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“Ambient intelligence refers to the presence of a digital environment that is sensitive, ad-
aptive, and responsive to the presence of people. Within a home environment, ambient in-
telligence will improve the quality of life of people by creating the desired atmosphere and
functionality via intelligent, personalized inter-connected systems and services.”

Emile Aarts, Philips Research [Aar09]

“This technology will recognize us, notice our habbits, learn our likes and dislikes, and adapt
its behaviour and the services it offers us accordingly.”

Stefano Marzano über Intelligente Dienste [AM04]



1 Einleitung

Im Rahmen dieser Arbeit wird ein neues Verfahren zur Informationsgewinnung aus akus-
tischen Signalen vorgestellt. Die gewonnenen Informationen geben Aufschluss über anwe-
sende Personen und stattgefundene Ereignisse sowie deren Position im Raum. Anschließend
wird die Integration dieser Informationsquelle in eine vernetzte Hausumgebung gezeigt und
in den Kontext der ambienten Intelligenz gesetzt. Aufbauend auf den Informationsquellen
der Hausumgebung wird abschließend ein audio-visuelles Kommunikationssystem vorge-
stellt. Dieses nutzt die im Haus vorhandenen Informationsquellen zur Realisierung einer
kontextbewussten Steuerung der Kommunikation.

Das Paradigma ambiente Intelligenz (AI) formuliert das Konzept einer vernetzten Umge-
bung, welche intelligent auf Personen und Ereignisse reagiert. Dabei soll das System sensitiv
gegenüber Wünschen und Bedürfnissen der Nutzer sein und aufdiese adaptiv reagieren, so
dass eine Steigerung des Komforts und der Lebensqualität für den Nutzer erfahrbar wird
[AM04]. Diese weitreichende Definition von ambienter Intelligenz umfasst Forschungs-
themen sowohl im Bereich der Hardware- als auch der Softwareentwicklung. Verwandte
Forschungsbereiche mit starken Überschneidungen im Aufgabenspektrum sindUbiquitous
Computingbzw.Pervasive Computing[Wei99]. Beide Begriffe beschreiben eine Vernetzung
und Durchsetzung alltäglicher Gegenstände mit Mikroprozessoren und Sensoren, wobei der
Begriff desPervasive Computingvornehmlich durch die Industrie geprägt wurde. Geräte
sollen sich automatisch untereinander vernetzen und eine allgegenwärtige Kapazität an Re-
chenleistung bereitstellen. Diese hardwareorientierte Sichtweise unterscheidet dasUbiqui-
tous Computingvon dem Paradigma ambiente Intelligenz. Im Sinne der ambienten Intel-
ligenz ist eine vernetzte Hardware eine notwendige Grundlage für ein System, jedoch soll
diese in den Hintergrund treten und möglichst aus dem Wahrnehmungsfeld des Nutzers ver-
schwinden. Die Funktionen und Dienste der Hardware sollen bei diesem Prozess erhalten
bleiben. Zusätzlich soll eine starke Orientierung auf den Benutzer erfolgen. Die Nutzung ei-
ner Funktion soll intuitiver werden, so dass dem Nutzer das Erlernen eines Bedienschemas
abgenommen wird, indem das System sich „intelligent“ verhält [Ami06].

Die zentralen Eigenschaften der ambienten Intelligenz sind durch Integration, Kontext-
bewusstsein, Personalisierung, Adaptivität und Antizipation gegeben [AM04]. Zunächst soll
ein System aus dem Wahrnehmungsbereich der Nutzer entferntwerden, indem die Hardware
in die Umgebung oder Dinge des täglichen Lebens vollständigintegriert wird. Diese unauf-
fällige Bereitstellung von Funktionen und Diensten führt zu einer verbesserten Akzeptanz
der Technik, da sie dem Nutzer weniger aufdringlich erscheint. Das Kontextbewusstsein ist
der Schlüssel zu einer aus der Sicht des Nutzers als „intelligent“ wahrgenommenen Umge-
bung. Ein kontextbewusstes System ist dadurch gekennzeichnet, dass es entsprechend der
verfügbaren Informationen Entscheidungen trifft und auf aktuelle Ereignisse reagiert. Das
Verhalten des Systems ist somit nicht nur abhängig von den Eingaben des Nutzers, sondern
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2 Einleitung

auch von dem aktuellen Kontext, in dem das System genutzt wird. Da das System kontextbe-
wusst handeln soll, muss es folglich Regeln beinhalten, dieentweder vom Nutzer vorgegeben
oder selbstständig gelernt werden. Diese Personalisierung ist eine aus dem Paradigma am-
biente Intelligenz abgeleitete Notwendigkeit, da das System sich dem Nutzer anpassen soll
und nicht umgekehrt. Damit verbunden ist die Eigenschaft der Adaptivität, welche die Fä-
higkeit beschreibt, auf den Benutzer zu reagieren und sich seinem Verhalten anzupassen.
Somit wird die Adaption auf den Benutzer zwangsläufig zu einer Personalisierung führen.
Die sicherlich am schwierigsten zu realisierende Eigenschaft der ambienten Intelligenz ist
die Antizipation. Das System soll die Absichten und Wünschevon Benutzern prognostizie-
ren und vorausschauende Entscheidungen treffen. Dies bedingt zunächst eine große Men-
ge an Informationen über den aktuellen Kontext und eine entsprechende Beschreibung der
möglichen zukünftigen Ereignisse basierend auf den vorhandenen Informationen. Häufige
Fehlentscheidungen und dadurch ausgelöste Reaktionen desSystems werden zwangsläufig
zu einer Ablehnung des Systems durch den Nutzer führen, da aus der Wahrnehmung des
Nutzers heraus das System „irrational“ agiert. Die Realisierung von ambienter Intelligenz
bedingt somit grundsätzlich eine Verfügbarkeit von verlässlichen Informationen.

Die Europäische Union unterstützt die Forschung im Bereichambienter Intelligenz im
Rahmen derInformation Society Technologies(IST) Projekte. Das 6. Rahmenprogramm
beinhaltete unter anderem das mittlerweile abgeschlossene Projekt Amigo [Ami06], des-
sen Untertitel „Ambient Intelligence for the networked home environment“ die Zielvorgaben
des Projektes verdeutlicht. Das Projekt Amigo hatte das Ziel, die Vorteile einer vernetzten
Umgebung für den Benutzer erfahrbar zu machen, indem intelligente Dienste auf Basis einer
Middlewareentwickelt wurden. EineMiddlewareist dabei eine Software, welche im Hin-
tergrund, d. h. vor dem Anwender verborgen, Systemkomponenten miteinander verknüpft.
Die vorliegende Arbeit stellt Teile der Forschungsergebnisse aus dem Bereich der akusti-
schen Szenenanalyse und der ambienten Kommunikation vor und gibt einen Einblick in die
Mechanismen der AmigoMiddleware.

Obwohl schon häufiger prognostiziert, haben Systeme zur Realisierung von ambienter In-
telligenz den Weg in den Massenmarkt noch nicht gefunden. ImProjekt Amigo wurde als
eines der Haupthindernisse hierfür die fehlende Interoperabilität von Geräten unterschiedli-
cher Hersteller identifiziert. Trotz fortschreitender Entwicklung im Bereich der Vernetzung
entwickeln viele Hersteller isolierte Lösungen, welche auf das eigene Produktportfolio ab-
gestimmt sind. Infolgedessen sind die in einem Haushalt vorhandenen Geräte, welche sich in
die Kategorien Haushaltsgeräte, Unterhaltungselektronik, mobile Geräte und Personal Com-
puter einteilen lassen, oft isoliert voneinander anstatt einen Verbund darzustellen [Ami06].
Aktuelle Entwicklungen führen zwar vermehrt zur Vernetzung von Geräten, wie z. B. zwi-
schen Computern und Unterhaltungselektronik, jedoch ist dies kein Weg zur allgemeinen In-
teroperabilität, sondern eine eher harte Verknüpfung überproprietäre Protokolle. Im Projekt
Amigo wurde daher eine quelloffene, standardisierte und interoperableMiddlewareentwi-
ckelt, welche mit den auf dem Markt etabliertenMiddleware-Technologien sowohl intera-
gieren als auch diese miteinander verknüpfen kann.

Das Bindeglied der ambienten Intelligenz ist eineMiddleware, welche die im Haus vor-
handenen Sensoren, Geräte, Dienste und Applikationen untereinander verbindet. Folglich
sorgt sie dafür, dass die in den Sensoren und Diensten gewonnenen Informationen im ge-
samten Netz verfügbar sind. Neben Messwert nehmenden Sensoren, wie z. B. Tempera-
turfühlern, sind in der vernetzten Hausumgebung auch komplexere Sensoren in Form von
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Mikrophonen und Kameras vorstellbar. Diese erfordern im Vergleich zu Messwertsensoren
spezielle Analyseverfahren zur Auswertung der aufgenommenen Daten. Im Falle von Mi-
krophondaten ist dies die akustische Szenenanalyse und fürdie Videodaten sind dies Ver-
fahren zur visuellen Personen- oder Objekterkennung. Die akustische Szenenanalyse hat das
Ziel, die in einem akustischen Signal enthaltenen Quellen zu identifizieren und alle nutz-
baren Daten zu extrahieren. Entstanden ist dieses Forschungsgebiet aus dem Bestreben, die
automatische Spracherkennung zu verbessern, indem eine bessere Identifikation der Stör-
quellen vorgenommen wird [RO98]. Betrachtet man die akustische Szenenanalyse aus dem
Blickwinkel der ambienten Intelligenz, so kann diese als eine wertvolle Informationsquelle
für kontextuelle Zusammenhänge gesehen werden. Vorteilhaft hierbei ist, dass Mikrophone
als Sensoren unauffällig in die Umgebung integriert werdenkönnen. Dabei erfassen sie den
gesamten Raum und sind unabhängig von den Beleuchtungsverhältnissen, wodurch sie In-
formationen liefern, die durch Kamerasysteme nicht erfassbar sind. Die in der akustischen
Szenenanalyse gewonnenen Daten geben Aufschluss über Benutzer, deren Aktivitäten und
auftretende Ereignisse.

Mikrophone sind als Sensoren für die akustische Szenenanalyse notwendig, jedoch ist die
Nutzung nicht auf die reine Informationsgewinnung beschränkt. In Kombination mit Laut-
sprechern und Netzwerktechnik ist der Aufbau verteilter Kommunikationssysteme möglich.
Orientiert sich solch ein System an den Ideen der ambienten Intelligenz, so wird es durch
den Begriff „ambiente Kommunikation“ charakterisiert. Die Grenzen zwischen der „klassi-
schen“ Kommunikation über Internetprotokolle (engl.Voice over Internet Protocol, VoIP)
und der „ambienten Kommunikation“ sind fließend, da in beiden Verfahren vergleichbare
Komponenten eingesetzt werden.

Ein Merkmal der ambienten Kommunikation ist die nicht vorhandene Bindung des Ge-
sprächs an ein dediziertes Gerät, wie z. B. ein Telefon. Der Nutzer muss nicht mehr ein
Gerät für die Funktion der Kommunikation aufsuchen, stattdessen tritt die Hardware in den
Hintergrund und die reine Funktionalität bleibt bestehen.Folglich kann der Nutzer jederzeit
eine Kommunikation starten und sich währenddessen frei bewegen. Das System setzt somit
eine Freisprechfunktion und einen über mehrere Räume verteilten Aufbau voraus.

Ein weiteres Merkmal der ambienten Kommunikation resultiert aus den Benutzerstudien
des Projektes Amigo [M+05]. Vielfach wurde durch die Testpersonen der Wunsch geäußert,
eine „intelligente Umgebung“ solle den Kontakt zu Freundenund nahen Verwandten unter-
stützen. Hieraus entstand die Idee einer kontinuierlichenVerbindung zwischen räumlich ent-
fernten, jedoch emotional nahe stehenden Personen, die einGefühl des „Verbunden-Seins“
erzeugen soll. Hierbei ist die Menge der ausgetauschten Informationen zwischen den Perso-
nen über die Zeit betrachtet geringer als bei einem klassischen Telefongespräch. Die Kom-
munikation ist fortlaufend aktiv und die Personen hören, was der entfernte Partner macht.
Somit entsteht bei beiden das Gefühl, dass der jeweils andere sich im Nebenraum befin-
det. Denkbar ist zum Beispiel, dass das System automatisch die Verbindung zwischen zwei
Personen etabliert, sobald beide von der Arbeit nach Hause kommen und jeweils, entspre-
chend der persönlichen Systemkonfigurationen, bei bestimmten Ereignissen die Verbindung
automatisch trennt.

Die Kommunikation kann sowohl durch explizite wie auch implizite Benutzereingaben
kontrolliert werden. Die explizite Interaktion beinhaltet die klassische Steuerung der Kom-
munikation durch den Benutzer, die durch direkte Eingaben,z. B. über einen berührungs-
empfindlichen Bildschirm, gekennzeichnet ist. Die implizite Steuerung versucht das System
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intuitiver für den Benutzer zu gestalten, indem aus dem Verhalten des Nutzers die impli-
zierten Befehle ermittelt werden. Vorstellbar ist zum Beispiel der automatische Aufbau einer
Kommunikation, wenn sich der Nutzer auf ein Bild des gewünschten Kommunikationspart-
ners zubewegt.

Die vorliegende Arbeit behandelt Aspekte aus den Themengebieten akustische Szenen-
analyse,Middlewareund ambiente Kommunikation und gliedert sich in die folgenden Kapi-
tel: In Kap. 2 wird ein Überblick über den aktuellen Stand derForschung in den Bereichen
akustische Szenenanalyse, ambiente Intelligenz,Middlewareund ambiente Kommunikati-
on gegeben. Die wissenschaftlichen Ziele dieser Arbeit werden im darauffolgenden Kap. 3
definiert. Das Kap. 4 stellt die Verfahren zur akustischen Szenenanalyse vor und fasst die
experimentellen Ergebnisse in diesem Bereich zusammen. InKap. 5 werden Aspekte der
akustischen Ereignisdetektion als ein spezieller Teil derakustischen Szenenanalyse näher
untersucht. Das Amigo System und die Verknüpfung der akustischen Szenenanalyse mit der
Amigo Middlewarewerden in Kap. 6 erläutert. Anschließend wird in Kap. 7 gezeigt, wie
das Amigo System zur Realisierung eines kontextbewussten Dienstes genutzt werden kann.
Das hierbei betrachtete Beispiel der ambienten Kommunikation verwendet sowohl akusti-
sche als auch visuelle Daten. Eine Zusammenfassung der Ergebnisse dieser Arbeit erfolgt
abschließend in Kap. 8.



2 Stand der Forschung

Diese Arbeit behandelt die Themengebiete akustische Szenenanalyse, ambiente Intelligenz,
Middlewareund ambiente Kommunikation. Dabei sollen die für die ambiente Intelligenz zu
entwickelnden Komponenten derMiddlewaredie Informationsgewinnung mittels der akus-
tischen Szenenanalyse mit der Anwendung, der ambienten Kommunikation, verknüpfen. Im
Folgenden wird ein Überblick über den Stand der Forschung inden einzelnen Themengebie-
ten gegeben.

2.1 Akustische Szenenanalyse

Die akustische Szenenanalyse ist auf Grund der unterschiedlichen Anwendungsgebiete ein
weit gefächertes Forschungsgebiet. Zunächst wurde es durch die DARPA im Rahmen der
„Rich Transcription Task“ gefördert. Das vorgegebene Ziel war hierbei, eine automatische
Zuordnung von Zeitabschnitten zu Sprechern (sog. Annotation) in Rundfunksendungen, Te-
lefongesprächen und Besprechungen durchzuführen [NIS08b, TR06].

Bedingt durch die Verfügbarkeit neuer Datenquellen, welche in Besprechungsräumen und
intelligenten Umgebungen zu finden sind, wandelten sich dieAnsätze von unimodalen zu
multimodalen Signalverarbeitungssystemen (vgl. Abb. 2.1). Waren in Telefongesprächen

Mehrkanalige
Audiodaten

Mikrophone
Verteilte

...

RFID

Video

Mehrfach

Intelligente Umgebungen

Kamera

Kamera
Schwenk− & zoombare

Rundfunk

Telefon

Einkanalige
Tonspur

Domkamera

Audio

Besprechungen

Sensoren

gruppen
Mikrophon−

Omnidirektionale
Kamera

Drucksensor
Teppich

Datenquellen

Abbildung 2.1: Datenquellen und Anwendungsgebiete der akustischen Szenenanalyse

und Rundfunksendungen nur einkanalige akustische Aufnahmen vorhanden, so bieten viele
Datenbasen von aufgezeichneten Besprechungen schon mehrkanalige Aufnahmen. Eine er-
neute Steigerung der Vielfalt der Sensoren ist in intelligenten Umgebungen zu verzeichnen.
Dabei kann die Ausstattung der Umgebungen stark variieren,wodurch eine Anpassung der
Systeme und Algorithmen zur Datenverarbeitung an die gegebene Sensorik notwendig ist.
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Am deutlichsten wird dies bei den visuellen Daten, wo neben Kameras mit festen Blickwin-
keln auch schwenk- und zoombare (engl.Pan Tilt Zoom, PTZ) Kameras oder omnidirek-
tionale Kameras eingesetzt werden. Somit findet eine Spezialisierung der Systeme auf die
vorhandene Sensorik und den Verwendungszweck statt.

Aktuelle Projekte, wie dasIST ProjektCHIL (Computer in the Human Interaction Loop)
[CHI04] oder das ProjektAMI (Augmented Multi-Party Interaction) [AMI04], erforschen
professionelle Arbeitsumgebungen, wie zum Beispiel Seminar- oder Besprechungsräume.
Ziele sind unter anderem die Verbesserung der automatischen Spracherkennung, die akus-
tische und visuelle Lokalisation von Personen, sowie die Identifikation von Personen und
Ereignissen [OSBC06, TMZ+06, B+05b]. Des Weiteren wird im ProjektDIRAC (Detection
and Identification of Rare Audiovisual Cues) [DIR06] an der Detektion und Identifikation
seltener akustischer und visueller Ereignisse gearbeitet.

Anwendungsgebiete der akustischen Szenenanalyse mit multimodalen Daten sind bei-
spielsweise verbesserte Video-Konferenzsysteme, automatische Überwachungssysteme und
Systeme zur Unterstützung älterer oder behinderter Menschen [KTVL07]. Ein weiteres For-
schungsgebiet ist die automatische Annotation von Videomaterial aus Fernsehsendungen
[KMK07, MMF +06]. Im Folgenden wird ein Überblick über die grundlegendenKomponen-
ten eines Systems zur akustischen Szenenanalyse und deren Stand der Forschung gegeben.

Eine Lokalisierung von Personen durch aufgenommene, akustische Signale kann durch die
Schätzung der Signallaufzeitdifferenzen zwischen Mikrophonpaaren erfolgen. Hierzu wer-
den z. B. im „Generalized Cross Correlation“-Verfahren die Korrelationen zwischen den
Signalen berechnet und durch das Wissen über die Position der Mikrophone eine Positions-
schätzung durchgeführt [KC76]. Zusätzlich kann nach Bedarf eine modellbasierte Nachfilte-
rung durch Kalman- oder Partikelfilter erfolgen, um die Genauigkeit der Positionsschätzung
zu erhöhen [WPH04].

Eine Identifikation von Sprechern und Ereignissen basiert zumeist auf einer Modellie-
rung der Klassen durch Gauß’sche Mischungsverteilungen (engl. Gaussian Mixture Model,
GMM) [Cam97]. Diese können einzeln, also für jede Klasse unabhängig, trainiert oder aber
von einem gemeinsamen (universellen) Hintergrundmodell adaptiert werden [RQD00]. Die
Modellbildung durch ein universelles Hintergrundmodell (engl.Universal Background Mo-
del, UBM) bietet den Vorteil, dass weniger Daten für das Training benötigt werden und eine
rudimentäre Erkennung von unbekannten Klassen erfolgen kann. Das Training wird mit dem
„Expectation Maximization“-Algorithmus (EM-Algorithmus) oder der Bayes’schen Adapti-
on durchgeführt [DHS01].

Neuere Verfahren zur Parameterschätzung der Klassenmodelle mit dem Ziel der Reduk-
tion der Fehlerrate stammen aus dem Bereich diskriminativer Lernverfahren. Bekannte An-
sätze sind das „Minimum Classification Error“-Training (MCE-Training) und das „Maxi-
mum Mutual Information“-Training (MMI -Training). Sowohl dasMCE- als auch dasMMI -
Training finden erfolgreich Anwendung im Bereich der automatischen Spracherkennung
[LP96], der Sprecheridentifikation [KYM+05] und Sprecherverifikation [MC03]. Dabei kön-
nen die diskriminativen Lernverfahren sehr langsam konvergieren oder im Extremfall auch
divergieren, falls keine geeigneten Gegenmaßnahmen getroffen werden [NCM91].

Bevor jedoch eine Identifikation von Sprechern erfolgen kann, muss zunächst eine Ein-
teilung der akustischen Daten in homogene Abschnitte, die sog. Segmentierung, erfolgen.
Ein homogener Abschnitt beinhaltet dabei nur Daten einer Klasse und kann folglich ein-
deutig klassifiziert werden. Die zur Segmentierung verwendeten Verfahren nutzen häufig
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das Bayes’sche Informationskriterium (engl.Bayesian Information Criterion, BIC), welches
auf einem Hypothesentest basiert [CG98, DW00]. Hierbei wird die Hypothese, dass an ei-
nem Punkt im beobachteten Zeitabschnitt ein Sprecherwechsel vorliegt und somit der erste
Teil des Zeitfensters aus einer Klasse und der zweite Teil des Zeitfensters aus einer ande-
ren Klasse stammt, der Hypothese gegenübergestellt, dass das gesamte Fenster aus einer
Klasse stammt. Verfahren, die aufBIC-Ansätzen basieren, nehmen dabei immer eine Ab-
wägung zwischen den Aspekten Genauigkeit, Verlässlichkeit und Latenz der Segmentierung
vor [LZ02, DY08].

Fasst man Sprecherwechseldetektion und Sprecheridentifikation als eine Aufgabe auf, so
wird dies als Sprecherprotokollierung (engl.speaker diarization) bezeichnet [PAW07]. Da-
bei wird versucht, durch eine automatische Annotation vorhandene Audio- oder Videodaten
so aufzubereiten, dass sie mit textbasierten Suchalgorithmen erfasst werden können [TR06].
Die Kombination einer Identifikation von Sprechern mit einer automatischen Spracherken-
nung und die Auswertung der Metadaten des Videomaterials liefern die Information „Wer
spricht Wann und Was?“. Hierbei können akustische Modelle für verschiedene Sprecher
vorab trainiert werden, um deren Anteile in den Audiodaten zu finden, wie es zum Bei-
spiel die Protokollierung von Besprechungsdaten erfordert. Alternativ kann auch die Aufga-
be gestellt sein, dass alle Anteile eines Sprechers durch eine eindeutige Kennung gekenn-
zeichnet werden sollen, ohne die Anzahl der Sprecher oder deren Identität vorab zu kennen
[SML+08, RT05].

In der Sprecherprotokollierung sind iterative Verfahren mit variierender Komplexität weit
verbreitet, die zwei unterschiedliche Ansätze verwenden.Die eine Möglichkeit („top-down“)
ist, die gesamten Daten an den wahrscheinlichsten Sprecherwechselpunkten, z. B. durch
eine Detektion des Sprechergeschlechts, aufzuteilen und somit mehrere Teile zu erhalten.
Anschließend werden die Teile erneut auf Sprecherwechselpunkte untersucht und aufge-
teilt [MMF+06]. Die andere Möglichkeit („bottom-up“) ist, die sehr feine Vorsegmentierung
der Daten in kleinste, homogene Abschnitte und das anschließende Clustern der Segmente,
so dass zusammenhängende Abschnitte eines Sprechers wieder in einem Segment zusam-
mengefasst werden [STGW05]. In beiden Verfahren werden Schwellwerte oder Grenzen
festgelegt, die das iterative Verfahren stoppen, sobald die vermutlich optimale Segmentie-
rung gefunden ist. Verfahren zur Sprecherprotokollierung, die auf Datenströmen arbeiten,
verwenden beispielsweiseHidden Markov Models(HMM) zur Modellierung der Sprecher-
gruppe. In [MMF+06] wird ein Verfahren vorgestellt, in dem je ein Zustand eines HMM
einen Sprecher repräsentiert und das bei einem neu auftretenden Sprecher um einen weiteren
Zustand erweitert wird. Die Transitionswahrscheinlichkeiten desHMM werden in diesem
Fall aus Trainingsdaten geschätzt und sind für jeden Zustandsübergang fest vorgegeben. Die
Grundlage einer jeden Identifikation ist eine Menge von Sprechermodellen, welche entwe-
der vorab trainiert oder während des Betriebs geschätzt werden. Eine echtzeitfähige Bildung
von Sprechermodellen auf fortlaufenden Datenströmen wirdin [LZ02] vorgestellt. Verfah-
ren, die auf Datenströmen arbeiten, haben jedoch im Vergleich zu iterativen Ansätzen immer
den Nachteil, dass keine Korrekturen vergangener Entscheidungen durch erneute Iterationen
oder Clusterungen möglich sind.

Eine Sprecherprotokollierung kann durch Nahbereichsmikrophone oder durch entfernte
Mikrophone erfolgen, die in Gruppen angeordnet oder auf einem Tisch verteilt sind. Da-
bei kann entweder eine Auswahl des besten Mikrophonsignalsoder eine Signalverbesserung
durch strahlformende Algorithmen verwendet werden, um dieLeistungsfähigkeit des Sys-
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tems zu steigern [AWH07].
Ein aktuelles Thema in der Forschung ist die multimodale Signalverarbeitung in „intel-

ligenten Umgebungen“, wo neben Mikrophonen und Kameras auch andere Sensoren ver-
fügbar sind. Ein Schwerpunkt dieses Forschungsthemas liegt bei der Positionsschätzung
von Personen durch akustische und/oder visuelle Daten [KFH+08]. Die Positionsinforma-
tionen von Sprechern können dann direkt für die Segmentierung von Audiodaten genutzt
werden [AFI+08] oder aber integriert in den akustischen Merkmalsvektorzu einer Verbes-
serung der Sprecherprotokollierung führen [PAW06, APW06]. Die Positionsinformationen
können wahlweise aus Laufzeitschätzungen zwischen Mikrophonen [PAW06], Kamerasys-
temen [SML+08] oder anderen Systemen, wie dem in [CSJ07] vorgeschlagenen „Radio
Frequency Identification“-System (RFID-System), stammen. Ansätze für die Sprecherpro-
tokollierung mit Audio- und Videodaten können in [NK07] und[FHY09] gefunden werden.
Entsprechend der verfügbaren Hardware in den Räumen unterscheiden sich die Systeme
und Verfahren deutlich. In [SML+08] wird z. B. ein System mit fest installierten Kameras
genutzt, bei dem das Gesicht eines Nutzers beim Betreten desRaumes mit einer Kamera
identifiziert und anschließend die Position des identifizierten Nutzers über andere Kame-
ras verfolgt wird. Der Ansatz in [BS07] verwendet im Kontrast dazu schwenkbare Kameras
und versucht kontinuierlich die im Raum befindlichen Personen zu identifizieren. Ein weite-
rer Aspekt der Sprecherprotokollierung in „intelligentenUmgebungen“ ist die Verfügbarkeit
multipler Datenquellen, die im Falle von Mikrophonen eine Auswahl oder Kombination von
Kanälen erfordert. Hierzu wurde in [GAW06] ein Ansatz mit einem Viterbi-Dekodierer vor-
geschlagen, der eine automatische Kanalauswahl durchführt. Alternativ gibt es eine Vielzahl
von Ansätzen zur Gewichtung, Normierung und Kombination multimodaler Informationen,
wovon einige in [EFJS07] untersucht wurden.

2.2 Middlewareund ambiente Intelligenz

Die Entwicklung von Anwendungen und Diensten in der vernetzten Hausumgebung setzt
vermehrt auf dienstorientierte Architekturen. Diese sindin der Lage, in heterogenen Umge-
bungen Geräte und Dienste miteinander zu verbinden und so die Inkompatibilitäten zwischen
unterschiedlichen Herstellern zu überwinden [MKGI07, Car08].

Die Verwendung vonWebserviceswird hierbei als eine mögliche Schlüsselkomponente
gesehen, da die aus dem Bereich desWorld Wide Web(WWW) bekannt gewordenen Diens-
te offene und standardisierte Schnittstellen und Beschreibungen bieten [PTDL07]. Der Da-
tenaustausch zwischen den Softwarediensten erfolgt dabeidurch das offeneSimple Object
Access Protocol(SOAP) [G+07]. Des Weiteren können die Dienste und die zugehörigen
Schnittstellen durch dieWeb Services Description Language(WSDL) [C+07] beschrieben
werden. Damit Dienste einander in einem gemeinsamen Netz finden, ist ein zentraler An-
laufpunkt im System notwendig, der in Form eines Verzeichnisdienstes, wie z. B. demLight-
weight Directory Access Protocol(LDAP) [Z+06], realisiert werden kann.

Im BereichMiddlewaregibt es verschiedene Standards mit unterschiedlichen Verbrei-
tungsgraden, wobeiUniversal Plug and Play(UPnP) [UPn08] eine weit verbreitete Tech-
nologie ist.UPnPbietet Mechanismen zur Lokalisierung, Beschreibung, Steuerung und Er-
eignismeldung von Diensten und Geräten. Ein Anwendungsgebiet ist die Verteilung von
Medieninhalten und die Steuerung von Unterhaltungselektronik. Im Bereich Gebäudeauto-
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matisierung sind Bussysteme wie derEuropean Installation Bus(EIB) [EIB09] verbreitet,
wobei der Einsatz aus Kostengründen meist auf professionelles Gebäudemanagement be-
schränkt ist. BeideMiddleware-Technologien sind zwar führend in ihrer Domäne, jedoch
sind sie zueinander inkompatibel und nur durch spezielle Verfahren miteinander verknüpf-
bar [RBH03].

Insgesamt wird die Entwicklung von ambienter Intelligenz durch die Inkompatibilität zwi-
schen Diensten und Systemen unterschiedlicher Herstellergehemmt [Ami06]. Dies ist einer
der Gründe für die Unterstützung des Projektes Amigo durch die Europäische Union. Die
Entwicklung von ambienter Intelligenz beinhaltet ein breites Spektrum an offenen Frage-
stellungen im Bereich der Software- und Hardwareentwicklung [FCP+05]. Aktuelle Syste-
me können zwar einzelne Aufgabenstellungen in vernetzten Umgebungen handhaben, je-
doch verwenden diese Ansätze zur Lösung der Problemstellungen feste von den Herstellern
vorgegebene Ansätze mit eingeschränkter Flexibilität [EK05]. Ein Beispiel hierfür ist der
EIB, welcher die Möglichkeit bietet, physikalische Informationen von Sensoren, wie z. B.
Lichtsensoren, zu sammeln und Komponenten mit aktorischenFähigkeiten, wie z. B. Tür-
schließsysteme, anzusteuern [EIB09].

2.3 Ambiente Kommunikation

Die ambiente Telefonie, wie sie in [Här07] vorgestellt wurde, beschreibt eine neue Form der
Kommunikation, welche auf der Kombination vonVoIP-Technologien und Freisprechtech-
nologien basiert. Die Verbreitung von Breitbandanschlüssen ermöglicht unbegrenzt Gesprä-
che überVoIP-Technologien zu führen, wobei die Kosten auf einen festen Betrag für den
Breitbandanschluss begrenzt sind1. Die damit verbundene Abkehr von Verbindungspreisen
hin zu festen Grundpreisen für die Versorgung mit Datenanschlüssen beeinflusst das Verhal-
ten der Benutzer derart, dass Verbindungen im Vergleich zurFestnetztelefonie länger, wenn
nicht sogar praktisch unbegrenzt, geführt werden [GDJ06].Infolgedessen tritt das intensive
Gespräch zwischen zwei Menschen während der Kommunikationin den Hintergrund und
die Menge an ausgetauschten Informationen pro Zeit wird geringer. Der Charakter einer
Verbindung wandelt sich vom reinen Medium zum mündlichen Informationsaustausch zum
System, das zwei räumlich getrennte Orte verbindet [BFGP08].

Die hierzu benötigten Technologien verwenden häufig dasReal-Time Transport Protocol
(RTP) [S+03] zur Datenübertragung und dasSession Initialization Protocol(SIP) [R+02]
zum Sitzungsaufbau und zur Sitzungsverwaltung. Des Weiteren existieren eine Vielzahl
von Audiokompressionsverfahren, um die Datenrate für eineVerbindung zu senken. Viele
Verfahren, wie z. B. das durch dieInternational Telecommunication Unit(ITU) standardi-
sierte Verfahren G.711, sind auf einen geringen Bandbreitebedarf optimiert und verwenden
daher eine Abtastrate von8 kHz [Wik09b]. Dazu wird das Signal zunächst auf einen Fre-
quenzbereich zwischen300Hz bis3400Hz begrenzt, wodurch Teile der Sprache und tieffre-
quente Umgebungsgeräusche unterdrückt werden. Paketorientierte Übertragungsverfahren,
wie z. B.RTP-Datenströme, verwenden das verbindungsloseUniversal Datagram Protocol
(UDP), um Verbindungen mit niedrigen Latenzen zu realisieren. Die hiermit verbundenen

1Aktuell wird auf Grund des steigenden Kostendrucks ein Umbau der Telekommunikationsnetze zu einer pa-
ketvermittelnden Netzinfrastrukur betrieben (engl.Next Generation Networks), wodurch auch in der Fest-
netztelefonie Festpreise für Telefonate ermöglicht werden [NGN09].
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Paketverluste sind abhängig von der Netzqualität und werden von einigen Audiokompressi-
onsverfahren automatisch durch eine Fehlerverschleierung (engl.Packet Loss Concealment,
PLC) kompensiert [Spe09].

Einige neuere Kompressionsverfahren, wie z. B. das quelloffene VerfahrenSpeex[Spe08],
besitzen die Option breitbandige Signale, d. h. Signale miteiner Abtastrate von16 kHz oder
sogar32 kHz, zu komprimieren. Sie bieten somit ein besseres Klangbild als schmalbandige
Verfahren. Die höheren Datenraten (z. B.Speex16 kHz: 32 kBit/s Datenrate je Kanal) stel-
len keinen Nachteil dar, da aktuelleADSL-Anschlüsse in privaten Wohnungen und Häusern
eine genügend hohe Bandbreite bieten [Wik09a]. Ein weiterer Vorteil dieser breitbandigen
Audiosignalübertragung ist die Möglichkeit, die neben demSprachsignal übertragenen an-
deren akustischen Ereignisse besser erkennen zu können. Der lokale Sprecher hört nicht nur
die Stimme des entfernten Sprechers, sondern auch die Umgebungsgeräusche, welche durch
die Aktivitäten des entfernten Sprechers entstehen, wodurch der Charakter der ambienten
Kommunikation zusätzlich unterstützt wird [SLH08].

Eine Freisprecheinrichtung erfordert zwingend die Verwendung von Echokompensations-
oder Echounterdrückungsverfahren sowie Ansätze zur optionalen Unterdrückung von statio-
nären Störquellen. Ansonsten entstehen störende Rückkopplungen oder Pfeifgeräusche, wel-
che die Qualität des Kommunikationssystems stark beeinträchtigen [BH03]. Ein Ansatz hier-
für besteht aus einem vorgeschalteten adaptiven Filter zurKompensation des ersten Anteils
der unbekannten Raumimpulsantwort und einem nachgeschalteten Nachfilter zur Restecho-
und Störgeräuschunterdrückung [LK07].

Die Adaptionssteuerung von Filtern zur Echokompensation benötigt neben der zu tref-
fenden Entscheidung ob das wiedergegebene Signal einen aktiven Sprecher enthält, auch
Informationen über die Aktivität des lokalen Sprechers [MH00]. Diese sog.Double-Talk-
Detektion kann durch die Berechnung der Kreuzkorrelation zwischen dem wiedergegebenen
Signal und dem aufgenommenen Signal, sowie dem Wissen über die geschätzte Raumim-
pulsantwort realisiert werden [BMC00]. Eine Sprecheraktivitätsdetektion für den entfernten
Sprecher kann durch die Berechnung von Kurzzeit- und Langzeitmittelwerten der Signal-
energie implementiert werden [RS04].



3 Wissenschaftliche Ziele

Ziel dieser Arbeit ist die Realisierung einer akustischen Szenenanalyse, deren Informationen
über eineMiddlewarean ein System zur ambienten Kommunikation weitergegeben werden.
Zunächst werden die Möglichkeiten der akustischen Szenenanalyse zur Informationsgewin-
nung innerhalb einer vernetzten Hausumgebung untersucht.Anschließend wird das Konzept
der AmigoMiddlewareerläutert, speziell die Aspekte des Datenaustausches und der Diens-
tinteraktion. In diesem Rahmen wird auch die Einbindung derakustischen Szenenanalyse
als Informationsquelle imMiddleware-Konzept herausgestellt. Darauf aufbauend werden
die notwendigen Komponenten der ambienten Kommunikation diskutiert und der gesamte
Systemaufbau vorgestellt. Im Folgenden werden aufgeschlüsselt nach den Themengebieten
akustische Szenenanalyse,Middlewareund ambiente Kommunikation die einzelnen Aufga-
benstellungen näher definiert.

3.1 Akustische Szenenanalyse

Die ambiente Intelligenz in einem Haus soll aktiv und gleichzeitig unauffällig die Bewohner
eines Hauses in ihrem täglichen Leben unterstützen und somit den Komfort steigern [AM04].
In dieser Arbeit dienen akustische Signale als Informationsquellen. Sie sollen fortlaufend
mit möglichst geringer Latenz ausgewertet werden, um Änderungen im Systemverhalten
aufgrund eines detektierten Ereignisses unmittelbar nachdessen Eintritt vornehmen zu kön-
nen. Der Prozessablauf, von der Signalaufnahme durch die Mikrophone, über die Entstörung
und die abschließende Klassifikation, muss zeitlich möglichst schnell erfolgen, so dass die
gewonnenen Informationen sofort über dieMiddlewarean die ausführenden Applikationen
weitergegeben werden können. Eine zu große Verzögerung in der Verarbeitungskette würde
die Reaktionen des Systems mit einer Latenz versehen, welche die hilfreichen Intentionen
der Applikationen ins Negative verkehren könnte.

Als Beispiel für die negativen Folgen von zu großen Latenzenkann eine einfache Licht-
steuerung durch Sprachbefehle in Kombination mit der akustischen Positionsschätzung be-
trachtet werden. Angenommen werde ein großes Wohnzimmer mit Essecke und angeschlos-
senem Kochbereich, so dass sich mehrere Beleuchtungsszenarien ergeben. Ein Benutzer gibt
den Befehl zum Anschalten des Lichtes, während er im Kochbereich steht. Das System ent-
scheidet nun anhand der akustischen Positionsschätzung, dass sich der Benutzer im Kü-
chenbereich aufhält und schaltet das Licht dort ein. Reagiert das System langsamer als das
Betätigen eines Schalters dauert, so ist der Vorteil der schalterlosen Lichtsteuerung für den
Benutzer nicht mehr gegeben, da für ihn die Unannehmlichkeit des Wartens überwiegt.

Aktuelle Verfahren trennen die Aufgabe der Lokalisation von der Identifikation der Spre-
cher und führen abschließend die Ergebnisse zusammen. Im Rahmen dieser Arbeit wird ein

11
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neuer Ansatz zur kombinierten Identifikation und Positionsschätzung entwickelt, der den zu-
vor genannten zeitlichen Anforderungen gerecht wird. Dabei wird die Positionsinformation
direkt mit in den Identifikationsprozess einbezogen, so dass eine Reduktion der Fehlerrate
erzielt wird.

Des Weiteren wird für die Lokalisation ein geeignetes Verfahren auf Basis von strahlfor-
menden Algorithmen ausgewählt, das sowohl eine Verbesserung der Signalqualität als auch
eine Positionsschätzung ermöglicht. Dieses wird im Kontext einer vernetzten Hausumge-
bung hinsichtlich der Genauigkeit mit einem aktuellen Verfahren verglichen.

Da die akustischen Signale sowohl zur Positionsschätzung als auch zur Identifikation von
Personen und Ereignissen verwendet werden, wird der Einfluss der akustischen Strahlfor-
mung auf den Klassifikationsprozess untersucht. Die hierzubenötigten Merkmale werden
sowohl für die Sprecheridentifikation als auch für die Ereignisdetektion verwendet, um der
Prämisse der Ressourcen schonenden Verfahren Rechnung zu tragen. Dabei wird untersucht,
ob die in der Sprach- und Sprechererkennung verbreiteten Merkmale für eine Identifikation
von akustischen Ereignissen verwendet werden können.

Diskriminative Lernverfahren zum Training von Modellen zur Sprecheridentifikation und
Spracherkennung erzielen signifikante Verbesserungen durch die Reduktion der Fehlerrate.
Dies ist möglich durch das Einbeziehen aller Klassen zum Training jeder einzelnen Klasse,
wodurch fehlerhafte Annahmen in der Modellierung und Näherungen kompensiert werden
können. Ein Vergleich zwischen diskriminativen Lernverfahren undML-Trainingsverfahren
wird zeigen, inwieweit eine Verbesserung der Klassifikationsleistung durch diese erreicht
werden kann und wo die Grenzen der Verfahren liegen.

Zusammenfassend kann das Ziel der hier zu entwickelnden akustischen Szenenanalyse als
Beantwortung der Frage „Wer spricht Wann und Wo, während Waspassiert?“ beschrieben
werden, während frühere Ansätze zur Sprecherprotokollierung lediglich die Beantwortung
der Frage „Wer spricht Wann?“ zum Ziel hatten.

Auf der einen Seite stellt die ambiente Kommunikation als Echtzeitanwendung hohe An-
forderungen an die Latenz der Informationsgewinnung durchdie akustische Szenenanalyse.
Auf der anderen Seite bietet eine audio-visuelle Kommunikation über die aufgenommenen
Videodaten eine weitere Datenquelle zur Verbesserung der akustischen Szenenanalyse. Da-
her wird im Rahmen dieser Arbeit auch die multimodale Sprecherprotokollierung als Fusion
von akustischen und visuellen Daten betrachtet.

3.2 Middlewareund ambiente Intelligenz

Eine Entscheidung in einem intelligenten System kann nur sogut sein, wie die Menge an
Informationen, auf deren Grundlage sie getroffen wurde. Folglich ist ein offenes System
zum Informationsaustausch eine wichtige Komponente für die ambiente Intelligenz. Grund-
gedanke bei der Entwicklung des Amigo Kontextmanagementsystems ist die Annahme, dass
in einer heterogenen Umgebung, wie dem vernetzten Haus, eine Vielzahl von zur Zeit un-
genutzten Informationsquellen vorhanden ist, durch derenNutzung die Qualität der ambien-
ten Intelligenz signifikant verbessert werden kann. Dabei muss darauf geachtet werden, ein
dynamisches System zu entwickeln, welches dem zeitvarianten Charakter einer Hausumge-
bung gerecht wird. Kontextquellen können in Form von Geräten in das Haus gebracht oder
herausgenommen werden, und müssen folglich dynamisch verwaltet werden. Dies steht im
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Kontrast zu anderenMiddleware-Technologien, wie z. B.EIB, bei denen Sensoren und Akto-
ren fest in die Umgebung integriert sind und keine Dynamik aufweisen. Das in Kooperation
mit den Projektpartnern von Amigo entwickelte Kontextmanagementsystem basiert auf den
in der AmigoMiddlewareimplementierten Methoden zur Nutzung von Diensten. Die Ein-
bindung von Informationsquellen in diesen losen Verbund von Quellen ermöglicht eine netz-
werkweite Nutzung der Informationen. In dieser Arbeit wirdgezeigt, wie die Mechanismen
derMiddlewarefür das Kontextmanagementsystem genutzt werden und wie dieakustische
Szenenanalyse als Kontextquelle eingebunden wird.

Die Amigo Middlewarebildet einen losen Verbund von Diensten, die dynamisch zusam-
mengestellt und verbunden werden. Dies bedeutet jedoch, dass eine aussagekräftige und
durch Maschinen verständliche Beschreibung der Dienste und Informationsquellen entwi-
ckelt werden muss, so dass eine automatische Komposition von Diensten auf semantischer
Ebene erfolgen kann. Die hierzu notwendigen Beschreibungen für die Kontextquelle der
akustischen Szenenanalyse werden im Rahmen dieser Arbeit vorgestellt.

