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Abstract

This thesis presents a general approach to the validation of interprocedural data
flow results for separated software modules, in order to enable the safe use of data
flow results on devices which cannot afford to run the data flow analysis on their
own. The underlying idea stems from the “Proof-Carrying-Code Principle”
[Nec97], which utilises that it is easier to check the correctness of a given solution
of a problem than to solve the problem.

The requirement to validate analysis results originally arose for Java Bytecode
Verification on Smart Cards. The generalisation of this specific application to the
validation of interprocedural data flow results enables advanced optimisations
or security checks on limited devices in a scenario where the mobile code is
transmitted via an inherently insecure transport media like the Internet. The
validation ensures the correctness of the results but the code producer can
perform the complex analysis on a more powerful machine.

The central contribution of this thesis is the extension of the validation approach
to the interprocedural analyses and to separated software modules. This is vital
in a mobile code scenario where different software modules can be dynamically
loaded to the target device and where the potential interactions between the
software modules and the runtime environment have to be considered.

Zusammenfassung

Diese Arbeit beschreibt einen allgemeinen Ansatz zur Validierung von interproze-
duralen Analyseergebnissen für einzelne Softwaremodule, um die sichere Nutzung
von Datenflussergebnissen auf Zielplattformen zu ermöglichen, die die Analyse
nicht eigenständig durchführen können. Die zugrunde liegende Idee entstammt
der “Proof-Carrying Code”-Methodik [Nec97], die sich zu Nutze macht, dass
es einfacher ist, die Korrektheit der Lösung eines Problems zu überprüfen als
das eigentliche Problem zu lösen.

Die Notwendigkeit, Datenflussergebnisse zu prüfen, entstand ursprünglich bei
der Java Bytecode Verfikation auf Smard Cards. Die Verallgemeinerung dieses
speziellen Ansatzes auf die Validierung von interprozeduralen Analyseergeb-
nissen ermöglicht erweiterte Optimierungen oder Sicherheitsüberprüfungen in
einem Umfeld in dem mobiler Code über ein unsicheres Transportmedium wie
dem Internet übertragen wird. Die Validierung stellt die Korrektheit der Anal-
yseergebnisse sicher, aber der Codeerzeuger kann die komplexe Analyse auf
einer leistungsfähigeren Maschine durchführen.

Der wesentliche Beitrag dieser Arbeit ist die Erweiterung des Vali-
dierungsansatzes auf interprozedurale Analysen und auf die Analyse einzelner
Softwaremodule. Dies ist entscheidend in einem Umfeld, in dem verschiedene
Softwaremodule zur Laufzeit auf eine Zielplattform geladen werden können
und wo die möglichen Wechselwirkungen zwischen Softwaremodulen und der
Laufzeitumgebung berücksichtigt werden müssen.
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1 Introduction

This thesis presents a general approach to the validation of interprocedural data
flow results for separated software modules, in order to enable the safe use of data
flow results on devices which cannot afford to run the data flow analysis on
their own. The central contribution is a reconsideration the generic functional
approach to interprocedural analysis in the validation scenario and an adoption
of the approach so that it can deal with analysis results of software modules
which are analysed in isolation.

The validation of interprocedural analysis results is attractive because an ef-
ficient validation process can still meet the resource-constraints of a limited
target device, while the consideration of interprocedural data flow significantly
extends the expressiveness of the framework. However, a mobile code sce-
nario where additional code can be dynamically loaded on a target platform
at runtime implies that a code producer of a single software module does not
know all the code which comes to execution on the target device. Therefore,
it is vital that the analysis framework supplies support for a modular analysis
which considers the potential interactions between software modules even if
each single software module is analysed in isolation.

From a more general perspective, the validation of data flow results is an
application of the proof-carrying code principle to protect a target device from
potentially malicious effects of mobile code. In his original work Necula [Nec97]
attaches a proof to the code of a device driver to ensure that it is safe to load the
device driver into the kernel memory. The approach exploits that it is easier to
check the correctness of a proof than to construct the proof. Similarly, the check
that a given result actually solves a data flow problem is simpler than to solve
the analysis problem.

The Proof-Carrying Code principle is an interesting approach to mobile code
safety because the code consumer is sure that the solution is correct and the
validation costs are limited to the load time of the code and do not impact the
runtime efficiency of the program. Other approaches protect the integrity of the
target device in a different way. One option is to execute mobile code in a secure
sandbox which requires that special runtime checks ensure that the program
behaves well. In this scenario the consumer does not have to trust the code
producer but the runtime checks impact the runtime efficiency of the program.
Another option is to attach a digital signature to the mobile code and the result
which ensure that neither the code nor the result have been manipulated during
transition. The check of the digital signature produces almost no costs on the
target device. However, the use of digital signatures requires a key-exchange
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CHAPTER 1. INTRODUCTION

protocol and the code consumer has to rely on the fact that the producer has
solved the problem correctly.

Java Bytecode Verification on Smart Cards is a classical problem which can
nicely be solved with the proof-carrying code principle but which is difficult
to tackle with the other techniques. The most challenging part of the Bytecode
Verification is to solve an intraprocedural type inference problem which ensures
that the program is type safe. This data flow problem cannot be solved on a
Smart Card but it is possible to validate a given solution of the type inference
problem. In contrast, it is prohibitively costly to enforce the type safety of a
program by runtime checks for each executed bytecode instruction in a sandbox.
Similarly, digital signatures cannot ensure that the code producer has performed
the type checking after the generation of the software because Java code which
is transmitted to a virtual machine can even stem from a completely unknown
source.

The type inference problem of the Java Bytecode Verification is an intraprocedu-
ral data flow problem. Furthermore, Rose [Ros03], and Albert [APH04] observe
that data flow problems fit into the proof-carrying code methodology because
a given data flow result can be checked by showing that it solves the system
of data flow equations which specify the problem. Data flow analyses form an
attractive problem class because they are based on a well understood theory
which originates in the works of Kam, Ullman [KU76], [KU77], and the abstract
interpretation model of Cousot [CC77]. Furthermore, the general framework
has been applied to numerous problems which span a large design space with
different trade-offs between expressiveness and efficiency.

The central contribution of this thesis is the reconsideration of the validation ap-
proach in the interprocedural setting and the support for an analysis of separated
software modules to capture the potential interactions between the runtime en-
vironment and different pieces of mobile code. To achieve this, we develop a
model for the validation of interprocedural results which can be applied to an
interesting class of analysis problems in a uniform way. The essential part of
the model is a uniform representation of interprocedural analysis results which
supports all operations required for the validation. This disburdens the de-
veloper of the analysis from the effort to specify a problem-specific validation
technique and a result representation for each analysis. Furthermore, the model
integrates support for dynamic method binding, different strategies to deal with
external code, and normalisation techniques which reduce the size of the result
representation into the validation process.

1.1 Methodical Contributions

On the way to the solution of the central goal of this thesis we have to reconsider
many aspects of traditional data flow analysis techniques in the validation
scenario. This yields methodical contributions in the following areas:

2



1.1. METHODICAL CONTRIBUTIONS

Validation of Interprocedural Results Our starting point is the functional
approach to interprocedural analysis [SP81] and the observation that the val-
idation of a data flow corresponds to the check that the given result solves
the system of data flow equations which specify the analysis problem [Ros03],
[APH04].

In order to facilitate the validation of interprocedural analysis results we rein-
terpret the general validation principle in the summary function model. Vital
is the key observation that the functional approach formulates the computation
of summary functions also in terms of a data flow problem.

However, the complexity of the underlying system of data flow equations
increases because it encodes the interprocedural flow graph, which takes the
summary functions of the callees at a call site into account. Furthermore, the
equation system which is to be checked by the validator deals with summary
functions and not with data flow values. As a consequence, the validator has
to be capable to compare the summary functions given in the certificate and the
summary function which describe the requirements of the program with each
other efficiently.

However, the generic functional approach does not make any assumptions
about the representation of the summary functions, so that the problem of an
efficient comparability of summary functions would have to be resolved for each
new analysis problem. Thus, we develop a summary function representation
which can represent an interesting class of analysis problem in a uniform way
and which supplies all operations which are required for the validation process.

A Generic Model The specification of a generic summary function which
meets the requirements of the validation process is the core contribution of the
thesis. Essentially, the summary function model solves three different problems:

1. The model abstracts from a concrete analysis because the model reduces
the specification effort of a data flow analysis to the specification of a
suitable inducing data flow lattice and the specification of instruction-level
summary functions. The functional approach solves the interprocedural
aspects of the data flow problem in a generic way based on this input.

2. The validation process requires that it is easy to compare summary func-
tion representations in the transmitted result to summary functions com-
puted during validation. We achieve this, by the specification of normali-
sation rules. The rules yield function representations that can be compared
easily by the comparison of their internal structure.

3. The second goal of the normalisation is to reduce the memory require-
ments of the function representation. Essentially, the normalisation rules
can be interpreted as a partial evaluation mechanism which operates on
constant elements of the inducing data flow lattice.

The function model is an adoption and reformulation of other generic inter-
procedural analysis frameworks like the ones of Reps et al. [RHS95], [SRH96]

3



CHAPTER 1. INTRODUCTION

and Knoop [Kno99], to meet the requirements of the validation process. The
model of Reps defines a generic function representation which uses a decom-
position of the program state into an tuple of data flow values, a bipartite graph
to model summary functions, microtransformer to express properties of the
inducing data flow problem, and an interprocedural flow graph to integrate
the summary functions of callees into the summary functions of the caller. The
substantially new achievement of the function model in this thesis is that the
function model combines the different aspects in a single function representation
and that this representation directly meets the requirements of the validation
process.

Representation of Modular Results The summary function model does not
only supply the basic infrastructure for the validation process but it can also
be extended for the representation of results which stem from the analysis of a
separated software module.

The functional approach to interprocedural analysis computes a summary
function for each method which comprises the effects of an invocation of the
method with respect to the problem. If a software module is analysed in
isolation, then summary functions which model the effects of methods outside
the module are not available.

We model this situation by the introduction of function variables in the summary
function representation. Function variables act as placeholders for currently
unavailable summary functions. The function variables represent the potential
influence of external code on the analysis result of the software module but it
does not resolve this dependency. Therefore, it is possible to use the function
variables in two different ways. Firstly, it is possible to integrate results of other
software modules later. Secondly, it is possible to replace the function variables
by safe assumptions about the behaviour of the external code. With the first
technique we can combine the results of different software modules, while
the second technique corresponds to an isolated analysis of a single software
module where the assumptions about external code is explicitly encoded in
summary functions which replace the function functions.

This modelling technique is novel, because it integrates the potential impact of
the behaviour of other software modules directly into the summary function
representation. This is a difference to other approaches like the component-
level analysis of Rountev [RSX08] which uses a separated flow graph model to
deal with external method invocations. The direct integration is advantageous,
because function variables are also subject to the normalisation process. This
way, it is possible to rule out dependencies on other software modules which
do not influence the analysis result. Even more importantly the integration
of summary function variables into the function model is compatible with
the validation process. Thus, it is also possible to validate such an open
representation where the dependencies on external code have not yet been
treated.

4



1.1. METHODICAL CONTRIBUTIONS

Dynamic Method Binding and Class Loading The resolution of dynami-
cally bound method calls is a prerequisite for any interprocedural analysis of an
object-oriented program. The target of a dynamic call depends on the runtime
type - or more precisely on the runtime class - of the object the receiver reference
points to. Therefore, a static program analysis has to find a safe approximation
of the set of classes of all potential receiver objects. This set defines the set of
potential call targets whose summary functions have to be considered at the call
site.

The determination of the potential classes of receiver references in a runtime
environment which permits dynamic class loading is a challenging task. The
reason is that it is no longer possible to treat the dynamic calls just by an
inspection of their declared type only. The declared type of the receiver
reference implicitly includes all subclasses so that the analysis has to assume
that additional method implementations are contributed by dynamically loaded
classes at virtually any dynamic call site. Usually, the analysis can make
very conservative assumptions about such unknown method implementations,
which significantly reduces the precision of the analysis.

The problem can be approached from two directions. Firstly, we can choose
an intermediate way between the safe but very restrictive worst-case assump-
tion, that any class can be subclassed and the overly optimistic closed-world
assumption that the whole program is known, and no class can be further sub-
classed. The closed-program assumption expects that all but the classes of the
software module under consideration can still be extended by additional sub-
classes. This is reasonable for applications which stem from a vendor who does
not intend to modify the program after deployment.

However, this strategy cannot be applied for libraries and frameworks because
they are designed for being extended. Therefore, we specify a data-flow based
type inference algorithm which tries to determine the potential classes a receiver
reference of a dynamic call may point to exactly. The key observation is that the
class of an object instance is known exactly immediately after the instantiation
of the object. We capture this intuition in terms of so-called point types each of
which represents instances of a specific class in a precise type model. A type
inference analysis can use this model to detect the set of potential classes of the
receiver objects of a specific call.

This analysis technique is a variant of existing type inference analyses. The
main contribution of this thesis, is to show how we can specify a type inference
algorithm in terms of the validatable summary function model. As a conse-
quence, the type results can be checked by the validation techniques developed
in the thesis. This leads to validatable interprocedural flow graphs even in the
presence of dynamic method binding and a dynamic class loading mechanism.

Optimisations of the Validation Process Several optimisation strategies
have been proposed to improve the efficiency of the validation process [BLTY03],
[RR98], [KK05] in the intraprocedural setting. We reinterpret such techniques in
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CHAPTER 1. INTRODUCTION

the interprocedural scenario in two steps. Firstly, we abstract from the problem-
specific details of the intraprocedural formulations. Secondly, we show how the
techniques can be applied to the generic summary function model.

The second step provides additional insights about the interprocedural vali-
dation scenario. For example, one of the most promising optimisation ideas
is the difference certificate approach which originates in Rose’s approach to
lightweight bytecode verification [RR98], [Ros03]. The idea is to ship only in-
formation in the certificate which represents the differences between the data
flow values computed during the validation pass for checking purposes and the
final analysis result. The reinterpretation of this strategy in the interprocedural
scenario reveals that it is necessary to derive difference functions in order to apply
the approach within the summary function model. Fortunately, the summary
function model turns out to meet this requirement.

1.2 Limitations

The model which is developed in this thesis for the validation of interprocedural
analysis results of software module deals with many aspects of the interpro-
cedural analysis of object-oriented programs and enables the validation of the
analysis results.

However, the current prototype implementation and the evaluation instantiate
the whole framework with a comparatively simple set of module implementa-
tions. Currently, the framework suffers from the following limitations.

Program State The environment which represents the program state at a
program point contains local variables, parameters and result values of method
invocations only. In other words, the framework tracks the data flow through
the call stack of the program only. This is sufficient to define interprocedural
variants of intraprocedural analyses which operate on the local variables and
simple escape analyses. The extension to global fields is straight forward,
because it requires the introduction of a new data flow variable for each field
only. In contrast, we expect that the consideration of the data flow via the
object heap is a challenging task because it may require support from a limited
points-to or alias analysis to identify the accessed object fields more precisely.

Inducing Data Flow Problems The evaluation of the prototype implementa-
tion uses a simple copy constant propagation as an inducing analysis and shows
that the validation approach is suitable in this scenario. Other inducing anal-
yses are specified in Chapter 7 but they are not completely implemented and
evaluated yet. However, general considerations justify the claim, that all data
flow problems which are efficiently representable IDE problems in the sense of
Reps [RHS95] are suitable targets of the validation approach as well.
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Interprocedural Precision One result of the evaluation is that more than 20%
of the data flow values depend on interprocedural data flow even though the
framework immediately uses pessimistic assumptions if it encounters language
constructs like field accesses. Thus, an interprocedural analysis approach
is promising in general, because it can determine more precise data flow
information for a significant amount of data flow values even in the current
implementation. However, the copy constant propagation turns out to compute
pessimistic values for almost all values which depend on interprocedural data
flow. This is due to the fact, that interprocedural dependencies are currently
restricted to result values of method invocations - which usually not return
known values. We expect that other analyses like the type inference analysis
specified in Chapter 7 exhibit a better interprocedural precision improvement,
for example if the analysed software contains factory methods, which return
references of a specific class.

Validation Scenario The framework implements the simplest validation sce-
nario, where the producer analyses a software module in isolation, treats all
external dependencies according to a specific strategy and ships the closed re-
sult to the validator in a complete certificate. However, the validator is also
already capable to validate an open result representation which still contains
external dependencies. Furthermore, the evaluation shows that this more com-
plex validation is manageable. Nevertheless, the proper use of this open result
implementation in an incremental or partial analysis scenario as well as the
application of optimisations strategies as discussed in Chapter 6 remain to be
fully implemented.

The Value Computation in a Modular Setting The effectiveness of the value
computation phase in the interprocedural approach depends strongly on the
potential entry points into the analysed software. This is usually not an issue for
a whole program analysis because it expects the main method of the program as
single entry point and it usually rules out potential call-backs into the program
e.g. by system calls. However, the question is an important issue for a single
software module. Usually, a module is intended to interact with other modules,
so that all methods of the method can be entry points at the first glance. We
intentionally defer the development of strategies for the restriction of entry
points into a module, because interestingly the evaluation reveals that the
functional part of the analysis already yields a significant amount of analysis
information.

1.3 Road Map

The thesis is mainly structured according to the methodical contributions sum-
marised in the previous section. Chapter 2 provides an overview about sev-
eral application scenarios for the validation techniques developed in this the-
sis. Chapter 3 summarises the properties of the traditional data flow analysis
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framework and establishes the basic terminology. Furthermore, we consider
the relationship between data flow analysis and model-checking techniques in
order to figure out potential effects of data flow validation techniques in a larger
context.

Chapter 4 formulates the general validation principles and reinterprets them
in the interprocedural setting. The general validation principle states that the
validation of data flow analysis results corresponds to the check that a given
data flow result solves the system of data flow equations. Furthermore, the
validation pass can validate any valid solution for the equation system. Thus,
it is possible to weaken the analysis results as long as they remain a solution
of the data flow problem. The analysis phase can apply this intentional under-
approximation principle to improve the efficiency of the validation pass. The
reinterpretation of these principles for the functional approach leads to the
interprocedural validation principle. Essentially, the underlying system of data
flow equations gets more complex in the interprocedural case but the general
principles can still be applied. Finally, the safe-approximation principle states
that it is possible to approximate the solution if we replace all variables in the
equations by safe lower bounds. This is vital to deal with data flow values
which depend on the behaviour of external modules.

Chapter 5 contains the essential contributions of the thesis. It develops the sum-
mary function model for the validation of interprocedural results. The model
reduces the function representation to normal forms which can be compared to
each other on a structural level. This keeps the summary function model generic
and increases the efficiency of the representation. An additional contribution is
that the model represents dependencies on other software modules explicitly in
terms of function variables so that the dependencies can either be replaced by
safe assumptions if the module is considered in isolation or more precise results
for other modules can be integrated later.

Chapter 6 reconsiders different optimisation strategies for the validation process
in the interprocedural setting. The goal is to figure out, how the optimisations
can be applied to the validation of the functional result of the interprocedural
analysis.

A discussion of different program analyses in Chapter 7 serves several pur-
poses. Firstly, it shows how different analyses can be specified in terms of the
generic model. Furthermore, we investigate how different characteristics of the
inducing analysis influence the complexity of summary function representation.
Finally, we consider the specification for a type inference algorithm in terms of
the summary function model to highlight the impact of open class hierarchies
on the interprocedural analysis scenario.

The following chapter contains an overview about the current state of the
prototype implementation of the analysis framework. The description focuses
on the structure of the framework and explains how the different kinds of
modules in the framework are currently instantiated.

The evaluation of the system investigates a full certificate approach which
instantiates the generic framework with a simple copy constant propagation as
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an inducing analysis and yields several results. Firstly, the measurements show
that an interprocedural analysis is promising because more than 20 % of the
analysis result depends on interprocedural data flow even for the comparatively
simple instantiation of the framework. Unfortunately, the example analysis
does exploit this potential because interprocedural copy constants are very
rare in the subject software. Secondly, we investigate the internal structure
of the function representation to show that the memory requirements for the
certificate and during the validation process remain manageable. Finally, a
runtime comparison of the analysis and the validation phase reveals that the
linear pass of the validation is in fact significantly faster than the iterative
analysis.
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2 Application Scenarios

The validation of analysis results is a useful approach to tackle different kinds
of problems. Firstly, we describe the basic application scenario in this chapter
in order to emphasise the characteristic properties which call for a validation
approach. Secondly, we discuss several concrete application scenarios which fit
into this general setting.

The key observation which forms the starting point of the whole approach is that
it is often much more efficient to validate that a given solution solves a specific
problem than to compute the solution. At the same time the validation process
ensures that the solution is correct, so that it is not necessary to ultimately trust
the computation phase.

This general principle can be used to separate a code producer from a code
consumer in a safe way. In this thesis we apply this general principle to the
validation of data flow results. Consider the situation in Figure 2.1. In the
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Figure 2.1: Validation of Analysis Results

traditional setting data flow analysis results are computed and immediately
used on the same host. For example a program optimiser can use the results
of a constant propagation or type inference analysis to produce an optimised
version of the program.

An important problem arises if the use of erroneous results has the potential to
break the integrity of the consumer. In this case, the consumer has to check that
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the analysis results correspond to the given program. Digital signatures are not
an option if the code consumer does not trust the producer or if key exchange
protocols cannot be established. In such a situation, the validation of the data
flow results is an interesting solution, because it checks that the analysis results
are correct but at the same time it is less costly than the computation of the
analysis results.

Java Bytecode verification is an example for the validation of data flow results.
Essentially, the Java virtual machine checks that the program in question is type
safe which can be expressed as the result of an intraprocedural type inference
problem. The computation of the type values has been too costly on very
restricted devices like smart cards but the validation of given results is possible
in such target environments. The check that a given program is type-safe is
vital to protect the virtual machine against several low-level attacks like the
manipulation of reference values which can be used to bypass other security
mechanism like security managers etc.

All in all, the validation of data flow results is useful in application scenarios
which separate the analysis phase from the usage of the results and which
exhibit the following properties:

Different Computational Capabilities The code consumer has only limited
computational capabilities at his disposal so that he cannot perform the
analysis on its own. Thus, efficiency is mandatory for all operations
performed at the consumer site.

Untrusted Producer The code consumer cannot ultimately trust the code pro-
ducer. Thus, a validation of the given results is required to protect the code
consumer against the use of erroneous results.

This thesis focuses on the validation of interprocedural analysis results, because
they are a good choice for the intended application scenario. On the one hand,
a rich number of program properties can be computed by interprocedural
analyses which range from simple ones like the determination of constant
arithmetic values to complex points-to analyses. Interprocedural analyses have
the potential to be more expressive than their intraprocedural counter parts
because they are able to track the data flow across the boundaries of method
calls.

On the other hand, data flow analyses are very efficient compared to more
sophisticated approaches like model-checking. Model checkers can check much
more precise properties but they suffer from the problem that the considered
state space of the program grows rapidly. Thus, model checkers are only suitable
to deal with programs of a limited size. In contrast, data flow analyses can be
performed efficiently even on large program modules. Thus, interprocedural
data flow analyses are a reasonable choice for the given application domain.

We will now consider different kinds of application scenarios which benefit
from the validation of analysis results.

12



2.1. SECURITY POLICIES AND MOBILE CODE

2.1 Security Policies and Mobile Code

The idea to validate given information about a program was originally applied
in a security scenario. The original proof-carrying code approach [Nec97]
formulated the fact that driver programs do not perform arbitrary accesses
to the kernel memory in terms of a proof in first order logic [NL96]. After the
consumer has checked this proof it is guaranteed that the given driver program
can be safely integrated into an operating system kernel.

In this scenario the validation of the proof is an end in itself, because it imme-
diately guarantees that the program exhibits the properties that the consumer
wishes to enforce. An important observation is that the kinds of properties
which can be checked depend on the calculus the proof is specified in. The
more expressive the underlying calculus is the more program properties are
captured. However, more expressive calculi are usually more costly to check.
Therefore, a reasonable trade-off has to be chosen according to the application
scenario.

A closely related observation is that a limited device that is deployed in a
network environment has to restrict itself to the validation of moderate pro-
gram properties. Full-fledged program verification techniques are usually pro-
hibitively costly to check, even with the support of producer supplied annota-
tions.

Data flow analysis problems constitute an interesting calculus in the security
scenario. Firstly, there exists a rich set of interesting data flow problems which
have been used in a number of different application domains already. Thus, the
number of program properties which can be expressed by data flow results is
significantly large. Secondly, the abstractions that model a data flow problem
are usually closer to the code under consideration than properties of the high-
level model of the software system. This is important because in the end the
code itself is the final instance which specifies the behaviour of the program.
Finally, it is often easy to specialise data flow analyses so that they express
additional properties of the code.

A very prominent example of the application of data flow techniques are
static type systems. Statically typed languages impose restrictions on the
programmer but in turn they provide guarantees about the behaviour of well-
typed programs. Type checking identifies errors early which significantly
increases the robustness and maintainability of the software product. The type
checking mechanism involves data flow techniques. For example, the most
complex part of the Java Bytecode verification solves an intraprocedural type
inference problem to establish the type correctness of the program. One of
the major advantages for the validation of type annotations of a program is
that the type checking is done by the consumer immediately before the code
comes to execution. This is important if the consumer wants to enforce the
well-typedness of the program on its own.

Furthermore, type inference techniques can be extended so that the constructor
of the consumer device can specify and communicate security relevant proper-
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ties by additional type constraints. A simple example is the introduction of a
null-type into the type inference algorithm which enables the type analysis to
conclude whether a reference type can be null or not. This is useful to enforce
that parameters of some security relevant method call are never null or to re-
move redundant checks from the code. So called type annotations [PACJ+08]
which head into this direction are even going to be integrated into the next
version of the Java language.

All in all, the use of data flow analysis results to specify security relevant
properties of the program is attractive. The wide adoption of the techniques and
their efficiency can be more relevant arguments than the fact than conservative
nature of data flow analyses restricts their expressiveness.

2.2 Program Optimisation and Partial Analyses

The validation of the results of data flow analyses is even more attractive if
the results are used for program optimisations which is their original field of
application. The most important advantage is that existing definitions of data
flow analyses can be used immediately to trigger optimisations at the consumer
side.

However, the optimisations can compromise the integrity of the consumer if
they are based on erroneous data flow information. For example, a dynamically
bound method call can be bound statically if the runtime type of the receiver
reference can be determined exactly by a static analysis. If the wrong receiver
type is given, then the optimisation will bind the method invocation to the
wrong method implementation. This may lead to malicious memory accesses,
for example if a method implementation of a subclass that operates on additional
fields is executed on an instance of the superclass that has a smaller memory
layout. Therefore, the validation of given data flow results is a major concern,
even if they do not describe security properties directly.

The application scenario has but another interesting property which distin-
guishes it from the security scenario: The abandonment of a specific optimi-
sation does not break the integrity of the consumer. This offers an additional
degree of freedom for the validation process. The producer can omit data flow
results which do not lead to optimisation opportunities or which become to
costly to be validated by the consumer.

The general idea is that the consumer can focus on the validation the useful data
flow information only. The loss of some optimisation opportunities may very
well be acceptable if in turn the costs of the validation process can be adapted
to the capabilities of the consumer. The producer can apply this principle in
its full strength because additional efforts can be spend at the producer site to
determine the best trade of between precision and validation costs beforehand.
Furthermore, even the consumer can apply the principle to protect himself from
denial of service attacks: whenever the validation of specific parts of the data
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flow result becomes too complex, the validator is free to drop optimisation
opportunities.

The application of optimisations at the consumer side has additional advan-
tages than just the protection of the consumer against erroneous optimisations.
Many optimisations require runtime support by the consumer and cannot be
performed by the producer, if the final target platform of the code is not known.
For example, the static binding of methods has to be supported by the virtual
machine and requires explicit knowledge about the memory layout of the vir-
tual method tables. This information depends on the implementation of the
target virtual machine, so that the application of the optimisation has to be
deferred until the code has been transmitted to a concrete target platform.

2.3 Modular Results and Partial Analysis

The capability to deal with data flow results of software modules separately is
useful in many ways. Our goal is to define modular analysis results in a way, that
they still exhibit the potential dependencies on other modules. The advantage
of such a result representation is that we can treat the dependencies on other
modules in a flexible way. This allows for the support of more sophisticated
application scenarios.

We can already take advantage of a modular result representation at the pro-
ducer side. Every program uses some sort of interface for example to access the
low-level IO-mechanisms of the operating system. Furthermore, each program
or module can interact with other programs in various way. If a modular result
representation captures such dependencies explicitly, then we can estimate the
potential effects in different ways, which is depicted in Figure 2.2. For exam-
ple, a very common technique is to apply the “closed-world” assumption. The
analysis phase derives its results and implicitly expects that the program under
consideration will not be extended. This is an optimistic assumption, because
most runtime systems allow for the late integration of additional plugins or
classes. Thus, another way to deal with the potential effects of software in-
frastructure on the target platform is to treat them completely pessimistically.
This is safe but has the potential to loose significant precision. A modular re-
sult representation enables the producer to apply one of the strategies or even
more sophisticated ones depending on the application scenario. Obviously, the
code consumer has to use the same strategy to validate a specific result variant.
Thus, the flexibility of a modular result representation can be used to adopt the
analysis and the validation phase to different application scenarios easily. In
this thesis we will use this technique in the evaluation to compare the potential
effects of different approximation strategies with each other.

The second advantage of a modular result representation is that it enables an
incremental validation scenario as depicted in Figure 2.3. Each larger software
module like an application program inherently consists of smaller modules like
packages and single classes. Thus, a modular result representation is able to
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Figure 2.2: Using Modular Results by the Producer

express the results for such smaller software components individually. Thus,
the validation process can start validation even before the whole program is
transmitted. If it is possible to validate some of the results, then the validator
can already use these pieces of the result to apply optimisations ahead of time.
Furthermore, the validator can drop pieces of the results as soon as they are no
longer needed for the validation of the remaining parts of the software.

Essentially, this scenario calls for two additional capabilities on the target
platform. Firstly, the validator has to be able to treat potential effects of missing
software pessimistically. Secondly, the validator also has to be able to validate
the modular result representation which is now subject to the validation process.
We show in this thesis that it is in fact possible to validate the modular result
representation defined in our framework and the implementation is already
able to apply this principle.

Finally, the modular result representation also provides the basic infrastructure
to extend the system to a partial validation scenario. Assume that two software
modules are analysed separately either on different platforms or at different
points in time. The capability of the validator to validate a modular result
allows for a validation of the results and a late integration to a complete result
at the consumer side as depicted in Figure 2.4. The differences to the incremental
scenario are subtle but important. In the incremental scenario we expect that
the producer has knowledge about the whole program in question. Thus, the
analysis phase can compute the final result for the whole program. Therefore, it
is possible to add additional pieces of information about the remaining software
components together with the modular results of the first components. Such
pieces of information support the validator during the validation process and
during the construction of the final analysis results. Furthermore, the analysis
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Figure 2.3: Incremental Validation Scenario

phase is able to resolve cyclic dependencies between the different software
modules by a fix-point iteration which yields a precise result.

In contrast, we expect that the analysis phase in the partial validation scenario
is not aware of the whole program. Although the validator is still able to
validate the modular results, it now lacks the support for the validation and
composition of the results. Most importantly, the analysis phase is not able to
resolve cyclic dependencies between different modules anymore. Nevertheless,
it is still possible to resolve cyclic dependencies within a single module. The
partial analysis scenario requires that the validator is able to compose modular
results and that cyclic dependencies between software modules are treated
conservatively. The model which we present in this thesis supplies the required
infrastructure, but we will not investigate this rather complex application
scenario in detail.

All in all, the capability to validate a modular result representation is one of
the core challenges which has to be solved to adopt the framework to various
realistic but sophisticated application scenarios.

2.4 Validation of Data Flow Results as an Assisting
Technique

There also exist additional application scenarios for the validation of data flow
results where the validation process is not an end in itself.

An interesting idea is to combine the validation of data flow results with other
validation techniques. This way, the efficiency of the data flow analysis and the
increased expressiveness of other approaches can benefit from each other.
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Figure 2.4: Partial Validation

Model checkers can validate program properties expressed in temporal logic. For-
mulae in temporal logic define program properties in terms of logical combina-
tors, atomic propositions and quantifiers over execution paths of the program.
Atomic propositions are very basic ones like “variable x has value 2” or “vari-
able x has the same value than variable y”. As a consequence, the state space of
a model checker which tries to prove a given formula grows rapidly because it
has to represent a huge amount of different program states on different program
paths.

The results of a data flow analysis can be used to reduce the state space of
the model-checker significantly. For example, the data flow result that a given
variable always holds a positive value rules out the half of the potential values
which have to be considered by the model-checker.

The usual argument why all properties of the program should be checked by
the model-checker is that this reduces the base of trust to the implementation
of the model-checker. Obviously, it is an advantage if the consumer which
wants to check specific program properties has to rely on a small code base
only, because errors in the implementation of the validation phase reduce its
value significantly.

However, the combination with data flow techniques is an interesting choice,
because data flow problems have a well established formal definition which
leads to a generic framework which can be instantiated for several analysis
easily. The validation of data flow results reduces the code base even further,
because the iterative fix-point computations do not have to be trusted anymore.
The validation proves that the solution is a valid solution of the data flow
problem in question whether or not the implementation of the analysis phase
is correct or not. Thus, the results can be safely used to streamline a subsequent
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model-checking phase, so that it becomes applicable on the limited target
platform. The important observation is that only the validation pass has to
be trusted additionally.

The validation of analysis results can also be interesting for approaches which
aim at translation validation. The goal in this scenario is to show that the
translation of a program by a compiler has preserved the semantics of the
program. The transformations applied by the compiler often depend on the
results of data flow analyses. This piece of the translation process can be
validated with the techniques presented in this thesis. As a consequence, the
validator can convince himself that the data flow analysis phase has operated
correctly for the program in question even though the implementation of the
analysis phase may still not match its specification completely.

This observation gives also rise to another application of the validation tech-
niques for data flow results which supported the implementation of our own
analysis framework: The validation pass can detect potential errors in the im-
plementation of the fix-point algorithm which solves the analysis problem. This
supports the implementation of an analysis and helps to increase the robustness
of the whole framework. For example, the validation revealed subtle errors in
a caching mechanism for instruction-level summary functions or in the lookup-
procedure for dynamically bound method calls whose occurrence depends on
the sequence in which the iterative algorithm processed intraprocedural con-
trol flow nodes. Furthermore, the generic nature of our approach supplies a
rich set of basic datastructures for the implementation of validatable analysis
which significantly decreases the size of the additional code base required for
the implementation of a new analysis.

To summarise, it is possible to embed the the validation of data flow results in
other larger application scenarios as well. Therefore, it is interesting to study
the underlying principles even from a more general perspective than in our
main scenario.

19



.



3 Foundations

3.1 Iterative Data Flow Analysis and Equation Systems

This section summarises the elements of the traditional data flow analysis
framework and its relationship to equation systems. The traditional framework
is defined with respect to the flow graph of the program which captures the
flow of control in the program and the potential execution paths. Data flow
analysis computes information about the program state for each program point
by an iterative algorithm which propagates data flow information through the
flow graph.

The flow graph model and the iterative solution algorithm are closely related to
an equation system and the determination of a valid solution for this system. The
system of data flow equations highlights the structure and the interdependen-
cies between data flow facts and is especially useful to explain the fundamental
principles of the validation of data flow analysis results in Chapter 4.

Therefore, this section briefly reviews the traditional model for data flow anal-
ysis to establish the basic terminology and to emphasise the most important
properties of data flow analyses which will be reconsidered in the validation
scenario later on.

The original formulation originates in the work of Kam, Ullman, and Kildall
[KU76], [KU77], [Kil73]. Introductory presentations can be found in any com-
piler text book [Hec77], [Muc97], [ALSU07], and a comprehensive survey is
given in [MR90].

The close relationship to equation systems and Gaussian elimination techniques
forms the foundation of elimination algorithms for data flow analysis [RP86].

3.1.1 Elements of Data Flow Problems

The traditional model defines a data flow problem D as a quadruple
〈
G, JK,L,T

〉
where G is a flow graph, JK is the so called label function, L is a lattice and T is
the function space of transfer functions.

The flow graph G models the flow of control in the program. If the algorithm
performs intraprocedural analysis this is the loop and branch structure of the
method. Interprocedural analysis extends the flow graph with the call graph
of the program, which describes the calling relations between the method
implementations in a program.
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The lattice L models data flow information we are interested in. We denote
the elements of the data flow lattice as data flow facts. They represent some
assertions about the program state which hold for every possible execution path
at a specific point. The information can range from simple yes-no statements,
e.g. the information whether the value of an arithmetic expression is available at
a program point, to more complex information like static types of local variables.

The set of transfer functions T models in a quite general sense the semantics
of the program with respect to the data flow problem in question. A transfer
function describes how the execution of the corresponding program fragment
modifies data flow facts which model the information about the program state.

The lattice L and the transfer functions in T model the program independent part
of the analysis problem. Therefore, they are often called the data flow framework.
In contrast the flow graph G represents a specific program, for which the data
flow analysis is to be performed. The label function M connects the program
and the framework. It assigns transfer functions to each piece of code - usually
to each node of the flow graph.

A solution of a data flow problem consists of lattice elements that express the
result for each point in the program. The solution consists of a valid result for
the start and the end of each node in the flow graph We refer to these results as
the input- and the output-solution of a flow graph node. Given a unique number
n for each node, we abbreviate the input and the output solution by In and On
respectively.

The following subsections explain fundamental properties of each element of
the model in more detail.

Flow Graph

The flow graph comprises the control flow structure of the program either on
the inter- or intraprocedural level. Even though there are differences between
these kinds of flow-graphs 1 three general graph properties are of interest for
all data flow analysis: branches, join points and backward edges.

An output solution describes the situation at the end of a node. It influences the
input solution of a successor node. If the node ends with a conditional branch
or switch-instruction then there are several successor nodes. Consequently, a
single output solution can contribute to several input solutions.

Join points are flow graph nodes with several predecessors. The input solution
approximates the solution from several input paths by which the node can
be reached. This requires the safe approximation of the output solution of
all predecessors. Thus, several output solutions contribute to a single input
solution.

1Intraprocedural graphs are usually reducible and exhibit an inherently linear structure. This
reduces the complexity of solution process and allows for specialised approaches like interval-
analysis.
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Finally, the iterative algorithm traverses the graph in a specific order and
propagates data flow facts along the edges of the graph. The order of the
graph traversal defines backward edges which are edges that target a node
which has already been processed. Information flowing along backward edges
may influence information computed previously. An optimistic input solution
may be replaced by a more conservative approximation. Such a weaker input
solution may in turn yield a weaker output solution. Therefore, the classical
algorithm has to iterate over nodes that it already had handled before. Section
3.1.3 will consider the influence of backward edges on the iterative algorithm
in more depth.

In the intraprocedural case the nodes of the flow graph G correspond to basic
blocks of the program. A basic block is a maximum sequence of instructions
that can be entered at the first of them and exited only from the last of them.
A basic block begins at the entry of the method, at the target of a branch,
or at the instruction after a branch. Intraprocedural analysis considers method
calls usually not as branches to keep the analysis local to the method. As a
consequence, the execution of the callee is treated like an ordinary instructions.

Edges connect the nodes a and b in a flow graph if control may flow from
the end of a to the beginning of b, e.g. if the last instruction of a is a branch
that targets the first instruction of b. However, the flow graph model can also
capture other levels of control flow abstractions as well. For example, the call
graph of the program describes the calling relation between the methods of
the program which can be represented by additional interprocedural edges in
extended variants of the flow graph graph.

The basic block model itself is already an abstraction of a more fine-grained
model, where each flow graph node corresponds to a single instruction. A
basic block summarises the effects of a linear sequence of instruction nodes.
This avoids the repetitive application of instruction-level transfer functions
because the start state is mapped to the end state immediately. However, the
instruction-level model has the advantage that only one transfer function has to
be defined for each instruction to specify a data flow problem. The functional
approach combines the different levels of abstraction because it computes
transfer functions for larger contexts like basic blocks or whole methods from
the instruction-level transfer functions automatically.

Lattice

The lattice L is a mathematical structure that defines a partial order and a
greatest lower bound operator meet : L × L → L. The meet-operator maps two
given elements to the greatest element that is smaller than the operands. In
contrast to a complete order, a partial order does not require that all elements
are in the order relation - i.e. there can be incomparable elements none of which
is smaller or equal than the other. The most prominent example of a partial
order is the power set which uses set inclusion ⊆ as order relation. The sets
X = {a, b} and Y = {a, c} are not comparable because neither X is a subset of Y
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nor Y is a subset of X. However, the meet-operator is defined for all elements
and maps X and Y to the set {a}which is the greatest set that is a subset of X and
Y.

The partial order of the lattice models the expressiveness or the quality of data
flow facts. The greater the solution the stronger the assertions about the program
state that have been found by the analysis. For example, if the analysis tries to
find available arithmetic expressions then a set which contains more available
expressions makes stronger assertions about the program state.

We say that a data flow value is more conservative or weaker than another if it
ensures strictly fewer facts about the program state. The partial order usually
defines a most optimistic value and a most pessimistic value. Any other value
is more conservative than the most optimistic value and the most pessimistic
value is more conservative than all other values. Sometimes, the most opti-
mistic element is artificial. For example, the most optimistic value of constant
propagation states that a variable may hold “any desired constant” which is
not a natural assertion about any reasonable program state. Nevertheless, the
extremal elements are useful for a unified handling of different data flow prob-
lems.

The meet-operator of the lattice models the safe approximation of data flow facts at
join points. Mathematically, the meet-operator computes the greatest element
which is smaller than the operands. In terms of data flow facts, the meet-
operator computes the strongest assertion about the program state which is
more conservative than two given facts. This definition has two implications:
Firstly, the result can only ensure at most fewer facts about the program state.
Thus, it safely approximates the input facts. Secondly, the strongest assertion
which satisfies this condition is chosen. This takes into account, that the analysis
tries to derive the strongest result.

The safe approximation operator models the semantics of join points in the flow
graph where different execution paths meet - for example after a conditional or
after a loop. If different data flow facts have been computed on the incoming
paths, then only those facts which are valid on all paths remain valid after
the join point. This is why the result of the meet-operation has to be at least
as conservative as the operands. Secondly, no information shall be dropped
without any reason. This is why the meet-operation yields the strongest element
that safely approximates the operands.

Interestingly, the lattice model is sufficient to model a large number of data flow
analyses in a uniform way because only the order relation and the meet-operator
is required for the definition and solution of the analysis problems. For example,
bit-vector analysis like reaching definitions and available expression are usually
defined based on set operations which can be interpreted as operations on
the power-set lattice. In contrast, different kinds of constant propagation or
type inference analysis cannot be expressed in the bit-vector model but they fit
smoothly into the lattice model.

Similarly, several analyses prefer to use the dual operator join which selects the
smallest upper bound of two elements because this is a more natural represen-
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tation in the set-based model. Consequently, intermediate results are refined
in lattice order and not against it. However, this behaviour also models safe
approximation. In both cases, the direction of the binary operator determines
the transition from two optimistic solutions to the best - but usually more pes-
simistic - solution that comprises the given solutions. Without loss of generality,
we use the symbol of the meet-operatoru to model safe approximation through-
out the thesis.

Function Space

The functions of the function space T model how elements of the program like
instructions or whole basic blocks influence the data flow information. They
map input information to the corresponding output information. Thus, they
map lattice elements back into the lattice.

Mathematically, transfer functions have to be monotone with respect to the
lattice order. Thus,

a v b ⇒ f (a) v f (b)

In other words, transfer functions preserve the lattice order. Consequently, a
conservative approximation of the input always yields a conservative approxi-
mation of the output. This property and the properties of the safe approximation
guarantee the termination of the iterative solution process whenever the lattice
has finite height 2 .

Label Function

The label function JK formalises the relationship between flow graph nodes and
their transfer functions. It maps flow graph nodes to transfer functions. The aim
is to separate a specific instance of a data flow problem - i.e. a concrete program
- from the set of transfer functions. For example, analyses on Java Bytecode can
be described by a single transfer function for each kind of Bytecode instruction.
The label function maps the bytecodes of a program to their corresponding
transfer function.

The formalism models the relationship between program and transfer functions
efficiently. For example, different instructions may have the same effect on the
data flow information. Consequently, the label function can map all these
instructions to the same implementation of a transfer function. Furthermore,
the composition of elementary transfer functions models the transfer function
of sequential structures like the instruction sequence of basic blocks easily.

2Even if the lattice itself is not finite, the analysis may terminate fast, if the transfer functions
reach fix points after a finite number of applications
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3.1.2 The Flow Graph Model and Equation Systems

The discussion in the previous section abstracts from specific properties of a
concrete data flow problem. The graph-based model is convenient to formulate
graph-based solution algorithms. However, the structure of a data flow problem
can also be expressed in terms of a system of data-flow equations. The benefit
of equation systems is that they emphasise the dependencies between data flow
values. This simplifies the formulation of the general validation principles in
Chapter 4. Furthermore, the algebraic description of a data flow problem is the
foundation of the summary functions model which is introduced in Chapter 5.

Essentially, transfer functions, solution elements, and the lattice with its opera-
tors have directed matches in the equation system. In contrast, the flow graph
structure is encoded implicitly in the structure of data equations.

The following sections describe the mapping in detail.

Lattice Elements The equation system contains one defining equation for
each input- and output-solution. We will use the abbreviations Ii and Oi as
variables in this equation system. Thus, a valid solution is a mapping from data
flow variables to concrete lattice elements which solves the equation system.

Transfer Functions The semantics of transfer functions can be modelled
directly by an equation. Obviously, the application of a transfer function
computes the output solution of a flow graph node from its input solution.
Thus,

Oi = ti(Ii) ∀i ∈ FlowNodes

The term ti can be considered as a functional that selects the correct transfer
function for flow graph node i form the function space T. This functional
corresponds to the label function of the classical model. The notion ti is easier
to read and emphasises the relationship to the corresponding flow graph node,
its input-, and its output-solution.

Any output solution Oi which is part of a data flow solution, has to satisfy the
corresponding equation. If so, the solution is correct with respect to the local
semantics of the flow graph node.

Flow Graph Structure and Conservative Approximation The second set of
equations captures the structure of the flow graph: Each input solution has to
be a conservative approximation of the output solution of all of its predecessor
nodes. Consequently,

Ii =
l

j∈pred(i)

O j ∀i ∈ FlowNodes
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The fact that the safe approximation involves all predecessor nodes implicitly
encodes the edges of the flow graph. Therefore, the second kind of equations
capture the semantics of the control flow of the program.

Thus, the system of equations completely defines a data flow problem. It
involves only lattice elements, the conservative approximation operator of the
lattice and monotone transfer functions. The process of solving a data flow
problem is equivalent to finding a solution of the equation system. Furthermore,
the equation system provides a checking criterion for a given solution as well:
a given solution is a valid solution if it solves the system of data flow equations.

3.1.3 The Iterative Worklist Algorithm

The goal of the data flow analysis is to determine a input- and output-solution
Ii and Oi for each node i in the flow graph.

The essential idea of the iterative worklist algorithm is to start with an optimistic
assumption for each input- and output-solution and to subsequently reduce the
assumptions according to the equations which define the analysis problem until
a valid solution has been found for the whole equation system.

Therefore, the algorithm maintains a worklist of nodes whose input solution
has been modified because a modification of an input solution requires that the
data flow information needs to be propagated. The whole algorithm can be
summarised as follows:

1. Choose an optimistic initial guess Ii for each i ∈ FlowGraphNodes. Place
every node i into the worklist.

2. While the worklist is not empty

a) Remove node i from the worklist
b) Compute O?

i = ti(Ii)
c) For all successors j of i

i. Compute I?j = I j uO?
i

ii. Put node j into the worklist if I?j @ I j

The algorithm applies transfer functions of flow graph nodes to input solutions.
This way the analysis computes the effects of the execution of a program
fragment given that the assertions represented by the input solutions hold.
This yields new assertions O′i about the program state after the execution of
the code fragment in the flow graph node. The input solutions of all successor
nodes have to be a safe approximation of these assertions which is why the data
flow information has to be merged into the input solution by the conservative
approximation operator u. This ensures that the input solution corresponds to
the conservative approximation of the output solution of all predecessor nodes
when the algorithm stabilises.

The initialisation and the termination of the algorithm requires some additional
discussion.
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Initial Guess It is important to observe that the algorithm starts with an
optimistic overapproximation of the solution for each internal node. An obvious
choice is the most optimistic element > of the lattice which states that virtually
any assertion about the program state is true. The intuition is that the algorithm
subsequently reduces the strength of the assertions according to the restrictions
imposed by the semantics of the instructions and the control flow of the program.
Therefore, the algorithm starts form the “best” of all possible solutions because
this way it is possible to reduce the result to the strongest assertions which solve
the data flow problem.

As a consequence, the algorithm maintains an optimistic overapproximation of
the result throughout the solution process and stops when this approximation
solves the data flow problem. The stepwise reduction of an overapproximation
guarantees that the algorithm computes the maximum fix point solution of the
program, because it weakens the solution only as far as necessary.

Special care has to be taken with respect to the initial solution of the entry node
of the flow graph. The entry node has no predecessor. Therefore, its input
solution will never be weakened. Thus, it has to be correct right from the start
and must not be an optimistic overapproximation.

The most pessimistic element ⊥ of the data flow lattice is a natural choice
for the input solution of the start node because it represents the empty set of
assumptions about the program state. However, the input solution of the entry
node sometimes incorporates problem specific knowledge in order to improve
the precision of the analysis. The most prominent example is the reaching
definitions analysis. This analysis computes which definitions of a variable are
available at each point in the program. The most pessimistic element of this
analysis is the set which contains all definitions because it is safe to assume that
there exists some execution path in the program by which a definition reaches
the program point. Thus, the analysis strives to rule out as much definitions as
possible because this strengthens the assertions about a variable at a program
point.

This analysis does not choose the most pessimistic element as the input solution
for the entry node, because this corresponds to the assumption that all defini-
tions are available at the start of a method. This assumptions is safe but too
conservative because this particular analysis can safely assume that no defini-
tion reaches the entry node of the method.

Iteration and Termination The termination of the algorithm depends on
two observations: Firstly, the conservative approximation operator u can only
weaken the input solutions of flow graph nodes. Secondly, all transfer functions
preserve the lattice order - i.e. if an input solution which is weaker than another
then it can only be mapped to a weaker or equal output solution.

Observe that this does not imply that output solutions are weaker than input
solutions, because the transfer functions can very well add assertions which
strengthens the result. For example, the transfer functions of the reaching
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definitions problem can introduce new definitions if these are generated in the
flow graph nodes.

Together the monotony of the transfer functions and the monotony of the
conservative approximation operator ensure that all input- and output-solutions
are replaced by strictly weaker solutions only.

The algorithm iterates whenever an input solution of an already processed flow
graph node is weakened because this implies that its output solution may have
to be weakened, too.

The monotony property gives rise to several termination arguments for this
iterative process. Firstly, if all descending chains 3 in the underlying lattice
are finite, then the maximum length of a chain limits the number of iterations.
The reason is that the conservative approximation operator strictly weakens the
result of each input solution so that the sequence of input solutions forms a
descending chain.

The algorithm can still terminate fast even if the chains in the lattice are not
finite due to special properties of the transfer functions which define the data
flow problem. The transfer functions of several data flow problems guarantee
that a repetitive application of the functions reach a fix point after a constant
number of steps. This also limits the number of iterations, due to the monotony
of the conservative approximation operator and the fact that transfer functions
preserve the lattice order.

3.1.4 Elimination Methods

Elimination Methods [RP86] take a slightly different approach to solve the
equation system which defines a data flow problem. The general idea is that
the system of equations can be solved by techniques which are closely related
to Gaussian elimination.

Each equation defines a data flow variable in terms of other data flow variables.
A variable in the defining term can be replaced by its own defining term.
Given that at least the defining term of the entry node is a constant value this
substitution strategy can solve the system of equations.

As long as the flow graph of the program is acyclic the strategy succeeds because
the defining terms of the predecessor nodes can substituted into the defining
terms of the successor nodes. A challenge arises at backward edges because
they correspond to a self reference in the defining equation of a data flow value.

Such a cyclic dependency has to be resolved. One possible approach is to
find some problem specific “loop-breaking terms” i.e. some criterion to derive
a valid solution for the recurrent definition based on knowledge about the
analysis. For example, it is possible to drop self-recurrent terms of a specific
nesting depth for bit-vector analysis without loss of precision. The reason is

3A descending chain is a sequence of lattice elements where each subsequent element is smaller
than the previous one
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that these kinds of analysis exhibit fast convergence in a sense that they reach a
fix-point immediately after one iteration of a loop has been considered.

The generic approach to resolve a cyclic dependency is to apply an iterative
fix-point iteration to the self dependent term.

Thus, the elimination approach does not always solve the determination of a
fix-point solution of a recursive equation, but it effectively isolates and extracts
recursive equations by subsequent substitution of data flow variables. This
principle is the foundation of interval-based analyses like the original Allen-
Cooke interval analysis [AC76], and its improvements [HU75], [GW76], [Tar81].
Essentially, these analyses subsequently compress non-cyclic regions in the flow
graph, resolve the cyclic dependency and proceed until the program has been
collapsed to a single node. The analyses work well for reducible flow graphs
where each cyclic sub-graph is single entry only.

The most important principle of the elimination approach is that variable
substitution can be used to compress sub-regions of the flow graph. This
principle gives rise to our definition of function composition in Section 5.1.

A simple example for the application of this principle is the use of transfer
functions for a whole basic block instead of a transfer function for each single
instruction. Assume that a basic blocks contains three instructions i1, . . . i3. The
corresponding instruction-level flow graph contains a sequence of three flow
graph nodes which leads to the following equation system

O1 = t1(I1)
I2 = O1

O2 = t2(I2)
I3 = O2

O3 = t3(I3)

where t1, t2, t3 denote the instruction-level transfer functions. A repeated sub-
stitution of the defining terms of the variables in the last equation reduces the
last equation to

O3 = t3(t2(t1(I1)))

Thus, all intermediate states within the basic block have been removed and the
final equation defines the mapping from the input solution I1 of the basic block
to the output solution O3 of the basic block. Given that function composition
is defined on the elementary transfer functions, the equation can be further
compressed to

O3 = tbb(I1) with tbb = t3 ◦ t2 ◦ t1

which constructs the basic block transfer function tbb.
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3.1.5 Advanced Scenarios of Program Analysis

The simple framework of data flow analysis has been extended to cope with
several additional challenges that arise from more sophisticated application
scenarios. We just provide a very brief overview here and postpone a deeper
discussion to the sections where the validation of data flow results deals with
some of the additional aspects.

Partial Program Analysis The traditional formulation of a data flow analysis
problem assumes that the whole program is available during the analysis phase.
However, software systems are usually composed of several components which
interact with each other and which may even be implemented in different
languages. Even the simplest monolithic programs interact at least with the
operating system in a non trivial way.

Thus, data flow analysis has to deal with method invocations which target code
that is not available during analysis. The first solution is to treat such interface
methods pessimistically. Essentially, all information about the program state
which may be influenced by the external call is dropped. This leads to analysis
results which are safe but usually less precise than necessary.

Therefore, partial program analysis strives to determine analysis results in a
way so that they can be composed with the results of the other components
later on. This preserves the precision of the analysis but introduces additional
challenges with respect to the representation of the analysis results. This aspect
will be considered further in Section 4.3.

Demand Driven Analysis The original purpose of program analysis was
to enable program optimisations. Thus, data flow analysis is usually not
performed for its own sake but with an intended usage in mind. Therefore,
it is a natural idea to reformulate the data flow problem to the question whether
some interesting program property of the program holds at a specific program
point. The intuition is that this question is substantially easier to answer than
to determine strong assertions for each point in the program.

This led to the definition of demand driven analysis. Such analyses start from
a specific analysis goal and consider relevant parts of the program only. A
prominent example is program slicing [Wei81] which starts from a specific
slicing criterion like the value of a single variable at a program point and restricts
the program to only those parts which influence the value of the variable. To
do so, the slicing approach determines the transitive closure of the data- and
control-dependencies which contribute to the slicing criterion.

We discuss this general idea and its influence on the validation scenario in more
depth in Section 4.3 which describes the safe lower bound principle and in
Section 6.3 which applies the principle for the optimisation of the validation
process.
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Conditional Analysis The most important reason for the efficiency of data
flow analyses is that it combines information about different execution paths
very early at the join points in the program. Whenever data flow information
is propagated to a successor node, then this information is merged with the
previous information about the input solution before the analysis reconsiders
the node. This strategy merges the information about two different paths
which may contribute different kinds of assertions about the program state
and continues to compute information which hold always independently from
the path by which the node is reached.

This strategy effectively limits the number of paths which are actually consid-
ered by the analysis and it guarantees the fast termination of the data flow
analysis algorithm.

However, it looses precision if some of the transfer functions which define the
data flow problem are monotone but do not distribute over the safe approxima-
tion operator, i.e.:

ti(a u b) @ ti(a) u ti(b)

The point is, that the analysis could have derived strictly stronger assertions
about the program state after node i if it had followed two paths which exhibit
different input solutions a and b separately instead of merging the path early by
the conservative approximation a u b.

In order to avoid this loss of precision some extensions of the traditional data
flow framework encode data flow information which hold under some con-
ditions only. For example, the analysis may track two kinds of information
depending on the value of a conditional. This technique separates the different
execution paths for an if- and an else-branch for example. The more sophis-
ticated the various kinds of analysis information get the more the analysis
degenerates to an analysis which considers all execution paths of the program
and merges different information about a program point only as a last step to
construct the final solution.

This solution is called the meet over all paths solution and it is the best solution
which can be derived by a static inspection of the program. However, this
approach requires exponential effort because all potential execution paths have
to be considered. In contrast, the traditional algorithm computes the maximum
fix point solution which terminates fast but has the potential to loose precision
due to the early merge of paths at join points in the program.

Interestingly, the computation of the meet over all paths solution is more closely
related to the model-checking approach which is discussed in Section 3.2.

3.2 Model Checking and Abstract Interpretations

Schmidt and Steffen observed that program analysis can be considered as model-
checking of abstract interpretations [SS98], [Sch98], [Ste91]. We briefly review
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the key observations which justify this general statement in order to discuss
how the validation of data flow results relates to the model checking approach
for proving program properties.

3.2.1 Model Checking and the Relationship to Program Analysis

A model checker is a procedure that decides whether a given structure M is a
model of a logical formula φ, i.e. whether M satisfies φ [MOSS99]. M is an
abstract model of the program in question, which is a usually finite automata-
like structure and φ is some kind of temporal logic that specifies the desired
property.

The nodes of the model M represent abstract program states. Two program
states are connected by an edge if the program state can change from the state
represented by the source node to the state represented by the target node.
The graph is annotated either with atomic propositions which describe the
properties of a node (Kripke structures) or with actions that characterise the
transitions represented by the edges (labelled transition systems).

Formulas of the temporal logic φ are constructed from the atomic propositions,
boolean connectives, and quantifiers which range over paths in abstract model
M. Thus, the formulas can express properties like “for all execution paths in M
property a holds” or “there exists an execution path where property b holds”
etc.

Generic decision procedures can check whether a given model M satisfies a
given formula.

This very generic idea offers a variety of different modelling decisions: How are
concrete program states abstracted? What are the atomic propositions? What
kinds of formulas are used?

Interestingly, the model checking approach can also express data flow problems
quite naturally. The general idea is to use the modelling techniques of abstract
interpretation [CC77] to encode a data flow problem in terms of a model suitable
for model checking. Abstract interpretation expresses the relationship between
an execution of the concrete program and traces in an abstract program model.
This is achieved by two mapping functions, an abstraction function α and a
concretisation function γ which map executions of the concrete program to an
abstract interpretation in the program model and back again. These functions
form a galois connection which means that a set of concrete program states is
mapped to an abstract representative and an abstract state can be mapped back
to the set of concrete states it represents.

A simple way to relate concrete executions of the program to a abstract inter-
pretation is to map any concrete state to an abstract state which merely contains
the value of the program counter. The resulting abstraction is the flow graph
of the program because there is one abstract state per program point and the
abstract interpretation follows the flow of control.
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Similarly, the semantics of the actions of the concrete program can be abstracted
as well. Essentially, the concrete semantics of a single instruction that specifies
how the instruction modifies the concrete state has to be mapped to a abstract
semantic of the instruction which specifies how the instruction modifies the
abstract state. This abstraction step is closely related to the definition of transfer
functions in the traditional formulation of data flow problem. Transfer functions
also specify the transformation of the abstract state, which is expressed as an
element of the data flow lattice.

These observations provide a way to specify a data flow problem in terms of a
model-checking problem [SS98]:

• The abstract program states in the model M correspond to the program
points. Thus, the model M is a representation for the flow graph of the
program.

• The actions (in a labelled transition system) represent the abstract se-
mantics of the instructions. For example, the semantics of the program
instructions with respect to the reaching definition problem reduces to
actions which state that program variables are used or modified by the
instruction.

• A formula in temporal logic specifies the data flow result. For example,
the reaching definitions problem can be stated by a formula that states
that a definition is available if there is a path from the definition of the
variable which does not contain a modification of the same variable.

Obviously, a model checker can determine whether a data flow fact holds
or not by checking if the model satisfies the formula. Additionally, a model
checker which solves the global model-checking problem “Given a finite model
structure M and a formula φ, determine the set of states in M which satisfy
φ” [MOSS99] solves the complete data flow problem, because the problem
statement translates to “Given a flow graph and a formula which describes
when a definition d reaches a program point in the flow graph, determine all
program points in the flow graph which are reached by a definition d”. Thus, it
is possible to solve a data flow problem with model-checking techniques. This
observation raises the question whether model-checking techniques can also be
applied for the validation of program analysis results.

3.2.2 Validation of Program Analysis Results

The program abstraction which is guided by the abstract interpretation ap-
proach yields a model checking problem which closely resembles the data flow
problem. It uses the general model checking approach in a very restricted way.
Therefore, the model does not suffer from the usual state explosion problems
a model checker is usually confronted with. Furthermore, the model checking
algorithm which determines fix points for arbitrary logical formulae seems to
degenerate to the data flow algorithm which computes a fix point for the data
flow problem. The observation which justifies this assumption is that both the
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temporal formula and the definition of the data flow problem quantifies over the
paths in the abstract representation of the program. For example, a definition
reaches a program point if there exists a path in the flow graph which connects
the definition with the program point on which the variable is not redefined.

