems

API Application Programming Interface

AADL Architecture Analysis & Design Language

AO Aspect-Orientation

AOD Aspect-Oriented Design

AODM Aspect-Oriented Design Modeling

ASIP Application Specific Instruction Processor

CWM Common Warehouse Meta-model

DERAF Distributed Embedded Real-time Aspects Framework

DERCS Distributed Embedded Real-time Compact Specification

DERTS Distributed Embedded and Real-Time System

DREAMS DistRibuted Extensible Application Management System

DSML Domain-Specific Modeling Languages

GenERTiCA Generation of Embedded Real-Time Code based on Aspects

HDL Hardware Description Language

HW Hardware

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

JPDD Join Point Designation Diagrams

MAC Media Access Control

205

MARTE Modeling and Analysis of Real-time and Embedded systems

MDA Model-Driven Architecture

MDD Model-Driven Design

MDE Model-Driven Engineering

MOF Meta-Objects Facilities

OMG Object Management Group

OO Object-Orientation

ORCOS Organic Reconfigurable Operating System

PIM Platform Independent Model

PSM Platform Specific Model]

QoS Quality of Service

QVT MOF Query/View/Transformation

RTSJ Real-Time Specification for Java

RTOS Real-Time Operating System

SAE Society of Automotive Engineers

SCL Skeleton Customization Language

SEEP Sistema Eletrônicos Embarcados baseados em Plataformas

SoC System-on-Chip

SPT UML profile for Schedulability, Performance and Time

SW Software

UAV Unmanned Aerial Vehicle

UML Unified Modeling Language

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WCET Worst Case Execution Time

XMI XML Metadata Interchange

XML eXtensible Markup Language

206

List of Publications

2009

[1] Edison P. Freitas, Rodrigo S. Allgayer, Marco A. Wehrmeister, Carlos E. Pereira, and Tony
Larsson. Supporting platform for heterogeneous sensor network operation based on un-
manned vehicles systems and wireless sensor nodes. InProceedings of IEEE Intelligent
Vehicles Symposium, pages 786–791, Los Alamitos, 2009. IEEE Computer Society.

[2] Edison P. Freitas, Tales Heimfarth, Marco A. Wehrmeister, Flavio R. Wagner, Armando M.
Ferreira, Carlos E. Pereira, and Tony Larsson. Using a link metric to improve communi-
cation mechanisms and real-time properties in an adaptive middleware for heterogeneous
sensor networks. InAdvances in Information Security and Assurance, pages 422–431.
Springer, Berlin, 2009.

[3] Edison P. Freitas, Marco A. Wehrmeister, Armando M. Ferreira, Carlos E. Pereira, and Tony
Larsson. Multi-agents supporting reflection in a middleware for mission-driven heteroge-
neous sensor networks. InProceedings of 3rd International Workshop on Agent Technology
for Sensor Networks, pages 25–32, 2009.

[4] Marcio F. S. Oliveira, Marco A. Wehrmeister, Francisco A. Nascimento, Carlos E. Pereira,
and Flavio R. Wagner.High-level Design Space Exploration of Embedded Systems Using
the Model-Driven Engineering and Aspect-Oriented Design Approaches, chapter 5, pages
114–146. Information Science Reference, Hershey, 2009.

[5] Marco A. Wehrmeister, Edison P. Freitas, and Carlos E. Pereira. An infrastructure for uml-
based code generation tools. InProceedings of 3rd IFIP International Embedded Systems
Symposium. Springer, 2009. (to appear).

[6] Marco A. Wehrmeister, Edison P. Freitas, and Carlos E. Pereira. Using genertica to genera-
tion code from rt-uml : a case study. InProceedings of 13th IFAC Symposium on Informa-
tion Control Problems in Manufacturing, pages 678–683. Elsevier Science, 2009.

207

Bibliography

2008

[1] Edison P. Freitas, Marco A. Wehrmeister, Carlos E. Pereira, and Tony Larsson. Real-time
support in adaptable middleware for heterogeneous sensor networks. InProceedings of
International Workshop on Real Time Software (co-located with International Multicon-
ference on Computer Science and Information Technology), pages 593–600, Los Vaqueros
Circle, 2008. IEEE Computer Society Press.

