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1. Einleitung

Seit der Entwicklung des Lasers im Jahr 1960 gewinnt die optische Dateniibertragung
stetig an Bedeutung. Optische Singlemode-Fasern bilden seit langem das Riickgrat im
Weitverkehrsnetz unserer Kommunikationsgesellschaft. Mit Hilfe von Multimode-Fasern
werden kiirzere Strecken iiberbriickt. Die Anwendungen sind vielseitig: Feldbus-Systeme
in der Automatisierungs- und Gebaudetechnik, optische Messsysteme oder auch die HiFi-
Anlage mit optischen Ein- und Ausgéngen seien hier genannt. Innerhalb geschlossener
elektronischer Systeme dominiert jedoch immer noch die konventionelle elektrische Ver-
bindungstechnik. Zwar existiert mit der Integrierten Optik eine Technologie zum Aufbau
integrierter optischer Schaltkreise (PIC, Photonic Integrated Circuit), vergleichbar mit den
herkémmlichen integrierten Schaltungen (IC). Die Einbettung optischer Wellenleiter in die
herkémmliche elektrische Leiterplatte steht jedoch noch aus.

1.1. Motivation und Zielsetzung

Obwohl die Taktraten innerhalb moderner Computersysteme nicht mehr so stark anstei-
gen wie in den vergangenen Jahrzehnten und auch das Mooresche Gesetz fiir zukiinftige
Anwendungen seine Giiltigkeit verlieren wird, ist weiterhin mit einem stetig steigenden Da-
tenaufkommen auf Leiterplattenebene zu rechnen. Grund ist die steigende Parallelisierung
der Recheneinheiten. Da ist zum Einen die Integration mehrerer Prozessorkerne auf einem
Chip zu nennen, zum Anderen die Einbettung mehrerer Prozessoren in einem System. Der
letztgenannte Fall bezieht sich auf Serversysteme, z.B. Bladeserver bzw. Bladesysteme.
Diese arbeiten schon heute mit Datenraten von bis zu 10Gb/s und stofen damit an die
Grenzen der konventionellen elektrischen Ubertragungstechnik.

Die Vorteile der optischen Ubertragungstechnik sind hinlinglich bekannt. Neben der ge-
ringeren Storempfindlichkeit und Storaussendung liegt der entscheidende Vorteil in der
deutlich groferen Bandbreite. Der Nachteil ist der weit groftere technologische Aufwand.
Zwar hat die Entwicklung erster Prototypen in den vergangenen Jahren gezeigt, dass die
Fertigung elektrooptischer Leiterplatten (EOPCB, Electro-Optical Printed Circuit Boards)
technologisch grundsétzlich méglich ist [22, 29, 42, 48|. Dabei wird die herkdmmliche mehr-
lagige elektrische Leiterplatte um eine oder mehrere optische Lagen ergénzt. Der Eingriff in
den standardisierten Fertigungsprozess ist jedoch massiv. Insbesondere die optische Durch-
kontaktierung, die optische Ein- und Auskopplung in die Leiterplatte, ist problematisch.
Sofern keine seitliche Anbindung méglich ist, muss die optische Welle um 90° umgelenkt
werden. Die dazu erforderliche Umlenkoptik, die in die Leiterplatte eingebracht werden
muss, besteht in der Regel aus einem Spiegel kombiniert mit einem Linsensystem Alter-
nativ kénnten flexible gebogene Wellenleiter eingesetzt werden [12]. Problematisch sind in
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beiden Féllen die gegeniiber der elektrischen Technologie verringerten Toleranzen bei der
Positionierung der optischen Komponenten.

Aufgrund des im Vergleich zur optischen Trégerwelle niedrigen Frequenzbereichs, in dem
elektrische Mikrostreifenleiter betrieben werden, gibt es zahlreiche effiziente numerische
Verfahren zur Simulation der Wellenausbreitung entlang Mikrostreifenleiterstrukturen.
Entsprechend sind umfangreiche kommerzielle Entwicklungswerkzeuge fiir den Entwurf
elektrischer Schaltkreise am Markt verfiighar. Génzlich anders verhélt es sich im Bereich
der optischen Wellenleiter, da aufgrund der kleinen Wellenlénge numerische Verfahren oft
nicht effizient sind. Zwar existieren Simulationsumgebungen fiir den Entwurf einzelner oder
einer Kombination mehrerer Komponenten wie z.B. Linsensysteme. Diese beruhen jedoch
meist auf strahlenoptische Methoden!. Die Grenzen der Anwendbarkeit dieser strahlenop-
tischen Methoden ist bislang nicht hinreichend gekléart. In der Literatur wird das Problem
meist nur umschrieben: ,Die Wellenlénge sei klein gegeniiber der kleinsten geometrischen
Abmessung’. Doch wie ist diese Aussage im Kontext der EOPCB-Technologie zu inter-
pretieren? Die vorliegende Arbeit soll dieser Fragestellung einige quantitative Antworten
geben. Die relevante Geometriegrofie ist der Durchmesser des optischen Wellenleiters.

Da die EOPCB-Technologie noch nicht am Markt eingefiihrt wurde, gibt es bisher wenige
fixe Spezifikationen fiir die eingebetteten optischen Wellenleiter. Aufgrund der Toleran-
zanforderungen werden in der Regel Multimode-Wellenleiter mit Querschnittsabmessun-
gen im Bereich zwischen 50 pm und 100 pm und einem Stufenindexprofil eingesetzt. Die
numerische Apertur N A liegt typischerweise bei 0,25. Aber auch kleinere Abmessungen
bis hin zum Singlemode-Wellenleiter sowie Gradientenprofile sind grundsétzlich denkbar.
Der ideale Kernquerschnitt ist fertigungsbedingt rechteckférmig, unterliegt aber den iibli-
chen produktionstechnischen Schwankungen, so dass sich trapezférmige Querschnitte oder
abgerundete Ecken ausbilden konnen. Um ein wellentheoretisches Referenzverfahren zu
entwickeln, muss jedoch auf Wellenleiterquerschnitte zuriickgegriffen werden, fiir die Feld-
l6sungen bekannt sind. Daher beschrankt sich diese Arbeit im Wesentlichen auf zirkular-
symmetrische Fasern und planare Schichtwellenleiter. Das Feld des anregenden Lasers wird
durch einen fundamentalen Gaufsstrahl approximiert, da aktuell noch keine Modelle realer
VCSEL-Dioden (VCSEL, Vertical-Cavity Surface-Emitting Laser) verfiighar sind, welche
gewOhnlich in der EOPCB-Technologie eingesetzt werden.

Im Fokus der Arbeit steht die Verifikation strahlenoptischer Verfahren zur Beschreibung
der Einkopplung optischer Wellen in eine zirkularsymmetrische Faser. Als Referenz dient
ein wellentheoretisches Verfahren auf Basis der exakten Feldlosung. Insbesondere wird
untersucht, wie stark der systematische Fehler bei Verkleinerung des Wellenleiterdurch-
messers zunimmt. Da die unzureichende Kopplung zwischen Laser und Wellenleiter durch
Fehljustage der Komponenten eine der wesentlichen Verlustmechanismen innerhalb opti-
scher Ubertragungsstrecken ist, wird die Einfallsrichtung der Achse des GauRkstrahls so-
wohl lateral verschoben als auch verdreht. Das mafsgebliche Vergleichskriterium ist die
Koppeleffizienz, definiert durch das Verhéltnis der im Wellenleiter gefiihrten Leistung zur
insgesamt eingekoppelten Leistung. Neben der zirkularsymmetrischen Faser werden zu-
sitzlich Moglichkeiten zur Modellierung rechteckformiger Wellenleiter aufgezeigt und es
werden die Unterschiede zum planaren Schichtwellenleiter veranschaulicht. Dieser letztge-

'Die Begriffe Strahlenoptik und geometrische Optik werden im Folgenden synonym verwendet.
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nannte Punkt ist von besonderer Bedeutung, da sich der zweite Schwerpunkt dieser Arbeit
auf die Wellenausbreitung im planaren Schichtwellenleiter bezieht. Anhand der Beschrei-
bung des transienten Leistungsflusses im geraden Schichtwellenleiter werden noch einmal
die grundlegenden Unterschiede zwischen Wellen- und Strahlenoptik hervorgehoben. Den
Abschluss bildet die Modellierung zirkular gekriimmter Schichtwellenleiter.

1.2. Einordnung und Durchfiihrung

Die Modellierung optischer Wellenleiter ist seit langem Gegenstand der Wissenschaft. Un-
mittelbar nach den grundlegenden theoretischen Arbeiten von Maxwell sowie der experi-
mentellen Bestatigung der Existenz elektromagnetischer Wellen von Hertz begannen auch
die Arbeiten zur Beschreibung der Fiihrung elektromagnetischer Wellen. Bereits im Jahr
1910 verodffentlichten Hondros und Debye eine erste fundamentale theoretische Arbeit zur
Modellierung optischer Wellenleiter, die damals noch als dielektrische Drahte bezeichnet
wurden [26]. Resultierten die ersten Arbeiten noch im Wesentlichen aus wissenschaftlicher
Neugier, gewann das Forschungsfeld mit der Entwicklung des Lasers im Jahr 1960 eine
neue Motivation. Entsprechend grof ist die Anzahl wissenschaftlicher Arbeiten, die in den
1960ern und frithen 1970ern Jahren entstand. Eine hervorragende Zusammenfassung der
theoretischen Arbeiten dieser Zeit bieten die Lehrbiicher von Marcuse [46, 47].

In den folgenden Jahren bis zur Gegenwart wurde die Theorie optischer Wellenleiter durch
zahlreiche Verdffentlichungen stetig vervollstéindigt. Einen Uberblick verschafft [13]. Das
Auffinden der Moden optischer Wellenleiter mit beliebiger Querschnittsgeometrie stellt
dabei einen wichtigen und zentralen Schwerpunkt dar. Waren es zunéchst analytische Na-
herungsverfahren, die im Fokus des Interesses standen, so sind es mittlerweile die zahlrei-
chen numerischen Verfahren, die durch die stdndig wachsende Effizienz moderner Com-
putersysteme immer leistungsfahiger werden. Zusammenfassende Darstellungen befinden
sich z.B. in [10, 71]|. Der Grofteil der vorhandenen Literatur bezieht sich jedoch auf op-
tische Singlemode-Wellenleiter, denen aufgrund ihres grofen Bandbreitenldngenprodukts
zu Recht grofle Beachtung geschenkt wird. Die Theorie der Multimode-Wellenleiter ist
aufwandiger, da aufgrund der groferen Geometrie die Anzahl der Eigenlosungen der Wel-
lengleichung — die Moden — grofer ist und es durch Wellenleiterinhomogenititen zur Uber-
kopplung zwischen den Moden kommen kann. Auch numerische Verfahren stoften hier
aktuell noch an ihre Grenzen, wenn das Verhéltnis aus Geometrie und Wellenldnge zu
grofs ist. Daher bedient man sich auch heute noch der seit langem bekannten und akzep-
tierten strahlenoptischen Naherungsverfahren. Hinsichtlich der Anwendung auf optische
Wellenleiter empfehlen sich hier die Arbeiten von Snyder, zusammengefasst in [60].

Leider gibt es bislang nur wenige theoretische Arbeiten zur Verifikation strahlenoptischer
Verfahren. In der vorhandenen Literatur werden in der Regel lediglich einzelne, physikalisch
isolierte Effekte verifiziert. Insbesondere mit Blick auf die Theorie optischer Wellenleiter
gibt es wenige Arbeiten, die zumindest einzelne Komponenten ganzheitlich untersuchen.
Eine eher seltene Ausnahme ist z.B. [37]|. Offensichtlich gab es bislang nicht den Bedarf
einer theoretischen Verifikation. Moglicherweise, weil in der multimodalen Faseroptik auch
effektiv experimentell gearbeitet werden kann. Die mit einer experimentellen Charakte-
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risierung elektrooptischer Leiterplatten verbundene Fertigung von Prototypen ist jedoch
sehr kostspielig, da ohne vorherige Simulation mit einem grofem Ausschuss zu rechnen ist.
Zur Validierung der eingesetzten Simulationswerkzeuge, die im Wesentlichen auf strahlen-
optischen Methoden aufbauen, wird daher in dieser Arbeit ein Vergleich zwischen Wellen-
und Strahlenoptik anhand zweier Schwerpunkte angestrebt. Im ersten Teil wird die Ein-
kopplung optischer Wellen in den Wellenleiter untersucht. Der zweite Teil beschreibt die
Wellenausbreitung im geraden und gekriimmten Wellenleiter. Da aufgrund des Mangels an
exakten Losungen auf idealisierte Bauelemente zuriickgegriffen werden muss, kénnen nicht
alle in der Praxis auftretenden Fehlerquellen beriicksichtigt werden. Beispielsweise bleiben
Storstellen wie raue Oberflachen und intrinsische Materialverluste unberiicksichtigt.

Die Arbeit gliedert sich im Weiteren wie folgt:

Kapitel 2. Grundlagen
Insbesondere werden die Felder des Gaufsstrahls fiir eine spétere Fehlerab-
schatzung hergeleitet. Dariiber hinaus werden die Grundlagen zur Modellie-
rung langshomogener Wellenleiter und die grundlegenden strahlenoptischen
Modellierungsansétze prasentiert.

Kapitel 3. Die Moden dielektrischer Stufenindex-Wellenleiter
Nach einer Beschreibung der grundlegenden Eigenschaften der Modenspek-
tren dielektrischer Wellenleiter werden im Folgenden die Modenspektren der
in dieser Arbeit verwendeten Wellenleiter charakterisiert. Neben planaren
Wellenleitern werden insbesondere kreiszylindrische Fasern und rechteckfor-
mige Wellenleiter behandelt.

Kapitel 4. Koppeleffizienz Gaufischer Eingangsstrahlen
Die Modellierung konzentriert sich auf die monochromatische Einkopplung in
die kreiszylindrische Faser. Da sich die spétere Analyse der Wellenausbreitung
im Wesentlichen auf planare Wellenleiter beschrankt, wird der Unterschied zur
planaren Approximation diskutiert. Zusétzlich werden Naherungslosungen fiir
rechteckformige Wellenleiter ausgewertet.

Kapitel 5. Wellenausbreitung in dielektrischen Wellenleitern

Zunichst steht das transiente Ubertragungsverhalten des lingshomogenen
Schichtwellenleiters fiir den Fall einer zeitperiodischen Anregung im Vorder-
grund. Daraus wird eine Ubertragungsfunktion fiir das Basisband abgeleitet.
Die Simulation zirkular gekriimmter Schichtwellenleiter konzentriert sich auf
die Berechnung der Verluste durch Abstrahlung. Aus dem kontinuierlichen
Modenspektrum des gekriimmten Wellenleiters werden dazu quasigefiihrte
Moden isoliert.

Die Kapitel 4 und 5 sind so aufgebaut, dass zunéchst die wellentheoretischen Referenzergeb-
nisse dargestellt und analysiert werden. Anschlieffend wird der Vergleich zur geometrischen
Optik gezogen. Die mathematische Beschreibung der Modenspektren und der abgeleiteten
Grofen ist mit Absicht detailliert dargestellt, obwohl die Felder dielektrischer Felder seit
langem Gegenstand der Wissenschaft sind und dementsprechend umfangreiche Literatur
existiert. Es soll jedoch zum Einen der nicht unerhebliche Implementierungsaufwand ver-
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deutlicht werden und des Weiteren auch die Reproduktion der Ergebnisse dieser Arbeit
vereinfacht werden. Fiir das Verstdndnis der verwendeten Notation empfiehlt sich neben
dem Studium des einleitenden Kapitels 2.1 auch die Durchsicht der verwendeten Symbo-
le und Konventionen auf Seite 175. Aufgrund der langen Historie der Theorie optischer
Wellenleiter ist eine umfassende Literaturangabe auch im Rahmen einer Dissertation fast
unmoglich. Die Literaturangaben verstehen sich daher in der Regel als Beispiel und wo
moglich wird zusammenfassende Literatur angegeben. Durch eine Internetrecherche lasst
sich leicht ergénzende und aufbauende Literatur finden.

Die Algorithmen dieser Arbeit wurden in der Programmiersprache C++ implementiert
und mit verschiedenen Compilern auf mehreren Unix-artigen Systemen getestet. Viele
der erforderlichen speziellen Funktionen, insbesondere Besselfunktionen, wurden der GNU
Scientific Library (GSL) entnommen. Ebenso wurden Routinen zur Fouriertransformation
und zur Nullstellensuche aus der GSL verwendet. Die Arbeiten im Kapitel 5.2.2 erfordern
Implementierungen komplexwertiger Besselfunktionen, die aktuell noch in keiner verfiig-
baren Bibliothek vorhanden sind. Hier sei auf die Arbeiten von Temme [68| sowie auf
[1, 3] verwiesen. Fiir Funktionen der linearen Algebra sollten stets optimierte Bibliothe-
ken verwendet werden, wie sie alle groken Prozessorhersteller anbieten. Zur Herleitung und
Verifikation einzelner Teilaufgaben wurde das Computeralgebrasystem Maple® verwendet.






2. Grundlagen

Dieses Kapitel behandelt die wesentlichen Grundgleichungen dieser Arbeit, die zwar in
der Literatur hinreichend bekannt sind, aber fiir das Verstdndnis dieser Arbeit wichtig
sind. Insbesondere wird auch die verwendete Notation vorgestellt und es werden einige
wichtige Annahmen hinsichtlich der Geometrie- und Materialparameter erortert. Das erste
Unterkapitel 2.1 beschreibt die Grundgleichungen des makroskopischen Elektromagnetis-
mus. Kapitel 2.2 beschreibt die Wellenausbreitung im homogenen Raum auf Basis ebener
Wellen und leitet einen Ausdruck fiir das Feld des Gaufstrahls her. In Kapitel 2.3 wird die
Notation zur Beschreibung der Wellenausbreitung entlang abschnittsweise langshomoge-
ner Wellenleiterstrukturen vorgestellt. Abschliefend wird in Kapitel 2.4 das Konzept der
Strahlenoptik vorgestellt.

2.1. Grundziige der Maxwellschen Theorie

Die Grundgleichungen der klassischen Elektrodynamik sind die Maxwellschen Gleichungen.
Sie lassen sich durch ein System gekoppelter Differenzialgleichungen beschreiben:

V- D(7t) = o(Fit), (2.1a)

V- B(Fit) = 0, (2.1b)

V x B(F ):—33;:’”, (2.1¢)
- aﬁ(m)

(2.1d)

Darin ist D die elektrische Flussdichte, B die magnetische Flussdichte, E die elektrische
Feldstéarke, H die magnetische Feldstéarke, o die elektrische Raumladungsdichte und J die
elektrische Stromdichte. Alle Grofen konnen sowohl Funktionen des Ortes 7 als auch der
Zeit t sein. Die Flussdichten sowie die Stromdichte sind iiber die Materialbeziehungen
mit den Feldstérken verkniipft. Da die in dieser Arbeit betrachteten Materialien sémtlich
lineare und isotrope Eigenschaften besitzen und ferner als zeitinvariant, ruhend und di-
spersionsfrei angenommen werden, lassen sich die Materialbeziehungen wie folgt angeben:

— — —

D(Ft) = eo e, (F) E(Ft), B(Fit) = po e (F) H(FE), J(7t) = w(F) E(F). (2.2)

Darin sind €9 und g die Permittivitdt und Permeabilitidt des Vakuums, ¢, und pu, die
relative Permittivitdt und Permeabilitét, sowie x die spezifische elektrische Leitfahigkeit.
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Von besonderer Bedeutung ist die Annahme zeitharmonischer Felder. Allgemein lésst sich
der Ubergang in den Frequenzbereich durch die Fouriertransformation beschreiben, was
im monochromatischen Fall in einer Schreibweise mit Dirac-Funktionen resultiert. Diese
wird in der Elektrotechnik in der Regel jedoch nicht dargestellt und es werden nur positive
Frequenzen w explizit betrachtet. Der Ubergang in den Zeitbereich erfolgt nach Multipli-
kation mit exp(jwt) durch Realteilbildung. Die Maxwellschen Gleichungen (2.1) nehmen
im Frequenzbereich die folgende Form an:

V- D(Fw) = o(Fw), (2.3a)
V- B(fw) =0, (2.3b)
Y7XE(#0 —jwB(Fw), (2.3¢)
V x H(Fw) = J(Fw) + jwD(Fw) (2.3d)

Darin werden die unterstrichenen Grofen als komplexe Amplituden bezeichnet.

Die Materialgleichungen (2.2) lauten nun

—

D(Fw) = eoe,(F) E(Fw), B(Fw) = po 1,(F) H(Fw), J(Fw) = k(f) EFw). (24)

Unter Verwendung dieser Materialbeziehungen sowie der Einfithrung einer komplexen Per-
mittivitat )
k(7

e (Tw) =¢e.(r) — j—= 2.5

e (Fu) = () — 55 (25)

lassen sich aus den beiden Rotationsgleichungen (2.3c) und (2.3d) die Differenzialgleichun-
gen

1 5 (7, =k (w Fw) B(F.w a
Vx (¥ % B ) = ) 2 ) B (2.60)
Vx (g ¥ % ) ) = ) ol (7 (2.6b)
ableiten. Darin ist
k?()(bd) = W4/Eplo (27)

die Wellenzahl des Vakuums. Eine Wellenzahl k > k; ohne oder mit anderem Index kenn-
zeichnet einen Raum mit spezifischen Materialeigenschaften:

k= ko /5 (2.8)

Die in der optischen Verbindungstechnik eingesetzten Materialien kdnnen als unmagnetisch
angesehen werden. Fiir die relative Permeabilitat gilt dann p,.(7) = 1. Intrinsische Mate-
rialverluste konnen zwar wie oben beschrieben durch eine komplexe Permittivitat beriick-
sichtigt werden, in der Regel beruhen die Verlustmechanismen im optischen Wellenleiter
jedoch nicht auf elektrischen Leitungsverlusten. Je nach eingesetztem Material resultiert
ein frequenzabhéngiges Dampfungsverhalten, das sich im Allgemeinen nicht durch (2.5)
beschreiben ldsst. Im Folgenden wird angenommen, dass die benotigte Bandbreite im Fre-
quenzbereich hinreichend klein ist und Verluste vernachléssigt werden kénnen (x = 0). Die
Annahme einer reellen frequenzunabhéngigen Permittivitéit ist dann gerechtfertigt.
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Anstelle der relativen Permittivitit e, wird haufig auch die Brechzahl

n =& (2.9)

verwendet. Des Weiteren wird angenommen, dass die Materialeigenschaften abschnitts-
weise konstant und die Réume ladungsfrei sind, o(7,w) = 0. Fiir diese abschnittsweise
homogenen Raume vereinfachen sich die Gleichungen (2.6) zu

AE(Fw) + K E(Fw) = 0, (2.10a)

AH(7w) + k? H(7w) = 0. (2.10b)
Diese homogenen Wellendifferenzialgleichungen entsprechen in ihrer Form einer Helmholtz-
Differenzialgleichung. An den Raumbereichsgrenzen miissen die Feldgréfen Randbedingun-

gen erfiillen. Besitzt die Grenzfliche g die Flichennormale €, lauten diese Randbedingun-
gen

g, x (E, - E2> —0, (2.11a)
g

&, (ﬁl —ﬁz) = K, (2.11b)

€ (21 - QQ) . =g, (2.11c)

g - (31 _ 32) —0. (2.11d)
g

Die Indices 1 und 2 kennzeichnen die unterschiedlichen Raumbereiche, wobei €, in den
Raum 1 hinein zeigt. Bei den Grofien K und ¢ handelt es sich um die komplexen Amplitu-
den einer Flachenstromdichte und einer Fldchenladungsdichte. In allen folgenden Betrach-
tungen dieser Arbeit sind beide gleich Null. Die Gleichungen (2.11) lassen sich dquivalent
auch fiir die zugehorigen zeitabhéngigen Grofsen formulieren.

Die Energiebilanz elektromagnetischer Felder wird durch den Poyntingschen Satz beschrie-
ben. In seiner differenziellen komplexen Schreibweise lautet er fiir den quellenfreien Raum

— V-8 =7, + j2w(W, —w,). (2.12)
Darin ist B L
S = %E x H (2.13)
der komplexe Poyntingsche Vektor,
Py=3J E (2.14)

die zeitlich gemittelte elektrische Verlustleistungsdichte und

—%k

E (2.15)

It

— _1B.g" — _ 1
Wm = 3 E ’ E ) We = 3
sind die zeitlich gemittelten Energiedichten des magnetischen und des elektrischen Feldes.
Durch Integration von (2.12) iiber ein Volumen v ergibt sich mit Hilfe des Satzes von Gaufs

ein Ausdruck fiir die zeitlich gemittelten elektrischen Verluste im Volumen v:

?v:%/I-E*dv:%{j{ S-da}. (2.16)
v ov
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Wird der Poyntingvektor anstatt {iber eine geschlossene Flédche nur iiber eine offene Teil-
flache integriert, lasst sich der zeitlich gemittelte Leistungsfluss durch die Teilfliche be-
rechnen. Dieser Fall ist von besonderem Interesse, wenn der Energietransport elektroma-
gnetischer Wellen beschrieben werden soll.

Fiir das Studium der Maxwellschen Theorie existiert ein grofses Literaturangebot. Als ein-

fiihrendes Lehrbuch sei exemplarisch [38] genannt. Fiir das vertiefende Studium empfiehlt
sich u.a. [28].

2.2. Wellenausbreitung im homogenen Raum

Bei gegebener Quelle ist die Beschreibung der Wellenausbreitung im ansonsten homoge-
nen Raum von fundamentaler Bedeutung um die grundlegenden Eigenschaften der Quelle
hinsichtlich ihres Nah- und Fernfeldes zu beschreiben. Im Kontext dieser Arbeit sind diese
Quellen Halbleiterlaser. Da in der Regel keine direkte analytische Losung der zu erfiillenden
inhomogenen Differenzialgleichung® existiert, unterscheidet die Feldtheorie zwei grundle-
gende Losungsansétze. Der erste Ansatz setzt voraus, dass die Elementarlosung fiir eine
korrespondierende Punktquelle bekannt ist. Die Gesamtlosung ergibt sich als Integral iiber
diese Elementarlosung, welche als Greensche Funktion bezeichnet wird. Der zweite Ansatz
kann als Black-Box-Ansatz bezeichnet werden. Die Quelle sei so geartet, dass auf einer
Hiillflache, die die Quellverteilung umschliefst, sinnvolle Annahmen iiber die Feldstarke ge-
macht werden konnen. Auf Basis dieser Annahmen kénnen Integralgleichungsmethoden zur
Bestimmung des resultierenden Feldes auferhalb der Quellverteilung angewendet werden.

Ist die Quelle wie im Fall des Lasers so geartet, dass die Wellenausbreitung nur in eine
bestimmte Richtung erfolgt, reicht es aus, die Feldverteilung in einer Ebene zu kennen.
Der Normalenvektor dieser Ebene verlauft typischerweise parallel zur Achse der Wellen-
ausbreitung. In dem so bestimmten resultierenden Halbraum lasst sich das Feld durch ein
Spektrum ebener Wellen darstellen. Mathematisch wird dies durch eine zweidimensionale
raumliche Fouriertransformation beschrieben. Zur Vertiefung empfiehlt sich [21].

2.2.1. Spektren ebener Wellen

Die ebene Welle kann als Eigenlosung der Helmholtzgleichungen (2.10) aufgefasst werden.
Ihre Phasenfronten bilden Ebenen im Raum, und somit fiillen die Felder ebenfalls den
gesamten Raum aus. Die einzelne ebene Welle ist daher keine physikalische Feldlosung.
Erst die Uberlagerung in Form eines gewichteten Spektrums ermdoglicht die Darstellung
einer physikalischen Feldlosung.

Das elektrische Feld einer in Richtung €; polarisierten ebenen Welle ist gegeben durch

E(7) = & Ey exp (—jk - 7) (2.17)

!Die inhomogene Wellendifferenzialgleichung lisst sich aus (2.6) ableiten. Anstelle der komplexen Per-
mittivitdt sollte die Stromdichte jedoch explizit beriicksichtigt werden.
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mit  &-k=0 und |k? =K (2.18)

Darin ist £, die konstante Amplitude der Welle. Die zugehorige magnetische Feldstéirke
berechnet sich geméf (2.3c) zu

ﬁ 1 -
H(r) = ——V x (é’tﬁo exp (—]k: r))
J@Ho (2.19)
— — &, x B(Fw)
mit Z=,/  und & - k=k (2.20)
£

Die Grofle Z wird als Wellenwiderstand bezeichnet.

Die Superposition aller ebenen Wellen mit unterschiedlichem Wellenvektor k stellt einen
vollstdndigen Losungsraum der Helmholtzgleichungen (2.10) fiir den homogenen Halbraum

dar.

Betrachtet wird nun ein quellenfreier Halbraum z > 0, auf dessen Rand bei z = 0 die
elektrische Feldstarke bekannt ist. Wird die z-Komponente des Wellenvektors durch die
verbleibenden kartesischen Komponenten substituiert,

ko= (/2 — k2 — k2, (2.21)

lasst sich die elektrische Feldstérke im Raum z > 0 durch ein Integral der Form

E(f) = / / (ko) exp (=5 (ko + kyy + (K2 = k2 = k2 2) ) dk, dk,  (2.22)

—00 —00

darstellen [21]. Die rdumliche Spektralfunktion T lisst sich aus der Randwertvorgabe in
z = 0 bestimmen:

B ] oo 00 ) |
T(tk) = 5 [ [ B exp(ihae + k) dody, (2.23)

—00 —0O0

Gleichung (2.23) kann komponentenweise gelost werden. Es reicht aus zwei Komponenten
der elektrischen Feldstéirke in der Grenzschicht z = 0 zu kennen. Die verbleibende Kom-
ponente kann dann mit Hilfe der Divergenzbedingung V - E = 0 bestimmt werden [21].
Hilfreich kann auch die Verwendung Hertzscher Potenziale sein, sieche A.1.1.

Die Integraldarstellung (2.22) entspricht in ihrer Form einem rdumlichen Fourierintegral.
Da k., auch imagindre Werte annehmen kann, beriicksichtigt (2.22) auch evaneszente Feldan-
teile. Diese sind physikalisch jedoch in der Regel bedeutungslos, da sie nicht zum Leistungs-
transport beitragen.
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2.2.2. Das Spektrum des Maxwellschen GaulBstrahls

Optische Wellen, deren Felder sich um eine bestimmte Achse der Wellenausbreitung fo-
kussieren, sind von besonderem Interesse in der Feldtheorie. In diesem Zusammenhang
wird oft der Begriff Strahl verwendet, der aber etwas die Wellennatur der Felder ver-
schleiert. Bemerkenswert ist, dass keine geschlossene analytische Losung der Maxwellschen
Gleichungen existiert, die einen solchen Strahl beschreibt. Im Folgenden wird daher eine
Spektraldarstellung eines Strahls betrachtet, dessen transversales Feldprofil gaufsférmig ist.
Dieser Strahl wird in dieser Arbeit zur Abgrenzung zum bekannten Paraxialen Gaufsstrahl
als Maxwellscher Gauftstrahl bezeichnet.

Die transversale elektrische Feldstarke in z = 0 wird gaukformig angesetzt:
E,(2,y,0) = &,Eyexp (—“’fu%yz) : (2.24)
0

Darin ist wy der Radius in der Ebene 2z = 0, bei dem die Feldgrofen auf das e !-fache
abgeklungen sind. Dieser Wert wird auch als Strahlradius bezeichnet. Die Strahlachse ent-
spricht der z-Achse. Die transversalen Komponenten der Spektralfunktion der Feldstarke
(2.24) sind gegeben durch

Ty (ko ky) = GE, 1 / / exp (—%) exp (j (ko + kyy)) dz dy
R (2.25)

— ¢ F %ex _ wi(k3+k7)
t - p - )

Mit (2.25) und der Beziehung (2.22) lassen sich die transversalen Komponenten der elek-
trischen Feldstidrke im Raum z > 0 bestimmen. Im Anhang A.1.1 wird eine Moglichkeit
aufgezeigt, wie sich die verbleibenden Feldkomponenten mit Hilfe Hertzscher Potenziale
aus den Maxwellschen Gleichungen ableiten lassen. Zur kompakten Darstellung des Ergeb-
nisses wird der vektorielle Operator

L (F(ksky)) //J-" Faky) (7 Tulkarky))
o exp <—j (kxa:+kyy+,/k2 —k2— k2 z)) dk, dk, (2.26)

eingefiihrt. Die Feldstarken ergeben sich damit wie folgt:

S o1 koky . (B2HED 0 0\ L
ﬂm:L(@ - (e a+ B g )

+ ( xkz 21, - €] + kzy[gy : a]) ey + (ki[€, - &) — ke, - gt])gz)) (2.28)
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Eine Schwierigkeit in der Entwicklung elektromagnetischer Felder in Integrale iiber ebene
Wellen liegt darin, dass die notigen Integrationen in der Regel nicht explizit analytisch
durchfiithrbar sind. Durch Ausnutzen der Rotationssymmetrie kann jedoch das Doppelin-
tegral in ein Einfachintegral umgewandelt werden. Mit

ky =0cos¢ und k, = psing (2.29)

ergibt sich fiir die jeweils transversale Komponente der elektrischen Feldstérke

oo
w2 52
/ exp 049
0

2

/exp (—j (:vécossb+yésing5+ V2= z)) odpds. (2.30)

0

§o

E,(r) = éiEq

W
3

Die Integration iiber ¢ ldsst sich nun mit Hilfe von (A.95) durchfiihren und man erhélt

2 7 2 ~2
B =gy | exp( o< )Jo(@ 2 r ) exp (/- 2) 6ds. (231)
0

Fiir die longitudinale Komponente folgt nach einigen Umformungen mit (A.96) - (A.99):

wg 0 . - o
/exp (- 1 ) J1(0/ 2% + y?) exp (—j k2— 52 z) \/:—2752dg. (2.32)
0

Darin sind Jy und J; gewohnliche Besselfunktionen 1. Art.

2.2.3. Der Paraxiale Gaulistrahl

Mit den Ausdriicken (2.27) und (2.28) liegt eine Feldlosung vor, die einem optischen Strahl
mit gaukformigen Profil entspricht. Das Arbeiten mit dieser Feldlosung ist jedoch aufwén-
dig, da fiir jeden Punkt, in dem das Feld bestimmt werden soll, ein uneigentliches Integral
gelost werden muss. Divergiert der Strahl nicht allzu stark, konzentrieren sich also die Fel-
der auf einen bestimmen Bereich um die Strahlachse, kann mit Hilfe einer Approximation
in Form einer Taylor-Entwicklung von k., um k, = k, = 0 eine wesentliche Vereinfachung
herbeigefiihrt werden. Diese lautet

k.= k?— k2 — k:2~k——k(k:2+k:2) (2.33)
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womit sich die Integration analytisch durchfiihren lasst:

2
= wy 1 2,12 _ k2+’f
E(7) = By //exp ~ (k2 4K2)) exp( <k w+kyy—l—(k )z)) dk, dk,
2
= etE %o //exp (=1 (w§ — 7 %) (K2+k))) exp (= (kex+kyy+kz)) dk, dk,

5 wg z2_ 2 .
= by ——— exp | exp (—jkz).
Wy —J% Wi k
(2.34)

Substituiert man zunéchst willkiirlich kwg = 2z, erhiilt man die folgende Darstellung:

E,(7) = &Eyu(F) exp (—jkz) mit u(F) = exp ( gk jjfm)) . (2.35)

Z0— jz

Es soll nun eine erste Abschétzung des durch Einfiihrung der paraxialen Ndherung hervor-
gerufenen Fehlers erfolgen. Die Feldlosung (2.35) muss der Helmholtzgleichung gentigen.
Daraus folgt, dass die Funktion u(7) die Gleichung

0%u ou
A —2jk— =0
e TN,
erfilllen muss, mit A, = 88;2 + 8‘922 Die Uberpriifung zeigt jedoch, dass der Term %
vernachlassigt wird. Die Funktion u( ) geniigt also der Gleichung
0
A — 2]ka—“ —0, (2.36)

welche auch als paraxiale Helmholtzgleichung bezeichnet wird. Die paraxiale Naherung
setzt also voraus, dass

ou
‘%' <k [ul (2.37)

gilt. Die Anderung der Einhiillenden u mit der Koordinate z ist klein gegeniiber der An-
derung des Gesamtfeldes.

Die Feldlssung (2.35) wird in der Literatur als fundamentaler Gaufistrahl bezeichnet?. Die
verbleibenden Feldkomponenten lassen sich aus den Maxwellschen Gleichungen bestimmen,
nun aber unter Berticksichtigung der paraxialen Naherung (2.37). Auf dieser Basis ergeben
sich die Feldgrofen zu

E() = E, (: _ ,(;:L;;)] @) u(r) exp (—jkz), (2.38a)
E 5 Ty X € S .

H = = — . 2.

H(7) ~ (ez X €} . +j20) u(r) exp (—jkz) (2.38b)

2Neben dem fundamentalen Gaufistrahl existieren auch GauRstrahlen héherer Ordnung, siche u.a. [4, 34].
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Abbildung 2.1.: Strahlradius und Phasenfronten des Gaufsstrahls.

Um die weiteren Eigenschaften des Strahls zu verdeutlichen, empfiehlt es sich, die Einhiil-
lende u getrennt nach Betrag und Phase zu betrachten. Es folgt

2 2 2 2
mit
) 2 220 22422
kzo k z

Das Betragsquadrat von E, ist proportional zur im zeitlichen Mittel in z-Richtung trans-
portierten Leistung:

2
z,y,2)|? de dy = —wg |_Z0| (2.41)

\)

—00—00

Der Strahlradius, bei dem der Betrag von u auf das e~!-fache gesunken ist, ist gleich w(z).
Etwa 86% der Leistung wird innerhalb dieses Strahlradius gefiihrt. In einem Kreis mit Ra-
dius 1,5 w(z) wird bereits 99% der Leistung transportiert. In den folgenden Betrachtungen
dieser Arbeit wird oft auch der Strahldurchmesser

b= 2w (2.42)

verwendet. Abbildung 2.1 zeigt den Strahlradius als Funktion der z-Koordinate und zu-
sitzlich die Phasenfronten, welche auf der z-Achse den Kriimmungsradius R(z) besitzen.

Im Fernfeld gilt mit der Bedingung z > z,

2 | 2 2 .2
u(r) %j%exp (_x Ty )exp (—jk::lj +y ) (2.43)

(j—é’z)Q 2z
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Der Strahlradius wéchst nun ndherungsweise linear an mit

220 Wo
w(z) = ”k_zgz = Z—Oz, (2.44)

und der Gaufistrahl divergiert unter einem Winkel

©,0 = arctan (%) (2.45)

20

Die Ausbreitungseigenschaften des Gaufsstrahls werden génzlich durch einen Parameter
festgelegt. D.h. der minimale Strahlradius wy und der Divergenzwinkel ©,9 konnen nicht
unabhéngig voneinander eingestellt werden. Ein kleiner Strahlradius korrespondiert mit
einem grofsen Divergenzwinkel. Fiir einen nicht divergierenden Strahl miisste zp — oo
gelten. Der Strahlradius wird dann ebenfalls unendlich grof und ein Vergleich mit (2.35)
zeigt, dass die Felder beim Ubergang z, — oo einer ebenen Welle entsprechen. Die Grofe
zo wird als Rayleigh-Lange bezeichnet.

Zu klaren ist noch die Frage, welche Werte z5 annehmen darf, um der paraxialen Ndherung
(2.37) zu gentigen. Aus (2.37) folgt
1 k(x*+y?)

— —J , < k. 2.46
Z+ jzo jZ(z + 720)? ( )

Daraus abgeleitet folgt weiter

<1 (2.47)
0

und
I

kzy  2m2w?
Der minimale Strahldurchmesser wy muss grof sein gegeniiber der Wellenldnge A. Da die
Werte 22 +y? in der Grofenordnung von w? liegen, und w? = w3[1+(2%/22)] gilt, impliziert
(2.47) dass w3 /22 < 1 gelten muss. Somit sind die Forderungen (2.48) und (2.47) identisch.
Aus (2.47) lasst sich auch folgern, dass innerhalb des Strahlradius die transversalen Feld-
komponenten gegeniiber der z-Komponente iiberwiegen. Eine quantitative Beurteilung des
aus der paraxialen Ndherung resultierenden Fehlers fiir die Parametersétze dieser Arbeit
befindet sich in Kapitel 4.3.1.

< 1. (2.48)

Da in dieser Arbeit auch planare Strukturen betrachtet werden, in denen die Abhéngigkeit
von einer transversalen Koordinate verschwindet, muss fiir diesen Fall die Feldlosung (2.38)
leicht modifiziert werden. Das Ergebnis befindet sich im Anhang A.1.2.

2.3. Gefuhrte Wellen an linearen Leiterstrukturen

Die Theorie gefithrter Wellen umfasst eine breite Klasse verschiedener Anwendungen. An-
gefangen im unteren Frequenzbereich mit der klassischen Paralleldrahtleitung, {iber Koaxi-
alleiter, Hohlleiter und Mikrostreifenleitungen im mittleren bis hoherem Frequenzbereich
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gelangt man schlieklich in den Bereich optischer Wellenleiter, welche im hohen Terahertzbe-
reich arbeiten. Im Gegensatz zu den zuvor genannten Wellenleitern erfolgt die Fiithrung der
Wellen in optischen Wellenleitern nicht mehr durch metallische Leiter, sondern durch To-
talreflexion an dielektrischen Grenzflichen. Ein weiterer gravierender Unterschied ist, dass
optische Wellenleiter sowohl als Singlemode- als auch Multimode-Wellenleiter betrieben
werden. Im letzten Fall wird die mégliche Ubertragungsdistanz durch die Modendispersion
beschrankt, zugunsten geringerer technologischer Anforderungen. Gegeniiber der konven-
tionellen elektrischen Technologie sind diese Anforderungen jedoch immer noch hoch.

In der Modellierung wellenfithrender Strukturen wird zwischen offenen und geschlossenen
Anordnungen unterschieden. Koaxialleiter und Hohlleiter bilden von sich aus geschlossene
Anordnungen, deren Felder bedingt durch den (néherungsweise) perfekt leitenden Aufsen-
leiter nicht in den Aufenraum eindringen. Dahingegen bilden optische Wellenleiter ohne
leitende Abschirmung eine offene Struktur, deren Felder in der Theorie den gesamten Raum
ausfiillen. Die folgende Beschreibung gilt unabhéingig vom Wellenleitertyp.

2.3.1. Theorie normaler Moden

Die Theorie normaler Moden beschreibt die Wellenausbreitung entlang ldngshomogener
Wellenleiter. Das heifst, die Geometrie &ndert sich im Definitionsgebiet nicht entlang einer
geradlinigen Koordinate, hier der z-Koordinate. Es empfiehlt sich, die vektoriellen Feld-
grofen in eine longitudinal geradlinige Komponente und eine transversale Komponente zu
zerlegen:

E=E+E., H=H,+H,. (2.49)

Ein Mode ist eine Eigenlosung der Wellendifferenzialgleichung der Form

EV<F) = C’l/ 5[/(7:;/) exXp (_,jkzuz) 5 (250&)
H,(7) = C, H, (7)) exp(—jk=2)., (2.50D)

mit dem transversalen Ortsvektor 73 = 77— €,z. Die Gleichungen (2.50) beschreiben das
elektrische und magnetische Feld des v-ten Mode mit v € N. Darin ist C,, die Amplitude
des Modes, gl, und EV sind die transversalen Modenfunktionen und k,, ist die Ausbrei-
tungskonstante des Modes.

Zur Losung der Wellendifferenzialgleichungen (2.10) bietet sich ein Ansatz mit Hilfe der
longitudinalen Komponenten der Felder an. Die transversalen Feldkomponenten ergeben
sich dann zu

— 1 —

B, - =T (Wovt ¥ H., + kwvtgw) , (2.51a)
— ]_ —
i, = <wgosm-vt x B, — kwvtﬁw) , (2.51b)

mit dem transversalen Nabla-Operator V; := V — €, 9/9z. Der Index i kennzeichnet ab-
schnittsweise unterschiedliche Raumbereiche. Fiir die transversalen Modenfunktionen ver-
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bleiben partielle Differenzialgleichungen in den transversalen Koordinaten 7}

AL (7)) + (B = K2,) €., (7) = 0, (2.52a)
A, (1) + (K = K2,) A, (7) = 0, (2.52b)

mit dem transversalen Laplace-Operator A; := A — 9?/92?. Fiir die Wellenzahl k_, lisst
sich daraus unmittelbar die Dispersionsbeziehung

: A, (Tow) AL, (Fw)
2 2 t& 2\t t,W
k,, =\/k2F k2, mit Fk;,= NG H(7w) (2.53)

ableiten. Das Vorzeichen vor k2, ergibt sich aus den angesetzten Losungsfunktionen, welche

sich wiederum mit Blick auf das zu l6sende Randwertproblem ergeben.

Im Fall verlustloser Materialien ist €, positiv reell. Das ermoglicht i.d.R. die Wahl rein
reeller oder rein imagindrer Wellenzahlen k,,. Aus (2.51) kann dann gefolgert werden

g, H, rein recll,
fir rein reelle k., : =ty re%n Fee o (2.54)
E.,,H., rein imaginar,
g E., ' 11
fiir rein imaginére k., : == re%n ?“ee T (2.55)
ﬂtl,,ﬂw rein imaginar.

Es muss jedoch beachtet werden, dass im Fall entarteter Moden Linearkombinationen
existieren kénnen, die diese Bedingungen verletzen?.

In positiver z-Richtung fortschreitende Moden sind durch R{k,} > 0 und S{k,} < 0
gegeben. Jeder vorwérts laufende Mode (v) kann durch Spiegelung an der Ebene z = 0 in
einen riickwérts laufenden Mode (—v) transformiert werden:

o (7) (R + LT\ o )
V(T)} {+ﬁw( 7)) + e -, (7, )} p(—jk.uz), (2.56a)

ARE i

Moden mit R{k,} = 0 werden als evaneszente Moden bezeichnet, da ihre Feldgrofen
in Ausbreitungsrichtung evaneszent abklingen. Die allgemeine Lésung der Maxwellschen
Gleichungen lésst sich durch Uberlagerung aller vorwérts und riickwérts laufenden Moden
angeben:

Mode (+v) : {

|ml|t111 Imlltm

Mode (—v) : {

{g?‘)} = VGZN [CV exp (—jk2) {i ((;j))} +C_, exp (jk2) {i i;))}] C@57)

—

Im Fall eines kontinuierlichen Modenspektrums geht die Summation in eine Integration
tiber. Mit Hilfe von (2.56) lasst sich das Feld auch ausschlieflich durch die Komponenten
der vorwérts laufenden Moden beschreiben. Dazu werden modale Spannungen

V,(2) = Cyexp (—jk.,z) + C_pexp (jk.,2) (2.58)

3Entartete Moden besitzen identische Ausbreitungskonstanten.
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und Strome
I,(z) = Cyexp (—jk.,2) — C_, exp (jk.,2) (2.59)

eingefiithrt. Man erhéalt so

E(f) =Y Vi(z)E,(7),  E.P) =) L(2)E., (1), (2.60)

H(F) =Y L(2)Hy (7)), H.(F) =Y Vi(2) H., (7). (2.61)

Orthogonalitdt und Leistung

Moden unterschiedlicher Ordnung sind orthogonal zueinander, d.h. in einer beliebigen Fla-
che z = z. = konstant gilt

/ (gy(a) x ﬂu(m) & da= Q0. (2.62)

z2=2zc

Darin ist ), eine zunichst beliebige Funktion von v und 0y, entspricht dem Kronecker-
Delta. Im Fall entarteter Moden ist darauf zu achten, dass die Indices v und p # v tatséch-
lich orthogonale Moden kennzeichnen?. Gleichung (2.62) ist auch im Fall verlustbehafteter
Materialien giiltig. Im Fall verlustfreier Materialien gilt dariiberhinaus

/ (é(ﬁ) X ﬂ;(m) 2. da = Qy by (2.63)

2=2zc

Die Grofe P, = % ist im Fall propagierender Moden positiv reell und entspricht der

im jeweiligen Mode transportierten Leistung, falls fiir die Amplitude |C,[ = 1 gilt. Die
Leistung P, die insgesamt im zeitlichen Mittel durch die Flache z = 2z, fliefit, berechnet
sich im verlustfreien Fall zu

P=1% /(E X ﬁ) c.dap = 1R {Z VV(ZC)I;(ZC)QV} . (2.64)

Z=Zc

Setzt man in diesen Ausdruck die modalen Spannungen (2.58) und Strome (2.59) ein,
erkennt man, dass der Leistungsfluss wie erwartet unabhéngig von z ist:

P= > P(CP-|Co)+RS D P(C;C_, —C,C") ¢ (2.65)
e S,

4Falls nur eine numerische gitterbasierte Feldlosung vorliegt, muss das Modenspektrum ggf. orthogona-
lisiert werden.
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Interessant ist, dass auch evaneszente Moden einen Leistungsfluss erzwingen kénnen. Dieser
resultiert jedoch aus der Uberlagerung eines () Modes und des korrespondierenden (—v)
Modes.

Sind die Feldlosungen so geartet, dass nur die magnetische Feldstdrke (TE-Moden) oder
nur die elektrische Feldstarke (TM-Moden) eine longitudinale Komponente besitzt, ver-
einfachen sich die Orthogonalitétsbeziehungen. Im Fall reiner TE-Moden vereinfacht sich
(2.63) zu

wﬂ rt dCL - Ql/ uv - <266)
Im Fall reiner TM-Moden ergibt sich
k.. 1 - 0 =
w g ﬂy(rt) : ﬂu(rt) da=Q, 5;“/- (267)

2.3.2. Abrupte Wellenleiteriibergange — Die Methode des
Mode-Matching

Die Modellierung der Wellenausbreitung entlang Wellenleiterinhomogenitéaten ist in der
Regel sehr aufwéndig und oft analytisch nicht moglich. Wird die senkrechte Schnittstelle
zweier abschnittsweise langshomogener Wellenleiter betrachtet, ldsst sich zumindest ei-
ne theoretisch exakte analytische Losung formulieren. Da in diesem Verfahren die beiden
unterschiedlichen Modensysteme des links- und rechtsseitigen Wellenleiters geméfs der zu
erfilllenden Randbedingungen aneinander angepasst werden miissen, wird oft von der Me-
thode des Mode-Matching gesprochen.

E(H)
v —_ EG)
Z ¢ —_
E(_l)
z2 =2

Abbildung 2.2.: Schnittstelle zweier abschnittsweise homogener Wellenleiter.

Abbildung 2.2 zeigt das Prinzip der senkrechten Schnittstelle zweier im Rahmen der ge-
machten Annahmen beliebiger Wellenleiter. Voraussetzung fiir die folgende Beschreibung
ist jedoch ein jeweils diskretes Modenspektrum. Sofern es sich um geschlossene Wellenlei-
ter handelt wird angenommen, dass der Querschnitt des umgebenden leitenden Schirms
links- und rechtsseitig identisch ist. Zur Vertiefung und fiir den Fall unterschiedlicher Quer-
schnittsabmessungen empfiehlt sich [15].
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In der Grenzschicht z = 2, miissen die Randbedingungen (2.11) erfiillt sein. In der Notation
(2.60) und (2.61) gilt dann

S VO (z,) éi? =3 V() éi? (2.68)
veN rveN
> I (z) Hyy = Y I (20) H,y, - (2.68b)
veN veN

Die Indices (/) und (r) dienen der Unterscheidung der links- und rechtsseitigen Feldlosung.
Zur weiteren Rechnung wird das Skalarprodukt (2.63), welches die Modenorthogonalitét
beschreibt, erweitert, so dass auch Produkte von Modenfunktionen unterschiedlicher Wel-
lenleiter zugelassen sind:

/ (& % {Hy)Y) & da= Q) mit s5e {Lr} (2.69)

und  QGY = Qs (2.70)

Mit Hilfe von (2.69) lasst sich die Gleichung (2.68a) nach Bilden des Skalarprodukts mit
der (rechtsseitigen) Modenfunktion ﬂi;) wie folgt schreiben:

> v = v, (2.71)
veN
Analog ergibt sich fiir die komplex konjugierte Gleichung (2.68b) nach Bilden des Skalar-
produkts mit der (linksseitigen) Modenfunktion éfj

{1y QP =Y "{1"yeln. (2.72)

veN

Die Gleichungen (2.68) beschreiben das Feldproblem natiirlich nur korrekt, wenn links-
und rechtsseitig das jeweils vollstandige Modenspektrum angesetzt wird. In der Praxis
reicht es jedoch in der Regel aus, sich auf eine hinreichend grofe endliche Anzahl Moden
zu beschranken. Dabei kann sich die Anzahl links- und rechtsseitiger Moden unterscheiden.

Aus den Gleichungen (2.71) und (2.72) lassen sich dann die folgenden Matrizengleichungen
ableiten:

Qv — Qv (2.73a)
QWi = Q™™ (2.73D)

Die Vektoren v und v(") sowie i) und i) beinhalten die modalen Spannungen Vu(l) und
V") bzw. die modalen Stréme I{” und I{”. Die Matrizen Q¥ und Q™ haben Diagonalform
mit den Eintrdgen Q,(f) bzw Q,(f). Dagegen ist die Uberlappmatrix Q) voll besetzt mit
den Eintriigen Q).



22 Kapitel 2. Grundlagen

Alternative Vorgehensweise

Alternativ kann auch jeweils das Skalarprodukt (2.69) der Gleichung (2.68a) mit einer
(linksseitigen) Modenfunktion ’EEQ sowie der komplex konjugierten Gleichung (2.68b) mit

der (rechtsseitigen) Modenfunktion S;) gebildet werden. Es resultieren die dquivalenten
Matrizengleichungen

Qv = Q™ (2.74a)
Q nH. (l Q(T (r) (274b)

Aquivalenz der unterschiedlichen Vorgehensweisen

Die Aquivalenz der unterschiedlichen Vorgehensweisen lésst smh Zelgen Wenn die Rei-

l —
henentwicklungen von 5;3 und ﬂi in Terme gegeben durch 5 V und H herangezogen
werden [15]:

(i) ) *
A0 Ql/ () Q v —(0)
Ep =) & 5w, (2.75) Hy, = j{—‘zl) } H,,.  (2.76)
veN

veN V v

Unter Ausnutzung von (2.69) lassen sich daraus entsprechende Reihenentwicklungen fiir
QY und Q) ableiten:

(ir)
(ll Quu (rl) (r) Q;w (rl)
=y ey, QU =>" Q). (27
veN V veN v

Uberfiihrt man diese Beziehungen in eine Matrixschreibweise, folgt

QY =QMQn Q™ (2.79), Q" =Q' QW QM. (2.80)

Die Multiplikation von (2.73a) mit Q(”)Q(’")_l und Anwendung von (2.79) resultiert in
(2.74a). (2.73a) ist somit linear abhéngig von (2.74a). Analog lasst sich mit (2.80) auch
zeigen, dass (2.73b) linear abhéngig von (2.74b) ist.

Leistungskonservierung

Die linksseitig in z-Richtung transportierte Leistung ist geméfs (2.64) gleich

' 1w{5 wanpy | 281

veN
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Durch Ubergang zur Matrixschreibweise lisst sich mit Hilfe von (2.73) zeigen, dass die
gezeigten Vorgehensweisen die Leistung konservieren:

0 _ g {V(Z)TQ(l){i(l)}*}
— 1R {V<Z>TQ<Zr>T{i<r>}*}
— 1y {VmTQ(r)T{i(r)}*}
— 1R {VmTQ(r){i(r)}*} _p"

(2.82)

Die Eigenschaft der Leistungskonservierung ist hilfreich hinsichtlich der Implementierung
eines Losungsalgorithmus. Sie garantiert natiirlich keinesfalls die korrekte Losung des Feld-
problems, da sie unabhéngig von der Anzahl berticksichtigter Moden ist.

Einkopplung

In der Regel gilt es Probleme zu beschreiben, bei denen die auf die Grenzschicht einfal-
lenden Wellen bekannt sind. Mit Hilfe der Bezichungen (2.58) und (2.59) folgt aus (2.73)
unmittelbar

QY () — D) = Q" () — ). (2.83h)
Eintrige der Vektoren ¢*Y und ¢*”) sind die Amplituden C,. Das Vorzeichen im Index
der Amplitudenvektoren kennzeichnet darin die Ausbreitungsrichtung der Teilwellen.

Nimmt man an, es fallen nur linksseitig Wellen ein, es gilt also
c =0, (2.84)

lasst sich direkt ein Gleichungssystem zur Bestimmung der unbekannten Amplituden der
reflektierten und transmittierten Wellen angeben:

Q™ ‘ _Qn \ [+ Qe+ 055,

Q(lmH‘ Q" 0] \Qretn ] '
Vollig analog lésst sich aus (2.74) das dquivalente Gleichungssystem

QD ‘ —Q0 \ [+ Q) 56)

Q| Qe 0] \Quoliety '

ableiten. Die so gewonnenen Gleichungssysteme (2.85) und (2.86) sind in der Regel nume-
risch gut konditioniert. Des Weiteren sind die Systemmatrizen reellwertig, sofern evanes-
zente oder komplexe Moden vernachléssigt werden kénnen.
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Es sei angemerkt, dass sich die Dimension der Gleichungssysteme aufgrund der Aquivalenz
der Vorgehensweisen reduzieren ldsst. Dazu empfiehlt sich an Stelle von (2.69) die Ver-
wendung eines Skalarprodukts ohne komplexe Konjugation der magnetischen Feldstéarke.
Auf diesem Weg lisst sich dann entweder ¢*") oder ¢(=) durch die jeweils andere Grofe
substituieren. Die numerische Kondition des resultierenden Gleichungssystems ist jedoch
zu Gunsten eines geringeren Speicherbedarfs etwas schlechter.

