IL“ University of Paderborn

Learning and imitation in heterogeneous
robot groups

Wilhelm Richert

Dissertation
in Computer Science

submitted to the

Faculty of Electrical Engineering,
Computer Science, and Mathematics

in partial fulfillment of the requirements for the degree of

doctor rerum naturalium
(Dr. rer. nat.)

Paderborn, 2009

Supervisors:

Prof. Dr. Franz]. Rammig, University of Paderborn
Prof. Dr. Hans Kleine Biining, University of Paderborn
Prof. Dr. Uwe Brinkschulte, University of Frankfurt

Date of public examination: 22. December 2009

ii

Acknowledgements

First of all, I would like to thank my supervisor Prof. Dr. Franz Rammig for his guidance and con-
structive feedback. I also thank Prof. Dr. Hans Kleine Biining and Prof. Dr. Uwe Brinkschulte for
vice-supervising my thesis, as well as Prof. Dr. Friedhelm Meyer auf der Heide, Prof. Dr. Achim
Rettberg and Dr. Matthias Fischer for reviewing my work.

This work would not have been possible without the many fruitful discussions with and sug-
gestions from my group leader Dr. Bernd Kleinjohann and my colleagues Dr. Lisa Kleinjohann,
Dr. Dirk Stichling, Dr. Christian Reimann, Mr. Markus Koch, Claudius Stern, Philipp Adelt, and
Andreas Thuy. I am especially grateful to Dr. Natascha Esau for her guidance in expressing my
ideas as concise mathematical formulas.

Neither would this work have been possible without the bright students I had the opportunity
to work with and who contributed to this work: Oliver Niehorster, Raphael Golombek, Ulrich
Scheller, and Riccardo Tornese. I also wish to thank Marina Scheiderbauer and my brother Jo-
hann Richert for revising the English of my manuscript.

Last but not least, I heartily thank my wife Natalie for her patience and support as well as our
two little sons Linus and Moritz for constantly reminding me of things in life that are way bigger
than two letters in front of a name will ever be.

iii

iv

Abstract

As robots become increasingly affordable, they are used in ever more diverse areas in order to
perform increasingly complex tasks. These tasks are typically preprogrammed by a human ex-
pert. In some cases, however, this is not feasible — either because of the inherent complexity of the
task itself or due to the dynamics of the environment. The only possibility then is to let the robot
learn the task by itself. This learning process usually involves a long training period in which the
robot experiments with its surroundings in order to learn the desired behavior. If robots have to
learn a shared goal in a group, the robots should imitate each other in order to reduce their in-
dividual learning time. The question how this can be done in a robot group has been considered
in this thesis, i. e., how robots in a group can learn to achieve their shared goal and imitate each
other in order to increase the performance and the speed of learning by spreading the learned
knowledge in the group.

To allow for this intertwined learning and imitation, a dedicated robot architecture has been de-
veloped. On the one hand, it fosters autonomous and self-exploratory learning. On the other
hand, it allows for manipulating the learned knowledge and behavior to account for new knowl-
edge gathered by the imitation process. Learning of behavior is achieved by separately learning
at two levels of abstraction. At the higher level, the strategy is learned as a mapping from abstract
states to symbolic actions. At the lower level, the symbolic actions are grounded autonomously
by learned low-level actions.

The approaches of imitation presented in this thesis are unique in that they relieve the require-
ments that governed multi-robot imitation so far. It enables robots in a robot group to imitate
each other in a non-obtrusive manner. The robots can thus increase their learning speed and
thereby the overall performance of the group by simply observing the other group members
without requiring them to stick to a certain communication protocol that would provide the
necessary information. With the presented approach, a robot is able to infer the behavior that
the observed demonstrator is performing and to replay the beneficial behavior with its own ca-
pabilities.

In addition, the presented approaches allow the robots to apply imitation even if the group is
heterogeneous. Normally, the performance of a group degrades if robots with incompatible ca-
pabilities imitate each other. Capability differences arise if robot morphologies differ in a robot
group. This is the case if different robots from different manufacturers form a robot group that
has to achieve shared goals. This thesis presents an approach that is able to determine similarities
or differences between robots. This can guide the robots in a heterogeneous robot group in order
to determine those robots for imitation that are most similar to themselves.

vi

Contents

Introduction 1
11 Objectives and contributions 0 L. 3
1.2 Thesisoutline e 4
State of the art 7
21 Learning 7
2.1 Supervised 7

2.2 Unsupervised 8

2.1.3 Reward-based 8

22 Imitation L 8
2.21 Biological background o o oL 9
2.2.1.1 Categorizing imitation 9

2.2.1.2 Imitation and memetics, 11

2.2.1.3 Imitationinbiology L 11

2.2.2 Imitationinrobotics o 12
2.2.21 Challenges in robot imitation 12

2.2.2.2 Programming by demonstration 14

2.2.2.3 Imitation in multi-robot systems 15

2.2.3 Contrasting the thesis to the state of the art approaches 15
Architecture for learning and imitating in groups 17
3.1 Architectural overview 18
3.1.1 Motivationlayer 19

312 Strategylayer o 19

313 Skilllayero L 20

3.2 Layerinteraction 20
3.3 Imitationinrobotgroups o L 21
3.4 Choiceoftheimitatee. 23

vii

CONTENTS

3.5 SCeNarios e e

Motivation layer

41 Background
411 Motivation in biological autonomous systems
4.1.2 Useofmotivationinrobots
4.2 Design of a robotic motivation system o ...
421 Excitation e e
4.2.2 Prioritizinggoals.
4.3 Conclusion e
Strategy layer
510 Background
5..1 Markov decision processes oo
5.1.1.1 Policy o
5.1.1.2 Solving Markov decision processes
5..2 Semi-Markov decision processes
5.2 Stateoftheart
5.2.1 Model-freeapproaches
5.2.2 Model-based approaches oo oL
5.2.3 Discussion e e
53 Policy e
5.4 Stateabstraction e
5.5 Model e
5.5.1 Transition heuristic
5.5.2 Failureheuristic
5,53 Rewardheuristic
5.5.4 Simplification heuristic o o L.
5.5.5 Experience heuristic. oL
5.6 Samplefrequency
5.7 Exploration
58 Example.
Skill layer
6.1 Twomodesofoperation
6.1.1 Explorationmode L
6.1.2 Exploitationmode L
6.1.3 Interface with the environment
6.2 Componentdescription
6.21 Skillmanager o o
6.2.1.1 Skillgeneration
6.2.1.2 Skillranking o oL
6.2.1.3 Skill notification
6.22 Modelmanager
6.2.2.1 Creating and updatingmodels

viii

CONTENTS

6.2.22 Scoringmodels L o L 65

6.2.3 Errorminimizer 65

6.3 Configuration 66
6.4 Conclusion e 67
An integrative example 69
71 Implementation of the motivationlayer 69
72 Implementation of the strategylayer 70
73 Implementation of the skilllayer 72
74 EBvaluation e 73
Imitation in robot groups 77
81 Relatedwork e 77
8.2 Overview of the multi-robot imitation approach 79
8.3 Transformingobservations 81
8.4 Understanding observed behavior 83
8.4.1 Viterbi e 84

8.4.2 Interpreting observed behavior 84

843 Example 88

8.5 Integrating recognized behavior. oo L L 90
8.6 Evaluation e 92
8.61 CTFwiththreebases 93

8.6.2 CTFwithfivebases 97

8.7 Conclusion i e 100
Choice of the imitatee 101
9.1 Relatedwork e 102
9.2 Background 103
9.2.1 Bayesian networks and how tolearnthem 103

9.2.2 Affordances 105

9.3 Overview of the demonstrator choice process. 106
9.4 Affordancedetection 107
9.5 Affordance network generation o L 108
9.6 Comparing affordancenetworks L. 112
9.6.1 Structural difference of affordance networks. 112

9.6.2 Parameter difference of affordance networks 114

9.6.3 Affordance network distance metric 120

9.7 Evaluation 120
9.71 Experimentalsetup 121
9.7.1.1 Parameterization of the environment. 121

9.7.1.2 Affordances and their validation 123

9.7.1.3 Imitated behavior and how to measure its success 123

9.72 Selection experiment 124
9.7.2.1 Scenario. e 124

9.72.2 Procedure. 125

CONTENTS

9.7.2.3 Result 125

9.7.3 Robustness experiment L Lo L o 128

9.7.3.1 Scenario. e 128

9.7.3.2 Procedure.o 128

9.7.3.3 Result e 128

9.7.4 Clustering experiment 129

9.7.4.1 Scenario. e 130

9.74.2 Procedure. 130

9.7.4.3 Results 131

9.8 Conclusion e 132

10 Summary and outlook 133
10,1 SUMMALY . o v vt vt vt e e e e e e e e e e e e e e 134
10.2 Contributions 134
103 Outlook e 136

A Notation 137
B Algorithms 139
List of Figures 143
List of Tables 145
Own publications 147
Bibliography 151

CHAPTER

Introduction

By three methods we may learn wisdom: First, by reflection, which is noblest; Second,
by imitation, which is easiest; and third by experience, which is the bitterest.
Confucius, Chinese philosopher

Of the methods by which we can gather wisdom or knowledge, imitation is often considered as
an inferior shortcut to the more creative “noble” or “bitter” ones. The imitator is thereby con-
trasted as dumb or lazy against the creative and eager imitatee. Yet, imitation is one of the most
powerful means to spread learned knowledge. With imitation, the imitator is relieved from indi-
vidual exploration, which leads to a drastic speedup of the learning process. This thesis explores
approaches that allow imitation to be combined with individual learning in heterogeneous robot
groups. It will be shown, how the learning speed of the robot group can be increased and thus
the self-organization of the group can be supported.

As a matter of fact, imitation plays an important role in the development of humans (Fig. 1.1).
They are able to imitate at an age as early as 12 days [123]. Being such a powerful means of knowl-
edge acquisition, imitation also has been observed in animals [50]. The imitation incidents show
significant differences in quality, though. There is, e. g., the more intelligent version of imitation
- often found in humans - that tries to analyze and interpret the imitatee’s actions, in order to
infer their original purpose. The other side of the spectrum shows a much simpler imitation type,
called mimicry, which tries to copy only the actions or appearance of the imitatee. Independent
of the sophistication level of imitation, it obviously pays off in nature.

For the above reasons, imitation has already been widely adopted in robotics research (cf. Chap. 2).
The possibility to let robots in a group benefit from each other’s experience not only speeds up
the learning phase, which is essential in today’s complex robots. It also decreases wear out and
damage, which is often involved in the exploration process.

Figure 1.1: Humans are capable of imitation at an early age

When trying to provide robots with imitation capabilities, one is faced with three challenges
corresponding to the three steps involved in imitation [44]:

o Recognition: Salient bits of the observed behavior have to be extracted from the raw obser-
vation.

o Transformation: The recognized complex behavior has to be transformed from the per-
spective of the imitatee into a data structure that is comprehensible for the imitator.

o Generation: New behavior has to be generated from the properly encoded data.

Current research often focuses on one of these challenges, requiring everything else to be speci-
fied by hand - mostly in a context where a human is the imitatee and the robot has to reproduce
the observed task [28, 51, 60]. Attempts that employ imitation in a multi-robot context combin-
ing learning and imitation so far still require important challenges to be solved by the human
expert beforehand, such as the actuator mapping between the imitator and the imitatee or even
the possibility to look into the other robot’s internal data structures [142, 175].

What is still missing, is a truly autonomous multi-robot imitation approach. That is an imita-
tion approach that does not require human intervention to solve any of the imitation-specific
challenges. In this case, the following requirements have to be met:

o The imitation approach has to rely only on subjective information perceived directly by
robot’s sensors.

A robot has to decide autonomously when it is imitating and when it is learning individu-
ally.

A robot has to decide autonomously what to imitate and how to integrate the observed
behavior into its own behavior knowledge.

1 Introduction

As the robot group shall be capable of learning to achieve its goals without human intervention,
the robots must be able to learn individually. Therefore, the above listed requirements can only
be met if imitation is intertwined with learning.

1.1 Objectives and contributions

This thesis considers the question of how robots can be designed so that they

o learn to achieve their shared goals in a robot group and

« imitate each other to increase the learning speed by spreading the gathered knowledge in
the group.

In order to allow for this intertwined learning and imitation, a dedicated robot software archi-
tecture is vital, which on the one hand fosters autonomous and self-exploratory learning while
on the other hand allows for manipulating the learned knowledge and behavior to account for
new information retrieved during the imitation process. Therefore, the imitation part will need
information regarding the low-level behavior, which interacts directly with the environment, to
detect and classify observations. The learning part will have to integrate the recognized behavior
in the component containing more abstract high-level behavior. Hence, the architecture has to
support this at multiple levels of behavior abstraction. Based on this architecture with imitation
support, the thesis will develop algorithms for autonomous robots that result in robust system
behavior and spread the system behavior refinements to other members of the system group.

The approach shall be evaluated in so-called Capture-The-Flag scenarios, in which items are scat-
tered in the environment to be collected by robots in a group and delivered to one or more goal
bases. This mimics the typical natural scenario of prey retrieval. Prey retrieval is being performed
in many natural systems and often used as a model for a range of other real-world applications, as
dirt cleanup, search and rescue, or searching of terrain samples in unknown environments [107].
It is one of the canonical tasks for multi-robot systems [57, 114] and comprises the major diffi-
culties the robots will face when deployed in the real-world.

In order to show that imitation combined with individual learning has provided benefits over
learning-only approaches, experiments easy to conduct like those often performed in simple
real-world robot scenarios are no longer possible. When imitation is combined with individ-
ual learning, it is no longer possible to count a specific behavior as a result of imitation. The
robot might have individually learned the specific behavior as well. Instead, a multitude of ex-
periment runs have to be performed with only learning enabled and with imitation and learning
both working together. Only this kind of experiment is able to show significantly, whether the
imitation together with individual learning has provided any benefits in terms of learning speed
over the learning-only experiments. Since a magnitude of long-running experiments are needed
to show statistically significant results, the approaches are evaluated in the physically realistic 3D
simulator Player/Gazebo [79]. For the dynamics, Gazebo relies on the Open Dynamics Engine
(ODE) [168], which is the current standard for the type of robot experiments [46, 69] needed
to evaluate the approaches in this thesis. In addition to already existing robot models that are

1.2 Thesis outline

Figure 1.2: Real Pioneer robot and simulated Pioneer robot basis [25]

very similar to their real-world counterparts, Gazebo offers support for easy modification and
extension of those models. As the base robot platform the Pioneer robot class is used [25], which
already exists as a module for the Gazebo simulation environment (Fig. 1.2).

Besides the novel architecture offering support for imitation, the thesis presents unique approaches
relieving the constraints that governed multi-robot imitation so far, to allow for the following:

« Robots in a robot group with shared goals can imitate each other in a non-obtrusive
manner. They can thus increase the learning speed and the overall group’s performance
by simply observing the other group members without requiring them to stick to a certain
communication protocol that would provide necessary information. With a technical re-
alization of the concept of the mirror neuron system found in humans and animals, the
robots are able to infer which behavior the observed demonstrator is performing. With
the presented techniques, the imitator is then able to replay the beneficial behavior with
its own capabilities.

 The robots in a group can be heterogeneous. Normally, the performance of a group de-
grades if robots with incompatible capabilities imitate each other. Capability differences
arise if the robot morphologies differ in a robot group. This is the case if different robots
from different manufacturers form a robot group that has to achieve a shared goal. This
thesis presents an approach that is able to determine similarities or differences between
robots. This can guide a robot in a heterogeneous robot group to determine those robots
that are most similar to itself.

1.2 Thesis outline

After providing the background for the two prevailing topics of learning and imitation, this thesis
presents the architecture that is necessary for the two approaches concerning imitation, namely
imitation in robot groups and the choice of the imitatee. The detailed chapter outline is as follows:

Chapter 2 (Background) starts with the three major types of learning and continues with present-
ing and contrasting different imitation notations that have been added to the scientific language
over the past century. Due to the huge body of research that exists in both research fields, this
chapter coarsely delineates both fields so that forthcoming chapters can locate their specific re-
search contributions accordingly.

1 Introduction

Chapter 3 (Architecture for learning and imitating in groups) provides an overview of the ar-
chitecture consisting of the three layers motivation, strategy, and skill layer and highlights their
interaction. The chapter then explains how the layers are used for imitation in robot groups and
for the choice of the imitatee.

Chapter 4 (Motivation layer) defines the goals of a robot by means of a motivation system that is
able to serve as an internal reward. The robot uses this motivation system to express its current
motivation as an overall well-being state to other robots.

Chapter 5 (Strategy layer) presents the strategy learning and state abstraction mechanisms that
are needed to autonomously learn to achieve the goal defined by the motivation layer.

Chapter 6 (Skill layer) explains how the robot can explore its own capabilities and learn low-level
actions, called skills, that can further be used by the strategy layer.

Chapter 7 (An integrative example) shows exemplary how the three layers are used to build a
fully autonomous robot that can learn to collect objects in the environment and carry them to a
goal base.

Chapter 8 (Imitation in robot groups) presents the algorithm, which uses the strategy layer and
skill layer to detect complex behavior in observations and integrates it into its own learned be-
havior knowledge.

Chapter 9 (Choice of the imitatee) handles the question how the imitation approach can be em-
ployed in heterogeneous robot groups, where the correct choice of the imitatee is vital. The chap-
ter describes how Bayesian networks on interaction capabilities are used to achieve a measure of
similarity between two robots.

Chapter 10 (Summary and outlook) concludes this thesis by summarizing its main points and
providing suggestions for future improvements.

1.2 Thesis outline

CHAPTER

State of the art

This thesis describes how a layered learning architecture for robots is used to support self-organi-
zation in robot groups by combining learning and imitation. While the concept of learning is
well-defined in the literature, this is not the case with the term imitation. As a consequence,
it has no single agreed definition and is misused in a great body of research. At the one side
of the spectrum, it is referred to as some kind of dull copying of behavior that was ingeniously
developed by another subject. The imitator is thereby contrasted as dumb and lazy against the
creative and eager imitatee. At the other side, imitation is recognized for the cognitive capacity
necessary to intelligently imitate another subject.

This chapter provides a broader view on both topics, learning and imitation. It is not meant as
a complete overview, though. The purpose is to coarsely delineate both fields of research so that
forthcoming chapters can locate their specific contributions.

2.1 Learning

Current learning approaches can be grouped into supervised, unsupervised, and reward-based
learning. This section describes their application domain, strengths and weaknesses.

2.1.1 Supervised

Supervised learning methods require a permanent critic that provides the correct actions for
the given state while the robots are in the learning phase. They are therefore used often in a
single-robot setup, where the robot is taught by a guide to perform the desired behavior [171].

2.2 Imitation

Supervised learning methods are usually not applicable in multi-robot scenarios because of the
complexity of interaction in the robot group. A critique would otherwise have to provide all
participating robots permanently with an individual feedback regarding their specific last action.

2.1.2 Unsupervised

Unsupervised learning methods are used in special cases like learning models to support robot
navigation [103]. Unsupervised methods do not require any external feedback. The only source
of information is the environmental data without any meta information regarding the outcome
of the recent behavior. Clustering is one example of unsupervised learning. Based only on the
relationship of a given data set the clustering approach groups the objects into similar clusters.
Another example is the self-organizing map [104], a type of artificial neural network that is trained
for dimensionality reduction purposes. The problem of blind source separation [24] has also
to be counted to the unsupervised learning methods. From a set of mixed signals one has to
extract the original signals without the support of any further information regarding the sources
of information.

2.1.3 Reward-based

Alarge body of research investigates reward-based methods, which can be divided into the camps
of reinforcement learning (RL) [173] and stochastic search methods, e. g. evolutionary computa-
tion [70], simulated annealing [111], or stochastic hill-climbing [77] that directly learn behaviors
and do not try to approximate value functions. Within the stochastic search method community
of the multi-agent domain, the focus lies on evolutionary computation. It is a well-known fact
that evolutionary methods require many populations. They are usually learned in a simulation
context, whereupon the learned behavior is applied to real-world scenarios. This is no option for
self-organizing robot groups: In this case all the adaptation and learning has to be carried out
in the real world. Therefore, this thesis focuses on the most successful reward-based learning
method, which is RL. A more detailed overview of the reinforcement learning approach that is
used in this thesis will be given in Sec. 5.1.

2.2 Imitation

Before surveying the body of research that already exists in the field of imitation and with its
connection to learning, this section has to map out the landscape of existing imitation concepts
and definitions. Subsequently, biological organisms, which are capable of imitation are presented
together with a classification of their respective type of imitation. It follows a survey of current
imitation research in robotics, which is evaluated and contrasted to the approach of this thesis.

In the following, organism refers to a living being, while robot refers to the context of this thesis’
application. Subject will be used if the described context is applicable to both nature and multi
robot systems.

2 State of the art

2.2.1 Biological background

Imitation has been investigated now for over 100 years. In the nineteenth century, Darwin, as
well as the biologist Romanes [152], classified many animal techniques of behavior acquisition
as imitation. They did not try to establish a definition of imitation, though. A little later, Bald-
win defined imitation in his evolution theories to be any adaptive process [35]. The first crisp
definition was then given by the psychologist Thorndike as “learning to do an act from seeing it
done” [178].

The definition range of imitation has always been a matter of debate since then. Thorpe sug-
gested a stringent definition of imitation restricting it to only those processes that exactly copy
the observed behavior [179]. In favor of a more tolerant definition, Whiten and Ham argued
that the definition should focus primarily on the outcome of an imitation process [187]: as long
as an animal has learned something useful from another one, it should count as imitation and
not require an exact reproduction of the observed action. Between these two extremal points,
numerous additional definitions have been placed in the meantime.

2.2.1.1 Categorizing imitation

Recognizing the problem of confusing the definitions of imitation and how this impedes the
communication within the robotics research community, Call and Carpenter [54] distinguish
imitation from emulation and mimicry. Although they focus on the classification of imitation in-
stead of its technical realization, their taxonomy helps to discriminate between the different types
in the body of research that will be described later. They propose a multidimensional framework
for classifying an imitation process, which incorporates three different sources of information an
imitator uses during the imitation process (Fig. 2.1). These dimensions are

o whether or not the imitatee’s goal is understood,
» whether or not the observed action is copied, and

« whether or not the observed final result can be reproduced.

Given these three dimensions, any type of imitation process can be categorized clearly. Some-
times, it is difficult or impossible to determine one or more of these dimensions by only observing
an imitation process, however.

This taxonomy classifies an imitation as mimicry, emulation, or imitation, which Call and Car-
penter define as follows.

Mimicry is the copying of an observed behavior that superficially resembles the behavior of the
observed organism. During mimicry the imitator does not understand the goal, but simply
tries to copy the observed action.

Emulation There are two different types of emulation dependent on whether the imitator un-
derstood the goal while imitating or not.

2.2 Imitation

/ reproduce result: imitation

copy action

/ \ do not reproduce result: failed emulation

understand
\ P reproduce result: goal emulation

goal
do not

copy action

™~ do not reproduce result: goal emulation

/ reproduce result: mimicry

copy action
do not un-

/ \ do not reproduce result: mimicry
derstand goal

reproduce result: emulation
\ 7 P

do not
copy action

~ do not reproduce result: other or no imitation

Figure 2.1: The three sources of imitation by Call and Carpenter [54]: goals, actions, and results

Action emulation focuses on the results (changes in the environment) during imitation’.
Itis not of interest whether or not the goal intended by the imitatee is reached. Thereby,
the subject may learn how to achieve a change in the environment, but fail to arrive
at the goal intended by the imitatee.

Goal emulation focuses on copying the goal without copying the action. This involves
creativity on the imitator’s side.

Often, it is not easy, and sometimes even impossible, to distinguish between both variants
of emulation. E. g., it is not yet resolved whether apes focus on results during imitation [55,
56], which would mean that they emulate, or whether they concentrate on goals [187],
meaning that they are involved in goal emulation.

'Call and Carpenter called this simply “emulation”

10

2 State of the art

Imitation Whereas emulation is based on reproducing the results of an observed action, imi-
tation also involves copying the actions that led to that result. An illustration of Call and
Carpenter [54] highlights the difference: When an imitatee uses a hammer to open a nut,
the emulation of it could also be to smash the nut on the wall or biting the nut to open it.
Imitation, in contrast, would involve the hammering action to open the nut.

Comparing the definitions of all the types of imitation, mimicry is certainly the least useful in
multi-robot applications. Not understanding the goal, mimicry involves a lot of trial and er-
ror until the observed result can be reproduced. And if the environment or other conditions
change, it is unlikely that the behavior knowledge collected in the previous mimicry process can
be transferred to the new situation.

Just as brittle as mimicry, is simple emulation. Without understanding the goal, the imitator is
missing important information that would help to transform previously learned behavior to new
situations that need new environmental changes to achieve the original goal. Even more so, as
emulation does not even incorporate segments of the observed action.

Goal emulation and imitation, finally, offer much more robustness and promise to reproduce the
observed result much faster. Whether or not the observed action is copied seems to be of minor
importance, as long as the goal is understood. This is also the imitation type of the multi-robot
imitation approach described in Chap. 8. There, the proposed approach involves to understand
the imitatee’s goal and thereby increases the overall robustness of the imitation process.

2.2.1.2 Imitation and memetics

The imitation process of copying successful behavior between organisms has been investigated by
Susan Blackmore (“The Meme Machine” [44]) and Richard Aunger (“The Electric Meme” [30])
from a sociological point of view. Based on Richard Dawkins’ work “The Selfish Gene” [65], they
analyzed an additional replicator besides the gene, which Dawkins called meme. In their view,
a meme is any unit of information that can be passed on from one subject to another. With
this broad definition they analyzed different kinds of imitation and were successful in describing
social learning incidents involving imitation. From the robotics research point of view, however,
they could not place memetics on a scientific basis, which allowed to quantify, control, or predict
memetics phenomena. The remainder of this thesis will therefore use the notion of imitation.

2.2.1.3 Imitation in biology

As might be obvious, humans are able to imitate. Children are capable of using all three types of
information (goal, action, result) [122, 130, 38]. Imitation of facial gestures in its simplest form,
mimicry, could be observed at infants of an age as early as 12 days [123].

Available evidence suggests that animals can imitate as well. Young birds, e. g., learn their re-
gional dialect of bird song by imitating the songs of their more mature peers [36, 90]. Kinnaman
observed a rhesus monkey (Macacus rhesus) that pulled a plug from a box containing food af-
ter it has observed another monkey doing so [98]. In the animal kingdom, dolphins are one of

11

2.2 Imitation

the most proficient nonhuman imitators. Kuczaj and Yeater found evidence that dolphins are
even capable of delayed imitation [106]. This requires the ability to mentally represent observed
behavior. This enables dolphins to even imitating themselves.

Even more surprising, imitation can be observed in fauna [50]. Orchids, e. g., are able to imitate.
Tongue-orchids developed flowers, which resemble nests that are confused by insects with their
natural nests — a form called visual imitation in the biology research community. Other orchids,
like Orchis papilionacea or Ophrys fusca, imitate the scents or pheromonal signals of certain insect
species. This allures these insects to attempt copulation, which results in flower pollination. A
closer look, however, reveals that the imitation attempts of this kind are clearly a form of mimicry
and not true imitation in the sense of Call and Carpenter.

2.2.2 Imitation in robotics

Imitation applied to technical systems can be found under diverse terms highlighting the dif-
ferent goals of the use of imitation. The two directions of imitation research most relevant to
this thesis are Programming by demonstration and multi-robot imitation. The former’s goal is to
program a robot in a more intuitive way — without having to rely on traditional programming
languages. This is useful in the case that either the time to program a robot would take too long,
or if the task cannot be expressed by the human expert at all. The goal of multi-robot imitation
is to let the robots in a robot group benefit from each other’s learning efforts. No human guiding
is given at runtime in this case.

Before presenting the work that is most relevant to this thesis’ focus, the current challenges are
described that govern robotics” imitation research today.

2.2.2.1 Challenges in robot imitation

The research in robotic imitation has been following a common theme over the years, which
deals with the five central questions and the correspondence problem.

The five big questions in imitation The challenges governing successful imitation in multi-
robot systems have been summarized by Dautenhahn and Nehaniv as the “Big Five” central ques-
tions in imitation, “namely whom, when, what, and how to imitate, in addition to the question
of what makes a successful imitation” [64].

whom In a group of robots, which robot can be regarded as a good teacher or imitatee?

when It is not wise to imitate all the time. The imitator should carefully take into account the
situation context of the available imitatees and whether the potential imitatee is in explo-
ration or exploitation mode.

what The imitator should be clear about what to imitate. This comprises at the broad view Call
and Carpenter’s previously mentioned three sources of information (results, actions, goals;
Sec. 2.2.1.1), but also the level of behavior (state sequences, low-level actions).

12

2 State of the art

how How should the observed behavior be mapped into the imitator’s own behavior repertoire?
This is called the correspondence problem and will be treated separately in the next section.

how to evaluate What should be counted as successful imitation?

Although the “whom” is the first of the challenges, it has been factored out in current research
so far - either by restricting the imitation process to a one-to-one imitatee-imitator relationship
where the roles of both are clear, or by providing the robots with fixed rules. However, the ques-
tion of whom to imitate plays an important role already in early childhood. This has been shown,
e. g., by the psychologist Burnstein [48], who found out that children imitate peers more often
that have similar sex, age, or interests.

The “when” has also not been thoroughly investigated up to date. Often, even the starting and
ending point of the action to imitate are given in advance. The full action in the given time
interval is then to be copied. In multi-robot applications, this is not possible, of course.

The question “what” to imitate is the best explored question in robotics imitation. It led to nu-
merous successful approaches applicable to different levels of behavior. In multi-robot scenarios
- the targeted application domain of this thesis — the “what” is restricted to sequences of higher
level behavior (state-action-state traces). The information in a robot group is too sparse for imi-
tating low-level actions.

Many approaches in current research take the easy way out when answering the “how” ques-
tion. Using the tabula rasa approach, the imitator is starting from scratch without any behavior
knowledge. In this case, it does not have to cope with combining individually learned behavior
with behavior collected by an imitation process. This is, however, the standard case in normal
applications.

The last question regarding the evaluation of the imitation success is naturally very specific to the
application scenario. Research focusing on the creativity aspect usually employs evolutionary
approaches, where the imitation success is measured in terms of behavior emergence. This is
not the focal point of this thesis, as it is targeted towards online imitation, where the imitation
success should increase within the same robot generation at runtime. Other researchers consider
imitation as successful that exactly copies the imitatee’s actions. This is also not of relevance for
this thesis. Instead, it measures imitation success in terms of how much it was able to speed up
the learning efforts.

The correspondence problem The correspondence problem arises from the differences be-
tween the imitator’s and imitatee’s morphology [132, 26]. This is the case, if the imitatee performs
an action of which the imitator has no direct corresponding actor. If, e.g., a robot with four
wheels tries to imitate a human walking on two feet, the robot has to interpret the observed ac-
tion (walking to a goal position) and find the corresponding behavior that results in the same
effect (control commands for the individual wheels).

In nature, the correspondence problem is solved by the mirror neuron system in the brain of hu-
mans and primates. It contains a special class of neurons, called mirror neurons, which were
discovered first by Rizzolatti and Craighero in the macaque monkey premotor cortex [150]. Mir-
ror neurons fire both when an organism performs a particular action and when it observes the

13

2.2 Imitation

same action performed by another organism. This indicates that behavior recognition is tightly
coupled to the process of behavior generation. Inamura et al. argue, this fact even suggests that
both processes are realized as a combined information processing scheme [94]. There is evi-
dence for mirroring as a more general principle [85], which applies to tactile sensation [97] and
to emotions such as disgust [188] and pain [164].

In case of technical systems, solving the correspondence problem is a hard problem. In order
to successfully solve the corresponding problem, the imitator has to understand the goal of the
imitatee. Consequently, a subject that is able to solve the correspondence problem is also capable
of not only mimicry but also of true imitation or goal emulation in the sense of Call and Carpenter
(Sec. 2.2.1.1). Johnson and Demiris found out that the correspondence problem can be solved
by focusing on the features of the demonstration that are important to the imitator [95]. This
involves an action abstraction mechanism.

2.2.2.2 Programming by demonstration

Programming by demonstration (PbD) tries to relieve the robot programmer from the tedious
low-level programming task (a manipulative task or gesture, like grasping an object, e.g.) by
demonstrating the task in question repeatedly to the robot [51]. PbD is sometimes also referred
to as programming by example, learning from demonstration [28], apprenticeship learning [60],
behavioral cloning [156, 96] or scaffolding and moulding [157], a form of self-imitation, in which a
human expert remotely controls a robot performing progressively complex task. Programming
by demonstration is preferably done by guiding the robot. Thereby, the human teacher moves
the robot’s components (arms or legs in the case of a humanoid robot) to perform the desired
action [53]. The robot then has to learn from the recorded sensori-motor data to copy the pre-
sented task. Goal understanding - and often the final result of the task - are often not relevant;
the presented task just has to be copied. This is a form of mimicry and often used in research
on human-robot interaction. PbD is therefore best applied in situations, where human experts
know how to perform the task, but not necessarily know how to express their performance. With
PbD, robots could be programmed for restricted environments to cook [89], to forage [78], to
control a helicopter [59], and to play tennis [92] and air hockey [41].

If the teacher is the human being, special techniques of action recognition are necessary to extract
salient information from the observation stream of the human performance. The recognition
of human action has therefore attained much attention spanning approaches based on hidden
Markov models (HMM) (189, 29], support vector machines [133], Gaussian processes [163] or
conditional random fields [167]. Perera et al. apply a Multi Factor Tensor model to recognize
styles and person identities in human movement sequences [138]. Their approach needs a phys-
ical model specified beforehand and relies on a motion-capturing system to extract the motion
data. Nejigane et al. use boosting to robustly recognize online human motion data [134].

Also for the reproduction of recognized behavior diverse techniques have been used. Some are
based on HMM and use the Viterbi algorithm to synthesize behavior thereof. Billard et al. [43,
52], as well as Azad et al. [31], e. g., use the Viterbi algorithm to let the upper part of a humanoid
robot replay behaviors observed at a human expert. In their work, the imitator-imitatee roles
are known and fixed. Also the start and end points of the behavior to imitate is known by the

14

2 State of the art

robot. They split the imitation task into the observation and imitation processes, having the
goal to minimize the discrepancy between the demonstrated and imitated data sets. Lee and
Nakamura even showed how a robot can imitate observed human behavior it if the robot only
saw parts of the human body [110]. They used HMM to encode the observed behavior and Viterbi
to reproduce it afterwards.

In all these approaches, the robot is only able to learn low-level behavior and this can only be
done from scratch. They are not suitable for behavior learning in robot groups, since not only a
human teacher is missing in the multi-robot case, but also the close imitator-imitatee relationship
is not given any more.

2.2.2.3 Imitation in multi-robot systems

Although the prevalent approaches in the PbD domain are able to demonstrate successful usage
of imitation in technical domains, they all suffer from requiring the imitator-imitatee relation-
ship to be fixed, with the imitatee often being a human. Furthermore, the time frame in the
observation, to which the imitator has to pay attention, often needs to be provided beforehand.
The task to be learned by imitation is then repeated several times and afterwards the robot has
to derive a generalized representation of the imitated task and be able to replay it.

Only a few current approaches, which have the need to use imitation in multi-robot systems,
address these questions. A survey on how they do so in the field of robotic soccer [175], computer
games [142], and general robotics [94] will be given in Sec. 8.1. The survey will also highlight,
how the sporadic imitation approach, which will be proposed in this thesis, improves upon them.

In multi-robot systems where the robots are allowed to imitate, the question naturally arises
whom a robot willing to imitate should choose for the imitation process. The previously sur-
veyed approaches ignore this issue by treating only homogeneous robot groups. For application
in heterogeneous groups, a means that measures the capability differences between the group
members is needed.

Up to now there is very limited research addressing this issue. While some require very detailed
information of the robot’s inner states and actions [33], others require the correspondence prob-
lem to be manually solved [162]. How these approaches work in detail, and how the provided
solution of this thesis stands out in that it allows the application of imitation with only mini-
mal predefined information also in heterogeneous robot groups, will be considered separately in
Sec. 9.1.

2.2.3 Contrasting the thesis to the state of the art approaches

In contrast to the existing approaches, this thesis combines the capability of imitation with lay-
ered learning architecture of a robot to be used in realistic multi-robot scenarios. It does so in
a way that allows the approach to be used without requiring the other robots to reveal any in-
ternal state or executed action except for the overall well-being state. In addition, the approach
presented in this thesis does not require all robots to use the proposed architecture. Robots that

15

2.2 Imitation

do, will benefit. This enables a group of such robots to increase their learning speed.