[2] Edison P. Freitas, Marco A. Wehrmeister, Carlos E. Pereira, and Tony Larsson. Reflective
middleware to support mission-driven heterogeneous sensor networks. InProceedings of
Workshop on Sensor Networks and Applications (co-located with 21st Symposium on Inte-
grated Circuits and Systems Design), pages 1–6, Porto Alegre, 2008. Universidade Federal
do Rio Grande do Sul.

[3] Edison P. Freitas, Marco A. Wehrmeister, Carlos E. Pereira, and Tony Larsson. Using as-
pects and component concepts to improve reuse of software for embedded systems product
lines. InProceedings of 12th International Software Product Line Conference, pages 105–
112, Limerick, 2008. University of Limerick.

[4] Carlos E. Pereira, Marcelo Götz, Marco A. Wehrmeister, Edison P. Freitas, and Elias
T. Silva Junior. Real-time distributed embedded systems: Infra-structure for bio-inspired
automation systems. InSelf-optimizing Mechatronic Systems: Design the Future, pages
449–468. Heinz Nixdorf Institute, Paderborn, 2008.

[5] Marco A. Wehrmeister, Edison P. Freitas, Dalimir Orfanus, Franz Rammig, and Carlos E.
Pereira. A case study to evaluate pros/cons of aspect- and object-oriented paradigms to
model distributed embedded real-time systems. InProceedings of 5th International Work-
shop on Model-based Methodologies for Pervasive and Embedded Software, pages 44–54,
Los Alamitos, 2008. IEEE Computer Society Press.

[6] Marco A. Wehrmeister, Edison P. Freitas, Dalimir Orfanus, Franz Rammig, and Carlos E.
Pereira. A comparison of the use of aspects and objects for modeling distributed embedded
real-time systems with rt-uml. InAnais do X Workshop de Sistemas de Tempo-Real e Em-
barcados (em conjunto com XXVI Simpósio Brasileiro de Redesde Computadores), pages
1–8, Porto Alegre, 2008. Sociedade Brasileira da Computação.

[7] Marco A. Wehrmeister, Edison P. Freitas, Dalimir Orfanus, Franz Rammig, and Carlos E.
Pereira. Evaluating aspect and object-oriented concepts to model distributed embedded real-
time systems using rt-uml. InProceedings of Trienal World Congress of the International
Federation of Automatic Control, pages 6885–6890. Elsevier Science, 2008.

[8] Marco A. Wehrmeister, Edison P. Freitas, Dalimir Orfanus, Franz Rammig, and Carlos E.
Pereira. Genertica: A tool for code generation and aspects weaving. InProceedings of 11th
IEEE Symposium on Object Oriented Real-Time Distributed Computing, pages 44–54, Los
Alamitos, 2008. IEEE Computer Society Press.

208

Bibliography

2007
[1] Edison P. Freitas, Marco A. Wehrmeister, Elias T. Silva Junior, Fabiano C. Carvalho,

Flavio R. Wagner, and Carlos E. Pereira. Deraf: A high-levelaspects framework for dis-
tributed embedded real-time systems design. InEarly Aspects: Current Challenges and
Future Directions (Lecture Notes in Computer Science), pages 55–74. Springer, Berlin /
Heidelberg, 2007.

[2] Edison P. Freitas, Marco A. Wehrmeister, Elias T. Silva Junior, Fabiano C. Carvalho,
Flavio R. Wagner, and Carlos E. Pereira. Using aspect-oriented concepts in the require-
ments analysis of distributed real-time embedded systems.In Embedded System Design:
Topics, Techniques and Trends, pages 221–230. Springer, Boston, 2007.

[3] Elias T. Silva Junior, Marco A. Wehrmeister, Flavio R. Wagner, and Carlos E. Pereira.
An approach to improve predictability in communication services in distributed real-time
embedded systems. InProceedings of 5th International Workshop on Java Technologies for
Real-time and Embedded Systems, pages 121–126, New York, 2007. ACM Press.