3.3 Ambiente Kommunikation

Erste Formen von ambienter Kommunikation wurden durch Aki Härmä (PhilipsR©) und Mi-
chael Stanford (IntelR©) als eine Art der Kommunikation beschrieben, bei der eineVoIP-
Verbindung einfach angelassen wurde und somit Gesprächspartner dieser beitreten oder die-
se verlassen, indem sie in den entsprechenden Raum eintreten oder hinausgehen [Här07].
Eine solche Form der Kommunikation kann natürlich nur zwischen nahestehenden Perso-
nen durchgeführt werden, da beide Seiten einen unkontrollierten, zufälligen Einblick in die
Privatsphäre des Anderen erhalten. Betrachtet man dieses beschriebene Szenario genauer,
so sind nicht alle Aspekte der ambienten Intelligenz mit einbezogen worden. In der hier
vorliegenden Arbeit wird die Idee der ambienten Kommunikation unter dem Paradigma der
ambienten Intelligenz untersucht, wodurch den in der Einleitung bereits beschrieben Kern-
elementen, wie z. B. der Orientierung auf den Benutzer, Rechnung getragen wird. Dies be-
dingt eine Einbindung der ambienten Kommunikation in die ambiente Intelligenz durch die
Verwendung einerMiddleware. Das physikalische Gerät zur Kommunikation, d. h. das Te-
lefon, wird dabei durch einen personalisierten Softwaredienst ersetzt. Es erfolgt somit eine
Ablösung der gerätezentrierten Kommunikation durch eine „überall“ verfügbare Möglich-
keit zur Kommunikation, in deren Verlauf die Kommunikationdem Nutzer durch das Haus
folgt und der Nutzer nicht mehr an einen Ort gebunden ist. Dieambiente Kommunikation
verwirklicht folglich die Kernelemente der ambienten Intelligenz:

• Integration: Die Hardwarekomponenten des Systems werden unauffällig in die Umge-
bung integriert. Der Nutzer muss nicht mehr ein bestimmtes Gerät aufsuchen, sondern
der Dienst der Kommunikation steht ihm überall zur Verfügung.

• Kontextbewusstsein: Informationen über die Umgebung, über anwesende Personen
und kontextrelevante Ereignisse tragen zur Verbesserung des Kommunikationssystems
bei und werden über eine entsprechende Schnittstelle verfügbar gemacht.

• Personalisierung: Die Kommunikation orientiert sich am Benutzer und wird an seine
Bedürfnisse und Wünsche angepasst.
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• Adaptivität & Antizipation: Das System wird auf aktuelle Ereignisse kontextabhängig
reagieren und dem Nutzer so vorhersagbare oder absehbare Handlungen abnehmen.
Hierbei wird zudem ein Schutz der Privatsphäre berücksichtigt.

Die Auswahl und Implementierung von Ansätzen und Verfahrenorientiert sich an deren
Effizienz, die gestellten Anforderungen im System zu erfüllen. Bevorzugt werden Lösungs-
ansätze, die parallel für mehrere Problemstellungen verwendet werden können, um die Leis-
tungsfähigkeit des Systems bei konstantem Ressourcenverbrauch zu steigern.



4 Akustische Szenenanalyse

Das Ziel der akustischen Szenenanalyse ist die Gewinnung von Informationen aus den Si-
gnalen von räumlich verteilten Mikrophonen. Die hierbei auftretenden Aufgaben können
in mehrere Verarbeitungsschritte aufgeteilt werden. Zuallererst wird eine Verarbeitung der
aufgenommenen Signale zum Zweck der Störgeräuschreduktion und der Berechnung von
Merkmalen durchgeführt. Hierauf basierend kann im nächsten Schritt eine Lokalisation von
Quellen durchgeführt werden. Anschließend kann eine Klassifikation der akustischen Ereig-
nisse anhand einer trainierten Wissensbasis erfolgen. Im letzten Verarbeitungsschritt werden
die gewonnenen Informationen zusammengeführt, bewertet und im System für Applikatio-
nen bereitgestellt.

4.1 Merkmalsextraktion

Die akustischen Signale im vernetzten Haus werden durch unterschiedliche stationäre und in-
stationäre Störquellen beeinflusst. Somit ist eine effektive Störunterdrückung für die spätere
Erkennung nötig. Grundsätzlich lassen sich hierbei zwei Ansätze verfolgen. Zum einen kann
das akustische Signal gefiltert werden, um eine Reduktion der Störung zu erreichen. Zum
anderen kann zunächst eine Merkmalsextraktion erfolgen und der Merkmalsvektor anschlie-
ßend entstört werden. Beide Ansätze werden erfolgreich unter anderem in der automatischen
Spracherkennung verwendet [ETS02, HS05].

Ein Leitgedanke bei der Entwicklung der akustischen Szenenanalyse ist die Effizienz von
Komponenten und deren Wiederverwendbarkeit. Die Entstörung des Zeitsignals anstelle der
Merkmale bietet in dieser Hinsicht den Vorteil, dass das entstörte Signal für eine Kommuni-
kation verwendbar ist.

4.1.1 Störgeräuschunterdrückung

Die hier verwendete Störgeräuschunterdrückung ist entwickelt worden aus der 2-stufigen
Wiener-Filterung desAdvanced Front-end Feature Extraction(AFE) desETSI[ETS02]. Die
Anforderung war, eine Filterung des Eingangssignals durchzuführen, die sowohl gute Er-
gebnisse für einen menschlichen Hörer (gute Sprachqualität) als auch für eine nachfolgende
Klassifikationsaufgabe (z. B. Sprechererkennung) erzielt.

Das AFE ist eine aus der Spracherkennung stammende Signalverarbeitungskomponen-
te, die bei geringer Rechenkomplexität einen hohen Gewinn im Signal-zu-Rauschabstand
(engl.Signal to Noise Ratio, SNR) bietet. Nachteilig für die Verwendung im Bereich Kom-
munikation ist die leicht reduzierte Sprachqualität bei niedrigenSNR-Werten. Zudem ist das

15
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2-stufige Wiener-Filter desAFE nur für eine Abtastrate von8 kHz spezifiziert. Eine Anpas-
sung auf eine Abtastrate von16 kHz ist durch eine Verdoppelung der Blockgrößen und der
Anpassung einiger Systemparameter möglich. Die ReduktiondesSNR-Gewinns bei niedri-
genSNR-Werten der Eingangssignale verbessert die subjektive Qualität des Sprachsignals
zu Lasten eines höheren Rauschanteils.
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Abbildung 4.1: Blockdiagramm des 2-stufigen Wiener-Filters zur Störgeräuschreduktion

Das Blockschaltbild in Abb. 4.1 zeigt die Komponenten des 2-stufigen Wiener-Filters.
Basierend auf einer Sprachaktivitätsdetektion wird auf dem Eingangssignal eine Schätzung
des Störgeräuschspektrums durchgeführt. Anschließend wird ein Wiener-Filter zur Redukti-
on der Störgeräusche geschätzt und mit Hilfe eine Mel-Frequenz-Filterbank gehörorientiert
geglättet. Die Filterung selbst wird im Zeitbereich durch den Block Faltung realisiert, da dies
dem Entstehen von Störungen (sog.musical tones) entgegenwirkt.

Die zweite Stufe des Wiener-Filters führt auf dem Ausgangssignal der ersten Stufe eine
erneute Schätzung des verbliebenen Störspektrums durch. Das hieraus berechnete Wiener-
Filter wird durch eine Mel-Frequenz Filterbank geglättet und in der Dämpfungsanpassung
mit dem Wiener-Filter der ersten Stufe kombiniert. Die Filterung wird erneut im Zeitbereich
realisiert.

4.1.2 Mel-Frequency Cepstral Coefficients

Die Mel-Frequency Cepstral Coefficients(MFCC) werden aus dem entstörten Ausgangssi-
gnal der 2-stufigen Wiener-Filterung berechnet. Zunächst werden durch eine Hochpassfilte-
rung Gleichanteile im Audiosignal sowie tieffrequente Störungen gedämpft. In einem weite-
ren Schritt wird in der Vorverstärkung eine Anhebung der Höhen vorgenommen. Das Signal
wird dann gefenstert, anschließend in den Frequenzbereichtransformiert und mit einer Mel-
Frequenz Filterbank geglättet. Die Berechnung der diskreten Cosinus Transformation (DCT)
liefert die cepstralen Merkmale, welche in der Nachverarbeitung mit Hilfe der logarithmier-
ten Energie des Audiosignals normalisiert werden. Zuletztwerden näherungsweise die erste
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(Delta-Merkmale) und zweite zeitliche Ableitung (Delta-Delta-Merkmale) der Merkmale be-
rechnet und im Multiplexer zu einem Merkmalsvektor zusammengefasst. In Abb. 4.2 ist das
Blockschaltbild zur Bestimmung derMFCC angegeben.
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Abbildung 4.2: Blockdiagramm zur Berechnung derMel-Frequency Cepstral Coefficients

4.1.3 Maximum Autocorrelation Value

Ein häufig in der Sprechererkennung verwendetes Merkmal istdie Stimmbandgrundfre-
quenz. Dieses Merkmal besitzt zum einen den Nachteil, dass es nur für stimmhafte Abschnit-
te der Sprache existiert. Zum anderen kann es für die Erkennung von akustischen Ereignis-
sen, die nicht durch den menschlichen Sprachtrakt hervorgerufen werden, nicht verwendet
werden.

In [WP00] wird ein alternatives Merkmal, derMaximum Autocorrelation Value(MACV),
vorgeschlagen, welcher ein Maß für die Periodizität des Signals in einem betrachteten Fens-
ter ist. Vorteil hierbei ist, dass das Merkmal auch für stimmlose Laute existiert und wie in der
Literatur [WP00] gezeigt wird, dem Merkmal Stimmbandgrundfrequenz in der Erkennungs-
leistung überlegen ist. Dieses Merkmal kann außerdem für die akustische Ereignisdetektion
verwendet werden, da es nur eine Bewertung der Periodizitätdes Signals vornimmt, die nicht
an das Vorhandensein einer Stimmbandgrundfrequenz gebunden ist.

Zunächst wird für denMACV die Autokorrelationsfunktion des gefensterten Eingangssi-
gnalsx̃(n) der LängeN mit

R(k) =
1

N

N−1−k∑

n=0

x̃(n)x̃(n+ k) k = 0, . . . , N − 1 (4.1)

berechnet. Anschließend wird die Autokorrelationsfunktion mit dem KoeffizientenR(0) nor-
miert:

r(k) =
R(k)

R(0)
. (4.2)

Die Autokorrelationssequenz kann entweder inQ gleich große Blöcke unterteilt werden, so
dass für jeden Block das Maximum bestimmt wird und so einMACV-Merkmalsvektor der
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DimensionQ entsteht, oder es wird nur einMACV-Wert für den Bereich der Stimmband-
grundfrequenz (t ∈ [2,5 ms, 12,5ms] =̂ k ∈ [40, 200] bei einer Abtastfrequenz von16 kHz)
berechnet.

MACV(q) = max
(q−1)N

Q
<k<qN

Q

{r(k)} q = 0, . . . , Q− 1 (4.3)

MACV = max
40<k<200

{r(k)} (4.4)

In [ZSN05] wird eine Variation desMACV vorgeschlagen, bei der Anstelle von Gl. 4.1 die
erwartungstreue Schätzung der Autokorrelationsfunktion

R(k) =
1

N − k

N−1−k∑

n=0

x̃(n)x̃(n+ k) k = 0, . . . , N − 1 (4.5)

verwendet wird.

4.2 Akustische Positionsschätzung

Die Lokalisation von Personen oder Ereignissen anhand von akustischen Signalen setzt das
Vorhandensein mehrerer räumlich getrennter Mikrophone bzw. Mikrophongruppen voraus.
Hierbei werden die Unterschiede in der Signallaufzeit und das Wissen über die Position der
Mikrophone verwendet, um Positionsschätzungen durchzuführen. Das am häufigsten in der
Literatur beschriebene Verfahren derGeneralized Cross Correlation with Phase Transfor-
mation(GCC-PHAT) nutzt die normalisierte Kreuzkorrelation zwischen zwei Mikrophonsi-
gnalen, um die Laufzeitdifferenz zu berechnen. Als Alternative hierzu wird in dieser Arbeit
die Positionsbestimmung mittels adaptiver Strahlformungdiskutiert.

4.2.1 Generalized Cross Correlation with Phase Transformation

Das in [KC76] vorgestelltGCC-PHAT-Verfahren berechnet mit Hilfe des normierten Kreuz-
leistungsdichtespektrums die Laufzeitdifferenz der Signale zwischen zwei Mikrophonen. Es
wird im Weiteren angenommen, dass insgesamtl = 1, . . . , L Mikrophongruppen mit je-
weilsMl Mikrophonen in einem Raum vorhanden sind. Die Laufzeitdifferenz zwischen den
abgetasteten Mikrophonsignalenxi,l(n) undxj,l(n) (i-tes undj-tes Mikrophon derl-ten Mi-
krophongruppe) wird geschätzt als das Maximum der Fourier-Rücktransformierten der Ko-
härenzfunktion. Die Fourier-Rücktransformierte ist mit

φ
(GCC)
ij,l (λ) = IDFT

{
DFT{xi,l(n)} · DFT∗ {xj,l(n)}
|DFT{xi,l(n)} · DFT∗ {xj,l(n)}|

}
(4.6)

gegeben. Zusätzlich ist es möglich die Fourier-Rücktransformierte zu interpolieren, um eine
höhere zeitliche Auflösung zu erzielen:

φ
(GCC)
ij,l (λ)

Interpolation−→ C
(GCC)
ij,l (τ) =

∑

λ

φ
(GCC)
ij,l (λ) si

(
π
τ − λT

T

)
. (4.7)
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An dieser Stelle sei darauf hingewiesen, dassC
(GCC)
ij,l (τ) in der Implementierung ein zeitlich

diskretes Signal darstellt, da die Interpolation in einem Digitalrechner durchgeführt wird.
Für die Schätzung der Laufzeitdifferenz folgt somit:

τ
(GCC)
ij,l = argmax

τ

{
|C(GCC)

ij,l (τ)|
}
. (4.8)

4.2.2 Akustische Strahlformung

Der Zweck der akustischen Strahlformung ist die Ausrichtung der Empfindlichkeit einer
Mikrophongruppe auf eine akustische Quelle im Raum. Die Verstärkung der Quelle führt im
Ausgangssignal zu einer Verbesserung desSNRund somit zu einer Unterdrückung möglicher
Störquellen aus anderen Raumrichtungen. Im Folgenden wirddas in [WH05] beschriebene
Verfahren zur Strahlformung vorgestellt. Es ist ein blindes Verfahren, welches sich auf die
stärkste im Raum befindliche Quelle ausrichtet. Um eine Fehlausrichtung der Strahlformung
in Sprachpausen zu unterbinden, wird eine Sprachaktivitätsdetektion zur Steuerung der Ad-
aption benötigt.

Gegeben sei eine Mikrophongruppe miti = 1, . . . ,Ml Mikrophonen. Jedes Mikrophon
liefert ein Signal

xi(n) = hi(n) ∗ s(n) + ni(n) (4.9)

bestehend aus einem Störsignalni(n) und dem gewünschten Sprachsignals(n), welches mit
der unbekannten Raumimpulsantworthi(n) gefaltet wird. Die Signalexi(n), i = 1, . . . ,Ml

sollen nun durch ein Filterfi(n) so gefiltert und anschließend summiert werden, dass eine
konstruktive Überlagerung des Sprachsignalss(n) erzielt wird:

y(n) =

Ml∑

i=1

fi(−n) ∗ xi(n). (4.10)

Die Filter fi(n) seien dabei Filter mit endlicher Filterimpulsantwort (engl. Finite Impulse
Response, FIR). Eine Implementierung der Filterung im Frequenzbereich führt zu einer Re-
duktion des Rechenaufwandes und ist der zeitlichen Filterung vorzuziehen. Es folgt für Gl.
4.10, dass

Y (k) =

Ml∑

i=1

F ∗
i (k) ·Xi(k) k = 0, . . . , K − 1 (4.11)

ist, mit k als demk-ten Frequenzbin derK langen diskreten Fourier Transformation (DFT).
Durch die Einführung der Vektornotation

F (k) = [F1(k), . . . , FMl
(k)]T (4.12)

X(k) = [X1(k), . . . , XMl
(k)]T (4.13)

kann Gl. 4.11 mit

Y (k) = FH(k)X(k) k = 0, . . . , K − 1 (4.14)
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dargestellt werden. Die Adaption der Filter erfolgt entsprechend [WH07] durch ein determi-
nistisches Gradientenverfahren und liefert die Adaptionsregel

Fm+1(k) = Fm(k) + µ
(
Φxx(k)Fm(k) − FH

m (k)Φxx(k)Fm(k)Fm(k)
)

(4.15)

mit m als Iterationsindex,µ als Schrittweite,Φxx als spektrale Kreuzleistungsdichtematrix
der Mikrophonsignale und der NebenbedingungFH(m)F (m) = 1. Dabei liefert die Glei-
chung Gl. 4.15 den Eigenvektor zum größten Eigenwert der spektralen Kreuzleistungsdich-
tematrixΦxx [WH07]. Diese Verfahren der akustischen Strahlformung wird alsFilter Sum
Beamformer(FSB) bezeichnet [WH05].

Die Verwendung vonFIR-Filtern imFSBbietet gegenüber einemDelay Sum Beamformer
(DSB) den Vorteil, dass neben den direkten Schallkomponenten auch frühe Reflexionen mit
berücksichtigt werden und somit die Klarheit der Sprache verbessert wird [WH05].

Ein positiver Nebeneffekt derFSB-Adaption ist die Möglichkeit, eine Schätzung des Ein-
fallswinkels der akustischen Signale relativ zur Ausrichtung der Mikrophongruppe anhand
der Filterimpulsantworten durchzuführen [SH06]. Hierfürwird die Kreuzkorrelation zwi-
schen demi-ten undj-ten Mikrophon derl-ten Mikrophongruppe mit

φ
(FSB)
ij,l (λ) = fi(−λ) ∗ fj(λ) (4.16)

berechnet, wobeiλ = m·T einem Vielfachen der Abtastperiode entspricht. Da dieFIR-Filter
nicht ganzzahlige Verzögerungen modellieren können, ist eine Interpolation der Kreuzkorre-
lation zur Steigerung der Auflösung möglich.

φ
(FSB)
ij,l (λ)

Interpolation−→ C
(FSB)
ij,l (τ) (4.17)

Die Verzögerung zwischen den Signalen an den Mikrophonen kann mit

τ
(FSB)
ij,l = argmax

τ
|C(FSB)

ij,l (τ)| (4.18)

bestimmt werden. Analog zur Latenzschätzung desGCC-PHATkann die Kreuzkorrelation
der FIR-Filter als Fourier-Rücktransformierte der Kohärenzfunktion der Mikrophonsignale
angesehen werden.

4.2.3 Lokalisation mittels verteilter Mikrophongruppen

Der Einfallswinkel kann grundsätzlich als Information über eine Position im vernetzten Haus
verwendet werden, jedoch steigert die Kombination verteilter Mikrophongruppen zur Schät-
zung einer Position in kartesischen Koordinaten den Informationsgehalt beträchtlich. Hierzu
ist es notwendig, die Position und Anordnung der Mikrophongruppen im Raum zu ken-
nen. Im Folgenden wird das aus der Literatur bekannte Verfahren der Kohärenzfeldanalyse
[OSBC06] einer Schnittpunktanalyse gegenübergestellt und hinsichtlich Genauigkeit und
Rechenaufwand verglichen.

Kohärenzfeldanalyse

Das verbreitetste Verfahren zur akustischen Positionsbestimmung ist die Kohärenzfeldana-
lyse (engl.Global Coherence Field analysis) [OSBC06], welche äquivalent zum „Steered
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Response Power“-Verfahren ist [DBA07] und mit dem Begriff „GCF-Analyse“ abgekürzt
wird. Hierbei wird die Positionsbestimmung im Raum zumeistin zwei Dimensionen durch-
geführt, so dass die möglichen Positionen in einer Fläche liegen. Über diese Fläche wird ein
GitterG gelegt, welches durch die diskreten Gitterpunkte[x, y] ∈ G definiert ist. Zu jedem
Zeitschritt wird die globale Kohärenzfunktion für alle Gitterpunkte[x, y] des Raumes mit

GCF(x, y) =
1

L

L∑

l=1

2

M2
l −Ml

Ml−1∑

i=1

Ml∑

j=i+1

Cij,l (τij,l(x, y)) (4.19)

berechnet. Hierbei werden die interpolierten Fourier-Rücktransformierten der Kohärenzfunk-
tionenCij,l(τ) der l = 1, . . . , L Mikrophongruppen verwendet, welche entweder mit dem
GCC-PHAT-Verfahren oder der akustischen Strahlformung geschätzt wurden. Die Laufzeit-
differenzτij,l(x, y) wird berechnet aus der relativen Position und Orientierungder l-ten Mi-
krophongruppe zum Aufpunkt[x, y] im Raum. Da der Aufwand der Aufpunktsberechnung
sich quadratisch zur Quantisierung des Raumes verhält, muss eine Abwägung zwischen
dem geduldeten Quantisierungsfehler und der vertretbarenRechenkomplexität vorgenom-
men werden.
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Abbildung 4.3: Beispiel eineGCF-Analyse für vier Mikrophongruppen zur akustischen Positions-
schätzung durch verteilte Mikrophongruppen

Die Abb. 4.3 zeigt ein Beispiel für eineGCF-Analyse für einen Raum der Größe4 m×4m,
in dem vier Mikrophongruppen (rl = [0, 2]; [4, 2]; [2, 0]; [2, 4]) jeweils mittig an den Wänden
angebracht sind. Das Maximum der globalen Kohärenzfunktion wird als Hypothese für die
Sprecherposition verwendet.

Schnittpunktanalyse

Die Schnittpunktanalyse ist ein vereinfachtes Verfahren zur Berechnung einer Sprecherposi-
tion, basierend auf den interpolierten Fourier-Rücktransformierten der Kohärenzfunktionen



22 Akustische Szenenanalyse

und dem Wissen über die Position und Anordnung der Mikrophongruppen. Es wird dabei
angenommen, dass jede derL Mikrophongruppen eine lineare Anordnung besitzt, so dass
die Einfallswinkelαij,l der akustischen Signale durch

αij,l = arcsin

(
c · T · τij,l

sij,l

)
(4.20)

berechnet werden können. Dabei istc die Schallgeschwindigkeit in der Luft,T die Abtast-
periode undsij,l der Abstand zwischen demi-ten undj-ten Mikrophon derl-ten Mikrophon-
gruppe. Stehen mehr als zwei Mikrophone in einer Gruppe (Ml > 2) zur Verfügung, kann
eine Mittelung über alle Kombinationen der Mikrophone mit

αl =
2

M2
l −Ml

Ml−1∑

i=1

Ml∑

j=i+1

αij,l (4.21)

erfolgen, falls die räumliche Ausdehnung der Mikrophongruppe nicht zu einer Verletzung
der Fernfeldnäherung führt. Die Fernfeldnäherung ist die Annahme, dass das akustische Si-
gnal in einer ebenen Wellenfront auf die Mikrophone trifft.Die Laufzeitdifferenzτij,l zwi-
schen den Mikrophonsignalen kann sowohl durch dasGCC-PHAT-Verfahren (τ (GCC)

ij,l ) als

auch durch denFSB-Ansatz (τ (FSB)
ij,l ) bestimmt werden.

Jede Winkelschätzungαl einer Mikrophongruppe mit der Positionrl = [xl, yl]
T wird als

Geradengleichung

gl(ν) = rl + ν · al(αl, βl) (4.22)

dargestellt. Der Richtungsvektoral ist dabei abhängig von dem geschätzten Einfallswinkel
αl und der Orientierung der Mikrophongruppe im gewählten Koordinatensystemβl (Winkel
zur Ordinate).

In Abb. 4.4 ist ein Beispiel für die Positionsbestimmung durch die Schnittpunktanalyse
gegeben. Die Kombination der Geradengleichungen deri-ten undj-ten Mikrophongruppe
liefert im Idealfall einen Schnittpunktχij im Raum, der als Grundlage für die Positions-
schätzung verwendet werden kann. Sollte ein Schnittpunkt durch Fehler bei der Schätzung
der Winkel außerhalb des Raumes liegen, so wird diese Schätzung verworfen. Die Position
P = [xp, yp]

T der akustischen Quelle wird als Schwerpunkt aller Schnittpunkteχij mit

P =
2

L2 − L

L−1∑

i=1

L∑

j=i+1

χij (4.23)

berechnet.
In Laborversuchen wurde beobachtet, dass die Gewichtung der Schnittpunkte mit einem

aus der Kreuzkorrelation berechneten Konfidenzwert die Schätzung positiv beeinflusst. Dies
ist auch in den Simulationen in Abb. 4.6 (a) erkennbar. Der Gewichtsfaktor berechnet sich
mit

γij,l =
max {|φij,l(λ)|}∑

λ′
|φij,l(λ′)|

, (4.24)
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Abbildung 4.4: Beispiel einer akustischen Positionsschätzung mit drei Mikrophongruppen durch die
Schnittpunktanalyse

und ist ein Maß für die Impulsförmigkeit der Kreuzkorrelationsfunktion.
Ein Überblick über Verfahren zur Positionsschätzung kann in [WM09] gefunden werden.

Unter anderem wird dort auf denLinear Intersection Estimatoreingegangen, der im dreidi-
mensionalen Raum den minimalen Abstand zwischen zwei Geraden als Positionsschätzung
verwendet und als verallgemeinerte Form der Schnittpunktanalyse für drei Dimensionen an-
gesehen werden kann.

Interpolation

Der Abstand der Mikrophone innerhalb einer Mikrophongruppe hat zum einen Einfluss auf
die maximal ohne Aliasingfehler auflösbaren Frequenzen undzum anderen einen Einfluss
auf die Anzahl der unterscheidbaren Laufzeitdifferenzen.Je kleiner der Abstand zwischen
den Mikrophonen gewählt wird, desto weniger räumliche Aliasingfehler treten auf und desto
geringer ist die Anzahl der ohne Interpolation unterscheidbaren Laufzeitdifferenzen.

Die Anzahl der Laufzeitdifferenzen wird bestimmt durch dieAbtastperiode der Fourier-
Rücktransformierten der Kohärenzfunktion und die gewählte Interpolation (vgl. Gl. 4.7).
Ohne Interpolation sind nur ganzzahlige Vielfache der Abtastperiode als Laufzeitdifferenz
messbar. Mit Interpolation vervielfacht sich die Anzahl der unterscheidbaren Laufzeitdif-
ferenzen um den Interpolationsfaktor. In beiden Fällen kann nur eine begrenzte Menge an
Laufzeitdifferenzen unterschieden werden.

In Abb. 4.5 (a) sind die resultierenden Winkel aus den Latenzschätzungen in rot einge-
zeichnet. Bei einer angenommenen Abtastrate von1/T = 16 kHz und einem Mikrophonab-
stand vonsij,l = 0,05m ergibt sich nach Gl. 4.20 eine maximal messbare Latenz zwischen
den Signalen für einen Winkelαij,l = ±π/2 von

λ
(max)
ij,l =

sij,l
c · T =

16 000 1
s
· 0,05m

343 m
s

= ⌈2,33⌉ = 3 (4.25)
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(b) Räumliche Verteilung der Schnittpunkte bei vier
Mikrophongruppen und Interpolation

Abbildung 4.5: Positionsschätzung durch Interpolation von Winkelschätzungen

Abtastwerten. Die maximale ohne Aliasingfehler auflösbareFrequenz kann mit

fmax =
c

sij,l
=

343 m
s

0,05m
= 6860Hz (4.26)

berechnet werden. Da ohne Interpolation nur ganzzahlige Verzögerungen messbar sind, kön-
nen nur7 Winkel pro Mikrophongruppe unterschieden werden (vgl. Abb. 4.5 (a), rote Li-
nien). Erst die Interpolation erreicht eine verwertbare Winkelauflösung des Raumes (vgl.
Abb. 4.5 (a), rote und blaue Linien). Die Abb. 4.5 (b) zeigt die entstehenden Schnittpunkte
für einen Aufbau mit vier Mikrophongruppen und Interpolation. Es ist erkennbar, dass gera-
de die Ecken gegenüber der Mitte des Raumes eine schlechtereAuflösung besitzen, da dort
weniger Schnittpunkte liegen. Auf Grund dieser Beobachtung ist es erforderlich, Systeme
zur akustischen Lokalisation so aufzubauen, dass der Bereich mit den meisten Schnittpunk-
ten im vorgesehenen Interaktionsbereich mit den Benutzernliegt.

Experimente

Die folgenden Experimente untersuchen und vergleichen dasGCC-PHAT-Verfahren mit
dem FSB-Ansatz zur Positionsschätzung hinsichtlich der Vor- und Nachteile für die Ver-
wendung in der akustischen Szenenanalyse.

In Abb. 4.6 sind die experimentellen Ergebnisse zum Vergleich der Positionsschätzung
zwischenGCC-PHATundFSBangegeben. Hierzu wurde ein Raum der Größe4 m × 4m,
mit einer Deckenhöhe von3 m und unterschiedlichen Raumnachhallzeiten mit der Spiegel-
methode nach [AB79] simuliert. Bei einer Abtastrate von16 kHz wurde für jede Nachhallzeit
eine90 s lange Audiodatei für einen sich zufällig bewegenden Sprecher künstlich verhallt.
Insgesamt8 Mikrophone waren paarweise mittig an den Wänden und im Abstand von0,05m
zueinander angebracht. DieFFT-Länge desGCC-PHAT-Verfahrens betrug2048 Abtastwer-
te, mit einer anschließenden Interpolation zur Verbesserung der Positionsschätzung. DerFSB
wurde mit einer Filterlänge von128 Werten implementiert und das Ergebnis der Filterkorre-
lation ebenfalls interpoliert.

Abbildung 4.6 (a) zeigt die Wurzel des mittleren quadratischen Fehlers (engl.Root Mean
Square, RMS) für die Positionsschätzung durch denGCC-PHAT („GCC-PHAT Schnitt-
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Abbildung 4.6: Experimente zur Positionsschätzung mit demFSB- und demGCC-PHAT-Verfahren

punkt“), denFSBohne Gewichtung der Schnittpunkte („FSBSchnittpunkt“) und denFSB
mit Gewichtung der Schnittpunkte proportional zum Konfidenzwert der Schätzungen („FSB
Konfidenz“) für ansteigende Nachhallzeiten des Raumes. DesWeiteren sind dieRMS-Werte
für die Positionsschätzung bei Verwendung der Kohärenzfeldanalyse für dasGCC-PHAT-
Verfahren („GCC-PHAT GCF“) und denFSB-Ansatz („FSB GCF“) angegeben.

Die experimentellen Ergebnisse zeigen, dass derFSBeine bessere Positionsschätzung er-
möglicht als dasGCC-PHAT-Verfahren. Des Weiteren besitzen die Ausgangssignale des
FSBein besseresSNRund könnten somit für weitere Verarbeitungsschritte besser geeignet
sein als ein einzelnes Mikrophonsignal. Vergleicht man dieErgebnisse der Positionsschät-
zung desGCC-PHAT-Verfahrens mitGCF-Analyse („GCC-PHAT GCF“) mit denen der
einfacheren Schnittpunktanalyse („GCC-PHATSchnittpunkt“), so kann festgestellt werden,
dass dasGCC-PHAT-Verfahren deutlich von derGCF-Analyse profitiert. Speziell für länge-
re Raumnachhallzeiten ist die Verwendung derGCF-Analyse vorteilhaft, um den Fehler der
Positionsschätzung gering zu halten. Im Falle der Positionsschätzung durch denFSBist der
Vorteil derGCF-Analyse („FSB GCF“) gegenüber der Schnittpunktanalyse („FSBSchnitt-
punkt“) weniger ausgeprägt und es kann zu Gunsten einer reduzierten Rechenanforderung
darauf verzichtet werden.

Abbildung 4.6 (b) zeigt die Untersuchungen zur Verteilung der Fehler bezogen auf den
Abstand der Sprecherposition zum Mittelpunkt des Raumes. Der Fehler steigt mit zuneh-
mender Distanz zum Mittelpunkt des Raumes an und ist am größten in den Ecken, wie es
bereits in experimentellen Versuchen im Labor beobachtet wurde. Dies zeigt, dass die Plat-
zierung der Mikrophone die erreichbare Schätzgenauigkeitbeeinflusst. Mikrophongruppen
sollten immer so angebracht werden, dass sie den Interaktionsbereich des Nutzers gut abde-
cken und die Gebiete mit großen Fehlern abseits der Nutzungsflächen liegen.

In [WPH04] wird gezeigt, dass die akustische Positionsschätzung durch eine modellba-
sierte Nachfilterung, wie z. B. Kalman- oder Partikelfilter,verbessert werden kann. Auf ei-
ne modellbasierte Nachfilterung wird im Rahmen dieser Arbeit bewusst verzichtet, da die
experimentell erreichten Genauigkeiten in realen Umgebungen den Anforderungen genü-
gen und somit eine rechenintensive Filterung unnötig ist. Eine erzielte Genauigkeit von ca.
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0,2m − 0,5 m kann als hinreichend für die häusliche Umgebung mit geringem Nachhall
(niedrigeT60-Zeiten) betrachtet werden.

Der Vergleich der benötigten Rechenzeit in Tab. 4.1 zeigt deutlich den Vorteil der Verwen-
dung desFSBgegenüber demGCC-PHAT-Verfahren.1 Die Positionsbestimmung desFSB

Modul Zeit (µs)

FSB-Strahlformung (2 Mikrophone) 273
FSB-Winkelschätzung (2 Mikrophone) 16
GCC-PHAT(2 Mikrophone) 653
Schnittpunktanalyse (4 Gruppen je 2 Mikrophone) 5
GCF-Analyse (4 Gruppen je 2 Mikrophone,0,1m Rasterung ) 1457
GCF-Analyse (4 Gruppen je 2 Mikrophone,0,05m Rasterung) 5624

FSBmit Schnittpunktanalyse (4 Gruppen je 2 Mikrophone) 1161
FSBmit GCF-Analyse (4 Gruppen je 2 Mikrophone,0,1m Raster) 2613
FSBmit GCF-Analyse (4 Gruppen je 2 Mikrophone,0,05m Raster) 6780
GCC-PHATmit Schnittpunktanalyse (4 Gruppen je 2 Mikrophone) 2617
GCC-PHATmit GCF-Analyse (4 Gruppen je 2 Mikrophone,0,1m Raster) 4069
GCC-PHATmit GCF-Analyse (4 Gruppen je 2 Mikrophone,0,05m Raster) 8236

Tabelle 4.1:Vergleich der Rechenzeit unterschiedlicher Module zur Positionsschätzung

mittels Schnittpunktanalyse benötigt im Vergleich zur Positionsschätzung desGCC-PHAT
mit Schnittpunktanalyse nur44,1% der Rechenleistung. Noch größer wird der Unterschied,
falls die GCF-Analyse angewendet wird, da die Schnittpunktberechnung um einen Faktor
1125 schneller ist. Die Experimente zeigen, dass im Falle desFSBdie Schnittpunktanalyse
der GCF-Analyse im Bereich Ressourcenbedarf überlegen ist, jedoch die Genauigkeit nur
geringfügig niedriger liegt. In der Literatur gibt es Ansätze, den Bedarf an Rechenzeit durch
die GCF-Analyse zu reduzieren [DBA07], welche hier jedoch nicht weiter betrachtet wer-
den.

4.3 Segmentierung und Sprecheridentifikation

Bei der sequentiellen Vorgehensweise zur Sprecheridentifikation wird zunächst eine Ein-
teilung des Datenstroms in homogene Abschnitte durchgeführt. Diese Abschnitte werden
dann durch eine Sprecheridentifikation einem bekannten Sprecher aus der Datenbasis zu-
geordnet. Demgegenüber steht eine gemeinsame Segmentierung und Sprecheridentifikation,
die in dieser Arbeit vorgeschlagen wird. Eine zeitnahe gemeinsame Identifikation von Spre-
chern in fortlaufenden Datenströmen erfordert Algorithmen, welche eine Segmentierung der
Daten in homogene Abschnitte eines Sprechers und eine Klassifikation dieser Segmente mit
möglichst geringer Latenz vornehmen.

Zunächst wird die Segmentierung von Daten durch die Anwendung des Bayes’schen In-
formationskriteriums erläutert und mögliche Ansätze zur Verwendung der Positionsinfor-
mationen zur Segmentierung diskutiert. Anschließend werden die Sprecheridentifikation für
homogene Sprachsegmente und das Modelltraining vorgestellt. Abschließend werden in Ex-
perimenten die Teilkomponenten der Segmentierung und Sprecheridentifikation, sowie das
Gesamtsystem getestet.

1Simulationsumgebung: Intel T2400@1,83 GHz, 2 GB RAM
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4.3.1 Sequentielle Sprecherwechseldetektion und Identifikation

Segmentierung durch Sprecherwechseldetektion

Das Ziel der Segmentierung ist die Einteilung der Daten in homogene Abschnitte, inner-
halb derer nur ein Sprecher aktiv ist. Diese Aufgabenstellung wird in der Literatur häufig als
Modellselektionsproblem formuliert [DW00, WH06]. Basierend auf denNw Merkmalsvek-
torenX1:Nw

= [x(1), . . . ,x(Nw)] in einem betrachteten Fenster werden die folgenden zwei
Hypothesen verglichen:

• H0: Alle Merkmalsvektoren sind eine unabhängige und identisch verteilte Stichprobe
der multivariaten NormalverteilungN (x; µ0,Σ0), welche den Sprecher beschreibt.

• H1: Die erstenNw/2 Merkmalsvektoren sind eine unabhängige und identisch verteilte
Stichprobe der multivariaten NormalverteilungN (x; µ1,Σ1) des Sprechers A und
die übrigen eine Stichprobe der multivariaten Normalverteilung N (x; µ2,Σ2) des
Sprechers B.

Die ModellparameterΘi = (µi,Σi), i = 1, 2, der Normalverteilungen bestehen aus den
Mittelwertvektorenµi und den KovarianzmatrizenΣi und sind zunächst unbekannt. Sie wer-
den durch einen „Maximum Likelihood“-Schätzer aus den Merkmalsvektoren innerhalb des
Fensters bestimmt. Die Bewertung der zwei Hypothesen entsprechend der Definition fürBIC
aus [DW00, NK05] liefert

BIC(Hi) = log p(X1:Nw
|Hi) − ξ

mi

2
logNw (4.27)

=
Nw∑

k=1

log p(x(k)|Hi) − ξ
mi

2
logNw, (4.28)

mit p(X1:Nw
|Hi) als Likelihood 2 derD-dimensionalen MerkmalsvektorenX1:Nw

für das
parametrische Modell der HypotheseHi, mi als Anzahl der Parameter im Modell undNw

als Anzahl der Merkmalsvektoren. Unter der Annahme multivariater Normalverteilungen
gilt

p (x(k)|H0) = N (x(k); µ0,Σ0) (4.29)

für die Dichtefunktion der HypotheseH0 und

p (x(k)|H1) =

{
N (x(k); µ1,Σ1) für

k ≤ Nw/2
N (x(k); µ2,Σ2) k > Nw/2

(4.30)

2An dieser Stelle wird bewusst der englische Begriff „Likelihood“ verwendet, um zu verdeutlichen, dass
die Auswertung der Dichtefunktion für die beobachteten Merkmalsvektoren und somit ein Zahlenwert und
nicht die Dichtefunktion betrachtet wird. Eine mögliche Übersetzung mit „Mutmaßlichkeit“, wie in [Hän01]
vorgeschlagen, wird zu Gunsten des häufig auch in deutschen Veröffentlichungen verwendeten Begriffs
„Likelihood“ verworfen.



28 Akustische Szenenanalyse

für die Dichtefunktion der HypotheseH1. DieLikelihoodder HypotheseH0 ist unter der An-
nahme, dassX1:Nw

eine unabhängige und identisch verteilte Stichprobe ist, gegeben durch

p(X1:Nw
|H0) =

Nw∏

k=1

1

(2π)
D
2 |Σ0|

1

2

e(−
1

2
(x(k)−µ0)T

Σ
−1

0
(x(k)−µ0)) (4.31)

= (2π)−
NwD

2 |Σ0|−
Nw
2 e

 

− 1

2

Nw
P

k=1

(x(k)−µ0)T
Σ

−1

0
(x(k)−µ0)

!

(4.32)

mit denML-Schätzwerten der ParameterΘ0 = (µ0,Σ0):

µ0 =
1

Nw

Nw∑

k=1

x(k) (4.33)

Σ0 =
1

Nw

Nw∑

k=1

(x(k) − µ0) (x(k) − µ0)
T . (4.34)

Durch Logarithmieren der Dichtefunktion und Verwendung von Gl. 4.33 und Gl. 4.34 folgt
entsprechend [WH06] (vgl. Kap. A.1) für dieLikelihoodder HypotheseH0

log (p(X1:Nw
|H0)) = −Nw

2
log (|Σ0|) −

NwD

2
(1 + log (2π)) (4.35)

bzw. für dieLikelihoodder HypotheseH1

log (p(X1:Nw
|H1)) = −Nw

4
log (|Σ1||Σ2|) −

NwD

2
(1 + log (2π)) . (4.36)

Die Differenz∆BIC derBIC-Werte der Hypothesen wird als Kriterium für Segmentierungs-
punkt verwendet und kann entsprechend [CW03] alsGeneralized Likelihood Ratioder Hy-
pothesen interpretiert werden.

∆BIC = BIC(H1) − BIC(H0) (4.37)

=
Nw

2
log(|Σ0|) −

Nw

4
log(|Σ1||Σ2|) − ξ

m0

4
logNw. (4.38)

Ein ∆BIC-Wert größer Null zeigt hierbei einen Segmentierungspunktan, wobei die Emp-
findlichkeit durch die Konstanteξ eingestellt wird.

Im Folgenden wird der∆BIC-Wert der Gl. 4.37 um einen Zeitindexk erweitert (∆BIC(k)),
welcher die Mitte des betrachteten Fensters der LängeNw angibt. Dieses Fenster wird über
den Datenstrom der Merkmalsvektoren geschoben, so dass derWert∆BIC(k) zu den Merk-
malsvektorenx(k−Nw/2+1), . . . ,x(k+Nw/2) gehört. Daraus resultiert eine Verzögerung
der Information über einen Sprecherwechsel aus den∆BIC-Werten von einer halben Fens-
terlänge (Nw/2).

Experimente unter variierenden Bedingungen, wie z. B. Hintergrundgeräuschen, zeigten
die Notwendigkeit, den Parameterξ aus Gl. 4.38 an die akustischen Umgebungsbedingun-
gen anzupassen. Dieser Nachteil ist in der Literatur bekannt und kann durch eine metrische
Entscheidungsregel abgemildert werden. Die Grundidee dermetrischen Entscheidungsregel
beruht auf der Beobachtung, dass ein Segmentierungspunkt im Zeitverlauf der∆BIC-Werte
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Abbildung 4.7: Metrische Entscheidungsregel zur Segmentierung durch∆BIC-Werte

durch ein lokales Maximum gekennzeichnet ist (vgl. Abb. 4.7). Ein Segmentierungspunkt
wird immer dann angenommen, falls die Differenz zwischen lokalem Minimum und Maxi-
mum einλ-faches der Standardabweichungσ des∆BIC-Wertes beträgt [DW00, DY08]. Die
metrische Entscheidungsregel zeigt folglich einen Segmentierungspunkt an, falls mindestens
eine der Bedingungen erfüllt ist:

|∆BIC(kmax) − ∆BIC(kminR
)| > λσ (4.39)

|∆BIC(kmax) − ∆BIC(kminL
)| > λσ. (4.40)

Dabei seikmax ein Zeitpunkt, an dem ein lokales Maximum im Zeitverlauf der∆BIC-Werte
vorliegt, undkminR

bzw.kminL
die zugehörigen Zeitpunkte der lokalen Minima, welche rechts

bzw. links vom Maximum liegen (vgl. Abb. 4.7).

Segmentierung mittels Positionsinformationen

Ein Sprecherwechsel geht immer mit einem Wechseln in der geschätzten Sprecherposition
einher. Umgekehrt ist eine Veränderung der Sprecherposition jedoch kein sicherer Indikator
für einen Sprecherwechsel, da der Sprecher auch nur seine Position geändert haben kann.

In Abb. 4.8 sind die Winkelschätzungen während eines Gesprächs zwischen zwei Perso-
nen und die zugehörigen Segmentierungspunkte, d. h. die Zeitpunkte der Sprecherwechsel,
dargestellt. Theoretisch kann ein solches Gespräch einzigdurch die Positionsinformationen
segmentiert werden, weil die Sprecher räumlich gut getrennt und jeweils an einer festen Po-
sition sind. Eine solche Voraussetzung ist in einer Hausumgebung nicht gegeben, da sich
die Sprecher frei bewegen können. Folglich müssen andere Ansätze zur Verwendung der
geschätzten Sprecherposition betrachtet werden.

Ein möglicher Ansatz ist, dass die Position eines Sprechersfür die Dauer einer Äußerung
als näherungsweise konstant und die Gesprächspartner als räumlich unterscheidbar ange-
nommen werden. Obwohl diese Annahmen in einem Gespräch üblicherweise gegeben sind,
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Abbildung 4.8: Vergleich zwischen Positionsinformationen und bekanntenSegmentierungspunkten

stellen sie eine Einschränkung der Verwendbarkeit des Systems dar. Zunächst werden Hy-
pothesen für Segmentierungspunkte durch das in Kap. 4.3.1 vorgestellte∆BIC-Verfahren
ermittelt und anschließend anhand der Positionsinformation nachgefiltert. Falls die Position
innerhalb eines Zeitfensters konstant ist, so werden Hypothesen für einen Sprecherwech-
sel innerhalb dieses Zeitfensters verworfen. Hierdurch kann eine erhebliche Reduktion der
Fehler erzielt werden, wie die Experimente in Kap. 4.3.3 zeigen.