2.4. Strahlenoptische Modellierungsansatze

Der Ubergang von der Wellenoptik zur Strahlenoptik ist dann sinnvoll, wenn Beugungs-
und Interferenzerscheinungen nicht vorhanden oder vernachléssighar sind. Die Wellen ver-
halten sich dann lokal wie ebene Wellen. Es wird daher auch oft von lokal ebenen Wellen
gesprochen. Die Strahltrajektorien verlaufen senkrecht zu den Phasenfronten der Wellen.
Umfassende Darstellungen zur Vertiefung befinden sich insbesondere in [7, 46, 60].

2.4.1. Mathematische Grundlagen

Eine notwendige Bedingung zur Anwendbarkeit strahlenoptischer Verfahren ist an die Wel-
lenldnge zu stellen. Diese muss klein gegeniiber der kleinsten geometrischen Abmessung
sein. Mathematisch exakt ableiten lasst sich die Theorie der Strahlenoptik als Grenzfall
einer verschwindenden Wellenldnge. Als anschauliches Beispiel kann der Gaufsstrahl her-
angezogen werden, denn mit w — oo gehen sowohl der minimale Strahlradius wy als auch
der Divergenzwinkel O,y gegen Null. Im Folgenden werden nur die wesentlichen Grund-
gleichungen kurz wiederholt.

Es wird angenommen, die Feldl6sungen nehmen die Form
W(7) = Wo(r) exp (—jkoS(7)) (2.87)

an (vgl. ebene Welle (2.17)). Die Funktionen W,(7) und S(7) sind nicht mehr abhéngig
von der Wellenzahl kg und verdndern sich nur langsam mit Ausbreitung der Welle. Unter
dieser Annahme sind Flachen konstanter Phase gegeben durch

S(7) = konstant. (2.88)
Der Normalenvektor dieser Fléache zeigt in Richtung des Strahls und ist gegeben durch
VS(7)
_»s = — . 2.89
() =~ (2:89)

Die Normierung mit der Brechzahl n(r) ergibt sich aus der Eikonalgleichung
(VS(7)" = n*(7), (2.90)

welcher die Funktion S(7) geniigen muss. Ein Strahl verlduft parallel zu é,(7). Falls 7(s)
eine Parametrisierung des Strahlpfads darstellt, gilt

() = T

(2.91)
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und nach einigen Umformungen folgt schlielich die Strahlgleichung

& (060 ) = It (292)

Die Losung dieser Gleichung ist im Allgemeinen sehr aufwéndig. Fiir abschnittsweise homo-
gene Gebiete ist jedoch sofort ersichtlich, dass die Strahlen innerhalb der Gebiete geradlinig
verlaufen.

Aus (2.89) und (2.91) lassen sich direkt die Konturintegrale

]fvg- dl = j{n(f) dZ@ =0 (2.93)

ableiten. Auf Basis dieser geschlossenen Konturintegrale lassen sich das Fermatsche Prinzip
und das Gesetz von Snellius herleiten [46]. Die Berechnung des Energietransports kann
nicht allein auf strahlenoptischer Basis erfolgen, sondern erfordert die Beriicksichtigung der
Wellennatur des Lichts. Da sich der optische Strahl lokal wie eine ebene Welle verhélt und
zudem ausschliefslich abschnittsweise homogene Rdume betrachtet werden, kann auch die
Beschreibung des Energietransports aus der Theorie der ebenen Welle abgeleitet werden.
Der Strahl verlauft in Richtung des Wellenvektors dieser lokal ebenen Welle und damit
auch in Richtung des Poyntingvektors. Abrupte Materialinderungen lassen sich daher auch
strahlenoptisch mit Hilfe der Fresnel-Koeffizienten beriicksichtigen, welche im Folgenden
vorgestellt werden. Zuvor muss jedoch noch einmal betont werden, dass, sobald die lokale
Feldbeschreibung nicht ndherungsweise einer ebenen Welle entspricht, eine strahlenoptische
Modellierung zu einem erhéhten Fehler fiithren kann.

2.4.2. Dielektrische Grenzflachen

Die Annahme einer unendlich ausgedehnten ebenen Grenzfliche besitzt selbstverstindlich
nur Modellcharakter, ist aber unter der Annahme einer rdumlich beschrinkten Feldlésung
sinnvoll. Aus demselben Grund lassen sich leicht gekriimmte Grenzflichen durch einen
ebenen Halbraum approximieren. Erst bei hinreichend starken Kriimmungen sind Erwei-
terungen notwendig.

Der ebene Halbraum

Das Verhalten ebener Wellen am dielektrischen Halbraum ist von fundamentaler Bedeu-
tung in der Optik. Relativ problemlos lassen sich die bekannten Gesetze der Optik ableiten,
allen voran das Gesetz von Snellius. Die Bedeutung dieser Gesetze ist jedoch weitreichend.
So lassen sich zum Beispiel die Moden des Schichtwellenleiters vollstandig durch sie be-
schreiben, vgl. Kapitel 3.1.3.

Betrachtet wird der schriage Einfall einer ebenen Welle auf einen Halbraum mit unterschied-
licher Permittivitét (e; — e5) geméf Abbildung 2.3 mit gx — oo. Es wird zunéchst ein
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Abbildung 2.3.: Darstellung der Wellenvektoren beim schrigen Einfall einer ebenen Welle
auf einen Halbraum unterschiedlicher Permittivitdt. Gestrichelt dargestellt
ist eine konkav gekriimmte Grenzschicht.

polarisationsunabhéngiger Ansatz formuliert, in dem W die y-Komponente des elektrischen
Feldes (TE-Polarisation) oder des magnetischen Feldes (TM-Polarisation) kennzeichnet:

gEy = go 67.7EE77, EE = klgE = kExgw + kEZé’z, (294)
Vpy =1r ¥, ek, kr = ki€ = kpo@y + kp-€., (2.95)
Dy, =t Yy IH7, Fr = kol = kra@, + kr.é.. (2.96)

Darin sind k; und ks die spezifischen Wellenzahlen der Teilrdume. Die Grofen tp und
rr sind der Transmissions- bzw. Reflexionsfaktor. Zusammen werden sie auch als Fresnel-
Koeffizienten bezeichnet. Durch Auswerten der Stetigkeitsbedingungen in der Grenzschicht
x = 0 lassen sich leicht die bekannten Bedingungen ,,Reflexionswinkel gleich Einfallswinkel*

Ip = Vg (2.97)
sowie das Gesetz von Snellius
ny sinvg = ngsin Vr (2.98)

ableiten. Die Fresnel-Koeffizienten lassen sich ebenfalls direkt aus den Stetigkeitsbedingun-
gen ableiten. Sie sind jedoch abhéngig von der Polarisation. Neben den Fresnel-Koeffizienten
werden im Folgenden auch die zugehorigen Leistungsfaktoren Rp und T angegeben, die
sich durch abschnittsweise Integration der z-Komponente des Poyntingvektors ergeben.

TE-Polarisation (¥ = E):

QkE /{ZT 2
e — 2 TIE — 2 |4TE 2.99
F kE:): + ka’ F kE:E ‘ F | 7 ( )
ke — krs
e B Me o RIE _ |, TP (2.100)

r - )
E kE:c + kTa:



2.4. Strahlenoptische Modellierungsansétze 27

TM-Polarisation (¥ = H):

282/6]5 €1kT 2
fIM . °20Be TM _ 21T\ TM 2 2.101
F Eokpy + €1kry F €9k py | r | ( )
k x k T
ppM — 20Ee PV pIM (T2 (2.102)

 eskps + etk
Von besonderem Interesse ist der Fall der Totalreflexion. Er tritt ein, falls
nysindg > ne (2.103)

gilt. Es folgt direkt

kre = kycos(V7) = koy/1 — sin®(V7) = —jk2\/§ sin?(dp) — 1. (2.104)
2

Die Phasenkonstante kr, ist rein imagindr und fiir > 0 findet keine Wellenausbreitung
in z-Richtung statt. Stattdessen klingen die Feldgréfsen evaneszent ab. Der Betrag des
Reflexionsfaktors ist wie erwartet gleich eins. Es gilt:

TE: "
rTE = exp (j2 arctan | T$|> : (2.105)
kEm
TM:
T™ _ . e1lkre|
rp =exp | j2arctan ——— | . (2.106)
EoREx

Zu beachten ist, dass die Transmissionsfaktoren T im Fall der Totalreflexion rein ima-
gindr sind. Im zeitlichen Mittel findet somit kein Leistungfluss in z-Richtung statt und
im strahlenoptischen Modell sollte daher der Transmissionsfaktor 7' = R{Tr} verwendet
werden.

In Abbildung 2.4a ist der Verlauf der Reflexionsfaktoren REE und RZM in Abhingigkeit
vom Einfallswinkel ¥ fiir einen typischen Parametersatz aufgetragen. Im transversalma-
gnetischen Fall existiert ein Winkel, der sogenannte Brewsterwinkel, so dass r™ = 0
gilt. Fiir transversalelektrische Felder existiert aufgrund der konstanten Permeabilitat kein
entsprechender Winkel. Alle obigen Zusammenhénge gelten in guter Naherung auch bei
leicht gekriimmten Grenzschichten mit ox < oo. Bei starken Kriimmungen sind jedoch
Modifikationen notig.

Gekriimmte Grenzflachen

Bereits in der 1970er Jahren hat insbesondere Snyder das Verhalten lokal ebener Wellen
am gekriimmten dielektrischen Halbraum untersucht [62]. Seine Ergebnisse sind allgemein
akzeptiert und werden im Folgenden aus Platzgriinden nur angegeben.

Von besonderem Interesse ist die Fragestellung, wie grofs die Verluste durch Transmission
sind, wenn eine urspriinglich (9 — o0) totalreflektierte ebene Welle auf eine konkav
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Abbildung 2.4.: Reflexionsfaktor Rr und Transmissionsfaktor 7" in Abhéngigkeit vom Ein-
fallswinkel. Es gilt n; = 1,57 und ny = 1,55.

gekrimmte Grenzschicht (ox < oo) trifft. Zur Beschreibung dieser Kriimmungsverluste
werden die Leistungsfaktoren modifiziert. Es gilt polarisationsunabhéngig:

T=|Tp|A uwnd R=1-T. (2.107)
Darin ist der Korrekturfaktor A gegeben durch

. . _9 2 2/3 2 1.2
Ao |Ai(Aexp(j2m/3))] it A — (kEzQK> (k. — k3) (2.108)

4| A|1/2 2k ki

Die Funktion Ai ist eine Airy-Funktion. In Abbildung 2.4b ist der Verlauf des modifizierten

Transmissionsfaktors im relevanten Einfallswinkelbereich fiir typische Werte ox aufgetra-
gen.

Die Goos-Hanchen-Verschiebung

Auch im Fall der Totalreflexion ebener Wellen am dielektrischen Halbraum ist der gesamte
Raum durch ein Feld ausgefiillt. Die transmittierte Welle klingt jedoch normal zur Grenz-
schicht evaneszent ab. Ein Leistungstransport findet nur parallel zur Grenzschicht statt.
Das Eindringen der Felder in den Halbraum mit kleinerer Brechzahl kann auch strahlen-
optisch mit Hilfe der Goos-Hénchen-Verschiebung modelliert werden [19, 32, 59].

Betrachtet wird ein einfaches Wellenpaket, bestehend aus zwei Teilwellen mit den Wellen-
zahlen k., + Ak,. Es wird angenommen Ak, ist hinreichend klein, so dass das Wellenpaket
in guter Néaherung durch einen Strahl approximiert werden kann, vgl. Abbildung 2.5. Die
komplexe Amplitude des einfallenden Wellenpakets in der Ebene x = 0 sei gegeben durch

Uy, = (exp (jAk.2) + exp (—jAk.2)) exp (—jk.z) = 2cos (Ak.z) exp (—jk.z) . (2.109)

Jede der beiden Teilwellen erfahrt bei der Reflexion am dielektrischen Halbraum einen
Phasensprung von 2®(k.). Der Faktor 2 ist hier zunéchst willkiirlich gewéhlt worden. Die
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Abbildung 2.5.: Die Goos-Hénchen-Verschiebung eines Strahlbiindels.

Phase ® ist eine Funktion von k., wobei fiir kleine Anderungen Ak, der Ausbreitungskon-
stanten die Entwicklung

do
dk.

Ok, + Ak,) ~ (k) + Ak, = o(k,) + AD (2.110)

verwendet werden kann. Fiir die Amplitude des reflektierten Wellenpakets gilt dann

Uy = (exp (j (Ak.z — 2A®)) + exp (—j (Ak.z — 2A®))) exp (—j (k.2 — 2))

2.111
= 2cos (Ak,(z — 2z5)) exp (—j (k,z — 2P)) ( )
mit 1o
= . 2.112
Tk (2.112)

Das reflektierte Wellenpaket erfahrt also eine Verschiebung in Ausbreitungsrichtung um
2z,. Diese Verschiebung lésst sich explizit berechnen. Im TE-Fall gilt geméf (2.105)

k VK2 — k3
ozl _ arctan Y22 (2.113)
kEw \/ k% - k?

® = arctan

und folglich

2TE = iz : (2.114)
V(K — k) (k2 = £3)

Analog gilt fiir den TM-Fall mit (2.106)

/12 _ |2
e1lkr| — arctan Y22 (2.115)
e2kpy ea/ K — k2

® = arctan

und
2 IM — i kiks (2.116)
VR k) (k2 — k2) (K + k3)R2 — kikE '

Werden die den Teilwellen zugeordneten Strahlpfade, wie in Abbildung 2.5 angedeutet,
im Raum x > 0 fortgesetzt, stellt sich ein Schnittpunkt ein, der um =z, gegeniiber der
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Grenzschicht verschoben ist. Die Strahlen werden somit effektiv erst an der Grenzschicht
r = x, reflektiert. Die Eindringtiefe x, ergibt sich allgemein zu
25 kg

= = .. 2.11
tan kzzs ( 7

Ts

Speziell fiir die beiden Polarisationen folgt:

1
z 2
und | 1202
™ — L2 : (2.119)

’ VE2 — k2 (k7 + k3)k? — kik3

2.4.3. Strahlenoptisches Modell des Gaullstrahls

Das strahlenoptische Modell wird aus dem Wirkleistungsfluss der optischen Welle abge-
leitet. Da sich die im zeitlichen Mittel durch eine Fléache iibertragene Wirkleistung aus
der Integration der reellen Komponente des komplexen Poyntingvektors berechnet, wird
gelegentlich auch der Begriff Poyntingvektormodell verwendet.

Zur Entwicklung des Modells wird eine Flidche transversal zur Ausbreitungsrichtung, hier
die z-Richtung, in diskrete Fldchenelemente aufgeteilt und die Leistungsflussdichte durch
das Fléchenelement aufintegriert. Diese Leistung kann dann einem Strahl zugeordnet wer-
den, der in der Mitte des Flachenelements entspringt und in Richtung des Poyntingvektors
zeigt. Der Realteil des Poyntingschen Vektors, abgeleitet aus den Feldgrofen (2.38), lautet
nach direkter Rechnung

gl =t [ e 2R le 72
Zm{g(f)} =1, /M0|go| u(7)| (ezthQHg) . (2.120)

Der Ausdruck ist wie erwartet unabhéngig von der Polarisation der Welle, da die Felder
rotationssymmetrisch bzgl. der Ausbreitungsachse sind.

Aufgrund der Rotationssymmetrie und der radial abnehmenden Intensitatsverteilung emp-
fiehlt sich eine Flachendiskretisierung in kreiszylindrischen Koordinaten. Im Fall einer re-
gelméfigen Diskretisierung mit dquidistanten Stiitzstellen in o- und @-Richtung wird so
der Bereich hochster Intensitéat am feinsten diskretisiert. Ein Flachensegment in kreiszylin-
drischen Koordinaten mit der Normalen in z-Richtung ist gegeben durch die Punkte (p,p)
mit

Om <0< Omy1 und @, < © < Opi1. (2.121)
Werden M Koordinaten in p-Richtung und N Koordinaten in ¢-Richtung angesetzt, dann
gilt

om =mAp mit m e {1,2,3,... M}, (2.122)
und ¢, =nAp mit ne{0,1,2,... N—1}. (2.123)
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Der Punkt oy = 0 wird ebenfalls beriicksichtigt, jedoch ist in diesem Fall der Winkel ¢
nicht definiert. Fiir N ergibt sich unmittelbar

_27T

N =T
Ap

(2.124)

Durch die Fliche ¢ < 2,5w(z) wird bereits nahezu 100% der Energie des Gaufsstrahls
gefiihrt®. Der Bereich ¢ > 2,5w(z) wird daher nicht beriicksichtigt und es gilt

(2.125)

In kreiszylindrischen Koordinaten ergibt sich mit ¢* = 2 + 3> geméf (2.39)

[u(f)] = 2 exp (—wf;(l)). (2.126)

w(z)

Das Integral tiber die Leistungsflussdichte (2.120) durch ein Kreissegment mit der Norma-
len €, ist somit gegeben durch:

Om+1 Pn+1

— €
Prn =34/ —|Eol” / /IU(@,Z)V@ dyp do
Ho
o Pn

B w2 202 20>
— | —|E QA '] o m . _ “CEm+1 )
Vi Borae'g [ow (- ) —ow (325

Damit ist das Modell des Gaufsstrahls vollstdndig parametrisiert. Der Gauftstrahl wird
durch eine Schar von N - M + 1 Strahlen approximiert, welche im Weiteren kurz als Strahl-
schar bezeichnet wird. Ein Strahl S,,,, besitzt folgende Eigenschaften:

e den Aufpunkt <@m,g5n> = ( [m + %] Ao, [n + %} A@)a

(2.127)

20m, COS Pn,
9 —1/2 22423
e die Richtung €, = << Z0m ) + 1) 2fmsingn |

2
22 +z3 22423

1

e die Leistung P,,,, sowie
e cine Polarisation in Richtung der elektrischen Feldstérke (2.38a).

Anzumerken ist, dass sich je nach Position der Transversalebene in z-Richtung unterschied-
liche Poyntingvektormodelle ergeben. Erst im Fall 2z > 2z, stellt sich ein ndherungsweise
konstanter Divergenzwinkel des Gaufstrahls ein und damit auch ein z-unabhéngiges Poyn-
tingvektormodell. Fiir grofe z dhneln die Felder des Gaufsstrahls denen eines elementaren
Punktstrahlers [23]. Die Phasenfronten sind néherungsweise sphérisch und verhalten sich

®Niherungsweise sind es 99,99963%.
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lokal wie eine ebene Welle. Im Rahmen der Rechnungen dieser Arbeit kann die Bedingung
z > zg nicht immer eingehalten werden, da tiber den Abstand z zur Strahltaille die ange-
strebte Strahlbreite eingestellt wird. Es ergeben sich trotz eines konstanten asymptotischen
Divergenzwinkels unterschiedliche Poyntingvektormodelle. Es zeigt sich somit bereits hier
eine erste Einschriankung in der Leistungsfahigkeit der geometrischen Optik.

Modellierung transienter Zeitverlaufe

In der Feldtheorie lassen sich die Ubergéinge zwischen Zeit- und Frequenzbereich zumindest
theoretisch mit Hilfe der Fouriertransformation beschreiben, wenngleich in der Praxis in
der Regel direkt eine Losung im Zeitbereich angestrebt wird. Im klassischen strahlenopti-
schen Modell wird die Frequenzabhéngigkeit nahezu vollstdndig vernachléssigt. Die Aus-
breitungsgeschwindigkeit ¢; = ¢o/n; eines Strahls ist wie bei der ebenen Welle ausschlieflich
abhéngig von den Materialparametern, die hier als dispersionsfrei und damit frequenzu-
nabhéngig angenommen werden. Zur Modellierung beliebiger transienter Schaltvorgénge
muss eine Uberlagerung mehrerer Strahlscharen angesetzt werden, denen jeweils eine Start-
zeit und eine Dauer zugeordnet wird. Folglich muss wie schon die Ortsabhéngigkeit auch
die Zeitabhéngigkeit diskretisiert werden. Ein transientes strahlenoptisches Modell miisste
fiir den Vergleich der Theorien aus einer Poyntingvektorverteilung im Zeitbereich abgelei-
tet werden. Da aktuell keine zeitabhéangigen Modelle realer Quellen existieren, beschrankt
sich diese Arbeit im Kapitel 5.3.2 auf sprunghafte Anderungen im Leistungsfluss. Fiir jede
positive Flanke wird dann eine Strahlschar angesetzt.



3. Die Moden dielektrischer
Stufenindex-Wellenleiter

Im homogenen freien Raum koénnen sich elektromagnetische Wellen ungestort ausbreiten.
Die Felder miissen lediglich den Maxwellschen Gleichungen geniigen, aber dariiber hinaus
keine weiteren Randbedingungen erfiillen. Physikalisch reale Felder divergieren mit Aus-
breitung der Welle und gentigen der Abstrahlbedingung [16]. Dagegen werden in wellenlei-
tenden Strukturen die elektromagnetischen Felder entlang elektrischer Leiter oder, wie in
dieser Arbeit, entlang dielektrischer Fasern gefiihrt. Diese gefiithrten Wellen miissen zusétz-
liche Randbedingungen an den Grenzen zwischen Wellenleiterkern und Wellenleitermantel
erfiillen, welche den Losungsraum beschrinken. Im Folgenden werden die Eigenschaften
der spezifischen Losungen, der sogenannten Moden, vorgestellt.

3.1. Grundlegende Eigenschaften der Moden
dielektrischer Wellenleiter

Zur Beschreibung beliebiger Wellenleiterstrukturen muss stets zwischen ausbreitungsfahi-
gen und evaneszenten Moden unterschieden werden. Die Felder evaneszenter Moden klingen
in longitudinaler Richtung ab und sind daher oft nicht von praktischer Relevanz. Der Be-
reich der ausbreitungsfahigen Moden wird wiederum unterteilt in den Bereich der gefiihrten
Moden und den Bereich der Strahlungsmoden. Die Felder der gefiihrten Moden konzen-
trieren sich auf den Wellenleiterkern. Dagegen fiillen die Felder der Strahlungsmoden im
Allgemeinen den gesamten Raum aus.

Alle Beschreibungen des gesamten Kapitels 3 beziehen sich auf den einzelnen Mode. Der
im Kapitel 2.3 eingefiihrte Index v wird daher der Ubersichtlichkeit wegen weggelassen.

3.1.1. Dielektrische Wellenleiter mit leitender Abschirmung

Eine Schwierigkeit in der Modellierung offener Strukturen ist das in der Regel kontinuier-
liche Modenspektrum. Im Fall ldngshomogener Strukturen setzt sich lediglich der Bereich
der gefithrten Moden aus einem diskreten Spektrum zusammen. Die Gesamtfelder werden
somit durch ein Integral {iber alle Moden beschrieben (vgl. Spektren ebener Wellen). Folg-
lich miissen zur Beschreibung von Wellenleiterinhomogenitéten héufig Integralgleichungen
gelost werden, was analytisch oft nicht moglich ist und auch numerisch sehr anspruchsvoll
ist. Sinnvoll ist daher der Ubergang zu einer geschlossenen Anordnung, d.h. der optische
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Wellenleiter wird in hinreichender Entfernung vom Kern durch einen perfekt leitenden
Schirm begrenzt. In vielen Problemstellungen fiihrt dies zu einem vollstandig diskreten
Modenspektrum [76].

Der Mantel wird im Modell des offenen Wellenleiters als unendlich ausgedehnt angenom-
men. Aufgrund der vielfaltigen Modellierungsmoglichkeiten wird der unendlich ausgedehn-
te homogene Raum in vielen theoretischen Modellen der Feldtheorie angenommen. In der
Praxis ist diese Vorstellung jedoch genauso unrealistisch wie das Einbringen einer per-
fekt leitenden Abschirmung. Letzteres birgt jedoch den Vorteil eines vollstéandig diskreten
Modenspektrums. Im realen Wellenleiter muss die Dicke des Mantels so gewahlt werden,
dass die Feldgrofsen der gefithrten Moden im Mantel hinreichend abgeklungen sind. In den
Simulationen dieser Arbeit ist an diesen Stellen ein perfekt leitender Schirm eingefiigt.
Das Spektrum der gefithrten Moden des offenen und geschlossenen Wellenleiters ist so-
mit in sehr guter Naherung identisch. Der Begriff Strahlungsmode mag nun jedoch etwas
irrefiihrend zu sein. Synonym wird daher auch die Bezeichnung Mantelmode verwendet.

Ein optischer Wellenleiter mit leitender Abschirmung stellt gleichzeitig auch einen inhomo-
gen gefiillten Hohlleiter dar. Diese Begriflichkeit ist insbesondere bei der Literaturrecher-
che wichtig. Hohleiter werden jedoch in der Regel als Singlemode-Wellenleiter betrieben.
Optische Wellenleiter mit leitender Abschirmung kénnen mit Blick auf ihre Hohlleiterei-
genschaften als hochstmultimodal angesehen werden.

3.1.2. Einteilung des Modenspektrums
Ausbreitungsfahige Moden

Im optischen Wellenleiter erfolgt die Fiithrung der Wellen durch einen Wellenleiterkern,
welcher eine groflere Brechzahl ny besitzt als der umgebende Mantel, mit ny < ny. Ab-
bildung 3.1 verdeutlicht das Prinzip. Aufgrund der verlustfreien Materialien werden die
ausbreitungsfiahigen Moden nicht geddmpft und sind daher durch eine reelle Wellenzahl

Mantel
Uz

Kern
ni

Abbildung 3.1.: Kern und Mantel des optischen Wellenleiters. Im Modell des geschlosse-
nen Wellenleiters wird der Mantel durch einen perfekt leitenden Schirm
abgeschlossen.
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gekennzeichnet, d.h. geméfs (2.53) muss gelten

b=\ — B = K3 (31)

Die Vorzeichen in der Wurzel wurden so gewéahlt, dass sich im Fall reeller k,; die Felder
auf den Wellenleiterkern konzentrieren. Ohnehin darf die Wellenzahl nicht grofer als die
spezifische Wellenzahl des Kernmaterials, k1 = kg\/c,1, sein. Die Bedingung

K >0 (3.2)
ist somit zwingend erforderlich und k,, ist stets reellwertig. Die Bedingung
ki >0 (3.3)

ruft ein evaneszentes Abklingen der Feldgréfsen im Mantel in transversaler Richtung hervor.
Fiir die Wellenzahl folgt damit unmittelbar

k.
Nng < — < nj. (34)
ko
Dieses Intervall kennzeichnet den Bereich der gefithrten Moden. Fiir die Grofe k. /ko wird
auch der Begriff effektiver Brechungsindex verwendet. Der Grenzfall negy = k,/ko = no
wird als Cut-Off bzw. neg > no als Cut-Off Bedingung bezeichnet.

Reelle Wellenzahlen im Bereich

k.
0<—<ng (3.5)
ko

bilden dagegen das Spektrum der Strahlungsmoden. Es gilt nun
k7, < 0. (3.6)

k5 ist rein imagindr und die Feldgrofen klingen im Mantel nicht mehr evaneszent ab.
Der Begrift Strahlungsmode erklart sich dadurch, dass dieser Teil des Modenspektrums
Wellen beschreibt, die Leistung vom Kern abstrahlen oder auch auf den Kern einstrahlen.
Strahlungsmoden werden durch eine nicht ideale Einkopplung oder durch Wellenleiterinho-

mogenitiaten angeregt. Im letztgenannten Fall kommt es zur sogenannten Modenkopplung
[47].

Evaneszente und komplexe Moden

Um ein vollstandiges Modenspektrum zu erhalten miissen neben den gefithrten Moden und
den Strahlungsmoden weitere Moden berticksichtigt werden. Moden mit rein imaginérer
Ausbreitungskonstante klingen in Ausbreitungsrichtung evaneszent ab. Entsprechend wer-
den sie auch als evaneszente Moden bezeichnet. Mathematisch gehen die evaneszenten
Moden direkt aus den Strahlungsmoden hervor, falls gilt

<k, = k,=Fj\/ky -k (3.7)
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Obwohl durch den einzelnen evaneszenten Mode kein Leistungstransport erfolgt, sind sie
zur Erfilllung der Stetigkeitsbedingungen in Wellenleiterschnittstellen erforderlich. Im Fall
hochmultimodaler optischer Wellenleiter konnen sie jedoch in der Regel vernachléssigt
werden.

Fiir alle ausbreitungsfahigen und evaneszenten Moden gilt
k2 € R. (3.8)

Neben diesen Moden konnen weitere Moden existieren, deren Wellenzahlen komplexwertig
sind:

k,=F(F6—ja) mit a#0AL#0. (3.9)

Es ist bislang noch nicht hinreichend geklért, welche Eigenschaften Wellenleiter besitzen
miissen, damit komplexe Moden existieren konnen. Fiir den offenen optischen Wellenleiter
ist bislang nur eine Arbeit bekannt, die die Moglichkeit der Existenz komplexer Moden vor-
hersagt [27]. Wichtig ist an dieser Stelle die Abgrenzung zu den sogenannten Leckmoden
(englisch: Leaky Modes), welche zwar ebenfalls komplexe Wellenzahlen besitzen, jedoch
unphysikalische Losungen darstellen, da sie mit ansteigender transversaler Koordinate di-
vergieren. Aufgrund des diskreten Spektrums kann auch durch eine Normalisierung keine
physikalische Losung gefunden werden. Leckmoden gehoren daher nicht zum vollstdndigen
Modenspektrum eines offenen dielektrischen Wellenleiters [72].

Fundamentale Arbeiten hinsichtlich geschlossener Wellenleiter sind [54] und [56]. Ihnen
kann beispielsweise entnommen werden, dass in geschlossenen Wellenleitern, deren Brech-
zahlprofil nur von einer kartesischen Koordinate abhéngt, keine komplexen Moden existie-
ren. Dieser Fall schliefst auch den geschlossenen Schichtwellenleiter ein. In geschlossenen
Wellenleitern mit einem Brechzahlprofil, das von beiden transversalen Koordinaten ab-
hangt, kénnen jedoch auch komplexe Moden auftreten. Ein einzelner komplexer Mode
liefert keinen physikalischen Feldbeitrag. Diese Moden treten daher stets paarweise auf.
Ein Paar verhélt sich physikalisch wie ein evaneszenter Mode, tragt also nicht zum Leis-
tungstransport im Wellenleiter bei.

Alle aus der Literatur bekannten Beispiele, in denen komplexe Moden einen signifikanten
Beitrag zum resultierenden Feld liefern, beziehen sich auf Hohlleiter, in denen nur weni-
ge Moden ausbreitungsfiahig sind. Dariiber hinaus muss der Bereich nahe dem Cut-Off
untersucht werden, denn in der Regel bilden sich komplexe Moden beim Ubergang vom
evaneszenten in den ausbreitungsfahigen Modenbereich aus. Der Brechungsindexkontrast
der Wellenleiter ist zudem typischerweise sehr grof, z.B. ny/ny = 4 in [30]. Es ist daher
davon auszugehen, dass komplexe Moden eines geschirmten optischen Wellenleiters keinen
signifikanten Beitrag zum Feld liefern. In allen folgenden Beschreibungen wird daher (3.8)
vorausgesetzt.

3.1.3. Planare Schichtwellenleiter

Betrachtet werden zunéchst Wellenleiter, deren Geometrien sich neben der Ausbreitungs-
richtung auch in einer transversalen Richtung nicht éndert. Die Feldgréfien éndern sich
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(a) Parallelplattenleitung (b) Schichtwellenleiter

Abbildung 3.2.: Planare Wellenleiter (PEC: Perfect Electric Conductor).

entlang dieser transversalen Koordinate, hier der y-Koordinate, nicht. Es gilt

0
—=0. 3.10
5 (3.10)
Diese Annahme ist natiirlich unphysikalisch und besitzt nur Modellcharakter, fithrt jedoch
zu einem einfachen und kompakten mathematischen Modell und eroffnet somit vielfaltige
Simulationsmoglichkeiten. Insbesondere lasst sich auch leicht der Bezug zur geometrischen

Optik herstellen.

Fiir die transversalen Modenfunktionen verbleiben gewohnliche Differenzialgleichungen,
die im kartesischen Koordinatensystem von allen Feldkomponenten erfiillt werden miissen:

PE(x) ?H(z)

2
92 = Fk:E(x) bzw. o

— FRH(). (3.11)

Unter den gemachten Annahmen mit abschnittsweise konstanten Materialien kénnen die
erforderlichen Randbedingungen mit einem Ansatz erfiillt werden, in dem entweder FE,
oder H, gleich Null ist. Im Fall H, = 0 spricht man von TM-Moden (TM fiir “transver-
sal magnetisch”). Im anderen Fall £, = 0 entsprechend von TE-Moden (fiir “transversal
elektrisch”). Mit (3.10) gilt weiter

e TM-Moden: H,, H, und E, gleich Null,
e TE-Moden: £, £, und H, gleich Null.

Im Folgenden werden nur die TE-Moden néher betrachtet. Alle Erlauterungen gelten je-
doch analog auch fiir die TM-Moden.

Die Parallelplattenleitung

Die einfachste planare wellenfithrende Struktur besteht aus zwei parallelen, perfekt lei-
tenden Platten (Parallelplattenleitung), deren Zwischenraum homogen gefiillt ist, Abbil-
dung 3.2a. Da die elektrische Feldstiarke nur eine y-Komponente besitzt, kann die zugeho-
rige Modenfunktion der TE-Moden unmittelbar angegeben werden. Mit

v

E,(x)=sin(k, (zx—%)) und k,= - V= 1,23... (3.12)

=Y 2
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sind die erforderlichen Randbedingungen an den perfekt leitenden Platten erfiillt. Mit Hilfe
der Beziehung (2.53) konnen die Wellenzahlen explizit angegeben werden:

vm

ky = k2 — <?)2. (3.13)

Aus (3.12) lésst sich unmittelbar der Bezug zur Strahlenoptik herstellen, wenn die Sinus-
funktion mit Hilfe der Euler-Relation durch zwei Exponentialfunktionen ausgedriickt wird.
Diese konnen als zwei ebene Wellen interpretiert werden, die zwischen den Platten total-
reflektiert werden. Die Teilwellen miissen sich phasenrichtig iiberlagern, womit wiederum
(3.13) resultiert.

Anzumerken sei noch, dass in der homogenen Parallelplattenleitung auch der TEM-Mode
(TEM fiir “transversal elektromagnetisch”) als Spezialfall der TM-Moden existiert.

Der geschirmte Schichtwellenleiter

Ist der Wellenleiter nur abschnittsweise homogen gefiillt, muss der Losungsansatz eben-
falls abschnittsweise unterschiedlich angesetzt werden. In dieser Arbeit werden Dreischicht-
Probleme geméft Abbildung 3.2b betrachtet. Der Bereich mit der Brechzahl n; wird als
optisch dichter gegeniiber dem restlichen Bereich angenommen mit n; > ns > ns. Die
folgende Beschreibung 16st dieses Randwertproblem:

—Ay Siﬂh(kx:a(x — % — Clg))/SiIlh(kmgag) fur g <z < g—f—ag

E (x) = cos(kxl(x — g)) + A sin(k:wl(:v - g)) fur —%l <r< g (3.14)

As sinh(kzg(x + g + Gg))/ sinh(k,2as) fiir —aQ—g <r< —g.

Aus der Gleichung (2.53) lassen sich die folgenden Beziehungen fiir die k,;, mit i = 1,2, 3,
ableiten:

B = kY — kg

— k2 + kfﬂ (3.15)
= ks + k.
Die Randbedingungen an der perfekt leitenden Berandung bei z = —g —ay bzw. © =

g + az sind mit diesem Ansatz bereits erfiillt. In den Grenzschichten x = ig miissen die
tangentialen Feldstéarken stetig sein. Es folgt aus den Randbedingungen fiir die elektrische
Feldstarke

Ay =1, (3.16)
A3 = COS(kxld) - Al Sin(lled) . (317)
Die z-Komponente der magnetischen Feldstiarke berechnet sich aus H, = _jwluo é’z%, und

man gewinnt aus den zugehorigen Randbedingungen zwei weitere Gleichungen:

— k'ngz/ tanh(kmgag) = kxlAh (318)
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2 20,2 2 2(2 2 2,2
< kg(ni —n3) < kg(ni — n3) < kgni

ko reell imaginar imaginar imaginar

k.3  reell reell imaginar imaginar

k., reell reell reell imaginar

Typ gefiihrter Mode  Substratmode Strahlungsmode evaneszenter Mode

Tabelle 3.1.: Einteilung des Modenspektrums des asymmetrischen Schichtwellenleiters.

kx2A3/ tanh(kxgag) = kxl sin(k‘xld) + kxlAl COS (k:xld) (319)

Fasst man (3.16) — (3.19) als Gleichungssystem mit dem Losungsvektor (A; Ay A3)T auf,
wird deutlich, dass das Gleichungssystem iiberbestimmt ist. Eine Losung existiert nur, falls
gilt
ks k.1 tanh(ky3a3) + kys tan (k1 d
—ltanh(kx2a2) S (Fzaas) ° ( : )

ko k1 tan(kxld) tanh(ky3as) — kus

Zur Losung von Gleichung (3.20) konnen beispielsweise ko und k.3 substituiert werden und
nach Losungen fiir k,; gesucht werden. Die Wellenzahlen k, des Schichtwellenleiters lassen
sich somit nicht mehr explizit bestimmen, sondern erfordern die Losung der transzendenten
Eigenwertgleichung (3.20).

(3.20)

Der Ansatz (3.14) wurde so gewéhlt, dass sich im Fall reeller k,; die Felder auf den Wel-
lenleiterkern im Bereich |z| < g konzentrieren. Im Fall gefithrter Moden nimmt k2, Werte

im Intervall
0 < k2, < ki(n —n3) (3.21)
an. Nimmt k,; grofere Werte an, konnen ks, k.3 und auch k, auch rein imaginare Wer-

te annehmen. Die Tabelle 3.1 gibt einen Uberblick. Hyperbolische Funktionen eines rein
imagindren Arguments lassen sich durch trigonometrische Funktionen ausdriicken:

sinh(jz) = jsin(z) und cosh(jz) = cos(z). (3.22)

Werden diese Beziehungen konsequent auf den obigen Ansatz angewendet, kann die ma-
thematische Beschreibung der Strahlungsmoden wiederum durch reellwertige Funktionen
erfolgen.

Im Fall des asymmetrischen Schichtwellenleiters muss der Bereich der Strahlungsmoden
unterteilt werden. Mit grofer werdenden k., bilden sich zunédchst Moden aus, deren Felder
sich neben dem Kern nur auf den Mantelbereich mit der Brechzahl ny konzentrieren. Die-
se werden oft als Substratmoden bezeichnet. Die weiteren Untersuchungen dieser Arbeit
konzentrieren sich jedoch auf symmetrische Wellenleiter, in denen dieser Modentyp nicht
existiert.

Eigenwerte und Leistung

Fiir die Parallelplattenleitung konnen die Wellenzahlen mit (3.13) explizit angegeben wer-
den. Die transzendente Eigenwertgleichung des Schichtwellenleiters (3.20) ist dagegen nur
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Abbildung 3.3.: Ausschnitt einer grafischen Darstellung der links- (gestrichelt) und rechts-
seitigen Funktionen der Eigenwertgleichung (3.20) fiir den Bereich der
Strahlungsmoden.

numerisch 16sbar. Diese numerische Losung der Eigenwertgleichung kann algorithmisch auf
Basis der bekannten Nullstellen und Singularitéten der Tangensfunktion durchgefiihrt wer-
den. Zur Illustration ist in Abbildung 3.3 die linke und rechte Seite von (3.20) exemplarisch
fiir den Bereich der Strahlungsmoden dargestellt. Zwischen zwei beliebigen benachbarten
Singularitdten befindet sich immer genau eine Losung. Zum Auffinden der Eigenwerte
reicht in der Regel ein einfaches Bisektions- oder Sekantenverfahren aus. In dieser Arbeit
wurde die Brent-Dekker-Methode angewendet.

Zur Bestimmung der pro Mode gefiihrten Leistung muss geméfs 2.66 im TE-Fall das Integral

P= Ayy;{f;} /|§y(a:)|2 dz (3.23)

gelost werden. Ay kennzeichnet einen Langenabschnitt in y-Richtung. Die elektrische Feld-
stirke ist durch (3.12) und (3.14) gegeben. Die auftretenden Integrationen sind elementar
durchfithrbar und im Anhang A.2.1 aufgefiihrt.

3.2. Kreiszylindrische Fasern

Die Stufenindex-Faser ist einer der wenigen optischen Wellenleiter mit zweidimensionalen
Querschnittsprofil, dessen Modenspektrum sich analytisch berechnen lésst. Lediglich die
wiederum transzendente Eigenwertgleichung muss analog zum Schichtwellenleiter nume-
risch gelost werden. Als ergénzende Literatur fiir den offenen Wellenleiter seien [9, 35, 53|
genannt. Eine Beschreibung der geschlossenen Faser befindet sich u.a. in [78]. Neben der
kreiszylindrischen Faser existieren analytische Losungen lediglich noch fiir elliptische Wel-
lenleiter [14].
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3.2.1. Feldgrollen der Moden
Separation der Helmholtzgleichung

Anders als im kartesischen Koordinatensystem fiihrt die Separation der Helmholtzgleichung
im kreiszylindrischen Koordinatensystem nicht zu einem System ausschliefllich gew6hnli-
cher Differenzialgleichungen. Aus dem Produktansatz

E.(0,p) = R(0)®(») (3.24)

folgt eingesetzt in die Wellendifferenzialgleichung (2.53) die partielle Differenzialgleichung

1 /0°R 10R 1 10%®
2y 2 T T4k _k2=0. 2
R(@g2+989>+ +W_/ 0 (3 5)

Die Funktion ® muss einer gewohnlichen Differenzialgleichung gentigen. Aufgrund der Pe-
riodizitat der ¢-Koordinate folgt

_ Jeos(mep) : _
O(p) = {Sin(mgo)} mit m=0,12.... (3.26)
Fiir die Funktion R verbleiben Besselsche Differenzialgleichungen. Es ist sinnvoll zwei Falle
zu unterscheiden:

k§1 = ke — K2 >0: R(0) = Ay Jp(kpi0) + Aa Ny (ko) (3.27)
k2, = k2 — kiern >0 R(0) = Ay Li(kyo) + Ay Ky (kg0) - (3.28)

Die wesentlichen Eigenschaften der gewohnlichen Besselfunktionen J,, und N,, sowie der
modifizierten Besselfunktionen I, und K,, werden im Anhang A.5.2 vorgestellt.

Im Fall einer zweidimensionalen Querschnittsgeometrie ist im Allgemeinen keine Aufteilung
nach TE- und TM-Moden méglich. Vielmehr sind die Moden hybrid, d.h. alle Feldkompo-
nenten sind ungleich Null. Jedoch ist aufgrund der Kreissymmetrie eine Unterscheidung
zweier orthogonaler Polarisationen moglich, deren Felder durch eine Drehung um 7 inein-
ander libergehen. Daher wird im Folgenden nur eine Polarisation explizit betrachtet. Wie

auch im noch folgenden Kapitel 4 ist dies (ndherungsweise) eine y-Polarisation.

Der kreiszylindrische Hohlleiter

Eine Ausnahme bildet der homogen gefiillte Rundhohlleiter in Abbildung 3.4a. In diesem
Fall besteht das Modenspektrum wieder vollstandig aus TE- und TM-Moden. Ohne die im
Koordinatenursprung singuldre Neumannfunktion /V,, lautet der Ansatz fiir die TE-Moden

H.(0.p) = Jm(ko0) cos(mep). (3.29)

Daraus berechnet sich die elektrische Feldstarke zu

g: _w (ég%Jm(ng) sin(mep) + €,koJ;, (ko0) cos(mgo)) , (3.30)
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PEC / PEC

: &

(a) Hohlleiter (b) Faser

Abbildung 3.4.: Kreiszylindrische Wellenleiter im Querschnitt.

mit J/ der Ableitung von .J,,, nach dem Argument. Aus der Randbedingung in ¢ = 7, folgt
schliefslich y
kg =2 mit n=123.... (3.31)

s

Darin ist j/ . die n-te Nullstelle der Ableitung der Besselfunktion J,,.

Die geschirmte Faser

Der Ansatz fiir den geméfs Abbildung 3.4b inhomogen gefiillten Wellenleiter muss nun
hybrid gewéhlt werden, d.h. die z-Komponenten der elektrischen und der magnetischen
Feldstéarke sind gleichzeitig ungleich Null. Es wird der folgende Ansatz betrachtet:

QZ(Q7S0) = Bll(g) Sin<m(p>7 (332&)
H.(0.p) = —Bai(o) cos(mep). (3.32b)
Im Kern, 0 < p < rg, werden gewohnliche Besselfunktionen angesetzt:
Bui(0) = Ji(ke10)/ Jin(ke1ra), (3.33a)
Boi(0) = Asdm(kpo)/ Im(kpra). (3.33b)
Dagegen werden im Aufenraum r4 < ¢ < r, modifizierte Besselfunktionen gewéhlt:
Bia(0) = Aol (kp20) /I (kpara) + As K (kg20) / Kim(koara), (3.34a)
BQQ(Q) = A5Im(k‘ggg)/1m(k’gz’rd) + AﬁKm(kQQQ)/Km(]CQQT’d). (334b)
Aus (3.32) lassen sich die transversalen Komponenten geméf
—J Wi :
Co=1 12 (’szii(a) + m?Bzz'(@)) sin(mp), (3.35a)
étp = L2 _ k2 (mEBli(Q) + WPJB;z'(Q)) cos(mep), (3.35b)
] WE;
H,= 33 - 2 (m?Bu(Q) + kZBéi(Q)) cos(mep), (3.35¢)
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H, = ijg (weiBii(g) + m%B%(g)) sin(me), (3.35d)
ableiten. Die Konstanten A, bis Ag konnen aus den Stetigkeitsbedingungen der Feldgrofen
bestimmt werden. In ¢ = r; miissen die tangentialen Komponenten der elektrischen und
magnetischen Feldstérke stetig sein. Dies betrifft somit die ¢- und z-Komponenten. In g =
rs miissen zudem die transversalen Komponenten der elektrischen Feldstarke verschwinden.
Es sind somit sechs Gleichungen zu erfiillen, von denen fiinf ausreichen um die Konstanten
Ay bis Ag zu bestimmen. Aus der sechsten gewinnt man dann die Eigenwertgleichung
der geschlossenen kreiszylindrischen Faser. Mit Hilfe der Stetigkeitsbedingungen fiir die
z-Komponente der elektrischen Feldstéirke in ¢ = r4 und o = r, lassen sich zunéchst A,
und As bestimmen:

[m(k QT’d)Km(k 2rs)
Ay = — e e )
: M) 550
_ ]m(kQQTS)Km<k92rd)
Az = MO0 () . (3.37)

Aus den Stetigkeitsbedingungen fiir die magnetischen Feldkomponenten in o = r, folgt:

 rawkp k2, ( M (ko)

A f—
4 mk, K2(er — er2) \ 2 M (k,z)

+ €1Gm(k’@1, kbg)) . (338)

Um die Konstanten As und Ag zu bestimmen, reicht es nun aus, z.B. die Stetigkeitsbedin-
gung fiir die p-Komponente der elektrischen Feldstarke in o = r, auszuwerten:

I (kgora) K, (kgors)

As = —Ay MO (oars) , (3.39)
o I;n(kL)?TS)Km(k@?rd)
Ag = Ay MO (oor) . (3.40)

Es verbleibt die Stetigkeitsbedingung fiir die ¢-Komponente der elektrischen Feldstéarke in
0 = rg, aus der man schliefslich die Eigenwertgleichung gewinnt:

m2k2k’8<5 1 — €& 2)2 &1 MOl(k' 2) Mll(k 2)
< i = = | =Gk k —m el G (ko1 ,k —m A2 ) . (341
7”?1@2’?32"331 (52 ( et 92)+ M%O(k@)) ( ( . 92)+ Mﬁ?(%z)) ( )

Darin sind by (1 )

Gt opg) = 22 Zm\Fetld). 3.42
( ol 92) ol Jm(kglrd) ( )
My (kg2) = Lnn(kgars) Kin(Kpora) — Kin(Kgors) In(Kgora), (3.43a)
Mv?ml(kQQ) = Im(kQ2TS)K’:n(k:QQTd) - Km(kQ2T8)]r/n(k92rd)a (3.43b)
Mgl()(kgﬂ) = I;n(kQﬂS)Km(kg?Td) - K;z(kQﬂS)Im(ngTd)a (3.43c)
M, (ko2) = I, (kgors) K, (Kgara) — K (Kgors) I, (K gora) - (3.43d)

Fiir m = 0 konnen die rechtsseitigen Faktoren der Eigenwertgleichung (3.41) unabhén-
gig voneinander gleich Null gesetzt werden und somit die Gleichung erfiillen. In diesem
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Fall kann wiederum zwischen TE- und TM-Moden unterschieden werden. Die zugehorigen
Eigenwertgleichungen sind

€1 MOl(kgg)
8—2Gm(k 1) + M) =0 (TM-Moden) , (3.44)
MM (ky2)
= = TE-Moden) . 4
G (ko) + M) 0 ( oden) (3.45)

Analog zu dem im vorherigen Unterkapitel betrachteten planaren Wellenleiter léasst sich das
Modenspektrum in unterschiedliche Bereiche aufteilen. Losungen der Eigenwertgleichung
mit

0 <kl <ki(ni—n3) (3.46)

gehoren dem Bereich der gefiihrten Moden an. Im Intervall
ka(ni —n3) <kl < kgni (3.47)

nimmt £, imagindre Werte an. Da k, noch reell ist, kennzeichnet dieses Intervall den
Bereich der Strahlungsmoden. Falls

kont < k2, (3.48)

gilt, ist auch k, rein imaginér. Die zugehorigen Moden sind evaneszente Moden. In den
letzten beiden Féllen empfiehlt sich die Substitution der rein imagindren Wellenzahl k
gemals

kpy — k= k2nd — k2. (3.49)

Die Besselschen Funktionen [, und K, sowie die Funktion G,, konnen geméf

Ln(kgy0)  — Jm(koy,0), (3.50a)
Km(kggag) — Nm(k9279)7 (350b)
Gm(kmﬂkm) — _Gm(kmﬂkm) (3500)

substituiert werden. Konsequent angewendet kann somit auch das Spektrum der Strah-
lungsmoden und der evaneszenten Moden wiederum durch reelle Funktionen beschrieben
werden.

3.2.2. Losung der Eigenwertgleichung und gefiihrte Leistung pro
Mode

Analog zum Schichtwellenleiter kann die Eigenwertgleichung (3.41) so dargestellt werden,
dass sich in einer grafischen Darstellung zwischen zwei benachbarten Singularititen wie-
derum genau eine Losung befindet. Dazu wird (3.41) wie folgt umgestellt

2[2.2 — g, 2 Mll MO
m P 0(67‘1 48 2) (G + _> — (iG + _m> . (351)

2 2 m
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: NeEre

Abbildung 3.5.: Exemplarische grafische Darstellung der links- (gestrichelt) und rechtssei-
tigen Funktionen der Eigenwertgleichung (3.51) fiir den Bereich der ge-
fiihrten Moden.

Die Funktion G,, weist in Abhéngigkeit von k, ein oszillatorisches Verhalten auf und be-
stimmt mafigeblich die Singularitidten von (3.51) fiir den Bereich der gefiihrten Moden. Die
linksseitige Funktion von (3.51) ist exemplarisch in Abbildung 3.5 gestrichelt dargestellt
und abgesehen vom ersten Intervall monoton steigend zwischen ihren Singularitdten. Die
rechtsseitige Funktion verlauft dagegen monoton fallend zwischen ihren Singularitdten. Die
Singularitdten der Funktion G,, sind durch die Nullstellen der Besselfunktion .J,,(k,1a) ge-
geben. Da diese bekannt sind und in numerischen Bibliotheken verfiigbar sind, dienen sie
als Basis fiir eine algorithmische Losungssuche. Lediglich die Intervalle vor der ersten und
nach der letzten Singularitit miissen separat untersucht werden.

Im Bereich der Strahlungsmoden weisen die Funktionen M%, M% M und M ebenfalls
ein oszillatorisches Verhalten auf. Das aufgezeigte Prinzip der algorithmischen Losungssu-
che dndert sich jedoch nicht. Die Bedingung monoton steigender und fallender Funktionen
ist weiterhin erfiillt. Allerdings nimmt die Anzahl der Lésungen pro Abschnitt Ak, in
Abhéngigkeit des Radius des leitenden Schirms r, deutlich zu. Fiir r, — oo lassen sich
schlielich keine diskreten Moden mehr angeben. Es liegt daher nahe, dass auch schon bei
endlichem Radius die Genauigkeit einer Double-Variablen, etwa 15 Dezimalstellen, mogli-
cherweise nicht ausreicht, um alle Eigenwerte mit hinreichender Genauigkeit zu bestimmen;
mehr dazu im Kapitel 4.3.4.

Zur Bestimmung des Leistungsflusses muss die Integration des Poyntingvektors nun im
kreiszylindrischen Koordinatensystem erfolgen:

P = %3‘% //ﬁzgdgdgo : (3.52)
z2=0

Darin berechnet sich die z-Komponente des Poyntingvektors mit Hilfe der Ausdriicke (3.35)
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zu

1 Ik
Sz = wgikz B/i 2 +m Z
s 2(k§—k§)2<< B0 +ml

|2

Bii(@)B;‘(@)

2o ok |
L Bl o) Bato) + L rBw)P) sin?(mg)

| 2

weikz kz *
; (m Bulo)? +m! Lpu0B5 )

QQ
k2
" B (o) B (o) + ok Bl (o) |2) cos?(mg) |
(3.53)

Fiir die erforderlichen Integrationen sind Stammfunktionen bekannt. Exemplarisch wird
im Anhang A.2.2 die Losung von (3.52) fiir den Bereich der gefithrten Moden hergeleitet.

3.3. Rechteckformige Wellenleiter

Die Felder des planaren Schichtwellenleiters und der Faser lassen sich analytisch berech-
nen, da sich die Randbedingungen formulieren lassen, indem jeweils nur eine Koordinate
konstant gesetzt wird. Dadurch lassen sich die jeweiligen Randwertprobleme mit Hilfe eines
Produktansatzes 16sen. Im Fall des rechteckformigen dielektrischen Wellenleiters ist dies
nicht mehr moglich. Bereits im Jahr 1969 wurden von Marcatili [44] und Goell [18| zwei
grundlegend unterschiedliche Losungsansitze fiir die Bestimmung der gefithrten Moden
vorgestellt. Wahrend Marcatili durch Vernachlassigung bestimmter Feldanteile im Mantel
einen approximativen analytischen Losungsweg beschreibt, zeigte Goell ein erstes effizien-
tes numerisches Verfahren auf. Beide Verfahren werden noch heute oft referenziert und im
Folgenden kurz vorgestellt. Anschlielfend wird noch auf die weiteren, mittlerweile fortge-
schrittenen numerischen Methoden eingegangen.

3.3.1. N&herungslésungen von Marcatili

Im Folgenden soll nur das grundlegende Prinzip des Marcatili-Ansatzes vorgestellt werden.
Daher beschrénkt sich dieser Abschnitt auf die Beschreibung der bzgl. beider kartesischen
Richtungen geraden Moden des offenen symmetrischen Rechteckwellenleiters. Die Beschrei-
bung der ungeraden Moden kann aber direkt abgeleitet werden. Eine umfassende Darstel-
lung auch fiir den asymmetrischen Wellenleiter befindet sich z.B. in [47]. Es sei erwéhnt,
dass Marcatili urspriinglich Singlemode-Koppelstrukturen untersuchte. Mittlerweile wird
sein Ansatz jedoch oft auch fir Multimode-Wellenleiter verwendet [39].

Der Losungsansatz von Marcatili beruht auf der Vernachléassigung der Feldanteile in den
Eckbereichen des Mantels. Geméft der Abbildung 3.6 sind dies die Bereiche fiir die gilt
L <z A %y < |y|. Aufgrund der Symmetrie des Wellenleiters braucht nur ein Viertel der
Wellenleitergeometrie explizit beriicksichtigt werden. Aufserhalb dieses Bereichs wird der
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Abbildung 3.6.: Geometrie des Rechteckleiters. Aus Symmetriegriinden wird nur ein Vier-
tel explizit betrachtet.

