'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Faculty of Electrical Engineering, Computer Science, aradidmatics
Department of Computer Science
Warburger StralRe 100
D-33098 Paderborn

An Aspect-Oriented Model-Driven
Engineering Approach for Distributed
Embedded Real-Time Systems

by

Marco Aurélio Wehrmeister

A thesis submitted to the
Graduate Program in Computer Science (PPGC)
Federal University of Rio Grande do Sul
and to the
Faculty of Computer Science, Electrical Engineering and Méhematics
University of Paderborn
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Ph.D.)andDoctor of Natural Science (Dr. rer. nat.)

Paderborn, September 2009

Supervisors:
Prof. Dr.-Ing. Carlos E. Pereira, Federal University of RBitande do Sul, Brazil
Prof. Dr. rer. nat. Franz J. Rammig, University of Paderb@armany

Public examination in Porto Alegre, Brazil
Additional members of examination committee:
Prof. Dr. Antdnio Augusto Frohlich
Prof. Dr. Leandro Buss Becker
Prof. Dr. Luigi Carro
Date: June 17th, 2009

Public examination in Paderborn, Germany
Additional members of examination committee:
Prof. Dr. Gregor Engels
Prof. Dr. Marco Platzner
Prof. Dr. Achim Rettberg
Date: September 17th, 2009

To Jo, my lovely wife, for her love, huge patience, support,
and understanding at the moments | was absent.

Acknowledgments

| have a noticeable improvement in my professional/pelislifieaafter these six years working
in the Embedded Systems Lab at the Federal University of Ram@ do Sul. | have been with
many people that contributed directly or indirectly to tmgprovement. |1 would like to express
gratitude to all of them.

First of all, | would like to thank Dr. Carlos Eduardo Pereikte is not only my advisor but
also a friend. His help along two years of master and foursy/eéPh.D. did strongly contribute
to several aspects of my professional and personal life itoRPdegre. Our discussions have
been a fundamental piece for the accomplishment of this widried to learn the maximum |
could from his example.

Other important part of my Ph.D. was my “sandwich” stage atuiversity of Paderborn,
Germany. For this, I would like to thank Dr. Franz Josef Ragfor accepting me as member in
his working group, for the discussions, critics and suggaston my work, and more specially,
for the opportunity to do the bi-national Ph.D. | do not havard to describe how this stay in
Germany opened my horizons concerning personal and piofiessaspects.

From home, | would like to thank my wife, Josi, for her suppertcouraging, and compre-
hension in the last six years. She was and still is a fundaahpigce during all phases of my
life. 1 am also thankful to my parents, Nelson and Berta, nothers Fernando and Leonardo,
and my sister-in-law Thaize for the encouragement and stipppecially, | would like to thank
my uncle Vendelino, aunt Janete, and cousins Rudolf, RaisBiarbara, and Julia for their sup-
port in Porto Alegre, decreasing the yearning for the farafly8lumenau. In special, | would
like to thank Barbara for the English review of some chapbéthis thesis.

I would also like to acknowledge all professors and admmiaiste staff of the Informatics
Institute, which somehow contributed for the conclusiomuf Ph.D. Specially, | would like
to thank Dr. Flavio Rech Wagner, Dr. Luigi Carro, and Dr. MdecSoares Pimenta for the
valuable discussions, critics, and suggestions durintpialtime.

| am thankful to all colleagues and friends from the Embed8gstems Lab who directly
or indirectly contributed to this work. | cannot name all bét because | will certainly forget
many names. However, | should mention those that providereble contributions to this
work: Edison Pignaton Freitas, Marcio Oliveira, and Eli@ddoro da Silva Jr. Additionally, |
would like to thank two undergrad students: William Silva floe help with some case studies
in ORCOS platform; and Ronaldo Rodrigues Ferreira (a.kiao)Bfor the English review of

this text’s first draft.

Considering my stay in Germany, | would like to express mytigrde to Marcelo Gotz,
which actually came back to Brazil when | arrive at Paderpfonall help and hints about the
life in Germany, and specially for letting me to “inherit’shhouse in Paderborn. From there, |
must also mention Vera Kuhne for all help with the bureaucetdhe university, the colleagues
of the working group, and specially Tales and Carolina Hahmif, Dalimir Orfanus, Fahad Bin
Tariq for various moments we spend together.

Finally, I would like to thank the Conselho Nacional Ciemtifie Tecnologico (CNPq) for
both regular and “sandwich” scholarships, and also the $obetr Akademischer Austausch
Dienst (DAAD) for the financial support during part of theysta Germany.

Contents

List of Figures Viii
List of Tables Xi
1. Introduction 3
1.1, Motivation. e 3
1.2. Goals and Scope Delimitation 6
1.3. Thesis Contributions. 8
1.4. TextOrganization i 10
2. Theoretical Background 11
2.1. Introduction. 11
2.2. Distributed Embedded Real-Time Systems. 11
2.2.1. Introduction 11
2.2.2. Real-TimeSystems. 11
2.2.3. Embedded Systems. 13
2.2.4. Distributed Systems. e 13
2.3. Requirements in Embedded SystemsDomain. 14
2.4. Embedded Systems Design Approaches. 17
241, Introduction 17
2.4.2. Object-Oriented Paradigm. 18
2.4.3. Aspect-Oriented Paradigm. 19
2.4.4. Evaluating the Design withMetrics 21
2.4.4.1. Introduction. 21
24.4.2. C&KMetricsSuite. 22
2.4.4.3. Assessment Framework for AO systems 23
2.5. Model-Driven Engineering 25
251, Overview. 25
25.2. MARTEUMLoprofile 26
3. State of the Art Analysis 31
3.1. Introduction. e 31
3.2. Design and Modeling Approaches. 32
3.2.1. OverviewofRelated-Work 32
3.2.2. DisCusSiON. 36

Contents

3.3. Separation of Concerns in Requirements Handling 37
3.3.1. Introduction 37
3.3.2. Separation of Concerns in General Systems Develupme. 37
3.3.3. The Use of AOD in the Design of DERTS. 41
3.3.4. DIsSCUSSION. 45

3.4. CodeGeneration. 46
3.4.1. Introduction 46
3.4.2. Code Generation fromUML Models. a7
3.4.3. Commercial Tools. 50
3.4.4. DISCUSSION. 51

3.5. Discussion onthe OpenProblems. 52

4. MDE process for DERTS design 55

4.1, Introduction. 55

4.2. Aspect-Oriented Model-Driven Engineering for DERTS. 56

4.3. Adaptations inthe SEEP designflow 60

5. Specifying DERTS Using UML and Aspects 63

5.1. Introduction. 63

5.2. Functional Requirements Handling Elements. 64
5.2.1. Introduction 64
5.2.2. Specification of System Expected Functionalities. 65
5.2.3. Specification of System Structure. 66

5.23.1. ClassDiagram 66
5.2.3.2. Composite Structure Diagram 67
5.2.3.3. Deployment Diagram 69
5.2.4. System Behavior Specification. L. 70
5.2.4.1. SequenceDiagram 70
5.2.4.2. ActivityDiagram 0 75
5.24.3. StateDiagram, 76

5.3. Non-Functional Requirements Handling Elements. 77
5.3.1. Introduction 77
5.3.2. Distributed Embedded Real-time Aspects Framework 79

5.3.2.1. OVerview 79
5.3.2.2. TimingPackage 80
5.3.2.3. PrecisionPackage., 81
5.3.2.4. Synchronization Package. 82
5.3.2.5. Communication Package 82
5.3.2.6. TaskAllocation Package. 83
5.3.2.7. EmbeddedPackage. 83
5.3.2.8. Discussion 84
5.3.3. Aspects Crosscutting Overview Diagram. 86
5.3.4. Join Points: Selecting Model Elements Affected bpekss 88
54, FinalRemarks 91

Vi

Contents

6. Tool Support for the Proposed Approach 93
6.1. Introduction. 93
6.2. A Platform Independent Model for Code Generation. 93
6.3. UML-to-DERCS Transformation. 98
6.4. MappingRules. 104

6.4.1. OVerview. e 104
6.4.2. ApplicationCode 105
6.4.3. Platform Configuration 112
6.5. Code Generation Process. i 113
6.6. FinalRemarks 116

7. Validation 119
7.1. Introduction. 119
7.2. ToolsetOverview. 119

7.2.1. RT-FemtoJavaPlatform. 119
7.22. ORCOSPIatform 120
7.2.3. Case Studies Assessment. 122
7.3. CaseStudies. 123
7.3.1. Unmanned Aerial Vehicle. 123
7.3.1.1. Object-Oriented Versian. 124
7.3.1.2. Aspect-Oriented Version 126
73.13. Results 129
7.3.2. Industrial Packing System oL 132
7.3.2.1. Object-Oriented Versian. 133
7.3.2.2. Aspect-Oriented Version 135
73.23. Results 136
7.3.3. Wheelchair Automation. 138
7.4. FinalRemarks 140

8. Conclusions and Future Work 145

A. DERAF Detailed Description 149
A.l. TimingPackage 149
A.2. PrecisionPackage. 151
A.3. Synchronization Packageo 153
A.4. CommunicationPackage 154
A.5. TaskAllocation Package. 155
A.6. Embedded Package. 157

B. UML Models for the UAV Case Study 159

C. Mapping Rules 175
C.1. Application 175
C.2. Platform Configuration. 188
C.3. Source Code Generated by GenERTICA 191

Vil

Contents

Bibliography 195
List of Abbreviations 205
List of Publications 207

viii

List of Figures

1.1
1.2.
1.3.

2.1.
2.2.
2.3.
2.4,
2.5.
2.6.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

4.1.
4.2.
4.3.
4.4.
4.5.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

Hardware and software designgap
Using higher abstraction levels in embedded systefmgmes.
Most important tools in embedded systemdesign.

Non-Functional Requirements Classification.
Scattering: same code inmultipleplaces
Quality model proposed by SantAnnaetal.
Overall MARTE architecture
Stereotypes of Time profile.
Stereotypes of GRMprofile. o oL

Methodology for Multimedia Systems available in Mewbs

SEEPdesignflow

Aspects and join points modeling in AODM.
Examples of Theme/UMLmodels
CAM model represented asaclassdiagram

(a) Aspects modeling;

(b) Advice modeling; (c) Pointspecification

Specification usingt@me aspect.
AO-related concepts modeling.

Overview of the AMoODE-RT design approach

Overview of RT-Frida

RT-FRIDA templates for requirements specification
Other tools provided by RT-FRIDA.
Adaptations proposed to SEED designflaw.

Graphical representation of system requirements
Specification of the static structure.
Specification of the dynamic structure.
Specification of objects deployment.,
Specification of the behavior in terms of actions penfed by objects.

Invalid behavior specification using sequence diagram
System behavior overview specified using activitydiagy

Behavior of classes specified using state diagrams

Conceptual AO model

16
20
24
28
29
29

34
36
38
39
40

42
43

55
56

57
58

61

66
67
68
69

71

75

77
78

List of Figures

5.10
511
5.12
5.13

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

6.10.
6.11.
6.12.
6.13.

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.

7.10.
7.11.
7.12.
7.13.

Al
A.2.
A.3.
A4,
A.5.
A.G.

B.1.
B.2.
B.3.
B.4.
B.5.

. All aspects provided by DERAFE 80
. Aspects specification using ACOD. 86
. JPDD for structural elements selection 90
. JPDD for behavioral elements selection. 90
GenERTICA mains features overview 94
DERCS meta-model: structural elements. 95
DERCS meta-model: behavioralelements 97
DERCS meta-model: AO-related elements. 98
Mapping rules XML organization., 106
Mapping rulessSourceOptions>and<PrimaryElements>branches 107
Mapping rules<Attributes>node L 108
Mapping rulessSendMessagerode 108
Mapping rulesPeriodicTimingaspect implementation. 110
Source code fragment with modifications performeddpeet adaptations . . 111
Platform configuration XML structure 113
GenERTICA: application code generation flowchart. 115
GenERTICA: platform configuration generation flowtha. 116
Reusability quality model 122
UAV movement control use case diagram. 124
UAV movement control classdiagram. 125
Fragments of UAV movement control sequence diagram 125
UAV non-functional requirements handling: (A) ACOMda(B) JPDD 128
Calculated metrics for the UAV control system 129
Comparison of UAV'dovenent Control l er classes. 130
Industrial packing system use casediagram 132
Industrial packing system classdiagram 133
Industrial packing system sequence diagram. 134
Industrial packing system: reused elements in (A) BCé&nd (B) JPDD. . . . 135
Calculated metrics for the industrial packing system. 136
Calculated metrics for the wheelchair movement cbsyrstem 138
Timing Packagehandling time non-functional requirements. 151
Precison Packagehandling precision non-functional requirements 152
Synchronization Packagérandling synchronization non-functional requiremett8

Communication Packagdiandling communication non-functional requiremeits4

TaskAllocation Packagenandling tasks allocation non-functional requirement$6

Embedded packagérandling embedded non-functional requirements . . . 158

UAV movement control use case diagram. 159
UAV movement control classdiagram. 160
Environmentsensing 161
Main and back rotorssensing. L o 162
Helicopter movementcontrol 163

List of Figures

B.6. Helicopter piloting 164
B.7. Environment sensing subsystem initialization. 164
B.8. Movement sensing subsystem initialization. 165
B.9. Control subsystem initialization. 165
B.10. Other behavio’¥ ndSensor Dri ver. get WndSpeed() 166
B.11. Other behavio®¥ ndSensor Dri ver. get WndDi rection() 166
B.12. Other behaviovbvenent Control | er. processinfo() 167
B.13. UAV movement control deployment diagram 168
B.14. Aspects Crosscutting OverviewDiagram 169
B.15.JPDD: selection of active objectsclass 170
B.16.JPDD: selection of shared passive objects 170
B.17.JPDD: selection of passive class attributes 170
B.18.JPDD: selection of passive class constructor. 171
B.19.JPDD: selection of sub systemsclasses 171
B.20.JPDD: selection of sub systems constructor 171
B.21.JPDD: selection of selection of active objects carcsion actions 171
B.22.JPDD: selection of active objects constructor bedravi 172
B.23.JPDD: selection of active objects constructor. 172
B.24.JPDD: selection of messages whose name starts with“ge 172
B.25.JPDD: selection of messages whose name startswitth“se 173
B.26.JPDD: selection of messages whose name starts with“ge 173
B.27.JPDD: selection of messages whose name starts with“se 173
B.28.JPDD: selection of passive objects contruction actio. 174
B.29.JPDD: selection of active objects periodic behavior 174
B.30.JPDD: selection of message sending action to rem¢eetsh. 174
B.31.JPDD: selection of sub systems constructor behavior. 174

Xi

List of Figures

Xii

List of Tables

2.1.

5.1.
5.2.
5.3.

6.1.
6.2.

7.1
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.

Metrics influence in quality attributes 23
Reserved words for actions specification 73
Naming pattern for elements selectioninJPDD 89
Summary of MARTE stereotypes used in AMoDE-RT. 92

UML-to-DERCS mappingtable. 99
UML-to-DERCS behavior elements relationships 103
UAV: Statistics of the UML model of AOversion 130
UAV: Statistics of the generated sourcecode. 131
Industrial packing system: Statistics of the UML moafehO version 137

Industrial packing system: Statistics of the gendratairce code 137

Wheelchair: Statistics of the UML model of AOversion. 139
Wheelchair: Statistics of the generated sourcecode. 140
AO elements reused in the different case studies 142

Xiii

Abstract

Currently, the design of distributed embedded real-tinstesyis is growing in complexity due
to the increasing amount of distinct functionalities thairagle system must perform, and also
to concerns related to designing different kinds of comptmelndustrial automation systems,
embedded electronics systems in automobiles or aeriatheshimedical equipments and others
are examples of such systems, which includes distinct caemis (e.g. hardware and soft-
ware ones) that are usually designed concurrently usinghcismodels, tools, specification,
and implementation languages. Moreover, these systenesdwmain specific and important
requirements, which do not represent by themselves thectegbunctionalities, but can affect
both the way that the system performs its functionalitiesvel as the overall design success.
The so-called non-functional requirements are difficuldéal with during the whole design
because usually a single non-functional requirement &ffeeveral distinct components.

This thesis proposes an automated integration of disetbetnbedded real-time systems
design phases focusing on automation systems. The propggedach uses Model-Driven
Engineering (MDE) technigues together with Aspect-OgenDesign (AOD) and previously
developed (or third party) hardware and software platfotrondesign the components of dis-
tributed embedded real-time systems. Additionally, AODazpts allow a separate handling of
requirement with distinct natures (i.e. functional and-fiamctional requirements), improving
the produced artifacts modularization (e.g. specificatimdel, source code, etc.). In addition,
this thesis proposes a code generation tool, which suppartsutomatic transition from the
initial specification phases to the following implemeraatphases. This tool uses a set of map-
ping rules, describing how elements at higher abstracteal$ are mapped (or transformed)
into lower abstraction level elements. In other words, smepping rules allow an automatic
transformation of the initial specification, which is close the application domain, in source
code for software and hardware components that can be aargilsynthesized by other tools,
obtaining the realization/implementation of the disttdmiembedded real-time system.

Keywords: Model-Driven Engineering (MDE), Aspect Oriented Develamh (AOD),
UML, Code Generation, Aspects Weaving, Real-Time Embe®jestems

Chapter 1

Introduction

1.1. Motivation

The use of specialized electronic devices to assist in @ailiyities is increasing rapidly. The
so-called embedded systems are hardly perceived as compystems. Currently, at least 20-
30 embedded systems can be found in a common householdeg#.gh@nes, digital cameras,
DVD players, microwave ovens, car’s electronic systems@hdrs. On the other hand, the
same household has only 1 or 2 desktop computers or lapt@gs [Moreover, many of these
systems have several tasks distributed in multiple praogamits (deployed either locally or
physically distant from each other) that must cooperatetomplish a common goal, while re-
specting stringent application’s real-time requiremerts example, in a modern middle-range
car, it is possible to find over 50 embedded systems comtgofieveral functions ranging from
anti-lock braking (ABS) and fuel injection systems to irdioiment systems such as GPS navi-
gator or a music/video player [128]. To meet this high denfamoh industry, many researchers
propose/develop methodologies, standards, architecaumre tools to assist the systematic de-
velopment of such special kind of distributed, cooperagind real-time embedded systems.

As technology advances faster, there is an increasing ditfioamew embedded systems
capable of performing a large amount of complex functidigalj which impact strongly in their
design time and complexity. Such growing complexity is ipdlst caused due to the distinct
nature of elements involved in the design of these systemsdesigners must produce, usu-
ally concurrently, hardware (HW) and software (SW) compiseHowever, as one can see in
figure 1.1, there is a productivity gap between the software and haeltegamms: the first one
needs 5 years to increase productivity twice, while ther latgroves it a little faster but still
not in the same rate as the increase in technology capesilith addition, the non-functional
nature of some important requirements have a great influardesign complexity. The embed-
ded systems domain has characteristics that constraiensydsign, such as fewer availability
of computational resources (e.g. memory and processing@mpovestrictions on low energy
consumption without performance degradation, and alsgha time-to-market [25].

To deal with the above mentioned problems, researchersesignirs propose to raise the

1. Introduction

2 Additional SW required for HW
log , 2x/10 months

2,

= LoC SW/Chip
= Gates/Chip Technology capabilities
- Gates/Day . 2x/36 months

= | oC/Day
HW including
SW design gap

HW design productivity
= = |Filling with IP and memory

B A HW design productivity

1981
1985
1989
1993
1997

2001
2005
2009
2013
2017
=
3
(0]
A

Figure 1.1.: Hardware and software design gap [66]

abstraction level used during system design. FiguPeshows a chart from a recent embedded
systems market survey [81], in which it can be seen that appeiely 43% of embedded
systems designers use higher levels of abstraction, sudMasSimulink or SystemC, in their
projects. In this context, the Object-Oriented (OO) pagadappears as an interesting choice
due to some characteristics, such as abstraction anddtigravhich are pointed since the 70’s
as key concepts to manage complexity growth and the incrgak@sign effort [53]. Over the
last years, the use of OO in the design of distributed emlibdek-time system is the focus
of several works, as can be seen in important conferencepubiidations, as for example the
IEEE International Symposium on Object-oriented Reaktilistributed Computing (ISORC),
[78], or [27]. However, not all issues involved in the desafrdistributed embedded real-time
systems are well handled only by using OO concepts. Theautisy) nature of some important
requirements impacts in different parts of a system (i.er-fomctional requirements crosscut
functional requirements), hindering the reuse of produaifacts (e.g. models, source code,
IPs, etc.) [42].

SystemC/ [N 17% 17%

wl " I Currently uses I Currently uses
hardware ¢ N 23% (2008 N= 978) 2 (2007 N= 852)
UML [16% I Likely to use 15% I Likely to use
I 18% (2008 N= 974) [23% {2007 N= 854)
Simulink/modeling [N 10% 12%
language I 14% [1e%
HW/SW codesign/ N 6% 5%
coverification tool [l 7% 6%
I 59 o
None of the above (e S0z=
[, 5,0% ——— a8%
Figure 2 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40% 50% 60% 70%

Figure 1.2.: Using higher abstraction levels in embeddestksy design [81]

1.1. Motivation

In the literature there are some proposals, e.g. [119] a2d]][1hat suggest the use of as-
pects to deal with the problem of crosscutting non-funetisaquirements in embedded systems
design. The Aspect-Oriented (AO) paradigm [42] allows aasefed specification of system’s
functional and non-functional requirements. Additiopait allows designers to concentrate
efforts on important concerns, such as the handling oftieed; performance and energy con-
sumption constraints. Additional AO helps in decoupling groduced artifact allowing their
reuse in the same or further projects. Thus, the achievertatigm of concerns in requirements
handling can improve the design of distributed embeddebtiraa systems, opening room
for reusing the produced artifacts. Usually, non-funaorequirements affect (i.e. crosscut)
functional requirements in different ways, in differensig phases and/or in different system
modules [42]. Traditional OO approaches do not handle thegairements in a satisfactory
form. To illustrate the this situation, let's consider thantrol of concurrent access to a shared
resource. The code responsible for handling this requinémmeaist be added each time some
task needs to use a shared resource, and hence, it is stattdne different modules.

Another way to decrease the gap between hardware and seftl#aigns, and also the de-
sign time, is the adoption of a common language to specifly ta structure and behavior of a
distributed embedded real-time system [128]. Thus, therinétion exchange between design
teams (i.e. teams that develop hardware and software canfmns facilitated, minimizing
possible misunderstandings in the specification [27]. &nl#st years, it can be observed the
increasing use of the Unified Modeling Language (UML) [921hie design of embedded sys-
tems. Such claim can be confirmed in the book “UML for SoC d#sjg8], which describes
different research works that proposed the use of UML togieSlystems-on-Chip (SoC).

The idea of using models to design complex systems is begpstianger because models
help in the understanding of complex problems and theimgiatesolution through higher levels
of abstract in the specification [113]. Based on the factthadels are essential for traditional
engineering projects (e.g. the construction of buildinigs,aerodynamic design of an aircraft or
the construction of an electromechanical engine), sevesabrchers and industry professionals
advocate that models produced during the design of conipoghtsystems must play the main
role during the whole design cycle [114].

The so-called Model-Driven Engineering (MDE) [113, 110fides that the design should
mainly focus on the creation of graphical models instead ritirvg source code for computer
programs. Hence, models are the most important artifadtseiresign of computational sys-
tems because they are easier to specify, understand anthmaBesides, they are less sensitive
to changes in the implementation technology, in other womtsdels are intended to be plat-
form and technology independent. To support this idea, ddmental premise of MDE is
that system implementation (e.g. source code) must be atittatly generated from models,
avoiding discrepancies among models and the actual systgharmentation. One example of
standardization for MDE is the Model-Driven Architectutd@A) [87], which offers a con-
ceptual framework and a set of standards to be used in thdogevent of general-purpose
systems, and proposes the use of UML for the specificatioretimglanguage. The transition
from a Platform Independent Model (PIM) to a Platform Spedifiodel (PSM) is performed
through standardized models transformations specifiadyubie MOF Query/View/ Transfor-

1. Introduction

mation (QVT) language [93]. However, in spite of this infrasture, UML and MDA do not
have elements to deal with functional and non-functionglil®@ments in a separated manner
because they only use OO-based concepts.

Despite all work done in academy, the use of high-level neitdeiguages is not a common
practice in current industry projects as can be seen in figuBalso from [81]. Analyzing
together figured.2and1.3, one can infer that designers want to use higher abstrackwels
during design, however the most important used tools asettimt deal with low-level artifacts,
such as compilers or debuggers. One possible reason faittgsion is due to the fact that low
level tools, such as compilers and debuggers, are much matgrén Other relevant reason
for this situation might also be that current available somhd methodologies do not fulfill the
(critical) needs of actual designs. Therefore, it is cléat there is a need for improved tools
supporting high-level techniques. Tool support is key tovathe use of MDE to cope with the
complexity of the embedded systems design [114].

1.2. Goals and Scope Delimitation

Considering the mentioned shortcomings in the design dfilisked embedded real-time sys-
tems, this research work has looked for solutions for thimfiohg problems:(i) manage the
complexity to handle requirement of distributed embeddzal-time system(ii) support for
separation of concerns in the handling of functional and-fiomictional requirementgjii) the
use of a common language to describe the initial specificgiie. model) of system struc-
ture and behavior; anlv) productivity increasing through an automatic transitioont initial
design phase, e.g. modeling, to further phases, e.g. ingol&tion.

As embedded systems are used in very distinct applicatioradts, applying systems with
a broad range of different characteristics and capalsijittes work restricts itself to distributed
embedded real-time systems applied to automation systmh, as industrial and home au-
tomation, or electronic control systems of vehicles andrafts. Thus, to overcome the men-
tioned problems in the design of such applications, thiskvemivocate the increase of the ab-
straction level by using models as the main artifact usethduhe whole design. As a result,
the produced high-level models can be successively refindbausystem implementation is
obtained.

To specify models for distributed embedded real-time systehis work recommends the
use of a standard modeling language, such as UML. Its diagemam used to describe func-
tional requirements, as well as those requirements retatéte Quality of Service (Qo0S) re-
quired/offered from/by system elements, which are specifising stereotypes from the re-
cently approved UML Profile foModeling and Analysis of Real-time and Embedded Systems
(MARTE) [94]. Furthermore, it is proposed to handle nondiional requirements already in
earlier phases, separating these requirements handting fimctional ones. Thus, to handle
non-functional requirements, this work proposes that A@cepts must be applied combined
with UML models. To achieve such goal, aspects must deal reilitime, performance and
distribution requirements, as well as energy consumptisemory and area usage. It is impor-

1.2. Goals and Scope Delimitation

Which of the following are your favorite/maosk
important software/hardware fools?

Compiler/assembler e 56%
Debugger NN 56%
Oscilloscope NN 36%
IDE I 28%
JIAG/EDM I 21%
ICE I 21%
Logic analyzer [N 19%
mancgemonn ety I 14%
Linux tools [9%
Software libraries [8%

Codevelopment tools [7%

Source code analysis/
timing analysis tools . 7%

Automatic code generation [l 6%
UML tools [6%
Simulation medeling teols [l 6%

Software testing tools [l 6% I 2008 (N=975)
Graphical design tools [l 6%
Figure 3 % 10% 20% 30% 40% 50% 60%

Figure 1.3.: Most important tools in embedded system dd§itjh

tant to highlight that there are other equally importanuisgments in the domain of distributed

embedded real-time systems, e.g. fault tolerance, whzb@nplex enough (by themselves) to
be dealt within the scope of other thesis. Consequentlysdope delimitation, this work does

not consider them.

According to Selic [113], models can be considered onlyqutg documentation for re-
quirements (functional and non-functional) of distrilitembedded real-time systems. In such
situation, designers might consider their real value toalsbecause models may easily di-
verge from the system real implementation. To overcomepitiblem, a fundamental premise
of MDE is to have adequate tool support to allow automaticegation of system implementa-
tion from their high level models. Hence, other goal of thigzrkvis to provide a tool capable of
generating code from UML's structural and behavioral diags. Moreover, it must be aware
of AO concepts specified within the model, i.e. it must idigntiie used aspects, as well as the
functional elements affected by them. The adaptation paed by the aspect must be woven
in the generated source code. Additionally, this code gdiner tool must be flexible, i.e. it
must not constraint the generated source code to a specdit tanguage. To achieve these

1. Introduction

goals, the tool can use scripts to generate code fragmangadb element in the UML model.
According to the motivations described until here, this kioas the following goals:

e To propose a design flow, which allows the use of MDE and AODn@ues, improv-
ing and increasing the reuse of previously developed anddestifacts (e.g. models,
libraries, mapping rules, code generation scripts, etc.);

e To advocate for the use of UML diagrams decorated with MART&ile stereotypes
in combination with aspects (from a high-level aspects &aork) for the specification
of the structure, behavior and non-functional requireméaindling in the design of dis-
tributed embedded real-time systems. This will put togethigial system specification
using a well-know and accepted standard, which helps inrnmétion exchange about
system characteristics and expected functionalities gna@sign teams (i.e. hardware
and software teams);

e To improve separation of concerns in the handling of requénets, i.e. functional re-
quirements are handled apart from the non-functional ones;

e To propose modeling guidelines, as well as UML diagram pritation semantics to
eliminate or at least decrease the ambiguity in diagranespretation. This allows the
transformation from the UML meta-model to a defined meta-ehodlhose semantics
is more suitable for code generation due to its accuracy ensfiecification of system
structure and behavior;

e To create a tool for code generation to support the autortratisition from specification
to implementation phases. The tool must support means émifgpg mapping rules to
transform model elements into source code constructiotiseithosen target language.
The generated code must be as complete as possible, mehairtbe code should not
contain only class skeletons;

e Mapping rules must allow their further reuse. In other worti®y must be described
in such a way that it might be possible to create a repositbigraated mapping rules.
However, it is important to highlight that the definition afch repository is out of the
scope of this Ph.D. thesis;

e To evaluate - using software engineering metrics - if theopsed approach and, in par-
ticular, the use of AO positively impacts in the system sfeation, and also in the auto-
matic generation of source code.

1.3. Thesis Contributions

This work was developed within the context of the SEEP ptqf8EEP stands foPlatform-
based Embedded Systenrs“Sistemas Elerénicos Embarcados baseados em Platafrmas
Following SEEP ideas, the main goal is to provide mechantsmsanage the increasing design
complexity by using MDE techniques and separation of carcer the handling of functional

1.3. Thesis Contributions

and non-functional requirements. Therefore, this workistdbutions are as follow:

Use of MDE techniques in embedded systems design: The use of models to assist in
the development of software for general purpose computastia new research topic. In addi-
tion, there are already some works on the “model-drivenrezgging” topic proposing solutions
to some problems. However, the employment of MDE in the aesigdistributed embedded
real-time systems can be considered a recent research wipah still has several gaps to be
fulfilled. Thus, it can be stated that the study and assedsafignodel-driven methodologies
and techniques applied to the design of distributed emlubdel-time systems is a relevant
contribution.

Platform independent modeling of embedded systems: This work suggests the use
of UML and the recently approved MARTE profile together wittncepts of AOD. This can
also be considered a contribution in the design of disteithiembedded real-time systems be-
cause they allow initial system description without coasitg its implementation. In other
words, it is possible to specify structure, behavior, ad aglcrosscutting non-functional re-
quirements without concerning if an element will be impleneel as software or hardware,
allowing a unified system specification that can be undedsbyoboth software and hardware
design teams.

Handling of crosscutting non-functional requirements in e mbedded systems de-
sign: Other remarkable contribution is the aspect frameworktetet handle non-functional
requirements of distributed embedded real-time systemmado To the best of our knowledge,
up to now there is no work in the literature reporting the tioed development of a high-level
aspects framework that can be used in both modeling and ingpitation levels.

Tool support for the proposed design flow: The code generation tool proposed in this
work is also an important contribution because it providesaatomatic transition from the
modeling phase to the implementation of distribution endleedreal-time systems. Again, to
the best of our knowledge, there is no other tool providirg gsame flexibility allowed in the
specification of the mapping rules scripts. These smalptcdoncentrate only on one or few
model elements, which facilitates the specification of nr@gpules. It is important to highlight
that it is expected that the tool could also generate HDL doal® the UML model. Other
functionality provided by this tool is the generation oftfidam configuration, in term of either
configuration files, or platform source code tailoring. lhatwords, besides generating con-
figuration files, the target platform can be configured by reezfrremoving source code lines
(related to unused platform services) from its source cde. fi

Tool support for aspects weaving: A very important contribution of the code generation
tool is the ability to weave aspects adaptations. It is jbsdio modify the generated code

1. Introduction

fragment using aspects (i.e. aspects weaving in the sood®),cas well as modify the high-
level model (i.e. aspects model weaving). Such feature wagonnd in any tool available
in industry or academy. Moreover, aspects specified withenUML model steer the platform
customization, meaning that platform services are indudepending on which aspect have
been specified in the model.

1.4. Text Organization

The remainder of this text is structured as folloW@hapter 2presents an overview on the basic
concepts used in this text. It includes key concepts relaieeimbedded real-time systems,
as well as requirements present in this domain; conceptOoaad AO paradigm; MDE and
platform-based approaches, and also a short overview ol &RTE UML profile.

In Chapter 3 the state of the art is discussed. Following topics are reoiedesign and
modeling approaches for embedded systems; handling ofdmiedesystems requirements; and
code generation techniques.

Chapter 4presents the design flow proposed in this work, nadgpect-oriented Model-
Driven Engineering for Real-Time systeiidMoDE-RT), which supports activities from re-
quirements analysis to system realization using a targéfiopm.

Chapter 5discusses guidelines for using UML to specify system stinecand behavior. It
also introduces an aspects framework, natributed Embedded Real-time Aspects Frame-
work (DERAF), which provides aspects with high-level semant@specify the handling of
crosscutting non-functional requirements within UML mizde

Chapter 6introduces the code generation tool named GenERTiGéngration of Embed-
ded Real-Time Code based on Aspecteated to support the AMoDE-RT design flow. Further,
this chapter presents an intermediate PIM naméedributed Embedded Real-time Compact
SpecificatioDERCS), discussing how to transform UML models into DERC&leis. The
code generation and aspects weaving approaches used bRGEHE as well as the specifica-
tion of mapping rules to produce source code from the UML raafe also discussed in this
chapter.

Three case studies, that illustrate the proposed approatibanERTICA usage, are pre-
sented irChapter 7 The case studies are: the movement control of an Unmanrweal Xehicle
(UAV), the movement control of a wheelchair, and the conggaitems for an automated packing
system. Additionally, this chapter provides an evaluatbthe AMoDE-RT approach based on
a set of software engineering metrics.

Finalizing, Chapter 8presents the conclusions of this work, and also draws director
future work.

10

Chapter 2

Theoretical Background

2.1. Introduction

This chapter presents some concepts used within the carftéis text. The goal here is to

provide basic understanding and some references for regleemcepts addressed in this text.
For a more detailed discussion on them, interested readersfarred to text books and tutorials
such as: [24], [72], [25], [132], [115], [14], [42], [70], ER] and [117].

2.2. Distributed Embedded Real-Time Systems

2.2.1. Introduction

Distributed Embedded Real-Time Systems can be defined #srsyshat must precisely meet
time requirements in spite of their running tasks be distat in different processing units,
having few available physical resources [122]. They muavidie temporal predictability while
performing multiple concurrent and communicating taskisictv are deployed on different re-
source constrained processing units (sometimes physitiatributed over different locations),
e.g. processing power, amount of available memory, or gnargsumption restrictions. In the
sequence, details on each characteristic that definesriéulist embedded real-time system
are presented.

2.2.2. Real-Time Systems

Real-time systems are a special kind of computational systm which the correct processing
of an algorithm is not enough to ensure correct system beh&aw. the algorithm worst case
execution time must be predictable, as well as algorithmlt®snust be delivered in prede-
fined time instants, meeting the application’s time requiats. Thus, real-time systems are

11

2. Theoretical Background

considered deterministic systems [72]. The ability to pescdata in milliseconds or even in
nanoseconds does not define a computational system as tarrealystem; what really mat-

ters is that system response times are limited and pretict8bankovic [118] presents several
misconceptions and misunderstandings on real-time sgshewh their definition.

When considering the accomplishment of real-time requams) real-time systems can be
classified in two categorieddard Real-Time Systemnd Soft Real-Time SystenThe former
represents systems that will have critical failures, wiieh cause catastrophic losses, if any
time constraint is not fulfilled [24]. On the other hand, tlagel represents systems that can
continue their execution, in a degraded operation mode, @hen some time requirements are
missed. Hard real-time systems are commonly found int@aetith the environment, such
as embedded control systems. For example, a car's engieeviaqgy system is an embedded
hard real-time system because a late response can damageihe and the passenger. Conse-
guently, such situation can lead to losses of car's occgplvies. Other examples are medical
devices or industrial control systems, whose malfunctigréan cause, respectively, life and
monetary losses. Soft real-time systems are commonly expjpti systems that receive data
streams that need to be processed. The processed resait idalivered to other components
or systems connected to the soft-real time system. As anm@ram@ntertainment audio/video
broadcast systems can be mentioned. In this system, thailfibinfent of time requirements
decreases the video and audio quality but the system reropéarating.

Furthermore, real-time systems domain has some importantepts that should be high-
lighted [24]:

e Deadlineis the maximal time instant at which a task must provide isuits, i.e. the
system has to finish execution of a given algorithm within aimal time limit. Deadlines
are key issues in hard real-time systems.

e Worst Case Execution Time(WCET) is the maximal time spent for an algorithm to
finish its execution and deliver the computed results.

e Period is the time interval between two consecutive execution\@&civity.

e Predictability is a key characteristic for real-time systems because teiavior must
be know. Latency and jitter must be guaranteed within a knowesimal time interval.
Latencyindicates the time spent from the stimulus detection uh#l éxecution of the
code responsible to handle such stimuldigter is a random variation in the timing of a
signal, especially a clock.

e Exception handling can be performed to overcome the problems caused by desadline
misses, or unexpected latency or jitter. Hence, correctdt®ns are performed in order
to alleviate or even to eliminate the effects of a temporifife.

12

2.2. Distributed Embedded Real-Time Systems

2.2.3. Embedded Systems

There are many definitions for embedded systems, some atedigtory while others are
complementary [128]. However, there is an important charatic that is shared among all
definitions and allows separating embedded systems froerglepurpose systems: the ability
to perform specialized tasks for specific purposes withénctimtext of a larger system. Usually,
these specific purpose systems have less processing p@meyeheral-purpose systems [132].

The current processors market share indicates that maneQ®fs of the sold processors
are used in embedded systems [128]. Almost all modern etgctdevices, from toys and cell
phones to vehicles or industrial embedded control systesesmicroprocessors or microcon-
trollers to deliver their expected functionality. As can ibeted, the proportion between the
usage of general-purpose processors and embedded prsdedaage.

Usually, embedded systems should use processors with Eweggy consumption, given
that in many application they impact in the processing padetivered to the software applica-
tion. Embedded systems are often built with limited memesources due to other constraints
such as components cost, physical size, or energy consumpgiquiring very optimized op-
erating systems or even their elimination. Hence such tipgraystem must provide only the
amount of services required by the application softwarespiite of all these constraints, the
requirements of the target application lead the decisiowluich processor or memory amount
to use, or if the systems will use an operating system [25].

Many embedded systems are developed assuming they museddous long period of
time without maintenance. The fact is that the intentiomigroduce an embedded system for a
given application domain, letting it operate autonomouighyits entire expected lifetime [132].
For that reason, many embedded systems do not own mechaaits] e.g. fans, magnetic
disks, etc. These sorts of components are affected by hdiama caused by their use, thus
these components need to be replaced or fixed. Besides, dfeeadternative components that
provide the same functionality, e.g. ROM and flash memorymmmants can store both the
operating system and application software.

2.2.4. Distributed Systems

Distributed systems are systems composed by a collectigmogfssors with their own local
memory, i.e. they do not share memory. These processorsaadiyuspatially distributed and
are connected through a communication infrastructure. distibuted system, the goal is to
decentralize processing among the processors in a trampeaay without given indications of
this split to the final user, for which the system does not appebe distributed [122].

Besides providing cooperation among multiple processioning at increasing the whole
processing power, distributed systems are also appliggjlications requiring decentralization
due to special needs, such as steer-by-wire systems, whiah ihterconnected sensors and
actuators deployed in each wheel and also in the steeringlhwherder to improve the overall
performance of the system.

13

2. Theoretical Background

The most remarkable characteristics of distributed systare related to their technical
issues [111]:

e The architecture can adopt the following approach@g:client-server;(ii) publisher-
subscriberf{iii) peer-to-peer;

e There is a mechanism to control how, when and where condysrenesses should exe-
cute;

e There is a mechanism to control concurrent access to shasedrnces. In other words,
concurrent processes should synchronize their accesshisbhared resources in order to
guarantee data integrity; and

e As processes communicate with each other, there is a comatiom control mechanism.
It should allow correct messages delivery to their destinat

2.3. Requirements in Embedded Systems Domain

In software industry, there is no common definition on whattérmrequirementeally means
[115]. There are two extremes: on one hand, it representsléigl and abstract statements of
services provided by the system or constraints that it muisili;f on the other hand, it repre-
sents detailed, mathematically formal definition of sysfenctions. According to Sommerville
[115], there is different level of system specification, @fhare intended to different types of
readers:

e User requirementsare statements, usually in natural language, for clientcamract
managers that do not have a detailed technical knowledge;

e System requirementsare detailed statements on system services and constrdings
system requirements document is intended to senior teahsiaff and project managers;

e Software design specificatioris an abstract definition of the software design, which is
the base for the following design and implementation phasgsus, it is intended to
software engineers who will, in fact, develop the system.

In this text, the terntequirementds used to refer to system requirements. An important
sub-classification is the separation of system requiresriant

e Functional requirements specify services provided by a system, along with how it
should react to certain inputs, and how it should behave iticpéar situations. Func-
tional requirements specification must be complete (i.&€savices required by users
should be provided) and consistent (i.e. requirementsidhmat have contradictions).
For large and complex systems, it is almost unfeasible t@eaetiunctional requirements
consistency and completeness [115];

e Non-functional requirements, as the name suggests, are not concerned with functions
delivered by the system. Rather, they are constraints orsehdces or functions, or

14

2.3. Requirements in Embedded Systems Domain

supporting elements that assist the execution of suchcasraind functions [32];

e Domain requirementsare obtained from characteristics of the target domairerdtran
user needs. They can be functional or non-functional, sgmting the fundamentals of
the application domain, e.g. a requirement for the deciberaf a train in an automated
train protection system.

Concerning the design of distributed embedded real-tirseesys, non-functional require-
ments are as important as functional requirements. In eddaedystems domain, it is not
uncommon to have non-functional requirements that areofimessense) contradictory, such as
for instance performance and energy consumption. Thusfurational requirements must be
classified in order to help in their handling during desigaeiitthough not particularly intended
to distributed embedded real-time system, a good exampierefunctional requirements clas-
sification is the one presented by Bertagnolli [10], whickatiées, in details, a classification
for non-functional requirements related to fault-tolérsystems. As one can suppose, some of
these requirements can be found in the distributed embeddddime system domain. How-
ever, according to Freitas [37], there are other importamt:-functional requirements that are
commonly found in this domain, as followsi) time; (ii) performancefiii) distribution; and
(iv) embedded issues. The classification of such requiremesit®ven in figure2.1

Time issues, such as real-time constraints and charditeriare depicted under tligne
branch, which was also divided in two sub-branches:

e Timing: in this branch, it can be seen typical elements of a real-Bysem such as
deadlines, activation period and cost (i.e. WCET); thesewlesscussed in sectidh2.2
However, there are other important requirements:

— Release timeepresents the moment at which an activity is ready to beutadr

— Activation latencyis the delay to start an activity execution, i.e. differebetween
the instant at which an activity became ready to execute lmdhistant of the be-
ginning of its real execution;

— Startis the time instant at which an activity begins its executemd

— Endis the time instant at which an activity finishes its exeautio

e Precision: under this sub-branch, one can see requirements related3orQhe accom-
plishment of real-time constraints, such as jitter that alae discussed in sectié2.2
Following, there are other requirements:

— Tolerated delayepresents the maximum latency the can be admitted;

— Laxity is obtained by calculating the deadline minus the WCET ofdivity, rep-
resenting this activity’'s maximum idleness.

— Freshnesss the time interval on which the associated data is consitealid;

— Resolutiordefines the lowest time granularity (e.g. nanosecondsisetibnds, etc.)
in which the system can operate.

— Drift represents deviation of system'’s logical time from phyldicae.

Non-functional requirements under tperformance branch represent constraints related
to both time and distribution non-functional requirementsor this reason, they received a

15

2. Theoretical Background

Deadline

Period

Cost

Release Time

Activation Latency

- Start and End
Time

Timing

Jitter

Tolerated Delay
Laxity
Freshness
Resolution

Drift

Precision

Non-Functional | performance Response Time
Requirements Throughput

Tasks Allocation
Hosts
Communication
Synchronization

Distribution

Area
Power Consumption

-Embedded Total Energy
Memory Allocation
Genenc Specific

Figure 2.1.: Non-Functional Requirements Classificat® [

separated classification [37]. Basicalligroughputrefers to the rate an element can deliver its
results, be them results from an algorithm execution or agEss sent/receivedResponse time
represents the delay after which the system delivers aty@guich depends on the execution of
both local and remote activities.

The classification related to distribution non-functioreduirements is not complete. Fig-
ure 2.1 show only the most relevant ones. As can be seen iwligtigbution branch, there are
four most common non-functional requirements:

e Task allocatiorrefers to deployment of activities on different processimgs that com-
pose the distributed embedded real-time system. Assdcwith other non-functional
requirements, it is also related with allocation such @iy in nodes with different ca-
pabilities, aiming at meeting real-time constraints;

e Hostsis related to node monitoring. The status of all nodes, whpaitticipate in the ac-
complishment of system activities, need to be regularlgkéd, in oder to evaluate if they
are working as expected. Usually, it is associated withakk &llocation requirement;

e Communicationis associated with communication features, such as netto@diogy,
connection type among nodes (e.g. connection-orientethemionless), if communica-
tion should use an acknowledgment mechanism or not, if gessshould be encrypted
or not, among other communication characteristics;

e Synchronizatiordefines policies for concurrent access to shared resoufdes.affects
the form concurrent activities perform their actions, whidepending on the adopted
policy, can affect the overall system performance.

16

2.4. Embedded Systems Design Approaches

The last branch is related tnbedded non-functional requirements. These requirements
are closer related to design constraints, i.e. they represastraints that can influence directly
in the performance, and hence, the fulfilment of other camsts. They were divided in three
features:

e Areaconstrains the system physical size and/or the amount diuzae. This requirement
can demand monitoring and management activities in ordeptimize the usage of sys-
tem hardware, or even migration of activities from softwardardware, and vice-versa;

e Energyrequirements constrain system runtime in terms of energypamwer consump-
tion. Such constraints have more impact in distributed eldbé real-time systems that
use batteries as power supply, due to the fact that the systtsps if batteries run out of
charge. Additionally, power dissipation can also be a pabin portable systems due to
devices overheating. Such issues must be carefully caesidkriring design;

e Memorynon-functional requirements, similar to the previous omesstrain the mem-
ory usage during system runtime. They can also demand nnimgjitand management
activities in order to improve their usage.

It is important to highlight that requirements in this cléisation are not independent from
each other, meaning they have conflicting aims, e.g. taskatng vs. processing power or
remaining energy. Moreover, some of them are related t@systide characteristics and con-
straints, while others have a more limited scope. A detalledussion on requirements analysis
is out of the scope of this text. Interested readers can tef@7], in order to obtain a detailed
discussion.

2.4. Embedded Systems Design Approaches

2.4.1. Introduction

There are several approaches to design embedded systeeysvar from ad-hoc design flows
to more formal and rigorous methodologies. In the same ayetare several different abstrac-
tions used to specify system architecture and expectedrisehbooking at the literature, there
are approaches that see the system as a set of data struopsestions and functions, while
others try to encapsulate them in single elements. Someeaf tse rigorous mathematical
formulations while others use more informal specificatjansich are most commonly found in
current industry practices, specially in initial desigrapbs [27].

Current practices for designing distributed embeddedtmead systems deal, in an accept-
able form, with some problems that appear during design. d¥ew the increasing number of
stringent requirements (e.g. energy consumption, pedoo®, portability, dependability, and
time-to-market) demands new methodologies, tools andaadti&ins to assist designer to cope
with the growing design complexity. According to Carro andgifer [25], embedded systems
are becoming more software intensive, thus innovation migpenore on software than on hard-
ware. The design of embedded software should essentidlpnwf@ome of the principles of

17

2. Theoretical Background

hardware design, i.e. reuse of previously developed arndatatl/certified source code.

A design flow consists in capturing requirements at a welhaefiabstraction level that al-
lows several refinements towards an efficient realizatidh@tpecified system [7]. Sometimes,
these steps from requirements to implementation are nohaeth as designers expected. Re-
guirements must be translated to a system level architectunich represents the conceptual
structure and expected system functional behavior. Faligyvthis architecture is translated into
an implementation, defining the system logical organiratist the last step, implementation is
realized as the system physical structure [128].

Therefore, itis important to use a suitable abstractionnwdesigning distributed embedded
real-time systems. As previously stated, software is b&@gmmore important in such design.
Hence, it makes sense to use approaches from the softwareerigg domain, even though
the project of embedded systems comprehends hardware twedrgodesigns, in order to close
the gap presented in figudel In this context, approaches such as Object-Orientatidd) (O
and Aspect-Orientation (AO) appear as interesting optidhe following sections will present
more details on each paradigm.

2.4.2. Object-Oriented Paradigm

The object-oriented paradigm allows designers to reasadheproblem in term of entities in-
stead of operations and functions. In fact, these entiti€e@® are calledbjects which have
their own local state, and operations that can change this. sin other words, objects encap-
sulate data and behavior to manipulate these data [14].eQaestly, a system is composed of
several interacting objects that maintain their own lotates while providing operations on this
information. The direct access to object’s data is not atldwo other objects, i.e. there is no
external access to such information, only object’s openatican access it.

Using OO based system analysis, classes and objects aetegtfrom functional require-
ments and non-functional ones. Further, in OO design, thegets and classes are refined by
including additional details into them. If needed, new sksscan be created. During modeling
design phase, designers must identify data types to raprebgct’s state as well as operations
that make objects behave as expected [115].

According to Armstrong [4], despite the fact that OO consepére introduce in late 1960s
with Simula programming language [35], there is no thordygimderstanding on the funda-
mental concepts that define the OO approach. In that workhakddentified the following
concepts as thguarks of object-oriented paradigm:

e Classis a description of structural characteristics (attrisyitand behavior (methods)
shared by one or more similar objects;

e Object is an individual or identifiable element in a OO system. It ogppresent either a
real or abstract system element. As mentioned it contaitesréaresenting its state in a

A quark is a fundamental particle that represents the seiatlgown unit of matter. Hence they are the basic
building blocks for everything in the universe [49].

18

2.4. Embedded Systems Design Approaches

given time instant;

Inheritance is the mechanism that allows characteristics to be reusetgueciasses, i.e.
attributes and behavior (methods) of one class can be iedludother classes;

Encapsulationis a technique to restrict the access to data and behavidasges and
objects through a pre-defined set of messages that objeatgiwén class can receive;

Abstraction is the act of creating classes to simplify the problem(s) ®ans of using
different levels of details;

Attribute is an remarkable characteristic of an elements class. Traf a#tributes rep-
resent a class’ structure;

Method represents object’'s behavior. It is a way to access, set aipmate object’s
information;

Message passings the process through which objects can exchange infoomati trig-
ger the execution of a behavior of the message’s receivecbj

Polymorphism is the ability of different classes (from the same hierajdbyrespond to
the same message through a different behavior, which is app®priate to each class;

Instantiation is the act of creating objects from a given class;

Relationship are associatioRsamong classes or objects. There are the following types
of relationships:

— Plain associationsndicate that classes or objects are related through me gsas-
ing, i.e. they do not represent any structural characterisven though the imple-
mentation could require an attribute of the same type asttier association end,
in order to respect thencapsulation

— Aggregationgndicate that other classes or objects make part of thetateiof the
aggregator class/object. Parts can exist without the ggtweelement;

— Compositionsrepresents a stronger aggregation relationship, wheréntiodved
classes or objects are dependent from each other, i.e.itheopecomposite without
its parts and vice-versa.

2.4.3. Aspect-Oriented Paradigm

Before starting the description of concepts important endepect-oriented paradigm, it is im-
portant to highlight some more fundamental concepts froitwsoe engineering. Such concepts
were extracted mainly from [30], [64] and [115].

e Concerns according to [64], are “...interests which pertain to tlgstem’s develop-
ment, its operation or any other aspects that are criticaltloerwise important to one
or mode stakeholders...”. Concerns are related to bothtiimad and non-functional

2It is important to mention thahheritanceis also considered a relationship among classes.

19

Theoretical Background

20

requirements;

Separation of concernameans to deal with each concern in isolation, in order toaallo
the creation of modular artifacts that handle them. Howeawethe literature of embed-

ded systems, it is usual to find the tes@paration of concernmeaning the separation
of functional and architectural concerns, as well as thersgjon of computation and

communication. This text uses this term as the separatidonational concerns from

non-functional ones;

Modularization means the ability to group or partition artifacts into easitcalledMod-
ules(i.e. an abstraction unit in the adopted language) thatlideaist be loosely coupled
and highly cohesive;

Compositionis the ability of integrating several modular artifactsilst coherent whole;

Decompositionis the division of a larger problem into smaller ones, whiciyrbe han-
dled apart from each other;

Tangling indicates that multiple concerns are mixed together in oodute;
Scattering indicates that one concern is spread over multiple modules;

Crosscutting represents the occurrencetahgling andscatteringthat happens when the
selected decomposition is unable to modularize concefestigtly;

Crosscutting concernsare concerns that cannot be mapped to unique modules, #uss le
ing to tangling and scattering. Non-functional requiretsaran be viewed as crosscutting
concerns, because they are usually intermixed with funaticequirements inside several
modules. Figur®.2 depict the crosscutting concerns related to transactiomagement
presented in [30].

void applyCharges
(Account acct,
BankLedger ledger)

(:) void transfer ‘

er.creditCharges (int amount, Account acal

1 acct.deductCharges
A led!

: void applylnterest
(Account acct,
BanklLedger ledger)

acct.creditinterest(

_ledger.debitinterest
_transaction.commit() _

Figure 2.2.: Scattering: same code in multiple places [30]

2.4. Embedded Systems Design Approaches

Some authors, such as [30], state that AO is the natural tamolof OO. Traditional ap-
proaches like OO do not deal with crosscutting concerns initatde way. In other words,
OO decomposition is unable to encapsulate crosscuttingfurational requirements, leading
to tangling and scattering in the handling of these requaéreih AO analysis and design have
emerged from thaspect-oriented programmir{§7]. According to Clarke and Baniassad [30]
there are two different approaches in AO, which follow théivgare composition presented in
[56]: (i) asymmetric which separates aspects from the core functionality; (@hdymmetric
which treats separated concerns at the same hierarchyilevelspects and base concerns have
the same importance. This work follows the asymmetric aggindor AOD.

Following, the basic AO concepts, which are based in [L08][426], are presented. These
concepts have a broader scope compared with those presef®&d, which are closer to pro-
gramming languages than to general concepts. This worksdoban the following AO con-
cepts:

e Aspectsrepresent units of modularization for crosscutting consgei.e. they can en-
capsulate into a single entity all structural and/or bet@alielement of a crosscutting
concern;

e Adaptations specify how concerns are adapted (i.e. enhanced, replaceden deleted)
when an aspect affects them. There are two kinds of adapsatio

— Structural adaptationgepresent modifications in the structure of a concern, e.g.
adding a new attribute or method to a class, or modifying dneél parameters list
or the return type of a method;

— Behavioral adaptationspecify changes in the behavior of a concern, e.g. inserting
a specific behavior before or after a message passing, acieglan entire behavior
for another one;

e Aspects weavings the composition process that spreads aspects adaptatiaffected
concerns. In other words, aspect adaptations are applisgeatific join points of the
affected concerns;

e Join points are well-defined places in the structure or behavior of corecavhere an
aspect can perform adaptations;

e Pointcuts are links between aspects adaptations and join pointsthey are specified
within an aspect to indicate the places where the aspectpatfsirm a given adaptation.
Usually, this relationship betweedaptationandjoin pointsis one-to-many, that means,
oneadaptationto one or manyoin points In addition, pointcuts also specifyralative
positionthat indicates if the adaptation should be apphetbre after or aroundthe join
point.

21

2. Theoretical Background

2.4.4. Evaluating the Design with Metrics
2.4.4.1. Introduction

A high quality systems is the goal of all designs. Hence, iinigortant to have mechanisms to
allow the assessment of a design in order to verify its qualiterms of a given set of char-
acteristics. Such mechanisms should provide quantitatiiggmation to permit a more pre-
cise evaluation [115]. Particularly, considering disitdd embedded real-time systems design,
measurement mechanisms must derive numeric values forathribeites of both hardware and
software designs. As previously stated, the design ofildigeed embedded real-time systems
is becoming software dominated, shifting the costs in dgakent, validation and test from
hardware to software. For this reason, despite the impoegtahmetrics extraction for hardware
designs, this section will only discuss software metrics.

In the software engineering literature, there are seveeditios and evaluation frameworks
to extract quantitative information from software. Eachlodse works aims at the evaluation
of different system characteristics. This text presentded description of two of these works:
(i) the C&K metrics suite; angli) the assessment framework for AO systems from Sant’anna et
al. [106].

2.4.4.2. C&K Metrics Suite

The C&K metrics suite [28] was proposed to measure the maioifa affecting OO software
quality, i.e. abstraction, encapsulation, and inherigarichese metrics have been used in many
works, including the evaluation of software for NASA's agpace systems [101]. C&K metrics
are composed from six measurements:

e Weighted Methods per Class (WMC)counts the number of methods implemented
within a class;

e Depth of Inheritance Tree (DIT) indicates the maximum depth in the classes hierarchy
tree, i.e. the number of levels from a class to the inherédree top;

e Number of Children (NOC) represents the number of immediate sub-classes that have
the same parent class;

e Coupling Between Object Classes (CBOJounts the number of other classes associated
to a given class;

e Response for a Class (RFCjndicates the number of methods that can be potentially
invoked in response to a message received by an object oéa giass;

e Lack of Cohesion in Methods (LCOM) uses the degree of similarity among method
pairs of a class. It uses the set of attributes, which areedhagtween two methods, to
calculate class cohesion. It counts the number of empty(isetgshe number of method
pairs that do not share the same attributes set) minus theatumh non-empty sets (i.e.

22

2.4. Embedded Systems Design Approaches

number of method pairs that share at least one attribute).

Only the numbers provided by the measurement of systematBasdics are not enough to
assess the quality of a design. These metrics should bededath each other in order to allow
their analysis, and hence, to determine design quality.leT24 represents the relationship
among C&K metrics and quality attributes that are beingueatsid. Marked cells indicate that
a metric influences the quality attribute.

Although the goal is usually to minimize metrics valueshibsld be highlighted that DIT
and NOC metrics do not follow this goal. A higher DIT increes®mplexity, however it im-
proves reuse. Likewise, a higher NOC leads to an increaseeirffort for testing (because
more classes should be tested) but also improves reusesfoteerit is not useful to read metric
values or quality attributes in isolation. They should balgred along with other metrics or
quality attributes in order to assess which are more impbttadesign goals, and consequently,
to make trade-offs to achieve the desired quality.

2.4.4.3. Assessment Framework for AO systems

Sant’anna et al. [106] have proposed an extension for C&Krioseto allow the evaluation
of OO and AO systems. Additionally, an assessment framewaik proposed to assist in the
analysis of metrics values extracted from the system. Tawalhe use of the same metrics
set to evaluate systems developed using different paradigms necessary to homogenize the
way to obtain these metrics values in order to take into attcabistractions provided by such
paradigms. Thus, Sant'anna et al. [106] treat aspectssadaasnd interfaces ammponents
while methods and aspects adaptations are calfgtations Following, the metrics set is
presented:

e Separation of Concerns metricsmeasure the ability to encapsulate the handling of a
concern. They are divided in the following metrics:

— Concern Diffusion over Components (CD&unts the number of components (i.e.
aspects or classes) engaged in the handling of a certaiemgnc

— Concern Diffusion over Operations (CD@punts the number of operations (i.e.
methods or aspect adaptations) related to the handling @fieeen;

— Concern Diffusion over LOC (CDLOQ@)punts the number of transition points for
each concern in the source code, i.e. code lines are dividegigments (where each

Table 2.1.: Metrics influence in quality attributes

WMC | DIT | NOC | CBO | RFC| LCOM
Comprehension X X X X
Maintainability X X X
Reusability X X X X X
Testability X X X X

23

2. Theoretical Background

fragment handles only one concern), thus transitions froenfoagment to another
are counted;

e Coupling metrics measure how dependent an element is regarding other sgstéen’
ments. Two metrics compose this group:

— Coupling between Components (CBEan extension to CBO from C&K metrics.
It counts the number of other components that are couplddangiven component.
For classes, CBC is similar to CBO, however for aspects CB@tsoother classes
that are specified within adaptations. If a component is lembmore than once with
other component, it is counted only once;

— Depth of Inheritance Tree (DIT$ an extension to DIT from C&K metrics by means
of including the aspects inheritance tree;

e Cohesion metrics Cohesion is the closeness measure for the relationshiparhponent
with its internal elements. It is translated by the follog/imetric:

— Lack of Cohesion in Operations (LCO@®)similar to LCOM of C&K metrics. The
difference is that, in addition to methods, adaptationsaése taken into account;

e Size metricsmeasure the size of the model:

— Vocabulary Size (VS)ounts the number of system components, i.e. the amount of
classes and aspects;

— Lines of Code (LOCjounts the number of lines of code;

— Number of Attributes (NOAJounts the internal vocabulary of each component, i.e.
the number of attributes of each class or aspect;

— Weighted Operations per Component (W@@asures the complexity of a compo-
nent in terms of its operations, i.e. the sum of complexitath method and/or
adaptation. The measure for operation complexity is obthlyy counting the num-
ber of parameters of the operation, assuming that an operatth more parameters
than another is likely to be more complex. WOC extends C&Krieg€tWMC be-
cause WMC considers the complexity for all method being Etgud.”;

In addition to the presented metrics set, Sant'anna et @6][define

relationships among metrics to assess the quality of rdilgadnd maintainability for a
system. The assessment framework defoesitiesthat are divided irfactors which in turn
are split intointernal attributesassociated witimetrics Figure2.3 shows these relationships.