In Kap. 4.3.2 wird ein alternativer Ansatz ohne die einschränkenden Annahmen vorge-
stellt, welcher eine kombinierte Segmentierung und Identifikation mit Hilfe der Positionsin-
formationen durchführt. Da dieser Ansatz Informationen aus dem Modul zur Sprecheriden-
tifikation benötigt, wird im folgenden Kapitel zunächst dieSprecheridentifikation erläutert.

Sprecheridentifikation

Die Problemstellung der Sprecheridentifikation wird allgemein als ein Mustererkennungs-
problem formuliert, bei dem eine beobachtete Menge von Merkmalsvektoren einem Spre-
chermodell zugeordnet werden soll [Cam97]. Dabei wird für jeden derI Nutzer ein sto-
chastisches Modell aus Trainingsdaten geschätzt. Für den Klassifikationsschritt werden die
Likelihoodsder Merkmalsvektoren für die Dichtefunktionen der Sprechermodelle berechnet
und anhand eines Hypothesentests verglichen. Im Folgendenwerden die zum Aufbau ei-
ner Sprecheridentifikation benötigten Ansätze und Gleichungen entsprechend den Ideen aus
[Cam97] und [RQD00] eingeführt, um deren Zusammenhang zur Sprecherprotokollierung
herzustellen.

Die Likelihood der MerkmalsvektorfolgeX1:N = [x(1), . . . ,x(N)], gegeben dasi-te
Sprechermodell (Ω = i), ist unter der Annahme unabhängiger und identisch verteilter Merk-
malsvektoren durch

p(X1:N |Ω = i) =

N∏

k=1

p(x(k)|Ω = i) (4.41)

gegeben. DieseLikelihoodwird auf dieLikelihoodp(X1:N |Ω 6= i) normiert, dass die Merk-
malsvektoren nicht von dem Sprecher stammen (sog. Gegenhypothese). Somit wird für die
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Entscheidung, welcher Sprecher aktiv ist, anstelle derLikelihoodp(X1:N |Ω = i) das Ver-
hältnis derLikelihoodsmit

Λ(X1:N |Ω = i) =
N∏

k=1

p(x(k)|Ω = i)

p(x(k)|Ω 6= i)
(4.42)

betrachtet. Die HypothesêΩ für das wahrscheinlichste Sprechermodell ist dann durch das
Sprechermodell gegeben, das die Summe der logarithmiertenLikelihood-Verhältnisse maxi-
miert:

Ω̂ = argmax
i

{
N∑

k=1

log

(
p(x(k)|Ω = i)

p(x(k)|Ω 6= i)

)}
. (4.43)

Die Bildung des Logarithmus wird zur Verbesserung der numerischen Stabilität verwendet
und hat dabei keinen Einfluss auf dieargmax-Operation.

Das Modell für die Gegenhypothese, auch universelles Hintergrundmodell (engl.Univer-
sal Background Model, UBM) genannt, kann entweder aus den Aufnahmen eines unabhängi-
gen Satzes von Sprechern oder aus der Datenmenge aller zu trainierenden Sprecher geschätzt
werden [RQD00]. In dieser Arbeit wird der zweite Ansatz gewählt, da hierbei auch mit klei-
neren Datenmengen Sprechermodelle gut trainiert werden können.

Das universelle Hintergrundmodell (Ω = ΩUBM) setzt sich aus der Kombination der ge-
schlechtsspezifischen Hintergrundmodelle für Männer (Ω = ΩM

UBM) und Frauen (Ω = ΩF
UBM)

zusammen. Da kein a priori Wissen über das Geschlecht der anwesenden Sprecher vorhan-
den ist, wird eine Gleichgewichtung der geschlechtsspezifischen Hintergrundmodelle mit

p(x(k)|Ω 6= i) = p(x(k)|Ω = ΩUBM) i = 1, . . . , I (4.44)

=
1

2
p(x(k)|Ω = ΩM

UBM) +
1

2
p(x(k)|Ω = ΩF

UBM) (4.45)

vorgenommen. Die Modellparameter werden jeweils aus den gesamten Daten der weibli-
chen bzw. männlichen Sprecher mittelsML-Parameterschätzung bestimmt [DHS01]. Dabei
kann die Verwendung von Trainingsdaten aus unterschiedlichen Aufnahmesituationen und
Mikrophonarten, wie z. B. Nahbereichs- und Fernfeldmikrophonen, die Robustheit der Spre-
cheridentifikation gegenüber Veränderungen der Aufnahmesituation verbessern.

Jede Dichtefunktion wird durch eine Gauß’sche Mischungsverteilung (GMM) beschrie-
ben, deren Gewichtecj,m, Mittelwertvektorenµj,m und KovarianzmatrizenΣj,m aus Trai-
ningsdaten bestimmt werden. DasGMM desj-ten Modells (Sprechermodell oder geschlechts-
spezifisches Hintergrundmodell) ist folglich als gewichtete Summe vonM multivariaten
Normalverteilungen mit

p(x(k)|Ω = j) =

M∑

m=1

cj,m · N (x(k); µj,m,Σj,m) j = 1, . . . , I,ΩF
UBM,Ω

M
UBM (4.46)

definiert. Dabei ist das Gewichtcj,m die a priori Wahrscheinlichkeit derm-ten Mischungs-
verteilung derj-ten Klasse mitcj,m = P (Z = m|Ω = j). Die ZufallsvariableZ ∈
{1, . . . ,M} stehe für die Zugehörigkeit zu einer Mischungsverteilung und die Zufallsva-
riableΩ ∈ {1, . . . , I,ΩF

UBM,Ω
M
UBM} für die Zugehörigkeit zu einer Klasse. Jedes Sprecher-

modell und jedes geschlechtsspezisches Hintergrundmodell besitzt somit einen eigenen Satz
von ModellparameternΘj = {cj,1, . . . , cj,M ,µj,1, . . . ,µj,M ,Σj,1, . . . ,Σj,M}.
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Die Modellierung eines Sprechers durch einHidden Markov Model(HMM) bietet nach
[RQD00] keinen signifikanten Vorteil gegenüber einerGMM-Modellierung, sofern keine
Informationen über die gesprochenen Wörter vorliegen.

Die individuellen Sprechermodelle werden mittels Bayes’scher Adaption [RQD00] aus
den geschlechtsspezifischen Modellen trainiert. Vorteil dieser Methode ist, dass auch Mo-
delle für Sprecher mit geringen Datenmengen trainiert werden können, da nur die Teile der
Modelle angepasst werden, die auch beobachtet worden sind.Liegen für einen Sprecher nur
wenige Beobachtungen vor, so entspricht sein Modell zu einem großen Teil dem geschlechts-
spezifischen Hintergrundmodell. Dies bedeutet aber auch, dass die Hintergrundmodelle eine
hohe Ähnlichkeit mit den zu trainierenden Sprechern haben müssen. Weibliche Sprecher
werden folglich ausgehend von einem weiblichen Hintergrundmodell trainiert und männli-
che Sprecher mit dem männlichen Hintergrundmodell. Die Schätzung der Modellparameter
der Sprechermodelle erfolgt durch eine Bayes’sche Adaption der geschlechtsspezifischen
Hintergrundmodelle.

Die Bayes’sche Adaption berechnet auf Basis des Hintergrundmodells zunächst die Wahr-
scheinlichkeit, dass der Merkmalsvektorx(k) zurm-ten Mischungsverteilung gehört:

p(Z = m|x(k),Ω = Ω∗
UBM) =

p(x(k)|Z = m,Ω = Ω∗
UBM)cΩ∗

UBM,m

M∑
j=1

p(x(k)|Z = j,Ω = Ω∗
UBM)cΩ∗

UBM,j

. (4.47)

Dabei seiZ die Zufallsvariable der Zugehörigkeit zu einer Mischungsverteilung undΩ∗
UBM

das geschlechtsspezifische Hintergrundmodell, welches entsprechend dem Sprecher zuΩM
UBM

oderΩF
UBM gewählt wird. Anschließend werden die sprecherspezifischeModellparameter̃Θi

mit

c̃i,m =
1

N

N∑

k=1

p(Z = m|x(k),Ω = Ω∗
UBM) (4.48)

µ̃i,m =
1

Nc̃i,m

N∑

k=1

p(Z = m|x(k),Ω = Ω∗
UBM) · x(k) (4.49)

Σ̃i,m =
1

Nc̃i,m

N∑

k=1

p(Z = m|x(k),Ω = Ω∗
UBM)(x(k) − µi)(x(k) − µi)

T (4.50)

geschätzt, welche in Kombination mit den Modellparameterndes gewählten Hintergrund-
modellsΘΩ∗

UBM
das neue SprechermodellΘi bilden:

ci,m = ǫi · c̃i,m + (1 − ǫi) · cΩ∗

UBM,m
(4.51)

µi,m = ǫi · µ̃i,m + (1 − ǫi) · µΩ∗

UBM,m
(4.52)

Σi,m = ǫi · Σ̃i,m + (1 − ǫi) · ΣΩ∗

UBM,m
. (4.53)

Der Adaptionskoeffizientǫi, der die Gewichtung der sprecherspezifischen Modellparameter
Θ̃i gegenüber den Parametern der HintergrundmodelleΘΩ∗

UBM
einstellt, wird mit

ǫi =
N · c̃i,m

N · c̃i,m + r
(4.54)
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berechnet. Der Relevanzfaktorr aus Gl. 4.54 steuert hierbei den Einfluss des Hintergrund-
modells, wobei für den Fallr = 0 die Relevanz des Hintergrundmodells zu Null gesetzt wird
und die Bayes’sche Adaption in dieML-Parameterschätzung desEM-Algorithmus übergeht.

Theoretisch ist es möglich, unterschiedliche Relevanzfaktoren für die Adaption von Mo-
dellparametern (ci,m,µi,m,Σi,m) zu nutzen. Jedoch haben experimentelle Untersuchungen
keine signifikanten Vorteile gezeigt, und daher werden die nachfolgenden Experimente je-
weils mit einem für alle Parameter gültigen Relevanzfaktordurchgeführt.

Da der Einsatz in der vernetzten Hausumgebung den Zweck hat,den Benutzer nahezu in
Echtzeit zu erkennen, um ihm bei seinen täglichen Arbeiten zu unterstützen, muss bei dem
Verfahren zur Sprecheridentifikation der Aspekt der echtzeitfähigen Verarbeitung von Da-
tenströmen betrachtet werden. Die Sprecheridentifikationals Systemkomponente trägt nicht
zur Latenz des Systems bei, da lediglich für jeden Merkmalsvektor dieLikelihoodder Spre-
cher nach Gl. 4.43 berechnet werden muss. Dies führt nicht zueiner Verzögerung, jedoch zu
einer hohen Rechenlast, falls eine große Personengruppe trainiert ist. Eine Option zur Verrin-
gerung der Rechenlast ist die Reduktion der Anzahl der berechneten Exponentialfunktionen,
indem nur die Verteilungen der Gauß’schen Mischungsverteilung der Sprecher berechnet
werden, bei denen dieLikelihooddes Hintergrundmodells einen minimalen Wert überschrei-
tet.

An dieser Stelle wird nicht auf die Detektion von Personen eingegangen, die nicht in der
Gruppe der bekannten Sprecher enthalten sind. Da das Systemim vernetzten Haus zur Un-
terstützung der Hausbewohner verwendet werden soll, ist die Annahme gerechtfertigt, dass
alle Personen im Haushalt bekannt sind und dass deren Anzahlnicht sonderlich groß ist. Ein
Ansatzpunkt für eine solche Detektion ist die Einführung eines Grenzwertes für die Summe
der Likelihood-Verhältnisse in Gl. 4.43. Überschreitet keine der Sprecherhypothesen einen
festgesetzten Schwellwert, so wird angenommen, dass der Sprecher nicht aus der Gruppe
der bekannten Sprecher stammt. Dieser Ansatz ermöglicht die Erkennung von unbekannten
Sprechern und reduziert die Anzahl der falsch klassifizierten Personen, jedoch zu Lasten
einer neuen Fehlerart, der fälschlich zurückgewiesenen Sprecher.

4.3.2 Gemeinsame Sprecherwechseldetektion und Identifikation

In den vorherigen Kapiteln wurde beschrieben, wie zunächsteine Sprecherwechseldetektion
und anschließend eine Sprecheridentifikation durchgeführt werden kann. Dieses sequentielle
Vorgehen hat den Nachteil, dass die zunächst in der Segmentierung getroffenen „frühen“ Ent-
scheidungen nur auf einem Teil der vorhandenen Informationen beruhen. Denn die Sprecher-
identität ist zum Zeitpunkt der Sprecherwechseldetektionnoch nicht bekannt. Daher wurde
die Idee entwickelt, die Identifikation und die Segmentierung parallel durchzuführen. Somit
kann das Treffen von vorläufigen Entscheidungen vermieden und eine endgültige Entschei-
dung unter Verwendung aller Wissensquellen getroffen werden, so dass alle vorhandenen
Informationen mit in die finale Entscheidung einfließen. Fürdie detaillierte Beschreibung
des Ansatzes wird die Defintion desHidden Markov Modelsbenötigt, welche entsprechend
[Rab89] im Folgenden gegeben wird.
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Hidden Markov Model

Ein Hidden Markov Modelist ein stochastisches Modell für ein System, welches durcheine
diskrete Markov-Kette erster Ordnung beschreibbar ist. Das Modell besteht aus einer Menge
vonI Zuständen, von denen einer der aktuelle Zustand ist, in dem sich das System befindet.
In gleichmäßigen Zeitabständen wechselt das System von einem Zustand in einen anderen,
wobei der Folgezustand auch der vorherige Zustand sein kann(vgl. Abb. 4.9). Diese Zu-
standsübergänge werden probabilistisch durch die Transitionswahrscheinlichkeiten

aij = P (Ω(k) = j|Ω(k − 1) = i) 1 ≤ i, j ≤ I (4.55)

beschrieben, wobeiΩ(k) der aktuelle Zustand des Systems zum Zeitpunktk undΩ(k − 1)
der vorherige Zustand des System sein soll. Die Wahrscheinlichkeit, dass sich das System
zum Startzeitpunkt im Zustandi befindet, ist mit

πi = P (Ω(0) = i) 1 ≤ i ≤ I (4.56)

gegeben. Der aktuelle Zustand des Systems ist nicht direkt beobachtbar (engl.hidden), je-
doch emittiert das System zu regelmäßigen Zeitpunktenk die beobachtbaren Merkmalsvek-
torenx(k). Des Weiteren werden die Verteilungsdichtefunktionen, welche die Emissions-
wahrscheinlichkeiten der Zustände beschreiben, als bekannt vorausgesetzt. Somit sind die
Emissionswahrscheinlichkeiten der Zustände mit

bi(x(k)) = p(x(k)|Ω = i) 1 ≤ i ≤ I (4.57)

bekannt. Das System ist vollständig durch die Wahrscheinlichkeiten aus Gl. 4.55, Gl. 4.56
und Gl. 4.57 beschrieben, wobei diese Wahrscheinlichkeiten häufig in vektorieller Schreib-
weise zusammengefasst werden. Die Transitionswahrscheinlichkeiten bilden dabei die Tran-
sistionsmatrix

A = (aij) 1 ≤ i, j ≤ I. (4.58)

Ferner werden die Verteilungsdichtefunktionen der Emissionswahrscheinlichkeiten inB und
die Anfangswahrscheinlichkeiten der Zustände in dem Vektor π zusammengefasst. Das Mo-
dell desHMM kann folglich kurz mit(A,B,π) angegeben werden.

Sprecherprotokollierung mittels einesHidden Markov Models

Kern der Sprecherprotokollierung ist einHidden Markov Modelzur Modellierung der Spre-
cher, deren Zustandsübergänge abhängig von Informationenüber Sprecherwechsel und da-
mit zeitvariant sind. Um der Anforderung nach einer geringen Latenz nachzukommen, wird
ein Viterbi-Dekodierer mit vorzeitiger Ausgabe der Erkennungsergebnisse (ein sog.Partial
Traceback) verwendet, der die optimale Abfolge der Zustände imHMM, gegeben die Beob-
achtungen, bestimmt.

Jeder derI Sprecher wird durch einen Zustand in diesemHidden Markov Modelreprä-
sentiert. Zusätzlich wird ein ZustandI + 1 für Stille eingefügt, um Sprachpausen zu model-
lieren. Abbildung 4.9 zeigt ein Beispiel fürI = 3 Sprecher. Die Emissionswahrscheinlich-
keiten der Zustände sind durch dieLikelihoodsder Sprecheridentifikation gegeben. Informa-
tionen über mögliche Sprecherwechsel fließen in die Transitionswahrscheinlichkeiten des



Akustische Szenenanalyse 35

1 2

3

4

1 := Nutzer A
2 := Nutzer B
3 := Nutzer C
4 := Stille

Abbildung 4.9: Hidden Markov Modelzur Modellierung einer Sprechergruppe

HMM ein. Zustandsübergänge, die einen Sprecherwechsel anzeigen, erhalten eine erhöhte
Wahrscheinlichkeit, falls Informationen über einen möglichen Sprecherwechsel vorliegen.
Gleichzeitig werden die Wahrscheinlichkeiten der Zustandsübergänge reduziert, die wieder
in den aktuellen Zustand führen. Ist ein Sprecherwechsel eher unwahrscheinlich, so erhalten
die Zustandsübergänge, die einen Sprecherwechsel anzeigen, niedrigere Wahrscheinlichkei-
ten und die restlichen Zustandsübergänge höhere Wahrscheinlichkeiten. Somit entsteht eine
zeitveränderliche Transitionsmatrix, welche den aktuellen Wissensstand über Sprecherwech-
sel repräsentiert.

Informationsquellen

Die Schätzung der Transitionswahrscheinlichkeiten soll auf Informationen über Sprecher-
wechselhypothesen basieren. Hierzu können die akustischePositionsschätzung und die be-
rechneten∆BIC-Werte verwendet werden. In Abb. 4.10 ist eine Übersicht derSystemkom-
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Abbildung 4.10: Systemkomponenten der Sprecherprotokollierung

ponenten für die Sprecherprotokollierung gegeben. Das Modul der Sprecherprotokollierung
implementiert einen Viterbi-Dekodierer, der die berechneten Werte des Bayes’schen Infor-
mationskriteriums (∆BIC-Werte) und die Werte der Positionsschätzung verwendet, umdie
Transitionsmatrix desHMM zu schätzen. Für die Emissionswahrscheinlichkeiten desHMM
werden im Viterbi-Dekodierer die Werte der Sprachaktivitätsdetektion und dieLikelihoods
der Sprecheridentifikation kombiniert, welche im Modul „Sprecherbewertung“ berechnet
werden. Hierzu wird jede Informationsquelle, soweit noch nicht geschehen, probabilistisch
modelliert.
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Das in Kap. 4.3.1 vorgestellte Verfahren zur Detektion von Sprecherwechseln berech-
net fortlaufend∆BIC-Werte aus den eingehenden Merkmalsvektoren. Die Berechung der
metrischen Entscheidungsregel zur Sprecherwechseldetektion ist mit einer zusätzlichen zeit-
lichen Latenz behaftet, da signifikante lokale Maxima detektiert werden müssen. Folglich
wird zur probabilistischen Modellierung von Informationen über Sprecherwechsel, statt der
metrischen Entscheidungsregel, die Varianz der∆BIC-Werte verwendet. Diese mitxbic(k)
bezeichnete Größe kann mit

µbic(k) = α · µbic(k − 1) + (1 − α) · ∆BIC(k) (4.59)

xbic(k) = β · xbic(k − 1) + (1 − β) ·
[
∆BIC(k) − µbic(k)

]2
(4.60)

geschätzt werden. Vorteilhaft bei diesem Ansatz ist die Vermeidung von Latenzen durch
die rekursive Schätzung der Varianz. Für die Modellierung werden die Parameter der Nor-
malverteilungenp(xbic(k)|c(k) = 0) undp(xbic(k)|c(k) = 1) aus Trainingsdaten geschätzt.
Hierbei istc(k) eine binäre Zufallsvariable, welche angibt, ob ein Sprecherwechsel vorliegt
(c(k) = 1) oder nicht (c(k) = 0).

Der FSB, als adaptiver Strahlformer, adaptiert blind auf den stärksten Sprecher und er-
möglicht durch die Korrelation der Filterimpulsantwortendie Schätzung des Einfallswinkels
des Sprachsignals (vgl. Kap. 4.2.2). Für den Fall, dass mehrals eine Mikrophongruppe zur
Verfügung steht, können die Winkelschätzungen zu einer Position P (k) in kartesischen Ko-
ordinaten kombiniert werden (vgl. Kap. 4.2.3). Als Indiz für mögliche Sprecherwechsel wird
die Varianzxpos(k) der Position berechnet, welche entweder auf Winkelschätzungen oder
zweidimensionalen Positonsschätzungen beruht. Erneut wird zur Vermeidung von Latenzen
eine rekursive Schätzung verwendet:

µpos(k) = α · µpos(k − 1) + (1 − α)· ‖ P (k) − P (k − 1) ‖2 (4.61)

xpos(k) = β · xpos(k − 1) + (1 − β) · [P (k) − µpos(k)]2 . (4.62)

Entsprechend des Ansatzes zur Modellierung der∆BIC-Werte wurden aus Trainingsdaten
die Parameter der Normalverteilungenp(xpos(k)|c(k) = 0) und p(xpos(k)|c(k) = 1) ge-
schätzt.

Informationen über die mögliche Identität des Sprechers werden durch die Sprecherbe-
wertung ermittelt. Für jeden akustischen Merkmalsvektorxsid(k) wird dasLikelihood-Ver-
hältnis der einzelnen Sprechermodelle nach Gl. 4.42 als Emissionswahrscheinlichkeit der zu
den Sprechern gehörendenHMM-Zustände berechnet.

Eine weitere Informationsquelle ist die Sprachaktivitätsdetektion. Hierzu wird das Verfah-
ren aus demExtended Advanced Front-end Feature Extraction(XAFE) desETSI [ETS02]
verwendet. Die Steuerung der Adaption des Strahlformers erfolgt jedoch mit einer ener-
giebasierten Sprachaktivitätsdetektionen (engl.Voice Activity Detection, VAD) nach [RS04].
Beide Sprachaktivitätsdetektionen liefern einen IndikatorP (S|xsid) für Sprache, dessen Wert
zwischen0 (Keine Sprache) und1 (Sprache) liegt.

Emissionswahrscheinlichkeiten

Die Emissionswahrscheinlichkeiten jedes Sprechers sind gegeben durch dieLikelihood-Ver-
hältnisse aus Gl. 4.42, deren zugrunde liegende Dichtefunktionen auf Sprachdaten ohne
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Sprachpausen für die Sprecheridentifikation trainiert werden. Jedoch treten in dem Daten-
strom der Sprecherprotokollierung Zeitabschnitte ohne Sprache auf, so dass dasLikelihood-
Verhältnis mit der Wahrscheinlichkeit, dass der vorliegende Block Sprache enthält, multipli-
ziert werden muss. Somit folgt für die Emissionswahrscheinlichkeit des Sprecherzustandes
Ω(k) = j zum Zeitpunktk:

bj(x
sid(k)) = p′(xsid(k)|Ω = j)

=

{
Λ(xsid(k)|Ω = j) · P (S|xsid(k))

für
j = 1, . . . , I

Λ(xsid(k)|Ω = j) · (1 − P (S|xsid)(k)) j = I + 1
. (4.63)

Für die Emissionswahrscheinlichkeit des Zustandes Stillewird der Mittelwert derLikeli-
hood-Verhältnisse verwendet:

Λ(xsid(k)|Ω = I + 1) =
1

I
I∑

j=1

Λ(xsid(k)|Ω = j). (4.64)

Transitionswahrscheinlichkeiten

Die Grundidee des Verfahrens ist es, die Wahrscheinlichkeit eines Zustandsübergangs ab-
hängig von den Informationen über die Positionsänderung eines Sprechers und der Varianz
der∆BIC-Werte zu machen. Unter Verwendung der binären Zufallsvariablec(k) und den zu-
vor vorgestellten probabilistischen Modellierungen der Sprecherwechselinformationen folgt
für die Transitionswahrscheinlichkeiten, dass sie proportional zuP (c(k)|xbic(k), xpos(k)) ge-
wählt werden. Es wird ferner die Annahme getroffen, dassxbic(k) und xpos(k) statistisch
unabhängig sind, so dass gilt:

P (c(k)|xpos(k), xbic(k)) =
p(xpos(k), xbic(k)|c(k))P (c(k))

p(xpos(k), xbic(k))
(4.65)

=
p(xpos(k)|c(k))P (c(k))

p(xpos(k))

p(xbic(k)|c(k))P (c(k))

p(xbic(k))

1

P (c(k))
. (4.66)

Unter der Annahme einer gleichförmigen Verteilung vonP (c(k)) folgt:

P (c(k)|xpos(k), xbic(k)) =
p(xpos(k)|c(k))∑

c′
p(xpos(k)|c(k) = c′)

p(xbic(k)|c(k))∑
c′
p(xbic(k)|c(k) = c′)

1

P (c(k))
. (4.67)

Die zeitveränderlichen Übergangswahrscheinlichkeiten zwischen denHMM-Zuständen wer-
den definiert zu:

aij(k) := P (Ω(k) = j|Ω(k − 1) = i) (4.68)

=
ãij(k)∑
j

ãij(k)
(4.69)

mit

ãij(k) =





P (c(k) = 0|xpos(k), xbic(k))

für

i = j, j 6= I + 1
P (c(k) = 1|xpos(k), xbic(k)) i 6= j, j 6= I + 1
P (c(k) = 0|xbic(k)) i = j = I + 1
P (c(k) = 1|xbic(k)) i 6= j, j = I + 1

. (4.70)
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Der Zustand Stille benötigt, wie aus Gl. 4.70 ersichtlich ist, eine spezielle Anpassung, da
für den Fall von Stille offensichtlich keine Positionsschätzung vorliegen kann. Jedoch wird
der Übergang von einem Sprecher zu einer Sprachpause und umgekehrt als Sprecherwechsel
durch den∆BIC-Wert angezeigt.

Die Sprecheridentifikation aus Kap. 4.3.1 bietet die Möglichkeit, eine Bestimmung des
Geschlechts des aktuellen Sprechers durchzuführen, indemdieLikelihoodsder geschlechts-
spezifischen Hintergrundmodelle ermittelt werden. Die Bestimmung des Sprechergeschlechts
erwies sich in Experimenten als sehr zuverlässig, jedoch führt die Verwendung dieser Infor-
mation zur Berechnung der Transitionswahrscheinlichkeiten nur zu geringfügig besseren Er-
gebnissen. Ein Grund dürfte in der Tatsache liegen, dass Verwechselungen zwischen männ-
lichen und weiblichen Sprechermodellen nur selten auftreten.

Viterbi-Dekodierer

Entfaltet man das Zustandsmodell aus Abb. 4.9 über die Zeit,so entsteht ein Trellisdiagramm
(vgl. Abb. 4.11). Ein Viterbi-Dekodierer bestimmt dann denbestbewertesten Pfad durch das
Trellis, d. h. die ZustandssequenzΩ̂1:N = [Ω̂(1), . . . , Ω̂(N)] mit

Ω̂1:N = argmax
Ω1:N

{ N∑

k=1

[
log p′(xsid(k)|Ω) + κ logP (Ω(k)|Ω(k − 1))

]}
. (4.71)

Aus der Literatur ist bekannt, dass Bedingungen hinsichtlich der minimal erlaubten Zeit
zwischen Sprecherwechseln und heuristische Ansätze zur Glättung benötigt werden, um das
exzessive Wechseln von Zuständen zu vermeiden [TR06]. Dieskann gerechtfertigt werden
durch die Annahme, dass selbst eine kurze Sprachäußerung aus mehreren Merkmalsvektoren
besteht, die im Abstand von10ms aus dem Sprachsignal berechnet werden. In dem hier vor-
gestellten Ansatz werden durch den Faktorκ in Gl. 4.71 die Emissionswahrscheinlichkeiten
gegenüber den Transitionswahrscheinlichkeiten stärker gewichtet, was zu einer Verminde-
rung der Zustandswechsel führt.

Sprecher 1

Sprecher 2

Sprecher 3

Stille

Detektion Sprecher 3Sprecher 3 StilleStille

k = 0k = 0 k = 1 k = 20 k = 22k = 21. . .

Traceback

Abbildung 4.11: Beispiel eines Trellisdiagramms und der Ausgabe des Viterbi-Dekodierers
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Um den zeitlichen Anforderungen des Systems gerecht zu werden, wird zu jedem Zeit-
punkt einPartial Tracebackgestartet. Hierbei wird ausgehend von jedem Zustand der Pfad
zurückverfolgt, der in dem Zustand endete. Der Teil der Pfade, welcher für alle Zustände
gleich ist, bestimmt den eindeutigen Zustandsverlauf in der Vergangenheit. In Abb. 4.11 ist
ein Beispiel für dasPartial Tracebackgegeben. Zum Zeitpunktk = 22 wird für die vier
Zustände der jeweilige Pfad über die vorangegangenen Zustände bestimmt. Beginnend mit
dem Zeitpunktk = 21 ergibt sich für alle Zustände ein eindeutiger Pfad (vgl. Abb. 4.11,
roter Pfad). Folglich kann der rot markierte Pfad ausgegeben werden.

Die Anzahl der Zeitschritte, die man in die Vergangenheit gehen muss, bis der Pfad ein-
deutig ist, ist zufällig. Daher wird eine maximale Latenzτmaxeingeführt, ab der eine Ausgabe
des Pfades erzwungen wird. Sollte kein eindeutiger Pfad existieren und gleichzeitig die ma-
ximale noch tolerierbare Latenzτmax überschritten werden, so wird der am besten bewertete
Pfad gewählt. Experimentelle Untersuchungen zeigen, dassin einem Großteil der Fälle der
eindeutige Pfad frühzeitig vorliegt (vgl. Kap. 4.4.6).

Zunächst wurde die Information über Sprecherpositionen nur verwendet, um Sprecher-
wechsel zu detektieren. Man beachte, dass mit dem Ergebnis der Viterbi-Dekodierung eine
Zuordnung der Positionsschätzungen zu den Sprechermodellen erfolgen kann. Dies ermög-
licht für jeden Sprecher eine individuelle Nachfilterung der Positionsschätzungen, welche
durch die Verwendung von Kalman- oder Partikelfiltern realisiert werden kann [WPH04].

4.3.3 Experimentelle Ergebnisse

Ein System zur Sprecherprotokollierung setzt sich aus verschiedenen Komponenten zusam-
men, die sich gegenseitig in ihrer Leistungsfähigkeit beeinflussen. Eine fehlerhafte Segmen-
tierung des Datenstroms wird zwangsläufig auch zu Fehlern inder Sprecheridentifikation
führen. Daher werden zunächst die Komponenten einzeln in Experimenten untersucht und
anschließend der Gesamtaufbau betrachtet. Die hierfür benötigten Fehlermaße und Datenba-
sen werden zu Beginn erläutert.

Fehlermaße

Eine objektive Beurteilung der Segmentierung von Daten erfordert zunächst ein Fehlermaß,
welches unabhängig von der Leistungsfähigkeit der nachgeschalteten Klassifikation ist. Hier-
für geeignet sind die in [DW00] eingeführten Fehlermaße derFalse Alarm Rate(FAR) mit

FAR=
Anzahl fehlerhafter Alarme

Anzahl Segmentierungspunkte+ Anzahl fehlerhafter Alarme
% (4.72)

und derMissed Detection Rate(MDR) mit

MDR =
Anzahl verpasster Detektionen
Anzahl Segmentierungspunkte

%. (4.73)

Die Abb. 4.12 zeigt beispielhaft die Fehlerarten bei der Segmentierung. Zu den Zeitpunk-
ten2 s, 7 s und10 s findet ein Sprecherwechsel in den Aufnahmen statt. Angezeigt werden
Sprecherwechsel durch die∆BIC-Werte zu den Zeitpunkten2,2 s, 4 s, 5,5 s und9,8 s. Grüne
und rote Flächen um die Zeitpunkte der Sprecherwechsel zeigen die erlaubten Toleranzbe-
reiche für die Detektion der Segmentierungspunkte an. Ein Segmentierungspunkt wird als
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Abbildung 4.12: Fehlerarten bei der Segmentierung von Audiodaten

verpasst eingestuft, falls in einem Bereich von±0,4 s um den Segmentierungspunkt kein
Sprecherwechsel durch das System angezeigt wird (vgl. Abb.4.12, Zeitpunkt:7 s). Fehler-
hafte Alarme sind alle vom System gemeldeten Sprecherwechsel in deren zeitlicher Um-
gebung (±0,4 s) keine Sprecherwechsel (vgl. Abb. 4.12, Zeitpunkte:4 s, 5,5 s) vorliegen.
Der Vergleich zwischen zwei Verfahren zur Segmentierung anhand einerReceiver Opera-
ting Characteristic(ROC) kann durch dieEqual Error Rate(EER) erfolgen, welche durch
den Punkt auf derROC, an der dieFARund dieMDRübereinstimmen, definiert ist.

Ein Fehlermaß für die Beurteilung der Klassifikationsleistung durch eine der Segmentie-
rung nachgeschalteten Sprecheridentifikation ist dieDiarization Error Rate(DER) mit

DER=
Anzahl der einem Sprecher fehlerhaft zugeordneten Merkmalsvektoren

Anzahl Merkmalsvektoren
%, (4.74)

welche durchNIST [NIS08a] definiert wurde. Sie ist ein Maß für die Leistungsfähigkeit des
Segmentierungs- und Identifikationsprozesses, der zusammengefasst als Sprecherprotokol-
lierung bezeichnet wird.

Datenbasis Sprecherprotokollierung

Das zuvor beschriebene Verfahren zur gemeinsamen Sprecherwechseldetektion und Spre-
cheridentifikation stellt höhere Anforderungen an eine Datenbasis als einige klassische An-
sätze zur Sprecherprotokollierung. Die Datenbasis desDARPA EARS Rich Transcription
Evaluation Projects[NIS08b] kann zum Beispiel nicht verwendet werden, da bei den Auf-
nahmen keine Mikrophongruppen verwendet wurden, welche eine Positionsschätzung des
Sprechers erlauben würden. Die Datenbasis desCHIL Projektes bietet theoretisch mit den
verwendeten Mikrophongruppen die Möglichkeit eine Positionsschätzung durchzuführen
[OSBC06]. Jedoch sind die Aufnahmen aus den Seminaren ungeeignet, da zu einem großen
Teil nur ein Sprecher aktiv ist und insgesamt nur eine geringe Anzahl von Sprecherwechseln
vorhanden ist. Daher wurde für die experimentellen Untersuchungen eine eigene Datenbasis
erstellt, um gezielt die Komponente des Systems zu untersuchen.

In Abb. 4.13 ist der Aufbau zur Erstellung einer Datenbasis skizziert. Sie umfasst insge-
samt1,5 Stunden gelesene Texte von5 Frauen und5 Männern. Dabei wurden die Sprecher
sowohl durch eine Mikrophongruppe in2,8m Abstand als auch durch Nahbereichsmikro-
phone aufgenommen. Zwischen den Sprechern befand sich eineschalldämpfende Wand,
so dass die Nahbereichsmikrophone nur einen geringen Anteil der Sprache des entfernten
Sprechers aufnehmen konnten. In einem Nachbearbeitungsschritt wurden die Nahbereichs-
aufnahmen einer adaptiven Filterung unterzogen, um den entfernten Sprecher zusätzlich zu
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Abbildung 4.13: Versuchsaufbau zur Erstellung einer Datenbasis zur Sprecherwechseldetektion

unterdrücken. Basierend auf den bearbeiteten Nahbereichsaufnahmen war eine zuverlässi-
ge automatische Detektion des aktiven Sprechers und somit eine Annotation der Datenbasis
möglich.

Die Texte wurden durch Sprecher abwechselnd abschnittsweise gelesen, wobei die Län-
ge der Passagen vorgegeben wurde. Anschließend wurde die Datenbasis in drei Gruppen
entsprechend der mittleren Passagenlängen eingeteilt. Dies waren schnelle Sprecherwechsel
(< 2 s), mittlere Sprecherwechsel (3 − 4 s) und langsame Sprecherwechsel (> 4 s), die ohne
längere Sprechpausen durchgeführt wurden.

Datenbasis Sprecheridentifikation

Die „CHIL Campaign 2004 - Speaker Identification and Verification“ des CHIL Projektes
stellt eine Datenbasis für die Evaluierung von Systemen zurSprecheridentifikation bereit
[SSM05]. Sie besteht aus annotierten Seminaraufnahmen von11 Sprechern, die parallel
jeweils mit einem entfernten (engl.Distant Talking Microphone, DTM) und einem nahen
Mikrophon (engl.Close Talking Microphone, CTM) aufgenommen wurden. Der Vergleich
mit den veröffentlichten Ergebnisse der Evaluierung in [Mos05] und [ZLB+05] ermöglichen
einen Einordnung des in dieser Arbeit beschriebenen Systems zur Sprecheridentifikation.

Die Daten der Datenbasis sind mit16Bit pro Abtastwert bei einer Abtastrate von16 kHz
gespeichert. In den Aufnahmen sind Hintergrundgeräusche aus den Seminaren, wie z. B. der
Lüfter eines Projektors, vorhanden. Eine Segmentierung der Daten in homogene Abschnitte
definierter Länge

• Training (33min): 30 s, 60 s

• Test (11 h): 1 s, 3 s, 5 s, 10 s, 30 s, 60 s

und eine Sortierung nach Fern- und Nahbereichsaufnahmen wurde durchELDA [ELD08]
vorgenommen.

Experimente zur Segmentierung

Die Ergebnisse in diesem Unterkapitel fassen die Experimente im Bereich der Segmentie-
rung von Sprachdaten durch∆BIC-Werte zusammen. Zunächst wird ein Vergleich der Seg-



42 Akustische Szenenanalyse

mentierungsleistung für verschiedene Merkmalsvektoren und Fenstergrößen durchgeführt.
Aus Abb. 4.14 (a) ist ersichtlich, dass dieMel-Frequency Cepstral Coefficients(MFCC) und
die Linear Prediction Cepstral Coefficients(LPCC) vergleichbare Ergebnisse für die Seg-
mentierung liefern. Die Kombination der beiden Merkmalsvektoren verbessert die Ergebnis-
se leicht, jedoch führt dieser Ansatz zu einer erheblichen Erhöhung der Systemlast und wird
daher nicht weiter verfolgt. Der Vergleich unterschiedlicher Fenstergrößen in Abb. 4.14 (b)
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Abbildung 4.14: Experimente mit Nahbereichsmikrophonen zur Merkmalsvektorwahl und Fenster-
größe

zeigt eine optimale Fenstergröße im Sinne der kleinstenEERvon ca.80 Merkmalsvektoren
für die verwendete Datenbasis. Dies entspricht einer Latenz durch die Segmentierung von40
Merkmalsvektoren (320ms).

In Abb. 4.15 ist der Vergleich der Segmentierungsergebnisse zwischen Fernfeldmikropho-
nen (DTM) und Nahbereichsmikrophonen (CTM) dargestellt. Der experimentelle Aufbau ist
in Abb. 4.13 (S. 41) dargestellt und bestand aus einer linearangeordneten Mikrophongruppe
aus6 Fernfeldmikrophonen im Abstand von0,05m mit einer Distanz von ca.2,8m zu den
Sprechern.

Die aus der Distanz zwischen Sprechern und Mikrophonen resultierende Verschlechterung
der Signalqualität durch Echos und Rauschen führt zu einer Erhöhung derEERum ca.7,0
Prozentpunkte gegenüber den Ergebnissen der Nahbereichsmikrophone (vgl. „CTM, Wie-
ner“ und „DTM 1 Kanal“). Die Verwendung eines Wiener-Filters („DTM 1 Kanal, Wiener“)
oder einer akustischen Strahlformung („DTM 6 Kanal,FSB“) verbessert dieEERgegenüber
den einkanaligen Ergebnissen und erreicht fast die Ergebnisse mit Nahbereichsmikrophonen.
Jedoch erst die Einbeziehung von Positionsdaten (vgl. Kap.4.3.1) ermöglicht eine signifi-
kante Reduktion derEERauf ca.13,8% („DTM 6 Kanal, Winkel“). Dieser Ansatz führt eine
Nachfilterung der angezeigten Sprecherwechsel anhand der Positionsschätzungen durch und
übertrifft auf diese Weise deutlich die Ergebnisse der Nahbereichsmikrophone.

Experimente zur Sprecheridentifikation

Die Tabellen 4.2 und 4.3 fassen die Ergebnisse der vorgestellten Sprecheridentifikation für
dieCHIL Datenbasis zusammen. Sie ermöglichen den Vergleich der Klassifikationsraten für
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Abbildung 4.15: Vergleich der Segmentierungsergebnisse von Fernfeldmikrophonen (DTM) und
Nahbereichsmikrophonen (CTM)

Nahbereichsaufnahmen und Aufnahmen aus größeren Distanzen für unterschiedliche Trai-
ningsdatensätze und Datenmengen. Angemerkt sei dabei, dass die entfernten Aufnahmen
nicht einer akustischen Strahlformung unterzogen werden können, da es sich um einkanali-
ge Aufnahmen handelt.

X
X

X
X

X
X

X
X

XX
Training

Test Klassifikationsrate (CTM) [%]
1 s 5 s 10 s 30 s 60 s

CTM 30 s 67,88 93,27 96,92 100,00 100,00

CTM 60 s 69,43 93,36 97,48 100,00 100,00

DTM 30 s 62,42 88,45 94,27 98,27 98,18

DTM 60 s 61,06 86,91 92,59 96,10 98,18

CTM 90 s & DTM 90 s 66,35 91,76 97,37 100,00 100,00

Tabelle 4.2:CHIL Datenbasis: Identifikation von Sprechern mit Nahbereichsmikrophonen (CTM)

In Tab. 4.2 sind die Klassifikationsraten für Nahbereichsaufnahmen für ein Training mit
wahlweise entfernten oder lokalen Mikrophondaten aufgeführt. Zum Vergleich sind in Tab.
4.3 die Klassifikationsraten für entfernte Mikrophondatenangegeben. Diese Aufnahmen sind
für die beabsichtigte Anwendung aussagekräftiger als die Nahbereichsaufnahmen, da im
Rahmen dieser Arbeit innerhalb der akustischen Szenenanalyse nur mit entfernten Mikro-
phongruppen gearbeitet wird.

Die Steigerung der Trainingsdatenmenge von30 s auf60 s reduziert die mittlere Fehlerra-
te bei gleichen Trainings- und Testbedingungen. Bei unterschiedlichen Trainings- und Test-
bedingungen sind die Ergebnisse nicht einheitlich. Eine Vergrößerung der Trainingsmenge
(DTM) für die Klassifikation der Nahbereichsaufnahmen (CTM) verschlechtert die Ergeb-
nisse geringfügig. Im Gegensatz dazu führt eine Vergrößerung der Trainingsmenge (CTM)
zu einer signifikanten Verbesserung der Klassifikationsraten von entfernten Mikrophonsi-
gnalen (DTM). Die jeweils letzte Zeile der Tabellen 4.2 und 4.3 zeigt dieErgebnisse für ein
Multi-Condition-Training, bei dem die gesamten Nah- und Fernbereichsdatenzu einem Trai-
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X
X

X
X

X
X

X
X

XX
Training

Test Klassifikationsrate (DTM) [%]
1 s 5 s 10 s 30 s 60 s

CTM 30 s 48,09 81,09 87,65 91,82 90,91

CTM 60 s 49,00 87,54 96,47 100,00 100,00

DTM 30 s 46,73 86,36 95,29 100,00 100,00

DTM 60 s 47,45 88,12 95,29 99,09 100,00

CTM 90 s & DTM 90 s 50,18 87,34 96,6 100,00 100,00

Tabelle 4.3:CHIL Datenbasis: Identifikation von Sprechern mit Fernfeldmikrophonen (DTM)

ningsdatensatz zusammengefasst werden. Diese Kombination ermöglicht gute Erkennungs-
ergebnisse für beide Testdatensätze, da sie sowohl die Charakteristiken der Nahbereichsmi-
krophone als auch der Fernfeldmikrophone trainiert.

Nachdem die Systemkomponenten der Segmentierung und der Sprecheridentifikation ein-
zeln validiert wurden, wird als nächstes die Fusion von Merkmalen zur Sprecheridentifika-
tion in einigen Experimenten untersucht, bevor die Sprecherprotokollierung näher betrachtet
wird.

