Run-time Reconfigurable Multiprocessors

Zur Erlangung des akademischen Grades

DOKTOR-INGENIEUR. (Dr.-Ing.)

der Fakultdt Elektrotechnik, Informatik und Mathematik
der Universitat Paderborn

genehmigte Dissertation

von

M. Sc. Madhura Purnaprajna

Paderborn

Referent: Prof. Dr.-Ing. Ulrich Riickert
Korreferent: Prof. Dr. Bertil Svensson

Tag der miindlichen Priifung: 16.12.2009
Paderborn, den 16.01.2010

Diss. EIM-E/261

Acknowledgements

I take this opportunity to thank Prof.Dr.-Ing. Ulrich Riickert for giving me a chance
to work at his research group. His support and encouragement were key to making
the past four years, indeed the very best.

I am especially thankful Dr.-Ing. Mario Porrmann for his guidance and encourage-
ment over the entire duration. A special thanks to Dr.-Ing. Markus Koster, I am glad
I got in touch with him in ERSA 2004. T would also like to thank my colleagues Jens
Hagemeier, Christopher Pohl, and Christoph Puttmann, for the many interesting dis-
cussions. All of these indeed lead to many motivational ideas.

I extend my gratitude to the research group of Programming Languages and Compil-
ers, in particular, Micheal Hufmann, Michael Thies, and Prof. Uwe Kastens. A lot
of my work was inspired through various discussions, lectures, and meetings with them.

I am also grateful to Prof. Bertil Svensson, who agreed review my thesis and to be
a member of my examination committee. A special thanks to him for his invaluable
suggestions. I also thank the members of my examination committee, Prof. Sybille
Hellebrand, Prof. Uwe Kastens, Prof. Reinhold Haeb-Umbach, and Prof. Fezvi Belli.

I take this opportunity to thank my mentor Prof. Dr.-Ing Beate Meffert for the con-
tinuous encouragement, especially during the last phase of my PhD program. The
Mentoring Program at the University of Paderborn headed by Prof. Scharlau was
important in bringing in an idea of ‘work-life’ balance in my ‘work-only’ life. My grat-
itude to Gaelle Desbordes, her regular emails were indeed very important to me.

Finally, I thank my father (Dr. V. Purnaprajna), my mother (Mrs. Bharathi Prajna),
my sister (Ms. Maanasa Purnaprajna), and my husband (Dr. Prashanth Athri). All
this would have been impossible without their love and support.

Madhura Purnaprajna
Paderborn, Germany

Pujyaya Raghavendraya Satya Dharma Rathayacha
Bhajataam Kalpavrukshaya Namtham Kamadhenuve

Abstract

The advantage in multiprocessors is the performance speedup obtained with processor-
level parallelism. Similarly, the flexibility for application-specific adaptability is the
advantage in reconfigurable architectures. To benefit from both these architectures, we
present a reconfigurable multiprocessor template that combines parallelism in multi-
processors and flexibility in reconfigurable architectures. A fast, single cycle, resource-
efficient, run-time reconfiguration scheme accelerates customisations in the reconfig-
urable multiprocessor template. Based on this methodology, a four-core multiprocessor
called QuadroCore has been implemented on UMC’s 90nm standard cells and on Xil-
inx’s FPGA. QuadroCore is customisable and adapts to variations in the granularity
of parallelism, the amount of communication between tasks, and the frequency of syn-
chronisation. To validate the advantages of this approach, a diverse set of applications
has been mapped onto the QuadroCore multiprocessor. Experimental results show
speedups in the range of 3 to 11 in comparison to a single processor. In addition, en-
ergy savings of up to 30% were noted on account of reconfiguration. Furthermore, to
steer application mapping based on power considerations, an instruction-level power
model has been developed. Using this model, power-driven instruction selection intro-
duces energy savings of up to 70% in the QuadroCore multiprocessor.

Contents

1

Introduction

1.1
1.2

Contributions
Organisation Lo

Architecture

2.1
2.2

2.3

2.4

2.5
2.6

Architectural Models Lo
Architectural Flexibility
2.2.1 Classifying Customisations
2.2.2 Cost of Flexibility
Architectural Design Space Exploration
2.3.1 Classifying Architectural Explorations
2.3.2 Ranking Architectural Merits
Multi-core Architectureso
2.4.1 Commercial Multi-core Processors
2.4.2 Limitations of Existing Multi-core architectures
Initiatives for Customisable Multi-core Processors
The Concept: Run-time Reconfigurable Multiprocessors
2.6.1 Reconfiguration Mechanism

2.6.2 Advantages of the New Reconfiguration Mechanism
2.7 SUMMATY . . . o v e e
Application
3.1 Programmability
3.2 Methods of Application Description

3.3

3.4

3.2.1 Application Description for Parallel Processors
3.2.2 Managing Communication and Synchronisation
3.2.3 Drawbacks of Existing Methods
Architecture-Independent Application Characteristics
3.3.1 Model for Computation
3.3.2 Model for Synchronisation L.
3.3.3 Model for Communication
Comparing Application-specific Attributes
3.4.1 DSP Applications

11
11
12
15
15
17
18
19
22
24
27
28
29
30

3.4.2 Multiplier used in Elliptic Curve Cryptography 48

3.4.3 Self-organising Maps 50
3.4.4 Priorities: Computation, Communication, or Synchronisation . . 51
3.5 Restating Amdahl’'s Law, 54
3.5.1 Speedup: Comparison to Amdahl’s Law 55
3.5.2 Power: Comparison to Amdahl’s Law 58
3.5.3 Impacton Energy 09
3.6 Summary L 61
Application to Architectural Mapping 63
4.1 Applications and Architectures: Fixed vs. Alterable 64
4.1.1 Fixed Applications, Fixed Architecture 65
4.1.2 Alterable Applications, Fixed Architecture 66
4.1.3 Fixed Application, Alterable Architectures 67
4.1.4 Alterable Applications, Alterable Architecture 68
4.2 Application Mapping: Objectives and Methods 69
4.2.1 Compilation Flow 69
422 FPGA Flow o 72
4.2.3 Comparing the two Design Flows 74
4.2.4 Merging Compilation and Synthesis Design Flows 76
4.2.5 Considerations for Merging Spatial and Temporal Design Flows 76
4.2.6 Optimisation Objectives 78
427 Cost Function o 79
4.3 Adaptive Mapping in Reconfigurable Multiprocessors 79
4.3.1 Reconfiguration for Application Mapping 80
4.3.2 Advantages of the Multi-dimensional Mapping Approach 85
4.4 SUmMMAary e e 85
QuadroCore: Architecture 87
5.1 Reconfiguration Design Space 88
5.1.1 Instruction to Control Reconfiguration 89
5.1.2 Synchromisation L oo 91
5.1.3 Communication 93
5.1.4 MIMD and SIMD operation 96
5.1.5 Word-length Configurability 97
5.1.6 Additional Instructions for Co-operative Multiprocessing 99
5.1.7 Compilation Flow 99
5.2 Time and Power Characteristics 100
5.2.1 Timing Characteristics 101

5.2.2 QuadroCore Power Distribution 101

5.2.3 Time and Power variations in the Reconfiguration Design Space
5.3 Instruction-level Power Model
5.3.1 Instruction Life Cycle. 0.
5.3.2 Memory Accesses
5.3.3 Register Accesseso
5.3.4 ALU ACCESSES . . . v v v i e e e
5.3.5 Multiprocessor Synchronisation
5.3.6 Instruction Set Characterisation
5.4 Impact of Compilation Techniques.
5.5 Implementation and Performance Measurements
5.5.1 Standard Cell Implementation
5.5.2 Post-layout Implementation Reports
55.3 FPGA Reports
5.6 Summary . . oL ...

6 QuadroCore: Applications
6.1 Design Flow for Resource Efficiency
6.2 Applications Mapped to QuadroCore
6.2.1 Timing Advantage of Reconfiguration
6.2.2 DSP Algorithms L
6.2.3 Multiplier used in Elliptic Curve Cryptography
6.2.4 Self-organising Maps oL
6.2.5 Comparison: Parallelism, Speedup, Energy
6.2.6 Comparable Architectures
6.3 Extending the QuadroCore Multiprocessor
6.3.1 Platform for Validating Parallel Programs
6.3.2 Environment for Run-time Processor Customisation
6.4 Summary

7 Conclusions and Future Work

7.1 SUummaryo
7.2 Future Work o

Glossary

List of Figures
List of Tables
References

Author’'s Publications

103
104

147
148
150

153

158

160

161

171

Chapter 1

Introduction

In the present times of high performance demands, embedded computing is consistently
overloaded with applications that call for ever increasing computational capabilities.
Features that predominantly existed in the high performance computing domain have
now begun to appear in hand held technologies, home appliances, entertainment sys-
tems etc. For such systems, meeting energy constraints and area restrictions is a
critical prerequisite, in addition to performance demands. In this scenario the com-
mercial success of a processor depends on a range of parameters such as design costs,
design & verification time, and consequently the time-to-market, in addition to its
architectural merits.

For processors, the design time involves two distinct domains — the application soft-
ware and the hardware architecture. Progressive technology scaling as portrayed by
Moore’s law, has steadily aided performance acceleration in the hardware domain.
Apart from technology scaling, tools for design and automation have assisted in re-
ducing the time-to-market. New methods of programming, assisted by languages and
higher levels of abstractions have contributed to easing software design. Languages
have survived longer than processors, since the focus in software design has been on
portability and reusability of legacy code. This constraint has to ensure compati-
bility to languages, programming, and the instruction set architectural compatibility
with the next generation of hardware. As a result, each new processor generation has
required designing new compilation tools for the same programming languages.

Reusability in the hardware domain has primarily relied on using the legacy instruc-
tion set architecture with additional features being included continually. To retain
frontend designs, IP cores have enabled reusability and retargetability across tech-
nologies. However, the processor hardware or the backend has been re-fabricated to
cope with the design updates and is a major bottleneck in the time-to-market. Build-
ing new hardware for every design change involves significant fabrication time. In this

2 Chapter 1. Introduction

scenario, hardware modifications that avoid design re-spins are appropriate solutions
to circumvent these bottlenecks. Hardware portability and reusability necessitates de-
velopment of architectural templates that provide in-field application-specific adapt-
ability. These design reuse alternatives help in reducing the design and verification
costs that together account to the high nonrecurring engineering costs.

Processor design has continuously evolved, both on account of progressive technology
scaling and the continual need for high performance. With increasing computational
needs, the complexity of the processor architecture has gone up from 29,000 tran-
sistors, 10 MHz, in Intel’s 8086 (in the 70’s) to a 731 million transistors, 3 GHz,
in an Intel’s QuadCore. However, these architectures still confine to the ‘von Neu-
mann’ style of processing with a load-store processing model. Distinctly different from
the ‘von Neumann’ model, are the parallel reconfigurable fabrics in FPGAs (Field
Programmable Gate Arrays). Processor design is being saturated with increased fre-
quency of operation but lower returns in performance and scalability. On the other
hand FPGA-based designs have enormous advantages to cope with design changes
and flexibility, but are inefficient for area, time, and power requirements. To cater
to these two distinct architectural domains, this thesis presents a unified design tem-
plate that merges parallelism at processor granularity with run-time reconfigurability
to ease application-specific adaptability. Both these features together aim at reducing
design & verification time, while retaining code portability. Run-time reconfigurability
has been introduced as a feature for application-specific adaptability. Conventionally,
reconfigurability enables a variety of implementation options for processor-based de-
signs. For example, a reconfigurable device is used as a co-processor, an additional
functional unit, or to provide resources to enhance the instruction set architecture. In
contrast, application-specific integrated circuits have fixed architectures and are ded-
icated for a single application. Introducing flexibility within a processor or an ASIC
often results in a loss in performance, in the absence of flexibility, a compute element
is limited in use to a single application domain. Hence optimal performance in a fixed
architecture is limited to a particular application. This restricts the architecture’s
range of usability. Thus, the goal of introducing reconfigurability is a compromise
between architectural rigidity and application domain extensibility.

The focus of this thesis is to tackle the existing performance disadvantage in processor
designs at one end and to address the overhead of reconfiguration (time, area, power)
in the present day FPGA architectures. The aim is to enhance reusability of existing
processors in order to avoid architectural redesigns without compromising on perfor-
mance. In doing so, it merges the advantage of exploring parallelism by using multiple
processors and introduces adaptability via run-time reconfiguration.

1.1 Contributions 3

1.1 Contributions

Parallelism and adaptability are two distinct architectural design considerations in
embedded processors. Parallelism in multi-core processors contributes to application
acceleration. Adaptability via run-time reconfiguration provides application-specific
customisations long after fabrication. To benefit from both these features, a recon-
figurable multiprocessor architecture — QuadroCore has been developed. A novel
reconfiguration mechanism has been incorporated that provides fast run-time adapt-
ability in our 4-processor QuadroCore.

With the aim of redefining the application-to-architecture mapping paradigms, the
main contributions in this thesis are as follows:

e A bottom-up design methodology is presented that introduces architectural flexi-
bility to ease parallel programming and application-specific customisation. This
is in contrast to top-down methodologies, where the primary focus is to ease
programmability and code-portability. We aim at reducing design, verification,
and fabrication costs of the target architecture in addition to retaining the ap-
plication code (application description)

e From an application perspective, it addresses redefining applications to map
onto customisable architectures and from an architectural perspective enables
adapting the architecture to suit application characteristics.

In order to meet diverse design constraints in embedded processing, following are the
contributions that address the performance objectives:

e Introduction of power as a criterion for application-specific instruction selection,
scheduling, and resource allocation. This is in addition to the classical approach
with time as a criterion.

e Provide an early performance feedback in multiprocessor designs, via feedback-
driven application mapping.

Application diversity has been addressed with experiments in the following application
domains:

e Computation acceleration in DSP algorithms
e Power savings in a multiplier used in Elliptic Curve Cryptography (ECC)

e Energy-efficiency in a neural network based machine-learning algorithm called
Self-organising Maps (SOM)

Additionally, a framework has been developed to ease architectural explorations and
to introduce application-specific processor customisations.

4 Chapter 1. Introduction

1.2 Organisation

Chapter 2 addresses the architectural considera-

Chapter 2

tions in processor design. Since the primary focus -
Architecture

is on reusability, existing multiprocessor architec-
tures, reconfigurable architectures, and methods

Registers Control

e 2|

\;/ Memory

of architectural explorations are studied. The fo-
cus is to understand their individual costs and

benefits. Further, methods of introducing archi-

tectural flexibility and their corresponding impact

on performance has been detailed. Finally, an
overview of our reconfigurable multiprocessor template is presented that combines
the advantages of existing multiprocessors and reconfigurable architectures.

Application description complements architec-

Ch.apt.er 3 tural design. Chapter 3 addresses details of ap-
Application plication design and surveys existing methods of

f / x application description. Application-level charac-

/’ teristics play an important role in performance of

[/ | \ a given processor. In this chapter, a detailed anal-
\ v / ysis on the diversity in applications is modelled
with respect to time and power. In order to meet

performance demands, it is necessary to match the
application’s characteristics to the architectural features. With this perspective, three
diverse sets of applications have been studied and their comparative performance char-
acteristics are presented. Additionally, energy analysis are made by applying Amdahl’s
law to the time and power models developed in this chapter.
Application-to-architectural mapping binds ap- ~®, Chapter 4

plication description to architectural constraints. :
Mapping

Chapter 4 is dedicated to addressing the diver-
sity in methods of mapping. Application and ar-

chitectural variations give rise to a classification {
that identifies four sub-groups. Using this clas- \ ot
sification, the location of our QuadroCore multi- I

Processor

Processor Processor

processor is identified. Using the four quadrants

of classification, mapping techniques in architec-

tures that can be modified during run-time, viz., processors and FPGAs are studied
closely. The similarities and diversities in the mapping techniques for processors and
FPGA architectures are discussed in detailed. Since, the focus is to merge these two

1.2 Organisation 5

diversities — a unified approach to merge spatial and temporal execution models is
presented. Here, reconfiguration has been introduced as a method to steer run-time
application mapping in order to enhance resource efficiency.

The concepts of multiprocessing and reconfigura-

Chapter 5
QuadroCore: Architecture

bility have been implemented in our reconfig-
urable multiprocessor — QuadroCore. Chapter 5
presents the details of the architecture, the recon-

processor Ml processor | A 1| I figuration mechanism, and the resulting extended
T I reconfiguration design space. This architecture
processor H processor |~ has been realised in UMC’s 90nm standard cell

technology and on Xilinx’s FPGA. The perfor-
mance details for these implementations are dis-
cussed in this chapter. Further, the instruction set architecture has been characterised
in terms of power and an instruction-level power model has been developed for the
base processor. The timing and power characterisation aids in application mapping
with two mutually opposing performance objectives. Finally, detailed performance
reports are presented to analyse the performance impact of introducing each of the
proposed reconfigurable modes.

In Chapter 6 the performance impact on map-

o th di licati droC Chapter 6
ping three 1\.ferse applica 1ogs on QuadroCore QuadroCore : Application
has been detailed. DSP algorithms, a computa- G-
tionally complex multiplier used in Elliptic Curve S N [Y N
Cryptography, and a neural network-based ma- brocessor H rrocessor ‘/J X «

chine learning algorithm are analysed with re- [T [TTTTT
source efficiency as the primary objective of ap- Processor
plication mapping. The reconfigurable capabili- N

TTTT
>
3
8
8
@
S
NN N]

ties make the architecture well-suited for resource

efficient application mapping. In addition, the adaptable nature of the architecture
enables it to be used within a framework for processor-specific run-time customisa-
tions and architectural validations. The quick reconfiguration mechanism introduces
these architectural variations. Finally, the architecture can be used to validate parallel
programs, which are independent of the target implementation platform. The in-built
communication and synchronisation mechanisms in QuadroCore aid in executing par-
allel programs on this hardware platform for accelerated verifications.

Finally, Chapter 7 summarises the proposed concepts, methods, applications, and im-
plementation reports for run-time reconfigurable multiprocessors. A section on future
work presents directions for extensions and further research.

Chapter 2

Architecture

A framework of resources and their interactions that enable execution of user-defined
applications is broadly termed - architecture. The architecture needs to meet user-
defined functionality, satisfy resources constraints, and ensure application-specific per-
formance considerations. Hence, it is composed of a distinct set resources suited for
an application (or an application domain). The range of variations in the application
domain accommodated in the target architecture determines the degree of flexibility
and adaptability. Thus, the architecture itself encompasses a spectrum of resources
specific to the application executed. In addition to the resources, the architectural
framework also includes mechanisms to enable efficient interaction between resources.
The architectural composition has constraints in terms of the type, number, functional,
and physical characteristics. These resources and their interactions together compose
the underlying architecture. These characteristics determine architectural attributes
such as frequency of operation, power dissipation, area and memory requirements etc.

Processor architectures are further categorised into hardware and software specifi-
cations. Typically, the processor hardware relates to the functionality and resource
constraints, whereas the software architecture administers application domain adapt-
ability. The definite set of resources to allow capturing the required application-specific
functionality defines the hardware architecture of the processing engine. The range
of functional flexibility accommodated contributes to defining the programmable fea-
tures. General-purpose processors appear at the far end of the design space with a
large amount of architectural flexibility and application-specific hardware is the near
end of the spectrum, limited to the application-specific functionality. The complexity
of processor hardware necessitates the use of design automation to ensure faster design
times, enable design verification, and provide a method of design space exploration.
Multi-core architectures comprise several processors together on a single chip. Design
and validation of multi-core processors not only involves verifying the functionality of

8 Chapter 2. Architecture

individual processors, but also requires validation of the interaction between multi-
ple such processors, operating in synergy. Co-operative multiprocessing includes the
infrastructure for inter-processor communication, synchronisation, and methods for
resource and data sharing. To ensure fault-free operation in this scenario, defining
a system-level model comprising individual processors, memories, hardware accelera-
tors and evaluating its behaviour along with the inter-play of hardware and software
becomes necessary.

This chapter starts with a discussion on architectural models in Section 2.1. It de-
scribes the advantages and disadvantages of the different performance estimation mod-
els available for designing processors. A classification of the methods of architectural
customisations and the associated costs are detailed in Section 2.2. Section 2.3 dis-
cusses the costs and benefits of the different methods of architectural explorations
used in literature. To understand the state of the art in multiprocessors, Section 2.4
is a survey of existing commercial multi-core processors. Section 2.5 looks at exist-
ing methods of application-specific architectural customisations. Finally, Section 2.6
provides a brief introduction to our reconfigurable multiprocessor — QuadroCore.

2.1 Architectural Models

There is a wide range of models that assist system emulation. Such models include
tools to capture the processor’s functionality with instruction set simulators, bus func-
tional models etc. In addition to ensuring functional correctness, performance models
provide system-level estimates for area, power, and timing characteristics. Early func-
tional and performance estimators enable faster fine-tuning of the processor architec-
ture in order to meet application-specific requirements.

For multi-core architectures, the primary purpose of defining a model is to confirm the
functionality and predict application-specific system performance prior to actual im-
plementation. Functional validations are essential to address application partitioning,
load-balancing etc. under varying input conditions prior to the actual architectural
implementation. Performance estimations are necessary to ascertain the advantage of
multi-core architectures with respect to time, power, and energy efficiency and suggest
timely modifications to the architecture.

For processors, the range of the abstraction-levels for the models varies between high-
level transaction-level definitions to low-level transistor characteristics. Two conflicting
parameters govern the performance characteristics of architectural models, viz., func-
tional accuracy, and simulation speed. Higher the accuracy of the system modelled;
greater is its resemblance to the actual implementation. Nevertheless, higher the level
of accuracy greater is the time and complexity associated to validate the design un-

2.1 Architectural Models 9

der test. For example, an instruction accurate processor model is fast and accurate
at instruction-level granularity, but neglects timing or clock-cycle considerations. In
addition, it does not estimate system-level performance characteristics such as oper-
ating frequency, area, power etc. However, functional modifications such as additional
instruction, altering the instruction functionality are easily incorporated. Further,
instruction-level models are essential for early design evaluation, ahead of the design
implementation. As a contrast, a gate-level processor model is much more accurate in
estimating area, frequency of operation and power dissipation, but arriving at a gate-
level model involves significant design efforts. In addition, introducing modifications
to the design at a gate-level model is time consuming and error prone. Thus, the loss in
accuracy in an instruction-level model is compensated by the speed of emulation. One
of the main goals of defining a model is to enable early behavioural and performance
prediction, for which a faster simulation speed provides a greater flexibility to intro-
duce and verify design alterations. Using such models it is then possible to simulate
entire systems composed of multiple such processors. ProtoFlex [1] and PTLSim |2]
are examples of full system simulators.

Figure 2.1 shows a comparison of the types of models as a plot of functional accuracy
versus simulation time. As also seen, the introduction of detailed physical character-
istics require larger simulation time and elaborate models for simulation.

Time Frequency, Power, Area

~ =

J

Transaction level Model
Instruction Accurate Simulation
Cycle Accurate Simulation

Bus Function Model

Gate level Simulation
Transistor level Simulation

-
>

Simulation Time, Accuracy

Figure 2.1: Comparing Simulation Time vs. Accuracy

With increase in precision, transistor-level specifications include detailed physical fea-
tures such as gate dimensions, gate capacitances, performance characteristics such as
timing, voltage, power etc. Gate-level netlists are constructed based on transistor-
level characteristics and are composed of technology-specific gates, registers, flip-flops,

10 Chapter 2. Architecture

memories, which together compose processors. Further, collection of processors repre-
sents system on chip and multiprocessor system on chips. As can be see, design space
explorations using these detailed models require higher design time in comparison to
simpler models. Multiprocessor systems and system on chips comprise multiple such
processors, requiring significantly larger time for emulation. In such cases, simpler
models such as transaction level models are used to speedup emulation by approxi-
mating processor characteristics as transactions. A detailed comparison of simulation
time for transaction-level models and RTL models is presented in [3].

Models for Multiprocessor Systems

Architectural description languages (ADL), such as UPSLA [4] (Universal Processor
Specification Language), LISA [5], nML [6], and others [7] provide methods to spec-
ify the instruction set architecture of the processor. This functional specification is
linked with parameters such as resource association, clock-cycles of execution, pipeline
stages, etc. Using this description, an automated tool flow generates the instruction
set simulator, compiler, linker, and assembler for the processor under design. A profile-
driven automated tool flow enables easy modifications to the processor’s instruction set
architecture, as per application requirements. Although these models appropriately
describe the function of the instruction set architecture, the absence of any system-
level details such as area, power etc. limit usability of this model only for functional
validation of the processor architecture. Including structural description such as reg-
isters, ALUs, and other resource constraints to realise the functionality is essential for
system-level performance prediction.

In addition to the processor’s instruction set architecture, the communication mecha-
nisms between the processing elements have evolved significantly. In the present day
processor architectures, the diversity in the communication infrastructure ranges be-
tween a shared bus and shared memory system, to multi-layered buses and crossbar
switches, and further to packet-based communications using network-on-chips. The
choice of the communication model makes a significant contribution to the overall sys-
tem performance. The choice of the communication model is dependent on the type
of application executed. For example, data-intensive processing in stream-processors
(such as [8]) share a register file and each of the ALUs access the register file via a
dedicated cross-connect. Network processors (such as BCM 1480 [9]) share a common
data-cache, where cache coherency is enabled via a shared data bus. It is therefore
necessary to include both the processor and the communication mechanism to ensure
functional and performance validation of the entire system.

A cycle-accurate model using gate-level description provides a mechanism to emulate
the entire system using vendor-specific libraries. However, the complexity and time

2.2 Architectural Flexibility 11

involved at these levels of accuracy necessitates methods of accelerated prototyping
using programmable devices such as FPGAs. However, methods of prototyping using
FPGAs are limited to functional validation at lower frequencies. System-level model
provides a mechanism to evaluate design details and introduce modifications early in
the design cycle. Finer, accurate models introduced later in the design cycle confirm
the design’s functionality and provide accurate performance estimates. Thus, a holistic
system-level simulation is essential to ensure collective validation of both the hardware
and software specifications.

2.2 Architectural Flexibility

Architectural flexibility has a benefit of circumventing frequent hardware redesigns
by providing customisation capabilities in the post-fabrication phase. Adaptability is
incorporated to expand the range of architectural reusability. As a counter effect, there
is a cost involved in adding flexibility to the architecture. In order to accommodate a
range of application-level diversities, this adaptability introduces a definite degradation
in the performance parameters such as maximum operating frequency, area, power
consumption etc.

2.2.1 Classifying Customisations

Design time or pre-field customisation refers to the architectural modifications that
can be introduced early in the design cycle, to match the application characteristics.
Further, the primary requirement for this type of customisation is the complete knowl-
edge of the application characteristics during the time of design. Consequently, any
additional modification involves a rerun of the entire design cycle, viz., design, veri-
fication, and fabrication time. This overhead directly relates to the additional costs
and time-to-market. Design time customisations introduced are also referred to as
configurability or extensibility [10].

Typically, the standard configurable parameters in a processor design cycle are mod-
ifications to existing building blocks such as introducing an additional ALU, varying
the number of registers, or register ports, word-length of the ALU, additional memory
etc. Similarly, extensibility refers to inclusion of architectural enhancements such as
additional instructions, based on profile information obtained for a specific application.
It is also restricted to application requirements known well ahead of execution time.
Configurability and extensibility are both associated with incremental updates to an
existing processor architecture introduced during design time. Further, they result in
incremental design updates and modest verification times in comparison to a complete

12 Chapter 2. Architecture

design re-spin, since modifications are introduced to existing, pre-verified design blocks
or IP cores. Processors from Tensilica [11] and ARC [12] are examples design time
configurable and extensible processors. Configurable IPCores from vendors such as
Xilinx are examples for application-specific configurable cores.

Run-time or in-field customisation refers to alterations that can be introduced in a
device long after the chip has been shipped or even during in-field operations. Pro-
grammability and reconfigurability are two distinct options. Programmability refers
to modifications introduced via application software to a fixed hardware. In this case,
the underlying hardware has features that are programmed in the application-mapping
phase. Most processors include programmable features that allow a range of appli-
cations to be mapped. This is in contrast to Application Specific Integrated Circuits
(or ASIC), which are dedicated for a single application with limited programmable
features.

As a contrast, reconfigurability refers to modifications to the hardware architecture in-
troduced long after the chip is fabricated. Reconfiguration introduces modifications to
both the control path and datapath of the underlying hardware architecture. FPGAs
are examples for reconfigurable architectures, where the individual building blocks are
configured to meet application-specific functional and performance requirements. De-
pending on the amount of modifications that are introduced and the complexity of
the configurable blocks, they are further classified as coarse-grained or fine-grained
reconfigurable architectures. In addition, dynamic run-time reconfiguration refers to
modifications introduced during the operation of the device, without affecting its nor-
mal operation. Although the amount of flexibility that can be introduced during
run-time makes an impact on the performance characteristics, it has the advantage of
introducing design updates in the post-fabrication phase.

2.2.2 Cost of Flexibility

Introducing architectural flexibility often results in a performance compromise. Flex-
ibility in the architecture is a trade-off between performance characteristics such as
operating frequency, area, power, and energy efficiency in comparison to fixed archi-
tectures with features limited to a single application or an application domain. An
example of processor flexibility can be seen in the programmable options in general
processors that support a range of applications to be mapped. This is in comparison
to dedicated digital signal processors that exhibit significantly higher performance, al-
though limited to the signal processing application domain. In this scenario, a perfect
solution is a single architecture entirely customised for one single application, thus
exhibiting optimal performance characteristics for that particular application. Con-
sequently, a performance deviation is noticed in comparison to the ASIC or a fully

2.2 Architectural Flexibility 13

custom implementation. A fully custom ASIC implementation is this perfect solution.
Thus, adding flexibility results in a performance change in comparison to the perfect
ASIC solution. This change in performance is termed as performance deviation. It
refers to the loss in performance because of added flexibility.

Metrics : In order to illustrate architectural features as an index for comparison,
the following metrics were chosen:

e Clock Cycles : The number of clock cycles required to execute a given application
(or program), when mapped onto this architecture.

e Frequency : The operating frequency of the target hardware implementation.
Execution speed is a product of two parameters, viz., number of clock cycles
required for execution and the operating frequency.

e Area : The total gate count or the area occupied by the architectural implemen-
tation.

e Power : The total power consumption when a given application is mapped on
this target architecture.

o Customisations: The range of application-specific customisations that can be
introduced to enhance performance on the given architecture during design time
or run time.

Architectures : In order to analyse diverse performance features between architec-
tures, the following four representative architectures we chosen:

e ASIC : Fixed, application-specific dedicated device.

o RISC processor : Typical programmable processors used in embedded processing
domain.

o Configurable processor : A RISC processor that can be customised as per appli-
cation requirements, during design time.

e FPGA : Highly customisable architectures, fine-grained configurability during
deployment.

Comparisons

The degree of performance deviation is indicated by high, medium, low, and none.
They refer to the difference between the perfect solution (or an ASIC implementa-
tion) and the architecture under consideration. A high degree of difference indicates a
large performance deviation compared to an ASIC implementation, which is a negative

14 Chapter 2. Architecture

trend towards performance merits. Similarly, a low performance deviation corresponds
to a relatively low loss in performance. Consequently, a match in performance with
the ASIC implementation is indicated by a degree of zero or none, which is a desir-
able feature for performance. Only in the case of customisations, a high degree of
performance deviation is considered as a positive impact, since it results in ease of
usability for a wide range of applications. Nevertheless, it results in other side effects
as negative impact in other performance indices.

Table 2.1: Comparing Performance Deviation among Architectures

Architecture Cycles Frequency Area and Power Customisations

ASIC None None None None
RISC Procs. High Low Medium High
Config. Procs. Medium Low Low Low

FPGA None Medium High High

Table 2.1 summarises the performance deviation that can be expected in RISC pro-
cessors, Configurable processors, and FPGAs in comparison to an ASIC.

An ASIC implementation represents a perfect solution. It exhibits no performance
deviation and also has no configurable options. Thus, it is primarily applicable for a
single application - single architecture scenario.

For RISC processors, the sequential mode of programming translates into a large
number of clock cycles for implementing a given algorithm. Hence, a high performance
deviation for the clock cycle in this case. The need for a large number of clock cycles
for implementation is typically compensated by a high frequency of operation, which
makes RISC processors slightly inefficient in comparison to ASICs with respect to the
operating frequency. Further, as these processors are not customised for an application
they do incur a medium performance deviation for the area and power reports, for the
additional resources that exist. However, the high customisation capabilities extend
the usability of RISC processors over a range of applications.

In the case of configurable processors, features such as instructions to access new
functional blocks and resources can be introduced after knowing the application char-
acteristics. Thus, the performance deviation for time, area, and power are reasonably
lower than for RISC processors. However, these performance characteristics of a con-
figurable processor are largely dependent on the additional features and suitability to
the application domain. Nevertheless, customisation is higher than an ASIC imple-
mentation, but lower than that of RISC processors and FPGAs. Here, configurable
processors are indicative of application-specific processors, fine-tuned for a single ap-
plication.

2.3 Architectural Design Space Exploration 15

FPGAs are representative of fine-grained programmable devices with extensive cus-
tomisation capabilities. On account of the customisation capabilities, the realisation
of an application is identical in terms of clock cycles required for execution. Thus, per-
formance deviation for clock cycles required for implementation is absent. However,
there exists a fair amount performance deviation in terms of frequency of operation
and a significantly high area and power deviation. The identical performance in terms
of clock cycles required for execution is a significant advantage for FPGAs.

Table 2.2 lists comparative figures for a RISC processor (MIPS 34K), a configurable
processor (XtensalLX2), and an FPGA (Xilinx Virtex IV), to understand the perfor-
mance deviation listed in Table 2.1.

Table 2.2: Examples for Performance Deviation among Architectures

Architecture Processor Frequency Area mW /MHz
RISC Procs. MIPS 34K 500 MHz 0.93 mm? 0.56
Config. Procs. Tensilica LX2 [13] 400-475 MHz 0.14 mm? 0.032 - 0.046
FPGA Xilinx XC4VPFX100 = 400 MHz = 300 mm? =~ 16

2.3 Architectural Design Space Exploration

Within the processor design cycle, architectural explorations are performed at different
stages with varying degrees of freedom. At design time, the entire processor can be
redesigned or customisations to an existing processor may be introduced as required
by the application. As a next stage, compilation and mapping is an important phase
of design space exploration. Finally, during run-time, modifications are introduced to
the application via software modifications or to the hardware via reconfiguration. It
has to be noted that the degree of freedom or the amount of modifications that can
be introduced via design space exploration reduces farther down the design flow, i.e.,
from design-time to run-time.

2.3.1 Classifying Architectural Explorations

Design time customisations introduce functional definition of resources, determin-
ing the number of resources, choosing the right communication mechanism for inter-
connectivity between resources etc. Internally, a processor comprises generic building
blocks such as ALUs, register files, memory, and a mechanism for interconnecting
these resources. With these components comprising a resource library, architectural
customisation during design time configures a processor system. This library can be

16 Chapter 2. Architecture

used to build processors with varying number and types of resources, as depicted in
Figure 2.2. The bottom-left of the figure shows conventional processors with pre-
defined set of resources and a fixed mode of operation. The bottom-right shows the
scalable template, where a hierarchy of processors can be built using a unified pro-
cessor template. The communication between these processors is also configurable.
The lower levels in the hierarchy show a point-to-point network and the higher levels
extend to packet-based communication. As can be seen, a range of processors can be
designed using this methodology. However, the performance of such an architecture is
known completely only after an application has been mapped onto the architecture,
i.e. during compile-time. Compile-time explorations or profile-driven fine-tuning is
discussed in the following paragraph. In contrast to configurable processors, the in-
struction set architecture is also included within the exploration space. The presence
of a resource library speeds up the design and verification time.

Since the library is predefined, the characteristics of each of the building blocks, such
as functionality, area, time, power are known during design time. Design space explo-
ration grades architectures based on these performance parameters to enable continu-
ous modification of the architecture to suit application-specific requirements. In order
to analyse the application-specific requirements, compile time explorations provide
suggestions to tune the architecture. Figure 2.3 shows the profile information classified
as register accesses, memory accesses and ALU operations for an application mapped
to an architecture. Depending on the requirements, additions to the architecture are
made to match the architectural features to conform to the application demands.
Compile time analysis provides a feedback with respect to application-level statistic
determined during compilation, which consider diverse performance parameters such
as time, power, and area.

Meeting diverse application-specific demands requires a system-level performance feed-
back. During compilation, architectural design space exploration is assisted via a
feedback-driven mechanism. Thus, early performance estimates are accurate in
terms of clocks cycles, power, area, and operating frequency. This method of application-
specific architectural modification can be extended as a method of prototyping to val-
idate the new processors micro-architecture. Since each of the building blocks that
compose the architecture use components from an existing library, they are individu-
ally verified and validated.

Although compile time analysis provides greater degree of freedom, each design en-
hancement corresponds to design changes, resulting in extended design and validation
times, and inevitable fabrication costs. Post-fabrication and in-field design modifi-
cations can be introduced via run-time reconfiguration. Run-time reconfiguration
is applicable in cases where the architecture has to be adapted to variations in the
environment, to performance changes identified in the post-fabrication phase, or to

2.3 Architectural Design Space Exploration 17

Library

Interconnects

v v Registers Memory <:>

Configurable Processors Scalable Multiprocessors

VLIW
Uni- Processor ‘ ; ; ; ; ‘
il

Heterogeneous

-y

‘ I | I I

I
| | e
1| | e
I

¢
¢

i i

i€
i
i [

¢
¢
¢
¢

Figure 2.2: Design Philosophy for Processor Architectures

alter performance during in-field operation. Reconfiguration can be used to alter the
time and power characteristics. Further it is most suited to address the domain of
reliability, where faulty parts are replaced by functional parts during run-time.

2.3.2 Ranking Architectural Merits

The performance of an architecture is specifically dependent on the performance of an
application (or the range of applications) mapped onto this architecture. The applica-
tion’s performance merits such as instructions per cycle, total execution time, total gate
count, power dissipation, and total energy consumption is used for comparison between
different architectural platforms. However, independent of the application are ratings

18 Chapter 2. Architecture

Application

l

FoTT > Base Architecture = Registers + FUs + Memory D |
I «— — —
| | |
£ } m | |
5! l(n -
o Register Access ALU Operations Memory Access :N- :é
‘ o @
N Sl
0, |§ 1 Z
} %) | %
-~ Read Write Data Instruction - |3
I -
|
|
|
|

AND / OR / NOT/ .. Add/Sub/ ..
v

Multiplier / Divider

l Area
Performance<:> Speed

Power

Figure 2.3: Profile-driven Architectural Tuning during Compile time

such as ease of programmability, range of adaptability, backward compatibility, cus-
tomisation capability, scalability, and reusability, which influence the time-to-market
and also the success or popularity of a particular architecture. Further, in order to
enable design space explorations, the ease at which architectural enhancements can be
introduced is also an index indicating architectural flexibility. The reasoning behind
designing our reconfigurable multiprocessors QuadroCore is to merge the advantages
of reconfigurable FPGAs and parallel multiprocessors. The focus is to minimise de-
sign time, enhance code-reusability, and ease application-specific customisation with
a minimal impact on performance characteristics. In other words, the focus of design-
ing QuadroCore is to ensure a lower performance deviation as compared to multi-core
processors and reconfigurable FPGAs.