Reusability and maintainability qualities of a system candefined by two factors: un-
derstandability and flexibility. The understandabilityctiar is obtained through separation of
concerns, coupling, cohesion and size attributes. Seépamaitconcerns directly affects the un-
derstandability of a system, because the more localizedetos are, the easier is to find and
to understand them. Cohesion and coupling indicate thé ééwvadependency of one element
regarding others. The more independent an element is, #ieres to understand it. Model
size impacts on understandability due to the amount of elégrtbat should be understood. For
the flexibility factor, the key attributes are coupling, eston, and separation of concerns. A

24

2.5. Model-Driven Engineering

Quality Factors Internal Attributes Metrics

S ti
[Reusability} of Conaorms| OO
CDLOC

Maintainability

Flexibility ‘ Coupling K=
LCOO

Figure 2.3.: Quality model proposed in [106]

component is flexible if it is independent or almost indefnaf the rest of the system, mean-
ing that it represents a specialized part of the system wibeaific and well-defined mission.

These characteristics are translated into low couplinghagi cohesion (i.e. it has a low de-

pendence on other parts of the system) and a good separétionaerns (i.e. the component
is responsible for a well defined mission).

2.5. Model-Driven Engineering

2.5.1. Overview

To start the discussion on Model-Driven Engineering (MOE3hould be stated what “model”
means. According to Bézivin [12], there are many differamitl also contradictory, definitions
for the word “model”, which depends on the context in whice tarm is used. For computing
related systems, a consensual definition of model was giydétothenberg [102] as follows:

“...Modeling, in the broadest sense, is the cost-effeatde of some-
thing in place of something else for some cognitive purptisalows
us to use something that is simpler, safer or cheaper thaity riea
some purpose. A model represents reality for the given maipihe
model is an abstraction of reality in the sense that it cangmtesent
all aspects of reality. This allows us to deal with the woridhisim-
plified manner, avoiding the complexity, danger and irreimlity of
reality. . .”

MDE is an approach that proposes the use of generative amsfdrenational techniques
for computing systems design where system implementatiomésemi-) automatically derived
from models or specifications. In such approanbdelsare used as primary engineering artifact
throughout the production lifecycle [113]. According tohudt [110], MDE is a promising
approach to deal with the complexity of platforms (which @ affectively decreased by using

25

2. Theoretical Background

third-generation languages), as well as express domaicifgpconcepts. Thus MDE combines:

e Domain-Specific Modeling Languages (DSMLjormalize the application structure, be-
havior and requirements of a particular domain. Moreoveey tdefine relationships
among concepts of the target domain, as well as specify kagti@nts and semantics
related to them. DSML are described in termsmadta-modelsvhose elements represent
concepts of the domain. Instances of meta-models représense of domain concepts
within a design;

e Transformation engines and generatorswhose purpose is to “understand” the infor-
mation contained in the model in order to produce (semieyaatically other types of
artifacts, such as more detailed models, source code, ailmuinputs, components con-
figuration files, and others. Such tools help ensure comsigteetween the specification
of the system and its implementation;

An already mentioned example of standard for MDE approahté®e Model-Driven Ar-
chitecture (MDA) [87], which was proposed by the Object Mgerment Group (OMG). The set
of standards supporting MDA is:

e Meta-Obijects Facility (MOF) [89], a standard for meta-models specification;

¢ Unified Modeling Language (UML) [92], a general purpose modeling language for sys-
tems specification. It was built upon MOF and represeis factostandard for modeling
languages;

e MOF Query/View/Transformation (QVT) [93], a standard defining transformation lan-
guages requirements and operational mappings to allowftranations of source models
into other target models that should conform to MOF meta-id

¢ XML Metadata Interchange (XMI) [91], a standard for metadata information exchange,
specified using a XML dialect, to allow the information exaga on MOF-based speci-
fications, such as interchange of UML models among diffet@uis;

e Common Warehouse Meta-model (CWM)86], which provides standard interfaces that
can be used to enable interchange of warehouse and busielfigéence metadata be-
tween warehouse tools, warehouse platforms and warehoetselata repositories in dis-
tributed heterogeneous environments.

The principle of MDA is to specify system functionality ugira Platform-Independent
Model (PIM) using an appropriate DSML. PIM provides a system djmtion that is suit-
able for deriving system implementation for different &trgplatforms. Further, this PIM is
translated to #latform-Specific ModglPSM), which, on the other hand, provides a platform
specific viewpoint of the system, i.e. it combines the spestibns in the PIM with the details
specifying how that system uses a particular type of platfotn order to enable this trans-
formation (or mapping), &latform Model(PM) must be provided. The PM provides a set of
technical concepts, representing the different kinds ofsphat make up a platform and the
services provided by that platform. It also provides coteegpresenting the different kinds of
elements to be used in the specification of how platform shbelused by the application.

26

2.5. Model-Driven Engineering

2.5.2. MARTE UML profile

UML was created to be a general purpose modeling languageoftware development. Its
wide acceptance makes it an interesting option also to defifgributed embedded real-time
systems. However, UML lacks suitable constructions/alstins to represent specific concepts
of embedded and also real-time systems domains. The fiestjpttto overcome such deficien-
cies was the UML profile for Schedulability, Performanced dime (SPT) [88]. SPT provides
concepts to allow both model-based schedulability andopmidince analysis, and also a rich
framework to model time and time-related mechanisms. Heweaccording to Gérard and
Selic [51], experiences in applying SPT revealed shortogmiwithin the profile in terms of
its expressiveness for modeling real-time and embeddedgphena. The amount of issues in
the SPT profile resulted in a Request for Proposals (RFP)riemaUML profile for specifying
embedded and real-time systems. Consequently, a new prafiltedviodeling and Analysis of
Real-Time and Embedded systeiMIARTE) [94] was proposed. It was accepted by OMG in
July 2007 and is in the finalization process.

The MARTE profile addresseqi) new elements to UML 2.x are propose() design
of both software and hardware aspects of embedded sysgii@nroader schedulability and
performance analysis capabilitig®;) specification of embedded systems characteristics, such
as memory capacity and energy consumptitw);support to component-based architectures;
(vi) other computational paradigms, such as asynchronoushisyraus, and timed; ar(gii) com-
pliance with the UML profile for Quality of Service and Faull@rance [95]. An overview of
MARTE profile is presented in figur2.4.

As can be seen, MARTE profile is composed by four packa@gMARTE Foundation;
(i) MARTE Design Modelf{iii) Real-Time and Embedded Analysis; div MARTE Annexes.
The MARTE Foundatiorpackage provides a domain-specific meta-model for coreepac
MARTE, as well as their characteristics and relationship®ig such concepts, i.e. it defines
the semantics base for the DSML provided by the profile. Efemef this package are shared
among other packages.

In fact, MARTE is intended to cope with two concerns: modglof real-time and em-
bedded systems features, and to support analysis of systgrarpes. MARTE Design Model
package provides first-order language constructs to spemflel expressing specific phenom-
ena of real-time and embedded systems. It allows platformetiteg in terms of software (see
Software Resource Modelif@RM) package) or hardware (sel@rdware Resource Modeling
(HRM) package) platforms. According to Gérard and Selic,[BAARTE sees platforms as
a set of resources, possibly comprising finer-grained ressuinto a hierarchical manner, in
which each resource offers at least one service. A resoarseen as a service provider with
finite capacity, which usually comes from physical limiteits of the underlying hardware (e.g.
memory capacity, bandwidth, processing power, etc.). tderiag software platforms, SRM
package provides a model-based view for concepts provid&®T®S API, such as semaphores
and concurrent tasks (or processes). On the other handdiegdardware platforms, HRM
package provides concepts to assist software design avghtidin by providing a high-level
hardware description model instead of using block diagrafwtklitionally, concepts provided

27

2. Theoretical Background

1
MARTE Foundation
<<profile>> <<profile>>
1~ 1 | Non-Functional <<profile>> <<profile>> Generic Resources | €~ 1
L Properties Time Allocation Modeling |
<<us‘ >> (NFP) (GRM) <cusgs>
|
- |
WHARANE Przsilm Mesile! Real-Time and Embedded Analysis
<<profile>>
<<profile>> <<profile>> . <P)
Generic High-Level Generic Quantitative Analysis Model
Component Model Application Modeling (GQAM)
(GCM) (HLAM) w w
ﬁ |<<use>> ﬁ |<<use>>
<<profile>> <<profile>> <<profile>> <<profile>>
Software Resource Hardware Resource Schedulability Performance
Modeling Modeling Analysis Modeling Analysis Modeling
(SRM) (HRM) (SAM) (PAM)
MARTE Annexes
<<profile>> —1 <<profile>>
Value Specification <<modelLibrary>> Repetitive Structure
Language MARTE Librai Modelin
vsL) v (RSM)

Figure 2.4.: Overall MARTE architecture [94]

by HRM assist in the analysis of real-time and embedded ptiegeand also in hardware mod-
els simulation, which depends on the description detadllend simulation accuracy.

Model-based analysis is supported by fReal-Time and Embedded Analygiackage,
which provides a foundation for applying transformatiora UML models into a wide vari-
ety of analysis models. According to OMG [94], tleneric Quantitative Analysis Modeling
(GQAM) defines basic UML extensions needed to decorate UMHatsy in order to perform
any kind of analysis. Currently, two kinds of analysis pajsare provided, namefchedu-
lability Analysis Modeling SAM) and Performance Analysis ModelingPAM) packages. The
former provides stereotypes to allow schedulability asiglywhile the later provides stereotypes
for performance analysis.

Due to their importance to this work, two packages of MM8RTE Foundatiorpackage
need to be detailed. The first one is flimepackage, which provides a general framework for
representing time and time-related concepts. MARTE adoptesmodels that rely on partial or-
dering of time instants. The temporal ordering of behavaiviies can be represented in many
ways, depending on the level of precision required. Theeetlaree main classes of time ab-
straction: (i) causal/temporalwhich concerns only about instruction precedence/deparyd
(i) clocked/synchronoyswhich adds the notion of simultaneity and divides the tiroales in
a discrete succession of instan(i§) physical/real-time which demands accurate modeling of
real-time duration values. Stereotypes availabl€iinepackage are shown in figuges.

A Cl ock existsinali neDormai nand gives access to time at a certain resolutionred-
Const rai nt represents a constraint (instant or duration value) aaatiwith a model ele-
ment bound to &l ock, while Ti nedEvent represents an event whose occurrence is ex-

28

2.5. Model-Driven Engineering

ackage Time[2]
P g [! <<stereotype>> <<stereotype>>
<<stereotype>> 7y <<stereotype>> o ClockType TimedValueSpecification
TimedDomain Clock —nature : TimeNatureKind [1] —interpretation : TimelnterpretationKind [0..1]
—unitType : Enumeration [0..1]

—standard : TimeStandardKind [0..1]

—isLogical : Boolean [1] = false

—On 1% —resolAttr : Property [0..1]
<<stereotype>> 1 —-maxValAttr : Property [0..1] <<stereotype>>
MARTE_Profile::NFP:: T -offsetAttr : Property [0..1] TimedinstantObservation
I —_Unit YP€ |-getTime : Operation [0..1]
n —setTimel : Operation [0..1] —obsKind : EventKind [0..1]
0.1 ; . :

= . —indexToValue : Operation [0..1

convFactor : Real [0..1] <<stereotypes> P [0..1]
—confOffset : Real [0..1] TimedEl ¢ kt
— ime« emen

baseUnit [0..1] [E— | K <<stereotype>> ‘ <<ste.reotype>> .

=~ <<stereotype>> TimedObservation B TimedDurationObservation
<<stereotype>> TimedProcessing —obsKind : EventKind [0..2]
ClockConstraints
0..
<<stereoype=> _Duration <<metaclass>>
. . UML Standard Profile::UML2 Metamodel::Classes::Kernel::
TimedConstraints 0.1 N
—every ValueSpecification
—interpretation : TimelnterpretationKind [0..1]
~Start 0.1
0.1 .1 0.1 | -Finish
<<stereotype>> <<metaclass>>
MARTE_Profile::NFP:: <<stereotype>> UML Standard Profile::UML2 Metamodel::CommonBehaviors::Communications::
NfpConstraint TimedEvent Event

—kind : ConstraintKind [0..1] —repetition : Integer [0..1]

Figure 2.5.: Stereotypes of Time profile [94]

plicitly bound to aCl ock. Theevery property specifies the duration between successive
occurrences, thus indicating a periodic evefitnmedPr ocessi ng represents activities hav-
ing known start and finish times, or a known duration, which laound to &Cl ock. For a
detailed description of the other stereotypes, readenefeged to [94].

Another important package is ti@@eneric Resources ModelirfGRM), which offers con-
cepts to model a general platform for executing real-timdesided applications. According
to OMG [94], this package allows the modeling of executingtfolrms at different levels of
details. Figure.6depicts the stereotypes available in GRM package.

The central concept of the GRM package is the notion Béaour ce, which represents

a physically or logically persistent entity that offers omemore services. There are many
types of resources such d$,nm ngResour ce representing a hardware or software entity that
is capable of following and evidencing the pace of timéoncurrency Resource and
Schedul abl eResour ce represent protected active resources that can performatbiii-
ties concurrently with others. The former indicates resesy which take their processing ca-
pacity from a potentially differen€onput i ng Resour ce enabling physical or logical con-
currency. On the other hand, the later only allow logicalatorency because it competes for
processing capacity of Br ocessi ng Resour ce with other Schedul abl eResour ce
elements. ASchedul er coordinates the access to tReocessi ngResour ce from all
Schedul abl eResour ce elements associated to it. A resource makes use of a sergite f
other resource by means At qui r e andRel ease. The former represents the allocation of
or the access to some resource, while the later representiethllocation or liberation of the
allocated resources. The control of concurrent accessesnionon resources at run-time is

29

2. Theoretical Background

performed by &t ual Excl usi veResour ce. Other kinds of resources can be represented

package Generic Resources Modeling (GRM) []J

<<stereotype>>

Resource

—-SubUsages

<<stereotype>>
MutualExclusionResource

—resMult : Integer [0..1]
—isProtected : Boolean
—isActive : Boolean

—ceiling : Integer

—protectKind : ProtectProtocolKind = Prioritylnheritance [

—otherProtectProtocol : String
—isProtected : Boolean = true{readOnly}

*

—protectgdSharedResources

<<stereotype>>

ResourceUsage
*

—execTime : NFP_Duration [*]{ordered}
-msgSize : NFP_DataSize [*|{ordered}
—allocatedMemory : NFP_DataSize [*|{ordered}

T —usedMemory : NFP_DataSize [*|{ordered}
_Usddr —powerPeak : NFP_Power [*[{ordered}
54& : NFP_Energy [*){ordered}

—duration : NFP_Duration
—isPeriodic : Boolean

—owner : Resource [0..1]

<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
CommunicationEndPoint SynchronizationResource ConcurrencyResource SchedulableResource -Viftual
Progessing
—packetSize : Integer -schedParams : SchedParameters Units 1
—isActive : Boolean = true{readOnly} —"——
<<stereotype>> 0.4
<<stereotype>> R 0
. ProcessingResource -
DeviceResource 7 —ProcessingUnits —SchedulableResources
-speedFactor : NFP_Real 0.+
- —Host —Scheflul
c <<Sler.eot-ype>>d. 0.1 <<stereotype>> o1 0.1 0.1
—1 - il ..
ommunicationMedia ‘mainScheduler| ComputingResource —H " <<stereotype>>
—elementSize : Integer 0S Scheduler
—isPreemptible : Boolean = true
<<stereotype>> <.<s.tereotype>> <<stereotyp.e>> -schedPolicy : SchedPolicyKind = FixedPriority
TimerResource —{ TimingResource GRService —otherSchedPolicy : String .
—schedule : OpaqueExpression

i

<<stereotype>>
ClockResource

-Dependent
<<stereotype>> <<stereotype>> <<stereotype>> Scheduler
<<stereotype>> Acquire StorageResource SecondaryScheduler
Rell 0.1
—isBloking : Boolean —elementSize : Integer

Figure 2.6.: Stereotypes of GRM profile [94]

using the GRM package. For more details see [94]

30

Chapter 3

State of the Art Analysis

3.1. Introduction

According to Sangiovanni-Vicentelli [105], to raise thestibction level used during design of
digital systems is fundamental to manage the increasinmmesmplexity, leading to costs
decrease and designers productivity improvements. In édaskesystem projects, many lan-
guages considered as “high-level” languages (e.g. Systamn3gstem Verilog) cannot suitably
deal with important requirements such as temporal prdalittaof an application. To increase
designers’ productivity and also decrease the amount afteakerrors caused by inconsistent
specifications or requirements misunderstanding, prégects should move from intermediate
levels to higher levels of abstraction, as well as to sepata handling of functional require-
ments from non-functional ones.

Many researchers propose to rise the abstraction level ing msodels as first-class ele-
ments during whole design of distributed embedded read-ystems. However, only using
models does not assure an improvement on design or desigraatsctivity. Therefore, to
achieve the benefits from using model-driven techniquesethadology is very important.
Hence, some side effects, such as lack of synchrony betwederlsand implementation, can
be decreased or even avoided. Additionally, the methogoiogst provide a smooth transi-
tion from high level specification (i.e. model) to implemaindn of the distributed embedded
real-time system, and also allows the reuse of artifacstedeand tested in previous designs.

This chapter discusses the state of the art in the desigrsuifldited embedded real-time
systems. It presents methodologies and modeling techsig@gewell as code generation ap-
proaches to produce source code from model, and the empiyohseparation of concerns in
the handling of requirements.

31

3. State of the Art Analysis

3.2. Design and Modeling Approaches

3.2.1. Overview of Related-Work

This section discusses traditional methodologies (i.es¢hmethodologies using OO) applied
to the design of distributed embedded real-time systems piésented approaches use a higher
abstraction level in terms of UML models to produce the ahiipecification of the structure
and behavior of distributed embedded real-time systems.

Schattkowsky and Mueller [107] have proposed a MDA-basethatkto specify and ex-
ecute embedded real-time systems. Their approach supp@tesm specification using class
diagrams, state diagrams, and sequence diagrams from UMIr2the class diagram, design-
ers specify classes, as well as their attributes and opagatiEach class’ operation is considered
a state machine. Different sequence diagrams are assbuaidtedifferent states of a state ma-
chine in order to describe the behavior (i.e. actions sexp)eiat must be executed within a
state of the state machine. The execution environment sigpptate machines composed of
simple or composite states, however, concurrent statesaareupported. Asynchronous calls
to methods lead to the instantiation of a new state machihehaexecutes its behavior concur-
rently with other state machines. Another remarkable feabfithat work is that interruptions
and exceptions can be specified within state machinesxiternal devices such as sensors can
generate external signals that are perceived by the ruréimaeonment. In order to execute
models, that work proposed thgbstract Execution PlatfornfAEP) [108], which is a stack-
based machine with instruction to manipulate OO conswustiexpressed in the UML model.
The produced models are “compiled”, generating a binaryedbdt runs in the AEP. In fact,
according to the authors, AEP is a virtual machine that caimipéemented in both software
and hardware, similarly to a Java Virtual Machine.

Arpinen et al. [5] present a technique to execute embeddplicafjons specified with
UML 2.0 in configurable multiprocessor systems. Applicatis specified using UML 2.0 di-
agrams, which are decorated with stereotype from the TWiiter{69] providing concepts of
embedded real-time systems to support automatic trandiion UML models to the SoC im-
plementation. The design flow starts with the applicatiochiéectural description, specified
with class and composite structure diagrams, defining systements in terms of components
interconnected by ports. System behavior is expressednirstef state machines, which rep-
resent application tasks. The next step is the architdats@oration, which is responsible to
allocate, map and schedule tasks into different proces$miowing, the design flow is split
into two branches: code generation of application softveane platform synthesis. State ma-
chines are transformed intextended Finite State MachinéEFSM) in order to allow C code
generation. Composite structure and class diagrams adé¢aisenfigure the platform, allowing
the needed VHDL code generation. Arpinen et al. [5] presartase study, which shows the
implementation of a MAC protocol for wireless networks. Thaplication has been imple-
mented using four Altera’s Nios Il processors and threemard accelerators interconnected
through a HIBI communication architecture.

Other work that uses UML as modeling language is present@2jn That work presented

32

3.2. Design and Modeling Approaches

an approach to transform UML models into SystemC code, atigwystem simulation. For
system description, class diagrams and state diagramsatedowith stereotypes indicating
SystemC constructions are used. According to Nguyen et8d], Elass diagrams represent
a system in terms of components, and how these componenii dbe interconnected with
each other to provide system architecture. Thus, classessad to describe computational
entities having a runtime state and an associated beh&abmiodifies their state. In this sense,
classes within a class diagram are decorated with steredtgpresenting SystemC elements,
such as modules, interfaces, ports and channels. Eachdiigtam describes the behavior of
a single component (i.e. a class), in which composite statiéh and-stateregions) are used
to model concurrency. Actions can be associated with they emtexit of a state, as well as
with state transitions. That approach follows the semardfche UML specification for state
machines, i.e. a state transition is triggered by an evelgtiball guard conditions are true.
As a consequence, within a system UML model, all actions aradyconditions are textual
descriptions using SystemC syntax.

Riccobene et al. [100] presented a proposal to modify the &s@n flow used by STMi-
croelectronics. The original design flow starts with reguoients specification using natural
language. These requirements guide the specification ctiedde models, which capture all
expected behavior in a platform independent fashion. Affiierstep, the design flow is split into
two concurrent phases: hardware and software designsougththeir concurrent nature, these
separate designs must interact in some steps to achieeersfjsl implementation. Riccobene
et al. [100] argue that, by using UML, it is possible to impedhe process in the sense of stan-
dardizing executable PIMs, and hence, improving commtioicebetween designers teams,
which can share the knowledge about system functionabitigsrequirements. Therefore, from
the design flow splitting, each team can decorate the exdleu?dM with profiles suitable to its
domain: the hardware team use a SystemC profile propose®®} {&@ map UML constructs
into synthesizable code; while the software team can us@filgpmore suitable to the pro-
gramming language used to implement functionalities thfitrun on hardware units created
by the hardware team. Adopting this approach, it is posdiblese code generation tools for
both designs. To model the system, the following UML diagsaare employed(i) class di-
agram to describe components types, as well as their adsland operationgji) composite
structure diagram to specify used components, their podsraerfaces(iii) sequence diagram
to create testbenches; a(id) state diagrams to represent the behavior of each operdiion.
that paper, a small case study has been presented, capsiinFIFO-based producer/con-
sumer, which is implemented as hardware using a UML 2.0 nael@brated with stereotype of
authors’ SystemC profile.

Other interesting work is the Metropolis project [7], whiphovides an infrastructure, a
toolset, and a design method to allow a uniform represemtdtr heterogeneous components
of an embedded system. In order to accomplish such appr8atawin et al. [7] propose the
separation of computation and communication specificabignmeans of isolating computation
element from communication ones. Hence, elements reudaeciamproved. The infrastructure
core is a meta-model allowing the representation of sewanalputation and communication
semantics at different abstraction levels, using diffel@mputation models. In this way, a
meta-model represents a set of processes interconneciatetfpces communicating through

33

3. State of the Art Analysis

Design Problem

Formulation
(Use Case Diagram)

Funtional Specification Platform Specification
(Class, State Machine, (Class, Components,
Activity, Sequence Diagram) Deployment Diagram)
Metropolis Communication
Refinement
Metamodel Mapping

HW/SW
Synthesis

Figure 3.1.: Methodology for Multimedia Systems availabléletropolis [27]

different medias. Processes have their own properties @mstraints. Their execution is con-
trolled by a scheduling policy. Furthermore, Metropolisthoelology suggests an approach
that uses successive refinements, in which more detailpeoeporated, to depart from higher
abstraction levels until arrive to system implementati@ncording to [52], Metropolis project
has different methodologies applicable to different dameaivhich are concerned with special
characteristics of their own domain, being very differenatni other domains. By December
2008, there are five domains having their own methodologult talerant data flows in au-
tomotive systems; multimedia; wireless communication s@asor networks; microprocessor
modeling and analog/mixed signal systems. In order to swgpoh diversity of methodologies,
some principles must be followed) functional decomposition, i.e. in the highest abstraction
level, the system is considered a single process, whichdsndgosed in a set of concurrent
processes(ii) between two communicating processes, there is always &a gxicess, which

is responsible to transform (or adapt) the values from thpuiwf one process to the input
of the other onefiii) for each communicating process, a media, which defines cancaru
tion semantics, is associatefly) in addition, each communicating process is enclosed by a
wrapper, connecting it to the medi@) at each refinement step, a media is replaced by a set
of processes and medias, adding more details on the comationiq(vi) finally, the specified
elements are mapped into architectural components (irewaae or software components) of
the chosen platform. Figurg.1 shows the methodology used in the multimedia domain. In
such methodology, UML diagrams are decorated with stepestyrom UML platform profile
[27], which defines elements of Metropolis infrastructurel @lso some models of computa-
tion. Thus, model elements represent different conceptiseo$elected model of computation.
Further, model refinement is performed to map model elenmtotglatform elements that are
available in a repository. Recently, in [36], an extensiamed Metro Il has been proposed. It
involves the improvement of Metropolis framework in ternigloee features: heterogeneous
IP import, orthogonalization of performance from behaviaord design space exploration.

HASoC (Hardware and Software Objects on Chip) [41] is an OGhodology, which is
partially based on RUP [68] and provides an incremental mdtive design flow for embedded
real-time systems. It suggests the design must start watbpRcification of a UML model vali-
dated using anncommitted modglvhich represents an abstract execution model where gbject

34

3.2. Design and Modeling Approaches

are not associated with a given implementation, be it aswenl or software. Requirements
are specified by means of use case diagrams, in which eaclasséscassociated with at least
one sequence diagram that indicates an execution scer&eatc and dynamic system struc-
tures are specified using, respectively, class and objéagsatins. Once system specification is
finished, the produced model is partitioned into hardwak sritware components producing
the so-callecommitted modelThese components are mapped into implementation plagform
which are reused from a platforms repository previouslyettgped and tested. Further, this
model is refined in order to include additional implememtatiietails, which must respect de-
sign constraints. In this step, the following platforms setected: interfaces between hardware
and software objects, i.e. device drivers; and availabidvii@are components, e.g. processors,
memories, communication buses. At the end, selected coanp®iintegration is performed,
leading to the final system implementation.

An iterative MDE method, which combines semi-formal andxfat notations, for fault-
tolerant distributed embedded real-time systems, cdlethod C is presented in [96]. The
aim of this method is to keep the development “continuum’pgérconcept is defined as “. . . the
continuity between different software development lifdeysteps without any logic or semantic
break so that they are at an effective level of automation” Method C proposes that gaps
between abstraction levels should be fulfilled by means adehtransformations using meta-
models of the adopted languages. Languages supportediméthod are UML and MARTE
profile, AADL [103], and +CAL [71]. UML diagrams decorated WiMARTE profile stereo-
types are used to specify application elements that maybeselated with real-time domain
concepts (e.g. tasks, timers, semaphores, etc.). On tiee loéimd, behavior is specified us-
ing formal semantics (e.g. Petri Nets) provided by both AA&¥d +CAL. The former allows
the description of software and hardware parts of the sysidrite the later is a formal action
language to be used within state or activity diagrams.

The SEEP project (portuguese acronym3atemas Eletrdnicos Embarcados baseados em
Plataforma$ [77] proposes a methodology that integrates design ahdftesnbedded systems
considering a wide range of requirements. The proposedadelbgy encompasses the whole
design cycle, from system modeling using UML to the genenatif embedded hardware and
software components. FiguBe2 shows the design flow proposed in SEEP. Design starts with
requirements specification as well as description of exgakfiinctions using high abstraction
level UML models. The next step is system exploration, inclitdesigners can select different
algorithms to perform the expected functionalities megtéipplication and design requirements.
Following, an architectural space exploration phase takase. In this phase, designed func-
tions are mapped to different hardware components that alsstrespect requirements. The
automatic generation of hardware and software componenhish is based on the functional-
ities partition performed in previous phases, happensamtxt step. At the end of the design
cycle, the embedded real-time system, which performs tiplicagion for which it has been
designed, is obtained.

35

3. State of the Art Analysis

High-level Model

Requirements Functional N
Specification Specification D validation

o System Algorithms &
Exploration Models Library

High-level E tabl -
— igh-level Executable : validation

Component Description
Library
—
@ation <— Platform xploratio
Library

Macro-architecture
with Functional
Mapping
I

i ; anning
Generation Synthesis Synthesis
/

N, — N~

2 V' ~a ¥
l Software] l Micro-architecutre] D validation

validation

N

Figure 3.2.: SEEP design flow

3.2.2. Discussion

Works presented in this section advocate the use of statalagdages as UML to specify the
structure and behavior of embedded systems. Using claggdiafor specification of system
static structure is a well-established approach, as welsag state diagrams to specify behav-
ior. Most of the presented works do use such diagrams. Hawsemetimes the use of state
machines is not a suitable form to specify behavior becatuseniot that easy, for example,
to understand concurrent activities or non-reactive sydiehavior. Furthermore, other issue,
which is not suitable to behavior specification in modelshésuse of textuahction languages
to describe actions performed within each state. This m#édebehavior description closer to
a computer program (written using a programming languduga) to a graphical representation
that may be easier to understand.

Each of these approaches, excluding Perseil and Pautepi@®loses their own profile to
decorate UML diagrams in order to provide specific semamtiecsodeled elements. Such situ-
ation hinders the exchange of information on the modelet&sybetween design teams, mainly
if one of the involved teams does not know the proprietaryilg:oThis problem also happens
during code generation. Code generation tools must be a#re profile semantics in order to
produce source code representing the profile’s stereoggraantics. Semantics standardization
in terms of UML profiles is a good approach to deal with the rios@d problems.

As can be observed, most of the presented works do not dezfisplly with the design
of distributed embedded real-time systems or separatdstialing of functional requirements
from non-functional ones. Although not clearly stated, wark proposed by Balarin et al.
[7] may deal with distributed functionalities due to themoposal for using higher abstraction

36

3.3. Separation of Concerns in Requirements Handling

levels to specify communication apart from computation.difidnally, considering the other
mentioned approaches, that work was the only approachatemarequirements from distinct
natures, i.e. computation and communication.

As this work is inserted in the context of the SEEP project ohits goals is to support
a mechanism for separation of concerns in the handling afiregents from initial design
phases, while in the same time supporting the distributidaractionalities over different pro-
cessing units. To accomplish this goal, this work proposiptations in SEEP design flow as
described in the Chapter 4.

3.3. Separation of Concerns in Requirements Handling

3.3.1. Introduction

This section discusses methods and techniques for marhtian in requirements handling,

focusing on the separation of the handling of functionalinegments from non-functional ones

during the whole development cycle. At the beginning, tlistion presents some proposals
applied to general-purpose systems, i.e. non-embeddéshsysAfterwards, other approaches
that apply such separation of concern in the design of endmkdeal-time systems are also
discussed.

3.3.2. Separation of Concerns in General Systems Developme nt

Stein et al. [120] propose th&spect-Oriented Design ModelifldODM) approach to repre-
sent concepts of AspectJ, an AO programming language peddmsKiczales et al. [67], within
UML diagrams. Aspects are represented as classes annotiledaspect » stereotype, as
shown in figure3.3a, and can specifgdvices introductionsandpointcuts Two kinds of adap-
tations are supported: structural and behavioral adapgtiStructural adaptations, which are
calledintroductionsin AspectJ terminology, are specified in the class diagrarmbégns of at-
tributes or operations specification, which will be insdrite classes whose structure is affected
by the aspect. As can be seen in figBr&b, anintroductionis specified, within the context of
an aspect, as a dashed ellipse decorated «itht r oduct i on» stereotype, e.gBookCopy
inserts the methodetState()in affected classes. On the other hand, behavioral adapsati
which are calledadvicesin AspectJ terminology, are specified in sequence diagrarhish
shows how a given interaction is affected by the aspectjmsgrting a method call into another
object before or after the affected interaction. &dviceis represented as a method decorated
with the «advi ce» stereotype (see figui@3a). An important part is the specification of the
elements affected by aspects, i.e. the specificatigainfpoints This is done usingoin Point
Designation Diagram¢JPDD) [121], which is a sequence diagram or a class diaghaitriri-
dicates model elements may be affected by aspects. F&Bralepicts an example of JPDD
that selects all method calls f@bServer.addUser(performed from any object after the user
registration in the authentication server. The link betwaspect adaptations and the selection

37

3. State of the Art Analysis

of affected elements (JPDD) is describeddmyntcuts which are specified as an attribute dec-
orated with thexpoi nt cut » stereotype. In other words, @intcutindicates which model
elements (by means of JPDD) must be modified by which adapt#idvice at which mo-
ment (before, after, or around). It is important to hightigiat, as the AODM follows AspectJ
semantics, structural adaptatiomstrioductiong are tightly coupled with the classes it affects,
hindering the reuse of such structural adaptations.

Theme/UML [31, 30] is an approach to support separation atems by means of con-
ceptual constructions callégtlemes According to Clarke and Baniassad [30], Theme/UML is
an AO approach that suppoggmmetricseparation of concerns rather thasymmetricsepa-
ration, which is supported by most of AO approaches (e.g. MPBspectJ, AspectC++, and
others). In this sense,themes more general than an aspect because it can represenefitggm
of behavior and/or structure representing a concern. leratlords, all elements related with the
handling of a concern are specified within only dheme One interesting characteristic of that
approach is that it is common to find different views of the satfement in differenthemes
i.e. certain elements and behaviors are shared among naretietheme To allow the rep-
resentation othemeswithin UML diagrams, the UML meta-model has been extendel@ 9.
That work proposes the conceptaifmposite patternsvhich supports the composition/decom-
position ability required by symmetric separation of canse Making an analogyomposite
patternscan be compared to UML templates, which allow model elemieatsartially defined.
In Theme/UML,themesare specified as packages containing all concepts rela@ddaacern

——————————— [inivitaitviiulnialsiniuiriuisiriuiulai
_ «aspecty (b) _-~"«introduction» ™~ «containsWeavinglnstructions» |
SubjectObserverProtocol s 'Bas eType {base=BookCopy}!
{instantiation=perJVM} e BOOKICOPV e el !
{base=undefined) &7 «interface» |1 Dy
/ . \
= / Subject |1 BaseType |
pointcut stateCl s) 1 : H \
kpointcut» pointcut startObserver(Observer o, Subject s) | «realizey | getState()i |
fepointcut» pointcut stopObserver(Observer o, Subject s) \ []
advice» advice_id01 \ BaseType || String /
s) {base stateCl _ [rgetstate() || -~ W
advice» advice_id02 N f i
after(Observer o, Subject s) {base startObserver(o, s)} S~o | ’,’/
cadvice» advice_id03 S -
after(Observer o, Subject s) {base stopObserver(o, s)} iU
________ TecontansWeavinginatractionant 7 «introduction» ! «containsWeavingInstructions» |
i ion» }BaseType __{base=Sub ject) ! T e BOOkManagerLBaseType {base=BookManager}!
Subject " s i ! TTTTTTTTTTRITTTTTTTT
Sy 2 - / i AN
_______________________ / N N\
_________ % i i ione! i e] BaseType | [«interface»| Y,
7 cintroduction» BaseType {base=Observer}! “""7| Observer ! . ! R Subject | !
(o ettt | «realize» lupdate(Subject);)]
TS - g \ 1 getState() | /
N BaseType f " V4
N - f String y
N epyrrsyr-raompe ey | HER [PIS-LLL I
«_|tupdate(Subject) |, Stri T
«aspect» N I Jying -
e] -
pointcut stateCl jects) | 1 TTTeee T
{base = target(s) && (
call(void BookCopy.return(..)) || (C) P - ~~
call(void BookCopy.borrow(..)));} 2 remotePointcut \\
epointcut» pointcut startObserver(Observer o, Subject s) ’/ \
{pase = target(o) && args(s) && BookCopy | * gk * * gk * 2 |
- +id |
call(void BookManager.buyBook(BookCopy));} e P } AuthServer DbServer :
fpointeut» pointcut stopObserver(Observer o, Subject s) +gelid() | T T T T !
{base = target(0) && args(s) && +setld() ! ! | i | !
call(void i opy); o ! .
(void Bookanager discardBook(BookCoy b 9) i registerUser i Lo | !
________ : : T | ccrosscuty | PPOTTOW(Customen) | - i1 <?jp>: i !
=~ L 2 | * . Stri | I
- SpaseTyor { ! {+retun(Customer) | ‘ (7 String, —/—1 addUser i !
(¢ rodutiony s eEE T ! ! * : String) [0..%] |
\._ BookCopy . BookManager ! B 2 . (*: Slring i |
TSeeees e +addBook(Book) \ 5. lring’) «execution>
eI -l i L) \ 1 I ' : | I t]
i iony JBaseType {t 3 +searchBook(Book) . ! 2ip !
_ BookManager ./~ TTTTTTTTTTTTTT +buyBook(BookCopy) S~ '
~ g +discardBook(BookCopy) [

Figure 3.3.: Aspects and join points modeling in AODM [12@1]L

38

3.3. Separation of Concerns in Requirements Handling

that are specified using class and sequence diagrams, asedejpi figure3.4a. In addition,
integration betweethemesds defined by means of a binding, which indicates which elémen
of athemeare affected by elements of othleme This integration is depicted in figu4b.
Comparing to the asymmetric approach, this is similar toréation between functional ele-
ments that are affected by aspects. There are two kindseagjration (i.e. aspect weaving): to
override and to merge concepts. In the former approach,esliengstructural and/or behavioral)
passed as parameters override associated elements ifatiedtheme On the other hand,
in the later approach, concepts of the affectingmeare merged with elements of the affected
themeat the points indicated as parameters.

The AO modeling approach proposed by France et al. [43] addseconcerns during mod-
eling step, aiming exploring different design alternative a platform-independent fashion.
Such approach produces Aspect-oriented Architecture Md@é\M), which consist in a base
architecture model namgatimary modelto specify the application model, and a set of aspect
models. Both kinds of elements are specified as UML diagrdmshis way, aspects models
describe how the primary model is affected by non-functiseguirements. The composition
of aspects models in the primary model (i.e. aspect weavirag) cause conflicts of interests
leading to the emergence of undesired system propertieh stuation, according to France et
al. [43], can be minimized (or solved) by means of adaptirgabpects model. Furthermore,
aspects provide structural and behavioral adaptatiortseiptimary model specified with tem-
plates in class diagrams (for structural adaptations) atidmoration diagrams (for behavioral

«subject» e Ll I Vo) Yo
Observer i <Subject, _aStateChange(..)> | | Observer | i <Subject, _aStateChange(..)> |
i <Observer, update()> ! i <Observer, update()> ;
" [
Observer :
- " «subject»
Subject subjects h Lierary
N + update() !
+ aStateChange() ! Book
_aStateChange() observers[Vector + name Location
- notify() p : + author + roomNumber
+ISBN + shelfNumber
aSubject : Subject anObserver : Observer + getName() * addBooIE;() k()
: : : + removeBoo
StateCh H H : + getAuthor()
astateChange() | ; + getISBN()
_aStateChange() BookManager
: BookCopy
+ add(Book)
""" + borrow() + remove(Book)
+ return() + search(Book)
+ addView(BookCopy)
+ removeView(BookCopy)
7 + updateStatus(BookCopy)
""" bind[<BookCopy, {meta:isQuery=false}>,
PP I— <BookManager, updateStatus()> |
action aSubject.notify()
post all observers in aSubject::observers
(a) are sent updade() event (b)

Figure 3.4.: Examples of Theme/UML models [31]

39

3. State of the Art Analysis

adaptations). It is important to highlight that, in that Wothere is no mention about how ele-
ments of the primary model are selected (i.e. join pointgi§ipation) to be adapted by aspects.

Pinto, Fuentes and Troya [98] propose an aspect- and compbased approach to sepa-
rate the handling of non-functional requirements from fiomal ones from early specification
to implementation phases during software developmens approach defines transformations
from UML models, which are decorated with stereotypes fram@om ponent-Aspect Model
(CAM) profile, to CAM models, which describes a system in terof components, aspects,
and composition rules to weave aspect into components. rdicapto Pinto, Fuentes and Troya
[98], behavior specification is realized using standardhmaeitsms of UML, i.e. state, activities,
and/or interaction diagrams. Although important, that kvdoes not discuss how behavior is
represented in CAM models. Further, the information déscriin a CAM model is specified
with the DAOP-ADL language [97], which uses tB¥tensible Markup LanguadXML) [129]
format to describe components and aspects of a system, smdhalir relationships. An ex-
ample of such XML file is given in figur8.5. DAOP-ADL specifications are interpreted by a
middleware platform calleBynamic Aspect-Oriented Platfor(@AOP) [97], which provides a
composition mechanism that performs aspects weaving dgadynat runtime, i.e. it performs
aspects adaptation in the affected components while rgrthmapplication. In this sense, dur-
ing the weaving process, aspects see components as “blaek’b&uch approach constraints
aspects adaptations to modify component behavior by mdanteccepting operation calls or
event occurrences, in other words, it is not possible to dgéim points, and hence, modify
internal behavior of a component.

An approach to specify Aspect-Oriented Executable Mod&BEM) has been proposed

<<Providedinterface>> N
C1Providedinterface <ApplicationArchitecture>
<components>
+foo() <component role="c1"> ... </component>
</components>
<<provides>> <aspects>
<aspect role="trace™> ... </aspect>
<<Role>> | <@fulfills |<<Component>> <<sends>> [<<Message>> <faspects> _
C1Role c1 foo <com p08|honConsta|qt§>
<componentCompositionRules>
-name ="c1"

<<applies to>> </componentCompositionRules>
{join point=BEFORE_SEND} <aspectEvaluationRules>
<sendMessage>

<<Role>> | <€fulfills |<<Aspect>> <source-comp role="c1"/>
TraceRole Trace <message name="foo"/>
<BEFORE_SEND>

-name = "trace" <concurrent>

<<evaluates>> t)
evaluates <aspectlList>trace</aspectList>
<<EvaluatedInterface>> </concurrent>

</BEFORE_SEND>
TraceEvaluatedinterface </sendVessage>

-joinpoint = ANY </aspectEvaluationRules>
</compositionConstraints>
</ApplicationArchitecture>

Figure 3.5.: CAM model represented as a class diagram [98]

40

3.3. Separation of Concerns in Requirements Handling

in [47]. This work provides a UML profile to describe AO-reddtconcept within UML models.
Three different models are producegd):. a base modespecifying system functional concerns;
(i) anaspects modedpecifying crosscutting concerns, including their prea@nd complete
behavior, in terms of AO elements using the AOEM profii@) a pointcut modedescribing
(using the AOEM profile) how crosscutting concerns are casadan the base model in terms of
pointcuts. Further, a weaver is used to transform the predintodels into a plain UML model,
which can be executed using Pépulo UML virtual machine [Alditionally, the AOEM profile
provides stereotypes to specify the action language defindte UML 2.x specification. To
allow the specification of AO-related actions, the AOEM gdeofextends the standard UML
action language by means of allowing, for example, getthmy intercepted message name,
or target or source object. For more information on this A@egion for the UML actions
language, readers are referred to [46]. Furthermore, tgpeces are specified as activities
diagrams (see figurg.ab), whose actions are decorated with stereotypes of the AQiiile.
These advices are related to pointcuts, which are specifitadsaguence diagrams (see figure
3.6¢c), showing the link between the join point selection andatieice. That work allows only
the interception of sent messages, i.e. only messagedadaents can be selected as join points.
However, Sanchez et al. [104] propose a modification in tlegifipation of pointcuts and join
points by means of using JPDDs [121].

3.3.3. The Use of AOD in the Design of DERTS

Zhang and Liu [133] use UML diagrams and AO concepts to sépdn@ handling of timing
requirements from other non-functional requirements edbsign of real-time systems. That
work proposed the use of only one aspect, in which all timifgrimation of a system is con-
tained. A UML profile is defined to decorate elements in a cthagram in order to represent
both AO and real-time concepts. Such profile provides lagguevel concepts of AO, e.g. as-
pects, advices, join points, crosscut, and control. Howét/is important to highlight that the
last two concepts, i.e. crosscut and control, are not defin&@ languagesCrosscutis used to
model the weaving relationship between classes and aspétts control models the weaving
relationship between behavior and aspects. Although mybtehavior is modeled with state

T

(a) <<aspect>> <<component>> = | | <<pointcut>>
Persistence @ Persister ! sd ShoppingCartUpdate /—

IPersistence

<<advice>>+persist() I
,,, | :ShoppingCart

<<Literal>> <<CallBehavior>> | target(<<calloperation>>) | <<joinpoint¥ {point =RECEIVE,
Persister GetReference persist i add*(..) | time =AFTER}
obj ectl] !
<<GetTarget>>
GetSettedComp ||

Figure 3.6.: AO modeling [47]: (a) aspects modeling; (b)iagmodeling; (c) pointcut specifi-
cation

{advice =Persistence .persist()ﬁ

41

3. State of the Art Analysis

diagrams and also proposing the control relationship,wak does not show how the modifi-
cation in the base behavior will eventually happens, neitiogv to specify join point to select
element in the base classes and behavior. Figufelepicts an example of timing handling
specification. As can be seen, time values description is gmmeans of notes (i.e. UML text
boxes) associated to a time aspect in the class diagram.ov&rehere are other stereotypes
representing real-time domain concepts, such as clockdiameds. However, they are very
similar to stereotypes from the UML SPT profile [88]. Partialy, the approach presented in
[133] is not adequate to describe such key requirementsnaggticonstraints and requirements
in real-time system design.

Noda and Kishi [84] have proposed an approach for using AQeotto model embedded
software. More specifically, they propose to use AO to moldeldontext in which the em-
bedded system operates. That work uses the symmetric a@ppiaraaspects, similarly to [30].
Functional and non-functional concerns are modeled astspehich are related to each other
by means of two types of inter-aspect relatio(istrigger and(ii) refer. The former indicates
that one aspect triggers the behavior of other aspect, Wigléater means that an aspect refers
to properties of another aspect to determine its behaviach $elation can be seen in figure
3.8a. Aspects are modeled as a class diagram and one or moreisgi@ms, and thus, each
class in the class diagram has its behavior specified in @ diajram. Figur&.8b depicts an
aspect concerning the role of front doors in the vehiclamihation system that was used as
case study in [84]. In addition, to define details of intgpexg relations, a rules-based language
has been proposed. Basically, this language describasaispects relations in term of events,
transitions, and guard conditions for transition in statgychms. Therefore, this can be seen as
a complement to system behavior specification. Figude shows a fragment of relation rules.

Lohmann et al. [74] propose the initial ideas for the CIAO r@i@g system, which is the
successor in the operating systems family called PURE [dridiéeply embedded systems, i.e.
those embedded systems with very restricted processingrpamd memory availability. The

{[1]1: Vi3 @(door.open, j) = @(| stop, i) = B
OPEN_MIN_TIME * @(| door.open, j) — FloorButton | | FloorLamp
@(| stop, i) = OPEN_MAX_TIME

[2] .. Vidj(=(@(]button, j) - @(| door.open, j) <
STAY_OPEN_NORMAL_TIME) — (@(!door.close, i)
= @(| door.open, i)+STAY_OPEN_MIN_TIME))

(@(door.close, i) = @({ door.open, i) +
STAY_OPEN_NORMAL_TIME))

[3]:. Vid j(tmove, j) - @(| door.close, i) =
OPEN_MIN_TIME * @(!move, i) — ControlSystem R Queu
@(| door.close, j) < CLOSE_MAX_TIME} 1 T

1.4 1 1

DirectionLamp

N

N <<Aspect>> <<Crosscut>> 1 Sensor

TimeAspect 1 Elevator 1.*
-t: Time
+set(time : TimeValue)
+get() : TimeValue

1
+reset() 1.* 1.* 1. 1.
+start|
+paus<g() m ElevatorLamp Motor ElevatorButton
| [| |
I L]

Figure 3.7.: Specification usingtiane aspecf{133]

42

3.3. Separation of Concerns in Requirements Handling

- trigger from POWER to BATTERYSTATUS
<<aspect>> <<sensor>> DOOR . Al
<<aspect>> <<actuator>> LIGHT 1. Power:t1 -> charge"BatteryStatus
. 2. Power:t2 -> stop”BatteryStatus
<reton)l T«mgger» $ | orwverboor |—— ootock| - trigger from DOOR to DOORSTATUS
<<trigger> |PassengerDoor}—{ PDLock ‘ 3. *t1->open”DoorStatus
<<aspect>> <<aspect>> 4. *t2 -> close"DoorStatus
<<process>> <<process>> Class diagram - trigger from BATTERYSTATUS to BATTERYSAVER
BATTERYSAVER LIGHTINGCONTROL 5. BatteryStatus:t1 -> saveBatterySaver
<<refer>> T«mgger» RS T«mgger» t1:0pen [DDLock@Unlocked] e t:unlock 6. BatteryStatus:t2 -> release’BatterySaver
V| i 1 i v i v - trigger from DOORSTATUS to BATTERYSAVER
<<aspect>> <<aspect>> H,c.m {_open] lock 7. DoorStatus:t1 -> save”BatterySaver
SSCONtoxS, pEsCOntoxiag ; 8. DoorStatus:t2 -> release”BatterySaver
State diagram for DriverDoor State diagram for DDLock Y
BATIERYSTATUS COORSTATUS - trigger from DOORSTATUS to LIGHTINGCONTROL
<<trigger>> <<re'er>>l T<<|ngger>> . . 9. DoorStatus:t1 -> on”LightingControl

T iliopen [PDLOCK@UW:':N] Hiunlock v 10. DoorStatus:t2 -> offALightingControl
<<aspect>> <<aspect>> - tri
<<sensor> <<sensor>> k & CUT T U AT HER

POWER DOOR 11. BatterySaver:t2 -> off"Light
State diagram for PassengerDoor State diagram for PDLock - trigger from LIGHTINGCONTROL to LIGHT
(a) (b) (0

Figure 3.8.: AO modeling [84]: (a) functional and non-fupogl concerns; (b) aspects model;
(c) inter-aspects relations rules

main goal of CiAQ is to provide a very fine grain configurable@ting system. Such granu-
larity is obtained by using concepts of AO programming suigabin the AspectC++ language
[116]. In this sense, CiAO separates non-functional hagdiiode from application components
code by means of using aspects that are woven into the agimticgode at the configuration

phase. According to Lohmann et al. [74], such separatiorrongs the reusability of appli-

cation components. In [75], the authors reported their e&pee on using AO programming
to design and implement the interrupt synchronization asrdigurable property in the CiAO

operating system.

AO concepts are used in thdrginia Embedded Systems ToolRfEST) [119] in order to
separate and check non-functional properties in the asadysl composition of component-
based embedded real-time systems. Two kinds of concepésidantified:prescriptive aspects
andaspects checksPrescriptive aspectare, in fact, advices (or adaptations) that modify the
information of model elements (e.g. tasks priority or thplication level of a component).
Such adaptations are described using a proprietary laegealtpdVEST Prescriptive Aspect
Language(VPAL). On the other handaspect checkidicate the dependency check among
components of a embedded real-time system. Such checkiegf@med using the information
from the system model. Sometimes, component charactsristin influence other components
behavior, e.g. tasks priorities and/or activation peritmgether with communication latency
may influence the end-to-end scheduling of activities. leeMEST provides automatic check
of components offered/required QoS that considers motdits in components performed
by the aspects weaving process. That work has performed as® studies that lead to the
conclusion that using aspects one can improve the analydis@mposition of components in
the design of embedded real-time systems.

Tsang, Clarke and Baniassad [124] present an interesting @@mnparing two implemen-
tations of a traffic simulator, which represents vehiclesigged with speed sensors as well as
sensors capable to measure the distance from other suimgwehicles, allowing vehicles be
self-driven through four track streets. The first versioimiplemented using pure OO concepts
and the Real-Time Specification for Java (RTSJ) [13], whike decond version uses AO con-

43

3. State of the Art Analysis

cepts and Aspect] [67] in order to refactor RTSJ constmusti@.g. the creation of threads,
memory management, synchronization, and others) thanhaspsulated in aspects. The evalu-
ation was made using an adapted version of the C&K metridg¢aal with AO constructions.
That work has shown that using AO leads to the improvementafutarity because many RTSJ
elements and constructions can be encapsulated in sapardties (i.e. aspects). However,
according to [124], there are some metrics that are worsédrcémpared to the OO version,
e.g. number of methods per class, which hinders the undeiedity and maintainability. As
conclusion, Tsang, Clarke and Baniassad [124] pointecbtietan achieve more benefits from
using AQ if the relation aspect/application is broad andegien meaning that maximizing en-
capsulation of redundant application code into aspectscan have an overall improvement of
the application code. The more redundant code a applichdsnbetter is the application code
modularity provided by aspects to encapsulate such redtcdde.

The AspeCtual COmponent-based Real-time system Develog@e@ORD) approach
[123] proposes the integration of component-based teaksigvith AO concepts for software
development of real-time systems. In that work, a Real-T®&@mponent Model (RT-COM)
has been proposed. It supports the notion of time and terhgamatraints, space and resource
management constraints, and composability semanticstiéwlally, the RT-COM provides the
concept of gray box components that preserve some of the fietiores of a black box com-
ponent, such as well-defined interfaces as access poirtie wotponent, and they also allow
aspect weaving to change component behavior and inteatal Sesanovic et al. [123] define
three kinds of aspectsi) application aspectgan change internal behavior of components, e.g.
security, synchronization, real-time policy handling;.gii) runtime aspectsefer to concerns
related to system integration with the run time environmerg. resource demand, platforms to
which components are compatible, WCET of components behavieach platform, and oth-
ers; (iii) composition aspectdescribe with which components a component can be combined,
respecting component’s version and offered and demand&dAimough ACCORD provides a
component model that could allow the use of AO concepts &ignigbstraction levels, that work
specifies both components and aspects using the Aspect@graprming language [116].

The SysWeaver approach [99] uses different tools to gemerate from models. The pro-
posed approach separates functional requirements, widah@deled using Mathlab Simulink,
from requirements the authors have calf@da-functionalrequirements, e.g. timing, replica-
tion, security, jitter, and others. In fagiara-functionalrequirements have the same meaning
of non-functional requirements as used in this wdtara-functionalrequirements are modeled
using the SysWeaver tool, which interacts with other commgletary tools to provide toolchain
integration, allowing domain-specific analysis such agdalability or model checking of other
system properties. Moreover, according to Rajkumar [98dt approach uses the concept of
components, whose encapsulation mechanism combined ysitbns properties model check-
ing enable the construction of “systems-of-systems” that'‘@orrect by construction”. In [99],
the SysWeaver approach has been used to design an ABS systeahiCles.

Balasubramanian et al. [9] present an approach to addessceitting concerns in component-
based MDE usinghspect-Oriented Domain ModelifdhODM). An AO model weaving tech-
nigue is used to spread crosscutting concerns encapsinaspects. The tool callgtionstraint-

44

3.3. Separation of Concerns in Requirements Handling

Specification Aspect Weav@&@-SAW) performs this aspects weaving in the contexRlatform-
Independent Component Modeling Langu#&B&CML) [8], which is a DSML for developing
com- ponent-based systems that has been developed usiGgtigeic Modeling Environment
(GME) [1]. PICML provides a proprietary modeling syntax foeating models of component-
based distributed systems, which includes informatiomterfaces, components properties and
system software building rules. C-SAW is a model transfdimmaengine, which has been im-
plemented as a plug-in to the GME. It takes as input the aleRIEML model and a text file
describing aspects and transformations that must be pegtbin the PICML model. Such
model transformations are described using Emebedded Constraint Langua@geCL), which

is an extended subset of the OMG’s Object Constraint Largy(@@]. Particularly, ECL pro-
vides two important conceptgi) modeling aspectgproviding modular constructions to specify
crosscutting concerns; arfii) strategies specifying transformations logic that will be applied
in PICML model elements affected by modeling aspects. Tipecgeh proposed by Balasubra-
manian et al. [9] was intended to be applied in the developwidarge-scale component-based
distributed system, in order to improve model scalabikityd also the handling of crosscutting
concerns. Thus, they presented a surveying system thamegsgJnmanned Aerial Vehicles
(UAV) to help in disaster recovery efforts stemming from figp earthquakes, or hurricanes.
UAV transmits videos from the surveyed area to a controleenthere rescue teams can de-
cide rescue actions. C-SAW has been used to perform modificain several components of
different modeled UAV.

3.3.4. Discussion

The use of AO paradigm in initial computing system designsplais recent and has not
achieved the maturity level of approaches using the OO maradSuch claim is supported
by the diversity of proposals for AO modeling that can be fbimthe literature, i.e. there are
several approaches to specify the same concepts using@ihefiorm, repeating what happened
before the UML creation. However, the same cannot be said@implementation, which has
achieved a certain degree of maturity as can be seen by tleusalof languages, such as the
AspectJ or AspectC++. Although there are proposals to afpfdlyin early phases, there is no
standard form to separate functional requirements hagpdiom non-functional requirements.
In particular, [120], [31], and [45] are the most remarkablarks. The first one is an approach
being refined to support other AO languages in addition toe&8p The second one proposes an
interesting approach, but the specification of how a therfeziaf other themes is not adequate
due to the lack of scalability, i.e. in systems with large amtaf crosscutting themes, the spec-
ification of bind relationship to express weaving hinders model maintalityalaind evolution.
Finally, the third approach proposes extensions to UML bleotto allow the specification of
AO concepts and also to perform AO model weaving.

To the best of our knowledge, the use of AO concepts in the doofalistributed embed-
ded systems is still low. There are few approaches suggetstair use in the implementation or
configuration of embedded software, and even fewer thabtapply these concepts in design
or modeling. For example, the approach proposed by Zhand iand33] suggests the use of
only one aspect to deal with all time related non-functiomgjuirements. The time require-

45

3. State of the Art Analysis

ments specification proposed by that approach is not agptefrecause time requirements can
have different viewpoints (e.g. periodic activations, diees or WCET for algorithms execu-
tion, latency measurements, and others) that can be misiadd by designers. In addition,
the use of UML notes to specify important information is nppeopriate due to the lack of rep-
resentation in the UML meta-model. Besides, there are dathgortant requirements from the
domain of distributed embedded real-time systems whoselingncan be improved if aspects
are used. The approach proposed by Noda and Kishi [84] usgsaspects to model all con-
cerns in embedded systems design. However, that work deeteabspecifically with timing,
embedded, or distribution non-functional requirementleylcan be handled separately from
functional requirements but this must be done specificatijnfdesign to design because of the
textual specification of aspects composition. Moreovesahevic et al. [123], Rajkumar [99]
and Balasubramanian et al. [9] propose component-baséghdgsproaches that specify aspect
in terms of textual descriptions instead of graphically elod) them.

3.4. Code Generation

3.4.1. Introduction

Code generation means to use a computer program to assrsidngtion of source code, be it
application source code, HDL source code, code for platioonfiguration, and others. Com-
monly, a code generator program takes as input a high leeelfggation in addition to a set of
templates in order to create one or more source code filestpstoAccording to Herrington
[59], code generation is not constrained to be only a quick twgroduce source code. Other
benefits can be achieved as follows:

e Quality: code generator tools use templates to produce code (foget falatform) from
elements specified in high level models. The more completet afstemplates is, the
better is the quality of the obtained generated source clidee templates describe an
optimized code generation based on designers quality amdiaation criteria, a quality
increase is reflected in the final generated source code;

e Consistency:the naming standardization for classes, methods, andwds is fully con-
sistent in the generated code. Hence, the application ofnmgestandardization facilitates
classes interfacing and use because such standards aesldeifinin the templates;

e Productivity: code generation increases productivity gains due to thodlityato adapt
quickly to changes during design. In other words, modiftsiin the specification can be
automatically propagated to system implementation. Intiaad code generation allows
the inclusion or exclusion of big portions of source code;

e Abstraction: advantages in terms of design abstraction level can bewthiesing code
generation tools that work with input specifications (e.gndels of the system structure
and behavior, database schemes, or user interface desigmsjeutral form, i.e. using
platform independent languages. In other words, it is jpbstb generate source code

46

3.4. Code Generation

for different programming languages (such as Java, Sralba C++) from the same
abstract model.

This section presents some proposals to generate code fidomtibdels, as well as com-
mercial tools that implement such code generation. Adutlly, some works that produce HDL
code from UML are also presented.

3.4.2. Code Generation from UML Models

Many different approaches to generate source code from UMHets can be found in the
literature. Some of them use only one diagram (e.g. claggatia®, while others use a combi-
nation of different diagrams (e.g. class diagrams witlesttquence and/or activities diagrams)
to generate code ranging from classes skeletons to codaimioigt system elements behavior.
This subsection present the some approaches.

The work presented in [55] demonstrates the mapping frossaléagrams to Java source
code. This approach allows the generation of high-levedscikeletons, which allows abstrac-
tion of details on attributes implementation, i.e. atttésudata type, from the class implemen-
tation point of view. In other words, the implementation sio®t need to know the attributes
existence because their stored values are accessed oolglhhget/set methods. The code
generation process only considers classes from the UML humtmrated withcEnt i t y»
stereotype. Each entity is mapped to an interface and a pelisses that implement this inter-
face, i.e. for each entit¥, the following Java elements are generai@dan interface namex;

(if) an abstract class nam&@bst and(iii) a concrete class namé&dnst The created interface
contains the operations defined in the UML model for the gniihe abstract class implements
the interface and specifies attributes, as well as theirtgpés (e.g. integer or string attributes)
and auxiliary methods that access theses attributes, velnelgenerated automatically by the
code generator. Finally, the concrete class extends theaabslass by means of adding the
methods that must be implemented to support the operationsthe entity interface. In fact,
the code generator produces empty methods that must belfilldfte programmer in order to
provide the entity behavior. The concrete class accesass attributes by means of the auxil-
iary get/set methods specified in the abstract class. Axbdily, associations among classes in
the UML model are represented byrsors which are entities encapsulating the complexity of
associations navigation and updates. The conceptirsbrshas been proposed to separate the
associations semantics from their real representationnaplémentation.