Experimente zur Gewichtung von Merkmalen

Die Fusion von Merkmalsvektoren oder derenLikelihoodsermöglicht eine Reduktion der
Fehlerrate bei der Sprecheridentifikation, wie in [KHF04] gezeigt wurde. Hierzu wird der
Merkmalsvektorxsid in die drei Komponenten

1. xsid
M (k): MFCC-Merkmalsvektor undMACV-Wert

2. xsid
∆M(k): 1. Ableitung derMFCC- undMACV-Werte

3. xsid
∆∆M(k): 2. Ableitung derMFCC- undMACV-Werte

aufgeteilt. Diese Aufteilung ist möglich, da diagonale Kovarianzmatrizen im Verlauf des
Trainings geschätzt werden. Experimentell soll eine Gewichtung der dreiLikelihood-Werte
(engl.score level fusion) untereinander mit

log Λ̃
(
xsid(k)|Ω = i

)
=1 · log Λ

(
xsid
M (k)|Ω = i

)
+ γdelta · log Λ

(
xsid

∆M(k)|Ω = i
)

+ γacc · log Λ
(
xsid

∆∆M(k)|Ω = i
)

(4.75)

vorgenommen werden. Je größer die Werteγdelta undγacc werden, desto weniger werden die
Likelihood-Werte derMFCC berücksichtigt. Umgekehrt bedeuten die Extremwerteγdelta =
γacc = 0, dass die Ableitungen vernachlässigt werden.

In Abb. 4.16 sind die experimentellen Ergebnisse für die Sprecherwechselraten (schnell,
mittel, langsam) und dem Mittelwert über alle Sprecherwechselraten angegeben. Deutlich
erkennbar ist der Anstieg der Fehlerraten für alle Sprecherwechselraten bei Vernachlässigung
der Ableitungen. Dieser ist umso ausgeprägter, je kleiner die durchschnittliche Segmentdauer
ist. Der Mittelwert aller Segmentdauern zeigt ein schwach ausgeprägtes Minimum für die
Gewichtungγdelta ≈ 2 und γacc ≈ 2. Somit kann experimentell gezeigt werden, dass die
zeitlichen Ableitungen der Merkmalsvektoren einen entscheidenden Beitrag zur Reduktion
der Fehlerrate leisten.
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(b) Sprecherwechsel3 − 4 s
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(c) Sprecherwechsel> 4 s
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(d) Mittelwert

Abbildung 4.16: Vergleich der Fehlerraten für unterschiedliche Gewichtungen der Merkmalsvektor-
komponenten

Sprecherprotokollierung

Der in Kap. 4.3.2 vorgestellte Ansatz zur Sprecherprotokollierung führt eine gleichzeitige
Segmentierung und Identifikation von Sprechern in einem Datenstrom durch. Um die Leis-
tungsfähigkeit des Ansatzes zu zeigen, werden zunächst Versuche mit zwei Standardverfah-
ren („Gleitendes Fenster“ und „Segmentierung mit∆BIC“) durchgeführt.

In Abb. 4.17 (a) sind die Ergebnisse für die Verwendung einesüber den Datenstrom glei-
tenden Fensters konstanter Länge (engl.sliding window) gegeben. Hierbei wird ein Fenster
von Merkmalsvektoren aus dem Datenstrom betrachtet und derwahrscheinlichste Sprecher
ermittelt. Obwohl keine Informationen über Sprecherwechsel oder Sprecherpositionen ver-
wendet werden, können mit diesem Verfahren brauchbare Ergebnisse erzielt werden. Deut-
lich zu erkennen ist, dass bei steigender Fenstergröße zunächst die Fehlerrate sinkt und je-
weils abhängig von der Sprecherwechselrate anschließend wieder steigt. Es existiert kein ge-
meinsames Minimum für die unterschiedlichen Sprecherwechselraten, da ein größeres Fens-
ter zwar eine sicherere Entscheidung des Sprechers ermöglicht, jedoch bei einer schnellen
Abfolge der Sprecherwechsel mehrere Sprecher in einem Fenster vorhanden sein können und
dadurch mehr Fehlentscheidungen entstehen. Aus diesem Grund werden im Folgenden im-
mer die Mittelwerte der Fehlerraten (DER) für alle Sprachsegmentdauern als Vergleichskri-
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Abbildung 4.17: Ergebnisse der Sprecherprotokollierung durch ein gleitendes Fenster und eine
∆BIC-Segmentierung

terium verwendet. Die optimalen Parameter ergeben sich durch das Minimum der mittleren
Fehlerrate.

Im zweiten Verfahren werden die Informationen der Sprecherwechseldetektion aus der
Berechnung der∆BIC-Werte verwendet, um eine Segmentierung des Datenstroms durch-
zuführen. Anschließend werden die Segmente durch die Sprecheridentifikation einem Spre-
chermodell zugeordnet. Der∆BIC-Schwellwertλ beeinflusst maßgeblich die Anzahl der
gefundenen Segmentierungspunkte (vgl. Abb. 4.7, S. 29). Ein niedriger Wert vonλ führt
zu einer hohen Anzahl von Fehlalarmen und somit zu einer Zerstückelung von homogenen
Sprachsegmenten. Diese falschen Segmentierungspunkte können durch die Sprecheridentifi-
kation kompensiert werden, falls die Segmentgrößen nicht zu klein sind. Es ist in Abb. 4.17
(b) zu erkennen, dass mit steigendem Schwellwertλ die Fehlerrate ansteigt, da eine Vielzahl
von Segmentierungspunkten nicht mehr erkannt werden.

Das vorgestellte Verfahren zur Sprecherprotokollierung verwendet einen Viterbi-Dekodie-
rer mit einemPartial Traceback. Entsprechend der Gl. 4.71 (S. 38) des Viterbi-Dekodierers
wird das Verfahren durch den Parameterκ zur Gewichtung der Emissionswahrscheinlichkei-
ten gegenüber den Transitionswahrscheinlichkeiten beeinflusst. Zusätzlich führt die Begren-
zung der maximalen Latenzτmax zu einem Anstieg der Fehlerrate.

In Abb. 4.18 (a) ist der Einfluss der zeitlichen Begrenzung des Partial Tracebackauf eine
maximale Latenz vonτmax Sekunden bezogen auf die Konstanteκ dargestellt. Es ist er-
kennbar, dass der Gewichtungsfaktorκ und die maximale Latenzτmax beide signifikant die
Ergebnisse der Klassifikation beeinflussen und dabei voneinander abhängig sind. Aus der
Abb. 4.18 (b) kann der Einfluss des Parametersκ auf die Sprecherprotokollierung abgelesen
werden. Ein großer Wert des Parameters ist vorteilhaft für mittlere und lange Sprachsegment-
dauern, da ein Verharren in einem Zustand unterstützt wird.Für schnelle Sprecherwechsel
jedoch ist eine zu starke Gewichtung nachteilig und führt zueiner Erhöhung der Fehlerrate
durch unterdrückte Sprecherwechsel. Da innerhalb der Datenbasis insgesamt mehr Daten für
langsame und mittlere Sprecherwechsel als für schnelle Sprecherwechsel vorliegen, wird für
den minimalen mittleren Fehler einκ im Bereich des Optimums für mittlere Sprachsegment-
dauern gewählt. Dies dürfte dem normalen Verlauf eines Gesprächs nahekommen und somit
dem beabsichtigten Anwendungsbereich Rechnung tragen.
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Abbildung 4.18: Sprecherprotokollierung mittels Viterbi-Dekodierer unter Verwendung von Positi-
onsdaten und∆BIC-Werten

hhhhhhhhhhhhhhh
Verfahren

Segmentdauer DER [%]
< 2 s 3 − 4 s > 4 s Mittelwert

Gleitendes Fenster 29,00 15,14 9,10 14,21

∆BIC-Segmentierung 28,76 13,91 7,94 12,98

Viterbi (Position,∆BIC, κ = 1) 22,62 11,52 6,83 10,69

Viterbi (Statisch,κ = 5) 25,53 10,05 5,72 9,66

Viterbi (Position,κ = 7) 21,66 9,32 5,69 8,95

Viterbi (∆BIC, κ = 7) 24,03 9,48 5,35 9,08

Viterbi (Position,∆BIC, κ = 7) 22,80 6,80 4,27 7,05

Perfekte Sprecherwechseldetektion11,09 4,05 2,46 4,00

Tabelle 4.4:Vergleich der Verfahren zur Sprecherprotokollierung anhand derDER

In Tab. 4.4 sind die Ergebnisse der Sprecherprotokollierung für unterschiedliche Verfahren
gegenübergestellt. Die schlechtesten Ergebnisse erzieltdas Verfahren des gleitenden Fens-
ters, da es keine Informationen über Sprecherwechsel in dieKlassifikation oder Segmentie-
rung mit einbezieht. Die Ausnutzung von Segmentierungspunkten aus der∆BIC-Segmen-
tierung verbessert demgegenüber die Ergebnisse. Ein Viterbi-Dekodierer mit einer geschätz-
ten Transitionsmatrix aus Positionsdaten und∆BIC-Werten übertrifft die reine∆BIC-Seg-
mentierung, jedoch führt die fehlende Glättung (κ = 1) zu Oszillationen zwischen den Zu-
ständen, was die Ergebnisse negativ beeinflusst. Zum Vergleich ist ein Viterbi-Dekodierer
mit einer statischen Transitionsmatrix und einem optimalen Gewichtungsfaktorκ untersucht
worden. Dieser Ansatz liefert eine mittlere Fehlerrate von9,66%, wobei jedoch die Verwen-
dung von Positionsdaten (DER 8,95%) oder Sprecherwechselinformationen (DER 9,08%)
zur Schätzung der Transitionsmatrix geringere Fehlerraten erzielen. Kombiniert man alle In-
formationen (Position,∆BIC, κ = 7), so kann eine mittlere Fehlerrate von7,05% erreicht
werden. Als unterste Grenze ist die Fehlerrate für eine perfekte Segmentierung angegeben,
welche die Leistungsfähigkeit der Sprecheridentifikationzeigt.
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4.4 Audio-visuelle Sprecherprotokollierung

Das bisher vorgestellte Verfahren zur Sprecherprotokollierung verwendet ausschließlich In-
formationen, welche aus akustischen Aufnahmen gewonnen wurden. Da die Sprecherpro-
tokollierung in einem System zur ambienten Kommunikation verwendet werden soll, kann
eine neue Informationsquelle in Form der Videodaten erschlossen werden. Im Folgenden soll
zunächst ein Überblick über das Verfahren zur Gesichtsdetektion und Identifikation gegeben
werden, bevor die Integration in den Prozess der Sprecherprotokollierung diskutiert wird.

4.4.1 System zur Gesichtsidentifikation

Aus der Literatur sind eine Reihe von Ansätzen zur Detektionund Identifikation von Ge-
sichtern bekannt [YKA02]. Je nach Anwendungsgebiet und damit Anforderungen an die Er-
kennungsgenauigkeit werden unterschiedlich aufwändige Verfahren eingesetzt. Gerade die
Detektion und Identifikation von Gesichtern bei schlechterBeleuchtung oder ungünstigen
Aufnahmewinkeln erfordert komplexe Ansätze. Da man im Falle einer Kommunikation je-
doch von einem kooperativen Benutzer ausgehen kann, soll andieser Stelle der Standardan-
satz nach [VJ01] zum Auffinden von aufrechten Gesichtern in Bildern verwendet werden.
Benutzer werden in diesem Zusammenhang als „kooperativ“ bezeichnet, da sie im Falle
einer Kommunikation meistens den Augenkontakt zum Gesprächspartner suchen und so-
mit in Richtung der Kamera schauen, die oberhalb des Displays angebracht ist. Die Be-
leuchtungssituation kann als unproblematisch angenommenwerden, da ansonsten bei einer
schlechten Beleuchtung das Gesicht für den entfernten Gesprächspartner nicht erkennbar
wäre. Die Identifikation der detektierten Gesichter erfolgt durch dieFisher-Faces-Methode
aus [BHK97].

4.4.2 Gesichtsdetektion

Die Anbindung der Kamera erfolgt entweder über einen USB-Anschluss, oder im Falle der in
den Versuchen verwendeten Kamera über eine Ethernet-Schnittstelle. Abbildung 4.19 zeigt

Bildpyramide
WinScale

Konvertierung
BMPJPG

Konvertierung
RGB HSVWebcam

Mittelwert
19x19

Mittelwert
3x3

Gesichts−
identifikationDisplay

Hautfarben−
segmentierung

RGBJPG

V

HSV

RGB
Cluster−

verfahren

transformation
Lokale Struktur−

Gesichtsdetektion

Abbildung 4.19: Blockschaltbild zur Gesichtsdetektion und Gesichtsidentifikation

die notwendigen Module zur Detektion von Gesichtern und anschließender Identifikation.
Die von der Kamera gesendeten Bilder werden zunächst vomJPG-Format in dasBMP-
Format konvertiert. Im nächsten Schritt wird das Bild in denHSV-Farbraum konvertiert, da
in diesem eine Hautfarbensegmentierung mit geringem Aufwand durchgeführt werden kann.
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Die Hautfarbensegmentierung dient der Begrenzung des Bildausschnittes, der für die Suche
nach Gesichtern im Gesichtsdetektor herangezogen wird. Parallel dazu wird das Bild in meh-
reren Stufen zu einer Bildpyramide skaliert und deren Teilbilder durch eine Strukturtransfor-
mation umgewandelt. Die einzelnen Module und ihre Aufgabenwerden im Folgenden näher
betrachtet.

Hautfarbensegmentierung

Die Hautfarbensegmentierung verwendet ein Histogramms zur Bestimmung der Wahrschein-
lichkeit für Hautfarbe in einem Bildpunkt. Das entstehendezweidimensionale Bild (vgl. Abb.

(a) Kamerabild (b) Hautfarbenwahrscheinlichkeit nach Histogramm

(c) Gemittelte Hautfarbenwahrscheinlichkeit (d) Hautfarbengebiete nach Schwellwertentscheidung

Abbildung 4.20: Beispiel einer Hautfarbensegmentierung mit Schwellwertentscheidung

4.20 (b)) enthält zunächst durch Bildrauschen und den Schattenwurf im Gesicht nur wenige
zusammenhängende Flächen, die als Haut erkannt wurden. Durch die Mittelwertbildung auf
19×19 Bildpunkten (vgl. Abb. 4.20 (c)) großen Flächen und einer Schwellwertentscheidung
(vgl. Abb. 4.20 (d)) werden diese Gebiete vergrößert. Die entstehenden Gebiete definieren
den Suchbereich für die Detektion von Gesichtern. Durch dieHautfarbensegmentierung ist
es möglich, die Anforderungen an die Rechenleistung zu senken und gleichzeitig die Rate
von Fehldetektionen zu reduzieren, da Strukturen im Hintergrund ohne Hautfarbe nicht mehr
fälschlicherweise als Gesicht detektiert werden können.
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Skalierung und Suche

Das Auffinden von Gesichtern unterschiedlicher Größe in Bildern kann auf zwei Arten erfol-
gen. Zum einen kann ein Detektor auf eine bestimmte Gesichtsgröße trainiert und das Bild in
verschiedene Stufen skaliert werden, oder aber der Detektor selbst wird skaliert und das Bild
beibehalten. In diesem System wird das Bild in15 Stufen skaliert, und es wird in jeder Stufe
nach Gesichtern der Größe19 × 19 Bildpunkte gesucht. Ein Gesicht, welches in keiner der
Skalierungsstufen des Bildes annähernd die Größe19 × 19 Bildpunkte erreicht, kann nicht
erkannt werden.

Abbildung 4.21: Beispiel einer Bildpyramide mit8 Skalierungsstufen

Abbildung 4.21 zeigt die ersten8 Bilder der Bildpyramide, die durch die Skalierung des
Graustufenbildes (V-Komponente des Originalbildes) entstehen. Die Skalierung des Bildes
erfolgt durch den in [KSLK03] vorgestelltenWinScale-Algorithmus, der am Ausgang des
Moduls die komplette Bildpyramide aller Skalierungsstufen liefert.

Für jedes skalierte Bild in der Pyramide wird eine lokale Strukturtransformation (LST)
nach [FK04] durchgeführt. Die Transformation verwendet binäre3 × 3 Kernel zur Kodie-
rung der lokalen Strukturinformation. Zunächst wird der mittlere Helligkeitswert der3 × 3
Umgebung eines Pixels berechnet und jedes Pixel mit diesem verglichen. Falls der Hellig-
keitswert des Pixels über dem Mittelwert liegt, so wird eine1 im Kernel gesetzt ansonsten
eine0. Somit entstehen insgesamt29 − 1 = 511 unterschiedliche Kernel, deren binäre Ko-
dierungen als Zahlen interpretiert werden.

In Abb. 4.22 (a) ist das Graustufenbild und in Abb. 4.22 (b) das zugehörige Bild der
lokalen Strukturtransformation zu sehen. Deutlich erkennbar ist, dass die Transformation
die Strukturen im Bild, wie z. B. Kanten und Konturen, hervorhebt und gleichzeitig die
Helligkeitsunterschiede vernachlässigt.

Der Gesichtsdetektor besteht, wie in [VJ01] vorgeschlagen, aus einer 4-stufigen Kaskade
von Entscheidern mit zunehmender Komplexität. Dabei wird ein Analysefenster der Größe
19 × 19 Pixel über das Bild geschoben. Innerhalb dieses Fensters liegen172 = 289 LST
Merkmale, von denen in jeder Stufe eine größer werdende Anzahl überprüft wird. Der Fo-
kus der Detektoren liegt hierbei auf dem Verwerfen von „Nicht-Gesichtern“, so dass in den
ersten Stufen der Großteil der Analysefenster verworfen werden kann und nur Fenster mit
möglichen Gesichtern an die nächste, aufwändigere Stufe weitergereicht werden. Die De-
tektoren der Kaskade werden in Anlehnung an [KE06] mittels einesAdaBoost-Algorithmus
[DHS01] trainiert, jedoch werden im Gegensatz zum dortigenVorschlag nicht nur die ersten
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(a) Graustufenbild (b) Ergebnis der lokalen Strukturtransformation

Abbildung 4.22: Merkmalsextraktion mittels lokaler Strukturtransformation des Graustufenbildes

drei Stufen, sondern alle vier Stufen mit demAdaBoost-Algorithmus trainiert.

(a) Mehrfachdetektion eines Gesichtes (b) Detektion nach Clusterung

Abbildung 4.23: Beispiel einer Mehrfachdetektion eines Gesichtes und Ergebnis der Clusterung

Ein Gesicht wird zumeist nicht nur in einer Skalierungsstufe eines Bildes, sondern auch
in der nächst höheren oder niedrigeren Skalierungsstufe gefunden. Zudem werden auch De-
tektionen, die nur um einige wenige Pixel verschoben sind, von der Kaskade als gefundene
Gesichter ausgegeben. In Abb. 4.23 (a) wurden die detektierten Gesichter mit grünen Käs-
ten umrandet und deren Zentren mit grünen Kreuzen markiert.In dem Beispielbild wird das
Gesicht insgesamt16 mal gefunden, und erst eine Clusterung der Detektionen liefert eine
Aussage über die tatsächliche Anzahl der Gesichter im Bild.Die Clusterung wurde als Mit-
telwert über die Detektionen berechnet, und das Ergebnis der Clusterung ist in Abb. 4.23 (b)
gegeben. Dabei werden für die Mittelung nur übereinander liegende Detektionen verwendet,
so dass auch die Detektion von mehreren Gesichtern in einem Bild möglich ist. Die Informa-
tion über detektierte Gesichter wird anschließend dem Modul zur Identifikation übergeben,
so dass eine Zuordnung zu den bekannten Gesichtern erfolgenkann.

4.4.3 Gesichtsidentifikation

Die Gesichtsidentifikation verwendet die Detektionen aus dem vorherigen Modul, um die zu
untersuchenden Bereiche des Bildes zu extrahieren und unter Verwendung derFisher-Faces-
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Methode aus [BHK97] zu identifizieren. Die Detektion eines Gesichtes kann zuverlässig auf
einer Größe von19 × 19 Pixeln erfolgen, jedoch ist dies für eine Identifikation derPerson
nicht ausreichend. Experimente haben gezeigt, dass für eine Identifikation das Gesicht eine
Mindestgröße von60 × 60 Pixeln haben sollte. Da die Gesichtsdetektion einen sehr knap-
pen Ausschnitt des Gesichtes markiert, der oben mit den Augen und unten mit dem Mund
abschließt, ist für eine Identifikation eine Erweiterung der ermittelten Gesichtsgrenzen not-
wendig. Dabei werden die zuvor in grün markierten Bereiche (vgl. Abb. 4.23 (b)) in jede
Richtung um ca.20 % gestreckt und der entstehende Ausschnitt so interpoliert,dass eine
Auflösung von60 × 60 Pixeln erzielt wird. Sollte für eine Identifikation eines Gesichtes
nicht die erforderliche Menge an Pixeln zur Verfügung stehen, weil zum Beispiel die De-
tektion in einer der kleinsten Stufen der Bildpyramide erfolgt ist, so wird die Detektion als
unbekannte Person vermerkt.

Es wird im Folgenden angenommen, dass ein Gesicht im Bild detektiert wird, das aus
der Gruppe derI bekannten Benutzer stammt. Die Identifikation des60 × 60 Pixel großen
Gesichtes erfolgt in zwei Schritten. Im ersten Schritt wirdder durch die Detektion definier-
te Bereich zeilenweise aus dem Graustufenbild ausgelesen und als VektorΓ(k) mit 3600
Dimensionen interpretiert. Auf diesem wird mit Hilfe einerTransformationsmatrixP , die
auf Trainingsdaten mit einer Hauptachsentransformation (engl.Principal Component Analy-
sis, PCA) geschätzt wurde, eine Dimensionsreduktion durchgeführt. Dies kann interpretiert
werden als Reduktion der vorhandenen Bildinformationen auf die für ein Gesicht relevan-
ten Informationen. Im zweiten Schritt wird eine TransformationsmatrixL angewendet, die
durch eine lineare Diskriminanzanalyse (LDA) auf den annotierten Gesichtern der Benutzer
geschätzt wurde. Diese reduziert die Dimension des Vektorsauf I − 1 Dimensionen, also
auf die Anzahl der bekannten Benutzer minus Eins. Der dimensionsreduzierte Vektor der
Detektion ergibt sich folglich zu:

xvid(k) = LT · (P T · (Γ(k) − mPCA) − mLDA) (4.76)

Hierbei bezeichnenmPCAundmLDA die Mittelwertvektoren der Trainingsdaten vor derPCA
bzw. der LDA.

Das Problem der Sprecherprotokollierung wird, wie zuvor beschrieben, durch einen sto-
chastischen Ansatz gelöst, wobei die Sequenz der Merkmalsvektoren als Realisierung eines
Zufallsprozesses interpretiert wird. Dies wird entsprechend für die visuellen Merkmalsvekto-
ren umgesetzt, indem die Dichtefunktionenp(xvid(k)|Ω = i), i = 1, . . . , I, bestehend aus je-
weils einer Normalverteilung, aus Trainingsdaten geschätzt werden. Die Klassifikationsrate
des Systems kann durch die Verknüpfung von aufeinander folgenden Beobachtungen, welche
aus dem gleichen Kamerawinkel stammen, verbessert werden.Hierfür werden die a posterio-
ri Wahrscheinlichkeiten eines Gesichtes des letzten Zeitschritts als a priori Wahrscheinlich-
keiten des aktuellen Zeitschritts verwendet. Dabei bezeichnetxvid

ν:k = [xvid(ν), . . . ,xvid(k)]
die Merkmalsvektoren von Zeitschritt(k− ν + 1) bis zum Zeitschrittk. Unter der Annahme
von unabhängigen und identisch verteilten Beobachtungen folgt für die a posteriori Wahr-
scheinlichkeiten:

P (Ω = i|xvid
ν:k) =

p(xvid(k)|Ω = i)P (Ω = i|xvid
ν:k−1)∑

j

p(xvid(k)|Ω = j)P (Ω = j|xvid
ν:k−1)

. (4.77)

Die Rekursion startet zum Zeitpunktν, an dem zum ersten Mal ein Gesicht an einer be-
stimmten Position detektiert wird. Startwerte für die Rekursion sind die a priori Wahrschein-
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lichkeitenP (Ω = i), die auf1/I gesetzt werden. Nach einer erfolgten Identifikation werden
die a posteriori Wahrscheinlichkeiten als a priori Wahrscheinlichkeiten für die Identifikati-
on von Gesichtern im nächsten Bild verwendet. Dafür wird dasBild in Kacheln eingeteilt
und es werden für jede Kachel, die vom Gesicht überdeckt wird, die Werte der a posteriori
Wahrscheinlichkeiten der Klassen abgespeichert. Somit profitiert die Gesichtsidentifikation
von den vorherigen Beobachtungen. Sollte innerhalb einer Kachel keine Detektion vorliegen,
so werden die gespeicherten Wahrscheinlichkeiten schrittweise auf die Initialisierungswerte
zurückgeführt.

Die Zusammenführung der akustischen und visuellen Beobachtungen bedingt, dass die
Beobachtungen von einem Benutzer stammen und nicht durch unterschiedliche Benutzer
hervorgerufen werden. Sollte die Kamera einen Benutzer fokussieren und die Gesichtsiden-
tifikation ihn identifizieren, so wäre es für die Sprecherprotokollierung von Nachteil, wenn
dieser Benutzer nicht der aktuelle Sprecher ist. Dieses Problem kann durch den Einsatz einer
schwenkbaren Kamera gelöst werden, in dem die Kamera immer auf den aktuellen Sprecher
fokussiert wird.

4.4.4 Kamerasteuerung und Systemintegration

Die Steuerung der Kamera erfolgt unter Berücksichtigung der Positionsschätzungen der
akustischen Szenenanalyse und den detektierten Gesichtern des zuvor vorgestellten Systems
zur Gesichtsidentifikation. In Abb. 4.24 ist das Blockschaltbild zur Kamerasteuerung und
audio-visuellen Sprecherprotokollierung gegeben. Das Videosystem, welches im oberen Teil
dargestellt ist, beinhaltet neben dem System zur Detektionund Identifikation von Gesich-
tern zwei weitere Module. Das ModulSHM verwaltet einen gemeinsamen Speicherbereich
(engl.Shared Memory, SHM) und ist verantwortlich für den Datenaustausch mit dem Audio-
system. Das ModulPTZ Controlsteuert die Kamera über eineTCP/IP-Schnittstelle und ist
somit verantwortlich für die Ausrichtung der Kamera. Hierzu fordert das Modul regelmäßig
die Informationen über die Fokussierung der Kamera an und berechnet die Differenz zu den
durch die akustische Positionsschätzung vorgegebenen Werten. Ist die Differenz zwischen
der akustischen Positionsschätzung und dem aktuellen Kamerablickwinkel so groß, dass der
Sprecher außerhalb des Bildes liegt, so wird die Fokussierung der Kamera auf den Sprecher
durchgeführt. Zusätzlich verwendet das Modul die Positions- und Größeninformationen von
detektierten Gesichtern im Bild, um die Fokussierung auf die Personen zu optimieren. Der
untere Teil der Abb. 4.24 zeigt das Audiosystem zur Sprecherprotokollierung und Sprecher-
lokalisation, wie es für den in Abb. 4.25 gezeigten experimentellen Aufbau verwendet wird.

Das Audiosystem verwendet drei der vier Winkelschätzungender adaptiven Strahlfor-
mung zur Positionsschätzung mittels Schnittpunktanalyse. Der vierte Winkel ist ein Nei-
gungswinkel, welcher ausschließlich für die Ausrichtung der Kamera verwendet wird. Das
Modul „Koordinatentransformation“ berechnet, basierendauf den Positionsdaten der Kame-
ra und der geschätzten Sprecherposition, die Schwenk- und Neigewinkel sowie den Zoom-
faktor der Kamera zur Fokussierung des aktuellen Sprechers. Diese Daten werden über das
Modul „SHM“ an die Kamerasteuerung weitergeleitet. Des Weiteren wirddie Positionsschät-
zung im Rahmen der Sprecherprotokollierung entsprechend Kap. 4.3.2 zur Schätzung der
Transitionsmatrix verwendet. Neben den Informationen derSprecherbewertung, der Sprach-
aktivitätsdetektion und des Bayes’schen Informationskriteriums werden nun auch die Infor-
mationen der Gesichtsidentifikation in der Sprecherprotokollierung berücksichtigt.
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Abbildung 4.24: Blockschaltbild der Kombination von Kamerasteuerung und audio-visueller Spre-
cherprotokollierung

Synchronisation und Datenaustausch

Das Audiosystem arbeitet bei einer Abtastrate von16 kHz und einer Blockgröße von128
Abtastwerten mit einer konstanten Rate von8ms pro Block. Im Gegensatz dazu liefert die
Kamera einen nicht kontinuierlichen Datenstrom von maximal 15 Bildern pro Sekunde, des-
sen Rate durch die Qualität des Netzwerks beeinflusst wird. Zusätzlich kann bedingt durch
die nicht konstante Rechenlast der Gesichtsidentifikationein sporadisches Verwerfen von
Bildern durchgeführt werden, um die Belastung zu verringern. Da sowohl das Audio- als
auch das Videosystem mit unterschiedlichen Datenraten arbeiten, muss eine Synchronisati-
on erfolgen. Der hier verwendete Ansatz verzichtet auf die Annotation von Daten mit Zeit-
stempeln, um eine Synchronisation mittels Verzögerungen zu realisieren, zu Gunsten des
Ansatzes, dass jeweils die aktuellen Daten in einem gemeinsamen Speicherbereich abgelegt
werden. Diese Daten werden von dem jeweils anderen System solange genutzt, bis sie durch
aktuellere Daten überschrieben werden.

Experimenteller Aufbau

Der experimentelle Aufbau zur audio-visuellen Sprecherprotokollierung beinhaltet neben
den drei Mikrophongruppen zur Lokalisierung des Sprechers(Gruppe1-Gruppe3) auch ei-
ne schwenkbare Kamera und einen Monitor. Mit jeder der drei Mikrophongruppen wird ein
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Winkel αi in Richtung des Sprechers nach Gl. 4.21 geschätzt. Hieraus ergeben sich die drei
Schnittpunkteχ12,χ23 undχ13 deren Schwerpunkt als Positionsschätzung verwendet wird
(vgl. Gl. 4.23, S. 22). Die Mikrophongruppe unterhalb der Kamera besitzt einen T-förmigen
Aufbau, der die Schätzung eines Neigungswinkelβ ermöglicht. Da die Kamera in den drei
Koordinaten Drehwinkel, Neigungswinkel und Zoomstufe arbeitet, muss die Position des
Sprechers von den kartesischen Koordinaten in einen Drehwinkel und eine Zoomstufe um-
gerechnet werden. Dies wird in dem Modul zur Koordinatentransformation im Audiosystem
durchgeführt.
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Abbildung 4.25: Experimenteller Aufbau zur ambienten Kommunikation und audio-visueller Spre-
cherprotokollierung

4.4.5 Integration der visuellen Information

Der in Kap. 4.3.2 vorgestellte Ansatz zur Sprecherprotokollierung verwendet einHMM,
dessen Emissionswahrscheinlichkeiten durch dieLikelihoodsder akustischen Merkmals-
vektoren gegeben sind. An dieser Stelle wird die Berechnungder Emissionswahrschein-
lichkeiten erweitert, so dass sowohl dieLikelihoodsder akustischen als auch der visuellen
Merkmalsvektoren berücksichtigt werden. Die Emissionswahrscheinlichkeiten derHMM-
Zustände sind nach Gl. 4.63 (S. 37) mit

bj(x
sid(k)) = p′(xsid(k)|Ω = j) (4.78)

gegeben. Unter der Annahme, dass die akustischen Merkmalsvektorenxsid(k) und die visu-
ellen Merkmalsvektorenxvid

ν:k statistisch unabhängig sind, werden die Emissionswahrschein-
lichkeiten neu definiert zu:

bj(x
sid(k),xvid

ν:k) := p(xsid(k),xvid
ν:k)|Ω = j) (4.79)

= p′(xsid(k)|Ω = j) · p(xvid
ν:k|Ω = j)

= p′(xsid(k)|Ω = j) · P (Ω = j|xvid
ν:k)

p(xvid
ν:k)

P (Ω = j)
. (4.80)

Die Transitionswahrscheinlichkeiten desHMM werden wie zuvor über die Sprecherwechsel-
informationen der Positionsschätzung und den∆BIC-Werten nach Gl. 4.70 (S. 37) geschätzt.
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Die optimale Abfolge der Zustände gegeben die Beobachtungen wird durch einen Viterbi-
Dekodierer bestimmt. Somit ist es gelungen, die Informationen aus dem Videosystem in
das System der akustischen Sprecherprotokollierung zu integrieren, so dass ein System zur
audio-visuellen Sprecherprotokollierung entsteht.

4.4.6 Experimentelle Ergebnisse

Das System der audio-visuellen Sprecherprotokollierung beinhaltet im Vergleich zu der akus-
tischen Sprecherprotokollierung die dynamische Komponente der Kamera. Ein Test auf einer
statischen Datenbasis ist somit nicht möglich, weil die aktuelle Schätzung der Position eines
Sprechers auf den akustischen und visuellen Daten beruht, welche mit der Kamera und den
Mikrophonen aufgenommen werden. Diese führen ihrerseits zu einer Anpassung des Kame-
rablickwinkels und folglich zu einer Änderung der Beobachtungen. Das System beeinflusst
sich also während der Laufzeit selbst und kann nur im laufenden Betrieb getestet werden.
Hierzu werden zwei typische Nutzungsszenarien ausgewähltund mit einer Gruppe von trai-
nierten Sprechern untersucht. Die ersten Tests werden mit Einzelnutzern durchgeführt, die
sich für den größten Teil der Aufnahmen an einem festen Ort des Raumes aufhalten. Vor-
teil dieses Szenarios ist es, dass die Kamera einen Großteilder Zeit eine gute Fokussierung
auf das Gesicht besitzt. Das zweite Szenario betrachtet eine Konferenzsituation, bei der sich
zwei Personen im Raum befinden und abwechselnd sprechen. Hierbei muss die Kamera die
Fokussierung zwischen den Sprechern wechseln, wodurch vermehrt Phasen ausbleibender
Gesichtsdetektionen entstehen.

Die so entstandene Menge von mehr als zwei Stunden Aufnahmenbietet zwar nicht die
Möglichkeit, nachträglich Einfluss auf die Position oder Ausrichtung der Kamera zu nehmen,
jedoch können bestimmte Aspekte der Sprecherprotokollierung untersucht werden. Zunächst
wird der zeitliche Ablauf der Kamerasteuerung anhand einesBeispiels erläutert. Anschlie-
ßend werden die Verzögerung des Systems und der Einfluss der zeitlichen Begrenzung näher
betrachtet. Zum Abschluss der Experimente werden die Ergebnisse der audio-visuellen Spre-
cherprotokollierung diskutiert.

Kamerasteuerung

Zunächst soll ein Beispiel für das zeitliche Verhalten der Kamerasteuerung bei einem Spre-
cherwechsel gegeben werden. In Abb. 4.26 ist im unteren Teilbild die Positionsschätzung
der akustischen Szenenanalyse in kartesischen Koordinaten gegeben. Im oberen Teilbild sind
entsprechend Gl. 4.77 (S. 52) die a posteriori Wahrscheinlichkeiten der Nutzer auf Basis der
Gesichtsidentifikation dargestellt. Im Zeitraum0 s bis4 s liefert das System wechselnde Hy-
pothesen für die Identität des detektierten Gesichtes, sowie immer wieder Zeiträume in denen
alle Modelle gleich wahrscheinlich sind und somit keine Gesichtsdetektion vorliegt. Dieses
Verhalten kann verschiedene Gründe haben, wie z. B. Bewegungen des Sprechers, die Aus-
richtung des Kopfes oder nicht optimale Beleuchtungsverhältnisse. Ab dem Zeitpunkt8,5 s
sind die Ergebnisse der Gesichtsidentifikation eindeutig,wie aus dem Verlauf der Kurven
ersichtlich ist.

Deutlich ist die mit dem Sprecherwechsel verbundene Änderung der Position zum Zeit-
punkt3,9 s erkennbar. Zu diesem Zeitpunkt wird eine Sprecherpositionaußerhalb des Kame-
rablickwinkels detektiert und die Kamera beginnt mit dem Schwenk auf die neue Position
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Abbildung 4.26: Vergleich zwischen den a posteriori Wahrscheinlichkeitender Gesichtsidentifika-
tion und der Positionsschätzung durch die akustische Szenenanalyse

und der anschließenden Fokussierung auf den Sprecher. Ab dem Zeitpunkt8,2 s ist das Ge-
sicht des Sprechers durch das System gefunden und identifiziert worden.

Der treppenförmige Verlauf der a posteriori Wahrscheinlichkeiten resultiert aus der im
Vergleich zum Audiosignal niedrigeren Verarbeitungsratedes Videosystems. Die Abb. 4.26
wurde aus den eingehenden Daten der Sprecherprotokollierung gewonnen und enthält somit
die im Takt des Audiosystems aufgezeichneten Signale. Da das Videosystem die aktuellen
Daten in einer geringeren Rate als der Taktrate des Audiosystems imSHMablegt, kommt es
zu einer mehrfachen Nutzung der Daten durch das Audiosystem.

Systemverzögerung

Die zeitlichen Anforderungen von kontextbewussten Diensten, wie z. B. der ambienten Kom-
munikation, verlangen eine möglichst geringe Latenz zwischen dem Eintreten eines Ereig-
nisses und der Benachrichtigung der Applikation durch das System. Die Sprecherprotokol-
lierung als Kontextquelle im vernetzten Haus beinhaltet systembedingt einige Latenzen, die
im Prozess der Signalverarbeitung entstehen. Folgende Verzögerungen sind im System vor-
handen:

• Hardware/Software-Schnittstelle: Die Latenz beträgt beieinem echtzeitfähigen Be-
triebssystem bei einer Blockgröße von128 Abtastwerten und einer Abtastfrequenz
von 16 kHz im Minimum 8ms. Steht kein echtzeitfähiges Betriebssystem zur Verfü-
gung ist eine Latenz von ca.3 Blöcken und somit24ms realistisch.

• Positionsschätzung: Die Positionsschätzung ist frei von Latenzen, weil sie durch die
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Korrelation derFSB-Filter berechnet wird. Jedoch benötigt die Ausrichtung der akusti-
schen Strahlformung eine gewisse, deterministisch nicht bestimmbare Zeit, bis die kor-
rekte Position nach Eintreten eines konvergierten Zustandes der Filter angezeigt wird.
Da für die Sprecherprotokollierung weniger die korrekte Position, sondern vielmehr
die Tatsache des Positionswechsels interessant ist, kann diese Latenz vernachlässigt
werden.

• Sprecherwechseldetektion: Die Berechnung der∆BIC-Werte erfordert die Betrach-
tung eines Zeitfensters der GrößeNw = 80 Merkmalsvektoren. Die Latenz beträgt
folglich Nw/2 · 8ms = 320ms.

• Viterbi-Dekodierer: Der Viterbi-Dekodierer besitzt einevariable Verzögerung, die durch
die obere Grenzeτmax zeitlich beschränkt ist.

Die variable Latenz des Viterbi-Dekodierers soll an dieserStelle näher untersucht werden.
Zunächst wird die zeitliche Begrenzungτmax weggelassen (τmax = ∞), um eine Messung
der tatsächlich vorliegenden Verzögerung durchführen zu können. In Abb. 4.27 sind die Er-
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Abbildung 4.27: Experimente zur zeitlichen Verzögerung des Viterbi-Dekodierers

gebnisse des Experiments gegeben. Aufgetragen über die Latenz des Viterbi-Dekodierers
(Abszisse) wird auf der Ordinate der Prozentsatz der Fälle angegeben, in denen ein eindeu-
tiger Pfad innerhalb dieser Latenz gefunden wird. Hierbei kann festgestellt werden, dass in
90% aller Fälle die Latenz geringer als0,5 s ist. Die mittlere Latenz bis ein eindeutiger Pfad
gefunden wird kann zu262ms für die akustische Sprecherprotokollierung und246ms für
die audio-visuelle Sprecherprotokollierung bestimmt werden. Die Medianwerte liegen bei
136ms (Audio) und104ms (Audio + Video). Die Verwendung der Videodaten reduziert in
einem geringen Maße die Latenz des Systems, weil die zusätzliche Information die Abfolge
von Zuständen eindeutiger macht.

Eine Zusammenfassung aller Verzögerungen im System der audio-visuellen Sprecherpro-
tokollierung ergibt eine mittlere Verzögerung zwischen dem Auftreten eines Sprechers und
der Registrierung dieses Sprechers durch das System von

τavg = 246ms + 320ms + 8 ms = 574ms. (4.81)
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Eine Vernachlässigung der Sprecherwechselinformationen, welche aus den∆BIC-Werten
berechnet werden, würde einen Großteil der Latenz zu Lasteneiner etwas verschlechterten
Klassifikationsrate vermeiden (vgl. Tab. 4.4, S. 47).

Latenzbegrenzung des Viterbi-Dekodierers

In der Theorie kann die Latenz des Viterbi-Dekodierers beliebig groß sein, so dass eine Be-
grenzung der maximalen Latenz notwendig ist. Dieser Eingriff in den Prozess der Bestim-
mung der optimalen Abfolge der Zustände vergrößert die Klassifikationsfehlerrate und wird
in Experimenten näher untersucht. Die Abb. 4.28 zeigt den Verlauf der Klassifikationsfehler-
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Abbildung 4.28: Abhängigkeit der Klassifikationsfehlerrate von der maximalen Latenzτmax des Vi-
terbi-Dekodierers

rate (DER) gegenüber der maximalen Latenz des Viterbi-Dekodierers.Je geringer die zeitli-
che Begrenzung des Dekodierers gewählt wird, desto größer ist der Fehler der Klassifikation.
Auf Grund der Experimente wird eine maximale Latenz von2 s als vertretbarer Mittelweg
zwischen Latenz und Fehlerrate gewählt. Der Vergleich der Kurvenverläufe zwischen akusti-
scher („Audio“) und audio-visueller („Audio + Video“) Sprecherprotokollierung liefert zwei
Ergebnisse. Zum einen ist unabhängig von der gewählten zeitlichen Begrenzung die Feh-
lerrate der audio-visuellen Sprecherprotokollierung immer geringer als bei der akustischen
Sprecherprotokollierung. Zum anderen ist die Zunahme des Fehlers bei der audio-visuellen
Sprecherprotokollierung geringer als bei der akustischenSprecherprotokollierung.

Experimente zum Anwendungsszenario

Das beabsichtigte Anwendungsszenario der ambienten Kommunikation beschreibt eine Kom-
munikation zwischen einem oder mehreren Personen mit akustischen und visuellen Daten.
Das System der Sprecherprotokollierung hat in dieser Umgebung im optimalen Fall zusätz-
liche Informationen über den aktuellen Sprecher, welche durch die Gesichtsidentifikation
bereitgestellt werden. Dieser Vorteil kann zu einem Nachteil werden, falls eine fehlerhafte
Gesichtsidentifikation vorliegt oder aber das identifizierte Gesicht nicht zum Sprecher ge-
hört. Steht keine Gesichtsidentifikation zur Verfügung, soverhält sich das System wie eine
rein akustische Sprecherprotokollierung.
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Gesichter [%] DER [%] Zeit
Fall Benutzer detektiert korrekt Audio Audio-Video [min:sec]

B
ei

sp
ie

le
E

in
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u

tz
er

A 83,55 83,99 5,13 2,96 3:07
B 72,51 83,97 6,22 4,67 7:43
C 94,18 74,60 16,54 11,65 3:18
D 94,27 100,00 24,88 1,13 2:57
E 93,70 19,51 6,58 14,41 2:47
F 56,16 90,30 7,91 1,38 6:27

B
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w
ei

N
u

tz
er

A & D 75,99 82,76 24,56 7,81 3:14
A & B 88,56 82,84 33,79 5,22 3:36
C & D 89,03 86,48 15,45 8,23 7:38
D & E 75,65 74,17 14,79 12,67 6:09
A & F 52,90 89,84 34,25 9,78 3:31
B & D 60,49 41,68 23,50 15,07 5:47

Mittelwert Einzelnutzer 84,53 84,79 7,46 3,72 61:18
Mittelwert zwei Nutzer 76,66 74,08 23,11 11,81 59:24
Mittelwert beide Fälle 80,46 79,49 15,16 7,70 120:42

Tabelle 4.5:Experimente zur audio-visuellen Sprecherprotokollierung

In Tab. 4.5 sind die Ergebnisse verschiedener Testläufe deraudio-visuellen Sprecherpro-
tokollierung dargestellt. Insgesamt wurden Aufnahmen vonüber2 h Länge für die Expe-
rimente gemacht und ausgewertet. In der dritten Spalte ist der Prozentsatz der detektierten
Gesichter und in der vierten der Prozentsatz der korrekt identifizierten Gesichter angege-
ben. Die fünfte Spalte gibt die Klassifikationsfehlerrate für die akustische und die sechste
die Klassifikationsrate für die audio-visuelle Sprecherprotokollierung wieder. In der letzten
Spalte ist die Zeitdauer des Experiments angegeben. Die ersten Zeilen der Tabelle zeigen
eine Auswahl der Experimente mit Einzelnutzern und die darauf folgenden Zeilen die Expe-
rimente mit zwei Nutzern. Die Mittelwerte für die gesamten Aufnahmen beider Fälle sind in
den letzten Zeilen angegeben.