2.4 Multi-core Architectures

Multi-core processors are increasingly being used in almost all application domains.
For network processing applications, multi-core network processors are advantageous

2.4 Multi-core Architectures 19

as individual packets are processed in parallel on multiple cores. In image and video
processing, graphic processors provide data-level parallelism with large number of
specialised processing elements. Similarly, even in general-purpose computing, multi-
core processors are being used to enable simultaneous execution of tasks to accelerate
processing applications with diverse characteristics. This section is a survey of existing
commercial multi-core processors, and a summary of their individual advantages and
disadvantages.

2.4.1 Commercial Multi-core Processors

Figure 2.4 is plot of existing multi-core processors that have been designed primarily
with multiple instance of existing processors. In the figure a range of application
domains have been considered to provide a consolidated overview of the number and
speed (expressed as frequency of operation) for existing multi-core processors, viz.,
network processors, graphic processors, and general-purpose multi-core processors.
The X-axis corresponds to the operating frequency of the processor, the Y-axis is a
logarithmic scale of the number of processing elements in the processor, and finally
the size of the bubble represents the power consumption of each of the processors.

Network processors with multiple cores have been used for a long time, since paral-
lelism in packet processing is easy for distribution of tasks among multiple processing
elements. Using the MIPS core as a building block has been commercial success for a
number of network processor vendors such as RMI [14], Cavium [15], Broadcom [9],
PMC Sierra [16], etc. Network processing involves managing simultaneous process-
ing of multiple packets. Hence, a homogeneous architecture with multiple identical
processing elements are characteristics of these network processors.

Graphic processors (GPU) can be categorised as domain-specific architectures, since
primarily targeted for video and graphic processing. These applications are charac-
terised by a sequence of identical graphic operations to be performed on parallel data
streams. Hence, these processors comprise multitudes of graphic-specific hardware
accelerators, such as programmable pixel and vertex shaders etc., for fast and simul-
taneous processing of parallel data streams. A state of the art graphic processor from
nVidia called TESLA [17], targeted for high-performance applications comprises 960
scalar processors, where each processor supports execution of 240 concurrent threads.
ATT’'s Radeon 4800 series [18] of graphic processors targeted for gaming applications
comprises up to 800 streaming processors, with the core clock frequency of 600 MHz
and a memory clock frequency of 800 MHz. However, a recent initiative extends the
use of GPUs for general-purpose computing (GPGPU).

Sun’s T1 Niagara [19] is an early example of multi-core general-purpose processor with
eight identical processors, each capable of executing four simultaneous threads. Thus,

20 Chapter 2. Architecture

NP: © Cavium @® |ntel IXP ® Broadcom
GPP: @ Intel Quad-Core O AMD Phenom|l @ IBM Cell
GPU: @ nVidia Tesla @ ATl Radeon
) 10000 1 Graphic Processors
©
a
& 1000 -
g
(@]
O 100 A
"‘5 General Purpose Processors
)
0
S 10 -
=
Network Processors
1 1 1 1 1

0 1 2 3 4

Frequency of Operation (GHz)

Figure 2.4: Design Space of Commercial Multi-core Processors

32 threads can be in execution simultaneously. Other examples of multi-core general-
purpose processors are quad-core processors such as Intel’s core i7 [20] and AMD’s
Phenom [21], with four-identical processors, which share a common L3-cache and
support simultaneous multi-threaded applications. These are all cases of Homogeneous
Architectures, where copies of the base processor with local cache are provided with
an additional stage of shared cache, for data and program sharing.

In processors such as AMD’s Fusion [22| the architecture comprises a primary general-
purpose processor together with a graphic processor as a complete system-on-chip
solution. These are examples of Heterogeneous Architectures, where processors with
different instruction set architectures are combined together on the same chip. IBM’s
Cell architecture |23| is also a heterogeneous multi-core with a PowerPC as the pri-
mary processor together with eight additional RISC processing engines. The primary
processor mainly ensures backward compatibility to existing software. Performance
improvements are achieved by mapping compute-intensive applications among the
parallel cores. Similarly, heterogeneity has been introduced in existing homogeneous

2.4 Multi-core Architectures 21

FPGAs with the inclusion of hard and soft processors, leading to the classical con-
cept of hardware software co-design for design partitioning and design acceleration.
Heterogeneity exists also when designing system-on-chips for specific applications also
called domain-specific architectures. These architectures typically comprise specific
hardware IPs; well suited for specialised application domains.

In addition to the processor’s microarchitecture, the performance figures are strongly
influenced by the communication mechanism among the processing elements and mem-
ory. Inter-processor communication enables transfer of instruction and data between
resources within the multi-core organisation. The coupling between resources is an
architectural decision based on the amount and frequency of communication between
the resources. As an example, VLIW processors (Very Long Instruction Word) are
predominantly used for applications with instruction-level parallelism, which requires
frequent exchange of data between processing elements. In such a scenario, a multi-
ported shared register file is typically incorporated. In streaming processors, where
a large amount of data is continuously processed, deep pipelines and structuring the
hardware such that intermediate processing results are forwarded or stored on-chip
memory avoids frequent cache or off-chip memory access. This is in contrast to general-
purpose CPU architectures. In general-purpose multi-core processors, to support task
and thread-level parallelism, a shared cache is typically employed, where coherency is
maintained via a shared bus. Often, the number of resources simultaneously active
on the shared bus limits the bandwidth. The limitation of sharing the bandwidth
in a bus-based architecture is overcome by using packet-based communication in a
network-on-chip or a switched cross-connect. On-chip interconnects such as the El-
ement Interconnect Bus (EIB) in IBM’s Cell architecture facilitates communication
between processing elements, memories, and other on-chip peripherals. As described
in [24], the implementation resembles a ring with four unidirectional channels, where
three concurrent operations can co-exist.

The data movement between the processing engine and location of the bulk memory
decides the memory hierarchy within the processor organisation. Typically, a fast ac-
cess to intermediate values computed is provided via a register-file, which is limited in
size. Cache mechanisms provide a temporary stage for fast data or program memory
access. Caches are also used for sharing of memory between independently operat-
ing processing element with their local memory. An intermediate stage of scratchpad
memory provides a low-cost mechanism to store frequently accessed data and/or in-
struction in a locally available shared scratchpad, which is identified during compile
time. Scratchpads help to reduce costs, both in terms of the access time and the
energy consumption [25].

Reusability is gaining importance with increasing design complexity influenced by in-
creasing transistor densities, and ever increasing demand for a fast time-to-market.

22 Chapter 2. Architecture

Hardware reusability promotes using the same processors architecture over a range of
applications and processor families, in order to allow backward compatibility. Software
reusability encourages code portability between processor generations and processor
families.

2.4.2 Limitations of Existing Multi-core architectures

To summarise, existing commercial multi-core architectures can be predominantly
characterised as multiple instances of existing processors, with a communication in-
frastructure, and a pre-defined shared memory hierarchy. The microarchitecture of the
processing elements depends on the application domain and the application domain
inter-processor information exchanges define the communication infrastructure. As
can be seen from Table 2.3 each application domain has a diverse architectural model.
Furthermore, application-specific customisations are restricted to the processor archi-
tecture. The processor architecture is customised with application domain hardware
accelerators to enhance performance. The single most significant disadvantage of such
architectures is the applicability only to data or task-parallel applications, and each of
the multi-core architectures is restricted to its own application domain. In addition,
the decision of when task or data can be partitioned onto the processing elements is
limited to threads defined during application description. Further, for multi-threaded
application, it becomes necessary to design a cache-coherent system, where the band-
width of the shared cache is an important bottleneck for including additional proces-
sors. Thus, a single template that can be reused over a range of applications, ensure
scalability, and easy adaptability is typically yet to be established.

Table 2.3: Commercial Multi-core Processors

Processor Cores Clock Freq. Power Memory Access
Intel Quad-Core [20] 4 26-3GHz 130 W Shared L3cache, QPI

GPP AMD Phenom [21] 4 2.5 GHz 95 W DCA and HyperTransport
IBM Cell [23] CPU & 8 SPE 3.2 GHz 250 W EIB with Shared L2
UltraSPARCT1 [26] 8 1.2 GHz 9 W Crossbar, Shared L2

NP Intel IXP 2850 16PEs + Xscale 1.4 GHz 2T W Shared bus,Nearest neighbour
Broadcom BCM 1480 [9] 4 0.8-1.2 GHz 23 W Dedicated, HyperTransport
Cavium Octeon 58XX [15] 4-16 500-800 MHz 15-40 W Shared cache,Coherent Interconn.
Freescale MSC8144 [27] 4 + QUICC 1 GHz 8 W Shared L2 cache

DSP TI TMS320C6474 [28] 3 1 GHz 8 W Shared L2 Cache
Analog Devices ADSP-BF561 [29] 2 600 MHz 2 W Shared L2 Cache, scratch pard

GPU nVidia Tesla C1060 [17| 240 1.3 GHz 160-200 W
AMD Radeon HD4800 [18] 800 800 MHz 500 W

GPP: General-Purpose Processors
NP : Network Processors

DSP: Digital Signal Processors
GPU: Graphics Processors

S9INJIIYIIY SI0D-THNIN F°T

€¢C

24 Chapter 2. Architecture

2.5 Initiatives for Customisable Multi-core
Processors

Customisations have been introduced to multi-core processors in order to adapt to
application-specific requirements. This classification exemplifies alterations introduced
to existing architecture or a generic template, to customise it to an application. In this
section, we look at some of the multi-core processors used in the embedded processing
domain and analyse their customisation capabilities.

In configurable processors such as Tensilica’s Xtensa [11] and ARC’s ARC700 [12],
configurable options permits user-driven processor configuration, with parameters such
as instruction length, cache sizes, number of functional units etc. With this base con-
figuration, it is then possible to add instruction set extensions to meet application-
specific performance requirements during design time. Although configurability allows
a range of customisation capabilities, it does not assist in altering the architecture for
in-field upgrades. Further, configurability necessitates new design re-spins for every
application-specific customisations introduced. Overall, it provides a good mechanism
for design space exploration early in the system design cycle. Another example of
configurability is seen in SiliconHive’s ULIW (ultra long instruction word) proces-
sors [30]. These processors are built using a single VLIW processor template and
additions to the number of core cells or IO cells can be included as a part of the ultra
long instruction word. SiliconHive’s processors support instruction-level parallelism
by introducing additional functional units, addressable as individual instruction slots.

Tile-based architectures, comprise copies of identical tiles, where each tile consists
of a processing element with its own local memory. Processors such as like Tilera or
RAW [31], Ambric [32], Picochip [33] etc. are examples of this classification. In these
architectures, each tile or entire processors can be replicated to enable scalability,
fault tolerance on account of homogeneity, and customisations on account of func-
tional unit configurability. The Tilera (or RAW) architecture is composed of identical
programmable tiles, where each tile consists of a MIPS-like processor, data cache, in-
struction cache, and routing logic. The communication mechanism is designed to allow
only a single clock delay for travel across one tile. RAW supports variations in the
interconnections topology between processing elements in an array like structure. The
compiler manages the RAW hardware resources and implements run-time analysis for
application-specific customisation. Using the same analogy, PicoArray [33| provides a
flexible two-dimensional grid of processors using a 3-way VLIW processor, with four
such processors in a cluster. A level lower in the design hierarchy is the pipeline pro-
cessor from Rapport called Kilocore [34], which replicates the individual pipelines for
enhanced parallel processing. A polymorphous architecture called TRIPS is presented
in [35], which has an additional feature of configuring to application-specific granular-

2.5 Initiatives for Customisable Multi-core Processors 25

Table 2.4: Customisations in Existing Architectures

Core PE Inter PE Customisation
Communication

ARC/Xtensa RISC Queue/FIFO based Registers, Accelerators

SiliconHive VLIW Prog. Interconnect Functional units, Registers,

Instruction slots
Rapport Kilocore 8-bit CPU Queue, Register file Pipelines

PicoArray 3-way, VLIW Bus and Switch Box Inter-PE communication
Ambric 32-bit RISC Queue based Interconnects, Scalability
Tilera (or RAW) RISC Nearest neighbour Inter-PE communication
FPGA LUTs Switchboxes, Routes LUTs, Routing

ities and parallelism. The architecture is composed of large coarse-grained partitioned
cores and avoids a centralised routing. The absence of a single routing unit avoids
long wires and eases scalability. Point-to-point communication channels are incor-
porated to enable exposure to software for optimisation during application mapping.
These regular processing fabrics provide coarse-grained architectural customisations
in comparison to fine-grained FPGA fabrics.

Among reconfigurable architectures, the FPGA is the most popular example. FP-
GAs are composed of regular homogeneous fabrics are representative of scalable archi-
tectures, where a single architectural fabric is used over an entire family of FPGAs.
They are fine-grained regular fabrics with configurable logic blocks (CLB) as individual
computation building blocks that can be scaled to increase the computational capabil-
ity of the fabric. Each individual building block is configurable to application-defined
functionality. Multiple such building blocks form intermediate hierarchies (slices) to
enable building uniform clusters with multi-hop communication networks. All the com-
ponents in an FPGA - the configurable blocks, the routing logic, and the memories
are programmable to user-defined architectural requirements. Further, programmable
features enable modifications to both the data and the control path, thus making this
architecture completely reconfigurable. The introduction of hard-cores, DSP blocks,
and multipliers within the regular configurable fabrics introduces heterogeneity.

Table 2.4 summarises the above mentioned architectures considering the range of con-
figurability using existing processors, as a method of application-specific adaptability.
Additional details such as application-to-architecture suitability is listed in [PPR09].

In contrast to methods of general-purpose reconfigurability in the above-mentioned
architectures, are a few application-specific reconfigurable processors discussed in this
section. Each of the method discussed in this section is distinct and application-
specific. In [36] application-driven reconfigurable features have been introduced in a

26 Chapter 2. Architecture

single-chip reconfigurable FFT/IFFT processor in order to achieve energy savings
and algorithmic flexibility. The architecture comprises a collection of FFT proces-
sors organized in ring topology. Reconfiguring the inputs, outputs, word-length of the
datapath, and partitioning the processing units for hardware sharing enables adapt-
ing to application-specific data-flow demands. Another dynamically reconfigurable
processors called, FlexCore [37], has an interconnect that reconfigures the datapath.
However, this framework requires redefining the instruction format and necessitates
the use of long instructions to adapt to the modified datapath. In [38], reconfiguration
is used as a method for transforming a floating point unit in a superscalar processor
into several independent ALUs, with minimal additional latency. This results in a per-
formance gain of up to 56%. In [39], a reconfigurable datapath processor implements a
synchronous pipeline computation model, where configurable processing elements are
connected by a configurable datapath. Here, execution agility is achieved by condi-
tional switching of datapaths. A processing cell architecture [40] supports synchronous
VLIW, asynchronous Multiple Instruction Multiple Data Streams (MIMD), and a mix-
ture of both modes of operation via reconfiguration. Through dynamic reconfiguration,
the cluster can be divided into a plurality of processing cells or be merged into a sin-
gle large cluster. The interconnection between processing elements is controlled by
RAM-based configuration switches. Depending on the application’s requirement, the
switches can be reconfigured to allow neighbouring cells to exchange programs etc.
Along the same lines, in [41], a multiprocessor architecture is described where a cross-
bar switch acts as a reconfigurable element for altering the processor-to-memory and
processor-to-processor connections. This configuration environment allows switching
a MIMD operation to Single Instruction Multiple Data Streams (SIMD) operation.

Pros and Cons of Existing Reconfigurable Architectures

Reconfiguration is a mechanism that customises the hardware architecture during the
deployment phase. The advantage of this scheme is to permit user-driven customisa-
tions to be introduced without having to redesign and re-fabricate the device. Ideally,
the reconfiguration scheme should be capable of introducing application or algorithm-
specific customisations to the architecture without incurring a significant reduction in
performance and reconfiguration management. The base architecture needs to be ap-
plication independent, wherein reconfigurability during run-time permits application-
specific customisations with a low performance deviation(defined in Section 2.2.2).
The reconfiguration mechanism in FPGA-like architectures has three main disadvan-
tages. Firstly, the time required to reconfigure is large. For present day FPGAs, it is in
the order of a few milliseconds. Secondly, a dedicated mechanism or a reconfiguration
manager is explicitly required to control and manage the process of reconfiguration.
Finally, an additional resource such as an external memory or dedicated storage is

2.6 The Concept: Run-time Reconfigurable Multiprocessors 27

required to store the configuration streams. These are some of the drawbacks of using
FPGA architecture for run-time customisations. Moving beyond the fine-grained re-
configurability in FPGAs, the possibility of reducing the reconfiguration overhead is
introduced by increasing the granularity of the logical blocks. Coarse-grained recon-
figuration schemes avoid the overhead involved in architectural redesign and reconfig-
uration management, but are restricted in usage to a specific application domain, or
a given processor architecture. Ideally, the reconfiguration scheme needs to be quick,
easy to manage and make minimal impact on account of customisations integrated
into the base architecture. In the following section, we present our concept of the
reconfigurable multiprocessor template that introduces reconfiguration as a method of
run-time application-specific adaptability. This scheme is generic and can be applied
to most in-order processor architectures. The customisable features can be introduced
via high-level programming. The focus is to manage reconfiguration without additional
overheads as observed in existing reconfigurable architectures.

2.6 The Concept: Run-time Reconfigurable
Multiprocessors

A fixed architecture often results in resources being unused or inefficiently used, de-
pending on the application that is being executed. This optimality in resource utili-
sation influences resource efficiency, power consumption, and consequently the overall
system performance. In order to achieve a balance between application domain cus-
tomisation while efficiently using the resources in a multiprocessor, we have developed
a generic reconfigurable multiprocessor template. The template in Figure 2.5 shows an
example of multiple loosely coupled processors in a reconfigurable fabric. The basic
processor building blocks act as fixed resources in the reconfigurable fabric. These
resources together comprise the compute engine of the processor. Here, reconfigurable
connectivity between the existing resources is added as an architectural feature. The
connectivity between resources is reconfigurable, thereby permitting user-defined pro-
cessors to be configured. The template itself can be scaled to suit application demands
using multiple such copies of processors. This feature extends the usability of the mul-
tiprocessor architecture to applications with varying resource requirements and degrees
of parallelism. Since, the basic building blocks of a processor remains untouched, the
added flexibility does not interfere with the original functionality and the instruction
set architecture. The original processor’s functionality remains unaltered. The re-
configurable interconnects allow interchangeable resource connectivity. The building
blocks within a processor are treated as distributed resources, accessible by all (or a
subset of) processors. This arrangement allows cooperative resource sharing within

28 Chapter 2. Architecture

multiprocessor hierarchy. The modularity and generic structure of the architecture
allows easy reusability and scalability to suit application requirements.

User-defined

User-defined
~— ~— Processor 2

Processor 1

) N B 9= R MR | Free resources
Fixed processor 7171 e g | immEnnEEsEmny .
resources N Niss . |Instruction| 1 |Instruction] T il
S Memory | | Memory | T T
AN @ T @ 0ot T
N ‘I Decoder | H | Decoder | T Tt
N @ T @ B UptoN
Up to 2 o au |[H| Aau | & ;)y P
processors — @ H @ o FF processors
| E\l Registers |E | Registers | T —F
Reconf;;ggrable i [Data i Data r e
Fabric H =+ | Memory | | Memory | £ Bam
T 1
Trrrrrrrrr Trrrrrrrrrrr rTrrrrrrrrrrr rrrrrrrrrrrr

Figure 2.5: Reconfigurable Multiprocessor Template

The reconfigurable fabric allows dynamic alterations to the interconnections between
the processor building blocks. The decision of altering the existing structure is driven
by the instruction executed. Hence, the choice of resources and its variations are deter-
mined during compilation and executed during run-time. Scalability, easy adaptability,
and extensibility are the main advantages of this multiprocessor template.

2.6.1 Reconfiguration Mechanism

A new method of reconfiguration has been developed to avoid the drawbacks in the
present day reconfiguration schemes. Here, a quick, single cycle run-time reconfigura-
tion is implemented to minimise the time required to reconfigure the resource connec-
tivity. The datapath or the control path can be reconfigured at run-time, as directed by
the instruction stream. Additionally, the reconfiguration stage can be introduced as an
additional pipeline stage to enhance the architectural flexibility. The two mechanisms
are discussed in the next section.

2.6 The Concept: Run-time Reconfigurable Multiprocessors 29

Instruction to Administer Run-time Reconfiguration

A special reconfiguration instruction executed during run-time connects resources, de-
pending upon the resources demanded by the application. The hardware modification
slightly alters the delay in the critical path, but flexibility is the achieved trade-off.

Reconfiguration as a Pipeline Stage

The stage of reconfiguration is introduced as an additional pipeline stage. The ad-
ditional pipeline stage allows an entire clock cycle for configuring the resource con-
nectivity. Figure 2.6 shows the additional stages, which results in an increase in the
instruction length affecting the latency of execution. An explicit pipeline stage avoids
any change in the operating frequency on account of the modified critical path.

Instruction Fetch

Instruction Decode

Instruction Fetch

Reconfigure

Instruction Decode

Instruction Fetch

Register Read

Reconfigure

Instruction Decode

Instruction Fetch

Execute

Register Read

Reconfigure

Instruction Decode

Register Write

Execute

Register Read

Reconfigure

Register Write Execute Register Read
Register Write Execute
Register Write

Figure 2.6: Reconfiguration as a Pipeline Stage

2.6.2 Advantages of the New Reconfiguration Mechanism

The aim of the design modification is to introduce run-time customisation of a single
multiprocessor template. Additionally, the ease of reconfiguration is also a design con-
cern. Here, the configuration information required to introduce modifications to the
template is limited to the control path and datapath information. This is in contrast
to configuration information in fine-grained FPGA architectures, where it comprises
functional details of the individual configurable blocks and the interconnect informa-
tion. Since the functional definition and performance of the individual resources of

30 Chapter 2. Architecture

the processor remain unaltered, the change in performance because of reconfiguration
is limited to this additional interconnect.

Execution of a single instruction is sufficient to control the functionality of the recon-
figurable interconnects. The layer of interconnects are controlled via instruction set
extensions to alter the control and dataflow between the decode, the execute, and the
register access stages. These enhancements ensure that the base instruction set archi-
tecture is reused and reconfiguration is managed at high-level of abstraction, as sug-
gested using the above-mentioned programming model. Introducing these instructions
at boundaries where a change in architecture is anticipated results in reconfiguring the
processors. With this scheme of reconfiguration, the reconfiguration information is
generated during compilation and introduced during run-time with a reconfiguration
overhead of a single cycle. Thus, the need for an additional reconfiguration controller
or manager is entirely avoided.

2.7 Summary

In this chapter, architectural aspects viz., methods of processor specification and func-
tional validation have been discussed. These design stages are essential but time
consuming and together influence the time-to-market. Considering processor design
in particular, methods of accelerating the architectural specification have resulted in
faster simulators, architectural models, etc. These methods have in turn reduced
the validation time and the process of design verification. In order to avoid frequent
redesigns, flexibility to adapt to application characteristics has been introduced via
design time and run-time customisations. However, introducing flexibility has a cor-
responding performance impact. With these issues under consideration, a method of
compile-time design space exploration has been presented. To learn from existing com-
mercial multi-core processors, a section studies their advantages and disadvantages.
Just as multi-core processors have been successful on account of their inherent paral-
lelism; reconfigurable architectures have been widely used for the flexibility. A section
on reconfigurable architectures and customisable multi-core processors attempts to dis-
tinguish the architectural features and identify the type of customisation incorporated
in each of the processors. Both multi-core processors and reconfigurable architectures
have unique features that address two distinct aspects, viz., parallelism and flexibility
respectively. The focus of this thesis is two merge these two unique features in a sin-
gle multiprocessor template. Finally, our concept of the reconfigurable multiprocessor
template is presented, which addresses both these aspects. An additional advantage
of this template-based design is that it re-uses existing processor cores and introduces
minimal architectural changes. This results in reduced design, verification, and valida-
tion time. In addition, a low overhead reconfiguration mechanism has been presented

2.7 Summary 31

that enables run-time customisation of the reconfigurable multiprocessor template.
The reconfigurable template and the quick reconfiguration scheme together provide a
mechanism to adapt to application-specific requirements.

Chapter 3

Application

At any time instance, the behaviour of the architecture depends on the application that
is being executed. Often, languages and programming models provide mechanisms,
constructs, primitives, syntax, and semantics to ease application description. These
methods are used to describe tasks, data, and their interactions, which together de-
fine the application’s overall functionality. For dedicated applications, domain-specific
programming languages provide detailed constructs and means to enhance quality,
productivity, and reusability via application abstraction for a particular application
domain. To aid reusability and code portability, application description is gener-
ally maintained agnostic of the target architecture. Finally, for architecture-specific
adaptability, mapping and compilation tools transform application functionality onto
architecture-specific resource constraints.

In this chapter, Section 3.1 classifies architectures on the basis of their nature of
programmability into clock cycle programmable and frequency programmable archi-
tectures. In Section 3.2 existing methods of application description and programming
models that focus on parallel programming are discussed. This section also includes
a discussion on methods of communication and synchronisation inherent in parallel
programming models. Application analysis that is independent of the target-specific
architectural constraints is made in Section 3.3. Based on this analysis, architecture-
independent application characteristics for computation, communication, and synchro-
nisation are extracted in the same section. Architecture-independent application char-
acteristics are compared for three diverse applications in Section 3.4. Additionally,
for a set of processors architecture-inherent characteristics are identified. A match
between applications and architectures based on their inherent characteristics is sug-
gested. When considering parallel processors, application partitioning makes a signif-
icant impact on speedup, power, and energy. Based on these analyses, Amdahl’s law
is re-calculated and extended with architectural parameters, viz., power and energy in

34 Chapter 3. Application

Section 3.5. Finally, a holistic methodology for application-driven performance opti-
misation using computation complexity, amount of communication, and frequency of
synchronisation is presented.

3.1 Programmability

Programming methods provide the user with abstractions and mechanisms to define
the application’s functionality. Application mapping aims at customising the under-
lying architecture to the specific functional requirement, i.e., use the programmable
features of the architecture in order to realise the application’s functionality. Thus,
application mapping encompasses fine-tuning customisable architecture-specific pro-
grammable parameters. However, programs are typically oblivious of the target archi-
tecture. In this aspect, programmability in architectures has two distinct objectives:
clock cycles of execution oroperating frequency.

Processors are representative of clock cycle programmable architectures. For applica-
tions mapped onto processors, the optimisation objective is typically the number of
clock cycles required for execution, since the operating frequency remains fixed. Pro-
cessors provide a fixed datapath and a programmable control path. The control flow
is determined by the sequence of instructions executed. The critical section of the
application is the compute-intensive part that dominates the execution time. Further,
the memory requirements such as code size and access time for instruction and data
also make an impact on application performance. In a multi-core scenario, strategies
also involve determining the optimal number of cores to meet the computational re-
quirements for a given application. These features influence the power and energy
consumption of the system. Thus, design space exploration for application mapping
using processors involves determining the best suitable features of the processor in
order to reduce the execution time or the number of clock cycles of execution. Conse-
quently, application description is sequential, aiming at reducing the time required to
implement a given functionality. With a fixed operating frequency, the focus is mainly
at clock-cycle-based optimisation.

In contrast to clock cycle programmable processors are frequency programmable FP-
GAs. FPGAs provide programmable control and datapaths. Here, the programmable
feature is the frequency of operation, which varies based on area, which is a contrasting
trade-off. The largest combinatorial logic computed in a clock cycle determines the
maximum operating frequency and the critical path in an FPGA. Since optimisation
in this context involves addressing time - i.e., operating frequency and latency, and
area - i.e., resource requirements, it results in a large design space, with multiple objec-
tives. Here, application description emphasises on increasing the maximum frequency

3.2 Methods of Application Description 35

of operation and reducing the gates (or CLBs and memory for FPGAs) required. This
strategy aims at a space-frequency optimisation with fixed clock cycles of execution
defined in the application source code. The larger design space necessitates strategies
with a higher degree of complexity. To aid the parallel application description, the
notion of concurrency and parallel task execution is embedded in this programming
model (e.g. HDLs).

3.2 Methods of Application Description

The programming model used for application description is dependent on the appli-
cation domain. The diversity ranges from sequential programming styles, concurrent
functional programming, and parallel hardware description languages. Figure 3.1 sum-
marises the diversity and overlaps with existing methods in application description.
Programming languages such as C, FORTRAN belong to the class of sequential ‘von
Neumann’ style of programming. These languages are characterised by the use of
variables to represent storage elements, control statements, and assignments for fetch,
store and arithmetic operations, as described in [42]. These characteristics represent
sequential word-at-a-time programming technique. In contrast to ‘von Neumann’ pro-
gramming language is functional programming (such as Hasktell, Lisp [43]), where a
program is composed of series of state-less functional evaluations, without variables.
The mathematical abstraction of program evaluations via functions forms the basis of
functional programming, in contrast to imperative programming styles. Occam [44] is
a concurrent programming language based on the paradigm of communicating sequen-
tial processes (CSP). Applications are described as concurrent functions, with message
passing between functions. The application of CSP dates back to the Transputer [45]
in 1980s.

Hardware description languages (HDLs) such as Verilog, VHDL are used to model
parallel circuits and hardware. The uniqueness in HDLs is the ability to describe an
application explicitly as sequential and parallel components. Thus, HDLs have also
been used to program applications targeted to FPGAs. The concurrency and paral-
lelism available in hardware is characteristic of this programming model. However,
HDLs are distinctly different from sequential programming languages, thus affecting
portability of legacy software and fall short of being applied directly to programming
parallel processors.

In order to ease the complexity involved in programming FPGAs, electronic system
level (ESL) design approaches has been introduced by increasing the input abstrac-
tion level. These approaches comprise languages that are subsets of ANSI C (such
as ImpulseC [46], HandelC [47]) to ensure ease of programming by reusing the same

36 Chapter 3. Application

Sequential
Programming

proZ?a:?rlllr?]Iing Threads Fortran
methods CUDA MPI

Occam

Functional

LiMe;‘"/ .
| Programming

Polis Esterel

Haskel

Parallel Hardware
Description

Figure 3.1: Abstractions for Parallel Application Description

programming style in C. In addition to the standard constructs, HandelC uses con-
structs such as par and seq to describe distinct parallel and sequential parts of the
application, as in Occam.

The automated translation of algorithmic specifications to architectural details is
termed as algorithmic synthesis. Tools such as Bluespec [48], Cynthesizer [49] from
Forte, NEC’s Cyberworkbench|50], System Studio from Synopsys, Catapult C [51]
from Mentor are examples that aim at transforming high-level algorithmic specifica-
tions to architectures. A prominent example is Bluespec, which is a high-level func-
tional hardware description languages aimed at reducing design, development, and
verification effort. The abstraction, which is primarily an extension of Haskell (a func-
tional programming language) does not compromise on the quality of the synthesis
results [52]. Using atomic transactions, Bluespec automates the generation of control
and arbitration logic to manage concurrent access of shared resources.

Stream processing is a programming paradigm that is used for data-centric parallel
programming. The main advantage of stream programming is the emphasis on in-
dependent operation on local data. Applications use independent functional units,
avoiding the need for explicit communication and synchronisation between resources.
Stream processing has been extended using vendor-specific languages such as CUDA

3.2 Methods of Application Description 37

for nVidia’s graphic processors [53] and Stream SDK for AMD’s graphic processors,
which extend the usage of graphic processors for general-purpose computing.

Unified programming approaches such as LiMe [54], combines applications description
for both processors and application-specific hardware (or hardware-software co-design).
Similarly, Polis [55] is an approach for specification, design, and validation environ-
ment for unified hardware-software applications. Also Esterel [56] is a synchronous
programming languages, that is now capable of generating both C and VHDL descrip-
tions. The uniqueness of such frameworks is the ability to support both clock-cycle
programmability and space-frequency adaptability.

Although a range of programming models and languages exist for application descrip-
tion and parallel programming, some questions and methods remain unaddressed:

e Impact of application description on performance: Impact on area, speedup,
power, and energy consumption

e Influence of programming language on extraction of parallelism: Diversity be-
tween sequential, functional, or parallel programming paradigms

e Expressing granularity of parallelism and its impact on performance: function-,
task-, data-, or thread-level parallelism

e Methods for explicit space-time multiplexing

3.2.1 Application Description for Parallel Processors

Parallel programming relies on exploiting application-specific parallelism. Typical
paradigms of parallelism include task-, data-, or thread-level parallelism etc. Tt is
necessary to match the inherent characteristics of an application with the target ar-
chitecture in order to achieve performance efficiency. E.g., a data-parallel application
needs an architecture that supports execution of parallel data streams in order to
ensure computational efficiency. For such an application, developing efficient meth-
ods of synchronisation or communication between the parallel data-streams is not the
primary objective. Thus, the decision of how an application is described is entirely
dependent on how an application is expected to behave and what the target architec-
ture should resemble. In this context, it becomes necessary to expose the application’s
inherent target-independent characteristics.

Threads, e.g. POSIX threads, provide a mechanism to express concurrent execution
within a single process. The basic philosophy governing threads-level parallelism in
a single processor scenario is to permit time-multiplexing of tasks in the presence of
shared resources. This is a method of forcing non-deterministic parallel execution in a
deterministic sequential programming model. Although threads provide the capability

38 Chapter 3. Application

of executing parts of the application concurrently, they exhibit an overhead in having
to switch between threads. In a multi-core scenario, threads are executed concurrently
on the multiple cores. The main drawback of using thread-level parallelism in a multi-
core scenario is the requirement for explicit coherency protocols and a shared memory
system, since threads operate on shared resources.

In contrast to the shared memory system of threads, is the distributed memory model
of message passing, in Message Passing Interface (MPI [57]). MPI provides a language
independent mechanism for parallel computers to communicate. It provides means
of topology definition, synchronisation mechanisms, and a means of communication
between participating computers, organised with distributed memories. The main ad-
vantage of such a system is scalability and portability. This method of expressing
applications as independent tasks, which communicate via message passing, targets
task-parallel applications. The programming model of communicating sequential pro-
cesses or CSP extends the concept of message passing to programming embedded
processors. In Ambric’s processors, message passing is incorporated via FIFO chan-
nels and there exists no shared memory. Writes to buffers are stalled when full and the
sender stalls until the receiver is ready, as detailed in [58|. This model avoids resource
sharing and replaces it by data/control exchange model, thus avoiding costly mem-
ory sharing protocols. In place of coherency and context switching between threads,
methods to enable fast information exchange is necessitated. Predominantly, these
methods are deterministic in nature.

For applications that exhibit fine-grained parallelism, such as DSP algorithms, au-
tomatic extraction of instruction-level parallelism is made using VLIW compilation
or hardware-driven superscalar processors. Such applications have implicit commu-
nication and synchronisation mechanisms. In VLIW processors, synchronisation and
communication paradigms are introduced during compilation and the individual pro-
cessing elements are always lock step synchronous. The main drawback of VLIW
processors is the limited ILP that can be extracted, and hence the limited scalability
of such processors. In addition, the compilation is entirely responsible for manag-
ing the computation, communication, and synchronisation. Similarly, for superscalar
processors, data dependencies and scheduling are managed by hardware during run-
time. Here, significant amounts of resources are dedicated to run-time management.
Further, speedup using these processors entirely relies on acceleration of dependency
checks and extracting parallelism within the instruction stream.

3.2.2 Managing Communication and Synchronisation

In this section, methods of programming meant for communication and synchronisa-
tion mechanisms are discussed.

3.2 Methods of Application Description 39

In shared memory systems, thread-based programming relies on explicit declaration of
shared variables and shared memories. Synchronisation between threads is managed
via features such as semaphores and mutexes. These are lock-based mechanisms to
avoid corruption of data elements and ensure prioritised use of data. Further, cache
coherency protocols ensure consistency between shared memory and the local copy
of data. Depending on the language specifics and the mechanism applied, the time
required is expected to vary. For example in CUDA, syncthreads() ensures that the
current thread block waits for all the other threads before exiting this function, in
order to ensure data or control protection. Thus, the synchronisation time depends
on the arrival time for all the threads at this synchronisation function. Further, it
increases linearly depending on number of times the syncthreads() is invoked, which
corresponds to the number of synchronisation points during program execution. In
MPI, synchronisation between tasks is enabled via barrier synchronisation. All par-
ticipating tasks wait until the barrier is reached before proceeding. The function
MPI _Barrier requires each process to wait until all other processes in the present
task have encountered the barrier. Both these methods are well suited for streaming
applications and task/data parallel applications, as limited inter-task synchronisation
and communication is expected. Unlike in the above-mentioned extremely parallel ap-
plications, this method synchronisation can account to a significant delay when using
CUDA or MPI for general-purpose applications with frequent data exchange.

Overall, synchronisation primitives or functions are governed by the following param-
eters:

e Time required to synchronise n participating elements
e Frequency of synchronisation (how often is synchronisation required)
e Number of elements that can be synchronised at once (scalability)

Communication between threads is managed via explicit declaration of shared vari-
ables or shared regions of memory, protected via lock based mechanisms. In MPI, send
and receive are functions in-built, where passing data between processes initiates com-
munication. Additionally, MPI also supports collective communication mechanisms
such as scatter-gather that enables broadcasts to all and receives from all. Thus,
the necessary parameters that govern the quality of the communication mechanism
include:

e Time required for exchange of data/control among participating elements
e Irequency of communication

e Number of elements that can benefit from this method of communication or
scalability of the mechanism

40 Chapter 3. Application

3.2.3 Drawbacks of Existing Methods

Typically, to aid portability application description is made independent of the appli-
cation mapping and the architectural constraints. Since the extraction of parallelism
is done prior to application mapping, a significant impact on performance is to be ex-
pected on account of the architectural constraints. Consider thread-level parallelism,
although parallel threads are defined during application description, the number of
concurrently executing threads depends on the processors capability and the proces-
sor load at that particular instance. Further, the overheads involved in thread stalls
and resumes are architecture-specific. In addition, executing threads in a multi-core
scenario demands the use of shared caches and cache-coherency policies for data-
coherency. Further, since the performance for an application expressed in thread-level
parallelism is non-deterministic, the speedup when using multi-cores cannot be pre-
dicted a priori. The same issues arise when using MPI or other schemes, where the
target architecture may have widely differing characteristics.