This thesis assumes an application scenario in which the code consumer lacks
the computational capabilities to perform the fix point computations which
solve to data flow problem on its own. Thus, a model checking process which
resembles the data flow algorithm will likely be too costly to be performed by
the consumer. However, the inherent relationship between data flow analysis
and a model-checker raises another question: is it possible to apply validation
techniques for data flow problem to a model checking problem, too? The idea
is that special annotations may guide the model checking process so that it
does not compute but just validate fix points of temporal formulae. This may
very well increase the efficiency of the checking process. The close relationship
between temporal formula that specify data flow problems and the traditional
formulation of data flow problems can establish the required link to adopt the
fix point checking techniques presented in this thesis to the model checking
algorithm. This seems to be an interesting area of further research.

Another question is why we consider the model checking solution of data flow
problems at all if there is a well established framework for the solution of data
flow problems at hand. The traditional formulation of data flow problems
restricts the potential abstractions of the concrete programs in several ways.
Most importantly, the executions paths of the program are abstracted into the
flow graph which does not take any information about the program state into
account. As a consequence, the flow graph joins different execution paths as
early as possible. This is the source of the efficiency of the data flow analysis,
because it effectively restricts the number of paths which have to be considered.
However, it is also the source of the potential loss of precision. An analysis
which tracks different paths separately before combining the results as a final
step computes the so-called maximum fix-point solution. This solution can be
more precise than the solution of the traditional fix-point algorithm for non-
distributive problems.

The general model checking framework provides such capabilities because it is
not bound to the efficient but simple program abstraction fixed in the definition
of flow graphs. However, the separation of different execution paths usually
leads to a significant increase of the number of abstract states. This directly
challenges a potential application of this technique in the application scenario
of this thesis because the resources at the consumer side are supposed to be
limited.

Furthermore, the additional degree of freedom imposes an implementation
challenge: a model checker running at the consumer side has to support different
kinds of program abstractions. In contrast, the traditional formulation of data
flow problems always use the same abstraction namely the flow graph of the
program.
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Nonetheless, the aforementioned idea of validating a fix point of temporal
formulae hints at an interesting question: If it is possible to apply validation
techniques to the generic model checking process itself, can this increase the
efficiency in such a way that more expressive abstractions of the program
executions can still be validated with limited resources? The answer to this
question is beyond the scope of this thesis but as outlined previously the inherent
relationship between data flow analysis and model checking may very well
provide a starting point for the adoption of data flow validation techniques to
a more sophisticated model checking scenario.
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This chapter focuses on general principles which give rise to the validation of
data flow results for program modules and elaborates on the key challenges
for the analysis model. Chapter 5 presents a summary function model which
solves these challenges and Chapter 6 describes optimisation strategies for the
validation process based on the terminology established in this chapter.

The validation principles are closely related to the goals of the thesis. Firstly,
the general validation principle states that the validation of data flow results
corresponds to the check that the results solve the system of data flow equations
which describe the problem in question. This principle is the core reason for
the inherent efficiency of the validation process because the validation of a given
solution requires a single pass over the system of equations only. In contrast,
the computation of the result - which corresponds to the analysis phase - requires
iteration over the system of equations.

Secondly, the intentional under-approximation principle shows that the validation
process can validate any solution of the data flow problem. The principle
provides an interesting degree of freedom for the analysis phase because it is
possible to weaken a result as long as it stays expressive enough to achieve
the goals at the consumer side. This is useful because the validation of weaker
results usually reduces the effort which has to be spend during the validation
process.

Thirdly, the interprocedural validation principle refines the general validation
principle to support the validation of interprocedural results. We use the
functional approach to interprocedural analysis [SP81] which consists of two
phases: The first phase computes a summary function for each method in the
program. Such a summary function comprises the effects of method invocation.
Thus, it maps the program state immediately before the execution of the method
directly to the program state upon return from the call. The second phase
computes a safe approximation for the invocation context of each method. This
phase takes the summary functions of the first phase into account. After that, it
is trivial to derive intermediate program states for each instruction in a method
from the invocation contexts and the summary function model. One of the
key features of the functional approach is that the computation of summary
functions is again formulated as a data flow problem. Therefore, it is possible
to adopt the general validation principle to the validation of interprocedural
results.

Finally, the validation of modular results introduces additional challenges. First
of all, the validator has to be able to validate the modular representation
of results. Fortunately, the general strategy for the validation of summary
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functions can be adopted to validate their modular counter-parts as well.
Secondly, the incremental scenario requires that the validator is able to safely
approximate the potential effects of other software modules. This is important
to ensure that the validator can safely use pieces of the result ahead of time. The
same mechanism is also required to deal with the partial validation scenario
as well. We express the potential effects of other software modules in terms
of variables in our model. The safe lower bound principle states that it is always
possible to replace all of these variables with a safe lower bound. This operation
yields a safe under-approximation of the modular result. At the same time, the
variables can act as insertion point for more precise results which in turn enables
the validator to compose modular results subsequently.

The chapter is structured as follows: Section 4.1 explains the relationship be-
tween the flow graph, the data flow equation system and the transmitted cer-
tificates for an intraprocedural analysis. Subsequently, the general validation
principle and the intentional under-approximation principle are considered in
this simple setting. The following section starts with a review of the functional
approach to interprocedural analysis, explains its different phases, and explains
why the computation of summary functions is also a data flow problem. The
adoption of the general validation principle leads to the interprocedural vali-
dation principle. Furthermore, the section addresses two additional challenges
of interprocedural analysis: parameter passing and dynamic method binding
at call sites. Section 4.3 explains the fundamental idea for the representation of
partial analysis results. Furthermore, we discuss how the modular result model
is used in the incremental and partial validation scenario. Finally, Section 4.4
summarises the key challenges for the analysis model which arise from the dis-
cussions in the chapter. These challenges are solved by the summary function
model presented in Chapter 5.

4.1 Intraprocedural Validation

This section formulates the general validation principle and the intentional
under-approximation principle in the intraprocedural setting. Both principles
are stated in terms of a generic data flow problem. Thus, any data flow analysis
result can be validated according to these principles. Section 4.2 applies the
principles to interprocedural analysis.

Validation is primarily concerned with the data flow solution and its inherent
structure. For further details about the iterative solution process which com-
putes the data flow solutions and a general discussion of classical data flow
problems refer to Section 3.1.

4.1.1 The General Validation Principle

The analysis phase performs data flow analysis for a program and transmits the
program and a certificate which holds a data flow solution to the validator. The
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Figure 4.1: Program Flow Graphs and Certificates

term certificate is borrowed from the proof-carrying code principle where the
certificate contains proofs about program properties. The notion emphasises
that the certificate is precomputed during the analysis phase and holds data
flow facts that describe properties of the program. The ultimate goal of the
validator is to show that the data flow solution encoded in the certificate is
a valid solution with respect to the given program. This is vital because the
certificate may have been modified during transition and the use of erroneous
data flow results might break the integrity of the consumer.

A natural representation of the program is a flow graph G. Figure 4.1 depicts
a flow graph of a program and the corresponding certificate. Nodes of the
flow graph model fragments of the program in question while its edges model
the fact that control may flow from the end of the source node to the first
instruction of the target node. As discussed in Section 3.1 the nodes of a flow
graph in intraprocedural analyses represent basic blocks and its edges model
the branching structure within the method. The extensions which capture
interprocedural control flow are discussed in Section 4.2.

A data flow solution consists of an input and an output solution for each flow graph
node. Input and output solutions model facts which always hold whenever
execution reaches the start and the end of a flow graph node respectively.

It is important to observe that there are several instances of an input or output
solution. There are input and output solutions computed during the analysis
phase, input and output solutions transmitted in the certificate, and input and
output solutions computed during the validation phase. We mark the input
and output solutions in the certificate with an additional asterisk whenever
we want to explicitly separate them from other input and output solutions.
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Furthermore, we mark intermediate solutions which are computed during the
validation phase with a star.

According to Section 3.1.2 the following system of data flow equations defines
the fix point solution of the data flow problem D = 〈G, JK,L,T〉:

∀i ∈ FlowNodes, ti = JiK ∈ T :
Oi v ti(Ii)

Ii v

{
IStart if i = 1d

j∈predG(i) O j else

This system models the dependencies between input and output solutions,
which have to hold for any valid solution. There are two different kinds of
dependencies. Firstly, output solutions depend on input solutions. Output
solution Oi represents the program state immediately after the execution of
flow node i while input solution Ii characterises the state immediately before
the execution of the node. Therefore, Oi has to reflect the modifications on Ii
due to the execution of the node. This is modelled by application of transfer
function ti to the input solution. Thus,

∀i ∈ FlowNodes : Oi v ti(Ii)

These equations define valid output solutions under the assumption that input
solutions are valid.

Secondly, input solutions depend on output solutions of the predecessor blocks.
If a flow graph node is reachable only by one predecessor, then its input
solution is equal to the output solution of this predecessor. If there are several
predecessors then the flow graph node constitutes a join point. Different
paths through the program meet each other at join points and only data flow
facts which are valid on each path remain valid at the join point. Hence, the
dependency of input and output solutions is defined by the safe approximation

∀i ∈ FlowNodes : Ii v
l

j∈pred(i)

O j

These equations define valid input solutions under the assumption that output
solutions are valid.

The whole equation system defines a valid data flow solution because the
validity of all input solutions gives rise to the validity of all output solutions a
vice versa. Thus, a given complete solution O∗1 . . .O

∗
n, I∗1 . . . I

∗
n is valid if it solves

the system of data flow equations. This algebraic observation can be expressed
in terms of the underlying program as well: The output-input dependency
enforces that the solution expresses the effects of a flow node execution correctly,
while the input-output dependency enforces that the solutions capture the
effects of the flow structure in the program. A solution is valid only if both
dependencies hold throughout the program.
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Figure 4.2: Relationship between Flow Graph and Equation System

The relationship between the flow graph model and the equation model is
depicted in Figure 4.2. The definition of output solution Oi depends on the
transfer function application of the corresponding node and the input solution
Ii. Similarly, the safe approximation of the output solution of the predecessor
nodes defines an input solution Ii. For example, node 4 has two predecessors
and its defining equation I4 = O2 uO3 models the two corresponding edges in
the flow graph.

The data flow values IStart and OEnd have a special meaning. They model the
program state right before the execution of the method and after its execution
respectively. Thus, IStart models the invocation context of the method. An
intraprocedural data flow analysis uses some safe assumptions about this state
as discussed in more depth in 3.1.3, which is modelled by the state IStart
in the equation system. Program state OEnd summarises the program state
after the method call has finished. This state is of special importance in the
interprocedural context as explained in Section 4.2.

All in all the observations of this section lead to the following principle

Principle 1 (General Validation Principle) In order to check that a data flow solu-
tion is valid the validator checks that it solves the system of inequalities that define a
valid solution.

Given that the validator receives a solution O∗1, . . . ,O
∗
n, I∗1, . . . , I

∗
n in the certificate

and the code of a method, this check boils down to two different elementary
steps. Firstly, the validator applies the appropriate transfer function to each
given output solution O∗i and shows that result O?

i satisfies

O∗i v O?
i = ti(I∗i )

41



CHAPTER 4. FUNDAMENTAL VALIDATION PRINCIPLES

This ensures that the given output solution is valid provided that the given
input solution is valid.

To prove this for a single input solution I∗i , the validator computes the conser-
vative approximation I?i of the given output solutions of all predecessor nodes
and checks that

I∗i v I?i =
l

j∈pred(i)

O∗j

The validator has established the validity of the whole solution, if the checks
hold for each inequality of the system.

Obviously, this check requires a single pass over the system of equations only,
because each equation is evaluated once. This single pass property is the main
reason why the validation is more efficient than the analysis phase. In order to
solve the system of data flow equations, the solution algorithm starts with an
optimistic guess and iterates over the system of equations until the solution has
stabilised.

The recomputation of a data flow value is required during the iterative algorithm
because the system of data flow equations usually contains recursive equation
structures which origin from loops. For example, the substitution of I6,O5, and
I5 in the defining equation of O6 yields

O6 = t6(t5(O4 uO6))

Thus, O6 depends on itself. A valid result of such a self-dependent data flow
value is a fix-point of the corresponding recursive equation. The iterative algo-
rithm computes such a fix-point by subsequent evaluation of the corresponding
data flow equation which is why the solution algorithm may have to process
equations several times.

Consequently, the validation pass can also be considered as a fix-point test which
ensures that a given solution of a recursive equation system is valid. In contrast,
the iterative solution algorithm performs a fix-point computation which yields a
valid fix-point which is subsequently transmitted in the certificate.

4.1.2 The Intentional Under-Approximation Principle

The iterative solution algorithm computes the maximal fix-point solution - i.e.
the solution which solves the system of data flow equations exactly. In contrast,
we have relaxed the validation condition to the test that the solution solves the
corresponding system of inequalities. This test still ensures that the solution is a
fix-point but not necessarily the best one. The observation leads to the second
important principle.

Principle 2 (Intentional Under-Approximation Principle) The validator checks
the validity of any valid solution to the data flow problem because the validation
process checks the system of inequalities.
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This principle is important because it offers an additional degree of freedom to
the code producer and the code consumer. The analysis phase at the producer
site has enough resources at hand to run a full-fledged analysis which yields
the most precise result with respect to the program. However, the analysis
results serve a specific purpose: for example, to show that a specific interface
is respected or to trigger some optimisations at the consumer site. Obviously,
there may be pieces of the most precise result which are not necessary to show
the interface compliance or which do not trigger some desired optimisations.
The code producer can reduce a result to a weaker one which still serves the
intended purpose before the certificate is transmitted to the code consumer. The
advantage is that weaker analysis results can be represented more compact and
that their validation can be significantly faster.

The validator can use the intentional under-approximation principle to protect
himself against denial-of-service attacks. Whenever the validation of a single
data flow fact gets to complex, the validator can choose a under-approximation
which is easier to verify. As a consequence, depended values may have to be
relaxed also, but the validator still proves the validity of the modified solution.

Obviously, the under-approximation principle is most valuable when the data
flow results are used to trigger optimisations because the loss of optimisation
opportunities does not compromise the integrity of the system. This differs
from the security scenario, where the results can only be relaxed as long as they
enforce the desired property.

4.2 Interprocedural Validation

Interprocedural validation is essentially a reinterpretation of the general valida-
tion principle in a more complex setting. The functional approach to interpro-
cedural analysis operates in two phases. The first phase computes a summary
function for each method which models how a given invocation context is ma-
nipulated by a invocation. Summary functions take effects of other method
invocations during the execution of the method into account.

The central observation is that the computation of summary functions is itself
a data flow problem. Thus, summary functions can be validated according to
the general validation principle. However, the system of data flow equations
describes the dependencies between data flow functions and not the dependency
between data flow values. The validation of this equation system introduces spe-
cial challenges for the representation of summary functions which are solved
by the function model presented in Chapter 5. A combination of data flow func-
tions and data flow values describes the result of an interprocedural analysis.
We will use the term data flow facts whenever it is not necessary to explicitly
distinguish between the different kinds of data.

Furthermore, it is important to notice that the computation of a summary
function for a whole method, involves the computation of intraprocedural
summaries which map the invocation context to the state at a specific program
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point within the method. These intraprocedural summaries can shortcut the
computation of data flow values so that the validation of interprocedural
analysis results has to be reformulated in a more sophisticated interprocedural
validation principle.

The following sections provide a short review of the functional approach to
interprocedural analysis before we discuss the elementary issues of interproce-
dural validation in detail and establish the interprocedural validation principle.

4.2.1 Review of Interprocedural Analysis

The functional approach to interprocedural data flow analysis was originally
formulated by Sharir and Pnueli [SP81]. The approach operates in two phases:
the first phase computes summary functions which summarise how the code
between two program points modifies data flow information. Subsequently,
the second phase computes concrete data flow values for each program point
based upon these summary functions.

The computation of summary functions itself can be separated into two sub-
problems: the computation of summary functions within the method and the
integration of summary functions of callees.

Firstly, let’s assume that the analysis is applied to a leaf method - i.e. a method
which does not call any other method. The goal is to compute a summary
function for each program point in the method. Such a summary function
describes how the code of the method modifies the invocation context of the
method and yields the solution of the corresponding program point as depicted
in Figure 4.3.
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Figure 4.3: Internal Summary Functions of a Method
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Let ψmn denote an intraprocedural summary function which maps the program
state at point n to the program state at point m. We identify each program point
with the unique number i of some flow graph node in the method. To separate
the input state of a flow graph node from the output state, we mark the output
state with an additional prime.

Thus, summary function ψ0i maps the invocation context - which is the state
immediately before the execution of the entry node 0 to the to the input state Ii.
Similarly,ψ0i′ maps the invocation context to the output state of flow graph node
i. The summary functions which map the invocation context to an intermediate
state play a vital role during the summary function computation and we usually
omit the leading 0 in the index expression if it is clear from the context.

Each of these intraprocedural summary functions can be regarded as “shortcut”
function which maps the invocation context immediately to the program state
at a specific point in the method. Especially, the semantics of loops like
the control flow from node five to node six is captured by the summary
functions of subsequent states like ψ′6. The summary function ψEnd which
maps the invocation context to the result context of the method will be of
special importance for the computation of summary functions in the presence
of method invocations.

Before we explain this aspect in detail, we state the computation of summary
functions as a data flow problem. The goal is to compute a summary function
for each point in the method. Thus, summary functions acts data flow values of
the data flow analysis which computes summary functions: instead of values
of the data flow lattice each input or output solution of flow node i holds the
corresponding summary function which maps the invocation context to the
program state at that point. Furthermore, the transfer functions of flow graph
nodes and the meet operator have to be redefined on the function level as
depicted in Figure 4.4.

A transfer function of a flow graph node takes an “input” summary function -
e.g. ψ3 - of the node as parameter and yields the “output” summary function.
The input summary function maps the invocation context to the program state
I3 and the summary function of the flow graph node maps I3 to the output state O3.
Consequently, the output summary function ψ3′ which maps the invocation
context directly to the state O3 can be computed by function composition of
ψ3 and the summary function of the flow node ψ33′ . Thus, transfer function
application during the computation of summary functions reduces to function
composition with flow nodes summaries.

Join points require safe approximation. Consider the flow of control from node
2 to node 4 and from node 3 to node 4 respectively. The analysis computes
two summary functions ψ2′ and ψ3′ which map the invocation context to the
program state immediately after their nodes. The assertions about the program
states at these points may differ from each other so that at the start of node 4 only
those assertions hold which are valid on both paths. The summary function
that maps the invocation context to the state I4 has to capture this intuition.
Essentially, this involves a safe approximation operation defined on functions.
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Figure 4.4: Computation of Summary Functions by Data Flow Analysis

The definition of this operation is based on the safe approximation operator uL
of the inducing data flow problem. It has to hold, that

ψα, ψβ ∈ SummaryFunctions :
ψγ =d f ψα uΨ ψβ

where ψγ(x) = ψα(x) uL ψβ(x) ∀x ∈ DataFlowValues

Essentially, the meet-function ψγ is defined as the function which maps all
parameter values to the conservative approximation of the result values of the
given functions.

All in all the computation of intraprocedural summary functions requires the
solution of a classical data flow analysis problem. The analysis just operates
on a lattice of functions as and its transfer functions correspond to function
composition. However, this framework is closely coupled to the inducing
analysis framework: The summary functions of flow graph nodes correspond
to the transfer functions of the underlying problem and the safe approximation
of summary functions has to preserve the conservative approximation of the
inducing value lattice.

An additional challenge arises at call sites. The goal of the summary function
analysis is to compute summary functions which incorporate the summary
functions of the callees of the method. To do so, the summary function of a
callee replaces the transfer functions of the purely intraprocedural problem as
shown in Figure 4.5.
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Figure 4.5: Integration of Summary Functions of Callees

The summary function of a callee corresponds to its intraprocedural summary
function ψEnd which maps the invocation context to the program state imme-
diately after the end node in the control flow graph. In order to emphasise
the special status of this kind of function we call them interprocedural summary
functions. In contrast, we use the term intraprocedural summary functions for the
functions which map the invocation context to some intermediate state within
the method.

For the sake of simplicity we assume that interprocedural summaries can be
immediately inserted at call sites. This is only valid if all summaries manipulate
a common set of global variables and if each method invocation is bound
statically. For a discussion how the model is extended to deal with local variables
and dynamically dispatched method invocations refer to Section 4.2.4.

The integration of interprocedural summary functions at call sites introduces
additional dependencies between summary functions because the interproce-
dural summary of a method depends on the interprocedural summaries of
callees. This dependency can even be cyclic if the method invocations are
directly or indirectly recursive. The interprocedural analysis resolves these in-
terprocedural dependencies by an extended fix-point computation. Initially, a
optimistic - but usually invalid - interprocedural summary function is assumed
for each method. The intraprocedural computation of summary functions uses
the optimistic guesses for the computation of a new solution for the method
currently under consideration. This usually yields a more conservative inter-
procedural summary function at the exit node of the method. Consequently, the
computations of the summary functions of all callers of the actual method have
to be repeated. The whole system eventually stabilises after several iterations.
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Finally, the first phase of interprocedural analysis yields an interprocedural
summary function for each method and intraprocedural summaries which map
the calling context of a method to each intermediate state within the method.
The second analysis phase uses these functions to compute data flow values
which describe the program state at each program point. Interestingly, it is
only necessary to compute the invocation context of each method, because
all intermediates states within the method can be directly computed by the
intraprocedural summaries.

The final invocation context of a method characterises the assertions about the
program state which hold for any invocation of the method. Formally, it is the
safe approximation of all invocation contexts at all call sites. These invocation
contexts are intermediate results within the caller. As such they depend on the
invocation context of the caller as explained above. Accordingly, we observe
another - potentially cyclic - dependency in the final step of interprocedural
analysis. Once again, fix point iteration resolves these dependencies.

The intraprocedural summary function for the input state of a call instruction
fastens this process, because it maps the invocation context of the caller directly
to the invocation context of the callee at the call site. This shortcuts the
propagation of data flow values from the invocation context of the caller to
the invocation context at the call sites and avoids intraprocedural fix-point
computations.

Summary The review of the functional approach to interprocedural analy-
sis fleshes out properties which are essential for the adoption of the general
validation principle to the interprocedural realm:

Firstly, interprocedural analysis computes summary functions to capture the
effects of method invocations. Thus, the validation of interprocedural analysis
results is not only concerned with validation of data flow values but also with
the validation of summary functions.

Secondly, the computation of summary functions is again a data flow problem
which operates on functions instead of values. A transfer function of this prob-
lem is the composition of flow node summary function which stems from the
inducing data flow problem. Only at call sites the analysis inserts interproce-
dural summary functions. The safe approximation operator which captures the
semantics of join points is redefined in the functional setting. These observations
allow the adoption of the general validation principle in the interprocedural set-
ting.

Thirdly, only data flow values which represent the safe approximation of the
invocation context of each method are of interest. Any intermediate state within
the method can be derived directly from its corresponding intraprocedural
summary function.

Finally, interprocedural analysis solves three different kinds of fix-point com-
putations. Intraprocedural summary functions incorporate cyclic dependen-
cies which arise from loops in the control flow of a method. The computation
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of precise interprocedural summaries resolves recursive calling dependencies
between methods and the computation of precise invocation contexts solves
interprocedural dependencies of data flow values. This is important, because
it shows that interprocedural analysis is inherently more complex than the in-
ducing intraprocedural counterpart. Furthermore, the central advantage of
validation is that it replaces costly fix-point iterations by a fix-point test. There-
fore, the code consumer can benefit even more in the interprocedural setting,
because he can avoid three different fix-point computations. This is even more
important setting because the calling dependencies between the methods of a
program are usually not that uniformly structured than intraprocedural control
flow.

4.2.2 Validation of Summary Functions

The result of an interprocedural analysis consists of a summary functions for
every single program point in a method and a safe approximation of the calling
context of each method. Thus, the validation of interprocedural analysis results
requires both, the validation of summary functions and the validation of data
flow values.

The validation of summary functions can be reduced to the general validation
principle. The discussion in Section 4.2.1 shows that the computation of sum-
mary functions is a variant of the generic formulation of a data flow problem
which uses function composition with transfer functions and a safe approxi-
mation operator that is defined on summary functions instead and not on data
flow values.

The system of data flow equations that defines a valid data flow solution (see
Section 4.1.1) can be rewritten accordingly:

ψi′ v fi(ψi) with
{

fori < Call : fi(x) = ti ◦ x
fori ∈ Call : fi(x) = ψcalli ◦ x

ψi v
l

j∈pred(i)

ψ j′

where ψcalli denotes the summary function of the method called in flow node i.

Obviously, the validation that given summary functions establish a valid so-
lution of this equation system requires only a single pass over the equation
system like in the intraprocedural setting. However, the equations deal with
data flow functions and not with data flow values. Therefore, the check requires
a function representation which supports the following operations:

Function composition ◦ is required to compute a guess for an output sum-
mary function with respect to a given input summary function.

Conservative approximation of functions uΨ is required to compute a guess
for an input summary functions with respect to given output summary
functions of predecessor nodes.
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Function comparison vΨ is required to compare the solution guesses to the
functions given in the certificate in both situations.

Especially function comparison - which is obviously crucial for the validation -
requires special attention: and explicit representation of a summary function as
an explicit map from input to output values is very inefficient and thus usually
not a practical approach. On the other hand, more compact representations like
ψ(x) = ⊥ also allow equivalent representation like ψ(x) = ⊥ u x which cannot
be compared to each other immediately. Chapter 5 presents a generic represen-
tation for summary functions which supports all of the required operations.

Once again a special issue arises at call sites. All transfer functions ti of the data
flow problem in question are part of the trusted computing base of the validator
and can be trusted. However, the summary function of a calleeψcalli is part of the
transmitted result and cannot be trusted immediately. Therefore, the validator
has to perform an additional check: the function ψEndi that is derived during
the computation of intraprocedural analysis has to be at least as optimistic than
its alter ego ψcalli that is inserted into the summary functions of all callers. Thus,
summary functions are only valid if the additional inequality

ψExitn v ψcalln

holds for all summary functions.

Parameter passing and dynamic method binding complicate the situation at a
call site even further because a direct function composition of a single callee
summary does not capture the effects correctly. However, the model can be
extended accordingly to deal with this issue as outlined in Section 4.2.4.

All in all the validation of summary functions can be reduced to the general
validation principle and the system of equations that describes a valid solution
reveals that function composition, function meet and function comparison have
to be supported by the summary function model in a validatable way.

4.2.3 Validation of Data Flow Values

The core challenges of the validation of interprocedural analysis results are
already solved during the validation of summary functions. Checking invoca-
tion contexts is straight-forward given that validated intraprocedural summary
functions are at hand. By definition, the transmitted calling context has to be
a safe approximation of all invocation contexts of the method at all call sites
of the program. The program state of a call site i in method m can be directly
computed by applying the summary functionψi of the call site to the invocation
context ICm of the caller.

Thus, the following inequality has to hold for each given invocation context ICn:

ICn v
l

i∈CallSites(n)

ψi(ICm)
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All other data flow values do not even have to be transmitted because they can
be directly computed from the invocation context and corresponding intrapro-
cedural summary function.

At this point it is important to observe, that the validity of a data flow solution
is a global criteria. In general, all equations have to be checked before the
validity of any data flow value can be taken for granted. However, this is a
severe restriction compared to the intraprocedural scenario which establishes
the validity of - admittedly less precise - data flow values after the inspection
of a single method already. The underlying reason is that several data flow
facts depend on intraprocedural data flow only. The conservative assumption
about the invocation context and about summary functions of callees treat
dependencies on interprocedural data flow safely but accept the corresponding
loss of precision. This observation leads to the central idea how to detect valid
lower bounds for an interprocedural analysis result at any point in time which
is discussed in Section 4.3.

4.2.4 Method Invocation Semantics

The discussion of the general approach to the validation of interprocedural anal-
ysis results assumed that an interprocedural summary function can be directly
used as the transfer function of a method invocation instruction. However,
virtual method binding, parameter passing, and local variables complicate the
issue.

Dynamic Method Binding Virtual method binding can be represented quite
directly by an extension of the control flow graph of a method. The node of
each call instruction is split into several nodes one for each possible call target
of the invocation as depicted in Figure 4.6

The target of a dynamically bound method call depends on the runtime type of
the receiver reference1. Therefore, a dynamic method invocation can be consid-
ered to be a switch-instruction which evaluates the runtime type of the receiver
and branches to an invocation of a concrete implementation mi. The control flow
immediately merges again in the successor node of the original call instruction.
This intuitive graph model translates directly into the equation model: the sum-
mary function of a dynamic call is modelled by the safe approximation of the
interprocedural summary functions of all potential call targets. Thus,

ψcallm =
l

i∈target(m)

ψcalli

1We argue in terms of dynamic method binding in object-oriented languages because we intend
to analyse Java programs. Exactly the same phenomenon arises from function variables in
languages like C where the actual call target depends on the runtime value of a function
pointer.
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call m call m_1 call m_2 call m_n=> ...

Figure 4.6: Representation of Dynamic Method Binding

This modelling idea is straight-forward but it raises an important question: how
can we restrict the set target(m) of “potential call targets” as much as possible to
prevent that the safe approximation of the summary function looses too much
precision?

A very simple approach is to take the name of the method and its signature
into account. This information is available in Java bytecode at each call site
immediately. However, this “name-based resolution” (NBR) approach also
combines completely unrelated methods that just accidentally share the same
name and parameter types. Some simple approaches improve the strategy
for object oriented programs: class hierarchy analysis (CHA) takes the class
hierarchy into account and rapid type analysis (RTA) restricts CHA to classes
which are instantiated at least once in the program.

These approaches are efficient but not very well suited for the analysis of
program modules. The reason is that all of them have to expect that some
additional implementation of a method is defined in some unknown subclass
of the program module. Therefore, they have to treat dynamically bound call
sites conservatively until the last part of the program is available.

More sophisticated analyses perform data flow analysis to restrict the potential
values of the receiver reference at a call site. This is much more convenient in our
application scenario because such analyses restrict the origin of a receiver type to
concrete instantiation sites. This yields a precise type which can be independent
from further extensions of the program. Therefore, we have specified a simple
variant of such a type inference algorithm in terms of the generic interprocedural
model as discussed in Section 7.3.

The results of this analysis can be validated within our model. However, an
additional issue arises: The type inference analysis restricts the receiver types
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of the potential call targets and more restrictive call targets yield a more precise
result of the type analysis. Thus, there exists a cyclic dependency between
data flow based type analysis and the determination of call targets. This
dependency can be resolved by interleaving the summary function computation
and the value computation until both computations stabilise. For an exhaustive
discussion of approaches to call graph construction refer to [Gro98]. Section 7.3
discusses the implications for the validation process.

Parameter Passing and Local Variables Data flow analysis computes a data
flow value for each point in the program. This data flow value comprises all
possible program states at the specific point for any execution of the program.
Summary functions map such a program state representation from the point
immediately before the execution of the code to the program state immediately
after the piece of code. This comprises the effects of the code on the program
state and provides a short-cut to derive the output value immediately from the
input value. Thus, summary functions can be considered to be program state
transformers.

It is quite natural to represent the program state by an environment which
maps a set of data flow variables to data flow values. Many data flow analyses
choose a one-to-one relationship between the variables of the program and the
data flow variables in the environment, because they consider the flow of data
through local and global variables. In this model special issues arise at call sites,
because the caller and the callee operate on a separate set of local variables and
the initialisation of the parameter of the callee depends on the arguments at a
specific call site.

Several extensions of the original functional approach cope with this issue
[Kno99], [RHS95]. We adopt the call site model of Knoop [Kno99] within our
summary function representation. The central modelling idea is to express the
semantics of a method call by additional “call”- and “return”-functions denoted
by ψcall and ψret respectively. The call-function models the parameter passing
and assigns the arguments at the call site to parameters within the callee. The
return-function serves two different purposes because it maps relevant changes
in the program state - like the assignment of the result value - to the appropriate
place in the context of the caller and it restores the rest of the context of the
caller. The whole situation is depicted in Figure 4.7.

The caller supplies arguments at the call site which determine the values of
the parameters in the invocation context of the callee. Therefore, we need an
additional mechanism to capture the semantics of parameter passing. Any kind
of variable - local variables, parameters of the caller, and global variables - can
be used as arguments of the call like the local variable l1 which determines the
value of the first parameter of m while the global variable g1 determines the
value of the second parameter. The additional summary function ψcall models
this mapping.

The interprocedural summary ψm maps the invocation context of method m
denoted by ICm to the program state immediately after the execution of the
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Figure 4.7: Method Invocation Model

callee. In turn, the invocation context ICm can be derived from the invocation
context of the caller denoted by ICn by composition of ψ5 and the appropriate
call function ψcall. Similarly, state immediately after execution of method m is
derived from the invocation context of the caller by ψm ◦ ψcallm ◦ ψ5.

However, the caller and the callee operate on separate incarnations of the
method frame. Each of them has its own set of local variables and the ma-
nipulation of a local variable by the callee must not influence local variables of
the caller. This is especially important for recursive method calls where caller
and callee are two different invocations of the same method. In such a case
the local variables of the caller and the callee have to be kept apart because
the modifications of the local variables in the callee must not affect the same
variables in the caller.

The compositionψm◦ψcallm◦ψ5 expresses the final state of the callee in terms of the
context of the callee. The construction of the corresponding state O5 in the caller
requires two different tasks. Firstly, modifications of the program state in the
callee which affect the state of the caller - like manipulations of global variables
and the assignment of the result value - have to be mapped into the context
of the caller. Secondly, the values of all local variables and parameters in the
caller have to be restored. This invalidates potential manipulations of the local
variables in the callee. These tasks are achieved by the return functional ψretm

which takes the input summaryψ5 and the compositional functionψm◦ψcallm◦ψ5
as parameters. The functional acts as a kind of “selector”-function which either
retrieves the definition of result values form the input function in order to restore
values or from the compositional function in order to integrate manipulations
of the program state in the caller context. Refer to Section 5.5 for the details.
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4.2.5 The Interprocedural Validation Principle

The validation of interprocedural analysis results is primarily concerned with
the validation of so called summary functions. Such summary functions capture
the effects of a method call more precisely than the conservative assumptions
of an intraprocedural analysis. The computation of summary functions is a
data flow problem which operates on data flow functions instead of data flow
values. It is closely related to the inducing data flow problem, because the
lattice of the inducing problem specifies the domain of summary functions
and elementary transfer functions integrate the semantics of flow nodes into
summary function. Thus, the general validation principle can be applied to the
validation of summary functions but requires a function model which supplies
function composition, function meet, and function comparison operations.

Dynamic method binding, parameter passing, and local variables complicate
the model of a method invocation. This finally leads to the following validation
principle:

Principle 3 (The Interprocedural Validation Principle) The code consumer re-
ceives intraprocedural summary functions ψi, ψi′ for each flow graph node within each
method, interprocedural summary functions ψm for each method, and a conservative
approximation of the invocation context ICm of each method.

The check that the given values constitute a solution to the following system of equation
ensures the validity of the result with respect to the program in question:

ψi′ v fi(ψi) with
{

fori < Call : fi(x) = ψii′ ◦ x
fori ∈ Call : fi(x) = ψcalln ◦ x

ψi v
l

j∈pred(i)

ψ j′

ψm v ψExitm

ICn v

l

mi∈CallSites(n)

ψmi(ICm)

The construction of the summary ψcallm requires the determination of all potential call
targets target(m) if the call is bound dynamically.

ψcallm =
l

i∈target(m)

ψcallmi

Each single call function is constructed from a summary function which expresses the
simultaneous assignment of arguments to parameters and a return functional, which
restores the local context of the caller and maps the modifications due to the method
invocation back into the caller context.

55



CHAPTER 4. FUNDAMENTAL VALIDATION PRINCIPLES

All in all, the general validation principle can be adopted to support the vali-
dation of summary functions and final data flow results of an interprocedural
analysis. The essential difference is that the equation system deals with sum-
mary functions which have to be validated like data flow values.

4.3 Program Modules and Sophisticated Validation
Scenarios

Any program is confronted with interfaces to other modules. Most state
of the art programming environments like Java or C# provide a rich set of
basic functionality in a runtime library. Furthermore, large software systems
have to be separated into modules to keep them maintainable and to enable
reuse. However, even a monolithic program written in a specific programming
language interacts with the operating system by calls to system routines which
provide low-level IO or access to the file system. Thus, any practical approach
to program analysis has to consider the boundary between software modules
written by different code producers and potentially implemented in a different
way.

There are three different approaches to the analysis of software modules [CC02]:

Worst-Case Assumptions: The analysis of a software module makes conser-
vative assumptions about the potential effects of each external call. This
corresponds to the loss of all analysis information at such a call site and
leads to a significant loss of precision.

User-Defined Interfaces: The analysis uses external information about the
behaviour and potential influence of external calls. This information may
be supplied by the user or it may stem from a separate analysis of the other
software module. However, the other module can contain call-backs into
the using module which have to be treated conservatively. This also results
in a loss of precision.

Symbolic-Relational Analysis: Each software component is considered in iso-
lation but the analysis yields a result which captures the dependency on
other software modules. A subsequent composition phase can combine
the analysis information for different modules and resolve the depen-
dencies. This yields a precise result for the whole program but requires
additional analysis effort in the combination phase.

The benefit of modular analysis is twofold. Firstly, it separates the analysis
effort. The analysis of a single module can be performed in isolation and the
analysis results can already be used to optimise the module. Secondly, the
analysis results of a single module can be reused several times if the module is
used in different contexts.

The symbolic-relational approach can even achieve the same precision of global
analysis. At the same time the relational representation - if compact and
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efficient - provides a natural source of speed-up. All internal dependencies
within the module can be resolved during the analysis of the module so that
the subsequent analysis which composes the results of different modules and
resolves the remaining inter-module dependencies is significantly faster than a
whole program analysis which starts from scratch.

Furthermore, a symbolic approach also subsumes the other approaches: If it
is possible to integrate the potential analysis results for other modules into
modular results of a software module, then we can also use this mechanism
to integrate worst-case assumptions of user defined analysis results instead of
analysis results. Thus, a symbolic modular result representation can signifi-
cantly increase the flexibility of an analysis framework.

The advantages and the need of modular analysis naturally leads to the question
how a validator can check results which stem from modular analysis. Firstly,
we reconsider the equation system to find out how analysis results of other
software modules can influence the result. This leads to the safe lower bound
principle which captures the idea that assumptions about external modules can
be integrated at insertion points in a symbolic representation. After a brief
example which provides an intuition of the idea, we discuss how the safe lower
bound principle is applied in the incremental and partial validation scenario.

4.3.1 The Safe Lower Bound Principle

Our is to find a representation which supports both the integration and val-
idation of interprocedural data flow information and the early extraction of
analysis results which do not depend on the other methods. The fundamental
modelling idea arises from an inspection of the data flow equation system which
describes an interprocedural analysis problem.

The first observation is that there is one defining expression for each data
flow fact. The invocation context of a method is defined by the invocation
contexts at each call site where the method may be invoked. Such an invocation
context corresponds to the intermediate state within the caller immediately
before the execution of the method. This state is defined by the corresponding
intraprocedural summary function of the program point. This summary is
itself defined by the summary functions of the predecessor blocks which either
depend on elementary transfer functions or the interprocedural summaries of
the callees. All in all the data flow facts - values as well as functions - transitively
depend on each other.

What are the unknown parts within this equation system if only a single method
is considered?

Obviously, the invocation context of the method is unknown, because it depends
on the invocation contexts at each call site. Thus, an invocation context in an
external module can weaken the result. Secondly, the summary functions of
external callees depend on the behaviour of the code in these methods.
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An unknown invocation context of a method acts as the parameter for intrapro-
cedural summary functions. The evaluation of the intraprocedural summary
function yields the final result of the intermediate state at the corresponding
program point. Thus, the intermediate states of the method indirectly depend
on the invocation context.

The intraprocedural summary functions of a method under consideration de-
pend on the summary functions of callees because the unknown callee sum-
maries are integrated by function composition at call sides.

Therefore, it is not possible to solve the system of data flow equations because
it incorporates data flow variables and function variables which refer to external
entities. These variables describe how the result depends on external modules.
Now assume that it is possible to modify the equation system in a way, which
removes all internal variables from the defining term in each equation so that
only external variables remain. Then this result representation expresses sym-
bolically how the data flow result of the software module depends on external
code.

The summary function model developed in Chapter 5 supports the computa-
tion of such a representation. At this point we just formulate the safe lower
bound principle, under the assumption that a modular result representation
exists which contains variables for unknown invocation contexts and callee
summaries of external methods.

Principle 4 (Safe Lower Bound Principle) The substitution of all external vari-
ables in the system of data flow equations by safe lower bounds yields a safe lower bound
for the solution of the equation system.

The safe lower bound principle captures the observation that it is possible to
construct a safe solution from a modular result representation if we replace the
dependencies on external modules by pessimistic assumptions.

Now, we just briefly discuss an illustrative example and defer the definition
of the underlying model to 5. Consider the simple program in Figure 4.8 and
assume that the analysis in question performs copy constant propagation.

Both intermediate program states O1 and O2 depend on the invocation context
of the method. The state O2 additionally depends on the interprocedural callee
summary ψm.

The following data flow equations summarise the situation:

O1 = ψ1′(IC)
O2 = ψ2′(IC)
ψ1′ = t1 ◦ id
ψ2′ = ψm ◦ ψ1′

Obviously, we cannot compute the final values for O1 and O2 until IC is available
and we cannot compute the summary function ψ2′ either because the summary
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l1 = 4;
l2 = p1;

l2 = m();

void method(p1, p2) {

}

IC = (?,  ?,  ?, ?)

O1 = (?,  ?,  ?, ?)

O2 = (?,  ?,  ?, ?)

t1


m

Figure 4.8: Safe Lower Bound Principle

also depends on the external callee summary ψm. However, it is possible to
determine ψ1′ because the function just depends on the transfer function t1
which is given by the specification of the analysis problem.

Furthermore, we can apply the safe lower bound principle, if we substitute the
unknown value of IC by the safe lower bound IC⊥ = (l1 = ⊥, l2 = ⊥, p1 = ⊥, p2 =
⊥) and apply the known summary functionψ1′ which yields a safe lower bound
for O1

O⊥1 = (l1 = 4, l2 = ⊥, p1 = ⊥, p2 = ⊥)

Interestingly, this safe lower bound contains the valuable information that l1
is constant at point O2. This information is stronger than the most pessimistic
assumption about O2 because some pieces of data flow information is generated
within the software module under consideration. Thus, the application of the
safe lower bound principle extracts those pieces of the result which hold already.

The principle can be applied to external callee summaries, too. In the example
the effect of the call of method m can be safely approximated by a function
which does not return a constant value. Thus,

ψ⊥m((l1, l2, p1, p2)) = (l1,⊥, p1, p2)

This safe lower bound for the callee function can in turn be used to derive a
safe lower bound for the output state O2. It just has to be applied to the safe
approximation of the invocation context like the preceding summary function
ψ1′ . This operation yields:

O⊥2 = ψ⊥m(IC⊥) = (l1 = 4, l2 = ⊥, p1 = ⊥, p2 = ⊥)
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The safe lower bound principle extracts valuable information at point O2 again,
because the result states that the local variable l1 is constant 4. This result is
reasonable, because the safe approximation of the callee summary implicitly
encodes, that the local variables of the caller are not affected by the method
invocation. This is correct for the analysis under consideration. This way,
even safe approximations of external summary function have the potential to
propagate valuable data flow information which supports the extraction of
information from a modular result representation.

4.3.2 Incremental Validation

In the incremental validation scenario we want to use the modular result
representation to

• extract those pieces of the results which just depend on the properties of
the program module so that the validator can use them ahead of time

• determine the valid parts of the available results in order to improve the
efficiency of the validation process.

The idea is to split the analysis context into smaller pieces and to annotate each
piece with a modular result representation that shows the dependencies on
external code and with the final result of the analysis of the original module.
As a consequence, each single piece of software can be considered in isolation
and the validity of the final result can be established in an incremental way.

The modular result representation and the safe lower bound principle form the
corner stones of the approach. The safe lower bound principle is able to extract
a safe lower bound for the final data flow result from the modular result at any
point in time. The validator can establish the validity of a single data flow fact
as soon as the safe lower bound for the fact corresponds to the final result.

Reconsider the example program in Figure 4.8 and assume that the implemen-
tation of the callee m is given by

i n t m( ) {
return 5 ;

}

Thus, the final output state O∗2 = (l1 = 4, l2 = 5, . . . ) supplied in the annotations
states that both the value of local variable l1 and the value of local variable
l2 is constant. However, the application of the safe lower bound principle
yields O⊥m = (l1 = 4, l2 = ⊥, . . . ). Thus, the fact that the local variable l2 is
constant cannot be derived from an inspection of the original method alone.
Nevertheless, the fact that l1 is constant 4 can already be used ahead of time.

As soon as the callee m becomes available it is possible to validate that its
summary function returns the constant value 5, because method m does not
depend on any callee. The valid summary can in turn be integrated into the
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intraprocedural summaries of the callees. This directly yields the validity of the
dependent result O∗2 in the caller.

Section 5.4 treats this incremental strategy in more depth.

4.3.3 Partial Validation

The incremental validation approach assumes that the analysis context is sepa-
rated into several sub-modules. Each sub-module is annotated with a modular
result representation which reveals its dependencies on other submodules. Fur-
thermore, the annotations contain the final results from the analysis of the whole
context, too.

The incremental validation can derive save lower bounds from the modular
representation which are immediately usable. Furthermore, the final results
can be checked in an incremental way. Essentially, a piece of the final result is
valid if it does not longer depend on unavailable modules. This property can
be checked by the comparison of the final result and the safe lower bound that
safely approximates the effects of all missing modules.

The partial validation scenario differs because we expect that each software
module is analysed in isolation. Therefore, it is not possible to ship the final
result that incorporates the effects of external modules together with the module.
However, it is still possible to ship the modular result representation and to
apply the safe approximation principle to derive a safe lower bound for the
software module. Furthermore, it is still possible to incorporate analysis results
from other modules into the modular representation later. At this point, the
modular result representation differs from the result for the software module
under the worst-case assumption and it is possible to construct more precise
results.

However, the fact that no final solution is available limits the effectiveness of
the composition. The problem is that the result from different modules can
cyclically depend on each other. A fix-point iteration is required at the consumer
side to resolve such dependencies. In fact, this is again a data flow problem and
we expect that the consumer is not able to solve such a problem on its own -
even the problem is less complex than the original one, because all dependencies
within each module have already been resolved. The only way out is to use
safe-under approximations whenever the composition would lead to a cyclic
dependency.

In contrast, the final result which is shipped in the incremental scenario consti-
tutes the “inter-module” fix-point of the analysis, so that the validation of this
precise result gets possible.

Obviously, there is a correlation between the size of the analysis context and
the remaining effort during the composition in the partial analysis scenario.
However, we do not consider this quite advanced scenario in detail and restrict
the implementation to the incremental scenario which already deals with the
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most important issues of the representation and validation of modular analysis
results.

4.4 Summary and Comparison

This chapter formulates the central principles for the validation of data flow
results for incomplete programs. The general validation principle states that
data flow results can be validated by the proof that they solve the system of
data flow equations which describe the data flow problem with respect to the
given program.

The idea is also applicable to the validation of interprocedural analysis re-
sults. Such results depend on summary functions which capture the effects
of methods more precisely and which are computed by a data flow analysis.
The corresponding equation system is more complex and involves composi-
tion, meet, and comparison operations on summary functions. Furthermore,
dynamic method binding, parameter passing, and local variables complicate
the integration of callee summaries at call sites.

The validator cannot establish the validity of summary functions which depend
on missing program parts. However, the validator can compute safe lower
bounds for the analysis results of a software module. The idea is to consider
references to missing program parts as variables and to substitute these variable
by safe lower bounds. Safe lower bounds provide a safe under-approximation
of the analysis result at any point in time. Furthermore, given results can be
considered valid as soon as they correspond to the safe lower bound. This is
an indirect proof that the given results do not depend on the results of other
modules anymore.

Several issues remain to be solved:

• A function representation is required that supports function composition,
function meet, and function comparison (see Chapter 5).

• The validation process relies on a valid determination of all potential
targets of a call. Essentially, the validity of a call graph has to be proved.
However, there exists a cyclic dependency: the call graph is constructed
by an interprocedural data flow analysis, which determines values for
function pointers or reference types but the analysis requires a call graph
(see Section 7.3).

• Parameter passing and the return from a function call have to capture the
semantics of the data flow problem correctly. The problem is discussed in
more depth in 5.5.

• An incremental or partial validation requires a modular result represen-
tation. This representation must also be validatable because otherwise the
validator cannot safely use the representation to extract safe lower bounds
(see Section 5.4.4).
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Comparison to Other Approaches The interprocedural validation principle
is formulated on a high level of abstraction. It adopts the generic formulation
of Sharir and Pnueli [SP81] which state interprocedural analysis as a data
flow problem which operates on the function lattice induced by an arbitrary
underlying data flow problem. At this level of abstraction, the model is both
flow- and context-sensitive. Context-sensitivity is implicit because summary
functions map the invocation context of a method to an intermediate state. In
contrast, flow-sensitivity depends on the properties of the elementary transfer
functions of the inducing problem.

Parameter passing and local variables require special attention at call sites. We
adopt the return-function model of Knoop [Kno99] to deal with this issue. Reps
also provides a solution in terms of a graph based function representation in
[RHS95].

We observe that dynamic method binding requires additional analysis effort to
restrict the potential call target while the original formulation assumed a single
known target at each call site. Any such call target determination has to be
validated before the results of a concrete analysis can be checked. Simple call
graph analyses like name based resolution, class hierarchy analysis, and rapid
type analysis [TP00], cannot be checked until the whole program is available.
This also applies to more sophisticated analyses like field or method type
analysis, which separate types reachable by a field or an method respectively.
In contrast, analysis which consider the data flow of types [Gro98] fit into
the general data flow model and can be validated according to the general
principles.

The validation of intraprocedural data flow results was first addressed in
the special scenario of lightweight bytecode verification [RR98]. The general
applicability to intraprocedural analysis problems is addressed in [Ros03] and
[Amm07].

The abstraction carrying code approach [APH05] reformulates the general vali-
dation principles in terms of an abstract interpretation framework [CC77]. The
underlying constraint solver provides support for the incremental validation of
data flow results [AAP06] but the framework does not supply explicit support
for interprocedural analysis.

SafeTSA [ADvRF01], [vR05] approaches mobile code security from a slightly
different angle. SafeTSA provides a program representation which implicitly
enforces the desired properties of the program - i.e. it is not possible to represent
program which violates the security constraints. The approach is based on
static single assignment form which is difficult to extend to the interprocedural
scenario.
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5 A Generic Model for Summary
Functions

Chapter 4 discusses the general validation principles which supports the vali-
dation of interprocedural analysis results for software modules. Furthermore,
the chapter identifies several challenges which have to be addressed by an anal-
ysis framework which supports the validation of analysis results. This chapter
presents a summary function model which supplies the required properties and
which supports the interprocedural validation. The summary function model
“lifts” a definition of an inducing data flow problem from the instruction-level
to the interprocedural-level automatically. This way, it is possible to apply the
same validation process to various kinds of inducing data flow problems.
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Figure 5.1: The Role of the Function Model in the Validation Scenario

Figure 5.1 shows how the separate pieces of the function model establish
the bridge between an inducing data flow problem and the interprocedural
validation phase. Furthermore, the figure acts as a road map for this chapter.

The inducing data flow problem has to supply the implementation of the lattice
which encodes the data flow values the analysis intends to compute. This
is sufficient for example to specify simple bit-vector analysis in the summary
function model. Additionally, the definition of more sophisticated analysis
like linear constant propagation requires the use of so called elementary transfer
functions.
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CHAPTER 5. A GENERIC MODEL FOR SUMMARY FUNCTIONS

The summary function model and the elements of the inducing data flow prob-
lem are combined in instruction-level summary functions. The specification of
an analysis requires the definition of these instruction-level summary functions
only, because the function model deals with all other aspects of the interproce-
dural analysis problem and the validation of its solution.

The solution of an interprocedural data flow problem requires to solve two
different data flow problems. Firstly, a summary function has to be computed
for each method, in order to capture the effects of a method invocation at each call
site in the program more precisely than in an intraprocedural analysis. Secondly,
the conservative approximation of the invocation contexts at all potential call
sites of a method yields a more precise result for the invocation context of this
method, which in turn leads to more precise results for the data flow facts that
describe the intermediate states in the method.

The system of data flow equations, which specifies the summary function prob-
lem, involves function composition with instruction-level summary functions,
function meet, and an order relation on summary functions. The function model
presented in this thesis supplies these operations. In particular, the model pro-
vides a simple criterion to compare two different function representations with
each other. This way, the function model lifts problem specific instruction-level
summary functions to the corresponding interprocedural problem automati-
cally.

Two additional aspects complicate the computation of summary functions.
Firstly, the semantics of the parameter passing mechanism has to be specified
whenever the analysis deals with local variables in the program. Secondly, our
application scenario requires the representation of modular analysis results. We
want to supply analysis results for each software module so that the validator
can continuously validate and combine the sub-solutions into a solution for the
whole program. The summary function model solves these two issues, too.

The second data flow problem specifies a valid solution for the safe approxima-
tion of the invocation context of each method. This specification depends on
the application of summary functions of the first problem. A definition of function
application is also given by the function model. Summary functions have to
be applicable, because they act as transfer functions which map the invocation
context of a method to intermediate states within the method during the second
analysis phase.

Finally, the summary function model provides a normalisation mechanism for
summary functions. The normalisation is vital to keep the size of summary
functions under control. This is important because a data flow solution for
the first problem is expressed in terms of summary functions and has to be
transmitted to and processed by the validator.

This chapter is structured according to these different aspects of the summary
function model.

Section 5.1 defines the summary function model and addresses the fundamental
requirements for the validation process namely how the model represents
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summary functions and supports function composition, function meet and
function application. The general idea is to model summary functions by data
flow expressions which consist of elements of the inducing data flow problem
and to reduce the operations on summary functions to operations on these
data flow expressions. The core model of data flow expressions combines
values of the inducing lattice, data flow variables which refer to the input
state of the summary function and the conservative approximation operator
of the inducing problem. This is already sufficient to define the instruction-
level transfer functions of simple bit-vector analyses. In order to increase
the expressiveness of the summary function model, Section 5.2 describes the
integration of elementary transfer functions into the model. Such elementary
transfer functions encode problem-specific properties of the inducing analysis
which cannot be expressed by the core model.

Section 5.3 defines reduction rules which lead to a normal form of summary
functions. The normal forms separate the summary functions into equivalence
classes so that the comparison of summary functions reduces to the comparison
of normal forms. Furthermore, the normal forms are compact because the
normalisation process corresponds to a partial evaluation strategy of data flow
expressions. Furthermore, we prove that the specified summary functions
form a lattice. This ensures that they can be used to define an interprocedural
data flow problem. This is the formal justification that the general validation
principle is applicable for the validation of interprocedural results which are
expressed in terms of the summary function model.

Section 5.4 extends the model with function variables in order to deal with
modular results. Function variables express the dependencies on code which
is external to the software module under consideration in a flexible way. It is
possible to substitute such variables by safe lower bounds or to substitute them
with analysis results of other software components as soon as they become
available. The analysis phase as well as the validation phase can use modular
analysis results in various ways. The analysis phase deals with potential effects
of external code either pessimistically by a safe approximation of the function
variables or optimistically if this is justified by special knowledge about the
application scenario or about language properties. The validation phase can
use a modular result to validate pieces of the analysis result even before the
complete result has been transmitted to the code consumer. This is useful,
because the validator can already use pieces of the result ahead of time and it
can early drop those pieces of the result which are not required for the validation
anymore.

We integrate the support of local variables and parameter passing into the model
in Section 5.5. The summary function of a callee cannot be integrated directly
into the summary function of a caller because both operate on their own set of
local variables. The arguments at a specific call site initialise the parameters of
the callee. Furthermore, the original values of the local variables of the caller
have to be restored after the execution of the callee and all effects on the caller
like the assignment of the result value or modifications of global variables have
to be mapped into the context of the caller.
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The chapter concludes with a summary and a discussion of related work which
is organised according to the different modelling aspects. Additionally, we
directly compare the function model with the IDE-framework of Reps, Sagiv,
and Horwitz [RHS95], [SRH96] in Sections 5.1 and 5.2 because both models
share several fundamental modelling ideas.

The main contribution of this thesis is that it develops a summary function
model which supports the validation of interprocedural results with minimal
assumptions about the inducing analysis. Furthermore the thesis shows how
the model can be extended to cope with modular analysis results.

5.1 Summary Function Definition

A summary functionψmn maps the program state at point m to the state at point
n and comprises the effects of all executions paths between these two points.
This section defines the structure of the summary function representation and
specifies the function operations which are required for the validation of inter-
procedural data flow results that are represented in terms of the model. At the
end of the section we will show how to use the model to specify instruction-
level summary functions for a specific data flow problem. Throughout the
whole chapter simple data flow problems like different variants of constant
propagation serve as a running examples.

The following sections extend the core model by elementary transfer functions,
normalisation rules, and function variables. The fundamental modelling ideas
can be summarised as follows:

1. The program state is decomposed into an environment - i.e. a mapping from
an arbitrary set of data flow variables to data flow values. Dependencies
between different pieces of the program state can be captured precisely in
such a fine-grained model.

2. The representation of a summary function consists of data flow expressions
which reduce the summary function computation to operations supplied
by the inducing data flow problem. The inducing data flow problem is de-
fined by instruction-level transfer functions and a value lattice only. Thus,
the summary function model “lifts” the definition of an intraprocedural
analysis to an interprocedural analysis in a generic way.

3. The summary function model supplies a simple comparison criterion. The
existence of an efficient comparison operation is vital for the validation
process.

4. We define a set of normalisation rules which reduce a data flow expression
to a canonical form. The reduction process corresponds to a partial
evaluation of the expressions and it is essential to keep the size of the
function representation under control.

5. Finally, the use of function variables in data flow expressions can model
the potential effects of unavailable parts of the program. The function
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variables can either be substituted by summary functions as soon as the
corresponding code becomes available or their effects can be safely ap-
proximated at any point in time. This additional degree of freedom sup-
ports an incremental validation scenario where the validator subsequently
validates and integrates analysis results for classes which are loaded at
different points in time.

5.1.1 Summary Functions and Data Flow Expressions

We start with a definition of the program state in terms of an environment which
maps a set of arbitrary data flow variables to data flow values.

Definition 1 (Program State) Let Var = {x, y, z, . . . } denote an arbitrary set of data
flow variables and let L be the lattice of data flow values of the inducing analysis. Then
we model the program state at a program point m by an environment envm, i.e. a
mapping from data flow variables to data flow values:

envm = 〈x→ xm, y→ ym, z→ zm, . . . 〉

Thus, the variable x refers to some data flow fact “x”, while xm denotes the value
of the data flow fact x at program point m.

Our central modelling idea is to define the semantics of a summary function
ψmn with respect to a single data flow fact x by the following equation

xn = f x
mn(envm) with f x

mn(envm) = ex
mn|[x:=xm,y:=ym,... ]

The function f x maps the program state at point m to the value of x at point
n denoted by xn. We call function f x

mn evaluation function of x because the
evaluation of the expression ex

mn yields the result of the function. The data flow
expression ex

mn is the defining expression of f x
mn.

Evaluation functions and their defining data flow expressions are superscribed
with the name of the data flow fact they evaluate to. It is important to observe
that an evaluation function takes the whole environment as parameter but
evaluates to a single data flow flow value for x. A summary function which
manipulates the whole environment consists of a tuple of evaluation functions
- one for each data flow fact. Thus,

Definition 2 (Summary Function) The summary function ψmn which maps the
program state envn at program point n to the program state envm at point m is defined
by

ψmn = 〈 f x
mn, f y

mn, f z
mn, . . . 〉 = 〈ex

mn, e
y
mn, e

z
mn, . . . 〉

Figure 5.2 shows an example for the structure of the summary function and
the environment in a small program where the program states consists of three
local variables x, y, and z only. However, the model extends smoothly to greater
environments as depicted on the left hand side of the figure.
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Figure 5.2: Environments and the Summary Function Model

The example program contains four basic blocks. In order to separate the
program states immediately before and after the execution of a basic block, we
mark the post state with an additional prime. Thus, the summary function ψ0′3
maps the program state after the execution of node 0 to the program before the
execution of node 3. Summary functions which map the state 0 of a method
to some intermediate state j play an important role during the analysis phase
which computes interprocedural summary functions. Thus, we omit a leading
0-index if it is clear from the context - i.e. ψ j corresponds to ψ0 j.

For the sake of simplicity, we abbreviate the environment envm = 〈x→ xm, y→
ym, . . . 〉 by (xm, ym, . . . ) and we notate function definitions which take an en-
vironment as parameter similarly to function applications in a programming
language, thus ψmn(envm) = ψmn(x, y, . . . ).

The summary function ψO′3 consists of three evaluation functions 〈 f x
0′3, . . . , f z

0′3〉

each of which is in turn specified by its defining data flow expression. Many of
the traditional analysis choose a direct correspondence between the variables of
the program and the data flow variables to model the program state. However,
data flow variables in the set Var can also refer to different program entities like
available expressions, global fields etc.

The definition of data flow expressions, which define the evaluation functions
completes the summary function model.

Definition 3 (Data Flow Expression) A data flow expression e has the form

e ::= c | x | e1 uL e2 | ti(e1, . . . , e j) | si(e1, . . . , e|Var|)

where c is a data flow value of the inducing lattice, x ∈ Var is a data flow variable,
si ∈ FctVar is a free function variable, uL, and ti ∈ ET are the safe approximation
operator and an elementary transfer function of the inducing data flow problem.
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5.1. SUMMARY FUNCTION DEFINITION

This definition assumes that the inducing data flow problem is a meet-problem
so that the safe approximation of two elements is given by the greatest lower
bound operator uL. Join-problems are treated similarly but we stick with the
symbol of the meet-operation throughout the thesis. Both join and meet model
the concept of safe approximation of two analysis results.

The different kinds of data flow expressions deal with several aspects of the
data flow problem in question:

Constant Expressions (c) do not depend on the input environment. They
model the generation of data flow facts.

Data Flow Variables (x) refer to specific elements of the input environment.
They can express value assignments etc. and act as insertion points during
function application and function composition (see Section 5.1.2).

Safe Approximation Expressions (uL) model the safe approximation of two
data flow facts in the inducing lattice L. This is vital do reduce the function
meet to the meet-operator of the inducing lattice.

Elementary Transfer Functions (ti) model more complex dependencies be-
tween data flow facts. They are required to increase the expressiveness of
the model to data flow analyses like linear constant propagation.

Function Variable Expressions (si) act as insertion points for summary func-
tions that model the effects of external code.

After the introduction of the summary function model, we continue with the
definition of the operations on summary functions.

