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Abstract

As robots become increasingly a�ordable, they are used in ever more diverse areas in order to
perform increasingly complex tasks. �ese tasks are typically preprogrammed by a human ex-
pert. In some cases, however, this is not feasible – either because of the inherent complexity of the
task itself or due to the dynamics of the environment. �e only possibility then is to let the robot
learn the task by itself. �is learning process usually involves a long training period in which the
robot experiments with its surroundings in order to learn the desired behavior. If robots have to
learn a shared goal in a group, the robots should imitate each other in order to reduce their in-
dividual learning time. �e question how this can be done in a robot group has been considered
in this thesis, i. e., how robots in a group can learn to achieve their shared goal and imitate each
other in order to increase the performance and the speed of learning by spreading the learned
knowledge in the group.

To allow for this intertwined learning and imitation, a dedicated robot architecture has been de-
veloped. On the one hand, it fosters autonomous and self-exploratory learning. On the other
hand, it allows for manipulating the learned knowledge and behavior to account for new knowl-
edge gathered by the imitation process. Learning of behavior is achieved by separately learning
at two levels of abstraction. At the higher level, the strategy is learned as a mapping from abstract
states to symbolic actions. At the lower level, the symbolic actions are grounded autonomously
by learned low-level actions.

�e approaches of imitation presented in this thesis are unique in that they relieve the require-
ments that governed multi-robot imitation so far. It enables robots in a robot group to imitate
each other in a non-obtrusive manner. �e robots can thus increase their learning speed and
thereby the overall performance of the group by simply observing the other group members
without requiring them to stick to a certain communication protocol that would provide the
necessary information. With the presented approach, a robot is able to infer the behavior that
the observed demonstrator is performing and to replay the bene�cial behavior with its own ca-
pabilities.

In addition, the presented approaches allow the robots to apply imitation even if the group is
heterogeneous. Normally, the performance of a group degrades if robots with incompatible ca-
pabilities imitate each other. Capability di�erences arise if robot morphologies di�er in a robot
group. �is is the case if di�erent robots from di�erent manufacturers form a robot group that
has to achieve shared goals. �is thesis presents an approach that is able to determine similarities
or di�erences between robots. �is can guide the robots in a heterogeneous robot group in order
to determine those robots for imitation that are most similar to themselves.
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CHAPTER1
Introduction

By three methods we may learn wisdom: First, by re�ection, which is noblest; Second,

by imitation, which is easiest; and third by experience, which is the bitterest.

Confucius, Chinese philosopher

Of the methods by which we can gather wisdom or knowledge, imitation is o�en considered as
an inferior shortcut to the more creative “noble” or “bitter” ones. �e imitator is thereby con-
trasted as dumb or lazy against the creative and eager imitatee. Yet, imitation is one of the most
powerful means to spread learned knowledge. With imitation, the imitator is relieved from indi-
vidual exploration, which leads to a drastic speedup of the learning process. �is thesis explores
approaches that allow imitation to be combined with individual learning in heterogeneous robot
groups. It will be shown, how the learning speed of the robot group can be increased and thus
the self-organization of the group can be supported.

As a matter of fact, imitation plays an important role in the development of humans (Fig. 1.1).
�ey are able to imitate at an age as early as 12 days [123]. Being such a powerful means of knowl-
edge acquisition, imitation also has been observed in animals [50]. �e imitation incidents show
signi�cant di�erences in quality, though. �ere is, e. g., the more intelligent version of imitation
– o�en found in humans – that tries to analyze and interpret the imitatee’s actions, in order to
infer their original purpose. �e other side of the spectrum shows amuch simpler imitation type,
called mimicry, which tries to copy only the actions or appearance of the imitatee. Independent
of the sophistication level of imitation, it obviously pays o� in nature.

For the above reasons, imitation has already beenwidely adopted in robotics research (cf. Chap. 2).
�e possibility to let robots in a group bene�t from each other’s experience not only speeds up
the learning phase, which is essential in today’s complex robots. It also decreases wear out and
damage, which is o�en involved in the exploration process.

1



Figure 1.1: Humans are capable of imitation at an early age

When trying to provide robots with imitation capabilities, one is faced with three challenges
corresponding to the three steps involved in imitation [44]:

• Recognition: Salient bits of the observed behavior have to be extracted from the raw obser-
vation.

• Transformation: �e recognized complex behavior has to be transformed from the per-
spective of the imitatee into a data structure that is comprehensible for the imitator.

• Generation: New behavior has to be generated from the properly encoded data.

Current research o�en focuses on one of these challenges, requiring everything else to be speci-
�ed by hand – mostly in a context where a human is the imitatee and the robot has to reproduce
the observed task [28, 51, 60]. Attempts that employ imitation in a multi-robot context combin-
ing learning and imitation so far still require important challenges to be solved by the human
expert beforehand, such as the actuator mapping between the imitator and the imitatee or even
the possibility to look into the other robot’s internal data structures [142, 175].

What is still missing, is a truly autonomous multi-robot imitation approach. �at is an imita-
tion approach that does not require human intervention to solve any of the imitation-speci�c
challenges. In this case, the following requirements have to be met:

• �e imitation approach has to rely only on subjective information perceived directly by
robot’s sensors.

• A robot has to decide autonomously when it is imitating and when it is learning individu-
ally.

• A robot has to decide autonomously what to imitate and how to integrate the observed
behavior into its own behavior knowledge.

2



1 Introduction

As the robot group shall be capable of learning to achieve its goals without human intervention,
the robots must be able to learn individually. �erefore, the above listed requirements can only
be met if imitation is intertwined with learning.

1.1 Objectives and contributions

�is thesis considers the question of how robots can be designed so that they

• learn to achieve their shared goals in a robot group and

• imitate each other to increase the learning speed by spreading the gathered knowledge in
the group.

In order to allow for this intertwined learning and imitation, a dedicated robot so�ware archi-
tecture is vital, which on the one hand fosters autonomous and self-exploratory learning while
on the other hand allows for manipulating the learned knowledge and behavior to account for
new information retrieved during the imitation process. �erefore, the imitation part will need
information regarding the low-level behavior, which interacts directly with the environment, to
detect and classify observations. �e learning part will have to integrate the recognized behavior
in the component containing more abstract high-level behavior. Hence, the architecture has to
support this at multiple levels of behavior abstraction. Based on this architecture with imitation
support, the thesis will develop algorithms for autonomous robots that result in robust system
behavior and spread the system behavior re�nements to other members of the system group.

�e approach shall be evaluated in so-called Capture-�e-Flag scenarios, in which items are scat-
tered in the environment to be collected by robots in a group and delivered to one or more goal
bases. �ismimics the typical natural scenario of prey retrieval. Prey retrieval is being performed
inmany natural systems and o�en used as amodel for a range of other real-world applications, as
dirt cleanup, search and rescue, or searching of terrain samples in unknown environments [107].
It is one of the canonical tasks for multi-robot systems [57, 114] and comprises the major di�-
culties the robots will face when deployed in the real-world.

In order to show that imitation combined with individual learning has provided bene�ts over
learning-only approaches, experiments easy to conduct like those o�en performed in simple
real-world robot scenarios are no longer possible. When imitation is combined with individ-
ual learning, it is no longer possible to count a speci�c behavior as a result of imitation. �e
robot might have individually learned the speci�c behavior as well. Instead, a multitude of ex-
periment runs have to be performed with only learning enabled and with imitation and learning
both working together. Only this kind of experiment is able to show signi�cantly, whether the
imitation together with individual learning has provided any bene�ts in terms of learning speed
over the learning-only experiments. Since a magnitude of long-running experiments are needed
to show statistically signi�cant results, the approaches are evaluated in the physically realistic 3D
simulator Player/Gazebo [79]. For the dynamics, Gazebo relies on the Open Dynamics Engine

(ODE) [168], which is the current standard for the type of robot experiments [46, 69] needed
to evaluate the approaches in this thesis. In addition to already existing robot models that are

3



1.2 �esis outline

Figure 1.2: Real Pioneer robot and simulated Pioneer robot basis [25]

very similar to their real-world counterparts, Gazebo o�ers support for easy modi�cation and
extension of those models. As the base robot platform the Pioneer robot class is used [25], which
already exists as a module for the Gazebo simulation environment (Fig. 1.2).

Besides the novel architecture o�ering support for imitation, the thesis presents unique approaches
relieving the constraints that governed multi-robot imitation so far, to allow for the following:

• Robots in a robot group with shared goals can imitate each other in a non-obtrusive
manner. �ey can thus increase the learning speed and the overall group’s performance
by simply observing the other group members without requiring them to stick to a certain
communication protocol that would provide necessary information. With a technical re-
alization of the concept of the mirror neuron system found in humans and animals, the
robots are able to infer which behavior the observed demonstrator is performing. With
the presented techniques, the imitator is then able to replay the bene�cial behavior with
its own capabilities.

• �e robots in a group can be heterogeneous. Normally, the performance of a group de-
grades if robots with incompatible capabilities imitate each other. Capability di�erences
arise if the robot morphologies di�er in a robot group. �is is the case if di�erent robots
from di�erent manufacturers form a robot group that has to achieve a shared goal. �is
thesis presents an approach that is able to determine similarities or di�erences between
robots. �is can guide a robot in a heterogeneous robot group to determine those robots
that are most similar to itself.

1.2 �esis outline

A�er providing the background for the two prevailing topics of learning and imitation, this thesis
presents the architecture that is necessary for the two approaches concerning imitation, namely
imitation in robot groups and the choice of the imitatee. �edetailed chapter outline is as follows:

Chapter 2 (Background) starts with the threemajor types of learning and continues with present-
ing and contrasting di�erent imitation notations that have been added to the scienti�c language
over the past century. Due to the huge body of research that exists in both research �elds, this
chapter coarsely delineates both �elds so that forthcoming chapters can locate their speci�c re-
search contributions accordingly.
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1 Introduction

Chapter 3 (Architecture for learning and imitating in groups) provides an overview of the ar-
chitecture consisting of the three layers motivation, strategy, and skill layer and highlights their
interaction. �e chapter then explains how the layers are used for imitation in robot groups and
for the choice of the imitatee.

Chapter 4 (Motivation layer) de�nes the goals of a robot by means of a motivation system that is
able to serve as an internal reward. �e robot uses this motivation system to express its current
motivation as an overall well-being state to other robots.

Chapter 5 (Strategy layer) presents the strategy learning and state abstraction mechanisms that
are needed to autonomously learn to achieve the goal de�ned by the motivation layer.

Chapter 6 (Skill layer) explains how the robot can explore its own capabilities and learn low-level
actions, called skills, that can further be used by the strategy layer.

Chapter 7 (An integrative example) shows exemplary how the three layers are used to build a
fully autonomous robot that can learn to collect objects in the environment and carry them to a
goal base.

Chapter 8 (Imitation in robot groups) presents the algorithm, which uses the strategy layer and
skill layer to detect complex behavior in observations and integrates it into its own learned be-
havior knowledge.

Chapter 9 (Choice of the imitatee) handles the question how the imitation approach can be em-
ployed in heterogeneous robot groups, where the correct choice of the imitatee is vital. �e chap-
ter describes how Bayesian networks on interaction capabilities are used to achieve a measure of
similarity between two robots.

Chapter 10 (Summary and outlook) concludes this thesis by summarizing its main points and
providing suggestions for future improvements.
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CHAPTER2
State of the art

�is thesis describes how a layered learning architecture for robots is used to support self-organi-
zation in robot groups by combining learning and imitation. While the concept of learning is
well-de�ned in the literature, this is not the case with the term imitation. As a consequence,
it has no single agreed de�nition and is misused in a great body of research. At the one side
of the spectrum, it is referred to as some kind of dull copying of behavior that was ingeniously
developed by another subject. �e imitator is thereby contrasted as dumb and lazy against the
creative and eager imitatee. At the other side, imitation is recognized for the cognitive capacity
necessary to intelligently imitate another subject.

�is chapter provides a broader view on both topics, learning and imitation. It is not meant as
a complete overview, though. �e purpose is to coarsely delineate both �elds of research so that
forthcoming chapters can locate their speci�c contributions.

2.1 Learning

Current learning approaches can be grouped into supervised, unsupervised, and reward-based

learning. �is section describes their application domain, strengths and weaknesses.

2.1.1 Supervised

Supervised learning methods require a permanent critic that provides the correct actions for
the given state while the robots are in the learning phase. �ey are therefore used o�en in a
single-robot setup, where the robot is taught by a guide to perform the desired behavior [171].
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2.2 Imitation

Supervised learning methods are usually not applicable in multi-robot scenarios because of the
complexity of interaction in the robot group. A critique would otherwise have to provide all
participating robots permanently with an individual feedback regarding their speci�c last action.

2.1.2 Unsupervised

Unsupervised learning methods are used in special cases like learning models to support robot
navigation [103]. Unsupervised methods do not require any external feedback. �e only source
of information is the environmental data without any meta information regarding the outcome
of the recent behavior. Clustering is one example of unsupervised learning. Based only on the
relationship of a given data set the clustering approach groups the objects into similar clusters.
Another example is the self-organizingmap [104], a type of arti�cial neural network that is trained
for dimensionality reduction purposes. �e problem of blind source separation [24] has also
to be counted to the unsupervised learning methods. From a set of mixed signals one has to
extract the original signals without the support of any further information regarding the sources
of information.

2.1.3 Reward-based

A large body of research investigates reward-basedmethods, which can be divided into the camps
of reinforcement learning (RL) [173] and stochastic search methods, e. g. evolutionary computa-
tion [70], simulated annealing [111], or stochastic hill-climbing [77] that directly learn behaviors
and do not try to approximate value functions. Within the stochastic search method community
of the multi-agent domain, the focus lies on evolutionary computation. It is a well-known fact
that evolutionary methods require many populations. �ey are usually learned in a simulation
context, whereupon the learned behavior is applied to real-world scenarios. �is is no option for
self-organizing robot groups: In this case all the adaptation and learning has to be carried out
in the real world. �erefore, this thesis focuses on the most successful reward-based learning
method, which is RL. A more detailed overview of the reinforcement learning approach that is
used in this thesis will be given in Sec. 5.1.

2.2 Imitation

Before surveying the body of research that already exists in the �eld of imitation and with its
connection to learning, this section has to map out the landscape of existing imitation concepts
and de�nitions. Subsequently, biological organisms, which are capable of imitation are presented
together with a classi�cation of their respective type of imitation. It follows a survey of current
imitation research in robotics, which is evaluated and contrasted to the approach of this thesis.

In the following, organism refers to a living being, while robot refers to the context of this thesis’
application. Subject will be used if the described context is applicable to both nature and multi
robot systems.
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2 State of the art

2.2.1 Biological background

Imitation has been investigated now for over 100 years. In the nineteenth century, Darwin, as
well as the biologist Romanes [152], classi�ed many animal techniques of behavior acquisition
as imitation. �ey did not try to establish a de�nition of imitation, though. A little later, Bald-
win de�ned imitation in his evolution theories to be any adaptive process [35]. �e �rst crisp
de�nition was then given by the psychologist �orndike as “learning to do an act from seeing it
done” [178].

�e de�nition range of imitation has always been a matter of debate since then. �orpe sug-
gested a stringent de�nition of imitation restricting it to only those processes that exactly copy
the observed behavior [179]. In favor of a more tolerant de�nition, Whiten and Ham argued
that the de�nition should focus primarily on the outcome of an imitation process [187]: as long
as an animal has learned something useful from another one, it should count as imitation and
not require an exact reproduction of the observed action. Between these two extremal points,
numerous additional de�nitions have been placed in the meantime.

2.2.1.1 Categorizing imitation

Recognizing the problem of confusing the de�nitions of imitation and how this impedes the
communication within the robotics research community, Call and Carpenter [54] distinguish
imitation from emulation andmimicry. Although they focus on the classi�cation of imitation in-
stead of its technical realization, their taxonomy helps to discriminate between the di�erent types
in the body of research that will be described later. �ey propose a multidimensional framework
for classifying an imitation process, which incorporates three di�erent sources of information an
imitator uses during the imitation process (Fig. 2.1). �ese dimensions are

• whether or not the imitatee’s goal is understood,

• whether or not the observed action is copied, and

• whether or not the observed �nal result can be reproduced.

Given these three dimensions, any type of imitation process can be categorized clearly. Some-
times, it is di�cult or impossible to determine one ormore of these dimensions by only observing
an imitation process, however.

�is taxonomy classi�es an imitation as mimicry, emulation, or imitation, which Call and Car-
penter de�ne as follows.

Mimicry is the copying of an observed behavior that super�cially resembles the behavior of the
observed organism. Duringmimicry the imitator does not understand the goal, but simply
tries to copy the observed action.

Emulation �ere are two di�erent types of emulation dependent on whether the imitator un-
derstood the goal while imitating or not.
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2.2 Imitation

understand
goal

do not
copy action

do not reproduce result: goal emulation

reproduce result: goal emulation

copy action

do not reproduce result: failed emulation

reproduce result: imitation

do not un-
derstand goal

do not
copy action

do not reproduce result: other or no imitation

reproduce result: emulation

copy action

do not reproduce result: mimicry

reproduce result: mimicry

Figure 2.1:�e three sources of imitation by Call and Carpenter [54]: goals, actions, and results

Action emulation focuses on the results (changes in the environment) during imitation1.
It is not of interestwhether or not the goal intended by the imitatee is reached. �ereby,
the subject may learn how to achieve a change in the environment, but fail to arrive
at the goal intended by the imitatee.

Goal emulation focuses on copying the goal without copying the action. �is involves
creativity on the imitator’s side.

O�en, it is not easy, and sometimes even impossible, to distinguish between both variants
of emulation. E. g., it is not yet resolved whether apes focus on results during imitation [55,
56], which would mean that they emulate, or whether they concentrate on goals [187],
meaning that they are involved in goal emulation.

1Call and Carpenter called this simply “emulation”.
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2 State of the art

Imitation Whereas emulation is based on reproducing the results of an observed action, imi-

tation also involves copying the actions that led to that result. An illustration of Call and
Carpenter [54] highlights the di�erence: When an imitatee uses a hammer to open a nut,
the emulation of it could also be to smash the nut on the wall or biting the nut to open it.
Imitation, in contrast, would involve the hammering action to open the nut.

Comparing the de�nitions of all the types of imitation, mimicry is certainly the least useful in
multi-robot applications. Not understanding the goal, mimicry involves a lot of trial and er-
ror until the observed result can be reproduced. And if the environment or other conditions
change, it is unlikely that the behavior knowledge collected in the previous mimicry process can
be transferred to the new situation.

Just as brittle as mimicry, is simple emulation. Without understanding the goal, the imitator is
missing important information that would help to transform previously learned behavior to new
situations that need new environmental changes to achieve the original goal. Even more so, as
emulation does not even incorporate segments of the observed action.

Goal emulation and imitation, �nally, o�er much more robustness and promise to reproduce the
observed result much faster. Whether or not the observed action is copied seems to be of minor
importance, as long as the goal is understood. �is is also the imitation type of the multi-robot
imitation approach described in Chap. 8. �ere, the proposed approach involves to understand
the imitatee’s goal and thereby increases the overall robustness of the imitation process.

2.2.1.2 Imitation and memetics

�e imitation process of copying successful behavior between organisms has been investigated by
Susan Blackmore (“�e Meme Machine” [44]) and Richard Aunger (“�e Electric Meme” [30])
from a sociological point of view. Based on Richard Dawkins’ work “�e Sel�sh Gene” [65], they
analyzed an additional replicator besides the gene, which Dawkins called meme. In their view,
a meme is any unit of information that can be passed on from one subject to another. With
this broad de�nition they analyzed di�erent kinds of imitation and were successful in describing
social learning incidents involving imitation. From the robotics research point of view, however,
they could not place memetics on a scienti�c basis, which allowed to quantify, control, or predict
memetics phenomena. �e remainder of this thesis will therefore use the notion of imitation.

2.2.1.3 Imitation in biology

As might be obvious, humans are able to imitate. Children are capable of using all three types of
information (goal, action, result) [122, 130, 38]. Imitation of facial gestures in its simplest form,
mimicry, could be observed at infants of an age as early as 12 days [123].

Available evidence suggests that animals can imitate as well. Young birds, e. g., learn their re-
gional dialect of bird song by imitating the songs of their more mature peers [36, 90]. Kinnaman
observed a rhesus monkey (Macacus rhesus) that pulled a plug from a box containing food af-
ter it has observed another monkey doing so [98]. In the animal kingdom, dolphins are one of
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2.2 Imitation

the most pro�cient nonhuman imitators. Kuczaj and Yeater found evidence that dolphins are
even capable of delayed imitation [106]. �is requires the ability to mentally represent observed
behavior. �is enables dolphins to even imitating themselves.

Even more surprising, imitation can be observed in fauna [50]. Orchids, e. g., are able to imitate.
Tongue-orchids developed �owers, which resemble nests that are confused by insects with their
natural nests – a form called visual imitation in the biology research community. Other orchids,
likeOrchis papilionacea orOphrys fusca, imitate the scents or pheromonal signals of certain insect
species. �is allures these insects to attempt copulation, which results in �ower pollination. A
closer look, however, reveals that the imitation attempts of this kind are clearly a form ofmimicry
and not true imitation in the sense of Call and Carpenter.

2.2.2 Imitation in robotics

Imitation applied to technical systems can be found under diverse terms highlighting the dif-
ferent goals of the use of imitation. �e two directions of imitation research most relevant to
this thesis are Programming by demonstration and multi-robot imitation. �e former’s goal is to
program a robot in a more intuitive way – without having to rely on traditional programming
languages. �is is useful in the case that either the time to program a robot would take too long,
or if the task cannot be expressed by the human expert at all. �e goal of multi-robot imitation
is to let the robots in a robot group bene�t from each other’s learning e�orts. No human guiding
is given at runtime in this case.

Before presenting the work that is most relevant to this thesis’ focus, the current challenges are
described that govern robotics’ imitation research today.

2.2.2.1 Challenges in robot imitation

�e research in robotic imitation has been following a common theme over the years, which
deals with the �ve central questions and the correspondence problem.

�e �ve big questions in imitation �e challenges governing successful imitation in multi-
robot systems have been summarized byDautenhahn andNehaniv as the “Big Five” central ques-
tions in imitation, “namely whom, when, what, and how to imitate, in addition to the question
of what makes a successful imitation” [64].

whom In a group of robots, which robot can be regarded as a good teacher or imitatee?

when It is not wise to imitate all the time. �e imitator should carefully take into account the
situation context of the available imitatees and whether the potential imitatee is in explo-
ration or exploitation mode.

what �e imitator should be clear about what to imitate. �is comprises at the broad view Call
and Carpenter’s previouslymentioned three sources of information (results, actions, goals;
Sec. 2.2.1.1), but also the level of behavior (state sequences, low-level actions).
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how How should the observed behavior be mapped into the imitator’s own behavior repertoire?
�is is called the correspondence problem and will be treated separately in the next section.

how to evaluate What should be counted as successful imitation?

Although the “whom” is the �rst of the challenges, it has been factored out in current research
so far – either by restricting the imitation process to a one-to-one imitatee-imitator relationship
where the roles of both are clear, or by providing the robots with �xed rules. However, the ques-
tion of whom to imitate plays an important role already in early childhood. �is has been shown,
e. g., by the psychologist Burnstein [48], who found out that children imitate peers more o�en
that have similar sex, age, or interests.

�e “when” has also not been thoroughly investigated up to date. O�en, even the starting and
ending point of the action to imitate are given in advance. �e full action in the given time
interval is then to be copied. In multi-robot applications, this is not possible, of course.

�e question “what” to imitate is the best explored question in robotics imitation. It led to nu-
merous successful approaches applicable to di�erent levels of behavior. In multi-robot scenarios
– the targeted application domain of this thesis – the “what” is restricted to sequences of higher
level behavior (state-action-state traces). �e information in a robot group is too sparse for imi-
tating low-level actions.

Many approaches in current research take the easy way out when answering the “how” ques-
tion. Using the tabula rasa approach, the imitator is starting from scratch without any behavior
knowledge. In this case, it does not have to cope with combining individually learned behavior
with behavior collected by an imitation process. �is is, however, the standard case in normal
applications.

�e last question regarding the evaluation of the imitation success is naturally very speci�c to the
application scenario. Research focusing on the creativity aspect usually employs evolutionary
approaches, where the imitation success is measured in terms of behavior emergence. �is is
not the focal point of this thesis, as it is targeted towards online imitation, where the imitation
success should increase within the same robot generation at runtime. Other researchers consider
imitation as successful that exactly copies the imitatee’s actions. �is is also not of relevance for
this thesis. Instead, it measures imitation success in terms of how much it was able to speed up
the learning e�orts.

�e correspondence problem �e correspondence problem arises from the di�erences be-
tween the imitator’s and imitatee’s morphology [132, 26]. �is is the case, if the imitatee performs
an action of which the imitator has no direct corresponding actor. If, e. g., a robot with four
wheels tries to imitate a human walking on two feet, the robot has to interpret the observed ac-
tion (walking to a goal position) and �nd the corresponding behavior that results in the same
e�ect (control commands for the individual wheels).

In nature, the correspondence problem is solved by themirror neuron system in the brain of hu-
mans and primates. It contains a special class of neurons, called mirror neurons, which were
discovered �rst by Rizzolatti and Craighero in the macaque monkey premotor cortex [150]. Mir-
ror neurons �re both when an organism performs a particular action and when it observes the
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same action performed by another organism. �is indicates that behavior recognition is tightly
coupled to the process of behavior generation. Inamura et al. argue, this fact even suggests that
both processes are realized as a combined information processing scheme [94]. �ere is evi-
dence for mirroring as a more general principle [85], which applies to tactile sensation [97] and
to emotions such as disgust [188] and pain [164].

In case of technical systems, solving the correspondence problem is a hard problem. In order
to successfully solve the corresponding problem, the imitator has to understand the goal of the
imitatee. Consequently, a subject that is able to solve the correspondence problem is also capable
of not onlymimicry but also of true imitation or goal emulation in the sense ofCall andCarpenter
(Sec. 2.2.1.1). Johnson and Demiris found out that the correspondence problem can be solved
by focusing on the features of the demonstration that are important to the imitator [95]. �is
involves an action abstraction mechanism.

2.2.2.2 Programming by demonstration

Programming by demonstration (PbD) tries to relieve the robot programmer from the tedious
low-level programming task (a manipulative task or gesture, like grasping an object, e. g.) by
demonstrating the task in question repeatedly to the robot [51]. PbD is sometimes also referred
to as programming by example, learning from demonstration [28], apprenticeship learning [60],
behavioral cloning [156, 96] or sca�olding and moulding [157], a form of self-imitation, in which a
human expert remotely controls a robot performing progressively complex task. Programming
by demonstration is preferably done by guiding the robot. �ereby, the human teacher moves
the robot’s components (arms or legs in the case of a humanoid robot) to perform the desired
action [53]. �e robot then has to learn from the recorded sensori-motor data to copy the pre-
sented task. Goal understanding – and o�en the �nal result of the task – are o�en not relevant;
the presented task just has to be copied. �is is a form of mimicry and o�en used in research
on human-robot interaction. PbD is therefore best applied in situations, where human experts
know how to perform the task, but not necessarily know how to express their performance. With
PbD, robots could be programmed for restricted environments to cook [89], to forage [78], to
control a helicopter [59], and to play tennis [92] and air hockey [41].

If the teacher is the humanbeing, special techniques of action recognition are necessary to extract
salient information from the observation stream of the human performance. �e recognition
of human action has therefore attained much attention spanning approaches based on hidden
Markov models (HMM) [189, 29], support vector machines [133], Gaussian processes [163] or
conditional random �elds [167]. Perera et al. apply a Multi Factor Tensor model to recognize
styles and person identities in human movement sequences [138]. �eir approach needs a phys-
ical model speci�ed beforehand and relies on a motion-capturing system to extract the motion
data. Nejigane et al. use boosting to robustly recognize online human motion data [134].

Also for the reproduction of recognized behavior diverse techniques have been used. Some are
based on HMM and use the Viterbi algorithm to synthesize behavior thereof. Billard et al. [43,
52], as well as Azad et al. [31], e. g., use the Viterbi algorithm to let the upper part of a humanoid
robot replay behaviors observed at a human expert. In their work, the imitator-imitatee roles
are known and �xed. Also the start and end points of the behavior to imitate is known by the
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robot. �ey split the imitation task into the observation and imitation processes, having the
goal to minimize the discrepancy between the demonstrated and imitated data sets. Lee and
Nakamura even showed how a robot can imitate observed human behavior it if the robot only
saw parts of the human body [110]. �ey usedHMMto encode the observed behavior andViterbi
to reproduce it a�erwards.

In all these approaches, the robot is only able to learn low-level behavior and this can only be
done from scratch. �ey are not suitable for behavior learning in robot groups, since not only a
human teacher ismissing in themulti-robot case, but also the close imitator-imitatee relationship
is not given any more.

2.2.2.3 Imitation in multi-robot systems

Although the prevalent approaches in the PbD domain are able to demonstrate successful usage
of imitation in technical domains, they all su�er from requiring the imitator-imitatee relation-
ship to be �xed, with the imitatee o�en being a human. Furthermore, the time frame in the
observation, to which the imitator has to pay attention, o�en needs to be provided beforehand.
�e task to be learned by imitation is then repeated several times and a�erwards the robot has
to derive a generalized representation of the imitated task and be able to replay it.

Only a few current approaches, which have the need to use imitation in multi-robot systems,
address these questions. A survey on how they do so in the �eld of robotic soccer [175], computer
games [142], and general robotics [94] will be given in Sec. 8.1. �e survey will also highlight,
how the sporadic imitation approach, whichwill be proposed in this thesis, improves upon them.

In multi-robot systems where the robots are allowed to imitate, the question naturally arises
whom a robot willing to imitate should choose for the imitation process. �e previously sur-
veyed approaches ignore this issue by treating only homogeneous robot groups. For application
in heterogeneous groups, a means that measures the capability di�erences between the group
members is needed.

Up to now there is very limited research addressing this issue. While some require very detailed
information of the robot’s inner states and actions [33], others require the correspondence prob-
lem to be manually solved [162]. How these approaches work in detail, and how the provided
solution of this thesis stands out in that it allows the application of imitation with only mini-
mal prede�ned information also in heterogeneous robot groups, will be considered separately in
Sec. 9.1.

2.2.3 Contrasting the thesis to the state of the art approaches

In contrast to the existing approaches, this thesis combines the capability of imitation with lay-
ered learning architecture of a robot to be used in realistic multi-robot scenarios. It does so in
a way that allows the approach to be used without requiring the other robots to reveal any in-
ternal state or executed action except for the overall well-being state. In addition, the approach
presented in this thesis does not require all robots to use the proposed architecture. Robots that
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do, will bene�t. �is enables a group of such robots to increase their learning speed.