To understand the importance of application-dependent characteristics, the following
sections characterise applications with respect to computation, communication, and
synchronisation requirements. Based on these characteristics, the performance impact
of including additional processing elements is analysed with the focus on time, power,
and energy reports.

3.3 Architecture-Independent Application
Characteristics

Applications are composed of collection of tasks executed in a particular sequence, of-
ten describing an algorithm. These tasks have specific input and output demands, com-
putational complexities, inter-task communication, and storage requirements. These
functional requirements are independent of the target architecture. Thus, an applica-
tion is composed of a finite set of states representing the control flow, and a fixed set of
computational characteristics corresponding to the data-flow requirements. Depend-
ing on the target architecture and its resource constraints, the resulting performance
is determined.

Application-specific characteristics need to match architectural constraints in order
to meet performance requirements and ensure resource efficiency. Here, we define
attributes that are representative of the application, irrespective of the application
domain and the target architecture. Then, the objective is to analyse the impact
on performance depending on the architectural attributes. These characteristics are

3.3 Architecture-Independent Application Characteristics 41

classified on varying degrees of granularity of parallelism and computational complexity
by decomposing the application into its parallelisable functional sub-units.

In processors, typically, an application is translated into a series of instructions; the se-
quence in which they are executed is determined by the control flow. Also in processors,
the data-flow is fixed, but control flow is programmable. The schedule of instructions
determines the sequence at which they are executed. Conventional scheduling for in-
order processors relies on time-based resource multiplexing. Increasingly as transistors
get smaller and area becomes cheaper, space multiplexing is expected to take over time
multiplexing, where scheduling in time can be replaced by scheduling in space. In such
a scenario, representing applications as collections of space-multiplexed functions in
place of sequences of time-multiplexed instructions becomes necessary. The follow-
ing sections the characterisation of applications is independent of these two models.
Hence, it is applicable for application mapping in both these domains.

3.3.1 Model for Computation

Application-level characteristics and the underlying architectural features together de-
termine the performance of the system. Here, the application-level formulation deter-
mines the total time required for all the computational operations in an application.
The total computation time is given by:
: 1
Teomp = Y _ Ceomp, * Neomp, - +——

2 T (3.1)
In the above equation, the total computation time (7o) is the total time required
to compute all the operations (k), where N,uy, is the number of computational opera-
tions, viz., the number of instructions, tasks, or processes depending on the granularity
of computation. The execution time of each operation is expressed as a product of
the number of clock cycles required for computation (Ceomyp), the number of such op-
erations (Neomp), and the reciprocal of operating frequency of the computational unit
(feomp) for every operation i.

In a sequential computing model (such as processors), Ceomy, corresponds to the num-
ber of clock cycles required for an instruction type %, Neomp, relates to the number of
such instructions in the application, and f..mp, in this model is the processor’s operat-
ing frequency. However, f.,mp, can be variable for each computation operation 7. As
an example, consider a computation function that translates to 10 addition operations
and that each addition operation requires 1 clock cycle. In that case, the parameters
for Equation 3.1 correspond to : Negmp = 10, Ceomp = 1, k = 1, and feomyp is the
processor’s operating frequency.

42 Chapter 3. Application

In a parallel computing model (such as FPGAs), Ceomyp is the execution time for a
task. In the best case C,yny, can be a single clock cycle, where the entire task can be
computed in a single clock cycle due to the availability of abundant parallel resources.
In this case, assuming just one instance of the task to suffice, Neom, = 1, and the
operating frequency (f.omp) is determined by the critical path of the computational
block. Thus, the Equation 3.1 can be used for varying granularities and computing
models.

Similarly, the total power consumed for all the computational operations (Piotai—comp)
is given by:

k
Ptotal—comp = Z Pcompi : Ncompi (32)
=1

where, Ny is the number of computations and P, is the power requirement per
computation ¢, and k is the total number of computations for a particular application.
Task execution using multiple processing elements leads to lower computational load
per processing element (lower P, per task i), but the power consumption increases
(with increase in cumulative Ng,m,). Overall, although partitioning an application
to multiple compute elements reduces the execution time, power scales linearly with
Neomp- Thus, overall impact on energy is nullified, unless a reduction in time is higher
than the number of additional N, (super-linear speedup).

In a sequential model used in processors, Peomp, corresponds to the instruction-level
power for instruction type ¢ and Neopmyp, is the number of instructions of type 4, where
k is the total of instruction types. In a parallel computing model, P, corresponds
to the power consumed by the task i and N;op, is the number of such tasks.

When using clock-cycle programmable architectures, application description can in-
fluence the number of operations (Neomp) required for computation. Whereas, the
number of cycles required for computation (Ceemyp) and frequency of operation (feomyp)
remains unchanged, as they are fixed for a given processor architecture. The num-
ber of cycles required for computation depends on the availability of computational
elements, the functionality of the computational elements, and the number of opera-
tions required to fulfill the given functionality. E.g., this number can be altered by
employing multiple processing elements. Similarly, for an FPGA or an ASIC, where
the architectures adheres to the application’s characteristics the timing characteristic
are identical for the two architectures. However, the power characteristic is dependent
on the architectural features such as frequency of operation. This explains why the
execution time of an application implemented as an ASIC and FPGA concur but not
the frequency of operation and the power characteristics, as listed in Table 2.1.

3.3 Architecture-Independent Application Characteristics 43

3.3.2 Model for Synchronisation

For parallel computations, the synchronisation mechanism employed determines the
overhead involved before the actual control or data exchange is initiated. To gen-
eralise the timing model for synchronisation, it may be termed as the time required
for synchronising parallel operations, where the time required for synchronising each
operation may be variable. The application’s functionality determines the amount
of synchronisation and the architecture-specific mechanisms determine the delays in-
volved for each synchronisation. Hence, the total synchronisation time or Ty, is given
by:
4 1
Toyne = Coyne, * Noyne, - ——

i—1 fsynci

(3.3)

where, Ny, is the number of times the parallel operations need to synchronise and is
dependent on the application characteristics and its computational granularity. Cgyp.
is the number of clock cycles required for each synchronisation operation and it is
dependent on the underlying architecture and the associated delay involved in the
arrival time for all tasks to the synchronisation point. k corresponds to the number
of synchronisation schemes available for every synchronisation instance 4. fgn. is the
operating frequency for each synchronisation mechanism z. Typically, in processors the
operating frequency is the same for computation, communication, and synchronisation.
As an example for application characteristics that determine synchronisation consider
extremely data-parallel applications. For such applications there is no exchange of
information between parallel tasks, which implies Ny, = 0.

Similarly the total power consumption for synchronisation Pjoq1—sync is given by :

k
Ptotalfsync = Z Psynci ' Nsynci (34)

i=1

where, Py, is the power consumption for each mechanism ¢ and Ny is the number
of such synchronisation operations.

Thus for a fixed architecture, with a single synchronisation scheme (k = 1), the es-
timation of synchronisation time and power depends on the transaction counts or
Ngyne. Optimising for time and power involves minimising the application-dependent
component Ny, which results in minimising both the total power consumption and
execution time.

44 Chapter 3. Application

3.3.3 Model for Communication

The number of inter-task data or control exchange is based on the granularity of
tasks and number of parallel tasks. The total communication time is defined as the
time required for exchange of data (or control) for all the communication operations.
Variations in the inter-task communication are entirely dependent on the architecture,
available bandwidth, and the associated physical resource constraints. E.g., the delays
involved in a bus-based infrastructure are protocol dependent and implementation
dependent. Whereas, for multi-ported, shared register files there is no communication
delay involved in data exchange. However, the number of such transactions required
is specific to application characteristics. Thus, the communication time is expressed
as:

k
Tcomm = E Ccommi : Ncommi :

- fcomm~
=1 4

! (3.5)

where, T,,m is the total communication time and N, is the number of times the
parallel operations exchange data and is dependent on application characteristics and
its granularities. Since there could exist multiple communication schemes even within
a single architecture, k is a parameter for each type of communication i. The number
of clock cycles required for each communication operation is given by Ceypnm and is
architecture-dependent (implementation-specific). E.g., it corresponds to the delays
in a bus-based access or in a point-to-point communication. feomm, is the operating
frequency of the communication operation.

Power characteristics for the communication component (Piotai—comm) may be given

by :

k
Ptotalfcomm = Z Pcommi : Ncommi (36)
i=1

where, Neomm is dependent on the application-specific attributes. E.g., the frequency
of communication or data-exchange depends on the degree of parallelism. P, is
architecture-specific and relates to the communication mechanism. E.g., for VLIW
processors the power consumed for data-exchange is a register file read (and/or write),
whereas for a bus-based multi-core it includes the communication mechanism (bus or
switch, etc.) followed by the read/write mechanism.

3.4 Comparing Application-specific Attributes 45

3.4 Comparing Application-specific Attributes

Attributes such as granularity of tasks, amount of inter-task communication, and fre-
quency of synchronisation identify application-specific attributes. An application is
composed of computing clouds inter-connected via communication and synchronisa-
tion mechanisms. The type of computing elements and the communication infrastruc-
ture is determined by the target architecture. However, application specification and
computational granularity influences the execution time and power consumption even
in the absence of the architectural influence, as seen in the previous sections.

Computation Q lg <>

Application Communication

Synchronisation ccee

I Tcomp

I Tcomm

Figure 3.2: Generic Timing Components

In this section, we classify applications based on computation requirements and its
associated communication and synchronisation overheads. Figure 3.2 is representative
of the components of an application. The quantitative relation between the amount
of computation, communication, and synchronisation is a decision making factor for
choosing the appropriate architecture. Although the model of the communication
protocol can be deterministic, the dependence of communication and synchronisation
on computation and vice-versa influence the performance accuracy of the models.

46 Chapter 3. Application

Equation 3.7 shows the total execution time for an application (Ti.,) with k tasks,
with T.pm, as the execution time for each task and 7., as the communication time
between tasks, and T, as the synchronisation time between tasks.

k
T;fotal = Z(Tcompi + Tcommi + Tsynci) (37)

i=1

For an application with fine-grained tasks, frequent inter-task communication, Ti.omp
corresponds to instructions and k represents the total number of instructions, as given
by Equation 3.7.

n k
Tiotat = > Teomp, + O _(Teomm, + Teyne,) n <k (3.8)

i=1 i=1

For an application where the tasks are composed of multiple such instructions, the
application can be subdivided into multiple tasks or functions. Applications could
comprise multiple tasks, where the granularity of a task comprises multiple such in-
structions. In this case, T, represents the execution time for tasks and n represents
the total number of tasks and £ is the associated inter-task communication and syn-
chronisation. These applications are representative of task-level granularity, given by
Equation 3.8.

n k
Eotal ~ Z Tcompi ‘ Z(Tcommi + Tsynci) ~ 0 (39)

i=1 i=1

For data-level parallelism, tasks operate independently on exclusive data-sets, with
equal length tasks and no inter-task communication or synchronisation, as represented
in Equation 3.9. For an application with thread-level parallelism, T¢op,, corresponds
to instructions in a thread and £ represents the total overhead for switching between
threads. However, this delay is non-deterministic since it depends on the caches poli-
cies, cache hit/miss rates, thread stalls etc.

In the following sections, for a set of applications attributes these attributes, viz.,
amount of computational requirements, communication demands, and frequency of
synchronisation are extracted. As will be seen, these attributes are representative of
the type of application and the granularity of parallelism.

3.4.1 DSP Applications

In this section two applications, viz., matrix multiplication and FIR filter, commonly
used among other DSP applications are analysed for their computation, communi-

3.4 Comparing Application-specific Attributes 47

cation, and synchronisation characteristics. These characteristics are inherent to the
algorithm and independent of the target architecture.

Matrix Multiplication

Consider multiplication of two n x n square matrices A and B, where the resulting
product matrix C is given by:

Cij =Y Aip* By, (3.10)
k=1

where each element of the resulting matrix requires n product computations and n — 1
summations. The algorithm itself operates on a total of 2-n -n data elements for
computation and an additional n - n data elements for storing the result. The resource
availability and the granularity of computation define the amount of communication
and synchronisation within the algorithm. As seen in Table 3.1, the application ex-
hibits zero communication and synchronisation demands, hence well suited for applica-
tion partitioning onto multiple elements with computation as the priority. Additionally
in this case, the performance is unaffected by the target-dependent communication and
synchronisation schemes.

Table 3.1: Matrix Multiplication: Comparing Computation, Communication, and

Synchronisation
Granularity Neomp Neomm — Nsyne
n Multipliers, n — 1 Adders n? 0 0

FIR Filter

Realising an FIR filter is given as follows by Equation 3.11 and the realisation is shown
in Figure 3.3. As seen, the first stage of computation requires n multiplications. A
stage of data exchange or communication follows this stage of computation in order
to perform a summation operation. A synchronisation operation is also necessary to
avoid any violations. The final stage is a summation operation. This results in a total
of n+1 computations (Neymp), one communication per computation element (Neomm),
and one synchronisation operation (Ngync).

y(i) = a(k)*z(i — k) (3.11)

48 Chapter 3. Application

a(1 x(i-1) a(2) x(i-2) a(n) x(i-n)

Computation X XooF X

Communication

Synchronisation

Computation z
y(i)

Figure 3.3: FIR Filter: Computation, Communication, Synchronisation

where a(k) is the coefficient of the FIR filter at tap k, z(i) is the input, y(i) is the
output at time ¢ and k is the length. The computation and communication demands
are dependent on application’s complexity and is proportional to n, as shown in Ta-
ble 3.2. Whereas, synchronisation requirement is negligible in comparison to the other
components.

Table 3.2: FIR Filter: Comparing Computation, Communication, & Synchronisation

Granularity Neomp Neomm — Neyne
1 Multiplier, 1 Adder n+1 n 1

Hence in this case, the computation and communication infrastructure of the un-
derlying architecture play an important role in achieving optimal performance. The
synchronisation requirement is a minor component for the overall execution time.

3.4.2 Multiplier used in Elliptic Curve Cryptography

The finite field multiplication in GF(2%*3) is represented as follows:

Az) = nz_:Aj-ij (3.12)
B(z) = nlej Xiw

3.4 Comparing Application-specific Attributes 49

where n = 8 and w = 32. Here, w is word width and n is 8 for a 233-bit word
length. Using Karatsuba [59] method iteratively, the multiplication of binary polyno-
mials of degree 232 can be calculated with 27 finite field multiplications at word-level.
The algorithmic realisation is represented in Figure 3.4, where the base nodes are the
multipliers (represented in blue). Considering the computations, it has 27 tasks with
inter-task dependencies as shown in the figure. In terms of communication, the first
stage has 27 data exchanges, followed by 9 in the second stage, and 3 exchanges in
the final stage (represented in red). To avoid data corruption, the first stage requires
9 synchronisations, the next stage needs 3 synchronisations, and finally one synchro-
nisation towards the end (represented in green). Identifying the optimal granularity
of the tasks is essential to obtain the number of computations (Nem,), the number of
inter-task communications (Neomm), and synchronisations (Ngyne)-

A

. Granularity
Computation

Y

Communication Synchronisation

Figure 3.4: ECC: Computation, Communication, Synchronisation

Table 3.3: ECC: Comparing Computation, Communication, and Synchronisation

Granularity Newmp Neomm Nsyne

Tasks = 1 27 39 13
Tasks — 9 3 3 1

The number of communication and synchronisation operations varies depending on the
granularity of the computational blocks. Table 3.3 shows the variations in numbers
for varying granularity. The optimal granularity is chosen such that the number of
computations is either equal or greater than the inter-task communication. Hence,
when a granularity of 9 tasks is chosen, the inter-task communication reduce to a total
of 3 exchanges and a single stage of synchronisation.

50 Chapter 3. Application

3.4.3 Self-organising Maps

Self-organising maps are neural network based machine learning algorithms used for
data analysis for high dimensional data sets [60]. A SOM comprises an N-dimensional
grid of neurons or processing elements that are adapted to an input data-set X.

= \/ Computation
\/ p

<I;|n\d local best matEh/

Synchronize all
participating processors
Share
local best matches

J

Find and share
global best match

Communication
+

Synchronisation

epoch

—
S **’\~—\\\/ Computation
S Adapt map)

Figure 3.5: Parallelising the SOM Algorithm

This is a case for data parallel algorithm execution and is divided into the following
three steps:

1. Initialise: The weight vectors m, are initialised for all neurons N

2. Locate Best match: A vector Y(t) is randomly selected from X and the distance
between 7/ (t) and all 71; is calculated. The neuron with the shortest distance
to the input is called the best match.

3. Adapt Map: The weight vectors ni; are adjusted towards the input m. based on
a neighbourhood function (often a Gauss-kernel)

Steps 2 and 3 are repeated for all vectors 7TeX , where each iteration for all vectors is
called one epoch. Depending on the requirements of the dataset, several such epochs
may be required to form a properly organised map. Thus, the execution time of the
SOM algorithm is mainly dependent on the number of neurons, the number of vectors,
the dimension of the vectors and the number of epochs, as shown in Figure 3.5 and
described in detail in [PPPRO9.

3.4 Comparing Application-specific Attributes 51

For simplification the total execution time (Tjq;) is given by:

Trotar % |N||X | dim () - epochs (3.13)

In terms of computation, all the | V| neurons perform the same set of operations, hence
the parallelism only limited by the target architecture. The sequential communica-
tion and synchronisation that is incurred is a very small portion of the code [61]|. To
explore data-level parallelism, two possible dimensions can be explored. Table 3.4
shows the characteristics categorised as computation time, communication demand,
and corresponding synchronisation requirement for both the approaches. The compu-
tation requirements are linearly proportional to the number of neurons, vectors and
the number of epochs. Similarly, the algorithm is composed of two computation in-
tensive tasks, where exchange of data is expected. Hence, the amount communication
and the frequency of synchronisation are both proportional to the number of epochs
and the approach chosen.

Table 3.4: Self-organising Maps: Computation, Communication, Synchronisation

Approa(:h Ncomp NCOmm NSynC
Neuron Parallel |N||X|dim(Z) - epochs |N| - epochs |N| - epochs
Vector Parallel |N||X|dim(Z) - epochs dim(7) - epochs dim(7) - epochs

3.4.4 Priorities: Computation, Communication, or
Synchronisation

Figure 3.6 shows the variations in the computation, communication, and synchro-
nisation requirements among the above discussed applications. As can be seen, the
choice of the target architecture needs to consider the application’s computation, com-
munication, and synchronisation demands. E.g., matrix multiplication is dominated
by computational demands. Since synchronisation and communication demands are
absent, it can be mapped even onto architectures that have high communication and
synchronisation costs. Whereas, an FIR filter requires an infrastructure with fast com-
munication and synchronisation mechanism, since the contribution is significant and
cannot be neglected. For the ECC application, fast computation and communication
mechanisms are essential when the granularity of tasks is low, since the cumulative
effect of the two dominates the execution time. The synchronisation time is not a
primary concern, since it is a minor component. As the granularity of tasks increase,
a corresponding reduction in the synchronisation and communication costs are seen.

52 Chapter 3. Application

However, both computation time and communication time need to be taken into con-
sideration for this application. For the SOM algorithm, as the application exhibits
data-level parallelism operating on large amounts of data, a higher granularity of
tasks are chosen to reduce the amount of inter-task communication and synchronisa-
tion requirements. Hence, in this case, the cost of synchronisation and communication
are a second-level priority in comparison to the computation infrastructure.

Compute B Communicate Synchronise
100% ~
80% | -
60% -
40% -

20% -

Total Execution Time

0% T T T !

Matrix FIR Filter ECC SOM
Multiplier

Figure 3.6: Application-Specific Computation, Communication, and Synchronisation

Matching Application Characteristics to Architectural Attributes

Table 3.5 compares the inherent computation, communication, synchronisation infras-
tructures in some existing processors. The processors chosen are the massively parallel
processor Ambric, a VLIW processor developed at the research group called CoreVA,
and the QuadroCore multiprocessor discussed in this thesis. In order to compare these
processors, the parameters discussed in Section 3.3 were chosen. For the processors
under consideration, Ngym, corresponds to the number of simultaneous computations,
Neomm 1s the number of simultaneous communications, and Ngy,. is the number of
simultaneous synchronisations supported by the architecture at any given time in-
stance. These parameters only consider the architectural features for simultaneous
operations, and do not consider the implementation details viz., clock cycles required
and the operating frequency.

The application shown in Figure 3.2 has been mapped onto a single processor, a
multi-issue fine-grained processor resembling a VLIW processor, and multiple copies
of a processor forming a multiprocessor, like QuadroCore. Figure 3.7 compares the

3.4 Comparing Application-specific Attributes 53

Table 3.5: Comparing Parallelism among Processors

Architecture Neomp Neomm — Noyne
Ambric [32] 8 8 1
CoreVA [62] 4 4 4
QuadroCore [PPR*| 4 4 4

variations in the computation, communication, and synchronisation characteristics for
changes in architectural characteristics.

Uniprocessor Fine-grained, Multiple Issue Coarse-grained, Multiprocessor
H '
T \:\
L]
|Za (e |
f d
L]
g S
= Processorl Slot1 Slot2 Slot3 Slot4 Processorl Processor2

Computation O] <>
Communication l
Synchronisation '

Processorl

Figure 3.7: Comparing Processors with Variable Granularities

For Ambric, each tile comprises eight programmable elements, hence has an Neom,
of 8. Each tile has eight parallel communication channels, which corresponds to an
Neomm of 8. The asynchronous mechanism of synchronisation corresponds to one
synchronisation between processing elements at any given time instance, hence has an

Ngyne of 1.

For our VLIW processor CoreVA, which has four parallel ALUs, the Ny, is 4. The
shared register file and a lock step synchronisation mechanism corresponds to an Ny,m
of 4 and an Ny, of 4.

The QuadroCore processor also has four processing elements, and is representative of
chip multiprocessors (CMP). The processors exchange data via a shared multi-port
register file. This infrastructure corresponds to an N, of 4 and an Negpm of 4.
Additionally, up to four processors can be synchronised simultaneously, which makes
Nsyne = 4.

54 Chapter 3. Application

Even in the presence of a fixed frequency of operation and identical application charac-
teristics (Neomps Neomm, and Ngyn.), the architecture-specific parameters (Ceomp, Ceomm,
and Cyy,.) influence the choice of applications best suited for an architecture. At
this stage, the number of pipeline stages that affects frequency of operation, which
is implementation-specific is not taken into consideration. To match these architec-
tural metrics, the application characteristics are categorised into applications with
instruction-level parallelism (ILP), task-level parallelism (TLP), and data-level paral-
lelism (DLP). Thus, the most optimal architecture for a given application is chosen
such that the computational operations dominate over the communication and syn-
chronisation overhead, also stated in Equations 3.7, 3.8, and 3.9. This can be obtained
by ensuring Tomp > Teomm + Tsyne-

Table 3.6 lists the differences for the three specific processors, where the difference in
the Ceomm and Cype changes the matching application domains. Here, the granularity
of computation is chosen at instruction-level, resulting in a single-cycle instruction
execution. With the correct choice of communication and synchronisation mechanism
Ambric can be used for instruction-, task-, and data-parallel applications. The CoreVA
VLIW processor is ideal for fine-grained instruction-level parallelism or in applications
with repeated identical operations like in data-parallel applications. Finally, as can be
seen, the QuadroCore is well suited for task- and data-level parallelism.

Table 3.6: Comparing Clock Cycles among Processors

Architecture Cippp Ceomm Csyne Matching Applications

Ambric 1 1-4 1 ILP, TLP, DLP
CoreVA 1 0 0 ILP, DLP
QuadroCore 1 4-15 1 TLP, DLP

Adaptive mapping strategies to modify these parameters depending on application
characteristics (Neomp, Neomm, and Ngyp.) are discussed later in Section 4.3.

3.5 Restating Amdahl’'s Law

The process of partitioning has to ensure a that the computation time dominates over
the communication and synchronisations times. The computation time is specific to
the architecture of the computing element or the processing element. E.g., it refers
to the processor’s microarchitecture (RISC, superscalar) and memory structure in a
multiprocessor organisation. In addition to the computation architecture, the com-
munication infrastructure contributes to the communication delay, which also means
that merely accelerating the compute engines is not sufficient, the communication and

3.5 Restating Amdahl’s Law 55

memory needs to scale accordingly. Similarly, the frequency of synchronisation also
influences the overall performance improvement. This is in addition to the effort of
analysing power and energy issues by extending Amdahl’s law in [63, 64]. Our analysis
is generic and only considers issues in parallelism affected by application partitioning.
Here, architectural constraints such as frequency of operation and device voltage re-
main unaltered.

3.5.1 Speedup: Comparison to Amdahl’'s Law

Consider an application mapped onto N processors, where the parallelisable portion
of its total execution time is given by T, and the non-parallelisable portion (or
the sequential portion of the parallelisabe part) given by Ty.,. As per Amdahl’s law,
apart from the sequential component (7,) the parallel component (7,) reduces with
increase in N (which is the number of processing elements), given by the following
equation:

Tseq + Tpar

Tpar

(Toey + T22) (3.14)

Speedup =

The overhead involved because of data-distribution, collection, memory access, and
the associated synchronisation times introduced on account of application partitioning
may be termed as the overhead of partitioning. Thus, Amdahl’s law can be re-written
as follows:

Tseq + Tpar

(3.15)
(Tseq + % + Tsync + Tcomm)

Speedup =

where, T}, is the sequential component of the total execution time, T}, is the par-
allelisable component of the total execution time. Ty, and T,pm,, are the non-
parallelisable overhead in time, incurred on account of application partitioning. In
other words, for a parallelisable portion p, and a corresponding sequential portion
(1 — p), the speedup is given by:

1

- 3.16
l—p+ % ()

Speedup =
Figure 3.8 shows the impact of the timing overhead of partitioning algorithms onto four
processing elements. The X-axis shows the percentage of time overhead in the applica-
tion and the Y-axis shows the speedup observed. Impact of increase in communication
and synchronisation code (additional non-parallelisable code) due to application par-
titioning is plotted. The execution time of the communication and synchronisation

56 Chapter 3. Application

—aToverhead=0 (Amdahl's Law) —+—Toverhead=0.1*P
——Toverhead=0.5*P »Toverhead=0.9*P

—x—Toverhead=P

Speedup

I T T T T T T T T T 0
0O 01 02 03 04 05 06 07 08 09 1

Parallel Portion

Figure 3.8: Impact of Sequential Code on Application Partitioning

overhead component (T,yerneaq) 1S assumed to be a fraction (0.1, 0.5, 0.9, and 1.0) of
the total parallelisable portion (P). Additionally, the total communication and syn-
chronisation code increases with the increase in the number of processors. As seen,
with an increase in overhead, the observed speedup deteriorates significantly. It also
shows that the sequential overhead on account of added parallelism cannot be ignored.
A performance deterioration compared to the original sequential execution is observed,
when the overhead of parallelism exceeds the achieved speedup. As seen in the plot,
an increase in the number of processors only makes an impact when the amount of
parallelism is high, irrespective of the amount of serial code. Further the same charac-
teristics are noticed for an increase in the number of processors, resulting in increased
overhead of parallelisation (viz. synchronisation and communication times). Apart
from the constant sequential component in any algorithm, a non-parallelisable com-
ponent that comes into play for every additional processing element included during
application partitioning. This additional component contributes to the overall speedup

computation.

3.5 Restating Amdahl’s Law 57

As an example, consider partitioning an FIR filter onto the 4-processor QuadroCore
using the new reconfiguration design space. The equation for realising an FIR filter is
given as follows by Equation 3.11.

—a—S1 —0—S2 ——S3 —0—S4 --e--Sfirl0

--k&--Sfir40 Sideal @ SQ-MM @ SQ-FIR

Speedup

0.0 0.2 04 0.6 0.8 1.0

Parallel Portion

Figure 3.9: Impact of Application Mapping on QuadroCore

Figure 3.9 shows the overlay of the classical Amdahl’s law with increasing number
of processors. The theoretical estimation of speedup achieved using Amdahl’s law
applied to one, two, three, and four processors are represented by S1, S2, S3 and 5S4
respectively. The ideal case of N-fold speedup is represented by the plot S;geq;, which
also represents the case of a matrix multiplier with data elements present locally for
each of the processors. The speedup achieved for a 10-tap FIR filter is represented
by Stiro and for a 40-tap filter by Sfia0. The intersection of the plot Sfi10 (and
Stirao) with the graphs for Amdahl’s law coincide with the parallelisable fraction for
one, two, three, and four processors respectively. As can be seen, with increase in the
number of processors, the parallelisable fraction decreases. The change in the serial to
parallelisable ratio is accounted for the additional communication and synchronisation
overhead incurred on account of application partitioning. The actual implementation

58 Chapter 3. Application

reports obtained on mapping the two applications (viz., matrix multiplication and
fir filter) on the QuadroCore multiprocessor are shown as solid points Sg_prr and
So—mu, which coincide with the plot S4. A slight deviation in the implementation
reports and the theoretical estimations may be accounted to the variations in the
shared memory access times on account of bus arbitration.

3.5.2 Power: Comparison to Amdahl’s Law
Power consumed in digital CMOS circuits is given by:

Piotar = a(Cr, - V2 far) + Isc - Vaa + Leakage - Vad (3.17)

where « is the probability of signal transition or the application-specific switching
activity, C'p, is the loading capacitance, Vg4 is the supply voltage, fqi is the operating
frequency, Igc is the short circuit current, [jeqrage is the leakage current.

For a constant operating frequency, the application-specific inputs influence the switch-
ing activity or a.. Application partitioning distributes the activity over a number of
processing elements. Thus, the total power consumption or dissipation is proportional
to the number of processing elements used. Consequently, power increases linearly
as the number of processors. Although, using additional processing elements reduces
the amount of work done by each processor and hence the execution time of each
of the processors, the overall power consumed scales linearly. Further, if additional
power is consumed due to the communication and synchronisation overhead, power
consumption increases accordingly.

Considering p as the parallelisable portion of the application being executed on a
cluster of N processors, the total power (Pjy,) consumed is a combination of the
parallel execution component and a sequential component given by:

F)total =p- PpCLT + (1 _p) : Pseq (318)

where, P,,, is the power consumed by the parallelisable portion of the application,
which contributes to a percentage p of the total power consumption. Pk, is the power
consumed by the sequential portion and it contributes to a ratio of (1 — p) times the
total power consumption.

In Equation 3.18, the assumption is that a single processor is sufficient for executing
sequential code and only the parallel component is partitioned onto multiple proces-
sors. Additionally, during the execution of the sequential code, static power of the
unused parallel processors is assumed to be negligible. Further, during the execution
of sequential code, only one processor dissipates power and the unused processors do

3.5 Restating Amdahl’s Law 59

not contribute to power. In this equation p is the ratio of the parallel portion in the
original application.

3.5.3 Impact on Energy

The combined impact of time and power influences energy calculations. Thus, the
total energy (Ey) consumed by N identical processors, is given by:

Tpar

En = [Pseq - Tseq] + [Ppor - =] (3.19)
N

where, P, is the power consumed by the sequential component of the application,
P

P
parallel processing elements.

o 18 the power consumed in the parallelisable portion, and N is the number of

Energy consumption during execution of the entire application on a single processor
is given by FEj:
E, = Pl : [Tseq + Tpar] (320)

where, P; is the power consumed on one processor.

Ideal Scenario

In the ideal case, leakage power, and additional dynamic power is absent when the
sequential portion of the algorithm is executed. Additionally, the partitioning of ap-
plication onto the N processors does not incur an addition power or communication or
synchronisation timing delay. In this scenario, the power consumption for N identical
processors are the summation of power for all the processors executing the parallelis-
able portion of the code and the sequential code is executed on one of the processors,
given by:

Ppw = PN (3.21)
Pseq = Pl

where, P; as the power consumed by one processor.

Similarly for Time,

T = 2.1 (3.22)
Tseq - <1_p)T1

=l

60 Chapter 3. Application

Combining Equations 3.18, 3.19,3.20, 3.21, and 3.22,

Ey = [(1_p)'Pl‘T1]+[N'P1'%‘T1] (3.23)

Comparing energy consumption of N processors to a single processor,

En
— = |1 3.24
== 1 (3.24)
The change in energy or savings in energy is absent when partitioning applications
onto N processors, even in the presence of a N-fold speedup.

Non-ideal Scenario

In this case, during the execution of sequential code on one of the processors the
power consumption is not entirely cut-off on the unused processors. Hence, the re-
sulting energy consumption is the same as that of a single processor, in the best
case scenario. Additionally, in the best case it is assumed that Tsyue + Toomm ~ 0,
Piyne + Peomm ~ 0. In Figure 3.10, variations in time, power, and energy for increasing
percentage of parallel component are plotted. time(1), time(2), time(3), and time(4)
represent the execution time on one, two, three, four processors respectively. Similarly,
energy(1), energy(2), energy(3), and energy(4) represent energy consumption. The
time plots (time(1), time(2), time(3), and time(4)) follow Amdahl’s law, where the
best performance is observed in the absence of any serial component and the entire
application can be partitioned equally among the available processors. Thus, time(4)
shows the best speedup. For the power, it is a linear relationship to the number
of processors, where power consumption scales with the number of processors. As
a consequence, the best energy reports observed from the energy plots (energy(l),
energy(2), energy(3), and energy(4)) is in the case of energy(4), where the time re-
ports are the best. However, as can be seen, the energy characteristic in the best case of
performance speedup (energy(4)) is merely as good as a single processor (energy(1)).
The benefits of speedup are lost on account of the multi-fold energy increase offset.
Additionally, these plots entirely ignore the overhead of partitioning, which further
worsens performance gains and corresponding energy savings.

Thus, following are the conclusions based on the formulations for time, power, and
energy:

e Time: Energy savings can be achieved when the speedup for N processing ele-
ments is greater than N, i.e. a super-linear speedup. However, extracting these
performance speedups is not always easily possible.

3.6 Summary 61

——time(l) —time(2) —time(3) —time(4)

—energy(1)—energy(2)—energy(3) energy(4)

4.5 4
2 - «—— Worst Case Energy
3.5 ~
3 -

2.5 A
2 - Best Case Energy

1.5 A

14 -
0.5 ’-—

0

Energy and Time

0 01 02 03 04 05 06 07 08 09 1

Parallel Portion

Figure 3.10: Analysis of Time, Power, Energy Characteristics

e Power: Increasing the number of processor results in a linear increase in power.
Thus, in the absence of voltage and frequency scaling strategies, increasing the
number of processors does not account to any energy savings.

Hence, it is essential to introduce new strategies, both in terms of time and power,
in a parallel processing scenario. These methods need to introduce energy savings
even with increasing number of processors. The following chapters focus on applica-
tion, architecture, and mapping methods to achieve energy savings in multiprocessor

architectures.

3.6 Summary

Based on the previous discussion it is apparent that application requirements need
to be extended beyond computational characteristics. For applications mapped onto
multiple processing elements, it needs to include the communication and synchronisa-
tion overhead incurred due to application partitioning. During application description,
architecture independent application characterisation helps to identify the appropriate
architectures. Such an application-driven optimisation needs to take into account the
following considerations:

62 Chapter 3. Application

e Considerations for run-time matching of computational, communication, and
synchronisation changes for application to architectural mapping

e Introduce optimisation strategies that consider the overhead of application par-
titioning and are independent of the underlying instruction set architecture

e Methods to alter the architecture to match application requirements and vice-
versa

e Introduction of power characterisation to make an overall impact on energy con-

sumption
St S .
v
Application Architecture
? g‘ ? Tcomp,Tcomm, Tsync
-e ee oke oee I:)comp,l:)comm, I:)sync

Ccomp, Csync, Cecomm

Ncomp, Ncomm, Nsync

Figure 3.11: Feedback for Application Modification

Figure 3.11 summarises the method of application description and feedback-driven op-
timisation strategy. Based on the feedback obtained, application-specific description
such as task-granularity, inter-task communication, and consequently synchronisation
can be fine-tuned. These performance characteristics enable efficient application par-
titioning onto multiple processing elements. In addition to timing characterisation
for computation, communication, and synchronisation, it becomes essential to con-
sider the power components for each of the above cases. In the following chapters,
architectural optimisations that address the above open questions are discussed. In
QuadroCore, architectural features enable power optimisation such that the overall
energy consumption for a four-processor cluster is lower than the energy consumption
of a single processor, even in the absence of a super-linear speedup.

Chapter 4

Application to Architectural Mapping

Transforming application-level description to meet architectural constraints consti-
tutes application-to-architectural mapping. This stage binds the two independent
domains, viz., application description and architectural constraints, also described
in the Y-chart [65]. Generally, application description is distinctly independent of
the underlying hardware. This approach is adopted to maintain universality, retain
target-independent code description, and provide code portability across architectures.
Hence, mapping is target-specific and is responsible for converting the application de-
scribed to suit the architecture.

In processor architectures, high-level programming abstractions in languages such as
C, aid in application description. After gauging the application’s complexity, selecting
the appropriate number and type of resources is a decision made during application
mapping. Compilation transforms the target independent application description to
combinations of instructions, defined in the processor’s instruction set architecture.
Target-specific constraints are introduced at this stage. Since the processor’s pro-
gramming model relies on sequential processing, scheduling decides the time instance
at which a resource is used based on the instruction executed. The instruction mem-
ory stores the sequence of instructions that need to be executed to accomplish the
application’s functionality with the corresponding data elements residing in the data
memory. The levels of memory hierarchy for the data flow exists between the register
file, as first level, the scratchpad memory, caches, and finally the main data memory.

With increasing complexities and transistor densities, application-specific integrated
circuit designs typically involve hardware synthesis. This is a process of translating
the high-level functional description to gate-level specification using process and tech-
nology specific libraries. This translated netlist is placed and routed, using elaborate
design tools to meet performance constraints. This process is followed by a huge de-
sign time for chip fabrication. This entire process has a large design time, verification

64 Chapter 4. Application to Architectural Mapping

time and consequently a large time-to-market. However, the single most important
performance advantage is the optimal application-to-architecture translation. The re-
sulting architecture is fine-tuned for a particular application, thus resulting in optimal
performance characteristics such as time, area, power.

FPGASs are off-the-shelf devices that avoid the delay and costs involved in fabrication.
User-defined applications and application updates can be introduced to the available
device, without having to fabricate each time. However, mapping in this context in-
volves transforming applications described in hardware description languages to suit
the architectural constraints of the target FPGA architecture. Customisations are
introduced by configuring these devices, which shortens the time-to-market. Con-
figuring, in this context, involves customising the FPGA’s components using HDL
synthesis, followed by placement, and routing of the synthesised design. Configuring
an FPGA involves defining the functionality of the individual configurable functional
blocks and programming the routing structures connecting them.