Burmester, Giese and Schéafer [21] have presented a codeatjeneapproach that uses
the FUJABA (From UML to Java And Back Again) Real-Time Tooliteu20] to generate
code for RTSJ applications. System structure is modelatukie components diagram from
UML, while behavior is specified with an extended versionh# UML state diagram called
Real-Time StatechartThe PIM of the system is transformed into a PSM that uses BiE S
profile [88] to specify real-time concerns. Every Real-Ti@®techart is transformed into,
at least, one active object, which represents the maindhaed is implemented as periodic
RealtimeThread At each period, all transitions that can be triggered aeckdd, and those
that passed some conditions (see [21]) are executed. @rihbgtates are not implemented

47

3. State of the Art Analysis

as multiple concurrent periodic threads, but by exactly pegodic thread (the main thread)
and multiple concurrent aperiodic threads. It is importanhighlight that, depending on the
deployment information of Real-Time Statecharts, a JVM lsave multiple periodic threads,
i.e. one for each Real-Time Statechart deployed in the JVM.

Bordin and Vardanega [16] propose a source code generdtategy for multiple target
OO0 languages from HRT-UML models, i.e. UML models annotatétth the FW profile [26]
that specifies HRT-HOOD [23] concepts. In that work, the Ri&J been assessed in order to
check (regarding some requirements proposed by that a)ti®ipotential to be used by code
generation tools. RTSJ source code with Java annotatiabden generated from HRT-UML
models. Such annotations allow traceability of HRT-HOODa=pts (e.g. cyclic or sporadic
execution of methods, or protected or unprotected methecugion) between model and source
code, and also, decreases the size of the generated codesédchides information from the
programmer [16]. Hence, a pre-processor, which convedsettannotations into plain RTSJ
code, is required to be used before the generated sourcecogslation.

A code generation approach based on MDA concepts was peedeyntHausmann and Kent
[57]. In order to generate skeleton source code from claagrains, the proposed approach
uses transformations based on meta-models. For each kangeige, a meta-model, as well
as the mapping rules from the PIM to the PSM, must be specifidt process of creating
mapping rules is based on pairs of elements, their reldtipas domains and constraints. A
pair represents two elements, in different models, thatedated through a relationship, which
specifies relation constraints, and in which domain elemard linked. The mapping between
PIM and PSM is specified in class diagrams, in which meta-ineldenents of different models
are linked by means of class diagram associations. AdditiO€L constraints can be included
in the associations. Besides not showing the final genesaierte code, mapping rules from
UML to Java language has been depicted in [57]. It can be sesrthis graphical approach
to describe mapping rules can assist in the overall visai#iz of the transformation, however,
it can hinder the creation of more complex mappings among+metdel elements of different
models.

Generation of AO source code is the focus of the work predeint¢58]. The goal is to
allow automatic generation of AspectJ source code fromnebete® UML diagrams by using the
Theme/UML approach. Theme/UML models are exported to XMkfivhich are taken as input
to a code generation tool developed with #Xtensible Stylesheet Language Transformations
(XSLT) [130]. The generated code is not complete, i.e. okBletons of classes and aspects
are provided. However, for aspects, the code includes thqgobs that link advices with join
points that were specified in the Theme/UML model. Furtheanblecht et al. [58] state that
it is possible to generate code for the body of advices, simeated Theme/UML diagrams
provide enough information on the modification of systemmadats, which will be executing
during the aspects weaving process.

Nitto et al. [83] use UML as a language to describe processeésizo to validate modeled
processes. To allow the intended validation, UML modelstiamaslated t®ORCHESTRA Pro-
cess Support Systegf@PSS) models [33], which are executable models with fosaaiantics.

In an OPSS description, one process is divided into a@#/itierformed by agents. Elements

48

3.4. Code Generation

in class, activities and state diagrams are transformedPt®%elements. The application struc-
ture, which is specified in the class diagram, is translaieectly in Java classes (skeleton
source code) of the OPSS framework. State diagrams repriselifecycle of an object, and
are translated to Java code representing objects beh&ially, activities diagram describes
activities flow of a process, as well as associations amotigitees and agents. It is used to
produce Java code that represents the precedence rdigtiofigctivities execution.

The formalization of class and sequence diagrams has bepogad by Long et al. [76] in
order to allow code generation from UML 2.0 models. The peggbmodel semantics is based
on theRelational Calculus of Object Systeifrf€0S) semantics, which was devised to design
OO0 systems. That work generates skeleton code from clagsadia, and code for methods
body from the sequence diagram. The code generation digoiitterprets sequence diagrams
as a composition of messages sequences, allowing its usecftion of code from separated
fragments of sequence diagrams. Source code can be geherdyeif the model passes a
consistency checking. In that work, the code generatiom@@S language is demonstrated,
showing how class skeletons, containing attributes andyemethods, are created. Considering
the behavior, each message in sequence diagrams is traesfdo a method call in rCOS.
Nested messages are mapped to method calls in the body cdrinat pnethod.

The generation of SystemC code from UML models is investigian [2]. Initially, that
works assesses constructions of UML 2 and those of Syste@G@mparing them in order
to create a mapping between concepts of both languages. idéong structural specifica-
tion, UML packages are mapped to SystemC name spaces, andadiie classes and classes
with ports are mapped to SystemC modules. However, othestgpnon-mentioned classes are
mapped to standard C++ classes. Ports in UML have a requickd provided interface. On the
other hand, in SystemCsc_port must have exactly one interface, which corresponds to the
required interface of UML port. Provided interface of UMLr®is equivalent t@c_expor t
construct of a SystemC module. Regarding the specificaticcommunication among ele-
ments, UML communication can be modeled as signals, i.encisgnous messages, that are
sent through ports. The destination is specified using adorge At the receiving object, the
signal is stored in a queue and will eventually be consumed®yktemC, ports are connected
through channels, whose reference is stored in the pomglssistem initialization. Therefore,
to map the mentioned semantics from UML to SystemC, UML cotore are mapped to Sys-
temCsc_fi f o channels that connestt _export of a module tosc_port of another one.
Furthermore, to produce SystemC source code from UML mottedsnapping process is com-
posed by three stepsi) the initial UML description is manually annotated with thgsg&mC
profile; (i) the model is automatically transformed into a new UML deswn that includes
direct representation of SystemC construction, e.g. stiaigrams are translated to classes, in
which each method implements the behavior performed inta.stadditionally, UML con-
cepts without SystemC correspondence are removed from dldelrand(iii) the UML model
produced in the previous step is transformed to the correipg SystemC code. This trans-
formation is an one-to-one transformation. This System@eageneration approach has been
implemented as a plugin to the Telelogic Tau tool [63], usiaghe C++ code generation facil-
ities.

49

3. State of the Art Analysis

There is an interesting on-going research in the Embeddsi@®g Lab of the Federal Uni-
versity of Rio Grande do Sul, whose initial results were mlteld in [39]. That work proposes
a meta-modeling infrastructure, callddbdel-Driven Embedded System des{ifoDES), to
represent distributed embedded real-time systems in higkiel of abstraction. The goal of
MoDES is to provide a common infrastructure to various MD&dpas for example, high-level
design space exploration or code generation tools. Thabapp suggests a methodology that
applies successive refinements from an initial specifinatichich is a PIM, to an implemen-
tation model of the system using a selected target platfofime initial PIM (which can be
specified using UML, Simulink, or other modeling languag=ransformed into an application
model that is an instance of thieternal Application Meta-Mode{lAMM), which represents
application functionalities in a uniform manner. Likewisaodels of many implementation
platforms (e.g. SystemC, Java, VHDL, and others) are spddifsing a uniform platform rep-
resentation callethternal Platform Meta-ModelIPMM). The set of mapping rules is described
using theMapping Meta-Mode(MMM), which is used to guide the transformation of IAMM
and IPMM model in a system realization model nanraglementation Meta-ModéMM. The
IMM represents the implementation of the initial model .(i#e one specified using UML,
Simulink, etc.) using a selected target platform (e.g. Jat#DL, SystemC, etc.). Hence, itis
possible to generate code from the IMM.

3.4.3. Commercial Tools

This section presents some commercial CASE tools that altme generation from UML di-
agrams. During the study of the state of the art in code géoeranany tools with different
automatic code generation capabilities were found: frodecgkeleton for classes to tools that
are capable of generate configuration files for server ofibiged components such as CORBA
or Enterprise Java Beans.

Rational Rose [61] CASE tool has many different versiondwlifferent code generation
capabilities. All of them work on the previous version of UMiLe. the version 1.4. The
tool Rational Rose Technical Developer (previously calRedional Rose Realtime) allows the
automatic creation of Java, C and C++ source code. It gerseratde skeletons for classes.
However, if any code was informed in ti@detab of methods specification, this text is also
included in method’s body. Additionally, behavioral codmde generated from state diagrams.
This code generation follows the same approach, i.e. cayees in theCodetab of states.

Rhapsody [62] and Tau [63] are modeling tools from Telelpgibich was recently ac-
quired by IBM. Both tools supported the specification of UMLL Znodels. In addition, Tau
also supports SysML. Rhapsody can generate code for Adat€a@d Java, while Tau for C,
C#, C++ and Java. The approach to produce code is similaetR#tional Rose tool, i.e. both
Rhapsody and Tau generate code skeletons for classes edmaiiyr of methods must be written
in a special field in methods specification.

Borland’s Together [17] CASE tool allows the generation ade skeletons for class, and
also methods body. It uses the last version of UML (versiantd.automatically create code for
Java, J2EE, C++ and C#. Code skeletons are generated frarfafisediagram, while methods

50

3.4. Code Generation

body from the sequence diagram. The code generation carstmaed by means of changing
the generation templates.

Artisan Studio [6] (previously called Artisan Real-timeu8io) supports UML 2.0 and
SysML modeling, and also automatic generation of C, C++, &a#a and Ada source code
using external tools. It also generates code skeletons ¢tass diagrams. In addition, source
code for classes behavior is generated from state diagr&witions performed in each state
must be written (in the selected target language) in spéeidks in states specification. To al-
low code generation, UML elements must be decorated witkatypes of the target language,
and hence, external code generators can produce the rigstractions in the selected target
language. Furthermore, C/C++ code generation tool useslages allowing some customiza-
tion of the generated code.

Poseidon for UML [50] is a CASE tool that supports UML 2 modgli and implements
a script-based code generation, which uses the VelocityplgmEngine [3]. There are pre-
defined scripts for the following languages: C#, C++, CORBA | Delphi, Perl, PHP4, SQL
DDL, and VB.net. The designer can create its own code gedoaratript that accesses infor-
mation of the UML model to generate code for other targetlaggs. However, only the class
diagram can be accessed, and thus only code skeletons cesabedc

Other tool is the ObjectiF [80], which also uses a templatsell code generation approach
to produce code skeletons from class diagrams. This toal steeeotypes to assist in Java, C#
and C++ source code generation. ObjectiF can generate atitalty get() andset() methods
(with the corresponding behavior) for attributes that aeeadated with a specific stereotype.
Additionally, it generates attributes and methods représg composition, aggregation, and
plain associations among classes. Moreover, it can alstectiee implementation of unit tests
for classes using NUnit or JUnit.

The CodeGenie MDD toolset [40] provides a code generatiohthat takes as input XMl
files from executable UML models. Three levels of code gdimraare supported(i) code
skeletons for classegpresenting only software static structuf@) code skeletons with ar-
chitectural mechanisrincluding architectural mechanisms (e.g. event queuaskst circular
buffers, etc.) in addition to classes structure; éiifcode skeletons with architectural mecha-
nism and behaviocomplementing the previous level by adding behavioral geierated from
the state diagram.

3.4.4. Discussion

Code generation from UML model is not a new topic. As one cangeneration of code skele-
tons from class diagrams is a well-defined approach due tathe number of tools that can
generate this kind of code. Some of the presented works caerafe behavioral code from
state diagrams. However, a drawback can be pointed: dameodithe target application, state
machines are not the most suitable model of computationdorite the developed application
behavior. Besides, the specification of actions performestate diagrams is neither standard-
ized nor a common consensus. It can be done using programamggages or more abstract

51

3. State of the Art Analysis

textual action languages. Thus, proposals that use othdr hiavioral diagrams can be seen
as an interesting option to specify actions in an UML moddthdugh sequence diagrams are
used in some works, there is no mention on the use of new cutisins available in the UML

2.X, such as those to specify “ifs”, “loops” and others. lhestwords, only method calls are
generated that is not sufficient to generate the complete ftoth the UML model.

Other open problem is the interpretation of UML diagramstiiedt combination. Different
viewpoints offered by different model elements provide agkable information, which can be
combined to obtain the complete description of system stra@nd behavior. However, there
is no defined semantics for different diagrams integratibimerefore, interpretation rules must
be created to allow the extraction of a concise specificatioich, for code generation purposes,
must be unambiguous and simple.

Finally, it was observed that most of the approaches profiesenapping 1-to-1 between
model and source code, i.e. the more detailed a model isebigthe amount of code lines that
can be generated from it. However, the specification of esteesletails in the model decreases
a key advantage of using models: the visualization facditthe structure and behavior of the
modeled system. Including details in excess hinders mautkdnstandability, and also decreases
the reuse of its elements. In order to avoid unnecessarjigigtahe model, a code generation
tool could infer missing information on model elements lolage modeling guidelines. Hence,
using 1-to-N mapping rules between model elements and ¢ihesde, this tool could generate
code as complete as the completeness of the mapping ruleificai®on. Other way to keep
models without unnecessary details is the use of AO concdpitails that are not directly
related to the desired functionalities can be encapsulatadpects. Crosscutting behavior can
also be represented in this way. Therefore, the code gémeraol could be aware of the
adaptations performed by aspects, which would modify tiegded code. In other words, the
code generation tool could also perform aspects weavings,Tusing AO concepts at modeling
level allows the use of non-AQO target languages.

3.5. Discussion on the Open Problems

This section discusses open problem identified in the worksiqusly cited in this chapter.
UML is broadly used and well accepted in the domain of sofénemgineering for modeling
“general purpose” computing systems. Such situation has eawing the attention of profes-
sionals of other computing domains, such as embedded systechhardware designers. One
feature that is desired by great part of designer, in all aging domains, is the capability of
automatic source code generation from high-level spetifics, in order to decrease design
effort and avoid error prone manual coding activities.

Related work presented in secti@® compared some approaches that use UML in the
design of systems whose functionalities are implementeither software of hardware. Every
approach uses different diagrams to structure and behspeémification. This shows that there
is no consensus on which diagrams must be used to specifyrédoatied embedded real-time
system. Additionally, it can be observed that many of thegga@aches, e.g. [5], [82], [100]

52

3.5. Discussion on the Open Problems

and [7], use proprietary profiles to extend UML semanticsoetiog to their needs. Given
that UML does provide mechanisms to extend its semantiégegdbat with non-standard (i.e.
proprietary) profiles is not a good approach because thaehérthe specification understanding
by stakeholders outside the design task. The use of standdnarofiles, as in [96], overcomes
the mentioned problem. Thus using standard profiles prdvigeorganizations such as OMG
(the group that maintains UML standard) is a very importasté that must be approached by
new modeling techniques. Besides, excluding the work ptedeby Balarin et al. [7], none of
the presented approaches separate the handling of citrsgadncerns, which decreases the
modularity of artifacts (e.g. models or source code) cakat@revious projects, hindering their
reuse in new projects.

Approaches that separate the handling of functional andfunactional requirements are
presented in sectioB.3. The majority of the cited work aims at the design of software'gen-
eral purpose” computing systems, i.e. not embedded saftwarose developer do not have to
worry about constraints that are intrinsic to embeddedtiead systems domains, such as tim-
ing constraints, restricted processing power, limited mgnamount, or energy consumption.
The mentioned separation of concerns is becoming populdraindomain by means of using
concepts of the AO paradigm. Using aspects to handle critisgcnon-functional requirements
improves the modularity and the encapsulation of concefhsre are many attempts to adapt
the UML for representing AO concepts in models. The main teck of approaches, such
as [120], is that they propose changes in the UML graphicalasyinstead of using the UML
extensibility mechanism as [45] and [98] propose. Such ywaight extensions hinder the
language standardization. The use of lightweight exteiss{ioe. UML profiles) is preferable,
since they allow the use of any modeling tool that supporsstandard extensibility mecha-
nism of the UML specification. Furthermore, the useompaosite patternsvhich is proposed
by Clarke and Walker [31], allows the use of UML standard bieal representation without
modifications. However, the problem of this approach is thetspecification of the affected el-
ements is not scalable, i.e. it is not suitable to specifymasition relationships of crosscutting
concerns that affect a huge amount of other concerns, lgadiproblems in the specification
of large systems.

Considering the design of distributed embedded real-tiystems, there is little discussion
on the use of AO concepts. Few works can be found in the litezatMost of them are related
to the implementation phase of such systems instead oteddsign phases. [133] and [84]
are exceptions. Zhang and Liu [133] propose the use of assagpect to specify the handling
of timing requirements within UML models. Other importardrmfunctional requirements of
embedded systems domain are neglected. Additionally, gaeifecation of timing properties
(as notes in the class diagram) is hard to understand anchalstuitable due to the weak re-
lation with UML meta-model elements. Noda and Kishi [84] silee symmetric approach for
modeling crosscutting concerns likewise [31]. Althouglsian interesting approach, it suffers
the same drawback of [31] approach, i.e. the lack of scatiabiMoreover, mixed specifica-
tion using graphical elements and textual description®igiasirable, because it is not easy to
visualize aspects composition, i.e. which aspect crossmthier aspects. [123], [9], [99], and
[119] propose the use of AO in component-based MDE of emlibdgstems. The first three
approaches propose the specification of aspects and tregitadidns in terms of proprietary

53

3. State of the Art Analysis

text-based languages. Moreover, [123] and [9] use pra@siehodeling syntax to model sys-
tem components, while [99] uses Simulink syntax. Althouggnentioned modeling syntaxes
provide DSML to specify embedded system components, ttekydeandardization for specifi-
cation. Going towards the approaches that use AO for impitinge embedded systems, [119]
use aspects to check if there is a matching of requiredéafarformation by components that
are related with each other. [74] and [124] are implemematelated approaches, i.e. they use
AO programming languages to deal with crosscutting nortfonal requirements. Analyzing
the results reported by both works, one could conclude tiektare a lot of open issues that
can be investigated. Other crosscutting non-functionglirements, such as access synchro-
nization of shared resources, memory management, or coiatian issues, could be handled
with aspects at application implementation and targeffquiat tailoring. Moreover, the cre-
ation of a set of aspects to deal with non-functional regquo@ets from higher abstraction levels
(i.e. requirements specification and modeling) to more ERadevels (i.e. implementation and
platform tailoring) is a very interesting research topic.

Analyzing the mentioned code generation approaches, ibeatated that there is no for-
malization or even consensus for UML diagrams interpratatir integration of different dia-
grams. Such problem hinders the generation of completefoodemputing systems. However,
one exception is the class diagram, for which there is a “defined interpretation”. All pre-
sented works can at least generate code skeleton for specifigsses. Although useful, code
skeletons are a small fraction of all code that could be ggadrfrom the entire UML model.
The problem is that there is no consolidated approach targenkeehavioral code from elements
of other diagrams. Some works propose the use of state diagmhose actions are specified
using the target programming language or any other kind>atié¢ action language. Others
propose the use of sequence or activities diagrams but hooradtructions can be translated
to code in a given platform. Anyway, the generation of codetaiming the behavior specified
in the UML model is still not well defined compared to the gextien of code skeletons from
class diagrams.

Some directions for MDE of distributed embedded real-tiystesm were pointed, however
there are many open problems that can be addressed fronséaeck point of view. Those open
problems go from the formalization of models interpretatsmantics to the empirical use of
mappings to transform models into source code. In additismg AO concepts would allow a
better modularization and handling of crosscutting comeemnd non-functional requirements.
Code generation approaches could consider AO conceptisisgedthin UML models in order
to allow code generation for both AO and non-AO programmimgglages. Hence, besides
code generation, the tool could perform aspects weavingdargenerated code, and also tailor
the target platform based on the aspects specified in thelmAdiditionally, optimization could
be performed while reading the UML model or generating code.

54

Chapter 4

MDE process for DERTS design

4.1. Introduction

One of the goals of this thesis is to propose a design flow tica¢ases the abstraction level dur-
ing design of distributed embedded real-time systems, deroio address its complexity. The
proposed design flow must allow a smooth transition froniahgpecification phases to im-
plementation/coding phases. For that, #spect-oriented Model-Driven Engineering for Real-
Time systemfAMoDE-RT) design flow has been created. AMoDE-RT uses MOdaéues
combined with AO concepts to accomplish the mentioned gols important to highlight
that, to be effective, AMoODE-RT needs adequate tool supfuanich is also provided by this
work) in order to assist its use in the design of distributetbedded real-time systems. Figure
4.1 depicts an overview of the AMoDE-RT design flow.

Requirements . I q
w Analysis # Requirements I # mModeIlng
¥
DERCS
h RT-UML Model h RT-UML
Model Transformation Specification
© ©) @
GenERTICA
Code Compilation
Code Aspects Generated .

Generation = Weaving Source Code » o and Synthesis
@)

3

Distributed Embedded
Real-Time System
(1)

Figure 4.1.: Overview of the AMoDE-RT design approach

55

4. MDE process for DERTS design

4.2. Aspect-Oriented Model-Driven Engineering for DERTS

The first step in AMoDE-RT is gathering requirements and trairgs of the distributed embed-
ded real-time system. This is performed using the RT-FRIPpraach, which is an extension
to the FRIDA [10] requirements analysis approach aimingpatiyang it into the distributed
embedded real-time systems domain. RT-FRIDA is the re$atocmoperative work performed
together with the colleague Edison Pignaton de Freitasi®oWhSc. dissertation [37]. In ad-
dition to requirements analysis, the RT-FRIDA also shanestodeling step with AMoDE-RT.
A brief discussion of both steps is given in the followingagnaphs, and an in depth discussion
on AMoDE-RT modeling approach is presented in the next @rapor details on RT-FRIDA,
readers should refer to [37].

An overview of RT-FRIDA steps is depicted in figude2. The requirements identification
step is the first step and is divided in two activities that barmperformed in parallefunctional
requirementsspecification andon-functional requirementspecification. Firstly, a use case
diagram is created. It depicts all expected functionalifier the distributed embedded real
time system, and also the external elements that interdbtthése functionalities. For each
use case specified in this diagram, a functional requiresrtemiplate (see figure 3a) must be
filled. After that, the filled templates of functional reqerinents are analyzed regarding possible
conflicts. Thus a conflicts resolution matrix is created, imch the first row and first column are
filled with the IDs of functional requirements. If a funct@requirement conflicts with other
one, a “X” is marked in the cell that intersects row and colushnonflicting requirements.

For non-functional requirements specification, additicstaps are then performed. RT-
FRIDA provides checklists (see an example in figdrda) that assist in identifying the non-
functional requirements that have been presented in se2t® Answering these checklists’
guestions helps in the identification on which non-funaiomequirements affect functional re-
quirements. As performed for functional requirements gjpation, a template must be filled
for each non-functional requirement (see figdrab). In addition to checklists, there is also a
parser that can be used to identify key words in documentdenrin natural language, indi-

Requirements Identification

Functional
Requirements
Specification

Non-Functional Automatic
IRSequlrleme.nts - Identification
pecification

1 1
Mapping i {
Functional Concepts Aspects
Extraction Extraction DERAF

r' 3

[Mapping Table Construction J
- B |
Concepts Modeling *

UML Diagrams Drawing
Functional * Non-Functional
Seclla;sc/e?t:;?\t/it E ACOD
J Yo JPDD

State Machine

Figure 4.2.: Overview of RT-Frida

56

4.2. Aspect-Oriented Model-Driven Engineering for DERTS

cating the presence of unspecified non-functional requargm[37]. After that, there is also a
conflicts resolution step similar to the one in functionajuieements specification, i.e. design-
ers fill a conflicts resolution matrix indicating which nomatctional requirements affect others.

The second step of RT-FRIDA approach is the mapping of requents to (candidate) de-
sign elements. This is done using a mapping table as the peteldin figured.4b. As it can be
observed, rows indicate functional requirements, whileoms non-functional requirements.
If any non-functional requirement affects any functioneduirement, a “X” is marked in the
cell that intersects row and column of involved requireraerfeurthermore, this mapping ta-
ble links requirements to (candidate) design elementswailg requirements traceability from
requirements analysis to system design. Hence, the lasincoindicates which (candidate)
classes in the design model are responsible to handle dmattiequirement. Similarly, the last
row indicates which aspects are used to handle crosscutttingfunctional requirements. As-
pects are provided by a predefined aspects framework n&istibuted Embedded Real-time
Aspects FrameworfDERAF), which is discussed in details in the secttfof the next chap-
ter. It is important to highlight that this table is initiglfilled with candidate handling element
and, during the whole design phase, it can be modified/ugdaitd new elements that will be
included to the design model. Consequently, it is importarkeep this table updated in order
to maintain traceability of requirements to design elemamid vice-versa.

At the end of these two steps, designers have produced adetwients specifying func-
tional and non-functional requirements that the systeneuddvelopment must deal with, and
also the relationships among these requirements.

(@) Funtional requirements template (b) Non-funtional requirements template
Item Description Item Description
5 D This identifier allows requirements traceability over the whole project. 5 D This identifier permits the requirement
'ﬁ = traceability over the whole project.
Q Name Use case name. S
= — [= Name Crosscutting concern's name.
] Goal Description of the use case goals. E=]
@ - y — 5 Autor The person that is responsible for the
o Author The person that is responsible for the use case description. k-] corsscuting concern specification.
® Pre- A condition that must hold before the execution of the use case. Classification | Classification in which the concern belongs.
K] condition —
= c Post- Description Description of how the concern afect system
=] o A condition that must hold after the execution of the use case. c functionalities.
e o condition o
[T " = Afected Use |, .
o [P:::ca’:y Actors that are the source of the events for the main scenario stimuli _g Cases List of the use cases afected by the concemn.
L - - - E Context Determines in which situation a use case is
f(-’ Secondary Passwe_ acto_rs_th?t interact with the use case, but do not execute & affected by the concern.
Actor any action within its context. 7
" — (Global/Partial) The requirement is global if it
g g Priority tLrJ]sed Ito qu(:we th_e relatn;we ?poﬁalclt_:e_among use cases. There are Scope affects the whole system, and is partial if
»TE ree levels: Maximum, Medium, Minimum. afects only part(s) of the system.
k] % % A requirement can be in one of the following situations: = — -
[S| Situation |0 - Identified; 2 - Specified; 4 - Canceled; c Conc_ern s importance _regardlng other non-
a w 1- Analyzed; 3 - Approved; 5 - Finished; © g Priority functional concerns. Higher numbers
c s represent higher importance.
Main Describes the main flow of the use case, as well as its results, o 3 -
(Normal) |without condiser error conditions. 0 g 0 - Identifyed; 3 - Approved;
Paths - g w Status 1-Analysed; 4 - Canceled;
Alternate |Describes the alternate flow to the use case. a 2 - Specifyed; 5 - Finished;
Exception |Describes a exceptional situation in the use case flow.
. Main Describes the main steps of the use case scenario.
Scenario — - - — -
Variations |Describes steps that modify one or more steps within the scenario.

Figure 4.3.: RT-FRIDA templates for requirements spedifica

57

4. MDE process for DERTS design

(a) Checklist example

Relevance | Priority | Restrictions / Conditions / Description

Time
Timing

Movement Control; Environment Sensing; Main

L L S
Is there any periodic activity or data sampling? X 8 Rotor Sensing; Back Rotor Sensing;

Is there any sporadic activities?
Is there any aperiodic activity?
Is there any restriction in relation to the latency

N L X 9 Corrective Action
to start an execution of a system activity?
Is there any specific instant to start or finish an
execution of a system activity?
Was any WCET specified? Or at least, is there X 10 The smapled data of both rotors must be ready at a

any concern about this? maximum of 10 ms.

(b) Requirements mapping table

Non-Functional Requirements FR handling
ID | NFR-1 | NFR-2 NFR-n elements

_ 2| FRA1 Class1, Class3
5
S | FR2 Class2
38

x| FR-n X ClassN
NFR handing Aspect2

elements Aspect Aspect3 AspectN

Figure 4.4.: Other tools provided by RT-FRIDA

These documents are then used in the next phase: systemimgodéViL diagrams anno-
tated with the stereotype of the MARTE profile [94] are useahtmlel the structure and behavior
of distributed embedded real-time systems. In this phab#, bhodels are created and succes-
sively refined up to achieve the desired level of detail, jgliog sufficient information to allow
system realization. In the initial UML model, elements dése concepts that are closer to the
target application domain, e.g. sensors, steering dewvizdsnes, speed and trajectory informa-
tion, robot arms, etc. These elements represent problemaidaroncepts, hiding details about
their implementation. Higher abstraction levels are edsi@nderstand, and allow designer to
focus on applications foundations instead of concerningubmplementation issues. Thus,
they represent the handling of functional requirementsplidption elements can be reused
from previous designs, and hence, it is possible to cregsiries of application domain el-
ements. Such elements can be made up of many different UNtheglts and/or diagrams. For
instance a robot arm can be compound of three joints and pegripo reuse this domain-level
element, at least five classes (three for the joints, ondéogtipper, and the composite class for
the robot arm) are reused. Additionally, behavioral diaggalescribing robot arm’s behavior
could also be reused.

The specification of non-functional requirements handiggone with assistance of as-
pects provided by DERAF. They are used in two mome(ijsn modeling phase (see section
5.3.2; (ii) in implementation phase, more specifically, in code germr@spects weaving step
(see chapter 6). During modeling phase, aspects are chased bn their high level semantics
to handle crosscutting non-functional requirements. Ratiaince, th€oncurrentAccessControl
aspect deals with issues on concurrent access control @fdshesources. Hence, if the system
has this non-functional requireme@pncurrentAccessContralspect is selected and specified
in the Aspects Crosscutting Overview Diagrg®COD). Moreover, based on information of

58

4.2. Aspect-Oriented Model-Driven Engineering for DERTS

the mapping table created previously, designers mustfgpehich UML model’s elements are
affected by this aspect. For that, designers crdate Point Designation Diagram&PDD),
which are special diagrams that specify model elementstsate JPDD, which can be stored
in a repository and reused in further designs likewise DER#Spects, are specified using com-
mon UML modeling tools with support to profiles. Details ondeting both functional and
non-functional requirements are given in the next chapter.

At the end of modeling phase, designers have created a UMIehtluat specifies elements
to deal with the functional and non-functional requirensentsing, respectively, OO and AO
concepts.

Although increasing abstraction level during design isdyfi managing complexity, the
higher the abstraction level is, more are the chances of@mbs or even erroneous inter-
pretations of the same specification. Usually, high levek#jrations cannot be executed in
computational devices (e.g. microprocessors, integratedits, or Programmable Logic Con-
trollers (PLC)) due to their incomplete semantics and/ok laf sufficient details. To overcome
these issues, specification ambiguities must be removedalan computational elements (e.g.
FIFO queues, scheduler, synchronization mechanisms, thedsp must be included into these
high-level specifications. A transformation of the initrabdel into a more concise one must
happen. AMoDE-RT's third step performs the transformatdrthe UML model annotated
with MARTE profile stereotypes into an instance of bistributed Embedded Real-time Com-
pact SpecificatiofDERCS), which is a PIM suitable to code generation and mexretution
purposes. By transforming UML into DERCS, the informatiam system structure, behavior
and non-functional requirements handling, which is spmart different UML diagrams whose
information may overlap each other, is combined in fewer@mtise elements in DERCS rep-
resentation. For more information on UML to DERCS transfation see sectiof.2

The next step is source code generation from the DERCS mAdehentioned, one of the
goals of this work is to provide a smooth transition from highel models to the implementa-
tion of distributed embedded real-time systems. Thus, a gederation tool calleGeneration
of Embedded Real-Time Code based on Asp&tsnERTICA) has been developed. In fact,
GenERTICA performs not only code generation, but also aspeeaving. The code generation
process executes a set of scripts (mapping rules) to perfardel-to-text transformations from
DERCS elements to constructions in the target platform.

Mapping rules are specified as small scripts that creates@ade fragments (representing
target platform constructions) for elements in the DERCSlehoSource code files are made
up of these generated code fragments. Scripts are storedrgawized in mapping rules files
specified using the eXtensible Markup Language (XML) [129Tviat. Therefore, it is possible
to create a repository to allow the reuse of previously eatcripts and mapping rules for
platforms. The code generation process iterates all elesni@oking for the script that defines
the mapping from the element being evaluated into suitatmsteuct(s) in the target platform.

Additionally, if the element under evaluation is affectgdamy DERAF aspect, the aspects
weaving process is performed after the generation of the é@yment. GenERTICA uses
aspects implementations to modify code fragments, i.engénsin generated code fragments are

59

4. MDE process for DERTS design

performed by implementations of aspects adaptations. eTisalso the possibility to perform
adaptations in DERCS model elements before generating cbldes, GenERTICA provides
code and model aspects weaving. It important to highlight tnplementations of aspects
adaptations are scripts similar to “normal” mapping rulespss. Hence, it is also possible to
create repositories of different implementations for tame aspect adaptation, depending on
the target platform. Moreover, DERAF aspects are also usedilbr platforms, in the sense
of configuring the selected target platform by adding onlgvises that are required by the
application. More details on GenERTICA, and also the codeeg®ion and aspects weaving
processes are given in chapter 6.

The last step of AMoODE-RT is the use of a third party tool to pilmand synthesize the
generated application code. In addition, the generatetfiopta configuration files are used
to configure the final platform that will be deployed. Afteaththe realization of distributed
embedded real-time system being designed is ready to batexear tested.

4.3. Adaptations in the SEEP design flow

As already mentioned, this work was developed within thepeoaf the SEEP project. Thus
it proposes adaptations to the original SEEP design flowydieroto accommodate the pro-
posed AMoDE-RT design flow, as depicted in figut®. The start of SEEP flow has been
extended to incorporate steps 1, 2 and 3 of AMODE-RT (seedi¢n). Thus, in the original
“High-level Model” step, “Requirements Specification” atfeinctional Specification” were
substituted by, respectively, “Functional RequirememscHication” and “Non-Functional Re-
quirements Specification”. A “System Model Specificatiotépshas been included after re-
guirements specification. In this step, designers can repphcation elements and DERAF
aspect in the UML model, as mentioned above. The result sfstieip is the “Complete System
Specification”, which is the created UML model whose diagsame decorated with stereotypes
of the MARTE profile. After that, a “Remove Ambiguities fromddel” step was added. It rep-
resents the transformation of the UML model created in tlegipus step into a DERCS model,
which is represented by the “Compact System Specificatiax bt is important to highlight
that the DERCS model can be used as input to the system etipioeectivity, which incorpo-
rate the platform-independent computational elementdioresd in the previous section. Thus,
different implementation of these elements can be evaluatel the one that best fits system
requirements can be selected.

Other proposed extension to the original SEEP design flowpscted in figured.5h. After
the “Architectural Exploration”, a “Code Generation + AsfeWeaving” activity has been
included — it appears after the “Macro-Architecture withnEtional mapping” box in figure
4.5, This code generation activity represents the forth stepMdDE-RT design flow, and is
performed by the GenERTICA code generation tool. Repasgaf mapping rules and DERAF
aspects implementations were included in SEEP design flee/flgure4.5c). Both mapping
rules and aspects implementation rely on the platformdadblaiin the platforms library (see
figure 4.5d). GenERTICA reuses elements of these repositories tonpeithe code generation

60

4.3. Adaptations in the SEEP design flow

and aspects weaving processes. As result of this activityce code files for both software and
hardware are created. Further, these source code filesetérughe compilation and synthesis
step, and can also be tested using the SEEP test approactiy, Fgal implementation of the
distributed embedded real-time system being designecdtasneial.

e e === === ===== 1
1 High-Level Model I
| Functional Non-Functional
1 Requirements Requirements 1
| Specification Specification |
< 7 I
! (aprioaton DERAF |)
e High-Level
| Aspects 1
|
1 -
I Complete System 1 9 validation
" Specification I
I |
I |
I |
|
: Compact System I
Specification
(E—— | I(a)

System
Exploration

High-level Exgcutable validation
g Description

.......

....... Macro-architecture
etz — = — o —Wilh functiopal _ ._alvalidation
mappm I
I_ Mapping
] Rules 1
2 H 1
(e —=|: |
! I
1
I

v 0
ALTTT N

DERAF [L2
i1 | Implement. [
I Library _J}|| SWand RTOS HW Source
: + - Source Code

o

Communication
synthesis

I Software | | Micro-architecture I 2 validation

Figure 4.5.: Adaptations proposed to SEED design flow

61

4. MDE process for DERTS design

62

Chapter 5

Specifying DERTS Using UML and
Aspects

5.1. Introduction

This chapter discusses the distributed embedded realdystems specification, in terms of
modeling their structure, behavior, and non-functiongureements handling. The word “model”
has very different meanings, which are related to contexthiicth it is used. In the context of

this work, models are simplified descriptions of computiteeents that are being developed
to provide the expected functionalities for a computingesys which must cope with applica-

tion/domain requirements.

As stated in chapter 4, this work uses UML to specify modelslisfributed embedded
real-time systems. However, as UML lacks specific syntaxanslfficient semantics to de-
scribe embedded and real-time system domain concepts, [A3tpset of the MARTE profile
stereotypes is used to complement the system’s featuresisaton.

This chapter discusses guidelines to create UML models;iwhiust be followed to allow
the transformation of UML models into DERCS models for codaayation purposes. In fact,
in addition to suggestions on the diagrams selection, thes#eling guidelines define some
restrictions in modeling activities, allowing a correcis®m specification interpretation and
transformation. Hence, the information on structure, bilmaand non-functional requirements
handling that is spread over different diagrams can be coedbin the DERCS model. The
discussion is divided in two partsi) specification of functional requirements handling, which
approaches the use of some UML diagrams to specify the steueind behavior of systems;
and (ii) specification of non-functional requirements handlingjolrexplains how to specify
AO concepts in UML models.

63

5. Specifying DERTS Using UML and Aspects

5.2. Functional Requirements Handling Elements

5.2.1. Introduction

The current version of UML specification, namely version 2], supports 14 diagrams,
whose brief description is given as follows:

e Structural Diagrams show a complete or partial view of system’s structure. Al
diagrams are:

— Class Diagranshows system static structure in terms of classes andaotsf their
attributes and operations, as well as relationships amueg;t

— Composite Structure Diagramtepicts the system structure as hierarchically linked
blocks. The internal structure of a structured classifieshigwn as parts intercon-
nected by ports, which are linked to interfaces;

— Component Diagranprovides a component view of system structure, i.e. it shows
classes and their instances as components. Relationskipspaesented as provid-
ed/required interfaces;

— Deployment Diagrandescribes the system architecture, by means of assigning ob
jects onto execution platforms;

— Object Diagramdepicts the dynamic structure, i.e. class instances arndrtia-
tionships, at a specific instant;

— Package Diagranshow the system as a set of packages that represent thel logica
grouping of classifiers; and

— Profile Diagramis very similar to the class diagram, but instead of showlagses,
this diagram depicts stereotypes.

e Behavior Diagramsdepict complete or partial expected system behavior:

— Use Case Diagranshows system’s main functionalities in a very abstractitash
as well as external actors that interact with the system;

— State Machine Diagrardisplays hierarchical finite state machines, which are com-
posed of composite states with one or more orthogonal statese states machines
are an extended version of Harel’s statecharts [54];

— Activity Diagramdepicts system behavior in terms of activities and contia.fl
Activities use a Petri net-like semantic, i.e. its exeautggmantics is based on
tokens. Additionally, there are special kinds of nodes teatesent forks, joins,
branches, and others;

— Interaction Diagramsshows the communication among concurrent objects. There
are four kinds:

64

5.2. Functional Requirements Handling Elements

x Sequence Diagramhow multiple objects exchanging messages during their
lifetime. Objects are represented as lifelines. Messaghi&gh can be syn-
chronous or asynchronous, are represented as horizamtal fiom one life-
line to another one. There are also special constructicatsrépresent loops,
branches, concurrent messages exchanges, and others;

x Communication Diagranms similar to the sequence diagram, but instead of
showing messages exchanged over time, it shows only theagesserder with-
out any special control flow element;

« Interaction Overview Diagrans a special kind of activity diagram, in which
the nodes represent sequence diagrams instead of astiwitid

« Timing Diagramrepresents discrete values or states changing while tissepa
It is similar to continuous waveforms.

For more details on UML diagrams, interested readers aeeresf to [15] and [92].

According to Vanderperren, Mueller and Dehaene [127],rméttion captured in UML
models is often redundant and overlaps. Consequently,nibtisiecessary to use all of these
diagrams to model a distributed embedded real-time systeapending on the used design
method and project goals, only some of them are useful. Meresome diagrams are more
suitable (or clear) than others to specify system chairiatitey in a given target application
domain. For instance, although activity, state and sequeéimgrams are behavior diagrams,
sequence diagrams show the behavior related to objectamgicly messages in a better way
than activity or state diagrams allow, in spite of all of theauld express such actions.

In this sense, AMoDE-RT modeling approach restricts UMLges#o eight diagrams:
() use case diagrantii) class diagram(iii) sequence diagran{iv) composite structure dia-
gram;(v) deployment diagram(yvi) activity diagramjvii) state diagram. However, only (i), (ii)
and (iii) are mandatory, the other diagrams are optional.m&sitioned, to allow information
contained in these diagrams to be correctly extracted, randformed into a DERCS model, a
set of modeling guidelines for each diagram has been createdmust be followed. The fol-
lowing subsections discuss these guidelines, providiagnges on how to create the supported
diagrams.

5.2.2. Specification of System Expected Functionalities

As mentioned in chapter 4, the use case diagram is used to thleomain functionalities of
the distributed embedded real-time system being desidrigdre5.1depicts a sketch showing
elements that are important in the AMoDE-RT approach. Thiek'snan” is the graphical
representation of an actor, which represents a role playeduser, thing, or any other system
that interacts with the system. Ellipses represent usescaggch indicate a set of actions
performed by the system that yields an observable resuisimcéated actors. In other words, use
cases represent the main expected functionalities. Itp®itant to highlight that crosscutting
non-functional requirements, which affect system fundidy, are also represented in the use

65

5. Specifying DERTS Using UML and Aspects

case diagram. Therefore, the information of the mappingetathich has been created in the
requirements analysis (see chapter 4 and [37]), is usedctorate uses cases with stereotype
indicating the first-level of non-functional requirementassification presented in figugel of
section2.3. These stereotypes are shown in figbré as«NFR_* » stereotypes. Hence, the
traceability between requirements and model elementsniforeed.

=

Left Wheel
Actuator

<<NFR_Timing>>
Control Wheelchair
Movement

<<NFR_Embedded>>

Sample Movement
Information

_<<include>x

Figure 5.1.: Graphical representation of system requirgsne

5.2.3. Specification of System Structure
5.2.3.1. Class Diagram

The main diagram to describe system structure is the claggain. As expected, this diagram
describes the static structure of the distributed embeddaktime system under design. It
shows all classes that are responsible or related to theihgraf functional requirements.
Figure5.2shows an example of such diagram.

The proposed modeling approach assumes the common and séd# this diagram, i.e.
classes are depicted with their attributes and method siggg as well as their relationships
with other classes. Names of classes and attributes musibiséastives to represent elements,
which are relevant to the system or their characteristicsth® other hand, method names must
be verbs to represent activities performed by objects df slesses. This haming convention
must be also followed in interfaces specification. Furttmam class names are used to fill
the mapping table of RT-FRIDA in order to allow traceabilligtween design elements and
requirements specification.

One important feature to be observed in fight@ is the use of stereotypes decorating
certain elements. As mentioned in sectidd.2 encapsulation restricts the access to class
attributed by means of providing access methods. Hencel#ss needs to access an attribute
of other class, the designer must inclugie and/orsetmethods for that purpose. Such methods
are specified as in the clasfovementControlleri.e. axgett er » or «set t er » stereotype
must decorate, respectivelget and set methods. The attribute that is accessed by them is
specified using the tagged val@dtribute Later, in the transformation of the UML model into
a DERCS model, this information is used to automaticallyegate the corresponding behavior
of such methods.

Taking into account the specification of concepts that aeeifip to the real-time domain,
the UML model can represent active and passive objectsvéotdjects are resources that are
able to perform actions concurrently with other active ot§g24, 94]. Hence, the proposed
approach assumes that active objects include their owadhwoé control. Classes that repre-
sent active objects are decorated with the stereoifehedul abl eResour ce» from the

66

5.2. Functional Requirements Handling Elements

-movinfo

<<MutualExclusionResource>> P oftWhesl ‘ 1
Movementinformation Actuator i o MovementControlSystem
1 1

-Mode : int

+setActValue(value : float) |-rightWheel +shutdown()
+setMode(newMode : int) : void +getActValue() : float y 7
+getSpeed() : float - —ctrl $1
+getMode() : int -act 1
+processDate(newData : int) 1 <<SchedulableResource>>
+storeDate(newData : int)

MovementController
-info T 1 -newActuationValue : float

<<getter>>+getActuationValue(){Attribute = newActuationValue}
K———]<<setter>>+setActuationValue(){Attribute = newActuationValue}
+run()

+savePreviousMode()

AbstractController

#processinfo(speed : int, angle : int) : float

Figure 5.2.: Specification of the static structure

MARTE profile, as the clasMovementControlleiin figure 5.2 On the other hand, passive
objects are resources that perform actions in responséntalisbf both active or passive ob-
jects, meaning that a passive object can eventually be sede®ncurrently in the context of
more than one active object execution flow (i.e. thread)hdfdoncurrent access of such ob-
jects needs to be synchronized, classes that represekirttiisf object must be annotated with
the «Mut ual Excl usi onResour ce» stereotype of the MARTE profile. Thdovementin-
formationclass in figures.2 is an example of controlled shared passive object classss€4a
without any stereotype or decorated witResour ce» stereotype are interpreted as passive
objects with concurrent access synchronization.

Multiple inheritance is not allowed, i.e. one class can haly one parent class as speci-
fied in the generalization relationship betwédovementControlleand AbstractController If
classes, which are children of different parent classex teeshare some features, an interface
specifying these features should be created. Then, thaseed should be linked to this inter-
face by means of the interface realization relationshifhe®three relationships are supported:
() association{ii) composition; andiii) aggregation. In all of these relationship at least one
association end must dgone), i.e. only the following cardinalities are allowedtatl, 1-ton,
1-ton..*, and 1-to-* (wherenis a positive natural number). Hence, many-to-many reiatigps
cannot be specified. Additionally, at least one associatimh must have a hame, and must be
navigable, indicating that objects of the class represkehyeone association end can commu-
nicate with objects of the class represented by the navégatdociation end, e.g. in figube2,
act indicates thaMovementControllés objects can interact witActuators objects. During
the transformation of the UML model, information of the rgafble association end is used to
create an attribute in the class of the other association Einese constraints were imposed in
order to provide a precise interpretation of these relatigrs during the transformation of the
UML model into the DERCS model (for details see sectiod).

5.2.3.2. Composite Structure Diagram

Besides the specification of the static structure of theidiged embedded real-time system,
designers can also specify the dynamic structure (or pait) aking the composite structure

67

5. Specifying DERTS Using UML and Aspects

diagram. In the context of this work, dynamic structure nsciie set of active and passive ob-
jects (i.e. class instances) that compose the system. dadgiimentioned, the use of composite
structure diagram is not mandatory. The information onesyisbbjects can also be extracted
from the sequence diagram by means of its lifelines. Howexing this diagram is particularly
interesting in the design of systems that do not create ness éhstances after the initialization
phase, as usual in hard-real time control system, due tersysbnstraint or application require-
ments. Thus, all objects required in the system executi@s@leould be specified in a single
composite structure diagram. Figle3 shows an example of composite structure diagram.

As can be seen, the whole system under design is representedlass flovementCon-
trolSysten that encloses its set of active and passive objects, whekiepicted as rectangles
likewise classes in the class diagram, efgl (active object))eftWheel rightWhee] andmov-
Info (passive objects). The difference is the syntax for nameifspation in such classifiers:
“object_name : class_name [amount_of objéctdfor objects that make up other objects,
object_namenust be the name of the navigable association end of theatdspeomposite/ag-
gregation relationship in the class diagram, e.g. inswméé\ctuator inside MovementCon-
trolSystemthat refers to “leftWheel” and “rightWheel” compositiongpicted in figure5.2
Moreover,amount_of _objectdefines the amount of instances of a given class, ampvinfo
: Movementinformation [I]represents one object of tidovementinformatiomrlass. Two or
more instances of the same class can be indicated using neimbie brackets, or different
rectangles (each one having a uniqgue name) as demonstndieft\ivheel” and “rightWheel”
objects.

As one can see in figu 3, composite relationships are specified as solid lines mgtea,
and aggregation relationships as dashed lines, e.g. “oliggct insideMovementController
that refers to “info” aggregation depicted in figuse2 On the other hand, normal associations
are depicted as lines linking objects, e.g. “act[0]", “a4¢t[that represent the association with
the same name in figuie2

Composite structure diagrams also depict MARTE stereastypdiich were used in the
class diagram to refine classes’ semantics according toeptsof real-time and embedded
domains, facilitating the differentiation of active objgdrom passive ones. However, it is
important to highlight that, as this information is represel as instances of UML meta-model
elements, it does not need to be specified twice. Hence, itheeneed to re-annotate objects
with the same stereotypes used in the class diagram. Durangrdnsformation of the UML

MovementControlSystem

<<SchedulableResource>> 4|act[0] leftWheel : Actuator [1] |
ctrl : MovementController [1]

act[1]
_________ ; 4| rightWheel : Actuator [1] |
| <<MutualExclusionResource>>
| info : Movementinformation [1] 1 info <<MutualExclusionResource>>

movinfo : Movementinformation [1]

Figure 5.3.: Specification of the dynamic structure

68

5.2. Functional Requirements Handling Elements

model into the DERCS model, such information is obtainethftbe meta-model elements of
the class diagram.

5.2.3.3. Deployment Diagram

Other structural diagram used in AMoDE-RT modeling apphoiscthe deployment diagram,
which specifies on which computing device (e.g. devices piititessors and memory, ASIC or
FPGA hardware devices, or hybrid devices) objects exebate behavior, as well as in which
kind of platform they are implemented. Figusglshows an example of such diagram. Different
computing devices are specifiedrazdesin deployment diagrams, while different platforms as
artifacts placed inside these nodes, elode_landNode 2are computing nodes, arlldva
andC++ are platforms representing node’s implementation. Objact specified as instances
linked with artifacts througimanifest relationshipsTherefore, objects are deployed in the node
(or computing device) that owns the artifact associatechémnt e.g. ctrl is an active object
implemented as software using a Java platform;laeft?vheelandrightWheelare implemented

in C++.

Objects that are linked with artifacts in the same node sepribocal objects On the other
hand, objects linked with artifacts residing in differeides are consideredmote objectsAt
modeling level, the semantics of the communication amongllobjects is the same as remote
objects, i.e. one object sends a message to another, waitingt for a response. The same
is true for objects modelled as implemented as softwareoar@drdware. The differentiation
among messages sent to local or remote objects is done duriteggeneration phase by Gen-
ERTICA that evaluates nodes on which source and target tshjeglated to sending message
actions) are deployed. However, it is important to highligitat there are some non-functional
requirements related to distributed objects communinafitney are handled by aspects of DE-
RAF, allowing designers to focus on concepts of the targptieation domain instead of on
implementation issues, as explained in the sedi@n

<<MutualExclusionResource>>
Node_1 movinfo :
Movementinformation Node_2
<<art|fact>>D <<n1\anifest>> <<ar1ifact>>D <<ar1ifact>>D
Java | ||} === = = -
Java C++
_______ L — — e T
<<manifest>> <<manifest>> = .
| leftWheel :_ <<manifes>> <<manifest>>
<<SchedulableResource>> Actuator - -
ctrl : \i rightWheel :
MovementController | MCS : MovementControlSystem | Actuator

Figure 5.4.: Specification of objects deployment

69

5. Specifying DERTS Using UML and Aspects

5.2.4. System Behavior Specification
5.2.4.1. Sequence Diagram

System behavior is specified as a combination of differentLU\R behavior diagrams, i.e.
different diagrams of the same type, such as different semudiagrams, as well as different
kinds of diagrams, such as a combination of different secpighagrams with state and/or
activity diagrams. In AMoDE-RT modeling approach, the sawpe diagram plays the main
role for describing the behavior of a distributed embedded-time system. It was chosen due
to its intuitive syntax to depict objects communicatingtweich other (i.e. message exchanges),
as well as its capability of controlling the execution flowthimn the diagram. As explained in
the following paragraphs, a set of reserved words has besatedt to represent other kinds of
actions, such as value assignment to variables or objetiuaés, evaluation of expressions,
and objects state changes. Consequently, it is possiblpettifg most actions a distributed
embedded real-time system needs to perform as its behavior.

There are some modeling rules that must be followed in omlellbw the combination
of the behavior information spread into different sequediegrams. Figureés.5 depicts an
example of a valid behavior specification using a sequenagrain. All lifelines represent
active or passive objects, whose name must be either the ohare attribute or a variable.

<<Scheduler>> <<SchedulableResource>> act : Actuator <<MutualExclusionResource>>
sched : Scheduler ctrl : MovementController info : Movementinformation
I I | I
I 1: run() I | |
| <<TimedEvent>> | 2: setActValue(value="0") R |
{every ="(15,ms)"}
3:
| | loop - — = — — — tmpAct : Actuator I
| | [i=0;i<10] | |
I I alt T 4: getActValue(R I
' ! ww2==o [l _ _ _sresut I I
I I | T I
| | | 6: setActValue(value=result) | |
l l 7 il T 7igetAcvaey 1 l
| | felse] | : getActValue() R |
I 8: result
[[gK-————=-—- - — [
[[I i [
| | | ; 9: ASSIGN(j, i+1) | |
[[| | [
| 10: processinfo(speed=| angle=) |
] 11: setMode(newMode=10) I
[I 1 L
| " & 1 [II:I
o

I 12: ASSIGN(int var1| angle*0.9) | I
| [speed > 100] | 13: getSpeed() | _ |
| | 14: speed | JII
| | | |
T 1 I

Figure 5.5.: Specification of the behavior in terms of actiperformed by objects

70

5.2. Functional Requirements Handling Elements

Therefore, an object that sends a message to other objetbmuslated to it through either a
relationship between both class (specified in the clasgatiag or the creation of this object
(as a local variable) within the context of its methods’ hétia For example, the third lifeline
(from left to right) represents the association relatigmdbetweenMovementControllerand
Actuator classes, whose association end has been named as “actlgsgeliagram depicted
in figure5.2). As mentioned in the previous section, this associati@hrepresents an attribute
with the same name in tHdovementControllerallowing the communication between objects
of this class and objects of tictuatorclass.

However, there is an exception of this naming rule: the fifstihe does not need to rep-
resent any specific object. Hence, it can have any name dimgjuhe “*” wildcard charac-
ter, as depicted in figur®.6), and does not require any associated object. This is pessib
because the transformation algorithm usually interpretssages departing from the first life-
line as the beginning of an actions’ execution flow. For examin figure5.5, “message 1"
indicates the beginning of the behavior MiobvementControllerun() method. The same is
valid for messages “1” and “6” in figur6.6 that represent start of, respectivelovement-
Controller.processinfo(andMovementinformatiosetMode()methods’ behavior Although the
relaxed naming rule, there is a pitfall in the specificatibmessages sent to the first lifeline: if
the message is sent from other lifeline to the first one, emgessage 5” in figuré.6, it means
a sending message action, and hence, the first lifeline nepsésent an object to allow the
correct interpretation of this action. The transformatagorithm will try to find the method
associated with the message (in this case, the meatkratid()), but will succeed due to the lack
of associated object. In other words, the situation preskint figure5.6 represents an invalid
message flow due to the lack of any object and/or class agsddimthe first lifeline, i.e. the
name “*” indicates that the lifeline can represent any objec

Furthermore, considering the execution flow depicted imsgage diagrams, messages must
be specified according a nesting constraint: it is expedtatithe next message departs either
from the lifeline that has received the previous messagé&oar one of the lifelines that had
sent any previous message. In this sense, the diagram f@serigure5.5 represents a valid
flow, because all messages have been specified accordingaustinaint. Considering this se-
guence diagram, let's assume a “imaginary” execution flat plasses a control token from the

<<SchedulableResource>> <<MutualExclusionResource>> | | act : Actuator
ctrl : MovementController info : Movementinformation
= 7S 7S =
1: processlInfo(speed=, anglef) | |
| 2:getMode()

par

[proc_1]

p-h 3:setMode(newMode=10)

4: savePreviousMode() | |
I u
|
|
|
|

5:invalid()

6: setMode(newMode=)

7:savePreviousMode()

8: setActValue(value=150))

|
|
|
|
|
|
|
L

Figure 5.6.: Invalid behavior specification using sequatiagram

71

5. Specifying DERTS Using UML and Aspects

sched : Scheduldifeline to ctrl : MovementControlledifeline in “message 1”. This token is
forwarded from this lifeline taact : Actuator (“message 2”), which, in turn, passes it to the
tmpAct : Actuatolifeline (“message 3”). After the instantiation éictuatorclass, the token is
returned to thact : Actuatorlifeline. Following, the token is passed agairttgpAct : Actuator

in either “message 4" or “message 7", returning back to tlewipus lifeline (i.e.act : Actu-
ator) after the execution of the behavior specified within theresponding alternative in the
combined fragment. Finally, after the execution of thegrgsient action specified in “message
9” (explained in the following paragraphs), the token isireed toctrl : MovementController
lifeline. Further, “message 10” specifies a recursive ngessahich indicates the beginning
of MovementControlleprocessinfo(method behavior (the darker part in the lifeline). Thus,
all messages sent from this lifeline part belongptocessinfo(y behavior. Likewise explained
previously, the execution token flows among lifelines retipg the message nesting order. In
this example, it is important to note that almost all messdgay. messages 1, 2, 4, 6, 7, 10, 11,
and 14) have been specified as synchronous call operatiosagess meaning that the execu-
tion of the calling method'’s behavior must be held until théed method returns the execution
control token.

On the other hand, figurg.6 shows an invalid behavior specification using sequence di-
agrams. It describes a broken execution flow due to “messag@r&e reading this diagram
according to the mentioned messages nesting constrasexpected that “message 3” departs
from info : Movementinformatiarctrl : MovementControlleror “*” lifelines rather than from
act : Actuator Hence, the specified execution flow violates the expectesbages nesting or-
der. Nevertheless, if “message 3” and “message 5" (as @qulain previous paragraphs) are
removed, the sequence diagram depicted in figuBdecomes a valid behavior specification,
due to the compliance with the mentioned constraints.

As mentioned, sequence diagrams are key diagrams to systeawibr specification. They
are intended to depict objects interactions in terms of agess exchanged among them. How-
ever, behavior of distributed embedded real-time systeamsat be fully specified using only
sending messages actions. There are other equally impadtons: (i) values assignment to
object attributes or variable§j) evaluation (or execution) of mathematical or boolean expre
sion; (i) explicit changes in the object statdiv) array-related actions, such as insert/remove
elements, get/set element values, or get the array lengd piioblem is that there is no avail-
able construction in sequence diagrams to specify sucbractiThus a set of reserved words
was created to specify these actions. Tdblepresents the created reserved words, which are
used in the specification of message names to represent thimneal actions. In order to allow
the correct interpretation of such names during the tramsftion phase, the syntax depicted in
table5.1 must be followed.

Other important feature in behavior specification is thetiwdrof execution flow using
constructions such as branches or loops. Since the apmbUHVL 2.0 superstructure spec-
ification, sequence diagrams allow the specification ofrabgbnstructions, namecbmbined

1The term “state” in the context of OO can interpreted as twmmlementary definitions(i) values of object’s
attributes at a given instant; and/@i a explicit state, which is generally specified in a state rimechin this
work, “object state”, “state of the object”, or simple “statefers to (ii).

72

5.2. Functional Requirements Handling Elements

Table 5.1.: Reserved words for actions specification

Syntax

Description

ASSI G\([data type] target,
val ue)

Represent an assignment action of a value to a variable eciobj
attribute, where:

dat a t ype is optional, and indicates the variable data type;

t ar get specifies the name of the target variable or attribute, in
which the value is stored. The naming constraint (i.e. ififel
naming) must be respected;

val ue is the value to be assigned.

EXPRESSI ON([[dat a type]
target,] expr)

Represent the evaluation (or execution) action of a mattieaha

or boolean expression, where:

dat a t ype is optional, and indicates the variable data type;

t ar get is optional, and specifies the name of a variable or at-
tribute in which the expression result is stored. The namomg
straint (i.e. lifeline naming) must be respected;

expr is the expression to be evaluated.

MODI FY_STATE(newsSt at e)

Represent the action that changes explicitly the objede,sta
where:

newsSt at e represent the new state in which the object will be
after the execution of this action.

| NSERT _ELEMENT(t ar get,
[pos,] val ue)

Represent the action of inserting a value in a given arraighwvh
can be a variable or attribute:

t ar get specifies the array name. The naming constraint (i.e.
lifeline naming) must be respected;

pos is optional, and specifies the array position after which the
value is inserted. If it is omitted, the element is added &tyes
end;

val ue is the value to be inserted.

REMOVE_ELEMENT(t ar get ,
pos)

Represent the action of removing a value from a given array,
which can be a variable or attribute.

t ar get specifies the array name. The naming constraint (i.e.
lifeline naming) must be respected,;

pos specifies the array position that must be removed.

ARRAY LENGTH(t ar get)

Represent the action of reading the length of a given arraigtw
can be a variable or attribute.

t ar get specifies the array name. The naming constraint (i.e.
lifeline naming) must be respected.

