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“Ambient intelligence refers to the presence of a digitaliesnment that is sensitive, ad-
aptive, and responsive to the presence of people. Withinnaehenvironment, ambient in-
telligence will improve the quality of life of people by ctieg the desired atmosphere and
functionality via intelligent, personalized inter-corated systems and services.”

Emile Aarts, Philips Research [Aar09]

“This technology will recognize us, notice our habbits rieaur likes and dislikes, and adapt
its behaviour and the services it offers us accordingly”

Stefano Marzano Uber Intelligente Dienste [AMO04]



1 Einleitung

Im Rahmen dieser Arbeit wird ein neues Verfahren zur Infaromsgewinnung aus akus-
tischen Signalen vorgestellt. Die gewonnenen Informatiogeben Aufschluss tber anwe-
sende Personen und stattgefundene Ereignisse sowie desi@nfPim Raum. Anschliel3end
wird die Integration dieser Informationsquelle in einenadzte Hausumgebung gezeigt und
in den Kontext der ambienten Intelligenz gesetzt. Aufbauauaf den Informationsquellen
der Hausumgebung wird abschlieRend ein audio-visuellearKonikationssystem vorge-
stellt. Dieses nutzt die im Haus vorhandenen Informatiaegn zur Realisierung einer
kontextbewussten Steuerung der Kommunikation.

Das Paradigma ambiente Intelligenz (Al) formuliert das eyt einer vernetzten Umge-
bung, welche intelligent auf Personen und Ereignisse egaddabei soll das System sensitiv
gegenuber Winschen und Bedirfnissen der Nutzer sein urdiesd adaptiv reagieren, so
dass eine Steigerung des Komforts und der Lebensqualitétefiti Nutzer erfahrbar wird
[AMO4]. Diese weitreichende Definition von ambienter lfigggnz umfasst Forschungs-
themen sowohl im Bereich der Hardware- als auch der Sofeminecklung. Verwandte
Forschungsbereiche mit starken Uberschneidungen im Aeftgpektrum sintUbiquitous
Computingozw. Pervasive ComputinfyVei99]. Beide Begriffe beschreiben eine Vernetzung
und Durchsetzung alltaglicher Gegenstande mit Mikropssaeen und Sensoren, wobei der
Begriff desPervasive Computingornehmlich durch die Industrie gepragt wurde. Gerate
sollen sich automatisch untereinander vernetzen und #geganwartige Kapazitat an Re-
chenleistung bereitstellen. Diese hardwareorientieitbt®eise unterscheidet dabiqui-
tous Computingzon dem Paradigma ambiente Intelligenz. Im Sinne der antdreimtel-
ligenz ist eine vernetzte Hardware eine notwendige Grgadfér ein System, jedoch soll
diese in den Hintergrund treten und moglichst aus dem Walhnnegsfeld des Nutzers ver-
schwinden. Die Funktionen und Dienste der Hardware sol&rdiesem Prozess erhalten
bleiben. Zusatzlich soll eine starke Orientierung auf denw@zer erfolgen. Die Nutzung ei-
ner Funktion soll intuitiver werden, so dass dem Nutzer déeriken eines Bedienschemas
abgenommen wird, indem das System sich ,intelligent” vieAaniO6].

Die zentralen Eigenschaften der ambienten Intelligend durch Integration, Kontext-
bewusstsein, Personalisierung, Adaptivitat und Antizgregegeben [AMO04]. Zunachst soll
ein System aus dem Wahrnehmungsbereich der Nutzer entferdén, indem die Hardware
in die Umgebung oder Dinge des taglichen Lebens vollstéimtigriert wird. Diese unauf-
fallige Bereitstellung von Funktionen und Diensten fluhrteiner verbesserten Akzeptanz
der Technik, da sie dem Nutzer weniger aufdringlich ersth&as Kontextbewusstsein ist
der Schlissel zu einer aus der Sicht des Nutzers als ,geelif wahrgenommenen Umge-
bung. Ein kontextbewusstes System ist dadurch gekenmeictiass es entsprechend der
verfigbaren Informationen Entscheidungen trifft und akdtialle Ereignisse reagiert. Das
Verhalten des Systems ist somit nicht nur abhéngig von degdben des Nutzers, sondern
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auch von dem aktuellen Kontext, in dem das System genutdt & das System kontextbe-
wusst handeln soll, muss es folglich Regeln beinhaltergnli@eder vom Nutzer vorgegeben
oder selbststandig gelernt werden. Diese Personaligiastieine aus dem Paradigma am-
biente Intelligenz abgeleitete Notwendigkeit, da das &yssich dem Nutzer anpassen soll
und nicht umgekehrt. Damit verbunden ist die EigenschaftAdiaptivitat, welche die Fa-
higkeit beschreibt, auf den Benutzer zu reagieren und ®ofes Verhalten anzupassen.
Somit wird die Adaption auf den Benutzer zwangslaufig zu reRersonalisierung fuhren.
Die sicherlich am schwierigsten zu realisierende Eigeaéater ambienten Intelligenz ist
die Antizipation. Das System soll die Absichten und Wiinsatre Benutzern prognostizie-
ren und vorausschauende Entscheidungen treffen. Dieadiexiinachst eine grof3e Men-
ge an Informationen Uber den aktuellen Kontext und einepeatfiende Beschreibung der
moglichen zukinftigen Ereignisse basierend auf den valbaen Informationen. Haufige
Fehlentscheidungen und dadurch ausgeldste Reaktione®ydemms werden zwangslaufig
zu einer Ablehnung des Systems durch den Nutzer fuhren, sl@euWahrnehmung des
Nutzers heraus das System irrational* agiert. Die Realisig von ambienter Intelligenz
bedingt somit grundsatzlich eine Verfligbarkeit von vesliggen Informationen.

Die Europdaische Union unterstitzt die Forschung im Bereaictbienter Intelligenz im
Rahmen deidnformation Society Technologi€sST) Projekte. Das 6. Rahmenprogramm
beinhaltete unter anderem das mittlerweile abgeschlesBeniekt Amigo [AmiO6], des-
sen Untertitel Ambient Intelligence for the networked home environfngietZielvorgaben
des Projektes verdeutlicht. Das Projekt Amigo hatte dak die Vorteile einer vernetzten
Umgebung fur den Benutzer erfahrbar zu machen, indemigeelle Dienste auf Basis einer
Middlewareentwickelt wurden. Einédiddlewareist dabei eine Software, welche im Hin-
tergrund, d. h. vor dem Anwender verborgen, Systemkomgeneaniteinander verknupft.
Die vorliegende Arbeit stellt Teile der Forschungsergebaiaus dem Bereich der akusti-
schen Szenenanalyse und der ambienten Kommunikation dogibheinen Einblick in die
Mechanismen der AmigMiddleware

Obwohl schon haufiger prognostiziert, haben Systeme zurdrReang von ambienter In-
telligenz den Weg in den Massenmarkt noch nicht gefunderPdojekt Amigo wurde als
eines der Haupthindernisse hierfur die fehlende Inteadphtat von Geraten unterschiedli-
cher Hersteller identifiziert. Trotz fortschreitender &itklung im Bereich der Vernetzung
entwickeln viele Hersteller isolierte Losungen, welché @as eigene Produktportfolio ab-
gestimmt sind. Infolgedessen sind die in einem Haushaltarmtenen Gerate, welche sich in
die Kategorien Haushaltsgerate, Unterhaltungselekromobile Gerate und Personal Com-
puter einteilen lassen, oft isoliert voneinander ansiatreVerbund darzustellen [Ami06].
Aktuelle Entwicklungen fihren zwar vermehrt zur Vernetgwon Geraten, wie z. B. zwi-
schen Computern und Unterhaltungselektronik, jedochestkein Weg zur allgemeinen In-
teroperabilitdt, sondern eine eher harte Verkntpfung filmrietare Protokolle. Im Projekt
Amigo wurde daher eine quelloffene, standardisierte uteraperableMiddlewareentwi-
ckelt, welche mit den auf dem Markt etabliertBtiddleware Technologien sowohl intera-
gieren als auch diese miteinander verknipfen kann.

Das Bindeglied der ambienten Intelligenz ist eM&ldleware welche die im Haus vor-
handenen Sensoren, Geréte, Dienste und Applikationemeuma@der verbindet. Folglich
sorgt sie dafur, dass die in den Sensoren und Diensten gewenrinformationen im ge-
samten Netz verfugbar sind. Neben Messwert nehmenden isenswe z. B. Tempera-
turfihlern, sind in der vernetzten Hausumgebung auch kexepé Sensoren in Form von
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Mikrophonen und Kameras vorstellbar. Diese erfordern inmghch zu Messwertsensoren
spezielle Analyseverfahren zur Auswertung der aufgenomeméaten. Im Falle von Mi-
krophondaten ist dies die akustische Szenenanalyse urdiefiWideodaten sind dies Ver-
fahren zur visuellen Personen- oder Objekterkennung. Ristesche Szenenanalyse hat das
Ziel, die in einem akustischen Signal enthaltenen Quellerdentifizieren und alle nutz-
baren Daten zu extrahieren. Entstanden ist dieses Forgspebiet aus dem Bestreben, die
automatische Spracherkennung zu verbessern, indem esserbddentifikation der Stor-
guellen vorgenommen wird [RO98]. Betrachtet man die akuk8 Szenenanalyse aus dem
Blickwinkel der ambienten Intelligenz, so kann diese atseewvertvolle Informationsquelle
fur kontextuelle Zusammenhénge gesehen werden. Vorteitebei ist, dass Mikrophone
als Sensoren unauffallig in die Umgebung integriert werkiamen. Dabei erfassen sie den
gesamten Raum und sind unabhangig von den Beleuchtung#wesken, wodurch sie In-
formationen liefern, die durch Kamerasysteme nicht ebfassind. Die in der akustischen
Szenenanalyse gewonnenen Daten geben Aufschluss Ubez8emeren Aktivitdten und
auftretende Ereignisse.

Mikrophone sind als Sensoren fur die akustische Szeneysmabtwendig, jedoch ist die
Nutzung nicht auf die reine Informationsgewinnung besckirdn Kombination mit Laut-
sprechern und Netzwerktechnik ist der Aufbau verteiltemi&aunikationssysteme maoglich.
Orientiert sich solch ein System an den Ideen der ambiemietlidenz, so wird es durch
den Begriff ,ambiente Kommunikation* charakterisiert.eDerenzen zwischen der ,klassi-
schen* Kommunikation Uber Internetprotokolle (engbice over Internet ProtocpMolP)
und der ,ambienten Kommunikation® sind flieRend, da in beidferfahren vergleichbare
Komponenten eingesetzt werden.

Ein Merkmal der ambienten Kommunikation ist die nicht vordene Bindung des Ge-
sprachs an ein dediziertes Gerat, wie z. B. ein Telefon. Ddzét muss nicht mehr ein
Gerat fur die Funktion der Kommunikation aufsuchen, sestsen tritt die Hardware in den
Hintergrund und die reine Funktionalitat bleibt besteHesiglich kann der Nutzer jederzeit
eine Kommunikation starten und sich wahrenddessen freegew. Das System setzt somit
eine Freisprechfunktion und einen tber mehrere Raumeiltentdufbau voraus.

Ein weiteres Merkmal der ambienten Kommunikation restilaeis den Benutzerstudien
des Projektes Amigo [MO05]. Vielfach wurde durch die Testpersonen der Wunsch gaéul3
eine ,intelligente Umgebung® solle den Kontakt zu Freunded nahen Verwandten unter-
stitzen. Hieraus entstand die Idee einer kontinuierlidfehindung zwischen raumlich ent-
fernten, jedoch emotional nahe stehenden Personen, dieediml des ,Verbunden-Seins*
erzeugen soll. Hierbei ist die Menge der ausgetauschtemhationen zwischen den Perso-
nen Uber die Zeit betrachtet geringer als bei einem klassisdelefongesprach. Die Kom-
munikation ist fortlaufend aktiv und die Personen horens war entfernte Partner macht.
Somit entsteht bei beiden das Geflhl, dass der jeweils arglelh im Nebenraum befin-
det. Denkbar ist zum Beispiel, dass das System automatisdfedbindung zwischen zwei
Personen etabliert, sobald beide von der Arbeit nach Haoiserlen und jeweils, entspre-
chend der personlichen Systemkonfigurationen, bei besemireignissen die Verbindung
automatisch trennt.

Die Kommunikation kann sowohl durch explizite wie auch impé Benutzereingaben
kontrolliert werden. Die explizite Interaktion beinhdltie klassische Steuerung der Kom-
munikation durch den Benutzer, die durch direkte EingalzeB. Gber einen berihrungs-
empfindlichen Bildschirm, gekennzeichnet ist. Die impéZteuerung versucht das System
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intuitiver fir den Benutzer zu gestalten, indem aus dem alezh des Nutzers die impli-
zierten Befehle ermittelt werden. Vorstellbar ist zum Besder automatische Aufbau einer
Kommunikation, wenn sich der Nutzer auf ein Bild des gewttest Kommunikationspart-
ners zubewegt.

Die vorliegende Arbeit behandelt Aspekte aus den Themeegmbakustische Szenen-
analyseMiddlewareund ambiente Kommunikation und gliedert sich in die folgam#&api-
tel: In Kap. 2 wird ein Uberblick iber den aktuellen Stand Berschung in den Bereichen
akustische Szenenanalyse, ambiente Intellighhiddlewareund ambiente Kommunikati-
on gegeben. Die wissenschaftlichen Ziele dieser Arbeitler@im darauffolgenden Kap. 3
definiert. Das Kap. 4 stellt die Verfahren zur akustischeen8nanalyse vor und fasst die
experimentellen Ergebnisse in diesem Bereich zusammean 5 werden Aspekte der
akustischen Ereignisdetektion als ein spezieller Teilaarstischen Szenenanalyse naher
untersucht. Das Amigo System und die Verknuipfung der acistin Szenenanalyse mit der
Amigo Middlewarewerden in Kap. 6 erlautert. Anschlie3end wird in Kap. 7 ggizewvie
das Amigo System zur Realisierung eines kontextbewusstmsizs genutzt werden kann.
Das hierbei betrachtete Beispiel der ambienten Kommuioikaterwendet sowohl akusti-
sche als auch visuelle Daten. Eine Zusammenfassung debriisge dieser Arbeit erfolgt
abschliel3end in Kap. 8.



2 Stand der Forschung

Diese Arbeit behandelt die Themengebiete akustische 8aeab/se, ambiente Intelligenz,
Middlewareund ambiente Kommunikation. Dabei sollen die fur die amtgeéntelligenz zu
entwickelnden Komponenten diliddlewaredie Informationsgewinnung mittels der akus-
tischen Szenenanalyse mit der Anwendung, der ambientemimnkation, verkntpfen. Im
Folgenden wird ein Uberblick tiber den Stand der Forschudgireinzelnen Themengebie-
ten gegeben.

2.1 Akustische Szenenanalyse

Die akustische Szenenanalyse ist auf Grund der unterdiciied Anwendungsgebiete ein
weit gefachertes Forschungsgebiet. Zunachst wurde eé diiedARPAIM Rahmen der
»Rich Transcription Taskgefordert. Das vorgegebene Ziel war hierbei, eine autoia¢
Zuordnung von Zeitabschnitten zu Sprechern (sog. Anrastain Rundfunksendungen, Te-
lefongesprachen und Besprechungen durchzufihren [NIST8R6].

Bedingt durch die Verfugbarkeit neuer Datenquellen, welahBesprechungsrdumen und
intelligenten Umgebungen zu finden sind, wandelten sichAgigitze von unimodalen zu
multimodalen Signalverarbeitungssystemen (vgl. Abb).2Maren in Telefongesprachen

Datenquellen

Intelligente Umgebunge!

Rundfunk
ey —

Telefon
e
EilkaanaIige —
onspur rucksenso
Mehrkanalige Teppich
Audiodaten w

,/ Ompidirektionale
i Kamera
Verteilte
Mikrophone Domkamera
Schwenk- & zoombaie
Besprechungen Kamera

Abbildung 2.1: Datenquellen und Anwendungsgebiete der akustischen Saealyse

und Rundfunksendungen nur einkanalige akustische Aufeahmarhanden, so bieten viele
Datenbasen von aufgezeichneten Besprechungen schonanalige Aufnahmen. Eine er-
neute Steigerung der Vielfalt der Sensoren ist in intefltga Umgebungen zu verzeichnen.
Dabei kann die Ausstattung der Umgebungen stark varii@vedurch eine Anpassung der
Systeme und Algorithmen zur Datenverarbeitung an die gagelSensorik notwendig ist.
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Am deutlichsten wird dies bei den visuellen Daten, wo nebamB&ras mit festen Blickwin-
keln auch schwenk- und zoombare (erfén Tilt Zoom PTZ) Kameras oder omnidirek-
tionale Kameras eingesetzt werden. Somit findet eine Smerang der Systeme auf die
vorhandene Sensorik und den Verwendungszweck statt.

Aktuelle Projekte, wie dakST ProjektCHIL (Computer in the Human Interaction Lopp
[CHIO4] oder das Projek&MI (Augmented Multi-Party InteractiQrfAMI04], erforschen
professionelle Arbeitsumgebungen, wie zum Beispiel Samiader Besprechungsraume.
Ziele sind unter anderem die Verbesserung der automatisepeacherkennung, die akus-
tische und visuelle Lokalisation von Personen, sowie denfifikation von Personen und
Ereignissen [OSBCO06, TMZD6, B"05b]. Des Weiteren wird im ProjeRRIRAC (Detection
and Identification of Rare Audiovisual CQg®IR06] an der Detektion und Identifikation
seltener akustischer und visueller Ereignisse gearbeitet

Anwendungsgebiete der akustischen Szenenanalyse mitmmadhllen Daten sind bei-
spielsweise verbesserte Video-Konferenzsysteme, atisrha Uberwachungssysteme und
Systeme zur Unterstitzung alterer oder behinderter Memsidir VLO7]. Ein weiteres For-
schungsgebiet ist die automatische Annotation von Videera aus Fernsehsendungen
[KMKO7, MMF *06]. Im Folgenden wird ein Uberblick tiber die grundlegendemponen-
ten eines Systems zur akustischen Szenenanalyse und daneind8r Forschung gegeben.

Eine Lokalisierung von Personen durch aufgenommene,igkbstSignale kann durch die
Schatzung der Signallaufzeitdifferenzen zwischen Mikimpaaren erfolgen. Hierzu wer-
den z. B. im Generalized Cross CorrelatifVerfahren die Korrelationen zwischen den
Signalen berechnet und durch das Wissen tber die Positradi@ephone eine Positions-
schatzung durchgefiihrt [KC76]. Zuséatzlich kann nach Beglae modellbasierte Nachfilte-
rung durch Kalman- oder Partikelfilter erfolgen, um die Gegkeit der Positionsschéatzung
zu erhbhen [WPHO4].

Eine Identifikation von Sprechern und Ereignissen basemeist auf einer Modellie-
rung der Klassen durch Gauly'sche Mischungsverteilungegl.(@aussian Mixture Model
GMM) [Cam97]. Diese kdnnen einzeln, also fur jede Klasse unadigatrainiert oder aber
von einem gemeinsamen (universellen) Hintergrundmodelptaert werden [RQDOO]. Die
Modellbildung durch ein universelles Hintergrundmodehgl. Universal Background Mo-
del, UBM) bietet den Vorteil, dass weniger Daten fir das Trainingdtighwerden und eine
rudimentare Erkennung von unbekannten Klassen erfolgem. k2as Training wird mit dem
»EXpectation MaximizatiorAlgorithmus (EM-Algorithmus) oder der Bayes’'schen Adapti-
on durchgefuhrt [DHSO1].

Neuere Verfahren zur Parameterschatzung der Klasseniaadieldem Ziel der Reduk-
tion der Fehlerrate stammen aus dem Bereich diskriminatemverfahren. Bekannte An-
satze sind dasMinimum Classification ErrdkTraining (MCE-Training) und das IMaxi-
mum Mutual InformatiofiTraining (MMI-Training). Sowohl dasCE- als auch dadIMi -
Training finden erfolgreich Anwendung im Bereich der auttsthen Spracherkennung
[LP96], der Sprecheridentifikation [KYNMO5] und Sprecherverifikation [MCO03]. Dabei kdn-
nen die diskriminativen Lernverfahren sehr langsam kagieeen oder im Extremfall auch
divergieren, falls keine geeigneten Gegenmal3nahmerfigeingerden [NCM91].

Bevor jedoch eine Identifikation von Sprechern erfolgennkanuss zunéchst eine Ein-
teilung der akustischen Daten in homogene Abschnitte, atje Segmentierung, erfolgen.
Ein homogener Abschnitt beinhaltet dabei nur Daten einasg@ und kann folglich ein-
deutig klassifiziert werden. Die zur Segmentierung vervedenl Verfahren nutzen haufig
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das Bayes’sche Informationskriterium (engayesian Information CriteriorBIC), welches
auf einem Hypothesentest basiert [CG98, DWO0O]. Hierbedwlie Hypothese, dass an ei-
nem Punkt im beobachteten Zeitabschnitt ein Sprechengeebdiegt und somit der erste
Teil des Zeitfensters aus einer Klasse und der zweite TsilZadtfensters aus einer ande-
ren Klasse stammt, der Hypothese gegenibergestellt, dasgesamte Fenster aus einer
Klasse stammt. Verfahren, die aBfC-Ansatzen basieren, nehmen dabei immer eine Ab-
wagung zwischen den Aspekten Genauigkeit, Verlasslithikel Latenz der Segmentierung
vor [LZ02, DYO08].

Fasst man Sprecherwechseldetektion und Sprecheridatibfikals eine Aufgabe auf, so
wird dies als Sprecherprotokollierung (engpheaker diarizatiopbezeichnet [PAWO07]. Da-
bei wird versucht, durch eine automatische Annotation andene Audio- oder Videodaten
so aufzubereiten, dass sie mit textbasierten Suchalgueitrerfasst werden kénnen [TRO6].
Die Kombination einer Identifikation von Sprechern mit einetomatischen Spracherken-
nung und die Auswertung der Metadaten des Videomaterifisrh die Information ,\Wer
spricht Wann und Was?“. Hierbei kbnnen akustische Modelteverschiedene Sprecher
vorab trainiert werden, um deren Anteile in den Audiodatarfiaden, wie es zum Bei-
spiel die Protokollierung von Besprechungsdaten erforédternativ kann auch die Aufga-
be gestellt sein, dass alle Anteile eines Sprechers dungheendeutige Kennung gekenn-
zeichnet werden sollen, ohne die Anzahl der Sprecher odenddentitat vorab zu kennen
[SML*08, RTO5].

In der Sprecherprotokollierung sind iterative Verfahrehwvariierender Komplexitat weit
verbreitet, die zwei unterschiedliche Ansatze verwenBameine Moglichkeit (fop-dowr)
ist, die gesamten Daten an den wahrscheinlichsten Spreebleselpunkten, z. B. durch
eine Detektion des Sprechergeschlechts, aufzuteilen aimit snehrere Teile zu erhalten.
Anschliel3end werden die Teile erneut auf Sprecherwecdhskie untersucht und aufge-
teilt [MMF *06]. Die andere Mdglichkeit Qottom-up) ist, die sehr feine Vorsegmentierung
der Daten in kleinste, homogene Abschnitte und das anfahriae Clustern der Segmente,
so dass zusammenhangende Abschnitte eines Sprechers imi@ileem Segment zusam-
mengefasst werden [STGWO05]. In beiden Verfahren werdemws8lbherte oder Grenzen
festgelegt, die das iterative Verfahren stoppen, sobad/edimutlich optimale Segmentie-
rung gefunden ist. Verfahren zur Sprecherprotokollierudig auf Datenstromen arbeiten,
verwenden beispielsweiséidden Markov Model§HMM) zur Modellierung der Sprecher-
gruppe. In [MMF 06] wird ein Verfahren vorgestellt, in dem je ein ZustandesinlMM
einen Sprecher reprasentiert und das bei einem neu anfiextSprecher um einen weiteren
Zustand erweitert wird. Die Transitionswahrscheinlidtdwe desHMM werden in diesem
Fall aus Trainingsdaten geschatzt und sind fur jeden Zdstdrergang fest vorgegeben. Die
Grundlage einer jeden Identifikation ist eine Menge von 8peemodellen, welche entwe-
der vorab trainiert oder wahrend des Betriebs geschéatziemeEine echtzeitfahige Bildung
von Sprechermodellen auf fortlaufenden Datenstromen inifdZ02] vorgestellt. Verfah-
ren, die auf Datenstromen arbeiten, haben jedoch im Velgiai iterativen Ansatzen immer
den Nachteil, dass keine Korrekturen vergangener Entdghgen durch erneute Iterationen
oder Clusterungen mdoglich sind.

Eine Sprecherprotokollierung kann durch Nahbereichsopikone oder durch entfernte
Mikrophone erfolgen, die in Gruppen angeordnet oder augraifisch verteilt sind. Da-
bei kann entweder eine Auswahl des besten Mikrophonsiguigiseine Signalverbesserung
durch strahlformende Algorithmen verwendet werden, umLeistungsfahigkeit des Sys-
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tems zu steigern [AWHO7].

Ein aktuelles Thema in der Forschung ist die multimodalen&igerarbeitung in ,intel-
ligenten Umgebungen®, wo neben Mikrophonen und Kamerak andere Sensoren ver-
fugbar sind. Ein Schwerpunkt dieses Forschungsthematdegder Positionsschatzung
von Personen durch akustische und/oder visuelle Daten {KiBH Die Positionsinforma-
tionen von Sprechern kdnnen dann direkt fur die Segmemiiexon Audiodaten genutzt
werden [AFI*08] oder aber integriert in den akustischen Merkmalsvektoeiner \erbes-
serung der Sprecherprotokollierung fihren [PAW06, APW@B¢ Positionsinformationen
kénnen wahlweise aus Laufzeitschatzungen zwischen Milonen [PAW06], Kamerasys-
temen [SML08] oder anderen Systemen, wie dem in [CSJ07] vorgeschéaggRadio
Frequency IdentificatiohSystem RFID-System), stammen. Ansdatze fur die Sprecherpro-
tokollierung mit Audio- und Videodaten kdnnen in [NKO7] uffeHYQ9] gefunden werden.
Entsprechend der verfligbaren Hardware in den Raumen ohé&den sich die Systeme
und Verfahren deutlich. In [SMLO08] wird z. B. ein System mit fest installierten Kameras
genutzt, bei dem das Gesicht eines Nutzers beim BetreteRaasies mit einer Kamera
identifiziert und anschlie3end die Position des identifieie Nutzers tber andere Kame-
ras verfolgt wird. Der Ansatz in [BS07] verwendet im Kontrdazu schwenkbare Kameras
und versucht kontinuierlich die im Raum befindlichen Peesoru identifizieren. Ein weite-
rer Aspekt der Sprecherprotokollierung in ,intelligentégmgebungen* ist die Verfligbarkeit
multipler Datenquellen, die im Falle von Mikrophonen eingstvahl oder Kombination von
Kanélen erfordert. Hierzu wurde in [GAWO06] ein Ansatz mitemn Viterbi-Dekodierer vor-
geschlagen, der eine automatische Kanalauswahl dur¢hAlitarnativ gibt es eine Vielzahl
von Ansétzen zur Gewichtung, Normierung und Kombinatiotimaodaler Informationen,
wovon einige in [EFJS07] untersucht wurden.

2.2 Middlewareund ambiente Intelligenz

Die Entwicklung von Anwendungen und Diensten in der verestHausumgebung setzt
vermehrt auf dienstorientierte Architekturen. Diese smder Lage, in heterogenen Umge-
bungen Gerate und Dienste miteinander zu verbinden unednkbmpatibilitdten zwischen
unterschiedlichen Herstellern zu Giberwinden [MKGIO07, @34r

Die Verwendung vorWebservicesvird hierbei als eine mégliche Schlisselkomponente
gesehen, da die aus dem Bereich d&sld Wide WelfWWW) bekannt gewordenen Diens-
te offene und standardisierte Schnittstellen und Besohingien bieten [PTDLO7]. Der Da-
tenaustausch zwischen den Softwarediensten erfolgt diaioeh das offen&imple Object
Access Protoco{SOAP [GT07]. Des Weiteren kénnen die Dienste und die zugehérigen
Schnittstellen durch digVeb Services Description Langua@&'SDL) [CT07] beschrieben
werden. Damit Dienste einander in einem gemeinsamen Neterfijrist ein zentraler An-
laufpunkt im System notwendig, der in Form eines Verzeistiieinstes, wie z. B. demght-
weight Directory Access Protoc@LDAP) [Z106], realisiert werden kann.

Im Bereich Middleware gibt es verschiedene Standards mit unterschiedlichenr&ierb
tungsgraden, wobeiniversal Plug and PlafUPnP) [UPNn08] eine weit verbreitete Tech-
nologie ist.UPnP bietet Mechanismen zur Lokalisierung, Beschreibung, Stewg und Er-
eignismeldung von Diensten und Geréaten. Ein Anwendungsgedt die Verteilung von
Medieninhalten und die Steuerung von Unterhaltungsedekir Im Bereich Gebaudeauto-
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matisierung sind Bussysteme wie deuropean Installation BusEIB) [EIBQO9] verbreitet,
wobei der Einsatz aus Kostengriinden meist auf professesn@ebdudemanagement be-
schrankt ist. BeideMiddlewareTechnologien sind zwar fihrend in ihrer Doméane, jedoch
sind sie zueinander inkompatibel und nur durch spezielléa¥ieen miteinander verknipf-
bar [RBHO3].

Insgesamt wird die Entwicklung von ambienter Intelligenzah die Inkompatibilitat zwi-
schen Diensten und Systemen unterschiedlicher Hersgglegmmt [AmiO6]. Dies ist einer
der Grunde fur die Unterstutzung des Projektes Amigo duretEdropaische Union. Die
Entwicklung von ambienter Intelligenz beinhaltet ein tesiSpektrum an offenen Frage-
stellungen im Bereich der Software- und Hardwareentwinil[FCP"05]. Aktuelle Syste-
me kénnen zwar einzelne Aufgabenstellungen in vernetziamgabhungen handhaben, je-
doch verwenden diese Ansétze zur Lésung der Problemggelfuieste von den Herstellern
vorgegebene Ansatze mit eingeschrankter FlexibilitatQ&K Ein Beispiel hierfur ist der
EIB, welcher die Mdglichkeit bietet, physikalische Infornmaten von Sensoren, wie z. B.
Lichtsensoren, zu sammeln und Komponenten mit aktoris€fégagkeiten, wie z. B. Tur-
schlie3systeme, anzusteuern [EIB09].

2.3 Ambiente Kommunikation

Die ambiente Telefonie, wie sie in [Har07] vorgestellt weirleschreibt eine neue Form der
Kommunikation, welche auf der Kombination v&olP-Technologien und Freisprechtech-
nologien basiert. Die Verbreitung von Breitbandanschdiissmadglicht unbegrenzt Gespra-
che UbeVolP-Technologien zu fiihren, wobei die Kosten auf einen festetra§ fir den
Breitbandanschluss begrenzt sinBie damit verbundene Abkehr von Verbindungspreisen
hin zu festen Grundpreisen fiir die Versorgung mit Daternfdiissen beeinflusst das Verhal-
ten der Benutzer derart, dass Verbindungen im Vergleiclireatnetztelefonie langer, wenn
nicht sogar praktisch unbegrenzt, gefuhrt werden [GDJ0&)lgedessen tritt das intensive
Gesprach zwischen zwei Menschen wahrend der Kommunikatiden Hintergrund und
die Menge an ausgetauschten Informationen pro Zeit wirthger. Der Charakter einer
Verbindung wandelt sich vom reinen Medium zum mundlichdorimationsaustausch zum
System, das zwei rdumlich getrennte Orte verbindet [BFGP08

Die hierzu bendtigten Technologien verwenden haufigRisal-Time Transport Protocol
(RTP [ST03] zur Datenlibertragung und d&sssion Initialization ProtocISIP) [RT02]
zum Sitzungsaufbau und zur Sitzungsverwaltung. Des Végitexistieren eine Vielzahl
von Audiokompressionsverfahren, um die Datenrate fur ¥erdindung zu senken. Viele
Verfahren, wie z. B. das durch dieternational Telecommunication Un{kTU) standardi-
sierte Verfahren G.711, sind auf einen geringen Bandlredarf optimiert und verwenden
daher eine Abtastrate vankHz [Wik09b]. Dazu wird das Signal zunachst auf einen Fre-
guenzbereich zwische®0 Hz bis 3400 Hz begrenzt, wodurch Teile der Sprache und tieffre-
quente Umgebungsgerausche unterdriickt werden. Paketerie Ubertragungsverfahren,
wie z. B.RTRDatenstrome, verwenden das verbindungsldsieersal Datagram Protocol
(UDP), um Verbindungen mit niedrigen Latenzen zu realisierei. lidermit verbundenen

LAktuell wird auf Grund des steigenden Kostendrucks ein Umder Telekommunikationsnetze zu einer pa-
ketvermitteInden Netzinfrastrukur betrieben (eridgxt Generation Networkswodurch auch in der Fest-
netztelefonie Festpreise fur Telefonate ermdglicht we [ESNO9].
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Paketverluste sind abhangig von der Netzqualitat und wevda einigen Audiokompressi-
onsverfahren automatisch durch eine Fehlerverschlaygiemyl.Packet Loss Concealment
PLC) kompensiert [Spe09].

Einige neuere Kompressionsverfahren, wie z. B. das qdefliefVerfahrerSpeexSpe08],
besitzen die Option breitbandige Signale, d. h. Signaleemér Abtastrate vom6 kHz oder
sogar32 kHz, zu komprimieren. Sie bieten somit ein besseres Klanglsldeéhmalbandige
Verfahren. Die hoheren Datenraten (z.3peex 6 kHz: 32kBit /s Datenrate je Kanal) stel-
len keinen Nachteil dar, da aktue®dSL-Anschliisse in privaten Wohnungen und Hausern
eine genugend hohe Bandbreite bieten [Wik09a]. Ein weitdoeteil dieser breitbandigen
Audiosignaliibertragung ist die Moglichkeit, die neben depmachsignal tGbertragenen an-
deren akustischen Ereignisse besser erkennen zu kénnelokBle Sprecher hort nicht nur
die Stimme des entfernten Sprechers, sondern auch die Uimgsdperdusche, welche durch
die Aktivitdten des entfernten Sprechers entstehen, vebdder Charakter der ambienten
Kommunikation zusatzlich unterstitzt wird [SLHOS8].

Eine Freisprecheinrichtung erfordert zwingend die Vereerg von Echokompensations-
oder Echounterdriickungsverfahren sowie Ansatze zurmglgo Unterdriickung von statio-
naren Storquellen. Ansonsten entstehen stérende Rucdkkaygn oder Pfeifgerausche, wel-
che die Qualitat des Kommunikationssystems stark beeimigien [BHO3]. Ein Ansatz hier-
fur besteht aus einem vorgeschalteten adaptiven FiltelKaompensation des ersten Anteils
der unbekannten Raumimpulsantwort und einem nachgest#ralNachfilter zur Restecho-
und Storgerduschunterdriickung [LKO7].

Die Adaptionssteuerung von Filtern zur Echokompensatemobgt neben der zu tref-
fenden Entscheidung ob das wiedergegebene Signal eineeral8precher enthalt, auch
Informationen Uber die Aktivitat des lokalen Sprechers [DOH Diese sogDouble-Talk
Detektion kann durch die Berechnung der Kreuzkorrelatisisehen dem wiedergegebenen
Signal und dem aufgenommenen Signal, sowie dem Wissen ibegedchatzte Raumim-
pulsantwort realisiert werden [BMCOO]. Eine Sprecheraidtsdetektion fir den entfernten
Sprecher kann durch die Berechnung von Kurzzeit- und Latgitelwerten der Signal-
energie implementiert werden [RS04].
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Ziel dieser Arbeit ist die Realisierung einer akustischeertfenanalyse, deren Informationen
Uber eineMiddlewarean ein System zur ambienten Kommunikation weitergegebedeme
Zunachst werden die Moglichkeiten der akustischen Szevadyse zur Informationsgewin-
nung innerhalb einer vernetzten Hausumgebung unterstuiebthlie3end wird das Konzept
der AmigoMiddlewareerlautert, speziell die Aspekte des Datenaustauschesarridieins-
tinteraktion. In diesem Rahmen wird auch die Einbindungalearstischen Szenenanalyse
als Informationsquelle inMiddlewareKonzept herausgestellt. Darauf aufbauend werden
die notwendigen Komponenten der ambienten Kommunikatiskutiert und der gesamte
Systemaufbau vorgestellt. Im Folgenden werden aufgesséliinach den Themengebieten
akustische Szenenanalyséiddlewareund ambiente Kommunikation die einzelnen Aufga-
benstellungen naher definiert.

3.1 Akustische Szenenanalyse

Die ambiente Intelligenz in einem Haus soll aktiv und glemitig unauffallig die Bewohner
eines Hauses in ihrem taglichen Leben unterstiitzen und demKomfort steigern [AMO04].
In dieser Arbeit dienen akustische Signale als Informagmellen. Sie sollen fortlaufend
mit moglichst geringer Latenz ausgewertet werden, um Aunagen im Systemverhalten
aufgrund eines detektierten Ereignisses unmittelbar dasken Eintritt vornehmen zu kon-
nen. Der Prozessablauf, von der Signalaufnahme durch dieptione, Gber die Entstdrung
und die abschlielBende Klassifikation, muss zeitlich méglischnell erfolgen, so dass die
gewonnenen Informationen sofort Uber dMeddlewarean die ausfiihrenden Applikationen
weitergegeben werden kénnen. Eine zu grol3e Verzégerungy iestarbeitungskette wirde
die Reaktionen des Systems mit einer Latenz versehen, aveiehhilfreichen Intentionen
der Applikationen ins Negative verkehren kdnnte.

Als Beispiel fur die negativen Folgen von zu grof3en Laterkasm eine einfache Licht-
steuerung durch Sprachbefehle in Kombination mit der agatstn Positionsschatzung be-
trachtet werden. Angenommen werde ein grof3es Wohnzimmétssecke und angeschlos-
senem Kochbereich, so dass sich mehrere Beleuchtungasregrgeben. Ein Benutzer gibt
den Befehl zum Anschalten des Lichtes, wahrend er im Ko@htteisteht. Das System ent-
scheidet nun anhand der akustischen Positionsschéatzasg,sich der Benutzer im Kui-
chenbereich aufhalt und schaltet das Licht dort ein. Reladés System langsamer als das
Betatigen eines Schalters dauert, so ist der Vorteil desilsatiosen Lichtsteuerung fiir den
Benutzer nicht mehr gegeben, da fir ihn die Unannehmlitloles Wartens tberwiegt.

Aktuelle Verfahren trennen die Aufgabe der Lokalisation der Identifikation der Spre-
cher und fihren abschlie3end die Ergebnisse zusammen.HmdrReadieser Arbeit wird ein

11
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neuer Ansatz zur kombinierten Identifikation und Positsmfgitzung entwickelt, der den zu-
vor genannten zeitlichen Anforderungen gerecht wird. Dalirel die Positionsinformation
direkt mit in den ldentifikationsprozess einbezogen, s® @&ise Reduktion der Fehlerrate
erzielt wird.

Des Weiteren wird fur die Lokalisation ein geeignetes Meréa auf Basis von strahlfor-
menden Algorithmen ausgewahlt, das sowohl eine Verbeasgeater Signalqualitat als auch
eine Positionsschatzung ermoglicht. Dieses wird im Kanéémer vernetzten Hausumge-
bung hinsichtlich der Genauigkeit mit einem aktuellen ®aren verglichen.

Da die akustischen Signale sowohl zur Positionsschétzigragiah zur Identifikation von
Personen und Ereignissen verwendet werden, wird der Esnflas akustischen Strahlfor-
mung auf den Klassifikationsprozess untersucht. Die hibenidtigten Merkmale werden
sowohl fir die Sprecheridentifikation als auch fir die Enesgetektion verwendet, um der
Pramisse der Ressourcen schonenden Verfahren Rechnuagen.tDabei wird untersucht,
ob die in der Sprach- und Sprechererkennung verbreitetekrivide fir eine Identifikation
von akustischen Ereignissen verwendet werden kdnnen.

Diskriminative Lernverfahren zum Training von Modellerr &precheridentifikation und
Spracherkennung erzielen signifikante Verbesserungasndlie Reduktion der Fehlerrate.
Dies ist méglich durch das Einbeziehen aller Klassen zurmifrg jeder einzelnen Klasse,
wodurch fehlerhafte Annahmen in der Modellierung und Néhgen kompensiert werden
konnen. Ein Vergleich zwischen diskriminativen Lernvaren undML-Trainingsverfahren
wird zeigen, inwieweit eine Verbesserung der Klassifikagleistung durch diese erreicht
werden kann und wo die Grenzen der Verfahren liegen.

Zusammenfassend kann das Ziel der hier zu entwickelndestisghien Szenenanalyse als
Beantwortung der Frage ,Wer spricht Wann und Wo, wahrend péssiert?” beschrieben
werden, wahrend frihere Ansétze zur Sprecherprotokotigetediglich die Beantwortung
der Frage ,Wer spricht Wann?“ zum Ziel hatten.

Auf der einen Seite stellt die ambiente Kommunikation aletEeitanwendung hohe An-
forderungen an die Latenz der Informationsgewinnung ddrefakustische Szenenanalyse.
Auf der anderen Seite bietet eine audio-visuelle Kommuiokaliber die aufgenommenen
Videodaten eine weitere Datenquelle zur Verbesserunghkiestiachen Szenenanalyse. Da-
her wird im Rahmen dieser Arbeit auch die multimodale Spegutotokollierung als Fusion
von akustischen und visuellen Daten betrachtet.

3.2 Middlewareund ambiente Intelligenz

Eine Entscheidung in einem intelligenten System kann nigucsein, wie die Menge an
Informationen, auf deren Grundlage sie getroffen wurddglieh ist ein offenes System
zum Informationsaustausch eine wichtige Komponente &ladibiente Intelligenz. Grund-
gedanke bei der Entwicklung des Amigo Kontextmanagemetgnys ist die Annahme, dass
in einer heterogenen Umgebung, wie dem vernetzten Haus \@gtzahl von zur Zeit un-
genutzten Informationsquellen vorhanden ist, durch dii@zung die Qualitat der ambien-
ten Intelligenz signifikant verbessert werden kann. Dab&srdarauf geachtet werden, ein
dynamisches System zu entwickeln, welches dem zeitvena@harakter einer Hausumge-
bung gerecht wird. Kontextquellen kdnnen in Form von Gerdtedas Haus gebracht oder
herausgenommen werden, und missen folglich dynamischaitetwverden. Dies steht im
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Kontrast zu andereMliddleware Technologien, wie z. BEIB, bei denen Sensoren und Akto-
ren fest in die Umgebung integriert sind und keine Dynamikvaisen. Das in Kooperation
mit den Projektpartnern von Amigo entwickelte Kontextmggraentsystem basiert auf den
in der AmigoMiddlewareimplementierten Methoden zur Nutzung von Diensten. Die Ein
bindung von Informationsquellen in diesen losen Verbund®aellen ermdglicht eine netz-
werkweite Nutzung der Informationen. In dieser Arbeit wiyekzeigt, wie die Mechanismen
der Middlewarefir das Kontextmanagementsystem genutzt werden und wiakdigtische
Szenenanalyse als Kontextquelle eingebunden wird.

Die Amigo Middlewarebildet einen losen Verbund von Diensten, die dynamischrausa
mengestellt und verbunden werden. Dies bedeutet jedods, elae aussagekraftige und
durch Maschinen verstandliche Beschreibung der Dienstielnfiormationsquellen entwi-
ckelt werden muss, so dass eine automatische Kompositioliensten auf semantischer
Ebene erfolgen kann. Die hierzu notwendigen Beschreiburigiedie Kontextquelle der
akustischen Szenenanalyse werden im Rahmen dieser Adogéstellt.