In this chapter, we focus our discussion to application mapping in devices that can
be customised in the post-fabrication phase, viz., processors and FPGAs. Mapping
strategies for these two devices address two diverse domains, viz. time and space.
The following section associates architectures and applications to provide a better un-
derstanding of the diversity in mapping strategies for variations in applications and
architectural features. Design space exploration in this context involves finding the
best match between a given application and its target architecture. In this context,
Section 4.2 details and compares the objectives for application mapping in the two
design flows, viz., compilation and FPGA mapping. This discussion leads to a method
of merging the two design flows for applications mapped onto our reconfigurable multi-
processor QuadroCore. A generic technique to merge two conventional mapping styles
of spatial and temporal design flows is discussed. Section 4.3 presents a technique that
uses reconfiguration as a method for adaptive mapping in our reconfigurable multi-
processor. Two schemes of adaptive mapping, viz., static and dynamic reconfiguration
are presented in this section. Finally, Section 4.4 summarises the entire chapter.

4.1 Applications and Architectures: Fixed vs.
Alterable

The application’s performance requirements, compatibility, time-to-market, and ease
of application mapping for the application that needs to be executed decides the target
architecture. Figure 4.1 summarises the diversities that arise in application to archi-
tecture mapping. These paradigms are limited to possibilities, where in-field modifica-
tions are possible. Hence, they are compile-time or run-time modifiable architectures

4.1 Applications and Architectures: Fixed vs. Alterable 65

and applications. This classification includes programmable processors and reconfig-
urable FPGAs and excludes design-time configurable processors such as Tensilica’s
Xtensa [11], SiliconHive [30], as they require a phase of device fabrication.

Fixed Application Alterable Application
)
5 ASICs A s General Purpose
© Processors
2 Network
S Processors
2 Digital Signal EE Vol
raphic Processors oltron
g Processors TRIPS
x . -
i Domain specific processors
o QuadroCore
=
g Core Coarse-grained
= — Cannibalisation Reconfigurable
ageNe i .
E g iz Architectures
ko) Fault Tolerant
@ FPGA
2
<

Figure 4.1: Architecture and Application Diversities : Fixed versus Alterable

4.1.1 Fixed Applications, Fixed Architecture

The top-left quadrant represents the deterministic case of a one-to-one translation of
a fixed application to an architecture. Typically, the constraint of a single application
requires no flexibility or in-field programmability for application-level variations. A
fixed architecture generally suits such a scenario, leading to the design of Application-
Specific ICs.

In contrast, if a fixed application domain is targeted, it can be classified as domain
specific architectures. Examples include graphic processors, network processors, and
digital signal processors designed to match specific application domains. They com-
prise customised blocks such as programmable shaders in graphic processors, pattern
matchers in network processors, and fast multiply-accumulate units in digital sig-
nal processors. These additional features distinguish domain specific processors from
general-purpose processors. On account of their customisations, the performance and
resource efficiency is fine-tuned for that particular application domain.

The advent of GPGPU [66] (general-purpose processing using graphic processors) is
a cross-domain use of domain-specific architectures for general-purpose computing.

66 Chapter 4. Application to Architectural Mapping

The hardware accelerators or special function units in graphic processors can be used
to accelerate certain non-graphic applications. For example, the use of shaders to
implement matrix multiplication is a case of non-graphic application. These initiatives
demand increasing programming support and hardware flexibility to ease general-
purpose programming.

In short, these processors have:
e Domain-specific programmable features and reusable application libraries
e Programmability limited to domain-specific parameters

e Absence of portability between application domains

4.1.2 Alterable Applications, Fixed Architecture

In order to reuse a single architecture over a varied range of application character-
istics necessitates designing flexible general-purpose processors. The case where the
processor architecture is not customised to a single application, results in a relative
loss in performance for adaptability to large range of application-level diversity. The
advantage of such architecture is the ease of programmability, with high-level program-
ming language support, easy mapping support, and backward compatibility. This is
possible at a compromise on performance, a necessary trade-off for a generalisation.
Further, application-mapping process needs to conform to application-specific perfor-
mance. For example, general-purpose processors operate at very high frequencies to
compensate for the additional clock cycles required to suit the diversity in application
functionality.

With a restriction in the number of resources available, the application description
and the mapping process need to manage the available resources efficiently. This leads
to introducing mechanisms for effective scheduling in order to manage disparity in the
resource requirement and resource availability. Typical examples of general-purpose
processors are the x86 processors. The time multiplexing of resources demands higher
operating frequencies, which in turn introduces a gap between the processor and the
memory’s operating frequencies. Thus, demanding a need for fast memory access
mechanisms like caches and scratchpads. These requirements in turn justify the need
for programming language support, such as threads-level parallelism, as mechanisms
to hide the memory access delays via parallel execution.

Fixed architectures like TRIPS [35] and Voltron [67], which adapt to application-
specific granularities and parallelism also belong to this classification. QuadroCore
can also belong to this classification as a range of applications can be mapped on to
a single multiprocessor template. The processor’s instruction set architecture is fixed;

4.1 Applications and Architectures: Fixed vs. Alterable 67

hence, it belongs to this category. However, QuadroCore has additional features that
includes it in the class of alterable architectures, as discussed in sections that follow.

To summarise, the questions that arise in a domain with alterable applications and a
fixed architecture are:

e Area versus frequency trade-off to meet functional requirements
e In-field programmability and adaptability
e Functional validation or prototype implementation

e Domain-independence and flexibility

4.1.3 Fixed Application, Alterable Architectures

In a real world scenario, in-field architectural variations are inevitable during device
deployment. The basis of these architectural variations can be categorised into three
types. Firstly, an intentional architectural variation may be introduced for perfor-
mance enhancements, to adapt to newer technologies, or newer generations of proces-
sors. In order to support application mapping irrespective of the change in under-
lying hardware, the mapping scheme needs to adapt accordingly. In this case it is
advantageous that application description is independent of the target architecture.
Retargetable compilation addresses this capability of performance optimal code gener-
ation for a varied set of target architectures. Target-specific strategies are introduced
to meet performance demands based on the new resource constraints. Existing open
source initiatives such as SUIF [68], LLVM [69], and open source initiative called
Trimaran [70], are target-independent compilation frameworks.

The second type of architectural variation is in the form of environmental changes
encountered on account of faults. Physical faults may deter normal device operation.
Additionally, faults may also occur due to device aging and process variations. Thus,
the mapping tool needs to address device reliability and ensure fault free application
translation. These operational impediments lead to introducing techniques such as
self-healing in the presence of additional redundant resources or methods of graceful
degradation to extend device operation in the presence of faults. Architectures such
as Core Cannibalisation Architectures |71], StageNet |72] are examples of processors
with enhancements to withstand faults encountered during device operation.

Finally, in the third case, performance indicators introduce changes in the architectural
features. These performance indicators include device temperature, power variations,
frequency versus energy trade-offs etc, which are primarily encountered in field, during
device run-time, or prolonged device usage. For the same application description, map-
ping tools need to incorporate an in-field re-mapping strategy based on the feedback

68 Chapter 4. Application to Architectural Mapping

obtained from the specific performance indicators. Performance-driven re-mapping
includes strategies for power-aware scheduling, dynamic voltage, and frequency scal-
ing, avoiding hot spots that are recognised during run-time. Strategies for run-time
adaptations are identified and modified solely by the mapping algorithm.

Thus, mapping tools for in-field adaptability have the following requirements:
e Capability to adapt to varying architectural characteristics

e A fast, run-time mechanism for adaptability, with very little performance over-
head

4.1.4 Alterable Applications, Alterable Architecture

This is a special case of universal flexibility for both applications and architectures.
Changes in application characteristics introduce changes to the architecture or vice-
versa.

Flexibility to adapt to application-specific changes is an essential feature for archi-
tectural prototyping. These architectures are suitable candidates for design space ex-
ploration, during run-time. Design space exploration extends beyond arriving at the
best architecture, to also identifying the range of applications that may be well suited
for an architecture and vice-versa. The adaptive mapping strategy enables continuous
fine-tuning of the architecture to adapt to performance and environmental conditions

FPGAs are another extreme case of general-purpose processing. With programmable
resources available in abundance, these devices can be programmed to suit frequency
and timing requirements, which are otherwise limited using sequential processors.
With the same features of programmability, and area as the incurred trade-off, re-
sources are mapped in parallel to meet the speed requirements. In addition, recon-
figuration mechanism aid in time multiplexing of the resources available. However,
present day schemes of reconfiguration typically incur a large overhead. To circum-
vent the reconfiguration overhead, coarse-grained reconfigurable architectures such as
ADRES |73 and Tilera [74] have been designed. These architectures can be adapted
to variations in application characteristics and hence can be categorised alongside
FPGAs.

QuadroCore is also representative of such architectures, since it adapts to application-
dependent variations. With a single ISA, it is extensible over run-time to suit to
varying ISAs. This concept of architectural prototyping encourages usage in scenarios
that require functional validations of ISAs, for example, mapping a new instruction
set onto the base instruction of the QuadroCore. This technique resembles the case of
cross-compilation, code morphing, and virtualisation.

The following features characterise this case of application-to-architecture co-relation:

4.2 Application Mapping: Objectives and Methods 69

e Fixed ISA, changeable data and control path
e Introduces run-time alterations to the architecture

e Continuous fine-tuning

4.2 Application Mapping: Objectives and Methods

Application mapping is a continuous process, which is generally steered by the application-
specific performance objectives. Diverse performance objectives such as area, time,
energy etc., together determine the quality of application mapping. For a fixed archi-
tecture, these performance reports provide a feedback to alter the application descrip-
tion and mapping strategies. For example, code-generation for processors is directed
towards optimising code size, time, or power. Each of these objectives has contrasting
performance impact; hence need to be considered in combination. For a given applica-
tion, depending on the mapping objective variations in performance can be observed.
Even in the presence of a fixed architecture and definite application considerations,
mapping objectives introduce variations in the achieved performance. Processors and
FPGAs are two diverse architectures that can be steered with distinct performance
objectives, in the post-fabrication phase. Here, the focus is on processors that repre-
sent a sequential processing model and FPGAs representing parallel execution model.
In the following sections the two mapping strategies, viz., compilation flow for pro-
cessors and the FPGA design flow are detailed, with a comparison of computational
complexity of the individual phases for both the design flows.

4.2.1 Compilation Flow

A standard processor design flow for transforming application description to architec-
tural specifics — called compilation is shown in Figure 4.2. As described in Chapter 3,
application description is often made entirely independent of the target processor ar-
chitecture. The process of compilation has to ensure error-free transformation of the
application code to the target processor code.

Firstly, program analysis introduces static modifications to the application code and
transforms it to an intermediate representation. The optimisations introduced at this
stage are target-independent and referred to as frontend optimisations. These trans-
formations include strategies such as dead code elimination, copy propagation, and
common sub-expression elimination. The goal of this stage is to introduce optimisa-
tions to eliminate redundant code and reduce the number of instructions required to
replicate a high-level program. These passes are often found both in HDLs and in
sequential programming languages.

70 Chapter 4. Application to Architectural Mapping

Objectives Optimisation Phases Outcome
Application
Description
Functionality
Program
Analysis
Target independent code
_ Instruction
Clock Cycles, #Instructions celection
Target instructions
Control / Data D denci Instruction _
ontrol / Data Dependencies Scheduling
l Scheduled target instructions
Number: Registers, ALUs lifetimes Reglst_er e
Allocation L
l Target Binaries
Access: Memory, Register, ALU Application
Execution
------------------------------ Feedback
Code Size Clock cycles Total Power

Figure 4.2: Compilation Flow

The resulting intermediate representation of control and data flow is then transformed
using a series of target-dependent optimisation passes. Instruction selection ensures
transforming the intermediate representation to the target instruction set architecture.
This is a tree-pattern matching process; ensuring optimal set of instructions is obtained
for every specific application code. The intermediate representation is a tree defining
the control and data flow of the application. The processor’s instructions represent
the target patterns. The goal of tree pattern matching is to meet the performance
objective, while realising the application’s functionality. The required time depends on
the complexity of the tree and the number of patterns available to cover a tree pattern.
This transformation is the first stage of application-to-architectural mapping, where
the target processor’s characteristics define the bounds of mapping. The exploration
space encompasses patterns of instructions and the cost function to evaluate the quality
of tree cover for instruction selection.

As a next step, these instructions are scheduled in order to share resources in a time-
multiplexed fashion. The objective of scheduling is to associate a time component to

4.2 Application Mapping: Objectives and Methods 71

resource availability in order to meet application-specific resource demands. It ensures
that a given resource is available at a given time, while meeting the application’s timing
dependencies. In the processor’s sequential model, resource constrained scheduling is
performed on these instructions to meet the target processor’s resource constraints.
Meeting timing requirements and ensuring data-dependencies are the objective of the
scheduler. Resource allocation associates the instruction’s resource requirements to
the processors resources. Additionally, memory and register allocation phases ensure
minimising memory accesses and efficient utilisation of the available registers. The
objective of register allocation is to maximise the utilisation of registers and ensure
minimal register-spills. Both these objectives aim at minimising execution time of
the application code. Scheduling and resource allocation are together responsible
for time-multiplexing the application’s resource requirements among the finite set of
resources available in a processor. Furthermore, processor code-generation is restricted
to sequential programming model, where majority of optimisation revolves around
ensuring efficient time multiplexing of the finite set of resources.

Feedback : Optimal application-to-architectural mapping using the compilation flow
involves identifying the sequence of instructions that result in efficient resource utilisa-
tion. In order to introduce a user-driven steering of application mapping that enables
altering the performance objectives, a feedback-driven mechanism is shown in Fig-
ure 4.2. Feedback steers the objective of each of the stages based on time, code size
and power reports obtained as a consequence of the intermediate stages of the design
flow. This feedback-driven design flow is predominantly done via manual interven-
tion in present day compilation techniques. An automated, iterative compilation flow
enables accelerated application mapping.

Computational Complexity in Compilation

Instruction selection, scheduling, and register allocation are the individual compute
intensive tasks during compilation. Bottom-up rewrite system or BURS [75] is a
standard technique used for instruction selection from the intermediate language rep-
resentation. Here, in the first bottom-up pass, all low cost patterns that match the
intermediate code are labelled. The second pass is top-down traversal that identifies
the best sequence of instructions to match the patterns. In the third and final pass,
the instruction patterns selected in the second pass to output a sequence of instruc-
tions to replicate the original tree-grammar. Further details can be found in [76]. The
complexity involved in the process of instruction selection is proportional to the nodes
in the source tree (m) and the nodes in the target tree (n). Thus, it has a maximum
time complexity of O(mn) for pattern matching, [77].

72 Chapter 4. Application to Architectural Mapping

The next stage of resource constrained scheduling is an established case of NP-complete
problems [78]. The register allocation phase is based on live variable analysis. The
variables in the application code are mapped to the limited set of registers available
in the processor. Here, the life span of a variable in a register decides reusability of a
register. Register allocation is an NP-complete problem and heuristics such as graph
colouring are used to minimise the register requirements.

Consequently, the computational complexity of the compilation process in processors
is a function of number of instructions, number of resources, number of registers, and
the pipeline stages.

4.2.2 FPGA Flow

The application mapping flow, typically used in FPGA-based designs is shown in Fig-
ure 4.3. For designs that use FPGAs, translating application functionality or circuit
description for the target FPGA is application mapping. Firstly, the HDL-based appli-
cation description is translated into a target independent netlist via the process of logic
synthesis. This stage of logic synthesis involves language-specific optimisations such as
common sub-expression elimination, operator re-ordering, resource sharing, and loop
unrolling. This netlist is then mapped onto FPGA-specific components (such as LUTs,
flip-flops, and memory) via technology mapping. These FPGA resources define the
configurable space for realising diverse functionalities. Clustering ensures grouping of
technology-specific elements into the same basic logic block, called configurable logic
blocks in Xilinx FPGAs. This stage aids placement, which identifies locations for the
technology-specific elements on the FPGA area. The stage of routing follows placement
of resources, where the interconnections between the placed resources are established.
Each of these transformations needs to ensure that the functionality remains unal-
tered. The performance objectives focus typically on the combined optimisation of
maximum delay, area, and the total power consumed.

Hardware compilation differs from standard FPGA design flows, where the application
description is made using software programming languages such as C. Here, the ob-
jective is to map applications described in C or other sequential high-level languages
to hardware that are inherently parallel in nature, such as FPGAs. This process of
mapping requires transforming the notion of time in application description to space
(or resources) in the target architecture.

Scheduling in time with resource constraints is transformed into a case of scheduling
to meet frequency constraints in the presence of abundant resources, only limited by
the FPGAs resources. Examples of C-to-FPGA initiatives include from c-to-silicon
compiler from Cadence [79], and AHIR [80]. FPGA-mapping has expanded its design
space with the inclusion of partial run-time reconfiguration.

4.2 Application Mapping: Objectives and Methods 73

Objectives Optimisation Phases Outcome
Application

Circuit
Description Functionality / Behaviour

Logic Synthesis

Technology independent Netlist
Gates, Critical Path ~ Technology

Mapping
Netlist- Technology-specific
Fanout, Critical Path, Gates Clustering <
Netlist- Relative location information
Utilisation, Fanout, Critical Path, Gates Placement <

Netlist - absolute location information

Wire length Routing <

Bitstream
Application
Execution
Feedback
Frequency Area Total Power

Figure 4.3: FPGA Design Flow

Feedback : Within the FPGA mapping flow, a feedback introduces a higher degree
performance at each stage. Figure 4.3 shows stages that enable altering the design
flow to suit the user-driven application objectives such as fanout in contrast to critical
path or gate count. The performance objectives change with variations in application
characteristics and hence the design objectives can be modified based on performance
statistics obtained during each stage of application mapping.

Computational Complexity in FPGA Design Flow

The first stage of synthesis mainly involves technology-independent optimisation. The
problem of technology mapping resembles the case of tree-pattern matching during
instruction selection. Thus, it has the same level of complexity and addresses for
multi-objective optimisation of delay, area, and power. Clustering is an extension
of the technology-mapping problem, which also addresses the same multi-objective

74 Chapter 4. Application to Architectural Mapping

performance parameters. Placement problem is an established NP-complete problem.
Heuristics such as simulated annealing, genetic algorithms, etc. have been used for
optimisation. Routing in two-dimensional FPGAs has also been recognised as an
NP-complete problem. Heuristics, graph-based algorithms, and evolutionary iterative
algorithms have been used for routing [81]. Overall, the computational complexity
is a function of configurable space of the FPGA blocks, viz., LUTs, and the routing
network.

4.2.3 Comparing the two Design Flows

Compared to the compilation flow, the FPGA (or standard cell) design flow involves
a larger design space, higher number of design objectives, hence greater computa-
tional requirements, resulting in larger mapping times. The granularity of application
mapping is distinctly different. FPGAs operate at user-defined granularity, which
are realised using LUTs and combinatorial logic blocks, whereas processors operate
at instruction-level granularity. Table 4.1 compares the design inputs, outputs and
standard performance objectives for compilation techniques and FPGA /standard cell
design tools.

Table 4.1: Comparing Compilation and Synthesis Design Flows

Design Flow Entry Granularity Performance Objectives
Compilation HLLs Instruction Cycles, Code size, Power
Synthesis HDLs Logical Operation Frequency, Power, Area

In the compilation flow, time is an objective for optimisation in each of the stages.
Program analysis techniques include control flow analysis (such as dead code elim-
ination, loop optimisation, code motion etc.) and data-flow analysis (such as copy
propagation, strength reduction, common sub-expression elimination etc.). Further,
instruction selection, scheduling, and register allocation all incorporate strategies that
directly make an impact on timing optimisation with respect to clock cycles required for
execution. In the FPGA flow, during logic synthesis and technology mapping, timing
optimisations are introduced via logic/register duplication. Timing and power-driven
placement and routing approaches have also been integrated for overall performance
optimisation.

Area optimisation using compilation techniques attempt to minimise the total code
size, which comprise techniques such as retaining loops and eliminating dead-code.
Code size reduction is an important optimisation phase in embedded processors, a
survey of existing code-compression techniques can be found in [82]. During syn-
thesis, techniques for area optimisation are primarily introduced to enhance resource

4.2 Application Mapping: Objectives and Methods 75

reusability. Area and timing are mutually opposing performance objectives. The area
versus speed trade-off corresponds to a case of spatial versus temporal computing.
For reconfigurable architectures, the same parameters help steer application-driven
reconfiguration.

During FPGA synthesis, power is introduced as an application mapping objectives us-
ing methods such as, switching activity feedback, clock-gating, operand isolation, and
fanout reduction. Additionally, power-driven placement and routing algorithms aim
at minimising the switching activity and the interconnect length, which influences the
interconnect capacitance, and consequently the power consumed. Power-driven compi-
lation in [83] aims at reducing the hamming distance between consecutive instructions
(and hence switching activity) by compiler-driven register name adjustment and dead
register re-assignment. This approach has an overall power saving in the range of 25
to 44% of the core power. Instruction scheduling described, e.g., in [84], [85] aims at
reducing the switching activity based on the instructions selected and the operands
used. The focus is to vary the schedule of instructions selected to influence the inter-
instruction or the circuit-state effect.

Table 4.2 summarises the differences in the compilation and synthesis design flows,
with time, area, and power as the mapping objectives.

Table 4.2: Comparing Processor Compilation and FPGA Synthesis Objectives

Design Flow Time Area Power

Compilation Clock Cycles Code Size Switching activity
Synthesis Critical Path Gates Fanout, Wire length, Switching activity

Considering strategies that can be applied to devices in field, or post-fabrication, the
design space is limited to the application mapping in processors and FPGAs. Co-
relating the two, the first stage can be termed as the stage of transforming application
code to a target-specific netlist or architecture-specific instructions, as the case may be.
The next stages involve spatial or temporal scheduling to meet performance require-
ments. The process of instruction selection in compilation and technology mapping
during synthesis are both based on tree-covering or graph-covering algorithms. The
stages following this translation diversify as time multiplexing during compilation or
space scheduling in synthesis. As can be seen, application mapping in multiproces-
sors can be considered as a solution that merges both these types of multiplexing.
Scheduling in space is a choice of the number of processors and multiplexing in time
exists for the resources within each of the processors. Hence, scheduling in this context
may be performed for varying number of resources, where the number of processors
corresponds to the resource specification. Similarly, if the placement and routing al-
gorithms in FPGAs were to have fixed delays, and if the number of resources was

76 Chapter 4. Application to Architectural Mapping

limited to a fixed subset, the mapping procedure in FPGAs would resemble that of
multiprocessors.

4.2.4 Merging Compilation and Synthesis Design Flows

Predominantly at the architectural level, FPGAs have been closely coupled with
processors. In the CPU-co-processor approach, FPGAs have been introduced for
application-specific acceleration. With closer coupling, FPGA-like reconfigurable fab-
ric has been integrated within the datapath in the Stretch architecture [86]. In these
examples, the processor is still a sequential processing element and the reconfigurable
fabric aids in extending the processor for design acceleration.

The granularities in recent FPGA architectures have advanced from homogeneous,
fine-grained LUT-only fabric to include integrated DSP blocks, multipliers, and even
hard processor cores. Nevertheless, the task of partitioning the application to proces-
sors and FPGA fabric is entirely user-driven. In contrast, the QuadroCore design flow
ensures a unified compilation flow since the target architecture comprises only proces-
sors. Adaptability in the parallel domain revolves around the granularity of parallelism
composed of computation, communication, and synchronisation. Our application map-
ping approach in QuadroCore is to use the parallelism at processor-level granularity.
Tasks that can be executed in parallel are mapped onto individual processors, where
each processor still adopts a sequential processing model. To summarise, FPGAs com-
prise programmable computational blocks and programmable interconnects, to explore
parallelism in the space-domain. Whereas processors have fixed computational blocks
and fixed interconnects, with programmability permitted only in the time domain. To
merge the advantages of both the diversities, QuadroCore uses fixed computational
blocks with programmable interconnects to permit programmability in the time and
space domains.

Figure 4.4 summarises the design flow used in QuadroCore. The design flow uses the
philosophy of parallel mapping in FPGA synthesis as the first stage of application
mapping and second stage of the compilation flow in processors. Consequently, the
design flow is an inter-play of processor compilation and the FPGA synthesis.

4.2.5 Considerations for Merging Spatial and Temporal Design
Flows

The presence of multiple processors enables exploring spatial parallelism. Additionally,
the identical nature of each of the processors enables temporal resource sharing. Thus,
spatial and temporal paradigms exist simultaneously in multi-core architectures, which

4.2 Application Mapping: Objectives and Methods 77

Application

|

Initial Task-to-Processor assignment

Instructions

l

[
|
| |
! |
! |
|
I
|
| O
E : i i Ha)
'-'C- | Computation Time Communication Time : 2
oS! | ®
8, B
. :é
% : Add Reconfigure |
O, Compute elements Control / Data path : g
|
B l |
| |
|
: Modify Resource Modify Inter-processor :
7] Allocation Communication [~

Optimal Task-Resource Mapping

Figure 4.4: Merging Compilation and Synthesis

need to be selectively introduced to achieve resource efficiency and optimal application-
to-architectural mapping. This computing model represents the case of communicating
sequential processes [87] (CSP). The independent processes are executed in parallel,
with inter-process communication, and each of the individual processes execute se-
quentially. Task distribution between processors enables spatial mapping and time
scheduling the individually mapped processes ensure time multiplexing and resource
sharing. Additionally, reconfiguration of resource connectivity enables adapting the
resource availability on a per-task basis. Thus, the process of application mapping
in this case is a multi-dimensional optimisation problem, with time and space as the
contrasting parameters. This scheme of application mapping addresses the following
mutually opposing design considerations:

e Priority of space over time or vice-versa viz., task scheduling versus task distri-
bution.

78 Chapter 4. Application to Architectural Mapping

e Overhead involved in reusing the same resource (time) versus introducing addi-
tional resources (space)

e The choice of static or dynamic reconfiguration, which consequently determines
the overhead per reconfiguration and frequency of reconfiguration

Resource

Application
Task Types O |:] <>

Reconfiguration -——————

Time Domain Space Domain Time and Space Multiplexed

Fixed Time (best case)
Reconfiguration in Time

Scheduling in Time

Space Available Variable Space

Fixed Space

Figure 4.5: Spatial versus Temporal Scheduling

The reconfiguration mechanism necessitates both time and space scheduling, as shown
in Figure 4.5. First, it ensures efficient resource utilisation by permitting resource
sharing between processors. Secondly, in enables power savings by turning-off unused
resources and hence saving both static and dynamic power. For such a concept to be
effective, space and time scheduling have been developed. Firstly, space scheduling
(or task distribution) is given a higher priority to meet resource requirement in terms
of computation, which corresponds to resource allocation. Additionally, meeting the
functional requirement of each of the processors is determined in this phase. Next
is the stage where scheduling in time ensures that the task dependencies are satis-
fied. The resources allocated in space are time multiplexed to meet the application’s
functionality.

4.2.6 Optimisation Objectives

The process of application mapping is steered by multiple performance objectives to
optimise resource efficiency. The two stages of space scheduling and time schedul-

4.3 Adaptive Mapping in Reconfigurable Multiprocessors 79

ing address a diverse set of optimisation objectives. The performance objectives are
expressed as:

Power = f(Register accesses, Memory Accesses, ALU accesses) (4.1)

Time = f(Register cycles, Memory cycles, ALU cycles) (4.2)

Overall, system optimisation is a combined function expressed as follows:

energy = f(time, power) (4.3)

4.2.7 Cost Function

A domain-independent cost function is defined such that it is independent of the pro-
cessor’s instruction set architecture, pipeline stages, operating frequency, and cache
hierarchy. It relies mainly on expressing the trade-offs observed in space and time.
Thus, it enables portability for application mapping in multiprocessor architectures.
Further, computational complexity and compilation time varies directly as the design
space. In the formulations for the cost function, the design space is limited to estab-
lishing a trade-off between space and time, for a set of existing resource configurations.
As detailed in Section 3.3 the total time and power consumption for a given application

is given by:
k
Crtotal = Z(Tcompi + Tcommq; + Tsynci)
i=1
k
Ptotal = Z(]Dtotalfcompi + Ptotalfcommi + Ptotalfsynci) (44)
=1

4.3 Adaptive Mapping in Reconfigurable
Multiprocessors

As described in the previous sections, the performance of an application is optimal
when the target architecture matches the application’s computation, communication,
and synchronisation requirements. This adaptability is achieved via reconfiguration
in our multiprocessor. In order to enable flexible control and data flow between the
processors in the QuadroCore multiprocessor, a set of reconfigurable capabilities have
been introduced, as illustrated in Figure 4.6.

In order to ease data sharing between processors, the features introduced are classified
as zones of reconfigurability, listed below. The following list enumerates the levels

80 Chapter 4. Application to Architectural Mapping

Processor 1 Processor 2

Instruction | |
Memory |

Unused Processor ———» o @ Default Path

% Reconfigured Path

Reconfiguration Zone

Zone 1:Control Path ——— -

. .D.ECOd .r. -

Zone 2 :Control Path —

‘ i =

: Zone 1 :Data Path

Zone 2 :Data Path

Reconfigurable Fabric—y—

Memory Memory

Figure 4.6: Zones of Reconfigurability

of hierarchy with the datapath of processors, which include the additional modifiable
paths.

Local register file access (default)
N-hop neighbouring register access (Zone 1)
Local memory access (default)

N-hop neighbouring memory access (Zone 2)

A

External memory access (default)

In the reconfigurable multiprocessor, the first level of memory hierarchy is the register
file access, as in the default case. The second level of access is made possible via the
Zone 1 reconfigurable interconnect. The next stage is the local memory access, which
is typically the second level of hierarchy in the absence of reconfiguration. The Zone 2
interconnect aids the access to the local memory of the neighbouring processor, and
hence is the third level of memory hierarchy. Finally, the default access to external
memory forms the last and the most expensive stage of data access.

4.3.1 Reconfiguration for Application Mapping

Conventionally, both in compilation and synthesis techniques, multiple optimisation
passes are introduced to match the application’s demands to a given static architec-
ture. The static nature of the architecture is responsible for the performance deviation
(defined in Chapter 2). Our approach in application mapping on QuadroCore relies
on matching the architecture according to the diversity in application characteristics.

4.3 Adaptive Mapping in Reconfigurable Multiprocessors 81

With changing application demands, the underlying multiprocessor architecture is re-
configured to match the computation and communication needs. The objective of
application mapping is multi-dimensional. This phase relies on contrasting objectives
such as — determining whether the tasks can be distributed in space (meet resource
requirement) or need to be multiplexed (scheduled for time) or the focus is on energy
minimisation (both power and time). Figure 4.7 shows two cases of application map-
ping that are made possible via reconfiguration within the multiprocessors, viz., static
and dynamic mapping. The case of static mapping refers to processor customisation
that are introduced on a per-application basis. Hence, this method incurs a one-time
reconfiguration cost for every application. In the case of dynamic mapping, reconfig-
uration is used match the processor’s resources for every task in an application, i.e.,
on a per-task basis. Hence, this case may require frequent reconfiguration to adapt
to application with diverse characteristics. Figure 4.7 shows the control and data
flow graph for a sample application with diverse characteristics (shown by changes
in colours and shapes). In the case of static mapping, the processor configuration is
determined for the application, and remains unchanged during the entire duration of
application execution. In the case of dynamic mapping, the processor’s configuration
is continually modified with changes in application characteristics. A reconfiguration
time is incurred for every change in configuration between tasks.

Static Mapping

In conventional compilation process, a match between the application-specific resource
requirements is made with the available resources in the processor architecture using
the information obtained during application profiling. In contrast to the conventional
approach, flexibility between processor resources allows altering the resources avail-
able in the processors. The resource availability can be altered by including additional
processors or borrowing resources from the neighbouring processors. Access to the
additional resources is enabled via special reconfigurable interconnects among the pro-
cessors in a multiprocessor organisation. A static mapping configures processors based
on the application’s computational demands before execution of an application. Since
the processors are homogeneous and share the same base instruction set architecture,
tasks are interchangeably moved or migrated onto any of the processors. Depending
on the availability of processors and the achieved load distribution among processors,
tasks are mapped statically onto processors. The case of static mapping configures
the processors only once per application. Hence, once configured the processors retain
their resource characteristics during the entire duration of the application execution.
This case of static mapping resembles the case design space exploration in config-
urable processors like Xtensa [11], but introduced during run-time. The advantage of
this approach is in the distinct division between the application execution time and

82 Chapter 4. Application to Architectural Mapping

Example Task Graph Static Dynamic
MM || M| MM || M|
D D D D D D D D

Reg Reg Reg Reg Reg Reg Reg Reg

Aw || A Aw || Aaw ALU [} ALU ALU ALY

DM DM DM DM

DM DM DM DM

RECONFIGURE

MM [M| [i miim v

= n IR % p || b D «— Customised processor
7,

Reg Reg Reg Reg Reg Reg Reg

-
ALU ALU ALU ALU ALY ALU ALY %

Y : N
oM |[[om om || bm DM i DM |f {| DM %

Unused Resources

RECONFIGURE

IM IM IM IM IM IM IM IM
D D D D D D D D .
<— Customised processor
Reg Reg Reg Reg Reg Reg Reg Reg
Aw || AW Aw || A AU ALU & VA
7 % Unused Resources
om || D M ov om| ZZ V)

M DI DM
Unused Processor

Figure 4.7: Application-driven Static and Dynamic Mapping

the reconfiguration time (once per application). However, as shown in the figure, an
entire processor may be rendered unused even when resources may be required by a
task, on account of the static mapping strategy.

Using the cost functions defined in Section 4.2.7, an algorithm has been formulated
to steer application mapping using the static method. Reconfiguration in this con-
text provides additional design space to optimise application-to-architecture demand.
Thus, for every application that needs to be mapped, it may be characterised as the
additional resources that can be accessed via reconfiguration, only limited by resource
availability. To ensure optimal application to architecture mapping, a time budget
(Thudget), power budget (Pyyager) and energy budget (Epyage:) is predefined, following
which processor configuration is determined. The case of static application mapping
is listed below in Algorithm 4.1. The algorithm takes into account the synchronisation
overhead (Tsyn.), which is a trade-off between the amount of communication (T,omm)
and the granularity of parallelism (7.,,,). As described in the algorithm, it is an
iterative procedure, where once the timing budget is met; the mapping is altered to
meet the power budget. It has to be noted that in the case of static mapping, the re-
configuration time (Tyecon) is nOt a part of the total execution time (T}yq) or the total
power consumption (P). Hence, static mapping is appropriate as a mechanism for

4.3 Adaptive Mapping in Reconfigurable Multiprocessors 83

adapting the reconfigurable template to diverse applications, where reconfiguration is
infrequent and is introduced only between application boundaries.

Algorithm 4.1 Static Task to Processor Mapping
Require: Number of Tasks < Number of Processors
Ensure: Eiy < Epudger and Tyorar < Thudget

1: Assign one base processor for each task

2: while Ebudget < FEiota do

3: while Tbudget < Tty do

4: for Each Processor, once per application do
5: Profile Time

6: if Teomp > Teomm then

7: reconfigure to add ALUs

8: else if 1.0 > Teomp then

9: reconfigure to add registers

10: else if T, > Teomm then

11: reconfigure change synchronisation mode
12: else if Piiar > Poudger then

13: reconfigure to reduce ALUs, registers, synchronisation
14: end if

15: end for

16: end while
17: end while

Impact of Static Mapping : The case of static mapping is advantageous for ap-
plications where the variations in the task-level characteristics within an application
is minimal. Thus, a processor configuration can be chosen and retained during the
entire duration of application execution, without having to reconfigure the proces-
sor. Configuring the processor to a particular application domain is an advantage
for static mapping. Further, the processor conforms to the application-specific re-
source requirement more closely than a general-purpose processor, which typically has
a fixed configuration. This results in a lower performance deviation and an increased
optimality in terms of time, area, and power consumption in comparison to a fixed
Processor.

Dynamic Mapping

In the static case, individual processor building blocks may be rendered unused, de-
pending on the diversity within an application. Hence, instead of fixing the resource
definition for each of the processors statically, unused resources such as ALUs and
registers are borrowed from the neighbouring processors dynamically during run-time.

84 Chapter 4. Application to Architectural Mapping

Thus, a single processor is enhanced with additional resources to suit the diversity
within an application. Each time, based on resource requirement, resources are ac-
quired or relinquished via run-time reconfiguration. Each time there is a task that has
to be mapped, the processors are reconfigured to match the characteristics. In contrast
to the case of static mapping, the dynamic mapping encounters frequent reconfigura-
tions within an application. This overhead can only be estimated on a per-application
basis, since the characteristics and its diversity are application dependent. However,
the conformity between application and architecture characteristics minimises perfor-
mance deviation and ensures optimal resource utilisation. As shown in the figure,
parts of processors may remain unused to ensure optimal resource utilisation.

The procedure adapted for dynamic mapping is listed below in Algorithm 4.2. In the
dynamic case, reconfiguration is introduced on a per task basis to ensure optimality.
Hence an important consideration in this case is the reconfiguration overhead (T econ),
which is now included in the total execution time (Tjotq1)-

Algorithm 4.2 Dynamic Task to Processor Mapping
Require: Number of Tasks < Number of Processors
Require: Total Number of Resources per Task < Total Number of Resources
Ensure: E, < Epudger and Tiorar < Thudger and Trecon < Tiotal
1: For the first task, assign one base processor for each task
2: while Ebudget < Eipta do
3: while Tbudget < Tiotar do

4: for Each processor, for every task do

5: Profile Time

6: if Teomp = Teomm then

7: reconfigure to add ALUs

8: else if T,.opm > Teomp then

9: reconfigure to add registers

10: else if T, > Teomm then

11: reconfigure change synchronisation mode
12: else if P,y > Phudger then

13: reconfigure to reduce ALUs, registers, synchronisation
14: end if

15: end for

16: end while
17: end while

Impact of Dynamic Mapping : Dynamic mapping enables adapting the architec-
ture to the incoming task requirement. This adaptability is introduced on a per-task
basis. In comparison to the static case, the architecture is further adapted to suit the
application. Hence, if the impact of reconfiguration is not significant in comparison the

4.4 Summary 85

total computation time, it results in a increased optimality with respect to resource
efficiency in comparison to the static case. The task-to-processor adaptability results
in a lower performance deviation in comparison to the static case.

4.3.2 Advantages of the Multi-dimensional Mapping Approach

The new multi-dimensional mapping of applications addresses application targeted to
reconfigurable multiprocessors, agnostic of the processor’s instruction set architecture.
The basic principle is to rate instructions with respect to time, power, and code size.
Thus, diverse properties of instructions are user to steer energy characteristics during
application mapping. The formulated cost function stems from the instruction set
architecture of the processor being used, thus can be modified to other instruction set
architectures.