To allow for this combination of learning and imitation, a carefully designed architecture is nec-
essary. �is thesis deals with this challenge by presenting an architecture designed carefully to
support this combination (Chap. 3 – 7) prior to describing the imitation approach (Chap. 8 –
9). In contrast to existing approaches, this thesis does not aim to imitate for the sake of copy-
ing another robot’s low-level behavior, but to increase the overall learning speed of the robot by
imitation. �is will have to include all levels of abstraction, not only of low-level behavior. �e
presented architecture will address this.

�e robots using this approach have to infer the answers to the �ve big questions described earlier
by themselves. As already mentioned, the “whom” has so far been ignored using only homoge-
neous robot groups. �is thesis presents an approach that answers this question in the form of a
new measure of behavioral di�erence that can be used prior to the imitation process (Chap. 9).

�e “when”, meaning the corresponding time frame for imitation, is found out by the externally
visible signals that provide information about the overall state of the imitatee. �is mimics the
expressions of emotion in humans, which guide other human imitator when they want to decide
whether to imitate or not.

�e “what” and “how”, which is the correspondence problem, will be solved by learning actions
that are learned against a goal function, which in turn is used to recognize the action itself in the
observation data (Chap. 6).
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CHAPTER3
Architecture for learning and imitating

in groups

�is chapter provides an overview of the architecture that is the basis for realizing self-organizing
autonomous systems that are able to learn individual behavior, detect imitation possibilities, and
then are able to imitate each other [9, 16, 10, 21]. �e architecture enables a robot to individually
learn to use its capabilities in dynamic environments. In order to improve the learning speed it
has to combine individual learning with imitation of successful behaviors of teammates – with
the e�ect that bene�cial knowledge is spread in a robot group. In addition, an imitator shall be
able to detect which other robots it should imitate. �is is important in heterogeneous robot
groups, where the robots have the same goal but di�erent capabilities. �is leads to the following
requirements for the architecture:

• To enable a robot to learn behavior individually in continuous time and space with noisy
sensors and unreliable actuators.

• �e ability to adapt and improve the robot’s behavior at runtime.

• �e maintenance of learned behavior in a form that provides su�cient information and
corresponding methods, which are necessary to categorize observed behavior of other
robots in order to imitate.

• To support the robot programmer in specifying the overall behavior of an individual robot
in an intuitive way.
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3.1 Architectural overview

3.1 Architectural overview

�e architecture (Fig. 3.1) is based on Nilsson’s Triple Tower architecture [136] with the main
components perception, modeling, and action (Fig. 3.1). �ey de�ne the three basic components
for the robot’s data �ow in each step: First the robot perceives its environment using its sensors,
which is done in the perception component. It is responsible for re�ning the raw perception I
and providing the perception data in the required form to the modeling tower. �is component
carries out the main reasoning. Based on past experience and current perception, it determines
the best next action to achieve its goals. �e chosen action is then applied to the actuators us-
ing the action component. �is chapter introduces the three layers of the model tower that are
necessary to individually learn autonomous behavior in continuous time and space with noisy
sensors and unreliable actuators. In this sense, behavior is regarded as a complex sequence of
reactive low-level skills.

�is thesis focuses on the modeling tower. It is composed of three layers with di�erent levels of
abstraction that will be presented in more detail in the three following chapters: the motivation

layer allows the intuitive speci�cation of complex goals (Chap. 4), the strategy layer is responsible
for devising strategies that ful�ll the goals (Chap. 5), and the skill layer autonomously learns low-
level behavior according to the robot’s capabilities that serve the strategy (Chap. 6). �ese layers
interact in such away that they combine top-down goal speci�cationwith bottom-up exploration
of the robot’s own capabilities.

Each layer in the modeling tower is provided with perception data from the perception tower.
�e skill layer, however, is the only layer that is directly acting on the environment. Each layer is
allowed to request the raw perception I to be individually preprocessed. �roughout the thesis,
the individually preprocessed perception is denoted by Im for the motivation, Is for the strat-
egy, and Ia (action) for the skill layer. When de�ning the three procedures that preprocess the
perception, on the one hand the designer must take care to provide enough information for the
layers to accomplish their task. On the other hand, he must keep in mind that the learning al-
gorithms can be subject to the curse of dimensionality if too much information is provided. In
addition, the preprocessing step must be e�cient as it is executed at each processing loop cycle.

At the top level, the motivation layer de�nes the overall goal in the form of sub-goals. Each sub-
goal is de�ned by one motivation function, which in turn is coupled to one strategy learning
algorithm. A motivation function determines, which goal is the most pro�table one to reach
at each moment. With di�erent motivations, the architecture is able to handle changes in the
environment without the need of relearning everything. �e middle layer realizes the strategies
necessary to accomplish the goals de�ned by the motivation. It does so on an abstract level,
where it views the behavior as symbolic actions to be performed for a certain duration. �ey are
grounded by the skills in the lowest layer. A skill is de�ned by a goal function and handled by
the lowest layer. Using this function, a skill is also capable of recognizing whether a skill similar
to itself has been executed in the observations.

18
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Figure 3.1:�e robot architecture

3.1.1 Motivation layer

�e overall goal of a robot is speci�ed in the motivation layer by the robot programmer. It can
be de�ned through a number of individual so-called motivations, which can even be mutually
contradicting.

�e ful�llment of a sub-goal is realized by minimizing the corresponding motivation, which is
represented by a non-negative scalar. �e motivation’s value is dependent on external stimula-
tion and the internal reaction to it. Everything that can be physically perceived is regarded as
external stimulation. �is includes, e. g., the relative position to an object or the robot’s battery
state. �e robot’s motivation is de�ned as a function of the current perception, the time, and the
motivation’s previous value. �erewith, it is possible, e. g., to specify which perceptual states are
preferable or to model impatience so that the robot is preferring behavior that achieves its goals
faster. �e internal reaction is de�ned by dynamic evaluation functions that allow the modeling
of automatic decay or increase of the motivation. In order to reach desirable states, the system
proactively has to select the proper sequence of actions or behaviors in its behavior repertoire
that will result in positive evaluations and keeps the motivations low, also called satis�ed. If all
motivations are satis�ed, one can de�ne a special motivation that enforces curious exploration.
�is can be compared to the children’s play instinct. �ereby the robot has a de�ned motivation
at each time step.

3.1.2 Strategy layer

�e strategy layer’s task is to �nd state-action sequences that keep the robot’s motivations low,
which results in achieving its overall goal. It receives a motivation vector containing the individ-
ualmotivations from themotivation layer. In the strategy layer, complex policies are learned that
satisfy the motivation. A policy is a mapping from a system state to an action the robot has to
execute. �e strategy maintains one policy for each motivation. �e strategy layer is moderating
between the individual and possibly contradicting goals, which can be ordered and assigned a
priority according to how much they’re unsatis�ed. �is means that the robot chooses to follow
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3.2 Layer interaction

a policy, which is connected to the motivation with highest priority. �is is also the least satis�ed
one.

For each policy, the strategy layer has to maintain a reasonable state abstraction. �at means,
that the strategy layer autonomously has to �nd a state space that is suited for the task at hand.
�e strategy layer does this by heuristically splitting and merging states.

3.1.3 Skill layer

�epolicies in the strategy layer treat the actions as abstract symbolswithout botheringwith their
actual execution. To have any e�ect on the environment, they must be grounded physically. �is
is accomplished in the skill layer. It autonomously learns andmaintains a set of skills that achieve
their individual goals. A goal is represented by a goal function that measures the achievement of
a skill. Each time the skill layer has reliably learned a new skill, it noti�es the strategy layer, which
in turn updates its own set of abstract actions. For each skill, alternative types of model functions
can be provided. �ey are approximated at runtime and compete by means of their prediction
accuracy for being executed at the next time step. Execution in this contextmeans that the chosen
approximated function takes the current state as input provided by the perception and returns
an action vector.

�e action vector, which is sent to the action tower, contains one element for each hardware actor
to control. �e approach does not consider the low-level hardware part. It just issues the action
vector and takes the �nal realization by means of, e. g., PID controller, etc. for granted.

3.2 Layer interaction

To allow for su�cient reactivity while being able to timely maintain the data structures that are
related to the reasoning and involved in the strategy building, the layers work in parallel. �emay
work even at di�erent frequencies, as shown exemplary in Fig. 3.2. �e skill layer runs at higher
speed to ensure that the robot reacts appropriately to the environment’s events. It recurrently
maps the current perceptionwith the skill requestedmost recently by the strategy layer to the best
action. �e strategy layer does not necessarily need to run at the same frequency. In most cases
it su�ces to run the strategy at a much lower frequency. And even then it will not necessarily
require a skill change at each time step. In addition, its calculation may take longer once in a
while, because it has to reexamine its complete experience history from time to time in order to
adjust its data structures. �is is being enabled by decoupling the reactive from the reasoning
components.

�is is exemplary demonstrated in Fig. 3.2 (page 22). �e strategy step is triggered to perform its
next cycle consisting of determining the current motivation and the corresponding next strategy
action Ê. �e motivation and strategy layer work synchronously as the strategy layer requires
the most current motivation as feedback regarding its last chosen action. �e strategy step does
not have to �nish before the next skill step is triggered Ë. If it is triggered, it simply executes
according to the action most recently delivered by the strategy layer. �is can be seen in the
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3 Architecture for learning and imitating in groups

�gure, where “determine next strategy step” in the strategy step is not �nished before the skill
step is started. In the middle of the skill stepË, the strategy layer has determined the next action
to execute and signals this to the skill layer. Both subsequent skill steps Ì and Í then perform
this action accordingly.

3.3 Imitation in robot groups

Individual learning is possible with the three layers alone. In groups of robots with the same
overall goal, they should be able to bene�t from the results of each other’s individual learning
processes.

�e imitation component in Fig. 3.1, which will be described in detail in Chap. 8, allows for
imitation in such a group without disturbing other robots. �is is usually not the case in typical
imitation approaches in literature. �ere, a known imitatee1 (human or robot) repeats the same
action over and over again. �e imitator (robot) then records the multiple action performances
and tries to �nd a generic representation for the underlying behavior.

In contrast to that, the approach in this thesis allows for sporadic imitation. �ismeans that each
robot is allowed to observe as much as it wants to, but never to interrupt another robot by requir-
ing a repetition of a behavior it has previously seen. Unlike the traditional imitation approaches,
a start and end point of the interesting interval to be imitated is not provided. �erefore, this
approach requires that the robots express some kind of overall state. �is is equivalent, e. g., to
expressed emotions, by which humans are able to infer from each other whether a certain action
previously performed was bene�cial or not.

A sporadically imitating robot monitors all other observable robots. Once, it has detected a
signi�cant change in the expressed overall state of another robot, it analyzes the past observed
behavior of that robot. �e only assumption made in this process is that the behavior sequence,
which has led to a change in the overall state of the observed robot, will also lead to similar
changes for the imitator when it executes it. It thereby assumes, that all robots in the group
share the same overall goal and have similar motivations. Everything else is le� undetermined:
�e presented approach makes no assumptions about the other robot’s strategy implementation,
low-level skills, or hardware morphology.

�is is only made possible by the three-layered architecture, where the individually learned skills
of the skill layer analyze the observations to detect themselves in the observed behavior. �e
imitation process then tries to �nd a possible sequence of states in the strategy layer that transfer
one to another based on the skills’ evaluation. �is leads to a condensed interpretation of the
observation, by means of the imitator’s own strategy and skill knowledge. With this state-action-
sequence the imitation process then feeds the strategy layer that updates its strategy accordingly.
In a way, this is technically similar to the mirror neuron system’s way of imitation [150], where
each skill tries to recognize its own e�ects in the observation stream.

1�roughout this chapter “imitatee” and “demonstrator” will be used interchangeably.
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Figure 3.2: Exemplary layer interaction in normal execution mode
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3 Architecture for learning and imitating in groups

3.4 Choice of the imitatee

A major challenge results from sporadic imitation in robot groups: How does a robot know
whom it should imitate if no assumptions are made regarding the robot morphology and result-
ing capabilities? As the observed behavior is fed as an additional experience into its own strategy,
imitating arbitrary robots will not lead to long-term performance decrease. By virtue of the lay-
ered approach the behavior will be unlearned automatically if it does not result in increased per-
formance, which can bemeasured directly in the strategy layer. Nevertheless, imitating arbitrary
robots might render imitation useless.

�erefore, a robot should only imitate robots with similar capabilities. Observed behavior will
then more likely lead to the same outcome. �e question is, how to measure the robot similar-
ity. �is thesis presents an approach that allows robots to calculate a similarity distance based
on a�ordances, which are interaction possibilities the environmental objects present to a robot
(Chap. 9). �is is done in the demonstrator choice component in Fig. 3.1. As a consequence, the
underlying so�ware or hardware speci�cations of the robots in that group are not important. As
long as the a�ordances are similar, a robot can assume that it will be bene�cial if it imitates the
other corresponding robot.

As can be seen in the demonstrator choice component in Fig. 3.1, the robot is always monitoring
the other robots’ capabilities through its perception. Each time the imitation component has
detected an interesting and bene�cial behavior sequence in another robot’s performance, it asks
the demonstrator choice component how likely it is that imitating this behavior will lead to a
similar performance. Only in the positive case the observed behavior will be imitated.

3.5 Scenarios

As described in the introduction, this thesis’ evaluations are oriented towards the prey retrieval
scenarios, speci�cally the Capture-�e-Flag variant. �ere, a number of robots share the same
goal of collecting objects in the environment and delivering them to one of several goal bases.
Although the robots may be of di�erent size, power, or morphology and thus possess diverse
capabilities, they share the same overall goal.

�is is supported by the architecture, as it allows the speci�cation of similar goals in the motiva-
tion layers of the individual robots’, but allows the robots to develop their own strategy and skills
– whichever are appropriate to their physical conditions.

In the next three chapters (Chap. 4 to 6), themotivation, strategy and skill layers will be described
in detail. Subsequently, the thesis explains how sporadic imitation (Chap. 8) and the choice of
the demonstrator (Chap. 9) is realized.
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CHAPTER4
Motivation layer

�emotivation layer (Fig. 4.1) de�nes the goals of the robot. At each instant of time it clearly de-
�nes the current needs of robot. With its underlying strategy layer and skill layer it has to choose
the behavior that satis�es all goals. By specifying the motivation system, the human designer
pinpoints, which behavior the robot has to learn.

Besides the de�nition of the robot’s goals, the motivation layer signals its current overall state to
other robots, i. e., its estimation of how well it has proceeded so far in achieving its goals. �is
will be used by other robots to decide whether they shall imitate this robot or not.

In summary, the motivation layer has to ful�l and support the following tasks:

• Provide information about the robot’s current goals and their levels of achievement to the
strategy layer.

• Provide a way, by which the robot can be observed by other robots in the group for the
purpose of imitation.

In the following, a short background on motivation systems is given. Subsequently, the motiva-
tion system of this thesis is described [10, 21].

4.1 Background

�e�eld ofmotivation and its large body of research have developed over 100 di�erent de�nitions
of the termmotivation [99]. In this section, a view on motivation is given relevant to robotics.
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Figure 4.1:�e layered robot architecture

4.1.1 Motivation in biological autonomous systems

�e actions of autonomous systems, including organisms like humans or animals, have to be
guided by basic goals. In nature, these goals are encoded in terms of drives. Drives are to be
satis�ed so that the organism “feels” content. �ey indicate if something, some parameter of the
system itself or the situation within the surrounding environment, is not within normal bounds.
�e organism then has to take proper action.

One of the �rst researchers who categorized drives was Maslow. He developed the concept of a
hierarchy of needs [118] according to which the di�erent drives of a human belong to one of �ve
priorities:

1. Physiological needs are the basic needs a human has, such as breathing, sleeping or the
need to eating.

2. Safety needs address the security of the human’s body or of its property and employment.

3. Social needs are characterized as the need for friendship and family.

4. �e need for esteem comprises self-esteem as well as the respect of others.

5. Self-actualization is the need with the lowest priority. Examples of self-actualization in-
clude abstract concepts like creativity, morality or problem solving.

�e four needs with the highest priority are called de�ciency needs. �ey de�nitely must be sat-
is�ed before a human may be content. When a de�ciency need is satis�ed, there is no more
incentive to act towards the satisfaction of it. �e self-actualization need is called a growth need.
�e growth need can never be fully satis�ed, in contrast to the de�ciency needs.

Needs are evoked or depleted by stimuli, which can be either internal (sleep) or external (food).
�is means that, e. g., the absence of food over a longer period of time evokes the desire to ap-
proach exactly that stimuli. �is is achieved by so-calledmotivations.
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4 Motivation layer

According to the neuroscientist Salamone [154, 155], a motivation is a set of processes by which
“organisms regulate the probability, proximity, and availability of stimuli”, including both internal
and external stimuli. Salamone distinguishes two phases during the course of motivated behav-
ior: in the instrumental phase the “organism regulates the proximity or delivery of stimuli”. It is
followed by a terminal phase, in which the organism directly interacts with the stimulus. Sala-
mone ascribes directional and activational aspects to motivations, as they are typically directed
towards a stimulus or away from it and can be of di�erent strength. As Cofer puts it [61]:

Motivational concepts, then, have had at least two major functions with respect to

behavior. One is to energize responses, either in general or speci�cally, and to control

their vigor and e�ciency. �e other is to guide behavior to speci�c ends, i. e., to give

direction to behavior.

Motivations are, therefore, tightly related to reinforcement signals. In the viewof the psychologist
Spence [169, p. 29]:

�e combination of a motivating state and the environmental situation impels the sub-

ject to respond and to continue responding to various aspects of the situation until a

reinforcer is obtained or until removed from the situation.

Such a reinforcer has the capacity to direct behavior, as noted by the biologist Tapp [176]: Stimuli,
e. g., to which the organism approaches, are positively reinforcing.

In summary, the need of an organism to satisfy its drives generates its motivations. �ose moti-
vations in turn are not diminishing until the corresponding reinforcers are obtained or removed.
Transferred to the robotics domain, with the de�nition of the robot’s drives, the robot can be pro-
vided with dynamic motivations. �ese motivations guide the robot towards learning behavior
that evokes stimuli, which the robot is seeking and to eliminate those stimuli that are not wanted.

4.1.2 Use of motivation in robots

�e neuroscientist Rolls argues that human brains are designed around reward and punishment
evaluation systems. In his view, it is the way that genes can build a complex system that will
“produce appropriate but �exible behavior to increase �tness” [151]. From the view of the robotic
systemdesigner, this insight can be used to circumvent the di�cult design of the reward or �tness
function, which is typically inevitable in all learning based optimization approaches. Instead of
specifying reward functions that guide the learning e�ort, one can design the response of the
motivation system to extrinsic (a ball is visible to which the robot has to drive) and inherent (the
battery charge condition of the robot) states. �e change in the motivation state is then used to
calculate the reward.

Motivations may not only be used to directly control the behavior of autonomous systems like
robots. Moreover, they can also be used to control which behavior will be imitated in a group
of robots. �e bene�t of this approach has been shown by Broekens in an experiment where
a foraging robot was able to speed up its learning e�orts when being guided by human facial
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4.2 Design of a robotic motivation system

expression [47]. In the respective experiment, the recognized human emotions were used by the
learning robot as social cues for the desirability of an action.

�erefore, the motivation states of the other robots, which each robot of the group can per-
ceive, will be interpreted internally as a reinforcement signal in this thesis. �is is in the sense of
Broekens, except that in contrast to his approach, the demonstrating robot does not intend to give
reinforcement to another robot. Instead, all robots always output their own current motivation
state, which can be used in the imitation process of the imitating robot.

As the robots will output their current motivational state so it can be perceived by nearby robots
when they are imitating, they are e�ectively setting up an a�ective communication channel [140].
�is communication channel and the assumption that all robots in the group share the same
overall goals are the only assumptions made in this approach.

�e behavior learning aspect will be explained in the next two chapters 5 and 6. How drives and
thereby motivations can be designed so that they make sense to a robot will be described in the
following, using drive andmotivation interchangeably.

4.2 Design of a robotic motivation system

For the evaluation of the robot’s overall state the motivation layer uses biologically inspired eval-
uation methods similar to the motivation described earlier. With them, one is able to specify the
overall goal in the motivation layer (Fig. 4.2) as a motivation vector µ:

µ = (µ1, . . . , µn)T , µi ∈ R+ (4.1)

Each motivation µi corresponds to one goal i, which is considered accomplished or satis�ed if
0 ≤ µi < µθ

i , with µθ
i de�ning the threshold of the well-being region (Fig. 4.2 and 4.3). �e value

for µi is calculated by the function
µ̂i ∶ Im → R+ , (4.2)

which is a mapping from the perception at a given time t, I(t) ∈ Im, to the degree of accomplish-
ment of goal i:

µi = µ̂i(I(t)) (4.3)

By specifying µ̂i , which determines the development of µi , and its satisfaction threshold µθ
i , one

is able to intuitively de�ne the robot’s overall goal:

µ =
⎛
⎜⎜⎜
⎝

µ1
µ2
⋮
µn

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

µ̂1(I(t))
µ̂2(I(t))

⋮
µ̂n(I(t))

⎞
⎟⎟⎟
⎠

(4.4)

�e robot, then, accomplishes the overall goal comprising all sub-goals, byminimizing each goal
i’s motivation value µi . While it is adapting its strategy and skill set, it does so with only this urge
in mind.
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Figure 4.2: An example of a motivation system for three sub-goals: each drive measures the status of
accomplishing one sub-goal (0 = fully accomplished). �e current motivation µ is the vector
to the current drive state. A drive i is called satis�ed, and thereby its goal achieved, if the
corresponding motivation element µi is below its threshold µθ
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Figure 4.3: An example of a sub-goal subjected to an excitation. �e excitation describes the force, which
the current drive state is subjected to. By specifying it dependent on the perception and on the
internal state of the robot the user is “programming” the �nal behavior.
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4.3 Conclusion

When specifying the motivation system of the robotic, one has to ensure that the motivation
correctly re�ects the achievement status of the robot’s goal. �at means, that big changes in µ
also re�ect big changes in the goal’s status of achievement.

4.2.1 Excitation

In addition to the dependence on perception, themotivation can be subjected to time dependent
changes. Examples for this are typical human drives that are increasing recurrently, like the need
to eat or to sleep.

�e motivation layer uses time-dependent excitation for this e�ect, as it is shown exemplary in
Fig. 4.3. �erefore, it is required that the current time is included in the perception I(t). With the
excitation, time dynamic behavior can be realized. E. g., an exploration drive could be speci�ed
to force the robot avoiding boredom. It would be reinforced each time the robot did nothing,
and only decreased if the perception su�ciently changed.

4.2.2 Prioritizing goals

At each time step, the motivation layer provides the current motivation vector to the strategy
layer. As will be described in the next chapter, the strategy layer will have to prioritize, which of
the sub-goals are to be handled �rst. �is is done based on the shortest vector µp of the current
motivation state to the well-being region, which is used for drive prioritization (Fig. 4.2):

µp =
⎛
⎜⎜⎜
⎝

max(0, µ1 − µθ
1 )

max(0, µ2 − µθ
2)

⋮
max(0, µn − µθ

n)

⎞
⎟⎟⎟
⎠

(4.5)

In order to model a hierarchy of needs, the di�erent drives can be prioritized by means of an
according scaling.

4.3 Conclusion

�e robot interprets the minimization of the vector of the point of origin to the current drive
state as its current motivation. �is serves two functions in the framework as required at the
beginning of this chapter:

1. On the one hand, the motivation µ is used by the strategy layer to calculate the reward.
�ereby, a positive reinforcement is given to the strategy layer, whenever the motivational
state approaches the zero vector and thus moves towards the well-being region. A negative
reinforcement is given in the opposite case.
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4 Motivation layer

2. On the other hand, it supports imitation in multi-robot scenarios. �e motivation value
in this motivation layer can be used to express the robot’s overall well-being to the other
robots and guides themwhen they are observing each other to imitate only obviously ben-
e�cial behavior.

In summary, the following concepts are realized by the motivation layer:

• �e overall goal of a robot is split into multiple sub-goals and speci�ed by means of drives.

• A drive represents a need, which the robot wants to satisfy.

• A drive has a threshold, which marks whether the drive is satis�ed. �e strength of the
desire to satisfy the need is represented by the motivation.

• All robots in a group are assumed to have a similar set of drives, meaning that they share
the same overall goal.

An example for a concrete realization of the motivation layer will follow in Chap. 7, a�er the
strategy layer (Chap. 5) and skill layer (Chap. 6) have been introduced.
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CHAPTER5
Strategy layer

In order to satisfy the motivation layer with its motivation vector µ = (µ1, . . . , µn)T and the well-
being region de�ned by µθ , the robot has to derive a strategy that is able to keep µi < µθ

i given
only the experience stream

⟨. . . , (o, a, d , µ, f )t−1, (o, a, d , µ, f )t , . . .⟩ (5.1)

with the following notation:

observation o: �is is the preprocessed and �ltered raw perception I representing the fully ob-
servable state (o = Is)1,

action a is the action that is sent to the skill layer in order to execute the corresponding low-level
behavior.

duration d is the duration between two consecutively triggered actions. �e duration is used to
properly discount the received reward, which is delivered in terms of themotivation vector
µ.

motivation µ: �e time derivative of the motivation vector is used to calculate the return of the
last action.

failure f signals whether the skill layer (Chap. 6) considers the last executed action as failed.
�is can be, for instance, the skill layer signalling that the previously executed skill has not
performed as expected, because the robot is trying to drive against a wall.

1In domains, where this cannot be assured, the presented approach still works, but the underlying SMDP frame-
work has to be extended to a partially observable Markov decision process (POMDP) [165]. For more details, cf.
Sec. 5.1.1.
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Figure 5.1:�e layered robot architecture

�e derivation of a strategy is the task of the strategy layer [21, 10], which is located between the
motivation and the skill layer, as shown in Fig. 5.1.

To keep this learning program feasible, the strategy layer is not trying to learn one strategy for
the whole motivation system. Instead, it is generating one strategy for each motivation µi . �e
system then selects the active strategy dependent on the dynamic drive prioritization (Eq. (4.5)
in Sec. 4.2.2). A simple approach is to choose the drive with the least satis�ed motivation. �is
section will restrict the description to the strategy of one sub-goal i and the corresponding mo-
tivation µ = µi .

�e strategy learning approach is outlined in Fig. 5.2 and works as follows. A�er preprocessing
the raw perception and appending it to its accumulated experience, the strategy generalizes the
raw state, which is the actual state observations ot , into an abstract region st . �is is vital, because
operating directly on the raw state space is infeasible. �e solution space would be too big to be
explored within a reasonable amount of time. �e abstraction is achieved by a set of heuristics
that modify the mapping, which assigns abstract states to the preprocessed perception states.
�emappingmay be of any form of abstractionmethod. In this thesis, the approach uses nearest
neighbor, as it is one of the most general abstraction methods [62]. Each time new experience
is made by the robot, the model consisting of the state transitions, rewards, and time statistics is
updated. Using the abstract states, the approach then has to �nd a sequence of state-action-pairs
that leads the robot to its current goal. �is problem can be cast into theMarkov decision process
(MDP) class. �erefore, reinforcement learning is used to �nd the optimal strategy according to
the imperfect perception experience [172]. In summary, a model-based reinforcement learning
with prioritized sweeping [128] is used to derive an optimal policy by means of semi-Markov
decision processes (SMDP) [147] (cf. Sec. 5.1.2). SMDPs are necessary, as they allow – in contrast
to MDPs – for variable-duration actions, which is necessary for realistic scenarios. �e policy
can be queried at each time step for the best action according to the current abstract state, which
can be e�ciently realized by a simple look up table. From time to time, random actions are used
instead to ensure a continuous exploration of the strategy space.

�e strategy layer does not execute actions by itself. Separating the concerns of high-level strat-
egy and low-level actions, the strategy layer only treats them as symbols and sends these to the
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Figure 5.2: Processes involved in updating one policy in the strategy layer
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skill layer, which translates them into the particular actuator settings and executes them in the
environment.

A�er the presentation of reinforcement learning basics and the description of the state of the
art in this domain, this chapter presents the strategy learning component in detail. As most of
the notation can be best explained within the context of reinforcement learning, the chapter will
begin with a description thereof (Sec. 5.3). �e chapter continues by explaining how the state
is abstracted (Sec. 5.4) and how it is creating and maintaining models using the abstracted state
space (Sec. 5.5). �e remainder of the chapter addresses practical issues and concludes with an
example.

5.1 Background

�e problem of �nding an optimal action sequence that reaches a goal in an unknown environ-
ment is known as sequential decision making under uncertainty [147]. In the case that a robot
is placed in such a problem setting and no supervisor or guide is available, all information the
robot can rely on is the perception s ∈ S, the executed action a ∈ A and some kind of “outcome”
of it, called reward r ∈ R. �e robot’s experience stream thus looks like the following:

. . . , (st−2, at−2, rt−2), (st−1, at−1, rt−1), (st , at , rt) (5.2)

If each state of the state space conveys all information necessary for the robot to intelligently pur-
sue its goal, the state space S is said to beMarkovian, i. e., it has theMarkov property. In this case,
the underlying structure of the problem is a Markov process. �e problem can then be modeled
as a Markov decision process (MDP) and solved with reinforcement learning approaches [172]2.
�e following sections present the MDP as the most basic case and introduce the semi-Markov
decision process (SMDP) as a more general MDP, which is suitable for time-dependent applica-
tions like the robot scenarios in this thesis.

5.1.1 Markov decision processes

AMarkov decision process (MDP) [147] is de�ned by the tuple (S,A, T , R) and describes a control
problemwhere an agent interacts with its environment in order to optimize the reward it receives
from it:

• S is the robot’s �nite state space.

• A is the �nite set of actions the robot can execute.
2In non-Markovian scenarios, partially observable MDPs (POMDP) have to be used [165]. Although POMDPs

are non-Markovian, the optimal POMDP solution is Markovian over the belief state, which is an approximation of
the underlying hidden state.
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• T ∶ S×A×S→ R+ is the transition function. T(s, a, s′) de�nes the probability that action
a executed in state s leads to the next state s′, where

∀s ∈ S, a ∈ A ∶ ∑
s′∈S

T(s, a, s′) = 1 ⋁ ∑
s′∈S

T(s, a, s′) = 0 .

• R ∶ S ×A → R is the reward function, which provides feedback about the outcome of the
robot’s last action in its last state.

In real-world applications T and R cannot be given to the robot directly, but have to be found
out by the robot via interaction. �e decision process is calledMarkov, because both functions
depend only on the current state and action, and not on their past history. I. e., the probability
P(st+1 = s′, rt+1 = r ∣ st , at) of transitioning to state s′ and receiving reward r a�er the robot has
executed action at in state st is independent of the robot’s history:

P(st+1 = s′, rt+1 = r ∣ st , at) = P(st+1 = s′, rt+1 = r ∣ st , at , rt , st−1, at−1, . . . , r1, s0, a0) (5.3)

5.1.1.1 Policy

A policy de�nes which action the robot chooses in a given state. �is is the actual strategy of a
robot. It is a mapping π ∶ S → A that assigns an action a ∈ A to each state s ∈ S. �e goal of
reinforcement learning is to �nd an optimal policy in the policy space Π for theMarkov decision
process.