5.1.2 Function Operations

The definition of the required function operations is straight-forward and can
be summarised as follows:

Function Application → evaluation of expressions with data flow variables
substituted by parameter values

Function Composition → substitution of data flow variables with defining
expressions

Function Meet →meet of expressions

Function Comparison → structural comparison of defining expressions

Function Application and Composition Variables in expressions give rise
to the definition of function application and composition because they describe
how a single item of the output state - namely x - depends on the pieces of the
input environment. The evaluation function f x

mn(x, y, z, . . . ) = ex
mn can contain

references to pieces of the input state like x, y, or z. A concrete input state
envm = (xm, ym, zm) yields the value of x at program point m by substitution of
variables in ex

mn with the corresponding values in envn , thus
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∀v ∈ Var, f x
mn(x, y, z, . . . ) = ex

mn : xn = f x
mn(xm, ym, zm, . . . ) =de f ex

mn|[v:=vm]

Thus, the application of the evaluation function the data flow value 7 yields
f22′(7) = ex

22′ |[x:=7] = x|[x:=7] = 7. Obviously, ex
22′ = x models the identity function

for variable x which is natural because it captures the semantics of the self
assignment in the block, that does not change the value of x.

Similarly, function composition reduces to substitution of variables in expres-
sions, too. Consider the evaluation functions f x

11′ and f x
22′ in Figure 5.3. The

functions map the program state at point 1 and point 2 to the value x1′ and x2′ ,
respectively. The evaluation function f12′ maps the program state at point 1 to
the value x2′ directly and can be constructed as follows:

The evaluation function f x
11′ defines the state x1′ = f x

11′(x1) in terms of x1 while
f x
22′(x2) = ex

22′ defines the state x2′ in terms of x2. Furthermore, the states x1′

and x2 are equal, so that x2 = x1′ = f x
11′(x1) = ex

11′ . Consequently, the defining
expression ex

11′ can substitute x2 in ex
22′ . This yields a defining expression ex

12′
which describes the dependency of x2′ to the input state x1. Thus,

f x
lm(x) = ex

lm , f x
mn(x) = ex

mn :
f x
ln = f x

mn ◦ f x
lm =de f f x

mn(ex
lm) = ex

mn|[x/ex
lm] = ex

ln

Essentially, the substitution removes the variables which reference the interme-
diate state at the point between the two functions. For example, the substitution
within the identity expression in ex

22′ point 2 effectively propagates the defin-
ing expressions from point 1 so that the evaluation function f x

12′ becomes the
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constant expression 5. Interestingly, constant expressions like ⊥ in f33′ stop the
propagation of expression from the preceding functions, because they do not
contain variables that can be substituted. This way, newly generated data flow
facts invalidate the knowledge derived for a variable beforehand.

The example assumes that the program state only consists of a single data
flow fact x. However, the composition can be extended to the composition
of summary functions which operate on a whole environment easily. The
difference to the single variable case, is that the defining expression in the second
function f22′ can contain several data flow variables. Each of these variables has
to be substituted with the defining expression of its corresponding evaluation
function in ψ11′ .

Function Meet and the Order Relation of Functions The flow of control
merges at join points in the program. After the join point only those data flow
facts remain valid which are valid on all paths which reach the join point. This
is captured by the safe approximation operator uL of the inducing data flow
lattice because it yields the strongest data flow fact which subsumes the given
facts.

We reduce the meet of summary functions to the meet of expressions. Consider
the situation in the example program in Figure 5.3 where two summary func-
tions map the input state x0′ to the two data flow values x2′ and x3′ immediately
before the join point denoted by the program state x4. The meet of these two
functions maps the input state x0′ directly to the state at the join point. This
state is defined by the conservative approximation of the predecessor states
x4 = x2′ uL x3′ which in turn are defined by the defining expressions of f x

12′ and
f x
33′ respectively. Thus, the meet of these expressions captures the semantics of

the join point and defines the function meet:

f x
14 = f x

12′ uψ f x
33′ =de f ex

12′ uL ex
33′ = 5uL ⊥

The definition of a meet operation always gives rise to the definition of an
order relation because x u y = y ⇔ x w y. Accordingly, the meet of data flow
expressions leads to a simple criterion to decide the order relation of expressions.

Theorem 1 (Simple Order Relation on Expressions) An expression e1 safely ap-
proximates an expression e2 if it contains strictly more subexpressions than e2. Two
expressions are equal if they contain exactly the same subexpressions.

Functions are in order relation if their defining expressions are in order rela-
tion. We defined function application by expression evaluation. Furthermore,
the evaluation of a meet expression can only yield a weaker result due to the
semantics of the meet in the inducing lattice. Therefore, an evaluation function
which combines strictly more subexpressions with this operator can only pro-
duce weaker or equal results. This way a structural comparison of data flow
expressions gives rise the comparison of summary functions.
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Unfortunately, the simple comparison criterion raises an important challenge. It
compares two expressions purely syntactically. As a consequence, semantically
equivalent expressions like 4 uL 3 and ⊥ are not considered to be equal. The
meet of these expressions yields

(4 uL 3)uL ⊥= 4 uL 3uL ⊥

Thus, the result expressions tend to be larger than necessary. We solve this
problem by the definition of normalisation rules - e.g. folding of constant
expressions or the use of specific properties of the bottom element ⊥ - which
lead to a much more compact representation. This is discussed in Section 5.3.1.

5.1.3 Specification of Instruction-Level Summary Functions

The specification of a data flow problem in the functional approach to inter-
procedural analysis only requires the definition of transfer functions for each
instruction of the program. The approach automatically combines transfer func-
tions for two subsequent instructions by function composition. Similarly, the
function meet combines the summary functions of different execution paths
between two program points into a summary functions that characterises the
effects of both path. This way, the functional approach computes summary
functions which span larger and larger program parts.

This construction strategy by function composition and function meet does not
depend on the inducing problem. However, the functional approach usually
treats the function representation and the implementation of composition and
meet as a black box. The summary function model presented in this Chapter
goes a step further, because it does also define function composition and func-
tion meet independently from the inducing data flow problem. This reduces the
specification of a data flow problem to the specification of instruction-level sum-
mary functions in terms of the summary function model and the frameworks
supplies a generic implementation for function composition and meet.

For example, consider the program in Figure 5.4 and assume that we want
to specify the reaching definitions problem in terms of the summary function
model. There are three definitions of the local variable x which we name
according to their program position as x1, x2, and x3. Furthermore, the local
variable y is defined at point 0 which additionally introduces the definition y0.
The reaching definitions analysis determines whether or not a definition of a
specific variable is available at a specific program point. Thus, an environment
envn =< x1 → bool, x2 → bool, x3 → bool, y0 → bool〉 which maps a data flow
variable for each definition to a boolean value can model the program state
with respect to the analysis problem. The boolean value just states whether
there exists an execution path in the program by which the definition can reach
the corresponding program point or not.

The instruction-level transfer functionsψ11′ , ψ22′ , andψ33′ model the fact that the
definitions x1, x2 and x3 become available at the program points. Furthermore,
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they invalidate the availability of the other definitions of x and preserve the
availability of y is not affected. Thus,

ψ11′ = 〈ex1
11′ , e

x2
11′ , e

x3
11′ , e

y0
11′〉 = 〈⊥,>,>, y0〉

ψ22′ = 〈ex1
22′ , e

x2
22′ , e

x3
22′ , e

y0
22′〉 = 〈>,⊥,>, y0〉

ψ33′ = 〈ex1
33′ , e

x2
33′ , e

x3
33′ , e

y0
33′〉 = 〈>,>,⊥, y0〉

where⊥ (or true) denotes that the definition reaches the point after the instruc-
tion and > (or false) denotes that the definition fails to do so 1

These instruction-level summary functions define the reaching-definition prob-
lem in terms of the summary function model. The summary function com-
putation phase can construct summary functions which span larger contexts
than a single instruction by the generic definition of function composition and
function meet automatically.

For example, the function composition of ψ11′ and ψ22′ yields the summary
function ψ12′ by variable substitution in the defining expressions of ψ22′ :

ψ12′ = 〈>,⊥,>, y0〉
1Traditionally, reaching definitions is modelled as a join-problem but we stick with our conven-

tion to use the symbol u to denote safe approximation. The second aspect which is surprising
at the first glance is that a new definition maps the definition in question to the most pes-
simistic element⊥ and all other definitions of the same variable to the most optimistic element
>. The reason for this is that the knowledge about the program state increases if less definitions
for a specific variables have to be taken into acount. Thus, the important information gain of
a new definition is that all other definitions do not reach the program point immediate after
the definition in question.
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This summary is equal to ψ22′ because the single variable y0 is substituted by
itself and constant expressions do not change during the substitution process.
The function meet at the join point 4 yields the summary function

ψ0′4 = 〈> u >,⊥ u >,> u ⊥, y0 u y0〉

which comprises the effects of both execution paths from the point after instruc-
tion 0 to the point immediately before instruction 4. The summary function
states that definition x1 does not reach point 4 and that definitions x2 and x3
can reach point 4. Moreover, the fact that definitions x2 and x3 reach point 4
does not depend on any information about the program point 0′. In contrast,
the reachability information about definition y0 is propagated by the summary
function, because the corresponding part of the mapping is essentially the iden-
tity mapping.

5.1.4 Relationship to IDFS-problems

The core model of the summary function representation presented in this section
is closely related to the summary function model of Reps, Horwitz, and Sagiv
[RHS95].

The design goal of the summary function model of Reps is to reduce the
summary function computation to a graph reachability problem. To achieve
this, a summary function is modelled as a bipartite graph in which edges
connect nodes which represent the input state to nodes which represent the
output state. The graph model also decomposes the program state into an
environment because a node in the bipartite graph represents a single element
of the whole program state.

The manipulation of the environment is modelled by graph edges in the follow-
ing way. Consider the instruction-level transfer functions for the three different
kinds of instructions shown in Figure 5.5.

The graph model expresses the generation of new data flow facts (new defini-
tions) by connecting the output nodes of the definitions to an artificial true-
element. This enables the reduction to a graph reachability problem because
the question if a definition is available boils down to the question whether there
is a path to the true-element in the graph or not. The data flow expression
model avoids the additional element in the program state tuple and represents
the generation of data flow facts by the constant expression ⊥.

A new definition of a variable invalidates the reachability information about
all other definitions of the variable. The graph model implicitly represents the
invalidation of data flow facts by missing edges in the graph. As a consequence,
there is no path to the additional true-element which is interpreted as the fact
that definition x2 does not reach the point after instruction 1. The assignment
of the constant expression>models the invalidation of data flow facts explicitly
in terms of data flow expressions.
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Figure 5.5: Comparison to the Summary Function Model of Reps

The propagation of data flow facts connects input nodes directly to the corre-
sponding output node in the graph model while the expression model captures
the situation by a self assignment of variables.

Function composition reduces to path compression and function meet reduces
to the union of two graphs. The result graphs directly fit the corresponding
data flow expressions.

Thus, the graph-based model is comparable to the expression model as long
as simple bit-vector analysis like reaching definitions are considered. The
differences become apparent when the approaches are extended to analyses like
linear constant propagation which require more than propagation, generation,
and conservative approximation of data flow facts. Refer to Section 5.2.3 for
details.

5.2 Function Application Expressions and Elementary
Transfer Functions

Constant expressions, data flow variables and safe approximation expressions
already deal with the generation of data flow facts, assignment semantics, and
the safe approximation summary functions at join points. Furthermore, the
summary function model splits the program state into a tuple of data flow
values to keep potential manipulations as local as possible.

These basic parts of the function model can express simple bit-vector problems
and copy constant propagation directly in the summary function model as
discussed in the Sections 7.1.1, 7.1.2, and 7.2.
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Linear constant propagation is one of the simplest analysis which calls for an
extension of the model because it cannot be specified solely with the simple
types of expressions. Consider the statement

x = 2 ∗ y + 10

Obviously, variable x is constant after the execution of the instruction if variable
y is constant before. However, the relationship between the value of x and the
value of y cannot be expressed by a simple assignment and it does not involve
the safe approximation of different data flow facts either. The reason is that the
value of x depends on the value of y in a complex problem-specific way which
cannot be expressed with elements of the core model.

In order to capture such dependencies, we permit that the inducing analysis
supplies a set of elementary transfer functions. Each of these elementary transfer
functions captures a complex dependency between some data flow values in
the input state of an instruction and a single value in the output environment.
For example, the linear constant analysis can characterise the semantics of the
statement by the linear function x = lin(2,10)(y) = 2 ∗ y + 10. We call the transfer
functions of the inducing data flow problem elementary transfer functions to
separate them from the summary functions which describe the semantics of a
instruction-level summary functions in the function model.

The central idea is to use elementary transfer functions in the defining expres-
sions of instruction-level summary function only if the manipulation of the
program state cannot be expressed by simpler expressions. This way, elemen-
tary transfer functions increase the expressiveness of the summary function
model, while their potential effects are kept as local as possible.

5.2.1 Properties of Function Application Expressions

Let T be the set of elementary transfer functions of the inducing data flow
problem. We integrate these transfer functions into the data flow expression
model as follows:

Definition 4 (Elementary Function Application Expression) Let
ti ∈ T : Ln

→ L,n ∈ [0..|Var|] and e1, . . . , en ∈ E be an elementary transfer function
and data flow expressions respectively. Then the elementary function application
expression t(e1, . . . , en) is a data flow expression.

Observe, that we allow elementary transfer functions to have an arbitrary arity
n. Thus, it can take more than one data flow value from the input environment
as parameter. This differs from the usual definition of transfer functions [KU77]
but allows to streamline the representation of function application expressions
in Section 5.4.2. The restriction to a fixed number of data flow values is vital
to decrease the number of parameter expressions. For example, linear constant
propagation only requires unary functions because it considers only arithmetic
dependencies between a single input variable and a single output variable.
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The summary function model is intended to deal with several inducing data
flow analyses uniformly. Therefore, the model does not take specific properties
of the elementary transfer function into account. Nevertheless, elementary
transfer functions stem from the definition of a data flow problem so that they
always exhibit two important properties:

1. Elementary transfer functions are monotone with respect to the order
relation of the inducing lattice. Thus, they preserve the order relation
when they are applied to different values.

2. Elementary transfer functions can be applied to concrete values of the
inducing data flow lattice.

Furthermore, we identify an elementary transfer function ti ∈ T by a unique
index i and we assume that the maximum set of data flow variables that can
influence the result is known. The second prerequisite ensures, that we can
identify the data flow variables which yield the parameters of the expressions
exactly.

These properties guarantee that we can easily integrate elementary transfer
functions into the summary function model. Furthermore, we can estimate their
potential effects on the result of a summary function. Consider the extended
example in Figure 5.6.


1'4'

4: x = 2 * y + 10;

2: y = 3; 3: y = 2;

1: 

x
1'
 y

1'

x
4'
 y

4'


22'


33'


44'

Figure 5.6: Estimating the Effects of Function Application Expressions

The summary functionψ1′4′ results from the conservative approximation ofψ1′2′

and ψ1′3′ in point 4 and the subsequent composition with the instruction-level
summary ψ44′ to:

ψ1′4′ = 〈ex
1′4′ , e

y
1′4′〉 = 〈lin(2,10)(3 uL 2), 3 uL 2〉
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Obviously, this function always yields the most pessimistic element ⊥ for both
x and y independently from the fact whether x or y have a constant value at
point 1′. We can come to this conclusion, because both the safe approximation
operator of the inducing analysis and the elementary transfer functions can
be applied to values of the inducing data flow analysis. Thus, expression ex

1′4′
evaluates to lin(2,10)(3uL2) = lin(2,10)(⊥) = ⊥. This is the most pessimistic element
of the constant propagation lattice and it states that the corresponding variable
is not a constant. The important observation is that it is possible to reason about
the properties of elementary transfer functions even without taking problem
specific knowledge about elementary transfer functions into account. This is
vital for the formalisation of the normalisation process in Section 5.3.1.

5.2.2 Nesting Depth and Fix-Point Properties

The introduction of elementary transfer functions and the example in Figure
5.6 uncover an interesting property of data flow expressions. The structure of
a data flow expression encode different execution paths in the program which
contribute to a specific data flow value. This is closely related to the discussion
in Section 3.1.2 where we observe that the flow graph of a program is encoded
in the system of data flow equations which define a data flow problem. For
example, the function application expression in the summary function ψ1′4′

lin(2,10)(3 uL 2)

encodes that the two paths which join in point 4 contribute two different
constants that are merged by the safe approximation operator. The result
of this merge operation defines the input state for the function application
expression which in turn extends the path to the point after the execution
of the arithmetic operation. The evaluation of the different subexpressions
corresponds to a compression of execution paths - which is one of the key
ideas of the normalisation process for summary functions which is discussed in
Section 5.3.1.

If data flow expressions encode data flow along different execution paths then
it is a natural question, what happens in the case of cyclic structures like loops
which introduce potentially infinite execution paths in the program. Consider
the example in Figure 5.7.

The code contains a loop which increases the value of variable x by the factor of
two which is captured by the elementary transfer function lin(2,0). The summary
function ψ1′3 results from the iterated composition of the summary function of
node 2 namely ψ22′ = 〈lin(2,0)(x)〉 and a subsequent conservative approximation
with the previous value of the summary ψ3′1′ to:

ψ1′3 = (1 u lin(2,0)(1) u lin(2.0)(1 u lin(2,0)(1) u . . . ) . . .

80



5.2. FUNCTION APPLICATION EXPRESSIONS AND ELEMENTARY
TRANSFER FUNCTIONS

while (...) {
2: x = 2 * x + 0;

}


1'3

1: x = 1;

3: 

x
1'

x
3

Figure 5.7: Nesting Depth of Function Application Expressions

Each of the subexpressions in the outermost conservative approximation ex-
pression corresponds to a summary function which yields the input state of
one iteration of the loop. The parameter expressions of the elementary transfer
function refer to the input state of the preceding iteration. Obviously, cyclic
structures in the flow graph of the program can lead to an infinite nesting depth
of data flow expressions, if all execution paths are stated explicitly in the data
expressions.

The problem can be approached in two different ways. Firstly, the nesting depth
of data flow expressions can be restricted to a constant number. Whenever
a nested expression is to be substituted at this nesting level, the expression
is approximated by the most pessimistic element ⊥. This approach restricts
the number of subsequent applications of elementary function applications
considered by the analysis. It is safe and applicable to all inducing data flow
problems but potentially looses precision.

Secondly, the summary function model can take special properties of the in-
ducing data flow analysis into account. Any inducing data flow problem has
to guarantee termination. Therefore, there can only be a limited number of
elementary transfer function applications before the computation of data flow
analysis reaches a fix-point. Consequently, it suffices to track a limited number
of nested application expressions in the function model to ensure that the sum-
mary functions represent the evaluation sequence which computes the fix-point.
For example, following the terminology of [MR90] data flow problems which
are fast (i.e. they are 2-bounded) are guaranteed to reach a fix-point after at most
two subsequent applications of a specific elementary transfer function. It is im-
portant to observe that “k-boundness” is a property of the inducing function
space and not of the inducing data flow lattice. Therefore, a data flow prob-
lem can be bounded even though the underlying data flow lattice has infinite
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height. The boundness of summary functions still guarantees the termination
of the analysis after a finite number of iterations.

However, we will not consider the second approach further in order to keep the
summary function model as lean as possible. Our primary goal is to solve all
analyses presented in Chapter 7 in a more precise way than their intraprocedural
counterparts. This can already be achieved with the first strategy.

Interestingly, the challenge does not even arise for simple bit-vector problems.
The specification of instruction-level summary functions - e.g. for the reaching-
definitions problem - does not require elementary transfer functions. Thus,
it is not possible to construct arbitrarily large expressions without function
application expressions. The basic expression model is limited to a conservative
approximation expression which combines constant expressions and data flow
variables. Thus, the size of such an expression is bounded by the number of
data flow variables and the size of the inducing lattice 2.

5.2.3 Relationship to IDE-problems

The effects of nested elementary transfer functions are also addressed in the
extension of the graph reachability approach to distributive environment prob-
lems [SRH96]. The extension enables the graph based model to express analysis
problems like linear constant propagation.

The fundamental idea of the extension is to attach unary functions to each of the
data flow edges in the bipartite graph. This way, the linear constant propagation
problem can be expressed as depicted in Figure 5.8.

Each of the edges is labelled by a function which expresses the linear depen-
dency of one constant value to another constant value. For example, the edge
from a to b in the first function representation expresses the fact that b evaluates
to the value 2a+1. This linear dependency is implemented in the unary function
lin(2,1) which maps constant values appropriately.

Function composition boils down to substitution as shown by the blue arrows in
the figure. The two linear dependencies from b to a and from c to b are comprised
into a new linear dependency from c to a. The IDE-model computes the resulting
linear dependency lin(2,5) by the composition of the linear dependencies lin(2,1)
and lin(1,5). This happens during the composition of the summary functions
in the graph-based representation, when the edges of the input functions are
relaxed to the edges of the result function.

The data flow expression model, expresses composition by substitution of ex-
pressions. However, the summary function model is not aware of the special
semantics of linear constant dependencies. Such a dependency shows up as
an expression that models the application of the elementary transfer function

2The folding of constant expressions during the normalisation of a data flow expression even
ensures that each normal form of a data flow expression contains one constant expression
only (see Section 5.3.1).
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Figure 5.8: Composition of Transfer Functions of Linear Constant Propa-
gation

application expression lin(2,1)(a). The substitution step during the composition
of summary functions yields the nested expression lin(5,1)(lin(2,1)(a)) which de-
scribes the dependency between c and a.

The first observation is that the graph model of the linear constant propagation
model incorporates problem specific knowledge into the function representation.
Essentially, it is mandatory that the function composition of elementary transfer
functions is computable. Furthermore, the fix-point iteration during the sum-
mary function analysis requires, that there exists an order relation on function
representations.

In contrast, data flow expressions model function composition explicitly by
nested elementary transfer functions. The model treats elementary transfer
functions symbolically and exploits only that each function can be identified by a
unique index and that it can be applied to data flow values. We restrict ourselves
by such weak assumptions because we want to separate the normalisation
of summary functions from problem specific implementations of elementary
transfer functions. The validation process operates on a normal form of summary
functions in order to reduce the memory requirements of the summary functions
during validation. We discuss this issue in more depth in Section 5.3.

The second observation is that the expression model is not restricted to unary
transfer functions. The model intentionally allows elementary transfer function
of arbitrary arity. Such an extension is difficult in the graph model because each
edge in the graph has a single source node only.

Therefore, dependencies on several input variables can only be expressed as
long as they can be decomposed into the conservative approximation of depen-
dencies on single variables. This is sufficient for linear constant propagation,
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because the dependency of a single variable to each of the input variables, can
be expressed by a single linear functions at each incoming graph edge.

As soon as a single function application expressions requires more than one
parameter, the original graph model fails. A straight-forward extension would
require the introduction of multi-edges which may significantly complicate the
implementation and formal justification of the model. A well-known example
of a problem which requires more than one parameter is integer constant
propagation with symbolic execution of arithmetic operators because operators
like addition and multiplication depend on two operands in a non-trivial way.

However, this specific analysis is not distributive and as such also beyond the
scope of the current expressiveness of our function model, too. Nevertheless,
distributivity is only required for the justification of the current definition
of the normalisation process. It is an interesting question, whether there
is a formal argument that all elementary transfer functions of a distributive
data flow problem can be decomposed into the meet of unary elementary
transfer functions or not. If it is possible to find a counter-example, then the
expression model extends the expressiveness of IDE-problems even in its current
formulation.

Nevertheless, the main contribution of this thesis is an investigation of the
validation process and not necessarily the specification of complex data flow
problems. Furthermore, we show how the support of modular analysis can be
integrated directly into the summary function model.

5.3 Normalisation and Properties of Summary
Functions

The definition of the summary function model in Section 5.1 raises three impor-
tant challenges:

• We have to show that the summary functions can be used to encode the
result of the summary function computation phase of an interprocedural
analysis. If the property holds, then we can apply the general validation
principle for the validation of summary functions. The proof requires to
show that summary functions form a function lattice with respect to the
function meet operation uΨ.

• We have to prove that the summary functions can act as transfer functions
of the value computation phase. This justifies, that the validated summary
functions can be used to check the result of the interprocedural invocation
contexts of the methods. The proof requires to show that the application
of summary functions is monotone with respect to the inducing lattice of
data flow values.

• The straight forward approach to the definition of an order relation of ex-
pressions is inconvenient because it just compares expressions on a purely
syntactical basis. As a consequence, several obvious transformations are
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not yet exploited. For example, if a constant propagation analysis is en-
coded in the model, then the expressions 4uL 3 and⊥ are not considered to
be equal under the simple definition of the order relation of expressions.
As a consequence, the meet of these expressions would yield

(4 uL 3)uE ⊥= 4 uL 3uL ⊥

which is by far more complex than necessary.

This section addresses these issues and is structured in the following way:
Firstly, we define normalisation rules for data flow expressions which lead to
a normal form of the evaluation functions and the summary functions they
define. Secondly, we consider the properties of the normal form of expressions
in Section 5.3.2. Finally, Section 5.3.3 shows that the properties of normalised
data flow expressions guarantee that the summary functions have the required
properties.

Figure 5.9 depicts the overall line of reasoning. We start from the definition of

D: Normalsiation Rules

P: Normal Form e↓ is Unique

D: Order Relation    
E↓

based on 
Structural Properties of e↓ 

P: Structural Properties of e↓ 

P: < E,    
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     E↓
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,
     

> is a Lattice P: Application of  ∈  
is monotone in L

Properties of 
Summary Functions

Properties of 
Data Flow Expressions

Normalisation Rules

Figure 5.9: Line of Reasoning about Data Flow Expressions and Summary
Functions

the normalisation rules and prove that the resulting normal form is unique. This
proof can be established by showing that the normalisation rules terminate and
that they are locally confluent. Next, we prove that the normal form exhibits
special structural properties and define a order relation on expressions based
on these properties. The order relation and the corresponding approximation
operation define a lattice on the set of data flow expressions. Furthermore, the
evaluation of expressions preserves the order relation of the inducing lattice -
i.e. if a data flow expression is evaluated with weaker values as a substitution
for variables than the evaluation does not yield stronger results. These two
properties of data flow expressions give rise to the proof that the summary
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functions form a lattice and that function application is monotone with respect
to the order relation of the inducing data flow problem.

5.3.1 Normalisation of Data Flow Expressions

This section defines normalisation rules for data flow expressions. The normali-
sation serves two different purposes. Firstly, it compresses the representation of
defining expressions. Secondly, normal forms of expressions can be compared
to each other easily by comparing their syntactic structures. This is important
to define the order relation on expressions in a generic way, which does not
involve problem specific knowledge about the inducing data flow problem.

The normalisation rules can be considered as a partial evaluation of data flow
expressions. Essentially, they reduce all subexpressions, which cannot depend
on the input state of the summary. There are not only reduction rules that
evaluation constant expressions but also rules that drop variable subexpressions
that cannot contribute to the result of the whole expression anymore.

Normalisation Rules

An expression in normal form consists of the conservative approximation ex-
pression of a single constant value, data flow variables, and function application
expressions where each function occurs only once and whose parameter expres-
sions are also in normal form. The following normalisation rules lead to this
normal form.

The first three rules deal with data flow values and data flow variables. The
following rules deal with function application expressions. For the sake of sim-
plicity, we assume that function application expressions have a single parameter
only but all rules can be extended to the n-ary case in the straight-forward way.

Constant Folding (CF)

c1 uL c2
CF
−→ c3 with c3 = c1 uL c2

The constant folding reduction replaces two constant terms by their safe ap-
proximation. It ensures that a single constant will remain on one level in the
nesting structure of each expression.

Duplicate Variable Removal (VAR)

x uL x VAR
−→ x

The VAR-reduction reduces the occurrences of a single variable to a single
representative. It is justified by the fact that the conservative approximation
operator uL is reflexive.
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Bottom Shortcut (BSC)
e uL ⊥

BSC
−→ ⊥

The BSC-reduction exploits the special status of the least element ⊥ in the
inducing lattice. This element represents the loss of all information. No matter
to which concrete lattice element the expression e evaluates, the final result of
the conservative approximation with ⊥ will always yield ⊥. Therefore, the
original compound expression can be represented much more efficiently by ⊥
which is known to be the result of any possible evaluation.

The tuple representation is vital for the effectiveness of the BSC-reduction. It is
much more likely that data flow information is lost for a single variable than for
the whole program state.

Push Out Upper Bound (POUB)

If [t(p)]|[xi:=>] u cold = cnew @ cold then t(p) u cold
POUB
−→ t(p) u cnew

The intuition of the POUB-reduction can be summarised as follows: even
though we do not know the precise semantics of elementary transfer functions,
we can still determine an upper bound for the expression t(p). The reason is that
the substitution of all variable occurrences in the parameter expression p with
the most optimistic element leads to an upper bound for this expression and the
result of the function application to such an upper bound is an upper bound of
the function due to the monotony of t.

Intuitively, the reduction rule states that we can use the upper bound of an
application expression to weaken the upper bound of the surrounding approx-
imation expression. It’s main purpose is to enable additional BSC-reductions.
For example, consider an elementary transfer function which maps the most
pessimistic element ⊥ to itself - which is quite often the case. Then

t(e|[xi:=>]) u c POUB
−→ t(e) u ⊥
BSC
−→ ⊥

Furthermore, the POUB
−→ also integrates the application of elementary transfer

functions into the normalisation process but avoids a subtle challenge which
arises, if a straight-forward application rule would have been integrated in the
normalisation process.

Distributivity (DSTR)

ti(p1) uL ti(p2) DSTR
−→ ti(p1 uL p2)

The distributivity rule ensures that each normal form has a single application of
a specific function on each level of the nested expression structure. Furthermore,
it enables additional normalisations of the combined parameter expressions.
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Obviously, we would like to integrate a rule like t(c1) APP
−→ c2 which replaces

an elementary transfer function which is applied to a constant by the result
of the function application. Now assume that we perform a linear constant
propagation which specifies the semantics of the increment operator ++ by an
elementary transfer function incr. The problem arises at the join point in the
example program depicted in Figure 5.10. The definition of the function meet


0'3'


0'2'

4: ...

1: a = 1
2: x = a++; 3: x = p++;

0: ...

ex = incr(1) ex = incr(p)

incr(1)      incr(p)

2      incr(p) incr(1    p)

APP DSTR

≠

Figure 5.10: Interference of an APP- and the DSTR-rule

yields a safe expression for the evaluation function of x to incr(1) u incr(p).

This expression is subject to normalisation. Both the potential APP
−→-rule and

the DSTR
−→ -rule can be applied but the result expressions differ structurally! As

a consequence, the expressions cannot be compared to each other easily, if the
analysis phase and the validation phase apply the normalisation rules in a
different way. A comparison operation would have to be aware of the fact that
2u incr(p) and incr(1up) are semantically equivalent. Such a check is clearly more
complicated than the pure structural comparison we strive for.

This observation can even be stated more generally: any function representation
has to supply a comparison operation that can compare functions independently
from the way they are constructed by the analysis and the validation phase.
This can be difficult if function operations like normalisation can yield different
function representations which are semantically equivalent. The generic nor-
malisation rules defined in this section solve this issue independently form the
inducing data flow problem.

For example, the combination of the POUB
−→ - and the DSTR-rule to safe approxima-

tion expression incr(1)uincr(p) yields 2uincr(1up) independently of application
order of the normalisation rules. This is a consequence of the uniqueness of the
normal form which is proved in Section 5.3.2.
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Interpretation

Data flow expressions define summary functions which map the program state
from one point to another. The summary functions comprise the effects of all
execution paths between the program points. Join points of paths lead to safe
approximation expressions and function composition is realised by variable
substitution. This way, a single data flow expression encodes the data flow
which finally yields a specific value in the output state of a summary function.

The partial evaluation strategy compresses this information about the data
flow through different paths in the program. Constant folding combines two
data flow values which have been generated on different paths. Similarly,
the reduction of the several occurrences of a variable x in a approximation
expressions conflates the fact that the same piece of the input state - namely
the value of variable x influences the output value in the same way on different
paths.

The BSC
−→-rules automatically drops dependencies which cannot influence the

result. The element⊥ is the least informative element of the inducing data flow
so that an expression euL⊥ states the fact, that the most pessimistic assumptions
had to be made on one path. Thus, it does not matter what happens on any
other path so that the expression e which describes the influence of the other
path can be dropped without loss of precision.

The other rules deal with function application expressions which can be con-
sidered as an explicit formulation of the composition of two subsequent paths.
The preceding path supplies the parameter expressions while the function ap-
plication expressions comprises the effects of a single instruction, which could
not be expressed by simpler elements of the model.

The POUB
−→ -rule deals with application expressions which cannot be evaluated

because some of their parameter expressions still contain a variable. In such
a case, we assume that the relevant piece of the input state which is denoted
by variable x is the best of all possible data flow values - the most optimistic
element >. Then it is possible to evaluate the parameter expressions and to
apply the elementary transfer function. This yields an optimistic upper bound for
the application expression. No matter which input state is used, the application
expression will always evaluate to an element that is not better than the upper
bound. If this optimistic bound is weaker than the constant bound on another
path, then we can reduce the constant expression without loss of precision.
Essentially, the rule exploits the monotony of elementary transfer functions
to inspect the potential influence of an function application expression. It is
especially useful for function application expressions, which take more than
one parameter. If one of the parameters is the most pessimistic element and
another one still depends on the input state, then it is likely that the evaluation
of the application expressions also yields the most pessimistic element.
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5.3.2 Properties of Data Flow Expressions

It is vital for the validation process, that the validator can compare summary
functions to each other. We achieve this in the following way: The summary
function representation is reduced to data flow expressions which have a unique
normal form. Furthermore, data flow expressions exhibit a specific syntactic
structure which defines an order relation on data flow expressions. This order
relation on expressions extends to an order relation on summary function. Thus,
two summary functions can be compared with each other by reducing their
defining data flow expressions to their normal form and subsequently compare
the syntactic structure of the expressions.

We show in this Section that the reduction rules defined in Section 5.3.1 yield a
unique normal form and define a partial order on the syntactic structure of data
flow expressions in normal form.

Uniqueness of the Normal Form

The uniqueness of a normal form is an immediate consequence of the ter-
mination and the local confluence of the reduction relation. Intuitively, local
confluence ensures that two intermediate expressions, which result from the ap-
plication of two different reduction rules can be reduced to a common expression
again. Additionally, locally confluent reduction relations which terminate re-
duce a term to a unique normal form independently from the order in which
reduction rules are applied.

Lemma 1 (Termination of the Reduction Relation) The reduction relation →E
terminates.

Proof 1 We can connect each expressions to a tuple (n, c) ∈N1×L which combines the
number of subexpressions n and the most pessimistic constant c in the subexpressions
of a specific nesting level.

The point-wise extension of the order relations 〈N1,≤〉 and 〈L,vL〉 yields a partial
order on these tuples which is well founded if the partial order vL is well founded.
All reduction rules either decrease n or weaken c (POUB) so that there cannot be an
infinite decreasing chain in 〈E,→E〉 because there is no infinite decreasing chain in
〈N × L,≤ × v〉

Lemma 2 (Local Confluence of the Reduction Relation) The reduction relation
→E is locally confluent.

Proof 2 By finding locally confluent reduction sequences for each possible pair of
elementary reductions. (See Appendix A)

Theorem 2 (Uniqueness of the Normal Form) The normal form e ↓ of an expres-
sion e ∈ E with respect to the reduction relation→E is unique.
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Proof 3 The reduction relation →E terminates due to Lemma 1, and it is locally
confluent due to Lemma 2. Therefore, the reduction relation is confluent due to the
Lemma of Newman[New42] and reduces to a unique normal form.

The termination proof already shows, that the normalisation rules try to reduce
data flow expressions to a minimal number of subexpressions. This is vital
to keep the summary function representation compact and simplifies the com-
parison of summary functions which depends on the structural comparison of
expressions in normal form.

Structure of Irreducible Expressions and a Checkable Order Relation

Now we define a partial order based on the structure of the normal form of
expressions. Firstly, we prove that each expression in normal form either is the
most pessimistic expression⊥ or it contains at most one constant, and each data
flow variable as well as each application expression occurs only once within
each of the nested subexpressions.

We assume that each each elementary transfer function ti and each data flow
variable xk can be identified with a unique index i and k respectively. Let TI and
VK denote the subsets of the corresponding index sets.

Once again we assume that each elementary transfer function takes a single
variable as an argument to simplify the notation, but the arguments hold for
the n-ary case as well.

Theorem 3 (Structure of Irreducible Expressions) Let e↓ denote the normal form
of an arbitrary expression e. Then expression e↓ has the following structure

e↓=
l

i∈TI

ti(pi) uL
l

k∈VK

xk uL c

or e↓= ⊥

and all parameter expressions pi are also in normal form.

Proof 4 By contradiction: Assume that e contains more than one occurrence of function
application expression ti, of variable xk, or two constants. Then there is a reduction rule
and e is not in normal form.

Next, we define an order relation on expressions in normal form. Essentially,
the order relation is a more elaborated variant of the simple order relation that
suggests to consider expressions to be weaker which consists of strictly more
subexpressions (see Section 5.1.2). The new order relation considers expressions
to be weaker whose normal form contains strictly more subexpressions. Addi-
tionally, the order relation of the constant expressions is additionally considered
for two expressions which contain the same set of other subexpressions.

Obviously, this order relation can be checked easily by the comparison of the
structure of expressions in normal form.
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Definition 5 (Order Relation of Expressions) Let e1, e2 ∈ E. Then the order
relation of expressions is defined as: e1 vE↓ e2 iff for e1 ↓ and e2 ↓ holds either
e1 ↓= ⊥ or

1. TI1 ⊇ TI2 ∧ ∀i ∈ TI2 : p1i vE↓ p2i and

2. VK1 ⊇ VK2 and

3. c1 vL c2

Theorem 4 The relation vE↓ is a partial order.

Proof 5 By induction over the structure of the expressions and the fact that the subset
relation ⊆ and the meet-operator of the inducing data flow lattice vL are partial orders.

The definition of the partial order yields a definition of the meet of expressions
uE↓ as usual:

Definition 6 (Meet of Expressions) Let e1, e2 ∈ E↓. Then the meet of expressions
is defined as e1 uE↓ e2 = e3 iff

1. e3 vE↓ e1 ∧ e3 vE↓ e2

2. @e4, e4 A e3 : e4 vE↓ e1 ∧ e4 vE↓ e2

Theorem 5 (Property of the Meet of Expressions) The meet of expressions can be
modelled by the meet operation of the inducing lattice. It holds that

e1 uE↓ e2 = e3 = e1 uL e2

Proof 6 By comparison of the normal forms of e1, e2, and e3 to establish e3 vE↓ e1 and
e3 vE↓ e2 and proving the maximality of e3 by contradiction.

See Appendix A.

Thus, the safe approximation uE↓ which combines two expressions with the
safe approximation operator of the inducing lattice, forms itself a lattice on the
set of data flow expressions.

Evaluation of Expressions

Next, we show that expressions, which do not contain any function variables,
preserve the lattice order of the inducing lattice L whenever they are evaluated
with variables replaced by elements of the inducing lattice. We do not formally
define the semantics of the rather intuitive evaluation process at this point, but
remark that it seems to be closely related to Herbrand interpretation of arithmetic
expressions as used in [RKS99], [MORS05].

Definition 7 (Applicable Expressions) Let Eapp ⊂ E denote the set of data flow
expressions which do not contain free function variables. We call an expression e ∈ Eapp
an applicable expression.
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Free function variables are only required to model modular results (refer to
Section 5.4). They occur only as intermediate results during the computation of
the final interprocedural summary functions. Only the final summary functions
need to be evaluated, so that we limit the definition of the evaluation operation
to applicable expressions.

Lemma 3 (Evaluation of Applicable Data Flow Expressions) Then

∀v ∈ L, e1, e2 ∈ Eapp : e1 vE↓ e2 ⇒ e1|[x:=v] v e2|[x:=v]

Intuitively, weaker expressions with respect to the order relation of expression
always evaluate to weaker data flow values.

Proof 7 By induction over the structure of (applicable) expressions and the fact that
weaker expression can only contain:

1. additional terms in conservative approximation expressions

2. monotone function applications which operate on weaker or equal parameters

3. weaker or equal constants.

This lemma is the central prerequisite for the definition of summary function
operations.

Remark

The discussion in Section 5.2.2 already remarks that function application ex-
pressions induce nested expressions and that the nesting depth is not bounded
if a function application expression is subsequently used as its own parame-
ter expression due to cycles in the flow graph. This phenomenon can now be
interpreted in the algebraic model.

The order relation of expression is a partial order. However, it is not a well
founded partial order. The normalisation rules guarantee that any normal form
of an expression has a limited number of subexpressions on each nesting level
but the nesting depth is not limited. In contrast, it can be infinite due to the
recursive definition of function application expressions which allow arbitrary
parameter expressions.

As a consequence, we cannot show by a simple argument that any data flow
analysis which involves the expression lattice terminates. A safe - but overly
conservative - way to deal with this issue is to limit the maximum nesting depth
to a constant number n and to approximate all parameter expressions at this
level by the safe lower bound ⊥. This fits smoothly into the expression model
but potentially decreases the precision of an analysis which uses the model.
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5.3.3 Properties of the Summary Function Model

The functional approach to interprocedural analysis uses summary functions in
two different ways. Firstly, they are the data flow values during the summary
function computation phase. Secondly, they act as transfer functions during
the value computation phase where they map the safe approximation of an
invocation context of a method to the context of each call-instruction in the
method.

Thus, summary functions have to exhibit two different kinds of properties to
be usable in the different phases. The first phase requires that is is possible to
specify the computation of summary functions in terms of a data flow problem.
Essentially, this requirement can be broken down to two elementary properties:

• The set of summary functions has to form a lattice with respect to an order
relation and the function meet defined for the summary functions.

• Function composition with a specific instruction-level summary function
has to be monotone. This is necessary because the function composition
operation acts as transfer function in the function computation phase.

The fact that the summary function computation can be expressed as a data
flow problem ensures, that we can validate given summary functions by the
general validation principle.

The summary functions, which are computed in the functional phase, act as
transfer functions during the computation of safe approximations of invocation
contexts. Therefore, they have to exhibit the following additional property

• The application of summary functions has to be monotone with respect to
elements of the inducing lattice L.

We will now prove that these properties hold for applicable summary functions.
Applicable summary functions are defined as follows:

Definition 8 (Applicable Evaluation Functions) We call an evaluation function
applicable if its defining expression does not contain any function variable application
expression.

Definition 9 (Applicable Summary Functions) We call a summary function ψ ∈
Ψ applicable if all of its evaluation functions are applicable. We denote the subset of
applicable summary functions by Ψapp ⊂ Ψ.

Essentially, an applicable summary function does not contain free function
variables. The reason for the separation is that function application substitutes
data flow variables and evaluates the underlying expressions which is not
possible as long as a data flow expression does not contains function variables.

We call summary functions open if they contain function variables because
function variables express unresolved dependencies to external code. This
representation is necessary to encode the analysis results for separated software
modules in a flexible way. The extension is discussed in Section 5.4.2. The
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general difference between applicable and open summary functions is that
only applicable summary functions can act as transfer functions in the value
computation phase. However, we show in Section 5.4.2 that the computation of
open summary functions can also be expressed as a data flow problem so that a
validator can check open summary functions according to the general validation
principle as well. The open summary function representation increases the
flexibility of the analysis and validation phase so that it is possible to deal with
the separate analysis of software modules in various ways.

We now show that applicable summary functions exhibit the required prop-
erties. The definition of summary functions directly depends on data flow
expressions. Particularly, function meet, function comparison, and function
application reduce to the meet, comparison and evaluation of data flow expres-
sions. Thus, the general idea is to reduce the properties of summary functions
to the properties of expressions. The central prerequisite is Lemma 3 which en-
sures that the evaluation of data flow expressions preserves the order of values
of the inducing lattice.

Partial Order on Summary Functions

Firstly, we refine the intuitive definition of summary function application given
in the introduction of the function model. The important additional aspect is,
that we have to restrict the definition of function application to applicable sum-
mary functions because the defining expressions cannot be evaluated properly
if they still contain function variables. Once again, we restrict ourselves the
single variable case, i.e. Var = {x}, envm = 〈x → xm〉 to simplify the notation.
The extension to full environments is straight forward.

The application of summary function is reduced to variable substitution in the
defining expressions by

Definition 10 (Application of Summary Functions) Let ψ ∈ Ψapp an applicable
summary function and e ∈ Eapp its defining expression. Then

∀v ∈ L : ψ(v) =d f (ex
|[x:=v])

Next, we define an order relation on summary functions by a reduction to the
order relation we have specified for data flow expressions. In this section we
restrict ourselves to applicable summary functions.

Definition 11 (Order of Summary Function) Let ψ1, ψ2 ∈ Ψapp and let e1, e2 ∈

Eapp be their defining expressions. Then

ψ1 vΨ ψ2 =d f e1 vE↓ e2

Our final goal is to show, that summary functions form a lattice with respect
to the specified order relation. Therefore, the order relation has to be a partial
order. A summary function is considered to be more conservative than another,
if it maps all elements of the domain to a result element which is at least as
conservative as the corresponding result of the second function. Thus,

95



CHAPTER 5. A GENERIC MODEL FOR SUMMARY FUNCTIONS

Theorem 6 (Partial Order of Applicable Summary Functions) The order is a
partial order on applicable summary functions with respect to evaluation in L i.e.

ψ1 vΨ ψ2 ⇒ ∀v ∈ L : ψ1(v) vL ψ2(v)

Proof 8 Immediate consequence of Definition 11 and Lemma 3.

Essentially, the fact that the evaluation of data flow expressions preserves the
order relation of the inducing lattice directly implies that the application of
summary functions preserves the order relation as well. Similarly, the meet of
summary functions is in fact a meet operation because it is also reduced to the
meet of expression. Thus, summary functions form a lattice with respect to the
order relation induced by the order relation of expressions.

Monotony of Function Composition

Next, we have to show, that function composition with a fixed summary
function is monotone. This is necessary, because function composition with
instruction-level summary functions defines the transfer functions of the func-
tional data flow problem. Function composition is reduced to the substitution
of data flow variables in the first function by the defining expressions of the
second function. Thus,

Definition 12 (Function Composition) Let ψ1, ψ2 ∈ Ψapp and e1, e2 ∈ Eapp. Then
we define the function composition as follows:

ψ1 ◦ ψ2 =de f e1|[x:=e2]

This definition of function composition is monotone with respect to the order
relation of summary functions. We consider the function composition with a
fixed summary function ψc which models the semantics of a single node in the
flow graph.

Theorem 7 (Monotony of Function Composition) The composition of applicable
summary functions is monotone in (Ψ,upsi). Let ψc ∈ Ψapp:

∀ψ1, ψ2 ∈ Ψapp : ψ1 vΨ ψ2 ⇒ ψc ◦ ψ1 vΨ ψc ◦ ψ2

Proof 9 For the order relation on summary functions to hold, the order relation on
their defining expressions has to hold. Thus, with the definition of the composition we
can reduce the proposition to:

∀ec, e1, e2 ∈ Eapp : e1 vE↓ e2 ⇒ ec|[x:=e1] vE↓ ec|[x:=e2]

which is clearly the case according to the definition of vE↓ (see Definition 5).
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The important observation is that the order relation of expressions ensures that
weaker expressions contain at least the same subexpressions as stronger ones.
Thus, they contain at least the same data flow variables. As a consequence, the
substitution of variables with specific expressions always yields expressions
which contain at least the same expressions again.

All in all, we have shown, that the computation of summary functions can be
expressed in terms of a data flow problem. Thus, we can apply the general
validation principle to check their validity at the consumer side.

This property holds independently from the inducing data flow problem be-
cause the summary function model relies on generic properties of the inducing
lattice only.

Monotony of Summary Functions

The summary functions, which have been computed in the functional phase,
act as transfer functions in the subsequent analysis phase which computes a
safe approximation for the invocation context of each method.

It is a prerequisite that transfer functions of a data flow analysis are monotone
with respect to the order relation of the lattice of data flow values.

Theorem 8 (Monotony of Applicable Summary Functions) The applicable
summary functions are monotone in (L,uL).

∀v1, v2 ∈ L : v1 vL v2 ⇒ ψ(v1) vL ψ(v2)

Proof 10 Immediate consequence of Definition 10 and Lemma 3.

Thus, it is in fact possible to use summary functions which are expressed in terms
of the expression model as transfer functions for the second phase. Together
with the preceding result we come to the conclusion that it is possible to validate
summary functions and to use them in the subsequent value computation phase.
Thus, the summary function model allows to deal with the validation of the
functional part of the interprocedural analysis in a way that does not depend
on the inducing analysis.

5.3.4 Summary Functions and the Inducing Data Flow Problem

The summary function model inherits the properties of the inducing data
flow problem. Summary functions are monotone with respect to order of
the inducing data flow lattice because the evaluation of data flow expressions
involves the application of monotone transfer functions of the inducing problem
and the conservative approximation operator of the inducing lattice only.

Similarly, the comparison criterion which investigates the structure of data flow
expressions on a syntactical level depends on the fact that only the conservative
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approximation operator can combine different subexpressions which each other.
Therefore, additional subexpressions can only weaken the result of the valuation
of an expression which is vital for the prove that the order relation of summary
functions has the necessary properties.

The normalisation of expressions splits data flow expressions into equivalence
classes. The uniqueness of the normal form guarantees that there is a distin-
guished element for each equivalent class which can act as the representative
for the comparison operation. Furthermore, the normal form is more compact
than arbitrary expressions because the reduction rules mimic the behaviour of
a partial evaluation of the expression.

However, the distributivity reduction, which reduces all function application
expressions to a single application expression on each level in the nesting
structure, demands that the inducing data flow framework is distributive.
Therefore, non-distributive problems like integer constant propagation which
uses symbolic evaluation of arithmetic expressions cannot be handled properly
by the normalisation process. The reason is that the “early meet” has the
potential to loose precision for non-distributive functions. It is possible, that

t(a u b) = c1 @ c2 = t(a) u t(b)

As a consequence, the uniqueness of the normal form can no longer be guaran-

teed because it depends on the order of DSTR
−→ and POUB

−→ -reductions.

There are two different ways to approach the challenge which arises from
the non-distributivity of an inducing analysis: Firstly, the evaluation order
of the analysis and validation phase can be “synchronised” so that the loss
of precision always occurs at the same points. However, this removes an
important degree of freedom and it requires additional formal justifications.
The second approach is that the analysis phase computes the results which
states the maximal loss of precision due to non-distributivity. The idea is to meet
all analysis results as early as possible in order to compute a fix-point which
conservatively approximates the results of all possible evaluation sequences.
The intentional under-approximation principle guarantees that the validator
can validate this fix-point independently from its own evaluation sequence.

We do not consider this aspect further, because the demand to support the
validation of non-distributive analyses has not arisen yet. Furthermore, the
potential impact on the efficiency of the function representation or the quality
of the results might be significant.

5.4 Modular Results and Incremental Validation

One of the requirements which are identified in Chapter 4 is that the validation
process shall support an incremental validation scenario. This scenario expects
that the whole program is structured into several modules each of which is
shipped to the consumer site in isolation.
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One of the important prerequisites is the ability to express the data flow results
for a single software module in a flexible way. Essentially, we want to be able to

1. derive a safe lower bound for the analysis results of each available module
at any point in time and to

2. compose the representation of results from different modules in order to
construct a result for a larger part of the program.

This capability is useful for both the analysis and the validation phase. The
analysis phase can use the flexible representation of a modular result to apply
a number of strategies that deal with the influence of external code in different
ways. We discuss this in more depth during the presentation of our evaluation
methodology in Chapter 9.

The validator can use the representation for modular results in two different
ways. Firstly, the validator can compute a valid lower bound for analysis
results at any point in time. Thus, it is possible to apply optimisation which
depend only on the safe lower bounds immediately. Secondly, all pieces of the
whole program analysis result which coincide with the safe lower bound can be
considered valid. Thus, the safe lower bound acts as a checking criterion for the
validity of data flow facts and separates closed from open data flow facts. The
validator can subsequently check the validity of each modular result and it can
combine the modular results into a whole program result. The primary goal
is to increase the efficiency of the validation process in an incremental validation
scenario.

The first question is, which granularity to choose for modular data flow results.
The granularity of the results determines the minimal scope of a modular
result. If this scope is small, then the validator is able to partially use the
data flow results early and intermediate results which are only relevant for the
validation of the module can be dropped. Similarly, the analysis can estimate
the potentially effects of external code in a more fine-grained manner on a small
scope.

We choose a single method as the minimal part of the program that is considered
in isolation for two reasons. Firstly, a method is the key abstraction of the
functional approach to interprocedural analysis. Therefore, the representation
of modular results fits smoothly into the analysis model. Secondly, a single
method is a natural scope for the early use of analysis results for example in an
optimisation scenario. An incremental validation or analysis on a per method
basis can trigger at least some optimisations immediately after the code of the
method has been considered.

The next question is how external code can influence the analysis result which
is derived from the context of a single method. The analysis results of a method
depend on the analysis results from the rest of the program in two different
ways. Firstly, other methods can call the method under consideration. Each
call provides a new invocation context for the method which can weaken the
assumptions about the program state at the start of the method. Secondly, the
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method can itself call other methods. Such a call influences the assumptions
about the program state immediately after the corresponding call instruction.

This section explains how the model of summary functions has to be extended
in order to represent modular results. Section 5.4.1 considers the influence
of external calls on the invocation context of the method under consideration.
It turns out that the summary function model is already inherently able to
deal with this issue. The following section investigates the influence of the
callees of the method under consideration. The central modelling idea is to
capture this dependency by the introduction of free function variables into the
expression model. This way the composition of modular results boils down
to the substitution of function variables. Furthermore, the introduction of
function variables yields a mechanism to estimate the potential effects of external
code by the substitution of different kinds of summary functions. Section 5.4.3
illustrates the application of this technique by an interesting observation: any
intraprocedural analysis result is in fact a safe approximation of the modular
result for the method under consideration.

Section 5.4.5 discusses the formal properties of function variables in the expres-
sion model. Finally, we conclude with a reinterpretation of the incremental
validation process for the extended function model.

5.4.1 Invocation Contexts and Data Flow Variables

The influence of the invocation context of a method shows up in the definition
of the intermediate program states Ii and Oi before and after the execution of
the instruction i in a method m. According to the definition of interprocedural
data flow problems in Section 4.2 it holds that

∀i ∈ FlowNodesm : Ii = ψi(ICm) ∧Oi = ψi′(ICm)

Each intermediate state Ii and Oi can be computed from the intraprocedural
summary functions ψi, ψi′ which map the state at program point 0 given by ICm
directly to the intermediate state.

The following equation defines the invocation context ICm and reveals the
dependency on call sites in other methods.

ICm v
l

n∈CallSites(m)

In

Essentially, the assumptions about the invocation context ICm of a method
m have to subsume the assumptions about the program state In at each call
site. Consequently, no valid information about an invocation context can be
derived until all possible call sites are available. This renders all invocation
contexts of publicly accessible methods open until all software modules have
been transferred to the consumer.
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Nevertheless, it is possible to exploit specific language features to detect that
new code cannot contain additional calls to a specific method. For example,
private methods in Java cannot be called directly from code outside the defining
class. Thus, all call sites of private methods are known after a class is loaded
completely. However, even the invocation context of private methods indirectly
depends on the invocation context of some public method which acts as an entry
point for the control flow into the software module. Thus, the effectiveness of the
computation of invocation contexts is limited within a single software module.

Thus, it is difficult to establish the validity of invocation contexts if additional
pieces of code can still be transmitted to the consumer. Therefore, it is important
that the validator can safely approximate the potential effects of invocation
contexts at any time during the validation process. This can be achieved easily,
if the validator uses safe assumptions about an invocation context. The most
pessimistic element of the inducing lattice is always a safe lower bound because
it states that nothing is assumed about the program state at all. However, some
analysis provide better, problem specific lower bounds, which can be used in
the same way than the most pessimistic one.

The use of the most pessimistic element as a lower bound for an invocation
context ICm yields a safe lower bound for each intermediate states within
method m.

I⊥i = ψi(⊥) v Ii ∧ O⊥i = ψi′(⊥) v Oi

The result states I⊥i and 0⊥i safely approximate the states from the analysis result
because the intraprocedural summary functions ψ j are monotone in L. Even if
the validator uses the most pessimistic element ⊥ as a safe lower bound for the
invocation contexts then the safe lower bounds for the intermediate states can
provide a significant amount of information.

Consider the example code in Figure 5.11 and assume that the analysis in ques-
tion performs copy constant propagation. The invocation context ICm consist of
the values of the three parameters p1, p2 and p3 of method m. Obviously, the as-
sumptions about the invocation context - i.e. the question whether a parameter
always holds a constant value - depends on the method calls of m throughout
the program.

The assumptions about the program state immediately after the execution of
instruction 4 are captured by the output state O4. This state is computed by
the intraprocedural summary function ψ4′ which directly maps the state before
the first instruction in node 0 - namely the invocation context - to the state O4.
The summary function ψ4′ is the composition of the instruction-level summary
functions of the instructions 0,1,2, and 4. This composition yields the following
summary function

ψ4′ = 〈ep1
4′ , e

p2
4′ , e

p2
4′ 〉 = 〈5, 2, p3〉
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ICm

2: 

4: p
1
 = 5


4'

0: p
1
 = 1;

1: p
2
 = 2;

void m(int p
1
, int p

2
, int p

3
) {

}

3:

O4

Figure 5.11: Safe Approximation of Invocation Contexts

Essentially, this summary function states that the value of p1 will always be
constant 5 after instruction 4, and that the value of p2 will always be constant
2. The value of p3 depends on the value of the parameter p3 in the invocation
context.

As stated before, the validator can derive a safe lower bound for the state O4
from a safe lower bound for the invocation context ICm. If the validator chooses
the most pessimistic element (⊥,⊥,⊥) as lower bound, then the intraprocedural
summary function ψ4′ yields the safe lower bound O⊥4 as

O⊥4 = ψ4′(⊥,⊥,⊥) = (5, 2,⊥)

This value is a safe approximation of the data flow result and it is valid
independently from the value of the invocation context ICm. Furthermore, the
assumptions about the program state 04 is significantly more informative than
the most pessimistic assumption would have been.

This way, the validator can partially use the analysis result immediately after the
inspection of method m even though the validity of the whole solution cannot
be established yet.

The same technique can be applied by the analysis phase, too. If the closed
world assumption does not hold, then the analysis can consider the publicly
visible methods as additional entry points because they can be called by external
code. Thus, the analysis has to expect some unknown call site, which supplies a
pessimistic invocation context, so that it has to conservatively approximate
the corresponding invocation contexts. However, the analysis can still try
to determine more precise invocation contexts for methods, which are not
accessible from outside the software module.
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The example reveals, how the dependencies between intermediate states and
the invocation context are encoded in the summary function model. The
intraprocedural summary functions refer to the parameter environment - which
is the invocation context of the method - by data flow variables. For example the
value of p3 at point 4’ is the same as the value of p3 in the invocation context. In
contrast, constant expressions evaluate to more precise values, even if the most
pessimistic element ⊥ is substituted for the variable values. This way the basic
definition of the summary function model already supports the computation of
safe lower bounds for intermediate states and does not require any extensions.

However, the strategy in general requires, that the intraprocedural summary
function like ψ04′ are valid. Unfortunately, they can depend on summary
functions which capture the semantics of unknown callees. Such summary
functions cannot be validated without the code of the callee. Section 5.4.2
defines an extension of the summary function model, which allows to derive
a safe lower bound for summary functions. Such a summary function may be
less precise than the final one but we can use it to derive valid lower bounds for
the intermediate states even without knowledge of the whole program.

5.4.2 External Callees and Function Variables

The method under consideration can call other methods. The summary func-
tions of these methods contribute to the intraprocedural summary functions of
the caller and it is not possible determine the callee summaries, without code
of the callees.

Like in the previous section, we take a look at the relevant equations in the
definition of a data flow solution (refer to Section 4.2.5). Intraprocedural
summary functions are defined in the following way:

ψi′ v fi(ψi) with
{

fori < Call : fi(x) = ψii′ ◦ x
fori ∈ Call : fi(x) = ψcalln ◦ x

ψi v
l

j∈pred(i)

ψ j′

ψm v ψExitm

Essentially, the intraprocedural summary function that maps the invocation
context to the state at program point i′ after instruction i is defined by the
composition of the intraprocedural summary function of the point immediately
before the execution of the instruction and the instruction-level summary func-
tion ψii′ . The situation differs for call instructions. At invocation sites, the
composition involves the interprocedural summary function ψcalln of the callee n.
This can only be determined if method n is available.
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As a consequence, all intraprocedural summary functions of the current method
which depend on unavailable callee summaries cannot be determined com-
pletely, too. In order to deal with this issue we introduce a second representa-
tion of intraprocedural summary functions which contains all dependencies on
unknown summary functions in terms of free function variables. This representa-
tion is flexible because we can substitute function variables either to derive safe
lower bound or to integrate summary functions of the callees as soon as they
become available during the analysis or validation phase.

During the validation process the code consumer can derive a safe lower
bound for all program states in an available method by a combination of the
safe approximation of the invocation context and the safe approximation of
intraprocedural summary functions: the validator just replaces all free function
variables by safe lower bounds for the corresponding callee summaries. The
result is a safe lower bound for each intraprocedural summary in the caller
which in turn can be used to derive a safe lower bound for each intermediate
state.

In order to represent calls to external callees, we introduce function variable
expressions into the data flow expression model:

Definition 13 (Variable Function Application Expression) Let S be a set of func-
tion variables, si ∈ S a function variable, and e1, . . . , en ∈ E data flow expressions. Then
the variable function application expression si(e1, . . . , en) is a data flow expression.

A function variable acts as a placeholder for a single evaluation function in the
summary function of the callee. This evaluation function yields a single data
flow fact in the output state of the callee which is represented by the function
variable expression. The parameters in the function variable expression model
the input state of the callee. The parameter expressions are required to integrate
the callee summary if it becomes available. In order to simplify the discussion
we will just say that a function variable refers to a specific callee summary
without explicitly stating the specific evaluation function within the summary
function.

This kind of function representation cannot be used directly as a transfer
function for the computation of data flow values, because its definition depends
on summaries of external callees. However, the function representation can
be computed and validated without knowledge about the external callees.
Furthermore, it can act as a skeleton for the a safe lower bound and for the
solution candidate of the final summary. We can either substitute the function
variables by safe lower bounds which yields a safe lower bound for the summary
in question or it can integrate summary functions of the callees in order to derive
a solution for the greater context which involves the new methods, too. Thus, the
new function representation can be considered as an open summary function,
which can be closed by substitution of the external summaries in various ways.