The case of time and space scheduling is addressed as a two-stage process. The
space-dimension is considered first, with the resource allocation that addresses the
task-to-processor mapping. This stage is either static, with fixed resource assignment
or dynamic with reconfigurable resource connectivity between resources. The second
stage addresses the time-domain, where the instructions are scheduled sequentially to
execute the given task. On account of fixed resources and programmable intercon-
nects, the reduction in the design space makes the multi-dimensional approach faster
for design space exploration, in comparison to fine-grained FPGAs. In addition, re-
configuration acts as a tool for fine-tuning application mapping. In the static case,
reconfiguration introduces adaptability on a per-application basis. To adapt to diver-
sities within applications, dynamic reconfiguration introduces run-time modifications
to match application-to-architectural characteristics.

4.4 Summary

The objective of application-to-architectural mapping is to meet diverse functional
and performance requirements. In this chapter, a classification is made that matches
applications and architectures, based on the nature of architectural adaptability and
the variations in application characteristics. In this context, two existing methods of
application-to-architectural mapping techniques — compilation in processors and the
synthesis in FPGA design flows, are analysed. They are representative of two diverse
paradigms, viz., sequential and parallel programming models. In both the design flows,
a feedback mechanism is identified as an essential requirement to ensure optimality
in the mapping process. An automated early feedback mechanism is predominantly
absent in present day tools and design flows.

86 Chapter 4. Application to Architectural Mapping

Our approach is to merge to the two design flows and introduce a feedback-driven mech-
anism to steer application mapping. Additionally, the objective is to enhance flexibility
and ease programmability when mapping applications with diverse characteristics to
architectures during run-time. To this effect, an adaptive mapping strategy has been
introduced via reconfiguration of the control and data path of the processors. Recon-
figuration in this context enables adapting the architecture to meet application-specific
requirements. These concepts merge spatial and temporal programming paradigms to
explore diverse performance objectives such as time, power, area, and energy. Two
strategies of application mapping — static and dynamic mapping are presented that
address application mapping in our reconfigurable multiprocessors. The case of static
mapping aims at application-specific processor customisation, with infrequent recon-
figurations. In the case of dynamic mapping, reconfiguration is introduced frequently
to adapt to changes within an application. Overall, mapping is initiated in conjunction
with architectural alterations using the application-level statistics and reconfiguration
as a method of run-time adaptability.

Chapter 5

QuadroCore: Architecture

To ascertain the feasibility of the architectural features presented in the previous chap-
ters, QuadroCore is the prototype implementation of the architectural concepts of the
reconfigurable multiprocessor template. The focus of this chapter is to present de-
tailed quantitative results to help assess the benefits of the concepts presented in the
previous chapters and propose directions that may lead to future research. Quadro-
Core is a four-processor realisation of the reconfigurable multiprocessor template intro-
duced in Chapter 2. Our systematic design methodology builds upon the architectural
variations and performance impact of application-specific characteristics, discussed in
Chapter 3. Application mapping is steered with time and power as the performance
objectives, as discussed in detail in Chapter 4.

This chapter presents the architectural details of the QuadroCore multiprocessor and
performance measurements for its implementations. In Section 5.1, the reconfiguration
capabilities that have been built into the architecture are presented. Also in this
section, our unique concept of a fast, low overhead run-time reconfiguration has been
detailed. The reconfiguration design space that can be explored as a combination
of the QuadroCore multiprocessor architecture and the reconfiguration mechanism
are analysed with time and power as the performance objectives. An instruction-
level power model is presented that can be incorporated in the timing and power
aware application-mapping design flow, as presented in Chapter 4. In Section 5.4, the
impact of the standard compilation techniques employed to map an application with
considerations to the mutually opposing time and power characteristics are analysed.
Finally, a performance analysis for the QuadroCore multiprocessor when realised using
standard cells and FPGAs, and the performance deviation are analysed.

88 Chapter 5. QuadroCore: Architecture

5.1 Reconfiguration Design Space

QuadroCore is our reconfigurable multiprocessor architecture composed of four 32-bit
RISC-based processors, called NCore described in [88]. The instruction set architecture
of NCore is based on Motorola’s MCore processor. The instruction set architecture of
the NCore processor provides about 11% free opcode space to allow architectural en-
hancements. This free opcode space has been utilised to add instruction set extensions
that permit run-time modifications to the architecture and support for co-operative
operation of multiple instances of the same processor. Using a network-on-chip this
collection of processors can be scaled to include multiple such processors. The Quadro-
Core has been enhanced to include all the features described in the reconfigurable
multiprocessor template. Thus, it can switch between a set of predefined modes to
adapt to application-specific requirements. The template in Figure 5.1 shows four
loosely coupled processors in QuadroCore. The reconfigurable connectivity between
the existing resources is added as an architectural feature.

Shared Memory

Memory Memory Memory Memory
Reconfigurable

Interconnects i i i i

Decoder Decoder Decoder Decoder
Control Path —\4{ i i i
ALU ALU ALU ALU

Datapath

A ¢ ! !

Control Path

Registers Registers Registers Registers
Memory Memory Memory Memory
Processor 1 Processor 2 Processor 3 Processor 4

Figure 5.1: QuadroCore Reconfigurable Multiprocessor

Table 5.1 shows the possible reconfiguration options implemented our QuadroCore
reconfigurable multiprocessor. As noticed from the column on the right, application
characteristics define the mode of operation. These characteristics can be different
within stages of an application or between applications in a single application domain.
In order to adapt to these variations, this unique scheme or reconfiguration allows
fast switching between the reconfigurable modes of operation during run-time. In

5.1 Reconfiguration Design Space 89

the following sections, each of these operating modes and the reasoning behind this
approach is described. In [PP08al, a summary of all the modes that can co-exist in
QuadroCore is depicted.

Table 5.1: Reconfigurable Operating Modes

Operating Mode Application Characteristics

Asynchronous MIMD coarse-grained, task-level parallelism

Synchronous MIMD fine-grained, instruction-level parallelism

SIMD data-level parallelism

Fast memory access data-level parallelism, large amount of data exchange
Using shared register file fine-grained, few, frequent register exchange
Wide-word ALU data-level parallelism

Sharing registers applications with high register pressure

5.1.1 Instruction to Control Reconfiguration

The decision of altering the existing structure is driven by the instruction executed.
Hence, the choice of resources and their variations are determined during application
compilation and requested during run-time. A quick, single cycle run-time reconfig-
uration ensures low overhead in terms of time required to reconfigure this resource
connectivity. The execution of a special reconfiguration instruction connects the ex-
isting resources. Thus, depending upon the resource demand of the application these
instructions are executed at boundaries between regions where a change in resource
requirement is observed during program analysis. This reconfiguration instruction acts
as the configuration information to determine the functionality of the reconfigurable
interconnects between the intermediate stages of the instruction pipeline.

The interconnect introduced between the decode & execute stages, and execute &
register read /write stages allows run-time selection and co-operative resource sharing
between the multiple control paths (and/or datapaths) among the four processors.
Figure 5.2 shows the location of the reconfigurable interconnect.

Reconfiguration Instruction Format

The QuadroCore reconfiguration information comprises the operating mode informa-
tion. This is a single instruction, where the choice of the mode is decoded from the
instruction. This approach is contrast to FPGA-based designs, where a configuration
file includes both control and data information required to configure the individual
configurable logic blocks, memories, and define their interconnections.

90 Chapter 5. QuadroCore: Architecture

Fetch + Decode + Reconfigure Execute Store
Reconfigurable
e G Interconnect
Y —— — Decode
Mode 1 — ALU Register
Instruction — Decode
Memory ALU Register
Mode -|
Instruction — Decod .
Memory ecode ALU Register
Mode 1
Instruction g ALU Register
Memory
Mode
- » - » —p
Pipeline Stage 1 Pipeline Stage 2 Pipeline Stage 3

Figure 5.2: Reconfiguration Mechanism

Reconfiguration Stream

Since the configuration stream is a part of the instruction stream (shown in Figure 5.3),
a separate configuration stream and configuration memory is not required. Reconfigu-
ration information is part of the instruction stream and resides along with the program
code.

Figure 5.3 illustrates mode changes encountered during program execution achieved
via instruction streams in the QuadroCore multiprocessor. Initially, all the processors
operate in the default asynchronous mode. Due to application demands, Processors 1-3
are required to be switched to the synchronous mode. In this case the mode switch is a
two stage process; firstly Processors 1-3 are synchronised using barrier synchronisation.
Next, a reconfiguration switch changes the operating mode to the synchronous mode.
During this time, Processor 4 continues to operate in the default asynchronous mode.
Next, all the four processors are reconfigured to operate in the SIMD mode. In all these
cases, it has to be noted that the instruction stream itself behaves as the configuration
stream to allow switching between the fixed set of modes. The mode changes are
determined during compile-time and the architectural changes (reconfiguration) are

inferred during run-time. The compilation flow and details of the compiler can be
found in [PPRT|.

5.1 Reconfiguration Design Space 91

E=—= Synchronous [1 Synchronization
WiZ7777 Asynchronous/MIMD [TTITTIT1] SIMD I Rcconfiguration
7 7Z
Asynchronous/
MIMD
7
Synchronization 4 g
E
c
i}
Reconfiguration §
X
el ——————— u
<
synchronous | e s s
==——

Reconfiguration

SIMD

Processor 1 Processor 2 Processor 3 Processor 4

Figure 5.3: Instruction Stream as the Configuration Stream

5.1.2 Synchronisation

Synchronisation enables one or more processors to initiate communication at a com-
mon time instance. In multiprocessors, synchronisation is essential to co-ordinate
processors to operate in unison. Applications mapped onto multiprocessors exhibit
varying degrees of parallelism. A variable granularity of parallelism demands suit-
able synchronisation schemes, such that the clock-cycle overhead of synchronisation is
minimal. Here, two modes of synchronisation have been introduced. For infrequent
data exchange or coarse-grained parallelism, synchronisation between processors is
achieved via a single-cycle barrier synchronisation scheme. This mode is termed as
asynchronous MIMD, since the processors operate independently until they encounter
a barrier synchronisation instruction. As shown in Figure 5.4, in the asynchronous
mode of operation, the definition and use of a variable (a in figure) requires inser-
tion of barrier synchronisation in order to avoid a read before write violation. This
ensures that the use operation is executed only after a define has been executed on
Processor 1.

92 Chapter 5. QuadroCore: Architecture

For frequent or fine-grained synchronisation, the processors can be configured during
run-time to operate in a lock-step fashion. In this mode, all the processors operate
synchronously according to the schedule pre-determined by the compiler, which avoids
explicit synchronisation. This mode is termed as synchronous MIMD and is suited for
instruction-level parallelism. As shown in Figure 5.4, it resembles the default operating
mode in VLIW processors, where all functional units operate synchronously. Hence,
the read before write violations are managed during scheduling stage in the compilation
process. However, a disadvantage of this mode of operation is the need for operat-
ing each instruction synchronously, irrespective of inter-processor data exchange. In
VLIW processors, the presence of a single decoding unit ensures synchronous oper-
ation at all times. Here, the synchronous MIMD mode is a case of pseudo VLIW
operation, as synchronisation at instruction boundaries is explicitly introduced by the
hardware implementation. The hardware architecture ensures that a new instruction
is fetched only when all the processors have completed executing the current instruc-
tion. In other works, all the participating processors perform an instruction fetch
simultaneously. Another method of ensuring deterministic scheduling and execution
is by forcing the instruction length for every instruction. In this way, all instructions
have a predetermined execution length and there are no uncertainties in instruction
execution time encountered during execution.

Processor 1 Processor 2

define a
barrier Processor 1 Processor 2
barrier Clock 1 define a Clock 1
use a Clock 2 use a Clock 2
Asynchronous Synchronous

Figure 5.4: Types of Synchronisation

By default, the multiprocessors operate asynchronously and exchange of data is made
possible via explicit barrier synchronisation, which has the following construct, where
mask is a 4-bit values that represents the processors (all or a subset) that need to be
explicitly synchronised.

barrier (mask); /+* Initiates Barrier Synchronisation x/
The execution time for this instruction is one clock cycle and is dependent on the
arrival time of all the processors required to synchronise using this instruction.

The following instruction switches processors listed by mask to a synchronous mode
of operation, where mask represents the processors (all or a subset) that operate
synchronously.

5.1 Reconfiguration Design Space 93

synchronise (mask); /* Synchronises Processors defined in mask %/

In this mode, the execution times for all the instructions need to be fixed during
compilation.

Hardware Support for Synchronisation

In the asynchronous mode of operation, barrier instructions synchronise between in-
dependently operating instruction streams. Since the task of barrier placement is
optimised during compilation, the hardware architecture has to ensure a very low cost
instruction execution time without affecting the system’s operating frequency. In our
architecture, this synchronisation is achieved in a single clock cycle, where each proces-
sor accesses a barrier status register asynchronously. Depending on when each of the
processor encounters a barrier instruction, the barrier status register is set accordingly.
When the required subset of barriers has been reached, the register is reset and the
status is provided simultaneously to all the processors. Hence, constant polling of an
external memory address, employed in classical synchronisation methods is avoided.
The single cycle restriction introduces a minimal variation in the system’s operating
frequency, discussed later in Section 5.5.1. This method of synchronisation is faster
than techniques implemented via software barriers in recent implementations such as
in [89].

In the synchronous mode, the instruction streams operate in lock-step, synchronous
fashion at every instruction. This ensures a predictable behaviour to allow the compiler
to schedule the instruction to explore the maximum degree of instruction-level paral-
lelism. The instructions are restricted to fixed cycles per instruction, explicitly fixing
the execution time for all instructions. For example, instructions with data-dependent
execution lengths, such as early exits in multiplications, are disabled. Although the
execution time of each instruction is forced to a worst-case value, there is no additional
delay involved in synchronising between instruction streams. Here, the maximum op-
erating frequency of the system remains unaltered, but the clock cycles required for
execution changes.

5.1.3 Communication

Originally, exchange of register contents between processors was solely permitted via a
shared external memory. This involves a significant clock cycle overhead, since access
to the external shared memory is managed by a round robin arbitration mechanism.
Using this scheme each processor has to request for access and depending on the
number of simultaneous requests and time of arrival of each request, the access to the

94 Chapter 5. QuadroCore: Architecture

external shared memory is assigned. To avoid this large access time and to enable quick
exchange of register values between processors a multi-port register file consisting of
32 registers was introduced. This multi-port shared register file is accessible to all the
processors simultaneously. This allows sharing of register values without having to
alter the instruction set architecture.

In addition to dedicated access to a shared register file, fast access to external shared
memory was also incorporated. Since all the processors access a common external
memory via a shared bus, a bus contention is inevitable. To circumvent this bottleneck,
fast-memory-access mode was added. In this mode a single processor takes over the
external memory access mechanism for all the four processors. It fetches data for all
the processors in a single wide-word fetch (128-bit). This fetched data is internally
distributed among the processing elements (32-bits). This mode of operation bypasses
the bus arbitration and contention incurred during shared data access. Additionally, it
also introduces determinism in the memory access mechanism, since the waiting time
in arbitration is entirely avoided.

Additionally, register sharing among processors is possible on account of the recon-
figurable interconnect introduced between the ALUs and the register files. For ap-
plications with high register pressure, registers from the neighbouring processors are
borrowed. Figure 5.5 shows the reconfigured register write (control and datapath),
which helps to avoid the register read operation for the next operation and minimises
the data-exchange overhead between the two processors.

Instruction === Decode = Register == T Register
Processor2 — petcpy — —) Read —/) Write
Instruction === Decode = Register . T
Processor 1 Fetch — —) Read =)

Figure 5.5: Mechanism for Sharing Registers Contents

Table 5.2 shows the share construct that moves the result computed in the execute
stage of Processor 1 to the local register file of Processor 2 (X|[2]) by reconfiguring the
register write stage of Processor 1 to be directed to the local register file of Processor 2.
This mode saves data transfer time (via shared register file or shared memories), hence
resulting in a reduction in the number of instructions and execution time. This example
assumes that the Register 2 in Processor 2 is available for use by Processor 1 during
the transfer. For this operation both the control path and the datapath between the
processor’s execute and register write stages are reconfigured. Communication can also
be chosen a reconfigurable operating mode depending on the amount and frequency
of data communication between processors.

5.1 Reconfiguration Design Space 95

Table 5.2: Inter-processor Communication

With Reconfiguration Without Reconfiguration

share(X[2],2); 1d(X[2],M1))
st(M1,2)
or

send (X[2],2);
receive(X[2],2);

3 or 4 clock cycles 10-24 clock cycles

This construct by itself translates into a reconfiguration instruction and a register write
operation, which totally requires 3 clock cycles. In the absence of this mode, the total
time required to transfer one single register content between two processors requires 4
clock cycles using the shared register file (send/receive operations). Using the shared
memory, the duration ranges between 5 to 12 clock cycles for each operation. In the
above example, the total round time results in 10 to 24 clock cycles when using external
memory.

Shared Register File for Data Communication

A shared register file has been introduced to ease the data exchange mechanism be-
tween the processors. This shared register file consists of 32 registers, accessible by all
the processors via dedicated ports at all times. This set of registers is in addition to
the 16-entry local register file that exists for each processor. Since there are indepen-
dent read and write ports for each processor, no hardware arbitration mechanism is
required for registers access, since the valid read-write sequences are scheduled during
compilation. This ensures a two clock cycle access time for read or writes operations,
enabled via special load and store instructions. As access to the external memory for
data exchange takes 6 to 15 clock cycles, it is not used for communication. Hence,
the round-trip time (write and read) is 4 clock-cycles for the shared register file in
comparison to 16 to 30 clock cycles using the shared memory. Further, the compiler
manages data dependencies and read-write sequencing. A similar mechanism is added
via instruction set extensions to allow sharing (or broadcasting) the condition flag of
one of the processors for collective branch operations. The shared register file is only
used for inter-processor communication, because its access time is longer than access-
ing the local registers of a processor. In order to utilise the shared registers for all
instructions the encoding of register operands would have to be extended to store the

96 Chapter 5. QuadroCore: Architecture

additional register numbers. This would result in larger instructions, and hence an
increase in code size.

5.1.4 MIMD and SIMD operation

The MIMD mode of operation is the default mode of operation in the QuadroCore
multiprocessor. The SIMD mode of operation is used when all the processors exe-
cute the same instruction stream. For this mode of operation, one of the decoder is
responsible for forwarding the control and data signals to all the four ALUs, register
files, and local data memories. Thus, in this mode of operation a single instruction
is sufficient for operation of all the four processors. One of the decoder switches to a
master mode and forwards the decoded instructions to all the participating processors.
The unused decoding units of all the other processors are switched to an idle mode, for
energy savings. Thus, instruction fetch and decode operation is performed by one of
the processors (called ‘master’). Consequently the instruction fetch and decode unit
of the other processors are switched-off for energy savings.

Additionally, for faster data access, the fast memory access mechanism is used in
conjunction with this mode (described in the next subsection). Depending on the
application, one (or more than one) processor(s) could operate in the ‘master’ mode.
A special reconfiguration instruction enables switching between the default MIMD
mode (where each processor operates on its own instruction memory) to the SIMD
mode. This instruction executed during run-time provides reconfigurability in hard-
ware. Thus, both the modes of operation co-exist and are invoked based on application
demands.

Figure 5.6 shows the operation for Processor 1 and Processor 2 in SIMD mode, where
the control path between the decode and execute stages are reconfigured.

Instruction === Register = Register
Processor 2
Fetch — DT Read) S GEG —) Write
B e H ——— e - e
Processor 1 \i | Register =) Execute = Register
‘ﬁ | Read —) —) Write

Figure 5.6: Single Instruction Stream, Multiple Data Stream

The MIMD mode is the default mode of operation and a SIMD mode of operation
can be activated via a reconfiguration instruction. Following is an example of loops,
as shown below is a for loop:

5.1 Reconfiguration Design Space 97

for—simd (i=0; i<4; i++) /* switches to SIMD mode x/
{SIMD operations}

where, for-simd results in instruction fetch and decode managed by one of the proces-
sors. Thus making a corresponding reduction in code size, instruction-fetch & decode.
Additionally, the fast memory access mechanism circumvents the communication delay
in accessing the shared memory for all the participating processors by simultaneously
fetching multiple memory locations followed by internal re-distribution.

Fast Memory Access

The external shared memory is used for sharing data streams and large amounts of
common data. This memory is accessible by all the processors via a round robin
arbitration mechanism. When multiple processors access this external memory, the
round robin arbitration mechanism provides sequential access. This architecture is well
suited for random, asynchronous accesses initiated by the processors sharing memory.
However, a substantial bottleneck is introduced during simultaneous access to memory,
which is incurred in the SIMD mode. To circumvent this bottleneck, a fast memory
access mechanism is added to accelerate access to adjacent memory locations using
additional instructions. Using this instruction, a single transaction accesses multiple
adjacent memory locations, which may represent consecutive locations of an array.
Thus, the multiple data locations read are distributed (or collected) internally among
the four processors. A similar procedure is also applicable for storing data arriving
from the four individual processors via a single write operation to external memory.
These special instructions avoid the delay involved during arbitration and reduce the
total access time from a worst case of 15 clock cycles to exactly 7 clock cycles.

The following code in Table 5.3 shows the method of invoking the fast memory access
mode during application programming. The copy-simd construct copies the variable
X to all the participating processors, followed by an addition operation performed
simultaneously, with only the master processor performing the instruction fetch and
decode. This mode of operation is used to speedup data distribution, as in the case of
the SIMD mode.

5.1.5 Word-length Configurability

For a given architecture, the effective resource utilisation depends on the effectiveness
of the application mapping mechanism. A variation in the valid word-length required
in the application directly influences resource utilisation and consequently the power

98 Chapter 5. QuadroCore: Architecture

Table 5.3: SIMD core with Fast Memory Access

With Reconfiguration Without Reconfiguration
copy-simd (X[i]); for(i=0; i<4; i++)
copy-simd(Y[i]); {

for-simd(i=0; i<4; i++) copy(X[il);

{ copy(Y[il);

zZ[1i] = X[i] + Y[il; Z[i] = X[i] + Y[il;

1 }

17 clock cycles 24 clock cycles

dissipation. Here, a variable word-length property of the processor allows using only
the required word length as required by the application. In addition, multiple 32-bit
ALUs from the neighbouring processors are merged to expand the word-length of a
Processor.

Figure 5.7 shows the representation, where two 32-bit datapaths are merged to form
a single 64-bit datapath, also avoiding redundant instruction fetch and decode opera-
tions.

Processor 2 Instruction - Decode Register - - Register
Reteh = Read —) —) Write
*** Execute
|— | . _
Processor 1 — | Register mmm) = Register
‘:VN ‘ Read :> j Write

Figure 5.7: Varying the ALU Word-length

Y = add64(X][0], X[1]); /* 64—bit addition x /

Two ALUs are merged by using the instruction add6/, which ensures that the addi-
tion operations includes the carry over from the lower order bytes to the higher order
ALU in the neighbouring processor. Reconfiguring the adders permits carry-over logic,
and saves instruction fetches for word-width operations, provided all the participating
ALUs execute the same instruction. The same is applicable to the other arithmetic
units and ALU operations, viz. subtraction, division, multiplication, etc. The differ-
ence in the clock cycles required for execution with and without this reconfigurable
mode is shown in Table 5.4.

5.1 Reconfiguration Design Space 99

Table 5.4: Variable Word-length ALUs
With Reconfiguration Without Reconfiguration

Y = add64(X1[63:0], X2[63:0]1); Y1
Y2

add(X1[31:0],X2[31:01)
add (X1[63:32] ,X2[63:32],C0)

2 clock cycles 4 clock cycles

To summarise, Figure 5.8 shows the modes of operation that have been introduced via
reconfiguration in the QuadroCore multiprocessor. These modes of operation enable
customisations according to application requirements.

| Shared Memory | | Shared Memory | | Shared Memory |

1 . n

‘ Instruction ‘ ‘ Instructio ‘ ‘ Instructior ‘ ‘ Instruction ‘
Memory Mem ry Memory Memory
) I
eeeee ecoder ccoder ecode
‘ Decod ‘ ‘ Decoder ‘ ‘ Decoder ‘ ‘ Decod ‘
e =l =l = 1 L O |) {)
I I I I ‘ ALU ‘ ‘ ALU ‘ ‘ ALU ‘ ‘ ALU ‘ ‘ ALU ‘ l ALU l l ALU l
‘ egisters ‘ ‘ Registers ‘ ‘ Registers ‘ ‘ Registers ‘ ‘ Registers ‘ ‘ Registers ‘ ‘ Registers ‘ ‘ Regist ‘ ‘ Reg\slevs‘ ‘ Registers ‘ ‘ Registers ‘ ‘ REQ‘SWS‘
| Dga I V(! | | (= L 1 1 L) I L S
Meguw Merfw Mem: Iw Mego'\/ Memory Memon Memory Memory Me::m MDe?:\auvz Me:\‘:vx
| Shared Registers | | Shared Registers] | Shared Registers |
MIMD SIMD 64bit ALU + 32bit ALU + 32bit ALU

Figure 5.8: Reconfigurable Modes in QuadroCore

5.1.6 Additional Instructions for Co-operative Multiprocessing

In order to enable the above mentioned operating modes and additional co-operative
processing among the four processors, a set of instruction set extensions were added to
ease the control flow. Table 5.5 lists the instructions and their respective functionali-
ties. As an example, a combination of cstw and cldw enabled data exchange among
participating processors. Similarly, executing crsync on a master processor results in
broadcasting the carry flag among the four processors.

5.1.7 Compilation Flow

To aid automatic application parallelisation onto QuadroCore, a compiler has been
designed in parallel to this work on hardware architecture. The approach, called Co-

100 Chapter 5. QuadroCore: Architecture

Table 5.5: Instruction Set Extensions for Co-operative Processing

Instruction Function

cstw Store contents of local register to shared register

cldw Load contents of local register from shared register
barrier Initiates barrier synchronisation among all (or a subset) of processors
reconfig Reconfigures between modes

mbt Modified branch flag condition: Branch if true

mbf Modified branch flag condition: Branch if false

mjmpi Modified branch flag condition: Branch if false

mjsri Modified immediate jump index

mlrw Modified relative word

crsync Share carry flag

load128 Loads 128-bit data from shared memory to SIMD register

storel28 Stores 128-bit data to shared memory from SIMD register
writesreg Writes from SIMD register to local register file
readsreg Reads from local register to SIMD register

BRA !, uses compile-time analysis determines the schedule for reconfiguration during
run-time. Reconfiguration alters the architecture by choosing between a fixed set of
operating modes, called reconfigurable architectural variants at run-time. Given a pro-
gram that exhibits both regular and non-regular structures, the compiler determines
the best execution mode by analysing the parallelism during compilation. Further, the
usage of a manageable set of variants leads to an enormous reduction in the design
space, compared to fine-grained reconfiguration. The compiler then addresses this
finite design space efficiently by using well-known program analysis techniques [90)].
This is in contrast to research using fine-grained reconfigurable architectures, where re-
configuration typically incurs a significant overhead [91]. More details of the compiler
construction and strategies used can be found in [92].

5.2 Time and Power Characteristics

Timing and power considerations have been incorporated as performance objectives
in the design of the QuadroCore multiprocessor. The following sections provide a
detailed analysis of these two performance components, which together contribute to
the processor’s energy-efficiency.

! Compiler Driven Dynamic Reconfiguration of Architectural Variants (merge two Ds to a B)

5.2 Time and Power Characteristics 101

5.2.1 Timing Characteristics

Application partitioning distributes instructions, tasks, or data among the four proces-
sors in the QuadroCore multiprocessor. Application partitioning at instruction-level
granularity is possible using the CoBRA compiler. Methods of divide and conquer
algorithms aid in task and data partitioning. In this context, an application with ex-
ecution time T}, that is partitioned onto the four processors is expressed as follows:

Ttotal

TQuadroCore = T + Tsync + Tcomm (5]—)

where, THuadrocore 1S the execution time on QuadroCore, 4 is the number of proces-
sors in QuadroCore, Tsyne, Teomm correspond the inter-processor synchronisation and
communication times respectively, as defined in Section 3.3. Here, each of the timing
components can be steered using the reconfigurable operating modes in QuadroCore.

QuadroCore Access Times

The base RISC processor, NCore has a single cycle execution time for most ALU
operations and access to the local register file. Access to the local memory for data
and instruction access involves a 3 clock cycle delay. Next in the memory hierarchy,
the access to the shared external memory involves an access time that ranges between
6 to 15 clock cycles. The variation in the access time is on account of the delay involved
in arbitration and the number of simultaneous requests, which requires queuing of the
accesses. This is the default access time in the QuadroCore multiprocessor.

The additional reconfigurable operating modes introduce modifications to the access
times. The shared register file has an access time of 2 clock cycles per operation and 4
clock cycle round time for a read-write operation. The fast memory access mechanism
reduces the 15 clock cycle delay in accessing the external shared memory to a 7 clock
cycle access time in case of access to adjacent memory locations. To summarise, the
variations in clock cycles required for access observed within the processor hierarchy
is shown in Figure 5.9.

5.2.2 QuadroCore Power Distribution

To study the power characteristics of the QuadroCore multiprocessor, the entire archi-
tecture comprising four processing elements and the corresponding local instruction
and data memory was synthesised onto UMC’s 90 nm standard cells. The processor
core accounted to a gate count of about 130K gates and the local instruction and data
memory were a total of 32K bytes. Using the synthesis tools, the default power values

102 Chapter 5. QuadroCore: Architecture

Shared Memory

A M A
()
‘ W TP '
o
5
Decoder N
o
3 o
o)
o
ALU ~
< <
8 A o
S I @
- v |
Registers
w
o
g Memory ||| &
S Processor 4
N
Processor 1 M J
Processor 2

Shared Registers

Figure 5.9: Communication Hierarchy

were measured. In Figure 5.10, the power distribution plot for the reconfigurable mul-
tiprocessor shows that 80% of the total power is dominated by memory. The remaining
20% is the contribution from the processor cores.

Power Estimation

On analysing the power distribution in the QuadroCore multiprocessor, the total power
consumption in QuadroCore (Pguadrocore) 18 expressed as the cumulative power of the
processors’ building blocks. The selection of the processors’ building blocks depends
on the operations executed within the instruction life cycle. The total power consumed

may be represented as:

N
PQuadroCore =4 % Z(Pimemi + Pdmemi + Pemeci + PTegi + Preconi) (52)

i=1

where, N is the number of instructions, 4 is representative of the number of processors
in QuadroCore, Pj,., is the power contribution by the instruction memory, Pi,em

5.2 Time and Power Characteristics 103

processor 4

processor 3

processor 2
memory 1

processor 1

memory 4
memory 2

memory 3

Figure 5.10: Core Power vs. Memory Power

is that of the data memory, P.,.. is the power for the execution unit, P, is for the
register file, and P,.., is the power consumption on account of reconfiguration.

5.2.3 Time and Power variations in the Reconfiguration Design
Space

Table 5.6 lists the performance impact on the individual time and power components
for each of the modes in the reconfiguration design space. Each of the modes has a
distinct impact on time and power characteristics, which are determined by the appli-
cation that is mapped onto the QuadroCore multiprocessor. For instance, the choice
of the type of synchronisation is a trade-off between the frequency of synchronisation,
which influences T, the corresponding impact on power Pjen,, or the change in
code size, which alters T}ccon. Similarly, in comparison to the MIMD mode, the SIMD
mode has reduced instruction fetches (only for one processor), which results in savings
in Pjnem at the cost of addition time (Tyecon)- In case of register-sharing the additional
power required is only for the register file borrowed from the neighbouring processor
and the power required for reconfiguring the register inputs. With configurable ALUs,
multiple identical operations can be executed simultaneously, affecting Tioar, Trecon,
and Pj,em and power consumed by the addition ALU (P,,). Thus, the choice of
operating mode is based on application-specific characteristics, which can be altered
during application definition.

104 Chapter 5. QuadroCore: Architecture

Table 5.6: Performance Impact based on Reconfigurable Modes

Architecture Time Power
ASYNC/SYNC Tsynchrecon P@'mem
SIMD/MIMD Trecon Piem

Register Sharing TreconsTeomm — Pimem,Pimem
Conﬁgurable ALUs T;fotal)Trecon Pimemapalu

5.3 Instruction-level Power Model

For processor-based designs, application-specific energy consumption is primarily rec-
orded after mapping the application on the architecture. Hence, energy estimations
are observed as an ‘after-effect’ rather than a design criterion. Although tools allow
back-annotating the switching activity during synthesis, at this stage no significant
reduction in power or energy can be observed since the application-to-architecture-
mapping (which determines the entire dynamic activity) does not consider power
as a design criteria. More particularly, the dynamic power is entirely application
dependent, hence application-specific power adaptations can only be applied during
application mapping. High-level model-based approaches such as [93, 94, 95], charac-
terise applications and application-level transformations for power and energy, based
on the switching activity measured for the application running on the target pro-
cessor. These tools provide instruction-accurate estimates for power and energy as
a measure for high-level transformations on energy. Similarly, in [83], the reduction
in hamming distance is used as a method for reducing the overall switching activ-
ity. This method is explored by reducing the hamming distance between consecutive
processor operations by compiler-driven register name adjustment and dead register re-
assignment. It accounts to an overall power savings in the range of 25-44% of the core
power. In our perspective, application-level transformations influence the processor-
to-memory interaction and make an impact on system power (processor + memory).
These transformations mainly influence the choice of instructions, which in turn al-
ters the processor-to-memory interactions, influencing the total system power. When
comparing the total power of the system consisting of the processor power and the
memory power, the impact of strategies applied to the processor power alone makes a
very small impact. In line with our investigations, [96] also emphasises that the impact
of memory power on the total power is significant. In [96], the authors present the
impact of loop transformations such as loop tiling, loop unrolling and loop fusion, used
to reduce memory accesses as a method of reducing power. Similar to this approach
is our objective — to correlate memory transactions to the basis of instruction selec-
tion, which ultimately determines the power contribution of the memory subsystem.
Hence, high-level transformations, in our perspective, relate to variations in instruc-

5.3 Instruction-level Power Model 105

tion selection. Instruction scheduling described, e.g., in [84, 85| aims at reducing the
switching activity based on the instructions selected and the operands used. The focus
is to vary the schedule of instructions selected to influence the inter-instruction or the
circuit-state effect and not the choice of instructions. Consequently, the only criteria
for instruction selection has been time, hence the concept of code-generation for low
power is the focus of our investigation.

Typically, instructions are classified on the basis of the number and type of operations,
type of operands, and addressing modes. Based on these classifications, an instruc-
tion is weighed on the basis of the time (in terms of clock cycles) required to execute
the instruction. Hence, during compilation instruction selection mainly relies on the
number of clock cycles as a criterion to choose the sequence of instruction to match
the control and data flow graphs of the application. In some cases, the number of in-
structions required to represent a basic block is also a criterion to reduce the program
code size. Therefore, the stage where application-to-architectural transformation is
performed entirely on these selected instructions. The focus here is to characterise
instructions in terms of time and power. Thus, instruction selection relies on timing
and power perspective for overall energy minimisation. This methodology charac-
terises instruction-level power using transactions on the basic building blocks of the
processor (such as register file, ALU and memories, which can be quantified in terms
of power). This method enables instruction-specific attributes to be customised to
suit the instruction set architecture. Hence, the methodology and the model are both
extensible. Additionally, this method is independent of the application-specific input
data, inter-instruction effects, input data, and methods of instruction scheduling. A
simple trade-off between time and power has been identified using the access counts
to the processor’s building blocks.

For each instruction P, the total system power is the sum of the dynamic power
and the static power. But, for the implementation in today’s standard cell technologies
(90 nm, 130 nm etc.), the dynamic power exceeds the static power in orders of magni-
tude, hence we only consider the dynamic power. The total dynamic power consumed
directly relates to the average switching activity or S,q. Thus instruction-level power
is given by :

:>Pinstr X Srate (53)

Where S, is the switching rate (or toggle rate), obtained by measuring the switching
activity within a given instruction duration, given by:

Nioggl
Srate Ztoggies 5.4
te 7jz'nstr ()

106 Chapter 5. QuadroCore: Architecture

where, Niygq105 15 the total toggle count for a given instruction and T}, is the instruc-
tion length.

5.3.1 Instruction Life Cycle

In this section, the time and power consumption for each instruction is modelled based
on the intermediate operations in the instruction life cycle. The total life cycle of an
instruction is composed of the instruction fetch, decode, register read, execute and
finally the write to the register file. In the following sections based on these processor
transactions, instructions are characterised for both for power.

The instruction-level power (P, q,) may be given by:

Pmstr = Limem + Pdec + Pexec + Preg (55)

where, Pje is composed of the power consumed when fetching the instructions and
directly relates to the number of instructions executed, Py, is the power consumed by
the decoder for each instruction execution, P,.... is that of the execution stage, and
P,¢q4 corresponds to the power consumed during register read and write stages.

P.... depends on the type of instruction executed. Hence, we classify types of instruc-
tion as follows:

P, for arithmetic and logical operations,

Preg for mov instructions,

Pe:vec = (56)

Pimem for load or store operations,

Poyne for synchronisation instructions.

where, P, is the power consumed by the ALU, P,., is the power consumed by the
register file, Pypcn is the power consumed by the data memory, Py, is the power
consumed during synchronisation instruction.

Also, P,., depends on the number of registers specified as operands in the instruction
that need to be read (or written) from (or to) the register file. Hence, for QuadroCore’s
instruction set,

Preg—read for store operations,
Preg = § Preg—write for load operations, (5.7)

n* Preg_read + M * Preg_write for ALU operations.

5.3 Instruction-level Power Model 107

where, P,cg_rcqaa is the power consumption for register read during for store operations,
P,eg—write 18 the power consumption for register write during for load operations and n
is the number of source register operands and m destination operands. Hence, using
Equation 5.5,5.4 the total energy consumption (E;q;) that is expressed independent
of the input data and inter-instruction effects is given by:

n

Etotal = Z]Dinstr * T;nstr (58)

i=1
n

= Z(]Dimem + Pdec + Pexec + preg) * Enstr
i=1

X Z(Smemi + Sdeci + Sexeci + Sregi) * T%nstr

i=1

where, n is the total number of instructions and S is the switching activity recorded
for each of the resources, viz., instruction memory (Sinem), decoder (Sg.), execution
unit (Sezec), and the register file (S,e,).

5.3.2 Memory Accesses

The time characteristic of an instruction is given by the execution time or the in-
struction length. In contrast, the power consumption relates to the average switching
activity recorded during the entire instruction cycle. Using Equation 5.9, the switching
activity recorded for the processor’s memory blocks relates directly to the number of
memory accesses, given by:

Smem - Simem+Sdmem (59)
Smem X (Nimem+Ndmem)

where, Sjem 18 the total switching activity of the memories, which is the sum of
instruction memory Sjem and data memory Sgmem. Nimem and Ngnem are the access
counts at the instruction and data memory respectively.

Hence, a reduction in the number of instructions or the choice of instructions with
reduced memory accesses (both data and instruction) corresponds to lower switching
activity and hence lower power dissipation. In addition it may also be observed that
a single long instruction corresponds to lower power consumption in comparison to
multiple short instructions to achieve the same functionality (due to reduced average
activity incurred on account reduced instruction memory accesses).