Optimality is de�ned in terms of the value function V π ∶ S→ R that estimates how useful it is for
a robot to be in a given state, also known as the utility. A policy is called optimal and denoted
by π∗ if the following condition holds for all policies π′ ∈ Π: V π∗(s) ≥ V π′(s) ∀ s ∈ S. When
de�ning the value function, the incorporation of the reward has to be tailored to the class of
application domains, as this de�nes the optimization criterion. Most o�en used are the average,
�nite horizon, and discounted reward [173].

average Some applications ask for themaximization of the long-term average reward. With E[⋅]
being the expectation, this is realized by

V π(s) = lim
N→∞

1
N
E [

N−1
∑
t=0

rt ∣ s0 = s] (5.4)

�nite horizon If the robot’s strategy horizon is �nite with a �xed life time N , i. e., where a con-
tinuous task has to be performed over a given time, the reward can simply by accumulated:

V π(s) = E [
N−1
∑
t=0

rt ∣ s0 = s] (5.5)

discounted For continuous but not time-limited tasks it is wise to give a smaller weight to a
reward that is more distant in the future. �is can be achieved with the discount factor
γ ∈ [0, 1):

V π(s) = E [
∞
∑
t=0

γtrt ∣ s0 = s] (5.6)
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As this thesis is concerned with learning and improving the performance of robots in a robot
group that have to accomplish continuous tasks that are not time-limited, the following focuses
on value functions that incorporate the discounted reward.

Although value functions allow to discriminate between more and less useful states, they don’t
allow yet for decision making. �erefore, it is reasonable to analyze it on the state-action-level,
which is done by the Q value function Qπ ∶ S × A → R. It determines the value of executing
an action according to a policy π in a given state by considering the received reward and the
expected value of the next state:

Qπ(s, a) = R(s, a) + γ∑
s′∈S

T(s, a, s′)V π(s′) (5.7)

Once the optimal value functionV π∗(s, a) = E [Qπ∗(s, a)] and with it the optimal Q value func-
tion Qπ∗ is found, the optimal action is retrieved by

π∗(s) = argmax
a∈A

Qπ∗(s, a) . (5.8)

5.1.1.2 Solving Markov decision processes

�e question is how to �nd V π∗ in order to get the optimal policy π∗. �is can be done by
dynamic programming (DP) methods [39, 91]. �e most well-known DP methods are value iter-
ation and policy iteration, which compute the optimal policy for a given model. �is model has
to be provided beforehand or explored by the robot itself. For this reason, DPmethods are called
model-based or indirect in contrast tomodel-freemethods that derive the policy directly without
building a model.

Value iteration starts with an arbitrary value function V and updates it according to the so-
called Bellmann’s Equation for all states s ∈ S

V π
n+1(s) =max

a∈A
[R(s, a) + γ∑

s′∈S
T(s, a, s′)V π

n (s′)] (5.9)

until no signi�cant change is detected anymore, according to a de�ned precision ε: ∣∣V π
n+1−

V π
n ∣∣ < ε.

Policy iteration starts with an arbitrary policy π, which is used to calculate the value function.
With the updated value function the policy is updated:

πn+1(s) = argmax
a∈A

[R(s, a) + γ∑
s′∈S

T(s, a, s′)V π
n (s′)] (5.10)

�is is repeated until the policy has converged: πn+1 = πn.
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5.1.2 Semi-Markov decision processes

In the MDP framework, actions always have unit duration. Processes get more complicated if
they are allowed to take variable amounts of time before transferring to the next state. �is is
inevitable in real-world applications like the evaluation scenarios in this thesis. In that case the
Markov property does not hold any more: the current state alone does not su�ce to predict the
next state. Problems with this characteristic have to be solved in the semi-Markov decision process

(SMDP) framework [147], which models continuous-time discrete-event systems.

At �rst this involves replacing the step discount factor γ by a continuous discount factor β ∈
(0,∞). A reward r received a�er time t thus leads to a net reward of e−βt . If β = ∞ the robot is
said to be myopic, as the future reward is discounted by e−∞t ≈ 0 and the robot thus is concen-
trating only on the immediate reward. In an MDP world this would be realized by γ = 0. With β

approaching zero the robot is paying increasingly more attention to reward that is farther in the
future. In addition, it requires more complex transition models. �e transition function T be-
comes a probability density functions over time in the SMDP framework, in contrast to a simple
probability distribution in the MDP context.

5.2 State of the art

Even when ignoring the need for action recognition, which is necessary for perception-based
imitations, there is a lot of research done in the area of strategy learning in continuous state
and action spaces. It can be divided into model-free and model-based approaches. Model-free
approaches learn the optimal strategy and actions directly from the interaction with the envi-
ronment. Model-based approaches �rstly learn a model of the environment and themselves.

5.2.1 Model-free approaches

It is obvious that a full search in continuous state and action spaces is infeasible. For reinforce-
ment learning approaches to be applied in realistic domains, it is therefore vital to limit the search
to small areas in the search space. One approach to do that is the actor critic method [105]. It
separates the presentation of the policy from the value function. For each state, the actor main-
tains a probability distribution over the action space. �e critic is responsible for providing the
reward from the actions taken by the actor, which in turns modi�es its policy. As this relieves
the designer from assumptions about the value function, it introduces new assumptions about
the underlying probability distribution. To overcome this problem Lazaric et al. devised Sequen-
tial Monte Carlo Learning [109], which combines the actor critic method with a nonparametric
representation of the actions. A�er initially being drawn from a prior distribution, they are re-
sampled dependent on the utility values learned by the critic.

Hasselt andWiering devised theContinuous Actor Critic Learning Automaton approach. It allows
robots to use reinforcement learning for operating on continuous state and action spaces [181].
�ey calculate real valued actions by interpolating the available discrete actions based on their
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utility values. �erefore, the performance is highly dependent on initial assumptions about the
value function.

Bonarini et al. developedLearning Entities Adaptive Partitioning (LEAP) [45], amodel-free learn-
ing algorithm that uses overlapping state space partitions, which are dynamically modi�ed to
learn near-optimal policies with a small number of parameters. Whenever it detects incoher-
ence between the current action values and the rewards from the environment, it modi�es those
partitions. In addition, it is able to prune over-re�ned partitions. �ereby, it creates a multi-
resolution state representation specialized only in areas where the �ner resolution is actually
needed. �e action space is not considered by this approach. In their grid world experiment,
they use a �xed set of prede�ned actions.

5.2.2 Model-based approaches

�eAdaptive Modelling and Planning System (AMPS) by Kochenderfer [100] maintains an adap-
tive representation of both the state and the action space. In his approach, the abstraction of the
state and action space is combined with policy learning: states are grouped into abstract regions,
which have the common property that perception-action-traces, previously performed in that
region, “feel similar” in terms of the failure rates, duration, and expected reward. It does so by
splitting and merging abstract states at runtime. AMPS not only dynamically abstracts the state
space into regions, but also the action space into action regions. �is is, however, done in a very
arti�cial way that could not yet been shown to work in real world domains.

Although the strategy layer of this thesis is inspired by AMPS, it di�ers from it in the following
important points: AMPS applies the splitting and merging also to the action space, which works
�ne in arti�cial domains but will not cope with the domain dependency one is typically faced
with in real environments. In contrast to that, this thesis’ approach uses goal functions as the
strategy’s actions, which have to be realized by a separate skill-learning layer. �is leads to a useful
separation of concerns: the task of the strategy layer is to �nd sequences of actions and treats
actions as mere symbols. �e skill layer by means of data driven skill functions then grounds
these symbols.

Another aspect is the supported number of goals. Take, e. g., a system, which has to ful�ll a
speci�c task while paying attention to its diminishing resources. While, on the one hand, ac-
complishing the task, the resources might get exhausted. If it, on the other hand, always stays
near the fuel station, the task will not be accomplished. Approaches like AMPS, which do not
support multiple goals by multiple separate strategies, have to incorporate all di�erent goal as-
pects in one reward function. �is leads to a combinatorial explosion in the state space and
implicates a much slower learning convergence.

As already described, this approach uses abstract motivations, which the designer has to specify.
�ese motivations may also contain competing goals. �e major advantage of this approach is
that the robot can learn one separate strategy for each motivation. Depending on the strength of
each motivation, it has now a means to choose the right strategy for the current perception and
motivation state.
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5.2.3 Discussion

All these approaches have the following underlying restricting assumptions. First, they assume
that optimal actions are either possible to be prede�ned or e�ectively learnable within the rein-
forcement learning framework. �ismeans that prior to using these approaches a careful analysis
of all occurring events in the environment has to be carried out by the designer. Except forAMPS,
they are all based on Markov Decision Processes (MDP).

Time varying actions, which are the norm in realistic scenarios, however, require a semi-Markov
Decision Process (SMDP), which complicates the search in continuous action spaces. Arguing
that models are di�cult to approximate at runtime, the model-free approaches do not learn a
model on which the policy is approximated, but only the value function. Furthermore, they
always solve only one goal and it is not intuitively clear, howmultiple possibly contradicting goals
could be integrated using the same state and action space for all goals. �e biggest problem of all,
however, is that these approaches are solely aimed at learning from scratch. It is not clear how
those could be combined with imitation. �e architecture presented in this thesis was designed
with these aspects in mind.

�e approach in this thesis has the following advantages over AMPS:

• �e actions are learned in a developmental fashion, allowing the robot to actively explore
its own capabilities. By separating strategy learning from action learning, this approach
allows for the application of learning algorithms natural to the respective level of abstrac-
tion. �is is vital for imitation as it allows for associating observations to belong either to
the strategy or skill level, when the robot tries to imitate another robot.

• �e model adaptations automatically tune most of their parameters. In contrast to that,
AMPS requires the robot to be run in the target environment for several times until the
correct thresholds for the di�erent heuristics have been found.

• No “oracle” is needed. AMPS requires to guide the robot to the goal several times until
it is able to learn by itself. In this thesis, the motivation system allows the designer to
specify many simple reward functions, instead of a complex one. �is eases the strategy
generation, as many simpler strategies can be learned instead of one complex strategy.

5.3 Policy

�e reward in this thesis is composed of two reward elements. �e transition reward r ∈ R
speci�es the one time reward for transferring the robot from the abstract state s ∈ S with action
a ∈ A to the abstract state s′ ∈ S. �e reward rate ρ ∈ R is given continuously for staying in state
s while executing action a until the robot arrives at state s. �is is necessary to provide the most
general form of goal speci�cation by means of the motivation system. Both components can be
extracted from the motivation µi of goal i by means of

(r, ρ) = { (−µ̇, 0), if ∣µ̇∣ > θR

(0,−µ̇), otherwise . (5.11)
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abstract state

first state 
observation
in new state

Figure 5.3:�is example shows �ve di�erent paths of di�erent duration from s2 to s1 using the actions a1
and a2. �e reward received, when arriving at s1 is discounted by γ(s = s2, a1,2, s′ = s1). �e
reward receivedwhile staying in s2 and executing action a1,2 is discounted by λ(s = s2, a1,2, s′ =
s1). Both discounting functions incorporate the time t it takes to transfer from one state to
another and its probability Pt(t ∣ s = s2, a1,2, s′ = s1).

�ismeans that the reward is interpreted as transition reward, if it exceeds the reward rate thresh-
old θR, otherwise it is received as reward rate. In the following, the notation of Kochenderfer is
followed regarding the learning of strategies on abstract state spaces with SMDPs [102].

�e strategy layer basically has to account for both types of reward in its discount calculation.
�is is necessary to discriminate between di�erent actions that result in the same outcome in
terms of the resulting state and reward, but involve di�erent amounts of time. �is shall be
demonstrated with Fig. 5.3 using two di�erent scenarios. Obviously, the robot should prefer
faster actions if the result of the involved transition to a di�erent state with positive reward is
encountered earlier and can thus be made more o�en. Let actions a1 and a2 in Fig. 5.3 corre-
spond to driving to a goal represented by s1 in two di�erent ways. In this case, the robot should
prefer a2 over a1. If, on the other hand, two actions in the same state yield a constant positive
reward, the robot should prefer the one that stays longer in the speci�c state, as this would result
in more accumulated positive reward. Let a1 in Fig. 5.3 now correspond to the action of charg-
ing the batteries. �en the robot should obviously prefer that action over some other action a2
that would leave the state very quickly. Both e�ects are achieved by the discounted value of the

unit transition reward3 γ(s, a, s′) and the average cumulative discounted sum of unit reward rates

λ(s, a, s′), respectively. �ey approximate the discount factor by which the received reward is
multiplied to retrieve the reward that is incorporated into the policy.

Determining the true values for γ(s, a, s′) and λ(s, a, s′) of a transition entails the averaging of
the discount term e−βt (Sec. 5.1.2) over all time durations t that will ever be realized by a robot.

3Not to be confused with the discount factor γ in MDP problems.
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For γ(s, a, s′) that is
γ(s, a, s′) = ∫

∞

0
e−βtdPt(t ∣ s, a, s′) , (5.12)

where the integral is the Lebesgue integral [88]. Pt(t ∣ s, a, s′) is the probability that the robot
is able to transition from s to s′ using action a within time t. It is used to weigh the term e−βt .
γ(s, a, s′), thereby, calculates the discount factor for the transition process.
As explained above, some situations require to criticize the process of carrying out an action
while staying in the same state. For this, the average cumulative discounted sum of unit reward

rates is needed. It is received continuously while executing action a in state s until arriving at
state s′ and is calculated as

λ(s, a, s′) = ∫
∞

0
∫

t

0
e−βt′dt′dPt(t ∣ s, a, s′) . (5.13)

λ(s, a, s′) di�ers from γ(s, a, s′) only in that it involves the integral of the discounted reward
rates instead of the simple discounted transition reward.

�e expected discounted reward when started in state s and acting according to policy π can be
speci�ed as the expectation of the sum of the discounted transition reward and reward rate [101]:

Vπ(s) ≡ E{
∞
∑
k=1

[ e−βtk+1rk´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
discounted

transition reward

+ ∫
tk+1

tk

e−βtρkdt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
discounted
reward rate

] ∣ s1 = s, ak = π(sk) } . (5.14)

�e robot has to determine Vπ(s) iteratively at runtime. It does so by updating recurrently the
value function each time a new event occurs:

Vπ(s) ←max
a∈A

[R(s, a) + ∑
s′∈S

P(s′∣s, a)γ(s, a, s′)Vπ(s′)] . (5.15)

�e inner term is the compound reward R(s, a) that can be expected in state s when executing
action a added to the expected discounted value of the next state that the robot will transition
to. Vπ(s) is then the maximum of the values for all the possible actions available in s.
With the updated value function Vπ(s), π(s) can be assigned the action that yielded the maxi-
mum for Vπ(s):

π(s) = argmax
a∈A

[R(s, a) + ∑
s′∈S

P(s′∣s, a)γ(s, a, s′)Vπ(s′)] (5.16)

Eventually,V(s) and π(s)will then converge to the true value functionV∗(s) and optimal policy
π∗(s), respectively [100].
R(s, a) is determined according to Kochenderfer by the expected sum over all possible states of
the transition reward r(s, a, s′) and reward rate ρ(s, a, s′) discounted by γ(s, a, s′) and λ(s, a, s′),
respectively:

R(s, a) = ∑
s′∈S

P(s′ ∣ s, a) (γ(s, a, s′)r(s, a, s′) + λ(s, a, s′)ρ(s, a, s′)) (5.17)
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�is can be done with non-parametric estimation [100]. For that it is �rst necessary to estimate
γ(s, a, s′), as λ(s, a, s′) is being simpli�ed to

λ(s, a, s′) = (1 − γ(s, a, s′))/β . (5.18)

If n(sk , ak , sk+1) is the number of (sk , ak , sk+1) transitions, then γ is estimated a�er the kth tran-
sition by γ̂ as follows:

γ̂(sk , ak , sk+1) ← γ̂(sk , ak , sk+1) +
e−βtk − γ̂(sk , ak , sk+1)

n(sk , ak , sk+1)
(5.19)

Let σr(s, a, s′) be the accumulated transition reward and σρ(s, a, s′) the sum of the reward rates
received when going from s to s′ with action a. Using the simpli�cation in Eq. (5.18) and the
approximation γ̂(sk , ak , sk+1) in Eq. (5.19), the estimated expected reward R̂(s, a) for executing
a in s can then be calculated as [101]

R̂(s, a) = 1
n(s, a) ∑s′∈S

(γ̂(s, a, s′)(σr(s, a, s′) −
σρ(s, a, s′)

β
) +

σρ(s, a, s′)
β

) . (5.20)

5.4 State abstraction

�e state is determined by the state abstraction (Fig. 5.2, p. 35)

ξ ∶ Is → S . (5.21)

It maps the raw state observations ot ∈ Is = Rd in the perception space to states in the abstracted
region space S, where d is the number of dimensions of the perception space. �is is necessary in
order to achieve a feasible number of meaningful states. �e strategy uses the raw observations
in the experience only tomaintain the abstract state space. �e state space of the strategy consists
of the abstract states maintained by ξ.

At each interaction with the environment, the robot receives a new observation, which it has
to assign to one of the states in S. �is is a case of instance-based learning and can be solved by
nearest neighbor generalization (NN) [62]. Based on a distancemeasureD, a new instance of data
is labelled with the label of its nearest neighbor in the special case of 1NN.�is can be generalized
to kNN, where the label is determined from the majority vote of the k nearest neighbors’. In that
case the votes are typically inversely weighted by the relative distance to the new data point. �e
nearest-neighbor approach requires the function D, by which the distance between two points
is measured, to be a pseudo-metric.

LetO be the set of observations that are to be mapped and queried a�erwards and D a distance
function. �e tuple (O,D) is called metric space if D ful�lls the conditions of a metric:

De�nition 5.1 (Metric) A function D ∶ O × O → R is called metric if it satis�es the following

conditions:
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• Positiveness: ∀x , y ∈ O, D(x , y) ≥ 0.

• Symmetry: ∀x , y ∈ O, D(x , y) = D(y, x).

• Re�exivity: ∀x ∈ O, D(x , x) = 0.

• Strict positiveness: ∀x , y ∈ O, x ≠ y ⇒ D(x , y) > 0.

• Triangular inequality: ∀x , y, z ∈ O, D(x , z) ≤ D(x , y) + D(y, z).

If the distance measure does not satisfy the strict positiveness condition, it is called pseudo-metric.
In this case, di�erent observations having a distance of zerowill be regarded as the same observation.

As a robot is observing the state as a real-valued vector, the observations span a vector space,
which is a metric space.

�e implementation of ξ has to be e�cient to be used at runtime. As each strategy step the
abstraction will be queried at least once to determine the state for the current observation. �is
will then be added to the instances used by ξ. In addition, observations might be dropped if they
are too old. From time to time themappingwill have to bemodi�ed either by splitting ormerging
the existing states. �is requires the implementation of ξ to support the following operations in
an e�cient manner:

• Insertion of new state observations

• Deletion of old state observations

• Queryingmost similar state observation to a new state observation

�is is possible with so-called kd-trees [42, 74, 75]. A kd-tree is a data structure supporting
fast searches in k-dimensional data sets. It accelerates the query speed by leveraging the spatial
properties of the data. As it originally is a static data structure, new insertion or deletion of
data will degenerate the kd-tree once it is constructed based on the available data. �is leads
to suboptimal performance. Kd-trees are therefore extended by incremental approaches, which
construct balanced kd-trees. �e BKD-tree [146] and the hB-tree [115] are two examples. While
the hB-tree can su�er from degenerating space utilization [72], the BKD-tree maintains close to
100% space utilization while insertion, deletion, and performing range queries are guaranteed
to be of amortized logarithmic time. Basically, it maintains a sequence of balanced kd-trees of
increasing complexity.

�e general drawback of kd-trees in su�ering from the curse of dimensionality, can be alleviated
when the search for the nearest neighbor is done with the Best-Bin-First approximation algo-
rithm [37]. It �nds the nearest neighbour for a large fraction of the queries, and a very close
neighbour in the remaining cases. �ereby, it is able to e�ciently �nd the nearest neighbor even
in high dimensional spaces.

Because the state observation is domain dependent, the vector space assumption might be vio-
lated. In this case, the mapping can be realized by an M-Tree approach, which generalizes over
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spatial trees by not relying on a strict order de�ned over all objects: �e Symmetric M-tree [160]
by Sexton and Swinbank supports e�cient dynamic insertion and deletion while only paying at-
tention to the relative object distances and not their order. However, as generalmetric approaches
are targeted towards applications where the distance calculation is the most costly action, they
usually cache the distances. �is naturally leads to a growing amount of data to be stored. �ose
approaches are therefore more suited to multimedia applications. One example is the search for
the most similar image in an image database. �ere, the average color of an image could be one
feature to be considered in the distance calculation, which is very time intensive.

5.5 Model

At the beginning, all states belong to only one region, since the robot has no reason to believe
otherwise. While interacting with the environment, the model is modi�ed by adapting the state
abstraction through splitting ormerging states:

split(s, l1, . . . , ln) splits the state s into n new states {s1, . . . , sn}. li is a list of observations that
shall be assigned to the same new state si . All remaining observations

{ok ∣ ξ(ok) = s ∧ ok ∉ ⋃ li} (5.22)

are then mapped by ξ to their nearest neighbor of the new states si . �e original state s is
removed a�erwards.

merge(l1, . . . , ln) takes n lists of observations that are mapped to n di�erent states {s1, . . . , sn},
creates a new state s andmaps all observations in⋃ li to that new state. �e corresponding
original states {s1, . . . , sn} are removed a�erwards.

�e following heuristics use merge and split to adapt the state abstraction ξ and the model in-
cluding the underlying statistics so that they re�ect the world experience.

5.5.1 Transition heuristic

As mentioned above, the continuous state space is split into regions so that for each raw state
belonging to the same region executing the same action “feels” similar to the robot. �is means
that Q(s, a, s′) as the expected value for transitioning from s to s′ with the greedy action a =
π(s) can be estimated with a su�cient con�dence. �is is calculated using interaction sequences
starting in s and arriving in s′ while only executing the greedy action a:

Q(s, a, s′) = γ(s, a, s′) (r(s, a, s′) + V(s′)) + λ(s, a, s′)ρ(s, a, s′) (5.23)

Let succa(s) = {s′ ∣ P(s′ ∣ s, a) > 0} be all successor states reachable from state s by action a.
If raw states are mistakenly grouped into the same abstract region the variance of the values for
Q(s, a, s′) calculated for all the greedy traces belonging to the same region will increase. A high
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5 Strategy layer

variance of the experienced values for Q(s, a, s′) indicates that splitting that region will likely
lead to better transition estimates in the split regions:

Var ({Q(s, a, s′) ∣ s′ ∈ succa(s) }) > θTV (5.24)

�is can be done by clustering the traces so that traces with similar Q(s, a, s′) are grouped to-
gether. For each cluster, one region is created.

�e challenge is the determination of θTV . AMPS, which also uses a splitting heuristic based on
the variance for Q(s, a, s′), requires the designer to analyze the scenario and empirically deter-
mine that value beforehand. �is is apparently no possibility for groups of robots, which have to
learn the proper behavior autonomously. As the distribution for Q usually cannot be foreseen it
occurs that θTV is either too low, which results in too �ne state abstraction and slows down the
learning speed; or it is too high, which leaves too much aliasing in the strategy. �e competing
forces for determining θTV are therefore as follows:

1. �emore o�en the robot is experiencing aliasing and the higher the variance of the values
of the resulting regions’ is, the higher the inclination to split should be.

2. �e lower the variance is compared to themaximum region value the lower the inclination
to split should be.

Both points are solved by replacing Var in Eq. (5.24) with QVar, which is de�ned in Eq. (5.25).

QVar (Q(s, a, s′)) ≡ ∑
s′∈succa(s)

P(s′ ∣ s, a)
(Q(s, a, s′) − Q(s, a, s′))

2

V abs
max

2 (5.25)

It normalizes the quadratic deviation of the Q values from their mean value, Q(s, a, s′), to the
maximal absolute region value V abs

max = max({∣V(s)∣ ∣ s ∈ S}). �is is then weighted by the
transition probability of the region. Since QVar stays in the �xed interval [0, 1], the threshold
θTV can be set to a �xed value independent of the future development of the region values. �e
inclination to split is thus adapting with the changing value function at runtime. A region is then
split if the following condition holds:

QVar ({Q(s, a, s′) ∣ s′ ∈ succa(s) }) > θTV (5.26)

5.5.2 Failure heuristic

With each region, a failure rate is associated. It describes the ratio of failure signals receivedwhen
the greedy action of the corresponding region has been executed to the number of success signals.
�ese signals are emitted by the strategy and skill layer, which will be described later. �ey are
encoded as ft in each interaction of the experience stream. Failure signals are scenario speci�c
and can be emitted if, e. g., the robot bumps into a wall or if it has not encountered something
interesting over a longer period of time. �e failure heuristic splits a region if the failure rate of
its greedy action is not su�ciently homogeneous. �is is indicated by the condition

θ f < f < 1 − θ f , (5.27)
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with 0 < θ f < 1/2. When decreasing the user de�ned threshold θ f , the failure heuristic be-
comes more eager to split a region. �is forces the state abstraction to attain a set of regions that
have failure rates, which result in a more deterministic strategy. For both resulting new regions
individual greedy actions can then be determined by the reinforcement learning algorithm.

5.5.3 Reward heuristic

Especially in the beginning of the robot’s lifetime, when there is not yet enough information for
the transition and failure heuristics to adapt the state space based on su�cient statistical data,
the reward heuristic is of importance. It allows a region s ∈ S to be split if the variance of the
reward rate is too high. �is indicates that the action performed in that region receives a too
diverse feedback in terms of the reward rates from the environment. A split of that region will
then lead to multiple regions, which are more likely to be consistent with regard to the expected
reward rates. �is is also vital in cases where the failure signal is too seldom, as it provides the
only other possibility to initially split a region.

In particular, the reward heuristic is looking at the reward rates of the experience stream for a
clear switch from low to high variance areas, where both areas are of su�cient length. Such a
switch in variance indicates that a split is advisable, as the robot experiences signi�cant di�er-
ences in the reward rates when executing the same action in the same region. �erefore, the
reward heuristic considers the window of the last n reward rates made in the current region. �e
transition rewards in that time frame are not considered, as they only will show non-zero val-
ues in rare occasions. Let ρt

t−n = (ρt−n , . . . , ρt) and t be the current time. �e reward heuristic
is searching for an index k that splits ρt

t−n into the two sequences ρt−k−1
t−n and ρt

t−k, such that the
following condition holds:

∣ρt−k−1
t−n ∣ > θ l ∧ ∣ρt

t−k ∣ > θ l

∧
(Var(ρt−k−1

t−n ) ≈ 0 ∧ Var(ρt
t−k) > θRV ∨

Var(ρt−k−1
t−n ) > θRV ∧ Var(ρt

t−k) ≈ 0)

(5.28)

�e �rst part ensures that the split reward rate components are of su�cient length (θ l). �is is
necessary for robustness against outliers in the reward rate stream. �e second part tests for the
switch from low to high variance regions and for high to low variance regions, respectively.

�e minimum variance threshold θRV is dependent on the design of the motivation system. Re-
call from Eq. (5.11), Sec. 5.3, that the reward, which is received by the motivation system, is inter-
preted as a reward rate, if ∣µ̇∣ ≤ θR. With θRV = k ⋅ θR, (0 < k < 1), a switch is easily detected by
the reward heuristic. �e minimum sequence length of the individual variance subsequences,
θ l , ensures that the reward heuristic ignores trivial splits. Naturally it is set to be a fraction of the
considered time horizon n. �e detailed algorithm is provided in Alg. 1, p. 140.
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5.5.4 Simpli�cation heuristic

As splitting might lead to overly complex models, a means is needed that remerges regions once
the robot has gathered new experiences that suggest a simpler model. �is is achieved by the
simpli�cation heuristic, which analyzes sequences of regions connected by greedy actions. Sim-
ilar to AMPS, the simpli�cation heuristic considers chain and sibling merges. If a behaves nearly
deterministically in s, the reachable successors are then denoted by succ(s, a):

succ(s, a) ≡ { s′, if P(s′∣s, a) ≈ 1
None, otherwise (5.29)

A chain merge of two regions s′ and s′ is performed if

succ(s′, π(s′)) = s′′ ∧ succ(s′′, π(s′′)) = s ∧ π(s′) = π(s′′) . (5.30)

In this case, the region s′′ is super�cial and can thus be merged with s′ into the new region
s′′′ = s′ ∪ s′′, with succ(s′′′′, π(s′′′)) = s and π(s′′′) = π(s′) = π(s′′). All other regions that
resulted into either s′ or s′′ are updated accordingly.

In the same vein, a sibling merge is triggered if

succ(s′, π(s′)) = s ∧ succ(s′′, π(s′′)) = s ∧ π(s′) = π(s′′) . (5.31)

In this case, s′ and s′′ have similar expectations about the future region if the same action is
executed.

5.5.5 Experience heuristic

�is heuristic limits the memory horizon of the robot toMθ ∈ N+ interactions. It removes inter-
actions that are too far in the past in order to keep the robot’s model and policy aligned to the
recent experience of the robot. Basically, it removes those old interactions from its memory and
adds the new experience to it. �us, it is modifying the experience of at most two regions which
might cause an update of the model and of the policy.

5.6 Sample frequency

In order to let the chosen action take e�ect, the strategy layer is not triggering an action each time
new perception is available. Instead, a new action is only triggered if at least one of the following
conditions hold:

• �e new perception di�ers su�ciently from the old one, measured by some scenario-
speci�c distance metric d:
d(ot1 , ot2) > θo
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• �e motivation layer has signaled a su�ciently interesting motivation change:
∣µt2 − µt1 ∣ > θr

• A certain amount of time has passed:
t2 − t1 > θ t

θo, θr, and θ t are application speci�c andhave to be determined empirically. �is dynamic sample
frequency is also necessary for realistic applications to ensure that the robot is not overwhelmed
by uninteresting information.

5.7 Exploration

With no information provided by the environment, the robot has to fall back to random explo-
ration to actively request further information. As Whitehead notes, totally uninformed explo-
ration is not likely to yield reasonable behavior, though [186]:

Learning is more o�en a transfer than a discovery. Similarly, intelligent robots cannot

be expected to learn complex real-world tasks in isolation by trial and error alone.

Given, e. g., a one-dimensional grid with the states s ∈ S = {−10,−9, . . . , 10}, where the robot is
located at s = 0 and where it has to reach one of the goals 10 or -10 by choosing actions from
A ∈ {l e f t, right} with equal probability. As this is a discrete one-dimensional random walk,
the average number of actions required to reach one of the goals without any further knowledge
would be 100. And this applies just to the very simple grid example.