To allow for this combination of learning and imitation, a carefully designed architecture is nec-
essary. This thesis deals with this challenge by presenting an architecture designed carefully to
support this combination (Chap. 3 - 7) prior to describing the imitation approach (Chap. 8 -
9). In contrast to existing approaches, this thesis does not aim to imitate for the sake of copy-
ing another robot’s low-level behavior, but to increase the overall learning speed of the robot by
imitation. This will have to include all levels of abstraction, not only of low-level behavior. The
presented architecture will address this.

The robots using this approach have to infer the answers to the five big questions described earlier
by themselves. As already mentioned, the “whom” has so far been ignored using only homoge-
neous robot groups. This thesis presents an approach that answers this question in the form of a
new measure of behavioral difference that can be used prior to the imitation process (Chap. 9).

The “when”, meaning the corresponding time frame for imitation, is found out by the externally
visible signals that provide information about the overall state of the imitatee. This mimics the
expressions of emotion in humans, which guide other human imitator when they want to decide
whether to imitate or not.

The “what” and “how”, which is the correspondence problem, will be solved by learning actions
that are learned against a goal function, which in turn is used to recognize the action itself in the
observation data (Chap. 6).

16

CHAPTER

Architecture for learning and imitating
in groups

This chapter provides an overview of the architecture that is the basis for realizing self-organizing
autonomous systems that are able to learn individual behavior, detect imitation possibilities, and
then are able to imitate each other [9, 16, 10, 21]. The architecture enables a robot to individually
learn to use its capabilities in dynamic environments. In order to improve the learning speed it
has to combine individual learning with imitation of successful behaviors of teammates — with
the effect that beneficial knowledge is spread in a robot group. In addition, an imitator shall be
able to detect which other robots it should imitate. This is important in heterogeneous robot
groups, where the robots have the same goal but different capabilities. This leads to the following
requirements for the architecture:

To enable a robot to learn behavior individually in continuous time and space with noisy
sensors and unreliable actuators.

o The ability to adapt and improve the robot’s behavior at runtime.

« The maintenance of learned behavior in a form that provides sufficient information and
corresponding methods, which are necessary to categorize observed behavior of other
robots in order to imitate.

o To support the robot programmer in specifying the overall behavior of an individual robot
in an intuitive way.

17

3.1 Architectural overview

3.1 Architectural overview

The architecture (Fig. 3.1) is based on Nilsson’s Triple Tower architecture [136] with the main
components perception, modeling, and action (Fig. 3.1). They define the three basic components
for the robot’s data flow in each step: First the robot perceives its environment using its sensors,
which is done in the perception component. It is responsible for refining the raw perception 7
and providing the perception data in the required form to the modeling tower. This component
carries out the main reasoning. Based on past experience and current perception, it determines
the best next action to achieve its goals. The chosen action is then applied to the actuators us-
ing the action component. This chapter introduces the three layers of the model tower that are
necessary to individually learn autonomous behavior in continuous time and space with noisy
sensors and unreliable actuators. In this sense, behavior is regarded as a complex sequence of
reactive low-level skills.

This thesis focuses on the modeling tower. It is composed of three layers with different levels of
abstraction that will be presented in more detail in the three following chapters: the motivation
layer allows the intuitive specification of complex goals (Chap. 4), the strategy layer is responsible
for devising strategies that fulfill the goals (Chap. 5), and the skill layer autonomously learns low-
level behavior according to the robot’s capabilities that serve the strategy (Chap. 6). These layers
interact in such a way that they combine top-down goal specification with bottom-up exploration
of the robot’s own capabilities.

Each layer in the modeling tower is provided with perception data from the perception tower.
The skill layer, however, is the only layer that is directly acting on the environment. Each layer is
allowed to request the raw perception 7 to be individually preprocessed. Throughout the thesis,
the individually preprocessed perception is denoted by Z,, for the motivation, Z; for the strat-
egy, and Z, (action) for the skill layer. When defining the three procedures that preprocess the
perception, on the one hand the designer must take care to provide enough information for the
layers to accomplish their task. On the other hand, he must keep in mind that the learning al-
gorithms can be subject to the curse of dimensionality if too much information is provided. In
addition, the preprocessing step must be efficient as it is executed at each processing loop cycle.

At the top level, the motivation layer defines the overall goal in the form of sub-goals. Each sub-
goal is defined by one motivation function, which in turn is coupled to one strategy learning
algorithm. A motivation function determines, which goal is the most profitable one to reach
at each moment. With different motivations, the architecture is able to handle changes in the
environment without the need of relearning everything. The middle layer realizes the strategies
necessary to accomplish the goals defined by the motivation. It does so on an abstract level,
where it views the behavior as symbolic actions to be performed for a certain duration. They are
grounded by the skills in the lowest layer. A skill is defined by a goal function and handled by
the lowest layer. Using this function, a skill is also capable of recognizing whether a skill similar
to itself has been executed in the observations.

18

3 Architecture for learning and imitating in groups

Im . .
motivation layer
I AN
I l l current motivation
g v v
2 | 1 g
o,
o = strategy layer =
E = :
o] Sl 8 — 9
o -
2C — s requestl Tresult
— g-s — E
Z, o a . O
= skill layer

Figure 3.1: The robot architecture

3.1.1 Motivation layer

The overall goal of a robot is specified in the motivation layer by the robot programmer. It can
be defined through a number of individual so-called motivations, which can even be mutually
contradicting.

The fulfillment of a sub-goal is realized by minimizing the corresponding motivation, which is
represented by a non-negative scalar. The motivation’s value is dependent on external stimula-
tion and the internal reaction to it. Everything that can be physically perceived is regarded as
external stimulation. This includes, e. g., the relative position to an object or the robot’s battery
state. The robot’s motivation is defined as a function of the current perception, the time, and the
motivation’s previous value. Therewith, it is possible, e. g., to specify which perceptual states are
preferable or to model impatience so that the robot is preferring behavior that achieves its goals
faster. The internal reaction is defined by dynamic evaluation functions that allow the modeling
of automatic decay or increase of the motivation. In order to reach desirable states, the system
proactively has to select the proper sequence of actions or behaviors in its behavior repertoire
that will result in positive evaluations and keeps the motivations low, also called satisfied. If all
motivations are satisfied, one can define a special motivation that enforces curious exploration.
This can be compared to the children’s play instinct. Thereby the robot has a defined motivation
at each time step.

3.1.2 Strategy layer

The strategy layer’s task is to find state-action sequences that keep the robot’s motivations low,
which results in achieving its overall goal. It receives a motivation vector containing the individ-
ual motivations from the motivation layer. In the strategy layer, complex policies are learned that
satisty the motivation. A policy is a mapping from a system state to an action the robot has to
execute. The strategy maintains one policy for each motivation. The strategy layer is moderating
between the individual and possibly contradicting goals, which can be ordered and assigned a
priority according to how much they’re unsatisfied. This means that the robot chooses to follow

19

3.2 Layer interaction

a policy, which is connected to the motivation with highest priority. This is also the least satisfied
one.

For each policy, the strategy layer has to maintain a reasonable state abstraction. That means,
that the strategy layer autonomously has to find a state space that is suited for the task at hand.
The strategy layer does this by heuristically splitting and merging states.

3.1.3 Skill layer

The policies in the strategy layer treat the actions as abstract symbols without bothering with their
actual execution. To have any effect on the environment, they must be grounded physically. This
is accomplished in the skill layer. It autonomously learns and maintains a set of skills that achieve
their individual goals. A goal is represented by a goal function that measures the achievement of
askill. Each time the skill layer has reliably learned a new skill, it notifies the strategy layer, which
in turn updates its own set of abstract actions. For each skill, alternative types of model functions
can be provided. They are approximated at runtime and compete by means of their prediction
accuracy for being executed at the next time step. Execution in this context means that the chosen
approximated function takes the current state as input provided by the perception and returns
an action vector.

The action vector, which is sent to the action tower, contains one element for each hardware actor
to control. The approach does not consider the low-level hardware part. It just issues the action
vector and takes the final realization by means of, e. g., PID controller, etc. for granted.

3.2 Layer interaction

To allow for sufficient reactivity while being able to timely maintain the data structures that are
related to the reasoning and involved in the strategy building, the layers work in parallel. The may
work even at different frequencies, as shown exemplary in Fig. 3.2. The skill layer runs at higher
speed to ensure that the robot reacts appropriately to the environment’s events. It recurrently
maps the current perception with the skill requested most recently by the strategy layer to the best
action. The strategy layer does not necessarily need to run at the same frequency. In most cases
it suffices to run the strategy at a much lower frequency. And even then it will not necessarily
require a skill change at each time step. In addition, its calculation may take longer once in a
while, because it has to reexamine its complete experience history from time to time in order to
adjust its data structures. This is being enabled by decoupling the reactive from the reasoning
components.

This is exemplary demonstrated in Fig. 3.2 (page 22). The strategy step is triggered to perform its
next cycle consisting of determining the current motivation and the corresponding next strategy
action @. The motivation and strategy layer work synchronously as the strategy layer requires
the most current motivation as feedback regarding its last chosen action. The strategy step does
not have to finish before the next skill step is triggered @. If it is triggered, it simply executes
according to the action most recently delivered by the strategy layer. This can be seen in the

20

3 Architecture for learning and imitating in groups

figure, where “determine next strategy step” in the strategy step is not finished before the skill
step is started. In the middle of the skill step @, the strategy layer has determined the next action
to execute and signals this to the skill layer. Both subsequent skill steps ® and @ then perform
this action accordingly.

3.3 Imitation in robot groups

Individual learning is possible with the three layers alone. In groups of robots with the same
overall goal, they should be able to benefit from the results of each other’s individual learning
processes.

The imitation component in Fig. 3.1, which will be described in detail in Chap. 8, allows for
imitation in such a group without disturbing other robots. This is usually not the case in typical
imitation approaches in literature. There, a known imitatee! (human or robot) repeats the same
action over and over again. The imitator (robot) then records the multiple action performances
and tries to find a generic representation for the underlying behavior.

In contrast to that, the approach in this thesis allows for sporadic imitation. This means that each
robot is allowed to observe as much as it wants to, but never to interrupt another robot by requir-
ing a repetition of a behavior it has previously seen. Unlike the traditional imitation approaches,
a start and end point of the interesting interval to be imitated is not provided. Therefore, this
approach requires that the robots express some kind of overall state. This is equivalent, e. g., to
expressed emotions, by which humans are able to infer from each other whether a certain action
previously performed was beneficial or not.

A sporadically imitating robot monitors all other observable robots. Once, it has detected a
significant change in the expressed overall state of another robot, it analyzes the past observed
behavior of that robot. The only assumption made in this process is that the behavior sequence,
which has led to a change in the overall state of the observed robot, will also lead to similar
changes for the imitator when it executes it. It thereby assumes, that all robots in the group
share the same overall goal and have similar motivations. Everything else is left undetermined:
The presented approach makes no assumptions about the other robot’s strategy implementation,
low-level skills, or hardware morphology.

This is only made possible by the three-layered architecture, where the individually learned skills
of the skill layer analyze the observations to detect themselves in the observed behavior. The
imitation process then tries to find a possible sequence of states in the strategy layer that transfer
one to another based on the skills’ evaluation. This leads to a condensed interpretation of the
observation, by means of the imitator’s own strategy and skill knowledge. With this state-action-
sequence the imitation process then feeds the strategy layer that updates its strategy accordingly.
In a way, this is technically similar to the mirror neuron system’s way of imitation [150], where
each skill tries to recognize its own effects in the observation stream.

"Throughout this chapter “imitatee” and “demonstrator” will be used interchangeably.

21

3.3 Imitation in robot groups

clock motivation layer | | strategy layer | | skill layer | | perception action

© nekxt strategy ste;}vent

Strategy step)

raquest Z,,

processed perception VM

t next motivation

17
o

request Zg

processed perception VM

determine next strategy step

@ next skill step event

Skill step)
request Z,

P pro ce{ssﬁefi}zeirfe 0on

set next skill | calculate best acfuator command
1

[

e - - 7\
et next low-level action

@»

© next skill step event

Skill step)
request Z,

proggssed perception
<

calculate best actuator command

[

<777\

et next low-level action

@

O next skill step event

L —J — L] [

Figure 3.2: Exemplary layer interaction in normal execution mode

22

3 Architecture for learning and imitating in groups

3.4 Choice of the imitatee

A major challenge results from sporadic imitation in robot groups: How does a robot know
whom it should imitate if no assumptions are made regarding the robot morphology and result-
ing capabilities? As the observed behavior is fed as an additional experience into its own strategy,
imitating arbitrary robots will not lead to long-term performance decrease. By virtue of the lay-
ered approach the behavior will be unlearned automatically if it does not result in increased per-
formance, which can be measured directly in the strategy layer. Nevertheless, imitating arbitrary
robots might render imitation useless.

Therefore, a robot should only imitate robots with similar capabilities. Observed behavior will
then more likely lead to the same outcome. The question is, how to measure the robot similar-
ity. This thesis presents an approach that allows robots to calculate a similarity distance based
on affordances, which are interaction possibilities the environmental objects present to a robot
(Chap. 9). This is done in the demonstrator choice component in Fig. 3.1. As a consequence, the
underlying software or hardware specifications of the robots in that group are not important. As
long as the affordances are similar, a robot can assume that it will be beneficial if it imitates the
other corresponding robot.

As can be seen in the demonstrator choice component in Fig. 3.1, the robot is always monitoring
the other robots” capabilities through its perception. Each time the imitation component has
detected an interesting and beneficial behavior sequence in another robot’s performance, it asks
the demonstrator choice component how likely it is that imitating this behavior will lead to a
similar performance. Only in the positive case the observed behavior will be imitated.

3.5 Scenarios

As described in the introduction, this thesis’ evaluations are oriented towards the prey retrieval
scenarios, specifically the Capture-The-Flag variant. There, a number of robots share the same
goal of collecting objects in the environment and delivering them to one of several goal bases.
Although the robots may be of different size, power, or morphology and thus possess diverse
capabilities, they share the same overall goal.

This is supported by the architecture, as it allows the specification of similar goals in the motiva-
tion layers of the individual robots), but allows the robots to develop their own strategy and skills
— whichever are appropriate to their physical conditions.

In the next three chapters (Chap. 4 to 6), the motivation, strategy and skill layers will be described
in detail. Subsequently, the thesis explains how sporadic imitation (Chap. 8) and the choice of
the demonstrator (Chap. 9) is realized.

23

3.5 Scenarios

24

CHAPTER

Motivation layer

The motivation layer (Fig. 4.1) defines the goals of the robot. At each instant of time it clearly de-
fines the current needs of robot. With its underlying strategy layer and skill layer it has to choose
the behavior that satisfies all goals. By specifying the motivation system, the human designer
pinpoints, which behavior the robot has to learn.

Besides the definition of the robot’s goals, the motivation layer signals its current overall state to
other robots, i. e., its estimation of how well it has proceeded so far in achieving its goals. This
will be used by other robots to decide whether they shall imitate this robot or not.

In summary, the motivation layer has to fulfil and support the following tasks:

« Provide information about the robot’s current goals and their levels of achievement to the
strategy layer.

« Provide a way, by which the robot can be observed by other robots in the group for the
purpose of imitation.

In the following, a short background on motivation systems is given. Subsequently, the motiva-
tion system of this thesis is described [10, 21].

4.1 Background

The field of motivation and its large body of research have developed over 100 different definitions
of the term motivation [99]. In this section, a view on motivation is given relevant to robotics.

25

4.1 Background

motivation layer

current motivation

g

2 | I g
o strategy layer £
g 3
&

train/exec l request l T result
1]
: skill layer
— J —

Figure 4.1: The layered robot architecture

4.1.1 Motivation in biological autonomous systems

The actions of autonomous systems, including organisms like humans or animals, have to be
guided by basic goals. In nature, these goals are encoded in terms of drives. Drives are to be
satisfied so that the organism “feels” content. They indicate if something, some parameter of the
system itself or the situation within the surrounding environment, is not within normal bounds.
The organism then has to take proper action.

One of the first researchers who categorized drives was Maslow. He developed the concept of a
hierarchy of needs [118] according to which the different drives of a human belong to one of five
priorities:

1. Physiological needs are the basic needs a human has, such as breathing, sleeping or the
need to eating.

2. Safety needs address the security of the human’s body or of its property and employment.
3. Social needs are characterized as the need for friendship and family.
4. The need for esteem comprises self-esteem as well as the respect of others.

5. Self-actualization is the need with the lowest priority. Examples of self-actualization in-
clude abstract concepts like creativity, morality or problem solving.

The four needs with the highest priority are called deficiency needs. They definitely must be sat-
isfied before a human may be content. When a deficiency need is satisfied, there is no more
incentive to act towards the satisfaction of it. The self-actualization need is called a growth need.
The growth need can never be fully satisfied, in contrast to the deficiency needs.

Needs are evoked or depleted by stimuli, which can be either internal (sleep) or external (food).
This means that, e. g., the absence of food over a longer period of time evokes the desire to ap-
proach exactly that stimuli. This is achieved by so-called motivations.

26

4 Motivation layer

According to the neuroscientist Salamone [154, 155], a motivation is a set of processes by which
“organisms regulate the probability, proximity, and availability of stimuli”, including both internal
and external stimuli. Salamone distinguishes two phases during the course of motivated behav-
ior: in the instrumental phase the “organism regulates the proximity or delivery of stimuli”. It is
followed by a terminal phase, in which the organism directly interacts with the stimulus. Sala-
mone ascribes directional and activational aspects to motivations, as they are typically directed
towards a stimulus or away from it and can be of different strength. As Cofer puts it [61]:

Motivational concepts, then, have had at least two major functions with respect to
behavior. One is to energize responses, either in general or specifically, and to control
their vigor and efficiency. The other is to guide behavior to specific ends, i. e., to give
direction to behavior.

Motivations are, therefore, tightly related to reinforcement signals. In the view of the psychologist
Spence [169, p. 29]:

The combination of a motivating state and the environmental situation impels the sub-
ject to respond and to continue responding to various aspects of the situation until a
reinforcer is obtained or until removed from the situation.

Such a reinforcer has the capacity to direct behavior, as noted by the biologist Tapp [176]: Stimuli,
e. g., to which the organism approaches, are positively reinforcing.

In summary, the need of an organism to satisfy its drives generates its motivations. Those moti-
vations in turn are not diminishing until the corresponding reinforcers are obtained or removed.
Transferred to the robotics domain, with the definition of the robot’s drives, the robot can be pro-
vided with dynamic motivations. These motivations guide the robot towards learning behavior
that evokes stimuli, which the robot is seeking and to eliminate those stimuli that are not wanted.

4.1.2 Use of motivation in robots

The neuroscientist Rolls argues that human brains are designed around reward and punishment
evaluation systems. In his view, it is the way that genes can build a complex system that will
“produce appropriate but flexible behavior to increase fitness” [151]. From the view of the robotic
system designer, this insight can be used to circumvent the difficult design of the reward or fitness
function, which is typically inevitable in all learning based optimization approaches. Instead of
specifying reward functions that guide the learning effort, one can design the response of the
motivation system to extrinsic (a ball is visible to which the robot has to drive) and inherent (the
battery charge condition of the robot) states. The change in the motivation state is then used to
calculate the reward.

Motivations may not only be used to directly control the behavior of autonomous systems like
robots. Moreover, they can also be used to control which behavior will be imitated in a group
of robots. The benefit of this approach has been shown by Broekens in an experiment where
a foraging robot was able to speed up its learning efforts when being guided by human facial

27

4.2 Design of a robotic motivation system

expression [47]. In the respective experiment, the recognized human emotions were used by the
learning robot as social cues for the desirability of an action.

Therefore, the motivation states of the other robots, which each robot of the group can per-
ceive, will be interpreted internally as a reinforcement signal in this thesis. This is in the sense of
Broekens, except that in contrast to his approach, the demonstrating robot does not intend to give
reinforcement to another robot. Instead, all robots always output their own current motivation
state, which can be used in the imitation process of the imitating robot.

As the robots will output their current motivational state so it can be perceived by nearby robots
when they are imitating, they are effectively setting up an affective communication channel [140].
This communication channel and the assumption that all robots in the group share the same
overall goals are the only assumptions made in this approach.

The behavior learning aspect will be explained in the next two chapters 5 and 6. How drives and
thereby motivations can be designed so that they make sense to a robot will be described in the
following, using drive and motivation interchangeably.

4.2 Design of a robotic motivation system

For the evaluation of the robot’s overall state the motivation layer uses biologically inspired eval-
uation methods similar to the motivation described earlier. With them, one is able to specify the
overall goal in the motivation layer (Fig. 4.2) as a motivation vector u:

”:(!’ll)--~;#n)T) !/liER+ (4'1)

Each motivation y; corresponds to one goal i, which is considered accomplished or satisfied if
o < pi < u¥, with u? defining the threshold of the well-being region (Fig. 4.2 and 4.3). The value
for u; is calculated by the function

di i Ty > R (42)

which is a mapping from the perception at a given time ¢, I(¢) € Z,,, to the degree of accomplish-
ment of goal i:

ui= i (1(1)) (4.3)

By specifying 4;, which determines the development of y;, and its satisfaction threshold u?, one
is able to intuitively define the robot’s overall goal:

w\ (1))

e[| <] 0O

)\ (1(1))

(4.4)

The robot, then, accomplishes the overall goal comprising all sub-goals, by minimizing each goal
i’s motivation value y;. While it is adapting its strategy and skill set, it does so with only this urge
in mind.

28

4 Motivation layer

drive 1

current current
motivation drive state

shortest vector
Mp . to desired drive area,
" used for prioritization

-

i H R
well-being ! *
regiOn
R Me
,,,,, . >
: drive 2
0 p
H3
drive 3

Figure 4.2: An example of a motivation system for three sub-goals: each drive measures the status of
accomplishing one sub-goal (o = fully accomplished). The current motivation g is the vector
to the current drive state. A drive i is called satisfied, and thereby its goal achieved, if the
corresponding motivation element y; is below its threshold Y. In this example, drives 2 and

3 are satisfied.

excitation
1—'————————_______________ _________j::::::“—-
. . threshold
S triggering
"/« behavior /
well-being region
0 » t

Figure 4.3: An example of a sub-goal subjected to an excitation. The excitation describes the force, which
the current drive state is subjected to. By specifying it dependent on the perception and on the
internal state of the robot the user is “programming” the final behavior.

29

4.3 Conclusion

When specifying the motivation system of the robotic, one has to ensure that the motivation
correctly reflects the achievement status of the robot’s goal. That means, that big changes in p
also reflect big changes in the goal’s status of achievement.

4.2.1 Excitation

In addition to the dependence on perception, the motivation can be subjected to time dependent
changes. Examples for this are typical human drives that are increasing recurrently, like the need
to eat or to sleep.

The motivation layer uses time-dependent excitation for this effect, as it is shown exemplary in
Fig. 4.3. Therefore, it is required that the current time is included in the perception I(¢). With the
excitation, time dynamic behavior can be realized. E. g., an exploration drive could be specified
to force the robot avoiding boredom. It would be reinforced each time the robot did nothing,
and only decreased if the perception sufficiently changed.

4.2.2 Prioritizing goals

At each time step, the motivation layer provides the current motivation vector to the strategy
layer. As will be described in the next chapter, the strategy layer will have to prioritize, which of
the sub-goals are to be handled first. This is done based on the shortest vector y? of the current
motivation state to the well-being region, which is used for drive prioritization (Fig. 4.2):

max (o, 4, — u?)
o - (ot) (49

max (o, 4, — %)

In order to model a hierarchy of needs, the different drives can be prioritized by means of an
according scaling.

4.3 Conclusion

The robot interprets the minimization of the vector of the point of origin to the current drive
state as its current motivation. This serves two functions in the framework as required at the
beginning of this chapter:

1. On the one hand, the motivation g is used by the strategy layer to calculate the reward.
Thereby, a positive reinforcement is given to the strategy layer, whenever the motivational
state approaches the zero vector and thus moves towards the well-being region. A negative
reinforcement is given in the opposite case.

30

4 Motivation layer

2. On the other hand, it supports imitation in multi-robot scenarios. The motivation value
in this motivation layer can be used to express the robot’s overall well-being to the other
robots and guides them when they are observing each other to imitate only obviously ben-
eficial behavior.

In summary, the following concepts are realized by the motivation layer:

The overall goal of a robot is split into multiple sub-goals and specified by means of drives.

A drive represents a need, which the robot wants to satisfy.

A drive has a threshold, which marks whether the drive is satisfied. The strength of the
desire to satisfy the need is represented by the motivation.

All robots in a group are assumed to have a similar set of drives, meaning that they share
the same overall goal.

An example for a concrete realization of the motivation layer will follow in Chap. 7, after the
strategy layer (Chap. 5) and skill layer (Chap. 6) have been introduced.

31

4.3 Conclusion

32

CHAPTER

Strategy layer

In order to satisfy the motivation layer with its motivation vector g = (p,, ..., 4,)T and the well-
being region defined by u?, the robot has to derive a strategy that is able to keep y; < u? given
only the experience stream

(....(0,a,d,u, f)i, (0,a,d, 1, f), .. .) (5.1)

with the following notation:

observation o: This is the preprocessed and filtered raw perception Z representing the fully ob-
servable state (0 = Z)*,

action a is the action that is sent to the skill layer in order to execute the corresponding low-level
behavior.

duration d is the duration between two consecutively triggered actions. The duration is used to
properly discount the received reward, which is delivered in terms of the motivation vector

Y.

motivation y: The time derivative of the motivation vector is used to calculate the return of the
last action.

failure f signals whether the skill layer (Chap. 6) considers the last executed action as failed.
This can be, for instance, the skill layer signalling that the previously executed skill has not
performed as expected, because the robot is trying to drive against a wall.

In domains, where this cannot be assured, the presented approach still works, but the underlying SMDP frame-
work has to be extended to a partially observable Markov decision process (POMDP) [165]. For more details, cf.
Sec. 5.1.1.

33

motivation layer

l current motivation

g

2 | 7 g
o> strategy layer o=
3 g
=9

train/exec request result
.
7 0
‘ skill layer

Figure 5.1: The layered robot architecture

The derivation of a strategy is the task of the strategy layer [21, 10], which is located between the
motivation and the skill layer, as shown in Fig. 5.1.

To keep this learning program feasible, the strategy layer is not trying to learn one strategy for
the whole motivation system. Instead, it is generating one strategy for each motivation y;. The
system then selects the active strategy dependent on the dynamic drive prioritization (Eq. (4.5)
in Sec. 4.2.2). A simple approach is to choose the drive with the least satisfied motivation. This
section will restrict the description to the strategy of one sub-goal i and the corresponding mo-
tivation y = p;.

The strategy learning approach is outlined in Fig. 5.2 and works as follows. After preprocessing
the raw perception and appending it to its accumulated experience, the strategy generalizes the
raw state, which is the actual state observations o, into an abstract region s,. This is vital, because
operating directly on the raw state space is infeasible. The solution space would be too big to be
explored within a reasonable amount of time. The abstraction is achieved by a set of heuristics
that modify the mapping, which assigns abstract states to the preprocessed perception states.
The mapping may be of any form of abstraction method. In this thesis, the approach uses nearest
neighbor, as it is one of the most general abstraction methods [62]. Each time new experience
is made by the robot, the model consisting of the state transitions, rewards, and time statistics is
updated. Using the abstract states, the approach then has to find a sequence of state-action-pairs
that leads the robot to its current goal. This problem can be cast into the Markov decision process
(MDP) class. Therefore, reinforcement learning is used to find the optimal strategy according to
the imperfect perception experience [172]. In summary, a model-based reinforcement learning
with prioritized sweeping [128] is used to derive an optimal policy by means of semi-Markov
decision processes (SMDP) [147] (cf. Sec. 5.1.2). SMDPs are necessary, as they allow — in contrast
to MDPs - for variable-duration actions, which is necessary for realistic scenarios. The policy
can be queried at each time step for the best action according to the current abstract state, which
can be efficiently realized by a simple look up table. From time to time, random actions are used
instead to ensure a continuous exploration of the strategy space.

The strategy layer does not execute actions by itself. Separating the concerns of high-level strat-
egy and low-level actions, the strategy layer only treats them as symbols and sends these to the

34

5 Strategy layer

raw perception, motivation
T, pi

|

perception filtering

o, = I

l

accumulated experience

((0,a.d, pis flins - (0, asds iy i)

— ~.

abstraction .
N heuristics
s = §(o)

. —

model
T,R,y

|

reinforcement learning

l

policy
m

|

action selection
a = 7(s)

Figure 5.2: Processes involved in updating one policy in the strategy layer

35

5.1 Background

skill layer, which translates them into the particular actuator settings and executes them in the
environment.

After the presentation of reinforcement learning basics and the description of the state of the
art in this domain, this chapter presents the strategy learning component in detail. As most of
the notation can be best explained within the context of reinforcement learning, the chapter will
begin with a description thereof (Sec. 5.3). The chapter continues by explaining how the state
is abstracted (Sec. 5.4) and how it is creating and maintaining models using the abstracted state
space (Sec. 5.5). The remainder of the chapter addresses practical issues and concludes with an
example.

5.1 Background

The problem of finding an optimal action sequence that reaches a goal in an unknown environ-
ment is known as sequential decision making under uncertainty [147]. In the case that a robot
is placed in such a problem setting and no supervisor or guide is available, all information the
robot can rely on is the perception s € S, the executed action a € A and some kind of “outcome”
of it, called reward r € R. The robot’s experience stream thus looks like the following:

s (St—2> Ai—ss rt—z)a (St—n As—1s rt—1)) (Sts ag, rt) (52)

If each state of the state space conveys all information necessary for the robot to intelligently pur-
sue its goal, the state space S is said to be Markovian, i. e., it has the Markov property. In this case,
the underlying structure of the problem is a Markov process. The problem can then be modeled
as a Markov decision process (MDP) and solved with reinforcement learning approaches [172]>.
The following sections present the MDP as the most basic case and introduce the semi-Markov
decision process (SMDP) as a more general MDP, which is suitable for time-dependent applica-
tions like the robot scenarios in this thesis.

5.1.1 Markov decision processes
A Markov decision process (MDP) [147] is defined by the tuple (S, A, T, R) and describes a control

problem where an agent interacts with its environment in order to optimize the reward it receives
from it:

« Sis the robot’s finite state space.

o A is the finite set of actions the robot can execute.

*In non-Markovian scenarios, partially observable MDPs (POMDP) have to be used [165]. Although POMDPs
are non-Markovian, the optimal POMDP solution is Markovian over the belief state, which is an approximation of
the underlying hidden state.

36

5 Strategy layer

o T:SxAxS — R+ is the transition function. T(s, a, s”) defines the probability that action
a executed in state s leads to the next state s’, where
VseS,acA: Y T(s,a,8')=1\ > T(s,a,s")=o0.

s’eS s’eS

e R:Sx A — Ris the reward function, which provides feedback about the outcome of the
robot’s last action in its last state.

In real-world applications T and R cannot be given to the robot directly, but have to be found
out by the robot via interaction. The decision process is called Markov, because both functions
depend only on the current state and action, and not on their past history. L. e., the probability
P(s4, = 8,114y = 1| 84, a,) of transitioning to state s’ and receiving reward r after the robot has
executed action a, in state s, is independent of the robot’s history:

P(sp =810 =7]860,) = P(Spty =8, 1000 = 7| S0 00, 715 Sy Qs+« 5 115 S05 G) (5.3)

5.1.1.1 Policy

A policy defines which action the robot chooses in a given state. This is the actual strategy of a
robot. It is a mapping 7 : S — A that assigns an action a € A to each state s € S. The goal of
reinforcement learning is to find an optimal policy in the policy space IT for the Markov decision
process.

Optimality is defined in terms of the value function V™ : S — R that estimates how useful it is for
a robot to be in a given state, also known as the utility. A policy is called optimal and denoted
by n* if the following condition holds for all policies 7’ € IT: V7" (s) > V7 (s) V s € S. When
defining the value function, the incorporation of the reward has to be tailored to the class of
application domains, as this defines the optimization criterion. Most often used are the average,
finite horizon, and discounted reward [173].

average Some applications ask for the maximization of the long-term average reward. With E[-]
being the expectation, this is realized by

] 1 N-1
V7(s) = 1\111—1;130 NE [Z re | so = s] (5.4)

t=o0

finite horizon If the robot’s strategy horizon is finite with a fixed life time N, i. e., where a con-
tinuous task has to be performed over a given time, the reward can simply by accumulated:

N-1
V™(s)=E [Z re| so = s] (5.5)

t=0
discounted For continuous but not time-limited tasks it is wise to give a smaller weight to a
reward that is more distant in the future. This can be achieved with the discount factor
y € [0,1):
V™(s)=E [Z Y're| so = s] (5.6)

t=0

37

5.1 Background

As this thesis is concerned with learning and improving the performance of robots in a robot
group that have to accomplish continuous tasks that are not time-limited, the following focuses
on value functions that incorporate the discounted reward.

Although value functions allow to discriminate between more and less useful states, they don’t
allow yet for decision making. Therefore, it is reasonable to analyze it on the state-action-level,
which is done by the Q value function Q™ : S x A — R. It determines the value of executing
an action according to a policy 7 in a given state by considering the received reward and the
expected value of the next state:

Q"(s,a) =R(s,a) +y Z T(s,a,s)V™(s") (5.7)

s'eS

Once the optimal value function V7' (s, a) = E[Q™ (s, a) | and with it the optimal Q value func-
tion Q™" is found, the optimal action is retrieved by

m*(s) = argmax Q" (s, a) . (5.8)
aeA

5.1.1.2 Solving Markov decision processes

The question is how to find V7 in order to get the optimal policy 7*. This can be done by
dynamic programming (DP) methods [39, 91]. The most well-known DP methods are value iter-
ation and policy iteration, which compute the optimal policy for a given model. This model has
to be provided beforehand or explored by the robot itself. For this reason, DP methods are called
model-based or indirect in contrast to model-free methods that derive the policy directly without
building a model.

Value iteration starts with an arbitrary value function V and updates it according to the so-
called Bellmann’s Equation for all states s € S

VI (s) = max R(s,a)+y Y T(s,a,s")V](s") (5.9)
ae s'eS

until no significant change is detected any more, according to a defined precision : || V%, -
V7| < e.

Policy iteration starts with an arbitrary policy 7, which is used to calculate the value function.
With the updated value function the policy is updated:

Tui(s) = argmax [R(s,a) +y Z T(s,a,s")V7(s") (5.10)
acl

s’eS

This is repeated until the policy has converged: 7, = 7,.

38

5 Strategy layer

5.1.2 Semi-Markov decision processes

In the MDP framework, actions always have unit duration. Processes get more complicated if
they are allowed to take variable amounts of time before transferring to the next state. This is
inevitable in real-world applications like the evaluation scenarios in this thesis. In that case the
Markov property does not hold any more: the current state alone does not suffice to predict the
next state. Problems with this characteristic have to be solved in the semi-Markov decision process
(SMDP) framework [147], which models continuous-time discrete-event systems.

At first this involves replacing the step discount factor y by a continuous discount factor €
(0,0). A reward r received after time ¢ thus leads to a net reward of e %, If = oo the robot is
said to be myopic, as the future reward is discounted by e~>’ ~ o and the robot thus is concen-
trating only on the immediate reward. In an MDP world this would be realized by y = o. With 8
approaching zero the robot is paying increasingly more attention to reward that is farther in the
future. In addition, it requires more complex transition models. The transition function T be-
comes a probability density functions over time in the SMDP framework, in contrast to a simple
probability distribution in the MDP context.

5.2 State of the art

Even when ignoring the need for action recognition, which is necessary for perception-based
imitations, there is a lot of research done in the area of strategy learning in continuous state
and action spaces. It can be divided into model-free and model-based approaches. Model-free
approaches learn the optimal strategy and actions directly from the interaction with the envi-
ronment. Model-based approaches firstly learn a model of the environment and themselves.

