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1. Einleitung

Seit der Entwicklung des Lasers im Jahr 1960 gewinnt die optische Datenübertragung
stetig an Bedeutung. Optische Singlemode-Fasern bilden seit langem das Rückgrat im
Weitverkehrsnetz unserer Kommunikationsgesellschaft. Mit Hilfe von Multimode-Fasern
werden kürzere Strecken überbrückt. Die Anwendungen sind vielseitig: Feldbus-Systeme
in der Automatisierungs- und Gebäudetechnik, optische Messsysteme oder auch die HiFi-
Anlage mit optischen Ein- und Ausgängen seien hier genannt. Innerhalb geschlossener
elektronischer Systeme dominiert jedoch immer noch die konventionelle elektrische Ver-
bindungstechnik. Zwar existiert mit der Integrierten Optik eine Technologie zum Aufbau
integrierter optischer Schaltkreise (PIC, Photonic Integrated Circuit), vergleichbar mit den
herkömmlichen integrierten Schaltungen (IC). Die Einbettung optischer Wellenleiter in die
herkömmliche elektrische Leiterplatte steht jedoch noch aus.

1.1. Motivation und Zielsetzung

Obwohl die Taktraten innerhalb moderner Computersysteme nicht mehr so stark anstei-
gen wie in den vergangenen Jahrzehnten und auch das Mooresche Gesetz für zukünftige
Anwendungen seine Gültigkeit verlieren wird, ist weiterhin mit einem stetig steigenden Da-
tenaufkommen auf Leiterplattenebene zu rechnen. Grund ist die steigende Parallelisierung
der Recheneinheiten. Da ist zum Einen die Integration mehrerer Prozessorkerne auf einem
Chip zu nennen, zum Anderen die Einbettung mehrerer Prozessoren in einem System. Der
letztgenannte Fall bezieht sich auf Serversysteme, z.B. Bladeserver bzw. Bladesysteme.
Diese arbeiten schon heute mit Datenraten von bis zu 10Gb/s und stoßen damit an die
Grenzen der konventionellen elektrischen Übertragungstechnik.

Die Vorteile der optischen Übertragungstechnik sind hinlänglich bekannt. Neben der ge-
ringeren Störempfindlichkeit und Störaussendung liegt der entscheidende Vorteil in der
deutlich größeren Bandbreite. Der Nachteil ist der weit größere technologische Aufwand.
Zwar hat die Entwicklung erster Prototypen in den vergangenen Jahren gezeigt, dass die
Fertigung elektrooptischer Leiterplatten (EOPCB, Electro-Optical Printed Circuit Boards)
technologisch grundsätzlich möglich ist [22, 29, 42, 48]. Dabei wird die herkömmliche mehr-
lagige elektrische Leiterplatte um eine oder mehrere optische Lagen ergänzt. Der Eingriff in
den standardisierten Fertigungsprozess ist jedoch massiv. Insbesondere die optische Durch-
kontaktierung, die optische Ein- und Auskopplung in die Leiterplatte, ist problematisch.
Sofern keine seitliche Anbindung möglich ist, muss die optische Welle um 90◦ umgelenkt
werden. Die dazu erforderliche Umlenkoptik, die in die Leiterplatte eingebracht werden
muss, besteht in der Regel aus einem Spiegel kombiniert mit einem Linsensystem Alter-
nativ könnten flexible gebogene Wellenleiter eingesetzt werden [12]. Problematisch sind in
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2 Kapitel 1. Einleitung

beiden Fällen die gegenüber der elektrischen Technologie verringerten Toleranzen bei der
Positionierung der optischen Komponenten.

Aufgrund des im Vergleich zur optischen Trägerwelle niedrigen Frequenzbereichs, in dem
elektrische Mikrostreifenleiter betrieben werden, gibt es zahlreiche effiziente numerische
Verfahren zur Simulation der Wellenausbreitung entlang Mikrostreifenleiterstrukturen.
Entsprechend sind umfangreiche kommerzielle Entwicklungswerkzeuge für den Entwurf
elektrischer Schaltkreise am Markt verfügbar. Gänzlich anders verhält es sich im Bereich
der optischen Wellenleiter, da aufgrund der kleinen Wellenlänge numerische Verfahren oft
nicht effizient sind. Zwar existieren Simulationsumgebungen für den Entwurf einzelner oder
einer Kombination mehrerer Komponenten wie z.B. Linsensysteme. Diese beruhen jedoch
meist auf strahlenoptische Methoden1. Die Grenzen der Anwendbarkeit dieser strahlenop-
tischen Methoden ist bislang nicht hinreichend geklärt. In der Literatur wird das Problem
meist nur umschrieben: ‚Die Wellenlänge sei klein gegenüber der kleinsten geometrischen
Abmessung‘. Doch wie ist diese Aussage im Kontext der EOPCB-Technologie zu inter-
pretieren? Die vorliegende Arbeit soll dieser Fragestellung einige quantitative Antworten
geben. Die relevante Geometriegröße ist der Durchmesser des optischen Wellenleiters.

Da die EOPCB-Technologie noch nicht am Markt eingeführt wurde, gibt es bisher wenige
fixe Spezifikationen für die eingebetteten optischen Wellenleiter. Aufgrund der Toleran-
zanforderungen werden in der Regel Multimode-Wellenleiter mit Querschnittsabmessun-
gen im Bereich zwischen 50 µm und 100 µm und einem Stufenindexprofil eingesetzt. Die
numerische Apertur NA liegt typischerweise bei 0,25. Aber auch kleinere Abmessungen
bis hin zum Singlemode-Wellenleiter sowie Gradientenprofile sind grundsätzlich denkbar.
Der ideale Kernquerschnitt ist fertigungsbedingt rechteckförmig, unterliegt aber den übli-
chen produktionstechnischen Schwankungen, so dass sich trapezförmige Querschnitte oder
abgerundete Ecken ausbilden können. Um ein wellentheoretisches Referenzverfahren zu
entwickeln, muss jedoch auf Wellenleiterquerschnitte zurückgegriffen werden, für die Feld-
lösungen bekannt sind. Daher beschränkt sich diese Arbeit im Wesentlichen auf zirkular-
symmetrische Fasern und planare Schichtwellenleiter. Das Feld des anregenden Lasers wird
durch einen fundamentalen Gaußstrahl approximiert, da aktuell noch keine Modelle realer
VCSEL-Dioden (VCSEL, Vertical-Cavity Surface-Emitting Laser) verfügbar sind, welche
gewöhnlich in der EOPCB-Technologie eingesetzt werden.

Im Fokus der Arbeit steht die Verifikation strahlenoptischer Verfahren zur Beschreibung
der Einkopplung optischer Wellen in eine zirkularsymmetrische Faser. Als Referenz dient
ein wellentheoretisches Verfahren auf Basis der exakten Feldlösung. Insbesondere wird
untersucht, wie stark der systematische Fehler bei Verkleinerung des Wellenleiterdurch-
messers zunimmt. Da die unzureichende Kopplung zwischen Laser und Wellenleiter durch
Fehljustage der Komponenten eine der wesentlichen Verlustmechanismen innerhalb opti-
scher Übertragungsstrecken ist, wird die Einfallsrichtung der Achse des Gaußstrahls so-
wohl lateral verschoben als auch verdreht. Das maßgebliche Vergleichskriterium ist die
Koppeleffizienz, definiert durch das Verhältnis der im Wellenleiter geführten Leistung zur
insgesamt eingekoppelten Leistung. Neben der zirkularsymmetrischen Faser werden zu-
sätzlich Möglichkeiten zur Modellierung rechteckförmiger Wellenleiter aufgezeigt und es
werden die Unterschiede zum planaren Schichtwellenleiter veranschaulicht. Dieser letztge-
1Die Begriffe Strahlenoptik und geometrische Optik werden im Folgenden synonym verwendet.



1.2. Einordnung und Durchführung 3

nannte Punkt ist von besonderer Bedeutung, da sich der zweite Schwerpunkt dieser Arbeit
auf die Wellenausbreitung im planaren Schichtwellenleiter bezieht. Anhand der Beschrei-
bung des transienten Leistungsflusses im geraden Schichtwellenleiter werden noch einmal
die grundlegenden Unterschiede zwischen Wellen- und Strahlenoptik hervorgehoben. Den
Abschluss bildet die Modellierung zirkular gekrümmter Schichtwellenleiter.