[4] Marco A. Wehrmeister, Edison P. Freitas, Franz Rammig, and Carlos E. Pereira. Com-
bining aspects-oriented concepts with model-driven techniques in the design of distributed
embedded real-time systems. InProceedings of 19th Euromicro Conference on Real-Time
Systems, Work-In-Progress Session, pages 49–59, Singapore, 2007. National University of
Singapore.

[5] Marco A. Wehrmeister, Edison P. Freitas, Flavio R. Wagner, and Carlos E. Pereira. An
aspect-oriented approach for dealing with non-functionalrequirements in a model-driven
development of distributed embedded real-time systems. InProceedings of 10th IEEE In-
ternational Symposium on Object and Component-Oriented Real-Time Distributed Com-
puting, pages 49–52, Washington, 2007. IEEE Computer Society.

2006
[1] Edison P. Freitas, Marco A. Wehrmeister, Elias T. Silva Junior, Fabiano C. Carvalho,

Flavio R. Wagner, and Carlos E. Pereira. Using aspects to model distributed real-time
embedded systems. InAnais do III Workshop Brasileiro de Desenvolvimento de Software
Orientado a Aspectos (em conjunto com XX Simposio Brasileiro de Engenharia de Soft-
ware), pages 1–11. SBC, 2006.

[2] Francisco A. Nascimento, Marcio F. S. Oliveira, Marco A.Wehrmeister, Flavio R. Wagner,
and Carlos E. Pereira. Mda-based approach for embedded software generation from a um-
l/mof repository. InProceedings of 19th Symposium On Integrated Circuits And Systems
Design, pages 143–148, New York, 2006. ACM Press.

[3] Marco A. Wehrmeister, Fernando H. Ataide, Fabiano C. Carvalho, and Carlos E. Pereira.
A comparative study of embedded protocols for safety-critical control applications. InPro-
ceedings of 12th IFAC Symposium on Information Control Problems in Manufacturing,
pages 87–94. Elsevier Science, 2006.

209

Bibliography

[4] Marco A. Wehrmeister, Leandro B. Becker, and Carlos E. Pereira. Optimizing the genera-
tion of object-oriented real-time embedded applications based on the real-time specification
for java. InProceedings of IEEE/ACM Design, Automation and Test in Europe, pages 1–6,
Los Alamitos, 2006. IEEE Computer.

2005

[1] Elias T. Silva Junior, Marco A. Wehrmeister, Leandro B. Becker, Carlos E. Pereira, and
Flavio R. Wagner. Design exploration in hw/sw co-design of real-time object-oriented em-
bedded systems: the scheduler object. InProceedings of 10th IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems, pages 378–388, Washington, 2005.
IEEE Computer Society.

[2] Elias T. Silva Junior, Marco A. Wehrmeister, Fabiano C. Carvalho, Leandro B. Becker,
Carlos E. Pereira, and Flavio R. Wagner. Exploração do espaço de projeto em hw/sw co-
design de sistemas tempo-real embarcados orientados a objetos: o objeto escalonador. In
Anais do VII Workshop de Tempo Real (em conjunto com XXIII Simpósio Brasileiro de
Redes de Computadores), pages 09–16, 2005.

[3] Marco A. Wehrmeister, Fernando H. Ataide, Fabiano C. Carvalho, and Carlos E. Pereira.
Assessing the use of rt-java in automotive time-triggered applications. InFrom Specification
to Embedded Systems Application, pages 223–234. Springer-Verlag, New York, 2005.

[4] Marco A. Wehrmeister, Leandro B. Becker, and Carlos E. Pereira. Applying the seep
method in the design of a real-time embedded control system for a motorized wheelchair. In
Proceedings of 10th IEEE International Conference on Emerging Technologies and Factory
Automation, pages 147–184, Los Alamitos, 2005. IEEE Computer Society.

[5] Marco A. Wehrmeister, Leandro B. Becker, and Carlos E. Pereira. An approach for de-
signing real-time embedded systems from rt-uml specifications. InProceedings of 16th
International Federation of Automatic Control World Congress. Elsevier Science, 2005.