5.2.1 Model-free approaches

It is obvious that a full search in continuous state and action spaces is infeasible. For reinforce-
ment learning approaches to be applied in realistic domains, it is therefore vital to limit the search
to small areas in the search space. One approach to do that is the actor critic method [105]. It
separates the presentation of the policy from the value function. For each state, the actor main-
tains a probability distribution over the action space. The critic is responsible for providing the
reward from the actions taken by the actor, which in turns modifies its policy. As this relieves
the designer from assumptions about the value function, it introduces new assumptions about
the underlying probability distribution. To overcome this problem Lazaric et al. devised Sequen-
tial Monte Carlo Learning [109], which combines the actor critic method with a nonparametric
representation of the actions. After initially being drawn from a prior distribution, they are re-
sampled dependent on the utility values learned by the critic.

Hasselt and Wiering devised the Continuous Actor Critic Learning Automaton approach. It allows
robots to use reinforcement learning for operating on continuous state and action spaces [181].
They calculate real valued actions by interpolating the available discrete actions based on their

39

5.2 State of the art

utility values. Therefore, the performance is highly dependent on initial assumptions about the
value function.

Bonarini etal. developed Learning Entities Adaptive Partitioning (LEAP) [45], amodel-freelearn-
ing algorithm that uses overlapping state space partitions, which are dynamically modified to
learn near-optimal policies with a small number of parameters. Whenever it detects incoher-
ence between the current action values and the rewards from the environment, it modifies those
partitions. In addition, it is able to prune over-refined partitions. Thereby, it creates a multi-
resolution state representation specialized only in areas where the finer resolution is actually
needed. The action space is not considered by this approach. In their grid world experiment,
they use a fixed set of predefined actions.

5.2.2 Model-based approaches

The Adaptive Modelling and Planning System (AMPS) by Kochenderfer [100] maintains an adap-
tive representation of both the state and the action space. In his approach, the abstraction of the
state and action space is combined with policy learning: states are grouped into abstract regions,
which have the common property that perception-action-traces, previously performed in that
region, “feel similar” in terms of the failure rates, duration, and expected reward. It does so by
splitting and merging abstract states at runtime. AMPS not only dynamically abstracts the state
space into regions, but also the action space into action regions. This is, however, done in a very
artificial way that could not yet been shown to work in real world domains.

Although the strategy layer of this thesis is inspired by AMPS, it differs from it in the following
important points: AMPS applies the splitting and merging also to the action space, which works
fine in artificial domains but will not cope with the domain dependency one is typically faced
with in real environments. In contrast to that, this thesis’ approach uses goal functions as the
strategy’s actions, which have to be realized by a separate skill-learning layer. This leads to a useful
separation of concerns: the task of the strategy layer is to find sequences of actions and treats
actions as mere symbols. The skill layer by means of data driven skill functions then grounds
these symbols.

Another aspect is the supported number of goals. Take, e.g., a system, which has to fulfill a
specific task while paying attention to its diminishing resources. While, on the one hand, ac-
complishing the task, the resources might get exhausted. If it, on the other hand, always stays
near the fuel station, the task will not be accomplished. Approaches like AMPS, which do not
support multiple goals by multiple separate strategies, have to incorporate all different goal as-
pects in one reward function. This leads to a combinatorial explosion in the state space and
implicates a much slower learning convergence.

As already described, this approach uses abstract motivations, which the designer has to specity.
These motivations may also contain competing goals. The major advantage of this approach is
that the robot can learn one separate strategy for each motivation. Depending on the strength of
each motivation, it has now a means to choose the right strategy for the current perception and
motivation state.

40

5 Strategy layer

5.2.3 Discussion

All these approaches have the following underlying restricting assumptions. First, they assume
that optimal actions are either possible to be predefined or effectively learnable within the rein-
forcement learning framework. This means that prior to using these approaches a careful analysis
of all occurring events in the environment has to be carried out by the designer. Except for AMPS,
they are all based on Markov Decision Processes (MDP).

Time varying actions, which are the norm in realistic scenarios, however, require a semi-Markov
Decision Process (SMDP), which complicates the search in continuous action spaces. Arguing
that models are difficult to approximate at runtime, the model-free approaches do not learn a
model on which the policy is approximated, but only the value function. Furthermore, they
always solve only one goal and it is not intuitively clear, how multiple possibly contradicting goals
could be integrated using the same state and action space for all goals. The biggest problem of all,
however, is that these approaches are solely aimed at learning from scratch. It is not clear how
those could be combined with imitation. The architecture presented in this thesis was designed
with these aspects in mind.

The approach in this thesis has the following advantages over AMPS:

o The actions are learned in a developmental fashion, allowing the robot to actively explore
its own capabilities. By separating strategy learning from action learning, this approach
allows for the application of learning algorithms natural to the respective level of abstrac-
tion. This is vital for imitation as it allows for associating observations to belong either to
the strategy or skill level, when the robot tries to imitate another robot.

« The model adaptations automatically tune most of their parameters. In contrast to that,
AMPS requires the robot to be run in the target environment for several times until the
correct thresholds for the different heuristics have been found.

« No “oracle” is needed. AMPS requires to guide the robot to the goal several times until
it is able to learn by itself. In this thesis, the motivation system allows the designer to
specify many simple reward functions, instead of a complex one. This eases the strategy
generation, as many simpler strategies can be learned instead of one complex strategy.

5.3 Policy

The reward in this thesis is composed of two reward elements. The transition reward r € R
specifies the one time reward for transferring the robot from the abstract state s € S with action
a € A to the abstract state s’ € S. The reward rate p € R is given continuously for staying in state
s while executing action a until the robot arrives at state s. This is necessary to provide the most
general form of goal specification by means of the motivation system. Both components can be
extracted from the motivation y; of goal i by means of

(r.p) { (" 0). || > B (5.0

(0,—u), otherwise

41

5.3 Policy

47 observation

“47in new state
abstract state

Figure 5.3: This example shows five different paths of different duration from s, to s, using the actions a,
and a,. The reward received, when arriving at s, is discounted by y(s = s,,d,,,s" = s,). The
reward received while staying in s, and executing action a, , is discounted by A(s = s, a, 5,8’ =
s;). Both discounting functions incorporate the time ¢ it takes to transfer from one state to
another and its probability P;(t|s = s,, a,,,8 = ;).

This means that the reward is interpreted as transition reward, if it exceeds the reward rate thresh-
old 6y, otherwise it is received as reward rate. In the following, the notation of Kochenderfer is
followed regarding the learning of strategies on abstract state spaces with SMDPs [102].

The strategy layer basically has to account for both types of reward in its discount calculation.
This is necessary to discriminate between different actions that result in the same outcome in
terms of the resulting state and reward, but involve different amounts of time. This shall be
demonstrated with Fig. 5.3 using two different scenarios. Obviously, the robot should prefer
faster actions if the result of the involved transition to a different state with positive reward is
encountered earlier and can thus be made more often. Let actions a, and a, in Fig. 5.3 corre-
spond to driving to a goal represented by s, in two different ways. In this case, the robot should
prefer a, over a,. If, on the other hand, two actions in the same state yield a constant positive
reward, the robot should prefer the one that stays longer in the specific state, as this would result
in more accumulated positive reward. Let a, in Fig. 5.3 now correspond to the action of charg-
ing the batteries. Then the robot should obviously prefer that action over some other action a,
that would leave the state very quickly. Both effects are achieved by the discounted value of the
unit transition reward y(s, a, s') and the average cumulative discounted sum of unit reward rates
A(s,a,s"), respectively. They approximate the discount factor by which the received reward is
multiplied to retrieve the reward that is incorporated into the policy.

Determining the true values for y(s, a,s’) and A(s, a,s’) of a transition entails the averaging of
the discount term e~#* (Sec. 5.1.2) over all time durations ¢ that will ever be realized by a robot.

3Not to be confused with the discount factor y in MDP problems.

42

5 Strategy layer

For y(s, a,s") that is
y(s,a,s") = [e PdP,(t|s,a,s"), (5.12)

where the integral is the Lebesgue integral [88]. P,(t | s,a,s’) is the probability that the robot
is able to transition from s to s’ using action a within time t. It is used to weigh the term e 5.
y(s, a,s"), thereby, calculates the discount factor for the transition process.

As explained above, some situations require to criticize the process of carrying out an action
while staying in the same state. For this, the average cumulative discounted sum of unit reward
rates is needed. It is received continuously while executing action a in state s until arriving at
state s’ and is calculated as

o] t
A(s,a,s") = / [e P'dr'dP,(t|s,a,s') . (5.13)

A(s, a,s") differs from y(s, a,s’) only in that it involves the integral of the discounted reward
rates instead of the simple discounted transition reward.

The expected discounted reward when started in state s and acting according to policy 7 can be
specified as the expectation of the sum of the discounted transition reward and reward rate [101]:

k=1 H—/
discounted

transition reward

e bt
V.(s) = E{ Z [e Pliny, + _/t ‘ e Plpidt] |sl =s,a = 1(sg) } (5.14)
—_———

discounted
reward rate

The robot has to determine V,(s) iteratively at runtime. It does so by updating recurrently the
value function each time a new event occurs:

Vi(s) < max lR(s, a)+ Y P(s'|s,a)y(s,a,s") Vﬂ(s’)] . (5.15)
ae s’'eS

The inner term is the compound reward R(s, a) that can be expected in state s when executing

action a added to the expected discounted value of the next state that the robot will transition

to. V;(s) is then the maximum of the values for all the possible actions available in s.

With the updated value function V,(s), 7(s) can be assigned the action that yielded the maxi-
mum for V,(s):

7(s) = argmax R(s,a) + > P(s'ls,a)y(s,a,s") Va(s") (5.16)
aeh s’eS
Eventually, V(s) and 7(s) will then converge to the true value function V*(s) and optimal policy
n*(s), respectively [100].

R(s, a) is determined according to Kochenderfer by the expected sum over all possible states of
the transition reward (s, a, s’) and reward rate p(s, a, s") discounted by y(s, a, s’) and A(s, a, s"),
respectively:

R(s,a) =Y P(s'|s,a) (y(s,a,s)r(s,a,s") + A(s,a,5")p(s, a,5")) (5.17)

s'eS

43

5.4 State abstraction

This can be done with non-parametric estimation [100]. For that it is first necessary to estimate
y(s,a,s"),as A(s, a,s") is being simplified to

As,a,8")=(1-y(s,a,s"))/B . (5.18)

If n(sk, ak, Sk+.) is the number of (s, ax, sg+,) transitions, then y is estimated after the k" tran-
sition by y as follows:

e‘ﬂtk -)/}(Sk) ak, Sk+1)
n(Sk, Ak, 5k+1)

?(Ska ak’5k+1) - ?(Sk, Ak, 5k+1) + (519)

Let 0,(s, a,s”) be the accumulated transition reward and 0, (s, a, s") the sum of the reward rates
received when going from s to s’ with action a. Using the simplification in Eq. (5.18) and the
approximation (s, dk, Sts) in Eq. (5.19), the estimated expected reward R(s, a) for executing
a in s can then be calculated as [101]

\ 1 .)) op(s,a,s’)) ap(s,a,s’))
R(s,a) = s,a,s')| o.(s,a,s’) - + . (5.20)
)= gy B ok - 255 g
5.4 State abstraction
The state is determined by the state abstraction (Fig. 5.2, p. 35)
E:I,>S. (5.21)

It maps the raw state observations o; € Z; = R? in the perception space to states in the abstracted
region space S, where d is the number of dimensions of the perception space. This is necessary in
order to achieve a feasible number of meaningful states. The strategy uses the raw observations
in the experience only to maintain the abstract state space. The state space of the strategy consists
of the abstract states maintained by &.

At each interaction with the environment, the robot receives a new observation, which it has
to assign to one of the states in S. This is a case of instance-based learning and can be solved by
nearest neighbor generalization (NN) [62]. Based on a distance measure D, a new instance of data
is labelled with the label of its nearest neighbor in the special case of iINN. This can be generalized
to kNN, where the label is determined from the majority vote of the k nearest neighbors. In that
case the votes are typically inversely weighted by the relative distance to the new data point. The
nearest-neighbor approach requires the function D, by which the distance between two points
is measured, to be a pseudo-metric.

Let O be the set of observations that are to be mapped and queried afterwards and D a distance
function. The tuple (O, D) is called metric space if D fulfills the conditions of a metric:

Definition 5.1 (Metric) A function D : O x O — R is called metric if it satisfies the following
conditions:

44

5 Strategy layer

Positiveness: Vx,y € O, D(x,y) > o.

Symmetry: Vx,y € O, D(x,y) = D(y, x).

Reflexivity: Vx € O, D(x,x) = o.
o Strict positiveness: Yx,y € O,x + y = D(x, y) > o.

o Triangular inequality: Vx, y,z € O, D(x,z) < D(x,y) + D(y,z).

If the distance measure does not satisfy the strict positiveness condition, it is called pseudo-metric.
In this case, different observations having a distance of zero will be regarded as the same observation.

As a robot is observing the state as a real-valued vector, the observations span a vector space,
which is a metric space.

The implementation of & has to be efficient to be used at runtime. As each strategy step the
abstraction will be queried at least once to determine the state for the current observation. This
will then be added to the instances used by &. In addition, observations might be dropped if they
are too old. From time to time the mapping will have to be modified either by splitting or merging
the existing states. This requires the implementation of & to support the following operations in
an efficient manner:

« Insertion of new state observations
o Deletion of old state observations

o Querying most similar state observation to a new state observation

This is possible with so-called kd-trees [42, 74, 75]. A kd-tree is a data structure supporting
fast searches in k-dimensional data sets. It accelerates the query speed by leveraging the spatial
properties of the data. As it originally is a static data structure, new insertion or deletion of
data will degenerate the kd-tree once it is constructed based on the available data. This leads
to suboptimal performance. Kd-trees are therefore extended by incremental approaches, which
construct balanced kd-trees. The BKD-tree [146] and the hB-tree [115] are two examples. While
the hB-tree can suffer from degenerating space utilization [72], the BKD-tree maintains close to
100% space utilization while insertion, deletion, and performing range queries are guaranteed
to be of amortized logarithmic time. Basically, it maintains a sequence of balanced kd-trees of
increasing complexity.

The general drawback of kd-trees in suffering from the curse of dimensionality, can be alleviated
when the search for the nearest neighbor is done with the Best-Bin-First approximation algo-
rithm [37]. It finds the nearest neighbour for a large fraction of the queries, and a very close
neighbour in the remaining cases. Thereby; it is able to efficiently find the nearest neighbor even
in high dimensional spaces.

Because the state observation is domain dependent, the vector space assumption might be vio-
lated. In this case, the mapping can be realized by an M-Tree approach, which generalizes over

45

5.5 Model

spatial trees by not relying on a strict order defined over all objects: The Symmetric M-tree [160]
by Sexton and Swinbank supports efficient dynamic insertion and deletion while only paying at-
tention to the relative object distances and not their order. However, as general metric approaches
are targeted towards applications where the distance calculation is the most costly action, they
usually cache the distances. This naturally leads to a growing amount of data to be stored. Those
approaches are therefore more suited to multimedia applications. One example is the search for
the most similar image in an image database. There, the average color of an image could be one
feature to be considered in the distance calculation, which is very time intensive.

5.5 Model

At the beginning, all states belong to only one region, since the robot has no reason to believe
otherwise. While interacting with the environment, the model is modified by adapting the state
abstraction through splitting or merging states:

split(s, [,,...,1,) splits the state s into n new states {s,,...,s,}. [; is a list of observations that
shall be assigned to the same new state s;. All remaining observations
{or | &(ox) =snox e J1i} (5.22)

are then mapped by ¢ to their nearest neighbor of the new states s;. The original state s is
removed afterwards.

merge(l,,...,1,) takes n lists of observations that are mapped to n different states {s,,...,s,},
creates a new state s and maps all observations in | /; to that new state. The corresponding
original states {s,,...,s,} are removed afterwards.

The following heuristics use merge and split to adapt the state abstraction & and the model in-
cluding the underlying statistics so that they reflect the world experience.

5.5.1 Transition heuristic

As mentioned above, the continuous state space is split into regions so that for each raw state
belonging to the same region executing the same action “feels” similar to the robot. This means
that Q(s, a,s’) as the expected value for transitioning from s to s’ with the greedy action a =
71(s) can be estimated with a sufficient confidence. This is calculated using interaction sequences
starting in s and arriving in s’ while only executing the greedy action a:

Q(s,a,s") =y(s,a,s") (r(s,a,s") + V(s')) + A(s,a,s")p(s,a,s") (5.23)

Let succ,(s) = {s' | P(s" | s,a) > o} be all successor states reachable from state s by action a.
If raw states are mistakenly grouped into the same abstract region the variance of the values for
Q(s, a,s") calculated for all the greedy traces belonging to the same region will increase. A high

46

5 Strategy layer

variance of the experienced values for Q(s, a,s’) indicates that splitting that region will likely
lead to better transition estimates in the split regions:

Var ({Q(s,a,s") | s" e succ,(s) }) > Ory (5.24)

This can be done by clustering the traces so that traces with similar Q(s, a,s’) are grouped to-
gether. For each cluster, one region is created.

The challenge is the determination of 6ry. AMPS, which also uses a splitting heuristic based on
the variance for Q(s, a, s’), requires the designer to analyze the scenario and empirically deter-
mine that value beforehand. This is apparently no possibility for groups of robots, which have to
learn the proper behavior autonomously. As the distribution for Q usually cannot be foreseen it
occurs that 07 is either too low, which results in too fine state abstraction and slows down the
learning speed; or it is too high, which leaves too much aliasing in the strategy. The competing
forces for determining 01y are therefore as follows:

1. 'The more often the robot is experiencing aliasing and the higher the variance of the values
of the resulting regions’ is, the higher the inclination to split should be.

2. The lower the variance is compared to the maximum region value the lower the inclination
to split should be.

Both points are solved by replacing Var in Eq. (5.24) with QVar, which is defined in Eq. (5.25).

Qs as) - Qs as))
QVar(Q(s,a,s")) = > P(5’|5’a)< Vabs 2)

s'esuccq(s) max

(5.25)

It normalizes the quadratic deviation of the Q values from their mean value, Q(s, a,s’), to the
maximal absolute region value V22 = max({|V(s)| | s € S}). This is then weighted by the
transition probability of the region. Since QVar stays in the fixed interval [o,1], the threshold
Orv can be set to a fixed value independent of the future development of the region values. The
inclination to split is thus adapting with the changing value function at runtime. A region is then

split if the following condition holds:
QVar ({Q(s,a,s") | s" e succ,(s) }) > Ory (5.26)

5.5.2 Failure heuristic

With each region, a failure rate is associated. It describes the ratio of failure signals received when
the greedy action of the corresponding region has been executed to the number of success signals.
These signals are emitted by the strategy and skill layer, which will be described later. They are
encoded as f; in each interaction of the experience stream. Failure signals are scenario specific
and can be emitted if, e. g., the robot bumps into a wall or if it has not encountered something
interesting over a longer period of time. The failure heuristic splits a region if the failure rate of
its greedy action is not sufficiently homogeneous. This is indicated by the condition

O < f<1-06f, (5.27)

47

5.5 Model

with o < 6 < 1/2. When decreasing the user defined threshold 6y, the failure heuristic be-
comes more eager to split a region. This forces the state abstraction to attain a set of regions that
have failure rates, which result in a more deterministic strategy. For both resulting new regions
individual greedy actions can then be determined by the reinforcement learning algorithm.

5.5.3 Reward heuristic

Especially in the beginning of the robots lifetime, when there is not yet enough information for
the transition and failure heuristics to adapt the state space based on sufficient statistical data,
the reward heuristic is of importance. It allows a region s € S to be split if the variance of the
reward rate is too high. This indicates that the action performed in that region receives a too
diverse feedback in terms of the reward rates from the environment. A split of that region will
then lead to multiple regions, which are more likely to be consistent with regard to the expected
reward rates. This is also vital in cases where the failure signal is too seldom, as it provides the
only other possibility to initially split a region.

In particular, the reward heuristic is looking at the reward rates of the experience stream for a
clear switch from low to high variance areas, where both areas are of sufficient length. Such a
switch in variance indicates that a split is advisable, as the robot experiences significant differ-
ences in the reward rates when executing the same action in the same region. Therefore, the
reward heuristic considers the window of the last #n reward rates made in the current region. The
transition rewards in that time frame are not considered, as they only will show non-zero val-
ues in rare occasions. Let p;_, = (ps—n, ..., p:) and t be the current time. The reward heuristic
is searching for an index k that splits p_, into the two sequences p/=%™ and p!_,, such that the
following condition holds:

pi=h 1> 61 A lpiyl > 61
A
(Var(pi=k*) ~ 0 A Var(p!) > Ory v
Var(pi=) > 6ry A Var(p!) ~0)

(5.28)

The first part ensures that the split reward rate components are of sufficient length (8;). This is
necessary for robustness against outliers in the reward rate stream. The second part tests for the
switch from low to high variance regions and for high to low variance regions, respectively.

The minimum variance threshold 6y is dependent on the design of the motivation system. Re-
call from Eq. (5.11), Sec. 5.3, that the reward, which is received by the motivation system, is inter-
preted as a reward rate, if |gZ| < Oz. With Ogy = k- O, (0 < k < 1), a switch is easily detected by
the reward heuristic. The minimum sequence length of the individual variance subsequences,
0;, ensures that the reward heuristic ignores trivial splits. Naturally it is set to be a fraction of the
considered time horizon n. The detailed algorithm is provided in Alg. 1, p. 140.

48

5 Strategy layer

5.5.4 Simplification heuristic

As splitting might lead to overly complex models, a means is needed that remerges regions once
the robot has gathered new experiences that suggest a simpler model. This is achieved by the
simplification heuristic, which analyzes sequences of regions connected by greedy actions. Sim-
ilar to AMPS, the simplification heuristic considers chain and sibling merges. If a behaves nearly
deterministically in s, the reachable successors are then denoted by succ(s, a):

s, if P(s'[s,a) ~1
suce(s, a) = { None, otherwise (5-20)
A chain merge of two regions s’ and s’ is performed if
succ(s',m(s")) =s" A succ(s",n(s")) =s A n(s") =n(s") . (5.30)

In this case, the region s” is superficial and can thus be merged with s’ into the new region
s = s"us”, with succ(s"",n(s")) = s and n(s") = n(s") = n(s"). All other regions that
resulted into either s’ or s” are updated accordingly.

In the same vein, a sibling merge is triggered if
succ(s',n(s")) =s A succ(s",n(s")) =s A n(s") =n(s") . (5.31)

In this case, s’ and s” have similar expectations about the future region if the same action is
executed.

5.5.5 Experience heuristic

This heuristic limits the memory horizon of the robot to My € N* interactions. It removes inter-
actions that are too far in the past in order to keep the robot’s model and policy aligned to the
recent experience of the robot. Basically, it removes those old interactions from its memory and
adds the new experience to it. Thus, it is modifying the experience of at most two regions which
might cause an update of the model and of the policy.

5.6 Sample frequency

In order to let the chosen action take effect, the strategy layer is not triggering an action each time
new perception is available. Instead, a new action is only triggered if at least one of the following
conditions hold:

o The new perception differs sufficiently from the old one, measured by some scenario-
specific distance metric d:
d(oy,,0,) > 0,

49

5.7 Exploration

« The motivation layer has signaled a sufficiently interesting motivation change:
|4ut2 _lut1| > 0’"

o A certain amount of time has passed:
t,—t, >0,

0,, 0,,and 0, are application specific and have to be determined empirically. This dynamic sample
frequency is also necessary for realistic applications to ensure that the robot is not overwhelmed
by uninteresting information.

5.7 Exploration

With no information provided by the environment, the robot has to fall back to random explo-
ration to actively request further information. As Whitehead notes, totally uninformed explo-
ration is not likely to yield reasonable behavior, though [186]:

Learning is more often a transfer than a discovery. Similarly, intelligent robots cannot
be expected to learn complex real-world tasks in isolation by trial and error alone.

Given, e. g., a one-dimensional grid with the states s € S = {10, -9, ..., 10}, where the robot is
located at s = o and where it has to reach one of the goals 10 or -10 by choosing actions from
A e {left,right} with equal probability. As this is a discrete one-dimensional random walk,
the average number of actions required to reach one of the goals without any further knowledge
would be 100. And this applies just to the very simple grid example.

Two possibilities to overcome the problem of tabula rasa exploration within the reinforcement
learning context are guiding [112, 166, 71] and reward shaping [120, 119, 135]. While guiding re-
quires a form of teacher that provides salient knowledge and thus leads to a supervised learning
setting, reward shaping only restructures the reward function in order to provide more instan-
taneous information to the robot. Thereby, the learning setting is still unsupervised. The re-
structured reward function then simply helps the robot to direct its exploration efforts. Reward
shaping can be done manually beforehand [149, 108] or automatically online [117]. The previ-
ously described motivation layer has been designed in a way that allows it to be used as such a
shaped reward function.

Practically, the robot is learning concurrently at the strategy and skill layer. One has to make
sure that at any given point in time the other layer remains constant from the perspective of the
learning layer [121]. From the perspective of the strategy learning, this can be assured using so-
called GLIE policies (Greedy in the Limit with Infinite Exploration) [113]. A GLIE policy has the
following characterization:

1. Each action is executed infinitely often in each state, which is also visited an infinite num-
ber of times.

2. The learning policy is greedy in the limit with respect to the value function. That means
that the exploration rate is always positive, but decreases with time.

50

5 Strategy layer

Py(als)

0'8.0 0.2 0.4 0.6 0.8 1.0
Failure ratio f=|failure traces|/|all traces|

Figure 5.4: The probability of choosing action a in state s given its failure rate f =
|failure traces|/|all traces|

The Boltzmann exploration P(a|s) is an example that shows these properties. It calculates the
probability of choosing action a in state s depending on some temperature parameter 7:

eQ(S’a)/T

3 QG

a’eA

P(als) = (5.32)

When applied to the calculation of the action selection possibility in learning problems, 7 starts
with a high value and is “cooled down” with increasing experience. Along with this develop-
ment the variance in the Q-values is becoming increasingly important, as high-valued actions
are increasingly preferred over under-performing ones. In literature, 7 is usually decreased as
time goes by. It is not, however, the case that a robot gathers important experience as time goes
by. As a consequence, a robot might settle on a policy after some time, even though the robot
performed nothing useful at all. This might lead to sub-optimal strategies.

Therefore, it is advisable to use a replacement for P(a|s) that better captures the notion of the
robot’s experience. The failure rate f is a candidate in this case. It is delivered by the skill layer
and captures the experience in terms of whether the executed skill behaved according to the
expectations. Fig. 5.4 shows the probability of choosing action a in state s dependent on the
failure rate of that action: Ps(a|s). It is parametrized by e, which specifies the probability of
random actions in the border cases f = o and f = 1 and determines the probability interpolation

of fe(o,1).

The question, when to explore at the strategy layer and when at the skill layer is answered heuris-
tically in this thesis. Upon start, the strategy layer signals the skill layer to start its exploration
phase. The strategy layer retracts the control, if the skill layer has signalled that it has learned the
skills that are necessary for the scenario in question. Subsequently, the strategy layer explores
according to Pr(als).

51

5.8 Example

32
56

28
48
24
40
20

32
16

24 12

16

(€] @1

3.1 4. 1) (€] 6,1) (6,2) (6,3)

20

“4,2)

@n 64

(O]

(6,5)

1,1

(6,6)

Figure 5.5: Upper figures: Two similar L-shape mazes of different size. The robot starts in the upper left
(“S”) and has to reach the lower right (“G”) with the actions north, east, south, and west. The
region number, its greedy action 7% (s), and the region’s value V*(s) (the brighter the higher)
is shown for each state. Lower figures: Comparison of the strategies for the two mazes and
the corresponding state abstraction mapping.

5.8 Example

To demonstrate how the strategy is able to extract the salient information to create an appropriate
policy with the according state abstraction, two grid worlds of different sizes are presented in
Fig. 5.5. The robot starts in the upper left and has to reach the lower right by choosing among
the four possible actions west, east, north, and south*. The optimal strategy is the same in both
worlds. As can be seen, the robot finds this same strategy for both worlds. The figure also shows
how the approach separates states it has never encountered before into abstract regions. This is
the case in the lower left corner in both grid worlds, which the robot has obviously never visited.
In the right grid world, e. g., the area is diagonally split into the regions 6 and 4, based on the
employed nearest neighbor heuristic.

So far, it has been assumed that A is always provided beforehand and that the strategy simply has
to choose the right action at each state. For real-world scenarios it would be advantageous if A
also could be learned at runtime. AMPS does this by applying similar abstraction heuristics to A

4“How more realistic continuous actions are learned and used will be described in the next chapter.

52

5 Strategy layer

that helped to organize the state space S. The actions learned in this way, however, are limited to
simple domains, where the real-world dynamics can be presented by simple hypotheses. In the
next section the skill layer is presented, which is able to learn reactive actions that are robust to
noise and can handle complex dynamics.

53

5.8 Example

54

CHAPTER

Skill layer

So far, the actions determined at the strategy layer are mere symbols, not able to work in the real
world. To have any effect, they must be translated into low-level actuator commands. The bridge
between these symbolic actions and the low-level actuator commands of the robot’s hardware is
the skill layer (Fig. 6.1) [7, 15, 21]". Its purpose is twofold:

« At the beginning, the skill layer has to autonomously learn a set of skills that are useful for
the strategy layer. Thereby, the skill layer is grounding the symbolic actions of the strategy
layer.

o During normal execution, the skill layer shall optimize its skills over the whole lifetime of
the robot.

The skill layer perceives its environment in terms of features of objects like the relative distance
to an object. Skills are only considered useful if they directly impact those features. If, e. g., a
skill manages to decrease the feature distance to an object, it is considered interesting for the
strategy layer and will be explored. The skill layer notifies the strategy layer about a new skill by
sending the skill’s identifier and the involved number of target objects if it considers that potential
skill to be reliable. It will be described later on how this is measured by means of the skill’s
reproducibility.

In the following, action denotes the symbolic representation of a skill at the strategy layer, and
skill the according representation in the skill layer that performs the action. A skill is a tuple of
functions on the perceived features.

In order to increase the skill layer’s robustness, it is not prescribed at design time which learning
method to use at runtime. Instead, one is allowed to provide multiple possible learning methods.

"This approach has been implemented within the scope of the master thesis [180].

55

6.1 Two modes of operation

Im . .
motivation layer
J
l current motivation
g
g | I g
by strategy layer =
2 E
e
train/exec l request l result
7 O
. skill layer
" "

Figure 6.1: The layered robot architecture

The skill layer dynamically chooses the learning method that provides the best performance at
runtime. This is achieved by continuously evaluating the learning methods through assigning
them positive real valued scores. When the skill layer is executing a skill and has to choose
between two or more competing models (which will be described later on) it chooses the one
with the higher score.

6.1 Two modes of operation

When learning behavior at two different layers, the exploration-exploitation dilemma - naturally
found in learning problems - is amplified. On the one hand, the strategy layer has to explore
strategies over actions that are assumed to reliably yield the same result over time. On the other
hand, the skill layer has to explore skills in order to provide the strategy layer with a sufficient set
of usable skills.

This is solved by the strategy layer deciding when the skill layer is allowed to explore. If the skill
layer is exploring, the strategy does not interfere by commanding, which skill to execute next. It
waits for the skill layer to signal new skills that it deems to be reliable. The strategy layer updates
its own action space each time accordingly. It triggers the skill layer to be in exploitation mode
again if it deems its current action space as sufficient. From then on, the strategy layer is again
in control and allowed to request the skill layer to execute skills. This leads to the two different
operation modes: the exploration and exploitation mode. In the following, the data flows of both
modes are described. The detailed description of the participating components will be given
subsequently.

6.1.1 Exploration mode

In exploration mode (Fig. 6.2), the skill manager explores possible actions by generating potential
skills and directly setting the actuator commands. At first, this is done randomly. It is called
motor babbling as it refers to the early stages in child development, where the infant is exploring

56

6 Skill layer

strategy layer
training mode notify new skill
| skill layer -
skill ‘ explore actions @)
manager
Icreute & fetch skills
g
=1 o
2 L skills E
Y -
g g
= create
models
model error
manager minimizer

Figure 6.2: Data flow in exploration mode

its own sensori-motor coupling. While interacting with the environment, the model manager
creates the corresponding models that predict the environment’s and its own behavior. Over
time, the predictions get increasingly more accurate until the skill manager regards some of the
skills as reliable. In this case, it notifies the strategy layer, which in turn updates its action space.

6.1.2 Exploitation mode

In exploitation mode (Fig. 6.3), the strategy layer requests from time to time the skill layer to
execute a skill by sending its identifier and a list of object IDs. From then on, the skill layer
executes the skill by applying it to the specified objects. This allows for more generic skills at the
skill layer. While the skill layer is executing a certain skill, it is still continuously updating its
models, thus optimizing them all the time.

In this mode, the skill manager occasionally receives information from the strategy layer about
the next skill to execute. This information is passed to the error minimizer, which from then
on retrieves the corresponding models and ascertains the best possible actuator command for
the perception at each time step. In parallel, the model manager is continuously updating the
models with the new experience it receives at each time step with Z,. While the basic behavior
of a skill is fix from the strategy layer’s point of view, the model manager is tuning them so that
they increase in accuracy.

6.1.3 Interface with the environment

The skill layer expects the perception to be in factored or feature-based form. The skill layer’s
perception space Z, = {(id,,id,,v) | id, € ID,,id, € ID,,v € R} is a set of triples, each of

57

6.2 Component description

strategy layer

\

execution mode request skill

- " skill layer

skill
manager

set current skill

Za skills

update etch current skill
models
model error (@]
manager minimizer

— 1 I} L

perception
action

Figure 6.3: Data flow in exploitation mode

which describes the value v of an object id,’s perceptual feature id,. ID, and ID, are the sets of
the environment’s objects and perceptual features. The perceptual feature, in the following also
simply called feature, describes one specific aspect of an object and is chosen from a predefined
list of possible properties ID,. One example for such a set is ID, = {angle,distance, color}.
id, is uniquely identifying one object in the environment. A typical example is the perception of
the ball’s relative position by means of its relative angle and distance:

I(t) = {(ball,angle, 95.4), (ball, distance,10.3) }

Throughout this section the skill layer’s input at time ¢ is denoted by I(t) € Z,.

By relying on the perception to be in factored form containing object identities and properties,
the skill layer is able to apply the same skill to different objects having the same property. If, e. g.,
the skill to approach the ball is learned by means of minimizing the perceptual feature distance,
it can be applied also to approach the goal base or even to stay between the ball and the goal. In
all cases the distance is minimized; in case of staying between the ball and the goal, the distances
to both objects are minimized.

At each time step ¢, the skill layer determines a motor action M(t) € O = Rk, where k is the
number of actuators the robot is allowed to control. It contains one element for each actuator.

6.2 Component description

In this section, the components skill manager, model manager, and error minimizer are de-
scribed. As they all rely on the skill repository, this will be defined beforehand.

The strategy layer activates a skill by sending the skill identifier to the skill manager. Internally,

58

6 Skill layer

the skill layer retrieves the corresponding tuple of error functions from the central skill repository
(“skills” in Fig. 6.3 and 6.2), which describe different aspects of the overall goal of that skill, and
executes the corresponding low-level behaviors connected to those. At each time step, the skill
layer monitors the current state of execution and may signal to the strategy layer one of the signals
success, failure, or none at all.

For the definition of a skill, the notion of an extraction, control, and error function have to be intro-
duced. Subsequently, the progress function will be defined, which calculates the overall progress
state of a skill by means of the error functions in F,.

Definition 6.1 An extraction function f,,, : T, — R extracts information from a perception I(t) €
Z,.

An extraction function can be implemented by simply returning one of the perceptual feature
values from ID, of a target object. It can be also more complex so that it returns the result of a
mathematical operation on a list of the results of extraction functions.

Example 6.1 Let 7, = {{ball, goal} x {angle,distance} x R} and at time t be the perception
I(t) = {(ball,angle,10), (ball,distance,0.5), (goal, angle,90), (goal,distance,2)}. If f1,
is implemented so that it returns 0.5 as the ball distance from the perception I1(t) and f?2,, accord-
ingly 2 for the goal distance, the previously mentioned behavior of staying between the goal and the
ball will rely on the accumulated distances returned by 2., (I1(t)) = fL.(I(t)) + f2.,(I(t)) = 2.5.

X

By means of extraction functions, it is possible to select the desired information, which together
with the following control function allows the specification of the behavior to be learned.

Definition 6.2 A control function f.: R xR — R* associates an error value to the tuple (v;,, vy,),
wherev,, andv,, are the values returned by an extraction function at different points in time (t; < t;).

