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I

This thesis was created thanks to a cooperation between the International Graduate

School Dynamic Intelligent Systems at the University of Paderborn and the German

airline Deutsche Lufthansa AG. It includes the consideration of problems occurring in

applied revenue management under the aspect of academic research. The goal is to use

methodological approaches to airline revenue management, demand forecast and simula-

tion presented in the further text as well as expert knowledge and data available in the

industry.

The purpose of this text is the development of a new view of forecast performance, in

order to avoid some of the complications connected to evaluation of demand forecasts for

revenue management. To enable this, a theoretical concept of decomposing and evaluating

forecasts under the laboratory conditions provided by a simulation and using information

exclusive to simulation environments is developed. To demonstrate the potential of this

concept, the implementation of a simulation environment including a choice-based de-

mand model is documented. Finally, a number of statements about the implications of

forecast quality and forecast evaluation is expressed formally and tested using simulation

experiments to demonstrate the use of the proposed concept.

Subject classifications: Simulation, Forecasting, Revenue Management, Yield Manage-

ment, Inventory Control, Pricing, Price-Elasticity, Econometrics
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Part I.

State of the Art and Research Opportunities
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In this part, an introduction to the topic of this thesis as well as a background in rev-

enue management and demand forecasting is provided. This includes existing research

on overall revenue management, optimization methods, and approaches to demand fore-

casting. In the course of recapturing the state of the art, current challenges for demand

forecasting and research opportunities with regard to forecast evaluation are pointed out.
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1. Introduction

Two general approaches to pricing a product exist: Prices may be calculated in order

to ensure a break even (to cover the costs of production) or to maximize revenue. In

airline revenue management, the latter is achieved by calculating the optimal number of

products to sell at a set of prices, given products that create similar production costs.

For example, a ticket on a flight from Frankfurt to New York may cost 400 Euro three

months before departure, but the price for the same flight under the same conditions may

increase to 800 Euro when the ticket is bought three days before departure. The goal is

to sell all seats available on the flight at the highest price customers are willing to pay. In

the example, this is achieved by differentiating customer segments according to the time

of booking before departure. Revenue management is often cited to be the art of “selling

the right seats to the right customers at the right prices” (American Airlines (1987)).

In order to successfully apply revenue management, knowledge of customers is required.

It is impossible to sell the right seats at the right price if there is no information available

on the price customers are willing to pay and the conditions under which they are willing

to do so. This information is provided by a demand forecast. It aspires to predict the

amount of customers that will be willing to buy a ticket at a specific price and time.

Based on the forecasted demand, revenue can be maximized by optimizing inventory

controls. The result should be the maximum of revenue to be earned under the given

conditions. Depending on the forecast and the optimization method, these inventory

controls maximize revenue per flight or for a complete network of itineraries offered by

the airline.

In any case, the process described above indicates that the demand forecast has a

decisive influence on the outcome of revenue management. The forecast provides the

basis for any optimization and thereby influences the inventory controls. If a forecast is

underestimates valuable demand, too many tickets may be sold at a reduced fare, leading



Chapter 1: Introduction 4

to shortages in capacity when customers willing to pay high fares request to book. In

the case of overestimation, too many tickets may be reserved for customers expected to

pay high fares, leading to unsold tickets and empty seats at the day of departure. The

consequence of both errors is falling short of maximum revenue.

Due to their importance, it is necessary to evaluate the performance of demand forecast

methods. This task is aggravated by two complications. The definition of the term

“performance” is ambivalent: Most forecasts are rated by their accuracy, their ability to

correctly predict the future. Yet in revenue management, experience shows that sometimes

a forecast that lacks accuracy can still lead to high revenue - the major indicator of revenue

management success. The revenue resulting from the implementation of a forecast method

may therefore be considered another indicator of a method’s performance.

Even the evaluation of forecast accuracy alone is not trivial. The inventory controls that

are computed based on the forecast information limit the bookings to be observed. As the

historical data created by booking bookings often the the only information available on

actual demand, they are frequently used to evaluate the forecast. The forecast’s accuracy

is estimated based on an indicator it influenced – the risk of self-fulfilling prophecies arises.

In this thesis, a decomposition approach as a new concept for the analysis of the evalu-

ation of forecasts is presented. For this purpose, a decomposed view of revenue manage-

ment and demand forecasting is introduced. Based on this concept, systematic evaluation

processes are developed. A simulation environment is documented to demonstrate the

implementation of these processes. Finally, a number of hypotheses on the evaluation of

demand forecasts are formalized and tested using simulation experiments.

1.1. Background and Terminology

Revenue Management plays an important role in the business model of airlines all over

the world. Optimizing the seat allocation in order to maximize revenue has a history that

goes back to 1950. Before the deregulation of the airline industry introduced competition,

revenue management mostly meant overbooking settings optimized to avoid empty seats.

For this purpose, forecasts estimate the number of cancellations and no-shows. Can-

cellations are returns of booked tickets within the booking horizon; no-shows indicate
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customers with booked tickets failing to show up at the day of departure. Without over-

booking, the number of seats sold is equal to the capacity of the aircraft assigned to a

flight. With overbooking, the number of seats sold exceeds capacity not every customer

that books a ticket is expected to require a seat. The risk included in the practice of over-

booking is the occurrence of denied boardings. Denied boardings happen when customers

that booked tickets are denied as not enough seats are available due to an overestimation

of cancellations and no-shows. They are connected to direct costs as alternative trans-

port or over-night-stays have to be made available by the airline and to indirect costs as

customer satisfaction decreases.

The idea of maximizing revenue by offering tickets at different prices gained in impor-

tance with the Airline Deregulation Act of 1978. With this act, the American government

opened airline markets by removing control from route planning, fares and market entry.

This lead to increasing competition and, as a consequence, to competitive pricing.

In order to gain advantages over competition, so-called early bird offers were introduced.

In this form of customer segmentation, as in the example used in the introduction, tickets

are offered at reduced fares in the beginning of the booking horizon. As time to departure

decreases, fares increase, and tickets become more expensive. The underlying assumption

is that those customers that are willing to pay high fares, such as business travelers,

request shortly before departure. Customers that book early and at reduced prices are

not expected to be willing to pay the regular fare. With the introduction of this concept,

demand forecasts predicting the number of customer requests to arrive for specific classes

at a given time in the booking horizon gained importance. The decision of how many

tickets to sell at reduced fares and how many tickets to reserve for valuable customers is

based on such predictions.

In addition to the timing of request within the booking horizon, customer segmentation

can also be based on features or restrictions attached to booking classes. Features may

include superior physical comfort in the form of seating in the business compartment

or positive conditions such as a flexible re-booking policies. Restrictions are aimed at

rendering tickets sold at reduced fares less attractive, for instance by imposing negative

conditions such as minimum stay or weekend stay.
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With increased computing power, the focus shifted from a flight view to a network view

of revenue management. Also referred to as origin-destination revenue management,

this approach includes the idea that customers do not actually desire to book tickets on

isolated flights. Rather, they want to travel from an origin to a destination via a network

of itineraries offered by one or more airlines. Such itineraries connect two airports and

can consist of one or more legs. Legs are the edges of the network, described by two

vertices (airports) connected by direct flights. Instead of predicting demand to arrive for

single flights, a network-based demand forecast predicts requests for itineraries. Instead

of maximizing revenue per flight, a network-based optimization for revenue management

aims to maximizes revenue for the complete network.

In recent years, the Internet has improved market transparency. Additionally, no-frills

airlines now offer restriction-free classes. These are not differentiated by either features

or restrictions, but only by their fare. When customers are able to compare the offers of

different airlines easily and are offered classes only differentiated by price, the independent

or static model of demand collapses. Customers no longer request tickets in a specific class.

Instead, they may be willing to buy a valuable class but use opportunities for booking at

lower fares.

Models now need to include the idea of correlated and flexible demand. Customer re-

quests depend on which itineraries and classes are made available. With these challenges,

the importance of forecast performance (and its evaluation) increases.

1.2. Motivation and Goals

As pointed out for example in Pölt (1998) and Weatherford & Belobaba (2002), the

accuracy of the demand forecast has a significant impact on the success of revenue man-

agement. The target function of most methods for optimizing revenue includes predicted

demand. Depending on the number of customers expected to request tickets at a higher

price in the future, current requests are accepted or denied. Examples of optimization

methods have been summarized in Weatherford & Bodily (1992), McGill & Ryzin (1999),

and Talluri & Van Ryzin (2004b).
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Forecast accuracy can have indirect effects on long-term results of revenue management.

While the information drawn from the overall results of a revenue management system

offers conclusion toward the financial success, it does not provide insights toward the

accuracy of the forecast.

While it is important for the performance of an airline’s revenue management strat-

egy, measuring forecast accuracy is not trivial. Most analyses draw conclusions from

comparisons of demand forecasts to historical booking data – the result are error mea-

surements. This data has been shaped by the inventory controls in place at a given point

of time before departure. These controls the results of revenue optimization techniques.

The optimization uses the demand forecast as input. Therefore, evaluating a forecast by

comparing it to the bookings that resulted from its application is a biased approach.

Furthermore, while a forecast based on historical data offers information on expected

demand, bookings have been constrained by limitations in capacity. If demand exceeds

capacity, forecasts should exceed bookings. As a consequence, error measurements incor-

porate unconstraining of historical booking data or constraining of the forecast. However,

the transformation of bookings to demand is a component of the forecast. The transfor-

mation of a forecast to compare it to bookings is done using the inventory controls. Both

comparisons result in a bias as a part of the forecast method is used for its own evaluation.

Ideally, in order to make statements about the performance of a forecast, one would like

to know the actual demand it attempted to predict. As no detailed information about

each individual customer’s decision processes can be attained, this is not possible in

practice. The nearest approximation are customer surveys (stated and revealed preference

data) as documented in Algers & Beser (2001) or click-streams hinted at in Nason (2007).

Both are not a satisfying solution: While click-streams focus exclusively on web-based

points of sale, customer surveys carry the risk of bias – customers may lie consciously or

unconsciously.

Accepting that the actual demand may never be known, feasible alternatives have to be

explored. One is the comparison of the results gained from the implementation of different

forecast methods when all other factors remain the same (ceteris paribus). This would

mean using first one, then the other method while keeping the same optimization system

and in the exact same market environment. Again, this does not seem realistic: As the
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same seat cannot be sold twice, the same flight event may not be optimized twice. Two

different flights either take place in geographically and therefore economically different

markets or at different points of time (under circumstances influenced by season and time

of day) or are bound to influence one another. Due to this, any implementation of this

method in practice is likely to be flawed.

Additionally, the question of whether accurate forecasts are good forecasts is still dis-

cussed in the revenue management research community. Simulation experiments have

shown that a forecast that is somewhat flawed, depending on the pricing and competition

situation given, can lead to higher revenue than what is earned when demand is estimated

correctly. For this reason, the further text will make a distinction between forecast per-

formance and accuracy. The latter is regarded as an influential part of the former, but

not as its synonym.

The main goal of this thesis is the development and demonstration of a decomposed

approach to evaluating forecast performance. To compare the performance of methods,

a clear separation between forecast, optimization, and further means of strategic manip-

ulation located in the inventory is necessary. With a decomposition concept, the conse-

quences of changes in any component can be analyzed separately. At the same time, the

interpretation of overall system performance is still feasible.

For the demonstration of the decomposed concept, a simulation environment offers

many advantages. It provides a stable and fully controllable framework. Two simula-

tion scenarios may confront a system with the exact same customer model. Under such

conditions, solely methodical factors can cause differences in bookings and revenue. The

applicability of the results of such a simulation can be secured by including a sufficiently

complex customer model as well as a realistic network of flights. The results offer insights

not just concerning the financial success and the accuracy of different forecasting meth-

ods. In addition, conclusions toward the connection of the two and their evaluation may

be drawn.

In order to achieve the defined goal and to demonstrate the advantages of a decomposed

concept of evaluation in a simulation environment, a number of tasks are defined:

• categorization of existing forecast methods;

• characterization of existing approaches to forecast evaluation;
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• conceptualization of a decomposition of revenue management systems and demand

forecasts;

• formulation of processes to separately evaluate the components of revenue manage-

ment systems;

• implementation of a simulation environment to apply the concept;

• formalization of statements on forecast performance evaluation to base simulation

experiments on;

• analysis of the results of experiments conducted in the simulation environment.

The next section describes the form in which the approach to these tasks was docu-

mented in the following chapters of this thesis. It shortly summarizes the content of each

of the three parts.

1.3. Outline

This thesis is divided into three parts. In the first part, an introduction to revenue man-

agement and the state of the art regarding forecasts and their evaluation is provided.

A research gap is identified and the research opportunities derived from it are listed.

In the second part, the solution approach is outlined. For this purpose, the concept of

the decomposed evaluation of demand forecasts and the implementation of a simulation

environment are documented. In the third part, simulation experiments and the find-

ings resulting from them are summarized. Conclusions toward the evaluation of forecast

performance and future research are drawn.

Part One: As the motivation and the findings of this work are based on existing methods

of airline revenue management, first an overview of published research in this field is

presented in Chapter 2. This chapter starts with a general introduction to the history,

the motivation, and the terminology of revenue management. Approaches to maximizing

revenue according to linear optimization, dynamic programming, and heuristic methods

are presented next. Finally, recent challenges such as the increased overview of the market

place provided by Internet search engines and the advent of no-frills airlines are listed.
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These developments as well as its general role in maximizing revenue are used to underline

the importance of accurate demand forecasting.

Approaches to demand forecasting are summarized in Chapter 3. They are categorized

by aspects of demand including overall volume, unconstraining of bookings and flexible

demand behavior. The multitude of mathematical methods available to predict the various

aspects demand to come becomes apparent in this chapter.

Approaches to quantifying forecast performance are presented in Chapter 4. Further-

more, examples of applied forecast performance measurements are provided.

In Chapter 5, research opportunities with regard to demand forecast performance mea-

surement are pointed out. These research opportunities serve as motivation and provide

aims for the further work.

Part Two: A new approach to decomposing and evaluating demand forecasts is pre-

sented in Chapter 6. This chapter describes how a simulation system can be used to iso-

late different components and aspects of the system. These parts can then be evaluated

separately. Documented are concepts for analyzing the complete revenue management

system, the isolated forecast component and the decomposed aspects of demand volume,

unconstraining and behavior.

To implement this concept of decomposition, a simulation environment is documented

in Chapter 7. General concepts of simulation control are introduced and the implementa-

tion of a supply and demand model is described in detail. In addition, the precise revenue

management methods included are explained. Finally, the market implementations pre-

pared for simulation experiments are presented.

Part Three: Based on the simulation environment introduced in Chapter 7, simulation

experiments have been conducted to provide examples for the simulation based analysis

of forecast performance. The hypotheses that were evaluated empirically are formally

listed in Chapter 8 together with the conclusions that can be drawn from the results of

the experiments. The aspects under which revenue management in general and demand

forecasting in particular were analyzed include the long-term effects of methods, the idea
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of psychic forecasts used in the simulation, the key performance indicators traditionally

used, the consequences of demand uncertainty and first approaches to evaluating price-

sensitivity for revenue management.

Finally, Section 9 provides a summary of steps taken and the insights gained. In

addition, an outlook to potential further research is offered.
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2. Existing Research on Airline Revenue Management

A great body of published research has been devoted to airline revenue management.

Literature including overviews of existing research is listed in the first part of this section.

Next, some approaches to maximizing revenue given available knowledge of demand are

described. Finally, recent challenges that revenue management experts are confronted

with are documented.

2.1. Available Overview Literature

A first introduction to revenue management and its importance for business success is pro-

vided by Cross (1997). The most important research with regard to demand forecasting

for revenue management up to 1999 has been outlined in McGill & Ryzin (1999). More

information, especially on general theory, is provided by Pak & Piersma (2002) and Talluri

& Van Ryzin (2004b). One of the latest overview articles, Chiang et al. (2007), mostly

concentrates the application of revenue management. Weatherford & Bodily (1992), Bi-

tran & Caldentey (2003), and Boyd & Bilegan (2003) focus on other areas of revenue

management such as the development of a typology, pricing, and the implications of

e-commerce.

Some detail on how to model the restrictions and the objective of revenue management

is offered in Wang (1982). An account of the development of a revenue management

system at American Airlines is provided by Smith et al. (1992). Revenue management

in the broader context of operations research problems in the air transport industry is

presented in Barnhart et al. (2003). Methods for approaching the subject with differing

degrees of sophistication are presented in Vinod (2006).
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2.2. State of the Art of Optimization

The research listed here is concerned both with mathematically optimal solutions and

heuristic approaches. Furthermore, most models used in revenue management rely on

simplifying assumptions – these are described with the references.

Flight Optimization: In Littlewood (1972), a first approach to optimally allocating

availabilities based on demand predicted per flight and booking class is introduced. Its

optimality given the condition of static demand was proven by Mayer (1976). Similar

topics are considered in Bhatia & Parekh (1973), Richter (1982), Gerchak et al. (1985),

Alstrup et al. (1986), Kraft et al. (1986), Pratte (1986), Wollmer (1986a), Gerchak &

Parlar (1987), Pfeifer (1989), Wong (1990), Stone & Diamond (1992), Wollmer (1992),

M. Li (1997) and M. Z. F. Li & Oum (1998). The expected marginal seat revenue

(EMSR) approach to allocating seats, which is widely used in practice, was introduced

in P. Belobaba (1987a), P. Belobaba (1987b), and P. Belobaba (1989). The underlying

assumption of low-fare demand arriving before high-fare demand is discussed with regard

to optimality in Titze & Griesshaber (1983). The concept of nesting booking classes to

ensure the availability of valuable classes is outlined in W. Swan (1993c).

In M. Z. F. Li & Oum (2002), optimality conditions of models for flight-based revenue

maximization are discussed. One of the first considerations that demand for several

classes may be stochastically dependent is presented in Brumelle et al. (1990). Brumelle

& McGill (1993) maximizes revenue when demand is dependent on the fare; prices as

decision variables are also considered in Weatherford (1997a,b, 2001). The idea that

fares may not be monotonically increasing within a fare structure is included in Robinson

(1995). A consideration of how fare structures may influence demand and a concept of

encouraging sell-up between classes are described in Botimer & Belobaba (1999).

The task of maximizing revenue is modeled as a knapsack problem in Young & van

Slyke (1994) and Young & van Slyke (2000). Cancellations and no-shows are included

in the model used in Subramanian et al. (1999). Ryzin & McGill (2000) presents an

adaptive algorithm aimed at eliminating the strong reliance on demand forecasts. A

similar goal is pursued by Ball & Queyranne (2006) via the use of competitive analysis of
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online algorithms. A situation in which only limited demand information is available is

discussed in Lan & Gao (2007). All these papers consider leg-based optimization only.

Flight-based models that consider stochastic uncertainty with no strict assumptions

about the timing of demand arrival are often optimized using dynamic pricing. This

dates back to Kincaid & Darling (1963). For multiple classes and customers that do not

exhibit a strict arrival pattern, this is presented in T. C. Lee & Hersh (1993) and Zhao &

Zheng (2000). Brumelle & Walczak (1997) includes the possibility of customers arriving

in batches, Walczak & Brumelle (2007) builds up on this. A consideration of no-shows and

diversion between flights is given in Zhao & Zheng (1998). In Lautenbacher & Stidham

(1999), the maximization of revenue with dynamic pricing given dependent demand is

discussed. In Cooper & Mello (2002), the limitation of certain stochastic programs to

flight-based problems is pointed out.

Network Optimization: While flight-based optimization becomes more sophisticated

and relies less on simplifying assumptions, the maximization of revenue over complete

networks has come into focus. Models that include several segments being offered on

one flight may be regarded as the preparation of this. Ladany & Bedi (1977), Hersh &

Ladany (1978), Buhr (1982), Wang (1983), and Simpson (1985) discuss this possibility.

Smith & Penn (1988) and Vinod (1995) are also concerned with the optimization of

multiple segments.

The first approaches to modeling the passenger flow over a network have been docu-

mented in Glover et al. (1982), D’Sylva (1982), Dror et al. (1988), Curry (1990), Vinod &

Ratliff (1990); Vinod (1990), Phillips et al. (1991), Wong et al. (1993) and Talluri (1994).

As one of the first, Williamson (1992) uses a simulation system to demonstrate the impact

of different network and leg-based revenue optimization methods. A linear programming

approach to network optimization is outlined in Wollmer (1986b), while a non-linear pro-

gramming approach is considered in Vinod (1991). In Garcia-Diaz & Kuyumcu (1997),

a cutting plane approach is used to solve the network problem. While Williamson (1988)

and Vinod (1989) introduce the concept of virtual nesting, Williamson (1992) considers

the decision of whether to accept or deny a customer request as the comparison to a bid

price.
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In Talluri (2001), the idea that passengers may be routed in a way that creates balances

high- and low-fare demand over itineraries is introduced. The idea that different itineraries

might compete for demand is expanded in Coldren & Koppelman (2005).

Gallego & Ryzin (1997) expanded the dynamic pricing method in order to consider

networks rather than legs. In Gallego & Hu (2007), dynamic pricing is applied with

special regard to recent challenges such as restriction-free classes and diversion between

competing flights.

Cooper & Mello (2003) propose a combination of mathematical programming meth-

ods and heuristics to make network revenue management applicable to the practice. A

concept to avoid the distinction between forecast and optimization is offered in Chen

et al. (2003): Value functions for network revenue management are estimated via sta-

tistical learning. Möller et al. (2004) attempts to maximize network revenue via linear

programming using stochastic scenarios rather than straight-forward demand forecasts as

input. The introduction of a network-based revenue management system in practice is

documented in Swift (2002) and Cutshall & Weisbrodt (2006).

In de Boer (2003), among other concepts, the use of simulation to maximize network

revenue is proposed; this prepares the way for Bertsimas & de Boer (2005). Ryzin &

Vulcano (2006) proposes a simulation-based approach to optimization that extends the

work of Bertsimas & de Boer (2005) to include a continuous model of capacity and de-

mand. A concepts for the joint optimization of inventory controls and fleet assignment is

introduced in Frank et al. (2006) and evaluated with the help of a simulation system.

2.3. Appraisals of Recent Challenges

Some developments concerning the market place and distribution channels have compli-

cated revenue management for airlines during the last decades. As customers are able

to effortlessly compare fares via websites such as opodo.com, travelocity.com, or low-

fares.com, they have become more flexible and price-oriented. Considerations of the im-

pact of increased market transparency and the consequences for consumers can be found

in Nason (2007). The entry of so-called no-frills airlines into the market place helped
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to further stress the influences of prices and put traditional airlines under pressure. The

business model of such airlines is described in some detail in Calder (2006).

General introductions to this situation and the consequences for revenue management

can be found in Boyd & Kallesen (2004), Dunleavy & Westermann (2005) and Ratliff

& Vinod (2005). In Boyd (2004), special attention is paid to the impact of Internet

sales. The rest of this section is devoted to three major challenges: Customers basing

their booking decision on which classes are available (dependent demand), customers

considering competition offers, and strategic customers delaying their bookings as they

hope for reduced fare offers.

Dependent Demand: The consequences of ignoring flexible customers and optimizing

revenue under the assumption of static demand are analyzed in Cooper et al. (2006):

When customers purchase the lowest available fare, static forecasts become self-fulfilling

prophecies. Availabilities assigned to reduced-fare classes are used up by flexible cus-

tomers, creating bookings – the basis for future forecasts. As more and more demand is

predicted for tickets offered at a low fare and the optimization algorithm allocates more

availability to low fares, revenue suffers the spiral-down effect.

As the perils of not reacting to changes in customer behavior are established, much

research has been devoted to new approaches to revenue management. Special attention

was directed toward restriction-free environments. This term describes the offer of booking

classes differentiated only by price. Restrictions such as weekend-stays or minimum-

stays are not applied. This strategy is frequently implemented by no-frills airlines and

matched by traditional airlines striving for competitiveness as described in Dunleavy

& Westermann (2005). Consequences of restriction-free environments are demonstrated

using the Passenger Origin Destination Simulator (PODS, see also C. Hopperstad (2000),

Gorin (2000), Gorin (2004) and Reyes (2006) for introductions) in Cusano (2003) and

P. Belobaba & Gorin (2004).

In P. Belobaba & Hopperstad (2004), the idea of the spiral-down effect is summarized

and a definition of sell-up is given: The term describes the probability of a customer

buying his ticket for a specific fare, given he would have bought the lowest fare had it
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been available. The presentation introduces a modified EMSRb algorithm based on sell-up

estimates as well as a dynamic program including knowledge on sell-up.

A different view of price-sensitive customers, called buy-down, is introduced in Ozdaryal

& Saranathan (2004). The term describes the phenomenon of customers who would

previously have bought one specific class now buingy a cheaper class, if it is available. As

a counter agent, inventory fences limiting the availability of cheap classes are proposed.

More comparisons of low-cost environments versus the traditional network models of

revenue management can be found in Weber & Thiel (2004). As ways of dealing with

price-elasticities the authors suggest neural networks.

A summary of methods for restriction-free environments is provided in Cléaz-Savoyen

(2005). The author presents and evaluates two network-optimization methods based on

the knowledge of sell-up probabilities: (Q-Forecasting as introduced in B. P. Hopperstad

C.H. (2004) and Fare Adjustment as introduced in Fiig & Isler (2004)). Detailed results

for an evaluation of fare adjustment using PODS are also presented in Lua (2007a,b,c) as

well as in Kayser (2007).

The consequences of restriction-free environments and a more transparent market place

can also be phrased as a change in assumptions. Traditional revenue management re-

garded demand as static or independent : Customers buy tickets in one booking class,

if that class was not offered, they do not buy at all. The new view includes dependent

demand: Customers choices depend on the classes offered.

P. Belobaba (1987b) touches on this idea when describing possibilities for incorporation

of passenger shifts in the EMSR model. In Pfeifer (1989), decision rules are implemented

based on the probability that customers are “shoppers”, basing their booking decision on

fares. Among the first papers to consider a change in assumptions is also Brumelle et al.

(1990). The author expands Littlewood’s Rule to include dependent demand.

An approach that is not just limited to the airline industry is documented in Bodily

& Weatherford (1995). In this context, buy-down is termed diversion. Heuristic deci-

sion rules are suggested for multiple nested classes in order to avoid as much diversion

as possible. P. Belobaba & Weatherford (1996) also considers diversion and evaluates

decision rules to minimize it. In addition, the authors present a new heuristic. Zhao &
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Zheng (2001) introduces a dynamic threshold policy in order to limit diversion. The au-

thors differentiate between static and dynamic policies: Whereas traditional approaches

to maximizing revenue such as Littlewood’s rule provided static policies, dynamic rules

allow for a change customer behavior and according changes in the policy. Furthermore,

the model includes the restriction that fare classes, once they are closed, can not be

re-opened.

A different view of dependent customer behavior is taken in Gallego & Phillips (2004)

and Gallego et al. (2008). Used in order to develop flexible or callable products, dependent

demand is regarded as an opportunity rather than a risk.

Competition: As customers have access to websites summarizing the offers of several

airlines, they can comparison-shop much easier. This makes it necessary for airlines to

consider competition to a greater degree.

In Fischer & Kamerschen (2003), an analysis of demand aggregated to airport-pairs

with regard to the market situation in terms of competition is presented. The authors

employed the Rosse-Panzar test in order to measure the consequences of competition on

airline markets.

The conclusions of this examination are not so much revenue management recommen-

dations as they are general statements about economic implications: The more intense

competition is, the lower the average fare. It is stated that with regard to the data used,

airline competition is not as perfect as often supposed.

An approach that focuses more on game theory aspects of airline revenue management

under competition is documented in Netessine & Shumsky (2005). Considered are both

vertical (different airlines compete on different legs of a multi-leg itinerary) and horizontal

(different airlines compete on the same leg) competition. Conditions for a Nash equilib-

rium are provided as desirable characteristics of the demand distribution. However, no

method of estimating the real consequences on a given market is provided.

A game theoretical view of revenue management is also taken in Gallego et al. (2006).

Without special regard for the airline industry, revenue management under competition is

regarded as a sequential and as a repeated game. Again, conditions for a Nash equilibrium
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are outlined and the advantages of competitors cooperating are pointed out. That condi-

tion is very difficult to realize under the legal circumstances of airline revenue management

practice.

Another example of the inclusion of competitor information is provided by Walczak

(2005). However, while knowledge of the influence of competition on demand is included

in a dynamic program according to this presentation, this knowledge is regarded as given.

Its estimation is not part of the research.

In Coldren & Koppelman (2005), demand shares for travel along itineraries of competing

airlines are predicted. The model includes departure day, brand, and service as factors.

Both a multinomial logit model and variations of the nested model are considered in

order to analyze the influence of these factors. The price differences between the different

airlines’ offers are not considered.

In the course of research conducted with PODS, some concepts for including knowl-

edge of competition in the estimation of sell-up rates have been outlined. These and the

resulting findings have been presented at several PODS summits. Recent examples can

be found inCarrier (2003), Guo (2007), and C. Hopperstad (2007). In addition, research

concerned with fare adjustment as for instance Kayser (2007) underlines that the con-

sideration of customer reactions to prices becomes even more important in markets with

intense competition. Finally, matching the lowest competitor price is presented as an ap-

proach including competition in revenue management that avoids actually forecasting the

customer reaction in Lua (2007a,b,c). In all these publications, knowledge of competitor

prices is regarded as given.

It can be concluded that much research that considers the effects of competition does

so only with regard to its general consequences. Forecasting methods that do consider a

wider range of influence factors often offer the possibility of including competition prices

or the existence of competition in the model.

In Gallego & Hu (2007), demand models that consider more characteristics of the

product as decision factors for customers are examined with special regard to competi-

tion. Dynamic pricing is presented to include demand forecasts that incorporate such

a customer model in the optimization. With consideration of the single-leg model, the

authors extend both on Netessine & Shumsky (2005) and Gallego et al. (2006). With
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regard to the airline industry, cooperation is excluded. An open-loop Nash equilibrium is

presented. Changes in customer demand as caused by competition are ascribed to the

predictions of a customer choice model. A general introduction to dynamic pricing and

the opportunities it offers is provided in Westermann (2006).

Strategic Customers: Another phenomenon along with the idea of flexible, informed,

and price-sensitive customers is that of strategic as opposed to myopic customers as

described by Talluri & Van Ryzin (2004b). This idea implies that customers learn from

their previous booking experiences and use their knowledge for future decisions. For

instance, a customer observed an offer for a reduced-fare ticket coming up shortly before

departure might delay his next booking, hoping for cheap tickets to be offered late in the

booking horizon again. Such strategic behavior needs to be recognized and considered in

inventory policies in order to avoid revenue losses.

Such demand behavior is described in Anderson & Wilson (2003); the authors point

out the impact of customers implementing strategies to counteract airline revenue man-

agement strategies. While not offering a concept on how to quantify or react to strategic

customers, the article highlights their possible importance to future revenue management

research. Xu & Hopp (2005b) considers strategic behavior in the retail industry as well

as in the airline industry and compares empirical observations with regard to changes in

price-elasticity. In Cho et al. (2007), fare track systems designed to systematically mine

airline fare data to enable customers to minimize their expenses are analyzed. Potential

benefits of such systems both for customers and airlines are listed.

Levin et al. (2006) describes a dynamic pricing strategy based on the assumption that

the market is monopolistic and customers may delay their bookings strategically. Knowl-

edge on customers’ strategies is regarded as available. Once more the dire consequences

of ignoring strategic customers are pointed out. Another model of dynamic pricing under

similar conditions is presented in Su (2007). Wilson et al. (2006) considers a demand

model with customers reacting flexibly to offers by buying the lowest available fare and

strategically delaying their bookings. An approach to finding optimal booking limits

under these conditions is offered.
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3. Demand Forecasting for Revenue Management

Forecasting demand is one of the fundamental elements of Revenue Management. Knowl-

edge of the amount and the qualities of demand for seats on flights is crucial for a successful

optimization model. Research such as presented in Pölt (1998) shows that forecast accu-

racy result has a positive impact on revenue. This has also been confirmed in Weatherford

& Belobaba (2002). An analysis of business risk presented in Lancaster (2003) shows that

much of this risk stems from faulty forecasts.

A succinct characterization of the demand model needed for revenue management is

offered by van Ryzin (2005):

[...] it is really the entire system for estimating demand and market response

– the data sources, the information technology for collecting and storing data,

the various statistical estimations models and algorithms used to process and

analyze these data and the infrastructure for deploying model outputs – in

short, everything that is required to turn raw data into actionable market

information. This is normally called the ’forecasting system’ in traditional

RM parlance, though forecasting is merely one of its many functions.

Developments such as described in Section 2.3 make forecasting for revenue manage-

ment even more complex. At the same time, a more automated approach to revenue

management, growing data management opportunities, and the resulting need for higher

quality forecasts increase the interest in forecast methods (see for example Zaki (2000),

Chiang et al. (2007), or Nason (2007)).

In order to provide an overview of forecasting for revenue maximization, a categorization

is introduced. Research is listed according to the characteristics of demand that it focuses

on. Three characteristics of demand are discussed:
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• Demand volume: The absolute amount of passengers that request tickets can be

split up into the arrival process of demand throughout the booking horizon and the

development of overall demand over several departures due to trends and seasonality.

• Unconstraining : The transformation of observed sales data to deduce actual de-

mand.

• Demand behavior : The reaction of customers requesting tickets to the alternatives

offered by the airline and its competitors.

More general information on mathematical methods mentioned as approaches to fore-

casting are described in the following sections can be found in Armstrong (2001).

3.1. Demand Volume

When within the booking horizon will customers request tickets? How many customers,

overall, will demand tickets for a certain flight departure? If information on the amount

of demand per product and the timing of its arrival is available, target functions can be

formulated to optimally allocate capacity. Research conducted in order to gain estimates

for both dimensions will be summarized in this section.

Much early research on forecasting for revenue management has been done to optimize

overbooking levels. This is not the key question considered in this thesis; further reading

related to overbooking can be found in Taylor (1962); Rothstein & Stone (1967); McGill

(1989).