1.2. Einordnung und Durchführung

Die Modellierung optischer Wellenleiter ist seit langem Gegenstand der Wissenschaft. Un-
mittelbar nach den grundlegenden theoretischen Arbeiten von Maxwell sowie der experi-
mentellen Bestätigung der Existenz elektromagnetischer Wellen von Hertz begannen auch
die Arbeiten zur Beschreibung der Führung elektromagnetischer Wellen. Bereits im Jahr
1910 veröffentlichten Hondros und Debye eine erste fundamentale theoretische Arbeit zur
Modellierung optischer Wellenleiter, die damals noch als dielektrische Drähte bezeichnet
wurden [26]. Resultierten die ersten Arbeiten noch im Wesentlichen aus wissenschaftlicher
Neugier, gewann das Forschungsfeld mit der Entwicklung des Lasers im Jahr 1960 eine
neue Motivation. Entsprechend groß ist die Anzahl wissenschaftlicher Arbeiten, die in den
1960ern und frühen 1970ern Jahren entstand. Eine hervorragende Zusammenfassung der
theoretischen Arbeiten dieser Zeit bieten die Lehrbücher von Marcuse [46, 47].

In den folgenden Jahren bis zur Gegenwart wurde die Theorie optischer Wellenleiter durch
zahlreiche Veröffentlichungen stetig vervollständigt. Einen Überblick verschafft [13]. Das
Auffinden der Moden optischer Wellenleiter mit beliebiger Querschnittsgeometrie stellt
dabei einen wichtigen und zentralen Schwerpunkt dar. Waren es zunächst analytische Nä-
herungsverfahren, die im Fokus des Interesses standen, so sind es mittlerweile die zahlrei-
chen numerischen Verfahren, die durch die ständig wachsende Effizienz moderner Com-
putersysteme immer leistungsfähiger werden. Zusammenfassende Darstellungen befinden
sich z.B. in [10, 71]. Der Großteil der vorhandenen Literatur bezieht sich jedoch auf op-
tische Singlemode-Wellenleiter, denen aufgrund ihres großen Bandbreitenlängenprodukts
zu Recht große Beachtung geschenkt wird. Die Theorie der Multimode-Wellenleiter ist
aufwändiger, da aufgrund der größeren Geometrie die Anzahl der Eigenlösungen der Wel-
lengleichung – die Moden – größer ist und es durch Wellenleiterinhomogenitäten zur Über-
kopplung zwischen den Moden kommen kann. Auch numerische Verfahren stoßen hier
aktuell noch an ihre Grenzen, wenn das Verhältnis aus Geometrie und Wellenlänge zu
groß ist. Daher bedient man sich auch heute noch der seit langem bekannten und akzep-
tierten strahlenoptischen Näherungsverfahren. Hinsichtlich der Anwendung auf optische
Wellenleiter empfehlen sich hier die Arbeiten von Snyder, zusammengefasst in [60].

Leider gibt es bislang nur wenige theoretische Arbeiten zur Verifikation strahlenoptischer
Verfahren. In der vorhandenen Literatur werden in der Regel lediglich einzelne, physikalisch
isolierte Effekte verifiziert. Insbesondere mit Blick auf die Theorie optischer Wellenleiter
gibt es wenige Arbeiten, die zumindest einzelne Komponenten ganzheitlich untersuchen.
Eine eher seltene Ausnahme ist z.B. [37]. Offensichtlich gab es bislang nicht den Bedarf
einer theoretischen Verifikation. Möglicherweise, weil in der multimodalen Faseroptik auch
effektiv experimentell gearbeitet werden kann. Die mit einer experimentellen Charakte-
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risierung elektrooptischer Leiterplatten verbundene Fertigung von Prototypen ist jedoch
sehr kostspielig, da ohne vorherige Simulation mit einem großem Ausschuss zu rechnen ist.
Zur Validierung der eingesetzten Simulationswerkzeuge, die im Wesentlichen auf strahlen-
optischen Methoden aufbauen, wird daher in dieser Arbeit ein Vergleich zwischen Wellen-
und Strahlenoptik anhand zweier Schwerpunkte angestrebt. Im ersten Teil wird die Ein-
kopplung optischer Wellen in den Wellenleiter untersucht. Der zweite Teil beschreibt die
Wellenausbreitung im geraden und gekrümmten Wellenleiter. Da aufgrund des Mangels an
exakten Lösungen auf idealisierte Bauelemente zurückgegriffen werden muss, können nicht
alle in der Praxis auftretenden Fehlerquellen berücksichtigt werden. Beispielsweise bleiben
Störstellen wie raue Oberflächen und intrinsische Materialverluste unberücksichtigt.

Die Arbeit gliedert sich im Weiteren wie folgt:

Kapitel 2. Grundlagen
Insbesondere werden die Felder des Gaußstrahls für eine spätere Fehlerab-
schätzung hergeleitet. Darüber hinaus werden die Grundlagen zur Modellie-
rung längshomogener Wellenleiter und die grundlegenden strahlenoptischen
Modellierungsansätze präsentiert.

Kapitel 3. Die Moden dielektrischer Stufenindex-Wellenleiter
Nach einer Beschreibung der grundlegenden Eigenschaften der Modenspek-
tren dielektrischer Wellenleiter werden im Folgenden die Modenspektren der
in dieser Arbeit verwendeten Wellenleiter charakterisiert. Neben planaren
Wellenleitern werden insbesondere kreiszylindrische Fasern und rechteckför-
mige Wellenleiter behandelt.

Kapitel 4. Koppeleffizienz Gaußscher Eingangsstrahlen
Die Modellierung konzentriert sich auf die monochromatische Einkopplung in
die kreiszylindrische Faser. Da sich die spätere Analyse der Wellenausbreitung
imWesentlichen auf planare Wellenleiter beschränkt, wird der Unterschied zur
planaren Approximation diskutiert. Zusätzlich werden Näherungslösungen für
rechteckförmige Wellenleiter ausgewertet.

Kapitel 5. Wellenausbreitung in dielektrischen Wellenleitern
Zunächst steht das transiente Übertragungsverhalten des längshomogenen
Schichtwellenleiters für den Fall einer zeitperiodischen Anregung im Vorder-
grund. Daraus wird eine Übertragungsfunktion für das Basisband abgeleitet.
Die Simulation zirkular gekrümmter Schichtwellenleiter konzentriert sich auf
die Berechnung der Verluste durch Abstrahlung. Aus dem kontinuierlichen
Modenspektrum des gekrümmten Wellenleiters werden dazu quasigeführte
Moden isoliert.

Die Kapitel 4 und 5 sind so aufgebaut, dass zunächst die wellentheoretischen Referenzergeb-
nisse dargestellt und analysiert werden. Anschließend wird der Vergleich zur geometrischen
Optik gezogen. Die mathematische Beschreibung der Modenspektren und der abgeleiteten
Größen ist mit Absicht detailliert dargestellt, obwohl die Felder dielektrischer Felder seit
langem Gegenstand der Wissenschaft sind und dementsprechend umfangreiche Literatur
existiert. Es soll jedoch zum Einen der nicht unerhebliche Implementierungsaufwand ver-
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deutlicht werden und des Weiteren auch die Reproduktion der Ergebnisse dieser Arbeit
vereinfacht werden. Für das Verständnis der verwendeten Notation empfiehlt sich neben
dem Studium des einleitenden Kapitels 2.1 auch die Durchsicht der verwendeten Symbo-
le und Konventionen auf Seite 175. Aufgrund der langen Historie der Theorie optischer
Wellenleiter ist eine umfassende Literaturangabe auch im Rahmen einer Dissertation fast
unmöglich. Die Literaturangaben verstehen sich daher in der Regel als Beispiel und wo
möglich wird zusammenfassende Literatur angegeben. Durch eine Internetrecherche lässt
sich leicht ergänzende und aufbauende Literatur finden.

Die Algorithmen dieser Arbeit wurden in der Programmiersprache C++ implementiert
und mit verschiedenen Compilern auf mehreren Unix-artigen Systemen getestet. Viele
der erforderlichen speziellen Funktionen, insbesondere Besselfunktionen, wurden der GNU
Scientific Library (GSL) entnommen. Ebenso wurden Routinen zur Fouriertransformation
und zur Nullstellensuche aus der GSL verwendet. Die Arbeiten im Kapitel 5.2.2 erfordern
Implementierungen komplexwertiger Besselfunktionen, die aktuell noch in keiner verfüg-
baren Bibliothek vorhanden sind. Hier sei auf die Arbeiten von Temme [68] sowie auf
[1, 3] verwiesen. Für Funktionen der linearen Algebra sollten stets optimierte Bibliothe-
ken verwendet werden, wie sie alle großen Prozessorhersteller anbieten. Zur Herleitung und
Verifikation einzelner Teilaufgaben wurde das Computeralgebrasystem Maple® verwendet.