Example 6.2 The following control functions are typical examples for specifying behavior, which
decreases or increases a perceived property, respectively:

control function to decrease value : f.(vi,,v;,) = [vi)] (6.1)
1

|ij|
Both functions ignore the first argument. In Eq. (6.1), e. ., the expression |v, | gives a higher error

value the higher the current value v, is. This has the effect that in order to return a low error value
the control function needs the value to be decreased.

control function to increase value : f.(vi,,v;,) = (6.2)

Forcing a value of a perceptual feature to be decreased by a specific value § can be done with the
following control function:

control function to keep value : f.(vi,,vi,) = [vi, = 8 — vy | (6.3)

If, e. g., the ball distance at time t; is 10m, and the robot shall approach it by § = 2m, the current
error value at time t; is defined by [10 — 2 — v, |, assuming that v, and v, return the ball distance
from I(t;) and I(t;), respectively. If the robot at time t; is at a distance of 8m to the ball, the error
is zero.

59

6.2 Component description

Definition 6.3 An error function f, : 7, x I, — R* assigns an error value to the perception pair
(I1(t:), I(t))):

fe(I(ti)’ I(tj)) = fc (fext(I(ti))’fext(I(tj))) (6-4)
I(t;) is the current perception and I(t;) the perception of f.’s first application, which is used as a
reference point (I(t;),1(t;) € Z,).

Definition 6.4 A skill is a tuple s = (f%,..., fN) of N error functions (N € N), which describe
different aspects of the goal of the desired behavior. The tuple also serves as a unique identifier, by
which the strategy layer requests this behavior together with N objects in corresponding order, to
which the error functions will be applied.

Example 6.3 For a behavior of approaching the ball so that it finally is located directly in front of
the robot, a skill s would be defined as follows:

foa(I(1)) returns the ball distance
f2.(I(1)) returns the ball angle
feive) = [ve)] control function to minimize the value

foI(t:),1(1))) = fe(fori(I(1:))s fori(I(21))) to minimize the ball distance
fo(I(t),I(t))) = fe(foe (I(t:)), fo (I(t)))) to minimize the ball angle
s=(f2, f2) skill to approach the ball and orient towards it

The skill’s overall progress is finally measured by a progress function. The robot can use it to both
learn an according skill and recognize the skill in an observation, as will be described in Chap. 8.
Thereby, the robot is technically emulating the mirror neuron system’s behavior recognition as it
is found in humans and animals [150]: the same neurons that are firing when a certain behavior
is executed are also firing if the behavior is observed at someone else. In this thesis, the skill layer
is learning to satisfy the progress function. The skill's same progress function is also used in the
imitation phase to recognize the corresponding skill in observations.

Definition 6.5 A progress function f, : 7, x I, — [0,1] is measuring a skill’s progress between
two time points t; and t; based on the perception at those points (t; < t;). A progress function is
defined by two thresholds, C; € R* and C, € R* (C, < C,). For a skill s = (f},..., fN) it is defined
as

0 if Ca < W(I(t:),1(t}))
SyI(6), (1)) = S=EEEE i C< W), 1(17) < Ca (65)
: ifW(I(1), 1(17)) < C,

where I(t;) is the perception when the skill has been started, 1(t;) is the current perception, and

W(I(t:), I(1;)) = T, fEU(8:), (1)),

In Fig. 6.4, the progress function is plotted exemplary for C; = 0.15and C, = 0.75, which are called
success and abort threshold. The skill is considered as failed and can be aborted if the sum of the
error functions, W(I(t;),I(t;)), exceeds C,. In the interval [C;, C,], the skill is considered to

60

6 Skill layer

1.0

0.8

«20.6

0.4

0.2

0.8.

1.0

Figure 6.4: The progress function f, plotted over the error function sum W (Eq. (6.5))

be normally executed. If W(I(t;),1(t;)) > Ci, the skill is considered to be successfully finished.
These three states of the skill are measured by the progress function in the exploitation phase and
used by the skill manager (Fig. 6.3), as will be described later on.

The thresholds C; and C, are determined by the skill manager in exploration mode (Fig. 6.2).
For that purpose, the skill layer is monitoring the extremal values for the extraction functions,
on which W is indirectly dependent through its error functions. The abort and success thresh-
olds are then the values of W calculated from the error functions with extremal values for the
extraction functions decreased and increased by a small tolerance, respectively. In case that the
abort or success condition is met, the skill manager will signal the corresponding event to the
strategy layer so that it can react accordingly.

The remaining chapter describes how the three components skill manager, model manager, and
error minimizer interact with each other.

6.2.1 Skill manager

The skills of the skill layer are maintained by the skill manager. Its concrete tasks are to

generate skills that enable the robot to control the perceived properties,

assign a priority to each skill dependent on its execution priority,

determine the skills the robot can reliably perform and notify them as new skills to the
strategy layer, and

manage the execution of requested skills.

61

6.2 Component description

The first three tasks are handled in the exploration phase, the latter one in the exploitation phase.

6.2.1.1 Skill generation

The skill generation naturally depends on the expressiveness of the skill definition, as described in
Sec. 6.2. The more expressive it is in terms of possible perceivable features, extraction and control
functions, the more possibilities the skill manager has to explore. In the evaluation experiments,
the skill definition has been chosen in a way that lets the skill manager explore all possible skill
definitions. For more complex scenarios where this is not possible, so-called feature selection
mechanisms can be used to tackle this challenge. This is, however, outside the scope of this
thesis.

6.2.1.2 Skill ranking

As it might be unfeasible to train all possible skills, the skill manager maintains a training priority
for the potential skills. This is determined in training mode by a measure of interestingness for
each skill. While the robot is moving randomly through the environment, it analyzes the percep-
tion stream to find interesting data in it. Let v be a value of a perception item (id,, id,, v;) € I(t)
at time t and v{" = (v, .., vy,). The interestingness event occurs if v, either differs significantly
from its n past values or if it is a new extremal value:

Var(v;") < Var(v{"™)

\V (6.6)
th+1 < . ln {Vti} v th-H > .max {vti}
1=1,..., n 1=1,..., n
Each time this condition is found in the current perception, the ranking of each skill s, ranking(s),
that impacts the corresponding object-feature tuple (id,, id,) by one of its error functions is in-
creased.

As the skills’ training is prioritised according to their ranking, this heuristic motivates the sys-
tem to explore actions that control the most changeable properties. This is exemplary shown in
Fig. 6.5 for the value v, of two skills, s, and s,, both of which impact the corresponding percep-
tion triple (id,, id,, v;). s, is ranked lower than s,, because some value v of a property causes less
interestingness events. Training prioritization by means of the function ranking(s) is a simple
and fast heuristic to let the robot spend its time most useful. It will not waste its time by exploring
potential skills that probably will not provide enough information during the exploration phase
to create a useful skill.

6.2.1.3 Skill notification

The skill’s reliability heavily depends on the designer’s original goals concerning the robot. In
some cases it is necessary to have very reliable actions at the cost of a longer training phase. In
other cases it might be useful to have first sufficient actions available quickly at the beginning.

62

6 Skill layer

T T T T T
1 1 1 1 1
5 ¢ 1 1 1 1 1
1 1 1 1 1

= w

<] T

7)) 1 1 1 1 1
“— 1 1 1 1 1
) 1 1 1 1 1
1 1 1 1 1
> | | | | |
S 1 1 1 1 1
1 1 1 1 1

t t, t ts t, ts ts

v, of skill s,

~
(=]
~
iy
~
V)
.
w
~
N
~
~
[=2]

Figure 6.5: The two skills s, and s, are ranked differently due to the different amount of events. Interest-
ingness events are marked with circles for each time step. As ranking(s,) > ranking(s,), s,
has a higher priority for exploration when the robot is in training mode than s,.

After a skill has been successfully executed by a predefined number of consecutive times, the
skill manager regards it as reliable and notifies it to the strategy layer, which can execute the skill
henceforth.

Recall from Def. 6.4 that a skill is a tuple (f2,..., fN) of error functions. When the skill layer
notifies the strategy layer about a newly learned skill, the skill is bounded by the skill layer towards
concrete objects.

Let O be the set of visible objects in the environment. The strategy layer updates its action space A
with the newskill (f2, ..., f¥) matched against the proper allocation of objects (0, ...,0N) € OV
by

A< AU{{(fh0),. ., (FN, "N [(f,0") # (fl,0) Vi j A oFeO} . (6.7)

Thereby, unnecessary actions like ((minimize angle, ball), (minimize angle, ball)) can be avoided.

On the strategy’s side, ((f2, 0'),..., (fN,0")) serves no other purpose than uniquely associating
an action in the strategy’s action space with the corresponding skill in the skill layer. Thus, the
strategy layer can treat its actions as symbols, which are grounded by the skill layer. Symbol
grounding [86] is the process in robotics research that is equivalent to the sensorimotor stage
in Piaget’s theory on child development [139]. This way, the strategy layer can concentrate on

sequences of actions while the skill layer is handling the execution of the actions in form of
skills.

63

6.2 Component description

6.2.2 Model manager

The environment’s reaction to a low-level action is described by prediction models. Given the
current perception, a set of prediction models describe how the perception will change after
having executed the skill for one time step. The model manager is in charge of maintaining a
sufficient set of prediction models. It does so by

o creating prediction models for each perceived property,
« updating prediction models to reflect new experiences, and

o calculating a score for each model dependent on its prediction accuracy.

The creation of models takes place in the exploration phase, while the updating and continuous
scoring of prediction models is carried out in the exploitation phase.

Definition 6.6 A prediction model is defined by the tuple (id,, S, M, m). id, € ID,, is the per-
ception feature to be predicted. S c ID, x 1D, is a subset of the perceptual features of perceived
objects. M c O is a subset of the actuators the model should incorporate. The prediction function
m: RISHMI - R predicts the value for the perceptual feature id, at the next input perception given
the values of S and M.

6.2.2.1 Creating and updating models

Because of its freedom in definition, the model manager is challenged with a very high number
of possible combinations of S, M, and regression algorithms when creating models in the explo-
ration phase. It has to determine which subset S of the perceived properties, which subset M of
the motor signals, and which regression algorithm to use.

For each skill, multiple prediction models compete to be used based on their past prediction
accuracy. This is measured by the squared error loss function

L=(Y-m(X))*,

which is to be minimized in the fitting process of the prediction models. This allows to provide
the skill layer with a number of different function approximators for m. It will continuously test
them to find out at runtime, which one is the best predictor.

Throughout this thesis, the skill layer is provided with the radial basis function approximation
(RBF) for high generalization and polynomial approximation for fast calculation as the modeling
algorithms. Concrete definitions and examples will be given in Sec. 7.3. However, the skill layer
is not dependent on these two specific approximation techniques. In fact, any function type can
be used for m, as long as it supports the necessary input and output spaces.

64

6 Skill layer

6.2.2.2 Scoring models

The training data for the models is generated as follows. At each time ¢, the current perception
S(t) is determined by the previous perception S(f —1) and by the last low-level action M (¢ —1).
Therefore, a new experience tuple (S(t —1), M(t —1), S(t)) is available at each time step.

Each time a new feature is perceived, the model manager generates a set of models that predict
the feature’s value using diverse function approximators and input spaces. Each of these models
is continuously updated with new experiences that activate at least one interest signal. The model
manager disposes of two such signals, the surprise and mistake signal.

surprise signal The surprise signal is triggered if the prediction error is more then twice the
average prediction error of the model.

mistake signal The mistake signal is activated if the sign of the property’s value change predicted
by the model is different from the real one.

These signals are inspired by the principle that humans learn when there is a discrepancy between
what happens and what they actually have predicted that should have happened [184].

Finally, the model manager computes the score of each prediction model function m as the in-
verse of the mean squared error in predicting the last # interactions with the environment:

S (m(S(t), M(t)) = vi,,,)?

The model with the highest score, ., is used as the prediction model for the skill.

score(m) = (6.8)

6.2.3 Error minimizer

In the exploration phase (Fig. 6.3), the error minimizer uses the prediction models learned by
the model manager to determine the best next motor vector M(t +1) to send to the actuator for
the skill requested by the strategy layer based on the current perception. The error minimizer
minimizes the error functions f} of the current skill s = (f},..., fN) for the next perception,
which is called the expected next error e(t +1). It can be computed as a function of the low level
action M described by the following algorithm.

1. Determine the perception I.(t) that contains only perceptual features, on which the error
functions of the current skill s are dependent:

1(t) = {(ido, id,,v) | (idy, idy,v) € I(t) A id, € ID5} (6.9)

where ID;, is the set of all perceptual features the skill function depends on. This can
be either directly by way of the extraction functions (Def. 6.1), on which the skill’s error
functions f; depend (Def. 6.3), or indirectly through the perceptual features, on which the
skill’s prediction models depend (Def. 6.6).

65

6.3 Configuration

2. Determine the best actuator command M., for skill s. This is the actuator command that
yields the minimal error expected by the prediction models according to the skill’s error
functions:

(a) Estimate the next perception, I.(¢+1), dependent on the motor action M as predicted
by miest:
M(t+1) = {m), (I.(t),M(t)) | p; e (1) } (6.10)

The prediction model mies , is the one with the highest score for predicting p;, as
maintained by the model manager:

m{mt = arg max{score(m)} (6.11)

(b) Calculate the expected next error e}'(t + 1), with I.(¢;) being the perception when
the skill has been started:

et (t+1) = fE(1(8:), 1Y (t +1)) (6.12)

(c) Determine the best actuator command M(t), by finding the one that minimizes the
accumulated expected error:

M(t) = mﬂ}lnie,?’f(t+1) (6.13)
k=1

M(t) is found in a two stage process. At first, a coarse grid is projected into the low-level actuator
space. From the actuator commands at the grid points the actuator command M, (t) with
the lowest predicted error is determined. Starting with M4 (t), constrained optimization by
linear approximation [141] (COBYLA) is used to determine the approximate optimal one. It is
approximated as the process is used with a timeout in order to timely deliver an actuator com-
mand. In the optimization process, COBYLA’ time complexity is determined by the prediction
model function 7,y : RSFM R (cf. Def. 6.6). As I.(t) does not change during that process,
the approach reduces computation costs by generating a sub-model function mj__ : RM - R
with fixed input, and uses that instead of 1y, in the calculation of M(t).

6.3 Configuration

As already pointed out, the greater universality leads to a bigger exploration space. Although
the skill layer is fully autonomous and able to cope with that, it is wise to limit the exploration
space by specifying non-changing parameters beforehand. This can be achieved by configuring
the following parameters:

o Degrees of freedom specify the number of actors the skill layer has to control.

o Extraction functions define the language that can be used to specify the error functions.

66

6 Skill layer

o Control functions specify the functions that the error minimizer will minimize by means
of the error functions.

o Regression models are used by the model manager to build predictions for the environ-
ment interaction. A regression model consists of two methods: one that fits a model to an
experience trace and one that predicts the value of the modeled property.

6.4 Conclusion

The skill layer finds out by itself what types of capabilities are actually learnable before it starts
trying to learn specific skills. The learned skills are then adapted while being executed. The main
point of this skill layer, however, is its ability to detect behavior in observation streams. With this
capability, the robot can ask the individually learned skills, whether there are behavior patterns in
the observation that could also be achieved by the skill itself. With this information, the imitation
approach of Chap. 8 is then able to abstract and recognize complex behavior in the observation.

67

6.4 Conclusion

68

CHAPTER

An integrative example

This chapter shows exemplary how all three layers can be specified so that a robot learns to col-
lect objects and carry them to a goal in a Capture-The-Flag (CTF) scenario. As already discussed
in Sec. 1.1, CTF is often used as a canonical task to evaluate multi-robot systems and can be
seen as a model for real-world tasks like dirt cleanup, search and rescue operations, and similar
tasks. The autonomously learned behavior will be demonstrated and tested within the Player-
Stage/Gazebo [79] simulation (Fig. 7.1). The Pioneer2DX robot serves as the robotic platform.
It has four wheels and a gripper, which is used to push the object. The dynamics are simulated
using the Open Dynamics Engine (ODE) [168].

The scenario consists of a goal base to which objects, which are dispersed in the environment,
have to be transported. The robot has to find out which skills, which have to be autonomously
learned by the skill layer (Chap. 6), have to be executed in which order, learned by the strat-
egy layer (Chap. 5), to achieve that goal. Although the scenario is quite simple, it shows all the
characteristics of real-world scenarios, i. e., it is noisy, continuous, and time-dependent.

The results regarding the strategy layer are averaged over 200 experiments, in which the robot had
to push an object 30 times consecutively to the goal. The confidence interval of 95% is provided.
The charts regarding the skill layer are individual examples.

7.1 Implementation of the motivation layer

For this example it suffices to equip the robot with only one drive. A positive transition reward
of 100 is given if the robot has pushed the object to the yellow goal base. The change of the
distance between the nearest object and the goal is provided as reward rates. The perception Z
is preprocessed to provide the robot’s relative distance d, to the goal g and the robots relative

69

7.2 Implementation of the strategy layer

Figure 7.1: Capture-The-Flag scenario. The robot has to learn to push the blue object to the yellow goal
base. It has to learn by itself both the low-level actions and the strategy using them, involving
the proper state abstraction and the correct timing of the actions

distance d,; and angle a, to the object g:

Tn=(dgdgay) e R (7.1)

The motivation layer was defined to provide the strategy layer with the following motivation:

o ifdy <1m Ady < 0.5 |ay| < 20°
P (Zn(t)) = max{o, ph(Zn(t—1)) - A‘ig{)m} if |a,| < 20° (7.2)
max {0, 4,(Z,,((t —1)) + 0.01} otherwise

This provides a high reward for reaching the goal (d, < 1m) with the object in the gripper (d, <

0.5 A |ay| < 20°), because it is setting the motivation to zero. If the object is far away but in front

of the robot (|ay| < 20°), it gets the small incentive — Mfﬁ){) A which is the bigger the nearer the

object gets. Otherwise, the motivation is increased by o.01. This forces the robot to prefer faster
strategies.

With this definition, the robot will receive different rewards for reaching the goal, based on how
high its motivation grew in the past. This is, however, not of a problem for the strategy layer, as
it treats the received rewards as statistical samples.

7.2 Implementation of the strategy layer

The strategy’s state space consists of the robot’s relative distance and angle to goal g and object g:

I, = (dg ag, dg, ag) € R* (73)

70

7 An integrative example

As described in Chap. 5, the task of the strategy layer is to generate a strategy that guides the
robot through this state space in order to satisfy the motivation layer. Based on the current state
of Z;, the robot chooses the best action according to that strategy. It has been discussed that this is
infeasible with the original state space of Z; as it would take too long for the robot to find a usable
strategy. Instead, the strategy layer abstracts the continuous 4-dimensional state space into a
manageable amount of abstract states. These abstract states, also called regions, are determined
by means of the heuristics presented in Sec. 5.5. A region consists of states that “feel similar”
to the robot when executing the same action. This means that the failure rates, durations, and
expected rewards are similar for all the states of the same region given the same action.

For this to work properly, the adaptation heuristics of the state space, which are described in
Sec. 5.5, have to be parametrized. The choice of the parameters is domain dependent and has
to be done manually using expert knowledge of the domain. The following parameters were
therefore determined empirically:

o Transition heuristic: It determines whether a region s should be split because the region s’
that is reached by the greedy action 7(s) has a too low probability P(s’ |s, a). The heuristic
is controlled by the threshold 07y in Eq. (5.26) (page 47). The higher this threshold the
more tolerant the strategy layer is regarding greedy next states, which are ambiguous. With
this threshold the strategy layer trades off policy accuracy against the number of involved
regions. A lower ambiguity is bought by a higher number of regions.

The threshold is determined to be 01y = o0.2. If a region’s greedy action has no clear next
region as a result, it will be quickly split with this value.

o Experience heuristic: This heuristic controls the robot’s memory. By limiting the number
of the robot’s past experiences, it basically forgets experiences that are too old. If an old
experience drops out of the memory, the policy is updated to account for the changed
memory. Without this heuristic, the complexity would rise continuously as an increasing
amount of experiences would have to be handled by the other heuristics.

In this chapter, the number of experiences is not bounded (6, = o0), but stays below 9,000
(Fig. 7.2).

o Failure heuristic: It adjusts regions based on the failure signals received by the skill layer.
While the robot is in normal execution mode, the skill layer may send failure signals mean-
ing that the applied skill did not perform as expected. Due to the noise in the environment,
the skill layer may signal a failure even if there is no problem in the environment. In that
case, the failure signals should be ignored. If, however, the failure signals arrive at a high
frequency, this is a sign that the state space may not be properly abstracted. This means
that skills make assumptions about the outcome of their application that don’t hold in the
given state. The failure heuristic splits the region corresponding to that state so that the
policy can better distinguish the different states. Eq. (5.27) (page 47) determines whether
the corresponding region is split, based on the failure threshold 6.

In the experiments, 6 = 0.01 ensures that regions are split at very low failure rates.

 Reward heuristic: In the beginning of a robot’s lifetime, there is usually not enough infor-
mation on which the transition and failure heuristics can base their state splitting deci-

71

7.3 Implementation of the skill layer

sions. In that case, the strategy layer contains just one region into which all observed states
are mapped. In this situation, the reward heuristic comes to the rescue. It analyzes the
observed reward rates in order to find a significant change in the reward rate variance as
defined by Eq. (5.28) (page 48). The point in the experience stream, where this is the case
might be a good choice for a split. All experienced states that belong to the same region
before that point are separated from those that come later. The time window in which the
reward heuristic looks for such a variance change is defined by n. The minimum reward
rate variance is specified by Ory. The splitting is, in addition, only performed if the traces
with low and high variance both contain at least 0, state observations.

The strategy layer considers the reward rates of the last # = 20 interactions and used the
constants 0z, = 0.01and 6; = 6.

o Simplification heuristic: The application of the abovementioned heuristics results in an in-
creasingly detailed state abstraction. The simplification heuristic counteracts this devel-
opment by merging regions that are overly discriminating in the light of new experience.
This is specified by the definition of when an action is viewed deterministic, as described
in Sec. 5.5.4.

In the experiments, an action a in state s was considered deterministic, if P(s’|s,a) >
0.8 for some next state s’. Given the following exemplary policy with the corresponding
transition probabilities:

n(s,)=a, P(s,|s,a,)=0.9

n(s,) = a, P(s;]s,,a,) =0.8 (7.4)

In this case the two actions a, and a, are considered as being deterministic. As a conse-
quence, the simplification heuristic will merge s, and s,.

These heuristics are responsible for maintaining a reasonable state space abstraction. The policy
that is built using those abstract states is governed by the discount factor f3 (cf. Sec. 5.1.2 and 5.3).
With a value of near zero, the robot is increasingly paying attention to a reward that is further
in the future. At higher values of 8 the robot becomes increasingly near-sighted (Eq. (5.12), p. 43).
The discount parameter of the strategy is set to § = 0.1.

7.3 Implementation of the skill layer

The skill layer is configured to control two degrees of freedom: velocity and rotational speed. It
was provided with one control function “decrease” defined similarly to Eq. (6.1) (page 59):

fC(sz" th) = |ij| (75)

The skill layer preprocesses the perception Z in order to provide the robot’s relative distance and
angle to the goal and to the object:

T, = {{ball, goal} x {angle,distance} x R} (7.6)

72

7 An integrative example

In this experiment, polynomials and radial basis functions (RBF) are used for m. The polynomial
function can be calculated fast but has restricted generalization capabilities, while an RBF is time-
consuming but offers much better generalization possibilities.

Polynomial The multivariate polynomial is defined by

d d
mp"l}’(x) = Z Z Cd,.... dnxld‘ -...-x,‘f“ , (7.7)

where d is the degree of the polynomial and c,,_4, are the coefficients.

E.g., the polynomial m?° (x) = x,x}x,, + 3x2x,x7 is realized by the coefficients c, , ,, = 1
and c, ;s = 3, where the first summand has d, = d,, = 1 and d; = 4, and the second has
d,=2,d,=1and d; =7.

The degree d is determined using the early stopping technique. It is biased towards simpler
models in that it increases the model complexity by means of its degree until no significant
increase in accuracy can be observed.

Radial basis function An RBF is defined by

() = 32, =5 78)

| - | defines the Euclidean distance between the center x; and a data point x. ¢ is the
multiquadric basis function ¢(r) = \/(2)>+1 with e = £ ¥V ||x;|. The final result
is weighted by A; € R. They are computed by solving the set of linear equations y; =
Li(¢(|x:]|) — p) Vi € {1..N}, where p is a smoothing constant. An example of an RBE,
which is used as a prediction model for a skill, is shown in Fig. 7.5 (p. 76).

The model manager is allowed to generate polynomials of maximal degree ten. The smoothing
constant is set to p = 0.001 for the RBF model function to smooth it slightly.

7.4 Evaluation

The evaluation compares two settings. In the setting for the first type of experiments (“manual”),
the motivation layer and strategy layer are used as defined above. The skill layer, however, consists
of manually programmed skills. The second type (“learned”) uses the skill layer as defined in
Sec. 7.3 instead. Wherever appropriate, the charts contain a 95% confidence-interval.

Fig. 7.2 shows how the robot manages to abstract the 4-dimensional state space of the strategy
layer into a small number of abstract regions, with which the strategy is learned. With hand-
crafted skills it has abstracted the observed states of nearly 8,000 interactions into only seven
abstract states. With everything being learned, meaning that also the skills are autonomously
learned by the robot, the robot has generated only 13 regions out of more then 8,500 state ob-
servations. This shows that the robot separate the infinite 4-dimensional state space into a low

73

7.4 Evaluation

- 9000 14
28000 112
87000 108
26000 2
25000 8 &
84000 6 g
_g 3000 eeoe |ength of experience list (manual) 14 -E
46',]2000 e Iengtbh of 1?xperiencza list (Ieljlrned) E’
c = number of regions (manua 2
Q 1000 === number of regions (learned)

% 5 10 15 20 25 38

episode

Figure 7.2: Size of experience and number of abstract regions

[
-
o
o

eeee manual
<«++< |earned

(/)]

T

S

o 800/

=

5 600

(o]

i

g 400/

Q

£ 200

I

S G 5 10 15 20 25 30

episode

Figure 7.3: Time to push the object to the goal

number of abstract regions, by which it is able to explain the environment and its interactions
with it.

Comparing the total time of the first run the robot needs for pushing the object to the goal, the
learned version needs approximately 1, ooos compared to 500s in the manual version (Fig. 7.3).
This is explained by the fact that the robot needs more exploration time when also learning at
the skill layer. There it also has to explore its own capabilities and learn the necessary skills.
Both charts converge slightly above 200s. It shows that while being slower in the beginning, the
learning skill layer manages to finally converge to the same performance, which is nearly optimal
for this scenario.

The reward per second is displayed in Fig. 7.4. The learning skill layer stays slightly below the
manual version. The learning version, however, can be considered as far more robust. This shows
that the approach is capable to autonomously tackle infinite state and action spaces in realistic
scenarios.

The skill layer has autonomously generated different competing prediction models that deter-
mine the behavior of the learned skills in all experiment runs in the end. The skill layer, however,
has always chosen RBF for the finally learned skill due to its greater accuracy. Only in the begin-
ning of the experiments, when only little data is available, the polynomial is chosen. The learned

74

7 An integrative example

1.2
'\.ﬂ/’_'/\——o-—o/\

-g 1.0 W
80 8 T T T P
nor S
80.6
e

0.4
:
LO.Z eeee manual

<++<< |earned

©
2
"l

10 15 20 25 30
episode

Figure 7.4: The reward per second

behavior will be represented in a synthetic way to show the proceedings of the skill layer (Fig. 7.5).
The utilized prediction model is based on the radial basis function approximation. It predicts the
next value of the angle by knowing the value of the angle and the distance to the object and the
chosen low-level action. A grid of 30x30 points in the input space is used. The input dimensions
are the angle and the distance to the object, so each point of the grid is characterized by a certain
angle-distance couple. For each point of the grid, the error minimizer (Sec 6.2.3) computes the
low-level action that minimizes the predicted distance. The result is one 3-dimensional graph for
each degree of freedom: one indicating the chosen tangent speed and the other indicating the
chosen rotational speed. The third dimension (the actuator intensity) is represented by colors:
red for negative intensity, white for zero, and blue for positive intensity.

In Fig. 7.5, the behavior of decreasing the angle to the object is represented. The upper graph
indicates the rotational speed dependent on the angle and distance to the object. For each angle-
distance combination a full blue color means rotating right with highest rotational speed (100),
and a full red color means rotating left (-100). The values between are interpolated accordingly. A
white color, e. g., means no rotation. This is the case, if the angle is already minimized. Otherwise,
itis set to turn towards the object. It can be seen that the robot correctly learns to set the rotational
speed dependent on the relative angle to the object.

The frontal velocity is shown in the lower graph and looks more noisy than the rotational speed.
It shows that the robot drives backwards when it is close to the object. In effect, driving forwards
in that case could lead to a continuous rotation around the object that would never lead to a
decrease of the distance. When the distance is not low, there is not a clear behavior with regard
to the forward speed. This makes sense, because it does not much affect the angle to the object
so it can even be chosen randomly without side effects on the performance of the action.

75

7.4 Evaluation

Decrease angle through RBF_Model
by knowing distance and angle

150

100
50
o (=1
g o e
- o
£ =1
=) 2
5 50 e
-100
-150
100 400 500 600 700 800 900
distance (cm)
Decrease angle through RBF_Model
by knowing distance and angle
100
80
60
440
9 120
o o
[}
z 0 0
o
[1]
2
H 20
4-40
-60
-80
-100

200 300 400 500 600 700 800 900
distance (cm)

Figure 7.5: Low-level actions associated to the abstract action of minimizing the angle to the object. The
red color denotes a full negative value (-100), while the blue one a full positive one (100).

76

CHAPTER

Imitation in robot groups

The previous chapter has laid out the basis for a robot to successfully bootstrap its own learning
process. How a robot can speed up this process by imitating the other robots’ successful behaviors
will be presented in this chapter [18, 19, 20]". It comprises

« algorithms to recognize, interpret — and thereby understand - the observed behavior (Sec. 8.4),
« the integration of understood behavior into the robot’s own knowledge (Sec. 8.5), and

o experimental results that display that this approach increases the learning speed and per-
formance (Sec. 8.6).

Although the material regarding imitation in robot groups is rather sparse, some work has al-
ready been conducted in this field of research. Before presenting the approach of this thesis, the
current approaches will therefore be presented and contrasted.

8.1 Related work

The field of imitation has already been overviewed in Chap. 2. This section will survey the state
of the art in multi-robot imitation. In addition to the previously described challenges that the
more constraint imitation approaches described above have to face, multi-robot imitation has to
cope with the following problems:

« When to imitate (cf. Sec. 2.2.2.1).

'Parts of this approach have been implemented within the scope of the diploma thesis [159].

77

8.1 Related work

« How to integrate the observed behavior into the already individually learned behavior
knowledge.

This section surveys the research that tackles especially these challenges in the context of multi-
robot and multi-agent context.

Takahashi et al. use imitation to learn robotic soccer behaviors like approaching or shooting a
ball [175,174]. During imitation a robot in their approach uses the value function approximated to
the observation of the imitatee to estimate the imitatee’s performed policy. They rely on manually
discretized state spaces. The approach requires the following set up: The imitatee first performs
an action 10 times while the imitator observes it. Then, the imitator tries to perform the action
with the observation knowledge. Afterwards the imitator evaluates the behavior, as well as its
recognition performance. Finally, the procedure starts over again until the imitator has learned
the action. This approach requires the robot group to stop in their current task whenever an
imitator tries to learn new behavior by imitation.

Priesterjahn uses imitation in the field of multi-agent first-person shooter games [142, 143, 144,
145] to generate non-person characters (NPC) that maximize the human game player’s fun. The
difficulty in designing such games is not to maximize the NPCs game strength, but to keep the
game agents at a strength level similar to the human player’s. Priesterjahn achieves this by evolv-
ing neural network controllers, which incorporate successful behavior from other NPCs as well
as behavior information from the human player. At first, a human player’s actions are recorded
while he is playing the computer game. The recorded data is then used as a starting rule base to
evolve a neural network at play time. A rule is the mapping of an environmental state to an action.
The environmental state is basically the grid map (30 x 30 cells in his experiments) with a value
for each grid cell indicating whether the cell is free, blocked, or containing an opponent. The
finally learned behavior consisting of the learned rules is thus targeted to that particular grid and
player setting. Priesterjahn combines imitation with learning in that the NPCs are sharing so-
called “elite” situation/action-rules. These are rules that performed exceptionally well during the
game. This requires the situation, as well as the action, to behave similar for all NPCs. The action
is a 4-tuple (forward movement, lateral movement, view angle, attack). The forward movement,
e. g., allows for forward, no movement, and backward ({1,0,-1}). Thus, the approach is targeted
to game worlds and cannot easily be transferred to real-world robotic scenarios. In addition, it
requires all NPCs to commit to the same communication channel and protocol. In real-world
applications, this type of imitation is problematic if the communication channel is too noisy or
temporarily not working. In addition, his approach is designed for game scenarios that contain
actors with the same behavior capabilities. The question, how to deal with heterogeneous groups
is therefore not handled by his approach. It, however, showed that imitation-based adaptation is
able to outperform the evolutionary only approach.

Closest to the approach of this thesis come Inamura et al. [93, 94] with their Mimesis Loop ap-
proach. Thereby they are able to symbolize observed low-level behavior traces. This is used as
top-down teaching from the user’s side in combination with the bottom-up learning from the
robot’s side. As this is useful to decrease the programming effort, it is an exclusive solution,
not allowing to be used with other learning techniques like, e. g., reinforcement learning. Also
their approach is not able to use already existing abstract states of the imitator in the recognition
process. Once a robot has extracted enough information to construct a hidden Markov model

78

8 Imitation in robot groups

(HMM) based on the recognized low-level behaviors, it is fixed to that HMM - no exploratory
actions are possible any more on the abstract states. Furthermore, the segmentation process that
splits the continuous movement trajectories into basic movements uses a fixed scheme. With
that it is not possible to allow for ambiguities at the recognition phase.

In summary, there is either work in the field of imitation that allows single robots to learn indi-
vidual tasks from a predetermined teacher, and there is imitation employed in multi-agent sit-
uations that misses the action recognition and correspondence problem task. Furthermore, up
to now no research has been carried out regarding sporadic imitation, which is apparently very
important when robots in groups should benefit from each other’s learning efforts. Typically, the
imitation process should not interrupt the observed robot, so that the imitating robot often has
only one example of interesting behavior to learn from. This usually does not provide enough
information for learning a generalized skill that can be replayed later on. Instead of trying to
learn low-level skills from observation, the observer nevertheless might use the observation to
update its strategy if it is able to retrieve the salient information. How this can be achieved will
be described in this chapter.

8.2 Overview of the multi-robot imitation approach

It lies within the nature of robot groups that the information retrieved during sporadic obser-
vation in an imitation process is rather sparse, since imitation possibilities do not show up very
often. And even when there is such a possibility, the observing robot should not disturb the imita-
tee or demonstrator by requesting a repetition of the behavior observed previously. This renders
the imitation of low-level skills unfeasible, because it usually requires a lot of data gathered by
observation of many repetitions before the skill can be replayed satisfactorily.

Nevertheless, a robot group can benefit from sporadic imitation if its robots attempt to imitate
the broader picture of the general behavior, i. e., the imitation of strategies or sequences of low-
level skills. At this level of behavior, imitation provides enough information for the following
exploitation possibilities of the observation:

1. The robot may decide to spend more exploration efforts on the state transitions just ob-
served, which play a role in the sequence of newly observed behavior.

2. If the robot observes state transitions for which it cannot find already known skills in its
skill repertoire, it can direct its exploration efforts of the skill layer to learn that specific
possibly new skill.

3. The robot can incorporate the transition data of the observed demonstrator condensed
into its own strategy.

The imitation approach presented in this chapter revolves around the third possibility, as the
exploration process would exceed the scope of this thesis (cf. Sec. 8.5).

The general approach is shown exemplary in Fig. 8.1 where a robot (imitator) tries to understand
the observed behavior episode of an other robot (demonstrator or imitatee). The episode consists

79

8.2 Overview of the multi-robot imitation approach

observed episode
((of,€)s.... (o, ey))

!

transform observations

!

subjective observation data
((oP,e),..., (0F- en))

!

interpret behavior

!

recognized episodes
(....((t,0P,s),a: (¢, 0P,s")),...)

!

estimate rewards

!

observed interpreted experience
(..., ((t,0P,s), a1y, (1, 0P,8)),...)