Arrival Process: To determine the optimal availabilities within the booking horizon,

three aspects of demand have to be available: A fixed overall demand (regarded as the

state space according to a terminology derived from A. O. Lee (1990)), the rate of demand

arrival as well as the sequence of high- and low-fare demand.

First distributions that describe demand arrival for a single fare class and flight are

given in Beckmann & Bobkowski (1958). The resulting description of demand is referred

to as booking curve. In addition to the positive impact of accepted passenger requests,

cancellations have a negative impact on this curve.
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In order to reduce complexity, it is common to divide the booking horizon up and to then

observe bookings as they occurred in time slices. Method that solely considers bookings

that have already been accepted on the flight is referred to as advanced bookings method

according to A. O. Lee (1990). Those concepts that only refer to observed demand on

previous departures of the same flight numbers are regarded as historical booking methods.

It is noted that methods combined from both concepts tend to work best – accordingly,

current research uses information both from past flights and already accepted bookings.

Poisson processes as a special case of Markovian processes are a common way of mod-

eling demand arrival – one of the first examples is Rothstein (1968). As they assume

the state of the system they model to be influenced only by the latest event, the arrival

of demand is regarded to be independent of booking controls. Customers request tickets

exactly once, if their request is denied they do not return. Recent examples of the applica-

tion of Poisson processes can be found in Weatherford et al. (1993), Talluri & Van Ryzin

(2004a) and Walczak & Brumelle (2007). The arrival rate of the customers is regarded

as a parameter to be estimated either via ad-hoc or time-series methods or by analyzing

influence factors.

To optimally allocate seats at any time within the booking period, Chen et al. (2003)

propose a method of statistical learning that estimates a market value for tickets be-

ing purchased at a specific time. The paper extends a model based on a discrete-time

Markov decision problem in Lautenbacher & Stidham (1999) to the network level. Instead

of explicitly forecasting demand, value functions for remaining seats are estimated and

updated.

A similar topic, demand learning for dynamic pricing, is taken up in Xu & Hopp (2005a).

This paper includes the assumption of a piecewise deterministic and Markovian customer

arrival process, the distribution of which is regarded as known, homogeneous and price

independent. It introduces estimates key parameters of the distribution by observing

demand as it arrives.

Correlations in demand for different products at the same point of time as well as

correlations in demand for the same products at different points of time within the booking

horizon are considered in Stefanescu et al. (2004). A linear mixed effects model considers

a booking time component, weighting matrices for correlations of influences by external
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shocks, and a normally distributed error term. Data is unconstrained using the estimation

maximization algorithm. In order to estimate the parameters of the demand distribution,

maximum likelihood is applied.

Final Bookings: Overall demand volume can fluctuate over time due to economic trends,

the influence of seasons, trade fairs, and holidays, within weekly or daily patterns. As

described in Talluri & Van Ryzin (2004b) and Armstrong (2001), a variety of statistical

methods can be employed in order to pick up trends and patterns. Two views stand out:

Demand may be predicted by considering the data patterns and emulating them with ad-

hoc methods or it may be predicted by considering possible causal relationships between

the booking data and influence factors. The latter approach is also called associative.

Much current revenue management research focuses on demand behavior rather than

overall demand development. Research considering the macro level of airline demand as

needed for airline fleeting, strategy, and general economics stays important. Examples

can be found in Andersson (2001), Abed et al. (2001), Bhadra (2003), Battersby (2005)

and Cunningham & De Haan (2006). Brons et al. (2002) and Njegovan (2006) consider

the influence of prices on overall demand levels.

In Grosche et al. (2007), a rather macroeconomic view of demand estimation is taken,

too. Still, the authors do mention the possibility of using their estimates for the op-

timization of itineraries for which no historical data exists yet. In order to calculate

the connection between service-related and geo-economic forces and demand, two gravity

models are implemented. These assume the influencing factors to be independent.

Even if demand is considered stationary, some fluctuation is likely to occur from one

departure to the next. Although focusing on spill estimation for fleet assignment, W. Swan

(2002) indicates that a gamma distribution of average stationary demand makes sense for

revenue management. The paper follows up on research described in W. Swan (1993a,b,

1999).

The idea that overall demand volume may not be exclusively derived the time factor

is presented in Sa (1987). The author introduces a model of regression analysis that may

be applied to different markets to forecast final bookings. Apart from time and historical

bookings, this regression considers socio-demographic factors as well as level of service
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variables. An earlier overview of regression models for demand estimation can be found

in Taneja (1978).

In order to predict demand over a network, Neuling et al. (2004) proposes an analysis

of passenger name records. This data includes information on each passenger’s itinerary,

including all booked segments. In addition to a regular demand forecast, a no-show

forecast is offered.

A theory of time series influenced by a variety of factors is laid out in Armstrong et al.

(2004). The authors describe a concept of decomposing the series to represent the causal

forces that impact it.

Time series and their reaction to external factors are also the focus of hybrid methods

combining traditional statistics and neural networks. An example of such an effort is

presented in Aburto & Weber (2007), which connects neural networks with an ARIMA

model. However, the application considers supermarkets rather than airlines.

3.2. Unconstraining

Historical booking data as stored by airlines does not represent actual demand. Customer

requests are constrained by the amount of tickets offered. Without further information,

it is unknown whether more tickets could have been sold, unless offer exceeded demand.

A general introduction to this topic is also presented in Pölt (2000). Unconstraining, also

called detruncation, refers to the transformation of bookings to demand.

Nahmias (1994) refers to the demand that is not accepted as bookings as lost sales. The

paper concentrates on retail rather than the airline industry and describes the application

of maximum likelihood estimation, a best linear unbias estimator and an additional new

estimator.

In Zeni (2001a) the author extensively presents and compares a number of unconstrain-

ing methods. The findings are also summarized in Zeni (2001b). Among the listed con-

cepts are: ignoring the censoring, discarding the censored data, mean imputation method,

the booking profile method, expectation maximization, and projection detruncation.
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The easiest alternative is to ignore the censoring or to discard the censored data. The

mean imputation method, a variation of pickup unconstraining, and the booking profile

method are both ways of estimating demand by extrapolating from the mean of book-

ings that were not truncated. Expectation maximization uses a normal distribution and

maximum likelihood in order to iteratively estimate the parameters influencing demand.

Finally, projection detruncation is a variation of expectation maximization that uses an

additional parameter to scale the amount of unconstraining applied to the data.

The conclusion of Zeni (2001b) is that anything preferable to ignoring the truncation.

While intricate and computationally intense, expectation maximization works best. Such

findings are also confirmed by Weatherford (2000) and Weatherford & Pölt (2002).

McGill (1995) introduces a concept of censored regression in order to estimate customer

bookings. This model extends unconstraining by estimating demand depending on up to

nine factors. To that aim, the expectation maximization method is adapted to what the

authors call censored demand estimation maximization. Other examples of the use of

expectation maximization can be found in Talluri & Van Ryzin (2004b), Stefanescu et al.

(2004) and Ferguson et al. (2007).

While claiming not to use any forecasting techniques, Ryzin & McGill (2000) solves

the problem of unconstraining data by applying life tables. This method is taken from

survival analysis and is implemented to estimate parameters of a survival function. It

indicates how many additional requests arrived after a booking class was closed. Tests

indicate mixed performance, therefore the implementation is only recommended for small

or start-up airlines or when demand is difficult to predict.

A new method of unconstraining is proposed in Ferguson et al. (2007). It uses double

exponential smoothing, also called “Holt’s Method”. Two smoothing constants are intro-

duced to calculate the base demand and the trend. An application is described both

for monotonously closing booking classes and booking classes being re-opened. Based on

simulated customer requests, the new method is compared to an averaging method, esti-

mation maximization and projection detruncation taken from Weatherford & Pölt (2002),

as well as the method of life tables described in Ryzin & McGill (2000). The results are

generally favorable but do vary with regard to the simulated customer behavior.
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In Lan & Gao (2007), another approach to dealing with limited demand information

is offered. The authors develop robust inventory controls when only upper and lower

boundaries for demand are known. The concept is shown to be effective for single-leg

problems. This method as well as its preceding research on competitive online algorithms

in Ball & Queyranne (2006) would have to be adapted for network models.

While other industries profit from available turn-down data (see for instance Zhu

(2006)), such data is not yet fully available for airlines. Turn-down data stores customer

requests that have been denied in addition to those that were accepted as bookings. If

such data was available, the transformation of sales data to get information on demand

would become superfluous.

The nearest thing to turn-down data available for airlines are so-called click-streams.

These record customer behavior as observed on travel websites. They are likely to be

biased as customers do not seriously consider all travel-itineraries clicked at. The possible

importance of this kind of data for future revenue management forecasting is hinted at in

Nason (2007). However, no published research on working with this kind of information

in the airline business could be found.

3.3. Demand Behavior

The last sections as well as traditional approaches consider the overall amount of demand

to arrive for a distinct product (itinerary and booking class). Changes in customer men-

tality make other considerations necessary. As laid out for example in van Ryzin (2005),

customers that are more informed and flexible require a shift of focus from products to

customers. It used to be feasible to merely ask how many units of one product (for in-

stance, business class tickets) would be requested. Now it makes more sense to ask how

many business class customers (that might also go for a bargain ticket if it is offered to

them) do consider leaving their origin at a certain time for a specific destination. Much

of the development that has lead to this kind of flexible customer behavior has been

described in Section 2.3

With a new view of demand comes a consideration of dynamic demand behavior. Cus-

tomers choose between alternatives that are offered by the airline and its competition. It
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is no longer the absolute number of customers that revenue management needs to con-

sider, but also their choices with regard to prices, competition, and other utilities such

as schedule time and transfers. As indicated in P. Belobaba (1987b), with such choice

behavior, it is possible to recapture rejected customer requests vertically (to a different

booking class) or horizontally (to a different itinerary).

Sell-Up and Buy-Down: Vertical choice behavior leads to buy-down, the possibility that

customers with a high willingness to pay are offered a low price and accept it. On the

other hand, it opens the way to sell-up, customers being forced by inventory controls to

buy a class that is more valuable than the cheapest class possible. Simulation results with

regard to the performance of traditional revenue management given buy-down and sell-up

are offered in Cusano (2003) and Ozdaryal & Saranathan (2004).

Under these conditions, the challenge of revenue management becomes to include in-

formation on customers’ price-elasticity in forecasting models. As will be listed in the

following paragraphs, different approaches formulate this using different concepts such as

as willingness to pay, Q-forecasting, or hybrid demand.

Willingness to Pay: An appraisal of the influence of prices on customer demand is

documented in Castelli et al. (2003). With an ordinary least squares regression as well as

a multilevel analysis-based methodology, the variance of price elasticity on different routes

in a network is analyzed. With its focus on overall demand as well as on specific routes for

specific airlines, this paper straddles the border of macro- and microeconomics. Weber &

Thiel (2004) presents an attempt to estimate customer demand curves based on price. An

artificial neural network is implemented in order to derive price elasticities from booking

data.

First ideas about demand behavior being based on price elasticities date back as early

as the 1970s. Notable examples are Lennon (1972) and Jung & Fuji (1976).

Q-Forecasting and Fare Modifiers: Some approaches to forecasting demand under the

assumption that customers are not segmented according to restrictions are presented in

Cléaz-Savoyen (2005). The findings are accompanied by simulation results as attained
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through PODS. Building up on research documented in Bohutinsky (1990), P. Belobaba

& Weatherford (1996), and Gorin (2000), the thesis concentrates on combinations of Q-

forecasting and fare modifiers.

Q-forecasting models the behavior of customers by calculating the amount of passengers

willing to buy the class with the lowest fare - “Q”. The amount of passengers willing to

buy the next higher priced class is predicted from sell-up rates. These are formulated as

Frat5-rates : the price-ratio of two classes at which fifty percent of the demand for the

lower priced class will be willing to buy the higher-priced class. Frat5-rates are estimated

dynamically over the booking horizon via a regression across time-frames.

Fare adjustment using fare modifiers as a concept developed in Fiig & Isler (2004) are

introduced to optimize revenue for flights that have both a restricted and an unrestricted

fare-structure, thereby catering both to price-sensitive customers and to independent de-

mand. Fare modifiers also rely on sell-up estimates; however, they do not necessarily

assume that all lower priced classes are closed (as this is unnecessary in a restricted fare

environment).

Hybrid Demand: Building up on Cléaz-Savoyen (2005), Reyes (2006) offers forecasting

methods for a combination of restricted and unrestricted classes referred to as hybrid fare

structures. He describes the challenge of separating price and product-oriented demand.

A similar statement can be found in Boyd & Kallesen (2004), where the two demand

segments are called priceable and yieldable. While a product-oriented customer is only

interested in purchasing a ticket with or without specific restrictions, a price-oriented

customer will be looking to buy at the lowest available price.

Two understandings of hybrid forecasting are introduced in Reyes (2006): The simulta-

neous deployment of two separate forecasting methods for the two customer segments or

the separate forecasting of two fare structures, restricted and unrestricted. The concept

is ascribed to P. Belobaba & Hopperstad (2004). Combined are two more methods: Fare

adjustment as outlined in Fiig & Isler (2004) and path categorization. A similar approach

to incorporate market-based demand forecasts in network optimization is also taken in

C. Hopperstad (1994).
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Path categorization assumes that willingness to pay is related to the amount of transfers

a passenger’s way over an O&D network includes, as well as to how dominant a market he

comes from. Tests conducted with the help of the PODS are cited to show that both fare

adjustment and path categorization can significantly improve network revenue if hybrid

forecasting is applied. A review of the performance of sell-up algorithms in PODS can be

found in Guo (2007).

Customer Choice: While the consideration of prices for customer decisions is gaining

importance with the rise of no-frills carriers, other factors contribute to customer choice

behavior, too. It is intuitively appealing that when buying tickets, customers should

consider the travel time as well as the amount of transfers and connecting times. An

example of the examination of travel choices with regard to risk can be found in Theis et

al. (2006). Reyes (2006) mentions a connection between willingness to pay and transfers.

The paper includes this connection by applying path categorization.

The idea that customer choice depends on the distribution channel and characteristics

of the itinerary is outlined in Walczak & Brumelle (2007). This article claims that the

decision to buy depends on the price and assumes that the customer’s demand function

with regard to the price is known. Arrival rates derived from the demand function are

included in a Poisson process. Customer profiles are included in the arrival process,

thereby making customers’ demand functions variable. Comprised is also the so-called

market state, the competitive situation. The article refers to Walczak (2005) at this point

(see also Section 2.3).

The quantification of the influence of product characteristics and market state on cus-

tomer demand is relegated to consumer choice behavior models. Among these, discrete

choice models are of special interest for revenue management - in these, customers have to

choose exactly one of several distinct alternatives. The theory of discrete choice models

with special regard to revenue management and parameter estimation via maximum like-

lihood has been described for the first time in Kanafani & Sadoulet (1977) and Ben-Akiva

& Lerman (1985). On this theoretical background, a multitude of research has evolved.

In Talluri & van Ryzin (2000), a multi-nomial logit model of demand is developed in

order to predict customer choice. This model implements logistic regression for more than
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two variables to be included in customers’ cost functiosn. The probability of a customer

buying a product is calculated as a natural logarithm defined by a linear function. The

model parameters (arrival rates as well as choice factors) are estimated via estimation

maximization. Given this model, revenue is optimized for the single-leg multiple-fare case

with the help of a dynamic program.

The complexity of such programs increases over the available seats as well as over the

number of itineraries and classes. This issue is also referred to as the curse of dimension-

ality – see for example Bertsimas & de Boer (2005) for a description as well as an attempt

of solution. Therefore, most research considering customer choice models and dynamic

programs only consider one leg at a time. A similar model is also applied in Talluri &

Van Ryzin (2004a); here, only the prices that are offered are considered as factors.

In Talluri & Van Ryzin (2004b), a customer choice model is implemented in order to

estimate the connection between prices and customer demand. In this case, customers’

cost functions only include fares. After the model parameters are estimated using max-

imum likelihood, the paper offers optimal policies for an independent view of demand,

a multinomial logit model, and a model in which customers always purchase the lowest

available fare.

Another introduction to choice-based revenue management is provided in Vulcano

(2006). Simulation based optimization is suggested to build up on forecasts that incor-

porate this model. Apart from the already mentioned multinomial logit model of choice,

alternatives such as finite-mixture logit, Markovian second choice, and general random

utility are mentioned. The author also distinguishes between the estimation of choice

parameters and that of volume parameters. Forecasting methods for the latter have been

presented in Section 3.1. In order to estimate choice parameters, both estimation maxi-

mization and maximum likelihood are proposed.

Finally, an examination of price sensitivity with special regard to customers that buy

airline tickets online is documented in Garrow et al. (2007). The authors use stated pref-

erence data in order to estimate a multinomial nested logit model of customer choice

behavior. As a consequence of using stated preference data, the article draws special

attention to matters of survey design and recruitment. Both ticket prices and sociodemo-

graphic factors are included in the analysis in an attempt to explain willingness to pay
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through other utilities. The use of knowledge of customer behavior is also outlined in

Fudenberg & Villas-Boas (2006).
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4. Demand Forecast Performance Measurements

As can be seen from the overview presented in the previous sections, much development

has taken place with regard to airline revenue management in general and especially

demand forecasting. With a shift from product focus to customer focus and a trend toward

less restricted products, high quality forecasting has gained significance. The importance

of forecast accuracy has been underlined for instance in Weatherford & Belobaba (2002).

Considering the task of finding the best forecast for a given situation, it can also make

sense to consider the complete revenue management system. Benchmarks to analyze the

efficiency of a set-up of this kind are provided by so-called revenue opportunity models

(ROM ). Such models usually attempt to estimate an upper benchmark for the revenue

that may be earned in a market by analyzing historical booking data (an example of this

is described in Rannou & Melli (2003) with regard to the hotel industry).

Granger & Pesaran (2000) propose the use of decision theory in order to evaluate fore-

cast performance. This means evaluating the outcome of decisions based on the forecast

in order to make statements about its quality. In the case of predicting demand in order

to maximize revenue, the forecast that leads to the highest earnings accordingly must be

the best.

General statistics offer several possible methods to calculate forecast error measure-

ments. Without regarding the specific challenges of determining future sales by trans-

forming historical bookings, these measurements will be presented in Section 4.1. In the

literature presented, the consequences of their application to specific objects and aggrega-

tion levels of comparisons are only hinted at.

For example, the object of comparison for forecast evaluation needs to be agreed on

before computing error measurements. Armstrong (2001) suggests analogous data from

different geographical areas or control groups as well as “backcasting” (predicting the past

based on current data). Evaluation methods applied in revenue management tend to use
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actual booking data (see for example Pölt (1998)). However, they have to chose between

different transformations to make booking data comparable to demand forecasts. The

consequences of this choice require further examination.

Existing attempts to evaluate any share of the multitude of forecast methods offered

can be found in Section 4.2. This includes tests of forecasting concepts conducted in the

course of their introduction as well as overview articles comparing existing approaches.

Challenges that arise from the application of the theoretical indicators of forecast ac-

curacy presented in this Chapter to the reality of revenue management are pointed out

in Section 5. Regarding these difficulties, research opportunities are identified. Finally,

immediate steps that can be taken to create a new approach to forecast evaluation are

outlined.

4.1. Theoretical Background

A general introduction to the concept of evaluating forecasts by statistical means is pre-

sented in Armstrong (2001). Further literature considering the topic will be summarized

in the context of those explanations.

An introductory overview of the challenges and aspects of time series forecasting as well

as of the consequences of forecasting errors in economic settings is provided by Makridakis

(1986). General guidelines toward the evaluation of forecast for a specific problem is

presented in Fildes (1992). The author points out that rather than relying on prior

forecasting competitions, researchers should evaluate methods with regard to the data at

hand.

The underlying assumption of evaluating forecasts is that the considered alternatives

are all methodically valid. This means that the task of choosing the right method for a

certain situation has already been tackled. As was shown in the previous chapter, a range

of solutions tailored specifically to forecasting for airline revenue management does exist.

However, the question which approach is best remains. Note that forecast quality

depends on the priorities of the evaluator: It may indicate accuracy, robustness, or a
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good fit with other revenue management methods. In this chapter, a forecast’s ability to

predict actual demand, its accuracy, is regarded as its main performance factor.

Armstrong (2001) differentiates between analyzing the input and the output of forecast-

ing methods. When rating two methods processing the same kind of data and reaching

comparable results, a statistical indicator can be computed.

In the case of forecasting for revenue management, similar inputs are accessed by most

methods: Historical bookings and in some cases survey data. Forecasting methods for

revenue management may be arranged by the input data they use as well as the infor-

mation they provide on demand. The assumptions used were already mentioned when

describing the available methods in Section 3.

Another aspect of error measurement mentioned in Armstrong (2001) may be relevant

when testing forecast methods for revenue management: Asymmetrically rated evaluation.

If for instance the underestimation of demand is thought to be more harmful to revenue

than their overestimation, negative errors in the forecast might be rated more severely.

Whether to consider such asymmetries in the initial measurement of forecast errors or to

include their analysis in a final interpretation of the evaluation is a matter of context.

In order to evaluate error measures, Armstrong (2001) suggests the comparison of

rankings derived from those measurements. However, what measurements should be

calculated and compared?

In order to define the forecast error, Fildes (1992) introduces a formal notation. It has

been modified to fit the model presented in the remainder of this text.

• Let s be the index of departure days (in the real world) or simulation runs (in a

simulation model). In chronological order: s = 1, ..., N s.

• Let t be a point of time in the booking horizon, t = 0, ..., N t with t = 0 indicating

the start of the booking horizon and t = N t indicating its end.

• Let f be the index of flights with f ∈ F .

• Let c be the index of classes with c ∈ C.

• Let func (f, c, t, s) be the forecast of unconstrained demand for flight f in class c

between the points of time t− 1 and t of s.
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• Let bunc (f, c, t, s) be the unconstrained bookings for flight f in class c between points

of time t− 1 and t of s.

• Let eu-u
◦ (f, c, t, s) be the forecast error computed according to method ◦ for flight

f , class c, and time slice t− 1 to t in the booking horizon of s. The inputs for the

computation of this error are func (f, c, t, s) and bunc (f, c, t, s).

Errors can be summarized according to two ways: Series Squared Errors (SSE ) and

Series Absolute Percentage Errors (SAPE ). Aggregation can happen across a time period

considered in one series or across several series given one point of time or the complete

period.

Ideally, indicators measuring forecast quality should allow for the criteria given by

Diebold & Lopez (1996) as well as for a minimization of error as described by Fildes

(1992). To that effect, a combination of error measures can be helpful, describing both

the behavior of errors as well as their overall volume.

A preference of unit-free measures not affected by the scale of the predictions avoids to

unfairly weight different markets with different demand volumes. Biased error measures

should also be avoided - an example is the use of the SAPE indicator mean absolute

percent error (MAPE ) when considering positive numbers (such as bookings without

cancellations). MAPE is calculated by averaging the absolute percent errors (APE ).

• Let êu-u
◦ (s) be the series error computed according to method ◦ for s.

• Let eu-u
APE (f, c, t, s) be the APE computed as shown in Definition (4.1).

• Let êu-u
MAPE (s) be the MAPE computed as shown in Definition (4.2).

eu-u
APE (f, c, t, s) :=

|func (f, c, t, s)− bunc (f, c, t, s)|
bunc (f, c, t, s)

· 100

∀ f ∈ F ; c ∈ C; t = 1, ..., N t − 1; s = 1, ..., N s

(4.1)

êu-u
MAPE (s) :=

∑
f∈F

∑
c∈C
∑Nt

t=1 e
u-u
APE (f, c, t, s)

|F | · |C| ·N t

∀ s = 1, ..., N s

(4.2)

As it calculates the difference between a positive forecast and another positive bench-

mark, the highest difference possible if demand is underestimated is 100%. Overestimation
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may be infinitely high. With such measures, an adjustment as the unbiased absolute per-

centage error (UAPE ) presented in Makridakis (1993) can be in helpful (see Definition

(4.3)). This error measurement is summarized in Definition (4.4). The result is also

referred to as symmetrical MAPE (SMAPE ) by Tayman & Swanson (1999).

• Let eu-u
UAPE (f, c, t, s) be the UAPE computed as shown in Definition (4.3).

• Let êu-u
SMAPE (s) be the SMAPE computed for s as shown in Definition (4.4).

eu-u
UAPE (f, c, t, s) :=

|func (f, c, t, s)− bunc (f, c, t, s)|
func(f,c,t,s)+bunc(f,c,t,s)

2

· 100

∀ f ∈ F ; c ∈ V ; t = 1, ..., N t − 1; s = 1, ..., N s

(4.3)

êu-u
SMAPE (s) :=

∑
f∈F

∑
c∈C
∑Nt

t=1 e
u-u
UAPE (f, c, t, s)

|F | · |C| ·N t

∀ s = 1, ..., N s

(4.4)

Alternatively, in order to compensate for the measure’s vulnerability with regard to

underestimation, Fildes (1992) suggests the use of the Median Absolute Percentage Error

(MdAPE ). The calculation of this measure is shown in Definition (4.5).

• Let êu-u
MdAPE (s) be the MdAPE computed for s as shown in Definition (4.5).

• Let N = |F | · |C| ·N t be the overall number of observations for flights, classes and

points of time before departure per s.

• Let Eu-u
APE (s) be the set of all observations of APE for s.

• Let arg (E, n) be a function returning the nth element of the ordered set E.

êu-u
MdAPE (s) :=


arg(Eu-u

APE(s),N
2 )+arg(Eu-u

APE(s),N
2

+1)
2

N mod 2 = 0

arg
(
Eu-u

APE (s) , N
2

+ 1
)

N mod 2 > 0

∀ s = 1, ..., N s

(4.5)
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Based on the claim that MAPE tends to overstate the error found in skewed forecasts,

Tayman & Swanson (1999) reason that a class of measures called Minimization Estimators

(M-estimators) are more valid. The authors list resistance and robustness as criteria for

a good forecast performance estimator. Resistance describes small subsamples having

only a limited effect on the results of the evaluation. Robustness implies insensitivity

to underlying assumptions e.g. about the distribution. The authors compare the use

of MUAPE and M-Estimators. The latter are based on maximum likelihood procedures

minimizing objective functions describing the relative deviation of observations

The performance of any forecast depends on the degree in which the data considered

can be predicted. If forecasts are evaluated between different markets, it makes sense to

consider their sensitivity to the degree of demand uncertainty. If for example departures

of the same flight rather than different markets are compared, each point of data includes

the same level of uncertainty. However, when comparing forecasts to actual data the pool

of data the researchers can analyze often is limited. In Sullivan et al. (2003), solutions to

this problem of shared data sets are presented.

A comparison to the naive forecast (random walk) provided by the so-called relative

absolute error (RAE ) can be advisable to neutralize market effects. The random walk

predicts the next value of a series by assuming that it will be the same as the previous

value. It is introduced in Definition (4.6).

• Let f̂ (f, c, t, s) be the naive forecast for class c on flight f between points of time

t− 1 and t of s as shown in (4.6).

• Let eu-u
RAE (f, c, t, s) be the relative absolute error calculated for the forecast generated

for demand to arrive for flight f , class c, between points of time t− 1 and t of run

s as shown in Definition (4.7).

• Let êu-u
GMRAE (s) be the RAE summarized over its geometric mean (GMRAE ) as

presented in Definition (4.8).

• Let êu-u
MdRAE (s) be the RAE summarized over its median (MdRAE ) as presented in

Definition (4.9).
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f̂ (f, c, t, s) :=

0 s = 1

bunc (f, c, t, s− 1) s > 1

∀ f ∈ F ; c ∈ C; t = 1, ..., N t

(4.6)

eu-u
RAE (f, c, t, s) :=

|func (f, c, t, s)− bunc (f, c, t, s)|∣∣∣f̂unc (f, c, t, s)− bunc (f, c, t, s)
∣∣∣

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 1, ..., N s

(4.7)

êu-u
GMRAE (s) :=

(∏
f∈F

∏
c∈C

Nt∏
t=1

eu-u
RAE (f, c, t, s)

)1/(|F |+|C|+(Nt))

∀ s = 1, ..., N s

(4.8)

Note that the geometric mean is costly to calculate for large |F |+ |C|+N t.

êu-u
MdRAE (s) :=

arg
(
Eu-u

RAE (s) , N+1
2

)
N mod 2 = 0

arg(Eu-u
RAE(s),N−1

2 )+arg(Eu-u
RAE(s),N+1

2 )
2

N mod 2 > 0

∀ s = 1, ...N s

(4.9)

According to Armstrong & Collopy (1992), RAE provides a valid alternative to another

measure called Theil’s U2 as presented in Theil (1966) and discussed and recommended

in Bliemel (1973) (see Definition (4.12). In order to make RAE comparable to MAPE,

Armstrong & Collopy (1992) suggests the calculation of a Relative Absolute Percent Error

as shown in Definition (4.10).

• Let eu-u
RAPE (f, c, t, s) be the relative absolute percent error computed as shown in

Definition (4.10).

• Let êu-u
MRAPE (s) be the mean relative absolute percent error computed for s as shown

in Definition (4.11).
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• Let êu-u
U2 (s) be Theil’s U2 as shown in Definition (4.12).

eu-u
RAPE (f, c, t, s) :=

|func(f,c,t,s)−b(f,c,t,s)|
b(f,c,t,s)

|f̂unc(f,c,t,s)−b(f,c,t,s)|
b(f,c,t,s)

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 1, ..., N s

(4.10)

êu-u
MRAPE (s) :=

∑
f∈F

∑
c∈C
∑Nt

t=1 e
u-u
RAPE (f, c, t, s)

|F | · |C| ·N t

∀ s = 1, ..., N s

(4.11)

êu-u
U2 (s) :=

√∑
f∈F

∑
c∈C
∑Nt

t=1 (func (f, c, t, s)− b (f, c, t, s))2√∑
f∈F

∑
c∈C
∑Nt

t=1 b (f, c, t, s)

∀ s = 1, ..., N s

(4.12)

While the relative absolute percent error is bounded between 0 and 1, RAE and U2 have

no finite upper boundary. Another estimate of forecast quality based on the comparison

to a random walk is Percent Better. As shown in Definition (4.15), this measure calculates

the percentage of forecasts for which a given method is more accurate than the random

walk or naive forecast.

• Let δPB
f,c,t,s as shown in Definition (4.13) be an indicator to define whether for one

combination of flight f , class c, and time slice t − 1 to t of the booking horizon

of s the difference of the forecast to the bookings is smaller than that of the naive

forecast to the bookings.

• Let nu-u
PB (s) as shown in Definition (4.14) be the number of cases in which the

difference between the unconstrained forecast computed the unconstrained bookings

is smaller than that between the naive forecast and unconstrained bookings for s.

• Let êu-u
PB (s) as shown in Definition (4.15) be the percent better indicator.
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δPB
f,c,t,s :=

1 |func (f, c, t, s)− b (f, c, t, s) | < |f̂unc (f, c, t, s)− b (f, c, t, s) |

0 else.

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 1, ..., N s

(4.13)

nu-u
PB (s) :=

∑
f∈F

∑
c∈C

Nt∑
t=1

δPB
f,c,t,s

∀ s = 1, ..., N s

(4.14)

êu-u
PB (s) :=

nu-u
PB (s)

|F | · |C| · (N t)
· 100

∀ s = 1, ..., N s

(4.15)

Armstrong & Collopy (1992) emphasize the ease of explanation as an advantage of RAE

over U2. However, as described in Makridakis (1993), the use of RAE is not without

problems, either, as it can be blown out of proportion due to overly large random values.

On the other hand, the use of Theil’s U2 can be justified in a scientific context when

managerial understanding is not the first priority.

Armstrong (2001) argues against the use of both a coefficient of determination, R2, and

Root Mean Square Error (RMSE ) when evaluating time series forecasting methods. R2,

as shown in Definition (4.16), is calculated from the ratio of the sum of squared errors

and the total sum of squares of a set of predicted and observed values. While an R2 of 1

is regarded as an indication of a perfect fit of predicted values to the observed data, this

can be misleading. On the one hand, this figure does not consider a systematical bias. On

the other hand, with a variation of zero in the data, R2 can turn out as zero, indicating

no correlation, even if the forecast is correct.

• Let b (s) be the average number of bookings per flight and class and slice of time of

the booking horizon observed in s.

• Let R2 (s) as shown in Definition (4.16) be the coefficient of determination for fore-

casts computed in s.
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b (s) :=

∑
f∈F

∑
c∈C
∑Nt

t=1 b (f, c, t, s)

|F | · |C| ·N t

R2 (s) :=

∑
f∈F

∑
c∈C
∑Nt

t=1 (func (f, c, t, s)− b (f, c, t, s))2(
b (f, c, t, s)− b (s)

)2

∀ s = 1, ..., N s

(4.16)

The RMSE as shown in Definition (4.17) is calculated as the square root of the mean

squared error (MSE ) also referred to as mean square forecast error (MSFE ) or mean

square deviation (MSD). It offers an alternative to the mean absolute error (MAE ) or

mean absolute deviation (MAD). The RMSE is cautioned against in Armstrong & Collopy

(1992), Armstrong & Fildes (1995) and Armstrong (2001) as it overstates the impact of

large errors. Its interpretative pitfalls are also emphasized in Fildes (1992). While this

makes sense in so far as that larger errors can lead to larger economic losses, it mixes

the interpretation of results with their calculation. For the same reason, the use of MSE

is criticized in Chatfield (1988). It is recommended for use only when the predicted

quantities are of a comparable order. In the case of comparing for instance departures of

the same flight, this can hold true.

• Let êu-u
RMSE (s) be the RMSE computed as shown in Definition (4.17).

eu-u
RMSE (s) :=

√∑
f∈F

∑
c∈C
∑Nt

t=1 (func (f, c, t, s)− b (f, c, t, s))2

|F | · |C| ·N t

∀ s = 1, ..., N s

(4.17)

In Fildes (1992), the calculation of a Geometric Root MSE Squared is suggested in order

to summarize the indicator. For reasons of computational effort, like U2, RMSE will be

averaged arithmetically in the further text.