3.3 Ambiente Kommunikation

Erste Formen von ambienter Kommunikation wurden durch Akirké (Philip®) und Mi-
chael Stanford (Int&) als eine Art der Kommunikation beschrieben, bei der &io&P-
Verbindung einfach angelassen wurde und somit Gespréathepdieser beitreten oder die-
se verlassen, indem sie in den entsprechenden Raum aint@¢e hinausgehen [Har07].
Eine solche Form der Kommunikation kann naturlich nur ziwst nahestehenden Perso-
nen durchgefuhrt werden, da beide Seiten einen unkormrh, zufélligen Einblick in die
Privatsphare des Anderen erhalten. Betrachtet man diesehiiebene Szenario genauer,
so sind nicht alle Aspekte der ambienten Intelligenz mibezogen worden. In der hier
vorliegenden Arbeit wird die Idee der ambienten Kommund@tnter dem Paradigma der
ambienten Intelligenz untersucht, wodurch den in der Hundg bereits beschrieben Kern-
elementen, wie z. B. der Orientierung auf den Benutzer, Rauafp getragen wird. Dies be-
dingt eine Einbindung der ambienten Kommunikation in didogmte Intelligenz durch die
Verwendung eineMiddleware Das physikalische Gerat zur Kommunikation, d. h. das Te-
lefon, wird dabei durch einen personalisierten Softwamesl ersetzt. Es erfolgt somit eine
Ablosung der geratezentrierten Kommunikation durch eiieegall“ verfligbare Moglich-
keit zur Kommunikation, in deren Verlauf die Kommunikatidem Nutzer durch das Haus
folgt und der Nutzer nicht mehr an einen Ort gebunden ist.ddmiente Kommunikation
verwirklicht folglich die Kernelemente der ambienten lhgenz:

¢ Integration: Die Hardwarekomponenten des Systems wendaufidllig in die Umge-
bung integriert. Der Nutzer muss nicht mehr ein bestimmtesiGaufsuchen, sondern
der Dienst der Kommunikation steht ihm tberall zur Verfugun

e Kontextbewusstsein: Informationen tber die Umgebungy @oevesende Personen
und kontextrelevante Ereignisse tragen zur Verbesseremgdmmunikationssystems
bei und werden Uber eine entsprechende Schnittstelleglaafigemacht.

e Personalisierung: Die Kommunikation orientiert sich arm&8eer und wird an seine
Bedurfnisse und Wiinsche angepasst.
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e Adaptivitat & Antizipation: Das System wird auf aktuelledignisse kontextabhangig
reagieren und dem Nutzer so vorhersagbare oder absehbadtuhigen abnehmen.
Hierbei wird zudem ein Schutz der Privatsphére beriickigicht

Die Auswahl und Implementierung von Ansétzen und Verfahwaantiert sich an deren
Effizienz, die gestellten Anforderungen im System zu egfiilBevorzugt werden Losungs-
ansatze, die parallel fir mehrere Problemstellungen vateteverden kdnnen, um die Leis-
tungsfahigkeit des Systems bei konstantem Ressourceauetbzu steigern.



4 Akustische Szenenanalyse

Das Ziel der akustischen Szenenanalyse ist die Gewinnumdgnformationen aus den Si-
gnalen von raumlich verteilten Mikrophonen. Die hierbefteaienden Aufgaben kénnen
in mehrere Verarbeitungsschritte aufgeteilt werden. [Bualst wird eine Verarbeitung der
aufgenommenen Signale zum Zweck der Stérgerauschredulttid der Berechnung von
Merkmalen durchgefuhrt. Hierauf basierend kann im nachSthritt eine Lokalisation von
Quellen durchgefihrt werden. Anschliel3end kann eine Kikagon der akustischen Ereig-
nisse anhand einer trainierten Wissensbasis erfolgeretiateh Verarbeitungsschritt werden
die gewonnenen Informationen zusammengefihrt, bewantetrn System fur Applikatio-
nen bereitgestellt.

4.1 Merkmalsextraktion

Die akustischen Signale im vernetzten Haus werden dur@rssttiedliche stationére und in-
stationare Storquellen beeinflusst. Somit ist eine effeksitorunterdriickung fur die spéatere
Erkennung noétig. Grundséatzlich lassen sich hierbei zwaidhre verfolgen. Zum einen kann
das akustische Signal gefiltert werden, um eine ReduktiorSttiZung zu erreichen. Zum

anderen kann zunachst eine Merkmalsextraktion erfolgdrden Merkmalsvektor anschlie-

Rend entstort werden. Beide Ansétze werden erfolgreicr aniderem in der automatischen
Spracherkennung verwendet [ETS02, HS05].

Ein Leitgedanke bei der Entwicklung der akustischen Szanalyse ist die Effizienz von
Komponenten und deren Wiederverwendbarkeit. Die Entatpdes Zeitsignals anstelle der
Merkmale bietet in dieser Hinsicht den Vorteil, dass dasténte Signal fir eine Kommuni-
kation verwendbar ist.

4.1.1 Storgerauschunterdrickung

Die hier verwendete Storgerdauschunterdrickung ist ekbMiovorden aus der 2-stufigen
Wiener-Filterung deddvanced Front-end Feature ExtractiOhFE) desETSI[ETS02]. Die
Anforderung war, eine Filterung des Eingangssignals dawfithren, die sowohl gute Er-
gebnisse fur einen menschlichen Horer (gute Sprachgyallsauch fur eine nachfolgende
Klassifikationsaufgabe (z. B. Sprechererkennung) erzielt

Das AFE ist eine aus der Spracherkennung stammende Signalvetarpgkomponen-
te, die bei geringer Rechenkomplexitat einen hohen Gewmisignal-zu-Rauschabstand
(engl.Signal to Noise RatiocSNR bietet. Nachteilig fur die Verwendung im Bereich Kom-
munikation ist die leicht reduzierte Sprachqualitat bednigenSNRWerten. Zudem ist das

15
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2-stufige Wiener-Filter deAFE nur fur eine Abtastrate vo®kHz spezifiziert. Eine Anpas-
sung auf eine Abtastrate vdi kHz ist durch eine Verdoppelung der Blockgrdf3en und der
Anpassung einiger Systemparameter moglich. Die Redukis®®NRGewinns bei niedri-
gen SNRWerten der Eingangssignale verbessert die subjektiveitQudes Sprachsignals
zu Lasten eines héheren Rauschanteils.

Sprachaktivitatd— = Rausch
m‘:: detektion schatzung
signal Block- Fensterun r

[ bildung (Hann) FFT
~ @ IDCT Filtlzz/lretz)lz;n ;

[Fensterun

(Hann) [FFT ) -
Rausch
schatzung

Mel-

Filterbank

FensteruMlDCT
Block—-
bildung

Abbildung 4.1: Blockdiagramm des 2-stufigen Wiener-Filters zur Storgechreduktion

Y

Block—
bildung

Dampfungs—
anpassung
Wiener Filter

Das Blockschaltbild in Abb. 4.1 zeigt die Komponenten destifigen Wiener-Filters.
Basierend auf einer Sprachaktivitdtsdetektion wird auh d@ngangssignal eine Schatzung
des Storgerauschspektrums durchgefihrt. AnschlieRenaldeivi Wiener-Filter zur Redukti-
on der Storgerausche geschatzt und mit Hilfe eine Mel-FaegFilterbank gehdrorientiert
geglattet. Die Filterung selbst wird im Zeitbereich duremdBlock Faltung realisiert, da dies
dem Entstehen von Stdrungen (sogisical tonesentgegenwirkt.

Die zweite Stufe des Wiener-Filters fuhrt auf dem Ausgaigyyed der ersten Stufe eine
erneute Schatzung des verbliebenen Stérspektrums duashhiBraus berechnete Wiener-
Filter wird durch eine Mel-Frequenz Filterbank geglattetiun der Dampfungsanpassung
mit dem Wiener-Filter der ersten Stufe kombiniert. Diediling wird erneut im Zeitbereich
realisiert.

4.1.2 Mel-Frequency Cepstral Coefficients

Die Mel-Frequency Cepstral Coefficient8IFCC) werden aus dem entstorten Ausgangssi-
gnal der 2-stufigen Wiener-Filterung berechnet. Zunaclestien durch eine Hochpassfilte-
rung Gleichanteile im Audiosignal sowie tieffrequenter8tigen gedampft. In einem weite-
ren Schritt wird in der Vorverstarkung eine Anhebung der étbtiorgenommen. Das Signal
wird dann gefenstert, anschlie3end in den Frequenzberaicsformiert und mit einer Mel-
Frequenz Filterbank geglattet. Die Berechnung der diskr€bsinus Transformation (DCT)
liefert die cepstralen Merkmale, welche in der Nachveriaubg mit Hilfe der logarithmier-
ten Energie des Audiosignals normalisiert werden. Zuleerden ndherungsweise die erste
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(Delta-Merkmale) und zweite zeitliche Ableitung (DeltalEa-Merkmale) der Merkmale be-
rechnet und im Multiplexer zu einem Merkmalsvektor zusamgedasst. In Abb. 4.2 ist das
Blockschaltbild zur Bestimmung d&FCC angegeben.

Audio- [ Gleichanteils Block- Vorverstarkung
signal filterung bildung Fensterun (Hohenanhebung) Fensterung

Log- Mel-
F{DCT] Log Filterbank|
- J Nachverarbeitun}]

Delta-Delta
Merkmale

=

Multiplexer

Merkmalsvektor

Abbildung 4.2: Blockdiagramm zur Berechnung delel-Frequency Cepstral Coefficients

4.1.3 Maximum Autocorrelation Value

Ein haufig in der Sprechererkennung verwendetes MerkmaliéstStimmbandgrundfre-
guenz. Dieses Merkmal besitzt zum einen den Nachteil, dassrdtr stimmhafte Abschnit-
te der Sprache existiert. Zum anderen kann es fir die Erkenwon akustischen Ereignis-
sen, die nicht durch den menschlichen Sprachtrakt heruaiere werden, nicht verwendet
werden.

In [WPOO] wird ein alternatives Merkmal, détaximum Autocorrelation ValugMACYV),
vorgeschlagen, welcher ein Mal3 fur die Periodizitat des&@gjin einem betrachteten Fens-
ter ist. Vorteil hierbei ist, dass das Merkmal auch fur stimse Laute existiert und wie in der
Literatur [WPOO] gezeigt wird, dem Merkmal Stimmbandgriradquenz in der Erkennungs-
leistung Uberlegen ist. Dieses Merkmal kann auf3erdem &iaklistische Ereignisdetektion
verwendet werden, da es nur eine Bewertung der Periodiabignals vornimmt, die nicht
an das Vorhandensein einer Stimmbandgrundfrequenz gebusid

Zunachst wird fur demMACYV die Autokorrelationsfunktion des gefensterten EingailRgss
gnalsz(n) der LangeN mit

N—1-k
1
= — 1 T — N N - 1 41
R(k) = + nzzo En)E(n+k)  k=0,..., (4.1)
berechnet. Anschlieend wird die Autokorrelationsfuniktinit dem Koeffiziente®(0) nor-
miert:
R(k)

k)= ———=. 4.2
Die Autokorrelationssequenz kann entwedegigleich grol3e Blocke unterteilt werden, so
dass fur jeden Block das Maximum bestimmt wird und soM&CV-Merkmalsvektor der
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Dimension( entsteht, oder es wird nur eMACV-Wert fir den Bereich der Stimmband-
grundfrequenzt(e [2,5ms, 12,5ms] = k € [40, 200] bei einer Abtastfrequenz vait kHz)
berechnet.

MACMq) = max {r(k)} ¢q=0,...,Q0—1 (4.3)
(a-1) F<k<qgy
MACV = 401385500{7"( )} (4.4)

In [ZSNO5] wird eine Variation deMACV vorgeschlagen, bei der Anstelle von Gl. 4.1 die
erwartungstreue Schatzung der Autokorrelationsfunktion

N—-1-k

—0,....N—1 4.
R(k N > Fn+k)  k=0,..., (4.5)

verwendet wird.

4.2 Akustische Positionsschatzung

Die Lokalisation von Personen oder Ereignissen anhand kostiachen Signalen setzt das
Vorhandensein mehrerer raumlich getrennter Mikrophone hikrophongruppen voraus.
Hierbei werden die Unterschiede in der Signallaufzeit uasl \issen Uber die Position der
Mikrophone verwendet, um Positionsschatzungen durclhzaefil Das am haufigsten in der
Literatur beschriebene Verfahren deeneralized Cross Correlation with Phase Transfor-
mation(GCC-PHAT) nutzt die normalisierte Kreuzkorrelation zwischen zwekidphonsi-
gnalen, um die Laufzeitdifferenz zu berechnen. Als Altéxeehierzu wird in dieser Arbeit
die Positionsbestimmung mittels adaptiver Strahlformdisgutiert.

4.2.1 Generalized Cross Correlation with Phase Transformation

Das in [KC76] vorgestellGCC-PHATVerfahren berechnet mit Hilfe des normierten Kreuz-
leistungsdichtespektrums die Laufzeitdifferenz der Sigrzwischen zwei Mikrophonen. Es
wird im Weiteren angenommen, dass insgesamt 1, ..., L Mikrophongruppen mit je-
weils M; Mikrophonen in einem Raum vorhanden sind. Die Laufzeidéhz zwischen den
abgetasteten Mikrophonsignaley(n) undz;;(n) (i-tes undj-tes Mikrophon det-ten Mi-
krophongruppe) wird geschétzt als das Maximum der Foliaktransformierten der Ko-
harenzfunktion. Die Fourier-Rucktransformierte ist mit

DFT {z:,(n)} - DFT" {z,(n)}
‘DFT{;L’%I(n)} .DFT* {xﬂ(n)}‘ } (46)

POy = lDFT{

gegeben. Zusétzlich ist es mdglich die Fourier-Ruckti@ngierte zu interpolieren, um eine
hohere zeitliche Auflosung zu erzielen:

—\T
5O L - e () )

T



Akustische Szenenanalyse 19

An dieser Stelle sei darauf hingewiesen, d&g§ “’(r) in der Implementierung ein zeitlich
diskretes Signal darstellt, da die Interpolation in einermgit@lrechner durchgefihrt wird.
Fur die Schatzung der Laufzeitdifferenz folgt somit:

ij,l

GO argmax{|C’i(flCC)(T)|}. (4.8)

4.2.2 Akustische Strahlformung

Der Zweck der akustischen Strahlformung ist die Ausricgtdier Empfindlichkeit einer
Mikrophongruppe auf eine akustische Quelle im Raum. Diestekung der Quelle fuhrt im
Ausgangssignal zu einer Verbesserungsie&und somit zu einer Unterdriickung maglicher
Stoérquellen aus anderen Raumrichtungen. Im Folgendendasdn [WHO05] beschriebene
Verfahren zur Strahlformung vorgestellt. Es ist ein blisderfahren, welches sich auf die
starkste im Raum befindliche Quelle ausrichtet. Um einedtetnichtung der Strahlformung
in Sprachpausen zu unterbinden, wird eine Sprachaksdédektion zur Steuerung der Ad-
aption bendotigt.

Gegeben sei eine Mikrophongruppe mit 1,..., M; Mikrophonen. Jedes Mikrophon
liefert ein Signal

2(n) = hi(n) * s(n) + ny(n) (4.9)

bestehend aus einem Storsignal:) und dem gewiinschten Sprachsigsial), welches mit

der unbekannten Raumimpulsantwhbytn) gefaltet wird. Die Signale;(n),i = 1,..., M,
sollen nun durch ein Filtef;(n) so gefiltert und anschlieRend summiert werden, dass eine
konstruktive Uberlagerung des Sprachsignals erzielt wird:

M,

y(n) = Z fi(=n) % z;(n). (4.10)

Die Filter f;(n) seien dabei Filter mit endlicher Filterimpulsantwort (erfgnite Impulse
Response-IR). Eine Implementierung der Filterung im Frequenzbereitirtfzu einer Re-
duktion des Rechenaufwandes und ist der zeitlichen Fiitgmorzuziehen. Es folgt fur Gl.
4.10, dass

M,

Y(k) =Y F(k)-Xi(k) k=0,... K-1 (4.11)
i=1
ist, mit £ als demk-ten Frequenzbin dei langen diskreten Fourier Transformation (DFT).

Durch die Einfuhrung der Vektornotation

F(k) = [Fi(k),..., Fy (k)" (4.12)
X (k) = [Xy(k), ..., Xa, (B)]" (4.13)

kann Gl. 4.11 mit

Y(k)=F*k)X(k) k=0,....,K—1 (4.14)
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dargestellt werden. Die Adaption der Filter erfolgt enegirend [WHO7] durch ein determi-
nistisches Gradientenverfahren und liefert die Adaptiegsl

Fro1(K) = Fou(k) + 1t (@00 (k) Fo(k) = FY (B)@,, (k) F (k) F (k) (4.15)

mit m als Iterationsindexy als Schrittweite®,.,. als spektrale Kreuzleistungsdichtematrix
der Mikrophonsignale und der Nebenbedingui(m)F (m) = 1. Dabei liefert die Glei-
chung Gl. 4.15 den Eigenvektor zum grof3ten Eigenwert dektsden Kreuzleistungsdich-
tematrix®,, [WHO7]. Diese Verfahren der akustischen Strahlformungivails Filter Sum
Beamforme(FSB) bezeichnet [WHO05].

Die Verwendung vorrIR-Filtern im FSBbietet gegeniber eineBelay Sum Beamformer
(DSB den Vorteil, dass neben den direkten Schallkomponentem faiihe Reflexionen mit
bertcksichtigt werden und somit die Klarheit der Sprachbessert wird [WHO05].

Ein positiver Nebeneffekt ddtSB-Adaption ist die Mdglichkeit, eine Schatzung des Ein-
fallswinkels der akustischen Signale relativ zur Austicty der Mikrophongruppe anhand
der Filterimpulsantworten durchzufiihren [SHO6]. Hierfuird die Kreuzkorrelation zwi-
schen demi-ten undj-ten Mikrophon dei-ten Mikrophongruppe mit

oI = fil(=N) = f (V) (4.16)

berechnet, wobel = m-T einem Vielfachen der Abtastperiode entspricht. DaFdi-Filter
nicht ganzzahlige Verzogerungen modellieren kbnneninstlaterpolation der Kreuzkorre-
lation zur Steigerung der Auflésung maglich.

qsz(flSB)()\) Inte&ol'?tion Ci(flSB)(T) (4.17)
Die Verzégerung zwischen den Signalen an den Mikrophonan kat

TZ.(JZSB) = argmax |CZ~(£SB) (1)] (4.18)
bestimmt werden. Analog zur Latenzschatzung @&C-PHATkann die Kreuzkorrelation

der FIR-Filter als Fourier-Rucktransformierte der Koharenzfimk der Mikrophonsignale
angesehen werden.

4.2.3 Lokalisation mittels verteilter Mikrophongruppen

Der Einfallswinkel kann grundsatzlich als Information tibane Position im vernetzten Haus
verwendet werden, jedoch steigert die Kombination veeteMikrophongruppen zur Schét-
zung einer Position in kartesischen Koordinaten den In&dimnsgehalt betrachtlich. Hierzu
ist es notwendig, die Position und Anordnung der Mikrophrapgen im Raum zu ken-

nen. Im Folgenden wird das aus der Literatur bekannte Viefatler Koharenzfeldanalyse
[OSBCO06] einer Schnittpunktanalyse gegenibergestetlt hinsichtlich Genauigkeit und

Rechenaufwand verglichen.

Koharenzfeldanalyse

Das verbreitetste Verfahren zur akustischen Positiotisesing ist die Koharenzfeldana-
lyse (engl.Global Coherence Field analygi$OSBCO06], welche aquivalent zunSteered



Akustische Szenenanalyse 21

Response PowéMerfahren ist [DBAO7] und mit dem Begriff GCF-Analyse* abgekirzt
wird. Hierbei wird die Positionsbestimmung im Raum zumgistwei Dimensionen durch-
gefiihrt, so dass die méglichen Positionen in einer Flaemeh. Uber diese Flache wird ein
Gitter G gelegt, welches durch die diskreten Gitterpurlkte)] € G definiert ist. Zu jedem
Zeitschritt wird die globale Koharenzfunktion fir alle @itpunkte]x, y| des Raumes mit

“1 M,

1
GCFSC ’y = EZ M2 Ml Z Z Cz]l 7-z]l x y)) (419)
=1 i=1 j=i+1
berechnet. Hierbei werden die interpolierten Fourieri@@nsformierten der Koharenzfunk-
tionenC;;,(7) der! = 1,..., L Mikrophongruppen verwendet, welche entweder mit dem

GCC-PHATVerfahren oder der akustischen Strahlformung geschataien. Die Laufzeit-
differenzr;;,(x, y) wird berechnet aus der relativen Position und Orientiensrg-ten Mi-
krophongruppe zum AufpunKt, y| im Raum. Da der Aufwand der Aufpunktsberechnung
sich quadratisch zur Quantisierung des Raumes verhalts ming Abwagung zwischen
dem geduldeten Quantisierungsfehler und der vertretbRemmenkomplexitat vorgenom-
men werden.

0,3
0,25+

0,24

0,15+

GCF(x,y)

0,05

\‘ “’
NN Q\‘:‘ ‘

Abbildung 4.3: Beispiel eineGCF-Analyse fur vier Mikrophongruppen zur akustischen Posi
schéatzung durch verteilte Mikrophongruppen

Die Abb. 4.3 zeigt ein Beispiel fur eir@CF-Analyse fir einen Raum der Grofen x4 m,
in dem vier Mikrophongrupperr({ = [0, 2]; [4, 2]; [2, 0]; [2, 4]) jeweils mittig an den Wanden
angebracht sind. Das Maximum der globalen Koharenzfunkiiod als Hypothese fur die
Sprecherposition verwendet.

Schnittpunktanalyse

Die Schnittpunktanalyse ist ein vereinfachtes VerfahtarBerechnung einer Sprecherposi-
tion, basierend auf den interpolierten Fourier-Rlckt@amsierten der Koharenzfunktionen
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und dem Wissen uber die Position und Anordnung der Mikroghappen. Es wird dabei
angenommen, dass jede deMikrophongruppen eine lineare Anordnung besitzt, so dass
die Einfallswinkelo;;; der akustischen Signale durch

wjy = arcsin <c T TW) (4.20)
Sigl

berechnet werden kénnen. Dabeidstie Schallgeschwindigkeit in der Luff; die Abtast-

periode und;;; der Abstand zwischen def¥ten undj-ten Mikrophon det-ten Mikrophon-

gruppe. Stehen mehr als zwei Mikrophone in einer Grupge ¥ 2) zur Verfigung, kann

eine Mittelung Uber alle Kombinationen der Mikrophone mit

M,—1 M,

al = ﬁ Z Z Qi1 (421)

i=1 j=i+1

erfolgen, falls die rdumliche Ausdehnung der Mikrophomgr nicht zu einer Verletzung
der Fernfeldnaherung fuhrt. Die Fernfeldndherung ist dieghme, dass das akustische Si-
gnal in einer ebenen Wellenfront auf die Mikrophone tribie Laufzeitdifferenzr;;; zwi-

schen den Mikrophonsignalen kann sowohl durch G&C-PHATVerfahren @(j(icc)) als

auch durch deRSBAnsatz ¢T ) bestimmt werden.
Jede Winkelschatzung, einer Mikrophongruppe mit der Position = [z;, y,]7 wird als
Geradengleichung

9a(v) = rm+v-aa,B) (4.22)

dargestellt. Der Richtungsvektay ist dabei abhangig von dem geschatzten Einfallswinkel
a; und der Orientierung der Mikrophongruppe im gewahlten Kowatensystens, (Winkel
zur Ordinate).

In Abb. 4.4 ist ein Beispiel fur die Positionsbestimmungatudie Schnittpunktanalyse
gegeben. Die Kombination der Geradengleichungeni-den und;j-ten Mikrophongruppe
liefert im Idealfall einen Schnittpunky,; im Raum, der als Grundlage fir die Positions-
schéatzung verwendet werden kann. Sollte ein SchnittpumidhdFehler bei der Schatzung
der Winkel auRerhalb des Raumes liegen, so wird diese Soigiizerworfen. Die Position
P = [z,,y,]" der akustischen Quelle wird als Schwerpunkt aller Schumitkpe x;; mit

9 L-1 L
P = mz Z Xij (4.23)

i=1 j=i+1

berechnet.

In Laborversuchen wurde beobachtet, dass die Gewichtun§aittpunkte mit einem
aus der Kreuzkorrelation berechneten Konfidenzwert diétang positiv beeinflusst. Dies
ist auch in den Simulationen in Abb. 4.6 (a) erkennbar. DewiGasfaktor berechnet sich
mit

L ma i) 424
R S 2
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Abbildung 4.4: Beispiel einer akustischen Positionsschatzung mit dr&rdfihongruppen durch die
Schnittpunktanalyse

und ist ein Mal3 fur die Impulsférmigkeit der Kreuzkorretatsfunktion.

Ein Uberblick uiber Verfahren zur Positionsschatzung kariWMO09] gefunden werden.
Unter anderem wird dort auf ddrinear Intersection Estimatogingegangen, der im dreidi-
mensionalen Raum den minimalen Abstand zwischen zwei @pral$ Positionsschatzung
verwendet und als verallgemeinerte Form der Schnittpunakyae fir drei Dimensionen an-
gesehen werden kann.

Interpolation

Der Abstand der Mikrophone innerhalb einer Mikrophongmippt zum einen Einfluss auf
die maximal ohne Aliasingfehler auflésbaren Frequenzenzumd anderen einen Einfluss
auf die Anzahl der unterscheidbaren Laufzeitdifferendenkleiner der Abstand zwischen
den Mikrophonen gewahlt wird, desto weniger raumliche gifigfehler treten auf und desto
geringer ist die Anzahl der ohne Interpolation untersdbaidn Laufzeitdifferenzen.

Die Anzahl der Laufzeitdifferenzen wird bestimmt durch dietastperiode der Fourier-
Rucktransformierten der Kohéarenzfunktion und die geveihtiterpolation (vgl. Gl. 4.7).
Ohne Interpolation sind nur ganzzahlige Vielfache der Atgtariode als Laufzeitdifferenz
messbar. Mit Interpolation vervielfacht sich die Anzaht daeterscheidbaren Laufzeitdif-
ferenzen um den Interpolationsfaktor. In beiden Fallerkaumr eine begrenzte Menge an
Laufzeitdifferenzen unterschieden werden.

In Abb. 4.5 (a) sind die resultierenden Winkel aus den Laehdtzungen in rot einge-
zeichnet. Bei einer angenommenen Abtastrately@h= 16 kHz und einem Mikrophonab-
stand vons;;; = 0,05 m ergibt sich nach Gl. 4.20 eine maximal messbare Latenz harsc
den Signalen flr einen Winkel;;; = £7/2 von

1
)\('rpax) _ Sz’j,l _ 16 000 o 0,05 m
ik ¢ T 3431

=[2,33] =3 (4.25)
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(a) Auswirkung der Interpolation auf die Winkelaufl@b) Raumliche Verteilung der Schnittpunkte bei vier
sung Mikrophongruppen und Interpolation

Abbildung 4.5: Positionsschéatzung durch Interpolation von Winkelsalnégen

Abtastwerten. Die maximale ohne Aliasingfehler auflosthasguenz kann mit

foo— ¢ 3BT eseon (4.26)
me T e 0,05m z '

berechnet werden. Da ohne Interpolation nur ganzzahliggdgerungen messbar sind, kon-
nen nur7 Winkel pro Mikrophongruppe unterschieden werden (vgl. Abs (a), rote Li-
nien). Erst die Interpolation erreicht eine verwertbarenk®iauflésung des Raumes (vgl.
Abb. 4.5 (a), rote und blaue Linien). Die Abb. 4.5 (b) zeigt dntstehenden Schnittpunkte
fur einen Aufbau mit vier Mikrophongruppen und Interpadetti Es ist erkennbar, dass gera-
de die Ecken gegeniber der Mitte des Raumes eine schleghifésung besitzen, da dort
weniger Schnittpunkte liegen. Auf Grund dieser Beobaahtish es erforderlich, Systeme
zur akustischen Lokalisation so aufzubauen, dass derddengt den meisten Schnittpunk-
ten im vorgesehenen Interaktionsbereich mit den Benutzgh

Experimente

Die folgenden Experimente untersuchen und vergleichenGla€-PHATVerfahren mit
demFSBAnsatz zur Positionsschatzung hinsichtlich der Vor- uratiMeile fur die Ver-
wendung in der akustischen Szenenanalyse.

In Abb. 4.6 sind die experimentellen Ergebnisse zum Vetbleler Positionsschatzung
zwischenGCC-PHATund FSBangegeben. Hierzu wurde ein Raum der Gréidex 4 m,
mit einer Deckenh6he vohm und unterschiedlichen Raumnachhallzeiten mit der Spiegel
methode nach [AB79] simuliert. Bei einer Abtastrate ¥6rkHz wurde fur jede Nachhallzeit
eine90 s lange Audiodatei fur einen sich zufallig bewegenden Spre&kinstlich verhallt.
Insgesam8 Mikrophone waren paarweise mittig an den Wanden und im Algistan0,05 m
zueinander angebracht. CH&T-Lange de$sCC-PHATVerfahrens betrug048 Abtastwer-
te, mit einer anschliel3enden Interpolation zur Verbesgpder Positionsschatzung. 8B
wurde mit einer Filterlange vor8 Werten implementiert und das Ergebnis der Filterkorre-
lation ebenfalls interpoliert.

Abbildung 4.6 (a) zeigt die Wurzel des mittleren quadrdtestFehlers (engRoot Mean
Square RM§ fiur die Positionsschatzung durch d&CC-PHAT (, GCC-PHAT Schnitt-
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Abbildung 4.6: Experimente zur Positionsschatzung mit de8B und demGCC-PHATVerfahren

punkt), denFSBohne Gewichtung der Schnittpunktd=§B Schnittpunkt®) und der-SB
mit Gewichtung der Schnittpunkte proportional zum Konfiddgart der SchatzungenK$SB
Konfidenz®) fur ansteigende Nachhallzeiten des RaumesVigteren sind dilRMSWerte
fur die Positionsschatzung bei Verwendung der Kohéaredafelyse fur da&SCC-PHAT
Verfahren (GCC-PHAT GCF) und denFSB-Ansatz (,FSB GCF) angegeben.

Die experimentellen Ergebnisse zeigen, das=&3eine bessere Positionsschéatzung er-
moglicht als dasGCC-PHATVerfahren. Des Weiteren besitzen die Ausgangssignale des
FSBein bessereSNRund kdnnten somit flr weitere Verarbeitungsschritte bregseignet
sein als ein einzelnes Mikrophonsignal. Vergleicht mankfigebnisse der Positionsschét-
zung desGCC-PHATVerfahrens mitGCF-Analyse (GCC-PHAT GCF) mit denen der
einfacheren Schnittpunktanalys&(GC-PHATSchnittpunkt®), so kann festgestellt werden,
dass da§&sCC-PHATVerfahren deutlich von deeCF-Analyse profitiert. Speziell fir lange-
re Raumnachhallzeiten ist die Verwendung @&F-Analyse vorteilhaft, um den Fehler der
Positionsschatzung gering zu halten. Im Falle der Posisidmétzung durch ddfSBist der
Vorteil der GCF-Analyse (,FSB GCF) gegentber der Schnittpunktanalys&$§B Schnitt-
punkt) weniger ausgepragt und es kann zu Gunsten eineriextitn Rechenanforderung
darauf verzichtet werden.

Abbildung 4.6 (b) zeigt die Untersuchungen zur Verteilueg Behler bezogen auf den
Abstand der Sprecherposition zum Mittelpunkt des Raumes.H2hler steigt mit zuneh-
mender Distanz zum Mittelpunkt des Raumes an und ist am gm@dRtden Ecken, wie es
bereits in experimentellen Versuchen im Labor beobachtetiev Dies zeigt, dass die Plat-
zierung der Mikrophone die erreichbare Schatzgenauidgesinflusst. Mikrophongruppen
sollten immer so angebracht werden, dass sie den Intenskigoeich des Nutzers gut abde-
cken und die Gebiete mit grof3en Fehlern abseits der Nut#iéngen liegen.

In [WPHO04] wird gezeigt, dass die akustische Positionszcimdg durch eine modellba-
sierte Nachfilterung, wie z. B. Kalman- oder Partikelfiliegrbessert werden kann. Auf ei-
ne modellbasierte Nachfilterung wird im Rahmen dieser Arbewusst verzichtet, da die
experimentell erreichten Genauigkeiten in realen Umggbarden Anforderungen genu-
gen und somit eine rechenintensive Filterung unnotig iste EErzielte Genauigkeit von ca.
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0,2m — 0,5m kann als hinreichend fir die hausliche Umgebung mit germéé&chhall
(niedrigeTgy-Zeiten) betrachtet werden.

Der Vergleich der bendtigten Rechenzeit in Tab. 4.1 zeigtlad den Vorteil der Verwen-
dung desFSBgegeniiber demsCC-PHATVerfahren! Die Positionsbestimmung d€SB

| Modul | Zeit (us) |

FSB-Strahlformung (2 Mikrophone) 273
FSBWinkelschatzung (2 Mikrophone) 16

GCC-PHAT(2 Mikrophone) 653
Schnittpunktanalyse (4 Gruppen je 2 Mikrophone) 5

GCF-Analyse (4 Gruppen je 2 Mikrophon@,l m Rasterung) 1457
GCF-Analyse (4 Gruppen je 2 Mikrophon@,05 m Rasterung) 5624
FSBmit Schnittpunktanalyse (4 Gruppen je 2 Mikrophone) 1161
FSBmit GCF-Analyse (4 Gruppen je 2 Mikrophon@,l m Raster) 2613
FSBmit GCF-Analyse (4 Gruppen je 2 Mikrophon@,05 m Raster) 6780
GCC-PHATmiIt Schnittpunktanalyse (4 Gruppen je 2 Mikrophone) 2617
GCC-PHATmIt GCF-Analyse (4 Gruppen je 2 Mikrophon@,l m Raster) 4069
GCC-PHATmIt GCF-Analyse (4 Gruppen je 2 Mikrophon@05 m Raster)| 8236

Tabelle 4.1:Vergleich der Rechenzeit unterschiedlicher Module zuitPosschatzung

mittels Schnittpunktanalyse bendtigt im Vergleich zuriBossschatzung deSCC-PHAT

mit Schnittpunktanalyse ndrt,1 % der Rechenleistung. Noch gréer wird der Unterschied,
falls die GCF-Analyse angewendet wird, da die Schnittpunktberechnumgimen Faktor
1125 schneller ist. Die Experimente zeigen, dass im FalleF&Bdie Schnittpunktanalyse
der GCF-Analyse im Bereich Ressourcenbedarf Uiberlegen ist, jedoe Genauigkeit nur
geringfugig niedriger liegt. In der Literatur gibt es Angg&itden Bedarf an Rechenzeit durch
die GCF-Analyse zu reduzieren [DBAOQ7], welche hier jedoch nichiterebetrachtet wer-
den.

4.3 Segmentierung und Sprecheridentifikation

Bei der sequentiellen Vorgehensweise zur Sprecheridatidon wird zunéchst eine Ein-
teilung des Datenstroms in homogene Abschnitte durchgefDiese Abschnitte werden
dann durch eine Sprecheridentifikation einem bekannteacBpr aus der Datenbasis zu-
geordnet. Demgegenuber steht eine gemeinsame Segmegtierd Sprecheridentifikation,
die in dieser Arbeit vorgeschlagen wird. Eine zeitnahe gesagne Identifikation von Spre-
chern in fortlaufenden Datenstromen erfordert Algoritiimeelche eine Segmentierung der
Daten in homogene Abschnitte eines Sprechers und eineititaion dieser Segmente mit
maoglichst geringer Latenz vornehmen.

Zunachst wird die Segmentierung von Daten durch die Anwegdies Bayes’schen In-
formationskriteriums erlautert und mégliche Ansatze zerwendung der Positionsinfor-
mationen zur Segmentierung diskutiert. Anschlie3end aredde Sprecheridentifikation fr
homogene Sprachsegmente und das Modelltraining vortesteschlieRend werden in Ex-
perimenten die Teilkomponenten der Segmentierung undcBerelentifikation, sowie das
Gesamtsystem getestet.

1Simulationsumgebung: Intel T2400@1,83 GHz, 2 GB RAM
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4.3.1 Sequentielle Sprecherwechseldetektion und Identtion
Segmentierung durch Sprecherwechseldetektion

Das Ziel der Segmentierung ist die Einteilung der Daten imbgene Abschnitte, inner-
halb derer nur ein Sprecher aktiv ist. Diese Aufgabenstglivird in der Literatur haufig als
Modellselektionsproblem formuliert [DW00, WHO06]. Basead auf denV,, Merkmalsvek-
torenX,.y, = [x(1),...,x(N,)] in einem betrachteten Fenster werden die folgenden zwei
Hypothesen verglichen:

e Hy: Alle Merkmalsvektoren sind eine unabhangige und idehtisarteilte Stichprobe
der multivariaten Normalverteilung/ (x; o, 3o), welche den Sprecher beschreibt.

e H;: Die erstenV,, /2 Merkmalsvektoren sind eine unabhangige und identiscleltert
Stichprobe der multivariaten Normalverteilunyy(x; p1,3;) des Sprechers A und
die Ubrigen eine Stichprobe der multivariaten Normahikney N (x; o, o) des
Sprechers B.

Die Modellparamete®; = (u;,;), @« = 1,2, der Normalverteilungen bestehen aus den
Mittelwertvektorenu; und den Kovarianzmatrizeq, und sind zunachst unbekannt. Sie wer-

den durch einenMaximum LikelihoottSchatzer aus den Merkmalsvektoren innerhalb des
Fensters bestimmt. Die Bewertung der zwei Hypothesen extispnd der Definition flBIC

aus [DWO0O0, NKO5] liefert

BIC(H;) = logp(Xl:Nw\Hi)—f%logNw (4.27)
N’LU
m;
= D _logp(@(k)|H;) — £ log N, (4.28)
k=1

mit p(X1.n, |H;) als Likelihood? der D-dimensionalen MerkmalsvektoreX .y, fir das
parametrische Modell der Hypothesg, m; als Anzahl der Parameter im Modell urid,
als Anzahl der Merkmalsvektoren. Unter der Annahme muitar Normalverteilungen

gilt
p(x(k)[Ho) = N (2 (k); po, Xo) (4.29)
fur die Dichtefunktion der Hypothesé, und

N (x(k); p1, 1) k < Ny/2

p (k)| H)) = { N (b 5 TS N (4.30)

2An dieser Stelle wird bewusst der englische Begriffkglihood' verwendet, um zu verdeutlichen, dass
die Auswertung der Dichtefunktion fur die beobachtetenkvielsvektoren und somit ein Zahlenwert und
nicht die Dichtefunktion betrachtet wird. Eine mdglichedigetzung mit ,MutmaRlichkeit*, wie in [Han01]
vorgeschlagen, wird zu Gunsten des haufig auch in deutsceeiffeéhtlichungen verwendeten Begriffs
»Likelihood' verworfen.
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fur die Dichtefunktion der Hypothedé, . Die Likelihoodder Hypotheséi ist unter der An-
nahme, das¥X.y, eine unabhangige und identisch verteilte Stichprobe égfegen durch

Nu

p(XlzNw|H0) — H %e(*%(m(k)*ﬂo)Tzofl(m(k)*H-o)) (4.31)
k=1 (2m) 2 | X0l>
_ NuD Ny (‘%]izvi‘ul(w(k)—MO)TE(Tl(w(k)—uo))
=(2m)" 2 |X] 2 e = (4.32)
mit denML-Schéatzwerten der Parame®@p = (g, Xo):
1 N
po = D x(k) (4.33)
W k=1
1 S
o = N Z (x(k) — po) (z(k) — #O)T- (4.34)
W og=1

Durch Logarithmieren der Dichtefunktion und Verwendung ¥&. 4.33 und Gl. 4.34 folgt
entsprechend [WHO06] (vgl. Kap. A.1) fur digkelihoodder Hypothesei,

log (p(X1ow [Ho)) = —~2log ([Z0]) — 22 (1 +log (2r)  (4.35)

bzw. fur dieLikelihoodder Hypothesé{;

log (p( X, [ ) = 2 log (1Sh]|%]) — 27 (1 4 log (2r)) . (4.36)

Die DifferenzABIC derBIC-Werte der Hypothesen wird als Kriterium fir Segmentiesing
punkt verwendet und kann entsprechend [CWO03Gdseralized Likelihood Ratider Hy-
pothesen interpretiert werden.

ABIC = BIC(H,) — BIC(H,) (4.37)
Nw Nw ™m,
= 5" log(|Bo]) — " log(|%1[[Tal) — €= log N (4.38)

Ein ABIC-Wert groRer Null zeigt hierbei einen Segmentierungspamnktwobei die Emp-
findlichkeit durch die Konstantgeingestellt wird.

Im Folgenden wird deABIC-Wert der Gl. 4.37 um einen Zeitindéerweitert ABIC(k)),
welcher die Mitte des betrachteten Fensters der Langangibt. Dieses Fenster wird tber
den Datenstrom der Merkmalsvektoren geschoben, so da¥¢etieABIC(k) zu den Merk-

malsvektorerx(k— N, /2+1),...,x(k+ N, /2) gehort. Daraus resultiert eine Verzégerung
der Information tber einen Sprecherwechsel ausAIBIC-Werten von einer halben Fens-
terlange (V,,/2).

Experimente unter variierenden Bedingungen, wie z. B. é¢dgrundgerduschen, zeigten
die Notwendigkeit, den Parametgraus Gl. 4.38 an die akustischen Umgebungsbedingun-
gen anzupassen. Dieser Nachteil ist in der Literatur betkameh kann durch eine metrische
Entscheidungsregel abgemildert werden. Die Grundideeng¢tischen Entscheidungsregel
beruht auf der Beobachtung, dass ein Segmentierungspurdéitverlauf derABIC-Werte
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Abbildung 4.7: Metrische Entscheidungsregel zur Segmentierung diwBHC-Werte

durch ein lokales Maximum gekennzeichnet ist (vgl. Abb)4Ein Segmentierungspunkt
wird immer dann angenommen, falls die Differenz zwischémlem Minimum und Maxi-
mum einA-faches der StandardabweichundesABIC-Wertes betragt [DW0O, DY08]. Die
metrische Entscheidungsregel zeigt folglich einen Segieremgspunkt an, falls mindestens
eine der Bedingungen erftillt ist:

| ABIC(Kmax) — ABIC(Kminy,)| > Ao (4.39)
| ABIC(Kyax) — ABIC(Kinin, )| > Ao (4.40)

Dabei seik,,., €in Zeitpunkt, an dem ein lokales Maximum im Zeitverlauf dd8IC-Werte
vorliegt, undk,,in,, DZW. £y, die zugehorigen Zeitpunkte der lokalen Minima, welche tech
bzw. links vom Maximum liegen (vgl. Abb. 4.7).

Segmentierung mittels Positionsinformationen

Ein Sprecherwechsel geht immer mit einem Wechseln in deshg¢sten Sprecherposition
einher. Umgekehrt ist eine Veranderung der Sprecherpageédoch kein sicherer Indikator
fur einen Sprecherwechsel, da der Sprecher auch nur sesit@R@eandert haben kann.

In Abb. 4.8 sind die Winkelschatzungen wéhrend eines Gebprawischen zwei Perso-
nen und die zugehoérigen Segmentierungspunkte, d. h. dipufdite der Sprecherwechsel,
dargestellt. Theoretisch kann ein solches Gesprach ethich die Positionsinformationen
segmentiert werden, weil die Sprecher raumlich gut getrend jeweils an einer festen Po-
sition sind. Eine solche Voraussetzung ist in einer Haugbuagg nicht gegeben, da sich
die Sprecher frei bewegen kdnnen. Folglich missen andesétaa zur Verwendung der
geschatzten Sprecherposition betrachtet werden.