!

integrate into experience,

update SMDP

Figure 8.1: The process of imitation: observing an other robot’s behavior, interpreting it in terms of its
own knowledge, and integrating it into the latter

of the raw perception as observation o! and the visible “well-being” state e’ of the demonstrator
D as observed by the imitator I (hence the superscript). The well-being state is comparable to
an emotional state that comprises the robot’s overall state in form of a drive state (Chap. 4). The
robots permanently observe each other and maintain a window of predefined length of the last
observations and well-being states. If a robot shows a significant change in its well-being state
and an observing robot detects that, it will try to imitate only the section of the observed episode
that contains the quasi-monotonic well-being state.

The observation o is subjective to the imitator I, consisting of perception data that contains the
coordinates of the imitatee or demonstrator D, which is moving around. To really understand
what the demonstrator did, the imitator has to “look with the demonstrator’s eyes”. That means
that the imitator has to translate all the coordinate information in the observations to see what
it would have perceived in the demonstrator’s situation.

8o

8 Imitation in robot groups

It then interprets the subjective perception by allowing its low-level skills a € A to give so-called
votes (cf. Chap. 6), which express how well each of them could have achieved the observation
changes. Using an algorithm inspired by the Viterbi algorithm from the field of Hidden Markov
Models (HMM) [148], those votes are then used in combination with the imitator’s state space
S in order to find the most likely behavior sequence corresponding to the observations. Sub-
sequently, the recognized episodes are enriched with the estimated information for the missing
data. Finally, this is integrated into the imitator’s experience and the strategy is updated.

8.3 Transforming observations

Consider the example, where an imitator I observes a demonstrator D driving directly to a goal
base. The demonstrator perceives its environment in terms of distance and angle to that goal:
Z, = R2. Over a period of time, the demonstrator perceives the following sequence for Z;:

(...,(3m,20°%), (2.7m,17°),..., (0.2m,3°%)) (8.1)

As the demonstrator perceives the last state, (0.2, 3°), the robot has reached its goal and receives
a high positive reward from its motivation layer. As a consequence, the demonstrator’s strategy
layer updates its policy to account for the fact that it will receive positive reward with higher
probability when the goal is near and in front of it.

The observing imitator I has, however, no access to the demonstrator’s subjective perception. It
has to infer it from its own observations. The raw state space of its strategy layer usually does
not even contain enough information regarding other robot’s coordinates as it is kept as small as
possible for better learning convergence. The imitator instead has the ability to access the raw
information available from its perception component before it is preprocessed, which is Z (cf.
Fig. 3.1, p. 19). It contains positional data including the 3-D position and orientation subjective
to the imitator regarding all the objects and robots in the vicinity. Therefore, the imitator collects
the following information when observing the demonstrator, where all of the positional data in
the perceived observation is imitator centric:

o' =(1!,... 11}, (8.2)
where O! contains the window of the last N received raw perceptions.

Let exemplary Z! = T; = ((vl, 0%), (vp, 05), ¢), k € {1,..., N}, be defined as the 3-D positions
and orientations of goal g and robot D and some other non-vector value c. v} and v}, are then
regarded as positional data. In the following, the superscript denotes the coordinate system of
the positional data. E. g., v} is a vector of the goal g in the coordination system of the imitator I.
As the transformation is done with respect to D’s coordinate system, (v1, 81)) will be replaced by
the relative position and orientation of the imitator I as seen from the demonstrator D. All other
positional data - in this case only v; — will be converted from the imitator’s coordinate system
(I) into that of the demonstrator (D). The conversion makes use of D’s relative position v, and
orientation 0% so that it reflects D’s subjective observation.

This transformation is achieved by the mapping ¢p : v, —» v5. It has to be applied to each po-
sitional data individually. Let vI, = (x1, y1,zL)T and 0% = (a},, L, y})T be retrieved from Z

81

8.3 Transforming observations

as the 3-D position vector and orientation of the demonstrator’s coordinate system in the imita-
tor’s coordinate system. Prior to the transformation they are converted to homogeneous coor-
dinates [185]. Such a coordinate is a four-element column vector, where the first three elements
are the original coordinates and the fourth is a scale factor, which is always 1 in this case. Ho-
mogeneous coordinates allow the translation to be represented as a matrix multiplication, which
unifies all rotation and translation matrices into one. These homogeneous transformation ma-
trices, namely the rotation around the three axes and the translation as shown in Fig. 8.2, are
defined by Eq. (8.3) and (8.4).

X

Figure 8.2: The robot’s coordinate system

1 o o o cospl, o sinpl o cosyl, —sinyl o o
1 ol ol 1
o cosap —sinap O o 1) o sin cos o o
R, = o sintx’D cosocID o R}’: —sinfl, o cosBl o R, = OYD OYD 1 o (83)
D D D D
o o o 1 o o o 1 o o o 1
1 0o o «xh
I
_Jo 1 o yp
T= o o 1 1z} (8.4)
o o o 1

The chain multiplication Mp_; = R,R,R. T transforms an object’s position from the demonstra-
tor’s point of view into the point of view of the imitator. As the recognition algorithm needs the
opposite effect, the inverse of Mp_ results in the transformation matrix M;_,p, which converts
an object from the coordinate system of the imitator to that of the demonstrator:

Mi.p = (R.R,R.T)" (8.5)

In the frequent case that imitator and demonstrator are coplanar (z}, = af) = L = o), the
transformation may be simplified, because of R, = R, = E. The transformation matrix M;_p
transforms an object’s position v§ = (x5, ¥5,z5)7 in the imitator’s coordinate system into that
of the demonstrator’s:

X

D Ve
VO/ = MI—>D P (86)

Z0

1

vy, is a vector in homogeneous coordinates. The 3-D vector v, which specifies the object’s po-

sition subjective to the demonstrator, is retrieved by extracting the first three coordinates of v),.

82

8 Imitation in robot groups

The last coordinate, being the scaling factor, may be ignored. With Eq. (8.6) the demonstrator
is able to generate the according subjective observation for each observation for any observable

demonstrator:
(ZP,...,1R) (8.7)

This can then be preprocessed by the user-defined function Y; : Z — Z; (cf. Chap. 3) in order to
retrieve the state in the strategy layer’s state space, which is the perception that the demonstrator

D has seen:
ol =(z.,>,...,.Y) (8.8)

The recognition process can now analyze OP in order to recognize behavior that probably has
led to the positive reward.

8.4 Understanding observed behavior

The desired outcome of the observation and recognition phase in an imitation process is a state-
action-trace that results in a performance similar to the observations. For this, the imitating
robot has to find corresponding states in its own strategy’s state space that might play a role when
imitating the observed behavior. Furthermore, it should only regard states that can be connected
by means of actions of which the imitating robot is capable. This requires the imitator to couple
its strategy and skill layer, whereby it is able to accomplish the recognition and understanding of
other robots’ behavior in terms of its own strategy and skill capabilities. As described in Chap. 5,
the strategy is modeled with a Semi-Markov Decision Process (SMDP) that has a dynamically
adjusting state space. It uses self-developed skills as actions, which are triggered in terms of goal
functions on the perception (Chap. 6).

With the described means for strategy and skill learning, the Viterbi algorithm can now be
adapted accordingly. It is often used to replay behavior previously encoded by a Hidden Markov
Model (HMM) [148] in an imitation process. HMMs are stochastic models that describe Markov
processes. HMMs are often used in the field of imitation to encode sequential patterns of mo-
tion as stochastic finite state automata [52]. Before the recognition algorithm is presented, a short
overview of the Viterbi algorithm following the description of Bengio [40] is given. Throughout
this chapter the following notation is used:

« P(0]s) is the likeliness of observing o in state s.

o P(s'|s) = X, P,(s"|s) is the probability of s being the next state after s’ independent of
which action a € A has been chosen.

e P(0;|0s-y,a) = Py(0;]0;-,) is the probability of observing o, after having observed o;_, in
the previous time step and executed action a henceforward.

o P(s'|s,a) = P,(s'|s) is the probability that action a executed in state s transitions to s’ (cf.
Sec. 5.3).

o T(s,a,s’) is the strategy’s individually learned probability of transitioning to state s’ when
started in state s and executing action a henceforward (called P(s’ s, a) in Sec. 5.3).

83

8.4 Understanding observed behavior

In the following, the time stamp subscript ¢ refers to a continuous point in time at which the
according attribute has been perceived. The continuous time point of the attribute in the previous
time step is addressed by ¢ — 1.

8.4.1 Viterbi

The Viterbi path is usually calculated by the imitation approaches in the literature to find the
state sequence that the imitator later on should realize in order to exactly copy the observed
behavior [52]. This is carried out by using the state space of the inferred HMM, which is assumed
to be fix and to reflect the demonstrator’s state and action space together with the state transition
probabilities.

The path is calculated by the Viterbi algorithm [182], which attempts to find the most likely hid-
den state sequence sN = (s,,s,,...,5n), S; € S, that best explains the observation sequence oV,
0; € R? with d being the dimension of the observation vector. It is achieved by maximizing the

probability P(sN |oN):

sN* = argmax P (sV [ol) (8.9)

1
sy

The Viterbi algorithm efficiently determines the maximum in time O(T#) using Bellman’s dy-
namic programming algorithm, where 7 is the number of non-zero transition probabilities [39].
It does so by recursively calculating the probability?

V(s t) = nsqtgle(of, S1oe S8t =S) (8.10)
that s € S is the observed hidden state at time ¢ given the observations o!:
V(s,t) =P(o;|sc=s) max [P(st=s|s =s)V(s",t-1)] (8.11)
With an initial assignment of)V by
V(s,1) = P(0,|s,=s)P(s,=5s)VseS (8.12)
the most likely path can then be extracted with backward recursion:

@(s,t) =argmax [P(s; = s|s,, =s)V(s', t —1)] (8.13)

It determines the best predecessor of state s at time .

8.4.2 Interpreting observed behavior

The approach in this thesis utilizes cues from the Viterbi algorithm. In contrast to the approaches
in the literature, the Viterbi algorithm in this thesis is merely used to explain the observations

*In order to not confuse the value of a hidden state in the Viterbi path with the value of a state in reinforcement
learning (cf. Sec. 5.3), it is denoted by V instead of V.

84

8 Imitation in robot groups

recorded from the demonstrator with the current knowledge of the imitator. In this way, the
imitator tries to understand the demonstrator with the knowledge it already has attained in terms
of its own strategy knowledge (cf. Chap. 5) and skill repertoire (cf. Chap. 6). The presented

algorithm takes as the input an episode O = (o,,...,0y) consisting of demonstrator centric
observations. It then extracts a list of understood state transitions of the form
r=(..,((t,o,s)a,(t,0,s)),...). (8.14)

For this, Eq. (8.11) as part of the recognition part in the imitation process has to be modified
accordingly.

Using the state abstraction mapping & : RY — S from Sec. 5.4, P(0;|s; = s) could easily be
realized as an indicator function:

P(oi]s =) = { L Sor) = (8.15)

0, otherwise

This would, however, yield a weight, which is too high, to the imitating robot’s current mapping
of &, because it rules out all other states S \ {&(0,)}. At the other side of the extreme, & could be
ignored by assigning the same probability to all observations in order to take all other abstract
states into account. However, as the robots in the group are considered to have similar goals, the
imitator should also exploit its current mapping assuming that the chosen demonstrator has a
similar one. This leads to the trade-off discussed in the following.

As an example, consider Fig. 8.3 where the most likely state has to be determined for the observa-
tion 0. As described in the previous chapter, the nearest neighbor approach is chosen throughout
this thesis to map the state observations to the abstract states of the strategy. Let N* be the set
of k observations in the robot’s experience that are nearest to o: N; = {0,,0,, 0,}. Furthermore,
define N¥_ to be those observations in N¥ that are mapped to s by &:

0—$

Nt ={0

o€ NE A E(0) =5} (8.16)

In the example figure, N;_;, = {0,,0,}. P(0|s; = s) can then be defined to be inversely depen-
dent on the distance to the labeled observation instances in the nearest neighbor representation:

A

0;—0

-2

zéeN]jﬂ

P(o;|s; =5s) =
Corlse=s) = o a1

(8.17)

During the recognition phase, the robot thereby gives all regions their chance, depending on
how much their observations resemble the one in question. In the case of N, = N¥, Eq. (8.17)
behaves like the initial suggestion in Eq. (8.15) for P(o;|s; = s).

The calculation of P(s; = s|s;-, = §’) in Eq. (8.11) is more involved. If one would just take the
transition probability of its greedy action in s,_,, P(s|s’, 7(s")), the robot would not get new
insights about other — and maybe better - state transitions in that specific state. Instead, it should
guess from the observations which of the skills in its own skill repertoire would best realize the
recorded observations.

Given an arbitrary state transition (s, s,,) with s;, # s, (#, < t,). For each recorded observation
step (041, 0¢), [t — 1, t] c [1,, t,], all the skills estimate their vote P,(0;|0,-,). With this vote, the

85

8.4 Understanding observed behavior

region

("abstract state") state observation

("raw state")

Figure 8.3: The calculation of P(o;|s; = s) is based on the distances to the k nearest observations. In this
example, N* and N* _ _are shown for o; = 0,5 = 5,, and k = 3.

Figure 8.4: Example of a demonstrator that might drive either to the red (left) or the yellow (right)
goal base. The heuristic assigns a higher probability to that skill that is nearer to its
optimum (in this case, “drive to red base”

skill a estimates its ability to transition the robot in a way that realizes the change from obser-
vation o0;_, to o;. It does so by means of the corresponding progress function f,, with which the
skills were learned (Chap. 6). The vote calculation is governed by the following heuristics:

o The skill delivers a higher vote if its progress function is nearer to its optimum. As a con-
sequence, the skill’s attention is focused to nearer objects, which are considered as more
relevant to the robot’s actions. This is necessary to filter out unrelated skills. As an exam-
ple, Fig. 8.4 shows a robot, which is pushing an object towards two possible goals. For an
observing imitator robot having two skills a,.; and a,.jjow, both would vote equally as it
is ambiguous to which goal the demonstrator is actually driving. With this heuristic, a,.4
will vote higher then a,.;;,., because the robot is nearer to the red goal.

« If the progress function is within a given tolerance range €, around the optimal value 1 it
delivers a vote of zero. This is necessary since small but irrelevant changes of the progress
functions of skills that have already accomplished their tasks will result in votes that rule
out other skills that are currently working towards their goals. €, can be derived while skill

86

8 Imitation in robot groups

a was learned: it is dependent on the overall variance while executing the skill.

+ The vote is clipped to the interval [o,1]. Negative votes occur when f5(0;,) < f;(0;). In
Fig. 8.4, this would be the case for both skills a,.q and ay.;joy. if the robot drives backwards
whereby it moves away from the goals.

These heuristics lead to the voting function in Eq. (8.18).

min (max(%,o) ,1) , 1-fi(or) <e

(8.18)
o, otherwise

Pa(0t|0t—1) = {

This voting function is then used to accumulate the total votes for an observation over the period
of one state transition. To discourage actions with long duration but low accumulated votes, it is
divided in addition by the time span of the full state transition:

Zﬁitl Pa(ot | Ot—l)

P,(sy, —
2 1

(8.19)

S,) =

For each observed potential state transition (s, s,), the robot uses Eq. (8.19) to determine the
most likely transition action
A = argmax P, (s;, | s,,) . (8.20)
a

This action determines the transition probability in the observer’s strategy that would most prob-
ably correspond to the observation of the demonstrator:

P(sy,

$i,) = T (51,5 Ami> S1,) (8.21)

Integrating Eq. (8.16)-(8.21) into Eq. (8.11) leads to the following modified recursive solution:
V(s,t) = P(0;]s: = s) max [T(st_1 =s',argmax P, (s, |s,,),s: = s)V(s', t - 1)] (8.22)

In contrast to the original Viterbi approach, no initial state probabilities can be assumed for the
demonstrator. Hence, V(s,1) in Eq. (8.12) is being simplified to

V(s,1) = P(o,]s,=s) VseS. (8.23)

¢(s, t) is finally determined according to Eq. (8.13). As the observed actions are not of unit time,
the imitator will recognize the same action and state for some period of time. The recognized
state-action transitions must therefore be extracted from ¢ to be of any use to the imitating robot.
An example is given in Eq. (8.24), where the tuples show the condensed information extracted
from ¢.

(S051,52) (51,a3,53)

So > S0 > S0 >S5, > S, >S5 >S5 >8>S, (8.24)
———
(SZ)aZ)Sl)

While observing the demonstrator, it can happen from time to time that the imitator does not
find corresponding actions for the observations, i. e., Pa(otgbs | Ofﬁbfl) < 0, for all actions. This

87

8.4 Understanding observed behavior

Figure 8.5: The subjective perception of the robot Figure 8.6: Experimental scenario: the ball has to
used in the experiments. It shows one be put onto the elevated platform.
camera image with the ball that has been
recognized by the vision preprocessing
step.

means that the just observed behavior at time ¢, is unknown to the imitator. The original Viterbi
algorithm would zero out all subsequent probability values, which would result in no sensible
recognition at all: V(s,t) ~ o V¢ > t2, . To prevent this, the demonstrator suspends the normal
Viterbi path calculation and scans the observation stream for the next time step !, , at which the
demonstrator is again able to recognize a skill with sufficient confidence: P;(0s, |0p, —1) > Oops.
The threshold 6, has to be determined empirically. The algorithm then starts the described
modified Viterbi algorithm anew at time ¢!, . It returns these independently recognized episodes
as separate traces:

L=(...,((t,0,8),a,(t,0,s)),...) (8.25)

For full reference, the whole algorithm is depicted in Alg. 2 and 3 (pages 141 and 142).

8.4.3 Example

To demonstrate the recognition process, two robots are placed into an environment with a soccer
ball that has to be transported onto an elevated platform (Fig. 8.6). To achieve this, they can
either simply push it or use their grippers to pick the ball and release it onto that platform. In
this example, both robots have fixed roles, subsequently called demonstrator and imitator, and
the imitation period is given to focus on the recognition part.

The robots have a defined field of view (fov) of 60°. They are able to perceive the soccer ball’s po-
sition and width in the camera image if it is within their fov by means of their vision capabilities.
The platform onto which the ball has to be placed is given as absolute coordinates to the robot,
which also knows its own position. The robots are equipped with 2-D barcode markers, which
enable them to detect each other’s relative position and orientation by means of the camera based
tracking library ARToolkit [183]. The raw perception Z provides the following information to the

88

8 Imitation in robot groups

imitator (Fig. 8.5):

v{, ball’s relative 3-D coordinates
p= Vg goal platform’s relative 3-D coordinates
(vp, 01) 3-D vector to and bearing of the demonstrator robot

For the strategy layer, the raw perception Z is then converted into a raw state observation o = Z;
by the user-defined function Y; (cf. Sec. 8.3 and Chap. 3):

vi| ball distance
o' = Y,(Z") = A goal distance (8.26)
vg-(0,0,1) ball height

As described in the previous section, the recognition algorithm does not operate on its own state
observation o, but on the observation transformed into the demonstrator’s view:

lep(vy)l [vy
o? =Y,(Z") = lop(ve)| = lvgl (8.27)
lop(vy - (0,0,1))| zp

The skill layer is equipped with the capabilities to rotate and translate the robot and to use the
gripper. If it is not using its grippers, it is nevertheless able to move the ball around in the field
by simply pushing them. In the imitation process, only the positions of the ball and of the other
robot can be observed.

The robots are capable of appropriate strategies and skills in order to move the ball around. The
demonstrator disposes of three skills: approaching the ball, lifting the ball, and approaching the
goal. The imitator is lacking the skill to lift the ball. It has instead individually learned the skill to
approach the ball (cf. Chap. 6) and is able to approach the goal and the corresponding strategy
using those skills (cf. Chap. 5). In the experiment, the imitator is observing the demonstrator
how it moves to the ball, picks it up, and carries it to the platform. It then tries to recognize a
potentially beneficial strategy in the observation.

The outcome of the recognition process is shown in Fig. 8.7. The imitator has successfully recog-
nized episodes in the demonstrator’s movements that coincide with the imitator’s own behavior
knowledge (dark areas marked as “B” and “G”). B denotes the time span in which the demon-
strator recognized a skill resembling its own approach ball skill and G resembling its approach
goal skill. The time span between the recognized areas is detected by the imitator as not under-
standable behavior (light areas). The recognition process is bootstrapped again as soon as it has
reasonable explanations for the observed behavior data. This missing link can now be used in the
subsequent exploration processes to direct the exploration towards it, while the understandable
regions can be used, e. g., to adapt the strategy towards using them more aggressively.

If the imitator would have been able to lift the ball, the corresponding recognition results would
be as depicted in Fig. 8.8. The time span that was missing in Fig. 8.7 is now correctly detected as
the behavior lifting the ball and marked with “L”

In this section, the focus has been on the recognition part. In the following, it will be used in a
larger picture, when recognized behavior is integrated in the robots’ own knowledge.

89

8.5 Integrating recognized behavior

3.5 5 5 : 5 —
=< 5 5 5 5 — — . goal distance
3.0| - /EEEEEEEEE | ... PP R —— ball distance |
s TS - - ball height

T

----------------- B- |

2.5

T

2.0

1.5

distance [m]

—
o

©
5

©
o

|
©
6]

Py (oo, ,)

COLOOLOO00O00

[cNoloNoNol il ol o
ONPOOONP,O

Figure 8.7: Recognition results during the imitation process: B and G (dark areas) denote the behavior
over the time that the demonstrator has understood and interpreted as being similar to its
own approaching ball and approaching goal skills. The behavior between them, lifting the ball
(light area), is recognized as a missing link.

8.5 Integrating recognized behavior

Although the previously described recognition algorithm is the most important part in the imi-
tation process, more efforts have to be made for a successful imitation process. The most natural
way is to integrate them in the form of interactions to the strategy’s own experience so that the
strategy layer does not have to discriminate between own and observed experiences.

Recall from Sec. 8.4 that the recognition algorithm (Alg. 2) results in sequence of understood
state transitions

F=(...,((t,o,s),a,(t,0,s)),...) . (8.28)

The imitation data has to be delivered to the strategy in the form of interactions, according to the
strategy’s experience stream by Eq. (5.1) (page 33):

t
Itlz = (Otla atla dtla ,utlaftl: Otz)

The missing data duration d, motivation g, and failure f need to be reconstructed for the re-
turned data of the recognition algorithm. Obviously, the duration is the difference of the start
and ending of the observation.

90

8 Imitation in robot groups

w
ul

~ f — — . goal distance
B o0000000080ag0d 4bo000000000000000000 R R —— ball distance |4
—————— - : : +——— ball height

~ . . 7

w
o
T

/
/

distance [m]
= NN
ul o (0]

—
o

1
© o o
(6] o (03]

Py(o,lo, ;)

COLOO000Le
[clololoNol N ol el
ONPOOONPO

Figure 8.8: Recognition results during the imitation process when the robot is capable of lifting the ball:
instead of the missing link the robot has correctly detected the lifting skill.

The motivation g is not directly observable. A way to infer the outcome of the recently per-
formed behavior is nevertheless vital for successful imitation. For this reason, the demonstrator
is required to express additional information, which is sufficient to approximate its overall drive
state p. In the following experiments, a colored light bulb on top of each robot achieves this. The
imitator approximates the motivation /i for each observed state transition from the drive state
expressed by the demonstrator at time t. Practically, this is done by normalizing the observed
drive state expression yP with respect to its minimum pL, and maximum pL,, for each demon-
strator robot d individually, including the imitator itself. This requires an initial calibration phase
where rough estimates are determined and only observation is allowed. Afterwards, the imitator
processes the observation using the approximated reward fi:

1 1
N D Mmax ~ Bmin
U=4 - —F5—75p
Hhax — Binin

The demonstrator keeps monitoring the minima and maxima for a better reward estimation.

(8.29)

The failure signals f are all assumed to be false. With a, d, and g, the robot is then able to create
a trace of interactions, containing only the most salient information (|1 fq| < |OM)):

L' = (I, 1,....1,,) (8.30)

Based on I ;q the imitator has to decide whether it is worth to integrate it into its own experience

91

8.6 Evaluation

own experience

t

Figure 8.9: The experience in the form of an interaction stream. The recognized behavior, which is ob-
served at other robots, is inserted into the experience as a new stream. Afterwards, the stream
of the own experience continues. This makes it possible to acquire observed data, while ac-
tively collecting further experience.

at all. The demonstrator might have been in exploration phase and thus have chosen random
actions. Alternatively, it might have been in exploitation phase, but its behavior does not con-
vey much vital information. In both cases, the approximated rewards are a valid indicator for
the usefulness of I ;q If the demonstrator experienced high absolute rewards, it does not matter
whether it was in exploration phase while being observed by the imitator. On the other hand,
if the demonstrator did not show any significant change in its overall well-being, it is irrelevant
whether it was in exploitation mode.

If the imitator decides that it can benefit from the interaction trace, it appends I ;" to its strategy’s
experience. However, it has to be implemented as a new episode of experience — not connected to
the robot’s own stream of experience, as shown in Fig. 8.9. Otherwise, the state transitions would
be inconsistent. The robot backs up its current state and restores it again after the imported expe-
rience to prevent having states of two different actors in one interaction. Otherwise, the inserted
interaction would look like a teleportation through the world. The strategy layer keeps track of all
“dangling” episodes in the experience stream and incorporates them accordingly when updating
its policy. In this manner, the whole process of learning observed behavior is transparent to the
underlying strategy. It does not know whether its input originates from an observation or from
its own perception. Thereby, the imitator benefits from the observation utilizing the complete
strategy learning.

8.6 Evaluation

The overall imitation approach is evaluated in two Capture-The-Flag (CTF) scenarios, where the
robots had to transport objects to goals of different value. To evaluate the benefits of the imitation
approach, all but one goal are easily approachable and provide only a low reward, while one goal
is difficult to reach, but provides a high reward. The optimal strategy, carrying all objects to the
difficult but highly rewarding goal, is learnable both with and without imitation. The question is
whether imitation results in a faster learning process.

The simulation models of the well-known Pioneer2DX is extended with an LED, which expresses
the corresponding well-being states (Fig. 8.10). The perception is preprocessed and delivered to
the strategy layer as a three-dimensional vector containing the following information:

92

8 Imitation in robot groups

well-being state

e —

Figure 8.10: The robots have grippers to grab the objects and LEDs for showing their emotional state

« Distance of robot to the closest object,
« Distance of the closest object to the closest goal, and

o ID of the closest goal

All experiments were conducted twice: with the imitation activated and with the imitation de-
activated. Wherever appropriate, the charts contain a 95% confidence-interval.

The development of the group’s behavior homogeneity is analyzed using Shannon’s information
entropy [161], which is a measure for the disorder of the realizations of a random variable:

H(X) ==Y p(x)logp(x) (8.31)

xeX

H’s range is [0, Hyay = log|X]], so it is normalized and the resulting function G is used as a
measure for the emergence of order in a strategy:

Hpax — H(X)

G(x) =~

(8.32)
In the experiments, X represents the goals to which the objects are transported. With G(X) = o
all goals are chosen equally often. As G(X) is approaching 1, the robots prefer more and more one
goal over the others. By comparing the normalized entropy of the imitation to the no-imitation
case, it can be seen whether imitation also has sped up the convergence of the group behavior.

8.6.1 CTF with three bases

This scenario consists of the three goal bases red, yellow, and black, to which the objects, which
are dispersed in the field, have to be transported (Fig. 8.11). The robots have predefined skills,
which are provided by the skill layer described in Chap. 6: approach the nearest object, approach
the red base, approach the yellow base, and approach the black base. The skills remain fixed
during the complete experiment. A positive reward of 10 is given for collecting an object. Once
the object has reached one of those bases, it receives an additional positive reward. For the yellow

93

8.6 Evaluation

objects

Figure 8.11: Scenario with three bases. For delivering the objects to the red or yellow base at the bottom,
the robots receive a reward of 20. For the black base the reward is 10,000.

3000 —

- < imitation

2 5500 »—— no-imitation| |

©

5

o 2000 \

=

)

§ 1500 L

©

g

o 1000

ALY

£ 500 VA

+ MMWWW
0 10 40 50

20 730
number of episodes

Figure 8.12: The average time needed for reaching a goal over 50 runs

and red base the reward is 20 points. The black base is farther away and thus more difficult and
unlikely to reach. For transporting an object to this base, a robot receives 10, ooo points. The
values for all charts are averaged over more than 500 times that a robot transports an object to a
goal.

The time a robot needed to catch one object and deliver it to a base is shown over 50 consecutive
episodes in Fig. 8.12. Evidently, the experiment with the imitation activated is much faster than
the one with the imitation deactivated in the beginning. The curves meet each other after eight
episodes and stay nearly the same, with a slight advantage for no-imitation. The reason for the
no-imitation version being a little faster in the end does not indicate that it is better. This is the
case, because the robots in the no-imitation experiment visit the black base less frequently. As
the black base is much farther away, it naturally leads to a shorter average time to reach the goal.
With activated imitation, all goal bases nearly get the same amount of objects in the beginning.

94

8 Imitation in robot groups

w
o

N
(6]

N
o

=
o

reward per second
=
u

u

— imitation_
—— no-imitation

40 50

20 30
number of episodes

Figure 8.13: Reward per second

After some exploration, increasingly more robots find out that it is beneficial to prefer the black
base (Fig 8.15). Without imitation the robots explore and learn to prefer the black base, too
(Fig. 8.14). However, the number of robots knowing this fact is much lower than the number
of robots with the activated imitation. Therefore, the average time to reach a goal is higher for
activated imitation, because the distance to the black base is farther.

w
U O

goal base [%]
i

P = N N
o

o

s 2 yellow
~— red
—= black

40 50

Ul

20 30
number of episodes

Figure 8.14: The percentage of objects brought to the respective base without imitation

The reward per second in Fig. 8.13 is a good overall indicator of how successful a strategy is. It
takes into consideration the reward as well as the time needed to receive it. Imitation starts better
than no-imitation because of the shorter amount of time needed to reach the goal. Later on, both
values are similar. At the end, the required time does not drop anymore, but the average reward
increases with more robots choosing the black base. As can bee seen in the chart the imitating
robots are in advantage. Due to the imitation process, the robots are able to faster learn the more
rewarding but also more time consuming behavior than with just individual learning.

To get a better understanding, Fig. 8.16 shows the amount of experiences in terms of interac-
tions the robots have made in each episode. It is interesting that the imitation starts with a lower
amount of experiences, although the only difference between both versions is that imitation ac-

95

8.6 Evaluation

N
o

goal base [%]
N ou

=
o

0 10 20 30 40 50
number of episodes

Figure 8.15: The percentage of objects brought to the respective base with imitation

2500

0

@ 2000} DI e ar———
C M

[J]

‘T 15007 1
(]

o

> /

@ 1000f

Y

5 M

(f'm 500

c / «— imitation

Q >— no-imitation

20 30 40 50
number of episodes

Figure 8.16: Size of the experience list

quires more information by means of observation. The acceleration achieved by imitation is so
high that the necessary amount of experiences to reach a goal is much lower than without imita-
tion. After some time, both charts cross each other, because the time, which is needed to reach
a goal, becomes nearly the same in both cases. At the end, imitation has acquired more experi-
ences by observation. The number of experiences is bounded by 2,000, where old observations
are dropped as new ones arrive. Using this sliding experience horizon, the robots are able to
adapt to changing environments and prevent information drowning.

Another question is how well the whole approach managed to handle the additional complexity,
introduced by the imitation process. This can be seen in Fig. 8.17. It shows the number of abstract
regions, into which the heuristics have divided the state space (cf. Sec. 5.5). It shows that the
graph converges below ten regions for imitation and even below six for no-imitation. The layered
learning architecture of the robots is able cope with the complexity of the task by maintaining an
appropriate state space, which consists of a limited number of abstract regions.

Finally, the group behavior is analyzed with respect to emerging behavior patterns. Emergence
is the way patterns in complex systems arise out of a multiplicity of relatively simple interactions.

96

8 Imitation in robot groups

10
2 o
=
o
@ of
Y
o
5 4l
o
£
3 2
c — imitation

—— no-imitation
0 10 20 30 40 50
number of episodes
Figure 8.17: Number of regions, in which the state space is split
0.14

<~ imitation
0.12H ™ no-imitation A

Zoso \
o 0.08 A
go.oe /\\v
S0 Vi
\/\/\/\ A /*\/\/\/\/

0 10 20 30 40 50
number of episodes

0.02

Figure 8.18: Goal choice homogeneity (1 = goals are maximal homogeneous)

Fig. 8.18 displays the emergence of the chosen goal base in each episode. A value of zero means
that the chosen goals are maximally heterogeneous. The value for maximum homogeneity is one.
With imitation enabled the emergence increases significantly while no-imitation is stuck at a low
value. So, the class of imitating robots shows much more homogeneity in their chosen goals than
the class of individual robots that do not learn from each other.

8.6.2 CTF with five bases

In this scenario two additional goal bases were added, as shown in Fig. 8.19. Both bases were
placed between the black base and the other low-value bases. Reaching an object did not result
in additional reward. All other parameters stayed the same as in Sec. 8.6.1. With the additional
two actions necessary to reach the two new goals the whole scenario gets more complex. The
fact that the new bases are between the objects and the black goal base decreases the chance that
a robot ever drives to the black base.

Fig. 8.20 and Fig. 8.21 show the distribution of the objects carried to the different goal bases.

97

8.6 Evaluation

objects

Figure 8.19: Scenario with five bases: for delivering the objects to the blue, green, red, or yellow base, the
robots receive a reward of 20. The reward for the black base is 10, 0oo.

30r
o'25F
20t
©
6157
3 <+++< blue
940t : ; ; L | sess yellow |
vvev red
St > green
‘ ‘ || ==== black
% 10 20 30 40 50

number of episodes

Figure 8.20: The percentage of objects brought to the respective base without imitation

98

8 Imitation in robot groups

40
35¢
—30F
X
o5 - g
0] A . s
% 20! o X A A\ A A
Q A E/ » A g « “ e\{ A
§15rAA AAAAAAA b AA i : <+« blue
[e)] A ansa yellow
100 v red ||
5 > green ||
==mn black
% 10 20 30 40 50

number of episodes

Figure 8.21: The percentage of objects brought to the respective base with imitation

600 T

> no-imitation
<«++< mitation

"»'500F

©

o

o

[0}

z 8\

< . N S U . WA\ |

; y . W

0}

j .

(o) ANEOZ 2N]

S WNTTTIRR

E

+ 100~

% 10 0 50

20 30
number of episodes

Figure 8.22: The average time needed for reaching a goal over 50 runs

The black base gets less objects compared to the previous experiments. Still, imitation shows a
significant improvement of the black base, starting from 2% up to 20% while the no-imitation
version never exceeds 10%.

This is also being underlined in Fig. 8.23, showing the reward per second, which the robots re-
ceive. Initially, the imitation version shows similar performance as the learning-only version.
With time, imitation gets better than no-imitation, though.

The five base experiment points out that also in the more complex scenario robots that imitate are
at an advantage. Having two more goal bases, the scenario decreases the probability to reach the
black goal base. Without imitation, the goal base distribution stays nearly the same. With imita-
tion enabled, it increases considerably. Imitation improves the overall performance by spreading
the information about beneficial behavior faster in the group.

99

8.7 Conclusion

12

10-

reward per second
)]

»=>> no-imitation|]

<+« mitation

0 10 20 30 40 50
number of episodes

Figure 8.23: Reward per second

8.7 Conclusion

This chapter has shown how imitation improves the learning speed and performance of a robot
group. The presented approach did so by finding the maximum likely path of states that cor-
responds to the observation with full reference to the imitator’s own knowledge. With it, the
imitator could reliably explain the demonstrator’s behavior in terms of its own capabilities.

The imitating robot only used data, which is externally perceivable, and did not require the
demonstrating robot to reveal its internal states or actions. Thereby, imitation is not restricted
to robots anymore that have explicitly been prepared for that beforehand. Using the presented
approach robots can now improve their strategies observing any robot that is around only requir-
ing that it expresses its overall state. This greatly enhances the autonomy of future multi-robot
systems.

100

CHAPTER

Choice of the imitatee

So far, it has been assumed that the behavioral capabilities of the robots in the group are similar.
This means that all the robots are morphologically homogeneous and have the same algorithmic
capabilities. In this case, it does not matter whom a robot imitates, because all robots are assumed
to be equal. Furthermore, they should observe one another all the time. This is, however, not the
case any longer in heterogeneous robot groups. Instead, prior to the imitation act itself, a robot
intending to imitate first has to choose a robot, whose demonstrated behavior is likely to result in
a behavior improvement for the imitator. For this purpose, the robot needs a notion of similarity
measurement for behavioral capabilities. How this may be realized and used to choose the best
imitatee’ in a group of heterogeneous robots will be presented in this chapter [1]2.