73

5. Specifying DERTS Using UML and Aspects

fragments which operate on an interaction fragment. Thus it is pdsgih specify alternative
or optional execution of interaction fragments, paralle@ition of interaction fragments, rep-
etition of interaction fragments execution, and otherse ptoposed modeling approach allows
using a subset of all combined fragments kinds:

e Alternatives (al t) designates different choices for execution of actionsieeges. To
use this construction, designers must specify at least tigmnatives. Each alternative
sequence is guarded by a boolean expression, which musirholdier to deviate the
execution flow to the alternative interaction fragment. f aternative does not have
a guard expression, the actions sequence of this alteenatiexecuted if and only if
guard conditions of all other alternatives do not hold. la tase of two or more guard
conditions hold, the action sequence specified within tis¢ diternative (considering the
alternatives order depicted in the sequence diagram) e other action sequences
are ignored. In other words, the actions specified imlan fragment are not concurrent.
Figure5.5depicts an example of such combined fragment;

e Option (opt) defines an optional sequence of action that are executetherttbe guard
expression holds. Itis similar &l t combined fragment, but it specifies only a single al-
ternative. Thereforept combined fragment must always have a guard condition. Eigur
5.5shows an example of this combined fragment;

e Parallel (par) represents parallel execution of action sequences, vehxiebute concur-
rently and independently from the other parallel parts. Aguences of actions could
terminate in different instants, designers must not speanify action after gar com-
bined fragment. Figurb.6also shows an example of this combined fragment;

e Loop combined fragmentl (oop) represents the repetition of the actions sequence exe-
cution. The actions sequence is repeated while the guam®sipn holds. Loops can
also have a fixed number of repetitions, which is specifiedgughe syntax var =
m nNunber; var < maxNunber” wherevar isthe name of the repetition counter;
nmi nNunber is the initialization value for the counter; angix Nunber is the number
of repetitions. Figur&.5shows an example of a loop combine fragment that has a fixed
number of repetitions.

To conclude the discussion on behavior specification ustgience diagrams, it is im-
portant to consider the specification of real-time featur8anilar to the specification of the
dynamic structure, stereotypes that decorate classedioé and passive objects are also de-
picted in sequence diagrams, due to the availability of ithficsrmation in instances of UML
meta-model element previously specified. In this sense, WARereotypes do not need to be
specified twice for the description of same system element«&chedul abl eResour ce»,
«Mut ual Excl usi onResour ce» and«Schedul er » stereotypes have already been used
in the class diagram, and could be depicted in sequenceadiagiements of figurb.5.

An important view of system behavior is the specification ctive@ objects’ concurrent
behavior that need to be periodically executed at a centagquéncy. This kind of active object
must have only one periodic behavior, i.e. only one methadhave its behavior triggered
periodically. Thus, designers must create at least oneeseguliagram for each periodic active
object, showing the activation pattern for its periodic &ébr. An example of such diagram is

74

5.2. Functional Requirements Handling Elements

presented in figur.5. This diagram must always start with a message sent fronctiedsiler
object to the active object, indicating the start of the @did behavior execution. Such message
must be decorated with MARTE®Ti nedEvent » stereotype. The time interval between two
consecutive executions of the behavior must be specifiedyubeevery tag, whose value
must follow MARTE'sValue Specification Languag®SL) [94] syntax: (n, timeUnit)”,
wheren is a number andli meUni t is the time unit. For instance, in figuke5, “message 1"

is annotated asgvery = (15, ns)”, indicating that the interval between two consecutive
executions of this behavior is 15 milliseconds.

5.2.4.2. Activity Diagram

Another diagram to specify system behavior that is supdadote AMODE-RT modeling ap-
proach is the activity diagram. Although optional in thegmwsed modeling approach, this kind
of diagram may be used in combination with sequence diagtarsgecify the overall view of
system behavior in terms of runtime phases.

Distributed embedded real-time system runtime can be @livid three distinct phases:
(i) initialization; (ii) execution; andiii) shutdown. The activity diagram is used to specify these
phases as shown in figuser. Each activity is associated with a sequence diagram, wdatdils
actions performed in the activity. AMoDE-RT modeling apgeb uses sequence diagrams
rather than textual action languages [79] to specify cormpghavior and/or actions sequence,
due to graphical specifications are considered easier terstachd than textual descriptions.
Besides, diagrams are more intuitive and technology inu#ga, facilitating the information
exchange among different design teams. Additionally,uixtanguages are considered very
similar to conventional programming languages (e.g. Jaw@/G++), and hence, they are not
the most suitable form to specify system behavior in higlellenodels.

System initialization and shutdown activities describaetions that need to be performed,
respectively, before and after the core functionalitiesvigle by the system. As it can be seen
in figure 5.7, after the initialization activity the execution flow is &ph several concurrent
activities. Usually, these activities indicate period@hhviors executed by active objects. If this
overview of system behavior is provided, it is expected thatamount of sequence diagrams
provided in the UML model is at least equal to the amount af/digts specified in the activity

¢ R

<<TimedEvent>> <<TimedEvent>> <<TimedEvent>>
System <<RTFeature>> <<RTFeature>> <<RTFeature>>
Initialization JoystickDriver. MovementController. | | MovementEncoder.
run() run() run()
System {every ="(10,ms)", {every ="(50,ms)", {every ="(10,ms)",
Shutdown relDeadline = "(10,ms)", relDeadline = "(50,ms)", relDeadline = "(10,ms)",
weet = "(3,ms)"} weet = "(10,ms)"} weet = "(2,ms)"}

i

Figure 5.7.: System behavior overview specified using egtiliagram

75

5. Specifying DERTS Using UML and Aspects

diagram.

Activities’ timing information are specified by MARTE stertypes and tagged values,
indicating the activation perioceyery tag of «Ti nedEvent »), deadline, and WCET (re-
spectively,r el Deadl i ne andwcet tags of«Real Ti neFeat ur e») for activities execu-
tion. Figure5.7 depicts three activities that are annotated with the meatidMARTE stereo-
types and tagged values, eJpystickDriver.run() MovementController.run@ndMovementEn-
coder.run() As mentioned, this information is specified once, i.e. amaare instances of UML
meta-model elements related to system elements, and reuseahy different diagrams that de-
pict the same elements, such as class diagram, sequencandjagtivity diagram, and/or any
other diagram supported by AMoDE-RT modeling approach.

It is important to highlight that runtime phases can alsoge#ied using state diagrams, in
which each state represents a phase. Although sequencardsgould also be linked to states
(in a state diagram) to indicate the behavior executed whersystem is in a given state, the
activity diagram is considered more suitable for depicsungh viewpoint due to its sequential
execution flow semantics, and also to the clearer visuaizaif concurrent behavior. Further-
more, AMoDE-RT modeling approach binds state diagramsatesels to specify explicitly states
in which object can be during different system runtime. @opently, using state diagrams to
specify system-level states may cause problems in the raddfdrmation interpretation and
transformation.

5.2.4.3. State Diagram

Although sequence and activity diagram are consideredcirifly complete to specify the
distributed embedded real-time systems behavior, ther@a@plication domains in which this
view of system behavior is not the most suitable one. Usuiallgeactive systems, behavior is
usually specified in term of events and actions performedspanse to these events. To support
this specification viewpoint, AMoDE-RT modeling approactes state diagrams, which are
associated with classes specified in the class diagram.idrséinse, state diagrams represent
both explicit states, in which a class instance (i.e. objeah be at a given instant, and the
behavior performed while it stays in these states. It is g to highlight that one state
diagram is associated with only one class, and vice-veligarés.8shows an example of state
diagram constructions, which are allowed in the proposedetitog approach.

State diagrams show behavior as states, transitions, amdsevActions are associated
with states indicating their execution in three momefijson entering the statéii) during the
stay on that state; an(@i) on exiting the state. Similarly to activity diagrams, ansanust be
specified using sequence diagrams, which are associateédtés & the mentioned moments.
Moreover, state transitions are fired by events, which magteenal or external. Internal events
are logical events from the application domain, e.g. theat&n of a certain kind of threat in
a surveillance system. Other example of internal eventdsribtant in which a method call
action is performed,e.qg. transitions from “Reading JaysRosition” to “Reading Movement
Information”, or from “Processing Data” to “Storing Proses Data” as depicted in figube8.
External events indicate remarkable occurrences, whippdreed in the external environment

76

5.3. Non-Functional Requirements Handling Elements

Running

low battery level Triggering

Alarm

low battery level

processinfo(speed : int,

Reading

Information Calculating

Actuation
Values

PP Reading Joystick

AApAplyi_ng low battery level

setActuationValue()

next activation

Values shutdown() _ —~ Stopping }
A<
m processDate(newData : int storeDate(newData : int)
® Reagg‘r?ssfeed next activation Storing shutdown()
Processed Data O
low battery|level
low battery level

low battery level

Triggering

Alarm IN

Figure 5.8.: Behavior of classes specified using state aliagr

in which the system is embedded, e.g. signals issued bymressensors. Such events are
specified as substantives in the transitions name, e.g. Betery level” transitions in figure
5.8. Furthermore, deep and shallow history pseudo-statesai@2hot supported by AMoDE-
RT modeling approach. Consequently, the only way to staigffia state machine is passing
through, respectively, initial and final states.

Orthogonal states are also supported. Designers cangpeeifsub-state machine in each
orthogonal region, meaning that once entering in a orthalgstate, objects can be in several
AND-stateq92] at the same time, e.g. “Running” state in fig&&. A transition from these
orthogonal states to any other state is possible only if @state machines arrive in their
final state. Hence, if the exit event (which triggers the @sibsition from an orthogonal state)
happens, and one or more sub-state machine are not in thalirsfate, the event is passed
to all sub-state machines which remain active. On the othedhif there is no active sub-
state machine, the exit transition from the orthogonakdtatppens. For instance, let's assume
that the state machine depicted in fig&®& is in “Running” orthogonal state. The first sub-
state machine (upper orthogonal region) is in the final seate the other one is in “Storing
Processed Data”. When a “shutdown” event occurs, it is jpasely/ to the second sub-state
machine, causing the transition from “Storing Processet@d'Da the final state, and thus, from
“Running” to “Shutdown”. It is also possible to specify angition from orthogonal states
without triggering events, indicating that, once all sttes machine arrive the final state, the
exit transition from the orthogonal state is triggered eatcally.

5.3. Non-Functional Requirements Handling Elements

5.3.1. Introduction

As already mentioned, AMoDE-RT modeling approach usesdaspe specify non-functional
requirements handling in UML models. Given that UML does Imte constructions to depict
AO concepts in its diagrams, a lightweight extension to UMLtérms of a UML profile has

77

5. Specifying DERTS Using UML and Aspects

been proposed. The concepts represented by the creatdd grafeotypes are based on the AO
concepts presented in secti®d@.3 and also the AO conceptual model proposed by Schauerhu-
ber et al. [109] (see figurg9). That model provides more general AO concepts comparéebto t
ones discussed in secti@rB, which are simply adaptations of specific AO languages qutisce
From this model, the following stereotypes have been dérive

e «Aspect »: used in ACOD (see sectidh.3.3 to specify which DERAF aspects (see
next section) are selected in the current design. It mussbd to decorate UML's class
meta-model element, extending its semantics to represpetts;

e «Behavi or al Adapt at i on»: used in ACOD to decorate aspects “methods” to spec-
ify behavioral adaptations performed in system functicelaments. It must be used to
decorate UML'’s operation meta-model element extendingdtaantics to represent be-
havioral adaptations;

e «Structural Adapt ati on»: used in ACOD to specify structural adaptations per-
formed in system functional elements. It is also used to @#edJML's operation meta-
model element;

e «Crosscut »: used in ACOD to decorate associations between classesspedts.

In ACOD, crosscut associationdo not represent by themselves a relationship between
aspects and classes. Instead, they represent informatibristinserted by aspects in
affected classes. Thus, this stereotype extends UML'scagsm relationship using the

ownedElement

ConcernDecomposition ‘
formalizedBy Concemn 1.+
Jaopi N S e Weaving
{overzpping
Base superaspecl* Aspect TConﬂictWilh
e A ConflictResolution
2
g |-
AdaptationRule
AdaptationSubject AdaptationKind
RelativePosition consistsOf consistsOf
relPos[0..1]:RelativePositionKind | __0 rator
! 1 *pe‘ 1 61 *
<<enumeration>> w composedOf Adaa”on composedOf
RelativePositionKind
gregﬂ:]ed Si_mg!s Composite | ~ Simple Composite | ~*
after Pointcut Pointcut Adaptation Adaptation
* | selectedBy
[JoinPointModel | ---{ SelectionMethod |
1. owner * | selectedJP Structural Behavioral
JoinPoint Adaptation Adaptation
ownedJP —
dynamicity 9 A
1| representedElement y y
Language
_Language 1.
1 Structural
owner 4. £ ; Element 1.*

Element

Figure 5.9.: Conceptual AO model [109]

78

5.3. Non-Functional Requirements Handling Elements

mentioned semantics;

e «Poi nt cut »: used in ACOD to decorate aspects “methods” to specify thiedetween
join points and aspect adaptations. It must be used to decbidl’'s operation meta-
model element extending its semantics to represent paittuthe decorated methods,
parameters represent pointcut information as explaineddtion5.3.3

e «Joi nPoi nt »: used in JPPDs (see sectibrB.4) to decorate the point in which aspects
can perform adaptations. It only indicates which (kind ofjdel element is affected by
aspect adaptations, instead of modifying their semantics;

e «JPDD»: used to decorate sequence or class diagrams indicatinthéyarepresent join
point selections rather than a functional diagram.

The following sections discuss how to use AO concepts towithlnon-functional require-
ments in the distributed embedded real-time systems desiigstly, an aspects framework to
handle the mentioned requirements is presented. Thesetaspe used in thAspects Cross-
cutting Overview DiagranfACOD), which is proposed in this work and discussed in secti
5.3.3 Finally, join point specification is presented in sect®B.4 which discusses the use of
Join Point Designation Diagram@PDD).

5.3.2. Distributed Embedded Real-time Aspects Framework
5.3.2.1. Overview

To provide modularized handling for non-functional reguients, a framework of aspects
namedDistributed Embedded Real-time Aspects FramewWDiERAF) has been created. In
this sense, DERAF aspects encapsulate in a single elenhésdueds related to the handling of
non-functional requirements.

Based on the AO conceptual model presented in the previai®iseDERAF is an ex-
tensible high-level aspects framework to be used in eadlisign, as well as implementation
phases. The main idea is to provide aspects that enhancedtieled system by means of
adding specific behavior and structure to specify non-fanet requirements handling. These
“new” behavior and structure are independent from any §pédgiplementation technology.

More specifically, DERAF was intended to be used togethen WKL and MARTE pro-
file. To achieve this goal, details about how to implementaspdaptations have been ab-
stracted, i.e. designers choose which aspects are usegkitydhe non-functional requirements
handling based on aspects adaptations high-level semaifticis, in UML model, DERAF as-
pects are used as “black boxes”. In addition, designers imdisiate which functional elements
are affected by the selected aspects using join pointsfagizin, as discussed in sectibr8.4

Considering the non-functional requirements presenteseation2.3, each requirement
can be handled by one or more DERAF aspects. Figur@shows an overview of the DERAF
aspects. As it can be seen, DERAF provides six packagesiggpagpect based on their goals.
The following sub-sections provide a brief discuss on theas#ics of each available aspect. In
addition, a more comprehensive description of DERAF aspeqiresented in appendix

79

5. Specifying DERTS Using UML and Aspects

<<Non-Functional>> |
Timing <<Non-Functional>>
Y Precision
i <<Aspect>> A > <<Aspect>>
imi i <<Aspect>>
TimingAttributes ” <<use>> | PeriodicTiming p
Jitter DataFreshness
<<use>> n
~N
<<Aspect>> [Suse>> <<Aspect>> <<Aspect>>
TimeBoundedActivity <<Aspect>> ToleratedDelay ClockDrift
SchedulingSupport
~
b
\
7
\ e
N b
<<Non-Functional>> _
Synchronization
<<use>> “e<uses> <<Non-Functional>>
<<Aspect>> Communication
ConcurrentAccessControl <<Aspect>> <cuse>> <<Aspect>>
| MessageAck | — — | Messagelntegrity
<<Aspect>> F<use>>
MessageSynchronization <<Aspect>>
MessageCompression
<<Non-Functional>> |
Embedded <<Non-Functional>>
TaskAllocation
<<Aspect>> <<Aspect>>
HwAreaMonitoring (&« ~<Y5%Z. HwAreaControl | <fuse>>
= = 4 _ N <<Aspect>>
TaskMigration
<<Aspect>> <cuses> | <<Aspect>> | SfUSEZ= 4 — K
EnergyMonitoring € — — — ~|EnergyControl ~ 7
-~
- <<Aspect>>
<<Aspect>> <<Aspect>> d<use>> Nodes P rrioval
MemoryUsage | _<<use>> | MemoryUsage lodeStatusRetrieval
Monitoring Control

Figure 5.10.: All aspects provided by DERAF

5.3.2.2. Timing Package

This package contains aspects to handle time-relatedremgeints, such as deadlines for activ-
ities execution, WCET information, periodic tasks aciwat and others.

TimingAttributesaspect is responsible to deal with active objects chaiatitsr such dead-
line, priority, WCET, and absolute time instants on whichittbehavior must start and finish
the execution. Attributes representing the mentionedaitaristics are inserted in the affected
active object classes, as well as methods and behaviortialize and handle these attributes.
As mentioned, the handling of these timing issues is dedegtat the target platform that must
provide support to this aspect semantics.

PeriodicTimingaspect provides means to trigger periodically an activeatijehavior ex-
ecution. Thus, besides adding an attribute indicating Reew@ion frequency in the affected
active object class, this aspect must also enclose theedfdéehavior with a repetition mech-
anism, whose execution is controlled according the infoionastored in the mentioned new
attribute. In other words, this aspect is used to deal wighhtéindling of periodic active objects

80

5.3. Non-Functional Requirements Handling Elements

(or threads).

SchedulingSupposdspect inserts a scheduler object in the affected compotdgs. This
object is responsible to control active objects executiodicating instants at which they must
start performing their behavior.

TimeBoundedActivitaspect controls the execution time duration of an activitaaion
by counting the time elapsed since the start time instantmdkimum allowed duration is
surpassed, this aspect provides means to abort the affectigity/action execution. Examples
of this aspect use are: to restrict the maximum time a shasalirce can be in exclusive access
mode, or the maximal time amount an active object can waith@rreply of a remote objects.

5.3.2.3. Precision Package

Precision in meeting time requirements are handled by thecss of this package, which con-
centrates efforts in features such as the maximum toledsky in starting activities, variance
in activities timeliness, information’s validity duratipor the deviation of local clock reference
compared with the global one.

Jitter aspect measures the accuracy variance in activities pgetbby the system. This
aspect provides means to measure the time before (or aftehserved activity happen, storing
this information (the history must provide information ¢fl@ast one time sample) to calculate
the variance among the observed time instants. This aspeticused, for example, to calculate
the jitter in an periodic active object activation or exéont or to compute the time variance of
a periodic message sending.

ToleratedDelayaspect controls the maximum tolerated latency to the astaet of a given
system activity. Thus, the time between the command andkd@ugion of the observed activity
must be measured and calculated. If the observed duratigyaaser than the maximum allowed
latency, this aspect provides means to handle this execeptio

ClockDrift aspect controls the clock deviation between the local tiovece and the global
one. Assuming that the target platform provides means twatlock synchronization, this
aspect uses the global clock as reference to calculate ¢hkedimck deviation. Thus, designers
must specify time instants (or system events, e.g. thergjast an behavior execution) at which
the local clock must be compared with the global clock refeeein order to check if there is a
difference between the two measured values.

DataFreshnesaspect is responsible to deal with the validity duratiorugdity) of different
system information [22]. For that, this aspect associamesstamps to affected data by adding
new attributes to representing such information, as weihserting behavior to control these
data use. In other words, each time a controlled data neels tead, its validity must be
checked and, if it is out of validity, a corrective behavionshbe performed, e.g. wait until the
date to be updated, read data directly from its source, deertne frequency at which periodic
behaviors (which read the controlled data) are executedlo§ously, each time a controlled
data is updated, its validity duration must also be updated.

81

5. Specifying DERTS Using UML and Aspects

5.3.2.4. Synchronization Package

Synchronization and the concurrent access control to dhr@sources requirements are dealt
by this package’s aspects.

ConcurrentAccessContraspect provides means to control the concurrent access-to ob
jects, which share their attributes information with otbbjects. The access to object’s different
elements can be controlled) the object itselfi(ii) their attributes; and/ofiii) their methods.
Therefore, depending on the controlled element, one or radigers (i.e. concurrency con-
troller instances) are created. Every time an (active asipasobject needs to access controlled
shared elements, it must request the access to them (igesteq) lock) that are granted or not
by the arbiter. Depending on the arbiter implementatiog. (@utex, semaphore, monitors), and
also to the number of objects that are accessing the shasedroe at the moment, the access
request can be authorized or not. Similarly, after the ughethared resource, the object that
had the access permission must notify the arbiter, indigdtiat it is leaving the shared resource
and does not need to use it anymore.

MessageSynchronizaticespect deals with holding behaviors execution until thévalrr
of an acknowledgement message (or a reply message) imdjdaiat the (remote) object has
received the message sent. It provides a waiting mechaheneduld be implemented as either
(i) a busy wait, i.e. a loop that waits until the acknowledgenmassage arrives; dii) using
the system scheduler, which preempts the execution of tiierduactive object, marking it as
blocked, and thus, opening room for other active objectswi@n. Later, when the expected
acknowledgement message arrives, the blocked activetobjearked as ready to execute, and
its execution is resumed following the scheduler’s deaisio

5.3.2.5. Communication Package

This package provides aspects to deal with objects commtimicin terms of messages send-
ing. The first intention was to cover the communication betwebjects that are located in

computing devices that are physically separated. Howelegrending on application require-

ments, this package’s aspects can also be used for specifygncommunication of objects

located in the same computing device.

MessageAckspect provides an acknowledgment mechanism to notifyptieceof a mes-
sage to its sender. In this sense, this aspect affects b of a message exchange: sender
and destination objects. On one side, the sender objecs sentessages and waits for an ac-
knowledgement of message reception. On the other sideetiever objects needs to send
an acknowledgement message after each received meddageageAcks related withMes-
sageSynchronizatioaspect.

Messagelntegritaspect is responsible for handling messages integrity dyiging check-
ing information within a message. Similarly kdessageAckthis aspect also affects both mes-
sage’s sender and receiver objects. Sender objects muastgemtegrity checking information,
appending it in the message to be sent, while receiver agbjeast generate checking informa-

82

5.3. Non-Functional Requirements Handling Elements

tion from the received message, comparing it with the infitiam that came with the received
message. The acknowledgment mechanism must be notifiethevhibe checking information
match or not.

MessageCompressiaaspect is in charge to compress/decompress messages inamrde
improve bandwidth utilization. Like the other aspects a$ fpackage, this aspect affects both
message’s sender and receiver objects. At sender side, dbsage is compressed using a
compression algorithm, while at receiver side the messagecompressed using the same
algorithm.

5.3.2.6. TaskAllocation Package

Aspects provided by this package handle non-functionalirements related to objects distribu-
tion on different computing devices at runtime. These aspae typically related to distributed
system nodes that are physically separated.

NodeStatusRetrievalspect includes a mechanism to gather information on theraydy-
namic characteristics, such as processing load, messadimgeand reception rates, and if the
computing device is running.

TaskMigrationaspect adds a migration mechanism to move active objeats dree com-
puting device to another one. Therefore, active objectsntiginate from one node to another,
as well as from software to hardware, or vice-vetsa

5.3.2.7. Embedded Package

Non-functional requirements related to physical resaieilability, which are very com-
mon concerns in embedded systems design, are handle byatdkage’'s aspects. Energy con-
sumption, memory usage, and hardware reconfigurable arebeceited as examples of such
concerns. Basically, the available aspects are concenadmitoring and controlling the men-
tioned physical resources. Thus, depending on the physisalrce being controlled, the con-
trol policy, and platform capabilities, different actiocasn be performed by these aspects as, for
instance(i) depending on the system requirements and runtime statemtove objects related
to non-critical activities{ii) active objects migration(iii) to loosen timing constraintgjv) to
decrease processor operation frequeleyto turn off unnecessary hardware components; It is
important to highlight that this aspects are dependent etalatform capabilities, meaning
that the platform must provide means to monitor and conyrstiesn physical resources.

HwAreaMonitoringaspect is related to systems that use reconfigurable hadieaices,
such as FPGAs. It provides a mechanism to monitor the reaoafile area by which the

2Objects migration between software and hardware (at rentisusually known as “reconfiguration”. However,
in embedded systems domain, “reconfiguration” usually méamipload a bitstream into a FPGA device. Thus,
in order to avoid misunderstandings, this text uses the tegoonfiguration” to refer to the later, while recon-
figuration between software and hardware are called “nimrat

83

5. Specifying DERTS Using UML and Aspects

remaining reconfigurable area (in terms of configurablecldpcks) is (re)calculated at each
reconfiguration command.

HwAreaControlaspect controls the hardware reconfigurable device usagddigg an ar-
biter to allow or deny every reconfiguration based on therinfdion of this package monitoring
aspects.

EnergyMonitoringaspect relies on the target platform to provide a mechargsmanitor
energy consumed by system activities. This mechanism measuane the remaining energy
level before the observed activities start, and after tbempletion. Further, it calculates the
amount of energy that was consumed by these activities.

EnergyControlaspect provides an object that uses information providethdéynonitoring
aspects to control the energy consumption. To accomplish goal, this object could perform
the actions mentioned in the beginning of this subsection.

MemoryUsageMonitoringaspect is similar to the other two monitoring aspects bus it i
related to software rather than to hardware. It provides ehax@sm that must calculate the
overall memory usage of a computing device at every objémtation/deallocation.

MemoryControlaspect uses the information provided l\emoryUsageMonitoringand
HwAreaMonitoringaspects to control the memory allocation requests for tbjeltocation
following an adopted memory control policy.

5.3.2.8. Discussion

As one can conclude from the DERAF aspects description, sspects deal with the same
non-functional requirements, suchMgssageSynchronizatiphlessageAckMessagelntegrity
and MessageCompressidhat handle objects message sendingMemoryUsageMonitoring
andMemoryUsageContradspects that handle memory non-functional requiremertitsrelare
aspects that access resources provided by other aspetdisastheSchedulingSupporspect
that uses resources provided biyningAttributesand PeriodicTimingaspects adaptations; or
control-related aspects that use information provided byitoring aspects to control the use
of embedded system physical resources.

However, it is important to note the conflicting nature of soaspects adaptations. The
behavior that handles a non-functional requirement caectathe handling behavior of other
non-functional requirements, e.g. the energy controltesefted by th&nergyControlaspect)
decides to migrate an active object from software to hardwasave energy, but the hardware
area controller (inserted by titwAreaContro) aborts this migration activity due to insufficient
available reconfigurable area. These conflicts must be daltzdesign time. RT-FRIDA pro-
vides tools to enable requirements conflicts resolutiondsygaing an importance value to each
requirement [37]. Hence, this information must be taken extcount in aspects implementa-
tion, so that, problems related to requirements confliatsheaminimized.

The key factor that motivated DERAF creation was to provideof high-level aspects,

84

5.3. Non-Functional Requirements Handling Elements

which offer well-defined adaptations semantics, to be usddNIL models. However, to al-
low its practical use, it is also necessary to provide théza#on of these aspects in terms of
application or platform source code, or platform configioracode. Additionally, aspects im-
plementation must follow the pre-defined semantics on “hand “where” aspects adaptation
can be applied. Keeping the coherency between high-lewgdtations semantics and their im-
plementation, it is possible to increase the reuse of asp@giementation previously created,
reducing the effort necessary to handle non-functionalireqents in further projects.

In this sense, it is important to highlight that, althoughitig information is specified by
Timing Package aspects within ACOD context, specific details on how todhkariming are
delegated to the target platform, in order to keep DERAF@sp#atform-independent. In other
words, the implementation of aspects adaptations defirsslgow to deal with each timing
feature using constructions available in the target platf@and respecting DERAF’s high-level
semantics as specified in UML model. An example of such aspgtementation can be seen
in figure 6.9 of the Chapter 6 that shows how periodic timing is handledigisionstructions
available in an RT-Java based platform. Other timing isgaes deadline, WCET, etc.) are
handled in a similar form: DERAF defines high-level semantic these non-functional re-
qguirements handling, which are further implemented usomgstructions and services available
in the target platform. Consequently, the exact handlingmhg features depends on the target
platform.

It should be stated that there are two kinds of possible implgations to aspect adap-
tations: (i) those that adapt application code; &jijl adaptations that tailor platform source
code, or produce platform configuration files. The formerespnts modification in the appli-
cation code itself, e.gPeriodicTimingaspect'd_oopMechanisnadaptationDataFreshnessas-
pect's VerifyFreshnesadaptation, oConcurrentAccessContralspect'sAcquireAccesadapta-
tion. On the other hand, the other kind enables or disableatark in the target implementation
platform, e.g. MessageAckMessagelntegrityand MessageCompressiaspects adaptations.
The most important thing is to note that, to provide the etgubaspects adaptations according
to the pre-defined semantics, the target platform must differequired services. It is not the
intention of the described DERAF semantics to provide a de#nsolution for the handling of
each non-functional requirements addressed by its aspleeysare suggestions to address with
these requirements handling.

Finally, it is worth mentioning that the aspects set progidg DERAF does not cover all
non-functional requirements present in the distributedbeuided systems domain. Currently,
non-functional requirements such as fault tolerance araddressed by DERAF aspects. How-
ever, it is an extensible framework, meaning that it is néitadilt to include other aspects. It is

only necessary to follow two rules:
1. High-level semantics, indicating “how” and “where” asfgeadaptations are applied,

must be pre-defined; and
2. Torespect aspects’ pre-defined semantics in their imgaiéstion using services and con-
structions of a given target platform.

85

5. Specifying DERTS Using UML and Aspects

5.3.3. Aspects Crosscutting Overview Diagram

As UML does not provide any meta-model element or graphioaktruction to represent as-
pects, this works has proposed thepects Crosscutting Overview Diagrd®COD), which is
an extended version of the standard class diagram. ACODsixban the concepts presented
by Stein et al. [120] and Schauerhuber et al. [109], and siR#RAF aspects affecting or not
functional elements. There are two ACOD versions with diffe levels of detail{i) overview
ACOD presents all aspects affecting classes without dagictetails about aspects’ informa-
tion; and(ii) detailed ACOD depicts all aspects specified in the UML modtmhg with their
adaptations and pointcuts, and all classes that receiveniemnation from aspects. Detailed
ACOD is the main information source for aspects specificatibhus, designers must always
create this diagram to specify AO-related elements. OgarAiCOD can be generated automat-
ically by evaluating all pointcuts specified in the detaifdOD (using the join points indicated
in these pointcuts) to discover which aspects affect whiakses. Hence, overview ACOD is
considered an informative diagram rather than an aspeetsfigation.

AO-related stereotypes proposed in this work are used totattmUML meta-model el-
ements depicted in ACOD to represent AO concepts as presenfegure5.11 Aspectsare
represented as classes decorated with«#epect » stereotype. AspectBehavioral adapta-
tions are specified as methods decorated withdBehavi or al Adapt at i on» stereotype,
while structural adaptationss methods decorated with th&t r uct ur al - Adapt ati on»
stereotype. Similarlypointcutsare specified as methods decorated wiHloi nt cut » stereo-
type. As pointcuts specify the link between join points stten and aspect adaptations, this
information is specified as method parameters as follows:

e The first parameter represents the join point name, andadtetiovhich model elements
are selected by these JPDD, el§DD_ InfoAttributeReadéh DataFreshness

e The second parameter indicates which adaptations arerpedoin selected model el-
ements, e.g.Deadlineand SetTimingAttributesn TimingAttributes If more than one
adaptation of the same aspect modify the same join poinptatiens names can be com-

<<Aspect>>
TimingAttributes <<MutualExclusionResource>>
Movementinformation

<<Pointcut>>+pcActClass(JPDD_ActiveObjectClass, Deadline+Priority+WCET, ADD_NEW_FEATURE)
<<Pointcut>>+pcActObjlnit(JPDD_ActiveObjectConstruction, SetTimingAttributes, AFTER)
<<StructuralAdaptation>>+Deadline() <<Crosscut>>
<<BehavioralAdaptation>>+SetTimingAttributes() {Validity F "50ms"}
T Speed
<<Crosscut>> <<Aspect>>
{Deadline = "20ms", DataFreshness <<Crosscut>>
Priority = "1", {Validity = "20ms"}
WCET = "8ms"} <<Pointcut>>+pcReadAttrValue(JPDD_InfoAttributeRead, VerifyFreshness, BEFORE) Angle

<<SchedulableResource>> || <<BehavioralAdaptation>>+VerifyFreshness()
MovementController .

Figure 5.11.: Aspects specification using ACOD

86

5.3. Non-Functional Requirements Handling Elements

bined in the same pointcut, using the “+” character to seépaach adaptation name, e.g.
“Deadline+Priority+WCET”;

e The third parameter specifies position (related to the jointp at which associated adap-
tations are applied. For structural adaptations, thisrpater is optional. The following
relative positions are supported:

— BEFORE: used for behavioral adaptations to indicate that they ppdiedd before
join point occurrences, e.pcReadAttrValuén DataFreshness

— AFTER: used for behavioral adaptations to indicate that they ppéiex after join
point occurrences, e.@cActODbjlnitin TimingAttributes

— AROUND: used for behavioral adaptations to indicate that thegloseg(i.e. adapta-
tions are done before and after) join point occurrences;

— REPLACE: used for behavioral or structural adaptations to indi¢ha#t join point
occurrencesre replacedby these adaptations;

— MODI FY_STRUCTURE: used for structural adaptations to indicate that tmeylify
elements selected by join points;

— ADD_NEW FEATURE: used for structural adaptations to indicate that new featu
(e.g. attributes) are added in affected elements pefctClassn TimingAttributes

An important ACOD feature must be highlighted: associaibetween aspects and classes,
which are decorated with theCr osscut » stereotype. If an aspect structural adaptation in-
serts new attributes in classes, the affected classes raustlided in ACOD specification.
For each affected class, an unilateral one-to-one asgntid¢corated with theCr osscut »
stereotype must be created from the aspect to the affecisd. cValues for the new attributes
are specified as tagged values in thesscut associatioas depicted in figur.11 As one can
see, TimingAttributesinserts three attributes (i.eDeadling Priority, andWCET) into Move-
mentController The crosscut associatiospecifies thaDeadlinemust be initialized with 20
ms, Priority with 1, andWCETwith 8 ms. Similarly,DataFreshnesaspect adds a new attribute
associated wittMovementinformatida Speedand Angleattributes. A different value to each
attribute is specified inrosscut associationgiowever, it is important to highlight tharosscut
associationsare not “real” associations between aspects and classesis bf UML associ-
ation semantics. Instead, they are interpreted as inforenetlationships that do not produce
any meta-model element in the associated elements.

Considering timing requirements handled by DERAF aspdhbts,form to specify such
information is demonstrated in figuBell For instance, deadlines are handledTyingAt-
tributes and thus, they are specified @®sscut associationsetween this aspect and the af-
fected active object classes. As DERAF defines high-levaptdion semantics (see Appendix
A), the exact handling of deadlines is delegated to the taigdform, which implements the
pre-defined semantics of this aspect. In this sense, the Uldeirspecifies that active ob-
jects behaviors are constrained by deadlines, which ari loedimingAttributes However,
there is no definition if this handling must be performed gsiimers, special APIs, or other
programming abstractions. The target platform is respbmgor this handling. Consequently,
aspects adaptations must be map to constructions in subbrpiadefining the mentioned non-
functional requirement handling. The same is valid to theeoaspects that deal with timing
issues, e.gPeriodicTiming DataFreshnessand other.

87

5. Specifying DERTS Using UML and Aspects

Additional examples of ACOD specification are provided ia ttase studies presented in
Chapter 7, and also in Appendix B.

5.3.4. Join Points: Selecting Model Elements Affected by As pects

Although the aspects specification is an important part affomctional handling specification,
equally important is the specification of which model eletaeare affected by aspects adap-
tations. Therefore, join points selection are specifiedgisi subset ofoin Point Designation
Diagrams(JPDD) [121]. The main reason for using JPDD is the posgibib specify join
points graphically, which facilitates the understanditpwt which element kind is selected.
Additionally, JPDDs are considered more suitable to useMLUWnodels than join points tex-
tual descriptions.

JPDD can capture model elements based on three differerglsa@dl control flow; (ii) data
flow; and (iii) state. The first model allows elements selection based oexieution control
flow depicted in sequence or activity diagrams, e.g. a JPD&tseactions performed in the
behavior of a given method “a”, which is called inside the dgbr of a method “b”. The
second model allows the elements selection based on datadoitesm one method to other
one, e.g. a JPDD selects a method behavior that has recestgdgpstarting with “s” character
as parameter. The last model allows elements selectiondoeteir explicit state described in
a state diagram, e.g. a JPDD selects all objects that ar¢qite “#\". As one can infer, elements
selection can be performed statically or dynamically. The fnodel allows both dynamic and
static selection; the other two only dynamic. Additionall}PDDs can select elements (e.qg.
classes, attributes, and others) based their names ratlreusing the mentioned models.

AMoDE-RT modeling approach supports both control flow JPDdp&l elements selection
based on naming patterns. However, there is a constraintratdlow JPDDs cannot specify
multiple calling levels, i.e. only actions performed in tmethod behavior context can be se-
lected. Furthermore, to specify which elements should ezt by JPDDs, this work follows
the naming patterns presented in Stein et al. [121], as shotable5.2

Elements selection is performed during the transformadiodML model into a DERCS
model. JPDDs are evaluated using elements’ static infeomaand hence, dynamic evalua-
tion of JPDD is not supported. In this sense, the followingdeicelements can be selected:
(i) classesy(ii) attributes;(iii) methods;(iv) nodes;(v) sending message actions;) object
creation actions{vii) object destruction actiongviii) method return actions; ar{tck) methods
behavior. Structural elements (i—iv) are selected usimgsthrt of JPDDs presented in figure
5.12 behavioral elements (v—ix) are selected by JPDDs depintédure5.13

Sequence diagrams and class diagrams are decorated w4t RmD» stereotype to indi-
cate that they are, in fact, the specification of join poinést#on rather than system specifica-
tion. Additionally, elements selected by the join point dezorated with th&Joi nPoi nt »
stereotype, which defines some tags to identify preciselighwilements are considered. The
available tags are(i) Cl asses; (i) Obj ect ; (iii) Node; (iv) MessageDefinition;and
(v) Behavi or.

88

5.3. Non-Functional Requirements Handling Elements

Table 5.2.: Naming pattern for elements selection in JPDD

Naming Pattern

Description

*

Indicate that any name matches with the pattern

*Endi ng Indicate that any name that ends with the character sequence
“Ending” matches with the pattern

Start * Indicate that any name that starts with the character seguen
“Start” matches with the pattern

nt hNane ' (’ [par Nane This special naming pattern is used in sending messagenactio

[, parNane]*])" '’ selection, where

ret TypeName mthNames the message name pattern as described above;
parNameis the message parameter name pattern. It is an op-
tional part. If method parameters should not be considehed,
string “..” must be used. Otherwise, parameters namingpatt
follows the above mentioned patterns;
retTypeNamendicates the method return type name, as de-
scribed above.

[local. | renote.] This special naming pattern is used in objects, classesagano

obj Name ' :’' cl assNane selection. They are used to name lifelines in sequenceatiagr

JPDD, where

local or remoteis a reserved word to indicate if the element com-
municates with, respectively, local or remote elements;
objNameis the object name, as described abastassNames
the class name, as described above.

To illustrate the specification of model elements sele¢tiobrief discussion on which ele-
ments are selected by JPDDs depicted in figbté2and5.13is provided. Structural elements
are selected by JPDDs presented in fighud2

e JPDDs in figuresh.12a and5.12% select classes. The former selects all active object
classes, while the later selects all classes whose obgatkrsessages to remote objects;
e Figure5.12 depicts the selection of all attributes, whose name statits'sensor”, from
all passive objects that are accessed exclusively;
e The selection of all system nodes is shown in fighwkEx;
e Figure5.1 depicts a JPDD that selects all methods, whose name sthrtset”;
e All constructors of all active object classes are selectethb JPDD presented in figure

5.1%.

Regarding the selection of behavioral elements, the fatiguelements are gathered by
JPDDs depicted in figurg.13

e All actions related to messages whose name starts with, “gdtith are sent from any
object to any passive object, are selected by the JPDD peesanfigure5.13.

e JPDD presented in figure.13 selects all actions representing messages, whose name
starts with “get”, and are sent to any remote object.

e Figure5.13 presents a JPDD that selects the periodic behaviboi(n Poi nt » stereo-
type's Behavi or tag) executed by any active object. Thus, this JPDD seldictises-

89

5. Specifying DERTS Using UML and Aspects

90

<<SchedulableResource>> |:| <<MutualExclusionResource>> |
<<JoinPoint>> : * :

*

<<JoinPoint>> [

*

‘| <<JoinPoint>>-sensor* : *

@ A © :
(e) () ;
— : : <<JoinPoint>>+set*()
<<JoinPoint>> remote.* ¥ | . :
onPont>> | [remote i
{Class} | : 1: <<SchedulableResource>>

* .k

<<JoinPoint>>

I 1% | m
: {MessageDefinition} I
: [
| : | '

Figure 5.12.: JPDD for structural elements selection

o <<MutualExclusionResource>> local.” :* remote.” :
| *i* : | ogr oy]
: 1: get*(..):
: 1:set*(.):* ! : U <<JoinPoini>>’|:::|
| : I
<<JoinPoint>> bl:::l : .
@ H ot O
<<Scheduler>> | [<<SchedulableResource>> |:| * <<Resource>>
* : Scheduler xox] * : *Information
! o ! | 41+ () :float
| 1:%(.): |
| <<JoinPoint>> : _
|| <<TimedEvent>> : 2
| {every =", : <<JoinPoint>> |
(c) - Behavior } : “(d)
i <<MutualExclusion : I I
~w Resource>> : . 1: N/
i i * .k . 1
E:|Z<J0|nP0|nt>> : : |L| <<JoinPoint>> 7\
I :
) - -(h)

Figure 5.13.: JPDD for behavioral elements selection

5.4. Final Remarks

sages sent from the scheduler to any active object, thahaaddition, are annotated with
«Ti medEvent » stereotype andver y tagged value.

e All return actions from methods of all passive object classbose name ends with “In-
formation” are selected by the JPDD shown in figar&3d.

e Figure5.13 depicts the selection of all actions that create passijextsh

e JPDD presented in figue 13 selects all actions that destroy any object.

5.4. Final Remarks

During the study to identify which diagrams are importanspecify structure and behavior
of distributed embedded real-time systems, the proposetkling approach selects UML dia-
grams that have been considered more intuitive, in ordexditithte the interpretation of design
intentions performed by different design teams. In thissesemodeling guidelines are defined
(and must be followed) to enable system specification to benaatically extracted from UML
models. Other goal is to use UML diagrams in its standard faoren using the standardized
graphical syntax without proposing any graphical extemsidence, off-the-shelf UML model-
ing tools can be used to support AMoODE-RT modeling approaithowt any constraints.

In AMoODE-RT, the class diagram is the most important diagtamescribe system’s static
structure. It provides all structural information for st objects. The activity diagram has
been chosen to depict an overall view of system runtime ghasevhich active objects’ con-
current behavior can be seen with their timing constrairfwessed using standard MARTE
stereotypes. However, in AMoDE-RT modeling approach, tlestnimportant behavior dia-
gram is the sequence diagram. Due to its intuitive graplsigaiax, sequence diagram has been
chosen to specify actions sequence execution instead xiatactions language. In this sense,
elements in activity and state diagrams are liked with seggidiagrams to indicate the behavior
executed by classes associated these elements. Congittexisubset of MARTE stereotypes
used in AMoDE-RT modeling guidelines, tal#e3 shows all stereotypes that can be used to
annotate UML diagrams’ elements, along with a brief desionipof their usage.

Also with regard to the specification of non-functional regments handling , this work
does not propose any new UML graphical extensions to modetéizepts. As mentioned,
the intention is to use UML standard diagrams, thus a liglghteextension in terms of a UML
profile has been proposed. Commercial off-the-shelf modetbols are able to specify both
ACOD and JPDD diagrams. JPDD has been chosen due to its sixgrsss to specify join
points selection, and also to the lack of a consolidateddstahfor AO concepts modeling.

Finally, although DERAF aspects’ pre-defined high-levehaatics define non-func- tional
requirements handling, aspects realization must be pedviid further design phases using ser-
vices provided by available platforms. Therefore, aspadsptations must be implemented
using constructions of a target platform, or reused fromiptes projects that had implemented
these adaptations using the target platform. In this seiatform support is crucial to allow
the DERAF effective use. Although this is not the focus oftthiesis, some DERAF aspects
implementations are provided using platforms availableunresearch group. Empirically, we

91

5. Specifying DERTS Using UML and Aspects

Table 5.3.: Summary of MARTE stereotypes used in AMoDE-RT

MARTE stereotypes UML elements Usage
«Schedul abl eResour ce» d ass Specifies active object classes
«Resour ce» or Cl ass Specifies passive object classes
«Mut ual Excl usi onResour ce»
«Schedul er » Cl ass Specifies the scheduler of a comput-
ing node
«Ti medEvent » Oper ati on, Specifies behaviors that are trig-
Message, gered periodically
Activity
""" every | [Indicates the time interval between
two consecutive executions of the
behavior
«RTFeat ur e» Activity Specifies behaviors’ timing charac-

teristics

Indicates behaviors’ WCET

believe that all aspects are fully, or at least partiallyplementable using platforms that are
already available in industry or academy.

92

Chapter 6

Tool Support for the Proposed
Approach

6.1. Introduction

Tool support is essential to improve a design method usdgetigéness. In MDE approaches,
one important tool is the code generation one, which usegrtiticed models to create source
code respecting system specification. Theref@eneration of Embedded Real-Time Code
based on Aspect&GenERTICA) has been created to support the AMoODE-RT aphroais
stated in chapter 4, GenERTICA is a script-based code gémeraol, which executes small
scripts to produce code fragments that are merged to praithgcexpected source code files
for a target platform. Figuré.1shows the three main features involved in the code genaratio
approach implemented by GenERTIC@: transformation of system specification from UML
to DERCS model, which is more suitable than UML for code gatien purposes(ii) model-
to-text mapping rules definition; ar{di) code generation and aspects weaving algorithm.

This chapter discusses GenERTICA's features. Firstly,ilitdiscuss the DERCS meta-
model, and heuristics created to transform UML model elémigno DERCS elements. Next,
mapping rules specification is discussed, focusing on mgjppiles file structure and scripts or-
ganization using the XML format. Additionally, mapping eslscripts are detailed. Finally, the
algorithm used to produce code from model elements is discliIsAspects weaving performed
by GenERTICA is also detailed.

6.2. A Platform Independent Model for Code Generation

UML is a complex modeling language, which allows system elet® specification using differ-
ent views. In its version 2.2, UML provides thirteen diffeteliagrams: six for system structure
specification, and seven for behavior specification. Algiothese different diagrams facilitate

93

6. Tool Support for the Proposed Approach

= XML
Model Mapping
Jransformation Rules

Source
Code

Code Generation
+

Aspects Weaving

Figure 6.1.: GenERTICA mains features overview

visualization of system features from different viewpsirthis diversity of diagrams may lead
to an ambiguous specification, due to information overlag@nd duplication. Furthermore,
UML is considered a semi-formal language, due to the laclooh&l semantics to define the
interpretation of system specification information, whishisually spread in several diagrams.
Consequently, computers cannot perform UML models auticrivderpretation (or execution).

A candidate solution to these problems is to transform UMagdams elements, which
represent embedded system information, into elementshef ohodel, providing the same ab-
straction level without binding system specification to anplementation platform. However,
this transformation makes sense only if this other modepcavide a more concise meta-model
compared to the UML one. Hence, this works proposes the ube gb-calledistributed Em-
bedded Real-Time Compact Specifica(ibERCS), aiming at providing a PIM suitable for code
generation purposes. DERCS is based on a subset of both theni#th-model and MARTE
profile meta-model, and also the AO conceptual model [10®viding a model that includes
OO0 and AO concepts. The main intention is to precisely andaninguously represent the in-
formation on distributed embedded real-time system’sctitire, behavior and non-functional
requirements handling.

DERCS meta-model defines a distributed embedded real-istera as set of communi-
cating objects, which interact among each other to provigeeikpected system functionality.
In other words, objects are the key elements in system spetiifin, representing hardware and
software components. System behavior is represented hyaotibns performed sequentially
by objects, and objects interaction. There are two objgmédy active and passive. Active
objects are autonomous entities that have their own flow ofrob(i.e. a particular thread),
allowing concurrent actions to be executed in parallel witter active objects. Additionally,
these objects can be compared to concurrent processes titaskubperating system, having
characteristics, such as activation patterns (e.g. periagberiodic, or sporadic), deadlines,

94

6.2. A Platform Independent Model for Code Generation

WCET, priorities, and others. On the other hand, passiveatbjare those that execute actions
sequentially in response to messages received from othectsl{active or passive). Passive
objects can be seen as entities that provide useful infi@mand services to active objects.

Likewise the UML meta-model, DERCS meta-model represgratem structure elements
using OO concepts. Figu®2 shows DERCS meta-model structural elements. olyjectis
a classinstance, which, in turn, represents elements structuterins of attributes and meth-
ods. Attributeshold values to represent objects’ state at a given instaritewethodsepresent
messages signatures that can be received from other obfets can be inherited from the
so-called superclasses. Concerningdhta typesDERCS defines almost the same data types
as UML. It is important to mention that classes can also defiget of explicit possiblstates
in which their instances can be during their lifetime. Clasplicit states are represented by
attributes whose data type $tateDataType Each state is associated witlansitions repre-
senting state changes. Further, more than one incomimiogt transitions can be associated
to the state. Concluding the discussion about system gteioepresentation, as one can infer,
there is no major difference from DERCS structural meta-ehetements to UML ones.

System behavior is represented by elements presented e 61 A behaviorconsists
of behavioral elements, which can be eitla&tionsor other behaviors, anfbcal variables
Basically, behaviors can be triggered in response to messageived from other objects (i.e. a
behavior is associated to a method body of a given classthér aords, behaviors can be seen

J7 ParameterKind

| IntegerDataType | |DateTime| | CharacterDataType ||FIoatingPointDataTypes |
I

| Byte | |Short | |Integer | | Long | W Float Double <<enumeration>>
I I I]

in
out
I I I inout

|Enumeration | |CIassDataType | |Void | |StateDataType 1_—Represent]
! —ParameterKin
1 —Represent Boolean)
Array

1
State
—DataType -SuperClass I_
1 1 1 0.1 1 1
-FromState -ToState
DataType :LLDataType 1_| Class | -InstanceOf
1 1 I 1 1.* 1.”
-DatpaType -References x 1 ?1 StateTransition
—ReturnType —Attributes T 1
0.* | : .
PassiveObject | |Node|—
1" attribute b ’
ActiveObject |
NamedElement ggjpelg/sed
<<enumeration>> —Vsibilit 0..* \V
Visibility 1 0
A AN 1 - .

protected

public 1 _Visibility 1 Method

Figure 6.2.: DERCS meta-model: structural elements

RuntimeElement

95

6. Tool Support for the Proposed Approach

as the execution of actions sequences that start in respomethod calls. DERCS defines
its actions model based on the UML meta-model, providindf@an independent actions as
follows:

e Assi gnment Act i onrepresents a value assignment to an attribute or localblaria

e Expressi onAct i onrepresents mathematical or boolean expressions evaiuatio

e SendMessageAct i on indicates the action of an object sending a message to anothe
object;

e Modi f ySt at eAct i on represents the action of changing object’s explicit state;

e Creat eCbj ect Acti on indicates an object creation, whiBest r oyCbj ect Ac-

t i on an object destruction;

e Ret ur nAct i on represents a method value return action;

e | nsert ArrayActi on represent the action of inserting a new element in an array,
while RenoveArrayAct i on represents the opposite, i.e. the action of removing an
element from an array. In additiody r ayLengt hAct i on represents the array size
information retrieval.

Moreover, DERCS defines that behaviors have pre- and poslittns that must hold,
respectively, before and after actions sequence execulrieaconditionsndicate that behaviors
start their actions execution only if the boolean exprass$iolds. Likewise post-conditions
indicate that behaviors repeat actions sequence exeautidrthe boolean expression become
valid.

Behaviors can also be executed in response to events aocesten fact, an event is asso-
ciated with an object that contains methods capable of iramthis event. Thus, when an event
occurs, it triggers a sending message action to one of tlheeiatsd object’'s methods. DERCS
defines two event types: internal and extertialernal eventsare detectable occurrences during
system runtime, such asessages sending/recepti@nteringin an explicit state, anéxiting
from an explicit state. On the other harmctternal eventare occurrences which happened in the
external environment in which the system is embedded. Eurtbre, events speciequential
andparallel triggers. The former indicates that the triggered objeloghavior must hold the
execution until the executing behavior finishes. On therotiaad, the later indicates that the
associated object’'s behavior can start its execution cosatly with other executing behaviors.

Other important DERCS feature is objects distribution. €ty reside in computing de-
vices (e.g. devices with general purpose processors andongeor dedicates hardware de-
vices), upon which their behavior is performeédbde element represents such devices, whose
implementation represents either software or hardwatéoptas. Additionally, it can represent
physically separated computing devices, making objectseteonsidered as local or remote
objects (depending on the objects/device reference). Meni is important to highlight that,
independently of objects implementation (i.e. softwardardware) or their deployment (i.e.
local or remote), behavior semantics proposed in DERCSiretha same. Thus, actions are
executed (behavior) in response to either messages rddedra other objects, or event occur-
rences. In other words, messages exchanged by objectsnimpied as software or hardware
and/or deployed in different devices, at DERCS abstradiéorl, have the same semantics.
The implementation of these different message exchangss tigpdefined in the chosen target

96

6.2. A Platform Independent Model for Code Generation

—|>| NamedElement |<)—| BaseElement |<} EntryStateEvent
A AN

1 DataType 1 —Return rype ExitStateEvent
- P
1 - 1 #TriggeredBehavior
Behavior r _ — _Related \V
1 " |RuntlmeEIement | |StateTransmon Transition W
1
o - 1] 1T —toEtement InterruptionEvent
1 - 0" ¢ —fromElement T
LL| LocalVariable i
‘I | BehavioralElement —AssociatedObject 1| Event K
1 1.%
Object |1 11 !
jec 1 " -
—DestinationVariable ModifyStateAction <<enumeration>>
1 |#RelatedObject TriggerKind
9
i i i i ArrayAction ReturnAction SEQUENTIAL
|ASS|gnmentAct|on | |ActlonWlthOutput | | y | | | PARALLEL
1 1 1]‘ : T | 1
—ResultOfAction
- 1 esultOfActio InsertArrayAction | | RemoveArrayAction MessageEvent
Attribute o) AA
—DestinationAttribute
I I
- ; 1 SendMessageEvent
ExpressionAction |ArrayLengthActlon | |0bIeCtACt'0" |1 —TriggeredAction
; . S Jﬂ--* 101 |ReceiveMessageEvent|
|Destroy0biectAction ||Create0biectAction | |Sendl\' ‘,-eActioni1 1fi Method

Figure 6.3.: DERCS meta-model: behavioral elements

platform that will realize the distributed embedded réaet system elements.

The most noticeable difference between DERCS and UML metdets is the capability
of representing AO concepts, as depicted in figude Aspectonsist of araspect adaptations
set, which contain bothtructural or behavioral adaptationsand a set opointcuts In essence,
DERCS represents DERAF aspects specified in the ACOD (assdied sectioh.3.3; sim-
ilarly, aspect adaptations represent specified adapsaficovided by the selected DERAF as-
pects. In addition, therosscutting informatiorspecified in ACOD’s crosscut associations (be-
tween aspects and classes) is representett bgscut t i ng andCr osscut ti ngl nf or -
mat i on elementsPointcutsrepresent the link betweekspect Adapt at i ons andJoi n-
poi nt elements, indicating theelative positionin which adaptations must be performed.
Rel at i vePosi t i on enumeration specifies one of the following options:

e BEFORE indicates that adaptations are perfornbeforejoin point occurrences. Itis used
in pointcuts that link join points representing behaviament (e.g. actions) selection
with aspect adaptations;

e AFTER indicates that adaptations are perfornadtér join point occurrences. It is also
used in pointcuts related to behavioral join points;

e AROCUND specifies that adaptations are performed in liforeandafter join point oc-
currences. Itis used in pointcuts that link join points thelect behavioral elements (e.g.
actions or behaviors) with aspect’s behavioral adaptation

97

6. Tool Support for the Proposed Approach

NamedElement Kl 1

“SelectedElements 0 ~AffectedElement
|] | <<enumeration>>
@nt Aspect RelativePosition
1 INE 1 BEFORE
: —Pointcuts AFTER
1 J,O . AROUND
Pointout | RelatibePositi ADD_NEW_FEATURE
ointcu —RelatiyePositipn
MODIFY_STRUCTURH
1 1 1 ol
—AspectAdaptation 0.”]crosscutting
—Crosscuting

1 - 0.*
_)| AspectAdaptation | ~Crosscutinglnfo
-StrugturalAdaptations lr —BehavioralAdaptations 1
]

L [0..* Crosscutting
| StructuralAdaptation | | BehavioralAdaptation | Information

Figure 6.4.: DERCS meta-model: AO-related elements

e ADD_NEW FEATURE specifies that new features (e.g. an attribute in a classparaam-
eter in a method) are included by the aspect adaptation istthetural elements selected
by the join point;

e MODI FY_STRUCTURE indicates that structural features of the selected elesnare
modified by the aspect adaptation. Likewise the previouwstivel position, this is used
in pointcuts related to join points selecting structurahetnts.

Join pointsare represented by tli®i npoi nt element, which contains a list of selected
base elements, i.e. those elements that extenBakeEl enent class. In other words, the se-
lected elements list consists of: instance€lofss, At t ri but e, Met hod, andNode, in ad-
dition to all behavior-related elements, i.e. instancedlgfct i on subclasses, arBehavi or
class. As it will be explained in the next section, the séactjuery specified in JPDD is eval-
uated, and all DERCS elements instances that match withetbet®n criteria are included in
theJoi npoi nt ’s elements selection list.

6.3. UML-to-DERCS Transformation

Based on the information provided in the previous sectioram be claimed that DERCS meta-
model can represent structure and behavior in a more com@gethan UML meta-model.
DERCS uses fewer meta-model elements to represent the sformation (i.e. system struc-
ture and behavior) compared to UML, which, in turn, has défe element to represent similar
features. In this sense, there is no direct one-to-onaéaekdtip among many DERCS elements
and their similar counterpart in UML meta-model. Hence,rem$form a UML model into a

98

6.3. UML-to-DERCS Transformation

DERCS model, some transformation heuristics had to be dkfine

Considering the structural elements, the majority of thewveha direct counterpart in the
UML meta-model, as show in tab&Ll Thus, when GenERTICA's transformation engine reads
the UML model, and one of these elements is found, it does eetlio interpret the UML
meta-model element semantic regarding any transformdgamistic, i.e. it just creates the
DERCS element that matches with the UML one. However, theren exceptions(i) method
signatures; andii) associations between classes. An UMK&r nel . Oper at i on element
decorated withkget t er » or «set t er » stereotypes indicates an access method to a given
attribute. Thus, the transformation heuristic understasuth role, and creates not only one
DERCS’Met hod element, but also its associatBdhavi or element, in which actions corre-
sponding to the specified semantics (i.e. get/set attsbedkies) are inserted.

Associations among classes have also a special transformfreguristic. As stated in chap-
ter 5, all associations must have at least one end specifgintiplicity equals to “1”, and the
navigable property set to true; the class representingassciation end will receive elements
related to the association. For “normal” associations,tithiesformation engine inserts a new
At tri but e element (related to the other association end), along withraanet er element
in class constructor, and #&ssi gnment Act i on to represent this new attribute initialization.
Access methods, i.e. get/set methods, for the new attrdmat@lso created as described in the
previous paragraph. For aggregation relationships, time $eansformation heuristic is applied.
However, for composition relationships, the class receiwe additional methods instead of the
new parameter and its assignment actiip.one method to create composite class parts; and
(i) another one to remove (or destroy) composite class pansdto methods, the correspond-
ing behavior is also created. To illustrate the mentionadibktcs, let's consider thieftWheel

Table 6.1.: UML-to-DERCS mapping table

UML meta-model DERCS meta-model
Ker nel . Cl ass Cl ass
Ker nel . Property Attribute
Ker nel . Type or Dat aType subclass
Kernel . Pri maryType
Ker nel . Operation Met hod
""" decorated withcgetter» 7| Met hod, Behavi or,ReturnAction T
" decorated withcset ter»] Met hod, Par anet er, Behavi or, Assi gnnent Acti on
Ker nel . Par anet er Par amet er
Ker nel . Par anet er Di r ect i onKi nd Par amet er Ki nd
Ker nel . Associ ati on Attribute, Met hod, Par anet er, Behavi or,
Assi gnnment Acti on, Ret ur nActi on
""" if any association end defines = | Attri but e, Met' hod, Par amet er, Behavi or,
Aggr egat i onKi nd as conposite Assi gnnent Act i on, Ret ur nActi on,
Creat eObj ect Acti on,Dest royCbj ect Acti on
Ker nel . I nst anceSpeci fi cation or
Basi cl nteractions. Lifeline
""" related to class decorated with ~~ | ActiveCbject Ty
«Schedul abl eResour ce»
""" related to class decorated with ~~~ | PassiveCbject T
«Mut ual Excl usi onResour ce»
or «<Resour ce»

99

6. Tool Support for the Proposed Approach

composite relationship betwedmovementControlSysteand Actuator depicted in figures.2

As one can seéActuator association end is the navigable end (indicated by the ahead).
ConsequentlyMovementControlSystemaceives a new attribute, whose namé&ftwWheeland

the type is theActuator class and, as this association is a composition, the mextiometh-
ods are also added MovementControlSystemstead of the new parameter and its assignment
action inMovementControlSystésrcontructor.