Ein moglicher Ansatz ist, dass die Position eines Sprediiedie Dauer einer AuRerung
als ndherungsweise konstant und die Gesprachspartndiuaigich unterscheidbar ange-
nommen werden. Obwohl diese Annahmen in einem Gespraathéblveise gegeben sind,
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Abbildung 4.8: Vergleich zwischen Positionsinformationen und bekan@egmentierungspunkten

stellen sie eine Einschrankung der Verwendbarkeit des8ystar. Zunachst werden Hy-
pothesen flir Segmentierungspunkte durch das in Kap. 4d@destellteABIC-Verfahren
ermittelt und anschliel3end anhand der Positionsinfoonatachgefiltert. Falls die Position
innerhalb eines Zeitfensters konstant ist, so werden Hhgsen flr einen Sprecherwech-
sel innerhalb dieses Zeitfensters verworfen. Hierdurainkaine erhebliche Reduktion der
Fehler erzielt werden, wie die Experimente in Kap. 4.3.8eei

In Kap. 4.3.2 wird ein alternativer Ansatz ohne die einsnoketaden Annahmen vorge-
stellt, welcher eine kombinierte Segmentierung und Idi&ation mit Hilfe der Positionsin-
formationen durchfiihrt. Da dieser Ansatz Informationes dem Modul zur Sprecheriden-
tifikation bendotigt, wird im folgenden Kapitel zunachst @precheridentifikation erlautert.

Sprecheridentifikation

Die Problemstellung der Sprecheridentifikation wird athgen als ein Mustererkennungs-
problem formuliert, bei dem eine beobachtete Menge von Metkvektoren einem Spre-
chermodell zugeordnet werden soll [Cam97]. Dabei wird &den derZ Nutzer ein sto-
chastisches Modell aus Trainingsdaten geschatzt. Fiur thssifikationsschritt werden die
Likelihoodsder Merkmalsvektoren fur die Dichtefunktionen der Sprectaeelle berechnet
und anhand eines Hypothesentests verglichen. Im Folgendesien die zum Aufbau ei-
ner Sprecheridentifikation benétigten Ansatze und Gleigen entsprechend den Ideen aus
[Cam97] und [RQDOOQ] eingefiihrt, um deren Zusammenhang puecherprotokollierung
herzustellen.

Die Likelihood der MerkmalsvektorfolgeX,.y = [z(1),...,x(N)], gegeben daste
Sprechermodel{ = i), ist unter der Annahme unabhangiger und identisch vestéderk-
malsvektoren durch

pXanl2=40) = ]p@k)IQ=1) (4.41)

k=1

gegeben. Dieskikelihoodwird auf dieLikelihoodp(X.y|2 # i) normiert, dass die Merk-
malsvektoren nicht von dem Sprecher stammen (sog. Gegetitege). Somit wird fur die
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Entscheidung, welcher Sprecher aktiv ist, anstelleLdeglihood p( X .5 |Q2 = i) das Ver-
haltnis der_ikelihoodsmit

al p(x(k)|Q2 =)
A(Xn|Q = 4) kﬂl CONED (4.42)

betrachtet. Die Hypothesfé fur das wahrscheinlichste Sprechermodell ist dann dursh da
Sprechermodell gegeben, das die Summe der logarithmieikelthood Verhaltnisse maxi-
miert:

5 _ p(a(k)[€ = i))
Q argmax {; log <p(:v(k)|Q 70 } . (4.43)
Die Bildung des Logarithmus wird zur Verbesserung der nisobken Stabilitéat verwendet
und hat dabei keinen Einfluss auf diezmax-Operation.

Das Modell fir die Gegenhypothese, auch universelles Hjnitadmodell (englUniver-
sal Background ModeUBM) genannt, kann entweder aus den Aufnahmen eines unabhangi-
gen Satzes von Sprechern oder aus der Datenmenge alleinzereladen Sprecher geschatzt
werden [RQDOO]. In dieser Arbeit wird der zweite Ansatz gbitaa hierbei auch mit klei-
neren Datenmengen Sprechermodelle gut trainiert werdeneg®

Das universelle Hintergrundmodelflk (= Qugm) setzt sich aus der Kombination der ge-
schlechtsspezifischen Hintergrundmodelle fur Manfes=(Q)%,,) und Frauen®@ = Qfg,,)
zusammen. Da kein a priori Wissen Uber das Geschlecht dexsamden Sprecher vorhan-
den ist, wird eine Gleichgewichtung der geschlechtssgehiéin Hintergrundmodelle mit

p(x(k)|Q # i) = p(x(k)|Q2 = Quem) i=1,...,7 (4.44)
= (@B = k) + Sp@ RO =) (4.45)

vorgenommen. Die Modellparameter werden jeweils aus deargeen Daten der weibli-
chen bzw. mannlichen Sprecher mitt®tl-Parameterschatzung bestimmt [DHS01]. Dabei
kann die Verwendung von Trainingsdaten aus unterschlesiidufnahmesituationen und
Mikrophonarten, wie z. B. Nahbereichs- und Fernfeldmikrapen, die Robustheit der Spre-
cheridentifikation gegentber Veranderungen der Aufnahioa®n verbessern.

Jede Dichtefunktion wird durch eine Gaul3’'sche Mischungsitang (GMM) beschrie-
ben, deren Gewichte; ,,,, Mittelwertvektorenu; ,, und Kovarianzmatrize; ,,, aus Trai-
ningsdaten bestimmt werden. DadM desj-ten Modells (Sprechermodell oder geschlechts-
spezifisches Hintergrundmodell) ist folglich als gewitetSumme von)/ multivariaten
Normalverteilungen mit

p(x(k)|Q2 = j) = chm‘ k); b, jm) J= 17---aQOSBMvQUMBM (4.46)

definiert. Dabei ist das Gewicht,, die a priori Wahrscheinlichkeit den-ten Mischungs-
verteilung derj-ten Klasse mitc;,, = P(Z = m|Q) = j). Die ZufallsvariableZ ¢
{1,..., M} stehe fur die Zugehorigkeit zu einer Mischungsverteilund die Zufallsva-
riable € {1,...,Z, Qlgu, QE,,} fur die Zugehorigkeit zu einer Klasse. Jedes Sprecher-
modell und jedes geschlechtsspezisches Hintergrundivimedeizt somit einen eigenen Satz
von Modellparameter®,; = {c;1, ..., Cja i1y - - s G My 23515 - -5 235, M }-
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Die Modellierung eines Sprechers durch élidden Markov Mode(HMM) bietet nach
[RQDO0O0] keinen signifikanten Vorteil gegentber eir@MM-Modellierung, sofern keine
Informationen Uber die gesprochenen Worter vorliegen.

Die individuellen Sprechermodelle werden mittels Baydss Adaption [RQDO00] aus
den geschlechtsspezifischen Modellen trainiert. Vorteibel Methode ist, dass auch Mo-
delle fur Sprecher mit geringen Datenmengen trainiert exekbnnen, da nur die Teile der
Modelle angepasst werden, die auch beobachtet wordenLsagkn fir einen Sprecher nur
wenige Beobachtungen vor, so entspricht sein Modell zunegr®(3en Teil dem geschlechts-
spezifischen Hintergrundmodell. Dies bedeutet aber awads, die Hintergrundmodelle eine
hohe Ahnlichkeit mit den zu trainierenden Sprechern habé&ssen. Weibliche Sprecher
werden folglich ausgehend von einem weiblichen Hintergraadell trainiert und méannli-
che Sprecher mit dem mé&nnlichen Hintergrundmodell. Diga&tmg der Modellparameter
der Sprechermodelle erfolgt durch eine Bayes'sche Adapler geschlechtsspezifischen
Hintergrundmodelle.

Die Bayes’sche Adaption berechnet auf Basis des Hintedynalells zunachst die Wahr-
scheinlichkeit, dass der Merkmalsvekte(k) zur m-ten Mischungsverteilung gehort:

p(x(k)|Z =m, Q= Qipm) g, m
M ’

];p(w(k)\Z = jv 0= QGBM>CQGBMJ

p(Z = mlz(k),Q = Qijgy) = (4.47)

Dabei seiZ die Zufallsvariable der Zugehorigkeit zu einer Mischurggssilung undjgy,
das geschlechtsspezifische Hintergrundmodell, welchspr@thend dem Sprecher@@fﬁ,\,I
oderQ{;,, gewahlt wird. AnschlieBend werden die sprecherspezifistbdellparamete®,
mit

G = o Dp(Z = mla(k), 9 = Ve (4.48)
1k1 N

Bim = Ne ZP(Z =m|z(k), Q2 = Qigy) - (k) (4.49)
LM =1

S = 2 S p(Z = mla(k), Q = Q) (k) — o) (k) — )T (4.50)

geschatzt, welche in Kombination mit den Modellparametigs gewéahlten Hintergrund-
modeIISGQDBM das neue Sprechermode@ll bilden:

Cim = € ° gi,m + (1 - Ei) . CQ{‘JBM,m (451)
Him — € ° lji,m + (1 - Ei) : /J’Q,’jBM,m (452)

BMm» 1T

Der Adaptionskoeffizient;, der die Gewichtung der sprecherspezifischen Modellpaeme
©; gegenuber den Parametern der Hintergrundmoéle = einstellt, wird mit

6 = — (4.54)
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berechnet. Der Relevanzfaktoiaus Gl. 4.54 steuert hierbei den Einfluss des Hintergrund-
modells, wobei fur den Fall = 0 die Relevanz des Hintergrundmodells zu Null gesetzt wird
und die Bayes’sche Adaption in diéL-Parameterschatzung desl-Algorithmus Gbergenht.

Theoretisch ist es mdglich, unterschiedliche Relevartafak fur die Adaption von Mo-
dellparameternd ., pi m, i) zU nutzen. Jedoch haben experimentelle Untersuchungen
keine signifikanten Vorteile gezeigt, und daher werden diehfolgenden Experimente je-
weils mit einem flr alle Parameter gultigen Relevanzfaltmchgefuhrt.

Da der Einsatz in der vernetzten Hausumgebung den ZweckiéaiBenutzer nahezu in
Echtzeit zu erkennen, um ihm bei seinen taglichen Arbeiteargerstitzen, muss bei dem
Verfahren zur Sprecheridentifikation der Aspekt der edtitdggen Verarbeitung von Da-
tenstromen betrachtet werden. Die Sprecheridentifikatisibystemkomponente tragt nicht
zur Latenz des Systems bei, da lediglich fur jeden Merkneki®r dieLikelihoodder Spre-
cher nach Gl. 4.43 berechnet werden muss. Dies fuihrt nicairer Verzégerung, jedoch zu
einer hohen Rechenlast, falls eine grol3e Personengrwgppeett ist. Eine Option zur Verrin-
gerung der Rechenlast ist die Reduktion der Anzahl der haeten Exponentialfunktionen,
indem nur die Verteilungen der Gaul3’'schen Mischungsvargider Sprecher berechnet
werden, bei denen digkelihooddes Hintergrundmodells einen minimalen Wert tberschrei-
tet.

An dieser Stelle wird nicht auf die Detektion von Person@mgegangen, die nicht in der
Gruppe der bekannten Sprecher enthalten sind. Da das Siysteaernetzten Haus zur Un-
terstitzung der Hausbewohner verwendet werden soll,eshdnahme gerechtfertigt, dass
alle Personen im Haushalt bekannt sind und dass deren Amizaéhlsonderlich grof3 ist. Ein
Ansatzpunkt fur eine solche Detektion ist die EinfUhrungesi Grenzwertes fur die Summe
der LikelihoodVerhaltnisse in Gl. 4.43. Uberschreitet keine der Spredgfmothesen einen
festgesetzten Schwellwert, so wird angenommen, dass decl8y nicht aus der Gruppe
der bekannten Sprecher stammt. Dieser Ansatz ermogliet&Ertkennung von unbekannten
Sprechern und reduziert die Anzahl der falsch klassifere®Rersonen, jedoch zu Lasten
einer neuen Fehlerart, der falschlich zurtickgewieseneec8pr.

4.3.2 Gemeinsame Sprecherwechseldetektion und Identifikan

In den vorherigen Kapiteln wurde beschrieben, wie zun&eihst Sprecherwechseldetektion
und anschlieRend eine Sprecheridentifikation durchgefwgmden kann. Dieses sequentielle
Vorgehen hat den Nachteil, dass die zun&chst in der Segenemgi getroffenen ,frihen” Ent-
scheidungen nur auf einem Teil der vorhandenen Informatid@eruhen. Denn die Sprecher-
identitat ist zum Zeitpunkt der Sprecherwechseldetektioch nicht bekannt. Daher wurde
die Idee entwickelt, die Identifikation und die Segmentigrparallel durchzufiihren. Somit
kann das Treffen von vorlaufigen Entscheidungen vermiedereine endgultige Entschei-
dung unter Verwendung aller Wissensquellen getroffen aerdo dass alle vorhandenen
Informationen mit in die finale Entscheidung einflie3en. Bi@ detaillierte Beschreibung
des Ansatzes wird die Defintion desdden Markov Model®endtigt, welche entsprechend
[Rab89] im Folgenden gegeben wird.
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Hidden Markov Model

Ein Hidden Markov Modeist ein stochastisches Modell fiir ein System, welches deioh
diskrete Markov-Kette erster Ordnung beschreibbar iss. ladell besteht aus einer Menge
vonZ Zustanden, von denen einer der aktuelle Zustand ist, in dgndas System befindet.
In gleichmaldigen Zeitabstanden wechselt das System vemefiustand in einen anderen,
wobei der Folgezustand auch der vorherige Zustand sein gayinAbb. 4.9). Diese Zu-
standsibergange werden probabilistisch durch die Transwahrscheinlichkeiten

ay = POK) = jIQk - 1) =i)  1<ij<T (4.55)

beschrieben, wobét (k) der aktuelle Zustand des Systems zum Zeitpunkhd Q(k — 1)
der vorherige Zustand des System sein soll. Die Wahrsablekdit, dass sich das System
zum Startzeitpunkt im Zustandefindet, ist mit

m=PQ0)=14) 1<i<T (4.56)

gegeben. Der aktuelle Zustand des Systems ist nicht diexdidchtbar (enghidden, je-
doch emittiert das System zu regelméaRigen Zeitpunkteie beobachtbaren Merkmalsvek-
torenxz (k). Des Weiteren werden die Verteilungsdichtefunktioneriche die Emissions-
wahrscheinlichkeiten der Zustande beschreiben, als pékemausgesetzt. Somit sind die
Emissionswahrscheinlichkeiten der Zustande mit

bi(x(k)) = ple(k)[Q=1) 1<i<T (4.57)

bekannt. Das System ist vollstandig durch die Wahrsclatikéiten aus Gl. 4.55, Gl. 4.56
und GI. 4.57 beschrieben, wobei diese Wahrscheinlichkdigifig in vektorieller Schreib-
weise zusammengefasst werden. Die Transitionswahrsindi@iten bilden dabei die Tran-
sistionsmatrix

A=(ay) 1<ij<T. (4.58)

Ferner werden die Verteilungsdichtefunktionen der Eraissivahrscheinlichkeiten iB und
die Anfangswahrscheinlichkeiten der Zustande in dem \fektousammengefasst. Das Mo-
dell desHMM kann folglich kurz mit( A, B, ) angegeben werden.

Sprecherprotokollierung mittels einesHidden Markov Models

Kern der Sprecherprotokollierung ist difidden Markov Modetur Modellierung der Spre-
cher, deren Zustandsuibergange abhangig von InformatidimenSprecherwechsel und da-
mit zeitvariant sind. Um der Anforderung nach einer germbatenz nachzukommen, wird
ein Viterbi-Dekodierer mit vorzeitiger Ausgabe der Erkangsergebnisse (ein sdgartial
Traceback verwendet, der die optimale Abfolge der ZustandéHMM, gegeben die Beob-
achtungen, bestimmt.

Jeder defZ Sprecher wird durch einen Zustand in diesdidden Markov Modelepra-
sentiert. Zusatzlich wird ein Zustado+- 1 fur Stille eingefugt, um Sprachpausen zu model-
lieren. Abbildung 4.9 zeigt ein Beispiel fir = 3 Sprecher. Die Emissionswahrscheinlich-
keiten der Zustande sind durch digelihoodsder Sprecheridentifikation gegeben. Informa-
tionen Uber mogliche Sprecherwechsel flie3en in die Transivahrscheinlichkeiten des
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ap 30

Abbildung 4.9: Hidden Markov Modetur Modellierung einer Sprechergruppe

HMM ein. Zustandstibergénge, die einen Sprecherwechsel anzeidhalten eine erhdhte
Wahrscheinlichkeit, falls Informationen Uber einen mélgén Sprecherwechsel vorliegen.
Gleichzeitig werden die Wahrscheinlichkeiten der Zussaiheérgange reduziert, die wieder
in den aktuellen Zustand fuhren. Ist ein Sprecherwechsl@hwahrscheinlich, so erhalten
die Zustandsibergange, die einen Sprecherwechsel anzeigdrigere Wahrscheinlichkei-
ten und die restlichen Zustandsiibergange hohere Wahnéich&eiten. Somit entsteht eine
zeitveranderliche Transitionsmatrix, welche den akareWissensstand Uber Sprecherwech-
sel reprasentiert.

Informationsquellen

Die Schatzung der Transitionswahrscheinlichkeiten saflllaformationen tber Sprecher-
wechselhypothesen basieren. Hierzu konnen die akustiga$idonsschatzung und die be-
rechnetem\BIC-Werte verwendet werden. In Abb. 4.10 ist eine UbersichtSjestemkom-

c
~ Winkel— " - 25
(_) schatzung [ Positionsschatzungf— ko g
Z g3
2 H[ Sprecherbewertungj—» S 2
(O] cQ
() %
£ H[Sprachaktivitatsdetekt@cu—» 55
;94 Adapti Merkmal § :
~ aptive erkmals Bayes’'sches S
= Strahlformung [ Informa%ionskriterium] A ~

Abbildung 4.10: Systemkomponenten der Sprecherprotokollierung

ponenten flr die Sprecherprotokollierung gegeben. DasuVidel Sprecherprotokollierung
implementiert einen Viterbi-Dekodierer, der die beredkné/Nerte des Bayes’schen Infor-
mationskriteriums ABIC-Werte) und die Werte der Positionsschatzung verwendeijiem
Transitionsmatrix deBIMM zu schatzen. Fur die EmissionswahrscheinlichkeiterHiés
werden im Viterbi-Dekodierer die Werte der Sprachaktigidi@tektion und di¢ikelihoods
der Sprecheridentifikation kombiniert, welche im Modul ;8gherbewertung“ berechnet
werden. Hierzu wird jede Informationsquelle, soweit noathhgeschehen, probabilistisch
modelliert.
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Das in Kap. 4.3.1 vorgestellte Verfahren zur Detektion vameSherwechseln berech-
net fortlaufendABIC-Werte aus den eingehenden Merkmalsvektoren. Die BergcHan
metrischen Entscheidungsregel zur Sprecherwechsetatetest mit einer zusatzlichen zeit-
lichen Latenz behaftet, da signifikante lokale Maxima diétekwerden mussen. Folglich
wird zur probabilistischen Modellierung von Informationgber Sprecherwechsel, statt der
metrischen Entscheidungsregel, die Varianz A&IC-Werte verwendet. Diese mif(k)
bezeichnete Grof3e kann mit

uo(k) =
xbic(k)

a- Pk — 1)+ (1 —a) - ABIC(k) (4.59)
B2k — 1)+ (1= 8) - [ABIC(k) — pP(k)]? (4.60)

geschatzt werden. Vorteilhaft bei diesem Ansatz ist dianedung von Latenzen durch
die rekursive Schatzung der Varianz. Fur die Modellierursgden die Parameter der Nor-
malverteilungem(z°(k)|c(k) = 0) undp(z®°(k)|c(k) = 1) aus Trainingsdaten geschatzt.
Hierbei istc(k) eine bindre Zufallsvariable, welche angibt, ob ein Spregbehsel vorliegt
(c(k) = 1) oder nicht ¢(k) = 0).

Der FSB als adaptiver Strahlformer, adaptiert blind auf den &k Sprecher und er-
maoglicht durch die Korrelation der Filterimpulsantwortdie Schétzung des Einfallswinkels
des Sprachsignals (vgl. Kap. 4.2.2). Fiur den Fall, dass @steine Mikrophongruppe zur
Verflgung steht, kdnnen die Winkelschatzungen zu eineitiBod? (k) in kartesischen Ko-
ordinaten kombiniert werden (vgl. Kap. 4.2.3). Als Indiz fiildgliche Sprecherwechsel wird
die VarianzzP°%(k) der Position berechnet, welche entweder auf Winkelschéeu oder
zweidimensionalen Positonsschéatzungen beruht. Ernedtanr Vermeidung von Latenzen
eine rekursive Schatzung verwendet:

pP(k) = o Pk — 1) + (1 — a)- || P(k) — P(k —1) ||, (4.61)
PS(k) = B 2Pk — 1) + (1= B) - [P(k) — pP(k)]". (4.62)

Entsprechend des Ansatzes zur Modellierung ABIC-Werte wurden aus Trainingsdaten
die Parameter der Normalverteilungefx"°5(k)|c(k) = 0) und p(zP*(k)|c(k) = 1) ge-
schatzt.

Informationen Uber die mdgliche Identitat des Sprechensiare durch die Sprecherbe-
wertung ermittelt. Fir jeden akustischen Merkmalsveldt®(k) wird dasLikelihood-Ver-
haltnis der einzelnen Sprechermodelle nach Gl. 4.42 als&aniswahrscheinlichkeit der zu
den Sprechern gehdrenddiviM-Zustande berechnet.

Eine weitere Informationsquelle ist die Sprachaktivi@&tektion. Hierzu wird das Verfah-
ren aus denkxtended Advanced Front-end Feature Extraci8FE) desETSI[ETS02]
verwendet. Die Steuerung der Adaption des Strahlformdmdgérjedoch mit einer ener-
giebasierten Sprachaktivitatsdetektionen (e¥igice Activity DetectiofVAD) nach [RS04].
Beide Sprachaktivitatsdetektionen liefern einen Indikat(Sx*Y) fir Sprache, dessen Wert
zwischen) (Keine Sprache) untl (Sprache) liegt.

Emissionswahrscheinlichkeiten

Die Emissionswahrscheinlichkeiten jedes Sprechers sgefgen durch dieikelihood Ver-
haltnisse aus Gl. 4.42, deren zugrunde liegende Dichtéfurdn auf Sprachdaten ohne
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Sprachpausen fur die Sprecheridentifikation trainiertd@ar Jedoch treten in dem Daten-
strom der Sprecherprotokollierung Zeitabschnitte ohma8ye auf, so dass daikelihood
Verhéltnis mit der Wahrscheinlichkeit, dass der vorliedgeBlock Sprache enthalt, multipli-
ziert werden muss. Somit folgt fur die Emissionswahrsdiaikeit des Sprecherzustandes
Q(k) = j zum Zeitpunkik:

bi(@™(k)) = o/ (k)| = j)
:{ Ma™(k)j0 = j)-P(Ss9(k) o j=1...T
AMa(k)|Q = j) - (- P(Sa)(k)) " j=T+1

Fur die Emissionswahrscheinlichkeit des Zustandes Stilid der Mittelwert derLikeli-
hoodVerhéaltnisse verwendet:

(4.63)

T
AxSYE)Q =T + 1) Z xS9(k)|Q = 7). (4.64)

l\] |

Transitionswahrscheinlichkeiten

Die Grundidee des Verfahrens ist es, die Wahrscheinlitldiees Zustandsibergangs ab-
hangig von den Informationen Uber die Positions&nderumgseSprechers und der Varianz
der ABIC-Werte zu machen. Unter Verwendung der binaren Zufallatdei (k) und den zu-
vor vorgestellten probabilistischen Modellierungen dereégherwechselinformationen folgt
fur die Transitionswahrscheinlichkeiten, dass sie propoal zuP (c(k)|z¢(k), zP°5(k)) ge-
wahlt werden. Es wird ferner die Annahme getroffen, de¥§k) und zP°(k) statistisch
unabhangig sind, so dass gilt:

()| 2Pk, 2D(k)) — PR 2 ()l e(k) Ple(k)

) ) (469
_ (k) [c(k)) P(c(k)) p(a”(k)|c(k)) P(c(k) 1
D) sk PRy
Unter der Annahme einer gleichférmigen Verteilung voft (%)) folgt:
P(C(k:)|xpos(k),xbic(k)) _ p(aP%(k)|e(k)) p(x blc(k|)|c(k)) 1 (4.67)

2 p(aPk)|e(k) = ) Zp(xb'c(k) c(k) = ) P(c(k))

Die zeitveranderlichen Ubergangswahrscheinlichkeitészhen deriMM-Zustanden wer-
den definiert zu:

s (k) = P (k) = j|0(k — 1) = ) (4.69)
_ Zaa (’f()k) (4.69)
mit
e BT
- P(c(k) = 1]|xP(k), x™'° w1 F G4 FT+1
@ (k) = P(e(k) = 0]a™ (k) fr (2000 (470
P(c(k) = 1|2™(k)) i#4,j=T+1
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Der Zustand Stille ben6étigt, wie aus Gl. 4.70 ersichtlidh éne spezielle Anpassung, da
fur den Fall von Stille offensichtlich keine Positionsstzuing vorliegen kann. Jedoch wird
der Ubergang von einem Sprecher zu einer Sprachpause urekehrtjals Sprecherwechsel
durch denABIC-Wert angezeigt.

Die Sprecheridentifikation aus Kap. 4.3.1 bietet die Mddt&it, eine Bestimmung des
Geschlechts des aktuellen Sprechers durchzufuhren, ideeloikelihoodsder geschlechts-
spezifischen Hintergrundmodelle ermittelt werden. DigtiBe®ung des Sprechergeschlechts
erwies sich in Experimenten als sehr zuverlassig, jedodett tlie Verwendung dieser Infor-
mation zur Berechnung der Transitionswahrscheinliclekaiur zu geringflgig besseren Er-
gebnissen. Ein Grund durfte in der Tatsache liegen, dasgedhiselungen zwischen mann-
lichen und weiblichen Sprechermodellen nur selten agftret

Viterbi-Dekodierer

Entfaltet man das Zustandsmodell aus Abb. 4.9 Uber diegtedntsteht ein Trellisdiagramm
(vgl. Abb. 4.11). Ein Viterbi-Dekodierer bestimmt dann dexstbewertesten Pfad durch das
Trellis, d. h. die Zustandssequefiz, y = (1), .. .,Q(N)] mit

N

Qv = argmax{ 3 [log P (@%9(k)|Q) + klog P(QK)[Q(k — 1))] } (4.71)

QI:N k=1

Aus der Literatur ist bekannt, dass Bedingungen hinsdinttier minimal erlaubten Zeit
zwischen Sprecherwechseln und heuristische Ansatze AtiuG¢ bendtigt werden, um das
exzessive Wechseln von Zustédnden zu vermeiden [TRO6]. K2ies gerechtfertigt werden
durch die Annahme, dass selbst eine kurze Sprachaul3ersingedmeren Merkmalsvektoren
besteht, die im Abstand var) ms aus dem Sprachsignal berechnet werden. In dem hier vor-
gestellten Ansatz werden durch den Faktan Gl. 4.71 die Emissionswahrscheinlichkeiten
gegeniber den Transitionswahrscheinlichkeiten star&etaptet, was zu einer Verminde-
rung der Zustandswechsel fuhrt.

T k
Sprecher1 | o—=a o——90 rac?bac .
A N’ - |
PN |
Sprecher2 | oo to——o : o} .
|
|
Sprecher 3 | [ SN : o -
|
|
Stlle [ oo ----- o ‘ o A
Detektion | gtjlle Sprecher 3 Sprecher3  Stille 1
k=0 k=1 ... k=20 k=21 k=22 k=0

Abbildung 4.11: Beispiel eines Trellisdiagramms und der Ausgabe des \ieexodierers
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Um den zeitlichen Anforderungen des Systems gerecht zuemewmdird zu jedem Zeit-
punkt einPartial Tracebackgestartet. Hierbei wird ausgehend von jedem Zustand der Pfa
zurtickverfolgt, der in dem Zustand endete. Der Teil der &facelcher fur alle Zustande
gleich ist, bestimmt den eindeutigen Zustandsverlauf midegangenheit. In Abb. 4.11 ist
ein Beispiel fur dagartial Tracebackgegeben. Zum Zeitpunkt = 22 wird fur die vier
Zustande der jeweilige Pfad Uber die vorangegangenen iestiestimmt. Beginnend mit
dem Zeitpunktt = 21 ergibt sich fir alle Zustande ein eindeutiger Pfad (vgl. Abl.1,
roter Pfad). Folglich kann der rot markierte Pfad ausgeg&mrden.

Die Anzahl der Zeitschritte, die man in die Vergangenheltegemuss, bis der Pfad ein-
deutig ist, ist zufallig. Daher wird eine maximale Latenz,eingefuhrt, ab der eine Ausgabe
des Pfades erzwungen wird. Sollte kein eindeutiger Pfastiexen und gleichzeitig die ma-
ximale noch tolerierbare Latenz.y Uberschritten werden, so wird der am besten bewertete
Pfad gewahlt. Experimentelle Untersuchungen zeigen, idassem Grol3teil der Falle der
eindeutige Pfad frihzeitig vorliegt (vgl. Kap. 4.4.6).

Zunachst wurde die Information Gber Sprecherpositionenveawendet, um Sprecher-
wechsel zu detektieren. Man beachte, dass mit dem Ergebniiterbi-Dekodierung eine
Zuordnung der Positionsschatzungen zu den Sprecherrandafiolgen kann. Dies ermdég-
licht fur jeden Sprecher eine individuelle Nachfilterung @®sitionsschatzungen, welche
durch die Verwendung von Kalman- oder Partikelfiltern i@alht werden kann [WPHO04].

4.3.3 Experimentelle Ergebnisse

Ein System zur Sprecherprotokollierung setzt sich aushedenen Komponenten zusam-
men, die sich gegenseitig in ihrer Leistungsfahigkeit biessen. Eine fehlerhafte Segmen-
tierung des Datenstroms wird zwangslaufig auch zu FehledeinSprecheridentifikation
fuhren. Daher werden zunéchst die Komponenten einzeln peiixenten untersucht und
anschliel3end der Gesamtaufbau betrachtet. Die hierfiatiggen Fehlermalie und Datenba-
sen werden zu Beginn erlautert.

FehlermalRe

Eine objektive Beurteilung der Segmentierung von Dateorddrt zunéchst ein Fehlermals,
welches unabhangig von der Leistungsfahigkeit der nacihgdteten Klassifikation ist. Hier-
fur geeignet sind die in [DWO0O0] eingefuhrten FehlermalReFddse Alarm RatéFAR) mit

Anzahl fehlerhafter Alarme

FAR = . 4.72
Anzahl SegmentierungspunktéAnzahl fehlerhafter AIarmZ0 ( )
und derMissed Detection Rat@DR) mit
MDR — Anzahl verpasstgr Detektionfr? (4.73)
Anzahl Segmentierungspun te

Die Abb. 4.12 zeigt beispielhaft die Fehlerarten bei demSagfierung. Zu den Zeitpunk-
ten2s, 7s und 10s findet ein Sprecherwechsel in den Aufnahmen statt. Angenetgden
Sprecherwechsel durch dleBIC-Werte zu den Zeitpunkten?2s, 4s, 5,5s und9,8 s. Griine
und rote Flachen um die Zeitpunkte der Sprecherwechsetzealg erlaubten Toleranzbe-
reiche fur die Detektion der Segmentierungspunkte an. Egntntierungspunkt wird als
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Abbildung 4.12: Fehlerarten bei der Segmentierung von Audiodaten

verpasst eingestuft, falls in einem Bereich vf,4s um den Segmentierungspunkt kein
Sprecherwechsel durch das System angezeigt wird (vgl. AR, Zeitpunkt7 s). Fehler-
hafte Alarme sind alle vom System gemeldeten Sprechengeamsleren zeitlicher Um-
gebung 0,4 s) keine Sprecherwechsel (vgl. Abb. 4.12, Zeitpunkie; 5,5s) vorliegen.
Der Vergleich zwischen zwei Verfahren zur Segmentierurtgaad eineiReceiver Opera-
ting Characteristic(ROC) kann durch digequal Error Rate(EER erfolgen, welche durch
den Punkt auf deROC, an der digFARund dieMDR lbereinstimmen, definiert ist.

Ein Fehlermal fir die Beurteilung der Klassifikationslaigt durch eine der Segmentie-
rung nachgeschalteten Sprecheridentifikation isDdaization Error Rate(DER) mit

Anzahl der einem Sprecher fehlerhaft zugeordneten Meﬂvelaﬂorer&/
(i

Anzahl Merkmalsvektoren
welche durctNIST[NIS08a] definiert wurde. Sie ist ein Mal3 fur die Leistundpfgkeit des

Segmentierungs- und Identifikationsprozesses, der zusagefasst als Sprecherprotokol-
lierung bezeichnet wird.

DER= (4.74)

Datenbasis Sprecherprotokollierung

Das zuvor beschriebene Verfahren zur gemeinsamen Spvestieseldetektion und Spre-
cheridentifikation stellt hdhere Anforderungen an eineelDbasis als einige klassische An-
satze zur Sprecherprotokollierung. Die Datenbasis DIBRPA EARS Rich Transcription
Evaluation ProjectgNIS08b] kann zum Beispiel nicht verwendet werden, da bei Aef-
nahmen keine Mikrophongruppen verwendet wurden, welche Bositionsschétzung des
Sprechers erlauben wirden. Die Datenbasis@el. Projektes bietet theoretisch mit den
verwendeten Mikrophongruppen die Mdglichkeit eine Posgischatzung durchzufiihren
[OSBCO06]. Jedoch sind die Aufnahmen aus den Seminaren igmgteda zu einem grof3en
Teil nur ein Sprecher aktiv ist und insgesamt nur eine geriugzahl von Sprecherwechseln
vorhanden ist. Daher wurde fir die experimentellen Untgrangen eine eigene Datenbasis
erstellt, um gezielt die Komponente des Systems zu unteeswuc

In Abb. 4.13 ist der Aufbau zur Erstellung einer Datenbakizzert. Sie umfasst insge-
samtl,5 Stunden gelesene Texte vbrirrauen unds Mannern. Dabei wurden die Sprecher
sowohl durch eine Mikrophongruppe 18 m Abstand als auch durch Nahbereichsmikro-
phone aufgenommen. Zwischen den Sprechern befand sichselvadldampfende Wand,
so dass die Nahbereichsmikrophone nur einen geringenlAlgeiSprache des entfernten
Sprechers aufnehmen konnten. In einem Nachbearbeitungssarden die Nahbereichs-
aufnahmen einer adaptiven Filterung unterzogen, um ddaratén Sprecher zuséatzlich zu
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Abbildung 4.13: Versuchsaufbau zur Erstellung einer Datenbasis zur Spreelchseldetektion

unterdricken. Basierend auf den bearbeiteten Nahbeegeittshmen war eine zuverlassi-
ge automatische Detektion des aktiven Sprechers und soreift@notation der Datenbasis
maoglich.

Die Texte wurden durch Sprecher abwechselnd abschnitsvgelesen, wobei die Lan-
ge der Passagen vorgegeben wurde. Anschliel3end wurde thalaais in drei Gruppen
entsprechend der mittleren Passagenlangen eingetaf vziren schnelle Sprecherwechsel
(< 2s), mittlere Sprecherwechseél ¢ 4 s) und langsame Sprecherwechsel4s), die ohne
langere Sprechpausen durchgefihrt wurden.

Datenbasis Sprecheridentifikation

Die ,CHIL Campaign 2004 - Speaker Identification and Verificdtidas CHIL Projektes
stellt eine Datenbasis fur die Evaluierung von SystemenSprecheridentifikation bereit
[SSMO5]. Sie besteht aus annotierten Seminaraufnahmenl v@prechern, die parallel
jeweils mit einem entfernten (endDistant Talking MicrophoneDTM) und einem nahen
Mikrophon (engl.Close Talking MicrophoneCTM) aufgenommen wurden. Der Vergleich
mit den veroffentlichten Ergebnisse der Evaluierung in §di8] und [ZLB"05] ermdglichen
einen Einordnung des in dieser Arbeit beschriebenen SgstenSprecheridentifikation.

Die Daten der Datenbasis sind niit Bit pro Abtastwert bei einer Abtastrate vo6kHz
gespeichert. In den Aufnahmen sind Hintergrundgerausebden Seminaren, wie z. B. der
Lufter eines Projektors, vorhanden. Eine Segmentierun@deen in homogene Abschnitte
definierter Lange

e Training @3 min): 30s, 60s

e Test(1h):1s,3s,5s,10s,30s,60s
und eine Sortierung nach Fern- und NahbereichsaufnahmestevdurchELDA [ELDO8]
vorgenommen.
Experimente zur Segmentierung

Die Ergebnisse in diesem Unterkapitel fassen die Expetieniem Bereich der Segmentie-
rung von Sprachdaten durckBIC-Werte zusammen. Zunachst wird ein Vergleich der Seg-
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mentierungsleistung fir verschiedene Merkmalsvektorash enstergréfRen durchgefthrt.
Aus Abb. 4.14 (a) ist ersichtlich, dass ditel-Frequency Cepstral Coefficier{td FCC) und

die Linear Prediction Cepstral Coefficienft PCC) vergleichbare Ergebnisse fir die Seg-
mentierung liefern. Die Kombination der beiden Merkmaldweeen verbessert die Ergebnis-
se leicht, jedoch fuhrt dieser Ansatz zu einer erheblichd®Eung der Systemlast und wird
daher nicht weiter verfolgt. Der Vergleich unterschieldéc FenstergroRen in Abb. 4.14 (b)
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Abbildung 4.14: Experimente mit Nahbereichsmikrophonen zur Merkmalswskdhl und Fenster-
gréiRe

zeigt eine optimale Fenstergrof3e im Sinne der kleinEERvon ca.80 Merkmalsvektoren
fur die verwendete Datenbasis. Dies entspricht einer lzadench die Segmentierung van
Merkmalsvektoren320 ms).

In Abb. 4.15 ist der Vergleich der Segmentierungsergebragsschen Fernfeldmikropho-
nen OTM) und Nahbereichsmikrophone@TM) dargestellt. Der experimentelle Aufbau ist
in Abb. 4.13 (S. 41) dargestellt und bestand aus einer limegeordneten Mikrophongruppe
aus6 Fernfeldmikrophonen im Abstand vén05 m mit einer Distanz von c&,8 m zu den
Sprechern.

Die aus der Distanz zwischen Sprechern und Mikrophonettig®inde Verschlechterung
der Signalqualitat durch Echos und Rauschen flhrt zu eir@sHting delEERum ca.7,0
Prozentpunkte gegentber den Ergebnissen der Nahbergicbghone (vgl. CTM, Wie-
ner‘und ,DTM 1 Kanal®). Die Verwendung eines Wiener-Filter®&(M 1 Kanal, Wiener®)
oder einer akustischen Strahlformun®{M 6 Kanal,FSB') verbessert die€ERgegeniber
den einkanaligen Ergebnissen und erreicht fast die Ergsmnit Nahbereichsmikrophonen.
Jedoch erst die Einbeziehung von Positionsdaten (vgl. &&p1) ermdglicht eine signifi-
kante Reduktion deEERauf ca.13,8 % (,DTM 6 Kanal, Winkel“). Dieser Ansatz fihrt eine
Nachfilterung der angezeigten Sprecherwechsel anhanddeioRsschatzungen durch und
Ubertrifft auf diese Weise deutlich die Ergebnisse der atilchsmikrophone.

Experimente zur Sprecheridentifikation

Die Tabellen 4.2 und 4.3 fassen die Ergebnisse der vor@fest@precheridentifikation fur
die CHIL Datenbasis zusammen. Sie ermdglichen den Vergleich dssifilationsraten fur
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Abbildung 4.15: Vergleich der Segmentierungsergebnisse von Fernfeldpiionen DTM) und
Nahbereichsmikrophone€{T M)

Nahbereichsaufnahmen und Aufnahmen aus gréf3eren Distéinzanterschiedliche Trai-

ningsdatensatze und Datenmengen. Angemerkt sei dabeidaa&ntfernten Aufnahmen
nicht einer akustischen Strahlformung unterzogen werdemén, da es sich um einkanali-
ge Aufnahmen handelt.

Test Klassifikationsrate@TM) [%]
Training s | 5s | 10s | 30s | 60s
CTM30s 67,88 | 93,27 | 96,92 | 100,00 | 100,00
CTM60s 69,43 | 93,36 | 97,48 | 100,00 | 100,00
DTM 30s 62,42 | 88,45 | 94,27 | 98,27 | 98,18
DTM60s 61,06 | 86,91 | 92,59 | 96,10 98,18

CTM90s & DTM 90s | 66,35 | 91,76 | 97,37 | 100,00 | 100,00 |

Tabelle 4.2:CHIL Datenbasis: Identifikation von Sprechern mit Nahbereickisphonen CTM)

In Tab. 4.2 sind die Klassifikationsraten flir Nahbereicfisalimen fir ein Training mit
wahlweise entfernten oder lokalen Mikrophondaten aufgefiZzum Vergleich sind in Tab.
4.3 die Klassifikationsraten fur entfernte Mikrophondaagegeben. Diese Aufnahmen sind
fur die beabsichtigte Anwendung aussagekraftiger als dikbdreichsaufnahmen, da im
Rahmen dieser Arbeit innerhalb der akustischen Szenersanalr mit entfernten Mikro-
phongruppen gearbeitet wird.

Die Steigerung der Trainingsdatenmenge 801 auf60 s reduziert die mittlere Fehlerra-
te bei gleichen Trainings- und Testbedingungen. Bei uatéesllichen Trainings- und Test-
bedingungen sind die Ergebnisse nicht einheitlich. EingN#erung der Trainingsmenge
(DTM) fur die Klassifikation der Nahbereichsaufnahm@T ) verschlechtert die Ergeb-
nisse geringfigig. Im Gegensatz dazu fuhrt eine Vergrafieder TrainingsmengeC{T M)
zu einer signifikanten Verbesserung der Klassifikatioesraon entfernten Mikrophonsi-
gnalen DTM). Die jeweils letzte Zeile der Tabellen 4.2 und 4.3 zeigtgigebnisse fur ein
Multi-Condition-Training, bei dem die gesamten Nah- und Fernbereichsadatemem Trai-
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Test Klassifikationsrate[@TM) [%]
Training s | 5s | 10s | 30s | 60s
CTM30s 48,09 | 81,09 | 87,65 | 91,82 90,91
CTM60s 49,00 | 87,54 | 96,47 | 100,00 | 100,00
DTM 30s 46,73 | 86,36 | 95,29 | 100,00 | 100,00
DTM60s 47,45 | 88,12 | 95,29 | 99,09 | 100,00

| CTM90s & DTM 90s | 50,18 | 87,34 [ 96,6 | 100,00 | 100,00 ]

Tabelle 4.3:CHIL Datenbasis: Identifikation von Sprechern mit Fernfeldaykronen DTM)

ningsdatensatz zusammengefasst werden. Diese Kombiretiwglicht gute Erkennungs-
ergebnisse flr beide Testdatensétze, da sie sowohl di@kteastiken der Nahbereichsmi-
krophone als auch der Fernfeldmikrophone trainiert.

Nachdem die Systemkomponenten der Segmentierung und aEat@pidentifikation ein-
zeln validiert wurden, wird als né&chstes die Fusion von Maalen zur Sprecheridentifika-
tion in einigen Experimenten untersucht, bevor die Sprgbéokollierung naher betrachtet
wird.