In summary, the approach constructs and maintains at runtime for each robot in the group an af-
fordance network, which is a Bayesian network of affordances detected in the observation. These
networks encode dependencies about the interaction possibilities, which are offered by environ-
mental objects to the different robots. Using the concept of affordances, a robot is able to reason
about behavioral differences between robots without having to take into account their diverse
hardware and software conditions. With a metric on those networks, a robot is able to calculate
the difference between its own capabilities and those of the other robots. Prior to its imitation
process, the robot can then choose the robot in the group that has the smallest behavioral dis-
tance to itself in order to maximize the probability of the imitation success.

"Throughout this chapter “imitatee” and “demonstrator” will be used interchangeably.
*This approach has been implemented within the scope of the diploma thesis [82].

101

9.1 Related work

Evaluation Chamber

Behavioral Respon se 1

Il u

A S e A
1 L - RS A
1 LY S—— [T

7 ¥ L} T

7 L} |

I 11 T

I

SA TN
LA -
¥ L S—

—/b)_
® |
_Ial
® |

Behavioral Difference

’ Y
iy
IRY

Figure 9.1: Measurement of behavioral difference according to Balch [32] in an idealistic evaluation en-
vironment, which is represented by the box with the circle representing the robot. For every
possible situation the actions of the two robots under investigation are recorded and plotted
at the right-hand side. Summation of the actions’ differences is defined as the behavioral dif-
ference (bottom)

9.1 Related work

Attempts in this regard have already been made by Balch [33]. He devised an approach to cal-
culate the Hierarchic Social Entropy of robot groups, which is a modification of Shannon’s Infor-
mation Entropy [161]. One step in his approach is the calculation of the behavioral difference be-
tween two robots. Therefore, the difference in the chosen actions given the same state is summed
over all possible states the robots might encounter (Fig. 9.1). Formally, given a group of robots
R ={R.,..., Ry}, such that each robot R ; can choose an action aj. in state s; of a discrete state
space according to its policy 7; : s; + aj. With p; being the fraction of time steps relative to its
whole life span that robot R ; has spent in state s;, the behavioral difference between robot R,
and R, as defined by Balch is calculated by Ds(R,, R)):

P)

Ds(Ray Ry) = Z(p“ 172 (s1) = 70 (s)|- (9.1)

In the case that R, and R, choose the same action in each state, Dg(R,,Ry) = o. If, in the
opposite, they disagree all the time about the best action to choose, Dg(R,, Rp) = 1.

Although this approach of calculating the behavioral difference between two robots could theo-
retically be used to determine the most similar demonstrator for an imitator, it is hardly appli-
cable outside of laboratory environments: p’, 7, and s; are required for all possible states both
robots have encountered. Even if that would have been possible, the approach is restricted to
a robot group, in which the same performed action 7,(s;) = m,(s;) leads to the same effects
in the environment for both robots R, and R;,. The robot group must be totally homogeneous
not allowing for the slightest manufacturing tolerance and requiring the same action set for all
robots.

102

9 Choice of the imitatee

Shen et al. developed means to detect the similarity and synchronicity between the behavior of
a human and a robot [162]. They detect spatial and temporal relationships between events in
the perception stream of the robot using Crutchfield’s information distance [63]. It measures the
distance between two information sources and is based on Shannon’s information entropy [161].
The robot analyzes the trajectories of vision-based markers (ARToolkit [183]), which are attached
to the body parts of a human. In experiments with a humanoid robot, the approach manages to
detect similar behavior like arm waving even if the behavior is time shifted. When transferred to
multi-robot scenarios, the approach of Shen et al. is restricted to application settings where all
participating robots share a similar morphology. Furthermore, it requires a fixed morphological
mapping between all the robots in the group. In essence, this requires to manually resolve the
correspondence problem (cf. Sec. 2.2.2.1).

In this chapter, a demonstrator selection approach is presented, which solves this challenge in
an unobtrusive manner. Only relying on observable information that can be subjectively per-
ceived, it helps a robot to find the robot in a robot group that is most similar to itself. Unlike the
behavioral difference approach of Balch, this approach does not need any access to the internal
states of the observed robots” high-level strategy or data structures of their low-level behavior.
Nor does the approach assume the same action set for all participating robots in the group. In
contrast to the approach of Shen et al., the approach presented in this chapter does not require
the correspondence problem to be solved manually beforehand.

9.2 Background

Before presenting the demonstrator selection approach, this section will provide the basics be-
hind its main ingredients: learning Bayesian networks and the nature of affordances.

9.2.1 Bayesian networks and how to learn them

A Bayesian network embeds dependency relationships between random variables [131]. The main
purpose of a Bayesian network is to allow reasoning under uncertainty.

Definition 9.1 (Bayesian network) A Bayesian network (BN) B = (G, ®) on a set of random
variables X = {X,,---, X,,} is defined by two components:

1. A directed acyclic graph G = (X, E) with nodes representing the random variables and edges
E ¢ Xx X encoding the conditional dependencies between them. G is also called the structure
of B.

2. Aset ® ={0,,...,0,} of conditional probability tables (CPT) ®; = P(X; | Pa(X;)), i €
{1,---,n}, which are associated with the random variables.

o Pa(v)={ul|ueX,(u,v)eE} is the set of parent nodes.

103

9.2 Background

(Cloudy w

| P(Cloudy)=0.50)

VAN

4 Sprinkler Rain)
Cloudy P(Sprinkler) Cloudy | P(Cloudy)
0 0.5 0 0.2
! 0'\1‘ J :/ 08)
4 WetGrass)
Sprinkler | Rain P(WetGrass)

0 0 0.0
1 0 0.9
0 1 0.9
\ 1 1 0.99)

Figure 9.2: Exemplary Bayesian network [129]

« The rows of the CPTs contain the probabilities ©;jx = P(x;; | eck(X;)) of the n; combi-
nations x;j, j € {1,---, n}, conditioned on the possible state combinations ec(X;) of the
parents Pa(X;).

o eck(X;) € ec(X;) represents the k-th state combination of ec(X;). The CPT of a node
without any parents contains only unconditioned probabilities P(x;), i. e., ®; = P(X;).

As an example, consider the situation where one sees wet grass outside and has to infer whether it
is due to the sprinkler or because of the rain [129]. A BN with the conditional variables Cloudy,
Sprinkler, Rain,and WetGrass can be modeled based on past experience as a Bayesian network
as shown in Fig. 9.2. It shows that the event that the grass is wet can have two possible reasons:
either it has rained (Rain=1) or the sprinkler has been activated (Sprinkler=1). Each of those
events again can have two possible events. For each combination, the Bayesian network shows the
probability that the grass is wet. If, e. g., the sprinkler was off, but it has rained, the probability
that the grass is wet is P(WetGrass) = 0.9. If one sees wet grass outside, using Bayes rule he
can now determine whether it is more likely that the sprinkler was on or that it has rained. In
this chapter, however, BNs are not used for inference, but for another reason. The conditional
probabilities of a BN allow for a much more compact representation. The node WetGrass, e. g.,
is considered conditionally independent of the node Cloudy. The CPT of WetGrass therefore
does not include probabilities for Cloudy. As presented below, this will be advantageous, when
BNs are used to encode behavioral dependencies of the robots.

If a Bayesian network BN is fully specified by its graph structure G and CPTs ©, the probabilities
of the random variables X; may be calculated by summing the joint probabilities over all out-
comes for their parents, which is called marginalization. In realistic applications, this is seldom

104

9 Choice of the imitatee

the case, though. Often, some of the data and some of the BN’s structure and/or CPT is given,
and the remaining information for the BN has to be retrieved. This is also the case in the demon-
strator selection approach. Here, the affordance data is given and the most plausible BN has to

be found.

There are four different situations, in which BNs can be learned. The training data may be com-
plete or partly missing and the network structure may be known or unknown. In this section, BNs
will encode efficiently the dependencies of noisy, and sometimes missing, observations regarding
the action capabilities of the surrounding robots. Thereby, the learning step faces the hardest sit-
uation: the data is incomplete and the network structure is not known in advance. This challenge
is handled by the Alternating Model Selection EM algorithm by Friedman [76].

9.2.2 Affordances

As the choice of the demonstrator has to be performed prior to the imitation process itself, the
robot has to be able to detect a set of behavioral capabilities in the other robots’ performance.
On the one hand, these behavioral capability detectors have to contain enough information to
support an imitator in its choice of the demonstrator. On the other hand, they must be general
enough to be able to detect the same pattern for morphological different robots.

A helpful concept for this was defined by the psychologist Gibson who observed that our per-
ception of the world is dependent on our interactions with it [80]. He introduced the term of
affordance defined as the action opportunity or interaction possibility the environmental objects
present to an actor. An affordance is thereby a quality that an object offers to specific actors.
Through the set of action possibilities, which an object offers to an actor, the object provides
meaning to that actor, as seen by Overbeeke and Wensveen [137]:

The world appears to us as inherently meaningful because we perceive action pos-
sibilities, i. e., affordances. Meaning is in the world, directly, not inferred through rea-
soning.

Thiruvengada and Rothrock analyzed affordances for their underlying properties. They found
the following seven properties [177]:

1. Itis an ecological concept defined at varying ecological levels for different animals.
2. An affordance is always attributed to a set of two or more things taken together.

3. By an affordance the environment informs the animal how it is to be used.

4. Sets of affordances describe a niche that specifies how a species lives.

5. An affordance contains real meaning, which exists independent of the perceiver.

6. Affordances are present even if a perceiver does not notice them.

7. An observer directly perceives basic affordances.

105

9.3 Overview of the demonstrator choice process

As such, affordances are a reasonable concept to detect robotic behavioral capabilities. When
a robot is collecting information about the affordances that are offered to it by objects in the
environment, it can compare whether its own niche resembles that one of another robot. The
more similar the specific niches of two robots are the more similar the robots themselves can
assumed to be and the more likely imitation will provide useful behavior.

The categorization of Zhang will help to define the type of affordance more clearly on which the
demonstrator selection approach in this section bases on [190]. He distinguishes five different
types of affordance:

Biological affordance is based on biological process. Some plants, e. g., afford nutrition, while
others afford biological hazards.

Physical affordance is concerned with physical structures. A chair affords a human to sit on it,
while it does not so to an elephant.

Perceptual affordance provides information cues regarding objects in the environment. Zangh
offers the pictorial signs for ladies’ and men’s restrooms as examples.

Cognitive affordance are provided by cultural conventions, like traffic lights, e. g..

Mixed affordance combines several of the aforementioned affordances. A mailbox, e. g., pro-
vides no information to a person that has no knowledge (cognitive affordance) about its
usages and structure of the mailbox itself (physical affordance).

By Zhang’s definition, physical affordance is the appropriate type in this case, as the robots’ capa-
bilities are naturally found out by physical interactions with the objects. Physical affordances are
reflected by the 3D structure of the objects involved in those affordances. Because 3D structures
are not directly perceived by humans or animals, they must reconstruct them from the perceived
2D images. Since this seems to be an easy task for humans and animals, it is not so for state-
of-the-art computer vision approaches [87, 73]. The concept of physical affordances is heavily
used in current robotics research. Lorken and Hertzberg use it to ground planning operators of
a mobile robot’s planning task [116]. Stoytchev lets a robot manipulator arm learn affordances in
experiments [170]. As another example, Detry et al. have figured out how a robot arm can learn
object grasp affordances [66].

The purpose of the imitatee selection approach, however, is not the preprocession part of affor-
dance recognition, but the use of affordances themselves in order to determine the best demon-
strator for an imitation. Therefore, the physical affordances will be provided to the evaluation
scenario. There, objects will offer affordances like pushable, pullable, liftable, or seizable.

9.3 Overview of the demonstrator choice process

The general overview of the process of choosing the best demonstrator for the later imitation
process is outlined in Fig. 9.3. To support the explanation of this process, it will be described
throughout this chapter subjectively from the view of an arbitrary robot R ,.

106

9 Choice of the imitatee

raw perception
A

l

affordance detection

l

accumulated affordances

T
don’t imitM \(n}tate

quit affordance network generation

l

affordance networks
AN,, ..., AN,

!

demonstrator choice

Rimitate = argmin {Day (AN;, AN,)}
Ri€R, Ri#Rom

Figure 9.3: Processes involved in choosing the best demonstrator for imitation

In order to acquire the necessary data, the R,, continuously monitors the other robots in the
group and tries to detect affordances in the perception. These detected affordances are updated
and accumulated in the affordance table 7. The process ends here if the robot is not about to
imitate another robot.

If the robot plans to imitate another robot, it generates one affordance network (AN) for each
robot in the group - including itself. These ANs are then compared to R,,’s own AN. The best
demonstrator is then determined as the robot who has the smallest distance to R,, in terms of
their affordance networks.

9.4 Affordance detection

In order to measure the behavioral difference between two robots, the robot in question needs a
sufficiently expressive set of measurable affordances [81]. These have to be provided beforehand.
In specifying the detectable affordances of environmental objects, one has the possibility of spec-
ifying the complexity of the behavioral difference measurement. The more numerous and diverse
the affordances are, which a robot is able to explore and observe, the more fine grained the robot
can compare its own behavior to that of other robots. The advantage of using affordances is that

107

9.5 Affordance network generation

they are completely independent of the robots morphologies.

In order to describe the affordance detection, let the set of robots in the environment be R =
{R.,..., R} and the set of object to be O = {0,,...,0,}. The perception stream I,,(t) € Z of
robot R, is assumed to be already preprocessed. In this perception stream, the robot is con-
tinuously looking for affordances A = {A,,..., A,} by means of one validity function for each
affordance A j:

Valid;(1,,(t),0,Ri) € {T,F, L} . (9.2)

It determines whether object 0 € O offered robot R € R the affordance A;, with the robot
R being able to observe itself. The validity function is composed of a list of conditions. All
but the last condition are preconditions ensuring that the observed robot was able to test the
affordance under question. If the test of one of these conditions fails, the affordance could not
be determined, which is marked with an “L” in that case. Otherwise, the last check determines
whether the affordance A is offered to the observed robot R (“I”) or not (“F”). This distinction
is necessary so that failed preconditions are not confused with lacking capabilities.

The following example will support the further explanations. The two robots R,.q and Ry, are
located in an environment with three objects from the set O = {0,,0,,0,}. As before, the data
will be presented from the view of robot R, = R,eq. The filtered perception can be tested for the
affordances A = {A,, A,, A,, A, }. After some time of observation, robot R .4 will have collected
the knowledge about which robot was offered what affordance by which object.

The knowledge is accumulated in 774 = 7™ U 7™ as shown in Tab. 9.1: 7! represents the data
of Rred Observing Rpjye:

Toe = { (A 01, Validj(Lea(), 00 Roe) [=1, 4 k=153 (9:3)

7.red represents the data of R,q observing itself. 7! and 7 differ only in the fact that R4 has
been offered affordance A, by object o, in contrast to Ryjue. Although the information in the
two data sets 7" and 7,5¢ suffices to compare the robots, the direct comparison is unfeasible
because of the following problems:

1. Data can be unknown (“1”) or even missing (no entry in 7).
2. The perception is noisy. Boolean data has therefore to be processed to account for that.

3. The number of comparisons increases with the amount of collected affordance data.

In the next section it is shown how these problems can be solved by encoding 7 in a Bayesian
network.

9.5 Affordance network generation

As the affordance data is noisy, instead of using Valid;(I(t),0,R) directly, one has to use the
corresponding probabilities. Therefore, each affordance A; € A has to be associated with a ran-
dom variable A; € {T, F}. This is done inside the Alternating Model Selection EM algorithm (cf.

108

9 Choice of the imitatee

Table 9.1: Affordance information, as detected by robot R 4. The robots R,.q and Ry, only differ in
affordance A, offered by object 0, (marked gray).

Tred
T I Triue
’ Aj ‘ Ok ‘ Validj(lred(t),ok,Rred) H Aj ‘ Ok ‘ Validj(lred(t),ok,Rblue) ‘
A, | o, T A, | o T
A, | o il A, | o 1
A | o T A | o, T
A, | 0y F A, | 0 F
A, | o, F A | o, F
A, | o, L A, | o, 1
A, | o, F A, | o, F
A, | o0, F A, | o, F
A, | o T A, | o T
A, | o, T A, | o, T
A, | o, T A; | o, T
A, | o T A, | o F

Sec. 9.2.1). It replaces each observed “1” by the most likely assignment of T or F according to its
internal heuristics [76].

Robot RR,, then approximates the unknown probability P(A;) = P(A; = T), which represents
the probability that affordance A; € A is offered to robot R;:

[{o| Valid;(I1,,(t),0,R;) = T,0 € O}]
0|

P(A)) = (9.4)
Each triple (Aj, 0, Valid;(IL,(t), 0,721)) € 7™ is associated one element in the sample space
of the random variable A;. The data collected while interacting with its environment is now
interpreted as one sample for each random variable A;. The more data the robot collects the
more accurate its approximation of P(A ;) becomes.

Interpreting affordances as random variables has the following advantages:

o The behavioral capabilities of the robots are decoupled from the concrete objects as the
comparisons can be made among the random variables in A = {A,,..., A5} and not
between the concrete triples in 7,

o The representation of the behavioral capabilities is more compact and robust as the uncer-
tainties and incompleteness of the data is taken into account.

« The joint distribution of random variables nicely fits into the concept of Bayesian networks
(BN) [131], which are very efficient and intuitive to interpret. The use of already existing
graph metrics is possible as they are essentially graphs.

« By grouping affordances with respect to the objects, it is possible to reason over affordance
dependencies.

109

9.5 Affordance network generation

7—red
d red
e 1 Tolue
[A [ok [Validj(Irea(); 0k, Rrea) [[Aj | 0k | Valid;(Irea(£), 0% Rolue) |
A, 0, \/T\‘ A, 01 \/T\\
A, | 0p i ! A, | 0, TLl
A, 0, ! T, Ay | oy T
A4 0, ‘\fl A4 0, LE)
M 02 \’F\‘ Ay 02 \/7\\
A, | 0, [! A, | o, L
As | o, | F! A; | o, [F!
Ay 2 ‘\f/‘ Ay 0> ‘\E)
A 05 (T A | o [T
A, | o | T! A, | o5 T
Ay 03 | T} Ay 03 } T\
Ay | o] I Ay | 05)
Tred’ Tred !
red blue
Lo [A [A [A [4] Lo [A [A [A [A
oo| T| L | T|F oo| T| L | T]|F
o, | F| 1| F | F o, | F| L | F | F
oo | T | T|T|T o, | T | T | T|F

Figure 9.4: Transformed affordance information for the two robots R,eq and Rpje as detected by R eq.
The lines correspond to objects with the columns containing the affordances.

In order to exploit these advantages, 7™ has to be transformed so it can be used as sample data
of the random variables in A. This is achieved by restructuring robot R;’s validation results
b e {T,F, 1} of all the triples in 7, with respect to the objects:

T = {(o,bf, ... ,bé) | bj- = Valid;(L,(t),0,R;) Y(Aj, 0, b;) € 77”} (9.5)

T consists of one (p + 1)-tuple for each object, where p = |A| is the number of detectable
affordances. Each tuple corresponds to one object in the environment of the robots. The trans-
formation of the data in Tab. 9.1 is shown in Fig. 9.4.

In the following, a Bayesian network is called affordance network AN = (G, ®) if its nodes are
random variables that represent the detected affordances in A. Structural Expectation Maximiza-
tion is used to learn the structure and the parameters of the network that best explain the data
in 7™ It utilizes the Maximum Likelihood method to estimate missing data. Fig. 9.5 shows the
affordance networks AN,.q and ANy, that correspond to the data in Fig. 9.4. As can be seen, the
Alternating Model Selection EM algorithm not only estimates the parameters for the missing data,
but also changes the probabilities for the provided data (P(A,) = 0.6 instead of 2/3). This im-
proves the chances of finding the most likely structure and parameters for the provided data [76].

110

9 Choice of the imitatee

(

P(A;) =0.60

A \(
)\

P(A,

) = 0.60

/ A

A, P(A,) Ay P(A,)
! 033) 1 100)
(a) ANreq
(e V[& N A
k P(A,) =o0.00) k P(A;) =0.60) k P(A,) =0.60)

4 A, N
A, P(A))
0 0.00
_ ! 100)
(b) ANplue

Figure 9.5: Affordance networks for the data in Tab. 9.1

111

9.6 Comparing affordance networks

9.6 Comparing affordance networks

The previously described method is then used by each robot to calculate from its filtered per-
ception sequence I,,,(t) of robot R, the according affordance network AN; for robot R ;. This is
then interpreted as the current behavioral capabilities of R;. This section describes how two af-
fordance networks can be compared with each other. As stated in Sec. 9.2.1, a Bayesian network
AN = (G, ®) consists of two components. The structure component G = (A, E) is a directed
acyclic graph (DAG) with its nodes representing the random variables and its edges the depen-
dencies between them. The parameter component © is a collection of local interaction models.
It describes the probabilities of each variable A; conditioned on its parent node set Pa(A;) in G.
Both contain causality information between the nodes in AN.

In the following, the metric that calculates the behavioral distance between two robots R, and R,
will be named Dy (AN,, AN,). The metric needed to compare two affordance networks has to
take into account the structural as well as the parameter component. The individual component
metrics will be called Dy (AN, AN,) and Dyyram (AN, , AN,), respectively.

The following two subsections present the calculation of the structural and parameter difference.
Subsequently, the affordance network metric is exemplary applied to the example affordance
networks in Fig. 9.5.

9.6.1 Structural difference of affordance networks

Comparing two arbitrary graphs in the general case is NP-complete. For the special case of an
affordance network, being a DAG with unique node labeling, Dickinson et al. showed that their
Graph Edit Distance algorithm (GED) is able to perform it in polynomial time [67]. It calculates
the difference between two graphs as the minimal cost of transforming one graph into the other.

The transformation requires an unique identification of the same nodes and edges in the two
graphs that are compared. This is defined by a label representation.

Definition 9.2 (Label representation for graphs with unique node labeling [67]) The graph
G=(V,E,a,p)

is called a labeled graph, if the function « : V — Ly assigns labels to nodes, and the function
B : E — Lg assigns labels to edges. The label representation L(G), is defined by L(G) = (L, C, 1),
where

(i) L={a(v)|veV} withv,zv,= a(v,) #a(v,) Vv,v,€V,

(ii) C={(a(w),a(v,))| (vi,v,) € E}, and
(iii) A:C — Ly with A(a(v,), a(v,)) = f(vi,v,) V(v,,v,) € E.

In order to transform one graph into the other, the edit operations changing, inserting, and re-
moving a node or edge are needed. Let G, % G, denote the transformation of G, into G, by a

112

9 Choice of the imitatee

sequence of edit operations es = op,, ..., 0p,. The cost of es is calculated as the sum of the in-
dividual costs c(es) = Y1, c(op;), with ¢(-) > 0. The GED between the two graphs G, and G, is
then calculated as defined in Def. (9.3).

Definition 9.3 (Graph Edit Distance [67]) Let G,, G, be labeled graphs and L(G,), L(G,) be the
corresponding label representations. The GED between G, and G, is then calculated as

D:ep(Gi, G,) = |Ly| + |Ly| — 2|L, n L,| + |C)| + |C,| = 2|Co| +|CL) (9.6)

where

Co={(i,j) [(i,j) e Cin CaA (i,) = Aa (i)}
is the set of equally labeled edges and

Co={G) (i) e Cin G A (i, 7)) # Aa(ds)}
is the set of differently labeled edges between equally labeled nodes of the two graphs.
Some simplifications are possible when applying the GED metric to affordance networks. Given
two affordance networks AN, = (G,,®,) with G, = (A, E') and AN, = (G,,0,) with G, =
(A2, E?). Since the GED only compares the graphs’ structures, it follows that Dggp(AN;, AN,) =

Dgep(G,, G,). In addition, some terms in the GED metric are irrelevant in the context of affor-
dance networks, as will be pointed out in the following.

For calculating Dyt (G, G,) based on Dgep(G,, G,) the affordance networks at first need a
label representation, which in turn relies on the labeling functions «a and f:

a : A~ A, AjeA AeA (9.7)
B : (ALAj))—1, VY(A,Aj)€E,i#] (9.8)

The nodes are naturally labeled uniquely by their corresponding affordances A; € A. The def-
inition of f3, assigning to all edges the same value, goes along with the edge semantic and the
affordance networks. An edge between two nodes simply states a causal dependency between
them. They convey no additional meaning like strength or type of the relationship. To calculate
the difference it is only important to know whether an edge does exist or not in the graph.

Definition 9.4 (Label representation for affordance networks) The label representation
L(G)=(L,C,A)
of the graph component of an affordance network AN = (G, @) is defined by:
() L={Ay..., A}, n=|AL A #A, = a(A,) + a(A,) VA, A, € A

(ii) C={(a(A),a(4))) | (A 4;) € E}
(iii) A: C —1with M(a(A;),a(A;)) = B(Ai,A;) =1V (A, Aj) €E, i#j.

113

9.6 Comparing affordance networks

Two nodes A; € G, and A; € G, are called corresponding if they are assigned the same label:
OCI(A,') = (XZ(AJ').

When a robot is monitoring other robots in order to recognize affordances, it checks its observa-
tions for the same set of affordances for each robot. Therefore, it can ensure that all the affordance
networks, which it has created for the different robots, contain the same set of nodes with the
same labels, hence |L,|+|L,|—2|L,N L,| = 0. The second simplification follows from the definition
of . When two graphs contain the same edge, this edge is also labeled the same. Consequently,
the term |C!|, which counts all edges with different labels, can be omitted from the metric. This
leads to the following distance measurement for affordance networks:

Dstruct(Gl’ Gz) = Dstruct(ANl) ANz) = |C1| + |C2| - 2|Co| (9-9)

The following example calculates the structural distance between the affordance networks AN, 4
and ANy, from Fig. 9.5. The label representations are defined by £(Greq) and L(Gpue):

o »C(Gred)
= Leqg = {Av Az; A3a A4}
= Crea = {(Aa’A4)) (As’ Al)}
- Ared : (x,)/) —->1 V(X,y) € Cred

o E(Gblue)
= Lype = {AI’ A, A3a A4}
= Coiue = {(As; A))}
-)Lblue : (X,)’) -1 V(xs,’V) € Cblue

Both graphs have one similar edge, so that C, = {(A;, A,)}. The structural distance AN,q and

ANblue is:
Dstruct(ANred) ANblue) = |Cred‘ + ’Cblue| - 2'|Co‘ =2+1—-2=1

9.6.2 Parameter difference of affordance networks

The basic idea behind the calculation of the difference between two affordance networks is to
interpret the networks’ nodes as points in the same metric space and to use the Manhattan met-
ric. The distance sum of all the corresponding nodes from AN, and AN, is then the parameter
difference between the two networks.

To support the description of the parameter difference, some definitions have to be introduced
first.

Definition 9.5 (Event combination of the parent nodes) Let AN = (G,©) and A; be a node
from G = (A, E,a,). Let Pa(A;) be the set of A;’s parent nodes and

F(A;) =Fi={f},= (Ajp)| Aj=a(A)), AjePa(A;), pe{o,1}} (9.10)

114

9 Choice of the imitatee

the event set of the A;’s parent affordance random variables, Pa(A;), with p = 1 indicating that
affordance Aj is provided and p = o otherwise. The event combination set of these variables is then
defined as

ec(A;) =ec; = {ec;y = (Fipoe s fip) | fiqm € F(AD),
Ju®jyYu+v,
€Ciy + eCix VW # X,
I=|Pa(A;)], kefy,....2"}}. (9.11)

As the possible events for a random variable are either true or false, |F;| = 2|Pa(A;)| and |ec;| =
olPa(Ai)

Consider node A, of the affordance network AN, in Fig. 9.6(b) as an example. It has two parents
A, and A,. In this case,

F(A,) = {(As1), (Ass0), (As51), (As,0)) (9.12)
and
ec(A,) ={ ((As1), (Ass1)),
(A1), (A;,0)),
((As,0), (A1),
((As,0),(As,0))} - (9.13)

With the help of the elements of ec;, it is possible to construct a coordinate system. Within
this coordinate system, it is possible to compare the parameter difference of an affordance for
different robots.

Definition 9.6 (Point representation of a node) Let A; be a node in G = (A, E,a, 3) and ec;
defined according to Def. (9.5). The set

coord(A;) = {coord(A;)i = (ecix,O;x) | P(A;|ecix) =0} (9.14)

is the coordinate set of point(A;) corresponding to node A;.
Let further the k-th axis of coord(A;) be

axis(A;)x = ecix (9.15)

and denote its value as
value(A)r =0, . (9.16)

The set coord(A;) contains a coordinate k for each event combination ec;y and therefore has
2lPa(A)l coordinates.

115

9.6 Comparing affordance networks

(4 N[a4)
LP(A3):0.56) LP(Az)zo.so)

(4 Y[4
LP(A3):0.36) LP(AZ) =o.45) p T

i1l A, A, P(Al)
/_A_\
1 (0] (6] 0.12
A, | P(A) 1 o 0.62
o 0.17 o 1 0.20
1 0.60 _ 1 1 0.00)
(a) AN, (b) AN,

Figure 9.6: Graph AN, is lacking edge A; — A,

Definition 9.7 (Comparability of points) Let A?‘ € G, and A% € G, be two corresponding nodes
for the graphs of different robots, a(AS*) = a(AS?), and coord(AS) and coord(AS?) their re-
spective coordinate sets. The points reside in the same coordinate system if for all coord(A®); €
coord(AS") exactly one coordinate coord (A5) € coord(AS) with axis(AT)y = axis(AS)w
exists. In this case, the nodes are said to be comparable.

For two comparable nodes, A?‘ and A%, a parameter distance can be calculated by Eq. (9.17):

!

Dparam (A", AS?) = > |value(A?1)k —value(A%)
k=1
axis(A?‘)k:axis(Afz)k/

(9.17)

Affordance networks do not necessarily contain only comparable nodes. Figures 9.6, 9.7, and
9.8 show three affordance networks AN,, AN,, and AN;, which cannot be compared with each
other. The rest of this section explains how to cope with this incomparability.

In all of these three cases, the coordinate sets of the points must be extended so that they satisfy
Def. (9.7). This is supported by the Markov property, which guarantees that two random variables
of an affordance network are independent if they are not directly connected by an edge. The law
of conditional independence allows to extend the condition set ec; ;. of probability P(A; | ec;)
by additional conditions without changing the probability, if A; is independent of the additional
conditions.

Definition 9.8 (Extended event combination of the parent nodes) Let A?l and AS* be two cor-
responding nodes in different affordance networks, Pa(AS") and Pa(A$?) their individual parent
sets, and A** = {a(Ay)|Ax € Pa(AS") U Pa(AS)} be the set of both parents’ affordances. The
extended event set of both nodes, A and A%, is given by

Fext(AiGl,Agjz) = Ff:t = {f:;; = (A],p) | A] € Aext, p € {O, 1}} . (918)

116

9 Choice of the imitatee

(A Y 4)
LP(A3):0.56) LP(Az)zo.so)

(4 N[a4)

3
" ~N LP(A3) = o.45) LP(AZ) = 0.27)
A, | A, | P(A) il
)
o} o] 0.12 A,
1 o 0.62 A, | P(A)
o] 1 0.20 o] 0.17
_ 1 1 0.00 1 0.60
(a) AN, from Fig. 9.6(b) (b) AN,

Figure 9.7: Opposite situation: graph AN} is lacking edge A, — A,

(4 N[a4) (4 N[4)

LP(A3) = 0.36) LP(AZ) = 0.45) LP(A3) = 0.45) LP(AZ) = 0.27)
))
A, | P(A) A, | P(A)
o 0.17 o 0.17
1 0.60 1 0.60
(a) AN, from Fig. 9.6(a) (b) AN, from Fig. 9.7(b)

Figure 9.8: Both affordance networks are lacking an edge that exists in the other network.

117

9.6 Comparing affordance networks

The set of event combinations of A" s parent nodes, extended by the missing parents of A5, is then
given by

Gi 4G _ - = (fi ' '
ecext(Ai ’An) _ ecf;lct _ {ecf;lc,tk _(jl:;l"-"fjllgl) | fjlmq;ﬂ € Fie;t’ (9.19)
JuF jyVu+v,
ecs e Vw #x,

in,w in,x

=A% ke 1,2}

Definition 9.9 (Probability of affordances with extended event combinations) Let two nodes,
A% € G, and A € G, be corresponding but not comparable as they do not show the properties of
Def. (9.7). Let ec; be the set of event combinations of node A" and ec¢** the set of event combina-
tions extended by AS*’s event combination set, which emerged from ec:;.

With the independence definition and the conditioned independence, the extended event combina-
tions condition the same probability as the original event combination:

P(AS ecf,ffkp) = P(AS" |eciy) V eciiy, € eciy's ecix € eci, p € {o,1} (9.20)
Each component in the original condition set, f; € eciu = (fi ... f],), | = |Pa(A))],

u = k, then has a corresponding component in the extended condition set, f]”fp € ecst =

(e finy) 1= |A], v = kp, with fi" = fI . With Def. (9.9) the following equality

hOldS: P(A?] | ecext) = P(AIG‘ | eci’u).

in,v

Using the equality of the probability distribution, the extended coordinate representation of the
point corresponding to A" can be defined.

Definition 9.10 (Extended point representation of a node) Let A?l € G, and AS* € G, be two
corresponding nodes violating the properties of Def. (9.7). Let ec*" be the extended event combina-

tion of the parent nodes of AS". The extended coordinate set coords*'(AS") of the point correspond-
ing to A can then be defined as:

coords (A%) = {(ectzt, @) | ectyl € ectit, O = P(A% [ecti)} (920
. G\
The k-th axis of coordX' (A7) is then defined as
axis(AS)g = eciy (9.22)
and its value denoted as
value(A?‘)k =0, . (9.23)

coords* (AS") is also called the extended point representation of node AS".

Consider the two graphs AN, and AN, in Fig. 9.6. In order to calculate the distance between
them, A®, the node A, in graph AN/, has to be extended so that it can be compared to A% the

118

9 Choice of the imitatee

4 A N\
A, | A | P(A)
A, o] o] 0.17
A, | P(A) 0 1 0.17
0 0.17 1 o) 0.60
1 | 0.60) _ ! 1 0.60)
(a) A, from Fig. 9.6(a) (b) A, after the extension

Figure 9.9: Extended point representation of node A, from Fig. 9.6(a): after extending the node’s condi-
tion set, it can be compared to A, from graph AN, in Fig. 9.6(b)

node A, in graph AN,. This is done by firstly determining Fex!(A%, A%*):

Fe (AR AT = { i) = (M),
fio = (As,0),
0 = (A1),

31

0 = (A5,0)} (9-24)
Using this extended event set, the extended event combination of the parent nodes is given by

ec™! (A7 AT) = {(fil 1),
(£ fio)»
(fior £31);
(fior f30)}
= {((A21), (A51)),
(A1), (As50)),
((As0), (As1)),
((Az50),(As5,0))} . (9.25)

The extended point representations are made up by the following equations and visualized in
Fig. 9.9.