2. Grundlagen

Dieses Kapitel behandelt die wesentlichen Grundgleichungen dieser Arbeit, die zwar in
der Literatur hinreichend bekannt sind, aber für das Verständnis dieser Arbeit wichtig
sind. Insbesondere wird auch die verwendete Notation vorgestellt und es werden einige
wichtige Annahmen hinsichtlich der Geometrie- und Materialparameter erörtert. Das erste
Unterkapitel 2.1 beschreibt die Grundgleichungen des makroskopischen Elektromagnetis-
mus. Kapitel 2.2 beschreibt die Wellenausbreitung im homogenen Raum auf Basis ebener
Wellen und leitet einen Ausdruck für das Feld des Gaußstrahls her. In Kapitel 2.3 wird die
Notation zur Beschreibung der Wellenausbreitung entlang abschnittsweise längshomoge-
ner Wellenleiterstrukturen vorgestellt. Abschließend wird in Kapitel 2.4 das Konzept der
Strahlenoptik vorgestellt.

2.1. Grundzüge der Maxwellschen Theorie

Die Grundgleichungen der klassischen Elektrodynamik sind die Maxwellschen Gleichungen.
Sie lassen sich durch ein System gekoppelter Differenzialgleichungen beschreiben:

∇ · ~D(~r,t) = %(~r,t), (2.1a)

∇ · ~B(~r,t) = 0, (2.1b)

∇× ~E(~r,t) = −∂
~B(~r,t)

∂t
, (2.1c)

∇× ~H(~r,t) = ~J(~r,t) +
∂ ~D(~r,t)

∂t
. (2.1d)

Darin ist ~D die elektrische Flussdichte, ~B die magnetische Flussdichte, ~E die elektrische
Feldstärke, ~H die magnetische Feldstärke, % die elektrische Raumladungsdichte und ~J die
elektrische Stromdichte. Alle Größen können sowohl Funktionen des Ortes ~r als auch der
Zeit t sein. Die Flussdichten sowie die Stromdichte sind über die Materialbeziehungen
mit den Feldstärken verknüpft. Da die in dieser Arbeit betrachteten Materialien sämtlich
lineare und isotrope Eigenschaften besitzen und ferner als zeitinvariant, ruhend und di-
spersionsfrei angenommen werden, lassen sich die Materialbeziehungen wie folgt angeben:

~D(~r,t) = ε0 εr(~r) ~E(~r,t), ~B(~r,t) = µ0 µr(~r) ~H(~r,t), ~J(~r,t) = κ(~r) ~E(~r,t). (2.2)

Darin sind ε0 und µ0 die Permittivität und Permeabilität des Vakuums, εr und µr die
relative Permittivität und Permeabilität, sowie κ die spezifische elektrische Leitfähigkeit.

7
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Von besonderer Bedeutung ist die Annahme zeitharmonischer Felder. Allgemein lässt sich
der Übergang in den Frequenzbereich durch die Fouriertransformation beschreiben, was
im monochromatischen Fall in einer Schreibweise mit Dirac-Funktionen resultiert. Diese
wird in der Elektrotechnik in der Regel jedoch nicht dargestellt und es werden nur positive
Frequenzen ω explizit betrachtet. Der Übergang in den Zeitbereich erfolgt nach Multipli-
kation mit exp(jωt) durch Realteilbildung. Die Maxwellschen Gleichungen (2.1) nehmen
im Frequenzbereich die folgende Form an:

∇ · ~D(~r,ω) = %(~r,ω), (2.3a)

∇ · ~B(~r,ω) = 0, (2.3b)

∇× ~E(~r,ω) = −jω ~B(~r,ω), (2.3c)

∇× ~H(~r,ω) = ~J(~r,ω) + jω ~D(~r,ω). (2.3d)

Darin werden die unterstrichenen Größen als komplexe Amplituden bezeichnet.

Die Materialgleichungen (2.2) lauten nun

~D(~r,ω) = ε0 εr(~r) ~E(~r,ω), ~B(~r,ω) = µ0 µr(~r) ~H(~r,ω), ~J(~r,ω) = κ(~r) ~E(~r,ω) . (2.4)

Unter Verwendung dieser Materialbeziehungen sowie der Einführung einer komplexen Per-
mittivität

εr(~r,ω) = εr(~r)− j
κ(~r)

ωε0

(2.5)

lassen sich aus den beiden Rotationsgleichungen (2.3c) und (2.3d) die Differenzialgleichun-
gen

∇×
(

1

µr(~r)
∇× ~E(~r,ω)

)
= k2

0(ω) εr(~r,ω) ~E(~r,ω), (2.6a)

∇×
(

1

εr(~r,ω)
∇× ~H(~r,ω)

)
= k2

0(ω)µr(~r) ~H(~r,ω) (2.6b)

ableiten. Darin ist
k0(ω) = ω

√
ε0µ0 (2.7)

die Wellenzahl des Vakuums. Eine Wellenzahl k > k0 ohne oder mit anderem Index kenn-
zeichnet einen Raum mit spezifischen Materialeigenschaften:

k = k0
√
εr. (2.8)

Die in der optischen Verbindungstechnik eingesetzten Materialien können als unmagnetisch
angesehen werden. Für die relative Permeabilität gilt dann µr(~r) = 1. Intrinsische Mate-
rialverluste können zwar wie oben beschrieben durch eine komplexe Permittivität berück-
sichtigt werden, in der Regel beruhen die Verlustmechanismen im optischen Wellenleiter
jedoch nicht auf elektrischen Leitungsverlusten. Je nach eingesetztem Material resultiert
ein frequenzabhängiges Dämpfungsverhalten, das sich im Allgemeinen nicht durch (2.5)
beschreiben lässt. Im Folgenden wird angenommen, dass die benötigte Bandbreite im Fre-
quenzbereich hinreichend klein ist und Verluste vernachlässigt werden können (κ = 0). Die
Annahme einer reellen frequenzunabhängigen Permittivität ist dann gerechtfertigt.
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Anstelle der relativen Permittivität εr wird häufig auch die Brechzahl

n =
√
εr (2.9)

verwendet. Des Weiteren wird angenommen, dass die Materialeigenschaften abschnitts-
weise konstant und die Räume ladungsfrei sind, %(~r,ω) = 0. Für diese abschnittsweise
homogenen Räume vereinfachen sich die Gleichungen (2.6) zu

∆ ~E(~r,ω) + k2 ~E(~r,ω) = 0, (2.10a)

∆ ~H(~r,ω) + k2 ~H(~r,ω) = 0. (2.10b)

Diese homogenen Wellendifferenzialgleichungen entsprechen in ihrer Form einer Helmholtz-
Differenzialgleichung. An den Raumbereichsgrenzen müssen die Feldgrößen Randbedingun-
gen erfüllen. Besitzt die Grenzfläche g die Flächennormale ~eg, lauten diese Randbedingun-
gen

~eg ×
(
~E1 − ~E2

) ∣∣∣
g

= 0, (2.11a)

~eg ×
(
~H1 − ~H2

) ∣∣∣
g

= ~K, (2.11b)

~eg ·
(
~D1 − ~D2

) ∣∣∣
g

= σ, (2.11c)

~eg ·
(
~B1 − ~B2

) ∣∣∣
g

= 0. (2.11d)

Die Indices 1 und 2 kennzeichnen die unterschiedlichen Raumbereiche, wobei ~eg in den
Raum 1 hinein zeigt. Bei den Größen ~K und σ handelt es sich um die komplexen Amplitu-
den einer Flächenstromdichte und einer Flächenladungsdichte. In allen folgenden Betrach-
tungen dieser Arbeit sind beide gleich Null. Die Gleichungen (2.11) lassen sich äquivalent
auch für die zugehörigen zeitabhängigen Größen formulieren.

Die Energiebilanz elektromagnetischer Felder wird durch den Poyntingschen Satz beschrie-
ben. In seiner differenziellen komplexen Schreibweise lautet er für den quellenfreien Raum

−∇ · ~S = pv + j2ω(wm − we). (2.12)

Darin ist
~S = 1

2
~E × ~H

∗
(2.13)

der komplexe Poyntingsche Vektor,

pv = 1
2
~J · ~E∗ (2.14)

die zeitlich gemittelte elektrische Verlustleistungsdichte und

wm = 1
4
~B · ~H∗, we = 1

4
~D · ~E∗ (2.15)

sind die zeitlich gemittelten Energiedichten des magnetischen und des elektrischen Feldes.
Durch Integration von (2.12) über ein Volumen v ergibt sich mit Hilfe des Satzes von Gauß
ein Ausdruck für die zeitlich gemittelten elektrischen Verluste im Volumen v:

P v = 1
2

∫

v

~J · ~E∗ dv = <
{∮

∂v

~S · d~a
}
. (2.16)
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Wird der Poyntingvektor anstatt über eine geschlossene Fläche nur über eine offene Teil-
fläche integriert, lässt sich der zeitlich gemittelte Leistungsfluss durch die Teilfläche be-
rechnen. Dieser Fall ist von besonderem Interesse, wenn der Energietransport elektroma-
gnetischer Wellen beschrieben werden soll.