Experimente zur Gewichtung von Merkmalen

Die Fusion von Merkmalsvektoren oder derekelihoodserméglicht eine Reduktion der
Fehlerrate bei der Sprecheridentifikation, wie in [KHFO04kgigt wurde. Hierzu wird der
Merkmalsvektoers in die drei Komponenten

1. z59(k): MFCC-Merkmalsvektor undACV-Wert
2. 59 (k): 1. Ableitung deMFCC- und MACV-Werte
3. %9, ,,(k): 2. Ableitung detMFCC- und MACV-Werte

aufgeteilt. Diese Aufteilung ist méglich, da diagonale Kganzmatrizen im Verlauf des
Trainings geschéatzt werden. Experimentell soll eine Getuiog der dreLikelihoodWerte
(engl.score level fusiopuntereinander mit

log A (29(k)|Q = i) =1-log A (z3§(k)|Q = i) + Yeera- log A (zXG; (k)| = 1)
+Yace - log A (3%, ()| = 7) (4.75)

vorgenommen werden. Je grof3er die Wettg, und~,.c werden, desto weniger werden die
LikelihoodWerte deMFCC bertcksichtigt. Umgekehrt bedeuten die Extremwejte, =
~vacc = 0, dass die Ableitungen vernachlassigt werden.

In Abb. 4.16 sind die experimentellen Ergebnisse fur dieeSiperwechselraten (schnell,
mittel, langsam) und dem Mittelwert Uber alle Sprechergetiaten angegeben. Deutlich
erkennbar ist der Anstieg der Fehlerraten fir alle Spreobehnselraten bei Vernachlassigung
der Ableitungen. Dieser ist umso ausgepragter, je kleiigaalarchschnittliche Segmentdauer
ist. Der Mittelwert aller Segmentdauern zeigt ein schwaabgepragtes Minimum fir die
Gewichtungygeira &~ 2 Undvac &~ 2. Somit kann experimentell gezeigt werden, dass die
zeitlichen Ableitungen der Merkmalsvektoren einen erggtdnden Beitrag zur Reduktion
der Fehlerrate leisten.
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Abbildung 4.16: Vergleich der Fehlerraten fur unterschiedliche Gewicgamder Merkmalsvektor-
komponenten

Sprecherprotokollierung

Der in Kap. 4.3.2 vorgestellte Ansatz zur Sprecherprotfakoing fuhrt eine gleichzeitige
Segmentierung und Identifikation von Sprechern in einenestom durch. Um die Leis-
tungsfahigkeit des Ansatzes zu zeigen, werden zunachst®ee mit zwei Standardverfah-
ren (,Gleitendes Fenster” und ,Segmentierung ti2IC*) durchgeflhrt.

In Abb. 4.17 (a) sind die Ergebnisse fur die Verwendung eiies den Datenstrom glei-
tenden Fensters konstanter Lange (eslglling window gegeben. Hierbei wird ein Fenster
von Merkmalsvektoren aus dem Datenstrom betrachtet undialerscheinlichste Sprecher
ermittelt. Obwohl keine Informationen tber Sprecherwetlesler Sprecherpositionen ver-
wendet werden, kdnnen mit diesem Verfahren brauchbarebbigge erzielt werden. Deut-
lich zu erkennen ist, dass bei steigender FenstergroRelzsindie Fehlerrate sinkt und je-
weils abh&ngig von der Sprecherwechselrate anschlielBienigmsteigt. Es existiert kein ge-
meinsames Minimum fur die unterschiedlichen Sprecheraachten, da ein grol3eres Fens-
ter zwar eine sicherere Entscheidung des Sprechers eahtjgédoch bei einer schnellen
Abfolge der Sprecherwechsel mehrere Sprecher in einentdfermshanden sein konnen und
dadurch mehr Fehlentscheidungen entstehen. Aus diesend @erden im Folgenden im-
mer die Mittelwerte der FehlerrateDER) fur alle Sprachsegmentdauern als Vergleichskri-
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Abbildung 4.17: Ergebnisse der Sprecherprotokollierung durch ein gld@gsnFenster und eine
ABIC-Segmentierung

terium verwendet. Die optimalen Parameter ergeben siathdilaets Minimum der mittleren
Fehlerrate.

Im zweiten Verfahren werden die Informationen der Spresbehseldetektion aus der
Berechnung deABIC-Werte verwendet, um eine Segmentierung des Datenstrorsk-du
zufuihren. AnschlielRend werden die Segmente durch die gnidentifikation einem Spre-
chermodell zugeordnet. DekBIC-Schwellwert\ beeinflusst mafl3geblich die Anzahl der
gefundenen Segmentierungspunkte (vgl. Abb. 4.7, S. 2@)nk&driger Wert von\ fuhrt
zu einer hohen Anzahl von Fehlalarmen und somit zu einertdekslung von homogenen
Sprachsegmenten. Diese falschen Segmentierungspumkierkdurch die Sprecheridentifi-
kation kompensiert werden, falls die Segmentgro3en nichkdein sind. Es ist in Abb. 4.17
(b) zu erkennen, dass mit steigendem Schwellwelie Fehlerrate ansteigt, da eine Vielzahl
von Segmentierungspunkten nicht mehr erkannt werden.

Das vorgestellte Verfahren zur Sprecherprotokollierueigwendet einen Viterbi-Dekodie-
rer mit einemPartial Traceback Entsprechend der Gl. 4.71 (S. 38) des Viterbi-Dekodierers
wird das Verfahren durch den Parameteur Gewichtung der Emissionswahrscheinlichkei-
ten gegenuber den Transitionswahrscheinlichkeiten Basgt. Zusatzlich fuhrt die Begren-
zung der maximalen Latenz,. zu einem Anstieg der Fehlerrate.

In Abb. 4.18 (a) ist der Einfluss der zeitlichen BegrenzungRetial Tracebaclkauf eine
maximale Latenz vom,,., Sekunden bezogen auf die Konstantelargestellt. Es ist er-
kennbar, dass der Gewichtungsfaktound die maximale Latenz,,,, beide signifikant die
Ergebnisse der Klassifikation beeinflussen und dabei vander abhéngig sind. Aus der
Abb. 4.18 (b) kann der Einfluss des Parameteasif die Sprecherprotokollierung abgelesen
werden. Ein gro3er Wert des Parameters ist vorteilhatft ftitere und lange Sprachsegment-
dauern, da ein Verharren in einem Zustand unterstitzt Wiiid.schnelle Sprecherwechsel
jedoch ist eine zu starke Gewichtung nachteilig und fuhréimer Erhéhung der Fehlerrate
durch unterdriickte Sprecherwechsel. Da innerhalb dembates insgesamt mehr Daten fur
langsame und mittlere Sprecherwechsel als fur schnellec8prwechsel vorliegen, wird fur
den minimalen mittleren Fehler einim Bereich des Optimums flr mittlere Sprachsegment-
dauern gewahlt. Dies durfte dem normalen Verlauf eines aebp nahekommen und somit
dem beabsichtigten Anwendungsbereich Rechnung tragen.
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Abbildung 4.18: Sprecherprotokollierung mittels Viterbi-Dekodierer en¥erwendung von Positi-
onsdaten und\BIC-Werten

Segmentdauer DER [%]
Verfahren <2s[3—4s] >4s | Mittelwert
Gleitendes Fenster 29,00 | 15,14 9,10 14,21
ABIC-Segmentierung 28,76 | 13,91 | 7,94 12,98
Viterbi (Position,ABIC, x = 1) 22,62 | 11,52 6,83 10,69
Viterbi (Statischx = 5) 25,53 10,05 5,72 9,66
Viterbi (Position,x = 7) 21,66 9,32 5,69 8,95
Viterbi (ABIC, x = 7) 24,03 | 9.48 | 5,35 9,08
Viterbi (Position,ABIC, x = 7) 22,80 6,80 4,27 7,05
| Perfekte Sprecherwechseldetektipn1,09 [ 4,05 [ 246 | 4,00 |

Tabelle 4.4:Vergleich der Verfahren zur Sprecherprotokollierung amhderDER

In Tab. 4.4 sind die Ergebnisse der Sprecherprotokollgfununterschiedliche Verfahren
gegenubergestellt. Die schlechtesten Ergebnisse edaelverfahren des gleitenden Fens-
ters, da es keine Informationen Uber Sprecherwechsel ikldssifikation oder Segmentie-
rung mit einbezieht. Die Ausnutzung von Segmentierungsigimaus deABIC-Segmen-
tierung verbessert demgegenuber die Ergebnisse. EirbWiDerkodierer mit einer geschétz-
ten Transitionsmatrix aus Positionsdaten uxidIC-Werten Ubertrifft die rein@\BIC-Seg-
mentierung, jedoch fuhrt die fehlende Glattumg=£€ 1) zu Oszillationen zwischen den Zu-
standen, was die Ergebnisse negativ beeinflusst. Zum Mgk ein Viterbi-Dekodierer
mit einer statischen Transitionsmatrix und einem optim&@ewichtungsfaktox untersucht
worden. Dieser Ansatz liefert eine mittlere Fehlerrate ¥66 %, wobei jedoch die Verwen-
dung von Positionsdate®ER 8,95 %) oder SprecherwechselinformationddER 9,08 %)
zur Schétzung der Transitionsmatrix geringere Fehlerrateielen. Kombiniert man alle In-
formationen (PositionABIC, x = 7), so kann eine mittlere Fehlerrate vo5 % erreicht
werden. Als unterste Grenze ist die Fehlerrate fur einesggfSegmentierung angegeben,
welche die Leistungsfahigkeit der Sprecheridentifikatieiyt.
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4.4 Audio-visuelle Sprecherprotokollierung

Das bisher vorgestellte Verfahren zur Sprecherprotakuiiig verwendet ausschliellich In-
formationen, welche aus akustischen Aufnahmen gewonnedenuDa die Sprecherpro-
tokollierung in einem System zur ambienten Kommunikatiennendet werden soll, kann
eine neue Informationsquelle in Form der Videodaten eossidn werden. Im Folgenden soll
zunéachst ein Uberblick Uber das Verfahren zur Gesichtktieteund Identifikation gegeben
werden, bevor die Integration in den Prozess der Spreastekmilierung diskutiert wird.

4.4.1 System zur Gesichtsidentifikation

Aus der Literatur sind eine Reihe von Anséatzen zur Detektiod Identifikation von Ge-
sichtern bekannt [YKAO2]. Je nach Anwendungsgebiet undidaniorderungen an die Er-
kennungsgenauigkeit werden unterschiedlich aufwandegéaliren eingesetzt. Gerade die
Detektion und ldentifikation von Gesichtern bei schlecldelteuchtung oder unguinstigen
Aufnahmewinkeln erfordert komplexe Ansatze. Da man imd=alher Kommunikation je-
doch von einem kooperativen Benutzer ausgehen kann, sdieaar Stelle der Standardan-
satz nach [VJO1] zum Auffinden von aufrechten GesichternilidelBh verwendet werden.
Benutzer werden in diesem Zusammenhang als ,kooperatiz€ibenet, da sie im Falle
einer Kommunikation meistens den Augenkontakt zum Gebgpartner suchen und so-
mit in Richtung der Kamera schauen, die oberhalb des Dispdangebracht ist. Die Be-
leuchtungssituation kann als unproblematisch angenonweedien, da ansonsten bei einer
schlechten Beleuchtung das Gesicht fur den entferntenr&asgpartner nicht erkennbar
ware. Die Identifikation der detektierten Gesichter erfalgrch dieFisher-FacesMiethode
aus [BHK97].

4.4.2 Gesichtsdetektion

Die Anbindung der Kamera erfolgt entweder tiber einen USBeAtuss, oder im Falle der in
den Versuchen verwendeten Kamera Uber eine Etherneti&taihe. Abbildung 4.19 zeigt

webcam JPG( jpG-~ BMP | RGB( RGB—~ HSV | HSV Hautfarben— Mittelwert
DQ Konvertierung Konvertierung segmentierun 19x19
\%

y

- Mittelwert
WinScale 3x3 Lokale Struktur
Bildpyramide transformation

RGB

) Gesichts—
Display identifikation Cluster—
verfahren

Abbildung 4.19: Blockschaltbild zur Gesichtsdetektion und Gesichtsidi&ation

Gesichtsdetektion

die notwendigen Module zur Detektion von Gesichtern undllref3ender Identifikation.
Die von der Kamera gesendeten Bilder werden zunachst ®@&Format in dasBMP-

Format konvertiert. Im nachsten Schritt wird das Bild in d&®V-Farbraum konvertiert, da
in diesem eine Hautfarbensegmentierung mit geringem Aondvelurchgefiihrt werden kann.
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Die Hautfarbensegmentierung dient der Begrenzung deakthnittes, der fur die Suche
nach Gesichtern im Gesichtsdetektor herangezogen wirdll€lalazu wird das Bild in meh-
reren Stufen zu einer Bildpyramide skaliert und deren Tldii durch eine Strukturtransfor-
mation umgewandelt. Die einzelnen Module und ihre Aufgalserden im Folgenden néher
betrachtet.

Hautfarbensegmentierung

Die Hautfarbensegmentierung verwendet ein HistogrammBestimmung der Wahrschein-
lichkeit fir Hautfarbe in einem Bildpunkt. Das entsteherdeidimensionale Bild (vgl. Abb.

(a) Kamerabild (b) Hautfarbenwahrscheinlichkeit nach Histogramm

(c) Gemittelte Hautfarbenwahrscheinlichkeit (d) Hautfarbengebiete nach Schwellwertentscheidung

Abbildung 4.20: Beispiel einer Hautfarbensegmentierung mit Schwellwesteheidung

4.20 (b)) enthélt zunachst durch Bildrauschen und den &ohatrf im Gesicht nur wenige
zusammenh&ngende Flachen, die als Haut erkannt wurdech Digr Mittelwertbildung auf
19 x 19 Bildpunkten (vgl. Abb. 4.20 (c)) groRen Flachen und eindnallwertentscheidung
(vgl. Abb. 4.20 (d)) werden diese Gebiete vergroRert. Distenenden Gebiete definieren
den Suchbereich fur die Detektion von Gesichtern. DurchHdietfarbensegmentierung ist
es moglich, die Anforderungen an die Rechenleistung zueseokd gleichzeitig die Rate
von Fehldetektionen zu reduzieren, da Strukturen im Hgnterd ohne Hautfarbe nicht mehr
falschlicherweise als Gesicht detektiert werden kénnen.
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Skalierung und Suche

Das Auffinden von Gesichtern unterschiedlicher Groé3e idési kann auf zwei Arten erfol-
gen. Zum einen kann ein Detektor auf eine bestimmte Gegjdifde trainiert und das Bild in
verschiedene Stufen skaliert werden, oder aber der Detedltost wird skaliert und das Bild
beibehalten. In diesem System wird das Bild inStufen skaliert, und es wird in jeder Stufe
nach Gesichtern der Grof3e x 19 Bildpunkte gesucht. Ein Gesicht, welches in keiner der
Skalierungsstufen des Bildes anndhernd die Gid3e 19 Bildpunkte erreicht, kann nicht
erkannt werden.

Abbildung 4.21: Beispiel einer Bildpyramide mi Skalierungsstufen

Abbildung 4.21 zeigt die erstenBilder der Bildpyramide, die durch die Skalierung des
Graustufenbildes (V-Komponente des Originalbildes) tehisn. Die Skalierung des Bildes
erfolgt durch den in [KSLKO3] vorgestelltew/inScaleAlgorithmus, der am Ausgang des
Moduls die komplette Bildpyramide aller Skalierungsstuliefert.

Fur jedes skalierte Bild in der Pyramide wird eine lokaleuBturtransformation (LST)
nach [FK04] durchgefiihrt. Die Transformation verwendeidoe3 x 3 Kernel zur Kodie-
rung der lokalen Strukturinformation. Zunachst wird dettlaie Helligkeitswert deB x 3
Umgebung eines Pixels berechnet und jedes Pixel mit dieseglichen. Falls der Hellig-
keitswert des Pixels Gber dem Mittelwert liegt, so wird elnien Kernel gesetzt ansonsten
eine0. Somit entstehen insgesagit— 1 = 511 unterschiedliche Kernel, deren binare Ko-
dierungen als Zahlen interpretiert werden.

In Abb. 4.22 (a) ist das Graustufenbild und in Abb. 4.22 (b} dagehtrige Bild der
lokalen Strukturtransformation zu sehen. Deutlich erkemnst, dass die Transformation
die Strukturen im Bild, wie z. B. Kanten und Konturen, hehalot und gleichzeitig die
Helligkeitsunterschiede vernachlassigt.

Der Gesichtsdetektor besteht, wie in [VJO1] vorgeschlagaa einer 4-stufigen Kaskade
von Entscheidern mit zunehmender Komplexitéat. Dabei windfnalysefenster der Grolie
19 x 19 Pixel tber das Bild geschoben. Innerhalb dieses Fensegsrli7? = 289 LST
Merkmale, von denen in jeder Stufe eine grol3er werdende Ardzerpriuft wird. Der Fo-
kus der Detektoren liegt hierbei auf dem Verwerfen von ,NiGesichtern®, so dass in den
ersten Stufen der Grol3teil der Analysefenster verworferdere kann und nur Fenster mit
maoglichen Gesichtern an die nachste, aufwandigere Stuitengereicht werden. Die De-
tektoren der Kaskade werden in Anlehnung an [KEO6] mittels®AdaBoostAlgorithmus
[DHSO01] trainiert, jedoch werden im Gegensatz zum dortigerschlag nicht nur die ersten
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(a) Graustufenbild (b) Ergebnis der lokalen Strukturtransformation

Abbildung 4.22: Merkmalsextraktion mittels lokaler Strukturtransforinatdes Graustufenbildes

drei Stufen, sondern alle vier Stufen mit d&daBoostAlgorithmus trainiert.

(a) Mehrfachdetektion eines Gesichtes (b) Detektion nach Clusterung

Abbildung 4.23: Beispiel einer Mehrfachdetektion eines Gesichtes undtfrigeder Clusterung

Ein Gesicht wird zumeist nicht nur in einer Skalierungssteines Bildes, sondern auch
in der nachst héheren oder niedrigeren Skalierungsstdiimden. Zudem werden auch De-
tektionen, die nur um einige wenige Pixel verschoben sind,der Kaskade als gefundene
Gesichter ausgegeben. In Abb. 4.23 (a) wurden die detekti€esichter mit grinen Kas-
ten umrandet und deren Zentren mit griinen Kreuzen markietiem Beispielbild wird das
Gesicht insgesamit6 mal gefunden, und erst eine Clusterung der Detektioneertieine
Aussage uber die tatsachliche Anzahl der Gesichter im Bilel Clusterung wurde als Mit-
telwert Uber die Detektionen berechnet, und das Ergebni€ldsterung ist in Abb. 4.23 (b)
gegeben. Dabei werden fur die Mittelung nur Gbereinaneégelde Detektionen verwendet,
so dass auch die Detektion von mehreren Gesichtern in eimemrmBglich ist. Die Informa-
tion Uber detektierte Gesichter wird anschlieRend dem Manaiuldentifikation Gbergeben,
so dass eine Zuordnung zu den bekannten Gesichtern erkdgen

4.4.3 Gesichtsidentifikation

Die Gesichtsidentifikation verwendet die Detektionen aars @orherigen Modul, um die zu
untersuchenden Bereiche des Bildes zu extrahieren und\erigendung deFisher-Faces



52 Akustische Szenenanalyse

Methode aus [BHK97] zu identifizieren. Die Detektion einess(@htes kann zuverlassig auf
einer Grol3e vori9 x 19 Pixeln erfolgen, jedoch ist dies fir eine Identifikation @&rson
nicht ausreichend. Experimente haben gezeigt, dass féd@emtifikation das Gesicht eine
Mindestgréf3e vors0 x 60 Pixeln haben sollte. Da die Gesichtsdetektion einen seap-kn
pen Ausschnitt des Gesichtes markiert, der oben mit den hugd unten mit dem Mund
abschliel3t, ist fur eine Identifikation eine Erweiterung eemittelten Gesichtsgrenzen not-
wendig. Dabei werden die zuvor in griin markierten Bereialgd. (Abb. 4.23 (b)) in jede
Richtung um ca20 % gestreckt und der entstehende Ausschnitt so interpotlegs eine
Auflésung von60 x 60 Pixeln erzielt wird. Sollte fur eine Identifikation eines kehtes
nicht die erforderliche Menge an Pixeln zur Verfugung stehveeil zum Beispiel die De-
tektion in einer der kleinsten Stufen der Bildpyramide kyffast, so wird die Detektion als
unbekannte Person vermerkt.

Es wird im Folgenden angenommen, dass ein Gesicht im Bilektlett wird, das aus
der Gruppe def bekannten Benutzer stammt. Die Identifikation dés< 60 Pixel grof3en
Gesichtes erfolgt in zwei Schritten. Im ersten Schritt wded durch die Detektion definier-
te Bereich zeilenweise aus dem Graustufenbild ausgeleseérals VektorI'(k) mit 3600
Dimensionen interpretiert. Auf diesem wird mit Hilfe einBransformationsmatrixP, die
auf Trainingsdaten mit einer Hauptachsentransformagagl(Principal Component Analy-
sis PCA) geschatzt wurde, eine Dimensionsreduktion durchgeflthels kann interpretiert
werden als Reduktion der vorhandenen Bildinformationdndaifiir ein Gesicht relevan-
ten Informationen. Im zweiten Schritt wird eine TransfotimasmatrixL angewendet, die
durch eine lineare Diskriminanzanalyse (LDA) auf den aremten Gesichtern der Benutzer
geschatzt wurde. Diese reduziert die Dimension des Vektaf& — 1 Dimensionen, also
auf die Anzahl der bekannten Benutzer minus Eins. Der dimassduzierte Vektor der
Detektion ergibt sich folglich zu:

(k) = LT . (PT - (D(k) — mpca) — Mipa) (4.76)

Hierbei bezeichnempcaundm 4 die Mittelwertvektoren der Trainingsdaten vor ¢RCA
bzw. der LDA.

Das Problem der Sprecherprotokollierung wird, wie zuvasdheieben, durch einen sto-
chastischen Ansatz geldst, wobei die Sequenz der Merkeiddtsen als Realisierung eines
Zufallsprozesses interpretiert wird. Dies wird entspegahfir die visuellen Merkmalsvekto-
ren umgesetzt, indem die Dichtefunktiongr"d(k)|2 = i),i = 1,..., Z, bestehend aus je-
weils einer Normalverteilung, aus Trainingsdaten gesthétrden. Die Klassifikationsrate
des Systems kann durch die Verknipfung von aufeinandeziidign Beobachtungen, welche
aus dem gleichen Kamerawinkel stammen, verbessert wetdenfiir werden die a posterio-
ri Wahrscheinlichkeiten eines Gesichtes des letzten &witss als a priori Wahrscheinlich-
keiten des aktuellen Zeitschritts verwendet. Dabei bérgitr!'d = [xV9(v), ..., x"9(k)]
die Merkmalsvektoren von Zeitschrit — v + 1) bis zum Zeitschritf:. Unter der Annahme
von unabhangigen und identisch verteilten Beobachtunglgn fiir die a posteriori Wahr-
scheinlichkeiten:

p(@"(R)[Q = ) P2 = ilzy5 )
Zp(wv'd( )| = j)P(Q = jlzyg_,)

Die Rekursion startet zum Zeltpunkt an dem zum ersten Mal ein Gesicht an einer be-
stimmten Position detektiert wird. Startwerte fur die Reskon sind die a priori Wahrschein-

P(Q = i|2¥d) — (4.77)
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lichkeiten P () = i), die aufl /Z gesetzt werden. Nach einer erfolgten Identifikation werden
die a posteriori Wahrscheinlichkeiten als a priori Wahesohchkeiten fur die Identifikati-

on von Gesichtern im nachsten Bild verwendet. Dafir wird Bidd in Kacheln eingeteilt
und es werden fir jede Kachel, die vom Gesicht Uberdeckt, wisdlWerte der a posteriori
Wahrscheinlichkeiten der Klassen abgespeichert. Somiitigrt die Gesichtsidentifikation
von den vorherigen Beobachtungen. Sollte innerhalb eiaehkl keine Detektion vorliegen,
so werden die gespeicherten Wahrscheinlichkeiten saleige auf die Initialisierungswerte
zurtckgefihrt.

Die Zusammenfuhrung der akustischen und visuellen Bedabaghn bedingt, dass die
Beobachtungen von einem Benutzer stammen und nicht durehisehiedliche Benutzer
hervorgerufen werden. Sollte die Kamera einen Benutzardsikren und die Gesichtsiden-
tifikation ihn identifizieren, so wéare es fir die Sprechetpkollierung von Nachteil, wenn
dieser Benutzer nicht der aktuelle Sprecher ist. Diesesi®rokann durch den Einsatz einer
schwenkbaren Kamera geldst werden, in dem die Kamera imufhelea aktuellen Sprecher
fokussiert wird.

4.4.4 Kamerasteuerung und Systemintegration

Die Steuerung der Kamera erfolgt unter Bericksichtigung Rigsitionsschatzungen der
akustischen Szenenanalyse und den detektierten Gesidagrzuvor vorgestellten Systems
zur Gesichtsidentifikation. In Abb. 4.24 ist das Blocksthiédd zur Kamerasteuerung und
audio-visuellen Sprecherprotokollierung gegeben. Ddsd&ystem, welches im oberen Teill
dargestellt ist, beinhaltet neben dem System zur Detekim@hldentifikation von Gesich-
tern zwei weitere Module. Das Mod&HM verwaltet einen gemeinsamen Speicherbereich
(engl.Shared MemorySHM) und ist verantwortlich fir den Datenaustausch mit dem Audi
system. Das ModuPTZ Controlsteuert die Kamera Uber eiff€P/IP-Schnittstelle und ist
somit verantwortlich fur die Ausrichtung der Kamera. Hiefardert das Modul regelmafig
die Informationen Uber die Fokussierung der Kamera an uretheet die Differenz zu den
durch die akustische Positionsschatzung vorgegebeneteWest die Differenz zwischen
der akustischen Positionsschatzung und dem aktuellen kgdatiekwinkel so grol3, dass der
Sprecher aulR3erhalb des Bildes liegt, so wird die Fokussieder Kamera auf den Sprecher
durchgefuhrt. Zusatzlich verwendet das Modul die Possiamd Grof3eninformationen von
detektierten Gesichtern im Bild, um die Fokussierung aafRgrsonen zu optimieren. Der
untere Teil der Abb. 4.24 zeigt das Audiosystem zur Sprgebeskollierung und Sprecher-
lokalisation, wie es fur den in Abb. 4.25 gezeigten expentakken Aufbau verwendet wird.

Das Audiosystem verwendet drei der vier Winkelschatzurdgmadaptiven Strahlfor-
mung zur Positionsschatzung mittels Schnittpunktanalse vierte Winkel ist ein Nei-
gungswinkel, welcher ausschlie3lich fur die Ausrichtueg damera verwendet wird. Das
Modul ,Koordinatentransformation“ berechnet, basierantiden Positionsdaten der Kame-
ra und der geschatzten Sprecherposition, die Schwenk- ergeNinkel sowie den Zoom-
faktor der Kamera zur Fokussierung des aktuellen Sprecbese Daten werden tber das
Modul ,SHM" an die Kamerasteuerung weitergeleitet. Des Weiteren eigdPositionsschat-
zung im Rahmen der Sprecherprotokollierung entsprecheap K.3.2 zur Schatzung der
Transitionsmatrix verwendet. Neben den InformationerSpeecherbewertung, der Sprach-
aktivitatsdetektion und des Bayes’schen Informatiorigekiims werden nun auch die Infor-
mationen der Gesichtsidentifikation in der Sprecherpmt®tung berucksichtigt.
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Abbildung 4.24: Blockschaltbild der Kombination von Kamerasteuerung undi@visueller Spre-
cherprotokollierung

Synchronisation und Datenaustausch

Das Audiosystem arbeitet bei einer Abtastrate ¥6itHz und einer Blockgrol3e vom28
Abtastwerten mit einer konstanten Rate &ms pro Block. Im Gegensatz dazu liefert die
Kamera einen nicht kontinuierlichen Datenstrom von makimiaildern pro Sekunde, des-
sen Rate durch die Qualitat des Netzwerks beeinflusst wirda@lich kann bedingt durch
die nicht konstante Rechenlast der Gesichtsidentifikatiansporadisches Verwerfen von
Bildern durchgefuhrt werden, um die Belastung zu verring&a sowohl das Audio- als
auch das Videosystem mit unterschiedlichen Datenrategitart) muss eine Synchronisati-
on erfolgen. Der hier verwendete Ansatz verzichtet auf diedtation von Daten mit Zeit-
stempeln, um eine Synchronisation mittels Verzogerungerealisieren, zu Gunsten des
Ansatzes, dass jeweils die aktuellen Daten in einem gemies Speicherbereich abgelegt
werden. Diese Daten werden von dem jeweils anderen Syste&ang®genutzt, bis sie durch
aktuellere Daten Uberschrieben werden.

Experimenteller Aufbau

Der experimentelle Aufbau zur audio-visuellen Sprechagkollierung beinhaltet neben
den drei Mikrophongruppen zur Lokalisierung des Spreck@rsippg-Gruppg) auch ei-
ne schwenkbare Kamera und einen Monitor. Mit jeder der digrdphongruppen wird ein
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Winkel @; in Richtung des Sprechers nach GI. 4.21 geschatzt. Hiergaben sich die drei
Schnittpunktex o, x23 und x 3 deren Schwerpunkt als Positionsschatzung verwendet wird
(vgl. Gl. 4.23, S. 22). Die Mikrophongruppe unterhalb demé&aa besitzt einen T-férmigen
Aufbau, der die Schatzung eines Neigungswinkelrmdglicht. Da die Kamera in den drei
Koordinaten Drehwinkel, Neigungswinkel und Zoomstufeegit, muss die Position des
Sprechers von den kartesischen Koordinaten in einen Dridehvund eine Zoomstufe um-
gerechnet werden. Dies wird in dem Modul zur Koordinatergfarmation im Audiosystem
durchgefuhrt.

Gruppe Gruppg
R

Kameréy ‘
ﬂ :
GrUppe | A
.y =
\\‘\53\\
Monitor ~Ta RN
\91
) X23\'
z
° X12 jy
X .
13 ‘ N a .

Abbildung 4.25: Experimenteller Aufbau zur ambienten Kommunikation undietvisueller Spre-
cherprotokollierung

4.4.5 Integration der visuellen Information

Der in Kap. 4.3.2 vorgestellte Ansatz zur Sprecherprofawing verwendet eitHMM,
dessen Emissionswahrscheinlichkeiten durch Ldikelihoodsder akustischen Merkmals-
vektoren gegeben sind. An dieser Stelle wird die BerechrdargEmissionswahrschein-
lichkeiten erweitert, so dass sowohl didelihoodsder akustischen als auch der visuellen
Merkmalsvektoren berlcksichtigt werden. Die Emissiortswseheinlichkeiten deHMM-
Zustande sind nach Gl. 4.63 (S. 37) mit

bi(x%(k)) = p'(@¥(k)|Q = j) (4.78)

gegeben. Unter der Annahme, dass die akustischen Merkekéatsenzs(k) und die visu-
ellen Merkmalsvektorem"'d statistisch unabhéngig sind, werden die Emissionswakiiseh
lichkeiten neu definiert zu:

b (@ (k), )5) = p(x*(k), 2)5)|Q = j) (4.79)
= p'(@®(k)|2 = j) - p(a}5 |2 = j)
vid)

— @RI = ) PO = Jlat) g

Die Transitionswahrscheinlichkeiten desMM werden wie zuvor Gber die Sprecherwechsel-
informationen der Positionsschatzung und dé8iC-Werten nach Gl. 4.70 (S. 37) geschétzt.

(4.80)
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Die optimale Abfolge der Zustdnde gegeben die Beobachtungel durch einen Viterbi-
Dekodierer bestimmt. Somit ist es gelungen, die Infornmetioaus dem Videosystem in
das System der akustischen Sprecherprotokollierung egrieten, so dass ein System zur
audio-visuellen Sprecherprotokollierung entsteht.

4.4.6 Experimentelle Ergebnisse

Das System der audio-visuellen Sprecherprotokollierwnghaltet im Vergleich zu der akus-
tischen Sprecherprotokollierung die dynamische Komptenéer Kamera. Ein Test auf einer
statischen Datenbasis ist somit nicht moglich, weil dieiakké Schatzung der Position eines
Sprechers auf den akustischen und visuellen Daten berelthe/mit der Kamera und den
Mikrophonen aufgenommen werden. Diese fiihren ihrerseitsreer Anpassung des Kame-
rablickwinkels und folglich zu einer Anderung der Beobarigen. Das System beeinflusst
sich also wahrend der Laufzeit selbst und kann nur im lawderi8etrieb getestet werden.
Hierzu werden zwei typische Nutzungsszenarien ausgewadlmit einer Gruppe von trai-
nierten Sprechern untersucht. Die ersten Tests werdeninaelButzern durchgefihrt, die
sich fur den gro3ten Teil der Aufnahmen an einem festen GrtRBumes aufhalten. Vor-
teil dieses Szenarios ist es, dass die Kamera einen GrdBtedleit eine gute Fokussierung
auf das Gesicht besitzt. Das zweite Szenario betrachtet@nferenzsituation, bei der sich
zwei Personen im Raum befinden und abwechselnd sprechebeHieuss die Kamera die
Fokussierung zwischen den Sprechern wechseln, wodurchevet Phasen ausbleibender
Gesichtsdetektionen entstehen.

Die so entstandene Menge von mehr als zwei Stunden Aufnabratet zwar nicht die
Maglichkeit, nachtraglich Einfluss auf die Position odersfiahtung der Kamera zu nehmen,
jedoch konnen bestimmte Aspekte der Sprecherprotokatigpuntersucht werden. Zunéachst
wird der zeitliche Ablauf der Kamerasteuerung anhand eBespiels erlautert. Anschlie-
Rend werden die Verzogerung des Systems und der Einflussiteten Begrenzung naher
betrachtet. Zum Abschluss der Experimente werden die Brgedder audio-visuellen Spre-
cherprotokollierung diskutiert.

Kamerasteuerung

Zunachst soll ein Beispiel fir das zeitliche Verhalten dant€rasteuerung bei einem Spre-
cherwechsel gegeben werden. In Abb. 4.26 ist im unteretilteilie Positionsschatzung
der akustischen Szenenanalyse in kartesischen Koordigatgeben. Im oberen Teilbild sind
entsprechend Gl. 4.77 (S. 52) die a posteriori Wahrsclobikdiiten der Nutzer auf Basis der
Gesichtsidentifikation dargestellt. Im Zeitrawm bis 4 s liefert das System wechselnde Hy-
pothesen fur die Identitat des detektierten Gesichtesesowner wieder Zeitraume in denen
alle Modelle gleich wahrscheinlich sind und somit keine iGetsdetektion vorliegt. Dieses
Verhalten kann verschiedene Grinde haben, wie z. B. Bewgsguales Sprechers, die Aus-
richtung des Kopfes oder nicht optimale Beleuchtungsverisge. Ab dem Zeitpunk&,5 s
sind die Ergebnisse der Gesichtsidentifikation eindewutig,aus dem Verlauf der Kurven
ersichtlich ist.

Deutlich ist die mit dem Sprecherwechsel verbundene Andeder Position zum Zeit-
punkt3,9 s erkennbar. Zu diesem Zeitpunkt wird eine Sprecherpos#idserhalb des Kame-
rablickwinkels detektiert und die Kamera beginnt mit denm®enk auf die neue Position
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Abbildung 4.26: Vergleich zwischen den a posteriori Wahrscheinlichkeitien Gesichtsidentifika-
tion und der Positionsschatzung durch die akustische 8aeaé/se

und der anschlieRenden Fokussierung auf den Sprecher.rAlZdigpunkt8,2 s ist das Ge-
sicht des Sprechers durch das System gefunden und idemtifirden.

Der treppenformige Verlauf der a posteriori Wahrschehig&ten resultiert aus der im
Vergleich zum Audiosignal niedrigeren Verarbeitungsidgs Videosystems. Die Abb. 4.26
wurde aus den eingehenden Daten der Sprecherprotokaljg@wonnen und enthalt somit
die im Takt des Audiosystems aufgezeichneten Signale. Ba/mkeosystem die aktuellen
Daten in einer geringeren Rate als der Taktrate des AudiasgssmSHM ablegt, kommt es
zu einer mehrfachen Nutzung der Daten durch das Audiosystem

Systemverzogerung

Die zeitlichen Anforderungen von kontextbewussten Diensivie z. B. der ambienten Kom-
munikation, verlangen eine maglichst geringe Latenz zeéscdem Eintreten eines Ereig-
nisses und der Benachrichtigung der Applikation durch desse®n. Die Sprecherprotokol-
lierung als Kontextquelle im vernetzten Haus beinhaltstaybedingt einige Latenzen, die
im Prozess der Signalverarbeitung entstehen. Folgena@yerungen sind im System vor-
handen:

e Hardware/Software-Schnittstelle: Die Latenz betragtdieem echtzeitfahigen Be-
triebssystem bei einer BlockgroRe vap8 Abtastwerten und einer Abtastfrequenz
von 16 kHz im Minimum 8 ms. Steht kein echtzeitfahiges Betriebssystem zur Verfu-
gung ist eine Latenz von ca.Blocken und somi24 ms realistisch.

e Positionsschatzung: Die Positionsschatzung ist frei vatehzen, weil sie durch die
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Korrelation def~SBFilter berechnet wird. Jedoch bendtigt die Ausrichtungadi@sti-
schen Strahlformung eine gewisse, deterministisch nigstitmmbare Zeit, bis die kor-
rekte Position nach Eintreten eines konvergierten Zustsddr Filter angezeigt wird.
Da flur die Sprecherprotokollierung weniger die korrektesiBon, sondern vielmehr
die Tatsache des Positionswechsels interessant ist, kas@ datenz vernachlassigt
werden.

e Sprecherwechseldetektion: Die Berechnung A&IC-Werte erfordert die Betrach-
tung eines Zeitfensters der GroéBg, = 80 Merkmalsvektoren. Die Latenz betragt
folglich N,,/2 - 8 ms = 320 ms.

¢ Viterbi-Dekodierer: Der Viterbi-Dekodierer besitzt eiveriable Verzégerung, die durch
die obere Grenze, . zeitlich beschrankt ist.

Die variable Latenz des Viterbi-Dekodierers soll an di€Swlle ndher untersucht werden.
Zunachst wird die zeitliche Begrenzung., weggelassenr{,., = oo), um eine Messung
der tatsachlich vorliegenden Verzdgerung durchfihrendnnkn. In Abb. 4.27 sind die Er-

Eindeutiger Pfad gefunden [%]

Audio + VideoH

— — — Audio
0 1 1 1 1 1 1 1 T T

0 0,5 1 15 2 2,5 3 3,5 4 4,5 5
Viterbi-Dekodierer Latenz [s]

Abbildung 4.27: Experimente zur zeitlichen Verzégerung des Viterbi-Dé&osts

gebnisse des Experiments gegeben. Aufgetragen Uber cé@z des Viterbi-Dekodierers
(Abszisse) wird auf der Ordinate der Prozentsatz der Fatiegeben, in denen ein eindeu-
tiger Pfad innerhalb dieser Latenz gefunden wird. Hierlagirkfestgestellt werden, dass in
90 % aller Falle die Latenz geringer as5 s ist. Die mittlere Latenz bis ein eindeutiger Pfad
gefunden wird kann z@262 ms fur die akustische Sprecherprotokollierung unid ms fir
die audio-visuelle Sprecherprotokollierung bestimmtdesr. Die Medianwerte liegen bei
136 ms (Audio) und104 ms (Audio + Video). Die Verwendung der Videodaten reduziert in
einem geringen Mal3e die Latenz des Systems, weil die zictd@Zhformation die Abfolge
von Zustanden eindeutiger macht.

Eine Zusammenfassung aller Verzégerungen im System dev-gistiellen Sprecherpro-
tokollierung ergibt eine mittlere Verzégerung zwischemd&uftreten eines Sprechers und
der Registrierung dieses Sprechers durch das System von

Tavg = 246 ms + 320 ms + 8 ms = 574 ms. (4.81)
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Eine Vernachlassigung der Sprecherwechselinformatiowefche aus dem\BIC-Werten
berechnet werden, wirde einen Grol3teil der Latenz zu Lasien etwas verschlechterten
Klassifikationsrate vermeiden (vgl. Tab. 4.4, S. 47).

Latenzbegrenzung des Viterbi-Dekodierers

In der Theorie kann die Latenz des Viterbi-Dekodiererseaiedj grof3 sein, so dass eine Be-
grenzung der maximalen Latenz notwendig ist. Dieser Hingriden Prozess der Bestim-
mung der optimalen Abfolge der Zustdnde vergrofRert diedflizationsfehlerrate und wird
in Experimenten naher untersucht. Die Abb. 4.28 zeigt detavder Klassifikationsfehler-
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Abbildung 4.28: Abhangigkeit der Klassifikationsfehlerrate von der maxeand.atenzr,, ., des Vi-
terbi-Dekodierers

rate OER) gegenuber der maximalen Latenz des Viterbi-Dekodiedergeringer die zeitli-
che Begrenzung des Dekodierers gewahlt wird, desto grétiaer Fehler der Klassifikation.
Auf Grund der Experimente wird eine maximale Latenz 2omals vertretbarer Mittelweg
zwischen Latenz und Fehlerrate gewahlt. Der Vergleich dev&nverlaufe zwischen akusti-
scher (,Audio”) und audio-visueller (,Audio + Video") Sprherprotokollierung liefert zwei
Ergebnisse. Zum einen ist unabhangig von der gewéhltelichein Begrenzung die Feh-
lerrate der audio-visuellen Sprecherprotokollierung inmeringer als bei der akustischen
Sprecherprotokollierung. Zum anderen ist die Zunahme d@beFs bei der audio-visuellen
Sprecherprotokollierung geringer als bei der akustis@mecherprotokollierung.

Experimente zum Anwendungsszenario

Das beabsichtigte Anwendungsszenario der ambienten Komkation beschreibt eine Kom-
munikation zwischen einem oder mehreren Personen mitiakbset und visuellen Daten.

Das System der Sprecherprotokollierung hat in dieser Uomggebm optimalen Fall zusétz-

liche Informationen Uber den aktuellen Sprecher, welchelddie Gesichtsidentifikation

bereitgestellt werden. Dieser Vorteil kann zu einem Nathterden, falls eine fehlerhafte

Gesichtsidentifikation vorliegt oder aber das identiftagBesicht nicht zum Sprecher ge-
hort. Steht keine Gesichtsidentifikation zur Verfigungyshalt sich das System wie eine
rein akustische Sprecherprotokollierung.
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Gesichter [%] DER [%] Zeit
Fall Benutzer detektiert| korrekt | Audio | Audio-Video | [min:sec]
A 83,55 83,99 | 5,13 2,96 3:07
3 B 7251 | 8397 | 6,22 4,67 7:43
E C 94,18 | 74,60 | 16,54 11,65 3:18
8% D 94,27 100,00 | 24,88 1,13 2:57
2c E 93,70 19,51 6,58 14,41 2:47
w F 56,16 90,30 | 7,91 1,38 6:27
A&D 75,99 82,76 | 24,56 7,81 3:14
o E A&B 88,56 82,84 | 33,79 5,22 3:36
o5 C&D 89,03 86,48 | 15,45 8,23 7:38
8z D&E 75,65 | 74,17 | 14,79 12,67 6:09
&2 A&F 52,90 | 89,84 | 34,25 9,78 3:31
N B&D 60,49 | 41,68 | 23,50 15,07 5.47
Mittelwert Einzelnutzer| 84,53 84,79 | 7,46 3,72 61:18
Mittelwert zwei Nutzer| 76,66 74,08 | 23,11 11,81 59:24
Mittelwert beide Falle 80,46 79,49 | 15,16 7,70 120:42

Tabelle 4.5:Experimente zur audio-visuellen Sprecherprotokolligrun

In Tab. 4.5 sind die Ergebnisse verschiedener Testlaufautiio-visuellen Sprecherpro-
tokollierung dargestellt. Insgesamt wurden Aufnahmen wibar2h Lange fiur die Expe-
rimente gemacht und ausgewertet. In der dritten SpalteeisPdbzentsatz der detektierten
Gesichter und in der vierten der Prozentsatz der korrekittiiiigerten Gesichter angege-
ben. Die funfte Spalte gibt die Klassifikationsfehlerraie die akustische und die sechste
die Klassifikationsrate fur die audio-visuelle Sprechetpkollierung wieder. In der letzten
Spalte ist die Zeitdauer des Experiments angegeben. Dienefeilen der Tabelle zeigen
eine Auswahl der Experimente mit Einzelnutzern und dieufdfdgenden Zeilen die Expe-
rimente mit zwei Nutzern. Die Mittelwerte fur die gesamtem®ahmen beider Falle sind in
den letzten Zeilen angegeben.