We define the following terminology in order to separate the new kind of
summary functions from applicable summary functions as defined in Section
5.3.3.
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Definition 14 (Open Data Flow Expressions) We call a data flow expression e ∈ E
open if it contains a function variable application expression. We denote the subset of
open data flow expressions by Eopen ⊂ E.

Definition 15 (Open Evaluation Functions) We call an evaluation function open
if its defining expression is open.

Definition 16 (Open Summary Functions) We call a summary function ψ ∈ Ψ
open if one of its evaluation functions is open. We denote the subset of completable
summary functions by Ψopen ⊂ Ψ.

We discuss the properties of free function variables and the validation of open
summary functions in Section 5.4.5. At this point, we just consider an illustrative
example in order to provide a first intuition about the use of open summary
functions.

The example in 5.12 is an extended version of the example which we use
to consider the safe approximation of invocation contexts in Section 5.4.1. It
additionally contains two calls at point 2 and 3 respectively.
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Figure 5.12: Open Summary Functions

The summary function ψ2′ maps the invocation context to the program state in
O2. It is an open summary function because it still contains a function variable
sn1, which represents the potential effect of the unknown call to n1.

ψ2′ = 〈ep1
2′ , e

p2
2′ , e

p3
2′ 〉 = 〈sn1(1, p3), 2, p3〉

The defining expression ep1 = sn1(1, p3) is constructed during the function
composition of ψ2 = (1, 2, p3) and instruction-level summary function ψ22′ =
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〈sn1(p1, p3), p2, p3〉. The instruction-level summary ψ22′ captures the effects of
the call instruction at point 3. The function variable sn1 acts as a placeholder for
the evaluation function of the return value in the callee summary ψn1.

The invocation context of n1 at point 2 corresponds to the values of p1 and p3
immediately before the execution of the call instruction. This is represented in
the instruction-level function by the fact, that the function variable expression
takes the data flow variables p1 and p3 as parameters.

These two variables are substituted by the constant expression 1 and the data
flow variable p3 during the function composition of ψ2 and ψ22′ . Finally, the
open summary function models, that the value of p1 at point 2′ corresponds to
the application of the summary function of n1 to the program state (1, p3), where
the second parameter of the call is supplied by the value of the third parameter
p3 from the invocation context of m.

The summary function ψ4′ which maps the invocation context ICm directly to
the state O4 shows an interesting phenomenon. The function composition of
ψ22′ and the instruction-level summary of instruction 4 yields

ψ4′ = 〈5, 2, p3〉

which in turn states that the program state O4 does not depend on the call
of method n1. This is reasonable, because we assume that the function call
affects the value of local variable p1 only, for which new data flow information
is generated by instruction 4.

The subsequent join operation combines this summary function and the sum-
mary function ψ5 which corresponds to the whole method summary ψm if the
final node 5 does not change the data flow values.

ψm = 〈5 u sn2(1, p3), 2, p3〉

This representation reveals valuable information about the dependency be-
tween method m and its callees. Firstly, the value of p1 at the end of the method
invocation depends on the summary function of method n2. In contrast, the
values of p2 and p3 do not depend on any callee. Furthermore, the method invo-
cation in point 3 influences intermediate program states in method m only, but
it does not influence the summary function ψm. Thus, the validity of ψm does
not depend on the validity of the summary function of method n1. Therefore,
the summary function ψm can be determined or validated even without any
knowledge of ψn1.

Additionally, open summary functions provide a safe lower bound for their
final counterparts. The summary function which always evaluates to the most
pessimistic element of the inducing data flow analysis is a safe lower bound
for any function variable expression. If we substitute all function variables
with this summary function, then the result is a safe lower bound for the open
summary function. This strategy yields

ψ⊥m = 〈⊥, 2, p3〉
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as a safe lower bound for interprocedural summary of the method m. The
final summary function is equal to this lower bound if the analysis phase had
concluded that the summary function of n2 does never yield a constant value.
Interestingly, the validation phase can establish the validity of the summary
function ψm in such a situation without ever considering method n2.

Furthermore, the safe lower bound of an open summary function is applicable
because all function variables have been removed. Therefore, they can be used
to derive safe lower bounds for intermediate states even if the states depend
on external method invocations. For example, the evaluation of ψ⊥2′(⊥,⊥,⊥) =
(⊥, 2,⊥) shows that the parameter p2 always still has the constant value two
after the execution of the method call to n1.

5.4.3 Intraprocedural Analysis is an Application of the Safe Lower
Bound Principle

The observations in Section 5.4.2 show how it is possible to model the results of
a modular analysis in such a way, that the effects of external code can either be
safely approximated or later substituted with more precise values.

Interestingly, intraprocedural analysis is a special case of the safe approximation
strategy. An intraprocedural analysis aims at the computation of data flow
facts which hold independently from the rest of the program. Similarly, the
determination of a safe lower bound also safely approximates the potential
effects of unknown pieces of code.

If you consider a single method in isolation, then the effects of internal parts
of the method are twofold. Firstly, some unknown call site can provide an
arbitrary invocation context for the method. Secondly, each call site within the
method under consideration can affect the intermediate program state in the
caller.

The safe lower bound principle safely approximates these two effects. Assume
that an open representation for each intraprocedural summary function is avail-
able. These open representations contain the potential effects of external method
calls on the result state in terms of function variable expressions. The safe lower
bound computation substitutes these expressions by the most pessimistic sum-
mary function. The result is an applicable summary function, that is a safe
approximation of the final summary function in the interprocedural counter-
part of the analysis. It is safe because the use of the most pessimistic summary
function ensures that nothing is assumed about any method invocation and it
is usually an approximation, because an interprocedural analysis can provide a
more precise summary of the callee.

The second effect of external code are the potential invocation contexts at all
call sites. The second phase of the interprocedural analysis computes a safe
approximation for all of these invocation contexts. This approximation contains
assumptions about the program state that hold for each call site in the program.
If a single method is considered in isolation, then nothing can be assumed about
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the invocation context because some unknown call can happen in a program
state where an assumption does not hold. Therefore, the determination of a
safe lower bound for an intermediate state uses the most pessimistic element
of the data flow problem to capture this situation. Thus, the evaluation of the
safe lower bound of an intraprocedural summary function with the safe lower
bound for the invocation context yields a safe lower bound for the intermediate
state. This lower bound, does not depend on the behaviour of external callees
and not on a precise invocation context either.

The intraprocedural variant of the specific analysis deals with the influence
of unknown program parts exactly the same way. The definition of the in-
traprocedural problem requires the definition of a transfer function for each call
instruction in the code. These transfer functions necessarily have to make worst-
case assumptions about the modifications a callee can make. This is exactly the
same as to model the influence in terms of function variable expressions and to
safely approximate these expressions afterwards. Similarly, the intraprocedu-
ral analysis initialises the input state of the start node of the flow graph with
assumptions about the invocation context which hold independently from the
invocation sides of the method. This is the same, as to use a safe lower bound
for the invocation context during the the approximation of intermediate results.
All in all, the safe approximation of an open summary function result yields the
results of the corresponding intraprocedural analysis.

The two approaches differ only with respect to the specification of instruction-
level functions. An intraprocedural analysis does not compute intraprocedu-
ral summary functions but applies the transfer functions of the instructions
of the methods during the propagation and computation of data flow val-
ues. Thus, only the application of transfer functions has to be specified. In
contrast, the functional approach to interprocedural analysis subsequently con-
nects instruction-level summary functions to larger functions. This requires
function composition and function meet, which does not have to specified for
the transfer functions of the intraprocedural analysis.

5.4.4 Open Summary Functions and the Incremental Validation
Scenario

If we want to use the open summary function model during the validation
process, then we have to be capable to validate open summary functions
supplied by the analysis phase. This is possible because the computation of
open summary functions for a software module is a data flow problem. Thus,
we can apply the general validation principle even to the validation of modular
results, as discussed in Section 5.4.5.

This observation gives rise to an extended validation scenario which deals with
modular results. Assume that the validator receives two function representa-
tions for each method: an open one which describes the dependency on callee
summaries and an applicable one where all of these dependencies have been
resolved by the analysis phase. The validation of the open representation can
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be performed immediately because it involves the inspection of the code within
a method only. The validation of the applicable representation can be achieved
as follows. If the open summary function does not contain a reference to other
callee summaries any more, then it is valid and it can be safely substituted for
all corresponding function variables in the open representations of the callers.
This substitution strategy eventually validates all summary functions.

This strategy succeeds only if the call graph of the program forms a DAG. Any
cycle in the call graph of the program introduces a self-dependence in the open
representation of the summary function. At this point, the applicable function
representations are required. They constitute a fix-point solution of the sum-
mary function computation. Especially, they do not contain self-dependencies
anymore and serve as a "guess" for the correct solution of the recursive structure.
Therefore, the validator just has to check that the substitution of the applicable
summary function for the variables in the open representation is safely approx-
imated by the corresponding applicable function.

All in all, the validator can incrementally compose the results from several soft-
ware modules which is one of the key properties for the incremental validation
scenario.

The second key property is that the validator shall be able to determine a safe
lower bound for the available pieces of the result at any point in time. This is also
immediately possible. All remaining variable function application expressions
just have to be substituted by safe lower bounds of their result value. This
effectively removes all function variables and turns an open representation into
an applicable one which safely approximates the potential effects of the external
call.

5.4.5 Properties of Open Summary Functions

Section 5.3.3 contains the formal justifications which ensure that applicable sum-
mary functions form a lattice with respect to the meet operation. Furthermore,
function composition is shown to be monotone with respect the to the partial
order of the function lattice. These properties are vital to argue, that the com-
putation of applicable summary functions can be considered to be a data flow
problem.

When we reconsider the formal line of argumentation for open summary
functions we encounter a subtle problem: The proofs indirectly rely on the
fact that data flow expressions preserve the order of the value lattice under
evaluation (see Lemma 3). However, evaluation is not defined for open data
flow expressions because they contain function variables.

Therefore, we prove an additional result in order to establish the bridge be-
tween applicable and open summary functions. The idea is to show that the
substitution of function variables by applicable evaluation functions yields an
applicable expression. Furthermore, the result expression preserves the order
of the substituted evaluation functions in the sense that it evaluates to more
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conservative results whenever a more conservative function is used for the sub-
stitution.

We start with a definition of function variable substitution. Once again we
simplify the notation to the single variable x and remark that the extension to
larger environment is straight-forward.

Definition 17 (Substitution of Function Variables) Let e = s(epx) be a function
variable application expression with parameter expression ep and Ln=1

→ L : f (x) = e f x

an evaluation function with defining expression e f x. Then the substitution of the
function variable s by f denoted by e|[s:= f ] is defined as:

e|[s:= f ] = e f |[x:=epx]

Interestingly, the definition corresponds to the definition of function composi-
tion (see Definition 12) which also substitutes data flow variables in one function
by defining expressions of the second function. This is not surprising, because
we can interpret the substitution of function variables as a deferred composition
of the callee summary. The function variable expression serves as a placeholder
for an evaluation function in an unknown callee until this callee is integrated by
function variable substitution. A function variable expression is induced into
the summary function computation by the instruction-level summary function
of a call instruction. This summary functions model the effects of the call by
function variable expressions and they do not integrate the callee immediately.
This yields a open summary function representation where the composition of
callee summaries still can be resolved later by the substitution of the function
variables.

The observation is captured by the following lemma:

Lemma 4 (Correspondence of Function Substitution and Function Composition)
Let ψi = 〈ex

i 〉, and ψcallm ◦ ψi = (sm(ex
i )) be the composition with the instruction-level

summary which uses the function variable expressions to defer the composition of the
callee summary ψm = 〈ex

m〉. Then,

[ψcallm ◦ ψi]|[sm:=ex
m] = ψm ◦ ψi

Proof 11 Immediate consequence of the definition of function composition (Definition
12) and the definition of function variable substitution (Definition 17).

Thus, the immediate composition of a callee summary and the composition with
an open function representation that encode the effects of the call by function
variables and the substitution of these function variables in a subsequent step
yields the same result.

The substitution of function variables by applicable evaluation functions of
callees establishes the bridge between open summary functions and applicable
summary functions. Lemma 4 immediately reduces the properties of open
summary functions to the properties of applicable functions:
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Theorem 9 (Partial Order of Open Summary Functions) The order of open sum-
mary functions is a partial order provided that all function variables in a open summary
functions are substituted by applicable evaluation functions.

Proof 12 Consequence of the partial order of applicable summary functions (Theorem
6) and the correspondence of function substitution and function composition (Lemma
4).

Theorem 10 (Monotony of Open Summary Functions) Open summary func-
tions are monotone in (L,uL) provided that all function variables are substituted by
applicable evaluation functions.

Proof 13 Consequence of the monotony of applicable summary function (Theorem 8)
and the correspondence of function substitution and function composition (Lemma 4).

All in all, open summary functions form a lattice with respect to the meet oper-
ation of summary functions like applicable summary functions do. Therefore,
the computation of open representations of intraprocedural summary functions
is a data flow problem and the validator can check open summary function rep-
resentations according to the general validation principle.

Additionally, the correspondence between function variable substitution and
function composition also ensures that the substitution of an evaluation function
preserves the order relation in the following sense:

Theorem 11 (Order Preservation by Function Substitution) Let e f1, e f2 be
defining expressions of two evaluation functions and e = s(ep) be a function variable
application expression. Then

e f1 v e f2 ⇒ e|[s:=e f1] vE↓ e|[s:=e f2]

Thus, if two expressions are in order relation, then the substitution of a function variable
by this evaluation functions yields result functions with are in order relation with respect
to the order of expressions. As a consequence, the first expression always evaluates to
at least as conservative results than the second.

Proof 14 Immediate consequence of the definition of function variable substitution
(Definition 17) and the fact that function composition preserves the order of defining
expressions (Theorem 7).

This final result justifies the validity of the stepwise substitution of callee sum-
maries into open representations of summary functions during an incremental
validation process.

To summarise, the introduction of function variables provides a mechanism
to compute open summary functions that express the effects of code which is
external with respect to the software module under consideration. Additionally,
definition of a substitution of function variables with callee summaries allows
for a deferred integration of callee summaries as they become available. The
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computation of the open summary function representations is a data flow
problem so that open representations can be validated according to the general
validation principle. Furthermore, the integration of callee summaries into an
open function representation emulates the direct integration of callee summaries
during the analysis phase. Therefore, the substitution of function variables is a
mechanism to subsequently integrate callee summaries which become available
during the validation process.

5.4.6 Function Variables in the Expression Model

Function variable application expressions fit smoothly into the model of data
flow expressions because they can be treated like elementary function applica-
tion expressions. The central challenge is to extend the normalisation process
and to redefine the structural check of the order relation for open expressions.

Extension of the Normalisation Process

The constant folding, the duplicate variable removal, and the bottom shortcut
reduction are not affected by the introduction of function variable expressions.

In contrast, the push out upper bound normalisation has to consider function
variables. It does not only have to optimistically approximate data flow vari-
ables but function variables, too. This is achieved by the substitution of all
function variable expressions with an optimistic upper bound for the analysis
in question. Thus:

If [t(p)]|[xi:=>,si((epx)):=>] u cold = cnew @ cold

then t(p) u cold
POUB
−→ t(p) u cnew

This way, the POUB
−→ -normalisation can be applied to elementary transfer func-

tion expressions even in the presence of function variables in the parameter
expressions.

Additionally, we extend the distributivity normalisation to function variable
application expressions:

ti(p1) uL ti(p2) DSTR
−→ ti(p1 uL p2)

si(p1) uL si(p2) DSTR
−→ si(p1 uL p2)

This ensures, that there remains at most one expression for each function
variable on each nesting level of the data flow expression.

The extensions preserve the properties shown in Section 5.3.1. However,
the extension of the distributivity rule requires that the evaluation functions
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which are substituted for the function variables are distributive. The following
theorem states that applicable summary functions are distributive provided that
elementary transfer functions are distributive:

Theorem 12 (Distributivity of Applicable Summary Functions) Applicable
summary functions are distributive with respect to uL. Let ψ ∈ Ψapp:

∀v,w ∈ L : ψ(v) uL ψ(w) = ψ(v uL w)

Proof 15 Let e ∈ Eapp be the defining expression of ψ. According to the definition of
function application the proposition reduces to:

∀v,w ∈ L : e|[x:=v] uL e|[x:=w] = e|[x:=vuLw]

By induction over the structure of applicable expressions:

e = ⊥ : ⊥ uL ⊥ = ⊥

e = c : c uL c = c
e = x : v uL w = v uL w

e = es u x : es|[x:=v] uL v uL es|[x:=w] uL w = es|[x:=vuLw] uL v uL w
e = t(es) : t(es|[x:=v] uL t(es|[x:=w]) = t(es|[x:=vuLw])

Where the two last cases require the induction hypothesis that es|[x:=v] uL es|[x:=w] =
es|[x:=vuLw] for all expressions es with a smaller maximum nesting depth than e.
Furthermore, the last case requires that t ∈ T is distributive.

Thus, the normalisation process can be extended in a straight-forward way.
The normal form of an extended data flow expression is still unique and the
comparison criterion for data flow expressions is still simple to check because
the normal form has the following structure:

e↓=
l

i∈TI

ti(pi) uL
l

j∈SJ

s j(q j) uL
l

k∈VK

xk uL c

or e↓= ⊥

Therefore, the validator can check open summary functions by the same means
as their applicable counterparts. This completes the integration of open sum-
mary functions into the summary function model and enables the incremental
validation of analysis results of modular software.
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Remark: Nesting Depth Revisited

In the discussion of the expression model in Section 5.3.2 we already observed
that elementary function application expressions lead to nested data flow ex-
pressions and that we have to restrict the nesting depth in order to keep the
size of the expression representation under control. Similarly, function variable
application expressions lead to nested data flow expressions as well. We can
apply the same safe but conservative strategy to restrict the nesting depth in the
presence of nested function variable expressions.

Both approximations break cyclic dependencies which stem from loops in the
control flow. However, they conservatively approximate different dependen-
cies. The limitation of the nesting depth of elementary transfer functions deals
with situations where the result value of an elementary transfer function is used
as a parameter for the same function application in the next iteration. Thus, the
potential loss of precision depends on the properties of the elementary trans-
fer functions. Additionally, the properties of elementary transfer functions can
justify more precise approximation mechanisms as outlined in Section 5.2.2.

In contrast, the limitation of variable application expressions deals with situa-
tions where the result value of an external call is used as an argument of another
call. If a parameter of a call depends on the result of the same call of a previous
iteration of a loop in the flow graph, then the limitation of the nesting depth
breaks a cyclic dependency pessimistically, which could have been resolved
by a fix-point iteration in the interprocedural summary function computation
phase.

Furthermore, a limitation of the nesting depth can even affect open summary
function representations of straight line code. An early composition of subse-
quent summary functions which contain a reference to an external call leads to
a safe approximation if a single data flow fact transitively depends on several
external calls. The separation of the program state into an environment, the safe
approximation at join points, and a limited lifetime of data flow facts restrict
the number of situations where the limitation of the nesting depth reduces the
precision of the analysis result. However, from a conceptual point of view the
composition of open summary functions limits the number of external calls on
a program path and approximates the effects of the preceeding path by a safe
lower bound.

Additionally, the practical experiences with the current prototype implementa-
tion of the framework reveal that the early substitution of parameter expressions
has a significant impact on the runtime requirements of the analysis phase. We
discuss the problem and a potential solution as part of the runtime comparison
of the analysis and the validation phase in Section 9.4, but stick with the old for-
mulation of the function variable model the current prototype implementation
is based upon throughout the thesis.
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5.5 Method Invocation and Parameter Passing

Section 4.2.4 already provides an overview of the semantics of method invo-
cation in the presence of local variables and parameter passing. The general
observation is that the call site model requires two additional functions. The
summary function ψcallm models the assignment of arguments to parameters
and the return functional ψret acts as a selector function which maps modifica-
tions back into the context of the caller and restores the unaffected rest of the
context of the caller.

This section defines an appropriate representation for the program state in the
summary function model and defines the required summary functions.

5.5.1 Local Variables, Parameters, and Global Variables

The summary function representation models the program state as a environ-
ment which maps an arbitrary set data flow variables to data flow values. We
have not fixed the semantics of data flow variables, so that different analyses
can use them in different ways. For example, copy constant propagation uses
data flow variables to represent program variables directly, while an available
expression analysis models expressions in the program by data flow variables.
Many intraprocedural analyses consider the data flow through local variables.
If such analyses are extended to the interprocedural case, the data flow through
parameters, return values and global variables has to be considered, too. The
straight-forward way is to represent these different kinds of variables directly
by data flow variables in the data flow tuple.

We assume without loss of generality that local variables, parameters, and global
variables can be identified by a unique number up to an upper bound λ, π, and
γ, respectively. The following definition combines all of these variables into a
tuple which serves as a model for the program state.

Definition 18 (Interprocedural Core Tuple) Let LV = {l1, . . . , lλ},P =
{p1, . . . , pπ}, and GV = {g1, . . . , gγ} denote the sets of local variables, parame-
ters and global variables respectively. Then the set of data flow variables is defined as
Var = LV ∪ P ∪ GV ∪ r and the interprocedural core state consists of the tuple

(l1, . . . , lλ, r, p1, . . . , pπ, g1, . . . , gγ)

where r is a special variable which represents the result value of a method invocation.

Some comments are advisable. The sets LV and P represent the local variables
and parameters of a method invocation. However, it is not necessary to model
the local variables and parameters of each method separately, because the
variables can be reused for each method as we will see in the subsequent
sections. Thus, the sets are limited by the maximum number of local variables
and parameters which occur in some method of the specific program. We
model parameters explicitly because from the perspective of program analysis
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they share properties with local variables and global variables: on the one hand
data is passed to a callee via parameters and global variables while on the other
hand each method has an own set of parameters like it has an own set of local
variables. This differs from global variables which are unique throughout the
whole program.

Both properties are relevant for the model of method invocations.

Remark: Extensions of the Program State The definition of the interproce-
dural core tuple captures the data flow within the procedural core of a program-
ming language. It is possible to analyse the data flow through the call stack of
the program because the stack is modelled by local variables and parameters.

Furthermore, it is possible to analyse the data flow through uniquely defined
variables like global variables. Global variables correspond to class attributes in
object-oriented languages. Unlike the number of local variables and parameters
- which is usually very limited - the number of global variables can be linear in
the size of the program. However, special encoding strategies can reduce the
size of the program state representation as outlined in Sections 8.2.4 and 6.3.1.

The extension to objects and their fields complicates the issue. A simple but
limited approach is to extend the program state tuple by a single representative
for each object field. 3. However, the increase of precision which can be
gained by this extension may very well be limited because the analysis can
only compute data flow information which is valid for all object instances.

A points-to analysis is required whenever an analysis tries to restrict the poten-
tial objects which are accessed at a specific program point which reads or writes
an instance field. Given that valid results of a point-to analysis are at hand, a
subsequent analysis phase can restrict the potential effects of a field access to
fields of the object instances which may be referenced at the access site. This
requires an extended representation of the program state. The usual way is to
use a different representative for a fields for each object instantiation site within
the program. Obviously, this increases the number of field representatives sig-
nificantly and special optimisation strategies may very well be required to keep
the size of the state representation under control.

We intentionally limit the discussion to the procedural core model in order to
highlight the fundamental principles of the validation of analysis results. The
extension of these principles to more sophisticated analyses should always be
attempted in the straight-forward manner outlined in this section and technical
challenges like the size of the tuple representation can be approached by tech-
nical means. However, the summary function model may still degenerate for
more sophisticated analyses, especially if pointer analyses are considered. This
question is an interesting direction of further research.

3We describe the situation for the programming language Java, where at least the type of the
object and the specific field is known at each field access site. In languages like C which allow
for arbitrary pointer arithmetic the simple approach does not work because virtually any field
may be affected when a value is written to a storage location identified by a pointer

116



5.5. METHOD INVOCATION AND PARAMETER PASSING

Nevertheless, the core model of summary function analysis is already capable
to deal with interesting program analysis like the type inference analysis which
is described in Section 7.3. The result of this analysis yields an interprocedural
call graph which is a prerequisite for any interprocedural analysis.

5.5.2 Parameter Passing and the Call-Function

The runtime environment creates a new activation record4 on the call stack
of the program whenever a method is called. The activation record contains
local variables and parameters so that each method invocation operates on
its own set of local values. In contrast, each method invocation can access
global variables uniformly. The state of local variables, parameters, and global
variables immediately before the execution of the first instruction of a method
constitutes the invocation context of the method.

Interprocedural summary functions map the invocation context of the method
to the program state immediately after the execution of the method. Thus,
summary functions describe the manipulation of both the local variables of the
current method and the manipulation of global variables.

The invocation context depends on the program state at a specific call site as
depicted in Figure 5.13.
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Figure 5.13: Construction of the Call Function

The arguments of the method call initialise the parameters of the callee. Any
kind of the variables - like local variable l1 and global variable g1 - can serve as
an argument. Furthermore, the values of global variables coincide. In contrast,
local variables of the callee do not depend on the program state at the call site

4An activation record is called “method frame” in the Java terminology.
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because they are initialised to default values according to the semantics of the
programming language in question.

A program analysis describes these dependencies between the representation
of the program state at the call site and the invocation context of the callee by a
“call”-function. The call function depends on the call site, because the call site
determines the arguments of the call. Furthermore, the call function depends
on the callee because it maps the arguments to appropriate parameters and
initialises the local variables. Therefore, we subscript each call-function with
the program point of the call in the caller and with the name of the callee.

The transfer of values from arguments to parameters is closely related to
a sequence of assignments. However, these assignments have to happen
simultaneously in order to avoid interference between the local variables and
parameters of the caller and the callee. Consider the call instruction call(p2,
p1). Obviously, the assignment sequence

p1 = p2 ;
p2 = p1 ;

does not produce the correct invocation context, because the updated value
of p1 which corresponds to the parameter of the callee is used to initialise
parameter p2. Fortunately, the summary function representation is able to
express simultaneous updates of variables directly in the following way:

Definition 19 (Call Function) Let call(nx,m)(v1, . . . , vφ) be an invoke instruction
which calls method m at point x in method n. Then, the call-function ψcall(nx,m) is
defined as:

ψcall(mx,n)(l1, . . . , lλ, r, p1, . . . , pφ, g1, . . . , gγ) =d f

〈⊥1, . . . ,⊥λ,⊥, v1, . . . , vφ, g1, . . . , gγ〉

5.5.3 Method Return

The call-function maps the program state at the call site to the invocation context
of the callee. The interprocedural summary function of the callee maps this
invocation context to the program state immediately after the execution of the
method. However, the output state of the interprocedural summary function
expresses the program state in terms of the callee. Especially, this program state
contains information about the activation record of the callee and not about the
invocation context of the caller.

However, the summary function which captures the semantics of the method
invocation within the caller is a program state transformer which manipulates
the activation record of the caller. Thus, the program analysis model has to
integrate potential modifications into the context of the caller: Firstly, the
manipulations of global variables become visible in the callee after the call.
Secondly, the result value of the method invocation is stored to a variable in the
caller context.
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Furthermore, local variables and parameters of the caller are not effected by
the method invocation. Thus, the original values have to be restored upon the
method return. The situation is depicted in Figure 5.14.
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Figure 5.14: Return Function

The return-function restores the values l1, r, p1, and p2 in the caller context
because they are not affected by the call. Furthermore, the return-function
transfers the values of the global variables from the callee context into the
context of the caller, because the manipulation of global variables during the
method invocation affects invocation context of the caller. Finally, the result
value is stored into local variable l2 according to the assignment statement in
node 5 of the caller. This effect occurs after the restore of the local and the transfer
of global variables.

Formally, the return-function can be expressed as a functional which takes
two summary functions as input and produces a result function for the call
instruction. The first summary function is the intraprocedural summary ψ5
encodes the program state in the caller immediately before the execution of
the method call. The second summary function is the function composition
ψm ◦ ψcall(n5,m) ◦ ψ5 which describes the program state immediately after the
execution of the callee. The functional ψret(n5,m) yields a function which either
uses the mapping in the first or the second summary function to determine its
result - depending on the kind of variable in question.

Definition 20 (Return Function) Let vr = call(nx,m)(v1, . . . , vφ) be an invoke in-
struction which calls method m at point x in method n. Then the return-function
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ψret(nx,m) is defined as:

ψret(nx,m)(ψI, ψc) = ψr ◦ ψselectwith

ψselect(l1, . . . , lλ, r, p1, . . . , pπ, g1, . . . , gγ) =d f (el1
I , . . . , e

lλ
I , e

r
I , e

p
I , . . . , e

pπ
I , e

g1
c , . . . , e

gγ
c )

ψr(l1, . . . , lλ, r, p1, . . . , pπ, g1, . . . , gγ) =d f (ide, . . . , ide, vr = er
c, ide . . . ide)

where ψr uses the defining expression of the result value in the result representation in
the “appropriate” place vr and maps all other variables to themselves (ide).

All in all, the semantics of a call instruction can now be expressed as follows:

Definition 21 (Summary Function of a Call Instruction) Let vr =
call(nx,m)(v1, . . . , vφ) be an invoke instruction which calls method m at point x
in method n. Then the instruction-level summary function of the call instruction ψc is
defined as

ψc(s) = ψret(nx,m)(s, ψm ◦ ψcall(nx,m) ◦ s)

Remark The model assumes that the data flow information in local variables
cannot be affected by a method invocation which is true for all analyses de-
scribed in Chapter 7. Programming languages like C which allow a direct ma-
nipulation of the call stack or sophisticated points-to analyses can complicate
the issue. However, the simplifying assumption which holds for the considered
analyses allows the reuse of local variables and parameters and avoids a model
for the whole call stack in the analysis.

Furthermore, the representation implicitly models call-by-value semantics and
does not deal with aliasing effects. Once again, this is sufficient to deal with the
analyses presented in this thesis. An extension of the framework which takes
aliasing effects into account requires a validatable variant of an alias analysis.
The question which alias analysis are expressible in the validatable summary
function model is an interesting direction of further research.

5.5.4 Properties of Call- and Return-Function

Both the call- and the return-function have to be summary functions, in order
to integrate the extended model of a method invocation smoothly into the
summary function framework.

This is obviously the case for call-functions. Consequently, the function compo-
sition ψm ◦ ψcall ◦ ψI which yields the program state after execution of m is also
a summary function, because the composition of two summary function again
yields a summary function.

The return-function also constructs a summary function because it just point-
wise selects the evaluation functions of the given functions. This point-wise
selection is guided by the kind of the variables - evaluation functions for local
variables are taken from the caller context and the evaluation functions of the
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global variables and the result value are taken from the callee summary. This
ensures, that the instruction-level summary function of a call is monotone with
respect to function composition. This is important to ensure, that the instruction-
level summary is a valid transfer function for the call instruction.

Consequently, the extended model for method invocation fits directly into the
definition of the data flow problem which computes interprocedural. Thus, the
validation process can be immediately applied for the extended model, too.

5.5.5 Related Approaches

The formalisation of method invocation instruction presented in this section is
an adoption of the call-site model of the interprocedural framework of Knoop
[Kno99] to the summary function representation based on data flow expres-
sions. The difference is that the original model defines summary functions as
transformers of an abstract representation of the whole call stack. This model
allows to specify the interprocedural meet over all path solution but requires
the representation of a potentially infinite abstract call stack. In order to deal
with this issue, the original framework specifies an algorithm which computes
the interprocedural maximum fix point solution. This algorithm considers only
two elements of the call stack: the activation record of the caller and the one of
the callee.

The return-function defined in Section 5.5.3 follows this intuition. It also
considers the topmost elements of the call stack only. The program state of
the caller is encoded in the input summary function ψ5 while the program
state of the callee is encoded in the result of the function composition of input
summary function, call-function, and the summary of the callee. The return-
function merges the two states immediately after the method invocation has
finished.

Such an early merge is the key difference between the meet over all path solution
and the root cause for the loss of precision for non-distributive problems. The
phenomenon is usually observed when two intraprocedural paths join after
a conditional or after a loop. Here, we observe the interprocedural counter-
part, because the interprocedural summary function ψm already incorporates
all potential call sequences which originate from the call. The return-function
integrates this conservative approximation of the semantics of the call into the
summary of the callee. It is enriched by additional early intraprocedural merges
during the analysis of the caller. This yields a conservative approximation of
the interprocedural summary which in turn affects the precision of each callee.

The interprocedural framework of Reps, Horwitz, and Sagiv [RHS95], [SRH96]
integrates the semantics of parameter passing to and returning from a method
invocation explicitly within the path compression algorithm. This involves
three different sources of information. The compressed callee summary cap-
tures the semantics of the callee, a path grammar restricts the data flow to
interprocedurally realisable paths, and an additional flow edge, which directly
connects the call and the return nodes in the caller contributes local data flow.
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The data flow expression model does not involve a path grammar - which is
the fundamental modelling technique for the call-string approach also outlined
by Sharir and Pnuelli [SP81] - because the functional approach directly inserts
the summary function of the callee with respect to both, the call- and the return
semantics. The additional flow edge within the caller in the model of Reps
seems to be closely related to the fact that the result-function takes the input
summaryψ5 as a parameter and uses this summary to restore the local variables
and parameters of the caller.

5.6 Summary and Comparison

The summary function model solves several important issues which are vital to
support the validation of interprocedural analysis results of software modules:

• The definition of function composition, function meet, and function com-
parison is required to check the validity of summary functions according
to the general validation principle.

• Summary functions have to be applicable because they are used as transfer
function during the validation of the value computation phase of inter-
procedural analysis.

• The integration of arbitrary elementary transfer functions increases the
expressiveness of the model and provides a mechanism to extend in-
traprocedural analysis to their interprocedural counterpart in a generic
way.

• Analysis results for a single software module can be expressed by open
summary functions which contain function variables that refer to the sum-
mary functions of other modules. This allows for both the determination
of a safe lower bound of the available results as well as the subsequent
composition of analysis results.

• The call-site model takes parameter passing and the influence of local
variables into account. Furthermore, it provides a potential extension
point for reference semantics.

The main focus of the model is to support the validation of analysis results of
software modules. Efficiency issues - though addressed - are a secondary target.
The generic formulation of the data flow expression model allows to deal with
the central issues of the validation scenario in a way which is independent from
a specific analysis. However, it does not utilise problem-specific knowledge
like the compression of elementary transfer functions of the linear constant
propagation analysis.

The following sections flesh out the capabilities and limitations of the summary
function model by a comparison to related approaches.
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5.6.1 Capabilities of the Summary Function Model

Expressiveness The expressiveness of the summary function model is
closely related to the summary function model of Reps, Horwitz, and Sagiv
[RHS95], [SRH96] as outlined in Sections 5.1.4 and 5.2.3. The models coincide
for simple bit-vector analyses but differ in the integration of problem specific
transfer functions. The graph model requires that the dependencies between
elements of the program state can be decomposed into dependencies between
single variables and a subsequent conservative approximation. In contrast,
elementary transfer functions allow dependencies which involve more than a
single input variable. Such dependencies cannot be integrated into the graph
model smoothly, because they require the introduction of multi-edges.

All in all, the expression-based summary function model is capable to deal with
an extended class of interprocedural distributive environment problems.

Recent efforts to compute generic summary functions for a wider class of prob-
lems include the “conditional micro transformer” approach of Yorsh [YYC08]
and the “generic assertions” approach of Gulwani [GT07].

Conditional micro transformers express a summary function in terms of dis-
joined micro transformers which capture the transfer semantics only for a
subset of all program states that satisfy an associated condition. Function
composition involves the computation of weakest preconditions which in turn
requires that micro transformers are invertible. The model can cope with IDE-
problems but it is unclear to which class of analysis problems the approach
extends. The approach is concerned with the simplification of compositional
micro-transformers which seems to be related to the normalisation step in the
data flow expression model. However, the simplification of conditional micro
transformers does not explicitly address the challenge to keep the simplified
form unique which is vital for an efficient validation of the representation.

The generic assertions approach extend the expressiveness of method sum-
maries to program analyses which involve linear arithmetic [MOS04] and unary
uninterpreted functions [MORS05]. Possible assertions contain equalities of ex-
pressions and require that the underlying theory is unitary, i.e. for all equalities
there exists a unifier which is more general than any other unifier for that equal-
ity. This condition ensures the compactness of the representation of assertions
and leads to a fast computation of fix-points in the presence of cyclic structures
of the program. This aspect of the approach seems to be related to the normalisa-
tion rules of data flow expressions which ensure the uniqueness of the normal
form of summary functions (refer to Section 5.3.1). The question whether a
validation pass can check the representation of summary functions in terms of
assertions efficiently may be an interesting direction of further research.

Call-Site Model The specification of the method invocation semantics in an
interprocedural analysis framework can be discussed on two different levels.
Firstly, the parameter passing mechanism and the integration of modifications
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into the context of a caller immediately after the call site have to be expressed in
terms of the summary function model of the framework. Secondly, the general
mechanism has to be instantiated either by some kind of default implementation
or specific to the data flow analysis in question.

All interprocedural frameworks have to deal with two different issues at call
sites. An additional call-function has to capture the assignment of arguments
to parameters before the summary of the callee is considered while a return-
function has to integrate the effect of the call into the context of the caller. The
return-function needs access to the program state immediately after execution
of the callee and to the invocation context of the call because the values of
unaffected local variables of the callee have to be restored.

The interprocedural framework of Knoop [Kno99] models parameter passing
explicitly by the integration of an appropriate simultaneous assignment state-
ment before each call instruction. Thus, the transfer function of assignment
statements of the inducing data flow problem can be used directly. The frame-
work extends the program state model to a abstract variant of the call stack
in order to separate local variables of different method invocations. Summary
functions operate on this stack representation. The instruction level summary
functions just manipulate the topmost element and the call function pushes a
new abstract instance of a method frame onto the stack. Consequently, the
return function has access to an abstraction of the whole stack and can merge
the two topmost elements after a call site.

The PAG framework [AM95] uses the call-string approach which does not
explicitly compute function summaries but restricts the propagation of data
flow values on interprocedurally realisable paths. To do so, the program state
model holds information about different calling sequences and the program
state after a method invocation is merged into “fitting” sequences only. This
is achieved by user-defined “mapping”-functions, which have the information
about different calling sequences available.

The graph reachability approach of Reps [RHS95] uses additional flow edges
from call- to return-nodes to support restoring of local variables of the callee.
These edges host an own data flow function which can immediately map parts
of the invocation context to the result context in the caller.

PAG as well as the graph reachability approach capture the parameter passing
mechanism by additional summary functions which augment the flow edge
from a call-node to the entry node of the callee.

The method invocation mechanism presented in Section 5.5 solves the challenge
in a similar way. The call-function is a summary function which expresses the
simultaneous assignment of arguments to parameters. The return-functional
takes two summary functions as input which describe the original invocation
context and the situation after the execution of the callee respectively. Thus, the
original state can be restored and modifications can be integrated into the result
context of the caller.
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Section 5.5 already defines a default implementation which is suitable to deal
with the all analyses problems presented in Chapter 7. This model assumes
that the local variables of the caller cannot be affected by the callee. This
is true for several analyses especially when Java programs are considered
because the Java runtime environment prevents a direct manipulation of the
call stack. Nevertheless, the call- and return-function can be replaced by more
sophisticated versions if this is required for additional analyses.

All in all, interprocedural analysis frameworks tackle the same problems at call
sites even though the abstractions differ significantly. The data-flow expression
based summary model essentially proceeds along the same lines. The most
important advantage of our formalisation is that it keeps the representation of
summary functions validatable. This is an aspect that has not been considered
from the perspective of a interprocedural framework yet.

Modular Analysis Traditional analyses usually expect the whole program to
be present at analysis time or make worst-case assumptions about invocations
of unknown methods.

The analysis of software modules requires a result representation which can
be subsequently composed to the final result for the whole program. Such a
result representation can either be tailored to a specific problem or an analysis
framework tries to deal with the issue in a generic way.

The first approach can additionally be divided into two subcategories: either an
analysis produces problem specific summary functions or it uses a completely
problem specific representation. Examples of the first kind of analyses include
the points-to summaries of [RR01] or [GR07]. The advantage of specialised
summary functions functions is that their composition can be expressed in
terms of the functional approach to interprocedural analysis. However, the
representation of call-backs - if permitted - requires the integration of functional
aspects into the problem specific result representation. The second kind of
analyses which provide a problem specific solution define both the result
representation and the composition mechanism in an own model. An example
is the compositional pointer and escape analysis specified in [WR99] where a
so-called points-to escape graph encodes the relationships of references and the
composition of results is reduced to a specialised graph union.

In contrast to the problem specific approaches, the composition of partial anal-
ysis results can also be tackled based on the abstractions of an interprocedural
framework. The component-level analysis of Rountev [Rou02], [RKM06] tries
to perform as much of the summary function computation phase as possible.
The key observation is that it is possible to compute the summary functions
of leaf methods independently from the rest of the program because they do
not call any method. Furthermore, the summary functions of leaf methods
can already be inserted into the summary function computation of their callers
which in turn can make additional summaries computable. The computation
stops whenever the call to an external method is encountered. The result is
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a compressed representation of the intraprocedural summary functions of the
software module. The composition of the results just corresponds to the contin-
uation of the summary function computation with newly available summary
functions. Partial analysis systems defined by Thies [Thi02] constitute another
approach to specify analysis results of a software modules in a generic way. Par-
tial analysis systems encode data flow results in an algebraic structure which is
closely related to the structure of a data flow problem but additionally offers the
possibility to express dependencies between data flow facts. So-called single
aspect models establish references to data flow facts from unknown software
modules within the algebraic model. The approach can automatically combine
analysis results of different modules at link-time - given that the results of a
specific analysis can be expressed in terms of a partial analysis system,.

The summary function representation defined in this thesis is also a generic
approach to the combination of modular results. The incremental computa-
tion and validation of open summary functions follows the general idea of the
component-level analysis. However, function variables which express depen-
dencies on external modules are already integrated as first class elements in
the model. In particular, the normalisation process can affect function vari-
able expressions. This way, the analysis of a single software module drops
dependencies on other software modules automatically if they cannot influence
the result anymore. This is more aggressive than the component-level anal-
ysis which stops the computation process of summary function as soon as a
dependency on an external summary is encountered.

Furthermore, the validatable variant of a type inference algorithm which is
discussed in Section 7.3 solves an important challenge more accurately than
other approaches: the result can detect situations where a dynamically bound
method call targets methods in the software module only. Thus, even dynam-
ically bound calls can be closed already during the analysis of the software
module.

Data flow expressions and the normalisation specified in Section 5.3 share
several ideas with the algebraic transformations in partial analysis systems.
Additionally, data flow expressions provide several improvements:

• The dependency on the inducing data flow problem is made explicit in
data flow expressions. This eases the specification of data flow results
in the expression model. Furthermore, the normalisation rules are solely
based on generic properties of the inducing data flow problem.

• Method invocations are integrated directly into data flow expressions. In
contrast, single aspect models for methods rely on the additional concept
of method families which is specified separately.

• The reduction rules for data flow expression ensure the uniqueness of the
normal form which is a central prerequisite for the validation of data flow
expressions
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5.6.2 Limitations of the Summary Function Model

Influence of Elementary Transfer Functions The data flow expression
model targets both the validation aspect and the representation of modular
analysis results without taking advantage of special properties of a specific
analysis. This way, we can discuss and solve the main challenges of our appli-
cation scenario in a uniform way which keeps the focus on the general validation
principles. The approach can deal with an interesting class of analysis problems.
Particularly, the model is able to express a data-flow based type inference algo-
rithm that is useful in the incremental validation scenario. The type inference
result yields a call graph which in turn is a prerequisite for other interprocedural
analyses.

However, the universal formulation comes at a cost. The key question is whether
the use of elementary transfer functions and function variable application ex-
pressions can be kept under control. Elementary transfer functions abstract
from the problem specific details but lead to nested expressions. The nesting
depth can be infinite if the result of an elementary transfer function is used as
a parameter of the same transfer function. This can occur in intraprocedural
contexts whenever a data flow value computed in a preceding loop iteration
contributes to the same computation in the subsequent loop iteration. The nest-
ing depth is closely related to the questions how much subsequent applications
of transfer function lead to a fix-point. This is an important problem specific
property the data flow expression model is not aware of. The restriction of
the maximum nesting depth leads to a loss of precision while deeply nested
expressions can only be omitted if the analysis exploits knowledge about the
function properties of the specific problem.

A second consequence of the way the model deals with elementary transfer
function is that nested expressions cannot be compressed in a problem specific
way. For example, linear functions represent the symbolic computations of the
linear constant propagation problem. The composition of two linear functions
can be compressed into a single linear function because

lin(a1,b1)(lin(a2,b2)(x)) = a1(a2x + b2) + b1 = (a1a2)x + (a1a2 + b2) = lin(c,d)(x)

The extension of the graph reachability approach to linear constant propagation
[SRH96] explicitly exploits this compression strategy to keep the size of the
micro transformers under control. This is not immediately possible in the data
flow expression model because it has to be extended to integrate such problem
specific compression techniques.

Nevertheless, three mechanisms counter the blow up of elementary transfer
functions in the expression model. Firstly, the generation of data flow facts
removes any complex expression that describes the previous state of the data
flow fact in question. Secondly, the conservative approximation with a lower
bound drops a potentially complex expression. This occurs whenever a path
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where the pessimistic assumptions about a single data flow fact have to be

made is joined with other paths. Thirdly, the POUB
−→ -normalisation makes an

upper bound for elementary function application expressions available on the
level of the the function application. This removes elementary transfer functions
that cannot contribute valuable information anymore.

To summarise, the model of data flow expressions is especially well suited to
express analyses problems, which

• do only require few elementary transfer functions

• have many generation points of data flow information

• lead to a significant amount of safe lower bounds either because they
safely approximate the influence of data flow which is not considered by
the analysis or because they do not always yield valuable information.

Interestingly, bit-vector problems do usually not require elementary transfer
functions at all - so that the data flow expression model stays nearly as efficient
than problem specific solutions. In the worst case, the summary function model
can degenerate to an explicit representation of the composition and meet of
summary functions induced by the control flow of the program. In this case,
the tuple representation is not very efficient because it encodes the structure of
summary functions for each data flow fact again.

Model of Program State The current description of the program state is
tailored to the representation of a data flow fact per variable in the program. It
is especially useful to analyse the data flow through local variables on the call
stack of the program. The reason is that in many analysis the execution of a
callee cannot influence the local variables of the caller except for the variable
the result of the call is assigned to. As a consequence, the environment model
effectively isolates the influence of a call because only one variable becomes
dependent on a function variable expression.

This advantage is reduced when global variables and other program entities
are integrated into the environment. The invocation of a method can influence
any of these values so that each of them depends on a function variable ex-
pression after the call. Similarly to elementary transfer functions, conservative
approximations and the generation of new data flow values can remove such
references. Furthermore, the challenge can also be addressed on a technical
level as discussed in Section 8.2.5.

Algebraic Properties of Summary Functions The summary function model
requires that elementary transfer functions are distributive with respect to the
safe approximation operator of the inducing lattice. Essentially, this property
guarantees that the result of the evaluation of an expression does not depend
on the order of the evaluation of its subexpressions. Therefore, the different
normalisation steps can be applied in an arbitrary order without changing the
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result of the expression. This keeps the validation phase flexible and simplifies
the discussion about the formal properties of the normal form.

Interprocedural frameworks limit themselves to distributive analyses when-
ever guarantees about the quality of a solution have to be established. The
influence of non-distributivity is subtle: the functional approach has to keep
the summary function representation in the first phase under control, while the
call-string approach has to limit the depth of the call sequence which is tracked
precisely. The underlying question is always how long different program paths
are modelled separately before they are joined. Any early join has the potential
to loose precision for non-distributive problems.

We have identified two ways to approach the validation of non-distributive
problems. Firstly, the most conservative result with respect to the loss of
precision caused by early joints can be transmitted. This prevents that the
validator can accidentally join information too early and end up with a result
which is to weak to validate the given result. The second way is to synchronise
the analysis and the validation phase so that the loss of precision is guaranteed
to occur at the same points. This aspect is not investigated further.

Path Sensitivity The current representation of summary functions captures
pure data flow only. It does not take dependencies between data flow values
and the expressions of control statements into account. Therefore, the model is
not able to deal with conditional data flow analyses.

Nevertheless, extensions like the path-sensitive reformulation of the graph
reachability approach in the Bebob system [BR01] - which is part of the SLAM-
project [BR02] - can also be possible in the data flow expression model. Such
an extension leads to a more complex representation of the program state tuple
because it has to be able to express that some data flow facts are valid only if
conditions about other data flow facts hold. The Bebop system achieves this
by reducing the program to a boolean program so that transfer functions be-
come boolean functions which can be efficiently represented by binary decision
diagrams. The reduction to a boolean program works well for analyses which
determine “yes or no”-decisions. However, it is not obvious how this approach
extends to arbitrary analyses problems. It is likely, that the same phenomenon
can be observed when a path sensitive extension of data flow expressions is
considered because the restricted class of boolean functions can yield addi-
tional reductions of the extended representation.

Relational Analyses Muchnick and Jones investigate the general complexity
of flow analysis in [JM81]. They differentiate two classes of analysis methods -
the independent attribute method and the relational method.

The algorithms that use the independent attribute method associate with each
program point I a function fI : {X1, . . . ,Xn} → D where X1, . . .Xn are the variables
of the program and D is a lattice of data flow elements which describe properties

129



CHAPTER 5. A GENERIC MODEL FOR SUMMARY FUNCTIONS

of a variable. For example, fI(Xk) = {bool, int} states that variable Xk may have
type bool or type int at program point I in a type inference analysis.

A system of simultaneous equations of the form fIi(Xk) = gi j( fI1(X1), . . . , fIm(Xn))
specifies the problem and can be solved by fix-point iteration.

In contrast the relational method associates a relation fI ⊆ Dn with each pro-
gram point with the interpretation that fI is a set of n-tuples describing the
relationships among the values of X1, . . . ,Xn at point I [JM81]. Assume that the
analysis in question performs a type analysis on the example program depicted
in Figure 5.15.
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Figure 5.15: Comparison of the Attribute and the Relational Method

Two different paths in the program flow merge immediately before the node
which contains the assignment X = Y. The variable Y has type integer5 on the
left path and type real on the right path.

The attribute method associates a single data flow value to each variable at each
program point. Therefore, it merges the two different types that variable Y may
have at the join point I3. The result of this operation is the type set {i, r} which
indicates that Y has either type integer or real. As a consequence, the analysis
infers that X also has either type integer or type real at program point I4 after
the assignment. This approach is not capable to detect the relation between the

5Abbreviated by i
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type of X and the type of Y - the information that X and Y have the same type
at point I4 is lost. The reason is that the attribute method operates on a single
representation of the program state at each program point. Therefore, it has to
merge the different states from the left and the right path at the join point.

The relational approach solves the problem, because it uses a set of data flow
tuples as depicted by the dashed-boxed values in Figure 5.15. The two tuples
which represent the program state on the different paths are not merged at
the join point but combined by set union into a new set which contains two
different tuples for the different program states. A relational analysis considers
the effects of a code block on all program states in isolation. This yields a new
set of program states for I4 which clearly states that X and Y have the same type
at this point.

Obviously, the relational approach is a generalisation of the independent at-
tribute approach, because the result of the attribute approach is always the con-
servative approximation of all tuples in the tuple set of the relational approach
at the same point. Essentially, the relational approach has the capability to keep
track of different program states from different execution paths. This increases
the expressiveness of the approach. However, it increases the computational
complexity, too. In [JM81] Muchnick and Jones show that the independent at-
tribute approach is in P while type checking a language proposed by Dijkstra
in [Dij76] with the relational approach is inNP.

The summary function model for the validation of interprocedural analysis
results follows the design principles of the attribute approach. A summary
function transforms a single input state to a single output state. Internally, the
program state is also decomposed into a tuple of properties of a set of data
flow variables and a summary function is decomposed into a single evaluation
function for each variable in the output state. This closely resembles the intuition
of the system of equations of the form

fIi(Xk) = gi j( fI1(X1), . . . , fIm(Xn))

which also specifies the dependence of the flow value of Xk at the point Ii in
terms of the data flow facts of other variables at some other program points. A
summary function ψi j which maps the whole program state at point Ii to the
program state at point I j is defined as

ψi j(〈X1, . . . ,Xn〉) = 〈ex1
i j (X1, . . . ,Xn), . . . , exn

ij (X1, . . . ,Xn)〉

Thus, the evaluation functions correspond to the functions gi j . A difference is
that a summary function always considers a specific program point Ii as the
input point and refers to the state of the variables at this point only. In contrast,
the definition of the equation system in the attribute approach can refer to
different program states I1 and Ik for example.

It is an interesting question whether the summary function model can be
extended to the relational approach as well. An immediate idea is to use a
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set of summary functions instead of a single summary function to express the
mapping of program states from one point to another. Each of these summary
functions can map one of the input states to the corresponding output state, so
that the set of evaluation functions can act as a transformer for the extended
program state model in the relational approach. The function meet is the
most important point to consider because the behaviour at join points seems
to be the key difference between the independent attribute approach and the
relational approach. The first approach implies a conservative approximation
of program states while the second one implies the set union of program state
sets. Currently, the function meet is defined by a reduction to the conservative
approximation operator of the inducing lattice which is another hint at the
relationship to the attribute approach. The extension to relational analysis seems
to be likely to require some kind of union operation on summary function sets.
This introduces an additional level of abstraction into the summary function
model and is beyond the scope of this thesis.
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6 Optimisation of the Validation
Process

The validation of data flow results is reasonable only if it is significantly more
efficient than the iterative data flow algorithm. One of the key properties of
validation is that it avoids iterative fix point computations. Therefore, a single
pass over the system of data flow equations suffices to validate given results.
However, the annotation of data flow results increases the size of the transmitted
data. Furthermore, it may even be impossible to store the whole data flow result
at the consumer site which is why it is beneficial to use at least parts of the result
ahead of time and to drop data flow information as soon as it is no longer
needed.

Efficiency concerns can either be approached by an improvement of the under-
lying algorithm or by technical improvements like the use of more efficient data
structures. Algorithmic ideas exploit for example that the lifetime of data flow
facts in the validation process is limited or that it is possible to reuse data which
is computed during validation. In contrast, technical means include efficient
encoding strategies for data flow elements or specialised data structures. This
chapter discusses algorithmic improvements while the discussion of technical
optimisations is postponed to Chapter 8.

The fundamental ideas discussed in this chapter can be summarised as follows:

Reduction of the Certificate The validator produces data flow facts during
the checks required in the validation process. Parts of these values coincide
with the final data flow result. Thus, only those pieces of data flow
information which are not reconstructed in the validation process have to
be transmitted in the certificate.

Lifetime of Data Flow Values Some data flow facts influence only a limited
number of other data flow facts. Thus, a data flow fact can be dropped as
soon as all dependent data flow facts have been validated.

Intentional Under-approximation The validation process is capable to vali-
date any fix point of a given data flow problem. Therefore, the analysis
phase can replace data flow facts by safe lower bounds if the validation
of these facts is not necessary in a security scenario. The optimisation is
even better applicable in the optimisation scenario because the producer
can choose to drop any data flow fact if its validation becomes too costly.

The first two optimisations have already been considered in contributions
which deal with special validation contexts like Java Bytecode verification. The
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contribution of this chapter is to generalise the problem specific formulations
and to reinterpret the ideas in the interprocedural setting.

The use of intentional under-approximation is more specific to the application
scenario of this thesis because it is most useful when the consumer intends to
safely apply optimisations to the program. In such a scenario, the consumer
can waive any optimisation if the validation costs of the required data flow
information becomes too high. In contrast, the validation in a security scenario
can force the consumer to validate even those data flow facts, which require a
significant amount of validation effort.

6.1 Reduction of the Certificate

A first observation which gives rise to optimisations in the validation scenario
is that the validation process requires the recomputation of data flow facts for
checking purposes. Some of these recomputed values can replace information
in the annotations. This reduces the size of the annotations and even some
checks become obsolete because the validator can rely on the self-computed
values.

According to the general validation principle the validation of data flow results
corresponds to the check that the given results solve the system of data flow
equations which defines the data flow problem. This check requires two
different kinds of tests. Firstly, the solution has to capture the local semantics
of the code in a flow graph node. Thus, the output solution has to be as least as
conservative as the result of the transfer function application which takes the
given input solution as parameter. Secondly, the solution in the certificate has to
capture the safe approximation of data flow facts at join points. Thus, an input
solution has to be as least as conservative as the conservative approximation
of the output solution of each predecessor node. In the intraprocedural case,
the different kinds of checks correspond to the two kinds of inequalities in the
following equation system

∀i ∈ FlowNodes, ti = JiK ∈ T :
O∗i v ti(I∗i )

I∗i v
{

IStart if i = 1d
j∈predG(i) O∗j else

In order to check the validity of an output solution, the validator has to compute
the result of the transfer function ti with respect to I∗i which yields a output
solution O?

i . The validation of a given output solution O∗i reduces to the check
that

O∗i v O?
i = t(I∗i )
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However, the recomputed output solution O?
i is already a solution which is

valid with respect to I∗i . Thus, it is not necessary to ship a solution candidate
in the certificate if the validator reuses ? during the validation process. This
immediately reduces the size of the certificate and also avoids the check O∗i v O?

i .
This idea is exploited by the KVM approach to Java Bytecode verification.

6.1.1 The KVM Approach

The “Kilo Virtual Machine” is a lightweight variant of the Java Virtual Machine
which is tailored for limited devices like mobile phones. The available memory
on such devices is limited to some hundred kilobytes. Therefore, the original
bytecode verification algorithm - which is essentially a data flow algorithm that
solves an intraprocedural type inference problem - cannot be implemented on a
KVM. Thus, the Connected Limited Device Configuration [BLTY03] specifies a
bytecode verification which relies on the transmission of so-called “stack maps”
which contain the type information at each input of a flow node in a method.

The validation process computes the corresponding output solution O?
j = t j(I∗j)

and checks that

∀i ∈ succG( j) : I∗i v O?
j

This check can be performed easily because all input solutions are available in
the certificate and the offsets of the conditional branch instructions at the end
of a flow node identify the successor nodes explicitly.

Nevertheless, the check differs from the check defined by the equation system
of the data flow problem

I∗i v
l

j∈predG(i)

O?
j

Essentially, the approach replaces check that an input solution is as least as
conservative as the conservative approximation of all input solutions by the
check that the inequality holds for each output solution separately. This strategy
is justified by the observation that

I∗i v

l

j∈pred(i)

O?
j

⇔

∀ j ∈ pred(i) I∗i v O?
j

Informally, if I∗i is as least as conservative as the safe approximation of all output
solutions of all predecessor nodes, then it is more conservative than each output

135



CHAPTER 6. OPTIMISATION OF THE VALIDATION PROCESS

solution and vice versa. Consequently, the validator can check the validity of a
given input solution successively by checking its validity with respect to a single
output solution.

This decomposition of the check into checks, which involve a single input and
output solution only, enables the the validator to completely process a single
output solution once it is computed. This is important because it reduces the
intermediate storage which is required to hold the computed output solutions
to a single element. At this point we can already observe that the reuse
of recomputed values in the validation process has the potential to produce
additional costs: the validator may need intermediate storage to keep the
computed values.

The KVM approach avoids the need for additional storage by the reorganisation
of the join-point checks: instead of checking an input solution against all output
solutions of predecessor blocks it subsequently checks a single output solution
against the input solutions of all successor blocks so that it suffices to store a
single intermediate output solution only.

Interestingly, the decomposition of the join-point check requires that the valida-
tion looses the potential to validate the maximality of the given fix-point solution.
The validation of the maximum fix-point solution requires the computation of
the safe approximation of all output solutions and the check that the result is
equal to the given input solution. The problem is that

∀ j ∈ pred(i) I∗i v O?
j

;

I∗i =
l

j∈pred(i)

O?
j

Nevertheless, the loss of the potential to validate the maximality of the solution
does not affect the safety of the bytecode verification. Any solution which
passes the checks is a valid one and thus safe. A weaker result may still suffice
to ensure the type-safety of the program. This is the key observation which leads
to optimisations which exploit the intentional under-approximation principle
(see Section 6.3).

6.1.2 The Difference Certificate Approach

The general observation that the validator can reuse data flow facts computed
during the validation process can be exploited even more aggressively than in
the KVM approach. The general idea is to use computed output solutions as
candidates for subsequent input solutions. The certificate supplies difference
information only if the input solution of the data flow analysis differs from the
input solution candidate derived from preceding output solutions.
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The idea was originally proposed by Rose in her approach to lightweight
bytecode verification [RR98] and its general applicability to intraprocedural
analysis results is emphasised in [Ros03].

This section reformulates the original idea in terms of the validation of data
flow equations. Furthermore, we will address the additional question how long
intermediate results have to be kept by modified validation process. Consider
the example in Figure 6.1 which shows two different kinds of joint points of
paths in the flow graph.
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6

4

O3

O2

I4

I4 = O2      O3 I5 = O4      O6

O4

I5

O6

Figure 6.1: Construction of Input Solutions during the Validation Process

The situation on the left hand side shows the join of control after a conditional
statement. The validator has already computed the output solutions O?

2 and
O?

3 . Thus, it is possible to compute the safe approximation I?4 = O?
2 uO?

3 . This
data flow fact can immediately act as a valid value for the input solution I4. As a
consequence, the input solution does not have to be stored in the certificate and
even the check becomes obsolete because the validator recomputed the input
solution based on valid data flow facts.

The situation differs on the right hand side in Figure 6.1 where a backward edge
contributes to the information at the input of node 5. The output solution O?

4
is already available but the output solution O6 is not. In order to construct a
suitable input solution in such a case, the validator relies on difference information
in the certificate. This difference information serves as a substitute for the
unknown terms in the equation. The validator constructs the input solution by
the safe approximation of an input solution candidate I?5c = O4 and a difference
element ∆∗5 for the flow node, thus

I?5 = I?5c u ∆∗5 = O?
4 u ∆∗5
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More generally, the validator can use the safe approximation of all available
output solutions as an input solution candidate I?c5 and the certificate contributes
the effects of the safe approximation of all subsequent output solutions as a
single difference element ∆∗5.

Interestingly, the difference information is not always necessary, because if

I?c5 v ∆∗5 ⇒ O4 u ∆∗5 = O4

Intuitively, if the input solution candidate is already as conservative as all
information which is contributed by subsequent output solutions, then it is
not modified by the difference element which in turn can be omitted from the
certificate.

The problem is closely related to the fix-point computations in the iterative anal-
ysis algorithm. The data flow algorithm has to iterate only if some information
which is contributed by subsequent nodes invalidates an input solution used in
the preceding iteration. When the flow graph is processed in code order, this can
only occur via a backward edge. Thus, difference information is only required
at target nodes of backward edges and only if the input solution candidate does
not already constitute the final result. Intuitively, an entry in the difference
certificate predicts the result of a fix-point iteration whenever it differs from the
input solution candidate constructed during the validation pass.