Scale-dependent measures such as MSE cannot be used to compare forecast performance

over diverse series. Measures based on percentage errors such as MAPE are undefined if

zero values are predicted (division by zero), and measures based on relative errors such

as MRAE can overstate extreme values. Based on these problems, Hyndman & Koehler

(2006) introduce a new measure. The Mean Absolute Scaled Error (MASE) is calculated
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as a mean of the RAE, scaling the forecast error to the error of the naive forecast (see

Definition (4.7)).

• Let êu-u
MASE (s) be the MASE computed as shown in Definition (4.18).

êu-u
MASE (s) :=

∑
f∈F

∑
c∈C
∑Nt

t=1 |func (f, c, t, s)− b (f, c, t, s)|
|F | · |C| ·N t

∀ s = 1, ..., N s

(4.18)

Using the concept for computing MASE, the authors also define the Root Mean Squared

Scaled Error (RMSSE ).

• Let êu-u
RMSSE (s) be the RMSSE computed as shown in Definition (4.19).

êu-u
RMSSE (s) =

√√√√√∑
f∈F

∑
c∈C

Nt∑
t=1

(func (f, c, t, s)− b (f, c, t, s))2(
f̂unc (f, c, t, s)− b (f, c, t, s)

)2

∀ s = 1, ..., N s

(4.19)

In order to directly compare the accuracy of two competing forecasts, Diebold & Mari-

ano (1995) suggests the use of an evaluation of a null hypothesis stating a lack of difference.

The authors claim that their approach allows for a more diverse range of forecast errors.

They formulate the hypothesis as the statement that the population mean of the loss-

differential series of the two forecasts is 0. A summary of such tests can be found in

Harvey (1997).

With regard to the variety of available forecast measures, some limitation is called for.

When considering the idea of forecast measures as such rather than comparing two speci-

fied methods, rankings appear to make more sense than straight comparisons. Therefore,

tests based on a hypothesis assuming equal forecast quality will be neglected from this

point on.

One flaw inherent to scaled quality indicators becomes clear on further consideration.

Whether forecasts are scaled to the performance of a naive approach or to the spread of
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actual values, in the case of small numbers, division by zero is a constant issue. Especially

with regard to revenue management, however, this cannot be ignored: whether a forecast

predicts 5 or 100 bookings for a situation in which 0 bookings occur can make all the

difference.

The only indicators that avoid this trap are those that are not scaled. While for example

RMSE does not adjust for scale, it also considers every error as it occurs with the gravity

in which it occurs. Due to the lack of scaling, RMSE values cannot be compared over

data sets of different proportions. A simulation could allow for the artificial stabilizing

of market sizes: Three different methods can be evaluated based on the same customer

model and therefore within the same order of magnitude.

4.2. Applied Forecast Performance Evaluation

Much research is concerned with the theory of evaluating forecast accuracy. However,

there are also several reports of applied forecast evaluation in the area of revenue man-

agement. The topic is split between evaluations based on data from real-life systems and

evaluations using a simulation environment. While real-life data necessarily includes the

actual degree of complexity, it is also truncated and limited with regard to data collec-

tion methods. In contrast to this, simulation-based approaches offer more insight into

customer decisions but are limited by implicit model assumptions.

W. M. Swan (1990) represents one of the first reports of forecast evaluations based

on a simulation. In this case, the evaluation is focused on the spill (rejected customer

requests) caused by capacity allocation decisions based on demand forecasts. The results

of the analysis performed indicate that it is crucial – unconstraining is referred to as an

“estimate of spill” in this study.

Zeni (2001a) describes the evaluation of a range of unconstraining methods using a simu-

lation to constrain data and forecasting methods to unconstrain it again. The constrained

data is compared to actual airline data sets. The text has already been summarized in

3.2, the findings are also summarized in Zeni (2001b). The author judges any approach

preferrable to that of ignoring the truncation of data. He indicates that expectation max-



Chapter 4: Demand Forecast Performance Measurements 45

imization methods work best. Such findings are also confirmed by Weatherford (2000)

and Weatherford & Pölt (2002).

Another research study concerned with evaluating unconstraining methods is presented

in Ferguson et al. (2007). This study actually uses hotel data but relates the methods and

tests considered to those applied to airline data in other studies. Estimation maximization

methods and a newly proposed double exponential smoothing approach are compared

under the assumption of strictly static demand.

Ratliffe (2008) considers the problem of unconstraining under the aspect of customers

flexibly choosing from a range of flights offered. The results presented are based on a

simulation study. Evaluation is performed by a combination of MAD and MAPE ranking,

comparing multi-flight and single-flight estimation maximization methods. The conclusion

is that overall demand volume can make a difference for the success of forecasting methods.

In Ryzin & McGill (2000), the success of a revenue management system without a sys-

tematic forecast is evaluated using a simulation system. A simulation framework for the

evaluation of revenue management strategies is also presented in Abdelghany & Abdel-

ghany (2007) and Abdelghany & Abdelghany (2008). With regard to the success of the

introduction of a network-based forecast method, a performance analysis is presented in

Rockmann & Alder (2009). In Pölt (1998), some thoughts on forecast methods and their

evaluation are presented. P. P. Belobaba (1998) considers the same issue based on PODS

simulations. Forecasting approaches to estimating customer behavior, with special regard

to sell-up, are evaluated in C. Hopperstad (2007).

In Frank et al. (2008), a number of general principles for the development of simulations

to evaluate revenue management systems is provided. Thoughts regarding the calibration

of stochastic demand data for such simulations are offered in Kimms & Müller-Bungart

(2007).
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5. Research Gap and Opportunities

As has been shown, a body of research on the theory as well as some documentation on the

actual application of forecast evaluation for revenue management is available. Research

opportunities arise as a gap exists in the available literature. While simulation methods

have been applied to estimate the success of revenue management strategies, potential

of exclusive knowledge on the demand model included in a simulation has not been used

extensively. Additionally, few simulations include flexible demand as opposed to demand

streams conforming to the static assumptions included in many forecast methods.

Most theoretical evaluation methods focus on the calculation of forecast accuracy. This

is usually regarded to be the difference between actual observations and predictions. In

demand forecasting for revenue management, observations are indirectly influenced by

predictions – bookings only manifest if optimized availabilities allow them. The opti-

mization uses the forecast as input. New error measurements may be computed by not

comparing predictions to bookings but instead comparing them to a suitable transforma-

tion of demand knowledge as it is available in a simulation environment.

As a systematic connection between observed values and predictions rarely is considered

in theory, developments in error measurements over time are neglected. When predictions

may influence observations, phenomena such as self-fulfilling prophecies can arise. Signs

for such methodical flaws can be found in the indicator development. As a simulation

enables the quick modeling of long-term effects, the consequences of systematic develop-

ments can also be analyzed.

The revenue consequences of the use of a forecast method are often used as indicators

when the use of methods in the real world is examined. However, revenue may also be

impacted by the interaction of forecast and optimization. It does not in fact offer informa-

tion on how correct a forecast is but rather indicates how financially successful its use in a

certain environment has proven to be. A decomposition of the revenue management sys-
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tem would offer new opportunities of comparing forecasts without necessarily considering

the effect they have on revenue.

Using a transparent demand model in a simulation, traditional evaluation methods

may be reconsidered. New approaches to forecasting that attempt to describe demand

behavior can be evaluated by comparing parameters drawn from the forecast and the

model.

From the research gap described, three further steps can be derived:

Decomposition: When the components of a system can be isolated, processes can be

designed to evaluate them separately. This way, the performance of individual parts of

the system can be analyzed, while the other parts are kept stable (ceteris paribus). Such

a decomposition may be applied to a revenue management system or to an approach to

forecasting. This way, the accuracy of a forecast and its consequences for revenue can be

considered separately.

Simulation Environment: A simulation environment offers the opportunity of imple-

menting a decomposed model of revenue management and of interchanging separate mod-

ules. In addition to parts of the revenue management system, the market as presented

by a demand model can be influenced in a simulation. The demand model is transparent

in such an environment and can be mined for analysis. Furthermore, the cycles of fore-

casting, optimization and customers booking tickets can be sped up to observe long-term

effects.

Concept Application: Based on a decomposed model and knowledge about forecast

and forecast evaluation methods, expectations toward the evaluation of forecasts can be

stated. Simulation experiments can be designed and conducted to test them. From the

results of these simulation experiments, insights toward forecast evaluation may be drawn.



48

Part II.

Solution Approach - Concept and

Implementation
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A revenue management system can be described as three processes: Demand is pre-

dicted in the forecast component, availabilities to maximize revenue are computed in the

optimization component, and seats are allocated according to this optimization and pos-

sibly strategic goals in the inventory. Corresponding to the aspects described in Chapter

3, the process of forecasting may be divided up further.

Using a simulation system, the theoretical decomposition of revenue management can be

realized under laboratory conditions. The evaluation of methods of revenue management

in simulations has already been described in Section 4.2. The concept described in this

chapter goes one step further by systematically introducing knowledge of the demand

model (as is exclusive to the simulation environment) to the evaluation of forecasts.

As this thesis concentrates on the evaluation of demand forecasts, the decomposed view

of optimization and inventory is not described in further detail here. However, it may be

realized in a similar fashion.
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6. Simulation for Decomposition and Evaluation of RM

Systems

First, a concept for the overall evaluation of a revenue management system in a simulation

environment is described in the chapter. Next, the forecast component as a whole as well

as the aspects of predicting demand volume, unconstraining, and behavior aspects are

considered.

6.1. Overall System View

The consideration of the performance of a complete revenue management system follows

the ideas of decision theory as outlined in Granger & Pesaran (2000). This approach does

not conclude whether any part of the system is a decisive factor in its success.

Traditionally, in order to evaluate a whole system, one looks at whether it does what

it is supposed to do: Maximize revenue. When considering mathematical methods, this

can be achieved by mathematically proving that given correct forecasts, under certain

assumptions, an optimization algorithm determines inventory controls that yield maximal

revenue. An example of this approach can be found in Mayer (1976).

However, the knowledge that given correct forecasts, under certain assumptions, a rev-

enue management system works optimally is not helpful in practice. The assumptions

used in mathematical proofs are often simplified – one example is the “low fare demand

before high fare demand” rule described in Section 2.2. Forecast quality cannot be as-

sumed to be perfect or even constant. Results based on those conditions do not necessarily

apply to real-world systems.

A more practical view of evaluating a complete revenue management system is to look

at its outcome. This may be done by implementing and testing it on a real-world market

or under laboratory conditions using artificial demand.
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The advantage of a real-world implementation obviously lies in the confrontation of the

system with just the amount of complexity it is supposed to handle. At the same time,

results from the real-world may be tainted by events or economic trends and therefore

may not give clear information on the performance of a new method.

Artificial demand can be designed to include only a desired degree of volatility. Further-

more, the same demand may be used to test two or more methods. However, performance

when confronted with simplified model may not allow for conclusions on real-world per-

formance.

The results of a revenue management system are bookings. Beyond these bookings, ag-

gregated by departure, fare class, and time of booking, monetary indicators are yield (the

average fare paid) and revenue (the sum of fares paid by all booking customers). While

the first goal of revenue management is to maximize revenue, indicators on productivity

such as seat load factors can be helpful, too.

A simulation, in which detailed knowledge on demand behavior is available, offers the

opportunity of generating some additional results. These, as will be described subse-

quently, pertain information on rejected customers as well as on dependent demand be-

havior. As each customer can be observed requesting tickets and and being accepted or

turned down, the equivalents of turn-down or click-stream data as described in Section 3.2

can be derived. Therefore, in the simulation, one can easily find out how many requests

were rejected and for which reasons. This may happen for two reasons, termed spill and

spoilage.

If customer requests are rejected due to limited capacity, this is called spill. Ideally, the

phenomenon should apply to low-fare demand, which is rejected in favor of customers with

a higher willingness to pay. If customer requests are rejected in order to reserve seats for

more valuable demand that fails to materialize, this is called spoilage. Any rejection can

be categorized as one or the other. While spill can rarely be avoided, given that aircrafts

do have limited capacity, spoilage is the consequence of imperfect revenue management.

Vertically dependent demand may be observed within a simulation in terms of buy-

down and sell-up. As demand is artificially generated to include a cost function as well as

maximum constraints, each individual passenger’s maximum willingness to pay is known.

The demand model may include flexible choice behavior letting each customer minimize
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costs by choosing the cheapest available booking class within the parameters of product

preference. This leads to an effect also observed in practice: Customers often pay less

than what they theoretically are willing to. As information on the acceptance of product

restrictions and the acceptance of price is available, comparisons between what was booked

and what might have been booked are feasible in a simulation. Each booking can be placed

in a continuum of up-sell (the passenger was forced to pay more than the lowest price for

the requested product) and buy-down (the passenger’s maximum willingness to pay was

not fully exploited).

Horizontally dependent demand, customers choosing between available itineraries, can

be documented as recapture. Recapture can be observed when a customer, on not being

able to book his first choice due to limited availabilities, books a seat on a different

itinerary rather than not booking at all. In a demand model with flexible customers,

measuring recapture is not trivial. When many factors play a role in customer choice, it

can be difficult to decide what the originally desired and what the alternatively accepted

itinerary was. One solution is to define “first choice” as the itinerary a customer would

have chosen if the all prices were the same.

Another feature of a simulation is the possibility of repeating processes while keeping

individual components (such as the demand model) stable. This way, long-term conse-

quences of the use of methods can be analyzed. In practice, economic trends as well as

changes in the market situation (i.e. the entry of competitors) may distort the impact of

a new method. In a simulation, artificial demand can be used repeatedly and methods

can be tested ceteris paribus. This way, for example, the consequences of using historical

data as generated using a forecast method can be observed by comparing the results over

time. If the bookings, revenue, spill, spoilage, booking behaviors or recapture change,

this will not be due to changes in customer behavior.

The scheme of how to compare such a system’s results is shown in Figure 6.1. Step (1)

is to generate artificial demand for as many periods as the simulation aims at modeling.

Some of this data will be used for history building in step (2). In the case depicted, this

includes periods 1 to t−1. Requests and knowledge about the demand model are used to

provide the basis for the forecasts to be evaluated. This is realized by creating inventory

controls using an optimization based on forecasts derived from the knowledge of artificial
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Figure 6.1.: Evaluating the RM System

requests. These inventory controls are then used to turn the requests into booking data,

constraining them.

The historical booking data created in step (2) presents the basis for further calculations

in step (3). Now different forecast methods come into play. They all share the same data

basis – historical bookings from step (2). As the simulation can be repeated using the

same demand while employing different methods, each method can be tested. The results

of the forecasts are each handed to the same optimization method to generate inventory

controls. In a reservation system, each of the different sets of inventory controls is used to

channel the requests generated for period t. The results of this process can be compared

over the variety of methods evaluated.

In the set-up illustrated, only forecast performance over the course of one period, t,

is actually measured. By generating historical booking data for periods 1 to t − n and
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using the compared methods for optimizing availabilities during periods t − n + 1 to t,

any number n of periods can be included. This way, long-term evaluations are feasible.

6.2. Forecasting Component

The quest for evaluating the performance of the forecast component in a revenue manage-

ment system is not new. Some research conducted with regard to it has been introduced

in Chapter 4. Most attempts at evaluating the quality of a forecast that do not consider

the complete system such as described in Section 6.1 use one of three available options

presented in Figure 6.2.

The straight-forward approach is to compare predicted demand to the actual bookings.

However, these can be quite different quantities as bookings are constrained. Therefore,

it seems sensible to transform either the forecast or the bookings in order to make a

comparison more meaningful. In order to do this, one either compares the results of
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the forecast with unconstrained actual bookings, or constrained forecast results to actual

bookings.

These comparisons, however, do contain one major bias. The same method applied

to unconstrain historical booking data in order to build the forecast is applied to trans-

form actual bookings for the comparison. When constraining the forecast, the inventory

controls that were applied according to an optimization based on the forecasts are put

into place. Any forecast evaluation that is conducted like this will either include the

unconstraining method of the forecast or the inventory controls based on it.
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Figure 6.3.: Evaluating the Forecast Component

An approach based on a simulation system as presented in Figure 6.3 may avoid these

catches. Once more, artificial demand is generated in step (1). Requests are generated

for a time-line from 1 to t− 1, to ensure a test of the forecast’s ability to pick up trends

and seasonality. Requests for periods 1 to t − 1 are used to build a history of bookings

for the forecast methods to be evaluated in step (2). In step (3), the different forecast
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methods are tested by providing the same data basis in the form of historical bookings

and for the task of forecasting unconstrained bookings for period t.

Finally, the resulting forecasts can be evaluated by comparing them to the actual re-

quests as generated for period t. The forecast that did best in recognizing the underlying

patterns and unconstraining sales data should yield the result with the smallest deviation

to the actual requests. As different approaches to forecasting may offer different forms of

information, the requests need to be transformed in order to make a comparison feasible.

This means that a kind of perfect or psychic forecast needs to be created, employing the

same information and data format as the evaluated forecast method.

Of course, aspects of the process generating a psychic forecast may influence the test

results. However, a consistent approach in transforming requests, such as the general

principle of always exploiting maximum willingness to pay, can still enable a consistent

comparison of diverse methods.

The comparison can follow standard statistical procedures. This includes the calcula-

tion of key indicators as described in Chapter 4.

6.3. Demand Volume Aspect

Forecasting for revenue management consists of two linked tasks. Historical booking in-

formation needs to be transformed in order to learn about past demand (unconstraining).

Historical patterns need to be recognized and extrapolated in order to provide predictions

toward future demand (time series aspect). When evaluating forecasts, it can make sense

to separately consider a method’s ability to fulfill both tasks. This may provide insight

to build better approaches by combining existing concepts. While this section describes a

simulation-based evaluation of the time series aspect, the next section will consider how

the unconstraining aspect may be isolated and analyzed.

While unconstraining seems to be connected to the special nature of revenue manage-

ment, the consideration of time series is a problem common to all kinds of forecasting.

Once more, three aspects arise: Demand seasonality, long-term trends, and arrival timing.

Over long or short terms, developments depending on time can include recurring pat-

terns. The fluctuations based on these patterns are called seasonality. Apart from actual
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seasons such as spring or summer, demand may also fluctuate periodically with regard to

the day of week or the time of day. By recognizing seasonality and accurately predicting

it, a forecast can use the knowledge of the time a flight departs to estimate expected

demand.

While economic cycles may be considered as the outcome of a seasonality spreading over

the course of several years, it is more common to view them as a separate aspect, called

the trend. Trends provide information on the general development of demand volume over

several seasons. Rather than assuming that the second week day of the tenth week of

every year will see the exact same demand, different overall demand level for the current

situation based on recent developments is predicted. Seasonality is helpful to predict

patterns within this development.

Last but not least, demand arrival within the sales period also follows certain patterns

that may depend on the customers requesting demand. With regard to the timing of

a departure, demand arrival for the different booking classes or fares offered needs to

be predicted in order to allow for a successful optimization. This, too, is time series

forecasting.

Existing approaches to measuring a method’s ability to predict time series tend to do

so by providing a set of data that is not constrained. In revenue management, that means

relying on historical bookings that occurred in classes that were always available. In

practice, such data can only be the result of consistently low demand. Basing a forecast

evaluation on it means basing it on a special demand situation – one cannot say how the

forecast would perform given high levels of demand or high fluctuations in demand.

A simulation approach to evaluating the time series aspect can provide booking data

that has not been constrained by inventory controls. In such a model, capacities can be

set to infinity. In order to not turn even one customer away, capacity may be neglected

entirely: By closing booking classes, sales constrained and no longer represent the com-

plete demand. Without fixed capacities, unconstraining is necessary no more. Demand,

no matter how high or low and no matter how volatile, directly translates into bookings

that can be used as a basis for forecasts.

Based on this idea, requests are generated for departures t = 1..T in step (1) of Figure

6.4. The requests for 1..T − 1 are turned into historical bookings by assigning them to



Chapter 6: Simulation for Decomposition and Evaluation of RM Systems 58

generate 

stochastic 

requests

artificial 

requests for t

2
1

transform 

without 

constraining

artificial 

requests for 

1, …, t-1

artificial 

(historical) 

booking data

compare

requests 

forecasted 

for t

RESULT

3

transform 

without 

constraining

forecast 

variantsbenchmark 

forecast

Figure 6.4.: Evaluating the Trend Component

booking classes without constraining them in step (2). Forecast methods are provided

historical data and predict demand for the departure t = T in step (3). The forecast is by

design unconstrained and can therefore be easily compared to the requests generated. Any

flaws in the prediction are due to demand fluctuations caused by seasonality or trends.

As with traditional methods, the three aspects of revenue management time series may

be heeded by different indicators used in the error measurements. A forecasts ability

to pick up trends can be observed by comparing the overall predicted demand to the

overall amount of requests. Seasonality patterns included in forecasts may be evaluated

by forecasting and evaluating requests for a number of departures t = T − n..T rather

than for just one departure. The correct identification of arrival patterns can be checked

by comparing the predicted demand arrival rates for a departure to the demand arrival

rates inherent to the original requests.
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This section explained ways of evaluating the time series aspect alone based on the

simulation concept. Such is also the focus of much research on forecasts and forecast

evaluation as presented in Armstrong (2001). The further text will focus mainly on

evaluating the performance of unconstraining as well as conclusions toward dependent

demand behavior. This allows for an examination of problems particular to revenue

management forecasting.

6.4. Unconstraining Aspect

Traditionally, a forecast’s ability to deduct demand from sales data has been evaluated

using historical data with as little overall fluctuations as possible. For example, seasonality

may be filtered including only departures within one season, day of the week and time

slot in the analysis. Trend may be excluded by considering a very uniform market with

little fluctuations. By separately considering bookings for time slices before departure,

the necessity of anticipating arrival rates can be neglected. All this makes the evaluation

of a method possible only under very specific circumstances. The challenges a forecast

faces for example when faced with a market with volatile demand are not considered.

A new approach to evaluating the unconstraining component is illustrated in Figure 6.5.

In a simulation, requests can be generated repeatedly (including a normally distributed

distortion) for only one point of time, t, in step (1). They can be turned into bookings

by an optimization based on an initial forecast in step (2). With a history of bookings

for one departure, the forecast methods tested only have to unconstrain the sales data in

order to predict demand in step (3).

Unconstraining is only ever feasible within the range of available data. This means that

if a class was never open, no method will be able to guess whether there was demand in

a market for this class and if so, how much. A perfect forecast is likely to only yield one

kind of (restrictive) inventory controls. Therefore, depending on how the demand model is

calibrated, none of the applied methods are likely to correctly estimate all demand. They

can, however, be compared with one another given the same degree of information. In

order to further analyze methods, they might be compared based on different approaches

to initial optimization. For example, a first-come-first-served optimization without a
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Figure 6.5.: Evaluating the Unconstraining Component

forecast may be offered in step (2). The forecast outcomes given the data basis may yield

information about its reliability.

Diverse long-term effects are also conceivable. If, for example, overall demand is un-

derestimated on the long run, this can lead to a spiral-down effect: Capacity could be

reserved for expected high-value demand is allocated and sold at low fares. Customers

with a high willingness to pay may still book cheap tickets if those are available. As a

result, even fewer bookings are recorded in the high-value classes and even lower forecasts

are calculated. Such effects may be analyzed by letting a simulation run repeatedly on the

same, flexible customer model. If the customer behavior is stable, no changes in revenue

outcomes and bookings should occur. Any trend then points toward systematic flaw in

the uncontraining component.
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Systematic flaws may be inherent to a forecast method. For example, as already men-

tioned in Section 3, Internet usage has lead to a shift in customer behavior. Customers

book flexibly and bookings in one class or even on one flight or itinerary may be depen-

dent on current availabilities. To derive informations on customer behavior from historical

bookings and possibly additional information has become a new task of forecasting. The

next section offers some ideas of how to evaluate the success in this regard.

6.5. Demand Behavior Aspects

The idea of dependent customer behavior as opposed to a model in which customers

statically demand tickets in one booking class is still relatively new. Customer choice

may depend on the lowest price available, flight or itinerary alternatives, or even product

preferences as opposed to price sensitivity. In any case, availabilities have an influence

on what customers book, and no availability in one specific booking class and for one

specific flight does not automatically mean that a customer will not book anything else.

Literature describing approaches to incorporating this idea into revenue management has

been listed in Section 3.3.

Traditionally, models incorporating dependent demand have been evaluated by com-

paring them to concepts relying on static demand models. In practice, expected revenue

improvements are calculated based on expected up-sell. The accuracy of a method’s de-

scription of a customer model as derived from historical bookings, though, has rarely

been emphasized. For example, when considering classical customer choice models such

as introduced in Ben-Akiva & Lerman (1985), the assumption is that customer surveys

establish reasonable estimates of customer choice factors.

A simulation with a demand model including customer choice offers the possibility of

further analysis. By separately setting up the request generation including a cost function

as well as price and product restrictions, mixed situations can be generated and the results

of forecast methods applied can be compared. The actual factors of the cost function are

known in the simulation.

The comparisons of forecasts including dependent aspects within a simulation may be

conducted on any of the levels described in this section. Important is the consideration
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that the inclusion of a dependency assumption all by itself may not automatically lead

to more accurate forecasts or even higher revenues. Once more, a simulation offers the

opportunity of testing the concept within a freely manageable environment and on a stable

data basis.
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Figure 6.6.: Evaluating the Choice Component

As Figure 6.6 shows, the evaluation of the choice component differs from the evaluation

of the unconstraining component only in so far as that not merely overall demand volumes

are compared. Instead, the choice factors predicted by the forecast are extracted from

the demand model and used for the evaluation.
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7. Simulation Environment for Revenue Management

This section describes the revenue management simulation implemented and applied for

the consideration of demand forecast evaluations. The simulation system in place can

be divided into three major components. One is the simulation control, functioning as a

framework that controls the event-based timing of a simulation as well as the management

of information and the triggering of reporting functionalities. The choice-based demand

model is a complex component necessary to make the simulation realistic. Finally, the part

of the simulation that is modeled after an actual revenue management system: modules for

forecasting, optimization, and inventory control. The components interact as simulation

control triggers customer requests, forecasts and optimization, customer requests interact

with the inventory control to create bookings, the results of this interaction are saved and

processed, new forecasts and optimized seat allocations are calculated based on historical

bookings.

Figure 7.1 shows the simulation system in the context of set-up and analysis. Supply and

demand are prepared from schedule, fares and input parameters. The system transforms

this data into result indicators such as bookings and revenue according to parameters

such as required confidence intervals. The analysis component puts data into context,

generating information that conclusions may be drawn from.

In Section 7.1, the details of the simulation control as well as the data and parameters

involved are described. Subsequently, a description of the supply and demand model

used in the simulation is provided in Section 7.2. Finally, in Section 7.3, the revenue

management methods implemented are outlined.

Setting up a simulation system in order to evaluate forecasts, the evaluation approach

of replicating outputs as described in Armstrong (2001) is included to some extent. The

importance of a sufficiently large population of predictions and observations to measure

errors on is pointed out in Armstrong & Collopy (1992). In the case of a simulation
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Figure 7.1.: The Simulation Cycle

system, this pertains the number of runs evaluated as well as the number of scenarios set

up. Both are within the influence of the researcher but constrained by limits in time and

effort. Evaluating a method by comparing its output to actual knowledge about what is to

be predicted may yield misleading results as stochastic elements can lead to lucky flukes.

However, repeating the stochastic process over the course of several simulation runs,

such outliers can be neutralized: Results that are averaged over a number of replications

differing only in stochastic error terms tend to be more significant.

The system presented here follows the theory of stochastic simulation as laid down

in Law & Kelton (1997). In addition, the guidelines offered in Frank et al. (2008) are

considered.
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7.1. Simulation Control

Contemplating the design of a revenue management simulation system, several aspects can

be identified. Each simulation experiment needs to be prepared: Data has to be provided

and the nature of some processes as well as the reporting required need to be specified.

An experiment consists of several simulation runs; these have to be initialized and from

one run to the other, data needs to be updated or reset. Within each simulation run,

points of time within a booking horizon pass and events need to be handled as customers

request and book tickets. Finally, the simulation results need to be stored and processed.

7.1.1. Data Management

All data is stored as lists of records, with each record having a set of properties distin-

guishing it. The following overview outlines the information stored for each item; the

algorithms used to process or create the data will be described in more detail in the next

sections.

At the start of the simulation, supply and demand data is read into the system cache

for fast access. As the simulation proceeds, simulation control provides access to the

required data. After a simulation experiment has finished, reporting information stored

in the result records is processed and written out (see Section 7.1.3).

As illustrated by Figure 7.1, data from outside the system enters the simulation at

several moments. This data can be split into different sets as shown in the following list.

• Schedule, booking classes and fares: This information can be taken from the real

world and may be based on the actual schedule as well as a selection of the actual

fares

• Parameters for itinerary generation: This input describes how combinations of origin

and destination and itineraries connecting the two are generated from the schedule.

• Parameters for request generation: This input describes how demand is to be gen-

erated for the simulation.

• Parameters for simulation processing: These parameters describe how the simulation

is to be executed.
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List Properties Description

Airports name, latitude, longitude, traffic area Airports connected by

flights included in the

schedule used in the sim-

ulation.

Flights carrier, departure airport, arrival airport,

flight number, departure time, duration,

days of operation, capacity

Flights from one airport

to another.

Legs origin, destination, traffic area, distance Connections; at least one

flight between the two

airports is needed to jus-

tify a leg, but one leg can

include several flights at

different times of day.

Booking

Classes

name, carrier, traffic area, one boolean

value describing whether each of the in-

cluded product characteristics applies

Classes offered in the

simulation.

Fares carrier, class name, pairing, price Prices of tickets in one

class on one flight.

Pairings origin, destination, traffic area, request

share, customer mix

Origin and destination

combination offered to

customers.

Itineraries origin, destination, included flights, travel

time

Travel itineraries linking

two airports in a pairing.

Table 7.1.: Simulation Environment: Supply Lists
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List Properties Description

Customer

Types

name, request distribution, departure time

distributions, cost function, willingness to

pay, maximum accepted travel time, ac-

cepted deviation from the preferred de-

parture time, a boolean value describing

whether each of the included product char-

acteristics is accepted by this customer,

error term used for the individual distor-

tion of requests

Input for demand genera-

tion: Types of customers

that may request tick-

ets throughout the simu-

lation.

Requests run, time of request, preferred departure

time, pairing requested, actual cost func-

tion, actual price and product preferences

Output of demand gen-

eration: Customers that

request tickets during the

simulation.

Table 7.2.: Simulation Environment: Demand Lists

• Parameters for result analysis: These parameters describe how the basic result

indicators generated in the simulation can be refined and put into context.

The following parameters are required to prepare the generation of pairings of origin

and destinations and itineraries connecting them. They define which connections are

acceptable for travel and will become part of supply:

• minimum and maximum connection time,

• minimum and maximum travel distance,

• maximum alternative itineraries per pairing,

• maximum transfers.

The data input needed to set up a supply scenario and the results of the connection

builder process are listed in Table 7.1.

Table 7.2 describes the customer types needed for setting up demand generation and

the requests that are its result. To assign demand to markets, a customer mix needs to

be provided as input parameter, defining a distribution over pairings and customer types.
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Parameters influencing the analysis may be based on the motivation of the simulation

experiment. Output of the simulation experiments will be described in Section 7.1.3.

7.1.2. Simulation Runs and Lists of Events

Apart from providing data access and reporting facilities, two tasks of simulation control

remain. On the one hand, between simulation runs, preparatory measures and the evalu-

ation of stochastic confidence need to be controlled. On the other hand, within each run,

a list of events needs to be processed.

Between Simulation Runs

The simulation includes a number of repetitions (runs) as defined during set-up. As

described in Law & Kelton (1997), a certain number of runs is necessary to make the

outcome statistically significant. Within the simulation, any number of modules commu-

nicate with each other and access the data, and any number of processes can be triggered.

Depending on the requirements as declared during set-up or hard-coded into the system,

information on the simulation process is written out. Before the first run, an initialization

needs to be performed. Before every successive run, data from previous runs needs to be

processed and made available.

The initial run of any simulation experiment lacks historical information from preceding

runs. If a forecast requiring such information is included in the model, a substitute needs

to be provided in the first run. The task of simulation control is to recognize to first run

of an experiment and to generate an initial forecast that may be methodically different

from the forecasts in subsequent runs. Alternatively, before the first run, historical data

might be imported from an external data set and provided for the forecast.

After the initial run, data created in the preceding run may be used in the upcoming

run. This can be the case if the updating of the forecast method applied in the simulation

experiment depends on historical bookings. The task of simulation control is then to store

the booking data, reset the inventory, and trigger a forecast update at the beginning of

the new run. After every run, some amount of information on the interaction of the

demand model and revenue management processes needs to be permanently stored – this
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is the task of result reporting as documented in Section 7.1.3. Variables or data structures

intended to hold only the data created within one run need to be reset.

The overall number of runs N s included in one simulation experiment may be set before

the simulation starts. Alternatively, it can be set to depend on a defined confidence

interval.

The convergence of the sum of bookings and the sum of revenue toward the true mean

is tested after every run based on a confidence interval. This interval is determined via the

student (t) distribution and parameters, α and δ. Inequality (7.1) is used to test whether

the probability that the expected value does not differ from the true mean by more than

a percentage δ is equal to or lesser than α.

To describe the test for confidence, the following notation is needed.

• Let s be number of runs already processed.

• Let x be the average of the indicator (sum of bookings or revenue) over n.

• Let σ be the deviation of x.

• Let α be the acceptable probability of error.

• Let δ be the slice of x that is acceptable as a confidence interval.

• Let N̂ s be the number of runs recommended to reach the confidence interval.