As mentioned, UML has very different ways to specify systashdvior. DERCS proposes
a more simplified form for behavior representation (compgdaceUML meta-model elements).
For that reason, there is no direct one-to-one mapping frdwth Uehavior-related elements to
DERCS ones. Thus some UML behavior diagrams interpretéigamistics have been created.

In AMODE-RT approach, sequence diagram is the most impbdiagram to specify ob-
jects behavior, due to its capability of showing objectgiiattions, execution flow control (us-
ing combined fragmentf®2]), and also actions (using the reserved words presentsection
5.2 table5.1). The whole behavior of a distributed embedded real-tinséesy is specified using
different sequence diagrams, i.e. behavior informatiostrive extracted from more than one
diagram. Additionally, there is no one-to-one relatiorviEtn sequence diagrams meta-model
elements and DERCS behavioral ones. Thus, to accomplisiNtieto-DERCS transforma-
tion, an interpretation heuristic has been defined. Segudiagram messages are statically
analyzed using a stack-based algorithm, which pushes ges$ae. method calls) on the top
of a “call stack” to discover which messages (i.e. actions)yested inside the behavior of other
methods. Algorithiml shows this static analysis.

For each message, a tupte= (Sender, Target, Behavioid created, wher&enderis the
message’s sender lifeliigTargetis the message’s target lifeline; aBehavioris the behavior
associated to the method represented by the message. Bhithaiganalyzes all messages (re-
specting messages order depicted in the sequence diagrangate the corresponding action,
e.g. sending message, assignment, expression, etc. letb&age represents a sending message
action, this message’s tuple is pushed on top of the calkstidhe following messages are
sent from the same lifeline (i.e. same object) as tuplegetaon stack’s top, these messages
represent actions performed within the context of the mglinessage’s behavior.

It is important to highlight that combined fragments areatensidered in sequence dia-
grams analysis. Combined fragments represent executimnotdow in objects interactions,
i.e. they can specify both conditional, or repeating irdtBoms (as described in secti@n2.4).
For each combined fragment, a behavior with pre-conditidmscombined fragments whose
i nt eracti onQper at or property is sett@l t oropt), or post-conditions (for those spec-
ified with | oop operator) is created. Therefore, messages enclosed byirentragments
represent actions performed within the context of bran¢hes “ifs”) or loops. When a com-
bined fragment is detected, a new behavior is created, adtéd in the tuple’s behavior on
stack’s top. Hence, actions created from messages endigsdds combined fragment are
inserted into théBehavi or element related to the combined fragment.

ILifelines are vertical lines depicted in sequence diagr#mas represent objects and/or classes. The proposed
transformation heuristics interprets lifelines as sysearhjects.

100

6.3. UML-to-DERCS Transformation

Algorithm 1 Extract behavioral information from sequence diagrams

1: stack «— 0
2:
3: for all m = message in Sequence Diagrdm
4: if stack = () then
5: PUSH(tack, m)
6: else
7 if stack.Top.Target= m.Sendethen
8: /I Action must be inserted into the method’s behavior on theks top
9 action < create an action fromn
10: else
11: /I Action must be inserted into other method’s behavior.
12: POPGtack)
13:
14: /I Looking for the “right” method'’s behavior according theilt stack. . .
15: while (stack # 0) A (stack.Top.Target# m.Sendey do
16: POPGtack)
17: end while
18:
19: if stack # () then
20: /I The “right” method behavior could be found
21: action « create an action from
22: else
23: I Message order violates call stack order, i.e. it is senalbiyeline
24: /I (i.e. object) that have not sent any message before, ingake
25: I/l execution flow
26: throw an exception
27: end if
28: end if
29:
30: insertaction in stack.Top.behavior
31:
32 I/ Potentially, all send message actions (including messdg the lifeline itself)
33: Il trigger different behaviors, and hence, they must be gdsin the stack
34: if ((action is a send message actipn (m.Senders m.Targe})
V (m is a recursive messagthen
35: PUSH(tack, m)
36: end if
37 endif
38: end for

101

6. Tool Support for the Proposed Approach

The behavior transformation heuristic allows merging infation from different sequence
diagrams. For a given message if the following messages are nested messages (i.e. de-
parting fromm’s target lifeline), a DERC®ehavi or element is created, and associated with
the method represented by To illustrate this heuristic, let's consider the sequediagram
depicted in figure5.5. MovementController.run(method has two nested messadegua-
tor.setActValueand MovementController.processinfaHence, aBehavi or element contain-
ing two SendMessageAct i ons is created and associated withovementController.run()
method. Similarly,Actuator.setActValue(nethod has five nested messages (e.g. messages 3,
4,6, 7,8, and 9), and also two combined fragments enclosingested messages. ThAs-
tuator.setActValuel§ Behavi or contains ondBehavi or representing the “loop” combined
fragment, which, in turn, containsG eat eCObj ect Acti on and aAssi gnnment Acti on
(related to message 3), anotfBarhavi or 2 (related to the “alt” combined fragment), and other
Assi gnrrent Act i on (related to message 9)MovementController.processinfofhethod’s
behavior is extracted using the same heuristics.

As one case see, from a single sequence diagrams it is possisktract different method
behaviors, eliminating the need of creating one sequeragratin to each method behavior.
However, if not carefully used, such approach can produgsichied specification, e.g. the
same method behavior specified twice, leading to ambiguitiebehavior specification. To
overcome this problem, a simple ambiguity detection h&arlsas been created: if there is
already aBehavi or element associated withra method (created from other sequence di-
agram), and there are messages nested o the current sequence diagram, this situation
indicates thaim's behavior was specified twice. When this situation occtlrs,transforma-
tion engine reports the detected ambiguity to system dessgTo illustrate this situation, let’s
consider that sequence diagrams of figlsdsand5.6 are specified in the same UML model.
MovementController.processinfofjethod has nested messages in both diagrams. The trans-
formation engine will create Behavi or element to this method during the interpretation of
figure 5.5s sequence diagram and, when the transformation engee itrierpret figuré.6s
sequence diagram, it will discover that there is alreadBeavi or element associated to
MovementController.processinfofonsequently, the ambiguity is detected.

To summarize sequence diagram to DERCS elements trandfonmiable6.2 presents the
relationships among UML meta-model elements with DERCSone

State diagrams are used in AMoDE-RT modeling approach, laug] heed also transfor-
mation heuristics to derive DERCS behavioral elements fiteem. Two heuristics have been
defined:(i) straightforward state machine mapping; gidapplying theobjects for statesle-
sign pattern [48]. The first heuristic produdethen-elsestate machine implementations. More
specifically, DERCSSt at eDat aType elements are created to each state machine. Every
UML Behavi or St at eMachi nes. St at e element in the state machine is transformed to
a DERCSSt at e element, which is associated with the creg®eét eDat aType. Similarly,
Behavi or St at eMachi nes. Transi ti on elements are transformed in&b at eTr an-
si ti on elements, whose guard condition, and from/to states apeoalzined fronBehav-

i or St at eMachi nes. Moreover, the same transformation heuristics are applienthogo-

2ThisBehavi or element contains actions related to messages 4-8

102

6.3. UML-to-DERCS Transformation

Table 6.2.: UML-to-DERCS behavior elements relationships

UML meta-model

DERCS meta-model

Basi cl nteractions.
Basi cl nteractions.
Basi cl nteracti ons.

Ker nel . Operation

Li feline,
Message,
MessageCQccurrenceSpeci fication,

Basi cl nteracti ons.

Destructi onEvent,

Behavi or,

Assi gnment Acti on,

Expr essi onActi on,

I nsert ArrayActi on,
RenoveArrayActi on,
Modi f ySt at eActi on

Dest royObj ect Acti on

Basi cl nteractions.
Basi cl nteractions.

Basi cl nteractions

Li feline,
Conbi nedFr agnent ,
. I nteracti onFragnent

Behavi or

nal state: oné&t at eDat aType element is created to each orthogonal state region, and thus
DERCSSt at e elements are created to easND-stateqi.e. concurrent sub-state).

According to AMoDE-RT guidelines, one state diagram is aesged with only one class.
Hence, an attribute (whose type is this state diagra®t’at eDat aType element) and a
method (which is responsible to execute different actiosgedding on the actual state) are
created and added to the associated class. It is importdngldight that it is assumed that
associations between state diagrams and classes repitesdaiowing execution semantics:
instances of this class are active objects that execute étleooh related to the state machine.
This method is triggered periodically, and its behaviorcetes concurrently with other active
objects’ behaviors. In this sense, the behavior relatedhisorhethod performs a “common”
if-then-elsestate machine implementation. Considering the state meashiith orthogonal
AND-states additional attributes are created to each sub-state machiowever, instead of
representingSt at eDat aType elements, they represent sub-state machines’ activetsbjec
Therefore, when an object enters in a orthogonal statesgib-machine active objects start to
execute their behavior.

On the other hand, the second heuristic implementoHbjects for stateslesign pattern
[48], in which each state is represented as an object thad¢éimgnts behavior related to the state.
Objects for stateglesign pattern involves the following elementsintext state andconcrete
state subclasse§o summarize, the context object has an attribute reptiegethe state object,
which is an instance of one state’s subclass. The conteggdtls its methods execution to
the state object. In the proposed transformation heuriiie class associated with the state
diagram is thecontext This class receives a method representing the state diagacution,
and an attribute representing its state object, similarte first transformation heuristic. This
method behavior has only orgendMessageAct i on action, representing the delegation of
this method execution to the state object.

An abstract class is created to represent the state maelnidés used as the new attribute’s
type. This abstract class also has a method representieghséghine execution, which is over-
ridden by states’ concrete subclasses. For each st@leass element is created to represent
the state’s concrete subclass. This class extends thed>em’s abstract class, overriding

103

6. Tool Support for the Proposed Approach

its abstract method using the behavior extracted from theesee diagram associated with the
state. At the end of this method behavior, additioBahavi or elements with pre-conditions
(representing thd-then-elsestatements) are inserted to represent state’s outgoingiticms.
Actions executed in these behaviors represent the ddastiuaft context’s current state object,
and the creation of the next state object. For orthog@iD-state this heuristic follows the
same approach as the first one: creates active object classsch sub-state machine as ex-
plained earlier.

Both approaches have pros and cons. For example, (i) alksgsthemory usage but leads
to extra runtime overhead because objects need to discdvehactions must be performed in
the actual state, by means of comparing all state machinssilgle states (in the worst-case),
in order to execute the correct actions for the current st@te the other hand, (ii) uses more
memory because states are themselves objects (not onbuss representing states as enu-
merations or integer numbers), but allows less runtimelmaat caused by the search for the
correct actions to be executed when the object is in a spextdie. The decision on which
heuristic is applied depends on system constraints, anadery designers before the UML-
to-DERCS transformation process. Although important,enohthese state diagrams transfor-
mation heuristics are implemented in the initial versiolG@hERTICA's transformation engine
prototype. In fact their implementation was not considevad of this thesis’ main contribu-
tions, and thus, it was left to future work.

6.4. Mapping Rules

6.4.1. Overview

To generate code from the UML model, GenERTICA adopts asbdped approach, in which
small scripts define how to map model elements into targétopta constructions, generating
source code fragments that are merged to produce sourcdilesdd he proposed script-based
code generation improves separation of concerns in mapplag specification, because each
script is concerned with the transformation of a single nadiement (or few of them) into
source code fragment.

Mapping rules are described as XML [129] files, whose forragidrtable, and allows the
specification of self-described content organized in astagcture. These characteristics, and
also because XML is de-factostandard, have influenced its choice as the language used to
describe GenERTICA mapping rules. Furthermore, XML treganization facilitates scripts
storage in terms of platform mapping rules repositoridewaihg scripts to be reused in further
projects that use the same target platform. Hence, therdeffigrt to derive system implemen-
tation from an UML model is decreased.

Leaf nodes of the mapping rules’ tree contain scripts exectd generate code from a spe-
cific DERCS element (representing the correlated UML eldjnefss mentioned, each script
concentrates on generating a source code fragment retatedingle DERCS element. The
correct script is selected based on which element is beicgsaed by the code generation algo-

104

6.4. Mapping Rules

rithm (see next section), i.e. the leaf node must match WwighDERCS element. These scripts
have complete access to DERCS model information, in ordiee table to generate source code
as complete as possible. Consequently, the more compldeeganeration scripts are, more
source code is generated, and less effort is required to aftgmurite additional code. One of
GenERTICA's aims is to allow code generation as completeoasiple, decreasing (or even
eliminating) the need of manual coding. However, this wooksinot define a new script lan-
guage or script execution engine. It rather uses a well-knopen source scripting framework
calledVelocity[3], which defines th&/elocity Template Languad®TL) that provides all func-
tionalities required to assist the GenERTICA code germmadipproach implementation. VTL
is a Java-like scripting language, which returns a stringeaslt of script execution. Thus, the
generated source code fragment is obtained by means ofsawg@sodel information through
DERCS API.

Considering the mapping rules organization, one can segure®.5that the XML file root
is divided into a set of different target platforms, whosécdctrees represent mapping rules for
constructions in the target platform. There are two souotke categories defined in a platform
mapping rulesy(i) application code; andi) platform code. Both are divided in software and
hardware source code. In tlaplication branch, software and hardware sub-trees have the
same structure, i.e. they have the same script types toajermvde from DERCS elements; in
platform configuratiorbranch the difference is that platform software elemerdsige services
instead of components as in the hardware ones.

6.4.2. Application Code

Application branch is subdivided in{i) source code optiondii) primary elements scripts;
(iii) scripts for class-related elemen(s;) scripts for behavior-related elements; gmyiscript
specifying DERAF aspects implementation. Consideringfigure 6.6 lines 01-29 show an
excerpt from a XML file with mapping rules to Java. Th8ourceOptions>node manages
issues related to source code files creation, defining thesaode file naming convention
(<FileNameConvention>node) and organizatiorcGourceOrganization>node). GenERTICA
assumes that a target language may have both a declaratdcanamplementation file, such
as in C/C++ which defines header and implementation sourde fites. Thus<SourceOr-
ganization>node defines how each of them is structured. If there are depeies among
source code files, theSourceReferencernode indicates target language constructions to spec-
ify source code file references. It is important to note twdkaites in<SourceOrganization>
node: isAspectLanguagand hasClassesDeclarationThe former indicates if the target lan-
guage is an AO-language or not. GenERTICA will not perforpesss weaving if the attribute
value is “yes”. It will interpret scripts in thAspectbranch as aspects constructions in the target
AO-language.hasClassesDeclaratioattribute indicates if the target language requires a class
declaration before describing class implementation, sssdn C/C++ languages.

Taking into account (i), the<PrimaryElements>node (figure6.6 lines 30-59) provides
scripts representing straightforward mappings from DER{@8&ents to primary elements con-
structions in the target language. On the other hand, censgl(iii), theclassbranch provides

105

6. Tool Support for the Proposed Approach

File Name Convention ‘

.
Source Options
—
Declaration File

Visibilities |
Asp.ect1
(s
spect,
_—

Implementation File

Primary Elements

Class

Attributes ‘ Declaration ‘

Messages Implementation ‘

Variable Declaration

Application
- To Local Object
Message Sending
To Remote Object
Stage Changs

Behavior Insert Element

Array Remove Element ‘

Branch Array Length

Platform,

Platforms :
Object

Hardware : Same organization as Software :

Service,

Service,

Component;,

Software

w Platform Configuration

Hardware

Figure 6.5.: Mapping rules XML organization

106

6.4. Mapping Rules

more complex scripts, which need to retrieve informatiortt@nDERCS element being evalu-
ated, in order to generate the correct code fragment forelbatent.<Class>node defines, in
the<Implementation>node, how to use target language constructions to destwbedss im-
plementation, in terms of attributes and methods. Additilgnif the target languages requires
a class declaration construction, this node also providesnsito specify this in theDeclara-
tion> node.

However, <Class> node’s most important children nodes atAttributes> and <Mes-
sages>nodes. The later provides scripts to generate methodsrdtotaand implementation
based on information contained in a DER@®&t hod element. The former provides a script
to transform a DERC®&t t ri but e element into an attribute construction in the target plat-
form language. A script to generate attribute declaratfona Java target platform is presented
in figure 6.7. The code fragment produced by this script is shown in thisréig lower part.
As one can see, this script is highly cohesive because it deitth only one element, i.e. the
attribute, from which information is obtained by accessiogtext variables (those identifiers
starting with a “$” character), or directly calling one of BES APl methods of thattribute
element (e.g. line 03). Itis important to note here that atmds (of all elements) available in
the DERCS API can be used within the context of script.

Behaviorbranch (iv) provides key scripts to map DERCS behaviorainelgs into con-

01 <SourceOptions 30 <Pri maryEl enent s>
02 i sAspect Language="no" 31 <Dat aTypes>
03 Cl assesPer Fi |l e="1" 32 <Array>$Dat aType. Dat aType[] </ Array>
04 hasC assesDecl arati on="no" 33 <Bool ean>bool ean</ Bool ean>
05 I ndent ati on="5" 34 <Byt e>byt e</ Byt e>
06 Bl ockStart="{" Bl ockEnd="}"> 35 <Char >char </ Char >
07 <Fi | eNameConventi on> 36 <C ass>
08 $Cl ass. Name 37 $Dat aType. Repr esent . Nane
09 </ Fi | eNameConventi on> 38 </ Cl ass>
10 <Package> 39 <Dat eTi ne>Dat eTi ne</ Dat eTi ne>
11 package $C ass. Package; 40 <Enuner at i on></ Enuner ati on>
12 </ Package> 41 <l nt eger >i nt </ | nt eger >
13 <Sour ceRef er ence> 42 <Long>l ong</ Long>
14 i nport $Ref erencedCl ass. Package 43 <Short >short </ Short >
15 . $Ref er encedd ass. Nane; 44 <String>String</String>
16 </ Sour ceRef er ence> 45 <Voi d>voi d</ Voi d>
17 <Sour ceOr gani zati on> 46 <Doubl e>doubl e</ Doubl e>
18 <Decl arationFile 47 <Fl oat >f | oat </ Fl oat >
19 Fi | eExt ensi on=""> 48 </ Dat aTypes>
20 $Sour ceCode. Cl assesDecl arati on 49 <Visibilities>
21 </ Decl arationFi | e> 50 <Private>private</Private>
22 <l npl enentationFile 51 <Pr ot ect ed>pr ot ect ed</ Pr ot ect ed>
23 Fi | eExt ensi on=".java"> 52 <Publ i c>publ i c</ Publ i c>
24 $Sour ceCode. PackagesDecl ar ati on 53 </Visibilities>
25 $Sour ceCode. Ref erencesDecl arati on| 54 <Par anet er Ki nds>
26 $Sour ceCode. Cl assesl npl enentation| 55 <l n></ | n>
27 </l npl ementationFil e> 56 <Qut ></ Qut >
28 </ SourceOrgani zati on> 57 <l nQut ></ | nQut >
29 </ SourceOpti ons> 58 </ Par anet er Ki nds>
59 </ PrimaryEl ement s>

Figure 6.6.: Mapping rulessSourceOptions>and<PrimaryElements>branches

107

6. Tool Support for the Proposed Approach

01 <Attributes>

02 $VisibilityStr

03 #if ($Attribute.isStatic()) static #end
04 3$DataTypeStr S$Attri bute. Nanme

05 </ Attributes>

private int w ndSpeed

Figure 6.7.: Mapping rulessAttributes> node

01 <SendMessage> 26 <ToRenote>
02 <TolLocal > 27 <Sof t war e>
03 <Sof tware> 28 #set ($x=$Act i on. Par anet er sVal uesCount
04 #if ($Action. ToObject != 29 + 1)
05 $Act i on. Frombj ect) 30 nyMsg. set Nr Byt es($x)
06 $Act i on. ToObj ect . Narre. 31 nyMsg. addByt e(
07 #end 32 $Acti on. Rel at edMet hod. I D) ;
08 $Act i on. Rel at edMet hod. Nang(33 #f oreach($v in
09 #i f ($Acti on. Par anet er sVal uesCount > 34 $act i on. get Par anet er sVal ues())
10 0) 35 nyMsg. AddByt e((byt e) $v)
11 #f oreach($paramin 36 #end
12 $Acti on. Par anet er sVal ues) | 37 | ocal Tp. sendMsg(conect i onNunber
13 #if ($vel ocityCount > 1), #end 38 nyMsg
14 #set ($x = $vel ocityCount - 1) 39 t i meQut Par am get nsgSendTi me())
15 #i f ($Action. i sParaneterVal ue($x)) | 40 </ Sof t war e>
16 $par am 41 <Har dwar e></ Har dwar e>
17 #el se 42 </ ToRenot e>
18 $par am Nanme 43 </ SendMessage>
19 #end
20 #end
21 #end
22)
23 </ Sof t war e>
24 <Har dwar e></ Har dwar e>
25 </ TolLocal >
nyMsg. set NrBytes(1);
envl nfo. get W ndSpeed() nyMsg. addByt e(49) ;
| ocal Tp. sendMsg(conecti onNunber, mnmyMsg,
ti meQut Param get nsgSendTi me()) ;

Figure 6.8.: Mapping rulessSendMessagerode

108

6.4. Mapping Rules

structions in the target language. There is one node tofgpescript to each action available in
the DERCS actions model, and also to behaviors with pren@imeand post-conditions (loop).
Designers must only specify how to map individual DERCSaadiinto equivalent construc-
tions in the target language. Code fragments related torectire generated by these scripts,
and merged to compose a behavior. This approach facilitia¢especification of behavior map-
ping rules, because designers do not need to specify corapitgxs that deal with all action
types in the same script. Scripts have full access to actidoamation, as well as the behav-
ior containing them. Thus, it is possible to create very gdieed and elaborated scripts, as
the mapping rules foBendMessageAct i on elements shown in figure.8. As mentioned,
DERCS sending message semantics is the same for any kingef tdject, i.e. local or remote
objects, and/or objects implemented as software or haslwine target platform is in charge
to implement these sending message variations. In figu@dines 04-22 (left column) show
the script to map actions that send messages to local oljeatdava platform. On the other
hand, lines 28-39 (right side) depict the mapping of actibas send messages to remote objects
using a communication API [34] in the same Java platform. E3€FHCA decides which script
should be executed based on the information contained irséimelMessageActi on, i.e.
GenERTICA compare thBlode in which both sender and target objects have been deployed.
If the Node is the same, GenERTICA executes the script related to loeakages, otherwise it
executes the script related to remote messages. Examptes®fragments generated by both
scripts are presented in the lower part of this figu@&

The most important part of the application mapping rulesigigation is the set of scripts
to describe DERAF aspects implementations. As stated tioses. 3.2 DERAF aspects high-
level semantics do not define how to implement aspect adapsatt must be done in imple-
mentation phase considering the target platform. Thushénproposed code generation and
aspects weaving approach, DERAF aspects implementatigpersified via scripts within the
aspectsranch (v). For each aspect, scripts representing itstatalcand behavioral adapta-
tions are defined. GenERTICA executes aspect adaptatigrtssapon elements selected by
the join points. More specifically, information containedaspects’ pointcuts specification is
used to select which adaptations scripts must be executeddify the elements gathered by
join points. In other words, when the code generation algaorianalyzes a DERCS element
(e.g. class, attribute, behavior, action, etc.) to geerdtatsource code fragment, it also checks
if this element is selected by any JPDD. If it is the case psermf aspects adaptations related
to these JPDDs (as indicated in aspects’ pointcuts spdwfigaare executed, modifying either
the generated code fragment, or the element itself. Thegld®code generation, GenERTICA
also performs aspects weaving in both generated code fragrard DERCS elements.

There are two kinds of aspect adaptation implementatioms:tlwat modifies the generated
code fragment; and one that modifies the selected elemem.fofimer is executed after the
script defined incClass> of <Behavior> branches for the selected element, modifying the
generated code fragment to include changes promoted byspgeetaadaptation. The later is
executed before the mentioned branches’ scripts, modifyia selected element at model level,
i.e. the input DERCS model element is modified. Thereby, GREA is able to perform
aspects model weaving. To illustrate these two types ofcasggmaptation implementations,
figure 6.9 presents the implementation of tReriodicTimingaspect (see sectidn3.2 for the

109

6. Tool Support for the Proposed Approach

RT-FemtoJava platform [65, 131].

In this example, six adaptations have been created: thddirsimodifying the generated
source code fragment, and the two last modifying directy dffected element (indicated by
the Mbdel Level attribute). PeriodicTimingaspect affects active object classes that need to
execute its behavior cyclically at a given frequency. Helackaptations affected these classes’
attributes and behavioPeriod structural adaptation adds two attributes in affectedselssas
depicted in figuré.10lines 07-09; initialization code for these attributes isdrted in the class
constructor bySetPeriodbehavioral adaptation, as shown in lines 19-FequencyControl
appends code (after the last action) that controls the ¢wecirequency of active objects’ pe-
riodic behavior using RT-FemtoJava platform construdjas presented in line 33. Similarly,
LoopMechanisnadaptation encloses the periodic behavior (and the codet@usbyFrequen-
cyContro) in awhile construction, as depicted in lines 27 and 36. It is importamiote that,
to enable the expected behavibrequencyControhdaptation must be performed befd@op-
MechanismGenERTICA uses thér der attribute to control the execution order of adaptations
scripts (lower numbers have higher execution priority)this example FrequencyControbr-
der is 3 and_.oopMechanisnis 4, causing-requencyControscript to be executed befot®op-
Mechanisnone, forcing the code inserted by the first script (line 33)d@nclosed by thehile
construction inserted blyoopMechanisnscript (lines 27 and 36).

01 <Peri odi cTi m ng>

02 <Decl aration></Decl aration>

03 <Adaptations>

04 <Structural Name="Period" Oder="1" Mdel Level ="no">

05 private static RelativeTime _Period = new Rel ativeTine(0, 0, 0);
06 private static PeriodicParaneters _PeriodicParans =
07 new Periodi cParanmeters(null, null, null, null, null);

08 </ Structural >
09 <Behavi oral Name="Set Peri od" O der="2" Model Level ="no">

10 _Period. set (0, pPeriod, 0);
11 _Peri odi cPar ans. set Peri od(_Peri od);
12 set Rel easePar anet er s(_Peri odi cPar ans) ;

13 </ Behavioral >

14 <Behavi oral Nane="FrequencyControl" Order="3" Mbdel Level ="no">
15 wai t For Next Peri od() ;

16 </ Behavioral >

17 <Behavi oral Nanme="LoopMechani sm' Order="4" Mdel Level ="no" >

18 while (isRunning()) $Options. Bl ockStart
19 $CodeCener at or . get Gener at edCodeFr agnent (1)
20 $Opt i ons. Bl ockEnd

21 </ Behavi or al >

22 <Structural Nanme="ModifyConstructor" Order="1" Model Level ="yes">
23 $Message. addPar anet er (" pPeri od", $DERCSFactory. newl nt eger (fal se),
24 $DERCSFact ory. get Paraneterin());

25 </ Structural >

26 <Behavi oral Nanme="Adapt bj ect Construction" Order="1"

27 Model Level ="yes" >

28 $Act i on. addPar anet er Val ue($Cr osscut ti ng. get Val ued (" Peri od"))
29 </ Behavioral >

30 </Adaptations>

31 </ Peri odi cTi m ng>

Figure 6.9.: Mapping rulePeriodicTimingaspect implementation

110

6.4. Mapping Rules

Moreover, as one can see, source code fragments insertbd yentioned adaptations are
exactly equal to their script in the mapping rules XML filedicating that these adaptations
are independent of affected elements information. Howeldrough these scripts do not use
any information of affected elements, designers need tovaeeathat both scripts could be ap-
plied only to behavior-related elements (eBghavi or or Act i on subclass). However, if
these adaptations need to be applied to other DERCS eleffeegiCl ass, Met hod, etc.),
their script must be changed to provide additional modificet On the other hand, there are
adaptations scripts that are close related to affectedegltsne.gModifyConstructoror Adap-
tObjectConstructionThese adaptations modify affected elements’ DERCS spatidn rather
than their generated source code fragment. Adaptationsgoigamodel elements are always
executed before any other aspect adaptation, allowing hiedd modifications to be visible
for the non-aspect scripts (i.e. “normal” code generatizipss). Consequently, aspects model
weaving occurs prior to code generation, and also aspe&simgein the generated fragments.

01 public class Myvenent Control er extends Real ti meThread {

02 .

03 protected Environentlnformati on envlnfo;

04 protected int w ndSpeed;

05 ...

06 // PeriodicTimng.Period - Begin

07 private static RelativeTinme _Period = new Rel ativeTi me(0, 0, 0);
08 private static Periodi cParaneters _PeriodicParans =

09 new Peri odi cParanmeters(null, null, null, null, null);
10 // PeriodicTimng.Period - End

11 public void Myvenent Control er (Envi roment | nf ormati on new_envl nf o,
12 Movernent | nf or mati on new_nmvovl nf o, Movenent | nf or mati on new_bMvl nf o,
13 Mai nRot or Act uat or new_nRAct, BackRotor Actuator new bRAct, int pDeadline,
14 /'l PeriodicTimng. Mdi fyConstructor - Begin

15 int pPeriod) {

16 /1 PeriodicTimng. Modi fyConstructor - End

17 A

18 /1 PeriodicTimng. Set Period - Begin

19 _Period. set (0, pPeriod, 0);

20 _Peri odi cPar ans. set Peri od(_Peri od);

21 set Rel easePar anet er s(_Peri odi cPar ans) ;

22 /1 PeriodicTimng. Set Period - End

23}

24 ...

25 public void run() {

26 /| PeriodicTim ng. LoopMechani sm (1) - Begin

27 while (isRunning()) {

28 /1 PeriodicTi mng. LoopMechani sm (1) - End

29 .

30 wi ndSpeed = envl nfo. get WndSpeed();

31 C

32 /1 PeriodicTi mi ng. FrequencyControl - Begin

33 wai t For Next Peri od();

34 /1 PeriodicTi m ng. FrequencyControl - End

35 /| PeriodicTim ng. LoopMechani sm (2) - Begin

36

37 /1 PeriodicTim ng. LoopMechani sm (2) - End

38 }

39 }

Figure 6.10.: Source code fragment with modifications perém by aspect adaptations

111

6. Tool Support for the Proposed Approach

Considering model level aspect adaptatiaiedifyConstructorstructural adaptation uses
DERCS API to modify the constructor of affected classes tduite a new parameter that rep-
resents initialization value of thperiod attribute inserted byeriod adaptation. Moreover,
SetPeriodadaptation adds the code in selected constructors’ battavéssign this new param-
eter's value to theperiod attribute. As aspects model weaving occur before code gtaey
the code generation script is able to include the new paemietaffected constructors’ code
fragment, as shown in line 15 of figuéelQ Similarly, as the constructor of affected classes has
been modified, actions that create objects from these slassst also be maodified. Therefore,
AdaptObjectConstructioadaptation script performs a model level adaptation in teationed
actions. This adaptation uses the period information fipeddn ACOD’scrosscuttingrelation-
ships to include the correct information in the right objeeation action.

As one can infer, this difference in aspect adaptation talews flexibility in aspect imple-
mentation specification. Designers can choose the moab$eiinanner to implement DERAF
aspects adaptations, taking into account the target phatfé\dditionally, the combination of
aspects model and source code weaving opens room for news fordescribe aspects imple-
mentation, as well as allows new ways to explore how aspeotiifitations (performed on
system functional (or base) elements) are implemented.

6.4.3. Platform Configuration

Platform configurationbranch provides script to generate platform configuratitas fior tai-
lored source code files of frameworks, libraries, or APIsiclvtare generated based on services
or components needed by application source code. GenERagSAmes that the target plat-
form provides means (i.e. software services and hardwargaoents) to support platform
constructions described in application scripts. Congidethe usually constrained execution
environment of embedded systems, it makes sense to tadldatpet platform, in order to pro-
vide only services and components required by the embedgddation. In this sense, it is
essential that target platforms provide means to allow traifiguration in one of the following
alternatives:

e Configuration files, which turn on/off services or compomponents. GenERTICA ca
generate configuration files, allowing platform-specifiol$oto configure them, e.g. re-
moving unused elements, or optimizing provided services;

e Source codeavailability. GenERTICA can generate tailored source cbdsed on the
original code, optimizing the final target platform in terofsequired footprint.

GenERTICA platform configuration approach integrates DER&Sspects with platform
configuration. More specifically, DERAF aspects are relateplatform services and/or com-
ponents, and thus, if an aspect is specified in the modelgtivees(s) and component(s) related
to this aspect must be included in the final platform. Thefptat configuration specification is
very pragmatic:softwareor hardwarebranches are divided in several files, which, in turn, are
divided in parts (or fragments), as depicted in the exampliggure6.11 Platform configuration
or source code files are, in fact, specified as a sequencetdfagrents withinkPart> nodes.

112

6.5. Code Generation Process

01 <Pl at f or nConfi gurati on>

02 <Sof t war e>

03 <CGeneral QutputDirectory="./platforn></General >

04 <File Name="PlatFile_1.java" QutputDirectory="realtine"

05 Aspect s=" Schedul i ngSupport">

06 <Part>

07 A

08 Configuration statenents or source code fragnment
09

10 </ Part>

11 <Part Aspects="Tim ngAttributes, PeriodicTimng">
12 A

13 Configuration statenents or source code fragnment
14 A

15 </ Part>

16 </File>

17 <File> ... </File>

18 A

19 </ Sof t war e>

20 </ Pl at f or nConf i gur ati on>

Figure 6.11.: Platform configuration XML structure

Hence, GenERTICA creates platform configuration files friwese fragments. BothFile>
and<Part> nodes have aAspect s attribute indicating which DERAF aspects are related to,
respectively, platform configuration (or source code) fded/or its text fragments. They are
included in the generated platform configuration only if thedel specifies any aspect in the
list. On the other hand, if angFile> and/or<Part> node do not specify thAspect s attribute

(or its value is an empty string), it means that the node’sararmust always be included in the
generated configuration file.

6.5. Code Generation Process

As mentioned in the previous section, GenERTICA adopts igtdeased approach to produce
source code and/or configuration files, for both applicatiod target platform. Besides code
generation, GenERTICA also performs aspects weaving wsspgcts specified in the UML
model, as well as their adaptations’ implementation in fofracripts described in the mapping
rules XML file.

Therefore, GenERTICA's generation process involves twimiphases: code generation/as-
pects weaving of application level elements, and configpmétles generation or source code
tailoring of the target platform. The former analyzes adireénts in the model, trying to find the
script in the mapping rules XML file that matches with eactheith. On the other hand, the later
reads all XML nodes related to platform configuration, chieghf the associated aspects have
been specified in the model, to generate the configuratioadderding to the specification.

To provide more details on the process followed by GenERTi€§enerated application
code, figures.12depicts the activity diagram representing this processréocode is directly
generated from the DERCS model, which is obtained from tiggrad UML model via model

113

6. Tool Support for the Proposed Approach

transformations, due to its capability of representingittire, behavior, and non-functional
requirements handling in a more precise and unambiguotlsofashan compared to UML.
Thus, as can be seen, there are some DERCS key elementg diniwicode generation process:
() O ass; (i) At tri but e; (iii) Met hod; (iv) Behavi or ; (v) Act i on; (vi) Aspect s; and
(vii) Joi npoi nt .

Classes are the main elements in the code generation/aspeating process, due to their
importance to the distributed embedded real-time systeruifspation itself i.e. they represent
structure and behavior of system objects, which, in turpregent system elements. Therefore,
GenERTICA applies the code generation/aspects weaviogigilm to each class inthe DERCS
model classes list. For each class, its attributes, mettamdaell as their associated behavior
and actions list, are also used by the algorithm. As one canaseactivities execution pattern
can be extracted (for each of these elements), represehisglgorithm’s kernel as follows:

1. Check if the element is affected by any model-level aspeaptation, using pointcut and
join points information. If it is the case, the adaptatiopésformed.

2. Try to find and execute the script that matches with the efgrbeing evaluated, e.g.
if the element is aéAssi gnnent Act i on the script in the<Assignment>is found and
executed.

3. Check if the element is affected by any other aspect atiapti.e. those that modify the
generated code fragment), and if so, execute all asso@aagutations.

On the other hand, the platform configuration generatiopgain inverse path, as shown
in figure 6.13 the <PlatformConfiguration>branch drives the generation process, and the in-
formation on DERAF aspects is obtained from the model. Tharsgach<File> and<Path>
node in this branch, at least one aspect in the associatedtadist must be found in the model
to allow the generation of the file or the inclusion any of istp.

114

6.5. Code Generation Process

Initialization

Is there
any Class to
analyse?

o Nog
Yes

Select next Class

Is it affected Yes
by model level aspect adap[‘)':gtli!:)ns
adaptations?

No

Search mapping
rule that fits with the
selected Class

Is there
any Attibute to
analyse?

No

Yes|

Select next Attribute

Is it affected
by model level aspect

Yes

Apply
adaptations

Search script
to execute
Execute script

Is it
affected by any
Aspect?

adaptations

Generate
source code file

Combine source
code fragments
Apply
No adaptations

Is

Apply
adaptations

selected Yed
Class affected by any e
Aspect? Yes i
s it No
affected by any
Aspect?
No

Is there
any Message to
analyse?

Yes| Search script
to execute
Select next Message

Apply
No adaptations

Is it affected
by model level aspect
adaptations?

Execute script

Is it affected
by model level aspect
adaptations?

Yes

Yes

Apply
adaptations

Search script
to execute

Execute script

Select next Action

Yes

Is there
any Action to
analyse?

No Apply
Lo by =
Aspect? adaptations
Yes

Figure 6.12.: GenERTICA: application code generation floavt

115

6. Tool Support for the Proposed Approach

@-

Is any
Aspect found in
model?

there any File
to analyse?

Initialization

Select File Read Aspects
Node List

No

Is there
any Part to
analyse?

associated
Aspects?

Include Part
in File

Aspect found in

Figure 6.13.: GenERTICA: platform configuration genenmafilowchart

6.6. Final Remarks

UML is not the most suitable modeling language to allow catgkode generation, due to its
various intentional semantic variation points. Theref@enERTICA code generation approach
transforms UML into the proposed DERCS model, trying to diimphe access to system spec-
ification information. Moreover, DERCS meta-model allowe tsame specification level as
UML for describing structure and behavior, but using fewatanmodel elements, facilitating
the mapping of model elements into constructions in theetaptptform language. However,
more important is the separation of concerns in requiresneandling specification provided
by DERCS. DERCS AO concepts allow using AO-related elemanisodeling level that can
be further realized in both AO and non-AO target languages.

Regarding mapping rules description, the main reason foichoice of XML is because
it represents a well-structured and self-described spatiifin for organizing code generation
scripts. Thus, other tools can use the mapping rules filestf@r purposes, such as evaluat-
ing different target platform constructions mapping rulesepresent the same model element.
Additionally, the XML format facilitates the creation of ipjing rules repositories, from which
tools can read their information to decide which file (or fraant) should be selected and reused.

GenERTICA approach of using small scripts improves sejuaratf concern in mapping
rules specification because designers need only to takadetmunt few elements for transform-
ing a concepts in the model into constructions in the tamyegliage. Moreover, scripts allow
aspects weaving at two levels: model and source code. In wibrels, aspects adaptations can
modify both model elements and the source code fragmentratedefrom them. Designers
can choose the implementation form that better fits theidsie@o the best of our knowledge,
there is no other aspect weaving approach that allows bottehamd source code level aspects
weaving.

Furthermore, aspect adaptation implementations areyhidgypendent on the target plat-
form, i.e. the target platform must provide means to allowR2E aspects semantics realiza-
tion. However, it must be stated that this work does not ihtenprovide implementations for
all aspects available in DERAF. Even so, the ones providptesent good examples on how

116

6.6. Final Remarks

to implement other DERAF aspects. Besides, the proposee gederation/aspects weaving
approach enables the use of both AO and non-AO language® dargfet language in scripts
specification, enabling more flexibility in the target ptath selection.

Finally, it is important to highlight that, after code geaton/aspects weaving process,
separation in the handling of functional from non-funciibrequirements is missed, i.e. code
representing non-functional requirements is intermix@t the code related to functional ones.
However, it is not a problem since the RT-FRIDA approachduseequirements specification)
and also the mapping rules structure organization alloeethility in handling elements/con-
struction from requirements to code, and vice-versa.

117

6. Tool Support for the Proposed Approach

118

Chapter 7

Validation

7.1. Introduction

This chapter presents three case studies to illustrate @itthie the AMoDE-RT approach, as
well as the GenERTICA code generation and aspects weauhgTtbe first case study presents
the movement control system of an unmanned aerial vehiwesd¢cond one the control system
of an industrial packing system; finally, the third one theveraent control of an automated
wheelchair. For each case study, two versions have beetedreabject-oriented and aspect-
oriented. In addition, they have been compared using a swabgbe software engineering
metrics for AO systems presented in sect®.4.3 Mapping rules for two different platforms,
namely the RT-FemtoJava and ORCOS platforms, have beeiiispe¢o generate source code
from the AO version of these systems examples.

7.2. Toolset Overview

In order to facilitate the understanding of the presentesg cudies, a brief description on the
technologies used in implementation is presented. RT-&#aah and ORCOS platforms, which
have been used to implement the AO version of these casestuate presented. Thereafter,
the assessment framework used to evaluate both versioasiotase study is also presented.

7.2.1. RT-FemtoJava Platform

RT-FemtoJava platform is composed by a customizable Jaaegsor [65], and a set of APIs
to support real-time applications [131]. RT-FemtoJavaessor implements a Java execution
engine as hardware by means of a stack-based machine cblapeith the Java Virtual Ma-
chine (JVM) specification [73]. Moreover, it adopts the Han/ organization, i.e. different
memories for code (ROM) and data (RAM). There are differasions available for the RT-
FemtoJava processor: 8, 16, 32-bits with different archites (multicycle, pipeline, VLIW).

119

7. Validation

The choice of which version should be selected is made aicgptd application requirements
and constraints.

As RT-FemtoJava is a customizable processor, it is genebgtthe SASHIMI environment
[65], which takes the compiled Jabgtecodess input to produce a VHDL description of the
customized RT-FemtoJava, optimized for that Java binaglg ctn other words, SASHIMI anal-
yses the compiled Java code, and automatically synthesiz&pplication Specific Instruction
Processoi(ASIP), using only the instructions subset used by the tapplication. Hence, the
synthesized processor control unit size is directly propoal to the number of different Java
opcodeseeded by the application software, optimizing the finatgdat based on application
requirements.

In addition to RT-FemtoJava processor, an API [131] basetti®Real-Time Specification
for Java(RTSJ) [13] was developed to facilitate application sofeveevelopment by raising
the abstraction level of programming constructs. Theralogmammers do not have to worry
about low-level details. This API covers the most importasypects of real-time programming
like multithreading, real-time scheduling, and specifmabf timing issues. To clearly express
timing and other constraints in the real-time applicationrse code, this API introduces the
concept of schedulable objects (i.e. active object), whi@hinstances of classes that imple-
ment the RTS$chedulablénterface (askealtimeThreadlass). It also specifies a set of classes
to store parameters that represent particular resourcartdsrfrom one or more schedulable
objects. For example, tHeeleaseParameterdass (super class frodperiodicParameterand
PeriodicParametensincludes several useful parameters for the specificatforeal-time re-
quirements, e.g. deadlines, activation period, and othdmseover, it supports the expression
of the following elements(i) time values (absolute and relative timéi) clocks;(iii) periodic,
sporadic and aperiodic task®y) scheduling policies{v) timers;(vi) asynchronous events and
their handlers; andvii) pooling servers to minimize the disturbance caused by &sgnous
events handlers execution. For details on the RTSJ-baskedd?ested readers are referred to
[131]

As mentioned, RT-FemtoJava platform also has a commuaitatP| [34] that allows the
establishment of a communication channel upon a networlyhich objects residing in dif-
ferent processing nodes can exchange messages. Two cocatmmimodels are supported
by the communication API: client-server and publisherssuiber. The former allows connec-
tion oriented and point-to-point communication, while tager connectionless and multicast
communication. Additionally, distinct priorities and fing constraints can be associated with
messages, improving the real-time constraints manageifemeover, the communication API
is divided in transport, network, and data link layers,daling the OSI/ISO reference model.
In the current version, it implements a communication istinacture following the CAN-bus
[18] communication protocol.

7.2.2. ORCOS Platform

Organic Reconfigurable Operating Syst€@RCOS) platform provides a customizable RTOS,
whose aim is to run it upon any kind of embedded hardware [1ZHRCOS implements a

120

7.2. Toolset Overview

fully object-oriented hybrid kernel (using C++ languagepresenting the evolution of ths-
tRibuted Extensible Application Management SystBfREAMS) [38], a library-based con-
struction set for operating system services. A remarkaatéufe of ORCOS/DREAMS is the
ability to separate mandatory operating systems source jgads from optional ones by using
a configuration mechanism. Thus, ORCOS can achieve smallybfootprint using a configu-
ration mechanism that uses an XML-based configuration Egguname&keleton Customiza-
tion LanguaggSCL).

ORCOS kernel is divided in several independent modules;iwdnie selected and integrated
by means of the SCL. The following services are provided byCORS:

Memory managementis one of the most important modules, and is mandatory in any
system configuration. There are separated memory spaceadbrapplication task, and
also for the ORCOS kernel. In addition, each task has its o@many manager, which

is responsible for task’s memory management strategy. dereif the embedded hard-
ware supports virtual memory, ORCOS is able to use it;

System callsprovide a manner for applications task to communicate with@RCOS
kernel. Thus, when a task needs to use any kernel functignilimust usesyscallAPI
functions to trigger a hardware interrupt, which, in tusirécognized by the kernel that
executes the desired kernel functionality;

File systemuses the same approach as the Unix file system, i.e. all fiteraysntries
can be accessed through a unique path. Resources arerespisigide the file system
structure, and accessed through a POSIX-like set of keunetibns;

Processesin ORCOS, represent tasks and their set of executing thrdelal-time sup-
port is provided by ORCOS through real-time threads andtmeed schedulers. More-
over, there are special kernel tasks/thread calletkerthread€o support asynchronous
interrupts for hardware devices I/O, timed functions c¢alteriodic functions calls (like-
wise periodic threads but with the option of stopping fumetexecution to allocate the
workerthreadto other purpose);

Schedulingis other important module in ORCOS, and is divided in two stefispatching
and scheduling. The later comprehends the set of rules ¢&ondigte the order in which
threads are executed, while the former executes instngtmallocate CPU to the thread
selected to execute. The following scheduling policiesauailable: Earliest Deadline
First (EDF), Rate Monotoni¢RM), Round Robir{RR), and a priority-based scheduler;

Hardware Abstraction Layer (HAL) provides an abstraction layer to access the real
hardware, avoiding the ORCOS kernel to access it directly;

Power managementllows energy savings. The current ORCOS version allows tonl
halt the CPU execution every time the idle task is going tacetes

Communication module allows inter-node and inter-process communicatigfining
a socket communication interface that uses different poioto communicate. Each
socket can be explicitly configured (at runtime) to definealifprotocol stack (OSI/ISO

121

7. Validation

reference model’s transport and network layers) need tsbd.u

A detailed discussion on ORCOS is beyond the scope of thisTéwxis, interested readers
are addressed to [125] and [38].

7.2.3. Case Studies Assessment

Case studies presented in this chapter aim at assessiigg d@girovements achieved by using
the proposed AMoDE-RT design flow. Thus, for each case stwayyversions have been de-
signed: one using only OO concepts to specify both functiand non-functional requirements
handling, and another one applying AO concepts to deal vathfanctional requirements.

To compare the suitability of OO and AO concepts for distigduembedded real-time
systems development, a set of quality metrics is calculde@éach version. This work uses
the assessment framework presented Sant’/Anna et al. by (€6 sectior?2.4.4.3 to infer the
reusability quality of the produced UML models. Not all dabie metrics have been used to
provide the qualitative assessment of both models. A suifseetrics had to be chosen and
adapted based on their suitability for modeling insteadbdirng phase. Hence, implementation
related metrics, such ddnes of Codehave not been used. Additionally, it is important to
highlight that this assessment concentrates only on “l#litya instead of “reusability and
maintainability” as proposed in the original assessmeainéwork [106]. Figurer.1 shows
the selected metrics and their relations to provide theatality quality assessment. For more
details on each metric, readers are referred to seétibrd.3 In addition, to assist in metrics
extraction, a plug-in for the MagicDraw modeling tool [85shbeen developed and used to
automatically calculate the metrics set.

Moreover, in order to be able to do a fair comparison betweéna@d AO models, the
development of these models were done by two different perame person has modeled the
OO version of all case studies, while the other one has mddke&AO version. The intention
of this approach is to decrease the occurrence of any biasndnahappen if the same person
designs both versions of the same system.

Besides model assessment, other point evaluated in thesestialies is the source code

Quality Factors Internal Attributes Metrics

; CcDhC
Understandability N Osf‘%‘):r:ig?:s %
A\

Cohesion|—LCOO|

Reusability

Flexibility

Coupling

Figure 7.1.: Reusability quality model

122

7.3. Case Studies

generated from UML models. Statics about the amount of socwde files, as well as generated
lines of code, for each mentioned target platform are ptegen

7.3. Case Studies

7.3.1. Unmanned Aerial Vehicle

Unmanned Aerial Vehicl@JAV) is an aircraft that flies without having an onboard piland

is used in activities where the human presence is avoidedadimherited risks, or simply to
decrease operational costs. UAVs can fly a pre-programmee o be remotely operated by
a ground station. Reconnaissance support in natural disastonitoring and defect detection
of transmission lines located in inhospitable places, ae@d aurveillance and vigilance are
some examples of UAV applications. An UAV is compounded oksal subsystems, such as
video recording and transmission, navigation, missionagament, collision avoidance, self-
diagnostic, and movement control.

This work focuses on the movement control subsystem of araaned helicopter, mod-
ifying the UAV movement control case study presented in [3¢means of providing a more
detailed design. Summarizing, the helicopter controlesysis divided three different modules:

e Sampling subsysteris responsible to sample helicopter information (e.g. naaid tail
rotors pace), as well as environmental information (e.gmikity, temperature, wind
speed and direction). Sampled data have different utiféyiines depending on the in-
formation kind, operation mode, and/or mission;

e Control subsystemuses the sampled data to control both helicopter main ahdotai
tors, allowing helicopter guidance and piloting. Basigatlimplements a control system
based on the method proposed by Seibel [112];

e Actuation subsystemtakes the control values produced by the control subsystpply-
ing them in helicopter rotor engines.

Further, the helicopter control system has two intercotateceal-time processing nodes:
one is located close to the main rotor and the other one atoetback rotor. In other words,
the designed control system is distributed over these twonmenicating nodes, employing both
remote and local objects. For a complete description onsifstem’s requirements, interested
readers should refer to [37].

Figure 7.2 shows functionalities expected from the mentioned subgystAccording to
AMoDE-RT modeling guidelines, functionalities affectey fion-functional requirements (e.g.
“Helicopter Movement Control”) are decorated with non-tianal stereotype annotations, e.g.
such as«NFR_Ti mi ng». The following subsections provide more details on the rfemtle
subsystem using AO and OO concepts.

123

7. Validation

Temperature Humidity Sensor
Sensor

Humidity Wind
Tempergture Sensing Sensing
Sensing
"
% \ A

Y
<<NFR_Timing>>
<<NFR_Embedded>>

<<NFR_Distribution>>
Rotor

Sensing

Wind Sensor

Z<NFR_Distribution>>\—"_
Back Rotor Back Rotor

Sensing Sensor

Main Rotor
Sensor

N <<NFR_Timing>>
Navigation <<NFR_Embedded>>
Control

Control Alarm

DataTransfer

Enviroment
Sensing

Main Rotor
Sensing

) 7
\'<<|nclude>> / <<include>>

<<NFR_Timing>>
<<NFR_Embedded>>
<<NFR_Distribution>>

<<NFR_Distribution>>
Piloting
Maintenance System Helicopter

, <<include>> \
System Movement Control

— it - _¢<<include>> %
Special Condition extension points
. Back Rotor
UAV in danger
Movement Control g % P

(UAV in danger) b
L 1 - U Main Rotor
<<extend>>
Actuator

Figure 7.2.: UAV movement control use case diagram

7.3.1.1. Object-Oriented Version

The static structure of UAV movement control system is depiavith a class diagram. This
diagram shows classes, their attributes and methods, amélgtionships among classes. Figure
7.3-A depicts the UML class diagram created for the OO versiogiséggested in AMODE-RT
modeling guidelines, classes representing active obgetslecorated with theSchedul a-

bl eResour ce» stereotype from the MARTE profile, and passive objects witlut ual -
Excl usi onResour ce» stereotype.

Some classes depicted in figufe3-A (those with different filling color) are responsible
to handle non-functional requirements as, for examptayaphor e class that is responsible
to control the simultaneous access to shared passive sbjéatrer that deals with timing
requirements, oener gyCont r ol | er that deals with energy consumption.

UAV control system’s behavior was specified using only segaediagrams, showing the
behavior in terms of interactions among objects. Thirtedfierént sequence diagrams were
created: (i) Helicopter movement controlji) Back rotor control;(iii) Main rotor movement
encoder{iv) Back rotor movement encoddy;) Environment data acquisitiofyi) General Be-
havior (vii) General Behavior Qviii) General Behavior &x) Control Sub-System Initialization
(x) Environment Sub-System |Initializatiofxi) Movement Sensing Sub-System Initialization
(xii) Energy control; andxiii) Task migration. Figurd.4-A shows two fragments of the he-
licopter movement control sequence diagram: (Al) the stNbvenent Control | er’s
periodic behavior responsible for controlling the helimpmovement, and (A2) the end of this
active object method behavior.

In this diagram, thé&schedul er object sends periodically an activation message (each 20
ms), which is annotated with theTi nedEvent » stereotype, to th&bvenent Cont r ol -

124

7.3. Case Studies

MovementSensing

SubSystem

<<SchedulableResource>>
— 1 1 ‘Energ) ‘
EnergyC !
rotors | RotorActuator MainRotorActuator
<<SchedulableResource>> 1.2
Alarm = 2
<<RTclock>> <<SchedulableResource>>
Timer BackRotorActuator
E ontrol |
1 1\\ iEnviromenlSensingSubSyslem ‘
ControlSubSvetem L 19
7 <<SchedulableResource>> 1

! <<SchedulableResource>>
BackRotorActuator

! <<SchedulableResource>>
Alarm

SpecialCondition
MovementControl

1
1 1 <<SchedulableResource>>
! MovementControler
1 9
1 g J/
, 1010 1 <<MutualExclusionResource>>

MovementControler

T 1

1

Observer

‘Subiecl ‘

<<SchedulableResource>>

<<SchedulableResource>>
MovementEncoder

<<MutualExclusionResource>>

‘mation

RemoteTask

1

L/ <<MutualExclusionResource>>

‘mation

\ * 1.2

Driver

[Fstanraor |

HSensorDriverJ

Jcommunica(ionDriver ﬁ [

T 7

<<SchedulableResource>>

1.3

1
‘ MainRotorSensorDriver

Driver

‘Enviromen!SensorDriver ‘

‘Huml itySensorDriver ‘ ‘T

Driver ‘ ‘

Driver ‘

(A) Object-Oriented Version

Movementinformation

1 ControlSubSystem

I 1
| <<SchedulableResource>>

<<MutualExclusionResource>>

Enviromentinformation

1 MovementEncoder
| i T
1 <<SchedulableResource>>
1 T Envir
Driver

! T 1
1
1 . EnviromentSensing

MalnRot'or SubSystem
1 SensorDriver 1.

SensorDriver

EnviromentSensorDriver ‘

T

‘ TemperatureSensorDriver ‘ ‘WindSensorDriver ‘

! <<SchedulableResource>>
! BackRotorSensorDriver
I
1 (B) Aspect-Oriented Version

HumiditySensorDriver

Figure 7.3.: UAV movement control class diagram

T
<<Scheduler>> <<SchedulableResource>> <<MutualExclusio <<Scheduler>> <<SchedulableResource>> {<MutualExclusionResource>>| | <<SchedulableReso
sched:Scheduler| [mCtrl:MovementController MRInfo:Movement] sched:Scheduler||mCtrl:MovementControlled|MRInfo:MovementInformation| [BRAct :BackRotorActua

<<TimedEvent>> I T e > S /
1: run() " every = (20,ms))
Toop A T: ran() 2: getRotation() | |
. . <<TimerResource>> ‘ 3: mrRotation
01 freq - oo = — I
4: getPace ()
3: setDelay (delay=20) | 5: mrpace |
| - " "6: getRotation()
4: start() L _ _ _ _ _ brRotation T
<<Acquire>>
5: acquire() | : getPace () |
2: getRotation() | k — = — — — PrPace
3: mrRotation 10: getWind ed0
I | 11: windSpeed)|
4: getPace() ~ - - — — — = R - -
i | 12: getWindDiy ()
| 5: mrPace ' __ __ __ 10 n ! 13: windpireclion
) - - — _ 13: windbirection
Al <<hcquire>> I [| 14: getHumidify()
(A1) 11: acquire() i L | 15: humidit
L —1] el e e - —
— . 16: getTemperature ()
— . L | 17: temperatude
(A2) 34: send() | ﬁ
o } } 18: processMovemeftInfo ()
—] ‘ 19: setPace (“newValue=newMRPd
setPace (“newValue=newMRPace”) [20: setRotatloxﬂ"Eewvalue*new\
37: setRotation (“newVallue-newdRRotation’) | 21: applyParametefs () \
38: applyParameters () ‘ etPace (“newValue=newBRPace”)
I : setRotation(“nelivValue=newBRRotation”)
39: deczeaseEnergrLevel[] |
X . 0 <<TimedEvent>>
40: waitForTimeout (tiner=freqCtrl) | {every = (20,ms) }
. - T
41: >< 24: run()
LJ ‘ s T ‘ U

(A) Object-Oriented Version

(B) Aspect-Oriented Version

=y

Figure 7.4.: Fragments of UAV movement control sequencgrdia

125

7. Validation

| er object. A loop combined fragment, indicating the repetitivature of the control task,
encloses all performed actions. Timing and distributiogureements handling is performed
by, respectivelyTi mer andSemaphor e classes (see figure4-Al). Timer's timeout value
is the value of the activation period assignedvovenent Cont r ol | er object. At the end
of the controller method (figur&.4-A2), the execution is held until the timeout occurrence
(message 40) to control the execution frequency. FigudeAl also depicts the synchro-
nized access (using a semaphore, as depicted in message Miydnent | nf or mat i on
object, whose attributes values are writtenNipv enment Encoder active object, and read by
Moverent Cont r ol | er active object. Therefore, before every access tivtheenent | n-

f or mat i on object, an permission must be requested, and after its isesxclusive access
must be released.

As stated before, the control system has one processingatalde main rotor and another
one at the back rotor. The control task runs in the main ratderwhile the back rotor actuation
task runs in its own node. Thus, the movement control task sarsl the calculated actuation
values to the back rotor node. Figufel-A2 shows the handling of this communication non-
functional requirement (messages 34 and 35), and also fiieaton of calculated actuation
values to the main rotor actuator. Furthermore, this diagakso shows other method related to
control energy consumption (message 39).

7.3.1.2. Aspect-Oriented Version

The AO version uses DERAF aspects to specify the handlingooffanctional requirements,
i.e. the handling of each non-functional requirement ides®x within the scope of a single
element instead of being spread over several differentesiésnm

Figure 7.3-B depicts the class diagram for the AO version. As can bergbde this di-
agram is simpler to visualize compared to the one in OO weysioe to the elimination of
classes that are not related with the application itseadf (classes that handle non-functional
requirements). In other words, in AO version the handlingharfi-functional requirements is
done using aspects from DERAF, which are specified in the ACOe may argue that the
same visual simplification is achieved by means of sepaydtinctional from non-functional
requirements handling classes into two different clasgrdias. This claim is true, however, the
use of aspects brings other advantages, such as a decreas@ling among classes, reduction
in the amount of model elements related to non-functiongiirements handling, and others.

Considering the behavior specification, the number of regusequence diagrams was
also reduced to nine. In AO version the following sequenag@ims of OO version have been
eliminated:(i) Back rotor actuation(ii) Back rotor movement encodéiij) Energy control; and
(iv) Task migration. The last two diagrams (iii and iv) are notessary anymore because the
handling of energy control and task migration requiremébatge been delegated to, respectively,
Ener gyCont r ol andTaskM gr at i on aspects of DERAF (see sectibrB.2. Actions in
the other two eliminated diagrams, i.e. (i) and (ii), wereagee with, respectively, “Helicopter
Movement Control” and “Main Rotor Movement Encoder” sequeediagrams. Figuré.4-B
shows the movement control diagram, which is equivalenhéostime diagram in OO version.

126

7.3. Case Studies

As can be observed, all non-functional requirements hagdilements have been removed,
reducing considerably the size of diagrams in terms of nurnbenessages (40% reduction)
and lifelines.

Additionally, figure7.4-B also shows the union of “Helicopter Movement Control” and
“Back Rotor Actuation” sequence diagrams, which is represiby the parallel combined frag-
ment (“par”), meaning that both interactions occur coneutly. Due to elimination of messages
related to non-functional handling, only two messages meeaafrom the original “Back Rotor
Actuation”. Thus, these messages were included into thdi¢bfger Movement Control” se-
guence diagram (see messages 24 and 25) and, conseqientBatk Rotor Actuation” could
be eliminated in the AO version.

According to AMoDE-RT, DERAF aspects and join points arecHfjied using a combina-
tion of ACOD and JPDD (see secti&d). Figure7.5-A shows a fragment of the UAV's ACOD,
showing three aspectsFi mi ngAttri but es, Peri odi cTi ni ng and Concurrency-
Cont r ol . The first two aspects insert new attributes to active objeletsses (those annotated
with «Schedul abl eResour ce» stereotype). Attributes related to deadline, priority and
WCET are inserted byi ni ngAt t ri but es, and the activation period Ber i odi cTi i ng
aspect. Values for this new attributes are specified in cubsgssociations. It is important to
emphasize that crosscutting associations do not insettémggelves new attributes into partic-
ipating elements (class or aspect) as normal associatitersce, they do not bind classes with
aspects, and vice-versa.