Two possibilities to overcome the problem of tabula rasa exploration within the reinforcement
learning context are guiding [112, 166, 71] and reward shaping [120, 119, 135]. While guiding re-
quires a form of teacher that provides salient knowledge and thus leads to a supervised learning
setting, reward shaping only restructures the reward function in order to provide more instan-
taneous information to the robot. �ereby, the learning setting is still unsupervised. �e re-
structured reward function then simply helps the robot to direct its exploration e�orts. Reward
shaping can be done manually beforehand [149, 108] or automatically online [117]. �e previ-
ously described motivation layer has been designed in a way that allows it to be used as such a
shaped reward function.

Practically, the robot is learning concurrently at the strategy and skill layer. One has to make
sure that at any given point in time the other layer remains constant from the perspective of the
learning layer [121]. From the perspective of the strategy learning, this can be assured using so-
called GLIE policies (Greedy in the Limit with In�nite Exploration) [113]. A GLIE policy has the
following characterization:

1. Each action is executed in�nitely o�en in each state, which is also visited an in�nite num-
ber of times.

2. �e learning policy is greedy in the limit with respect to the value function. �at means
that the exploration rate is always positive, but decreases with time.
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Figure 5.4:�e probability of choosing action a in state s given its failure rate f =

∣failure traces∣/∣all traces∣

�e Boltzmann exploration P(a ∣ s) is an example that shows these properties. It calculates the
probability of choosing action a in state s depending on some temperature parameter τ:

P(a ∣ s) = eQ(s,a)/τ

∑
a′∈A

eQ(s,a
′)/τ (5.32)

When applied to the calculation of the action selection possibility in learning problems, τ starts
with a high value and is “cooled down” with increasing experience. Along with this develop-
ment the variance in the Q-values is becoming increasingly important, as high-valued actions
are increasingly preferred over under-performing ones. In literature, τ is usually decreased as
time goes by. It is not, however, the case that a robot gathers important experience as time goes
by. As a consequence, a robot might settle on a policy a�er some time, even though the robot
performed nothing useful at all. �is might lead to sub-optimal strategies.

�erefore, it is advisable to use a replacement for P(a ∣ s) that better captures the notion of the
robot’s experience. �e failure rate f is a candidate in this case. It is delivered by the skill layer
and captures the experience in terms of whether the executed skill behaved according to the
expectations. Fig. 5.4 shows the probability of choosing action a in state s dependent on the
failure rate of that action: Pf (a ∣ s). It is parametrized by є, which speci�es the probability of
random actions in the border cases f = 0 and f = 1 and determines the probability interpolation
of f ∈ (0, 1).
�e question, when to explore at the strategy layer and when at the skill layer is answered heuris-
tically in this thesis. Upon start, the strategy layer signals the skill layer to start its exploration
phase. �e strategy layer retracts the control, if the skill layer has signalled that it has learned the
skills that are necessary for the scenario in question. Subsequently, the strategy layer explores
according to Pf (a ∣ s).
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Figure 5.5: Upper �gures: Two similar L-shape mazes of di�erent size. �e robot starts in the upper le�
(“S”) and has to reach the lower right (“G”) with the actions north, east, south, and west. �e
region number, its greedy action π∗(s), and the region’s value V∗(s) (the brighter the higher)
is shown for each state. Lower �gures: Comparison of the strategies for the two mazes and
the corresponding state abstraction mapping.

5.8 Example

To demonstrate how the strategy is able to extract the salient information to create an appropriate
policy with the according state abstraction, two grid worlds of di�erent sizes are presented in
Fig. 5.5. �e robot starts in the upper le� and has to reach the lower right by choosing among
the four possible actions west, east, north, and south4. �e optimal strategy is the same in both
worlds. As can be seen, the robot �nds this same strategy for both worlds. �e �gure also shows
how the approach separates states it has never encountered before into abstract regions. �is is
the case in the lower le� corner in both grid worlds, which the robot has obviously never visited.
In the right grid world, e. g., the area is diagonally split into the regions 6 and 4, based on the
employed nearest neighbor heuristic.

So far, it has been assumed thatA is always provided beforehand and that the strategy simply has
to choose the right action at each state. For real-world scenarios it would be advantageous if A
also could be learned at runtime. AMPS does this by applying similar abstraction heuristics toA

4How more realistic continuous actions are learned and used will be described in the next chapter.
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that helped to organize the state space S. �e actions learned in this way, however, are limited to
simple domains, where the real-world dynamics can be presented by simple hypotheses. In the
next section the skill layer is presented, which is able to learn reactive actions that are robust to
noise and can handle complex dynamics.
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CHAPTER6
Skill layer

So far, the actions determined at the strategy layer are mere symbols, not able to work in the real
world. To have any e�ect, they must be translated into low-level actuator commands. �e bridge
between these symbolic actions and the low-level actuator commands of the robot’s hardware is
the skill layer (Fig. 6.1) [7, 15, 21]1. Its purpose is twofold:

• At the beginning, the skill layer has to autonomously learn a set of skills that are useful for
the strategy layer. �ereby, the skill layer is grounding the symbolic actions of the strategy
layer.

• During normal execution, the skill layer shall optimize its skills over the whole lifetime of
the robot.

�e skill layer perceives its environment in terms of features of objects like the relative distance
to an object. Skills are only considered useful if they directly impact those features. If, e. g., a
skill manages to decrease the feature distance to an object, it is considered interesting for the
strategy layer and will be explored. �e skill layer noti�es the strategy layer about a new skill by
sending the skill’s identi�er and the involved number of target objects if it considers that potential
skill to be reliable. It will be described later on how this is measured by means of the skill’s
reproducibility.

In the following, action denotes the symbolic representation of a skill at the strategy layer, and
skill the according representation in the skill layer that performs the action. A skill is a tuple of
functions on the perceived features.

In order to increase the skill layer’s robustness, it is not prescribed at design time which learning
method to use at runtime. Instead, one is allowed to providemultiple possible learningmethods.

1�is approach has been implemented within the scope of the master thesis [180].
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Figure 6.1:�e layered robot architecture

�e skill layer dynamically chooses the learning method that provides the best performance at
runtime. �is is achieved by continuously evaluating the learning methods through assigning
them positive real valued scores. When the skill layer is executing a skill and has to choose
between two or more competing models (which will be described later on) it chooses the one
with the higher score.

6.1 Two modes of operation

When learning behavior at two di�erent layers, the exploration-exploitation dilemma – naturally
found in learning problems – is ampli�ed. On the one hand, the strategy layer has to explore
strategies over actions that are assumed to reliably yield the same result over time. On the other
hand, the skill layer has to explore skills in order to provide the strategy layer with a su�cient set
of usable skills.

�is is solved by the strategy layer deciding when the skill layer is allowed to explore. If the skill
layer is exploring, the strategy does not interfere by commanding, which skill to execute next. It
waits for the skill layer to signal new skills that it deems to be reliable. �e strategy layer updates
its own action space each time accordingly. It triggers the skill layer to be in exploitation mode
again if it deems its current action space as su�cient. From then on, the strategy layer is again
in control and allowed to request the skill layer to execute skills. �is leads to the two di�erent
operation modes: the exploration and exploitationmode. In the following, the data �ows of both
modes are described. �e detailed description of the participating components will be given
subsequently.

6.1.1 Exploration mode

In explorationmode (Fig. 6.2), the skillmanager explores possible actions by generating potential
skills and directly setting the actuator commands. At �rst, this is done randomly. It is called
motor babbling as it refers to the early stages in child development, where the infant is exploring

56



6 Skill layer

skill layer

strategy layer

skill
manager

skills

model
manager

error
minimizer

ac
tio
n

pe
rc
ep
tio
n

training mode notify new skill

create & fetch skills

create
models

Ia

Oexplore actions

Figure 6.2: Data �ow in exploration mode

its own sensori-motor coupling. While interacting with the environment, the model manager
creates the corresponding models that predict the environment’s and its own behavior. Over
time, the predictions get increasingly more accurate until the skill manager regards some of the
skills as reliable. In this case, it noti�es the strategy layer, which in turn updates its action space.

6.1.2 Exploitation mode

In exploitation mode (Fig. 6.3), the strategy layer requests from time to time the skill layer to
execute a skill by sending its identi�er and a list of object IDs. From then on, the skill layer
executes the skill by applying it to the speci�ed objects. �is allows for more generic skills at the
skill layer. While the skill layer is executing a certain skill, it is still continuously updating its
models, thus optimizing them all the time.

In this mode, the skill manager occasionally receives information from the strategy layer about
the next skill to execute. �is information is passed to the error minimizer, which from then
on retrieves the corresponding models and ascertains the best possible actuator command for
the perception at each time step. In parallel, the model manager is continuously updating the
models with the new experience it receives at each time step with Ia. While the basic behavior
of a skill is �x from the strategy layer’s point of view, the model manager is tuning them so that
they increase in accuracy.

6.1.3 Interface with the environment

�e skill layer expects the perception to be in factored or feature-based form. �e skill layer’s
perception space Ia = {(ido , idp, v) ∣ ido ∈ IDo , idp ∈ IDp, v ∈ R} is a set of triples, each of
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Figure 6.3: Data �ow in exploitation mode

which describes the value v of an object ido’s perceptual feature idp. IDo and IDp are the sets of
the environment’s objects and perceptual features. �e perceptual feature, in the following also
simply called feature, describes one speci�c aspect of an object and is chosen from a prede�ned
list of possible properties IDp. One example for such a set is IDp = {angl e , distance , color}.
ido is uniquely identifying one object in the environment. A typical example is the perception of
the ball’s relative position by means of its relative angle and distance:

I(t) = {(bal l , angl e , 95.4), (bal l , distance , 10.3)}

�roughout this section the skill layer’s input at time t is denoted by I(t) ∈ Ia.
By relying on the perception to be in factored form containing object identities and properties,
the skill layer is able to apply the same skill to di�erent objects having the same property. If, e. g.,
the skill to approach the ball is learned by means of minimizing the perceptual feature distance,
it can be applied also to approach the goal base or even to stay between the ball and the goal. In
all cases the distance is minimized; in case of staying between the ball and the goal, the distances
to both objects are minimized.

At each time step t, the skill layer determines a motor action M(t) ∈ O = Rk, where k is the
number of actuators the robot is allowed to control. It contains one element for each actuator.

6.2 Component description

In this section, the components skill manager, model manager, and error minimizer are de-
scribed. As they all rely on the skill repository, this will be de�ned beforehand.

�e strategy layer activates a skill by sending the skill identi�er to the skill manager. Internally,
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the skill layer retrieves the corresponding tuple of error functions from the central skill repository
(“skills” in Fig. 6.3 and 6.2), which describe di�erent aspects of the overall goal of that skill, and
executes the corresponding low-level behaviors connected to those. At each time step, the skill
layermonitors the current state of execution andmay signal to the strategy layer one of the signals
success, failure, or none at all.

For the de�nition of a skill, the notion of an extraction, control, and error functionhave to be intro-
duced. Subsequently, the progress function will be de�ned, which calculates the overall progress
state of a skill by means of the error functions in Fe .

De�nition 6.1 An extraction function fext ∶ Ia → R extracts information froma perception I(t) ∈
Ia.

An extraction function can be implemented by simply returning one of the perceptual feature
values from IDp of a target object. It can be also more complex so that it returns the result of a
mathematical operation on a list of the results of extraction functions.

Example 6.1 Let Ia = {{bal l , goal} × {angl e , distance} × R} and at time t be the perception

I(t) = {(bal l , angl e , 10), (bal l , distance , 0.5), (goal , angl e , 90), (goal , distance , 2)}. If f 1ext
is implemented so that it returns 0.5 as the ball distance from the perception I(t) and f 2ext accord-

ingly 2 for the goal distance, the previously mentioned behavior of staying between the goal and the

ball will rely on the accumulated distances returned by f 3ext(I(t)) = f 1ext(I(t)) + f 2ext(I(t)) = 2.5.

By means of extraction functions, it is possible to select the desired information, which together
with the following control function allows the speci�cation of the behavior to be learned.

De�nition 6.2 A control function fc ∶ R×R→ R+ associates an error value to the tuple (vt i , vt j),
where vt i and vt j are the values returned by an extraction function at di�erent points in time (ti < t j).

Example 6.2 �e following control functions are typical examples for specifying behavior, which

decreases or increases a perceived property, respectively:

control function to decrease value ∶ fc(vt i , vt j) = ∣vt j ∣ (6.1)

control function to increase value ∶ fc(vt i , vt j) =
1

∣vt j ∣
(6.2)

Both functions ignore the �rst argument. In Eq. (6.1), e. g., the expression ∣vt j ∣ gives a higher error
value the higher the current value vt j is. �is has the e�ect that in order to return a low error value

the control function needs the value to be decreased.

Forcing a value of a perceptual feature to be decreased by a speci�c value δ can be done with the

following control function:

control function to keep value ∶ fc(vt i , vt j) = ∣vt i − δ − vt j ∣ (6.3)

If, e. g., the ball distance at time ti is 10m, and the robot shall approach it by δ = 2m, the current

error value at time t j is de�ned by ∣10 − 2 − vt j ∣, assuming that vt i and vt j return the ball distance

from I(ti) and I(t j), respectively. If the robot at time t j is at a distance of 8m to the ball, the error

is zero.
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De�nition 6.3 An error function fe ∶ Ia × Ia → R+ assigns an error value to the perception pair

(I(ti), I(t j)):
fe(I(ti), I(t j)) = fc ( fext(I(ti)), fext(I(t j))) (6.4)

I(t j) is the current perception and I(ti) the perception of fe ’s �rst application, which is used as a

reference point (I(ti), I(t j) ∈ Ia).

De�nition 6.4 A skill is a tuple s = ( f 1e , . . . , f Ne ) of N error functions (N ∈ N), which describe

di�erent aspects of the goal of the desired behavior. �e tuple also serves as a unique identi�er, by

which the strategy layer requests this behavior together with N objects in corresponding order, to

which the error functions will be applied.

Example 6.3 For a behavior of approaching the ball so that it �nally is located directly in front of

the robot, a skill s would be de�ned as follows:

f 1ext(I(t)) returns the ball distance

f 2ext(I(t)) returns the ball angle

fc(vt i , vt j) = ∣vt j ∣ control function to minimize the value

f 1e (I(ti), I(t j)) = fc( f 1ext(I(ti)), f 1ext(I(t j))) to minimize the ball distance

f 2e (I(ti), I(t j)) = fc( f 2ext(I(ti)), f 2ext(I(t j))) to minimize the ball angle

s = ( f 1e , f 2e ) skill to approach the ball and orient towards it

�e skill’s overall progress is �nally measured by a progress function. �e robot can use it to both
learn an according skill and recognize the skill in an observation, as will be described in Chap. 8.
�ereby, the robot is technically emulating the mirror neuron system’s behavior recognition as it
is found in humans and animals [150]: the same neurons that are �ring when a certain behavior
is executed are also �ring if the behavior is observed at someone else. In this thesis, the skill layer
is learning to satisfy the progress function. �e skill’s same progress function is also used in the
imitation phase to recognize the corresponding skill in observations.

De�nition 6.5 A progress function fp ∶ Ia × Ia → [0, 1] is measuring a skill’s progress between

two time points ti and t j based on the perception at those points (ti < t j). A progress function is

de�ned by two thresholds, Cs ∈ R+ and Ca ∈ R+ (Cs < Ca). For a skill s = ( f 1e , . . . , f Ne ) it is de�ned
as

fp(I(ti), I(t j)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if Ca ≤W(I(ti), I(t j))
Ca−W(I(t i),I(t j))

Ca−Cs
if Cs <W(I(ti), I(t j)) < Ca

1 if W(I(ti), I(t j)) ≤ Cs

, (6.5)

where I(ti) is the perception when the skill has been started, I(t j) is the current perception, and
W(I(ti), I(t j)) = ∑N

k=1 f
k
e (I(ti), I(t j)).

In Fig. 6.4, the progress function is plotted exemplary forCs = 0.15 andCa = 0.75, which are called
success and abort threshold. �e skill is considered as failed and can be aborted if the sum of the
error functions, W(I(ti), I(t j)), exceeds Ca. In the interval [Cs ,Ca], the skill is considered to
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6 Skill layer

Figure 6.4:�e progress function fp plotted over the error function sumW (Eq. (6.5))

be normally executed. IfW(I(ti), I(t j)) > Cs, the skill is considered to be successfully �nished.
�ese three states of the skill are measured by the progress function in the exploitation phase and
used by the skill manager (Fig. 6.3), as will be described later on.

�e thresholds Cs and Ca are determined by the skill manager in exploration mode (Fig. 6.2).
For that purpose, the skill layer is monitoring the extremal values for the extraction functions,
on whichW is indirectly dependent through its error functions. �e abort and success thresh-
olds are then the values of W calculated from the error functions with extremal values for the
extraction functions decreased and increased by a small tolerance, respectively. In case that the
abort or success condition is met, the skill manager will signal the corresponding event to the
strategy layer so that it can react accordingly.

�e remaining chapter describes how the three components skill manager, model manager, and
error minimizer interact with each other.

6.2.1 Skill manager

�e skills of the skill layer are maintained by the skill manager. Its concrete tasks are to

• generate skills that enable the robot to control the perceived properties,

• assign a priority to each skill dependent on its execution priority,

• determine the skills the robot can reliably perform and notify them as new skills to the
strategy layer, and

• manage the execution of requested skills.
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�e �rst three tasks are handled in the exploration phase, the latter one in the exploitation phase.

6.2.1.1 Skill generation

�eskill generation naturally depends on the expressiveness of the skill de�nition, as described in
Sec. 6.2. �emore expressive it is in terms of possible perceivable features, extraction and control
functions, the more possibilities the skill manager has to explore. In the evaluation experiments,
the skill de�nition has been chosen in a way that lets the skill manager explore all possible skill
de�nitions. For more complex scenarios where this is not possible, so-called feature selection
mechanisms can be used to tackle this challenge. �is is, however, outside the scope of this
thesis.

6.2.1.2 Skill ranking

As itmight be unfeasible to train all possible skills, the skill managermaintains a training priority
for the potential skills. �is is determined in training mode by a measure of interestingness for
each skill. While the robot is moving randomly through the environment, it analyzes the percep-
tion stream to �nd interesting data in it. Let vt be a value of a perception item (ido , idp, vt) ∈ I(t)
at time t and v tnt1 = (vt1 , . . . , vtn). �e interestingness event occurs if vt either di�ers signi�cantly
from its n past values or if it is a new extremal value:

Var(v tnt1 ) ≪ Var(v tn+1t1 )
⋁ (6.6)

vtn+1 < min
i=1,...,n

{vt i} ∨ vtn+1 > max
i=1,...,n

{vt i}

Each time this condition is found in the current perception, the ranking of each skill s, ranking(s),
that impacts the corresponding object-feature tuple (ido , idp) by one of its error functions is in-
creased.

As the skills’ training is prioritised according to their ranking, this heuristic motivates the sys-
tem to explore actions that control the most changeable properties. �is is exemplary shown in
Fig. 6.5 for the value vt of two skills, s1 and s2, both of which impact the corresponding percep-
tion triple (ido , idp, vt). s1 is ranked lower than s2, because some value v of a property causes less
interestingness events. Training prioritization by means of the function ranking(s) is a simple
and fast heuristic to let the robot spend its timemost useful. It will not waste its time by exploring
potential skills that probably will not provide enough information during the exploration phase
to create a useful skill.

6.2.1.3 Skill noti�cation

�e skill’s reliability heavily depends on the designer’s original goals concerning the robot. In
some cases it is necessary to have very reliable actions at the cost of a longer training phase. In
other cases it might be useful to have �rst su�cient actions available quickly at the beginning.
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6 Skill layer

Figure 6.5:�e two skills s1 and s2 are ranked di�erently due to the di�erent amount of events. Interest-
ingness events are marked with circles for each time step. As ranking(s2) > ranking(s1), s2
has a higher priority for exploration when the robot is in training mode than s1.

A�er a skill has been successfully executed by a prede�ned number of consecutive times, the
skill manager regards it as reliable and noti�es it to the strategy layer, which can execute the skill
henceforth.

Recall from Def. 6.4 that a skill is a tuple ( f 1e , . . . , f Ne ) of error functions. When the skill layer
noti�es the strategy layer about a newly learned skill, the skill is bounded by the skill layer towards
concrete objects.

LetO be the set of visible objects in the environment. �e strategy layer updates its action spaceA
with the new skill ( f 1e , . . . , f Ne )matched against the proper allocation of objects (o1, . . . , oN) ∈ ON

by

A← A ∪ {⟨( f 1e , o1), . . . , ( f Ne , 0N)⟩ ∣ ( f ie , oi) ≠ ( f je , o j)∀i ≠ j ∧ ok ∈ O} . (6.7)

�ereby, unnecessary actions like ⟨(minimize angle, ball), (minimize angle, ball)⟩ can be avoided.
On the strategy’s side, ⟨( f 1e , o1), . . . , ( f Ne , 0N)⟩ serves no other purpose than uniquely associating
an action in the strategy’s action space with the corresponding skill in the skill layer. �us, the
strategy layer can treat its actions as symbols, which are grounded by the skill layer. Symbol

grounding [86] is the process in robotics research that is equivalent to the sensorimotor stage
in Piaget’s theory on child development [139]. �is way, the strategy layer can concentrate on
sequences of actions while the skill layer is handling the execution of the actions in form of
skills.
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6.2 Component description

6.2.2 Model manager

�e environment’s reaction to a low-level action is described by prediction models. Given the
current perception, a set of prediction models describe how the perception will change a�er
having executed the skill for one time step. �e model manager is in charge of maintaining a
su�cient set of prediction models. It does so by

• creating prediction models for each perceived property,

• updating prediction models to re�ect new experiences, and

• calculating a score for each model dependent on its prediction accuracy.

�e creation of models takes place in the exploration phase, while the updating and continuous
scoring of prediction models is carried out in the exploitation phase.

De�nition 6.6 A prediction model is de�ned by the tuple (idp, S̃ , M̃ ,m). idp ∈ IDp is the per-

ception feature to be predicted. S̃ ⊂ IDo × IDp is a subset of the perceptual features of perceived

objects. M̃ ⊂ O is a subset of the actuators the model should incorporate. �e prediction function

m: R∣S̃∣+∣M̃∣ → R predicts the value for the perceptual feature idp at the next input perception given

the values of S̃ and M̃.

6.2.2.1 Creating and updating models

Because of its freedom in de�nition, the model manager is challenged with a very high number
of possible combinations of S̃, M̃, and regression algorithms when creating models in the explo-
ration phase. It has to determine which subset S̃ of the perceived properties, which subset M̃ of
the motor signals, and which regression algorithm to use.

For each skill, multiple prediction models compete to be used based on their past prediction
accuracy. �is is measured by the squared error loss function

L = (Y −m(X))2 ,

which is to be minimized in the �tting process of the prediction models. �is allows to provide
the skill layer with a number of di�erent function approximators for m. It will continuously test
them to �nd out at runtime, which one is the best predictor.

�roughout this thesis, the skill layer is provided with the radial basis function approximation
(RBF) for high generalization and polynomial approximation for fast calculation as themodeling
algorithms. Concrete de�nitions and examples will be given in Sec. 7.3. However, the skill layer
is not dependent on these two speci�c approximation techniques. In fact, any function type can
be used for m, as long as it supports the necessary input and output spaces.
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6 Skill layer

6.2.2.2 Scoring models

�e training data for the models is generated as follows. At each time t, the current perception
S(t) is determined by the previous perception S(t − 1) and by the last low-level actionM(t − 1).
�erefore, a new experience tuple (S(t − 1),M(t − 1), S(t)) is available at each time step.
Each time a new feature is perceived, the model manager generates a set of models that predict
the feature’s value using diverse function approximators and input spaces. Each of these models
is continuously updated with new experiences that activate at least one interest signal. �emodel
manager disposes of two such signals, the surprise andmistake signal.

surprise signal �e surprise signal is triggered if the prediction error is more then twice the
average prediction error of the model.

mistake signal �emistake signal is activated if the sign of the property’s value change predicted
by the model is di�erent from the real one.

�ese signals are inspired by the principle that humans learnwhen there is a discrepancy between
what happens and what they actually have predicted that should have happened [184].

Finally, the model manager computes the score of each prediction model function m as the in-
verse of the mean squared error in predicting the last n interactions with the environment:

score(m) = n

∑k+n
i=k (m(S(ti),M(ti)) − vt i+1)

2 (6.8)

�e model with the highest score, mbest , is used as the prediction model for the skill.

6.2.3 Error minimizer

In the exploration phase (Fig. 6.3), the error minimizer uses the prediction models learned by
the model manager to determine the best next motor vectorM(t + 1) to send to the actuator for
the skill requested by the strategy layer based on the current perception. �e error minimizer
minimizes the error functions f ie of the current skill s = ( f 1e , . . . , f Ne ) for the next perception,
which is called the expected next error e(t + 1). It can be computed as a function of the low level
actionM described by the following algorithm.

1. Determine the perception Ic(t) that contains only perceptual features, on which the error
functions of the current skill s are dependent:

Ic(t) = {(ido , idp, v) ∣ (ido , idp, v) ∈ I(t) ∧ idp ∈ IDs
p} , (6.9)

where IDs
p is the set of all perceptual features the skill function depends on. �is can

be either directly by way of the extraction functions (Def. 6.1), on which the skill’s error
functions f ie depend (Def. 6.3), or indirectly through the perceptual features, on which the
skill’s prediction models depend (Def. 6.6).
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2. Determine the best actuator commandMbest for skill s. �is is the actuator command that
yields the minimal error expected by the prediction models according to the skill’s error
functions:

(a) Estimate the next perception, Ic(t+1), dependent on themotor actionM as predicted
by m j

best
:

IMc (t + 1) = {m j

best
(Ic(t),M(t)) ∣ p j ∈ Ic(t)} (6.10)

�e prediction model m j

best
is the one with the highest score for predicting p j, as

maintained by the model manager:

m
j

best
= argmax

m

{score(m)} (6.11)

(b) Calculate the expected next error eM
k
(t + 1), with Ic(ti) being the perception when

the skill has been started:

eMk (t + 1) = f ke (Ic(ti), IMc (t + 1)) (6.12)

(c) Determine the best actuator commandM(t), by �nding the one that minimizes the
accumulated expected error:

M(t) =min
M

N

∑
k=1

eMk (t + 1) (6.13)

M(t) is found in a two stage process. At �rst, a coarse grid is projected into the low-level actuator
space. From the actuator commands at the grid points the actuator command Mcoarse(t) with
the lowest predicted error is determined. Starting with Mcoarse(t), constrained optimization by
linear approximation [141] (COBYLA) is used to determine the approximate optimal one. It is
approximated as the process is used with a timeout in order to timely deliver an actuator com-
mand. In the optimization process, COBYLA’s time complexity is determined by the prediction
model function mbest ∶ R∣S̃∣+∣M̃∣ → R (cf. Def. 6.6). As Ic(t) does not change during that process,
the approach reduces computation costs by generating a sub-model function m′

best
∶ R∣M̃∣ → R

with �xed input, and uses that instead of mbest in the calculation ofM(t).

6.3 Con�guration

As already pointed out, the greater universality leads to a bigger exploration space. Although
the skill layer is fully autonomous and able to cope with that, it is wise to limit the exploration
space by specifying non-changing parameters beforehand. �is can be achieved by con�guring
the following parameters:

• Degrees of freedom specify the number of actors the skill layer has to control.

• Extraction functions de�ne the language that can be used to specify the error functions.
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• Control functions specify the functions that the error minimizer will minimize by means
of the error functions.

• Regression models are used by the model manager to build predictions for the environ-
ment interaction. A regression model consists of two methods: one that �ts a model to an
experience trace and one that predicts the value of the modeled property.

6.4 Conclusion

�e skill layer �nds out by itself what types of capabilities are actually learnable before it starts
trying to learn speci�c skills. �e learned skills are then adapted while being executed. �emain
point of this skill layer, however, is its ability to detect behavior in observation streams. With this
capability, the robot can ask the individually learned skills, whether there are behavior patterns in
the observation that could also be achieved by the skill itself. With this information, the imitation
approach of Chap. 8 is then able to abstract and recognize complex behavior in the observation.
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CHAPTER7
An integrative example

�is chapter shows exemplary how all three layers can be speci�ed so that a robot learns to col-
lect objects and carry them to a goal in a Capture-�e-Flag (CTF) scenario. As already discussed
in Sec. 1.1, CTF is o�en used as a canonical task to evaluate multi-robot systems and can be
seen as a model for real-world tasks like dirt cleanup, search and rescue operations, and similar
tasks. �e autonomously learned behavior will be demonstrated and tested within the Player-
Stage/Gazebo [79] simulation (Fig. 7.1). �e Pioneer2DX robot serves as the robotic platform.
It has four wheels and a gripper, which is used to push the object. �e dynamics are simulated
using the Open Dynamics Engine (ODE) [168].

�e scenario consists of a goal base to which objects, which are dispersed in the environment,
have to be transported. �e robot has to �nd out which skills, which have to be autonomously
learned by the skill layer (Chap. 6), have to be executed in which order, learned by the strat-
egy layer (Chap. 5), to achieve that goal. Although the scenario is quite simple, it shows all the
characteristics of real-world scenarios, i. e., it is noisy, continuous, and time-dependent.

�e results regarding the strategy layer are averaged over 200 experiments, inwhich the robot had
to push an object 30 times consecutively to the goal. �e con�dence interval of 95% is provided.
�e charts regarding the skill layer are individual examples.

7.1 Implementation of the motivation layer

For this example it su�ces to equip the robot with only one drive. A positive transition reward
of 100 is given if the robot has pushed the object to the yellow goal base. �e change of the
distance between the nearest object and the goal is provided as reward rates. �e perception I
is preprocessed to provide the robot’s relative distance dg to the goal g and the robot’s relative
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Figure 7.1: Capture-�e-Flag scenario. �e robot has to learn to push the blue object to the yellow goal
base. It has to learn by itself both the low-level actions and the strategy using them, involving
the proper state abstraction and the correct timing of the actions

distance dq and angle αq to the object q:

Im = (dg , dq , αq) ∈ R3 (7.1)

�e motivation layer was de�ned to provide the strategy layer with the following motivation:

µ1(Im(t)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if dg < 1m ∧ dq < 0.5 ∧ ∣αq∣ < 20○
max{0, µ1(Im(t − 1)) − ∆dq/∆t

100 } if ∣αq∣ < 20○
max {0, µ1(Im((t − 1)) + 0.01} otherwise

(7.2)

�is provides a high reward for reaching the goal (dg < 1m) with the object in the gripper (dq <
0.5 ∧ ∣αq∣ < 20○), because it is setting the motivation to zero. If the object is far away but in front
of the robot (∣αq∣ < 20○), it gets the small incentive −∆dq/∆t100 , which is the bigger the nearer the
object gets. Otherwise, the motivation is increased by 0.01. �is forces the robot to prefer faster
strategies.