∣∣∣∣tn−1,1−α
2
· σ√

n

∣∣∣∣ ≤ |δ · x| (7.1)

If Inequality (7.1) is not fulfilled within the set maximum number of overall runs N s,

the number of runs recommended to reach the confidence interval, N̂ s is calculated for

informational purposes as shown in Definition (7.2). If deemed reasonable, the experiment

can be repeated with the required number of runs.

n̂ :=

(
tn−1,1−α

2
· σ
)2

(δ · x)2 (7.2)

When the indicators can be expected to develop systematically during a simulation

experiment, testing for a confidence interval is less useful. However, in this case, a number
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of initial runs may be exempted from the test (and the calculation of x). The system can

then be tested for stability under an expected dynamic behavior.

Within Simulation Runs

A revenue management simulation can be set up to answer a multitude of questions.

Regardless of its purpose, certain modules seem to be compulsory and are depicted in

Figure 7.2. These modules interact and thereby create or update data to be analyzed

later.

Within each run, simulation control has to keep track of time and trigger various pro-

cesses. This happens based on events. An event may be the arrival of a customer request,

the end of the booking horizon and the departure of a flight, or the necessity for an update

of forecast and optimization within the booking horizon. Event-controlled simulation al-

lows for an efficient way of implementation: The alternative would be to account for each

minuscule time slice within the booking horizon to test whether any action is necessary.

As a run begins, simulation control first triggers the update or the initialization of the

forecast module. Based on this, inventory allocation is optimized for each flight included
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in the experiment. The list of customer requests is processed in the order of their arrival.

Each request is scheduled for a specific time in the booking horizon. If an update was

scheduled for a point of time that lies between two subsequent request, this update is

triggered by the simulation control before the next request is processed.

Data is generated as the revenue management system starts working. This includes

forecasts, optimization results, availabilities, and bookings as well as possibly details on

customer choice behavior shown in the course of the booking process. Simulation control

keeps track of this data as it is updated within the run.

The simulation includes the basic parts needed for revenue management: A forecast

determines demand to come and thereby provides an objective function for revenue to

be maximized by the optimization. That, in turn, yields a set of inventory controls

intended to result in maximum revenue. The algorithms and the data used in these

processes depend on the methods included as documented in Section 7.3. The resulting

availabilities are managed by an inventory system. The inventory acts as the interface to

the market.

A simulation could also be set up to examine the effects of competition with minimal

effort. For this, several parallel revenue management systems would be implemented. This

means that several inventories based on separate forecast and optimization modules are

kept up. The required data can still be stored in the same component but is distributed

according to airline. All airline inventories interface with the same demand model, the

market. Keeping track of different methods and therefore modules assigned to different

airlines is also within the responsibility of simulation control.

7.1.3. Reporting

Once a simulation experiment has been concluded, a broad data basis can be analyzed.

This information may be used to evaluate the general performance of a system set-up,

test the functioning of an implemented simulation, or even calculate error measurements

considering the level of accuracy of a given forecast. The information needed depends on

the specification of the simulation experiment considered. The data that has to be col-

lected and processed in order to analyze the result of simulation experiments is presented

in Table 7.3.
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Bookings: Per run, flight, class, point of time before departure.

Revenue: Per run, flight, class, point of time before departure.

Yield: Per run, flight, class, point of time before departure.

Available seats: Per run, flight, class, point of time before departure.

Forecast Error: Per run and point of time before departure, aggregated

over flight, class, time before departure.

Buy-Down and Sell-

Up:

Per customer request, aggregated over run and time be-

fore departure.

Denied and Accepted

Requests:

Per customer request, aggregated over run and time be-

fore departure.

Table 7.3.: Output of Simulation Experiments

7.2. Supply and Demand Data

The goal of revenue management is to sell a perishable product at the right price. In the

airline industry, the product is a seat on a flight differentiated by characteristics including

the price, restrictions and features such as comfort and flexibility. Customers choose what

to buy based on their preference. When the flight departs, the seats on it lose their value.

In order to implement a realistic revenue management simulation, both product (sup-

ply) and customer (demand) need to be defined in detail. Offering routes through a

network as well as a range of booking classes tied to diverse restrictions and features

confronts customers with alternative products. They choose from these according to a

rational choice model including a cost function and a set of maximum values and boolean

acceptance rules.

7.2.1. Supply Information

The supply of an airline consists of seats on flights, represented by tickets. The flights are

described in the airline’s schedule. The capacity of each flight is defined by the aircraft

assigned during the fleet assignment process. By transferring from one flight to another,

customers travel from origin to destination according to itineraries. These itineraries are

calculated by booking engines provided by the airline itself or third parties. They are an
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integral part of a simulation that models flexible customers. Finally, tickets are sold for

different booking classes. Each class defines a set of restrictions, features and the price of

the ticket.

Flights and Itineraries

Flights are described by a departure airport, an arrival airport, and a departure date and

time. They are further distinguished by a flight number and a carrier code. A combination

of two airports connected by one or more flights is referred to as a leg. Based on airports

as vertices and legs as edges, networks can be defined.

As described in Section 2, state of the art research tends to consider network rather

than flight views. Especially with the advent of Internet booking portals, customers no

longer book single flights but rather decide for or against itineraries leading them on a

path through a network. While the decision of whether to include a network model in

forecasting and optimization is a methodological one, a realistic simulation should model

both customer choice behavior and the product range based on a network view.

In the revenue management simulation system presented, a network is created from

the legs included during simulation set-up. In order to do so, two data structures are

required. A list of pairings describes combinations of origin and destination linked by

one or more legs. Further information that can be provided for each pairing includes

the knowledge whether a direct flight from origin to destination is available, the traffic

area and the geographical distance involved. For each pairing, a set of itineraries can be

defined. These itineraries describe the legs that a customer might book tickets for in order

to travel from the origin of a pairing to its destination. The complete process is presented

in Figure 7.3; those parts of the model that enable the network view are marked bold.

The connection builder derives pairings and itineraries from a set of flights. For this

purpose, a shortest path algorithm needs to be implemented. As indicated in Figure 7.3,

a modified Dijkstra offering the n-shortest paths is used in this case. How many paths a

customer may chose from and what itineraries are regarded as valid depends on a range

of settings. For example, while it may make sense to travel from Munich to New York

via Frankfurt, the customer should not be offered a trip from Munich to Frankfurt via
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Figure 7.3.: Defining the Product

New York. In order to avoid such invalid itineraries, constraints on the overall duration

of travel,the amount of transfers and connecting times are set by parameters.

The relationships of flights, pairings and itineraries are as presented in the following

formulas.

• Let f ∈ F be the flights included in the schedule.

• Let Θ represent the parameters defining maximum duration of travel, amount of

transfers and connecting times.

• Let q ∈ Q be the pairings that are possible based on a given set of airports.

• Let ∆ (q̂, F,Θ) be the Dijkstra function defining the itineraries connecting origin

and destination of pairing q̂ based on a set of flights F and a set of parameters Θ.
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• Let i ∈ I be the itineraries derived from the schedule and the parameters.

• Let Iq be the set of itineraries derived from the schedule and the parameters con-

necting origin and destination of pairing q.

• Let Fi be the set of flights included in itinerary i.

Function (7.3) shows the generation of itineraries from pairings. If no itineraries can be

computed according to the parameters, the pairing is removed from the set of pairings.

New itineraries that are found for a pairing are added to the set of itineraries.

∆ (q̂, F,Θ) =

Iq̂ → I := I ∪ Iq̂

{∅} → Q := Q\q̂

∀ q̂ ∈ Q

(7.3)

According to this process, Inequality (7.4) states that every pairing included in the set of

offered pairings needs to be associated to one or more itineraries.

|Iq| ≥ 1 ∀ q ∈ Q (7.4)

Equation (7.5) shows that the set of offered itineraries is made up by subsets of itineraries

offered for each pairing.

I =
⋃
q∈Q

Iq (7.5)

Classes and Fares

Tickets are categorized by booking classes characterized by a set of restrictions or features.

The price of the ticket (fare) is defined by a function over the booking class and the chosen

flight. In practice, fare classes present an additional differentiation, defining diverse tariffs

for the same booking class. The simplified model implemented in the simulation assumes

that every booking classes represents exactly one fare class.

Every booking class has distinguishing characteristics: A caption naming it, a set of

restrictions, and a set of product features. Examples of possible restrictions are a weekend

or a minimum stay. Example of features are special flexibility or the seating in the business

compartment. A lack of features may also be modelled as a restriction.
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Each flight is assigned a set of booking classes. It seems intuitive that flights span-

ning greater distances are connected to a higher fare than short flights, even if the same

booking class is chosen. Furthermore, it common that the fare increases with increasing

features and decreasing restrictions as presented in Inequality (7.6). Therefore, the func-

tion defining the price of a ticket takes into account the booking class and the flight’s

traffic area.

• Let c ∈ C be the classes offered, ordered by decreasing features and increasing

restrictions.

• Let f ∈ F be the flights offered.

• Let p (f, c) define the price of booking class c for flight f .

p (f, c) > p (f, c+ 1) ∀ f ∈ F ; c ∈ C (7.6)

7.2.2. Demand Model

If there were no customers demanding tickets, revenue management would be senseless.

Therefore, any revenue management simulation needs to include a demand model. How-

ever, the degree of sophistication of this artificial demand depends on the simulation

requirements. Each part of the simulation component needs input and processes and

stores updated or additional data.

In order to provide challenges for current forecasting methods, the customer model

should include as few simplifying assumptions as possible. For example, customers should

aspire to travel via a network from origin to destination rather than statically booking

single flights. Furthermore, the customer model should allow for flexible decisions based

on individual availability situations as they are possible in the age of comparison shopping.

Finally, while the demand model implemented here strives to include new ideas on flex-

ible customer behavior, one caveat needs to be mentioned. As flexible customer choice

was excluded by the assumption of independence in early demand forecasts for revenue

management, other aspects of customer behavior may not be included in the model im-

plemented here. Such implicit assumptions may lead to results that deviate from real-life

observations, but cannot be avoided whenever a model of reality is designed based on

current knowledge.
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Demand Volume and Arrival

The overall amount of requests is approximated within the set-up parameters. It is as-

signed as a percentage of the amount of seats offered based on the supply model. A

demand volume setting of 150% will therefore result in about 1.5 times as many requests

as there are seats. This is an approximation in two regards: Some of these requests can

end up as bookings on more than one flight, and the actual demand volume is based on

a inhomogenous Poisson process as described below. The demand volume is distorted by

an error term for each run and used as an input for the intensity of a Poisson process.

This avoids a too deterministic model of demand.

Definition (7.7) formalizes the distortion of overall demand volumes.

• Let R be the parameter defining the average amount of requests to be scheduled

per simulation run of the experiment.
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• Let εs be the error term of demand for simulation run s drawn from the normal

distribution with expected value 0 and a deviation defined by an input parameter.

• Let Rs be the set of requests that is generated for simulation run s.

|Rs| := R + εs ∀ s = 1, ..., N s (7.7)

Depending on the number of pairings included in the simulation, the share of requests

allocated to each can be fixed manually or automatically. In an aggregated, automated

approach, request shares depend on characteristics such as traffic area or the existence of

direct flights.

Equation (7.8) presents the underlying constraints.

• Let q ∈ Q be the pairings offered.

• Let γ(q) ∈ [0, 1] be the share of overall requests allocated to pairing q.∑
q∈Q

γ (q) = 1 (7.8)

In order to allow for sufficiently complex patterns in customer arrival and behavior, the

simulation is based on the concept of customer types. The customer type describes the

factors applied for a choice of itinerary given a combination of origin and destination, the

requirements of a booking class, a customer’s price-sensitivity and the arrival distribution.

The share of the requests assigned to one pairing that is connected to one customer type

is determined by the pairing’s customer mix. Again, this customer mix (a distribution

over the existing customer types) may be assigned manually per pairing or automatically

based on pairing characteristics.

Depending on the motivation for implementing a simulation system, the featured de-

mand model can include different degrees of complexity. In order to test the workings of

mathematical methods especially with regard to optimization, demand is frequently mod-

eled based on stochastic distributions. Demand arrival in the sense of the implementation

presented here is based on a Poisson process with separate parameters for each customer

type.

Depending on the number of pairings included in the simulation, the request share can

be fixed manually or automatically. In an aggregated, automated approach, pairings can
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be assigned shares depending on characteristics such as traffic area or the existence of

direct flights.

Every pairing has a customer mix associated to it, which includes one or more customer

types. Equation (7.9) presents the underlying constraints.

• Let m ∈M be the index of customer types.

• Let η (q,m)) ∈ [0, 1] be the share of requests allocated to pairing q that is to be

based on customer type m.∑
m∈M

η (q,m) = 1 ∀ q ∈ Q (7.9)

The absolute amount of requests based on one customer type for one pairing can be

calculated from the request share and the customer mix as shown in Definition (7.10).

|Rq,m
s | := |Rs| · γ (q) · η (q,m) (7.10)

Based on this, an inhomogeneous Poisson Process can be generated using the arrival

distribution defined for the customer type.

• Let λq,m be the overall intensity of the Poisson process for pairing q and customer

type m throughout the booking horizon.

• Let P [N (q,m, t+ τ)−N (q,m, t) = k] be the probability of k requests based on

customer type m to arrive for pairing q in the time slice t to t + τ of the booking

horizon of simulation run s.

This means that the Poisson Process (Xi,q,m)i∈N is defined by Xi,q,m is distributed accord-

ing to exp(λq,m). It defines P [N (q,m, t+ τ)−N (q,m, t) = k].

When requests are generated from customer types, a normally distributed error term

is added to the cost function. A function that computes requests from customer types

therefore needs input variables as presented in Function (7.11).

• Let |Rq,m,Nt

s | be the number of requests based on customer type m planned to arrive

for pairing q within the booking horizon of simulation run s.

• Let σε be the deviation of the normal distribution that error terms εr are drawn

from.
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• Let Ψ
(
m, q, |Rq,m,Nt

s |, εr
)

be the function that defines |Rq,m,Nt

s | individual requests

for pairing q based on customer types m and a given error deviation εr.

Ψ
(
m, q, |Rq,m,Nt

s |, σε
)

= Rm,q,Nt

s

∀ m ∈M, q ∈ Q, s = 1, ..., N s
(7.11)

As shown in Equation (7.12), the overall set of requests generated for one simulation run

can be divided into subsets of requests derived from specific customer types for specific

pairings.

Rs =
⋃
m∈M

⋃
q∈Q

Rq,m,Nt

s ∀ s = 1, ..., N s (7.12)

Itinerary Choice

Given a departure day and a pairing, the choice of itinerary is based on the cost function

and product acceptance stored in each request. A discussion of the decision factors follows.

More factors are imaginable and could be implemented without much additional effort.

As this section formally describes the preference for one itinerary over the other given

by each request, some notation is required. First, there are some additional features of

itineraries and pairings:

• Let q ∈ Q be the index of all pairings offered in the simulation.

• Let νdist (q) be the minimum distance between origin and destination airports of the

pairing q.

• Let νdur (q) be the minimum travel time required by pairing q

• Let i ∈ I be the index of all itineraries offered in the simulation.

• Let Iq be the set of all itineraries connecting origin and destination of pairing q.

• Let Ii,q be a boolean matrix indicating whether itinerary i connects pairing q as

shown in Definition (7.13).

• Let xdep (i) be the departure time of itinerary i.

• Let xdur (i) be the travel time attached to itinerary i.
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• Let xtrans (i) be the number of transfers in itinerary i.

Ii,q :=

1 i ∈ Iq

0 i /∈ Iq
∀ i ∈ I; q ∈ Q (7.13)

Next, the factors of the cost function and the product acceptance defined in the cus-

tomer type:

• Let βdep (m) be the weight of the deviation from the preferred departure time in the

cost function of the customer type m.

• Let βdur (m) be the weight of the difference between actual and minimum travel

time in the cost function of the customer type m.

• Let βtrans (m) be the weight of the number of transfers included in the chosen

itinerary in the cost function of the customer type m.

• Let βcar (m) be the cost factor attached to any itinerary that is not provided by the

preferred carrier of customer type m.

• Let δdep (m) be the factor for maximum acceptable deviation from wd (r), defined

by the customer type m.

• Let δdur (m) be the factor for maximum acceptable travel time, defined by the cus-

tomer type m.

• Let σε be the deviation of the normal distribution that the error terms are drawn

from.

Finally, some more characteristics of requests:

• Let r ∈ R be the index of requests included in the simulation.

• Let mr be the customer type that request r was generated from.

• Let qr be the pairing that request r was generated for.

• Let wdep (r) be the preferred departure time of request r.

• Let εr be the actual error term drawn from the normal distribution and attached to

the cost function of request r.
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• Let Ĉ(i, r) be the cost of itinerary i considered by request r, without regard for the

actual ticket price (given the assumption that all itineraries cost the same).

With regard to the set of itineraries acceptable according to one request, note the

relationship displayed in Definition (7.14). All sets of alternative itineraries are subsets of

the quantity of itineraries offered. In order to belong to the set of acceptable itineraries of

one request, the considered alternative needs to belong to the set of itineraries associated

with the pairing the request is targeted at.

Ir ⊂ Iqr ⊂ I ∀ r ∈ R (7.14)

Departure Deviation: The time of day that is the preferred departure time wdep (r) de-

pends on a daily distribution from which the preferred hour of departure is drawn when

the request is generated. The factor βdep (mr) weights the difference between wdep (r)

and the departure time of the itinerary considered, xdep (i), in the cost function. Only

itineraries that fulfill the constraint shown in Inequality (7.15) are considered. This in-

cludes a maximum acceptable deviation from the preferred departure time that depends

on a parameter δdep (mr) as well as the distance covered by the pairing qr, ν (qr).∣∣wdep (r)− xdep (i)
∣∣ ≤ δdep (mr) ·

√
ν (qr)

∀ r ∈ R; i ∈ Iqr
(7.15)

Travel Time: The factor βdur (mr) weights the difference between the minimum travel

time νdur (qr) connected to the pairing qr requested and the travel time of the itinerary

considered, xdur (i), in the cost function. Only itineraries that fulfill the constraint shown

in Inequality (7.16) are considered. This constraint includes a maximum acceptable de-

viation from the minimum travel time that depends on a parameter δdur (mr) as well as

the distance covered by the pairing qr, ν (qr).∣∣νdur (qr)− xdur (i)
∣∣ ≤ δdur (mr) ·

√
ν (qr)

∀ r ∈ R; i ∈ Iqr
(7.16)

Transfers: The factor βtrans (mr) weights the number of transfers included in the con-

sidered itinerary, xtrans (i), in the cost function. Only itineraries that fulfill the constraint
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shown in Inequality (7.17) are considered; this constraint includes a maximum acceptable

number of transfers that depends on a parameter δtrans (mr).

xtrans (i) ≤ δtrans (mr)

∀ r ∈ R; i ∈ Iqr
(7.17)

Brand Preference: If a carrier is preferred by a customer type and several carriers are

included in the simulation experiment, a factor βcar (mr) is included in the cost function.

It adds a constant additional cost to any brand that is not the preferred carrier.

Cost Function Without Price: The cost function without regard for the price is shown

in Equation (7.18). Note that a normally distributed error depending on the customer

type, εr is added to each request’s cost function to individualize it. By minimizing the

cost, the first choice itinerary for every request can be determined from the quantity

of acceptable itineraries according to the constraints shown above. However, when a

customer makes a booking decision, he can only really consider itineraries for which

tickets are available.

Ĉ(i, r) = βdep (mr)
(∣∣νdep (qr)− xdep (i)

∣∣)+ βdur (mr)
(∣∣νdur (qr)− xdur (i)

∣∣)
+βtrans (mr) · xtrans (i) + βcar (mr) + εr

∀ r ∈ R; i ∈ Iqr

(7.18)

Simplifying Model Assumptions: In the revenue management simulation presented in

this text, some transformations are based on pragmatic assumptions. One is the as-

sociation between maximum acceptable departure time deviations and travel times: A

connection to the overall distance traveled is known, but the precise functional form is

not established. For the data used in this simulation, the product of a factor and the

square-root of the distance worked well. However, different functional forms are con-

ceivable. The same transformation is used to make the customers’ willingness to pay

dependent on the distance traveled. Finally, the form of the cost function is assumed to

be linear. Much more complex functional forms are conceivable. Implementing them is

easily possible, but a comparison of cost functions was not the focus of this work. In

order to model flexible customer choice behavior, the condition for bookings depending

on availabilities, the linear cost function is sufficient.
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Class Choice

In order to formally express the logic of class choice, additional variables have to be

defined:

• Let f ∈ F be the index of flights.

• Let Fi be the set of flights included in itinerary i.

• Let c ∈ C be the index of booking classes offered.

• Let p (f, c) be the fare associated to a ticket for flight f in booking class c.

• Let z ∈ Z be the set of restrictions of booking classes - the absence of a feature,

such as comfort seating, is modeled as a restriction.

• Let Zc be the restrictions included in booking class c.

• Let Zr be the restrictions accepted by request r.

• Let δprice
r be the factor defining maximum willingness to pay for customer type m.

• Let δprice
r be the factor defining maximum willingness to pay for request r.

• Let βprice
m be the weight of fare in the cost function of the customer type m.

• Let C(i, r) be the cost of itinerary i as defined by the cost function of request r

when a lowest available fare has been found.

• Let δproduct
r,c be a boolean matrix defining whether the product represented by booking

class c is acceptable according to the product requirements of request r.

• Let δwtp
r,c,i be a boolean matrix defining whether the price of class c on itinerary i is

acceptable according to the willingness to pay of request r.

• Let cmin
r be the cheapest acceptable class according to the product requirements of

request r.

Product Characteristics: Every customer type includes a list of acceptable restrictions

and required features for classes. These correspond to the restrictions and features that

are used to describe the booking classes in the supply model. Whether one of the classes
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available for an itinerary is acceptable becomes a matter of aligning class characteristics

and customer requirements. Class c is acceptable for request r if it fulfills the condition

presented in Inequality (7.19):

δproduct
r,c :=

1 Zc ⊂ Zr

0 else.

∀ r ∈ R; c ∈ C

(7.19)

Based on product acceptance, the acceptable class with the lowest price can already

been defined. This is based on the model limitation that classes have the same descending

order of price and restrictions on all flights. The cheapest acceptable class of a request r

is determined according to Definition (7.20).

cmin
r := c′ | |p (◦, c′) = min

(
p (◦, c) ∀ c ∈

{
C × δproduct

r,c

})
∀ r ∈ R

(7.20)

Price Characteristics: Included in the definition of the customer type is the maximum

willingness to pay. It depends on the parameter δprice
m and the distance covered by the

pairing qr, ν (qr). δ
price
r is calculated by distorting the underlying δprice

mr with the normally

distributed error term εr as shown in Definition (7.21). The choice of a combination of

class c and itinerary i is only acceptable if the overall fare fulfills the restriction shown in

Inequality (7.22).

δprice
r := δprice

mr + εr ∀ r ∈ R (7.21)

δwtp
r,i :=

1
∑

f∈Fi p
(
f, cmin

r

)
≤ δprice

r ·
√
ν (qr)

0 else.

∀ r ∈ R; i ∈ Iqr

(7.22)

The demand model is based on the assumption that every customer will accept a class

that includes more features or less restrictions than required, if that class is offered at

a fare lower than the maximum willingness to pay. A customer will always chose the

cheapest of all acceptable classes of one itinerary. The cost of tickets in the cheapest

acceptable class of the flights included is added to each itinerary’s cost function. The

resulting costs for the considered alternatives are compared and the itinerary with the
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lowest cost is chosen. The cheapest available and acceptable class on this itinerary is

booked.

Cost Function With Price: The cost function including the price is shown in Equation

(7.23). The minimum available and acceptable price is added to the function with a

weight factor βprice
mr .

C(i, r) = Ĉ(i, r) + βprice
mr ·

∑
f∈Fi

p
(
f, cmin

r

)
∀ r ∈ R; i ∈ Iqr

(7.23)

If no acceptable class is available, the itinerary is not considered. If no acceptable class

could be determined on any of the acceptable itineraries, no booking takes place.

7.2.3. Exemplary Scenario

An example may be useful in illustrating how a simulation scenario can be generated. This

section will describe the design of supply data and the generation of customer requests.

Picture a small network consisting of four airports (vertices): The domestic airports

FRA (Frankfurt) and HAM (Hamburg) as well as the intercontinental airports JFK (New

York) and BKK (Bangkok). The four airports are connected by three vice-versa flight

legs (edges): FRA-HAM/HAM-FRA, FRA-BKK/BKK-FRA, HAM-JFK/JFK-HAM.

As shown in Figure 7.5, part (a), such a network offers a maximum of six possible

pairings. If no other constraints are considered, a customer can travel from any of the

airports to any of the other airports. An example is traveling from HAM to BKK via

FRA or directly, routes described by the dotted line in part (b).

A connection builder including constraints such as a maximum number of acceptable

transfers and a minimum as well as a maximum connecting time, however, may enforce

a limitation of offered pairings. In the given example, traveling from BKK to JFK is

only possible by transfers at both FRA and HAM. With a restriction to a maximum of

one transfer per itinerary, the pairing BKK-JFK is no longer considered, with the result

shown in part (c).
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Figure 7.5.: Example – Product

Other pairings, in the given example HAM-BKK, may be excluded due to connecting

times exceeding the maximum given by input parameters. The network presented in part

(d) of Figure 7.5 would remain.

In order to provide complete itineraries for customers to chose from, a connection

builder combines the existing flights to form paths through the network. In keeping

with the current example, four pairings and eight directed itineraries emerge: FRA-HAM

(direct), HAM-FRA (direct), FRA-BKK (direct), BKK-FRA (direct), HAM-JFK (direct),

JFK-HAM (direct), and FRA-JFK (via HAM) as well as JFK-FRA (via HAM). Other

theoretically possible paths such as FRA-JFK-FRA-HAM are excluded by restrictions of

the connection builder.

Before the three existing pairings can be assigned shares of customer types, these need

to be defined. This small example contains only two types of customers: Business travelers

and tourists.

The timing of requests for tickets needs to be fixed per customer type. Keeping in

line with classical assumptions, tourists plan their trips a long time before departure,

whereas business travelers spontaneously decide to travel. Accordingly, the bulk of tourist
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Business Tourist

arrival distribution

seasonal distribution

weekly distribution

daily distribution

Figure 7.6.: Example – Customer Types

customers arrives during the first two thirds of the booking horizon, whereas most business

customers arrive during the last third. As presented in Section 7.2.2, this is modeled as

changes in the intensity of the Poisson process over time. The different distributions with

regard to arrival and desired departure time can be seen in Figure 7.6.

Tourists may include different factors in their cost functions and tend to display a lower

maximum willingness to pay than business travelers. In this example, the customer type

representing tourists is willing to accept a weekend stay as well as a minimum stay of

five days. The customer type representing business travelers requires extra flexibility and

seating in the business compartment.

Pairings are assigned a general share of requests as well as a customer mix. To keep a

simulation realistic, the amount of customer requests is calibrated to match productivity

indicators such as seat load factors. An orientation for the assignment of shares to cus-

tomer types may be taken from actual booking data for classes aimed at different product

segments.
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For this example, HAM-JFK (vice-versa) is assigned a 40% share of pairings whereas

FRA-BKK (vice versa) gets a 20% share. Assuming an overall demand of a thousand

requests, this means 400 requests for HAM-JFK and 200 requests for FRA-BKK.

One of the pairings is a major business route while the other is set to be a predominantly

tourist market. The consequence is to assign HAM-JFK a customer mix that determines

an 80% share of classical business customers and a 20% share of tourist customers, whereas

FRA-BKK gets exactly the opposite, 20% business customers and 80% tourists.

When requests are generated, the request shares of the pairings are regarded as fixed.

For 200 requests, the fact that the customer will want to travel from FRA to BKK is

certain. For 40 of these, the customer type will be “business” whereas for the rest (160),

the customer type will be “tourist”. A random element enters the model when these

numbers are used as the intensity of the respective Poisson processes for tourist and

business customer types. The request arrivals generated from these Poisson processes can

still differ from the expected intensity.

The distributions underlying the customer types are presented in Figure 7.6. The de-

sired departure time is drawn from three distributions: First the week, then the week

day, finally the preferred hour of departure are drawn. The result might look something

like this: A business customer requests a flight from FRA to BKK, leaving in the tenth

week of the year, on Tuesday, at 9 a.m. – the request arrives ten days before departure.

The request will include the product restrictions defined in the type description, for ex-

ample an exclusive acceptance of seats in the business compartment combined with an

intolerance for weekend stays.

The underlying cost function is taken from the customer type. It is distorted by an

error term drawn from a normal distribution for each request.

7.3. Revenue Management Components

Apart from supply and demand data, a revenue management simulation needs to include

a model of the systems actually in use in airline revenue management. Required are a

forecast, an optimization, and an inventory control. The implementation details for these

modules are described in the following text.
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7.3.1. Forecast

Following basic approaches to demand forecasting as described in Section 3, two forecast

methods have been implemented. The exponential smoothing forecast follows the tra-

ditional assumption of static demand by observing historical bookings for one class to

predict demand for the same class. The price sensitive forecast alternative considers pos-

sible buy-down and sell-up to occur between classes that are regarded as interchangeable

by the customers.

Initial Forecasts

Every forecast method needs past observations to predict the future. In the first run of

a simulation experiment, such information is not yet available. Several ways of handling

this are conceivable:

Zero Forecast: When this forecast is chosen as the initialization method, all demand to

come is set to zero. As actual bookings are observed, the forecast is expected to increase.

Random Forecast: When this forecast is chosen as the initialization method, a parame-

ter is provided to indicate the predicted seat load factor. From this, the absolute number

of demand is derived via the capacity. This demand is then predicted equally distributed

over the booking classes.

Real Forecast: Using the real-world forecast for the supply included in the simulation

could be a way of ensuring a realistic initial status. However, the condition for this

is a demand model that is accurately calibrated to match real-world demand. As full

information on real-world customer choice behavior is not available, this is condition

cannot be fulfilled.

Psychic Forecast: This is a forecast that is based on knowledge of demand as inherent

in the simulation. Different methods of computing it are conceivable and may lead to

different results.



Chapter 7: Simulation Environment for Revenue Management 91

Exponential Smoothing

The exponential smoothing forecast predicts demand volume based on historical obser-

vations. By predicting demand for time slices before departure, the forecast considers

demand arrival patterns. By predicting demand for each flight, departure time patterns

are included.

The inclusion of seasonal patterns in the forecast could be implemented by adding

methods taken from time series forecasting. However, as the focus of the simulation ex-

periments conducted is on the evaluation of the quality of unconstraining and recognition

of demand behavior, this has not been implemented.

In the exponential smoothing forecast the unconstraining aspect is included via additive

pick-up. Historical bookings are transformed unless the class in which they occurred was

available throughout the considered time slice. If it was available, the observation is

added to the history of bookings as shown in Definition (7.24). If it was not available,

the number of bookings observed is compared to that observed in previous runs while the

class was open. The higher value is used. This process is formally expressed in Definition

(7.25).

• Let s = 2, ..., N s be the runs included in a simulation for which a forecast update is

performed. s+ 1 occurs chronologically after s and can be based on historical data

derived from s. For s = 1, an initial forecast is supplied.

• Let t = 0, ..., N t be points of time in booking horizon, with t = 0 designating the

start of the booking horizon and t = N t being the time of departure.

• Let c ∈ C be the booking classes ordered by descending price.

• Let f ∈ F be the flights included in the schedule.

• Let b (f, c, t, s) be the bookings observed for flight f , class c, between points of time

before departure t− 1 and t, in simulation run s.

• Let b̂ (f, c, t, s) be the average of historical bookings during the runs 1 to s that

occurred on flight f between points of time t and t − 1 while booking class c was

available.
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• Let bunc (f, c, t, s) be the unconstrained bookings for flight f , class c, between points

of time t− 1 and t, in simulation run s.

• Let a (f, c, t, s) be the seats available for sale for flight f , class c, at points of time

before departure t in simulation run s.

First, the unconstrained bookings observed while the class was available need to be

updated:

b̂ (f, c, t, s) :=


b̂(f,c,t,s−1)·(s−1)+b(f,c,t,s)

s
a (f, c, t− 1, s) > 0, a (f, c, t, s) > 0

b̂ (f, c, t, s− 1) else.

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 2, ..., N s

(7.24)

Next, the observed bookings need to be unconstrained if the class was not available

throughout the time slice:

bunc (f, c, t, s) :=

b (f, c, t, s) a (f, c, t− 1, s) > 0; a (f, c, t, s) > 0

max
(
b̂ (f, c, t, s) , b (f, c, t, s)

)
else.

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 2, ..., N s

(7.25)

The forecast is updated with the help of the unconstrained bookings. The emphasis

given to new bookings over the existent forecast is influenced by a parameter α. Definition

(7.26) shows how the forecast is updated after each run.

• Let func (f, c, t, s) be the predicted demand to arrive for flight f between points of

time t− 1 and t per class c and simulation run s.

• Let func (t, c, t, 1) be the initial forecast.

• Let αexp be the weight of new bookings in the calculation of the updated uncon-

strained forecast.

func (f, c, t, s) := (1− αexp) · func (f, c, t, s− 1) + λexp · bunc (f, c, t, s)

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 2, ..., N s; αexp ∈ [0, 1]
(7.26)

A variation of the exponential smoothing method inlcudes updates of the forecast within

the booking horizon of one simulation run. A comparison of actual and predicted bookings
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is used to determine the current difference in terms of a factor. This factor is applied to

future bookings, as shown in Definition (7.27):

func (f, c, t′, s) := func (f, c, t′, s) ·
(

1 +
bunc (f, c, t, s)− func (f, c, t, s)

func (f, c, t, s)

)
∀ t′ = t+ 1, ..., N t; f ∈ F ; c ∈ C; s = 2, ..., N s

if func (f, c, t, s) > 0, a (f, c, t− 1, s) > 0, a (f, c, t, s) > 0

(7.27)

Price-Sensitive Estimators

Alternative forecasting method uses price-sensitive estimators. The underlying assump-

tion is that every customer will buy the cheapest alternative if classes are only differenti-

ated by price. In the simulation implemented, this is true for booking classes that offer

the same set of characteristics. In that case, demand is influenced by two factors, the

price of the cheapest available booking class and the time before departure.