As mentioned, the real link between aspects adaptationaffexted elements (whose se-
lection is specified with JPDDs) is specified by pointcutscdption within aspects. Figure
7.5-B shows five examples of all JPDDs created in this case study:

1. Acti veC ass join point (B1) represents the selection of all classes tatad with
«Schedul abl eResour ce» stereotype;

2. Act Obj Cont r uct or join point (B2) selects all actions that construct all agtbbjects;

3. Peri odi cActi vati onjoin point (B3) represents the selection of all messagegtwh
are annotated witkTi nredEvent » stereotype, sent by the scheduler to any active ob-
ject;

4. | nf oObj Cr eat i onjoin point (B4) selects all actions that construct passbjects (i.e.
classes annotated wi¢Mut ual Excl usi onResour ce»), whose name ends with “In-
formation”;

5. Set | nf oVal ue join point (B5) selects all messages with name starting Vigtt”,
which are sent to passive objects whose name ends with hhaton”.

As shown in figure7.5-A, Peri odi cTi m ng aspect uses JPDDs numbers 1-3, while
Ti mi ngAttri but es aspect uses only JPDDs numbers 1 and 2.

ConcurrencyCont r ol aspect affects passive objects, which store informatiahdan
be simultaneously accessed by more than one active obfeatsigns a concurrency control
mechanism to each affected object during their instantiativhose join point is captured by

127

7. Validation

<<;;§S$‘_Sc_t>>>> (A) | <<JoinPoint>> (B)
L fthtag <<SchedulableResource>>
TimingAttributes | *

— 0w i ”
<<Pointcut>>+pcActClass(ActiveClass, Deadline+Priority+WCET) {(Name = “ActiveClass”}
<<Pointcut>>+pcActObjInit (ActObjConstructor, SetupTimingAttributes, AFTHR) (B1)
<<StructuralAdaptation>>+Deadline ()
<<Structuralddaptation>>+Priority()] Beeeeeee s
<<StructuralAdaptation>>+WCET ()

. * . ox
<<BehavioralAdaptation>>+SetupTimingAttributes () : <<JoinPoint>>
T = . . <<Schedulable
<<frosscut>> <<Crospcut>> {Name¢ = “ActObjConstructor”} Resource>>
5 — ” {Dealine| = “5ms”, JE— —_
{Dealine = “10ms”, Priorith = “17 * .ok
Priprity = “17, rlori ‘27 a0 | I: *(..):*
WCET = “5ms”} WCET = ms” } T
<<Crofsscut>> <<Crossdqut>>
. << >>
{Dealife = “15ms”,[<<Schedulable (Deafrs:SSH&ZOms” {(Dealine = |15ms”, | (B2)
Priority = “17, Resource>> Priofity = “17 ! Priority =[“1",
N ” MovementEncoder = ’ N sy mmmammaamaaamwaaaaaaaaaaEaaaaaaaaaan .
WCET 8ms”} WCET|= “7ms”} WCET = “8m$”}
<<SchedulableResource>>
<<Schedulable <<SchedulableResource> <<Schedulable | <<Scheduler>>
Resource>> EnvironmentDataSampler Resource>> * t Scheduler o
MovementController BackRotorActuator T T
<<Crosfscut>> | . .
<<Crospcut>> (Period |- “20ms”} <<Schedulable <<JoinPoint>>
Period | “15ms”
{ ! Resource>> <<Crdsscut>> {Namé = “perlodchctlvatan”)
<<Crospcut>> Alarm (Period = “15ms”) . O
{Period “10ms”} B | :
<<TimedEvent>>
<<Aspect>> . ox .k
P 1: *(..):
<<NFR Timing>> (B3)
PeridicTiming | bl i ittt i e s a s s
<<Pointcut>>+pcActClass(ActiveClass, Period)
<<P01ntcut>>+pcActObjIan(Ai\ctob?Conétructor, Setupl::’erlod, AFTER) | <<JoinPoint>> <<MutexExclusion
<<Pointcut>>+pcLoop(PeriodicActivation, LoopMechanism, AROUND) {Namd = “InfoObjCreation”} Resource>>
<<Pointcut>>+pcFreqCtrl(PeriodicActivation, FrequencyControl, AFTER) e _ « *Tnf .
<<StructuralAdaptation>>+Period () | 1: *(..):* : *Information
<<BehavioralAdaptation>>+SetupPeriod () |
<<BehavioralAdaptation>>+LoopMechanism()
<<BehavioralAdaptation>>+FrequencyControl () | (B4)
<<Aspect>> :
<<NER_Distribution>> | <<Schedulable <<MutexExclusion
- Resource>> Resource>>
ConcurrencyControl % . *Information
<<Pointcut>>+pcInfoClass(InfoObjCreation, ConcurrencyControlMechanism) | | <<JoinPoint>> |
<<Po%ntcut>>+pcBeforew‘rltelnfo(SetInfoValue, AcquireAccess, BEFORE) | (Name = “setInfoValue”} |
<<Pointcut>>+pcAfterWriteInfo(SetInfoValue, ReleaseAccess, AFTER) >
<<StructuralAdaptation>>+ConcurrencyControlMechanism() 1: set*(..):*
<<BehavioralAdaptation>>+AcquireAccess ()
<<BehavioralAdaptation>>+ReleaseAccess () (B5) ! '
1

Figure 7.5.: UAV non-functional requirements handling) ®COD, and (B) JPDD

thel nf oCbj Cr eat i on JPDD. Additionally, before every access (read or write) pocdected
object, an access permission must be requested to thimtorgchanism. Similarly, the control
mechanism should be informed that the object is no longesén Writing accesses are captured
by Set | nf oVal ue JPDD. It is important to highlight that according to DERAFemises of
high-level aspects, at modeling level, it does not mattérnif inserted control mechanism is a
new attribute for each affected classes or simply an newadjlatiject, which is associated with
the protected shared object. These are implementatiofifisgssues, which should be decided
at implementation phase.

As a first impression, one can think that the specification 6O® and JPDD seems to
require more effort but it is not true. The generic nature BDDs allows their re-use from
previous modeled projects, as demonstrated in these aadiest Hence, many JPDDs have
been simply reused without modification in the other casdissu

128

7.3. Case Studies

7.3.1.3. Results

Considering separation of concerns metrics, figufeA shows how effective was the applica-
tion of DERAF aspects to handle time, distribution and endleeicconcerns. All non-functional
requirements have better handling separation in the AO hmmepared to the OO one, i.e.
the smaller amount of elements (classes and/or aspectdliiaa concern, better separation
of concerns is achieved, leading to a decrease in the sogtteroblem. The numbers pre-
sented confirm the simplification observed in the diagran®®¥{ersion. The reduction ranges
from 55% to 83% for the CDC and from 75% to 92% for the CDO met@DC/CDO be-
came smaller in AO version because the way they are caldu{age sectior2.4.4.3. For in-
stance, in AO version, CDC for timing non-functional regmrents considers only the follow-
ing DERAF aspectsPeri odi cTi m ng, Schedul i ngSupport, Ti mi ngAtri but es
andTi mePa- ranet er sAdapt er. On the other hand, in OO version, CDC takes into ac-
count classes specifically related to timing non-functisequirements handlingschedul er
and Ti ner) plus those related to functional requirements, which asal with time issues
(Movenent Control | er, Movenent Encoder, Envi r onnment Dat aSanpl er, Back-
Rot or Sensor Dri ver ,BackRot or Act uat or , Al ar mandEner gyControl | er).
Consequently, in OO model, functional and non-functioegjuirements handling intermixing
cause the inclusion of some functional elements/methodsmgunctional elements/methods.

Considering the other metrics, figufes-B depicts the results obtained. Analyzing coupling
metrics, DIT results show that the use of aspect did not nedtlifne inheritance tree. CBC
results show, again, a decrease of more than 55% in the AOImG®LC takes into account
each reference (e.g. attribute, method call, parametahigr classes/aspects. Consequently,
classes/aspects in AO version are more modular than in Og€lowermainly, due also to the
intermixed treatment of functional and non-functionaluiegments that happens in OO version.
Observing the size metric, VS did not change, while NOA hasaehse of 52%. This happened
because several non-functional-related attributes werethfrom classes to aspects, which are
woven into all affected classes in implementation phase.

=00 BDAO ®00 DAO

70 700
59

614
60 600
50 500
40 38 400
30 29 300
217
164
20 0 12 14 12 200 105
10 4 l4 z lé. 3 100 l7__2| 2 53 53 g9q .50
0 . 0 R -
cbe -

CcDC CDO CDO cDC CDO CBC DIT LCOO | LCOO Vs NOA
Timing Distribution Embedded Coupling Cohesion Size
(A) Separation of concerns metrics (B) Coupling, Cohesion and Size metrics

Figure 7.6.: Calculated metrics for the UAV control system

129

7. Validation

<<SchedulableResource>> <<SchedulableResource>>
MovementController_OO MovementController_AO

+getPriority() +run() : void

+setPriority() +processinfo(r1:int, p1:int, r2:int, p2:int, ws:float, wd:float, h:float, t:float) : void
+getDeadline() +getLastValidComputation()

+setDeadline()

+getPeriod()

+setPeriod()

+getWCET()

+setWCET()

+getEnergyLevel()

+decreaseEnergyLevel()

+resetEnergyLevel()

+waitForTimeout(timer)

+changeControlPolicy()

+run() : void

+processinfo(r1:int, p1:int, r2:int, p2:int, ws:float, wd:float, h:float, t:float) : void
+getLastValidComputation()

Figure 7.7.: Comparison of UAVSbvenent Cont r ol | er classes

Regarding cohesion, the difference of LCOO between AO andn@Qels is more than
91%. This decrease is primarily caused by eliminatiorgetfsetmethods for attributes re-
lated to non-functional requirements handling. To illagrthis difference, figur@.7 presents
Movenent Cont r ol | er class for OO and AO versions. Moreover, LCOO metric does not
distinguish the two kinds ofet/setmethods: (i) “raw” which have minimum impact on real
cohesion; (i) with computations, which have significanpawt on real cohesion. As one can
see, OO version'dbvenent Cont r ol | er has nine “raw’get/setmethods related to non-
functional requirements. Therefore, to provide a fair asswnt, LCOO for OO has been re-
calculated excluding “rawget/setmethods (LCOO* in figure7.6-B). Even in this situation,
LCOO decrease is 75% in AO model. The obtained results shatwiing aspects improves
model cohesion.

Besides the modeling approach, AMoDE-RT also supports gederation using the pro-
duced UML model as input. Mapping rules for two differenttfdans, i.e. RT-FemtoJava and
ORCOS, have been created and used to produce the systera sodecin Java and C++. Tables
7.1and7.2present some statistics about, respectively, the UAV meverrontrol UML model
and the generated source code.

Table 7.1.: UAV: Statistics of the UML model of AO version

Diagrams Amount
_____ Structual
 Bahavioal 0
_____ AGOD
_____ SPDD g
DERAF aspects 10

""" Structural adaptations | 15
 Behavioral adaptations | 18

130

7.3. Case Studies

The size of mapping rules XML files, in terms of code lines, @8 8ines for the RT-
FemtoJava, and 749 lines for ORCOS platform. However, ifities related to XML markup
are not considered, the amount of lines for the mapping sdept is 388 and 332, respectively.
These scripts represent tAgplicationbranch. ORCOS mapping rules file is smaller than the
RT-FemtoJava one due to the later has more aspect adaptstigpis than the former. In fact, in
ORCOS platform, several expected behaviors of aspectatiay (e.gPer i odi cTi ni ng’s
LoopMechani smandFr equencyCont r ol) are implicitly executed within platform con-
text, and hence, they do not need extra lines of code in ajait code, only the correct con-
figuration to enable such behavior. Furthermore, as somectspsed in the UML model are
not supported by both target platforms, their adaptatioesri only a comment (one line) indi-
cating that aspects have performed adaptations in gedesatece code fragments. Despite not
implementing real code, these scripts serve as demoustratiaspects weaving performed by
GenERTICA.

Considering generated platform configuration, the difieeein amount of lines is even
greater. RT-FemtoJava configuration has 2931 lines, and@&R4B0 lines. This happened
because ORCOS has already a configuration mechanism, aRérRiBJava none. Hence, on
one hand, a configuration file is generated for ORCOS, and ewttier hand, the entire RT-
FemtoJava API code is tailored to include only lines that/jgle services required by aspects.
In other words, by using this RT-FemtoJava configurationr@ggh, GenERTICA provides a
preprocessor mechanism to Java, likewise the one natiuplyosted in C/C++.

Regarding the generated source code for the UAV movementat@ystem, all behav-
iors/actions specified with sequence diagrams have beepaddp source code constructions.
Thus, for the RT-FemtoJava platform, the amount of apptioatode lines is almost 3.3 times
the amount of mapping rules scripts lines. For ORCOS, theeisaalmost 4.2 times, demon-
strating the effort reduction in application coding, and timportance of code generation tools
in MDE approaches. In the other case studies, the mappieg have been used without modi-
fication, and hence, the effort to obtain system implemantatas even lower than in this case

Table 7.2.: UAV: Statistics of the generated source code

RT-FemtoJava' ORCOS
Mapping Rules (lines) 388/803 332/749
Application
______ Source codefiies | et s
o lines of Code L R R L
Binary Size (k)| sai@y] e
Platform
""" Source code files | 21/38* | o101
o ines of Code L e w0
Binary Size (k)| Y TR LR i

+ Numbers inside parentheses represent the bytecodessiested by java compiler
* Considering RTSJ API [131] + API COM [34]

131

7. Validation

study.

Considering the size of compiled source code, a considedifierence between both plat-
forms can be perceived. This is caused by the differencedmstinstructions size of both target
processors. ORCOS code has been compiled to a 32-bits POvpedeessor, whose instruc-
tions size is 4 bytes. On the other hand, RT-FemtoJava isdwhae implementation of the
JVM specification and, according to Lindholm and Yellin [78]e size of JVM instructions is
1, 2 or 3 bytes. Consequently, PowerPC'’s binary size coul@inbthe worst-case) almost four
times greater than RT-FemtoJava’s binary size.

7.3.2. Industrial Packing System

This case study was inspired on the packing system presanféd] and [19]. The system is
composed of a robotic arm with a gripper, two conveyors, eag® unit and several sensors.
The input conveyor brings individual parts, which are cameki to form products. The conveyor
stops when the sensor detects the presence of a part. Thebtitie arm will either put it in the
storage unit or use it to assembly a product. The second gonkengs empty boxes into which
parts are inserted. This conveyor remains operating ustildnsor detects an empty box at the
expected position. When the product is completely assamtiie controller sends a command
to the conveyor and it starts to move forward again. The odlatris a periodic active object
that verifies whether there are products to be assembly apdrts to be place into the storage
unit. When the new product requires a part, which is phylsidatated at the parts conveyor,
this part is taken from there, and used to mount the prodtiograise, the part is taken from the
storage unit. This system was intended to be distributedthere are four different processing
nodes: one responsible to control the products assembtggs@and the robotic arm; two nodes
to control, respectively, the input parts conveyor and gsembled products output conveyor;
and one to control the amount of parts in the storage unit.

The discussion starts exactly as in the UAV case study: \ir$te packing system func-

Gripper Control
<<NFR_Timing>> Item Reader
<<NFR_Embedded>> _<<£1cl£de_>>_
Arm Joints
% Control

<<NFR_Distribution>>
Robotic Arm
Input Parts
Conveyor

Control
% Conveyor Movement

Output Control
>~ Products

Conveyor <<NFR_Timing>>
% \ Items Detection
Storage Unit >"<<NFR_Timing>> <<incluge$> <<include>>
<<NFR_Distribution>>
Storage Unit Detection
Control

Figure 7.8.: Industrial packing system use case diagram

<<NFR_Timing>>
<<NFR_Distribution>>

<<NFR_Timing>>
<<NFR_Embedded>>
<<NFR_Distribution>>

Robot Arm

Assembly Cell
Control

132

7.3. Case Studies

tionalities are specified with an use case diagram, as @ebintfigure7.8. Once again, one
can see that several use cases are annotated with stesetigied to non-functional require-
ments. Although this case study has more use cases decwithe¢tNFR_" stereotypes, it has
fewer non-functional requirements. More specificallyréhare fewer embedded non-functional
requirements (if compared to the UAV case study), due tcegystize and absence of energy
constraints in products packing system.

This case study have been performed as previous the premiaus.e. object- and aspect-
oriented modeling approaches are shown and compared widsgessment framework. Source
code have also been generated for the two mentioned platfaand their statistics are pre-
sented.

7.3.2.1. Object-Oriented Version

Following the approach adopted in the UAV case study, thestiucture of the packing system
is specified using the class diagram, as depicted in figudé\. The same MARTE profile
stereotypes have been used, k&chedul abl eResour ce» and«Mut ual Excl usi on-
Resour ce», to specify, respectively, active and passive objects.-floational requirements
related classes are also emphasized with different colors.

l Communicationinterface

I =

(A) Object-Oriented Version

T
1 1
TaskMigration <<SchedulableResource>> ’—> MemoryManager (; | <<SchedulableResource>>
:' MemoryGontroller aE RobotArmJoint
_ %) T z
- | [I I 1
1 1| <<SchedulableResource>> <<Scheduler>> WristJoint ShoulderJoint RotaryShoulderJoint ArmJoint
Semaphore |
RobotArmJoint e Scheduler | 1 1 1 1
I A 1l 1
[T I 1 ‘ B ! <<SchedulableResource>> |
‘ WristJoint ‘ ‘ ShoulderJoint H RotaryShoulderJoint ‘ ‘ ArmJoint ‘ ! <<Schedulable 1 1| RobotArm AssemblyCellController 1
|
1 T 1 1T B Reso.urce» 1 T T 1 T
| Gripper
<<TimerSource>> 1 ! ! . | 1 1
Timer \ “ RobotArm | <<Schedulable 1 1| <<Schedulable
|
y I - Resource>>
AN 1 1T -t Resource>> <<MutualExclusion |1 1
S | C
T S i - | . IltemReader Resource>> onveyor
<<Schedulable ! RobotArmPosition 1
Resource>> <<SchedulableResource>> Jl | % ! T
Gripper 1 AssemblyCellController | RFIDReader
1 1 ‘ B ‘ B P2 - =
[1T 1T MutualExclusi 1 ol<<SchedulableResource>> |<<MutualExclusion
! I |s<Mutuatexelusion StoagerCompartment Resource>>
1| <<Schedulable - i <<Schedulable | Resource>> 9 P
Resource>> <<MutualExclusion Resource>> f— StorageUnit T ftem
1| IltemReader Resource>> Conveyor — !
A RobotArmPosition | 0..*
1 - 1 1
RFIDRead ’I 1l | 1. «|<<MutualExclusion
1 L : | <<MutualExclusion Resource>> <<MutualExclusion |0 .
1 [C—=| <<SchedulableResource>> <<MutualExclusion | Reso_urce» ProductPart Resource>>
<<Mutual 1 4| StoagerCompartment Resource>> | Recipe Product
] " o
[] Exclusion Item
1 Resource>> 1 !
StorageUnit 0..* [!
1 1| 1., | <<MutualExclusion| | | <<MutualExclusion :
<MutualExclusion Resource>> Resource>> |l 0" 1
Resource>> ProductPart . Product |
1 1 Recipe \
|
|
|

(B) Aspect-Oriented Version

Figure 7.9.: Industrial packing system class diagram

133

7. Validation

For behavior specification, eleven sequence diagrams teem ¢treated(i) Products as-
sembly control;(ii) Conveyor control;(iii) Item detection;(iv) Robotic arm joints control,
(v) Gripper control;(vi) Robotic arm movements contrdljii) Storage unit controlfviii) Con-
troller sub-system initialization{ix) Conveyor sub-system initializatiorfx) Storage unit sub-
system initialization; angxi) Memory management and tasks migration. Figlug-A shows
two fragments of (i), as in the UAV case study: (a) the starpafducts assembly control
execution, and (b) the end of this behavior. Repeating th¥ dése study modeling pat-
tern, the scheduler object sends a periodic message (&evhotéh «Ti medEvent ») to the
Assenbl yCel | Contr ol | er active object, triggering its behavior execution at eacke® s
onds. Classes specifying non-functional requirementslliirancan also be seen in these frag-
ments, e.gTi mer andMessage classes.

As stated before, active objects are spread into four nodég main control task (i.e.
Assenbl yCel | Control | er object) runs in the main node, and must access information
from conveyors and storage objects located in other nodass, This object must send messages
to these other objects, in order to collaborate with thenréaged with the products assembly
and parts storage. For instance, figiir@0-A shows the message sending that requests the
position of the storage unit, into which a part should be gib@nessages 45-48). Additionally,
other messages related to other non-functional requirentremdling, e.g. the memory control
(message 51 and 55), are also depicted.

<<Scheduler>> <<SchedulableResource>> robotArm:RobotArm <<Scheduler>> hedulableResource>>
<<NFR_Timing>> | |acc:AssemblyCellController sched:Scheduler] semblyCellController
sched:Scheduler
[< I
<<Tim: {ev
1: run() 1: run()
oop 2 allocate (amount=Ti alt] [(nasProdudthToBuild() == True) & | |
O [(MixedParfsput.isltembetected() == TRUE)] 5. getrecipey)
.. [<<TimerResource>>]
1 __ 3] <<NFR Timing>> | k- — — — —1— 3¢ recipe
freq:Timer loop J[i=0; i eceita.getPartsCount ()] L
T | | 4: getPart (index=i)
4: setTimeout (t=Period) '
part |
| - - - — - — == - 1 —
5: start() alt) [(Producsfin.isItemDetected() == TRUE) && |
| (part =1 productsin.getTtem())] | 6: getPosition ()
L 6: allocate (amount-Msg| 7: pos [
I I - [opemerippero | T T T T T T
<<NFR_Distributior| : |
‘ \ Msg:Message B
B * ¢
alt [(hasProductsToBuild() ==| True) & |
(MixedPartsOut.i*sTtemDetected() == TRUE)] 8: gefRecipe
I f 9: recipe
e — — — o Ziregipe
©
Too -0; i< a.getPartlsC
[i=0; i < receita.getPartlsCount ()] | o getP“rt(lpdexfll
A1 T
L&D || ,,_ng,w-—u\,]
o B EEII LI VeI S
(A2) >
46: set (Value=GET ITEM PQSITION) |
50: openGripper () |
51: | | [
52: free(amount-Msg.size()) A |
} 34: moveTo (newPos=pos)
53: waitForTimeout () _ |
| 35: openGripper () ‘
54: ; :

(A) Obje-Et-Oriented Version (B) AspTect-Oriented Version

Figure 7.10.: Industrial packing system sequence diagram

134

7.3. Case Studies

7.3.2.2. Aspect-Oriented Version

DERAF was also used in the AO version of the industrial pagksgstem to specify non-
functional requirements handling. Figured-B shows the class diagram specifying the static
structure. Again, the amount of classes, as well as theéaetabmong them, have decreased.
Thus the complexity of this diagram decreases in AO versjast, like in the previous case
study. Hence, the same statements made in the previousrshotd in this case study.

In AO version, system behavior has been specified using legsamns than the OO ver-
sion, however, for the industrial packing system case stilndydecrease happened only in one
case: “Memory control and tasks migration” was removed duéé handling of memory con-
trol and task migration requirements to be delegated tpeaiely,Menor yUsageCont r ol
andTaskM gr at i on aspects. Figur@.10-B shows two fragments of the products assembler
control diagram, which are equivalent to those presentdigime 7.10-A. The amount of mes-
sages in this diagram is 36% smaller than the OO version osehappened in the UAV case
study, the complexity decrease for describing the samemsyfatures can be clearly perceived.

Considering the specification of non-functional requirateeéhandling, figur&’.11 shows
a fragment of ACOD, showing the reuseTifni ngPar anet er s andPer i odi cPar ane-
t er s aspects. Not only aspects have been reused. As one canisegoijas (i.e. JPDD)

Pop—— @) | ®)

<<NFR_Timing>>

PeridicTiming
<<SchedulableResource>>
*

| <<JoinPoint>>

<<Pointcut>>+pcActClass(ActiveClass, Period)
<<Pointcut>>+pcActObjInit (ActObjConstructor, SetupPeriod, AFTER) {Name = “ActiveClass”}
<<Pointcut>>+pcLoop (PeriodicActivation, LoopMechanism, AROUND) |

<<Pointcut>>+pcFreqCtrl (PeriodicActivation, FrequencyControl, AFTER)
<<StructuralAdaptation>>+Period ()

<<BehavioralAdaptation>>+SetupPeriod () |
<<BehavioralAdaptation>>+LoopMechanism ()

<<BehavioralAdaptation>>+FrequencyControl () (B1)
<<Crospcut>> <<Crospcut>> <<Crosgcut>> } """"""""""""""""""""
(Period |- “500m4~} (Period [= “300ms”} {Period “500ms” |t
<<Crofscut>> <<Crossqut>> <<closscut>>
{Period = “350ms”}| {Period =|“500ms”} {Peri¢d = “5s5”}
<<JoinPoint>>
e SACtOD C ‘ tor”) <<Schedulable
ame = c jConstructor
<<, >> Resource>>
SAschedRes <<SAschedRes>> <<SAschedRes>> <<SAschedRes>> | — — *
<<SAresource>> P
ItemReader StorageCompartment [[[AssemblyCellController 1: *(..):*
Conveyor |
<<clro>;3::§1oto>> <<SAschedRes>>| <<Crofsscut>> |
<<SAschedRes>> (Dealinp= : ns, Gripper (Dealfne=5s,
RobotArmJoint ;régfitg’ ‘ Priofity=5,
CET=1p0ms} WCET$3. 55} |
<{crosscut>> <corpsscut>> <<Crdsscut>> <<Cfosscut>> (B2)
{Dpaline=500ms, (peafl ine=350m}, {Dealine=500ms, {Dealline=500ms, | L it e i e e e
Priority=5, pPriprity=5, Priofity=5, pridrity=5, [
WEET=100ms } WCEJr=150ms } WCETA100ms) WCET=100ms } <<Scheduler>> <<SchedulableResource>>
<<Aspect>> * : Scheduler X
<<NFR_Timing>> | | |
TimingAttributes <<JoinPoint>>
| (Namé = “periodicActivati!)n”)
<<Pointcut>>+pcActClass(ActiveClass, Deadline+Priority+WCET)

1 >l

L_|<<Pointcut>>+pcActObjInit (ActObjConstructor,SetupTimingAttributes, AFTER) <<TimedEvent>>

<<StructuralAdaptation>>+Deadline () | 1 *(..):*
<<StructuralAdaptation>>+Priority ()

<<StructuralAdaptation>>+WCET ()

<<BehavioralAdaptation>>+SetupTimingAttributes () I (BS)

Figure 7.11.: Industrial packing system: reused element&)iACOD, and (B) JPDD

135

7. Validation

used in pointcuts specification are also reused from the Uéetudy. This shows the gen-
erality of DERAF and the AMoDE-RT approach, demonstratingt taspects can be reused at
modeling level in different distributed embedded systemsighs, due to their high-level se-

mantics. It is important to highlight that, for aspects iepkentation, the mapping rules have
also been reused without modifications, due to the fact beatarget platform is the same, and
the implementation follows the high-level pre-defined setica of each aspect.

7.3.2.3. Results

Separation of concerns metrics depicted in figargE2A shows that the same improvement
achieved in UAV case study is obtained in the AO version ofitftstrial packing system.
CDC metrics have been reduced at least 66% up to 81%, while €@ 16% up to 75%.
Although there is an improvement of concerns separatiomag not in the same degree as
in the UAV case study, due to the amount of timing non-fun@lorequirements present in
both systems, as for example freshness requirements in d8¥ study that do not exist in the
industrial packing system.

The other metrics exhibit similar improvement§):DIT did not change, i.e. aspects do not
modify classes hierarchyii) AO model is again more cohesive, as pointed by the decrease of
47% in CBC metric{iii) VS in AO version indicates a small increase (i.e. one elejnbatause
in this version memory requirements are handled by two eisn®enor yUsageCont r ol
andMenor yUsageMoni t or i ng aspects) instead of one element as specified in OO version;
(iv) NOA, on the other hand, decrease almost 46% in AO versionyisigothat in spite of
the increase in VS metric, the number of classes’ interrezhehts has decreased. Regarding
model cohesion, in AO version, LCOO decreases 58% whendemsg all kinds of methods,
and 16% if “raw” get/setmethods are excluded, showing that, in spite of the goodsiohen
the OO version, the use of AO concepts improve system catesio

Considering the created UML model, and the implementatemegated from it, tables.3

00 OAO 200 OAO
25 240

203
193
20 19 200
15 13 160
12 12
1 120 08
10 10 9
102 80 80 89
80
4 48
5 3 5 3 40 2728
11
o o 11 N
cDC CDO cDC Ccbo cDC CDO CBC DIT LCOO | LCOO* VS NOA

Time Distribution Embedded Coupling Cohesion Size
(A) Separation of concerns metrics (B) Coupling, Cohesion and Size metrics

Figure 7.12.: Calculated metrics for the industrial pagksgstem

136

7.3. Case Studies

Table 7.3.: Industrial packing system: Statistics of thelUfdlodel of AO version

Diagrams Amount
______ Structural Ty
Behavieral T 15
______ ACOD
pRD i3

DERAF aspects 9
""" Structural adaptations | 14
~ Behavioral adaptations | 15

* 11 JPDDs have been reused from UAV

Table 7.4.: Industrial packing system: Statistics of theegated source code

RT-FemtoJava' ORCOS
Mapping Rules (lines) 388/803 332/749
Application
______ Source codefiies | e as
o lines of Code L P R LT
Binary Size (k)| deaey 19
Platform
""" Source code files | 21/38* | o101
o ines of Code L e o
Binary Size (k6] sasey 1 i

+ Numbers inside parentheses represent the bytecodessiested by java compiler
* Considering RTSJ API [131] + API COM [34]

137

7. Validation

and7.4 show the statistics on the produced artifacts. In this castysthe reuse of previously
created artifacts is highlighted in both AO-related eletaegpecification and mapping rules.
Considering the former, in addition to DERAF aspects reds88)Ds also have been reused.
From the 13 JPDDs used in this case study, 11 have been rewwsedHe UAV case study
without any modification. The same happened with the mappites specification. Thus,
none effort was necessary to generate 1144 and 1343 soutediges for, respectively, RT-
FemtoJava and ORCOS platforms.

7.3.3. Wheelchair Automation

The third case study was an automation system for an elegttiated wheelchair. Therefore,
AMOoDE-RT approach has been applied in the wheelchair's e control system. Summa-
rizing, the wheelchair movement control includes two eagifone for each wheel), a joystick
to steer the wheelchair in terms of speed and direction,\@adénsors to sample wheel rotation
speed. Therefore, the system must perform the following@want activities:

e To sample the wheel sensors every 10 milliseconds to daterthé movement speed and
direction;

e To sample the current joystick position at the same peried 10 ms;

e To perform the wheelchair control algorithm every 50 ms,lgppg the calculated actua-
tion value to left and right wheel engines;

e To monitor changes in the operation mode. The operation rimdldeences in the way of
deadlines misses are treatéi:signal the occurrence of missed deadlin@};signal the
occurrence of missed deadlines, and apply the last valicaon value; ofiii) signal the
occurrence of missed deadlines, and stop the wheelchaiemmaemnt.

UML models of this case study have already been presentadglbas discussed, in [131]
(OO0 version) and [37] (AO version). Thus, in this text, thebof this case study is to discuss

=00 OAO =00 OAO
100 5
80
62
60 48
39 35
40
20 - 1323 =
0 - 11
CDC | CDO | CDC | CDO | CDC | CDO CBC DIT | LCOO | VS NOA
Timing Distribution Embedded ‘ Coupling ‘Cohesion‘ Size
(A) Separation of concerns metrics (B) Coupling, Cohesion and Size metrics

Figure 7.13.: Calculated metrics for the wheelchair movgnaentrol system

138

7.3. Case Studies

the calculated metrics for both version, and in additiomespnt results concerning the generated
source code from the UML model of AO version. Moreover, ttasestudy is slightly different
from the one presented in [37] because AMoODE-RT modelinglgliies require some small
modifications in diagrams, in order to allow code generatiom the produced UML model.

Figure 7.13 shows the calculated metrics for the wheelchair case stAdyoccurred in
the other cases studies, AO version has increased the sepavhconcern: CDC decreased
50% for timing and distribution and 71% for embedded norcfiomal requirements, and CDO
from 58% to 65%. As it can be noted, comparing with the otheecudies, the improvement
obtained for CDC metric in this case study is not the same obiareed in UAV and industrial
packing system. This situation happens due to the fewer atmdmon-functional requirements
that exist in wheelchair case study compared to the onesirasthe other case studies. This
can be also confirmed by CBC metric that decreased only 10%ddiition, the lower CBC
absolute value in both versions indicates that the wheelamavement control case study has
a good degree of decoupling. Combining the later metricevalith the lower LCOO absolute
value, it can be stated that both OO and AO versions are weilgded, due to, mainly, its
small size in comparison with the other case studies. M@eowne can see that, although NOA
decreases almost 48%, the VS metric increases 27% in the Abre As in the industrial
packing system, the reason for this increase is that therem@mone-to-one relation between
non-functional requirements handling classes in OO veraiw aspects in AO version. Hence,
as the system size is small, the relative impact of extra efgsnis greater than in the other
case studies. However, as the other metrics have a sigtifiopnovement, this increase in
vocabulary size is still acceptable.

Compared to the wheelchair case study presented in [37ledieontribution of this case
study is the generation of source code. As the other two ¢ades, two tables presents some
statistics: tabl&.5 considers the produced UML model for the AO version; andet#@t6 con-
siders the source code generated for the RT-FemtoJava aB®ORIatform.

Again, this case study emphasizes the reuse of previousbtext artifacts. In this case
study, 100% of JPDDs could be reused from the UAV case studysidering that both DERAF
aspects and JPDDs have been reused, one can state thandAMHDE-RT, designers need

Table 7.5.: Wheelchair: Statistics of the UML model of AOsien

Diagrams Amount
______ Structural
B R S P
______ ACOD g
B RN i

DERAF aspects 5
""" Structural adaptations | 10
~ Behavioral adaptations | 12

* all JPDDs have been reused from UAV

139

7. Validation

Table 7.6.: Wheelchair: Statistics of the generated sotwde

RT-FemtoJava' ORCOS
Mapping Rules (lines) 388/803 332/749
Application
S ouree code files L R si
o linesofcode Ll e S
Binary Sie (Kb) seiey | 33
Platform
eaures code fiies TETo AR ool
s ofcede Tyl 0
Binary Sie (Kb) 500@8) | A

+ Numbers inside parentheses represent the bytecodesesigeated by java compiler
* only RTSJ API[131]

only to concern with functional requirements specificatietting non-functional requirements

handling specification to be composed by already createdesits. Moreover, as experience is
acquired in the development of others projects, the modehehts repository grows in amount
of elements, increasing the possibility of reusing morenelets.

Considering the wheelchair control system implementaitichis case study, GenERTICA
has generated 672 and 712 source code lines for, respgcRfeFemtoJava and ORCOS plat-
forms. Rates of generated source code lines per mapping saigts lines are 1.73 and 2.14,
respectively. As one can conclude, implementation gairtBigncase study are not the same as
the other cases studies mainly due to its size, i.e. whdelcase study has 12 classes while
the UAV and the industrial packing system have 22 classes. dacdhe same sense, this case
study specified 6 behavioral diagrams, while the other ofesntl 12 different diagrams each.
However, in wheelchair case study, no additional mappitgsrbad to be defined, i.e. as the
mapping rules files have already been specified in the first stasly, it was necessary only to
reuse them without modifications to obtain the mentionedwarhof source code files.

7.4. Final Remarks

Taking into account the results obtained for all case stdiean be stated that the use of AO
concepts improves the reusability quality, even for smalbedded real-time systems, as the
case of the wheelchair movement control system. Almost atlics have better values for AO
model compared to OO one, ranging from 37% to 66% in averagmsi@ering the under-
standability factor, key issues such as separation of enaceohesion and coupling improved
around 45% in average. Although the number of componentinbesased a little bit (10% in
average), the number of attributes decreased ca. 48%. kimilftg factor, AO model elements
are more cohesive and decoupled compared to OO model. 8eparaf concerns results show
that elements in AO model have more specific and well-defintb than in OO model.

140

7.4. Final Remarks

The difference in the absolute metrics values leads to thelgsion that improvements
achieved with the use of AO concepts increase with the numibenosscutting non-functional
requirements. Additionally, these case studies’ metrigdiom that, using AO, the same ben-
efits achieved in traditional information systems can beiokd in the design of distributed
embedded real-time systems.

Further, as one can see in taldlg, using DERAF aspects at modeling level allows their
reuse in different designs. If the implementation followe ispect adaptations high-level se-
mantics, the aspects implementation can also be reusedcased in all presented the case
studies. AMoDE-RT approach to specify join points selati@bso allows the reuse of JPDD
(52% of all created JPDDs have been used in all case stutleg)ever, it is worth to comment
that JPDDs must specify generic selection of elements BRPD_Act i veObj ect Cl ass
or JPDD_Per i odi cBehavi or) to allow their reuse. Usually, JPDDs selecting specific el-
ements (e.gJPDD | nf oAt t ri but eRead) are harder to reuse, due to their close relation
with application specific elements (the mentioned JPD2ctelttributes of classes whose name
ends with “Information”).

Considering the use of GenERTICA, it must be stated that theuat of generated code
is directly proportional to mapping rules scripts and déenys specification completeness. In
other words, if the UML model can provide complete inforroatabout system structure and
behavior (following AMoODE-RT modeling guidelines), and ppéng rules specification can
map all elements available in the model into constructiomslable in a given target platform,
itis likely that GenERTICA can generate a large amount ofe®gode. Considering the source
code generated in presented case studies, one can sedgdmissible to generate an amount
of source code lines from 1.73 to 4.2 times the amount of nmappiles scripts lines.

Regarding the generated source code, source code filesaiaiter the code generation
process are more complete than the ones obtained usingt@easbmmercial or academic code
generation tools, which usually only provide class skelstand/or simple state machine related
code. In addition, the aspects weaving performed by GenEREllows the use of aspect
adaptations in non-AO languages. Even considering thesmntabes, it must be highlighted
that the generated code is not complete. There are sevealllissoes that are highly dependent
on the target platform, which cannot be solved using gergnadoaches like GenERTICA'S one.
For example, in all case studies, there is a need of fillinggebetween the software objects
representing hardware components (ndSensor Dri ver in UAV case study) and the
real hardware. This kind of code is too specific to be specifieéML models or mapping rules,
implying unnecessary details for a single element. Thusggammers must code manually the
corresponding methods in the generated source code filbgr &le of platform-specific
problems is the circular cross-reference problem in C++¥c@uode files. This situation has
occurred in the performed case studies, due to GenERTi(x¥isoach to specify references,
which is strongly based on the Java language. A solutionHhigr droblem would be to pre-
declare referenced classes inside class source code fies, GenERTICA code generation

"Mapping rules script's amount of lines for RT-FemtoJava RICOS platforms are, respectively, 388 and 332
lines. These numbers only represent script lines withoosiclering XML marks, which, in fact, do not influence
code generation

141

7. Validation

142

Table 7.7.: AO elements reused in the different case studies

UAV | IPS* | Wheelchair

DERAF aspects

TimingAttributes X X X
PeriodicTiming T o o
FimeBoundedAcivity T
SchedulingSupport 1 w1 g
Jitter
BataErashnaas R R g
ToleratedDelay e
CloekDpift
ConcurrentAccessControl X X X
‘MessageSynchionization T R R
MessageAck X X
Messagelnteqrity
MossageCompression T
TaskMigration X X
NodeStatusRetrieval T
HwAreaMonitoring
HwAteaControl b
EnergyMonitoring Sl SRR AR
EnergyControl e]
MemoryUsageMonitoring s
MemoryUsageControl N I
JPDD

JPDD_ActiveObjectClass X X X
JPDD_ActiveObjectConstruction | X | X | X
JPDD_ActiveObjectConstruction_Action X | X | X
JPDD_ActiveObjectConstructor | X | X | X
JPDD BxclusiveGet T o o
JPDD_ExclusiveObjectClass | X | X | X
JPDD Exdlusiveset T o o
JPDD InfoAtiibuteRead oS R R o
JPOD InfoAtinbutewiite T O R <
JPOD InfoClassatribute T O R o
JPDD_lInfoObjectConstruction_2 | x|\
JPDD_lInfoObjectConstruction_Action | X | | X
JPDD_ObjectConstruction_Action | | X |
JPDD ObjeciDestruction Acion | N I
JPDD PeriodicBehavior ~ T 1 R R g
JPDD_SendMsgToRemoteObject | X | x|\
JPDD SubSystemClass T o g
JPDD SubSystemGonstiicion [T
JPDD_SubSystemConstruction_2 | X | X | X

* Industrial Packing System

7.4. Final Remarks

algorithm must be extended to include this option.

There is another small technical problem in the code geinarptocess implemented in the
initial version of GenERTICA: the expressions used inshie WML model must be specified
using the target platform syntax. In other words, GenERTi€&ds expressions in the model,
using them as they are (i.e. a text fragment) in the generaidd. Consequently, if the target
language changes, and the expressions syntax is not the sgpnessions in the model must
be fixed, otherwise the generated code incur to compilatiosre A solution to this problem
would be to parse expressions specified in the UML model, eximg them to the target plat-
form syntax. A generic expressions language must be usexpémifying expressions in UML
diagrams. In this sense, OCL could be a reasonable optibitstmhharacteristics and suitability
for this purpose need to be evaluated before choosing iisgéneric expressions language.

To conclude this chapter, it is worth to mention that the UAse study is completely
provided in the appendices. Interested readers can seetm@ate UML model, along with
mapping rules files for the RT-FemtoJava platform.

143

7. Validation

144

Chapter 8

Conclusions and Future Work

This work has proposed an approach to design distributecceddnl real-time systems using
MDE techniques along with concepts of AO paradigm to copé Wit increasing complex-
ity associated with the design of modern systems. More fipalty, the proposed approach
has addressed the following topi¢s: manage the complexity of functional and non-functional
requirements handlingii) support for separation of concerrisi) specification of system struc-
ture and behavior using a common langua@e; improvement in design phases transition by
providing adequate tool support. All ideas and elementsyted in the proposed approach have
been presented throughout this text.

AMODE-RT design flow proposes solutions for all these isssapporting a smooth tran-
sition from requirements specification to source code impletation, in order to fulfill gaps
usually found in the design flow. Such quest is achieved uaimgmbination of elements:
() RT-FRIDA for requirements analysigii) UML as specification languagéiji) DERAF as-
pects to handle non-functional requiremeifitg) modeling guidelines to homogenize the spec-
ification of system structure, behavior, and non-functioeguirements handlingv) DERCS
as intermediate representation of such modeled informagio) transformation heuristics to
convert UML model elements into DERCS elements; &riij GenERTICA code generation
tool to support the AMoDE-RT approach.

Besides requirements gathering, RT-FRIDA assists in rigkiequirements specification
with design elements, improving requirements tracegbifitirther, traceability is still preserved
in implementation, due to GenERTICA approach that uses mgppules to generated code
fragments from model elemets. In other words, it is possibleompare generated source
code lines with code generation/aspect adaptation scrigleting them with model elements,
to discover which requirements are handled by these coég. lin this sense, the effort to check
if the system meets the requirements can be decreased.

This work has shown that UML and MARTE profile can be used tai$psystem expected
functionalities in terms of structure, behavior, and also-functional requirements handling.
As MARTE provides stereotypes with standard semantics poess real-time and embedded
systems features, its usage is preferable rather than “moade” profiles, due to its already

145

8. Conclusions and Future Work

accepted concepts and constructions that passed througbraus review process. Using a
common and standard specification language facilitatesdimmunication of design intention,
reducing possible misunderstandings in specificatiorrpné¢ation. Further, UML raises the
abstraction level used in design by shifting the focus frapeeted functions to system elements
and their roles to accomplish the desired functionalitiepresenting abstractions closer to real
world elements.

However, as UML has many variation semantic points, it ie aisportant to define mod-
eling guidelines and also interpretation semantics to mmize (or even remove) model spec-
ification ambiguities. AMoDE-RT modeling guidelines inteto provide flexibility in UML
diagrams creation, but defining, at the same time, an ird&fon semantic for modeled ele-
ments, allowing the integration of information specifiedlistinct diagrams (mainly in behavior
diagrams).

UML sequence diagrams have been successfully used toloesations performed within
behaviors, eliminating the need of using textual actiogleges as current approaches suggest.
AMoDE-RT transformation heuristics allow actions sequeestraction from several differ-
ent sequence diagrams, enabling their association wittr dtbhavior diagrams, such as state
diagrams, to provide graphical behavior specification.

Furthermore, this work results have shown that using AO ephin distributed embed-
ded real-time systems design improves separation of cosi@ethe handling of functional and
non-functional requirements. In this sense, DERAF is a rkaide contribution due to the lack
of aspects with platform independent adaptation semaottézted specifically to real-time and
embedded systems domain. Due to its well-defined semaBtiERAF has been successfully
used at both modeling and implementation levels. Moredkierassessment presented in chap-
ter 7 indicates improvements in design understandabitity feexibility, and also in the reuse
of previously developed artifacts (i.e. model and/or code)vas demonstrated that DERAF
aspects and JPDDs can easily be reused in different designs.

Despite the lack of support for AO concepts in official UML sifieation, AMoDE-RT pro-
poses to specify them using DERAF, ACOD and a set of JPDD#&ddsf proposing invasive
extensions to UML meta-model elements, AMoDE-RT proposkghéweight extension using
UML'’s extensibility mechanism, i.e. a profile, allowing thse of off-the-self UML modeling
tool to create AO elements with ACOD and JPDDs.

Similarly to other MDE approaches, the effectiveness of ANEBRT approach usage is
highly dependent on tool support. Therefore, GenERTICA ltesn created to assist in the
automatic transformation of UML models into source codedidferent target platforms. Al-
though UML and MARTE provide adequate constructions to gpdeatures of distributed
embedded real-time systems, they do not allow an unambggsipecification targeting source
code generation. Consequently, the intermediate PIMat&8IERCS has been proposed to sup-
port code generation tools construction. The most reméekdifference between UML and
DERCS is the representation of AO concepts, whose relagdeglts stand for information
specified in ACOD and JPDD. AMoDE-RT transformation heiggsextract information from
ACOD and JPDD, allowing the creation of DERCS elements. ditamh, it interprets JPDD

146

semantics gathering selected elements, associating élesents with the DERCS join points
representation.

GenERTICA code generation approach is different from thgritg of code generation
tools available; it allows the separation of concerns in pivagprules description by using small
scripts responsible to generate source code fragmentstictigal and/or behavioral elements.
It can be state empirically that this approach improves siolineand reinforces designers focus
on individual elements instead of the whole model. Besid#sclearly demonstrated by case
studies, we believe empirically that, using GenERTICA apph, it is easy to reuse parts of
mapping rules files in different designs, or using thesespastbase to extend the mapping rule
scripts with other constructions in the target platform.

A remarkable contribution of GenERTICA is its ability to pemm aspects weaving in gen-
erated code fragments, and also in the input DERCS modes. CHpiability, along with the use
of model-level aspects, allow to apply AO concept with ndD-farget platforms, as demon-
strated in case studies. Furthermore, model weaving pEdvity GenERTICA could be also
used in other tools, such as design exploration tools, tluateathe impact of a given aspect
implementation. In this sense, in spite of allowing diffsr@anplementations, DERAF aspect
semantics must be preserved to allow their high-level ge&)ue. the same platform can pro-
vide different forms to implement aspect adaptations, lhigtitnplementation must respect the
pre-defined high-level semantics.

MDE, AOD, and code generation topics have still more issoeket investigated. This
work development has leaded to other open problems reggtidinmentioned topics. Thus, to
conclude this text, a discussion on directions for futuvegtigation are provided:

e Sequence diagram is not the most adequate diagram, in ess$ergpecify algorithmic
behavior that do not represent object interactions. InViehapecifications, there are
algorithms having more mathematical expressions calounl#ian object interactions. In
these situations, activity diagrams are more suitable seguence diagrams. Hence, a
modification in AMoDE-RT modeling guidelines and transfation heuristics (to pro-
vide support for both sequence and activity diagrams toifypactions performed within
a behavior) would allow designers to choose the one therbiitiewith the behavior
characteristics;

e MARTE profile has a bunch of other stereotype to describeties features, e.gRe-
sour ceUsage, GRSer vi ce, Ti mi ngResour ce, and others. To investigate how to
combine them with the AMoDE-RT approach is other researcécton;

e To support other JPDD types would allow other advanced pgtior elements selec-
tion instead of only direct elements selection. This extanss very challenging due
to expressiveness power of JPDD that would need elemertisatiean considering, for
example, execution flows, state machines, or indirect efaassociations;

e To implement UML state diagrams transformation into DER@3nents according to
AMOoDE-RT transformation heuristics, as explained in cbagt

e MDE assumes that system implementation is obtained diréctin models. To assure

147

8. Conclusions and Future Work

148

that the automatically generated source code is functiprakrect, the source model
must also be correct. Thus, it is an interesting topic tostigate how to execute models.
DERCS could be used as the base for a UML virtual machine tmatiates the behavior

specified in UML models, allowing early evaluation of systeemhavior;

Following the model execution thread, it is also interagtmprovide means for automatic
UML model testing, likewise implementation-level apprbas such as JUnit. Automatic
model testing could allow automatic evaluation of modelng®s against expected be-
havior results;

To extend GenERTICA's code generation approach to overabm@roblem of circular
cross-reference, as mentioned in chapter 7;

To investigate the use of OCL to support the specificationxpfessions in a program-
ming language independent fashion and, in addition, to MekeERTICA fully platform
independent;

To create mapping rules for other platforms, such VHDL, Mgriand others;

To apply AMoDE-RT approach in other application domainsrobedded systems.

Appendix A

DERAF Detailed Description

This appendix provides a more exhaustive discussion onitfielavel semantics of DERAF
aspects, representing the initial proposal for the hagddhnon-functional requirements pre-
sented in chapter 2.

A.1l. Timing Package

As depicted in figuréA.l1, this package contains aspects to handle time-relatedreeugnts,
such as deadlines for activities execution, WCET infororgtiperiodic tasks activation, and
others.

TimingAttributes aspect is responsible to deal with active objects chatatitarsuch dead-
line, priority, WCET, and absolute time instants on whichittbehavior must start and finish
the execution. Attributes representing the mentionedaaitaristics are inserted in the affected
active object classes, as well as methods and behaviorti@lizé and handle these attributes.
It provides the following adaptations:

e Deadlineinserts an attribute representing the active objects bhehaeadline, i.e. an
active object has only one main behavior, to which the dead$ related;

e WCETadds attributes to represent the WCET of active objectsviaisa

e StartTimenserts an attribute to specify the absolute time instanthith an active object
can start their main behavior execution;

e EndTimenserts an attribute to represent the absolute time instamhich the execution
of the active object main behavior is not allowed to executer instance, a periodic
active object cannot be triggered to execute its behavter @$ end time;

e Priority adds an attribute to represent the priority that an actijecbthave to execute
their behavior;

e SetTimingAttributesnserts the behavior responsible to initialize the inskdé#ributes
values;

149

A. DERAF Detailed Description

e AddAccessMethodslds access methods to the inserted attributes;

PeriodicTiming aspect provides means to trigger periodically an activeattjehavior ex-
ecution. Thus, besides adding an attribute indicating Reew@ion frequency in the affected
active object class, this aspect must also enclose theedféehavior with a repetition mech-
anism, whose execution is controlled according the infoionastored in the mentioned new
attribute. In other words, this aspect is used to deal wighhtéindling of periodic active objects
(or threads). It provides the following adaptations:

e Period inserts an attribute representing the activation periogesfodic active objects
behavior that is used to control the behavior executionuegy;

e SetPeriodinserts all code responsible to initialize the period hbittie values, as well as
the get/set methods responsible to access it;

e LoopMechanisnencloses periodic active objects behavior with a mechgrasich hence,
behavior’s actions sequence is executed repeatedly;

e FrequencyControadds a mechanism to control the execution frequency of gieraxtive
object behavior. This mechanism is responsible to holdeciject’'s behavior execution.
One solution would be to inform the scheduler that the aabvgct has executed its
behavior, and can be suspended. Other implementation beudousy wait.

SchedulingSupport aspect inserts a scheduler object in the affected compuotidgs. This
object is responsible to control active objects executiogicating instants at which they must
start performing their behavior. It provides the followiadaptations:

e Schedulermdds a scheduling mechanism that follows a given schedpbitigy;
e SetupConcurrentActivitiegserts the behavior responsible to add active objectsen th
scheduling list, in order to perform the execution schedule

TimeBoundedActivity aspect controls the execution time duration of an activitaaiion
by counting the time elapsed since the start time instantmdkimum allowed duration is
surpassed, this aspect provides means to abort the affedieiy/action execution. Examples
of this aspect use are: to restrict the maximum time a shasalirce can be in exclusive access
mode, or the maximal time amount an active object can waithfereply of a remote objects.
It provides the following adaptations:

e TimeCountinfrastructuredds a time counting mechanism (e.g. timer) associated with
the affected element, which can be a new class attribute @ca Variable in a method
behavior;

e StartCountinginserts behavior to setup and start the time counting méstmaat the
starting time the controlled action/activity;

e StopCountingadds behavior to stop the time counting mechanism right #fite con-
trolled action/activity is finished.

150

A.2. Precision Package

<<Non-Functional>>
Timing

<<Aspect>>
TimingAttributes

<<StructuralAdaptation>>+Deadline()
<<StructuralAdaptation>>+Priority()
<<StructuralAdaptation>>+WCET()
<<StructuralAdaptation>>+StartTime()
<<StructuralAdaptation>>+EndTime()

<<BehavioralAdaptation>>+SetupTimingAttributes()
<<BehavioralAdaptation>>+AddAccessMethods()

N
<use>> !
1

<<Aspect>>
SchedulingSupport

<<StructuralAdaptation>>+Scheduler()

<<BehavioralAdaptation>>+SetupConcurrentActivities()

<use>>

<<Aspect>>
PeriodicTiming

<<StructuralAdaptation>>+Period()
<<BehavioralAdaptation>>+SetupPeriod()
<<BehavioralAdaptation>>+LoopMechanism()
<<BehavioralAdaptation>>+FrequencyControl()

7

<<use>>. -~

-
-

-
-
-
-

-
-

<<Aspect>>
TimeBoundedActivity

<<StructuralAdaptation>>+TimeCountInfrastructure()
<<BehavioralAdaptation>>+StartCounting()
<<BehavioralAdaptation>>+StopCounting()

Figure A.1.:Timing Packagehandling time non-functional requirements
A.2. Precision Package

Precision in meeting time requirements are handled by thecss of this package, which con-
centrates efforts in features such as the maximum toled®ky in starting activities, variance
in activities timeliness, information’s validity duratipor the deviation of local clock reference
compared with the global one. Precision package aspectepreted in figured.2.

Jitter aspect measures the accuracy variance in activities pegfbby the system. This
aspect provides means to measure the time before (or aftehserved activity happen, storing
this information (the history must provide information ¢fl@ast one time sample) to calculate
the variance among the observed time instants. This aspebiscused, for example, to calculate
the jitter in an periodic active object activation or exéonf or to compute the time variance of
a periodic message sending. It provides the following ategts:

e StartTimeadds, as the name indicates, behavior to measure the timeguoivhich an
activity starts;

o VerifyToleratedJitterinserts a behavior to calculate the variance in two consectitne
measurements of the same activity, comparing the resuit tvé instant at which this
activity is expected to be performed. If the variance viegathe tolerated threshold, a
corrective behavior can be executed.

ToleratedDelay aspect controls the maximum tolerated latency to the astaglof a given
system activity. Thus, the time between the command andxbeuéon of the observed ac-
tivity must be measured and calculated. If the observedtidurés greater than the maximum
allowed latency, this aspect provides means to handle xigispgion. It provides the following
adaptations:

e StartTimeinserts behavior to measure the time instant at which awitgas commanded

151

A. DERAF Detailed Description

<<Non-Functional>>

Precision
<<Aspect>> <<Aspect>>
Jitter DataFreshness
<<BehavioralAdaptation>>+StartTime() <<StructuralAdaptation>>+ValidityInformation()
<<BehavioralAdaptation>>+VerifyToleratedJitter() | |<<BehavioralAdaptation>>+SetupValidity()
<<BehavioralAdaptation>>+VerifyFreshness()
<<BehavioralAdaptation>>+UpdateValidity()

<<Aspect>>

ToleratedDelay <<Aspect>>
ClockDrift

<<BehavioralAdaptation>>+StartTime()
<<BehavioralAdaptation>>+VerifyToleratedDelay() | |<<BehavioralAdaptation>>+CorrectClock()

Figure A.2.:Precison Packagehandling precision non-functional requirements

to start;

e VerifyToleratedDelayadds a behavior to measure the time point at which the observe
activity actually starts. The time interval (i.e. delay)ween command and execution
starting instants is calculated and compared with the eégdedelay. If the threshold is
violated, a corrective behavior can be executed.

ClockDrift aspect controls the clock deviation between the local tiouece and the global
one. Assuming that the target platform provides means tavadllock synchronization, this
aspect uses the global clock as reference to calculate ¢hkedimck deviation. Thus, designers
must specify time instants (or system events, e.g. thaérgjaot an behavior execution) at which
the local clock must be compared with the global clock rafeeein order to check if there is a
difference between the two measured values. It providefotloeving adaptation:

e CheckClockDriftreads the current time from both global and local clocks, @rdpares
the time obtained from them. If the perceived different issale the accepted threshold
range, any corrective action (e.g. update the local clofékeace) can be performed.

DataFreshness aspect is responsible to deal with the validity durationuility) of dif-
ferent system information [22]. For that, this aspect asges timestamps to affected data by
adding new attributes to representing such informationyelbas inserting behavior to control
these data use. In other words, each time a controlled datisrie be read, its validity must be
checked and, if it is out of validity, a corrective behavioushbe performed, e.g. wait until the
date to be updated, read data directly from its source, dserthe frequency at which periodic
behaviors (which read the controlled data) are executealo§ously, each time a controlled
data is updated, its validity duration must also be upddtgmtovides the following adaptations:

¢ ValidityInformationadds an attribute indicating the validity period of the coled at-
tribute or object;

e SetValidityinserts the behavior that is responsible for initializihg walidity period in-
formation;

152

A.3. Synchronization Package

o \erifyFreshnesénserts a behavior to check data validity before all readiotjons that
access the controlled data;

e UpdateValidityadds the corresponding behavior that updates data vadifiéyall actions
that write/modify the controlled data.

A.3. Synchronization Package

This package provides aspects to deal with non-functieeglirements related to the synchro-
nization and the concurrent access control to shared resauFigureA.3 depicts the available
aspects.

ConcurrentAccessControl aspect provides means to control the concurrent access to ob
jects, which share their attributes information with otbbjects. The access to object’s different
elements can be controlle) the object itselfi(ii) their attributes; and/ofiii) their methods.
Therefore, depending on the controlled element, one or radiigers (i.e. concurrency con-
troller instances) are created. Every time an (active asipasobject needs to access controlled
shared elements, it must request the access to them (iesteg lock) that are granted or not
by the arbiter. Depending on the arbiter implementatiog. (@utex, semaphore, monitors), and
also to the number of objects that are accessing the shasedroe at the moment, the access
request can be authorized or not. Similarly, after the usdbethared resource, the object that
had the access permission must notify the arbiter, indigdtiat it is leaving the shared resource
and does not need to use it anymore. It provides the followataptations:

e ConcurrentControlMechanisimserts an arbiter to control the access to shared resqurces

e AcquireAccesadds the behavior that is responsible for requesting thesado shared
resources before reading or writing information from/te #hared resource;

e ReleaseAccessserts a behavior to notify the arbiter that the accessdaalttare resource

<<Non-Functional>>
Synchronization

<<Aspect>>
ConcurrentAccessControl

<<StructuralAdaptation>>+ConcorrencyControlMechanism()
<<BehavioralAdaptation>>+AcquireAccess()
<<BehavioralAdaptation>>+ReleaseAccess()

<<Aspect>>
MessageSynchronization

<<StructuralAdaptation>>+WaitingMechanism()
<<BehavioralAdaptation>>+WaitForAcknowledge()

Figure A.3.:Synchronization Packagdtandling synchronization non-functional requirements

153

A. DERAF Detailed Description

can be released;

MessageSynchronization aspect deals with holding behaviors execution until thealrof
an acknowledgement message (or a reply message) indic¢hihthe (remote) object has re-
ceived the message sent. It provides a waiting mechanignedhéd be implemented as either
(i) a busy wait, i.e. a loop that waits until the acknowledgenmassage arrives; dii) using
the system scheduler, which preempts the execution of tirerduactive object, marking it as
blocked, and thus, opening room for other active objectswgi@n. Later, when the expected ac-
knowledgement message arrives, the blocked active olsjetariked as ready to execute, and its
execution is resumed following the scheduler’s decisioprdvides the following adaptations:

e WaitingMechanisninserts the acknowledgement waiting mechanism. In fastatiapta-
tion makes more sense within the context of (ii), becausst¢heduler must be modified
in order to realize this implementation;

e WaitForAcknowledgemeradds the behavior that is responsible for waiting for the ex-
pected acknowledgement message;

A.4. Communication Package

This package provides aspects to deal with objects commtimicin terms of messages send-
ing. The first intention was to cover the communication betwebjects that are located in

computing devices that are physically separated. Howelegrending on application require-

ments, this package’s aspects can also be used for specifygncommunication of objects

located in the same computing device. The available aspeetshow in figuré\.4.