Im Falle eines einzelnen Nutzers beträgt die mittlere Fehlerrate des Systems7,46% im rein
akustischen Ansatz, und die Verwendung der visuellen Datenermöglicht eine Reduktion der
DERauf3,72%. Betrachtet man die einzelnen Experimente genauer, so fallen die Nutzer „D“
im positiven und „E“ im negativen Sinne auf. Der Nutzer „D“ wird durch die Kamera in über
94,00% der Zeit detektiert und dabei zu100,00 % richtig identifiziert. Erwartungsgemäß
verbessert sich die Klassifikationsfehlerrate von zunächst unterdurchschnittlichen24,88%
auf einen sehr guten Wert von1,13%. Im Gegensatz dazu wird der Nutzer „E“ häufig durch
die Gesichtsidentifikation falsch klassifiziert. Obwohl sein Gesicht in93,70% der Fällen
detektiert wird, kann es nur in19,51% korrekt identifiziert werden. Dies hat einen negativen
Effekt auf die audio-visuelle Sprecherprotokollierung und führt zu einer Verschlechterung
der Klassifikationsrate um7,83%.

Die Beispiele für zwei Nutzer zeigen ein zu den Einzelnutzern vergleichbares Bild. Die
Fehlerrate der akustischen Sprecherprotokollierung ist durch die Dialogsituation etwas höher
als im Einzelnutzerfall. Die Verwendung der Videodaten führt im Mittel zu einer Verbesse-
rung der Klassifikationsraten von23,11% auf 11,81 %. Die Mittelung aller Daten zeigt an-
nähernd eine Halbierung der Klassifikationsrate durch die Verwendung des audio-visuellen
Ansatzes.



5 Akustische Ereignisdetektion

Die akustische Ereignisdetektion ist ein Teil der akustischen Szenenanalyse, welcher sich
speziell mit der Identifikation von akustischen Ereignissen in der häuslichen Umgebung be-
fasst. Da Mikrophone im Gegensatz zu Kameras dauerhaft den ganzen Raum erfassen kön-
nen und unabhängig von der Beleuchtung sind, bieten sie die Möglichkeit, eine alternative
Informationsquelle zu visuellen Verfahren zu erschließen. Die Auswahl von Ereignissen ist
zunächst durch das Vorhandensein verfügbarer Daten zum Training und Testen begrenzt und
orientiert sich an verfügbaren Datenbasen.

5.1 Datenbasis Ereignisdetektion

Die hier verwendete Datenbasis zur Erkennung akustischer Ereignisse wurde im Rahmen des
CHIL Projektes erstellt und besteht aus insgesamt3 Sitzungen [TMNS05]. Die Aufnahmen
wurden in einem Konferenzraum der Größe5,2m × 3,9m mit weiblichen und männlichen
Personen erstellt (vgl. Abb. 5.1 (a)).

P1 P2

P6

P7 P4Mik.−Gruppe E

Tisch

P3

P5Mik.−Gruppe D

Mik.−Gruppe B

x

y Mik.−Gruppe A

Tür

Mik.−Gruppe C

(a) Aufbau desCHIL Konferenzraumes und Platzierung der Mikrophongrup-
pen

0,2 m 0,2 m

0,3 m

(b) Aufbau der T-förmigen
Mikrophongruppe

Abbildung 5.1: Experimenteller Aufbau der Datenbasis zur akustischen Ereignisdetektion

Jeder Teilnehmer musste eine vorgegebene Menge an akustischen Ereignissen an den de-
finierten PlätzenP1 bisP7 erzeugen. Die Daten wurden dabei mit3 T-förmigen Mikrophon-
gruppen (Mik.-Gruppe A bis C) bestehend aus4 Mikrophonen, einer linearen Mikrophon-
gruppe mit7 Mikrophonen (Mik.-Gruppe D) und7 auf dem Tisch verteilten Mikrophonen
(Mik.-Gruppe E) aufgenommen. Der Abstand der Mikrophone innerhalb einer Gruppe wur-
de zu0,2m bzw. 0,3 m gewählt (vgl. Abb. 5.1 (b)). Die Abtastfrequenz der Aufnahmen

61
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betrug44,1 kHz und wurde für die Experimente auf16 kHz reduziert. In der Datenbasis sind
die folgenden14 verschiedenen akustischen Ereignisse enthalten, deren Häufigkeit in Klam-
mern angegeben ist:

• ap (60): Applaudieren (mehrere
Personen)

• cl (64): Rühren eines Löffels in ei-
ner Tasse

• cm (76): Verrücken eines Stuhls

• co (65): Husten oder Räuspern

• do (60): Öffnen einer Tür

• ds (61): Schließen einer Tür

• kj (65): Ablegen oder Aufnehmen
eines Schlüsselbundes

• kn (50): Klopfen an einer Tür oder
auf einem Tisch

• kt (66): Tippen auf einer Tastatur

• la (64): Lachen

• pr (116): Klingeln eines Mobiltele-
fons

• pw (84): Papierrascheln

• st (73): Schritte

• un (126): Unbekannt

5.2 Experimente zur Modellierung

Die Identifikation von akustischen Ereignissen ist im Vergleich zur Sprecheridentifikation
ein neueres Thema in der Forschung. Zunächst soll daher einegeeignete Modellierung der
Ereignisse auf Basis der in der akustischen Szenenanalyse verwendeten Merkmalsvektoren
gefunden werden. Dieser Ansatz bietet den Vorteil, dass sowohl für die Ereignisdetektion als
auch für die Sprecheridentifikation die gleichen Merkmale verwendet werden und in einem
gemeinsamen System die aufwendige Neuberechnung von alternativen Merkmalen entfällt.
Die Ergebnisse derCHIL Projektevaluation der Ereignisdetektion können in [TMZ+07] und
[BP08] nachgelesen werden.

Für die Experimente wird ein Drittel der Daten zum Training (Sitzung 1 auf DVD 1) und
zwei Drittel zum Testen (Sitzung 2 auf DVD 2 und Sitzung 3 auf DVD 3) verwendet. Als
Ausgangspunkt für die Modellbildung werden zwei Ansätze näher untersucht. Zum einen
werden Modelle bestehend aus Gauß’schen Mischungsverteilungen mit einer unterschiedli-
chen Anzahl von Verteilungen auf den Trainingsdaten geschätzt (GMM-Ansatz). Zum an-
deren wird eine Gruppierung der Ereignisse anhand der Konfusionsmatrix der Erkennungs-
ergebnisse in zwei Gruppen vorgenommen. Für diese Gruppen werden, entsprechend dem
Ansatz zur Sprecheridentifikation, Hintergrundmodelle geschätzt und auf jedes Ereignis ein-
zeln adaptiert (UBM-Ansatz). Beide Verfahren nutzen Gauß’sche Mischungsverteilungen zur
Modellierung der akustischen Ereignisse, jedoch wird im Folgenden zur leichteren Unter-
scheidung entweder vomGMM-Ansatz oderUBM-Ansatz gesprochen.

5.2.1 Modellierung mit Gauß’schen Mischungsverteilungen

Die Modellierung der Ereignisse durch Gauß’sche Mischungsverteilungen erfordert die Fest-
legung der Modellkomplexität durch die Wahl der Verteilungsanzahl. Mit steigender Vertei-
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lungsanzahl können zwar die Ereignisse theoretisch bessermodelliert werden, jedoch nimmt
die benötigte Rechenleistung zu. Zudem ist die Menge an Trainingsdaten begrenzt und eine
zu große Modellkomplexität wird, wie aus der Spracherkennung bekannt, durch stagnierende
bzw. verringerte Klassifikationsergebnisse erkennbar sein. Zunächst soll dieser Aspekt der
Modellierung experimentell untersucht werden.

10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

Trainingsschritt

K
la

ss
ifi

ka
tio

ns
ra

te
 [%

]

 

 

4 
V

er
te

ilu
ng

en

8 
V

er
te

ilu
ng

en

16
 V

er
te

ilu
ng

en

32
 V

er
te

ilu
ng

en

64
 V

er
te

ilu
ng

en

12
8 

V
er

te
ilu

ng
en

Training (DVD 1)
Test (DVD 2)
Test (DVD 3)

Abbildung 5.2: Vergleich der Klassifikationsraten desGMM-Ansatzes

In Abb. 5.2 sind die Klassifikationsraten über die Trainingsschritte angegeben. Hierbei
werden42-dimensionale Merkmalsvektoren verwendet, welche aus denMFCC- undMACV-
Werten, deren ersten zeitlichen Ableitungen und deren zweiten zeitlichen Ableitungen be-
stehen. Zu den durch senkrechte blaue Linien gekennzeichneten Trainingsschritten wird eine
Aufspaltung der Verteilungen (engl.density splitting) durchgeführt, so dass eine Verdoppe-
lung der Verteilungsanzahl erzielt wird. Dabei werden, wiein der automatischen Spracher-
kennung üblich, die Verteilungen mit den größten Gewichtenin zwei oder mehrere Vertei-
lungen aufgeteilt. Es ist erkennbar, dass jeweils nach der Aufspaltung der Verteilungen eine
Phase der Modellanpassung erfolgt, in welcher die Klassifikationsraten zunächst abnehmen
und anschließend steigen.

Ein Vergleich der Klassifikationsraten auf den Trainingsdaten (DVD 1) und den Testda-
ten (DVD 2, DVD 3) zeigt, dass bei der Erhöhung der Modellkomplexität von64 auf 128
Verteilungen die Klassifikationsrate der Trainingsdaten verbessert wird. Jedoch stagniert die
Klassifikationsrate auf den Testdaten. Infolgedessen wirdkein weiteres Aufspalten der Ver-
teilungen mehr vorgenommen, um eine Überanpassung (engl.overfitting[DHS01]) der Mo-
delle an die Trainingsdaten zu vermeiden. Im Vergleich zwischen Trainings- und Testdaten
ist erkennbar, dass die Ergebnisse der beiden Testdaten (DVD 2, DVD 3) nahe aneinander
liegen und gegenüber den Trainingsdaten ca.5% schlechter klassifiziert werden.

In Abb. 5.3 sind, aufgeschlüsselt nach den Ereignissen, dieKlassifikationsraten auf den
Testdaten angegeben. Die Ereignisse Schritte („st“) und Papier („pw“) erzielen die schlech-
testen Ergebnisse, was auf die geringe Energie der akustischen Ereignisse im Vergleich zu
den anderen Ereignissen zurückzuführen ist. Das Modell Unbekannt („un“) bildet ein Sam-
melmodell für alle unbekannten akustischen Ereignisse in den Aufnahmen der Datenbasis.
Zusätzlich ist der Mittelwert („avg“) der Klassifikationsrate über alle Ereignisse angegeben.
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Abbildung 5.3: Vergleich der Klassifikationsraten desGMM-Ansatzes bezogen auf die einzelnen Er-
eignisse auf Testdaten (DVD 2, DVD 3)

5.2.2 Modellierung mit universellen Hintergrundmodellen

Die Modellierung der Ereignisse mit Hilfe von universellenHintergrundmodellen ist ein
Ansatzpunkt, um die geringe Anzahl an Trainingsbeispielenin der Datenbasis zu kompen-
sieren. Bei der Modellierung durch universelle Hintergrundmodelle werden die zu trainie-
renden Klassen in Gruppen eingeteilt, so dass Ereignisse mit vergleichbaren akustischen
Eigenschaften in einer Gruppe sind. Diese bei der Sprecheridentifikation natürlich gegebe-
ne Einteilung in zwei Gruppen (männliche und weibliche Sprecher) ist bei der akustischen
Ereignisdetektion nicht gegeben.

Die Einteilung der Ereignisse in Gruppen erfolgt in zwei Schritten. Zunächst werden die
Ereignisse anhand des akustischen Eindrucks in die zwei Gruppen

• Gruppe 1: do, ds, kn, kt, st

• Gruppe 2: ap, cl, cm, co, kj, la, pr, pw, un

eingeteilt, wobei die erste Gruppe klopfende und schlagende Ereignisse umfasst und die
zweite Gruppe die übrigen Ereignisse modelliert. Grundgedanke dabei ist, die Anzahl der
Hintergrundmodelle gering zu halten, dabei jedoch Gruppenmit ähnlichen akustischen Ei-
genschaften zu erzeugen. Dies ist notwendig, da bei der Bayes’schen Adaption Teile der
Hintergrundmodelle mit in die neuen Modelle der Ereignisseeingehen. Eine große Abwei-
chung der Hintergrundmodelle von den zu erzeugenden Modellen wäre somit nachteilhaft
und ist vergleichbar mit der Adaption eines weiblichen Hintergrundmodells auf einen männ-
lichen Sprecher.

Erste experimentelle Versuche mit64 Verteilungen zeigten, dass entgegen der Annahme,
dass die meisten Fehler durch Verwechselungen innerhalb einer Gruppe auftreten würden,
einige Ereignisse häufig Modellen der anderen Gruppe zugeordnet wurden. Folglich wurden
die Ereignisse mit Hilfe der Konfusionsmatrix neu geordnet, so dass die zwei Gruppen

• Gruppe 1: do, ds, kn, kt, la, pr, pw, st

• Gruppe 2: ap, cl, cm, co, kj, un
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Abbildung 5.4: Experimente zur Modellbildung durch denUBM-Ansatz

Die Abb. 5.4 (a) zeigt die Klassifikationsraten in Abhängigkeit von der Modellkomplexität
für die Modellierung durch universelle Hintergrundmodelle. Bis zu einer Anzahl von ca.128
Verteilungen steigt die Klassifikationsrate mit zunehmender Modellkomplexität. Oberhalb
von 128 Verteilungen pro Ereignis kann keine signifikante Verbesserung durch die Verwen-
dung von mehr Verteilungen erzielt werden. In Abb. 5.4 (b) ist der Einfluss des Relevanz-
faktors, welcher bei der Adaption der Modelle vom Hintergrundmodell verwendet wird, auf
die Klassifikationsrate dargestellt. Ein geringer Relevanzfaktor bedeutet, dass dem Hinter-
grundmodell eine geringere Relevanz als den vorhandenen Trainingsdaten zugeordnet wird
(vgl. Gl. 4.47-Gl. 4.53, S. 32). Es ist zu erkennen, dass die Klassifikationsrate mit steigen-
dem Relevanzfaktor (r = 10, 16, 20) abnimmt und somit die Modellierung durch den Ansatz
der Hintergrundmodelle grundsätzlich in Frage gestellt werden muss. Um den Unterschied
zu verdeutlichen, sind die Werte für denGMM-Ansatz, welcher mit einem Relevanzfaktor0
gleichzusetzen ist, ebenfalls eingetragen.
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Abbildung 5.5: Vergleich der Klassifikationsraten desUBM-Ansatzes mit Relevanzfaktorr = 16

bezogen auf die einzelnen Ereignisse auf Testdaten (DVD 2, DVD 3)
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In Abb. 5.5 sind die Klassifikationsraten für denUBM-Ansatz dargestellt. Eine Beobach-
tung aus den Experimenten ist, dass für einen Teil der akustischen Ereignisse, wie z. B.
Schritte („st“), eine steigende Anzahl der Mischungsverteilungen eine bessere Erkennungs-
leistung ermöglicht, während bei anderen Ereignissen, wiez. B. Lachen („la“), eine größere
Anzahl der Mischungsverteilungen den entgegengesetzten Effekt hat. Der direkte Vergleich
der Modellierungsarten in Abb. 5.6 zeigt die unterschiedlichen Vorteile der Verfahren. Die
GMM-Modellierung erzielt mit einer mittleren Klassifikationsrate von90,7 % bessere Er-
gebnisse als derUBM-Ansatz mit86,3 %, auch wenn für einzelne akustische Ereignisse der
UBM-Ansatz besser ist.
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Abbildung 5.6: Vergleich der Klassifikationsraten desUBM- und desGMM-Ansatzes auf Testdaten
(DVD 2, DVD 3)

5.3 Diskriminative Lernverfahren

Statistische Klassifikationsverfahren sind in der Literatur weit verbreitet. Hierbei werden
Merkmale als Zufallsvariablen mit zugehörigen klassenbedingten Verteilungen beschrieben,
die häufig Gauß’sche Mischungsverteilungen verwenden. ZurSchätzung der Modellparame-
ter gibt es unterschiedliche Ansätze. Am weitesten verbreitet ist die „Maximum Likelihood“-
Parameterschätzung (ML-Parameterschätzung), bei dem die Modellparameter so bestimmt
werden, dass dieLikelihoodsder Trainingsdaten maximiert werden.

Wenn die vorgegebene Form der klassenbedingten Verteilungen korrekt und die Trai-
ningsdatenmenge sehr groß ist, dann können mit derML-Parameterschätzung die den Da-
ten zugrundeliegenden Verteilungen korrekt geschätzt werden. Durch die Anwendung der
Bayes’schen Entscheidungsregel erzielt man in diesem Falldie minimale Fehlerrate. In der
Praxis sind diese Annahmen jedoch meist nicht erfüllt. Dannwird mit der ML-Parameter-
schätzung die eigentlich interessierende Größe, die Klassifikationsrate, nicht mehr unbedingt
optimiert [LYL07].

Diskriminative Lernverfahren greifen diesen Punkt auf undversuchen, durch das Einbe-
ziehen aller Klassen im Trainingsprozess eine minimale Fehlerrate zu erzielen. Dabei kön-
nen auch Näherungen und Einschränkungen in den Modellen, wie z. B. diagonale Kovari-
anzmatrizen, mit diskriminativen Ansätzen besser behandelt werden als bei der klassischen
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ML-Parameterschätzung [NCM91]. In der akustischen Ereignisdetektion werden diagonale
Kovarianzmatrizen in den Modellen verwendet. Folglich könnten diskriminative Lernverfah-
ren zu einer Verbesserung der Klassifikationsraten führen.
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Abbildung 5.7: Beispieldaten eines 2-Klassenproblems und zugehörige Klassengrenzen nach der
Bayes’schen Entscheidungsregel (vollständig besetzte Kovarianzmatrizen)

Im Folgenden wird das diskriminative Lernverfahren der „Maximum Mutual Informati-
on“-Parameterschätzung vorgestellt. Anschließend werden die experimentellen Ergebnisse
auf der Datenbasis zur akustischen Ereignisdetektion diskutiert. Da die Darstellung von Da-
ten mit mehr als zwei Dimensionen in Graphen nicht möglich ist, wird zur Veranschauli-
chung ein 2-Klassenproblem in zwei Dimensionen (vgl. Abb. 5.7 (a)) betrachtet. Den Daten
liegen Gauß’sche Mischungsverteilungen zugrunde, die je Klasse aus drei multivariaten Nor-
malverteilungen mit vollständig besetzten Kovarianzmatrizen bestehen. In Abb. 5.7 (b) sind
die idealen Klassengrenzen nach der Bayes’schen Entscheidungsregel eingezeichnet. Die
einzelnen Mischungsverteilungen werden hierbei durch Ellipsen angedeutet.

Zur Simulation von Modellierungsfehlern wird die Annahme getroffen, dass die zu schät-
zenden Kovarianzmatrizen eine diagonale Form haben. Folglich werden durch die Parame-
terschätzung Kovarianzmatrizen der Form

Σ̂i,m =

(
σ2
i,m,1 0
0 σ2

i,m,2

)
(5.1)

ermittelt. Im Anhang A.4 (S. 121) sind für dieses Beispiel die Modellparameter und die
Ergebnisse der Parameterschätzung für verschiedene Verfahren aufgeführt.

5.3.1 MMI -Parameterschätzung

Das Ziel der „Maximum Mutual Information“-Parameterschätzung (MMI -Parameterschät-
zung) ist die Maximierung der Transinformation zwischen den Merkmalsvektoren und den
zugehörigen Klassen, welche durch eine Maximierung der a posteriori Wahrscheinlichkeiten
der Klassen gegeben die Merkmalsvektoren erreicht werden kann [HD08]. Dies führt zu
einer Maximierung der Anzahl korrekt klassifizierter Merkmalsvektoren im Training [LP96].
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Im Folgenden wird eine Menge vonK Klassen betrachtet, deren Modellparameter ge-
schätzt werden sollen. Jede Klasse soll durch eine Gauß’sche Mischungsverteilung beschrie-
ben werden, die aus einer gewichteten Summe vonM multivariaten Normalverteilungen be-
stehen soll. Der VektorΘ beinhaltet die Parameter der Mischungsverteilungen allerKlassen,
bestehend aus den Gewichtenck,m, den Mittelwertvektorenµk,m und den Kovarianzmatrizen
Σk,m. Der erste Index steht hierbei für die Klasse und der zweite Index für die betrachtete
Mischungsverteilung.

Für die Parameterschätzung sind je KlasseNk Merkmalsvektoren der DimensionD mit
Xk,1:Nk

= [xk(1), . . . ,xk(Nk)] vorhanden (k = 1, . . . , K). Des Weiteren wird die Zu-
fallsvariable der Klassenzugehörigkeit eines Merkmalsvektorsxk(n) mit Ω bezeichnet. Sie
kann die diskreten Werte aus der MengeO = {1, . . . , K} annehmen. Zusätzlich wird die
ZufallsvariableZ verwendet, um die Zugehörigkeit eines Merkmalsvektors zu einer Mi-
schungsverteilung anzuzeigen. Diese Zufallsvariable kann die diskreten Werte der Menge
Z = {1, . . . ,M} annehmen.

Ein Merkmalsvektor der Klassei wird nach der Bayes’schen Entscheidungsregel korrekt
klassifiziert, falls

P (Ω = i|xi(n);Θ) > P (Ω = j|xi(n);Θ) für alle j 6= i (5.2)

gilt, wobei Θ die Abhängigkeit der Entscheidungsregel von denGMM-Modellparametern
anzeigt. Soll die Anzahl korrekt klassifizierter Merkmalsvektoren maximiert werden, so
müssen folglich die a posteriori Wahrscheinlichkeiten derKlassen gegeben die Merkmals-
vektoren maximiert werden. Dabei ist die a posteriori Wahrscheinlichkeit deri-ten Klasse
für die MerkmalsvektorenXi,1:Ni

mit

P (Ω = i|Xi,1:Ni
;Θ) =

Ni∏

n=1

p(xi(n)|Ω = i;Θ) · P (Ω = i)
K∑
k=1

p(xi(n)|Ω = k;Θ) · P (Ω = k)

(5.3)

gegeben. Der Logartihmus der Gl. 5.3 wird im Folgenden als Zielfunktion bezeichnet, wel-
che durch dieMMI -Parameterschätzung maximiert wird.

Eine ausführliche Herleitung der Adaptionsgleichungen der MMI -Parameterschätzung ist
im Anhang A.2 (S. 115) zu finden. Zunächst wird dabei der Gradient der Zielfunktion

Qi(Θ) =

Ni∑

n=1

log




p(xi(n)|Ω = i;Θ) · P (Ω = i)
K∑
k=1

p(xi(n)|Ω = k;Θ) · P (Ω = k)


 (5.4)

bezüglich des gesuchten Modellparameters bestimmt. Anschließend wird der Gradient der
Zielfunktion zu null gesetzt, so dass die Gleichungen für die Schätzwerte der Gewichte,
Mittelwerte und Kovarianzmatrizen bestimmt werden können.

Die Parameterschätzung mittelsMMI wird in einem iterativen Verfahren durchgeführt,
welches einenEM-Algorithmus verwendet. Zur Initialisierung des Algorithmus werden die
Modellparameter derML-Parameterschätzung genutzt. Im ersten Schritt, dem Erwartungs-
wertschritt (engl.Expectation), wird eine Schätzung von zwei versteckten Parametern vor-
genommen. Dies sind die Wahrscheinlichkeit einer Fehlklassifikation des Merkmalsvektors
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und die Zugehörigkeit des Merkmalsvektors zu einer Mischungsverteilung. Die Erwartungs-
werte der versteckten Parameter werden anhand der aktuellen Modellparameter geschätzt. Im
zweiten Schritt, dem Maximierungsschritt (engl.Maximization), werden die im vorherigen
Schritt berechneten versteckten Parameter verwendet, um eine neue Schätzung der Modell-
parameter durchzuführen. Anschließend wird zur Verbesserung des Konvergenzverhaltens
eine Glättung der Parameterschätzungen vorgenommen. Im Folgenden wird ein Überblick
über den Algorithmus gegeben.

EM-Algorithmus zur MMI -Parameterschätzung

1. Initialisierung : Setze den Iterationszählerν = 0 und initialisiere die ParameterΘi(ν)
deri-ten Klasse mit den Modellparametern derML-Parameterschätzung für diese Klas-
se.

2. Erwartungswertschritt : Berechne für jeden Merkmalsvektorxi(n), n = 1, . . . , Ni

die Wahrscheinlichkeit der Fehlklassifikation durch die aktuellen Modelle mit

ψi(n) =


1 − p(xi(n)|Ω = i;Θi(ν)) · P (Ω = i)

K∑
k=1

p(xi(n)|Ω = k;Θk(ν)) · P (Ω = k)


 (5.5)

und für jede Mischungsverteilungj = 1, . . . ,M die Wahrscheinlichkeit, dass der
Merkmalsvektor zu dieser Mischungsverteilung gehört mit

γi,j(n) =




p(xi(n)|Ω = i, Z = j;Θi(ν)) · P (Z = j|Ω = i)
M∑
m=1

p(xi(n)|Ω = i, Z = m;Θi(ν)) · P (Z = m|Ω = i)


. (5.6)

3. Maximierungsschritt : Schätzung der ModellparameterΘ̂i unter Verwendung der im
vorherigen Schritt berechneten Erwartungswerte mit

• Gewichte

ĉi,j =

Ni∑
n=1

ψi(n) · γi,j(n)

Ni∑
n=1

ψi(n)

(5.7)

• Mittelwerte

µ̂i,j =

Ni∑
n=1

[ψi(n) · γi,j(n) · xi(n)]

Ni∑
n=1

ψi(n) · γi,j(n)

(5.8)
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• Kovarianzmatrizen

Σ̂i,j =

Ni∑
n=1

[
ψi(n) · γi,j(n) (xi(n) − µi,j) (xi(n) − µi,j)

T
]

Ni∑
n=1

ψi(n) · γi,j(n)

(5.9)

4. Glättung: Berechnung der neuen Modellparameter als Kombination ausden aktuellen
ModellparameternΘi(ν) und den neu geschätzten ModellparameternΘ̂i des Maxi-
mierungsschrittes mit

Θi(ν + 1) = α · Θi(ν) + (1 − α) · Θ̂i für α ∈ [0, 1]. (5.10)

Erhöhe Iterationsindexν = ν+1 und gehe zu „Schritt 2“oder Abbruch nach erreichen
der gewünschten Iterationsanzahl.

Diskussion

Die Schätzungen der MischungsparameterΘ̂i nach Gl. 5.7 (Mischungsgewichte), Gl. 5.8
(Mittelwertvektoren) und Gl. 5.9 (Kovarianzmatrizen) erfolgt iterativ, wobei für die Berech-
nung der neuen SchätzwertêΘi die vorherigen SchätzwerteΘi(ν) aus der letzten Iteration
verwendet werden. Hierbei kann es zu einem schwingenden Verhalten der Schätzungen kom-
men, das durch den Glättungsschritt (vgl.EM-Algorithmus 4. Schritt) gedämpft wird. Alter-
nativ kann in die Optimierung eine Nebenbedingung eingeführt werden, welche die Distanz
zwischen neuen und alten Schätzwerten der Parameter begrenzt [LLJ+08].

Eine Gegenüberstellung der Gleichungen zur Schätzung der Mischungsparameter entspre-
chend derML-Parameterschätzung (vgl. Gl. 4.47, S. 32) und demMMI -Verfahren zeigt ei-
ne hohe Ähnlichkeit der Ansätze. DasMMI -Verfahren verwendet im Vergleich zumML-
Verfahren den zusätzlichen Gewichtsfaktor

ψi(n) =


1 − p(xi(n)|Ω = i;Θi(ν))P (Ω = i)

K∑
k=1

p(xi(n)|Ω = k;Θk(ν))P (Ω = k)


 (5.11)

für die Schätzung der neuen Modellparameter, wodurch eine Gewichtung der Merkmals-
vektoren anhand der Wahrscheinlichkeit der Fehlklassifikation vorgenommen wird. Falls ein
Merkmalsvektorxi(n) durch die aktuellen Modellparameter mit einer hohen Wahrschein-
lichkeit falsch klassifiziert wird, so wirdp(Ω = i|xi(n);Θ(ν)) einen kleinen Wert anneh-
men und der Gewichtsfaktorψi(n) strebt gegen den Wert Eins. Umgekehrt wird ein zuverläs-
sig richtig klassifizierter Trainingsvektor einen Gewichtsfaktor von annähernd Null besitzen
(ψi(n) → 0). Folglich berücksichtigt dasMMI -Verfahren während der Schätzung der neu-
en Modellparameter die vermutlich falsch klassifizierten Trainingsvektoren stärker als die
vermutlich richtig klassifizierten Vektoren.

Mit Hilfe des Gewichtsfaktorsψi(n) kann das zuvor erwähnte schwingende Verhalten der
Modellparameterschätzung während der Iterationen erklärt werden. Angenommen, die Men-
geA von Merkmalsvektoren wird zunächst zuverlässig korrekt klassifiziert und die gleich
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große MengeB derselben Klasse wird falsch klassifiziert, so wird für die Schätzung der
Mittelwertvektoren die GruppeB im Verhältnis zur GruppeA stärker verwendet. Es kommt
zu einer Verschiebung der Mittelwerte in Richtung der MengeB und folglich zu einer Än-
derung der Klassengrenzen, was im nächsten Iterationsschritt dazu führen kann, dass nun
die Vektoren der MengeA anstatt der MengeB falsch klassifiziert werden. Es wird somit
im nächsten Schritt eine Gegenbewegung in Richtung der MengeA entstehen, welche bei
fehlender Dämpfung zu einem schwingenden Verhalten führt.
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Abbildung 5.8: Vergleich der Klassengrenzen von Modellen nach einerML- bzw. MMI -Parameter-
schätzung (diagonale Kovarianzmatrizen)

In Abb. 5.8 sind die Ergebnisse der Klassifikation der durchML- bzw. MMI -Parameter-
schätzung gewonnenen Modelle dargestellt. DieML-Parameterschätzung optimiert die Mo-
dellparameter der einzelnen Klassen so, dass dieLikelihoodder Trainingsdaten maximiert
wird. Die so entstehenden Klassengrenzen sind nicht optimal für die Separation der Trai-
ningsdaten, wie die in rot eingezeichneten Klassengrenzenin Abb. 5.8 (a) verdeutlichen.
Jede Klasse wird durch drei Mischungsverteilungen modelliert, welche als Ellipsen ange-
deutet sind. Die Hauptachsen der Ellipsen sind dabei proportional zur Standardabweichung
der Verteilungen in der jeweiligen Raumrichtung. DieMMI -Parameterschätzung hat das Ziel,
die Transinformation zu maximieren, wodurch die Modellierung der Klassen nebensächlich
wird. Dies ist deutlich aus Abb. 5.8 (b) zu entnehmen, da z. B.die Daten der Klasse2 bei
[x, y] = [3,−2] durch keine Mischungsverteilung mehr direkt modelliert werden. Vielmehr
werden diese Daten automatisch durch die gebildeten Klassengrenzen korrekt klassifiziert.
Die Fehlerrate bei der Klassifizierung sinkt von10,6% bei derML-Parameterschätzung auf
5,4% bei derMMI -Parameterschätzung.

5.3.2 Experimentelle Ergebnisse

In den Experimenten wird untersucht, ob die Klassifikationsrate durch das diskriminative
Lernverfahren bei einer gleichbleibenden Komplexität derModelle verbessert werden kann.
Als Referenz wird das beste Modell aus derML-Parameterschätzung verwendet. Die Beob-
achtung der Fehlerratenänderung bei der Klassifikation derTrainingsdaten während der Pa-
rameterschätzung mitMMI wird jeweils einen Hinweis auf die möglichen Verbesserungen
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durch das diskriminative Lernverfahren liefern. Ein Test der Modelle auf den unabhängigen
Testdaten zeigt anschließend, ob die Reduktion der Fehlerrate durch eine verbesserte Model-
lierung der Ereignisse entstanden ist oder ob eine zu starkeAnpassung an die Trainingsdaten
vorgenommen wurde.

MMI -Parameterschätzung

Die MMI -Parameterschätzung wird mit den Modellen derML-Parameterschätzung initiali-
siert, welche aus128 Gauß’schen Mischungsverteilungen je Klasse bestehen. Dieexperi-
mentellen Ergebnisse derMMI -Parameterschätzung sind in Abb. 5.9 dargestellt, wobei die
relative Fehlerratenreduktion sich jeweils auf die Klassifikationsergebnisse der mitML ge-
schätzten Mischungsparameter bezieht. In Abb. 5.9 (a) ist die relative Fehlerratenreduktion
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ten (DVD 2, DVD 3)

Abbildung 5.9: Fehlerratenreduktion durch dieMMI -Parameterschätzung von Modellen

auf den Trainingsdaten über die Iterationsschritte aufgetragen. Die höchste Reduktion der
Fehlerrate wird mit73,52% für die∆MFCC-Merkmale erzielt. Danach folgen die Werte der
∆∆MFCC mit 38,08% und derMFCC mit 31,35%. In den ersten25 Iterationen wird der
größte Teil der Verbesserungen erreicht, wie aus dem Verlauf der Kurve für die Fusion der
Merkmalsvektoren (vgl. Abb. 5.9 (a), „Fusion“) entnommen werden kann, jedoch steigen die
Kurven selbst für Iterationen oberhalb von120 noch leicht an. Durch dieMMI -Parameter-
schätzung ist es also möglich, die Fehlerrate auf den Trainingsdaten nochmals um die Hälfte
gegenüber derML-Parameterschätzung zu senken.

Die auf den Trainingsdaten erreichten Fehlerratenreduktionen sind nicht im gleichen Um-
fang auf den Testdaten zu erwarten, da ein Teil der Verbesserungen durch eine Überanpas-
sung der Modelle auf die Trainingsdaten entsteht. Spezielldie hohe Anzahl der Iterationen
lässt die Vermutung aufkommen, dass eine Überanpassung derModelle vorliegen könnte.
In Abb. 5.9 (b) sind daher die Ergebnisse der fusionierten Merkmale (MFCC+ ∆MFCC+
∆∆MFCC) für die Trainings- und Testdaten über die Iterationen dargestellt. Erwartungsge-
mäß fallen die Fehlerratenreduktionen auf den Testdaten der DVD 2 und DVD 3 geringer aus
als auf den Trainingsdaten der DVD 1. Jedoch sind für die Daten der zweiten Sitzung eine
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Abbildung 5.10: Vergleich der Klassifikationsraten für Modelle aus derML- und MMI -Parameter-
schätzung auf Testdaten (DVD 2, DVD 3)

relative Fehlerratenreduktion von18,86 % und für die Daten der dritten Sitzung von8,12%
zu verzeichnen.

In Abb. 5.10 sind die Klassifikationsraten der Testdaten derzweiten und dritten Sitzung
als Vergleich zwischenML- undMMI -Parameterschätzung dargestellt. Es zeigt sich hierbei
ein nicht einheitliches Bild für die Klassen, da einige besser und einige schlechter erkannt
werden. Insgesamt jedoch verbessert sich die mittlere Klassifikationsrate („avg“) auf beiden
Testdatensätzen.

5.4 Quellenauswahl und Fusion

Die Lokalisation von Sprechern und akustischen Ereignissen erfordert eine gewisse Menge
an verteilten Mikrophonen in einem Raum. Dadurch ergibt sich die Möglichkeit, auch für die
Identifikation eine Auswahl oder Fusion der verfügbaren Mikrophonsignale vorzunehmen.
In dieser Arbeit wird die Fusion nach der Modellbewertung näher betrachtet. Abbildung 5.11

Modelle

M
ik

ro
ph

on
e 

/ J
A

C
K Modellbewertung

Modellbewertung

Modellbewertung

Modellbewertung

B
ew

er
tu

ng

. .
 .

Merkmalsextraktion

Merkmalsextraktion

Merkmalsextraktion

Merkmalsextraktion

. .
 .

Selektion
&

Fusion

Abbildung 5.11: Fusion und Selektion vonLikelihood-Werten bei der Ereignisdetektion

zeigt diesen Ansatzpunkt, welcher eine Fusion oder Selektion auf Grundlage derLikelihood-
Werte im System der akustischen Ereignisdetektion vornimmt. Grundsätzlich wird zunächst
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eine Entstörung und Merkmalsextraktion für alle verfügbaren Audiosignale der Mikrophone
vorgenommen. Anschließend werden dieLikelihoodsder Merkmalsvektoren mit den vorab
trainierten Modellen berechnet. Für die finale Entscheidung, welches Ereignis vorliegt, wird
eine Fusion oder eine Selektion derLikelihoodsoder auch eine Kombination aus beidem
vorgenommen.

5.4.1 Ansätze zur Fusion von Modellbewertungen

Die Datenbasis zur Ereignisdetektion beinhaltet Aufnahmen von 22 unabhängigen Mikro-
phonen, welche in5 Gruppen angeordnet sind. Da die meisten Ereignisse nur einegeringe
zeitliche Dauer aufweisen (z. B. Klopfen) oder keine eindeutige Position im Raum besitzen
(z. B. Applaus), ist eine verlässliche Ausrichtung einer Strahlformung auf die Position ei-
nes Ereignisses schwierig oder unmöglich. Daher wird auf eine akustischen Strahlformung
verzichtet, wie sie bei der Sprecherprotokollierung verwendet wird.

Die Parameterschätzung der Modelle kann prinzipiell auf zwei Weisen erfolgen. Entweder
wird für jedes Mikrophon separat ein Satz von Parametern geschätzt, so dass mikrophonspe-
zifische Modelle entstehen, oder sämtliche Daten aller Mikrophone werden zur Schätzung
der Modellparameter verwendet. Letzterer Ansatz bedeutet, dass mehr Daten pro Modell zur
Parameterschätzung zur Verfügung stehen, da ein Ereignis in 22 leicht variierenden Aufnah-
men vorliegt. Experimente mit mikrophonspezifischen Modellen zeigten schlechtere Erken-
nungsergebnisse als die Verwendung eines mikrophonunabhängigen Modells. Daher wurden
die weiteren Experimente mit einem Modell für alle Mikrophone durchgeführt.

Im Anhang A.3 (S. 120) befinden sich die zwei Tabellen Tab. A.1und Tab. A.2, welche
die Motivation für die folgenden Untersuchungen liefern. Beide Tabellen zeigen die Klas-
sifikationsraten der Testdaten aufgeteilt nach den22 Mikrophonen, so dass die Spannbreite
der Klassifikationsraten zwischen den vorliegenden Mikrophonkanälen deutlich wird. Ein
Beispiel ist das Ereignis Lachen, welches im Datensatz der DVD 2 vom besten Mikrophon
zu100,00% (Mikrophon20) und vom schlechtesten Mikrophon nur zu80,95 % (Mikrophon
10) richtig klassifiziert wurde. Umgekehrt ist das Mikrophon20 mit einer Klassifikationsrate
von87,50% eines der schlechtesten Mikrophone für die Identifikation des Ereignisses Klop-
fen und das Mikrophon10 liefert mit einer Klassifikationsrate von100,00% eine perfekte
Leistung. Ein Mikrophon, welches ein Ereignis schlecht klassifiziert, kann folglich für ein
anderes Ereignis optimal sein.

Die Vermutung, dass bestimmte Mikrophone durch ihre Lage vielleicht für einzelne Ereig-
nisse optimal sind, kann durch den Vergleich der Tabellen widerlegt werden. Beispielsweise
können die mit dem Mikrophon10 aufgenommenen Ereignisse Klopfen („kn“) als Gegenbei-
spiel verwendet werden. Im Datensatz der DVD 2 wird dieses Ereignis in allen Aufnahmen
des Mikrophons10 richtig erkannt. Jedoch werden die Aufnahmen von Klopfen imDaten-
satz der DVD 3 von diesem Mikrophon mit am schlechtesten klassifiziert. Da die Lage der
Mikrophone kein Kriterium für eine Selektion ist, werden während der Klassifikation alle
Mikrophonaufnahmen gleich behandelt.

Untersucht werden drei Ansätze zur Selektion und Fusion dervorliegendenLikelihoods.
Alle drei Verfahren sind durch die alleinige Betrachtung der Likelihood-Werte unabhängig
von der zugrunde liegenden Methode der Modellparameterschätzung und werden sowohl mit
den Modellen derML- als auch derMMI -Parameterschätzung verwendet. Gegeben seien für
jedes Mikrophonsignalm derM Mikrophonsignale eine Menge vonN Merkmalsvektoren
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X
(m)
1:N , deren Klassenzugehörigkeit mitΩ bezeichnet wird.

Maximum-MAP-Entscheidungsregel

Die optimale Entscheidungsregel ist durch die „Maximum A Posteriori“-Entscheidungsregel
(MAP-Entscheidungsregel) gegeben. Da mehr als ein Mikrophon zur Verfügung steht, kann
zwar für jedes Mikrophon eine optimale Entscheidung durch die MAP-Entscheidungsregel
getroffen werden, jedoch ist dann noch eine Entscheidung auf den22 Ergebnissen zu tref-
fen. Hierzu wurde die MAP-Entscheidungsregel um einen weiterenmax-Operator erweitert
(Maximum-MAP), so dass das Maximum aller MAP-Werte über allen Mikrophonen ver-
wendet wird. Die Maximum-MAP-Entscheidungsregel lautet:

Ω̂ = argmax
k,m

{
P (Ω = k|X(m)

1:N )
}
. (5.12)

Es wird also das Mikrophon ausgewählt, deren a posteriori Wahrscheinlichkeiten auf die
sicherste Entscheidung hindeuten.

Mehrheitsvotum

Die zweite Entscheidungsregel verwendet ein Mehrheitsvotum über alle Kanäle, um die Ent-
scheidung für eine Klasse zu treffen. Zunächst wird innerhalb eines jeden Kanals eine Hy-
pothesêΩ(m) für das beobachtete Ereignis anhand der MAP-Entscheidungsregel aufgestellt.
Anschließend wird die Klasse ausgewählt, welche am häufigsten als Hypothese genannt wur-
de. Die Entscheidungsregel des Mehrheitsvotums lautet somit:

Ω̂(m) = argmax
k

{
P (Ω = k|X(m)

1:N )
}

(5.13)

Ω̂(m) Mehrheit−→ Ω̂. (5.14)

MAP-Produkt-Entscheidungsregel

Die Maximum-MAP-Entscheidungsregel trifft eine Auswahl aus allen Kanälen für die end-
gültige Entscheidung. Dabei kann ein stark gestörter Kanalmit sehr niedrigenLikelihood-
Werten zu einer Fehlentscheidung führen, weil durch die Normierung der MAP-Entschei-
dungsregel die absoluten Werte derLikelihoodsvernachlässigt werden. Diese Unzulänglich-
keit wird im Mehrheitsvotum umgangen, indem die Mehrheit der Entscheidungen betrachtet
wird. Hierbei gehen jedoch nur die Werte derLikelihoodsinnerhalb eines Kanals in die Ent-
scheidung ein und nicht ein Vergleich der Werte zwischen denKanälen. Die MAP-Produkt-
Entscheidungsregel versucht diesen Aspekt zu berücksichtigen und eine Fusion derLike-
lihood-Werte aller Kanäle durchzuführen. Unter der Annahme, dassdie Merkmalsvektoren
der Mikrophone voneinander statistisch unabhängig sind, folgt

p(X
(1)
1:N , . . . ,X

(M)
1:N |Ω = k) =

M∏

m=1

(
p(X

(m)
1:N |Ω = k)

)
. (5.15)

Ferner sei das Auftreten aller Ereignisse gleich wahrscheinlich, so dass die MAP-Produkt-
Entscheidungsregel definiert werden kann durch:

Ω̂ = argmax
k

{
p(X

(1)
1:N , . . . ,X

(M)
1:N |Ω = k)

}
. (5.16)
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Die MAP-Produkt-Entscheidungsregel verwendet explizit die Annahme, dass die Merkmals-
vektoren an den Mikrophonen statistisch unabhängig voneinander sind. Diese Annahme
könnte für weit voneinander entfernte Mikrophone zutreffen, jedoch ist dies für Mikrophone
einer Mikrophongruppe womöglich nicht gegeben.