Für das Studium der Maxwellschen Theorie existiert ein großes Literaturangebot. Als ein-
führendes Lehrbuch sei exemplarisch [38] genannt. Für das vertiefende Studium empfiehlt
sich u.a. [28].

2.2. Wellenausbreitung im homogenen Raum

Bei gegebener Quelle ist die Beschreibung der Wellenausbreitung im ansonsten homoge-
nen Raum von fundamentaler Bedeutung um die grundlegenden Eigenschaften der Quelle
hinsichtlich ihres Nah- und Fernfeldes zu beschreiben. Im Kontext dieser Arbeit sind diese
Quellen Halbleiterlaser. Da in der Regel keine direkte analytische Lösung der zu erfüllenden
inhomogenen Differenzialgleichung1 existiert, unterscheidet die Feldtheorie zwei grundle-
gende Lösungsansätze. Der erste Ansatz setzt voraus, dass die Elementarlösung für eine
korrespondierende Punktquelle bekannt ist. Die Gesamtlösung ergibt sich als Integral über
diese Elementarlösung, welche als Greensche Funktion bezeichnet wird. Der zweite Ansatz
kann als Black-Box-Ansatz bezeichnet werden. Die Quelle sei so geartet, dass auf einer
Hüllfläche, die die Quellverteilung umschließt, sinnvolle Annahmen über die Feldstärke ge-
macht werden können. Auf Basis dieser Annahmen können Integralgleichungsmethoden zur
Bestimmung des resultierenden Feldes außerhalb der Quellverteilung angewendet werden.

Ist die Quelle wie im Fall des Lasers so geartet, dass die Wellenausbreitung nur in eine
bestimmte Richtung erfolgt, reicht es aus, die Feldverteilung in einer Ebene zu kennen.
Der Normalenvektor dieser Ebene verläuft typischerweise parallel zur Achse der Wellen-
ausbreitung. In dem so bestimmten resultierenden Halbraum lässt sich das Feld durch ein
Spektrum ebener Wellen darstellen. Mathematisch wird dies durch eine zweidimensionale
räumliche Fouriertransformation beschrieben. Zur Vertiefung empfiehlt sich [21].

2.2.1. Spektren ebener Wellen

Die ebene Welle kann als Eigenlösung der Helmholtzgleichungen (2.10) aufgefasst werden.
Ihre Phasenfronten bilden Ebenen im Raum, und somit füllen die Felder ebenfalls den
gesamten Raum aus. Die einzelne ebene Welle ist daher keine physikalische Feldlösung.
Erst die Überlagerung in Form eines gewichteten Spektrums ermöglicht die Darstellung
einer physikalischen Feldlösung.

Das elektrische Feld einer in Richtung ~et polarisierten ebenen Welle ist gegeben durch

~E(~r) = ~etE0 exp
(
−j~k · ~r

)
(2.17)

1Die inhomogene Wellendifferenzialgleichung lässt sich aus (2.6) ableiten. Anstelle der komplexen Per-
mittivität sollte die Stromdichte jedoch explizit berücksichtigt werden.
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mit ~et · ~k = 0 und |~k|2 = k2. (2.18)

Darin ist E0 die konstante Amplitude der Welle. Die zugehörige magnetische Feldstärke
berechnet sich gemäß (2.3c) zu

~H(~r) =
−1

jωµ0

∇×
(
~etE0 exp

(
−j~k · ~r

))

=
1

Z
~ek × ~E(~r,ω)

(2.19)

mit Z =

√
µ0

ε
und ~ek · ~k = k. (2.20)

Die Größe Z wird als Wellenwiderstand bezeichnet.

Die Superposition aller ebenen Wellen mit unterschiedlichem Wellenvektor ~k stellt einen
vollständigen Lösungsraum der Helmholtzgleichungen (2.10) für den homogenen Halbraum
dar.

Betrachtet wird nun ein quellenfreier Halbraum z > 0, auf dessen Rand bei z = 0 die
elektrische Feldstärke bekannt ist. Wird die z-Komponente des Wellenvektors durch die
verbleibenden kartesischen Komponenten substituiert,

kz =
√
k2 − k2

x − k2
y, (2.21)

lässt sich die elektrische Feldstärke im Raum z > 0 durch ein Integral der Form

~E(~r) =

∞∫

−∞

∞∫

−∞

~T (kx,ky) exp
(
−j
(
kxx+ kyy +

√
k2 − k2

x − k2
y z
))

dkx dky (2.22)

darstellen [21]. Die räumliche Spektralfunktion ~T lässt sich aus der Randwertvorgabe in
z = 0 bestimmen:

~T (kx,ky) =
1

4π2

∞∫

−∞

∞∫

−∞

~E(x,y,0) exp
(
j(kxx+ kyy)

)
dx dy. (2.23)

Gleichung (2.23) kann komponentenweise gelöst werden. Es reicht aus zwei Komponenten
der elektrischen Feldstärke in der Grenzschicht z = 0 zu kennen. Die verbleibende Kom-
ponente kann dann mit Hilfe der Divergenzbedingung ∇ · ~E = 0 bestimmt werden [21].
Hilfreich kann auch die Verwendung Hertzscher Potenziale sein, siehe A.1.1.

Die Integraldarstellung (2.22) entspricht in ihrer Form einem räumlichen Fourierintegral.
Da kz auch imaginäre Werte annehmen kann, berücksichtigt (2.22) auch evaneszente Feldan-
teile. Diese sind physikalisch jedoch in der Regel bedeutungslos, da sie nicht zum Leistungs-
transport beitragen.
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2.2.2. Das Spektrum des Maxwellschen Gaußstrahls

Optische Wellen, deren Felder sich um eine bestimmte Achse der Wellenausbreitung fo-
kussieren, sind von besonderem Interesse in der Feldtheorie. In diesem Zusammenhang
wird oft der Begriff Strahl verwendet, der aber etwas die Wellennatur der Felder ver-
schleiert. Bemerkenswert ist, dass keine geschlossene analytische Lösung der Maxwellschen
Gleichungen existiert, die einen solchen Strahl beschreibt. Im Folgenden wird daher eine
Spektraldarstellung eines Strahls betrachtet, dessen transversales Feldprofil gaußförmig ist.
Dieser Strahl wird in dieser Arbeit zur Abgrenzung zum bekannten Paraxialen Gaußstrahl
als Maxwellscher Gaußstrahl bezeichnet.

Die transversale elektrische Feldstärke in z = 0 wird gaußförmig angesetzt:

~Et(x,y,0) = ~etE0 exp
(
−x2+y2

w2
0

)
. (2.24)

Darin ist w0 der Radius in der Ebene z = 0, bei dem die Feldgrößen auf das e−1-fache
abgeklungen sind. Dieser Wert wird auch als Strahlradius bezeichnet. Die Strahlachse ent-
spricht der z-Achse. Die transversalen Komponenten der Spektralfunktion der Feldstärke
(2.24) sind gegeben durch

~T t(kx,ky) = ~etE0

1

4π2

∞∫

−∞

∞∫

−∞

exp
(
−x2+y2

w2
0

)
exp
(
j(kxx+ kyy)

)
dx dy

= ~etE0

w2
0

4π
exp

(
−w2

0(k2x+k2y)

4

)
.

(2.25)

Mit (2.25) und der Beziehung (2.22) lassen sich die transversalen Komponenten der elek-
trischen Feldstärke im Raum z > 0 bestimmen. Im Anhang A.1.1 wird eine Möglichkeit
aufgezeigt, wie sich die verbleibenden Feldkomponenten mit Hilfe Hertzscher Potenziale
aus den Maxwellschen Gleichungen ableiten lassen. Zur kompakten Darstellung des Ergeb-
nisses wird der vektorielle Operator

~L
(
~F(kx,ky)

)
:=

∞∫

−∞

∞∫

−∞

~F(kx,ky)
(
~et · ~T t(kx,ky)

)

exp
(
−j
(
kxx+kyy+

√
k2 −k2

x−k2
y z
))

dkx dky (2.26)

eingeführt. Die Feldstärken ergeben sich damit wie folgt:

~E(~r) = ~L

(
~et −

(kx[~ex · ~et] + ky[~ey · ~et])
kz

~ez

)
, (2.27)

~H(~r) = ~L

(
1

ωµ

(
−
(
kxky
kz

[~ex · ~et] +
(k2
y + k2

z)

kz
[~ey · ~et]

)
~ex

+

(
k2
x + k2

z

kz
[~ex · ~et] +

kxky
kz

[~ey · ~et]
)
~ey +

(
kx[~ey · ~et]− ky[~ex · ~et]