In the original application scenario of Java Bytecode verification back edges -
which correspond to loops in the control flow graph - are rare and the type
information about local variable registers1 does not change very much during
the analysis process. Thus, the conservative approximation of the output
solution of predecessor nodes visited during the traversal in code order usually
corresponds to the final solution already - and the difference certificate becomes
empty.

However, the reduction to a difference certificate imposes a new challenge,
because the validator has to keep intermediate results in some temporary
storage. The required size of such temporary storage is crucial for a target
device like a smart card because random access memory is usually a much
more valuable resource than EEPROM where the certificate can be stored.

Recall that the validator has to check that

∀ j ∈ predG(i) : Ii v O j

Thus, the situation on the right hand side in Figure 6.1 requires that I?5 v O?
4 and

that I?5 v O?
6 hold. The first check immediately holds, because O?

4 was used to
construct I?5 . However, the second check is still pending, because the validator
must not assume that the difference information in the certificate contains the

1In contrast to the Virtual Machine Specification we denote the local variables in the method
frame of a virtual machine as local variable registers to separate them from the local variables
of the source language.
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correct value. Therefore, the input solution I?5 has to be kept in memory until
the output solution O?

6 becomes available.

The original approach of Rose stores the input solution for all flow nodes which
are the target of a backward edge. Additionally, output solutions are kept as
long as they contribute to the computation of input solution candidates - i.e.
as long as the last successor node has been processed. This leads to a memory
consumption which depends on the overall number of backward edges and to
the maximum number of forward edges which pass a cut in the flow graph.

However, the observation that output solutions have a limited lifetime extends
smoothly to the input solutions which are stored for subsequent checks: An
input solution can be released as soon as the last check has been performed -
i.e. when the last predecessor node has been processed. The following section
establishes a model for the lifetime of data flow values and deals with the
minimisation of the number of intermediate results.

6.2 Lifetime of Data Flow Facts in the Validation
Process

In Section 6.1 we observe that the size of the transmitted certificate can be
reduced significantly if the validator reuses data flow facts which are computed
during the validation process. Essentially, difference elements have to be
transmitted only if the final result of the iterative fix-point computations differs
from the solution candidate constructed by the validator. However, the strategy
requires that the validator stores some of the data flow results as long as their
validity has finally been established.

In this section we will develop a graph model for the dependencies between
data flow facts and show how it is possible to estimate the maximum number of
intermediate results during the validation process by an inspection of the graph.
Next, we reinterpret the different optimisations in terms of the dependency
model. Furthermore, the graph model reveals that the number of intermediate
results depends on the order in which the validator processes the flow graph
nodes. This offers an additional optimisation opportunity as discussed at the
end of the section.

6.2.1 Dependency Model

The question how long a data flow fact is needed during the validation process is
closely related to the dependency between data flow facts. These dependencies
can be easily derived from the system of data flow equations. Consider the flow
graph in Figure 6.2.

The corresponding system of data flow equations shows that there is exactly one
defining equation for each data flow fact. Furthermore, several data flow facts
can contribute to the computation of a specific value like the output solutions
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Figure 6.2: Intraprocedural Flow Graph

O2 and O3 give rise to the definition of I4. Likewise a single data flow fact can
contribute to the definition of several data flow facts like O1 which contributes
to the definition of I2 as well as I3.

I1 v IStart

O1 v t1(I1)
I2 v O1

O2 v t2(I2)
I3 v O1

O3 v t3(I3)
I4 v O2 uO3

O4 v t4(I4)
I5 v O4 uO6

O5 v t5(I5)
I6 v O5

O6 v t6(I6)
OEnd v O5

We can capture these dependencies in a graph which contains the data flow
facts as nodes. A directed edge (n1,n2) connects two data flow facts n1,n2 if n1
contributes to the defining equation of n2. The graph in Figure 6.3 captures the
direct dependencies in the data flow equation system.
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Figure 6.3: Dependence Graph

This graph is closely related to the original flow graph because the flow edges
directly correspond to edges which connect output to input solutions. The other
kind of edges which connect input to output solutions directly corresponds to
the nodes of the flow graph. The advantage of the new representation is that
it abstracts from the different kinds of solutions so that we can argue about the
lifetime of input and output solutions in a uniform way.

The validation process checks that a given solution solves the system of data flow
equations. The validator can perform these checks easily if all data flow facts
are available. However, this simple strategy requires that the whole solution is
kept in memory during the validation process. Thus, it is an important question,
how long a data flow fact is still required and when it can be dropped. The
answer is given by the dependence graph.

The validation process is a linear pass over the system of equations and the
dependence graph respectively. A single data flow fact can be checked as soon
as all predecessor nodes in the dependence graph have been visited. Similarly,
the value itself is needed as long as there exists an unprocessed successor node.
Thus, the lifetime of a data flow fact starts when it is processed and ends after
the processing of the last successor or predecessor respectively.

Consequently, the lifetime of a data flow fact depends on the order in which the
solutions are processed and captured within a linear ordering of the dependence
graph.

6.2.2 Reuse and Check

We will now reconsider the different validation strategies in terms of the de-
pendence graph model. To begin with, we can observe that both the KVM and
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the difference certificate approach check the dependency between two solutions
separately. For example, the check of the defining equation of I4 v O2 u O3 is
not performed by first applying the conservative approximation of O2 and O3
and a subsequent check. In contrast, the check is split into two checks, which
finally establishes the validity of the equation because

I4 v O2 ∧ I4 v O3 ⇒ I4 v O2 uO3

The edges in the dependence graph directly correspond to these checks which in
turn justifies that a data flow fact can be released as soon as all checks involving
this element have been performed. The fact that the validator can take the
lifetime of data flow facts into account reduces the number of data flow facts
which have to be kept in memory during the validation process.

Additionally, the difference certificate approach uses a second principle in
order to reduce the amount of information which has to be transmitted in
the certificate: Instead of checking a direct dependency between two data flow
facts, the validator can use an available data flow fact as solution candidate
for a dependent solution. This candidate fulfils the properties of the check by
construction.

Consider the situation for the input solution of node 5 in the example:

O4 v . . .

I5 v O4 uO6

. . .

O6 v . . .

The output solution O4 is available already. Thus, it can act as a solution
candidate for I5 and the check that the value of I5 is smaller or equal than O4 holds
trivially. Furthermore, the certificate has to contribute difference information if
and only if the value of O6 weakens the result of the conservative approximation
expression.

In fact, the strategy of the difference certificate approach can be reformulated
as follows: A solution candidate for a data flow fact is constructed from the
defining data flow by substituting variables by available values and by values
provided in the certificate.

A forward edge in the dependency model indicates that the solution of the
source node is available and can be integrated into a solution candidate for the
target node. The solution candidate is used when the validator processes the
target node. Thus, the length of a forward edge determines the lifetime of a
solution candidate.

Similarly, backward edges represent postponed checks. The validator has to
check the solution of the source node against the solution of the target node.
Therefore, the solution which has been derived for the target node has to be
kept in memory until the solution of the source node becomes available.
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6.2.3 Optimisation Goals

The key observation of the preceding sections is that the validator can process the
data flow equations in an arbitrary order. However, the processing order defines
forward and backward edges. Thus, the number of reusable results, deferred
checks, and the lifetime of data flow facts changes according to the processing
order. This observation can be used to improve the validation process further.
However, the consumer has to be capable to deal with an arbitrary validation
order which is determined at the producer site. This general idea has already
been observed in [KK05] but it has not been generalised to the interprocedural
setting.

The validation process can be optimised in two different ways. Firstly, the reuse
of data flow facts computed during the validation process reduces the size
of the transmitted certificate. Secondly, the processing order determines the
maximum number of intermediate solutions which have to be kept in memory
during the validation process.

A straight-forward idea to achieve the first optimisation goal is to minimise the
number of backward edges in the linear arrangement of the dependence graph.
A backward edges models the fact that the current data flow fact depends on
a fact which has not been computed yet. Thus, the certificate has to supply
difference information if the unknown data flow fact weakens the solution
candidate which can be derived by the evaluation of the defining equation with
the available data flow facts. This shows, that the number of backward edges
is only an indirect criteria for the size reduction of the certificate, because some
backward edges may not trigger the inclusion of difference information.

A depth-first traversal is a good choice to minimise the number of backward
edges. Especially, if the flow graph is reducible then the set of backward edges
is independent from the chosen depth-first traversal [HU74]. Intraprocedural
flow graphs are usually reducible so that the strategy is very reasonable in the
intraprocedural setting. However, the situation changes for irreducible graphs
because the number of backward edges in irreducible graphs does depend on
the order of the traversal [CHK04]. Nevertheless, the depth-first strategy still
provides a good starting point for the certificate reduction. It is important to
observe that this optimisation is performed at the producer site. Thus, complex
optimisations strategies can be acceptable because the primary goal is to relieve
the consumer site from computation costs.

The second optimisation goal is the reduction of the maximum number of
intermediate results in the validation process. A first idea is to optimise the
maximal cut in the linear arrangement [KK05] because it is an upper bound of
the required number of intermediate results. A cut in the linear arrangement
separates processed data flow results from unprocessed ones. Forward edges
which cross the cut indicate that an available data flow fact contributes to the
computation of a unknown data flow fact. Thus, the available fact should
be stored to provide a solution candidate for the unknown fact. Similarly,
a backward edge which crosses the cut indicates that an available solution
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depends on an unknown fact. Thus, the target fact has to be kept in memory
until the corresponding check has been performed.

The real costs differ slightly from this cost measure because some intermediate
results are counted several times. Consider the situation in Figure 6.4.
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Figure 6.4: Multi Edges in the Dependence Graph

The input fact I1 is the target of two different backward edges originating in
O2 and O3 respectively. Thus, the input fact I1 has to be stored until its last
predecessor O3 has been processed. Nevertheless, only a single place in memory
is required to store the value of I1 even though there are two backward edges
cross the cut between I1 and O2.

The same situation arises when a solution is the target of two incoming edges
like I6. An input solution candidate for I′6 = O4 u O5 can be computed as soon
as the output fact O5 is available. Again a single place in memory suffices to
store this candidate even though two forward edges cross the cut between O5
and I6.

The optimisation algorithm can take this observation into account if it combines
forward and backward edges with the same target into a special multi-edge
as depicted in Figure 6.4. Such a multi-edge is counted only once when the
number of cut-crossing edges is determined. This technique is also used by
approaches to the register allocation problem in classical compilers [Bel66],
[BCT94], [Cha82].

This model improves the significance of the cost measure but it complicates the
search for a linear arrangement that provides the minimal cut. The most precise
cost model is even more complex if the validation process takes advantage of an
additional degree of freedom. The example in Figure 6.4 assumes that output
solutions are immediately used to construct an input solution candidate. This
strategy reduces the storage requirements if the candidate depends on several
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available output solutions. However, Figure 6.5 shows, that this approach does
not always yield the best result.
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Figure 6.5: Storage Requirements in Presence of Multiple Successors

The immediate construction of the input solution candidate for I5 . . . I6 leads
to the storage of three candidates. However, it suffices to construct the input
candidates when they are needed. Thus, the validator can keep the output fact
O4 in a single storage location. Figure 6.5 shows the different kinds of edges
which model the two strategies.

It is important to exploit this optimisation opportunity in the intraprocedural
scenario because switch-statements produce a significant amount of successor
nodes in the control-flow graph. The immediate construction of input solution
candidates produces one copy for each branch in the switch-statement while
the reuse of the output fact gets along with a single element.

All in all, the optimisation of the intermediate storage requires both, the choice
of a reasonable linear arrangement and a flexible construction of input candi-
dates. However, the whole optimisation scenario is even more complex, because
the choice of the linear arrangement also influences the size of the certificate.
Therefore, a reasonable heuristic is to choose a depth-first traversal which min-
imises the number of backward-edges and to optimise the memory allocation
during this traversal using the ideas described in this section. Nevertheless,
more complex optimisation strategies can be applied to the problem, because
the effort is spend solely on the producer site.

145



CHAPTER 6. OPTIMISATION OF THE VALIDATION PROCESS

6.3 Safe Lower Bounds

Section 6.1 and 6.2 describe optimisation strategies for the size of the certificate
and the maximal number of intermediate results respectively. Both approaches
reduce the cost for the validation of data flow solutions.

The memory requirements of the validation process can be reduced even further,
if we exploit knowledge about safe-lower bounds in the analysis result. The
most pessimistic element of the data flow lattice represents the loss of all
information about the corresponding data flow fact. Thus, it does not have
to be stored explicitly but can be implicitly assumed whenever data flow
information is omitted. Special data structures can use this idea to reduce
memory consumption as discussed in Section 8.2.4.

The most pessimistic element ⊥ is always a safe-lower bound. However, some
analysis supply more precise safe-lower bounds. For example, a type inference
analysis for Java programs (see Section 7.3) can use the declared types of fields and
of result types of method invocations to recreate omitted type information. The
general principle is the same: only valuable information is stored explicitly in the
annotation or in intermediate results, while omitted values are reconstructed
from safe-lower bounds if needed. The key insight is that the validator can
immediately trust a safe-lower bound.

Obviously, the potential of this optimisation directly depends on the quality
of the analysis results. More precise results require that more data flow facts
have to be stored explicitly while the storage requirements decrease the more
data flow facts have been reduced to a safe-lower bound during the analysis.
Interestingly, the optimisation is adaptive in the sense that it offers a trade-off
between the quality of the solution and the memory needed to store the solution.
This can be exploited in several ways.

6.3.1 Lattice Strength Reduction

We model the program state in terms of a data flow environment which is a
mapping from data flow variables to data flow values. Each data flow variable
represents a single piece of information a specific analysis is interested in. The
size of such an environment depends on the number of data flow variables the
analysis has to track.

For example, a constant propagation analysis tries to determine whether a local
variable contains a constant value or not. Thus, the maximum number of local
variables in a method limits the size of the corresponding data flow tuple. The
size increases if the analysis additionally takes global variables into account.
Conceptually, a data flow environment can be extended point-wise in the same
way a power-set lattice is extended by the inclusion of an additional element.

A straight-forward implementation of the analysis tracks all variables because
any of them has the potential to store a constant value. However, only a very
small number of variables will contain a constant value. Thus, the analysis could
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have been reduced to those variables which actually contain constant values if
the result of the analysis would have been known beforehand. An analysis
cannot benefit directly from this observation, but the validation process can.
The information, which variables actually have to be considered to establish the
validity of the result can be shipped along with the annotations. The validator
can use the information to streamline the data-structures which are used to
store the data flow environments. Conceptually, the validator can reduce the
power-set lattice of all variables to the power-set lattice of relevant variables.
This is why we call this technique “lattice strength reduction”.

Bernardeschi [BLMM05] suggests a similar idea to reduce the memory require-
ments of Java Bytecode verification. Essentially, the type check is split into
several phases which deals with different kinds of types like integer and refer-
ence types separately. As a consequence, each phase has to deal with a reduced
number of facts only which reduces the maximum memory consumption.

The savings by lattice strength reduction can be significant for analysis like
constant propagation which usually leads to a small amount of valuable in-
formation. Furthermore, the technique applies well to analyses which exhibit
strong lower bounds like the declared types of fields and methods in Java pro-
grams. However, the efficiency of the approach is limited if the analysis derives
potentially useful information for each point in the program. For example, the
computation of available expressions will determine that each expression is at
least available directly after its computation.

Nevertheless, the technique is still valuable to reduce the size of the lattice
intentionally as discussed in the following section.

6.3.2 Intentional Under-Approximation and Demand-Driven
Analysis

So far, we have observed that safe lower bounds and the reduction of the data
flow lattice to relevant elements improve the efficiency of the validation process.
This observation becomes even more important if we take into account that the
analysis results shall serve a specific purpose in our application scenario. The
analysis always tries to compute the strongest result possible. In contrast, the
validator only has to check the weakest result required to prove that the program
respects a security policy or that an optimisation can be applied safely.

Thus, the producer can weaken a strong analysis result before it is transmitted to
the consumer. The weaker the analysis result is the more efficient the safe lower
bound or lattice strength reduction techniques become. For example, the results
of an available expression analysis can be reduced to those expressions which
actually contribute to an expression which offers an optimisation opportunity. All
other expressions can be omitted by a reduction of the corresponding data flow
lattice to the relevant expressions.

This general technique can be applied to the security and the optimisation
scenario. However, it is more effective, if the analyses results are used to apply
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optimisations only. The reason is that the producer can even weaken the results
if this implies that some optimisation opportunities are lost because missed
optimisations do not break the integrity of the consumer. In contrast, the result
can only be weakened up to specific bound in the security scenario. If the
consumer uses the analysis result to enforce a specific property of the program,
then the results have to be strong enough to enable the corresponding checks.

The question whether or not a data flow fact is relevant is a transitive property.
Not only the data flow facts which are immediately required to justify an
optimisation or to prove a security policy but also all data flow facts the fact
depends upon. Therefore, the result cannot be weakened arbitrarily.

The problem to decide which analysis results are relevant is closely related
to demand-driven analysis. This kind of data flow analysis techniques starts
from a given program point and analyses only those pieces of the program
which correspond to the data flow facts at this point. The producer can use a
demand-driven analysis to determine the weakest results that still guarantee
the properties demanded by the validator.

6.4 Reinterpretation in the Interprocedural Scenario

The main concepts for the optimisation of the validation process can be sum-
marised as follows:

• The system of data flow equations contains a single defining expression
for each data flow fact.

• The immediate dependencies between a data flow fact and the facts which
contribute to its defining equation can be modelled in a dependence graph.

• The validation pass corresponds to a linear arrangement of the depen-
dence graph.

• The certificate has to contain difference information only if a final data
flow fact is weaker than the currently available facts suggest. This can
only apply if a data flow fact is a target of a backward edge in the linear
arrangement of the dependence graph.

• The linear arrangement of the dependence graph also determines the
lifetime of a data flow fact. A fact can be dropped when the last immediate
successor and predecessor has been processed.

• The maximal cut in the linear arrangement is an upper bound for the
maximal number of intermediate results during the validation process.
This number can be reduced by a flexible construction of input solution
candidates which corresponds to the question when an available data flow
fact is substituted into the defining equations it contributes to.

These general observations can be reinterpreted in the interprocedural setting.
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6.4.1 Dependencies in the Interprocedural Result

The validation of interprocedural summary functions can be modelled by a
linear arrangement of a dependency graph like the validation of intraprocedural
results. The validation pass visits each function and within each function all
flow graph nodes. Therefore, the linear arrangement contains a node for each
intraprocedural summary function of each method in the program.

The intraprocedural control flow edges connect summary functions to each
other like they connect data flow values to each other in the intraprocedural case.
However, the interprocedural dependence graph contains additional edges due
to the calling relations between methods.

Intraprocedural analyses use a constant transfer function tcalli to safely approx-
imate the potential effects of a call. In contrast, the computation of summary
functions integrates the summary function ψn of the callee n:

O∗i v tcalli(I
∗

i ) intraprocedural case

ψ∗i′ = ψ∗n ◦ ψi interprocedural case

Thus, the output summary ψi′ does not only depend on the input summary but
also on the interprocedural summary of the callee. Therefore, the complexity of
the dependence structure increases as depicted in Figure 6.6.


Exit


5


5'


n ... 

m...

Method n() Method m()

call n();

Figure 6.6: Interprocedural Dependencies

In the example, the output summary ψ5′ does not only depend on the intrapro-
cedural input summary ψ5 but also on the summary function of the callee ψn.
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Such an interprocedural summary function of a whole method corresponds to
the output summary function of the exit node of the method and the depen-
dency model has to be adopted appropriately.

Similarly to the intraprocedural case the linear arrangement of the summary
function nodes constitutes a potential validation order and the dependence
edges describe which data flow facts are already available. For example, the
forward edge from the exit node of method n states that the interprocedural
summary function is required for the validation of the intraprocedural summary
function ψ5′ . We will now reinterpret the different optimisation strategies on
the interprocedural dependence graph.

6.4.2 Difference Certificates

The key idea of difference certificates is to reuse information which is computed
during the validation phase. Available information corresponds to forward
edges in the dependence graph. Therefore, it is a reasonable strategy to apply a
depth first traversal within each method, like in the intraprocedural case. The
dependency edges which model the intraprocedural control flow introduce
backward edges for loops only. The safe approximation of the summary
functions of known predecessors can act as a solution candidate for the input
summary function of the loop header. Thus,

ψi′ =
l

j∈pred(i)∧ j<i

ψ j′ u ψ∆i

where∆i =
l

k∈pred(i)∧k>i

ψk′

Once again, the difference information is omitted if it is already safely approxi-
mated by the known output summary functions.

Interprocedural dependence edges behave differently. The validation pass pro-
cesses all methods in some order. It is important to note, that the interprocedural
dependence edges flow from the callee to the call site in the caller. Thus, a linear
arrangement which processes a callee before all of its callers produces forward
edges, so that no difference information is needed. This is not surprising because
a validation pass which starts at the leaf nodes and proceeds in a bottom-up
order through the call graph has all required summary functions at hand.

Nevertheless, cycles in the call graph introduce additional backward edges
in the linear arrangement of the summary functions which differ from the
intraprocedural backward edges. An interprocedural backward edge indicates
that the validator processes the equation of a call node when the summary
function of the callee has not yet been constructed. Thus, the validator tries to
check that
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ψi′ v ψcalli ◦ ψi

without a solution candidate for ψcalli at hand. This situation differs from the
situation at intraprocedural join points because composition of an arbitrary
summary function can lead to any result. Therefore, it is not possible to
integrate some kind of difference information in the certificate. In contrast,
the full summary of the callee has to be shipped in the certificate if a caller is
processed before the callee. However, the summary function of a specific callee
has to be shipped only once and can be reused at subsequent call sites.

The final question with respect to the difference approach is how the producer
can construct efficient ∆-functions for intraprocedural join points. Fortunately,
difference functions can be derived from the summary function model easily as
discussed in Section 8.3.3.

6.4.3 Intermediate Results

The general observations about the lifetime of data flow facts during the vali-
dation process apply directly to the validation of summary functions as well.
Each output summary function is relevant until the last successor node in the
intraprocedural flow graph node is processed. Similarly, input summary func-
tions have to be stored for subsequent checks, whenever their flow graph node
is the target of a backward edge in the linear arrangement. Such input solutions
are relevant until the last predecessor node is processed by the validation pass.

Additionally, the number of intermediate summary functions can be reduced
further by the same flexible substitution techniques, which have been consid-
ered for the intraprocedural validation scenario.

In contrast, flexible substitution strategies cannot be applied to interprocedural
summary functions and they do not give rise to solution candidates for successor
nodes in the dependence graph either. The problem is that the interprocedural
summary function is used differently at a call site. It acts as transformer of an
unknown input summary function ψi, because

ψi′ v ψ
?
calli
◦ ψi

This equation cannot be exploited to construct a solution candidate if one of
the participating summary functions is missing. However, it is still possible
to compute the output summary if ψ?calli

and ψi have already been constructed
during the validation pass.

Furthermore, the dependency graph determines the additional lifetime con-
straints in the interprocedural validation scenario. An interprocedural sum-
mary has to be kept in memory until the last call site has been processed.
Additionally, the intraprocedural output summary functions have to be stored
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for a subsequent check if the summary function whenever a caller is processed
before the callee.

Thus, the general observation that it is advantageous for the validator to process
the analysis result in an order which minimises the number of backward edges
applies for interprocedural dependency edges as well. The interprocedural
dependency edges encode the call graph of the program in reverse order because
the edges originate in callees and target the callers. Thus, the order which
avoids backward edges roughly corresponds to a bottom-up traversal of the
call graph that starts at leaf methods and subsequently proceeds to the callers.
Backward edges only arise due to recursive parts of the call graph. As the
structure of call graphs is usually not reducible, the order in which the different
methods are processed influences the number of backward edges. However,
the consumer has enough computational capabilities to find a good solution for
this optimisation problem.

All in all, the storage of intraprocedural summary functions can be managed
by the same strategies which have been invented in the intraprocedural setting.
Additionally, a single copy of each interprocedural summary has to be kept
in memory until the validator has past the last call site of the corresponding
method. Thus, the flow nodes of each method should be processed according
to the strategies of the intraprocedural scenario and the methods themselves
should be arranged according to a bottom-up traversal of the call graph to
minimise the lifetime of callee summaries.

6.4.4 Modular Results and the Dependence Graph

The central idea for the construction of the dependence graph, is that the
defining equation of each data flow fact connects the fact to the data flow
values it depends upon. We can apply the same idea to modular results.

Consider the example in Figure 6.7 and assume that the analysis in question
performs a simple copy constant propagation. The modular representation of
the summary function of this method is constructed by function composition
and the safe approximation of the summary functions which capture the two
control flow paths through the method. The summary results to

ψm = 〈. . . , ea, . . . 〉 = 〈. . . ,⊥ . . . 〉

We can consider this equation to be the definition of the modular result for ψm.
Consequently, the external variables show on which other data flow facts the
summary depends upon. The modular summary function ψm does not contain
a reference to the callee n anymore, although the method m does call method n.

This reason is that the normalisation process modifies the equation system. The
effect originates from the safe approximation of the summary functions ψ2′ and
ψ3′ at the join point. On the left branch the value of a is known not to be
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2: a := input();

0:   if (...)

3: a := call_n();

4:  return a;

public int m() {

}

Figure 6.7: Summary Functions of Copy Constant Propagation

constant while its value depends on the invocation of method n on the right
branch. Thus,

ψ4 = ψ2′ u ψ3′

= 〈. . . ,⊥ usn(. . . ), . . . 〉
BSC
−→ 〈. . . ,⊥, . . . 〉

Essentially, the BSC
−→-reduction removes the dependency because a safe lower

bound on one path subsumes the potential influence of the invocation of a
callee on the other path.

As a consequence, the validation pass does not have to keep the summary
function of method m in the intermediate storage until the callee n has been
processed. Essentially, the partial evaluation strategy that is encoded in the
normalisation has suppressed the analysis of specific program paths if other
program paths already lead to some safe lower bound. This technique reduces
the dependencies between data flow facts so that some intermediate results can
be dropped ahead of time.

Obviously, the benefit of the technique depends on the question how many
pieces of the result consist of or are intentionally weakened to a safe lower
bound. Nevertheless, the dependency model described in this section is capable
to deal with the specific properties of modular results smoothly.
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6.5 Summary and Related Work

In this chapter we considered the dependencies between data flow values
and several optimisation strategies for the validation process. The defining
equations of the data flow values define a dependence graph. The data flow
elements form the nodes of this graph and two data flow elements are connected
by an edge if the fact of the source node is used in the defining equation of the
target node.

The validation pass is a linear arrangement of the dependence graph. Forward
edges model that data flow facts which define another fact have already been
processed. In contrast, backward edges indicate that a data flow fact which
contributes to the definition of the element under consideration has not been
visited yet. This model is suitable to explain different optimisation strategies of
the validation process.

Firstly, the idea to store only difference information in the certificate directly
relates to the number of backward edges in the linear arrangement of the
dependence graph. Difference information has to be supplied only if there
is a backward edge and if the data flow information contributed by the edge is
not already subsumed by available contributors.

Secondly, data flow elements have to be kept in memory only as long as the
last predecessor and the last successor node have been processed. The maximal
number of cut edges in the linear arrangement of the dependence graph is an
upper bound for maximal number of intermediate elements required during
the validation process. The validator is free to either keep intermediate results
in storage or to merge them into the defining equations they contribute to. It is
possible to reduce the intermediate elements further, if the validator makes use
of this possibility.

The third way to reduce the costs of the validation process is to validate a weaker
fix point than the maximal one. The intention is that weaker data flow results
can be represented more efficiently and that weaker results exhibit a simpler
dependency structure.

The different optimisation strategies directly apply to the interprocedural de-
pendence graph as well but the summary functions of callees impose additional
challenges. Firstly, the summary functions have to be supplied completely, be-
cause they act as function transformers and do not contribute to a conservative
approximation like intraprocedural functions at join points in the control flow.
Secondly, the callee summaries have to be kept in memory until the last call site
is processed. In the incremental validation scenario it is possible to reduce the
number of intermediate open summary functions by an adoption of the depen-
dence graph model. Essentially, the normalisation process has the potential to
remove dependencies on other data flow facts, so that open summary functions
can be dropped earlier than usual. However, this strategy applies mostly to
analyses which exhibit a larger number of safe lower bounds in the final result.

The idea to store difference information in the certificate stems from the
lightweight approach to Java Bytecode verification [RR98] and has been adopted
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in the abstraction carrying code approach as well [AASPH06]. The fact that the
difference information depends on the traversal strategy during the validation
process has been observed in [AASPH06], but the question which traversal
strategies to choose is not considered. Amme et al. observe in [Amm07] the
correlation between backward edges and the points where the certificate might
have to contribute additional information. They suggest a reversed postorder
traversal, which minimises the number of back edges for reducible intraproce-
dural flow graphs, but which may not be the best choice of irreducible graphs.
Furthermore, the approach does not exploit the fact that the validation pass
has already computed a solution candidate so that not all potential annotation
points have to contribute information.

To our knowledge, the reduction of the maximum number of intermediate
results during the validation process has only been addressed in [KK05]. The
dependence graph model presented in this chapter generalises the approach
to the interprocedural setting. Bernardeschi suggests an approach to reduce
the number of intermediate results during the intraprocedural analysis phase
[BFM06]. Essentially, the postdominator relation of nodes in the control flow
graph is used to decide when intermediate results can be safely dropped because
they are not needed to analyse the subsequent flow graph nodes.

An incremental approach to validation of data flow results is discussed in
[AAP06]. Essentially, the capability of the underlying constraint solver system
to deal with incremental extensions of a problem definition is exploited to adopt
the abstraction carrying code approach. However, the extension impacts the
effectiveness of the difference certificate approach because larger descriptions
of data flow equations have to be shipped. Furthermore, the organisation of
the validation process is delegated to the constraint solving system so that it is
not clear if special knowledge about the structure of the data flow problem is
exploited.

Recently [RSX08], Rountev presented a combination of his approach to the
analysis of large software libraries [Rou05], [RKM06] and the framework for the
analysis of IDE problems by Reps [SRH96]. The central idea is that summary
functions which do not contain references to external methods are subsequently
inserted into the summary functions of their callers. This corresponds to a
bottom up traversal of the call graph. However, the approach does not try
to estimate the influence of callees on the summaries of the callers to reduce
external dependencies further. Instead, it keeps a set of summary functions
which explicitly define the mapping from the the start node and the return nodes
of unknown callees to the exit nodes and call nodes. In contrast, the summary
function model presented in Chapter 5 integrates references to external callees
explicitly as function variables into the function model. This way, the function
representation can be reduced to those effects of external callees which influence
the result function of the caller.
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7 Validatable Program Analyses

This chapter describes how the generic summary function model targets sev-
eral well known analyses. The complexity of the analyses considered ranges
from simple bit-vector analyses like reaching definitions to type inference algo-
rithms in the presence of dynamic method dispatch and partially known class
hierarchies.

The goal of the discussion is twofold. Firstly, we want to show how to use
the generic summary function model for the specification of several data flow
analyses. The specification always consists of two different parts: the spec-
ification of the inducing lattice which represents data flow values and their
safe approximation and the specification of instruction-level summary func-
tions. The framework supplies default implementations for all other pieces of
an interprocedural data flow problem. Secondly, the discussion shows how the
characteristics of the various data flow analyses influence the complexity of the
summary function representation. Essentially, we show why the specification
of simple bit-vector problems leads to simple summary functions and why more
complex analyses lead to more complex summary functions.

The key observations can be roughly summarised as follows:

Separable Bit-Vector Analyses Classical bit-vector analyses use only a re-
stricted subset of the elements of the generic summary function model.
Essentially, the inducing value lattice consists of the extremal elements >
and ⊥ only. Furthermore, separable data flow analyses do not introduce
any dependency between different elements of the data flow environment.
As a consequence, the normalisation rules reduce a defining expression of
a variable x to either >, ⊥, or x. Therefore, the representation of summary
functions stays linear in the size of the environment.

Non-Separable Bit-Vector Analyses Data flow facts depend on each other
in a non-separable analysis. Such dependencies on several data flow
facts are captured by several data flow variables in a defining expression.
However, the dependencies can usually be expressed in terms of lattice
operations only, so that problem specific function application expressions
are not needed. Therefore, the function representation can become at most
quadratic in the size of the environment. However, this is highly unlikely,
because the impact of the normalisation and the fact that the dependencies
between data flow variables are sparse usually, leads to a linear size of the
summary functions again.

Complex Lattices The constant propagation lattice is a prominent example for
a lattice which contains more elements than the two extremal elements in
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the “boolean” lattice which is the elementary building block of bit-vector
lattices. The data flow expression model treats the generation of all lattice
elements by constant expressions. Such expressions are subject to constant
folding. Therefore, only a single constant remains in each expression.
This is why the summary functions for copy constant propagation stay
as simple as the summary functions for non-separable bit-vector analysis.
Even the positive impact of the most pessimistic element on the size of the
function representation is still significant because many variables values
are not constant.

Function Application Expressions Linear constant propagation is the first
problem which requires function application expressions for the specifi-
cation of instruction-level summary functions, because the semantics of
arithmetic expressions cannot be expressed directly in terms of the safe
approximation of data flow variables. The potential impact of elementary
functions is massive, because they increase the upper-bound for the repre-
sentation of summary functions to O(n2d) where d is the nesting depth of
the expressions. However, either problem specific properties or the effect
of some of the normalisation techniques reduce the size of the representa-
tion again to the at most quadratic but usually linear case.

Object-Oriented Features Finally, we consider how the framework can be
instantiated to specify a type inference analysis which is vital to deal with
dynamic method binding in object-oriented programs.

All interprocedural analyses require the determination of all potential tar-
gets of a method invocation at a specific call site. A so-called call graph
is a data structure which expresses this information. Function pointers or
the closely related dynamic method dispatch of object-oriented programs
introduce a cyclic dependency between call graph construction and inter-
procedural data flow analysis: the call-graph is required to perform any
interprocedural analysis and an interprocedural type inference analysis
is required to restrict the dynamic type of a call site as much as possible.
The usual approach to deal with this issue is to interleave the type infer-
ence analysis and the call graph construction until a common fix-point is
reached.

Interestingly, the validation of such a type inference result can be per-
formed very easily because the validator is not aware of the interleaved
fix point computations but merely checks the validity of the type inference
result with respect to the implied call graph.

The validation of this sophisticated analysis is not only important because
it is a prerequisite for any interprocedural analysis but also because it
exhibits some additional challenges for the incremental and partial vali-
dation scenario. If the program is not completely available the approach
has to cope with expandable class hierarchies and incomplete supertype
relations. This is modelled within the inducing data flow lattice so that
the summary function model again contains a single reference to a data
flow value in each expression.
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Additionally, the specification requires two elementary transfer functions
to capture the semantics of array accesses and explicit type casts. However,
it is highly unlikely that these elementary transfer functions ever lead to
nested expressions. Thus, the summary function model stays efficient
even for this quite complex analysis.

All in all, one of the key challenges for the specification of an analysis is
to keep the size of function application expressions under control. We can
achieve this goal in different ways. First of all, the semantics of instruction-level
summary functions should express as much of the problem’s semantics in terms
of the core model. Secondly, the normalisation rules reduce the occurrence of
function application expressions automatically, if the analysis yields safe lower
bounds often. This is for example the case in a constant propagation analysis.
Additionally, problem-specific properties of the elementary summary functions
can either reduce nested function applications to smaller ones or they can render
the occurrence of nested expressions unlikely.

However, the nesting depth is always an issue for open summary functions
because function variable expressions cannot be evaluated so that the potential
influence of the normalisation techniques decreases. This is a challenge mainly
for the analysis phase because the final result for an analysis will not contain
any function variables anymore. The open representations for intraprocedural
summary functions which are additionally shipped to the consumer will not
contain highly nested function variable expressions, if the size of methods is
small and if loops do not immediately create a cyclic self-dependency for a call
site.

7.1 Bit-Vector Analyses and the Power-Set Lattice

A bit-vector analyses is a simple kind of a data flow analyses because it just
computes whether or not a property holds for a program entity. The properties
and the program entities can differ significantly, but the result of a bit-vector
analysis is always a truth value.

Reaching definitions, available expressions, live variables, and very busy ex-
pressions form the four most prominent examples of bit-vector analysis because
they cover the potential combinations of forward- and backward problems and
universally- or existentially-quantified problems respectively. For example,
reaching definitions is a existentially-quantified, forward problem, because it
detects whether or not there exists a path from a definition to a specific program
point. In contrast, an expression is very busy at a program point, if it is used on
all paths from a program point to the exit of the method and the other examples
capture the remaining cases.

The examples show that the program entities under consideration can be quite
different. Reaching definitions analysis is concerned with definitions of vari-
ables, which are program points where a variable is assigned a value. Obviously,
there can be several different definition points for a single variable. Very busy
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expressions and available expressions deal with arithmetic subexpressions and
live variable analysis answers the question if there exists a path to the exit of a
method on which a specific variable is used.

Even though the program entities under consideration differ the representation
of the result is usually modelled by a simple set. Program entities which are
in the set exhibit the property and the other program entities do not. The data
flow lattice is the power-set lattice which consists of all subsets of the set of all
program entities. The order relation of this lattice is the subset relation, i.e. a
subset is smaller than its supersets. Thus, the greatest element is the full set
which includes all program entities while the empty set is the smallest element
of the power-set lattice.

Analyses which operate on the power-set lattice are called bit-vector analysis
because bit-vectors can represent sets and set operations very efficiently. To
achieve this, a single bit in a bit-vector is associated to a program property.
The truth value of this bit determines whether or not the property holds at
a program point. From the set-based point of view the bit determines if the
program property is in the set or not. Technically, the bit-vector representation
is very memory efficient, because a single bit suffices to represent each program
property. Furthermore, set intersection and set union boils down to logical
AND and logical OR respectively. Conceptually, the bit-vector representation
decomposes the monolithic set representation into a bit-representation for each
program property. This is remarkable because at this point the relationship to
the environment model becomes apparent: We can identify the program entities
of the bit-vector problem with data flow variables and use the simplest possible
lattice which consists of the extremal elements only as the inducing lattice. If
the extremal elements are identified with the truth values true and false, then
the program environment becomes a mapping from data flow variables to truth
values, which is directly corresponds to the bit-vector representation.

The simple structure of the power-set lattice directly implies that the structure
of the summary function representation stays simple, too. We investigate the
effects by the specification of instruction-level summary function for separable
and non-separable bit-vector analyses.

7.1.1 Separable Bit-Vector Analyses: Reaching Definitions

We can model the reaching definition problem by a data flow variable for
each variable definition in the program. The environment mapping maps each
variable to true if the definition reaches the program point under consideration
and to false otherwise. Thus, the inducing lattice is the boolean lattice where
false corresponds to the most optimistic element > and true corresponds to
the most pessimistic element ⊥.

The safe approximation operator in this boolean lattice is the logical OR because
a definition needs to reach a specific program point by a single path only.

The simple structure of the inducing lattice yields very simple expression
structures in the summary function model. In the traditional formulation of
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bit-vector analyses the instruction-level transfer functions are usually specified
in terms of so called GEN- and KILL-sets by the following equation:

OUT = (IN \ KILL) ∪ GEN

The intuition is that the data flow information which is valid after the execution
of an instruction (OUT) can be computed from the information which was valid
before the execution of the instruction and not invalidated by the instruction
(IN \KILL) combined with the information generated by the instruction (GEN).

For the reaching definition problem the GEN-set of an assignment statement
at program point n like n: x = ... just contains the definition xn because
the new definition of variable x is available immediately after the instruction.
Furthermore, the instruction invalidates all other definitions of x which may
have reached point n. Thus, the KILL-set contains all definitions which refer to
a definition of variable x.

GEN- and KILL-sets directly translate to summary functions in the data flow ex-
pression model. Elements in the GEN-set are always true after the instruction,
while elements in the KILL-set are always false. Thus, a summary function
which operates on environments maps elements in the GEN-set to the constant
true and elements in the KILL-set to the constant false respectively. Further-
more, all other elements remain unchanged which is captured by the identity
mapping as depicted in Figure 7.1.

1: x := 10
2: y := 20 3: x := 5;

4: x := x + y;

Set Model Summary Model
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 – Kill

5
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5
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
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       = ( 0 , 0 , 1 , y
2
 ) 

Figure 7.1: Instruction-Level Summary Functions for Bit-Vector Problems

Thus, each defining data flow expression for a definition xi in an instruction-
level summary function is either >, ⊥, or xi. Therefore, the summary functions
which are computed during the function computation phase remain structurally
simple. The reason is that summary function composition and the meet of
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summary functions always yield one of three elementary expressions again. For
example, the substitution of xi with one of the elementary expressions yields the
substituted expressions while the constants ⊥ and > remain unchanged during
substitution. Similarly, the meet of two elementary expressions like xi u xi or
xiu ⊥ reduces to xi or ⊥ according to the normalisation rules for data flow
expressions (see Section 5.3.1).

One reason for the efficiency of the summary function representation in this
particular case is the simple data flow lattice which consists of the extremal
elements of the lattice only. This allows to use the normalisations defined
for these special constants. Secondly, the reachability of a definition after an
instruction cannot depend on the reachability of other expressions but only on
the reachability of itself. Therefore, a defining expression of a data flow fact xi
can only contain the variable xi and no other variable. This is why the reaching
definitions problem is called a separable bit-vector analysis because the problem
can be solved for each definition independently from the reachability of all other
definitions.

As a consequence, we can conclude that the applicable summary functions
of separable bit-vector problems stay linear in the size of the program state
representation because all defining data flow expressions consist of a single
atomic expression only.

Thus, the validation principle directly applies to separable bit-vector analysis
and the use of function variable expressions extends the model smoothly to the
incremental scenario. The use of function variable expressions is also simpler
for separable analysis because a single parameter expression is sufficient.

7.1.2 Non-Separable Bit-Vector Analyses: Faint Variables

A non-separable bit-vector analysis cannot be solved for each program property
in isolation. An example for such an analysis are faint variables because the
faintness of a variable can depend on the faintness of other variables. A variable
x is called faint at a program point n if on all paths from n to the exit node either

• x is not used before it is redefined or

• x is only used to compute another faint variable - e.g. y.

Thus, the faint variable analysis can be considered to be an extended version
of the live variable analysis which additionally takes the liveliness of target
variables of an assignment into account. As a consequence, the definition of the
GEN− and KILL−sets gets more complex because it has to incorporate potential
dependencies on the faintness of other variables:

GENn = {x|x ∈ LHSn, x < RHSn}

KILLn = {x|x ∈ RHSn, y ∈ LHSn, y < OUTn} ∪ {x|x ∈ USEn}
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In this definition the sets LHSn and RHSn denote the variables which occur on
the left hand side and on the right hand site of an assignment while the set USEn
contains variables used in other statements like print(x).

The important point is the first part of the definition of the KILL-set which states
that the faintness of a variable is invalidated if the variable is used on the right
hand side of an assignment but only if the target variable of the assignment is
not faint after the instruction. Thus, the faintness of variable x can depend on
the faintness of another variable. For example, if variable z is faint after the
assignment z = x + y the faintness of x and y is not killed by the assignment.

The translation into the expression model is again straight-forward, if we
take into account that dependencies on the input state 1 are modelled by
variable expressions which refer to the corresponding data flow variables. Thus,
the instruction-level transfer function of the assignment n: y = x can be
modelled in a first step as

ψnn′ = (ex
nn′ , e

y
nn′ , e

z
nn′) = (t(x, y), y, z)

where the elementary transfer function t is a placeholder for a function which
describes how the faintness of x before depends on the faintness of x and y after
the assignment. The dependency on y stems from the restricted definition of
the KILL-set while the dependency on the faintness of x itself arises from the
usual definition of the transfer function for backward problems

INn = (OUTn − KILLn) ∪ GENn

which implicitly propagates all values which are not influenced by the KILL-
and GEN-sets.

The first attempt to specify the instruction-level summary functions of the faint
variables problem uses some elementary transfer function t, to capture the fact
that the faintness of a variable may depend on the faintness of other variables.
However, elementary transfer functions introduce nested expressions into the
summary function model.

We have chosen the simple example of the faint variable analysis, to discuss two
general techniques to reduce the occurrence of elementary transfer function. The
first technique is generally applicable and manifests itself in the definition of

the POUB
−→ -normalisation rule. Recall that

If [t(p)]|[xi:=>] u cold = cnew @ cold then t(p) u cold
POUB
−→ t(p) u cnew

and consider the expression t(x, y) with y =⊥. Such an expression can occur, if a
summary function that states that y is not faint is composed with the summary
function of y := x. Then,

t(x,⊥) POUB
−→ t(x,⊥)u ⊥BSC

−→⊥

1which is the output solution for backward problems
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because t(x,⊥)|[x:=>] = t(>,⊥) =⊥. Essentially, the evaluation of the elementary
function t under the optimistic assumption that x is faint after the instruction
yields the result that x is not faint before the instruction, because y is not faint
after the instruction. This technique is applicable to all elementary transfer
functions no matter how complex their internal semantics are. It works very
well for problems like faint variables, because the non-faintness of a single
parameter immediately implies that the whole expression will always evaluate
to a non-faint result.

The second technique to reduce the occurrence of elementary transfer functions,
is to remove them as far as possible from the specification of instruction-
level summary functions. This can be achieved for the faint variable problem
because the dependency is just the logical AND operation and the logical AND
corresponds to the safe approximation operation of the inducing lattice. Thus,
we can simply replace the elementary function application expressions by the
safe approximation operator u. The instruction-level summary function in the
example simplifies to

ψnn′ = (ex
nn′ , e

y
nn′e

z
nn′) = (x u y, z)

The expressions are now subject to the duplicate variable removal and do not
contain any nested expression anymore. An immediate consequence is that each
defining expression has at most as many subexpressions as there are data flow
variables. Thus, the summary function representation will be at most quadratic
in the size of the environment. However, this upper bound will usually not
occur because it implies a situation where the faintness of a variable depends
on the faintness of all other variables. As soon as one of the variables in such a
large expression is proved not to be faint (⊥) the BSC

−→-normalisation reduces the
whole expression to ⊥.

This assumption is also supported by empirical evidence from the graph reach-
ability approach of Reps et al.. For problems which do not require elementary
functions in the instruction-level specification our model is equivalent to the
graph model and it is observed in [RHS95] that the number of incoming edges
for a node in the graph representation is bounded by 2 for many interesting
problems and practically the number of edges remains linear in the size of
the nodes for other problems, too. Therefore, the number of variables in the
summary function representation also stays linear in the size of the environ-
ment because data flow variables in expressions correspond to incoming graph
edges.

7.2 Constant Propagation

Simple variants of copy constant propagation like copy constant propagation
[FL88] and linear constant propagation do not differ much from the bit-vector
problems. However, the constant propagation lattice differs from the simple
boolean lattice which is the inducing lattice of the bit-vector problems.
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Furthermore, the linear constant propagation considers dependencies between
data flow variables which cannot be expressed as easily as the dependencies
between boolean variables. Therefore, it is interesting to investigate how the
summary function model deals with the additional properties of these constant
propagation problems.

7.2.1 Arbitrary Lattices: Copy Constant Propagation

Constant propagation does not only compute whether or not a variable contains
a constant value but strives to determine the value of the constant. Thus, a
simple truth value is not sufficient to represent the data flow information. In
contrast, the inducing lattice of constant propagation analyses is augmented
with constant values in the following way.
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The most pessimistic element ⊥ states that a variable value is not constant,
while the constant elements constitute the fact that a variable has exactly the
corresponding value. The conservative approximation operator preserves a
constant value, as long as the same constant value is detected on different
paths. In contrast, the approximation of two different constant values always
yields the most pessimistic element ⊥.

The most optimistic element> is an artificial element. It represents “any desired
constant” because the safe approximation with any constant value yields the
constant value.

The instruction-level summary functions of the constant propagation are fairly
simple. Whenever an assignment statement assigns a constant value to a vari-
able, then the summary function generate the appropriate data flow informa-
tion. Similarly, variable assignments like x = y propagate the data flow infor-
mation from variable y to variable x as depicted in Figure 7.2.

Constant data flow expressions model the generation of data flow information
about constants. The dependency on another variables which stems from
variable assignments is captured by variable expressions. The loss of data
flow information - for example when the program reads an arbitrary value from
the input - is expressed by the most pessimistic expression ⊥. The construction
of summary functions combines defining expressions for a data flow variable
from different paths on which different variables have been assigned to some
variable x a by conservative approximation. Thus, the defining expression of a
variable x can contain different variable expressions as subexpressions.
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Figure 7.2: Summary Functions for Copy Constant Propagation

All in all, the construction of the instruction-level summary functions for the
copy constant propagation problem is similar to the construction for non-
separable bit-vector analyses. The difference is only that copy constant prop-
agation uses more expressive data flow values. The constant folding normal-
isation in the expression model reduces the number of constant expression in
each evaluation function to a single element. Therefore, the considerations
about complexity of the summary function representation for non-separable
bit-vector problems directly apply to copy constant propagation as well: the
worst case size of a function representation is quadratic in the size of the envi-
ronment but the average case is expected to be linear. Once again this statement
is justified by the empirical evidence provided in the extended version of the
graph reachability approach to interprocedural analysis [SRH96].

7.2.2 Elementary Functions: Linear Constant Propagation

Linear constant propagation is an improvement of copy constant propagation
which additionally takes linear dependencies between constants into account.
To achieve this, the analysis symbolically executes computations of the form

x = a ∗ y + b

where x, y are variables and a, b are constant values. Obviously, if y is constant
so is x but the value of x depends on the linear factor a and b. Linear constant
propagation restricts the symbolic execution to linear dependencies because
they exhibit some properties which simplify the analysis. The result of all other
kinds of arithmetic expressions is still safely approximated by the assumption
that the result is not constant.
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We will come back to the advantageous properties of linear dependencies at the
end of the section. Beforehand, we apply once again the standard specification
technique in the expression model that more complex dependencies between
variables can be captured in terms of elementary transfer functions.

In order to specify the semantics of a linear arithmetic computation we define
elementary functions l(a,b) : L → L each of which takes a single value y as
parameter and maps it to the value a ∗ y + b2. With such elementary functions
at hand, we can immediately define the semantics of the example instruction in
terms of an instruction-level summary function as

ψii′(. . . , x, y, . . . ) = 〈ex
ii′ , e

y
ii′ , . . . 〉 = 〈. . . , lab(y), y, . . . 〉

This model is straight-forward and the instruction-level summaries suffice to
perform an interprocedural analysis in the generic framework immediately.

However, the introduction of elementary transfer functions always raises effi-
ciency concerns. Conceptually, the number of elementary transfer functions is
not bounded because there is one function for each pair of numbers a and b.
Thus, it is possible that the application of summary function composition and
meet during the summary computation phase produces safe approximation ex-
pressions which contain each potential combination of a linear dependency in
the program and a data flow variable from the environment in the program.
Thus, the upper bound of the summary function representation raises in a first
step to O(n(nl)) where l is the number of linear dependencies in the program.
The upper bound raises even further, because function composition introduces
nested expressions, which in turn can contain parameter expressions which have
the same complexity as the surrounding safe approximation expression. Even
if we bound the nesting depth to a fixed constant, then the worst-case size of
the representation has the potential to grow out of control.

Fortunately, this pathological case will usually not occur. Nested expression
stem from instruction sequences where one variable transitively depends on
another, thus

i : z = a ∗ y + b
j : x = c ∗ z + d

}
ψi j′ = 〈. . . , ex, . . . 〉 = 〈. . . , lcd(lab(y)), . . . 〉

Such transitive dependencies can occur in index expressions for multi-
dimensional arrays but in such a case the number of dependent variables corre-
sponds to the dimension of the array which is usually quite small. Additionally,
the “width” of the expressions increases, whenever a single variable linearly de-
pends on different variables on different paths. We expect such a situation also
to be unlikely, and even if it occurs, then its potential effects on the expressions
size may very well be limited.

Furthermore, the normalisation of the summary function representation reduces
the number of linear dependencies if a non-constant value is detected on one

2The functions map lattice values. Thus, they also have to deal with > and ⊥ each of which is
mapped to itself.
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branch (BSC
−→-normalisation) of if constants in the input state, yield different

constant values (POUB
−→ -normalisation, followed by a CF

−→- and BSC
−→-normalisation).

Thus, we can conclude that the specification technique to use elementary
transfer functions to express complex data flow dependencies between elements
in instruction-level summary function

• is always applicable

• immediately supports the validation scenario

• is for many problems practical, but

• has to accept a potential loss of precision due to safe approximation tech-
niques, which have to be applied to keep the size of function application
expressions under control.

At the beginning of the section, we already remarked, that the linear constant
propagation exhibits special properties, which ensure that the summary func-
tion model can be kept simple. Essentially, all potential linear dependencies can
be reduced to the safe approximation of one linear dependency per variable in
the environment. Thus, the upper bound for the summary function represen-
tation reduces to a size which is quadratic in the size of the environment which
models the program state again.

This is exploited in the definition of linear constant propagation in terms of the
graph reducibility approach [SRH96] as follows. The key observation is that
a transitive linear dependency can be reduced to a direct linear dependency.
Consider the example in Figure 7.3. The function composition l(2,7)◦ l(5,1) implies

1:  z = 5 * y + 1

2:  x = 2 * z + 7

x y z

x y z

l
(5,1)

x y z

x y z

l
(2,7)

x y z

x y z

Composition

=> l
(2,7) 

o l
(5,1)

 = l
(10,9)

Figure 7.3: Reduction of Transitive Dependencies in the Graph Model

that
x = 2 ∗ (5 ∗ y + 1) + 7 = 10 ∗ y + 9
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and we can model the dependency between y and x directly by x = l(10,9)(y).
Essentially, it is easy to compute the composition of linear functions. This
effectively removes the nesting depth from the representation of elementary
summary functions.

However, we already observed that remaining safe approximation expression
can still contain an elementary transfer function for each linear dependency
in the program and each variable in the environment. Fortunately, the safe
approximation of two linear functions which take the same parameter as input,
is also computable. Reps, Sagiv and Horwitz [SRH96] choose a representation
which exploits the following observation: Two linear dependencies x = lab(y)
and x = lcd(y) between a variable x and a variable y represent two straight
lines, so that three cases have to be considered. Firstly, the lines are identical
(a = c ∧ b = d) then one of the dependencies can be dropped. Secondly, the two
lines can be parallel. Thus, the equations are not equal for any y so that the
safe approximation of two results can never be a constant value. Therefore, the
linear dependencies can be replaced by the most conservative element. Finally,
the two lines can intersect in exactly one point, like

x = 13y + 3
x = 11y + 7

which intersect for y = 2 where x becomes 29. To model such a situation,
the graph approach represents linear function internally by a linear equation
and a constant which eventually stores the intersection point. Thus, the safe
approximation of the linear dependencies in the example yields

l(13,3,>) u l(11,7,>) = l(13,3,29)

Observe that the representation of the elementary function has been extended
with the third component that models the intersection point.

Thus, all linear dependencies which take the same variable as input can be safely
approximated. As a consequence, the upper bound of the summary function
representation reduces to O(n2) because each variable in the environment can
produce at most one linear dependency to a single target variable.

However, the reasonable definition of the safe approximation exhibits a subtle
problem. It would have been also possible to choose the second linear depen-
dency on represent the line part of the representation, i.e.

l(13,3,>) u l(11,7,>) = l(11,7,29)

Thus, the extended model captures the safe approximation in a reasonable way
but there exist several semantically equivalent representations for the result of the
approximation.

Now, we have reached a very fundamental point which is highly important for
the validation of any analysis that has to be specified by elementary transfer
functions. Assume that the analysis phase derives the representation l(13,3,29)
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but the validator processes the equation in a different order and comes up
with the representation l(11,7,29). Then the validator cannot compare these two
function representations without knowledge of the internal structure of the
elementary transfer functions. Essentially, an equality check has to be defined
which can detect the semantical equivalence of two elementary function even
if their internal structure differs. This is the key difference to the treatment of
elementary transfer functions in the expression model, which requires only that
each elementary function can be uniquely identified.

To guarantee that the representation of elementary transfer functions 3 stays effi-
cient, the IDE-approach restricts itself to elementary functions which efficiently
support the following operations:

• function application - t(v1) = v2

• function meet - t1 u t2 = t3

• function composition - t2 ◦ t1 = t3

• equality check - t1 = t2

• the function lattice has finite height

• closed under function composition and meet

Interestingly, things have come full circle at this point, because these are the cen-
tral requirements for the interprocedural analysis and validation phase which
we already elaborated in Chapter 4! Essentially, the IDE-approach states that
the representation of the summary function representation stays efficient if the
elementary transfer functions which are used to specify instruction-level sum-
mary functions have an efficient representation, which can be exploited during
function composition and safe approximation of the full-fledged summary func-
tions.

This fundamental observation has several implications for the assessment of the
summary function model developed in this thesis:

1. If there is an efficient representation for the elementary transfer functions
as postulated by the IDE-approach, then this efficient representation can
also be validated if the validator uses the problem-specific operations to
check elementary transfer function expressions. Thus, IDE-problems fit
into the validation model.

2. Even if an efficient representation of elementary functions does not exists,
then it is still possible to use the expression model. However, the lack of
an efficient representation which is used to compress the representation
of elementary transfer functions leads to a significant conceptual increase
in the maximum “width” and the nesting depth of expressions. The nor-
malisation rules tackle this growth and they do only require the following
operations

3Elementary transfer functions are called “value transformer functions” in the original ap-
proach.
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• function application - t(v1) = v2

• identity check - t1 = t1

Essentially, reduction from the whole program state to the dependencies
between different variables tries to keep the potential influence of ele-
mentary functions as local as possible and the normalisation rules try to
safely approximate elementary functions by applying them to data flow
values inferred for some pieces of the program state during the function
computation.

Even though this may not be sufficient from the conceptual point of view, it
may still be sufficient from a practical point of view. As we have observed
at the beginning of this section, linear constant propagation is an example,
where the approach which does not use an efficient representation for the
elementary transfer functions can still be practically applicable.

Furthermore, safe approximation techniques which restrict the nesting
depth and the width of the expression can keep the expression approach
still practical by accepting the inherent loss of precision.

3. The graph model is restricted to problems, for which the dependencies of
a single variable on the input state can be decomposed into the safe ap-
proximation of a direct dependency for each single variable in the input
environment. This means that the model is restricted to unary elemen-
tary functions while the expression model can also cope with function
expressions that take an arbitrary but fixed number of parameters.

All in all, the reduction of the specification of summary functions to the speci-
fication of instruction-level functions which use elementary transfer functions
is common to both approaches. However, the expression model unifies ele-
mentary functions and other kinds of expressions in a single model. This is
necessary, to show that the normalisation rules reduce the defining expressions
to a unique normal. This is vital to ensure that the validation process relies on
a structural comparison of expression only.

Furthermore, the expression model is flexible enough to cope with problems
which do not exhibit an efficient representation for elementary summary func-
tions. However, this immediately raises the question if the normalisation rules
suffice to keep the resulting size of the summary function representation under
control. This thesis does not investigate this aspect further, because its main
focus is to consider the validation of interprocedural analysis problems.

7.3 Object Oriented Aspects: Type Inference and Call
Graph Construction

Type inference is a prerequisite for any interprocedural analysis because the
potential receivers of a method call determine the summary functions which
describe the semantics of the call. The method name and its signature suffice to
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determine the callee in purely procedural languages. Dynamic method binding
or function pointers allow multiple candidates for callees at a call site because
the runtime environment resolves the call depending on type of the receiver
reference or the value of the function pointer.

In order to increase the precision of an interprocedural analysis a static analysis
should try to restrict the runtime types of the receiver reference as much as
possible. Each potential call target which can safely be ruled out avoids the
integration of an additional callee summary at the call site. This is important
because any additional callee has the potential to decrease the precision of a
subsequent analysis.

The producer can disburden the consumer from the analysis effort, if it ships
a safe approximation for the runtime type in the certificate. However, the
consumer cannot immediately trust this type information, because faulty and
too optimistic type information rules out call targets which can actually be
chosen at runtime. As a consequence faulty and too optimistic results of all
subsequent analyses can also pass the validation. Thus, the consumer has to
validate given type information during the validation process.

To achieve this goal, we formulate the computation of type information in terms
of an interprocedural data flow problem and discuss three additional aspects
which arise due to the special nature of the type inference problem.

The section is structured accordingly. Firstly, we specify the type inference
problem in terms of an interprocedural data flow problem within the summary
function model. As usual, this requires the definition of a suitable data flow
lattice and the specification of instruction-level summary functions. We use a
lattice of type sets in order to improve the precision of the type representation
compared to the usual subtype relation. The instruction-level summary func-
tions are closely related to a constant propagation which operates on types and
not on integers.

Secondly, we discuss a special challenge of the type inference algorithm: the aim
of the type analysis is to provide type information for the construction of the
interprocedural flow graph. However, the interprocedural type analysis itself
requires an interprocedural flow graph. We can resolve this cyclic dependency
either by using safe lower bounds for the receiver references or by an interleaved
fix-point computation.

Thirdly, we reinterpret the general validation strategy for the type inference
problem. An additional section is dedicated to the question how the restriction
to a single software module in the incremental or partial validation scenario
influences the validation of type results. Essentially, the validator has to deal
with an open class hierarchy, because classes which are transmitted to the
consumer extend the class hierarchy and thus the type model of the analysis.
The type representation of our analysis deals with this problem. Finally, we
conclude with a short discussion of other algorithms for call graph construction
and investigate whether they are suitable in a validation scenario.
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7.3.1 Data Flow Based Type Inference

Our goal is to determine information about the runtime type of the receiver
reference in order to restrict the number of potential call targets which have to
be taken into account at a dynamically bound call site. Therefore, we define
a type inference algorithm which is based on the data flow analysis model
presented in Chapter 5. This allows for a validation of the type inference result
at the consumer side. The specification of a data flow problem in the summary
function model requires the definition of a data flow lattice and the definition
of instruction-level transfer function in terms of the summary function model.

Precise Types

Many type analyses use the subtype relation in the class hierarchy to represent
types. We adopt and formalise a type model which has already been used as
an auxiliary analysis for the definition of method families in partial analysis
systems [Thi02]. The integration of the type system in a data flow problem
is vital to ensure that the results can be validated according to the general
validation principles for interprocedural analyses.