With this de�nition, the robot will receive di�erent rewards for reaching the goal, based on how
high its motivation grew in the past. �is is, however, not of a problem for the strategy layer, as
it treats the received rewards as statistical samples.

7.2 Implementation of the strategy layer

�e strategy’s state space consists of the robot’s relative distance and angle to goal g and object q:

Is = (dg , αg , dq , αq) ∈ R4 (7.3)
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As described in Chap. 5, the task of the strategy layer is to generate a strategy that guides the
robot through this state space in order to satisfy the motivation layer. Based on the current state
of Is, the robot chooses the best action according to that strategy. It has been discussed that this is
infeasible with the original state space of Is as it would take too long for the robot to �nd a usable
strategy. Instead, the strategy layer abstracts the continuous 4-dimensional state space into a
manageable amount of abstract states. �ese abstract states, also called regions, are determined
by means of the heuristics presented in Sec. 5.5. A region consists of states that “feel similar”
to the robot when executing the same action. �is means that the failure rates, durations, and
expected rewards are similar for all the states of the same region given the same action.

For this to work properly, the adaptation heuristics of the state space, which are described in
Sec. 5.5, have to be parametrized. �e choice of the parameters is domain dependent and has
to be done manually using expert knowledge of the domain. �e following parameters were
therefore determined empirically:

• Transition heuristic: It determines whether a region s should be split because the region s′
that is reached by the greedy action π(s) has a too low probability P(s′ ∣ s, a). �e heuristic
is controlled by the threshold θTV in Eq. (5.26) (page 47). �e higher this threshold the
more tolerant the strategy layer is regarding greedy next states, which are ambiguous. With
this threshold the strategy layer trades o� policy accuracy against the number of involved
regions. A lower ambiguity is bought by a higher number of regions.
�e threshold is determined to be θTV = 0.2. If a region’s greedy action has no clear next
region as a result, it will be quickly split with this value.

• Experience heuristic: �is heuristic controls the robot’s memory. By limiting the number
of the robot’s past experiences, it basically forgets experiences that are too old. If an old
experience drops out of the memory, the policy is updated to account for the changed
memory. Without this heuristic, the complexity would rise continuously as an increasing
amount of experiences would have to be handled by the other heuristics.
In this chapter, the number of experiences is not bounded (θM = ∞), but stays below 9,000
(Fig. 7.2).

• Failure heuristic: It adjusts regions based on the failure signals received by the skill layer.
While the robot is in normal executionmode, the skill layermay send failure signalsmean-
ing that the applied skill did not perform as expected. Due to the noise in the environment,
the skill layer may signal a failure even if there is no problem in the environment. In that
case, the failure signals should be ignored. If, however, the failure signals arrive at a high
frequency, this is a sign that the state space may not be properly abstracted. �is means
that skills make assumptions about the outcome of their application that don’t hold in the
given state. �e failure heuristic splits the region corresponding to that state so that the
policy can better distinguish the di�erent states. Eq. (5.27) (page 47) determines whether
the corresponding region is split, based on the failure threshold θ f .
In the experiments, θ f = 0.01 ensures that regions are split at very low failure rates.

• Reward heuristic: In the beginning of a robot’s lifetime, there is usually not enough infor-
mation on which the transition and failure heuristics can base their state splitting deci-

71



7.3 Implementation of the skill layer

sions. In that case, the strategy layer contains just one region into which all observed states
are mapped. In this situation, the reward heuristic comes to the rescue. It analyzes the
observed reward rates in order to �nd a signi�cant change in the reward rate variance as
de�ned by Eq. (5.28) (page 48). �e point in the experience stream, where this is the case
might be a good choice for a split. All experienced states that belong to the same region
before that point are separated from those that come later. �e time window in which the
reward heuristic looks for such a variance change is de�ned by n. �e minimum reward
rate variance is speci�ed by θRV . �e splitting is, in addition, only performed if the traces
with low and high variance both contain at least θ l state observations.
�e strategy layer considers the reward rates of the last n = 20 interactions and used the
constants θRV = 0.01 and θ l = 6.

• Simpli�cation heuristic:�e application of the abovementioned heuristics results in an in-
creasingly detailed state abstraction. �e simpli�cation heuristic counteracts this devel-
opment by merging regions that are overly discriminating in the light of new experience.
�is is speci�ed by the de�nition of when an action is viewed deterministic, as described
in Sec. 5.5.4.
In the experiments, an action a in state s was considered deterministic, if P(s′ ∣ s, a) ≥
0.8 for some next state s′. Given the following exemplary policy with the corresponding
transition probabilities:

π(s1) = a1 P(s2 ∣ s1, a1) = 0.9
π(s2) = a2 P(s3 ∣ s2, a2) = 0.8

(7.4)

In this case the two actions a1 and a2 are considered as being deterministic. As a conse-
quence, the simpli�cation heuristic will merge s1 and s2.

�ese heuristics are responsible for maintaining a reasonable state space abstraction. �e policy
that is built using those abstract states is governed by the discount factor β (cf. Sec. 5.1.2 and 5.3).
With a value of β near zero, the robot is increasingly paying attention to a reward that is further
in the future. At higher values of β the robot becomes increasingly near-sighted (Eq. (5.12), p. 43).
�e discount parameter of the strategy is set to β = 0.1.

7.3 Implementation of the skill layer

�e skill layer is con�gured to control two degrees of freedom: velocity and rotational speed. It
was provided with one control function “decrease” de�ned similarly to Eq. (6.1) (page 59):

fc(vt i , vt j) = ∣vt j ∣ (7.5)

�e skill layer preprocesses the perception I in order to provide the robot’s relative distance and
angle to the goal and to the object:

Ia = {{bal l , goal} × {angl e , distance} ×R} (7.6)
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In this experiment, polynomials and radial basis functions (RBF) are used form. �e polynomial
function can be calculated fast but has restricted generalization capabilities, while anRBF is time-
consuming but o�ers much better generalization possibilities.

Polynomial �emultivariate polynomial is de�ned by

mpol y(x) =
d

∑
d1=0
. . .

d

∑
dn=0

cd1 ,...,dnx
d1
1 ⋅ . . . ⋅ xdnn , (7.7)

where d is the degree of the polynomial and cd1 ...dn are the coe�cients.

E. g., the polynomial mpol y(x) = x1x
4
3 x10 + 3x22x3x75 is realized by the coe�cients c1,3,10 = 1

and c2,3,5 = 3, where the �rst summand has d1 = d10 = 1 and d3 = 4, and the second has
d2 = 2, d3 = 1, and d5 = 7.
�e degree d is determined using the early stopping technique. It is biased towards simpler
models in that it increases the model complexity bymeans of its degree until no signi�cant
increase in accuracy can be observed.

Radial basis function An RBF is de�ned by

mrb f (x) =
N

∑
i=1

λiϕ(∥x − xi∥) . (7.8)

∥ ⋅ ∥ de�nes the Euclidean distance between the center xi and a data point x. ϕ is the
multiquadric basis function ϕ(r) =

√
( 1
єr
)2 + 1 with є = 1

N ∑
N
i=1 ∥xi∥. �e �nal result

is weighted by λi ∈ R. �ey are computed by solving the set of linear equations yi =
λi(ϕ(∥xi∥) − ρ) ∀i ∈ {1..N}, where ρ is a smoothing constant. An example of an RBF,
which is used as a prediction model for a skill, is shown in Fig. 7.5 (p. 76).

�e model manager is allowed to generate polynomials of maximal degree ten. �e smoothing
constant is set to ρ = 0.001 for the RBF model function to smooth it slightly.

7.4 Evaluation

�e evaluation compares two settings. In the setting for the �rst type of experiments (“manual”),
themotivation layer and strategy layer are used as de�ned above. �e skill layer, however, consists
of manually programmed skills. �e second type (“learned”) uses the skill layer as de�ned in
Sec. 7.3 instead. Wherever appropriate, the charts contain a 95% con�dence-interval.

Fig. 7.2 shows how the robot manages to abstract the 4-dimensional state space of the strategy
layer into a small number of abstract regions, with which the strategy is learned. With hand-
cra�ed skills it has abstracted the observed states of nearly 8,000 interactions into only seven
abstract states. With everything being learned, meaning that also the skills are autonomously
learned by the robot, the robot has generated only 13 regions out of more then 8,500 state ob-
servations. �is shows that the robot separate the in�nite 4-dimensional state space into a low
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Figure 7.2: Size of experience and number of abstract regions

Figure 7.3: Time to push the object to the goal

number of abstract regions, by which it is able to explain the environment and its interactions
with it.

Comparing the total time of the �rst run the robot needs for pushing the object to the goal, the
learned version needs approximately 1, 000s compared to 500s in the manual version (Fig. 7.3).
�is is explained by the fact that the robot needs more exploration time when also learning at
the skill layer. �ere it also has to explore its own capabilities and learn the necessary skills.
Both charts converge slightly above 200s. It shows that while being slower in the beginning, the
learning skill layer manages to �nally converge to the same performance, which is nearly optimal
for this scenario.

�e reward per second is displayed in Fig. 7.4. �e learning skill layer stays slightly below the
manual version. �e learning version, however, can be considered as farmore robust. �is shows
that the approach is capable to autonomously tackle in�nite state and action spaces in realistic
scenarios.

�e skill layer has autonomously generated di�erent competing prediction models that deter-
mine the behavior of the learned skills in all experiment runs in the end. �e skill layer, however,
has always chosen RBF for the �nally learned skill due to its greater accuracy. Only in the begin-
ning of the experiments, when only little data is available, the polynomial is chosen. �e learned
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Figure 7.4:�e reward per second

behavior will be represented in a synthetic way to show the proceedings of the skill layer (Fig. 7.5).
�e utilized predictionmodel is based on the radial basis function approximation. It predicts the
next value of the angle by knowing the value of the angle and the distance to the object and the
chosen low-level action. A grid of 30x30 points in the input space is used. �e input dimensions
are the angle and the distance to the object, so each point of the grid is characterized by a certain
angle-distance couple. For each point of the grid, the error minimizer (Sec 6.2.3) computes the
low-level action that minimizes the predicted distance. �e result is one 3-dimensional graph for
each degree of freedom: one indicating the chosen tangent speed and the other indicating the
chosen rotational speed. �e third dimension (the actuator intensity) is represented by colors:
red for negative intensity, white for zero, and blue for positive intensity.

In Fig. 7.5, the behavior of decreasing the angle to the object is represented. �e upper graph
indicates the rotational speed dependent on the angle and distance to the object. For each angle-
distance combination a full blue color means rotating right with highest rotational speed (100),
and a full red colormeans rotating le� (-100). �e values between are interpolated accordingly. A
white color, e. g., means no rotation. �is is the case, if the angle is alreadyminimized. Otherwise,
it is set to turn towards the object. It can be seen that the robot correctly learns to set the rotational
speed dependent on the relative angle to the object.

�e frontal velocity is shown in the lower graph and looks more noisy than the rotational speed.
It shows that the robot drives backwards when it is close to the object. In e�ect, driving forwards
in that case could lead to a continuous rotation around the object that would never lead to a
decrease of the distance. When the distance is not low, there is not a clear behavior with regard
to the forward speed. �is makes sense, because it does not much a�ect the angle to the object
so it can even be chosen randomly without side e�ects on the performance of the action.
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7.4 Evaluation

Figure 7.5: Low-level actions associated to the abstract action of minimizing the angle to the object. �e
red color denotes a full negative value (-100), while the blue one a full positive one (100).
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CHAPTER8
Imitation in robot groups

�e previous chapter has laid out the basis for a robot to successfully bootstrap its own learning
process. How a robot can speed up this process by imitating the other robots’ successful behaviors
will be presented in this chapter [18, 19, 20]1. It comprises

• algorithms to recognize, interpret – and thereby understand– the observed behavior (Sec. 8.4),

• the integration of understood behavior into the robot’s own knowledge (Sec. 8.5), and

• experimental results that display that this approach increases the learning speed and per-
formance (Sec. 8.6).

Although the material regarding imitation in robot groups is rather sparse, some work has al-
ready been conducted in this �eld of research. Before presenting the approach of this thesis, the
current approaches will therefore be presented and contrasted.

8.1 Related work

�e �eld of imitation has already been overviewed in Chap. 2. �is section will survey the state
of the art in multi-robot imitation. In addition to the previously described challenges that the
more constraint imitation approaches described above have to face, multi-robot imitation has to
cope with the following problems:

• When to imitate (cf. Sec. 2.2.2.1).
1Parts of this approach have been implemented within the scope of the diploma thesis [159].
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8.1 Related work

• How to integrate the observed behavior into the already individually learned behavior
knowledge.

�is section surveys the research that tackles especially these challenges in the context of multi-
robot and multi-agent context.

Takahashi et al. use imitation to learn robotic soccer behaviors like approaching or shooting a
ball [175, 174]. During imitation a robot in their approach uses the value function approximated to
the observation of the imitatee to estimate the imitatee’s performed policy. �ey rely onmanually
discretized state spaces. �e approach requires the following set up: �e imitatee �rst performs
an action 10 times while the imitator observes it. �en, the imitator tries to perform the action
with the observation knowledge. A�erwards the imitator evaluates the behavior, as well as its
recognition performance. Finally, the procedure starts over again until the imitator has learned
the action. �is approach requires the robot group to stop in their current task whenever an
imitator tries to learn new behavior by imitation.

Priesterjahn uses imitation in the �eld of multi-agent �rst-person shooter games [142, 143, 144,
145] to generate non-person characters (NPC) that maximize the human game player’s fun. �e
di�culty in designing such games is not to maximize the NPCs game strength, but to keep the
game agents at a strength level similar to the human player’s. Priesterjahn achieves this by evolv-
ing neural network controllers, which incorporate successful behavior from other NPCs as well
as behavior information from the human player. At �rst, a human player’s actions are recorded
while he is playing the computer game. �e recorded data is then used as a starting rule base to
evolve a neural network at play time. A rule is themapping of an environmental state to an action.
�e environmental state is basically the grid map (30 × 30 cells in his experiments) with a value
for each grid cell indicating whether the cell is free, blocked, or containing an opponent. �e
�nally learned behavior consisting of the learned rules is thus targeted to that particular grid and
player setting. Priesterjahn combines imitation with learning in that the NPCs are sharing so-
called “elite” situation/action-rules. �ese are rules that performed exceptionally well during the
game. �is requires the situation, as well as the action, to behave similar for all NPCs. �e action
is a 4-tuple (forward movement, lateral movement, view angle, attack). �e forward movement,
e. g., allows for forward, no movement, and backward ({1,0,-1}). �us, the approach is targeted
to game worlds and cannot easily be transferred to real-world robotic scenarios. In addition, it
requires all NPCs to commit to the same communication channel and protocol. In real-world
applications, this type of imitation is problematic if the communication channel is too noisy or
temporarily not working. In addition, his approach is designed for game scenarios that contain
actors with the same behavior capabilities. �e question, how to deal with heterogeneous groups
is therefore not handled by his approach. It, however, showed that imitation-based adaptation is
able to outperform the evolutionary only approach.

Closest to the approach of this thesis come Inamura et al. [93, 94] with their Mimesis Loop ap-
proach. �ereby they are able to symbolize observed low-level behavior traces. �is is used as
top-down teaching from the user’s side in combination with the bottom-up learning from the
robot’s side. As this is useful to decrease the programming e�ort, it is an exclusive solution,
not allowing to be used with other learning techniques like, e. g., reinforcement learning. Also
their approach is not able to use already existing abstract states of the imitator in the recognition
process. Once a robot has extracted enough information to construct a hidden Markov model
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8 Imitation in robot groups

(HMM) based on the recognized low-level behaviors, it is �xed to that HMM – no exploratory
actions are possible any more on the abstract states. Furthermore, the segmentation process that
splits the continuous movement trajectories into basic movements uses a �xed scheme. With
that it is not possible to allow for ambiguities at the recognition phase.

In summary, there is either work in the �eld of imitation that allows single robots to learn indi-
vidual tasks from a predetermined teacher, and there is imitation employed in multi-agent sit-
uations that misses the action recognition and correspondence problem task. Furthermore, up
to now no research has been carried out regarding sporadic imitation, which is apparently very
important when robots in groups should bene�t from each other’s learning e�orts. Typically, the
imitation process should not interrupt the observed robot, so that the imitating robot o�en has
only one example of interesting behavior to learn from. �is usually does not provide enough
information for learning a generalized skill that can be replayed later on. Instead of trying to
learn low-level skills from observation, the observer nevertheless might use the observation to
update its strategy if it is able to retrieve the salient information. How this can be achieved will
be described in this chapter.

8.2 Overview of the multi-robot imitation approach

It lies within the nature of robot groups that the information retrieved during sporadic obser-
vation in an imitation process is rather sparse, since imitation possibilities do not show up very
o�en. And evenwhen there is such a possibility, the observing robot should not disturb the imita-
tee or demonstrator by requesting a repetition of the behavior observed previously. �is renders
the imitation of low-level skills unfeasible, because it usually requires a lot of data gathered by
observation of many repetitions before the skill can be replayed satisfactorily.

Nevertheless, a robot group can bene�t from sporadic imitation if its robots attempt to imitate
the broader picture of the general behavior, i. e., the imitation of strategies or sequences of low-
level skills. At this level of behavior, imitation provides enough information for the following
exploitation possibilities of the observation:

1. �e robot may decide to spend more exploration e�orts on the state transitions just ob-
served, which play a role in the sequence of newly observed behavior.

2. If the robot observes state transitions for which it cannot �nd already known skills in its
skill repertoire, it can direct its exploration e�orts of the skill layer to learn that speci�c
possibly new skill.

3. �e robot can incorporate the transition data of the observed demonstrator condensed
into its own strategy.

�e imitation approach presented in this chapter revolves around the third possibility, as the
exploration process would exceed the scope of this thesis (cf. Sec. 8.5).

�e general approach is shown exemplary in Fig. 8.1 where a robot (imitator) tries to understand
the observed behavior episode of an other robot (demonstrator or imitatee). �e episode consists
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8.2 Overview of the multi-robot imitation approach

observed episode

⟨(oI1 , eI1), . . . , (oIN , eIN)⟩

transform observations

subjective observation data

⟨(oD1 , e1), . . . , (oDN , eN)⟩

interpret behavior

recognized episodes

⟨. . . , ((t, oD , s), at , (t′, o′D , s′)) , . . .⟩

estimate rewards

observed interpreted experience

⟨. . . , ((t, oD , s), at , rt , (t′, o′D , s′)) , . . .⟩

integrate into experience,
update SMDP

Figure 8.1:�e process of imitation: observing an other robot’s behavior, interpreting it in terms of its
own knowledge, and integrating it into the latter

of the raw perception as observation oI and the visible “well-being” state eI of the demonstrator
D as observed by the imitator I (hence the superscript). �e well-being state is comparable to
an emotional state that comprises the robot’s overall state in form of a drive state (Chap. 4). �e
robots permanently observe each other and maintain a window of prede�ned length of the last
observations and well-being states. If a robot shows a signi�cant change in its well-being state
and an observing robot detects that, it will try to imitate only the section of the observed episode
that contains the quasi-monotonic well-being state.

�e observation oI is subjective to the imitator I, consisting of perception data that contains the
coordinates of the imitatee or demonstrator D, which is moving around. To really understand
what the demonstrator did, the imitator has to “look with the demonstrator’s eyes”. �at means
that the imitator has to translate all the coordinate information in the observations to see what
it would have perceived in the demonstrator’s situation.
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8 Imitation in robot groups

It then interprets the subjective perception by allowing its low-level skills a ∈ A to give so-called
votes (cf. Chap. 6), which express how well each of them could have achieved the observation
changes. Using an algorithm inspired by the Viterbi algorithm from the �eld of Hidden Markov
Models (HMM) [148], those votes are then used in combination with the imitator’s state space
S in order to �nd the most likely behavior sequence corresponding to the observations. Sub-
sequently, the recognized episodes are enriched with the estimated information for the missing
data. Finally, this is integrated into the imitator’s experience and the strategy is updated.

8.3 Transforming observations

Consider the example, where an imitator I observes a demonstrator D driving directly to a goal
base. �e demonstrator perceives its environment in terms of distance and angle to that goal:
Is = R2. Over a period of time, the demonstrator perceives the following sequence for Is:

⟨. . . , (3m, 20○), (2.7m, 17○), . . . , (0.2m, 3○)⟩ (8.1)

As the demonstrator perceives the last state, (0.2m, 3○), the robot has reached its goal and receives
a high positive reward from its motivation layer. As a consequence, the demonstrator’s strategy
layer updates its policy to account for the fact that it will receive positive reward with higher
probability when the goal is near and in front of it.

�e observing imitator I has, however, no access to the demonstrator’s subjective perception. It
has to infer it from its own observations. �e raw state space of its strategy layer usually does
not even contain enough information regarding other robot’s coordinates as it is kept as small as
possible for better learning convergence. �e imitator instead has the ability to access the raw
information available from its perception component before it is preprocessed, which is I (cf.
Fig. 3.1, p. 19). It contains positional data including the 3-D position and orientation subjective
to the imitator regarding all the objects and robots in the vicinity. �erefore, the imitator collects
the following information when observing the demonstrator, where all of the positional data in
the perceived observation is imitator centric:

OI = ⟨I I1 , . . . , I IN⟩ , (8.2)

where OI contains the window of the last N received raw perceptions.

Let exemplary I I
k
= Ik = ((vIg , θ I

g), (vID , θ I
D), c), k ∈ {1, . . . ,N}, be de�ned as the 3-D positions

and orientations of goal g and robot D and some other non-vector value c. vIg and vID are then
regarded as positional data. In the following, the superscript denotes the coordinate system of
the positional data. E. g., vIg is a vector of the goal g in the coordination system of the imitator I.
As the transformation is done with respect to D’s coordinate system, (vID , θ I

D)will be replaced by
the relative position and orientation of the imitator I as seen from the demonstrator D. All other
positional data – in this case only vIg – will be converted from the imitator’s coordinate system
(I) into that of the demonstrator (D). �e conversion makes use of D’s relative position vID and
orientation θ I

D so that it re�ects D’s subjective observation.

�is transformation is achieved by the mapping φD ∶ vIO ↦ vDO . It has to be applied to each po-
sitional data individually. Let vID = (x I

D , yID , zID)T and θ I
D = (αI

D , βI
D , γI

D)T be retrieved from I
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8.3 Transforming observations

as the 3-D position vector and orientation of the demonstrator’s coordinate system in the imita-
tor’s coordinate system. Prior to the transformation they are converted to homogeneous coor-
dinates [185]. Such a coordinate is a four-element column vector, where the �rst three elements
are the original coordinates and the fourth is a scale factor, which is always 1 in this case. Ho-
mogeneous coordinates allow the translation to be represented as a matrix multiplication, which
uni�es all rotation and translation matrices into one. �ese homogeneous transformation ma-
trices, namely the rotation around the three axes and the translation as shown in Fig. 8.2, are
de�ned by Eq. (8.3) and (8.4).

Figure 8.2:�e robot’s coordinate system

Rx =
⎛
⎝

1 0 0 0
0 cos αI

D − sin αI
D 0

0 sin αI
D cos αI

D 0
0 0 0 1

⎞
⎠
Ry =

⎛
⎝

cos βI
D 0 sin βI

D 0
0 1 0 0

− sin βI
D 0 cos βI

D 0
0 0 0 1

⎞
⎠
Rz =

⎛
⎝

cos γI
D − sin γI

D 0 0
sin γI

D cos γI
D 0 0

0 0 1 0
0 0 0 1

⎞
⎠

(8.3)

T =
⎛
⎝

1 0 0 x ID
0 1 0 yID
0 0 1 zID
0 0 0 1

⎞
⎠

(8.4)

�e chainmultiplicationMD→I = RxRyRzT transforms an object’s position from the demonstra-
tor’s point of view into the point of view of the imitator. As the recognition algorithm needs the
opposite e�ect, the inverse of MD→I results in the transformation matrix MI→D, which converts
an object from the coordinate system of the imitator to that of the demonstrator:

MI→D = (RxRyRzT)−1 (8.5)

In the frequent case that imitator and demonstrator are coplanar (zID = αI
D = βI

D = 0), the
transformation may be simpli�ed, because of Rx = Ry = E. �e transformation matrix MI→D
transforms an object’s position vIO = (x I

O , yIO , zIO)T in the imitator’s coordinate system into that
of the demonstrator’s:

vDO′ = MI→D

⎛
⎜⎜⎜
⎝

x I
O

yIO
zIO
1

⎞
⎟⎟⎟
⎠

(8.6)

vDO′ is a vector in homogeneous coordinates. �e 3-D vector v
D
O , which speci�es the object’s po-

sition subjective to the demonstrator, is retrieved by extracting the �rst three coordinates of vDO′ .
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8 Imitation in robot groups

�e last coordinate, being the scaling factor, may be ignored. With Eq. (8.6) the demonstrator
is able to generate the according subjective observation for each observation for any observable
demonstrator:

⟨ID1 , . . . , IDN ⟩ (8.7)

�is can then be preprocessed by the user-de�ned function Υs ∶ I → Is (cf. Chap. 3) in order to
retrieve the state in the strategy layer’s state space, which is the perception that the demonstrator
D has seen:

OD = ⟨IsD1 , . . . , IsDN⟩ (8.8)

�e recognition process can now analyze OD in order to recognize behavior that probably has
led to the positive reward.

8.4 Understanding observed behavior

�e desired outcome of the observation and recognition phase in an imitation process is a state-
action-trace that results in a performance similar to the observations. For this, the imitating
robot has to �nd corresponding states in its own strategy’s state space that might play a role when
imitating the observed behavior. Furthermore, it should only regard states that can be connected
by means of actions of which the imitating robot is capable. �is requires the imitator to couple
its strategy and skill layer, whereby it is able to accomplish the recognition and understanding of
other robots’ behavior in terms of its own strategy and skill capabilities. As described in Chap. 5,
the strategy is modeled with a Semi-Markov Decision Process (SMDP) that has a dynamically
adjusting state space. It uses self-developed skills as actions, which are triggered in terms of goal
functions on the perception (Chap. 6).

With the described means for strategy and skill learning, the Viterbi algorithm can now be
adapted accordingly. It is o�en used to replay behavior previously encoded by a Hidden Markov
Model (HMM) [148] in an imitation process. HMMs are stochastic models that describeMarkov
processes. HMMs are o�en used in the �eld of imitation to encode sequential patterns of mo-
tion as stochastic �nite state automata [52]. Before the recognition algorithm is presented, a short
overview of the Viterbi algorithm following the description of Bengio [40] is given. �roughout
this chapter the following notation is used:

• P(o ∣ s) is the likeliness of observing o in state s.

• P(s′ ∣ s) = ∑a Pa(s′ ∣ s) is the probability of s being the next state a�er s′ independent of
which action a ∈ A has been chosen.

• P(ot ∣ ot−1, a) ≡ Pa(ot ∣ ot−1) is the probability of observing ot a�er having observed ot−1 in
the previous time step and executed action a henceforward.

• P(s′ ∣ s, a) ≡ Pa(s′ ∣ s) is the probability that action a executed in state s transitions to s′ (cf.
Sec. 5.3).

• T(s, a, s′) is the strategy’s individually learned probability of transitioning to state s′ when
started in state s and executing action a henceforward (called P(s′ ∣ s, a) in Sec. 5.3).
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8.4 Understanding observed behavior

In the following, the time stamp subscript t refers to a continuous point in time at which the
according attribute has been perceived. �e continuous time point of the attribute in the previous
time step is addressed by t − 1.

8.4.1 Viterbi

�e Viterbi path is usually calculated by the imitation approaches in the literature to �nd the
state sequence that the imitator later on should realize in order to exactly copy the observed
behavior [52]. �is is carried out by using the state space of the inferred HMM, which is assumed
to be �x and to re�ect the demonstrator’s state and action space together with the state transition
probabilities.

�e path is calculated by the Viterbi algorithm [182], which attempts to �nd the most likely hid-
den state sequence sN1 = ⟨s1, s2, . . . , sN⟩, si ∈ S, that best explains the observation sequence oN1 ,
oi ∈ Rd with d being the dimension of the observation vector. It is achieved by maximizing the
probability P(sN1 ∣ oN1 ):

sN∗1 = argmax
sN1

P (sN1 ∣ oN1 ) (8.9)

�e Viterbi algorithm e�ciently determines the maximum in time O(Tn) using Bellman’s dy-
namic programming algorithm, where n is the number of non-zero transition probabilities [39].
It does so by recursively calculating the probability2

V(s, t) =max
st−11

P(ot1 , s1 . . . st−1st = s) (8.10)

that s ∈ S is the observed hidden state at time t given the observations ot1:

V(s, t) = P(ot ∣ st = s)max
s′

[P(st = s ∣ st−1 = s′)V(s′, t − 1)] (8.11)

With an initial assignment of V by

V(s, 1) = P(o1 ∣ s1 = s)P(s1 = s) ∀ s ∈ S (8.12)

the most likely path can then be extracted with backward recursion:

φ(s, t) = argmax
s′

[P(st = s ∣ st−1 = s′)V(s′, t − 1)] (8.13)

It determines the best predecessor of state s at time t.

8.4.2 Interpreting observed behavior

�eapproach in this thesis utilizes cues from the Viterbi algorithm. In contrast to the approaches
in the literature, the Viterbi algorithm in this thesis is merely used to explain the observations

2In order to not confuse the value of a hidden state in the Viterbi path with the value of a state in reinforcement
learning (cf. Sec. 5.3), it is denoted by V instead of V .
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8 Imitation in robot groups

recorded from the demonstrator with the current knowledge of the imitator. In this way, the
imitator tries to understand the demonstrator with the knowledge it already has attained in terms
of its own strategy knowledge (cf. Chap. 5) and skill repertoire (cf. Chap. 6). �e presented
algorithm takes as the input an episode O = ⟨o1, . . . , oN⟩ consisting of demonstrator centric
observations. It then extracts a list of understood state transitions of the form

Γ = (. . . , ((t, o, s), a, (t′, o′, s′)) , . . .) . (8.14)

For this, Eq. (8.11) as part of the recognition part in the imitation process has to be modi�ed
accordingly.

Using the state abstraction mapping ξ ∶ Rd → S from Sec. 5.4, P(ot ∣ st = s) could easily be
realized as an indicator function:

P(ot ∣ st = s) = { 1, if ξ(ot) = s

0, otherwise (8.15)

�is would, however, yield a weight, which is too high, to the imitating robot’s current mapping
of ξ, because it rules out all other states S∖ {ξ(ot)}. At the other side of the extreme, ξ could be
ignored by assigning the same probability to all observations in order to take all other abstract
states into account. However, as the robots in the group are considered to have similar goals, the
imitator should also exploit its current mapping assuming that the chosen demonstrator has a
similar one. �is leads to the trade-o� discussed in the following.