)
~ez

))
. (2.28)
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Eine Schwierigkeit in der Entwicklung elektromagnetischer Felder in Integrale über ebene
Wellen liegt darin, dass die nötigen Integrationen in der Regel nicht explizit analytisch
durchführbar sind. Durch Ausnutzen der Rotationssymmetrie kann jedoch das Doppelin-
tegral in ein Einfachintegral umgewandelt werden. Mit

kx = %̃ cos ϕ̃ und ky = %̃ sin ϕ̃ (2.29)

ergibt sich für die jeweils transversale Komponente der elektrischen Feldstärke

~Et(~r) = ~etE0

w2
0

4π

∞∫

0

exp
(
−w2

0 %̃
2

4

)

2π∫

0

exp
(
−j
(
x%̃ cos ϕ̃+y%̃ sin ϕ̃+

√
k2−%̃2 z

))
%̃ dϕ̃ d%̃. (2.30)

Die Integration über ϕ̃ lässt sich nun mit Hilfe von (A.95) durchführen und man erhält

~Et(~r) = ~etE0

w2
0

2

∞∫

0

exp

(
−w

2
0 %̃

2

4

)
J0(%̃

√
x2 + y2) exp

(
−j
√
k2−%̃2 z

)
%̃ d%̃. (2.31)

Für die longitudinale Komponente folgt nach einigen Umformungen mit (A.96) - (A.99):

Ez(~r) =
w2

0

2

~r · ~et√
x2 + y2

jE0

∞∫

0

exp

(
−w

2
0 %̃

2

4

)
J1(%̃

√
x2 + y2) exp

(
−j
√
k2−%̃2 z

)
%̃2√
k2−%̃2

d%̃. (2.32)

Darin sind J0 und J1 gewöhnliche Besselfunktionen 1. Art.

2.2.3. Der Paraxiale Gaußstrahl

Mit den Ausdrücken (2.27) und (2.28) liegt eine Feldlösung vor, die einem optischen Strahl
mit gaußförmigen Profil entspricht. Das Arbeiten mit dieser Feldlösung ist jedoch aufwän-
dig, da für jeden Punkt, in dem das Feld bestimmt werden soll, ein uneigentliches Integral
gelöst werden muss. Divergiert der Strahl nicht allzu stark, konzentrieren sich also die Fel-
der auf einen bestimmen Bereich um die Strahlachse, kann mit Hilfe einer Approximation
in Form einer Taylor-Entwicklung von kz um kx = ky = 0 eine wesentliche Vereinfachung
herbeigeführt werden. Diese lautet

kz =
√
k2 − k2

x − k2
y ≈ k − 1

2k

(
k2
x + k2

y

)
, (2.33)
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womit sich die Integration analytisch durchführen lässt:

~Et(~r) = ~etE0

w2
0

4π

∞∫

−∞

∞∫

−∞

exp
(
−1

4
w2

0(k2
x+k2

y)
)

exp
(
−j
(
kxx+kyy+

(
k − k2x+k2y

2k

)
z
))

dkx dky

= ~etE0

w2
0

4π

∞∫

−∞

∞∫

−∞

exp
(
−1

4

(
w2

0 − j 2z
k

)
(k2
x+k2

y)
)

exp (−j (kxx+kyy+kz)) dkx dky

= ~etE0

w2
0

w2
0 − j 2z

k

exp

(
−x2−y2

w2
0−j

2z
k

)
exp (−jkz) .

(2.34)

Substituiert man zunächst willkürlich kw2
0 = 2z0 erhält man die folgende Darstellung:

~Et(~r) = ~etE0 u(~r) exp (−jkz) mit u(~r) =
z0

z0 − jz
exp

(
−jk x2+y2

2(z+jz0)

)
. (2.35)

Es soll nun eine erste Abschätzung des durch Einführung der paraxialen Näherung hervor-
gerufenen Fehlers erfolgen. Die Feldlösung (2.35) muss der Helmholtzgleichung genügen.
Daraus folgt, dass die Funktion u(~r) die Gleichung

∆tu+
∂2u

∂z2
− 2jk

∂u

∂z
= 0

erfüllen muss, mit ∆t = ∂2

∂x2
+ ∂2

∂y2
. Die Überprüfung zeigt jedoch, dass der Term ∂2u

∂z2

vernachlässigt wird. Die Funktion u(~r) genügt also der Gleichung

∆tu− 2jk
∂u

∂z
= 0, (2.36)

welche auch als paraxiale Helmholtzgleichung bezeichnet wird. Die paraxiale Näherung
setzt also voraus, dass ∣∣∣∣

∂u

∂z

∣∣∣∣� k |u| (2.37)

gilt. Die Änderung der Einhüllenden u mit der Koordinate z ist klein gegenüber der Än-
derung des Gesamtfeldes.

Die Feldlösung (2.35) wird in der Literatur als fundamentaler Gaußstrahl bezeichnet2. Die
verbleibenden Feldkomponenten lassen sich aus den Maxwellschen Gleichungen bestimmen,
nun aber unter Berücksichtigung der paraxialen Näherung (2.37). Auf dieser Basis ergeben
sich die Feldgrößen zu

~E(~r) = E0

(
~et −

(~et · ~rt)
z + jz0

~ez

)
u(~r) exp (−jkz) , (2.38a)

~H(~r) =
E0

Z

(
~ez × ~et +

~rt × ~et
z + jz0

)
u(~r) exp (−jkz) . (2.38b)

2Neben dem fundamentalen Gaußstrahl existieren auch Gaußstrahlen höherer Ordnung, siehe u.a. [4, 34].
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z0

√
2w0

Θa0

w(z)

z

Abbildung 2.1.: Strahlradius und Phasenfronten des Gaußstrahls.

Um die weiteren Eigenschaften des Strahls zu verdeutlichen, empfiehlt es sich, die Einhül-
lende u getrennt nach Betrag und Phase zu betrachten. Es folgt

u(~r) =
w0

w(z)
exp

(
−x

2 + y2

w2(z)

)
exp

(
−jkx

2 + y2

2R(z)

)
exp (j arctan z/z0) (2.39)

mit

w2(z) =
2

kz0

(
z2 + z2

0

)
, w0 = w(0) =

√
2z0

k
und R(z) =

z2 + z2
0

z
. (2.40)

Das Betragsquadrat von E0 ist proportional zur im zeitlichen Mittel in z-Richtung trans-
portierten Leistung:

P =
1

2

|E0|2
Z

∞∫

−∞

∞∫

−∞

|u(x,y,z)|2 dx dy =
π

4
w2

0

|E0|2
Z

. (2.41)

Der Strahlradius, bei dem der Betrag von u auf das e−1-fache gesunken ist, ist gleich w(z).
Etwa 86% der Leistung wird innerhalb dieses Strahlradius geführt. In einem Kreis mit Ra-
dius 1,5w(z) wird bereits 99% der Leistung transportiert. In den folgenden Betrachtungen
dieser Arbeit wird oft auch der Strahldurchmesser

b = 2w (2.42)

verwendet. Abbildung 2.1 zeigt den Strahlradius als Funktion der z-Koordinate und zu-
sätzlich die Phasenfronten, welche auf der z-Achse den Krümmungsradius R(z) besitzen.

Im Fernfeld gilt mit der Bedingung z � z0

u(~r) ≈ j
z0

z
exp

(
−x

2 + y2

(w0

z0
z)2

)
exp

(
−jkx

2 + y2

2z

)
. (2.43)
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Der Strahlradius wächst nun näherungsweise linear an mit

w(z) =

√
2z0

kz2
0

z =
w0

z0

z, (2.44)

und der Gaußstrahl divergiert unter einem Winkel

Θa0 = arctan

(
w0

z0

)
. (2.45)

Die Ausbreitungseigenschaften des Gaußstrahls werden gänzlich durch einen Parameter
festgelegt. D.h. der minimale Strahlradius w0 und der Divergenzwinkel Θa0 können nicht
unabhängig voneinander eingestellt werden. Ein kleiner Strahlradius korrespondiert mit
einem großen Divergenzwinkel. Für einen nicht divergierenden Strahl müsste z0 → ∞
gelten. Der Strahlradius wird dann ebenfalls unendlich groß und ein Vergleich mit (2.35)
zeigt, dass die Felder beim Übergang z0 →∞ einer ebenen Welle entsprechen. Die Größe
z0 wird als Rayleigh-Länge bezeichnet.