Im Falle eines einzelnen Nutzers betragt die mittlere Fediie des Systen¥s46 % im rein
akustischen Ansatz, und die Verwendung der visuellen Det@idglicht eine Reduktion der
DERauf3,72 %. Betrachtet man die einzelnen Experimente genauer, smfdié Nutzer ,D"

im positiven und ,,E* im negativen Sinne auf. Der Nutzer ,D“rélidurch die Kamera in Giber
94,00 % der Zeit detektiert und dabei z100,00 % richtig identifiziert. Erwartungsgeman
verbessert sich die Klassifikationsfehlerrate von zuntaghterdurchschnittlichef4,88 %
auf einen sehr guten Wert vani3 %. Im Gegensatz dazu wird der Nutzer ,E* haufig durch
die Gesichtsidentifikation falsch klassifiziert. Obwohins&esicht in93,70 % der Fallen
detektiert wird, kann es nur it9,51 % korrekt identifiziert werden. Dies hat einen negativen
Effekt auf die audio-visuelle Sprecherprotokollierungdiiihrt zu einer Verschlechterung
der Klassifikationsrate ums3 %.

Die Beispiele fur zwei Nutzer zeigen ein zu den Einzelnutaerrgleichbares Bild. Die
Fehlerrate der akustischen Sprecherprotokollierunguistiddie Dialogsituation etwas hdher
als im Einzelnutzerfall. Die Verwendung der Videodatenrfiitm Mittel zu einer Verbesse-
rung der Klassifikationsraten var3,11 % auf 11,81 %. Die Mittelung aller Daten zeigt an-
nahernd eine Halbierung der Klassifikationsrate durch éeveéndung des audio-visuellen
Ansatzes.



5 Akustische Ereignisdetektion

Die akustische Ereignisdetektion ist ein Teil der akubiscSzenenanalyse, welcher sich
speziell mit der Identifikation von akustischen Ereignisseder hauslichen Umgebung be-
fasst. Da Mikrophone im Gegensatz zu Kameras dauerhaft @ereg Raum erfassen kon-
nen und unabhangig von der Beleuchtung sind, bieten sie dglibhkeit, eine alternative
Informationsquelle zu visuellen Verfahren zu erschlieff@e Auswahl von Ereignissen ist
zunéchst durch das Vorhandensein verfuigbarer Daten zumirigaind Testen begrenzt und
orientiert sich an verfigbaren Datenbasen.

5.1 Datenbasis Ereignisdetektion

Die hier verwendete Datenbasis zur Erkennung akustisalegyiitsse wurde im Rahmen des
CHIL Projektes erstellt und besteht aus insgesa®itzungen [TMNSO05]. Die Aufnahmen
wurden in einem Konferenzraum der GrdRR2m x 3,9 m mit weiblichen und méannlichen
Personen erstellt (vgl. Abb. 5.1 (a)).

"—; O O O Mik.-Gruppe A
x o/

O [P3

Ol ‘5

Ol O Tisch Ol

Ol Mik.—Gruppe E @ @ ®

Ol © O OOl _ O

Ol Mik.-Gruppe B

Mik.-Gruppe D '

- ® 02m ® 02m ®
O O O Mik-Gruppe C

(a) Aufbau deCHIL Konferenzraumes und Platzierung der Mikrophongrup) Aufbau der T-férmigen
pen Mikrophongruppe

Abbildung 5.1: Experimenteller Aufbau der Datenbasis zur akustischerggiseletektion

Jeder Teilnehmer musste eine vorgegebene Menge an akestiEceignissen an den de-
finierten PlatzerP; bis P; erzeugen. Die Daten wurden dabei shil-formigen Mikrophon-
gruppen (Mik.-Gruppe A bis C) bestehend aullikrophonen, einer linearen Mikrophon-
gruppe mit7 Mikrophonen (Mik.-Gruppe D) und@ auf dem Tisch verteilten Mikrophonen
(Mik.-Gruppe E) aufgenommen. Der Abstand der Mikrophomeihalb einer Gruppe wur-
de zu0,2m bzw. 0,3m gewahlt (vgl. Abb. 5.1 (b)). Die Abtastfrequenz der Aufnamm

61



62 Akustische Ereignisdetektion

betrug44,1 kHz und wurde fur die Experimente aié kHz reduziert. In der Datenbasis sind
die folgendeni 4 verschiedenen akustischen Ereignisse enthalten, dengighkkit in Klam-
mern angegeben ist:

e ap (60): Applaudieren (mehrere e kn (50): Klopfen an einer Tur oder
Personen) auf einem Tisch

e cl (64): Ruhren eines Loffels in ei- kt (66): Tippen auf einer Tastatur

ner Tasse
e la (64): Lachen

e cm (76): Verrucken eines Stuhls , , .
e pr(116): Klingeln eines Mobiltele-

e CO (65): Husten oder Rauspern fons
e do (60): Offnen einer Tir e pw (84): Papierrascheln
e ds (61): Schlie3en einer Tur e st (73): Schritte

e kj (65): Ablegen oder Aufnehmen un (126): Unbekannt

eines Schlisselbundes

5.2 Experimente zur Modellierung

Die Identifikation von akustischen Ereignissen ist im Vergh zur Sprecheridentifikation
ein neueres Thema in der Forschung. Zunachst soll dahegegignete Modellierung der
Ereignisse auf Basis der in der akustischen Szenenanatysendeten Merkmalsvektoren
gefunden werden. Dieser Ansatz bietet den Vorteil, dassbiir die Ereignisdetektion als
auch fur die Sprecheridentifikation die gleichen Merkmaemxendet werden und in einem
gemeinsamen System die aufwendige Neuberechnung vonatltem Merkmalen entfallt.
Die Ergebnisse deCHIL Projektevaluation der Ereignisdetektion konnen in [TMZ] und
[BPO8] nachgelesen werden.

Fir die Experimente wird ein Drittel der Daten zum Traini&gtZung 1 auf DVD 1) und
zwei Drittel zum Testen (Sitzung 2 auf DVD 2 und Sitzung 3 aMD3) verwendet. Als
Ausgangspunkt fur die Modellbildung werden zwei Ansatzhanduntersucht. Zum einen
werden Modelle bestehend aus Gaul3’'schen Mischungsvergeih mit einer unterschiedli-
chen Anzahl von Verteilungen auf den Trainingsdaten gezt@MM-Ansatz). Zum an-
deren wird eine Gruppierung der Ereignisse anhand der ksaorismatrix der Erkennungs-
ergebnisse in zwei Gruppen vorgenommen. Fir diese Gruppettew, entsprechend dem
Ansatz zur Sprecheridentifikation, Hintergrundmodelleagitzt und auf jedes Ereignis ein-
zeln adaptiertBM-Ansatz). Beide Verfahren nutzen Gauf3'sche Mischungsierigen zur
Modellierung der akustischen Ereignisse, jedoch wird ing€&oden zur leichteren Unter-
scheidung entweder vo@MM-Ansatz odetJBM-Ansatz gesprochen.

5.2.1 Modellierung mit Gaul3’'schen Mischungsverteilungen

Die Modellierung der Ereignisse durch Gaul3’'sche Mischuegsilungen erfordert die Fest-
legung der Modellkomplexitat durch die Wahl der Verteilsagzahl. Mit steigender Vertei-
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lungsanzahl kdnnen zwar die Ereignisse theoretisch bessdelliert werden, jedoch nimmt
die bendétigte Rechenleistung zu. Zudem ist die Menge amifiggdaten begrenzt und eine
zu grol3e Modellkomplexitat wird, wie aus der Spracherkegriekannt, durch stagnierende
bzw. verringerte Klassifikationsergebnisse erkennbar. sginachst soll dieser Aspekt der
Modellierung experimentell untersucht werden.

100

95

90

4.Verteilungen _ _ _ _ _

8 Verteilungen
64 Vertejlungen
128 Verteilungen

85

80

Klassifikationsrate [%)]

751

Training (DVD 1)|]
——— Test (DVD 2)
Test (DVD 3)

1T T T

10 20 30 40 50 60 70 80 90 100
Trainingsschritt

70

Abbildung 5.2: Vergleich der Klassifikationsraten dedMM-Ansatzes

In Abb. 5.2 sind die Klassifikationsraten Uber die Trainsg®itte angegeben. Hierbei
werderd2-dimensionale Merkmalsvektoren verwendet, welche ausvfe@C- undMACV-
Werten, deren ersten zeitlichen Ableitungen und derenteweieitlichen Ableitungen be-
stehen. Zu den durch senkrechte blaue Linien gekennzéammeainingsschritten wird eine
Aufspaltung der Verteilungen (englensity splitting durchgeftihrt, so dass eine Verdoppe-
lung der Verteilungsanzahl erzielt wird. Dabei werden, wieler automatischen Spracher-
kennung ublich, die Verteilungen mit den gré3ten Gewicliwerwei oder mehrere Vertei-
lungen aufgeteilt. Es ist erkennbar, dass jeweils nach déspaltung der Verteilungen eine
Phase der Modellanpassung erfolgt, in welcher die Klasdifiksraten zunachst abnehmen
und anschliel3end steigen.

Ein Vergleich der Klassifikationsraten auf den TrainingedgDVD 1) und den Testda-
ten (DVD 2, DVD 3) zeigt, dass bei der Erh6hung der Modellkéexjpat von64 auf 128
Verteilungen die Klassifikationsrate der Trainingsdaterbessert wird. Jedoch stagniert die
Klassifikationsrate auf den Testdaten. Infolgedessen kand weiteres Aufspalten der Ver-
teilungen mehr vorgenommen, um eine Uberanpassung @regfitting[DHS01]) der Mo-
delle an die Trainingsdaten zu vermeiden. Im Vergleich ehes Trainings- und Testdaten
ist erkennbar, dass die Ergebnisse der beiden Testdateh EDDVD 3) nahe aneinander
liegen und gegentiber den Trainingsdaterb¢a.schlechter klassifiziert werden.

In Abb. 5.3 sind, aufgeschlisselt nach den EreignisserKidissifikationsraten auf den
Testdaten angegeben. Die Ereignisse Schritie)(und Papier (pw*) erzielen die schlech-
testen Ergebnisse, was auf die geringe Energie der akustidereignisse im Vergleich zu
den anderen Ereignissen zurtickzuftihren ist. Das Modelkekiatnt (un*) bildet ein Sam-
melmodell fir alle unbekannten akustischen EreignisseemAufnahmen der Datenbasis.
Zusatzlich ist der Mittelwert @vd’) der Klassifikationsrate tiber alle Ereignisse angegeben.
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Klassifikationsrate [%)]

co do ds kj kn kt la pr pw st un avg
Ereignis

Abbildung 5.3: Vergleich der Klassifikationsraten dédM-Ansatzes bezogen auf die einzelnen Er-
eignisse auf Testdaten (DVD 2, DVD 3)

5.2.2 Modellierung mit universellen Hintergrundmodellen

Die Modellierung der Ereignisse mit Hilfe von universellelimtergrundmodellen ist ein
Ansatzpunkt, um die geringe Anzahl an Trainingsbeispiélesier Datenbasis zu kompen-
sieren. Bei der Modellierung durch universelle Hinterghmodelle werden die zu trainie-
renden Klassen in Gruppen eingeteilt, so dass Ereignisseargleichbaren akustischen
Eigenschaften in einer Gruppe sind. Diese bei der Spretdifikation natirlich gegebe-
ne Einteilung in zwei Gruppen (mannliche und weibliche $peg) ist bei der akustischen
Ereignisdetektion nicht gegeben.

Die Einteilung der Ereignisse in Gruppen erfolgt in zwei @itén. Zunachst werden die
Ereignisse anhand des akustischen Eindrucks in die zweig@ru

e Gruppe 1: do, ds, kn, kt, st
e Gruppe 2: ap, cl, cm, co, kj, la, pr, pw, un

eingeteilt, wobei die erste Gruppe klopfende und schlagdfi@ignisse umfasst und die
zweite Gruppe die Ubrigen Ereignisse modelliert. Grundgé&d dabei ist, die Anzahl der
Hintergrundmodelle gering zu halten, dabei jedoch Gruppéréhnlichen akustischen Ei-
genschaften zu erzeugen. Dies ist notwendig, da bei dersBayen Adaption Teile der
Hintergrundmodelle mit in die neuen Modelle der Ereignissgehen. Eine grol3e Abwei-
chung der Hintergrundmodelle von den zu erzeugenden MadelBre somit nachteilhaft
und ist vergleichbar mit der Adaption eines weiblichen igtundmodells auf einen mann-
lichen Sprecher.

Erste experimentelle Versuche it Verteilungen zeigten, dass entgegen der Annahme,
dass die meisten Fehler durch Verwechselungen innerhadis Gruppe auftreten wirden,
einige Ereignisse haufig Modellen der anderen Gruppe zdgebwurden. Folglich wurden
die Ereignisse mit Hilfe der Konfusionsmatrix neu geordsetdass die zwei Gruppen

e Gruppe 1: do, ds, kn, kt, la, pr, pw, st

e Gruppe 2: ap, cl, cm, co, kj, un
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gebildet wurden.
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Verteilungen je GMM Relevanzfaktor

(a) Variation der GMM-Komplexitat(= 16) (b) Einfluss des Relevanzfaktors (128 Verteilungen)
Abbildung 5.4: Experimente zur Modellbildung durch dé&iBM-Ansatz

Die Abb. 5.4 (a) zeigt die Klassifikationsraten in Abhangigkon der Modellkomplexitat
fur die Modellierung durch universelle HintergrundmodeBis zu einer Anzahl von c&28
Verteilungen steigt die Klassifikationsrate mit zunehnmegndodellkomplexitat. Oberhalb
von 128 Verteilungen pro Ereignis kann keine signifikante Verbassg durch die Verwen-
dung von mehr Verteilungen erzielt werden. In Abb. 5.4 (bJier Einfluss des Relevanz-
faktors, welcher bei der Adaption der Modelle vom Hintergimmodell verwendet wird, auf
die Klassifikationsrate dargestellt. Ein geringer ReleVaktor bedeutet, dass dem Hinter-
grundmodell eine geringere Relevanz als den vorhanderanifigsdaten zugeordnet wird
(vgl. Gl. 4.47-Gl. 4.53, S. 32). Es ist zu erkennen, dass dizss{fikationsrate mit steigen-
dem Relevanzfaktor(= 10, 16, 20) abnimmt und somit die Modellierung durch den Ansatz
der Hintergrundmodelle grundsétzlich in Frage gestelitder muss. Um den Unterschied
zu verdeutlichen, sind die Werte fur d&MM-Ansatz, welcher mit einem Relevanzfaktor
gleichzusetzen ist, ebenfalls eingetragen.
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Abbildung 5.5: Vergleich der Klassifikationsraten dé&BM-Ansatzes mit Relevanzfaktor = 16
bezogen auf die einzelnen Ereignisse auf Testdaten (DVD/D, B)
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In Abb. 5.5 sind die Klassifikationsraten fur des8M-Ansatz dargestellt. Eine Beobach-
tung aus den Experimenten ist, dass fur einen Teil der aaln&n Ereignisse, wie z. B.
Schritte (,st*), eine steigende Anzahl der Mischungsverteilungen egssbre Erkennungs-
leistung ermdglicht, wahrend bei anderen Ereignissenzwie Lachen (]a“), eine groRere
Anzahl der Mischungsverteilungen den entgegengesetfeki Bat. Der direkte Vergleich
der Modellierungsarten in Abb. 5.6 zeigt die unterschidwin Vorteile der Verfahren. Die
GMM-Modellierung erzielt mit einer mittleren Klassifikatiaase von90,7 % bessere Er-
gebnisse als d&dBM-Ansatz mit’6,3 %, auch wenn fir einzelne akustische Ereignisse der
UBM-Ansatz besser ist.
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I GV 128

N0 -

Klassifikationsrate [%]
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Abbildung 5.6: Vergleich der Klassifikationsraten de8M- und desGMM-Ansatzes auf Testdaten
(DVD 2, DVD 3)

5.3 Diskriminative Lernverfahren

Statistische Klassifikationsverfahren sind in der Literateit verbreitet. Hierbei werden
Merkmale als Zufallsvariablen mit zugehorigen klasseinggdn Verteilungen beschrieben,
die haufig Gauld'sche Mischungsverteilungen verwendenSghétzung der Modellparame-
ter gibt es unterschiedliche Ansatze. Am weitesten vedtrisit die Maximum Likelihoot
Parameterschatzunlyl-Parameterschatzung), bei dem die Modellparameter sorimast
werden, dass dieikelihoodsder Trainingsdaten maximiert werden.

Wenn die vorgegebene Form der klassenbedingten Verteitukgrrekt und die Trai-
ningsdatenmenge sehr grofl3 ist, dann kdnnen mibMleParameterschatzung die den Da-
ten zugrundeliegenden Verteilungen korrekt geschatztdeverDurch die Anwendung der
Bayes’schen Entscheidungsregel erzielt man in diesendiathinimale Fehlerrate. In der
Praxis sind diese Annahmen jedoch meist nicht erfullt. Damd mit der ML-Parameter-
schatzung die eigentlich interessierende Groél3e, die ifilkettonsrate, nicht mehr unbedingt
optimiert [LYLO7].

Diskriminative Lernverfahren greifen diesen Punkt auf wedsuchen, durch das Einbe-
ziehen aller Klassen im Trainingsprozess eine minimalddfedtie zu erzielen. Dabei kon-
nen auch Naherungen und Einschrankungen in den ModellenzvB. diagonale Kovari-
anzmatrizen, mit diskriminativen Ansatzen besser beHanegeden als bei der klassischen
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ML-Parameterschatzung [NCM91]. In der akustischen Ereidgtektion werden diagonale
Kovarianzmatrizen in den Modellen verwendet. Folglichkiim diskriminative Lernverfah-
ren zu einer Verbesserung der Klassifikationsraten fiihren.

T
L O  Klasse 1 korrekt
6 O Klasse 1falsch
X Klasse 2 korrekt
Klasse 2 falsch

Klassengrenzen
GMM Klasse 1 (%
Klasse 2 |

‘
% X X

X R
XX *?&m&

T
O Klasse 1|
Il X Klasse 2|
x
f. A
x

)

% " ” ) 0 2 4
(a) Beispieldaten des 2-Klassenproblems (b) Klassengrenzen Bayes'sche Entscheidungsregel

Abbildung 5.7: Beispieldaten eines 2-Klassenproblems und zugehdrigesktegrenzen nach der
Bayes’schen Entscheidungsregel (vollsténdig besetztar&mzmatrizen)

Im Folgenden wird das diskriminative Lernverfahren detaximum Mutual Informati-
on‘-Parameterschatzung vorgestellt. AnschlieRend werderexperimentellen Ergebnisse
auf der Datenbasis zur akustischen Ereignisdetektiorutiesk Da die Darstellung von Da-
ten mit mehr als zwei Dimensionen in Graphen nicht méglithvierd zur Veranschauli-
chung ein 2-Klassenproblem in zwei Dimensionen (vgl. AbB.(&)) betrachtet. Den Daten
liegen Gaul3'sche Mischungsverteilungen zugrunde, didged€ aus drei multivariaten Nor-
malverteilungen mit vollstandig besetzten Kovarianzmatr bestehen. In Abb. 5.7 (b) sind
die idealen Klassengrenzen nach der Bayes’'schen Entselysicegel eingezeichnet. Die
einzelnen Mischungsverteilungen werden hierbei durcipg8h angedeutet.

Zur Simulation von Modellierungsfehlern wird die Annahregrgffen, dass die zu schét-
zenden Kovarianzmatrizen eine diagonale Form haben.iEblglerden durch die Parame-
terschatzung Kovarianzmatrizen der Form

N o? 0
S = (T ) 51

Oim,2

ermittelt. Im Anhang A.4 (S. 121) sind fur dieses Beispied dlodellparameter und die
Ergebnisse der Parameterschatzung fir verschiedenénkéanfaufgefuhrt.

5.3.1 MMI -Parameterschatzung

Das Ziel der Maximum Mutual InformatichParameterschatzungiMI-Parameterschat-
zung) ist die Maximierung der Transinformation zwischen derkmalsvektoren und den
zugehorigen Klassen, welche durch eine Maximierung destepori Wahrscheinlichkeiten
der Klassen gegeben die Merkmalsvektoren erreicht werden KHDOS8]. Dies flhrt zu
einer Maximierung der Anzahl korrekt klassifizierter Merkisvektoren im Training [LP96].
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Im Folgenden wird eine Menge vol Klassen betrachtet, deren Modellparameter ge-
schétzt werden sollen. Jede Klasse soll durch eine GawWdddthungsverteilung beschrie-
ben werden, die aus einer gewichteten SummeMNomultivariaten Normalverteilungen be-
stehen soll. Der Vekto® beinhaltet die Parameter der Mischungsverteilungenlélissen,
bestehend aus den Gewichtgn,, den Mittelwertvektorem ,,, und den Kovarianzmatrizen
3.m. Der erste Index steht hierbei fiir die Klasse und der zweitiex fur die betrachtete
Mischungsverteilung.

Fur die Parameterschatzung sind je KlagdgeMerkmalsvektoren der Dimensiai mit
Xian, = [®r(1),...,xk(N)] vorhanden ¥ = 1,..., K). Des Weiteren wird die Zu-
fallsvariable der Klassenzugehdrigkeit eines Merkma{gws . (n) mit ) bezeichnet. Sie
kann die diskreten Werte aus der Mer@e= {1,..., K} annehmen. Zuséatzlich wird die
ZufallsvariableZ verwendet, um die Zugehorigkeit eines Merkmalsvektors inereMi-
schungsverteilung anzuzeigen. Diese Zufallsvariablenldia diskreten Werte der Menge
Z ={1,..., M} annehmen.

Ein Merkmalsvektor der Klassewird nach der Bayes'schen Entscheidungsregel korrekt
klassifiziert, falls

P(Q =i|xz;i(n); ®) > P(Q = jlx;(n); ©) furallej # ¢ (5.2)

gilt, wobei ® die Abhangigkeit der Entscheidungsregel von &vM-Modellparametern
anzeigt. Soll die Anzahl korrekt klassifizierter Merkmaktoren maximiert werden, so
mussen folglich die a posteriori Wahrscheinlichkeiten iderssen gegeben die Merkmals-
vektoren maximiert werden. Dabei ist die a posteriori Wehesnlichkeit deri-ten Klasse
far die MerkmalsvektoreiX; ;.n, mit

PO = 1| X 1w ©) = H Kp(:vz-(n)lQ =i;0)- P(Q =i (5.3)
n=l ];p(:vi(n)lﬂ =k 0)-P(Q=k)

gegeben. Der Logartihmus der Gl. 5.3 wird im Folgenden addfunktion bezeichnet, wel-
che durch di¢ViIMI-Parameterschatzung maximiert wird.

Eine ausfuhrliche Herleitung der Adaptionsgleichungenhdigll -Parameterschatzung ist
im Anhang A.2 (S. 115) zu finden. Zuné&chst wird dabei der Gratdiler Zielfunktion

0(©) = ilog p(z:(n)|Q = i;©) - P(Q = i) 5.4)

beziglich des gesuchten Modellparameters bestimmt. Aie8emd wird der Gradient der
Zielfunktion zu null gesetzt, so dass die Gleichungen fi& 8Schéatzwerte der Gewichte,
Mittelwerte und Kovarianzmatrizen bestimmt werden kénnen

Die Parameterschatzung mitté&MI wird in einem iterativen Verfahren durchgefuhrt,
welches eineieM-Algorithmus verwendet. Zur Initialisierung des Algomtlus werden die
Modellparameter dekML-Parameterschatzung genutzt. Im ersten Schritt, dem Emgs-
wertschritt (englExpectatiof), wird eine Schatzung von zwei versteckten Parametern vor-
genommen. Dies sind die Wahrscheinlichkeit einer Fehdifikation des Merkmalsvektors
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und die Zugehorigkeit des Merkmalsvektors zu einer Misgsuerteilung. Die Erwartungs-
werte der versteckten Parameter werden anhand der akitdigellparameter geschatzt. Im
zweiten Schritt, dem Maximierungsschritt (enlglaximizatior), werden die im vorherigen
Schritt berechneten versteckten Parameter verwendetineameue Schéatzung der Modell-
parameter durchzufihren. AnschlieRend wird zur Verbesgsedes Konvergenzverhaltens
eine Glattung der Parameterschatzungen vorgenommen. lriéten wird ein Uberblick
Uber den Algorithmus gegeben.

EM-Algorithmus zur MMI -Parameterschatzung

1. Initialisierung : Setze den Iterationszahler= 0 und initialisiere die Paramet@; ()
deri-ten Klasse mit den Modellparametern dilr-Parameterschéatzung fur diese Klas-
se.

2. Erwartungswertschritt : Berechne fur jeden Merkmalsvektat(n),n = 1,..., N;
die Wahrscheinlichkeit der Fehlklassifikation durch dieuaken Modelle mit

p(xi(n)|Q2 =i ©;(v)) - P(Q = i)

kZ p(xi(n)|Q = k; O(v)) - P(Q = k)
=1
und fir jede Mischungsverteilung = 1,..., M die Wahrscheinlichkeit, dass der
Merkmalsvektor zu dieser Mischungsverteilung gehort mit
plx;(n)|Q2=1,72=75,0,v))  P(Z=j|2=1
yis(n) = (@i(n)] J;©i(v)) - P(Z = jI© = 1) (5.6)

m%ﬂp(mz(n)m =i, Z=m;0;)) - P(Z=m|Q=1)

3. Maximierungsschritt: Schatzung der Modellparame@ug unter Verwendung der im
vorherigen Schritt berechneten Erwartungswerte mit

e Gewichte

> i(n) - vii(n)
n=1 (5.7)

> i(n)

Ni

Cij =

o Mittelwerte

S* () - 7oy (n) - ()]
i = =l N (5.8)
; Yi(n) - vi,j(n)
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e Kovarianzmatrizen

S [l ) @) — ) () — )]
3 ;== (5.9)

4. Glattung: Berechnung der neuen Modellparameter als Kombinatiodeansktuellen
Modellparameterr®;(») und den neu geschatzten Modellparame®rrdes Maxi-
mierungsschrittes mit

Ov+1)=a-0,v)+(1—a)-©, fur «acl01] (5.10)

Erhohe Iterationsindex = v+1 und gehe zu ,,Schritt 2bder Abbruch nach erreichen
der gewilinschten Iterationsanzahl.

Diskussion

Die Schatzungen der Mischungsparam@mach Gl. 5.7 (Mischungsgewichte), GI. 5.8
(Mittelwertvektoren) und Gl. 5.9 (Kovarianzmatrizen)addt iterativ, wobei flr die Berech-
nung der neuen Schatzwei®e die vorherigen Schatzwert®, () aus der letzten Iteration
verwendet werden. Hierbei kann es zu einem schwingendéralen der Schatzungen kom-
men, das durch den Glattungsschritt (\gM-Algorithmus 4. Schritt) gedampft wird. Alter-
nativ kann in die Optimierung eine Nebenbedingung einggfiterden, welche die Distanz
zwischen neuen und alten Schatzwerten der Parameter aefjredt08].

Eine Gegenuberstellung der Gleichungen zur Schatzung ehMhgsparameter entspre-
chend deML-Parameterschatzung (vgl. Gl. 4.47, S. 32) und dé&khl -Verfahren zeigt ei-
ne hohe Ahnlichkeit der Ansatze. DMMI-Verfahren verwendet im Vergleich zuML-
Verfahren den zuséatzlichen Gewichtsfaktor

p(xi(n)|Q = i; () P(2 = i)

Giln) = | 1~ (5.11)

521 p(i(n)|Q = ks ©,(1)) P(Q = k)

fur die Schéatzung der neuen Modellparameter, wodurch emeichtung der Merkmals-
vektoren anhand der Wahrscheinlichkeit der Fehlklassiikaszorgenommen wird. Falls ein
Merkmalsvektorz;(n) durch die aktuellen Modellparameter mit einer hohen Wadiest
lichkeit falsch klassifiziert wird, so wirg(Q2 = i|x;(n); ©(v)) einen kleinen Wert anneh-
men und der Gewichtsfaktar,(n) strebt gegen den Wert Eins. Umgekehrt wird ein zuverlas-
sig richtig klassifizierter Trainingsvektor einen Gewsflaktor von anné&hernd Null besitzen
(¥i(n) — 0). Folglich berucksichtigt dasMI-Verfahren wahrend der Schatzung der neu-
en Modellparameter die vermutlich falsch klassifizierteaidingsvektoren starker als die
vermutlich richtig klassifizierten Vektoren.

Mit Hilfe des Gewichtsfaktorg);(n) kann das zuvor erwéhnte schwingende Verhalten der
Modellparameterschatzung wahrend der Iterationen érkEnden. Angenommen, die Men-
ge A von Merkmalsvektoren wird zunachst zuverlassig korreksgifiziert und die gleich
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groRe MengeB derselben Klasse wird falsch klassifiziert, so wird fir deh&zung der
Mittelwertvektoren die Grupp® im Verhaltnis zur Gruppel starker verwendet. Es kommt
zu einer Verschiebung der Mittelwerte in Richtung der Meiyand folglich zu einer An-
derung der Klassengrenzen, was im néchsten Iterationgstdzu fihren kann, dass nun
die Vektoren der Menge! anstatt der Meng® falsch klassifiziert werden. Es wird somit
im nachsten Schritt eine Gegenbewegung in Richtung der Bldngntstehen, welche bei
fehlender Dampfung zu einem schwingenden Verhalten fihrt.

T v r T T
Klasse 1 korrek O Klasse 1 korrek
Klasse 1 falsch d [ © Klasse 1 falsch
o X Klasse 2 korrekd
Klasse 2 falsch
Klassengrenzen
GMM Klasse 1

(a) ML-Parameterschatzung (b) MMI-Parameterschéatzung

Abbildung 5.8: Vergleich der Klassengrenzen von Modellen nach eMkefr bzw. MMI-Parameter-
schatzung (diagonale Kovarianzmatrizen)

In Abb. 5.8 sind die Ergebnisse der Klassifikation der duvtth bzw. MMI-Parameter-
schatzung gewonnenen Modelle dargestellt. e Parameterschatzung optimiert die Mo-
dellparameter der einzelnen Klassen so, dass.itidihood der Trainingsdaten maximiert
wird. Die so entstehenden Klassengrenzen sind nicht opfiinalie Separation der Trai-
ningsdaten, wie die in rot eingezeichneten Klassengremzétbb. 5.8 (a) verdeutlichen.
Jede Klasse wird durch drei Mischungsverteilungen mastgllivelche als Ellipsen ange-
deutet sind. Die Hauptachsen der Ellipsen sind dabei ptiopat zur Standardabweichung
der Verteilungen in der jeweiligen Raumrichtung. M#&11-Parameterschatzung hat das Ziel,
die Transinformation zu maximieren, wodurch die Modellry der Klassen nebensachlich
wird. Dies ist deutlich aus Abb. 5.8 (b) zu entnehmen, da adi8 Daten der Klassg bei
[z,y] = [3, —2] durch keine Mischungsverteilung mehr direkt modelliertaem. Vielmehr
werden diese Daten automatisch durch die gebildeten Kigssezen korrekt klassifiziert.
Die Fehlerrate bei der Klassifizierung sinkt vbinG % bei derML-Parameterschatzung auf
5,4 % bei derMMI-Parameterschatzung.

5.3.2 Experimentelle Ergebnisse

In den Experimenten wird untersucht, ob die Klassifikattatesdurch das diskriminative
Lernverfahren bei einer gleichbleibenden Komplexitatiedelle verbessert werden kann.
Als Referenz wird das beste Modell aus d#c-Parameterschétzung verwendet. Die Beob-
achtung der Fehlerratenanderung bei der Klassifikatiod deningsdaten wéhrend der Pa-
rameterschatzung miMMI wird jeweils einen Hinweis auf die mdglichen Verbesserunge
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durch das diskriminative Lernverfahren liefern. Ein Test Modelle auf den unabhangigen
Testdaten zeigt anschlie3end, ob die Reduktion der Falgaiturch eine verbesserte Model-

lierung der Ereignisse entstanden ist oder ob eine zu sfargassung an die Trainingsdaten
vorgenommen wurde.

MMI -Parameterschéatzung

Die MMI-Parameterschatzung wird mit den Modellen Nir-Parameterschatzung initiali-
siert, welche augd28 Gauld'schen Mischungsverteilungen je Klasse bestehenexXperi-
mentellen Ergebnisse d&tMI-Parameterschétzung sind in Abb. 5.9 dargestellt, wolgei di
relative Fehlerratenreduktion sich jeweils auf die Kléikationsergebnisse der nML ge-
schatzten Mischungsparameter bezieht. In Abb. 5.9 (a)jestatative Fehlerratenreduktion

w
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rel. Fehlerratenreduzierung [%]
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T
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o

(a) Trainingsdaten aufgeschlisselt nach Merkma(e Vergleich von Trainingsdaten (DVD 1) und Testda-
ten (DVD 2, DVD 3)

Abbildung 5.9: Fehlerratenreduktion durch diéMI-Parameterschatzung von Modellen

auf den Trainingsdaten Uber die Iterationsschritte atdgen. Die hochste Reduktion der
Fehlerrate wird mit3,52 % fur die AMFCC-Merkmale erzielt. Danach folgen die Werte der
AAMFCC mit 38,08 % und derMFCC mit 31,35 %. In den erster25 Iterationen wird der
gro3te Teil der Verbesserungen erreicht, wie aus dem VadkeruKurve fir die Fusion der
Merkmalsvektoren (vgl. Abb. 5.9 (a), ,Fusion®“) entnommegrden kann, jedoch steigen die
Kurven selbst fir Iterationen oberhalb voR0 noch leicht an. Durch di&MI-Parameter-
schétzung ist es also moglich, die Fehlerrate auf den Tgsciaten nochmals um die Halfte
gegeniber deviL-Parameterschétzung zu senken.

Die auf den Trainingsdaten erreichten Fehlerratenredn&t sind nicht im gleichen Um-
fang auf den Testdaten zu erwarten, da ein Teil der Verbasgen durch eine Uberanpas-
sung der Modelle auf die Trainingsdaten entsteht. Spedielhohe Anzahl der Iterationen
lasst die Vermutung aufkommen, dass eine Uberanpassurigatielle vorliegen konnte.
In Abb. 5.9 (b) sind daher die Ergebnisse der fusionierterkitale MFCC + AMFCC +
AAMFCC) fur die Trainings- und Testdaten Uber die Iterationen estgjlt. Erwartungsge-
malf fallen die Fehlerratenreduktionen auf den Testdated\de 2 und DVD 3 geringer aus
als auf den Trainingsdaten der DVD 1. Jedoch sind fiir die iDd&x zweiten Sitzung eine
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Abbildung 5.10: Vergleich der Klassifikationsraten fur Modelle aus 8- und MMI-Parameter-
schatzung auf Testdaten (DVD 2, DVD 3)

relative Fehlerratenreduktion vdms,86 % und fir die Daten der dritten Sitzung véni2 %
zu verzeichnen.

In Abb. 5.10 sind die Klassifikationsraten der Testdatenzsegiten und dritten Sitzung
als Vergleich zwischeML- und MMI-Parameterschatzung dargestellt. Es zeigt sich hierbei
ein nicht einheitliches Bild fir die Klassen, da einige leeamd einige schlechter erkannt
werden. Insgesamt jedoch verbessert sich die mittleresKilationsrate (avd‘) auf beiden
Testdatenséatzen.

5.4 Quellenauswahl und Fusion
Die Lokalisation von Sprechern und akustischen Ereignisstordert eine gewisse Menge
an verteilten Mikrophonen in einem Raum. Dadurch ergildt die Moglichkeit, auch fur die

Identifikation eine Auswahl oder Fusion der verfugbaren fgjghonsignale vorzunehmen.
In dieser Arbeit wird die Fusion nach der Modellbewertungerédbetrachtet. Abbildung 5.11

»[Merkmalsextraktiop —&( Modellbewertung
{Merkmalsextraktio}:[ Modellbewertung
»{Merkmalsextraktiop =g Modellbewertung

{Merkmalsextraktio}:[ Modellbewertun@/

Abbildung 5.11: Fusion und Selektion vohikelihoodWerten bei der Ereignisdetektion

|

Selektion
&
Fusion

Mikrophone / JACK
Bewertung

|

zeigt diesen Ansatzpunkt, welcher eine Fusion oder Selekiif Grundlage ddrikelihood
Werte im System der akustischen Ereignisdetektion vorrtim@rundséatzlich wird zunachst
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eine Entstérung und Merkmalsextraktion fur alle verflugmaAudiosignale der Mikrophone
vorgenommen. Anschlie3end werden Hikelihoodsder Merkmalsvektoren mit den vorab
trainierten Modellen berechnet. Fur die finale Entscheijdwelches Ereignis vorliegt, wird
eine Fusion oder eine Selektion dekelihoodsoder auch eine Kombination aus beidem
vorgenommen.

5.4.1 Ansatze zur Fusion von Modellbewertungen

Die Datenbasis zur Ereignisdetektion beinhaltet Aufnatnw@n 22 unabhangigen Mikro-
phonen, welche i® Gruppen angeordnet sind. Da die meisten Ereignisse numgeiriege
zeitliche Dauer aufweisen (z. B. Klopfen) oder keine eiridguPosition im Raum besitzen
(z. B. Applaus), ist eine verlassliche Ausrichtung eingalBiformung auf die Position ei-
nes Ereignisses schwierig oder unmdglich. Daher wird ang akustischen Strahlformung
verzichtet, wie sie bei der Sprecherprotokollierung verset wird.

Die Parameterschatzung der Modelle kann prinzipiell awdizieisen erfolgen. Entweder
wird flir jedes Mikrophon separat ein Satz von Parameteralggst, so dass mikrophonspe-
zifische Modelle entstehen, oder samtliche Daten aller dfikpne werden zur Schéatzung
der Modellparameter verwendet. Letzterer Ansatz bededass mehr Daten pro Modell zur
Parameterschatzung zur Verfiigung stehen, da ein Eremg2@deicht variierenden Aufnah-
men vorliegt. Experimente mit mikrophonspezifischen Mtaeteigten schlechtere Erken-
nungsergebnisse als die Verwendung eines mikrophonunglg@i Modells. Daher wurden
die weiteren Experimente mit einem Modell fir alle Mikropieodurchgefuhrt.

Im Anhang A.3 (S. 120) befinden sich die zwei Tabellen Tab. undl Tab. A.2, welche
die Motivation fur die folgenden Untersuchungen liefereid® Tabellen zeigen die Klas-
sifikationsraten der Testdaten aufgeteilt nach 2ieMikrophonen, so dass die Spannbreite
der Klassifikationsraten zwischen den vorliegenden Mikmojkanélen deutlich wird. Ein
Beispiel ist das Ereignis Lachen, welches im Datensatz 8 P vom besten Mikrophon
zu 100,00 % (Mikrophon20) und vom schlechtesten Mikrophon nur&w95 % (Mikrophon
10) richtig klassifiziert wurde. Umgekehrt ist das Mikrophzihmit einer Klassifikationsrate
von 87,50 % eines der schlechtesten Mikrophone fiir die Identifikaties Breignisses Klop-
fen und das Mikrophono0 liefert mit einer Klassifikationsrate vor0,00 % eine perfekte
Leistung. Ein Mikrophon, welches ein Ereignis schlechsklfziert, kann folglich flr ein
anderes Ereignis optimal sein.

Die Vermutung, dass bestimmte Mikrophone durch ihre Lagheicht flr einzelne Ereig-
nisse optimal sind, kann durch den Vergleich der Tabelleteriegt werden. Beispielsweise
konnen die mit dem Mikrophoi) aufgenommenen Ereignisse Klopfeii;) als Gegenbei-
spiel verwendet werden. Im Datensatz der DVD 2 wird diesegfrs in allen Aufnahmen
des Mikrophond 0 richtig erkannt. Jedoch werden die Aufnahmen von KlopferDiaten-
satz der DVD 3 von diesem Mikrophon mit am schlechtestersKiagert. Da die Lage der
Mikrophone kein Kriterium fur eine Selektion ist, werdentwénd der Klassifikation alle
Mikrophonaufnahmen gleich behandelt.

Untersucht werden drei Ansatze zur Selektion und Fusiorvolidiegenderiikelihoods
Alle drei Verfahren sind durch die alleinige Betrachtung dielihoodWerte unabhangig
von der zugrunde liegenden Methode der Modellparametétaehg und werden sowohl mit
den Modellen deML- als auch deMMI-Parameterschatzung verwendet. Gegeben seien fir
jedes Mikrophonsignal: der M Mikrophonsignale eine Menge val Merkmalsvektoren
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Xl(”fv) deren Klassenzugehdrigkeit niltbezeichnet wird.

Maximum-MAP-Entscheidungsregel

Die optimale Entscheidungsregel ist durch die ,Maximum Atedori“-Entscheidungsregel
(MAP-Entscheidungsregel) gegeben. Da mehr als ein Mikvaur Verfiigung steht, kann
zwar fur jedes Mikrophon eine optimale Entscheidung duiehMAP-Entscheidungsregel
getroffen werden, jedoch ist dann noch eine Entscheiduhgen22 Ergebnissen zu tref-
fen. Hierzu wurde die MAP-Entscheidungsregel um einenareitmax-Operator erweitert

(Maximum-MAP), so dass das Maximum aller MAP-Werte UbeemlMikrophonen ver-

wendet wird. Die Maximum-MAP-Entscheidungsregel lautet:

~

) = argmax {P(Q = k:|X{mN))} : (5.12)
k,m

Es wird also das Mikrophon ausgewahlt, deren a posteriohrgdhneinlichkeiten auf die
sicherste Entscheidung hindeuten.

Mehrheitsvotum

Die zweite Entscheidungsregel verwendet ein Mehrheitsaaiber alle Kanale, um die Ent-
scheidung fur eine Klasse zu treffen. Zunachst wird innlereanes jeden Kanals eine Hy-
pothese)(™ fiir das beobachtete Ereignis anhand der MAP-Entscheideggjsaufgestellt.
Anschlie3end wird die Klasse ausgewahlt, welche am haafigds Hypothese genannt wur
de. Die Entscheidungsregel des Mehrheitsvotums lauteit:som

k
QO(m)  Mehrheit & (5.14)

MAP-Produkt-Entscheidungsregel

Die Maximum-MAP-Entscheidungsregel trifft eine Auswabbkallen Kanalen fir die end-
gultige Entscheidung. Dabei kann ein stark gestorter Kamtisehr niedrigernikelihood
Werten zu einer Fehlentscheidung fuhren, weil durch diemhienung der MAP-Entschei-
dungsregel die absoluten Werte dételihoodsvernachlassigt werden. Diese Unzulanglich-
keit wird im Mehrheitsvotum umgangen, indem die MehrheitEitscheidungen betrachtet
wird. Hierbei gehen jedoch nur die Werte dakelihoodsinnerhalb eines Kanals in die Ent-
scheidung ein und nicht ein Vergleich der Werte zwischenKimélen. Die MAP-Produkt-
Entscheidungsregel versucht diesen Aspekt zu beriickggchtind eine Fusion ddrike-
lihood-Werte aller Kanale durchzufihren. Unter der Annahme, das#/lerkmalsvektoren
der Mikrophone voneinander statistisch unabhangig soidt f

M
X xR0 =k = T (rxiRie=5). (5.15)

m=1
Ferner sei das Auftreten aller Ereignisse gleich wahrsdislj so dass die MAP-Produkt-
Entscheidungsregel definiert werden kann durch:

Q = argmax {p(Xl(lj)V, . 7X1(:]\]{/)|Q = l{;)} . (5.16)
k
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Die MAP-Produkt-Entscheidungsregel verwendet expligtshnahme, dass die Merkmals-
vektoren an den Mikrophonen statistisch unabhangig vemeier sind. Diese Annahme
konnte fur weit voneinander entfernte Mikrophone zutmeffjedoch ist dies fur Mikrophone
einer Mikrophongruppe womaoglich nicht gegeben.