MessageAck aspect provides an acknowledgment mechanism to notifytieceof a mes-
sage to its sender. In this sense, this aspect affects b of a message exchange: sender
and destination objects. On one side, the sender objecs semissages and waits for an ac-

<<Non-Functional>>
Communication

<<Aspect>>
MessageAck

<<StructuralAdaptation>>+AcknowledgeMechanism()
<<BehavioralAdaptation>>+SinalAcknowledgeMechanism()
<<BehavioralAdaptation>>+SendAcknowledge()

7
,
<<use>>

y
L

<<Aspect>> <<Aspect>>
Messagelntegrity MessageCompression
<<BehavioralAdaptation>>+GeneratelntegrityInfo() <<BehavioralAdaptation>>+Compress()
<<BehavioralAdaptation>>+VerifyIntegrityInfo() <<BehavioralAdaptation>>+Decompress()

Figure A.4..Communication Packagdiandling communication non-functional requirements

154

A.5. TaskAllocation Package

knowledgement of message reception. On the other side etfgver objects needs to send
an acknowledgement message after each received meddagsageAcks related withMes-
sageSynchronizatioaspect. It provides the following adaptations:

e AcknowledgeMechanisadds the acknowledge mechanism. After a message reception,
this mechanism must be notified about this arrival, and senacknowledgement mes-
sage to this message sender;

e SignalAcknowledgeMechanisauds the behavior, at the sender object side, that is re-
sponsible for notifying the acknowledge mechanism that ssage has been sent and an
acknowledge message must be received;

e SendAcknowledgmserts a behavior, at the receiver object side, that sem@dslanowl-
edge message, after an message reception, informing dersenat the message has been
delivered to the destination object;

Messagel ntegrity aspect is responsible for handling messages integritydiging check-
ing information within a message. Similarly kdessageAckthis aspect also affects both mes-
sage’s sender and receiver objects. Sender objects mesateimtegrity checking information,
appending it in the message to be sent, while receiver gbjeast generate checking informa-
tion from the received message, comparing it with the infitiam that came with the received
message. The acknowledgment mechanism must be notifiethevtibe checking information
match or not. It provides the following adaptations:

e Generatelntegritylnfanserts behavior, at the message sender side, before tleagees
sending action, that executes a algorithm to generate cigeakformation that is ap-
pended in the message being sent;

o Verifylntegritylnfoadds behavior, at the message receiver side after the neessaap-
tion, that executes an algorithm (the same performed atagessender side) to generate
checking information of the received message, comparieg#merated information with
the one received in the message. If it matches, the acknge/letechanism is notified,
otherwise any other corrective behavior can be performed;

MessageCompression spect is in charge to compress/decompress messages irtanaher
prove bandwidth utilization. Like the other aspects of thégkage, this aspect affects both
message’s sender and receiver objects. At sender side, ébgage is compressed using a
compression algorithm, while at receiver side the message¢ompressed using the same
algorithm. It provides the following adaptations:

e Compresadds a behavior to compress the message being sent befdegsign
e Decompresadds a behavior to decompress the compressed messagedduefiore ac-
tually delivering it;

A.5. TaskAllocation Package

Aspects provided by this package handle non-functionalirements related to objects distribu-
tion on different computing devices at runtime. These aspame typically related to distributed

155

A. DERAF Detailed Description

system nodes that are physically separated. FiguBelepicts the available aspects.

NodeStatusRetrieval aspect includes a mechanism to gather information on thierays
dynamic characteristics, such as processing load, messagéng and reception rates, and if
the computing device is running. It provides the followirdpptations:

e ProcessinglLoadhserts a behavior to calculate the device’s processirdy lgadating this
information at every start/end of an active object behavior

e MessageThroughpwdds a behavior to calculate the sent messages rate, assviied a
ratio for the received ones. This information is updatedvatyemessage sending/recep-
tion;

e Alive includes a new object in the computing device that is resptango broadcast an
“I'm alive” message to the other devices in the distributgstam;

TaskMigration aspect adds a migration mechanism to move active objeatsdre com-
puting device to another one. Therefore, active objectstigrate from one node to another, as
well as from software to hardware, or vice-vetsalo accomplish this mission, the migration
mechanism must provide means for saving/restoring theutiegccontext of active objects, as
well as for objects serialization and object’s informatgending. In fact, the decision on which
objects must migrate is made by the aspects responsiblentootembedded systems physi-
cal resources, such &nergyControl MemoryUsageContrpland HwAreaControl Basically
TaskMigration aspecprovides only one adaptation, i.&igrate behavioral one, which adds
the mentioned behavior related to the migration mechanism.

1Objects migration between software and hardware (at r@tisusually known as “reconfiguration”. However,
in embedded systems domain, “reconfiguration” usually méanpload a bitstream into a FPGA device. Thus,
in order to avoid misunderstandings, this text uses the teznonfiguration” to refer to the later, while objects
software-to-hardware and/or hardware-to-software riégoration are also called “migration”

<<Non-Functional>>
TaskAllocation

<<Aspect>>
TaskMigration

<<BehavioralAdaptation>>+Migrate()

<<Aspect>>
NodeStatusRetrieval

<<BehavioralAdaptation>>+ProcessingLoad()
<<BehavioralAdaptation>>+MessageThroughput()
<<BehavioralAdaptation>>+Alive()

Figure A.5..TaskAllocation Packagehandling tasks allocation non-functional requirements

156

A.6. Embedded Package

A.6. Embedded Package

Non-functional requirements related to physical resaiesailability, which are very common
concerns in embedded systems design, are handle by thiageslaspects. Energy consump-
tion, memory usage, and hardware reconfigurable area caiteleas examples of such con-
cerns. As depicted ii.6, the available aspects are concerned in monitoring andatimd
the mentioned physical resources. Thus, depending on tfsgah resource being controlled,
the control policy, and platform capabilities, differertians can be performed by these as-
pects as, for instancdi) depending on the system requirements and runtime statemntove
objects related to non-critical activitie@i) active objects migratior(jii) to loosen timing con-
straints; (iv) to decrease processor operation frequeifeyto turn off unnecessary hardware
components; It is important to highlight that this aspectsdependent on target platform capa-
bilities, meaning that the platform must provide means tmitoo and control system physical
resources.

HwAreaMonitoring aspect is related to systems that use reconfigurable hadlgsaices,
such as FPGAs. It provides a mechanism to monitor the reaoafile area by which the
remaining reconfigurable area (in terms of configurableclddipcks) is (re)calculated at each
reconfiguration command. It provides the following addpte:

e IncreaseAreaUsag@serts a behavior that increases the reconfigurable aage asnount,
before all hardware reconfiguration actions, based on aared by the new hardware
active objects;

e DecreaseAreaUsagmdds a behavior that decreases the reconfigurable areaamagat,
before all hardware reconfiguration actions, based on sipenhation of the hardware
active objects that are leaving the reconfigurable harddevee;

HwAreaControl aspect controls the hardware reconfigurable device usagddigg an ar-
biter to allow or deny every reconfiguration based on therinfdion of this package monitoring
aspects. In fact it provides only one adaptation: the inatusf a new active object that accesses
the information produced by tHdwAreaMonitoringaspect to control the reconfigurable area
use, taken actions as described earlier in this sub-section

EnergyMonitoring aspect relies on the target platform to provide a mecharasmonitor
energy consumed by system activities. This mechanism measune the remaining energy
level before the observed activities start, and after tbempletion. Further, it calculates the
amount of energy that was consumed by these activitiesoliges the following adaptations:

e EnergyMonitoringMechanisradds the energy monitoring mechanism;

¢ InitialEnergyMeasuremerinserts a behavior responsible to measure the energy level b
fore any activity execution;

e CalculateEnergyConsumpticadds a behavior that also measures the energy level right
after the execution of observed activity is finished, catiog the energy consumed by
this activity, and also by the overall system;

EnergyControl aspect provides an object that uses information providetidoynonitoring

157

A. DERAF Detailed Description

<<Non-Functional>>

Embedded

<<Aspect>> <<Aspect>>

HwAreaMonitoring k- - <<use>> _ | HwAreaControl

<<BehavioralAdaptation>>+IncreaseAreaUsage()

<<BehavioralAdaptation>>+HwAreaControlPolic
<<BehavioralAdaptation>>+DecreaseAreaUsage() P > v0

<<Aspect>>
EnergyMonitoring

<<Aspect>>
<<use>> EnergyControl

<<StructuralAdaptation>>+EnergyMonitoringMechanism()
<<BehavioralAdaptation>>+StartingEnergyAmount() <<BehavioralAdaptation>>+EnergyConsumptionPolicy()
<<BehavioralAdaptation>>+CalculateEnergyConsumption()

<<Aspect>>
MemoryUsageMonitoring <<Aspect>>
<<use>>
,,,,,,, MemoryUsageControl
<<BehavioralAdaptation>>+IncriaseMemoryUsage()
<<BehavioralAdaptation>>+DecreaseMemoryUsage() <<BehavioralAdaptation>>+MemoryUsageControlPolicy()

Figure A.6.:Embedded packagdtandling embedded non-functional requirements

aspects to control the energy consumption. To accomplish goal, this object could per-
form the actions mentioned in the beginning of this subseactiThis aspect provides only one
adaptationEnergyConsumptionPolicyhat includes an energy controller element in the system.

MemoryUsageMonitoring aspect is similar to the other two monitoring aspects but it i
related to software rather than to hardware. It provides ehaxg@sm that must calculate the
overall memory usage of a computing device at every objémtation/deallocation. It provides
the following adaptations:

¢ IncreaseMemoryUsagaserts a behavior to increase the monitoring elementriméion
on used memory amount before every action that allocatesonyem

e DecreaseMemoryUsagdeserts a behavior to decrease the used memory amount @form
tion before every action that allocates memory;

MemoryControl aspect uses the information provided lmoryUsageMonitoringand
HwAreaMonitoringaspects to control the memory allocation requests for tbjeltocation
following an adopted memory control policy. Thus tiemoryUsageControlPolicgdaptation
inserts this controller element in the system.

158

Appendix B

UML Models for the UAV Case Study

<<NFR_Distribution>>

Special Condition
Movement Control

(@) <<NFR_Timing>>
Piloting R
T o otor
O <<extend>> Main Rotor Sensing
<<inglude>> Actuator
Navigation | B:clt(R:)tor y Q
Control o Cluator @
<<NFR_Timing>> Back Rotor
<<NFR_Embedded>> <<iLdude>> Sensor

<<NFR_Distribution>>

Helicopter Q
Movement Control <<NFR_Distribution>>
- : Main Rotor Back Rotor
xtension poin X
extension points Sensor Sensing

UAV in danger

<<NFR_Timing>>

<<NFR_Distribution>>
Environment

Sensing

<<include>>

<<NFR_Timing>>
<<NFR_Embedded>>

Alarm Control

\<<include>>

0o

. Humidity
Maintenance pata Transfer Sensing

System System

®) Wind

Humidity Sensor
Temperature Sensor
Sensor

Figure B.1.: UAV movement control use case diagram

159

B. UML Models for the UAV Case Study

-mrAct

ControlSubSystem

1 1 -movCirl
1

<<SchedulableResource>>

] MainRotorActuator

-mrAct

MovementController

-newMRRotation : int
-newMRPace : int
-newBRRotation : int
-newBRPace : int

1 1 J7

RotorActuator

-Rotation : int
-Pace :int

+getPace() : int e — SensorDriver -newWindDirection : int
-Value : float
+run() : void
-mrSensor | 1 -brSensor | 1 <<setter>>+setValue(value : float){getter/setter for attribute = Value] |+encodeHumidity(value : float) : void

mrSensor | MainRotorSensorDriver

1 |MovementSensorDriver 1

+run() : void <<setter>>+setRotation(rotation : int){getter/setter for attribute = Rotation}
+processinfo(r1 :int, p1 :int, r2 : int, p2 : int, ws : float, wd : float, h : float, t : float) : voi¢ |<<getter>>+getRotation() : int{query,getter/setter for attribute = Rotation}
; <<SchedulableResource>> <<setter>>+setPace(pace : int){getter/setter for attribute = Pace}
— MovementEncoder 1 1 1 1 <<getter>>+getPace() : int{query,getter/setter for attribute = Pace}
1 [newRotation : int 1 N +applyParameters() : void
[|-newPace : int 1
0 void -brAct| 1 - EnvironmentSensingSubSystem
+run() : voi
+encodeRotation(value : int) : void -brAct | <<SchedulableResource>>L ; “Envi : ; _
“encodePace(value : int) : void LA : "3 BackRotorActuator _envihfo <<getter>>+getEnvironmentinfo() : Environmentinformation{getter/setter for attribute = envinfo)
-¢nvinfo |1 1
movEncoder |1 (1 1 Vo
—T +run() : void <<MutualExclusionResource>> T
-brinfo{1 -mrinfo|1 -mrinfo{1 -brinfo|1 Environmentinformation
<<MutualExclusionResource>> -Humidity : float
Movementinformation -WindSpeed : float
- - -WindDirection : float
-Eotatlor\ 1: int -Temperature : float
-Pace : in
- —— - - <<setter>>+setHumidity(humidity : float){getter/setter for attribute = Humidity}
<<seller>>+selRolat|‘on(n.nllatlon int){gener/sene.r for anrlbulg = Rotation <<getter>>+getHumidity() : float{getter/setter for attribute = Humidity}
<<getter>>+getRotation() : int{getter/setter for attribute = Rotation} <<setter>>+setWindSpeed(windSpeed : float){getter/setter for attribute = WindSpeed}
<<setter>>+setPace(pace : int){getter/setter for attribute = Pace} <<getter>>+getWindSpeed() : float{getter/setter for attribute = WindSpeed}
<<getter>>+getPace() : int{getter/setter for attribute = Pace} <<setter>>+setWindDirection(windDirection : float){getter/setter for attribute = WindDirection|
R “oriniolt ~ctriMode | 1 <<getter>>+getWindDirection() : float{getter/setter for attribute = WindDirection}
SpecialConditionMovementControl <<setter>>+setTemperature(tsj‘mperature : float)(gelter{sener for attribute = Temperature}
<<getter>>+getTemperature() : float{getter/setter for attribute = Temperature}
1 1 -Mode : MovementControlMode
-envinfol1
<<enumeration>>
- M tSensing y MovementControlMode
1 [<<getter>>+getMainRototinfo() : Movementinformation{getter/setter for attribute = mrinfo ugg_l'_’:ﬁé ENVIRONMENT 1 -envSampler |1
<<getter>>+getBackRotorlnfo() : Movementinformation{getter/setter for attribute = brinfo LOWﬁFUEL <SchedulableResource>>
UNDER_ATTACK EnvironmentDataSampler

-newHumidity : int

+getRotation() : int

<<MutualExclusionResource>>

-newTemperature : int
-newWindSpeed : int

BackRotorSensorDriver

<<getter>>+getValue() : float{getter/setter for attribute = Value}

+encodeTemperature(value : float) : void

1 T
-brSensor T EnvironmentSensorDriver
<<SchedulableResource>> =

-alarm Alarm

-alarm

+encodeWindInfo(wSpeed : float, wDirection : float

1 1

-sTemperature |1

[
HumiditySensorDriver

WindSensorDriver

#issueAlarm() : boolean

+triggerUnderAttackAlarm()

+triggerLowFuelAlarm() : boolean — —
+riggerHostileEnvironmentAlarm() : boolean [SHumidity |1 -sHumldltyT1 +getWindDirection() : floa

Temperatur

-sTemperature

Driver

+getWindSpeed() : float |-sWind

1

: boolean

Figure B.2.: UAV movement control class diagram

160

19T

interaction Environment Sensing [@ Environment Sensig]J

<<Scheduler>>
: Scheduler

<<SchedulableResource>>

<<MutualExclusionResource>>

. Envi o)
env : Envir

Info : Environmentinformatio

T

1:run()

]
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
|
I
I
|
I

o

<<TimedEvent>>

T

|
2: getValue)

sHumidity : HumiditySensorDriver ‘ l sTemperature : TemperatureSensorDriver ‘ l sWind : WindSensorDrive

{every = "(20, ms)"}

5: setHumidity(humidity=newHumidity)

3: humidity |

4: encodeHumidity(value="humidity")

»

| 6: getValue)

8: encode Temperature(value="teniperaturg”

9: setTemperature(temperature=newTequrature)

‘ 7: temperature | m

10: getWinngeedl

11: windSpeed 'M

14: encodeWindInfo(wSpeed=windSpeed, wDirection=windDirection)

15: setWindSpeed(windSpeed=newWing§‘peed)

16: setWindDirection(windDirection=r 1ew\

T

ndDirection)

I
]
I
I
I
I
|
I
I
I
I
I
i
I
I
I
I
I
I
I
|
I
I
|
I
I
|
o
I

Y
\

\

L
\

\

Figure B.3.:

Environment sensing

B. UML Models for the UAV Case Study

interaction Movement Encode[@ Movement Encode U

<<Scheduler>>
: Scheduler

<<SchedulableResource>>
movEncoder : MovementEncoder

| mrSensor : MainRotorSensorDriver

I 1:run():""

»

<<MutualExclusionResource>>
mrinfo : Movementinformation

brSensor : BackRotorSensorDriver

<<TimedEvent>
{every ="(10, ms)"}

2: getRotation()

3: rotation
e« — — — 2 = - - -
4: encodeRotation(value=rotatioh)
|

5: getPace()

7: encodePace(value="pace") I

L

|
8: setRotation(rotation=newRotation)

9: setPace(pace=newRace)

| 10: getRotation()

11: rotation

13: getPace()

14: pace

N

15: encodePace(value=pace)

|
16: setRotation(rotation=newRotation)

<<MutualExclusionResource>>
brinfo : Movementinformation

17: setPace(pace=newPace)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|

Figure B.4.: Main and back rotors sensing

162

€91

interaction Movement Control [@ Movement Control u

<<Scheduler>>
: Scheduler

<<SchedulableResource>>
movCtrl : MovementControlle

<<MutualExclusionResource>>
brinfo : Movementinformation

<<SchedulableResource>>
brAct : BackRotorActuator

<<MutualExclusionResource>>
envinfo : Environmentinformation

<<MutualExclusionResource>>
mrinfo : Movementinformation

mrAct : MainRotorActuator

T

1: run()

}
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L

<<TimedEvent>>
{every ="(20, ms)"}

2: getRotation(

T
3: brRotation
ke — — 22T - —

4: getPace() |

5:

brPace 'M

6: getRotation()

7: miRotation

8: gétPaceI

9: rJanace

10: getWindSpeed() |

11: windSpeed

12: getWindDirection(

13: windDirection

14: getHumidity()

15: humidity

16: getTemperaturef

| 17: temperature |

| |
18: processlinfo(r1 ="erotz?tion“, p1="mrPace", r2=“erotation",‘ p2="brPace", ws="windSpeed", wd="\f/indDirection", h="humiditytmp=itature")

19: setRotation(rotation=newMRRotation)

| 20: setPace(pace=newMRPace) |

21: setRotation(rotatio}n=newBRRotation)

»

A

22: setPace(pace=r:1ewBRPace)

23: applyParameters)(

24: applyPatametersy(

I
;
T
I
I
I
I
I
L
I
I

Figure B.5.: Helicopter movement control

B. UML Models for the UAV Case Study

interaction Back Rotor Control [@ Back Rotor Control U

<<Scheduler>> <<SchedulableResource>>
: Scheduler brAct : BackRotorActuator

1:run()

<<TimedEvent>>
{every ="(10, ms)"}

2: applyParameters()

Figure B.6.: Helicopter piloting

interaction Initialization_EnvironmentSensingSubSyste [@ Initialization_EnvironmentSensingSubSystem U

1:

2: (sHumidity, sWind, sTemperature, envinfo) <<SchedulableResource>>
____________ envSampler : EnvironmentDataSampler

H — 9| : EnvironmentSensingSubSyste

Figure B.7.: Environment sensing subsystem initializatio

164

interaction Initialization_MovementSensingSubSystem [@ Initialization_MovementSensingSubSyste U

]

1:
- - e| :MovementSerrsingSubSystem

I 2: (mrinfo, mrSensor, brinfo, brSengor <<SchedulableResource>>
movEncoder : Ml)vementEncoder

Figure B.8.: Movement sensing subsystem initialization

interaction Initialization_ControlSubSystem [@ Initialization_ControlSubSystem U

I:] l :EnvironmentSensingSubSystem‘ l : MovementSensingSubSystem
1 I I

g — : ControlSubSystem I

2: getEnvironmentinfo():"" N

3:renv |

<<SchedulableResource>>
movCtrl : MovementController

|
I
‘ 1
I
I

1

\
\

\
\

\
\

\
\

\
\

\
|

\
\

|
! \
‘ L
‘ \

Figure B.9.: Control subsystem initialization

165

B. UML Models for the UAV Case Study

interaction General Behaviors [@ General Behaviors U

| * | | sWind : WindSensorDriver |

1: getWindSpeed()

2: ASSIGN(int x, 100)

3: ASSIGN(x, x+i*3)
4: ASSIGN(i, i+1)

5: RETURN(x)

loop

[inti=0;i<5]

__|____._____.()____

[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S

Figure B.10.: Other behaviokf ndSensor Dri ver . get W ndSpeed()

interaction General Behaviors 2 [@ General Behaviors 2 U

5: RETURN(x)

l * ‘ l sWind : WindSensorDriver‘
I I
| 1: getWindDirection() N
: : 2: ASSIGN(int x, 0)
[loop T
| x<0] |
‘ S
| alt |
I k==01 || 3: ASSIGN(x, x*5)
| |
| - - M -"—-"—--—-—-—- - -
| [else]
| 4: ASSIGN(x, x - 10)
I
|
|
|
I
I
L]

Figure B.11.: Other behavioWW ndSensor Dri ver. get W ndDi recti on()

166

interaction General Behaviors 3 [@ General Behavior8 U

]

1: processlinfo(r1=, p1=, r2=, p2=, ws=, wd=, h=) t=

<<SchedulableResource>> <<SchedulableResource>>
: MovementControtle alarm : Alarm

ctriMode : SpecialConditionMovementControl

|
"
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

opt

[(ws >15) || (h > 85) || (t > 40)

T
|
?
|
2: setMode(mode=MovementControlMode.HOSTILE_ENVIRONMENT)

[——————— R A

7 tIriggerHostiIeEnvironmentAIaIrTl()

‘9:

triggerUnderAttackAlarm() ‘

i &
alt | | ‘
[ctrMode.getMode() == MoveméntControlMode.NORMAL] | |
| 3: EXPRESSION(neWwMRRotation, newMRRotation/r1*p1) |
I | |
| 4: ASSIGN(newMRPace, (newMRPace+p}l)/r1 |
| | I
‘ 5: EXPRESSION(ne\‘NBRRotation, newBRRotation/r2*p2) |
I | |
I | |
| 6: ASSIGN(newBRP?ce, (newBRPace+pR)/r2
I |
o ___ L | o o o _ _ _ _ _ _ __ | — —
[ctriMode.getMode() == MovemeéntControlMode.HOSTILE_ENVIRONMENT]
T

T

|

[
T

Figure B.12.: Other behaviokbvenent Cont rol | er. processl nf o()

167

B. UML Models for the UAV Case Study

package FR[% System_DeponmentU

<<SchedulableResource>> | | <<SchedulableResource>> mrAct :
alarm : Alarm movCtrl : MainRotorActuator
N MovementController N
| <<manifest>> 4\<<manifest>> | _Ssmanifest>> N sHumidity :
<<MutualExclusionResource>> <srfhanifest>> | I | | HumiditySensorDriver
envinfo : I MainRotor <<manifest>>| |
Environmentinformation A) <<mdnifbsts>> sWind :
<<artifact>> D — —| Tt — > WindSensorDriver
<<SchedulableResource>> RT-FemtoJava.MainRotor_Node
envSampler : <tmanifest>>T ' T umli st>; sTemperature :
EnvironmentDataSampler < — — — — |<<manifest>> | <<manifest>> | TemperatureSensorDriver
| | [K<manifest>>
\%
mrSensor : <<MutualExclusionResource>> || <<SchedulableResource>>
MainRotorSensorDriver mrinfo : movEncoder :
Movementinformation MovementEncoder
<<MutualExclusionResource>>
brinfo : -
Movementinformation | _ <<anifest>> BackRotor
1 <<SchedulableResource>>
. <<artifact>> << fest>> i
brSensor : <<manifest>> RT-F toJ aréac kRot Nod D I Earl_es_ brAct :
BackRotorSensorDriver - T~ -Femto ava.BackRotor_Node BackRotorActuator

Figure B.13.: UAV movement control deployment diagram

168

691

<<Aspect>>
TimingAttributes

<<Aspect>>
DataFreshness

<<Pointcut>>+pcActClass(JPDD_ActiveObjectClass, Deadline+Priority+WCET, ADD_NEW_FEATURE)
<<Pointcut>>+pcActClass2(JPDD_ActiveObjectClass, ModityClassStructure, MODIFY_STRUCTURE)
<<Pointcut>>+pcActObjlnit(JPDD_ActiveObjectConstruction, SetTimingAttributes, AFTER)
<<Pointcut>>+pcActObjInit2(JPDD_ActiveObjectConstruction_Action, AdaptObjectConstruction, MODIFY_STRUCTURE)|
<<Pointcut>>+pcActObjContructor(JPDD_ActiveObjectConstructor, ModifyConstructor, MODIFY_STRUCTURE)
<<StructuralAdaptation>>+Deadline()

<<StructuralAdaptation>>+Priority()

<<StructuralAdaptation>>+WCET()

<<StructuralAdaptation>>+ModifyConstructor()

<<StructuralAdaptation>>+ModityClassStructure()

<<BehavioralAdaptation>>+SetTimingAttributes()

<<BehavioralAdaptation>>+AdaptObjectConstruction()

<<Crosscut>> <<Crosscut>> <<Crosscut>> <<Crosscut>> <<Crosscut>>
{Deadline = "20ms", {Deadline = "10ms", |{Deadline = "20ms", |{Deadline = "10ms",|{Deadline = "5ms",
Priority = "1", Priority = "2", Priority = "2", Priority = "1", Priority = "0",
WCET = "8ms'} WCET = "5ms’} WCET = "7ms'} WCET = "3ms'} WCET = "2ms'}

<<Pointcut>>+pcinfoClassAttr(JPDD_InfoClassAttribute, ValidityInformation, ADD_NEW_FEATURE
<<Pointcut>>+pcInfoClassObjlnit(JPDD_InfoObjectConstruction_Action, SetValidity, AFTER)
<<Pointcut>>+pcReadAttrValue(JPDD_InfoAttributeRead, VerifyFreshness, BEFORE)
<<Pointcut>>+pcWriteAttrValue(JPDD_InfoAttributeWrite, UpdateFreshness, AFTER)
<<StructuralAdaptation>>+ValidityInformation()

<<BehavioralAdaptation>>+SetValidity()

<<BehavioralAdaptation>>+VerifyFreshness()

<<BehavioralAdaptation>>+UpdateFreshness()

<<Crosscut>> <<Crosscut>>
{Validity = "100ms"} {Validity = "25ms"}
Humidity, Temperature WindSpeed, WindDirection

<<Crosscut>>
{Validity = "25ms"}

<<MutualExclusionResource>>
Movementinformation

<<MutualExclusionResource>>
Environmentinformation

<<SchedulableResource>>|
Alarm

<<SchedulableResource>>
MovementController EnvironmentDataSampler

<<SchedulableResource>>

<<Aspect>>
ConcurrentAccessControl

<<SchedulableResource>>| <<SchedulableResource>>|
MovementEncoder BackRotorActuator

<<Crosscut>> <<Crosscut>> <<Crosscut>> <<Crosscut>>
{Period = "20ms"} {Period = "10ms"} |{Period = "20ms"} {Period = "10ms"}

<<Aspect>>
PeriodicTiming

<<Pointcut>>+pcActClass(JPDD_ActiveObjectClass, Period, ADD_NEW_FEATURE)
<<Pointcut>>+pcActObjConstructor(JPDD_ActiveObjectConstructor, ModifyConstructor, MODIFY_STRUCTURE)
<<Pointcut>>+pcActObjlnit(JPDD_ActiveObjectConstruction, SetPeriod, AFTER)

<<Pointcut>>+pcActObjInit2(JPDD_ActiveObjectConstruction_Action, AdaptObjectConstruction, MODIFY_STRUCTURE)|
<<Pointcut>>+pcLoop(JPDD_PeriodicBehavior, LoopMechanism, AROUND)

<<Pointcut>>+pcFreqCtrl(JPDD_PeriodicBehavior, FrequencyControl, AFTER)
<<StructuralAdaptation>>+Period()

<<StructuralAdaptation>>+ModifyConstructor()

<<BehavioralAdaptation>>+SetPeriod()

<<BehavioralAdaptation>>+LoopMechanism()

<<BehavioralAdaptation>>+FrequencyControl()

<<Pointcut>>+pcSharedObjClass(JPDD_ExclusiveObjectClass, ConcurrencyControlMechanism, ADD_NEW_FEATURE)
<<Pointcut>>+pcBeforeRead(JPDD_ExclusiveGet, AcquireAccess, BEFORE)

<<Pointcut>>+pcAfterRead(JPDD_ExclusiveGet, ReleaseAccess, AFTER)

<<Pointcut>>+pcBeforeWrite(JPDD_ExclusiveSet, AcquireAccess, BEFORE)

<<Pointcut>>+pcAfterWrite(JPDD_ExclusiveSet, ReleaseAccess, AFTER)
<<StructuralAdaptation>>+ConcurrencyControlMechanism()

<<BehavioralAdaptation>>+AcquireAccess()

<<BehavioralAdaptation>>+ReleaseAccess()

<<Aspect>>
SchedulingSupport

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, Scheduler, ADD_NEW_FEATURE)
<<Pointcut>>+pcSubSystemConstruction(JPDD_SubSystemConstruction_2, SetupConcurrentActivities, AFTER)|
<<StructuralAdaptation>>+Scheduler()

<<BehavioralAdaptation>>+SetupConcurrentActivities()

<<BehavioralAdaptation>>+AdaptObjectConstruction()

<<Aspect>>
MessageSynchronization

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, WaitingMechanism, ADD_NEW_FEATURE
<<Pointcut>>+pcRemoteMsgSending(JPDD_SendMsgToRemoteObject, WaitForAcknowledge, AFTER)
<<StructuralAdaptation>>+WaitingMechanism()

<<BehavioralAdaptation>>+WaitForAcknowledge()

<<Aspect>>
MessageAck

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, AcknowledgmentMechanism, ADD_NEW_FEATURE
<<StructuralAdaptation>>+AcknowledgmentMechanism()

<<BehavioralAdaptation>>+SendAcknowledgment)()
<<BehavioralAdaptation>>+SinalAcknowledgmentMechanism()

<<Aspect>>
EnergyControl

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, EnergyConsumptionPolicy, ADD_NEW_FEATURE
<<StructuralAdaptation>>+EnergyConsumptionPolicy()

<<Aspect>>
EnergyMonitoring

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, EnergyMonitoringMechanism, ADD_NEW_FEATURE
<<Pointcut>>+pcGetStartingEnergy(JPDD_PeriodicBehavior, StartingEnergyAmount, BEFORE)
<<Pointcut>>+pcCalcEnergy(JPDD_PeriodicBehavior, CalculateEnergyConsumption, AFTER)
<<StructuralAdaptation>>+EnergyMonitoringMechanism()

<<BehavioralAdaptation>>+StartingEnergyAmount()

<<BehavioralAdaptation>>+CalculateEnergyConsumption()

<<Aspect>>
TaskMigration

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, MigrationMechanism, ADD_NEW_FEATURE
<<StructuralAdaptation>>+MigrationMechanism()
<<BehavioralAdaptation>>+Migrate()

Figure B.14.: Aspects Crosscutting Overview Diagram

B. UML Models for the UAV Case Study

package NFR[JPDD_ActiveObjectClass y

<<SchedulableResource>>
<<JoinPoint>>
*

Figure B.15.: JPDD: selection of active objects class

package NFR[JPDD_ExclusiveObjectClass JJ

<<JoinPoint>>
<<MutualExclusionResource>>
*

Figure B.16.: JPDD: selection of shared passive objects

package NFR[JPDD_InfoClassAttribute JJ

*Information

<<JoinPoint>>-*; *

Figure B.17.: JPDD: selection of passive class attributes

170

package NFR[JPDD_InfoObjectConstruction_2 D

*Information

<<JoinPoint>>+*Information(..) : *{Behavior}

Figure B.18.: JPDD: selection of passive class constructor

package NFR[JPDD_SubSystemClass y

<<JoinPoint>>
*SubSystem

Figure B.19.: JPDD: selection of sub systems classes

package NFR [JPDD_SubSystemConstruction_2 U

*SubSystem

<<JoinPoint>>+*SubSystem(..):*(){Behavior}

Figure B.20.: JPDD: selection of sub systems constructor

interaction JPDD_ActiveObjectConstruction_Action [JPDD_ActiveObjectConstruction_Action]J

<<SchedulableResource>>

1:
m :<\JanF‘_oint_>>9 i
I
|

Figure B.21.: JPDD: selection of selection of active olgexinstruction actions

171

B. UML Models for the UAV Case Study

interaction JPDD_ActiveObjectConstruction [JPDD_ActiveObjectConstruction JJ

1: <<SchedulableResource>>

* .k

_<<\Ein;oir¥>>
{Behavior} |

Figure B.22.: JPDD: selection of active objects constnubehavior

interaction JPDD_ActiveObjectConstructor [JPDD_ActiveObjectConstructor JJ

1 <<SchedulableResource>>

* .k

<<JoinPoint>>
{MessageDefinition} [

Figure B.23.: JPDD: selection of active objects constnucto

interaction JPDD_ExclusiveGet[JPDD_ExclusiveGet y

*ox <<MutualExclusionResource>>
* . %

| 1: get*(..)? |

| <<JoinPoint>>

Figure B.24.: JPDD: selection of messages whose name wsii#intsget”

172

interaction JPDD_ExclusiveSet[JPDD_ExclusiveSet ﬂ

ok <<MutualExclusionResource>>
* . *

1: set*(..):* |

<<JoinPoint>>

Figure B.25.: JPDD: selection of messages whose name wiiftitsset”

interaction JPDD_InfoAttributeRead [JPDD _InfoAttributeRead y

ok * : *Information

I
1: get*(..):* |

<<JoinPoint>>
{Behavior}

Figure B.26.: JPDD: selection of messages whose name wsfiéttsget”

interaction JPDD_ InfoAttributeWrite[JPDD_InfoAttributeWrite JJ

ok * 1 *Information

I
1: set*(..):* |

[
I
| <<JoinPoint>>
|
I

{Behavior}

Figure B.27.: JPDD: selection of messages whose name si#ntéset”

173

B. UML Models for the UAV Case Study

interaction JPDD_InfoObjectConstruction_Action [JPDD_InfoObjectConstruction_Action lJ

1:
<<JoinPoint>>

Figure B.28.: JPDD: selection of passive objects contoacéiction

interaction JPDD_PeriodicBehavior [JPDD_PeriodicBehavior lJ

<<Scheduler>> <<SchedulableResource>>
*: Scheduler *io¥

| |
1:%(.)"
<<TimedEvent>>
<<JoinPoint>>
{Behavior,
every = "} I

Figure B.29.: JPDD: selection of active objects periodidséor

interaction JPDD_SendMsgToRemoteObject [JPDD_SendMsgToRemoteObject JJ

| local.* : * | remote.* : *
I I
| 1) |

<<JoinPoint>>

Figure B.30.: JPDD: selection of message sending actiogntmte objects

interaction JPDD_SubSystemConstruction [JPDD_SubSystemConstruction lJ

Iilt
- - - = *: *SubSystem
<<JoinPoint>>

{Behavior}

Figure B.31.: JPDD: selection of sub systems constructbavier

174

Appendix C

Mapping Rules

C.1. Application

<?xm version="1.0" encodi ng="utf-8"?>

<Pl at f or

e I A L L L L L L L L

<l--%

e R L L L L L R L L

ns>

Configuration for RT-FentoJava Platform

<RT- Fent oJava>

<l--

Mappi ng rul es for APPLI CATI ON CODE - - >

<Appl i cation>
<Sof t war e>

<!-- Source code generation options -->
<Sour ceOptions isAspect Language="no" C assesPerFile="1"
hasC assesDecl arati on="no" |dentati on="5"
Bl ockStart="{" Bl ockEnd="}">
<Fi | eNameConventi on>$Cl ass. Nane</ Fi | eNanmeConventi on>
<Package>package $d ass. Package; </ Package>
<Sour ceRef er ence>
i nport $Ref erencedC ass. Package\ . $Ref er encedC ass. Nang;
</ Sour ceRef er ence>
<Sour ceOr gani zati on>
<Decl arati onFil e Fil eExtension="">
$Sour ceCode. C assesDecl arati on
</ Decl arationFi |l e>
<l mpl enent ati onFi |l e Fil eExtensi on=".java">
$Sour ceCode. PackagesDecl ar ati on
\ n$Sour ceCode. Ref er encesDecl ar ati on
\ n$Sour ceCode. C assesl| npl enent ati on
</l npl ementati onFil e>
</ Sour ceOrgani zati on>
</ Sour ceOpt i ons>

<l-- Mapping rules for PRI MARY ELEMENTS -->
<Pri mar yEl ement sMappi ng>
<Dat aTypes>
<Array>
#set ($n = $Dat aType. get Si ze())
#set ($s = $CodeGener at or. get Dat aTypeSt r ($Dat aType. Dat aType)
#if ($n > 0)

k-

175

C. Mapping Rules

$s[]
#el se
ArrayListé< $s>
#end
</ Array>
<Bool ean>bool ean</ Bool ean>
<Byt e>byt e</ Byt e>
<Char >char </ Char >
<Cl ass>$Dat aType. Repr esent . Nane</ O ass>
<Dat eTi me>Dat e</ Dat eTi me>
<Enuner ati onDefinition>
publ i c enum $Dat aType. Nane
$Opti ons. Bl ockSt art
#foreach ($v in $Dat aType. Val ues)
#if ($velocityCount > 1) , #end
\ n$v
#end
\ n$Opt i on. Bl ockEnd
</ Enuner ati onDefinition>
<Enuner ati on>
${ Dat aType. Nanme}
</ Enuner ati on>
<l nt eger >i nt </ | nt eger >
<Long>| ong</ Long>
<Short >short </ Short >
<String>String</String>
<Voi d>voi d</ Voi d>
<Doubl e>doubl e</ Doubl e>
<Fl oat >f | oat </ Fl oat >
</ Dat aTypes>
<Dat aTypeDef aul t Val ues>
<Array>nul | </ Array>
<Bool ean>t r ue</ Bool ean>
<Byt e>0</ Byt e>
<Char >'’ </ Char >
<C ass>nul | </ Cl ass>
<Dat eTi ne>new Dat e(2000, 01, 01, 0, 0, O0)</DateTi me>
<Enuner ati on></ Enuner ati on>
<l nt eger >0</ | nt eger >
<Long>0</ Long>
<Short >0</ Short >
<String>""</String>
<Voi d></ Voi d>
<Doubl e>0. 0</ Doubl e>
<Fl oat >0. 0</ Fl oat >
</ Dat aTypeDef aul t Val ues>
<Visibilities>
<Private>private</Private>
<Pr ot ect ed>pr ot ect ed</ Pr ot ect ed>
<Publ i c>publ i c</ Publ i c>
</Visibilities>
<Par anet er Ki nds>
<l n></1n>
<Qut ></ Qut >
<l nQut ></ | nQut >
</ Par anet er Ki nds>
</ Pri mar yEl ement sMappi ng>

<l-- Mapping rules for CLASSES -->
<Cl asses>
<Decl ar at i on></ Decl ar ati on>

176

C.1. Application

<l npl enent ati on>
import saito.sashim.realtine.*;
\n
public
#if ($C ass.isAbstract())
abstract
#end
cl ass $C ass. Nane
#if ($d ass. Superd ass)
ext ends $Cl ass. Super Cl ass. Nane
#end
\ n$Opt i ons. Bl ockSt art
\ n$CodeCener at or. get Attri but esDecl arati on(1)
\'n
\ n$CodeCener at or . get Messages| npl enent ati on(1)
\ n$Opt i ons. Bl ockEnd
</ | npl emrent ati on>

<Attributes>
$VisibilityStr
#if ($Attribute.isStatic())
static
#end
$Dat aTypeStr $Attri bute. Nane;
</Attributes>

<Messages>
<Decl ar ati on></ Decl arati on>
<l mpl enent ati on>

#i f ($DERCSHel per.isDestructor ($Message) == fal se)

$VisibilityStr
#if ($Message.isStatic())
static
#end
#i f ($Message. i sAbstract())
abstract
#end
#i f ($DERCSHel per . i sNor nal Met hod($Message))
$Ret urnTypeStr
#end
${ Message. Nane} (
#i f ($Message. Paranet ersCount > 0)
#f oreach($paramin $Message. Paraneters)
#if ($vel ocityCount > 1), #end

$CodeCener at or . get Dat aTypeSt r ($par am Dat aType) $param Nane

#end
#end
)
#if (!$Message.isAbstract())
$Opt i ons. Bl ockSt art
\'n// Variabl es

\ n$CodeGener at or . get Vari abl esDecl arati on(1)

\n// Actions

\ n$CodeGener at or . get Act i onsCode(1)
\ n$Opt i ons. Bl ockEnd
#el se

#end

#el se
NN/ *kkkrkhhkrkhhkhkhkkhkkkkkokkkkkkk*
\n// destructor was ignored

NN/ *kkkrhkhhkkhkhkhkkhkkkhokkkkkkk*

#end

177

C. Mapping Rules

</ I npl enent ati on>
</ Messages>
</ Cl asses>

<l-- Mapping rules for BEHAVIOR, i.e. sequence of actions -->
<Behavi or >
<Vari abl eDecl arati on>
$Dat aTypeStr $Vari abl e. Narre
</ Vari abl eDecl arati on>

<Branch>
if ($Branch. EnterCondition) $Options. Bl ockStart
#set ($ident = $ldentati onLevel + 0)
\ n$CodeGener at or . get Var i abl esDecl ar ati on($i dent)
\ n$CodeCGener at or . get Act i onsCode($i dent)
\ n$Opt i ons. Bl ockEnd
#if ($Branch. hasAl ternativeBehavior())
\n el se $Options. Bl ockStart
\ n$CodeGener at or . get Vari abl esDecl arati on($Branch. Al t er nat i veBehavi or
$i dent)
\ n$CodeGener at or . get Acti onsCode($Branch. Al t er nati veBehavi or, $ident)
\ n$Opt i ons. Bl ockEnd
#end
</ Branch>

<Loop>
#i f ($Loop. Nunber Of Repetitions > 0)
for(int $lndexVariabl eNane = 0; $IndexVariabl eNane &t
$Loop. Nunber O Repeti ti ons; $I ndexVari abl eNane++)
#el sei f ($Loop. Exi t Condi ti on)
#i f ($Loop. Ent er Condi ti on)
${ Loop. Ent er Condi ti on};
#end
\'n while ($Loop. Exi t Condi tion)
#end
$Opti ons. Bl ockStart
\ n$CodeGener at or . get Vari abl esDecl arati on(1)
\ n$CodeGener at or . get Act i onsCode(1)
\ n$Opt i ons. Bl ockEnd
</ Loop>

<Assi gnnment >
#if ($Action.isVariabl eAssignnment())
$Act i on. Vari abl e. Name
#el se
#if ($Action. Ooj ect)
${ Action. Obj ect. Nane}. ${ Acti on. Attri bute. Nane}
#el se
${Action. Attribute. Nane}
#end
#end

#if ($Action.isAssignnment Of Val ue())
$Acti on. Val ue
#el se
$CodeGener at or. get Acti onCode($Acti on. Acti on)
#end
</ Assi gnment >

<oj ect >

<Creation>
#set ($x = 'nada’)

178

C.1. Application

new ${Acti on. Obj ect. | nstanceOX . Nane} (
#if ($Action. Paranet er sVal uesCount > 0)
#f oreach($x in $Action. Paranet ersVal ues)
#if ($vel ocityCount > 1), #end
$x
#end
#end

</ Creation>

<Destruction></Destruction>
</ Cbj ect >

<Expr essi on>
#i f ($DERCSHel per. i sNor nal Met hod($Message))
${Action. Acti on. Expr essi on}
#el se
${ Acti on. Expr essi on}
#end

</ Expr essi on>

<Ret ur n>

return

#if ($Action.isAssignment Of Val ue())
${ Acti on. Val ue}

#el sei f ($Action.isAttributeAssignment())
${Action. Attribute. Nane}

#el se
$CodeGener at or. get Acti onCode($Acti on. Acti on)

#end

</ Retur n>
<St at eChange></ St at eChange>

<SendMessage>
<ToLocal >
<Sof t war e>
#if ($Action.get Tobject() != $Action. get FronDbj ect())
#if ($Action. Rel atedMet hod.isStatic())
${ Act i on. Rel at edMet hod. Oaner Cl ass. Nane}.
#el se
${Act i on. ToObj ect . Nane} .
#end
#end
${ Acti on. Rel at edMet hod. Nane} (
#if ($Action. Paranet er sVal uesCount > 0)
#f oreach($paramin $Acti on. get Par anet er sVal ues())
#if ($vel ocityCount > 1), #end
#set ($x = S$vel ocityCount - 1)
#if ($Action.isParaneterVal ue($x))
${ par an}
#el se
${ par am Nane}
#end
#end
#end
)
</ Sof t war e>
<Har dwar e></ Har dwar e>
</ ToLocal >

179

C. Mapping Rules

<ToRenot e>
<Sof t war e>
#if ($Action.get ToObject() !'= $Action. get FronDbject())
#if ($Action. Rel atedMet hod. isStatic())
${ Acti on. Rel at edMet hod. Oaner Cl ass. Nane}.
#el se
${Act i on. ToObj ect . Nane} .
#end
#end
${Acti on. Rel at edMet hod. Nane} (
#if ($Action. Paranet er sVal uesCount > 0)
#f oreach($paramin $Acti on. get Par anet er sVal ues())
#if ($velocityCount > 1), #end
#set ($x = S$vel ocityCount - 1)
#if ($Action.isParaneterVal ue($x))
${ par ant
#el se
${ par am Nane}
#end
#end
#end
Y: /] ** REMOTE #+
</ Sof t war e>
<Har dwar e></ Har dwar e>
</ ToRenot e>
</ SendMessage>

<l nsertArrayEl enent >
#if ($Action.isVariabl eAssignment())
$Act i on. Vari abl e. Name
#el se
#if ($Action. oj ect)
${Acti on. Obj ect. Nane}. ${ Acti on. Attri but e. Nane}
#el se
${Action. Attri bute. Nane}
#end
#end
.add(${Action. El enent});
</l nsertArrayEl ement >

<RenoveArrayEl emrent >
#if ($Action.isVariabl eAssignment())
$Act i on. Vari abl e. Name
#el se
#if ($Action. Ooj ect)
${Acti on. Obj ect. Nane}. ${ Acti on. Attri but e. Nane}
#el se
${Action. Attribute. Nane}
#end
#end
.renmove(${Action. El enent})
</ RenoveArr ayEl ement >

<Get ArrayEl enent >
#if ($Action.isVariabl eAssignnment())
$Action. Vari abl e. Narme
#el se
#if ($Action. bject)
${ Action. Obj ect. Nane}. ${ Action. Attri bute. Nane}
#el se
${Action. Attribute. Nane}
#end
#end

180

C.1. Application

.get (${Action. Element});
</ CGet Arr ayEl ement >

<Set Arr ayEl ement >
#if ($Action.isVariabl eAssignnment())
$Act i on. Vari abl e. Name
#el se
#if ($Action. Ooj ect)
${ Acti on. Obj ect. Nane}. ${ Action. Attri bute. Nane}
#el se
${Action. Attribute. Nane}
#end
#end
.set (${Action. Elenment});
</ Set Arr ayEl enent >

<ArraylLengt h>
#if ($Action.isVariabl eAssignment())
$Act i on. Vari abl e. Namre
#el se
#if ($Acti on. Ooj ect)
${ Acti on. Obj ect. Nane}. ${ Action. Attri bute. Nane}
#el se
${Action. Attribute. Nane}
#end
#end
.size()
</ ArraylLengt h>
</ Behavi or >

<l-- Mapping rules for | NTERRUPT HANDLI NG code -->
<I nt errupt Handl i ng>
</ I nterrupt Handl i ng>

<!-- Mapping rul es for DERAF ASPECTS -->

<Aspect s>
<! --**-->
<l--x Ti m ng Package *-->
<! B R R R R R EEEEEEEEEEREEEEEEEER]

<Tim ngAttributes>
<Decl ar ati on></ Decl ar ati on>
<Adapt at i ons>

<Structural Nane="Deadline" O der="3" Mddel Level ="no">
private static RelativeTine _Deadline = new Rel ativeTine(0,0,0);
\n
\npublic void exceptionTask() {}
\nprotected void initializeStack() {}
\npublic void nmainTask() {}

</ Structural >

<Structural Nane="Priority" Order="3">

</ Structural >

<Structural Nanme="WCET" Order="3" Mbdel Level ="no">
private static RelativeTine _Cost = new Rel ativeTine(0, 0, 0)

</ Structural >

<Structural Nanme="MdityCd assStructure” O der="0" Mdel Level ="yes">
$DERCSHel per . changeSuper C ass($C ass

$DERCSFact ory. newC ass("Real ti neThread", null, true), true)

</ Structural >

<Structural Nanme="MdifyConstructor" Order="0" Model Level ="yes">
$Message. addPar anet er (" pDeadl i ne", $DERCSFactory. newl nt eger (fal se),

$DERCSFact ory. get Paraneterin());

C. Mapping Rules

$Message. addPar anet er (" pCost", $DERCSFact ory. newi nt eger (f al se),
$DERCSFact ory. get Paraneterin());

</ Structural >

<Behavi oral Nane="Set Ti mi ngAttributes" Order="2" Model Level ="no">
\'n_Deadl i ne. set (0, pDeadl i ne, 0) ;
\'n_Cost . set (0, pCost, 0);
\ nget Rel easePar anet ers() . set Deadl i ne(_Deadl i ne);
\ nget Rel easePar anet ers() . set Cost (_Cost);

</ Behavi oral >

<Behavi oral Nane="Adapt Obj ect Construction" O der="0" Mdel Level ="yes">
$Act i on. addPar anet er Val ue($DERCSHel per. str Ti neTol nt eger (

$Crosscut ting. get Val uet (" Deadl i ne"), "ns"))
$Act i on. addPar anet er Val ue($DERCSHel per. str Ti meTol nt eger (
$Crosscut ting. get Val uef ("WCET"), "ns"))

</ Behavi oral >

<Structural Nane="AddAccessMet hods" Order="3" Mdel Level ="no">
/1 TimngAttributes. AddAccessMet hods

</ Structural >

<Structural Nane="StartTine" O der="3" Mdel Level ="no">
/1 TimngAttributes. StartTine

</ Structural >

<Structural Nane="EndTi me" Order="3" Mbdel Level ="no">
/1 TimngAttributes. EndTi nme

</ Structural >

</ Adapt ati ons>
</ TimngAttributes>

<Peri odi cTi m ng>
<Decl ar ati on></ Decl ar ati on>
<Adapt ati ons>
<Structural Nane="Period" Order="1" Mdel Level ="no">
\nprivate static RelativeTinme _Period = new Rel ativeTine(0,0,0);
\nprivate static Periodi cParaneters _PeriodicParans =
new Peri odi cParanmeters(null, null, null, null, null);
</ Structural >
<Structural Nanme="MdifyConstructor" O der="1" Model Level ="yes">
$Message. addPar anet er (" pPeri od", $DERCSFactory. newl nt eger (fal se),
$DERCSFact ory. get Paraneterin());
</ Structural >
<Behavi oral Nane="Set Peri od" Order="2" Mddel Level ="no">
\'n_Peri od. set (0, pPeri od, 0);
\'n_Peri odi cPar ans. set Peri od(_Peri od) ;
\ nset Rel easePar anet er s(_Peri odi cPar ans) ;
</ Behavi or al >
<Behavi oral Nanme="FrequencyControl" Order="3" Model Level ="no">
wai t For Next Peri od();
</ Behavi oral >
<Behavi oral Nane="LoopMechani sm Order="4" Mbdel Level ="no">
whil e (isRunning()) $Options. Bl ockStart
\ n$CodeGener at or . get Gener at edCodeFr agnent (1)
\ n$Opt i ons. Bl ockEnd
</ Behavi oral >
<Behavi oral Nane="Adapt Obj ect Construction" Order="1" Mdel Level ="yes">
$Act i on. addPar anet er Val ue($DERCSHel per. str Ti neTol nt eger (
$Crosscutting. getVal ueOr ("Period"), "nms"))
</ Behavi or al >
</ Adapt ati ons>
</ Peri odi cTi m ng>

<Schedul i ngSuppor t >
<Decl ar ati on></ Decl arati on>
<Adapt at i ons>
<Structural Nane="Schedul er" Order="0" Moddel Level ="no">

182

C.1. Application

/1 Schedul i ngSupport. Begi n
\npublic static EDFSchedul er schedul er = new EDFSchedul er();
\npublic void idleTask() {}
\'n// Schedul i ngSupport. End
</ Structural >
<Behavi oral Nane="SetupConcurrentActivities" O der="0" Mdel Level ="no">
\'n // Schedul i ngSupport
\ nSchedul er. set Def aul t Schedul er (schedul er);
\'n
#foreach($Ooj in $Message. Tri gger edBehavi or. Behari or al El enent s)
#i f ($DERCSHel per. i sAssi gnment Of Acti veQbj ect ($bj))
#if ($Action.isVariabl eAssi gnnent())
#set ($Obj Nane = $bj . Vari abl e. Nanme)
#el sei f ($Qpj . Obj ect)

#set ($Qbj Nane = $Cbj . Obj ect. Nane + .’ + $Obj. Attribute. Nane)
#el se

#set ($Qbj Nanme = $Qbj . Attri bute. Nane)
#end
\n

\ n${ Cbj Nane} . addToFeasi bi lity();
\ n${ bj Nane}.start();
\n
#end
#end
\n
\ nschedul er. set upTi ner ()
\ ni dl eTask();
</ Behavi or al >
</ Adapt ati ons>
</ Schedul i ngSupport >

<Ti neBoundedActi vity>
<Adapt at i ons>
<Structural Nanme="Ti neCountl|nfrastructure" O der="0" Mddel Level ="no">
/1 Ti meBoundedActivity. Ti meCount I nfrastructure
</ Structural >
<Behavi oral Nane="Start Counting" O der="0" Mdel Level ="no">
/1 TimeBoundedActivity. Start Counting
</ Behavi or al >
<Behavi oral Nane="St opCounting" Order="0" Mddel Level ="no">
/1 Ti meBoundedActivity. St opCounting
</ Behavi or al >
</ Adapt ati ons>
</ Ti mreBoundedActi vi ty>

<' B R R O R R R R R EEE R R
<I--x Preci si on Package *-->
<! mmkkkkkkkkhkhkhkhkhkhkhhkhkhkhhhkhkhhhhkhkhhhkhkhhhkhkhhhhhkhkhdhhkhhhhhkhhhrhkhkhhhhhdh-->
Jitter>

<Adapt ati ons>
<Behavi oral Nane="StartTi ne" O der="0" Mddel Level ="no">
/1 Jitter.StartTinme
</ Behavi or al >
<Behavi oral Nane="VerifyTol eratedJitter" Order="0" Mdel Level ="no">
/1 Jitter.VerifyTol eratedJditter
</ Behavi or al >
</ Adapt ati ons>
</Jitter>

<Tol er at edDel ay>
<Adapt ati ons>
<Behavi oral Nane="StartTi ne" O der="0" Mddel Level ="no">
/1 Tol eratedDel ay. StartTi e

183

C. Mapping Rules

</ Behavi or al >
<Behavi oral Nane="VerifyTol eratedDel ay" O der="0" Mbddel Level ="no">
/'l Tol erat edDel ay. Veri fyTol er at edDel ay
</ Behavi oral >
</ Adapt ati ons>
</ Tol er at edDel ay>

<Cl ockDrift>
<Adapt ati ons>
<Behavi oral Nane="CheckCd ockDrift" Order="0" Mdel Level ="no">
/1 O ockDrift.CheckC ockDrift
</ Behavi oral >
</ Adapt ati ons>
</ C ockDrift>

<Dat aFr eshness>
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Structural Nane="Validitylnformation" O der="0" Mdel Level ="no">
/'l freshness: ${Attribute. Nane}
\nprivate static AbsoluteTinme ${Attribute. Nane} Validity =
new Absol ut eTi me(0, 0, 0);
\nprivate static AbsoluteTinme ${Attribute. Nane} NextValidity =
new Absol ut eTi me(0, 0, 0);
\n
\'npublic void set${Attribute. Name}Validity(int newalidity)
$Opti ons. Bl ockSt art
\n ${Attribute. Nane} _Validity.set(0, newalidity,0);
\ n$Opt i ons. Bl ockEnd
\n//freshness: ${Attribute. Nane}
\n
</ Structural >
<Structural Nane="SetValidity" O der="0" Model Level ="no">
#set ($Obj Name = '---")
#if ($Action.isVariabl eAssignnment())
#set ($Obj Name = $Action. Vari abl e. Nane)
#el sei f ($Acti on. Obj ect)

#set ($Obj Name = $Action. Object.Nane + .’ + $Action. Attribute. Nane)
#el se
#set ($Obj Name = $Action. Attri bute. Nane)
#end
/'l begin of freshness setup
\n
#f oreach($NFR in ${Crosscutting. Crosscutinglnformations})
#if ($NFR Name == "Validity")
#if ($NFR El enent Nane == $NFR. Nane)
#foreach ($Attr in
$Crosscutting. get Affect edEl ement (). getAttributes())
\ n${ bj Nane}. set ${Attr. Nane} Val i di t y(
$DERCSHel per . strTi neTol nt eger ($NFR. Val ue, "ns"))
/'l freshness
\n
#end
#el se
\ n${ bj Nane}. set ${ NFR. get El enment Narme() } Val i di t y(
$DERCSHel per. strTi meTol nt eger ($NFR. Val ue, "ns"))
/'l freshness
\n
#end
#end
#end

\n // end of freshness setup
</ Structural >

184

C.1. Application

<Behavi oral Nane="VerifyFreshness" Order="0" Mdel Level ="no">
#if ($Message. Associ at edAttri bute)
if (${Message. Associ atedAttribute. Nane} _Next Validity. conpareTo(
Cl ock.getTinme()) >= 0) $Options. Bl ockStart
\ n$CodeCener at or . get Gener at edCodeFr agnent (1)
\ n$Opt i ons. Bl ockEnd
\nel se $Options. Bl ockStart
\n ${Message. Associ at edAttri bute. Name} =
${ Message. Associ at edAttri bute. Nanme} » 90 / 100;
\ n$Opt i ons. Bl ockEnd
#end
</ Behavi or al >
<Behavi oral Nane="Updat eFreshness" Order="0" Mdel Level ="no">
\ n${ Message. Associ at edAttri bute. Nanme} _Next Val i dity. set(
Cl ock.getTine());
\ n${ Message. Associ at edAt tri but e. Nane} _Next Val i di ty. add(
${ Message. Associ at edAttri bute. Name}_Validity);
</ Behavi oral >
</ Adapt ati ons>
</ Dat aFr eshness>

<! mmkkkkkhkkkhkhkhkhkhkhkhhkhkhkhhhkhkhhhhkhhhkhkhkh bk kb hkhhkhhhhkhkhkhdhhhkhhhrhkhhhhhhdh-->
<l--x Synchroni zati on Package ko>
<! mmkkkkkkhkkhkhkhkhkhkhkhhkhkhkhhhkhkhhhhkhhhhkhkh bk hkhhhkdhkhhhhkhkhhhhhkhhhrkhkhhhhhdh-->

<Concurrent AccessControl >
<Decl ar ati on></ Decl ar ati on>

<Adapt ati ons>
<Structural Nane="ConcurrencyControl Mechani snf' Order="0" Mbdel Level =" no">

/1 Concurrent AccessControl . ConcurrencyCont rol Mechani sm

</ Structural >

<Behavi oral Nane="AcquireAccess" Order="0" Mdel Level ="no">
/1 Concurrent AccessControl . Aqui reAccess

</ Behavi oral >

<Behavi oral Nane="Rel easeAccess" Order="0" Mbdel Level ="no">
/1 Concurrent AccessControl . Rel easeAccess

</ Behavi oral >

</ Adapt ati ons>
</ Concurrent AccessControl >

<MessageSynchr oni zati on>
<Decl ar ati on></ Decl arati on>

<Adapt ati ons>
<Structural Nanme="WiitingMechani sni' O der="0" Model Level ="no">

/1 MessageSynchroni zati on. Wi ti ngMechani sm
</ Structural >
<Behavi oral Nane="Wit For Acknowl edge" Order="0" Model Level ="no">
/'l MessageSynchroni zati on. Wi t For Acknowl edge
</ Behavi oral >
</ Adapt ati ons>
</ MessageSynchr oni zati on>

<! mmkkkkkhkhkkhkhkhhkhkhkhkhkhkhkhhhkhkhhhhkhhhhkhkhhhkhkhhhkhhkhkhhhkhkhhhhhkhhhrhkhhhhhhdh- - >
<l--x Communi cati on Package *-->
<! mmkkkkkhkhkkhkhkhhkhkhkhkhkhkhkhhhkhkhhhhkhkhhhkhkh bk hkh bk hhkhkhhhkhkhhhhhkhhhrhkhkhhhhhdh-->
<MessageAck>

<Decl ar at i on></ Decl ar ati on>

<Adapt ati ons>
<Structural Nane="Acknow edgnent Mechani sni Order="0" Mddel Level ="no">

/'l MessageAck. Acknowl edgeMechani sm

</ Structural >
<Behavi oral Nane="Si gnal Acknow edgnent Mechani sni' Order ="0"
Model Level =" no" >

/'l MessageAck. Si gnal Acknowl edgeMechani sm

185

C. Mapping Rules

</ Behavi or al >
<Behavi oral Nane="SendAcknow edgnent" Order="0" Mbodel Level ="no">
/'l MessageAck. SendAcknow edge
</ Behavi oral >
</ Adapt ati ons>
</ MessageAck>