Zu klären ist noch die Frage, welche Werte z0 annehmen darf, um der paraxialen Näherung
(2.37) zu genügen. Aus (2.37) folgt

∣∣∣∣
1

z + jz0

− j k(x2+y2)

2(z + jz0)2

∣∣∣∣� k. (2.46)

Daraus abgeleitet folgt weiter
x2 + y2

z2 + z2
0

� 1 (2.47)

und
1

kz0

=
λ2

2π2w2
0

� 1. (2.48)

Der minimale Strahldurchmesser w0 muss groß sein gegenüber der Wellenlänge λ. Da die
Werte x2 +y2 in der Größenordnung von w2 liegen, und w2 = w2

0[1+(z2/z2
0)] gilt, impliziert

(2.47) dass w2
0/z

2
0 � 1 gelten muss. Somit sind die Forderungen (2.48) und (2.47) identisch.

Aus (2.47) lässt sich auch folgern, dass innerhalb des Strahlradius die transversalen Feld-
komponenten gegenüber der z-Komponente überwiegen. Eine quantitative Beurteilung des
aus der paraxialen Näherung resultierenden Fehlers für die Parametersätze dieser Arbeit
befindet sich in Kapitel 4.3.1.

Da in dieser Arbeit auch planare Strukturen betrachtet werden, in denen die Abhängigkeit
von einer transversalen Koordinate verschwindet, muss für diesen Fall die Feldlösung (2.38)
leicht modifiziert werden. Das Ergebnis befindet sich im Anhang A.1.2.

2.3. Geführte Wellen an linearen Leiterstrukturen

Die Theorie geführter Wellen umfasst eine breite Klasse verschiedener Anwendungen. An-
gefangen im unteren Frequenzbereich mit der klassischen Paralleldrahtleitung, über Koaxi-
alleiter, Hohlleiter und Mikrostreifenleitungen im mittleren bis höherem Frequenzbereich
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gelangt man schließlich in den Bereich optischer Wellenleiter, welche im hohen Terahertzbe-
reich arbeiten. Im Gegensatz zu den zuvor genannten Wellenleitern erfolgt die Führung der
Wellen in optischen Wellenleitern nicht mehr durch metallische Leiter, sondern durch To-
talreflexion an dielektrischen Grenzflächen. Ein weiterer gravierender Unterschied ist, dass
optische Wellenleiter sowohl als Singlemode- als auch Multimode-Wellenleiter betrieben
werden. Im letzten Fall wird die mögliche Übertragungsdistanz durch die Modendispersion
beschränkt, zugunsten geringerer technologischer Anforderungen. Gegenüber der konven-
tionellen elektrischen Technologie sind diese Anforderungen jedoch immer noch hoch.

In der Modellierung wellenführender Strukturen wird zwischen offenen und geschlossenen
Anordnungen unterschieden. Koaxialleiter und Hohlleiter bilden von sich aus geschlossene
Anordnungen, deren Felder bedingt durch den (näherungsweise) perfekt leitenden Außen-
leiter nicht in den Außenraum eindringen. Dahingegen bilden optische Wellenleiter ohne
leitende Abschirmung eine offene Struktur, deren Felder in der Theorie den gesamten Raum
ausfüllen. Die folgende Beschreibung gilt unabhängig vom Wellenleitertyp.

2.3.1. Theorie normaler Moden

Die Theorie normaler Moden beschreibt die Wellenausbreitung entlang längshomogener
Wellenleiter. Das heißt, die Geometrie ändert sich im Definitionsgebiet nicht entlang einer
geradlinigen Koordinate, hier der z-Koordinate. Es empfiehlt sich, die vektoriellen Feld-
größen in eine longitudinal geradlinige Komponente und eine transversale Komponente zu
zerlegen:

~E = ~Et + ~Ez, ~H = ~H t + ~Hz. (2.49)

Ein Mode ist eine Eigenlösung der Wellendifferenzialgleichung der Form

~Eν(~r) = Cν ~Eν(~rt) exp (−jkzνz) , (2.50a)
~Hν(~r) = Cν ~Hν(~rt) exp (−jkzνz) , (2.50b)

mit dem transversalen Ortsvektor ~rt = ~r − ~ezz. Die Gleichungen (2.50) beschreiben das
elektrische und magnetische Feld des ν-ten Mode mit ν ∈ N. Darin ist Cν die Amplitude
des Modes, ~Eν und ~Hν sind die transversalen Modenfunktionen und kzν ist die Ausbrei-
tungskonstante des Modes.

Zur Lösung der Wellendifferenzialgleichungen (2.10) bietet sich ein Ansatz mit Hilfe der
longitudinalen Komponenten der Felder an. Die transversalen Feldkomponenten ergeben
sich dann zu

~Etν =
1

j(k2
i − k2

zν)

(
ωµ0∇t × ~Hzν + kzν∇tEzν

)
, (2.51a)

~H tν =
1

−j(k2
i − k2

zν)

(
ωε0εri∇t × ~Ezν − kzν∇tHzν

)
, (2.51b)

mit dem transversalen Nabla-Operator ∇t := ∇ − ~ez ∂/∂z. Der Index i kennzeichnet ab-
schnittsweise unterschiedliche Raumbereiche. Für die transversalen Modenfunktionen ver-
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bleiben partielle Differenzialgleichungen in den transversalen Koordinaten ~rt

∆tEzν(~rt) + (k2
i − k2

zν) Ezν(~rt) = 0, (2.52a)
∆tHzν(~rt) + (k2

i − k2
zν)Hzν(~rt) = 0, (2.52b)

mit dem transversalen Laplace-Operator ∆t := ∆ − ∂2/∂z2. Für die Wellenzahl kzν lässt
sich daraus unmittelbar die Dispersionsbeziehung

kzν =
√
k2
i ∓ k2

tνi mit ∓ k2
tνi =

∆tEzν(~rt,ω)

Ezν(~rt,ω)
=

∆tHzν(~rt,ω)

Hzν(~rt,ω)
(2.53)

ableiten. Das Vorzeichen vor k2
tνi ergibt sich aus den angesetzten Lösungsfunktionen, welche

sich wiederum mit Blick auf das zu lösende Randwertproblem ergeben.

Im Fall verlustloser Materialien ist εr positiv reell. Das ermöglicht i.d.R. die Wahl rein
reeller oder rein imaginärer Wellenzahlen kzν . Aus (2.51) kann dann gefolgert werden

für rein reelle kzν :

{
~E tν , ~Htν rein reell,
Ezν ,Hzν rein imaginär,

(2.54)

für rein imaginäre kzν :

{
~E tν ,Ezν rein reell,
~Htν ,Hzν rein imaginär.

(2.55)

Es muss jedoch beachtet werden, dass im Fall entarteter Moden Linearkombinationen
existieren können, die diese Bedingungen verletzen3.

In positiver z-Richtung fortschreitende Moden sind durch <{kz} ≥ 0 und ={kz} ≤ 0
gegeben. Jeder vorwärts laufende Mode (ν) kann durch Spiegelung an der Ebene z = 0 in
einen rückwärts laufenden Mode (−ν) transformiert werden:

Mode (+ν) :

{
~Eν(~r)
~Hν(~r)

}
=

{
+~E tν(~rt) + ~ezEzν(~rt)
+ ~Htν(~rt) + ~ezHzν(~rt)

}
exp (−jkzνz) , (2.56a)

Mode (−ν) :

{
~E−ν(~r)
~H−ν(~r)

}
=

{
+~E tν(~rt)− ~ezEzν(~rt)
− ~Htν(~rt) + ~ezHzν(~rt)

}
exp (+jkzνz) . (2.56b)

Moden mit <{kz} = 0 werden als evaneszente Moden bezeichnet, da ihre Feldgrößen
in Ausbreitungsrichtung evaneszent abklingen. Die allgemeine Lösung der Maxwellschen
Gleichungen lässt sich durch Überlagerung aller vorwärts und rückwärts laufenden Moden
angeben:

{
~E(~r)
~H(~r)

}
=
∑

ν∈N

[
Cν exp (−jkzνz)

{
~Eν(~rt)
~Hν(~rt)

}
+ C−ν exp (jkzνz)

{
~E−ν(~rt)
~H−ν(~rt)

}]
. (2.57)

Im Fall eines kontinuierlichen Modenspektrums geht die Summation in eine Integration
über. Mit Hilfe von (2.56) lässt sich das Feld auch ausschließlich durch die Komponenten
der vorwärts laufenden Moden beschreiben. Dazu werden modale Spannungen

Vν(z) = Cν exp (−jkzνz) + C−ν exp (jkzνz) (2.58)
3Entartete Moden besitzen identische Ausbreitungskonstanten.
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und Ströme
Iν(z) = Cν exp (−jkzνz)− C−ν exp (jkzνz) (2.59)

eingeführt. Man erhält so

~Et(~r) =
∑

ν∈N
Vν(z) ~E tν(~rt), Ez(~r) =

∑

ν∈N
Iν(z) Ezν(~rt), (2.60)