5.4.2 Experimentelle Ergebnisse

Die Experimente verwenden die Datenbasis der akustiscretgritsidentifikation des Pro-
jektesCHIL. Die Abb. 5.12 zeigt einen Vergleich der Klassifikationsraauf den Testdaten
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80 H [ Maximum-MAP
:] Mehrheitsvotum
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Abbildung 5.12: Vergleich von Auswahlverfahren und Kombinationsansazerakustischen Ereig-
nisidentifikation ML-Parameterschatzung, 1&MM, DVD 2 und DVD 3)
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(DVD 2 und DVD 3) zwischen den drei Entscheidungsregeln undreEinzelerkennung,
jeweils aufgeteilt nach den Ereignissen. Dabei sei darsugfdwiesen, dass die Ergebnisse
der Einzelerkennung, wie sie aus den vorherigen Kapitekatua sind, jeweils die Klas-
sifikation aller Aufnahmen eines Ereignisses beinhaltét. Zigrunde liegenden Modelle
sind Gauld'sche Mischungsverteilungen rd8 Verteilungen. Die mittlere Klassifikations-
rate (,avg’) ist in den drei Ansatzen im Vergleich zu den ErgebnissenEdezelerkennung
verbessert worden.

In Tab. 5.1 sind die Klassifikationsraten fur verschiedemsgize der Modellparameter-
schéatzung gegeben. Es werden die ErgebnissklddParameterschatzung denen des diskri-
minativen Lernverfahrens durdiMI gegentber gestellt. Dabei wird deutlich, dass die Ver-
besserung der Modelle durch das diskriminative Trainingldulie Fusion detikelihood
Werte an Bedeutung verliert. Sowohl dilt- als auch dieMMI-Parameterschéatzung liefern
vergleichbare Resultate nach der Fusion, wobei die WahAdsatzes, d. h. ob ,Maximum-
MAP*, ,Mehrheitsvotum® oder ,MAP-Produkt®, keinen signikanten Unterschied macht.

Diskussion und Ausblick

Zuletzt soll das Potential zukunftiger Ansétze fur die \é&=$ferung der Selektion und Fusi-
on vonLikelihoodsanhand eines Experiments untersucht werden. Hierzu weligdrike-
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Daten | hyp 2 | pvb 3 | DVD 2+ DVD 3 | Modelle

Ansatz
Einzelerkennung 91,64 | 89,58 90,70
Maximum-MAP | 94,29 | 92,58 93,45 ML
Mehrheitsvotum| 94,57 | 92,28 93,45

MAP-Produkt | 94,00 | 91,99 93,01
Einzelerkennung 93,21 | 90,43 91,85
Maximum-MAP | 94,57 | 92,58 93,59 MM
Mehrheitsvotum| 94,57 | 92,28 93,45

MAP-Produkt | 94,57 | 91,99 93,30

Tabelle 5.1:Vergleich der Klassifikationsraten fur unterschiedlichraiilingsverfahren

lihoodsaller Mikrophone fiir ein Ereignis darauf untersucht, ob Mikrophonsignal exis-
tiert bei dem das Ereignis richtig identifiziert wird. Bener optimalen Wahl eines Kanals
wiurde in diesem Fall das Ereignis richtig erkannt werdee.Abb. 5.13 zeigt den Vergleich
zwischen der Einzelerkennung, dem Mehrheitsvotum und pigmalen Wahl eines Mikro-
phons. Fir einige Ereignisse ist bereits das Maximum desdffizationsraten erreicht, falls
nicht die zugrunde liegenden Modelle verbessert werdea.Kbassifikationsraten einiger
anderer Ereignisse, wie z. B. Papiep\,), konnten jedoch betrachtlich gesteigert werden.

100 — —
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[ 1Mehrheitsvotum
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75 [T T A T
co ds kn la
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Abbildung 5.13: Vergleich der Klassifikationsraten zwischen Einzelerkenyy Mehrheitsvotum und
optimaler Mikrophonwahl auf Testdaten (DVD 2, DVD 3)
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6 Middlewareund ambiente Intelligenz

Die Amigo Architektur orientiert sich an den durch die Visider ambienten Intelligenz auf-
gestellten Anforderungen an eine intelligente Hausumgglpamio6]. Im vernetzten Haus
werden Applikationen und Dienste entsprechend den Bed8dn der Nutzer gestartet, kon-
figuriert, verwendet und beendet. Zuséatzlich kann die Aaigstg mit Komponenten zeitlich
variieren, da diese in das Haus eingebracht oder aus dem didfiesnt werden bzw. ihre
Position im Haus andern. Somit ist die vernetzte Hausumggeturch eine starke Dynamik
gepragt, welcher durch die gewahlte Architektur Rechnuetgagen wird [SBGO05].

Ein weiterer Aspekt ist die Interaktion mit vorhandeMiddlewareund Technologien zur
Vernetzung. Das Amigo System verwendet einen semantigehggtz, um eine gro3tmaogli-
che Interoperabilitat zu erzielen. Hierbei wird im AmigosEsm die Bedeutung einer Einheit
durch eine Referenz zu einem definierten Vokabular von Aigk@m (Ontologie) gekapselt,
welche ein spezielles Gebiet von Wissen reprasentierergd GM).

Im Folgenden wird gezeigt, wie die Ideen des semantisché&zeN&ir die vernetzte Haus-
umgebung genutzt werden kénnen. Anschliel3end wird diedktien zwischen den Diens-
ten mittelsWebserviceSchnittstellen erklart und ein Uberblick tber die Amigcchitektur
gegeben. Zum Abschluss wird das Amigo Kontextmanagemdrdarahdes Beispiels der
akustischen Szenenanalyse diskutiert.

6.1 Semantisches Netz

Das semantische Netz (engemantic wepist als Weiterentwicklung ded/orld Wide Web
(WWW entworfen worden, um die derzeitigen Unzul&nglichkeitanlUmgang mit Infor-
mationen zu beheben {®1]. Seit Erfindung deblypertext Transfer Protocol@éHTTP) im
Jahre 1990 ist dag®/WW auf eine fir den Menschen unuberschaubare Gré3e gewachsen
([ISCO7]: Jul 2007, 489.774.2690stsim Domain Name Syste(DNS)). Dadurch ist der
Nutzen fur den Einzelnen eher begrenzt, obwohl die verfiggbéenge an Informationen
gestiegen ist. Erst die Mdglichkeit einer durch Maschinestguerten Suche, Verarbeitung
und Auswertung wird dem Nutzer einen spurbaren Vorteildem[BHLO1].

Die vernetzte Hausumgebung bildet wie &88/Woder zukiinftig das semantische Netz
einen Wissensraum mit vielen heterogenen InformatiorkueDieses Wissen kann nur
durch eine automatische Verarbeitung fur den Nutzer esssbh werden, um ,intelligente
Systeme” zu realisieren. Somit ist es naheliegend, in daeteten Hausumgebung die Kon-
zepte und Ideen des semantischen Netzes einzusetzen. trardetes semantischen Netzes
stehen die Ontologien, die prasentiertes Wissen fur Mascrannotieren und damit erst fur
Maschinen verstandlich machen.
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6.1.1 Ontologien

Eine Ontologie stellt entsprechend [Gru93] eine ,expiifitrmale Spezifikation einer ge-
meinsamen Konzeptualisierung” dar. Grundgedanke hiésbdie Reprasentation einer ge-
meinsamen Wissensbasis durch die formale Festlegung \gniffBa und deren Relationen.
Eine Ontologie soll die fir einen Menschen verstandlich&@ormationen und deren Zu-
sammenhange Maschinen zuganglich machen, so dass einkime#lscVerarbeitung und
Interpretation maglich wird.

In der AmigoMiddlewarewird die Web Ontology Languagé®©WL) [MHO04] verwendet,
um Ontologien fur die vernetzte Hausumgebung zu ersteBanbasiert auf derResource
Description FrameworkRDF), welches ein€&xtensible Markup LanguagXML) [B*08b]
nutzt.

Die Amigo Ontologien sind unter [R08] verfligbar und frei zuganglich. Sie definieren un-
ter anderem das Vokabular zur Reprasentation von Sensgegéten und Diensten. Die mit
diesem Vokabular darstellbaren Kontextinformationenassén beispielsweise Sensormess-
werte (Temperatur), vorhandene Gerate im Haus (Bildschtiamlischrank), die Zustéande
der Gerate (Ein, Aus, Standby) und die Fahigkeiten von Den@elligkeitskontrolle, Be-
nachrichtigungsdienst), um an dieser Stelle nur eine Abkntanennen.

Die Nutzung von Ontologien ist nicht begrenzt auf die von §aworgegebenen Vokabu-
lare und kann durch eigene Ontologien ergénzt werden. &@miten auch neue Zusammen-
hange, die nicht in den bestehenden Ontologien berlckgiettirden, durch das Erstellen
und Verdoffentlichen einer Ontologie in das System integreerden. Ist der Kontext einer
Information hinreichend durch Ontologien beschriebenkaon die Information in Form
einerRDF-Beschreibung im System dargestellt werden.

6.1.2 Kontextinformation

Eine im System vorliegende Kontextinformation wird zum Zke der Verdffentlichung
den Ontologien entsprechend beschrieben und irR&R-Modell verpackt. Dabei unter-
scheidet daRDF-Modell allgemein die drei Informationstypen RessourdgeBschaft und
Objekt. Eine Kombination dieser drei Typen wird &®F-Tripel bezeichnet und stellt ei-
ne Aussage Uber eine Ressource in einer definierten Doméfendsh statement[B*08a).
Ein RDF-Modell kann durch einen sprachunabhangig®+Graphen reprasentiert werden.
Ressourcen werden durch Ellipsen, Eigenschaften duraihbftete Pfeile und Objekte als
Rechtecke gekennzeichnet.

TemperatureSensao

timestamp

22.05.2006
13:15

Abbildung 6.1: Beispiel einesfRDF-Graphen zur Beschreibung einer Temperaturinformation
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<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http ://wwwv.w3.0rg/1999/02/22 rdf—syntax—ns#"
xmlns:amigo:<http ://amigo.org/owl/AmigolCCS . owl#>
xmlns:domotic:<http ://amigo.org/owl/Domaotics . owl#>
xmlns:context:<http ://amigo.org/owl/ContextTransgoowl#>
<domotic: TemperatureSensor >
<context:timestamp>
2006-05—22T13:15:15.452+0200
</context:timestamp >
<context:isLocatedln>
<context:room>
<context:identifier >
Kitchen
<context:identifier >
</context:room>
</context:isLocatedln>
<amigo:temperature>
21.5
</amigo:temperature >
</domotic: TemperatureSensor >
</rdf:RDF>
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Liste 6.1: RDF-Beschreibung einer Temperaturinformation

Die Liste 6.1 zeigt ein Beispiel fur dRDF-Beschreibung einer Temperaturinformation in
XML-Notation fur derRDF-Graphen aus Abb. 6.1. Die Aussage der Kontextinforma#tian |
tet, dass ein TemperatursenstefperaturSensyrwelcher sich in dem Raunms{ocatedIn
mit dem Bezeichneidentifier) Kitchenbefindet, zum angegeben Zeitpuniinestampdie
TemperatuR1,5 (temperaturggemessen hat. Die Zeilen 3-6 der Liste 6.1 beinhalten die Ab
kirzungen und Verweise auf die verwendeten Ontologien.Tesperatursensor ist als Ge-
rat in der Ontologie der Hausvernetzungmotics.owbeschrieben. Die kontextbezogenen
Zusammenhange stammen aus der Ontol@gietextTransport.owlund die Beschreibung
des Temperaturwertes ist aus der Amigo Ontol@gragolCCS.owentnommen worden.

Nachdem die Grammatik und das Vokabular zur Darstellundrdermationen durch die
Ontologien festgelegt sind, werden nun gemeinsame Deiiv@ti zur Abfrage der Informa-
tionen benotigt. Applikationen, die Informationen suchieandtigen eine definierte Abfra-
gesprache, welche von den Kontextquellen verstanden uadoegtet werden kann.

6.1.3 Abfragesprache fur Kontextinformationen

Eine maschinelle Verarbeitung von Informationen bendatigiben der Reprasentation der
Daten mittels einer Ontologie auch eine definierte Abfragashe. Die AmigdViddleware
verwendet diSPARQL Protocol and RDF Query Langug@PARQN [PS08], um Informa-
tionen abzufragen. Als Beispiel soll nun eBBARQLEFrage fuir die Kontextquelle aus Abb.
6.1 vorgestellt werden.

Eine SPARQLFrage gliedert sich in zwei Teile. Zunachst werden Ubee déflenge von
Variablen die Namen der Riickgabevariablen der Objektgdésgt (Liste 6.2: Zeile 5). An-
schlieBend wird tber ein Muster von Tripeln der kontexeigZlisammenhang der gesuchten
Informationen definiert, beRDF sind dies die Ressourcen und Eigenschaften (Liste 6.2:
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PREFIX domotic: <http ://amigo.gforge.inria.fr/owl/Doatics.owl#>
PREFIX amigo: <http ://amigo.gforge.inria.fr/owl/Ami¢@CS . owl#>
PREFIX context:<http ://amigo.gforge.inria.fr/owl/CoaxtTransport.owl#>
PREFIX rdf: <http ://www.w3.0rg/1999/02/22 rdf —syntax—ns#>
SELECT ?room ?temp ?time WHERE {

?id rdf:type domotic: TemperatureSensor .

?id context:isLocatedln ?r

?r context:identifier ?room .

?id amigo:temperature ?temp

?id context:timestamp ?time .}

© 00 N o o~ W N P
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Liste 6.2: Beispiel einelSPARQLFrage nach Temperaturinformationen

Zeile 6-10). Somit kann sowohl gezielt nach Objekten in infationen als auch nach dem
Kontext gefragt werden. Optional kbnnen Préfixe zur Verkiigzverwendet werden (Liste

6.2: Zeile 1-4). Die in Liste 6.2 gestellte Frage sucht eziphiach den Kontextinformationen

von Temperatursensoredgmotic: TemperatureSengarnd méchte neben der Temperatur-
information (?temp auch die Position des SensoPsdonm) und den Zeitpunkt der Messung

(?time wissen.

TemperatureSensoy TemperatureSensoy

22.05.2006|

21,5 1315 ?time

(a) Beispiel einesRDF-Graphen zur Be- (b) SPARQLBeispielfrage nach Tempera-
schreibung einer Temperaturinformation turinformationen

Abbildung 6.2: Vergleich zwischen Kontextinformation und Kontextabfag

Vergleicht man die Frage aus Liste 6.2 mit der Informatioslaste 6.1 so kann festgehal-
ten werden, dass dBPARQLFrage eine Art von Sieb flr Informationen definiert (vgl.kAb
6.2). Zum einen werden definierte Ressourcen und Eigertechgénannt, um die Men-
ge an Kontextquellen einzuschranken. Zum anderen werdea dRlatzhalter mehrere In-
formationen gleichzeitig abgefragt. Durch die Einschrink der gesuchten Ressource auf
Temperatursensoren aus der Heimvernetzuaiognptic: TemperatureSengaverden andere
Temperaturinformationen, wie zum Beispiel die von Kihtéeiken, ausgeschlossen.

Nachdem die Grammatik, das Vokabular, die Beschreibunglimédbfrage von Kontext-
informationen beschrieben wurden, wird im Folgenden dieh8wach Kontextquellen und
die Interaktion mitihnen beschrieben. Dienste, die Infationen anbieten, missen durch ei-
ne geeignete Technik im Netz verdffentlicht werden, so eass Applikation, die Informa-
tionen sucht, diese finden und abfragen kann. Diese Aufgabks eentralen Anlaufpunktes
Ubernimmt ein Verzeichnisdienst.

6.1.4 Verzeichnisdienst

Die Aufgabe des Verzeichnisdienstes ist die Speicherumglnimrmationen tber Dienste
und deren Referenzen im Amigo System. Dabei verwaltet dexeihnisdienst eine hierar-
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chisch strukturierte Datenbank von Informationen. Diek&innen nach de®@erverClient
Prinzip auf diese Daten mittels eines festgelegten Prdi®kagreifen. Im Amigo System
wird das von deinternational Telecommunication Un{tTU) standardisiertéightweight
Directory Access ProtocdLDAP) [Z106] der X.500 Architektur [ITUO1] verwendet. Die
Amigo Middlewarestellt geeignete Methoden zur Suche von Diensten basienaildAP
zur Verfugung.

Hat eine Applikation einen geeigneten Dienst Uber den Venpésdienst gefunden, so
ist der néchste Schritt die Interaktion mit dem Dienst. Dkaan zum einen die Abfrage
von Informationen sein (Beispiel: Temperatursensor) aden anderen das Auslésen von
Aktionen durch den Dienst (Beispiel: Anschalten einer Lajnpm Amigo System werden
zur InteraktionWebserviceSchnittstellen verwendet.

6.2 Webservice

Die vom Amigo System im Netz bereitgestellten Dienste kesiVebserviceschnittstellen
[WWWO02], um Methoden flr Applikationen oder Dienste bezegitellen. Die Beschrei-
bung der Schnittstellen kann semantisch mit der im Projekigh entwickelten Sprache
Amigo-Soder rein syntaktisch mit déeb Services Description Langua@®SDL) [CT07]
erfolgen.Amigo-Sist eine verallgemeinerte Form défeb Ontology Language for Web Ser-
vices(OWL-S [DAMO6], die gegenluber deDWL-Sum Klassen und Eigenschaften fur die
Unterstitzung vorQuality of Servicg QoS und das Kontextbewusstsein erweitert wurde
[MKGIO7].

Jeder Amigo Dienst wird mit detdniform Resource Nam@&RN) ,,urn:amigo” im Amigo
System gekennzeichnet. EiklRN [M 797] ist eine dauerhafte, ortsunabhangige Bezeich-
nung einer Ressource, die das Schésmi&orm Resource IdentifigfURI) vom Typ ,urn®
[BT05a] verwendet.

N
Applikation Dienst
Verzeichnisdiens -
Exportiere Methoden
- String GetTime()
Suche Methoden - Int Add(int m, int n)
Dienstadresse (IP)

Binde(IP,MethodeH l Quittiere(Bindenummer)

RPC: T= GetTime(} Aufruf GetTime()
T="11:55" return("11:55")
N ——

Zeitlicher Ablauf

Abbildung 6.3: Interaktion zwischen Applikation und Dienst mittééebservices

In Abb. 6.3 ist die zeitliche Abfolge der Kommunikation bedrdverwendung eines ex-
portiertenWebservicedurch eine Applikation gezeigt. Zunéchst exportiert degridt seine
zwei Methoden GetTimeund Add), indem er sie bein DAP-Verzeichnisdienst registriert.
Eine Applikation kann diese Methoden Uber den Verzeicherst suchen und die Adresse
des Dienstes ermitteln. AnschlieBend bindet die Appldmtliie Methoden an die Adresse
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und erhéalt als Quittung die Bindenummer vom Dienst. DurcleeRemote Procedure Call
(RPQ kann nun die Applikation die Methoden des Dienstes verngand

6.3 Amigo Architektur

Grundsatzlich gliedert sich die Amigo Architektur in viestichten: PlattformiMiddleware

intelligente Dienste und Applikationen (vgl. Abb. 6.4} [J6]. Diese Schichten werden in den
folgenden Kapiteln naher betrachtet, wobei deren AufgaBanktionen und Schnittstellen

spezifiziert werden.

Applikationen ‘ Amigo Applikationer‘

Intelligente gg

Benutzer | o2 | 3

Dienste | 8% | L0 |lo3w |3 om
OSsT (920 (oo (|38 & x
30 (322 (|22 ||&3 S
S50 ||5&8C =0pcC ||Q= 7=
2S=s 02K ||S=R (|20 23
“=c |70 [|[@50 ||3& @@
€8 a”" || 7| 3"
St =) o) =3
a3 1
2L

Abbildung 6.4: Spezifikation der Amigo Architektur gemanas]

6.3.1 Plattform

Die vorhandenen Plattformen in einer vernetzten Hausumyglstellen eine heterogene
Umgebung flr die Verwendung von Software dar. Dabei vaatiaie in den Bereichen Spei-
cher, Rechenleistung, Betriebssystem, Benutzer- undidekaschnittstellen. Das Spektrum
der anvisierten Gerate, auf denen die AmMialdlewareeingesetzt werden soll, reicht von
Haushaltsgeraten Gber Smartphones, Notebooks bis hinrtertaltungselektronik. Diese
Gerate nutzen neben den verbreiteten BetriebssystemeatoWsn Linux, Windows Mobile
und Symbian OS auch zum Teil hardwarespezifische Softwayelbumgen.

Eine hoher Anteil an Hardwareplattformen wird im Projekt yondurch die Verwendung
der auf Java basierende®pen Services Gateway InitiativBlattform (OSGHPlattform)
[OSGO08] abgedeckt. Entwickler kbnnen zudem optional uMi@dows mit demnet-Frame-
work Applikationen und Dienste erstellen. D@SGHLaufzeitumgebung eignet sich fur die
plattformibergreifende Entwicklung von Software, da siealen Geraten mit einefava
Virtual Machineund ausreichenden Ressourcen ausgefiihrt werden kann|[SS07
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Eine Applikation auf de©SGFHPlattform gliedert sich in Softwarepakete (er@jlindles,
deren Lebenszyklen durch die Zustande ,Installiert, 8tatt Aktiv, Stoppend, Aufgelost
und Entfernt” festgelegt sind. Hierbei teilen sich die Agationen auf eine©SGIPlattform
die vorhandenen Ressourcen und konnen applikationsidifery aktiveBundlesund deren
exportierte Klassen nutzen. Jedasndleverfugt tber einen Lademechanismus flur Klassen
(engl.Class Loade), welcher den Speicherbereich der Klassen (e@lglss Spaceverwal-
tet. In diesem Speicherbereich sind drei Arten von Klassehanden:

e Private Klassen: Exklusiv durch dBsindlegenutzte und bereitgestellte Klassen.
¢ Importierte Klassen: Klassen, die von andeBemdlesbereitgestellt werden.
e Exportierte Klassen: Klassen, die fir andBrendlesbereitgestellt werden.

Zusatzlich existieren Mechanismen zum Installieren, t8tarStoppen, Aktualisieren und
Loschen deBundlesDiese Verwaltungsmechanismen sind besonders im BererdBeréte
mit eingeschrankter Benutzerschnittstelle notwendigeime Fernwartung zu ermdglichen.

6.3.2 AmigoMiddleware

Oberhalb der Plattformschicht ist die Amiddiddieware mit ihrem interoperablen Kern
angesiedelt. Eine der Schliisseltechnologien des Amigte®gsist die nahtlose Integration
von heterogenen Strukturen im Bereich etabliekédleware(z. B. UPnP) und Geréten
in der vernetzten Hausumgebung. Diese Interoperabilitét mit Hilfe des interoperablen
MiddlewareKerns realisiert.

Interoperabler MiddlewareKern

Eine Middleware muss zum einen Funktionen zur Bekanntmachung und zur Sumhe v
Diensten imService Discovery ProtocdlSDP definieren. Zum anderen miussen Metho-
den zur Interaktion inService Interaction Protocdéstgelegt werden. Beide Protokolle sind
Middlewarespezifisch und im Allgemeinen zwischen zvivtiddleware Technologien nicht
austauschbar.

Im Amigo System ist die Aufgabe dédiddlewareKerns, eine fir die Dienste transpa-
rente Interoperabilitdt zu schaffen. Dabei vermittelt g@BP-Detection and Interoperabili-
ty“-Protokoll (SDI-Protokoll) [BI05] die Suchanfragen und Antworten, und gi&srvice In-
teraction Interoperability-Protokoll (SII-Protokoll) ermdglicht die Interaktion [SB@®@5].
Interoperabilitéat bedeutet in diesem Zusammenhang, dass unterschiedlichéviddle-
ware-Technologien miteinander kommunizieren und interagiga¢s ob beide die gleichen
Protokolle verwenden wirden.

In Abb. 6.5 ist das Beispiel aus [SB®5] gegeben, welches die Kommunikation zwischen
einem mobilen GeraRersonal Digital AssistenPDA) und einem Medienserver zeigt. Das
mobile Gerat verwendet d&ervice Location ProtocdSLP) und dieRemote Method Invo-
cation(RMI), und der Medienserver nutziniversal Plug and PlayUPnP) mit demSimple
Service Discovery ProtocdESDB und dasSimple Object Access Protod@OAB. Dieses
Beispiel wird hier vorgestellt, um die Realisierung derlfaeh geforderten Interoperabili-
tat durch die Amigaviddlewarezu erlautern. Zunachst initiiert der Benutzer Uber seinen
PDAdurch eineSLR-Anfrage eine Suche nach Medienservern im Netz. Diese #afvard
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Abbildung 6.5: Amigo interoperableMiddlewareKern

von derSLREinheit an dieUPnP-Einheit weitergegeben und mittels déDI-Einheit vom
SLRProtokoll auf dasSSDRProtokoll fir UPnP Ubersetzt. DidJPnP-Einheit erhalt vom
Medienserver als Antwort eine Beschreibung der verfigb&®enste mittels deSOAR
Protokolls. Anschlie3end veranlasst tiIEnP-Einheit denProxy GeneratoreinenRMI auf
UPNnP KommunikationsStubzu erstellen und diesen sowohl beRroxy Providerals auch
bei derSLP-Einheit zu publizieren. DePDA wird von derSLR-Einheit Uber die Verfugbar-
keit desRMI-Proxy informiert. Die Adresse deStubswird vom Proxy Providergeliefert
und derPDA kann transparent tber d&tubmit dem Medienserver kommunizieren, als ob
beide die gleicheMiddleware Technologien verwenden wirden.

Middleware

Die Amigo Middlewareist verantwortlich fur die Bereitstellung von Grundfurkien zur
Dienstsuche, Komposition und Interoperabilitat. Des @fe sind Medien- und Inhalts-
dienste fur die Unterhaltungselektronik in deliddleware implementiert, wie z. B. die
Speicherung und Verteilung von Medien. Entsprechend dézeXstudien aus [M05] sind
Dienste zum Schutz der Sicherheit und der PrivatsphareriMiiidlewareverankert. Ein
Dienst zum Mobilititsmanagement unterstitzt Nutzer beMdenvendung mobiler Geréte.

6.3.3 Intelligente Dienste

Die intelligenten Benutzerdienste im Amigo System nutze:n Aimigo Middlewarg um
Grundfunktionen fur die Entwicklung von Applikationen ierdvernetzten Hausumgebung
bereitzustellen [J05]. Eine der Kernaufgaben ist die Verwaltung und Verathe&jtvon Kon-
textinformationen, um Diensten automatisierte und iigetite Entscheidungen zu ermégli-
chen. Zusétzlich wurden Dienste implementiert, die z. B.dee Erstellung von Benutzer-
schnittstellen hilfreich sind. Im Folgenden werden dieiigsten Dienste erlautert.
Informationen Uber Benutzer und ihre Gewohnheiten werdenhddie Benutzermodel-
lierung bereitgestellt. Dieser Dienst erstellt eine Datrk Uber Benutzer und macht diese
Uber einéNVebserviceschnittstelle anderen Diensten zugéanglich. Jedes Bermiudell star-
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tet mit einem Stereotypenmodell, bei dem ein minimaler $atz Standardeigenschaften
angewendet wird.

Der Kontextbewusstseins- und Benachrichtigungsdieabt Bienste flr die automatisier-
te Benachrichtigung bei Eintreten eines Ereignisses ader Eombination von Ereignissen
bereit [ECBO06]. Applikationen kdnnen hierflir Regeln dedinein und beim Dienst hinterle-
gen. Dieser Uberwacht die Kontextquellen im System und dierchtigt die Applikation,
sobald eine hinterlegte Regel erfillt ist.

6.4 Kontextmanagement

Der Amigo Kontextmanagementdienst (er@bntext Management ServjceMs stellt eine
offene Infrastruktur fiir das Austauschen von Kontextinfationen bereit [RPS)7]. Hier-
bei werden sowohl Informationen Uber physikalische SesrgoBenutzeraktivitaten oder
ausgefuhrte Applikationen als auch deren Zustande vetarhmd bereitgestellt. Informa-
tionen, die aus der Kombination von unterschiedlichen [@nedder deren Abstraktion ent-
stehen, werden dabei als Kontextinformationen bezeichfiae Applikation kann diese
Kontextquellen Gber den Kontextmanagementdienst nutaeinsomit zu einer kontextbe-
wussten Applikation werden.

Das System zum Kontextmanagement beinhaltet drei Arterkeonponenten: Kontext-
quellen, Kontextnutzer und Kontextbroker. Eine Quelldltstabei den Nutzern Kontext-
informationen zur Verfigung, wobei der Broker als zentrgdemittiungsstelle zwischen
diesen fungiert.

6.4.1 Schnittstellendefinition und Kommunikation

Das Projekt Amigo hat durch die Entwicklung der Amilyiddlewareeine offene Losung
fur die Vernetzung von Diensten in der hauslichen Umgebwesgigaffen. Innerhalb dieser
Middlewarenutzen Dienste definierte Verfahren zur Dienstsuche (vap.16.2) und standar-
disierte Schnittstellen fur die Kommunikation. Eine voesin Schnittstellen ist di€on-
textSourceSchnittstelle, welche einen Satz von vi&kebserviceMethoden fur das Amigo
Kontextmanagementsystem definiert. Kontextquellen unaté&dnutzer missen diesen Satz
von Methoden implementieren, um im Kontextmanagemerggsyshiteinander kommuni-
zieren zu konnen [X5].

Fur die synchrone Kommunikation (vgl. Abb. 6.6 (a)) ist aef &eite der Kontextquelle
die queryMethode zu implementieren, welche als Ubergabeparanée3PARQLFrage
nach der Kontextinformation erwartet und als RuckgabedierAntwort auf diesSPARQL
Frage liefert. Die asynchrone Kommunikation (vgl. Abb. §) erfordert drei Metho-
den. Dies sind auf der Seite der KontextquelleslibscribeMethode und dieinsubscribe
Methode und auf der Seite des Kontextnutzeraigfy-Methode.

Die Kommunikation zwischen Kontextquelle und Kontextrautkann auf zwei Arten er-
folgen. In Abb. 6.6 (a) ist zun&chst die synchrone Kommutokadargestellt. Hierbei re-
gistriert sich die Kontextquelle mit einer BeschreibungeinEigenschaften beim Kontext-
broker und hinterlegt die Adresse zum Aufruf iniebserviceMethoden. Eine Applikation
kann zuné&chst den Kontextbroker durch ®iebservicd.ookupim Netzwerk finden und
anschlieBend eine Quellensuche durch die SpezifikatiodfErderungen an die Quelle
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Kontext- Kontext Applikation Kontext— Kontext- iKati
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(a) Synchrone Kommunikation (b) Asynchrone Kommunikation

Abbildung 6.6: Kommunikation zwischen Kontextquelle und Applikation

eingrenzen. Die Applikation stellt dann eine &PARQLbasierende Kontextfrage, worauf
die Kontextquelle direkt antwortet. Dieses Kommunikasieerfahren eignet sich zum direk-
ten Abfragen von Informationen. Es ist jedoch weniger geeigfalls die Applikation auf
ein bestimmtes Ereignis reagieren soll. Ein kontinuibeg Abfragen von Kontextquellen
erzeugt entweder eine hohe Last durch héufige Anfragen @desite hohe Latenz bis die
Anderungen bekannt werden, falls die Applikation nur sehkafragen stellt.

Eine Beobachtung von Sensoren ohne zyklisches Abfragekatgextquelle kann durch
die asynchrone Kommunikation erfolgen (vgl. Abb. 6.6 (B Applikation fordert wie im
synchronen Fall die Liste der Kontextquellen an. Bei digsiéant sie eine Subskription mit
einer SPARQLFrage durch und tbergibt dabei die Adresse \dlebserviceMethode (0-
tify-Methode), welche die Kontextquelle zur Benachrichtiguagvenden soll. Als Riickga-
bewert erhalt die Applikation eine eindeutige Identifibagnummer fir die Registrierung,
welche in derunsubscribeMethode verwendet wird, um die Subskription riickgangig zu
machen. Findet nun ein Ereignis statt, welches @8BARQLFrage der Applikation passt,
so wird diese Uber die neuen Kontextinformationen infortidierzu nutzt die Kontext-
guelle dienotify-Methode der Applikation, deren Funktionsparameter aafAtitwort der
SPARQLEFrage gesetzt wird.

6.4.2 Kontextbewusste Applikationen

Eine Applikation wird von einem Benutzer als ,intelligenwahrgenommen, falls die von
der Applikation getroffenen Entscheidungen dem Nutzemsiti erscheinen. Hierzu beno-
tigt diese Zugriff auf Kontextinformationen, so dass diephkation den aktuellen Kontext
erfassen kann. Die verfligbaren Kontextinformationen emrch der Applikation mitein-
ander verknipft und anhand von Entscheidungsregeln aesggwAnschliel3end kann die
Applikation eine kontextbewusste Entscheidung treffegicive vom Nutzer als ,intelligent*,
im Sinne von kontextabhéngig, wahrgenommen wird.

Die Idee des Amigo Systems ist, zun&chst jede Art von Inféionadurch eine Kontext-
guelle zu abstrahieren und diese anschlielRend miteinandesrknipfen. Dies kann durch
Dienste erfolgen, die Informationen eines Typs biindelnsiadls neue Kontextquelle wie-
der verfigbar machen. Als Beispiel kann hier Hecation Management Servi¢eMS) ge-
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nannt werden. Dieser Dienst kombiniert die unterschiééiicPositionsinformationen aus
beispielsweisd&kFID-Systemen, akustischen Lokalisierungstechniken undrand@uellen
in einer zentralen Datenbank und stellt anschlieRend dMesenbank als Kontextquelle an-
deren Applikationen zur Verfligung.

Ein weiterer Ansatz zum Aufbau ,intelligenter Applikatien ist die semantische Suche
nach Kontextquellen im vernetzten Haus mit Hilfe der Amigaddlewareund der Ver-
knupfung der verfigbaren Informationen in der Applikatseibst. Eine Applikation wird
als kontextbewusste Applikation bezeichnet, falls ein der Entscheidungen automatisiert
durchgefihrt wird und dabei auf Kontextinformationen lietrund nicht nur auf Eingaben
eines Benutzers.

6.4.3 Akustische Szenenanalyse als Kontextquelle

Die akustische Szenenanalyse nutzt die Signale der im Hatesilten Mikrophongruppen,
um gleichzeitig Positionsschatzungen und ldentifikatomen Personen und Ereignissen
durchzufuihren. Die hierbei generierten Kontextinformaén werden Diensten im Amigo
System zur Verfigung gestellt.

. " . >, timestamp | 02.03.2009
18:00:01

estimatedPosition| |

isPositionOf i

RelativeLocatio
relativeToSpace

X v identifier

identifier

Abbildung 6.7: Beispiel einer Kontextinformation der akustischen Szanetyse

In Abb. 6.7 ist beispielhaft eine Kontextinformation deualischen Szenenanalyse fir
eine Personenlokalisation dargestellt. Zur Vereinfagdes Graphen wurden die Préfixe der
Ontologie weggelassen, welche in'[@8] definiert ist. Die enthaltene Kontextinformation
sagt aus, dass der Nutzdrsich zum angegebenen Zeitpunkt im Rauman der Stelle
X =2,0mundY = 1,5m befand.

Betrachtet man das gesamte Aufgabenspektrum der akuwestistignalverarbeitung, so
muss neben der akustischen Szenenanalyse auch der Aspédardmunikation berick-
sichtigt werden. Da die akustische Szenenanalyse nichdieuBignale analysiert, sondern
auch eine Stérgerduschunterdriickung durchftihrt, soltilgich zur Rechenzeitersparnis
die entstorten Signale der akustischen Szenenanalyseéeftodhmunikation genutzt wer-
den. Um Uberlastungen des Systems und infolgedessen Aessis Audiodatenstroms
wahrend der Kommunikation vorzubeugen, wird die Berditgtg von Kontextinformati-
onen aus der akustischen Szenenanalyse (ASA) durch dasdgessDSGI-Bundle, OS-
GI:ASA' auf einerOSGHPlattform durchgefiihrt. DieséBundlewird durch eine Interpro-
zesskommunikation auf Basis eing®P-Datenstroms mit dem Modul der Sprecherproto-
kollierung verbunden.
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Nachdem nun die Architektur der Amiddiddlewareund die verfigbaren Dienste vorge-
stellt wurden, wird im folgenden Kapitel die Realisierureg dmbienten Kommunikation auf
Basis des Amigo Systems dargestellt. Diese Anwendungi®eispiel flr einen kontextbe-
wussten Dienst, der unabhéngig von expliziten Benutzgasien Entscheidungen trifft und
somit als ein Schritt in die Richtung von ambienter Intedlig angesehen werden kann.
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Das Konzept der ambienten Intelligenz beschreibt das Eaifevon Geraten aus dem Um-
feld der Benutzer bei gleichzeitiger Bereitstellung devarudurch die Geréate verfligbaren
Dienste [AM04]. Ubertragt man dieses Konzept auf den Bareier Kommunikation, be-
deutet dies ein Entfernen der klassischen Kommunikatendsg, wie z. B. des Telefons,
und den Ubergang von der gerateorientierten KommunikatiorFreisprechfunktionalitat.
Der Benutzer muss nun nicht mehr ein Telefon zur Kommuroketiufsuchen und mit sich
tragen, sondern kann jederzeit auch ohne Gerat kommuenzjSL.HO8].

Ein wichtiger Aspekt der ambienten Kommunikation, welches der Forderung nach ei-
ner freien Kommunikation folgt, ist die Realisierung vorgyseollow-Me-Fahigkeiten. Unter
dem Begriff ,Follow-Mé* wird im Rahmen dieser Arbeit die Fahigkeit des Systemsinesec
ben, eine Kommunikation dem Benutzer automatisch und samniextabhangig folgen zu
lassen. Ein Benutzer kann eine Kommunikation in einem Raanes und sich anschlie-
Rend frei in seiner Wohnumgebung bewegen, wahrend dasnsysiféir sorgt, dass das Ge-
sprach automatisch dem Benutzer folgt. Hierdurch treterteihnischen Randbedingungen
der Kommunikation in den Hintergrund, wahrend der Benusagnen taglichen Arbeiten
nachgeht.

Im Folgenden werden d&eamless Audio Interfa¢8Aln) und seine Komponenten vor-
gestellt, welches zur Realisierung einer ambienten Komkation verwendet werden kann.
Nach der Vorstellung der Systemarchitektur und der Integran die Middlewarewerden
die grundlegenden Module zur Signalverarbeitung erléufeim Abschluss wird die Erwei-
terung des Systems um Komponenten zur audio-visuellen Kamiation diskutiert. Um
eine klare Trennung zwischen devhddlewareDienst und der signalverarbeitenden Kom-
ponente vorzunehmen werden folgende Begriffe verwendet:,BAIntDienst* wird far
dasOSGI-Bundlevon SAIntverwendet, welches fir die Kommunikation mit ddrddle-
ware verantwortlich ist. Das SAIntModul“ bezeichnet daSparkModul*, welches als Teil
der Signalverarbeitung fur d&outingder Audiodaten und die Echtzeitkommunikation ver-
antwortlich ist.

7.1 Systemarchitektur undMiddlewareIntegration
Die Systemarchitektur der ambienten Kommunikation, dstegkt in Abb. 7.1, teilt sich auf

in die vier Bereiche Hardware, Signalverarbeitung, Edtkeenmunikation und kontext-
abhangige Steuerung. Der Begriff Hardware umfasst dieelem Mikrophone und Laut-

1DasSpeech processing and recognition too(8park ist eine modulare Software des Fachgebietes Nach-
richtentechnik zur digitalen Signalverarbeitung auf Coitepn.
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Abbildung 7.1: Blockschaltbild der Systemkomponenten der ambienten Konikation

sprecher im Haus, die entweder in Wanden oder Geraten iategind, sowie die zu de-
ren Betrieb notwendigen Verstarker und Analog-Digitaffitil-Analog-Wandler (AD/DA-
Wandler). Die Schnittstelle zwischen der Hardware und dém&re wird mittels dendack
Audio Connection Ki(JACK) [JACO8] realisiert, um eine geringe Latenz an der Scheites
zwischen Hardware und Softwarnd\(//SW zu erzielen.

Die Signale aus den Mikrophonen werden in der Signalveitang einer Echounterdri-
ckung und einer Storgerauschfilterung sowie gegebensmdaér adaptiven Strahlformung
unterzogen. Die Echounterdriickung teilt sich hierbei i@ dtdaptive Echounterdriickung
(engl. Adaptive Echo CancelgAEC) und in ein Nachfilter zur Reduktion der verbliebe-
nen Restechos auf. Innerhalb des Nachfilters wird neben diardliickung der Restechos
auch die Unterdriickung der Storgerdusche durchgefilid.ikahrkanalige Aufnahmen aus
Mikrophongruppen verwendet werden, so muss vor der adap®irahlformung die Unter-
driickung der Echos erfolgen.

Bei der echtzeitfahigen Kommunikation kdnnen zwei Falléetsthieden werden. Dies
ist zum einen die interne Kommunikation, bei der eine Vetthimg zwischen zwei Personen
im selben Haus aufgebaut wird. Zum anderen ist es die ext@nmenunikation zwischen
einer lokalen Person und einer entfernten Person.32dstModul muss im ersten Fall die
Daten wie ein Router zwischen den Rdumen austauschen. Riavgten Fall, dass ein
Kommunikationspartner nicht im Haus ist, verbindet 8&dntModul die Nutzer tber eine
»Internet Protocdl-Verbindung (P-Verbindung) mittels deReal-Time Transport Protocols
(RTP. In Abb. 7.1 sind beispielhaft eine lokale Verbindung ashien den Nutzern A und B
sowie eine externe Verbindung des Benutzers C aus dem RawamgZ&ddellt. Die Signalver-
arbeitung deSAlntist in der Lage, mehrere Verbindungen gleichzeitig zu wtigzen. Es
ist als fortlaufend aktives System konzipiert, um moglivleezdgerungen durch Startzeiten
auszuschlie3en. Da es zudem dauerhaft die Signalvetangdiir alle Raume durchfihrt,
ist die Systemauslastung konstant und nicht durch Lagespgepragt.

Integration in die Amigo Middleware

Die fur die Steuerung der Kommunikation bendtigten Koritégtmationen werden aus
der AmigoMiddlewarebezogen. DeSAIntDienst registriert sich hierzu bei den ben6tig-
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ten Kontextquellen mit Hilfe des Kontextbrokers und bauaednterprozesskommunikation
(engl. Inter Process CommunicatiphPC) zum SAIntModul auf. Zusétzlich werden Uber
dieselPC-Schnittstelle in der umgekehrten Richtung die gewonndtmrtextinformationen
anderen Applikationen und Diensten im Amigo System zurMguhg gestellt.