108 Chapter 5. QuadroCore: Architecture

As seen in Figure 5.10, the local memories dominate the power plot, which further
emphasises the need for reducing processor initiated memory transaction to reduce
the total system power. Since the total switching activity is inversely proportional
to the instruction length (see Equation 5.4, instructions with larger execution length
correspond to a reduced frequency in memory accesses. This reduction in memory
accesses and hence switching activity results in lower power consumption compared to
instruction with shorter execution lengths.

5.3.3 Register Accesses

Analysing the core power of our reconfigurable multiprocessor QuadroCore, it was
seen that the register file contributes to 30% of the core power, which suggests register
accesses as the next level of application-specific power contribution. Thus, switching
activity associated with register file is directly related to the number of register accesses
(Nyeg) made in a single instruction cycle.

Sreg X Npe 5.10
g g

5.3.4 ALU Accesses

The next dominant component contributing to power, is the ALU which accounts to
20% of the core power. Switching activity at the ALU-level is data-dependent, which
implies that variations in the input data patterns alter the switching activity. These
variations can be observed with variations in the word-length of the input data and
the type of ALU operation. Furthermore, as only 20% of the total processor power
(core + memory) is influenced by the core power contribution, a reduction in the ALU
power only makes a very small impact in the total system power optimisation.

5.3.5 Multiprocessor Synchronisation

When considering multiprocessors, co-operative operations such as data sharing and
data exchange necessitates inter-processor synchronisation, based on data-dependency
determined during compilation. Typically, in synchronous VLIW processors NOPs
are inserted to assert wait states or stalls. In asynchronous multiprocessors, barrier
synchronisation is a well-known technique in inter-processor synchronisation. Our re-
configurable multiprocessor supports both these methods; hence the analysis for the
right choice of synchronisation mechanism was evaluated both with respect to time
and power. Each NOP instruction corresponds to an instruction fetch and results in
a single stall cycle. Whereas, a single barrier instruction could result in multiple stall

5.3 Instruction-level Power Model 109

cycles, making it power-friendly on account of reduced processor-to-memory interac-
tions. Thus, the power consumed during synchronisation is directly proportional to
the number of memory accesses per stall cycle.

5.3.6 Instruction Set Characterisation

As a first step to analyse power, the power distribution of the processor was anal-
ysed for our reconfigurable multiprocessor architecture. To analyse the impact of
instruction-level attributes on the variation in total power, a diverse set of instructions
were chosen. Further, to make an accurate estimate of instruction-level attributes on
power, the toggle rate was recorded exactly for the instruction duration. An accurate
power measurement was made using the value change dump (VCD) file obtained for
the exact instruction duration based on gate-level simulations at 200 MHz on the syn-
thesised netlist generated using UMC’s 90 nm standard cells. Power measurements
were made using PrimeTime PX from Synopsys [97]. Figure 5.11 shows the variations
observed in the total power and in the core power for the set of chosen instructions.

0.09 - m Core
Memory

0.08 +

0.07

0.06 -

0.05 ~

Power (W)

0.04 -

0.03

0.02 ~

0.01

mult Id xor add mov rnop barrier

Figure 5.11: Comparing Instructions in terms of Core Power and Memory Power

Since gate-level simulation for every instruction is time consuming, a subset of in-
structions was chosen as representative instructions. The choice of instructions was
made such that it could be representative for most of the instructions in the Quadro-
Core instruction set architecture. Hence, a load (Id) instruction is a representation of
all instructions with a register access and a memory transaction (which also includes

110 Chapter 5. QuadroCore: Architecture

store instructions). An zor (or add) instruction is a representation of all single cy-
cle, ALU-based arithmetic instructions with two register reads, and a register write
(which includes instructions such as nor, and, add, sub, shift, etc). The mov instruc-
tion represents a single-cycle instruction with a register read and a register write.
Special instructions that were included for synchronisation are barrier and rnop. bar-
rier initiates a barrier synchronisation mechanism and rnop adds stalls to the unused
processors. As can be seen, the core power accounts for only about 10% of the total
power consumption in all the cases.

Comparing Instruction Length, Power, and Energy

To analyse the variations in time and power for each of the instructions, Table 5.7
lists the instruction length in clock cycles, the total power consumption during the
execution of the instruction, and the total energy consumption (product of execution
time and power consumption for the instruction duration).

Table 5.7: Comparing Instruction Length, Power, and Energy

Instruction Length Total Power Total Energy

mult 18 0.0139 W 1.251 nJ
Id 3 0.0596 W 0.894 nJ
Xor 1 0.0855 W 0.428 nJ
add 1 0.0799 W 0.399 nJ
mov 1 0.0767 W 0.384 nJ
rnop 1 0.0763 W 0.382 nJ
barrier lto N 0.0241 W 0.121 nJ

The instruction mult has the maximum execution time of 18 clock cycles and the
lowest power consumption. However, the execution time overrides the power con-
sumption, resulting in higher energy consumption. The Id instruction has a 3 cycle
execution time. However, the power consumption for this instruction is significantly
higher than the mult instruction. As a consequence of lowered instruction length,
the energy consumption of /d is lower than that of mult. Instructions zor, mov, rnop
have the same instruction length and almost the same power and energy consumption.
These three instructions represent ALU operations. The barrier instruction has a vari-
able instruction execution time, since it depends on the instruction executed on other
processors as well. The above example shows that the instruction length is larger than
that of a rnop instruction and has a power consumption that is lower than the other
instructions. Consequently the barrier instruction has the lowest power consumption,
since the processor stalls all operations and waits for the other processors to encounter

5.3 Instruction-level Power Model 111

a barrier instruction. A detailed analysis of the variations in power in each of the
instruction follows in the next section.

Impact of Accesses on Core Power and Memory Power

Table 5.8 lists the variations in number of access to the processor’s resources and
the impact on the core power and memory power consumption for each of the above
mentioned instructions.

Table 5.8: Comparing Accesses, Core Power, and Memory Power

Instruction Memory Register Core Power Memory Power
Accesses File Access

mult 1 3 7.63 mW 0.063 W
1d 2 2 9.21 mW 0.050 W
Xor 1 3 12.5 mW 0.073 W
add 1 3 7.33 mW 0.073 W
mov 1 2 4.17 mW 0.073 W
rnop 1 0 3.85 mW 0.073 W
barrier 1 0 5.83 mW 0.018 W

Firstly, the frequency of memory accesses per instruction directly influences the mem-
ory power and hence the total energy. The multiplication operation has a instruction
%8, which is the longest with respect to time, least in terms
of average memory power. Similarly, for a load instruction the frequency is % as com-

memory access frequency of

pared to zor % This hypothesis can be extended to instructions that require multiple
registers to be loaded (or stored) to (or from) memory based on a single instruction.
It exemplifies the case where a single instruction fetch and decode leads to multiple
loads (or stores), which may be advantageous as compared to multiple load (or store)
instructions. Similarly, another analogy for this case is with the load (or store) in-
struction, where the data to be loaded resides at an address location identified via a
relative addressing with respect to the program counter or from PC-relative address.
Such a load requires multiple memory accesses for a single load, which corresponds to
higher power consumption for every load (or store).

Further, for instructions with the same number of memory accesses, the number of
register accesses directly influences the core power. These variations can be observed
in the instruction add (3 accesses) in comparison to mov (2 accesses), where the core-
power is directly proportional. Finally, addressing the type of synchronisation, a nop
(1 instruction for every stall cycle) is expensive compared to a barrier instruction (one
instruction for the entire duration of the stall).

112 Chapter 5. QuadroCore: Architecture

The significant difference in core power and memory power suggests using methods
such as using multiple voltage domains and frequency domains for core and memory
organisation.

Impact of Operand Values

As a second step, the variations in power with changes in the input operands were
measured and are listed in Table 5.8. Two instructions that are identical in the number
of memory accesses and the number of register accesses (add and zor), were chosen to
observe the variations in power, which correspond to energy since the time for executing
these instructions is the same. These two instruction show a minimal variation in core
power, in accordance to Equation 5.6. Table 5.9 summarises the variations based on
the operands on two different instructions of the same length. As can be seen, a
variation of up to 38% in core power has been noticed for the test case, but the overall
impact on total power is a minimal 5%.

Table 5.9: Variations based on Operands Values

Instr. Core Power Change in Total Power Change in

Core Power Total Power
XOr 0.013 W 38% 0.0805 W 5%
add 0.007 W 2.7% 0.0799 W 0.12%

5.4 Impact of Compilation Techniques

To investigate the mutually opposing costs and benefits of time and power character-
istics during instruction selection and code generation, the following standard com-
piler optimisation strategies were considered. The classical approach is to apply these
strategies with the objective of optimising time; however the contrasting effects when
measuring power has been highlighted below.

Data-flow Optimisations

Optimisations such as common sub-expression elimination, constant folding and con-
stant propagation are methods of target independent optimisations, which involve
eliminating unnecessary computations, resulting in reduced code. Reduction in code
size corresponds to reduction in memory transactions on account of reduced instruc-
tion fetches. Hence, these transformations make a positive impact on both time and
power.

5.4 Impact of Compilation Techniques 113

Loop Transformations

Methods such as loop-unrolling and loop fusion have been frequently applied for code
optimisation. The purpose of introducing loop unrolling is to avoid using loop-specific
overhead in the control statements and branch operations. Similarly, loop fusion is used
to increase the amount of work done in a loop and to reduce the number of iterations.
Both these techniques amount to reduced control instructions, which implies reduced
instruction fetches and hence memory accesses. This makes a positive impact on
overall energy reductions, as long as the code resides in the local cache. Consider a
simple for loop, with the following bounds:

for (int i=0;i< loop—size;i++)
ali] = b[i] + c[i];

Table 5.10 compares the assembly code for the above code with and without loop
unrolling. Using the instruction-level power model, the difference in the memory,
register, and ALU accesses are computed for the two variations. These variations
relate to variation in power, which has been obtained using gate-level simulations and
are listed in Table 5.11.

The assembly code in Table 5.11 compares the advantages of loop-unrolling with re-
spect to power for a loop-size of 10 recursions. The savings in power correlate to the
formulations presented in Section 5.3 expressed as transactions on processor building
blocks, which align with the suggestions in [96].

Strength Reduction

Typically, instructions are characterised with respect to time, hence strength reduc-
tion directly involves replacing time-expensive operations with combinations of one or
more less expensive instructions. This may result in increased code size or number
of instruction, but results in lower execution time. However, an increase in number
of instruction results in an increase in the number of instruction fetches. This cor-
responds to an increase in number of memory accesses and therefore an increase in
power. Although strength reduction is beneficial in terms of time, it may result in in-
crease power consumption. A sample case of replacing time-expensive multiplication
with a combination of shift and addition operations is shown in Table 5.12. Multipli-
cation operation requires 18 clock cycles (90 ns) and is replaced by a combination of
shift & add instructions. This replacement results in a 50% reduction time required
for execution. However, the difference in power consumed is 85%. This results in
an overall difference of 70% in energy consumption, justifying the mutually opposing
nature of this optimisation strategy for time and power.

114

Chapter 5. QuadroCore: Architecture

Table 5.10: Comparing Code with and without Loop-unrolling

** Without loop unrolling **

movi r2, 0 // init. loop counter
lrw r3, mA //address of A

lrw r4, mA //address of B

lrw r5, mA //address of C

14 r6, (r3)

1d r7, (r2)

add r6,r7

st r6, (rb)

incrmt r3

loop:

r4
r5
r2
r2, loop-size

incrmt
incrmt
incrmt
cmplti
bt loop
jmp main

Memory Accesses

=7 + (12 * loop-size) + 3
Register Accesses

= 4 + (17 * loop-size) + 1
ALU Accesses

= (2 * loop-size) + 2

** With
lrw r3,

loop unrolling **
mA //address of A
lrw r4, mA //address of B
lrw r5, mA //address of C
14 r6, (r3)

14 r7, (r2)

add r6,r7

st r6, (rb)

incrmt r3

incrmt r4

incrmt rb

//second recursion

1d 16, (r3)

14 r7, (r2)

add r6,r7

st r6, (rb)

incrmt r3

incrmt r4

incrmt rb5

//third recursion

Memory Accesses

= 3 + (10 * loop-size)
Register Accesses

= 3 + (14 * loop-size)
ALU Accesses

= 4 * loop-size

Table 5.11: Loop Transformations:

Variations in Time, Power, and Energy

Strategy Time Total Power Core Power Mem. Power Tot. Energy
(ns) (W) (W) (W) (nJ)

For loop 1600 0.067 0.013 0.054 107

Unrolled 1000(-37%) 0.058(-13%) 0.012(-8%) 0.046(-15%) 58(-46%)

Table 5.12: Strength Reduction: Variations based on Instruction Selected

Strategy Time Total Power Core Power Mem. Power Tot. Energy
(ns) (W) (W) (W) (nJ)

Combined 45 0.084 0.012 0.072 3.78

Multiply 90 (+100%) 0.013 (-85%) 0.007 (-42%) 0.006 (-92%) 1.17 (-70%)

5.5 Implementation and Performance Measurements 115

Re-materialisation

In order to optimise time, reloading a register from memory is substituted by re-
computing the memory value. Although, it eliminates time expensive memory access
with less expensive ALU and register access, it may result in an increased number of
instructions (which is entirely data/address dependent). This results in an increase
in the instruction memory accesses and as a consequence an increase in the overall
system power. Although, if re-materialisation is achieved by replacing a spill by a
fewer computable instructions, it may be advantageous in terms of power, as depicted
in Table 5.13.

Table 5.13: Comparing Code with and without Re-materialisation

** Register spilling*x* ** Recompute register valuex*x*
addi sp, offset //location to spill 1di r2, Oxa //compute reg.
st r2, (sp) //copy to stack
or
subi sp, offset //recomp. location 1di r2, OxFFFFFFF // multiple instr.
1d r2, (sp) //restore reg. sar r2, 10 // to compute reg.
Mem. Accesses = 6 + offset comp. Mem. Accesses = 2
Reg. Accesses =6 Reg. Accesses = 2
ALU Accesses = 2 ALU Accesses =0
Clock Cycles = 6 + offset comp. Clock Cycles = 2-3

Based on these examples, it is observed that instructions characterised in terms of time
do not always imply power and energy optimisation. Hence, true characterisation of
instructions need to include both time and power as parameters for optimal code-
generation and steer application mapping for energy optimisation.

5.5 Implementation and Performance Measurements

This section analyses the performance reports for the QuadroCore multiprocessor re-
alised using standard cell technology and Xilinx’s FPGA. Based on the implementation
reports, prominent performance differences and deviations are discussed.

116 Chapter 5. QuadroCore: Architecture

5.5.1 Standard Cell Implementation

The design composed of the four processors and their respective instruction and data
memory, was synthesised with UMC’s 90 nm standard cell technology under typical
operating conditions, where voltages was 1.0V and temperature of 25C. Each of the
processors has a 16 x 32 registers file, 32-bit ALU and 32K local instruction and data
memory. For UMC’s 90nm standard technology, a 2-input NAND gate has a gate-
count of 4 and a gate density of 400/mm?. With these inputs for the base cell, area
reports are obtained after synthesis and place route using Synopsys’s Design Compiler
and Cadence’s SoC Encounter.

Table 5.14: Performance Comparison: Impact of Reconfigurable Modes

Architecture Clock Frequency Area Total Power
Original Multiprocessor 476 MHz 0.27 mm? 11.53 mW
QuadroCore 454 MHz 0.34 mm? 11.36 mW

On adding reconfigurable modes to the original architecture, a change in area and
operating frequency is shown in Table 5.14. A change of 9% in area and operating
frequency of 3% was observed as compared to the original architecture [98]. The layer
of interconnects are controlled via instruction set extensions to alter the control and
dataflow between the decode, execute, and register access stages. These enhance-
ments ensure that the base instruction set architecture is reused and reconfiguration
is managed at a high-level of abstraction, as suggested using the above-mentioned
programming model. All these configurations and the programming constructs result
in a reduction in the number of instructions, hence reduced memory transactions,
and reduced power consumption. The leakage power using UMC’s 90nm standard
cell technology is in the range of 0.8 mW. The benefits in terms of clock cycles are
at a cost of additional multiplexers and additional routing interconnects between the
processing stages, which result in reduced overall frequency. Therefore, the presented
methodology is a trade-off between achieved clock frequency and the cycles required
for application execution.

Area Reports

Table 5.15 compares area reports for synthesis at 222 MHz. In terms of area, it is may
be noted that a single NCore contributes to an insignificant amount of 3% of the total
core area. The processing engine or the ALU contributes to 20% of the processor core,
and the register file to 40% of the processor area. The compute intensive unit of the
core corresponds to 20% of total, where as the storage unit corresponds to 40%, and

5.5 Implementation and Performance Measurements 117

the rest is the control logic (40%). The memories itself correspond to nearly 88% of
the total core area.

Table 5.15: Comparing Area : Compute and Communication Overhead

Architecture Area (mm?) % Area
ALU 0.02 0.6
Decoder 0.005 0.1
Register File 0.04 1.2
Address Generation 0.003 0.1
Other Control Logic 0.03 1.0
NCore 0.08 3

4 x NCore 0.32 12

4 x Memory 2.30 88
QuadroCore 2.62 100

Core versus Memories

Table 5.16 shows the difference in the performance of the QuadroCore with and with-
out its local instruction and data memories. As can be seen, nearly 85% of power
consumption is on account of the local memories. Additionally, maximum clock fre-
quency of the processor with memories is lower than the cluster of four processors, on
account of the slow memory interface. A single bank of instruction and data memory
nearly corresponds to four processing elements in terms of power and eight processor
core in terms of area.

Table 5.16: Impact of Introducing Memories

Architecture Clock Frequency Area Power
QuadroCore (Core + Memory) 261 MHz 2.63 mm? 39.10 mW
QuadroCore (Core) 454 MHz 0.34 mm? 11.36 mW

From the detailed power reports for the QuadroCore multiprocessor operating at 1.0 V
supply, it was seen that the total dynamic power is nearly 90% (37.05 mW) of the total
power consumption (39.13 mW). It has to be noted that the dominant dynamic power
is entirely application dependent. Hence any further power savings requires modifying
the application definition and application mapping strategies for low power. Further, it
was noted that about 86% of the total power was contributed by the on-chip memory.
Among the rest (14%), the register file itself had a contribution of about 20% of power.

118 Chapter 5. QuadroCore: Architecture

NCore, DualCore to QuadroCore

Table 5.17 shows the impact on time, area, and power for increasing number of cores.
The clock frequency of operation remains marginally affected and is around 2%. How-
ever, the area and power change are in a linear relationship to the number of cores.
The change in area from a 2-core cluster to a 3-core cluster is 32% and from a 3-core
cluster to a 4-core cluster is 26%. Similarly in case of power, a change of 37% from a
2-core to 3-core and a change of 28% from a 2-core to 4-core cluster is noticed.

Table 5.17: Impact of Additional Processors

Architecture Clock Frequency Area Power mW /MHz

1-Core 280 MHz 0.67 mm? 7.2 mW 0.03
2-Core 273 MHz 1.32 mm? 18.1 mW 0.07
3-Core 270 MHz 1.97 mm? 28.7 mW 0.11
QuadroCore 261 MHz 2.63 mm? 39.1 mW 0.15

Impact to Technology Scaling

A comparative study for the implementation of the QuadroCore multiprocessor on
UMC’s 90 nm and 130 nm technologies was carried out. The 90 nm technology has a
density of 400K gates per mm? and an operating voltage of 1.0V. The 130 nm technol-
ogy has a density of 200K gates per mm? and a 1.2V operating voltage. With reduced
process technology, the area reduces and the maximum achievable clock frequency is
significantly higher. The side-effect of higher operating frequencies and lower area is
the increase power consumption, as can be seen in Table 5.18.

Table 5.18: Impact of Technology Scaling

Architecture Clock Frequency Area Power

130 nm 285 MHz 0.75 mm? 9.6 mW
90 nm 454 MHz 0.34 mm? 11.36 mW

Impact of Clock Gating

Table 5.19 shows the performance impact of introducing clock gating as a power saving
technique in the QuadroCore multiprocessor. It results in a minor reduction in the
maximum frequency of operation (about 0.8%) and increase in area (about 1%) and
a significant amount of power savings. The power savings are nearly 31% of the total

5.5 Implementation and Performance Measurements 119

power after introducing clock gating. The majority of power savings are due to the
reduction in power introduced in the register files. With clock gating, the power
contribution of register files reduces from 25% to 2% of the total power. The addition
of 298 clock-gating elements accounts to a clock gating of 96% the total 8033 registers.

Table 5.19: Impact of Clock Gating

Architecture Clock Frequency Area Power
QuadroCore without clock gating 270 MHz 2.67 mm® 57 mW
QuadroCore with clock gating 261 MHz 2.63 mm? 39.1 mW

QuadroCore Reconfigurable Modes : Costs
Table 5.20 lists the individual performance reports for QuadroCore’s reconfigurable

modes and the corresponding performance impact on the achieved maximum clock
frequency, area, and total power (with the default switching activity).

Table 5.20: Standard Cell Synthesis Reports - Typical Operating Conditions

Architecture Clock Freq. Area Power
QuadroCore: Base 276 MHz 2.50 mm? 41.8 mW
QuadroCore: Sync 276 MHz 2.51 mm? 42.0 mW
uadroCore: Comm 276 MHz 2.61 mm? 41.7 mW
Q
QuadroCore: SIMD/MIMD 270 MHz 2.59 mm? 40.7 mW
QuadroCore: ISEs 273 MHz 2.59 mm? 41.0 mW
QuadroCore: FMA 273 MHz 2.59 mm? 41.9 mW
QuadroCore: All Modes 261 MHz 2.63 mm? 39.1 mW

In the table, Base refers to the original four processor cluster in the absence of any
reconfiguration modes. Sync refers to the enhancements to the Base to support the
synchronisation mode of reconfiguration described in Section 5.1.2. Comm refers to
the enhancements to the Base to support the communication mode of reconfiguration
described in Section 5.1.3. SIMD/MIMD refers to the enhancements to the Base
to support the SIMD/MIMD modes described in Section 5.1.4. ISE refers to the
enhancements to the Base to support the additional instruction set extensions that
were included to support co-operative processing, discussed in Section 5.1.6. FMA
refers to the enhancements to the Base to support the fast memory access mode
described in Section 5.1.4. Finally, QuadroCore: All Modes includes all the above
mentioned modes.

120 Chapter 5. QuadroCore: Architecture

As can be seen, the overall impact on introducing the reconfigurable modes is about
5% in terms of achieved maximum clock frequency, 5% in terms of area, and 6% in
terms of dynamic power. The maximum change in clock frequency is noticed in the
SIMD/MIMD mode of operation, where the control path is significantly altered to
broadcast control signals to all the processors. Similarly, the maximum change in area
is noticed in the Communication mode, where the shared register file is responsible
for the additional area. Figure 5.12 summarises the performance reports in terms of
frequency of operation, area, and power consumption for each of the reconfigurable
operating modes.

@ QuadroCore -Base O QuadroCore -Comm
©® QuadroCore -SIMD/MIMD @ QuadroCore -ISE
O QuadroCore -FMA ® QuadroCore - All Modes

© QuadroCore -Sync

43 -
425
42 -
415 -
41
40.5
40

Power Consumption (mW)

39.5 A1
39 1
38.5 1

38

255 260 265 270 275 280

Frequency of Operation (MHZz)

Figure 5.12: QuadroCore : Performance Reports

5.5.2 Post-layout Implementation Reports

Table 5.21 compares the implementations at 285 MHz, for the post-synthesis and
post place and route (P&R) implementations. The results are compared first only
for the core (without memories). The post-place and route reports indicate the area
and power reports for a utilisation density of 85%. It has to be noted that the post-
synthesis reports are estimations with an approximation for the interconnects and
wires using a wire-load model. Whereas, the post-place and route reports include the
actual report as obtained after the design has been routed.

5.5 Implementation and Performance Measurements 121

Table 5.21: Post place and Route evaluations: Core Only

Architecture Area Power Utilisation Density
QuadroCore (post-synthesis) 0.26 mm? 6.62 mW
QuadroCore (post P&R) 0.40 mm? 19.82 mW 85%

Table 5.22 compares the implementation reports for the entire QuadroCore multipro-
cessor (core and memories) at 222 MHz. The reports are indicative of the impact of
introducing actual wire-length estimations after the place and route phase.

Table 5.22: Post place and route evaluations - Core + Memory

Architecture Area Power Utilisation Density
QuadroCore (post-synthesis) 2.63 mm? 39.1 mW
QuadroCore (post P&R) 3.33 mm? 56.72 mW 68.9%

Figure 5.13 shows the floor plan for the major building blocks in the QuadroCore
multiprocessor. The layout is a ‘core-only’ (without any I/0O interface) implementation
to analyse the impact of physical characteristics in the modifications introduced in the
QuadroCore multiprocessor.

5.56.3 FPGA Reports

The entire architecture has been mapped to our scalable rapid prototyping system,
RAPTOR2000 [99]. Using this environment, accelerated architectural prototyping for
performance analysis of applications (described in C), is then possible. This exper-
imental setup facilitates convenient cycle accurate performance estimations for large
benchmarks. The FPGA implementation of the QuadroCore has an operating fre-
quency of 12.5 MHz and occupies 58% of the slices and 53% of the Block RAMs on a
Virtex-II 4000. In Table 5.23 time, area, power reports for the FPGA implementation
that was made for functional validation.

Table 5.23: FPGA Performance Reports

Architecture Clock Frequency Slices Block RAM Power
FPGA XC2v4000 12.5 MHz 58% 53% 2 W

122 Chapter 5. QuadroCore: Architecture

Memory 1
Memory 3

Core

Memory 2
Memory 4

Figure 5.13: Post Place and Route Layout

Performance Deviation

Table 5.24 shows the performance deviation between standard cell and FPGA imple-
mentation. The area comparison is an approximation to FPGA equivalent gate count,
included only for simplistic comparison.

Table 5.24: Performance Deviation

Architecture Clock Frequency Area Power

QuadroCore- All Modes 261 MHz 783505 39.1 mW

FPGA 12.5 MHz 4455240 2 W

Performance Deviation 20.88 6 51
5.6 Summary

A reconfigurable multiprocessor template that provides fast adaptability to application-
specific computation, communication, and synchronisation demands has been devel-
oped. Using this template, a reconfigurable multiprocessor — QuadroCore that has

5.6 Summary 123

four instances of our RISC processors (called NCore) has been realised. The focus
of this approach is to use multiple instance of an existing processor core, introduce
minimal modifications to the base instruction set architecture, in order to enable
application-specific customisation via run-time reconfiguration. The most important
advantage of this approach is the reduction design and verification time, and hence
the time-to-market. Design space exploration is made possible via a set of reconfig-
urable modes. Reconfigurability in this context enables adapting the multiprocessor
architecture to variations the degree of task-level parallelism, processor-to-processor
communication, and the inter-processor synchronisation. The hardware overhead itself
has a very minimal impact on account of the reconfiguration enhancements. In order
to ascertain the performance benefits of the proposed approach, the QuadroCore mul-
tiprocessor has been realised on on UMC’s 90 nm standard cell technology and Xilinx
Virtex2 FPGA. The standard cell realisation has been used for performance measure-
ments and the FPGA prototype aids in accelerated functional validation with large
benchmarks. Analysing the performance changes compared to a fixed architecture, a
change in operating frequency of 3%, area of about 9%, and power of 1% has been
noticed. On the other hand, introducing these reconfigurable capabilities extends us-
ing the multiprocessor architecture over a diverse range of applications. Although the
addition of flexibility in the architecture results in a reduction in the maximum oper-
ating frequency, and increase in area, is compensated by the reduction in the number
of clock cycles and power required to perform a given task.

Chapter 6

QuadroCore: Applications

The QuadroCore reconfigurable multiprocessor adapts according the granularity of
computation, communication demands, and synchronisation paradigms of the appli-
cation. In order to analyse the impact of application-specific characteristics on perfor-
mance, a diverse set of applications have been mapped to the QuadroCore multiproces-
sor. Firstly, to confirm the impact on the timing evaluation, a set of micro-benchmarks
were mapped. Next, the costs and benefits of this approach with respect to execution
time and power consumption for three different application domains viz., DSP appli-
cations, multiplier used in Elliptic Curve Cryptography, and Neural Networks based
Self-organising Maps are analysed. Additionally, the built-in features in QuadroCore
have been used for processor customisation that can be enabled via profile-driven re-
source estimation. Typically, methods of processor customisations are mainly driven
by introducing instruction set extensions or adding application-specific dedicated hard-
ware accelerators. Here, we limit our discussion to exploring the design space within
processor architectures, with customisations that can be introduced during run-time.
The application-specific functionalities and resource requirements are identified during
compile time and the processor architecture is modified during run-time. A generic
multiprocessor template is developed to aid such a mechanism, which is flexible enough
to adapt to a range of processor-specific variations. For simplification, a standard pro-
cessor limited with single-issue and in-order execution is chosen.

In this chapter, Section 6.1 shows the design flow employed for mapping applications
with diverse characteristics to the QuadroCore multiprocessor. Section 6.2.1 shows the
performance improvement in terms of time for a set of micro-benchmarks and shows
the advantage of a reconfigurable, mixed-mode approach. As a proof of concept for the
time-power optimisation, applications from three diverse domains have been mapped
and their performance reports have been analysed in Section 6.2. Resource efficiency
is the primary focus of mapping for these applications. Next, in order to extend the

126 Chapter 6. QuadroCore: Applications

usability of in-built flexibility, methods of processor customisations are presented in
Section 6.3. Also in this section, a discussion on using QuadroCore multiprocessor as
a platform for application validation, particularly with respect to parallel programs
is included. In this case, the combined hardware-software validation is a distinct
advantage.

6.1 Design Flow for Resource Efficiency

Performance and optimal resource utilisation have been the primary focus of designing
our reconfigurable multiprocessor — QuadroCore. It provides a generic architectural
template, where applications with diverse characteristics can be mapped. Its flexible
nature provides adaptability in terms of granularity of computation, amount communi-
cation, and frequency of synchronisation to suit the application. The implementation
details to support this scenario are discussed in the following sections.

Figure 6.1 shows the design flow used to adapt the QuadroCore multiprocessor to the
application demands. The QuadroCore multiprocessor can be categorised as a clock-
cycle programmable architecture, as described in Section 3.1. Thus, the maximum
frequency of operation is fixed, and the programmable parameter is the clock-cycles
required for execution. In this design flow, the objective is to optimise both time
in terms of clock cycles required for computation and the power consumed at the
instruction-level. This method of mapping is a two-stage process. In the first level,
choice of the right reconfigurable mode is made according to the application’s char-
acteristics. This translates to a choice of reconfigurable modes incorporated in the
hardware during application execution. The second stage is a process of application-
specific instruction-level power and time optimisation, in software. For each operating
mode, the choice of the appropriate set of instructions is made for the performance
objective. The choice of the reconfigurable mode has a greater freedom for design
space exploration. The choice of the mode can influence parameters that affect both
time and power reports, as listed in Table 5.6. The next level of fine-tuning is achieved
based on the instruction-level timing and power modes, described in Section 5.3. The
design-flow is feedback directed and provides and estimation of the run-time statistics
of the impact of application-level transformations on the target reconfigurable multi-
processor. Transformations can be introduced during the application specification (in
software) and application mapping (in hardware). This new approach is generic and
the performance objectives can be customised to suit the application-to-architecture

mapping.

6.2 Applications Mapped to QuadroCore 127

Application Reconfiguration Design Space

Definition
inC

A A

Instruction
Selection:
Time & Power

Y

Mapping

64 Bit ALU + 32 Bit ALU + 32 Bit ALU

v

Functional and Timing Verification

Gate level Simulation

A\

Record switching actvity

A\

Evaluate Power

Figure 6.1: Design Flow for Application Mapping on QuadroCore

6.2 Applications Mapped to QuadroCore

In this section, the performance impact of mapping a set of applications onto the
QuadroCore multiprocessor has been analysed. In Section 6.2.2, the variations in
time, power, and energy for two DSP applications are reported. The focus here is
to analyse the impact of application partitioning in terms of time, power, and con-
sequently energy. In Section 6.2.3 a multiplier used in Elliptic Curve Cryptography,
which is representative of applications with function-level or task-level parallelism is
analysed. The variations in time and power, with reconfiguration used for power sav-
ings are analysed. In Section 6.2.4, a data-parallel application called Self-organising
Maps has been analysed for energy savings achieved via reconfiguration and parallel
data processing. The same application has also been mapped onto a state-of-the-art
configurable processor to compare the difference in performance.

128 Chapter 6. QuadroCore: Applications

6.2.1 Timing Advantage of Reconfiguration

Experiments were performed using the parallelising compiler on the hardware imple-
mentation of the proposed reconfigurable multiprocessor architecture. The same was
simulated with a cycle accurate simulator. The current prototype implementation of
the CoBRA compiler performs a fine-grained parallelization on basic block level. This
section presents evaluations of performance comparison of the reconfigurable operat-
ing modes. For the initial evaluation, small excerpts from practical audio and video
applications were selected. These computational blocks constitute typical transcoding
algorithms for aggregation network access nodes.

convolution: Computes the discrete convolution of a 50 element array with a 16
element array.

fft: Represents the variable access pattern of a Fast Fourier Transformation with two
arrays of 16 elements each.

mm: Multiplies two 4x4 matrices.
sharpening: Sharpening algorithm for an image dimension of 10x10 pixels.

vectormuladd: Multiply-accumulate on vectors of 10 elements.

The compiler selects between asynchronous, synchronous or SIMD modes for each
basic block or just use a single processor. Run-time mode change is enabled via a
single cycle reconfiguration. We restrict our comparisons to a single processor and a
cluster of four processors, although evaluations of the architecture with two, three of
four processors may be performed. In Table 6.1, ASYNC represents the asynchronous
mode, SYNC is the synchronous mode and SIMD is the SIMD mode. A combination
of one or more modes is achieved via reconfiguration, as suggested by the compiler. It
has to be noted that no single mode of operation is a true winner for all the applica-
tions. This further emphasises the point that a fixed hardware architecture may not be
suitable for application, even within the same application domain. The results imply
that the performance improvements depend on the type of the application and the
corresponding mode of operation. For convolution, mm and £ft the CoBRA compiler
achieves a significant improvement in performance by partitioning the algorithm into
four processors. Parallelising £ft yields a speedup of 10, because the well-balanced
register need avoids a significant amount of spill code in contrast to a single processor.
Even when multiple processors access the external memory with a significant overhead,
a performance increase can be observed compared to a single processor. However, in
case of vectormuladd it may be seen that an increase in the number of processors
does not have a positive effect on the performance (as in the case of synchronous and
asynchronous mode). These results demonstrate that using the selected reconfigurable
modes in our multiprocessor is beneficial, since the architecture allows switching be-
tween these modes and the compiler selects the optimal implementation for each piece

6.2 Applications Mapped to QuadroCore

129

Table 6.1: Reconfigurable Modes: Performance Reports

Benchmark ‘ Modes ‘ Clock Cycles ‘ Speedup
mm Single Processor 681

ASYNC 207 3.28

ASYNC + SYNC 226 3.01

ASYNC + SYNC + SIMD 236 2.88
fft Single Processor 34431

ASYNC 4105 8.38

ASYNC + SYNC 3165 10.87

ASYNC + SYNC + SIMD 3662 9.40
convolution Single Processor 16871

ASYNC 12330 1.36

ASYNC + SYNC 12428 1.35

ASYNC + SYNC + SIMD 16231 1.03
sharpening Single Processor 40069

ASYNC 38486 1.04

ASYNC + SYNC 35602 1.12

ASYNC + SYNC + SIMD 29026 1.38
vectormuladd | Single Processor 883

ASYNC 1482 0.56

ASYNC + SYNC 1438 0.61

ASYNC + SYNC + SIMD 755 1.17

of code. Additional analysis with time as the optimisation objective can be found

in [HTK*07).

6.2.2 DSP Algorithms

Two algorithms frequently used in DSP applications, viz., Matrix Multiplier and FIR
filter are mapped onto the 4-processor QuadroCore using the new reconfiguration

design space.

Matrix Multiplication

Consider two m—dimensional square matrices, A and B, the resulting elements of the

product matrix C' is computed as given by:

m
Cij = E A * By
k=1

(6.1)

130 Chapter 6. QuadroCore: Applications

The computation can be divided into the following steps:
1. Distribute A and B among the four processors (corresponds to Teomm)
2. >0 (A g = By j)(corresponds t0 Tiomp)
3. Final result €' is available in the individual processors

where, each element of the resulting matrix C' requires m product computations and
m — 1 summations. The algorithm computes using m x m data elements. Step 1
corresponds to the communication overhead on account of partitioning, T,.,m. Step 2
is the core computation time, 7.,,,, it can be distributed across on all the processors.
Since the operation is identical and parallelised it can be operated in SIMD mode,
which influences T}.con, and Pi,.

FIR filter

The equation for realising an FIR filter is given as follows:

y(n) =Y a(k)*z(n — k) (6.2)

where a(k) is the coefficient of the FIR filter at tap k, z(n) is the input, y(n) is the
output at time n and N is the length. For partitioning an FIR filter onto the 4-
processor QuadroCore using the new reconfiguration design space, the algorithm is
divided into the following steps:

Distribute a(k) and z(n-k) among the four processors (corresponds t0 Teomm)
y(k) = a(k) * x(n-k)(corresponds to T omyp)

Wait for end of computation, for all k elements (corresponds to Tyyp.)
Collect y(n) from all the other three processors (corresponds t0 Tpmm)

Zﬁzl y(k) (corresponds to Tiomp)

SANEE I

The choice of the mode is a compromise between the number of cycles required for
execution (optimising for time) and the corresponding impact on power (optimising
for power). The clock cycles depict the variation in execution time for each chosen
mode, and the benefits reflect the corresponding savings in clock cycles or power that
is achieved in each of the modes. Since the choice of the modes are entirely application
dependent, accordingly are the costs and benefits evaluated. E.g., in Step 2, the MIMD
mode of operation is beneficial in time, but results in higher power consumption in
comparison to SIMD. Similarly, in Step 3, the SYNC mode results in lower synchro-
nisation time, but ASYNC is power-efficient on account of fewer instruction memory

6.2 Applications Mapped to QuadroCore 131

accesses. A detailed timing analysis of the variations in timing for each of the above
mentioned steps when the available reconfigurable modes is discussed in [PP0O8b].