P(AY
P(AY
P(A}
P(AT

ec) = P(AS |ec,) =017

11,10

ec?) = P(AS |ecy,) = 017

11,1,

ect) = P(AY

11,20

ec!) = P(A%

11,2,

ec,) = 0.6

ec,) = 0.6

Let ¢; = coord*(A®) and ¢, = coord®*'(A%*) be the extended point representations of the

119

9.7 Evaluation

corresponding nodes A®* and A$*. The Manhattan distance is calculated as follows:

2|A2Xt‘

Dyaram (A, AG) = > value(AS), — value(AS)| (9.26)
k=1
axis(AiGl)k=axis(A§2)kz

This leads to the calculation of the Manhattan distance of two affordance networks:

Dparam(ANv AN?.) = Dparam(Gla Gz) = Z Dparam(As;laAgz) (927)
A?‘eGl,Af2 €G,
&1 (A%)= (A

Dyaram applied to the networks from Fig. 9.5 (page 111) results in the following parameter distance:

4
Dparam (ANred) ANblue) = Z Dparam (Aried> A?lue)

=0.0 + 0.0 + 0.0 + 0.33

=0.33 (9.28)

9.6.3 Affordance network distance metric

With the definition of both distance components, the total distance of the affordance networks
can be calculated as the weighted sum of both components:

DAN(AN1> ANz) = 77 : Dstruct(ANv ANz) + (1 - 77) : Dparam(ANu ANz) . (929)
The total distance of the example networks AN,.q and ANy, in Fig. 9.5 with # = 0.5 then is

DAN (ANred’ ANblue) =0.5"- Dstruct (ANred) ANblue) + 0.5 Dparam (ANred) ANblue)
0.5-1+ 0.5-0.33 = 0.665 . (9.30)

If robot R,, in a robot group R = {R,,..., R, } has observed other robots, detected affordances,
and constructed the corresponding affordance networks for all the other robots and for itself, it
can then choose to imitate robot R;,,;zare that is most similar to itself in terms of the affordance
network metric:

Rimitate = al’gmin {DAN (ANi) ANm)} (931)
RieR, Ri+Rm

9.7 Evaluation

The following three experiments evaluate the applicability and robustness of the demonstrator
selection. The starting situation in all of these experiments is an imitator robot that has to choose
one imitatee from a group of potential demonstrator robots. The first experiment shows detailed
how different capabilities lead to different affordance observations of which in turn different

120

9 Choice of the imitatee

Figure 9.10: Evaluation environment containing morphologically different robots and objects of different
shape, width, height, mass, and surface

affordance networks are generated. In the second experiment, the imitation performance and
robustness of the whole approach is analyzed. Both experiments assume the variance of the ob-
jects’ properties to support the generation of meaningful statistics of the recognized affordances.
With increasing variance, the usefulness of the created affordance networks decreases as the same
affordance is averaged over objects of greatly varying properties. This is the case if, e. g., the im-
itator has observed a demonstrator being able to push a lightweight object but unable to push
a heavy one. The last experiment shows how to overcome this problem by clustering objects
according to their properties.

9.7.1 Experimental setup

Multiple morphologically different robots are located in a Gazebo environment containing ob-
jects of different sizes and shapes. Fig. 9.10 shows an example environment with two of those
robots with different morphology and objects of different sizes and shapes. In the exploration
phase, the robots are interacting with those objects and thereby detecting the affordances offered
to them. In addition, they are continuously monitoring the other robots in the environment
and thereby detecting affordances of those robots as well. Whenever a robot decides to imitate
another robot, it executes the demonstrator selection algorithm and imitates the selected robot.
The remainder of this section presents the used parameter intervals of the robots’ and objects’
properties

9.7.1.1 Parameterization of the environment

The Pioneer2DX is used as the base robot platform, which already exists as a module for the
Gazebo simulation environment [25]. Two simulated SickLMS 200 laser scanners [23] are cou-

121

9.7 Evaluation

(a) Standard gripper

(b) Barb gripper

Figure 9.11: Two different grippers that lead to very different affordances of the corresponding robots

Table 9.2: Parametrization of the robots used in the experiments

parameter values description

5 | power [0.3,6.0] kg maximal weight a robot can pull/push

g speed [0.03,0.2] m/s controls the impulse a robot impact on an object
length [0.08,0.2]m the longer the gripper the deeper the objects can be
span [0.16,0.5] m limits the diameter of objects that can be gripped

5 | closing [1.0,30.0] kg controls the contact pressure (to pull heavier objects

& | force the closing force must be higher)

2 lifting [30.0,80.0] kg controls the friction (to lift heavier objects the closing
force force must be higher)
form {normal, barb} | different forms lead to different interaction possibili-

ties (Fig. 9.11)

pled to scan the full 360° of the robot’s environment for objects and other robots. The lasers
return the ID and the relative position for both. The robot knows the objects’ individual prop-
erties. In all experiments, the robots have the same perception configuration. The evaluation
concentrates on the morphological differences that are leading to different action capabilities,
which are the movement and gripping capabilities. Tab. 9.2 lists the different parameters and
shows the intervals of their values together with their effect on the robot’s action capabilities.

Not only the robot’s morphology determines, which affordances are offered by an object, but also
the properties of that object itself. The evaluation experiments used objects of different shape,
width, height, mass, and surface. Tab. 9.3 provides a detailed overview.

122

9 Choice of the imitatee

Table 9.3: Parametrization of the objects used in the experiments

parameter | values discretization
mass [1.0,5.0] kg 0.5 kg

width [0.04,0.24] m 0.05 m
height [0.17,0.2] m 0.05 m
friction [50,100] % 0.1%

shaped { sphere, cube, cylinder}

9.7.1.2 Affordances and their validation

As already pointed out above, the algorithm relies on a fixed set of predefined affordances. In all
the experiments, the used affordance set was A = { A, = seizable, A, = liftable, A, = pushable, A, =
pullable }. The affordances are defined as follows:

seizable The robot is able to reach the object, position it in its gripper, and close the gripper with
the object in it.

liftable The object can be gripped by the robot. When lifting the gripper with the object in it, it
stays fixed to the gripper and is also lifted.

pushable When the robot bumps against the object and continues to move forward, the object
pushed forward.

pullable While the robot is driving backwards having previously gripped an object, the object
stays within the gripper.

The examination of an affordance A; € A is conducted by means of Valid;(I,(t),0,R) as de-
fined in Sec. 9.2. This function needs a list of preconditions that have to be met in order to test the
final condition. The final condition determines the affordance (cf. Sec. 9.4). For the previously
presented four affordances, those conditions are represented as finite state machines in Fig. 9.12.

The presented parameters of the robots and objects allow for sufficiently different scenarios to
evaluate the demonstrator selection approach in this chapter. Before moving on to the experi-
ments the measurement of imitation success has to be defined.

9.7.1.3 Imitated behavior and how to measure its success

The robots imitate other robots that are performing different skills on the diverse objects in the
environment. While doing so, the imitator’s error functions of the involved skills will provide

123

9.7 Evaluation

drive to ok

object

drive to
object

ok align to ok

seize
object object
fai

ok align to ok

align to
object

(a) seizable (b) liftable

drive to ok align to drive seize
object object forward object object
fail fail

(c) pushable (d) pullable

seize
object

fail

drive to
object

Figure 9.12: Affordance testing conditions modeled as finite state machines for the affordances used in
the experiments

feedback regarding how successful the individual skills have been executed. The number of fail-
ure signals the strategy layer retrieved while executing the imitated behavior serves as an indi-
cator how wise the demonstrator choice had been.

9.7.2 Selection experiment

The purpose of this experiment is to show the overall feasibility of the demonstrator selection
algorithm by means of a complex scenario.

9.7.2.1 Scenario

The environment contains three robots R = {R,, R,, R,} and nine objects O = {o,,...,0,}. Of
the three robots, R, is the imitator that has to decide which of the other robots is most similar
to itself. All robots are able to explore those objects to find out which of the affordances A = {
seizable, liftable, pushable, pullable } are offered by them. The exploration is conducted by means
of a set of predefined behaviors.

The concrete parameterization of the robots and objects is shown in Tab. 9.4 and 9.5. As a close
look to Tab. 9.4 reveals, robot R, seems to resemble more R, than R,. The affordance network
metric should therefore return a smaller distance to R, than to R, for robot R,. Compared to
the object parameter intervals in Tab. 9.3 the objects in this experiment are very similar. They
are all designed to be small and lightweight.

124

9 Choice of the imitatee

Table 9.4: Dimensioning of the three robots in the selection experiment
robots | motor gripper
power | length [power | form

R, | strong | long weak | barb
R, medium | medium | weak | barb
R, | weak short strong | normal

Table 9.5: Dimensioning of objects in the selection experiment
| object | mass | width | height | friction | form |

0, 1.5kg | 0.04m | 0.41m 95% | cube

0, 1.5kg | 0.04m | 0.42m 100% | cube

0, 1.0kg | 0.06m | 0.41m 95% | cube

0, 1.8kg | 0.04m | 0.42m 95% | cube

0s 1.5kg | 0.06m | 0.40m 100% | cylinder
0¢ 1.5kg | 0.04m | 0.41m 100% | cylinder
0, 1.0okg | 0.06m | 0.42m 95% | cube

0g 1.3kg | 0.04m | 0.39m 100% | cylinder
0, 1.3kg | 0.31m | 0.31m 90% | sphere

9.7.2.2 Procedure

The robots start exploring the objects without any information regarding the interaction possi-
bilities. The exploration phase stops after each robot has investigated each object and created its
affordance networks. Finally, the affordance network distances Dn(R,, R,) and Dan(R,, R;)
are calculated.

9.7.2.3 Result

Fig. 9.13, 9.14, and 9.15 show the affordance networks, which robot R, has built for all robots
including itself based on its observation. The outcome of the affordance network metric D,y =
1 Dgtruct (AN, AN,) + (1= 1) - Dparam (AN, AN,) in Eq. (9.29) applied to these networks is shown
in Tab. 9.6 for different values of #.

Table 9.6: Behavioral distance calculated by the affordance network metric

4 [Dan(R.R.) [Dan(R,R,) |

0.1 0.41 3.45
0.25 | 0.34 3.53
0.5 0.23 3.69
0.75 | 0.11 3.85
0.9 | 0.045 3.94

125

9.7 Evaluation

-

Pullable

4 N\

Seizable

(" Liftable

\P(Pullable) = 0.70)

\ P(Seizable) =1.00)

\P(Liftable) = 0.00)

\ 4

(Pushable h
Pullable | P(Pushable)
o 0.33
! 1.0)

(

Figure 9.13: Affordance network of robot R, (imitator)

Pullable

\ (Seizable \ (Liftable \

@(Pullable) = 0.60) kP(Seizable) = 0.90) @(Liftable) = o.ocJ

\ 4

(Pushable h
Pullable | P(Pushable)
o 0.25
\ 1 0.83)

Figure 9.14: Affordance network of robot R, (demonstrator)

126

9 Choice of the imitatee

(" Ppullable)

kP(Pullable) = o.125)

Yy

(" Liftable)
Pullable [P(Liftable)
0 0.14
1 100)
(Pushable h
Liftable | P(Pushable)
0 0.50
! 1.00)
(Seizable h
Pushable | P(Seizable)
0 0.66
1 1.00)

Figure 9.15: Affordance network of robot R, (demonstrator)

127

9.7 Evaluation

It shows that the imitator robot R, would always choose R, for imitation, which is the more
similar demonstrator. This indicates that the more similar robots have been oftfered the more
similar affordances by the objects. The affordance networks consequently reflected this similarity,
which led to a smaller value in the distance measurement.

9.7.3 Robustness experiment

Imitation in general is of most utility to the robot when it has not already explored much com-
pared to the other robots. Ironically, at this stage, it also has not collected that much information
regarding the affordances offered to it and to the other robots. This experiment evaluates how
the demonstrator selection algorithm copes with the situation. In addition, it investigates how
the algorithm reacts to uncertainty in the collected affordance data. For that purpose, the col-
lected affordance data will be set to “1” (missing) by 0%, 10%, 20%, and 35%, respectively. The
Alternating Model Selection EM algorithm by Friedman [76] basically allows for uncertainty in
the data. This experiment evaluates, how well it does so in the affordance network context.

9.7.3.1 Scenario

The scenario consists of the three robots as in the previous experiment (Sec. 9.7.2) plus another
demonstrator robot R,. That one is dissimilar to the imitator, representing a bad decision. The
objects are also the same as in the previous experiment. Throughout this experiment the metric
has equal weights for both components (1 = 0.5).

9.7.3.2 Procedure

One experiment run consists of 35 episodes. Starting with the first episode, the imitator R, has
no affordance information (7; = @), whereas all demonstrators (R,-,) have already explored the
environment. The imitator gets the chance to test one not yet tested random affordance on an
object. This populates 7, by one affordance tuple. The imitator then calculates AN, and has to
select a demonstrator based on the calculated distances. AN,_, are fix throughout the whole
experiment.

Initially, this will obviously be rather random with only little affordance information. Based on
the choice, the imitator imitates the demonstrator and immediately applies the imitated behavior
sequence.

9.7.3.3 Result

The results are shown in Fig. 9.16. They are displayed relatively to the number of failure signals
received in the first episode. As expected, the failure signal for the random imitation experiment
stays the same throughout the experiment run. This is the reference performance, marking the
case of imitation without using the demonstrator selection algorithm.

128

9 Choice of the imitatee

0%

failure signals compared to first trial

0.4} | ===
eoee 10%
waxa 20%
.2
0 vvvy 3504
<<<< random imitation

0 5 10 15 20 25 30 35
trial

Figure 9.16: Impact of the demonstrator selection algorithm on the failure rates for different fractions of
unknown data (with 95% confidence interval for the 0% case)

The graph shows that the algorithm presented in this chapter is able to improve upon that. It does
so, however, not before the 15th experiment run. That means that this approach needs a minimal
amount of data to show its strengths. Although the failure rate never drops to zero due to the
noise in the environment and the realistic simulation scenario, the approach is able to decrease
the failure rate by approximately 50% in the case of no unknown data (0% case).

With increasingly more introduced unknown data, the performance degrades as expected. With
35% and more of unknown data it approaches the performance of random imitation. Recall that
this approach uses the Alternating Model Selection EM-algorithm to learn the affordance net-
works [76]. At approximately 30% of unknown data, virtually all the instances in the affordance
dataset are incomplete.

In summary, the demonstrator selection algorithm is able to improve the imitation performance
significantly by choosing demonstrator robots that will most likely provide useful new behavior
to the imitator. The algorithm, however, needs a minimal amount of meaningful data. If this
cannot be guaranteed the worst thing to happen is a performance as if it had not been used.

9.7.4 Clustering experiment
In the previous experiments, the objects had similar properties. E. g., all nine objects had nearly

similar size and weight. This supports the demonstrator selection algorithm as it increases the
quality of the collected affordance data. With more variance in the properties of the objects, also

129

9.7 Evaluation

the affordance data becomes more ambiguous. If, e. g., nine additional objects were introduced,
all of them big and heavy, the collected affordance data would be contradicting for the most part.
The experiment in this section investigates how the approach copes with objects that are more
heterogeneous.

For this purpose, the robots cluster the objects according to the properties they can perceive.
Subsequently, they construct one affordance network for each cluster individually. The applied
affordance network metric finally has to be extended so that it incorporates all the individual
affordance network distances.

9.7.4.1 Scenario

The experimental setup consists of 18 objects, which can be divided into two groups depending
on their perceivable properties. Within each group, the variance of the object properties is low.
The robots, however, are not given the number of clusters. They determine this by means of the
elbow criteria [27], which can then be used together with the applied agglomerative hierarchical
clustering method [124, 153]. It forms bottom-up the most similar pairs of objects to clusters,
and then the most similar clusters into bigger clusters, and so on, level for level. At each level,
the sum of the clusters’ mean square error of the object distances indicates the quality of the
clustering. The elbow criteria states that it is advisable to stop the agglomeration process if the
error increases steeply from one level to the next.

9.7.4.2 Procedure

The experiment proceeds similar to the previous one, except that the imitator clusters the objects
perceived so far prior to the affordance data collection and affordance network creation. It then
creates the affordance networks for each robot in each cluster individually. Recall that the whole
procedure is performed from the view of one robot. At no point in the experiment, the robots
share any data. Therefore, when the imitating robot creates the according affordance networks
of the different robots based on its observations, the clustering stays the same.

Assume that the objects have been grouped into 7 clusters of the set {K,, ..., K,}. In this case,
the imitating robot R, creates n affordance networks for each robot. During exploration, R,,
collects the affordances observed at robot R; into the n sets 7., ..., T (cf. Eq. (9.5) in Sec. 9.5).
Robot R, uses them to create the according affordance networks AN;,, ..., AN, ,. It calculates
the cluster-based distance D, (R4, Ry) between two robots R, and R, by a weighted sum of
the individual affordance network distances, where the weight is determined by the amount of

affordance data available for the corresponding cluster:

ky

D;N(Ra’Rh) = Z k

=1

DN (ANa,la ANh,I) (9.32)

Each affordance network AN; ;, constructed from data 7.7, is weighted by %, where

k=min{(|7'a"’}|+| b”}|) |1£l§n} (933)

130

9 Choice of the imitatee

—
N

[
(o]

o
o)

o
£

e
~

=szs normal
eeee Clustered

failure signals compared to first trial
o
(o))

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
trial

©
o)

Figure 9.17: Impact of the clustered demonstrator selection algorithm on the failure rates compared to
the non-clustered approach

is the minimal amount of affordance data collected by both robots R, and R,. The numerator
ki = min {| 77}, 7,711} (9:34)

is the minimal amount of objects belonging to cluster K; explored by both robots. This ensures
a higher weight for distance calculations that are based on more data.

The rest of the cluster experiment is done equally to the previous experiment.

9.7.4.3 Results

The graph in Fig. 9.17 shows the performance of the clustering approach (“clustered”) and com-
pares it to the not clustered one (“normal”) averaged over ten experiments. Without clustering,
the failure rates stay the same for over 55 trials and the choice of the best demonstrator is ran-
dom. This indicates that it needs much more data to construct meaningful affordance networks
if the objects show a greater variance in their properties. It takes over 65 trials for the imitator to
collect enough data.

In contrast to that, the clustered approach is able to decrease the failure rates very early. After the
35th trial it converges at half of its starting failure rate.

131

9.8 Conclusion

9.8 Conclusion

This chapter solved the problem of determining the best demonstrator to imitate. As it is most
reasonable to imitate a robot with similar capabilities, this robot is determined by means of the
similarity of the observed affordances compared to the affordances of the imitating robot. Typi-
cally, these observations are noisy and ambiguous. To cope with this, the presented demonstrator
selection approach constructs affordance networks that are Bayesian networks with affordances
as nodes. With a metric that takes into account both the network structure and the affordance
dependency parameters, the demonstrator selection approach is able to determine the best robot
demonstrator for a given robot.

It does so even without requiring the robots to reveal their inner status of other information.
Thus, it is not only robust with respect to the reliability of the communication channel and does
not require the same communication protocol. It even works in robot groups where robots are
not specifically designed to be used in an imitation scenario.

The approach requires predefined affordances as its basis. If this cannot be requested for a spe-
cific scenario, an affordance-learning phase could precede the application of the demonstrator
selection approach. Research by Montesano et al. [125, 126, 127] and Detry et al. [66] has shown
that this is a viable solution.

The experiments have shown empirically that the demonstrator selection increases the imita-
tion performance while being robust to deterioration of the observation quality. In addition to
improving the imitation performance, the approach also saves computing resources otherwise
spent at monitoring robots that are too different to imitate.

132

CHAPTER 1 O

Summary and outlook

The famous science fiction writer Arthur C. Clarke once formulated his three laws of prediction
regarding the state and progress of science [58]:

1. When a distinguished but elderly scientist states that something is possible, he is
almost certainly right. When he states that something is impossible, he is very
probably wrong.

2. The only way of discovering the limits of the possible is to venture a little way past
them into the impossible.

3. Any sufficiently advanced technology is indistinguishable from magic.

Because pushing the technological boundaries forward is such a tough and risky thing, researchers
often take inspiration by nature hoping to ease some of those difficulties. When they are trying to

copy or emulate processes and mechanisms that have been proven to be successful in nature, one

inevitably has to realize and acknowledge the complexity and sophistication governing natural

processes. This is also true for imitation and its combination with learning. Whereas imitation

observed “in the wild” seems to be so easy and natural, it is hard to accomplish in technical sys-

tems. Even more so, if restricting assumptions are omitted. This thesis has presented approaches

that are a step forward in this direction, as they allow for sporadic imitation in heterogeneous

robot groups. The remainder of this chapter summarizes the contributions of this thesis and

discusses possible enhancements.

133

10.1 Summary

10.1 Summary

Decent learning capabilities are inevitable for robots in a robot group that has to achieve its goal
in a robust manner. Even, if the original task can be programmed completely, unforeseen changes
in the environment or of the robots themselves due to wear and tear still require each robot to
continuously adapt. This process of initial learning and adapting the learned knowledge can and
should be sped up by spreading the learned knowledge among the group members - in form of
imitation.

For a robot system to support this combination of learning and imitation, this thesis first de-
veloped a robot architecture that supports the required characteristics. It consists of the three
layers motivation, strategy, and skill. The overall goal of the robot is specified intuitively in the
motivation layer. At runtime, it provides feedback to the robot with respect to the outcome of
its last actions. This feedback is used in the strategy layer as a reward information. Based on
that, the strategy calculates and updates its current optimal policy. The policy is modeled by a
semi-Markov decision process that keeps track of which action is most useful in the respective
state. The actions are grounded in the skill layer. This means that for each symbolic action in
the strategy layer, the skill layer maintains a low-level representation. This is an approximated
function that determines the commands for the actuators. A robot is able to individually learn
to achieve the goals specified in the motivation layer on two levels. At first, the skill layer is au-
tonomously able to derive low-level skills that might be useful to achieve the overall goal. And
then, there is the strategy layer, which uses these previously learned skills to build its strategy.

If the robot encounters another robot that might serve as a demonstrator, both the skill and
strategy layer work together to reconstruct the observed behavior. Inspired by the biological
mirror neuron system, the skill layer recognizes behavior in the observation that it could also
have performed. Based on this insight, the strategy layer then builds the most likely state-action-
trace according to the observation. Since the information is already in a format that is understood
by both the strategy layer and skill layer, the recognized behavior in the observation can then be
added to the current experience of the strategy layer. This procedure is made possible only by
the clear separation of concerns between the strategy and the skill layer.

Another challenge that has been solved in this thesis is the decision regarding the most useful
imitatee. This problem aggravates with increasing heterogeneity in the robot group. With the
proposed solution, imitation can now be used in completely heterogeneous robot groups. The
approach is based on the behavioral difference between two robots. It creates affordance net-
works, which are Bayesian networks on observed affordances. Once, an imitator has created an
affordance network for each robot in a group, it can calculate the difference between itself and all
the other robots. By taking the robot with the smallest distance, it has chosen the imitatee that
behaves most similar to itself, which increases the probability of successful imitation.

10.2 Contributions

The thesis starts with a survey of imitation in science ranging from biology over psychology to
robotics (Chap. 2), which originally connects different fields of research. The remainder delivers

134

10 Summary and outlook

the following contributions:

An architecture that combines top-down goal specification with bottom-up behavior
acquisition (Chap. 3 - Chap. 6). There are already robot architectures that deploy means
to address the inherent complexity in today’s robot tasks by combining high-level goal-
specification with low-level behavior execution. The approach of this thesis is original in
that it has integrated the support for imitation at each layer.

An algorithm for non-obtrusive imitation (Chap. 8). The presented approach only re-
quires the imitatee to emit a signal of its overall well-being, which is used to approximate
the observation’s overall success. Everything else, the correspondence problem, the “how”,

“what”, “when’, and “whom” is handled autonomously by the approach itself. This increases
the robot’s own autonomy and robustness dramatically.

An algorithm to autonomously determine the best imitatee (Chap. 9). The “how” is
handled in a novel manner, as it only requires a set of affordances to be specified, based on
which the imitator is then able to calculate the most similar imitatee of potential robots.
This advances the state of the art, in that it poses no further requirements to the robots in
the robot group.

The contributions have been published in the following journals and conference proceedings:

International Journal On Advances in Intelligent Systems 2009
[21]

IROS: IEEE/RS] International Conference on Intelligent Robots and Systems 2008
18]

ADPRL: IEEE International Symposium on Approximate Dynamic Programming and Re-
inforcement Learning 2009
[20]

BICC: IFIP Conference on Biologically Inspired Cooperative Computing 2006, 2008
[13,17,1]

ICAS: International Conference on Autonomic and Autonomous Systems 2007, 2008, 2009
[9, 16, 19]

SEAMS: IEEE/ACM ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems 2008
[10]

A complete list of publications can be found in the appendix.

135

10.3 Outlook

10.3 Outlook

Since the presented techniques and algorithms are qualitatively new approaches, there is natu-
rally room for more evaluation experience in further areas. It will be interesting to see how well
the architecture behaves in situations that are more noisy and uncertain or that involve more
objects and robots. Besides the extension of evaluation experience, the following areas can be
improved as described in the remainder of this section.

Regarding the architecture, some of the parameters that control the strategy and skill layer are
manually predefined and thus have to be found empirically. Further investigation is needed to
examine how those can be determined dynamically. This would directly improve the robustness
and autonomy of the overall system.

In the presented imitation approach, each robot assumes that the other robots are steered by the
same value system, which is the behavior of the motivation layer. I. e., they don’t assume the same
implementation, but that all the robots agree upon what is beneficial and what is not in terms of
the rewards. To increase the applicability of the robots even more, some kind of compatibility
check of the motivation system is needed. If robots are able to detect, which robots possess quite
different goals, it would rule them out as potential imitatees. Needless imitation attempts would
then be prevented.

The quality of the imitation approach could be improved further by implementing joint attention
methods [49]. Joint attention is the capability of attending to the same object, to which another
robot is looking [68]. This would limit the object to track to those the demonstrator is tracking.

The imitatee selection approach can be improved by reasoning in the imitatee selection step
whether it is wise to imitate at all. The current approach selects the most similar robot. If all
other robots are dissimilar, the approach, nevertheless, chooses one to imitate. In this case, the
approach could decide that no robot within the visible range is “similar enough”. This requires an
absolute threshold of behavioral similarity and could be determined online in the optimal case.

The presented architecture can even be used as a basis for qualitatively new multi-robot coordi-
nation. Current approaches that already enable robots in groups to coordinate their actions so
far require fixed coordination rules [34, 83, 84, 158]. This limits the deployment of robot groups
to predefined and fixed scenarios where only those robots can benefit that are enabled with the
predefined rules, which are needed for coordination. In contrast, coordination based on the pre-
sented architecture’s capability to recognize complex behavior in observations could overcome
this restriction. Based on the continuously recognized complex behavior, each robot could build
teammate models of the other robots. These models could then guide the robot to coordinate the
actions with the other robots even if they were provided with incompatible coordination means
or not specifically designed for coordination at all.

136

APPENDIX z s

Notation

137

R set of all robots R; in the group
(0 set of objects in the environment

U motivation vector

Ui motivation for goal i

b motivation threshold defining when goal i is satisfied

uf priority for goal i

S state space

A action space

V(s) value or expected accumulated return of state s

Q(s,a) utility of performing action a in state s

T(s,a,s') probability of arriving at s’ when executing action a in state s

R(s,a) expected reward for executing action 4 in state s

7(s) policy that assigns an action so state s

Sext extraction function

fe computes the error associated to a couple of real values

fe computes the error of the perception S

fo progress function

m model prediction function

7 raw perception (input)

Tinsa preprocessed perception for the motivation, strategy, and skill layer, re-
spectively

O raw action (output)

1% value of a hidden state in a Viterbi path

A set of detectable affordances A;

A set of random variables representing affordances in A

138

APPENDIX B

Algorithms

139

Algorithm 1 Splitting a reward rate sequence

Input: p!_,: the last n received reward rates
Output: Two reward rate sequences that satisfy Eq. (5.28) or “None”
/I Calculate the boundaries the n histogram bins and the number of reward rates that fall
into each of them
Ppins Peount < histogram(p!_,, bins=n)
imax < ArgmMax; hiy,,,
binyax < by
change < {i| (pi € bitiyax) # (picy € bitiyax) Vie{1,...,n—1}}
Piow < reward rate sequence without a change and Var(pjoy) ~ 0
if |change| >1 v Var(p!_,) < 0v V |piow| < 6, then

return None
else

k € change

return p!_k7, p! |

-

L 2N 2 R v N

=
Q

140

B Algorithms

Algorithm 2 RECOGNIZE: Recognize familiar behavior

Input: ON: observation episode stream (0,, ..., 0y); Sand T(s’, a, s): state space and transition

probabilities of the imitator’s strategy (SMDP)

Output: Recognized most likely state transitions with observed transition actions

=

N = — [— =
e 9 an £ & B E 9

21
22:
23:
24:
25:

L 2N 2 R RN

Transform OY into subjective observations — oV (Sec. 8.3)

[<@ /1 collects understood (s', a, s) triples
V(s,1) < max,, P(o,|s,=s) VseS

e, <1

e < N

£< e, 1
while ¢ < |N| do
if max, P,(0;]0;_,) > 0, then
for s € S do
a,_, < argmax, P,(o;|0.,)
V(s, t) < max, P,(o;|s; = s) maxy [T(s", a;_1, s)V(s', t —1)]
¢(s,t) < argmax, [T (s, a,-,,s)V(s',t —1)]

else
e o t
I < I'URETRIEVE(g, tI:,,, 170
while max, P,(0;|0,.,) < O,ps and t < [N|-1do
t<—t+1
if max, P,(0;]0;-,) > 0,5 then
tree, < t
e N
V(s,t) < max,, P(o;]s;) VseS
t<—t+1

if 72, < 17 then

start

T < I URETRIEVE(g, t7¢,,, 7))
return I’

141

Algorithm 3 RETRIEVE: Calculate the most likely behavior sequence out of ¢

Input: oY, ¢, and S from Alg 2; recognition window [t[;,,, £,] for o

Output: The recognized most likely state transitions with observed transition actions for the
specified time window

1: rtemp <~ @

. best rec
2 0% < argmax ¢ V(s, 1)

. rec
3 [« tond
4 while t > t7f, do

. . best best _ 4rec
5: if go(se%d, t) + Senz v t =1t then

. est est
6: Sstart < (p(send’ t) b b

t t
7 A < argmax, P, (s)ef | oo,

. best rec best
8: I_‘temp <~ rtemp U ((t> 0t Sstart)’ Aml> (tend’ Othfd’ Send)
9: tona < 1

. best best

10: Send < Sstart
11 t<—t—-1

12: return [,

142

List of Figures

1.1
1.2

2.1

3.1
3.2

4.1
4.2
43

5.1
5.2
53
5.4
5.5

6.1
6.2
6.3

6.4
6.5

7.1
7.2
73
7.4
7:5

Humans are capable of imitation atanearlyage
Real Pioneer robot and simulated Pioneer robotbasis [25]

The three sources of imitation by Call and Carpenter [54]

The robot architecture
Exemplary layer interaction in normal executionmode

The layered robot architecture o L.
An example of a motivation system for three sub-goals
An example of a sub-goal subjected to an excitation

The layered robot architecture o L.
Processes involved in updating one policy in the strategy layer
This example shows five different paths of different duration
The probability of choosing action a in state s given its failure rate f
Gridworldexample L

The layered robot architecture o L.
Data flow in explorationmode
Data flow in exploitationmode L.
The progress function f,
Skill rankingexample

Capture-The-Flagscenario
Size of experience and number of abstractregions
Time to push the objecttothegoal
Thereward persecond
Visualization of alow-level action

10

19
22

LIST OF FIGURES

8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.1
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17

The process of imitation: observing an other robot’s behavior, interpreting it in

terms of its own knowledge, and integrating it into the latter 80
The robot’s coordinate system 82
The calculation of P(0;]$:=5) . o v v i it 86
Example of an ambiguous situation for voting o L. 86
The subjective perception of the robot used in the experiments 88
Experimental scenario: the ball has to be put onto the elevated platform. 88
Recognition results during the imitation process (no lifting) 90
Recognition results during the imitation process (with lifting) 91
The experience in the form of an interaction stream 92
Simulation robot used in the experiments o oL 93
Scenario with threebases. 94
The average time needed for reaching a goaloversoruns. 94
Rewardpersecond 95
The percentage of objects brought to the respective base without imitation ... 95
The percentage of objects brought to the respective base with imitation 96
Size of the experiencelist 96
Number of regions, in which the state spaceissplit 97
Goal choice homogeneity (1 = goals are maximal homogeneous) 97
Scenariowith fivebases. e 98
The percentage of objects brought to the respective base without imitation ... 98
The percentage of objects brought to the respective base with imitation 99
The average time needed for reaching a goal oversoruns. 99
Rewardpersecond 100
Measurement of behavioral difference according to Balch [32] 102
Exemplary Bayesian network [129] o L. 104
Processes involved in choosing the best demonstrator for imitation 107
Transformed affordance information 110
Affordance networks for thedatain Tab.g.1. 111
Graph AN, islackingedge A, — A, L o L 116
Opposite situation: graph AN, is lackingedge A, = A, 117
Both affordance networks are lacking an edge that exists in the other network. . 117
Extended point representationofnode A, L. 119
Evaluation environment with morphologically different robots and objects . . . 121
Different grippertypes 122
Affordance testing conditions modeled as finite state machines 124
Affordance network of robot R, (imitator) 126
Affordance network of robot R, (demonstrator) 126
Affordance network of robot R, (demonstrator) 127
Impact of the demonstrator selection algorithm on the failure rates 129
Impact of the clustered demonstrator selection (clustered) 131

144

List of Tables

9.1
9.2
9.3
9.4
9.5
9.6

Affordance information detected by robot Ryeq -« . o o o o o o oo ool 109
Parametrization of the robots used in the experiments 122
Parametrization of the objects used in the experiments 123
Dimensioning of the three robots in the selection experiment 125
Dimensioning of objects in the selection experiment 125
Behavioral distance calculated by the affordance network metric 125

145

LIST OF TABLES

146

Own publications

[1]

(6]

Raphael Golombek, Willi Richert, Bernd Kleinjohann, and Philipp Adelt. Measurement of
robot similarity to determine the best demonstrator for imitation in a group of heteroge-
neous robots. In IFIP Conference on Biologically Inspired Cooperative Computing — BICC.
Milano, Italy, 2008.

Bernd Kleinjohann, Lisa Kleinjohann, Willi Richert, and Claudius Stern. Integrating au-
tonomous behavior and team coordination into an embedded architecture. In Pedro U.
Lima, editor, Robot Soccer, chapter “Integrating autonomous behaviour and team coordina-
tion into an embedded architecture”, pages 253-280. Pro Literature Verlag / ARS, December
2007.

Markus Koch, Robert Beckebans, Jiirgen Schrage, and Willi Richert. Real-time measure-
ment, visualization and analysis of movements by fiber optical sensory applied to robotics.
In 47th International IEEE Conference on Instrumentation, Control and Information Tech-
nology (SICE 2008). Tokyo, Japan, August 2008.

Markus Koch, Willi Richert, and Alexander Saskevic. A self-optimization approach for
hybrid planning and socially inspired agents. In Second NASA GSFC/IEEE Workshop on
Radical Agent Concepts. NASA Goddard Space Flight Center Visitor’s Center Greenbelt,
MD, USA, 2005.

Markus Koch, Jiirgen Schrage, and Willi Richert. Optic-tactile robotics and medical ap-
plications. In International IEEE/ASME Conference on Advanced Intelligent Mechatronics
(AIM 2008). Xi'an, China, July 2008.

Rafael Radkowski, Willi Richert, Henning Zabel, and Philipp Adelt. Augmented reality-
based behavior-analysis of autonomous robotic soccers. In IADIS International Conference
of Applied Computation. Algarve (Portugal), 2008.

147

OWN PUBLICATIONS

(7]

(8]

[9]

[10]

[13]

[14]

[15]

[16]

Willi Richert and Bernd Kleinjohann. Self-organization at the lowest level: Proactively
learning skills in autonomous systems. In GI 2006 - Organic Computing Workshop, GI-
Edition Lecture Notes in Informatics (LNI), 2006.

Willi Richert and Bernd Kleinjohann. A robust skill learning framework for autonomous
mobile robots. In Proceedings of the 4th International Symposium on Autonomous Minirobots
for Research and Edutainment (AMiRE 2007), volume 216. HNI-Verlagsschriftenreihe, 2007.

Willi Richert and Bernd Kleinjohann. Towards robust layered learning. In International
Conference on Autonomic and Autonomous Systems (ICAS 07). IEEE Computer Society, June
2007.

Willi Richert and Bernd Kleinjohann. Adaptivity at every layer: a modular approach for
evolving societies of learning autonomous systems. In Proceedings of IEEE/ACM ICSE
Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 08),
pages 113-120. ACM, New York, NY, USA, 2008. ISBN 978-1-60558-037-1.

Willi Richert, Bernd Kleinjohann, and Lisa Kleinjohann. Evolving agent societies through
imitation controlled by artificial emotions. In De-Shuang Huang, Xiao-Ping Zhang, and
Guang-Bin Huang, editors, Advances in Intelligent Computing, International Conference on
Intelligent Computing, ICIC 2005, Hefei, China, August 23-26, 2005, Proceedings, Part I, vol-
ume 3644 of Lecture Notes in Computer Science, pages 1004-1013. Springer, 2005. ISBN
3-540-28226-2.