Bluetooth Haus B
o Position |
3
é A RFID > LMS
=
= : : Internet
( oscrasa ) ( oscsaint )
A A
' IPC ' IPC ’ " IPC
Y Y . N Y
g [ Akustische;[ Spark:SAInt 4 _ || ___ RTP-Daten | | & Spark:SAInt )
o | |(Szenenanalyse Add  [] | My 1]
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Lautsprecher --* UDP Lautsprecher

Abbildung 7.2: Blockschaltbild zur Integration vo8Alntin die AmigoMiddleware

In Abb. 7.2 sind die Abhangigkeiten der verschiedenen Kamepten und die Datenstro-
me fur eine Kommunikation zwischen zwei Hausern dargesMlie bereits in Abb. 7.1
detaillierter gezeigt wurde, verbind@ACK die Hardware mit der Signalverarbeitung. An
dieser Stelle werden auch die Audiodaten fur die akusti€4enenanalyse enthommen,
deren Kontextinformationen tber die Kontextquéll8Gl:ASAder Middlewarezur Verfu-
gung gestellt werden. Der untere Teil der Abb. 7.2 zeigt din&verarbeitung, die durch
IPC-Schnittstellen mit den Diensten deliddlewareverbunden ist. Der Datenaustausch in-
nerhalb deMiddlewarewird durchWebserviceAufrufe realisiert und basiert im Falle von
Kontextquellen auf delContextSourceéschnittstelle (vgl. Kap. 6.4.1).

Im Haus A sind als Lokalisierungstechniken die akustiscten8nanalyse und eRFID-
System vorhanden. Die Daten der beiden Kontextquellenewventh LMS zu einer neuen
Kontextquelle zusammengefasst. Diese wird durch 8amtDienst ((OSGISAInt) zur
Lokalisierung von Benutzern verwendet. Gleichzeitig iatgeren eine Applikation und die
graphische Schnittstelle va@Alint(, SAInt GUF) mit dem SAIntDienst. Im Haus B befindet
sich neben eineRFID-System auch eine Positionsbestimmung auf Basis von Bitléte
Signalen.

Die Kommunikation zwischen den Hausern verwendet die @rtést Signale aus der Si-
gnalverarbeitung. Diese werden durch &&ntModul entweder direkt im Haus oder tGber
eineRTRVerbindung weitergeleitet. Hierbei wird ein Kommunil@aisdienst (engAmbient
Communication ServicdCS auf einem entfernten Server verwendet, welcher fir den Sit
zungsaufbau und die Behandlung der Ubersetzung von Nekadmssen (engNetwork
Address TranslatiorNAT) zustandig ist.
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7.2 Signalverarbeitung

Die Aufgabe der Signalverarbeitung ist eine adaptive kilig der Mikrophonsignale vor
der Ubertragung durch das Kommunikationssystem. Hierbdisowohl eine Echounterdrii-
ckung als auch eine Storgerauschreduktion durchgeftiime. Echounterdriickung ist notig,
da die empfangenen Signale des entfernten Sprechers igbéadisprecher wiedergege-
ben werden und tber die Mikrophone im selben Raum aufgenamveeden. Falls keine
Filterung der Signale durchgefihrt wird, so kann der enteeSprecher sein eigenes Echo
horen. Wird auf beiden Seiten eine Freisprecheinrichtuergvendet, so kann es zu einer
Ruckkopplung der Signale und einem Aufschwingen des Syskemmmen. Die Echounter-
drickung ist somit nicht nur fir den subjektiven Horeindwaier Nutzer wichtig, sondern
auch fur die Stabilitat des Ubertragungssystems notwerlg Nachfilterung der Mikro-
phonsignale hinsichtlich mdglicher stationarer Storumigé optional, da es im Rahmen der
ambienten Kommunikation durchaus erwiinscht sein konases Hintergrundgerausche zur
Einordnung der aktuellen Aktivitdten mit Gbertragen werde

JACK

Verzdgerung

Detektor flr
nahe Spreche

JACK

Lautsprecher | Mikrophon
y

( )
- Spark:SAInt |

Abbildung 7.3: Blockschaltbild zur Echounterdriickung und Stérgeraulehiing desSAlnt

Die Abb. 7.3 zeigt das Blockschaltbild der Signalveranaitzur Echounterdriickung und
Storgerauschfilterung, wie es im Amigo System zur ambieK@nmunikation verwendet
wird. Die Signalverarbeitung iSparkarbeitet nach dem Prinzip eines diskreten Ereignis-
systems und ist modular aufgebaut. Jedes Modul wird einojefiihrt, sobald an jedem
Eingang des Moduls ein Datenpaket anliegt. Somit sind sakeStrukturen, bei denen Ein-
géange von Modulen von deren Ausgangen abhangig sind, niciBparkrealisierbar. Die
in Abb. 7.3 eingezeichnete Ruckkopplung der wiedergegab&mgnale des entfernten Spre-
chers, welche in der Echounterdriickung benétigt wird,lgtfidber JACK [JACO8]. Hierzu
wird ein virtueller Lautsprecher idACK erzeugt und intern mit einem virtuellen Mikro-
phon verknlpft (gestrichelte Linie). Sollte es BACK durch eine zu hohe Rechenlast zu
Paketverlusten kommen, so verliert die wiedergegebensplornm virtuellen Mikrophon
die gleiche Anzahl an Paketen wie die Tonspuren der aufgeraniMikrophonsignale. Es
besteht somit nicht die Gefahr, dass die beiden Tonspurticlzauseinanderlaufen. Im Fol-
genden werden die signalverarbeitenden Module und ihreundg liegenden Algorithmen
erlautert.



Ambiente Kommunikation 95

7.2.1 Begrenzer

Der Begrenzer ist eine notwendige Komponente, um die Stithidles Systems im Falle von
lauten Stérungen zu gewahrleisten. Bei akustischen Esesign mit hohen Energien, wie
z. B. einer laut rufenden Person in der Né&he eines Mikroplooles einer zuschlagenden
Tur, kann die begrenzte Dampfung der Echounterdriickungeruéntfernten Seite kurzzei-
tig nicht ausreichen und es kommt zu einer aufschwingenklestiachen Rickkopplung in
Form eines Pfeifens. Der Begrenzer nach [Z6197] dampft dig&nhgssignale, deren Ener-
gie oberhalb einer festgelegten Schwelle liegt, auf dem®titvert und beeinflusst Signale
unterhalb der Schwelle nicht.
Zunachst wird der gegléattete Spitzenweytn) der Energidxz(n)| eines Blocks iber den
zeitlichen Verlauf der Signalblocke(rn) mit
B (1 =714 —7R)xp(n — 1) + Tal(n)| (0 |Z(N)] > 2H(N —1)
O R rvict U x| < zyln - 1)

bestimmt. Die Parameter, fur die Anstiegszeit undy, fir die Abfallzeit beeinflussen die
Starke der Glattung und sind in informellen Experimente\kuastiklabor zur, = 0,9 und
Tr = 0,005 bestimmt worden. Anschlieend wird der Gewichtsfakior) entsprechend des
Schwellwertesy; durch

[ B Tn-1) gr 108 {zp(n)} > 7
[(n) = { B-Tn—1)+(1-0) far log{z,(n)} < vr (7:2)

berechnet. Die Glattungskonstante wurde experimentelf z4 0,9 bestimmt. Das Aus-
gangssignal des Begrenzers ergibt sich aus der Multipiikades Eingangssignalblocks
x(n) mit der Dampfund’(n).

Fur den Fall, dass die Bedinguhg; {z,(n)} > ~7 erfullt ist, wird der logische Ausgang
des Moduls fur mehrere Blocke auf ,Wahr* gesetzt. Dies digieat dem nachfolgenden
adaptiven Filter die kuinstliche Begrenzung der Eingamgsse und verhindert so eine még-
liche fehlerhafte Adaption.

7.2.2 Sprachaktivitatsdetektion

Die Sprachaktivitatsdetektion (en§jfoice Activity DetectiojfiVAD) ist eine der entscheiden-
den Komponenten im System, da basierend auf der Spraciatdiletektion Entscheidun-
gen in der Strahlformung, der Echounterdriickung, der Posisch&atzung und der Sprecher-
identifikation vorgenommen werden. Jedes dieser Teildgiggebiete hat spezielle Anfor-
derungen an eine Sprachaktivitatsdetektion, die ¥#bB alleine nicht erfullen kann. Eine
VAD kann entweder Sprache von Hintergrundgerauschen sicliersaheiden, was dazu
fuhrt, dass Teile der Sprache mit wenig Energie als Ger&usletssifiziert werden, oder ei-
neVAD kann so eingestellt werden, dass auch Sprachanteile nmiggerEnergie gefunden
werden, was dazu fuhrt, dass Stérgerausche haufiger alshepkkassifiziert werden.

Die akustische Strahlformung soll die Richtcharaktetider Mikrophongruppe auf einen
Benutzer immer dann anpassen, sobald dieser spricht.egitigche, wie z. B. Turen oder
Lufter, sollen hingegen ignoriert werden. Ein effizienters&tz hierzu wurde in [RS04] vor-
gestellt. Hierbei werden im Zeitbereich Mittelwerte derelgie berechnet und miteinander



96 Ambiente Kommunikation

verglichen. Ubersteigt der tiber ein kurzes Fenster gdbaitféert der Energie den langfris-
tig gemittelten Wert fur die Hintergrundstérung, so wirdeeEntscheidung fir Sprachakti-
vitat getroffen. Dieser Ansatz liefert in Umgebungen mitiggen Stérungen sowohl fiir die
Steuerung der akustischen Strahlformung als auch fir Beitbengen fir die Adaption der
Filter in der Echounterdriickung gute Ergebnisse. Die ueigsfahigkeit sinkt jedoch mit
ansteigendem Pegel der Stérungen, so dass in stark gastéirtgebungen aufwandigere
Ansatze, wie z. B. in [WSHO07] vorgeschlagen, verwendet wenthiissen.

Die Sprecherprotokollierung besitzt andere Anforderunge die Sprachaktivitatsdetek-
tion als die akustische Strahlformung. Entsprechend delemSpracherkennung verwen-
deten Verfahren, soll eindAD zur Sprecherprotokollierung moglichst zusammenhangende
Segmente von Sprache erkennen und diese auch zusammemh&egezeichnen. Selbst
Sprachanteile mit geringer Energie sollen als Sprachenyaieechnet werden. Somit wird
es notig, einen Sicherheitsbereich um einen Bereich etka@prache zu definieren, wel-
cher auch der Sprache zugeordnet wird. Dies fuhrt zwanfiglau einer Vergré3erung der
Latenz der Sprachaktivitdtsentscheidung in der GroR3enmgl des Sicherheitsbereichs vor
der erkannten Sprache. Da zur Merkmalsextraktion und ztst&ming bereits dasdvanced
Frontend ETShach [ETS02] verwendet wird, kann auch die dort beschrieltgweiterung
zur Sprachaktivitatsdetektion verwendet werden. DiesauisVerwendung mit einem Spra-
cherkenner optimiert und erfullt die zuvor beschriebenafoAderungen.

7.2.3 Echounterdriickung

Die Module der Echounterdriickung bendétigen zur Neuschtzler adaptiven Filter In-
formationen Uber die Sprachaktivitat der Kommunikatierilsehmer. Hierbei kann die Ent-
scheidung bezuglich des entfernten Sprechers durch digevielung einelVAD auf den
empfangenen Signalen getroffen werden. Ein lokaler Sgrekann ebenfalls durch eine
VAD detektiert werden, falls der entfernte Sprecher nichtvakti Da jedoch die Mdglich-
keit besteht, dass auf beiden Seiten die Sprecher aktiy sinds eine Detektion des na-
hen Sprechers durchgefuhrt werden. Dies erfolgt im Detdldtanahe Sprecher (endilear
Speaker DetectpNSD), welcher seine Entscheidung auf Grund der Mikrophonsegraker
wiedergegeben Signale und der geschatzten Raumimpu (s itfit.

Die Echounterdriickung schatzt durch die AdaptionAlEE-Filters die unbekannte Uber-
tragungsfunktion zwischen Mikrophon und Lautsprecher.di@se Ubertragungsfunktion
nicht nur durch die Anordnung der Mikrophone und Lautspeecsondern mafigeblich durch
den Raum bestimmt ist, wird die Fourier-Riicktransforngietieser Ubertragungsfunktion
abklrzend als Raumimpulsantwort bezeichnet AIBC wird ein Filter mit endlicher Filte-
rimpulsantwort (englFinite Impulse RespongEIR) zur Schatzung der Raumimpulsantwort
verwendet, so dass im Allgemeinen Restechos im AusgangdsigsAEC verbleiben. Die-
se werden durch ein Nachfilter soweit reduziert, dass sighdien entfernten Sprecher nicht
mehr wahrgenommen werden kénnen.

Dieser zuvor beschriebene Ansatz zur EchounterdrickuinddgmaNachteil, dass flr eine
verlassliche Entscheidung dBISD zuné&chst eine gute Schatzung der Raumimpulsantwort
vorliegen muss. Die Raumimpulsantwort kann aber nur kbgekchatzt werden, falls wah-
rend der Adaption kein lokaler Sprecher aktiv ist. Somitibgtdie Schatzung dédSDauch
die Adaption de®AECund umgekehrt. Geht man davon aus, dass das System zur &mnbien
Kommunikation fest im Haus installiert ist, kann eine Vdrdtzung der Raumimpulsantwort
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wahrend der Installation vorgenommen werden. Diese wedstdrtwert flr die adaptiven
Filter desAEC verwendet und delSDkann von Beginn an gute Schéatzungen fur das Vor-
handensein eines lokalen Sprechers vornehmen.

Detektion eines nahen Sprechers

Die Detektion eines nahen Sprechers erfolgt entsprecHglC00] durch die Kreuzkor-

relation zwischen dem wiedergegeben Signal und dem aufgeremen Signal. Dabei sei
die Raumimpulsantwort mit = [k, ..., hy]? gegeben. Dies fuhrt auf ddSD-Entschei-

dungsvariable

VhTp,.h
VhT P .h + 02 (73)

mit o als der Varianz des lokalen Sprechersignals ¢ipdder Matrix der Autokorrelations-
terme des wiedergegebenen Signals. Ist der lokale Sprewdidiv, so gilté = 1, und fur
einen aktiven lokalen Sprecher &k 1.

Da die Filterung eines Signals effizienter im Frequenziolrals im Zeitbereich durchge-
fuhrt werden kann, wird fir die ambiente Kommunikation ai¢GB01] vorgestellte Berech-
nung der Entscheidungsvariableim Frequenzbereich genutzt. Hierbei werden blockweise
die Auto- und Kreuzkorrelation der Signale im Frequenziobrgeschatzt und anschlieend
zeitlich geglattet. Der Zahler der EntscheidungsvarialoheGl. 7.3 wird durch eine Multi-
plikation der geschatzten Raumimpulsantwort mit der Kkeazlation zwischen wiederge-
gebenem und aufgenommenem Signal naherungsweise besrantienner ist durch die
Autokorrelation des Mikrophonsignals gegeben.

& =

Adaptive Filterung

Die Echounterdriickung ist eine Systemidentifikationsalbiég bei der das unbekannte Uber-
tragungssystem zwischen Mikrophon und Lautsprecher deircadaptives Filter geschatzt
werden soll [Hay02]. Dabei wird eiRIR-Filter zur Nachbildung der unbekannten Raum-
impulsantwort blockweise durch Anwendung einBl®rmalized Least Mean Squéralgo-
rithmus NLMS-Algorithmus) adaptiert [BHO3]. In Abb. 7.4 ist der prinagle Aufbau der
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Abbildung 7.4: Blockschaltbild der adaptiven Filterung zur Echountecttiing

Echounterdriickung dargestellt. Das aufgenommene Miknegilgnaly (n) setzt sich aus der
lokalen Stérung:(n), dem lokalen Sprechefn) und dem mit der Raumimpulsantwaitn)
gefalteten Signal des entfernten Sprechégrs) zusammen.
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Die Adaptionsgleichung des Filtersist mit

v(n) - e(n)
()P (7.4)

gegeben, mit(n) als Schrittweite und(n) als Fehlersignal.

Die Vorteile desNLMSAlgorithmus liegen in der niedrigen Komplexitat des Algoy
mus (FilterlangeV, Onvs ~ 2N, [Hay02]) und seiner Robustheit gegenuber Stérungen
und falschen Entscheidungen zur Adaption. Nachteilig istldngsame Konvergenz bei
zeitlichen Anderungen des zu identifizierenden Systembgiies in der Anwendung der
ambienten Kommunikation eine geringere Rolle spielt. Aufgl des festen Aufbaus stellt
die Anordnung der Mikrophone und Lautsprecher ein zeithéherungsweise konstantes
System dar, das nur geringe Anpassungen der geschatztembedlarf. Folglich kann eine
kleine Schrittweitg:(n) gewahlt werden, wodurch der Einfluss fehlerhafter Entstiregen
durch derNSDminimiert wird.

Die Implementierung de&ECerfolgt, wie zuvor beinNSD, im Frequenzbereich mit Hilfe
einesOverlap-Savé/erfahrens. Zusatzlich wird die Filterung partitionidcrchgefuhrt, um
eine unabh&ngig von der verwendeten Filterlange konstadtige Latenz deAEC-Moduls
zu erzielen (vgl. [DES99]).

Das Ausgangssignal dé&C enthalt neben lokalen Stérungefn) auch Restechdsgn),
weil das endliche Filter deBEC auf Grund seiner Lange nur einen Teil der Raumimpuls-
antwort nachbilden kann. Jedoch werden in einem nachgéstemaFilter diese Restechos
zusammen mit den lokalen Stdrgerduschen soweit redudass, sie fur den Benutzer nicht
mehr wahrnehmbar sind.

win+1) = wn)+un) -

Nachfilter

Die Nachfilterung desEC-Ausgangssignals wurde entsprechend dem Vorschlag inTLKO
implementiert. Das Ausgangssignal ddsC ergibt sich zu

e(n) = h(n)xz(n)+s(n)+r(n) —wn)*x(n) (7.5)
= (i) —wln)) « () +s(n) +r(n) (7.6)

(n)

=

mit b(n) als dem verbleibenden Restecho des entfernten Sprechetes.dér Annahme, dass
das Signal des lokalen Sprechers, die lokale Stérung undektecho statistisch unabhangig
sind gilt

E(m,w) = B(m,w)+ S(m,w)+ R(m,w) (7.7)

mit £(m,w), S(m,w), R(m,w) und B(m,w) als den Frequenzspektren der Signle),
s(n), r(n) undb(n) im betrachteten Signalbloak. Grundidee in [LKO7] ist die Einfuhrung
von vier Hypothesen tber die Signalanteile im momentandadphonsignal:

e H,: Storgerausché&(m,w) = R(m,w).
e H,: Storgerdusche und lokaler Sprecli&im, w) = R(m,w) + S(m,w).

e H,: Storgerdusche und entfernter Sprechiémn, w) = R(m,w) + B(m,w).
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e Hj3: Storgerdusche, entfernter Sprecher und lokaler Sprecher
E(m,w) = R(m,w) + B(m,w) + S(m,w).

Die Unterscheidung zwischen den beiden Hypothesengruppei/; und H,, H; kann
zuverlassig durch eine Sprachaktivitatsdetektion auf &gmal des entfernten Sprechers
durchgefuhrt werden. Der Test zwischen den Hypothesemhatteder Gruppen entspricht
dem Problem der zuvor vorgestellten Detektion eines napesc8ers.

Die Ubertragungsfunktion des Nachfilters ergibt sich nad€0[7] zu

g(ma w) i C(mv w)

POl = ) - Clm.a) + &lm.w) + COm) 79
mit dem a prioriSNR
E 2 Fim—1,w)E(m—1,w)|?
E(m,w) = ago (% - 1) +(1— ozg)| (m }i%:)()m,(zb) w)l (7.9)
und dem a priori Signal-zu-Echoverhaltnis (erf§jgnal to Echo RatiocSER
E 2 F(m—1,w0)E(m—1,w)|?
((m,w) = aco (% - 1) +(1— ozg)‘ (m }%;()m,(zg w)l (7.10)

Dabei seiﬁn(m,w) die Schatzung des Leistungsdichtespektrums des lokalascRans,
R,(m,w) die Schatzung des Leistungsdichtespektrums des Restestios) die Einheits-
sprungfunktion. Die Parameter werden@zu= 0,99 unda, = 0,95 gewahlt.

Da die ambiente Kommunikation auch die Ubertragung von @etéen aus der Umge-
bung der Kommunikationspartner optional mit einschlieBelh ist eine Modifikation des
Filters aus GI. 7.8 notwendig. Entsprechend der Idee aukK\89] ergibt sich die neue
Filterfunktion zu

Fmw) = 0m9) Cmw) + fe S(m.w) + f; ((m w)
) E(m,w) - ((m,w) + &(m,w) + ((m,w)

(7.11)

mit dem Parametes, zur Steuerung der Unterdriickung lokaler Stérungen gngur Be-
einflussung der Restechounterdriickung. Dieser Ansatetldzatem den Vorteil, dass Sto-
rungen, wie z. BMusical Tonesdurch eine gute Wahl der Parameter vermieden werden
kénnen, indem eine Reststorung in den Signalen toleried. wi

7.3 Echtzeitkommunikation

DasSAIntModul unterscheidet bei der Echtzeitkommunikation zweeA von Verbindun-
gen. Zum einen sind dies lokale Verbindungen zwischen Rersion Haus und zum anderen
externe Verbindungen zwischen lokalen und entfernteroifers Im ersten Fall missen die
Personen im Haus lokalisiert und anschlie3end eine Audsavaung Uber die entsprechen-
den Mikrophone und Lautsprecher aufgebaut werden. Dertewaell erfordert eine Positi-
onsbestimmung des lokalen Teilnehmers und den Aufbau ettezgeitfahigen Datenstroms
Uber einlP-basiertes Netzwerk. Eine Lokalisation von Nutzern etfwgal immer Gber den
SAIntDienst, der als Kontextnutzer in der Amigtiddlewareagiert.
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7.3.1 Lokalisation von Nutzern

Die Positionsdaten von Benutzern werden im Amigo Systenstduerschiedene Kontext-
guellen bereitgestellt. Dabei unterscheiden sich die aezuglich der raumlichen und
der zeitlichen Aufldsung. Um eine kontinuierliche Suchelmiontextquellen und der an-
schlieRenden Registrierung bei allen geeigneten KonteX&n zu vermeiden, verwendet
derSAIntDienst den Amigd.ocation Management Servi¢eMS). DerLMS Gibernimmt die
Suche nach Kontextquellen und fuhrt die unterschiedlichEmmationen in einer gemeinsa-
men Datenbank zusammen. Diese Datenbank wird als Kontelleqanderen Diensten tber
die IContextSourceschnittstelle zur Verfligung gestellt und kann tber dierAgé in Liste
7.1 Uber den Kontextbroker gesucht werden.

<?xml version=\"1.0\"?>
<rdf:RDF
xmins:rdf="http ://www.w3.0rg/1999/02/22 rdf —syntax—ns#"
xmins:j.1="http ://amigo.gforge.inria.fr/owl/ConteXransport.owl#"
<j.1l:ContextSourceRegistration>
<j.l:contextType>
CombinedUserLocation
</j.l:contextType>
<j.l:timeliness >
current
</j.l:timeliness >
</j.1l:ContextSourceRegistration>
</rdf :RDF>
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Liste 7.1: Anfrage desSAIntDienstes an den Kontextbroker zur Suche Id&tS

Der SAIntDienst auf delOSGFHPlattform, welcher Uber eingC-Schnittstelle mit dem
SAIntModul verbunden ist, sucht Gber den Kontextbroker naclfeladenLMS-Diensten
und registriert sich dort. Wahrend der Registrierung miatg derSAlntDienst beimLMS
die SPARQLEFrage in Liste 7.2, so dass im Falle einer Positionsandgedisse denBAint
Dienst unverzuglich mitgeteilt wird. Fortlaufend werdeie &ositionsinformationen tber
Nutzer von denSAlntDienst an dasSAlntModul weitergeleitet, so dass dg&IntModul
eine automatische Sitzungsverwaltung durchfiihren kann.

Die SPARQLFrage ist an der Position von Personen mit der GenauigkERaumebene
interessiert und besitzt einen optionalen Teil, um préeiseformationen abzufragen. Not-
wendig fur die Funktion des Dienstes ist die Informationridben Raum, in dem sich der
Benutzer befindet. Die optionale Information, an welchdatieen Position im Raum die
Person aktuell ist, ermdglicht im Falle verteilter Mikrapte und Lautsprecher die Auswahl
der nachstgelegenen Hardware.

7.3.2 Sitzungsverwaltung

Die Sitzungsverwaltung dient dem Aufbau von externen Vetbhgen und automatisiert den
hierfir notwendigen Registrierungsprozess. Sobald engd® vom System in einen Raum
mit ausreichender Hardwareausstattung (Mikrophon undspaecher) lokalisiert wird, fihrt
dasSAIntModul eine Registrierung dieser Person beim KommunikatieenstACS durch.
AndereSAIntModule, welche mit dem gleichen Kommunikationsdiensbueden sind, er-
halten hierdurch die Nachricht, dass diese Person flr eomarkunikation zur Verfligung
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PREFIX context:<http ://amigo.gforge.inria.fr/owl/CoeaxtTransport.owl#>
PREFIX rdf: <http ://www.w3.0rg/1999/02/22 rdf—syntax—ns#>
SELECT ?user ?room ?time ?prob ?x ?y WHERE {

?ul rdf:type context:UserLocation

?ul context:timestamp ?time

?ul context:probability ?prob

?2ul context:isLocatedln ?r

?r context:identifier ?room .

?ul context:isLocationOf ?u

?u context:identifier ?user

optional {?ul context:estimatedPosition ?ep

?ep context:X ?x .

?ep context:Y ?y .

?2ul context:relative2Space ?r.

?r context:identifier ?room.}

1
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Liste 7.2: SPARQLFrage deSAlntDienstes an debMS

steht. Verlasst diese Person den Raum und geht in einercBerene Hardware, so wird die
Registrierung beim Kommunikationsdienst durch 888ntModul zuriickgezogen.

Die Echtzeitkommunikation besitzt eine benutzerorigtgiérchitektur, so dass Verbin-
dungen an Personen und nicht an Gerate oder R&ume gebundekise Verbindung wird
zwischen zwei Personen initiiert, indem entweder eine dgsdhen eine direkte Verbin-
dungsanfrage zu einer anderen Person stellt oder indemAgipkkation versucht, zwel
Personen zu verbinden. In beiden Fallen wird\lebserviceiethode Connect(Person A,
Person B) des SAIntDienstes verwendet, um eine Verbindung zu initialisieren

Jede Verbindungsanfrage wird Uber ¢RC-Schnittstelle an daSAlntModul weiterge-
leitet, welches die Position der Teilnehmer v@aAlntDienst abfragt. Falls beide Personen
sich im Haus befinden und eine Mdglichkeit zur Kommunikatibmch Mikrophone und
Lautsprecher besteht, so wird eine direkte Verbindung @ves den Raumen hergestellt.
Konnte nur ein Teilnehmer im Haus lokalisiert werden, sadwiersucht, mittels eines Sit-
zungsprotokolls eine externe Verbindung zur anderen Reiiber den Kommunikations-
dienst herzustellen. Hierzu sendet das lo&dntModul eine Verbindungseinladung tber
den Kommunikationsdienst an d@&IntModul des entfernten Teilnehmers. Akzeptiert die-
ser die Einladung zur Kommunikation, so teilt anschlie3é@modKommunikationsdienst den
beidenSAIntModulen dielP-Adressen der Teilnehmer mit, so dass diese eine direkte Ver
bindung untereinander aufbauen kénnen.

7.3.3 Datenaustausch

Der Datenaustausch zwischen entfernten Kommunikatidmskenern erfolgt verbindungs-
los iberUDP-Verbindungen. Vorteil dieses Ansatzes ist die niedrigeeha bei der Uber-
tragung der Audiodaten, der jedoch durch mégliche Pakeister oder die Vertauschung
von Datenpaketen beim Empfang durch unterschiedlichetRalkeeiten (engljitter) er-
kauft wird. Die Audiodaten werden zunéchst komprimiert, die Datenrate zu reduzieren,
und anschlieend mit deReal-Time Transport ProtocdRTP) [ST03] in die UDP-Pakete
verpackt.

Das ImRFC3489urch dielnternet Engineering Task Foramrgestellte Simple Traver-
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sal of User Datagram Protocol Through Network Address Tiatoss'-Protokoll (STUN
Protokoll) [R703] beschreibt die Detektion und Uberwindung von Verfahran Uberset-
zung von NetzwerkadresseNAT). Die Abb. 7.5 zeigt an einem Beispiel die Problemstel-
lung beim Datenaustausch, hervorgerufen durch die Umsgtezon internen Adressen auf
externe Adressen, und die Losung des Problems durch dieevieling de&\CS

|
| Internet ACS |
! IP 150.1.2.3 ‘\‘ |
| |
|
| RTP-Daten |
| |

{Extern 141.11.22.3 Extern 137,24_25?

NAT Router A NAT Router B

Intern 192.168.1.

| / \ | | Y

. | Host Al Host A2 ! |

| A | Host B1

IP 192.168.1.5 IP 192.168.1.6 | IP 192 168.1.9

Lokales Netz Haus A | i Lokales Netz Haus B

Intern 192.168.1.

A

Abbildung 7.5: Beispiel fir dieNAT-Problematik der ambienten Kommunikation

Angenommen es soll eine Datenverbindung zwischen Hest A1 und demHost B1
aufgebaut werden. Beiddostskennen zwar ihre lokale Adresse, jedoch nicht die externe
Adresse ihres Routers. Als gemeinsamer Anlaufpunkt zunb&weiner Kommunikations-
sitzung wird derACSverwendet, der von beiden erreichbar ist. Sendet eineHdstsein
Paket an de\CS so ersetzt der jeweilige Router im Rahmen N&T die Adresse im Pa-
ket durch seine eigene externe Adresse, bevor das PakeinahGfweitergeleitet wird.
Antwortet derACSauf dieses Paket, so leitet der Router das Antwortpakeewait den
entsprechendedost welcher zuvor eine Anfrage an d&€Sgesendet hat.

Der Host A1 kann kein Paket direkt an ddiost B1 senden, da er die externe Adres-
se des Routers B nicht kennt. Da beidestsauf demACSregistriert sind, kennt dieser
die externen Adressen der Router aus den empfangenen Raketkann diese bei einer
Verbindungsanfrage an beide Kommunikationsteilnehmerrafiteln. Sobald di¢lostsdie
externe Adresse des jeweiligen anderen Teilnehmers kebegmnen sie Pakete an diese
Adresse zu senden. Empfangt der Router B nun ein Paket votelRAUso nimmt er an,
dass es die Antwort auf das véiost B1 anHost Al gesendete Paket ist und leitet es an
denHostB1 weiter. Das gleiche fuhrt entsprechend der Router A mtw® ihm empfan-
genen Paketen durch. Mit diesem Verfahren ist es mogliehNaiT-VerfahrenFull Cong
Restricted Coneind Port Restricted Coneu Uberwinden, falls fur die Kommunikation mit
demACSderselbe Port genutzt wird wie fur den Datenaustausch hersdenHosts Der
ACSubernimmt somit neben der i®TUN-Protokoll beschriebenen Uberwindung dAT
auch die Sitzungsinitialisierung vergleichbar&iP [RT02].

Die Audiosignale selbst werden mit deapeexCodec (6 kHz Breitband) [PS08] kom-
primiert, um die bendétigte Bandbreite zu reduzieren. Dalimrnimmt derSpeexCodec
im Rahmen der Paketverlustverschleierung die Kompensagoorengegangener Pakete.
Mogliche Paketverluste durch Schwankungen in der Pakeddusog.Jitter) werden im
SAIntModul durch einen Paketpuffer reduziert.
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7.4 Kontextbasierte Steuerung

Der Kern des Systems zur ambienten Kommunikation ist di¢skbasierte Steuerung, wel-
che die Amigaviddlewareverwendet, um relevante Kontextinformationen zu sammeth u
auszuwerten. Hierbei sind Kontextquellen mit Positiofsimationen tber Personen bzw.
zentralisierte Dienste wie d&MS notwendig, um automatisierte Entscheidungen treffen zu
kénnen. DelSAIntDienst fuhrt beim Start zun&achst eine synchrone Abfralpe Eontext-
guellen auf Informationen durch und registriert sich atis@end bei diesen fur asynchrone
Benachrichtigungen (vgl. Kap. 6.4.1). Ein erster Teil dentextbasierten Steuerung ist die
bereits vorgestellte automatische Sitzungsverwaltusdap. 7.3.2. Diese fuhrt, ausgehend
von den Kontextinformationen tiber die Position der Nutggre automatische Registrierung
der Nutzer bei einem Kommunikationsdienst durch.

7.4.1 Follow-Me-Fahigkeiten

Die Idee inFollow-Me-Szenarien ist es, eine Kommunikation einem Sprecher fiatgdas-
sen, ohne dass dieser direkten Einfluss auf eine Anwendumgere oder Anweisungen
geben muss. Hierzu muss das System den aktuellen Ort des #woikationsteilnehmers
kennen und im Falle einer Positionsédnderung eine Anpassommghmen. Da eine konti-
nuierliche, zyklische Abfrage von Positionsdaten zu elr@ren Belastung déviddleware
fuhrt, wird der Mechanismus des asynchronen Datenaustass@rwendet, um auf Ande-
rungen des Kontextes zu reagieren.

Bewegt sich eine Person von einem Raum in einen anderen, llg® dies durch eine
der Kontextquellen registriert und an deMSweitergemeldet werden. Da d8AIntDienst
beim LMS eine SPARQLFrage nach der Position aller Personen bei der Registigenin-
terlegt hat, wird die Anderung der Position zu einer Koritégtrmation als Antwort auf die
SPARQLFrage fuhren. Folglich ruft dartMS die WebserviceMethodenotify des registrier-
ten SAIntDienstes mit deBPARQLANtwort als Ubergabeparameter auf. ®&IntDienst
selbst signalisiert derSBAIntModul tGber dielPC-Schnittstelle, dass neue Kontextinforma-
tionen vorliegen, und tbermittelt diese. Dies fuihrt zu eldberpriifung der Auswirkungen
der neuen Kontextinformationen auf die laufenden Verbngeiun und gegebenenfalls einer
Anpassung dieser. Zudem werden die Registrierungen dsoRan beimrACSentsprechend
der neuen Daten vorgenommen.

Die Positionsanderung einer Person kann die folgendenti®eak hervorrufen. Tritt die
Person in den voiBAlntkontrollierten Bereich ein, so wird sie beifCSregistriert und
in den Kontextinformationen als verfligbar fir eine Komnkation aufgefihrt. Betritt eine
Person einen Raum ohne Mikrophone und Lautsprecher, odésstdas Haus, so l6scht
dasSAIntModul automatisch die Registrierung beim Kommunikatotiaast.

Sollte die Person eine laufende Verbindung wahrend des Rauahsels haben, so ergeben
sich mehrere Moglichkeiten, wie das System reagiert. WindRaum mit Mikrophonen und
Lautsprechern betreten, so lenkt dd@&intModul das Gespréach ohne Unterbrechung des
Datenstroms in den Raum um. Dieses lbergangslose &mhlessUmstellen der Ver-
bindung erfolgt fir das menschliche Gehor nicht wahrnehndazaes ohne Neuaufbau einer
RTRVerbindung auskommt und verzdgerungsfrei umschaltéis Bee Person einen Raum
ohne Hardware betritt, so stoppt die Verbindung zum entéer8precher und wird gehalten,
bis eine konfigurierbare Zeitspanne erreicht ist oder disdfeeinen Raum mit Hardware
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wieder betritt. Das Verhalten kann fur jede Verbindungwdliell eingestellt werden.

Besitzt ein Gerat im Raum einen alternati@fintDienst, z. B. ein Notebook mit Head-
set, und einen Anmeldungsmanager der die Anmeldedateonsitsddsinformationen an den
LMSweitermeldet, so kann eine Ubergabe der Verbindung (&agidovey an den zweiten
SAIntDienst durchgefiihrt werden. Der Nutzer kdnnte sich zunsjdel auf dem Notebook
anmelden und de8AintDienst stellt daraufhin eine Verbindung her. Dies kanmogdnicht
Ubergangslos erfolgen, da die @R&P-Verbindung beendet und eine neue aufgebaut werden
muss. Daher vernehmen beide Nutzer wahrenddessen eineenk@ussetzer der Verbin-
dung, bis dieRTRVerbindung wieder aufgebaut ist.

7.4.2 SAInt als Kontextquelle

Die ambiente Kommunikation verwendet nicht nur Kontexdmfationen, um eine intelli-
gente Steuerung zu realisieren, sondern sie ist gleichzsite Kontextquelle flr andere
Applikationen und Dienste. Die Liste 7.3 zeigt die Regesting desSAIntDienstes beim

Kontextbroker als Kontextquelle.

<?xml version="1.0"?>
<rdf:RDF
xmlns="http ://amigo.gforge.inria.fr/owl/ContextTraport.owl#"
xmins:rdf="http ://www.w3.0rg/1999/02/22 rdf —syntax—ns#"
xmins:rdfs="http ://www.w3.0rg/2000/01/rdfschema#"
xml:base="http ://amigo.gforge.inria.fr/owl/Contextdnsport.owl#">
<ContextSourceRegistration>
<timeliness >
current
</timeliness >
<contextType >
SeamlessAudiolnterface
</contextType >
</ContextSourceRegistration>
</rdf:RDF>
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Liste 7.3: Registrierung deSAlntDienstes beim Kontextbroker

Die Kontextinformationen eineSAIntumfassen die drei Bereiche Hardware, registrier-
te Benutzer und laufende Verbindungen, wie es in Abb. 7.8pelhaft dargestellt ist. Der
Bereich Hardware informiert tiber die Ra&ume, welche durdSdentModul mit einer Au-
dioschnittstelle abgedeckt sind. Diese Information idliza konstant, da sie abh&ngig von
der Hardware ist und sich somit nicht ohne Neustart @&&I1-Bundlesindert. Applika-
tionen konnen also im vernetzten Haus zunachst nach laefieé®dintDiensten Uber den
Kontextbroker suchen und sich bei diesen als Kontextnuézgstrieren. Dadurch sind sie in
der Lage, die Abdeckung mit Audioschnittstellen im gesanMetzwerk zu ermitteln.

Die Informationen Uber registrierte Benutzer und laufexdeindungen zeigen den ak-
tuellen Status deBAlntDienste. Hieraus erfahren Applikationen, welche Persagerade
Uber einenSAIntDienst erreichbar oder aber gerade durch eine laufendenomkation
gebunden sind. Benutzer, die aktuell eine Kommunikatidmei, werden in der Liste der
registrierten Nutzer nicht aufgefuhrt, da jeder Nutzer eine Kommunikation fihren kann
und somit fur neue Verbindungen nicht zur Verfigung steht.
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Abbildung 7.6: Beispiel fir die Kontextinformationen d&AIntDienstes

Jede Verbindung zwischen zwei Personen besitzt einenwgigda Schlissel G;onnec-
tionID"), eine Charakterisierung der PrivatsphéarPriyacyLevel), einen Schwellwert far
das Halten unterbrochener Verbindungenirfjeout [s]) und einen Verstarkungsfaktor fur
die Wiedergabe der empfangenen Signatgain” [dB]). Diese Parameter konnen mit Hilfe
von WebserviceMethoden im Verlauf der Kommunikation durch Applikationeder die
Nutzer angepasst werden, um z. B. auf aktuelle Ereignisseagieren. Die Informationen
Uber die Kommunikationsteilnehmerc@nnectedClieri} zeigen die aktuellen Positionen
der Personen oder aber die-Adressen der entfernten Teilnehmer. Handelt es sich um ein
lokale Verbindung, so zeigen diB-Adressen jeweils den Wertgcalhost und die Raume
stammen aus der Menge der mit Hardware ausgestatteten RAenegternen Verbindungen
ist der Raum des entfernten Teilnehmers autknowri gesetzt, und di¢P-Adresse ist die
Zieladresse deRTR-Datenstroms.

7.4.3 Schutz der Privatsphéare

Der Schutz der Privatsphare ist entsprechend der Ergebde&ssAmigo Benutzerstudien
[M*05] bei der kontextabhangigen Steuerung mit beriicksichtigden. Jede Verbindung
besitzt eine EigenschafPrivacyLevel, die entweder 6ffentlich oder privat gesetzt werden
kann. Betritt eine Person einen Raum mit einer laufendsmratat gekennzeichneten Kom-
munikation so wird die Verbindung unterbrochen, bis diesBerden Raum wieder verlasst.
Das gleiche geschieht, falls ein KommunikationspartneeeiRaum betritt, in dem sich be-
reits eine Person befindet.

Jederzeit kann dePRyivacyLevél einer Verbindung mittels deMebserviceMethode con-
figureCommunication(ID, Stringgfles SAIntDienstes konfiguriert werden. Startet eine Ver-
bindung in einem Raum mit mehr als einer Person, so wird ardstrdmaliig als 6ffentlich
vermerkt, ansonsten werden zunachst die Standardwertéutser verwendet.

Der Sonderfall, dass eine Person mit einer laufenden Konkation auf eine weitere Per-
son mit ebenfalls einer laufenden Kommunikation triffglktkein Problem fir den Schutz
der Privatsphare dar. Sind beide Kommunikationen 6ffeimtiso horen zwar die entfernten
Teilnehmer jeweils das lokale Gespréach der beiden Persgeaych kdnnen die entfernten
Personen sich gegenseitig nicht héren, da die Echountdwang die entsprechenden Si-
gnalanteile herausfiltert. Es ist somit entfernten Ges$mi@inehmern nicht méglich, Rick-
schliusse auf die Kommunikationspartner anderer Persangielzen.
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7.5 Visuelle Kommunikation

Im Folgenden wird ein System zur Kommunikation vorgestet#lches aufbauend auf der
Architektur vonSAlinteine audio-visuelle Kommunikation realisiert. Ziel istt@erbei, die
durch SAInt ermdglichte Bewegungsfreiheit des Nutzers auch bei eirmrtthgung von
Videodaten beizubehalten.

7.5.1 Systemintegration

DasSAIntModul realisiert bereits di€ollow-MeFahigkeiten fiir die Audiosignale der am-
bienten Kommunikation mit Hilfe deSAIntDienstes und deviddleware Folglich liegt es
nahe, die visuelle Kommunikation an die akustische Komikation zu binden und somit
die gleichen Mechanismen zu nutzen. Die visuelle Kommuitkavird als optionale Kom-
ponente im System integriert. Sie wird genutzt, falls aufiee Seiten der Kommunikation
geeignete Hardware vorhanden ist.

Ein Unterschied bei der Aufnahme und Wiedergabe von Audnal ideosignalen ist,
dass die Soundkarte eines Computers mehrere Kanéle audnehnad wiedergeben, die
Grafikkarte jedoch meist nur einen Monitor ansteuern kamm 3@mputer kann somit nur
fir einen Videodatenstrom genutzt werden. Daher wird zsuelien Kommunikation das
»Seamless Audio and Video Interfaddodul (SAVIntModul) implementiert, welches die
Videodaten einer Kamera aufnimmt und diese iBEPversenden kann. Empfangene Daten
werden von diesem Modul Gber einen Ausgang am Bildschirmestellt. Zu jeder Kombi-
nation von Kamera und Bildschirm gehort folglich ein laudesSAVIntModul. Die Vide-
odaten der ambienten Kommunikation kdnnen sowohl von éle¢zwerkkamera als auch
einer lokal an den Computer angeschlossenen Kamera (z. B-W&bcam) stammen. Sie
werden mit denTheoraCodec [The08] komprimiert und mitteRTP Ubertragen.