As an example, consider Fig. 8.3 where themost likely state has to be determined for the observa-
tion o. As described in the previous chapter, the nearest neighbor approach is chosen throughout
this thesis to map the state observations to the abstract states of the strategy. Let N k

o be the set
of k observations in the robot’s experience that are nearest to o: N3o = {o1, o2, o3}. Furthermore,
de�ne N k

o→s to be those observations in N k
o that are mapped to s by ξ:

N k
o→s = {ô ∣ ô ∈ N k

o ∧ ξ(ô) = s} (8.16)

In the example �gure, N3o→s2 = {o1, o2}. P(ot ∣ st = s) can then be de�ned to be inversely depen-
dent on the distance to the labeled observation instances in the nearest neighbor representation:

P(ot ∣ st = s) =
∑ô∈N k

o→s
∥ ot − ô ∥−2

∑ô∈N k
o
∥ ot − ô ∥−2 (8.17)

During the recognition phase, the robot thereby gives all regions their chance, depending on
how much their observations resemble the one in question. In the case of N k

o→s = N k
o , Eq. (8.17)

behaves like the initial suggestion in Eq. (8.15) for P(ot ∣ st = s).
�e calculation of P(st = s ∣ st−1 = s′) in Eq. (8.11) is more involved. If one would just take the
transition probability of its greedy action in st−1, P(s ∣ s′, π(s′)), the robot would not get new
insights about other – andmaybe better – state transitions in that speci�c state. Instead, it should
guess from the observations which of the skills in its own skill repertoire would best realize the
recorded observations.

Given an arbitrary state transition ⟨st1 , st2⟩ with st1 ≠ st2 (t1 < t2). For each recorded observation
step ⟨ot−1, ot⟩, [t − 1, t] ⊂ [t1, t2], all the skills estimate their vote Pa(ot ∣ ot−1). With this vote, the
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region
("abstract state") state observation

("raw state")

Figure 8.3:�e calculation of P(ot ∣ st = s) is based on the distances to the k nearest observations. In this
example, Nk

o and Nk
o→s are shown for ot = o, s = s2, and k = 3.

Figure 8.4: Example of a demonstrator that might drive either to the red (le�) or the yellow (right)
goal base. �e heuristic assigns a higher probability to that skill that is nearer to its
optimum (in this case, “drive to red base”)

skill a estimates its ability to transition the robot in a way that realizes the change from obser-
vation ot−1 to ot . It does so by means of the corresponding progress function fp, with which the
skills were learned (Chap. 6). �e vote calculation is governed by the following heuristics:

• �e skill delivers a higher vote if its progress function is nearer to its optimum. As a con-
sequence, the skill’s attention is focused to nearer objects, which are considered as more
relevant to the robot’s actions. �is is necessary to �lter out unrelated skills. As an exam-
ple, Fig. 8.4 shows a robot, which is pushing an object towards two possible goals. For an
observing imitator robot having two skills ared and ayel low , both would vote equally as it
is ambiguous to which goal the demonstrator is actually driving. With this heuristic, ared
will vote higher then ayel low , because the robot is nearer to the red goal.

• If the progress function is within a given tolerance range єa around the optimal value 1 it
delivers a vote of zero. �is is necessary since small but irrelevant changes of the progress
functions of skills that have already accomplished their tasks will result in votes that rule
out other skills that are currently working towards their goals. єa can be derived while skill
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8 Imitation in robot groups

a was learned: it is dependent on the overall variance while executing the skill.

• �e vote is clipped to the interval [0, 1]. Negative votes occur when f ap (ot−1) < f ap (ot). In
Fig. 8.4, this would be the case for both skills ared and ayel low , if the robot drives backwards
whereby it moves away from the goals.

�ese heuristics lead to the voting function in Eq. (8.18).

Pa(ot ∣ ot−1) =
⎧⎪⎪⎨⎪⎪⎩

min (max ( f ap (ot)− f ap (ot−1)
1− f ap (ot)

, 0) , 1) , 1 − f ap (ot) < є
0, otherwise

(8.18)

�is voting function is then used to accumulate the total votes for an observation over the period
of one state transition. To discourage actions with long duration but low accumulated votes, it is
divided in addition by the time span of the full state transition:

Pa(st2 ∣ st1) =
∑t2

t=t1 Pa(ot ∣ ot−1)
t2 − t1

(8.19)

For each observed potential state transition ⟨st1 , st2⟩, the robot uses Eq. (8.19) to determine the
most likely transition action

aml = argmax
a

Pa(st2 ∣ st1) . (8.20)

�is action determines the transition probability in the observer’s strategy that wouldmost prob-
ably correspond to the observation of the demonstrator:

P(st2 ∣ st1) = T(st1 , aml , st2) (8.21)

Integrating Eq. (8.16)-(8.21) into Eq. (8.11) leads to the following modi�ed recursive solution:

V(s, t) = P(ot ∣ st = s)max
s′

[T(st−1 = s′, argmax
a

Pa(st2 ∣ st1), st = s)V(s′, t − 1)] (8.22)

In contrast to the original Viterbi approach, no initial state probabilities can be assumed for the
demonstrator. Hence, V(s, 1) in Eq. (8.12) is being simpli�ed to

V(s, 1) = P(o1 ∣ s1 = s) ∀ s ∈ S . (8.23)

φ(s, t) is �nally determined according to Eq. (8.13). As the observed actions are not of unit time,
the imitator will recognize the same action and state for some period of time. �e recognized
state-action transitionsmust therefore be extracted from φ to be of any use to the imitating robot.
An example is given in Eq. (8.24), where the tuples show the condensed information extracted
from φ.

(s0 ,a1 ,s2)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
s0 → s0 → s0 → ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(s2 ,a2 ,s1)

s2 → s2 →
(s1 ,a3 ,s3)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
s1 → s1 → s1 → s3 (8.24)

While observing the demonstrator, it can happen from time to time that the imitator does not
�nd corresponding actions for the observations, i. e., Pa(ot0

obs
∣ ot0

obs
−1) < θobs for all actions. �is
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8.4 Understanding observed behavior

Figure 8.5:�e subjective perception of the robot
used in the experiments. It shows one
camera image with the ball that has been
recognized by the vision preprocessing
step.

Figure 8.6: Experimental scenario: the ball has to
be put onto the elevated platform.

means that the just observed behavior at time t0
obs
is unknown to the imitator. �e original Viterbi

algorithm would zero out all subsequent probability values, which would result in no sensible
recognition at all: V(s, t) ≈ 0 ∀t > t0

obs
. To prevent this, the demonstrator suspends the normal

Viterbi path calculation and scans the observation stream for the next time step t1
obs
, at which the

demonstrator is again able to recognize a skill with su�cient con�dence: Pa(ot1
obs

∣ ot1
obs
−1) ≥ θobs.

�e threshold θobs has to be determined empirically. �e algorithm then starts the described
modi�ed Viterbi algorithm anew at time t1

obs
. It returns these independently recognized episodes

as separate traces:
Γ = (. . . , ((t, o, s), a, (t′, o′, s′)) , . . .) (8.25)

For full reference, the whole algorithm is depicted in Alg. 2 and 3 (pages 141 and 142).

8.4.3 Example

To demonstrate the recognition process, two robots are placed into an environment with a soccer
ball that has to be transported onto an elevated platform (Fig. 8.6). To achieve this, they can
either simply push it or use their grippers to pick the ball and release it onto that platform. In
this example, both robots have �xed roles, subsequently called demonstrator and imitator, and
the imitation period is given to focus on the recognition part.

�e robots have a de�ned �eld of view (fov) of 60○. �ey are able to perceive the soccer ball’s po-
sition and width in the camera image if it is within their fov by means of their vision capabilities.
�e platform onto which the ball has to be placed is given as absolute coordinates to the robot,
which also knows its own position. �e robots are equipped with 2-D barcode markers, which
enable them to detect each other’s relative position and orientation bymeans of the camera based
tracking library ARToolkit [183]. �e raw perception I provides the following information to the
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8 Imitation in robot groups

imitator (Fig. 8.5):

p =
⎛
⎜
⎝

vIb
vIg

(vID , θ I
D)

⎞
⎟
⎠

ball’s relative 3-D coordinates
goal platform’s relative 3-D coordinates
3-D vector to and bearing of the demonstrator robot

For the strategy layer, the raw perception I is then converted into a raw state observation o = Is
by the user-de�ned function Υs (cf. Sec. 8.3 and Chap. 3):

oI = Υs(I I) =
⎛
⎜
⎝

∥vIb∥
∥vIg∥

vIg ⋅ (0, 0, 1)

⎞
⎟
⎠

ball distance
goal distance
ball height

(8.26)

As described in the previous section, the recognition algorithm does not operate on its own state
observation o, but on the observation transformed into the demonstrator’s view:

oD = Υs(ID) =
⎛
⎜
⎝

∥φD(vIb)∥
∥φD(vIg)∥

∥φD(vIb ⋅ (0, 0, 1))∥

⎞
⎟
⎠
=
⎛
⎜
⎝

∥vDb ∥
∥vDg ∥
zD
b

⎞
⎟
⎠

(8.27)

�e skill layer is equipped with the capabilities to rotate and translate the robot and to use the
gripper. If it is not using its grippers, it is nevertheless able to move the ball around in the �eld
by simply pushing them. In the imitation process, only the positions of the ball and of the other
robot can be observed.

�e robots are capable of appropriate strategies and skills in order to move the ball around. �e
demonstrator disposes of three skills: approaching the ball, li�ing the ball, and approaching the
goal. �e imitator is lacking the skill to li� the ball. It has instead individually learned the skill to
approach the ball (cf. Chap. 6) and is able to approach the goal and the corresponding strategy
using those skills (cf. Chap. 5). In the experiment, the imitator is observing the demonstrator
how it moves to the ball, picks it up, and carries it to the platform. It then tries to recognize a
potentially bene�cial strategy in the observation.

�e outcome of the recognition process is shown in Fig. 8.7. �e imitator has successfully recog-
nized episodes in the demonstrator’s movements that coincide with the imitator’s own behavior
knowledge (dark areas marked as “B” and “G”). B denotes the time span in which the demon-
strator recognized a skill resembling its own approach ball skill and G resembling its approach
goal skill. �e time span between the recognized areas is detected by the imitator as not under-
standable behavior (light areas). �e recognition process is bootstrapped again as soon as it has
reasonable explanations for the observed behavior data. �ismissing link can now be used in the
subsequent exploration processes to direct the exploration towards it, while the understandable
regions can be used, e. g., to adapt the strategy towards using them more aggressively.

If the imitator would have been able to li� the ball, the corresponding recognition results would
be as depicted in Fig. 8.8. �e time span that was missing in Fig. 8.7 is now correctly detected as
the behavior li�ing the ball and marked with “L”.

In this section, the focus has been on the recognition part. In the following, it will be used in a
larger picture, when recognized behavior is integrated in the robots’ own knowledge.
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8.5 Integrating recognized behavior

Figure 8.7: Recognition results during the imitation process: B and G (dark areas) denote the behavior
over the time that the demonstrator has understood and interpreted as being similar to its
own approaching ball and approaching goal skills. �e behavior between them, li�ing the ball
(light area), is recognized as a missing link.

8.5 Integrating recognized behavior

Although the previously described recognition algorithm is the most important part in the imi-
tation process, more e�orts have to be made for a successful imitation process. �e most natural
way is to integrate them in the form of interactions to the strategy’s own experience so that the
strategy layer does not have to discriminate between own and observed experiences.

Recall from Sec. 8.4 that the recognition algorithm (Alg. 2) results in sequence of understood
state transitions

Γ = (. . . , ((t, o, s), a, (t′, o′, s′)) , . . .) . (8.28)

�e imitation data has to be delivered to the strategy in the form of interactions, according to the
strategy’s experience stream by Eq. (5.1) (page 33):

I t2t1 = (ot1 , at1 , dt1 , µt1 , ft1 , ot2)

�e missing data duration d, motivation µ, and failure f need to be reconstructed for the re-
turned data of the recognition algorithm. Obviously, the duration is the di�erence of the start
and ending of the observation.
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8 Imitation in robot groups

Figure 8.8: Recognition results during the imitation process when the robot is capable of li�ing the ball:
instead of the missing link the robot has correctly detected the li�ing skill.

�e motivation µ is not directly observable. A way to infer the outcome of the recently per-
formed behavior is nevertheless vital for successful imitation. For this reason, the demonstrator
is required to express additional information, which is su�cient to approximate its overall drive
state µ. In the following experiments, a colored light bulb on top of each robot achieves this. �e
imitator approximates the motivation µ̂ for each observed state transition from the drive state
expressed by the demonstrator at time t. Practically, this is done by normalizing the observed
drive state expression µD with respect to its minimum µD

min and maximum µD
max for each demon-

strator robot d individually, including the imitator itself. �is requires an initial calibration phase
where rough estimates are determined and only observation is allowed. A�erwards, the imitator
processes the observation using the approximated reward µ̂:

µ̂ = µD ⋅ µ
I
max − µI

min

µD
max − µD

min
(8.29)

�e demonstrator keeps monitoring the minima and maxima for a better reward estimation.

�e failure signals f are all assumed to be false. With a, d, and µ, the robot is then able to create
a trace of interactions, containing only the most salient information (∣I tqt1 ∣ ≪ ∣O tN

t1 ∣):

I
tq
t1 = ⟨It1 , It2 , . . . , Itq⟩ (8.30)

Based on I tqt1 the imitator has to decide whether it is worth to integrate it into its own experience
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Figure 8.9:�e experience in the form of an interaction stream. �e recognized behavior, which is ob-
served at other robots, is inserted into the experience as a new stream. A�erwards, the stream
of the own experience continues. �is makes it possible to acquire observed data, while ac-
tively collecting further experience.

at all. �e demonstrator might have been in exploration phase and thus have chosen random
actions. Alternatively, it might have been in exploitation phase, but its behavior does not con-
vey much vital information. In both cases, the approximated rewards are a valid indicator for
the usefulness of I tqt1 . If the demonstrator experienced high absolute rewards, it does not matter
whether it was in exploration phase while being observed by the imitator. On the other hand,
if the demonstrator did not show any signi�cant change in its overall well-being, it is irrelevant
whether it was in exploitation mode.

If the imitator decides that it can bene�t from the interaction trace, it appends I tqt1 to its strategy’s
experience. However, it has to be implemented as a new episode of experience – not connected to
the robot’s own stream of experience, as shown in Fig. 8.9. Otherwise, the state transitions would
be inconsistent. �e robot backs up its current state and restores it again a�er the imported expe-
rience to prevent having states of two di�erent actors in one interaction. Otherwise, the inserted
interactionwould look like a teleportation through the world. �e strategy layer keeps track of all
“dangling” episodes in the experience stream and incorporates them accordingly when updating
its policy. In this manner, the whole process of learning observed behavior is transparent to the
underlying strategy. It does not know whether its input originates from an observation or from
its own perception. �ereby, the imitator bene�ts from the observation utilizing the complete
strategy learning.

8.6 Evaluation

�e overall imitation approach is evaluated in two Capture-�e-Flag (CTF) scenarios, where the
robots had to transport objects to goals of di�erent value. To evaluate the bene�ts of the imitation
approach, all but one goal are easily approachable and provide only a low reward, while one goal
is di�cult to reach, but provides a high reward. �e optimal strategy, carrying all objects to the
di�cult but highly rewarding goal, is learnable both with and without imitation. �e question is
whether imitation results in a faster learning process.

�e simulationmodels of the well-known Pioneer2DX is extended with an LED, which expresses
the corresponding well-being states (Fig. 8.10). �e perception is preprocessed and delivered to
the strategy layer as a three-dimensional vector containing the following information:

92



8 Imitation in robot groups

Figure 8.10:�e robots have grippers to grab the objects and LEDs for showing their emotional state

• Distance of robot to the closest object,

• Distance of the closest object to the closest goal, and

• ID of the closest goal

All experiments were conducted twice: with the imitation activated and with the imitation de-
activated. Wherever appropriate, the charts contain a 95% con�dence-interval.

�e development of the group’s behavior homogeneity is analyzed using Shannon’s information
entropy [161], which is a measure for the disorder of the realizations of a random variable:

H(X) = −∑
x∈X

p(x) log p(x) (8.31)

H’s range is [0,Hmax = log ∣X∣], so it is normalized and the resulting function G is used as a
measure for the emergence of order in a strategy:

G(X) = Hmax −H(X)
Hmax

(8.32)

In the experiments, X represents the goals to which the objects are transported. With G(X) = 0
all goals are chosen equally o�en. AsG(X) is approaching 1, the robots prefermore andmore one
goal over the others. By comparing the normalized entropy of the imitation to the no-imitation
case, it can be seen whether imitation also has sped up the convergence of the group behavior.

8.6.1 CTF with three bases

�is scenario consists of the three goal bases red, yellow, and black, to which the objects, which
are dispersed in the �eld, have to be transported (Fig. 8.11). �e robots have prede�ned skills,
which are provided by the skill layer described in Chap. 6: approach the nearest object, approach
the red base, approach the yellow base, and approach the black base. �e skills remain �xed
during the complete experiment. A positive reward of 10 is given for collecting an object. Once
the object has reached one of those bases, it receives an additional positive reward. For the yellow
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Figure 8.11: Scenario with three bases. For delivering the objects to the red or yellow base at the bottom,
the robots receive a reward of 20. For the black base the reward is 10,000.

Figure 8.12:�e average time needed for reaching a goal over 50 runs

and red base the reward is 20 points. �e black base is farther away and thus more di�cult and
unlikely to reach. For transporting an object to this base, a robot receives 10, 000 points. �e
values for all charts are averaged over more than 500 times that a robot transports an object to a
goal.

�e time a robot needed to catch one object and deliver it to a base is shown over 50 consecutive
episodes in Fig. 8.12. Evidently, the experiment with the imitation activated is much faster than
the one with the imitation deactivated in the beginning. �e curves meet each other a�er eight
episodes and stay nearly the same, with a slight advantage for no-imitation. �e reason for the
no-imitation version being a little faster in the end does not indicate that it is better. �is is the
case, because the robots in the no-imitation experiment visit the black base less frequently. As
the black base is much farther away, it naturally leads to a shorter average time to reach the goal.
With activated imitation, all goal bases nearly get the same amount of objects in the beginning.
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Figure 8.13: Reward per second

A�er some exploration, increasingly more robots �nd out that it is bene�cial to prefer the black
base (Fig 8.15). Without imitation the robots explore and learn to prefer the black base, too
(Fig. 8.14). However, the number of robots knowing this fact is much lower than the number
of robots with the activated imitation. �erefore, the average time to reach a goal is higher for
activated imitation, because the distance to the black base is farther.

Figure 8.14:�e percentage of objects brought to the respective base without imitation

�e reward per second in Fig. 8.13 is a good overall indicator of how successful a strategy is. It
takes into consideration the reward as well as the time needed to receive it. Imitation starts better
than no-imitation because of the shorter amount of time needed to reach the goal. Later on, both
values are similar. At the end, the required time does not drop anymore, but the average reward
increases with more robots choosing the black base. As can bee seen in the chart the imitating
robots are in advantage. Due to the imitation process, the robots are able to faster learn the more
rewarding but also more time consuming behavior than with just individual learning.

To get a better understanding, Fig. 8.16 shows the amount of experiences in terms of interac-
tions the robots have made in each episode. It is interesting that the imitation starts with a lower
amount of experiences, although the only di�erence between both versions is that imitation ac-
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Figure 8.15:�e percentage of objects brought to the respective base with imitation

Figure 8.16: Size of the experience list

quires more information by means of observation. �e acceleration achieved by imitation is so
high that the necessary amount of experiences to reach a goal is much lower than without imita-
tion. A�er some time, both charts cross each other, because the time, which is needed to reach
a goal, becomes nearly the same in both cases. At the end, imitation has acquired more experi-
ences by observation. �e number of experiences is bounded by 2,000, where old observations
are dropped as new ones arrive. Using this sliding experience horizon, the robots are able to
adapt to changing environments and prevent information drowning.

Another question is how well the whole approach managed to handle the additional complexity,
introduced by the imitation process. �is can be seen in Fig. 8.17. It shows the number of abstract
regions, into which the heuristics have divided the state space (cf. Sec. 5.5). It shows that the
graph converges below ten regions for imitation and even below six for no-imitation. �e layered
learning architecture of the robots is able cope with the complexity of the task by maintaining an
appropriate state space, which consists of a limited number of abstract regions.

Finally, the group behavior is analyzed with respect to emerging behavior patterns. Emergence
is the way patterns in complex systems arise out of a multiplicity of relatively simple interactions.
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Figure 8.17: Number of regions, in which the state space is split
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Figure 8.18: Goal choice homogeneity (1 = goals are maximal homogeneous)

Fig. 8.18 displays the emergence of the chosen goal base in each episode. A value of zero means
that the chosen goals aremaximally heterogeneous. �e value formaximumhomogeneity is one.
With imitation enabled the emergence increases signi�cantly while no-imitation is stuck at a low
value. So, the class of imitating robots showsmuchmore homogeneity in their chosen goals than
the class of individual robots that do not learn from each other.

8.6.2 CTF with �ve bases

In this scenario two additional goal bases were added, as shown in Fig. 8.19. Both bases were
placed between the black base and the other low-value bases. Reaching an object did not result
in additional reward. All other parameters stayed the same as in Sec. 8.6.1. With the additional
two actions necessary to reach the two new goals the whole scenario gets more complex. �e
fact that the new bases are between the objects and the black goal base decreases the chance that
a robot ever drives to the black base.

Fig. 8.20 and Fig. 8.21 show the distribution of the objects carried to the di�erent goal bases.
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Figure 8.19: Scenario with �ve bases: for delivering the objects to the blue, green, red, or yellow base, the
robots receive a reward of 20. �e reward for the black base is 10, 000.

Figure 8.20:�e percentage of objects brought to the respective base without imitation
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Figure 8.21:�e percentage of objects brought to the respective base with imitation

Figure 8.22:�e average time needed for reaching a goal over 50 runs

�e black base gets less objects compared to the previous experiments. Still, imitation shows a
signi�cant improvement of the black base, starting from 2% up to 20% while the no-imitation
version never exceeds 10%.

�is is also being underlined in Fig. 8.23, showing the reward per second, which the robots re-
ceive. Initially, the imitation version shows similar performance as the learning-only version.
With time, imitation gets better than no-imitation, though.

�e �ve base experiment points out that also in themore complex scenario robots that imitate are
at an advantage. Having two more goal bases, the scenario decreases the probability to reach the
black goal base. Without imitation, the goal base distribution stays nearly the same. With imita-
tion enabled, it increases considerably. Imitation improves the overall performance by spreading
the information about bene�cial behavior faster in the group.
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Figure 8.23: Reward per second

8.7 Conclusion

�is chapter has shown how imitation improves the learning speed and performance of a robot
group. �e presented approach did so by �nding the maximum likely path of states that cor-
responds to the observation with full reference to the imitator’s own knowledge. With it, the
imitator could reliably explain the demonstrator’s behavior in terms of its own capabilities.

�e imitating robot only used data, which is externally perceivable, and did not require the
demonstrating robot to reveal its internal states or actions. �ereby, imitation is not restricted
to robots anymore that have explicitly been prepared for that beforehand. Using the presented
approach robots can now improve their strategies observing any robot that is around only requir-
ing that it expresses its overall state. �is greatly enhances the autonomy of future multi-robot
systems.
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CHAPTER9
Choice of the imitatee

So far, it has been assumed that the behavioral capabilities of the robots in the group are similar.
�is means that all the robots are morphologically homogeneous and have the same algorithmic
capabilities. In this case, it does notmatter whom a robot imitates, because all robots are assumed
to be equal. Furthermore, they should observe one another all the time. �is is, however, not the
case any longer in heterogeneous robot groups. Instead, prior to the imitation act itself, a robot
intending to imitate �rst has to choose a robot, whose demonstrated behavior is likely to result in
a behavior improvement for the imitator. For this purpose, the robot needs a notion of similarity
measurement for behavioral capabilities. How this may be realized and used to choose the best
imitatee1 in a group of heterogeneous robots will be presented in this chapter [1]2.

In summary, the approach constructs andmaintains at runtime for each robot in the group an af-
fordance network, which is a Bayesian network of a�ordances detected in the observation. �ese
networks encode dependencies about the interaction possibilities, which are o�ered by environ-
mental objects to the di�erent robots. Using the concept of a�ordances, a robot is able to reason
about behavioral di�erences between robots without having to take into account their diverse
hardware and so�ware conditions. With a metric on those networks, a robot is able to calculate
the di�erence between its own capabilities and those of the other robots. Prior to its imitation
process, the robot can then choose the robot in the group that has the smallest behavioral dis-
tance to itself in order to maximize the probability of the imitation success.

1�roughout this chapter “imitatee” and “demonstrator” will be used interchangeably.
2�is approach has been implemented within the scope of the diploma thesis [82].
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Figure 9.1:Measurement of behavioral di�erence according to Balch [32] in an idealistic evaluation en-
vironment, which is represented by the box with the circle representing the robot. For every
possible situation the actions of the two robots under investigation are recorded and plotted
at the right-hand side. Summation of the actions’ di�erences is de�ned as the behavioral dif-
ference (bottom)

9.1 Related work

Attempts in this regard have already been made by Balch [33]. He devised an approach to cal-
culate the Hierarchic Social Entropy of robot groups, which is a modi�cation of Shannon’s Infor-
mation Entropy [161]. One step in his approach is the calculation of the behavioral di�erence be-
tween two robots. �erefore, the di�erence in the chosen actions given the same state is summed
over all possible states the robots might encounter (Fig. 9.1). Formally, given a group of robots
R = {R1, . . . ,Rn}, such that each robotR j can choose an action a i

j in state si of a discrete state
space according to its policy π j ∶ si ↦ a i

j. With pij being the fraction of time steps relative to its
whole life span that robot R j has spent in state si , the behavioral di�erence between robot Ra

andRb as de�ned by Balch is calculated by DB(Ra ,Rb):

DB(Ra ,Rb) = ∑
i

(pia + pi
b
)

2
∣πa(si) − πb(si)∣. (9.1)

In the case that Ra and Rb choose the same action in each state, DB(Ra ,Rb) = 0. If, in the
opposite, they disagree all the time about the best action to choose, DB(Ra ,Rb) = 1.
Although this approach of calculating the behavioral di�erence between two robots could theo-
retically be used to determine the most similar demonstrator for an imitator, it is hardly appli-
cable outside of laboratory environments: pi , π, and si are required for all possible states both
robots have encountered. Even if that would have been possible, the approach is restricted to
a robot group, in which the same performed action πa(si) = πb(si) leads to the same e�ects
in the environment for both robots Ra and Rb. �e robot group must be totally homogeneous
not allowing for the slightest manufacturing tolerance and requiring the same action set for all
robots.
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Shen et al. developed means to detect the similarity and synchronicity between the behavior of
a human and a robot [162]. �ey detect spatial and temporal relationships between events in
the perception stream of the robot using Crutch�eld’s information distance [63]. It measures the
distance between two information sources and is based on Shannon’s information entropy [161].
�e robot analyzes the trajectories of vision-basedmarkers (ARToolkit [183]), which are attached
to the body parts of a human. In experiments with a humanoid robot, the approach manages to
detect similar behavior like arm waving even if the behavior is time shi�ed. When transferred to
multi-robot scenarios, the approach of Shen et al. is restricted to application settings where all
participating robots share a similar morphology. Furthermore, it requires a �xed morphological
mapping between all the robots in the group. In essence, this requires to manually resolve the
correspondence problem (cf. Sec. 2.2.2.1).

In this chapter, a demonstrator selection approach is presented, which solves this challenge in
an unobtrusive manner. Only relying on observable information that can be subjectively per-
ceived, it helps a robot to �nd the robot in a robot group that is most similar to itself. Unlike the
behavioral di�erence approach of Balch, this approach does not need any access to the internal
states of the observed robots’ high-level strategy or data structures of their low-level behavior.
Nor does the approach assume the same action set for all participating robots in the group. In
contrast to the approach of Shen et al., the approach presented in this chapter does not require
the correspondence problem to be solved manually beforehand.

9.2 Background

Before presenting the demonstrator selection approach, this section will provide the basics be-
hind its main ingredients: learning Bayesian networks and the nature of a�ordances.

9.2.1 Bayesian networks and how to learn them

ABayesian network embeds dependency relationships between randomvariables [131]. �emain
purpose of a Bayesian network is to allow reasoning under uncertainty.

De�nition 9.1 (Bayesian network) A Bayesian network (BN) B = (G , Θ) on a set of random

variables X = {X1,⋯, Xn} is de�ned by two components:

1. A directed acyclic graph G = (X , E) with nodes representing the random variables and edges

E ⊆ X×X encoding the conditional dependencies between them. G is also called the structure
of B.

2. A set Θ = {Θ1, . . . , Θn} of conditional probability tables (CPT) Θi = P(Xi ∣ Pa(Xi)), i ∈
{1,⋯, n}, which are associated with the random variables.

• Pa(v) = {u ∣ u ∈ X , (u, v) ∈ E} is the set of parent nodes.
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Figure 9.2: Exemplary Bayesian network [129]

• �e rows of the CPTs contain the probabilities Θi jk = P(xi j ∣ eck(Xi)) of the ni combi-

nations xi j, j ∈ {1,⋯, n}, conditioned on the possible state combinations ec(Xi) of the
parents Pa(Xi).

• eck(Xi) ∈ ec(Xi) represents the k-th state combination of ec(Xi). �e CPT of a node

without any parents contains only unconditioned probabilities P(xi , j), i. e.,Θi = P(Xi).

As an example, consider the situation where one sees wet grass outside and has to infer whether it
is due to the sprinkler or because of the rain [129]. A BN with the conditional variables Cloudy,
Sprinkl er, Rain, andWetGrass can bemodeled based on past experience as a Bayesian network
as shown in Fig. 9.2. It shows that the event that the grass is wet can have two possible reasons:
either it has rained (Rain=1) or the sprinkler has been activated (Sprinkl er=1). Each of those
events again can have two possible events. For each combination, the Bayesian network shows the
probability that the grass is wet. If, e. g., the sprinkler was o�, but it has rained, the probability
that the grass is wet is P(WetGrass) = 0.9. If one sees wet grass outside, using Bayes rule he
can now determine whether it is more likely that the sprinkler was on or that it has rained. In
this chapter, however, BNs are not used for inference, but for another reason. �e conditional
probabilities of a BN allow for a much more compact representation. �e nodeWetGrass, e. g.,
is considered conditionally independent of the node Cloudy. �e CPT of WetGrass therefore
does not include probabilities for Cloudy. As presented below, this will be advantageous, when
BNs are used to encode behavioral dependencies of the robots.