Impact on Power

The power characteristics of the QuadroCore depends on the number of active proces-
sors and the choice of the reconfigurable modes. Power scales linearly with the number
of processors. The difference in power is the largest between the SIMD and the MIMD
mode of operation. Thus, to ensure low-power operation, the QuadroCore is switched
to SIMD mode, as much as possible. In the presence of data-dependent control flow
or in the absence of data-level parallelism, all the processors need to operate in the
default MIMD mode. For operation of N identical processors in MIMD mode, the
total power is given by:

Prima = PLx N (6.3)

where, P; is the power dissipated by a single processor. To save power, the Quadro-
Core multiprocessor is operated in the MIMD mode only in the presence of data-
dependencies. Thus, in the best-case scenario, the QuadroCore operates entirely in
the SIMD mode resulting the least power dissipation (Ps;nq), and in the worst case en-
tirely in the MIMD mode (Pp;ma) resulting in the highest power consumption. Thus,
for QuadroCore:

Pguadrocore = T * Pyyma + Y * Prima (6.4)

where, x is the percentage of data-parallel SIMD component in the application, and y
is the default MIMD component, such that x +y = 1, Figure 6.2 shows the change in
power with increasing number of processing elements, for two application - viz., matrix
multiplication and an N-tap FIR filter. The inherent application characteristics restrict
operating in the low-power SIMD mode, thus making an overall impact on the total
power consumption. Power consumption reduces with the introduction of the SIMD
mode. This is proportional to the number of processors. The FIR filter switches
back and forth between SIMD and MIMD modes of operation, where as the matrix
multiplication has SIMD as the dominant mode of operation. Thus, for four processors,
the application characteristics results in operation between the two extremes (SIMD
and MIMD), as shown in the figure.

Impact on Energy

Energy has a combined influence on time and power characteristics. Energy consump-
tion for the N processors is given by:

EN - PN * Ttotal (65)

132 Chapter 6. QuadroCore: Applications

e=Pmimd =¢=Psimd =8@=Pfir =t=Pmm

g ~ Application-Specific
o Characteristics
[a W
2 2 1
=
©
K]
= é,—”//" .

14 o

0 T

0 1 2 3 4

Number of Processors

Figure 6.2: Application-Specific Power Characteristics in QuadroCore

Figure 6.3 shows the impact on energy, with increase in the number of processors and
the impact of application-specific characteristics. Matrix multiplier represented by
Epm s a case of minimal impact on account of application partitioning, whereas Ey;,
is the case with increasing overhead in terms of communication and synchronisation
overhead on account of partitioning. As can be seen, the SIMD mode of operation
represents the best-case solution for time and power. The application mapping of an
FIR filter on two processors is beneficial in terms of energy, than the case of additional
processors. For matrix multiplication, the low overhead of partitioning provides a
best-case solution with three processors. However, the change in the overhead for par-
titioning increases with increase in number of processors. To confirm the estimations,
the two applications were mapped on the QuadroCore multiprocessor. The point de-
noted by E-Q-FIR and E-Q-M M represent the energy values for the FIR filter and
the matrix multiplier respectively.

6.2.3 Multiplier used in Elliptic Curve Cryptography

The finite field multiplication in GF(2%3) used in Elliptic Curve Cryptography was
modified using the Karatsuba’s method [100], and was mapped onto the QuadroCore

6.2 Applications Mapped to QuadroCore 133

—=—Efir ——Emm ——Emimd
——Esimd ¢ E-Q-MM 4 E-Q-FIR

1.2 4

e ———

0.8 4

.
—

0.6 -

0.4 A

Relative Energy

0 T T 1
2 3
Number of Processors

Figure 6.3: Impact of Application Partitioning on Energy

multiprocessor. To match the word-length of the individual processors (w = 32 bit),
the input polynomials a(z) and b(z) are divided into eight 32 bit words:

Alz) = nz_l A - XTI (6.6)

n—1
B(z) = Y B;- X'
=0

C = A-B

with n = 8w = 32. The coefficients of higher degree than the considered binary field
(233 ---255) are padded with zeros. By applying the Karatsuba method iteratively,
the multiplication of binary polynomials of degree 232 can be calculated with 27 finite
field multiplications at word-level. The application’s characteristics were discussed in
Section 3.4.2. The word-level multiplications are distributed to the four processors
PE1 --- PEJ of the QuadroCore multiprocessor. In this way, always four partial
products are processed in parallel. Here the task executed is the same for all the
processors. For each partial word-level multiplication the processors calculate the sum
of the words j of the input polynomials A(x) and B(z). In binary fields, the sum of
the input coefficients is easily calculated by an zor operation. The multiplication at
word-level itself is performed using shift-and-zor instructions [101]. The product C is
a polynomial of double word length, which is stored in two registers containing the
high (H) and low (L) word of the product, respectively. Finally, the partial products
are added, i.e. zor’ed, to the corresponding word segments ¢; of the result.

134 Chapter 6. QuadroCore: Applications

Table 6.2 shows the variation in time and power for a case study on a multiplier in
Elliptic Curve Cryptography, with an operating frequency of 200 MHz, UMC’s 90 nm
standard cell technology. A savings of 10% were observed when used in the SIMD-
MIMD mode. In the SIMD-MIMD mode, the processors execute blocks of code in
SIMD mode whenever possible. In case of data dependent variations to the control
path, the mode is switched back to MIMD. The processors (PFE2, PE3 and PEj)
are reconfigured to operate based on the instruction stream of the ‘master’ (PE1),
when executing the same function, e.g. the word-level multiplication. Each time,
reconfiguring between the modes requires one clock cycle. Since all the processors
need to execute the same instruction stream, all the processors need to be synchronised
before entering the SIMD mode. Hence, there is a difference in the execution times
between SIMD and MIMD modes. The reconfiguration functionality was hand-coded
in assembly as a first proof of concept. A power saving of 23.4% was noted when
used in SIMD mode, as compared to the MIMD mode. The resulting energy saving
was 15.54% as discussed in [PPP08|. An important observation is the energy savings
observed even in the absence of an N-fold speedup.

Table 6.2: ECC: Performance Variations with Operating Mode

Mode | Execution Cycles | Speedup | Power(W) | Energy (uJ)
Single Processor 9402 1 0.017 0.799
MIMD 3193 2.94 0.063 1.012
SIMD—MIMD 3337 2.81 0.057 0.957

Scalability for Function-level Parallelism

The multiplier used in Elliptic Curve Cryptography, represents an application with
function-level parallelism. The algorithm has 27 identical functions, which can be
executed in parallel, provided the inter-function dependencies are satisfied. The inter-
function dependencies permit a maximum parallelism of three functions to be executed
in parallel. Hence, for equal load balancing a 3-processor QuadroCore is optimal. As
also observed from the speedup reports in Table 6.2, it is in the range of 3, even for
a four processor QuadroCore. This example proves the usability of the QuadroCore
multiprocessor to applications that exhibit function-level parallelism. In the presence
of data-level dependency a single cycle mode switch to the MIMD mode or the use of an
instruction helps in sharing the branch/jump condition (as discussed in Section 5.1.6).

6.2 Applications Mapped to QuadroCore 135

Comparison to CoreVA

For comparison, CoreVA |62] - a VLIW processor that was developed in the research
group is listed in Table 6.3. CoreVA has been extended to include instruction set ex-
tensions to accelerate the application (listed as CoreVA-Extended). The performance
measurements for the two processors were made at 200 MHz.

The difference in the clock cycles for execution is accounted to the fact that the Ciopp,
Ceomm, and Cgyp. for the two architectures are different, as listed in Table 3.6. The
inter-task communication and memory access mechanisms that account for C.,,,, in a
VLIW processor and a chip multiprocessor like QuadroCore are diverse. A VLIW pro-
cessor like CoreVA relies on a shared memory access mechanism with a shared register
file and shared instruction and data memory. However, the QuadroCore multiproces-
sor uses the shared register file only for exchange of data and stores all the shared
data in the shared external memory. This difference in access mechanism makes a
difference of 6-15 clock cycles for each data accessed.

Table 6.3: Comparing QuadroCore with CoreVA

Mode | Execution Cycles | Power(W) | Energy (uJ)
Single Processor 9402 0.017 0.799
MIMD 3193 0.063 1.012
SIMD—MIMD 3337 0.057 0.957
CoreVA 1839 0.207 1.90
CoreVA-Extended 1636 0.210 1.71

As can be seen, implementing the algorithm using the QuadroCore processor is ben-
eficial in terms of power consumption and total energy requirement. Whereas, the
CoreVA processor is beneficial in terms of clock cycles required for implementation.
However, it has to be noted that the CoreVA processor has been synthesised on ST’s
90nm standard cell technology, whereas QuadroCore has been implemented on UMC’s
90nm standard cells. Additionally, the power measurements for the QuadroCore mul-
tiprocessor include the power consumption of the core and memory, obtained after
post-synthesis simulation. Whereas, the power reports obtained for CoreVA processor
are high-level estimates and exclude the power contribution of the local memories. As
discussed in Section 5.2.2, the core power corresponds to only 20% of the total power.
Furthermore, power saving strategies such as clock gating that has been introduced
in QuadroCore result in significant power savings. Hence, the difference in power
estimations between the two processors is a significant advantage for QuadroCore.

136 Chapter 6. QuadroCore: Applications

6.2.4 Self-organising Maps

Self-organising maps (SOM) are neural network based machine learning algorithms
that are extremely data parallel in nature. This application was chosen as an example
to observe the performance impact of mapping data parallel algorithms on Quadro-
Core. Details of the application-level characteristics and its characteristics in terms of
the computation, communication, and amount of inter-task synchronisation have been
presented in Section 3.4.3. As described, the algorithm is composed of two functions,
viz., a best match search and an adapt-map function. Since all the data elements need
to execute these two functions, the algorithm is representative of data-parallel applica-
tions. The functional representation of the algorithm as mapped onto the QuadroCore
multiprocessor is shown in Figure 6.4. On partitioning data onto the four processors in
the QuadroCore, the search operation is sub-divided into two stages. In the first stage,
a local best match is found locally in each of the processors. Next, these local best
match values are shared and a global best match is identified. After the best match
has been located, the adapt-map function is performed using this global best match.
Additional details of the algorithm may be found in [PPPR09|. For the algorithm
itself, the total execution time (Tjq) is given by:

Ty < |N||X|dim(2) - epochs (6.7)

where, |N| is the number of Neurons, |X| is the number of vectors, dim(Z') is the
dimension of the weight vectors, and epochs is the number of iterations.

For the implementation on QuadroCore, using Neuron parallel approach, the execution
time Tuadrocore 15 given by the following equation:

N
TQuadroCore X ([%—‘ dim(7) + thM> | X| - epochs, (6.8)

where, PE is 4 for our QuadroCore processor and t,p,/ is the additional time (in clock
cycles) during which the four processors synchronise, share their local best matches,
and find a global best match.

SOM on QuadroCore

As shown in Figure 6.4, the algorithm is subdivided into functions find local best match,
find global best match, and adapt Map. Since find local best match and adapt Map
perform exactly the same operations on a large amount of data, data is partitioned onto
the four processors and these functions are executed in parallel on all the processors.
Since the operations are identical on all the processors, they can be executed in SIMD

6.2 Applications Mapped to QuadroCore 137

i Processor 1 Processor 2 Processor 3 Processor 4
A
Initalize Map Initalize Map Initalize Map Initalize Map .
alk
| | 1 I
Find local Find local Find local Find local a2

Best Match Best Match Best Match Best Match

4
Synchronize + Reconfigure

Find Global
Best Match

TQuadroCore
#epochs
MIMD
Team

y
Synchronize + Reconfigure

[a)

Adapt Map Adapt Map Adapt Map Adapt Map

SIM
Tam

Figure 6.4: SOM Mapped to QuadroCore

mode. A switch to the SIMD mode from the default MIMD mode is done by inserting
a reconfiguration instruction (function called reconfig(mode)). After the local best
match function is executed, each processor sends its local best match data to the shared
register file (function called send(data, location)). The steps between find local best
match and adapt Map are data-dependent (a search operation), thus performed by one
processor only (MIMD). Therefore, another reconfiguration instruction is inserted and
the local best match data from all the processors is received from the shared register
file receive(data, location) to calculate a global best match. For executing the
adapt map function all processors again enter SIMD mode, as they share the same
instruction stream. In general, finding the local best matches and adapting the map
are the dominating functions as they are executed more often. They are executed on
all the processors simultaneously in SIMD mode, resulting in significant power savings
and an increase in code density.

Tables 6.4, 6.5, 6.6 compare the performance of the SOM application when mapped to
a single processor, the QuadroCore operating in MIMD mode, and when operating in
the low power SIMD mode (which includes reconfiguration overhead to/from MIMD
mode). The speedup denotes the improvement in execution time on the reconfigurable
multiprocessor as compared to the execution time on a single processor. Energy is
calculated for the processor when operating at 200 MHz and is the product of the total
time required (product of execution cycle and clock period) and the power consumed
in the respective modes. The power measurement for a single processor was made
for the entire QuadroCore, with one active processor. Hence, a difference in energy
measurements for the QuadroCore with one active processor and the QuadroCore
operating in MIMD mode are noticed on account of the power contribution of the

138 Chapter 6. QuadroCore: Applications

unused resources. This additional power includes the leakage power and internal power
for the shared register file, the wishbone bus, and other resources which are unused
when only one processor is active. The leakage power is in the range of 1.5 mW. In the
absence of power contribution from the unused resources, the energy measurements
for a single processor would be lower than that of the MIMD mode. Adding power
gating capabilities to the architecture would result in zero leakage power contribution
from the unused resources.

In the following experimental results, it is clear that the MIMD mode of operation
is optimal in terms of time and the SIMD mode of operation ensures low power con-
sumption. However, the power savings in the SIMD mode in comparison to the MIMD
mode has an additional advantage. The significant power savings in the SIMD mode
also results in energy savings, which is in the range of 28.44% to 30.9% in the following
tables. It has to be noted that energy savings are observed even in the absence of a
4-fold speedup in our four processor QuadroCore operating in SIMD mode, which is
a distinct advantage. As discussed in Section 3.5, this new scheme of reconfiguration
ensures power savings and performance speedup for every additional processor. These
experiments are a proof of concept for our scheme of architectural modifications to
ensure energy savings for applications mapped on to the QuadroCore multiprocessor.

Table 6.4: Parameters: Vectors = 25 , Epoch = 1, Components = 5, Neurons = 16

Operating Mode ‘ Execution Cycles ‘ Speedup ‘ Power (W) ‘ Energy (uJ)

Single Processor 268,327 1 0.015 20.90
MIMD 77,267 3.47 0.052 20.20
SIMD—-MIMD 78,250 3.43 0.043 17.04

Table 6.5: Parameters: Vectors = 5, Epoch = 1, Components = 10, Neurons = 16

Operating Mode ‘ Execution Cycles ‘ Speedup ‘ Power (W) ‘ Energy (uJ)

Single Processor 100,719 1 0.016 8.11
MIMD 28,581 3.52 0.055 7.83
SIMD—-MIMD 28,744 3.51 0.045 6.47

Table 6.6: Parameters: Vectors = 5, Epoch = 1, Components = 5, Neurons = 16

Operating Mode ‘ Execution Cycles ‘ Speedup ‘ Power (W) ‘ Energy (uJ)

Single Processor 53,870 1 0.015 4.14
MIMD 15,608 3.45 0.052 4.05
SIMD—MIMD 15,790 3.41 0.044 3.50

6.2 Applications Mapped to QuadroCore 139

Variation in Application Parameters

The impact of variations in parameters such as the number of vectors, components
and number of epochs was measured. For the test cases, the achieved speedup was
in the range of 3.2 to 3.5. For further analysis, they can be easily scaled to larger
scenarios. An increase in the number of vector components is beneficial in terms of
speedups and energy savings, since the ratio of synchronisation overhead to parallel
execution reduces with the number of vector components. Similarly, an increase in the
number of neurons will result in speedup closer to 4 and make a corresponding impact
on energy savings. As seen from the tabulated results, power savings in the range of
14% to 18% have been observed in the SIMD mode, when compared to the MIMD
mode. The corresponding energy savings were in the range of 30% in comparison to
a single processor. As a consequence of switching between SIMD—MIMD modes, the
reduction in speed for SIMD operation is in the range of 0.2 to 2%. Apart from power
and energy savings, the code size in SIMD mode was also reduced by about 8%, due
to reduction in code size for the slave processors.

Scalability of Data Parallel Application

For the SOM algorithm, the parallelisable portion corresponds to the algorithm for the
computation of the best match and the adapt map functions. However, the overhead of
partitioning includes a serial portion, which is encountered on account of the division
of the search process into local best match and global best match functions. Hence, the
execution time obtained on the QuadroCore on account of the application partitioning
can be expressed as:

TQuadrocore = Tinit + (Typar + W) - epochs (6.9)
where, T}, is the initialisation time for the maps, T}z, is the time required to the local
best match (function call find best match) among the neurons in the local memories
on each of the processors. T,py is the time required to compute the global best match
on one of the processors, after the individual local best matches have been located.
And, Taps is the time required to adapt the map (function call adapt Map) on each
of the processors, based on the global best match shared among all the processors.
PFE is the number of processors that are simultaneously operating on individual maps.

By increasing the number of processors PFE, the time required to compute the local
1
PE
). However, T,y is the additional overhead involved in partitioning. This

best match (7)) and the adapt map (Taps) reduces proportionally (1) o and
1
PE

time depends on the synchronisation time between the participating processors, which

TAM XX

is proportional to the number of participating processors (T,pyv x PE). However,

140 Chapter 6. QuadroCore: Applications

the computation time involved in locating the local best time and the adapt map
functions is much larger than the time required to find the global best match (T;55, >
T,5m)- Thus, the overhead of partitioning is minimal compared to the advantage of
partitioning the application onto the four processors on QuadroCore. In addition, the
reduction in the memory accesses on account of operation in the SIMD mode leads
to reduction in power. Consequently, it leads to energy savings due to application
partitioning.

6.2.5 Comparison: Parallelism, Speedup, Energy

Table 6.7 summarises the variations in costs and benefits for the above discussed
applications on QuadroCore. DSP benchmarks (such as convolution, FFT) showed a
performance speedup of up to 11 on account of the high register need. This corresponds
to energy savings of 60% compared to the multiprocessor without reconfiguration. A
machine learning application (self-organising maps) with task and data-level paral-
lelism, showed a speedup of 3.5 compared to a single processor. Additionally, energy
savings of up to 31% are observed on account of reconfiguration. A multiplier used
in Elliptic Curve Cryptography with task-level parallelism exhibits a similar speedup
of 3 in comparison to a single processors and energy savings of 20% on account of
reconfiguration in the QuadroCore multiprocessor. Figure 6.5 summarises the perfor-

Table 6.7: Application Performance on QuadroCore

Application ‘ Parallelism ‘ Max. Speedup ‘ Energy Savings
DSP Instruction-level 11 60%

SOM Data-level 3.5 17-31%
ECC Task/Function-level 3 20%

mance reports of the three applications in terms of speedup, power consumption and
energy consumption. Additionally, it compares the achieved reports to the theoretical
estimations (Ideal Scenario) according to Amdahl’s law as discussed in Section 3.5.
As can be seen, the speedups obtained are higher than the ideal case for DSP appli-
cations, where a superlinear speedup is seen. The power consumption is equal to or
less than the ideal case, on account on the reconfiguration mechanism employed in the
QuadroCore processor. Finally, energy consumption is equal to or less than the ideal
case for the three diverse applications.

6.2 Applications Mapped to QuadroCore 141

ODSP EECC OSOM @ Theoretical

12 -

10 -

8 -

6 -

4 - ®

2 -

0 . |—-_| |

Speedup Power Energy

Figure 6.5: Comparing Performance with Theoretical Estimations

6.2.6 Comparable Architectures

Figure 6.6 compares the performance in cycles, area, and energy for SOM algorithm
mapped onto a set of architectures. The plot shows the variations for a single NCore
processor, the QuadroCore operating in MIMD mode, SIMD mode, Tensilica’s base
processor (1K Instruction cache and 1K Data cache), and the same Xtensa base pro-
cessor enhanced with instruction set extensions. For comparison, all the cores were
analysed at 90nm target technology with an operating frequency of 200 MHz. The
size of the points corresponds to a third dimension, which is the gate-count for the
processor core (excluding the memory), in each of the cases.

As seen in the plot, the energy consumption of the QuadroCore multiprocessor on ac-
count of the parallelism is lower in comparison to a single Xtensa processor. Although
QuadroCore outperforms the others in terms of clock cycles, it has been noted that
a single QuadroCore has four independent datapaths as compared to a single control
and datapath in Xtensa processors. Multiple control and data-paths in QuadroCore
provide an advantage in terms of speed for the data-parallel SOM algorithm. Fur-
ther, the SIMD mode of operation also results in additional energy savings. It may be
noted that increasing the number of Xtensa processors will also result in an improved
performance (cycles). However, increasing the number of processor cores will result in
higher power consumption, and require much larger area. The presented method can
be incorporated along with instruction set extensions as a solution to address perfor-
mance trade-offs such as area, power, and time. For comparison, a custom realisation

142 Chapter 6. QuadroCore: Applications

NCore ® QuadroCore-MIMD QuadroCore-SIMD
® Xtensa Xtensa+ISE e FPGA
6 -
N O
= 4
=
> 37
o
o 2 1
c
L 1’
0 1 1 1 1

0 20,000 40,000 60,000
Time (cycles)

Figure 6.6: Comparing Area, Energy, and Execution time

of the SOM algorithm based on [102], was implemented on Xilinx XCV4LX100, oper-
ating at 150 MHz (indicated as a green quadrilateral). This implementation achieves a
significant improvement in time and energy. However, the inherent fine-grained config-
urability in FPGAs results in a high area requirement, which is excluded in Figure 6.6.

Figure 6.7 compares the same set of architectures in terms of area, clock cycles of ex-
ecution and power consumption. As can be seen, the performance of the QuadroCore
multiprocessor in both the reconfigurable operating modes is comparable in power
consumption to other similar state-of-the-art RISC processors. However, the power
consumption of FPGAs exceeds the power consumption of the remaining architecture
by orders of magnitude. An important point of comparison between the reconfigurable
QuadroCore and the configurable Xtensa processors is the capability of run-time adapt-
ability in QuadroCore in comparison to design time configurability (via additional in-
structions) in Tensilica’s processors. In addition, the design time for QuadroCore is
much shorter, since the design entry and reconfiguration management is made possible
using C-based application description. The presented architecture and methodology
is a proof of concept for reusing existing processors (NCore processors here) to build
clusters of multiprocessors that can be customised to application requirements during
run-time. The changes introduced ensure that the pipeline stages and the original
processor ISA are unaltered.

6.3 Extending the QuadroCore Multiprocessor 143

NCore ® QuadroCore-MIMD © QuadroCore-SIMD
® Xtensa Xtensa+ISE ® FPGA
2000 -
1500‘
<
1=
- 1000 -
(O]
=
(@]
o
500 4
-10,000 1(},000 30,000 .,000
-500 -
Time (cycles)

Figure 6.7: Comparing Area, Power, and Execution time

6.3 Extending the QuadroCore Multiprocessor

Architectural adaptability in the QuadroCore is a significant advantage that extends
the usability of the multiprocessor, beyond application acceleration. To explore these
features, the QuadroCore multiprocessor was mapped onto our FPGA-based prototyp-
ing environment. The benefit of mapping this multiprocessor environment onto our
rapid prototyping environment is two-fold. Firstly, it provides and environment to val-
idate parallel programs and manage application partitioning. Next, the flexible nature
of the QuadroCore multiprocessor aids in introducing architectural changes based on
the run-time statistics obtained using the prototyping framework. Together, the com-
bined hardware-software design environment provides a platform for an accelerated
application and architectural validation.

6.3.1 Platform for Validating Parallel Programs

The QuadroCore multiprocessor organisation is adaptable and scalable to suit appli-
cation needs. With an operating frequency of about 200 MHz, it provides a framework
for validating parallel programs, where the design entry is based on widely used se-

144 Chapter 6. QuadroCore: Applications

quential programming models, such as C. FPGA-based prototyping environments such
as FAST [103, 1] have been deployed to accelerate simulation speeds. The program-
ming model FPGAs is a significant drawback to this approach, since it only relies
on HDLs design entry for application mapping. Our approach in contrast, expresses
parallelism application definition using legacy sequential programming languages such
as C, as described in Chapter 5. The necessary directives to support parallel pro-
gramming initiatives are methods of expressing synchronisation, communication, and
task-level parallelism. These paradigms are supported in the compilation framework
used for application mapping in the QuadroCore multiprocessor. Typically, the main
concern in performance estimations for large applications is the large execution time in
simulation-based environments. To circumvent this drawback, As shown in Figure 6.8,
the entire architecture has been mapped to our scalable rapid prototyping system,
RAPTOR2000 [104]. This prototyping environment is supported with a user-interface
and monitoring framework to obtain run-time statistics [PPP09]. This accelerated
feedback obtained in real-time, enables faster validation, and enables modification
that can be incorporated in the design phase. Thus, partitioning applications and
load balancing based on input data are now possible via feedback parameters obtained
via the prototyping environment. Based on the instruction-level power model de-
scribed in Section 5.3 a feedback on the application-level power characteristics is also
generated. As the application definition is made using high-level programming lan-
guages such as C, mapping existing benchmarks and applications is straightforward.
An additional advantage of the FPGA-based prototyping environment is the nature
of its scalability. The entire multiprocessor organisation is scalable to include many
such processing clusters. The number of processors and the inter-connectivity can be
scaled as in the GigaNetIC architecture [98], which connects multiple such clusters via
a network-on-chip. In addition, the prototyping environment is scalable with multi-
ple add-on daughter boards and fast inter-board communication. Thus, this platform
for accelerated prototyping facilitates convenient cycle accurate timing estimation and
power estimation for large computationally intensive applications.

6.3.2 Environment for Run-time Processor Customisation

Introducing processor customisation is a standard procedure for of application-specific
adaptability. Configurable processors such as Xtensa [11] as examples of design time
customisable processors. The QuadroCore reconfigurable multiprocessor provides ca-
pabilities to alter its control and data-flow using high-level constructs as discussed in
Section 5.1. These changes to the processor architecture are introduced during run-
time. With these features, the QuadroCore multiprocessor can be customised to suit
applications with instruction set extensions introduced during run-time. For example,
the need for an additional ALU or a register file is achieved by reconfiguring the control

6.4 Summary 145

Switch Box
X4 L4

QuadroCore

' Shared Memory

Y

&
O

Functional validation

Application-specific
Characteristics

Figure 6.8: Scalable Architecture and Prototyping Environment

and datapath between the execute and register read /write stages. Therefore, the con-
figurable features typically introduced during design time are now introduced during
run-time via performance statistics obtained in conjunction with rapid prototyping
environment. The design framework now has configurable features as functional units
per processor, processors per cluster, and clusters per multi-core architecture. Each
of these features is customisable during run-time to suit variations in applications,
architecture, and the collective influence of the two domains.

6.4 Summary

This chapter focuses on analysing the impact of application-specific characteristics
on the performance of the QuadroCore multiprocessor. As a proof of concept, the
performance impact of mapping three diverse applications onto the QuadroCore mul-
tiprocessor have been analysed. Firstly, a set of micro-benchmarks were mapped to
the QuadroCore using the CoOBRA compiler, where speedup of up to 11 was observed
in comparison to a single processor implementation. Next, it has been established
theoretically that for DSP applications, the advantage achieved in terms of power is
in the range of 1.2 to 3.5 times, depending on algorithm-specific characteristics. For
a function-parallel multiplier used in Elliptic Curve Cryptography, a power savings of
23% and a corresponding energy savings of 15.5% using the presented reconfiguration

146 Chapter 6. QuadroCore: Applications

mechanism have been achieved on the QuadroCore multiprocessor. The reconfigu-
ration mechanism yields power savings in the range of 14-18% and energy savings
of 28-31% for a data-parallel application called Self-organising Maps. The diversity
of application characteristics and the consistent performance advantage confirms the
usability of the QuadroCore multiprocessor over a wide range of applications. A com-
parison of the results obtained for these applications with the theoretical estimations
typically employed in multiprocessors is made. It can be seen that the energy results
obtained using QuadroCore are the lowest in all the cases. Finally, a comparison
in terms of performance is also made with a state-of-the-art configurable processor
Xtensa from Tensilica. Overall, the average power and energy consumption using the
QuadroCore multiprocessor is lower compared to the other processors.

In addition to resource efficiency and application acceleration, the QuadroCore mul-
tiprocessor has been mapped onto our FPGA-based prototyping environment. This
helps in using this environment for accelerated validation of parallel programs. Further,
the flexibility in the QuadroCore multiprocessor has been used to introduce processor
customisations during run-time. The uniqueness is that it ensures combined validation
of both the application and the architecture. The scalable nature of the prototyping
environment and the reconfigurable multiprocessor together provides a mechanism for
validation and early estimations for time, power, and area.

Chapter 7

Conclusions and Future Work

Architectural comparisons consider diverse performance factors such as time, power,
and energy. In addition to architectural merits, the application’s characteristics and
its computational demands define the type of architecture deployed. Thus, identifying
application-level properties is necessary in steering the overall performance. Diminish-
ing returns in spite of higher transistor densities and operating frequencies emphasise
the need for other alternatives of performance enhancements. Standard approaches use
single processors, which are expected to operate at high frequencies in order to meet
performance demands. Alternatively, using multiple processors provides the possibil-
ities for application partitioning and task distribution over multiple processing units
each with lower operating frequencies. In this case, application-level characteristics
and granularity of application partitioning are of concern for high performance. An-
other important objective for application redesign is the need for energy-efficiency.
Present day architectures have primarily relied on high-performance, with power and
energy costs as the inevitable side-effects. Apart from these performance characteris-
tics, the design, verification, and validation time of an architecture makes a significant
impact on the time-to-market, which directly contributes to the market success.

Recently significant efforts have been directed towards multi-core design, where paral-
lel application description and portability to other existing legacy code are dominant
challenges. On one hand, it is often stated that designing applications for parallel com-
puting and multi-core architectures is a whole new research dimension. Nevertheless,
methods of parallel application description have long existed in HDL-based designs, for
close to 30 years. Similarly, in the case of processor architectures, newer generations
of processor architectures have been developed with the primary task of being binary
compatible to its previous generations. Code portability and binary compatibility have
been the focus in designing new processors.

148 Chapter 7. Conclusions and Future Work

In lieu of the range of questions that have appeared in the multi-core design domain,
this thesis has presented an approach to the design of a reconfigurable multiprocessor
architecture. It presents a novel perspective on application description, and addresses
application-to-architectural mapping with the focus on introducing power as a primary
criterion in the design flow. Additionally, our objective has been on minimising hard-
ware re-spins by introducing a run-time mechanism to fine-tune architectural features
to match application characteristics. Methods of designing architectures, applications,
and the process of mapping applications to architectures in embedded computing do-
main have been presented in this thesis.

7.1 Summary

The focus of this thesis has been to develop a reusable multiprocessor template that
benefits from the advantages in multiprocessors and reconfigurable architectures. In
addition, it addresses application description and mapping by applying diverse perfor-
mance objectives, viz., time, power, and energy.

In Chapter 2, the architectural aspects in designing multi-core processors have been
presented. This stage is governed by mutually opposing design decisions, such time
versus area, or time versus power etc. These decisions necessitate design space explo-
rations. Architectural explorations often use models to aid fast and early performance
estimations. However, accuracy of these models and the time required for explorations
are mutually opposing decisions. Typically, performance measurements are accurate
when made towards the end of the design cycle. However, the need for a quick perfor-
mance feedback to the architecture under design necessitates the introduction of early
performance estimates. These opposing objectives have lead to introducing high-level
models to speedup design space exploration. In the same chapter an overview of ex-
isting methods in defining architectural models and the extent to which each of the
models contribute to decision making in architectural considerations are described.
Architectural design decisions are also greatly influenced by the amount of flexibil-
ity introduced. To highlight the impact, the degree of flexibility and the variations
observed on performance characteristics are discussed. The diversity in architectural
features necessitates exploration, which is based on merits defined to identify the
correct architecture. Based on these features, a classification on existing multi-core
architectures and their pros & cons are discussed. A similar study is made for re-
configurable architectures. Learning from the benefits and drawbacks that exist in
both these kinds of architectures, a run-time reconfigurable multiprocessor template
has been developed. Our QuadroCore multiprocessor is designed and implemented
based on this design philosophy. It merges two successful architectural techniques,

7.1 Summary 149

viz., reconfigurability and parallelism. Finally, the advantages of this scheme have
been summarised.

Performance of a processor depends to a large extent on the type of application that it
is used for. Typically, time is the primary focus of application mapping. Performance
measurements such as power and energy have been widely addressed as hardware and
circuit design issues, where power is predominantly recorded after an application is
mapped. However, the application that runs on a given processor or hardware is en-
tirely responsible for the power consumption by the device. With these diverse design
issues, Chapter 3 classifies applications with a focus on methods of description and
characteristics to support parallel programming. Independent of the type of applica-
tion description is the cost of application partitioning and its impact on computation,
communication, and synchronisation demands. Three diverse applications, viz., DSP
algorithms, multiplier used in Elliptic Curve Cryptography, and a data-parallel ma-
chine learning algorithm — Self-organising Maps, have been characterised based on
these attributes. Increasingly, parallelism has been used as an approach for perfor-
mance improvement. Hence, we extend the classical approach described in Amdahl’s
law to express parallelism as a function of time, to include parameters such power
and energy. This approach provides a feedback on the impact on the granularity of
parallelism, independent of the architecture it is mapped on. This in turn, affects
performance parameters, viz., time, power, area, and energy consumption.

Mapping addresses the issue of matching application-level features and architectural
attributes. In Chapter 4 the diversities in application to architectural features were dis-
cussed. When the application’s features entirely coincide with architectural attributes,
it results in a perfect solution. However, a perfect solution for every application under
consideration introduces a large time-to-market. The choice of a perfect solution versus
a timely solution is made with performance characteristics such as time, area, power,
which provide a direct feedback to steer the mapping algorithms. In this chapter, two
mapping schemes, viz., compilation and FPGA synthesis were detailed, representing
temporal and spatial mapping strategies respectively. A scheme that merges both
these paradigms, in order to gain from the advantages in both the approaches, is pre-
sented. Additionally, a scheme of adaptive mapping via run-time reconfiguration is
presented. For the reconfigurable multiprocessor template in Chapter 2, an adaptive
design flow that uses reconfiguration as a method of customising the architecture has
been presented. As power begins to emerge as an important performance factor, map-
ping is addressed as a multi-dimensional optimisation problem with time, power, and
energy as the objectives.

In Chapter 5 the design and implementation details of the QuadroCore multiproces-
sor were presented. To observe the diversity in spatial and temporal computation, a
proof of concept for the multiprocessor framework was developed. Using a collection of

150 Chapter 7. Conclusions and Future Work

four 32-bit processors, reconfiguration was added as a feature for application-specific
adaptability. Application-specific adaptability addresses the computational complex-
ity, communication model, and the method of synchronisation via reconfiguration.
The design was implemented on UMC’s 90 nm standard cell technology. Using the
synthesised netlist, gate-level simulations were conducted to observe the impact of
application-specific characteristics on performance characteristics such as power, and
time, consequently energy. A power-model was formulated at instruction-level for the
processor architecture. This generic power model is integrated in the application-
mapping design flow to enable time and power aware application mapping.

With the validation of the presented technique via a prototype implementation, we
were encouraged to look at another dimension where the architecture can be employed.
In Chapter 6, we have presented three applications where this architecture provides
a resource efficient application mapping in comparison to other existing architectures.
In addition, the flexibility in QuadroCore is a feature that facilitates the use of the
multiprocessor as a platform for run-time processor customisation and in a prototyping
environment for validating parallel programs.

7.2 Future Work

The QuadroCore design philosophy successfully addresses the scheme of introducing
reconfiguration as a mechanism for run-time application adaptability. This scheme of
application description, architectural modification, and mapping can be extended as
follows:

Reliability via Reconfiguration

The fast single cycle reconfiguration mechanism can be used to tackle variations in
device performance and reliability. The quick reconfiguration scheme acts as a quick
recovery mechanism to adapt to variations encountered during device deployment.
The uniform fabric of processors aids in easy task migration and resource reuse, which
together assist in recovering from faults identified during operation.

Asymmetric Data paths

This mode of operation is an extension to the existing modes of operation in the
QuadroCore. It uses the two reconfigurable interconnects, viz., between the instruc-
tion fetch and decode stage, and registers access and execute stages. In this mode of
operation, the non-functional parts of the processors are replaced by the corresponding

7.2 Future Work 151

functional building blocks borrowed from the nearest neighbour, by actively reconfig-
uring the interconnections. This is feasible since all the processors are identical and
the resources of the neighbouring processors are easily accessible. Figure 7.1 shows
the reconstructed control and data path using the fault-free resources of two adjacent
Processors.

Faulty Resources

|

|

Instruction —|
Processor 2 Fetch = < <
- Register Register
Processor 1 >< | Dt — Read Write

Figure 7.1: Reusing Resources to Restore Normal Operation

Dynamic Voltage and Frequency Scaling

To introduce power as a criterion for application mapping, this thesis characterises
instructions in terms of power consumption, which is in addition to characterisation
in terms of time. An immediate extension to this approach is to include frequency
and voltage characteristics during instruction selection via DVFS. Using voltage and
frequency as an application-mapping criterion provides a fine-grained control over
timing and power, for application-specific modifications that can be introduced during
run-time.

Field Programmable Multiprocessor Arrays

QuadroCore is a first step towards using reconfiguration for application-specific run-
time adaptability and can be extended to include various flavours of reconfiguration.
With next generation FPGA architecture primarily composed of a sea of processors,
programming via high-level programming languages simplifies customisations. The
added benefit of such architectures is the reduction in power consumption, a sig-
nificant performance deviation, and the possibility to explore parallelism only by the
amount of parallelisable portions as described by Amdahl’s law. A field programmable
multiprocessor (FPMA) array provides a platform for exploring both sequential and
parallel processing paradigms with a communicating-sequential processing model.

The flexibility in FPMAs enables modifying the architecture to incorporate a parallel
pipelined model to enable streaming operations. The ease of modification transforms

152 Chapter 7. Conclusions and Future Work

the ‘von Neumann’ model of computation to a systolic array-like interconnected ar-
chitecture.

Scheduling for Peak Power Reduction

Peak power is a cumulative affect of application characteristics recorded for every
clock cycle of execution. Since the choice of the instruction is power-aware, scheduling
introduces the additional benefit of maintaining a peak power envelope such that
an overshoot of the power margin is circumvented. During compile time, it ensures
scheduling of instructions to even out power consumption. Additionally during run-
time, the same principle ensures rescheduling to benefit from power savings to extend
battery lifetimes.

Adaptive Load-balancing

Merging the features of DVFS and adaptive scheduling provides a platform to design
real-time monitoring environment, with load balancing to adapt according to variations
in power, temperature, and operating frequency. The fast reconfiguration mechanism
enables adaptability, while making a small impact on the overall speed of operation.
Effects such as temperature overshoots recorded during run-time can then be tackled
via task migration, frequency adaptation, or adaptive scheduling mechanisms.