<Messagel ntegrity>
<Decl ar at i on></ Decl arati on>
<Adapt ati ons>
<Behavi oral Nanme="Ceneratelntegritylnfo" Oder="0" Mdel Level ="no">
/'l Messagel ntegrity.Generatelntegritylnfo
</ Behavi or al >
<Behavi oral Nane="Verifylntegritylnfo" Order="0" Mdel Level ="no">
/1 Messagelntegrity.Verifylntegritylnfo
</ Behavi or al >
</ Adapt ati ons>
</ Messagel ntegrity>

<MessageConpr essi on>
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Behavi oral Nane="Conpress" Order="0" Mddel Level ="no">
/| MessageConpr essi on. Conpr ess
</ Behavi oral >
<Behavi oral Nane="Deconpress" O der="0" Model Level ="no">
/'l MessageConpr essi on. Deconpr ess
</ Behavi or al >
</ Adapt ati ons>
</ MessageConpr essi on>

<| ek khkkkhhkhhkhkhhkhhkhhhkhhhkhhkhhhhhkhhhdhkhhhdhkhhhdhdhhkhhhdhhdhhhkhdhhhdhhhdh- =D
<l--x TaskAl | ocati on Package *-->
<| ek kkkkhhkhhkhkhhkhhkhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhdhdhhkhhhdhhdhhhkhdhdhhdhhhdh-->

<NodeSt at usRet ri eval >
<Decl ar ati on></ Decl ar ati on>
<Adapt ati ons>
<Structural Nane="Alive" O der="0" Mdel Level ="no">
/1 NodeStatusRetrieval.Alive
</ Structural >
<Behavi oral Nane="Processi ngLoad" Order="0" Mdel Level ="no">
/'l NodeSt atusRetrieval . Processi ngLoad
</ Behavi oral >
<Behavi oral Nane="MessageThroughput” Order="0" Model Level ="no">
/1 NodeSt at usRetri eval . MessageThr oughput
</ Behavi oral >
</ Adapt ati ons>
</ NodeSt at usRet ri eval >

<TaskM grati on>
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Behavi oral Nane="M grate" Order="0" Mbdel Level ="no">
/1 TaskM gration.Mgrate
</ Behavi or al >
<Structural Nane="M grati onMechani sn Order="0" Model Level ="no">
/] TaskM gration. M grati onMechani sm
</ Structural >
</ Adapt ati ons>
</ TaskM gr ati on>

2 2 2

<l--x% Enbedded Package *-->

186

C.1. Application

<' B R R o R R R R R R R EEE R
<HwAr eaMoni t ori ng>
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Structural Nane="HwAreMonitoringMechani smi' O der="0" Mddel Level ="no">
/'l HwWAr eaMbni t or i ng. HWAr eMoni t ori ngMechani sm
</ Structural >
<Behavi oral Nanme="IncreaseAreaUsage" O der="0" Model Level ="no">
/'l HwAr eaMoni t ori ng. | ncr easeAr eaUsage
</ Behavi or al >
<Behavi oral Nane="Decr easeAreaUsage" Order="0" Model Level ="no">
/1 HwAr eaMoni t ori ng. Decr easeAr eaUsage
</ Behavi oral >
</ Adapt ati ons>
</ HwAr eaMbni t ori ng>

<HwAr eaCont r ol >
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Structural Nanme="HwAreaControl Policy" O der="0" Mdel Level ="no">
/'l HwAr eaControl .| nsert Control Mechani sm
</ Structural >
</ Adapt ati ons>
</ HwAr eaCont r ol >

<Ener gyMoni t ori ng>
<Decl ar at i on></ Decl arati on>
<Adapt ati ons>
<Structural Nanme="EnergyMonitoringMechani snf O der="0" Moddel Level ="no">
/1 EnergyMonitoring. EnergyMonitori ngMechani sm
</ Structural >
<Behavi oral Nane="StartingEnergyAnount" Order="0" Mbdel Level ="no">
/1 EnergyMonitoring. Starti ngEner gyAmunt
</ Behavi or al >
<Behavi oral Nane="Cal cul at eEner gyConsunpti on" O der="0" Model Level ="no">
/'l EnergyMoni toring. Cal cul at eEner gyConsunpti on
</ Behavi oral >
</ Adapt ati ons>
</ Ener gyMoni t ori ng>

<Ener gyCont r ol >
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Structural Nane="EnergyConsunptionPolicy" O der="0" Mdel Level ="no">
/'l EnergyControl . EnergyConsunpti onPolicy
</ Structural >
</ Adapt ati ons>
</ Ener gyCont r ol >

<Menor yUsageMoni t ori ng>
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Structural Nane="MenoryMonitoringMechani sm O der="0" Model Level ="no">
/1 MenoryUsageMoni t ori ng. Menor yMoni t ori ngMechani sm
</ Structural >
<Behavi oral Nane="IncreaseMenoryUsage" O der="0" Model Level =" no">
/1 MenoryUsageMoni toring. | ncreaseMenor yUsage
</ Behavi or al >
<Behavi oral Nane="Decr easeMenoryUsage" O der="0" Mbdel Level ="no">
/1 MenoryUsageMoni t ori ng. Decr easeMenor yUsage
</ Behavi oral >
</ Adapt ati ons>
</ Menor yUsageMoni t ori ng>

187

C. Mapping Rules

<Menor yCont r ol >
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Structural Nane="MenoryUsageControl Policy" O der="0" Mdel Level ="no">
/1 MeroryControl . MenoryUsageCont rol Pol i cy
</ Structural >
</ Adapt ati ons>
</ MenoryContr ol >
</ Aspect s>
</ Sof t war e>

<Har dwar e></ Har dwar e>
</ Application>

<!-- Mapping rules for PLATFORM CCDE - ->
<Pl at f or mConfi gurati on>
<Sof t war e>
<Sour ceOptions Qutput Directory="pl atforni ></ Sour ceOpti ons>
<Files xm ns:xi="http://ww.w3. org/ 2001/ Xl ncl ude" >

<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
<xi :include
</Fil es>

</ Sof t war e>
<Har dwar e></ Har dwar e>

</ Pl at f or mConfi gurati on>
</ RT- Fent oJava>

</ Pl at f or ns>

href ="./pl at f orm RT- Fent oJava/ Absol ut eTi me. xm "/ >

href="./pl atf orm RT- Fent oJava/ Abst r act Pool i ngServer.xm "/ >
href="./pl at f or m RT- Fent oJava/ Aperi odi cParaneters. xm "/ >
href="./pl at f orm RT- Fent oJava/ AsyncEvent . xm "/ >

href="./pl at f or m RT- Fent oJava/ AsyncEvent Handl er. xnml "/ >

href ="./pl at f or m RT- Fent oJava/ AsyncEvent sMechani sm xm "/ >
href="./pl atform RT- Fent oJava/ C ock. xm "/ >

href ="./pl at f or m RT- Fent oJava/ EDFSchedul er. xm "/ >

href="./pl at f orm RT- Fent oJava/ Fi xedPri orityHWschedul er. xm "/ >
href="./pl at f orm RT- Fent oJava/ Hi ghResol uti onTi me. xm "/ >

href ="./pl at f orm RT- Fent oJava/ H\Real t i neThr ead. xm "/ >

href ="./pl at f orm RT- Fent oJava/ | nt er r upt Pool i ngMechani sm xm "/ >
href ="./pl at f or m RT- Fent oJava/ OneShot Ti ner. xm "/ >

href="./pl atform RT- Fent oJava/ Peri odi cParaneters. xm "/ >
href="./pl at f orm RT- Fent oJava/ Peri odi cTi mer. xm "/ >

href ="./pl at f or m RT- Fent oJava/ Pool i ngServer2. xm "/ >

href ="./pl at f orm RT- Fent oJava/ Pool i ngServer 1. xm "/ >
href="./pl atform RT- Fent oJava/ PriorityParaneters.xm"/>
href="./pl at f orm RT- Fent oJava/ Pri ori tySchedul er. xm "/ >
href="./pl at f orm RT- Fent oJava/ Pri ori tySchedul er2. xm "/ >
href="./pl atf orm RT- Fent oJava/ Rat eMonot oni cSchedul er. xm "/ >
href="./pl at f orm RT- Fent oJava/ Real ti meThread. xm "/ >
href="./pl at f orm RT- Fent oJava/ Rel ati veTi ne. xm "/ >

href="./pl at f orm RT- Fent oJava/ Rel easePar aneters. xm "/ >
href="./pl atform RT- Fent oJava/ Schedul er. xm "/ >

href ="./pl at f or m RT- Fent oJava/ Schedul i ngPar aneters. xm "/ >
href ="./pl at f orm RT- Fent oJava/ Spor adi cParaneters. xm "/ >
href="./pl atform RT- Fent oJava/ Ti ner.xm "/ >

href="./pl at f orm RT- Fent oJava/ Ti neTri gger edReal ti meThread. xm "/ >
href="./pl atform RT- Fent oJava/ Ti meTri gger edSchedul er.xm "/ >

C.2. Platform Configuration

<Fi | e Name="Schedul er.java" QutputDirectory="saito.sashim.realtine"

188

C.2. Platform Configuration

Aspect s=" Schedul i ngSupport">
<Fr agnent >
package saito.sashim.realtine;
import saito.sashim.x*;

public abstract class Scheduler inplenments Tinerlnterface ({
protected static Schedul er c_defaul t Scheduler = null;
protected static int m MinBaseStackPoi nter = OxFFFF;

protected int mcurrentTask = -1;
protected bool ean m Processing = fal se;
</ Fragnment >
<Fragnent Aspects="Ti m ngAttributes">
public final static int MAX_APERI ODI C_TASKS = 16;
protected static Real ti neThread m Aperi odi cTaskList[] =
{nul'l, null, null, null, null, null, null, null,
null, null, null, null, null, null, null, null};
protected int m AperiodicLi st Count = O;
</ Fragnment >
<Fragnent Aspects="PeriodicTi m ng">
public final static int MAX_PERI ODI C_ TASKS = 16;
protected static Realti meThread m Peri odi cTaskList[] =
{nul'l, null, null, null, null, null, null, null,
null, null, null, null, null, null, null, null};
protected int m PeriodicListCount = O;
</ Fragnment >
<Fr agnent >
public abstract bool ean i sFeasible();
public abstract void runSchedul er();
protected abstract int getContextOffsetForStaticMethod();
protected abstract int getContextCffsetForVirtual Met hod();

protected static int indexOf(RealtimeThread list[], int |istCount,
Real ti meThread schedul abl e) {
int i =0;
for (; (i &t; listCount) &anp;&np; (list[i] !'= schedul able); i++);
if (i &t; listCount)
return i;
el se
return -1;

}

protected static void addToLi stOrderByPriority(RealtineThread list[],
int listCount, RealtineThread schedul able, int priority) {
int i =0;
for(; (i &t; listCount) &anp; &np; (priority &t;=
((PriorityParameters)list[i].getSchedulingParaneters()).getPriority());

i ++);
if (i &t; listCount) {
for(int j =1listCount; j >1i; j--)
list[j] = list[j-1];
}

list[i] = schedul abl e;

}

protected bool ean addToFeasi bility(RealtinmeThread schedul able) {
</ Fragment >
<Fragnent Aspects="PeriodicTi m ng">
if ((m_PeriodicListCount & t; (MAX_PERI ODI C_TASKS-1)) &anp; &anp;
(i ndexOf (schedul able) == -1)) {
m Peri odi cTaskLi st [m Peri odi cLi st Count] = schedul abl e;
m _Peri odi cLi st Count ++;
return true;

189

C. Mapping Rules

}

el se
</ Fragnent >
<Fr agnent >
return fal se;
}

protected bool ean renoveFronteasi bility(RealtimeThread schedul able) {
</ Fragnment >
<Fragment Aspects="Peri odi cTi m ng">
if (m_PeriodicListCount > 0) {
int i =0;
for(; (i & t; mPeriodiclListCount) &anp; &anp;
(m_Periodi cTaskList[i] != schedul able); i++);
if (i &t; mPeriodicListCount) {
m Peri odi cTaskList[i] = null;
m _Peri odi cLi st Count - - ;
if (i &t; mPeriodicListCount) {
int j =i;
for(; (j & t;= mPeriodicListCount); j++)
m Peri odi cTaskList[j] = mPeriodi cTaskList[j +1];
m Periodi cTaskList[j] = null;
}
return true;
}
el se
return fal se;
}

el se
</ Fragnment >
<Fr agnent >
return fal se;
}

public static Schedul er getDefaul t Schedul er() {
return c_defaul t Schedul er;

}

protected int indexCOf(RealtineThread schedul able) {
</ Fragnent >
<Fragment Aspects="Periodi cTi m ng">

int i =0;
for (; (i &t; MAX_PERI ODI C_TASKS) &anp; &anp;
(m_Periodi cTaskList[i] != schedul able); i++);
if (i &t; MAX_PERI ODI C_TASKS)
return i;
el se

</ Fragment >
<Fragnent >

return -1,
}
publ i c bool ean i sAddedToFeasi bility(RealtineThread schedul able) {
return (indexOf (schedul able) !'=-1);
}

public static void setDefaultSchedul er(Schedul er scheduler) {
c_def aul t Schedul er = schedul er;

}

public static void saveMai nContext() {
m_Mai nBaseSt ackPoi nter = Fent oJavaSO. saveCTX() +
get Def aul t Schedul er (). get Cont ext O f set For St ati cMet hod() ;

190

C.3. Source Code Generated by GenERTICA

}

public static void restoreMinContext() {
c_def aul t Schedul er. m Processing = fal se;
Fent oJavaSO. r est or eCTX(m Mai nBaseSt ackPoi nter);

}

public bool ean i sAll TasksFi ni shed() {
bool ean result = true;
</ Fragnment >
<Fragnent Aspects="PeriodicTi m ng">
for (int i=0; (i & t; mPeriodicListCount) &anp; &np; result; i++)
result &anp; = m Periodi cTaskList[i].isFinished();
</ Fragnment >
<Fr agnent >
return result;
}

public void setupTinmer() {
Fent oJaval nt er r upt Syst em set Enabl e(O0x2F) ;
Fent oJavaTi ner. set Ti ner 0(100) ;
Fent oJavaTi ner.start Ti mer0();

}

public void tfOMethod() {
Fent oJaval nt errupt Syst em set Enabl e(0x6F) ;
Fent oJavaTi ner. st opTi mer0() ;
if (!c_defaultSchedul er. m Processing) {
c_def aul t Schedul er. m Processing = true;
Fent oJaval nt err upt Syst em set Enabl e(0x2F) ;
c_def aul t Schedul er. runSchedul er () ;
c_def aul t Schedul er. m Processing = fal se;
}
}

public void tf1Method() {} // not used ! Used in Tiner objects
}
</ Fragment >
</File>

C.3. Source Code Generated by GenERTICA

import saito.sashim.realtine.*;
public class MovenentController extends RealtinmeThread {
private Special ConditionMovenent Control ctrl Mde;
private Environnmentlnfornmation envlnfo;
private Mvenentlnfornation nrlnfo;
private MainRotorActuator nrAct;
private Mvenentlnfornation brlnfo;
private BackRotorActuator brAct;
private int newlVRRotation;
private int newVRPace;
private int newBRRotation;
private int newBRPace;
private Alarmalarm

private static RelativeTine _Cost = new Rel ativeTine(0,0,0);
private static RelativeTinme _Deadline = new Rel ativeTine(0, 0, 0);

public void exceptionTask() {}
protected void initializeStack() {}

191

C. Mapping Rules

public void mainTask() {}

private static RelativeTime _Period = new Rel ativeTine(0,0,0);

private static PeriodicParaneters

new Peri odi cParaneters(nul |,

public Movenent Control | er (

/] Variabl es

/'l Actions
ctrl Mode =
envinfo = _envlnfo;
nrinfo = _minfo;
nr Act = _nrAct;
brinfo = _brinfo;
brAct = _brAct;
alarm= _alarm

_Deadl i ne. set (0, pDeadl i ne, 0) ;

_Cost . set (0, pCost, 0);

_Peri odi cParans =
null, null,
Envi ronnent I nformati on _envlnfo
Moverent | nformation _nrinfo
Mai nRot or Act uat or _nrAct
Moverent I nformation _brinfo
BackRot or Act uat or _brAct
Alarm _alarm , int pDeadline
int pCost , int pPeriod)

new Speci al Condi ti onMovenent Control ();

get Rel easePar anet ers() . set Deadl i ne(_Deadl i ne);
get Rel easePar anet ers() . set Cost (_Cost);

_Period. set (0, pPeriod, 0);

_Periodi cPar ans. set Peri od(_Peri od);
set Rel easePar anet er s(_Peri odi cPar ans) ;

}
public Envi ronnment | nf or mati on
/1 Vari abl es
/'l Actions
return envinfo ;
}
public void setenvlnfo(
/'l Vari abl es
/'l Actions
envinfo = _envlnfo;
}
public Movenent | nf or mati on
/'l Vari abl es
/'l Actions
return nrinfo ;
}
public void setnrlnfo(
/'l Vari abl es
/'l Actions
nrinfo = _nrlinfo;
}
public Mai nRot or Act uat or
/1 Vari abl es
/'l Actions
return nrAct ;
public void setnrAct(
/1 Vari abl es
/'l Actions
nrAct = _nrAct;
}
public Movenent | nf or mati on

192

getenvinfo() {

Envi ronnent | nformati on _envlnfo

getnrinfo() {

Moverent | nformation _nmrinfo) |

getnrAct() {

Mai nRot or Act uat or _nr Act) |

getbrinfo() {

{

)

nul |,

null);

{

C.3. Source Code Generated by GenERTICA

/'l Vari abl es
/1 Actions
return brinfo ;

}

public void setbrlnfo(Movenent | nformation _brinfo) |
/'l Vari abl es
/'l Actions

brinfo = _brinfo;

public BackRot or Actuator getbrAct() {
/'l Vari abl es
/'l Actions
return brAct ;
}

public voi d setbrAct(BackRot or Act uat or _br Act) |
/'l Variabl es
/1 Actions
brAct = _brAct;
}

public Alarm getalarn{) {
/'l Vari abl es
/1 Actions

return alarm;

}

public void setal arnf Alarm _alarm) {
/'l Variabl es

/'l Actions

alarm= _alarm

public void run() {
/1 Vari abl es

int brRotation;

int brPace;

int nmrRotation;

int nrPace;

float w ndSpeed;

float wi ndDirection;

float humidity;

float tenperature;

/1 Actions

while (isRunning()) {
/1 EnergyMonitoring. Starti ngEner gyAmunt
brRotation = brinfo.getRotation(); // ** REMOTE **
/1 MessageSynchroni zati on. Wi t For Acknowl edge
brPace = brinfo.getPace(); // ** REMOTE *x*
/1 MessageSynchroni zati on. Wi t For Acknowl edge
/1 Concurrent AccessControl . Aqui r eAccess
nrRotation = nrilnfo.getRotation();
/1 Concurrent AccessControl . Rel easeAccess
/1 Concurrent AccessControl . Aqui r eAccess
nrPace = nrlnfo.getPace();
/1 Concurrent AccessControl . Rel easeAccess
/1 Concurrent AccessControl . Aqui reAccess
wi ndSpeed = envlnfo.get WndSpeed();
/1 Concurrent AccessControl . Rel easeAccess
/1 Concurrent AccessControl . Aqui reAccess
wi ndDirection = envlnfo.getWndDirection();
/1 Concurrent AccessControl . Rel easeAccess
/1 Concurrent AccessControl . Aqui reAccess
hum dity = envinfo.getHumdity();
/1 Concurrent AccessControl . Rel easeAccess
/1 Concurrent AccessControl . Aqui reAccess
tenperature = envlnfo.getTenperature();

193

C. Mapping Rules

/1 Concurrent AccessControl . Rel easeAccess

processl nfo(nrRotation, nrPace, brRotation, brPace, w ndSpeed,
wi ndDirection, humdity, tenperature);

nT Act . set Rot ati on(newVRRot ati on) ;

nT Act . set Pace(newiVRPace) ;

br Act . setRotati on(newBRRotation); // *x REMOTE *x*

/'l MessageSynchroni zati on. Wi t For Acknowl edge

br Act. set Pace(newBRPace); // ** REMOTE *=*

/'l MessageSynchroni zat i on. Wi t For Acknowl edge

nr Act . appl yParaneters();

br Act . appl yParaneters(); // *+x REMOTE *=*

/'l MessageSynchroni zati on. Wi t For Acknowl edge

/' EnergyMoni toring. Cal cul at eEner gyConsunpti on

wai t For Next Peri od();

}

public void processlnfo(int r1 , int p1 , intr2 , int p2 |,
float ws , float wd , float h , float t) |
/'l Variabl es
/1 Actions
if ((((int)ws) > 15) || (((int)h) > 85) || (((int)t) > 40)) {
ctrl Mode. set Mode(Speci al Condi ti onMovenent Cont r ol . HOSTI LE_ENVI RONMENT) ;

if (ctrlMde.getMde() == Special Conditi onMovenent Control.NORVAL) {
newVRRot ati on = newlRRot ation/rlxpl ;
newMVRPace = (newVRPace+pl)/r1;
newBRRot ati on = newBRRot ation/r2xp2 ;
newBRPace = (newBRPace+p2)/r2;
} else {

if (ctrlMde.getMde() ==
Speci al Condi ti onMovenent Control . HOSTI LE_ENVI RONVENT) {
alarmtriggerHostil eEnvironment Al arn();
} else {

if (ctrlMde.getMde() ==
Speci al Condi ti onMovenent Control . LON FUEL) {
al arm trigger LowFuel Al arn();
} else {

if (ctrlMde.getMde() ==

Speci al Condi ti onMovenent Cont rol . UNDER_ATTACK) {
alarm triggerUnder AttackAl arm();

194

Bibliography

[1] Akos Lédeczi et al. Composing domain-specific desigrirenvments.IEEE Computer

2]

34(11):44-51, 2001.

Per Andersson and Martin Host. Uml and systemc: A consparand mapping rules for
automatic code generation. In Eugenio Villar, editembedded Systems Specification
and Design Languagepages 199-209. Springer Netherlands, 2008.

[3] Apache. Apache velocity project, 2008. http://velg@pache.org/.

[4]

Deborah J. Armstrong. The quarks of object-orientedetigyment. Communication of
the ACM 49(2):123-128, 2006.

[5] Tero Arpinen et al. Configurable multiprocessor platfowith rtos for distributed exe-

cution of uml 2.0 designed applications. Pnoceedings of the Design, Automation and
Test in Europe Conference and Exhibitiggages 1324-1329, Leuven, 2006. European
Design and Automation Association.

[6] Artisan. Artisan real-time studio, 2008. http://wwvitiaansoftwaretools.com/products/ar

[7]

[8]

[9]

[10]

[11]

tisan-studio/.

Felice Balarin et al. Metropolis: An integrated electio system design environment.
Computer 36(4):45-52, 2003.

Krishnakumar Balasubramanian et al. A platform-indegent component modeling
language for distributed real-time and embedded system®rdceedings of the IEEE
Real-Time and Embedded Technology and Applications Syunpgsages 190-199, Los
Alamitos, 2005. IEEE Computer Society.

Krishnakumar Balasubramanian et al. Weaving deploytraspects into domain-specific
models. International Journal of Software Engineering and KnovgedEngineering
16(3):403—-424, 2006.

Silvia Castro Bertagnolli.FRIDA: um método para elicitagdo e modelagem de RNFs
PhD thesis, Programa de Pos-Graduagdo em Computacaoydiseke Federal do Rio
Grande do Sul, Porto Alegre, 2004.

Danilo Beuche et al. The pure family of object-orientggerating systems for deeply
embedded systems. Rroceedings of the 2nd IEEE International Symposium on bje
Oriented Real-Time Distributed Computingages 45-53, Washington, 1999. IEEE
Computer Society.

195

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

196

Jean Bézivin. On the unification power of modelSoftware and Systems Modeling
4(2):171-188, May 2005.

Gregory Bollella et al. The Real-Time Specification for Java, version 1.04&ldison
Wesley Longman, second edition, 2001.

Grady BoochObject-Oriented Analysis and Design with ApplicatioAsldison-Wesley,
Massachusetts, 1994.

Grady Booch, James Rumbaugh, and Ivar Jacobkmified Modeling Language User
Guide, The (2nd Edition)Addison-Wesley, 2005.

Matteo Bordin and Tullio Vardanega. Real-time javanfran automated code generation
perspective. IfProceedings of the 5th International Workshop on Java Teldyies for
Real-Time and Embedded Systepages 63—72, New York, 2007. ACM.

Borland. Borland together, 2008. http://www.borlazwm/us/products/together/.

BOSCH. Can 2.0 protocol specification, 1991. http:/iwean-cia.org/index.php?
id=164.

James Brusey et al. Auto-id based control demonstratiophase 2: Pick
and place packing with holonic control. Technical reportanridge Univer-
sity, 2003. http://www.ifm.eng.cam.ac.uk/automatiarblications/documents/CAM-
AUTOID-WHO011.pdf.

Sven Burmester et al. The fujaba real-time tool suiteod€l-driven development of
safety-critical, real-time systems. Rroceedings of the 27th International Conference
on Software Engineeringages 670-671, New York, 2005. ACM.

Sven Burmester, Holger Giese, and Wilhelm Schafer. dlkaldiven architecture for hard
real-time systems: From platform independent models tecdd Proceedings of the
European Conference on Model Driven Architecture - Fouimiet and Applications
pages 25-40, Berlin, 2005. Springer.

A. Burns et al. The meaning and role of value in scheduflexible real-time systems.
Journal of Systems Architecty6(4):305-325, 2000.

Alan Burns and Andrew J. Wellings. Hrt-hood: a struetlirdesign method for hard
real-time systemsReal-Time System&(1):73-114, 1994.

Alan Burns and Andrew J. WellingReal-Time Systems and Programming Languages
Addison-Wesley, Harlow, second edition, 1997.

Luigi Carro and Flavio Rech Wagner. Sistemas compatais embarcados. lornadas
de Atualizacdo em Informéaticaumber 22, pages 45-94. SBC, Campinas, 2003.

Vaclav Cechticky et al. A uml2 profile for reusable andifiable software components
for real-time applications. lProceedings of the 9th International Conference on Soft-
ware Reusgpages 312—-325, Berlin, 2006. Springer.

Bibliography

[27] Rong Chen et al. Uml and platform-based design. In Llnwihavagno, Grant Martin,
and Bran Selic, editord)ML for Real: Design of Embedded Real-Time Systqrages
107-126. Kluwer Academic Publishers, Norwell, 2003.

[28] S. R. Chidamber and C. F. Kemerer. A metrics suite foedbpriented designlEEE
Transactions on Software Engineerjri2p(6):476-493, 1994.

[29] Siobhan Clarke. Extending standard uml with model cosipn semanticsScience of
Computer Programming: Special issue on Unified Modelingduage 44(1):71-100,
2002.

[30] Siobhan Clarke and Elisa Baniassafispect-Oriented Analysis and DesigAddison-
Wesley Professional, Upper Sadde River, 2005.

[31] Siobhan Clarke and Robert J. Walker. Towards a standesyn language for aosd. In
Proceedings of the 1st International Conference on Asfeiented Software Develop-
ment pages 113-119, New York, 2002. ACM.

[32] Edmund H. Conrow and Patricia S. Shishido. Implemeantisk management on soft-
ware intensive projectdEEE Software14(3):83—-89, 1997.

[33] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Gatja. The jedi event-based in-
frastructure and its application to the development of {hesavfms.IEEE Transactions
on Software Engineerin@7(9):827-850, 2001.

[34] Elias Teodoro da Silva Jr.Middleware Adaptativo para Sistemas Embarcados e de
Tempo-Real PhD thesis, Programa de Pds-Graduacdo em Computacaecrsidade
Federal do Rio Grande do Sul, Porto Alegre, 2008.

[35] Ole-Johan Dahl and Kristen Nygaard. Simula: an algdal simulation languag€om-
mununication of the ACM(9):671-678, 1966.

[36] Abhijit Davare et al. A next-generation design framektor platform-based design. In
Proceedings of the Conference on Using Hardware Design anifidation Languages
2007.

[37] Edison Pignaton de Freitas. Metodologia orientada [meess para a especificacdo
de sistemas tempo-real embarcados e distribuidos. Masesis, Programa de Poés-
Graduacdo em Computacdo, Universidade Federal do Rio &dm&ul, Porto Alegre,
2007.

[38] Carsten Ditze Towards Operating System Synthe$tD thesis, Department of Mathe-
matics and Computer Science, University of Paderborn,iBads 2000.

[39] Francisco A. M. do Nascimento, Marcio F. da S. Oliveivarco A. Wehrmeister, Car-
los E. Pereira, and Flavio R. Wagner. Mda-based approadtnibedded software gen-
eration from a uml/mof repository. IRroceedings of the 19th annual Symposium on
Integrated Circuits and Systems Desigages 143-148, New York, 2006. ACM.

[40] DomainSolutions. Codegenie mdd, 2008. http://wwwndmnsolutions.co.uk/.

197

Bibliography

[41] Martyn Edwards and Peter Green. Uml for hardware antvsoé object modeling.
In Luciano Lavagno, Grant Martin, and Bran Selic, editayd/L for Real: Design of
Embedded Real-Time Systemages 127-147. Kluwer Academic Publishers, Norwell,
2003.

[42] Robert E. Filman et al., editorsAspect-Oriented Software Developmemddison-
Wesley, Boston, 2005.

[43] Robert France et al. Aspect-oriented approach to ekaygn modelling|EE Proceed-
ings - Software151(4):173-185, Aug. 2004.

[44] Lidia Fuentes, Jorge Manrique, and Pablo Sanchez. |B6putool for debugging uml
models. InProceedings of the 30th International Conference on Soévngineering
pages 955-956, New York, 2008. ACM.

[45] Lidia Fuentes, Mdnica Pinto, and José Maria Troya. $ujng the development of cam-
daop applications: an integrated development procesiware-Practice & Experience
37(1):21-64, 2007.

[46] Lidia Fuentes and Pablo Sanchez. Elaborating uml 2ofiles for ao design. IfPro-
ceedings of the 8th Workshop on Aspect-Oriented Modeliaj\), 2006.

[47] Lidia Fuentes and Pablo Sanchez. Designing and weaspgct-oriented executable
uml models.Journal of Object Technolog(7):109-136, 2007.

[48] Erich Gamma et al.Design patterns: elements of reusable object-orientetiveoé
Addison-Wesley Longman Publishing, Boston, 1995.

[49] Murray Gell-Mann.The quark and the jaguar: adventures in the simple and theptem
W. H. Freeman & Co., New York, 1995.

[50] Gentleware. Poseidon for uml, 2008. http://www.gewtire.com/uml-software-pe.html.

[51] Sébastien Gérard and Bran Selic. The uml — marte steizgal profile. InProceedings
of the 17th World Congress of the International Federatibotomatic Contrgl pages
6909-6913, 2008.

[52] GSRC. Metropolis: Design environment for heterogerseosystems, 2002.
http://www.gigascale.org/metropolis/index.html.

[53] A. N. Habermann, Lawrence Flon, and Lee Cooprider. Madzation and hierarchy in
a family of operating system&€ommunications of the ACM9(5):266—-272, 1976.

[54] David Harel. Statecharts: A visual formalism for compkystemsScience of Computer
Programming 8(3):231-274, 1987.

[65] William H. Harrison, Charles Barton, and Mukund Raghetvari. Mapping uml de-
signs to java. IfProceedings of the 15th ACM SIGPLAN Conference on Objeietnxd
Programming, Systems, Languages, and Applicatipages 178-187, New York, 2000.
ACM.

198

Bibliography

[56] William H. Harrison, Harold L. Ossher, and Peri L. TarAsymmetrically vs sym-
metrically organized paradigms for software compositidiechnical report, IBM Wat-
son Research Center, 2002. http://domino.watson.ibmlitwary/cyberdig.nsf/papers/
2A4097E93456D0CF85256CA9006DAC29/$File/RC22685.pdf.

[57] Jan Hendrik Hausmann and Stuart Kent. Visualizing rhoagppings in uml. InPro-
ceedings of the ACM Symposium on Software Visualizapiages 169-178, New York,
2003. ACM.

[58] Marcelo Victora Hecht, Eduardo Piveta, Marcelo Pinagiaind Roberto T. Price. Aspect-
oriented code generation. Amnais do XX Simposio Brasileiro de Engenharia de Softyare
pages 209-223, Porto Alegre, 2006. Sociedade BrasileiG@Godgputacao.

[59] Jack Herrington. Code Generation in Action Manning Publications Co., Greenwich,
20083.

[60] Steve Hodges et al. Auto-id based control demonstratiophase 1. Pick and
place packing with conventional control. Technical repo@ambridge Univer-
sity, 2003. http://www.ifm.eng.cam.ac.uk/automatiarglications/documents/CAM-
AUTOID-WH-006.pdf.

[61] IBM. Ibm rational rose technical developer, 2008. Hfypww.ibm.com/software/awd
tools/developer/rose/.

[62] IBM. Ibm telelogic rhapsody, 2008. http://modelirgjelogic.com/products/rhapsody/
software/developer/index.cfm.

[63] IBM. Ibm telelogic tau, 2008. http://www.telelogi@m/products/tau/tau/index.cfm.

[64] ISO/IEC. Systems and software engineering - recommeérmtactice for architectural
description of software-intensive systemkSO/IEC 42010 IEEE Std 1471-2000 First
edition 2007-07-15pages c1-24, Jul. 2007.

[65] Sergio Akira Ito et al. Making java work for microcontler applications.|IEEE Design
and Test of Computerg8(5):100-110, 2001.

[66] ITRS. International technology roadmap for semicaridts 2007 edition: De-
sign. Technical report, International Technology RoadrftapSemiconductors, 2007.
http://www.itrs.net/Links/2007ITRS/2007_Chapter€i20Design.pdf.

[67] Gregor Kiczales et al. Aspect-oriented programming Proceedings of European
Conference on Object-Oriented Programmjipgges 220-242, Berlin, 1997. Springer-
Verlag.

[68] Philippe Kruchten. The Rational Unified Process: An Introduction, Second Bditi
Addison-Wesley, Boston, 2000.

[69] Petri Kukkala et al. Uml 2.0 profile for embedded systeesign. InProceedings of
the Design, Automation and Test in Europe Conference anébHwh, pages 710-715,
Washington, DC, USA, 2005. IEEE Computer Society.

199

Bibliography

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

200

Leslie Lamport. Time, clocks, and the ordering of eganta distributed systemCom-
munications of the ACM21(7):558-565, 1978.

Leslie Lamport. The +cal algorithm language. Techhiegort, Microsoft Research,
2007. http://research.microsoft.com/users/lampob@fpluscal.pdf.

Phillip A. Laplante.Real-Time Systems Design and Analysis : an Engineer’s Haotdb
IEEE Press, New York, second edition, 1997.

Tim Lindholm and Frank Yellin.Java Virtual Machine SpecificationAddison-Wesley,
Boston, 1999.

Daniel Lohmann et al. Pure embedded operating systeai@o- In Proceedings of
the International Workshop on Operating System PlatforansBEmbedded Real-Time
Applications 2006.

Daniel Lohmann et al. Interrupt synchronization in thao operating system: Experi-
ences from implementing low-level system policies by aop.Ptoceedings of the 6th
Workshop on Aspects, Components, and Patterns for Infrietsire SoftwareNew York,
2007. ACM.

Quan Long et al. Consistent code generation from umletsodin Proceedings of the
Australian Software Engineering Conferengages 23-30, Los Alamitos, 2005. IEEE
Computer Society.

LSE. Sistemas ~eletr6nicos embarcados baseados enafophaas, 2003.
http://www.inf.ufrgs. brlse/pag_projeto.php?cod_projeto=1.

Grant Martin and Wolfgang MUlIler, editorsUML for SOC Design Springer-Verlag,
Netherlands, 2005.

Stephen J. Mellor et al. An action language for uml: Pl for a precise execution
semantics. IProceedings of the First International Workshop on The @difModel-
ing Language. UML’98: Beyond the Notatiogpages 307—318, London, 1999. Springer-
Verlag.

MicroTool. objectif — the tool for model-driven devgment with uml, 2008.
http://www.microtool.de/objectif/en/index.asp.

Richard Nass. An insider’s view of the 2008 embeddedketastudy.Embedded Systems
Design 21(9), September 2008. http://www.embedded.com/désigfissue/210200580.

Kathy Dang Nguyen, Zhenxin Sun, P. S. Thiagarajan, ardd\ai Wong. Model-driven
soc design via executable uml to systemcPtaceedings of the 25th IEEE International
Real-Time Systems Symposiyrages 459-468, Washington, 2004. IEEE Computer So-
ciety.

Elisabetta Di Nitto et al. Deriving executable procdsscriptions from uml. I#®roceed-
ings of the 24th International Conference on Software Eegjimg pages 155-165, New
York, 2002. ACM.

Bibliography

[84] Natsuko Noda and Tomoji Kishi. Aspect-oriented modglfor embedded software de-
sign. InProceedings of the 14th Asia-Pacific Software Engineeringf€ence pages
342-349, Washington, 2007. IEEE Computer Society.

[85] NoMagic. Introducing magicdraw, 2008. http://www.giedraw.com/.

[86] OMG. Common warehouse metamodel (cwm), 2003. httpoivomg.org/spec/
CWM/1.1/.

[87] OMG. Model-driven architecture, 2004. http://www.grarg/mda.

[88] OMG. Uml profile for schedulability, performance, anidh¢, version 1.1, 2005b.
http://www.omg.org/technology/documents/formal/stiiability.htm.

[89] OMG. Meta object facility (mof) 2.0, 2006. http://wwemg.org/spec/MOF/2.0.
[90] OMG. Object constraint language (ocl) 2.0, 2006. ipvw.omg.org/spec/OCL/2.0/.

[91] OMG. Xml metadata interchange (xmi) 2.1.1, 2007. ihpwvw.omg.org/spec/
XMI/2.1.1/.

[92] OMG. Unified modeling language (uml), version 2.2, 200&tp://www.omg.org/spec/
UML/2.2/Betal/Superstructure/PDF.

[93] OMG. Mof query/views/transformations, 2008a. htwww.omg.org/spec/QVT/1.0.

[94] OMG. Uml profile for modeling and analysis of real-timedeembedded systems (marte),
2008hb. http://lwww.omg.org/cgi-bin/doc?ptc/2008-06-08

[95] OMG. Uml profile for for modeling quality of service anddlt tolerance characteristics
and mechanisms, v1.1, 2008c. http://www.omg.org/spetRIE.1/.

[96] Isabelle Perseil and Laurent Pautet. Foundations @wasoftware engineering method
for real-time systemslnnovations in Systems and Software Engineer#{g):195-202,
Oct. 2008.

[97] Monica Pinto, Lidia Fuentes, and Jose Maria Troya. Badp an architecture descrip-
tion language for dynamic component and aspect-basedagemeht. InProceedings
of the 2nd International Conference on Generative Programyrand Component Engi-
neering pages 118-137, New York, 2003. Springer-Verlag.

[98] Monica Pinto, Lidia Fuentes, and José Maria Troya. Aathgit component and aspect-
oriented platform.The Computer Journa#8(4):401-420, 2005.

[99] Raj Rajkumar. Model-based development of embeddetesys The sysweaver ap-
proach. In S. Ramesh and Prahladavaradan Sampath, etilexisGeneration Design
and Verification Methodologies for Distributed Embeddeai@u Systemgpages 35-46.
Springer Netherlands, 2007.

201

Bibliography

[100] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchiso@design methodology involv-
ing a uml 2.0 profile for systemc. IRroceedings of theDesign, Automation and Test in
Europe Conference and Exhibitiopages 704-709, Washington, 2005. IEEE Computer
Society.

[101] Linda H. Rosenberg. Applying and interpreting objeotiented metrics.
Technical report, NASA Software Assurance Technology €ent 2003.
http://satc.gsfc.nasa.gov/support/STC_APR98/apmiiapply.pdf.

[102] J. Rothenberg. The nature of modeling. In Lawrence Elnven, Kenneth A. Loparo,
and Norman R. Nielsen, editoréytificial Intelligence, Simulation & Modelingpages
75-92. John Wiley & Sons, New York, 1989.

[103] SAE. Architecture analysis & design language, 200&: Hwww.sae.org/technical/stan
dards/AS5506.

[104] Pablo Sanchez et al. Aspect-oriented model weaviygprme model composition and
model transformation. IfProceedings of the 11th International Conference on Model
Driven Engineering Languages and Systeipages 766—781, Berlin, 2008. Springer-
Verlag.

[105] Alberto Sangiovanni-Vincentelli. The tides of ed&EE Design & Test of Computers
20(6):59-75, Nov. 2003.

[106] Claudio Sant’'anna et al. On the reuse and maintenanaspect-oriented software: An
assessment framework. Rroceedings XVII Brazilian Symposium on Software Engi-
neering number 17, pages 19-24, 2003.

[107] Tim Schattkowsky and Wolfgang Mueller. Model-basge@dfication and execution of
embedded real-time systems. Mmoceedings of Design, Automation and Test in Eu-
rope Conference and Exhibitiprolume 2, pages 1392—-1393, Los Alamitos, 2004. IEEE
Computer Society.

[108] Tim Schattkowsky, Wolfgang Mueller, and Achim Retilpe A model-based approach
for executable specifications on reconfigurable hardwar@rdceedings of Design, Au-
tomation and Test in Europe Conference and Exhibjtipages 692-697, Washington,
2005. IEEE Computer Society.

[109] Andrea Schauerhuber et al. Towards a common referesmohitecture for
aspect-oriented modeling. IlProceedings of the 8th International Work-
shop on Aspect-Oriented Modelingnumber 3rd, 2006. http://dawis2.icb.uni-
due.de/events/AOM_AOSD2006/Schauerhuber.pdf.

[110] Douglas C. Schmidt. Guest editor’s introduction: Mbdriven engineeringEEE Com-
puter, 39(2):25-31, Feb. 2006.

[111] Douglas C. Schmidt, David L. Levine, and Sumedh Mungé&ée design of the tao
real-time object request brokeComputer Communicationg1:294—-324, 1998.

202

Bibliography

[112] Conrado Werner SeibelUma metodologia Formal para o Planejamento e Controle
de Missdes de Aeronaves Nao-TripuladaBhD thesis, Departamento de Engenharia
Elétrica, Universidade Federal de Santa Catarina, Flopélis, 2001.

[113] Bran Selic. The pragmatics of model-driven developmEEE Software20(5):19-25,
2003a.

[114] Bran Selic and Leo Motus. Using models in real-timewafe design.IEEE Control
Systems Magazin23(3):31-42, June 2003b.

[115] lan Sommerville Software EngineeringAddison-Wesley, Harlow, sixth edition, 2001.

[116] Olaf Spinczyk and Daniel Lohmann. The design and immgetation of aspectc++.
Knowledge-Based Systems: Special Issue on Creative $ofvesign 20(7):636—651,
2007.

[117] Thomas Stahl and Markus Voelteklodel-Driven Software Development: Technology,
Engineering, ManagemenWilley, 2006.

[118] John A. Stankovic. Misconceptions about real-timenpating: A serious problem for
next-generation system€omputey 21(10):10-19, 1988.

[119] John A. Stankovic et al. Vest: An aspect-based contiposiool for real-time systems.
Real-Time and Embedded Technology and Applications SympoEE 0:58, 2003.

[120] Dominik Stein et al. A uml-based aspect-oriented giesiotation for aspectj. |Rro-
ceedings of the 1st International Conference on Aspea®ed Software Development
pages 106-112, New York, 2002. ACM Press.

[121] Dominik Stein et al. Expressing different conceptoaddels of join point selections in
aspect-oriented design. Proceedings of the 5th international conference on Aspect-
oriented software developmepiages 15-26, New York, 2006. ACM.

[122] Andrew S. Tanenbaum and Maarten van Ste@nstributed Systems: Principles and
Paradigms Prentice-Hall, Upper Saddle River, second edition, 2007.

[123] Aleksandra Tesanovic et al. Aspects and componentgahtime system develop-
ment: Towards reconfigurable and reusable softwaoernal of Embedded Computing
1(1/2005):17-37, Jan. 2005.

[124] Shiu Lun Tsang, Siobhan Clarke, and Elisa L. A. BarddssAn evaluation of aspect-
oriented programming for java-based real-time systemeldpwment. InProceedings of
the 7th IEEE International Symposium on Object-OrientedlR@ne Distributed Com-
puting (ISORC 2004)number 7, pages 291-300, Los Alamitos, 2004. IEEE Computer
Society.

[125] UPB. Organic reconfigurable operating system, 2008psti/orcos.cs.uni-paderborn.
de/orcosl/.

203

Bibliography

[126] Klaas van den Berg, Jose Maria Conejero, and Ruzanitah@an. Aosd ontology 1.0:
Public ontology of aspect-orientation. Technical rep&@SD-Europe, 2005. AOSD-
Europe-UT-01.

[127] Yves Vanderperren, Wolfgang Mueller, and Wim Dehaenéml for electronic sys-
tems design: a comprehensive overvie@esign Automation for Embedded Systems
12(4):261-292, 2008.

[128] Stamatis Vassiliadis et al. The hipeac roadmap on ddduk systems. Technical re-
port, European Network of Excellence on High-Performanceb&dded Architecture
and Compilation, 2005. http://www.hipeac.net/roadmap.

[129] W3C. extensible markup language (xml) 1.0 (fourthtied), 2006. http://www.w3.org/
TR/2006/REC-xmI-20060816.

[130] W3C. Xsltransformation (xslt) 2.0 - candidate recowh&tion, 2006. http://www.w3.0rg/
TR/xslt20.

[131] Marco Aurélio Wehrmeister. Framework orientado aetdg para projeto de hardware
e software embarcados para sistemas tempo-real. Masdiess,t Programa de Pos-
Graduacao em Computacdo, Universidade Federal do Rio &adm8&ul, Porto Alegre,
2005.

[132] Wayne Hendrix Wolf.Computers as Components : Principles of Embedded Computing
System DesigrMorgan Kaufmann, San Francisco, 2001.

[133] Lichen Zhang and Ruicheng Liu. Aspect-oriented teak system modeling method
based on uml. IfProceedings of the 11th IEEE International Conference oré&sided
and Real-Time Computing Systems and Applicatipages 373-376, Washington, 2005.
IEEE Computer Society.

204

List of Abbreviations

AAM Aspect-oriented Architecture Model
ABS Anti-lock Bracking System

AMODE-RT Aspect-oriented Model-Driven Engineering fordkdime systems

API Application Programming Interface
AADL Architecture Analysis & Design Language
AO Aspect-Orientation

AOD Aspect-Oriented Design

AODM Aspect-Oriented Design Modeling

ASIP Application Specific Instruction Processor

CWM Common Warehouse Meta-model

DERAF Distributed Embedded Real-time Aspects Framework
DERCS Distributed Embedded Real-time Compact Specificatio
DERTS Distributed Embedded and Real-Time System
DREAMS DistRibuted Extensible Application ManagementiSys
DSML Domain-Specific Modeling Languages

GenERTICA Generation of Embedded Real-Time Code based peds

HDL Hardware Description Language

HW Hardware

IEEE Institute of Electrical and Electronics Engineers
IP Intellectual Property

JPDD Join Point Designation Diagrams

MAC Media Access Control

205

MARTE Modeling and Analysis of Real-time and Embedded syste

MDA Model-Driven Architecture
MDD Model-Driven Design

MDE Model-Driven Engineering
MOF Meta-Objects Facilities
OMG Object Management Group
00O Object-Orientation

ORCOS Organic Reconfigurable Operating System

PIM Platform Independent Model

PSM Platform Specific Model]

QoS Quiality of Service

QVT MOF Query/View/Transformation

RTSJ Real-Time Specification for Java

RTOS Real-Time Operating System

SAE Society of Automotive Engineers

SCL Skeleton Customization Language

SEEP Sistema Eletrbnicos Embarcados baseados em Plataformas
SoC System-on-Chip

SPT UML profile for Schedulability, Performance and Time
SwW Software

UAV Unmanned Aerial Vehicle

UML Unified Modeling Language

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WCET Worst Case Execution Time
XMl XML Metadata Interchange
XML eXtensible Markup Language

206

List of Publications

2009

[1] Edison P. Freitas, Rodrigo S. Allgayer, Marco A. Wehrstei, Carlos E. Pereira, and Tony
Larsson. Supporting platform for heterogeneous sensevanktoperation based on un-
manned vehicles systems and wireless sensor nodeBrotreedings of IEEE Intelligent
Vehicles Symposiumages 786—791, Los Alamitos, 2009. IEEE Computer Society.

[2] Edison P. Freitas, Tales Heimfarth, Marco A. Wehrmejdtéavio R. Wagner, Armando M.
Ferreira, Carlos E. Pereira, and Tony Larsson. Using a liekiimto improve communi-
cation mechanisms and real-time properties in an adaptiddleware for heterogeneous
sensor networks. IMdvances in Information Security and Assuranpages 422—-431.
Springer, Berlin, 2009.

[3] Edison P. Freitas, Marco A. Wehrmeister, Armando M. Eea, Carlos E. Pereira, and Tony
Larsson. Multi-agents supporting reflection in a middlesvior mission-driven heteroge-
neous sensor networks. Rroceedings of 3rd International Workshop on Agent Teabmol
for Sensor Networkgages 25-32, 2009.

[4] Marcio F. S. Oliveira, Marco A. Wehrmeister, FranciscoMascimento, Carlos E. Pereira,
and Flavio R. WagnerHigh-level Design Space Exploration of Embedded SysterimgUs
the Model-Driven Engineering and Aspect-Oriented Desigprdacheschapter 5, pages
114-146. Information Science Reference, Hershey, 2009.

[5] Marco A. Wehrmeister, Edison P. Freitas, and Carlos Eeire An infrastructure for uml-
based code generation tools. Rroceedings of 3rd IFIP International Embedded Systems
SymposiumSpringer, 2009. (to appear).

[6] Marco A. Wehrmeister, Edison P. Freitas, and Carlos EeiPe Using genertica to genera-
tion code from rt-uml : a case study. Rroceedings of 13th IFAC Symposium on Informa-
tion Control Problems in Manufacturingpages 678-683. Elsevier Science, 2009.

207

Bibliography

2008

[1] Edison P. Freitas, Marco A. Wehrmeister, Carlos E. Pareind Tony Larsson. Real-time
support in adaptable middleware for heterogeneous semtaorks. InProceedings of
International Workshop on Real Time Software (co-locatétth Wmternational Multicon-
ference on Computer Science and Information Technolgages 593—-600, Los Vaqueros
Circle, 2008. IEEE Computer Society Press.

[2] Edison P. Freitas, Marco A. Wehrmeister, Carlos E. Pareind Tony Larsson. Reflective
middleware to support mission-driven heterogeneous sereworks. InProceedings of
Workshop on Sensor Networks and Applications (co-locatgd24st Symposium on Inte-
grated Circuits and Systems Desigpages 1-6, Porto Alegre, 2008. Universidade Federal
do Rio Grande do Sul.

[3] Edison P. Freitas, Marco A. Wehrmeister, Carlos E. Pareind Tony Larsson. Using as-
pects and component concepts to improve reuse of softwassfbedded systems product
lines. InProceedings of 12th International Software Product Linenfecence pages 105—
112, Limerick, 2008. University of Limerick.

[4] Carlos E. Pereira, Marcelo Go6tz, Marco A. Wehrmeistedjsn P. Freitas, and Elias
T. Silva Junior. Real-time distributed embedded systemfadstructure for bio-inspired
automation systems. I8elf-optimizing Mechatronic Systems: Design the Futpeges
449-468. Heinz Nixdorf Institute, Paderborn, 2008.

[5] Marco A. Wehrmeister, Edison P. Freitas, Dalimir Orfapnfranz Rammig, and Carlos E.
Pereira. A case study to evaluate pros/cons of aspect- gedtaviented paradigms to
model distributed embedded real-time systemsProceedings of 5th International Work-
shop on Model-based Methodologies for Pervasive and Endae8dftwarepages 44-54,
Los Alamitos, 2008. IEEE Computer Society Press.

[6] Marco A. Wehrmeister, Edison P. Freitas, Dalimir Orfapnfranz Rammig, and Carlos E.
Pereira. A comparison of the use of aspects and objects fdeling distributed embedded
real-time systems with rt-uml. IAnais do X Workshop de Sistemas de Tempo-Real e Em-
barcados (em conjunto com XXVI Simpésio Brasileiro de RddeSomputadorespages
1-8, Porto Alegre, 2008. Sociedade Brasileira da Compataca

[7] Marco A. Wehrmeister, Edison P. Freitas, Dalimir Orfan&ranz Rammig, and Carlos E.
Pereira. Evaluating aspect and object-oriented conceptetel distributed embedded real-
time systems using rt-uml. IRroceedings of Trienal World Congress of the International
Federation of Automatic Contrppages 6885—6890. Elsevier Science, 2008.

[8] Marco A. Wehrmeister, Edison P. Freitas, Dalimir Orfan&ranz Rammig, and Carlos E.
Pereira. Genertica: A tool for code generation and aspesaswg. InProceedings of 11th
IEEE Symposium on Object Oriented Real-Time Distributech@ging pages 44-54, Los
Alamitos, 2008. IEEE Computer Society Press.

208

Bibliography

2007

[1] Edison P. Freitas, Marco A. Wehrmeister, Elias T. Silemidr, Fabiano C. Carvalho,
Flavio R. Wagner, and Carlos E. Pereira. Deraf: A high-lasgects framework for dis-
tributed embedded real-time systems design.Edmly Aspects: Current Challenges and
Future Directions (Lecture Notes in Computer Sciengg)ges 55-74. Springer, Berlin /
Heidelberg, 2007.

[2] Edison P. Freitas, Marco A. Wehrmeister, Elias T. Silwmidr, Fabiano C. Carvalho,
Flavio R. Wagner, and Carlos E. Pereira. Using aspectiedeaoncepts in the require-
ments analysis of distributed real-time embedded systdm&mbedded System Design:
Topics, Techniques and Trengmges 221-230. Springer, Boston, 2007.

[3] Elias T. Silva Junior, Marco A. Wehrmeister, Flavio R. yvier, and Carlos E. Pereira.
An approach to improve predictability in communicationvéees in distributed real-time
embedded systems. Rroceedings of 5th International Workshop on Java Tectgiesofor
Real-time and Embedded Systepages 121-126, New York, 2007. ACM Press.

[4] Marco A. Wehrmeister, Edison P. Freitas, Franz Rammigl @arlos E. Pereira. Com-
bining aspects-oriented concepts with model-driven teghes in the design of distributed
embedded real-time systems. Rmceedings of 19th Euromicro Conference on Real-Time
Systems, Work-In-Progress Sessipages 49-59, Singapore, 2007. National University of
Singapore.

[5] Marco A. Wehrmeister, Edison P. Freitas, Flavio R. Wagmaad Carlos E. Pereira. An
aspect-oriented approach for dealing with non-functiaegluirements in a model-driven
development of distributed embedded real-time system®&rdoeedings of 10th IEEE In-
ternational Symposium on Object and Component-Orienteal-Rme Distributed Com-
puting pages 49-52, Washington, 2007. IEEE Computer Society.

2006

[1] Edison P. Freitas, Marco A. Wehrmeister, Elias T. Silwmidr, Fabiano C. Carvalho,
Flavio R. Wagner, and Carlos E. Pereira. Using aspects tcehdistributed real-time
embedded systems. Anais do Il Workshop Brasileiro de Desenvolvimento deviuo
Orientado a Aspectos (em conjunto com XX Simposio Brasitlr Engenharia de Soft-
ware), pages 1-11. SBC, 2006.

[2] Francisco A. Nascimento, Marcio F. S. Oliveira, MarcoWWehrmeister, Flavio R. Wagner,
and Carlos E. Pereira. Mda-based approach for embeddedasefyeneration from a um-
I/mof repository. InProceedings of 19th Symposium On Integrated Circuits ArsteBys
Design pages 143-148, New York, 2006. ACM Press.

[3] Marco A. Wehrmeister, Fernando H. Ataide, Fabiano C.vakwo, and Carlos E. Pereira.
A comparative study of embedded protocols for safetyeaitcontrol applications. IRro-
ceedings of 12th IFAC Symposium on Information Control Rmwis in Manufacturing
pages 87-94. Elsevier Science, 2006.

209

Bibliography

[4]

Marco A. Wehrmeister, Leandro B. Becker, and Carlos EefPa&. Optimizing the genera-
tion of object-oriented real-time embedded applicaticaselol on the real-time specification
for java. InProceedings of IEEE/ACM Design, Automation and Test in pgjrpages 1-6,
Los Alamitos, 2006. IEEE Computer.

2005

[1]

[2]

3]

[4]

5]

[6]

[7]

[8]

Elias T. Silva Junior, Marco A. Wehrmeister, Leandro BedRer, Carlos E. Pereira, and
Flavio R. Wagner. Design exploration in hw/sw co-designeail#time object-oriented em-
bedded systems: the scheduler objecPtioceedings of 10th IEEE International Workshop
on Object-Oriented Real-Time Dependable Systgrages 378—-388, Washington, 2005.
IEEE Computer Society.

Elias T. Silva Junior, Marco A. Wehrmeister, Fabiano Girélho, Leandro B. Becker,
Carlos E. Pereira, and Flavio R. Wagner. Exploracdo do espagrojeto em hw/sw co-
design de sistemas tempo-real embarcados orientadostasobjeobjeto escalonador. In
Anais do VII Workshop de Tempo Real (em conjunto com XXIlp&im Brasileiro de
Redes de Computadoreppges 09-16, 2005.

Marco A. Wehrmeister, Fernando H. Ataide, Fabiano C.v@llwo, and Carlos E. Pereira.
Assessing the use of rt-java in automotive time-triggegalieations. InFrom Specification
to Embedded Systems Applicatipages 223-234. Springer-Verlag, New York, 2005.

Marco A. Wehrmeister, Leandro B. Becker, and Carlos BelPa. Applying the seep
method in the design of a real-time embedded control systemrhotorized wheelchair. In
Proceedings of 10th IEEE International Conference on Eingrechnologies and Factory
Automation pages 147-184, Los Alamitos, 2005. IEEE Computer Society.

Marco A. Wehrmeister, Leandro B. Becker, and Carlos EelPa An approach for de-
signing real-time embedded systems from rt-uml specifioati InProceedings of 16th
International Federation of Automatic Control World Corgs Elsevier Science, 2005.

Marco A. Wehrmeister, Leandro B. Becker, and Carlos EelP&. Metodologia de projeto
orientada a objetos baseada em plataformas para sistemas-teal embarcados. Anais
do VII Workshop de Tempo Real (em conjunto com XXIIl Simf#sisileiro de Redes de
Computadores)pages 01-08, 2005.

Marco A. Wehrmeister, Leandro B. Becker, and Carlos EePP&. Object-oriented method-
ology to the development of embedded real-time system®rdoeedings of 3rd IEEE In-
ternational Conference on Industrial Informatjgzages 68—73, Los Alamitos, 2005. IEEE
Computer Society.

Marco A. Wehrmeister, Leandro B. Becker, Carlos E. Rareand Flavio R. Wagner. An
object-oriented platform-based design process for endzbdeal-time systems. IRro-
ceedings of 8th IEEE International Symposium on Objece@éed Real-Time Distributed
Computing pages 125-128, Los Alamitos, 2005. IEEE Computer Society.

210

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals and Scope Delimitation
	Thesis Contributions
	Text Organization

	Theoretical Background
	Introduction
	Distributed Embedded Real-Time Systems
	Introduction
	Real-Time Systems
	Embedded Systems
	Distributed Systems

	Requirements in Embedded Systems Domain
	Embedded Systems Design Approaches
	Introduction
	Object-Oriented Paradigm
	Aspect-Oriented Paradigm
	Evaluating the Design with Metrics
	Introduction
	C&K Metrics Suite
	Assessment Framework for AO systems

	Model-Driven Engineering
	Overview
	MARTE UML profile

	State of the Art Analysis
	Introduction
	Design and Modeling Approaches
	Overview of Related-Work
	Discussion

	Separation of Concerns in Requirements Handling
	Introduction
	Separation of Concerns in General Systems Development
	The Use of AOD in the Design of DERTS
	Discussion

	Code Generation
	Introduction
	Code Generation from UML Models
	Commercial Tools
	Discussion

	Discussion on the Open Problems

	MDE process for DERTS design
	Introduction
	Aspect-Oriented Model-Driven Engineering for DERTS
	Adaptations in the SEEP design flow

	Specifying DERTS Using UML and Aspects
	Introduction
	Functional Requirements Handling Elements
	Introduction
	Specification of System Expected Functionalities
	Specification of System Structure
	Class Diagram
	Composite Structure Diagram
	Deployment Diagram

	System Behavior Specification
	Sequence Diagram
	Activity Diagram
	State Diagram

	Non-Functional Requirements Handling Elements
	Introduction
	Distributed Embedded Real-time Aspects Framework
	Overview
	Timing Package
	Precision Package
	Synchronization Package
	Communication Package
	TaskAllocation Package
	Embedded Package
	Discussion

	Aspects Crosscutting Overview Diagram
	Join Points: Selecting Model Elements Affected by Aspects

	Final Remarks

	Tool Support for the Proposed Approach
	Introduction
	A Platform Independent Model for Code Generation
	UML-to-DERCS Transformation
	Mapping Rules
	Overview
	Application Code
	Platform Configuration

	Code Generation Process
	Final Remarks

	Validation
	Introduction
	Toolset Overview
	RT-FemtoJava Platform
	ORCOS Platform
	Case Studies Assessment

	Case Studies
	Unmanned Aerial Vehicle
	Object-Oriented Version
	Aspect-Oriented Version
	Results

	Industrial Packing System
	Object-Oriented Version
	Aspect-Oriented Version
	Results

	Wheelchair Automation

	Final Remarks

	Conclusions and Future Work
	DERAF Detailed Description
	Timing Package
	Precision Package
	Synchronization Package
	Communication Package
	TaskAllocation Package
	Embedded Package

	UML Models for the UAV Case Study
	Mapping Rules
	Application
	Platform Configuration
	Source Code Generated by GenERTiCA

	Bibliography
	List of Abbreviations
	List of Publications