Haus A Internet Haus B
RTP Audio
OSGI:SAInt 7| ACS Y- OSGI:SAlnt
pc T T T e e
IPC d ,/ RTP Video'\ Toa
7777777 7 ‘\ rIPC Spark:SAlnt
Spark:SAVInt Spark:SAVInt - ,
[ Signalverarbeitung
{0 = HW/SW JACK | H X ﬁ [ HW/SW JACK |
s Ak pisH AL
™ Mikrophone & £ Nutzer A Nutzer B [ Mikrophone &
Raum X IO Lautsprecher d N Raum Z Lautsprecher

Abbildung 7.7: Blockschaltbild der Integration voBAVIntModulen in dieSAlntArchitektur

In Abb. 7.7 ist ein Beispiel fur die Kommunikation nf#AVIntModulen gegeben. Jedes
SAVIntModul registriert sich bei einem laufend&AIntModul tiber eindPC-Schnittstel-
le mit der Information, welcher Raum durch die Kamera eibsghst. EinSAIntModul
kann mehrer&AVIintModule steuern, wodurch im besten Fall alle Raume, welchetddie
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angeschlossenen Mikrophone erreichbar, auch durch KannadhMonitore versorgt sind.
In Abb. 7.7 ist beispielhaft eine Anordnung fur zwei RaumeHiaus A und ein Raum in
Haus B skizziert worden. Die Komponenten déiddleware Schicht LMS, Kontextquellen,
etc.) bis auf dersAlntDienst wurden in dieser Skizze zur Vereinfachung weggelagvgl.
Abb. 7.2).

Ein wesentlicher Vorteil der ambienten Kommunikation istBewegungsfreiheit des Be-
nutzers, so dass dieser sich frei im Raum und zwischen dem&&bewegen kann. Diese
Freiheit sollte bei der Integration von Videodaten mit lodsichtigt werden. Jedoch bein-
haltet eine Kommunikation mit Videodaten zunachst den Makldass der Uberwiegende
Teil von Kameratypen fest im Raum installiert wird und eirfiesten Blickwinkel hat. Be-
nutzer, die sich frei bewegen, kbnnen somit aus dem Bildustaafen. Dies kann durch
eine passende Wahl der Kameraposition und einer Weitwankehhme umgangen werden,
jedoch fuhrt dies zu einem Bild, in dem der Kommunikatiomsper in vielen Positionen
im Raum nur sehr klein dargestellt werden kann. Alternatinrk das in Kap. 4.4.4 (vgl.
Abb. 4.24, S. 54) vorgestellte System zur Steuerung eirevesck- und zoombaren Kamera
genutzt werden. Hierzu wird im Videosystem &@AVIntModul zur Ubertragung und zum
Empfang von Videodaten integriert, dessen Ausgang auf déssdBirm dargestellt wird.
Das Audiosystem wird entsprechend der Abb. 7.3 (S. 94) unSdjealverarbeitung zur
Echounterdrickung und Stérgeréauschfilterung und umS&imtModul erweitert. Da die
empfangenen Audiodaten d8&IntModuls Uber die Lautsprecher wiedergegeben werden,
muss die Adaption der akustischen Strahlformung durchresoe Logik gesteuert werden.
Diese Logik sorgt dafir, dass, falls der entfernte Spreakay ist, die Adaption der Filter
unterbrochen wird, um eine Ausrichtung der Kamera auf dietd@recher zu verhindern.
Der Ablauf einer Kommunikation wird im Folgenden anhancdesiBeispiels erlautert.

7.5.2 Kommunikationsbeispiel

Das Kommunikationsbeispiel nimmt an, dass 8&intDienst im Haus A eine Kommuni-
kation zwischen den Nutzern A und B mit Hilfe d8alntModuls initiiert (vgl. Abb. 7.7).
DasSAIntModul im Haus A sendet eine Verbindungsanfrage UberAlé8an dasSAInt
Modul im Haus B. Nachdem Nutzer B der Kommunikation zugestirhat, beginnen beide
SAIntModule die Audiodaten (vgl. Abb. 7.7RTPAudio®) zu den vomACSubermittelten
IP-Adressen zu senden.

Zeitgleich mit dem Start der Audioverbindung geben8/&ntModule an die jeweiligen
SAVIntModule der R&ume, in denen sich die Nutzer aufhalten, dieeédsung, eine Video-
verbindung aufzubauen. Zu diesem Zweck registrieren seSAVIntModule auf demACS
und handeln eine Videoverbindung aus. Die Videodaten weddekt mit einelRTRVerbin-
dung (vgl. Abb. 7.7, RTPVideo®) zwischen derBAVIntModulen ausgetauscht, so dass die
Audiodaten und Videodaten getrennt tibertragen werdere §trennte Ubertragung kann
ohne Synchronisierung der Datenstrome erfolgen, falld digzeitdifferenz zwischen den
beiden Datenstromen niedrig ist.

Die Videokommunikation deSAVIntModuls wird Uber didPC-Schnittstelle deSAlInt
Moduls kontrolliert. Sollte dasSAIntModul durch denSAIntDienst die Beendigung der
Verbindung signalisiert bekommen, so wird mit der Beendgyder akustischen Kommuni-
kation auch die visuelle Kommunikation gestoppt.
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7.5.3 Follow-Me-Fahigkeiten

Die Follow-MeFahigkeiten des Systems werden bendétigt, sobald ein Benden Raum
wechselt. Entsprechend des obigen Beispiels nehmen witaass, der Nutzer A von Raum
Y in den Raum X geht. In diesem Fall benachrichtigt &&XIntDienst dasSAIntModul
Uber den Positionswechsel des Nutzers. BamtModul leitet den Audiodatenstrom in den
Raum X um und stoppt tiber diBC-Schnittstelle die Videotibertragung de8VintModuls
aus Raum Y. Da in Raum X auch e8AVIntModul verfugbar ist, initiiert daSAIntModul
Uber dielPC-Schnittstelle eine Videoverbindung. Nach dem AushandemnVideoverbin-
dung Uber derACSstartet diese mit einer leichten Verzégerung gegenubeAddrover-
bindung. Im Gegensatz zur Audioverbindung, welche nattlesRaume wechseln kann,
erzwingt die Videoverbindung bei jedem Raumwechsel einenaifbau deRTRVerbin-
dung.

7.6 Demonstration

Im Rahmen des Amig®pendaym Februar 2008 wurde die ambiente Kommunikation zwi-
schen Standorten in Deutschland, Frankreich und den NatEn demonstriert. Trotz der
unterschiedlichen Ausstattung mit Hardware konnten di@ponenten der ambienten Kom-
munikation an allen Standorten verwendet werden. Dies &duich den modularen Aufbau
der Software ermdglicht, welcher den Anforderungen eirtesd®rtes entsprechend ange-
passt werden konnte. Zudem zeigte es die Flexibilitat dergariiddlewarein Bezug auf
die Integration anderer Applikationen und Dienste. Eirspal hierflr war die Nutzung des
SAlIntDienstes zur Kommunikation durch andere Applikationeierbki nutzten die Appli-
kationen die vonSAIntDienst exportierteVebserviceschnittstellen zur Steuerung einer
audio-visuellen Kommunikation. Der Standort in Deutsollaerwendete die audio-visuelle
Kamerasteuerung, um die Vorteile einer akustischen Kastewarung zu demonstrieren.
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Im Rahmen dieser Arbeit wurde ein System zur akustischenedamalyse entwickelt, wel-
ches fortlaufend die Identitat und Position des aktuellpre&hers ermittelt. Die Verwen-
dung des Systems in einem Kommunikationsszenario fuhnt&atwicklung einer audio-
visuellen Sprecherprotokollierung, deren Fehlerratell@ne Gesichtserkennung signifi-
kant reduziert wurde. Des Weiteren wurden die Amigadlewareund das System zur
Verarbeitung von Kontextinformationen vorgestellt. Hierwurde die Einbindung der akus-
tischen Szenenanalyse als Quelle von Kontextinformatigyezeigt. Anschlie3end wurde
mit Hilfe der Middlewareund den Amigo Diensten ein System zur ambienten Kommuni-
kation realisiert. Dabei erméglichte die Verfigbarkeitarschiedlicher Kontextquellen eine
kontextabhangige Steuerung.

Die zeitlichen Anforderungen des vernetzten Hauses amrtr@bonsquellen wurde in die-
ser Arbeit als hoch eingestuft, da die Akzeptanz eines Bystrirch seine Benutzer in Folge
hoher Latenzen gefahrdet ist. Die drei Schliisselelemeamtalaistischen Signalverarbeitung
in ,intelligenten Umgebungen” werden durch die automégsSpracherkennung, die akus-
tische Szenenanalyse und die ambiente Kommunikationdggbilnnerhalb dieser Arbeit
wurden die Aspekte der akustischen Szenenanalyse und dégrsen Kommunikation na-
her untersucht.

Ausgehend von den zuvor identifizierten Forschungszieler&zunachst die Sprecher-
protokollierung als Teil der akustischen Szenenanalyseadiget. Diese gliederte sich in
die Aufgaben der Segmentierung der Daten in homogene Aliszlind die anschliel3ende
Klassifikation dieser Segmente. Hierbei zeigte sich, dasauf dem Bayes’schen Informa-
tionskriterium basierende Segmentierungstechnik sowahider Signalverarbeitung durch
die akustische Strahlformung als auch von den Positioaad#dr Sprecher profitierte.

Die sequentielle Segmentierung und Identifikation von 8peen in Datenstromen besal3
den inharenten Nachteil, dass frihzeitig getroffene Eaisiingen in der Segmentierung
nicht riickgangig gemacht werden konnten. Dieser Naclgsilltierte aus den zeitlichen An-
forderungen an die akustische Szenenanalyse, welche dei@n$informationen mit einer
maoglichst geringen Latenz zur Verfigung stellen sollte.Hiadurch weder iterative noch
mehrstufige Verfahren verwendet werden kénnen, wurde aierm&nsatz zur gleichzeiti-
gen Segmentierung, Lokalisation und Sprecheridentibkaé@intwickelt. Grundidee dieses
Ansatzes war die Verwendung eindgdden Markov Modelsnit zeitveranderlichen Tran-
sitionswahrscheinlichkeiten, dessen Zustéande die &dan Sprecher reprasentierten. Die
Berechnung der Transitionswahrscheinlichkeiten wurdésiert iber die Sprecherwechsel-
informationen, welche durch die akustische Positiondzcing und das Bayes’sche Infor-
mationskriterium bereitgestellt wurden. Die Implementrey einer vorzeitigen Zuruckver-
folgung der Entscheidungen ermdglichte die Verwendunghahssitzes auf kontinuierlichen
Datenstromen mit geringer Latenz. Experimentell konnteegg werden, dass der Median
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der Entscheidungen fur den aktuellen Sprecher bei wenigegiaer halben Sekunde lag.
Dabei fuhrte die Begrenzung der maximalen Latenz auf zwkius@en nur zu einer gerin-

gen Erhohung der Fehlerrate. Des Weiteren zeigten die Empete, dass der neue Ansatz
der gemeinsamen Segmentierung und Klassifikation hoheresKikationsraten erzielte als
ein vergleichbares sequentielles Verfahren.

Die in dieser Arbeit betrachtete Umgebung war mit Mikrop&iorund Kameras ausge-
stattet. Dies bot die Mdglichkeit, die Sprecherprotolkasling in Kommunikationsszenarien
durch Informationen aus der Bildverarbeitung zu verbesdeas hierzu integrierte Video-
system ermoglichte die Detektion und Identifikation von iG&grn. Ein Datenaustausch
zwischen der akustischen Signalverarbeitung und der NesuPatenverarbeitung fuhrte zu
einer Verbesserung beider Systeme. Die Kamera konnte digéopplung der Systeme so-
wohl akustisch als auch anhand erkannter Gesichter ausmhatesteuert werden. Folglich
war es maoglich, die Kamera immer auf den aktuellen Sprechsruaichten, selbst wenn
dieser nicht in die Kamera schaute oder aul3erhalb des Kafiodrainkels war. Detektierte
und identifizierte das Videosystem das Gesicht eines Serecko wurde diese Informati-
on an das System zur Sprecherprotokollierung weitergegéhie Integration der visuellen
Informationen des Videosystems in den Prozess der akhshs8precherprotokollierung
fuhrte zu einer Erweiterung des zuvor vorgestellten AresatbDie Emissionswahrschein-
lichkeiten derHMM-Zustande wurden nun sowohl durch die akustischen Spredusile
als auch durch die visuellen Modelle der Nutzer bestimmpeExnente zeigten, dass durch
die Beriicksichtigung der visuellen Informationen die Isiikationsfehlerrate im Vergleich
zu einem rein akustischen System um die Hélfte gesenkt weaiente.

Ein weiteres Forschungsgebiet der akustischen Szengsaniat die Identifikation akus-
tischer Ereignisse, welche die aus der Sprecherprotekofig bekannte Fragestellung ,Wer
spricht Wann und Wo?“ noch um die Komponente ,Wahrend Wasipd8“ erweitert. Im
Rahmen dieser Arbeit wurden verschiedene Verfahren zurelMecling der Ereignisse un-
tersucht und die Verwendbarkeit der Merkmale aus der Spratntifikation getestet. Zu-
nachst wurden die Modellparameter zur Beschreibung destslhhen Ereignisse mittels
eines Maximum LikelihoottVerfahrens geschatzt. AnschlieRend wurden Modelle mimhd
diskriminativen LernverfahrenNaximum Mutual Informatiohtrainiert. In Experimenten
wurde gezeigt, dass die Modelle aus dem diskriminativemezfahren eine niedrigere
Klassifikationsfehlerrate ermoglichen als die Modelle das ,Maximum LikelihoottPa-
rameterschétzung.

Die Datenbasis zur akustischen Ereignisdetektion staraugelem Bereich der professio-
nell genutzten Arbeitsumgebungen und wurde im ProfaRiL erstellt. Da die Datenbasis
aus mehrkanaligen Aufnahmen bestand, konnte eine Veroessder Klassifikationsrate
durch die Auswahl und Kombination von Kanélen erzielt werdeie mittlere Klassifikati-
onsrate lag im Fall der Einzelerkennung bei Ub@fs und bei der Kombination mehrerer
Kanale sogar Uber3 %.

Die Gewinnung von Kontextinformationen war der erste Sthum Aufbau einer durch
den Benutzer als ,intelligent” wahrgenommenen Umgebumst &e Integration von Kon-
textquellen, wie z. B. der akustischen Szenenanalysen@néferbund von Diensten und Ap-
plikationen erlaubte das Treffen von kontextabhangigeshsomit ,intelligenten Entschei-
dungen*. Im Rahmen dieser Arbeit wurde die Integration deisaschen Szenenanalyse in
die AmigoMiddlewarevorgestellt, wobei ein Schwerpunkt auf das Kontextmanageme-
legt wurde. Das Amigo System zum Kontextmanagement vereteneinen Kontextbroker
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als zentralen Anlaufpunkt fur Kontextquellen und Kontex#rer. Die Interaktion der Diens-
te untereinander wurde Uber standardisi&vebserviceschnittstellen realisiert, so dass eine
offene, dienstorientierte Softwarearchitektur gebildatde.

Aufbauend auf der Amigdliddlewareund den vorhandenen Kontextquellen wurde im
letzten Teil der Arbeit ein System zur ambienten Kommundgatorgestellt, welches als
Beispiel einer kontextbewussten Anwendung angesehenewedann. Hierbei wurden die
Komponenten zur akustischen Signalverarbeitung vortigsteslche zur Unterdriickung
von Echos und Stdrgerauschen notwendig sind. Diese ausitéeatur entnommenen Ver-
fahren wurden in ein echtzeitfahiges System integriertumdomponenten zur Audio- und
Videodatenkompression sowie zum Datenaustausch ergdiertlurch war es moglich, eine
echtzeitfahige Kommunikation zwischen zwei beliebigesn8brten Uber ein gemeinsames
IP-Netzwerk aufzubauen und gleichzeitig eine Datenvemegilim lokalen System vorzu-
nehmen.

Die Steuerung der Datenstrome innerhalb der ambienten Komkation erfolgte kon-
textbasiert durch die in dévliddlewarevorhandenen Daten Uber die Nutzerpositionen. Da-
bei stellte die audio-visuelle Sprecherprotokollierualg, Teil der akustischen Szenenanaly-
se, eine mogliche Kontextquelle neben anderen VerfahreRasitionsbestimmung dar. Im
Vergleich mit anderen Systemen, wie z. R ID-basierter Positionsschéatzung, bot die akus-
tische Szenenanalyse den Vorteil, dass keine zusatzliGleesite durch den Benutzer mit-
gefuhrt werden mussten. Das System der ambienten Komntigrikautzte unter anderem
die vorhandenen Kontextinformationen, um automatisierSitzungsverwaltung fur Benut-
zer durchzufiihren. Des Weiteren standen dem Nutzer wald@emidommunikatiorFollow-
Me-Fahigkeiten zur Verfigung, d. h. der Nutzer konnte siclh ifreRaum und zwischen
den Raumen bewegen, wahrend die kontextbewusste SteudiruAgdio- und Videodaten
der Kommunikation dem Nutzer automatisch folgen liel3. Deeviéndung einer schwenk-
und zoombaren Kamera, welche mit den kombinierten Ergebnisler akustischen Posi-
tionsschéatzung und der Gesichtsdetektion gesteuert wardeglichte eine automatische
Ausrichtung der Kamera auf den aktuellen Sprecher.

Ausblick

Die hier vorgestellten Systeme zur akustischen Szeneysahd zur ambienten Kommuni-
kation verwendeten vorab trainierte Modelle, die aus eménlen Trainingsphase stamm-
ten. Der Aufwand eines solchen Trainings steht im Gegermatien ldeen der ambienten
Intelligenz, da dort die automatische Anpassung des Sygsaerden Benutzer gefordert wird.
Daher ist der nachste Entwicklungsschritt des Systems,@lasautomatisches Training der
Benutzer und der Hardwareausstattung durchgefuhrt wingtait Modelle fir jeden Nut-
zer vorab zu trainieren, wird das System eigenstandig nenet@er erkennen und fur diese
neue Modelle trainieren. Somit wird das System sukzeska\Naltzer beobachten und deren
Modelle mit zunehmender Datenmenge immer besser tramiBreBezug auf die Hardwa-
re wird das System um selbstkonfigurierende und selbstidmKomponenten erweitert, so
dass es z. B. eigenstandig die Geometrie und Position vonolgtiiongruppen bestimmen
kann.
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A Anhang

A.1 Herleitung ABIC

Die Likelihoodder Hypothesé{, ist gegeben mit:

DX Ho) = Hﬁ e (= (@h) = )" S5 @) - ) ) (A

= ((QW)D‘EO‘)# exp <—% Zw ((w(k) — o) 25 (k) — Ho))) (A.2)

k=1

Logarithmieren der Dichtefunktion ergibt di®g-Likelihood

log (p(X1.n,, [ Ho))

- 25 loa(2r) = og([2ol) — 3 > (alk) — ) B (wlh) — o) (A2)
k=1

Fur die weiteren Umformungen werden einige EigenschaftenMatrizen verwendet, die
im Folgenden angegeben werden. Wenn die Ma#tibestehend aus den Elementéy)
durch das Produkt zweier Vektorenundb mit

A= (4j)=a-b" = (a;-b) (A.4)
dargestellt werden kann, so gilt fr die Spur vdn

N N
=1 =1

Somit kann die Summe aus GIl. A.3 umgeformt werden zu:

S (@(k) — o) S5 (k) — o) = S spur | S5 @ (k) — o) (k) — o) | (A6)

a T
aj by, k bl

= spur <Zu 2 (@ (k) — po)(m(k) — NO)T>

— spur(i]g1 Z(m(k) — po)(z(k) — po)”

k=1

(A7)
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Da X, mit
1
_ T
3 = N ;(w(k) — po)(x(k) — po) (A.8)
aus den MerkmalsvektoreX.y, geschatzt wird, folgt fur Gl. A.7:
Nw
> (@ (k) = p0) S5 (@ (k) — o) = SPUT(E5" - Ny - o) (A.9)
k=1
=N, - D. (A.10)
Somit folgt fur Gl. A.3:
DN, Ny, 1
log (p(X1:n,|Ho)) = — 5 log(27) — 7l09(|§30|) — 5N D (A.11)
Ny, DN,
= log(|3]) — 5 (14 log(2m)). (A.12)
Des Weiteren ist dieikelihoodder Hypothesédi; gegeben durch:

Nu/2 . . o
p( XN, | H1) = kll m - €Xp (—5 (k) — p)" =7z (k) — Ml)))

11 . P(—%((w(k)—ug)TZ?(:c(k)—m))) (A.13)

ex
(27m) % |2

k=Nu/2+1
. N /2
— (2m)P[=]) T exp (—i S (k) — ) TS0 (k) — uo))
k=1
(2m)P1%]) ™ exp (—; ST (k) — o) TSy (k) - u2>>> .
k=Ny/2+1

(A.14)
Das Logarithmieren der Dichtefunktion der Hypothégeund die Verwendung von Gl. A.4

und GI. A.5 fuhrt auf:
Ny
log (p<X1:Nw|H1)) = log(27r) - Tlog(‘leEQD - 25 9 (A.15)

Entsprechend der Definition fikBIC [DWO0OQ] berechnet sich dessen Wert aus der Diffe-
renz der Gleichungen GI. A.12 und GI. A.15 und deren zugegedriGewichtsterme fur die
Modellkomplexitat zu:

DN,

1 DN,

ABIC = BIC(H,) — BIC(H,) (A.16)
— —%log(|21||22|) — DNw(l + log(27)) — {% log N,
+ %log(\ZoD + @(1 +log(27)) + §? log N,, (A.17)
= 2 2l0g(|80]) — 2109 (|5l [Sa]) — € log N (A.18)

Im letzten Schritt wurde die Vereinfachung verwendet, diissHypothesed; doppelt so
viele Modellparameter besitzt, wie die Hypothégg(m; = 2my).
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A.2 Herleitung MMI -Parameterschatzung

Gegeben seien jeweils;, MerkmalsvektorenX. ;.y, = [xx(1), ..., xi(Ng)] flr jede der
k=1,..., K Klassen, welche zur Parameterschatzung der Modelle veleteverden sol-
len. Jede Klasse soll durch e®MM mit M Mischungsverteilungen beschrieben werden.
Die Zufallsvariabel der Klassenzugehorigkeit eines Malavektorszy(n) werde mit()
und die Zufallsvariabel der Zugehoérigkeit zu einer Misopswerteilung mitZ bezeichnet.
Das Ziel derMMI-Parameterschatzung ist die Maximierung der Anzahl derekbiklas-
sifizierten Trainingsmerkmale [LP96]. Folglich muss fle dtarameterschatzung deten
Klasse

P(Q=i|X;1.n:0) = : — (A.19)

maximiert werden. Die Parameterschatzung soll anhandodesithmierten Ausdrucks aus
Gl. A.20 erfolgen.

Qi(®) =log (P(Q =i Xi1.n; O)) (A.21)

=log ﬁ Kp(wl(n”Q =1;0;) - P(Q2=1)
n=1 3" p(a;(n)|Q =k;Oy) - P(Q=F)

k=1
:ibg p(xi(n)|Q2 =140;) - P(Q =)
=\ D @)=k 6y P =F)

— log (Zp(wi(n)lQ =k;O) - P(Q = k))] (A.22)
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Zunachst erfolgt die Berechnung des Gradienten zur Bestimgnaer Parameterwert®;
durch:

Vein‘(_@)
al Ve, [p(xi(n)|Q = i;0;)] -~ Ve, l~c2::1p<wl<n>|Q _here Ty (A.23)
— | pxi(n)|Q=1i;0;) kz::lp(wl( Q= k; ©,)P(Q = k)
55| Ve (@m0 = 0] Ve, [p(@(n)|2 = i: ©,) (2 = i)
o p(x;(n)|Q2 =1i;0;) ;p(mz(n)m =k;0,)P(Q=k)
B N; L Kp(ml(nﬂQ =1;0,)P(2=1) Ve, [log (p(x:(n)|Q = i;©,))]
" 2 p(@i(n)[Q = k; O P(Q = k)
I biln) ’ |
" [4(n) Ve, log (p(ai(m)|2 = 5 @) (A.24)

n=1

Im Folgenden wird der Ausdruck

p(ai(n)|2 = i; ©;) P(Q = i)

kil P, ()| = k: ©)P(Q = k)

Yi(n) = | 1— (A.25)

zur Abkurzung der Schreibweise verwendet. Er kann intégtewerden als die Wahr-
scheinlichkeit, dass ein Merkmalsvektor(n) mit den aktuellen Modellparametern aller
Klassen falsch klassifiziert wird. Die déiikelihoodsp(x;(n)|2 = i; ©;) zugrundeliegen-
den Verteilungsdichtefunktionen sind Gauf3'sche Misclsuegeilungen. Sie bestehen aus
jeweils M Einzelverteilungem(x;(n)|2 =i, Z = m; ©;), welche mit

Cim = P(Z =m|Q =1) m=1,....M (A.26)

gewichtet sind. Folglich sind dieikelihoodsder Verteilungsdichtefunktionen mit

Cim - D(xi(N)|Q=1,Z =m;0;) (A.27)

M:

p(xi(n)|Q2 =1i;0;)

m=1
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gegeben. Fur die Berechnung des Mittelwertvektors odeKaearianzmatrix dey-ten Ein-
zelverteilung folgt

Ve, , [log (p(xi(n)|Q = i; ©;))]

=Ve,, |log (Z Cim - D(xi(n)|Q =i, Z = m; @0)] (A.28)
Voo, [y pl@(m)|Q =i, Z = j:©,)

- P ()0 =170) (A.29)
- Ve., [p(@:(n)|Q=1i,2Z = j; ©,)], (A.30)

p(xi(n)|2 = i; ©;)
wobei die Umformung von Gl. A.29 auf Gl. A.30 bericksichtidéss der Gradient nicht fur

die Mischungsgewichte betrachtet wird. Die Anwendung derdd’schen Regel fir bedingte
Wahrscheinlichkeiten auf Gl. A.30 in der Form

P(Z=312=1) _ P(Z = jlxi(n),Q =1i;0;)
p(z(n)|Q=14:0;,)  plxi(n)Q=1i,7Z=76, (A.31)
Cij _ i (n)
2N p(n)Q =140,  pla;(n)Q=147=j;0,) (A.32)
mit
%i5(n) = P(Z = jlai(n), 0 = ©,) (A.33)
fuhrt auf:
Ve, [log (p(:(n)[9 = i ©,)]
— Yi,i(n) o
Cp(xi(n)|Q =14, Z = j; @i)v@m’ [p(xi(n)|2 =1, Z = j; ©;)] (A.34)
=7:.;(n)Ve,, [log (p(xi(n)|Q=1,Z = j; ©;))] . (A.35)

Die Bestimmung der Mittelwertvektorgm; ; der j-ten Einzelverteilung kann unter Verwen-
dung von [BSMMO01] mit

. exp( =3 (@i(n)—pi )" ;5 (@i(n)—pi )
V., 10 (p(@i(n)]Q = i ©,)) = vu,,,-log< il il ))(A.sa)

= 3, (@i(n) — piy) (A.37)
erfolgen. Das Einsetzen der Teilergebnisse aus Gl. A.3531nd.37 in die Gradientenglei-

chung aus Gl. A.24 liefert die Bestimmungsgleichung flrghechatzten Mittelwertvektoren
;. ; mit:

Vi, Qi(®)] =0 (A.38)
X Hi,j =i, j
0= [ti(n) 7is(n) - B} (i(n) — fis)]
" [i(n) - eg(n) - ()]
@ﬁi,j = =l . (A39)
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Entsprechend der Herleitung fir die Mittelwertvektoger wird fur die Schatzung der Ko-
varianzmatrizer¥; ; zunachst der Gradient aus Gl. A.35 mit Hilfe von [Fuk90] bastt:

Vs, , log (p(xi(n)|Q2 = 7; ©))

(exp (-3 @) = i) 57 (@i(n) — p2,)) )
=Vsy, , log (A.40)
(2m)" [,

= Vs, [lom (2 + () — ) 5 (o) — )|
1

=73 (2&1 — X} (@i(n) — pij) (wi(n) — pi )" E;j) . (A.41)

Setzt man die Teilergebnisse aus Gl. A.41 und Gl. A.35 in ded&ntengleichung aus Gl.
A.24 ein, so folgt:

E,J7217
N; ~ R -
[wz iy (n (Ej} — 37 (@i(n) — pay) (zi(n) — pay)" 2;;)}
n=1
N;

IS

A (i) - 4(n) (@i(n) = prag) (i) = pas)”
oy =21 - : (A.43)

> ¢i(n) - 3is(n)

Die Schatzung der Mischungsgewiclag erfolgt mit Hilfe des Lagrange-Multiplikators,
der in die Optimierung aus Gl. A.22 mit einbezogen wird:

N; . . M
Yl pla(n)Q=i0)PQ=1) |, (Z - 1) (A44)

" ép(wi(n)lﬁ =k @) P(Q=F)

Die Berechnung des Gradienten fur den Ausdruck in Gl. A.d#it die Bestimmungsglei-
chung fure; ; mit:

V.., Q4(O, N =0 (A.45)
N; .
~ | p(x |Q—ZZ—],@)P(Q=2)
@nzll Q=40 P(Q =)
Q=i 7 =7:0,)P(Q =i
_p([:f()l J; ©:) P( ) oo
1;1p(wz(n)|9 =k;0,)P(Q=k)
N (n)|Q =4,7Z = j:©,) B
VN {zpz ( N OTEECN ]+A_o. (A.46)

n=1
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Unter Verwendung von Gl. A.32 folgt:

{wi(n) %’Ej‘(‘")} +A=0 (A.47)
8= S wn) (). (A.48)

Die Summation def/-Gleichungen aus Gl. A.48 fuhrt mit

M
> cim = 1 (A.49)
m=1

zur Bestimmung des Lagrange-Multiplikators:

BUE ol Kp(wi(n)\ﬂzi;@i)P(in) _ (A.50)
T L p@mIe=kO)PQ = k)

Somit folgt fiir die Mischungsgewichte ;:

G, == . (A.51)

Die MMI-Parameterschétzung ist éiM-Algorithmus. Im ersten SchritExpectation wer-
den die Erwartungswerte der Wahrscheinlichkeit einerlgassifikation (vgl. Gl. A.25) und
die Zugehorigkeit zu einer Mischungsverteilung (vgl. GI38) mit Hilfe der aktuellen Mo-
dellparameter geschatzt. Im zweiten Schhakimizatior) werden die im vorherigen Schritt
berechneten Werte verwendet, um eine neue Schéatzung delliprameter (vgl. Gl. A.51,
Gl. A.39, Gl. A.43) durchzufuhren und somit die Zielfunkti¢Gl. A.20) zu maximieren.
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A.3 Experimentelle Ergebnisse der Ereignisdetektion

Die folgenden zwei Tabellen enthalten die Klassifikatiatesn der Ereignisidentifikation
fur jedes einzelne Mikrophon im Raum. Tab. A.1 gibt die Emgebe fur die Testdaten auf
DVD 2 und Tab. A.2 die Ergebnisse flur DVD 3 wieder. Die beidetzten Zeilen geben die
beste und die schlechteste Klassifikationsrate fir jedeig s wieder, um die Spannbreite
der Klassifikationsraten zwischen dgimMikrophonen aufzuzeigen.

[ [ ap ] cl [ em [ co [ do [ ds ] Kj [ kn T kKt ] la [ pr [ pw [ st T un ]
Mik. 1 100,00 100,00 85,71 90,91 100,00 95,24 95,24 100,00 96,00 95,24 86,11 82,76 91,67 76,09
Mik. 2 100,00 100,00 89,29 90,91 100,00 95,24 95,24 100,00 96,00 95,24 88,89 82,76 87,50 80,43
Mik. 3 100,00 100,00 89,29 95,45 100,00 95,24 95,24 100,00 92,00 90,48 86,11 86,21 91,67 82,61
Mik. 4 100,00 100,00 89,29 90,91 85,00 85,71 100,00 100,00 100,00 90,48 91,67 96,55 83,33 80,43
Mik. 5 100,00 100,00 92,86 90,91 100,00 95,24 95,24 100,00 92,00 85,71 88,89 79,31 91,67 82,61
Mik. 6 100,00 100,00 96,43 90,91 80,00 85,71 95,24 100,00 92,00 90,48 94,44 89,66 87,50 82,61
Mik. 7 100,00 100,00 92,86 90,91 100,00 95,24 95,24 100,00 96,00 95,24 88,89 86,21 91,67 86,96
Mik. 8 100,00 100,00 89,29 95,45 100,00 95,24 95,24 100,00 96,00 90,48 86,11 82,76 91,67 82,61
Mik. 9 100,00 100,00 82,14 100,00 100,00 90,48 100,00 100,00 92,00 95,24 91,67 79,31 91,67 86,96

Mik. 10 100,00 | 100,00 | 85,71 100,00 | 100,00 | 95,24 100,00 | 100,00 92,00 80,95 91,67 82,76 | 91,67 86,96
Mik. 11 100,00 | 100,00 | 85,71 100,00 | 100,00 | 95,24 95,24 100,00 92,00 85,71 86,11 75,86 | 87,50 84,78
Mik. 12 100,00 | 100,00 | 85,71 100,00 | 100,00 | 95,24 100,00 | 100,00 92,00 85,71 97,22 72,41 | 91,67 86,96
Mik. 13 100,00 | 100,00 | 82,14 86,36 100,00 | 95,24 100,00 | 100,00 96,00 95,24 80,56 86,21 | 87,50 89,13
Mik. 14 100,00 | 100,00 | 85,71 86,36 100,00 | 95,24 90,48 100,00 92,00 90,48 77,78 89,66 | 91,67 89,13
Mik. 15 100,00 | 100,00 | 85,71 77,27 100,00 | 95,24 80,95 100,00 92,00 95,24 80,56 89,66 | 91,67 86,96
Mik. 16 100,00 | 100,00 | 89,29 86,36 100,00 | 85,71 95,24 93,75 92,00 95,24 88,89 93,10 [ 75,00 76,09
Mik. 17 100,00 | 100,00 | 89,29 90,91 100,00 | 85,71 95,24 93,75 92,00 90,48 83,33 93,10 [ 75,00 71,74
Mik. 18 100,00 | 100,00 | 89,29 86,36 100,00 | 85,71 100,00 93,75 92,00 90,48 88,89 96,55 | 83,33 78,26
Mik. 19 100,00 | 100,00 | 89,29 90,91 95,00 85,71 100,00 87,50 92,00 95,24 91,67 96,55 | 83,33 76,09
Mik. 20 100,00 | 100,00 | 89,29 90,91 100,00 | 85,71 100,00 87,50 88,00 100,00 | 88,89 93,10 | 83,33 76,09
Mik. 21 100,00 | 100,00 | 92,86 90,91 100,00 | 85,71 100,00 87,50 96,00 95,24 94,44 | 93,10 | 83,33 73,91
Mik. 22 100,00 | 100,00 | 89,29 90,91 100,00 | 85,71 95,24 93,75 88,00 90,48 91,67 96,55 | 83,33 76,09

[ Minimum | 100,00 | 100,00 | 82,14 | 77,27 | 80,00 | 8571 | 80,95 | 87,50 | 88,00 | 8095 | 77,78 | 7241 | 7500 | 71,74
[ Maximum | 100,00 | 100,00 | 96,43 | 100,00 | 100,00 | 9524 | 100,00 | 100,00 | 100,00 | 100,00 | 97,22 | 96,55 | 91,67 | 89,13

Tabelle A.1: Klassifikationsraten der Ereignisse je Kanal fur die Test@DVD 2)

[ [ ap [ o [ om [ co [ do [ ds [ kK [ kn [ kt [ Ta [ pr [ pw [ st [ un ]
Mik. 1 100,00 | 100,00 | 96,00 | 90,48 | 100,00 | 95,00 86,96 88,24 100,00 90,48 72,09 87,50 90,48 | 80,95
Mik. 2 100,00 | 100,00 [ 92,00 90,48 100,00 | 95,00 86,96 88,24 100,00 90,48 67,44 91,67 85,71 80,95
Mik. 3 100,00 | 100,00 [ 96,00 90,48 100,00 | 95,00 91,30 100,00 | 100,00 90,48 72,09 87,50 85,71 83,33
Mik. 4 100,00 | 100,00 [ 96,00 | 95,24 95,00 95,00 95,65 88,24 100,00 90,48 74,42 95,83 90,48 | 78,57
Mik. 5 100,00 | 100,00 | 92,00 | 95,24 | 100,00 | 95,00 95,65 94,12 100,00 90,48 58,14 87,50 90,48 | 83,33
Mik. 6 100,00 | 100,00 [ 92,00 90,48 90,00 95,00 91,30 100,00 | 100,00 95,24 76,74 95,83 95,24 | 85,71
Mik. 7 100,00 | 100,00 [ 92,00 90,48 100,00 | 95,00 95,65 94,12 100,00 90,48 74,42 87,50 90,48 83,33
Mik. 8 100,00 | 100,00 | 92,00 | 90,48 | 100,00 | 95,00 95,65 94,12 100,00 85,71 60,47 87,50 90,48 | 83,33
Mik. 9 100,00 | 100,00 [ 92,00 95,24 [ 100,00 | 95,00 95,65 94,12 100,00 95,24 72,09 91,67 85,71 83,33
Mik. 10 100,00 | 100,00 [ 92,00 85,71 100,00 | 95,00 91,30 88,24 100,00 90,48 74,42 87,50 85,71 83,33
Mik. 11 100,00 | 100,00 | 96,00 | 90,48 | 100,00 | 95,00 91,30 88,24 100,00 85,71 69,77 87,50 85,71 | 83,33
Mik. 12 100,00 | 100,00 | 92,00 | 95,24 | 100,00 | 95,00 91,30 88,24 100,00 85,71 69,77 87,50 90,48 | 83,33

Mik. 13 95,00 100,00 | 96,00 | 90,48 | 100,00 | 95,00 100,00 94,12 100,00 | 100,00 | 62,79 83,33 90,48 | 80,95
Mik. 14 90,00 100,00 | 96,00 | 80,95 | 100,00 | 95,00 91,30 88,24 100,00 95,24 60,47 87,50 95,24 | 83,33
Mik. 15 90,00 100,00 | 84,00 | 80,95 [ 100,00 [ 95,00 86,96 100,00 | 100,00 90,48 67,44 87,50 95,24 | 78,57
Mik. 16 100,00 | 100,00 | 96,00 | 95,24 | 100,00 | 95,00 91,30 94,12 95,00 95,24 79,07 91,67 90,48 | 78,57
Mik. 17 100,00 | 100,00 | 96,00 | 95,24 | 100,00 | 95,00 86,96 88,24 100,00 90,48 76,74 95,83 80,95 | 83,33
Mik. 18 100,00 | 100,00 | 96,00 [ 95,24 [ 100,00 [ 95,00 91,30 94,12 100,00 85,71 76,74 | 100,00 [ 90,48 | 80,95
Mik. 19 100,00 | 100,00 | 96,00 [ 95,24 [ 100,00 [ 95,00 95,65 88,24 100,00 85,71 81,40 95,83 90,48 | 78,57
Mik. 20 100,00 | 100,00 | 96,00 | 90,48 | 100,00 | 95,00 91,30 94,12 95,00 90,48 76,74 91,67 90,48 | 80,95
Mik. 21 100,00 | 100,00 | 96,00 | 95,24 | 100,00 | 95,00 91,30 94,12 100,00 90,48 76,74 95,83 90,48 | 80,95
Mik. 22 100,00 | 100,00 | 96,00 [ 95,24 [ 100,00 [ 95,00 86,96 94,12 100,00 95,24 76,74 91,67 95,24 | 80,95

[ Minimum | 90,00 | 100,00 | 84,00 | 80,95 | 90,00 | 9500 | 86,96 | 88,24 | 9500 | 8571 | 58,14 | 83,33 | 80,95 | 7857
[ Maximum | 100,00 | 100,00 | 96,00 | 95,24 | 100,00 | 95,00 | 100,00 | 100,00 | 100,00 | 100,00 | 81,40 | 100,00 | 9524 | 8571

Tabelle A.2: Klassifikationsraten der Ereignisse je Kanal fur die Testd@DVD 3)



Anhang 121

A.4 ML-und MMI -Parameterschéatzung
Die Likelihoodeines Merkmalsvektors fur die i-te Klasse = i) ist mit

plx|Q=1i) = chm- (T iy D) 1 =1,2 (A.52)
gegeben. Die Modellparameter der Klagg€ = 1) sind mit

3 7 4
ﬂ; Ci2 = ﬂ;cl,s = ﬁ; (A-53)

—6 —1 4
M11 = (_3) 12 = ( 0 ) 13 = (4) ; (A.54)

11 =

1,0 0,0\ (1,8 1,6\ (1,6 0,0
X = (0,0 1,0) P22 = (1,6 1,8) P2 = (0,0 1,6) (A.55)
und die der Klasse (2 = 2) mit
4 6 4
0271 = (A56)

ﬁ;cm = ﬁ;cm = ﬁ;

3 1 —4

K21 = <_2) s M22 = (0) 1 H2,3 = ( 4 ) ; (A.57)
01 00} « _ (18 16\  _ (18 16

21 = <0,0 1,0) 222 = <1,6 1,8) 22 = (1,6 1,8) (A-58)

gegeben. Fur die Parameter &M lieferten die Schatzverfahren die folgenden Werte:

e ML-Parameterschatzung (volle Kovarianzmatrizen)

c11 = 0,21;¢12 = 0,505 ¢1 3 = 0,28; (A.59)
—6,00 —0,98 4,01
l’l’l,l - (_3 00) ;l’l’l,2 - ( 0 01 ) ;l’l’l,?) - (4 01) 7 (AGO)
0,98 —0,02) (1,86 1,66\ (1,62 0,02\
11 = (—0,02 0,97 ) 212 = (1,66 1,85) 218 = (0,02 1,62) - (A6L)
C1 = 0,43; Coo = 0 29 Co3 = 0 29, (A62)
1,01 3,01 3,96
K21 = (0 00) M2 ( 1 97) 23 = ( 4,03 ) (A.63)

1,77 1,58\ ~ (0,10 0,01\ (1,86 1,67
221 = (1,58 1,79)’2272_(0,01 1,00)’2273_ (1,67 1,86) (A.64)
e ML-Parameterschatzung (diagonale Kovarianzmatrizen)

C11 = 0 27 C12 = 0,42, C1,3 = 0 32 (A65)
—5,50 —0,96 3,72

2,08 0,00\ (099 0,00\ (2,08 0,00
1= <o,00 0,99)’21’2_<0,00 1,00)’2173_ (0,00 1,72) (A-67)
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Co1 = 0,487 Co9 = 0,247 C23 = 0,29,

(121 (301 [-398)\
IJ’2,1 - _0’10 7,-1’2,2 - _2’19 7,‘1’2,3 - 4’02 )

1,94 0,00\ « (008 000\ (177
221 = (0,00 1,81) 222 = (0,00 0,87) 223 = (0,00

e MMI-Parameterschatzung (diagonale Kovarianzmatrizen)

0171 = 0,15, 0172 = 0,55, 0173 = 0,30,

_[(—455\ (=076 (286
Pri=A_946) #1227 007 ) #3 7 \276)"
3,64 0,00\ ~ (0,93 0,00\ (2,04
Z11 = <o,00 1,57) 212 = (0,00 0,90) 218 = (0,00
0271 = 0,667 0272 = 0,25, 0273 = 0,09,
041\ (285 (=207
Pa1 =1 _g58) #2277 (184 ) H23 =\ _29)°

1,35 0,00\ » _ (083 000\  _ (932
21 = <o,00 1,01) 222 = (0,00 0,84) ek (0,00

0,00
1,79

0,00
1,60

0,00
9,24

)

)

)

(A.68)

(A.69)

(A.70)

(A.71)

(A.72)

(A.73)

(A.74)

(A.75)

(A.76)
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