Feldansatz entsprechend gerade fortgesetzt. Willkiirlich wird eine Polarisation gewahlt, in
der die y-Komponente der magnetischen Feldstiarke gegeniiber der x-Komponente domi-
niert. Mit Blick auf die zu erfiillenden Randbedingungen wird der folgende Ansatz gewéhlt:

cos(kyz) cos(kyy) fiir <% y<

H, ~0, H, = Age k2% cos(k,y)  fiir x> %I, y <

(3.54)

) |@& I} |@& o |m&

Az cos(kyx)e ™ v fir x < % y>

Die tibrigen Feldkomponenten berechnen sich geméafs den Maxwellschen Gleichungen:

) —ky cos(kyx) sin(kyy) . —ky sin(k,x) cos(kyy)
H.= L —ky Ape™ 2" sin(kyy) £, = o — ko Age™ 2% cos(k,y)
o _ky3A3 COS(kitx)eikysya S _]‘Cg:AB Sin(kxx)eikysyv
(3.55) (3.56)
1 (ky + k2) cos(kyx) cos(kyy) . ky k. sin(k,z) sin(k,y)
&, = ok (k; + k2) Aye k27 cos(kyy) g, = o kykaAze'—kzzx sin(k,y)
(—hys + k2) Az cos(kyz)e s, kysk As sin(k,x)e kY,
(3.57), (3.58)

Im Bereich der gefithrten Moden gilt bei hinreichender Fiihrung der Moden
k?x,k'y < k’z bzw. kamky ¢ ]{Jonh k?()?’LQ. (359)

Folglich dominiert geméf (3.57) und (3.58) die z-Komponente der elektrischen Feldstérke
deutlich die y-Komponente. Die somit beschriebenen Moden kénnen als quasi-z-polarisiert
angesehen werden. Fiir die Phasenkonstanten gilt weiter:

k2 =kini — kX — k. (3.60)
= kin3 + k2 — ki (3.61)
= kin3 — kI + k. (3.62)
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Die Bestimmung der noch unbekannten Konstanten erfolgt durch Auswertung der Rand-
bedingungen. Zunéchst in z = d,/2:

H,H. cos(kydy/2) = Age Fe2dz/2, (3.63)
E,E. : 22 ko, sin(kydy [2) = kyo AgeFo2de/2, (3.64)
€1
Die Konstante A, lasst sich unmittelbar aus einer der Gleichungen bestimmen, wenn die
k. die Eigenwertgleichung erfiillt, die sich durch Division der beiden Gleichungen ergibt:

ke
tan(kya/2) = ?k—Q (3.65)
2 hg

Darin kann k,» mit Hilfe von (3.60) und (3.61) substituiert werden. Gleichung (3.65) ent-
spricht der Eigenwertgleichung der geraden TM-Moden eines offenen Schichtwellenleiters.

Aus den Randbedingungen in y = d,,/2 folgt

H.: kysin(kydy, /2 + ) = ky3A36_ky3dy/27 (3.66)
1 1

E,: E—(kﬁsrl — k%) cos(kyd,/2) = g—(kgem — k2) Age Fuad/2, (3.67)
1 2
1 1

g, — cos(kyd,/2) = — Aze Fvd/2, (3.68)
&1 E9

Aufgrund des fehlerhaften Ansatzes muss es im Laufe der Rechnung zu Unstimmigkeiten
kommen. Dies ist nun der Fall. Die Gleichungen (3.67) und (3.68) lassen sich nicht un-
abhingig voneinander erfiillen. Mit der Annahme (3.59) kann jedoch k, gegeniiber k2e,o
vernachléssigt werden und (3.67) geht tiber in

cos(kyd,/2) = Age Fvadv/2, (3.69)

Mit (3.69) und (3.66) lasst sich dann A bestimmen und die Eigenwertgleichung fiir die &,

ableiten: L
tan(k,d, /2) = kﬁ’ (3.70)
y
Diese entspricht der Eigenwertgleichung der geraden TE-Moden des offenen Schichtwellen-
leiters.

Dem Modell der Marcatili-Moden liegt also die Annahme (3.59) zu Grunde. Anschaulich
heifit das, die Feldoszillation in transversaler Richtung ist klein gegeniiber der Oszillation in
Ausbreitungsrichtung. Die Naherung (3.59) ldsst sich wie folgt quantisieren. Geméaf (3.21)

liegen die k,,k, im Bereich
0 < ky,ky < koy/n? — ni. (3.71)

Aus (3.59) folgt damit als obere Abschidtzung fiir den hochsten gerade noch gefiihrten

Mode
NA = /n? —n% < ny. (3.72)

Diese Bedingung unterstiitzt die allgemein Annahme, dass die Naherungslosungen von
Marcatili fiir schwach fithrende Wellenleiter genauere Ergebnisse liefern. Allerdings dringen
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(a) Gesamter Querschnitt, Mode 6,4 (b) Ausschnitt, Mode 50,25

Abbildung 3.7.: Betrag der elektrischen Feldstéirke zweier quasi x-polarisierter Moden.

die Felder im Wellenleiter mit kleiner NA im Mittel aller Moden auch weiter in den Mantel
ein, so dass die Vernachlassigung der Feldanteile in den Eckbereichen moglicherweise zu
einem erhohten Fehler fiihrt.

Eine direkte Auswertung der Bedingungen (3.59) und (3.72) zur Ableitung eines Fehler-
mafes ist schwierig bzw. nicht sehr aussagekriftig. Eine weitere Methode zur Abschétzung
der Phasenkonstanten ist die Methode der effektiven Brechzahl [36]. In der urspriingli-
chen Form berechnet diese Methode die Phasenkonstanten ebenfalls aus der Kombination
zweier Schichtwellenleiter!. Jedoch wird das Kernmaterial des zweiten Schichtwellenleiters
aus den effektiven Brechzahlen des ersten Schichtwellenleiters gebildet. Die resultierenden
effektiven Brechzahlen des rechteckformigen Wellenleiters sind in der Regel grofer als die
Néherungslosungen von Marcatili und {iberschéitzen die exakte Losung etwas. Mittlerweile
existieren jedoch diverse Erweiterungen zur klassischen Vorgehensweise. Diese haben die
Vermutung bestétigt, dass die Naherungslosungen von Marcatili die Fithrung der Moden
unterschatzt [11, 47]. Mit einer verbesserten Abschétzung der Phasenkonstanten liegt je-
doch nicht automatisch eine bessere Feldlosung vor. Grundséatzlich ist es zwar denkbar,
aus der effektiven Brechzahl Ausdriicke fiir die transversalen Phasenkonstanten k, und k,
abzuleiten und diese in der vorhandenen Feldlosung (3.55) - (3.58) zu verwenden. Dieser
Ansatz soll hier jedoch nicht weiter verfolgt werden.

Zur lustration zeigt Abbildung 3.7 zwei Feldbilder nach dem Losungsansatz von Marcatili
fir die Parameter n; = 1,57 und ny = 1,55 sowie d, = 50pm und d, = 100 pm. In der
gewahlten quasi z-Polarisation existieren 30 Losungen der Eigenwertgleichung (3.65) fiir die
k, und 59 Losungen der Eigenwertgleichung (3.70) fiir die k,, die jeweils mit den gefiihrten
Moden des jeweiligen Schichtwellenleiters korrespondieren. Insgesamt existieren jedoch nur
1370 Kombinationen, die geméf (3.60) eine effektive Brechzahl hervorrufen, die grofser als
die Mantelbrechzahl ist und damit den Bereich der gefiihrten Moden zuzuordnen sind.
Wie oben erwadhnt unterschétzt der Marcatili-Ansatz die Phasenkonstanten etwas, so dass
gef. auch Moden mit neg < no als gefithrte Moden einzuordnen sind. Abbildung 3.7a zeigt

IDiese Aussage bezieht sich wiederum auf symmetrische Wellenleiter. Asymmetrische Wellenleiter erfor-
dern einige zusétzliche Rechenschritte.
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den Betrag der elektrischen Feldstirke des 6,4-Modes? und soll lediglich verdeutlichen,
dass die Feldlosungen im Kern einem vollkommen symmetrischen Feldbild entsprechen.
Abbildung 3.7b zeigt einen Ausschnitt des Feldbildes des 50,25-Modes. Die Felder dringen
nun bereits deutlich in den Mantel ein und der Fehler durch Vernachléssigung der Felder
in den Eckbereichen steigt.

Da sich die Nédherungslosungen von Marcatili auf den offenen Wellenleiter beziehen, sei
noch erwihnt, dass auch auch fiir eine geschlossene Anordnung keine exakte analytische
Feldlosung existiert. Es gibt jedoch Arbeiten, die Naherungslosungen fiir geschlossene Wel-
lenleiter behandeln [77].

3.3.2. Numerische Verfahren

In der Literatur sind viele unterschiedliche numerische Verfahren bekannt. Alle géngi-
gen Verfahren lassen sich auch fiir die Bestimmung der Moden dielektrischer Wellenlei-
ter verwenden. Es seien hier beispielsweise Finite-Elemente-Methoden, Finite-Differenzen-
Methoden, Finite-Integrations-Methoden und Randelementmethoden genannt. Einen Uber-
blick verschafft u.a. [10, 71, 72]. Zunéchst sollen jedoch Beispiele fiir Verfahren vorgestellt
werden, die nicht die Querschnittsebene des Wellenleiters diskretisieren, sondern den Lo-
sungsraum der Helmholtzgleichung.

Reihenentwicklungen

In der Mathematik ist es oft hilfreich, Funktionen durch Reihenentwicklungen auszu-
driicken oder zu approximieren. Klassische Beispiele sind Taylorreihen und Fourierreihen.
Es liegt daher nahe, auch Losungen der Maxwellschen Gleichungen durch Reihenentwick-
lungen zu approximieren, sofern keine exakte Losung gefunden werden kann. Als Pionier-
arbeit fiir den Bereich der optischen Wellenleiter kann die von Goell 1969 présentierte
Methode [18] angesehen werden. Diese sieht einen abschnittsweise unterschiedlichen An-
satz in kreiszylindrischen Koordinaten fiir die z-Komponenten der Felder vor:

E.ilop) = Z an®in(0) sin(ny + ), (3.73a)

i
o

WE

3
Il
o

Der Index ¢ kennzeichnet wieder die unterschiedlichen Raumbereiche. Analog zur kreiszy-
lindrischen Faser miissen im Kern gewthnliche Besselfunktionen und im Mantel modifi-
zierte Besselfunktionen angesetzt werden. Es gilt ®1,(0) = J,, (/£ — k2 0) und $y,(0) =
Kn( k2 — k2 Q). Uber die Wahl der Phase 7; = 0 oder ~; = 5 und die Wahl ausschliefs-
lich gerader oder ungerader Reihenindizes n lésst sich die Symmetrie des rechteckformigen
Wellenleiters beriicksichtigen.

26,4-Mode: Es wird die sechste Losung von (3.65) und die vierte Losung von (3.70) verwendet.
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Zur Bestimmung der Gewichte a,, und b,, werden mit Hilfe eines Point-Matching entspre-
chend der Anzahl der Gewichte viele Gleichungen abgeleitet. D.h. die Randbedingungen
werden nur an endlich vielen dquidistanten Stellen ausgewertet. Das so gewonnene Glei-
chungssystem besitzt nur dann eine nichttriviale Losung, falls die Determinante der Sy-
stemmatrix verschwindet. Die Nullstellen der Determinante entsprechen den Eigenwerten
der Moden. Wie viele Reihenglieder (N + 1) tatséchlich angesetzt werden miissen, hangt
insbesondere auch von der Ordnung des zu bestimmenden Modes ab. Der Grundmode lasst
sich oft bereits mit sehr wenigen Reihengliedern approximieren. Leider ist das Verfahren
insgesamt numerisch schlecht konditioniert, so dass die Qualitdt der Losungen mit wach-
sender Anzahl Reihenglieder nachlésst. Der Aufwand zur Berechnung eines Modes hoherer
Ordnung ist somit sehr hoch, sofern der Mode iiberhaupt bestimmt werden kann.

Es ist auch nicht grundséatzlich gekldrt, ob dieser Ansatz fiir N — oo gegen die exakte
Losung konvergiert [72]. Ohnehin mag es abwegig erscheinen, die Moden eines Wellen-
leiters mit rechteckférmiger Geometrie durch Zylinderfunktionen zu approximieren. Eine
alternative Vorgehensweise sieht trigonometrische Ansatzfunktionen vor [24]. Dieses wurde
zundchst nur als Losung der skalaren Wellendifferenzialgleichung formuliert:

AE(Fw) + (K2 — k2) E(7,w) = 0. (3.74)

Darin ist £ die dominierende transversale Komponente der elektrischen Feldstérke eines
Modes. Der Losungsansatz entspricht einer zweidimensionalen Fourierreihe, die hier unge-
rade angesetzt wird:

N ) 2 . (nmx\ . (mny
E(zy) = ;;cnmq)nm(x,y) mit ., (2,y) = I sin ( I ) sin ( I, ) :

(3.75)
Darin definieren L, und L, ein kartesisches Fenster, auf dessen Rand die Feldgrofen hin-
reichend gut abgeklungen sind. Die Ansatzfunktionen ®,,,, sind im Gegensatz zum Ansatz
von Goell (3.73) unabhéngig von der Ausbreitungskonstanten k.. Eingesetzt in (3.74) lasst
sich unter Ausnutzung der Orthogonalitét der ®,,, ein Eigenwertproblem zur Bestimmung
der k£, und ¢, ableiten.

Die Losungsansétze (3.73) und (3.75) sollen nur exemplarisch die grundlegenden Ansét-
ze beschreiben. Diese wurden in der Vergangenheit in vielen wissenschaftlichen Arbeiten
iberarbeitet, u.a. |45, 55, 70, 73|. Die Untersuchungen beschrianken sich jedoch im We-
sentlichen wiederum auf Wellenleiter mit wenigen gefithrten Moden. Fiir hochmultimodale
Wellenleiter und insbesondere fiir Moden nahe dem Cut-Off sind die vorgestellten Verfah-
ren jedoch oft unzuverléssig und nicht leistungsféhig. Ein Vergleich zwischen den Lésungen
von Goell und Marcatili befindet sich z.B. in [41].

Weitere numerische Losungsansatze

Wie einleitend erwéhnt existiert eine Vielzahl unterschiedlicher klassischer Verfahren. Im
Folgenden sollen nur die grundlegenden Probleme angesprochen werden, die im Grunde
alle Verfahren gemeinsam haben.
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Abbildung 3.8.: Betrag der elektrischen Feldstérke der Uberlagerung zweier naherungswei-
se entarteter Moden nahe dem Cut-Off. Exemplarisches Simulationsergeb-
nis aus Comsol®.

Eine Schwierigkeit bei der Verwendung gitterbasierter Verfahren ist der Speicherbedarf.
Da sich die Problemstellungen auf die Querschnittsebene beschréanken, bezieht sich diese
Aussage mittlerweile weniger auf den Bedarf zur Rechenzeit, als vielmehr auf den Bedarf
zur Nachbearbeitungzeit. Das Abspeichern der Feldlosungen einiger hundert bis tausen-
der hybrider Moden kann in Abhéngigkeit der absoluten Abmessungen und der gewéhlten
Diskretisierung bis zu einigen Terabyte Speicher erfordern. Im Zuge steigender Festplat-
tenkapazitdten 16st sich dieses Problem jedoch wahrscheinlich in Zukunft ohne weiteres
Zutun. Die erforderlichen Rechenzeiten liegen bereits jetzt selbst bei Verwendung konven-
tioneller PC-Hardware in einem akzeptablen Bereich. Einige hundert Moden lassen sich je
nach eingesetztem Verfahren in der Regel innerhalb weniger Minuten berechnen?.

Die grofte Schwierigkeit in der Modellierung hochmultimodaler Wellenleiter ist die néhe-
rungsweise Entartung der Moden, die insbesondere nahe dem Cut-Off eine eindeutige Zu-
ordnung der Moden erschwert. In jedem Fall sollten mogliche Symmetrien in der Geometrie
ausgenutzt werden, um die mogliche Entartung zwischen Moden unterschiedlicher Polarisa-
tion zu beriicksichtigen und um das Rechengebiet minimal klein zu halten. Dennoch lassen
sich auch durch eine feinere Diskretisierung des Rechengebiets aufgrund der stets endli-
chen Rechengenauigkeit nicht immer alle Moden eines Wellenleiters isolieren. Exempla-
risch zeigt Abbildung 3.8 die Ausgabe einer Rechnung mit Hilfe der Simulationsumgebung
COMSOL® | welche auf der Methode der Finiten Elemente (FEM) basiert. Dargestellt ist
der Betrag der elektrischen Feldstérke eines Modes nahe dem Cut-Off. Mit grofser Wahr-
scheinlichkeit handelt es sich jedoch um die Uberlagerung zweier niherungsweise entarteter
Moden.

Obwohl die Feldlosung aus Abbildung 3.8 im Rahmen der verfiigharen Rechengenauigkeit
durchaus eine korrekte Losung der Helmholtzgleichung darstellen kann, offenbart sich an

3Die Angaben beziehen sich auf die in dieser Arbeit betrachteten Wellenleiter. Getestet wurden die
Simulationsumgebungen COMSOL® und CST MICROWAVE STUDIO® auf konventioneller PC-
Hardware, z.B. 2,4 GHz Prozessor mit 4 GB Arbeitsspeicher.
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dieser Stelle ein weiteres elementares Problem. Um letztlich effektiv mit den gewonnenen
Feldlosungen arbeiten zu koénnen, beispielsweise die Einkopplung in den Wellenleiter zu
analysieren, muss zumindest das Spektrum der gefithrten Moden vollstandig bestimmt sein.
Aktuell ist kein Verfahren verfligbar, das automatisiert diese Vollstandigkeit garantieren
kann. Stattdessen muss so weit moglich visuell kontrolliert werden, welche Moden dem
vollstdndigen Spektrum gefiihrter Moden zuzuordnen sind.

Der Vergleich zwischen den Feldlosungen von Marcatili und der FEM-Simulation hat im
Ubrigen eine gute Ubereinstimmung fiir Moden mit hinreichend grofier effektiver Brechzahl
hervorgebracht. Je kleiner die Differenz zwischen effektiver Brechzahl und Mantelbrechzahl
ist, desto stérker sind jedoch die Abweichungen. Aufgrund der Schwierigkeiten beider Ver-
fahren bei der Bestimmung der Moden nahe dem Cut-Off wird an dieser Stelle auf einen
expliziten Vergleich anhand eines definierten Fehlermafes verzichtet.






4. Koppeleffizienz Gaulsscher
Eingangsstrahlen

Die Schnittstelle zwischen Laserdiode und optischem Wellenleiter ist aufgrund der ho-
hen Toleranzanfordungen bei der Montage stets ein kritischer Punkt im Aufbau optischer
Dateniibertragungsstrecken [5]. In der Faseroptik gibt es ein grofe Anzahl verschiedener
Stecksysteme, die eine hinreichend gute Kopplung gewahrleisten. Es ist nicht grundsétz-
lich ausgeschlossen diese Stecksysteme auch fiir die Anbindung an die in der Leiterplat-
te eingebetteten Wellenleiter zu verwenden. Stecker und Buchse miissen jedoch entspre-
chend adaptiert werden. Alternativ miissen neue Koppellésungen entwickelt werden. Die in
diesem Entwicklungsprozess eingesetzten Simulationswerkzeuge beruhen meist auf strah-
lenoptischen Methoden. Ziel dieses Kapitels ist die Verifikation dieser strahlenoptischen
Methoden, die bekanntlich nur eine Ndherungslosung fiir hinreichend grofse Geometrien
darstellen. Als Referenzfeld dient der monochromatische Gaufistrahl, der zwar nur néhe-
rungsweise das Feld einer realen Laserdiode wiedergibt, aber aufgrund seiner geschlossenen
mathematischen Beschreibung gut fiir den Vergleich zwischen Wellenoptik und Strahlen-
optik geeignet ist.

Im Kapitel 4.1 wird zunédchst das wellentheoretische Modell mit seinen Parametern und
den wesentlichen Modellierungsschritten vorgestellt. Anschlieffend werden im Kapitel 4.2
grundlegende Ergebnisse fiir die erreichbare Koppeleffizienz bei der Einkopplung in die
kreiszylindrische Faser vorgestellt. Da sich die Betrachtungen zur Wellenausbreitung im
Kapitel 5 géanzlich auf den planaren Schichtwellenleiter konzentrieren, werden die Unter-
schiede bei der Einkopplung kurz diskutiert. Der Einfluss verschiedener Simulationspa-
rameter, wie z.B. die Anzahl zu beriicksichtigender Moden, und die damit verbundenen
Grenzen des Modells werden in Kapitel 4.3 besprochen. Die zentralen Ergebnisse des Ver-
gleichs zwischen Wellenoptik und Strahlenoptik werden dann im Kapitel 4.4 présentiert.
Am Anfang dieses Kapitels stehen einige Erlauterungen zum strahlenoptischen Modell.
Zum Abschluss werden im Kapitel 4.5 einige Ergebnisse fiir den Rechteckwellenleiter disku-
tiert. Da auf Basis der Marcatili-Moden nur Losungen fiir die gefiihrten Moden existieren,
wird einleitend ein Naherungsverfahren zur wellentheoretischen Analyse vorgestellt.

4.1. Modellparameter und Modellierungsschritte

Zur Einordnung des Simulationsaufwands werden in diesem Kapitel die wesentlichen Mo-
dellierungsschritte vorgestellt. Der Modellierungsprozess léasst sich in vier Schritte aufteilen:

25
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Charakterisierung des Modenspektrums der beteiligten Wellenleiter, insbesondere
Berechnung der Eigenwerte (Kapitel 3).

Beschreibung der einfallenden Wellen durch Moden eines Hohlleiters (Kapitel 4.1.2).

Berechnung der im Rahmen der Methode des Mode-Matchings auftretenden Uber-
lappintegrale (Kapitel 4.1.3).

Durchfiihrung des Mode-Matchings, d.h. Aufstellen und Losen des Gleichungssystems
(Kapitel 4.1.4).

Die Charakterisierung der Modenspektren wurde im Kapitel 3 hinreichend diskutiert. Die
verbleibenden drei Schritte werden im Folgenden néher beleuchtet. Zunéchst werden jedoch
die betrachteten Geometrie- und Materialparameter vorgestellt, da diese essentiell fiir alle
weiteren Betrachtungen sind.

4.1.1. Geometrie- und Materialparameter, Parametrisierung der
Quelle

Das theoretische Modell der optischen Stufenindexfaser ist mit Definition der Kern- und
Mantelbrechzahl sowie dem Kerndurchmesser vollstiandig definiert. In der Praxis miisste
zumindest noch der Durchmesser des Mantels angegeben werden, welcher an dieser Stelle
zundchst als hinreichend grof angenommen wird. Der planare Schichtwellenleiter kann
zusétzlich ein asymmetrisches Brechzahlprofil aufweisen. Die Untersuchungen dieser Arbeit
beschrinken sich jedoch auf den symmetrischen Wellenleiter. Aus den Brechungsindices
leitet sich unmittelbar die Numerische Apertur NA = y/n? — n3 sowie der Einfallswinkel
©. = arcsin(N A) ab. Dieser Einfallswinkel bezogen auf die Wellenleiterachse definiert im
planaren Fall die Grenze, bis zu der ein einfallender Strahl noch im Kern gefithrt wird. Im
Fall einer zweidimensionalen QQuerschnittsgeomtrie ist ©, nur eine gute Ndherung. Mehr
dazu in Kapitel 4.4.

In der Tabelle 4.1 sind einige Werte fiir unterschiedliche Parameterkonfigurationen aufge-
listet. Dabei ist die Wellenldnge A\ ebenso wie die Kernbrechzahl n,; konstant. Es gilt im
Weiteren durchgehend

A=850nm  und ny = 1,57. (4.1)

Des Weiteren sind ein Kerndurchmesser von d = 70um und eine Mantelbrechzahl von
no = 1,55 Ausgangsparameter, die jedoch im Verlauf der Arbeit variiert werden. In Ab-
héngigkeit des Kerndurchmessers sowie der Mantelbrechzahl werden die maximale azi-
muthale Ordnung Mp, die Anzahl der gefiihrten Moden, die numerische Apertur N A und
der Einfallswinkel ©. angegeben. Die Angabe der Anzahl gefithrter Moden bezieht sich
auf eine Polarisation. Die Anzahl gefiihrter Fasermoden Ng korrespondiert mit der Anzahl
gefiihrter Schichtwellenleitermoden Ng in etwa geméfs

T T\ 2
Ny~ “Np ~ <—> N2, 4.2
rA o Ne () NS (4.2)
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d/pm N max Ord.  Gef. Moden NA O,
Mg Np(m=1) Ng

70 1,550 59 1075 (41) 42 0,250 14,4°7°
50 1,550 41 554 (29) 30 0,250 14,4°7°
30 1,550 24 208 (17) 18 0,250 14,47°
10 1,550 7 26 (5) 6 0,250 14,47°
70 1,560 41 543 (29) 30 0,177 10,19°
70 1,565 28 279 (21) 21 0125  7,19°
70 1,568 17 113 (13) 14 0,079 4,54°

Tabelle 4.1.: Diverse Wellenleiterparameter fiir A = 850 nm und n; = 1,57.

Darin ist Ny eine Abschétzung fiir die Anzahl der gefiihrten Moden des rechteckformigen
Wellenleiters. Voraussetzung fiir (4.2) ist eine hinreichend grofe Anzahl Schichtwellenlei-
termoden. Fiir kleine Ng stellt (4.2) nur eine sehr grobe Nédherung dar. Fiir azimuthale
Ordnungen m > M existieren keine gefithrten Fasermoden mehr. Sofern nur die Leistung
in den gefithrten Moden interessiert, braucht daher beim Mode-Matching nur die maximale
Ordnung My beriicksichtigt zu werden. Die Anzahl gefiihrter Fasermoden in der Ordnung
m = 1 ist ungefdhr gleich Ng.

Neben den Geometrie- und Materialparametern des Wellenleiters ist die Parametrisierung
der Quelle von fundamentaler Bedeutung. Das Feld der Quelle wird durch einen Gaufs-
strahl, wie er in Kapitel 2.2.3 vorgestellt wurde, approximiert. Bei gegebener Wellenzahl
k werden die grundlegenden Eigenschaften des Gaufsstrahls ausschlieftlich durch einen Pa-
rameter festgelegt: der Rayleigh-Lénge zy. Daraus abgeleitet ergibt sich mit (2.45) der
Divergenzwinkel ©,y des Strahls. Fiir die Wellenzahl sei k& = ky angenommen, d.h. der
Bereich vor der Wellenleiterstirnflache sei luftgefiillt mit ny = 1. In der Praxis wird dieser
Fall vermieden, da die Reflexionsverluste maximal sind. In dieser Arbeit soll jedoch genau
dieser ungiinstigste Fall untersucht werden.

Um die effektive Strahlbreite in der Wellenleiterstirnfliche bei senkrechtem Einfall einzu-
stellen, gibt es zwei mogliche unabhéangige Vorgehensweisen, die auch miteinander kom-
biniert werden konnen. Die erste Moglichkeit besteht darin, die Rayleigh-Léange zo und
damit auch den asymptotischen Divergenzwinkel 6, konstant zu halten und den Abstand
2. der Strahltaille zur Wellenleiterstirnfliche zu variieren. Diese Vorgehensweise wird in
dieser Arbeit favorisiert. Alternativ konnte der Abstand der Strahltaille konstant gehalten
werden und iiber die Rayleigh-Lénge z, die Strahlbreite eingestellt werden. Im Extremfall
befindet sich die Strahltaille direkt in der Grenzschicht, womit sich ebene Phasenfronten
des Gaufsstrahls in der Wellenleiterstirnfliche ergeben. Eine Kombination beider Moglich-
keiten wire, den lokalen Divergenzwinkel konstant zu halten, d.h. es gilt 9/0z w(z) = kon-
stant. Ein konstanter Divergenzwinkel vereinfacht die Interpretation und insbesondere den
Vergleich der Ergebnisse fiir unterschiedliche geometrische Abmessungen. In dieser Ar-
beit wird daher vornehmlich ein Gaufstrahl mit einem asymptotischen Divergenzwinkel
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b/pm 6,18 10 20 30 40 20 60 70
Ze/pm 0 449 108,7 167,7 2258 283,5 341,0 3984
Ou(ze) 0 3,94° 4,76° 4,89° 494° 4,96° 4,97° 4,98°

Tabelle 4.2.: Axiale Verschiebung z. des Gaufstrahls fiir ©,9 = 5° zum Einstellen unter-
schiedlicher Strahlbreiten b = 2w(z.) in der Wellenleiterstirnfléche.

O. = 5° betrachtet. Grofsere Divergenzwinkel erhdhen den inhérenten Fehler der pa-
raxialen Approximation, welcher in Kapitel 4.3.1 ndher diskutiert wird. Bezogen auf die
Wellenldnge A = 850 nm ergibt sich im freien Raum die Rayleigh-Lange zu 2z = 35,3 pm.
In der Tabelle 4.2 sind typische Werte fiir die Strahlbreite b = 2w(z.) und die zugehorigen
Verschiebungen z, aufgelistet. Des Weiteren ist der lokale Divergenzwinkel

ow(z) 222
= = —_— 4.
O4(2e) = arctan ( ) . arctan ( o z%)) (4.3)

0z
angegeben, der erst fiir sehr kleine Strahlbreiten deutlich vom asymptotischen Divergen-
zwinkel O,y abweicht, vgl. Abbildung 4.1b.

Ausgehend von der senkrechten meridionalen Positionierung der Strahlachse kann der
Strahl um einen Winkel verdreht oder lateral verschoben werden. Der Fall einer gleichzei-
tigen Verdrehung und Verschiebung wird in dieser Arbeit nicht betrachtet. Daher braucht

T
) ’ o jl(ze)
A b2
, ‘ s . ‘ \‘ s * b / 2 .
. L AN
e A ny
'.‘@gg/ S0 -
27 & o
Nng = 1 no I/
(a) Querschnittsansicht (b) Der lokale Divergenzwinkel

Abbildung 4.1.: Ausbreitungseigenschaften des Gaukstrahls. (a) Position des Gaufstrahls
zur Wellenleiterstirnflache. Die Strahlachse wird um den Winkel ¥ verdreht
oder um die Strecke h lateral verschoben. (b) Der lokale Divergenzwinkel
ist stets etwas kleiner als der asymptotische Divergenzwinkel © .
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nur die Verdrehung um eine Achse bzw. die Verschiebung in Richtung einer Achse explizit
berechnet zu werden. Der jeweils orthogonale Fall kann durch Variation der Polarisati-
on des Gaufstrahls beriicksichtigt werden. Abbildung 4.1a zeigt das definierte Modell zur
Einkopplung im Querschnitt, das sowohl fiir die Faser als auch fiir den Schichtwellenleiter
verwendet wird. Der Gaufstrahl wird somit um den Winkel ¢ um die y-Achse verdreht
oder um die Lénge h lateral in z-Richtung verschoben. Die Feldbeschreibung (2.38) des
Gaufsstrahls bezieht sich auf das Koordinatensystem (z’,y',2") und ist durch eine Koor-
dinatentransformation, welche die Rotation und die Translation beriicksichtigt, mit dem
Koordinatensystem (x,y,z) verkniipft.

In Abbildung 4.1a nicht eingezeichnet ist der perfekt leitende Schirm, der die gesamte
Anordnung umgibt. Der Einfluss dieses Schirms ist gering, sofern nur die in die gefiihrten
Moden eingekoppelte Leistung berechnet werden soll. Die Anzahl vorhandener Strahlungs-
moden steigt jedoch mit wachsendem Durchmesser des Schirms. Dieser Durchmesser wurde
standardmaéfig auf das Doppelte des Ausgangskerndurchmessers s = 2d = 140 pm gesetzt.
Zur Verifikation wurde der Durchmesser auf bis zu 300 pm erhéht. Mit der Diskussion
iiber einen sinnvollen Abstand des leitenden Schirms zum Wellenleiterkern beschéftigt sich
Kapitel 4.3.2.

Neben den genannten physikalischen Parametern existiert eine Reihe weiterer Simulations-
parameter, die in den folgenden Kapiteln vorgestellt werden. Kritische Simulationspara-
meter sind beispielsweise die Anzahl beriicksichtigter Moden oder die Anzahl angesetzter
Strahlen. Im wellentheoretischen Modell wurden stets alle propagierenden Moden bertick-
sichtigt, mehr dazu im Kapitel 4.3.3. Um den Diskretisierungsfehler im strahlenoptischen
Modell zu minimieren wurden bis zu 2-10° Strahlen beriicksichtigt, siche auch Kapitel 4.4.2.

4.1.2. Spektraldarstellung der einfallenden Wellen

Die Durchfithrung des Mode-Matching-Verfahrens geméfs Kapitel 2.3.2 erfordert Felder,
die durch Moden eines geschlossenen, langshomogenen Wellenleiters beschrieben werden.
Zwar kann das Verfahren problemlos modifiziert werden, so dass die einfallende Welle ex-
plizit durch eine nahezu beliebige Feldlosung vorgegeben werden kann!. Die reflektierten
und transmittierten Wellen miissen jedoch weiterhin durch ein diskretes Modenspektrum
beschrieben werden, da ein kontinuierliches Modenspektrum ein System von Integralglei-
chungen hervorrufen wiirde, welches in der Regel nicht ohne Weiteres losbar ist. In jedem
Fall miissen Integrale iiber ein Produkt der Feldgrofen der einfallende Welle mit denen
eines Wellenleitermodes gebildet werden. Diese werden oft als Uberlappintegrale bezeich-
net und sind meist nur numerisch losbar. Bei einer hohen Anzahl beriicksichtigter Moden
ist dies mit einem entsprechend groften Rechenaufwand verbunden. Ist, wie in dieser Ar-
beit, der Raum vor dem betrachteten dielektrischen Wellenleiter homogen, wird durch
den eingefiigten, perfekt leitenden Schirm ein homogener Hohlleiter gebildet. Sofern ei-
ne Entwicklung der einfallenden Welle in Moden dieses Hohlleiters mdglich ist, kénnen
bei einmalig erfolgter Entwicklung beliebig viele unterschiedliche Wellenleiter untersucht
werden. Bedingung ist natiirlich ein konstanter Durchmesser des leitenden Schirms.

!Die rechte Seite in (2.85) oder (2.86) muss dann modifiziert werden.
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Es wird angenommen, dass eine Approximation der Felder des Gaufsstrahls (2.38) unter
Verwendung der Notation aus Kapitel 2.3.1 geméaf der Reihenentwicklung

wal
E (7~ Y (CIME () exp (kTN z) + CIPE, " () exp (—jKLF2))  (44)

v=0

moglich ist. Darin kennzeichnet der Index P die Feldgréfsen des paraxialen Gaufsstrahls.
Analog erfolgt die Beschreibung der magnetischen Feldstdarke. Da die Moden des homoge-
nen Hohlleiters stets transversalelektrisch oder transversalmagnetisch sind, wurde bereits
hier eine Aufteilung vorgenommen. Eine detaillierte Diskussion tiber die Anzahl Ny, zu
berticksichtigender Moden wird in Kapitel 4.3.3 gefiihrt. Die Entwicklung (4.4) unterliegt
drei wesentlichen systematischen Fehlern:

e Die Felder des Gauftstrahls fiillen den gesamten Raum aus und werden durch den
leitenden Schirm abgeschnitten.

e Es kann nur eine endliche Anzahl Moden fiir die Reihenentwicklung beriicksichtigt
werden.

e Die Felder des Gaufsstrahls unterliegen der paraxiale Ndherung.

Eine detailliertere Diskussion wird auf Kapitel 4.3 verschoben. Fiir den Moment sei ange-
nommen, dass alle drei Fehler im Kontext dieser Arbeit vernachlassigbar sind.

Parallelplattenleitung

Die Felder des planaren Gauftstrahls sind ebenfalls transversalelektrisch oder transversal-
magnetisch, vgl. A.1.2. Die Beziehung (4.4) vereinfacht sich im Fall transversalelektrischer

Felder somit zu
Ny —1

E' (M~ Y CrE," () exp (—jkLE=) (4.5)
r=0

worin gVTE(Ft) geméik (3.12) gegeben ist:

£, (@) =éysin(ky (w=3)) mit ko="" v=123.... (4.6)
Im Allgemeinen wird zur Bestimmung der Amplituden CT% die Modenorthogonalitiit (2.63)
ausgenutzt, d.h. es wird das Kreuzprodukt der Gleichung (4.5) mit einer Modenfunktion
der magnetischen Feldstiarke gebildet. Anschliefsend wird iiber eine Ebene z = konstant
integriert. Die linksseitige Integration des Produkts aus Gaufsfunktion und Modenfunktion
ist i.d.R. nur numerisch moglich. Aufgrund der einfachen mathematischen Beschreibung
der Moden durch trigonometrische Funktionen bietet sich eine alternative Herangehens-
weise an. Das Feld des Gaufsstrahls wird dabei in der Transversalebene z = konstant durch
ein trigonometrisches Interpolationspolynom approximiert. Die Amplituden CT' E kénnen

dann durch einen einfachen Koeffizientenvergleich bestimmt werden.
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Im Allgemeinen besitzt ein trigonometrisches Interpolationspolynom fiir eine gerade Stiitz-
stellenanzahl die Form

K—1
T — Zo T — Xg
I(x) = dy+ dg cos (K27r - ) + ;(dk + dn_p) cos (k27r T )

K-1
+ ] Z(dk — dek) sin (k2ﬂ'$ ;Io) s (47)

k=1

mit dem Definitionsintervall [zg,xo + T]. Die Werte (dy,...,dy_1) sind die den N = 2K
Abtastwerten? der zu interpolierenden Funktion g(x) zugeordneten diskreten Fourierkoef-
fizienten. Diese lassen sich geméf

N—-1
de = Y g (i% + o) e™N mit k=0,... N-1 (4.8)

=0

berechnen. Eine geeignet hohe Stiitzstellenanzahl vorausgesetzt, lassen sich die Koeffizien-
ten mit Hilfe einer schnellen Fouriertransformation (FFT) berechnen. Eine detailliertere
Beschreibung der trigonometrischen Interpolation befindet sich z.B. in [52].

Im Fall transversalelektrischer Felder darf das Interpolationspolynom nur Sinusfunktionen

enthalten. Das Wegfallen der Kosinusfunktionen in (4.7) erfordert dy = —dy_j, sowie dy =
dr = 0. Dies wird durch eine ungerade Fortsetzung auf das Intervall [—%,ﬂ gemafs
. gz s T4 <z<T/4
(@) = 31 / / (49)
—g(—x—T/2) : —3T/4<z<-T/4

erreicht. In der gewéhlten Notation gilt xy = —37/4 und T = 2s. Die Amplituden der
TE-Moden ergeben sich damit zu

0 : v=_0
CTe={j49d, : v=1,...K—1 (4.10)
0 : v=K.

Da sich aus dem Ansatz transversalelektrischer Felder kein TEM-Mode ableiten lasst, ist
die Amplitude CI® richtigerweise gleich Null. Das Ergebnis CEE = 0 resultiert jedoch aus
der Approximation des Feldes durch ein Interpolationspolynom und gilt nur nédherungs-
weise fiir hinreichend grofe K.

Es sei angemerkt, dass die Wahl der elektrischen Feldstérke fiir die Entwicklung willkiirlich
ist. In analoger Vorgehensweise héatte auch die magnetische Feldstarke gewéahlt werden kon-
nen. Die Verwendung der y-gerichteten elektrischen Feldstarke hat jedoch den Vorteil, dass
sich die Richtung bei Rotation des Gaufsstrahls um die y-Achse nicht &ndert. Unabhéngig
davon, welche Feldgrofe fiir die Entwicklung verwendet wird, unterliegt die Gesamtlosung

2Die Anzahl der Abtastwerte muss nicht exakt mit der Anzahl Reihenglieder in 4.5 korrelieren. In der
Praxis sollte immer K > Ny gelten.
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immer dem Fehler der paraxialen Ndherung. Dazu mehr in Kapitel 4.3.3. Die Bestimmung
der Amplituden CT™ erfolgt analog, jedoch muss an Stelle der ungeraden Fortsetzung (4.9)
eine gerade Fortsetzung gewéhlt werden.

Die Anzahl der Stiitzstellen sollte in Abhéngigkeit des Plattenabstandes s und der damit
verbundenen Anzahl gefiihrter Moden gewéhlt werden. Ein typischer Wert ist s = 300 nm,
womit 706 gefiihrte Moden pro Polarisation existieren. Die Stiitzstellenanzahl wurde stan-
dardmifig auf mindestens N = 22 gesetzt. In der Regel sollte jedoch auch eine geringere
Stiitzstellenanzahl ausreichen. Die erforderliche Rechenzeit ist auch fiir grofse N vernach-
lassigbar gering.

Rundhobhlleiter

Im dreidimensionalen Fall wird zunéchst die Modenorthogonalitit (2.63) ausgenutzt. Das
Kreuzprodukt von (4.4) mit der komplex konjugierten Funktion des magnetischen Feldes
des p-ten TM-Modes und die anschliefsende Integration iiber eine transversale Ebene, hier
willkiirlich z = 0, liefert

/E xﬁTE ezda—/z CTMSTM ﬂu +CTEE ﬁTE*) G da (410)

Loy
2=0 ZOVl

Da im Rundhohlleiter kein TEM-Mode existiert, beginnt die Summation nun mit v = 1.
Unter der Annahme, dass Summation und Integration vertauscht werden diirfen, und unter
Beriicksichtigung der Modenorthogonalitét folgt unmittelbar

cre = Qi/ (prﬂfE*) &, da. (4.12)
I

Analog dazu ergeben sich die C’EM zu

™ 1/ STM
M=o (E xH, ) ¢, da. (4.13)

Unter Verwendung des Feldansatzes (3.29) fiir die transversalelektrischen Moden ergibt
sich fiir die Amplituden

= o / / (EPHTE — EPHTP) o dpdo

Qu (?/EP (0:¢) ( kfzg‘] (Fou0) Sin(m‘ﬁ)) o dpde (4.14)

]S/EP (e:¢) ( 7 Im(kou0) COS(”W)) ngodg>.
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Ein analoger Ausdruck ergibt sich fiir die Bestimmung der C’EM . Die numerische Berech-
nung dieser Doppelintegrale ist i.d.R. mit einem hohen Rechenaufwand verbunden. Zur
Losung ware ein adaptives Verfahren wiinschenswert, da die Feldverteilung des Gaufs-
strahls in Abhéngigkeit der Verdrehung ¢} und der lateralen Verschiebung h stark variiert.
Aufgrund dessen ist es aber auch schwierig, ein gleichsam stabiles wie effizientes adaptives
Verfahren zu implementieren. Da die Amplituden bei konstantem Radius des leitendem
Schirms nur einmalig bestimmt werden miissen, wurde im Rahmen dieser Arbeit ein ein-
faches Verfahren auf Basis der wiederhohlten eindimensionalen Integration verwendet. Die
Stiitzstellenstellenanzahl wurde entsprechend hoch angesetzt.

Die Integration in @-Richtung wurde wie zuvor mit Hilfe der schnellen Fouriertransfor-
mation durchgefiihrt, d.h. die Feldfunktionen des Gaufstrahls EZ,D und Ef; wurden wieder
durch trigonometrische Interpolationspolynome approximiert. Anschliefend kann die In-
tegration in ¢-Richtung elementar durchgefiihrt werden. Die Integrale (4.14) werden dazu
wie folgt umgestellt:

Ts 2

rp_ ) e [T P .
TGk, k/ [ B eo)sintme)do | Juhuie) de
0

(4.15)

Ts

27
+ / EL (0,) cos(mep) de | J;, (kgu0) 0 do
0 0

Diese Vorgehensweise hat den Vorteil, dass durch das trigonometrische Interpolationspo-
lynom alle azimuthalen Ordnungen in einem Schritt beriicksichtigt werden. Der Nachteil
ist, dass fiir alle Ordnungen dieselben Stiitzstellen in p-Richtung angesetzt werden. Daher
wird in dieser Richtung ein einfaches Quadraturverfahren mit dquidistanten Stiitzstellen
verwendet. Es sei betont, dass die vorgestellte Methode nicht zwangslaufig die effizien-
teste ist. Weitere Untersuchungen dahingehend wurden nicht vorgenommen, da die Rei-
henentwicklung nur einmalig durchgefiihrt werden muss, um unterschiedliche dielektrische
Wellenleiter zu berticksichtigen.

Die Rechenzeiten sind im Vergleich zur planaren Anordnung um ein Vielfaches hoéher,
denn neben dem héheren Aufwand bei der Integration ist auch die Gesamtzahl zu bertick-
sichtigender Moden ungleich hoher. Dazu mehr in Kapitel 4.3.3. Standardméfig wurden
210 Punkte fiir die FFT verwendet und 2000 Punkte fiir die Integration in p-Richtung.
Zur Verifikation wurde die Anzahl der Stiitzstellen in beiden Richtungen verdoppelt. Die
Anzahl gefiihrter Moden pro azimuthaler Ordnung m betrigt bei einem Durchmesser des
Hohlleiters von 300 pm zwischen 353 (m=1) und 324 (m=>59).

4.1.3. Uberlappintegrale links- und rechtsseitiger Moden

Im Rahmen der Methode des Mode-Matching miissen Uberlappintegrale der Form (2.69)
gelost werden:

QW = [ (&)< {Hy)}) e.de (4.16)

z=zc
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Zu beachten ist, dass die Anzahl zu beriicksichtigender Moden links- und rechtsseitig sehr
grof sein kann. Im planaren Fall miissen jeweils einige hundert bis tausend Moden be-
riicksichtigt werden, im dreidimensionalen Fall sind es bereits bis zu einige zehntausend
Moden. Entsprechend hoch ist die Anzahl durchzufiihrender Integrationen. Fiir die Anord-
nungen dieser Arbeit lassen sich aufgrund der herrschenden Symmetrien die Integrationen
analytisch durchfiihren.

Planare Wellenleiter

In einer planaren Anordnung sind im Fall transversalelektrischer Wellen Integrale der Form

QU = ’“Z“A / EO@){EN@)Y do (4.17)

Z2=2zc

zu l6sen. Der Integralkern besteht aus Produkten trigonometrischer und hyperbolischer
Funktionen und die Integrationen sind entsprechend elementar durchfiihrbar. Fiir die Kom-
bination aus linksseitiger Parallelplattenleitung und rechtseitigem Schichtwellenleiter wur-
de (4.17) exemplarisch im Anhang A.3.1 gelost. Zur Notation sei angemerkt, dass die
Phasenkonstanten k, und k, der Ubersichtlichkeit wegen nur iiber den Index v oder 0
unterschieden werden. Ob die Phasenkonstante zum links- oder rechtsseitigen Wellenleiter
gehort, muss iiber die Zuordnung in (4.17) entschieden werden.

Zylindrische Fasern

In kreiszylindrischen Koordinaten nimmt (4.16) die Form

(lT // g,, W S(IH )ngpdg (4.18)

0=0¢=0

an. Wird im linksseitigen Rundhohlleiter ein transversalelektrischer Mode mit der elektri-
schen Feldstérke (3.30) betrachtet und rechtsseitig ein Fasermode mit der magnetischen
Feldstirke (3.35) angesetzt, dann folgt aus (4.18) der Integralausdruck

R / (;Jmufgue) (weiBtito) + m ™2 B3(0))

WE;

T Ep Tl (k) ( “Eipe (o) + k:MB;z<g>) ) odo. (4.19)

Darin sind die Bj/s;(0) geméh (3.33) bzw. (3.34) Kombinationen aus gewchnlichen oder
modifizierten Besselfunktionen. Auch dieses Integral ist analytisch l6sbar. Der Rechenauf-
wand ist jedoch im Vergleich zur planaren Anordnung deutlich hoher. Die Losung von
(4.19) ist exemplarisch fiir einen gefithrten Fasermode im Anhang A.3.2 aufgefiihrt.
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Numerik

Das Vorhandensein analytischer Losungen garantiert noch keine fehlerfreie Bestimmung
des Integralwertes. Da auf einem Rechensystem immer nur eine begrenzte Stellenanzahl
zur Verfiigung steht, ist zum einen der giiltige Zahlenbereich eingeschriankt. Es kann somit
zu Zahlenbereichsiiberlaufen kommen. Das zweite, in der Regel schwerer wiegende Problem
ist das Phénomen der Ausloschung. Dieser Fall tritt insbesondere auf, wenn das Uberlap-
pintegral mit einem Strahlungsmode der Faser gebildet wird. Ein Faktor in den Losungen

ist der Term
1 1

2 2 2 7.2 7
kQV + kQ2N kjgy - kQQ}J,

(4.20)

vgl.(A.60). Mit wachsendem Radius des leitenden Schirms steigt die Anzahl der Losungen
k‘gQ# und damit auch die Wahrscheinlichkeit, dass aufgrund von Ausléschung ein erhéhter
Fehler resultiert. Abhilfe schafft eine Taylorentwicklung. Sei F'(x,y) mit x=k,, und yﬁffggu

eine Stammfunktion des Uberlappintegrals, mit
1
(z+y)(z—y

Wird die Funktion g(z,y) in eine Taylorreihe bzgl. ihres zweiten Arguments um den Punkt
y = = + Ax entwickelt, ergibt sich nach Abbruch hinter dem linearen Glied

d

F(xay) =

)g(x,y)- (4.21)

Az, (4.22)

xT

Da in den Integralausdriicken stets g(z,z) = konstant gilt, folgt fiir den Integralwert I(z,y)
nach Einsetzen der Grenzen

o=b 1

I(ry) = F(2y) Ty J(z.x)

o=b

(4.23)
o=a
Die Kennzeichnung ¢’ steht fiir die Ableitung nach dem zweiten Argument. Die Konstante
g(z,x) entfillt durch die Auswertung der Stammfunktion an den Grenzen ¢ = [a,b]. Der
fiir x &~ y numerisch schlecht auszuwertende Term z — y ist in dieser Approximation nicht
enthalten. Alternativ oder zur Kontrolle der korrekten Berechnung des Integralwertes kann
eine numerische Integration in p-Richtung durchgefiihrt werden.

4.1.4. Durchfithrung des Mode-Matching

Nach Abarbeitung der genannten Vorleistungen muss zur Bestimmung der Amplituden
der reflektierten und transmittierten Moden eines der beiden Gleichungssysteme (2.85)
oder (2.86) gelost werden. Im planaren Fall sind in der Regel bis zu 1000 beriicksichtigte
Moden auf beiden Seiten der Schnittstelle ausreichend. Die Dimension des resultierenden
Gleichungssystems ist damit handhabbar und ohne grofte Hardwareanforderungen mit ei-
nem direkten Verfahren losbar. Die Verwendung eines direkten Verfahrens, wie z.B. eine
LR-Zerlegung, birgt zudem den Vorteil, dass sie einmalig durchgefiihrt fiir verschiedene
rechtsseitige Vektoren und damit verschiedene Anregungen verwendet werden kann.
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Die Anzahl zu beriicksichtigender Fasermoden ist ungleich hoher. Das Modenspektrum der
Faser ist jedoch so geartet, dass Moden unterschiedlicher azimuthaler Ordnung orthogonal
sind. Diese azimuthale Orthogonalitéat gilt auch fiir Moden unterschiedlicher zirkularsym-
metrischer Wellenleitertypen. Werden My azimuthale Ordnungen beriicksichtigt, kann das
Gleichungssystem somit in Mg Gleichungssysteme kleinerer Dimension aufgeteilt werden.
Die Dimension der resultierenden Gleichungssysteme ist wiederum hinreichend klein.

Der insgesamt zu leistende Rechenaufwand zur Beschreibung der Einkopplung in die Faser
tibersteigt den Aufwand zur Beschreibung der Einkopplung in den Schichtwellenleiter um
ein Vielfaches. In der planaren Anordnung liegt die Rechenzeit fiir die einzelne Simula-
tion insgesamt im Bereich einiger Sekunden und erhoéht sich nur maéakig fiir jede weitere
Variation der Anregung®. Bei der Faser wird der Grofteil der Rechenzeit fiir die Rei-
henentwicklung der Anregung benétigt. Allerdings muss diese nur einmalig durchgefiihrt
werden, um unterschiedliche Fasern zu simulieren. Lediglich ein konstanter Radius des
leitenden Schirms ist Voraussetzung. Sofern nur die Leistung interessiert, die in die ge-
fiihrten Moden eingekoppelt wird, muss sich die Reihenentwicklung zudem nur iiber die
entsprechenden azimuthalen Ordnungen erstrecken. Hinsichtlich der Implementierung auf
einem Rechensystem empfiehlt sich die Erstellung einer Lookup-Tabelle fiir die diversen
Besselfunktionswerte.

4.2. Koppeleffizienz fiir Stufenindex-Wellenleiter

Die in diesem Kapitel prasentierten Ergebnisse basieren auf dem zuvor préasentierten wel-
lentheoretischen Losungsansatz zur Beschreibung der Einkopplung eines Gaufistrahls in
einen dielektrischen Wellenleiter. Es werden zunéchst Ergebnisse fiir die dielektrische Fa-
ser gezeigt. Anschliefend wird kurz auf die Unterschiede zur planaren Geometrie einge-
gangen. Alle Ergebnisse beziehen sich auf eine y-gerichtete Polarisation. Die Unterschiede
zur orthogonalen x-gerichteten Polarisation sind jedoch nicht signifikant und liegen in den
Abbildungen unterhalb der darstellbaren Genauigkeit.

4.2.1. Definition der Koppeleffizienz

Es wird angenommen, eine Welle trifft aus negativer z-Richtung kommend auf die Stirn-

flache des dielektrischen Wellenleiters. Diese Welle fiihrt die Leistung P Dann ist die

Koppeleftizienz n definiert als Quotient der in die gefithrten Moden eingekoppelten Leistung

und der einfallenden Leistung P,

1 r r
n=100% —5 > [CS7) QU (4.24)
2P Ve
{gef. Moden}

Zur besseren Unterscheidung in den Diagrammen von der spéter eingefiihrten relativen
Abweichung § wird die Koppeleffizienz in Prozent angegeben.

3Herkémmlicher PC, z.B. 2 GHz Prozessor mit einem Kern und 1 GB Arbeitsspeicher.
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Abbildung 4.2.: Leistungfluss im Schichtwellenleiter bei nicht idealer Einkopplung.

Bei sehr kurzen Wellenleitern ist die Definition (4.24) ggf. zu modifizieren. Durch eine nicht
ideale Kopplung kann Leistung in das Spektrum der Strahlungsmoden eingekoppelt wer-
den, die dann vom Wellenleiterkern weg, radial nach auken abgestrahlt wird. Dieser Prozess
bedarf aber einer gewissen Wellenleiterlénge. Ist diese sehr kurz, kann ein Empfanger am
Wellenleiterende auch Leistung aufnehmen, die im Spektrum der Strahlungsmoden gefiihrt
wird. Abbildung 4.2 zeigt exemplarisch die zeitl. gemittelte Leistungsflussdichte |R{S}|
am Anfang eines Schichtwellenleiters. Die Darstellung in Abbildung 4.2 ist in transversaler
Richtung um den Faktor zwei gestreckt. Der Einfallswinkel des Gaufsstrahls betragt 14,5°.

4.2.2. Koppeleffizienz bei Variation der Einfallsrichtung

Zunachst sollen einige elementare Ergebnisse betrachtet werden, die die Einarbeitung in die
Thematik erleichtern. Es werden daher auch Ergebnisse gezeigt, die nicht von praktischem
Interesse sind, da die Koppeleffizienz zu gering ist. Die maximal erreichbare Koppeleffizi-
enz liegt fiir die gewéhlten Parameter aufgrund von Reflektionsverlusten nicht bei 100 %,
sondern etwa 5 % darunter. Die Strahlbreite des Eingangsstrahls ist zundchst konstant mit
b = 50 pm.

Verdrehung des Eingangsstrahls

Abbildung 4.3a zeigt Ergebnisse fiir einen Kerndurchmesser d = 70 pm und vier verschiede-
ne Mantelbrechzahlen. Die Strahlachse trifft meridional auf (h = 0). Mit einer Strahlbreite
von b = 50 pm wird die Stirnfliche des Wellenleiterkerns nahezu vollstandig ausgeleuchtet,
da die Felder des Gaufsstrahls noch iiber den Strahlradius hinaus ragen. Die maximale
Koppeleffizienz ist mit 93,42 % bereits etwas kleiner als das theoretische Maximum, dass
sich fiir deutlich kleinere Strahlbreiten ergibt und bei etwa 95,1 % liegt. Bei der Verdrehung
des Eingangsstrahls um einen Winkel ¢ wird erwartet, dass die Koppeleffizienz ab einem
bestimmten kritischen Winkel stark abnimmt. Dieser kritische Winkel sollte aufgrund der
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Abbildung 4.3.: Die Koppeleffizienz in Abhéngigkeit des Einfallswinkels 4.

Rotationssymmetrie des Gaufsstrahls ndherungsweise der Differenz des maximalem Ein-
fallswinkels ©. und des Divergenzwinkels ©,¢ entsprechen:

9. = O, — Oy (4.25)

Die in Abbildung 4.3a dargestellten Ergebnisse bestéitigen diese Annahme. Zur Erinnerung:
Der asymptotische Divergenzwinkel ©,y des Gaufsstrahls ist konstant gleich 5°. Mit den
Werten fiir ©, aus Tabelle 4.1 und den Mantelbrechzahlen n, = 1,55, 1,56, 1,565 sind
die kritischen Winkel 9. = 9,47°, 5,19°, 2,19°. Im Fall n, = 1,568 ist 9. negativ und wie
erwartet stellt sich ein deutlicher Einbruch der maximalen Koppeleffizienz bei ¢ = 0 ein.
Die 3dB-Grenze, bei der die Koppeleffizienz auf 50 % des Maximalwerts abgefallen ist,
liegt etwas unterhalb des maximalen Einfallswinkels O..