The type model represents types in terms of type sets. Consider the class
hierarchy depicted in Figure 7.4 and assume that the analysis determines that

   

B    C
CB

Object

A

B C

D

Â

Figure 7.4: Precise Types

the receiver reference of a call is of type B on one path and of type C on another
path to a specific call site. If the analysis uses the nearest common supertype of
types B and C for the safe approximation at the join point of the two different
paths, then this results in type A and all of its subtypes. Now assume that
the target method m is declared in each of the classes A,B, and C, then the
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analysis has to assume that all three methods A.m, B.m, and C.m are potential
call targets. However, the call will never result in A.m because the assumption
that a reference of type A reaches the call site is not true for the two program
paths which reach the call site. The imprecision has been introduced by the
specification of the safe approximation operator which is more conservative
than necessary.

We avoid this problem by representing the type information for a reference by a
type set. The safe approximation operation is set union and the order relation is
the superset relation - i.e. a type set is weaker than another type set if it contains
more types.

This way, the safe approximation of type set {Ḃ} and {Ċ} yields {Ḃ, Ċ} which
preserves the information that a reference of type A is not a valid receiver of the
call in the example.

A type is a subset of program entities. The type of a reference to an object is a
representative for references which target objects of some specific classes. The
classes of the program form a class hierarchy. This is captured in the following
definitions:

Definition 22 (Class Hierarchy) A class hierarchy is a directed acyclic graph (C,E)
where C is the set of classes in the program and a directed edge (csub, csuper) ∈ E iff csuper
is the immediate supertype of csub.

A type B is a subtype of a type A if A = B or if there exists a path from B to A in the
class hierarchy.

Obviously, the subtype relation is a transitive and reflexive relation.

Definition 23 (Point Type) Let CH = (C,E) be a class hierarchy. The point type of
a class c ∈ C denoted by ċ represents references to instances of the class C and only of
class C.

It is important to observe, that point types do not take the subtype relation into
account. Thus Ḃ is a type which represents references to instances of type B only
and explicitly rules out references to instances some subclass D of B. This is
vital to rule out additional call targets because if some method m is declared in
both B and D, then the knowledge, that a reference does not point to an instance
of class D, effectively rules out D.m as a potential call target.

However, point types do not fulfil all requirements of a type inference algorithm
for separated software modules. Therefore, we introduce the notion of cone types
as follows:

Definition 24 (Cone Type) Let CH = (C,E) be a class hierarchy. The cone type of a
class c ∈ C denoted by ĉ represents references to instances of the class C and to instances
of all subclasses C′ of C.
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The term cone type emphasises that a cone type represents a whole cone in the
class hierarchy while a point type represents a single point (i.e. a node) in the
class hierarchy. A cone type captures the “usual” intuition about what a Java
programmer considers to be the declared type of a reference. The point types
are a more precise representation which enables the type inference algorithm to
rule more call targets than by the consideration of the declared type alone.

As stated before, we combine point types and cone types in a type set and call
such sets precise types to emphasise that they represent the classes a reference
may point to more precisely than the declared types in the Java program.

Definition 25 (Precise Type) A precise type is a set of cone types and point types.
It represents references to all classes which are represented by its point types and cone
types.

Our goal is to specify a type inference algorithm in terms of a data flow problem.
Thus, precise types have to form a lattice, which is in fact the case

Corollary 1 The power-set lattice of the set of all precise types and cone types of a
given class hierarchy CH forms a lattice, with respect to the order relation set inclusion
and the safe approximation operation set union.

Proof 16 Immediate consequence of the fact that a power-set forms a lattice under set
union and set inclusion.

The safe approximation by a union of type sets avoids the potential loss of
precision which is typical for the safe approximation which yields the closest
common supertype of two given types. Furthermore, the combination of point
types and cone types is vital for supporting the analysis of separated software
modules but we postpone a more in-depth discussion about the use of cone types
to Section 7.3.4 and continue with the specification of the data flow problem at
this point.

Instruction-Level Transfer Functions for the Type Inference Problem

The lattice of precise types is able to capture type information more precisely
than the immediate use of the subtype relation of the class hierarchy, because
a precise type can contain point types. The point type Ȧ represents a reference
which can only point to instances of class A. Such a kind of information is
generated only by instructions which create new objects, because a specific class
acts as the prototype for the construction of a new object. In Java, objects stay
coupled to its “creation class” which was used for its construction throughout
their whole lifetime.

Especially, it is possible to determine the call target of a dynamic call exactly
if we know the creation class of the object the receiver reference points to at
runtime. Thus, the proper question a type analysis has to answer is what the
potential creation classes of the receiver reference of a call are. In other words,
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our type inference analysis tries to follow the data flow from object instantiation
sites, where the creation class of an object is known exactly to all the call sites.
If it is possible to determine all potential creation sites of a receiver reference
of a call exactly, then it is possible to determine all potential callees by simply
simulating the method dispatch for each creation class. In the best case, the
analysis can determine that all potential object creations use the same class, so
that the target method is known exactly.

The instruction-level summary functions which specify such an analysis gen-
erate a precise type which contains a single point type for object creation in-
structions. An assignment instruction copies the type information to the target
variable. Essentially, this behaviour is closely related to a copy constant propa-
gation which propagates type values and not integer constants.

Consider the example in Figure 7.5. New objects are created by instruction 1

6: v
1
.m();

7: return v
1
;


6

4: A v
2
 = v

1
;

5: v
2
.m();


5

3: v
1
 := new B();

1: A v
1
 := new C();

2: if (...)

Hierarchy

Object

A

B C

0: Invocation Context

Figure 7.5: Type Inference

and instruction 3 which create instances of class C and B respectively. Thus,
the corresponding instruction-level summary functions determine the type
information for the target variable v1 by

ψ11′ = 〈. . . , ev1, . . . 〉 = 〈. . . , {Ċ}, 〉
ψ33′ = 〈. . . , ev1, . . . 〉 = 〈. . . , {Ḃ}, 〉

The semantics of the assignment statement at point 4 is captured by the
instruction-level summary

ψ44′ = 〈. . . , ev2, . . . 〉 = 〈. . . , v1, . . . 〉

The generic framework constructs the intraprocedural summary functions from
these instruction-level summary functions by applying function composition
and function meet.
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The summary functions ψ5 and ψ6 are of special importance because they map
the invocation context to the program state immediately before an invocation
of the callee m. This state contains type information for the receiver reference
v2 and v1 respectively.

For example, the intraprocedural summary function ψ5 evaluates to

ψ5 = ψ44′ ◦ ψ22′ ◦ ψ11′ = 〈. . . , ev2, . . . 〉 = 〈. . . , {Ċ}, . . . 〉

because the instruction-level summary function of the assignment statement
propagates the type information generated by the first instruction from variable
v1 to variable v2. Thus, the analysis detects, that the receiver references of the
call in point 5 will always refer to an object of class C. As a consequence, the
dynamic call will always result in an invocation of C.m, if method m is defined
in class C. This information is more precise than the declared type of variable
v2 because it rules out a method implementation A.m.

The fact that the safe approximation of precise types does not loose precision
becomes apparent at the join point immediately before instruction 6. The
defining expression of variable v1 in the intraprocedural summary function
ψ6 evaluates to

ψ6 = ((ψ33′) uΨ (ψ55′ ◦ ψ44′)) ◦ ψ22′ ◦ ψ11′)
= 〈. . . , {Ḃ}, . . . 〉 uΨ 〈. . . , v1, . . . 〉 ◦ 〈. . . , {Ċ}, . . . 〉
= 〈. . . , {Ḃ} u v1, . . . 〉 ◦ 〈. . . , {Ċ}, . . . 〉
= 〈. . . , {Ḃ} u {Ċ}, . . . 〉
= 〈. . . , {Ḃ, Ċ}, . . . 〉

The essential observation is the fact that the safe approximation of summary
functionsuΨ reduces to the safe approximation of lattice elements which in turn
is defined by the union of precise types. The type information about the first
object creation is propagated via the right execution path, where reference v1 is
not changed. In contrast, new type information about reference v1 is generated
on the left path and the two different pieces of information are joined in point 6.

These quite simple instruction-level summary functions already specify a type
inference analysis which is able to track the data flow of reference types through
the whole call stack of the program, which contains the local variables. It also
includes the parameter passing and return mechanism because the type analysis
can use the generic model presented in Section 5.5.

The analysis can determine precise type information, due to the fact that point
types represent the creation class of references and that the set-based safe
approximation avoids a potential loss of precision at join points.

Class Fields, Object Fields, and Arrays So far, we have not specified the
semantics of instructions which access class or object fields, yet. Class fields
correspond to global variables and can be represented by additional data flow
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variables into the environment which represents the program state as discussed
in Section 5.5.1.

As mentioned in the same section, the situation is more difficult for object fields,
because there exists a field for each separate object. We observed that there are
three different ways, to deal with the situation:

1. The result of each instruction which reads an object field is safely approx-
imated by the generation of the most pessimistic element of the analysis.

2. The analysis can use a single data flow variable for each object field and
treat all read and writer operations in a context and flow insensitive manner.

3. The analysis can rely on an alias or point to analysis to separate fields in
different object instances from each other.

We can now reinterpret these generic strategies in the context of the type
inference problem.

The third strategy is the most precise one, but it relies on a validatable alias or
point-to analysis. Even though it should be possible to specify at least simple
variants of this analysis, the framework does not offer an implementation yet.
However, the situation reveals a general challenge for the validation scenario:
Unlike a normal analysis which simply uses the results of an auxiliary analysis,
the validator cannot immediately trust the results of other analyses. Thus, if
an analysis depends on another analysis, then the validation of analysis results
always requires the validation of all auxiliary analyses as well. Remember that
the type inference analysis we discuss here is also an auxiliary analysis for all
subsequent interprocedural analysis because it provides the type information
which is required to determine the target method of dynamic calls. The
validation of an auxiliary analysis is not always trivial as we will see when
we discuss the use of type inference results in Section 7.3.4.

The conservative strategy to deal with object fields raises the question what
elements of the type lattice safely approximate the type information about
references which are read from object fields. The most pessimistic element
of the data flow lattice is always a suitable safe lower bound. The order relation
of the precise type lattice is set union. Thus, the most pessimistic element is
the full set - i.e. the precise type set which contains the point types and cone
types of all classes in the class hierarchy. Essentially, the analysis expects that
the reference which is read from an object field can refer to object instances of
any class in the program.

This safe lower bound is valid, but very conservative. We can improve the
safe lower bound of a field access, if we take the declared type of the field into
account. The static type of a field restricts the references which can be stored
in the field, to those which point to an instance of the declared class or one
of its subclasses. This intuition is captured by the corresponding cone type,
which can act as more precise lower bound for reading field accesses. Thus,
the field access v = a.f is modelled by the instruction-level summary function
ψ = 〈. . . , ev, . . . 〉 = 〈. . . , {Ĉ}, . . . if the field f has declared type C. Thus, we use
cone types to model safe lower bounds based on the declared type of program
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entities. This strategy cannot only be used to deal with object fields but to deal
with native methods as well. The safe approximation of a native method uses
the most pessimistic summary function to model the effects of the call. Thus,
the result type of the method invocation would have been the most pessimistic
element of the type lattice. However, even native methods have a declared type
whose corresponding cone type can act as a more precise lower bound for the
call.

Interestingly, the same principle applies to array accesses as well. The semantics
of an instruction which reads a reference from an array, can be modelled by a
cone type which corresponds to the declared type of the array elements. Thus,
if a reference is read from an array of type A[], then the target variable contains
a reference which points to instances of class A or one of its subclasses, which
is modelled by the cone type Â

The validator can trust the declared type information because the Java bytecode
verifier ensures, that no reference is stored in a field which would violate the type
restrictions of the statically declared type. The bytecode verification can also be
formulated in terms of a validation problem, which leads to an interesting
observation: Sometimes it is possible to specify a simple analysis like the
bytecode verification and use its analysis results to increase the precision of
a subsequent analysis.

We expect that the safe approximation strategy which takes the declared type
of object fields into account is as precise as the strategy which tries to determine
the type information in a context and flow insensitive manner for most cases.
Therefore, we do not consider the third option to deal with object fields further.

Explicit Casts Up to now we have specified the instruction-level summary
functions of object creation instructions, reference assignments, field accesses,
array accesses and method invocations. The elements of the inducing lattice
and data flow variables suffice to express all of these instructions, if we accept
some loss of precision for field and array accesses.

Explicit casts influence the type information in way which can no longer be
represented by simple data flow expressions. As usual, we introduce problem
specific elementary transfer functions to deal with the issue. Consider the
following code snippet:

public c l a s s B extends A {
private A fa ;

public void method ( ) {
fa = new B ( ) ;
B b = ( B ) fa ;
. . .

}
}
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A reference to an object of class B is stored in a field of declared type A. If
the program reads the reference from the field, then an explicit cast is required
before the reference can be assigned to a variable of declared type B. We model
the effects of such a cast by an elementary transfer function ecB(x) which maps
a given type to the set intersection of the given type and the type of the cast.
Thus, the semantics of the cast instruction in the example is modelled by the
instruction-level summary function

ψ = 〈. . . , ea1, . . . 〉 = 〈. . . , ecB{Â}, . . . 〉

The safe lower bound of this expression is the type B̂ because the elementary
summary function of a cast improves the type information, if the parameter type
is weaker than the type of the cast.

Additionally, the cast expression preserves more precise type information, e.g.
ecB({Ḃ}) evaluates to {Ḃ} and not to the cone type {B̂}. This is important to avoid
a potential loss of precision by the cast expression. For example, consider the
following code snippet:

public c l a s s A {
public s t a t i c A min (A a1 , a2 ) {

i f ( a1 . isSmallerThan ( a2 ) ) {
return a1 ;

} e lse {
return a2 ;

}
}

}

public c l a s s B extends A {

public void method ( ) {
B b1 = new B ( 3 ) ;
B b2 = new B ( 7 ) ;
B b3 = ( B )A. min ( b1 , b2 ) ;
. . .

}
}

The interprocedural data flow algorithm detects that the result type of the
method invocation corresponds to the precise type Ḃ because the call is treated
in a context-sensitive way. However, the programmer has to cast the result to
type B in order to meet the semantics of the Java language. If the cast would
have been modelled conservatively, then the information that the result type
will always be Ḃ is lost due to the cast. The definition of more precise elementary
transfer functions avoids this problem.
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7.3.2 Type Inference and Flow Graph Construction

In the preceding section we have specified a type inference analysis in terms
of a data flow problem. The goal of this effort is to derive information about
the runtime type of the receiver references a dynamically bound method calls.
The type information is required to determine all potential target methods of
a dynamically bound call, so that an interprocedural analysis can compute the
safe approximation of all corresponding summary functions. Essentially, the
type information supplies the interprocedural flow graph subsequent analysis
operate on. This raises two questions:

1. How do we integrate the type information of a type analysis into the
summary function model of a subsequent “client” analysis?

2. How do we resolve the cyclic dependency between the flow graph con-
struction and the type inference analysis which also has to operate on an
interprocedural flow graph?

From the point of view of a client analysis the type inference analysis is a module
which supplies a type expression for the receiver reference of each call site in
the program. The evaluation of this type expression yields a precise type which
is a set of cone types and point types. The cone types can also be expanded
to all the point types they represent4. Thus, the type analysis yields a set of
point types, each of which refers to a potential creation class of the receiver
reference of the call. Each class exactly defines a single method implementation
which is the call target of the dynamic call, if the receiver reference is of that
class. If the class C implements the target method m, then C.m is the target of
the call. Otherwise, the class has to inherit the implementation from one of
its superclasses5. Therefore, the look-up mechanism proceeds along the super
class chain until it finds the method implementation. This look-up procedure is
repeated for each point type which finally determines the set of all potential call
targets. A client analysis uses the safe approximation of the callee summaries
for all of these call targets as a instruction-level summary function for the call
instructions.

Like any of its client analysis, the type inference analysis has to cope with
dynamically bound call sites, too. This introduces a cyclic dependency because
the type inference analysis also requires a module which determines a safe
approximation for the runtime type of the receiver references of dynamic calls.

There are two different ways to deal with this problem. Firstly, the type inference
analysis can use a simpler module to compute the type information. For
example, the type inference algorithm can use the statically declared type of
the receiver reference. We observe in Sections 7.3.1 that the statically declared
type is a safe lower bound for the receiver reference. The validator can rely

4We postpone the discussion of the impact of missing program parts to Section 7.3.4.
5Notice that a creation class cannot be abstract because abstract classes cannot be instantiated.

Therefore, each class which is used to create objects has to provide an implementation for all
methods of its interface.
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on statically declared type because the Java bytecode verifier ensures that only
references of the declared type are used as receiver references. The cone type
Â represents all corresponding references and the look-up mechanism for all
methods implementations for each point type in the class cone yields a safe
approximation for the potential target implementations.

The draw-back of this simple solution is that the type analysis looses precision,
because the statically declared type over-approximates the call targets. We can
avoid this loss of precision if we interleave the use of the computation of the
type information and its use in the following way:

The type inference analysis starts with most optimistic assumptions about the
type of the receiver references at call sites. The most optimistic element with
respect to the order relation of the precise type lattice is the empty type set6.
The empty type set does not contain any point type and in turn the resolution of
the method binding does not yield any call target. Thus, the algorithm inserts
the most optimistic summary function at call sites. As a consequence all data
flow variables which are modified by the method invocation are set to the most
optimistic type result, too. Obviously, the corresponding result of the analysis
is too optimistic. However, the analysis weakens the type information about
receiver references because precise types which stem from object creations or
safely approximated field accesses etc. are propagated to a call site. We use this
weaker but more reasonable results in a second iteration of the type inference
analysis. The weaker results trigger the inclusion of the first callee summaries
at call sites and lead again to weaker results. The type analysis continues the
iteration until the whole result stabilises.

The result of the interleaved type analysis and flow graph construction is a valid
result for the interprocedural type inference problem. It is more precise than
the result of the analysis which uses safe lower bounds for the type of receiver
references immediately, because the algorithm inserts additional call targets
only if a preceding iteration provided the evidence that the receiver reference can
in fact point to a specific class. Essentially, the interleaved algorithm computes
a simultaneous fix-point solution for the type analysis and the flow graph. For
a comprehensive discussion of such call graph construction algorithms refer to
[Gro98].

7.3.3 Validation of Interprocedural Flow Graphs

In the preceding sections we have specified an interprocedural type inference
algorithm which yields safe approximations for the runtime types of receiver
references. This information yields an interprocedural flow graph which is a
prerequisite for any interprocedural analysis.

It was a central observation that the iterative type inference algorithm computes
a simultaneous fix-point solution for the type inference and the flow graph con-
struction problem. Thus, the type inference analysis involves an additional

6The order relation is the super set relation, thus greater sets represent weaker results.
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fourth fix-point computation next to the tree fix-point iterations for intraproce-
dural summary function, interprocedural summary functions, and invocation
context computation which are inherent to any interprocedural analysis.

Interestingly, the validation of an interprocedural type inference result avoids
this fix-point computation, too. A single pass over the program still suffices to
validate the whole result. The interprocedural type inference result consists of
a safe approximation of the invocation context of each method, intraprocedural
summary functions for each flow graph node and an interprocedural summary
function for each method, like any other analysis. The checks which ensure
that the result constitutes a valid solution for the underlying data flow equation
system stay exactly the same.

The only difference to the validation of other analyses concerns the construction
of instruction-level summary functions for call instructions. Recall that the
validation process constructs the instruction-level summary function of a call
instruction in the following way (refer to Section 4.2.5 for details):

ψcallm =
l

i∈target(m)

ψcallmi

The instruction-level summary function of a call instruction corresponds to the
safe approximation of the interprocedural summary function of each potential
callee. We have observed in this section, that the determination of the potential
call targets of a dynamically bound call, depends on some safe approximation
t of the runtime type of the receiver reference. Thus, the validation relies on
the computation of target(pni,mni) which denotes the set of potential callees
of a method call to method m at the call site i in the method n under the
assumption given that pni is a safe approximation of the runtime type of the
receiver reference. This computation requires an additional module which
yields a valid value for pni.

We can derive this information from the result of the type inference problem by
an access to the program state In_i which is the input state for the call instruction
i in method n. This state contains a safe approximation of the type of the receiver
reference of the call. It can be constructed from the type inference result by the
corresponding intraprocedural summary function ψn_i because

In_i = ψn_i(ICn)

The validator can compute the safe approximation of the receiver reference
during the validation of the type inference result in the very same way. The
only difference is that it accesses its own analysis while other analyses rely on
the result of the type inference algorithm.

The validity of the type analysis results is ensured, because the construction of
the instruction-level summary function implicitly injects the assumptions about
the receiver reference into the validation process. Essentially, the validator
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checks the modified equation system that contains the additional dependencies
on receiver types in terms of the augmented determination of the callee targets
in target(pni, . . . ).

7.3.4 Type Inference for Software Modules

The computation of a safe approximation of runtime types for receiver references
introduces additional challenges if the validation has to deal with separated
software modules.

1. The representation of the data flow results for a software module uses data
flow variables and free function variables to capture the effects of other
modules which are not yet available. The flow graph construction which
depends on the results of a type inference analysis introduces an additional
dependency on other modules, because the result of the underlying type
analysis can depend on other modules. A straight forward idea to model
the impact of open type results on a client analysis is to augment the free
function variables with the defining expressions for the receiver reference
in the corresponding intraprocedural summary function.

2. The safe approximation principle has to be extended, because not only
data flow variables and function variables of the client analysis but also
the type expressions of receiver references have to be safely approximated.
Essentially, this means, that the validator assumes the existence of some
pessimistic method implementation until the defining type expression of
the call can be closed.

3. If several software modules are transmitted to the consumer subsequently,
then the consumer does not know the complete class hierarchy of the
program. An open class hierarchy impacts the determination of the set of
potential callees in two different ways. Firstly, if the safe approximation of
the receiver reference contains cone types, then the validator has to take the
existence of additional unknown subclasses into account. Secondly, the
determination of the call target for a point type requires the knowledge
of the complete super type chain if the corresponding class inherits the
method implementation from one of its super classes.

4. One of the advantages of the modular result representation is that it
is possible to apply different strategies to close the result of a whole
program analysis at the consumer side. We reinterpret these strategies
in the presence of open class hierarchies.

This section is structured accordingly and concludes with a brief discussion
about optimisation opportunities for the representation of precise types.

Receiver Type Expressions

The determination of all potential callee summaries at a call site depends on a
safe approximation of the runtime type of the receiver reference. If the result
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of a type inference algorithm is available, then it is possible to derive this type
information from the invocation context of the caller and the intraprocedural
summary function which maps the invocation context to the call. This technique
is applicable immediately if the final analysis result is available.

However, the representation of modular analysis results, uses data flow vari-
ables and free function variables to represent the potential impact of other
program modules in a flexible way. As a consequence, the result of the type
inference analysis can contain function variables because it also has to be rep-
resented in a modular way. Thus, it is not possible to apply an intraprocedural
summary function to derive the invocation context for a call site for two reasons.
Firstly, the intraprocedural summary function of the type inference problem can
contain free function variables. This happens if the type of a receiver reference
depends on the behaviour of a method which is external to the software module
under consideration. Secondly, the safe approximation of the invocation con-
text of the caller cannot be trusted before all corresponding call sides have been
processed.

Fortunately, the open representation of the intraprocedural summary function
can be validated and trusted as discussed in Section 5.4. A summary function
contains a defining expression for each data flow variable. Especially, it contains
a defining expression of the value of the receiver reference of the call. This
expression can contain function variables and data flow variables if the runtime
type of the receiver reference depends on external methods or on the invocation
context, but the expression itself can be validated by an inspection of the caller.

Therefore, we represent each instruction-level summary function of a dynamic
call in a client analysis with a type expression given by the module which
determines the safe approximation of the type of receiver references at call
sites. This type expression is vital to adopt the call target determination for the
modular result representation which is discussed in Section 7.3.4.

The extension of function variables with receiver type expressions also impacts
the normalisation process. In order to normalise function variable expressions,
the normalisation process applies the rule

smi(p1) uL smi(p2) DSTR
−→ smi(p1 uL p2)

The intuition of the rule is that two applications of the same summary function
on two different program paths are compressed to a single application on a the
safe approximation of the parameter environments of the original applications.

Now that we have augmented function variables with type expressions which
describe the type of the receiver reference we are confronted with an additional
challenge. The function variables stem from two different call instructions so
that the type expressions of the receiver references can differ. Thus, the normal-
isation of the original function variable expressions requires the combination
of the type expressions. This introduces a subtle challenge, because the orig-
inal normalisation rule implicitly assumed that a function variable expression
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represents the insertion point for exactly one callee summary m. Thus, the
normalisation rule just anticipates the the corresponding normalisation

mi(p1) uL mi(p2)→ mi(p1 uL p2)

which is applied after the substitution of summary function mi.

The augmentation of the summary function variable with the receiver type
expression implies that a single function variable now represents several callees
each of which belongs to one of the potential call targets of the dynamic call
with respect to the given type expression.

Consider the example in Figure 7.6. Two paths which contain two different
dynamic calls to a method m. On the left path the type inference analysis has

...

m1 m2 m1

...

target(pt2,m) = {m1, m2} target(pt3,m) = {m1}

2' = < ..., sm (pt2, ...), ... >

2: 3:

0:

4:

3' = < ..., sm (pt3, ...), ... >

4 = 2'  ∏  3' = < ..., ???, ... >

Figure 7.6: Normalisation of Function Variables for Dynamic Calls

determined the precise type pt2 to be a safe approximation of the receiver type
on the left path. This type yields two implementations m1 and m2 as potential
targets for the dynamic call. In contrast, the type information pt3 about the
receiver type on the right branch is more precise and restricts the set of potential
call targets to method implementation m1.

Thus, the function variable expression sm(pt2, p2) represents the safe approxima-
tion of the callee summaries m1 and m2 while the function variable expression
sm(pt3, p3) represents just the callee summary m1. If the callee summaries are
available than the safe approximation at the joint point, yields

ψ4 = ψ2′ u ψ3′

= 〈. . . ,m1(p2) um2(p2) um1(p3), . . . 〉
= 〈. . . ,m1(p2 u p3) um2(p2), . . . 〉

The essential observation is that we can combine the two occurrences of m1
but we have to avoid the introduction of the expression m2(p3) because the
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type analysis has ruled out the method implementation m2 on the right branch.
Therefore, the corresponding summary function must not be applied to the
invocation context of instruction 3. Otherwise, we introduce a potential loss of
precision into the normalisation process which in turn can effect the compara-
bility of summary functions which is vital for the validation.

The consequence is that we have to consider the relationship between the re-

ceiver type expressions before we apply the DSTR
−→ -normalisation in the extended

model for open summary functions. This problem can be solved in two differ-
ent ways. Firstly, we can restrict the normalisation rule for function variable
expressions to expressions which carry the same receiver type expression. If the
type expressions coincide, then it is ensured that they refer to the same set of
call targets so that all call targets occur on both path.

The second option is to decompose the type expressions into one part which is
valid on both path and additional type expressions that represent the peculiari-
ties of the specific parts. A function variable expression of the common receiver
types can take the safe approximation of the invocation contexts as parameter
and the other function variable expressions take the invocation context on the
respective path. This way it is at least possible to merge the common part of the
input expressions.

We do not consider the challenges of the second approach further because we do
not expect the situation to occur often in practice. Thus, the first approach should
suffice even though it has the potential to increase the number of subexpressions
in the general case. The reason is that a single function variable can occur several
times if it is connected to different receiver type expressions.

Safe-Approximation of Type Expressions

The safe approximation of the modular results of a client analysis, requires
that the receiver type expression of function variables are safely approximated
beforehand. This is necessary because the type expression may be part of
a modular result of a type analysis so that it can contain function variable
expressions of that analysis.

We observe in Section 7.3.1 that type expressions can be safely approximated
in two ways. Firstly, the most pessimistic element of the analysis is always
a suitable lower bound. The most pessimistic element of the type analysis
is the type set which contains all potential types. As a consequence, the
safe approximation mechanism of the client analysis takes all existing method
implementations into account, if it uses this type to approximate the receiver
type expression of a function variable.

Secondly, we can use the declared type of a program entity as a safe lower bound,
because the Java bytecode verification enforces this type. As a consequence,
the safe approximation mechanism collects all method implementations in the
corresponding cone of class hierarchy and substitutes the function variable with
the meet of the summary functions.
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Result Determination in the Presence of Open Class Hierarchies

In an open world, the safe-approximation of function variable expressions is
further complicated by the fact that the class hierarchy can be expanded with
additional classes. The type representation reveals which parts of the type
result can be influenced by additional classes because it differentiates between
point types and cone types. A point type refers to one specific class in the class
hierarchy. Thus, it is not influenced by additional subclasses. This is the reason
why it is possible to insert all potential callees at a call site if the receiver type
consists of point types only even if it is possible to extend the class hierarchy
further.

In contrast, a cone type always implies that some additional subclasses have to
be considered at a call site. The only safe way to deal with this situation is to
assume that some additional class contributes the worst case implementation
of a method and to safely approximate the whole call with a safe lower bound.
Thus, an analysis significantly looses precision whenever the type analysis fails
to restrict the potential type of a receiver reference to a set of point types.
Essentially, the safe strategy for the treatment of cone types is an application of
the principle which applies “worst-case assumptions” for all external program
entities. Additional subclasses are external program entities and the cone types
in receiver type expression show how they influence the analysis result.

Additionally, the cone type model can also be used to apply the more optimistic
“closed world” and “closed program” assumptions. If the analysis performs a
whole program analysis than it assumes that the program will not be extended
after analysis. Thus, there will be no additional subclasses and the cone types
can be reduced to the set of point types of the corresponding cone in the
class hierarchy. Similarly, the cone type model can also be used to apply the
“closed program assumption” which assumes that the classes of a program are
not extended by other software modules but library classes can be extended.
As a consequence, cone types which refer to library classes can be treated
pessimistically while cone types of program classes can be treated optimistically.

In any case, the cone type model is vital for the representation of the potential
effects of dynamic method binding in the presence of an expandable class
hierarchy.

Representation of Precise Types

We model a precise type as a set of point types and cone types. Furthermore,
we use the power-set lattice of the precise type sets as a data flow lattice. As a
consequence, the analysis collects all different pieces of type information which
influence a data flow fact at a specific program point in one large type set.

In the worst case such a type set can contain 2 ∗ |C| elements if C is the set of
classes referenced in the program module under consideration because for each
class there exists a point type and a cone type. However, a cone type Ĉ always
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subsumes the corresponding point type Ċ, so that it suffices to store at most |C|
elements.

The representation can be condensed further, if we take the special status of
the class java.lang.Object into account which is the superclass of all classes
and the root of the whole class hierarchy. Therefore, a type set which contains
the cone type ˆObject does not have to store other pieces of type information
explicitly, because the cone type of Object subsumes all other cone and point
types.

These two observations reduce the number of types in a type set significantly
for usual programs. The reason is that the class hierarchy is usually very wide
because many classes extend the class Object but the hierarchy is not very
deep, because the specialisation of classes does usually not span many layers of
abstraction. Therefore, different pieces of type information either remain in one
of the small subtrees, or the cone type of object subsumes the other members of
the type set.

It is important, that the representation does not include any knowledge about
the super type relation of the different classes. This is vital to ensure that the type
representation does not depend on the existence of a complete class hierarchy.
As a consequence, the type representation can also be used in an incremental
validation scenario, which considers the classes of a program subsequently and
builds the class hierarchy step-by-step. Thus, the type sets have to be encoded
in the uncompressed set representation

Nevertheless the consumer can use even a partially constructed class hierarchy
to further compress its internal type representation. As soon as a class file for
a class B has been transmitted, the consumer can extract the immediate super
type of the from the class file and integrate it into the class hierarchy. Whenever
the partial class hierarchy states that the type B is a subtype of type A, then the
cone type Â subsumes both the point type Ḃ and the cone type B̂.

This way the internal representation of type sets can subsequently reduce to
a representation which incorporates the growing knowledge about the class
hierarchy at the consumer site. At the same time, the representation stays
capable to estimate the potential effects of the unknown parts of the class
hierarchy in a flexible way.

7.3.5 Summary and Comparison to Existing Algorithms

The resolution of dynamically bound method calls is a prerequisite for all in-
terprocedural analyses because the potential call targets define the callee sum-
maries which have to be integrated at a dynamic call site. An interprocedural
analysis for object-oriented programs cannot afford to treat the influence of dy-
namic calls conservatively because this would restrict the interprocedural data
flow to private and global methods, which are bound statically.

The determination of the potential call target of a dynamically bound call
requires type information about the receiver reference of the call and knowledge
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about the class hierarchy. The call target of a dynamical method call is defined
by the class which was use to construct the object the receiver reference of the
call points to. Thus, the type information about the receiver reference should
restrict the set of potential creation classes of receiver reference as far as possible.

A simple possibility is to take the declared type of the method into account. The
Java bytecode verifier ensures that the receiver reference of a method call points
to an object which corresponds to the defining class or to one of its subclasses.
Thus, all classes which belong to the cone in the class hierarchy whose root is
the declaring class are considered as potential creation classes.

However, this approach requires that the analysis can make some optimistic
assumptions. For example, a whole program analysis supposes that the closed-
world assumption holds - i.e. that the analysis context contains all program
entities and that the program cannot be extended. Especially, this implies, that
the class hierarchy is fixed and therefore a statically declared type has a fixed
set of subclasses.

Unfortunately, the closed-world assumption does not hold for mobile code and
the Java environment. It is an essential feature of the Java environment that
it provides a mechanism to load program classes via a network connection at
runtime. As a consequence, the class hierarchy can evolve during the runtime
of a program.

A way to deal with this situation is to make worst case assumptions about
dynamically loaded classes. The worst-case assumption renders the statically
declared type almost useless, because we have to assume that some arbitrary
subclass is dynamically loaded and supplies a method implementation for a
dynamic call which weakens all assertions about the available implementations.
Thus, the summary functions for dynamically bound method calls have to be
weakened to the most pessimistic function which rules out any interprocedural
data flow which might have been detected during the analysis of the software
module under consideration.

An intermediate way is to assume that optimistic assumptions hold about the
program in question but that the whole runtime environment can be extended
arbitrarily. For example, it can be reasonable to assume that the classes of some
specific program cannot be subclassed by dynamically loaded classes because
different programs from different sources usually do not know each others code.
This closed-program assumption allows for an optimistic treatment of the statically
declared types which correspond to program classes while all other types are
treated according to the worst-case assumption.

However, this approach is only effective after the whole program has been trans-
mitted to the consumer site. Therefore, the results cannot be used immediately
during the class loading process but only after the arrival of the whole module.

The specification of a data flow-based type inference in this section is a step
towards a more precise treatment of the dynamic call resolution. The starting
point is the observation that the set of potential creation classes for a receiver
reference has to be fixed and that the safe approximation by statically declared
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types does not solve this problem without further assumptions if the class
hierarchy is expandable. Therefore, we specify a type model which represents
an exactly known creation class by a point type. Point types originate from object
creation instructions and a specialised analysis can investigate the potential data
flow from object instantiations to the use of receiver references at dynamic call.
The advantage of this analysis is that a fixed set of point types, determines the
potential call target independently from potential extensions of the class hierarchy,
because point types do not implicitly include all subclasses. As a consequence,
the dynamic call can be bound to all of its call targets as soon as all classes
for the point types are available. This supports an incremental and even a
partial validation scenario because it removes the dependency on a completely
available class hierarchy.

However, statically declared types are still useful to safely approximate potential
effects of other software modules on the type analysis result. These effects
arise in an incremental validation scenario if the analysis result depends on
the behaviour of code which is not yet available. Furthermore, the current
formulation of the type inference problem does not consider all potential data
flow in the program. For example, the analysis does not consider the data flow
through native methods and via object fields. The statically declared types - or
cone types in our terminology - provide a useful lower bound for the potential
effects and keep the approximation techniques which rely on some specific
assumption like the closed-program assumption still applicable. Thus, the type
analysis discussed in this section combines the advantages of a precise data flow
based approach with approximation techniques. Furthermore, the results are
validatable because the data flow problem has been expressed in terms of the
validatable summary function model. Additionally, the discussion reveals, how
type inference results have to be incorporated in the validation of the results of
a client analysis which uses the type results.

Now, we can investigate the applicability of well-known techniques for the call
graph construction for application scenario which involves the validation of
data flow results of mobile code.

Class hierarchy analysis (CHA) [DGC95] considers the signature of the method
and simulates the method binding strategy in the class hierarchy to find the
potential call target. This is the approach which considers the statically declared
type of the receiver reference and the corresponding cone in the class hierarchy
only. We have already observed that this requires the closed-world or closed-
program assumption and prevents the early integration of callee summaries at
dynamic call sites in an incremental scenario. The same observation applies to
an improved variant of CHA called rapid type analysis [BS96]. This variant
restricts the resolution of a dynamic call to those classes which are instantiated
within the program. Variable type analysis (VTA) and its variants [BMA03]
improve the result even further because it considers which kinds of references
are stored in variables during program execution. However, this analysis is
flow insensitive and uses a single type value for each variable in the program.
This analysis also depends on the closed-world assumption: If the closed-
world assumption does not hold then the analysis has to assume that references
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to objects with additional types are store into the variables in some of the
unavailable pieces of the code. This would significantly reduce the precision of
this kind of analyses.

Fragment class analysis [RMR03] does not solve but formalise the problem.
The idea is to augment a program fragment with some additional code that
exhibits all the potential effects of unavailable code. A whole program analysis
of the program fragment of interest and the additional code snippet yields a safe
approximation of the analysis result for the fragment. Not surprisingly, CHA
and RTA behave poorly in this setting, because CHA has to assume additional
subtypes which augment the class hierarchy of the code fragment and RTA has
to assume arbitrary instantiation sides. Only data flow based algorithms like
Anderson-style points-to analysis [And94] are reported to achieve good results.
This is not surprising, because some pieces of the result can solely depend on
data flow within the program fragment.

For a comprehensive discussion about various data flow based techniques for
the call graph construction refer to [Gro98]. Especially, the thesis discusses
several ways to resolve the cyclic dependencies between the type inference
algorithm and the construction of the underlying call graph. We have adopted
the most precise strategy which uses an interleaved fix-point computation to our
application scenario in Section 7.3.3. The original idea for the representation of
types in terms of point and cone types to combine the advantages of a data flow
analysis and safe approximation techniques stems from an auxiliary analysis for
the construction of method families in [Thi02]. The contribution of this thesis
is the specification of a type analysis in terms of the summary function model
and a comprehensive discussion of its use for the validation of interprocedural
analysis results in presence of dynamic method binding and class loading. The
main contribution is not the increased precision with respect to a class hierarchy
analysis but to ensure the validity of type inference results before the relevant
part of the class hierarchy is available.
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8 LUPUS - A Framework for
Validatable Data Flow Analysis

We have build a prototype implementation of a framework for the computa-
tion and validation of interprocedural analysis results - the LUPUS system. The
acronym LUPUS stands for Lightweight Utilisation of Program Analysis Results
from Untrusted Sources. The system consists of two components that imple-
ment the interprocedural program analysis and the validation of the analysis
results as depicted in Figure 8.1.
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Figure 8.1: Elements of the LUPUS System

The static analysis phase conducts the interprocedural analysis. Furthermore,
an additional subsystem can inspect, rearrange, and reduce the precision of
analysis results according to the intentional under-approximation strategy dis-
cussed in Chapter 6. The implementation of this module requires the develop-
ment or adoption of demand-driven analysis techniques which is beyond the
scope of this thesis. However, an implementation of such a module can easily be
integrated into the system later, because the validator can validate any reduced
fix-point of an analysis.

The framework expresses the analysis results in terms of the summary function
model described in Chapter 5. These results are attached to the class files of
the program and shipped to the code consumer. The target platform runs
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a lightweight variant of the framework called LUPULUS1 that performs the
validation and composition of the results. After this phase the analysis result
are known to be valid. Depending on the application scenario the consumer
can safely accept the code or apply optimisations which depend on the results.

Both the analysis and the validation share a common model for the data flow
problem in question. They differ in the fact that the fix-point computation phase
in the analysis is replaced by a fix-point validation.

The description in this chapter is arranged accordingly. Firstly, we provide an
overview of the system architecture before we continue with a discussion of the
common base model which is shared by the two phases. Thereafter, we describe
the implementation of the analysis and the validation before we conclude with
a short comparison to existing frameworks.

8.1 System Overview

The LUPUS framework is structured in three different layers as depicted in Fig-
ure 8.2. The algorithmic layer contains the analysis and validation algorithms.
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Figure 8.2: System Structure

Currently, the analysis and the validation variant of the framework differ in the
algorithmic layer only and share the implementation of the underlying data flow
problem in the model layer. The analysis phase is capable to compute open rep-
resentations for both intraprocedural and interprocedural summary functions.

1LUPULUS is the latin diminutive of LUPUS
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Furthermore, it is possible to derive the final summary functions for the soft-
ware module from the open representation by applying different strategies to
deal with external dependencies. The validation component currently features
an implementation of the full certificate validator only. From the conceptual
point of view a difference certificate validator can be implemented relatively
easy, because the summary function model supports the determination of dif-
ference functions. However, an implementation requires the organisation of the
intermediate storage during the validation phase. Essentially, it has to consider
the interprocedural dependency model outlined in Section 6.2. Without the ca-
pability to drop intermediate result, the difference approach would degenerate
to an approach which subsequently constructs a full certificate.

The implementation of an incremental validator is even more challenging,
because it requires a careful organisation of the open and applicable summary
function representations. The current implementation of the full certificate
approach is capable to validate the open summary function representation
for intraprocedural and interprocedural summary functions computed by the
analysis phase. However, this is only the first step in an incremental validator.
It is vital that an incremental validator carefully organises the use of open
summary functions and drops this representation as soon as the validity of
the corresponding applicable summary function is established. Essentially,
this requires the application of the safe-lower bound principle as discussed in
Section 5.4. This is challenging from the implementation point of view and only
required, in the more advanced incremental and partial analysis scenario. The
other application scenario which constructs a modular analysis at the producer
site according to the worst-case or closed-program assumption is captured by
the prototype already. The draw-back with respect to the incremental validation
scenario is that the validation phase has to process the whole result completely.

The model layer hosts the key elements of a data flow problem definition: the
summary functions, the flow graph, the mapping function, and the data flow
lattice. New data flow analyses have to be specified in terms of the summary
function model which reduces the specification effort to the specification of
instruction-level summary functions. The summary function model plays
an outstanding role because it deals with the interprocedural aspect of the
data flow analyses. The summary function representation depends on data
flow expressions as described in Chapter 5. The main focus of this thesis
is to investigate the expressiveness and complexity of the summary function
model in different application scenarios. Therefore, the generic model currently
uses an implementation which is tailored to expandability. This simplifies the
specification and investigation of new analysis problems but raises the problem
that the analysis and validation component use a heavyweight infrastructure.
This is not a major problem for the analysis phase because we expect that
sufficient computational resources are always available at the producer side.
However, the situation is not convenient for the use of the framework on a
limited device. The severe memory and runtime constraints on a limited device
call for a more efficient implementation of the generic function model. A more
efficient model would immediately improve the efficiency of the analysis and
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the validation. However, such improvements raise the question whether the
interface for a user can be kept as simple as it is today. An interesting idea is to
use a generator which produces adapter code which couples the high-level
specification of instruction-level summary functions for a concrete analysis
problem with an efficient summary function implementation automatically.
However, the construction of an industrial-strength framework is way beyond
the aim of this thesis.

An additional support layer provides auxiliary services for the model layer. The
program analysis framework PAULI2 supplies basic analyses like a control flow
analysis, which is used to build intraprocedural flow graphs of the program,
and an abstract model of the program under investigation. The program model
is closely related to the abstract syntax tree of the program. The model structures
the program into packages, classes, methods and bytecode instructions. The
construction of the program model depends on the “Bytecode Engineering
Library” BCEL which is capable to process Java class files. It is an important
advantage that the whole framework can analyse Java Bytecode, because this
allows for an analysis of software components for which the source code is
not available. Furthermore, it simplifies the analysis, because it does not have
to cope with tasks like name-analysis for local variables or genericity because
many of such source-level concepts are explicit in the bytecode.

As an additional service, the framework PAULI offers a plugin mechanism
for program analyses and automatic caching of analysis results. This caching
mechanism enables the analysis of large software systems, because analysis
results are computed on demand, reused as long as they are in the cache, and
recomputed automatically if they have been dropped to reclaim memory.

8.2 Implementation of Data Flow Problems

In this section we briefly review the data structures which represent the central
elements of data flow problems, how they are implemented in the LUPUS
framework, and how they are used to specify new analyses. Section 8.3 and
Section 8.4 show how the model specification is used by the analysis framework
and the validator respectively.

Generality and expandability are the central design goals of the framework. To
simplify the specification of new analysis problems and the integration of other
implementation of elements of the basic infrastructure, each component of the
analysis model consists of three different parts.

• An interface specifies the high-level view of the component. Other parts
of the system usually use this interface to access the component if they
do not depend on each other. The interfaces separate the components
from each other, so that even central components like the intraprocedural
control flow graph can still be replaced.

2The framework is developed by the research group “Programming Languages and Compilers”
of the University Paderborn
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• The framework provides a default implementation for each component
which already fixes a large amount of the design decisions. Furthermore,
the framework supports the setup of the infrastructure so that the imple-
mentor can focus on the specification of the concrete analysis problem as
long as the default implementations suffice to deal with the corresponding
aspects of the problem. Furthermore, this facilitates the reuse of compo-
nents in different analysis.

• The user of the framework has to supply an implementation of the com-
ponents whenever the default implementation does not fit exactly. Some
components like the instruction-level summary functions are designed
for being extended, so that the user can reuse at least parts of the default
implementation.

The following subsections describe the general interfaces of the components,
highlight interesting properties of their default implementations, and discuss
how a user can specify a concrete analysis problem in the framework.

8.2.1 Elements of a Data Flow Problem

According to Section 3.1 an analysis problem consists of four different parts: the
flow graph G, a mapping function JK, a data flow lattice L, and a function space
of transfer functions F. The data flow lattice L and the transfer functions in F are
independent from the program and form the analysis framework3. The flow graph
and the label function which maps flow graph nodes to their corresponding
transfer function in F depend on the program which is subject to the analysis.
Therefore, they have to be constructed for a specific program.

Conceptually, the functional approach to interprocedural analysis instantiates
the general model in two ways. Firstly, the interprocedural summary compu-
tation operates on an interprocedural flow graph and determines a summary
function for each program point. Secondly, the value computation phase uses
the summary functions as transfer functions to compute a safe approximation
of the invocation context of each method. Thus, the summary functions serve
two different purposes: They act as data flow values in the first phase and
as transfer functions of the second phase. In order to support both tasks any
summary function model has to support function composition, function meet,
and function application operations. The summary function model in the LUPUS
framework defines these operations in a generic way (see Chapter 5).

The interprocedural computation of summary functions has to deal with two
additional aspects which do not need to be considered by pure intraprocedural
analysis. Firstly, the dynamic method binding has to be resolved at each call site
to determine all potential call targets. Secondly, the parameter passing mecha-
nism has to be modelled because the caller and the callee operate both on their
own set of local variables The LUPUS framework offers default implementations
for these two modules but they can be exchanged if need be.

3This is the traditional terminology and must not be confused with the software framework
which implements the analysis
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8.2.2 Specification of a Concrete Analysis

In order to specify a concrete analysis, the user has to supply instruction-level
summary functions and the inducing data flow lattice only as depicted in Figure
8.3. The instruction-level summary functions have to be expressed in terms of
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Figure 8.3: Specification of a Concrete Analysis

the summary function model. The summary functions manipulate data flow
environments which are mappings from data flow variables to data flow values.
The framework offers a default implementation for a data flow environment
which supplies mappings for the local variables and the operand stack of the
virtual machine. This default environment can be instantiated with arbitrary
inducing lattices which supply the data flow values.

Additionally, the framework offers a safe default implementation for each byte-
code instruction. The goal is to reduce the number of summary functions which
have to be specified by the user to a minimum. The intuition is that the de-
fault summary functions specify copy assignments by a corresponding mapping
from the source to the target variable and use the most pessimistic element of
the inducing lattice wherever data flow information may be generated. Such
generation points include object instantiation sites, field accesses and so on. The
use of the most pessimistic element of the client analysis safely approximates
the behaviour of the corresponding bytecode instruction. The default behaviour
deals safely with instructions that are not relevant for the concrete analysis. For
example, the specification of a pure integer constant propagation does have to
deal with bytecode instructions that operate on references.

After the user has provided instruction-level summary functions and the induc-
ing data flow lattice, the LUPUS framework can set up the analysis automatically.
A standard control flow analysis constructs the intraprocedural flow graph.
Function composition offers the means to construct the summary function of
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each flow graph nodes in the summary function model automatically. The flow
node summaries are required for the interprocedural summary computation
phase because this phase composes the summary of a flow node with the input
summary in order to determine the output summary function.

A separated module is responsible for the integration of summary function at
call sites. The default implementation of this module models the parameter
passing mechanism by a simultaneous assignment of arguments to parameters.
Furthermore, the result value is assigned to the appropriate local variable after
the call. This mechanism is appropriate for all analyses which track data flow
through local variables, parameters and can be extended to global fields as
discussed in Section 5.5.

Finally, the integration of summary functions at call sites requires to deal with
dynamically bound method invocations which may target several callees. An
additional module determines a safe approximation of all potential callees.
The module simulates the dynamic lookup-procedure on an expandable class
hierarchy. It determines the currently reachable callees with respect to a type
representation for receiver types in terms of the precise type model developed
in Section 7.3. It is possible to determine the targets of the call precisely as long
as the type representation contains point types only. Furthermore, it is possible
to determine if the call target for a single point type is within the current analysis
context or external to it.

In contrast, cone types implicitly represent all subclasses of the root class,
too. The question whether or not the analysis has to assume the dynamic
loading of subclasses depend on the assumptions permitted by the application
scenario. It is always possible to deal with the impact of additional subclasses
pessimistically and to assume that any cone type can refer to some unknown
subclass. This worst-case assumption can be relaxed if the application scenario
supports the closed-program assumption - i.e. it is reasonable to assume, that
no subclasses for a class specified in the software module can be loaded after the
module. This assumption allows to treat cone types of program classes precisely
after the class hierarchy fragment of the program has been fully constructed.

The resolution strategy is applicable independently of the underlying type
analysis which yields the type representation. However, more precise type
information can rule out potential call targets. Especially, the potential impact of
the dynamic class loading reduces if cone types can be ruled out because the call
targets of point types do not depend on additional classes. The current prototype
implementation uses a very simple type analysis which yields a single point
type for statically bound method invocations like private methods and static
methods and a cone type which corresponds to the statically declared type of the
receiver reference for dynamic call sites. Conceptually, this strategy corresponds
to a class hierarchy analysis, but the module applies the type information in a
modular fashion: external callees can be detected automatically and the cone
type model allows for the application of the closed-program assumption or
other strategies. Additionally, the interface to the underlying type analysis
is very thin. Essentially, the binding resolution just expects a precise type
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representation which safely approximates the type of the receiver reference at
each call site. Thus, the results of a more sophisticated type inference algorithm
like the one which is outlined in Section 7.3 can be integrated as soon as they
become available.

8.2.3 Flow Graphs and Program Points

The flow graph model of the LUPUS framework uses two different representa-
tions for the intra- and interprocedural control flow.

Firstly, the framework constructs a traditional control flow graph for each
method body. The control flow analysis is provided by the PAULI framework
which can deal with arbitrary class-files by the use of the BCEL-library 4. The
ability to analyse class files is advantageous, because it allows for the inspection
of libraries whose source code is not available. Furthermore, class files form the
natural transport format for Java code because a target platform usually runs a
virtual machine but not a full fledged Java source code compiler.

The control flow graph representation supports the computation of intraprocedu-
ral summary functions - these are summary functions which map the invocation
context of a method to the intermediate program points within the code of the
method. This analysis phase does not split the control flow graph at call sites,
like this is usually done in other interprocedural analysis frameworks. In con-
trast, the analysis adds function variables into the data flow expressions which
represent the intraprocedural summary functions. The central idea is that open
summary functions implicitly encode a compressed form of the interprocedu-
ral flow graph and that their validity can be ensured due to the validatable
summary function model. Thus, the validator does not have to construct or
maintain a separate data structure for the interprocedural flow graph.

The function variables act as insertion points for the summary functions of
potential callees in the subsequent analysis phase which computes interproce-
dural summary functions. Conceptually, the analysis switches from the graph
representation to a system of data flow equations. A subtle advantage of this
representation is that function variable expressions are subject to normalisation
like any other data flow expression. This way, the analysis can determine auto-
matically, which method invocations can influence which pieces of the program
state. Function variable expressions may be dropped during function compo-
sition of function meet. If a summary function is removed during composition,
then some new data flow fact has invalidated the influence of a call on a specific
piece of the program state. A function variable can be ruled out by the function
meet, if the analysis detects a loss of data flow information on a different path
already.

The open representation also allows for a flexible treatment of callees. Espe-
cially, we can integrate summaries of methods subsequently and we can apply

4The Bytecode Engineering Library BCEL is part of the Apache project and provides access to
the internal structure of class files.
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the worst-case assumption or the closed-program assumption after the whole
software module has been analysed. This way, the open representation of sum-
mary functions supports a modular analysis at the producer side. Additionally,
the open representation is the basis for the more sophisticated incremental and
partial validation scenario where the validator has to integrate pieces of the re-
sult subsequently. The current implementation of the analysis is able to derive
several variants of the open representation and to approximate the results in
different ways. The validator is able to validate such open summary functions,
too. However, the use of the open representations in a incremental or partial
validation scenario requires additional efforts, which we will discuss briefly in
Section 8.4.

Irregular Control Flow The current implementation of the framework makes
several simplifying assumptions about the flow of control in the subject soft-
ware. First of all, the framework does not apply special strategies to restrict
the possible entry points of the program module under consideration. This is a
challenging task in an expandable object-oriented environment, because most
methods are callable from unknown code at the first glance. The closed-program
assumption cannot be adopted directly, because methods implementation of the
software module which override a method of an external class can be called dy-
namically in the external code. A great number of potential entry points limits
the potential precision of the value computation phase significantly, because
the analysis cannot make any assumptions about the program state at an entry
point. As a consequence, the invocation contexts of internal methods have to
be treated pessimistically, if they directly or transitively depend on the invo-
cation context of an entry point. Thus, the information gain of the final value
computation phase is likely to be limited unless a - validatable - strategy for the
restriction of potential entry points is integrated into the framework. However,
the functional part of the analysis already computes a significant amount of
valuable data flow information. We compare this information gain of the func-
tional phases with the potential additional information gain of a subsequent
value computation phase in Section 9.2.

The framework treats exceptions conservatively, too. All information about
the call stack is lost when the flow of control passes to an exception handler.
This is a safe but pessimistic strategy and limits the usefulness of the analysis
within exception handlers. However, the handling of exceptional states should
not occur very often during the normal execution of the program, so that the
impact of the precision loss in exception handlers on the analysis result should
be limited.

Furthermore, multi-threading and reflection is not considered by the framework
yet. This restriction seems to be acceptable, because we expect limited devices
not to use these features of the Java language extensively. Method invocations
by reflection can be treated conservatively like the invocation of native methods:
such calls simply result in the loss of all information about the heap state of the
program.
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8.2.4 Data Flow Values, Data Flow Expressions and Environments

The model of the data flow lattice consists of two parts: a common interface
which describes the generic properties of all lattices and the implementation of
the lattice operations and data flow values for each concrete data flow lattice.
For example, the lattice of constant values is required for different variants of
constant propagation and a lattice which implicitly encodes the class hierarchy
is required for a type inference analyses respectively.

The generic properties of the lattice comprise the order relation and the two
distinguished extremal elements > and ⊥. The extremal elements play an im-
portant role in the analysis framework, because they always exist and it holds
that the >-element is safely approximated by and the ⊥-element safely ap-
proximates all elements of the lattice. Thus, the >-element forms the natural
optimistic initial element because it can reduce to any potential value. The
⊥-element is even more important, because it indicates the loss of all valuable
information. This element does not have to be stored explicitly, because it is al-
ways safe to use the most pessimistic assumption if better data flow information
is missing.

Furthermore, the ⊥-element provides an elegant way to express the safe under-
approximation of data flow facts. Whenever a piece of data flow information is
not yet available the ⊥-element can act as a safe substitute of the fact. Based on
this assumption, the framework can derive safe assumptions about dependent
data flow facts as well.

The inducing data flow lattice naturally gives rise to the lattice of data flow ex-
pressions as defined in Chapter 5. The building blocks of data flow expressions
are generic and can be shared between different analyses which instantiate the
expression model with their own value lattice. The expression model offers the
following expression types:

A Constant Value Expression models a value of the inducing lattice as an
expression.

A Safe Approximation Expression combines two subexpressions with the
safe approximation operator of the inducing lattice

An Elementary Function Application Expression represents the application
of an elementary transfer function to a fixed tuple of parameters. Elemen-
tary transfer functions model complex dependencies between several data
flow values if this is required to specify the analysis in question.

A Data Flow Variable is a placeholder for a single data flow fact in the data flow
environment. It acts as an insertion point for data flow expressions and
data flow values during function composition and function application.

A Function Variable Expression takes an arbitrary number of subexpressions
as parameters. The function variable is a placeholder for a summary
function and acts as an insertion point of the summary functions of callees.
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Data flow expressions form the corner-stone of the summary function model.
The specification of an inducing analysis requires the definition of instruction-
level summary functions in terms of the model. Thereafter, the framework
constructs interprocedural summary functions in a generic way.

Like any lattice, the expression lattice also contains distinguished extremal
elements. The >-expressions represents the empty expression whereas the ⊥-
expression represents the safe approximation of all possible expressions. The
framework uses the ⊥-expression once again to improve the size of summary

functions and to safely approximate unknown data flow expressions. The BSC
−→-

normalisation exploits the property of the ⊥-expression in the normalisation
process. This normalisation replaces the safe approximation of ⊥ with another
subexpression because the⊥-expression models the safe approximation implic-
itly already.

The framework also provides a flexible data structure for the representation
of data flow environments. An environment is a mapping from data flow
variables to data flow expressions. Its purpose is to lift the manipulation of a
single piece of program state which is expressed by a data flow expression to the
manipulation of the whole state. The set of data flow variables depends on the
granularity of the inducing analysis. For example, the default implementation
considers the local variables and the elements of the operand stack in a method
frame. Obviously, it is inapt to store the mapping for all data flow variables in a
data flow environment explicitly. The largest method frames can consist of more
than hundred local variables, while the average method manipulates less than
the ten local variables. Therefore, the data structure that models an environment
contains a default mapping for all variables which are not explicitly mentioned
in the environment. Natural choices for the target of the default mapping are
the extremal elements and the identity mapping. The extremal elements act as
initial choices and safe approximations while the identity mapping represents
that all unmentioned data flow facts are not modified by the corresponding
summary function.

8.2.5 Summary Function Implementation

A summary function is a tuple of evaluation functions each of which describes
the manipulation of a single element of the data flow environment. The LUPUS-
framework models summary functions by an environment mapping which
maps each data flow variable to the defining expression of the corresponding
evaluation function. This way, the implementation of the data flow environment
can be shared between the summary function model and a value computation
phase which operates on mappings from data flow variables to data flow values.

For example, the default mapping mechanism is shared as well, so that the
internal representation of a summary function does not have to mention the
mapping for each data flow variable explicitly. This significantly reduces the
memory requirements of summary functions for all analyses considered in this
thesis.
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The LUPUS-framework offers a default implementation of an analysis specifica-
tion, that already contains instruction-level transfer functions for all Bytecode
instructions (see Section 8.2.2). These default summaries also cope with the
fact that the Java Virtual Machine is implemented as a stack machine: the push
of operands from local variables onto the stack and the store of the operation
result, are modelled as assignments. Interestingly, the composition of summary
functions usually removes dependencies on the operand stack completely as
shown in the example in Figure 8.4.

BytecodeSource Code Composition

iload_2

istore_1
l1 = l2

Default
Summaries

< s0 = l2, l1 = l1, ...>

< s0 =    , l1 = s0, ...>┴

< s0 =    , l1 = l2, ...>┴

Figure 8.4: Removal of Stack Manipulations by Function Composition

The assignment of the local variables in the source code cannot be performed
directly in the stack model: the virtual machine has to load the value of l2 onto
the operand stack before it can be stored into the target variable. This behaviour
is resembled by the default summary functions which model data transfer
from and to the operand stack. Finally, the composition of these summaries
substitutes variable s0, which removes the indirection that is introduced by the
operand stack model of the virtual machine.

The advantage of this straight-forward modelling approach is twofold. Firstly,
the framework provides a natural default implementation for the data transfer
between operand stack and local variables so that the implementor of a new
analysis can focus on the instructions which are relevant for the analysis in
question. Secondly, the framework starts directly from Java Bytecode and
the validity of the subsequent summary function composition is justified by
the properties of the summary function model. Furthermore, the composition
mechanism is required anyway, during the computation of interprocedural
summary functions. In contrast, frameworks that construct an intermediate
representation like three address code impose an additional challenge for the
validator: either the validator has to reconstruct the intermediate representation
on its own, or it has to validate that the intermediate representation used to
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express the analysis results is valid with respect to the given program. The reuse
of the summary function model directly at the level of bytecode instructions
nicely solves this issue for many analyses in a generic way.

8.3 The Program Analysis Framework

The LUPUS framework implements the summary function approach to interpro-
cedural analysis in three different phases:

1. An intraprocedural analysis computes the intraprocedural summary func-
tions. These summary functions represent the mapping of the invocation
context of a method to the program state before or after the execution of
each instruction in the method body.

2. The summary functions which result from this phase contain function
variables that represent the effects of the callees in the method. An inter-
procedural analysis computes a fix-point solution for the corresponding
system of data flow equations. This solution consists of an interprocedural
summary function for each method - i.e. an applicable summary function
which maps the invocation context of a method directly to the state upon
method return. The final result for the intraprocedural summaries can be
computed easily by the substitution of function variables with the final
interprocedural summaries.

3. The value computation phase computes the conservative approximation
for the invocation contexts of each method. This phase computes a fix-
point solution for the dependencies between the final results for the invo-
cation context of the method and the invocation context at all call sites. The
application of the final intraprocedural summary functions computes the
invocation contexts at call sites from the invocation context of the method,
directly. All other intermediate program states within a method can be
computed the same way after the result for the invocation context has
been established. This phase is currently not fully implemented because
it requires a strategy for the restriction of the potential entry points of the
module which is non-trivial in an expandable environment. However, we
compare the potential information gain of the value computation phase, to
the information gain which is already achieved in the functional analysis
phase (see Section 9.2).

Two design decisions influence the implementation of the interprocedural anal-
ysis significantly. Firstly, the analysis already uses the summary function model
presented in Chapter 5. This is advantageous because it enables the reuse of
a significant part of the infrastructure in the analysis and the validation phase.
However, the analysis “inherits” some of the properties of the model. Most im-
portantly, the implementation currently restricts the nesting depth of defining
expressions to a fixed number which can decrease the precision of the analysis.
In general, the validation phase does not depend on the implementation of the
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analysis phase. An arbitrary analysis framework can be used as long as the
analysis results can be specified in terms of the summary function model.