~H t(~r) =
∑

ν∈N
Iν(z) ~Htν(~rt), Hz(~r) =

∑

ν∈N
Vν(z)Hzν(~rt). (2.61)

Orthogonalität und Leistung

Moden unterschiedlicher Ordnung sind orthogonal zueinander, d.h. in einer beliebigen Flä-
che z = zc = konstant gilt

∫

z=zc

(
~Eν(~rt)× ~Hµ(~rt)

)
· ~ez da = Q̃ν δµν . (2.62)

Darin ist Q̃ν eine zunächst beliebige Funktion von ν und δνµ entspricht dem Kronecker-
Delta. Im Fall entarteter Moden ist darauf zu achten, dass die Indices ν und µ 6= ν tatsäch-
lich orthogonale Moden kennzeichnen4. Gleichung (2.62) ist auch im Fall verlustbehafteter
Materialien gültig. Im Fall verlustfreier Materialien gilt darüberhinaus

∫

z=zc

(
~Eν(~rt)× ~H∗µ(~rt)

)
· ~ez da = Qν δµν . (2.63)

Die Größe P ν = Qν
2

ist im Fall propagierender Moden positiv reell und entspricht der
im jeweiligen Mode transportierten Leistung, falls für die Amplitude |Cν | = 1 gilt. Die
Leistung P , die insgesamt im zeitlichen Mittel durch die Fläche z = zc fließt, berechnet
sich im verlustfreien Fall zu

P = 1
2
<





∫

z=zc

(
~E × ~H

∗) · ~ez da



 = 1

2
<
{∑

ν

Vν(zc)I
∗
ν (zc)Qν

}
. (2.64)

Setzt man in diesen Ausdruck die modalen Spannungen (2.58) und Ströme (2.59) ein,
erkennt man, dass der Leistungsfluss wie erwartet unabhängig von z ist:

P =
∑

ν,
prop.
Moden

P ν(|Cν |2 − |C−ν |2) + <





∑

ν,
evan.
Moden

P ν(C
∗
νC−ν − CνC∗−ν)




. (2.65)

4Falls nur eine numerische gitterbasierte Feldlösung vorliegt, muss das Modenspektrum ggf. orthogona-
lisiert werden.
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Interessant ist, dass auch evaneszente Moden einen Leistungsfluss erzwingen können. Dieser
resultiert jedoch aus der Überlagerung eines (ν) Modes und des korrespondierenden (−ν)
Modes.

Sind die Feldlösungen so geartet, dass nur die magnetische Feldstärke (TE-Moden) oder
nur die elektrische Feldstärke (TM-Moden) eine longitudinale Komponente besitzt, ver-
einfachen sich die Orthogonalitätsbeziehungen. Im Fall reiner TE-Moden vereinfacht sich
(2.63) zu

kzν
ωµ

∫

z=zc

~Eν(~rt) · ~E
∗
µ(~rt) da = Qν δµν . (2.66)

Im Fall reiner TM-Moden ergibt sich

kzν
ω

∫

z=zc

1

ε
~Hν(~rt) · ~H

∗
µ(~rt) da = Qν δµν . (2.67)

2.3.2. Abrupte Wellenleiterübergänge – Die Methode des
Mode-Matching

Die Modellierung der Wellenausbreitung entlang Wellenleiterinhomogenitäten ist in der
Regel sehr aufwändig und oft analytisch nicht möglich. Wird die senkrechte Schnittstelle
zweier abschnittsweise längshomogener Wellenleiter betrachtet, lässt sich zumindest ei-
ne theoretisch exakte analytische Lösung formulieren. Da in diesem Verfahren die beiden
unterschiedlichen Modensysteme des links- und rechtsseitigen Wellenleiters gemäß der zu
erfüllenden Randbedingungen aneinander angepasst werden müssen, wird oft von der Me-
thode des Mode-Matching gesprochen.

E(+l)

E(−l)

E(+r)

z = zc

x

z

Abbildung 2.2.: Schnittstelle zweier abschnittsweise homogener Wellenleiter.

Abbildung 2.2 zeigt das Prinzip der senkrechten Schnittstelle zweier im Rahmen der ge-
machten Annahmen beliebiger Wellenleiter. Voraussetzung für die folgende Beschreibung
ist jedoch ein jeweils diskretes Modenspektrum. Sofern es sich um geschlossene Wellenlei-
ter handelt wird angenommen, dass der Querschnitt des umgebenden leitenden Schirms
links- und rechtsseitig identisch ist. Zur Vertiefung und für den Fall unterschiedlicher Quer-
schnittsabmessungen empfiehlt sich [15].
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In der Grenzschicht z = zc müssen die Randbedingungen (2.11) erfüllt sein. In der Notation
(2.60) und (2.61) gilt dann

∑

ν∈N
V (l)
ν (zc) ~E

(l)

tν =
∑

ν∈N
V (r)
ν (zc) ~E

(r)

tν (2.68a)

∑

ν∈N
I(l)
ν (zc) ~H

(l)

tν =
∑

ν∈N
I(r)
ν (zc) ~H

(r)

tν . (2.68b)

Die Indices (l) und (r) dienen der Unterscheidung der links- und rechtsseitigen Feldlösung.
Zur weiteren Rechnung wird das Skalarprodukt (2.63), welches die Modenorthogonalität
beschreibt, erweitert, so dass auch Produkte von Modenfunktionen unterschiedlicher Wel-
lenleiter zugelassen sind:

∫

z=zc

(
~E (ŝ)

tν ×
{
~H(s̃)

tµ

}∗) · ~ez da = Q(ŝs̃)
µν mit ŝ,s̃ ∈ {l,r} (2.69)

und Q(ŝŝ)
µν = Q(ŝ)

ν δµν . (2.70)

Mit Hilfe von (2.69) lässt sich die Gleichung (2.68a) nach Bilden des Skalarprodukts mit
der (rechtsseitigen) Modenfunktion ~H(r)

tµ wie folgt schreiben:

∑

ν∈N
V (l)
ν Q(lr)

µν = V (r)
µ Q(r)

µ . (2.71)

Analog ergibt sich für die komplex konjugierte Gleichung (2.68b) nach Bilden des Skalar-
produkts mit der (linksseitigen) Modenfunktion ~E (l)

tµ

{
I(l)
µ

}∗
Q(l)
µ =

∑

ν∈N

{
I(r)
ν

}∗
Q(lr)
νµ . (2.72)

Die Gleichungen (2.68) beschreiben das Feldproblem natürlich nur korrekt, wenn links-
und rechtsseitig das jeweils vollständige Modenspektrum angesetzt wird. In der Praxis
reicht es jedoch in der Regel aus, sich auf eine hinreichend große endliche Anzahl Moden
zu beschränken. Dabei kann sich die Anzahl links- und rechtsseitiger Moden unterscheiden.

Aus den Gleichungen (2.71) und (2.72) lassen sich dann die folgenden Matrizengleichungen
ableiten:

Q(lr)v(l) = Q(r)v(r) (2.73a)

Q(l)∗i(l) = Q(lr)H
i(r). (2.73b)

Die Vektoren v(l) und v(r) sowie i(l) und i(r) beinhalten die modalen Spannungen V (l)
µ und

V
(r)
µ bzw. die modalen Ströme I(l)

µ und I(r)
µ . Die MatrizenQ(l) undQ(r) haben Diagonalform

mit den Einträgen Q
(l)
µ bzw Q

(r)
µ . Dagegen ist die Überlappmatrix Q(lr) voll besetzt mit

den Einträgen Q(lr)
µν .
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Alternative Vorgehensweise

Alternativ kann auch jeweils das Skalarprodukt (2.69) der Gleichung (2.68a) mit einer
(linksseitigen) Modenfunktion ~H(l)

tµ sowie der komplex konjugierten Gleichung (2.68b) mit

der (rechtsseitigen) Modenfunktion ~E (r)

tµ gebildet werden. Es resultieren die äquivalenten
Matrizengleichungen

Q(l)v(l) = Q(rl)v(r) (2.74a)

Q(rl)H
i(l) = Q(r)∗i(r). (2.74b)

Äquivalenz der unterschiedlichen Vorgehensweisen

Die Äquivalenz der unterschiedlichen Vorgehensweisen lässt sich zeigen, wenn die Rei-
henentwicklungen von ~E (l)

tµ und ~H(r)

tµ in Terme gegeben durch ~E (r)

tν und ~H(l)

tν herangezogen
werden [15]:

~E (l)

tµ =
∑

ν∈N

Q
(lr)
νµ

Q
(r)
ν

~E (r)

tν , (2.75) ~H(r)

tµ =
∑

ν∈N

{
Q

(lr)
µν

Q
(l)
ν

}∗
~H(l)

tν . (2.76)

Unter Ausnutzung von (2.69) lassen sich daraus entsprechende Reihenentwicklungen für
Q

(l)
µ und Q(r)

µ ableiten:

Q
(ll)
ξµ =

∑

ν∈N

Q
(lr)
νµ

Q
(r)
ν

Q
(rl)
ξν , (2.77) Q

(r)
µξ =

∑

ν∈N

Q
(lr)
µν

Q
(l)
ν

Q
(rl)
νξ . (2.78)

Überführt man diese Beziehungen in eine Matrixschreibweise, folgt

Q(l) = Q(rl)Q(r)−1
Q(lr) (2.79), Q(r) = Q(rl)T

Q(l)−1
Q(lr)T

. (2.80)

Die Multiplikation von (2.73a) mit Q(rl)Q(r)−1 und Anwendung von (2.79) resultiert in
(2.74a). (2.73a) ist somit linear abhängig von (2.74a). Analog lässt sich mit (2.80) auch
zeigen, dass (2.73b) linear abhängig von (2.74b) ist.