Die Verkleinerung des Kerndurchmessers ohne Anpassung des Strahldurchmessers ist in
der Praxis natiirlich unsinnig. Abbildung 4.3b zeigt Ergebnisse fiir vier unterschiedliche
Kerndurchmesser bei konstanter Mantelbrechzahl ny = 1,55. Schon bei Verkleinerung des
Kerndurchmessers auf den Durchmesser des Strahls, d = 50 ym, sinkt die maximale Kop-
peleffizienz bei 1 = 0 auf etwa 83,64 %. Es sei daran erinnert, dass die Leistung, die der
Gaufistrahl innerhalb seines Strahlradius transportiert, gleich 86,47 % seiner Gesamtleis-
tung ist. Wird der Kerndurchmesser weiter verkleinert, nimmt die erreichbare Koppeleffizi-
enz deutlich ab. Zu bemerken ist noch, dass im Fall ¢ = 0 aufgrund der Rotationssymmetrie
nur Moden der azimuthalen Ordnung m = 1 angeregt werden. Fiir d = 10 pm existieren
nur 5 gefithrte Moden in der Ordnung m = 1. Wird der Strahl verdreht, kénnen auch
Moden héherer azimuthaler Ordnung angeregt werden und die Koppeleffizienz kann leicht
ansteigen. So erklért sich das leicht oszillatorische Verhalten in den Graphen.

Laterale Verschiebung des Eingangsstrahls

Neben der Verdrehung des Quellstrahls stellt die laterale Verschiebung der Quelle den zwei-
ten wesentlichen Verlustmechanismus dar. Abbildung 4.4 zeigt Ergebnisse fiir die Koppelef-
fizienz in Abhéngigkeit der lateralen Verschiebung bei senkrechtem Einfall des Gaufistrahls
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Abbildung 4.4.: Die Koppeleffizienz in Abhéngigkeit der lateralen Verschiebung h.

(¥ = 0). Dabei wurden dieselben Geometrie- und Materialparametervariationen wie zuvor
beriicksichtigt. Wie erwartet sind die Ergebnisse nahezu unabhéngig vom Wert der Man-
telbrechzahl und damit von der Numerischen Apertur N A, solange diese hinreichend grofs
ist, so dass in etwa ©, > 1,50, gilt, vgl. Tabelle 4.1. Erst fiir eine sehr kleine N A fallt
die Koppeleffizienz insgesamt ab.

Aufgrund der relativ groffen Strahlbreite nimmt die Koppeleffizienz auch fiir kleine Ver-
schiebungen h schon leicht ab. Fiir d = 70 pm ist ab einer Verschiebung von etwa h = 15 pm
ein stiarkerer Abfall zu verzeichnen, da bei grofteren Verschiebungen wesentliche Feldantei-
le des Gaufsstrahls nicht mehr auf die Stirnfliche des Wellenleiterkerns treffen. Die 3 dB-
Grenze liegt bei h = 34pm und damit knapp unter dem Radius des Kerndurchmessers.
Wird der Kernradius verkleinert, verschiebt sich entsprechend auch die 3 dB-Grenze.

4.2.3. Koppeleffizienz bei gleichmaBiger Verkleinerung des Kern-
und des Strahldurchmessers

Ein wesentliches Ziel dieser Arbeit ist die Verifikation strahlenoptischer Methoden und
insbesondere das Auffinden des Grenzbereichs, in dem ein erhéhter methodischer Fehler
zu erwarten ist. Dieser wird erwartet, falls die Geometrie nicht hinreichend grofs gegeniiber
der Wellenlénge ist. Die zu betrachtende Geometriegrofse ist in diesem Fall der Durchmes-
ser des Wellenleiterkerns. Eine Verringerung des Kerndurchmessers ohne entsprechende
Skalierung der Strahlbreite des Gaufistrahls fiihrt wie gezeigt zu Einbufsen bei der Kop-
peleffizienz. Es stellt sich die Frage, welchen Einfluss die gleichméfige Verkleinerung des
Kerndurchmessers und des Strahldurchmessers auf die Koppeleffizienz hat. Schlieflich &n-
dert sich mit Variation des Kerndurchmessers auch das Spektrum der Moden. Ebenso
andert sich die Feldverteilung des Gaufsstrahls in der Schnittflache leicht.

Mit Blick auf den Vergleich zur Strahlenoptik werden zwei Félle betrachtet. Zum einen
der Fall einer idealen Koppelvoraussetzung, bei dem der Kerndurchmesser grofer als der
Strahldurchmesser ist. Es gilt d/b = 1,5. Ausgehend von einem Kerndurchmesser von d =
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Abbildung 4.5.: Die Koppeleffizienz bei gleichméfiger Verkleinerung des Kerndurchmes-
sers d und des Strahldurchmessers b. (a),(c): in Abhéngigkeit des Einfalls-
winkels 9. (b),(d): in Abhéngigkeit der lateralen Verschiebung h.

90 um (b = 60 pm) wird der Kern in fiinf Schritten bis auf einen Durchmesser von d = 15 pm
(b = 10 um) verkleinert. Die Ergebnisse fiir 1 zeigt Abbildung 4.5. Die numerische Apertur
des Wellenleiters ist N A = 0,25 mit ny = 1,55. Im zweiten Fall wird d/b = 1,0 gewahlt. Bei
dieser Wahl ist die maximal erreichbare Koppeleffizienz auf etwa 83 % begrenzt. Interessant
ist diese Wahl, da die Stirnfliche des Wellenleiterkerns und des direkt umgebenen Mantels
vollstandig ausgeleuchtet sind.

Die Interpretation der Ergebnisse kann kurz ausfallen. Merkliche Abweichungen gibt es
jeweils dann, wenn ein signifikanter Anteil des einfallenden Leistungflusses auf den kern-
nahen Mantelbereich trifft. Dies ist insbesondere dann der Fall, wenn der Strahl lateral
verschoben wird, Abbildungen 4.5b und 4.5d. Insgesamt ldsst sich jedoch festhalten, dass
die gesamte Anordnung innerhalb der gewdhlten Geometrieparameter weitestgehend ska-
lierbar ist, ohne dass massive Anderungen in der Koppeleffizienz zu erwarten sind. Die
leichten Unterschiede erkléren sich im Wesentlichen aus dem kleiner werdenden lokalen
Divergenzwinkel des Gaufstrahls bei Verkleinerung des Strahldurchmessers b in der Wel-
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lenleiterstirnflache, vgl. Tabelle 4.2.

4.2.4. Anmerkungen zur Approximation durch planare Wellenleiter

Da sich die Untersuchungen zur Wellenausbreitung im Kapitel 5 gédnzlich auf den plana-
ren Schichtwellenleiter beschrénken, miissen einige Unterschiede im Vergleich zur Faser
hinsichtlich der erreichbaren Koppeleffizienz hervorgehoben werden [65].

Alle in den vorherigen Kapiteln 4.2.2 und 4.2.3 gemachten Aussagen gelten qualitativ
auch fiir den planaren Schichtwellenleiter. Aufgrund der fehlenden Abhéngigkeit von ei-
ner Dimension ergeben sich jedoch einige quantitative Unterschiede. Diese betreffen nicht
die wesentlichen Ausbreitungseigenschaften des Strahls. Insbesondere divergiert der Strahl
unter einem identischen Winkel. Wie der Beschreibung des planaren Gaufsstrahls im An-
hang A.1.2 zu entnehmen ist, ist allerdings die innerhalb der Strahlbreite gefiihrte Leistung
mit iiber 95 % deutlich grofer (vorher 86 %). Dementsprechend ist die erreichbare Koppelef-
fizienz je nach Verhiltnis d/b im Durchschnitt ebenfalls deutlich grofer. Erst ab einem
Verhéltnis von ca. d/b > 1,5 und hinreichend geringer Verdrehung bzw. Verschiebung des
Strahls stellen sich in etwa identische Koppeleffizienzen ein.

Die Besonderheit der planaren Approximation besteht insbesondere darin, dass sich ver-
schiedene Effekte stidrker auswirken. Besonders deutlich werden diese Effekte im strah-
lenoptischen Modell. Es sei z.B. die Goos-Hénchen-Verschiebung genannt. Ursache ist die
fehlende transversale Abhéngigkeit in einer Dimension, die im physikalisch realen Modell
einzelne Effekte etwas verschleiert. Mehr dazu in Kapitel 4.4.3. Dariiber hinaus sind si-
gnifikante Unterschiede insbesondere auch dann zu erwarten, wenn nur wenige gefiihrte
Moden existieren. Dieser Punkt steht jedoch nicht im Fokus dieser Arbeit.

4.3. Grenzen der Modellierung

Wie im Abschnitt 4.1.2 schon einleitend beschrieben, unterliegt das vorliegende Modell zur
Beschreibung der Einkopplung optischer Wellen in einen dielektrischen Wellenleiter einigen
Annahmen, die den allgemeinen Losungsraum méglicherweise einschranken. Die folgenden
Abschnitte sollen die Grenzen des vorliegenden Modells etwas néher beschreiben.

4.3.1. Der Fehler der Paraxialen Ndaherung

Der Gaufsstrahl wird in dieser Arbeit als Feld einer idealisierten Quelle herangezogen, um
die weiteren Eigenschaften einer optisch multimodalen Ubertragungsstrecke zu analysieren.
Diese Untersuchungen erfolgen auf Basis der Theorie normaler Moden, Kapitel 2.3.1, mit
dem Ziel einer méglichst exakten Modellierung zur Entwicklung eines Referenzmodells. Ist
schon das Modell der Quelle mit einem hohen Fehler behaftet, ist dieses Ziel moglicherweise
nicht zu erreichen. Um zunéchst ein Gefiihl fiir den zu erwartenden Fehler zu bekommen, ist
in Abbildung 4.6 ein Vergleich der transversalen elektrischen Feldstérke des Maxwellschen
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Abbildung 4.6.: Vergleich des Realteils der transversalen elektrischen Feldstéarke des Max-
wellschen £ und Paraxialen GauRkstrahls £7 in Abhingigkeit der trans-
versalen Koordinate fiir b = 50 pm.

und Paraxialen Gauftstrahls dargestellt. Die Feldgrofsen sind in der Ebene z ausgewertet
worden, in der die Strahlbreite jeweils den Wert b = 50 pm annimmt. Aufgrund der Ro-
tationssymmetrie reicht die Darstellung in Abhéngigkeit der radialen Koordinate aus. Der
Divergenzwinkel 6,9 = 5° wurde gewéhlt, da in diesem Fall die Abweichung zwischen den
unterschiedlichen Feldlosungen geméfts Abbildung 4.6 vertretbar gering erscheint. Deutlich
grofer ist die Abweichung im Fall ©,9 = 14°. Dieser Wert entstammt dem Datenblatt einer
VCSEL-Diode.

Fiir eine weitere Abschétzung des Fehlers hervorgerufen durch die paraxiale Ndherung wird
das folgenden Fehlermafs

[ |EM (7 — EF (P da

fp Ze === b)
) T IO de

2=Ze

(4.26)

eingefiihrt. Darin steht wie schon in Abbildung 4.6 Eiw fiir das transversale Feld des Max-
wellschen Gaufstrahls und E fiir das transversale Feld des Paraxialen Gaukstrahls. Das
Integral iiber das Betragsquadrat der elektrischen Feldstérke ist proportional zur transpor-
tierten Leistung. Das Fehlermaf f, setzt somit die im Differenzfeld transportierte Leistung
ins Verhéltnis zur insgesamt transportierten Leistung. In der Strahltaille gilt f, = 0, die
Feldgrofsen sind identisch. Mit wachsender Koordinate in Ausbreitungsrichtung werden die
Abweichungen gréfser und auch f, wird anwachsen.

Voraussetzung fiir die korrekte Berechnung von f, ist die hinreichend genaue Bestimmung
der Feldgrofen. Im Fall des Paraxialen Gaufsstrahls ist mit (2.38a) eine analytische Losung
gegeben, die sich auch numerisch problemlos auswerten lasst. Der Maxwellsche Gaufistrahl
erfordert mit (2.31) jedoch die Auswertung eines uneigentlichen Integrals. Insbesondere
bei kleinen Divergenzwinkeln ist anzunehmen, dass die Integration an einer bestimmten
Stelle gy abgebrochen werden kann. Beispielsweise ist nicht zu erwarten, dass evaneszente
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Abbildung 4.7.: Das Fehlermaf f, in Abhéngigkeit von g, /k fiir unterschiedliche Divergen-
zwinkel © ..

Anteile einen signifikanten Beitrag liefern. Es gilt also naherungsweise

w2 @ w? 3
EM(P) ~ E, 70 /exp (— 04 ) Jo(0v/ % + y?) exp <—j k2 —o? z> 0dp. (4.27)
0

Auf dieser Basis zeigt Abbildung 4.7 Ergebnisse fiir das Fehlermafs f, in Abhéngigkeit der
Integrationsgrenze gq. Dargestellt sind Ergebnisse fiir vier unterschiedliche Divergenzwin-
kel. Des Weiteren werden die Félle b = 2wy (z. = 0) sowie b = 50 pum (z. = 283,5 pm)
unterschieden. Im ersten Fall, Abbildung 4.7a, gilt f, — 0 fiir g9 — oo und diese Tendenz
wird auch in allen vier Fallen bestétigt, wie erwartet jedoch deutlich besser fiir kleine
Divergenzwinkel. Evaneszente Feldanteile liefern aber selbst fiir ©,9 = 14° keinen signifi-
kanten Beitrag, da am Ubergang oy = k das Fehlerma® bereits auf fp = 4e-15 abgefallen
ist.

Fiir z > 0 strebt f, gegen einen konstanten Wert grofer Null. In dem in Abbildung 4.7b
dargestellten Fall mit b = 50 pm sind dies bei einer Genauigkeit von drei Stellen die in Ta-
belle 4.3 gegebenen Werte. Interessieren soll zunéchst die Frage, welche Integrationsgrenze
0o mindestens gewahlt werden muss, um die Felder des Maxwellschen Gaufistrahls hinrei-
chend genau zu berechnen. In den Kurven in Abbildung 4.7b ist insbesondere bei kleinem
Divergenzwinkel deutlich ein Knick zu erkennen, ab dem sich der Wert f,, scheinbar nicht

Oa0 2° 5° 10° 14°
Toleosr=1 4,04e-07  9,94e-05 6,35e-3  3,76e-2
Min. eo/k 0,2 0,4 0,55 0,6
2wy 150pm 6,18 pm 3,06 pm 2,16 pm

Tabelle 4.3.: Exemplarische Grenzwerte des Fehlermafes f,, an der Stelle b = 50 pm, emp-
fohlene Integrationsgrenze gy, und der minimale Strahldurchmesser b = 2wy.
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Abbildung 4.8.: Das Fehlermaf f,: (a) in Abhéngigkeit des Divergenzwinkels und (b) in
Abhéngigkeit des Strahldurchmessers b.

mehr dndert. Bei genauer Betrachtung, aufterhalb der in Abbildung 4.7 darstellbaren Ge-
nauigkeit, stellt sich auch nach diesem Knick noch eine leichte Oszillation ein. Aus diesen
Ergebnissen abgeleitete Grenzwerte fiir gy sind ebenfalls in Tabelle 4.3 aufgefiihrt.

Abschliefiend soll noch etwas detaillierter die Abhéngigkeit des Fehlermafes f,, vom Diver-
genzwinkel O, und von der Strahlbreite b untersucht werden. In Abbildung 4.8a ist die
Abhéngigkeit von O, fiir drei in dieser Arbeit verwendeten Strahlbreiten dargestellt. Wird
ein maximaler Fehler von f, = 1073 angesetzt, ergibt sich fiir b = 75 pm ein maximaler
Divergenzwinkel von etwa 6°. In der Abbildung 4.8b ist zusétzlich die Entwicklung des
Fehlers fiir grofer werdende Strahldurchmesser b dokumentiert. Insbesondere bei groftem
O40 wichst der Fehler schnell so stark an, dass von der Verwendung der paraxialen Néahe-
rung abzuraten ist. Beispielsweise nimmt im Fall ©,9 = 14° und b = 200 pm das Fehlermafs
den Wert f, = 0,195 an. Da das Fehlermaf eine leistungsbezogene Grofse ist, variiert ent-
sprechend auch die gefiihrte Leistung nach der Entwicklung der Felder in Moden eines
Hohlleiters. Genau wie die Felder des Maxwellschen Gaufsstrahls unterliegen die Moden
des Hohlleiters nicht der paraxialen Naherung. Natiirlich hdngt der tolerierbare Fehler
stark vom eigentlichen Ziel der Anwendung ab. Im Kontext dieser Arbeit ist dies die Ent-
wicklung eines Referenzmodells, in dem der Gaufistrahl als Referenzquelle dient. Da der
Vergleich zwischen den wellen- und strahlenoptischen Ergebnissen im Kapitel 4.4 teilweise
Abweichungen aufzeigt, die lediglich im Promillebereich liegen, sollte an dieser Stelle ein
maximales Fehlermafs zugelassen werden, das deutlich unter dem Promillebereich liegt. Mit
einer maximalen Strahlbreite von b = 75 pm und einem Divergenzwinkel von 0,y = 5° ist
dies gegeben.

Als ergénzende Literatur empfiehlt sich insbesondere [69].
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4.3.2. Geschlossene oder offene Wellenleiter?

Im Kapitel 3.1 wurde bereits thematisiert, dass in der Modellierung optischer Wellenleiter
zwischen offenen und geschlossenen Anordnungen unterschieden werden kann. Dabei muss
beachtet werden, dass beide Ansétze nur Modellcharakter besitzen. Standard-Multimode-
Fasern besitzen in der Regel einen Kern mit Durchmessern von 50 pm oder 62,5 pm. Der
Durchmesser des umgebenden Mantels ist gleich 125 pm und damit etwa doppelt so grof
wie der Kern. Es wird somit angenommen, dass die Felder der gefiihrten Moden ent-
sprechend schnell im Mantel abklingen. Dass dem auch so ist, zeigt exemplarisch Abbil-
dung 4.9a. Fiir die Parameter ny = 1,57, no = 1,568 und d = 75pm ist das transversale
Modenprofil des 14. und damit des letzten noch gefiihrten Modes eines Schichtwellenleiters
aufgetragen, vgl. Abbildung 3.2b. Eine hinreichend grofe Mantelschichtdicke a vorausge-
setzt, dringt das Feld augenscheinlich ca. 30 pm weit in den Mantel ein.

Unerlésslich ist in jedem Fall die hinreichend genaue Beschreibung des Spektrums der
gefiihrten Moden. Um den Einfluss des leitenden Schirms auf das Modenprofil zu verdeut-
lichen, zeigt Abbildung 4.9a Ergebnisse fiir unterschiedliche Mantelschichtdicken. Nimmt
man eine Mantelschichtdicke von a = 500 pm als Referenzwert an, wird deutlich, dass
selbst bei einer Dicke von nur 10 pum das Feld im Kern (|| < 37,5 pum) noch hinreichend
gut beschrieben wird. Lediglich im Mantel kommt es zu gréferen Abweichungen. Bei noch
kleineren Schichtdicken dndert sich das Modenprofil schliefslich auch signifikant im Kern.

Die vergleichsweise kleine numerische Apertur wurde im Ubrigen gewihlt, da sich die Felder
eines 14. Modes noch in einem akzeptablen Mafsstab darstellen lassen. Im Mittel dringen
die Felder bei kleiner werdender numerischer Apertur zwar weiter in den Mantel ein. Die
Felder des letzten gerade noch gefithrten Modes eines Wellenleiters mit grofser Apertur
kénnen aber durchaus noch weiter in den Mantel reichen, z.B. besitzt fiir no = 1,55 der

1 ‘
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Abbildung 4.9.: (a): Ausschnitt des transversalen Modenprofils |€,| des 14. Modes fiir un-
terschiedliche Mantelschichtdicken a. Der Wellenleiterkern ist grau unter-
legt. (b): Das Fehlermafs f,, in Abhéngigkeit der Mantelschichtdicke a. Es
gilt jeweils d = 75 pm.



76 Kapitel 4. Koppeleffizienz Gaufsscher Eingangsstrahlen

PEC Rand

Abbildung 4.10.: Zeitlich gemittelte Leistungsflussdichte [R{S}| bei Anregung in z = 0
durch einen um 14,5° verdrehten Gaufsstrahl fiir die Wellenleiterparame-
ter: ny = 1,57, no = 1,55 und d = 70 pm. Dargestellt ist der Vergleich
zwischen einer geschlossenen und einer (nidherungsweise) offenen Struk-
tur.

45. und damit letzte gefiihrte Mode nach 60 pm noch merkliche Feldanteile.

Zur Quantifizierung des Fehlers im Profil der gefithrten Moden wurde wie im vorangegan-
gen Abschnitt ein Fehlermafs f berechnet:

[ 1EX () — €57 da
fo=" : (4.28)
J1EX (x))? da

Darin kennzeichnet £° das Feld eines Modes des offenen Wellenleiters. Das Ergebnis fiir
die jeweils zwei letzten gefiihrten Moden der beiden genannten Wellenleiter ist in Ab-
bildung 4.9b dargestellt. Legt man wiederum einen maximalen Fehler von f = 1073 zu
Grunde, ist dieser auch im schlechtesten Fall bei a = g erreicht. Alle Moden niedrigerer
Ordnung erreichen diese Fehlerschranke viel frither. Die Untersuchungen fiir die kreiszy-
lindrische Faser bringen analoge Ergebnisse hinsichtlich der Eindringtiefe der Felder in
den Mantel hervor. Es kann somit abschlieffend festgehalten werden, dass der Durchmes-
ser des leitenden Schirms mindestens doppelt so grof sein sollte wie der Durchmesser des
Kerns, um den Einfluss des leitenden Schirms auf die Koppeleffizienz zu minimieren. Ein

signifikanter Einfluss ist jedoch erst fiir deutlich kleinere Schirmdurchmesser zu erwarten.

Unter den genannten Bedingungen ist der Leistungsfluss im Kern des langshomogenen
Wellenleiters aufgrund der Modenorthogonalitdt unabhéngig vom Durchmesser des um-
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gebenden Schirms. Voraussetzung ist natiirlich die korrekte Berechnung der Amplituden
der gefithrten Moden. Das Spektrum der Strahlungsmoden variiert jedoch zwangslaufig
mit Anderung des Schirmradius, da durch den Schirm Reflexionen hervorgerufen werden.
Abbildung 4.10 zeigt exemplarisch die Anderung in der Leistungsflussdichte fiir den Fall
eines Schichtwellenleiters mit Schirmabstand a = 50 pm im Vergleich zu einem Wellenleiter
mit @ = 800 pm. Da sich im letztgenannten Fall der Einfluss des leitenden Schirms erst
fiir deutlich grofsere z bemerkbar macht, wird in Abbildung 4.10 unten der Begriff offener
Rand verwendet. Die Darstellungen sind in transversaler Richtung um den Faktor 2 ge-
streckt. In der oberen Abbildung werden durch den PEC-Rand (PEC, englisch fiir perfekter
elektrischer Leiter) deutlich erkennbare Reflexionen hervorgerufen. In der Umgebung der
Schnittfliche z = 0 zeigen beide Abbildungen jedoch Ubereinstimmung auf. Tatséichlich
ist die mit beiden Anordnungen berechnete Koppeleffizienz im Rahmen der erreichbaren
Genauigkeit identisch.

Der Einfluss des leitenden Schirms auf das anregende Feld ist im Ubrigen vernachlissigbar.
Zwar werden die Felder, sofern noch signifikant vorhanden, durch den Schirm abgeschnit-
ten. Diese abgeschnittenden Anteile rufen jedoch keine unerwiinschten Effekte hervor, son-
dern werden nicht weiter beriicksichtigt.

4.3.3. Die Anzahl zu beriicksichtigender Moden

Wie bereits diskutiert, setzt sich das Modenspektrum eines jeden Wellenleiters auch im
Fall eines diskreten Spektrums aus einer unendlichen Anzahl Moden zusammen. Unab-
héngig von der gewdhlten Vorgehensweise kann eine Simulation ohne zusétzliche Naherun-
gen jedoch immer nur endlich viele Moden beriicksichtigen. Im Folgenden soll zunéchst
untersucht werden, wie viele Moden fiir die hinreichend genaue Beschreibung des Gaufs-
strahls durch Hohlleitermoden erforderlich sind. Anschliefend wird die Untersuchung auf
die Durchfiihrung des Mode-Matchings ausgedehnt.

Entwicklung des einfallenden Feldes

Die Entwicklung der Felder des Gaufsstrahls in die Moden eines Rundhohlleiters ist der
rechenintensivste Teil der Simulationen dieser Arbeit. Wiinschenswert wére es daher, nur
die Amplituden der Moden zu berechnen, die auch signifikant angeregt werden. Zur Vi-
sualisierung des angeregten Modenspektrums wird die Folge der Partialsummen {iber die
Leistung der einzelnen Moden

n
Pz(neg) = ZF” mit  p = max{v|k,, > kones} (4.29)
v=1

betrachtet. Der Ubersichtlichkeit wegen und zur besseren Vergleichbarkeit wird Pz definiert
als Funktion einer effektiven Brechzahl neg. Die Summation in (4.29) beriicksichtigt Moden
im Indexbereich ny; > k,,/ko > neg. Mit den in dieser Arbeit betrachteten diskreten
Modenspektren verliuft Pz (neg) stufenférmig, was jedoch aufgrund der Vielmodigkeit der
Wellenleiter und der endlichen Darstellungsgenauigkeit oft nicht auffallt.
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Abbildung 4.11.: Anregung des Modenspektrums im Hohlleiter: Akkumulierte Leistung P=
fiir verschiedene Einfallswinkel 9. Es gilt ©,9 = 5° und Mz = 59.

Die effektive Brechzahl ist fiir ausbreitungsfihige Moden reellwertig und liegt im Fall des
luftgefiillten Hohlleiters im Intervall (0,1). Abbildung 4.11a zeigt exemplarisch den Verlauf
von FE(TLeﬁ‘) fiir einen Divergenzwinkel ©,9 = 5° und unterschiedliche Einfallswinkel 9. So-
fern eine hinreichend grofse Anzahl ausbreitungsfiahiger Moden existiert, ist die Darstellung
nahezu unabhéingig vom Radius des Hohlleiters. Die Leistung des einfallenden Gaufistrahls
ist im Weiteren stets normiert auf ein Watt.

Es zeigt sich, dass mit wachsendem FEinfallswinkel das angeregte Spektrum verschoben
wird. Die Breite des angeregten Spektrums korrespondiert mit dem Divergenzwinkel des
Gaufsstrahls. Dies wird unmittelbar deutlich, wenn die Winkel arccos(n.g) der jeweiligen
Moden betrachtet werden. Da die maximale beriicksichtigte azimuthale Ordnung Mp = 59
ist, wird bei grokem Einfallswinkel der Maximalwert nicht erreicht. Durch eine laterale
Verschiebung des Gaufistrahls werden zwar Moden hoherer azimuthaler Ordnung ange-
regt, jedoch keine Moden mit kleinerem effektiven Index. Entsprechend wird dieser Fall
in Abbildung 4.11a nicht beriicksichtigt. Dieses Ergebnis ldsst sich aus der klassischen
Fouriertheorie ableiten, nach der eine Verschiebung im Ursprungsbereich lediglich eine
Anderung der Phase im Bildbereich hervorruft. Abgesehen von der fehlenden azimuthalen
Ordnung resultieren fiir den planaren Schichtwellenleiter vollkommen analoge Ergebnisse.

Abbildung 4.11b zeigt zusétzlich die akkumulierte Leistung, aufgetragen iiber die azi-
muthale Modenzahl m. Im Fall ¥ = 0 werden nur Moden der Ordnung m = 1 angeregt.
Mit wachsendem Einfallswinkel werden dann verstarkt hohere Ordnungen angeregt.

Fiir den Algorithmus zur Berechnung der Amplituden der Hohlleitermoden empfiehlt sich
somit die Implementierung eines Abbruchkriteriums bzgl. der Leistung pro Ordnung m. In
dieser Arbeit wurde eine Schranke von AP = 5e-7 verwendet. Ordnungen m, die weniger
Leistung als AP fithren, werden nicht mehr beriicksichtigt. In jeder Ordnung m brauchen
dann nur die Moden im entsprechenden Indexbereich beriicksichtigt werden, wobei in dieser
Arbeit standardméfig alle ausbreitungsfahigen Moden einer Ordnung m beriicksichtigt
werden. Die Kontrolle der korrekten Entwicklung des Gaufsstrahls erfolgt wiederum iiber
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Abbildung 4.12.: Anregung des Modenspektrums der Faser: Akkumulierte Leistung Pz fiir
verschiedene Einfallswinkel 9 und verschiedene Verschiebungen h. Es gilt
d = T70pm, ny = 1,55, O, = 5° und Mg = 59.

ein Fehlermafs &quivalent zu (4.26). Da die numerische zweidimensionale Integration sehr
aufwéndig ist, wurde nur iiber die Koordinatenachsen integriert. Im planaren Fall lasst sich
zeigen, dass das Fehlermafl gegen Null strebt. Systematisch bedingt bleibt das Fehlermaf
im Rundhohleiter in der Regel etwas oberhalb AP.

Durchfithrung des Mode-Matching

Analog zu den vorherigen Untersuchungen zum Modenspektrum des Hohlleiters wurde
auch das Spektrum der Faser analysiert. Die Ergebnisse sind in Abbildung 4.12 dargestellt.
Aufgrund von Reflexionsverlusten ist die Gesamtleistung stets kleiner eins. Der effektive
Index der Kernmoden der Faser liegt im Intervall (1,57,1,55). Fiir nog < 1,55 bilden sich
Mantelmoden aus. Die Aufteilung in Kern- und Mantelmoden ist der entscheidende Un-
terschied zum Hohlleiter. Besonders deutlich wird dieser Unterschied in der Anregung des
Modenspektrums bei Variation der lateralen Verschiebung, Abbildung 4.12a. Wiederum
werden auch fiir grofe Verschiebungen keine Kernmoden mit kleinerem n.g angeregt. Ist
die Verschiebung so grof, dass wenig Leistung in die Kernmoden gekoppelt wird, werden
stattdessen die Mantelmoden angeregt, deren effektiver Index nur unwesentlich kleiner als
1,55 ist. Physikalisch ist dies plausibel, da iiber den effektiven Index, bzw. iiber den Winkel
des Wellenvektors zur Wellenleiterachse arccos(neg/n;), die Richtung der Wellenausbrei-
tung festgelegt wird.

Wie viele Moden nun tatséchlich in den Simulationen beriicksichtigt werden miissen, ist wie
gezeigt sowohl von der Anregung als auch von den Eigenschaften des dielektrischen Wel-
lenleiters abhéngig. Die Anzahl gefithrter Moden sowie die maximale azimuthale Ordnung
M, bis zu der noch gefiithrte Kernmoden existieren, ist in Tabelle 4.1 aufgefiithrt. Priméar
wird die Anzahl ausbreitungsfihiger Mantelmoden durch den Durchmesser des leitenden
Schirms festgelegt. Abbildung 4.13 zeigt exemplarisch die {iber den effektiven Brechungs-
index aufsummierte Anzahl ausbreitungsfahiger Moden des Hohlleiters und der Faser fiir
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Abbildung 4.13.: Gesamtanzahl ausbreitungsfahiger Moden in einer Polarisation, aufsum-
miert iiber den effektiven Index neg = k./ko bis zur Ordnung Mg = 59.
Es gilt d = 70 pm und ny = 1,55.

zwei unterschiedliche Schirmdurchmesser. Dabei wurden nur Moden bis zur azimuthalen
Ordnung Mp = 59 beriicksichtigt. Die Gesamtanzahl ausbreitungsfahiger Moden ist noch
einmal deutlich grofser. Aufgrund der groferen Brechzahlen der Faser, sowohl im Kern
als auch im Mantel, ist die Anzahl ausbreitungsfahiger Moden fiir die Faser grofter. Alle
Angaben beziehen sich dabei auf nur eine Polarisation. Oft ist die maximal zu beriicksich-
tigende azimuthale Ordnung deutlich kleiner als Mg, vgl. Abbildung 4.12b. Im Extremfall
des senkrechten meridionalen Einfalls der Strahlachse muss nur die Ordnung m=1 beriick-
sichtigt werden. In dieser Ordnung existieren fiir s = 140 pm im Hohlleiter 329 und in der
Faser 513 ausbreitungsfdhige Moden (davon 41 Kernmoden). Im Fall s = 300 um sind es
705 bzw. 1097 Moden. Wie bereits diskutiert brauchen nicht alle Moden einer Ordnung m
beriicksichtigt werden. Die Anzahl der Kern- und Mantelmoden im planaren Schichtwel-
lenleiter entspricht nahezu der Anzahl Fasermoden der Ordnung m = 1.

Zur Kontrolle der Randbedingungen wurde erneut ein im Vergleich zu (4.26) leicht modi-
fiziertes Fehlermaft angewendet:

2 11 |EY (7 — B9 (7| d
ff By (1) — By () at

fm (4.30)

_ = S
I B @+ EP 6| da

Wiederum léasst sich im planaren Fall zeigen, dass das Fehlermaf gegen Null strebt. Der
Aufwand fiir die zweidimensionale Querschnittsebene der Faser ist jedoch ungleich hoher,
da die Anzahl der Moden deutlich grofer ist und zudem die mathematische Beschreibung
der Fasermoden aufwéndiger ist. In den Simulationen wurden wiederum standardméfig
alle ausbreitungsfihigen Moden einer Ordnung m beriicksichtigt. Bei grofsem Einfallswin-
kel miissen somit links- und rechtsseitig der Grenzschicht jeweils mehrere zehntausend
Moden beriicksichtigt werden. Anstelle der Fléchenintegrationen in (4.30) wurde daher
nur stichprobenartig iiber Linien ¢ = konstant integriert. Des Weiteren wurden vornehm-
lich Wellenleiter mit kleinem Kerndurchmesser untersucht, da diese im besonderen Fokus
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des Interesses stehen, mit dem Nebeneffekt, dass die Anzahl zu beriicksichtigender Mo-
den relativ gering ist. Die Kontrolle fiir den Fall, dass die Achse des Gaufsstrahls in einer
Meridionalebene liegt, ergab fiir den senkrechten Einfall mit 19 = 0 einen maximalen Feh-
ler f < 1077 und auch fiir groRere Einfallswinkel einen maximalen Fehler f < 1073. Im
Zweifelsfall wurde zusétzlich eine Sichtkontrolle durchgefiihrt, so dass in jedem Fall eine
hinreichend genaue Beschreibung des Einkoppelprozesses garantiert ist.

4.3.4. Anmerkungen zur numerischen Stabilitat

In Anlehnung an die Erlauterungen des vorangegangenen Abschnitts soll noch einmal dar-
an erinnert werden, dass auch eine korrekte analytische Losung der Wellengleichung keine
stabile Implementierung auf einem Rechensystem garantiert. Abgesehen vom grundsétz-
lich vorausgesetzten Determinismus der implementierten Algorithmen versteht sich das
Attribut stabil in dieser Arbeit derart, dass insbesondere die folgenden Teilaufgaben mit
hinreichender Genauigkeit durchgefiihrt werden:

e Auswertung aller Teilfunktionen (z.B. Besselfunktionen),
e Losung der Eigenwertgleichungen,
e Durchfiihrung der numerischen Integrationen.

Die ersten beiden genannten Punkte sind direkt miteinander verkniipft, da zur Losung
der Eigenwertgleichung bereits entsprechend viele elementare Funktionsauswertungen no-
tig sind. Durch die parallele Implementierung der zugehorigen Algorithmen in der Hoch-
sprache C++ und der Interpretersprache des Computeralgebrasystems Maple® konnte
die stabile Implementierung beider Teilaufgaben sichergestellt werden. Natiirlich lassen
sich dennoch nicht die grundsétzlichen numerischen Schwierigkeiten vermeiden, die mit
einem endlichen verfiigharen Zahlenbereich verbunden sind, wie auch schon in Kapitel
4.1.3 angedeutet. Der Loser der Eigenwertgleichung beruht auf den bekannten Nullstellen
der Besselfunktionen bzw. auf den Nullstellen der Kombinationen von Besselfunktionen.
Insbesondere im Spektrum der Mantelmoden im Bereich des effektiven Index nahe der
Mantelbrechzahl existieren Losungen, die sich mit der Genauigkeit eine Variablen doppel-
ter Genauigkeit nicht auflésen lassen. D.h. der Eigenwert stimmt quasi mit der Nullstelle
einer Besselfunktion iiberein. Hier besteht die Gefahr eines erhchten Fehlers, da im Verlauf
der weiteren Rechnungen immer wieder Besselfunktionen mit entsprechendem Argument
aufgerufen werden. In den Simulationen dieser Arbeit konnten jedoch keine wesentlichen
Unstimmigkeiten beobachtet werden.

Es soll jedoch nicht verschwiegen werden, dass auch in der vorhandenen Implementierung
einige Grenzen existieren. Beispielsweise konnen keine azimuthalen Ordnungen m > 97
beriicksichtigt werden. Diese werden jedoch erst fiir Wellenleiterkerndurchmesser grofier
100 pm benotigt. Dariiberhinaus kommt es gelegentlich zu Schwierigkeiten bei der Aus-
wertung einiger Teilfunktionen in der Ordnung Mp, in der gerade noch ein gefiihrter Mo-
de existiert. In dieser Arbeit tritt dieser Fall fiir d = 60 pm (Mp = 50) und d = 90 pm
(Mp = 77) auf. Die Ursache dieses Problems wurde nicht weiter verfolgt, da in den entspre-
chenden Ordnungen m = M auch fiir grofte Einfallswinkel jeweils nur ein vernachlassigbar
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kleiner Teil der Gesamtleistung gefiihrt wird, vgl. Abbildung 4.12b.

Da fiir die notwendigen numerischen Integrationen dieser Arbeit zumeist Quadraturverfah-
ren mit dquidistanten Stiitzstellen verwendet wurden, wurde die Anzahl der Stiitzstellen
entweder direkt sehr hoch angesetzt oder aber zur Kontrolle stichprobenartig erhoht. Zu-
sammenfassend lasst sich festhalten, dass die implementierten Routinen dieser Arbeit sehr
stabil arbeiten. Die wenigen Ausnahmefille sind detektierbar und lassen sich entsprechend
bertiicksichtigen.

4.4. Vergleich zur Strahlenoptik

Die vorangegangene Beschreibung des wellentheoretischen Modells hat einen nicht uner-
heblichen Rechenaufwand aufgezeigt. Der Rechenaufwand eines strahlenoptischen Modells
ist in der Regel geringer. Jedoch ist dies nicht zwangsléufig der Fall, wenn eine hohe Anzahl
Strahlen beriicksichtigt werden muss. In jedem Fall ist die mathematische Beschreibung
deutlich einfacher, da aufgrund der abschnittsweise homogenen Materialeigenschaften die
Strahltrajektorien ebenfalls abschnittsweise gerade sind. Zu kléren ist noch die Frage, wel-
cher Bedingung ein Strahl geniigen muss, damit er im Wellenleiterkern gefithrt wird.

4.4.1. Effektiver Kernquerschnitt und Akzeptanzwinkel

Bekanntlich klingen die Felder eines gefiihrten Modes in transversaler Richtung erst im
Mantel evaneszent ab, dringen also ein Stiick weit in den Mantel ein. Wie im Kapitel 2.4.2
vorgestellt, kann das Eindringen der Felder in den Mantel strahlenoptisch mit Hilfe der
Goos-Héanchen-Verschiebung nachgebildet werden. Das setzt jedoch Strahlen voraus, die
bereits im Wellenleiterkern gefiihrt werden. In der klassischen strahlenoptischen Theorie
wird ein Strahl im Wellenleiterkern gefiihrt, wenn er zuvor auf die Stirnfliche des Wellenlei-
terkerns aufgetroffen ist und anschliefend an der Grenzfliche zwischen Kern und Mantel
totalreflektiert wird. In einer moglichen Erweiterung dieses klassischen Modells kénnten
auch Strahlen zugelassen werden, die zwar neben der Stirnfliche des Wellenleiterkerns auf-
treffen, jedoch noch innerhalb der Goos-Héanchen-Verschiebung bleiben. Zur Illustration
ist in Abbildung 4.14 der Grenzfall zweier moglicher Strahlpfade, S; und S, dargestellt.

Beide Strahlen treffen in einem Punkt, P, bzw. P,, auf, der genau um den Betrag der
Goos-Héanchen-Verschiebung neben der Kern-Mantel-Grenzfliche liegt. Da der Strahl S,
unter einem groferen Winkel auftrifft, dringt er geméfs der Definition (2.118) weiter in den
Mantel ein. Die Eindringtiefe x, berechnet sich in Abhéngigkeit des Einfallswinkels fiir die
T E-Polarisation geméafs

1 1
#TE — - _ = _ (4.31)
Ko/ ey — n3 k:o\/n% —n2 — (sin®)°

Der Ausdruck fiir die T'M-Polarisation ist etwas umfangreicher, vgl. (2.119). Im Ergebnis
sind die Unterschiede zwischen den Polarisationen jedoch gering. Die minimale Eindring-
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Abbildung 4.14.: Tllustration zweier moglicher Strahlpfade im Wellenleiterkern unter Be-
riicksichtigung der Goos-Héanchen-Verschiebung.

tiefe ergibt sich fiir © = 0 zu

1
P S — (4.32)
koy/n3 — n3

Fiir den Einfallswinkel © sei angenommen

sin® < sin®, = NA = y/n? — n2. (4.33)

Der Verlauf der Eindringtiefe als Funktion des effektiven Brechungsindex neg = k./ko
ist fiir unterschiedliche Mantelbrechzahlen in Abbildung 4.15a dargestellt. Im Grenzpunkt
sin©® = NA bzw. neg = ny ist die Funktion jeweils singulér. Beachtet werden muss, dass
sich die Wellenzahl k, auf die Ausbreitung im Wellenleiterkern bezieht.

Es ist nicht ersichtlich, warum ein Strahl, der unter grofem Winkel weit abseits vom Kern
einféllt, im Kern gefiithrt wird, wohingegen ein senkrecht einfallender Strahl mit gleichem
Aufpunkt nicht im Kern gefithrt wird. Ein Strahl, der mit dem Grenzwinkel sint = NA
auftritt, wiirde sogar unabhéngig vom Aufpunkt im Kern gefiithrt. Gleichzeitig erscheint
die vollkommene Vernachlassigung der Goos-Héanchen-Verschiebung bei der Einkopplung
in den Wellenleiter ebenso nicht gerechtfertigt, denn die minimale Verschiebung z, fiir
sin’ = 0 kann bereits Werte im Mikrometerbereich annehmen. Die Tabelle in Abbil-
dung 4.15b listet die zugehorigen Werte auf. In [37] wird der effektive Kernquerschnitt um
die konstante Verschiebung x|y, .. verbreitert. Darin ist k. i, die Wellenzahl des letzten
gerade noch gefithrten Modes. Der zugehorige effektive Index liegt bereits in der Nédhe der
Mantelbrechzahl ny. Entsprechend grof ist x,, z.B. x5 & 7pm fiir ny = 1,55. Die Diskus-
sion, in welcher Art die Goos-Hénchen-Verschiebung beriicksichtigt werden sollte, wird im
folgenden Kapitel anhand konkreter Beispiele fortgefiihrt.

Neben der effektiven Kernquerschnittsfliche ist der Einfallswinkel der Strahlen von beson-
derer Bedeutung. Gemaéfs Kapitel 2.4.3 trifft ein Strahl mit dem Richtungsvektor e auf die
Stirnfléache.
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(a) Abhéngigkeit von neg = k. /ko

(b) Die minimale Eindringtiefe

Abbildung 4.15.: Die Eindringtiefe abgeleitet aus der Goos-Hénchen-Verschiebung.

Schicht- und Rechteckwellenleiter

Beim planaren Schichtwellenleiter werden Strahlen im Kern gefiihrt, falls (4.33) gilt. Da in
diesem Fall die y-Komponente des Ausbreitungsvektors gleich Null ist, ey, = 0, verbleibt
fiir die z-Komponente

lese| < NA. (4.34)

Im Fall eines Wellenleiters mit zweidimensionalem Querschnittprofil muss die Bedingung (4.33)
erweitert werden. Fiir den rechteckformigen Wellenleiter folgt analog zu (4.34) [37]

less| < NA A esy| < NA. (4.35)

Kreiszylindrische Fasern

Deutlich aufwindiger wird die Beschreibung jedoch fiir die kreiszylindrische Faser [58, 61].
Dazu wird Abbildung 4.16 betrachtet, die das Auftreffen eines Strahls auf die Kerngrenz-
fliche zeigt und einige notwendige Winkel definiert. Der Ubersicht wegen werden zunéchst
Strahlen betrachtet, die bereits die Stirnfliche transmittiert haben. Diese Grofen werden
im Folgenden mit einer Schlange akzentuiert.

Nach den Gesetzen der geometrischen Optik fiir den ebenen Halbraum unterliegen Strahlen
mit -

®N < E — @c (436)
nicht der Totalreflexion. Darin ist © ~ der Winkel zwischen dem Strahl und der Norma—
len der Grenzfliche. ©, ist der kritische Winkel fiir Strahlen im Kern, mit cos O,

Diese Beziehung behélt auch fiir die konkav gekriimmte Grenzflache ihre Gult1gke1t der
verbleibende Bereich muss jedoch unterteilt werden. Strahlen mit

0. < 0O, und On > g -0, (4.37)
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Abbildung 4.16.: Aufpunkt und zugehorige Winkel eines Strahls im Kern der kreiszylin-
drischen Faser nach der Einkopplung.

werden ohne Abstrahlung im Kern gefiihrt. Dagegen geben Strahlen mit

6.>6. ud Oy > g ey (4.38)

aufgrund von Tunnelverlusten Leistung an den Mantel ab. Diese Strahlen werden daher
als Leckstrahlen bezeichnet. Es sind jedoch in der Regel deutlich mehr Reflexionen notig,
damit ein signifikanter Anteil der Leistung in den Mantel abgestrahlt wird, verglichen mit
den Strahlen, die die Bedingung (4.36) verletzten. Der Winkel Oy lsst sich mit Hilfe der
Beziehung

cos O = sin O, sin Og (4.39)

aus den Komponenten des Ausbreitungsvektors €5 bestimmen. Aufgrund der in dieser Ar-
beit gewahlten Anregung wird nur sehr wenig Leistung in die Leckstrahlen gekoppelt. Fiir
eine detailliertere Darstellung und Interpretation der Strahlfithrung in kreiszylindrischen
Fasern sei daher auf [61] verwiesen.

Durch einen rotationssymmetrischen Gaufsstrahl werden bei idealer Einkopplung, d.h.
Strahlachse und Wellenleiterachse fallen zusammen, nur Strahlpfade angeregt, die in einer
Ebene mit der Wellenleiterachse liegen. Man spricht auch von Meridionalebenen. In diesem
Fall gilt fiir alle Strahlen ©g = 7 und mit (4.39) lasst sich direkt zeigen, dass Leckstrahlen,
die der Bedingung (4.38) gentigen, nicht existieren kénnen. Damit ein mafgeblicher Anteil
der einfallenden Leistung in Leckstrahlen eingekoppelt wird, miisste der Strahl gleichzeitig
verdreht und lateral verschoben werden. Da die erreichbare Koppeleffizienz schnell ab-
nehmen wiirde, wird dieser Fall in dieser Arbeit nicht betrachtet. Leckstrahlen werden
daher nicht weiter beriicksichtigt. Ein auf die Stirnfliche auftreffender Strahl muss da-
mit wie beim planaren Wellenleiter nur der Bedingung (4.33) geniigen. Bezogen auf die
z-Komponenten des Ausbreitungsvektors des einfallenden Strahls gilt:

es, > 1/ 1 — (n? —n3). (4.40)
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4.4.2. Allgemeine Ergebnisse

Einleitend sollen zunéchst kurz die Erwartungshaltung an die geometrische Optik und
die daraus resultierenden Konsequenzen rekapituliert werden. Die geometrische Optik ver-
spricht immer dann gute Ergebnisse, wenn die Geometrie grof gegeniiber der Wellenlén-
ge ist. Ubertragen auf den optischen Wellenleiter impliziert dies einen hinreichend grofen
Kerndurchmesser und damit einen vielmodigen Wellenleiter. Die Anzahl der gefithrten Mo-
den wird jedoch neben der Geometrie auch von der numerischen Apertur des Wellenleiters
bestimmt, so dass mit kleiner werdender numerischer Apertur die Anzahl der gefiihrten
Moden abnimmt. Eine hinreichend grofse Anzahl gefithrter Moden ist auch Voraussetzung,
wenn der Strahl als lokale ebene Welle interpretiert wird. Im klassischen strahlenoptischen
Modell kann der Ausbreitungsvektor dieser lokalen ebenen Welle beliebige Winkel zur Wel-
lenleiterachse annehmen. In der Theorie der normalen Moden sind es jedoch nur endlich
viele zuléssige Winkel. Damit die Annahme eines kontinuierlichen Winkelspektrums ge-
rechtfertigt ist, sollte das diskrete Spektrum der normalen Moden also hinreichend dicht
sein.

Unabhéngig von den absoluten Abmessungen besitzt eine Stufenindexfaser stets abrupte
Materialiibergénge zwischen Kern und Mantel. Die zuvor gefiihrte Diskussion hinsichtlich
der Beriicksichtigung der Goos-Hénchen-Verschiebung bei der Einkopplung in den Wel-
lenleiter hat bereits aufgezeigt, dass ein Strahl, der im Grenzbereich zwischen Kern und
Mantel auftrifft, moglicherweise nicht eindeutig als gefiithrt zugeordnet werden kann. Zu-
sammenfassend lisst sich festhalten, dass gute Ubereinstimmung zwischen Wellentheorie
und Strahlenoptik erwartet wird, wenn

e der Durchmesser des Wellenleiterkerns und die numerische Apertur hinreichend grofs
sind,

e wenig Leistung und damit wenig Strahlen auf den Bereich der Schnittstelle zwischen
Kern und Mantel treffen.

Ein expliziter Vergleich soll nun zunéchst anhand der bereits im Kapitel 4.2.2 herangezoge-
nen Parametersétze erfolgen, siehe auch [64]. Fiir alle Parametersitze wurde die Koppelef-
fizienz auf Basis strahlenoptischer Methodik neu berechnet. Eine Gegeniiberstellung der
Ergebnisse fiir die kreiszylindrische Faser ist in Abbildung 4.17 dargestellt. Dabei werden
im strahlenoptischen Modell drei Methoden unterschieden, die den effektiven Kerndurch-
messer betreffen. In der folgenden Auflistung der Methoden korrespondiert der Bezeichner
mit den Legenden in Abbildung 4.17.

STRAHL Der Kernradius verbleibt unverandert.

STRAHL GH Der Kernradius wird um die winkelabhédngige Goos-Hénchen-
Verschiebung geméfs Abbildung 4.15a erweitert.

STRAHL CGH Der Kernradius wird um die konstante minimale Goos-Hénchen-
Verschiebung geméfs der Tabelle in Abbildung 4.15b erweitert.

Der Bezeichner WELLE kennzeichnet die bereits im Kapitel 4.2.2 prasentierten wellen-
theoretischen Resultate. Die Definition der Koppeleffizienz im strahlenoptischen Modell er-
folgt analog zu (4.24), jedoch wird nun die Leistung der im Kern totalreflektierten Strahlen
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aufsummiert. Um einen signifikanten Diskretisierungsfehler im strahlenoptischen Modell
auszuschlieften, wurde in der Notation des Kapitels 2.4.3 standardméfig eine Diskretisie-
rung von 500 Punkten in radialer Richtung und 1000 Punkten in azimuthaler Richtung
gewahlt. Zur Verifikation wurde die Anzahl der Punkte in beiden Richtungen verdoppelt,
wobei keine Abweichungen in der Koppeleffizienz in fiinf signifikanten Stellen festgestellt
werden konnte.

Die Interpretation der Ergebnisse in Abbildung 4.17 soll ausgehend von der Konfiguration
erfolgen, die die grofte Anzahl gefithrter Moden bereitstellt: d = 70 pm und n, = 1,55. Zur
Erinnerung, die Kernbrechzahl ist konstant gleich n; = 1,57 und der Strahldurchmesser
ist konstant gleich b = 50 pm. Wie erwartet stimmen die Ergebnisse der unterschiedlichen
Methoden sehr gut {iberein, solange der Strahl nur verdreht wird, Abbildung 4.17a mit d =
70 pm. Da wenig Leistung auf den Bereich der Schnittstelle zwischen Kern und Mantel trifft,
hat die Goos-Hanchen-Verschiebung nahezu keinen Einfluss. Wird der Strahl jedoch lateral
verschoben, stellen sich mit wachsender Verschiebung h deutliche Abweichungen in den
Ergebnissen ein, Abbildung 4.17¢ mit d = 70 pm. Dabei verringert die Beriicksichtigung der
Goos-Héanchen-Verschiebung die Abweichung deutlich. Ob die Methode STRAHL GH oder
STRAHL CGH verwendet wird, ist von untergeordneter Bedeutung, da sich die Winkel,
unter denen die Strahlen auftreffen, durch die laterale Verschiebung nicht verandern.

Wird nun bei konstanter numerischer Apertur und konstantem Strahldurchmesser der
Kerndurchmesser verringert, treffen zunehmend Strahlen im Grenzbereich Kern-Mantel
auf und die Abweichungen zwischen den Ergebnissen der Strahlen- und Wellenoptik wer-
den grofer. Dies zeigt sich sowohl in Abbildung 4.17a als auch in Abbildung 4.17c. Bei
Verdrehung des Gaufsstrahls zeigen sich nun auch deutliche Unterschiede zwischen den
Methoden STRAHL GH und STRAHL CGH auf. Waren bislang die strahlenoptisch be-
rechneten Koppeleffizienzen stets kleiner als die wellenoptische Referenz, ergeben sich ab
einem Winkel ¢ ~ 7° grofere Werte. Eine deutliche Uberhéhung stellt sich insbeson-
dere durch Verwendung der winkelabhéngigen Goos-Héanchen-Verschiebung ein, Methode
STRAHL GH. Diese Uberhshung wird hervorgerufen durch die Singularitit im Ausdruck
fir die Eindringtiefe x, Gleichung (4.31), wenn Strahlen nahe oder gleich dem kritischen
Winkel ©. auftreffen. Als Zwischenfazit lasst sich festhalten, dass das klassische strah-
lenoptische Modell (Methode STRAHL) die Koppeleffizienz in jedem Fall grob qualitativ
richtig berechnet. Je nach Aufpunkt der Strahlachse und Grofse des Kerndurchmessers
stellt sich jedoch ein absoluter Fehler von bis zu 5 Prozentpunkten ein. Die Erweiterung
des klassischen Modells um die minimale Goos-Hénchen-Verschiebung, Methode STRAHL
CGH minimiert den mittleren Fehler deutlich.

Die Verkleinerung der numerischen Apertur bei konstantem Kerndurchmesser d = 70 pm
sorgt erst mit deutlich kleinerer Apertur fiir einen gréferen Fehler, Abbildungen 4.17b und
4.17d. Eine Verkleinerung von NA = 0,25 auf NA = 0,177 mit ny = 1,56 ldsst noch keinen
signifikanten Anstieg des Fehlers erkennen, obwohl die Gesamtanzahl gefiihrter Moden be-
reits etwa halbiert wird, vgl. Tabelle 4.1. Daher sind diese beiden Félle in Abbildung 4.17d
der Ubersicht wegen nicht dargestellt. Bei einer weiteren Verkleinerung der numerischen
Apertur stellen sich jedoch merkliche Abweichungen ein. Zwar stimmen bei ausschliefli-
cher Verdrehung des Gaufistrahls die Kurvenldufe insbesondere fiir grofere Einfallswinkel
sehr gut iiberein, Abbildung 4.17c. Signifikante Unterschiede sind jedoch insbesondere fiir
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kleine Einfallswinkel zu beobachten, obwohl wenig Leistung im Grenzbereich Kern-Mantel
auftrifft. Insbesondere stellt sich auch bei senkrechtem meridionalem Einfall der Strahl-
achse eine Abweichung von +0,75% fiir ny = 1,565 und -1,6 % fiir ny = 1,568 ein. Hier
gilt es zu berticksichtigen, dass bei senkrechtem meridionalem Einfall der Strahlachse nur
Moden der azimuthalen Ordnung m = 1 angeregt werden. Die Anzahl der Moden in dieser
Ordnung ist mit 21 fiir no = 1,565 und 13 fiir no = 1,568 offenbar schon zu gering. Wird
der Strahl verdreht, kénnen auch Moden hoherer azimuthaler Ordnung angeregt werden.
Durch die insgesamt geringe Anzahl gefiihrter Moden im Fall ny = 1,568 (NA = 0,079) ist
der Kurvenverlauf der wellentheoretischen Berechnung leicht oszillatorisch. Die Graphen
der strahlenoptischen Simulation sind dagegen vollkommen glatt? und ab einem definierten
Punkt monoton fallend. Das leicht oszillatorische Verhalten ist auch in Abbildung 4.17d
zu erkennen, in der die Abbhéngigkeit von der lateralen Verschiebung aufgetragen ist. Hier
zeigen sich auch die groften Abweichungen, wenn der Strahl hinreichend weit verschoben
wird, so dass der Grenzbereich Kern-Mantel vollkommen ausgeleuchtet ist.