Secondly, the framework does not build an interprocedural flow graph, but
operates on the equation systems which is implicitly defined by the summary
functions computed in the first phase. We discuss the implementation of the
different phase in more detail, now.

8.3.1 Intraprocedural Analysis

The intraprocedural analysis phase computes a summary function for each
program point in a method. These summary functions map the invocation
context of a method to the program state immediately before or after the
execution of each instruction in the method. The summary function which
maps the invocation context to the program point after the execution of the
return instruction 5 plays a special role because it comprises the interprocedural
effects of the execution of a call to the specific method. We call these summary
function interprocedural summary functions in order to emphasise that they
capture the behaviour of a complete method call including all of its subcalls.

The computation of intraprocedural summary functions is a data flow problem
which uses function composition with the instruction-level summary functions
as transfer functions (see Section 4.2). The instruction-level summary func-
tions correspond to those which would have been used in the intraprocedural
counterpart of the analysis. The difference is that the instruction-level transfer
functions are now specified in terms of the summary function model, too.

Furthermore, the intraprocedural summary function computation deals with
call instructions in a special way. The aim is to compute an open representation
of the interprocedural summary function of the method. Therefore, the analysis
does not integrate the - potentially unknown - callee summaries directly, but
uses function variable expressions to express the effects of a callee summary
symbolically. These function variable expressions are first class values in the
expression model. Thus, they are subject to normalisation whenever the analysis
computes canonical normal forms of the summary functions.

The result of the intraprocedural analysis phase is a single, compact summary
function which represents the interprocedural summary functions. It contains
function variables for those summaries which influence the final result of the
method execution. These function variables can be subsequently substituted
by callee summaries as soon as they become available. The interprocedural
analysis phase utilises this representation to compute the final interprocedural
summaries as discussed in Section 8.3.2.

A special challenge arises from cyclic dependencies within the method which
lead to an increasing nesting depth of function expressions. Such a situation can
arise only if the result of a method invocation contributes to the call context of

5If the method has multiple return instructions, then the overall summary is the meet over all
return summaries, which corresponds to the introduction of an artificial unique exit node.
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the same call in a subsequent iteration of a loop. As a consequence, the function
expression which describes the state after the first invocation is substituted into
the parameter expressions of the function application expression of the second
call during the solution of the data flow problem. Thus, the nesting depth
of the function expressions increases on each iteration around the loop. The
framework stops this substitution process and determines a function fix-point
either by a safe approximation or by the utilisation of special characteristics of
the data flow problem in question, as described in Section 5.2.2.

The problem is not a limitation of the fix-point iteration, but our aim to derive a
finite representation for the summary function of a method without considering
its callees. This is vital to reduce the number of summary functions from one
function per control flow node to a single summary function per method and
we accept the potential loss of precision to achieve this.

Another idea to construct a finite representation even in the presence of loops is
to treat function variable expressions as uninterpreted functions [GTN04]. For
example, is possible to represent nested unary uninterpreted function symbols
by a string of function symbols. Automata can represent such strings in a finite
data structure even if the strings themselves are infinite. The problem is that this
theory is not directly applicable to function variable expressions because our
functions refer to a tuple of parameter expressions so that the underlying data
structure becomes a potentially infinite tree. The current implementation of the
framework as well as the underlying summary function model does not support
such a kind of representation, yet. Nevertheless, it is an interesting direction
of further research to investigate if such modelling techniques are applicable in
the validation scenario.

8.3.2 Interprocedural Analysis

The implementation of the interprocedural analysis phase in the LUPUS-
framework does not construct an interprocedural flow graph but operates
directly on the data flow expression model. The intraprocedural summary
function analysis phase computes a function representation which contains
function variable expressions for all relevant callees. Furthermore, the analysis
has already resolved intraprocedural fix-points during the summary function
computation.

The goal of the interprocedural summary function analysis is to compute a fi-
nal interprocedural summary function for each method in the program. This
task corresponds to finding a valid substitution for all function variables in the
resolvable interprocedural summary functions that result from the intraproce-
dural phase.

The final summary function results can be computed as follows: Firstly, the anal-
ysis module substitutes all function variables in each open summary function
by the most optimistic summary function which maps all possible parameter
values to the most optimistic element in the inducing value lattice. The resulting
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functions are solution candidates for the interprocedural summary function of
the corresponding method. Next, an iterative fix-point computation substitutes
solution candidates for the function variables in the open representation. This
substitution process subsequently weakens the solution candidates. The whole
process eventually stabilises as soon as the set of solution candidates forms a
valid fix-point solution.

The following considerations explain the algorithmic idea of the implementa-
tion. First of all, the system of flow equations which specifies the data flow
problem is equivalent to the flow graph model. The propagation of data flow
facts in the flow graph directly corresponds to the substitution of data flow
variables in the equation system with some values that form the actual solution
candidate for the corresponding data flow fact. Therefore, it is more or less a
matter of taste whether the algorithm operates on the equation system or on the
flow graph representation.

Function variables which refer to external methods complicate the fix-point
computation. It is possible to apply the different approximation strategies like
the worst-case assumption or the closed-program assumption directly at the
call site to remove the function variable expressions of external calls. However,
the current implementation computes open representations for the summary
functions which still contain external function variables. The advantage is
that we can apply the various approximation strategies to the same result
representation and that we can evaluate the potential size of open summary
function representations as they are required in the incremental or partial
analysis. However, the use of function variables for external functions during
the computation leads to a potential loss of precision like in the intraprocedural
setting, because the conservative limitation of the nesting depth limits the
maximum number of unprocessed calls on a path in the intermediate results.
However, the situation will improve as soon as more advanced mechanism to
represent nested summary functions, which we have outlined in Section 8.3.1,
become available.

8.3.3 Solution Analysis and Preparation of the Certificate

The program analysis phase computes the interprocedural result in terms of
summary functions and invocation contexts. This result is a valid solution of
the equation system which defines the interprocedural data flow problem. The
validator can check a complete result easily because it just has to evaluate each
right hand side with the values given in the solution and compare it to the
defined value.

However, the complete analysis result contains a summary function for each
control flow node in the program. Furthermore, a naive encoding of the
summary functions can be quadratic in the size of the environment because
the mapping of each data flow variable may contain a reference to all data
flow variables. The size can even increase further, if the problem specification
requires elementary transfer functions. The normalisation rules tackle this
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problem already because they reduce the function representation to a canonical
normal with a minimal number of expressions. However, the size and the
number of the summary functions is still significant.

Therefore, the producer of the analysis results should spend additional efforts
to support an efficient validation process at the consumer side. In Section 8.3.3
and in Section 6.4.2 we discuss two techniques which aim at this target. The
lattice strength reduction technique, reduces the size of the cross-product lattice
which defines the environments the validator operates on. This directly reduces
the size of the summary functions, because they are linear in the size of the data
flow environment. Secondly, the difference certificate approach reduces the number
and the size of summary functions in the certificate by storing only those pieces
of the function representation which differ from the representations which are
derived during the validation process anyway. Now, we briefly discuss how
these techniques can be integrated into the framework.

Lattice Strength Reduction

The goal of the lattice strength reduction is to reduce the size of the data flow
environment, which has to be considered by the validator. The default mapping
mechanism in the implementation of data flow environment (see Section 8.2.4)
provides the technical support for this technique, because all data flow variables
which use the default evaluation functions are not stored explicitly in the
environment.

This already reduces the size of the environment in the default implementation
of a interprocedural analysis in the LUPUS framework which tracks the data flow
through local variables and return values. In such an analysis the environment
corresponds to a single method frame. The maximum size of a method frame is
bounded by the maximum size of the local variables and of the operand stack
which is manipulated by some methods in the analysis context. The maximum
size is significant - we encounter methods with more than 70 local variables
in the Java 1.5 runtime library. However, the average size of a method frame
is very small and involves 5.86 variables on average only. Thus, the use of a
default mapping in the environment reduces the memory requirements for the
method frame part to less than 10% compared to the straight-forward model.
The implementation of the data flow environment adopts itself to the situation
automatically, because mappings are only integrated if the corresponding data
flow variable is really used.

Admittedly, the same result can be achieved if the construction of the data flow
environment for a specific method takes the number of variables into account,
which are affected by the method. This is simple for local variables and the
operand stack, because the class file contains the maximum number of these
variables for each method. Furthermore, the correctness of the numbers is
ensured by the bytecode verifier. However, this is not another optimisation
technique but the different side of the coin: the validator can either use an
adaptive implementation of the environment, or use given knowledge about

209



CHAPTER 8. LUPUS - A FRAMEWORK FOR VALIDATABLE DATA FLOW
ANALYSIS

the program for the construction of the environments. The second technique
requires that the validator protects itself against erroneous values - like the
bytecode verifier protects the virtual machine against too small values for the
size of the operand stack or the number of local variables. Anyway, both variants
aim at the reduction of the lattice strength and this principle can be applied at
other points as well.

For example, it is valid to reduce the number of parameter expressions of an
unknown call, to those pieces of the program state which are visible to the callee.
Essentially, the values of local variables at the call side can be omitted from the
argument state of the call, because all arguments are supplied to the callee on
the operand stack. Similarly, the state of the local variables and the values on
the operand stack of the callee are irrelevant for caller, because these values are
invalidated on the call stack upon method return anyway. Thus, it is possible to
reduce the strength of the environment of the interprocedural summary function
to the mapping of the result value. This has also been observed by Rountev in
[RSX08].

The advantage in the validation scenario is that we can extend the lattice strength
reduction if it does not depend on language properties but also if it depends
on the result. For example, the analyser can ship the information that the data
flow via some global fields does not have to be tracked in the certificate. This
information can be integrated into the validation process easily, if the validator
always assumes that the values which are read from such fields correspond
to the most pessimistic value. The adaptive implementation of the data flow
environment immediately rules out the corresponding mapping so that only
relevant global fields will ever occur in the data flow environment.

Difference Certificate Construction

The idea of the difference certificate approach as discussed in Section 6.1 is to
use valid solution candidates which are produced during the validation process
directly wherever possible and to ship only difference information if the solution
candidate does not match the final result of the analysis.

In the interprocedural setting, the validator has to validate summary func-
tions. Thus, the application of the difference certificate approach requires the
determination of difference functions, which require a minimal amount of space.
Interestingly, the summary function model supports the determination of differ-
ence functions directly - we just have to combine the original difference idea for
data flow values with the definition of the order relation of summary functions.

The original difference certificate approach exploits the observation that known
data flow values can already subsume the unknown ones if the validation
process reaches a join point. Thus, the validator can construct the input solution
I? from the safe approximation I?c of all known input solutions and a difference
element ∆ which exists only if I?c does not already correspond to I? because
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We can apply this technique to summary functions immediately if we just
integrate the safe approximation over all output summary functions into the
certificate if and only if the input solution candidate differs from the final result.
However, the safe approximation of all unknown summary functions may be
much larger than necessary if it contains the same defining expressions for most
variables, because only the differences to the already available candidate are
relevant. In Chapter 5 the order relation on summary function representation
is specified based on the observation that only a safe approximation expression
which contains additional subexpressions is considered to be weaker than a
given one. Thus, if the solution candidate I?c does not already subsume the
output summaries of the unprocessed predecessor node, then it lacks only some
subexpressions in the defining expressions of the whole summary function.

As a consequence, it is possible to determine a much more fine grained repre-
sentation of a difference function. Essentially, the difference function just has
to contain all subexpressions, which are not already present in the solution
candidate computed by the validator. Conceptually, we apply the difference
computation principle to each defining expression separately and the defini-
tion of the order relation on expressions directly yields the missing expressions,
which have to be stored in the difference function. This way, the summary func-
tion model already supports the core mechanism which is required to prepare
a difference certificate after the analysis phase.

8.4 LUPULUS - An Efficient and Flexible Validator

The validator has to check that a given data flow result is valid with respect
to the given program. To achieve this, the validator has to check two different
kinds of properties: Firstly, the data flow results have to express the semantics
of join points correctly. This check ensures that the influence of the flow structure
of the program is modelled correctly. Secondly, the validator has to check that
the transfer function of each instruction in the code has been applied correctly.
This ensures that the data flow result models the semantics of the code with
respect to the data flow problem correctly. Throughout this section we follow
the convention of Chapter 4 where we mark values and functions given in the
certificate by an asterisk ∗ and the solution candidates produced by the validator
by a star ?.

A complete interprocedural data flow result consists of a safe approximation of
all invocation contexts for each method and a summary function for each node
in the control flow graph of the method. The check of the transfer function
semantics proves that the given input and output summary function of a flow
graph node n are reasonable with respect to the summary function ψnn′ that
describes the semantics of the flow node. To ensure this, the composition of the
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input summaryψ0n and flow node summaryψnn′ has to be as least as optimistic
than the given output summary ψ0n′ , thus

ψ∗On′ v ψ
?
On′ = ψnn′ ◦ ψ

∗

0n

Thus, the check of the effects of the code and its summary functions is straight
forward.

The check of join point semantics is a little bit more complex because there
are different kinds of join points which effect the result of an interprocedural
analysis problem:

1. An “intraprocedural join point” is a meet of two different control flows
of a method. It is the consequence of conditionals or backward edge of a
loop. These join points are known from intraprocedural analysis already.

2. The safe approximation of the invocation context of a method constitutes
a kind of “call join point” because it merges the program paths of all calls
to the method.

3. Dynamic method binding can be considered to be a switch over all
potential callees of the method call where the runtime type of the object
or the runtime value of a function pointer acts as a guard. After the call,
the flow of control from the different potential call target joins again in a
“dynamic binding joint point”.

Even though all of these join points involve different kinds of information, the
validator checks them in essentially the same way. Before we explore this in
more depth, we take a closer look at the different kinds of join points.

The intraprocedural join points essentially encode the control flow graph of the
method. If a flow node can be reached by different branches, then the validator
has to check that the safe approximation of the output summary functions of the
predecessor nodes is at least as optimistic as the given input summary function
of the join node, thus

ψ∗0i v ψ
?
0i =

l

j∈predFi

ψ?0 j′

This effectively ensures that the assertions about the program state at the join
point hold at the end of each predecessor node. This check is again equivalent to
the same check at join points in the intraprocedural scenario. The only difference
is that summary functions and not data flow values are safely approximated
and compared.

The other join points occur in the interprocedural scenario only. Firstly, the given
invocation context of each method has to safely approximate the invocation
context at each call site. The invocation context of a call site can be directly
obtained by the corresponding intraprocedural summary function and the
invocation context of the caller. Let O j denote the invocation context at a
call site of method m, then

IC∗m v IC?m =
l

j∈callsites(m)

O?
j =

l

j∈callsites(m)

ψ∗0 j(IC
∗

j)
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The involved values differ from the check of intraprocedural join points. How-
ever, the check once again requires that the validator constructs a solution
candidate by a safe approximation of a number of values.

The additional join points which arise from dynamically bound method in-
vocations lead to a similar check. The semantics of each call-instruction i is
represented by an additional instruction-level summary function ψ∗ii′ in the cer-
tificate. This summary function acts as the instruction-level summary function
of the call instruction during the validation of the intraprocedural summary
functions of the caller because the validator checks that ψ∗0i′ v ψ

?
0i′ = ψ∗ii′ ◦ ψ

∗

0i.
The validity of given summary functions of callees requires that the given sum-
mary safely approximates all interprocedural summaries of all potential callees
at the call site. Let calltarget(i) denote the set of all callees of the call instruction
i, then

ψ∗ii′ v ψ
?
ii′ =

l

j∈calltarget(i)

ψ∗j

where ψ∗j denotes the interprocedural summary of method j. This summary
corresponds to the output summary of the exit node of the method.

Essentially, all join point tests are structurally equivalent, because the validator
has to check that the safe approximation of some given values B∗j is as least as
optimistic than some given value A∗, thus

A∗ v A? =
l

j∈J

B∗j

This check can be performed in two different ways. Firstly, the validator can
compute the safe approximation and check the resulting solution candidate
against the corresponding entry in the certificate. Secondly, the validator can
also decompose the check into a number of subsequent tests, one for each
relevant entry in the certificate which contributes to the test:

∀ j ∈ J : A∗ v B∗j

This is possible because the validator does not have to ensure the maximality
of the given fix-point. In order to validate the maximality of the fix point
the validator has to check the equivalence of A∗ and A? which requires the
computation of the safe approximation.

Any validator has to ensure that both the transfer function and the join point
checks hold for all pieces of the analysis result. The validators differ only in the
way how they achieve this goal. Before we take a look at different validation
strategies, we consider which parts of the framework infrastructure can be
reused by the validator.

8.4.1 Reusable Infrastructure

The structure of the checks that have to be performed by the validator can act as
a guide to find out which parts of the framework infrastructure can be reused
by the validator.
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First of all, the checks rely on the function model, because summary function
have to be compared to each other, composed with each other, and they have to
be applied to invocation contexts, in order to derive the data flow values that
describe the invocation contexts of method calls. Thus, the validation process
relies on a correct implementation of the summary function model. This model
involves data flow environments and evaluation functions which in turn depend
on an implementation of the data flow expression model.

Furthermore, the check of the intraprocedural summary function expressed by
the equation

ψ∗On′ v ψ
?
On′ = ψnn′ ◦ ψ

∗

0n

requires valid instruction-level summary functions ψnn′ .

It is not surprising, that the validator depends on the expression model and
instruction-level summary functions because these two pieces of information
define the data flow problem in question. The expression model establishes
the link to the inducing lattice, because constant expressions correspond to the
values of the inducing lattice and the evaluation of expressions corresponds
to a computation of lattice values. The instruction-level summary functions
define the semantics of single instructions with respect to the data flow problem
because they specify how the execution of an instruction changes the assertions
about the program state the analysis is able to ensure.

Thus, the validation process depends on a correct specification of the concrete
data-flow problem. However, the summary functions model is shared between
all analysis - just the implementation of the inducing lattice and the instruction-
level summary functions can differ from one analysis to another.

The validator depends on other modules in a general way, too. Firstly, it depends
on the control-flow graph of the method, because the check

ψ∗0i v ψ
?
0i =

l

j∈predFi

ψ0 j′

requires the determination of the predecessors of node i in the flow graph F. The
validator can either perform a control-flow analysis on its own, or it can check
the validity of control flow information supplied implicitly in the certificate.

The additional checks which are required in the interprocedural scenario induce
additional dependencies. Both the check of the invocation contexts

IC∗m v IC?m =
l

j∈callsites(m)

O?
j =

l

j∈callsites(m)

ψ∗0 j(IC
∗

j)

and the check of the instruction-level transfer functions of call instructions

ψ∗ii′ v ψ
?
ii′ =

l

j∈calltarget(i)

ψ∗j

depend on the determination of the targets of a dynamically bound method call.
The resolution of a dynamically bound method call depends on precise type
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information about the receiver reference of the call. The implementation of the
call resolution mechanism is capable to cope with expandable class hierarchies.
A point type in the precise type representation defines the call target exactly,
and the resolution mechanism can check whether the target method is part of
the software module under consideration or not. In the latter case the validator
inserts the most pessimistic summary function at the call side. However, this
situation only arises if the program inherits a method implementation from an
unknown superclass. The treatment of cone types depends on the assumptions
which can be made about the dynamic class loading. The worst-case assumption
expects that virtually any class can be extended by a subsequently loaded
class, so that all call sites which depend on cone types have to be treated
pessimistically. The closed-program assumptions relaxes this very conservative
approach. However, the analysis phase and the validation phase have to use
the same implementation of the dynamic call resolution.

Additionally, the validator has to check the validity of the type information
used for the resolution. This is simple in the current prototype implementation
because we just use the statically declared type of the receiver reference for
the resolution dynamically bound method calls and the Java bytecode verifier
checks the validity of this type. Nevertheless, we can also integrate more precise
type results if they stem from a validatable type inference algorithm at this point.

The final aspect which also has to be considered during the validation is that the
summary functions of callees cannot be integrated directly into the intraproce-
dural summary functions of the caller because they express the manipulations
of the program state in terms of the context of the caller. Thus, the validator de-
pends on the module which supplies the call- and return-functions for method
calls, too.

To summarise, the validator reuses significant parts of the analysis framework:

• the summary function model including data flow expressions and their
normalisation

• the control flow graph of methods

• the definition of the inducing data flow problem including the inducing
lattice and instruction-level summary function

• the type model used to resolve dynamically bound method calls

• and the module which specifies the semantics of method invocation and
return in terms of call- and return functions.

The validator does not reuse the data flow solver, complex strategies for or-
ganisation of the worklist of the solver to fasten the fix-point computation etc.
Furthermore, it is possible to support the construction of the relevant data struc-
tures in the validator by additional information in the certificate as long as the
validator can check the given values easily.

All in all, the validator can establish the validity of a given result in a single pass
over the certificate and avoids any iteration which may be required in the anal-
ysis phase either due to the fix-point computation or due to interdependencies
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between different analyses. This linear pass property is the core reason for the
efficiency of the validation process. The efficiency can be increased even further,
because the validator considers a very small part of the result during each check
only, while the analysis phase has to store a large number of intermediate results
simultaneously.

8.4.2 Complete Result Validator

The simplest variant of the validator assumes that the analysis phase stores
all relevant pieces of information in the certificate. If the complete result
is available, then the validator can simply perform all of the checks. The
interface to the certificate just requires query methods for the different kinds
of information. It is reasonable to assume that such queries can be answered
in constant or logarithmic time, if the certificate organises the information in a
hash table or if the order in the certificate takes the known access pattern of the
validator into account.

The complete validation run requires two checks for each intraprocedural
summary function of each flow node in the program. The first check proves
its correctness with respect to the instruction-level summary function and the
second one proves that the summary is reasonable with respect to summary of
the predecessor or successor in the flow graph. The successor and predecessor
information of the flow graph can be validated quite easily, because the targets
of conditional branches are constant and explicitly encoded in the bytecode
conditional bytecode instruction.

Additionally, the instruction-level summary functions of call instructions have
to be checked against the summary functions of all callees. This involves a check
of the type hierarchy as well, if more sophisticated strategies are used during
the static resolution of the dynamic binding.

All in all, the complete result validator is a very simple module. Its additional
memory requirements are negligible because they are bounded by the maximum
number of intermediate results required for the check of a single equation and
some administrative data required for the check of data structures like the flow
graph and the class hierarchy.

However, the complete result validator suffers from two major drawbacks.
Firstly, the size of the certificate is large, even if technical optimisations of the
data structures like lattice-strength reduction and normalisation of the summary
functions are applied. The reason is that the certificate holds two summary
functions for each control flow node in the program and a summary function is
at least linear in the size of the - potentially reduced - representation of the data
flow environment lattice.

The second drawback of the simple validator is that the analysis results cannot
be used immediately during the validation process because the producer has
applied some strategy to deal with external references which removes function
variables from the representation. As a consequence, the validator has to
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consider the whole analysis result of a software module to establish the validity
of pieces of this result.

This thesis already sets the scene for more sophisticated validation scenarios
which target these two draw-backs of the full certificate approach. The differ-
ence certificate validation strategy targets a reduction of the size of the certificate,
while an incremental validator enables the consumer side to use pieces of the
analyses results before the whole program has arrived and it facilitates the use
of optimistic assumptions about additionally loaded classes, too.

The summary function model already supports the determination of difference
summary functions as explained in Section 8.3.3 and the prototype information
of the full certificate validator is already able to validate the open results of a
modular analysis where the references to external calls have not been removed.
Thus, the framework already provides a significant amount of the infrastructure
for the implementation of a difference or incremental validator. The remaining
challenge is the implementation of an efficient organisation of the intermediate
storage during a more sophisticated validation process.

8.5 Summary and Comparison to Existing Frameworks

We briefly summarise the current state of the implementation, before we com-
pare the LUPUS framework to existing ones. Consider Table 8.1 which classifies
the capabilities of the LUPUS-framework in four different categories. The cate-
gories state which concrete analyses, which kinds of data flow, which resolution
strategies for dynamic binding, and which kinds of validators are supported
to what degree by the framework. The degree of support ranges from concep-
tual support in the model, via framework support for the generic parts of the
problem up to a full implementation and evaluation of the specific feature.

The summary in the table shows that the conceptual support in the model
is quite comprehensive. The model deals with elementary transfer functions
which are required to model analyses like linear constant propagation (LCP)
and type inference (TINF). It is also possible to express a reimplementation of
the interprocedural def-use analysis with copy propagation, that is one of the
most important handcrafted interprocedural analysis in the PAULI framework.

The decomposition of the program state into a data flow environment allows
for an integration of fields as soon as they can be identified with a data flow
variable. This is straight forward for class fields which are identified by their
name. Even accesses to fields of the receiver object of a call can be identified
in the bytecode by a specialised intraprocedural analysis that can be expressed
in the model comparatively simple. All of these extensions introduce a limited
number of additional data flow variables into the environment. The support of
data flow that considers object fields is the only point where it is questionable
whether a straight-forward use of the model will be possible. A straight-
forward use of the model would distinguish fields of object which are created at
different instantiation sites by additional data flow variables and the size of the
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Model Framework Implementation
Support Support and Evaluation

Analysis
- CCP + + +
- TINF + + (+)
- LCP + + -
- DEFUSE + + -
Dataflow
- Call Stack + + +
- Global Fields + + -
- this.Fields + (+) -
- Object Fields (+) - -
Dynamic Binding
- Expandable Type System + + +
- CHA-Based Resolution + + +
- Type-Based Resolution + (+) -
Validation
- Full Certificate + + +
- Difference Certificate + + -
- Incremental + (+) -

Table 8.1: State of the Implementation

environment would likely become unmanageable. From this observation we
conclude that the consideration of general data flow via object fields requires
an extension of the environment model which takes the result of a points-to or
alias analysis into account.

The integration of the dynamic binding is an example how the consideration
of a language feature can lead to further extensions of the summary function
model: The model - more precisely the representation of a dynamically bound
call as the meet of the summary function of the callees - required additions like a
type system which is aware of the expandability of the class hierarchy as well as
a parametrisation of function variables with the receiver type of a dynamic call.
As a consequence, the validation process had to be adopted as well, to ensure
that the consumer also checks the validity of the new features. The underlying
class hierarchy can be derived safely from the superclass relation and the validity
of the statically declared receiver type is ensured by the bytecode verifier of the
JVM. This immediately enables a CHA-based resolution of dynamically bound
method calls. Furthermore, the results of a type inference analysis which is
specified in terms of the model, can also be used to strengthen the precision of
the resolution mechanics.

Finally, the model supports different variants of the validation process in the
interprocedural setting. The model expresses the summary function computa-
tion as a data flow problem so that a simple validator can check the result by the
general validation principle. Furthermore, the summary function model allows
for the computation of difference functions, which directly enable a difference
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certificate validation. Even an incremental approach is already prepared by the
introduction of open summary functions.

The implementation effort which is needed to realise the different aspects can
be separated into required additions to the framework and the problem-specific
parts of the implementation. The implementation support in the framework
is quite advanced. An interface for elementary transfer functions is available
and they are already considered during the normalisation process which is
vital for the analysis and validation phase. This allows for the specification of
distributive analyses that are more expressive than simple bit-vector problems.
Furthermore, the existence of an adaptive data flow environment, provides the
infrastructure for lattice strength reduction techniques.

The framework solves the resolution of dynamic binding automatically. Func-
tion variables carry type information about the receiver reference which corre-
sponds to the statically declared type in the simplest case. The dynamic call
resolution is performed on a expandable type hierarchy according to the anno-
tated type during both analysis and validation. Thus, the framework is able to
incorporate more advanced strategies for the determination of the receiver type
smoothly.

The full certificate and the preparation of a difference certificate are supported
by the framework. The incremental approach is partially supported. Open
summary functions can be validated like applicable ones but additional book-
keeping mechanisms are required to keep track of the relationship between
open summary functions and the applicable ones that represent the final result.

We use the basic facilities of each category for the evaluation of the framework.
This is achieved by an interprocedural copy constant propagation which consid-
ers the data flow in the call stack of the program and a CHA-based resolution of
dynamic method binding. The results are validated by a full certificate valida-
tor. Furthermore, the analysis phase computes various kinds of open summary
functions, so that it is possible to reason about the information gain in the dif-
ferent analysis phases and to consider the impact of strategies which deal with
references to external code (see Chapter 9).

We now compare the current state of the implementation of LUPUS to other
frameworks. There are two important conclusions. Firstly, the LUPUS frame-
work is the first framework that supplies generic support for the validation of
interprocedural analysis results. Secondly, there is no other framework, which
combines the support for various kinds of analyses, data flows, object-oriented
aspects like dynamic method binding, and validation techniques in such a uni-
fying way.

However, the LUPUS framework cannot cope with well-established research
and industrial-strength frameworks with respect to the number of supported
analysis and with respect to the technical maturity, yet. For example, both the
analysis and the validation phase are based on a common infrastructure which
is currently tailored for a smooth representation of the analysis model and
which includes limited technical optimisations only. Furthermore, the safe but
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very conservative treatment of nested function expressions can lead to a loss of
analysis precision if the results are compared to results of existing approaches.

The following sections compare the capabilities of the LUPUS framework to
existing frameworks in more depth.

8.5.1 SOOT and INDUS

SOOT is a program analysis tool-set developed by the Sable group of the McGill
university [VRCG+99]. It provides framework support for intraprocedural data
flow analysis which is tailored to set-based analysis. Interestingly, the SOOT
tool-set is able to operate on different kinds of intermediate representations. It
features the Jimple intermediate language which is a three address code variant
that effectively removes the operand stack model of the Java virtual machine.
Shimple is an SSA extension of the intermediate representation.

Interprocedural extensions exist also, ranging from the SPARK framework
[LH03] for the implementation of points-to analyses and PADDLE which is
a BDD-based variant of interprocedural analysis [Lho06].

The basic infrastructure of SOOT is used by other projects like INDUS from
the Santos laboratory of the Kansas state university. INDUS supplies an infras-
tructure for analysis algorithms and data structures. It already contains a fairly
rich set of analyses which range from object-flow analysis, escape analysis, and
dependency analysis to more specialised monitor and dead-lock analyses. Ad-
ditionally, the framework hosts a Java program slicer which implements a rich
set of slicing variants [RH07].

Though these frameworks are technically mature, they do not provide a com-
mon model for the interprocedural analyses. In contrast, they contain several
implementations of specialised interprocedural analyses algorithms which all
operate on their own set of data structures. This is an inconvenient situation for
the question how to validate an analysis result because new validation strate-
gies are required for each algorithm. The fact that several program analyses
depend on each other - for example program slicing relies on a control- and
data-dependency analysis - complicate the issue further. As the main focus of
this thesis is a general investigation of the validation principles in an interpro-
cedural analysis scenario, we did not try to integrate a validation process into a
framework that already incorporates such a rich set of subtle dependencies.

8.5.2 PAG

The program analysis generator PAG [AM95] is one of the few frameworks
which supplies infrastructure support for interprocedural analysis in a generic
way. The frameworks offers generic solvers for both the call-string and the
functional approach.
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Essentially, the user just has to define the semantics of instruction-level transfer
functions and the analysis lattice and the framework performs the iterative fix-
point algorithm. The call-string approach is especially well-suited for the PAG
approach, because the framework does only have to apply the instruction-level
transfer functions given by the specification of the analysis.

The functional variant of the framework is roughly equivalent to the framework
suggested by Knoop in [Kno99]. PAG provides default implementations and
interfaces for call-functions and return-functionals. This way, the framework
is capable to deal with local variables and return values of recursive functions
in the functional setting. However, both frameworks do not provide much
support for the implementation of summary functions. Essentially, they expect
that the user of the framework supplies efficient implementations for the meet
and composition of summary functions.

Though this approach is very flexible, because each analysis can supply
problem-specific summary function implementations, it also delegates the ques-
tion how to compare summary functions to the specification of the analysis.
However, this is one of the vital questions, which have to be answered to enable
the validation of interprocedural analysis results. The summary function model
presented in Chapter 5 solves this problem because it ensures that the function
representations reduce to a normal form which can be compared to each other
by a simple inspection of the structure of the functions. In contrast, frameworks
like PAG leave the solution of such problems to the user of the framework.

Although I decided to stick with the functional model to consider the validation
of interprocedural analysis results, the wide-spread use of the PAG framework
and the featured call-string approach raises an interesting question for further
research: Can we come up with a general validation principle for interprocedu-
ral analysis results which stem from a call-string analysis? I think that one of
the crucial subgoals for such an approach is to capture the intuition of realisable
path which prevents the propagation of data flow information along infeasible
call path in the call-string approach. This issue is avoided in the functional ap-
proach, because the summary functions abstract from concrete data flow values
when they are integrated into the call sides in each caller.

8.5.3 SafeTSA

SafeTSA [ADvRF01] is a completely different approach to mobile code safety.
The general idea is to transform the program into an inherently safe intermediate
format. Only valid programs can be encoded in the intermediate format so that
a check of the validity boils down to the proof that the program is structurally
correct.

The technique has been originally applied to encode the type safety of a pro-
gram in the intermediate representation and it has been integrated into a just in
time compilation framework by Ronne in [vR05] that also provides traditional
analysis techniques like constant propagation and common subexpression re-
moval.
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Essentially, the SafeTSA representation provides a secure encoding of the SSA
representation of a program which simplifies the application of subsequent
analysis phases. However, there is no obvious extension to the interprocedural
scenario yet.

8.5.4 Code Surfer

CodeSurfer [BGR05] is an industrial strength framework for the analysis of x86-
executable code. Recently, Lim has extended the framework by a transformer
specification language TSL [LR08]. The primary goal of this language is to
specify the semantics of different instruction sets like the x86, the PowerPC, or
the SPARC instruction set in a uniform way, so that data flow analyses which
are language independent can be easily applied to different instruction sets.

Conceptually, this approach is comparable to the specification of an analy-
sis based on instruction-level summary functions in the LUPUS-framework. Both
approaches strive to separate the specification effort in two parts: the generic
specification of an (interprocedural) analysis and the specification of the seman-
tics of single instructions. As a consequence, some techniques like the reuse of
instruction-level summary functions that are equal for different analyses can be
found in both frameworks.

The CodeSurfer framework is more mature because it already incorporates a
significant number of data flow analyses - even interprocedural ones - which are
based on the same principles as the approach of the LUPUS framework. However,
the framework targets low-level machine code and does not explicitly deal with
object-oriented aspects and questions related to the validation of the analysis
results - which are the main challenges targeted in this thesis.

8.5.5 Abstraction Carrying Code

The abstraction carrying code framework by Elvira Albert et al. [APH05] uses
a constraint solver to implement data flow analyses based on the abstract inter-
pretation approach. The framework emphasises the applicability of the general
validation principle to arbitrary data flow analyses which are expressed as ab-
stract interpretation problems. Furthermore, the constraint solver framework
offers already capabilities to deal with an incremental validation scenario.

However, the framework does not deal with interprocedural and object-oriented
aspects like dynamic method binding and parameter passing. Like in other
frameworks the bulk of the implementation effort is hidden behind the interface
of the abstract interpretation framework.
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The validation of analysis results consists of three elementary phases. Firstly,
the producer analyses the subject software, computes the the analysis results,
and encodes them in terms of the analysis model presented in Chapter 5.
The output of the analysis phase are interprocedural summary functions and
invocation contexts which are prepared in a way that the validator can check
the correctness of the given results easily. These results are transferred to the
consumer in the transmission phase. Finally, the validator checks and uses the
results in the validation phase.

This chapter investigates the behaviour of the three phases on different kinds of
subject software. The subject software covers various kinds of runtime libraries,
small applications, benchmark programs and larger software systems. Section
9.1 describes the software and compares their characteristics.

The following sections cover each phase of the application scenario separately.
The evaluation of the analysis phase focuses on the quality of the analysis
results. The analysis phase is capable to derive open summary function rep-
resentations from the intraprocedural context and for an analysis of the whole
software module. We investigate and compare these summary functions to
determine the potential and the real information gain of the different phases of
the interprocedural analysis. Furthermore, the open representation of summary
functions allows for a comparison of different strategies to deal with external
code. Thus, we can compare the impact of the worst-case, the closed-program,
and the closed-world assumption with each other.

The transmission phase is an important cost factor of the validation approach.
The size of the annotations increases the overall size of the program and has
to remain acceptable. The annotations contain summary functions and safe
approximations of invocation contexts. The size of the summary functions is the
central challenge, because a single summary function representation can become
quadratic in the program state even if it does not contain nested-expressions
which increase the potential size even further.

Finally, the complexity of the validation phase is considered. For the full-
certificate approach the memory requirements is closely related to the size of
the certificate because a full certificate makes all pieces of information directly
accessible for checks during the validation phase. Therefore, the size of the
full certificate is also an upper bound for the memory requirements of the
difference certificate approach. The intermediate storage will never contain
more information even if no intermediate result is dropped at all. A first
attempt to estimate the runtime efficiency of the validation phase completes
the evaluation.
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9.1 Evaluation Setting

In this section we briefly summarise the currently available parts of the frame-
work, the characteristics of the analysis, and the subject software considered by
the evaluation. The goal of the evaluation is to investigate the impact of several
design decisions on the summary function model and to show that the model
is applicable in a concrete context.

The prototype implementation of the framework is discussed in depth in Chap-
ter 8. The analysis part of the framework is capable to determine open rep-
resentations of intraprocedural and interprocedural summary functions. The
open representation of intraprocedural summary functions is derived for each
method separately and treats all method calls as calls to external methods. The
computation of interprocedural summary functions resolves to calls to internal
methods of the software module. However, it can still contain function vari-
ables, if an interprocedural summary depends on calls to external methods. For
example, some unknown subclass can contribute additional call targets.

The final result for intraprocedural summary functions can be constructed from
the interprocedural summary functions comparatively easy. It suffices to sub-
stitute the function variables in the initial open result with the interprocedural
summaries. The result of this substitution phase consists of intraprocedural
summary functions which contain function variables for external method invo-
cations only.

The open summary function representation is flexible, because it is possible to
apply different strategies to resolve the references to external code. Examples in-
clude an application of the worst-case assumption that just safely approximates
the dependent parts of the model and the application of the closed-program as-
sumption which optimistically assumes that classes of the software module will
not be extended by dynamically loaded classes. The output of this phase is a
final representation of the analysis result under the corresponding assumption.

The validation part of the framework features a full certificate validator which
is able to validate open and final summary function representations. In order to
validate the final summary function representation it is necessary to apply the
same approximation technique for external references in the validation phase
which had been used in the analysis phase.

The evaluation focuses on the open and final summary representations because
they allow for

• the determination potential and achieved information gain in the differ-
ent phases of the interprocedural analysis. Particularly, we compare the
amount of data flow information detected within methods to the final
results of the interprocedural summary function computation. Further-
more, the interprocedural summary functions reveal how much data flow
information depends on the final value computation phase.

• the investigation of the impact of the different approximation strategies
for external code
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• a discussion of the certificate size which essentially depends on the size
of the function representation

• an estimation of the impact of the normalisation process and encoding
strategies on the size of the summary function representation.

These four topics form the goals of the evaluation of the analysis phase and
the certificate size. The evaluation concludes with a brief comparison of the
runtime requirements for the analysis and validation in the existing prototype
implementation.

9.1.1 Evaluated Analysis

Copy Constant Propagation (CCP) A copy constant propagation which in-
cludes integer constants and the null-reference forms our primary example
analysis. The analysis uses the default implementations of the interprocedural
analysis modules of the LUPUS-framework to show that these modules already
suffice to specify useful analyses. The following list summarises the capabilities
of the default implementations (for details refer to Chapter 8).

Instruction-Level Summary Functions The default implementation of
instruction-level summary functions tracks the data flow through the
local variables and the operand stack of the virtual machine. They
use copy semantics for load and store instructions which transfer data
between the local variables and the operand stack and safely approximate
all instructions which can generate new data flow information - like
reading field accesses. The only exception to this rule are call instructions
where function variable expressions are integrated in the instruction-level
summary. This model is tailored to analyses which use a one-to-one
relationship between data flow variables and the local variables in the
virtual machine. The specification of the concrete copy constant analysis
just contributes the instruction-level transfer functions for the instructions
which generate new copy constants - namely the ICONSTx, LDC, and
ACONST_NULL bytecodes.

Callee Integration The integration of a callee summary models the simulta-
neous assignment of arguments to parameters and the assignment of the
result value to the operand stack slot which takes the result value in the
caller. This way, the analysis is able to track the data flow through the
whole call stack of the program.

Dynamic Method Binding The resolution of dynamic method calls depends
on a safe-approximation of the receiver type reference in terms of the
precise type model developed in Section 7.3. Furthermore, a strategy is
required which determines whether or not it is possible to load additional
external subclasses for a specific cone type. We investigate the impact
of the worst-case assumption and the closed-program assumption on the
statically declared type of the receiver reference. This setting can be
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interpreted as a class hierarchy analysis which is adopted to the modular
setting.

All in all the analysis is fairly simple compared to sophisticated interprocedural
analyses which target a specific problem. Nevertheless, it forms a suitable
starting point to investigate if the generic summary model is usable to specify
validatable interprocedural analyses. Furthermore, we have discussed several
extensions and improvements for the default implementations like the analysis
of static fields and the use of data-flow based type inference results. The
evaluation of a manageable analysis setting answers the question which aspects
of the analysis influence the precision of the analysis results in which way.
Furthermore, we have to expect that the resource-constraints of a target platform
do not suffice to use the results of very ambitious analyses even if the consumer
applies validation techniques.

Additionally, the ability to validate the data flow through the call stack of the
program is already a useful technique if it is applied in a problem specific way.
For example, consider the following code snippet

c l a s s Securi tyChecker {

public s t a t i c native performSecurityCheck ( ) ;

public s t a t i c i n t securi tyCheck ( )
performSecurityCheck ( ) ;
return SECURITY_TOKEN ;

}

public s t a t i c void c r i t i c a l A c c e s s ( i n t securi tyToken ) {
. . .

}

and assume that the consumer side wishes to enforce that client code has passed
the security check before it invokes the criticalAccess-method. This security
policy can be enforced, if a copy constant propagation traces only the data flow
of a special constant SECURITY_TOKENwhich is generated in the securityCheck-
method. If the analysis yields the result that all call sites of the criticalAccess-
method in a program pass the special constant as an argument, then this implies
that the program must have invoked the securityCheck()-method beforehand.
The analysis results get fairly simple, because only those variables which are
used to pass the SECURITY_TOKEN around will contain data flow information
which differs from the most pessimistic element.

9.1.2 Analysed Software

The evaluation considers different kinds of software which we subdivide into
three larger categories. Firstly, we investigate several instances of the Java
runtime library. The runtime library is a prerequisite to run Java programs
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and it is available for a wide range of platforms. Secondly, we consider
applications and benchmarks of the well known Java Spec Benchmark Suite
[Cor]. Single software applications form the usual target of traditional whole
program analyses. Finally, we include software frameworks into the evaluation.
One of the primary design goals of frameworks is expandability and we want
to investigate if this affect the characteristics of the achieved results.

Libraries The Java runtime library has changed significantly during the devel-
opment of the Java language. Newer versions of the standard library which is
part of the usual Java runtime environment have continuously been expanded.
Nowadays, the library includes more than 10000 classes and more than 100000
methods. Due to its size, it is already a challenge for an analysis framework.
We investigate two variants of the standard library: a modern version of the
Java 5 library as well as an old 1.3.1 version.

The 1.3.1 version of the library is a good candidate for a combined analysis with
the application programs because the core of the language has not changed very
much. Therefore, we expect most application programs to be able to run with
this version of the library. At the same time the library itself is significantly
smaller than the modern versions. Using a small but sufficiently complete
version of the library reduces the analysis effort but avoids to introduce a
dependency on an extraction technique. Therefore, we investigate the 1.3.1
version of the library to prepare complete program analyses. Additionally,
we stripped away the javax-packages which are not mandatory for a valid
implementation of the runtime environment to decrease the size of the libraries
to some 80 %.

During the evolution of the Java environment, several reduced versions of
the standard library have been defined which target smaller platforms than a
desktop computer. The Java Micro Edition is tailored for devices with restricted
computational capabilities like cell phones or PDAs and an even more restricted
set of classes forms the runtime library of the Java Card platform. A Java Card
is a chip card with a small microprocessor which is used as a subscriber identity
module in mobile phones or as an identification card in public health systems.

These restricted versions of the runtime library are of a special importance be-
cause they meet the application scenario of this thesis. A runtime environment
which supports the full-fledged standard version of Java is likely to support a
data flow analyser as well. Thus, validation is a way to speed up the use of
prepared results but it is not mandatory. In contrast, limited devices like mobile
phones or smard-cards require the validation approach because the analysis is
likely to be prohibitively costly if computed from scratch. The following table
summarises the characteristics of the different libraries.
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Name # Classes # Methods # CFG Nodes # Invoke Instr.
jdk1.5.0_07 11572 (C) 107591 479277 288012 (dyn)

1595 (I) 1667 (nat) 155250 (stat)
jdk1.5.0_07 -javax 9252 (C) 85913 388366 231444 (dyn)

1301 (I) 1667(nat) 127080 (stat)
jdk1.3.1 4768 (C) 42434 199477 113394 (dyn)

510 (I) 1394 (nat) 61336 (stat)
jdk1.3.1 -javax 3344 (C) 29647 142629 76330 (dyn)

356 (I) 1394 (nat) 46068 (stat)
j2me_cldc-11 85 (C) 1337 5990 1614 (dyn)

13 (I) 88 (nat) 1968 (stat)
java_card-2_2 69 (C) 449 1925 303 (dyn)

27 (I) 104 (nat) 1054 (stat)

The CLDC library contains only 1337 Java methods in 85 classes and the Java
Card library version 2.2 even contains 449 Java methods in 69 classes only. Thus,
they form an interesting target for the validation scenario while the investigation
of larger libraries shows, that the analysis scales at least for simple program
analysis like the copy-constant propagation.

The number of statically bound method calls is significant for the large libraries
where roughly every third call site is a static call. However, the statically
bound method calls even outnumber the dynamically bound ones, for the
restricted version of the library. This may be a consequence of the fact that
developers avoid the dynamic creation of objects as far as possible on limited
target devices and sacrifice a more flexible expandability which is provided by
an more object-oriented programming style. The comparatively high number
of statically bound calls in the restricted environments, reduces the potential
impact of a pessimistic treatment of the runtime type of receiver references.
Thus, it is reasonable to start with a dynamic call resolution based on the
statically declared type under the closed program assumption.

Furthermore, the comparison supports our claim that interprocedural analysis
techniques are interesting for Java programs. The average number of control
flow nodes per method is about four and the average control flow node contains
one method invocation. Thus, a significant amount of the control flow in
the program depends on method invocations while the average method is
structurally simple.

Applications and Benchmarks We include two programs from the Java Spec
98 benchmark and two application programs into the evaluation. We intention-
ally restrict ourselves to the two largest programs in the benchmark suite be-
cause most of the benchmarks either depend heavily on the runtime library or
are small applications which aim at a test of the IO or runtime behaviour of the
subject software. For example, the db and compress benchmarks include only
34 and 44 methods respectively. Such small applications are not an interesting
target for an evaluation which focuses on average properties of summary func-
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tions because the data set is too small. Therefore, the evaluation considers the
following programs only

jess: the largest program in the Spec benchmark suite

raytrace: a raytracer implementation of the Spec benchmark suite

jedit: version 4.2 of the well known open-source Java text editor.

xmlviewer: a graphical viewer for XML-documents

Large Software Systems and Frameworks We also investigate different
parts of our own analysis framework which consists of the bytecode engineer-
ing library BCEL (version 5.2), the PAULI framework which supplies auxiliary
analysis, and the basic infrastructure and the LUPUS framework for the inter-
procedural analysis and validation. The frameworks make only limited use of
the capabilities of the Java standard libraries. Most importantly, they rely on
the elementary data structures in the java.util package. Most of the program
logic is implemented by the frameworks themselves, so that it is reasonable to
analyse them separately and in combination with the old version of the JDK.
Furthermore, the frameworks are designed for expandability which makes them
potentially harder to analyse than smaller monolithic applications.

9.2 Evaluation of the Analysis Phase

The primary goal of the evaluation of the analysis phase is to investigate the
precision and the structure of the analysis results. A comparison of open
summary functions enables us to determine how much of the analysis precision
stems from the different phases of the interprocedural analysis. Furthermore, we
apply several strategies to deal with the impact of external code and investigate
how the various strategies influence the precision of the result. The precision
is closely related to the structural complexity of the result because less precise
results require less memory to be stored. Thus, the comparison also yields
insights about the memory requirements of the different analysis phases.

The computation of summary functions in the LUPUS framework is depicted
in Figure 9.1. A first analysis phase computes an open representation for
the intraprocedural summary functions of each method in isolation. The
summaries contain function variables for all method invocations within the
method, because each call is treated as an external call. In particular, the phase
computes an open representation for the interprocedural summary function of the
method which is equivalent to the intraprocedural output summary function of
the exit node. This open summary function encodes a potentially compressed -
variant of the interprocedural flow graph of the method. The representation is
compressed, because function variables may have been ruled out already by the
partial evaluation during the computation and normalisation of the summary
functions.
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Figure 9.1: Summary Function Computation in the LUPUS Framework

The open representation derived from the intraprocedural context acts as in-
put for the interprocedural function analysis. This analysis phase substitutes
function variables which refer to methods within the software module under
consideration with the corresponding open summary functions and resolves
cyclic dependencies by fix-point iteration. The result of this phase is an open
representation for the interprocedural summary function of each method which
contains only summary function variables which refer to external method invo-
cations. These open interprocedural summary functions constitute the modular
result of the analysis.

The dependencies on external code are modelled explicitly in the interprocedu-
ral analysis results. This is useful for the evaluation because it allows to compute
the effects of different strategies to deal with external code from the same in-
termediate result. Function variables remain in the interprocedural summary
function representation only if one of its call targets is external. Cone types in
the precise type representation of the receiver type are one reason for such a
situation because they refer to all subclasses of a class. Other software modules
can contribute additional subclasses which in turn can contribute additional
call targets for the dynamically bound call. We apply different strategies to deal
with this situation. Firstly, the worst-case assumption expects that all classes can
be subclassed by external code. This strategy treats all function variables which
contain cone types pessimistically. Technically, they are replaced by safe lower
bounds. The closed-program assumption is more optimistic. It assumes that the
classes of the analysed software module cannot be extended by additionally
loaded classes. This assumption is useful for application programs which de-
pend on an expandable library but which are not designed for expandability
themselves. The approximation strategy still treats cone types which originate
in a class of the library pessimistically, but “closes” cone types which originate
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in a class of the software module. Technically, the cone type is replaced by
a set of point types and the function variable is dropped if all corresponding
call targets are part of the software module. The safe approximation of open
summary functions yields final summary functions, which do not contain any
function variable anymore.

The interprocedural summary function computation determines a summary
function of each method but it does not compute the final intraprocedural
summary functions which map the invocation context of the method to each
program point within the method. These summary functions can be derived
from the open result of the first phase and the interprocedural summary func-
tions computed by the second phase: A subsequent substitution phase replaces
all function variables in the intraprocedural result by the interprocedural sum-
mary functions computed in the second phase. The result of this substitution
can still contain function variables for external methods because the substitu-
tion replaces internal calls only. Thus, the remaining function variables have to
be treated again with the given safe approximation strategy for external code.
The final result of the substitution phase is a final representation of all summary
functions. If no safe approximation strategy is applied to external calls, then
the result is the open representation of the modular result which still contains
the references to external code.

We investigate and compare the structure of the various kinds of summary
functions in the following sections. Firstly, we investigate the open representa-
tion of the intraprocedural summary functions computed in the intraprocedural
phase, because they implicitly encode the result of the intraprocedural counter-
part of the analysis. Thus, it is possible to estimate the potential information
gain of the subsequent phases and to compare it with the information gain
already achieved in the intraprocedural context. Secondly, we investigate the
effects of the interprocedural computation phase and the different strategies
to deal with external code. The final representations can be compared to the
open representation in order to determine how many additional precision could
have been achieved by an analysis of a larger context. Thirdly, the applicable
representations also implicitly encode how much precision can still be gained
by an interprocedural value computation phase.

9.2.1 Intraprocedural Summary Computation

The open summary functions which are computed in the first phase of the
summary computation encode the result of a purely intraprocedural analysis.
The summary functions contain the dependencies on all callees in terms of
function variables. Furthermore, the summary functions contain dependencies
on the invocation context in terms of data flow variables.

Thus, the question how much analysis information stems from the intraproce-
dural context and how much depends on the subsequent interprocedural com-
putation phases boils down to the question how many defining expressions are
already constant and how many still depend on function or data flow variables.
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All constant data flow expressions are known to be valid independently from
the results of the subsequent interprocedural summary function and invocation
context computation. Thus, the open summary function representation derived
in the first phase allows for a separation of the intraprocedural information gain
and the potential interprocedural information gain just by an inspection of the ex-
pression structure within the intraprocedural summary functions. It holds that

Constant Expressions model valuable data flow information which is gen-
erated within the method and which does not depend on the invocation
context or the callees. This can occur for example in a copy constant
propagation if an integer constant is assigned to a local variable.

Most Pessimistic Expressions model the loss of all valuable data flow infor-
mation due to effects within the method. This can happen for example if
two incompatible constants are combined at a join point, or if the analy-
sis makes pessimistic assumptions about values which are read from an
object field.

Data Flow Variable Expressions model the fact, that some value depends
directly on a piece of the invocation context. Such an expression originates
for example from the assignment of a parameter to a local variable.

Function Variable Expressions model the direct dependency of the corre-
sponding piece of the program state to the effects of a single call. Such
a dependency is for example generated if the result of the method call is
assigned to a local variable of the caller.

Safe Approximation Expressions occur wherever a piece of the program
state depends on several pieces of data flow information. Such expres-
sions are created at join points, if the expressions from the different paths
cannot be merged by the normalisation process. For example, a constant
value on one path may be joined with a data flow variable that describes
a direct dependency on a parameter value on another path.

Constant expressions and most pessimistic expressions state what pieces of
the program state depend solely on the code in the method. We call these
pieces of the result the intraprocedural information gain, because they cannot
be influenced by the subsequent interprocedural analysis phase. In contrast, all
other expressions have the potential to yield more precise results. The primary
goal of the evaluation of the intraprocedural summary functions is to compare
the intraprocedural information gain to the potential interprocedural gain.

We further split the comparison into three different categories of summary
functions

Input Summary Function of Flow Nodes: The input summary functions of
flow graph nodes are important because they are the only intraprocedural
summary functions which have to be shipped in the certificate. Each
flow graph node contains a single sequence of instructions so that the
intermediate summary functions can be reconstructed easily.
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Output Summary of the Exit Node: The output summary of the exit node
is the interprocedural summary function of the whole method. The
open representation computed in the intraprocedural computation phase
contains all relevant dependencies on callee summaries and forms the
basic data structure for the interprocedural summary computation for the
whole software module.

Input Summary Functions of Call Instructions: The input summary func-
tions of call instructions are important because they are used during the
final interprocedural computation phase. The goal of this phase is to com-
pute a safe approximation of the invocation context of each method, and
the input summary functions of call instructions directly map the invo-
cation context of the caller to the invocation context of the callee at the
specific call site.

We start now with the investigation of the input summary functions of flow
graph nodes before we proceed to the other kinds of summary functions.

Input Summary Functions of Flow Nodes Input summary functions of con-
trol flow nodes are important to encode and ship the intraprocedural part of
the result. They map the invocation context of the method directly to the input
state of the flow graph node and comprise the effects of preceding branches and
loops. In contrast, the summary functions of points within a flow graph node
can be reconstructed comparatively easy, because this requires the subsequent
consideration of the instruction-level summary functions of the straight-line
code within the node.

In contrast to the input summary functions, the input states of the intraproce-
dural result do not have to be shipped in the certificate because they can be
immediately constructed from the intraprocedural summary functions and the
invocation context representation.

The program state which is mapped by the summary functions consists of the
local variables and the operand stack in the current implementation. In order
to decrease the size of the function representation the framework does not store
expressions which model the identity mapping of a data flow variable. This is
useful because the data flow information for many data flow variables remain
unchanged for significant parts of the method. For example, parameters are
usually not assigned new values.

In contrast, we expect that most of the data flow variables which represent
the operand stack are mapped to the most pessimistic element because the
operand stack of the Java virtual machine is usually empty when a branch
instruction is executed. There are very few source-level language constructs
which are compiled to a bytecode sequence which produces a non-empty
stack. One example is the conditional assignment operator “?”, which is not
used excessively. Other examples include the results of boolean negation or
comparison if they are used as method parameters or stored into fields. In fact
we found in all pieces of subject software that over 99% of the operand stack
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variables are mapped to the most pessimistic element. We conclude from this
observation that the data flow through the operand stack affects the analysis only
within the flow graph nodes. Thus, the summary function representation can
be condensed even further, if the implementation allows for the specification of
different default mappings for different kinds of data flow variables: the default
choice for local variables should remain the identity mapping while the default
choice for operands stack variables should be changed to the most pessimistic
element.

The stack variables do not contribute a significant amount of information. Thus,
we have to inspect the mappings of local variables, to estimate how much data
flow information is derived from the intraprocedural context and what amount
of information can still be gained by the subsequent interprocedural analysis
phases. Figure 9.2 shows the percentage of the different kinds of defining
expressions for each piece of the subject software.

The percentage of the most pessimistic expressions ranges from 47% to 73%.
The high number of pessimistic expressions is not surprising, because the
current implementation of the framework makes pessimistic assumptions for
language constructs like the access to fields and the copy constant propagation
additionally treats the result of arithmetic expressions pessimistically.

The distribution among the other kinds of expressions is more interesting. Most
notable, the analysis uncovers many copy constants from the intraprocedural
context already. The Java Card library exhibits the highest rate of copy con-
stants in the local variables. More than 6% of the defining expressions in the
function representation are copy constants 1. This corresponds to the observa-
tion that the implementation of the Java Card platform sacrifices object-oriented
design principles due to efficiency concerns and solves several problems by a
direct manipulation of integer values to avoid the overhead of additional ob-
ject instantiations. The same reason explains the difference between the other
runtime libraries and the modules of our analysis framework. The current
prototype implementation of the framework represents even central data struc-
tures like summary functions in an object-oriented style and does not operate
on many integer values. This behaviour may change if technical optimisations
are introduced to increase the runtime efficiency but renders the framework an
uncomfortable target for the copy-constant propagation for the time being.

The high number of intraprocedural copy constants stems from a code gen-
eration pattern in the standard Java compiler. The introduction of an integer
constant translates to a bytecode sequence where the constant is generated on
the operand stack stored into a local variable and read from the local variable
for further use. This is a straight forward technique but not necessary, if the con-
stant value is used only once, e.g. to initialise a loop counter. The Java compiler
does not strive for the optimisation of Java Bytecode, because a JIT compiler is
expected to optimise the code on a standard target platform anyway. However,

1Remember that the evaluation does not count identity mappings in summary functions and that
local variables which contain a copy constant throughout their lifetime appear in summary
functions at several program points.
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Figure 9.2: Local Variables in Input Summary Functions of Flow Graph
Nodes
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we cannot expect that a JIT compiler is part of a resource-constraint execution
environment like a Java Card. Thus, the analysis results can be used to sup-
port some lightweight optimisations of the bytecode in such an environment at
affordable costs.

Pessimistic and constant expressions together form the intraprocedural informa-
tion gain, because they cannot change anymore during the subsequent phases
of the interprocedural analysis. Though they dominate the other pieces of the
result in the subject analysis, it is interesting to investigate the remaining data
flow expressions. Firstly, most remaining local variables depend on a single
function variable expression. Thus, they depend directly on a single method
invocation. The number of such expressions is the converse of the situation for
constant expressions: the parts of the analysis framework exhibit more function
expressions while their number reduces for the runtime libraries. Once again,
we expect that this is an immediate consequence of the object-oriented style of
the framework implementation, which for example uses delegation quite often.
Up to 40% of the local variables depend on a function variable in the imple-
mentation of the LUPUS framework. This observation is even more interesting,
because it does not only apply to the copy-constant propagation example, but
to all analyses which use copy semantics to express the effect of assignments
between variables. Thus, we expect that at least the same amount of function
variable expressions will be observed for other analyses.

The number of safe approximation expressions is about 10%. Only the PAULI
framework shows significantly more and the application programs and the Java
Card library show significantly less safe approximation expressions. This is a
consequence of several fundamental characteristics of the summary function
approach. A safe approximation expressions states that the state of the corre-
sponding data flow variable depends on several program paths. The higher
the number of such execution paths, the more likely it is, that one of them re-
duces the variable state to a safe-lower bound - and all other paths are dropped.
Furthermore, the contribution of complex interprocedural program paths is
“hidden” by function variables, because a function variable is a placeholder for
the effects of a complete method invocation.

The comparatively small number of variable expressions calls for an expla-
nation. Local variable registers in the virtual machine which hold parameter
values do not change most of the time, which leads to a high number of identity
mappings in the summary function representation. Such mappings show not up
in the evaluation result for the variable expressions, because identity mappings
are not stored in the data structure which represents the summary functions.
Thus, the values show where a local variable holds the same value as another
local variable. The investigated samples show, that such situations usually stem
from non-empty operand stacks at branches - which exist but are very rare as
we already observed earlier.

We conclude that the potential interprocedural information gain which can be
achieved by considering the data flow via the result values of method calls
ranges form 25% (Java Card library) to 50% (LUPUS framework) of the local

236



9.2. EVALUATION OF THE ANALYSIS PHASE

variables in the input summary functions of the program. We investigate the
achieved information gain in Section 9.2.2.

Interprocedural Summaries The open representation of the interprocedural
summary function of a method, shows how an invocation of the corresponding
method changes the program state. We investigate the representation after
the intraprocedural summary computation phase already, to find out, how
many of these manipulations can already be inferred by the isolated analysis
of single methods and how many effects depend on an investigation of the
interprocedural data flow.

The manipulations of the program state by a method invocation have to be
discriminated into two classes: the modifications which become visible in the
caller and those which become not. For the time being, the return value of
a method is the only variable which modifies the program state in the caller.
Fields are not yet modelled, and the local variables and the operand stack of the
callee are invalidated upon method return when the method frame is removed
from the call stack. Therefore, the evaluation focuses on an investigation of the
defining expressions of the method result variable in interprocedural summary
functions.

Figure 9.3 shows the different kinds of data flow expressions which define
the result value of a method after the intraprocedural part of the function
analysis. More than halve of the methods are known not to return a constant
value after the intraprocedural summary function analysis already. Some
application programs even exhibit more than 80% of pessimistic expressions.
This situation is not surprising because the pessimistic treatment of field accesses
which specify for example the result of wide-spread getter-methods, are treated
pessimistically. Furthermore, the method result is the final state of the method
invocation and is more likely to depend on some non-constant value, than a
local variable which is initialised and used within the method only.