If a Bayesian network BN is fully speci�ed by its graph structureG and CPTs Θ, the probabilities
of the random variables Xi may be calculated by summing the joint probabilities over all out-
comes for their parents, which is called marginalization. In realistic applications, this is seldom
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9 Choice of the imitatee

the case, though. O�en, some of the data and some of the BN’s structure and/or CPT is given,
and the remaining information for the BN has to be retrieved. �is is also the case in the demon-
strator selection approach. Here, the a�ordance data is given and the most plausible BN has to
be found.

�ere are four di�erent situations, in which BNs can be learned. �e training data may be com-

plete or partly missing and the network structure may be known or unknown. In this section, BNs
will encode e�ciently the dependencies of noisy, and sometimesmissing, observations regarding
the action capabilities of the surrounding robots. �ereby, the learning step faces the hardest sit-
uation: the data is incomplete and the network structure is not known in advance. �is challenge
is handled by the Alternating Model Selection EM algorithm by Friedman [76].

9.2.2 A�ordances

As the choice of the demonstrator has to be performed prior to the imitation process itself, the
robot has to be able to detect a set of behavioral capabilities in the other robots’ performance.
On the one hand, these behavioral capability detectors have to contain enough information to
support an imitator in its choice of the demonstrator. On the other hand, they must be general
enough to be able to detect the same pattern for morphological di�erent robots.

A helpful concept for this was de�ned by the psychologist Gibson who observed that our per-
ception of the world is dependent on our interactions with it [80]. He introduced the term of
a�ordance de�ned as the action opportunity or interaction possibility the environmental objects
present to an actor. An a�ordance is thereby a quality that an object o�ers to speci�c actors.
�rough the set of action possibilities, which an object o�ers to an actor, the object provides
meaning to that actor, as seen by Overbeeke and Wensveen [137]:

�e world appears to us as inherently meaningful because we perceive action pos-

sibilities, i. e., a�ordances. Meaning is in the world, directly, not inferred through rea-

soning.

�iruvengada and Rothrock analyzed a�ordances for their underlying properties. �ey found
the following seven properties [177]:

1. It is an ecological concept de�ned at varying ecological levels for di�erent animals.

2. An a�ordance is always attributed to a set of two or more things taken together.

3. By an a�ordance the environment informs the animal how it is to be used.

4. Sets of a�ordances describe a niche that speci�es how a species lives.

5. An a�ordance contains real meaning, which exists independent of the perceiver.

6. A�ordances are present even if a perceiver does not notice them.

7. An observer directly perceives basic a�ordances.
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As such, a�ordances are a reasonable concept to detect robotic behavioral capabilities. When
a robot is collecting information about the a�ordances that are o�ered to it by objects in the
environment, it can compare whether its own niche resembles that one of another robot. �e
more similar the speci�c niches of two robots are the more similar the robots themselves can
assumed to be and the more likely imitation will provide useful behavior.

�e categorization of Zhang will help to de�ne the type of a�ordance more clearly on which the
demonstrator selection approach in this section bases on [190]. He distinguishes �ve di�erent
types of a�ordance:

Biological a�ordance is based on biological process. Some plants, e. g., a�ord nutrition, while
others a�ord biological hazards.

Physical a�ordance is concerned with physical structures. A chair a�ords a human to sit on it,
while it does not so to an elephant.

Perceptual a�ordance provides information cues regarding objects in the environment. Zangh
o�ers the pictorial signs for ladies’ and men’s restrooms as examples.

Cognitive a�ordance are provided by cultural conventions, like tra�c lights, e. g..

Mixed a�ordance combines several of the aforementioned a�ordances. A mailbox, e. g., pro-
vides no information to a person that has no knowledge (cognitive a�ordance) about its
usages and structure of the mailbox itself (physical a�ordance).

By Zhang’s de�nition, physical a�ordance is the appropriate type in this case, as the robots’ capa-
bilities are naturally found out by physical interactions with the objects. Physical a�ordances are
re�ected by the 3D structure of the objects involved in those a�ordances. Because 3D structures
are not directly perceived by humans or animals, they must reconstruct them from the perceived
2D images. Since this seems to be an easy task for humans and animals, it is not so for state-
of-the-art computer vision approaches [87, 73]. �e concept of physical a�ordances is heavily
used in current robotics research. Lörken and Hertzberg use it to ground planning operators of
a mobile robot’s planning task [116]. Stoytchev lets a robot manipulator arm learn a�ordances in
experiments [170]. As another example, Detry et al. have �gured out how a robot arm can learn
object grasp a�ordances [66].

�e purpose of the imitatee selection approach, however, is not the preprocession part of a�or-
dance recognition, but the use of a�ordances themselves in order to determine the best demon-
strator for an imitation. �erefore, the physical a�ordances will be provided to the evaluation
scenario. �ere, objects will o�er a�ordances like pushable, pullable, li�able, or seizable.

9.3 Overview of the demonstrator choice process

�e general overview of the process of choosing the best demonstrator for the later imitation
process is outlined in Fig. 9.3. To support the explanation of this process, it will be described
throughout this chapter subjectively from the view of an arbitrary robotRm.
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Figure 9.3: Processes involved in choosing the best demonstrator for imitation

In order to acquire the necessary data, the Rm continuously monitors the other robots in the
group and tries to detect a�ordances in the perception. �ese detected a�ordances are updated
and accumulated in the a�ordance table T . �e process ends here if the robot is not about to
imitate another robot.

If the robot plans to imitate another robot, it generates one a�ordance network (AN) for each
robot in the group – including itself. �ese ANs are then compared to Rm’s own AN. �e best
demonstrator is then determined as the robot who has the smallest distance to Rm in terms of
their a�ordance networks.

9.4 A�ordance detection

In order to measure the behavioral di�erence between two robots, the robot in question needs a
su�ciently expressive set of measurable a�ordances [81]. �ese have to be provided beforehand.
In specifying the detectable a�ordances of environmental objects, one has the possibility of spec-
ifying the complexity of the behavioral di�erencemeasurement. �emore numerous and diverse
the a�ordances are, which a robot is able to explore and observe, the more �ne grained the robot
can compare its own behavior to that of other robots. �e advantage of using a�ordances is that
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9.5 A�ordance network generation

they are completely independent of the robots morphologies.

In order to describe the a�ordance detection, let the set of robots in the environment be R =
{R1, . . . ,Rn} and the set of object to be O = {o1, . . . , oq}. �e perception stream Im(t) ∈ I of
robot Rm is assumed to be already preprocessed. In this perception stream, the robot is con-
tinuously looking for a�ordances Λ = {Λ1, . . . , Λp} by means of one validity function for each
a�ordance Λ j:

Val id j(Im(t), o,Rk) ∈ {T , F , �} . (9.2)

It determines whether object o ∈ O o�ered robot Rk ∈ R the a�ordance Λ j, with the robot
Rm being able to observe itself. �e validity function is composed of a list of conditions. All
but the last condition are preconditions ensuring that the observed robot was able to test the
a�ordance under question. If the test of one of these conditions fails, the a�ordance could not
be determined, which is marked with an “�” in that case. Otherwise, the last check determines
whether the a�ordance Λ j is o�ered to the observed robotR (“T”) or not (“F”). �is distinction
is necessary so that failed preconditions are not confused with lacking capabilities.

�e following example will support the further explanations. �e two robotsRred andRblue are
located in an environment with three objects from the set O = {o1, o2, o3}. As before, the data
will be presented from the view of robotRm = Rred. �e �ltered perception can be tested for the
a�ordances Λ = {Λ1, Λ2, Λ3, Λ4}. A�er some time of observation, robotRred will have collected
the knowledge about which robot was o�ered what a�ordance by which object.

�e knowledge is accumulated in T red = T redred ∪T redblue as shown in Tab. 9.1: T redblue represents the data
ofRred observingRblue:

T redblue = {(Λ j, ok ,Val id j(Ired(t), ok ,Rblue) ∣ j = 1, . . . , 4, k = 1, . . . , 3} (9.3)

T redred represents the data ofRred observing itself. T redred and T redblue di�er only in the fact thatRred has
been o�ered a�ordance Λ4 by object o3, in contrast to Rblue. Although the information in the
two data sets T redred and T redblue su�ces to compare the robots, the direct comparison is unfeasible
because of the following problems:

1. Data can be unknown (“�”) or even missing (no entry in T ).

2. �e perception is noisy. Boolean data has therefore to be processed to account for that.

3. �e number of comparisons increases with the amount of collected a�ordance data.

In the next section it is shown how these problems can be solved by encoding T in a Bayesian
network.

9.5 A�ordance network generation

As the a�ordance data is noisy, instead of using Val id j(I(t), o,R) directly, one has to use the
corresponding probabilities. �erefore, each a�ordance Λ j ∈ Λ has to be associated with a ran-
dom variable A j ∈ {T , F}. �is is done inside the AlternatingModel Selection EM algorithm (cf.
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9 Choice of the imitatee

Table 9.1: A�ordance information, as detected by robot Rred. �e robots Rred and Rblue only di�er in
a�ordance Λ4 o�ered by object o3 (marked gray).

T red
T redred T redblue

Λ j ok Val id j(Ired(t), ok ,Rred) Λ j ok Val id j(Ired(t), ok ,Rblue)
Λ1 o1 T Λ1 o1 T

Λ2 o1 � Λ2 o1 �
Λ3 o1 T Λ3 o1 T

Λ4 o1 F Λ4 o1 F

Λ1 o2 F Λ1 o2 F

Λ2 o2 � Λ2 o2 �
Λ3 o2 F Λ3 o2 F

Λ4 o2 F Λ4 o2 F

Λ1 o3 T Λ1 o3 T

Λ2 o3 T Λ2 o3 T

Λ3 o3 T Λ3 o3 T

Λ4 o3 T Λ4 o3 F

Sec. 9.2.1). It replaces each observed “�” by the most likely assignment of T or F according to its
internal heuristics [76].

Robot Rm then approximates the unknown probability P(A j) = P(A j = T), which represents
the probability that a�ordance Λ j ∈ Λ is o�ered to robotRl :

P(A j) =
∣{o ∣ Val id j(Im(t), o,Rl) = T , o ∈ O}∣

∣O∣ . (9.4)

Each triple (Λ j, o,Val id j(Im(t), o,Rl)) ∈ T m
l
is associated one element in the sample space

of the random variable A j. �e data collected while interacting with its environment is now
interpreted as one sample for each random variable A j. �e more data the robot collects the
more accurate its approximation of P(A j) becomes.
Interpreting a�ordances as random variables has the following advantages:

• �e behavioral capabilities of the robots are decoupled from the concrete objects as the
comparisons can be made among the random variables in A = {A1, . . . ,A∣Λ∣} and not
between the concrete triples in T m

l
.

• �e representation of the behavioral capabilities is more compact and robust as the uncer-
tainties and incompleteness of the data is taken into account.

• �e joint distribution of random variables nicely �ts into the concept of Bayesian networks
(BN) [131], which are very e�cient and intuitive to interpret. �e use of already existing
graph metrics is possible as they are essentially graphs.

• By grouping a�ordances with respect to the objects, it is possible to reason over a�ordance
dependencies.
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T red
T redred T redblue

Λ j ok Val id j(Ired(t), ok ,Rred) Λ j ok Val id j(Ired(t), ok ,Rblue)
Λ1 o1 T Λ1 o1 T

Λ2 o1 � Λ2 o1 �
Λ3 o1 T Λ3 o1 T

Λ4 o1 F Λ4 o1 F

Λ1 o2 F Λ1 o2 F

Λ2 o2 � Λ2 o2 �
Λ3 o2 F Λ3 o2 F

Λ4 o2 F Λ4 o2 F

Λ1 o3 T Λ1 o3 T

Λ2 o3 T Λ2 o3 T

Λ3 o3 T Λ3 o3 T

Λ4 o3 T Λ4 o3 F

ok Λ1 Λ2 Λ3 Λ4
o1 T � T F

o2 F � F F

o3 T T T T

ok Λ1 Λ2 Λ3 Λ4
o1 T � T F

o2 F � F F

o3 T T T F

T redred
′ T redblue

′

Figure 9.4: Transformed a�ordance information for the two robots Rred and Rblue as detected by Rred.
�e lines correspond to objects with the columns containing the a�ordances.

In order to exploit these advantages, T m has to be transformed so it can be used as sample data
of the random variables in A. �is is achieved by restructuring robot Rl ’s validation results
b ∈ {T , F , �} of all the triples in T m

l
with respect to the objects:

T m
l
′ = {(o, b l

1 , . . . , b l
p) ∣ b l

j = Val id j(Im(t), o,Rl) ∀(Λ j, o, b l
j) ∈ T m

l } . (9.5)

T m
l
′ consists of one (p + 1)-tuple for each object, where p = ∣Λ∣ is the number of detectable

a�ordances. Each tuple corresponds to one object in the environment of the robots. �e trans-
formation of the data in Tab. 9.1 is shown in Fig. 9.4.

In the following, a Bayesian network is called a�ordance network AN = (G , Θ) if its nodes are
random variables that represent the detected a�ordances in Λ. Structural ExpectationMaximiza-

tion is used to learn the structure and the parameters of the network that best explain the data
in T m′. It utilizes theMaximum Likelihood method to estimate missing data. Fig. 9.5 shows the
a�ordance networks ANred and ANblue that correspond to the data in Fig. 9.4. As can be seen, the
AlternatingModel Selection EM algorithm not only estimates the parameters for themissing data,
but also changes the probabilities for the provided data (P(A1) = 0.6 instead of 2/3). �is im-
proves the chances of �nding themost likely structure and parameters for the provided data [76].
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Figure 9.5: A�ordance networks for the data in Tab. 9.1
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9.6 Comparing a�ordance networks

�e previously described method is then used by each robot to calculate from its �ltered per-
ception sequence Im(t) of robotRm the according a�ordance network ANi for robotRi . �is is
then interpreted as the current behavioral capabilities ofRi . �is section describes how two af-
fordance networks can be compared with each other. As stated in Sec. 9.2.1, a Bayesian network
AN = (G , Θ) consists of two components. �e structure component G = (A, E) is a directed
acyclic graph (DAG) with its nodes representing the random variables and its edges the depen-
dencies between them. �e parameter component Θ is a collection of local interaction models.
It describes the probabilities of each variable Ai conditioned on its parent node set Pa(Ai) in G.
Both contain causality information between the nodes in AN .

In the following, themetric that calculates the behavioral distance between two robotsR1 andR2
will be named DAN(AN1,AN2). �e metric needed to compare two a�ordance networks has to
take into account the structural as well as the parameter component. �e individual component
metrics will be called Dstruct(AN1,AN2) and Dparam(AN1,AN2), respectively.
�e following two subsections present the calculation of the structural and parameter di�erence.
Subsequently, the a�ordance network metric is exemplary applied to the example a�ordance
networks in Fig. 9.5.

9.6.1 Structural di�erence of a�ordance networks

Comparing two arbitrary graphs in the general case is NP-complete. For the special case of an
a�ordance network, being a DAG with unique node labeling, Dickinson et al. showed that their
Graph Edit Distance algorithm (GED) is able to perform it in polynomial time [67]. It calculates
the di�erence between two graphs as the minimal cost of transforming one graph into the other.

�e transformation requires an unique identi�cation of the same nodes and edges in the two
graphs that are compared. �is is de�ned by a label representation.

De�nition 9.2 (Label representation for graphs with unique node labeling [67]) �e graph

G = (V , E , α, β)

is called a labeled graph, if the function α ∶ V → LV assigns labels to nodes, and the function

β ∶ E → LE assigns labels to edges. �e label representation L(G), is de�ned by L(G) = (L,C , λ),
where

(i) L = {α(v) ∣ v ∈ V}, with v1 ≠ v2⇒ α(v1) ≠ α(v2) ∀ v1, v2 ∈ V,

(ii) C = {(α(v1), α(v2)) ∣ (v1, v2) ∈ E}, and

(iii) λ ∶ C → LE with λ(α(v1), α(v2)) = β(v1, v2) ∀(v1, v2) ∈ E.

In order to transform one graph into the other, the edit operations changing, inserting, and re-
moving a node or edge are needed. Let G1

es→ G2 denote the transformation of G1 into G2 by a
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sequence of edit operations es = op1, . . . , opn. �e cost of es is calculated as the sum of the in-
dividual costs c(es) = ∑n

i=1 c(opi), with c(⋅) > 0. �e GED between the two graphs G1 and G2 is
then calculated as de�ned in Def. (9.3).

De�nition 9.3 (Graph Edit Distance [67]) Let G1, G2 be labeled graphs andL(G1),L(G2) be the
corresponding label representations. �e GED between G1 and G2 is then calculated as

DGED(G1,G2) = ∣L1∣ + ∣L2∣ − 2∣L1 ∩ L2∣ + ∣C1∣ + ∣C2∣ − 2∣C0∣ + ∣C′
0∣ , (9.6)

where

C0 = {(i , j) ∣ (i , j) ∈ C1 ∩ C2 ∧ λ1(i , j)) = λ2(i , j)}
is the set of equally labeled edges and

C′
0 = {(i , j) ∣ (i , j) ∈ C1 ∩ C2 ∧ λ1(i , j)) ≠ λ2(i , j)}

is the set of di�erently labeled edges between equally labeled nodes of the two graphs.

Some simpli�cations are possible when applying the GEDmetric to a�ordance networks. Given
two a�ordance networks AN1 = (G1, Θ1) with G1 = (A1, E1) and AN2 = (G2, Θ2) with G2 =
(A2, E2). Since the GED only compares the graphs’ structures, it follows that DGED(AN1,AN2) =
DGED(G1,G2). In addition, some terms in the GED metric are irrelevant in the context of a�or-
dance networks, as will be pointed out in the following.

For calculating Dstruct(G1,G2) based on DGED(G1,G2) the a�ordance networks at �rst need a
label representation, which in turn relies on the labeling functions α and β:

α ∶ Ai ↦ Λi , Ai ∈ A, Λi ∈ Λ (9.7)
β ∶ (Ai ,A j) ↦ 1, ∀(Ai ,A j) ∈ E , i ≠ j (9.8)

�e nodes are naturally labeled uniquely by their corresponding a�ordances Λi ∈ Λ. �e def-
inition of β, assigning to all edges the same value, goes along with the edge semantic and the
a�ordance networks. An edge between two nodes simply states a causal dependency between
them. �ey convey no additional meaning like strength or type of the relationship. To calculate
the di�erence it is only important to know whether an edge does exist or not in the graph.

De�nition 9.4 (Label representation for a�ordance networks) �e label representation

L(G) = (L,C , λ)

of the graph component of an a�ordance network AN = (G ,Θ) is de�ned by:

(i) L = {Λ1, . . . , Λn}, n = ∣Λ∣, A1 ≠ A2⇒ α(A1) ≠ α(A2) ∀ A1,A2 ∈ A

(ii) C = {(α(Ai), α(A j)) ∣ (Ai ,A j) ∈ E}

(iii) λ ∶ C → 1 with λ(α(Ai), α(A j)) = β(Ai ,A j) = 1 ∀ (Ai ,A j) ∈ E, i ≠ j.
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Two nodes Ai ∈ G1 and A j ∈ G2 are called corresponding if they are assigned the same label:
α1(Ai) = α2(A j).
When a robot is monitoring other robots in order to recognize a�ordances, it checks its observa-
tions for the same set of a�ordances for each robot. �erefore, it can ensure that all the a�ordance
networks, which it has created for the di�erent robots, contain the same set of nodes with the
same labels, hence ∣L1∣+ ∣L2∣−2∣L1∩L2∣ = 0. �e second simpli�cation follows from the de�nition
of β. When two graphs contain the same edge, this edge is also labeled the same. Consequently,
the term ∣C′

0∣, which counts all edges with di�erent labels, can be omitted from the metric. �is
leads to the following distance measurement for a�ordance networks:

Dstruct(G1,G2) = Dstruct(AN1,AN2) = ∣C1∣ + ∣C2∣ − 2∣C0∣ (9.9)

�e following example calculates the structural distance between the a�ordance networks ANred
and ANblue from Fig. 9.5. �e label representations are de�ned by L(Gred) and L(Gblue):

• L(Gred)

– Lred = {Λ1, Λ2, Λ3, Λ4}
– Cred = {(Λ3, Λ4), (Λ3, Λ1)}
– λred ∶ (x , y) → 1 ∀(x , y) ∈ Cred

• L(Gblue)

– Lblue = {Λ1, Λ2, Λ3, Λ4}
– Cblue = {(Λ3, Λ1)}
– λblue ∶ (x , y) → 1 ∀(x , y) ∈ Cblue

Both graphs have one similar edge, so that C0 = {(Λ3, Λ1)}. �e structural distance ANred and
ANblue is:

Dstruct(ANred,ANblue) = ∣Cred∣ + ∣Cblue∣ − 2∣C0∣ = 2 + 1 − 2 = 1

9.6.2 Parameter di�erence of a�ordance networks

�e basic idea behind the calculation of the di�erence between two a�ordance networks is to
interpret the networks’ nodes as points in the same metric space and to use the Manhattan met-
ric. �e distance sum of all the corresponding nodes from AN1 and AN2 is then the parameter
di�erence between the two networks.

To support the description of the parameter di�erence, some de�nitions have to be introduced
�rst.

De�nition 9.5 (Event combination of the parent nodes) Let AN = (G , Θ) and Ai be a node

from G = (A, E , α, β). Let Pa(Ai) be the set of Ai ’s parent nodes and

F(Ai) = Fi = { f ijp = (Λ j, p) ∣ Λ j = α(A j), A j ∈ Pa(Ai), p ∈ {0, 1}} (9.10)
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the event set of the Ai ’s parent a�ordance random variables, Pa(Ai), with p = 1 indicating that
a�ordance Λ j is provided and p = 0 otherwise. �e event combination set of these variables is then

de�ned as

ec(Ai) = eci = {eci ,k = ( f ij1p1 , . . . , f ij l p l ) ∣ f ijmqm ∈ F(Ai),
ju ≠ jv ∀u ≠ v ,
eciw ≠ ecix ∀w ≠ x ,
l = ∣Pa(Ai)∣, k ∈ {1, . . . , 2l}} . (9.11)

As the possible events for a random variable are either true or false, ∣Fi ∣ = 2∣Pa(Ai)∣ and ∣eci ∣ =
2∣Pa(A i)∣.

Consider node A1 of the a�ordance network AN2 in Fig. 9.6(b) as an example. It has two parents
A2 and A3. In this case,

F(A1) = {(Λ2, 1), (Λ2, 0), (Λ3, 1), (Λ3, 0)} (9.12)

and

ec(A1) = { ((Λ2, 1), (Λ3, 1)) ,
((Λ2, 1), (Λ3, 0)) ,
((Λ2, 0), (Λ3, 1)) ,
((Λ2, 0), (Λ3, 0))} . (9.13)

With the help of the elements of eci , it is possible to construct a coordinate system. Within
this coordinate system, it is possible to compare the parameter di�erence of an a�ordance for
di�erent robots.

De�nition 9.6 (Point representation of a node) Let Ai be a node in G = (A, E , α, β) and eci
de�ned according to Def. (9.5). �e set

coord(Ai) = {coord(Ai)k = (eci ,k , Θi ,k) ∣ P(Ai ∣ eci ,k) = Θi ,k} (9.14)

is the coordinate set of point(Ai) corresponding to node Ai .

Let further the k-th axis of coord(Ai) be

axis(Ai)k = eci ,k (9.15)

and denote its value as

value(Ai)k = Θi ,k . (9.16)

�e set coord(Ai) contains a coordinate k for each event combination eci ,k and therefore has

2∣Pa(A i)∣ coordinates.
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Figure 9.6: Graph AN1 is lacking edge A3 → A1

De�nition 9.7 (Comparability of points) Let AG1
i ∈ G1 and AG2

n ∈ G2 be two corresponding nodes
for the graphs of di�erent robots, α(AG1

i ) = α(AG2
n ), and coord(AG1

i ) and coord(AG2
n ) their re-

spective coordinate sets. �e points reside in the same coordinate system if for all coord(AG1
i )k ∈

coord(AG1
i ) exactly one coordinate coord(AG2

n )k′ ∈ coord(AG2
n ) with axis(AG1

i )k = axis(AG2
n )k′

exists. In this case, the nodes are said to be comparable.

For two comparable nodes, AG1
i and A

G2
n , a parameter distance can be calculated by Eq. (9.17):

Dparam(AG1
i ,A

G2
n ) =

2l

∑
k=1

axis(AG1
i
)k=axis(AG2

n )k′

∣value(AG1
i )k − value(AG2

n )k′ ∣ (9.17)

A�ordance networks do not necessarily contain only comparable nodes. Figures 9.6, 9.7, and
9.8 show three a�ordance networks AN1, AN2, and AN3, which cannot be compared with each
other. �e rest of this section explains how to cope with this incomparability.

In all of these three cases, the coordinate sets of the points must be extended so that they satisfy
Def. (9.7). �is is supported by theMarkov property, which guarantees that two randomvariables
of an a�ordance network are independent if they are not directly connected by an edge. �e law
of conditional independence allows to extend the condition set eci ,k of probability P(Ai ∣ eci ,k)
by additional conditions without changing the probability, if Ai is independent of the additional
conditions.

De�nition 9.8 (Extended event combination of the parent nodes) Let AG1
i and AG2

n be two cor-

responding nodes in di�erent a�ordance networks, Pa(AG1
i ) and Pa(AG2

n ) their individual parent
sets, and Λext = {α(Ak) ∣Ak ∈ Pa(AG1

i ) ∪ Pa(AG2
n )} be the set of both parents’ a�ordances. �e

extended event set of both nodes, AG1
i and AG2

n , is given by

F ext(AG1
i ,A

G2
n ) = F ext

in = { f injp = (Λ j, p) ∣ Λ j ∈ Λext , p ∈ {0, 1}} . (9.18)
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Figure 9.7: Opposite situation: graph AN3 is lacking edge A2 → A1
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Figure 9.8: Both a�ordance networks are lacking an edge that exists in the other network.
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�e set of event combinations of AG1
i ’s parent nodes, extended by the missing parents of AG2

n , is then

given by

ecext(AG1
i ,A

G2
n ) = ecextin = {ecextin,k = ( f inj1p1 , . . . , f inj l p l ) ∣ f ijmqm ∈ F ext

in , (9.19)

ju ≠ jv ∀u ≠ v ,
ecextin,w ≠ ecextin,x ∀w ≠ x ,

l = ∣Λext ∣ , k ∈ {1, . . . , 2l}} .

De�nition 9.9 (Probability of a�ordances with extended event combinations) Let twonodes,
AG1

i ∈ G1 and AG2
n ∈ G2, be corresponding but not comparable as they do not show the properties of

Def. (9.7). Let eci be the set of event combinations of node AG1
i and ecextin the set of event combina-

tions extended by AG2
n ’s event combination set, which emerged from eci .

With the independence de�nition and the conditioned independence, the extended event combina-

tions condition the same probability as the original event combination:

P(AG1
i ∣ ecextin,kp) = P(AG1

i ∣ eci ,k) ∀ ecextin,kp ∈ ec
ext
in , eci ,k ∈ eci , p ∈ {0, 1} (9.20)

Each component in the original condition set, f iju pu ∈ eci ,u = ( jij1p1 , . . . , f ij l p l ), l = ∣Pa(Ai)∣,
u = k, then has a corresponding component in the extended condition set, f injv pv ∈ ecextin,v =
( jinj1p1 , . . . , f inj l ′ p l ′), l

′ = ∣Λext ∣, v = kp, with f inju pu = f ijv pv . With Def. (9.9) the following equality
holds: P(AG1

i ∣ ecextin,v) = P(AG1
i ∣ eci ,u).

Using the equality of the probability distribution, the extended coordinate representation of the
point corresponding to AG1

i can be de�ned.

De�nition 9.10 (Extended point representation of a node) Let AG1
i ∈ G1 and AG2

n ∈ G2 be two
corresponding nodes violating the properties of Def. (9.7). Let ecextin be the extended event combina-

tion of the parent nodes of AG1
i . �e extended coordinate set coordext

in (AG1
i ) of the point correspond-

ing to AG1
i can then be de�ned as:

coord ext
in (AG1

i ) = {(ecextin,k , Θi ,k) ∣ ecextin,k ∈ ecextin , Θi ,k = P(AG1
i ∣ ecextin,k)} (9.21)

�e k-th axis of coordext
in (AG1

i ) is then de�ned as

axis(AG1
i )k = ecextin,k (9.22)

and its value denoted as

value(AG1
i )k = Θi ,k . (9.23)

coord ext
in (AG1

i ) is also called the extended point representation of node AG1
i .

Consider the two graphs AN1 and AN2 in Fig. 9.6. In order to calculate the distance between
them, AG1

1 , the node A1 in graph AN1, has to be extended so that it can be compared to AG2
1 , the
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Figure 9.9: Extended point representation of node A1 from Fig. 9.6(a): a�er extending the node’s condi-
tion set, it can be compared to A1 from graph AN2 in Fig. 9.6(b)

node A1 in graph AN2. �is is done by �rstly determining F ext(AG1
1 ,AG2

1 ):

F ext(AG1
1 ,AG2

1 ) = { f 1121 = (Λ2, 1),
f 1120 = (Λ2, 0),
f 1131 = (Λ3, 1),
f 1130 = (Λ3, 0)} (9.24)

Using this extended event set, the extended event combination of the parent nodes is given by

ecext(AG1
1 ,AG2

1 ) = {( f 1121 , f 1131 ),
( f 1121 , f 1130),
( f 1120, f 1131 ),
( f 1120, f 1130)}

= {((Λ2, 1), (Λ3, 1)),
((Λ2, 1), (Λ3, 0)),
((Λ2, 0), (Λ3, 1)),
((Λ2, 0), (Λ3, 0))} . (9.25)

�e extended point representations are made up by the following equations and visualized in
Fig. 9.9.