Wie sich zeigt, birgt die Beriicksichtigung der Goos-Hénchen-Verschiebung bei einer kleinen
numerischen Apertur des Wellenleiters keinen Vorteil. In der Methode STRAHL GH tritt
fiir ny = 1,568 wieder eine deutliche Uberhéhung auf. Auch die Methode STRAHL CGH
verspricht im Mittel keinen kleineren Fehler. Bereits fiir die grofsere Apertur NA = 0,25
hat sich gezeigt, dass bei einer Verdrehung des Gaufistrahls durch die Goos-Hénchen-
Verschiebung ein erhohter Fehler resultieren kann. Dieser ist offensichtlich besonders grof,
wenn viel Leistung im Grenzbereich Kern-Mantel einfillt und die korrespondierenden
Strahlen unter einem Winkel nahe dem kritischen Winkel O, auftreffen. Bei einer kleinen
numerischen Apertur wird auch ohne Verdrehung des Gaufsstrahls die gesamte Apertur
des Wellenleiters vollstandig ausgeleuchtet, d.h. der Divergenzwinkel des Gaufstrahls ©,
ist unter Umsténden sogar grofer als der kritische Winkel ©.. Dies ist z.B. fiir no = 1,568
und ©,9 = 5° der Fall, vgl. Tabelle 4.1. Letztlich ist es aber die bereits zu geringe Anzahl
gefiihrter Moden, im Fall n, = 1,568 sind es 113, die fiir das leicht oszillatorische Verhalten
der Graphen sorgt und damit fiir einen nicht vorhersehbaren Fehler in den strahlenopti-
schen Ergebnissen. Eine Korrektur ist mit elementaren Mittel, wie einer Manipulation des
effektiven Kernradius, nicht mdoglich.

Der insgesamt resultierende mittlere Fehler aller Ergebnisse in Abbildung 4.17 kdénnte
durch eine weitere Modifikation der Goos-Héanchen-Verschiebung moglicherweise noch ver-
ringert werden. An einige Stellen ist selbst bei Verwendung der konstanten Goos-Hénchen-
Verschiebung die berechnete Koppeleffizienz deutlich {iberhéht. Eine zumindest leichte
Verbesserung kénnte die Substitution z,, = 1%/, sein. Diese Funktion spiegelt gewisser-
mafen die Funktion =5 an der Linie x4 und skaliert dabei, so dass x4, |e-e, = 0 gilt. Wird
der Kerndurchmesser um x,, erweitert, stellen sich Koppeleffizienzen ein, die zwischen
denen der Methoden STRAHL und STRAHL CGH liegen. Im Fokus der weiteren Unter-
suchungen steht jedoch nicht die Reduktion des mittleren Gesamtfehlers. Stattdessen wird
der aus praktischer Sicht relevante Bereich nidher betrachtet, in dem Koppeleffizienzen von
zumindest tiber 80 % erreicht werden.

Zunéchst soll jedoch der Vergleich zwischen Wellen- und Strahlenoptik ausgedehnt werden

4Die Umschreibung vollkommen glatt ist nicht als mathematische Definition zu verstehen, sondern resul-
tiert allein aus der Anschauung.
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(a) Variation des Einfallswinkels, h =0 (b) Variation der lateralen Verschiebung, ¥ = 0

Abbildung 4.18.: Anregung des Modenspektrums der Faser (WELLE —) und der Ver-
gleich zur Strahlenoptik (STRAHL CGH ---): Akkumulierte Leistung
Pc fiir die Parameter aus Abbildung 4.12a (d = 70 pm, ny = 1,55).

auf die Beschreibung der Anregung des Modenspektrums. Dieser Vergleich ist wichtig, da
der Leistungsfluss im Wellenleiter bedingt durch die Modendispersion in Abhéngigkeit der
Anregung variieren kann. Betrachtet wird analog zu Abbildung 4.12a die akkumulierte Leis-
tung P=, aufgetragen iiber den effektiven Index neg. Im strahlenoptischen Modell ist der
effektive Index analog zur wellentheoretischen Referenz definiert {iber die z-Komponente
des Ausbreitungsvektors. Da dieser jedoch auf den Betrag eins normiert ist, wird entspre-
chend mit der Kernbrechzahl skaliert:

Neff = N1€sz. (441)

Die akkumulierte Leistung berechnet sich analog zu (4.29), jedoch wird die Leistung der
einzelnen gefithrten Strahlen aufsummiert. Abbildung 4.18 zeigt die Ergebnisse, deren In-
terpretation kurz ausfallen kann. Bei ausschlieflicher Verdrehung des Gaufsstrahls stimmen
die Ergebnisse sehr gut iiberein, wie schon die berechneten Koppeleffizienzen, vgl. Abbil-
dung 4.17a mit d = 70 pm. Da es bei der lateralen Verschiebung des Gaufistrahls bereits
merkliche Abweichungen in der Koppeleffizienz gibt, vgl. Abbildung 4.17c, stellen sich
dementsprechend auch merkliche Abweichungen im angeregten Moden- bzw. Strahlspek-
trum ein. Die Auswirkungen auf den zu erwartenden Leistungsfluss sind jedoch noch nicht
dramatisch, da das angeregte Spektrum im Wesentlichen nur leicht verschoben wird. Ohne-
hin ist die erreichbare Koppeleffizienz fiir den praktischen Einsatz bereits bei A = 20 pm zu
gering. Die Ergebnisse in Abbildung 4.18 fiir den senkrechten meridionalen Einfall, =0
und h = 0, verdeutlichen auch noch einmal den wesentlichen Unterschied zwischen dem
diskreten Modenspektrum des Wellenleiters und dem kontinuierlichen Winkelspektrum im
strahlenoptischen Modell. In diesem Fall werden nur Moden der azimuthalen Ordnung
m = 1 angeregt und es stellt sich ein entsprechend treppenférmiger Verlauf ein, der im
strahlenoptischen Modell nicht nachgebildet werden kann. In der Praxis ist dieses Problem
jedoch unbedeutend, da beide Ergebnisse im lokalen Mittel iibereinstimmen.

Bevor der Vergleich zwischen Wellen- und Strahlenoptik fortgesetzt wird, sollen einige An-
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merkungen zu den Unterschieden gemacht werden, die sich bei Verwendung eines Schicht-
wellenleiters an Stelle der Faser einstellen.

4.4.3. Anmerkungen zur Approximation durch planare Wellenleiter

Wie im Kapitel 4.2.4 bereits angemerkt, existieren einige quantitative Unterschiede bei
Verwendung eines planaren Wellenleiters. Wichtig ist jedoch zunéchst zu betonen, dass
alle qualitativen Aussagen des vorherigen Abschnitts auch fiir den planaren Schichtwellen-
leiter gelten. Die quantitativen Unterschiede resultieren aus der fehlenden Abhéngigkeit
von einer transversalen Koordinate. Im planaren Modell fiihrt der Gaufsstrahl deutlich
mehr Leistung innerhalb seiner Strahlbreite. Dadurch sind die Auswirkungen der Verbrei-
terung der Kernschichtdicke durch die Goos-Hanchen-Verschiebung wesentlich ausgeprag-
ter. Exemplarisch sind in Abbildung 4.19 Koppeleffizienzen fiir die mit Abbildung 4.17a
korrespondierenden Parametersitze aufgetragen. Dargestellt ist die Koppeleffizienz in Ab-
héangigkeit des Einfallswinkels ) fiir unterschiedliche Kernschichtdicken d des Schichtwel-
lenleiters bei konstanter Strahlbreite b = 50 pm und konstanter Mantelbrechzahl n, = 1,55.
Dabei wurden im strahlenoptischen Modell 10 000 Strahlen angesetzt.

Wie bereits erwahnt, ist die erreichbare Koppeleffizienz im Vergleich zur Faser stets etwas
grofser. Deutlich grofer sind aber auch die Abweichungen zwischen den unterschiedlichen
strahlenoptischen Verfahren, was insbesondere fiir kleine Winkel ¢/ wiederum aus der unter-
schiedlichen Leistungsverteilung innerhalb der Strahlbreite des Gaufstrahls resultiert. Fiir
grofsere Winkel nahe dem kritischen Winkel ergibt sich insbesondere fiir kleine Kernschicht-
dicken eine markante Spitze im Verlauf der mit der Methode STRAHL GH berechneten
Koppeleffizienz. Diese Uberhéhungen sind auch in Abbildung 4.17a zu erkennen, jedoch
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Abbildung 4.19.: Gegeniiberstellung der wellentheoretischen und strahlenoptischen Er-
gebnisse fiir den Schichtwellenleiter fiir die Parametersitze aus Abbil-
dung 4.17a.
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nicht so ausgepragt. Da die Verdrehung des Gaufsstrahls lediglich eine Transformation der
Felder bzw. der Strahlen in Abhéngigkeit der beziiglich der Drehachse orthogonalen Koor-
dinaten bewirkt, &ndern sich die Feldgrofen in Richtung der Drehachse nur unwesentlich.
Damit wirkt sich auch der Effekt der Goos-Hanchen-Verschiebung im Wesentlichen nur
in einer transversalen Richtung aus. Im planaren Modell liegt aber ohnehin nur eine Ab-
hangigkeit von einer transversalen Koordinate vor. Bezogen auf einen elementaren Strahl
lautet die Transformationsvorschrift bei Verdrehung des Gaufstrahls allgemein

€50 = (€sz COSVY + €4, SIN V) €, + €4, + (—€5y SINTV + e, cOs V) €. (4.42)

Im planaren Modell gilt jedoch stets e, = 0.

Wie schon zuvor fiir die Faser liefert auch beim Schichtwellenleiter die Methode STRAHL
CGH wieder im Mittel und insbesondere fiir kleine 1 die beste Approximation. Eben-
so ist wieder ein leicht oszillatorisches Verhalten in den Graphen der wellentheoretischen
Simulationen fiir kleine Kernschichtdicken zu erkennen, das durch ein strahlenoptisches
Verfahren nicht nachgebildet werden kann. Dabei ist zu beachten, dass im Fall d = 10 pm
lediglich 6 gefithrte Moden existieren. Fiir d = 30 pm sind es immerhin bereits 18. Zur
Erinnerung sei erwéhnt, dass fiir d = 70 pm auch nur 42 gefithrte Moden existieren, vgl.
Tabelle 4.1. Dennoch kann dieser Wellenleiter bereits als hochmultimodal angesehen wer-
den, denn ein Wellenleiter mit zweidimensionalem Querschnittsprofil fiihrt bei gleichem
Durchmesser schon tiber 1000 Moden.

4.4.4. GleichmaBige Verkleinerung des Kern- und des
Strahldurchmessers

Die im Kapitel 4.4.2 présentierten Ergebnisse dienten der allgemeinen Beurteilung der
Qualitat der strahlenoptischen Methoden. Da in einem realen System in der Regel mehrere
Schnittstellen auftreten, sollte die Koppeleffizienz einer einzigen Schnittstelle immer nahe
am theoretischen Maximum sein, damit die Dampfung des Gesamtsystems nicht zu grof ist.
Denn neben den systematischen Verlusten durch Abstrahlung sind stets auch intrinsische
Materialverluste und Verluste durch zuféllige Storstellen zu erwarten. Um das Erreichen
einer hinreichend grofen Koppeleffizienz sicherzustellen, muss

e der Strahldurchmesser b kleiner als der Kerndurchmesser d sein,
e die Quelle, hier der Gaufsstrahl, hinreichend gut positioniert werden.

Im Folgenden wird daher eine maximale Verdrehung ¥ = 5° berticksichtigt, bei einer nume-
rischen Apertur des Wellenleiters von NA = 0,25. Die maximale laterale Verschiebung ist
abhéngig vom Durchmesser des Gaufistrahls und gleich h = 0,2 6. Der Strahldurchmesser b
steht im festen Verhéltnis zum Kerndurchmesser der Faser d, wobei zwei Fille unterschie-
den werden. Zum Einen soll d/b = 1,5 gelten. Der Kerndurchmesser ist deutlich grofer
als der Strahldurchmesser und die damit erreichbare Koppeleffizienz liegt bei iiber 94 %.
Im zweiten Fall gilt d/b = 1,0. Die erreichbare Koppeleffizienz sinkt auf etwa 83 % und ist
damit fiir die Praxis bereits zu gering. Fiir den Vergleich zwischen den unterschiedlichen
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Simulationsmethoden ist dieser Fall jedoch interessant, da ein wesentlicher Teil der einfal-
lenden Leistung im Grenzbereich Kern-Mantel auftrifft und damit relativ grofse Differenzen
zu erwarten sind.

Untersucht werden soll, wie sich der inhédrente Fehler der strahlenoptischen Methoden ent-
wickelt, wenn die Geometrie verkleinert wird. Im Kapitel 4.2.3 wurde schon einleitend
festgestellt, dass die Geometrie bei gleich bleibender Koppeleffizienz weitestgehend ska-
lierbar ist. Erst fiir sehr kleine Kerndurchmesser steigt die Koppeleffizienz aufgrund der
unterschiedlichen lokalen Eigenschaften des Gaufsstrahls leicht an. Wie schon im Kapi-
tel 4.2.3 wird zunéchst fiir d/b = 1,5 der Kerndurchmesser, ausgehend von d = 90 pm,
in fiinf dquidistanten Schritten auf d = 15 pum verkleinert. Fiir einen expliziten Vergleich
der unterschiedlichen Methoden wird in den folgenden Darstellungen jeweils die relative
Abweichung

5r _ TIWelle — T]Strahl (443)

TTWelle

aufgetragen. Darin ist nweye die mit Hilfe der wellentheoretischen Analyse errechnete Kop-
peleffizienz, die als Referenz dient, und 7.1 ist die auf Basis strahlenoptischer Methoden
ermittelte Koppeleffizienz.

In Abbildung 4.20 sind die Ergebnisse fir d/b = 1,5 aufgefiihrt. Abbildung 4.20a zeigt
den Fehler der klassischen Methode STRAHL in Abhéngigkeit des Einfallswinkels. Dem
gegeniibergestellt ist in Abbildung 4.20b der Fehler der Methode STRAHL CGH, wobei die
um den Faktor 0,5 skalierte Ordinate berticksichtigt werden muss. Wie erwartet steigt der
mittlere Fehler der Methode STRAHL mit kleiner werdendem Kerndurchmesser an. Die
relative Abweichung nimmt jedoch maximal einen Wert von 9, = —0,007 fiir d = 15um
an und bleibt damit insgesamt sehr klein. Mit der Methode STRAHL CGH kann der
Fehler auch fiir kleine Kerndurchmesser im Mittel deutlich reduziert werden, wenngleich
die relative Abweichung mit wachsendem Einfallswinkel leicht ansteigt und fiir ¥ = 5°
einen Wert von bis zu §,, = 0,001 annehmen kann.

Die Entwicklung des Fehlers in Abhéngigkeit der lateralen Verschiebung ist fiir die klas-
sische Methode STRAHL in Abbildung 4.20c dargestellt. Wiederum mit unterschiedlich
skalierter Ordinate ist in Abbildung 4.20d das Ergebnis fiir die Methode STRAHL CGH
gegeniibergestellt. Wie zuvor steigt die Abweichung 9, mit kleinere werdendem Kerndurch-
messer an. Im Unterschied zur Verdrehung des Gaufstrahls nimmt die Abweichung nun
jedoch mit wachsender Verschiebung weiter ab, so dass der Betrag der maximalen Ab-
weichung fiir d = 15 pm deutlich iiber |§,| = 0,01 liegt. Durch Anwendung der Methode
STRAHL CGH verringert sich der Fehler wiederum deutlich und bleibt fiir d > 45 pm im-
mer unterhalb |0,| = 0,001. Lediglich fiir den kleinsten Kernquerschnitt verbleibt auch fiir
h = 0 eine minimale Abweichung von 4, = —0,0018. Als Zwischenfazit 14sst sich dennoch
festhalten, dass bei idealen Koppelbedingungen der Fehler der Methode STRAHL CGH
auch fiir sehr kleine Kernquerschnitte vernachlissigbar gering ist. Der maximale prozen-
tuale Fehler der Methode STRAHL CGH liegt selbst fiir d = 15 pm (b = 10 pm) unterhalb
4 %o.

Bei einer maximalen Verschiebung A = 0,2b und einem Verhéltnis d/b = 1,5 ist der
Uberlapp zwischen den durch die Durchmesser b und d beschriebenen Kreisflichen immer
maximal. Eine zwingende Voraussetzung, um die Koppeleffizienz zu maximieren. In der
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Abbildung 4.20.: Relative Abweichung ¢, fiir d/b = 1,5. Die Legende in Abbildung (b) ist
fiir alle Abbildungen giiltig. Es gilt no, = 1,55.

Praxis ist diese Voraussetzung sicher nicht immer gegeben und es soll daher nun der Fall
d/b = 1,0 betrachtet werden. Die Ergebnisse sind in Abbildung 4.21 aufgetragen. Darin
wird der Kerndurchmesser ausgehend von d = 70 pm in sechs dquidistanten Schritten auf
d = 10um verkleinert. Auf den ersten Blick gleichen die Kurvenverldufe denen in Ab-
bildung 4.20 sehr stark. Die Werte der relativen Abweichungen sind jedoch fast um eine
Zehnerpotenz angestiegen. Des Weiteren ist die Abweichung stets negativ. Erneut lésst
sich feststellen, dass der Fehler mit kleiner werdendem Kerndurchmesser ansteigt und dass
die Goos-Hénchen-Verschiebung (Methode STRAHL CGH) den mittleren Fehler deut-
lich reduziert. Der prozentuale Fehler liegt in der Methode STRAHL auch beim grofiten
Kerndurchmesser zwischen 1% und 2% und steigt auf iiber 6 % fiir den kleinsten Kern-
durchmesser. Mit der Methode STRAHL CGH verringert sich der Fehler im Mittel auf
weniger als 0,5 % fiir Kerndurchmesser bis d = 50 pm und Maximal 3,5 % fiir den kleinsten
Kerndurchmesser.

Als Fazit ldsst sich festhalten, dass die strahlenoptische Simulationstechnik unter Bertick-
sichtigung eines erweiterten effektiven Kerndurchmessers grundsétzlich zur Bestimmung
der Koppeleffizienz geeignet ist. Bis zu einem Kerndurchmesser von d = 50 pm kann sie
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Abbildung 4.21.: Relative Abweichung ¢, fiir d/b = 1,0. Die Legende in Abbildung (b) ist

fiir alle Abbildungen giiltig.

nahezu bedenkenlos eingesetzt werden. Fiir kleinere Kerndurchmesser muss mit einem Feh-
ler von maximal 2 % fiir d > 30 pm und 3,5 % fiir d > 10 pm gerechnet werden. Diese Werte
verstehen sich im Rahmen dieser Arbeit als Maximalwerte. Der mittlere Fehler liegt im
Mittel deutlich darunter, vgl. Abbildung 4.20. Es muss jedoch auch bedacht werden, dass
der verwendete Gaufsstrahl die Feldverteilung einer realen Quelle mdglicherweise nur in
grober Naherung wieder gibt, so dass eine konservative Einordnung des Fehlers sinnvoll

erscheint.

In Ergénzung und zur Bestétigung des formulierten Fazits befinden sich im Anhang A.4
Ergebnisse fiir die numerische Apertur NA = 0,177 (ny = 1,56).
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4.5. Naherungsverfahren fiir rechteckformige
Wellenleiter

Die Wellenleiter einer elektrooptischen Leiterplatte besitzen in der Regel ein rechteckfor-
miges Querschnittsprofil. Leider existieren fiir diesen Wellenleitertyp lediglich Naherungs-
l6sungen fiir die gefiihrten Moden. Dieses Kapitel untersucht die Anwendbarkeit der im
Kapitel 3.3.1 vorgestellten Feldlosungen von Marcatili zur Bestimmung der Koppeleffizienz
des rechteckformigen Wellenleiters. Dazu wird zunéchst ein wellentheoretisches Naherungs-
verfahren vorgestellt, das auf Basis von Uberlappintegralen unter ausschlieflicher Verwen-
dung gefiihrter Moden die Koppeleffizienz bestimmt [66]. Anschliefend wird ein Vergleich
zur strahlenoptischen Simulation gezogen. Da die Ergebnisse fiir die dielektrische Faser
gezeigt haben, dass die strahlenoptische Berechnung der Koppeleffizienz fiir hinreichend
grofte Geometrien sehr genaue Ergebnisse liefern kann, dient die Strahlenoptik in diesem
Fall als Referenz.

4.5.1. Naherungsverfahren zur Berechnung der Koppeleffizienz

Im Kapitel 2.3.2 wurde die Theorie zur Beschreibung der Reflexion und Transmission durch
senkrechte Wellenleiterschnittstellen vorgestellt. Ist der Sprung in der mittleren Brechzahl
zwischen dem links- und rechtsseitigen Wellenleiter gering, konnen reflektierte Wellen ggf.
vernachlissigt werden. Aus (2.83a) folgt dann mit ¢~ = 0 eine direkte Losung fiir die
Amplituden der transmittierten Wellen

T ) L r
) = QM) QU (4.44)
Aus der alternativen Beschreibung ergibt sich
o -1
Cg—‘-?") — <Q(T) > Q(TZ)HC(+I). <445)

Da sich die Losungen offensichtlich unterscheiden, wurden die Indices 1 und 2 eingefiihrt.
Die Amplituden der transmittierten Moden lassen sich nun explizit angeben:

1

(4+r) Ir) ~v(+l
Clu - (r) ZQ;(W)CIE )7 (446>
QM v
(+n 1 rl)* (4
o™ = o7 2 QUi (4.47)
I v

Diese Ausdriicke kénnen auch durch eine Reihenentwicklung der linksseitigen Modenfunk-
tionen in Termen der rechtseitigen Modenfunktionen hergeleitet werden. Der Gleichung
(4.46) liegt dabei die elektrische Feldstérke zugrunde und der Gleichung (4.47) die magne-
tische Feldstéarke.

Es existieren somit zwei fehlerbehaftete Losungen. Zur Verdeutlichung des entstehenden
Fehlers wird der einfache Fall einer Schnittstelle zweier Parallelplattenleitungen mit identi-
schen Querschnittsabmessungen, aber unterschiedlichem Dielektrikum betrachtet. Da ein
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linksseitiger Mode und ein rechtsseitiger Mode mit unterschiedlicher Ordnung orthogonal
sind, gilt

Qv
Cr = =o, (4.48)
Qv
()"
Oyt = = Ol (4.49)

v

Wird linksseitig ein beliebiger TE-Moden angeregt, folgt mit (3.12)

[ (€ < {H)Y) e.da

ci = CtH) = o+h), (4.50)
Ik (éw x {H,, } ) e, da
Gs
A7) M\ =
f (Stu {th/ } ) €, da k(l)lu(v")
O ORI (0 = . (4.51)
(&) x {#,}) e.da kD p®
Gs
Die exakte Losung lautet
0, @
C) = 2k CcH) = 2 o, (4.52)
D) + k5 ] 4 keu®
kzo ()

Mit der in der Optik allgemein angenommenen Beziehung ) = ;") sowie der gemachten
Annahme einer ausschliefslich kleinen Anderung der Permittivitat gilt

D ~ k) - CU O ~ 00, (4.53)

Ein analoges Ergebnis erhélt man fiir die TM-Moden, wenn man in den Ausdriicken die
Indices 1 und 2 vertauscht, sowie die Permeabilitat durch die Permittivitat ersetzt.

Im obigen Fall der Parallelplattenleitung ldsst sich leicht zeigen, dass entweder
ci <ot <o oder O < oS < ol (4.54)

gilt. Es liegt daher nahe, zur Bestimmung von CS™ einen Mittelwert aus CST) und C’é:r)
zu bilden. Eine interessante Eigenschaft offenbart das geometrische Mittel. Berechnet man
auf dieser Basis die transmittierte Leistung, ergibt sich in Matrixschreibweise

—(4r r T . r)*
P = Qe (4.55)

Unabhéingig vom Wellenleitertyp konserviert diese Herangehensweise bei einem Wellenlei-
tertibergang die Leistung, was mit (2.79) leicht gezeigt werden kann:

—(4r T r)*
P(+ ) _ Cg+ ) Q(r)cg+ )
_ Cngr)TQ(rl)TC(-H)*

T T -1 T *
— T QInTQn QDT ¢+ (4.56)

v~

vgl. (2.79)
_ C(+z)TQ(z)C(+z)* _ pi
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Fiir sehr kleine Reflexionsverluste stellt (4.56) eine sehr gute Approximation dar. Fiir
grofere Reflexionsverluste kdnnen unter Beriicksichtigung eines Korrekturfaktors 7' sehr
gute Ergebnisse erzielt werden. Auf dieser Basis gilt fiir die Betrige der Amplituden o)

CEE R {T O (4.57)
In den noch folgenden Rechnungen wird der Faktor T' durch den Leistungstransmissions-
faktor einer Ebenen Welle am dielektrischen Halbraum approximiert, 7" = T% mit T aus
Gleichung (2.99) oder (2.101). Die Phase der Losungen C" und C{™ ist in der Regel
nahezu identisch, so dass sich auch die Phase von CS™ rekonstruieren lisst. Formal ist
jedoch nur die Summe (4.56) reellwertig, so dass in (4.57) der Realteiloperator erforderlich
ist.

Neben dem vorgestellten Verfahren existieren einige weitere Approximationen, deren Im-
plementierungsaufwand etwas geringer ist, da beispielsweise nur eine Feldgrofe explizit
berticksichtigt wird [33]. Die mit (4.57) definierte Vorgehensweise ist jedoch hinsichtlich
der Genauigkeit iiberlegen.

Verifikation des Ndherungsverfahrens

Alle Rechnungen des Kapitels 4.2.2 wurden zur Verifikation des Naherungsverfahrens unter
Anwendung der Approximation (4.57) wiederholt. Abbildung 4.22 zeigt die Ergebnisse in
Form einer relativen Abweichung ,., die analog zu (4.43) definiert ist. Die Interpretation
der Ergebnisse kann erneut kurz ausfallen. In Bereichen, in denen hinreichend grofie Kop-
peleffizienzen erreicht werden, ist der maximale relative Fehler in der Regel deutlich kleiner
|0,| = 0,001. Aufserhalb dieser Bereiche steigt der Fehler nur méfig an und bleibt, solange
die Koppeleffizienz merklich grofser Null ist, im unteren Promillebereich. Die Qualitat des
Néaherungsverfahrens ist demnach fiir die folgenden Simulationen ausreichend.

4.5.2. Ergebnisse fiir den rechteckformigen Wellenleiter

Abschliefsend werden Ergebnisse fiir die Koppeleffizienz des rechteckférmigen Wellenleiters
gezeigt. Im Vordergrund steht dabei nicht die allgemeine Interpretation der Abhéngigkeit
von der Einfallsrichtung und den Eigenschaften der Quelle, da diese sich nur unwesent-
lich von den Ergebnissen der kreiszylindrischen Faser unterscheiden. Stattdessen wird ver-
sucht, durch den Vergleich zur Strahlenoptik einige Aussagen {iber den Giiltigkeitsbereich
der Naherungslosungen von Marcatili abzuleiten. Im Folgenden werden wiederum die Pa-
rametersiatze des Kapitels 4.2.2 verwendet, wobei der Durchmesser d des Faserkerns nun
der Kantenldnge eines quadratischen Wellenleiterkerns entspricht. Aufgrund der gréferen
Querschnittsfliche des quadratischen Wellenleiters ist die Koppeleffizienz bei entsprechen-
der Anregung etwas grofer als die der Faser, die Abhéngigkeiten vom Einfallswinkel und
von der Verschiebung des Gaufsstrahls sind dennoch qualitativ gleich.

Die Néherungslosungen von Marcatili werden im Kapitel 3.3.1 beschrieben. Wie aufgezeigt
unterliegen sie der einschrinkenden Bedingung (3.59), welche fordert, dass die transversa-
len Wellenzahlen k, und k, wesentlich kleiner als die Ausbreitungskonstante k. sind. Diese
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Abbildung 4.22.: Relative Abweichung o, der Koppeleffizienz fiir die kreiszylindrische Faser
im Vergleich zwischen der Naherungslosung und der exakten Losung. Der
Strahldurchmesser ist gleich b = 50 pm.

Bedingung wird offensichtlich von Moden nahe dem Cut-Off, d.h. mit einem effektiven In-
dex nahe der Mantelbrechzahl, am schlechtesten erfiillt. Hier schliefst sich unmittelbar die
Frage an, welcher minimale effektive Index erlaubt ist, damit ein Mode dem Spektrum der
gefiihrten Moden zugeordnet werden kann. Wie im Kapitel 3.3.1 diskutiert, unterschétzt
der Marcatili-Ansatz die Ausbreitungskonstanten k., und damit auch den effektiven Index
ner = k. /ko. Es wire somit moglich, dass ein Mode mit neg < ng noch den gefiihrten Moden
zuzuordnen ist. Diese Moglichkeit wird im Folgenden nicht weiter verfolgt, da nicht direkt
ersichtlich ist, ob die zusétzliche Beriicksichtigung eines Modes mit fehlerhafter Feldver-
teilung tatséchlich das Simulationsergebnis verbessert. Zusammenfassend lassen sich die
vermuteten Ursachen fiir Fehler im Simulationsergebnis festhalten:

e Fehlerhafte Feldverteilung fiir Moden nahe am Cut-Off,

e Vernachlassigung von Moden aufgrund einer fehlerhaften Berechnung der Ausbrei-
tungskonstanten.

Unter Berticksichtigung dieser Vermutungen sollen nun die Ergebnisse in Abbildung 4.23
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des rechteckférmigen Wellenleiters. Die Parametersétze entsprechen denen aus Abbildung 4.17 fiir die kreiszylin-
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Abbildung 4.24.: Anregung des Modenspektrums des rechteckférmigen Wellenleiters auf
Basis der Ndherungslosungen von Marcatili. Es gilt d = 70 pm, ny = 1,55.
(Vgl. Abbildung 4.12a: Anregung des Modenspektrums der Faser.)

interpretiert werden. Diese miissen in Relation zu Abbildung 4.17 gesetzt werden, welche
die Ergebnisse fiir die kreiszylindrische Faser zeigt. Abbildung 4.23 stellt die auf Basis der
vorgestellten Néherungslosung (4.57) berechneten Koppeleffizienzen den strahlenoptischen
Ergebnissen gegeniiber. Im strahlenoptischen Modell wurde der Kern um die konstante
Goos-Hénchen-Verschiebung verbreitert (Methode STRAHL CGH).

Die Interpretation der Ergebnisse startet mit Abbildung 4.23c, da hier die geringsten Ab-
weichungen auftreten. Bei konstanter N A sind nun Ergebnisse fiir unterschiedliche Kan-
tenldngen des Wellenleiterkerns dargestellt. Der Gaufstrahl wird nur lateral verschoben,
was auch im Fall des rechteckférmigen Wellenleiters im Bereich der gefithrten Moden zu
keiner Verbreiterung des angeregten Modenspektrums fithrt. Abbildung 4.24 zeigt die An-
regung des Modenspektrums des rechteckformigen Wellenleiters fiir d = 70 pm. Da keine
Losungen fiir das Spektrum der Strahlungsmoden vorliegen, bleiben diese unberiicksichtigt.
Allerdings werden im Gegensatz zur Berechnung der Koppeleffizienz Marcatili-Losungen
mit neg < no = 1,55 berticksichtigt. Im Graphen fiir h = 40 pm ist deutlich zu erkennen,
dass diese Moden noch signifikant angeregt werden. Insgesamt entsprechen die Abweichun-
gen in Abbildung 4.23c den bereits bei der Faser beobachteten Abweichungen zwischen den
Ergebnissen der Wellentheorie und der Strahlenoptik. Ein deutliches Indiz dafiir, dass die
Néherungslosungen von Marcatili im hohen Indexbereich, ny = 1,57 > n.g > 1,565, eine
hinreichend gute Approximation darstellen.

Diese Aussage wird durch die Ergebnisse in Abbildung 4.23a bestétigt, welche bei iden-
tischen Geometrie- und Materialparametern des Wellenleiters die Verdrehung des Gaufs-
strahls beriicksichtigt. Erst fiir sehr grofse Einfallswinkel stellen sich deutliche Abweichun-
gen ein, die bei der Faser nicht beobachtet werden konnten. Demzufolge wird fiir grofe
Einfallswinkel die Koppeleffizienz durch Verwendung der Marcatili-Losungen etwas iiber-
schétzt. Es zeigt sich jedoch auch, dass fiir d = 70 pm und 9 = 10° immer noch eine gu-
te Ubereinstimmung zwischen den Ergebnissen herrscht. Wie Abbildung 4.24 zeigt, wird
in diesem Fall nahezu das gesamte Spektrum der gefiihrten Moden angeregt. Erst wenn
mafsgeblich viel Leistung in die Moden nahe dem Cut-Off eingekoppelt wird, steigen die
Abweichungen deutlich an, z.B. fiir 9 = 15°.
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Die Ergebnisse in Abbildung 4.23b und 4.23d bestétigen diese Annahme. Hier wird die
Mantelbrechzahl verkleinert und damit werden bei gleich bleibendem Divergenzwinkel des
Gaufsstrahls automatisch Moden angeregt, die ndher am Cut-Off liegen. Mit abnehmender
Mantelbrechzahl nehmen die Abweichungen stark zu, jedoch unterschatzt die Verwendung
der Marcatili-Losungen nun die Koppeleffizienz im Vergleich zur Strahlenoptik deutlich.
Ein Verhalten, das bei der Faser nicht beobachtet werden konnte. Natiirlich muss im strah-
lenoptischen Modell ein moglicher zusatzlicher Fehler berticksichtigt werden, hervorgerufen
durch die Ecken im Querschnitt des Wellenleiterkerns, die ja im Modell der kreiszylindri-
schen Faser fehlen. In Abbildung 4.23b wird der Gaufsstrahl jedoch nur verdreht und es
trifft wenig Leistung in den Eckbereichen auf. Es ist daher davon auszugehen, dass die
wellentheoretische Ndherung hier einen Fehler verursacht. Da geméf (3.72) der Marcatili-
Ansatz bei kleiner NA eine bessere Naherungslosung verspricht, ist moglicherweise die
Nichtberiicksichtigung einiger Moden nahe am Cut-Off die Fehlerursache. Wohingegen zu-
vor in Abbildung 4.23a die Zunahme der Koppeleffizienz vornehmlich aus der fehlerhaften
Feldverteilung der Moden nahe am Cut-Off resultierten.

Als Fazit ldsst sich festhalten, dass die Nédherungslosungen von Marcatili einen sinnvol-
len Ansatz zur Modellierung rechteckformiger Wellenleiter darstellen, solange vornehmlich
Moden mit hinreichend grofier effektiver Brechzahl angeregt werden. Mit den présentierten
Ergebnissen lasst sich zwar keine direkte Fehlerrechnung betreiben oder eine Fehlerschranke
fiir die effektive Brechzahl ableiten. Es gibt jedoch deutliche Indizien dafiir, dass insbe-
sondere Losungen im Intervall ny < neg < ™3™ eine hinreichend gute Approximation
darstellen. Wie von Marcatili vorhergesagt, tritt fiir Moden mit n.s nahe ny ein deutlich
erhohter Fehler auf.



5. Wellenausbreitung in
dielektrischen Wellenleitern

Die Beschreibung der Wellenausbreitung im dielektrischen Wellenleiter ist wie schon die
Beschreibung der Einkopplung mathematisch sehr aufwiandig und es sind nur wenige exak-
te Losungen der Maxwellschen Gleichungen bekannt. Zur Erinnerung sei erwéahnt, dass sich
das Modell zur Beschreibung der Einkopplung auf bzgl. der Wellenleiterachse senkrechte
Schnittstellen beschrankt. Sobald die Schnittstelle schriag verlduft oder Inhomogenitéaten
wie raue Oberflachen beriicksichtigt werden miissen, existieren in der Regel keine analy-
tischen Losungen mehr. Analog dazu lasst sich die Wellenausbreitung ebenfalls nur im
langshomogenen Wellenleiter exakt beschreiben, sofern das Modenspektrum des Wellenlei-
ters bekannt ist. Einen analytischen Losungsansatz gibt es dariiber hinaus nur fiir zirkular
gekriimmte Schichtwellenleiter.

Aufgrund der Vielmodigkeit der Wellenleiter ist auch die Feldberechnung im ldngshomo-
genen Wellenleiter stets mit einem nicht unerheblichen Rechenaufwand verbunden. Ka-
pitel 5.1 stellt daher zundchst Ergebnisse fiir die monochromatische Anregung des Mo-
denspektrums dar. AnschlieRend wird das transiente Ubertragungsverhalten am Beispiel
zeitperiodischer Anregungen betrachtet. Bei der Beschreibung zirkular gekriimmter Wel-
lenleiter kann man sich nicht mehr der Theorie normaler Moden bedienen. Stattdessen
muss ein kontinuierliches nichtorthogonales Modenspektrum angesetzt werden, aus dem
sich jedoch wiederum quasigefithrte Moden ableiten lassen. Dieser Thematik widmet sich
Kapitel 5.2. Dass sich auch alle wesentlichen Ergebnisse auf Basis elementarer strahlenop-
tischer Methoden ableiten lassen, wird abschliefend in Kapitel 5.3 diskutiert. Falls nicht
anders notiert, gelten fiir alle Parameter dieselben Annahmen wie im vorangegangenen
Kapitel 4.

5.1. Wellenausbreitung im langshomogenen
Wellenleiter

Das Ubertragungsverhalten monochromatischer Wellen im lingshomogen Wellenleiter ist
nach erfolgter Berechnung der Leistungsverteilung auf das Modenspektrum trivial zu be-
stimmen. Der Ubergang in den Zeitbereich erfolgt nach Multiplikation mit exp(jwt) durch
einfache Realteilbildung. Um die Ausbreitung beliebig zeitabhéngiger Wellen zu beschrei-
ben, muss jedoch die Fouriertransformation angewendet werden. Diese ist im Allgemeinen
nur fiir einfache Spezialfalle effektiv durchfiihrbar, da das Modenspektrum fiir die gesamte
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Bandbreite des zeitabhéngigen Signals bestimmt werden muss. Die im Folgenden gezeigten
exemplarischen Ergebnisse beziehen sich daher auf den planaren Schichtwellenleiter.

5.1.1. Monochromatische Wellenausbreitung

Sobald die Anregung des Modenspektrums eines lingshomogenen Wellenleiters bestimmt
wurde, ldsst sich das elektromagnetische Feld in jedem Punkt durch Uberlagerung der
Feldanteile aller Moden berechnen. Obwohl die monochromatische Anregung kein direktes
praktisches Interesse offenbart — schliefslich erfordert jede Form der Dateniibertragung eine
bestimmte Bandbreite — lassen sich gerade im multimodalen Wellenleiter aufgrund der
Modendispersion interessante Interferenzerscheinungen beobachten [63]. Unter Annahme
einer hinreichend schmalbandigen Anregung kénnen diese Effekte auch im realen System
ausgenutzt werden.

Abbildung 5.1 zeigt die zeitlich gemittelte Leistungsflussdichte |[R{S}| in einem Schicht-
wellenleiter der Dicke d = 70 pm und der numerischen Apertur NA = 0,25. Die Achse des
einfallenden Gaufsstrahls trifft senkrecht und meridional bei z = 0 auf. Strahlbreite und
Divergenzwinkel sind gleich b = 50 pm und ©,¢ = 5°. Die Darstellung ist in z-Richtung um
den Faktor 50 gestaucht. Bedingt durch die symmetrische Anregung werden nur Moden

| W ‘
g = =
d =70 m e e —— ——
I — T —
e i M
z = 0 z = §mm
T e —
———————
z =bmm z = 10mm

Abbildung 5.1.: Zeitlich gemittelte Leistungsflussdichte [R{S}| in einem Schichtwellenleiter
der Dicke d = 70 pm und NA = 0.25 bei Anregung in z = 0 durch einen
Gaufistrahl unter idealen Koppelbedingungen.

angeregt, die bzgl. der Wellenleiterachse eine gerades Profil aufweisen. Dementsprechend
ist auch die transversale Flussdichteverteilung stets symmetrisch und bedingt durch die un-
terschiedlichen Ausbreitungsgeschwindigkeiten der Moden stellen sich die gezeigten Inter-
ferenzmuster ein. Besonders markante Intensitiatsverteilungen ergeben sich fiir z = 4,2 mm
und z = 8,9 mm. Im ersten Fall bilden sich zwei dominante lokale Maxima aus. Wiirde der
Wellenleiter an dieser Stelle in der Mitte geteilt, konnte ein Splitterstruktur aufgebaut wer-
den, die den Leistungsfluss in 3 dB-Anteile aufteilt. Im zweiten Fall konzentriert sich der
Leistungsfluss auf einen einzigen, sehr schmalen Bereich. Hier kdnnte ein Wellenleiter mit
kleinerem Durchmesser anschliefen, ohne das ein signifikanter Verlust durch Abstrahlung
zu erwarten ist.
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Da sich die Interferenzmuster mit Ausbreitung der Welle wiederholen, wird im Englischen
von ,Self-Imaging‘ gesprochen [63]. In der Praxis lassen sich diese Effekte jedoch nur mit
erheblichem Aufwand ausnutzen, da sehr hohe Anforderungen an die Qualitdt und die
Positionierung der Quelle gestellt werden miissen. Es sei auch noch einmal betont, dass
sich die gezeigten Ergebnisse nur auf ein planares zweidimensionales Problem beziehen.
Analoge Ergebnisse sind jedoch auch im Fall eines Wellenleiters mit zweidimensionalem
Querschnittprofil zu erwarten, da bei Einfall eines Gaufstrahls unter idealen Koppelbe-
dingungen immer nur ein entsprechender definierter Bereich im Modenspektrum angeregt
wird, vgl. Abbildung 4.12a.

Die in Abbildung 5.1 gezeigten Interferenzmuster in der Leistungsflussdichte sind insbeson-
dere auch dann von Bedeutung, wenn sich einem Stiick geraden Wellenleiter ein gekriimm-
ter Wellenleiter anschliefst. Je nach Lange des geraden Stiicks variiert die Feldverteilung am
Anfang der Kriimmung und damit auch das Ubertragungsverhalten durch die Kriimmung.
Mehr dazu im Kapitel 5.2.

Abschliefsend soll noch ein weiteres Phdnomen angesprochen werden, dass zwar offensicht-
lich ist, jedoch selten diskutiert wird. In der geometrischen Optik wird zu Testzwecken oft
die NA des Wellenleiters homogen ausgeleuchtet. Dazu wird eine Punktquelle angesetzt,
die Strahlen gleicher Intensitiat unter einer dquidistanten Winkeldiskretisierung aussendet.
Wie sieht nun eine korrespondierende wellentheoretische Anregung aus? Diese Frage ist im
Grunde nicht zu beantworten, da aus einem strahlenoptischen Modell aufgrund der feh-
lenden Phaseninformation eine elektromagnetische Welle nur eingeschriankt rekonstruiert
werden kann. Abbildung 5.2 zeigt exemplarisch die Leistungsflussdichte in einem Schicht-
wellenleiter, wenn alle gefithrten Moden in z = 0 gleichphasig angeregt werden!. In der

|
|
|
|
|
|
!
|
|
|
|

z

Abbildung 5.2.: Zeitlich gemittelte Leistungsflussdichte |R{S}| bei gleichphasiger Anre-
gung aller gefiihrten Moden in z = 0 eines Schichtwellenleiters der Dicke
d = 70 pm sowie NA = 0,25.

Ebene z = 0 konzentrieren sich die Felder am unteren Rand des Wellenleiterkerns. Wird
die strahlenoptische Punktquelle ebenfalls am unteren Rand des Wellenleiterkerns plat-
ziert, lisst sich vermutlich eine groftmogliche Ubereinstimmung hinsichtlich der weiteren
Propagation der Wellen und Strahlen im Wellenleiter erwirken. Wird ein expliziter Ver-
gleich der unterschiedlichen Theorien angestrebt, sollte jedoch immer das strahlenoptische
Modell aus dem Poyntingvektorfeld der wellentheoretischen Analyse abgeleitet werden.

Unter der Annahme einer analytischen Beschreibung des Modenspektrums wie z.B. im Kapitel 3.1.3 gilt
fiir die Amplituden der gefiithrten Moden C, = 1.
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5.1.2. Transientes Ubertragungsverhalten

Um die Implementierung auf einem Rechnersystem zu vereinfachen, beschrankt sich die
folgende Beschreibung auf eine periodische Zeitabhéangigkeit des Modulationssignals und
damit implizit auf die Theorie der Fourierreihen [17]. Im Fokus steht das reine Ubertra-
gungsverhalten des optischen Wellenleiters. Quelle und Empfanger werden als ideal ange-
nommen. Ebenso werden die Schnittstellen zwischen den Bauteilen als ideal angenommen
und damit Reflexionsverluste vernachlassigt.

Das elektrische Feld des Tragersignals sei y-polarisiert und gegeben durch
EY (7ot) = R{ Eq(Fo.w0) exp(jwot) |- (5.1)

Wird der Pumpstrom des Lasers durch eine periodische Pulsfolge moduliert, so besitzen
neben der Ausgangsleistung des Lasers auch die zugehorigen Feldgrofen eine periodische
Zeitabhangigkeit. Die Fouriersumme des Modulationssignals bezogen auf die Feldgrofen
sei durch

N
gt) = > coexp(jnQt), mit ¢, €R und ¢, =c_, (5.2)
n=—N

gegeben. Darin ist €2 = QT“ die Grundfrequenz und 7' ist die Grundperiode. Der kompak-
teren Schreibweise wegen beschrankt sich die Darstellung auf gerade Modulationssignale.
Fiir die noch folgende Beschreibung des Leistungsflusses im Wellenleiter ist es sinnvoll,
Koeflizienten mit [n| > N explizit gleich Null zu setzen, d.h. es gilt

=0 VY |n|>N. (5.3)

Das resultierende modulierte Feld vor der Wellenleiterstirnflache berechnet sich zu

EyG(Fo,t) = E}(Fo,t) g(t) = %{Eo(ﬁ),wo) Z cn exp(j(wo + nQ)t)} (5.4)

n=—N

Anders als im freien Raum unterliegen die Felder im dielektrischen Wellenleiter der chro-
matischen Dispersion sowie der Modendispersion [47], welche im multimodalen Wellenleiter
dominiert. Es ist daher von fundamentaler Bedeutung, wie sich die einfallende Leistung auf
die einzelnen Moden verteilt. Trotz der urspriinglich monochromatischen Anregung (5.1)
besitzt das Feld vor der Wellenleiterstirnfliche aufgrund der Modulation nun eine durch
(5.2) definierte Bandbreite und fiir die exakte Beschreibung der Einkopplung miisste fiir
jede Frequenz w, = wy + n () ein Mode-Matching durchgefiihrt werden. Allerdings é&ndert
sich das Modenspektrum in Abhingigkeit von n Q nur unwesentlich?. Da auch die anregen-
de Feldverteilung E,(7,wp), die wie zuvor durch den Gaukstrahl gegeben ist, unabhéngig
von n () ist, reicht es aus, das Mode-Matching einmalig fiir die Frequenz wqy durchzufiihren.

2Zur Erinnerung: die Wellenléinge des optischen Triigers ist in dieser Arbeit gleich 850 nm. Damit liegt
die Tragerfrequenz wy im hoheren Terahertz-Bereich und ist um einige Dekaden gréfer als die Modu-
lationsfrequenz §2, die typischerweise im Gigahertz-Bereich liegt.
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In der Notation gemaft Kapitel 2.3.1 lasst sich das Feld im Wellenleiter durch

N
E;V(F,t) = 3?{ exp(jwot) Z ¢, exp(jnidt) Ey’n(f',wn)}, (5.5)
n=—N
mit
Eym(??,wn) = Z CV §V(Ft7wn> eXp(_jkzu,nZ) (56)

beschreiben. Zu beachten ist, dass die Frequenzabhéngigkeit nun durch den Index n be-
riicksichtigt wird. Die Amplituden C, sind wie beschrieben frequenzunabhéngig und da
Verluste durch Reflexion oder Abstrahlung vernachléssigt werden, werden die Maxima im
Leistungsfluss mit

» cip, =1 (5.7)

auf Eins normiert. Darin ist P, die fiir w = wo pro Mode gefiihrte normierte Leistung, vgl.
(2.63). Die Summation in (5.6) erstreckt sich nur tiber die gefithrten Moden des Wellenlei-
ters.

Die Leistungsflussdichte im elektromagnetischen Feld beschreibt sich allgemein durch den
Poyntingvektor. Fiir die gewéhlte Polarisation berechnet sich die Komponente in Ausbrei-
tungsrichtung aus

S, (Tt) = —EZV(F,t) HY (Ft). (5.8)
Darin wird die magnetische Feldstéirke analog zu (5.5) beschrieben durch
N
HY(7t) = —3%{ exp(jwot) Y cn exp(jnQlt) gz,n(mn)}, (5.9)
n=—N
H,,(Fw) = S 20, €, (Frwn) exp(—jan?): (5.10)

v

In den Darstellungen (5.5) und (5.9) wurde die Zeitabhéngigkeit vom hochfrequenten opti-
schen Trager bewusst vorangestellt. Die Zeitabhéngigkeit der Feldgrofsen ist von der Form

\ill/g(t) = R {exp(jwot) U12(t) } . (5.11)

Somit ergibt sich fiir das Produkt zweier Feldgrofen, und damit auch fiir den Poynting-
vektor, die Zeitabhangigkeit

By () T (Ft) = 1(@1@) exp(jint) + V3 (1) exp(—jiot)

4
<\I/2(t) exp(jwot) + Wi(t) exp(— jwot)) (5.12)
- % R{W, (1) T3(1)} + % R{W, () Ty(t) exp(j2uwot) }-

In dieser Darstellung ist der erste Summand nicht mehr von der Trégerfrequenz wy abhén-
gig, im Gegensatz zum zweiten Summanden, welcher mit der doppelten Tragerfrequenz
oszilliert. Da dieser hochstfrequente Anteil von einer Photodiode nicht aufgelost wird,
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wird er im Folgenden vernachléassigt. Die tiefpassgefilterte Leistungsflussdichte berechnet
sich dann zu

§Z(F,t) = %?R{ ( Z cn B2, (Twn) exp(ant)) ( Z conH, (Fw_p) exp(ant)> }

n=—N n=—N
(5.13)
Dieses Produkt zweier Fouriersummen kann mit Hilfe einer Faltung der diskreten Spektren
umgeformt werden:

§Z(F,t) = %?R{ Z [ Z (cmEy p (Fiwm)) (cm_nﬂ;’mn(ﬁwm_n))] exp(ant)}.

n=—2N L m=—N
(5.14)
Die in Ausbreitungsrichtung transportierte Leistung ergibt sich durch Integration und ist
gleich

ﬁ(zc,t):%ﬁ?{ Z [ Z CmCm—n /Ey (T wm)Hy o (FiWim—n) da] exp(ant)}.

n=—2N Lm=—N

Pze)
(5.15)
Weiter folgt fiir die Fouriersumme der Leistung
2N
- , : 1 -
p(z,t) = Z pn(2) exp(jnQdt) mit p,(z) = 1 (pn( ) —I—p_n(z)) : (5.16)
n=—2N

Die Rechenzeiten zur Bestimmung des Leistungsfluss p(z,t) variieren in Abhéngigkeit der
Bandbreite des Modulationssignals. Eine hohe Bandbreite korrespondiert mit einer grofen
Anzahl Reihenglieder N und damit einer grofsen Anzahl Rechenoperationen zur Bestim-
mung des diskreten Faltungsprodukts. Des Weiteren muss pro Summand in (5.15) ein
Integral gelost werden, das zwar ggf. analytisch berechnet werden kann, in jedem Fall aber
den Simultionsaufwand erh6ht. Im Allgemeinen ist die Bandbreite jedoch hinreichend klein
gegeniiber der optischer Trigerfrequenz, so dass die Anderung im transversalen Modenpro-
fil mit der Frequenz w vernachlissigt werden kann. Anstelle von (5.6) und (5.10) kénnen
die Feldausdriicke

Ey’n(Fvwn) ~ Z Cl/ §y(ﬁ’w0) eXp(_jkzu,nz)v (517)

H, . Z szOO E, (Trwo) exp(—jkynz) (5.18)

verwendet werden. Gleichung (5.15) vereinfacht sich damit zu

He) { 5

n=—2N

Z CrnCrm—n Z 1C,12 P, exp(—j (kuym — l{:z,,m_n)z)] exp(ant)}.

m=—

(5.19)
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Die Annahme, dass sich das transversale Modenprofil mit der Frequenz nur langsam éndert,
soll nicht ausschlieften, dass die Anzahl der gefithrten Moden nicht variiert. Insbesondere
im hochmultimodalen Fall variiert die Anzahl der gefithrten Moden auch bei kleinen Fre-
quenzénderungen. Die Anderungen betreffen mafgeblich nur den Teil des Modenspektrums
nahe dem Cut-Off, d.h n.g &~ no. Sollen hohe Koppeleffizienzen erzielt werden, wird dieser
Teil des Modenspektrums in der Regel nicht signifikant angeregt, vgl. Abbildung 4.12a.

Im Folgenden Beispiel wird ein Modulationssignal mit der Grundfrequenz 2 = 10 GHz
betrachtet. Es gilt somit T = 100 ps. Das Modulationssignal sei eine Folge von Sinusbogen
geméf

cos(Z), n—1/4<t/T<n+1/4, €L
g(t) ~ { T : (5.20)
0, sonst
Aufgrund der endlichen verfiigbaren Bandbreite gilt (5.20) nur ndherungsweise. Um die
Auswirkungen der Modendispersion und die damit verbundene Pulsverformung zu ver-
deutlichen, wurde ein Puls-Pause Verhéltnis von eins gewahlt. Die Koeffizienten der zuge-

horigen Fouriersumme sind gleich

—Z2 (=12, n=246...
= mem ()", =246 (5.21)
0, n=3057....

1 1
Co = ;, Cc1 = 5
Koeffizienten mit einem Index |n| > N sind geméf (5.3) gleich Null. Die Folge der Fourier-
koeffizienten klingt quadratisch ab. Da sich das Modulationssignal auf die Feldgrofien be-
zieht, besitzt der initiale Leistungsfluss eine entsprechend quadratische Abhéngigkeit, d.h.
es gilt p(0,¢) ~ ¢g?(t). Entsprechend schmalbandig ist das Frequenzspektrum?®. Da jedoch fiir
den spéateren Vergleich zur Strahlenoptik auch rechteckférmige Pulse niherungsweise mo-
delliert werden sollen, wird insgesamt ein Wellenldngenbereich von 838 nm < A < 862nm
beriicksichtigt. Das entspricht einer Bandbreite von bereits etwa 10 THz und somit N = 500
Reihengliedern in (5.2). Die Anderungen im Spektrum der gefiihrten Moden sind in diesem
Bereich vernachléassigbar. Fiir den im Folgenden betrachteten Schichtwellenleiter der Dicke
d = 75um und der Apertur NA = 0,25 sinkt die Anzahl der gefiihrten Moden ab der
Wellenlénge 851,5 nm zwar von 45 auf 44, das transversale Modenprofil der verbleibenden
44 Moden variiert jedoch nur sehr wenig.

In Abbildung 5.3 ist der normierte Leistungsfluss p(z,t) an verschiedenen Stellen z = L fiir
unterschiedliche Anregungen des Modenspektrums aufgetragen. Es gilt d/b = 1,5, d.h. der
Durchmesser des Gaufsstrahls ist gleich b = 50 pm. Die Kurven fiir L > 0 wurden auf der
Zeitachse verschoben, so dass der Uberlapp in Abbildung 5.3a am groften ist. Diese Abbil-
dung zeigt den Fall der idealen Einkopplung, d.h. die Strahlachse trifft senkrecht meridional
auf. Geméfs Abbildung 4.12a werden nur Moden mit grofsem effektiven Index n.g angeregt
und entsprechend gering ist die Pulsverformung. Dargestellt sind neben dem Eingangssi-
gnal Ergebnisse fiir fiinf unterschiedliche Wellenleiterldngen L = 1,2,...5m. Es zeigt sich,
dass mit zunehmender Wellenleiterlinge wie erwartet die Amplitude der Pulse abnimmt
und die Breite zunimmt. Beachtet werden muss, dass in einem realen Ubertragungssystem
keine derart grofse Pause zwischen den Pulsen existiert. Dennoch sollte in diesem Fall auch
noch nach L = 5m eine Detektion der Pulse moglich sein. Da eine laterale Verschiebung h

3Diese Aussage bezieht sich auf eine Definition wie etwa die 3 dB-Bandbreite.
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Abbildung 5.3.: Normierter Leistungsfluss an ausgewéhlten Stellen z = L in einem Schicht-
wellenleiter nach Einkopplung eines Gaufstrahls unter verschiedenen Win-
keln 4. Es gilt d = 75 pum, b = 50 pm, A = 0 und NA = 0,25. Die Legende
in Abbildung (a) gilt auch in (b), (¢) und (d).

des Gaufstrahls nicht zu einer Verbreiterung des angeregten Modenspektrums fiihrt, sind
in den weiteren Abbildungen Ergebnisse fiir unterschiedliche Einfallswinkel 9 dargestellt.