5.4.2 Experimentelle Ergebnisse

Die Experimente verwenden die Datenbasis der akustischen Ereignisidentifikation des Pro-
jektesCHIL. Die Abb. 5.12 zeigt einen Vergleich der Klassifikationsraten auf den Testdaten
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Abbildung 5.12: Vergleich von Auswahlverfahren und Kombinationsansätzenzur akustischen Ereig-
nisidentifikation (ML-Parameterschätzung, 128GMM, DVD 2 und DVD 3)

(DVD 2 und DVD 3) zwischen den drei Entscheidungsregeln und einer Einzelerkennung,
jeweils aufgeteilt nach den Ereignissen. Dabei sei darauf hingewiesen, dass die Ergebnisse
der Einzelerkennung, wie sie aus den vorherigen Kapiteln bekannt sind, jeweils die Klas-
sifikation aller Aufnahmen eines Ereignisses beinhaltet. Die zugrunde liegenden Modelle
sind Gauß’sche Mischungsverteilungen mit128 Verteilungen. Die mittlere Klassifikations-
rate („avg“) ist in den drei Ansätzen im Vergleich zu den Ergebnissen der Einzelerkennung
verbessert worden.

In Tab. 5.1 sind die Klassifikationsraten für verschiedene Ansätze der Modellparameter-
schätzung gegeben. Es werden die Ergebnisse derML-Parameterschätzung denen des diskri-
minativen Lernverfahrens durchMMI gegenüber gestellt. Dabei wird deutlich, dass die Ver-
besserung der Modelle durch das diskriminative Training durch die Fusion derLikelihood-
Werte an Bedeutung verliert. Sowohl dieML- als auch dieMMI -Parameterschätzung liefern
vergleichbare Resultate nach der Fusion, wobei die Wahl desAnsatzes, d. h. ob „Maximum-
MAP“, „Mehrheitsvotum“ oder „MAP-Produkt“, keinen signifikanten Unterschied macht.

Diskussion und Ausblick

Zuletzt soll das Potential zukünftiger Ansätze für die Verbesserung der Selektion und Fusi-
on vonLikelihoodsanhand eines Experiments untersucht werden. Hierzu werdendie Like-
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P
P

P
P

P
P

P
PP

Ansatz
Daten

DVD 2 DVD 3 DVD 2 + DVD 3 Modelle

Einzelerkennung 91,64 89,58 90,70

ML
Maximum-MAP 94,29 92,58 93,45
Mehrheitsvotum 94,57 92,28 93,45
MAP-Produkt 94,00 91,99 93,01

Einzelerkennung 93,21 90,43 91,85

MMI
Maximum-MAP 94,57 92,58 93,59
Mehrheitsvotum 94,57 92,28 93,45
MAP-Produkt 94,57 91,99 93,30

Tabelle 5.1:Vergleich der Klassifikationsraten für unterschiedliche Trainingsverfahren

lihoodsaller Mikrophone für ein Ereignis darauf untersucht, ob einMikrophonsignal exis-
tiert bei dem das Ereignis richtig identifiziert wird. Bei einer optimalen Wahl eines Kanals
würde in diesem Fall das Ereignis richtig erkannt werden. Die Abb. 5.13 zeigt den Vergleich
zwischen der Einzelerkennung, dem Mehrheitsvotum und der optimalen Wahl eines Mikro-
phons. Für einige Ereignisse ist bereits das Maximum der Klassifikationsraten erreicht, falls
nicht die zugrunde liegenden Modelle verbessert werden. Die Klassifikationsraten einiger
anderer Ereignisse, wie z. B. Papier („pw“), könnten jedoch beträchtlich gesteigert werden.

ap cl cm co do ds kj kn kt la pr pw st un avg
75

80

85

90

95

100

K
la

ss
ifi

ka
tio

ns
ra

te
 [%

]

Ereignis

 

 

Einzelerkennung
Mehrheitsvotum
Optimale Wahl

Abbildung 5.13: Vergleich der Klassifikationsraten zwischen Einzelerkennung, Mehrheitsvotum und
optimaler Mikrophonwahl auf Testdaten (DVD 2, DVD 3)
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6 Middlewareund ambiente Intelligenz

Die Amigo Architektur orientiert sich an den durch die Vision der ambienten Intelligenz auf-
gestellten Anforderungen an eine intelligente Hausumgebung [Ami06]. Im vernetzten Haus
werden Applikationen und Dienste entsprechend den Bedürfnissen der Nutzer gestartet, kon-
figuriert, verwendet und beendet. Zusätzlich kann die Ausstattung mit Komponenten zeitlich
variieren, da diese in das Haus eingebracht oder aus dem Hausentfernt werden bzw. ihre
Position im Haus ändern. Somit ist die vernetzte Hausumgebung durch eine starke Dynamik
geprägt, welcher durch die gewählte Architektur Rechnung getragen wird [SBG+05].

Ein weiterer Aspekt ist die Interaktion mit vorhandenerMiddlewareund Technologien zur
Vernetzung. Das Amigo System verwendet einen semantischenAnsatz, um eine größtmögli-
che Interoperabilität zu erzielen. Hierbei wird im Amigo System die Bedeutung einer Einheit
durch eine Referenz zu einem definierten Vokabular von Ausdrücken (Ontologie) gekapselt,
welche ein spezielles Gebiet von Wissen repräsentieren [GMB+05].

Im Folgenden wird gezeigt, wie die Ideen des semantischen Netzes für die vernetzte Haus-
umgebung genutzt werden können. Anschließend wird die Interaktion zwischen den Diens-
ten mittelsWebservice-Schnittstellen erklärt und ein Überblick über die Amigo Architektur
gegeben. Zum Abschluss wird das Amigo Kontextmanagement anhand des Beispiels der
akustischen Szenenanalyse diskutiert.

6.1 Semantisches Netz

Das semantische Netz (engl.semantic web) ist als Weiterentwicklung desWorld Wide Web
(WWW) entworfen worden, um die derzeitigen Unzulänglichkeitenim Umgang mit Infor-
mationen zu beheben [B+01]. Seit Erfindung desHypertext Transfer Protocols(HTTP) im
Jahre 1990 ist dasWWWauf eine für den Menschen unüberschaubare Größe gewachsen
([ISC07]: Jul 2007, 489.774.269Hostsim Domain Name System(DNS)). Dadurch ist der
Nutzen für den Einzelnen eher begrenzt, obwohl die verfügbare Menge an Informationen
gestiegen ist. Erst die Möglichkeit einer durch Maschinen gesteuerten Suche, Verarbeitung
und Auswertung wird dem Nutzer einen spürbaren Vorteil bringen [BHL01].

Die vernetzte Hausumgebung bildet wie dasWWWoder zukünftig das semantische Netz
einen Wissensraum mit vielen heterogenen Informationsquellen. Dieses Wissen kann nur
durch eine automatische Verarbeitung für den Nutzer erschlossen werden, um „intelligente
Systeme“ zu realisieren. Somit ist es naheliegend, in der vernetzten Hausumgebung die Kon-
zepte und Ideen des semantischen Netzes einzusetzen. Im Zentrum des semantischen Netzes
stehen die Ontologien, die präsentiertes Wissen für Maschinen annotieren und damit erst für
Maschinen verständlich machen.

79
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6.1.1 Ontologien

Eine Ontologie stellt entsprechend [Gru93] eine „explizite formale Spezifikation einer ge-
meinsamen Konzeptualisierung“ dar. Grundgedanke hierbeiist die Repräsentation einer ge-
meinsamen Wissensbasis durch die formale Festlegung von Begriffen und deren Relationen.
Eine Ontologie soll die für einen Menschen verständlichen Informationen und deren Zu-
sammenhänge Maschinen zugänglich machen, so dass eine maschinelle Verarbeitung und
Interpretation möglich wird.

In der AmigoMiddlewarewird die Web Ontology Language(OWL) [MH04] verwendet,
um Ontologien für die vernetzte Hausumgebung zu erstellen.Sie basiert auf demResource
Description Framework(RDF), welches eineExtensible Markup Language(XML) [B+08b]
nutzt.

Die Amigo Ontologien sind unter [R+08] verfügbar und frei zugänglich. Sie definieren un-
ter anderem das Vokabular zur Repräsentation von Sensoren,Geräten und Diensten. Die mit
diesem Vokabular darstellbaren Kontextinformationen umfassen beispielsweise Sensormess-
werte (Temperatur), vorhandene Geräte im Haus (Bildschirm, Kühlschrank), die Zustände
der Geräte (Ein, Aus, Standby) und die Fähigkeiten von Diensten (Helligkeitskontrolle, Be-
nachrichtigungsdienst), um an dieser Stelle nur eine Auswahl zu nennen.

Die Nutzung von Ontologien ist nicht begrenzt auf die von Amigo vorgegebenen Vokabu-
lare und kann durch eigene Ontologien ergänzt werden. Somitkönnen auch neue Zusammen-
hänge, die nicht in den bestehenden Ontologien berücksichtigt wurden, durch das Erstellen
und Veröffentlichen einer Ontologie in das System integriert werden. Ist der Kontext einer
Information hinreichend durch Ontologien beschrieben, sokann die Information in Form
einerRDF-Beschreibung im System dargestellt werden.

6.1.2 Kontextinformation

Eine im System vorliegende Kontextinformation wird zum Zwecke der Veröffentlichung
den Ontologien entsprechend beschrieben und in einRDF-Modell verpackt. Dabei unter-
scheidet dasRDF-Modell allgemein die drei Informationstypen Ressource, Eigenschaft und
Objekt. Eine Kombination dieser drei Typen wird alsRDF-Tripel bezeichnet und stellt ei-
ne Aussage über eine Ressource in einer definierten Domäne dar (engl.statement) [B+08a].
EinRDF-Modell kann durch einen sprachunabhängigenRDF-Graphen repräsentiert werden.
Ressourcen werden durch Ellipsen, Eigenschaften durch beschriftete Pfeile und Objekte als
Rechtecke gekennzeichnet.

21,5
22.05.2006

13:15room

Kitchen

identifier

isLocatedIn

timestamptemperature

TemperatureSensor

Abbildung 6.1: Beispiel einesRDF-Graphen zur Beschreibung einer Temperaturinformation
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� �
1 <?xml v e r s i o n ="1 .0 "? >
2 < r d f :RDF
3 xmlns : r d f =" h t t p : / / www. w3 . o rg /1999/02/22− r d f−syn tax−ns #"
4 xmlns : amigo : < h t t p : / / amigo . o rg / owl / AmigoICCS . owl#>
5 xmlns : domot ic : < h t t p : / / amigo . o rg / owl / Domotics . owl#>
6 xmlns : c o n t e x t : < h t t p : / / amigo . o rg / owl / C o n t e x t T r a n s p o rt . owl#>
7 <domot ic : Tempera tu reSensor >
8 < c o n t e x t : t imestamp >
9 2006−05−22T13 :15 :15 .452+0200

10 </ c o n t e x t : t imestamp >
11 < c o n t e x t : i s L o c a t e d I n >
12 < c o n t e x t : room>
13 < c o n t e x t : i d e n t i f i e r >
14 Ki t chen
15 < c o n t e x t : i d e n t i f i e r >
16 </ c o n t e x t : room>
17 </ c o n t e x t : i s L o c a t e d I n >
18 <amigo : t e m p e r a t u r e >
19 21 .5
20 </ amigo : t e m p e r a t u r e >
21 </ domot ic : Tempera tu reSensor >
22 </ r d f :RDF>


� �

Liste 6.1: RDF-Beschreibung einer Temperaturinformation

Die Liste 6.1 zeigt ein Beispiel für dieRDF-Beschreibung einer Temperaturinformation in
XML-Notation für denRDF-Graphen aus Abb. 6.1. Die Aussage der Kontextinformation lau-
tet, dass ein Temperatursensor (TemperaturSensor), welcher sich in dem Raum (isLocatedIn)
mit dem Bezeichner (identifier) Kitchenbefindet, zum angegeben Zeitpunkt (timestamp) die
Temperatur21,5 (temperature) gemessen hat. Die Zeilen 3-6 der Liste 6.1 beinhalten die Ab-
kürzungen und Verweise auf die verwendeten Ontologien. DerTemperatursensor ist als Ge-
rät in der Ontologie der HausvernetzungDomotics.owlbeschrieben. Die kontextbezogenen
Zusammenhänge stammen aus der OntologieContextTransport.owl, und die Beschreibung
des Temperaturwertes ist aus der Amigo OntologieAmigoICCS.owlentnommen worden.

Nachdem die Grammatik und das Vokabular zur Darstellung derInformationen durch die
Ontologien festgelegt sind, werden nun gemeinsame Definitionen zur Abfrage der Informa-
tionen benötigt. Applikationen, die Informationen suchen, benötigen eine definierte Abfra-
gesprache, welche von den Kontextquellen verstanden und verarbeitet werden kann.

6.1.3 Abfragesprache für Kontextinformationen

Eine maschinelle Verarbeitung von Informationen benötigtneben der Repräsentation der
Daten mittels einer Ontologie auch eine definierte Abfragesprache. Die AmigoMiddleware
verwendet dieSPARQL Protocol and RDF Query Language(SPARQL) [PS08], um Informa-
tionen abzufragen. Als Beispiel soll nun eineSPARQL-Frage für die Kontextquelle aus Abb.
6.1 vorgestellt werden.

Eine SPARQL-Frage gliedert sich in zwei Teile. Zunächst werden über eine Menge von
Variablen die Namen der Rückgabevariablen der Objekte festgelegt (Liste 6.2: Zeile 5). An-
schließend wird über ein Muster von Tripeln der kontextuelle Zusammenhang der gesuchten
Informationen definiert, beiRDF sind dies die Ressourcen und Eigenschaften (Liste 6.2:
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� �
1 PREFIX domot ic : < h t t p : / / amigo . g f o r g e . i n r i a . f r / owl / Domotics . owl#>
2 PREFIX amigo : < h t t p : / / amigo . g f o r g e . i n r i a . f r / owl / AmigoICCS . owl#>
3 PREFIX c o n t e x t : < h t t p : / / amigo . g f o r g e . i n r i a . f r / owl / C o nt e x t T r a n s p o r t . owl#>
4 PREFIX r d f : < h t t p : / / www. w3 . o rg /1999/02/22− r d f−syn tax−ns#>
5 SELECT ?room ? temp ? t ime WHERE {
6 ? i d r d f : t ype domot ic : Tempera tu reSenso r .
7 ? i d c o n t e x t : i s L o c a t e d I n ? r .
8 ? r c o n t e x t : i d e n t i f i e r ? room .
9 ? i d amigo : t e m p e r a t u r e ? temp .

10 ? i d c o n t e x t : t imestamp ? t ime . }

� �

Liste 6.2: Beispiel einerSPARQL-Frage nach Temperaturinformationen

Zeile 6-10). Somit kann sowohl gezielt nach Objekten in Informationen als auch nach dem
Kontext gefragt werden. Optional können Präfixe zur Verkürzung verwendet werden (Liste
6.2: Zeile 1-4). Die in Liste 6.2 gestellte Frage sucht explizit nach den Kontextinformationen
von Temperatursensoren (domotic:TemperatureSensor) und möchte neben der Temperatur-
information (?temp) auch die Position des Sensors (?room) und den Zeitpunkt der Messung
(?time) wissen.

21,5
22.05.2006

13:15room

Kitchen

identifier

isLocatedIn

timestamptemperature

TemperatureSensor

(a) Beispiel einesRDF-Graphen zur Be-
schreibung einer Temperaturinformation

identifier

isLocatedIn

timestamptemperature

?time

?room

?r?temp

TemperatureSensor

(b) SPARQL-Beispielfrage nach Tempera-
turinformationen

Abbildung 6.2: Vergleich zwischen Kontextinformation und Kontextabfrage

Vergleicht man die Frage aus Liste 6.2 mit der Information aus Liste 6.1 so kann festgehal-
ten werden, dass dieSPARQL-Frage eine Art von Sieb für Informationen definiert (vgl. Abb.
6.2). Zum einen werden definierte Ressourcen und Eigenschaften genannt, um die Men-
ge an Kontextquellen einzuschränken. Zum anderen werden durch Platzhalter mehrere In-
formationen gleichzeitig abgefragt. Durch die Einschränkung der gesuchten Ressource auf
Temperatursensoren aus der Heimvernetzung (domotic:TemperatureSensor) werden andere
Temperaturinformationen, wie zum Beispiel die von Kühlschränken, ausgeschlossen.

Nachdem die Grammatik, das Vokabular, die Beschreibung unddie Abfrage von Kontext-
informationen beschrieben wurden, wird im Folgenden die Suche nach Kontextquellen und
die Interaktion mit ihnen beschrieben. Dienste, die Informationen anbieten, müssen durch ei-
ne geeignete Technik im Netz veröffentlicht werden, so dasseine Applikation, die Informa-
tionen sucht, diese finden und abfragen kann. Diese Aufgabe eines zentralen Anlaufpunktes
übernimmt ein Verzeichnisdienst.

6.1.4 Verzeichnisdienst

Die Aufgabe des Verzeichnisdienstes ist die Speicherung von Informationen über Dienste
und deren Referenzen im Amigo System. Dabei verwaltet der Verzeichnisdienst eine hierar-
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chisch strukturierte Datenbank von Informationen. Dienste können nach demServer-Client-
Prinzip auf diese Daten mittels eines festgelegten Protokolls zugreifen. Im Amigo System
wird das von derInternational Telecommunication Unit(ITU) standardisierteLightweight
Directory Access Protocol(LDAP) [Z+06] der X.500 Architektur [ITU01] verwendet. Die
Amigo Middlewarestellt geeignete Methoden zur Suche von Diensten basierendauf LDAP
zur Verfügung.

Hat eine Applikation einen geeigneten Dienst über den Verzeichnisdienst gefunden, so
ist der nächste Schritt die Interaktion mit dem Dienst. Dieskann zum einen die Abfrage
von Informationen sein (Beispiel: Temperatursensor) oderzum anderen das Auslösen von
Aktionen durch den Dienst (Beispiel: Anschalten einer Lampe). Im Amigo System werden
zur InteraktionWebservice-Schnittstellen verwendet.

6.2 Webservice

Die vom Amigo System im Netz bereitgestellten Dienste besitzenWebservice-Schnittstellen
[WWW02], um Methoden für Applikationen oder Dienste bereitzustellen. Die Beschrei-
bung der Schnittstellen kann semantisch mit der im Projekt Amigo entwickelten Sprache
Amigo-Soder rein syntaktisch mit derWeb Services Description Language(WSDL) [C+07]
erfolgen.Amigo-Sist eine verallgemeinerte Form derWeb Ontology Language for Web Ser-
vices(OWL-S) [DAM06], die gegenüber derOWL-Sum Klassen und Eigenschaften für die
Unterstützung vonQuality of Service(QoS) und das Kontextbewusstsein erweitert wurde
[MKGI07].

Jeder Amigo Dienst wird mit demUniform Resource Name(URN) „urn:amigo“ im Amigo
System gekennzeichnet. EineURN [M+97] ist eine dauerhafte, ortsunabhängige Bezeich-
nung einer Ressource, die das SchemaUniform Resource Identifier(URI) vom Typ „urn“
[B+05a] verwendet.
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Abbildung 6.3: Interaktion zwischen Applikation und Dienst mittelsWebservices

In Abb. 6.3 ist die zeitliche Abfolge der Kommunikation bei der Verwendung eines ex-
portiertenWebservicesdurch eine Applikation gezeigt. Zunächst exportiert der Dienst seine
zwei Methoden (GetTimeundAdd), indem er sie beimLDAP-Verzeichnisdienst registriert.
Eine Applikation kann diese Methoden über den Verzeichnisdienst suchen und die Adresse
des Dienstes ermitteln. Anschließend bindet die Applikation die Methoden an die Adresse
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und erhält als Quittung die Bindenummer vom Dienst. Durch einenRemote Procedure Call
(RPC) kann nun die Applikation die Methoden des Dienstes verwenden.

6.3 Amigo Architektur

Grundsätzlich gliedert sich die Amigo Architektur in vier Schichten: Plattform,Middleware,
intelligente Dienste und Applikationen (vgl. Abb. 6.4) [J+05]. Diese Schichten werden in den
folgenden Kapiteln näher betrachtet, wobei deren Aufgaben, Funktionen und Schnittstellen
spezifiziert werden.
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Abbildung 6.4: Spezifikation der Amigo Architektur gemäß [J+05]

6.3.1 Plattform

Die vorhandenen Plattformen in einer vernetzten Hausumgebung stellen eine heterogene
Umgebung für die Verwendung von Software dar. Dabei variieren sie in den Bereichen Spei-
cher, Rechenleistung, Betriebssystem, Benutzer- und Netzwerkschnittstellen. Das Spektrum
der anvisierten Geräte, auf denen die AmigoMiddlewareeingesetzt werden soll, reicht von
Haushaltsgeräten über Smartphones, Notebooks bis hin zur Unterhaltungselektronik. Diese
Geräte nutzen neben den verbreiteten Betriebssystemen Windows, Linux, Windows Mobile
und Symbian OS auch zum Teil hardwarespezifische Softwareumgebungen.

Eine hoher Anteil an Hardwareplattformen wird im Projekt Amigo durch die Verwendung
der auf Java basierenden „Open Services Gateway Initiative“-Plattform (OSGI-Plattform)
[OSG08] abgedeckt. Entwickler können zudem optional unterWindows mit dem.net-Frame-
work Applikationen und Dienste erstellen. DieOSGI-Laufzeitumgebung eignet sich für die
plattformübergreifende Entwicklung von Software, da sie auf allen Geräten mit einerJava
Virtual Machineund ausreichenden Ressourcen ausgeführt werden kann [SS07].
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Eine Applikation auf derOSGI-Plattform gliedert sich in Softwarepakete (engl.Bundles),
deren Lebenszyklen durch die Zustände „Installiert, Startend, Aktiv, Stoppend, Aufgelöst
und Entfernt“ festgelegt sind. Hierbei teilen sich die Applikationen auf einerOSGI-Plattform
die vorhandenen Ressourcen und können applikationsübergreifend aktiveBundlesund deren
exportierte Klassen nutzen. JedesBundleverfügt über einen Lademechanismus für Klassen
(engl.Class Loader), welcher den Speicherbereich der Klassen (engl.Class Space) verwal-
tet. In diesem Speicherbereich sind drei Arten von Klassen vorhanden:

• Private Klassen: Exklusiv durch dasBundlegenutzte und bereitgestellte Klassen.

• Importierte Klassen: Klassen, die von anderenBundlesbereitgestellt werden.

• Exportierte Klassen: Klassen, die für andereBundlesbereitgestellt werden.

Zusätzlich existieren Mechanismen zum Installieren, Starten, Stoppen, Aktualisieren und
Löschen derBundles. Diese Verwaltungsmechanismen sind besonders im Bereich der Geräte
mit eingeschränkter Benutzerschnittstelle notwendig, umeine Fernwartung zu ermöglichen.

6.3.2 AmigoMiddleware

Oberhalb der Plattformschicht ist die AmigoMiddlewaremit ihrem interoperablen Kern
angesiedelt. Eine der Schlüsseltechnologien des Amigo Systems ist die nahtlose Integration
von heterogenen Strukturen im Bereich etablierterMiddleware(z. B. UPnP) und Geräten
in der vernetzten Hausumgebung. Diese Interoperabilität wird mit Hilfe des interoperablen
Middleware-Kerns realisiert.

Interoperabler Middleware-Kern

Eine Middleware muss zum einen Funktionen zur Bekanntmachung und zur Suche von
Diensten imService Discovery Protocol(SDP) definieren. Zum anderen müssen Metho-
den zur Interaktion imService Interaction Protocolfestgelegt werden. Beide Protokolle sind
Middlewarespezifisch und im Allgemeinen zwischen zweiMiddleware-Technologien nicht
austauschbar.

Im Amigo System ist die Aufgabe desMiddleware-Kerns, eine für die Dienste transpa-
rente Interoperabilität zu schaffen. Dabei vermittelt das„SDP-Detection and Interoperabili-
ty“-Protokoll (SDI-Protokoll) [BI05] die Suchanfragen und Antworten, und das„Service In-
teraction Interoperability“-Protokoll (SII-Protokoll) ermöglicht die Interaktion [SBG+05].
Interoperabilität bedeutet in diesem Zusammenhang, dass zwei unterschiedlicheMiddle-
ware-Technologien miteinander kommunizieren und interagieren, als ob beide die gleichen
Protokolle verwenden würden.

In Abb. 6.5 ist das Beispiel aus [SBG+05] gegeben, welches die Kommunikation zwischen
einem mobilen Gerät (Personal Digital Assistent, PDA) und einem Medienserver zeigt. Das
mobile Gerät verwendet dasService Location Protocol(SLP) und dieRemote Method Invo-
cation(RMI), und der Medienserver nutztUniversal Plug and Play(UPnP) mit demSimple
Service Discovery Protocol(SSDP) und dasSimple Object Access Protocol(SOAP). Dieses
Beispiel wird hier vorgestellt, um die Realisierung der vielfach geforderten Interoperabili-
tät durch die AmigoMiddlewarezu erläutern. Zunächst initiiert der Benutzer über seinen
PDA durch eineSLP-Anfrage eine Suche nach Medienservern im Netz. Diese Anfrage wird
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Abbildung 6.5: Amigo interoperablerMiddleware-Kern

von derSLP-Einheit an dieUPnP-Einheit weitergegeben und mittels derSDI-Einheit vom
SLP-Protokoll auf dasSSDP-Protokoll für UPnP übersetzt. DieUPnP-Einheit erhält vom
Medienserver als Antwort eine Beschreibung der verfügbaren Dienste mittels desSOAP-
Protokolls. Anschließend veranlasst dieUPnP-Einheit denProxy Generator, einenRMI auf
UPnPKommunikations-Stubzu erstellen und diesen sowohl beimProxy Providerals auch
bei derSLP-Einheit zu publizieren. DerPDA wird von derSLP-Einheit über die Verfügbar-
keit desRMI-Proxy informiert. Die Adresse desStubswird vom Proxy Providergeliefert
und derPDA kann transparent über denStubmit dem Medienserver kommunizieren, als ob
beide die gleichenMiddleware-Technologien verwenden würden.

Middleware

Die Amigo Middlewareist verantwortlich für die Bereitstellung von Grundfunktionen zur
Dienstsuche, Komposition und Interoperabilität. Des Weiteren sind Medien- und Inhalts-
dienste für die Unterhaltungselektronik in derMiddleware implementiert, wie z. B. die
Speicherung und Verteilung von Medien. Entsprechend der Nutzerstudien aus [M+05] sind
Dienste zum Schutz der Sicherheit und der Privatsphäre in der Middlewareverankert. Ein
Dienst zum Mobilitätsmanagement unterstützt Nutzer bei der Verwendung mobiler Geräte.

6.3.3 Intelligente Dienste

Die intelligenten Benutzerdienste im Amigo System nutzen die Amigo Middleware, um
Grundfunktionen für die Entwicklung von Applikationen in der vernetzten Hausumgebung
bereitzustellen [J+05]. Eine der Kernaufgaben ist die Verwaltung und Verarbeitung von Kon-
textinformationen, um Diensten automatisierte und intelligente Entscheidungen zu ermögli-
chen. Zusätzlich wurden Dienste implementiert, die z. B. bei der Erstellung von Benutzer-
schnittstellen hilfreich sind. Im Folgenden werden die wichtigsten Dienste erläutert.

Informationen über Benutzer und ihre Gewohnheiten werden durch die Benutzermodel-
lierung bereitgestellt. Dieser Dienst erstellt eine Datenbank über Benutzer und macht diese
über eineWebservice-Schnittstelle anderen Diensten zugänglich. Jedes Benutzermodell star-
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tet mit einem Stereotypenmodell, bei dem ein minimaler Satzvon Standardeigenschaften
angewendet wird.

Der Kontextbewusstseins- und Benachrichtigungsdienst stellt Dienste für die automatisier-
te Benachrichtigung bei Eintreten eines Ereignisses oder einer Kombination von Ereignissen
bereit [ECB06]. Applikationen können hierfür Regeln definieren und beim Dienst hinterle-
gen. Dieser überwacht die Kontextquellen im System und benachrichtigt die Applikation,
sobald eine hinterlegte Regel erfüllt ist.

6.4 Kontextmanagement

Der Amigo Kontextmanagementdienst (engl.Context Management Service, CMS) stellt eine
offene Infrastruktur für das Austauschen von Kontextinformationen bereit [RPS+07]. Hier-
bei werden sowohl Informationen über physikalische Sensoren, Benutzeraktivitäten oder
ausgeführte Applikationen als auch deren Zustände verarbeitet und bereitgestellt. Informa-
tionen, die aus der Kombination von unterschiedlichen Quellen oder deren Abstraktion ent-
stehen, werden dabei als Kontextinformationen bezeichnet. Eine Applikation kann diese
Kontextquellen über den Kontextmanagementdienst nutzen und somit zu einer kontextbe-
wussten Applikation werden.

Das System zum Kontextmanagement beinhaltet drei Arten vonKomponenten: Kontext-
quellen, Kontextnutzer und Kontextbroker. Eine Quelle stellt dabei den Nutzern Kontext-
informationen zur Verfügung, wobei der Broker als zentraleVermittlungsstelle zwischen
diesen fungiert.

6.4.1 Schnittstellendefinition und Kommunikation

Das Projekt Amigo hat durch die Entwicklung der AmigoMiddlewareeine offene Lösung
für die Vernetzung von Diensten in der häuslichen Umgebung geschaffen. Innerhalb dieser
Middlewarenutzen Dienste definierte Verfahren zur Dienstsuche (vgl. Kap. 6.2) und standar-
disierte Schnittstellen für die Kommunikation. Eine von diesen Schnittstellen ist dieICon-
textSource-Schnittstelle, welche einen Satz von vierWebservice-Methoden für das Amigo
Kontextmanagementsystem definiert. Kontextquellen und Kontextnutzer müssen diesen Satz
von Methoden implementieren, um im Kontextmanagementsystem miteinander kommuni-
zieren zu können [J+05].

Für die synchrone Kommunikation (vgl. Abb. 6.6 (a)) ist auf der Seite der Kontextquelle
die query-Methode zu implementieren, welche als Übergabeparameterdie SPARQL-Frage
nach der Kontextinformation erwartet und als Rückgabewertdie Antwort auf dieSPARQL-
Frage liefert. Die asynchrone Kommunikation (vgl. Abb. 6.6(b)) erfordert drei Metho-
den. Dies sind auf der Seite der Kontextquelle diesubscribe-Methode und dieunsubscribe-
Methode und auf der Seite des Kontextnutzers dienotify-Methode.

Die Kommunikation zwischen Kontextquelle und Kontextnutzer kann auf zwei Arten er-
folgen. In Abb. 6.6 (a) ist zunächst die synchrone Kommunikation dargestellt. Hierbei re-
gistriert sich die Kontextquelle mit einer Beschreibung ihrer Eigenschaften beim Kontext-
broker und hinterlegt die Adresse zum Aufruf ihrerWebservice-Methoden. Eine Applikation
kann zunächst den Kontextbroker durch einWebservice-Lookup im Netzwerk finden und
anschließend eine Quellensuche durch die Spezifikation derAnforderungen an die Quelle
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eingrenzen. Die Applikation stellt dann eine aufSPARQLbasierende Kontextfrage, worauf
die Kontextquelle direkt antwortet. Dieses Kommunikationsverfahren eignet sich zum direk-
ten Abfragen von Informationen. Es ist jedoch weniger geeignet, falls die Applikation auf
ein bestimmtes Ereignis reagieren soll. Ein kontinuierliches Abfragen von Kontextquellen
erzeugt entweder eine hohe Last durch häufige Anfragen oder hat eine hohe Latenz bis die
Änderungen bekannt werden, falls die Applikation nur selten Anfragen stellt.

Eine Beobachtung von Sensoren ohne zyklisches Abfragen derKontextquelle kann durch
die asynchrone Kommunikation erfolgen (vgl. Abb. 6.6 (b)).Die Applikation fordert wie im
synchronen Fall die Liste der Kontextquellen an. Bei diesenführt sie eine Subskription mit
einerSPARQL-Frage durch und übergibt dabei die Adresse derWebservice-Methode (no-
tify-Methode), welche die Kontextquelle zur Benachrichtigungverwenden soll. Als Rückga-
bewert erhält die Applikation eine eindeutige Identifikationsnummer für die Registrierung,
welche in derunsubscribe-Methode verwendet wird, um die Subskription rückgängig zu
machen. Findet nun ein Ereignis statt, welches zurSPARQL-Frage der Applikation passt,
so wird diese über die neuen Kontextinformationen informiert. Hierzu nutzt die Kontext-
quelle dienotify-Methode der Applikation, deren Funktionsparameter auf die Antwort der
SPARQL-Frage gesetzt wird.

6.4.2 Kontextbewusste Applikationen

Eine Applikation wird von einem Benutzer als „intelligent“wahrgenommen, falls die von
der Applikation getroffenen Entscheidungen dem Nutzer sinnvoll erscheinen. Hierzu benö-
tigt diese Zugriff auf Kontextinformationen, so dass die Applikation den aktuellen Kontext
erfassen kann. Die verfügbaren Kontextinformationen werden in der Applikation mitein-
ander verknüpft und anhand von Entscheidungsregeln ausgewertet. Anschließend kann die
Applikation eine kontextbewusste Entscheidung treffen, welche vom Nutzer als „intelligent“,
im Sinne von kontextabhängig, wahrgenommen wird.

Die Idee des Amigo Systems ist, zunächst jede Art von Information durch eine Kontext-
quelle zu abstrahieren und diese anschließend miteinanderzu verknüpfen. Dies kann durch
Dienste erfolgen, die Informationen eines Typs bündeln undsie als neue Kontextquelle wie-
der verfügbar machen. Als Beispiel kann hier derLocation Management Service(LMS) ge-
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nannt werden. Dieser Dienst kombiniert die unterschiedlichen Positionsinformationen aus
beispielsweiseRFID-Systemen, akustischen Lokalisierungstechniken und anderen Quellen
in einer zentralen Datenbank und stellt anschließend dieseDatenbank als Kontextquelle an-
deren Applikationen zur Verfügung.

Ein weiterer Ansatz zum Aufbau „intelligenter Applikationen“ ist die semantische Suche
nach Kontextquellen im vernetzten Haus mit Hilfe der AmigoMiddlewareund der Ver-
knüpfung der verfügbaren Informationen in der Applikationselbst. Eine Applikation wird
als kontextbewusste Applikation bezeichnet, falls ein Teil der Entscheidungen automatisiert
durchgeführt wird und dabei auf Kontextinformationen beruht und nicht nur auf Eingaben
eines Benutzers.

6.4.3 Akustische Szenenanalyse als Kontextquelle

Die akustische Szenenanalyse nutzt die Signale der im Haus verteilten Mikrophongruppen,
um gleichzeitig Positionsschätzungen und Identifikationen von Personen und Ereignissen
durchzuführen. Die hierbei generierten Kontextinformationen werden Diensten im Amigo
System zur Verfügung gestellt.
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Abbildung 6.7: Beispiel einer Kontextinformation der akustischen Szenenanalyse

In Abb. 6.7 ist beispielhaft eine Kontextinformation der akustischen Szenenanalyse für
eine Personenlokalisation dargestellt. Zur Vereinfachung des Graphen wurden die Präfixe der
Ontologie weggelassen, welche in [R+08] definiert ist. Die enthaltene Kontextinformation
sagt aus, dass der NutzerA sich zum angegebenen Zeitpunkt im RaumX an der Stelle
X = 2,0m undY = 1,5 m befand.

Betrachtet man das gesamte Aufgabenspektrum der akustischen Signalverarbeitung, so
muss neben der akustischen Szenenanalyse auch der Aspekt der Kommunikation berück-
sichtigt werden. Da die akustische Szenenanalyse nicht nurdie Signale analysiert, sondern
auch eine Störgeräuschunterdrückung durchführt, solltenfolglich zur Rechenzeitersparnis
die entstörten Signale der akustischen Szenenanalyse für die Kommunikation genutzt wer-
den. Um Überlastungen des Systems und infolgedessen Aussetzer des Audiodatenstroms
während der Kommunikation vorzubeugen, wird die Bereitstellung von Kontextinformati-
onen aus der akustischen Szenenanalyse (ASA) durch das gesonderteOSGI-Bundle„OS-
GI:ASA“ auf einerOSGI-Plattform durchgeführt. DiesesBundlewird durch eine Interpro-
zesskommunikation auf Basis einesUDP-Datenstroms mit dem Modul der Sprecherproto-
kollierung verbunden.
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Nachdem nun die Architektur der AmigoMiddlewareund die verfügbaren Dienste vorge-
stellt wurden, wird im folgenden Kapitel die Realisierung der ambienten Kommunikation auf
Basis des Amigo Systems dargestellt. Diese Anwendung ist ein Beispiel für einen kontextbe-
wussten Dienst, der unabhängig von expliziten Benutzereingaben Entscheidungen trifft und
somit als ein Schritt in die Richtung von ambienter Intelligenz angesehen werden kann.
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Das Konzept der ambienten Intelligenz beschreibt das Entfernen von Geräten aus dem Um-
feld der Benutzer bei gleichzeitiger Bereitstellung der zuvor durch die Geräte verfügbaren
Dienste [AM04]. Überträgt man dieses Konzept auf den Bereich der Kommunikation, be-
deutet dies ein Entfernen der klassischen Kommunikationsgeräte, wie z. B. des Telefons,
und den Übergang von der geräteorientierten Kommunikationzur Freisprechfunktionalität.
Der Benutzer muss nun nicht mehr ein Telefon zur Kommunikation aufsuchen und mit sich
tragen, sondern kann jederzeit auch ohne Gerät kommunizieren [SLH08].

Ein wichtiger Aspekt der ambienten Kommunikation, welcheraus der Forderung nach ei-
ner freien Kommunikation folgt, ist die Realisierung von sog.Follow-Me-Fähigkeiten. Unter
dem Begriff „Follow-Me“ wird im Rahmen dieser Arbeit die Fähigkeit des Systems beschrie-
ben, eine Kommunikation dem Benutzer automatisch und somitkontextabhängig folgen zu
lassen. Ein Benutzer kann eine Kommunikation in einem Raum starten und sich anschlie-
ßend frei in seiner Wohnumgebung bewegen, während das System dafür sorgt, dass das Ge-
spräch automatisch dem Benutzer folgt. Hierdurch treten die technischen Randbedingungen
der Kommunikation in den Hintergrund, während der Benutzerseinen täglichen Arbeiten
nachgeht.

Im Folgenden werden dasSeamless Audio Interface(SAInt) und seine Komponenten vor-
gestellt, welches zur Realisierung einer ambienten Kommunikation verwendet werden kann.
Nach der Vorstellung der Systemarchitektur und der Integration in dieMiddlewarewerden
die grundlegenden Module zur Signalverarbeitung erläutert. Zum Abschluss wird die Erwei-
terung des Systems um Komponenten zur audio-visuellen Kommunikation diskutiert. Um
eine klare Trennung zwischen demMiddleware-Dienst und der signalverarbeitenden Kom-
ponente vorzunehmen werden folgende Begriffe verwendet: Der „SAInt-Dienst“ wird für
dasOSGI-Bundlevon SAInt verwendet, welches für die Kommunikation mit derMiddle-
wareverantwortlich ist. Das „SAInt-Modul“ bezeichnet dasSpark-Modul1, welches als Teil
der Signalverarbeitung für dasRoutingder Audiodaten und die Echtzeitkommunikation ver-
antwortlich ist.

7.1 Systemarchitektur undMiddleware-Integration

Die Systemarchitektur der ambienten Kommunikation, dargestellt in Abb. 7.1, teilt sich auf
in die vier Bereiche Hardware, Signalverarbeitung, Echtzeitkommunikation und kontext-
abhängige Steuerung. Der Begriff Hardware umfasst die verteilten Mikrophone und Laut-

1DasSpeech processing and recognition toolkit(Spark) ist eine modulare Software des Fachgebietes Nach-
richtentechnik zur digitalen Signalverarbeitung auf Computern.
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Abbildung 7.1: Blockschaltbild der Systemkomponenten der ambienten Kommunikation

sprecher im Haus, die entweder in Wänden oder Geräten integriert sind, sowie die zu de-
ren Betrieb notwendigen Verstärker und Analog-Digital/Digital-Analog-Wandler (AD/DA-
Wandler). Die Schnittstelle zwischen der Hardware und der Software wird mittels demJack
Audio Connection Kit(JACK) [JAC08] realisiert, um eine geringe Latenz an der Schnittstelle
zwischen Hardware und Software (HW/SW) zu erzielen.

Die Signale aus den Mikrophonen werden in der Signalverarbeitung einer Echounterdrü-
ckung und einer Störgeräuschfilterung sowie gegebenenfalls einer adaptiven Strahlformung
unterzogen. Die Echounterdrückung teilt sich hierbei in die adaptive Echounterdrückung
(engl. Adaptive Echo Canceler, AEC) und in ein Nachfilter zur Reduktion der verbliebe-
nen Restechos auf. Innerhalb des Nachfilters wird neben der Unterdrückung der Restechos
auch die Unterdrückung der Störgeräusche durchgeführt. Falls mehrkanalige Aufnahmen aus
Mikrophongruppen verwendet werden, so muss vor der adaptiven Strahlformung die Unter-
drückung der Echos erfolgen.

Bei der echtzeitfähigen Kommunikation können zwei Fälle unterschieden werden. Dies
ist zum einen die interne Kommunikation, bei der eine Verbindung zwischen zwei Personen
im selben Haus aufgebaut wird. Zum anderen ist es die externeKommunikation zwischen
einer lokalen Person und einer entfernten Person. DasSAInt-Modul muss im ersten Fall die
Daten wie ein Router zwischen den Räumen austauschen. Für den zweiten Fall, dass ein
Kommunikationspartner nicht im Haus ist, verbindet dasSAInt-Modul die Nutzer über eine
„ Internet Protocol“-Verbindung (IP-Verbindung) mittels desReal-Time Transport Protocols
(RTP). In Abb. 7.1 sind beispielhaft eine lokale Verbindung zwischen den Nutzern A und B
sowie eine externe Verbindung des Benutzers C aus dem Raum Z dargestellt. Die Signalver-
arbeitung desSAInt ist in der Lage, mehrere Verbindungen gleichzeitig zu unterstützen. Es
ist als fortlaufend aktives System konzipiert, um möglicheVerzögerungen durch Startzeiten
auszuschließen. Da es zudem dauerhaft die Signalverarbeitung für alle Räume durchführt,
ist die Systemauslastung konstant und nicht durch Lastspitzen geprägt.

Integration in die Amigo Middleware

Die für die Steuerung der Kommunikation benötigten Kontextinformationen werden aus
der AmigoMiddlewarebezogen. DerSAInt-Dienst registriert sich hierzu bei den benötig-
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ten Kontextquellen mit Hilfe des Kontextbrokers und baut eine Interprozesskommunikation
(engl. Inter Process Communication, IPC) zum SAInt-Modul auf. Zusätzlich werden über
dieseIPC-Schnittstelle in der umgekehrten Richtung die gewonnenenKontextinformationen
anderen Applikationen und Diensten im Amigo System zur Verfügung gestellt.
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Abbildung 7.2: Blockschaltbild zur Integration vonSAIntin die AmigoMiddleware

In Abb. 7.2 sind die Abhängigkeiten der verschiedenen Komponenten und die Datenströ-
me für eine Kommunikation zwischen zwei Häusern dargestellt. Wie bereits in Abb. 7.1
detaillierter gezeigt wurde, verbindetJACK die Hardware mit der Signalverarbeitung. An
dieser Stelle werden auch die Audiodaten für die akustischeSzenenanalyse entnommen,
deren Kontextinformationen über die KontextquelleOSGI:ASAder Middlewarezur Verfü-
gung gestellt werden. Der untere Teil der Abb. 7.2 zeigt die Signalverarbeitung, die durch
IPC-Schnittstellen mit den Diensten derMiddlewareverbunden ist. Der Datenaustausch in-
nerhalb derMiddlewarewird durchWebservice-Aufrufe realisiert und basiert im Falle von
Kontextquellen auf derIContextSource-Schnittstelle (vgl. Kap. 6.4.1).

Im Haus A sind als Lokalisierungstechniken die akustische Szenenanalyse und einRFID-
System vorhanden. Die Daten der beiden Kontextquellen werden im LMS zu einer neuen
Kontextquelle zusammengefasst. Diese wird durch denSAInt-Dienst („OSGI:SAInt“) zur
Lokalisierung von Benutzern verwendet. Gleichzeitig interagieren eine Applikation und die
graphische Schnittstelle vonSAInt(„SAInt GUI“) mit demSAInt-Dienst. Im Haus B befindet
sich neben einemRFID-System auch eine Positionsbestimmung auf Basis von BluetoothR©-
Signalen.

Die Kommunikation zwischen den Häusern verwendet die entstörten Signale aus der Si-
gnalverarbeitung. Diese werden durch dasSAInt-Modul entweder direkt im Haus oder über
eineRTP-Verbindung weitergeleitet. Hierbei wird ein Kommunikationsdienst (engl.Ambient
Communication Service, ACS) auf einem entfernten Server verwendet, welcher für den Sit-
zungsaufbau und die Behandlung der Übersetzung von Netzwerkadressen (engl.Network
Address Translation, NAT) zuständig ist.