The fact that the analysis uncovers copy-constants during the first phase of
the analysis already is astonishing at the first glance, because this implies
that the corresponding method returns a constant value. An investigation
of the situation revealed that it stems from two programming patterns: Firstly,
some methods return a constant value to indicate the normal termination of
the method while the erroneous termination is indicated with an exception.
The Java Card library uses this pattern extensively and contains 449 Java
methods only, which leads to the high percentage of constant result expressions.
Secondly, some methods override abstract methods in a special way. For
example, the method which yields the number of subexpressions in an atomic
data flow expression in the LUPUS framework returns the constant one.

Similar to the situation for input summary functions, the variable part of the
result depends mostly on function variable expressions. Thus, it is likely that
the result of a method invocation directly depends on the result of another
method invocation. This can happen for example if one method just delegates
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Figure 9.3: Result Values after Intraprocedural Function Analysis
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the call to another object which happens quite often in object oriented programs.
Once again more complex safe approximation expressions increase the variable
part of the result by another 10%, so that the overall percentage of the variable
part of the result ranges from 24% (xmlviewer) to over 50% (LUPUS-framework).
Once again the results hint at the fact, that the extensive use of object-oriented
design principles in the generic frameworks lead to a greater potential effect of
the interprocedural part of the analysis. However, even the Java Card library
and the J2ME library which target resource-constraint environments still have
a potential interprocedural information gain of about 25%.

The variable expressions have to be interpreted differently for result functions.
If the result of a method invocation depends on a single variable only, then the
method returns one of its parameters. Such a situation stems mostly from a
programming pattern where the method returns its own receiver reference for
convenience. For example, the StringBuffer.append()-method returns the
reference to the buffer which is the receiver of the call2.

All in all, the results show, that a significant amount of interprocedural summary
functions depend on interprocedural data flow, even if a simple analysis like
copy-constant propagation is considered. This is an important observation,
because it applies to all other analysis which use copy semantics for variable
assignments.

We investigate the concrete information gain which is effectively achieved by
the subsequent interprocedural analysis in Section 9.2.2.

Input Summary Functions of Call Instructions Input summary functions
of call instructions directly map the invocation context of the caller to the
program state immediately before the execution of the call. Especially, they
contain defining expressions which specify the arguments of the call. The data
flow information about arguments is interesting for two reasons. Firstly, the
parameter expressions of the call are substituted into the summary function
of the caller during function composition. Thus, more precise parameter
expression can yield more precise output summary functions for the call site
during the functional part of the interprocedural analysis. Secondly, the input
summary functions of call instructions form the transfer functions of the final
value computation phase during which the invocation context of a caller has
to be mapped to the program state at a call site. This state contributes to
the safe approximation of the invocation context of all call targets. Thus, the
input summary functions of call instruction provide a first intuition about the
potential precision of the invocation contexts.

The data flow information about the arguments of a call is contained in the
mapping of the operand stack variables, because the Java virtual machine moves
all arguments onto the stack immediately before the call. The measurements

2The receiver reference of the code is stored in a local variable register on the bytecode level like
parameters and other local variables at the source-code level. As a consequence, the bytecode
analysis treats all different kinds of source-level variables uniformly.
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in Figure 9.4 count the defining expressions for all operand stack elements.
This is a superset of the arguments because the operand stack can contain
additional elements at a call site. However, this is not likely to be the case,
because the bytecode produced by the standard Java compiler uses the operand
stack usually only to supply the operands for the next instruction. Again the
measurements show that most of the data flow information about arguments
is retrieved in the intraprocedural phase already: between 73% ad 80% of the
elements on the stack correspond to the most pessimistic element.

Remarkably, the percentage of variable expressions is quite large in comparison
to the other kinds of investigated summaries. It ranges from 7% to 16%. These
numbers include the common situation that the receiver reference of the caller
is used as the receiver reference of the callee.

At least some of the argument values are copy constants, which contribute 2%
to 7%. Again, we observed the highest rate of copy-constants for the JavaCard
library which is due to the fact that the code of the JavaCard platform solves
many problems on the level of byte- and short-values which would be solved
in an object oriented style in a standard Java environment.

Summary The results after the intraprocedural analysis phase show that
interprocedural analysis is promising, even if the analysis is as simple as a
copy-constant propagation. Even though there are differences depending on
which piece of the result is considered, usually more than 20% of the whole
result depends on interprocedural data flow. The part of the result which is not
fixed after in the intraprocedural context can even reach up to 50% as we have
observed for the input summary functions of control flow nodes in the result
of the LUPUS framework. Thus, there is a significant potential information gain
which can be achieved by an interprocedural analysis.

The amount of data flow information which depends on interprocedural data
flow will increase further, if the default modules of the framework start to
consider for example the data flow via fields. Furthermore, it is possible
to increase the expressiveness of a concrete analysis by additional problem-
specific improvements. For example, a linear constant propagation can increase
the number of integer constants because it symbolically evaluates arithmetic
expressions which take a constant operand.

We do not continue the evaluation along these lines but continue to investi-
gate the different analysis phases of the copy-constant propagation. The goal
is to determine how much of the potential information gain detected after the
intraprocedural summary phase is already achieved by the subsequent inter-
procedural analysis.

9.2.2 Interprocedural Summary Computation

The interprocedural summary computation resolves the calling relations within
the software module. To do so, the function variable expressions which have
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Figure 9.4: Operand Stack Expressions of Input Summary Functions of
Call Instructions
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been computed in the first intraprocedural analysis phase are substituted by the
summary functions of internal callees. Thus, the function variable expressions
of the intraprocedural result can change in three different ways.

Firstly, they can reduce to the most pessimistic expression, or to a constant value.
In this case, the result of the call is fixed already even though the subsequent
interprocedural invocation context computation has not yet been performed.
In other words, the result of the method invocation does not depend on the
invocation context of the call. This shows that some pieces of the data flow
result are already determined during the interprocedural analysis phase which
is why we call such pieces of the result the interprocedural information gain.

Secondly, function variable expressions can reduce to expressions which contain
data flow variables. Data flow variables refer to the invocation context of the
caller. Thus, these pieces of the analysis result depend on the subsequent value
computation phase, which computes safe approximations for the invocation
context of each method.

Finally, a function variable expression can reduce to a function variable expres-
sion which refers to an external call target. This happens if a method call either
directly or transitively depends on a call to an external method. A method call
can target an external method if some of the potential receiver classes inherit a
method implementation from an external class in the superclass chain or if some
of the receiver types refer to a cone type which can be extended by additional
classes. The first case has to be treated pessimistically always. The question
whether or not a cone type can be extended by external code depends on the
assumptions about the analysis scenario.

Now, we investigate the interprocedural information gain and the potential
effects of the “worst-case”- and the “closed-program”-assumption, before we
proceed with an investigation of the remaining influence of the final invocation
context computation phase in the subsequent section.

Interprocedural Information Gain We measure the information gain from the
interprocedural summary function computation by a comparison of the constant
expressions and the most pessimistic expressions in the summary functions after
the intraprocedural and after the interprocedural function computation phase.

The measurements in Figure 9.5 show the differences of the defining expres-
sions of the summary functions after the intraprocedural and interprocedural
analysis phase. We focus the evaluation on the input summary functions of flow
graph nodes, because we observe the most significant changes for this kind of
summary functions. The values show how the relative number of an expres-
sion type changes: for example, the 6.06% decrease for the function variable
expressions is a decrease of the intraprocedural 20.20% (refer to Figure 9.2) to
14.14%.

Essentially, the numbers show that the interprocedural summary function com-
putation phase reduces most of the safe approximation and function variable
expressions to safe lower bounds. This is not surprising for the copy constant
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Figure 9.5: Changes in Flow Node Input Summaries after Interprocedural
Analysis
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propagation because if a data flow value depends on a method invocation it is
not likely that the result of the method invocation will turn out to be a constant
value. Interestingly, the analysis detects such unlikely situations in the JavaC-
ard library because the percentage of constant expressions increases slightly by
0.06%. The explanation is that the programming pattern to return a constant
integer to indicate the normal termination of a method affects the local variables
in the caller.

There is also a small increase in the number of variable expressions which is a
consequence of the insertion of summary functions which return their receiver
reference into the summary function of callers.

Remarkable is the increase in the percentage of safe approximation expres-
sions in the analysis result of the Java Micro Edition. The percentage of safe
approximation expression increases if a single function variable expression is
substituted by a defining expression within the callee summary that depends
on different control flow paths in the callee. For example, the result of a method
can either be a constant or the result of some external method invocation.

All in all, the interprocedural analysis shows that most data flow values which
depend on method invocations reduce to the safe lower bound during the anal-
ysis of the software module. This is quite natural for the very conservative
copy-constant propagation implementation in the LUPUS-framework. How-
ever, the interprocedural analysis is able to uncover interprocedural data flow
even in such a unfavourable setting. Furthermore, the results show that an
application scenario where the code producer attaches the analysis results of
a sufficiently large software module is interesting because many internal data
flow dependencies are treated by the modular analysis already. As a conse-
quence, the number of complex function variable expressions reduce to those
which depend on external methods only, and the rest of the defining expressions
in summary functions becomes structurally simple. This reduces the size of the
function representation in the certificate, while the approach preserves useful
information and even dependencies to other modules.

Effects of Safe-Approximation Strategies The first and second analysis
phase compute the influence of the calling relations within the software module.
However, a small number of function variables remain which may depend
on external method implementations. The analysis phase can deal with such
dependencies in several ways.

Each call which targets an inherited method from an external superclass has to
be treated pessimistically always. In contrast, a receiver type expression which
leads to external calls because it contains cone types can be treated differently
depending on the way the class hierarchy can be extended.

The worst-case assumption expects that the class hierarchy can be extended
in an arbitrary way. Thus, any cone type can refer to some external subclass
that contributes a new implementation. As a consequence all function variables
have to be replaced by safe lower bounds.
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In contrast the closed-program assumption expects that classes in the software
module cannot be extended which is roughly equivalent to a situation where
all classes in the software module are implicitly expected to be final.

Figure 9.6 shows the differences of the expression distribution in the final sum-
mary functions after the remaining function variables have been treated accord-
ing to the “closed-program” and the “worst-case” assumption respectively. We
observe that the removal of function variable expressions due to the application
of the closed-program assumption uncovers variable expressions, constant ex-
pression as well as safe approximation expressions which then consist of several
variable and constant expressions.

However, the percentages of the variable, constant, and safe approximation
expressions differ by less than 1%. An exception is the result of the raytrace
application in the spec benchmark suite where the differences exceed 2%.

Again, the results show the interprocedural approach can uncover valuable data
flow information but its effectiveness is restricted due to the pessimistic nature
of the copy-constant analysis. Furthermore, the comparatively limited number
of data flow values which depend on external method invocations due to
dynamic method binding justify the decision to stick with a simple mechanism
for the resolution of dynamic call in the first prototype implementation of the
framework.

9.2.3 Invocation Context Computation

Modular analysis is a challenging task, because the effects of external code can
influence the achievable analysis precision significantly. The modular setting
influences the way we have to deal with the resolution of dynamic calls, as
discussed in the previous section. The closed-program assumption exploits
that reasonable assumptions about the loading of additional classes can be
made which rule out several call targets even if the type information about the
receiver type not very precise.

It is difficult to apply the same principle for the invocation context computation
as well. Essentially, we cannot easily restrict the potential entry points into
the software module. A potential entry point is a method of software module
which can be called by external code. A modular analysis cannot investigate the
corresponding call site in the external code. Therefore, a modular analysis has to
make worst-case assumptions about the invocation contexts of all entry points.
If the modular analysis expects that all methods are potential entry points, then
this pessimistic assumption renders the invocation context computation useless.

Thus, the situation calls for an adopted version of the closed-program assump-
tion - i.e. a strategy which allows for a reasonable restriction of the entry points
of the module. We envision strategies which exploit special language features.
For example, private methods are visible in the scope of their defining class
only. Therefore, only the methods of the defining class can contain call sites and
it is not possible to extend the class with additional methods after the class is
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Figure 9.6: Differences between Worst-Case and Closed-Program As-
sumption for Local Variables in Input Summary Functions
of Flow Nodes
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loaded. This simple observation rules out private methods as potential entry
points into the program module. However, the invocation contexts at the call
site of a private method can depend transitively on the invocation context of
some public method which contains the call, so that the potential information
gain from the invocation context determination will presumably still be limited.

The current implementation of the framework does not support sophisticated
strategies for the restriction of the entry points into the program. Thus, we have
to restrict the evaluation to the investigation of the potential information gain
of a analysis phase which aims at the computation of more precise invocation
contexts. This can be achieved by an inspection of the final summary functions
derived in the functional part of the analysis. These summary functions contain
data flow variables wherever the result of the summary function depends on
the invocation context of the method. Thus, we can determine how many pieces
of whole analysis result depend on the invocation context computation.

Figure 9.7 shows distribution of expressions types in the final input summary
functions of flow nodes after application of the closed-program assumption.
The interprocedural function analysis and the subsequent treatment of external
code has already fixed more than 90% of the defining data flow expressions.
However, the evaluation result does not contain identity mappings which
represent unmodified parameter values. Anyway, we conclude that the effect
of more precise values for the invocation contexts is rather limited for the copy
constant propagation problem.

To further support this claim we additionally inspect the invocation contexts at
each call site in the software module. The subsequent value computation phase
can compute an invocation context at a call site by the intraprocedural summary
function which maps the invocation context of the caller to the specific point.

Figure 9.8 shows the distribution of expressions types in the final input summary
function of call instructions after application of the closed program assumption.
Again the interprocedural analysis reduces more than 80% of the defining
expressions to safe-lower bounds. Only up to 15 % of the data flow values
depend on the invocation context of the caller and usually less than 5% are copy
constants.

If we take additionally into account, that there are usually several call sites of
a single method and that the defining expressions for all of these call sites are
merged by a safe approximation we can conclude that not many copy constants
will survive the context computation phase, even if a reasonably precise strategy
for the restriction of the entry points is available.

Again the result seems to be first and foremost a consequence of the pessimistic
nature of the copy constant propagation. However, the general methodology
which has been applied to the investigation of the copy constant propagation
can be applied to other analysis as well. One of the most interesting parts of
such an evaluation is the comparison of the influence of the modular setting and
the analysis itself. We observe that the copy constant propagation is already
inherently pessimistic so that pessimistic assumptions about external code do
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Figure 9.7: Final Input Summary Functions of Flow Graph Nodes (Closed
Program Assumption)
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Figure 9.8: Final Input Summary Functions of Call Instructions (Closed
Program Assumption)
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not influence the result significantly. Other analysis may turn out to be more
precise, so that more dependencies on external code remain. This in turn
can increase the influence of the strategies which are applied to deal with the
potential effects of external code.

9.3 Size of the Certificate

The certificate which is attached to the code enables the validator to reconstruct
and to check the data flow result. The data flow result consists of one inter-
procedural summary function for each method, one intraprocedural summary
function for each control flow node within the method, and a safe approxima-
tion for the invocation context of each method.

The size of the certificate depends primarily on the interprocedural summary
functions and the invocation contexts because intraprocedural summary func-
tions can be reconstructed comparatively easily. Most control-flow graphs ex-
hibit an inherently linear structure so that the reconstruction of the input sum-
maries can be achieved almost as easily as the reconstruction of intermediate
summary functions for the straight-line code with flow graph nodes. The output
summary of a predecessor node can act as an initial guess for the input node of a
successor. This initial guess is likely to correspond to the final solution because
most control flow nodes have only a limited number of additional predecessors
which might influence the initial guess.

Furthermore, object-oriented design principles favour the decomposition of
large method bodies into several smaller methods. In fact, we found that about
half of the method implementations in the Java standard library consists of
a single control-flow node only. Due to this general observations we focus
our investigation on the size of interprocedural summary functions, before we
investigate the size of invocation contexts.

9.3.1 Interprocedural Summary Functions

The size of a summary function representation can be inferred from the structure
of the defining data flow expressions that encode the summary function. The
representation contains a defining data flow expression for each single data
flow variable. Thus, the size of the summary function is linear in the size of the
program state representation even if all defining expressions are atomic.

The size of the interprocedural function representation can be reduced, because
it is sufficient to store those parts of the summary functions which can influence
the program state of the caller. This way, the current analysis setting allows
for a reduction of the function representation to a single data flow expression
because the result value of the call is the only piece of data flow information
which influences the result. Therefore, we focus the measurements on the
defining expressions of result values but remark that the size of the function
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representation is likely to increase to the mapping of the whole program state
if an analysis derives for example alias information or considers data flow via
fields.

The size of defining expressions is not an issue in an application scenario, where
the analysis at the producer side deals with all calls to external methods and
removes all function variable expressions. Figure 9.9 shows the distribution of
the expression types which define the result value of a call in the interprocedural
summary functions after the interprocedural function analysis3. Most of the
methods are either void-methods, or yield a pessimistic result. Constant and
single variable expressions define most of the remaining summary functions
so that a single data flow expression is sufficient to represent the summary
functions. The small number of safe approximation expression can increase
the memory requirements only if they combine a large number of data flow
variables. However, we found that the number of data flow variables in safe
approximation expressions is never larger than 3 for all pieces of the subject
software.

Thus, less than a single data flow element is required to store the mapping of the
result variable if the data structures do not store the safe lower bound explicitly.
Therefore, we expect that the summary function representations stay linear in
the size of the program state even if more data flow variables can be affected by
a method invocation.

To summarise, the framework can deal with the simplest validation scenario
where the final result of analysis which considers the software module in
isolation is attached to the code, because we expect that a single function
representation which is linear in the size of the program state suffices to encode
the interprocedural summary function for each method.

In contrast to the simple validation scenario, the incremental validation scenario
requires, that the validator additionally stores a valid open representation for
each method until the validity of the final representation has been established.
Open function representations are also required if modular results shall be
combined at the consumer side in the partial validation scenario.

Therefore, we want to answer the question, if the certificate size is still manage-
able even if it contains the structurally more complex open summary functions
which contain dependencies on callees in terms of function variable expressions.

The impact of function variable expressions on the size of the open interprocedu-
ral summary representations is most significant for the jedit-application. Fig-
ure 9.3 already provides a first hint because it shows, that the summary functions
of the jedit-application contain the largest percentage of safe approximation
expressions namely 8.51% (refer to Section 9.2). Safe approximation expressions
can contain several function variable expressions if the result of the method de-
pends on several method invocations on different paths. Furthermore, 19.19%

3The result values for void-methods are not shown but contribute to the overall method count.
Therefore, the sum of the percentage numbers of a piece of subject software is less than 100%.
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Figure 9.9: Result Values after Interprocedural Function Analysis (Closed
Program Assumption)
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Figure 9.10: Number of Function Variables in Complex Expressions
(JEdit)

of the summary functions depend on a function variable expression. A func-
tion variable expression can contribute more than one function variable, if its
parameter state depends on some preceding calls.

In order to estimate the size of these complex expressions we consider the num-
ber of function variable expressions in complex expressions which is depicted
in Figure 9.10. The average number of function variables in a complex ex-
pression is about 1.8, which can be observed for all other pieces of the subject
software, too. Therefore, we expect that the size of the function representation
will increase by a factor of three for complex expressions in open results, be-
cause the storage requirements of the parameter state of each function variable
expression is roughly equivalent to an additional summary function (refer to
Section 5.4.6). Thus, the certificate has to store three function representations
for complex expressions on average and a single function representation for
all other expression types. As complex expressions define about 20%-30% of
the summary functions an average of 2 summary function representations per
method should suffice to store an open function result.

This is less than the average number of invocation instructions per method,
which is more than 5 for the jedit-application. The fact that function variables
for some call instructions have been ruled out can have two reasons. Firstly,
the corresponding function variable expression may have been dropped during
function composition or during normalisation. Secondly, the design decision
to limit the nesting depth of function variable expressions in the current imple-
mentation can rule out function variables. The first effect is a property of the
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Figure 9.11: Expression Depth of Complex Expressions (JEdit)

constant-propagation analysis and any other analysis which deals with a signif-
icant number of safe lower bounds. In contrast, the second effect is a technical
regulation that decreases the potential precision of the analysis. Figure 9.11
shows the depth of complex expressions in the open result after the intrapro-
cedural summary function computation if the analysis framework restricts the
nesting depth to 2. More than halve of the complex expressions have a nesting
depth of one only. Therefore, we expect that the loss of precision due to the
decision to restrict the nesting depth is limited - at least for analysis which show
similar characteristics like the copy-constant propagation under consideration.

All in all, the certificate can store the final interprocedural summary result which
results from a complete modular analysis at the producer site, easily because a
single structurally simple summary function is sufficient for each method. The
incremental and partial validation scenario requires larger certificates because
it is necessary to store open summary function representations which encode a
compressed variant of the flow graph of the method. The evaluation of the open
summary functions for the copy-constant problem showed that the average
number of summary functions per method increases to about 2. However, these
summary functions are structurally more complex, so that we expect them to
be linear in the size of the program state, while the final summary functions can
be compressed to those pieces of the program state visible in the caller.
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9.3.2 Size of the Program State

The size of the program state representation determines both the size of the
invocation contexts and the size of the summary function representation which
contains a mapping for each data flow variable in the program state.

However, two encoding strategies can reduce the size of the program state.
Firstly, most pessimistic data flow values do not have to be stored in the repre-
sentation explicitly. Secondly, the program state can be reduced to those parts of
the program state, that can be affected by the method invocation. Conceptually,
the program state contains the maximum number of local variables required by
one of the methods in the analysis context. However, the relevant invocation
context of a method just has to contain the local variables, that are used by the
method in question.

We evaluate the number of local variables, to determine the consequences for
the size of the program state representation. Figure 9.12 shows the absolute and
average number of local variables in the methods of the whole lupus system
including the Java 5 standard library. This is the largest piece of software
considered by the evaluation and the results are quite representative for all other
pieces of subject software as well. The average number of local variables is less
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Figure 9.12: Local Variables per Method

than 3 but there are some extraordinary large methods, too. The largest method
frame in the Java 5 standard library contains 74 local variables. The big number
of local variables is not a challenge for the invocation context representation
because even large methods usually take very few arguments.
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However, some methods can be challenging with respect to the intraprocedural
validation because a high number of local variables leads to large summary func-
tions within the method. Furthermore, methods with many local variables tend
to contain many flow graph nodes, so that the number of summary functions
which have to be kept in memory during the intraprocedural validation can
increase significantly.

Thus, we suggest that large methods are refactored into smaller ones which
operate on their own set of local variables to decrease the storage requirements
of the intraprocedural part of the validation. The fact that the interprocedural
validation reintegrates the potential effects of the smaller callee into the sum-
mary function of the original function automatically is one of the advantages of
an interprocedural analysis framework.

To summarise, we expect that the size of a binary certificate file is likely to contain
very few information only, if the underlying data flow problem is as simple as
the interprocedural copy-constant propagation. The central idea for an efficient
representation is to restrict the information to the parts actually required for the
validation process: The invocation context has to contain information about the
parameters only, each interprocedural summary function can be restricted to the
defining expression of the method result, and all expressions which correspond
to safe lower bounds do not have to be stored explicitly either. Conceptually,
all these technical improvements boil down to the application of the safe lower
bound principle because the omission of irrelevant data flow information can
be interpreted as implicit under-approximation of all pieces of the result which
are not explicitly stored in the certificate.

9.4 Evaluation of the Validation Phase

Both the analysis and the validation use the same infrastructure which is
currently implemented in a way which offers many opportunities for further
optimisations. This situation provides advantages and challenges for a fair
comparison of the analysis and the validation phase. On the one hand, the
fact that both modules use the same infrastructure simplifies the comparison
on the conceptual level because the design decisions made on the model layer
affect the analysis and the validation in the same way. Furthermore, technical
optimisations in the model layer immediately improve both phases. On the
other hand, the proportional improvement of a more efficient implementation
will likely be higher for the analysis phase than for the validation phase, because
the analysis operates on more complex data structures and accesses them many
times while a linear pass over the final - and structurally more simple - results
suffices to perform the validation. Another source of potential improvements
is the iterative fix-point solver which influences the analysis phase only. If its
runtime efficiency increases, then this will decrease the gap between the analysis
and the validation module to some extend.

Thus, we conclude that the current evaluation setting is in favour of the val-
idation phase. We deal with this situation in the following way: Firstly, we
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strive to obtain general statements about the differences of the analysis and the
validation phase which do not depend on implementation details. Secondly,
we try to measure the impact of implementation details as best as possible.

9.4.1 Memory Requirements

Interestingly, the discussion of the certificate sizes for the different validation
scenarios paves the way for the comparison of the memory requirements of the
analysis and the validation phase.

The most important observation is that the requirement to store an interprocedu-
ral summary function for each method dominates the memory requirements as
soon as the subject software gets sufficiently large. Two observations justify this
statement. Firstly, the memory which is used for the intraprocedural summary
computation phase can be reclaimed as soon as the initial open representation
of the interprocedural summary function of the method has been constructed
or validated. Secondly, the number of methods in a software module usually
outnumbers the maximum number of control flow nodes in a single method by
far.

The analysis phase and the validation phase operate on different kinds of sum-
mary function representations in the simple validation scenario. The analysis
phase uses the open function representation which encodes a compressed form
of the interprocedural flow graph to derive a final function representation where
all function variables are replaced by the summary function of internal callees or
replaced by safe assumptions if they refer to external methods. The validation
phase uses the final interprocedural function representation to construct the
instruction-level summary functions of call instructions during the validation
of a single method.

Thus, the difference of the memory requirements between the analysis and the
validation phase conceptually stem from the different sizes of the open and
final representations of interprocedural summary functions, which we already
discussed in detail in Section 9.3. The result reveals that the open summary
representation is significantly more complex than the final one, because function
variable expressions require to store the parameter state of the call in terms
of additional summary functions. We found that on average two summary
function representations which are linear in the size of the program state are
required to store the open summary function result of each method. In contrast,
the final result requires to store a single summary function only,

Given that the average number of data flow variables which are necessary to
define the program state within the method is less than four (see Section 9.3.2),
we expect that on average 8 data flow expressions are sufficient to store the
open result of a method while a single data flow expression is sufficient to store
the final result in its compressed form.

The memory requirements of the validation phase can be reduced even further
if the validator drops all interprocedural summary functions immediately after
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the last call instruction of the corresponding method is processed. The effect
of this optimisation has not be measured yet, because both the analysis and
the validation phase use an arbitrary processing order in the current prototype
implementation.

The above considerations hold for the simple validation scenario where the
code producer processes all calling relations and only ships the final result of
this analysis to the code consumer. The incremental and the partial validation
scenario require the transmission of the open representation to the validator,
too. In this situation the difference in the memory requirements no longer
depends on the different representations but on the way the validator uses
the open representation. The validator needs the open representation to defer
the integration of callee summaries until their validity has been established.
This way, the open representation stays valid and can be used to derive a safe
lower bound for the final representation at any point in time. However, the
validator receives the final result of the analysis phase, too. As soon as the safe
lower bound of the valid open representation matches the result of the analysis,
the final function representation is valid and the validator can drop the open
representation. The current implementation does not feature an incremental
validator yet, but the high number of pessimistic summary functions in the
final result of the copy constant propagation justifies the assumption, that very
few open representations will be required during the incremental validation
process.

To summarise, the validation phase offers many opportunities to reduce the
memory requirements of the preceding analysis phase. The central reason is
that the analysis phase operates on summary function representations which
encode many potential interprocedural data flow dependencies. During the
analysis phase many of these dependencies are ruled out, so that the final result
is structurally much simpler than the initial solution of the analysis phase.
Obviously, this behaviour essentially depends on the existence of reasonable
safe lower bounds, which safely approximate the potential effects of method
invocations or on a limited lifetime of data flow facts. In contrast, the size of
the summary function representation will increase if potential dependencies
between many data flow facts are highly likely and where it is not easy to rule
out or restrict the potential effects of method invocations. However, such kinds
of analyses are not well suited for any modular analysis scenario where the
analysis cannot investigate external code anyway.

9.4.2 Runtime Requirements

The comparison of the runtime efficiency of the analysis and the validation
phase is difficult, because both phases currently depend on the heavy-weight
infrastructure of the LUPUS framework prototype. This infrastructure models
the summary function concept as directly as possible. Furthermore, the im-
plementation is designed for simple expandability so that additional layers of
abstractions impact the runtime efficiency. For example, the comparison of an
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environment involves a look-up of the data flow lattice for each variable in the
environment because the environment implementation is able to store values
of different data flow problems at the same time. This mechanism is useful to
inject a simple analysis of the size of the operand stack into an arbitrary client
analysis in a way which is transparent to the user and the rest of the framework.
However, a mature framework should provide more efficient data structures,
whenever the overall impact on the runtime efficiency becomes significant.

Further improvements of the infrastructure will increase both the efficiency
of the analysis and the efficiency of the validation phase. Nevertheless, the
improvements will impact the analysis phase more than the validation phase,
because the validation accesses the elementary data structures much less fre-
quently than the analysis phase. This is an immediate consequence of the
general observation that the validation performs a single linear pass over the
final result of the analysis only and that the final result is structurally more
simple than the open representation the analysis phase operates on.

In order to compare the analysis phase to the validation phase we measure
the runtime of an analysis phase that computes an open interprocedural repre-
sentation of the summary function of each method, applies different strategies
for the treatment of remaining function variable expressions and substitutes
this interprocedural summary functions back into the initial open result of the
intraprocedural summary representation. The runtime of these phases are com-
pared to the runtime of a validation pass that takes a full certificate of the result
and validates it with the same strategy for the treatment of external calls.

The measurements have been performed on an 2.60 GHz Intel Xeon processor
with 6 MB cache and enough main memory to store all intraprocedural summary
functions to avoid their reconstruction.

Figure 9.13 shows the runtime results for the Java 5 runtime environment which
is the largest piece of software considered in the evaluation. The results show
several characteristics which can be observed for all other pieces of subject
software as well:

• The construction of the initial open function representation and the com-
putation of the interprocedural summary functions (“Interprocedural
Analysis”) dominates all other phases.

• The impact of the safe approximation strategy which is applied to the
open representation after the analysis phase and during the validation is
not very significant.

• The validation phase is up to 20 times faster than the analysis phase even
if we do not take the back substitution time into account.

• The runtime requirements of the analysis phase are way beyond the
runtime requirements we would expect for a simple analysis like copy
constant propagation even if it is applied on a large piece of software.

The inconvenient runtime of the analysis phase requires a discerning investiga-
tion and explanation. Firstly, the prototype implementation always performs
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Figure 9.13: Runtime Measurements of the Java 5 Runtime Library

a modular analysis even if it intends to construct a final analysis result for the
software module in isolation. The simple analysis scenarios which apply the
“worst-case”- (WCA) or “closed-program”-assumption could do so immedi-
ately during the analysis phase which simplifies the function representations
and speed up the analysis. Even though we have not measured this aspect we
can already make an interesting observation about the validation phase which
applies the safe approximation directly: its runtime requirements do not signifi-
cantly depend on the way it has to deal with external calls. This is not surprising
because a decision whether a call can have external call targets only affects the
construction of the instruction-level transfer functions once for each instruction.

Another influence on the efficiency of the analysis phase is the interprocedural
fix-point solver. For example, the current implementation of the fix-point
solver processes the methods of a program in an arbitrary order and does
not take the complexity of the summary functions into account. This leads
to intermediate representations which are more complex than necessary. For
example, it is advantageous to prefer an integration of callee summaries which
do not contain any reference to function variables like leaf methods to simplify
the representation of a caller by the normalisation of summary functions as
early as possible.

Towards a Fair Comparison of the Analysis and the Validation Phase
Even though this thesis focuses on the validation phase the current situation
calls for a more in depth investigation of the runtime inefficiency of the analysis
phase, because a runtime of more than three hours for a comparatively simple
copy constant propagation hints at some conceptual problem in the implemen-
tation of the analysis.
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In fact, a detailed profiling of the framework revealed that the combination of
two factors give rise to the high runtime costs of the analysis phase: the heavy-
weight implementation of the elementary data structures which represent data
flow expressions and the conceptual decision to model the parameter state of a
function variable expression explicitly in terms of an environment. In order to
increase the robustness of the expression implementation, the prototype imple-
mentation creates copies of complex expressions whenever they are propagated
during the analysis. This avoids potential side effects of subsequent manipula-
tions but becomes a major issue, if the analysis phase explicitly constructs the
parameter state of a function variable expression early in the analysis phase.

To explain the problem consider the example in Figure 9.14 which shows a
method invocation m1 that affects two different pieces of the program state at
a join point. The current implementation of the intraprocedural propagation

1: a = m1(...);

2: b = m2(); 3: ...

4: ...
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Figure 9.14: Duplication of Complex Environments by the Propagation
of Function Variable Expressions

mechanism explicitly constructs the environment env1 during the composition
of the instruction-level summary function of the instruction in position 1. Fur-
thermore, the expression m1(env1) is propagated to point 2 where it contributes
to the construction of the parameter environment for the function variable ex-
pression m2. The construction of the parameter environment copies the defining
expressions, in order to avoid that subsequent normalisations produce danger-
ous side effects on the original expressions. This increases the robustness of the
system but yields the problem that changes in env1 have to be propagated to all
copies of the parameter environment.

Profiling of the current prototype implementation revealed that the construction
and the update of nested function variable expressions contribute significantly
to the runtime of the analysis phase.
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Phase (Java 5 runtime library)

A conceptual modification of the function variable representation can tackle
this problem. Instead of explicitly constructing the parameter environment
env1 we can refer to the corresponding input summary function by a function
variable ψ1. Thus, the expression m1(env1) is conceptually replaced by m1 ◦ ψ1,
where ψ1 refers to the intraprocedural input function of the call instruction.
As a consequence, the propagation mechanism does not produce copies of the
environment env1 but copies the function variable ψ1 only. In contrast to the
environment which can be a complex data structure, function variables which
refer to input summary functions can be copied and constructed in constant
time. Furthermore, changes to the input summary function ψ1 do not have
to be propagated to all dependent function variable expressions anymore -
it is sufficient to update the function representation the function variables
refer to. The new model also increases the efficiency of the interprocedural
analysis phase because the substitution of callee summaries for function variable
expressions can be deferred until they are either applicable or belong to a cyclic
dependency which has to be resolved by a fix-point iteration.

This new idea to deal with the parameter environment of function variables
is not fully integrated in the current prototype implementation of the LUPUS
framework, yet. However, an implementation of the intraprocedural analysis
phase which constructs function variable expressions according to the new model
is available, so that we can compare the two implementations to estimate the
potential effects on the runtime of the analysis phase.

Figure 9.15 shows a runtime comparison of the old and new style implemen-
tation (SFVP) of the intraprocedural analysis and validation phase. The new
implementation is approximately 10 times faster. However, most of the run-
time improvement is achieved in the analysis phase because the validation that
uses the new model is only 3 times faster than the one which uses the complex
function model. As a consequence, the runtime improvement of the validation
phase drops to a factor between 1 and 24. The runtime improvement of the
validation phase is - though reduced - much more understandable: the con-
ceptual improvement of the validation stems from avoided fix-point iterations

4In the current evaluation mechanism the analysis phase reuses the control flow graphs which
have been constructed in the validation, so that the runtime advantage of the validation is
slightly better than the given results suggest
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and a copy constant propagation reaches its fix-points fast. Thus, a runtime
improvement by a factor between 1 and 2 is more reasonable than a runtime
improvement by a factor of 20 which we observed for the current prototype
implementation.

We expect that significant runtime improvements can be achieved in the inter-
procedural analysis phase as well, because the manipulation of the parameter
environments is a major issue in this phase as well.

Interestingly, the use of function variables which refer to intraprocedural sum-
maries instead of an explicit construction of parameter environments offers
another advantage: function variable expressions do no longer lead to nested
expressions, which has been identified to be a major problem in Section 5.4.6.
Therefore, a reformulation of the function expression model seems to be one
of the most promising improvements of the functional approach to modular
analysis presented in this thesis.

9.5 Summary

The results of our evaluation are twofold. Firstly, we establish an evaluation
methodology that investigates the impact of the different sub-phases of the func-
tional approach to interprocedural analysis and validation. This methodology
uses the flexibility of the open summary function model, which expresses ref-
erences to external code in terms of function variables and can be applied to all
other analysis which are formulated in terms of the function model developed
in this thesis. Furthermore, some parts of the methodology like the comparison
of the intraprocedural and the interprocedural information gain may even be
applied to other analyses which use the functional approach to interprocedural
analysis. Secondly, the evaluation provides evidence that the validation of anal-
ysis results is useful in a modular analysis scenario, because the effectiveness
of a modular analysis and the potential runtime and memory improvements
of the validation phase both depend on the existence of reasonable safe lower
bounds which restrict the potential interdependencies of data flow values.

The most important observations with respect to the evaluation methodology
and the concrete results for a specific analysis can be summarised as follows.
The inspection and comparison of the different kinds of open and applicable
summary functions allows for the determination of several structural properties
of a specific analysis:

• The intraprocedural information gain can be determined by a comparison of
the constant and the variable part of open intraprocedural summary func-
tions because only the variable part can be influenced by the subsequent
interprocedural analysis.

• The interprocedural information gain of the summary function computation
phase can be determined by the comparison of the constant and the
variable part of the interprocedural summary functions which result from
the functional phase.
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• The potential information gain of the value computation phase can be derived
from the inspection of the data flow variables which are referenced by the
interprocedural summary functions.

• The effects of the worst-case assumption can be estimated by the safe approx-
imation of all external function variable expressions in the interprocedural
summary functions.

• The effects of the closed-program assumption, which expects that program
classes are not subclassed and program packages are not extended, can
be derived from the open summary functions, too. The approximation
strategy just drops all function variables which refer to internal methods
under the assumption that no additional subclass for a program class
will be loaded dynamically. All other method invocations are still safely
approximated.

Most evaluations of interprocedural analysis approaches focus on some of these
aspects only. Usually, the implementation of an interprocedural analysis de-
pends on some specific assumptions about the properties of external code, and
these assumptions are implicitly encoded in data structures that are specialised
for the analysis in question. Therefore, it is difficult to determine to what extent
the analysis result depends on properties of the analysis problem, on properties
of the dynamic call resolution, or on assumptions about the modular setting.
In contrast, the functional approach and the summary function model devel-
oped in this thesis makes most of these different aspects explicit in the function
representation.

The concrete evaluation of the summary functions of the copy constant propa-
gation reveals that on average two summary functions per method are sufficient
to represent the intermediate result in the interprocedural analysis phase and
that a compressed variant of the final summary function of each method is suffi-
cient during the validation phase in the simple validation setting. Furthermore,
even the incremental and partial validation scenarios are manageable as long as
it is possible to establish the validity of the final summary function result early
for a significant part of the result.

The runtime measurements reveal that the current prototype implementation of
the analysis phase suffers from the unfavourable design decision to model the
parameter state of a function variable expression explicitly in terms of an large
environment which is duplicated during the propagation of data flow values.
As a consequence, the analysis phase is far from being competitive which is in-
convenient even though the validation phase already runs comparatively fast.
An astonishingly simple modification which replaces the explicit construction
of a parameter environment by a reference to the intraprocedural summary
functions which defines the state can tackle the problem. First runtime compar-
isons of different implementations of the intraprocedural analysis phase show
that the new model reduces the runtime costs of this analysis phase to 10%.

Both, the memory and the runtime requirements are likely to increase if we
consider analyses which are more complex than the simple copy-constant
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propagation. However, we still expect that the approach is applicable to other
analyses which are suitable in a modular analysis setting. The reason is that
both, the efficiency of the summary function model and the efficiency of a
modular analysis require that the potential negative impact of external method
invocations can be kept under control. Only if this assumption holds for a
concrete analysis, then a modular analysis yields significantly precise results
and the number of function variable expressions in the summary function
representations remains manageable. The implementation and evaluation of
other analyses like the type inference analysis defined in Section 7.3 are the next
natural steps which should be taken to support this general claim.
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10 Conclusion

This thesis applies the proof-carrying code principle to separate interprocedural
analyses from the use of their results in a safe way. This enables the use of
analysis results in an inherently insecure network environment which connects
devices with differing computational capabilities. The key observation is that
it is easier to ensure that a given data flow result solves the system of data flow
equations which specifies the underlying data flow problem than to perform
the fix-point iterations which compute the result.

The result of an interprocedural analysis can be expressed in terms of summary
functions. The central challenge for the validation approach is to find a function
representation which allows for an efficient comparison of summary functions.
We achieved this comparability by the definition of a unique normal form so
that the comparison of summary functions reduces to a simple comparison of
the internal structure of the summary function representation.

Another challenge for the validation approach is that it cannot rely on the
results of auxiliary analyses but it has to ensure the validity of the auxiliary
analysis as well. Therefore, we had to find solutions for the safe resolution
of dynamic method binding which is a prerequisite for the interprocedural
analysis of object-oriented programs. Furthermore, the capability to download
additional code to a target platform is a central characteristic of the application
scenario of this thesis. To deal with this issue, the analysis has to be capable to
deal with separated software modules because not all of the code is available.
The contributions of this thesis can be summarised as follows.

10.1 Contributions

The summary function model developed in Chapter 5 comprises the central
methodical contribution of the thesis. First of all, the model supports the val-
idation of interprocedural analysis results because the summary functions can
be compared to each other easily. Essentially, one function safely approximates
another if it contains more subexpressions within its defining expressions. In-
tuitively, we exploit that the safe approximation operation of any inducing data
flow problem can only produce weaker results if it is applied to more data flow
values.

This is not a property of a specific problem but a property of any data flow
lattice. Therefore, it is possible to reuse the same function representation for
different analyses in a generic way. More complex dependencies between data
flow values can be expressed in terms of elementary transfer functions.
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The function model currently treats elementary transfer functions symbolically
and does not take any other properties than the applicability and the monotony
of the functions into account. However, the model restricts the nesting depth
of function expressions to a fixed depth which can result in a loss of precision.
To avoid this loss of precision, the elementary transfer function model offers
the opportunity to integrate problem specific normalisation rules. Essentially,
elementary transfer function expressions emulate the micro functions of the
graph based approach of of Reps, Sagiv, and Horwitz in a more flexible way.
For example, it is possible to use elementary transfer functions symbolically if
they do not meet all of the requirements imposed in the graph model. However,
the necessary limitation of the nesting depth of elementary transfer functions
results in a loss of precision which is can be avoided for the more restricted class
of functions.

The function model does not only deal with the specification of data flow prob-
lems, but defines also normalisation rules and the support for the representation
of modular results. The normalisation rules correspond to a partial evaluation
of the constant terms in the defining expressions. They are closely related to
path compression techniques because they strive to compress the data flow on
different paths between two program points to an immediate mapping of the
start state to the result state. The normalisation of summary functions solves one
of the central challenges of the validation process because it reduces summary
functions to a unique normal form. This is vital to ensure that the validator
can compare the summary functions which specify the requirements of the data
flow problem to the summary functions which represent the analysis results.

Function variables model the influence of external program parts in a modular
result representation. The advantage of this novel approach is that it integrates
the dependencies on external code directly into the function model. This way it
is possible to rule out irrelevant external dependencies. Furthermore, function
variable expressions can be safely approximated at any point in time which
yields a safe under-approximation of the final result which shows that the
general validation principles are applicable in the functional setting.

We successfully used the function model to define two data flow problems.
Firstly, a copy-constant propagation which tracks the data flow of integer
constant and null-references shows how it is possible to analyse the data flow
on the call stack of a program. The analysis of the call stack is a prerequisite for
more sophisticated analyses which also take the data flow via the object heap
into account. Secondly, we augment function variables with type information
about the receiver type of the call, in order to approximate the potential targets
of a dynamically bound method invocation. This is a prerequisite for any
interprocedural analysis of object-oriented programs because the runtime type
of the receiver reference defines the target of a call, which in turn specifies the
interprocedural flow graph of the program.

We use a precise type model to restrict the potential call targets even if the
runtime environment allows for the dynamic loading of additional classes.
The resolution mechanism is decoupled from the computation of the type
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information by the implementation. In this thesis we specify two different
approaches for the type computation: an adopted version of a traditional CHA-
based approach which uses the “closed-program assumption” to deal with
the expandability of the class hierarchy and a specification of a type inference
algorithm in terms of the function model developed in this thesis. The first
approach is sufficient for a first application of the framework while the second
one shows how the analysis system can compute and utilise more precise type
information.

All in all, the summary function model developed in this thesis solves the central
challenges for the validation of interprocedural analyses results for software
modules in an expandable object-oriented environment. The evaluation of
the prototype implementation shows that the model is suitable to specify data
flow analyses. The framework considers the data flow on the call stack of the
program and implicitly constructs an validatable interprocedural flow graph
for the subject software. Such a flow graph is a prerequisite for all more
sophisticated interprocedural analyses which may follow.

The main contribution of this thesis is a methodical treatment of challenges
which arise during the validation of interprocedural analysis results in an
expandable object-oriented runtime environment. The approach abstracts from
problem-specific properties and focuses on fundamental properties of any data
flow analysis - namely the lattice representation of the data flow values and the
monotony of transfer functions.

It is possible to observe the central principle of the validation approach which
replaces the fix-point computation by a fix-point test several times in this
generic model: The analysis resolves cyclic dependencies which stem from
loop structures and from recursive method invocations while a linear pass is
sufficient to check the corresponding result. Additionally, we also observe
that several analyses, like the call graph construction and the type analysis
for receiver types, can cyclically depend on each other, too. Such a kind of
dependency requires that the analyser repeats the analyses several times until
a common fix-point solution is reached. Again, the validator can avoid this
iteration and is able to check the analyses results in a linear pass. Therefore,
the approach in this thesis is only a first step to exploit the full potential of the
validation of analysis results.

10.2 Future Directions

The discussion reveals several natural extension points, to increase the expres-
siveness of the framework.

Distributivity The summary function model restricts itself to distributive data
flow problems. The advantage of distributive problems is that the preci-
sion of the result is independent to the sequence in which safe approxima-
tions and elementary transfer functions are applied. This ensures, that the
intermediate results of the validation process do not depend on the way
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the validator processes. Nevertheless, the general validation principle
may also be applicable to non-distributive problems, if we synchronise
the way in which analysis and validator process and normalise the anal-
ysis results.

Conservative Treatment of Nested Expressions The current implementa-
tion of the framework restricts the maximum nesting depth of expressions
and safely approximates the parameter expressions if the nesting depth
would exceed this limit. This strategy is safe and restricts the size of the
summary functions, but it reduces the precision of the analysis. Essen-
tially, the strategy restricts the number of subsequent elementary transfer
functions and the maximum number of external method calls on a pro-
gram path. The first restriction can be tackled if we take problem-specific
properties of elementary transfer functions into account in a way which
is similar to the compression of microtransformers in the graph-based
approach of Reps. The second issue can be solved if we replace parame-
ter expressions by references to intraprocedural summary functions and
adopt the substitution mechanism in the interprocedural fix-point solver.

Program State The environment model works very well for variables on the
call stack, because they cannot be modified by external calls. Thus, exter-
nal function calls do not introduce a function variable expression for each
local variable, but for the result of the method call only. Further extensions
of the program state like data flow values in fields increase the number of
function variable expressions the framework has to deal with. As a con-
sequence it becomes even more important to replace the construction of
nested parameter expressions by references to interprocedural summary
functions as suggested in the previous paragraph. However, the number
of summary functions the analysis approach has to store may increase to
the number of invoke instructions in the program. The situation calls for
an adopted version of the closed-program assumption where the analy-
sis for example takes the visibility of fields into account in order to rule
out external modifications immediately which would otherwise lead to
additional function variable expressions.

Additional Analyses The generic structure of the framework calls for the speci-
fication of additional analyses. The most important candidate is the imple-
mentation of the type inference algorithm outlined in Section 7.3 because
its result immediately improves the precision of the existing implemen-
tation for dynamic call resolution. The framework already meets the
requirements of the algorithm. The specification of most instruction-level
summary functions requires simple data flow functions which propagate
the type information similar to copy constant propagation. Elementary
transfer functions are required for the specification of array access instruc-
tions only, and they cannot lead to nested function expressions without
breaking the type safety of the program. Therefore, we expect that the
structure of the summary functions will remain linear in the size of the
program state.
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Safe Lower-Bounds The validator can derive a lower bound from an open
summary function representation at any point in time by the substitution
of variables with safe lower bounds for the summary functions or the
variables in the invocation context which are represented by the variables.
The most pessimistic element of the data flow problem exists always.
However, it is also possible to derive more precise safe lower bounds for
some data flow problems. For example, the declared type of a variable or
of a result value can act as a safe lower bound in the type inference analysis.
It is necessary to validate such a lower bound if we cannot make some
specific assumptions about the program. Interestingly, the Java Bytecode
Verification guarantees the correctness of the declared types by simple
analysis of each method body. This observation is interesting because it
shows that it is possible to use the results of a simpler analysis as a more
precise lower bound in a more sophisticated analysis, for example to keep
the size of the summary functions under control.

Alias and Points-To Analyses The analysis of the data flow via object fields
requires at least a limited alias and points-to analysis, because the question
which field is accessed by a read- or write-operation depends on the object
reference used to access the field. Simple variants, which for example
only identify accesses to the receiver reference of the call (this) are not
much more complex than the type inference or copy constant propagation
problems. In contrast, the validation of full fledged alias and points-
to results may very well require additional extensions to the summary
function model, because a straight-forward application of the existing
modeling techniques can result in large program state representations
and complex defining expressions. Nevertheless, it would be interesting
to determine more precisely how far the current model is able to cope with
this important class of analyses.

The investigation of the validation of analysis results in this thesis shows
that the more complex interprocedural setting increases the potential of the
proof-carrying code principle. The fundamental idea to replace a fix-point
computation by a check of the fix-point solution applies to the investigation of
recursive method invocations as well as to analyses which cyclically depend on
each other.

Furthermore, the integration of function variables into the summary function
model is a novel approach to represent results of separated software modules
in a validatable way and the generic formulation of the model allows for a com-
paratively simple formulation of additional analyses. Thus, the validation of
interprocedural analysis results forms an interesting basis for several directions
of further research which have not been fully exploited yet.
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A Proofs

Proof 17 (Lemma 2) A reduction relation→E is locally confluent if the results e1, e2
of two different reduction steps r1, r2 are joinable - i.e. we can find two subsequent
reduction sequences s1 and s2 which lead to the same expression e3.

e
r1

zzvvvvvvvvvv
r2

$$HHHHHHHHHH

e1
s1

## ##

e2
s2

{{{{
∃e3 : e3

We have to check that the property holds for each pair of the reductions CF
−→,

VAR
−→

,
BSC
−→,

POUB
−→ and DSTR

−→ . Each of the cases contains several subcases which capture the
different expression structures the reduction rules may be applicable in. Essentially,
the subterms involved in the reduction rules can either be completely disjoint, share a
common subterm or one term can be nested into the other.

The combinations which only consist of CF
−→,

VAR
−→, and BSC

−→-reductions are easy to solve,

so we are left with pairs of reductions that involve POUB
−→ or DSTR

−→ -reductions. We assume
once again that each function application expression takes a single parameter only, in

order to simplify the notation. The DSTR
−→ -reductions on function variable expressions are

proven in the same way as the similar reductions on elementary function applications.

Throughout all proofs, let ubi j denote the upper bound of a function application
expression and let cic j denote the result of the conservative approximation ci uL c j.
.

Reduction Pairs with r1 = POUB

• r2 = CF
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1.

e = t(p u c1) u c2 u c3

e POUB
−→ t1(p1 u c1) u c2ub11 u c3
CF
−→ t1(p1 u c1) u c3c2ub11

e CF
−→ t1(p1 u c1) u c2c3

= t1(p1 u c1) u c3c2ub11 if ub11 w c2c3
POUB
−→ t1(p1 u c1) u c3c2ub11 else

2. Obviously cub = [p1 u c1 u c2]|[x:=⊥] = [p1 u c2c3]|[x:=⊥], thus

e = t(p1 u c1 u c2) u c3

e POUB
−→ t1(p1 u c2 u c3) u ub11
CF
−→ t1(p1 u c2c3) u ub11

e CF
−→ t1(p1 u c2c3) u c3

POUB
−→ t1(p1 u c2c3) u ub11

• r2 = VAR Similar to CF

• r2 = BSC

1.

e = t1(p1 u c1)uc2 u ⊥

e POUB
−→ t1(p1 u c1) u c1ub11 u ⊥

BSC
−→ t1(p1 u c1) u ⊥
BSC
−→ ⊥

e BSC
−→ t1(p1 u c1) u ⊥
BSC
−→ ⊥

2.

e = t1(p1 u c1) u ⊥

POUB
−→ not applicable because @c @ ⊥.
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3. Obviously [p1 u ⊥]|[x:=⊥] = ⊥ = [⊥]|[x:=⊥], thus

e = t1(p1 u ⊥) u c2

e POUB
−→ t1(p1 u ⊥) u c2ub11
BSC
−→ t1(⊥) u c2ub11

e BSC
−→ t1(⊥) u c2

POUB
−→ t1(⊥) u c2ub11

• r2 = POUB

1. Let ub1 = t1(p1|[x:=⊥] u c1 and ub2 = t2(p2|[x:=⊥] u c2

e = t1(p1 u c1)ucut2(p2 u c2)

e POUB
−→ 1 t1(p1 u c1) u cub1 u t2(p2 u c2)

POUB
−→ 2 t1(p1 u c1) u cub1ub2 u t2(p2 u c2) if cub1ub2 @ cub1

= t1(p1 u c1) u cub1ub2 u t2(p2 u c2) else

e POUB
−→ 2 anagolous

2. Let ub2 = t2(p2|[x:=⊥] u c2 and ub1 = t1(ub2 u c1):

e = t1(t2(p2 u c2) u c1) u c3

e POUB
−→ 1 t1(t2(p2 u c2) u c1) u c3ub1

POUB
−→ 2 t1(t2(p2 u c2) u c1ub2) u c3ub1

e POUB
−→ 2 t1(t2(p2 u c2) u c1ub2) u c3

POUB
−→ 1 t1(t2(p2 u c2) u c1ub2) u c3ub1

because t2([p2]|[x:=⊥] u c1ub2)
= [ub2 u c1ub2]|[x:=⊥]

= [ub2 u c1]|[x:=ub2uc1]

⇒ t1([t2(p2 u c2) u c1ub2]|[x:=⊥]) = ub1

• r2 = DSTR
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1.

e = t1(p1 u c1) u t1(p2 u c2) u t3(p3 u c3) u c4

e DSTR
−→ t1(p1 u c1 u p2 u c2) u t3(p3 u c2) u c4

POUB
−→ t1(p1 u c1 u p2 u c2) u t3(p3 u c2) u c4ub3

e POUB
−→ t1(p1 u c1) u t1(p2 u c2) u t3(p3 u c2) u c4ub3

DSTR
−→ t1(p1 u c1 u p2 u c2) u t3(p3 u c2) u c4ub3

2.

e = t1(p1 u c1) u t1(p2 u c2) u c3

e DSTR
−→ t1(p1 u c1 u p2 u c2) u c3

POUB
−→ t1(p1 u c1 u p2 u c2) u c3ub2

because p1 u c1 u p2 u c2 v p2 u c2 due to the semantics of u
⇒ t1(p1 u c1 u p2 u c2) v t1(p2 u c2)

due to the monotony of t1

⇒ POUB is applicable because
POUB was applicable for t1(p2 u c2)

e POUB
−→ t1(p1 u c1) u t1(p2 u c2) u c3ub2

DSTR
−→ t1(p1 u c1 u p2 u c2) u c3ub2

If POUB
−→ is applicable to t1(p1 u c1) as well then it can either be applied, or it

is subsumed by an conservative approximation of the parameter expression

after application of DSTR
−→ . This requires distributivity of t.

3.

e = t1(t3(p3 u c3) u c1) u t1(p2 u c2)

e POUB
−→ t1(t3(p3 u c3) u c1ub3) u t1(p2 u c2)

DSTR
−→ t1(t3(p3 u c3) u c1ub3 u p2 u c2)

e DSTR
−→ t1(t3(p3 u c3) u c1 u p2 u c2)

POUB
−→ t1(t3(p3 u c3) u c1ub3 u p2 u c2)

Reduction Pairs with r1 = DSTR

• r2 = CF
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1.

e = c1 u c2 u t1(p1) u t1(p2)

e CF
−→ c1c2 u t1(p1) u t2(p2)

DSTR
−→ c1c2 u t1(p1 u p2)

DSTR
−→ c1 u c2 u t1(p1 u p2)
CF
−→ c1c2 u t1(p1 u p2)

2.

e = t1(p1 u c1 u c2) u t1(p2)

e CF
−→ t1(p1 u c1c2) u t1(p2)

DSTR
−→ t1(p1 u c1c2 u p2)

e DSTR
−→ t1(p1 u c1 u c2 u p2)
CF
−→ t1(p1 u c1c2 u p2)

• r2 = VAR Similar to r2 = CF

• r2 = BSC

1.

e = t1(p1) u t1(p2)u⊥

e BSC
−→ t1(p1) u ⊥
BSC
−→ ⊥

e DSTR
−→ t1(p1 u p2) u ⊥
BSC
−→ ⊥

2.

e = t1(p1 u ⊥) u t1(p2)

e BSC
−→ t1(⊥) u t1(p2)

DSTR
−→ t1(⊥ u p2)
BSC
−→ t1(⊥)

DSTR
−→ t1(p1 u ⊥ u p2)
BSC
−→ t1(⊥p2)
BSC
−→ t1(⊥)
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• r2 = DSTR

1.

e = t1(p1) u t1(p2) u t2(p3) u t2(p4)

e DSTR
−→ 1 t(p1 u p2) u t2(p3) u t2(p4)

DSTR
−→ 2 t(p1 u p2) u t2(p3 u p4)

e DSTR
−→ 2 analogous

2.

e = t1(p1) u t1(p2) u t1(p3)

e DSTR
−→ 1 t1(p1 u p2) u t1(p3)
DSTR
−→ t1(p1 u p2 u p3)

e DSTR
−→ 2 analogous

3.

e = t1(t2(p2) u t2(p3)) u t1(p1)

e DSTR
−→ 1 t1(t2(p2) u t2(p3) u p1)

DSTR
−→ 2 t1(t2(p2 u p3) u p1)

e DSTR
−→ 2 t1(t2(p2 u p3)) u p1

DSTR
−→ 1 t1(t2(p2 u p3) u p1)

Proof 18 (Theorem 5) The following proof is the full version which is extended by
function variable expressions which are introduced in Section 5.4.2.

Firstly, we have to prove that e3 is weaker or equal to e1 and e2 with respect to vE↓.
Secondly, we show that e3 is maximal.

1. e3 vE↓ e1:

Let e1↓ =
l

i∈TI1

ti(p1i) u
l

j∈SJ1

s j(q1 j)
l

k∈VK1

xk u c1

and e2↓ =
l

i∈TI2

ti(p2i) u
l

j∈SJ2

s j(q2 j)
l

k∈VK2

xk u c2
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then

e3↓ = e1↓ ue2↓

= [
l

i′∈TI1−TI2

ti′(p1i′) u
l

i′′∈TI2−TI1

ti′′(p2i′′) u

l

i′′′∈TI1∩TI2

ti′′′(p1i′′′) u ti′′′(p2i′′′) u

l

j′∈SJ1−SJ2

s j′(p1 j′) u
l

j′′∈SJ2−SJ1

s j′′(p2 j′′) u

l

j′′′∈SJ1∩SJ2

s j′′′(p1 j′′′ u s j′′′(p2 j′′′) u

l

k′∈VK1−VK2

xk′ u
l

k′′∈VK2−VK1

xk′′ u
l

k′′′∈VK1∩VK2

xk′′′ u xk′′′

c1 u c2]↓
DSTR
−→ ∗ [

l

i′∈TI1−TI2

ti′(p1i′) u
l

i′′∈TI2−TI1

ti′′(p2i′′) u
l

i′′′∈TI1∩TI2

ti′′′(p1i′′′ u p2i′′′) u

l

j′∈SJ1−SJ2

s j′(p1 j′) u
l

j′′∈SJ2−SJ1

s j′′(p2 j′′) u
l

j′′′∈SJ1∩SJ2

s j′′′(p1 j′′′ u p2 j′′′) u

l

k′∈VK1−VK2

xk′ u
l

k′′∈VK2−VK1

xk′′ u
l

k′′′∈VK1∩VK2

xk′′′ u xk′′′

c1 u c2]↓
VAR
−→ ∗ [

l

i′∈TI1−TI2

ti′(p1i′) u
l

i′′∈TI2−TI1

ti′′(p2i′′) u
l

i′′′∈TI1∩TI2

ti′′′(p1i′′′ u p2i′′′) u

l

j′∈SJ1−SJ2

s j′(p1 j′) u
l

j′′∈SJ2−SJ1

s j′′(p2 j′′) u
l

j′′′∈SJ1∩SJ2

s j′′′(p1 j′′′ u p2 j′′′) u

l

k′′′∈VK1∪VK2

xk′′′

c1 u c2]↓
CF
−→ [

l

i′∈TI1−TI2

ti′(p1i′) u
l

i′′∈TI2−TI1

ti′′(p2i′′) u
l

i′′′∈TI1∩TI2

ti′′′(p1i′′′ u p2i′′′) u

l

j′∈SJ1−SJ2

s j′(p1 j′) u
l

j′′∈SJ2−SJ1

s j′′(p2 j′′) u
l

j′′′∈SJ1∩SJ2

s j′′′(p1 j′′′ u p2 j′′′) u

l

k′′′∈VK1∪VK2

xk′′′

c1c2]↓
vE↓ e1↓

Clearly, the definition of vE↓ holds, because e ↓ either contains at least the same
subexpressions or application expression with weaker parameter expressions. If
c1c2 = ⊥ than the expression reduces further to ⊥ and the proposition also holds.

2. e3 vE↓ e2: Analogous.

3. e3 is maximal with respect tovE↓: Assume ∃e4 : e4 @E↓ e3∧e4 vE↓ e1∧e4 vE↓ e2.
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Due to e4 AE↓ e3 one of the following conditions holds:

a) There is a subexpression se in e3↓ which does not exist in e4↓.
This expression has to occur in either e1 or in e2 and in turn has to occur in
e4↓ due to the fact that e4 vE↓ e1 ∧ e4 vE↓ e2.

b) If e3 ↓ and e4 ↓ contain all the same subexpressions, then there must be a
function application expression which has a weaker parameter expression in
e3 than in e4. This cannot be the case due to the maximality of p1 uL p2 in L
and due to the induction hypothesis on expressions p1 and p2 with smaller
depth than e4.

c) If e4↓ ⊥, than @e3 : e4 A e3.
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