Mit zunehmendem Einfallswinkel des Gaufsstrahls verbreitert sich auch die Anregung des
Modenspektrums, entsprechend nimmt der Einfluss der Modendispersion zu. Fiir ¢ = 2° ist
die Pulsverbreiterung auch bei L = 5m noch moderat, die Amplitude sinkt auf etwa 0,666.
Bei ¢ = 5° nimmt die Amplitude bereits nach L = 3m einen Wert unter 0,5 an. Im Fall
¥ = 10° wird nahezu das gesamte Modenspektrum angeregt, insbesondere auch die Moden
hoher Ordnung. Die Amplitude sinkt bereits nach einem Meter auf etwa 0,6. Bedenkt man,
dass in einem realen System zusétzliche parasitiare Effekte die Dispersion weiter verstarken
kénnen, dann ist eine Dateniibertragung mit Wellenleiterlingen {iber 1 m wahrscheinlich
nicht mehr moglich. Im Kontext der EOPCB-Technologie sind jedoch Wellenleiterlangen
kleiner 1 m auch fiir den Einsatz in groferen Serversystemen oft ausreichend.
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5.1.3. Ubertragungsfunktion des planaren Schichtwellenleiters

Sofern, wie in dieser Arbeit angenommen, alle eingesetzten Materialien lineare Eigenschaf-
ten besitzen, stellt auch der optische Wellenleiter ein lineares Bauelement dar. Jedoch
bezieht sich diese Linearitat auf die Feldgrofen und nicht auf die iibertragene Leistung,
die bekanntlich aus dem Integral iiber den Poyntingvektor hervorgeht. In der klassischen in-
kohirenten Ubertragungstechnik wird durch Modulation des Pumpstroms der eingesetzten
Laserdiode die Ausgangsleistung variiert. Am Ende der Ubertragungsstrecke wird umge-
kehrt die Eingangsleistung in einen Strom umgewandelt. Im Folgenden soll wie zuvor ein
System betrachtet werden, in dem sowohl die Laserdiode als auch die Photodiode als ide-
al angenommen werden. Die Eingangsgrofe ist dann proportional zur Leistung p(0,t) am
Wellenleiteranfang. Entsprechend ist die Ausgangsgrofe proportional zur Leistung p(L,t)
am Wellenleiterende.

Das somit definierte System wird vollstdndig durch Gleichung (5.15) beschrieben. Die Cha-
rakterisierung des Systems ist jedoch schwierig, da sich die Eingangsgrofe nicht explizit aus
(5.15) isolieren lasst. Zwar ldsst sich noch zeigen, dass das System das Verstarkungsprin-
zip (Homogenitét) erfiillt. Im Allgemeinen ist das System jedoch nicht additiv. Dennoch
kann das System als ndherungsweise linear angenommen werden, so dass die Systemeigen-
schaften durch eine Ubertragungsfunktion beschrieben werden kénnen, die sich aus (5.16)
gemafs

pull) i p, = P (5.22)
P (0) 27

ableiten lasst. Die Annahme eines linearen Systems ist gerechtfertigt, solange die chroma-
tische Dispersion vernachlassigbar ist. In diesem Fall lasst sich die Dispersionsbeziehung
der Moden linearisieren. Es gilt

H(fﬂ) =

dk.,
dw wo '

ko (w) = K (wo) + (w — wo) (5.23)

Mit dieser Nédherung kann (5.19)

p(z,t) = { Z [ Z ConCon "Z|C‘ P, exp(—j( zym—kzy,mn)z)] exp(ant)}

n=—2N L m=-N
(5.24)
vereinfacht werden. In der gewéhlten Notation folgt aus (5.23)
Q d
kzll,n = kzu,O + n_ und kzu,m - kzmm—n = n_7 mit Vg = _w (525)
’Ugl, Ug’/ dkzu wo

Die Groke vy, wird als Gruppengeschwindigkeit des Modes v bezeichnet. Eingesetzt in
(5.24) ergibt sich

et = 3 (

n=—2N

Z]C > P, exp< j—QZ)> [ Z cmcmn] exp(jn€t). (5.26)

v
v m=—N
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10
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Abbildung 5.4.: Ubertragungsfunktion des planaren Schichtwellenleiters. Es gilt d = 75 pm,
b =50 pm und ny = 1,55.

Der Realteiloperator kann hier entfallen, da die Fourierkoeffizienten ein reelles Signal im-
plizieren. Mit (5.7) folgt nun fiir das Eingangssignal

p(0,t) = Z [ Z cmcmn] exp(jndt) (5.27)

n=—2N Lm=—N
und fiir das Ausgangssignal
2N N
p(Lt) = Z Hl(%)[ Z cmcm_n] exp(jnSdt). (5.28)
n=—2N m=—N

Darin ist

Vgv

Hi(h) = S 16 Pep (2721 ) (5.20)

die Ubertragungsfunktion des linearisierten Systems. Im Vergleich zur Definition (5.22), in
der die Fourierkoeffizienten geméf (5.16) berechnet werden, ist der erforderliche Rechen-
aufwand deutlich reduziert. Die Unterschiede sind jedoch in der Regel vernachlassigbar.

Abbildung 5.4 zeigt exemplarisch Ergebnisse fiir den Betrag der durch (5.22) definierten
Ubertragungsfunktion?®. Die Parametersitze korrespondieren mit denen aus Abbildung 5.3a
und 5.3d. Es gilt d = 75um und d/b = 1,5 sowie NA = 0,25. Die Kurven zeigen das er-
wartete Tiefpassverhalten auf. Die 3 dB-Frequenz, die Frequenz, bei der |H(f)| = 0,5 gilt,
nimmt mit zunehmender Wellenldnge ab. In Abbildung 5.4a ist analog zu Abbildung 5.3a
der Idealfall beriicksichtigt, bei dem der Gaufistrahl senkrecht meridional auftrifft. Das
Bandbreitenléngenprodukt betragt fsqg - L = 159 GHz-m. Der aus praktischer Sicht re-
levantere Fall mit ¢ = 10°, bei dem nahezu das gesamte Modenspektrum angeregt wird,
ist in Abbildung 5.4b dargestellt. In diesem Fall sinkt das Bandbreitenlangenprodukt auf

4Die Koeffizienten des Modulationssignals 5.2 wurden hierzu konstant gleich ¢,, = 1 V n gesetzt.
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faas - L = 14 GHz-m. Somit lésst sich das Ergebnis aus Abbildung 5.3d leicht erkléren.
Aus dem Bandbreitenlingenprodukt errechnet sich bei einer Frequenz von 10 GHz eine
maximale Lange von lediglich 1,4 m. Bei einer Lénge von 2m ist bereits keine hinreichende
Amplitude fiir eine zuverlassige Detektion mehr vorhanden.

Die Unterschiede zur Ubertragungsfunktion (5.29) liegen in Abbildung 5.4 meist unterhalb
der darstellbaren Genauigkeit. Lediglich in den Graphen fiir ©¥ = 10° existieren im Bereich
zwischen 10 GHz und 100 GHz merkliche, insgesamt jedoch vernachléassighare Unterschiede.
Diese begriinden sich darin, dass der letzte gefithrte Mode mit einer effektiven Brechzahl
neg = 1,550047 fiir A = 850 nm bereits sehr nahe am Cut-Off liegt und hier die Linearisie-
rung 5.23 problematisch ist. Es sei jedoch betont, dass er im betrachteten Frequenzbereich
nicht unterhalb des Cut-Off fallt. Fiir Einfallswinkel ¢ < 10° wird dieser Mode nicht signifi-
kant angeregt. Folglich ist die durch (5.22) bzw. (5.29) definierte Ubertragungsfunktion ein
sinnvolles Instrument zur Charakterisierung optischer Wellenleiter. Es muss jedoch auch
betont werden, dass diese Ubertragungsfunktionen nur Approximationen darstellen, die
gerechtfertigt sind, solange die chromatische Dispersion vernachléssigbar ist. Die starken
Oszillation in Abbildung 5.4 fiir Frequenzen gréfer 100 GHz sind im Ubrigen ein Resul-
tat der Modendispersion im Wellenleiter mit einer endlichen Anzahl gefithrter Moden. Je
weniger Moden gefiihrt werden, desto ausgeprégter fallen diese Oszillationen aus.

5.2. Wellenausbreitung im gekriimmten
Schichtwellenleiter

Obwohl die Beschreibung der Wellenausbreitung in gekriimmten dielektrischen Wellen-
leitern schon lange Gegenstand wissenschaftlicher Arbeiten ist [13, 43|, existieren man-
gels exakter analytischer Losungen nahezu keine verifizierten Modellierungsanséitze. Oft
wird der sogenannte Leckwellen-Ansatz® als exakte physikalische Losung der Maxwellschen
Gleichungen vorgestellt. Dieser in Kapitel 5.2.2 vorgestellte Ansatz beriicksichtigt expli-
zit radial nach auflen propagierende Wellen zur Beschreibung der Abstrahlverluste. Diese
Annahme erscheint auf den ersten Blick plausibel. Wie beim geraden Wellenleiter werden
die Abstrahlverluste jedoch durch die Uberlagerung von Strahlungsmoden beschrieben,
d.h. der komplexe Poyntingsche Vektor des einzelnen Modes besitzt keine reelle radiale
Komponente. Ein entsprechend modifizierter Ansatz wurde erstmalig von Morita und Ya-
mada veroffentlicht [51]. Leider unterliegt dieser Arbeit ein Fehler in der Bestimmung des
Modenspektrums, welcher von Kerndlmaier kurze Zeit spéter korrigiert wurde [31]. Sein
Losungsansatz und die wichtigsten abgeleiteten Ergebnisse werden in den Kapiteln 5.2.3
bis 5.2.5 vorgestellt. Da sich die Ergebnisse im Wesentlichen auf den Fall einer kleinen An-
zahl gefithrter Moden beschrénken, werden im Kapitel 5.2.6 Ergebnisse fiir multimodale
Schichtwellenleiter prasentiert.

5In der englischsprachigen Literatur wird der Begriff Leaky Mode verwendet.
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5.2.1. Uberblick

Aus Sicht der geometrischen Optik erfolgt die Wellenfiihrung im optischen Wellenleiter
durch Totalreflexion an der Kern-Mantel Schnittstelle. Fiir nicht allzu starke Wellenleiter-
kriimmungen sind die erforderlichen Bedingungen fiir die Totalreflexion weiterhin in guter
Néherung erfiillt, so dass ein Grofteil der eingekoppelten Leistung nach Durchlaufen der
Kriimmung im Wellenleiterkern erhalten bleibt. Abbildung 5.5 zeigt den Ubergang zweier
um 90° verkippter gerader Wellenleiter, die durch einen zirkular gekriimmten Wellenleiter-
abschnitt mit mittlerem Radius R verbunden sind.

Abbildung 5.5.: Ubergang zweier um 90° verkippter Wellenleiter.

Die Dicke des Schichtwellenleiterkerns ist gleich d, so dass ein innerer Radius R~ = R—d/2
und ein dukerer Radius R™ = R + d/2 angegeben werden kann. Hinsichtlich der Brech-
zahlen gelten dieselben Annahmen wie zuvor in der Beschreibung der Moden des geraden
Schichtwellenleiters, Kapitel 3.1.3. Ebenso wird wiederum nur der Fall transversalelektri-
scher Felder explizit betrachtet.

Es wird der Ansatz

—

E =¢.E(o,p) = e.R(0)P(p) (5.30)

gewahlt. Eingesetzt in die Helmholtz-Gleichung folgt

1 (0°R 10R 1 10%°9

— =2z — 4k =0 it k; = i 5.31

R<892 +gf)g)+g2®8<p2+ . mi W/ (5.31)
2

Ansatz und Losung sind analog zur Beschreibung der Moden der Faser in Kapitel 3.2, es

liegt jedoch keine z-Abhéngigkeit vor (k, = 0). Stattdessen erfolgt die Wellenausbreitung

nun in p-Richtung. Daher wird fiir ® ein Exponentialansatz gewahlt

() = exp(Fjre). (5.32)

Darin ist v nun die Ausbreitungskonstante des Modes und nicht wie zuvor lediglich ein
Zahlindex. Fiir die Funktion R(p) verbleibt wieder die Besselsche Differenzialgleichung mit
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den Losungen

R(o) = Ay Ju(kio) + Az N, (ki0)

. (5.33)

= Ay HV (ki) + Ay H? (k0) .
Da keine z-Abhéangigkeit vorliegt, entfallen die modifizierten Besselfunktionen als Losungs-
funktionen. Es mag jedoch sinnvoll erscheinen Hankelfunktionen zu verwenden, da sich so
leicht in radialer Richtung propagierende Wellen beschreiben lassen.

Die magnetische Feldstarke ergibt sich geméaft dem Induktionsgesetz zu

- (@ - o200 ) explivg) (530

und fiir den Poyntingschen Vektor folgt

[Ty
|tz

% ]—__’[* L ((:I:l/*>é;0|R<Q)|2 —jggR(Q)aR*(Q>

i=5 . 90 ) exp(£23(v — v*)p). (5.35)

1
2
Es zeigt sich somit direkt, dass im Fall einer reellwertigen Funktion R(g) der Poyntingvek-
tor keine reelle Komponente in radialer Richtung besitzt.

5.2.2. Der Leckwellen-Ansatz

Die Annahme radial nach aufien laufender Wellen zur Beschreibung der Abstrahlverluste
ist physikalisch plausibel und geméfs der Abstrahlbedingung auch erforderlich [16]. Jedoch
muss im Modenspektrum eines Wellenleiters nicht jeder einzelne Mode der Abstrahlbedin-
gung geniigen, sondern die resultierende Uberlagerung aller Moden. In der vorhandenen
Literatur wird dennoch oft ein Ansatz mit der Hankelfunktion H? im AuRenraum R+ <o
zur Beschreibung der Abstrahlverluste gewéhlt |25, 40, 46]. Dieser Ansatz 16st zwar die
Maxwellschen Gleichungen und fiihrt zu einem diskreten Spektrum quasigefithrter Moden
mit komplexen Eigenwerten. Er fiihrt jedoch nicht zum vollstdndigen Modenspektrum des
zirkular gekriimmten Schichtwellenleiters. Es wird sich jedoch zeigen, dass der Leckwellen-

Ansatz trotzdem eine sinnvolle Approximation darstellen kann.

Der Ansatz fiir die Funktion R(p) lautet

(k2g) 70 S 0 S R_
R(o) = ay Az Ju(kio) + Asy Ny(kro) \R™ <o < R* . (5.36)
Agy HY (k30) R <o

Darin entfallen im Innenraum p < R~ die im Koordinatenursprung singuléren Neumann-
funktionen NN,. In den Grenzschichten o = R~ und ¢ = R* muss die tangentiale elektrische
und magnetische Feldstéirke stetig sein. Aus den resultierenden vier Gleichungen lasst sich
ein tiberbestimmtes Gleichungssystem fiir die drei Koeffizienten A,,, Az, und Ay, ablei-
ten. Dieses Gleichungssystem ist nur dann eindeutig l6sbar, wenn die Determinante der



116 Kapitel 5. Wellenausbreitung in dielektrischen Wellenleitern

Systemmatrix verschwindet. Dies ist der Fall, falls

ko J, (ks RN, (ki R™) — ky J, (ke RT)NL(kyR™)
ks N, (ki RT)HY (ks R+) — ky N (ki R HS) (ks R+)
kr (ki R)J, (ks R™) — ko J! (ks R™)J, (k1 R™)

@ @y (5.37)
ki J! (ki RT)H)” (ksRt) — ksJ, (ki RT)H,” (ksRT)
gilt. Die Koeffizienten berechnen sich zu®
R-
As, = WT (li,,(kgR’)N;(klR’) - ng,’/(kQR’)N,,(klR’)) : (5.38)
TR~ , _ _ y _ _
As, = T(kQJy(k;gR ) (k1R™) — k1 J, (ki R™)J, (k2 R7)) (5.39)
Ay J,(kiRT) + A3 N, (k1R
Ay = 2 o (ki B7) + A Ny (R BT) (5.40)

H? (ks R+)

Die Konstanten a, bleiben als Amplituden der Moden zunéchst unbestimmt.

Es sind also nur diskrete Eigenwerte v zulédssig, die der Eigenwertgleichung (5.37) ge-
niigen. Die Losung der Eigenwertgleichung ist durchaus anspruchsvoll, da die Eigenwerte
komplexwertig sind. Der Imaginérteil ist die Dampfungskonstante der Moden beziiglich der
Ausbreitungsrichtung . Zur Losung empfiehlt sich die in [49] présentierte Vorgehensweise.
Diese separiert zunéchst die Losungen in der komplexen Ebene. Aus der Funktionentheorie
ist bekannt, dass sich die Phase einer Funktion f(r) beim Durchlauf einer geschlossenen
Kontur 0S um N27 dndert, falls sich innerhalb der geschlossenen Kontur N Nullstellen
der Funktion f befinden. Es gilt

N = %Aag (arg f(v)). (5.41)

Die geschlossene Kontur wird dabei in mathematisch positiver Richtung durchlaufen. So-
bald ein hinreichend kleines Gebiet mit nur einer Nullstelle isoliert worden ist, bieten sich
Sekantenverfahren an, um die Losung zu verbessern.

Im Vergleich zur Nullstellensuche auf der reellen Achse, wie es zuvor fiir die Bestimmung
der reellen Eigenwerte der Moden des geraden Wellenleiters erforderlich war, erfordert die
Entwicklung eines effizienten Losers zur Nullstellensuche in der komplexen Ebene deutlich
mehr Implementierungsaufwand. Liegen Schétzwerte fiir die zu erwarteten Nullstellen vor,
reduziert sich dieser Aufwand deutlich. Im vorliegenden Problem kénnen aus den bekannten
Eigenwerten des korrespondierenden geraden Wellenleiters Schatzwerte abgeleitet werden.
Alternativ bietet sich die im folgenden Kapitel 5.2.3 prasentierte Vorgehensweise an.

Orthogonalitdat und Leistung

Die Orthogonalitdt normaler Moden eines geraden Wellenleiters wird in der Literatur oft
aufgezeigt, u.a. [46]. Es sei hier nur genannt, dass der Nachweis der Orthogonalitét der

Es gilt J,(2)N.(2) — J.(2)N,(z) = 2.
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Moden des Leckwellen-Ansatzes analog gefiihrt werden kann [25]. Aufgrund der komplexen
Eigenwerte ist die Orthogonalitét jedoch analog zu (2.62) definiert, d.h. ohne Konjugation
der Feldgrofen.

Zur Bestimmung des Leistungflusses im Mode v in Ausbreitungsrichtung wird die -
Komponente des Poyntingvektors (5.35) iiber eine Fliache ¢ = konstant integriert:

P, = % = 2}(}2} exp(23(v — V*)go)/o |R(Q)| do. (5.42)

Darin kennzeichnet Az einen Langenabschnitt in z-Richtung. Die Integration kann analy-
tisch durchgefiihrt werden [25], mit dem Ergebnis

F/ - |GVA4V|2

Y 2wplS(v)|m

exp(|S(v)|m) exp(2S (v — V™) ). (5.43)

Der Imaginirteil des Eigenwerts v ist im Ubrigen stets negativ.

5.2.3. Die Exakte Rechnung

Der Begrift Ezakte Rechnung wurde von Kerndlmaier in seiner Dissertationsschrift ge-
pragt [31]. Da sich seine Argumentation auf reelle Eigenwerte beschrankt, darf aus dem
Hinweis auf eine exakte Rechnung nicht die Vollstdndigkeit des Losungsraums abgelei-
tet werden. Die ausfiihrlichen theoretischen Darstellungen von Kerndlmaier lassen jedoch
darauf schliefsen, dass sich analog zur Theorie des geraden Wellenleiters alle wesentlichen
Problemstellungen durch einen Ansatz mit rein reellen Eigenwerten losen lassen. Als Bei-
spiel seien die in dieser Arbeit betrachtete Uberginge zwischen geraden und gekriimmten
Wellenleiterelementen genannt.

Die exakte Rechnung unterscheidet sich im Ansatz im Vergleich zu (5.36) bei der Beschrei-
bung der Felder im Aufenraum (o > R*):

Jl’(k2g) 7O§Q§R_
R(p) = a, ¢ As Ju(k10) + Asy Ny(k1o) ,R- < o< R" . (5.44)
Ay Jy(ks0) + A5y Ny(kso) ,RT <o

Aus den zu erfiillenden Randbedingungen lassen sich wiederum vier Gleichungen ableiten,
aus denen sich die vier Koeffizienten A,, bis As, bestimmen lassen. Aufgrund der Aqui-
valenz zum Ansatz der Leckwellen (5.36) im Raum (0 < R™) bleiben die Konstanten As,
und As, unverandert:

Ay, = ”];_ (k1 J, (ko RO)NL (ki R7) — ko T, (k2 R7)N, (k1R 7)) (5.45)
As, = ﬂ; (kod) (ko R™)J, (k1 R™) — k1 J, (ke R7)J, (ki R7)) (5.46)
TR* + 1 + / +
Au =55 (—th@R)@@ﬂth)+A@Nth))

+ kN (ksR*) (Agy J, (ki RY) + As, N, (k1R+))>, (5.47)
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TRt + / + / +
A5V = 5 (l{?ljy(kgR )(A2y<]y(k1R )+A3VNu(k1R >)

— ks J)(ksR") (Agy J, (k1 RT) + AgyNu(klRﬂ)). (5.48)

Die Randbedingungen lassen sich somit fiir beliebige v erfiillen und folglich liegt ein voll-
standig kontinuierliches Modenspektrum vor. Wie oben erwéahnt, wird angenommen, dass
es ausreicht, rein reellwertige Losungen zu berticksichtigen, analog zum kontinuierlichen
Spektrum der Strahlungsmoden eines geraden Wellenleiters. Unter Zuhilfenahme der Be-
ziehungen fiir Besselfunktionen im Anhang A.5.2 lasst sich im Fall A5, = —j Ay, der Ansatz
(5.44) in (5.36) tiberfithren. Durch diese einschréankende Bedingung werden die diskreten
komplexwertigen Eigenwerte des Leckwellen-Ansatzes erzwungen.

Die Moden des gekriimmten Schichtwellenleiters werden im Weiteren analog zu den Moden
des geraden Wellenleiters (2.50) durch

E, (7
H,(7)

[y

,(0) exp(—jre), (5.49a)
,(0) exp(—jvy) (5.49b)

!

Qy

[
2

=y

Qy

beschrieben. Darin sind £ und i[ die transversalen Modenfunktionen des gekriimmten
Schichtwellenleiters. Die resultierenden Gesamtfeldstérken berechnen sich aus den Integra-
len iiber (5.49).

Quasigefiihrte Moden

Im kontinuierlichen Modenspektrum existieren einige Losungen, deren Felder sich auf den
Wellenleiterkern konzentrieren. Dies ist der Fall, wenn gilt

Ay = 0. (5.50)

Aus der Anschauung ldsst sich diese Gleichung wie folgt herleiten. Die Neumannfunktion
N, ist im Koordinatenursprung singuldr und nimmt auch in der Ebene o = R™ noch grofe
negative Werte an, vgl. Abbildung A.4. Dahingegen nimmt die Besselfunktion J, in diesem
Bereich nur sehr kleine Werte an. Mit A, = 0 folgt damit aus den Randbedingungen in
o = R*, dass der Betrag von As, aufgrund des grofen negativen Funktionswertes der
Neumannfunktion ebenfalls nur sehr kleine Werte annehmen kann. Da der Betrag der
Neumannfunktion mit wachsendem Argument schnell abnimmt, sind die Feldanteile im
Auftenbereich minimal.

Nichtorthogonalitdt und Leistung

Das Konzept der quasigefiihrten Moden ist essentiell wichtig fiir die noch folgenden Be-
trachtungen dieser Arbeit. Die Beschreibungen aus [31] zur Nichtorthogonalitét der Moden
des gekriimmten Schichtwellenleiters liefern in diesem Rahmen wichtige Erkenntnisse und
werden daher im Folgenden wiedergegeben.
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Zur weiteren Charakterisierung des Modenspektrums empfiehlt sich eine Normierung der

Feldstarken mit
2w
y =4 5.51
O Va5 (55

Die Moden des gekriimmten Schichtwellenleiters sind nichtorthogonal, d.h. es gilt

. P 1 [™ )
P = X, Z/o <ZI ><:7-[ —|— }[> do # 0 fir v#¢E. (5.52)

Der im Vergleich zur Definition der Orthogonalitit normaler Moden (2.63) abweichende
Ansatz wird gewahlt, da er im Folgenden zu einer symmetrischeren Darstellung fiihrt. Das
Integral in (5.52) kann analytisch gelost werden [51], mit dem Ergebnis

. I (A4,, jA5u> (A4s—JA54> REO)

P - 5.53
a9 A S+ .
Mit der Abkiirzung 5, = A4V erhélt man nach Bildung des Imaginérteils den Ausdruck
— 1 - Mv 1 v 4
P = — (B — Bv) cos(5(v —¢&)) + Ol sin(5 (v —¢))
=9\ e+ ) VA5

(5.54)
Dieser Ausdruck besitzt keine Singularitiaten fiir v = £. Vielmehr gilt

= —ﬁ/ - 1 (1 sin(%(l/—f)) 1 . (/BI/ _B£)> o 1 1 d/BV
v — L = —|uam — th == = .
vt T \v—¢ (v—=2¢) (1+32)v=e (v—=2¢) 2 7w(1+4p2) dv
(5.55)
Werden nur quasigefithrter Moden betrachtet gilt 3, = 8 = 0 und somit
_ sin(Z(v —¢))
P.="—2— 2"  fl .
v€ 7'('(]/ _ f) alls v 7é 57 (5 56)
sowie L 14
p oL 1db (5.57)

w2 wdr

Es wird sich noch zeigen, dass im Fall quasigefiihrter Moden
annimmt. Folglich gilt

d’B “ sehr grofe negative Werte
P, > P, (5.58)

und die zugehorigen Moden kénnen auch als quasiorthogonal angesehen werden, obwohl
das Modenspektrum insgesamt nichtorthogonal ist. Der Ausdruck F;V entspricht der im
Mode gefiihrten Leistung. Werden die Feldstérken an Stelle der Normierung (5.51) bzgl.
der Leistung normiert, lisst sich aus (5.58) das Kriterium

—/

P

Enr——
VP Pee

ableiten, welches zur Definition einer Quasi-Orthogonalitit geeignet ist.

1> (5.59)
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Beschreibung physikalischer Felder

Wird der Ubergang von einem geraden Wellenleiter in eine Kriimmung betrachtet, Abbil-
dung 5.5, miissen die tangentialen Feldgrofen in der Ubergangsebene stetig sein. Sofern
die Wellenleiterelemente identische Materialparameter besitzen, konnen Reflexionsverlus-
te vernachléssigt werden, da diese erst bei sehr starken Kriimmungen zu erwarten sind.
Es reicht dann aus, die Randbedingung nur einer Feldstéarke explizit zu beriicksichtigen.
Befindet sich die Ubergangsebene in ¢ = 0, folgt fiir die tangentiale elektrische Feldstirke

S ové) - / a, £, dv. (5.60)
" v

Darin beschreibt die linksseitige Summation das Feld im geraden Wellenleiter. Eine voll-
kommen analoge Gleichung erhélt man fiir die magnetische Feldstarke. Im Fall eines ortho-
gonalen Modenspektrums lasst sich aus den Randbedingungen eine Gleichung der Form

l — % N —(] — — * — % -
E Cﬁ“/(é: Xﬂtg"‘ﬁtgxﬂiu)) dg:/ay/<£wxﬂt§+£t§xﬂw> do dv
® v ¥
o

(5.61)
ableiten, wobei die rechtsseitige Integration nach v nur einen Beitrag fiir v = £ liefern wiir-
de. Im Fall des nichtorthogonalen Modenspektrums verbleibt jedoch die Integralgleichung:

> WL = / a, P, dv (5.62)
P v

Ie = i/ (éfj X Hye ‘|’£:g x ﬂiﬁ)@ do. (5.63)
Bei den Integralgleichungen (5.60) und (5.62) handelt es sich um Fredholmsche Integral-
gleichungen erster Art, die auch numerisch nur sehr schwer handhabbar sind. Es lassen sich
jedoch Naherungslosungen finden, sofern angenommen werden kann, dass der Beitrag der
quasigefithrten Moden im Modenspektrum dominiert. In diesem Fall ist eine Linearisierung
gemaéls
ds,
dv

B, =—kv mit v=v—1y und —k

. (5.64)

vo
moglich. Darin kennzeichnet vy einen quasigefithrten Mode. Im Rahmen dieser Naherung
wird aus (5.54):

(D_—E))
—£

b cos(5(r-8) + e
V() (142 82) V(2 2) (1+k2 €2)

ANELE]

1
P.—=
vé -

(5.65)
Verwendet man diesen Integralkern in der Integralgleichung (5.62), lasst sich mit Hilfe des
Residuensatzes zeigen, dass die Wurzel einer Lorentzverteilung (v/Lorentz-Verteilung)
1
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Eigenlosung der Integralgleichung ist. Es gilt also

1 — 1
— P, dv = ———. 5.67
/V\/1+k:2u2 Ve V1+ k22 67
Die Bedingung k > 0 ist im Ubrigen fiir alle quasigefiihrten Moden, anders als in [31]
angemerkt, immer erfiillt.

Abschliefend soll nun das Ubertragungsverhalten des gekriimmten Wellenleiters untersucht
werden. Dazu wird die Vorstellung der Ankopplung durch einen geraden Wellenleiter fiir
den Moment fallen gelassen” und es wird angenommen, dass die Feldverteilung im Wellen-
leiter durch eine v/Lorentz-Verteilung bestimmt sei. Es gilt

— — . . 1
Bew) = [afuldeos(—ivp)dy  mit o= (569

Ein analoger Ausdruck lasst sich fiir die magnetische Feldstéirke formulieren. Zu beachten
ist, dass die Feldgrofen geméf (5.51) normiert sind. Die Fragestellung ist nun, wie stark das
durch E (0,0) gegebene Eingangsfeld nach Durchlaufen einer Kriimmung um den Winkel ¢
verdndert wird. Dazu wird mit Hilfe des folgenden Skalarprodukts der Uberlapp zwischen
Eingangsfeld und Ausgangsfeld bestimmt:

—%

B(yp) = i/ooo (E(Q,O) x H (0,0) + E (0,0) % E(Q’O)L do. (5.69)

Es folgt mit (5.68) und (5.52)
() = ot ([ aPleaw) exalieo)as (5.70)
und mit (5.67) schlieflich
1 .
B(p) = /ETWQXP(]&O) dg. (5.71)

Sofern die Integration von der reellen Achse auf die geschlossene Kontur der oberen Halb-
ebene ausgedehnt wird, lasst sich das Integral mit Hilfe des Residuensatzes l16sen:

Bly) _ 1 exp(j¢y) e
B(0) 7k ObZi & — j/K)(E+4/k) d¢ = exp(—¢p/k) (5.72)
Halbebene
mit 1
BO= [ w1 (57

Es zeigt sich also, dass im Fall k& > ¢ die initiale Feldverteilung (5.68) auch nach Durch-
laufen der Kriimmung in sehr guter Naherung erhalten bleibt. Sofern nun sicher gestellt

TAn dieser Stelle unterscheidet sich die Interpretation etwas von [31], nicht jedoch die mathematische
Beschreibung.
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ist, dass sich beim Ubergang vom geraden Wellenleiter Feldverteilungen einstellen, die sich
durch eine oder mehrere v/ Lorentz-Verteilungen beschreiben lassen, dann liegt eine Feld-
16sung vor, die die Wellenausbreitung im gekriimmten Schichtwellenleiter in sehr guter
Naherung korrekt beschreibt.

Das Arbeiten mit einem kontinuierlichen Spektrum ist jedoch nach wie vor dahingehend
anspruchsvoll, als dass fiir jeden Punkt in der Ubergangsschnittstelle ein Integral geldst
werden muss. Fiir grofe k ist die v/Lorentz-Verteilung sehr schmalbandig und es scheint
gerechtfertigt, die Breite des Spektrums als hinreichend klein anzunehmen, so dass explizit
nur das Feld des diskreten quasigefiithrten Mode zu beriicksichtigten ist. Fiir kleine k stellt
diese Vorgehensweise nur eine grobe Naherung dar. Verwendet man jedoch den Wert av = %
als Dampfungskonstante des quasigefiihrten Modes, ergeben sich fiir kleine k schnell sehr
grofse Dampfungswerte. Bevor diese Argumentation im Kapitel 5.2.5 fortgesetzt wird, soll

zunachst der Vergleich zum Leckwellen-Ansatz gezogen werden.

5.2.4. Vergleich der Ansadtze

Mit den Lésungen des Leckwellen-Ansatzes und den quasigefithrten Moden des exakten
Ansatzes existieren zwei unterschiedliche Feldlosungen, von denen erwartet wird, dass sie
die Wellenausbreitung im gekriimmtem Schichtwellenleiter fiir nicht allzu starke Kriimmun-
gen hinreichend genau beschreiben. Sofern dies der Fall ist, miissen die Ansétze entweder
zumindest ndherungsweise iibereinstimmen oder auseinander hervorgehen. Zur Erinnerung
sei erwihnt, dass die Eigenwerte der quasigefithrten Moden des exakten Ansatzes aus

hervorgehen, die Moden des Leckwellen-Ansatzes jedoch aus
A4V = jA5l/' (575)

Darin sind Ay, und As, durch (5.47) und (5.48) gegeben. Ein allgemeiner analytischer
Nachweis der Aquivalenz beider Ansitze durch eine Abschitzung der Ausdriicke in den
jeweiligen Eigenwertgleichungen ist unter Umstéinden moglich, jedoch sehr aufwéndig. Da
Implementierungen beider Ansétze vorliegen, bietet sich ein expliziter Vergleich anhand
praktischer Beispiele an. Fiir nahezu alle Parametersitze dieser Arbeit wurden beide Ei-
genwertgleichungen gelost und die folgenden Aussagen konnen daher als allgemein giiltig
angenommen werden. Aus Platzgriinden werden nur die Ergebnisse fiir einen Wellenlei-
ter angegeben, der im geraden Fall (R — 00) sechs Moden fiihrt. Die Parameter lauten:
ny = 1,07, ny =n3=1,55,d=10pm, R = 3mm und A = 850 nm.

In der Tabelle 5.1 sind die Eigenwerte v, des exakten Ansatzes und der Real- und Imagi-
narteil der komplexen Eigenwerte v, des Leckwellen-Ansatzes aufgefithrt. Der Imaginérteil
von v ist das Dampfungsmafl der Leckwellen und korrespondiert mit oo = % aus der exak-
ten Rechnung. Die Ergebnisse in Tabelle 5.1 zeigen eine weitestgehende Ubereinstimmung
der beiden Ansétze auf. So stimmt fiir die ersten fiinf Moden der Realteil von v; innerhalb
des dargestellten Bereichs mit v, iiberein und weicht erst fiir den sechsten Mode leicht

ab. Der Imaginérteil von v ist fiir die ersten vier Moden derart klein, dass er zum Einen
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Mode Ve R{v} —a v}

1 34820,05 34820,05 -6,199e-34 -

2 34772,80 34772,80 -6,427e-28 -

3 34720,68 34720,68 -1,284e-21 =

4 34650,55 34650,55 -4,565e-14 -

5 34561,82 34561,82 -2,961e-6 -2,957e-6
6 34460,38 34460,58 -1,308 -1,263

Tabelle 5.1.: Eigenwerte und Dampfungskonstanten der quasigefithrten Moden (v, und «),
sowie der Moden des Leckwellen-Ansatzes (1).
Es gilt: ny = 1,57, no =ng = 1,05, d = 10pm, R = 3mm und A = 850 nm.

vernachléssigt werden kann und des Weiteren ohnehin nicht mit einem elementaren Se-
kantenverfahren bei doppelter Genauigkeit (~ 15 Dezimalstellen) aufgelost werden kann.
Fiir den fiinften Mode stellt sich immer noch ein sehr kleines Dampfungsmafs ein. Der
sechste Mode wird schlieflich so stark geddmpft, dass bei Anregung dieses Modes nach
einer 90°-Kriimmung weniger als 2% der Leistung verbleibt. Die Werte fiir —« und S{v;}
stimmen dabei in drei (5. Mode) bzw. in zwei (6. Mode) Stellen iiberein. Dabei zeigt sich,
dass die quasigefiihrten Moden der exakten Rechnung die Dampfung immer etwas grofser
abschétzen als die Leckwellen.

Wie sich diese Unterschiede auf die Feldgréfen auswirken, ist in Abbildung 5.6 darge-
stellt. Die Feldgrofsen sind beziiglich der im Mode gefithrten Leistung normiert. Skizziert
sind die Graphen der quasigefithrten Moden £,(o) gemiih (5.49), der Real- und Imaginéir-
teil der korrespondierenden Leckwellen sowie im Vergleich dazu der Mode eines geraden
Wellenleiters &, (o) gegeben durch (3.14). Wie erwartet sind die Unterschiede zwischen den
Ansétzen gering. Fiir den fiinften Mode liegen die Unterschiede unterhalb der darstellbaren
Genauigkeit. Der Imaginéarteil aus dem Leckwellen-Ansatz ist vernachléassigbar klein und
der Uberlapp mit dem korrespondierenden Mode des geraden Wellenleiters ist relativ grok.
Merkliche Unterschiede gibt es jedoch beim sechsten Mode, bei dem der Leckwellen-Ansatz
einen deutlichen Imaginérteil ausbildet und sich entsprechend Unterschiede beim Realteil
ergeben. Da beim Leckwellen-Ansatz das Feld im Aufsenraum durch eine Hankelfunktion
beschrieben wird, ist der Betrag in diesem Fall eine monoton abklingende Funktion, im
Gegensatz zur exakten Rechnung, bei der das Feld im Aufenraum durch eine Neumann-
funktion beschrieben wird. Ein Grofsteil der Leistung wird aufkerhalb des Kerns gefiihrt
und somit verringert sich die Amplitude im Kern und damit auch der Uberlapp mit dem
Mode des geraden Wellenleiters. Insgesamt sind die Unterschiede zwischen den beiden An-
sitzen jedoch in der Regel vernachlassigbar, da signifikante Unterschiede erst auftreten,
wenn die Dampfungskonstante grofse Werte annimmt, so dass der Mode nach Durchlaufen
einer hinreichend grofsen Bogenldnge nahezu keine Leistung mehr fithrt. Da der Aufwand
zur Bestimmung der quasigefiihrten Moden nach der exakten Rechnung aufgrund der rein
reellen Eigenwerte deutlich geringer ist als nach dem Leckwellen-Ansatz, ist dieser An-
satz vorzuziehen. Die zur Bestimmung der Dampfungskonstanten o = % durchzufithrende
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QGM — QGM —
Leck & -- Leck R --
Leck & --- ‘NOIRIR Leck & ---
Gerade -

Gerade -~

7N\

E N Nt ]
norm
2,99 2,995A 3 “3 005 3,01 3,015 3,02 299 2,995 3 3,005 3,01 3,015 3,02
g/mm Q/mm
(a) Mode 5 (b) Mode 6

Abbildung 5.6.: Gegeniiberstellung der elektrische Feldstiarke des 5. und 6. Modes: Quasi-
gefithrter Moden (QGM), Real- und Imaginérteil des Leckwellen- Ansatzes
(Leck R und Leck <) und die Moden des geraden Wellenleiters (Gerade).
Es gilt: ny = 1,57, ng = ng = 1,55, d = 10 pm, R = 3mm und A = 850 nm.
Der Wellenleiterkern ist grau hinterlegt.

Differenziation ist numerisch problemlos moglich.

5.2.5. Rechnung auf Basis quasigefiihrter Moden

Die vorangegangenen Erlauterungen haben aufgezeigt, dass eine Rechnung unter aus-
schlieklicher Verwendung der quasigefithrten Moden eine einfache und effektive Methode
zur Beschreibung der Wellenausbreitung im gekriimmten Schichtwellenleiter ist, solange
die Verluste durch Abstrahlung vernachléssighar sind. Vorausgesetzt wird an dieser Stelle,
dass beim Ubergang vom geraden Wellenleiter vornehmlich quasigefiihrte Moden angeregt
werden. Zunéchst soll anhand der Parameter aus Tabelle 5.1 begriindet werden, warum die
Annahme eines diskreten Spektrums quasigefiihrten Moden gerechtfertigt ist. Da der Wert
2/k = 2« die Halbwertsbreite der Lorentz-Verteilung représentiert, liegt geméfs Tabelle 5.1
die Halbwertsbreite der ersten fiinf Moden im Vergleich zum gegenseitigen Abstand der
Eigenwerte in einem vernachléssigbar kleinen Bereich. Lediglich fiir den bereits stark ge-
dampften sechsten Mode stellt sich eine verbreiterte Verteilung ein, die sich jedoch immer
noch stark um den Quasi-Eigenwert konzentriert. Da sich dieses Ergebnis sowohl auf Wel-
lenleiter mit grofserem Querschnitt und damit einer groferen Anzahl quasigefiithrter Moden
als auch auf grofsere Kriimmungsradien und somit weniger quasigefiihrte Moden iibertragen
lasst, erscheint es gerechtfertigt, einen Ansatz mit ausschliefslich diskreten quasigefiihrten
Moden zu wéhlen. Dieser formuliert sich fiir die Gewichtsfunktion a, unter Verwendung
der Dirac-Distribution zu

a, = Z Ch exp(—anp) 0(v — vy). (5.76)

Darin kennzeichnet C), die Amplitude, v,, den Eigenwert und «,, die Dédmpfungskonstante
eines quasigefithrten Modes. Unter dieser Annahme ldsst sich das Feld im gekriimmten
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Wellenleiter durch

E(op) = /ay Z,,(0) exp(—jrp)dy = CpE,,(0) exp(—j(vn—joum)p) (5.77)

beschreiben. Bevor auf dieser Basis die Ankopplung an gerade Wellenleiterelemente geméf
Abbildung 5.5 untersucht wird, sollen einige in dieser Hinsicht wichtige Eigenschaften des
Spektrums der quasigefiihrten Moden hervorgehoben werden.

Eigenschaften des Spektrums quasigefiihrter Moden

Der Abbildung 5.6 kann leicht die irrtiimliche Annahme entnommen werden, dass der
Uberlapp zwischen einem quasigefithrten Mode und dem korrespondierenden Mode eines
geraden Wellenleiters immer dann grofs ist, wenn das Dampfungsmaft o = 1/k hinreichend
kleine Werte annimmt. Dass dies nicht der Fall ist, zeigt exemplarisch Abbildung 5.7a fiir
den Grundmode eines Wellenleiters der Schichtdicke d = 50 pm bei gleichen Materialpara-
metern wie zuvor. Bei einem Kriimmungsradius von R = 3 mm existieren 16 quasigefiihrte
Moden im gekriimmten Wellenleiter gegeniiber 30 Moden im geraden Wellenleiter. Dabei
werden nur die Losungen der Eigenwertgleichung (5.50) berticksichtigt, deren Feldamplitu-
de im Kern grofer ist als im Auflenraum, vgl. Abbildung 5.6b. Abbildung 5.7a zeigt einen
relativ geringen Uberlapp zwischen den Feldbildern auf. Diese Tendenz ist gerade beim
Grundmode im multimodalen Wellenleiter besonders ausgepragt. Erst mit sehr grofen
Radien gehen die Modenfunktionen der quasigefiihrten Moden iiber in das korrespondie-
rende Modenspektrum eines geraden Wellenleiters [31]. Damit werden auch bei schwachen
Kriimmungsverlusten stets mehrere quasigefiihrte Moden angeregt. Zum Vergleich ist in
Abbildung 5.7b der Mode eines Singlemode-Wellenleiters mit gleicher numerischer Apertur
und gleichem Kriimmungsradius aufgetragen.

GM — QGM —
G?rade -- Gerade --
E E
norim. . norm
2,95 2,975 3 3,025 3,05 2,995 29975 3 3,0025 3,005
o/tm o/inm
(a) d = 50 pm (b) d =1pum

Abbildung 5.7.: Vergleich der elektrische Feldstérke des jeweils 1. Modes der quasigefiihrten
Moden (QGM) und der Moden des geraden Wellenleiters (Gerade).
Es gilt: ny = 1,57, ny = n3 = 1,55, R = 3mm und A = 850 nm.
Der Wellenleiterkern ist grau hinterlegt.
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Der Zusammenhang zum geraden Wellenleiter lésst sich iiber die Eigenwerte wie folgt her-
stellen. Unter der Annahme, dass die Wegstrecke z im geraden Wellenleiter der Bogenlénge
R ¢ im gekrimmten Wellenleiter entspricht, gilt

exp(—jk.z) ~ exp(—jk,Rp) = v=k,R. (5.78)

Darin ist k, ein Eigenwert des geraden Wellenleiters. Hierbei handelt es sich insbesondere
fiir kleine Kriimmungsradien nur um eine grobe Abschétzung, aus der jedoch der erwartete
Wertebereich der Eigenwerte v abgeschétzt werden kann, vgl. (3.4):

]ﬂong < k, < konq = kongRi <v < k0n1R+. (579)

Diese Abschéitzung ist fiir die Implementierung eines Losers der Eigenwertgleichungen
(5.37) und (5.50) erforderlich, wobei sich gezeigt hat, dass fiir den Grundmode vereinzelt
Losungen mit kgniR™ < v auftreten. Die Eigenwerte sind néherungsweise proportional
zum Kriimmungsradius. Da der Eigenwert auch gleichzeitig der Ordnung der Besselfunk-
tionen entspricht, ist ein grofer Kriimmungsradius problematisch hinsichtlich der Imple-
mentierung eines stabilen Algorithmus, da die Neumannfunktion insbesondere fiir grofe
Ordnungen bei kleinem Argument Zahlenbereichsiiberldufe provozieren kann, vgl. Abbil-
dung A.4b.

Die Proportionalitéit der Eigenwerte v zum Kriimmungsradius ist auch mit Blick auf den
Abstand der Eigenwerte zueinander interessant. Betrachtet man zunéchst wieder einen
konstanten Kriimmungsradius, so stellt sich ab einer bestimmten Schichtdicke eine kon-
stante Anzahl quasigefithrter Moden ein, z.B. existieren fiir R = 3 mm ab einer Schichtdicke
von ca. d = 40 um stets 16 quasigefiihrte Moden®. Ebenfalls konstant bleibt der Abstand
der Eigenwerte zueinander. Das Modenspektrum verschiebt sich jedoch mit wachsender
Schichtdicke insgesamt etwas in Richtung groRerer Eigenwerte®, wodurch sich die transver-
sale Feldverteilung der Moden ebenfalls leicht in Richtung des dufseren Rands verschiebt.
Dieser Umstand und die Tatsache, dass die Anzahl der quasigefithrten Moden nicht zu-
nimmt, fithrt bei konstantem Kriimmungsradius und wachsender Schichtdicke zu stérkeren
Abstrahlungsverlusten. Um die Verluste zu minimieren, muss der Kriimmungsradius pro-
portional zur Schichtdicke wachsen. Da die Eigenwerte ebenfalls proportional zum Kriim-
mungsradius wachsen, wird der Abstand der Eigenwerte zueinander grofer. Dieser Abstand
ist entscheidend fiir den Giiltigkeitsbereich der (Quasi)-Orthogonalitéat der quasigefiihrten
Moden, da die Differenz der Eigenwerte als Argument in der Si-Funktion auftritt, (5.56),
welche den Uberlapp zwischen den unterschiedlichen Moden beschreibt. Ein hinreichend
grofser Abstand ist Voraussetzung fiir die Beziehung (5.59), um auch im Fall kleiner £ in
guter Ndherung erfiillt zu sein. Fiir das oben genannte Zahlenbeispiel nimmt die minimale
Differenz benachbarter Eigenwerte etwa den Wert 20 an. Das Kriterium (5.59) ist damit
auch fiir zwei Moden mit sehr kleinem £ in guter Naherung erfiillt und die Annahme der
Quasi-Orthogonalitét ist damit gerechtfertigt.

8Es wurde eine maximale Schichtdicke d = 85 pm beriicksichtigt. Materialparameter wie zuvor n; = 1,57
und no = 1,55.

9 Aufgrund dieser Verschiebung ist zu erwarten, dass bei deutlich gréferen Schichtdicken die Anzahl der
Eigenwerte wieder leicht zunimmt.
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Ein- und Auskopplung

Da das Spektrum der quasigefithrten Moden in keinem Fall ein vollstdndiges Modenspek-
trum beschreibt, lassen sich unter ausschlieflicher Beriicksichtigung quasigefiihrter Moden
die Randbedingungen in den Schnittstellen zu den geraden Wellenleiterelementen im All-
gemeinen nicht erfiillen. Dennoch lassen sich aus den abgeleiteten Gleichungen (5.60) oder
(5.62) die Amplituden der quasigefiihrten Moden bestimmen'®. Aus (5.62) folgt mit (5.76)

unmittelbar _/ b)
Z CO Ie = Z c® (5.80)

Darin kennzeichnen v und £ nun ausschheféhch quasigefiithrte Moden, so dass der Index n
aus (5.76) nicht mehr dargestellt wird. Der umklammerte Index b kennzeichnet den Mode
des gekriimmten Wellenleiters analog zu den Indices [ und r fiir die geraden Ein- und
Auskoppelwellenleiter. Unter Annahme der Quasi-Orthogonalitédt (5.59) folgt aus (5.80)

1
CO ~ = > W1, (5.81)
vy 123

und somit ein expliziter Ausdruck zur Berechnung der Amplituden Y. Einen analogen,
aber hinsichtlich der Implementierung effizienteren Ausdruck erhélt man aus (5.60)

0 ~ ﬁ/(b) / [(ZC” *L) ] do. (5.82)

P

Hier wird explizit nur die Randbedingung der elektrischen Feldstérke beriicksichtigt. Um
die Anzahl der Integrationen zu reduzieren, wird die Summation iiber die Moden des
geraden Wellenleiters bereits im Integranden durchgefiihrt.

Analog ergibt sich mit der elektrischen Feldstirke (5.77) nach Durchlaufen einer Kriim-
mung um den Winkel ¢y fiir den erneuten Ubergang in einen geraden Wellenleiter

T —’ (r)
Cy) ~ _,(T)/KE CP exp(—j(v—jo,)po) £ V) x H, ] do. (5.83)
)

Darin ist ?y) die normierte Leistung pro Mode des geraden Wellenleiters, definiert durch
(3.23), bezogen auf einen Langenabschnitt Az. Die im Vergleich zu dem im Kapitel 3.1.3
angesetzten Koordinatensystem erforderliche Koordinatentransformation zur Beschreibung
der Felder im Ein- und Auskoppelwellenleiter wird im Ubrigen implizit vorausgesetzt.

Génzlich unberiicksichtigt blieb bislang die Frage, ob die Felddarstellung auf Basis quasi-
gefithrter Moden dahingehend hinreichend ist, dass die Anbindung an gerade Wellenleiter
tatséchlich korrekt beschrieben wird, siche Abbildung 5.5. Unabhéngig von moglichen Ver-
lusten durch Abstrahlung gilt es, ausgehend vom einfallenden Feld beschrieben durch ge-
fiihrte Moden des Einkoppelwellenleiters, die Anregung der gefithrten Moden des geraden

10Giehe auch Kapitel 4.5.1.
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Auskoppelwellenleiters zu bestimmen. D.h. in den Beziehungen (5.82) und (5.83) werden
nur gefiihrte Moden des geraden Wellenleiters verwendet. Diese Vorgehensweise wird im
Folgenden als QGM-Methode (Quasi-Gefithrte-Moden-Methode) bezeichnet.

Zur Validierung wird die Wellenausbreitung in zwei Wellenleitern mit unterschiedlichen
Kriimmungsradien modelliert und mit den Ergebnissen einer numerischen Simulation ver-
glichen. Einmalig abweichend vom bisherigen Standard betrégt die Wellenlénge A = 1,55 pm
und die Kernbrechzahl n; = 1,1. Die Schichtdicke der Wellenleiter ist gleich d = 20 pm
und die Mantelbrechzahlen sind mit ny = ng = 1,0 die des freien Raums. Die Parameter
verstehen sich als akademisches Beispiel und wurden so gewéhlt, dass mit den Kriitmmungs-
radien R = 250 pm und R = 125 pm eine numerische Simulation in einem angemessenem
Zeitraum moglich ist. Diese Simulationen wurden mit Hilfe der Software CST MICRO-
WAVE STUDIO® durchgefithrt'!. Die Rechenzeiten sind systemabhiingig und bewegen
sich fiir R = 250 pm in der GroéRenordnung von mehreren zehn Stunden'?. Dagegen sind
die Rechenzeiten der wellentheoretischen Approximation auf Basis quasigefiihrter Moden
vernachlassigbar klein. Die numerische Simulation erfordert dariiber hinaus mehrere zehn
Gigabyte Arbeitsspeicher. Des Weiteren wurden die Kriimmungsradien dahingehend ge-
wahlt, dass im ersten Fall nahezu keine Abstrahlung auftritt und im zweiten Fall bereits
ein Grofteil der eingehenden Leistung abgestrahlt wird. Angeregt wird im geraden Ein-
koppelwellenleiter, der 12 gefiihrte Moden besitzt, nur der Grundmode. Im gekriimmten
Wellenleiter existieren 10 bzw. 6 quasigefithrte Moden, wobei der jeweils letzte Mode nach
einer 90°-Kriimmung bereits fast vollstandig abgedampft wird.

Abbildung 5.8 zeigt die Simulationsergebnisse der QGM-Methode in Form des Betrags der
elektrischen Feldstérke in der Einkoppelebene ¢ = 0 und in der Auskoppelebene ¢ = 7/2.
Zur Kontrolle der Randbedingungen ist jeweils das Feld im geraden und im gekriimmten
Wellenleiter abgebildet. Zusétzlich ist fiir die Auskoppelebene das Feldergebnis der nume-
rischen Simulation dargestellt. Abbildung 5.8a verdeutlicht, dass im Fall eines hinreichend
grofsen Kriimmungsradius die Randbedingungen in ¢ = 0 in guter Naherung erfiillt sind.
Im direkten Vergleich dazu zeigt Abbildung 5.8c, dass schon bei der Beschreibung der Ein-
kopplung in den gekriimmten Wellenleiter gravierende Abweichungen auftreten konnen. Es
sei jedoch betont, dass diese Unterschiede in der Feldverteilung noch kein K.O.-Kriterium
fiir die QGM-Methode bedeuten, denn diese nimmt an, dass die Leistung, die nicht in
quasigefiihrte Moden eingekoppelt wird, wihrend des Durchlaufs der Kriimmung abge-
strahlt wird. Dass diese Annahme nicht unbegriindet ist, zeigt Abbildung 5.8d, in der
das Feld in der Auskoppelebene dargestellt ist. Der Uberlapp zwischen den Feldlosungen
der QGM-Methode im gekriimmten Wellenleiter und im geraden Auskoppelwellenleiter ist
deutlich grofter. Merkliche Abweichungen gibt es nur im Bereich aufserhalb des Wellen-
leiterkerns. Allerdings existieren noch deutliche Unterschiede im Vergleich zum Ergebnis
der numerischen Simulation. Diese betreffen die lokalen Maxima innerhalb und aufserhalb

1Djie Simulationen wurden in Zusammenarbeit mit Herrn Dipl.-Ing. Bastian Bandlow durchgefiihrt. Ver-
wendet wurde CST MICROWAVE STUDIO® in der Version MWS2009. Simulationsmethode war die
Finite Integration im Zeitbereich. Bei einer minimalen Auflésung von 20 Gitterlinien pro Wellenlénge
resultierten fiir R = 250 pm insgesamt 8053 x 8053 x 2 Gitterpunkte. Fiir die seitliche Berandung wurde
ein offener Rand (PML) gewéhlt.

12Diese Angabe bezieht sich auf Rechenserver mit z.B. 2x2,4 GHz Prozessoren und 128 GB Arbeitsspei-
cher.
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Abbildung 5.8.: Betrag der elektrischen Feldstéirke in den Ebenen ¢ = 0 und ¢ = 7/2.
Zur Validierung der QGM-Methode wird durch den oberen Index (—/+)
das Feld vor und hinter der Grenzschicht unterschieden. Fiir ¢ = 7/2
ist zusétzlich das Simulationsergebnis aus CST MICROWAVE STUDIO®
abgebildet. Der Wellenleiterkern ist grau hinterlegt. Einmalig abweichend
gilt: A = 1,55 1um, ny = 1,1 sowie ny = n3 = 1,0 und d = 20 pm.

des Wellenleiterkerns. Abbildung 5.8b zeigt dagegen, dass im Fall eines hinreichend groften
Kriimmungsradius auch die Ausgangsfeldverteilungen in guter Naherung tibereinstimmen.

Um die Abweichungen in Abbildung 5.8d zu erkléaren, wird die Feldstédrke im Wellenleiter
explizit betrachtet. Abbildung 5.9 zeigt die Resultate der numerischen Simulation. Die Er-
gebnisse in Abbildung 5.9a fiir R = 250 pm zeigen, dass nahezu keine Leistung abgestrahlt
wird. Die dargestellte Feldverteilung ist im Rahmen der darstellbaren Genauigkeit identisch
mit der Feldverteilung der QGM-Methode. Génzlich anders verhalt es sich fir R = 125 pm,
Abbildung 5.9b. Vornehmlich an zwei Stellen kommt es zur Abstrahlung vom Wellenlei-
terkern. Zunéchst wird nach einem Winkel von ca. ¢ = 30° deutlich Leistung abgestrahlt,
danach erst wieder kurz vor dem Ende der 90°-Kriimmung. Genau diese Abstrahlverluste
verfalschen das Feldbild am Ende der Krimmung im Kontext der QGM-Methode dahin-
gehend, als dass Feldanteile enthalten sind, die in keinem Fall die gefithrten Moden des
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(b) R =125pm

Abbildung 5.9.: Betrag der Elektrischen Feldstérke im gekriimmten Schichtwellenleiter bei
Anregung durch den Grundmode eines geraden Wellenleiters. Simulations-
ergebnisse aus CST MICROWAVE STUDIO®. Einmalig abweichend gilt:
A= 1,55um, ny = 1,1 sowie ny = n3 = 1,0 und d = 20 pm.
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geraden Wellenleiters anregen kénnen. Somit erkldren sich die Abweichungen zwischen den
Ergebnissen der QGM-Methode und der numerischen Simulation in Abbildung 5.8d.