• Let c ∈ C be a set of booking classes sharing the same set of restrictions, ordered

by descending price – this means N c is the booking class with the lowest price.

• Let b (f, c, t, s) be the bookings that were observed for flight f in class c between

points of time t− 1 and t of simulation run s.

• Let o (f, c, t, s) be a boolean matrix indicating the lowest available class for flight f

between points of time t− 1 and t of simulation run s.

• Let ωTf,t,s be the vector of time elasticity for flight f depending on the point of time

t before departure of run s.

• Let ωPf,c,s be the vector of price elasticity for flight f depending on the class c for

run s.

• Let uT (f, c, t, s) be the time-based estimator before departure for flight f , class c,

and point of time t of run s.

• Let uP (f, c, t, s) be the price-based estimator for flight f , class c, and point of time

t of run s.

• Let αT be the weight of the time-based estimator in the joint estimator.
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• Let αP be the weight of the estimator based on price in the joint estimator.

• Let uJ (f, c, t, s) be the joint estimator for flight f , class c, point of time t and run

s.

First of all, the cheapest class available needs to be determined as shown in Definition

(7.28). This information is stored as a boolean flag per time slice before departure, class,

and run.

o (f, c, t, s) :=


1 a (f, c, t, s) > 0; a (f, c′, t, s) = 0 ∀ c′ = c+ 1, ..., N c

1 c = 1; a (f, c′, t, s) = 0 ∀ c′ ∈ C

0 else.

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 1, ..., N s − 1

(7.28)

According to the assumption that customers will book the cheapest available class,

bookings can only be expected for this class. Therefore, the observed bookings in the

class indicated by a (f, c, t, s) = 1 enter both the price and the time estimator matrices.

For those classes that were not the cheapest available during time slice t, values are derived

via price-elasticity and time-elasticity vectors. The rules according to which the price and

time estimator matrices are filled are formalized in Definitions (7.29) and (7.30).

uP (f, c, t, s) :=



b (f, c, t, s− 1) o (f, c, t, s− 1) = 1

uP (f, c− 1, t, s)/ωP (f, c− 1, s− 1)
∑c

c′=1 o (f, c′, t, s− 1) = 1

uP (f, c+ 1, t, s) · ωP (f, c, s− 1)
∑Nc

c′=c+1 o (f, c′, t, s− 1) = 1

eP (f, c, t, s− 1) else.

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 2, ..., N s

(7.29)

uT (f, c, t, s) :=



b (f, c, t, s− 1) o (f, c, t, s− 1) = 1

uT (f, c, t+ 1, s− 1) · ωT (f,t,s−1)
ωT (f,t+1,s−1)

∑Nt

t′=t+1 o (f, c, t′, s− 1) = 1

uT (f, c, t− 1, s− 1) · ωT (f,t,s−1)
ωT (f,t−1,s−1)

∑t−1
t′=1 o (f, c, t′, s− 1) = 1

uT (f, c, t, s− 1) else.

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 2, ..., N s

(7.30)



Chapter 7: Simulation Environment for Revenue Management 95

The joint estimator matrix is computed as shown in (7.31) using the parameters αexp

(as introduced for exponential smoothing), αT and αP . Note that demand for one class c

is set to be higher or equal to that for the next, cheaper class c+ 1.

uJ (f, c, t, s) :=

(1− αexp) · uJ (f, c, t, s− 1)

+ min
(
αexp ·

(
αT · uT (f, c, t, s) + αP · uP (f, c, t, s)

)
, uJ (f, c+ 1, t, s)

)
∀ αexp, αT , αP ∈ [0, 1] ; αT + αP = 1; f ∈ F ; c ∈ C; t = 1, ..., N t; s = 2, ..., N s

(7.31)

The price-elasticity and time-elasticity vectors are updated based on the new joint

estimator matrix. Considered are those points of time up to which a class was the lowest

available and from which on it was no longer available. If no such change took place, the

elasticity vectors are not updated. This is formalized by Definitions (7.32) and (7.33):

ωP (f, c, s) :=
Nt∑
t=1

(o (f, c, t− 1, s− 1)− o (f, c, t, s− 1)) · uJ (t, c, s)

uJ (t− 1, c+ 1, s)

∀ f ∈ F ; c ∈ C; s = 2, ..., N s

(7.32)

ωT (f, t, s) :=



∑
c∈C

(
o (f, c, t, s− 1) · uJ (f, c, t, s)

)
·
∏
c∈C

(
c∑

c′=1

o (f, c′, t, s− 1)

)
· 1

ωPc,s

∑
c∈C o (f, c, t, s− 1) > 0

ωT (f, t, s− 1)
∑

c∈C o (f, c, t, s− 1) = 0

∀ f ∈ F ; t = 1, ..., N t; s = 2, ..., N s

(7.33)

In order to make this forecast a valid input for the implemented EMSR-b optimization

algorithm, it needs to be transformed into a pseudo-static version. For this purpose,

each customer is assumed to request the booking class that corresponds to his highest

willingness to pay. The transformation is formally described by Definition (7.34):

func (f, c, t, s) :=

uJ (f, c, t, s)− uJ (f, c+ 1, t, s) c < N c

uJ (f, c, t, s) c = N c

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 2, ..., N s

(7.34)
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7.3.2. Optimization

The optimization method implemented is EMSR-b as first presented in P. Belobaba

(1987b) (see also Section 2.2). As the focus of this work is foremost on forecast eval-

uation, EMSR-b was chosen for its adaptability to different forecast methods. This way,

the optimization method could be kept stable as forecasts vary and are transformed to

match its demands.

EMSR-b uses the accumulated forecast to allocate seats to booking classes. The decision

of whether or not to reserve capacity for more expensive classes is based on the expected

marginal seat revenue. This is calculated as a ratio of expected demand to arrive in one

class and the next cheaper class multiplied by their respective value.

When forecasts are updated within the booking horizon, the optimization can be up-

dated as well. In order to include this option, the point of time t before departure is

included in all calculations described here. If t = 0, the optimization takes place before

any bookings were observed. If availabilities are calculated again after a forecast update,

t > 0 and bookings may have already taken place. Whether or not to update the forecast

and the availabilities is a methodological decision.

• Let c ∈ C be a set of booking classes sharing the same set of restrictions, ordered

by descending price – this means N c is the booking class with the lowest price.

• Let
∑Nt

t=1 f
unc (f, c, t, s) be the sum of the unconstrained demand to arrive for flight

f in class c until point of time t in the booking horizon of run s.

• Let σ (func (f, c, t, s)) be the standard deviation of the forecast of demand for flight

f in class c at point of time t in run s.

• Let b (f, c, t, s) be the bookings that arrived for flight f in class c in run s between

points of time t− 1 and t.

• Let K (f, t, s) be the available capacity of the flight f the point of time t before

departure of simulation run s.

• Let p (f, c) be the price of class c for the flight f .

• Let p (f, c, t, s) be the expected marginal seat revenue for a seat in class c, flight f

at point of time t of simulation run s.
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• Let U−1 be the inverse of the normal distribution.

• Let S (f, c, t, s) be a “safety margin” of demand expected for class c of flight f during

the time between t− 1 and t, based on the standard deviation of predicted demand

and the inverse of the normal distribution.

• Let â (f, c, t, s) be the protected seats assigned to flight f in class c in simulation

run s at the point of time t.

At the beginning of the booking horizon, revenue-maximizing availabilities are com-

puted based on the demand forecast. Protected seats are calculated as the part of the

capacity that is reserved for one particular booking class. In a nested structure, these

seats can be used for bookings in the class they are reserved for or any more expensive

class. Before the booking horizon has started, at t = 0, capacity K (f, 0, s) is equal to the

overall capacity of the aircraft assigned to the considered flight.

To err on the side of caution, the average price of the considered class c and all the

more expensive classes offered is calculated. This average is weighted by the predicted

demand as shown in Definition (7.35). The result is the expected marginal seat revenue:

p (f, c, t, s) :=

∑c
c′=1

((∑Nt

t′=t+1 f
unc (f, c′, t′, s)

)
· p (f, c′)

)
∑c

c′=1

(∑Nt

t′=t+1 f
unc (t′, c′, s)

)
∀ f ∈ F ; c ∈ C; t = 0, ..., N t − 1; s = 1, ..., N s

(7.35)

The standard deviation of the forecast up to class c is computed as shown in Definition

(7.36):

σ̂ (func (f, c, t, s)) :=

√√√√ Nc∑
c′=c

σ (func (f, c, t, s))2

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 1, ..., N s

(7.36)

A safety margin S (f, c, t, s) is calculated using the inverse of the normal distribution,

U−1 and the standard deviation of the forecast.

S (f, c, t, s) := U−1

(
1− p (f, c)

p (f, c, t, s)

)
· σ̂ (func (f, c, t, s))

∀ f ∈ F ; c ∈ C; t = 0, ..., N t − 1; s = 1, ..., N s

(7.37)
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Finally, the protection levels are assigned as shown in Definition (7.38). Note that in

the case of availabilities being updated throughout the booking horizon, bookings that

already took place automatically become part of the protection levels. Protected seats are

allocated from top down: First, the most expensive class gets its share, left-over capacity

is assigned to the cheapest class.

K∗ (f, c, t, s) := K (f, t, s)−
c−1∑
c′=1

(â (f, c′, t, s))

∀ f ∈ F ; c ∈ C; t = 0, ..., N t; s = 1, ..., N s

F ∗ (f, t, c, s) :=(
Nc∑
c′=c

(
Nt∑

t′=t+1

func (f, c′, t′, s)

)
+ S (f, c, t, s)

)

−

(
Nc∑

c′=c+1

(
Nt∑

t′=t+1

func (f, c′, t′, s)

)
+ S (f, c+ 1, t, s)

)
∀ f ∈ F ; c ∈ C; t = 0, ..., N t − 1; s = 1, ..., N s

â (f, c, t, s) :=


min (K∗ (f, c, t, s) , F ∗ (f, t, c, s))

+
t∑

t′=0

(b (f, c, t′, s))
c < N c

K∗ (f, c, t, s) +
∑t

t′=0 (b (f, c, t′, s)) c = N c

∀ f ∈ F ; c ∈ C; t = 0, ..., N t − 1; s = 1, ..., N s

(7.38)

7.3.3. Inventory

A reservation system (inventory) is needed to calculate up-to-date availabilities and han-

dle customer bookings. In the inventory, customer requests for tickets meet the class

providing the desired product characteristics at the lowest available fare. Availabilities

are either calculated based on authorization levels and a nesting structure or by comparing

the value of a booking class to the current bid price.

In the case of authorization levels, each booking class offered is assigned a certain

amount of protected seats. An example for an optimization method yielding results in this
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form is EMSR-b as presented in Section 7.3.2. In order to make the system more robust

and allow for more than one booking class to be sold at any given time, the concept of

nesting as described for example in Talluri & Van Ryzin (2004b) is applied. As protected

seats are calculated using the EMSR-b method in the implemented simulation system,

this system uses a nested fare structure with availabilities that are equal to or exceed the

protected seats.

Any class is available for as long as the overall available seats exceed those seats pro-

tected for more expensive classes. The relationship is presented in Definition (7.39) ac-

cording to the notation introduced in Section 7.3.2.

a (f, c, t, s) :=

min

(
K (f, t, s)−

(
c−1∑
c′=1

(â (f, t, c′, s))−
c−1∑
c′=1

(
t∑

t′=1

b (f, t′, c′, s)

))
, 0

)
∀ f ∈ F ; c ∈ C; t = 0, ..., N t − 1; s = 1, ..., N s

(7.39)

According to this concept, once the protected seats reserved for one class are used up,

customers wanting to book a ticket in this class can access left-over protected seats in

any of the lower classes. Depending on the precise implementation, sold seats are either

subtracted from the lowest class’s protected seats or only from the protected seats of the

class directly nested under the desired class. Availabilities for every class are calculated

by adding up its protected seats as well as all the protected seats for the lower-nested

classes. Depending on whether the separation between the compartments is treated as

flexible or as fixed, a nesting structure can include all the classes offered or only the classes

offered within one compartment.

A graphic illustration of this concept is provided by Figure 7.7. Three classes are

included in the example shown. Class 1 is the most expensive one with the highest

nesting position. While 50 seats are protected for this class alone, all 100 seats making

up overall capacity may be sold in this class if none of the cheaper ones is booked. Class

2 represents an intermediate value. Based on unconstrained forecasts, 10 protected seats

have been calculated for this class. As 50 seats are protected for class 1, the remaining

50 seats may be sold in class 2 if the cheaper class is not booked. Class 3, the cheapest

option, is allocated the “left over” seats after protected seats for all more expensive classes
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flight f at 
time t of 

run s

Figure 7.7.: Inventory: Protected and Available Seats

have been reserved. These 40 seats may be sold in class 3. As the cheapest class, it cannot

access availabilities in any of the other classes.

If bid price controls are implemented, calculating availabilities becomes more straight

forward. Each booking class is assigned a value based on its fare and, possibly, the

buy-down it triggers according to a forecast including such information. This value,

also referred to as capacity allocation value, is compared to the bid price assigned by the

optimization component. If the class’s value is lower than the bid price, it is not available,

if it is equal or higher than the bid price, it is available. The bid price changes flexibly

with regard to the seats already sold and the customers expected to request seats in the

future.
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When a customer request arrives, the lowest available classes complying to the cus-

tomer’s product preferences are returned. Now, the customer can chose whether to book

a ticket; he will automatically book the alternative minimizing his cost function if his

maximum willingness to pay has not been excelled by all offers. If a reservation is af-

firmed, the inventory updates the availabilities. In the case of a nesting structure, this

includes updating the protected seats of the lower-priced classes if necessary. In the case

of bid price controls, this includes updating the bid price according to the specifications

given by the bid price curve provided by the optimization.

7.4. Market Implementations

As the basis of the simulation experiments presented in this thesis, one particular instance

of the demand model is continually used. This means the creation of a number of specific

customer types, their assembly to a customer mix, and the confrontation of this demand

with some variations of supply.

To ensure consistency, demand is varied along two clearly defined parameters and con-

fronted three alternative supply structures. These combinations can be used to evaluate

the application of a number of forecast and forecast evaluation methods.

7.4.1. Demand Variations

A number of different customer types were implemented to allow for a variety of product-

oriented and price-oriented behaviors. Underlying is the assumption of rational choice

behavior: Customers will always try to minimize cost in terms of price and preference

factors. For the mode, this means that all customer types will buy the cheapest ticket

available given all other (product) conditions are equal. Furthermore, they will choose

the itinerary that offers the best conditions according to the factors of their cost function.

Only one basic demand model was realized for the simulation experiments conducted.

This is based on the theory that revenue management does not change basic market

characteristics but instead utilizes different market segments by developing a targeted set
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of offers. According to this, the same demand model should lead to quite different result

indicators depending on both the fare structures and the inventory controls in place.

To allow for scenarios that are purely price-driven, purely product-driven, and hybrid,

requests based on customer choice behaviors including either priority need to be generated.

The implemented customer types are:

• No Frills 1: Main focus on price, will only accept “no-refund” restriction,

maximum willingness-to-pay is about 10% of the price span offered.

• No Frills 2: Main focus on price, will only accept “no-refund” restriction,

maximum willingness-to-pay is about 30% of the price span offered.

• Tourist Weekend: Main focus on price, will accept “no-refund” and “weekend-

stay” restriction, maximum willingness-to-pay is about 50 % of the price span of-

fered.

• Tourist Medium: Main focus on price, will accept all restrictions, maximum

willingness-to-pay is about 60% of the price span offered.

• Tourist Lux: Main focus is on travel time and departure time, will accept all

restrictions, maximum willingness-to-pay is over 100 % of the price span offered.

• Business Long: Main focus is on travel time and departure time, will accept

“no-refund” and “minimum stay” restrictions, maximum willingness-to-pay is about

90% of the price span offered.

• Business Flex: Main focus is on flexibility, travel time and departure time, will

not accept restrictions, maximum willingness-to-pay is about 95% of the price span

offered.

• Business Pure: Main focus is on flexibility, business compartment seats, travel

time and departure time, will not accept restrictions, maximum willingness-to-pay

is over 100% of the price span offered.

Figure 7.8 shows the distribution of these customer types in the mix applied to all

markets in the simulation. Depending on the error term added to the individual origin-

destination combinations, the customer mix presented may vary. This error term is based
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Figure 7.8.: Mix of Customer Types

on an input parameter defining the standard deviation of the normal distribution the error

term is drawn from.

Overall demand was varied according to two parameters, demand volume and the devi-

ation of the error term. While volume was controlled over the overall amount of requests

generated, the error term drawn from the normal distribution with a zero average and

the set standard deviation is included in multiple parts of the model. This way, the input

parameter deviation influences the uncertainty of demand.

The realized variations are listed below. The abbreviation “Vol.” describes the number

of requests in a percentage relation to the number of seats included in the simulation. For

example, “Vol.050” indicates that the number of generated requests equals 50% of the

number of seats. The abbreviation “Dev.” describes the standard deviation set for the
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normal distribution the error term is drawn from. In the case of “Dev.00”, demand only

varies from one run to the other due to the effects of drawing from a Poisson distribution.

• Vol.050 Dev.00: 3.000 requests are scheduled to arrive. The standard deviation

of error terms is 0.

• Vol.050 Dev.01: 3.000 requests are scheduled to arrive. The standard deviation

of error terms is 1.

• Vol.050 Dev.05: 3.000 requests are scheduled to arrive. The standard deviation

of error terms is 5.

• Vol.050 Dev.10: 3.000 requests are scheduled to arrive. The standard deviation

of error terms is 10.

• Vol.050 Dev.20: 3.000 requests are scheduled to arrive. The standard deviation

of error terms is 20.

• Vol.100 Dev.00: 6.000 requests are scheduled to arrive. The standard deviation

of error terms is 0.

• Vol.100 Dev.01: 6.000 requests are scheduled to arrive. The standard deviation

of error terms is 1.

• Vol.100 Dev.05: 6.000 requests are scheduled to arrive. The standard deviation

of error terms is 5.

• Vol.100 Dev.10: 6.000 requests are scheduled to arrive. The standard deviation

of error terms is 10.

• Vol.100 Dev.20: 6.000 requests are scheduled to arrive. The standard deviation

of error terms is of 20.

The consequences of varied volume and error deviation are presented in Figure 7.9.

Shown are the results of first-come-first-serve inventory controls averaged over 50 simula-

tion runs. As expected, the average seat load factor is higher for “Vol.100”. In addition,

it decreases slightly with increasing error deviation. The resulting deviation of the indi-

cator seat load factor increases with increasing error deviation. Average revenue is lower

for “Vol.100”: With more overall requests, more requests for cheap booking classes are
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Figure 7.9.: SLF Average and Deviation depending on Error Term Deviation
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Caption Description Fare Near Fare Far

C seat in business compartment 350 700

Y refundable ticket 250 500

G base fare 175 350

M minimum stay restriction 150 300

W weekend stay restriction 125 250

Table 7.4.: Booking Classes Differentiated by Product-Feature

accepted before valuable customers arrive. Average revenue also decreases with increasing

error deviation. The resulting deviation of revenue shows no clear trend over increasing

error deviation, however, low request volume react stronger to changes in error deviation.

This seems to hold true over all four observed indicators.

7.4.2. Supply Variations

As described in the previous section, the customer behavior is set to be stable throughout

the experiments. However, three representative supply variations are realized to model

three supply strategies found in applied airline revenue management: product-based dif-

ferentiation, price-based differentiation, and hybrid differentiation.

Table 7.4 lists the booking classes that present product-based differentiation. Table

7.5 lists the booking classes that present price-based differentiation. Table 7.6 lists the

booking classes that present hybrid differentiation. Classes are presented from top to

bottom in their nesting order. Two fares are assigned for flights spanning one (“Fare

Near”) or two traffic areas (“Fare Far”).

Parallel to the assumption of rational customer choice behavior described in Section

7.2.2, an assumption of rational supply planning is held with regard to the calibration of

the market scenarios realized. As it would not make sense in terms of economic rationality

for a customer to buy an expensive ticket if a cheap ticket that corresponds to his or her

product preferences was available, it seems unreasonable for an airline to offer a product

that does not trigger demand from a customer segment specific to this product.
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Caption Description Fare Near Fare Far

G base fare 175 350

K reduced fare 100 200

L reduced fare 75 150

T reduced fare 50 60

E reduced fare 20 20

Table 7.5.: Booking Classes Differentiated by Price

Caption Description Fare Near Fare Far

C seat in business compartment 350 700

Y refundable ticket 250 500

G base fare 175 350

M minimum stay restriction 150 300

W weekend stay restriction 125 250

K reduced fare 100 200

L reduced fare 75 150

T reduced fare 50 60

E reduced fare 20 20

Table 7.6.: Booking Classes Differentiated by Product Characteristics and Price (Hybrid

Differentiation)
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If the risk of buy-down is considered a cost, any new product differing from a base

fare and standard features is costly or neutral. Product characteristics such as a business

compartment differing in terms of physical comfort obviously gain added value through

higher production cost. Features such as the possibility of refund add uncertainty to the

airline’s plans. Tickets that are sold at rates lower than that of the highest rate offered

may cause buy-down and therefore include the risk of lost revenue.

Therefore, demand was calibrated according to the assumption that the airline would

not offer a new booking class if there was no reason to expect additional demand. Using

an expanding fare structure, a number of simulation experiments based on the variation

Vol.050 Dev.00 of the demand model described above were conducted. The fare structures

develop as follows:

• G: This is the version including a single, non-refundable base fare representing fare

structures in a time when neither product nor price differentiation was applied.

• G+Y: With the class Y, a more flexible class that is refundable is added at a price

that exceeds that of G.

• G Y+C: With the class C, an option of comfortable seating in a business class is

added at a price that exceeds that of Y.

• G Y C + M: The class M is the first reduced-fare class that is added to the supply

– however, to avoid buy-down, a “minimum-stay” restriction is included.

• G Y C M + W (product-based scenario): The class W is another reduced-fare

class that is added to the supply, with a fare that is lower than that of M – however,

to avoid buy-down, a “weekend-stay” restriction is included.

• G Y C M W + K, L, T, E (hybrid scenario): In the tradition of no-frills airline,

more classes are introduced at low fares that are not differentiated by restrictions

but only differ in price. The underlying hope is that with good inventory controls,

the gain through increased bookings will exceed the loss due to buy-down behavior.

• G K L T E (price-based scenario): Finally, to include an option that represents

that of low-fare or no-frills airlines, all classes based on product-differentiation are

excluded from the scenario once more and only classes differentiated by price are

offered.
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Figure 7.10.: Increase in Bookings by Additional Classes

The results of differentiation are illustrated in Figure 7.10. In this diagram, every

column presents seat load factors under first-come-first-serve seat allocation. The demand

model used was “Vol.050 Dev.00”. With every added class, seat load factors increase as

a new customer segment is addressed with a new product. The last column shows seat

load factors under a solely price-differentiated environment: Low prices activate customer

segments with a low willingness to pay, but a lack of product features such as business

compartment seats drives away a different customer segment.

In this section, market implementations for a revenue management simulation have been

presented. Using this data, the simulation including flexible demand, and the concept for

decomposition introduced earlier, simulation experiments can be conducted. These may

be used to analyze statements regarding forecast performance.
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Part III.

Experiments and Conclusions
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With the help of the simulation system described in Chapter 7 and the concept of

decomposition outlined in Chapter 6, experiments can be designed and executed to analyze

forecast performance and its evaluation. Common evaluation methods can be combined

with knowledge of the implemented demand model. The results of this are presented

in Chapter 8 as combinations of formal statements and simulation results visualized by

graphs.

In Chapter 9, a summary of the outcomes of this thesis is presented. This chapter

recaptures the goals as first introduced in Section 1.2 and detailed in Section 5. It ex-

plains the actions that were taken in order to fulfill the goals and their results. A list

of recommendations compiled from the thoughts documented Chapter 8 is included. Fi-

nally, more ideas on how to apply and extend the concept and the simulation environment

documented in Part II are offered.
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8. Simulation Based Analysis of Forecast Performance

This chapter lists ideas on forecast performance and forecast evaluation methods. These

ideas are used to design simulation experiments that illustrate their ramification and

consequences. Considered are the long-term effect of revenue management methods, as-

pects of error measurements, the use of psychic forecasts, uncertainty of demand, and the

inclusion of price-sensitivity in forecasts.

8.1. Observations on Long-Term Effects of Forecast Methods

When forecasts use historical data generated under their own influence, the repeated

application of revenue management methods leads to an evolving dynamic. A common

example for this is the so-called spiral-down effect. Its theoretical background has been

described in Cooper et al. (2006). In this section, it is used as an example for long-term

effects of revenue management methods.

The spiral-down effect can be expected when forecasting methods based on the as-

sumption of independent demand meet flexible customers. Such customers tend to buy

the cheapest acceptable class available. As a consequence, the forecast method will sys-

tematically predict more demand for low-fare classes and less demand for valuable classes.

An optimization using this forecast reserves less seats for valuable classes and allows more

availability in low-fare classes. The forecast becomes a self-fulfilling prophecy as the in-

creased availability is used by flexible customers and more bookings are observed in cheap

classes.

This effect is the result of a combination of methods and demand model. Therefore, the

spiral-down effect can be observed best when the complete system is analyzed as proposed

in Granger & Pesaran (2000).
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The simulation system offers ways of evaluating the development over time in fast-

forward mode. As the demand model can be kept stable, the effects of the cycle of

bookings-forecast-optimization-bookings-etc. can be observed over dozens of simulation

runs. The results of the complete system and the accuracy of the forecast component are

evaluated.

Revenue Management Configurations: To validate statements on long-term effects,

four forecast methods are applied to the price-based scenario with customers choosing be-

tween restriction-free classes. Implemented are three variations of an exponential smooth-

ing forecast in combination with EMSR-b. They differ in the weight that is attached to

new observations. While “Exp025” includes these new observation with a smoothing fac-

tor of α = 0.25, “Exp050” uses a smoothing factor of α = 0.5 and “Exp075” applies

a smoothing factor of α = 0.75. To provide a lower boundary, a first-come first-serve

strategy is provided and referred to as “FCFS”.

Given the combination of demand, supply, and methods, over the course of several

simulation runs, shifts in bookings and availability as well as plunging yield and revenue

should manifest. This does hold true as shown by the simulation results depicted in the

further text and figures. The spiral-down effect can be observed best during the first

simulation runs – for this reason, further examinations focus on s = 1..20. In consecutive

runs, the development slows down as it approaches a steady state.

Indicators: Several indicators can be used to describe the spiral-down effect. It has

consequences for:

• predicted demand (forecast),

• protected seats (availabilities),

• bookings,

• revenue,

• yield,

• forecast evaluations (error measurements).
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With regard to their expected development, these indicators and their formulaic expression

are listed in the following paragraphs. The outcome of the respective experiment is used

to illustrate the ideas presented in this section.

• Let c ∈ C be the index of restriction-free booking classes ordered descending by

their price.

• Let f ∈ F be the index of flights.

• Let t = 0, ..., N t be points of time before departure; demand arrives after t = 0,

t = N t is the time of departure.

• Let s = 1, ..., N s be the runs included in a simulation. s+ 1 occurs chronologically

after s and can be based on historical data derived from s.

• Let func (f, c, t, s) be the unconstrained demand forecast per class c on flight f for

the time between t− 1 and t of simulation run s.

• Let â(f, c, t, s) be the protected seats per class c on flight f at point of time t in

simulation run s.

• Let a (f, c, t, s) be the available seats per class c on flight f at point of time t in

simulation run s.

• Let b (f, c, t, s) be the bookings per class c on flight f that arrived between points

of time t− 1 and t of simulation run s.

• Let Rs be the set of requests assigned to run s in the simulation demand model.

For every simulation run, the demand model is equivalent, even though individual

requests differ due to the error terms included: Rs ≡ Rs+1

• Let r(s) be the overall revenue generated in simulation run s.

Forecast: When the forecast is based on historical bookings and customers book the

cheapest tickets available, the amount of predicted requests for valuable classes decreases

while that for cheap classes increases. In the real world, rather than being updated

for simulation runs s, the forecast is computed per departure. As no historical data is

available in the first run (s = 1), a psychic forecast is used to generate the first prediction.

Over consecutive runs, the forecast is updated using exponential smoothing.
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• Let the psychic forecast be described by a function F psy.

• Let the exponential smoothing forecast be described by a function F hist.

Definition (8.1) describes how forecasts are generated:

func (f, c, t, s) =

F psy (Rs, F, C, t, 1) s = 1

F hist (b (f, c, t, s− 1) , a (f, c, t, s− 1) , func (f, c, t, s− 1)) s > 1

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 1, ..., N s

(8.1)

If classes C are ordered in the descending order of their value, class 1 is the most

expensive class while class N c is the cheapest. Given the conditions of the spiral-down

effect, the following development is expected: Forecasts for valuable classes decrease, while

forecasts for cheap classes increase. This can be expressed formally as in Hypothesis (8.2):

lim
s→∞

func (f, c, t, s) = 0 c < N c

∃ ns ∈ N | func (f,N c, t, s) ≤ func (f,N c, t, s+ ns)

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 1, ..., N s − 1

(8.2)

An indicator independent of the overall amount of predicted demand can be derived

by computing the percentage of forecasted requests per class. This forecast-mix func % is

expected to show the behavior described in Hypothesis (8.2), normalized to 100%.

func % (f, c, t, s) =
func (f, c, t, s)∑
c∈C f

unc (f, c, t, s)
· 100

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 1, ..., N s

(8.3)

lim
s→∞

func% (f, c, t, s) =

0 c < N c

100 c = N c

∀ f ∈ F ; c ∈ C; t = 1, ..., N t

(8.4)

Figure 8.1 shows the amount of demand predicted in the five classes as method “Exp050”

is applied. In order to make the development of the forecast-mix comparable over the

scenario variations, forecasts are expressed as percentages of overall predicted demand,
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Figure 8.1.: Predicted Demand per Class with Exp050
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func % as described in Definition (8.3). As can be seen, forecasts for the most valuable

class, “A”, decrease over the course of 50 runs as those for the cheaper classes offered,

“B”, “C”, “D”, and “E” increase.
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Figure 8.2.: Decrease in Demand Predicted for Class “A”

The degree of this development differs over the different markets. When demand volume

is high as in “Vol. = 100”, it is not as steep as when observing markets with low demand

volume as in “Vol. = 050”. Additionally, the decrease grows stronger with increasing

deviation of the error term distribution. The decrease of the share of predicted demand

for the class “A” in percent points is illustrated by Figure 8.2. However, the trend

described is always the same and can be observed in all the variations of the price-based

scenario.

Availabilities: Availabilities are the result of the optimization, which is based on the

demand forecast. When EMSR-b is applied, the result is expressed as protections, seats

reserved for valuable classes. In a system of nested classes as described in Section 7.3.3,

protected seats are used to compute authorization levels, ensuring a minimum of avail-

ability for valuable classes.

As shown in Definition (8.5), the function Aemsrb uses the EMSR-b algorithm to generate

protections for class c on flight f and run s for the point of time before the booking horizon



Chapter 8: Simulation Based Analysis of Forecast Performance 118

starts, t = 0, â (f, c, 0, s), from the forecast func (f, c, t, s) and the prices per class c on

flight f , p(f, c):

â (f, c, 0, s) := Aemsrb

(
Nt∑
t=1

func (f, c, t, s), p (f, c)

)
∀ f ∈ F ; c ∈ C; s = 1, ..., N s

(8.5)

Given the conditions of the spiral-down effect, the following development is expected:

As forecasts for valuable classes decrease, so do the protected seats computed for these

classes. This can be expressed formally as presented in Hypothesis (8.6).

lim
s→∞

â (f, c, 0, s) = 0 c < N c

∃ ns ∈ N | â (f,N c, 0, s) ≤ â (f,N c, 0, s+ ns)

∀ f ∈ F ; c ∈ C; s = 1, ..., N s + 1

(8.6)

An indicator that is independent of the overall capacity can be derived by computing

the percentage of seats allocated to each class. This availabilities-mix â% is expected to

show the same behavior described in Hypothesis (8.6), normalized to 100%.

â% (f, c, t, s) =
â (f, c, t, s)∑
c∈C â (f, c, t, s)

· 100

∀ f ∈ F ; t = 1, ..., N t; s = 1, ..., N s

(8.7)

lim
s→∞

â% (f, c, 0, s) =

0 c < N c

100 c = N c

∀ f ∈ F ; c ∈ C

(8.8)

Figure 8.3 shows the amount of seats protected in the five classes as method “Exp050”

is applied. In order to make the development of the protection-mix comparable over the

scenario variations, protected seats are expressed as percentages of overall capacity, a% as

described in Definition (8.7). Protected seats for the most valuable class, “A”, decrease

over the course of 50 runs as those for the cheaper classes offered, “B”, “C”, “D”, and

“E” increase.

The degree of this development differs over the different markets. When demand volume

is high as in “Vol. = 100”, it is not as steep as when observing markets with low demand
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Figure 8.3.: Protected Seats per Class with Exp050
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Figure 8.4.: Decrease in Seats Protected for Class “A”

volume as in “Vol. = 050”. Additionally, the decrease grows stronger with increasing

deviation of the error term distribution. The decrease of the share of protected seats for

the class “A” in percent points is illustrated by Figure 8.4. However, the trend described

is always the same and can be observed in all the variations of the price-based scenario.