Willi Richert, Bernd Kleinjohann, and Lisa Kleinjohann. Learning action sequences
through imitation in behavior based architectures. In Systems Aspects in Organic and Perva-
sive Computing - ARCS 2005, number 3432 in LNCS, pages 93-107. Springer-Verlag Berlin,
march 200s.

Willi Richert, Bernd Kleinjohann, and Lisa Kleinjohann. Trading off impact and mutation
of knowledge by cooperatively learning robots. In IFIP Conference on Biologically Inspired
Cooperative Computing — BICC, 2006.

Willi Richert, Bernd Kleinjohann, Markus Koch, Alexander Bruder, Stefan Rose, and
Philipp Adelt. The Paderkicker Team: Autonomy in realtime environments. In Proceedings
of the Working Conference on Distributed and Parallel Embedded Systems (DIPES), 2006.

Willi Richert, Bernd Kleinjohann, and Alexander Murmann. Towards robust skill learning
with prediction guided autonomy in unknown environments. In Yuichi Motai and Bern-
hard Sick, editors, IEEE Mountain Workshop on Adaptive and Learning Systems, July 2006.

Willi Richert, Olaf Liike, Bastian Nordmeyer, and Bernd Kleinjohann. Increasing the au-
tonomy of mobile robots by on-line learning simultaneously at different levels of abstrac-
tion. In International Conference on Autonomic and Autonomous Systems (ICAS08). IEEE
Computer Society, March 2008. Best Paper Award.

Willi Richert, Oliver Niehorster, and Florian Klompmaker. Guiding exploration by combin-
ing individual learning and imitation in societies of autonomous robots. In IFIP Conference
on Biologically Inspired Cooperative Computing — BICC. Milano, Italy, 2008.

148

OWN PUBLICATIONS

[18] Willi Richert, Oliver Niehorster, and Markus Koch. Layered understanding for sporadic
imitation in a multi-robot scenario. In Proceedings of the IEEE/RS] International Conference
on Intelligent Robots and Systems (IROS 08), pages 1287-1292. Nice, France, 2008.

[19] Willi Richert, Ulrich Scheller, Markus Koch, Bernd Kleinjohann, and Claudius Stern. In-
creasing the autonomy of mobile robots by imitation in multi-robot scenarios. In Interna-
tional Conference on Autonomic and Autonomous Systems (ICAS 09), 2009.

[20] Willi Richert, Ulrich Scheller, Markus Koch, Bernd Kleinjohann, and Claudius Stern. In-
tegrating sporadic imitation in reinforcement learning robots. In IEEE International Sym-
posium on Approximate Dynamic Programming and Reinforcement Learning (ADPRL09),
2009.

[21] Willi Richert and Riccardo Tornese. ESLAS - a robust layered learning framework. Inter-
national Journal On Advances in Intelligent Systems, 2(1):241-253, May 2009.

[22] Claudius Stern, Philipp Adelt, Willi Richert, and Bernd Kleinjohann. Hierarchically dis-
tributing embedded systems for improved autonomy. In Proceedings of the Working Con-
ference on Distributed and Parallel Embedded Systems (DIPES), 2008.

149

OWN PUBLICATIONS

150

Bibliography

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

Sick sensor inteligence. 2008. URL http://www.sick.com/at/produkte/
produktkataloge/auto/lasermesssystemeindoor/de.html.

Ranjan Acharyya. A New Approach for Blind Source Separation of Convolutive Sources.
VDM Verlag, 2008.

ActivMedia. URL for the Pioneer robot: http://www.activrobots.com, 2003.

Aris Alissandrakis, Chrystopher L. Nehaniv, Kerstin Dautenhahn, and Hatfield Hefts All
Ab. Synchrony and perception in robotic imitation across embodiments. In Proc.
IEEE International Symposium on Computational Intelligence in Robotics and Automation
(CIRA’03), pages 923-930, 2003.

Ethem Alpaydin. Introduction To Machine Learning. MIT Press, 2004. ISBN 0262012111.

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57(5):469-483, 2009.

T. Asfour, P. Azad, F. Gyarfas, and R. Dillmann. Imitation Learning of Dual-Arm Manip-
ulation Tasks in Humanoid Robots. International Journal of Humanoid Robotics (IJHR),
2008.

Robert Aunger. The Electric Meme, pages 268-275. Free Press, 2002.

Pedram Azad, Tamim Asfour, and Riidiger Dillmann. Toward an unified representation for
imitation of human motion on humanoids. In IEEE International Conference on Robotics
and Automation (ICRA07), pages 2558-2563, 2007.

Tucker R. Balch. Behavioral Diversity in Learning Robot Teams. PhD thesis, Georgia Insti-
tute of Technology, December 1998.

151

BIBLIOGRAPHY

[33]

(34]

Tucker R. Balch. Hierarchic social entropy: An information theoretic measure of robot
group diversity. Autonomous Robots, 8(3):209-238, 2000.

G. Baldassarre, V. Trianni, M. Bonani, E Mondada, M. Marco, and S. Nolfi. Self-Organized
Coordinated Motion in Groups of Physically Connected Robots. IEEE Transactions on
Systems, Man and Cybernetics, 37(1):224, 2007.

J.M. Baldwin. Development and Evolution. New York, Macmillan, 1902.

L.E Baptista and L. Petrinovich. Social interaction, sensitive phases, and the song template
hypothesis in the white-crowned sparrow. Animal Behaviour, 32:172-181, 1984.

Jeftrey S. Beis and David G. Lowe. Shape indexing using approximate nearest-neighbour
search in high-dimensional spaces. IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 00, 1997.

E Bellagamba and M. Tomasello. Re-enacting intended acts: Comparing 12- and 18-
month-olds. Infant Behavior and Development, 22:277-282, 1999.

R.E. Bellman. Dynamic Programming. Courier Dover Publications, 2003.

Y. Bengio. Markovian models for sequential data. Neural Computing Surveys, 2:129-162,
1999.

D.C. Bentivegna. Learning from Observation Using Primitives. PhD thesis, Georgia Institute
of Technology, 2004.

Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509-517, 1975.

A. Billard, Y. Epars, S. Calinon, G. Cheng, and S. Schaal. Discovering optimal imitation
strategies. Robotics and Autonomous Systems, 47(2-3):69-77, 2004.

Blackmore, S. The Meme Machine. Oxford University Press, 1999. ISBN 0-19-286212-X.

A. Bonarini, A. Lazaric, and M. Restelli. Reinforcement learning in complex environments
through multiple adaptive partitions. In Proceedings of the 10th Congress of the Italian
Association for Artificial Intelligence (AI*IA), pages 531-542, 2007.

Josh Bongard and Hod Lipson. Automatic synthesis of multiple internal models through
active exploration. In AAAI Fall Symposium: From Reactive to Anticipatory Cognitive Em-
bodied Systems, 2005, November 2005.

Joost Broekens. Emotion and reinforcement: Affective facial expressions facilitate robot
learning. In Artifical Intelligence for Human Computing, pages 113-132, 2007.

E. Burnstein, E. Stotland, and A. Zander. Similarity to a model and self-evaluation. Journal
of Abnormal and Social Psychology, 62:257-264, 1961.

152

BIBLIOGRAPHY

[49]

[60]

[61]

[62]

G. Butterworth and N. Jarett. What minds have in common is space: Spatial mechanisms
serving joint visual attention in infancy. British Journal of Developmental Psychology, 9:
55-72, 1991.

Richard W. Byrne. Animal imitation. Current Biology, 19:R111-R114, 2009.

S. Calinon. Robot Programming by Demonstration: A Probabilistic Approach. EPFL/CRC
Press, 2009.

S. Calinon and A. Billard. Learning of gestures by imitation in a humanoid robot. In
Imitation and Social Learning in Robots, Humans and Animals: Behavioural, Social and
Communicative Dimensions, pages 153-177. Cambridge University Press, K. Dautenhahn
and C.L. Nehaniv edition, 2007.

S. Calinon and A. Billard. Statistical learning by imitation of competing constraints in joint
space and task space. Advanced Robotics, 2009.

Josep Call and Malinda Carpenter. Three sources of information in social learning. In
K. Dautenhahn and C. Nehaniv, editors, Imitation in animals and artifacts, pages 211-228.
MIT Press, Cambridge, MA, USA, 2002. ISBN 0-262-04203-7.

Josep Call and M. Tomasello. The social learning of tool use by orangutans (pongo pyg-
maeus). Human Evolution, 9:297-313, 1994.

Josep Call and M. Tomasello. The use of social information in the problem-solving of
orangutans (pongo pygmaeus) and human children (homo sapiens). Journal of Compara-
tive Psychology, 109(3):308-320, 1995.

Y. Uny Cao, Alex S. Fukunaga, and Andrew B. Kahng. Cooperative mobile robotics: An-
tecedents and directions. Autonomous Robots, 4(1):7-23, March 1997.

Arthur C Clarke. Profiles of the Future. Littlehampton Book Services Ltd, 1962.

Adam Coates, Pieter Abbeel, and Andrew Y. Ng. Learning for control from multiple
demonstrations. In Proceedings of the Twenty-Fifth International Conference on Machine
Learning (ICML 2008), pages 144-151, 2008.

Adam Coates, Pieter Abbeel, and Andrew Y. Ng. Apprenticeship learning for helicopter
control. Communications of the ACM, 52(7):97-105, 2009.

Charles N. Cofer. Motivation and emotion. Scott, Foresman and Co., Glenview, Ill., 1972.
176 S. pp.

T.M. Cover and P.E. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13:21-27, 1967.

J.P. Crutchfield. Information and its metric. In Nonlinear Structures in Physical Systems -
Pattern Formation, Chaos and Waves, pages 119-130. Springer Verlag, 1990.

153

BIBLIOGRAPHY

[64]

[65]

[66]

[70]

[71]

[72]

K. Dautenhahn and C. Nehaniv. Imitation in Animals and Artifacts, chapter “An agent-
based perspective on imitation” MIT Press, 2002.

R. Dawkins. The Selfish Gene. Oxford University Press, Oxford, 1976.

R. Detry, E. Baseski, M. Popovic, Y. Touati, N. Kriiger, O. Kroemer, J. Peters, and J. Pi-
ater. Learning object-specific grasp affordance densities. In Proceedings of the 8th IEEE
International Conference on Development and Learning (ICDL 2009), 2009.

Peter J. Dickinson, Horst Bunke, Arek Dadej, and Miro Kraetzl. On graphs with unique
node labels. In Graph Based Representations in Pattern Recognition, volume 2726, pages
409-437. Springer Berlin, Heidelberg, DE, 2003. ISBN 978-3-540-40452-1.

M.W. Doniec, G. Sun, and B. Scassellati. Active Learning of Joint Attention. IEEE-RAS
International Conference on Humanoid Robotics (Humanoids 2006), 2006.

M. Dorigo. Swarm-bot: An experiment in swarm robotics. In P. Arabshahi and A. Mar-
tinoli, editors, Proceedings of SIS 2005 - 2005 IEEE Swarm Intelligence Symposium, pages
192-200. IEEE Press, Piscataway, NJ, 2005.

Gerry Dozier. Evolving robot behavior via interactive evolutionary computation: from
real-world to simulation. In Proceedings of the 2001 ACM symposium on Applied computing
(SAC ’01), pages 340-344. ACM, New York, NY, USA, 2001.

K. Driessens and S. DZeroski. Integrating Guidance into Relational Reinforcement Learn-
ing. Machine Learning, 57(3):271-304, 2004.

G. Evangelidis, D. Lomet, and B. Salzberg. The hB “II-tree: a multi-attribute index support-
ing concurrency, recovery and node consolidation. The VLDB Journal The International
Journal on Very Large Data Bases, 6(1):1-25, 1997.

David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice Hall
Professional Technical Reference, 2002. ISBN 0130851981.

Jerome H. Friedman, F. Baskett, and L.J. Shustek. An algorithm for finding nearest neigh-
bors. IEEE Transactions on Computers, C-24(10):1000-1006, 1975.

Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Transactions on Mathematical Software,

3(3):209-226, 1977.

Nir Friedman. Learning belief networks in the presence of missing values and hidden vari-
ables. In Proc. 14th International Conference on Machine Learning, pages 125-133. Morgan
Kaufmann, 1997.

Lena Mariann Garder and Mats Erling Hovin. Robot gaits evolved by combining genetic
algorithms and binary hill climbing. In Proceedings of the 8th annual conference on Genetic
and evolutionary computation (GECCO ’06), pages 1165-1170. ACM, New York, NY, USA,
2006.

154

BIBLIOGRAPHY

(78]

[79]

[80]

[81]

Yiannis Gatsoulis, George Maistros, Yuval Marom, and Gillian Hayes. Learning to for-
age through imitation. In Proceedings of the Second IASTED International Conference on
Artificial Intelligence and Applications (AIA2002), pages 485-491, September 2002.

Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard. The player/stage project: Tools
for multi-robot and distributed sensor systems. In Proceedings of the International Confer-
ence on Advanced Robotics, pages 317-323. Coimbra, Portugal, Jul 2003.

James J. Gibson. The Senses Considered as Perceptual Systems. Houghton-Mifflin Company,
Boston, 1966.

J.J. Gibson. The theory of affordances. In R. Shaw and J. Brandsford, editors, Perceiving,
Acting, and Knowing: Toward and Ecological Psychology, pages 62—82. Erlbaum, Hillsdale,

NJ, 1977.

Raphael Golombek. Imitationssteuerung durch Messen von Ahnlichkeiten zwischen
Roboterverhalten. Diploma thesis, University of Paderborn, 2008.

Roderich Gross and Marco Dorigo. Evolution of solitary and group transport behaviors
for autonomous robots capable of self-assembling. Adaptive Behavior, 16(5):285-305, 2008.

C. Guestrin, M. Lagoudakis, and R. Parr. Coordinated reinforcement learning. In Pro-
ceedings of the Nineteenth International Conference on Machine Learning, pages 227-234,
2002.

W.D. Hamilton. Geometry of the selfish herd. Journal of Theoretical Biology, 31:295-311,
1971.

S. Harnad. The symbol grounding problem. Physica D, 42:335-346, 1990.

R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, second edition, 2004.

Thomas Hawkins. Lebesgue’s Theory of Integration: Its Origins and Development. Chelsea,
New York, second edition, 1979.

M. Hersch, F. Guenter, S. Calinon, and A. Billard. Dynamical system modulation for robot
learning via kinesthetic demonstrations. IEEE Transaction on Robotics, 24(6):1463-1467,
2008.

C.M. Heyes. Reflections on self-recognition in primates. Animal Behavior, 47:909-919,
1994.

Ronald A. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge,
MA, 1960.

J.A. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynami-
cal systems in humanoid robots. In International conference on robotics and automation
(ICRA), 2002.

155

BIBLIOGRAPHY

(93]

[97]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

T. Inamura, Y. Nakamura, H. Ezaki, and I. Toshima. Imitation and primitive symbol ac-
quisition of humanoids by the integrated mimesis loop. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), volume 4, 2001.

T. Inamura, I. Toshima, Y. Nakamura, and J. Saitama. Acquiring Motion Elements for
Bidirectional Computation of Motion Recognition and Generation. Experimental Robotics
VIII, 2003.

Matthew Johnson and Yiennis Demiris. Abstraction in recognition to solve the corre-
spondence problem for robot imitation. In Towards Autonomous Robotic System (TAROS),
pages 63-70, 2004.

W. Kadous, Claude Sammut, and R. Sheh. Autonomous traversal of rough terrain using be-
havioural cloning. In The 3rd International Conference on Autonomous Robots and Agents,
2006.

C. Keysers, B. Wicker, V. Gazzola, J.-L. Anton, L. Fogassi, and V. Gallese. A touching sight:
SII/PV activation during the observation and experience of touch. Neuron, 42(22):1-20,
2004.

AlJ. Kinnaman. Mental life of two macacus rhesus monkeys in captivity. The American
Journal of Psychology, 13(2):173-218, 1902.

Paul R. Kleinginna and Anne M. Kleinginna. A categorized list of motivation defini-
tions, with a suggestion for a consensual definition. Motivation and Emotion, 5(3):263-291,
September 1981.

M.]. Kochenderfer. Adaptive Modelling and Planning for Learning Intelligent Behaviour.
PhD thesis, School of Informatics, University of Edinburgh, 2006.

M.J. Kochenderfer. Adaptive Modelling and Planning for Learning Intelligent Behaviour.
2006.

M.]. Kochenderfer and G. Hayes. Modeling and planning in large state and action spaces.
In Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-05), 2005.

Sven Koenig and Reid G. Simmons. Unsupervised learning of probabilistic models for
robot navigation. In in Proceedings of the IEEE International Conference on Robotics and
Automation, pages 2301-2308, 1996.

T. Kohonen. Self-Organizing Maps. New York: Springer-Verlag, 3rd edition, 2001.

Vijay R. Konda and John N. Tsitsiklis. On actor-critic algorithms. SIAM J. Control Optim.,
42(4):1143-1166, 2003.

Stan A. Kuczaj and Deirdre B. Yeater. Dolphin imitation: Who, what, when, and why?
Aquatic Mammals, 32:413-422(10), December 2006.

156

BIBLIOGRAPHY

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Thomas H. Labella, Marco Dorigo, and Jean-Louis Deneubourg. Division of labor in a
group of robots inspired by ants’ foraging behavior. ACM Trans. Auton. Adapt. Syst., 1(1):
4-25, 2006.

A. Laud and G. DeJong. The influence of reward on the speed of reinforcement learning:
An analysis of shaping. Proceedings of the Twentieth International Conference (ICML 2003),
pages 21-24, 2003.

A. Lazaric, M. Restelli, and A. Bonarini. Reinforcement learning in continuous action
spaces through sequential monte carlo methods. In J.C. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 833-840.
MIT Press, Cambridge, MA, 2008.

Dongheui Lee and Yoshihiko Nakamura. Probabilistic model of whole-body motion im-
itation from partial observations. In Proceedings of the 12th International Conference on
Advanced Robotics (ICAR05), pages 337-343. Seattle, July 2005.

Yuming Liang and Lihong Xu. Mobile robot global path planning using hybrid modi-
fied simulated annealing optimization algorithm. In Proceedings of the first ACM/SIGEVO
Summit on Genetic and Evolutionary Computation (GEC ’09), pages 309-314. ACM, New
York, NY, USA, 2009.

L.J. Lin. Programming robots using reinforcement learning and teaching. Proceedings of
AAAI 91:781-786, 1991.

M.L. Littman, S. Singh, and T. Jaakkola. Szepesvari: Convergence Results for Single-Step
On-Policy Reinforcement-Learning Algorithms. Machine Learning Journal, pages 287-
308, 1998.

Wenguo Liu. Design and modelling of Adaptive Foraging in Swarm Robotic Systems. PhD
thesis, Univeristy of the West of England, Bristol, UK, 2008.

David B. Lomet and Betty Salzberg. The hb-tree: A multiattribute indexing method with
good guaranteed performance. ACM Transactions on Database Systems, 15(4):625-658,
1990.

Christopher Lorken and Joachim Hertzberg. Grounding planning operators by affor-
dances. In Proceedings of the 2008 International Conference on Cognitive Systems, 2008.

Bhaskara Marthi. Automatic shaping and decomposition of reward functions. In Proceed-
ings of the 24th international conference on Machine learning (ICML 2007), pages 601-608.
ACM, New York, NY, USA, 2007. ISBN 978-1-59593-793-3.

Abraham Maslow. A theory of human motivation. Psychological Review, 50:370-396, 1943.

Maja J. Matari¢. Reinforcement learning in the multi-robot domain. Autonomous Robots,
4(1):73-83, 1997.

M.]. Mataric. Reward functions for accelerated learning. Proceedings of the Eleventh Inter-
national Conference on Machine Learning, 189, 1994.

157

BIBLIOGRAPHY

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

ES. Melo and M.I. Ribeiro. Reinforcement learning with function approximation for co-
operative navigation tasks. In IEEE International Conference onRobotics and Automation
(ICRA 2008), pages 3321-3327, 2008.

AN. Meltzoft. Understanding the intentions of others: Re-enactment of intended acts by
18-month-old children. Developmental Psychology, 31:838-850, 1995.

Andrew N. Meltzoff and M. Keith Moore. Imitation of facial and manual gestures by hu-
man neonates. Science, 198(4312):75-78, October 1977.

Tom M. Mitchell. Machine Learning. The McGraw-Hill Companies Inc., 1 edition, 1997.
ISBN 0070428077.

L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor. Affordances, development
and imitation. In IEEE 6th International Conference on Development and Learning (ICDL),
pages 270-275, 2007.

Luis Montesano, M. Lopes, A. Bernardino, and Jose Santos-Victor. Modeling affordances
using bayesian networks. In IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS), pages 4102—4107, 2007.

Luis Montesano, Manuel Lopes, Alexandre Bernardino, and José Santos-Victor. Learning
object affordances: From sensory-motor coordination to imitation. IEEE Transactions on
Robotics, 24(1):15-26, 2008.

AW. Moore and C.G. Atkeson. Prioritized sweeping: Reinforcement learning with less
data and less time. Machine Learning, 13(1):103-130, 1993.

K. Murphy. A Brief Introduction to Graphical Models and Bayesian Networks, 1998. URL
http://www.cs.ubc.ca/ murphyk/Bayes/bnintro.html.

R. Olguin Nagell, K. and M. Tomasello. Processes of social learning in the tool use of
chimpanzees (pan troglodytes) and human children (homo sapiens). Journal of Compara-
tive Psychology, 107:174-186, 1993.

Richard E. Neapolitan. Learning Bayesian Networks. Pearson Prentice Hall, Upper Saddle
River, NJ, 2004.

C.L. Nehaniv and K. Dautenhaun. Imitation in Animals and Artifacts, chapter 2: “The
Correspondance Problem”, pages 41-61. MIT Press, 2002.

Y. Nejigane, M. Shimosaka, T. Mori, and T. Sato. Online action recognition with wrapped
boosting. In IEEE/RS] International Conference on Intelligent Robots and Systems (IROS

200y), pages 1389-1395, 2007.

Yu. Nejigane, M. Shimosaka, T. Mori, and T. Sato. Online action recognition with wrapped
boosting. In IEEE/RS] International Conference on Intelligent Robots and Systems (IROS

200y), pages 1389-1395, 2007.

158

BIBLIOGRAPHY

[135]

[136]

[137]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

(147]

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward trans-
formations: Theory and application to reward shaping. In Proceedings of the Sixteenth
International Conference on Machine Learning (ICML 1999), pages 278-287. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1999. ISBN 1-55860-612-2.

Nils J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers, San
Francisco, 1998.

Kees C.J. Overbeeke and Stephan S.A.G. Wensveen. From perception to experience, from
affordances to irresistibles. In DPPI '03: Proceedings of the 2003 international conference
on Designing pleasurable products and interfaces, pages 92-97. ACM, New York, NY, USA,
2003. ISBN 1-58113-652-8.

M. Perera, T. Shiratori, S. Kudoh, A. Nakazawa, and K. Ikeuchi. Multilinear analysis for task
recognition and person identification. In IEEE/RS] International Conference on Intelligent
Robots and Systems (IROS 2007), pages 1409-1415, 2007.

J. Piaget. The Child’s Construction of Reality. London: Routledge and Kegan Paul, 1955.

Rosalind W. Picard. Affective Computing. The MIT Press, Cambridge, Massachusetts, 1997.
ISBN 0-262-16170-2.

M.].D. Powell. A direct search optimization method that models the objective and con-
straint functions by linear interpolation. In Advances in optimization and numerical analy-
sis, Proceedings of the Sixth workshop on Optimization and Numerical Analysis, pages 51-67.
Academic Publishers, Oaxaca,Mexico, 1994.

Steffen Priesterjahn. Omnline imitation and adaptation in modern computer games. PhD
thesis, University of Paderborn, 2008.

Steffen Priesterjahn and Markus Eberling. Imitation learning in uncertain environments.
In Proceedings of the 10th international conference on Parallel Problem Solving from Nature,
pages 950—-960. Springer-Verlag, Berlin, Heidelberg, 2008.

Steffen Priesterjahn and Alexander Weimer. An evolutionary online adaptation method
for modern computer games based on imitation. In GECCO ’oy: Proceedings of the 9th
annual conference on Genetic and evolutionary computation, pages 344-345. ACM, New
York, NY, USA, 2007.

Steffen Priesterjahn, Alexander Weimer, and Markus Eberling. Real-time imitation-based
adaptation of gaming behaviour in modern computer games. In GECCO ’08: Proceedings
of the 10th annual conference on Genetic and evolutionary computation, pages 1431-1432.
ACM, New York, NY, USA, 2008.

Octavian Procopiuc, Pankaj K. Agarwal, Lars Arge, and Jeftrey Scott Vitter. Bkd-tree: A
dznamic scalable kd-tree. In SSTD, pages 46-65, 2003.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley-Interscience, April 1994. ISBN 0471619779.

159

BIBLIOGRAPHY

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[157]

[158]

[159]

[160]

[161]

L.R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

J. Randlgv and P. Alstrem. Learning to Drive a Bicycle using Reinforcement Learning and
Shaping. In JW. Shavlik, editor, Proceedings of the Fifteenth International Conference on
Machine Learning, pages 463—471, 1998.

G. Rizzolatti and L. Craighero. The mirror-neuron system. Annual Review of Neuroscience,
27(1):1169-192, 2004.

E.T. Rolls. Précis of The brain and emotion. Behavioral and Brain Sciences, 23(02):177-191,
2000.

G.J. Romanes. Animal Intelligence. London, Kegan Paul Trench, 1882.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ, 2nd edition edition, 2003.

J.D. Salamone. Behavioral pharmacology of dopamine systems: A new synthesis. John Wiley
and Sons Ltd, 1991. 599-614 pp.

J.D. Salamone. Complex motor and sensorimotor functions of striatal and accumbens
dopamine: involvement in instrumental behavior processes. Psychopharmacology, 107(2):
160-174, 1992.

C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning to fly. In Proceedings of the
Ninth International Conference on Machine Learning, pages 385-393. Aberdeen: Morgan
Kaufmann, 1992.

Joe Saunders, Chrystopher L. Nehaniv, and Kerstin Dautenhahn. Teaching robots by
moulding behavior and scaffolding the environment. In HRI "06: Proceedings of the 1st
ACM SIGCHI/SIGART conference on Human-robot interaction, pages 118-125. ACM, New
York, NY, USA, 2006. ISBN 1-59593-294-1.

Brian Scassellati. Theory of mind for a humanoid robot. Autonomous Robots, 12(1):13-24,
2002.

Ulrich Scheller. Lernen komplexer Verhalten in Robotergruppen durch Imitation und
Reinforcement-Learning. Diploma thesis, University of Paderborn, 2008.

Alan P. Sexton and Richard Swinbank. Bulk loading the m-tree to enhance query perfor-
mance. In M. Howard Williams and Lachlan M. MacKinnon, editors, British National Con-
ference on Databases (BNCOD), volume 3112 of Lecture Notes in Computer Science, pages
190-202. Springer, 2004.

C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27:379-423 and 623-656, 1948.

160

BIBLIOGRAPHY

[162]

[163]

[164]

[165]

[166]

[167]

[168]
[169]

[170]

[171]

[172]

[173]

[174]

[175]

Q. Shen, J. Saunders, H. Kose-Bagci, and K. Dautenhahn. Acting and interacting like me?
A method for identifying similarity and synchronous behaviour between a human and
robot. In Proceedings of the IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS08). Nice, France, 2008.

Aaron P. Shon, Keith Grochow, and Rajesh P.N. Rao. Robotic imitation from human mo-
tion capture using gaussian processes. In Proceedings of the IEEE/RAS International Con-
ference on Humanoid Robots (Humanoids), 2005.

Tania Singer, Ben Seymour, John P. O’Doherty, Klaas E. Stephan, Raymond J. Dolan, and
Chris D. Frith. Empathic neural responses are modulated by the perceived fairness of
others. Nature, January 2006.

Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Learning without state-
estimation in partially observable markovian decision processes. In In Proceedings of the
Eleventh International Conference on Machine Learning (ICML 1994), pages 284-292,1994.

W.D. Smart and L.P. Kaelbling. Practical reinforcement learning in continuous spaces.
Proceedings of the Seventeenth International Conference on Machine Learning, pages 903—
910, 2000.

C. Sminchisescu, A. Kanaujia, and D. Metaxas. Conditional models for contextual human
motion recognition. In IEEE Computer Vision and Image Understanding, volume 104, pages
210-220. Elsevier, 2006.

Russell Smith. Website of ODE (Open Dynamics Engine). http://www.ode.org/, 2008.
K.W. Spence. Behavior theory and conditioning. Yale University Press, New Haven, 1956.

Alexander Stoytchev. Toward Learning the Binding Affordances of Objects: A Behavior-
Grounded Approach. 2005. Developmental Robotics.

M. Sugisaka, A. Loukianov, F. Xiongfeng, T. Kubik, and K.B. Kubik. Development of an
artificial brain for liferobot. Applied Mathematics and Computation, 164(2):507-521, 2005.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, 1998.

RS Sutton and AG Barto. Reinforcement learning. Journal of Cognitive Neuroscience, 11(1):
126-134, 1999.

Y. Takahashi, K. Noma, and M. Asada. Rapid behavior learning in multi-agent environ-
ment based on state value estimation of others. In IEEE/RS] International Conference on
Intelligent Robots and Systems (IROS 2007), pages 76-81, 2007.

Yasutake Takahashi, Yoshihiro Tamura, and Minoru Asada. Mutual development of be-
havior acquisition and recognition based on value system. In From Animals to Animats
10, 10th International Conference on Simulation of Adaptive Behavior (SAB 2008), pages
291-300, 2008.

161

BIBLIOGRAPHY

[176] J.T. Tapp. Activity, reactivity, and the behavior-directing properties of stimuli. In J.T. Tapp,
editor, Reinforcement and Behavior, pages 148-178. New York: Academic Press, 1969.

[177] Hari Thiruvengada and Ling Rothrock. Affordance-based computational model of driver
behavior on highway systems: A colored petri net approach. In Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, pages 888-893, 2007.

[178] E.L. Thorndike. Animal intelligence: An experimental study of the associative processes
in animals. Psychological Review Monographs, 2(8), 1898.

[179] W.H. Thorpe. Learning and Instinct in Animals. London: Methuen, 1956.

[180] Riccardo Tornese. AMAF — Automatic Modular Action Framework. Master’s thesis, Po-
litecnico di Milano, Italy, 2009. To be submitted.

[181] H.van Hasselt and M.A. Wiering. Reinforcement learning in continuous action spaces. In
Approximate Dynamic Programming and Reinforcement Learning (ADPRLoy), pages 272
279, April 2007.

[182] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. Information Theory, IEEE Transactions on, 13(2):260-269, 1967.

[183] Daniel Wagner and Dieter Schmalstieg. ARToolKitPlus for pose tracking on mobile de-
vices. In Proceedings of 12th Computer Vision Winter Workshop (CVWW’07), February
2007.

[184] E.A. Wasserman and L. Castro. Surprise and Change: Variations in the Strength of Present
and Absent Cues in Causal Learning. Learning ¢ Behavior, 33(2):131-146, 2005.

[185] Alan Watt. 3D Computer Graphics. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1993. ISBN 0201631865.

[186] Steven D. Whitehead. A complexity analysis of cooperative mechanisms in reinforcement
learning. In Proceedings of the Ninth National Conference on Artificial Intelligence, volume
2. AAAI Press, pages 607-613, 1991.

[187] A. Whiten and R. Ham. Advances in the Study of Behavior, chapter “On the nature and
evolution of imitation in the animal kingdom: Reappraisal of a century of research’, pages
239-283. New York: Academic Press, 1992.

[188] Bruno Wicker, Christian Keysers, Jane Plailly, Jean-Pierre Royet, Vittorio Gallese, and Gi-
acomo Rizzolatti. Both of us disgusted in my insula: The common neural basis of seeing
and feeling disgust. Neuron, 40(3):655-664, 2003.

[189] J. Yamato, J. Ohya, and K. Ishii. Recognizing human action in time-sequential images using
hidden markov model. In Proceedings of the Computer Vision and Pattern Recognition

(CVPR “92), pages 379385, 1992.

[190] J. Zhang and V.L. Patel. Distributed cognition, representation, and affordance. Cognition
& Pragmatics, 14(2):333-341, 2006.

162

	1 Introduction
	1.1 Objectives and contributions
	1.2 Thesis outline

	2 State of the art
	2.1 Learning
	2.1.1 Supervised
	2.1.2 Unsupervised
	2.1.3 Reward-based

	2.2 Imitation
	2.2.1 Biological background
	2.2.1.1 Categorizing imitation
	2.2.1.2 Imitation and memetics
	2.2.1.3 Imitation in biology

	2.2.2 Imitation in robotics
	2.2.2.1 Challenges in robot imitation
	2.2.2.2 Programming by demonstration
	2.2.2.3 Imitation in multi-robot systems

	2.2.3 Contrasting the thesis to the state of the art approaches

	3 Architecture for learning and imitating in groups
	3.1 Architectural overview
	3.1.1 Motivation layer
	3.1.2 Strategy layer
	3.1.3 Skill layer

	3.2 Layer interaction
	3.3 Imitation in robot groups
	3.4 Choice of the imitatee
	3.5 Scenarios

	4 Motivation layer
	4.1 Background
	4.1.1 Motivation in biological autonomous systems
	4.1.2 Use of motivation in robots

	4.2 Design of a robotic motivation system
	4.2.1 Excitation
	4.2.2 Prioritizing goals

	4.3 Conclusion

	5 Strategy layer
	5.1 Background
	5.1.1 Markov decision processes
	5.1.1.1 Policy
	5.1.1.2 Solving Markov decision processes

	5.1.2 Semi-Markov decision processes

	5.2 State of the art
	5.2.1 Model-free approaches
	5.2.2 Model-based approaches
	5.2.3 Discussion

	5.3 Policy
	5.4 State abstraction
	5.5 Model
	5.5.1 Transition heuristic
	5.5.2 Failure heuristic
	5.5.3 Reward heuristic
	5.5.4 Simplification heuristic
	5.5.5 Experience heuristic

	5.6 Sample frequency
	5.7 Exploration
	5.8 Example

	6 Skill layer
	6.1 Two modes of operation
	6.1.1 Exploration mode
	6.1.2 Exploitation mode
	6.1.3 Interface with the environment

	6.2 Component description
	6.2.1 Skill manager
	6.2.1.1 Skill generation
	6.2.1.2 Skill ranking
	6.2.1.3 Skill notification

	6.2.2 Model manager
	6.2.2.1 Creating and updating models
	6.2.2.2 Scoring models

	6.2.3 Error minimizer

	6.3 Configuration
	6.4 Conclusion

	7 An integrative example
	7.1 Implementation of the motivation layer
	7.2 Implementation of the strategy layer
	7.3 Implementation of the skill layer
	7.4 Evaluation

	8 Imitation in robot groups
	8.1 Related work
	8.2 Overview of the multi-robot imitation approach
	8.3 Transforming observations
	8.4 Understanding observed behavior
	8.4.1 Viterbi
	8.4.2 Interpreting observed behavior
	8.4.3 Example

	8.5 Integrating recognized behavior
	8.6 Evaluation
	8.6.1 CTF with three bases
	8.6.2 CTF with five bases

	8.7 Conclusion

	9 Choice of the imitatee
	9.1 Related work
	9.2 Background
	9.2.1 Bayesian networks and how to learn them
	9.2.2 Affordances

	9.3 Overview of the demonstrator choice process
	9.4 Affordance detection
	9.5 Affordance network generation
	9.6 Comparing affordance networks
	9.6.1 Structural difference of affordance networks
	9.6.2 Parameter difference of affordance networks
	9.6.3 Affordance network distance metric

	9.7 Evaluation
	9.7.1 Experimental setup
	9.7.1.1 Parameterization of the environment
	9.7.1.2 Affordances and their validation
	9.7.1.3 Imitated behavior and how to measure its success

	9.7.2 Selection experiment
	9.7.2.1 Scenario
	9.7.2.2 Procedure
	9.7.2.3 Result

	9.7.3 Robustness experiment
	9.7.3.1 Scenario
	9.7.3.2 Procedure
	9.7.3.3 Result

	9.7.4 Clustering experiment
	9.7.4.1 Scenario
	9.7.4.2 Procedure
	9.7.4.3 Results

	9.8 Conclusion

	10 Summary and outlook
	10.1 Summary
	10.2 Contributions
	10.3 Outlook

	A Notation
	B Algorithms
	List of Figures
	List of Tables
	Own publications
	Bibliography