94 Ambiente Kommunikation

7.2 Signalverarbeitung

Die Aufgabe der Signalverarbeitung ist eine adaptive Filterung der Mikrophonsignale vor
der Übertragung durch das Kommunikationssystem. Hierbei wird sowohl eine Echounterdrü-
ckung als auch eine Störgeräuschreduktion durchgeführt. Eine Echounterdrückung ist nötig,
da die empfangenen Signale des entfernten Sprechers über die Lautsprecher wiedergege-
ben werden und über die Mikrophone im selben Raum aufgenommen werden. Falls keine
Filterung der Signale durchgeführt wird, so kann der entfernte Sprecher sein eigenes Echo
hören. Wird auf beiden Seiten eine Freisprecheinrichtung verwendet, so kann es zu einer
Rückkopplung der Signale und einem Aufschwingen des Systems kommen. Die Echounter-
drückung ist somit nicht nur für den subjektiven Höreindruck der Nutzer wichtig, sondern
auch für die Stabilität des Übertragungssystems notwendig. Die Nachfilterung der Mikro-
phonsignale hinsichtlich möglicher stationärer Störungen ist optional, da es im Rahmen der
ambienten Kommunikation durchaus erwünscht sein könnte, dass Hintergrundgeräusche zur
Einordnung der aktuellen Aktivitäten mit übertragen werden.
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Abbildung 7.3: Blockschaltbild zur Echounterdrückung und Störgeräuschfilterung desSAInt

Die Abb. 7.3 zeigt das Blockschaltbild der Signalverarbeitung zur Echounterdrückung und
Störgeräuschfilterung, wie es im Amigo System zur ambientenKommunikation verwendet
wird. Die Signalverarbeitung inSparkarbeitet nach dem Prinzip eines diskreten Ereignis-
systems und ist modular aufgebaut. Jedes Modul wird einmal ausgeführt, sobald an jedem
Eingang des Moduls ein Datenpaket anliegt. Somit sind rekursive Strukturen, bei denen Ein-
gänge von Modulen von deren Ausgängen abhängig sind, nicht mit Sparkrealisierbar. Die
in Abb. 7.3 eingezeichnete Rückkopplung der wiedergegebenen Signale des entfernten Spre-
chers, welche in der Echounterdrückung benötigt wird, erfolgt überJACK [JAC08]. Hierzu
wird ein virtueller Lautsprecher inJACK erzeugt und intern mit einem virtuellen Mikro-
phon verknüpft (gestrichelte Linie). Sollte es beiJACK durch eine zu hohe Rechenlast zu
Paketverlusten kommen, so verliert die wiedergegebene Tonspur im virtuellen Mikrophon
die gleiche Anzahl an Paketen wie die Tonspuren der aufgenommen Mikrophonsignale. Es
besteht somit nicht die Gefahr, dass die beiden Tonspuren zeitlich auseinanderlaufen. Im Fol-
genden werden die signalverarbeitenden Module und ihre zugrunde liegenden Algorithmen
erläutert.
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7.2.1 Begrenzer

Der Begrenzer ist eine notwendige Komponente, um die Stabilität des Systems im Falle von
lauten Störungen zu gewährleisten. Bei akustischen Ereignissen mit hohen Energien, wie
z. B. einer laut rufenden Person in der Nähe eines Mikrophonsoder einer zuschlagenden
Tür, kann die begrenzte Dämpfung der Echounterdrückung aufder entfernten Seite kurzzei-
tig nicht ausreichen und es kommt zu einer aufschwingenden akustischen Rückkopplung in
Form eines Pfeifens. Der Begrenzer nach [Zöl97] dämpft die Eingangssignale, deren Ener-
gie oberhalb einer festgelegten Schwelle liegt, auf den Schwellwert und beeinflusst Signale
unterhalb der Schwelle nicht.

Zunächst wird der geglättete Spitzenwertxp(n) der Energie|x(n)| eines Blocks über den
zeitlichen Verlauf der Signalblöckex(n) mit

xp(n) =

{
(1 − τA − τR)xp(n− 1) + τA|x(n)|

für
|x(n)| > xp(n− 1)

(1 − τR)xp(n− 1) |x(n)| ≤ xp(n− 1)
(7.1)

bestimmt. Die ParameterτA für die Anstiegszeit undτR für die Abfallzeit beeinflussen die
Stärke der Glättung und sind in informellen Experimenten imAkustiklabor zuτA = 0,9 und
τR = 0,005 bestimmt worden. Anschließend wird der GewichtsfaktorΓ(n) entsprechend des
SchwellwertesγT durch

Γ(n) =

{
β · Γ(n− 1)

für
log {xp(n)} > γT

β · Γ(n− 1) + (1 − β) log {xp(n)} ≤ γT
(7.2)

berechnet. Die Glättungskonstante wurde experimentell zuβ = 0,9 bestimmt. Das Aus-
gangssignal des Begrenzers ergibt sich aus der Multiplikation des Eingangssignalblocks
x(n) mit der DämpfungΓ(n).

Für den Fall, dass die Bedingunglog {xp(n)} > γT erfüllt ist, wird der logische Ausgang
des Moduls für mehrere Blöcke auf „Wahr“ gesetzt. Dies signalisiert dem nachfolgenden
adaptiven Filter die künstliche Begrenzung der Eingangssignale und verhindert so eine mög-
liche fehlerhafte Adaption.

7.2.2 Sprachaktivitätsdetektion

Die Sprachaktivitätsdetektion (engl.Voice Activity Detection, VAD) ist eine der entscheiden-
den Komponenten im System, da basierend auf der Sprachaktivitätsdetektion Entscheidun-
gen in der Strahlformung, der Echounterdrückung, der Positionsschätzung und der Sprecher-
identifikation vorgenommen werden. Jedes dieser Teilaufgabengebiete hat spezielle Anfor-
derungen an eine Sprachaktivitätsdetektion, die eineVAD alleine nicht erfüllen kann. Eine
VAD kann entweder Sprache von Hintergrundgeräuschen sicher unterscheiden, was dazu
führt, dass Teile der Sprache mit wenig Energie als Geräusche klassifiziert werden, oder ei-
neVAD kann so eingestellt werden, dass auch Sprachanteile mit geringer Energie gefunden
werden, was dazu führt, dass Störgeräusche häufiger als Sprache klassifiziert werden.

Die akustische Strahlformung soll die Richtcharakteristik der Mikrophongruppe auf einen
Benutzer immer dann anpassen, sobald dieser spricht. Störgeräusche, wie z. B. Türen oder
Lüfter, sollen hingegen ignoriert werden. Ein effizienter Ansatz hierzu wurde in [RS04] vor-
gestellt. Hierbei werden im Zeitbereich Mittelwerte der Energie berechnet und miteinander
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verglichen. Übersteigt der über ein kurzes Fenster gemittelte Wert der Energie den langfris-
tig gemittelten Wert für die Hintergrundstörung, so wird eine Entscheidung für Sprachakti-
vität getroffen. Dieser Ansatz liefert in Umgebungen mit geringen Störungen sowohl für die
Steuerung der akustischen Strahlformung als auch für Entscheidungen für die Adaption der
Filter in der Echounterdrückung gute Ergebnisse. Die Leistungsfähigkeit sinkt jedoch mit
ansteigendem Pegel der Störungen, so dass in stark gestörten Umgebungen aufwändigere
Ansätze, wie z. B. in [WSH07] vorgeschlagen, verwendet werden müssen.

Die Sprecherprotokollierung besitzt andere Anforderungen an die Sprachaktivitätsdetek-
tion als die akustische Strahlformung. Entsprechend der inder Spracherkennung verwen-
deten Verfahren, soll eineVAD zur Sprecherprotokollierung möglichst zusammenhängende
Segmente von Sprache erkennen und diese auch zusammenhängend kennzeichnen. Selbst
Sprachanteile mit geringer Energie sollen als Sprache gekennzeichnet werden. Somit wird
es nötig, einen Sicherheitsbereich um einen Bereich erkannter Sprache zu definieren, wel-
cher auch der Sprache zugeordnet wird. Dies führt zwangsläufig zu einer Vergrößerung der
Latenz der Sprachaktivitätsentscheidung in der Größenordnung des Sicherheitsbereichs vor
der erkannten Sprache. Da zur Merkmalsextraktion und zur Entstörung bereits dasAdvanced
Frontend ETSInach [ETS02] verwendet wird, kann auch die dort beschriebene Erweiterung
zur Sprachaktivitätsdetektion verwendet werden. Diese ist zur Verwendung mit einem Spra-
cherkenner optimiert und erfüllt die zuvor beschriebenen Anforderungen.

7.2.3 Echounterdrückung

Die Module der Echounterdrückung benötigen zur Neuschätzung der adaptiven Filter In-
formationen über die Sprachaktivität der Kommunikationsteilnehmer. Hierbei kann die Ent-
scheidung bezüglich des entfernten Sprechers durch die Verwendung einerVAD auf den
empfangenen Signalen getroffen werden. Ein lokaler Sprecher kann ebenfalls durch eine
VAD detektiert werden, falls der entfernte Sprecher nicht aktiv ist. Da jedoch die Möglich-
keit besteht, dass auf beiden Seiten die Sprecher aktiv sind, muss eine Detektion des na-
hen Sprechers durchgeführt werden. Dies erfolgt im Detektor für nahe Sprecher (engl.Near
Speaker Detector, NSD), welcher seine Entscheidung auf Grund der Mikrophonsignale, der
wiedergegeben Signale und der geschätzten Raumimpulsantwort trifft.

Die Echounterdrückung schätzt durch die Adaption desAEC-Filters die unbekannte Über-
tragungsfunktion zwischen Mikrophon und Lautsprecher. Dadiese Übertragungsfunktion
nicht nur durch die Anordnung der Mikrophone und Lautsprecher, sondern maßgeblich durch
den Raum bestimmt ist, wird die Fourier-Rücktransformierte dieser Übertragungsfunktion
abkürzend als Raumimpulsantwort bezeichnet. ImAEC wird ein Filter mit endlicher Filte-
rimpulsantwort (engl.Finite Impulse Response, FIR) zur Schätzung der Raumimpulsantwort
verwendet, so dass im Allgemeinen Restechos im Ausgangssignal desAECverbleiben. Die-
se werden durch ein Nachfilter soweit reduziert, dass sie durch den entfernten Sprecher nicht
mehr wahrgenommen werden können.

Dieser zuvor beschriebene Ansatz zur Echounterdrückung hat den Nachteil, dass für eine
verlässliche Entscheidung derNSDzunächst eine gute Schätzung der Raumimpulsantwort
vorliegen muss. Die Raumimpulsantwort kann aber nur korrekt geschätzt werden, falls wäh-
rend der Adaption kein lokaler Sprecher aktiv ist. Somit bedingt die Schätzung derNSDauch
die Adaption desAECund umgekehrt. Geht man davon aus, dass das System zur ambienten
Kommunikation fest im Haus installiert ist, kann eine Vorschätzung der Raumimpulsantwort
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während der Installation vorgenommen werden. Diese wird als Startwert für die adaptiven
Filter desAECverwendet und derNSDkann von Beginn an gute Schätzungen für das Vor-
handensein eines lokalen Sprechers vornehmen.

Detektion eines nahen Sprechers

Die Detektion eines nahen Sprechers erfolgt entsprechend [BMC00] durch die Kreuzkor-
relation zwischen dem wiedergegeben Signal und dem aufgenommenen Signal. Dabei sei
die Raumimpulsantwort mith = [h1, . . . , hN ]T gegeben. Dies führt auf dieNSD-Entschei-
dungsvariable

ξ =

√
hTφxxh√

hTφxxh + σ2
s

(7.3)

mit σ2
s als der Varianz des lokalen Sprechersignals undφxx der Matrix der Autokorrelations-

terme des wiedergegebenen Signals. Ist der lokale Sprecherinaktiv, so giltξ = 1, und für
einen aktiven lokalen Sprecher istξ < 1.

Da die Filterung eines Signals effizienter im Frequenzbereich als im Zeitbereich durchge-
führt werden kann, wird für die ambiente Kommunikation die in [GB01] vorgestellte Berech-
nung der Entscheidungsvariablenξ im Frequenzbereich genutzt. Hierbei werden blockweise
die Auto- und Kreuzkorrelation der Signale im Frequenzbereich geschätzt und anschließend
zeitlich geglättet. Der Zähler der Entscheidungsvariablen in Gl. 7.3 wird durch eine Multi-
plikation der geschätzten Raumimpulsantwort mit der Kreuzkorrelation zwischen wiederge-
gebenem und aufgenommenem Signal näherungsweise bestimmt. Der Nenner ist durch die
Autokorrelation des Mikrophonsignals gegeben.

Adaptive Filterung

Die Echounterdrückung ist eine Systemidentifikationsaufgabe, bei der das unbekannte Über-
tragungssystem zwischen Mikrophon und Lautsprecher durchein adaptives Filter geschätzt
werden soll [Hay02]. Dabei wird einFIR-Filter zur Nachbildung der unbekannten Raum-
impulsantwort blockweise durch Anwendung eines „Normalized Least Mean Square“-Algo-
rithmus (NLMS-Algorithmus) adaptiert [BH03]. In Abb. 7.4 ist der prinzipielle Aufbau der
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Abbildung 7.4: Blockschaltbild der adaptiven Filterung zur Echounterdrückung

Echounterdrückung dargestellt. Das aufgenommene Mikrophonsignaly(n) setzt sich aus der
lokalen Störungr(n), dem lokalen Sprechers(n) und dem mit der Raumimpulsantworth(n)
gefalteten Signal des entfernten Sprechersx(n) zusammen.
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Die Adaptionsgleichung des Filtersw ist mit

w(n+ 1) = w(n) + µ(n) · x(n) · e(n)

|x(n)|2 (7.4)

gegeben, mitµ(n) als Schrittweite unde(n) als Fehlersignal.
Die Vorteile desNLMS-Algorithmus liegen in der niedrigen Komplexität des Algorith-

mus (FilterlängeN , ONLMS ∼ 2N , [Hay02]) und seiner Robustheit gegenüber Störungen
und falschen Entscheidungen zur Adaption. Nachteilig ist die langsame Konvergenz bei
zeitlichen Änderungen des zu identifizierenden Systems, wobei dies in der Anwendung der
ambienten Kommunikation eine geringere Rolle spielt. Aufgrund des festen Aufbaus stellt
die Anordnung der Mikrophone und Lautsprecher ein zeitlichnäherungsweise konstantes
System dar, das nur geringe Anpassungen der geschätzten Filter bedarf. Folglich kann eine
kleine Schrittweiteµ(n) gewählt werden, wodurch der Einfluss fehlerhafter Entscheidungen
durch denNSDminimiert wird.

Die Implementierung desAECerfolgt, wie zuvor beimNSD, im Frequenzbereich mit Hilfe
einesOverlap-Save-Verfahrens. Zusätzlich wird die Filterung partitioniertdurchgeführt, um
eine unabhängig von der verwendeten Filterlänge konstant niedrige Latenz desAEC-Moduls
zu erzielen (vgl. [DES99]).

Das Ausgangssignal desAECenthält neben lokalen Störungenr(n) auch Restechosb(n),
weil das endliche Filter desAEC auf Grund seiner Länge nur einen Teil der Raumimpuls-
antwort nachbilden kann. Jedoch werden in einem nachgeschalteten Filter diese Restechos
zusammen mit den lokalen Störgeräuschen soweit reduziert,dass sie für den Benutzer nicht
mehr wahrnehmbar sind.

Nachfilter

Die Nachfilterung desAEC-Ausgangssignals wurde entsprechend dem Vorschlag in [LK07]
implementiert. Das Ausgangssignal desAECergibt sich zu

e(n) = h(n) ∗ x(n) + s(n) + r(n) − w(n) ∗ x(n) (7.5)

= (h(n) − w(n)) ∗ x(n)︸ ︷︷ ︸
b(n)

+s(n) + r(n) (7.6)

mit b(n) als dem verbleibenden Restecho des entfernten Sprechers. Unter der Annahme, dass
das Signal des lokalen Sprechers, die lokale Störung und dasRestecho statistisch unabhängig
sind gilt

E(m,ω) = B(m,ω) + S(m,ω) +R(m,ω) (7.7)

mit E(m,ω), S(m,ω), R(m,ω) undB(m,ω) als den Frequenzspektren der Signalee(n),
s(n), r(n) undb(n) im betrachteten Signalblockm. Grundidee in [LK07] ist die Einführung
von vier Hypothesen über die Signalanteile im momentanen Mikrophonsignal:

• H0: StörgeräuscheE(m,ω) = R(m,ω).

• H1: Störgeräusche und lokaler SprecherE(m,ω) = R(m,ω) + S(m,ω).

• H2: Störgeräusche und entfernter SprecherE(m,ω) = R(m,ω) +B(m,ω).
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• H3: Störgeräusche, entfernter Sprecher und lokaler Sprecher
E(m,ω) = R(m,ω) +B(m,ω) + S(m,ω).

Die Unterscheidung zwischen den beiden HypothesengruppenH0, H1 und H2, H3 kann
zuverlässig durch eine Sprachaktivitätsdetektion auf demSignal des entfernten Sprechers
durchgeführt werden. Der Test zwischen den Hypothesen innerhalb der Gruppen entspricht
dem Problem der zuvor vorgestellten Detektion eines nahen Sprechers.

Die Übertragungsfunktion des Nachfilters ergibt sich nach [LK07] zu

F (m,ω) =
ξ(m,ω) · ζ(m,ω)

ξ(m,ω) · ζ(m,ω) + ξ(m,ω) + ζ(m,ω)
(7.8)

mit dem a prioriSNR

ξ(m,ω) = αξσ

(
|E(m,ω)|2
R̂n(m,ω)

− 1

)
+ (1 − αξ)

|F (m− 1, ω)E(m− 1, ω)|2
R̂n(m,ω)

(7.9)

und dem a priori Signal-zu-Echoverhältnis (engl.Signal to Echo Ratio, SER)

ζ(m,ω) = αζσ

(
|E(m,ω)|2
R̂b(m,ω)

− 1

)
+ (1 − αζ)

|F (m− 1, ω)E(m− 1, ω)|2
R̂b(m,ω)

.(7.10)

Dabei seiR̂n(m,ω) die Schätzung des Leistungsdichtespektrums des lokalen Rauschens,
R̂b(m,ω) die Schätzung des Leistungsdichtespektrums des Restechosundσ() die Einheits-
sprungfunktion. Die Parameter werden zuαξ = 0,99 undαζ = 0,95 gewählt.

Da die ambiente Kommunikation auch die Übertragung von Geräuschen aus der Umge-
bung der Kommunikationspartner optional mit einschließensoll, ist eine Modifikation des
Filters aus Gl. 7.8 notwendig. Entsprechend der Idee aus [GJKV99] ergibt sich die neue
Filterfunktion zu

F̃ (m,ω) =
ξ(m,ω) · ζ(m,ω) + βξ ξ(m,ω) + βζ ζ(m,ω)

ξ(m,ω) · ζ(m,ω) + ξ(m,ω) + ζ(m,ω)
(7.11)

mit dem Parameterβξ zur Steuerung der Unterdrückung lokaler Störungen undβζ zur Be-
einflussung der Restechounterdrückung. Dieser Ansatz bietet zudem den Vorteil, dass Stö-
rungen, wie z. B.Musical Tones, durch eine gute Wahl der Parameter vermieden werden
können, indem eine Reststörung in den Signalen toleriert wird.

7.3 Echtzeitkommunikation

DasSAInt-Modul unterscheidet bei der Echtzeitkommunikation zwei Arten von Verbindun-
gen. Zum einen sind dies lokale Verbindungen zwischen Personen im Haus und zum anderen
externe Verbindungen zwischen lokalen und entfernten Personen. Im ersten Fall müssen die
Personen im Haus lokalisiert und anschließend eine Audioverbindung über die entsprechen-
den Mikrophone und Lautsprecher aufgebaut werden. Der zweite Fall erfordert eine Positi-
onsbestimmung des lokalen Teilnehmers und den Aufbau einesechtzeitfähigen Datenstroms
über einIP-basiertes Netzwerk. Eine Lokalisation von Nutzern erfolgt lokal immer über den
SAInt-Dienst, der als Kontextnutzer in der AmigoMiddlewareagiert.
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7.3.1 Lokalisation von Nutzern

Die Positionsdaten von Benutzern werden im Amigo System durch verschiedene Kontext-
quellen bereitgestellt. Dabei unterscheiden sich die Daten bezüglich der räumlichen und
der zeitlichen Auflösung. Um eine kontinuierliche Suche nach Kontextquellen und der an-
schließenden Registrierung bei allen geeigneten Kontextquellen zu vermeiden, verwendet
derSAInt-Dienst den AmigoLocation Management Service(LMS). DerLMSübernimmt die
Suche nach Kontextquellen und führt die unterschiedlichenInformationen in einer gemeinsa-
men Datenbank zusammen. Diese Datenbank wird als Kontextquelle anderen Diensten über
die IContextSource-Schnittstelle zur Verfügung gestellt und kann über die Anfrage in Liste
7.1 über den Kontextbroker gesucht werden.

� �
1 <?xml v e r s i o n = \ " 1 . 0 \ " ? >
2 < r d f :RDF
3 xmlns : r d f =" h t t p : / / www. w3 . o rg /1999/02/22− r d f−syn tax−ns #"
4 xmlns : j . 1= " h t t p : / / amigo . g f o r g e . i n r i a . f r / owl / C o n t e x tT r a n s p o r t . owl #">
5 < j . 1 : C o n t e x t S o u r c e R e g i s t r a t i o n >
6 < j . 1 : con tex tType >
7 CombinedUserLocat ion
8 </ j . 1 : con tex tType >
9 < j . 1 : t i m e l i n e s s >

10 c u r r e n t
11 </ j . 1 : t i m e l i n e s s >
12 </ j . 1 : C o n t e x t S o u r c e R e g i s t r a t i o n >
13 </ r d f :RDF>


� �

Liste 7.1: Anfrage desSAInt-Dienstes an den Kontextbroker zur Suche desLMS

Der SAInt-Dienst auf derOSGI-Plattform, welcher über eineIPC-Schnittstelle mit dem
SAInt-Modul verbunden ist, sucht über den Kontextbroker nach laufendenLMS-Diensten
und registriert sich dort. Während der Registrierung hinterlegt derSAInt-Dienst beimLMS
die SPARQL-Frage in Liste 7.2, so dass im Falle einer Positionsänderung diese demSAInt-
Dienst unverzüglich mitgeteilt wird. Fortlaufend werden die Positionsinformationen über
Nutzer von demSAInt-Dienst an dasSAInt-Modul weitergeleitet, so dass dasSAInt-Modul
eine automatische Sitzungsverwaltung durchführen kann.

Die SPARQL-Frage ist an der Position von Personen mit der Genauigkeit auf Raumebene
interessiert und besitzt einen optionalen Teil, um präzisere Informationen abzufragen. Not-
wendig für die Funktion des Dienstes ist die Information über den Raum, in dem sich der
Benutzer befindet. Die optionale Information, an welcher relativen Position im Raum die
Person aktuell ist, ermöglicht im Falle verteilter Mikrophone und Lautsprecher die Auswahl
der nächstgelegenen Hardware.

7.3.2 Sitzungsverwaltung

Die Sitzungsverwaltung dient dem Aufbau von externen Verbindungen und automatisiert den
hierfür notwendigen Registrierungsprozess. Sobald eine Person vom System in einen Raum
mit ausreichender Hardwareausstattung (Mikrophon und Lautsprecher) lokalisiert wird, führt
dasSAInt-Modul eine Registrierung dieser Person beim Kommunikationsdienst (ACS) durch.
AndereSAInt-Module, welche mit dem gleichen Kommunikationsdienst verbunden sind, er-
halten hierdurch die Nachricht, dass diese Person für eine Kommunikation zur Verfügung
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� �
1 PREFIX c o n t e x t : < h t t p : / / amigo . g f o r g e . i n r i a . f r / owl / C o nt e x t T r a n s p o r t . owl#>
2 PREFIX r d f : < h t t p : / / www. w3 . o rg /1999/02/22− r d f−syn tax−ns#>
3 SELECT ? u s e r ? room ? t ime ? prob ?x ?y WHERE {
4 ? u l r d f : t ype c o n t e x t : Use rLoca t i on .
5 ? u l c o n t e x t : t imestamp ? t ime .
6 ? u l c o n t e x t : p r o b a b i l i t y ? prob .
7 ? u l c o n t e x t : i s L o c a t e d I n ? r .
8 ? r c o n t e x t : i d e n t i f i e r ? room .
9 ? u l c o n t e x t : i s L o c a t i o n O f ?u .

10 ?u c o n t e x t : i d e n t i f i e r ? u s e r .
11 o p t i o n a l {? u l c o n t e x t : e s t i m a t e d P o s i t i o n ? ep .
12 ? ep c o n t e x t :X ?x .
13 ? ep c o n t e x t :Y ?y .
14 ? u l c o n t e x t : r e l a t i v e 2 S p a c e ? r .
15 ? r c o n t e x t : i d e n t i f i e r ? room . }
16 } ;


� �

Liste 7.2: SPARQL-Frage desSAInt-Dienstes an denLMS

steht. Verlässt diese Person den Raum und geht in einen Bereich ohne Hardware, so wird die
Registrierung beim Kommunikationsdienst durch dasSAInt-Modul zurückgezogen.

Die Echtzeitkommunikation besitzt eine benutzerorientierte Architektur, so dass Verbin-
dungen an Personen und nicht an Geräte oder Räume gebunden sind. Eine Verbindung wird
zwischen zwei Personen initiiert, indem entweder eine der Personen eine direkte Verbin-
dungsanfrage zu einer anderen Person stellt oder indem eineApplikation versucht, zwei
Personen zu verbinden. In beiden Fällen wird dieWebservice-Methode „Connect(Person A,
Person B)“ desSAInt-Dienstes verwendet, um eine Verbindung zu initialisieren.

Jede Verbindungsanfrage wird über dieIPC-Schnittstelle an dasSAInt-Modul weiterge-
leitet, welches die Position der Teilnehmer vomSAInt-Dienst abfragt. Falls beide Personen
sich im Haus befinden und eine Möglichkeit zur Kommunikationdurch Mikrophone und
Lautsprecher besteht, so wird eine direkte Verbindung zwischen den Räumen hergestellt.
Konnte nur ein Teilnehmer im Haus lokalisiert werden, so wird versucht, mittels eines Sit-
zungsprotokolls eine externe Verbindung zur anderen Person über den Kommunikations-
dienst herzustellen. Hierzu sendet das lokaleSAInt-Modul eine Verbindungseinladung über
den Kommunikationsdienst an dasSAInt-Modul des entfernten Teilnehmers. Akzeptiert die-
ser die Einladung zur Kommunikation, so teilt anschließendder Kommunikationsdienst den
beidenSAInt-Modulen dieIP-Adressen der Teilnehmer mit, so dass diese eine direkte Ver-
bindung untereinander aufbauen können.

7.3.3 Datenaustausch

Der Datenaustausch zwischen entfernten Kommunikationsteilnehmern erfolgt verbindungs-
los überUDP-Verbindungen. Vorteil dieses Ansatzes ist die niedrige Latenz bei der Über-
tragung der Audiodaten, der jedoch durch mögliche Paketverluste oder die Vertauschung
von Datenpaketen beim Empfang durch unterschiedliche Paketlaufzeiten (engl.jitter) er-
kauft wird. Die Audiodaten werden zunächst komprimiert, umdie Datenrate zu reduzieren,
und anschließend mit demReal-Time Transport Protocol(RTP) [S+03] in dieUDP-Pakete
verpackt.

Das imRFC3489durch dieInternet Engineering Task Forcevorgestellte „Simple Traver-
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sal of User Datagram Protocol Through Network Address Translators“-Protokoll (STUN-
Protokoll) [R+03] beschreibt die Detektion und Überwindung von Verfahrenzur Überset-
zung von Netzwerkadressen (NAT). Die Abb. 7.5 zeigt an einem Beispiel die Problemstel-
lung beim Datenaustausch, hervorgerufen durch die Umsetzung von internen Adressen auf
externe Adressen, und die Lösung des Problems durch die Verwendung desACS.

Host B1
IP 192.168.1.9

Host A1
IP 192.168.1.5 

Host A2
IP 192.168.1.6

ACS
IP 150.1.2.3

Extern 141.11.22.33 Extern 137.24.25.26

Lokales Netz Haus B

Intern 192.168.1.1
NAT Router B

Lokales Netz Haus A

Intern 192.168.1.1
NAT Router A

RTP-Daten

Internet

Abbildung 7.5: Beispiel für dieNAT-Problematik der ambienten Kommunikation

Angenommen es soll eine Datenverbindung zwischen demHost A1 und demHost B1
aufgebaut werden. BeideHostskennen zwar ihre lokale Adresse, jedoch nicht die externe
Adresse ihres Routers. Als gemeinsamer Anlaufpunkt zum Aufbau einer Kommunikations-
sitzung wird derACSverwendet, der von beiden erreichbar ist. Sendet einer derHostsein
Paket an denACS, so ersetzt der jeweilige Router im Rahmen derNAT die Adresse im Pa-
ket durch seine eigene externe Adresse, bevor das Paket an den ACSweitergeleitet wird.
Antwortet derACSauf dieses Paket, so leitet der Router das Antwortpaket weiter an den
entsprechendenHost, welcher zuvor eine Anfrage an denACSgesendet hat.

Der Host A1 kann kein Paket direkt an denHost B1 senden, da er die externe Adres-
se des Routers B nicht kennt. Da beideHostsauf demACS registriert sind, kennt dieser
die externen Adressen der Router aus den empfangenen Paketen und kann diese bei einer
Verbindungsanfrage an beide Kommunikationsteilnehmer übermitteln. Sobald dieHostsdie
externe Adresse des jeweiligen anderen Teilnehmers kennen, beginnen sie Pakete an diese
Adresse zu senden. Empfängt der Router B nun ein Paket von Router A, so nimmt er an,
dass es die Antwort auf das vonHost B1 anHost A1 gesendete Paket ist und leitet es an
denHostB1 weiter. Das gleiche führt entsprechend der Router A mit den von ihm empfan-
genen Paketen durch. Mit diesem Verfahren ist es möglich, die NAT-VerfahrenFull Cone,
Restricted ConeundPort Restricted Conezu überwinden, falls für die Kommunikation mit
demACSderselbe Port genutzt wird wie für den Datenaustausch zwischen denHosts. Der
ACSübernimmt somit neben der imSTUN-Protokoll beschriebenen Überwindung derNAT
auch die Sitzungsinitialisierung vergleichbar zuSIP [R+02].

Die Audiosignale selbst werden mit demSpeex-Codec (16 kHz Breitband) [PS08] kom-
primiert, um die benötigte Bandbreite zu reduzieren. Dabeiübernimmt derSpeex-Codec
im Rahmen der Paketverlustverschleierung die Kompensation verlorengegangener Pakete.
Mögliche Paketverluste durch Schwankungen in der Paketlaufzeit (sog.Jitter) werden im
SAInt-Modul durch einen Paketpuffer reduziert.
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7.4 Kontextbasierte Steuerung

Der Kern des Systems zur ambienten Kommunikation ist die kontextbasierte Steuerung, wel-
che die AmigoMiddlewareverwendet, um relevante Kontextinformationen zu sammeln und
auszuwerten. Hierbei sind Kontextquellen mit Positionsinformationen über Personen bzw.
zentralisierte Dienste wie derLMSnotwendig, um automatisierte Entscheidungen treffen zu
können. DerSAInt-Dienst führt beim Start zunächst eine synchrone Abfrage aller Kontext-
quellen auf Informationen durch und registriert sich anschließend bei diesen für asynchrone
Benachrichtigungen (vgl. Kap. 6.4.1). Ein erster Teil der kontextbasierten Steuerung ist die
bereits vorgestellte automatische Sitzungsverwaltung aus Kap. 7.3.2. Diese führt, ausgehend
von den Kontextinformationen über die Position der Nutzer,eine automatische Registrierung
der Nutzer bei einem Kommunikationsdienst durch.

7.4.1 Follow-Me-Fähigkeiten

Die Idee inFollow-Me-Szenarien ist es, eine Kommunikation einem Sprecher folgen zu las-
sen, ohne dass dieser direkten Einfluss auf eine Anwendung nehmen oder Anweisungen
geben muss. Hierzu muss das System den aktuellen Ort des Kommunikationsteilnehmers
kennen und im Falle einer Positionsänderung eine Anpassungvornehmen. Da eine konti-
nuierliche, zyklische Abfrage von Positionsdaten zu einerhohen Belastung derMiddleware
führt, wird der Mechanismus des asynchronen Datenaustausches verwendet, um auf Ände-
rungen des Kontextes zu reagieren.

Bewegt sich eine Person von einem Raum in einen anderen, so sollte dies durch eine
der Kontextquellen registriert und an denLMSweitergemeldet werden. Da derSAInt-Dienst
beimLMS eineSPARQL-Frage nach der Position aller Personen bei der Registrierung hin-
terlegt hat, wird die Änderung der Position zu einer Kontextinformation als Antwort auf die
SPARQL-Frage führen. Folglich ruft derLMSdie Webservice-Methodenotify des registrier-
tenSAInt-Dienstes mit derSPARQLAntwort als Übergabeparameter auf. DerSAInt-Dienst
selbst signalisiert demSAInt-Modul über dieIPC-Schnittstelle, dass neue Kontextinforma-
tionen vorliegen, und übermittelt diese. Dies führt zu einer Überprüfung der Auswirkungen
der neuen Kontextinformationen auf die laufenden Verbindungen und gegebenenfalls einer
Anpassung dieser. Zudem werden die Registrierungen der Personen beimACSentsprechend
der neuen Daten vorgenommen.

Die Positionsänderung einer Person kann die folgenden Reaktionen hervorrufen. Tritt die
Person in den vonSAInt kontrollierten Bereich ein, so wird sie beimACSregistriert und
in den Kontextinformationen als verfügbar für eine Kommunikation aufgeführt. Betritt eine
Person einen Raum ohne Mikrophone und Lautsprecher, oder verlässt das Haus, so löscht
dasSAInt-Modul automatisch die Registrierung beim Kommunikationsdienst.

Sollte die Person eine laufende Verbindung während des Raumwechsels haben, so ergeben
sich mehrere Möglichkeiten, wie das System reagiert. Wird ein Raum mit Mikrophonen und
Lautsprechern betreten, so lenkt dasSAInt-Modul das Gespräch ohne Unterbrechung des
Datenstroms in den Raum um. Dieses übergangslose (engl.seamless) Umstellen der Ver-
bindung erfolgt für das menschliche Gehör nicht wahrnehmbar, da es ohne Neuaufbau einer
RTP-Verbindung auskommt und verzögerungsfrei umschaltet. Falls die Person einen Raum
ohne Hardware betritt, so stoppt die Verbindung zum entfernten Sprecher und wird gehalten,
bis eine konfigurierbare Zeitspanne erreicht ist oder die Person einen Raum mit Hardware
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wieder betritt. Das Verhalten kann für jede Verbindung individuell eingestellt werden.
Besitzt ein Gerät im Raum einen alternativenSAInt-Dienst, z. B. ein Notebook mit Head-

set, und einen Anmeldungsmanager der die Anmeldedaten als Positionsinformationen an den
LMSweitermeldet, so kann eine Übergabe der Verbindung (engl.handover) an den zweiten
SAInt-Dienst durchgeführt werden. Der Nutzer könnte sich zum Beispiel auf dem Notebook
anmelden und derSAInt-Dienst stellt daraufhin eine Verbindung her. Dies kann jedoch nicht
übergangslos erfolgen, da die alteRTP-Verbindung beendet und eine neue aufgebaut werden
muss. Daher vernehmen beide Nutzer währenddessen einen kurzen Aussetzer der Verbin-
dung, bis dieRTP-Verbindung wieder aufgebaut ist.

7.4.2 SAInt als Kontextquelle

Die ambiente Kommunikation verwendet nicht nur Kontextinformationen, um eine intelli-
gente Steuerung zu realisieren, sondern sie ist gleichzeitig eine Kontextquelle für andere
Applikationen und Dienste. Die Liste 7.3 zeigt die Registrierung desSAInt-Dienstes beim
Kontextbroker als Kontextquelle.

� �
1 <?xml v e r s i o n ="1 .0 "? >
2 < r d f :RDF
3 xmlns=" h t t p : / / amigo . g f o r g e . i n r i a . f r / owl / C o n t e x t T r a ns p o r t . owl #"
4 xmlns : r d f =" h t t p : / / www. w3 . o rg /1999/02/22− r d f−syn tax−ns #"
5 xmlns : r d f s =" h t t p : / / www. w3 . o rg / 2 0 0 0 / 0 1 / rd f−schema #"
6 xml : base =" h t t p : / / amigo . g f o r g e . i n r i a . f r / owl / C o n t e x t Tr a n s p o r t . owl #">
7 < C o n t e x t S o u r c e R e g i s t r a t i o n >
8 < t i m e l i n e s s >
9 c u r r e n t

10 </ t i m e l i n e s s >
11 <con tex tType >
12 S e a m l e s s A u d i o I n t e r f a c e
13 </ con tex tType >
14 </ C o n t e x t S o u r c e R e g i s t r a t i o n >
15 </ r d f :RDF>


� �

Liste 7.3: Registrierung desSAInt-Dienstes beim Kontextbroker

Die Kontextinformationen einesSAIntumfassen die drei Bereiche Hardware, registrier-
te Benutzer und laufende Verbindungen, wie es in Abb. 7.6 beispielhaft dargestellt ist. Der
Bereich Hardware informiert über die Räume, welche durch das SAInt-Modul mit einer Au-
dioschnittstelle abgedeckt sind. Diese Information ist zeitlich konstant, da sie abhängig von
der Hardware ist und sich somit nicht ohne Neustart desOSGI-Bundlesändert. Applika-
tionen können also im vernetzten Haus zunächst nach laufenden SAInt-Diensten über den
Kontextbroker suchen und sich bei diesen als Kontextnutzerregistrieren. Dadurch sind sie in
der Lage, die Abdeckung mit Audioschnittstellen im gesamten Netzwerk zu ermitteln.

Die Informationen über registrierte Benutzer und laufendeVerbindungen zeigen den ak-
tuellen Status derSAInt-Dienste. Hieraus erfahren Applikationen, welche Personen gerade
über einenSAInt-Dienst erreichbar oder aber gerade durch eine laufende Kommunikation
gebunden sind. Benutzer, die aktuell eine Kommunikation führen, werden in der Liste der
registrierten Nutzer nicht aufgeführt, da jeder Nutzer nureine Kommunikation führen kann
und somit für neue Verbindungen nicht zur Verfügung steht.
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Abbildung 7.6: Beispiel für die Kontextinformationen desSAInt-Dienstes

Jede Verbindung zwischen zwei Personen besitzt einen eindeutigen Schlüssel („Connec-
tionID“), eine Charakterisierung der Privatsphäre („PrivacyLevel“), einen Schwellwert für
das Halten unterbrochener Verbindungen („Timeout“ [s]) und einen Verstärkungsfaktor für
die Wiedergabe der empfangenen Signale („Gain“ [dB]). Diese Parameter können mit Hilfe
von Webservice-Methoden im Verlauf der Kommunikation durch Applikationen oder die
Nutzer angepasst werden, um z. B. auf aktuelle Ereignisse zureagieren. Die Informationen
über die Kommunikationsteilnehmer („connectedClient“) zeigen die aktuellen Positionen
der Personen oder aber dieIP-Adressen der entfernten Teilnehmer. Handelt es sich um eine
lokale Verbindung, so zeigen dieIP-Adressen jeweils den Wert „localhost“ und die Räume
stammen aus der Menge der mit Hardware ausgestatteten Räume. Bei externen Verbindungen
ist der Raum des entfernten Teilnehmers auf „unknown“ gesetzt, und dieIP-Adresse ist die
Zieladresse desRTP-Datenstroms.

7.4.3 Schutz der Privatsphäre

Der Schutz der Privatsphäre ist entsprechend der Ergebnisse der Amigo Benutzerstudien
[M+05] bei der kontextabhängigen Steuerung mit berücksichtigt worden. Jede Verbindung
besitzt eine Eigenschaft „PrivacyLevel“, die entweder öffentlich oder privat gesetzt werden
kann. Betritt eine Person einen Raum mit einer laufenden, als privat gekennzeichneten Kom-
munikation so wird die Verbindung unterbrochen, bis die Person den Raum wieder verlässt.
Das gleiche geschieht, falls ein Kommunikationspartner einen Raum betritt, in dem sich be-
reits eine Person befindet.

Jederzeit kann der „PrivacyLevel“ einer Verbindung mittels derWebservice-Methode „con-
figureCommunication(ID, String)“ desSAInt-Dienstes konfiguriert werden. Startet eine Ver-
bindung in einem Raum mit mehr als einer Person, so wird sie standardmäßig als öffentlich
vermerkt, ansonsten werden zunächst die Standardwerte derNutzer verwendet.

Der Sonderfall, dass eine Person mit einer laufenden Kommunikation auf eine weitere Per-
son mit ebenfalls einer laufenden Kommunikation trifft, stellt kein Problem für den Schutz
der Privatsphäre dar. Sind beide Kommunikationen öffentlich, so hören zwar die entfernten
Teilnehmer jeweils das lokale Gespräch der beiden Personen, jedoch können die entfernten
Personen sich gegenseitig nicht hören, da die Echounterdrückung die entsprechenden Si-
gnalanteile herausfiltert. Es ist somit entfernten Gesprächsteilnehmern nicht möglich, Rück-
schlüsse auf die Kommunikationspartner anderer Personen zu ziehen.
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7.5 Visuelle Kommunikation

Im Folgenden wird ein System zur Kommunikation vorgestellt, welches aufbauend auf der
Architektur vonSAInteine audio-visuelle Kommunikation realisiert. Ziel ist eshierbei, die
durch SAInt ermöglichte Bewegungsfreiheit des Nutzers auch bei einer Übertragung von
Videodaten beizubehalten.

7.5.1 Systemintegration

DasSAInt-Modul realisiert bereits dieFollow-Me-Fähigkeiten für die Audiosignale der am-
bienten Kommunikation mit Hilfe desSAInt-Dienstes und derMiddleware. Folglich liegt es
nahe, die visuelle Kommunikation an die akustische Kommunikation zu binden und somit
die gleichen Mechanismen zu nutzen. Die visuelle Kommunikation wird als optionale Kom-
ponente im System integriert. Sie wird genutzt, falls auf beiden Seiten der Kommunikation
geeignete Hardware vorhanden ist.

Ein Unterschied bei der Aufnahme und Wiedergabe von Audio- und Videosignalen ist,
dass die Soundkarte eines Computers mehrere Kanäle aufnehmen und wiedergeben, die
Grafikkarte jedoch meist nur einen Monitor ansteuern kann. Ein Computer kann somit nur
für einen Videodatenstrom genutzt werden. Daher wird zur visuellen Kommunikation das
„Seamless Audio and Video Interface“-Modul (SAVInt-Modul) implementiert, welches die
Videodaten einer Kamera aufnimmt und diese überRTPversenden kann. Empfangene Daten
werden von diesem Modul über einen Ausgang am Bildschirm dargestellt. Zu jeder Kombi-
nation von Kamera und Bildschirm gehört folglich ein laufendesSAVInt-Modul. Die Vide-
odaten der ambienten Kommunikation können sowohl von einerNetzwerkkamera als auch
einer lokal an den Computer angeschlossenen Kamera (z. B. USB-Webcam) stammen. Sie
werden mit demTheora-Codec [The08] komprimiert und mittelsRTPübertragen.
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Abbildung 7.7: Blockschaltbild der Integration vonSAVInt-Modulen in dieSAInt-Architektur

In Abb. 7.7 ist ein Beispiel für die Kommunikation mitSAVInt-Modulen gegeben. Jedes
SAVInt-Modul registriert sich bei einem laufendenSAInt-Modul über eineIPC-Schnittstel-
le mit der Information, welcher Raum durch die Kamera einsehbar ist. EinSAInt-Modul
kann mehrereSAVInt-Module steuern, wodurch im besten Fall alle Räume, welche durch die
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angeschlossenen Mikrophone erreichbar, auch durch Kameras und Monitore versorgt sind.
In Abb. 7.7 ist beispielhaft eine Anordnung für zwei Räume imHaus A und ein Raum in
Haus B skizziert worden. Die Komponenten derMiddleware-Schicht (LMS, Kontextquellen,
etc.) bis auf denSAInt-Dienst wurden in dieser Skizze zur Vereinfachung weggelassen (vgl.
Abb. 7.2).