Bookings: In the demand model implemented, given the same product, customers al-

ways book the cheapest class available. For a set of restriction-free classes c = 1, ..., N c

with similar product characteristics and increasing value, if overall demand volume stays

constant, this means that the amount of bookings b(f, c, t, s) depends solely on the avail-

abilities a(f, c, t, s). As availabilities for cheap classes increase, so do the bookings in these

classes. Formally, this expectation can be expressed as follows:

lim
s→∞

b (f, c, t, s) = 0 c < N c

∃ ns ∈ N | b (f,N c, t, s) ≤ b (f,N c, t, s+ ns)

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 1, ..., N s − 1

(8.9)
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An indicator that is independent of the overall bookings can be derived by computing

the percentage of bookings for each class. This bookings-mix b% is expected to show the

same behavior described in Hypothesis (8.9), normalized to 100%.

b% (f, c, t, s) =
b (f, c, t, s)∑
c∈C b (f, c, t, s)

· 100

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 1, ..., N s

(8.10)

lim
s→∞

b% (f, c, t, s) =

0 c < N c

100 c = N c

∀ f ∈ F ; c ∈ C; t = 1, ..., N t

(8.11)

Figure 8.5 shows the amount of seats booked in the five classes as method “Exp050”

is applied. In order to make the development of the booking-mix comparable over the

scenario variations, bookings per class are expressed as percentages of overall bookings,

b% as described in Definition (8.10). As can be seen over all scenario variations, bookings

for the most valuable class, “A”, decrease over the course of 50 runs as those for the

cheaper classes offered, “B”, “C”, “D”, and “E” increase.

The degree of this development differs over the different markets. When the deviation

of the error term distribution is low, it is stronger for markets with high demand. When

the deviation of the error term is high, the opposite seems to be true. The decrease grows

stronger with increasing deviation of the error term distribution for “Vol. 050”, but not

for “Vol. 100”. The decrease of the share of bookings for the class “A” in percent points

is compared is illustrated by Figure 8.6. The trend described is always the same and can

be observed in all the variations of the price-based scenario.

Revenue: The major indicator in revenue management, overall revenue per run, r (s),

is computed as the sum over the product of bookings b (f, c, t, s) and the price of classes

p (f, c). Outside a simulation, this may indicate the revenue generated by all flights on

one departure day.

r (s) =
∑
f∈F

∑
c∈C

(
p (f, c) ·

Nt∑
t=1

b (f, c, t, s)

)
∀ s = 1, ..., N s

(8.12)
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Figure 8.5.: Observed Bookings per Class with Exp050
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Figure 8.6.: Decrease in the Share of Bookings Observed for Class “A”

If overall demand volume stays constant and the booking mix changes according to Hy-

pothesis (8.9), less bookings in valuable classes and more bookings in expensive classes

lead to decreasing overall revenue. Formally, this can be expressed as follows:

∑
f∈F

∑
c∈C

Nt∑
t=1

b (f, c, t, s) ≡
∑
f∈F

∑
c ∈ C

Nt∑
t=1

b (f, c, t, s+ 1)

→ r (s) ≤ r (s+ 1)

∀ s = 1, ..., N s − 1

(8.13)

However, the spiral-down effect may be beneficial for revenue if the gain in bookings due

to increased availabilities for cheap classes compensates for the loss in bookings in valuable

classes. There is actually a break-even point from which on the revenue lost to buy-down

is compensated by that gained through low-fare acquisition:

Nt∑
t=1

(b (f,N c, t, s)− b (f,N c, t, s+ 1)) · p (f,N c)

≤
Nt∑
t=1

Nc−1∑
c=1

(b (f, c, t, s+ 1)− b (f, c, t, s) · p (f, c))

∀ f ∈ F ; s = 1, ..., N s − 1

(8.14)
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To observe the development of revenue over time, a percentage indicator may be cal-

culated. Given an initial simulation run s = 1, revenue for all future s = 2, ..., N s may be

converted to a percentage r% of the revenue earned during the initial run.

r% (s) =
r (s)

r(1)
· 100

∀ s = 1, ..., N s

(8.15)

∑
f∈F

∑
c∈C

Nt∑
t=1

b%(f, c, t, s) ≡
∑
f∈F

∑
c∈C

Nt∑
t=1

b%(f, c, t, s+ 1)

→ r%(s) ≤ r%(s+ 1)

∀ s = 1, ..., N s − 1

(8.16)

Figure 8.7 shows the revenue earned as exponential smoothing methods “Exp025”,

“Exp050”, and “Exp075” are applied. In order to make the development of revenue

comparable over the scenario variations, it is expressed as percentages of the revenue

earned in run 1, r% as described in Definition (8.15). As can be seen over all scenario

variations, revenue decreases over the course of 50 runs.

The form of this development differs over the different markets. With high demand

volume “Vol. = 100”, as the conditions described by Hypothesis (8.14) do manifest

during the first runs, a small revenue increase can be observed in the beginning of the

simulation experiment. However, soon the loss of bookings in valuable classes stops being

compensated by the gain of bookings in low-fare classes and overall revenue decreases.

With low demand volume “Vol. = 050”, the decrease of revenue starts immediately after

the first run – its consequences are also more severe. When deviation is high as in “Dev.

= 20”, the development is not as straightforward as revenue shifts with volatile demand,

yet it is even steeper. The trend described is always the same and can be observed in all

the variations of the price-based scenario.

After a number of runs, revenue reaches a plateau that still exceeds what is earned

with first-come-first-serve controls. Inventory controls that were originally based on the

psychic forecast initialization keep some seats protected for valuable customers – and

as long as these customers request tickets before cheaper classes are available, bookings

will be observed in these classes. This leads to a halt in the spiral-down effect. Volatile
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Figure 8.7.: Revenue in Percent of Revenue Earned in Run 1
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customer arrival patterns, however, can still lead to a further shift toward cheap classes,

while no shift toward expensive classes can occur in a purely price-based market.

When several methods are compared, the percentage difference to a lowest benchmark

may be computed. A possible benchmark is the result of a first-come-first-serve seat

allocation, rfcfs (s). The indicator rfcfs % (s) is computed as the percentage by which the

revenue of the considered method exceeds that gained when first-come-first-serve was

applied.

rfcfs % (s) =
r (s)− rfcfs (s)

rfcfs (s)
· 100

∀ s = 1, ..., N s

(8.17)

Based on forecasts becoming self-fulfilling prophecies, the spiral-down effect is even more

severe when the forecast method picks up new data quickly. In Figure 8.7 the development

of revenue given the application of the three exponential smoothing methods is shown.

The indicator used to depict the implications of spiral-down for revenue depending on the

method used is rfcfs % as described by Definition (8.17). Revenue decreases more quickly

when the αexp employed to weight new values in the forecast is higher.

Yield: Yield is the average revenue gained per booking. It can be computed as shown

by dividing the overall sum of revenue by the overall sum of bookings.

y (s) =

∑
f∈F

∑
c∈C

(
p (f, c) ·

∑Nt

t=1 b (f, c, t, s)
)

∑
f∈F

∑
c∈C
∑Nt

t=1 b (f, c, t, s)

∀ s = 1, ..., N s

(8.18)

The development predicted for revenue in case of spiral-down can be applied to yield as

well. However, while extreme gains in low-fare bookings may lead to an overall revenue

compensation, the yield decrease can be expected with certainty. As only the cheapest

class, c = 1, is booked any more, the yield ends up as the price of this class.

lim
s→∞

y (s) =

∑
f∈F

(
p (f,N c) ·

∑Nt

t=1 b (f,N c, t, s)
)

∑
f∈F

∑Nt

t=1 b (f,N c, t, s)

∀ s = 1, ..., N s

(8.19)
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To better observe the development of yield over time, a percentage indicator may be

calculated. Given an initial simulation run s = 1, yield for all future s = 2..N s may be

converted to a percentage y% of the yield observed during the initial run.

y% (s) =
y (s)

y (1)
· 100 (8.20)

∑
f∈F

Nt∑
t=1

b (f,N c, t, s) ≤
∑
f∈F

Nt∑
t=1

b (f,N c, t, s+ 1)

and
∑
f∈F

Nt∑
t=1

b (f, 1, t, s) ≥
∑
f∈F

Nt∑
t=1

b (f, 1, t, s+ 1)

→ y% (s) ≤ y% (s+ 1)

∀ s = 1, ..., N s − 1

(8.21)

Figure 8.8 shows the amount yield earned as method “Exp050” is applied. In order to

make the development of yield comparable over the scenario variations, it is expressed as

percentages of the yield earned in run 1, y% as described in Definition (8.20). As can be

seen over all scenario variations, yield decreases over the course of 50 runs.

The form of this development differs over the different markets. As the yield is indepen-

dent of the amount of overall bookings, the observed decrease in yield is much smoother

than the decrease observed with regard to revenue. With low demand volume “Vol. =

050”, yield is lower even in the first run compared to high demand volume. In addition,

the decrease of yield is steeper. A high deviation of the error term distribution contributes

to this effect.

When several methods are compared, the percentage difference to a lowest benchmark

may be computed. A possible benchmark in the simulation is the yield resulting from a

first-come-first-serve seat allocation, yfcfs(s). The indicator yfcfs %(s) is computed as the

percentage by which the average yield of the considered method exceeds that observed

when first-come-first-serve was applied.

yfcfs % (s) =
yfcfs (s)− y (s)

yfcfs (s)
· 100

∀ s = 1, ..., N s

(8.22)
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Figure 8.8.: Yield in Percent of Yield Earned in Run 1
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Figure 8.9.: Yield in Percent of Yield Earned with First-Come-First-Serve
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In Figure 8.9, presents the development of yield given the application of the three

exponential smoothing methods “Exp025”, “Exp050”, and “Exp075”. The indicator used

to depict the implications of spiral-down for revenue depending on the method used is

yfcfs % as described by Definition (8.22). As the diagrams show, yield decreases more

quickly when the αexp employed to weight new values in the forecast is higher.

Forecast Evaluations: The expected development of forecast quality under the con-

ditions of the spiral-down effect is the same for all error measurements based on the

comparison of forecasted demand and bookings as outlined in Chapter 4.

• Let ec−c◦ (s) be the average forecast error computed for simulation run s based on

some to be defined method ◦ comparing observed bookings b (f, c, t, s) and the

constrained demand forecast f const (f, c, t, s).

As the forecast based on bookings predicts more demand to come for cheap classes and

availabilities based on the forecast allow for this demand to realize in more bookings,

the forecast becomes a self-fulfilling prophecy. This systematic flaw is interpreted as an

improvement of forecast quality:

ec−c◦ (s) ≥ ec−c◦ (s+ 1)

∀ s = 1, ..., N s − 1
(8.23)

When the conditions of the spiral-down effect are fulfilled and forecasts are evaluated

based on comparisons to actual bookings, their quality seems to improve. This can be

validated by observing the development of MAD, RMSE, MAPE and U2 applied to the

comparison of the constrained forecast f const and observed bookings b over the course of

50 runs. All indicators show a decrease over time as forecast and bookings converge due

to the spiral-down effect.

Figure 8.10 presents the development of MAD as three exponential smoothing meth-

ods are applied. Figure 8.11 presents the development of RMSE as three exponential

smoothing methods are applied. Figure 8.12 presents the development of MAPE as three

exponential smoothing methods are applied. Figure 8.13 presents the development of U2

as three exponential smoothing methods are applied.
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Figure 8.10.: Mean Absolute Deviation (MAD): Constrained FC from Observed BKD
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Figure 8.11.: Root Mean Squared Error (RMSE): : Constrained FC from Observed BKD
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Figure 8.12.: Mean Avg. Percentage Error (MAPE): Constrained FC from Observed BKD
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Figure 8.13.: Theil’s U2 (U2): Constrained FC from Observed BKD
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For all indicators, the trend of forecast quality over the course of a number of simulation

runs is more volatile if the deviation of the error term distribution is higher. As demand

volume shifts more strongly from one run to the next due to this, it becomes harder to

predict and a self-fulfilling prophecy takes longer to manifest. As for other indicators, the

development is steeper for markets with a low overall demand volume.

All indicators also show that just as the decrease of yield is steeper when new values are

weighted stronger, forecast quality seems to improve quicker. When the new observations

based on availabilities that are already influenced by the spiral-down effect are weighted

heavier, the forecast turns into a self-fulfilling prophecy even more quickly.

Effects of Updates within the Booking Horizon: Finally, the spiral-down effect can

even be observed within the booking horizon of a single run if forecasts are updated.

Figure 8.14 shows a comparison of revenue over 50 runs for all price-based scenarios when

exponential smoothing with a smoothing factor of 0.5 is applied. With “Exp050”, the

forecast is not updated throughout the booking horizon as bookings are observed. With

“Exp050upd”, the forecast is updated as described in Section 7.3.1. Revenue decreases

with every run when the forecast is updated. This is due to availabilities updated based

on decreasing shares of predicted demand for the most expensive classes as described

earlier in this section.

However, as presented in Figure 8.15, this updating of the forecast does not even lead

to better results concerning traditional forecast evaluation. Using MAD as an exemplary

error measurement, it becomes clear that the computed error of the forecast decreases as

the booking horizon progresses. This is due to the decreasing remaining time span for

which the forecast is valid. However, while this development can be observed both for

“Exp050” and “Exp050upd”, the overall level of mean absolute deviation is lower when

the forecast is not updated based on observed bookings.

The graph is shown only for those variations of demand where the deviation of the error

term is 0 (“Dev. = 00”). Not much variation can be observed as volume and deviation

change – this is due to both the fact that constrained values are compared and that the

comparison is limited to the first run, initialized using the psychic forecast.
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Figure 8.14.: Revenue Resulting from Exp050 and Exp050upd
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Figure 8.15.: MAD during the Booking Horizon of Run 1

Conclusion: When applied over longer terms, flawed assumptions included in adaptive

forecast methods can cause systematic trends in inventory controls and revenue devel-

opment. In addition, when causing a spiral-down effect, forecast methods can become

self-fulfilling prophecies.

8.2. Consequences of Possible Definitions of Psychic Forecasts

In the previous section, the spiral-down effect was demonstrated by providing an initial

forecast and then applying an adaptive method (exponential smoothing). The initial

forecast was implicitly assumed to present a more accurate prediction of demand, with the

adaptive method based on a model of static demand leading to a spiral-down effect when

confronted with flexible customer behavior. The initial forecast was based on knowledge

of the demand model implemented in the simulation, which is not available in the real

world. This class of forecasts will be referred to as psychic forecasts in the further text.

The concept of psychic forecasts will be the focus of this section. When evaluating

approaches to demand forecasting based on a simulation system, there are two applications
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for psychic forecasts: They may be used as initialization to observe the development of

indicators when adaptive methods are applied or as a benchmark to compare a method’s

ability of picking up the characteristics of the demand model.
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Figure 8.16.: Uses of the Psychic Forecast in the Simulation

Figure 8.16 emphasizes those parts of the system that have not been further examined

so far. For example when evaluating the unconstraing aspect as described in Section 6.4,

the previous text has regarded the psychic forecast as a constant method. It is employed

in two places, both marked in bold.

Several approaches are conceivable to calculate a psychic forecast. When used as an

initialization or as a benchmark for methods based on a static model of demand, the

psychic forecast can be varied along two parameters: Class choice and itinerary choice.

These choices relate to the ways in which customers decide which classes to book (class

choice) on which flights (itinerary choice) in order to reach their destination.



Chapter 8: Simulation Based Analysis of Forecast Performance 139

preferred itinerary alternative itineraries

maximum price c-max 1-i c-max 2-i

minimum price c-min 1-i c-min 2-i

acceptable prices c-frac 1-i c-frac 2-i

Table 8.1.: Possible Variations of Choice in Psychic Forecasts

Two variations of itinerary choice and three variations of class choice as well as their

combinations will be examined in this section. Together with their abbreviations, they

can be found in Table 8.1.

In order to express the options of psychic forecasting and their consequences formally,

additional notation is required. The following list recaptures some of the variables intro-

duced in Section 7.2.2.

• Let r ∈ R be the index of requests.

• Let Rs be the set of requests included in the run s.

• Let tr indicate the point of time t at which request r arrives.

• Let δtime
r,t be a boolean matrix indicating whether request r arrives at point of time

t: t = tr.

• Let sr indicate the simulation run s for which request r was generated.

• Let i ∈ I be the index of itineraries offered.

• Let Ir be the set of itineraries acceptable according to the product requirements

specified for request r (i.e. origin, destination, travel time, departure day and time,

transfers).

• Let Fi be the set of flights included in itinerary i.

• Let I it
f,i be a boolean matrix indicating whether flight f ∈ Fi for any f and i.

• Let δproduct
r,c be a boolean matrix defining whether the product represented by book-

ing class c is acceptable according to the product requirements of request r (see

Definition (7.19).
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• Let δwtp
r,c,i be a boolean matrix defining whether the price of class c on itinerary i is

acceptable according to the willingness to pay of request r (see Definition (7.21)).

• Let p (f, c) be the price of booking class c on flight f .

• Let func(f, c, t, s) be the unconstrained demand forecast for flight f , class c, and

point of time t of simulation run s.

• Let Ĉ(i, r) be the cost of itinerary i considered by request r, without regard for the

actual ticket price (given the assumption that all itineraries cost the same).

Preferred Itinerary (1-i): Psychic forecasts predicting demand to arrive only for the

preferred itinerary use knowledge of the customers’ cost function given by the simulation.

Demand is expected to arrive in a given booking class of the itinerary that would be chosen

if all itineraries were available at the same price. The hypothesis is that the demand is

most likely to manifest in the itinerary that presents the first choice according to the cost

function. The formal expression for the choice of itinerary in this psychic forecast is given

in Definitions (8.24).

• Let δi-choice
i,r be a boolean matrix indicating the chosen itinerary based on the cost

function of request r.

• Let ni be the number of itineraries that are chosen according to the method of

psychic forecast. For “1-i”, ni = 1.

δi-choice
i,r :=

1 i = i′|maxi′∈Ir Ĉ (i′, r)

0 else.

∀ r ∈ R; i ∈ Ir

(8.24)

Alternative Itineraries (n-i): Psychic forecasts that predict demand for two or more

itineraries use knowledge of the customers’ cost function. Demand is expected to arrive

in a given booking class of those itineraries that make the “top list” if all itineraries were

available at the same price. The number of itineraries ni that demand is distributed over

and the weight αit given to each itinerary are parameters of the method. The hypothesis

is that demand is most likely to manifest in itineraries presenting good choices according
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to the cost function, and that customers will divert from their first choice if availability

is lacking. Itineraries are defined as chosen in an iterative process, starting with the first

choice. The formal expression for the choice of itinerary in this psychic forecast is given

in Definitions (8.25).

δi-choice
i,r :=

1 i = i′|maxi′∈Ir
(
δi-choice
i′,r − 1

)2 · Ĉ (i′, r)

0 else.

∀ r ∈ R; i ∈ Ir

(8.25)

Maximum Price (c-max): Psychic forecasts predicting maximum prices use knowledge

of the customers’ maximum willingness to pay given in the simulation. They expect

demand to arrive in the most expensive acceptable booking class of a given itinerary.

The hypothesis is that when the forecast predicts customers to arrive according to their

highest willingness to pay, inventory controls will be restrictive enough to prevent much

of buy-down. The formal expression for this psychic forecast is given in Definitions (8.26)

and (8.27).

• Let δmax
r,c,i be a boolean matrix indicating the most expensive booking class available

on all flights of the given itinerary i and acceptable for r .

δmax
r,c,i :=

1 c = c′|maxc′∈C

(
δproduct
r,c′ · δprice

r,c′,i ·
∑

f∈Fi p (f, c)
)

0 else.

∀ r ∈ R; I ∈ Ir

(8.26)

func (f, c, t, s) :=
∑
r∈Rs

δtime
r,t ·

∑
i∈Ir I

it
f,i · δi-choice

i,r · δmax
r,c,i

ni

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 1...N s

(8.27)

Minimum Price (c-min): Psychic forecasts predicting minimum prices use knowledge of

the customers’ acceptance of booking classes given by the simulation. Demand is expected

to arrive in the cheapest acceptable booking class of a given itinerary. The hypothesis

is that when the forecast predicts customers to arrive in the cheapest class according

to their acceptance of product characteristics given by booking classes, the worst case
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of buy-down is already included in the forecast. The formal expression for this psychic

forecast is given in Definitions (8.28) and (8.29).

• Let δmin
r,c,i be a boolean matrix indicating the cheapest booking class available on all

flights of the given itinerary i and acceptable for r .

δmin
r,c,i :=

1 c = c′|minc′∈C

(
δproduct
r,c′ · δprice

r,c′,i ·
∑

f∈Fi p (f, c)
)
> 0

0 else.

∀ r ∈ R; I ∈ Ir

(8.28)

func (f, c, t, s) :=
∑
r∈Rs

δtime
r,t ·

∑
i∈Ir I

it
f,i · δi-choice

i,r · δmin
r,c,i

ni

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 1...N s

(8.29)

Acceptable Prices (c-frac): Psychic forecasts predicting all acceptable prices use the

knowledge of customers’ maximum willingness to pay and acceptance of booking classes

given by the simulation. Fractional demand is expected to arrive in all acceptable book-

ing classes of a given itinerary. The hypothesis is that demand will manifest in one of

these classes respectively and the forecast strives to get a reasonable estimate including

the possibility of buy-down. The formal expression for this psychic forecast is given in

Definition (8.30).

func (f, c, t, s) :=
∑
r∈Rs

δtime
r,t ·

∑
i∈Ir

(
I it
f,i · δi-choice

i,r ·
δproduct
r,c · δprice

r,c,i∑
c∈C δ

product
r,c · δprice

r,c,i

)
/ni

∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 1...N s

(8.30)

Psychic Forecasts as Benchmarks: To present the consequences of the use of the dif-

ferent psychic forecasts, a normalization to the effects of first-come-first-serve inventory

controls is performed. These effects can be calculated by applying the controls to the

same demand that is later used to evaluate psychic forecasts. First-come-first-serve con-

trols provide a benchmark as they are the simplest alternative to applying any forecast

at all.

• Let
∑

f∈F K (f, 0, s) be the overall available capacity at the beginning of run s.
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• Let
∑

f∈F
∑

c∈C
∑Nt

t=1 b (f, c, t, s) be the overall bookings generated in simulation

run s.

• Let r (s) be the overall revenue generated in simulation run s.

• Let rfcfs (s) be the overall revenue generated in simulation run s given first-come-

first-serve inventory controls.

• Let r% fcfs
2-i c-max (s) be the overall revenue generated in simulation run s using (e.g.)

psychic forecast method “2-i c-max”, as a percentage of the revenue resulting from

the application of first-come-first-serve controls.

• Let yfcfs (s) be the average yield generated in simulation run s given first-come-first-

serve inventory controls.

• Let y% fcfs
2-i c-max (s) be the average yield generated in simulation run s using (e.g.) psy-

chic forecast method “2-i c-max”, as a percentage of the revenue resulting from the

application of first-come-first-serve controls.

• Let l (s) be the average seat load factor generated in simulation run s.

• Let lfcfs (s) be the average seat load factor generated in simulation run s given first-

come-first-serve inventory controls.

• Let l% fcfs
2-i c-max (s) be the average seat load factor generated in simulation run s using

(e.g.) psychic forecast method “2-i c-max”, as a percentage of lfcfs (s).

Revenue is computed as described by Definition (8.12). The normalization to the

benchmark generated by first-come-first-serve controls is shown in Definition (8.31). To

present the result of a complete simulation experiment in a single indicator, the normalized

revenue may be averaged over all runs as presented in Definition (8.32).

r% fcfs (s) :=
r (s)

rfcfs (s)
· 100

∀ s = 1, ..., N s

(8.31)

r̂% fcfs :=

∑Ns

s=1 r
% fcfs (s)

N s
(8.32)

Yield is computed as described by Definition (8.18). The normalization to the bench-

mark generated by first-come-first-serve controls is shown in Definition (8.33). To present
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the result of a complete simulation experiment in a single indicator, the normalized rev-

enue may be averaged over all runs as presented in Definition (8.34).

y% fcfs (s) :=
y(s)

yfcfs (s)
· 100

∀ s = 1, ..., N s

(8.33)

ŷ% fcfs :=

∑Ns

s=1 y
% fcfs (s)

N s
(8.34)

The seat load factor is computed as a function of capacity and bookings, as presented

in Definition (8.35). It can be normalized, as Definition (8.36) shows. To present the

result of a complete simulation experiment in a single indicator, the normalized seat load

factor may be averaged over all runs as presented in Definition (8.37).

l (s) :=

∑
f∈F

∑
c∈C
∑Nt

t=1 b (f, c, t, s)∑
f∈F K (f, 0, s)

· 100

∀ s = 1, ..., N s

(8.35)

l% fcfs (s) :=
l (s)

lfcfs (s)
· 100

∀ s = 1, ..., N s

(8.36)

l̂% fcfs :=

∑Ns

s=1 l
% fcfs (s)

N s
(8.37)

The simulation experiments conducted to analyze the effect of psychic forecasts are

based on the “hybrid” market scenario described in Section 7.4. As in this scenario both

product- and price-oriented supply and demand are included, the broadest variety of

effects is expected. Variations of demand volume and deviation are included in the data

and will be pointed out whenever helpful.

Given the different approaches to translating willingness to pay and the acceptance of

booking classes into psychic forecasts, the assumption is that consequences of the choice

of class-forecast will become clear when considering revenue. The precise expectation is

formalized in Hypothesis (8.38)

r̂% fcfs
c-max ≥ r̂% fcfs

c-frac ≥ r̂% fcfs
c-min ≥ 100 (8.38)
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Figure 8.17.: Average Revenue over 50 Runs in Percent of First-Come-First-Serve
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Figure 8.17 shows the average revenue over 50 runs resulting from the application of

the listed variations of psychic forecasts over all runs. Revenue is expressed as r̂% fcfs as

formalized in Definition (8.32). In the diagram, the deviation of the average revenue in

both directions is presented by a grey vertical line. As expected, the deviation of the

average revenue grows as the deviation of the error term distribution grows and demand

volume is more volatile between runs.

In all cases, as predicted by Hypothesis (8.38), the psychic forecasts based on “c-max”

result in higher revenue than those based on “c-frac”. At the same time, “c-frac” still leads

to higher revenues than “c-min”. As the simulation experiment was based on a hybrid

scenario including some customers that do not accept the cheapest booking class, even

“c-min” always resulted in revenues exceeding those observed when first-come-first-serve

controls were applied.

In addition, it is remarkable that revenue was always highest when the forecast was not

only based on “c-max” but also took into account two alternative preferred itineraries as

in the variant “2-i”. This effect is strongest in the case of “Vol. = 100, Dev. = 00”,

when demand volume is high and the deviation of the error term distribution is low, and

in the case of “Vol. = 050, Dev. = 20”, when demand volume is low and the deviation of

the error term is high. In both cases, the probability for a few itineraries being requested

significantly more often than others seems to be higher. In such cases, it is advantageous

to include demand predicted also for the second-choice itineraries in the optimization.

The effect can even be observed in markets with a high demand volume when “c-frac”

is applied. However, the revenue observed in markets with a high error term deviation

is not much higher for “2-i” than it is for “1-i”. The reason for this becomes clear when

considering yield and seat load factor.

As demand is distributed more equally among itineraries with alternative itinerary

forecasts, availability control may be expected to turn more restrictive. The consequence

of this would be rising yields but also declining bookings. The precise expectation is

formalized in Hypotheses (8.39) and (8.40).

l̂% fcfs
2-i ≤ l̂% fcfs

1-i ≤ 100 (8.39)

ŷ% fcfs
2-i ≥ ŷ% fcfs

1-i ≥ 100 (8.40)



Chapter 8: Simulation Based Analysis of Forecast Performance 147

Vol. = 050, Dev. = 00

217%
257%

183% 179% 173%100%

400%

700%

c-max 1-i c-max 2-i c-frac 1-i c-frac 2-i c-min 1-i

Simulation Run

Vol. = 050, Dev. = 01

220%
263%

184% 180% 172%100%

400%

700%

c-max 1-i c-max 2-i c-frac 1-i c-frac 2-i c-min 1-i

Simulation Run

Vol. = 050, Dev. = 05

266%
325%

195% 192%
161%100%

400%

700%

c-max 1-i c-max 2-i c-frac 1-i c-frac 2-i c-min 1-i

Simulation Run

Vol. = 050, Dev. = 10

299%

369%

210% 206%
157%100%

400%

700%

c-max 1-i c-max 2-i c-frac 1-i c-frac 2-i c-min 1-i

Simulation Run

Vol. = 050, Dev. = 20

320%

400%

218% 214%
152%100%

400%

700%

c-max 1-i c-max 2-i c-frac 1-i c-frac 2-i c-min 1-i

Simulation Run

Vol. = 100, Dev. = 00

519%

644%

373% 376%

293%

100%

400%

700%

c-max 1-i c-max 2-i c-frac 1-i c-frac 2-i c-min 1-i

Simulation Run

Vol. = 100, Dev. = 01

447%

546%

342% 344%
289%

100%

400%

700%

c-max 1-i c-max 2-i c-frac 1-i c-frac 2-i c-min 1-i

Simulation Run

Vol. = 100, Dev. = 05

447%

542%

343% 346%
289%

100%

400%

700%

c-max 1-i c-max 2-i c-frac 1-i c-frac 2-i c-min 1-i

Simulation Run

Vol. = 100, Dev. = 10

496%

603%

369% 371%

279%

100%

400%

700%

c-max 1-i c-max 2-i c-frac 1-i c-frac 2-i c-min 1-i

Simulation Run

Vol. = 100, Dev. = 20

538%

659%

389% 390%

262%

100%

400%

700%

c-max 1-i c-max 2-i c-frac 1-i c-frac 2-i c-min 1-i

Simulation Run

Average Yield over 50 Runs in Percent of First-Come-First-Serve 

Figure 8.18.: Average Yield over 50 Runs in Percent of First-Come-First-Serve
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Figure 8.18 shows the average yield over 50 runs resulting from the application of the

listed variations of psychic forecasts over all runs. Yield is expressed as ŷ% fcfs as shown in

Definition (8.34). In the diagram, the deviation of the average yield in both directions is

presented by a grey vertical line. As can be expected, the deviation of the average yield

grows as the deviation of the error term distribution grows and demand volume is more

volatile between runs.

In all cases, the psychic forecasts based on “c-max” result in higher Yield than those

based on “c-frac”. At the same time, “c-frac” still leads to higher yield than “c-min”.

As the simulation experiment was based on a hybrid scenario including some customers

that do not accept the cheapest booking class, even “c-min” always resulted in yields

exceeding those observed when first-come-first-serve controls were applied.

As already remarked with regard to revenue and predicted by Hypothesis (8.40), yield is

always highest when the forecast is not only based on “c-max” but also takes into account

two alternative preferred itineraries as in the variant “2-i”. This effect is strongest in the

case of “Vol. = 100, Dev. = 20”, when demand volume is high and the deviation of

the error term distribution is also high. The consequence of the high deviation of the

error distribution is a less homogeneous distribution of demand volume over the existing

itineraries. This leads to more itineraries being especially desirable and more itineraries

being “second-choice”. Without a “2-i” forecast, the second-best alternatives are assigned

less restrictive inventory controls. However, in the case of “Vol. = 100, Dev. = 20”, the

consideration of second-best alternatives seems to have lead to losses in bookings: While

yield strongly exceeds the yield gained by “1-i”, the revenue as shown in Figure 8.17 was

not much higher.

Figure 8.19 shows the average seat load factor over 50 runs resulting from the appli-

cation of the listed variations of psychic forecasts over all runs. Seat load factor (SLF)

is expressed as l̂% fcfs as shown in Definition (8.37). In the diagram, the deviation of the

average SLF in both directions is presented by a grey vertical line. However, in contrast

to what was observed for yield and revenue previously, the deviation of this indicator is

small across all the markets.

In all cases, the psychic forecasts based on “c-max” result in lower SLF than those based

on “c-frac”. At the same time, “c-frac” still leads to lower SLF than “c-min”. The reason
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Figure 8.19.: Average SLF over 50 Runs in Percent of First-Come-First-Serve
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for this are more restrictive inventory controls resulting from demand being predicted to

arrive in classes that are not the cheapest. In the case of high demand volume, “Vol. =

100”, the psychic forecasts of the variant “c-min” lead to SLF that are even higher than

those achieved with first-come-first-serve controls. This is due to more bookings being

accepted as availabilities are optimized.

As already remarked with regard to yield, the itinerary choice has a direct effect on

SLF. They are even lower when the forecast is not only based on “c-max” but also takes

into account two alternative preferred itineraries as in the variant “2-i”. This effect can

be observed regardless of demand volume. It is stronger when the deviation of error term

distribution is high. The consequence of the high deviation of the error distribution is a

less homogeneous distribution of demand volume over the existing itineraries. This leads

to more itineraries being especially desirable and more itineraries being “second-choice”.

With a “2-i” forecast, the second-best alternatives are assigned more restrictive inventory

controls.

The consideration of second-choice alternatives leads to losses in bookings as more

seats are reserved for valuable customers that book on their preferred itinerary. This is

the reason for the effect observed with regard to revenue: While yield strongly exceeds

the yield gained by “1-i”, the revenue as shown in Figure 8.17 was not much higher.

Psychic Forecasts as Initialization: Used as an initialization method, psychic forecasts

influence the first set of historical bookings that adaptive methods such as exponential

smoothing can be based on. The degree of their influence may be derived from a mea-

surement that describes in how far the results of the simulation experiments based on

different initial forecasts but adapted according to the same method diverge. Therefore,

new indicators need to be introduced.

• Let {c-max 1-i, c-frac 1-i, c-min 1-i, c-max 2-i, c-frac 2-i} be the set of available psy-

chic forecasts.

• Let r%fcfs (s) be the revenue in run s as a percentage of the revenue gained with

first-come-first-serve controls.

• Let σ (r (s)) be the deviation of revenues at run s over all simulation experiments

considered.
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As the same adaptive method is applied in a range of simulation experiments start-

ing out with different initial forecasts, a development in the deviation of results can be

expected. The assumed relationship is formalized in Hypothesis (8.41).

lim
s→∞

σ (r (s)) = 0 (8.41)

Figure 8.20 shows r%fcfs (s) over the course of 50 runs for different initializations of

Exp050. When “zero FC” is used as initialization method, the forecast is set to be

zero for all flights and classes in the first run. It is then updated based on observed

unconstrained bookings using the exponential smoothing method “Exp050”. The other

options shown correspond to the psychic forecast variants presented previously.