P(AG1
1 ∣ ecext11,10) = P(AG1

1 ∣ ec11) = 0.17
P(AG1

1 ∣ ecext11,11) = P(AG1
1 ∣ ec11) = 0.17

P(AG1
1 ∣ ecext11,20) = P(AG1

1 ∣ ec12) = 0.6
P(AG1

1 ∣ ecext11,21) = P(AG1
1 ∣ ec12) = 0.6

Let ci = coordext
in (AG1

i ) and cn = coordext
ni (AG2

n ) be the extended point representations of the
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corresponding nodes AG1
i and A

G2
n . �e Manhattan distance is calculated as follows:

Dparam(AG1
i ,A

G2
n ) =

2∣Λ
ex t ∣

∑
k=1

axis(AG1
i
)k=axis(AG2

n )k′

∣value(AG1
i )k − value(AG2

n )k′ ∣ (9.26)

�is leads to the calculation of the Manhattan distance of two a�ordance networks:

Dparam(AN1,AN2) = Dparam(G1,G2) = ∑
A
G1
i
∈G1 ,AG2

n ∈G2
α1(AG1

i
)=α2(AG2

n )

Dparam(AG1
i ,A

G2
n ) (9.27)

Dparam applied to the networks fromFig. 9.5 (page 111) results in the following parameter distance:

Dparam(ANred,ANblue) =
4

∑
i=1

Dparam(Aredi ,Abluei )

=0.0 + 0.0 + 0.0 + 0.33
=0.33 (9.28)

9.6.3 A�ordance network distance metric

With the de�nition of both distance components, the total distance of the a�ordance networks
can be calculated as the weighted sum of both components:

DAN(AN1,AN2) = η ⋅ Dstruct(AN1,AN2) + (1 − η) ⋅ Dparam(AN1,AN2) . (9.29)

�e total distance of the example networks ANred and ANblue in Fig. 9.5 with η = 0.5 then is

DAN(ANred,ANblue) =0.5 ⋅ Dstruct(ANred,ANblue) + 0.5 ⋅ Dparam(ANred,ANblue)
0.5 ⋅ 1 + 0.5 ⋅ 0.33 = 0.665 . (9.30)

If robotRm in a robot groupR = {R1, . . . ,Rn} has observed other robots, detected a�ordances,
and constructed the corresponding a�ordance networks for all the other robots and for itself, it
can then choose to imitate robotRimitate that is most similar to itself in terms of the a�ordance
network metric:

Rimitate = argmin
Ri∈R, Ri≠Rm

{DAN (ANi ,ANm)} (9.31)

9.7 Evaluation

�e following three experiments evaluate the applicability and robustness of the demonstrator
selection. �e starting situation in all of these experiments is an imitator robot that has to choose
one imitatee from a group of potential demonstrator robots. �e �rst experiment shows detailed
how di�erent capabilities lead to di�erent a�ordance observations of which in turn di�erent
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Figure 9.10: Evaluation environment containingmorphologically di�erent robots and objects of di�erent
shape, width, height, mass, and surface

a�ordance networks are generated. In the second experiment, the imitation performance and
robustness of the whole approach is analyzed. Both experiments assume the variance of the ob-
jects’ properties to support the generation of meaningful statistics of the recognized a�ordances.
With increasing variance, the usefulness of the created a�ordance networks decreases as the same
a�ordance is averaged over objects of greatly varying properties. �is is the case if, e. g., the im-
itator has observed a demonstrator being able to push a lightweight object but unable to push
a heavy one. �e last experiment shows how to overcome this problem by clustering objects
according to their properties.

9.7.1 Experimental setup

Multiple morphologically di�erent robots are located in a Gazebo environment containing ob-
jects of di�erent sizes and shapes. Fig. 9.10 shows an example environment with two of those
robots with di�erent morphology and objects of di�erent sizes and shapes. In the exploration
phase, the robots are interacting with those objects and thereby detecting the a�ordances o�ered
to them. In addition, they are continuously monitoring the other robots in the environment
and thereby detecting a�ordances of those robots as well. Whenever a robot decides to imitate
another robot, it executes the demonstrator selection algorithm and imitates the selected robot.
�e remainder of this section presents the used parameter intervals of the robots’ and objects’
properties

9.7.1.1 Parameterization of the environment

�e Pioneer2DX is used as the base robot platform, which already exists as a module for the
Gazebo simulation environment [25]. Two simulated SickLMS 200 laser scanners [23] are cou-
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(a) Standard gripper (b) Barb gripper

Figure 9.11: Two di�erent grippers that lead to very di�erent a�ordances of the corresponding robots

Table 9.2: Parametrization of the robots used in the experiments

parameter values description

m
ot
or power [0.3, 6.0] kg maximal weight a robot can pull/push

speed [0.03, 0.2] m/s controls the impulse a robot impact on an object

gr
ip
pe
r

length [0.08, 0.2]m the longer the gripper the deeper the objects can be

span [0.16, 0.5] m limits the diameter of objects that can be gripped

closing
force

[1.0, 30.0] kg controls the contact pressure (to pull heavier objects
the closing force must be higher)

li�ing
force

[30.0, 80.0] kg controls the friction (to li� heavier objects the closing
force must be higher)

form {normal , barb} di�erent forms lead to di�erent interaction possibili-
ties (Fig. 9.11)

pled to scan the full 360○ of the robot’s environment for objects and other robots. �e lasers
return the ID and the relative position for both. �e robot knows the objects’ individual prop-
erties. In all experiments, the robots have the same perception con�guration. �e evaluation
concentrates on the morphological di�erences that are leading to di�erent action capabilities,
which are the movement and gripping capabilities. Tab. 9.2 lists the di�erent parameters and
shows the intervals of their values together with their e�ect on the robot’s action capabilities.

Not only the robot’s morphology determines, which a�ordances are o�ered by an object, but also
the properties of that object itself. �e evaluation experiments used objects of di�erent shape,
width, height, mass, and surface. Tab. 9.3 provides a detailed overview.
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Table 9.3: Parametrization of the objects used in the experiments

parameter values discretization

mass [1.0, 5.0] kg 0.5 kg

width [0.04, 0.24] m 0.05 m

height [0.17, 0.2] m 0.05 m

friction [50, 100] % 0.1 %

shaped { sphere, cube, cylinder}

9.7.1.2 A�ordances and their validation

As already pointed out above, the algorithm relies on a �xed set of prede�ned a�ordances. In all
the experiments, the used a�ordance setwas Λ = {Λ1 ≡ seizable, Λ2 ≡ li�able, Λ3 ≡ pushable, Λ4 ≡
pullable }. �e a�ordances are de�ned as follows:

seizable �e robot is able to reach the object, position it in its gripper, and close the gripper with
the object in it.

li�able �e object can be gripped by the robot. When li�ing the gripper with the object in it, it
stays �xed to the gripper and is also li�ed.

pushable When the robot bumps against the object and continues to move forward, the object
pushed forward.

pullable While the robot is driving backwards having previously gripped an object, the object
stays within the gripper.

�e examination of an a�ordance Λ j ∈ Λ is conducted by means of Val id j(Im(t), o,R) as de-
�ned in Sec. 9.2. �is function needs a list of preconditions that have to bemet in order to test the
�nal condition. �e �nal condition determines the a�ordance (cf. Sec. 9.4). For the previously
presented four a�ordances, those conditions are represented as �nite state machines in Fig. 9.12.

�e presented parameters of the robots and objects allow for su�ciently di�erent scenarios to
evaluate the demonstrator selection approach in this chapter. Before moving on to the experi-
ments the measurement of imitation success has to be de�ned.

9.7.1.3 Imitated behavior and how to measure its success

�e robots imitate other robots that are performing di�erent skills on the diverse objects in the
environment. While doing so, the imitator’s error functions of the involved skills will provide

123



9.7 Evaluation

drive to
object

align to
object

seize
object

�nish

ok

fail

ok

fail

(a) seizable

drive to
object

align to
object

seize
object

li�
object

�nish

ok

fail

ok

fail

ok

fail

(b) li�able

drive to
object

align to
object

drive
forward

�nish

ok

fail

ok

fail

(c) pushable

drive to
object

align to
object

seize
object

drive
back-
ward

�nish

ok

fail

ok

fail

ok

fail

(d) pullable

Figure 9.12: A�ordance testing conditions modeled as �nite state machines for the a�ordances used in
the experiments

feedback regarding how successful the individual skills have been executed. �e number of fail-
ure signals the strategy layer retrieved while executing the imitated behavior serves as an indi-
cator how wise the demonstrator choice had been.

9.7.2 Selection experiment

�e purpose of this experiment is to show the overall feasibility of the demonstrator selection
algorithm by means of a complex scenario.

9.7.2.1 Scenario

�e environment contains three robotsR = {R1,R2,R3} and nine objects O = {o1, . . . , o9}. Of
the three robots, R1 is the imitator that has to decide which of the other robots is most similar
to itself. All robots are able to explore those objects to �nd out which of the a�ordances Λ = {
seizable, li�able, pushable, pullable } are o�ered by them. �e exploration is conducted bymeans
of a set of prede�ned behaviors.

�e concrete parameterization of the robots and objects is shown in Tab. 9.4 and 9.5. As a close
look to Tab. 9.4 reveals, robot R1 seems to resemble more R2 than R3. �e a�ordance network
metric should therefore return a smaller distance to R2 than to R3 for robot R1. Compared to
the object parameter intervals in Tab. 9.3 the objects in this experiment are very similar. �ey
are all designed to be small and lightweight.
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Table 9.4: Dimensioning of the three robots in the selection experiment
robots motor gripper

power length power form
R1 strong long weak barb
R2 medium medium weak barb
R3 weak short strong normal

Table 9.5: Dimensioning of objects in the selection experiment
object mass width height friction form
o1 1.5kg 0.04m 0.41m 95% cube
o2 1.5kg 0.04m 0.42m 100% cube
o3 1.0kg 0.06m 0.41m 95% cube
o4 1.8kg 0.04m 0.42m 95% cube
o5 1.5kg 0.06m 0.40m 100% cylinder
o6 1.5kg 0.04m 0.41m 100% cylinder
o7 1.0kg 0.06m 0.42m 95% cube
o8 1.3kg 0.04m 0.39m 100% cylinder
o9 1.3kg 0.31m 0.31m 90% sphere

9.7.2.2 Procedure

�e robots start exploring the objects without any information regarding the interaction possi-
bilities. �e exploration phase stops a�er each robot has investigated each object and created its
a�ordance networks. Finally, the a�ordance network distances DAN(R1,R2) and DAN(R1,R3)
are calculated.

9.7.2.3 Result

Fig. 9.13, 9.14, and 9.15 show the a�ordance networks, which robot R1 has built for all robots
including itself based on its observation. �e outcome of the a�ordance network metric DAN =
η ⋅Dstruct(AN1,AN2)+(1−η) ⋅Dparam(AN1,AN2) in Eq. (9.29) applied to these networks is shown
in Tab. 9.6 for di�erent values of η.

Table 9.6: Behavioral distance calculated by the a�ordance network metric

η DAN(R1,R2) DAN(R1,R3)
0.1 0.41 3.45
0.25 0.34 3.53
0.5 0.23 3.69
0.75 0.11 3.85
0.9 0.045 3.94
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Figure 9.13: A�ordance network of robotR1 (imitator)
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Figure 9.14: A�ordance network of robotR2 (demonstrator)

126



9 Choice of the imitatee

Pul labl e

P(Pul labl e) = 0.125

Li f tabl e

Pul labl e

0

1

P(Li f tabl e)
0.14

1.00

Seizabl e

Pushabl e

0

1

P(Seizabl e)
0.66

1.00

Pushabl e

Li f tabl e

0

1

P(Pushabl e)
0.50

1.00

Figure 9.15: A�ordance network of robotR3 (demonstrator)
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It shows that the imitator robot R1 would always choose R2 for imitation, which is the more
similar demonstrator. �is indicates that the more similar robots have been o�ered the more
similar a�ordances by the objects. �e a�ordance networks consequently re�ected this similarity,
which led to a smaller value in the distance measurement.

9.7.3 Robustness experiment

Imitation in general is of most utility to the robot when it has not already explored much com-
pared to the other robots. Ironically, at this stage, it also has not collected that much information
regarding the a�ordances o�ered to it and to the other robots. �is experiment evaluates how
the demonstrator selection algorithm copes with the situation. In addition, it investigates how
the algorithm reacts to uncertainty in the collected a�ordance data. For that purpose, the col-
lected a�ordance data will be set to “�” (missing) by 0%, 10%, 20%, and 35%, respectively. �e
Alternating Model Selection EM algorithm by Friedman [76] basically allows for uncertainty in
the data. �is experiment evaluates, how well it does so in the a�ordance network context.

9.7.3.1 Scenario

�e scenario consists of the three robots as in the previous experiment (Sec. 9.7.2) plus another
demonstrator robot R4. �at one is dissimilar to the imitator, representing a bad decision. �e
objects are also the same as in the previous experiment. �roughout this experiment the metric
has equal weights for both components (η = 0.5).

9.7.3.2 Procedure

One experiment run consists of 35 episodes. Starting with the �rst episode, the imitator R1 has
no a�ordance information (T1 = ∅), whereas all demonstrators (R2−4) have already explored the
environment. �e imitator gets the chance to test one not yet tested random a�ordance on an
object. �is populates T1 by one a�ordance tuple. �e imitator then calculates AN1 and has to
select a demonstrator based on the calculated distances. AN2−4 are �x throughout the whole
experiment.

Initially, this will obviously be rather random with only little a�ordance information. Based on
the choice, the imitator imitates the demonstrator and immediately applies the imitated behavior
sequence.

9.7.3.3 Result

�e results are shown in Fig. 9.16. �ey are displayed relatively to the number of failure signals
received in the �rst episode. As expected, the failure signal for the random imitation experiment
stays the same throughout the experiment run. �is is the reference performance, marking the
case of imitation without using the demonstrator selection algorithm.
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Figure 9.16: Impact of the demonstrator selection algorithm on the failure rates for di�erent fractions of
unknown data (with 95% con�dence interval for the 0% case)

�egraph shows that the algorithm presented in this chapter is able to improve upon that. It does
so, however, not before the 15th experiment run. �at means that this approach needs a minimal
amount of data to show its strengths. Although the failure rate never drops to zero due to the
noise in the environment and the realistic simulation scenario, the approach is able to decrease
the failure rate by approximately 50% in the case of no unknown data (0% case).

With increasingly more introduced unknown data, the performance degrades as expected. With
35% and more of unknown data it approaches the performance of random imitation. Recall that
this approach uses the Alternating Model Selection EM-algorithm to learn the a�ordance net-
works [76]. At approximately 30% of unknown data, virtually all the instances in the a�ordance
dataset are incomplete.

In summary, the demonstrator selection algorithm is able to improve the imitation performance
signi�cantly by choosing demonstrator robots that will most likely provide useful new behavior
to the imitator. �e algorithm, however, needs a minimal amount of meaningful data. If this
cannot be guaranteed the worst thing to happen is a performance as if it had not been used.

9.7.4 Clustering experiment

In the previous experiments, the objects had similar properties. E. g., all nine objects had nearly
similar size and weight. �is supports the demonstrator selection algorithm as it increases the
quality of the collected a�ordance data. With more variance in the properties of the objects, also
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9.7 Evaluation

the a�ordance data becomes more ambiguous. If, e. g., nine additional objects were introduced,
all of them big and heavy, the collected a�ordance data would be contradicting for the most part.
�e experiment in this section investigates how the approach copes with objects that are more
heterogeneous.

For this purpose, the robots cluster the objects according to the properties they can perceive.
Subsequently, they construct one a�ordance network for each cluster individually. �e applied
a�ordance network metric �nally has to be extended so that it incorporates all the individual
a�ordance network distances.

9.7.4.1 Scenario

�e experimental setup consists of 18 objects, which can be divided into two groups depending
on their perceivable properties. Within each group, the variance of the object properties is low.
�e robots, however, are not given the number of clusters. �ey determine this by means of the
elbow criteria [27], which can then be used together with the applied agglomerative hierarchical
clustering method [124, 153]. It forms bottom-up the most similar pairs of objects to clusters,
and then the most similar clusters into bigger clusters, and so on, level for level. At each level,
the sum of the clusters’ mean square error of the object distances indicates the quality of the
clustering. �e elbow criteria states that it is advisable to stop the agglomeration process if the
error increases steeply from one level to the next.

9.7.4.2 Procedure

�e experiment proceeds similar to the previous one, except that the imitator clusters the objects
perceived so far prior to the a�ordance data collection and a�ordance network creation. It then
creates the a�ordance networks for each robot in each cluster individually. Recall that the whole
procedure is performed from the view of one robot. At no point in the experiment, the robots
share any data. �erefore, when the imitating robot creates the according a�ordance networks
of the di�erent robots based on its observations, the clustering stays the same.

Assume that the objects have been grouped into n clusters of the set {K1, . . . ,Kn}. In this case,
the imitating robot Rm creates n a�ordance networks for each robot. During exploration, Rm

collects the a�ordances observed at robotRi into the n sets T m
i ,1 , . . . , T m

i ,n (cf. Eq. (9.5) in Sec. 9.5).
RobotRm uses them to create the according a�ordance networks ANi ,1, . . . ,ANi ,n. It calculates
the cluster-based distance Dc

AN(Ra ,Rb) between two robots Ra and Rb by a weighted sum of
the individual a�ordance network distances, where the weight is determined by the amount of
a�ordance data available for the corresponding cluster:

Dc
AN(Ra ,Rb) =

n

∑
l=1

kl

k
⋅ DAN(ANa,l ,ANb,l) (9.32)

Each a�ordance network ANi ,l , constructed from data T m
i ,l , is weighted by

k l
k
, where

k =min{(∣T m
a,l ∣ + ∣T m

b,l ∣) ∣ 1 ≤ l ≤ n} (9.33)
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9 Choice of the imitatee

Figure 9.17: Impact of the clustered demonstrator selection algorithm on the failure rates compared to
the non-clustered approach

is the minimal amount of a�ordance data collected by both robotsRa andRb. �e numerator

kl =min{∣T m
a,l ∣, ∣T m

b,l ∣} (9.34)

is the minimal amount of objects belonging to cluster Kl explored by both robots. �is ensures
a higher weight for distance calculations that are based on more data.

�e rest of the cluster experiment is done equally to the previous experiment.

9.7.4.3 Results

�e graph in Fig. 9.17 shows the performance of the clustering approach (“clustered”) and com-
pares it to the not clustered one (“normal”) averaged over ten experiments. Without clustering,
the failure rates stay the same for over 55 trials and the choice of the best demonstrator is ran-
dom. �is indicates that it needs much more data to construct meaningful a�ordance networks
if the objects show a greater variance in their properties. It takes over 65 trials for the imitator to
collect enough data.

In contrast to that, the clustered approach is able to decrease the failure rates very early. A�er the
35th trial it converges at half of its starting failure rate.
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9.8 Conclusion

�is chapter solved the problem of determining the best demonstrator to imitate. As it is most
reasonable to imitate a robot with similar capabilities, this robot is determined by means of the
similarity of the observed a�ordances compared to the a�ordances of the imitating robot. Typi-
cally, these observations are noisy and ambiguous. To cope with this, the presented demonstrator
selection approach constructs a�ordance networks that are Bayesian networks with a�ordances
as nodes. With a metric that takes into account both the network structure and the a�ordance
dependency parameters, the demonstrator selection approach is able to determine the best robot
demonstrator for a given robot.

It does so even without requiring the robots to reveal their inner status of other information.
�us, it is not only robust with respect to the reliability of the communication channel and does
not require the same communication protocol. It even works in robot groups where robots are
not speci�cally designed to be used in an imitation scenario.

�e approach requires prede�ned a�ordances as its basis. If this cannot be requested for a spe-
ci�c scenario, an a�ordance-learning phase could precede the application of the demonstrator
selection approach. Research by Montesano et al. [125, 126, 127] and Detry et al. [66] has shown
that this is a viable solution.

�e experiments have shown empirically that the demonstrator selection increases the imita-
tion performance while being robust to deterioration of the observation quality. In addition to
improving the imitation performance, the approach also saves computing resources otherwise
spent at monitoring robots that are too di�erent to imitate.
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CHAPTER10
Summary and outlook

�e famous science �ction writer Arthur C. Clarke once formulated his three laws of prediction
regarding the state and progress of science [58]:

1. When a distinguished but elderly scientist states that something is possible, he is

almost certainly right. When he states that something is impossible, he is very

probably wrong.

2. �e only way of discovering the limits of the possible is to venture a little way past

them into the impossible.

3. Any su�ciently advanced technology is indistinguishable from magic.

Because pushing the technological boundaries forward is such a tough and risky thing, researchers
o�en take inspiration by nature hoping to ease some of those di�culties. When they are trying to
copy or emulate processes andmechanisms that have been proven to be successful in nature, one
inevitably has to realize and acknowledge the complexity and sophistication governing natural
processes. �is is also true for imitation and its combination with learning. Whereas imitation
observed “in the wild” seems to be so easy and natural, it is hard to accomplish in technical sys-
tems. Even more so, if restricting assumptions are omitted. �is thesis has presented approaches
that are a step forward in this direction, as they allow for sporadic imitation in heterogeneous
robot groups. �e remainder of this chapter summarizes the contributions of this thesis and
discusses possible enhancements.
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10.1 Summary

Decent learning capabilities are inevitable for robots in a robot group that has to achieve its goal
in a robustmanner. Even, if the original task can be programmed completely, unforeseen changes
in the environment or of the robots themselves due to wear and tear still require each robot to
continuously adapt. �is process of initial learning and adapting the learned knowledge can and
should be sped up by spreading the learned knowledge among the group members – in form of
imitation.

For a robot system to support this combination of learning and imitation, this thesis �rst de-
veloped a robot architecture that supports the required characteristics. It consists of the three
layers motivation, strategy, and skill. �e overall goal of the robot is speci�ed intuitively in the
motivation layer. At runtime, it provides feedback to the robot with respect to the outcome of
its last actions. �is feedback is used in the strategy layer as a reward information. Based on
that, the strategy calculates and updates its current optimal policy. �e policy is modeled by a
semi-Markov decision process that keeps track of which action is most useful in the respective
state. �e actions are grounded in the skill layer. �is means that for each symbolic action in
the strategy layer, the skill layer maintains a low-level representation. �is is an approximated
function that determines the commands for the actuators. A robot is able to individually learn
to achieve the goals speci�ed in the motivation layer on two levels. At �rst, the skill layer is au-
tonomously able to derive low-level skills that might be useful to achieve the overall goal. And
then, there is the strategy layer, which uses these previously learned skills to build its strategy.

If the robot encounters another robot that might serve as a demonstrator, both the skill and
strategy layer work together to reconstruct the observed behavior. Inspired by the biological
mirror neuron system, the skill layer recognizes behavior in the observation that it could also
have performed. Based on this insight, the strategy layer then builds the most likely state-action-
trace according to the observation. Since the information is already in a format that is understood
by both the strategy layer and skill layer, the recognized behavior in the observation can then be
added to the current experience of the strategy layer. �is procedure is made possible only by
the clear separation of concerns between the strategy and the skill layer.

Another challenge that has been solved in this thesis is the decision regarding the most useful
imitatee. �is problem aggravates with increasing heterogeneity in the robot group. With the
proposed solution, imitation can now be used in completely heterogeneous robot groups. �e
approach is based on the behavioral di�erence between two robots. It creates a�ordance net-
works, which are Bayesian networks on observed a�ordances. Once, an imitator has created an
a�ordance network for each robot in a group, it can calculate the di�erence between itself and all
the other robots. By taking the robot with the smallest distance, it has chosen the imitatee that
behaves most similar to itself, which increases the probability of successful imitation.

10.2 Contributions

�e thesis starts with a survey of imitation in science ranging from biology over psychology to
robotics (Chap. 2), which originally connects di�erent �elds of research. �e remainder delivers
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10 Summary and outlook

the following contributions:

• An architecture that combines top-down goal speci�cation with bottom-up behavior
acquisition (Chap. 3 – Chap. 6).�ere are already robot architectures that deploy means
to address the inherent complexity in today’s robot tasks by combining high-level goal-
speci�cation with low-level behavior execution. �e approach of this thesis is original in
that it has integrated the support for imitation at each layer.

• An algorithm for non-obtrusive imitation (Chap. 8). �e presented approach only re-
quires the imitatee to emit a signal of its overall well-being, which is used to approximate
the observation’s overall success. Everything else, the correspondence problem, the “how”,
“what”, “when”, and “whom” is handled autonomously by the approach itself. �is increases
the robot’s own autonomy and robustness dramatically.

• An algorithm to autonomously determine the best imitatee (Chap. 9). �e “how” is
handled in a novel manner, as it only requires a set of a�ordances to be speci�ed, based on
which the imitator is then able to calculate the most similar imitatee of potential robots.
�is advances the state of the art, in that it poses no further requirements to the robots in
the robot group.

�e contributions have been published in the following journals and conference proceedings:

• International Journal On Advances in Intelligent Systems 2009
[21]

• IROS: IEEE/RSJ International Conference on Intelligent Robots and Systems 2008
[18]

• ADPRL: IEEE International Symposium on Approximate Dynamic Programming and Re-

inforcement Learning 2009
[20]

• BICC: IFIP Conference on Biologically Inspired Cooperative Computing 2006, 2008
[13, 17, 1]

• ICAS: International Conference on Autonomic and Autonomous Systems 2007, 2008, 2009
[9, 16, 19]

• SEAMS: IEEE/ACMICSEWorkshop on So�ware Engineering forAdaptive and Self-Managing

Systems 2008
[10]

A complete list of publications can be found in the appendix.
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10.3 Outlook

Since the presented techniques and algorithms are qualitatively new approaches, there is natu-
rally room for more evaluation experience in further areas. It will be interesting to see how well
the architecture behaves in situations that are more noisy and uncertain or that involve more
objects and robots. Besides the extension of evaluation experience, the following areas can be
improved as described in the remainder of this section.

Regarding the architecture, some of the parameters that control the strategy and skill layer are
manually prede�ned and thus have to be found empirically. Further investigation is needed to
examine how those can be determined dynamically. �is would directly improve the robustness
and autonomy of the overall system.

In the presented imitation approach, each robot assumes that the other robots are steered by the
same value system, which is the behavior of themotivation layer. I. e., they don’t assume the same
implementation, but that all the robots agree upon what is bene�cial and what is not in terms of
the rewards. To increase the applicability of the robots even more, some kind of compatibility
check of the motivation system is needed. If robots are able to detect, which robots possess quite
di�erent goals, it would rule them out as potential imitatees. Needless imitation attempts would
then be prevented.

�e quality of the imitation approach could be improved further by implementing joint attention
methods [49]. Joint attention is the capability of attending to the same object, to which another
robot is looking [68]. �is would limit the object to track to those the demonstrator is tracking.

�e imitatee selection approach can be improved by reasoning in the imitatee selection step
whether it is wise to imitate at all. �e current approach selects the most similar robot. If all
other robots are dissimilar, the approach, nevertheless, chooses one to imitate. In this case, the
approach could decide that no robot within the visible range is “similar enough”. �is requires an
absolute threshold of behavioral similarity and could be determined online in the optimal case.

�e presented architecture can even be used as a basis for qualitatively new multi-robot coordi-
nation. Current approaches that already enable robots in groups to coordinate their actions so
far require �xed coordination rules [34, 83, 84, 158]. �is limits the deployment of robot groups
to prede�ned and �xed scenarios where only those robots can bene�t that are enabled with the
prede�ned rules, which are needed for coordination. In contrast, coordination based on the pre-
sented architecture’s capability to recognize complex behavior in observations could overcome
this restriction. Based on the continuously recognized complex behavior, each robot could build
teammatemodels of the other robots. �esemodels could then guide the robot to coordinate the
actions with the other robots even if they were provided with incompatible coordination means
or not speci�cally designed for coordination at all.
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R set of all robotsRi in the group
O set of objects in the environment

µ motivation vector
µi motivation for goal i
µθ
i motivation threshold de�ning when goal i is satis�ed

µ
p

i priority for goal i

S state space
A action space
V(s) value or expected accumulated return of state s
Q(s, a) utility of performing action a in state s
T(s, a, s′) probability of arriving at s′ when executing action a in state s
R(s, a) expected reward for executing action a in state s
π(s) policy that assigns an action so state s

fext extraction function
fc computes the error associated to a couple of real values
fe computes the error of the perception S
fp progress function
m model prediction function

I raw perception (input)
Im,s,a preprocessed perception for the motivation, strategy, and skill layer, re-

spectively
O raw action (output)

V value of a hidden state in a Viterbi path

Λ set of detectable a�ordances Λi

A set of random variables representing a�ordances in Λ
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Algorithm 1 Splitting a reward rate sequence
Input: ρt

t−n: the last n received reward rates
Output: Two reward rate sequences that satisfy Eq. (5.28) or “None”
// Calculate the boundaries the n histogram bins and the number of reward rates that fall
into each of them

1: hbin , hcount ← histogram(ρt
t−n, bins=n)

2: imax ← argmaxi h i
count

3: binmax ← h imax

bin

4: change ← {i ∣ (ρi ∈ binmax) ≠ (ρi−1 ∈ binmax) ∀i ∈ {1, . . . , n − 1}}
5: ρlow ← reward rate sequence without a change and Var(ρlow) ≈ 0
6: if ∣change∣ > 1 ∨ Var(ρt

t−n) < θV ∨ ∣ρlow ∣ < θ l then
7: return None
8: else
9: k ∈ change
10: return ρt−k−1

t−n , ρt
t−k
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B Algorithms

Algorithm 2 RECOGNIZE: Recognize familiar behavior
Input: ON

1 : observation episode stream ⟨o1, . . . , oN⟩; S and T(s′, a, s): state space and transition
probabilities of the imitator’s strategy (SMDP)

Output: Recognized most likely state transitions with observed transition actions

1: Transform ON
1 into subjective observations→ oN1 (Sec. 8.3)

2: Γ ← ∅ // collects understood ⟨s′, a, s⟩ triples
3: V(s, 1) ←maxs1 P(o1 ∣ s1 = s) ∀ s ∈ S
4: trecstart ← 1
5: trec

end
← N

6: t ← trecstart + 1
7: while t < ∣N ∣ do
8: if maxa Pa(ot ∣ ot−1) ≥ θobs then
9: for s ∈ S do
10: at−1 ← argmaxa Pa(ot ∣ ot−1)
11: V(s, t) ←maxa Pa(ot ∣ st = s)maxs′ [T(s′, at−1, s)V(s′, t − 1)]
12: φ(s, t) ← argmaxs′ [T(s′, at−1, s)V(s′, t − 1)]
13: else
14: trec

end
← t

15: Γ ← Γ ∪ RETRIEVE(φ, trecstart , trecend
)

16: whilemaxa Pa(ot ∣ ot−1) < θobs and t < ∣N ∣ − 1 do
17: t ← t + 1
18: if maxa Pa(ot ∣ ot−1) ≥ θobs then
19: trecstart ← t

20: trec
end
← N

21: V(s, t) ←maxst P(ot ∣ st) ∀ s ∈ S
22: t ← t + 1
23: if trecstart < trec

end
then

24: Γ ← Γ ∪ RETRIEVE(φ, trecstart , trecend
)

25: return Γ
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Algorithm 3 RETRIEVE: Calculate the most likely behavior sequence out of φ

Input: oN1 , φ, and S from Alg 2; recognition window [trecstart , trecend
] for oN1

Output: �e recognized most likely state transitions with observed transition actions for the
speci�ed time window

1: Γtemp ← ∅
2: sbest

end
← argmaxs∈S V(s, trecend

)
3: t ← trec

end

4: while t ≥ trecstart do
5: if φ(sbest

end
, t) ≠ sbest

end
∨ t = trecstart then

6: sbeststart ← φ(sbest
end
, t)

7: aml ← argmaxa Pa(sbestend
∣ sbeststart)

8: Γtemp ← Γtemp ∪ ((t, ot , sbeststart), aml , (trecend
, otrec

end
, sbest

end
))

9: trec
end
← t

10: sbest
end
← sbeststart

11: t ← t − 1
12: return Γtemp
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