Glossary

Coomm « + « o . Clock cycles required for each communication operation
Ceomp « -+« - - Clock cycles required for each computation operation
Copne -+ -+ - Clock cycles required for each synchronisation operation
Ey oo Energy consumption for a single processor

Ex Total energy consumption for N identical processors
Evudget - - - - - Energy budget for an application

Eota - ... Total energy consumption

Neomm « « « « . Total number of communication operations

Neomp -+ - o o - - Total number of compute operations

Ngmem — + « « « . Number of accesses to data memory

Nipemn « « « - . Number of accesses to instruction memory

Nyegg oo Number of accesses to register file

Noyne - o . Number of synchronisation operations

Nioggles -+ -+ - Total toggle count for a given instruction
P Power consumption for a single processor

Pouadrocore - - . Power consumption on QuadroCore

Pugw Power consumption of the ALU

Poudget - - - - - . Power budget for an application

Pomm - o .. Power consumption of the communication operations
Powp -+ o .. Power consumption of the computation operation
Pie Power consumption of the decoder

Pivem -« - - .. Power consumption of the data memory

Pooe - oo .. Power consumption of the execution unit

Poerm - o ... Power consumption of the instruction memory

154 Glossary
Pty Power consumed in an instruction cycle
Poima - ... Power consumption in MIMD mode
Por oo Power consumed by the parallelisable portion of the application
Pcon - Power consumption on account of reconfiguration
Preg—read . Power consumption for register read operation
Preg—write . Power consumption for register write operation
Preg Power consumption of the register file
Poy Power consumed by the sequential portion of the application
Pia Power consumption in SIMD mode
Poype Power consumption of the synchronisation operations

Rﬁotalfcomm

Ptotalfcomp

Ptotalfsync EEEEI

IDtotal

. Total power consumption of the communication operations

. Total power consumption of the computation operation

Total power consumption for all the synchronisation operations
Total power consumption

Switching activity at the decoder

Switching activity at data memory

Switching activity at execution unit

Switching activity at instruction memory

Total switching activity at data memory and instruction memory
Rate of switching activity

Switching activity at register file

Time required for executing the adapt map function

. Execution time on QuadroCore

Timing budget for an application

Total time for all communication operations
Total time for all compute operations

Time required for locating the global best match
Time required for initialising the maps
Instruction length

Time required for locating the local best match

Glossary 155

Toar « oo v oo Parallelisable portion of the total execution time

Trccon -+« « - - . Reconfiguration time

Toeq -« oo o Sequential portion of the total execution time

Toyne -~ -« o - - Total time for all synchronisation operations

Tivtal -« « - . . Total execution time

feomm « v o oo Operating frequency for each communication operations
feomp - oo Operating frequency of the computation operation

fsyne -+ - oo Operating frequency for each synchronisation operation
Do Percentage parallelisable portion of the total execution time
ADL Architectural Description Language

ASIC Application-specific Integrated Circuit

CLB Configurable Logic Blocks

CMOS Complementary Metal Oxide Semiconductor

CMP Chip Multiprocessor

CoBRA Compiler Driven Dynamic Reconfiguration of Architectural Variants
cpU ... Central Processing Unit

csp Communicating Sequential Processes

DCA Direct Cache Access

DLP Data-level Parallelism

DSP Digital Signal Processing

DVFES Dynamic Voltage and Frequency Scaling

ECC Elliptic Curve Cryptography

EIB Element Interconnect Bus

FET Fast Fourier Transform

FPGA Field Programmable Gate Arrays

FPMA Field Programmable Multiprocessor Array

GPGPU General Purpose Computing on Graphic Processing Units

156 Glossary
GPU Graphic Processing Units
HDL Hardware Description Language
ILe Instruction-level Parallelism
P Intellectual Property
Lur Lookup Table
MIMD Multiple Instruction Multiple Data
MPT Message Passing Interface
NOP No Operation
QPI Quick Path Interconnect
RISC Reduced Instruction Set Computer
RTL Register Transistor Level
SIMD Single Instruction Multiple Data
SOM Self-organising Maps
TLP Task-level Parallelism
UPSLA Universal Processor Specification Language
vCD Value Change Dump

VLIW Very Long Instruction Word

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
2.3
5.4
2.9
5.6

Comparing Simulation Time vs. Accuracy 9
Design Philosophy for Processor Architectures 17
Profile-driven Architectural Tuning during Compile time 18
Design Space of Commercial Multi-core Processors. 20
Reconfigurable Multiprocessor Template 28
Reconfiguration as a Pipeline Stage 29
Abstractions for Parallel Application Description 36
Generic Timing Components 45
FIR Filter: Computation, Communication, Synchronisation 48
ECC: Computation, Communication, Synchronisation 49
Parallelising the SOM Algorithm 50
Application-Specific Computation, Communication, and Synchronisation 52
Comparing Processors with Variable Granularities 53
Impact of Sequential Code on Application Partitioning 56
Impact of Application Mapping on QuadroCore 57
Analysis of Time, Power, Energy Characteristics 61
Feedback for Application Modification 62
Architecture and Application Diversities : Fixed versus Alterable . . . 65
Compilation Flow 70
FPGA Design Flow 73
Merging Compilation and Synthesis 7
Spatial versus Temporal Scheduling 78
Zones of Reconfigurability L. 80
Application-driven Static and Dynamic Mapping 82
QuadroCore Reconfigurable Multiprocessor 88
Reconfiguration Mechanism 90
Instruction Stream as the Configuration Stream 91
Types of Synchronisation 92
Mechanism for Sharing Registers Contents 94
Single Instruction Stream, Multiple Data Stream 96

158 List of Figures
5.7 Varying the ALU Word-length 98
5.8 Reconfigurable Modes in QuadroCore 99
5.9 Communication Hierarchy 102
5.10 Core Power vs. Memory Power 103
5.11 Comparing Instructions in terms of Core Power and Memory Power . . 109
5.12 QuadroCore : Performance Reports 120
5.13 Post Place and Route Layout 122
6.1 Design Flow for Application Mapping on QuadroCore 127
6.2 Application-Specific Power Characteristics in QuadroCore 132
6.3 Impact of Application Partitioning on Energy 133
6.4 SOM Mapped to QuadroCore 137
6.5 Comparing Performance with Theoretical Estimations 141
6.6 Comparing Area, Energy, and Execution time 142
6.7 Comparing Area, Power, and Execution time 143
6.8 Scalable Architecture and Prototyping Environment 145
7.1 Reusing Resources to Restore Normal Operation 151

List of Tables

2.1
2.2
2.3
2.4

3.1

3.2
3.3
3.4
3.5
3.6

4.1
4.2

0.1
5.2
5.3
5.4
3.5
5.6
2.7
5.8
2.9
5.10
5.11
5.12
5.13
5.14
5.15
0.16
5.17

Comparing Performance Deviation among Architectures 14
Examples for Performance Deviation among Architectures 15
Commercial Multi-core Processors 23
Customisations in Existing Architectures 25
Matrix Multiplication: Comparing Computation, Communication, and

Synchronisationo Lo 47
FIR Filter: Comparing Computation, Communication, & Synchronisation 48
ECC: Comparing Computation, Communication, and Synchronisation . 49
Self-organising Maps: Computation, Communication, Synchronisation . 51

Comparing Parallelism among Processors 53
Comparing Clock Cycles among Processors 54
Comparing Compilation and Synthesis Design Flows 74
Comparing Processor Compilation and FPGA Synthesis Objectives . . 75
Reconfigurable Operating Modes 89
Inter-processor Communication 95
SIMD core with Fast Memory Access 98
Variable Word-length ALUs 99
Instruction Set Extensions for Co-operative Processing 100
Performance Impact based on Reconfigurable Modes 104
Comparing Instruction Length, Power, and Energy 110
Comparing Accesses, Core Power, and Memory Power 111
Variations based on Operands Values 112
Comparing Code with and without Loop-unrolling 114
Loop Transformations: Variations in Time, Power, and Energy 114
Strength Reduction: Variations based on Instruction Selected 114
Comparing Code with and without Re-materialisation 115
Performance Comparison: Impact of Reconfigurable Modes 116
Comparing Area : Compute and Communication Overhead 117
Impact of Introducing Memories 117
Impact of Additional Processors 118

160

List of Tables

5.18
5.19
5.20
5.21
5.22
0.23
5.24

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Impact of Technology Scaling 118
Impact of Clock Gating 119
Standard Cell Synthesis Reports - Typical Operating Conditions 119
Post place and Route evaluations: Core Only 121
Post place and route evaluations - Core + Memory 121
FPGA Performance Reports 121
Performance Deviation o0 .. 122
Reconfigurable Modes: Performance Reports 129
ECC: Performance Variations with Operating Mode 134
Comparing QuadroCore with CoreVA 135

Parameters: Vectors = 25 , Epoch = 1, Components = 5, Neurons = 16 138
Parameters: Vectors = 5, Epoch = 1, Components = 10, Neurons = 16 138
Parameters: Vectors = 5, Epoch = 1, Components = 5, Neurons = 16 138
Application Performance on QuadroCore 140

References

1]

2]

3]

4]

5]

(6]

7]

8]

E. S. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi, and K. Mai, “A complexity-
effective architecture for accelerating full-system multiprocessor simulations us-
ing FPGAs,” in FPGA '08: Proceedings of the 16th international ACM/SIGDA
symposium on Field programmable gate arrays. New York, NY, USA: ACM,
2008, pp. 77-86.

M. Yourst, “PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural
Simulator,” IEEE International Symposium on Performance Analysis of Systems
and Software, pp. 23-34, April 2007.

N. Calazans, E. Moreno, F. Hessel, V. Rosa, F. Moraes, and E. Carara, “From
vhdl register transfer level to systemc transaction level modeling: A comparative
case study,” in SBCCI '03: Proceedings of the 16th symposium on Integrated
circuits and systems design. Washington, DC, USA: IEEE Computer Society,
2003, p. 355.

O. Bonorden, N. Bruels, D. K. Le, U. Kastens, F. Meyer auf der Heide, J.-
C. Niemann, M. Porrmann, U. Rueckert, A. Slowik, and M. Thies, “A holistic
methodology for network processor design,” in Proceedings of the Workshop on
High-Speed Local Networks held in conjunction with the 28th Annual IEEE Con-

ference on Local Computer Networks (LCN2003), Oct. 2003, pp. 583-592.

A. Hoffmann, H. Meyr, and R. Leupers, Architecture Ezploration for Embedded
Processors with Lisa. Norwell, MA, USA: Kluwer Academic Publishers, 2002.

A. Fauth, J. Van Praet, and M. Freericks, “Describing instruction set processors
using nML,” in European Design and Test Conference, 1995. ED and TC 1995,
Proceedings., Mar 1995, pp. 503-507.

P. Mishra and N. Dutt, “Architecture Description Languages for Programmable
Embedded Systems,” in In IEE Proceedings on Computers and Digital Tech-
niques, 2005, pp. 285-297.

U. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, and B. Khailany, “The Imag-
ine stream processor,” in Proceedings 2002 IEEE International Conference on
Computer Design, Sep. 2002, pp. 282-288.

162

References

9]

[10]

[11]

[12]

[13]
[14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]

23]

BCM 1480 : Product Brief, Broadcom Corporation, May 2006, available from
http://www.broadcom.com/collateral /pb/1480-PB04-R.pdf.

N. R. Potlapally, S. Ravi, A. Raghunathan, R. B. Lee, and N. K. Jha, “Impact
of Configurability and Extensibility on IPSec Protocol Execution on Embed-
ded Processors,” in VLSID-06: Proceedings of the 19th International Conference
on VLSI Design held jointly with 5th International Conference on Embedded
Systems Design. Washington, DC, USA: IEEE Computer Society, 2006, pp.
299-304.

R. E. Gonzalez, “Xtensa: A Configurable and Extensible Processor,” IEEE Mi-
cro, vol. 20, no. 2, pp. 60-70, 2000.

ARC Configurable CPU/DSP Cores, ARC Inc., Aug. 2008, available from http:

//www.arc.com.
Xtensa® LX2 Microprocessor Data Book, Tensilica, Inc., 2008.

XLS™ Processor Family, RMI Corporation, available from http://http://www.
rmicorp.com/products/xls.htm.

Product Brief: OCTEON Plus CN58XX / to 16-Core MIPS64-Based SoCs, Cav-
ium Networks, 2008, available from http://www.caviumnetworks.com.

RM9224 Integrated Multiprocessor: Product Brief, PMC-Sierra Inc., available
from http://www.pmec-sierra.com/products/details /rm9224 /.

NVIDIA Tesla C1060 Datasheet, NVIDIA Corporation, June 2008, available
from http://www.nvidia.com/object /product tesla_¢1060 us.html.

ATI Radeon™ HD 4800 Series Overview, Advanced Micro Devices, Inc., June
2009, available from http://ati.amd.com/products/radeonhd4800/index.html.

P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-Way Multithreaded
Sparc Processor,” IEEE Micro, vol. 25, no. 2, pp. 21-29, 2005.

Intel® Core™ §7-920 Processor, Intel Corporation, June 2009, available from
http://www.intel.com/support /processors/corei7 /.

Key Architectural Features of AMD Phenom™ X/ Quad-Core Pro-
cessors, Advanced Micro Devices, Inc., June 2009, available from
http://www.amd.com /us/products/desktop/processors/phenom /Pages/
AMD-phenom-processor-X4-features.aspx.

The Industry-Changing Impact of Accelerated Computing, Advanced Micro De-
vices, Inc., 2008, available from http://sites.amd.com/us/Documents/AMD
fusion Whitepaper.pdf.

D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak,

http://www.broadcom.com/collateral/pb/1480-PB04-R.pdf
http://www.arc.com
http://www.arc.com
http://http://www.rmicorp.com/products/xls.htm
http://http://www.rmicorp.com/products/xls.htm
http://www.caviumnetworks.com
http://www.pmc-sierra.com/products/details/rm9224/
http://www.nvidia.com/object/product_tesla_c1060_us.html
http://ati.amd.com/products/radeonhd4800/index.html
http://www.intel.com/support/processors/corei7/
http://www.amd.com/us/products/desktop/processors/phenom/Pages/AMD-phenom-processor-X4-features.aspx
http://www.amd.com/us/products/desktop/processors/phenom/Pages/AMD-phenom-processor-X4-features.aspx
http://sites.amd.com/us/Documents/AMD_fusion_Whitepaper.pdf
http://sites.amd.com/us/Documents/AMD_fusion_Whitepaper.pdf

References 163

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and
K. Yazawa, “The design and implementation of a first-generation CELL pro-
cessor,” in Solid-State Circuits Conference, 2005. Digest of Technical Papers.
ISSCC. 2005 IEEE International, 2005, pp. 184-592 Vol. 1.

T. W. Ainsworth and T. M. Pinkston, “On Characterizing Performance of the
Cell Broadband Engine Element Interconnect Bus,” in NOCS °07: Proceedings

of the First International Symposium on Networks-on-Chip. Washington, DC,
USA: TEEE Computer Society, 2007, pp. 18-29.

R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel, “Scratch-
pad memory: Design alternative for cache on-chip memory in embedded sys-
tems,” in CODES °02: Proceedings of the tenth international symposium on
Hardware/software codesign. New York, NY, USA: ACM, 2002, pp. 73-78.

UltraSPARC T1 Processor, Sun Microsystems, Inc., June 2009, available from
http://www.sun.com/processors/UltraSPARC-T1 /index.xml.

Product Datasheet : MSC8144 Quad Core Digital Signal Processor, Freescale
Semiconductor Inc., 2009, available from http://www.freescale.com.

Product Datasheet : TMS320C647} Multicore Digital Signal Processor, Texas
Instruments, 2009, available from http://focus.ti.com/docs/prod/folders/print/
tms320c6474.html.

Datasheet : Blackfin Embedded Symmetric Multiprocessor ADSP-BF561,
Analog Devices, Inc., 2007, available from http://www.analog.com/static/
imported-files/data_sheets/ADSP-BF561.pdf.

G. Burns, M. Jacobs, M. Lindwer, and B. Vandewiele, Silicon Hive’s Scalable
and Modular Architecture Template for High-Performance Multi-Core Systems,
2006.

M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoff-
mann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal, “Evaluation of the Raw Micropro-
cessor: An Exposed-Wire-Delay Architecture for ILP and Streams,” in ISCA
’04: Proceedings of the 31st annual international symposium on Computer ar-
chitecture. Washington, DC, USA: IEEE Computer Society, 2004, p. 2.

M. Butts, “Synchronization through Communication in a Massively Parallel Pro-
cessor Array,” IEEE Micro, vol. 27, no. 5, pp. 32-40, Sept.-Oct. 2007.

PC102 Product Brief, PicoChip Inc, March 2004, available from http://www.
picochip.com/.

Rapport” KC256, Technical Overview, Rapport Inc., 2008, available from http:
/ /www.rapportincorporated.com.

http://www.sun.com/processors/UltraSPARC-T1/index.xml
http://www.freescale.com
http://focus.ti.com/docs/prod/folders/print/tms320c6474.html
http://focus.ti.com/docs/prod/folders/print/tms320c6474.html
http://www.analog.com/static/imported-files/data_sheets/ADSP-BF561.pdf
http://www.analog.com/static/imported-files/data_sheets/ADSP-BF561.pdf
http://www.picochip.com/
http://www.picochip.com/
http://www.rapportincorporated.com
http://www.rapportincorporated.com

164

References

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]
48]

K. Sankaralingam et al., “Exploiting ILP, TLP, and DLP with the polymorphous
TRIPS architecture,” IEEE Micro, vol. 23, no. 6, pp. 46-51, 2003.

F. X. Guichang Zhong and J. Alan N Willson, “A Power-Scalable Reconfigurable
FFT/IFFT IC Based on a Multi-Processor Ring,” in IEEE Journal Of Solid-State
Circuits, Vol. 41, No. 2, February 2006. Washington, DC, USA: TEEE, 2006,
pp- 483-495.

M. Thuresson, M. Sjalander, M. Bjork, L. Svensson, P. Larsson-Edefors, and
P. Stenstrom, “FlexCore: Utilizing Exposed Datapath Control for Efficient Com-

puting,” Embedded Computer Systems: Architectures, Modeling and Simulation,
2007. IC-SAMOS 2007. International Conference on, pp. 18-25, July 2007.

M. Epalza, P. Tenne, and D. Mlynek, “Adding Limited Reconfigurability to Su-
perscalar Processors,” in PACT ’04: Proceedings of the 13th International Con-

ference on Parallel Architectures and Compilation Techniques. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 53-62.

S. B. Gregory W. Donohoe, K. Joseph Hass and P.-S. Yeh, “A Reconfigurable
Data Path Processor for Space Applications,” in Proc. Military and Aerospace
Applications of Programmable Logic Devices, Laurel, MD, September 24-28, 2000.

M. S. Schlansker and A. B. Seong, “Processing cells for use in computing sys-
tems,” in US Patent, Hewlett-Packard Development Company, 2004.

R. J. Gove, K. Balmer, N. K. Ing-Simmons, and K. M. Guttag, “Reconfigurable
multi-processor operating in SIMD mode with one processor fetching instructions
for use by remaining processors,” in US Patent, Texas Instruments Inc, 1996.

J. Backus, “Can programming be liberated from the von Neumann style? : a
functional style and its algebra of programs,” Commun. ACM, vol. 21, no. 8, pp.
613-641, 1978.

P. Hudak, “Conception, evolution, and application of functional programming
languages,” ACM Comput. Surv., vol. 21, no. 3, pp. 359-411, 1989.

Occam Reference Manual, SGS THOMSON Microelectronics Limited, 1995.

C. Whitby-Strevens, “The transputer,” in ISCA ’85: Proceedings of the 12th
annual international symposium on Computer architecture. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1985, pp. 292-300.

C-to-FPGA Solutions, TImpulse Accelerated Technologies, available from
http://impulsec.com.

HandelC Language Reference Manual, Embedded Solutions Limited.

R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high level spec-
ifications,” in Formal Methods and Models for Co-Design, 2004. MEMOCODE

References 165

04. Proceedings. Second ACM and IEEE International Conference on, June
2004, pp. 69-70.

[49] Cynthesizer™ The most productive path to silicon, Forte Design Systems, 2008,
available from http://www.forteds.com.

[50] Cyberworkbench: System LSI Development Is Changing!, NEC Sytem Technolo-
gies Ltd., 2005, available from http://www.nec.co.jp/.

[51] Catapult C, Mentor Graphics Inc., 2006, available from http://www.mentor.
com/catapult.

[52] Developing algorithmic designs using Bluespec, Bluespec Inc., 2007, available
from http://www.bluespec.com.

[53] NVIDIA, NVIDIA CUDA Programming Guide 2.0. NVIDIA, 2008.

[54] S. S. Huang, A. Hormati, D. Bacon, and R. Rabbah, “Liquid Metal: Object-
Oriented Programming Across the Hardware /Software Boundary,” in In proceed-

ings of the European Conference on Object-Oriented Programming (ECOOP),
Paphos, Cyprus, 2008.

[55] A Framework for Hardware-Software Co-Design of Embedded Systems, available
from http://embedded.cecs.berkeley.edu/Respep/Research /hsc/abstract.html.

[56] S. Singh, “A Demonstration of Co-Design and Co-Verification in a Synchronous
Language,” in DATE ’0j: Proceedings of the conference on Design, automation
and test in FEurope. Washington, DC, USA: IEEE Computer Society, 2004, p.
21394.

[57] M. Snir and S. Otto, MPI-The Complete Reference: The MPI Core. Cambridge,
MA, USA: MIT Press, 1998.

[58] M. Butts, A. M. Jones, and P. Wasson, “A Structural Object Programming
Model, Architecture, Chip and Tools for Reconfigurable Computing,” in FCCM
‘07: Proceedings of the 15th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines. Washington, DC, USA: IEEE Computer Society,
2007, pp. 55-64.

[59] A. A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on au-
tomata,” Soviet Physics Doklady, vol. 7, pp. 595-596, 1963.

|60] T. Kohonen, Self-organization and associative memory. Springer-Verlag New
York, Inc. New York, NY, USA, 1989.

[61] M. Porrmann, U. Witkowski, and U. Rueckert, “A massively parallel architec-
ture for self-organizing feature maps,” Neural Networks, IEEE Transactions on,
vol. 14, no. 5, pp. 1110-1121, Sept. 2003.

http://www.forteds.com
http://www.nec.co.jp/
http://www.mentor.com/catapult
http://www.mentor.com/catapult
http://www.bluespec.com
http://embedded.eecs.berkeley.edu/Respep/Research/hsc/abstract.html

166

References

[62]

|63]

[64]

[65]

|66]

[67]

|68

[69]

[70]

|71

R. Dreesen, T. Jungeblut, M. Thies, M. Porrmann, U. Kastens, and U. Rueck-
ert, “A synchronization method for register traces of pipelined processors,” in
International Embedded Systems Symposium, 2009, pp. 207-217.

S. Cho and R. Melhem, “Corollaries to Amdahl’s Law for Energy,” IEEE Com-
put. Archit. Lett., vol. 7, no. 1, pp. 25-28, 2008.

D. H. Woo and H.-H. S. Lee, “Extending Amdahl’s Law for Energy-Efficient
Computing in the Many-Core Era,” Computer, vol. 41, no. 12, pp. 24-31, 2008.

B. Kienhuis, E. Deprettere, K. Vissers, and P. Van Der Wolf, “An approach for
quantitative analysis of application-specific dataflow architectures,” Application-
Specific Systems, Architectures and Processors, 1997. Proceedings., IEEE Inter-
national Conference on, pp. 338349, Jul 1997.

D. Luebke, M. Harris, J. Krueger, T. Purcell, N. Govindaraju, I. Buck, C. Wool-
ley, and A. Lefohn, “GPGPU: General purpose computation on graphics hard-
ware,” in SIGGRAPH ’04: ACM SIGGRAPH 2004 Course Notes. New York,
NY, USA: ACM, 2004, p. 33.

H. Zhong, S. A. Lieberman, and S. A. Mahlke, “Extending Multicore Architec-
tures to Exploit Hybrid Parallelism in Single-thread Applications,” in HPCA
07: Proceedings of the 2007 IEEE 13th International Symposium on High Per-
formance Computer Architecture. Washington, DC, USA: TEEE Computer So-
ciety, 2007, pp. 25-36.

S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. Tseng, “An overview
of the SUIF compiler for scalable parallel machines,” in In Proceedings of the
Seventh SIAM Conference on Parallel Processing for Scientific Computing, 1995,
pp. 662-667.

C. Lattner, “LLVM: An Infrastructure for Multi-Stage Optimization,” Master’s
thesis, Computer Science Dept., University of Illinois at Urbana-Champaign,
Urbana, IL, Dec 2002, See hitp://llvm.cs.uiuc.edu.

L. N. Chakrapani, J. Gyllenhaal, W. mei W. Hwu, S. A. Mahlke, K. V. Palem,
and R. M. Rabbah, Trimaran: An Infrastructure for Research in Instruction-
Level Parallelism. Springer Berlin / Heidelberg, 2005, ch. Languages and Com-
pilers for High Performance Computing, pp. 32—41.

B. F. Romanescu and D. J. Sorin, “Core cannibalization architecture: improving
lifetime chip performance for multicore processors in the presence of hard faults,”
in PACT °08: Proceedings of the 17th international conference on Parallel ar-
chitectures and compilation techniques. New York, NY, USA: ACM, 2008, pp.
43-51.

http://llvm.cs.uiuc.edu

References 167

[72]

73]

[74]

[75]

[76]

[77]
78]
[79]

[30]

[81]

[82]

[83]

[84]

S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke, “The StageNet fabric for
constructing resilient multicore systems,” in Microarchitecture, 2008. MICRO-
41. 2008 41st IEEE/ACM International Symposium on, Nov. 2008, pp. 141-151.

B. Mei, A. Lambrechts, D. Verkest, J.-Y. Mignolet, and R. Lauwereins, “Ar-
chitecture Exploration for a Reconfigurable Architecture Template,” IEEE Des.
Test, vol. 22, no. 2, pp. 90-101, 2005.

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mat-
tina, C.-C. Miao, J. F. B. III, and A. Agarwal, “On-chip interconnection archi-
tecture of the tile processor,” IEEE Micro, vol. 27, no. 5, pp. 15-31, 2007.

T. A. Proebsting, “BURS automata generation,” ACM Trans. Program. Lang.
Syst., vol. 17, no. 3, pp. 461-486, 1995.

P. J. Hatcher and T. W. Christopher, “High-quality code generation via bottom-
up tree pattern matching,” in POPL ’86: Proceedings of the 13th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. New York, NY,
USA: ACM, 1986, pp. 119-130.

R. Ramesh and I. V. Ramakrishnan, “Nonlinear pattern matching in trees,” J.
ACM, vol. 39, no. 2, pp. 295-316, 1992.

J. Ullman, “NP-complete scheduling problems,” Journal of Computer and Sys-
tem Sciences, vol. 10, no. 3, pp. 384 — 393, 1975.

C-to-Silicon Compiler, Cadence Inc., 2009, available from http://www.cadence.
com/products/sd/silicon _compiler/.

S. D. Sahasrabuddhe, H. Raja, K. Arya, and M. P. Desai, “AHIR: A hardware
intermediate representation for hardware generation from high-level programs,”
in VLSI Design, 2007, pp. 245-250.

G. Haiyun and X. Juyan, “Research on the routing algorithm of SRAM-based
FPGA,” Solid-State and Integrated Circuits Technology, 2004. Proceedings. 7th
International Conference on, vol. 3, pp. 1964-1966 vol.3, Oct. 2004.

Arpad Beszédes, R. Ferenc, T. Gyimoéthy, A. Dolenc, and K. Karsisto, “Survey of
code-size reduction methods,” ACM Comput. Surv., vol. 35, no. 3, pp. 223-267,
2003.

P. Petrov and A. Orailoglu, “Compiler-Based Register Name Adjustment for
Low-Power Embedded Processors,” in ICCAD ’03: Proceedings of the 2003
IEEE/ACM international conference on Computer-aided design. Washington,
DC, USA: IEEE Computer Society, 2003, p. 523.

A. Parikh, S. Kim, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Instruction
Scheduling for Low Power,” The Journal of VLSI Signal Processing, vol. 37, May
2004.

http://www.cadence.com/products/sd/silicon_compiler/
http://www.cadence.com/products/sd/silicon_compiler/

168

References

[85]

[36]

187]

38

[89]

[90]

[91]

[92]

93]

[94]

[95]

[96]

M. T.-C. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power analysis and mini-
mization techniques for embedded dsp software,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 5, no. 1, pp. 123-135, Mar 1997.

Stretch : Software Configurable Processors, Stretch Inc., http://www.stretchinc.
com.

C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM, vol. 21,
no. 8, pp. 666677, 1978.

M. Gruenewald, U. Kastens, D. K. Le, J.-C. Niemann, M. Porrmann, U. Rueck-
ert, M. Thies, and A. Slowik, “Network Application Driven Instruction Set Ex-
tensions for Embedded Processing Clusters,” in PARELEC 2004, International
Conference on Parallel Computing in Electrical Engineering, Dresden, Germany,
7 - 10 Sep. 2004, pp. 209-214.

M. Tto, T. Hattori, Y. Yoshida, K. Hayase, T. Hayashi, O. Nishii, Y. Yasu,
A. Hasegawa, M. Takada, M. Ito, H. Mizuno, K. Uchiyama, T. Odaka, J. Shirako,
M. Mase, K. Kimura, and H. Kasahara, “An 8640 MIPS SoC with Independent
Power-Off Control of 8 CPUs and 8 RAMs by An Automatic Parallelizing Com-
piler,” Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical
Papers. IEEE International, pp. 90-598, Feb. 2008.

S. S. Muchnik, Advanced Compiler Design Implementation. Morgan Kaufmann
Publishers, 1997.

K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems and
software,” ACM Comput. Surv., vol. 34, no. 2, pp. 171-210, 2002.

M. Hussmann, “Compiler-Driven Dynamic Reconfiguration of Architectural
Variants,” Ph.D. dissertation, University of Paderborn, Apr. 2008.

W. Ye, N. Vijaykrishnan, M. T. Kandemir, and M. J. Irwin, “The design and use
of simplepower: a cycle-accurate energy estimation tool,” in Design Automation
Conference, 2000, pp. 340-345.

P. Stanley-Marbell and M. Hsiao, “Fast, flexible, cycle-accurate energy estima-
tion,” in ISLPED °01: Proceedings of the 2001 international symposium on Low
power electronics and design. New York, NY, USA: ACM Press, 2001, pp.
141-146.

D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in ISCA, 2000, pp. 83-94.
[Online|. Available: citeseer.ist.psu.edu/brooksOOwattch.html

M. Kandemir, N. Vijaykrishnan, M. Irwin, and W. Ye, “Influence of compiler
optimizations on system power,” Very Large Scale Integration (VLSI) Systems,
IEEFE Transactions on, vol. 9, no. 6, pp. 801-804, Dec 2001.

http://www.stretchinc.com
http://www.stretchinc.com
citeseer.ist.psu.edu/brooks00wattch.html

References 169

|97] Synopsys PrimeTime PX, Synopsys, Inc., available from
http://www.synopsys.com.

|98] J.-C. Niemann, C. Puttmann, M. Porrmann, and U. Rueckert, “GigaNetIC - A
Scalable Embedded On-Chip Multiprocessor Architecture for Network Applica-
tions,” in ARCS’06 Architecture of Computing Systems, 13 - 16 Mar. 2006.

[99] H. Kalte, M. Porrmann, and U. Riickert, “A Prototyping Platform for Dynami-
cally Reconfigurable System on Chip Designs,” in Proceedings of the IEEE Work-

shop Heterogeneous reconfigurable Systems on Chip (SoC), Hamburg, Germany,
2002.

[100] National Institute of Standards and Technology (NIST), Digital Signature Stan-
dard (DSS). U.S. Department Of Commerce, 27 Jan. 2000, vol. FIPS 186-2,
ch. Recommended elliptic curves for federal government use, pp. 24-48.

[101] C. K. Koc and T. Acar, “Montgomery multiplication in GF(2¥),” Des. Codes
Cryptography, vol. 14, no. 1, pp. 57-69, 1998.

[102] C. Pohl, M. Franzmeier, M. Porrmann, and U. Rueckert, “gNBX-reconfigurable
hardware acceleration of self-organizing maps,” in Field-Programmable Technol-
oqy, 2004. Proceedings. 2004 IEEE International Conference on, 2004, pp. 97—
104.

[103] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. Johnson, J. Keefe,
and H. Angepat, “FPGA-Accelerated Simulation Technologies (FAST): Fast,
Full-System, Cycle-Accurate Simulators,” in MICRO ’07: Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitecture. Washing-
ton, DC, USA: IEEE Computer Society, 2007, pp. 249-261.

[104] M. Porrmann, J. Hagemeyer, J. Romoth, and M. Strugholtz, “Rapid prototyp-
ing of next-generation multiprocessor SoCs,” In Proceedings of Semiconductor
Conference Dresden, SCD 2009, Dresden, Germany, April 29-30, 2009, invited
paper, April 2009.

Author’s Publications

[HTK*07] Michael Hussmann, Michael Thies, Uwe Kastens, Madhura Purnaprajna,

[PP08a]

[PPO8D)

[PPPOS]

[PPPOY

[PPPRO9]

[PPR*]|

Mario Porrmann, and Ulrich Rueckert. Compiler-driven reconfiguration of
multiprocessors. in Proceedings of the Workshop on Application Specific
Processors (WASP) 2007 held in conjunction with the Embedded Systems
Week, 2007 (CODES+ISSS, EMSOFT, and CASES), pages 3-10, 2007.

Madhura Purnaprajna and Mario Porrmann. Run-time reconfigurable clus-
ter of processors. In PhD Forum, International symposium in Parallel and
Distributed Processing Symposium, 2008.

Madhura Purnaprajna and Mario Porrmann. Run-time reconfigurable clus-
ter of processors. In Workshop on Design, Architecture, and Simulation of
Chip Multiprocessors (dasCMP), held in conjunction with Micro-41, pages
123-129, 2008.

Madhura Purnaprajna, Christoph Puttmann, and Mario Porrmann. Power
aware reconfigurable multiprocessor for elliptic curve cryptography. In
DATE 08: Proceedings of the conference on Design, Automation and Test
in Furope, pages 1462-1467, New York, NY, USA, 2008. ACM.

Mario Porrmann, Madhura Purnaprajna, and Christoph Puttmann. Self-
optimization of mpsocs targeting resource efficiency and fault tolerance. In
NASA/ESA Conference on Adaptive Hardware Systems 2009, pages 467
473, 2009.

Madhura Purnaprajna, Christopher Pohl, Mario Porrmann, and Ulrich
Rueckert. Using run-time reconfiguration for energy savings in parallel
data processing. In Proceedings of the International Conference on Engi-
neering of Reconfigurable Systems and Algorithms, FRSA’09, July 13-16,
2009, Las Vegas, Nevada, USA, pages 119-125, 2009.

Madhura Purnaprajna, Mario Porrmann, Ulrich Rueckert, Michael Huss-
mann, Michael Thies, and Uwe Kastens. Run-time reconfiguration of mul-

tiprocessors based on compile-time analysis. Accepted for Publication in
ACM Transaction in Reconfigurable Technology (TRETS).

172 Author’s Publications

[PPR09] Madhura Purnaprajna, Mario Porrmann, and Ulrich Rueckert. Run-time
reconfigurability in embedded multiprocessors. SIGARCH Comput. Archit.
News, 37(2):30-37, 20009.

	Introduction
	Contributions
	Organisation

	Architecture
	Architectural Models
	Architectural Flexibility
	Classifying Customisations
	Cost of Flexibility

	Architectural Design Space Exploration
	Classifying Architectural Explorations
	Ranking Architectural Merits

	Multi-core Architectures
	Commercial Multi-core Processors
	Limitations of Existing Multi-core architectures

	Initiatives for Customisable Multi-core Processors
	The Concept: Run-time Reconfigurable Multiprocessors
	Reconfiguration Mechanism
	Advantages of the New Reconfiguration Mechanism

	Summary

	Application
	Programmability
	Methods of Application Description
	Application Description for Parallel Processors
	Managing Communication and Synchronisation
	Drawbacks of Existing Methods

	Architecture-Independent Application Characteristics
	Model for Computation
	Model for Synchronisation
	Model for Communication

	Comparing Application-specific Attributes
	DSP Applications
	Multiplier used in Elliptic Curve Cryptography
	Self-organising Maps
	Priorities: Computation, Communication, or Synchronisation

	Restating Amdahl's Law
	Speedup: Comparison to Amdahl's Law
	Power: Comparison to Amdahl's Law
	Impact on Energy

	Summary

	Application to Architectural Mapping
	Applications and Architectures: Fixed vs. Alterable
	Fixed Applications, Fixed Architecture
	Alterable Applications, Fixed Architecture
	Fixed Application, Alterable Architectures
	Alterable Applications, Alterable Architecture

	Application Mapping: Objectives and Methods
	Compilation Flow
	FPGA Flow
	Comparing the two Design Flows
	Merging Compilation and Synthesis Design Flows
	Considerations for Merging Spatial and Temporal Design Flows
	Optimisation Objectives
	Cost Function

	Adaptive Mapping in Reconfigurable Multiprocessors
	Reconfiguration for Application Mapping
	Advantages of the Multi-dimensional Mapping Approach

	Summary

	QuadroCore: Architecture
	Reconfiguration Design Space
	Instruction to Control Reconfiguration
	Synchronisation
	Communication
	MIMD and SIMD operation
	Word-length Configurability
	Additional Instructions for Co-operative Multiprocessing
	Compilation Flow

	Time and Power Characteristics
	Timing Characteristics
	QuadroCore Power Distribution
	Time and Power variations in the Reconfiguration Design Space

	Instruction-level Power Model
	Instruction Life Cycle
	Memory Accesses
	Register Accesses
	ALU Accesses
	Multiprocessor Synchronisation
	Instruction Set Characterisation

	Impact of Compilation Techniques
	Implementation and Performance Measurements
	Standard Cell Implementation
	Post-layout Implementation Reports
	FPGA Reports

	Summary

	QuadroCore: Applications
	Design Flow for Resource Efficiency
	Applications Mapped to QuadroCore
	Timing Advantage of Reconfiguration
	DSP Algorithms
	Multiplier used in Elliptic Curve Cryptography
	Self-organising Maps
	Comparison: Parallelism, Speedup, Energy
	Comparable Architectures

	Extending the QuadroCore Multiprocessor
	Platform for Validating Parallel Programs
	Environment for Run-time Processor Customisation

	Summary

	Conclusions and Future Work
	Summary
	Future Work

	Glossary
	List of Figures
	List of Tables
	References
	Author's Publications