The “zero FC” initialization leads to first-come-first-serve controls being applied in

the first run. As no demand is predicted to arrive in any class, no protected seats are

computed by the EMSR-b optimization. A slight spiral-up effect can be observed in

later runs: As the exponential smoothing method picks up on product-based demand,

protected seats are introduced and the inventory controls are no longer merely based on

first-come-first-serve.

When used as an initialization method, “c-max 2-i” seems superior to “c-max 1-i”. In

contrast to the constant use of the psychic forecast that predicts demand to arrive in

part for second-choice itineraries, the exponential smoothing avoids the effect of overly

restrictive inventory controls. Both methods that are based on predicting demand to arrive

according to customers’ highest willingness to pay result in constantly higher revenue than

the alternatives.

While leading to lower revenue than the “c-max” and even “c-frac” alternatives, “c-

min” is still more successful than the “zero FC” initialization. As the market that is being

analyzed in these simulation experiments includes both a class structure and demand that

is price- as well as product-oriented, a share of customers accord to the static demand

assumption. An accurate prediction of this demand even in the cheapest class customers

are willing to buy therefore still results in protected seats for more valuable classes. The

initialization method “c-min” may also be regarded to present the state a complete spiral-

down effect would finally lead to in a hybrid market: All customers are predicted to arrive

in the cheapest class they are willing to buy, which is not necessarily the cheapest class

available.
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Figure 8.20.: Revenue in Percent of First-Come-First-Serve
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Figure 8.21.: Deviation of Revenue between Simulation Experimenets

Figure 8.21 shows the development of σ (r (s)) from run 1 to run 50, given different

forecast initializations and the adaptive method Exp050 as already discussed with regard

to Figure 8.20. As can be seen, the prediction formalized in Hypothesis (8.41) holds

true: The deviation of revenue between simulation experiments decreases as the same

exponential smoothing method is applied to different initial forecasts.

The difference in deviation between run 1 and run 50 is greater for markets including

low demand volume (“Vol. = 050”) and high deviation (“Dev. = 20”). This is due to

the fact that the spiral-down effect that leads to similar (low) revenue results takes place

faster under these conditions. This has been demonstrated in Section 8.1.

In all market variations including high demand volume (“Vol. = 100”), the initial

deviation is higher than when demand volume is low. Due to the high number of requests,

inventory control can have a wider range of success as the maximum of revenue that may

be gained is greater. As the spiral-down effect does not immediately lead to lower revenues

in such cases (this also been explained in Section 8.1), revenues do not decrease from their

initial state as much as they do in markets with low demand volume. For this reason, the

deviation does not decrease in a similar way, either.
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Conclusion: The concept of psychic forecasts can be used for two purposes in a sim-

ulation environment: To initialize adaptive forecast methods lacking historical bookings

and to serve as a benchmark for the evaluation of other forecast methods. However, the

choice of psychic forecast has a great influence on its success. The way in which the

psychic forecast is defined and computed from knowledge of the demand model has di-

rect consequences in the form of the resulting revenue. It influences both the success of

adaptive methods that use it as an initialization method and the outcome of evaluations

based on comparisons with it.

8.3. Evaluation of Standard Accuracy Indicators

The concept of simulation offers the opportunity of considering long-term developments

and comparisons with exclusive knowledge of the demand model. In the previous two

sections, these views have been applied to forecast methods. This section focuses on the

ways of evaluating forecasts as presented in Section 4.1 with the help of a simulation

system. It strives to analyze the advantages and fallacies of common approaches to

forecast evaluation.

In order to compare the effects of different methods, forecast evaluation needs to be

defined more clearly. Three dimensions can be identified that describe traditional forecast

error measurements: the objects of comparison, the level of comparison, and the method

of comparison.

Objects of Comparison: In general, the objects of comparison are always bookings and

forecasts. However, in the case of demand forecasting for revenue management, a differ-

entiation between the states “constrained” and “unconstrained” applies to both of these

indicators as already explained in Section 6.2. This view results in four indicators that

may be compared, two considering bookings and two considering forecasts. In addition,

the unconstrained or constrained psychic forecast available in the simulation may also be

used as a benchmark to compare the results of evaluation.

• Let b (c, f, t, s) be the bookings observed in class c of flight f between points of time

t− 1 and t in the booking horizon of simulation run s.
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• Let bunc (c, f, t, s) be the unconstrained bookings. The transformation from actual

to unconstrained bookings is implicit in the forecast method applied.

• Let func (c, f, t, s) be the demand predicted to arrive for class c of itinerary f between

points of time t − 1 and t in the booking horizon of simulation run s. This is the

output of the forecast method and the input for the optimization method.

• Let f const(c, f, t, s) be the constrained predicted demand. The transformation from

unconstrained to constrained is handled over the inventory controls that were applied

during the time period considered.

• Let func
1-i c-max(c, f, t, s) = func

psy (c, f, t, s) be the psychic forecast according to the

method using the preferred itinerary and maximum willingness to pay described

in Section 8.2. As it was shown to be a good upper benchmark in most scenarios,

this psychic forecast will be used representatively for all psychic forecasts in this

section.

• Let f const
1-i c-max(c, f, t, s) = f const

psy (c, f, t, s) be the constrained version of the psychic

forecast. The transformation from unconstrained to constrained is handled over the

inventory controls calculated on the basis of the psychic forecast.

Intuitively, it appears sensible to compare only indicators that are of the same trans-

formation. This would mean comparing only unconstrained bookings with the original

unconstrained forecast and only comparing actual bookings with a constrained forecast.

However, as bookings and forecasts appear originally in different states, an evaluation that

considers the difference between actual bookings and the original, unconstrained forecast

may also be of interest. In contrast to this, there seems to be no point in transform-

ing both indicators from their original state and comparing unconstrained bookings with

constrained forecasts.

The resulting options for comparison are:

• actual bookings vs. constrained forecast, ec−c;

• unconstrained bookings vs. unconstrained forecast, eu−u;

• actual bookings vs. unconstrained forecast, ec−u;

• unconstrained forecast (e.g. a psychic variant) vs. unconstrained forecast, eũ−u.



Chapter 8: Simulation Based Analysis of Forecast Performance 156

Levels of Comparison: Different aggregation levels may be considered as well. Before

comparing them, indicators may be averaged over classes, itineraries or points of time be-

fore departure. Summing up over classes or itineraries does not seem useful with regard to

forecast evaluation: If this was done, errors that occur with regard to the distribution of

predicted demand over classes or itineraries may be compensated. However, the distribu-

tion of demand over classes and itineraries is a vital information for revenue management.

The question of whether or not to sum up forecasts over points of time before departure

to evaluate them is not that trivial. The EMSR-b heuristic implemented in the revenue

management system modeled does not consider the order of arrival of demand. Does this

mean the information is irrelevant? In the course of this section, two aggregation levels

will therefore be analyzed:

• Let ê(s) be the series error calculated for run s comparing bookings and forecast

per flight, class and point of time.

• Let ê(s) be the series error calculated for run s comparing bookings and forecast

summed up over points of time per flight and class.

Methods of Comparison: Finally, four ways of calculating error measurements have

been described in Section 4.1: The absolute measurements MAD (mean absolute devia-

tion) and RMSE (root mean squared error) as well as the percentage error measurements

MAPE (mean average percentage error) and U2 (Theil’s U2). To specify the error calcu-

lated, further notation is needed.

• Let the usage of MAD be indicated by eMAD.

• Let the usage of RMSE be indicated by eRMSE.

• Let the usage of MAPE be indicated by eMAPE.

• Let the usage of U2 be indicated by eU2.

From these options, a tree of possible forecast error measurements emerges. It is out-

lined in Figure 8.22. According to it, using the range presented so far, 32 different error

measurements may be calculated from the combination of different forecasts or bookings.
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Figure 8.22.: Possible Error Measurements

By applying the alternative error measurements described, the consequences of choos-

ing one over the other can be tested using the simulation system. Applying different

measurements to the same scenario and combining it with knowledge about the actual

demand and quality of forecast methods applied allows for a systematic evaluation of

three fields: the choice of indicators to compare, the choice of aggregation level, and the

choice of error to compute.

Consequences of the Choice of Object: As documented in Section 4.2, it is common

to use the comparisons eu−u and ec−c for forecast evaluation. The condition for this is

the equivalence of both indicators. While the absolute numbers depend on the type of
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comparison, their conclusion should be the same. This may be tested by comparing the

ranking of methods based on each error measurement as shown in Definition (8.42).

• Let R(◦, e, s) be the rank of forecasting method ◦ resulting from its evaluation via

the error measurement e in simulation run s.

eu−u ≡ ec−c := R
(
◦, eu−u, s

)
= R

(
◦, ec−c, s

)
(8.42)
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Figure 8.23.: Rank of Methods according to MAD in Product-Based Scenario with “Vol.

= 050, Dev. = 00”
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Figure 8.23 shows the resulting ranks of the computation of eu−uMAD, ec−cMAD, and ec−uMAD

for the forecast methods “1-i c-max”, “2-i c-max”, “exp025”, “exp050”, “exp075” and

the version of “exp050” that is updated throughout the booking horizon, “exp050-upd”.

The methods are ranked based on observations made when applying them to a product-

sensitive market with low demand volume, “Vol. = 050”, and low deviation of the error

distribution “Dev. = 00”. This market shows the clearest results, however, similar trends

emerge when analyzing different error term deviations. As the ranks are constant after

the tenth run, only the first ten runs of the simulation experiment are shown in the graph.

As can be seen, after a number of runs, all error measurements included in the analysis

lead to the same result in terms of rank: While the Exp025 forecast is judged to be the

most accurate, the two psychic forecast options occupy the last places. The relationship

stated by Hypothesis (8.42) is confirmed.

Given a view of ranks rather than absolute errors, a comparison of actual bookings

and unconstrained forecasts becomes possible. While higher absolute quantities can be

expected due to the inherent quantitative difference of bookings and demand, intuitively

rankings may still be equivalent. A successful optimization should always exclude book-

ings in cheap classes if enough demand for more expensive classes is available, this may

not be true for scenarios including a high volume of demand. Here, a systematic (and de-

sirable) difference between demand and forecast may lead to a disadvantage for methods

that correctly predict the demand that never gets to manifest as bookings. The expec-

tation according to this logic is that possible equivalences disappear as absolute demand

increases. This is formally expressed in Hypothesis (8.43).∣∣∣∣ lim
|R|→∞

R
(
◦, eu−u, s

)
−R

(
◦, ec−u, s

)∣∣∣∣ ≥ 1∣∣∣∣ lim
|R|→∞

R
(
◦, ec−c, s

)
−R

(
◦, ec−u, s

)∣∣∣∣ ≥ 1

∀ s = 1, ..., N s

(8.43)

Figure 8.24 shows the resulting ranks of the computation of eu−uMAD, ec−cMAD, and ec−uMAD

for the forecast methods “1-i c-max”, “2-i c-max”, “exp025”, “exp050”, “exp075” and

the version of “exp050” that is updated throughout the booking horizon, “exp050-upd”.

The methods are ranked based on observations made when applying them to a product-

sensitive market with high demand volume, “Vol. = 050”, and low deviation of the error



Chapter 8: Simulation Based Analysis of Forecast Performance 160
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Figure 8.24.: Rank of Methods according to MAD in Product-Based Scenario with “Vol.

= 100, Dev. = 00”
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distribution “Dev. = 00”. This market shows the clearest results, however, similar trends

emerge when analyzing different error term deviations. As the ranks are constant after

the tenth run, only the first ten runs of the simulation experiment are shown in the graph.

Contrary to what could be expected based on Hypothesis (8.43), there is no difference

to be found between the ranking of forecasts after 15 runs – and from then on, it stays

constant for “Dev. = 00”. However, in getting to this state, especially during the first

two or three runs, the ranks seem to change quicker when demand volume is high. This

may be due to the higher pressure caused by more valuable demand being in the market.

In the simulation system, a psychic forecast includes the most accurate information.

Accordingly, correct error measurements should rate it as the best of all options. As can

be seen in Figure 8.23 and Figure 8.24, this is not the case. With regard to eu−u, the

reason for this lies in deficiencies in the unconstraining methods applied by the adaptive

forecasts and used to transform bookings for the comparison. These do not only lead to a

spiral-down-effect but also make forecasts that predict a smaller overall demand volume

seemingly more attractive. With regard to ec−c, the buy-down that is still possible in

spite of restrictive inventory controls leads to a deviation from the predicted maximum

willingness to pay.

As it incorporates buy-down and does not leave much space for spiral-down, func
1−ic−min

can be expected to perform better according to ec−c than func
1−ic−max does. This logic would

predict func
1−ic−frac to end up ranked between the two other alternatives. Hypothesis (8.44)

formalizes this expectation.

R
(
1-i c-min, ec−c, s

)
≤ R

(
1-i c-frac, ec−c, s

)
≤ R

(
1-i c-max, ec−c, s

)
∀ s = 1, ..., N s

(8.44)

Figure 8.25 shows that the prediction formalized in Hypothesis (8.44) does come true

when MAD is applied to variants of psychic forecasts in the product-sensitive scenario.

The graph illustrates the value of MAD averaged over 50 runs. The variant “1-i c-min”,

as predicted, always achieves the lowest deviation from actual bookings while “1-i c-max”

leads to the highest deviation. One exception to the rule is the case of high demand

volume “Vol. = 100” and low deviation “Dev. = 00” – while the order of “1-i c-max”

and “1-i c-min” stays the same, “1-i c-frac” is rated worst in this case.
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Figure 8.25.: MAD: Constrained Psychic Forecasts vs. Actual Bookings in the Product-

Based Scenarios

Finally, if nothing changes in customer behavior over time, the repeated application

of adaptive forecasts should lead to an improvement of forecast quality. In addition to

ec−c and eu−u, the error measurement alternative including psychic forecasts, eũ−u, can

be used to test for this. The expected forecast behavior can be found Hypotheses (8.45).

lim
s→∞

eũ−u (s) = 0

lim
s→∞

eu−u (s) = 0

lim
s→∞

ec−c (s) = 0

(8.45)

However, as shown in Figure 8.26, Hypothesis (8.45) does not hold for the adaptive

forecast methods based on exponential smoothing implemented here. In contrast to that,

the prediction of Hypothesis (8.45) can be observed to come true over the course of the fifty

simulation runs included in the experiment. The conclusion drawn from this observation

is that the seemingly adaptive effect that leads to an improvement of eu−u and ec−c is not

in fact due to an adaption to the real demand. Instead, it is the result of a spiral-down

effect as described in Section 8.1.
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Figure 8.26.: MAD of Unconstrained Forecasts from Psychic Forecast in Product-Based

Scenario with “Vol. = 050, Dev. = 00”

Consequences of the Level of Comparison: Whether or not to aggregate bookings and

forecasts over time before departure before calculating error measurements can also be

considered on the basis of a simulation experiment. For this, the computation of a reverse

psychic forecast is introduced.

• Let func
1-i c-max (f, c, t, s) be the psychic forecast predicting demand to arrive for class c

and flight f between points of time t− 1 and t in the booking horizon of simulation

run s.

• Let f
unc

1-i c-max (f, c, t, s) be the mirror psychic forecast as presented in Definition

(8.46).

f
unc

1-i c-max (f, c, t, s) := func
1-i c-max

(
f, c,N t − t+ 1, s

)
∀ f ∈ F ; c ∈ C; t = 1, ..., N t; s = 1, ..., N s

(8.46)

Considering that EMSR-b does not take into account the order of demand arrival, f
unc

and func may be expected to be equivalent with regard to their consequences. Using
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revenue r(s) as an indicator of overall system performance, this expectation has been

formalized in Hypothesis (8.47).

• Let r be the overall revenue resulting from the application of a forecast func to one

scenario in a simulation experiment.

• Let r be the overall revenue resulting from the application of a mirrored forecast

f
unc

to the same scenario.

func ≡ f
unc → r = r (8.47)

However, many revenue management systems include re-optimization routines within

the booking horizon as described in Section 7.3. These are modifications of forecasts and

inventory controls based on the deviation of already observed bookings from the predicted

demand.

• Let f ′unc be a forecast that is updated throughout the booking horizon.

• Let f ′
unc

be a mirror forecast that is updated throughout the booking horizon.

• Let r′ be the overall revenue resulting from the application of a mirror forecast that

is updated.

As updating is applied, a difference in revenue can be expected. As seen before, adaptation

to observed values does not always have a positive effect. For this reason, the expectation

phrased by Hypothesis (8.48) is neutral.

f ′
unc 6= f ′

unc → r′ 6= r′ (8.48)

Figure 8.27 shows the revenue earned when inventory controls based on the psychic

forecast are re-optimized, a mirrored psychic forecast is applied, or inventory controls

based on the mirrored psychic forecast are re-optimized. In order to render the difference

clearly visible without regard to variations of overall demand volume and error term

deviation, revenue is expressed as a percentage of the revenue earned under the same

conditions with the psychic forecast.

As can be seen, Hypothesis (8.47) holds true: The mirrored psychic forecast without

re-optimization leads to a result that is equivalent to that of the psychic forecast that was

not mirrored. The revenue percentage displayed is 100 %.
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Revenue in Percent of Revenue Observed with Psychic FC
(averaged over 50 runs on the product-based market)
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Figure 8.27.: Revenue in Percent of Revenue Earned by Psychic Forecast – Product-Based

Scenario

The consequences of updating as predicted by Hypothesis (8.48) can also be observed

in Figure 8.27. As shown, re-optimization combined with the psychic forecast leads to

higher revenue in all market variations included. This is due to the overly restrictive

inventory controls of the psychic forecast being corrected by re-optimization: While yield

decreases, the increase in the number of bookings is strong enough to compensate.

In situations with low demand volume and low error term deviation, combining the mir-

rored psychic forecast with a re-optimization leads to lower revenue. As valuable demand

is expected to arrive at incorrect times, the re-optimization does not compute inventory

controls that succeed at reserving seats. Instead, the number of additional bookings

gained when cheap tickets are available does not compensate for the loss in yield. How-

ever, in situations with high demand volume or a high error term deviation leading to a

non-homogeneous distribution of demand over itineraries, even the re-optimized mirrored

psychic forecast leads to higher revenue than the original psychic forecast. Again, this is

due to an increase in bookings that compensates for losses in yield.
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Consequences of Choice of Method: So far, all simulation experiments have focused

on the use of mean absolute deviation, MAD, to compute errors. However, three other

methods of computing error have been mentioned earlier. Of these, two (MAPE and U2)

are based on percentage rather than absolute errors. RMSE is another absolute error

measurement.

Two assumptions may be held about these indicators. One is the equivalence of absolute

error measurements as well as that of percentage error measurements. The assumption

has been taken from the literature presented in Section 4.1. It states that errors based on

a percentage calculation are preferable as they do take into account the overall amount

of demand.

Equivalence of MAD to RMSE and MAPE to U2 can be tested for based on a set-up

similar to that applied when considering the equivalence of object choices. If MAD and

RMSE are equivalent, this is not necessarily a question of their absolute value but one

of the resulting rankings for different forecast methods. The same is true for MAPE and

U2. This statement is formalized in Hypothesis (8.49).

ec−cMAD ≡ ec−cRMSE → R
(
MAD, ec−c, s

)
= R

(
RMSE, ec−c, s

)
ec−cMAPE ≡ ec−cU2 → R

(
MAPE, ec−c, s

)
= R

(
U2, ec−c, s

) (8.49)

If error measurements based on percentage values were more accurate than those based

on absolute values, one consequence would be a general difference in ratings. This expec-

tation can be expressed in similar terms as the expected equivalence of methods described

by Hypothesis (8.49). It is presented in Hypothesis (8.50).

ec−cMAD 6= ec−cMAPE → R
(
MAD, ec−c, s

)
6= R

(
MAPE, ec−c, s

)
ec−cRMSE 6= ec−cU2 → R

(
RMSE, ec−c, s

)
6= R

(
U2, ec−c, s

) (8.50)

Figure 8.28 shows that the prediction does hold true: Different rankings result from

the application of absolute or percentage values. No statement about the quality of

these measurements can be made yet. One way of evaluating the quality of the error

measurements analyzed here has already been introduced – the comparison to a psychic

forecast. It may offer insights as the quality of the psychic forecast is known to be superior

to that of the adaptive alternatives.
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Figure 8.28.: Ranks According to Different Error Measurements
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Conclusion: Different error measurements may result in different evaluations of the ac-

curacy of forecasts. A consequence of the choice of objects of comparison, level of compar-

ison, and method of comparison may be quite different rankings of the method compared.

Additionally, some simulation experiments involving mirrored psychic forecasts have in-

dicated that an accurate forecast is not necessarily the most successful forecast in terms

of resulting revenue.

8.4. Definitions and Effects of Uncertainty of Demand

The previous sections have considered the effects of the application of certain forecast

methods over a long term, the consequences of psychic initializations and benchmarks

and the characteristics of error measurements. All statements about the analysis of fore-

cast performance under these aspects have been illustrated by the results of simulation

experiments over an array of market variations. Depending on the volume of demand

included and the deviation of the error term involved in distorting demand over several

simulation runs, different results could be observed. The goal of this section is to examine

in how far the uncertainty included in a market influences the forecast quality and how

this aspect can be included in forecast performance evaluation.

The concept that some markets may include more uncertainty than others and therefore

be more difficult to predict has already been mentioned in Section 4.1 with special regard

to Diebold & Lopez (1996). When the customer behavior is random and volatile, no

forecast can achieve good results. Uncertainty includes two dimensions: information on

customer behavior is not available (apparent randomness) and the uncertainty of demand

is high. Both dimensions are to be analyzed.

Uncertainty due to Lacking Information: A way of comparing forecasts given different

amounts of information about customer behavior is to change the decision parameters

included in the market. An example of this can be found in the comparison of the product-

oriented to the price-oriented scenario. Customers confronted with a class structure clearly

differentiated by restrictions and basing their decision mainly on their product acceptance

tend to book the same classes whenever they are available. Customers confronted with a
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product structure that is only differentiated by price and basing their decision mainly on

the price tend to book the cheapest class available. A forecast that assumes static demand

includes the necessary information to predict product-oriented, but not price-oriented

demand. The consequence is a higher degree of uncertainty due to information (on buy-

down behavior, in this case) not being available. This lack of information becomes even

more influential to the success of the forecast in terms of revenue when overall demand

volume is low, as under such circumstances buy-down takes place more frequently.

• Let Sproduct indicate a combination of supply and demand that is based on a differ-

entiation by product characteristics (product-sensitive market).

• Let Sprice indicate a combination of supply and demand that is based on a differen-

tiation by price (price-sensitive market).

• Let Shybrid indicate a combination of supply and demand that is based on a differ-

entiation by price and product characteristics (hybrid market).

• Let S =
{
Sproduct, Sprice, Shybrid

}
be the set of market scenarios available.

• Let Ψ (S, σε, V, F
◦) describe a simulation experiment based on a market structure

S, a deviation of the error term of demand σ (ε), overall demand volume V and a

forecast F ◦.

• Let yfcfs % (Ψ (S, σε, V, F
◦)) be the average yield generated in a simulation experiment

as the percentage of the yield generated when inventory controls based first-come-

first-serve were applied.

• Let rpsy % (Ψ (S, σε, V, F
◦)) be the average revenue generated in a simulation exper-

iment as the percentage of the revenue generated when inventory controls based

first-come-first-serve were applied.

• Let ypsy % (Ψ (S, σε, V, F
◦)) be the average yield generated in a simulation experiment

as the percentage of the yield generated when inventory controls based on a “c-max

1-i” psychic forecast were applied.

• Let rpsy % (Ψ (S, σε, V, F
◦)) be the average revenue generated in a simulation exper-

iment as the percentage of the revenue generated when “c-max 1-i” psychic under

first-come-first-serve inventory controls were applied.
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• Let ec-c
MAD (Ψ (S, σε, V, F

◦)) be the mean average deviation of the constrained forecast

compared to the bookings observed in simulation experiment averaged over all runs.

In Hypothesis (8.51), the following expectation for simulation experiments using a psy-

chic forecast “c-max, 1-i” is formalized: If the market is product-based, the decrease of

yield resulting from a decrease in demand volume will not be as steep as when it is price

based.

yfcfs %
(
Ψ
(
Sproduct, σε, V, F

c-max, 1-i
))

yfcfs % (Ψ (Sproduct, σε, V ′, F c-max, 1-i))
≤
yfcfs %

(
Ψ
(
Sprice, σε, V, F

c-max, 1-i
))

yfcfs % (Ψ (Sprice, σε, V ′, F c-max, 1-i))

∀ V ′ ≤ V ;σε ∈ R
(8.51)
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Figure 8.29.: Increase of Yield in Percent of FCFS from Vol. = 050 to Vol. 100

Figure 8.29 shows the increase of yield indicated by yfcfs% as demand volume grows

from “Vol. = 050” to “Vol. = 100” The increase is depicted in percent of yfcfs% given

“Vol. = 050”. While growing yield can also be observed in a product-based market, the

increase is higher on price-based markets. On a product-based market, yield increases in

yield as with absolute demand volume being higher, the absolute share of customers that

exclusively request more valuable classes is also higher. On a price-based market, yield
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increases as the absolute number of customers with a high willingness to pay increases

and inventory controls are become more restrictive.

The effect of yield also seems to depend on the deviation given in the market (“Dev.

= 00” vs. “Dev. = 20”). In general, it can be stated that deviation leads to a weaker

growth in yield as demand volume increases.

Hypothesis (8.52) formalizes the expectation that in a price-based scenario, a static

forecast will be less successful at maximizing revenue than in a product-based scenario

even when it is based on “psychic” knowledge of maximum willingness to pay as described

by Section 8.2.

rfcfs %
(
Ψ
(
Sprice, σε, V, , F

c-max, 1-i
))
≤ rfcfs %

(
Ψ
(
Sproduct, σε, V, F

c-max, 1-i
))

∀ σε ∈ R;V ∈ N
(8.52)
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Figure 8.30.: Revenue in Percent of FCFS on Price- and Product-Based Markets

Figure 8.30 shows a comparison of the revenue as a percentage of the average yield ob-

served under first-come-first-serve inventory controls over price- and product-based mar-

kets. Obviously, the expectation stated in Hypothesis (8.52) is confirmed.
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In the product-based markets, the difference in revenue between first-come-first-serve

controls and the “c-max 1-i” psychic forecast is not large to start with: At most, the

psychic forecast exceeds first-come-first-serve by 37 % in cases with low deviation (“Dev. =

00”) and high demand volume. As customers request tickets for specific classes, and nested

inventory controls ensure availability in the most expensive classes, even well-computed

protection levels can not improve revenue much if enough capacity is available to accept

most requests. This is the reason for a difference of only 9 % for low demand volume and

high deviation (“Vol. = 050, Dev. = 20”). For product-based markets, inventory controls

are most useful for high demand, when bookings in cheap classes threaten to use capacity

that could be sold at higher prices.

The case is quite different when the price-based markets are considered. On these, the

difference between first-come-first-serve and the psychic forecast in terms of revenue is

at least 300%: Four times as much revenue can be gained when applying the inventory

controls based on “c-max 1-i” to low deviation and low demand (“Vol. = 050, Dev.

= 00”). As deviation rises, the distribution of demand becomes less homogenuous and

on some flights, demand exceeds capacity. In these cases, as already described for the

product-based scenarios, inventory controls based on the psychic forecast avoid using the

sparse capacity for customers requesting cheap tickets even on markets with low overall

demand. Revenue based on the psychic forecast exceeds that based on the first-come-first-

serve controls by up to 370 %. When demand volume is high, the effect of high deviation

does not add to the revenue. Instead, revenue is at its maximum when deviation is low,

exceeding what was earned with first-come-first-serve by 665 %.

Hypothesis (8.53) formalizes the expectation that in any scenario, a static forecast

based on exponential smoothing will be less successful at maximizing revenue when the

deviation of the distribution the error term is drawn from is high.

lim
σε→∞

rfcfs %
(
Ψ
(
Sprice, σε, V, F

◦)) = 100

∀ S ∈
{
Sproduct, Sprice, Shybrid

}
;V ∈ N;

{
Fexp25, Fexp50, F

exp75
} (8.53)

As could be seen in Figure 8.30, this statement only holds true for high demand volume.

When overall demand volume is low, a high deviation of the error term distribution can

have positive effects that may lead to an increase in revenue: As the distribution of
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demand over itineraries becomes less homogeneous, in spite of low demand volumes,

inventory controls become more effective at reserving seats for valuable customers.

Hypothesis (8.54) formalizes the expectation that in a price-based scenario, a static

forecast will be less successful at predicting demand accurately than in a product-based

scenario. The quality of demand forecast is measured as the mean absolute deviation

between the constrained forecast and the observed bookings.

ec-c
MAD

(
Ψ
(
Sprice, σε, V, , F

c-max, 1-i
))
≥ ec-c

MAD

(
Ψ
(
Sproduct, σε, V, F

c-max, 1-i
))

∀ σε ∈ R;V ∈ N
(8.54)
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Figure 8.31.: Difference in MAD (Price-Based - Product-Based Market) in Percent

Figure 8.31 shows the positive difference between the MAD observed on price- and

product-based markets. It indicates that the MAD computed from the constrained fore-

cast and actual bookings is always higher for price-based markets. As capacity and the

overall demand volume were kept constant for all simulation experiments, this fulfills the

prediction stated in Hypothesis (8.54).

Uncertainty due to Market Volatility: In the simulation, the uncertainty created by

the volatility of a market is modeled as the deviation of the distribution the error term is
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drawn from. A potentially high error term can result in overall demand volume changing

strongly from one run to the other. Furthermore, the distribution of demand over different

routes becomes more skewed.

σε ≤ σ′ε

→ ec-c
MAPE (Ψ (S, σε, V, F

◦)) ≤ ec-c
MAPE (Ψ (S, σ′ε, V, F

◦))

∀ S ∈
{
Sproduct, Sprice, Shybrid

}
;V ∈ N; {Fexp25, Fexp50, Fexp75}

(8.55)

In any scenario a static forecast will be less successful accurately forecasting demand

when the deviation of the distribution the error term is drawn from is high. Standard

error indicators will interpret this as a decrease in forecast performance, even though not

the forecast’s abilities but the potential for accurate forecasts has been diminished. For

the forecast error MAPE, this expectation is formalized by Hypothesis (8.55).

Figure 8.32 presents the value of eu-u
MAPE (Ψ (S, σε, V, F

◦)) averaged over 50 runs. The

error indicator is displayed for simulation experiments applying the naive forecast F naive

as well as exponential smoothing methods initialized by the psychic forecast “c-max 1-

i”; F exp025, F exp050, and Fexp075; to markets Sproduct and Sprice. Overall demand volume

changes from “Vol. = 050” to “Vol. = 100” – the four possible combinations of market-

type and demand volume have been used to generate one graph each. The deviation

of the error term distribution changes from “Dev. = 00” via “Dev. = 01”, “Dev. =

05”, and “Dev. = 10” to “Dev. = 20”. The mean average percentage error (MAPE) is

illustrated by a group of bars for each method, with the color changing from dark blue

(low deviation) to light blue (high deviation).

As can be seen in Figure 8.32, the forecast error tends to increase as the deviation of the

error term distribution increases. Its level is higher for the exponential smoothing methods

than for the naive forecast. This is due to the initialization of the exponential smoothing

methods based on the psychic forecast: As explained in Section 8.3, when evaluated by

standard error indicators, the psychic forecast leads to high errors. Furthermore, the

spiral-down effect that takes place on price-based markets as explained in Section 8.1

leads to smaller errors on price-based markets.
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Figure 8.32.: MAPE Averaged over 50 Runs
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Indicators of Uncertainty: To normalize the development of the forecast error to the

degree of market uncertainty, a new indicator is introduced.

• Let eu-u
PB (Ψ (S, σε, V, , F

◦)) be the percentage of cases in which deviation of uncon-

strained forecast F used in simulation experiment S from the observed bookings

was smaller than that of the naive forecast.

The performance of the naive forecast depends on the volatility of the market: If the

same amount of requests for the same classes arrives in every run, it is very successful.

While in such a situation, forecasting is also easier for other methods, the benchmark of

the naive forecast becomes harder to reach. If high market uncertainty leads to volatile

request volumes, the difference between the naive forecast and the actual observations

grows. While this makes forecasting harder for other methods, as well, the benchmark of

the naive forecast becomes easier to reach. This way, forecast performance is normalized

to the situation.

Figure 8.33 presents the value of eu-u
PB (Ψ (S, σε, V, F

◦)) averaged over 50 runs. The

performance indicator “Percent Better” is displayed for simulation experiments applying

the naive forecast F naive as well as exponential smoothing methods initialized by the

psychic forecast “c-max 1-i”; F exp025, F exp050, and F exp075; to markets Sproduct and Sprice.

Overall demand volume changes from “Vol. = 050” to “Vol. = 100” – the four possible

combinations of market-type and demand volume have been used to generate one graph

each. The deviation of the error term distribution changes from “Dev. = 00” via “Dev.

= 01”, “Dev. = 05”, and “Dev. = 10” to “Dev. = 20”. The percentage of cases for

which the respective method performed better than the naive method (PB) is illustrated

by a group of bars for each method applied, with the color changing from dark blue (low

deviation) to light blue (high deviation).

The introduction of a percent-better indicator does normalize the evaluation of forecast

accuracy according to the level of uncertainty included in a market. The number of cases

in which the evaluated method performed better than the naive forecast does not seem

to clearly depend on the deviation of the error distribution. While it grows with rising

deviation in the product-based market with high demand volume, it does not show a

trend for the other combinations of market and demand volume shown.
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Percent Better: Product-Based Market, Vol. = 050
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Figure 8.33.: “Percent Better” Averaged over 50 Runs
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According to what was shown so far, a general indicator of the uncertainty included

in a market may be the quality of the naive forecast. In a very stable environment, a

prediction based on the values observed during the last run can be expected to be accurate

if no trend influences demand. With demand fluctuating from one run to the other as

the deviation of error terms increases, this changes. Hypothesis (8.56) formalizes this

expectation.