Ein wesentlicher Vorteil der ambienten Kommunikation ist die Bewegungsfreiheit des Be-
nutzers, so dass dieser sich frei im Raum und zwischen den Räumen bewegen kann. Diese
Freiheit sollte bei der Integration von Videodaten mit berücksichtigt werden. Jedoch bein-
haltet eine Kommunikation mit Videodaten zunächst den Nachteil, dass der überwiegende
Teil von Kameratypen fest im Raum installiert wird und einenfesten Blickwinkel hat. Be-
nutzer, die sich frei bewegen, können somit aus dem Bild herauslaufen. Dies kann durch
eine passende Wahl der Kameraposition und einer Weitwinkelaufnahme umgangen werden,
jedoch führt dies zu einem Bild, in dem der Kommunikationspartner in vielen Positionen
im Raum nur sehr klein dargestellt werden kann. Alternativ kann das in Kap. 4.4.4 (vgl.
Abb. 4.24, S. 54) vorgestellte System zur Steuerung einer schwenk- und zoombaren Kamera
genutzt werden. Hierzu wird im Videosystem einSAVInt-Modul zur Übertragung und zum
Empfang von Videodaten integriert, dessen Ausgang auf dem Bildschirm dargestellt wird.
Das Audiosystem wird entsprechend der Abb. 7.3 (S. 94) um dieSignalverarbeitung zur
Echounterdrückung und Störgeräuschfilterung und um einSAInt-Modul erweitert. Da die
empfangenen Audiodaten desSAInt-Moduls über die Lautsprecher wiedergegeben werden,
muss die Adaption der akustischen Strahlformung durch eineneue Logik gesteuert werden.
Diese Logik sorgt dafür, dass, falls der entfernte Sprecheraktiv ist, die Adaption der Filter
unterbrochen wird, um eine Ausrichtung der Kamera auf die Lautsprecher zu verhindern.
Der Ablauf einer Kommunikation wird im Folgenden anhand eines Beispiels erläutert.

7.5.2 Kommunikationsbeispiel

Das Kommunikationsbeispiel nimmt an, dass derSAInt-Dienst im Haus A eine Kommuni-
kation zwischen den Nutzern A und B mit Hilfe desSAInt-Moduls initiiert (vgl. Abb. 7.7).
DasSAInt-Modul im Haus A sendet eine Verbindungsanfrage über denACSan dasSAInt-
Modul im Haus B. Nachdem Nutzer B der Kommunikation zugestimmt hat, beginnen beide
SAInt-Module die Audiodaten (vgl. Abb. 7.7, „RTPAudio“) zu den vomACSübermittelten
IP-Adressen zu senden.

Zeitgleich mit dem Start der Audioverbindung geben dieSAInt-Module an die jeweiligen
SAVInt-Module der Räume, in denen sich die Nutzer aufhalten, die Anweisung, eine Video-
verbindung aufzubauen. Zu diesem Zweck registrieren sich die SAVInt-Module auf demACS
und handeln eine Videoverbindung aus. Die Videodaten werden direkt mit einerRTP-Verbin-
dung (vgl. Abb. 7.7, „RTPVideo“) zwischen denSAVInt-Modulen ausgetauscht, so dass die
Audiodaten und Videodaten getrennt übertragen werden. Eine getrennte Übertragung kann
ohne Synchronisierung der Datenströme erfolgen, falls dieLaufzeitdifferenz zwischen den
beiden Datenströmen niedrig ist.

Die Videokommunikation desSAVInt-Moduls wird über dieIPC-Schnittstelle desSAInt-
Moduls kontrolliert. Sollte dasSAInt-Modul durch denSAInt-Dienst die Beendigung der
Verbindung signalisiert bekommen, so wird mit der Beendigung der akustischen Kommuni-
kation auch die visuelle Kommunikation gestoppt.
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7.5.3 Follow-Me-Fähigkeiten

Die Follow-Me-Fähigkeiten des Systems werden benötigt, sobald ein Benutzer den Raum
wechselt. Entsprechend des obigen Beispiels nehmen wir an,dass der Nutzer A von Raum
Y in den Raum X geht. In diesem Fall benachrichtigt derSAInt-Dienst dasSAInt-Modul
über den Positionswechsel des Nutzers. DasSAInt-Modul leitet den Audiodatenstrom in den
Raum X um und stoppt über dieIPC-Schnittstelle die Videoübertragung desSAVInt-Moduls
aus Raum Y. Da in Raum X auch einSAVInt-Modul verfügbar ist, initiiert dasSAInt-Modul
über dieIPC-Schnittstelle eine Videoverbindung. Nach dem Aushandelnder Videoverbin-
dung über denACSstartet diese mit einer leichten Verzögerung gegenüber derAudiover-
bindung. Im Gegensatz zur Audioverbindung, welche nahtlosdie Räume wechseln kann,
erzwingt die Videoverbindung bei jedem Raumwechsel einen Neuaufbau derRTP-Verbin-
dung.

7.6 Demonstration

Im Rahmen des AmigoOpendayim Februar 2008 wurde die ambiente Kommunikation zwi-
schen Standorten in Deutschland, Frankreich und den Niederlanden demonstriert. Trotz der
unterschiedlichen Ausstattung mit Hardware konnten die Komponenten der ambienten Kom-
munikation an allen Standorten verwendet werden. Dies wurde durch den modularen Aufbau
der Software ermöglicht, welcher den Anforderungen eines Standortes entsprechend ange-
passt werden konnte. Zudem zeigte es die Flexibilität der Amigo Middlewarein Bezug auf
die Integration anderer Applikationen und Dienste. Ein Beispiel hierfür war die Nutzung des
SAInt-Dienstes zur Kommunikation durch andere Applikationen. Hierbei nutzten die Appli-
kationen die vomSAInt-Dienst exportiertenWebservice-Schnittstellen zur Steuerung einer
audio-visuellen Kommunikation. Der Standort in Deutschland verwendete die audio-visuelle
Kamerasteuerung, um die Vorteile einer akustischen Kamerasteuerung zu demonstrieren.
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Im Rahmen dieser Arbeit wurde ein System zur akustischen Szenenanalyse entwickelt, wel-
ches fortlaufend die Identität und Position des aktuellen Sprechers ermittelt. Die Verwen-
dung des Systems in einem Kommunikationsszenario führte zur Entwicklung einer audio-
visuellen Sprecherprotokollierung, deren Fehlerrate durch eine Gesichtserkennung signifi-
kant reduziert wurde. Des Weiteren wurden die AmigoMiddlewareund das System zur
Verarbeitung von Kontextinformationen vorgestellt. Hierbei wurde die Einbindung der akus-
tischen Szenenanalyse als Quelle von Kontextinformationen gezeigt. Anschließend wurde
mit Hilfe der Middlewareund den Amigo Diensten ein System zur ambienten Kommuni-
kation realisiert. Dabei ermöglichte die Verfügbarkeit unterschiedlicher Kontextquellen eine
kontextabhängige Steuerung.

Die zeitlichen Anforderungen des vernetzten Hauses an Informationsquellen wurde in die-
ser Arbeit als hoch eingestuft, da die Akzeptanz eines Systems durch seine Benutzer in Folge
hoher Latenzen gefährdet ist. Die drei Schlüsselelemente der akustischen Signalverarbeitung
in „intelligenten Umgebungen“ werden durch die automatische Spracherkennung, die akus-
tische Szenenanalyse und die ambiente Kommunikation gebildet. Innerhalb dieser Arbeit
wurden die Aspekte der akustischen Szenenanalyse und der ambienten Kommunikation nä-
her untersucht.

Ausgehend von den zuvor identifizierten Forschungszielen wurde zunächst die Sprecher-
protokollierung als Teil der akustischen Szenenanalyse betrachtet. Diese gliederte sich in
die Aufgaben der Segmentierung der Daten in homogene Abschnitte und die anschließende
Klassifikation dieser Segmente. Hierbei zeigte sich, dass die auf dem Bayes’schen Informa-
tionskriterium basierende Segmentierungstechnik sowohlvon der Signalverarbeitung durch
die akustische Strahlformung als auch von den Positionsdaten der Sprecher profitierte.

Die sequentielle Segmentierung und Identifikation von Sprechern in Datenströmen besaß
den inhärenten Nachteil, dass frühzeitig getroffene Entscheidungen in der Segmentierung
nicht rückgängig gemacht werden konnten. Dieser Nachteil resultierte aus den zeitlichen An-
forderungen an die akustische Szenenanalyse, welche dem System Informationen mit einer
möglichst geringen Latenz zur Verfügung stellen sollte. Dahierdurch weder iterative noch
mehrstufige Verfahren verwendet werden können, wurde ein neuer Ansatz zur gleichzeiti-
gen Segmentierung, Lokalisation und Sprecheridentifikation entwickelt. Grundidee dieses
Ansatzes war die Verwendung einesHidden Markov Modelsmit zeitveränderlichen Tran-
sitionswahrscheinlichkeiten, dessen Zustände die trainierten Sprecher repräsentierten. Die
Berechnung der Transitionswahrscheinlichkeiten wurde realisiert über die Sprecherwechsel-
informationen, welche durch die akustische Positionsschätzung und das Bayes’sche Infor-
mationskriterium bereitgestellt wurden. Die Implementierung einer vorzeitigen Zurückver-
folgung der Entscheidungen ermöglichte die Verwendung desAnsatzes auf kontinuierlichen
Datenströmen mit geringer Latenz. Experimentell konnte gezeigt werden, dass der Median
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der Entscheidungen für den aktuellen Sprecher bei weniger als einer halben Sekunde lag.
Dabei führte die Begrenzung der maximalen Latenz auf zwei Sekunden nur zu einer gerin-
gen Erhöhung der Fehlerrate. Des Weiteren zeigten die Experimente, dass der neue Ansatz
der gemeinsamen Segmentierung und Klassifikation höhere Klassifikationsraten erzielte als
ein vergleichbares sequentielles Verfahren.

Die in dieser Arbeit betrachtete Umgebung war mit Mikrophonen und Kameras ausge-
stattet. Dies bot die Möglichkeit, die Sprecherprotokollierung in Kommunikationsszenarien
durch Informationen aus der Bildverarbeitung zu verbessern. Das hierzu integrierte Video-
system ermöglichte die Detektion und Identifikation von Gesichtern. Ein Datenaustausch
zwischen der akustischen Signalverarbeitung und der visuellen Datenverarbeitung führte zu
einer Verbesserung beider Systeme. Die Kamera konnte durchdie Kopplung der Systeme so-
wohl akustisch als auch anhand erkannter Gesichter automatisch gesteuert werden. Folglich
war es möglich, die Kamera immer auf den aktuellen Sprecher auszurichten, selbst wenn
dieser nicht in die Kamera schaute oder außerhalb des Kamerablickwinkels war. Detektierte
und identifizierte das Videosystem das Gesicht eines Sprechers, so wurde diese Informati-
on an das System zur Sprecherprotokollierung weitergegeben. Die Integration der visuellen
Informationen des Videosystems in den Prozess der akustischen Sprecherprotokollierung
führte zu einer Erweiterung des zuvor vorgestellten Ansatzes. Die Emissionswahrschein-
lichkeiten derHMM-Zustände wurden nun sowohl durch die akustischen Sprechermodelle
als auch durch die visuellen Modelle der Nutzer bestimmt. Experimente zeigten, dass durch
die Berücksichtigung der visuellen Informationen die Klassifikationsfehlerrate im Vergleich
zu einem rein akustischen System um die Hälfte gesenkt werden konnte.

Ein weiteres Forschungsgebiet der akustischen Szenenanalyse ist die Identifikation akus-
tischer Ereignisse, welche die aus der Sprecherprotokollierung bekannte Fragestellung „Wer
spricht Wann und Wo?“ noch um die Komponente „Während Was passiert?“ erweitert. Im
Rahmen dieser Arbeit wurden verschiedene Verfahren zur Modellierung der Ereignisse un-
tersucht und die Verwendbarkeit der Merkmale aus der Sprecheridentifikation getestet. Zu-
nächst wurden die Modellparameter zur Beschreibung der akustischen Ereignisse mittels
eines „Maximum Likelihood“-Verfahrens geschätzt. Anschließend wurden Modelle mit dem
diskriminativen Lernverfahren „Maximum Mutual Information“ trainiert. In Experimenten
wurde gezeigt, dass die Modelle aus dem diskriminativen Lernverfahren eine niedrigere
Klassifikationsfehlerrate ermöglichen als die Modelle ausder „Maximum Likelihood“-Pa-
rameterschätzung.

Die Datenbasis zur akustischen Ereignisdetektion stammteaus dem Bereich der professio-
nell genutzten Arbeitsumgebungen und wurde im ProjektCHIL erstellt. Da die Datenbasis
aus mehrkanaligen Aufnahmen bestand, konnte eine Verbesserung der Klassifikationsrate
durch die Auswahl und Kombination von Kanälen erzielt werden. Die mittlere Klassifikati-
onsrate lag im Fall der Einzelerkennung bei über90% und bei der Kombination mehrerer
Kanäle sogar über93%.

Die Gewinnung von Kontextinformationen war der erste Schritt zum Aufbau einer durch
den Benutzer als „intelligent“ wahrgenommenen Umgebung. Erst die Integration von Kon-
textquellen, wie z. B. der akustischen Szenenanalyse, in einen Verbund von Diensten und Ap-
plikationen erlaubte das Treffen von kontextabhängigen und somit „intelligenten Entschei-
dungen“. Im Rahmen dieser Arbeit wurde die Integration der akustischen Szenenanalyse in
die AmigoMiddlewarevorgestellt, wobei ein Schwerpunkt auf das Kontextmanagement ge-
legt wurde. Das Amigo System zum Kontextmanagement verwendete einen Kontextbroker
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als zentralen Anlaufpunkt für Kontextquellen und Kontextnutzer. Die Interaktion der Diens-
te untereinander wurde über standardisierteWebservice-Schnittstellen realisiert, so dass eine
offene, dienstorientierte Softwarearchitektur gebildetwurde.

Aufbauend auf der AmigoMiddlewareund den vorhandenen Kontextquellen wurde im
letzten Teil der Arbeit ein System zur ambienten Kommunikation vorgestellt, welches als
Beispiel einer kontextbewussten Anwendung angesehen werden kann. Hierbei wurden die
Komponenten zur akustischen Signalverarbeitung vorgestellt, welche zur Unterdrückung
von Echos und Störgeräuschen notwendig sind. Diese aus der Literatur entnommenen Ver-
fahren wurden in ein echtzeitfähiges System integriert undum Komponenten zur Audio- und
Videodatenkompression sowie zum Datenaustausch ergänzt.Hierdurch war es möglich, eine
echtzeitfähige Kommunikation zwischen zwei beliebigen Standorten über ein gemeinsames
IP-Netzwerk aufzubauen und gleichzeitig eine Datenverteilung im lokalen System vorzu-
nehmen.

Die Steuerung der Datenströme innerhalb der ambienten Kommunikation erfolgte kon-
textbasiert durch die in derMiddlewarevorhandenen Daten über die Nutzerpositionen. Da-
bei stellte die audio-visuelle Sprecherprotokollierung,als Teil der akustischen Szenenanaly-
se, eine mögliche Kontextquelle neben anderen Verfahren zur Positionsbestimmung dar. Im
Vergleich mit anderen Systemen, wie z. B.RFID-basierter Positionsschätzung, bot die akus-
tische Szenenanalyse den Vorteil, dass keine zusätzlichenGeräte durch den Benutzer mit-
geführt werden mussten. Das System der ambienten Kommunikation nutzte unter anderem
die vorhandenen Kontextinformationen, um automatisiert die Sitzungsverwaltung für Benut-
zer durchzuführen. Des Weiteren standen dem Nutzer währendder KommunikationFollow-
Me-Fähigkeiten zur Verfügung, d. h. der Nutzer konnte sich frei im Raum und zwischen
den Räumen bewegen, während die kontextbewusste Steuerungdie Audio- und Videodaten
der Kommunikation dem Nutzer automatisch folgen ließ. Die Verwendung einer schwenk-
und zoombaren Kamera, welche mit den kombinierten Ergebnissen der akustischen Posi-
tionsschätzung und der Gesichtsdetektion gesteuert wurde, ermöglichte eine automatische
Ausrichtung der Kamera auf den aktuellen Sprecher.

Ausblick

Die hier vorgestellten Systeme zur akustischen Szenenanalyse und zur ambienten Kommuni-
kation verwendeten vorab trainierte Modelle, die aus einerinitialen Trainingsphase stamm-
ten. Der Aufwand eines solchen Trainings steht im Gegensatzzu den Ideen der ambienten
Intelligenz, da dort die automatische Anpassung des Systems an den Benutzer gefordert wird.
Daher ist der nächste Entwicklungsschritt des Systems, dass ein automatisches Training der
Benutzer und der Hardwareausstattung durchgeführt wird. Anstatt Modelle für jeden Nut-
zer vorab zu trainieren, wird das System eigenständig neue Benutzer erkennen und für diese
neue Modelle trainieren. Somit wird das System sukzessiv alle Nutzer beobachten und deren
Modelle mit zunehmender Datenmenge immer besser trainieren. Im Bezug auf die Hardwa-
re wird das System um selbstkonfigurierende und selbstlernende Komponenten erweitert, so
dass es z. B. eigenständig die Geometrie und Position von Mikrophongruppen bestimmen
kann.
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A Anhang

A.1 Herleitung ∆BIC

Die Likelihoodder HypotheseH0 ist gegeben mit:
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Logarithmieren der Dichtefunktion ergibt dieLog-Likelihood:
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Für die weiteren Umformungen werden einige Eigenschaften von Matrizen verwendet, die
im Folgenden angegeben werden. Wenn die MatrixA bestehend aus den ElementenAij
durch das Produkt zweier Vektorena undb mit

A = (Aij) = a · bT = (ai · bj) (A.4)

dargestellt werden kann, so gilt für die Spur vonA:
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Somit kann die Summe aus Gl. A.3 umgeformt werden zu:

Nw∑

k=1

(x(k) − µ0)
T
Σ

−1
0︸ ︷︷ ︸

aT
k

(x(k) − µ0)︸ ︷︷ ︸
bk

=
Nw∑

k=1

spur


Σ

−1
0 (x(k) − µ0)︸ ︷︷ ︸

ak

(x(k) − µ0)
T

︸ ︷︷ ︸
bT

k


 (A.6)

= spur

(
Nw∑

k=1

Σ
−1
0 (x(k) − µ0)(x(k) − µ0)

T

)

= spur

(
Σ

−1
0

Nw∑

k=1

(x(k) − µ0)(x(k) − µ0)
T

)
. (A.7)

113



114 Anhang

DaΣ0 mit
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aus den MerkmalsvektorenX1:Nw
geschätzt wird, folgt für Gl. A.7:
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Somit folgt für Gl. A.3:
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DNw

2
(1 + log(2π)). (A.12)

Des Weiteren ist dieLikelihoodder HypotheseH1 gegeben durch:

p(X1:Nw
|H1) =

Nw/2∏

k=1

1

(2π)
D
2 |Σ1|

1

2

· exp

(
−1

2

(
(x(k) − µ1)

T
Σ

−1
1 (x(k) − µ1)

))

Nw∏

k=Nw/2+1

1

(2π)
D
2 |Σ2|

1

2

exp

(
−1

2

(
(x(k) − µ2)

T
Σ

−1
2 (x(k) − µ2)

))
(A.13)

=
(
(2π)D|Σ1|

)−Nw
4 exp


−1

2

Nw/2∑

k=1

(
(x(k) − µ1)

T
Σ

−1
1 (x(k) − µ1)

)



(
(2π)D|Σ2|

)−Nw
4 exp



−1

2

Nw∑

k=Nw/2+1

(
(x(k) − µ2)

T
Σ

−1
2 (x(k) − µ2)

)


 .

(A.14)

Das Logarithmieren der Dichtefunktion der HypotheseH1 und die Verwendung von Gl. A.4
und Gl. A.5 führt auf:

log (p(X1:Nw
|H1)) = − DNw

2
log(2π) − Nw

4
log(|Σ1||Σ2|) − 2

1

2

DNw

2
. (A.15)

Entsprechend der Definition für∆BIC [DW00] berechnet sich dessen Wert aus der Diffe-
renz der Gleichungen Gl. A.12 und Gl. A.15 und deren zugehörigen Gewichtsterme für die
Modellkomplexität zu:

∆BIC = BIC(H1) − BIC(H0) (A.16)

= −Nw

4
log(|Σ1||Σ2|) −

DNw

2
(1 + log(2π)) − ξ

m1

2
logNw

+
Nw

2
log(|Σ0|) +

DNw

2
(1 + log(2π)) + ξ

m0

2
logNw (A.17)

=
Nw

2
log(|Σ0|) −

Nw

4
log(|Σ1||Σ2|) − ξ

m0

4
logNw. (A.18)

Im letzten Schritt wurde die Vereinfachung verwendet, dassdie HypotheseH1 doppelt so
viele Modellparameter besitzt, wie die HypotheseH0 (m1 = 2m0).
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A.2 Herleitung MMI -Parameterschätzung

Gegeben seien jeweilsNk MerkmalsvektorenXk,1:Nk
= [xk(1), . . . ,xk(Nk)] für jede der

k = 1, . . . , K Klassen, welche zur Parameterschätzung der Modelle verwendet werden sol-
len. Jede Klasse soll durch einGMM mit M Mischungsverteilungen beschrieben werden.
Die Zufallsvariabel der Klassenzugehörigkeit eines Merkmalsvektorsxk(n) werde mitΩ
und die Zufallsvariabel der Zugehörigkeit zu einer Mischungsverteilung mitZ bezeichnet.
Das Ziel derMMI -Parameterschätzung ist die Maximierung der Anzahl der korrekt klas-
sifizierten Trainingsmerkmale [LP96]. Folglich muss für die Parameterschätzung deri-ten
Klasse

P (Ω = i|Xi,1:Ni
;Θ) =

Ni∏

n=1

p(xi(n)|Ω = i;Θi) · P (Ω = i)

p(xi(n))
(A.19)

=

Ni∏

n=1

p(xi(n)|Ω = i;Θi) · P (Ω = i)
K∑
k=1

p(xi(n)|Ω = k;Θk) · P (Ω = k)

. (A.20)

maximiert werden. Die Parameterschätzung soll anhand des logarithmierten Ausdrucks aus
Gl. A.20 erfolgen.

Qi(Θ) = log (P (Ω = i|Xi,1:N ;Θ)) (A.21)

= log




Ni∏

n=1

p(xi(n)|Ω = i;Θi) · P (Ω = i)
K∑
k=1

p(xi(n)|Ω = k;Θk) · P (Ω = k)




=

Ni∑

n=1

log




p(xi(n)|Ω = i;Θi) · P (Ω = i)
K∑
k=1

p(xi(n)|Ω = k;Θk) · P (Ω = k)




=

Ni∑

n=1

[
log (p(xi(n)|Ω = i;Θi) · P (Ω = i))

− log

(
K∑

k=1

p(xi(n)|Ω = k;Θk) · P (Ω = k)

)]
(A.22)
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Zunächst erfolgt die Berechnung des Gradienten zur Bestimmung der ParameterwerteΘi

durch:

∇Θi
Qi(Θ)

=

Ni∑

n=1



∇Θi

[p(xi(n)|Ω = i;Θi)]

p(xi(n)|Ω = i;Θi)
−

∇Θi

[
K∑
k=1

p(xi(n)|Ω = k;Θk)P (Ω = k)

]

K∑
k=1

p(xi(n)|Ω = k;Θk)P (Ω = k)


 (A.23)

=

Ni∑

n=1



∇Θi

[p(xi(n)|Ω = i;Θi)]

p(xi(n)|Ω = i;Θi)
− ∇Θi

[p(xi(n)|Ω = i;Θi)P (Ω = i)]
K∑
k=1

p(xi(n)|Ω = k;Θk)P (Ω = k)




=

Ni∑

n=1





1 − p(xi(n)|Ω = i;Θi)P (Ω = i)

K∑
k=1

p(xi(n)|Ω = k;Θk)P (Ω = k)




︸ ︷︷ ︸
ψi(n)

∇Θi
[log (p(xi(n)|Ω = i;Θi))]




=

Ni∑

n=1

[ψi(n)∇Θi
[log (p(xi(n)|Ω = i;Θi))]] . (A.24)

Im Folgenden wird der Ausdruck

ψi(n) =


1 − p(xi(n)|Ω = i;Θi)P (Ω = i)

K∑
k=1

p(xi(n)|Ω = k;Θk)P (Ω = k)


 (A.25)

zur Abkürzung der Schreibweise verwendet. Er kann interpretiert werden als die Wahr-
scheinlichkeit, dass ein Merkmalsvektorxi(n) mit den aktuellen Modellparametern aller
Klassen falsch klassifiziert wird. Die denLikelihoodsp(xi(n)|Ω = i;Θi) zugrundeliegen-
den Verteilungsdichtefunktionen sind Gauß’sche Mischungsverteilungen. Sie bestehen aus
jeweilsM Einzelverteilungenp(xi(n)|Ω = i, Z = m;Θi), welche mit

ci,m = P (Z = m|Ω = i) m = 1, . . . ,M (A.26)

gewichtet sind. Folglich sind dieLikelihoodsder Verteilungsdichtefunktionen mit

p(xi(n)|Ω = i;Θi) =
M∑

m=1

ci,m · p(xi(n)|Ω = i, Z = m;Θi) (A.27)
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gegeben. Für die Berechnung des Mittelwertvektors oder derKovarianzmatrix derj-ten Ein-
zelverteilung folgt

∇Θi,j
[log (p(xi(n)|Ω = i;Θi))]

=∇Θi,j

[
log

(
M∑

m=1

ci,m · p(xi(n)|Ω = i, Z = m;Θi)

)]
(A.28)

=
∇Θi,j

[ci,j · p(xi(n)|Ω = i, Z = j;Θi)]

p(xi(n)|Ω = i;Θi)
(A.29)

=
ci,j

p(xi(n)|Ω = i;Θi)
∇Θi,j

[p(xi(n)|Ω = i, Z = j;Θi)] , (A.30)

wobei die Umformung von Gl. A.29 auf Gl. A.30 berücksichtigt, dass der Gradient nicht für
die Mischungsgewichte betrachtet wird. Die Anwendung der Bayes’schen Regel für bedingte
Wahrscheinlichkeiten auf Gl. A.30 in der Form

P (Z = j|Ω = i)

p(xi(n)|Ω = i;Θi)
=

P (Z = j|xi(n),Ω = i;Θi)

p(xi(n)|Ω = i, Z = j;Θi)
(A.31)

⇔ ci,j
p(xi(n)|Ω = i;Θi)

=
γi,j(n)

p(xi(n)|Ω = i, Z = j;Θi)
(A.32)

mit

γi,j(n) = P (Z = j|xi(n),Ω = i;Θi) (A.33)

führt auf:

∇Θi,j
[log (p(xi(n)|Ω = i;Θi))]

=
γi,j(n)

p(xi(n)|Ω = i, Z = j;Θi)
∇Θi,j

[p(xi(n)|Ω = i, Z = j;Θi)] (A.34)

=γi,j(n)∇Θi,j
[log (p(xi(n)|Ω = i, Z = j;Θi))] . (A.35)

Die Bestimmung der Mittelwertvektorenµi,j derj-ten Einzelverteilung kann unter Verwen-
dung von [BSMM01] mit

∇µi,j
log (p(xi(n)|Ω = i;Θi)) = ∇µi,j

log

(
exp(− 1

2
(xi(n)−µi,j)

T
Σ

−1

i,j
(xi(n)−µi,j))√

(2π)D|Σi,j |

)
(A.36)

= Σ
−1
i,j (xi(n) − µi,j) (A.37)

erfolgen. Das Einsetzen der Teilergebnisse aus Gl. A.35 undGl. A.37 in die Gradientenglei-
chung aus Gl. A.24 liefert die Bestimmungsgleichung für diegeschätzten Mittelwertvektoren
µ̂i,j mit:

∇µi,j
Qi(Θ)

∣∣∣∣
µi,j=bµi,j

!
= 0 (A.38)

⇔0 =

Ni∑

n=1

[
ψi(n) · γi,j(n) · Σ−1

i,j (xi(n) − µ̂i,j)
]

⇔µ̂i,j =

Ni∑
n=1

[ψi(n) · γi,j(n) · xi(n)]

Ni∑
n=1

ψi(n) · γi,j(n)

. (A.39)
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Entsprechend der Herleitung für die Mittelwertvektorenµ̂i,j wird für die Schätzung der Ko-
varianzmatrizen̂Σi,j zunächst der Gradient aus Gl. A.35 mit Hilfe von [Fuk90] bestimmt:

∇Σi,j
log (p(xi(n)|Ω = i;Θi))

=∇Σi,j
log




exp
(
−1

2
(xi(n) − µi,j)

T
Σ

−1
i,j (xi(n) − µi,j)

)

√
(2π)D |Σi,j|


 (A.40)

= − 1

2
∇Σi,j

[
log (|Σi,j|) + (xi(n) − µi,j)

T
Σ

−1
i,j (xi(n) − µi,j)

]

= − 1

2

(
Σ

−1
i,j −Σ

−1
i,j (xi(n) − µi,j) (xi(n) − µi,j)

T
Σ

−1
i,j

)
. (A.41)

Setzt man die Teilergebnisse aus Gl. A.41 und Gl. A.35 in die Gradientengleichung aus Gl.
A.24 ein, so folgt:

∇Σi,j
Qi(Θ)

∣∣∣∣
Σi,j=bΣi,j

!
= 0 (A.42)

⇔0 =

Ni∑

n=1

[
ψi(n) · γi,j(n)

(
Σ̂

−1
i,j − Σ̂

−1
i,j (xi(n) − µi,j) (xi(n) − µi,j)

T
Σ̂

−1
i,j

)]

⇔Σ̂i,j =

Ni∑
n=1

[
ψi(n) · γi,j(n) (xi(n) − µi,j) (xi(n) − µi,j)

T
]

Ni∑
n=1

ψi(n) · γi,j(n)

. (A.43)

Die Schätzung der Mischungsgewichteĉi,j erfolgt mit Hilfe des Lagrange-Multiplikators,
der in die Optimierung aus Gl. A.22 mit einbezogen wird:

Q′
i(Θ, λ) =

Ni∑

n=1

log




p(xi(n)|Ω = i;Θi)P (Ω = i)
K∑
k=1

p(xi(n)|Ω = k;Θk)P (Ω = k)


 + λ

(
M∑

m=1

ci,m − 1

)
(A.44)

Die Berechnung des Gradienten für den Ausdruck in Gl. A.44 liefert die Bestimmungsglei-
chung fürci,j mit:

∇ci,jQ
′
i(Θ, λ)

∣∣∣∣
ci,j=bci,j

!
= 0 (A.45)

⇔
Ni∑

n=1

[
p(xi(n)|Ω = i, Z = j;Θi)P (Ω = i)

p(xi(n)|Ω = i;Θi)P (Ω = i)

− p(xi(n)|Ω = i, Z = j;Θi)P (Ω = i)
K∑
k=1

p(xi(n)|Ω = k;Θk)P (Ω = k)

]
+ λ = 0

⇔
Ni∑

n=1

[
ψi(n)

p(xi(n)|Ω = i, Z = j;Θi)

p(xi(n)|Ω = i;Θi)

]
+ λ = 0. (A.46)
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Unter Verwendung von Gl. A.32 folgt:

Ni∑

n=1

[
ψi(n)

γi,j(n)

ĉi,j

]
+ λ = 0 (A.47)

⇔ ĉi,j =
−1

λ

Ni∑

n=1

ψi(n) · γi,j(n). (A.48)

Die Summation derM-Gleichungen aus Gl. A.48 führt mit

M∑

m=1

ci,m = 1 (A.49)

zur Bestimmung des Lagrange-Multiplikators:

−λ =

Ni∑

n=1


1 − p(xi(n)|Ω = i;Θi)P (Ω = i)

K∑
k=1

p(xi(n)|Ω = k;Θk)P (Ω = k)


 . (A.50)

Somit folgt für die Mischungsgewichtêci,j:

ĉi,j =

Ni∑
n=1

ψi(n) · γi,j(n)

Ni∑
n=1

ψi(n)·
. (A.51)

Die MMI -Parameterschätzung ist einEM-Algorithmus. Im ersten Schritt (Expectation) wer-
den die Erwartungswerte der Wahrscheinlichkeit einer Fehlklassifikation (vgl. Gl. A.25) und
die Zugehörigkeit zu einer Mischungsverteilung (vgl. Gl. A.33) mit Hilfe der aktuellen Mo-
dellparameter geschätzt. Im zweiten Schritt (Maximization) werden die im vorherigen Schritt
berechneten Werte verwendet, um eine neue Schätzung der Modellparameter (vgl. Gl. A.51,
Gl. A.39, Gl. A.43) durchzuführen und somit die Zielfunktion (Gl. A.20) zu maximieren.
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A.3 Experimentelle Ergebnisse der Ereignisdetektion

Die folgenden zwei Tabellen enthalten die Klassifikationsraten der Ereignisidentifikation
für jedes einzelne Mikrophon im Raum. Tab. A.1 gibt die Ergebnisse für die Testdaten auf
DVD 2 und Tab. A.2 die Ergebnisse für DVD 3 wieder. Die beiden letzten Zeilen geben die
beste und die schlechteste Klassifikationsrate für jedes Ereignis wieder, um die Spannbreite
der Klassifikationsraten zwischen den22 Mikrophonen aufzuzeigen.

ap cl cm co do ds kj kn kt la pr pw st un

Mik. 1 100,00 100,00 85,71 90,91 100,00 95,24 95,24 100,00 96,00 95,24 86,11 82,76 91,67 76,09
Mik. 2 100,00 100,00 89,29 90,91 100,00 95,24 95,24 100,00 96,00 95,24 88,89 82,76 87,50 80,43
Mik. 3 100,00 100,00 89,29 95,45 100,00 95,24 95,24 100,00 92,00 90,48 86,11 86,21 91,67 82,61
Mik. 4 100,00 100,00 89,29 90,91 85,00 85,71 100,00 100,00 100,00 90,48 91,67 96,55 83,33 80,43
Mik. 5 100,00 100,00 92,86 90,91 100,00 95,24 95,24 100,00 92,00 85,71 88,89 79,31 91,67 82,61
Mik. 6 100,00 100,00 96,43 90,91 80,00 85,71 95,24 100,00 92,00 90,48 94,44 89,66 87,50 82,61
Mik. 7 100,00 100,00 92,86 90,91 100,00 95,24 95,24 100,00 96,00 95,24 88,89 86,21 91,67 86,96
Mik. 8 100,00 100,00 89,29 95,45 100,00 95,24 95,24 100,00 96,00 90,48 86,11 82,76 91,67 82,61
Mik. 9 100,00 100,00 82,14 100,00 100,00 90,48 100,00 100,00 92,00 95,24 91,67 79,31 91,67 86,96
Mik. 10 100,00 100,00 85,71 100,00 100,00 95,24 100,00 100,00 92,00 80,95 91,67 82,76 91,67 86,96
Mik. 11 100,00 100,00 85,71 100,00 100,00 95,24 95,24 100,00 92,00 85,71 86,11 75,86 87,50 84,78
Mik. 12 100,00 100,00 85,71 100,00 100,00 95,24 100,00 100,00 92,00 85,71 97,22 72,41 91,67 86,96
Mik. 13 100,00 100,00 82,14 86,36 100,00 95,24 100,00 100,00 96,00 95,24 80,56 86,21 87,50 89,13
Mik. 14 100,00 100,00 85,71 86,36 100,00 95,24 90,48 100,00 92,00 90,48 77,78 89,66 91,67 89,13
Mik. 15 100,00 100,00 85,71 77,27 100,00 95,24 80,95 100,00 92,00 95,24 80,56 89,66 91,67 86,96
Mik. 16 100,00 100,00 89,29 86,36 100,00 85,71 95,24 93,75 92,00 95,24 88,89 93,10 75,00 76,09
Mik. 17 100,00 100,00 89,29 90,91 100,00 85,71 95,24 93,75 92,00 90,48 83,33 93,10 75,00 71,74
Mik. 18 100,00 100,00 89,29 86,36 100,00 85,71 100,00 93,75 92,00 90,48 88,89 96,55 83,33 78,26
Mik. 19 100,00 100,00 89,29 90,91 95,00 85,71 100,00 87,50 92,00 95,24 91,67 96,55 83,33 76,09
Mik. 20 100,00 100,00 89,29 90,91 100,00 85,71 100,00 87,50 88,00 100,00 88,89 93,10 83,33 76,09
Mik. 21 100,00 100,00 92,86 90,91 100,00 85,71 100,00 87,50 96,00 95,24 94,44 93,10 83,33 73,91
Mik. 22 100,00 100,00 89,29 90,91 100,00 85,71 95,24 93,75 88,00 90,48 91,67 96,55 83,33 76,09

Minimum 100,00 100,00 82,14 77,27 80,00 85,71 80,95 87,50 88,00 80,95 77,78 72,41 75,00 71,74
Maximum 100,00 100,00 96,43 100,00 100,00 95,24 100,00 100,00 100,00 100,00 97,22 96,55 91,67 89,13

Tabelle A.1: Klassifikationsraten der Ereignisse je Kanal für die Testdaten (DVD 2)

ap cl cm co do ds kj kn kt la pr pw st un

Mik. 1 100,00 100,00 96,00 90,48 100,00 95,00 86,96 88,24 100,00 90,48 72,09 87,50 90,48 80,95
Mik. 2 100,00 100,00 92,00 90,48 100,00 95,00 86,96 88,24 100,00 90,48 67,44 91,67 85,71 80,95
Mik. 3 100,00 100,00 96,00 90,48 100,00 95,00 91,30 100,00 100,00 90,48 72,09 87,50 85,71 83,33
Mik. 4 100,00 100,00 96,00 95,24 95,00 95,00 95,65 88,24 100,00 90,48 74,42 95,83 90,48 78,57
Mik. 5 100,00 100,00 92,00 95,24 100,00 95,00 95,65 94,12 100,00 90,48 58,14 87,50 90,48 83,33
Mik. 6 100,00 100,00 92,00 90,48 90,00 95,00 91,30 100,00 100,00 95,24 76,74 95,83 95,24 85,71
Mik. 7 100,00 100,00 92,00 90,48 100,00 95,00 95,65 94,12 100,00 90,48 74,42 87,50 90,48 83,33
Mik. 8 100,00 100,00 92,00 90,48 100,00 95,00 95,65 94,12 100,00 85,71 60,47 87,50 90,48 83,33
Mik. 9 100,00 100,00 92,00 95,24 100,00 95,00 95,65 94,12 100,00 95,24 72,09 91,67 85,71 83,33
Mik. 10 100,00 100,00 92,00 85,71 100,00 95,00 91,30 88,24 100,00 90,48 74,42 87,50 85,71 83,33
Mik. 11 100,00 100,00 96,00 90,48 100,00 95,00 91,30 88,24 100,00 85,71 69,77 87,50 85,71 83,33
Mik. 12 100,00 100,00 92,00 95,24 100,00 95,00 91,30 88,24 100,00 85,71 69,77 87,50 90,48 83,33
Mik. 13 95,00 100,00 96,00 90,48 100,00 95,00 100,00 94,12 100,00 100,00 62,79 83,33 90,48 80,95
Mik. 14 90,00 100,00 96,00 80,95 100,00 95,00 91,30 88,24 100,00 95,24 60,47 87,50 95,24 83,33
Mik. 15 90,00 100,00 84,00 80,95 100,00 95,00 86,96 100,00 100,00 90,48 67,44 87,50 95,24 78,57
Mik. 16 100,00 100,00 96,00 95,24 100,00 95,00 91,30 94,12 95,00 95,24 79,07 91,67 90,48 78,57
Mik. 17 100,00 100,00 96,00 95,24 100,00 95,00 86,96 88,24 100,00 90,48 76,74 95,83 80,95 83,33
Mik. 18 100,00 100,00 96,00 95,24 100,00 95,00 91,30 94,12 100,00 85,71 76,74 100,00 90,48 80,95
Mik. 19 100,00 100,00 96,00 95,24 100,00 95,00 95,65 88,24 100,00 85,71 81,40 95,83 90,48 78,57
Mik. 20 100,00 100,00 96,00 90,48 100,00 95,00 91,30 94,12 95,00 90,48 76,74 91,67 90,48 80,95
Mik. 21 100,00 100,00 96,00 95,24 100,00 95,00 91,30 94,12 100,00 90,48 76,74 95,83 90,48 80,95
Mik. 22 100,00 100,00 96,00 95,24 100,00 95,00 86,96 94,12 100,00 95,24 76,74 91,67 95,24 80,95

Minimum 90,00 100,00 84,00 80,95 90,00 95,00 86,96 88,24 95,00 85,71 58,14 83,33 80,95 78,57
Maximum 100,00 100,00 96,00 95,24 100,00 95,00 100,00 100,00 100,00 100,00 81,40 100,00 95,24 85,71

Tabelle A.2: Klassifikationsraten der Ereignisse je Kanal für die Testdaten (DVD 3)
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A.4 ML - und MMI -Parameterschätzung

Die Likelihoodeines Merkmalsvektorsx für die i-te Klasse (Ω = i) ist mit

p(x|Ω = i) =

3∑

m=1

ci,m · N (x; µi,m,Σi,m) i = 1, 2 (A.52)

gegeben. Die Modellparameter der Klasse1 (Ω = 1) sind mit

c1,1 =
3

14
; c1,2 =

7

14
; c1,3 =

4

14
; (A.53)

µ1,1 =

(
−6
−3

)
; µ1,2 =

(
−1
0

)
; µ1,3 =

(
4
4

)
; (A.54)

Σ1,1 =

(
1,0 0,0
0,0 1,0

)
;Σ1,2 =

(
1,8 1,6
1,6 1,8

)
;Σ1,3 =

(
1,6 0,0
0,0 1,6

)
(A.55)

und die der Klasse2 (Ω = 2) mit

c2,1 =
4

14
; c2,2 =

6

14
; c2,3 =

4

14
; (A.56)

µ2,1 =

(
3
−2

)
; µ2,2 =

(
1
0

)
; µ2,3 =

(
−4
4

)
; (A.57)

Σ2,1 =

(
0,1 0,0
0,0 1,0

)
;Σ2,2 =

(
1,8 1,6
1,6 1,8

)
;Σ2,3 =

(
1,8 1,6
1,6 1,8

)
(A.58)

gegeben. Für die Parameter derGMM lieferten die Schätzverfahren die folgenden Werte:

• ML-Parameterschätzung (volle Kovarianzmatrizen)

c1,1 = 0,21; c1,2 = 0,50; c1,3 = 0,28; (A.59)

µ1,1 =

(
−6,00
−3,00

)
; µ1,2 =

(
−0,98
0,01

)
; µ1,3 =

(
4,01
4,01

)
; (A.60)

Σ1,1 =

(
0,98 −0,02
−0,02 0,97

)
;Σ1,2 =

(
1,86 1,66
1,66 1,85

)
;Σ1,3 =

(
1,62 0,02
0,02 1,62

)
; (A.61)

c2,1 = 0,43; c2,2 = 0,29; c2,3 = 0,29; (A.62)

µ2,1 =

(
1,01
0,00

)
; µ2,2 =

(
3,01
−1,97

)
; µ2,3 =

(
−3,96
4,03

)
; (A.63)

Σ2,1 =

(
1,77 1,58
1,58 1,79

)
;Σ2,2 =

(
0,10 0,01
0,01 1,00

)
;Σ2,3 =

(
1,86 1,67
1,67 1,86

)
(A.64)

• ML-Parameterschätzung (diagonale Kovarianzmatrizen)

c1,1 = 0,27; c1,2 = 0,42; c1,3 = 0,32; (A.65)

µ1,1 =

(
−5,50
−2,81

)
; µ1,2 =

(
−0,96
0,04

)
; µ1,3 =

(
3,72
3,84

)
; (A.66)

Σ1,1 =

(
2,08 0,00
0,00 0,99

)
;Σ1,2 =

(
0,99 0,00
0,00 1,00

)
;Σ1,3 =

(
2,08 0,00
0,00 1,72

)
(A.67)
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c2,1 = 0,48; c2,2 = 0,24; c2,3 = 0,29; (A.68)

µ2,1 =

(
1,21
−0,10

)
; µ2,2 =

(
3,01
−2,19

)
; µ2,3 =

(
−3,98
4,02

)
; (A.69)

Σ2,1 =

(
1,94 0,00
0,00 1,81

)
;Σ2,2 =

(
0,08 0,00
0,00 0,87

)
;Σ2,3 =

(
1,77 0,00
0,00 1,79

)
(A.70)

• MMI -Parameterschätzung (diagonale Kovarianzmatrizen)

c1,1 = 0,15; c1,2 = 0,55; c1,3 = 0,30; (A.71)

µ1,1 =

(
−4,55
−2,46

)
; µ1,2 =

(
−0,76
0,07

)
; µ1,3 =

(
2,86
2,76

)
; (A.72)

Σ1,1 =

(
3,64 0,00
0,00 1,57

)
;Σ1,2 =

(
0,93 0,00
0,00 0,90

)
;Σ1,3 =

(
2,04 0,00
0,00 1,60

)
(A.73)

c2,1 = 0,66; c2,2 = 0,25; c2,3 = 0,09; (A.74)

µ2,1 =

(
0,41
−0,58

)
; µ2,2 =

(
2,85
1,84

)
; µ2,3 =

(
−2,07
−0,29

)
; (A.75)

Σ2,1 =

(
1,35 0,00
0,00 1,01

)
;Σ2,2 =

(
0,83 0,00
0,00 0,84

)
;Σ2,3 =

(
9,32 0,00
0,00 9,24

)
(A.76)
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