Fiir eine Verifikation der QGM-Methode hinsichtlich der korrekten Beschreibung des Damp-
fungsverhaltens, hervorgerufen durch Abstrahlverluste, sind sicherlich weitere Simulationen
notig. Die gezeigten Ergebnisse sind jedoch bereits gute Indizien, die fiir die Anwendbar-
keit der QGM-Methode sprechen. Es sei noch einmal betont, dass mit quasigefiithrten
Moden in keinem Fall eine Abstrahlung explizit beschrieben werden kann. Das heifit im
Umkehrschluss, dass die Wellenleiterkriimmung einen hinreichend groffen Winkel einschlie-
fsen sollte, damit sichergestellt ist, dass Wellenanteile, die nicht den quasigefiihrten Moden
zuzuordnen sind, am Wellenleiterende keine gefithrten Moden des geraden Wellenleiters
anregen konnen. Im Folgenden werden daher ausschliefslich 90°-Kriimmungen betrachtet.

5.2.6. Ergebnisse fiir multimodale Wellenleiter

Die inhomogene Verbindung zweier gerader Wellenleiter sorgt in der Regel fiir eine Umver-
teilung der Leistung im Modenspektrum. Ein Teil der urspriinglich gefiihrten Leistung wird
zumeist auch in das Spektrum der Strahlungsmoden gekoppelt und vom Wellenleiterkern
abgestrahlt. Diese Leistungsanteile stellen bezogen auf das Ubertragungssystem Verluste
dar, die es zu minimieren gilt. Bezogen auf die hier betrachteten zirkularen Kriimmungen
existiert gewohnlich ein minimaler Kriimmungsradius, ab dem erhchte Verluste zu erwar-
ten sind. Im Folgenden wird das Dampfungsverhalten um 90° gekriimmter Wellenleiter in
Abhéngigkeit des Kriimmungsradius untersucht. Die Wellenlédnge ist nun wieder konstant
gleich A = 850 nm und fiir die Brechzahlen gilt wie zuvor n; = 1,57 und ny = ng = 1,55.

Abbildung 5.10 zeigt Ergebnisse fiir unterschiedliche Konfigurationen. Diese unterscheiden
sich in der Schichtdicke d des Wellenleiters, in der Lange x, des geraden Wellenleiters
vor der Kriitmmung und in der Wahl der Anregung. Das Verhéltnis zwischen Schichtdicke
und Strahldurchmesser des anregenden Gaufsstrahl ist stets gleich d/b = 1,5, dabei wird
der Einfallswinkel des Gaufsstrahls variiert. Die aufgetragenen Graphen zeigen jeweils die
Leistung P4, die im geraden Ausgangswellenleiter gefithrt wird, bei auf eins normierter
Eingangsleistung. Abbildung 5.10a beriicksichtigt fiinf unterschiedliche Einfallswinkel, wo-
bei nun zwischen positiven und negativen Winkeln unterschieden wird. Die Schichtdicke
ist zunéchst gleich d = 75 pm und es gilt x, = 0, d.h. der Gaufistrahl strahlt direkt in die
Kriimmung. Es ist daher unmittelbar ersichtlich, dass sich gravierende Unterschiede fiir
unterschiedliche Vorzeichen des Einfallswinkels einstellen.

Es mag iiberraschen, dass sich fiir Ausgangsleistungen im Bereich P4 > 0,5 niedrigere
Déampfungswerte einstellen, wenn der Gaufstrahl entgegen dem Verlauf der Kriimmung im
mathematisch negativen Sinn verdreht wird (¢ < 0). Durch einen negativen Einfallswinkel
verschieben sich jedoch die Feldanteile etwas zum dufkeren Rand bei o = R' und in diesem
Fall ist damit der Uberlapp mit den quasi-gefithrten Moden grofer.

Neben dem Vorzeichen ist der Betrag des Einfallswinkels von entscheidender Bedeutung.
Bei grofsem Einfallswinkel sind auch fiir grofe Kriimmungsradien signifikanten Damfungs-
werte vorhanden. Obwohl in diesem Fall kein gerader Wellenleiter vorgeschaltet ist, emp-
fiehlt es sich, die Anregung des Modenspektrums des geraden Wellenleiters zu rekapitu-
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i d/pm = 75 — | H d/pm = 75 — |
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Abbildung 5.10.: Normierte Ausgangsleistung nach Durchlaufen einer 90°-Kriimmung. Der
anregende Gaufsstrahl fallt meridional (h = 0) unter dem Winkel 9 ein. In
Abbildung (b) ist dem gekriimmten Wellenleiter ein gerader Wellenleiter
der Lénge x, vorgeschaltet. Es gilt n; = 1,57 und ny = n3 = 1,55.

lieren, vgl. Abbildung 4.12a. Im Fall ¥ = 10° wird nahezu das gesamte Spektrum der
gefiihrten Moden angeregt. Insbesondere die Leistungsanteile in den Moden nahe am Cut-
Off werden bereits bei relativ groffen Kriimmungsradien abgestrahlt.

An dieser Stelle muss betont werden, dass sich die Ergebnisse auf eine planare Appro-
ximation beziehen. Die aufgezeigten Effekte sind zwar auch im realen Wellenleiter mit
zweidimensionalem Querschnitt zu erwarten, jedoch nicht in der ausgeprégten Form. Die-
se Aussage bezieht sich insbesondere auf die Ergebnisse in Abbildung 5.10b. Hier werden
bei senkrechtem meridionalem Einfall des Gaufstrahls drei unterschiedlich lange gerade
Wellenleiter vorgeschaltet. Zur Interpretation empfiehlt sich ein Blick zuriick auf Abbil-
dung 5.1, welche den Leistungfluss im geraden Wellenleiter zeigt'®. In Abhingigkeit der
Lange des geraden Wellenleiterstiicks stellen sich unterschiedliche Feldverteilungen am An-
fang der Kriimmung ein. Je nachdem ob sich ein, zwei oder drei lokale Maxima ausbilden,

13Die Schichtdicke ist in Abbildung 5.1 etwas kleiner. Daher verschieben sich die Werte fiir z,, etwas.
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stellen sich die gezeigten Verldufe in der Ausgangsleistung ein.

Mit den Abbildungen 5.10c und 5.10d soll das Verhalten fiir kleiner werdende Schicht-
dicken d verdeutlicht werden. Bekanntermafen nimmt die Démpfung mit kleiner wer-
dender Schichtdicke bei konstantem Kriimmungsradius ab. Beim Vergleich der Graphen
muss beachtet werden, dass die Anregung durch den Gaufistrahl nicht vollkommen analog
zur Schichtdicke skaliert wird. Abbildung 5.10c zeigt Ergebnisse fiir den Fall der idealen
Einkopplung des Gaufstrahls, bei dem im geraden Wellenleiter vornehmlich Moden mit
grofser effektiver Brechzahl angeregt werden. Dagegen lassen sich die Ergebnisse in Abbil-
dung 5.10d mit ¥ = 10° fast schon als ungiinstigster Fall bezeichnen. Hier macht sich mit
kleiner werdender Schichtdicke die gleichzeitig abnehmende Anzahl gefiihrter Moden deut-
lich bemerkbar. Fiir d = 15 pm existieren nur noch 9 gefiihrte Moden. Die leichten Stufen in
den Graphen korrespondieren mit den einzelnen Moden dahingehend, dass mit jeder Stufe
ein Mode durch die Kriimmung abgeddmpft wird. Eine geringe Anzahl gefiihrter Moden
fithrt dazu, dass auch bei nicht idealer Einkopplung erst ab einem vergleichsweise kleinen
Kriimmungsradius eine signifikante Dédmpfung eintritt. Fiir d = 15 pm liegt dieser Radius
bei etwa 11 mm. Es sei jedoch betont, dass sich im Allgemeinen die Gesamtdampfung nicht
aus der Dampfung einzelner Moden ableiten lésst. Dennoch ldsst die hohe Dampfung eines
einzelnen Modes auch eine erhéhte Dampfung der Gesamtwelle vermuten.

Neben der Ausgangsleistung ist die Leistungsverteilung im Modenspektrum des Ausgangs-
wellenleiters von entscheidender Bedeutung. Wiirde sich die Breite des angeregten Mo-
denspektrums durch eine Wellenleiterkriimmung vergrofsern, konnte die Kaskadierung von
Wellenleiterelementen beispielsweise in Form von S-Bogen eine erhohte Dampfung verur-
sachen. Natiirlich wiirde sich auch die Modendispersion starker auswirken. Abbildung 5.11
zeigt das angeregten Modenspektrum in Form der akkumulierten Leistung Pz definiert
durch (4.29) exemplarisch fiir ausgewéhlte Parametersétze. Zur Erinnerung daran, dass
Kriimmungsverluste nicht isoliert von der initialen Anregung analysiert werden sollten,
beriicksichtigt Pz auch Reflexionsverluste bei der Einkopplung, d.h. die Graphen errei-
chen nicht den Wert eins. Die Parameter der Abbildungen 5.11a bis 5.11c¢ korrespondieren
mit Abbildung 5.10a. Die Ergebnisse fiir ¥ = —5° verdeutlichen, dass sich das angeregte
Spektrum in diesem Fall nicht verbreitert, solange die hervorgerufene Dampfung vernach-
lassigbar ist. Eine Leistungsiiberkopplung findet lediglich zwischen benachbarten Moden
statt. Fiir ¥ = 0 werden initial nur sehr wenige Moden angeregt, so dass es zu einer
leichten Verbreiterung des angeregten Spektrums kommt. Diese Verbreiterung auf eine ge-
wisse Mindestbreite ist immer zu beobachten, insbesondere auch wenn urspriinglich nur
der Grundmode angeregt wurde. Bei groffem Einfallswinkel ¥ = —10° wird ohnehin das
gesamte Modenspektrum angeregt und solange keine signifikanten Verluste auftreten, &n-
dert sich dies im Wesentlichen nicht. Treten Verluste durch Abstrahlung auf, zeigt sich
jedoch, dass insbesondere die Moden nahe am Cut-Off keine Leistung mehr fithren. Da die
Abstédnde zwischen den effektiven Brechzahlen benachbarter Moden nicht konstant sind,
verdeutlicht Abbildung 5.12 den Zusammenhang zwischen der Modenzahl v und der ef-
fektiven Brechzahl n.s. Insbesondere fiir den abschliefend betrachteten Wellenleiter der
Dicke d = 15pm muss beachtet werden, dass sich die Graphen aus einer Interpolation
durch lediglich 9 Punkte zusammensetzen. Entsprechend erreichen die Graphen auch nicht
den Endpunkt bei ny = 1,55. Abbildung 5.11d zeigt exemplarisch, dass auch im Wellen-
leiter mit wenigen gefiihrten Moden keine wesentliche Leistungsiiberkopplung zu Moden
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Abbildung 5.11.: Anregung des Modenspektrums nach Durchlaufen einer 90°-Kriimmung;:
Akkumulierte Leistung Pz fiir unterschiedliche Kriimmungsradien R.
Diese Darstellung beriicksichtigt auch Reflexionsverluste bei der Einkopp-
lung. Es gilt 2, = 0. Zur Erinnerung: Der asymptotische Divergenzwinkel
des Gaufsstrahls ist gleich ©, = 5°.

hoherer Ordnung stattfindet, vorausgesetzt die Dampfung ist hinreichend klein.

Abbildung 5.12: Die Modenzahl v des ge-
raden Wellenleiters aufgetragen iiber die
effektive Brechzahl n.g fiir unterschiedli-
che Schichtdicken d. Neben der Anzahl
der Moden wird insbesondere der Ab-
stand zwischen den effektiven Brechzah-
len hervorgehoben.

45 T T +
qo - d/um =75 et
35 15 * ++*+ m
30 :
1/25 - +++++ N
20 - +++++ =
15 | +++++ § N « x ]
1048 o \ 1
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Abbildung 5.12.
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5.3. Vergleich zur Strahlenoptik

Der Vergleich zur Strahlenoptik hinsichtlich der Einkopplung optischer Wellen in einen di-
elektrischen Wellenleiter hat zunéchst eine grundséatzliche Eignung strahlenoptischer Ver-
fahren aufgezeigt. Jedoch erfordert die Modellierung der Einkopplung keine explizite Be-
schreibung der Wellenausbreitung vor dem Wellenleiter, da das Poyntingvektormodell des
Gaufstrahls aus der Feldverteilung in der Ebene der Wellenleiterstirnfliche abgeleitet wird.
Wie bereits eingangs im Kapitel 2.4.3 erlautert, stellt sich ein einheitliches Poyntingvektor-
modell erst in hinreichender Entfernung von der Strahltaille ein, wenn der Divergenzwinkel
des Gaufistrahls ndherungsweise konstant ist. Die Beschreibung der Wellenausbreitung im
dielektrischen Wellenleiter erfordert grundsétzlich Kenntnis iiber die Phase der Moden, vgl.
Kapitel 5.1.1, welche in einer strahlenoptischen Modellierung génzlich verloren geht. Die
aus den Phasenbeziehungen resultierenden Interferenzmuster in der Intensitétsverteilung
im ladngshomogenen Wellenleiter sind jedoch unerheblich, solange am Wellenleiterende ein
Detektor mit hinreichend grofer geometrischer Apertur aufwartet. Schliefst sich jedoch bei-
spielsweise eine Kriimmung an'4, kann die Feldverteilung am Anfang der Kriimmung wie
gezeigt deutlichen Einfluss auf den Leistungsfluss im bzw. auf die Abstrahlung vom Wel-
lenleiter nehmen. Ob und wie ein strahlenoptisches Modell die zuvor gezeigten Ergebnisse
der wellentheoretischen Simulationen reproduzieren kann, soll im Folgenden untersucht
werden.

5.3.1. Strahlverfolgung im Schichtwellenleiter

Im abschnittsweise homogenen Raum werden die Strahltrajektorien stiickweise durch Ge-
raden beschrieben. Fiir die vergleichsweise einfachen Geometrien dieser Arbeit lassen sich
daher effiziente analytische Verfahren ableiten, die im Weiteren kurz vorgestellt werden
[6, 67]. Die Erlauterungen dieses Kapitels ergénzen das im Kapitel 2.4.3 vorgestellte Poyn-
tingvektormodell der Quelle sowie die im Kapitel 4.4.1 beschriebene strahlenoptische Mo-
dellierung der Einkopplung in den Wellenleiter. Fiir die strahlenoptische Analyse eines
(idealen) vollstandigen Systems fehlt damit nur noch ein Modell eines Detektors, dass je-
doch elementar realisierbar ist, sofern nur die empfangene Gesamtleistung bestimmt werden
soll. Der Detektor versteht sich in dieser Arbeit als einfacher Summierer der Leistung aller
eingefallenen Strahlen. Es muss jedoch beachtet werden, dass die Strahlen eines transienten
Modells nur eine begrenzte Giiltigkeitsdauer besitzen.

Gerade Wellenleiterelemente

Die Strahlausbreitung im homogenen Schichtwellenleiter ist elementar modellierbar, da sich
der Winkel aller Strahlen zur Wellenleiterberandung nicht veréndert, siche Abbildung 5.13.
Es wird in der folgenden Beschreibung nur der Fall eines positiven Einfallswinkels © explizit

14 Auch beliebig andere Abweichungen von der homogenen Wellenleitergeometrie sind denkbar, beispiels-
weise Storstellen, hervorgerufen durch Material- oder Fertigungsfehler.
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Abbildung 5.13.: Strahlpfad im homogenen Schichtwellenleiter.

betrachtet und es wird angenommen, dass im Wellenleiter der Lange L mindestens eine
Reflexion an der Wellenleiterberandung auftritt.

Der Winkel § im Wellenleiter ergibt sich aus dem Brechungsgesetz von Snellius. In Ab-
hangigkeit der N 4 1 Reflexionen an den Schnittstellen zum Mantel berechnet sich das
Vorzeichen des Austrittswinkels 0, sowie der Aufpunkt a auf der Endflache geméfs

0o =90, a= ftand falls N =13,5,..., (5.84)
0 =—0, a=d— ftand falls N =0.24,.... (5.85)

Darin ist

) L—c
f=L—c— Ne mit N:{ J (5.86)
e
sowie
d—h

€= und ¢ = — (5.87)

Wie zuvor ist d die Schichtdicke des Wellenleiterkerns und h ist der Aufpunkt des initia-
len Strahls auf der Wellenleiterstirnfliche. Unterliegt der Strahl im Wellenleiter nicht der
Totalreflexion, wird mit jeder Reflexion die Leistung des Strahls um den Leistungsreflexi-
onsfaktor aus (2.100) bzw. (2.102) geddmpft. Mit den Beziehungen (5.84) - (5.87) ist das
strahlenoptische Modell des homogenen Schichtwellenleiters bereits vollstandig parametri-
siert.

Zirkular gekriimmte Wellenleiterelemente

Aufgrund der idealen zirkular gekriimmten Grenzflachen ist analog zum geraden Wellenlei-
ter eine analytische Beschreibung moglich. Im Unterschied zum geraden Wellenleiter gibt
es jedoch den Spezialfall, dass Strahlen nur an der duferen Berandung des Wellenleiter-
kerns reflektiert werden'®. Dieser Spezialfall wird im Folgenden nicht explizit betrachtet.
Des Weiteren wird ein positiver initialer Winkel § angenommen und der Strahlpfad erfahrt
mindestens einmal eine Reflexion. Der Abbildung 5.14 ist jedoch zu entnehmen, dass sich
auch die Beschreibung der iibrigen Félle leicht ableiten lasst.

15Tm Englischen werden diese Strahlpfade als Whispering Gallery Rays bezeichnet.
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Abbildung 5.14.: Strahlpfad im zirkular gekriimmten Schichtwellenleiter.

Fiir die Winkel im Wellenleiter ergibt sich

R™+a 5 q . R +a
cos un sina =
Rt R~
Damit ein Strahlpfad auch Schnittpunkte mit der inneren Berandung besitzt, muss die
Bedingung

cosff =

cos 0. (5.88)

R +a

cosd < 1 (5.89)
erfiillt sein. Die Reflexionspunkte befinden sich in den Ebenen
p=n+Ny, N=012,... (5.90)
mit
n=pF—-9 und y=0+a—7/2. (5.91)

Wird angenommen, dass sich die Kriimmung iiber einen Gesamtwinkel , erstreckt, dann
gilt

(5.92)

k=po—n—Nvy mit N = VJO_UJ.

r-)/

Schlieklich folgt fiir den Austrittswinkel € sowie den Aufpunkt b auf der Wellenleiterend-

flache
c—fn b=""PRt p s N—024.. . (5.93)

cos e
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sin o

e=—(r/2+ kK —a), b:(

Aufgrund der gekriimmten Grenzflichen tritt weit haufiger als im geraden Wellenleiter
der Fall ein, dass Strahlen im Kern nicht totalreflektiert werden. Schlieflich werden so die
Abstrahlverluste beschrieben. Bei den Reflexionen am Aufenrand miissen wie im Kapi-
tel 2.4.2 beschrieben Tunnelverluste beriicksichtigt werden, d.h. an Stelle von (2.100) wird
(2.107) verwendet. Da der Strahl zuerst auf den Aufenrand (R*) trifft, finden, falls N
gerade ist, insgesamt N/2 + 1 Reflexionen am Aufenrand statt, sowie N/2 Reflexionen
am Innenrand. Fiir ungerade N ist die Anzahl der Reflexionen am Innen- und Aufsenrand
gleich (N + 1)/2. Mit den Beziechungen (5.88)-(5.94) wird damit die Strahlausbreitung im
gekriimmten Schichtwellenleiter vollstandig beschrieben.

- 1) R~ falls N=135.... (5.94)
COS &

5.3.2. Transientes Ubertragungsverhalten des lingshomogenen
Schichtwellenleiters

Die strahlenoptische Beschreibung des monochromatischen Leistungsflusses im homogenen
planaren Schichtwellenleiter ist wie aufgezeigt elementar beschreibbar, da sich mit jeder
Reflexion des Strahls an der Grenzfliche zum Mantel lediglich das Vorzeichen der trans-
versalen Komponente des Richtungsvektors €, dndert. Dieses Verhalten bleibt natiirlich
auch bei der Beschreibung eines transienten Leistungsflusses erhalten. Jedoch ldsst sich,
wie im Kapitel 2.4.3 beschrieben, ein beliebiger transienter Leistungsfluss nicht mit ei-
ner einzigen Strahlschar modellieren, sondern erfordert mit jeder Anderung des initialen
Leistungsflusses die Aussendung einer neuen Strahlschar. Eine Ausnahme bildet die Mo-
dellierung zeitlich rechteckférmiger Pulse oder auch die Bestimmung einer Sprungantwort.
Da sich in diesem Fall der initiale Leistungsfluss am Wellenleiteranfang abrupt &dndert,
reicht eine Strahlschar zur Modellierung aus.

Gemaék der Notation aus Kapitel 2.4.3 lésst sich die Sprungantwort eines planaren dielek-
trischen Wellenleiters aus

1, 0<t

a(t) = ZPma <t — E) mit o(t) = {0 L0 (5.95)

€szm Co

berechnen. Aufgrund der Planaritdt der im Folgenden betrachteten Modelle, werden die
Strahlen nur durch den Index m unterschieden. In (5.95) ist L/es,,, die optische Weglénge
eines Strahls im Wellenleiter der Linge L und cy/n; ist die Ausbreitungsgeschwindigkeit
im Wellenleiterkern. Es ist unmittelbar ersichtlich, dass diese Sprungantwort ein linea-
res System beschreibt. Im Gegensatz zur Wellenoptik arbeitet die geometrische Optik
ausschlieklich mit Leistungsgrofsen und umgeht damit die im Kapitel 5.1.3 diskutierten
Schwierigkeiten im wellentheoretischen Ansatz. Dariiber hinaus bleiben chromatische Di-
spersioneffekte in der geometrische Optik génzlich unberiicksichtigt. Durch Differenziation
und Transformation in den Frequenzbereich lisst sich aus der Sprungantwort eine Uber-
tragungsfunktion ableiten

H(f) = zm: P, exp (—j?ﬂf L @) . (5.96)

€szm Co
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Sowohl die Sprungantwort als auch die Ubertragungsfunktion lassen sich also ohne exakte
Strahlverfolgung berechnen. Des Weiteren sind beide Funktionen nicht direkt abhéngig von
der Dicke d des Wellenleiterkerns. Allerdings kénnen die Anzahl der gefiihrten Strahlen und
die Verteilung der Leistung auf die Strahlen und damit die P, variieren.

Bevor nun ein expliziter Vergleich zwischen Wellen- und Strahlenoptik angestrebt wird,
soll kurz die Erwartungshaltung an die Qualitét der strahlenoptischen Ergebnisse rekapi-
tuliert werden. Der wesentliche Unterschied besteht im jeweiligen Spektrum der zuléssigen
Ausbreitungskonstanten. In der klassischen Strahlenoptik konnen sich Strahlen unter belie-
bigen Winkel und damit mit beliebiger Ausbreitungskonstante bzgl. der Wellenleiterachse
ausbreiten. Wellenoptisch sind allerdings nur endlich viele Ausbreitungskonstanten zulas-
sig. Ein groferer Fehler ist daher zu erwarten, wenn nur wenige gefithrte Moden existieren.
Im Umkehrschluss heifst das: Solange ausreichend viele gefiihrte Moden existieren und die
Verteilung der Leistung auf die jeweiligen zugehorigen Ausbreitungskonstanten ndherungs-
weise identisch ist, vgl. Abbildung 4.18, ist eine gute Ubereinstimmung zu erwarten. Der
direkte Vergleich zwischen (5.96) und der wellentheoretischen Approximation (5.29) zeigt
des Weiteren, dass Unterschiede in der Ausbreitungsgeschwindigkeit der Strahlen bzw. Mo-
den existieren. Die effektive Ausbreitungsgeschwindigkeit eines Strahls bzgl. der Wellen-
leiterachse ist stets proportional zur z-Komponente des Ausbreitungsvektors e,,, wihrend
sich ein Mode im linearisierten Modell mit der Gruppengeschwindigkeit v, ausbreitet.

Der Einfluss eines diskreten Modenspektrums mit nur wenigen gefithrten Moden wird
besonders im transienten Leistungfluss deutlich. Es soll daher zunédchst ein Vergleich zwi-
schen Wellen- und Strahlenoptik anhand der Pulsverformung eines Rechteckpulses unter-
sucht werden. Strahlenoptisch kann ein Rechteckpuls modelliert werden, indem die Defini-
tion der Sprungantwort (5.95) um eine weitere Sprungfunktion o ergéinzt wird, welche die
Pulsdauer beriicksichtigt. Im wellentheoretischen Modell sind die Fourierkoeffizienten des
Modulationssignals (5.2) bei einem Puls-Pause Verhéltnis gleich eins durch

1 Z(-1)"2, m=137... (5.97)
Co ==, Cpm= .
0 0, m=248...

gegeben. Das Spektrum eines Rechteckpulses ist aufgrund der steilen Flanken sehr breit
und die Folge der Fourierkoeffizienten klingt daher nur mit 1/m ab. Bei einer Grundfre-
quenz von 10 GHz betrigt die (einseitige) 3 dB-Bandbreite des einzelnen Pulses bereits
12 GHz. Der Rechteckpuls ist daher nur eine rein theoretische Modellannahme.

Zur Beschreibung der Wellenausbreitung in einem Wellenleiter muss zunéchst die Einkopp-
lung modelliert werden. Entsprechend miissen auch bei der Interpretation der Ergebnis-
se die Unterschiede zwischen Wellen- und Strahlenoptik, die schon bei der Einkopplung
auftreten, gemaft Kapitel 4 beriicksichtigt werden. Das Leistungsmaximum ist jedoch im
Folgenden auf eins normiert, so dass die Unterschiede in der Koppeleffizienz unberiick-
sichtigt bleiben. Abbildung 5.15 zeigt Ergebnisse fiir vier unterschiedliche Schichtdicken
d und damit fir vier unterschiedliche Modenspektren. Alle Ergebnisse beziehen sich auf
eine Wellenleiterlange von L = 1 m. Berticksichtigt sind drei unterschiedliche Anregungen
¥ = 0°,5°,10° bei einem Verhaltnis d/b = 1,5. Der Fourierreihe im wellentheoretischen
Ansatz liegen wiederum 500 Reihenglieder zu Grunde, was bereits einer sehr grofsen Band-
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Abbildung 5.15.: Vergleich des transienten Leistungsflusses im Schichtwellenleiter der Lan-
ge L = 1m. Es gilt d/b = 1,5, n; = 1,57 und ny = 1,55. Die durchgezo-
genen Linien reprasentieren die strahlenoptischen Ergebnisse.

breite entspricht, jedoch naturgeméf aufgrund des Gibbsschen Phénomens zu einem deut-
lichen Uberschwingen fiihrt. Im planaren strahlenoptischen Modell wurden 10000 initiale
Strahlen verwendet. Bedingt durch Einkoppelverluste kann die Anzahl der Strahlen, die
sich im Kern ausbreiten, etwas geringer sein.

In den vorangegangenen Studien war meist ein Wellenleiter der Dicke d = 75 pm (bzw.
d = 70 pm) Ausgangspunkt der Untersuchungen. Dieser Fall ist in Abbildung 5.15b be-
riicksichtigt. Um das Verhalten bei gréfseren Schichtdicken zu beurteilen, wurde in Ab-
bildung 5.15a ein Wellenleiter der Dicke d = 105 pm verwendet. Besonders interessieren
sollen jedoch die Ergebnisse fiir kleine Schichtdicken mit d = 30pm und d = 15pm in
den Abbildungen 5.15¢ und 5.15d. Die Ergebnisse der strahlenoptischen Simulationen sind
durch die durchgezogenen Linien gekennzeichnet. Dabei sind die Kurven um die minimale
Signallaufzeit von Ln;/co = 5,237 ns verschoben, so dass die positive Flanke, sofern noch
vorhanden, bei t = 0 liegt. Wie erwartet steigen die Unterschiede zwischen den Theorien
mit kleiner werdender Geometrie, jedoch sind die Abweichungen insgesamt gering. Fiir die
Einfallswinkel ¥ = 0° und 5° ist gewissermafen eine perfekte Ubereinstimmung festzu-
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Mode 1 2 3 4 5 6 7 8 9
Neff 1,56978

Aneg - 103 -0,67 -1,11 -1,55 -198 -241 -282 -3,19 -348
v/ o 0,636864

Av,/co - 10* -2,35 -3,87 -5,34 -6,69 -7.82 -853 -8,14 -3,34

Tabelle 5.2.: Effektive Brechzahl nes und die normierte Gruppengeschwindigkeit v,/cy des
ersten TE-Modes sowie die Differenz zwischen benachbarten TE-Moden fir
d=15pm, n; = 1,57 und ny = 1,55.

stellen. Natiirlich kann das strahlenoptische Modell den bedingt durch die endliche Anzahl
gefiihrter Moden treppenférmigen Verlauf des Leistungsflusses nicht nachbilden. Im lokalen
zeitlichen Mittel gehen die Graphen jedoch nédherungsweise ineinander iiber. Etwas groftere
Abweichungen sind nur fiir ¢ = 10° zu verzeichnen, da nun insbesondere auch Moden nahe
dem Cut-Off angeregt werden.

Hier gilt es eine Besonderheit im Modenspektrum des dielektrischen Schichtwellenleiters
hervorzuheben. Wie zuvor erwiahnt existieren Unterschiede in der Ausbreitungsgeschwin-
digkeit eines Strahls und eines Modes. Tabelle 5.2 listet die Verinderung der effekti-
ven Brechzahlen und der Gruppengeschwindigkeit zum jeweils benachbarten Mode fiir
d = 15pm auf. Wie aus der Dispersionsbeziehung

k= /k2n? — k2 (5.98)

unmittelbar gefolgert werden kann, wéchst der Abstand zwischen den Ausbreitungskon-
stanten Ak, stetig an, da die k, ndherungsweise dquidistant sind. Wie die Tabelle 5.2
zeigt, gilt dies nicht fiir die Gruppengeschwindigkeiten der Moden, die leider nur nume-
risch bestimmt werden konnen. Der Abstand der Gruppengeschwindigkeiten Av, steigt
zunéchst ebenfalls an, nimmt dann fiir Moden nahe am Cut-Off aber wieder ab. Dieser
Effekt existiert auch fiir grofsere Schichtdicken und damit einer grofseren Anzahl gefiihr-
ter Moden. Er wirkt sich jedoch mit zunehmender Schichtdicke nicht mehr so stark aus,
wie die Ergebnisse in den Abbildungen 5.15 fiir den Einfallswinkel ¢ = 10° zeigen. Im
Verlauf der Graphen ist Av, naherungsweise proportional zu dem Abstand der Stufen im
wellentheoretisch bestimmten Leistungsfluss. Als Zahlenbeispiel sei noch genannt, dass fiir
d = 105 pm in einer Polarisation 62 gefithrte Moden existieren. Davon besitzen die letzten
14 Moden eine kleinere Gruppengeschwindigkeit als der letzte Mode des Wellenleiters mit
d = 15pm. Es sei daran erinnert, dass die strahlenoptischen Ergebnisse nahezu unabhén-
gig von der Dicke des Wellenleiters sind. Aufgrund des etwas kleineren Divergenzwinkels
des Gaufsstrahls im Fall kleiner Schichtdicken, vgl. Tabelle 4.2, ist das angeregte Spektrum
etwas schmaler und durch die geringere Modendispersion ist letztlich die Pulsaufweitung
ebenfalls etwas abgeschwécht.

Zusammenfassend stimmen selbst fiir d = 15 pm und ¥ = 10° die Ergebnisse im Mittel im-
mer noch gut iiberein. Der Graph des strahlenoptisch bestimmten Leistungsflusses scheint
auf der Zeitachse etwas verschoben zu sein gegeniiber der wellentheoretischen Referenz.
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Abbildung 5.16.: Vergleich der Ubertragungsfunktionen fiir die Parametersitze aus Ab-
bildung 5.15. Die durchgezogenen Linien reprasentieren die strahlenopti-
schen Ergebnisse.

Diese Verschiebung um wenige Pikosekunden ist jedoch in der Regel nicht von praktischer
Relevanz. Die strahlenoptischen Simulationen wurden im Ubrigen mit konstanter Goos-
Hénchen-Verschiebung durchgefiihrt. Abgesehen von der Beschreibung der Einkopplung
hat die Goos-Héanchen-Verschiebung jedoch keinen Einfluss auf den Gesamtleistungsfluss
im langshomogenen Wellenleiter.

Fiir alle Parametersitze wurde zusitzlich die Ubertragungsfunktion sowohl wellentheore-
tisch geméf (5.22) als auch strahlenoptisch geméf (5.96) berechnet. Die Ergebnisse fiir den
Betrag der Ubertragungsfunktion sind in Abbildung 5.16 aufgetragen und spiegeln im We-
sentlichen die bereits gewonnenen Erkenntnisse wieder. Mit kleiner werdender Geometrie
und mit gréfker werdendem Einfallswinkel werden die Abweichungen im Mittel grofer. Bei
Anregung mit ¢ = 10° nimmt die Ubertragungsfunktion im strahlenoptischen Modell im
Frequenzbereich f < 20 GHz immer etwas kleinere Werte an, was mit den kleinerem Maxi-
malwerten in Abbildung 5.15 korrespondiert. Fiir d = 105 pm ist insgesamt eine sehr gute
Ubereinstimmung zu verzeichnen. Aber auch hier macht sich fiir sehr grofe Frequenzen
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400 GHz < f das diskrete Modenspektrum bemerkbar, die Ubertragungsfunktion steigt
wieder an und geht in ein oszillierendes Verhalten iiber. Die Grenzfrequenz, ab der dieses
Verhalten eintritt, wird mit kleiner werdender Geometrie ebenfalls kleiner und insbesonde-
re fiir ¥ = 0° kann die Ubertragungsfunktion wieder annihernd den Wert eins annehmen.
Dies ist moglich, da die Breite des angeregten Modenspektrums in diesem Fall minimal
ist. Fiir d = 15nm und ¢ = 0° werden im Wesentlichen nur zwei Moden signifikant ange-
regt, vgl. Abbildung 5.15d. Ein periodisches Signal zerféllt lediglich in zwei Impulsfolgen,
die sich nach Durchlaufen einer definierten Strecke wieder nahezu vollkommen konstruktiv
iiberlagern. D.h. die Laufzeitdifferenz ist gleich der Grundperiode der Anregung.

Die Unterschiede zwischen dem exakten wellentheoretischen Ansatz (5.22) und der Appro-
ximation (5.29) sind im Ubrigen fiir alle Ergebnisse in Abbildung 5.15 vernachlissigbar,
mit der in Kapitel 5.1.3 genannten Ausnahme. Abbildung 5.15 zeigt deutlich die Grenzen
des sinnvollen Anwendungsbereichs einer Ubertragungsfunktion fiir multimodale optische
Wellenleiter auf. Zunéchst sollte betont werden, dass der Verlauf der Ubertragungsfunkti-
on massiv von der Anregung des Modenspektrums abhéngt. Damit kann ein Wellenleiter
ohne Kenntnis iiber die Anregung nicht anhand einer Ubertragungsfunktion charakteri-
siert werden. Werden nur wenige Moden angeregt oder hauptsidchlich Moden nahe dem
Cut-Off, ist zudem mit einem erhchten Fehler im strahlenoptischen Modell zu rechnen.
Ohnehin ist im Wellenleiter mit wenigen gefiihrten Moden die Ableitung einer Ubertra-
gungsfunktion abwegig. Hier empfiehlt es sich, die Ubertragungskapazitit direkt aus den
Gruppengeschwindigkeiten der Moden abzuleiten. Abschlieffend sollte noch einmal hervor-
gehoben werden, dass sich die gezeigten Ergebnisse auf einen Schichtwellenleiter beziehen.
Im realen Wellenleiter mit zweidimensionalem Querschnittsprofil existieren bei gleicher nu-
merischer Apertur deutlich mehr gefiihrte Moden und die Abweichungen zur Strahlenoptik
werden im Mittel geringer sein. Zumindest im theoretischen Modell muss jedoch beachtet
werden, dass auch in der kreiszylindrischen Faser bei symmetrischer Anregung nur Mo-
den der azimuthalen Ordnung m = 1 angeregt werden. In dieser Ordnung existieren etwa
genauso viele gefithrte Moden wie im Schichtwellenleiter.

5.3.3. Verluste durch Wellenleiterkriimmungen

Wie erwartet haben die Untersuchungen zur Wellenausbreitung im geraden Wellenleiter
die Eignung strahlenoptischer Methoden im Wesentlichen bestétigt. Erst bei sehr kleinen
Kerndurchmessern und einer geringen Anzahl angeregter Moden treten deutliche Abwei-
chungen auf. Wie eingangs erlautert tritt bei der Beschreibung von Kriimmungsverlusten
jedoch moglicherweise ein erhdhter Fehler auf, da diese in Abhéngigkeit von der Feldver-
teilung am Wellenleiteranfang variieren. Bevor ein expliziter Vergleich anhand der wellen-
theoretischen Ergebnisse aus Kapitel 5.2.6 prasentiert wird, soll der Einfluss des modifizier-
ten Leistungstransmissionsfaktors fiir gekriimmte Grenzflachen gemafs Kapitel 2.4.2 sowie
der Einfluss der Goos-Héanchen-Verschiebung untersucht werden. Fiir die im Folgenden
betrachteten Ergebnisse ist das Verhéltnis zwischen Kern- und Strahldurchmesser stets
gleich d/b = 1,5. Die Numerische Apertur des Wellenleiters ist ebenfalls konstant gleich
NA = 0,25 mit ny = 1,55.

Abbildung 5.17a zeigt Ergebnisse fiir einen Wellenleiter der Dicke d = 75 pm und einen
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Abbildung 5.17.: Vergleich der unterschiedlichen strahlenoptischen Methoden: Normierte
Ausgangsleistung nach Durchlaufen einer 90°-Kriimmung und absolute
Differenz. Es gilt d =75pm, b =50 pm, ny; = 1,57 und ny = 1,55. Die
Legende in Abbildung (a) gilt auch in (b).

senkrecht meridional einfallenden Gaufsstrahl (¢ = 0). Dargestellt ist wiederum die Aus-
gangsleistung nach Durchlaufen einer 90°-Kriimmung bei auf eins normierter Eingangsleis-
tung. Der Kriimmung ist kein gerades Element vorgeschaltet, z, = 0, so dass die initiale
Feldverteilung am Anfang der Kriimmung mit dem strahlenoptischen Poyntingvektormo-
dell korrespondiert. Im strahlenoptischen Modell werden drei Methoden unterschieden.

STRAHL Es wird weder der modifizierte Transmissionsfaktor noch die Goos-
Héanchen-Verschiebung berticksichtigt.

STRAHL TV Es wird der modifizierte Transmissionsfaktor, jedoch keine Goos-
Héanchen-Verschiebung berticksichtigt.

STRAHL TV CGH Es wird sowohl der modifizierte Transmissionsfaktor als auch die
konstante Goos-Hénchen-Verschiebung beriicksichtigt.

Der Bezeichner QGM kennzeichnet die wellentheoretische Approximation wie im Kapi-
tel 5.2.5 beschrieben. Die in Abbildung 5.17b aufgetragenen absoluten Differenzen zwischen
den Ergebnissen der strahlenoptischen Methoden und der wellentheoretischen Referenz zei-
gen deutlich die durch Anwendung eines modifizierten Transmissionsfaktors (2.107) und
der konstanten Goos-Hénchen-Verschiebung erreichbaren Verbesserungen auf. Fiir die Me-
thode STRAHL TV CGH stellt sich bereits eine Abweichung ein, die nahezu unterhalb der
darstellbaren Genauigkeit liegt. Daher wird im Weiteren ausschliefslich diese Methode ver-
wendet. Es sei noch einmal betont, dass der modifizierte Transmissionsfaktor lediglich bei
der Reflexion am konkav gekriimmten dufseren Rand verwendet wird. Analog zu den Simu-
lationen im Kapitel 4.4 fiihrt die konstante Goos-Hénchen-Verschiebung bei den gegebenen
Parametern zu einer Verbreiterung der effektiven Schichtdicke d um etwa 1,08 pm.

Der Vergleich zwischen Wellen- und Strahlenoptik soll nun anhand der Ergebnisse aus
Kapitel 5.2.6 fortgesetzt werden. Abbildung 5.18 zeigt Ergebnisse fiir die schon in Ab-
bildung 5.10 verwendeten Parameter. Den mit der strahlenoptischen Methode STRAHL
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Abbildung 5.18.: Vergleich der normierten Ausgangsleistung nach Durchlaufen einer 90°-
Kriimmung. Als Referenz dienen die Ergebnisse aus Abbildung 5.10, wel-

che grau hinterlegt sind.

TV CGH erstellten Graphen ist jeweils die wellentheoretische Referenz grau hinterlegt.
Abbildung 5.18a zeigt zunichst noch einmal die hervorragende Ubereinstimmung fiir den
Wellenleiter der Dicke d = 75 pm, solange der Kriimmung kein gerades Element vorgeschal-
tet ist. Es zeigt sich, dass diese Ubereinstimmung auch bei Verdrehung der Strahlachse um
+5° erhalten bleibt. Bei grofseren Einfallswinkeln wiirden im geraden Wellenleiter dann zu-
nehmend Moden nahe dem Cut-Off angeregt werden, welche auch schon bei grofen Kriim-
mungsradien abgestrahlt werden. Fiir ¥ = 4+10° treten daher leichte Abweichungen auf,
die im diskreten Modenspektrum begriindet sind. Im strahlenoptischen Modell weisen die
Graphen aufgrund der ndherungsweise kontinuierlich verteilten Strahlschar immer einen
vollkommen glatten Verlauf auf. Bei der vergleichsweise geringen Anzahl von 45 gefiihrten
Moden kommt es im wellentheoretischen Modell dagegen zu einem leicht oszillierenden
Verlauf, da nach und nach die einzelnen Moden nahe dem Cut-Off abgedampft werden.

Die Simulationsergebnisse in Abbildung 5.18b bestétigen die Annahme, dass die Variation
der Lange des vorgeschalteten geraden Wellenleiters nicht addquat im strahlenoptischen
Modell beriicksichtigt wird. Allerdings handelt es sich bei den gezeigten Ergebnissen im
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Wesentlichen um akademische Spezialfille, die in der Praxis vermutlich nicht derart aus-
gepriagt auftreten werden, zumal es sich nach wie vor um eine planare Approximation
handelt. Wie sich zeigt, stellt die Strahlenoptik zwischen den Extremwerten jedoch einen
ausgezeichneten Mittelwert dar, so dass die Ergebnisse in Abbildung 5.18b in keinem Fall
als K.O.-Kriterium fiir die strahlenoptische Methodik zu werten sind. Die Graphen der
strahlenoptischen Simulationen fiir z, > 0 fallen im Ubrigen stets niherungsweise zusam-
men.

Eine kleinere Schichtdicke sorgt nicht zwangslaufig fiir einen erhéhten Fehler im strahlen-
optischen Modell, wie Abbildung 5.18c fiir ¢ = 0 zeigt. Wie oben diskutiert gibt es jedoch
Abweichungen, sobald Moden des geraden Eingangswellenleiters nahe dem Cut-Off ange-
regt werden, z.B. fiir ¥ = —10° in Abbildung 5.18d. Es sei an dieser Stelle daran erinnert,
dass nahe dem Cut-Off die Abstdnde zwischen den Phasenkonstanten maximal werden. Die
Absténde zwischen den neun Phasenkonstanten der gefiihrten Moden des Wellenleiters der
Schichtdicke d = 15 pm wurden bereits exemplarisch in Tabelle 5.2 aufgefiihrt. Es liegt da-
her nahe, dass insbesondere bei kleinen Schichtdicken und somit wenigen gefiihrten Moden
die Abweichungen maximal sind. Dennoch liefert auch hier die Strahlenoptik néherungs-
weise immer einen Mittelwert zwischen den lokalen Oszillationen der wellentheoretischen
Referenz.

Als Zwischenfazit ldsst sich somit festhalten, dass die Ergebnisse der letztlich vollkommen
unterschiedlichen Vorgehensweisen, Wellenoptik und Strahlenoptik, iber weite Teile tiber-
einstimmen. Solange im geraden Einkoppelwellenleiter wenig Leistung in Moden nahe dem
Cut-Off gefiihrt wird, ist diese Ubereinstimmung nahezu unabhéngig von der Schichtdicke
des Wellenleiters. Wird jedoch auch Leistung in Moden nahe dem Cut-Off gefiihrt, ist ins-
besondere fiir kleine Schichtdicken ein erhohter Fehler zu erwarten. Dariiber hinaus lassen
sich bedingt durch das diskrete Modenspektrum stets Spezialfille konstruieren, in denen
die Strahlenoptik versagt bzw. nur ndherungsweise einen Mittelwert ausgibt.

Abschliefsend soll noch die Leistungsverteilung im Modenspektrum des Ausgangswellenlei-
ters mit der Leistungsverteilung in der Strahlschar des strahlenoptischen Modells verglichen
werden. Abbildung 5.19 zeigt die Ergebnisse, die mit den Parametern aus Abbildung 5.11
korrespondieren, jedoch wurde in (b) und (c) das Vorzeichen des Einfallswinkels gedndert,
um etwas aussagekréftigere Darstellungen zu erhalten. Die wellentheoretischen Ergebnis-
se sind dabei wiederum grau hinterlegt. Aufgrund der gegeniiber der zweidimensionalen
Querschnittsgeometrie vergleichsweise geringen Anzahl gefiihrter Moden ist grundsétzlich
nur eine méRige Ubereinstimmung zu erwarten. Die Abbildungen 5.19a bis 5.19¢ zeigen
jedoch eine sehr gute qualitative Ubereinstimmung fiir die Schichtdicke d = 75pm. Wie
zu erwarten sind die Graphen der strahlenoptischen Simulation anschaulich wieder glatte
Funktionen, wiahrend die wellentheoretischen Ergebnisse starke lokale Schwankungen auf-
weisen konnen. Insbesondere fiir kleine effektive Brechzahlen im Bereich 1,555 > nqg > 1,55
ist jedoch eine gute Ubereinstimmung zu verzeichnen, so dass die Breite des angeregten
Spektrums korrekt wiedergegeben wird. Gleiches gilt ndherungsweise auch fiir kleinere
Schichtdicken. Durch die kleinere Anzahl gefiihrter Moden werden die Abweichungen im
Mittel wiederum grofser. Abbildung 5.19d zeigt jedoch, dass auch fiir d = 15 pm noch eine
gute qualitative Ubereinstimmung herrscht, obwohl nur noch neun gefithrte Moden exis-
tieren. Die Abweichungen im Endwert fiir R = 1 mm sind nicht von grofer Bedeutung, da
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Abbildung 5.19.: Anregung des Modenspektrums nach Durchlaufen einer 90°-Kriimmung:
Akkumulierte Ausgangsleistung fiir unterschiedliche Kriimmungsradi-
en R. Die Parameter entsprechen denen der Abbildung 5.11, jedoch wurde
in (b) und (c) das Vorzeichen des Einfallswinkels gedndert. Die wellen-
theoretische Referenz ist grau hinterlegt.

die Verluste insgesamt schon sehr grofs sind.






6. Zusammentassung und Ausblick

Zusammenfassung

Der Vergleich zwischen Wellen- und Strahlenoptik fokussiert sich zunéchst auf die Beschrei-
bung der Einkopplung monochromatischer optischer Wellen in einen dielektrischen Wellen-
leiter mit senkrechter Stirnfliche und wird dann auf die Beschreibung des Leistungsflusses
im Wellenleiter ausgedehnt. Beides erfordert ein bekanntes Modenspektrum eines zunachst
als langshomogen angenommenen Wellenleiters. Die Untersuchungen beschranken sich da-
her im Wesentlichen auf kreiszylindrische Fasern und planare Schichtwellenleiter, jeweils
mit einem stufenférmigen Brechzahlprofil. Fiir das Randwertproblem eines rechteckférmi-
gen Wellenleiters existiert kein analytischer Losungsansatz. Daher werden fiir diesen in der
Praxis wichtigen Wellenleiter die vorhandenen Nédherungslosungen analysiert. Aber auch
ein exakter Losungsansatz erfordert stets die Losung einer transzendenten Eigenwertglei-
chung. Des Weiteren muss das im Allgemeinen kontinuierliche Spektrum der Strahlungs-
moden diskretisiert werden, z.B. wie in dieser Arbeit durch einen leitenden Schirm, und
die Anzahl der beriicksichtigten Moden begrenzt werden, so dass eine Implementierung auf
einem Rechensystem moglich ist.

Insbesondere im Ubertragungssystem mit multimodalen optischen Wellenleitern sind die
Eigenschaften der Quelle von fundamentaler Bedeutung, da die Leistungsverteilung auf
die Moden und damit die Ubertragungseigenschaften des Systems von ihr abhingen. Das
elektromagnetische Feld der Quelle wird durch einen paraxialen Gaufsstrahl approximiert,
dessen einfache mathematische Beschreibung und bekannte Eigenschaften einen umfassen-
den Vergleich zwischen Wellen- und Strahlenoptik ermoglichen. Aus dem resultierenden
Poyntingvektorfeld wird das strahlenoptische Modell der Quelle abgeleitet. Zu beachten
ist jedoch, dass der paraxiale Gauftstrahl nur eine Approximation fiir schwach divergieren-
de Felder darstellt. Um einen erhéhten Fehler auszuschliefsen, lasst sich fiir diese Arbeit
durch einen Vergleich mit einer Integraldarstellung iiber ebene Wellen ein maximaler Di-
vergenzwinkel von 5° ermitteln. Zur effizienten Beschreibung der Einkopplung wird der
Raum vor dem Wellenleiter ebenso wie der Wellenleiter selbst von einem leitenden Schirm
umgeben und die Felder des Gaufsstrahls durch die Moden des resultierenden Hohlleiters
beschrieben. Somit ist es moglich, alle Teilfelder durch Wellenleitermoden zu beschreiben
und die Amplituden der reflektierten und transmittierten Wellen durch Auswertung der
Stetigkeitsbedingungen zu bestimmen. Nach einer ausfiihrlichen Diskussion iiber die Aus-
wirkungen des leitenden Schirms auf die Modellierung kann ein merklicher Einfluss auf die
Anregung der gefithrten Moden der dielektrischen Wellenleiter ausgeschlossen werden.

Das kritische Element im strahlenoptischen Modell hinsichtlich der Modellierung der Ein-
kopplung ist die Schnittstelle zwischen Kern und Mantel des Wellenleiters. Hierzu wird
untersucht, ob die Verbreiterung des Faserkerndurchmessers um die Goos-Héanchen-Ver-

149



150 Zusammenfassung und Ausblick

schiebung eine sinnvolle Erganzung darstellt. Als erstes wichtiges Ergebnis dieser Arbeit
lasst sich feststellen, dass die Beriicksichtigung einer minimalen konstanten Goos-Héanchen-
Verschiebung den mittleren Fehler im strahlenoptischen Modell deutlich reduziert, ohne
den Simulationsaufwand zu erhohen. Unter Anwendung dieser Methode wird anschliefend
die Entwicklung des Fehlers bei der Berechnung der Koppeleffizienz fiir kleiner werdende
Wellenleitergeometrien untersucht. Der maximale Kerndurchmesser von 90 pm wird auf
bis zu 10 pm reduziert. Bei einer numerischen Apertur von 0,25 sinkt die Anzahl gefiihr-
ter Moden in einer Polarisation dabei von 1763 auf nur noch 26. Um hinreichend grofse
Koppeleffizienzen zu garantieren, muss der Durchmesser des Gaufistrahls kleiner als der
Kerndurchmesser sein. Dieser Fall wird zunéchst mit einem Verhéltnis zwischen Kern-
und Strahldurchmesser von 1,5 untersucht, wobei der einfallende Gaufsstrahl um bis zu
5° verdreht und um bis zu 20 % der Strahlbreite lateral verschoben wird. Innerhalb dieses
Bereichs resultiert eine hervorragende Ubereinstimmung zwischen der wellentheoretischen
und der strahlenoptischen Modellierung, mit relativen Abweichungen im unteren Promille-
bereich selbst fiir einen Strahldurchmesser von lediglich 10 pm. Die Abweichungen erhéhen
sich merklich, wenn Kern- und Strahldurchmesser gleich grofs sind. Unter der Vorausset-
zung, dass eine hinreichend grofse Koppeleffizienz erreicht wird, kann dieses Verhéltnis
als schlechtester Fall bezeichnet werden, da der gesamte Grenzbereich am Rand des Fa-
serkerns ausgeleuchtet ist. Bei einer maximalen relativen Abweichung von 3,5% fiir den
Strahldurchmesser gleich 10 pm und einem im Mittel deutlich geringeren Fehler lasst sich
jedoch als Fazit festhalten, dass strahlenoptische Methoden nahezu uneingeschréankt zur
Modellierung der Einkopplung in multimodale optische Stufenindex-Fasern geeignet sind.
Deutlich erhéhte Abweichungen sind erst zu erwarten, wenn nur noch wenige gefiihrte
Moden existieren.

Der Modellierungsaufwand fiir die kreiszylindrische Faser ist nicht unerheblich, wenn neben
dem Spektrum der gefithrten Moden auch das vollstéindige Spektrum der Strahlungsmo-
den bertiicksichtigt wird. Es wird daher zum Einen aufgezeigt, dass sich alle Ergebnisse
auch aus einem Modell mit einem planaren Schichtwellenleiters ableiten lassen. Es resul-
tieren aufgrund der fehlenden Abhéngigkeit von einer Koordinate lediglich leichte quan-
titative Unterschiede im Vergleich zur Faser. Des Weiteren wird ein Naherungsverfahren
vorgestellt, das lediglich gefiihrte Moden beriicksichtigt, aber dennoch eine sehr hohe Ge-
nauigkeit garantiert. Mit Hilfe dieses Verfahrens ldsst sich auch der Losungsansatz von
Marcatili zur Modellierung rechteckformiger Wellenleiter hinsichtlich der korrekten Be-
schreibung der Einkopplung in den Wellenleiter analysieren. Durch den Vergleich mit der
strahlenoptischen Methodik kann als Ergebnis festgestellt werden, dass der Ansatz von
Marcatili angewendet werden kann, solange keine Moden nahe dem Cut-Off angeregt wer-
den. Dieses Ergebnis entspricht den bekannten Erwartungen und in der Praxis muss im
Einzelfall entschieden werden, ob die damit verbundene Einschrinkung hinnehmbar ist.

Im zweiten Schwerpunkt dieser Arbeit wird die Wellenausbreitung im dielektrischen Wel-
lenleiter behandelt. Im Fokus steht neben der Beschreibung des transienten Leistungsflusses
im ldngshomogenen Wellenleiter insbesondere die Bestimmung des Dampfungsverhaltens
zirkular gekriimmter Wellenleiter. Da zur Beschreibung des transienten Leistungsflusses
das Modenspektrum innerhalb einer bestimmten Frequenzbandbreite bekannt sein muss,
beschrinkt sich die Untersuchung auf den planaren Schichtwellenleiter und auf periodi-
sche Zeitverlaufe. Neben der Zeitbereichsdarstellung lésst sich unter Vernachlassigung der
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chromatischen Dispersion auch eine Ubertragungsfunktion fiir das Basisband ableiten. Es
muss jedoch beachtet werden, dass die Ubertragungsfunktion stark von der gewihlten
Anregung abhingt, d.h. die Ubertragungseigenschaften eines multimodalen Wellenleiters
sollten nicht isoliert von der Quelle analysiert werden. Wie erwartet stimmen die Ergeb-
nisse der wellentheoretischen und strahlenoptischen Methoden fiir den langshomogenen
Wellenleiter weitestgehend iiberein. Diese Ubereinstimmung bezieht sich jedoch nur auf
den tiefpassgefilterten Gesamtleistungsfluss und nicht auf die lokale Intensitétsverteilung
im Wellenleiter, die im strahlenoptischen Modell aufgrund der fehlenden Phaseninforma-
tion nicht wiedergegeben werden kann. Gravierende Unterschiede im Leistungsfluss und
in der Ubertragungsfunktion des lingshomogenen Wellenleiters existieren dariiberhinaus
erst, wenn nur sehr wenige gefithrte Moden existieren bzw. angeregt werden oder wenn
ausschlieflich Moden nahe dem Cut-Off angeregt werden.