[6] Marco A. Wehrmeister, Leandro B. Becker, and Carlos E. Pereira. Metodologia de projeto
orientada a objetos baseada em plataformas para sistemas tempo-real embarcados. InAnais
do VII Workshop de Tempo Real (em conjunto com XXIII SimpósioBrasileiro de Redes de
Computadores), pages 01–08, 2005.

[7] Marco A. Wehrmeister, Leandro B. Becker, and Carlos E. Pereira. Object-oriented method-
ology to the development of embedded real-time systems. InProceedings of 3rd IEEE In-
ternational Conference on Industrial Informatics, pages 68–73, Los Alamitos, 2005. IEEE
Computer Society.

[8] Marco A. Wehrmeister, Leandro B. Becker, Carlos E. Pereira, and Flavio R. Wagner. An
object-oriented platform-based design process for embedded real-time systems. InPro-
ceedings of 8th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, pages 125–128, Los Alamitos, 2005. IEEE Computer Society.

210

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals and Scope Delimitation
	Thesis Contributions
	Text Organization

	Theoretical Background
	Introduction
	Distributed Embedded Real-Time Systems
	Introduction
	Real-Time Systems
	Embedded Systems
	Distributed Systems

	Requirements in Embedded Systems Domain
	Embedded Systems Design Approaches
	Introduction
	Object-Oriented Paradigm
	Aspect-Oriented Paradigm
	Evaluating the Design with Metrics
	Introduction
	C&K Metrics Suite
	Assessment Framework for AO systems

	Model-Driven Engineering
	Overview
	MARTE UML profile

	State of the Art Analysis
	Introduction
	Design and Modeling Approaches
	Overview of Related-Work
	Discussion

	Separation of Concerns in Requirements Handling
	Introduction
	Separation of Concerns in General Systems Development
	The Use of AOD in the Design of DERTS
	Discussion

	Code Generation
	Introduction
	Code Generation from UML Models
	Commercial Tools
	Discussion

	Discussion on the Open Problems

	MDE process for DERTS design
	Introduction
	Aspect-Oriented Model-Driven Engineering for DERTS
	Adaptations in the SEEP design flow

	Specifying DERTS Using UML and Aspects
	Introduction
	Functional Requirements Handling Elements
	Introduction
	Specification of System Expected Functionalities
	Specification of System Structure
	Class Diagram
	Composite Structure Diagram
	Deployment Diagram

	System Behavior Specification
	Sequence Diagram
	Activity Diagram
	State Diagram

	Non-Functional Requirements Handling Elements
	Introduction
	Distributed Embedded Real-time Aspects Framework
	Overview
	Timing Package
	Precision Package
	Synchronization Package
	Communication Package
	TaskAllocation Package
	Embedded Package
	Discussion

	Aspects Crosscutting Overview Diagram
	Join Points: Selecting Model Elements Affected by Aspects

	Final Remarks

	Tool Support for the Proposed Approach
	Introduction
	A Platform Independent Model for Code Generation
	UML-to-DERCS Transformation
	Mapping Rules
	Overview
	Application Code
	Platform Configuration

	Code Generation Process
	Final Remarks

	Validation
	Introduction
	Toolset Overview
	RT-FemtoJava Platform
	ORCOS Platform
	Case Studies Assessment

	Case Studies
	Unmanned Aerial Vehicle
	Object-Oriented Version
	Aspect-Oriented Version
	Results

	Industrial Packing System
	Object-Oriented Version
	Aspect-Oriented Version
	Results

	Wheelchair Automation

	Final Remarks

	Conclusions and Future Work
	DERAF Detailed Description
	Timing Package
	Precision Package
	Synchronization Package
	Communication Package
	TaskAllocation Package
	Embedded Package

	UML Models for the UAV Case Study
	Mapping Rules
	Application
	Platform Configuration
	Source Code Generated by GenERTiCA

	Bibliography
	List of Abbreviations
	List of Publications