σε ≤ σ′ε → ec-c
MAD

(
Ψ
(
S, σε, V, F

naive
))
≤ ec-c

MAD

(
Ψ
(
S, σ′ε, V, F

naive
))

∀ S ∈
{
Sproduct, Sprice, Shybrid

}
;V ∈ N

(8.56)
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Figure 8.34.: MAD for Naive Forecast Averaged over 50 Runs

Figure 8.34 shows the development of ec-c
MAD

(
Ψ
(
S, σε, V, F

naive
))

over all markets as σε

increases. As was already observed to some extend with regard to the error indicator

MAPE, the mean absolute deviation of the constrained naive forecast from observed

bookings increases with an increase in the deviation of the error term distribution. The

exception is the product-based market with low overall demand volume: Even with the

resulting high error term, product-based customers apparently stay equally predictable

as long as demand does not exceed capacity.
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Runs Required for the Achievement of Confidence Level
Delta (span): 0.01; Alpha (probability): 0.01
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Figure 8.35.: Runs Required for Confidence Level

In a simulation environment, another indication of market uncertainty is the number of

runs needed to reach the desired confidence level. Based on the computation of confidence

described in Section 7.1, the number of runs a simulation experiment increases with the

deviation of the distribution error terms. This observation is illustrated by Figure 8.35.

The graph shows the development of the number of runs required for simulation experi-

ments including first-come-first-serve controls or a naive forecast and EMSR-b, based on

price- or product-based markets with low or high demand volume and a range of deviations

of the error term distribution.

As can be seen, both methods applied need roughly an equal amount of runs to reach

the required confidence level. Note that on price-based markets, a naive forecast that is

initialized with a zero forecast and first-come-first-serve lead to similar inventory controls

and to bookings only in the cheapest class included in the scenario. Adaptive methods

such as psychic forecasts and exponential smoothing need many more runs as they interact

with the volatility of the market. However, in both cases the number of runs required

increases with the deviation of the distribution that the demand error term is drawn from.



Chapter 8: Simulation Based Analysis of Forecast Performance 180

Without having to rely on information exclusive to simulation environments, the error

variance of the naive forecast can also indicate uncertainty. The more that the fluctuation

of demand is influenced by a high error term and thereby randomized, the more random

also the quality of a naive forecast. Hypothesis (8.57) formalizes this expectation.

• Let σ2
(
ec-c

MAD

(
Ψ
(
S, σε, V, F

naive
)))

be the variation of the mean absolute deviation

of the constrained naive forecast from observed bookings over the runs of simulation

experiment Ψ.

σε ≤ σ′ε → σ2
(
ec-c

MAD

(
Ψ
(
S, σε, V, F

naive
)))
≤ σ2

(
ec-c

MAD

(
Ψ
(
S, σ′ε, V, F

naive
)))

∀ S ∈
{
Sproduct, Sprice, Shybrid

}
;V ∈ N

(8.57)
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Figure 8.36.: Variance of MAD for Naive Forecast over 50 Runs

Figure 8.36 shows the development of σ2
(
ec-c

MAD

(
Ψ
(
S, σε, V, F

naive
)))

as σε increases

over all markets. As predicted in Hypothesis (8.57), the variance of error increases rapidly

as the variance of the error term distribution increases.

Indicators of Robustness: Observing the development of revenue and forecast quality as

the deviation of the distribution of error terms increases can also give an indication of the
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robustness of a forecast method. In contrast to an observation of forecast quality under

static conditions, robustness provides information on how well a forecast reacts to changes

in the market place. Hypothesis (8.58) formalizes the description of a measurement of

robustness based on the comparison of revenue as uncertainty represented by the deviation

of the distribution that error terms are drawn from increases.

• Let Orev (F ◦, σε, σ
′
ε) be a revenue-based indicator of the robustness of a forecast

method F ◦ given an increase in uncertainty from σε to σ′ε

Orev (F ◦, σε, σ
′
ε) :=

r (Ψ (S, σ′ε, V, F
◦))

r (Ψ (S, σε, V, F ◦))

∀ S ∈
{
Sproduct, Sprice, Shybrid

}
;V ∈ N

(8.58)
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Figure 8.37.: Revenue Robustness based on Rev. Averaged over 50 Runs

Figure 8.37 shows the revenue-based robustness of first-come-first-serve controls, the

psychic forecast based on “c-max 1-i”, and the exponential smoothing method Exp050 for

σ′ε = 0 and σε = 20. As may be expected, the first-come-first-serve controls are the most

robust choice on most market variations: First-come-first-serve inventory controls are not

changed based on forecasts that may be mislead by demand with a high deviation of the

error term distribution. However, based on these controls, the lowest absolute revenue
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is generated in most cases. The psychic forecast, which anticipates at least part of the

demand volatility caused by the error term, comes in on second place with regard to

robustness.

Conclusion: Some combination market characteristics, labeled uncertainty, has an effect

on the potential success of any forecast method. In the simulation environment used

for experiments, uncertainty is modeled by an error term influencing the volatility of

customer behavior. As the deviation of the normal distribution this error term is drawn

from increases and thereby uncertainty rises, forecasts perform worse both in terms of

accuracy and in terms of resulting revenue. Finally, some indicators based on first-come-

first-serve controls or the naive forecast, by which to estimate the level of uncertainty

included in a market, have been introduced.

8.5. Evaluation Approaches for Price-Sensitive Forecasts

As some markets include more uncertainty than others, some forecast methods include

more information than others. The previous section presented simulation experiments

designed to show how markets where customers make decisions based on price-sensitivity

pose a problem for static forecasts not taking into account information such as which class

is the lowest available.

This section intends to demonstrate the advantages of additional demand information

considered in both the forecast and its evaluation. As an example for additional infor-

mation, the price sensitivity of customers is considered and a forecast method including

predictions on customers’ buy-down behavior is applied to the price-sensitive scenario.

The new forecast is based on price-sensitive estimators depending on the cheapest class

available. Details of its implementation are described in Section 7.3.1. It is influenced by

a weight parameter αP balancing the influence of price to that of time before departure.

In the further text, the results of the use of this forecast are marked as “price09” - the

parameter that determines the weight of the price-estimators was set to 0.9 for the ex-

periments presented here. The exponential smoothing parameter αexp can also be varied.

However, as the general consequences of this parameter have already been presented in
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Section 8.1, it is kept at αexp = 0.5 for all experiments presented here. For this reason,

the exponential smoothing forecast used for comparison is also “Exp050”.

To maximize the observed effects, the price-oriented market scenario is used in all

simulation experiments with the price-sensitivity forecast. When booking classes are only

differentiated by price and customers base their decisions on the information which class

is the cheapest available, the new forecast should fully realize its potential.

Revenue: First, it needs to be established that the new forecast method actually is

advantageous compared to exponential smoothing approaches. Hypothesis (8.59) presents

the expectation that at least one parametrization of the price-sensitive forecast performs

better in term of revenue than the exponential smoothing alternative.

• Let Ψ
(
Sprice, σε, V, F

◦) be a simulation experiment based on the price-sensitive

market scenario Sprice with error deviation σε, demand volume V and the forecast

method F ◦.

• Let rΨ(Sprice,σε,V,F ◦) (s) be the revenue generated in run s = 1, ..., N s of the above

described simulation experiment.

∃ F price → rΨ(Sprice,σε,V,F exp050) (s) ≤ rΨ(Sprice,σε,V,Fprice) (s)

∀ σε ∈ R; V ∈ N
(8.59)

Figure 8.38 shows the results of the application of the psychic forecast “c-max, i-1”, the

exponential smoothing method “exp050” and the price-sensitive forecast “market09” to

the price sensitive market variations over volume and the deviation of the error term. To

provide a measure of comparison, revenue is presented as a percentage what was earned

when first-come-first-serve inventory controls are applied. All methods are initialized with

the Fc-max, 1-i psychic method.

Accuracy: With new parameters and variables included, new forecast evaluation meth-

ods become available. In addition to comparing observed bookings to the predicted de-

mand, observed customer behavior may now also be transformed to make it comparable

to the estimators used in the new forecast.
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Figure 8.38.: Revenue in Percent of Revenue Earned in Run 1
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• Let bunc (f, c, t, s) be the unconstrained bookings for flight f observed in class c

during time slice t− 1 to t before departure in simulation run s.

• Let ω
Pf,c,s
F be the vector of price elasticity for flight f depending on the class c for

run s according to the forecast F .

• Let ω
Pf,c,s
b be the vector of price elasticity observed for flight f depending on the

class c for run s according to observed bookings.

• Let êωMAD (s) be the mean absolute deviation of the forecasted price elasticity from

the observed price elasticity during run s.

Definition (8.60) shows the computation of the price elasticity from observed bookings.

As no consideration is given to time before departure and the assumption of the price-

sensitive forecast is that all customers always buy the lowest class available, elasticity can

be computed as the share of bookings in one class compared to the overall bookings.

ω
Pf,c,s
b =

∑Nt

t=1 b
unc (f, c, t, s)∑Nc

c=1

∑Nt

t=1 b
unc (f, c, t, s)

∀ f ∈ F ; c ∈ {2, ..., N c} ; s = 1, ..., N s

(8.60)

Definition (8.61) shows the computation of the mean absolute deviation of forecasted

elasticity from observed elasticity. The only difference to the computation of the previ-

ously used MAD indicator is in the indicators used for comparison.

êωMAD (s) :=

∑
f∈F

∑Nc

c=2

∣∣∣ωPf,c,sF − ωPf,c,sb

∣∣∣
|F | · (|C| − 1)

∀ s = 1, ..., N s

(8.61)

After spiral-down is completed, as presented in Section 8.1, exponential smoothing

methods assuming static demand will predict all demand to request the cheapest booking

class in a purely price-based scenario. According to this logic, the elasticity vector of

“Exp050” is filled with zeros as no sell-up is predicted.

In Figure 8.39, the development of eωMAD is shown for two experiments with price-

sensitive forecasts, “market05” and “market09”, over the course of 50 simulation runs.
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Figure 8.39.: MAD of Elasticity vs. Psychic Elasticity
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As in the case of the price-sensitive forecast “market05”, the update includes more time-

sensitive information, the spiral-down effect occurs. The result of this could already been

seen in Figure 8.38, as revenue declined. In the case of the mean absolute deviation, this

results in higher errors compared to psychic knowledge of price elasticity.

Conclusion: The advantages of forecasts that include a model of demand that is not

static when confronting flexible demand structures have been pointed out. As a conclu-

sion, the need for new error measurements including objects of comparison that differ

from the traditional set of bookings and forecasted demand volume may be stressed.

8.6. Simulation-Based Findings Recaptured

A range of statements on the relationship between forecast performance, forecast accuracy,

and forecast evaluation methods have been formalized. Expectations concerning the long-

term effects of methods were drawn from existing research with regard to recent challenges

as described in Section 2.3. Possible consequences of definitions of psychic forecasts were

highlighted as the by-product of thoughts on customer-choice arising when designing the

implementation of the demand model as described in Section 7.2.2. The standard accuracy

indicators evaluated have been introduced previously in Section 4.1. The considerations

of the effect of uncertainty of demand were listed as the consequence of observations on

results depending on the deviation of the error term. Finally, some evaluation approaches

for price-sensitive forecasts were offered using the forecast method described in Section

7.3.1.

Theoretical statements were used to design experiments using the simulation system

described in Chapter 7. Based on the decomposition concept introduced in Chapter 6,

for the first time such theories were analyzed ceteris-paribus in a system that include

a volatile, flexible customer model and a sophisticated range of supply. Processing the

output of the simulation experiments lead to information concerning the conditions under

which the theoretical statements apply.

A number of findings has been verified using the concept for the decomposition and

evaluation of forecasts as documented in Chapter 6 based on the simulation environment
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presented in Chapter 7. The following observations have been made with regard to the

long-term application of methods in revenue management as described in Section 8.1:

• When forecasts based on static demand assumptions are confronted with a flexible,

price-sensitive customer model and a restriction-free class structure, the so-called

spiral-down effect can be observed (see Cooper et al. (2006).

• The spiral-down effect leads to decreasing forecasts for more valuable classes, de-

creasing amounts of protected seats for more valuable classes, and decreasing num-

bers of bookings in the valuable classes. At the same time, forecasts, availability

and bookings for the cheapest class increase.

• The ultimate consequence of the spiral-down effect is a loss in revenue. However,

in markets with high demand volume, the increase in bookings can temporarily

compensate for a loss in yield, resulting in increasing revenue for a limited time.

• The spiral-down effect is more drastic in markets with low demand volume and

volatile customer behavior.

• For adaptive forecast methods based on static demand that include a higher adaptive

weight, the spiral-down effect is more drastic than for those including a low adaptive

weight.

The following observations have been made with regard to the consequences of possible

definitions of psychic forecasts as described in detail in Section 8.2:

• In a simulation system, psychic forecasts may be used to initialize or to evaluate

other forecast methods.

• When predicting demand to arrive per booking class and itinerary, psychic forecasts

may differ with regard to the interpretation of customers’ willingness to pay and

preferred itineraries.

• The method chosen for generating the psychic forecast has consequences with regard

to its revenue performance, ...

• ... with regard to the revenue performance that adaptive methods based on it show,

...
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• ... and with regard to the evaluation of accuracy of forecast methods compared to

it.

The following observations have been made with regard to the evaluation of standard

accuracy indicators for demand forecasts in revenue management as described in Section

8.3:

• Forecast error measurements may lead to different results depending on the objects,

the level, and the method of comparison.

• Error measurements including different units or operate on different levels of aggre-

gation may be compared by comparing the resulting ranks of evaluated methods.

• With regard to the object of comparison, the decision whether to compare con-

strained forecasts to actual bookings, unconstrained forecasts to unconstrained

bookings, or unconstrained forecasts to actual bookings needs to be taken.

• With regard to the level of comparison, even when an optimization method does

not explicitly use information on the timing of demand arrival, it can be useful to

include timing in the evaluation of forecast accuracy. The information available on

this level may be used later in the process, for example when updating the forecast

within the booking horizon.

• The psychic forecast can be used as a benchmark for the self-improving effects of

forecasts that trigger a spiral-down effect.

The following observations have been made with regard to the definition and the effect of

uncertainty of demand as described in Section 8.4:

• The potential for forecast success in terms of accuracy and revenue depends on the

level of uncertainty included in a market.

• Uncertainty may be measured by the success of the naive forecast.

• In a simulation system, the robustness of forecast methods with regard to uncer-

tainty included in a market may be measured by comparing the results of the forecast

when normalized to the results of first-come-first-serve inventory controls at different

levels of uncertainty.
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The following observations have been made with regard to the evaluation of price-sensitive

forecast methods as described in detail in Section 8.5:

• In price-sensitive markets including a restriction-free product structure and cus-

tomers that base their decisions on price, forecasts that include a non-static model

of demand allow only for a weak spiral-down-effect.

• Forecasts that predict price-sensitive behavior require new evaluation methods based

on other objects of comparison than overall bookings and predicted demand volume.

According to the method applied in this chapter, more theories may be formalized and

tested. After a summary of the ideas introduced in this thesis, the final chapter will

provide a number of suggestions concerning further fields of inquiry.

This chapter described analyses applying the simulation environment for revenue man-

agement to the decomposition and evaluation of demand forecasts. The documentation

of findings that have been made possible by the concept and the implementation of this

system represents the closing argument of this text.
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9. Conclusion

The following sections first summarizes the ideas discussed in this text. Finally, an outlook

of future possible research and open questions is provided.

9.1. Summary

In this thesis, a new concept to evaluate demand forecast methods for revenue management

based on a decomposed view of the system was introduced. With the help of such a

concept, the components of revenue management and demand forecasts can be isolated

and evaluated. Interferences stemming from the market environment and the interaction

of the parts of the system can be controlled and analyzed: When evaluated in the presented

framework rather than on an actual market, the success of a method can be isolated from

possible economic trends. When the output of individual components is analyzed, the

performance of specific methods can be separated from their fit with the system. These

merits were demonstrated using a simulation environment. This chapter summarizes the

steps taken.

Background: Having introduced revenue management in general and the problems of

forecast performance evaluation in particular, a list of tasks was formulated in the initial

chapter, 1. Consecutively, these tasks have been made seized and set as goals for research.

The results have been documented in the previous text.

Categorization of Forecast Methods: In order to provide a sound basis for a new

concept of forecast evaluation, existing approaches to demand forecasting for revenue

management were listed in Chapter 3. Research on demand forecasting was categorized

by three aspects: the prediction of volume, the unconstraining of bookings to compute
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historical demand figures, and customer behavior. With regard to all categories, the

influence of forecasting on the outcome of revenue management was emphasized. The

categorization serves as the basis for a decomposition approach.

Characterization of Forecast Evaluation Methods: In Chapter 4, demand forecast

performance measurements are listed and characterized by the object, the level, and the

method of evaluation. A theoretical background of existing indicators is provided and

instances of forecast performance measurement applied in existing publications are listed.

In addition, in Chapter 4, research opportunities related to the special difficulties of

forecast evaluation for revenue management were highlighted. Based on the established

knowledge of forecast methods and approaches to forecast evaluation, the need for further

investigation into the decomposed evaluation was further justified. The consequences of

different error measurements are analyzed in Chapter 8.

Conceptualization of the Decomposition of Revenue Management Systems: To in-

troduce such a decomposed evaluation, Chapter 6 describes revenue management systems

in the terms of separate forecast, optimization and inventory modules. The forecast mod-

ule is further decomposed along the lines of the categorization introduced in Chapter 3.

This results in separate components for the prediction of overall demand volume, the

unconstraining and the prediction of demand behavior. Such a framework enables the

isolated evaluation and comparison of forecast methods ceteris-paribus.

Development of Processes for the Evaluation of Demand Forecast Components: In

Chapter 6, a new concept for the decomposition and evaluation of revenue management

systems is presented. In the framework described, the special characteristics of demand

forecasting for revenue management can be confronted by isolating aspects and using

knowledge of the customer demand model to compute new benchmarks. Detailed de-

scriptions of the use of this system to analyze a complete revenue management system,

the whole forecasting component as well as the aspects of predicting volume, unconstrain-

ing bookings to compute historical demand and predicting customer behavior are offered.
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Implementation of a Simulation Environment: In Chapter 7, a simulation environ-

ment for revenue management that enables the decomposed view is documented. This

includes a description of simulation control as well as of the supply information and

the demand model included. Furthermore, the revenue management components imple-

mented are formally introduced. Market implementations available based on the supply

and demand model are also outlined. The simulation-based approach provides access to

information on customer behavior not available in the real world and allows for the ac-

celerated observation of long-term developments. Given this view, the problem caused by

forecasts’ influence on observed bookings that later serve as a quality benchmark can be

quantified and avoided.

Formalization of Statements on Forecast Performance Evaluation: A number of

statements on forecast performance are formally expressed in terms of the decomposed

concept in Chapter 8. This includes a long-term view of the effects of methods applied, a

discussion of alternative methods of computing forecasts from available knowledge of the

demand model, a comparison of existing key performance indicators for forecast evalua-

tion in a simulation, an analysis of the concept of uncertainty of markets and finally an

introduction to the advantages and additional features of price-sensitive forecasting.

Analysis of Simulation Experiments: Based on statements on forecast performance

evaluation, simulation experiments have been designed, conducted and documented in

Chapter 8. For example, the difficulties stemming from traditional forecast evaluation

with regard to the spiral-down effect are demonstrated. Open decisions concerning the

transformation of knowledge on the demand model are analyzed. The effects of differences

in the market place with special regard to the concept of uncertainty are demonstrated

and quantified.

9.2. Outlook

Some opportunities for future research in revenue management become obvious without

special regard to forecast evaluation. New forecasting methods taking into account flexible
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customer behavior based on an ever more transparent market are still required and so are

optimization algorithms to efficiently compute inventory controls that maximize revenue

based on this information.

With regard to topics of this thesis, three topics that further research may expand on

emerge. These are the decomposition concept presented in Chapter 6, the simulation

environment introduced in Chapter 7, and applications of the combination of concept and

environment to the analysis of forecast evaluation documented in Chapter 8.

First of all, as a theoretical approach, the idea of decomposing the revenue management

system to evaluate its components separately and ceteris-paribus may not only be applied

to forecasting. Optimization methods and inventory solutions can also be analyzed in this

way. The following list offers a number of problems that may be considered in a similar

way as forecasting has been analyzed so far:

• Given a fixed market and forecast, what revenue management optimization method

works best?

• Given a fixed market, how can pricing and product design be improved?

• Given certain conditions of demand, how can scheduling and flight planning be

evaluated?

• Given methods of revenue management, how can fleet assignment be designed to

use opportunities of synergy?

Secondly, on a larger scale, different parts of the airline planning problem could be modeled

as a process built from separate components that may be interlinked to different degrees.

• Given a choice behavior of crew, how can crew scheduling be processed to maximize

gain both for the employees and the airline?

• Given certain options of action and probabilities of disturbance, how can operations

handling be designed in a robust fashion?

Thirdly, apart from including more aspects of the airline planning problem, the simula-

tion environment presented as a method of realizing the concept of decomposition could

be expanded to present a more realistic model of revenue management. From the cus-

tomer cost function, which is strictly linear so far, to the inclusion of cancellations and
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no-shows, a whole array of improvements is conceivable. The following list offers a number

of features that may be included in future versions of such a simulation environment:

• More methods for demand forecasting (network-based forecasts, market-sensitivity,

estimation maximization, neural networks);

• more methods for revenue optimization (network-based optimization, linear and

dynamic programming, new heuristics);

• real-time dynamic planning to realize strategic goals by applying rule-based systems

in the inventory;

• expansions to the customer model: more decision factors, different functional forms

for the cost function, cancellations, group bookings;

• expansions to the time horizon: seasonal departures, updating of forecasting within

simulation runs for consecutive departures.

When the simulation environment is considered as an object of further research, the

existence of implicit assumptions within and their consequences for evaluations based

on it have to be kept in mind. For example, any aspect of customer choice that is

influential in the real world but has not been identified in the model so far may distort

the findings. Therefore, whenever additional layers are added to this system, the risk of

implicit assumptions needs to be noted.

Fourthly, there are still many open questions that may be approached empirically with

the help of a concept for decomposition based on a simulation environment. Some of these

problems could already be tackled by the existing system. The following list includes

topics that are closely related to those presented in the last chapter.

• In how far can a simulation system be calibrated to present realistic market behav-

ior?

• Can a calibrated simulation system be used to generate new boundaries for revenue

opportunity?

• Can more aspects of market uncertainty be isolated and quantified?

• Can forecasts be evaluated based on the number of dimensions of demand they

predict?
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Finally, a more abstract idea may be drawn from the concept and experiments pre-

sented here. Using a simulation system to evaluate the interaction of a clearly defined

set of rules with a number of entities basing their actions on a cost function is a concept

that can be applied to many other fields of research. As decribed with regard to customer

choice behavior in the context of airline revenue management, the same conditions can be

replicated and confronted with different strategies in any simulation system. The chal-

lenge is always the decomposition of the system, the efficient definition of the boundaries

of the model included in the simulation, and the formulation of effective analyses and

experiments.
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Notation used in Formulas

αexp Weight of new bookings in the calculation of forecasts

based on exponential smoothing.

αP Weight of the estimator based on price in the joint esti-

mator.

αT Weight of the time-based estimator in the joint estima-

tor.

Aemsrb Function that computes protected seats based on the

EMSR-b algorithm.

a(f, c, t, s) Seats available for class c on flight f , at point of time

before departure t, in simulation run s.

â(f, c, t, s) Seats protected for class c on flight f , at point of time

before departure t, in simulation run s.

βdep (m) Weight of the deviation from the preferred departure

time in the cost function of the customer type m.

βdur (m) Weight of the difference between actual and minimum

travel time in the cost function of the customer type m.

βcar (m) Weight factor attached to any itinerary that is not pro-

vided by the preferred carrier of customer type m.

βprice (m) Weight of the fare attached to the considered itinerary

in the cost function of the customer type m.

βtrans (m) Weight of the number of transfers included in the chosen

itinerary in the cost function of the customer type m.

b(f, c, t, s) Bookings observed for flight f , class c, between points

of time before departure t − 1 and t, in simulation run

s.

b̂ (f, c, t, s) Average of historical bookings during the runs 1 to s

that occurred on flight f between points of time t and

t− 1 while booking class c was available.

bunc(f, c, t, s) Unconstrained bookings observed for flight f , class c,

between points of time before departure t − 1 and t, in

simulation run s.
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γ (p) ∈ [0, 1] Share of overall requests to be assigned to pairing p.

C Set of booking classes offered, ordered by descending

price.

C(i, r) Cost function of request r considering itinerary i when

a lowest available fare has been found.

Ĉ(i, r) Cost of itinerary i considered by request r, without re-

gard for the actual ticket price (given the assumption

that all itineraries cost the same).

Cr Set of classes acceptable according to the criteria of re-

quest r, ordered by descending price.

δdep (m) Factor for maximum acceptable deviation from wd (r),

defined by the customer type m.

δdur (m) Factor for maximum acceptable travel time, defined by

the customer type m.

δprice (m) Factor defining maximum willingness to pay for cus-

tomer type m.

δprice (r) Factor defining maximum willingness to pay for request

r.

εr Error term defining the distortion of request r.

εs Error term defining the distortion of demand in run s.

ec−c◦ (f, c, t, s);

ec−u◦ (f, c, t, s);

eu−u◦ (f, c, t, s)

Error comparing actual or unconstrained bookings to

constrained or unconstrained forecast based on method

◦ per flight f , class c and run s.

êc−c◦ (s); ec−u◦ (s); eu−u◦ (s) Series error comparing actual or unconstrained book-

ings to constrained or unconstrained forecast based on

method ◦ per run s.

F Set of flights included in the schedule.

Fi Set of flights included in itinerary i.

f const(f, c, t, s) Constrained demand predicted to arrive for flight f ,

class c, between points of time before departure t − 1

and t, in simulation run s.
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func(f, c, t, s) Unconstrained demand predicted to arrive for flight f ,

class c, between points of time before departure t − 1

and t, in simulation run s.

func % (f, c, t, s) Forecasted demand per class as percentage of forecasted

overall demand for the flight.

η (p,m) ∈ [0, 1] Share of requests scheduled to arrive for pairing p based

on customer type m.

Iq Set of itineraries connecting the origin and destination

included in pairing q.

Ir Set of itineraries acceptable according to the criteria of

request r

i ∈ I Itineraries derived from the schedule.

K (f, t, s) Available capacity of the flight f the point of time t

before departure of simulation run s.

λp,m,s Overall intensity of the Poisson process for pairing p

and customer type m throughout the booking horizon

of simulation run s

λt,t+τp,m,s Intensity of the Poisson process defining the arrival pat-

tern of customer type m for pairing p in the slice of

the booking horizon of simulation run s defined by the

interval [t, t+ τ ]

lfcfs (s) Average seat load factor generated in simulation run s

given first-come-first-serve inventory controls.

l% fcfs
2-i c-max (s) Average seat load factor generated in simulation run s

as percentage of lfcfs (s).

l (s) Average seat load factor generated in simulation run s.

M Set of customer types included in the demand model.

m (r)→ m Function resulting in the customer type from which a

request r was created.

νdist (p) Minimum distance between origin and destination air-

ports of the pairing p.

νdur (p) Minimum travel time required by pairing p
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o (f, c, t, s) Matrix of boolean values indicating the lowest available

class c for flight f between points of time t− 1 and t of

simulation run s.

Pp,m,s[N (p,m, t+ τ)

−N (p,m, t) = k]

Poisson probability of k requests based on customer type

m to arrive for pairing p in time slice t to t+ τ of simu-

lation run s.

p(f, c) Price of a ticket for flight f in booking class c.

p (f, c, t, s) Expected marginal seat revenue for a seat in class c,

flight f at point of time t of simulation run s.

q ∈ {1, ..., Np} Pairings derived from the schedule.

q (i)→ p Function resulting in the pairing for which an itinerary

i was created.

R Set of customer requests.

Rs Customer requests created for simulation run s.

Rp,m,t
s Requests based on customer type m that arrives for pair-

ing p up to point of time t in the booking horizon of

simulation run s.

R Input parameter defining the average number of requests

to be scheduled per run.

r (s) Overall revenue generated during simulation run s.

σε Deviation of the normal distribution that the error terms

are drawn from.

σ (func (f, c, t, s)) Standard deviation of the forecast of demand for flight

f in class c at point of time t in run s.

Shybrid Hybrid market scenario.

Sproduct Product-sensitive market scenario.

Sprice Price-sensitive market scenario.

s = 1, ..., N s Simulation runs included in the simulation experiment

in chronological order with run s−1 to occur before run

s.

t = 0, ..., N t Points of time before departure, demand arrives after

t = 0, t = N t is the time of departure.
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uP (f, c, t, s) Price-based estimator for flight f , class c, and point of

time t of run s

uT (f, c, t, s) Time-based estimator for flight f , class c, and the point

of time t of run s.

uJ (f, c, t, s) Joint estimator for flight f , class c, point of time t and

run s.

V Indicator of the average demand volume per simulation

run.

wdep (r) Preferred departure time of request r.

xdep (i) Departure time of itinerary i.

xdur (i) Travel time attached to itinerary i.

xtrans (i) Number of transfers in itinerary i.

y (s) Average yield generated during simulation run s.

Ψ (M,σε, V, F ) Simulation experiment based on a market structure M ,

a deviation of the error term of demand σε, overall de-

mand volume V , and a forecast method F .

ωPf,c,s Vector of price elasticity for flight f depending on the

class c for run s.

ωTf,t,s Vector of time elasticity for flight f depending on the

point of time t before departure of run s.

Z Set of possible restrictions of booking classes - the ab-

sence of a feature, such as comfort seating, is modeled

as a restriction.

Zclass (z, c)→ {0, 1} Boolean function defining for every booking class c

whether or not it includes restriction z.

Zrequest (z, r)→ {0, 1} Boolean function defining for every request r whether or

not it accepts restriction z.
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Glossary

arrival distribution Timing of requests over the booking horizon of a

flight.

authorization level Inventory control: A class is available if the book-

ings already accepted do not exceed the authoriza-

tion level.

bid price Inventory control: The fare of each class is compared

to a bid price, the class is available for sale if its fare

exceeds the bid price.

booking class Set of restrictions and features defining the condi-

tions under which a ticket is sold by a carrier; defined

by a caption.

booking horizon Period of time before the departure of a flight during

which tickets can be bought; also: reservation phase.

buy-down Phenomenon of customers buying a class that is

cheaper than the most expensive class acceptable ac-

cording to their willingness to pay.

cancellation Customers returning tickets before the departure day.

carrier Airline offering flights and tickets.

connecting time Time available between two connecting flights for

customers to transfer.

connection builder Function applied to generate pairings and itineraries

given flights and set-up parameters.

cost function Function weighting factors according to a customers

preferences, used to choose between itineraries.
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cost function factor Weight of characteristics of itineraries and prices in

the customers’ cost function.

customer mix Distribution over customer types for a given pairing.

customer segmentation Concept used to enable revenue management; cus-

tomers’ are segmented according to their product re-

quirements and price acceptance.

customer type Template of customer characteristics including ar-

rival time, product requirements, willingness to pay,

and cost function.

denied boarding Customers not being able to get a seat on a booked

flight due to flaws in overbooking.

destination Airport at which a customer desires to end the jour-

ney.

EMSR-b Heuristic maximizing revenue in a flight-based rev-

enue management system given static forecasts per

flight and class.

error term Stochastic distortion of request information, nor-

mally distributed.

Exp025 Exponential smoothing method applying the weight

0.25 to new data.

Exp050 Exponential smoothing method applying the weight

0.50 to new data.

Exp075 Exponential smoothing method applying the weight

0.75 to new data.

exponential smoothing Forecast method extrapolating expected demand

from historical bookings based on a static view of

demand.

fare Price of a ticket in a booking class on a specific flight.
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feature Positive condition attached to a ticket; examples can

be flexible refund or seat in the business compart-

ment.

flight Direct connection between two airports; defined by

a flight number, a carrier, a departure day and a

departure time.

flight view View of revenue management that strives to maxi-

mize revenue per flight.

itinerary Way of traveling from one origin to one destination

using one or more connecting flights.

leg Combination of two airports for which one or more

direct flights are offered.

MAD Error measurement: Mean absolute deviation.

MAPE Error measurement: Mean average percentage error.

naive forecast Forecast method extrapolating expected demand

from the bookings observed in the previous run based

on a static view of demand.

network view View of revenue management that strives to maxi-

mize revenue over a complete network.

no-frills airlines Airlines offering restriction-free classes at usually low

prices.

no-show Customers not using their ticket on the departure

day.

origin Airport from which a customer desires to start the

journey.
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overbooking Technique to compensate for no-shows and cancella-

tions by selling more seats than available based on

capacity.

pairing Combination of origin and destination for which

itineraries are offered.

PODS Passenger Origin and Destination Simulator – MIT

simulation used to evaluate revenue management

strategies.

Poisson Process Stochastic process used to describe the arrival distri-

bution of customer types.

price acceptance Customers’ maximum willingness to pay.

product acceptance Customers’ requirements regarding restrictions and

features of a booking class.

protected seats Result of optimization defining the seats to be sold

exclusively in a specific class; used to calculate au-

thorization levels.

random walk See: naive forecast.

request Instance of a customer desiring to buy a ticket for a

combination of origin and destination given certain

requirements regarding product and price.

restriction Negative condition attached to a ticket; examples can

be minimum stay or a lack of features such as flexible

refund.

RMSE Error measurement: Root mean squared error.

sell-up Phenomenon of customers buying a class that is more

expensive than the cheapest class acceptable accord-

ing to their product requirements.

simulation ...
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simulation experiment Simulation given specific data, methods, and set-up

parameters.

simulation scenario Data input for a simulation experiment.

traffic area Geographical area to categorize flights, legs,

itineraries, and pairings; example: continental vs. in-

tercontinental.

U2 Error measurement: also called Theil’s U2.

uncertainty Characteristic describing the volatility and thereby

the predictability of a market.
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