Ein analytisch exakter Losungsansatz fiir zirkular gekriimmte Wellenleiter existiert nur fiir
den planaren Schichtwellenleiter. Allerdings ist das resultierende Modenspektrum kontinu-
ierlich und zudem nichtorthogonal. Zur Beschreibung der Ankopplung an den Wellenleiter
miissten daher Integralgleichungen gelést werden, fiir die keine analytische Losung bekannt
ist und die auch numerisch schwer handhabbar sind. Aus dem Modenspektrum lassen sich
jedoch einige wenige quasigefiihrte Moden isolieren, deren Felder die Wellenleiterkriimmung
naherungsweise ungestort durchlaufen und fiir den unendlich groffen Kriimmungsradius in
die gefiihrten Moden des geraden Wellenleiters iibergehen. Die Eigenwerte dieser Moden
sind analog zum geraden Wellenleiter reellwertig, es lasst sich aber zuséatzlich eine Damp-
fungskonstante ableiten, die als Imaginérteil des Eigenwerts interpretiert werden kann.
Dieser zusammengesetzte Eigenwert entspricht einer Losung nach dem aus der Literatur
bekannten Leckwellen-Ansatz, welcher explizit radial nach aufen laufende Wellen ansetzt
und deren Eigenwerte in der komplexen Ebene liegen. Der Rechenaufwand dieser Methode
ist ungleich héher und die Methode der quasigefiihrten Moden ist daher vorzuziehen.

Die Rechnung auf Basis diskreter quasigefiihrter Moden verfolgt das Ziel, ausgehend von
einem geraden Eingangswellenleiter die Anregung der gefithrten Moden im wiederum ge-
raden Ausgangswellenleiter nach Durchlaufen einer 90°-Kriimmung zu bestimmen. Zur
Validierung wird ein Vergleich mit einer numerischen Simulation durchgefiihrt, welcher
eine sehr gute Ubereinstimmung fiir schwache Abstrahlverluste aufzeigt. Fiir stirkere Ver-
luste stellt die Rechnung auf Basis quasigefiihrter Moden immer noch eine gute Naherung

dar.

Den Abschluss dieser Arbeit bildet ein umfangreicher Vergleich zur strahlenoptischen Theo-
rie. Nahezu unabhéngig von der Schichtdicke des Wellenleiters herrscht immer dann eine
sehr gute Ubereinstimmung beziiglich der berechneten Ausgangsleistung, wenn dem ge-
kriimmten Wellenleiter kein gerades Element vorgeschaltet ist. Andernfalls konnen zwar
Abweichungen auftreten, da der ortliche Leistungsfluss im strahlenoptischen Modell nicht
korrekt wiedergegeben wird, im Mittel herrscht jedoch immer noch gute Ubereinstimmung.
Insbesondere wird der Kriimmungsradius, ab dem mit erh6hten Verlusten durch Abstrah-
lung zu rechnen ist, iibereinstimmend berechnet. Merkliche Unterschiede existieren dann,
wenn Moden nahe dem Cut-Off angeregt werden, was sich insbesondere im Wellenleiter
mit kleiner Schichtdicke bemerkbar macht. Neben der Ausgangsleitung werden auch die
Ausbreitungskonstanten der ausgangsseitig angeregten Moden und Strahlen verglichen.
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Wieder lisst sich unabhéingig von der Schichtdicke eine im Mittel gute Ubereinstimmung
registrieren.

Ausblick

Die in dieser Arbeit prasentierten Ergebnisse haben aufgezeigt, dass strahlenoptische Ver-
fahren grundsétzlich zur Modellierung optisch multimodaler Wellenleiter geeignet sind und
zwar auch dann, wenn bei kleinem Kerndurchmesser nur noch einige zehn Moden gefiihrt
werden. Jedoch handelt es sich insbesondere bei der Beschreibung des gekriimmten Wellen-
leiters noch um ein rein akademisches Beispiel. Wiinschenswert im Kontext der EOPCB-
Technologie wire es beispielsweise, den Vergleich zwischen Wellen- und Strahlenoptik auf
gekriimmte rechteckformige Wellenleiter auszudehnen. Wellentheoretische Modellierungs-
ansatze hierzu gibt es bereits seit langem, doch mangels exakter Losungen beruhen diese
ganzlich auf Naherungslosungen und sind daher nur bedingt als Referenz geeignet. Einen

Uberblick verschaffen die Arbeiten [13, 57].

Wesentliche Fortschritte in der Modellierung optischer Wellenleiter sind daher voraussicht-
lich nur mit numerischen Methoden zu erwarten. Die stetigen Steigerungen der Rechen-
leistung und der Speicherkapazitdt der am Markt verfiigharen Hardware ermdglichen die
Simulation immer grokerer Problemstellungen und machen damit klassische gitterbasierte
Verfahren zunehmend interessanter [10, 75]. Fiir eine ganzheitliche numerische Simulation
einer optisch multimodalen Ubertragungsstrecke mit absoluten Abmessungen von einigen
hunderttausend Wellenldngen entlang der Wellenleitertrajektorie ist jedoch noch einige
Entwicklungsarbeit erforderlich, so dass die Ergebnisse dieser Arbeit vermutlich noch einige
Zeit lang eine hilfreiche Referenz darstellen werden. Numerische Verfahren sind insbesonde-
re auch vielversprechend anwendbar in der Modellierung von Laserdioden, so dass anstelle
eines idealen Gaufsstrahls zukiinftig Modelle realer Quellen verwendet werden konnten.



A. Anhang

A.1. Der Gaulistrahl: Erganzungen

A.1.1. Hertzsche Potenziale des Gaulistrahls

Vektorpotenziale sind oft ein geeignetes Hilfsmittel komplexe Problemstellungen der Feld-
theorie transparenter darzustellen. Im zeitharmonischen Fall lassen sich die Feldgrofen
durch z-gerichtete Hertzsche Potenziale wie folgt beschreiben [16]:

=V xVxell, —jwuuV x &1l (A.1)

E mz)
H=jweV x &I, +V xVxé&ll,.. (A.2)

Darin sind II_, und II,, die z2-Komponenten des elektrischen und magnetischen Hertzschen
Vektors.

Die Spektraldarstellung der Hertzschen Vektoren sei bekannt, vgl. 2.22. Es gilt

m,, . = / / An, . (koiky) Bky by ) dk, d, (A.3)

—O00—00

h(ky Ky 7) = exp (— j (k:x +hyy+ R — k2 — k2 z)) . (A.4)

Unter der Annahme, dass Rotation und Integration vertauscht werden diirfen, miissen die
Rotationsoperatoren in (A.1) und (A.2) lediglich auf h angewendet werden. Mit

V x Eh(ky by ) = —j (kys — ko) hi(kin iy 7) (A.5)

mit

und

V XV % Ehk k) = (—koka@y — kyka, + (K2 + k2)&) h(ky k™) (A6)

sowie

k.= \/k*—kZ—k? (A.7)
ergibt sich das elektrische Feld zu

E= / / ( (—koksE, — kyk.G, + (k2 + k2)E.) Ay, (K ky)

—00—00

— wit (kyEy — k€, Anm(k’x,kzy)) h(ky ky. ) dky dk,.  (A.8)
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Wird angenommen, dass die transversale Spektralfunktion 7', der elektrischen Feldstarke
bekannt ist, dann folgt

€ - € Ly(ko ky) = —kok: Ay, (ka,ky) — wpkyAy,, (kaky), (A.9)

e

€y - € Ly(kasky) = —kyk.Ap, (ko ky) + wpks Ay, (Ko ky). (A.10)

Somit lassen sich die Spektralfunktionen der Hertzschen Potenziale in Abhéngigkeit von
T, angeben:

(k€ + ky€y) - €
k. (k% + k;;)
ki€, — ky€y) - €

wi (k2 + k2)

Fiir die elektrische und magnetische Feldstéarke folgt weiter:

Ane(kmky) = - It(kamky)? (A'11>

A (k) = T, (ko k). (A.12)

E = / / (gt _ (k€ - €] ];F kylé, - et])5Z>L(kx,ky)h(kx,kyf) dk, dk, (A.13)

z

und
. T T kuky ky +k2) L L
ﬂ - / / w_,u <_ ( kzy [em et] ( . kz >[ Y et]) o
+ kf [ez ’ et] + k [ey ' €t] €y '

Diese Ausdriicke finden sich in einer kompakteren Operatorschreibweise in (2.27) und (2.28)
wieder.

A.1.2. Feldbeschreibung des planaren GaulBstrahls

Die Modellierung der Einkopplung in den planaren Schichtwellenleiter erfordert analog zur
Beschreibung der Moden im Kapitel 3.1.3 eine Quelle, deren Feldgrdfsen unabhéngig von
einer transversalen Koordinate sind, hier der y-Koordinate.

Die Einhiillende u des planaren Gaufistrahls ist durch

w(z,2) = % exp (-wf—;@) exp (—jk %(QZ)) exp(j}arctan(z/z))  (A.15)

gegeben, vgl. (2.39). Darin sind wp, w(z) und R(z) unverdndert definiert durch (2.40).
Entsprechend &dndern sich auch die Ausbreitungseigenschaften des planaren Gaufistrahls
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im Vergleich zum dreidimensionalen Gauftstrahl im Wesentlichen nicht. Jedoch ist die
innerhalb des Strahlradius w(z) transportierte Leistung mit tiber 95% der Gesamtleistung
deutlich grofer.

Es ist sinnvoll, explizit zwischen einem transversalelektrischen und einem transversalma-
gnetischen Strahl zu unterscheiden:

~ L
TE: H(z,2) = ——70 (é’x - +szo é’z) u(z,z) exp(—jkz), (A.16)
E(r2) = Eye,u(x,z2) exp(—jkz), (A.17)

TM: H(z,z) = yu(z,2) exp(—jkz), (A.18)

=0
Z
Ey

B(z,2) = ( a 5z)u(x,z)exp(—jkz). (A.19)

z+ Jzo
Die Feldgrofsen werden in den Simulationen dieser Arbeit hinsichtlich der transportier-
ten Leistung normiert. Der Leistungstransport in z-Richtung pro Lingenabschnitt Ay ist
gegeben durch

N N T N 11/ P

P, = 5 /Re{ﬁxﬂ}ezdx—z 7 /\u(m,z)| dx (A.20)
L|Eo)? wo ]O 7
= — —2 d A.21
2 7 w(z) P w?(z) ‘ ( )

— o0

n @0’2

Um analog zur Beschreibung im Kapitel 2.4.3 ein strahlenoptisches Modell des planaren
Gaufstrahls abzuleiten, muss der Leistungsfluss in einem Léngenabschnitt Ax bestimmt
werden, mit dem Ergebnis

Tm+Ax

P = ;EZ‘ wu(}Oz) / exp (—2 wf%z)) da (A.23)

() () e

Der Aufpunkt eines Strahls ist nun gegeben durch

Tm=(m+31)Az mit me{-M/2,...,—2,-10,12,....M/2—-1}. (A.25)
Die Anzahl M der angesetzten Strahlen ist somit gerade und analog zu (2.125) gilt

M 25uw(z)
7 — A—w. (A..26)
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A.2. Leistungstransport im optischen Wellenleiter

Die folgende Darstellung soll nur einen Uberblick {iber den Implementierungsaufwand ver-
schaffen und es werden daher nur die gefithrten Moden explizit beriicksichtigt.

A.2.1. Schichtwellenleiter

Die Bestimmung des Leistungstransports in Ausbreitungsrichtung im zeitlichen Mittel er-
folgt durch Integration der z-Komponente des Poyntingvektors. Dieses Integral ist durch
(3.23) gegeben

P= Ay%k;} /|§y(x)|2 dz. (A.27)

Darin ist die elektrische Feldstédrke der TE-Moden gegeben durch (3.14)

— Sinh(k’zg(.’ﬂ — g — ag))/sinh(kxgag) fiir %l <x< g+a3
E,(x) = S cos(kp(z — 9)) + Arsin(kp(z — §)) fir —¢<a<i . (A.28)

As sinh(kmg(x + g + ag))/ sinh(kyoaq)  fiir —ag—g <zr< —g

Die Integrationen erstrecken sich iiber insgesamt fiinf Teilintegrationen mit dem Ergebnis

5 Rk} L |43 2
P=A — I A1y 4+ 2Re { A1 1 . (A.29
Y o (\ S (haas)E T Tsmb(hpap T 1o A+ 2Reidils} ) (A29)
Darin sind:
ngas
1
L = / | sinh (ky3(z — 4 — a3))[*de = 5% (cosh(kgsas) sinh(kzzas) — kyzas)  (A.30)
xid 3
=2
_d
2
I, = / | sinh(kmg(x + g + G/Q)) |?do = % (cosh(kyoaz) sinh(kyoas) — kyoas) (A.31)
g T2
T=—75—az
d
/ 1
I3 = / | cos(kpi(z — 4)) P dz = 5% (cos(ky1d) sin(ky1d) + ki d) (A.32)
zl
r=—3
d
/ 1
I — / [sin(her(z — ) do = o (— cos(hard) sin(kad) + kord) (A.33)
zl
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(A.34)

A.2.2. Kreiszylindrische Faser

Die Integration des Poyntingvektors (3.52) {iber die Querschnittsfléche der Faser lasst sich
aufteilen in Integrationen tiber die Kernfliche () und iiber die Mantelfliche (Ps). Die
Gesamtleistung ergibt sich als Summe beider Anteile

Im Kernbereich 0 < o < ry gilt Byy = A4Bi1. Zudem ist die Funktion B;; mit der
Bedingung (3.8) stets reellwertig. Nach der elementar durchfiihrbaren Integration in ¢-
Richtung verbleibt das Integral®

Td
™

— , m?

Py = By / ((ngkz —i—w,uk;|A4|2) (]Bn(g)|2 + ?|Bll<9)|2>
1
‘ (A.36)

m !/
+2 (ki Ag + [k A7) 5311(9)311(9)) ode.

Der Ausdruck ist bereits so umgeformt worden, dass nach Einsetzen von Bp; die Bezie-
hungen (A.82), (A.83) und (A.87) direkt angewendet werden konnen. Es folgt:

Td

— T 1
P = k. kAL (T2 (K J2 (k
1 41{%1 J%(kglrd) ! ( (wgl + wp z| 4| ) ( mfl( ng) + m+1( 91Q>)

+ (k‘%A4 + |kz|2AZ) (ng—l(kglg) - Jsm—&—l(kglg))) odo.

(A.37)
Das Integral kann nun mit Hilfe von (A.100) gelost werden, mit dem Ergebnis
2
— ™y 1 - 2
Py = 82, T2 (kura) <(w51 + kAL (k. + wpAy) (Jm_l(kglrd) — Jm(k'glrd)Jm_g(lerd)>

o (wer = kAL (ke = wpda) (T2 (koara) - Jm(kglrd)Jerg(lerd))).
(A.38)

'Da explizit nur gefiihrte Moden beriicksichtigt werden, wird auf eine Darstellung des Realteiloperators
verzichtet.
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Fiir die Integration iiber die Mantelflache ry < o < r, werden die Konstanten A, und As
sowie A5 und Ag zugunsten einer kompakten Schreibweise geméf

Ay = Ay /Iy (kgara), (A.39)
1213 = As/ K (kgra), (A.40)
= As/(AsL (K g27”d)), (A.41)

6 = AG/(A4 gg’f‘d ) <A42)

substituiert. Diese neuen Konstanten sind zudem auch im Fall evaneszenter Moden stets
reellwertig. Eingesetzt in (3.52) ergibt sich nach Integration in p-Richtung der folgende
Integralausdruck:

Ts

Py = LQ/ <w52sz~1§—|—wuk:\z44\2121§> I+ 73 [72n
2k92 kQ2

Td

2

+ (2&)82]@2142143 + 2wuk;‘|A4|2fl5flﬁ> (I/ K, k‘Q

Ime)

+ (wsgszlg +w,uk:]A4\2f~1§) (K’2 20 KQ)
.92

+ (kP Af + k3 AL) — <2A2A5]’ m + 243 A6 K] K,

kQQQ

+ <A3/~15 + 12121216> (Ko, + K, In) >] odo.
(A.43)

Das Argument der Besselfunktionen ist stets gleich k0 und wurde daher nicht dargestellt.
Des Weiteren wurde der Ausdruck so umgeformt, dass die Bezichungen (A.90), (A.91) und
(A.92) direkt angewendet werden konnen. Es folgt

Ts

— T
P
202,

Td

[(wegk A2 + wpkl| Ayl A2> ([2 1—|—[§L+1)

< ~ =\ 1
— <2w52k‘ A2A3 + 20)#1{7*|A4|2A5A6> - (Im—le—l + [m—i-le—i-l)

(w@k: A2+ wpk?| Ayl AQ) (K2 1+ K2 p)

+ (kA% + k2A,) (km

02

24y AsT) I, + 243 A6 K], K,
( )

<A3A5 + A2A6> (L1 K1 — Imy1 Kint1) )] odo.

(A.44)
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Die Integrationen kénnen mit Hilfe von (A.103) gelost werden, mit dem Ergebnis

— ™

Py =
L8k,

[(w <82]€ZA§ + Mk:‘A4‘2A§) (I’I’anl + ]31+1 + [m([m—Z + [m+2))

+w <@sz1§ + uk;|A4|2[1§> (K2 + K21 4 Eoy (Koo + Kny2))
—(D+E)(In 1K1+ Ly oKy + 1K 2)

- (D - E) (+Im+1Km+1 + ImeJrQ + IerQKm) ) QZ

+ (ks [2A% + K2A,) i—Qm (212[1513” + AP,AGK;) ] .
02 ra

(A.45)

Darin sind o o
D=w <52]€ZA2A3 + Mk:|A4‘2A5A6>

und

E = (k245 + k2A,) (A3A5 + ,212216) .

Die Integralgrenzen wurden zugunsten einer kompakteren Darstellung nicht eingesetzt. Im
Bereich der Strahlungsmoden ist k,» imagindr und es empfiehlt sich, bereits im Ansatz
die Besselfunktionen geméfs (3.49) und (3.50) zu substituieren. Die Integration kann dann
analog durchgefiihrt werden, jedoch mit Anderungen in den einzelnen Vorzeichen.

Im Fall evaneszenter Moden sind k, und damit auch A4 rein imaginér. Bedingt durch die
dann erforderliche Realteilbildung ist die im zeitlichen Mittel transportierte Leistung des
einzelnen evaneszenten Modes wie erwartet gleich Null.
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A.3. Uberlappintegrale abrupter Wellenleiteriiberginge

Wie schon im vorherigen Abschnitt werden in der folgenden Beschreibung explizit nur
gefiihrte Moden beriicksichtigt.

A.3.1. Schichtwellenleiter

Im planaren Modell des Schichtwellenleiters muss geméfs (4.17) ein Uberlappintegral der
Form

Q) = 4oy [ EliE @) (40
Gs

gelost werden. Darin wird das rechtsseitige Feld durch einen Mode des Schichtwellenleiters
beschrieben (3.14):

—sinh (kg3 (z — £ — a3))/sinh(kysuas)  fir € <z< $4as
EM(x) = cos(kpip(z — ) + Arsin(kpru(z — ) fir -4 <z< . (AA4T)

Syu 2
Az sinh (kyou (2 + & + a2)) /sinh(kpopa0)  fir —ar—% <z < -4

Das linksseitige Feld des Modes der Parallelplattenleitung ist gegeben durch (3.12):

EW(x,2) = sin(kg, (z — 4 — a3)). (A.48)
Zur Bestimmung des Uberlappintegrals sind vier Teilintegrationen erforderlich, mit dem
Ergebnis

k. I Ayl
Q) = —£A L L AL ) . (A.49)

wp Y (_Sinh(lﬂmgu(lg,) sinh(k,2,a2)

Darin sind:

5tas
L = ﬁf sinh (k3. (z — 4 — a3)) sin(kyy (v — £ — a3)) do =
2
1

m (/{;xgﬂ COSh(kmguag) sin(ky,a3) — kg sinh(k:xgﬂag) cos(k:xl,ag)) (A.50)
x3p TV

N

I, = /d cos(kp1u(z — 2)) sin(kp (z — £ — a3)) dz =

1/ cos (k:x,,ag) cos (k:x,,ag) 1 cos(/{xlud — ky(d+ (13)) cos(kmd + kg (d + CLg))
_§ ka}lp - kCCI/ * kxlu + kxu 5 kxlu - kxu * kxlu + kxl/

(A51)
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L
I3 = /d2 sin (ky1u(z — £)) sin(ke(z — 4 — a3)) do =

2

1 <sin(km,a3) N sin(k’m,,ag) ) N 1 (sin(k’xmd — kg (d + ag)) sin(kmd + kg (d + ag)) )
2 kxl,u - k:m/ kml,u + k:m/ k':pl,u - kxu kxl,u + kxu

2
(A.52)

d
T2
I, = /d sinh (kuou (7 + £ + a2)) sin(ke, (z — & — a3)) da =

37
1

_ m (kmz# cosh (ka2,a2) sin(ky, (d + a3)) + kay sinh (kgapua0) cos(kyy (d + ag)))
x2u TV

(A.53)

A.3.2. Kreiszylindrische Faser

Das Uberlappintegral zwischen Rundhohlleitermode und Fasermode ist durch (4.19) gege-
ben und nachfolgend leicht umgeformt aufgefiihrt:

Ts

Iy w o ™ m % m «

0

m2 ! I£3
+ K, (?Jm(kgu@)Bé‘i(@) + kgqu(kgu@)Bzi(0)> ) odo. (A.54)

Anteilig wird zunédchst die Integration iiber den Faserkern betrachtet. Werden die geméfs
(3.33) definierten Ausdriicke By; und Bs; eingesetzt, ldsst sich der Ausdruck

Td

() _ _WHo T L / g (ko) T (k T ko) T (K
Quul Fow orp I (kg17a) <W51 (kg,,g m(Kgw0) Iy, (Kg10) + Fp1,0 (Ko 0) T (Kg1,0)

m2

+ k:uAZ (—2jm<kgug)=]m(kgl,u@) + J;z(kgl/@>']r/n<k91u@)) QdQ (A55)
kgukgl,ug

ableiten. Dieser Ausdruck vereinfacht sich mit Hilfe von (A.88) und (A.89) zu

Td

Q(ZT) __WHo T 1 1/
ot kov ko1 Jm(kglrd) 2 ,

<(W51 + K2, AL T (Kow 0) Jim—1(Kp1,.0)

— (wer — @MAZ)JmH(kqu)Jerl(k@luQ)) odo. (A.56)
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In dieser Schreibweise kann die Integration mit Hilfe von (A.101) durchgefiihrt werden,
mit dem Ergebnis

() _ __TWHo 1 T4
ul 2kokgry Jm(koira) K2, — k2

olp

Q
((ng + k:uAZ) (ko Im—2(kora) Jm—1(korura) + korpIm—1(kgura) Jm—2(Ko1p7a))

— (wer = k2, A4%) [k I (kouTa) Tms1(Kgrura) + korpdms1 (Koyra) Jm (Ko1ra)] ) . (A5T)

Die Integration iiber den Querschnitt des Fasermantels erfolgt in analoger Schrittfolge.

Werden die geméf (3.34) definierten Ausdriicke Bjp und By eingesetzt, ldsst sich der
Ausdruck

Wiy T

, i weg A m m
Q,(fy; = / ( ke {k Jm(kgug)[;n(ngMQ) + —J;n<kgvg)[m<k92uQ)}

kov Kooy I (kg2ura) [ Kovo kgop0

rd
W€2A§
Ko (ko2pra)
kA 2
Zpu* 5 , ,
Im (kv 0) I (K + J (kpo)I! (k
]m(kgmﬂ"d) {k‘guk‘ngQ ( ¢ o) 92”@ ( 0 o)/ ( 92/19)}
k:qu;‘ |: m2
Km(kﬂ#rd) kgukg2y92

m m
{k‘ Jm(k@z/@K;n(kQ?uQ) + —J;n(kQVQ)Km(kQQHQ)}

o0 kg?ug

+ T (ko 0) Ko (Kg2,0) + Jr’n(/fgu@)Ké@(/fgzu@)} ) odo (A.58)

ableiten. Nach Umformungen mit Hilfe von (A.93) und (A.94) resultiert

Ts

, w w1 weg A%
QU =2 T - / (— [Tt (kv 0) o1 (K 9240) + T 1 (Kow©) I 1 (Ko,0))]

Kov Koop 2 I (kg2uma)

Td

wey A
m [Jm—l(kQVQ)Km—l(kQQNQ) + Jm+1(kQVQ)Km+1(kg2uQ)]
ke A
M—S [Jm—l(kng)Im—l(kQQH(Q) - Jm+1(kQVQ>Im+1 (kQ2,uQ)]
Im(kQQ#T’(D
ke A
+ _ w6 [Jmfl(kQVQ)Kmfl(katQ) - Jm+1 (kng)Kerl (lﬂgng)] ng (A59)
Km(ké’?,urd)

Schlieflich konnen die Integrationen durch (A.104) und (A.105) gelost werden, mit dem



A.3. Uberlappintegrale abrupter Wellenleiteriiberginge 163

Ergebnis
(Ir) W o 1
Q= =50 k2, + k2
ovkoop Koy + 024

Q * * *
m (W€2A2 + /fz,/lg)) [/fgujmﬁ(kgu@)[ (kng) kgzujm—l(kg:/@)[ (7%2#@)}

_ 4 * Ak
+ Im(kg2urd) (W€2A2 - kz,uAB) [kQVJm(kQVQ>Im+1 (kg2ug) — kgg'ut]m+1(kgyg)[m(k92ug)]

‘Q * * *
YK ) (oo d) (wea A5 + k2, A7) [kQVJmfz(kgyg)Km,l(kgzug)+k92ujm,l(kgyg) K, (kQQ#Q)]

Ts

Q * * *
+m (W52A3 - kzMAG) |:kgl/']m<kgl/Q)Kerl<k92u9)+k92ujm+1(kQVQ)Km<kQQ,uQ)]

Td

(A.60)

Wiederum wurden der Ubersichtlichkeit wegen die Integrationsgrenzen nicht eingesetzt.

Der Wert des Uberlappintegrals ergibt sich aus der Summe

QU = Q) +Qln). (A.61)
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A.4. Erganzung zum Kapitel 4.4.4 fiir die
Mantelbrechzahl n, = 1,56

Die Untersuchungen zur Koppeleffizienz bei gleichméafiger Verkleinerung des Kern- und des
Strahldurchmessers im Kapitel 4.4.4 beschrinken sich auf Wellenleiter mit der numerischen
Apertur NA = 0,25 (ny = 1,55). Obwohl dieser Wert im Kontext der EOPCB-Technologie
tiblich ist, lasst sich nicht génzlich auszuschlieffen, dass in zukiinftigen Anwendungen auch
Wellenleiter mit kleinerer N A eingesetzt werden. Aus diesem Grund wurden die Simu-
lationen des Kapitels 4.4.4 mit verkleinerter Mantelbrechzahl ny, = 1,56 wiederholt. Die
Gesamtanzahl gefithrter Fasermoden wird damit geméf Tabelle 4.1 etwa halbiert.

Zunachst gilt es wiederum sicher zu stellen, dass die Koppeleffizienz bei gleichméafiger
Verkleinerung des Kern- und des Strahldurchmessers nicht zu stark variiert. Analog zur
Abbildung 4.5, welche die Ergebnisse fiir ny = 1,55 darstellt, zeigt Abbildung A.1 die

100 ‘ | 100
90 d/pm =90 — _ 90
80 o 80
70t o 70
n 60 - 30 —— - n 60~
% 50 F 15 - : % 50 -d/pm = 90 —
40 F - 40 - 75 -
30 + : 30 |- Sg ”””
20 + — 20 30 ——
10 . 10 - 15 - i
O | | O | | | |
0° 5° 10° 15° 20° 1
W
100
— 0FE._
- 80 o =a -
- 70 .
e A n 60 f
,,,,, _ % 50 _
I 40 i
_ 30 _
] 20 -
y i 10 SN
e B s o 0002 04 06 08 1
0 5 1g 15 20 : A :
(¢) d/b=1,0 () d/b=1,0

Abbildung A.1.: Die Koppeleffizienz bei gleichméfiger Verkleinerung des Kerndurchmes-
sers d und des Strahldurchmessers b. (a),(c): in Abhéngigkeit des Einfalls-
winkels 9. (b),(d): in Abhéngigkeit der lateralen Verschiebung h.
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Ergebnisse fiir ny = 1,56. Wie zuvor ldsst sich die gesamte Anordnung weitestgehend
skalieren, mit den bereits genannten Einschrankungen.

Bevor die Entwicklung des Fehlers im strahlenoptischen Modell analog zum Kapitel 4.4.4
untersucht wird, soll kurz die Erwartungshaltung rekapituliert werden. Die Abbildun-
gen 4.17b und 4.17d zeigen bereits allgemeine Ergebnisse fiir unterschiedliche N A eines
Wellenleiters mit dem Durchmesser d = 70 pm. Insbesondere fiir sehr kleine N A weisen die
Graphen der wellentheoretischen Simulation deutliche lokale Oszillationen auf, die in kei-
nem Fall von einem strahlenoptischen Modell nachgebildet werden kénnen. Infolgedessen
ist auch durch die Beriicksichtigung der Goos-Hénchen-Verschiebung keine Verbesserung
zu erwarten, da die strahlenoptisch errechnete Koppeleffizienz in einigen Féllen deutlich
grofere Werte annimmt als die wellentheoretische Referenz. Fiir ny = 1,56 zeigt Abbil-
dung 4.17b jedoch noch eine gute Ubereinstimmung auf, so dass dieser Fall hier noch
einmal naher untersucht wird.

Abbildung A.2 zeigt die Ergebnisse fiir das Verhéltnis Kerndurchmesser zu Strahldurch-
messer gleich d/b = 1,5. Alle weiteren Parameter sind analog zu denen in Abbildung 4.20

0,008 - 0,008
0,006 ' = 0,006
0,004 0,004 |
0,002 0,002 pows
6 0 b= 5 0
0,002 ; -0,002
0,004 . -0,004 - O e
0,006 | T . -0,006 |- .
-0,008 | | | | -0,008 | | | |
o 10 20 30 10 5o )0 o 2 30 10 e
] ]

(a) Abhéingigkeit von ¢, Methode STRAHL (b) Abhéngigkeit von ¢, Methode STRAHL CGH
0,008 0,008
0,006 |- . 0,006 |- .
0,004 - . 0,004 .
0,002 | . 0,002 k.. oo
5 0k 5 0
-0,002 -0,002 .
-0,004 -0,004 .
0,006 = -0,006 | .
-0,008 L T ‘ = -0,008 ‘ : ‘

0 0,05 0,1 0,15 0,2 0 0,05 0,1 0,15 0,2
h)b h/b
(c) Abhéngigkeit von h, Methode STRAHL (d) Abhingigkeit von h, Methode STRAHL CGH

Abbildung A.2.: Relative Abweichung 0, fiir d/b = 1,5. Die Legende in Abbildung (b) ist
fiir alle Abbildungen giiltig.
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definiert. Der relative Fehler 9, nimmt im Vergleich zu Abbildung 4.20 insgesamt deutlich
grofere Werte an, bleibt jedoch fiir d > 30 pm stets kleiner als 0,006 und steigt auch fiir klei-
ne Kerndurchmesser nur méafig an. Die Berticksichtigung der Goos-Hénchen-Verschiebung
verspricht nur im Fall der lateralen Verschiebung h der Strahlachse eine leichte Verbes-
serung im Mittel. Insbesondere fiir grofe Einfallswinkel 9 zeigt sich jedoch eine deutliche
Erhohung der Abweichung. Der Fehler im strahlenoptischen Modell ist jedoch insgesamt
im Mittel deutlich kleiner als 1% und damit in einem akzeptablen Bereich. Es muss zudem
beachtet werden, dass eine Verdrehung der Strahlachse um 5° aufgrund der kleineren N A
bereits einen Grenzwert darstellt. Grofere Einfallswinkel fithren bereits zu einer deutlichen
Abnahme der Koppeleffizienz, vgl. Abbildung A.la.

Die Ergebnisse fiir das Verhéltnis Kerndurchmesser zu Strahldurchmesser gleich d/b = 1,0
sind in Abbildung A.3 dargestellt. Sie korrespondieren hinsichtlich der verbleibenden Pa-
rameter mit denen in Abbildung 4.21 und auch der relative Fehler im strahlenoptischen
Modell bewegt sich in derselben Grofenordnung. Wie zuvor fiir no = 1,55 fithrt die Be-
riicksichtigung der Goos-Hanchen-Verschiebung zu einer deutlichen Reduktion des mittle-
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Y
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h/b h/b
(c¢) Abhingigkeit h, Methode STRAHL (d) Abhéngigkeit h, Methode STRAHL CGH

Abbildung A.3.: Relative Abweichung 0, fiir d/b = 1,0. Die Legende in Abbildung (b) ist
fiir alle Abbildungen giiltig.
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ren Fehlers. Lediglich fiir grofse Einfallswinkel kommt es wiederum zu einem Anstieg. Fiir
Einfallswinkel ¥ < 3° und insbesondere bei ausschliefllicher Verschiebung der Strahlach-
se nimmt die Abweichung selbst fiir den kleinsten Kerndurchmesser einen Maximalwert
0, < 0,015 an. Im Mittel bleibt sie deutlich darunter, so dass das getroffene Fazit fiir
die NA = 0,25 hinsichtlich der Anwendbarkeit strahlenoptischer Verfahren auch fiir die
NA = 0,177 (ny = 1,56) seine Giiltigkeit behalt.
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A.5. Mathematische Hilfsmittel

A.5.1. Grundlagen
Zahlenmengen

Es werden die Mengen
N natiirliche Zahlen: 0,1,2,3, ...
Z ganze Zahlen: ... —2,—1,0,1,2,...
R reelle Zahlen: z.B. 2 = 1/4 (rationale Zahl) oder y = /2 (irrationale Zahl)
C komplexe Zahlen: z = z + jy
unterschieden.

In der obigen Beschreibung wird der Menge der natiirlichen Zahlen auch die Null zuge-
ordnet. Es ergibt sich aus dem Kontext, ob diese Zuordnung sinnvoll ist. Beispielsweise
geht der TEM-Mode der Parallelplattenleitung fiir v = 0 aus den TM-Moden hervor. Fiir
TE-Moden verbleibt mit ¥ = 0 dagegen nur die triviale Nulllésung, vgl. (3.12).

Komplexe Konjugation

Die Konjugation einer komplexen Grofse wird durch
2f=x—jy (A.62)
gekennzeichnet. Daraus abgeleitet folgt
R{z} =1(z+2)=2 und S{z}= %(2 -2 =y. (A.63)

In Matrixgleichungen tritt zusétzlich zur Konjugation oft gleichzeitig eine Transposition
auf. Man erhélt so die adjungierte Matrix

Q" =(Q)". (A.64)

Elementweise gilt

Operatoren
Die folgenden Operatoren werden exemplarisch in kartesischen Koordinaten angegebenen.
Fiir krummlinige Koordinaten empfiehlt sich u.a. [8, 50].

Nabla-Operator:
(A.66)
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Gradient, Divergenz und Rotation:
ou ou ou
= d = e —_— o —_— e, - A
VU = gradU = é, e + €y, o + €, 5 (A.67)
- - 0A 0A 0A
A=divA = "= Y £ A.
\V4 v e + 3y + Ep (A.68)
> > 0A 0A 0A 0A 0A 0A
A — tA — —»I z _ _y — x _ z —»Z _y _ xT A_69
VX o e(ay 8z)+ey(8z 8x>+ (&U Gy) ( )
Laplace-Operator:
0?’U  0*U  0*U
AU =V - = A.
U=V.-VU 92 + e + 9. (A.70)
Vektoridentitat:
VXVxA=V(V-A)—AA (A.71)

In vielen Problemstellungen dieser Arbeit sind die verbleibenden Grofsen lediglich abhéngig

von den transversalen Koordinaten
Ty = €xT + €yY.
Analog dazu wird der transversale Nabla-Operator

_0 _ 0
Vt = 6x£+€ya—y

definiert und in den Beziehungen (A.67) - (A.70) verwendet.

Die Fouriertransformation

Die Fouriertransformierte des Signals f(t) ist gegeben durch
) = [ 10 exp(-jut) do

Es folgt fiir die Riicktransformation

(A.72)

(A.73)

(A.74)

(A.75)
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Funktionsdefinitionen

Sprungfunktion:

Kronecker-Delta:

Ausblendeigenschaft der Dirac-Distribution:

/_Zé(x—xo)f

A.5.2. Besselfunktionen

0<t

o (A.76)
W=1v

s (A.77)
() dz = f(zo) (A.78)

Im Folgenden werden die Besselfunktionen ganzzahliger Ordnung vorgestellt, wie sie fiir
die Beschreibung der Fasermoden bendétigt werden. Viele der Zusammenhange behalten
jedoch auch im Fall einer beliebigen reell- oder komplexwertigen Ordnung ihre Giiltigkeit.
Fiir eine umfassende Einfithrung sei auf [2] und [74] verwiesen.

Einteilung

Es wird unterschieden zwischen

In(2); Nu(2)
In(2), Ky (2),

)

gewohnliche Besselfunktionen (1. und 2. Art),
modifizierte Besselfunktionen (1. und 2. Art),

H,Sl)(z), HT(LQ)(z), Hankelfunktionen (Besselfunktionen dritter Art),

mit z € C und hier n € N.

Die gewohnlichen Besselfunktionen und die Hankelfunktionen sind iiber

HD(2) = Ju(2) + jNa(2)
miteinander verkniipft. Dariiber hinaus gilt

I(z) = (=j§)"Tu(jz)

Jo(z) — N, (2) (A.79)

(A.80)

Nachfolgend steht ¥, und U, fiir eine beliebige gewthnliche Besselfunktionen J,, oder N,
und T, fiir die modifizierte Besselfunktion I,, oder (—1)"K,,.
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Abbildung A.4.: Funktionsverlaufe gewohnlicher Besselfunktionen.

Negative Ordnung
Uon(2) = (=1)"Un(2) T_n(2) = Tu(z)

Rekursion und Differenziation

Vs () 4 V() = 20(2), Taale) = Y (2) = o (2).

U, 1(2) = Wia(2) = 20 (2) T, 1(2) + Tosa (2) = 205(2),

W, () = Uooa(2) = S0 (2), T)(2) = Toea(2) = ZT(2).

W () = =W () + 0 (2), T)(2) = Yo (2) + 2 Ta(2).
Up(z) = —Ui(2) , I(z)=NL(z) , Kj(z)=—Ki(z)

Weitere abgeleitete Zusammenhinge

W2 + () = (024 () + 9 (2)

V() Wa(2) + 2 Ta(2)Ta(2) =

N —

(V1 (2)Wpo1(2) + Vi1 (2) Vi1 (2))

(Tn1(2) W0 1(2) = Vg1 (2) Urga (2))

|~ N

()W (2) + S V() Fa(2) =

n2

T2(2) + —Ti(z) =

22"

(Tifl () + Tiﬂ(z))

(A.81)

(A.87)

(A.88)

(A.89)
(A.90)

(A.91)

(A.92)
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A.5.3. Integrale

An dieser Stelle sind einige fiir diese Arbeit wichtige Integralausdriicke aufgelistet. Um-
fangreiche Integraltafeln befinden sich z.B. in [20].

Integrale iiber die kreiszylindrische Koordinate ¢

2w

[ e Fiwcoste) + ysin(e)) do = 257+ 5P) (A.95)
_/ cos(ip) cos(rocos(yp)) dp =0 (A.96)

j cos(ip) sin(rocos(¢)) dp = 21, (o) (A.97)

] sin(ip) cos(rg cos(ip)) dp = 0 (A.98)

] sin() sin(ro cos(y)) dyp = 0 (A.99)

—Tr

Unbestimmte Integrale mit Besselfunktionen

Im Folgenden ist ¢ eine beliebige Besselfunktion, ¥ und U sind beliebige gewohnliche
Besselfunktionen und ® bzw. ® sind beliebige modifizierte Besselfunktionen. Weiter gilt
hier o, € R.

22

[ Ga2)zdz = 5 (Gax) = Grilaz)Gn(a2) (A.100)
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~ B z(—a@n,l(az)\in(ﬁz) + ﬁ@n(az)@n,l(ﬁz))
/\Iln(az)\lln(ﬁz)z dz = o — 3

/\I/n(az)\fln(ozz)z dz = ZZ(ZWn(az)\T!n(az) — U, 1 (a2)¥, 1 (az)

- \IJnH(az)\Tln_l(az))

/Cbn(az)&)n(az)z dz = ZZ (2<I>n(az)<fn(az) + @, (a2) P (02)

+ <Dn+1(az)<bn_1(az))

B —z(aW,_1(az)1,(82) — BY,(az)],—1(82))
/\I/n(ozz)ln(ﬁz)z dz = ot 3

—z(aV, 1 (az) K, (Bz) + fU,(az) K,—1(82))

/\Ifn(az)Kn(ﬁz)zdz = PERNE

(A.101)

(A.102)

(A.103)

(A.104)

(A.105)
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Abkurzungen, Konventionen und
verwendete Symbole

Abkiirzungen

Allgemein:

Cut-Off
EOPCB

PEC
VCSEL

TE/M

Grenze des Bereichs der gefiihrten Moden; definiert auf Seite 35.

Elektro-Optische Leiterplatte

(Englisch: Electro-Optical Printed Circuit Board).

Perfekter elektrischer Leiter (Englisch: Perfect Electric Conductor).
Halbleiterlaser, der senkrecht zur Ebene des Halbleitermaterials ab-
strahlt (Englisch: Vertical-Cavity Surface-Emitting Laser).
Transversal Elektrisch/Magnetisch

Strahlenoptische Methoden:

STRAHL
STRAHL GH
STRAHL CGH
STRAHL TV
STRAHL TV CGH

Klassische strahlenoptische Vorgehensweise ohne Zusétze.
Beriicksichtigung der Goos-Hénchen-Verschiebung.
Beriicksichtigung der minimalen Goos-Hénchen-Verschiebung.
Beriicksichtigung von Tunnelverlusten (gekriimmte Grenzflichen).
Kombination der Methoden STRAHL TV und STRAHL CGH.

Wellentheoretische Methoden:

WELLE
WELLE MA
QGM

Allgemeiner Ansatz auf Basis der exakten Losung.
Néaherungslosung von Marcatili fiir Rechteck-Wellenleiter.

Néherungslosung fiir gekriimmte Wellenleiter auf Basis quasigefiihr-
ter Moden.

Allgemeine Konventionen

e Vektoren des dreidimensionalen Raums werden durch einen Pfeil gekennzeichnet,

2B. E.

e Vektoren und Matrizen des allgemeinen mehrdimensionalen Raums werden fett dar-

gestellt, z.B. Q.

e Feldgrofen im Frequenzbereich werden durch einen Unterstrich gekennzeichnet, z.B.
E. Ggf. wird auf diese Kennzeichnung verzichtet, sofern sich die Gréfen eindeutig
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auf den Frequenzbereich beziehen.

Die Abhéngigkeiten der Feldgrofen werden im Allgemeinen nur einmalig bei der Defi-
nition angegeben. So wird z.B. die Frequenzabhéngigkeit der komplexen Amplituden
nur initial in Kapitel 2.1 angegeben.

Einheitsvektoren werden durch € gekennzeichnet. Ein zusétzlicher Index kennzeich-
net:

x,y,2 kartesisches Koordinatensystem
0,p,z kreiszylindrisches Koordinatensystem
k Komponente in Ausbreitungsrichtung einer Welle
t Komponente transversal zur Ausbreitungsrichtung einer Welle
S Ausbreitungsrichtung eines Strahls
g Normalenvektor einer Grenzflache

Analog zur Indizierung der Einheitsvektoren wird auf die Komponenten eines Vektors
zuriickgegriffen, z.B. F, =€, - E.

Der Index 7 kennzeichnet stets Grofsen, die ausschliefslich in einem bestimmten Raum-
teil giiltig sind.

Indices konnen kombiniert werden, z.B. ko ist die z-Komponente des Vektors k im
Raumteil 2.

Nachfolgend werden die wichtigsten Formelzeichen aufgelistet, die von zentraler Bedeutung
sind oder kapiteliibergreifend verwendet werden. Zusétzlich wird der Ort des erstmaligen
Auftretens angegeben. Nichtaufgelistete Symbole besitzen nur lokale Giiltigkeit und erge-
ben sich aus dem Kontext.

Lateinische Formelzeichen

Apip,.. 6y  Konstanten im Separationsansatz zur Herleitung der Modenspektren,

Glg. (3.14)

a, a3 Mantelschichtdicke des Schichtwellenleiters, Abb. 3.2b

Gewichtungsfunktion des Modenspektrums des gekriimmten Wellenleiters,
Glg. (5.36) bzw. (5.44)

Magnetische Flussdichte, Glg. (2.1b)

Durchmesser des Gaufstrahls, b = 2w, Glg. (2.42)

Amplitude eines Modes, Glg. (2.50)

Lichtgeschwindigkeit im Vakuum, Seite 32

Lichtgeschwindigkeit im Medium, Seite 32

Koeffizienten in der Fourierreihe des Modulationssignals, Glg. (5.2)

Vektor mit Eintrdgen C,, Glg. (2.83)

Elektrische Flussdichte, Glg. (2.1a)

Durchmesser des Faserkerns bzw. Kerndicke des Schichtwellenleiters, Abb. 3.2b
Elektrische Feldstérke, Glg. (2.1c)
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Eo
fm
Ip
fw
S

Konstante Amplitude einer Welle, Glg. (2.17)
Fehlermafs, Kontrolle der Randbedingungen, Glg. (4.30)
Fehlermafs, Einfluss der paraxialen Néherung, Glg. (4.26)
Fehlermaf, Einfluss des leitenden Schirms, Glg. (4.28)
Frequenzvariable, Abb. (5.4)

Frequenzspektrum von ¢(t)

periodisches Modulationssignal, Glg. (5.2)

Magnetische Feldstarke, Glg. (2.1d)

Hankelfunktion 1.Art der Ordnung m, Glg. (5.33)

Hankelfunktion 2.Art der Ordnung m, Glg. (5.33)

Ubertragungsfunktion des lingshomogenen Wellenleiters, Glg. (5.22)
Ubertragungsfunktion des linearisierten Systems, Glg. (5.29)

laterale Verschiebung des Gaufistrahls, Abb. 4.1

modifizierte Besselfunktion 1. Art der Ordnung m, Glg. (3.28)

modaler Strom, Glg. (2.59)

Uberlappintegral, Glg. (5.63)

Vektor mit Eintrdgen I,, Glg. (2.73)

Elektrische Stromdichte, Glg. (2.1d)

gewohnliche Besselfunktion 1. Art der Ordnung 0, Glg. (2.31)

gewohnliche Besselfunktion 1. Art der Ordnung 1, Glg. (2.32)

gewohnliche Besselfunktion 1. Art der Ordnung m, Glg. (3.27)

imaginédre Einheit, Glg. (2.3d)

Flachenstromdichte, Glg. (2.11b)

modifizierte Besselfunktion 2. Art der Ordnung m, Glg. (3.28)

Wellenzahl des Vakuums k = w,/2ofio, Glg. (2.7)

charakteristische Grofse eines quasigefiihrten Modes des gekriimmten Wellen-
leiters, k = 1/a, Glg. (5.64)

spezifische Wellenzahl k = ko, /g,, Glg. (2.8)

Wellenvektor mit |lg| =k, Glg. (2.17)

Linge eines geraden Wellenleiterelements, Abb. 5.3

ohne Index: kontextabhéngige Summationsgrenze, z.B. Glg. (2.122)
maximale azimuthale Modenzahl m der zylindrischen Faser in der noch ein
gefithrter Mode existiert, Seite 56

azimuthale Modenzahl, Glg. (3.26)

gewohnliche Besselfunktion 2. Art der Ordnung m, Glg. (3.27)

Numerische Apertur NA = \/n? — n3

ohne Index: kontextabhéngige Summationsgrenze, z.B. Glg. (2.123)

Anzahl gefiihrter Moden der kreiszylindrischen Faser, Seite 56

Anzahl gefiihrter Moden des rechteckformigen Wellenleiters, Seite 56

Anzahl gefithrter Moden des Schichtwellenleiters, Seite 56

Gesamtanzahl berticksichtigter Moden in einer Rechnung, Glg. (4.4)
Brechzahl n;, = /6., Glg. (2.9); in dieser Arbeit konstant: n; = 1,57
(Ausnahme Kapitel 5.2.5: Abb. 5.8 und 5.9)

effektive Brechzahl n.g = k. /kq, Seite 35

zeitlich gemittelter Leistungsfluss durch eine Fliche z = konstant, Glg. (2.41)
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P zeitlich gemittelter Leistungsfluss pro Langenabschnitt Ay bzw. Az, Glg. (5.42)
?lyg Skalarprodukt zur Charakterisierung des Modenspektrums des gekriimmten
Schichtwellenleiters, Glg. (5.52)

Py Ausgangsleistung nach Durchlaufen einer Wellenleiterkriimmung bei auf ein
Watt normierter Eingangsleistung, Abb. 5.10

P, spezifische gefiihrte Leistung eines Modes, Glg. (2.63)

P, zeitlich gemittelte Verlustleistung, Glg. (2.16)

P Leistung gefiihrt durch einen elementaren Strahl, Glg. (2.127)

P= akkumulierte Leistung des Modenspektrums bzw. einer Strahlschar, Glg. (4.29)

Dy zeitlich gemittelte Verlustleistungsdichte des elektrischen Feldes, Glg. (2.12)

D tiefpassgefilterter Leistungsfluss im Wellenleiter, Glg. (5.15)

Dn Koeffizienten der Fourierreihe von p, Glg. (5.16)

Q. Wert des Skalarprodukts zur Definition der Modenorthogonalitdt im Fall ver-
lustfreier Materialien; es gilt Q, = 2P,, Glg. (2.63)

Qup Erweiterung des Skalarprodukts (), zur Beriicksichtigung von Moden unter-
schiedlicher Wellenleiter (Koppelkoeffizienten), Glg. (2.69)

Q Matrix mit Inhalten @Q,,, Glg. (2.73)

Rp Leistungs-Reflexionsfaktor fiir ebene Wellen am dielek. Halbraum, Glg. (2.100)

R(o) Funktion im Separationsansatz, Glg. (3.24)

R Kriimmungsradius der Phasenfronten des Gaufsstrahls auf der Ausbreitungs-
achse, Glg. (2.39)

R mittlerer Radius der Wellenleiterkriimmung, Abb. 5.5

R~ Innenradius der Wellenleiterkriimmung, Abb. 5.5

Rt Aufenradius der Wellenleiterkriimmung, Abb. 5.5

d allgemeiner Aufpunkt (Ortsvektor), Glg. (2.1a)

7 transversaler Ortsvektor 7, = 77— €,2, Glg. (2.38a)

T4 Radius des Faserkerns, Abb. 3.4a

Ts Radius des leitenden Schirms, Abb. 3.4b

rE Reflexionsfaktor fiir ebene Wellen am dielektrischen Halbraum, Glg. (2.95)

S, Leistungsflussdichte (Poyntingvektor), Glg. (2.12)

S, tiefpassgefilterte z-Komponente der Leistungsflussdichte, Glg. (5.13)

S Hilfsgrofse im strahlenoptischen Modell, Glg. (2.87)

Sin Kennzeichnung eines Strahls innerhalb einer Strahlschar, Seite 31

S Durchmesser bzw. Plattenabstand des leitenden Schirms, Abb. 3.2a

T Spektralfunktion nach der Zerlegung in ebene Wellen, Glg. (2.22)

Tr Leistungs-Transmissionsfaktor fiir ebene Wellen am dielektrischen Halbraum,
Glg. (2.99)

T verallgemeinerter Leistungs-Transmissionsfaktor fiir den Fall der Totalreflexion
und gekriimmte Grenzflachen, Glg. (2.107)

T Grundperiode der Fouriersumme, Glg. (5.2)

t Zeitvariable, Glg. (2.1a)

tr Transmissionsfaktor fiir ebene Wellen am dielektrischen Halbraum, Glg. (2.96)

V. modale Spannung, Glg. (2.58)

v Vektor mit Eintragen V,,, Glg. (2.73)

v Gruppengeschwindigkeit des Modes v, Glg. (5.25)
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Griechische

(07

By

Wo

Einhiillende des Gaukstrahls, Glg. (2.35)

Radius des Gaukstrahls, Glg. (2.39)

minimaler Radius des Gaufstrahls in der Strahltaille, Glg. (2.24)

zeitlich gemittelte Energiedichte des elektrischen Feldes, Glg. (2.12)
zeitlich gemittelte Energiedichte des magnetischen Feldes, Glg. (2.12)
Léange eines geraden Wellenleiterelements vor einer Kriimmung, Abb. 5.5
Eindringtiefe abgeleitet aus der Goos-Hénchen-Verschiebung, Abb. 2.5
minimale FEindringtiefe abgeleitet aus x, Glg. (4.32)

Wellenwiderstand Z = /po/e , Glg. (2.19)

Rayleigh-Lénge des Gaufsstrahls, Glg. (2.35)

Konstante zur Definition einer beliebigen Ebene z = konstant, Glg. (2.62)
longitudinale Verschiebung der Taille des Gauftstrahls, Tab. 4.2
longitudinale Goos-Héanchen-Verschiebung eines Strahls, Abb. 2.5

Formelzeichen

Déampfungskonstante eines quasigefithrten Modes, a = 1/k, Seite 122
Charakteristische Grofse zur Beschreibung des Modenspektrums des gekriimm-
ten Wellenleiters, Glg. (5.54)

Dirac-Distribution, Glg. (5.76)

Kronecker-Delta, Glg. (2.62)

Permittivitat des Vakuums, Glg. (2.2)

Relative Permittivitét, Glg. (2.2)

Koppeleffizienz, Glg. (4.24)

lokaler Divergenzwinkel des Gaufsstrahls, Glg. (4.3)

asymptotischer Divergenzwinkel des Gaukstrahls, Glg. (2.45)

Kritischer Winkel sin(©,.) = N A, Seite 56

Winkel um den der Gaufstrahl gedreht wird, Abb. 4.1

Winkel um den eine ebene Welle gedreht wird, Abb. 2.3

kritischer Winkel bei Verdrehung des Gaufstrahls, Glg. (4.25)

Elektrische Leitfahigkeit, Glg. (2.2)

Wellenlédnge, in dieser Arbeit bei monochromatischer Anregung konstant gleich
850 nm (Ausnahme Kapitel 5.2.5: Abb. 5.8 und 5.9), Glg. (2.48)
Permeabilitdt des Vakuums, Glg. (2.2)

relative Permeabilitit, Glg. (2.2)

Modenzahl, Integer in den Kapiteln 2 und 4, komplexwertig im Kapitel 5
Eigenwert eines quasigefithrten Modes, Tabelle 5.1

Eigenwert einer Leckwelle, Tabelle 5.1

Elektrische Raumladungsdichte, Glg. (2.1a)

Radius einer gekriimmten Grenzfliche, Abb. 2.3

Flachenladungsdichte, Glg. (2.11c)

Funktion im Separationsansatz, Glg. (3.24)

skalare Komponente des elektrischen oder magnetischen Feldes, Glg. (2.87)
Grundfrequenz der Fouriersumme, Glg. (5.2)

Frequenzvariable (Kreisfrequenz), Glg. (2.3)

Tragerfrequenz mit A = 850 nm, Glg. (5.1)
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Operatoren

Siehe auch Anhang A.5.1.

Laplace-Operator, Glg. (2.10)

Vektoroperator zur Beschreibung des Maxwellschen Gaufstrahls, Glg. (2.26)
Nabla-Operator, Glg. (2.1)

Realteil-Operator, ®#{z + jy} = =, Glg. (2.16)

Imaginérteil-Operator, S{z + jy} = vy, Seite 18

@B D

Spezielle Indices

Unten:
ERT Einfallende, reflektierte oder transmittierte Teilwellen, Abb. 2.3
v, € Modenzahlen, Integer in den Kapiteln 2 und 4, komplexwertig in Kapitel 5,
Glg. (2.50)
Oben:
M Feldgrofe des Maxwellschen Gaufsstrahls, Glg. (4.26)
P Feldgrofe des paraxialen Gaufsstrahls, Glg. (4.26)
TE Die elektrische Feldstarke besitzt keine Komponente in Ausbreitungsrichtung,
Glg. (2.99)
M Die magnetische Feldstdarke besitzt keine Komponente in Ausbreitungsrich-
tung, Glg. (2.101)
() Quasigefiihrter Mode des gekriimmten Wellenleiters, Glg. (5.80)
(1) Teilraum linksseitig der Schnittstelle, Glg. (2.68)

(=10),(+1) Teilraum linksseitig der Schnittstelle; Wellenausbreitung in longitudinal nega-
tiver (—I) bzw. positiver (+{) Richtung, Abbildung 2.2

(r) Teilraum rechtsseitig der Schnittstelle, Glg. (2.68)

(—7),(+r) Teilraum rechtseitig der Schnittstelle; Wellenausbreitung in longitudinal nega-
tiver (—r) bzw. positiver (+r) Richtung, Abbildung 2.2

(Ir), (rl)  Kennzeichnung von Uberlappintegralen, Glg. (2.69)

Sonstige

Die nachfolgenden Symbole kennzeichnen Modenfunktionen, welche die Abhéngigkeit der
Feldgrofse von den jeweils transversalen Koordinaten beschreibt.

E.E elektrische Feldstiarke des gekriimmten Schichtwellenleiters, Glg. (5.49)
EE elektrische Feldstérke eines geraden Wellenleiters, Glg. (2.50)
H,H magnetische Feldstarke des gekriimmten Schichtwellenleiters, Glg. (5.49)

ﬂ,ﬂ magnetische Feldstérke eines geraden Wellenleiters, Glg. (2.50)
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