Leistungskonservierung

Die linksseitig in z-Richtung transportierte Leistung ist gemäß (2.64) gleich

P
(l)

= 1
2
<
{∑

ν∈N
V (l)
ν Q(l)

ν

{
I(l)
ν

}∗
}
. (2.81)



2.3. Geführte Wellen an linearen Leiterstrukturen 23

Durch Übergang zur Matrixschreibweise lässt sich mit Hilfe von (2.73) zeigen, dass die
gezeigten Vorgehensweisen die Leistung konservieren:

P
(l)

= 1
2
<
{
v(l)T

Q(l){i(l)}∗
}

= 1
2
<
{
v(l)T

Q(lr)T{i(r)}∗
}

= 1
2
<
{
v(r)T

Q(r)T{i(r)}∗
}

= 1
2
<
{
v(r)T

Q(r){i(r)}∗
}

= P
(r)
.

(2.82)

Die Eigenschaft der Leistungskonservierung ist hilfreich hinsichtlich der Implementierung
eines Lösungsalgorithmus. Sie garantiert natürlich keinesfalls die korrekte Lösung des Feld-
problems, da sie unabhängig von der Anzahl berücksichtigter Moden ist.

Einkopplung

In der Regel gilt es Probleme zu beschreiben, bei denen die auf die Grenzschicht einfal-
lenden Wellen bekannt sind. Mit Hilfe der Beziehungen (2.58) und (2.59) folgt aus (2.73)
unmittelbar

Q(lr)
(
c(+l) + c(−l)) = Q(r)

(
c(+r) + c(−r)) , (2.83a)

Q(l)∗ (c(+l) − c(−l)) = Q(lr)H (
c(+r) − c(−r)) . (2.83b)

Einträge der Vektoren c(±l) und c(±r) sind die Amplituden Cν . Das Vorzeichen im Index
der Amplitudenvektoren kennzeichnet darin die Ausbreitungsrichtung der Teilwellen.

Nimmt man an, es fallen nur linksseitig Wellen ein, es gilt also

c(−r) = 0, (2.84)

lässt sich direkt ein Gleichungssystem zur Bestimmung der unbekannten Amplituden der
reflektierten und transmittierten Wellen angeben:


 Q(r) −Q(lr)

Q(lr)H
Q(l)∗




c

(+r)

c(−l)


 =


Q

(lr)c(+l)

Q(l)∗c(+l)


 . (2.85)

Völlig analog lässt sich aus (2.74) das äquivalente Gleichungssystem

 Q(rl) −Q(l)

Q(r)∗ Q(rl)H




c

(+r)

c(−l)


 =


 Q(l)c(+l)

Q(rl)H
c(+l)


 (2.86)

ableiten. Die so gewonnenen Gleichungssysteme (2.85) und (2.86) sind in der Regel nume-
risch gut konditioniert. Des Weiteren sind die Systemmatrizen reellwertig, sofern evanes-
zente oder komplexe Moden vernachlässigt werden können.
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Es sei angemerkt, dass sich die Dimension der Gleichungssysteme aufgrund der Äquivalenz
der Vorgehensweisen reduzieren lässt. Dazu empfiehlt sich an Stelle von (2.69) die Ver-
wendung eines Skalarprodukts ohne komplexe Konjugation der magnetischen Feldstärke.
Auf diesem Weg lässt sich dann entweder c(+r) oder c(−l) durch die jeweils andere Größe
substituieren. Die numerische Kondition des resultierenden Gleichungssystems ist jedoch
zu Gunsten eines geringeren Speicherbedarfs etwas schlechter.

2.4. Strahlenoptische Modellierungsansätze

Der Übergang von der Wellenoptik zur Strahlenoptik ist dann sinnvoll, wenn Beugungs-
und Interferenzerscheinungen nicht vorhanden oder vernachlässigbar sind. Die Wellen ver-
halten sich dann lokal wie ebene Wellen. Es wird daher auch oft von lokal ebenen Wellen
gesprochen. Die Strahltrajektorien verlaufen senkrecht zu den Phasenfronten der Wellen.
Umfassende Darstellungen zur Vertiefung befinden sich insbesondere in [7, 46, 60].

2.4.1. Mathematische Grundlagen

Eine notwendige Bedingung zur Anwendbarkeit strahlenoptischer Verfahren ist an die Wel-
lenlänge zu stellen. Diese muss klein gegenüber der kleinsten geometrischen Abmessung
sein. Mathematisch exakt ableiten lässt sich die Theorie der Strahlenoptik als Grenzfall
einer verschwindenden Wellenlänge. Als anschauliches Beispiel kann der Gaußstrahl her-
angezogen werden, denn mit ω →∞ gehen sowohl der minimale Strahlradius w0 als auch
der Divergenzwinkel Θa0 gegen Null. Im Folgenden werden nur die wesentlichen Grund-
gleichungen kurz wiederholt.

Es wird angenommen, die Feldlösungen nehmen die Form

Ψ(~r) = Ψ0(~r) exp (−jk0S(~r)) (2.87)

an (vgl. ebene Welle (2.17)). Die Funktionen Ψ0(~r) und S(~r) sind nicht mehr abhängig
von der Wellenzahl k0 und verändern sich nur langsam mit Ausbreitung der Welle. Unter
dieser Annahme sind Flächen konstanter Phase gegeben durch

S(~r) = konstant. (2.88)

Der Normalenvektor dieser Fläche zeigt in Richtung des Strahls und ist gegeben durch

~es(~r) =
∇S(~r)

n(~r)
. (2.89)

Die Normierung mit der Brechzahl n(~r) ergibt sich aus der Eikonalgleichung
(
∇S(~r)

)2
= n2(~r), (2.90)

welcher die Funktion S(~r) genügen muss. Ein Strahl verläuft parallel zu ~es(~r). Falls ~r(s)
eine Parametrisierung des Strahlpfads darstellt, gilt

~es(~r) =
d~r(s)
ds

(2.91)
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und nach einigen Umformungen folgt schließlich die Strahlgleichung

d
ds

(
n(~r(s))

d~r(s)
ds

)
= ∇n(~r(s)). (2.92)

Die Lösung dieser Gleichung ist im Allgemeinen sehr aufwändig. Für abschnittsweise homo-
gene Gebiete ist jedoch sofort ersichtlich, dass die Strahlen innerhalb der Gebiete geradlinig
verlaufen.

Aus (2.89) und (2.91) lassen sich direkt die Konturintegrale
∮
∇S · d~l =

∮
n(~r)

d~r(s)
ds
· d~l = 0 (2.93)

ableiten. Auf Basis dieser geschlossenen Konturintegrale lassen sich das Fermatsche Prinzip
und das Gesetz von Snellius herleiten [46]. Die Berechnung des Energietransports kann
nicht allein auf strahlenoptischer Basis erfolgen, sondern erfordert die Berücksichtigung der
Wellennatur des Lichts. Da sich der optische Strahl lokal wie eine ebene Welle verhält und
zudem ausschließlich abschnittsweise homogene Räume betrachtet werden, kann auch die
Beschreibung des Energietransports aus der Theorie der ebenen Welle abgeleitet werden.
Der Strahl verläuft in Richtung des Wellenvektors dieser lokal ebenen Welle und damit
auch in Richtung des Poyntingvektors. Abrupte Materialänderungen lassen sich daher auch
strahlenoptisch mit Hilfe der Fresnel-Koeffizienten berücksichtigen, welche im Folgenden
vorgestellt werden. Zuvor muss jedoch noch einmal betont werden, dass, sobald die lokale
Feldbeschreibung nicht näherungsweise einer ebenen Welle entspricht, eine strahlenoptische
Modellierung zu einem erhöhten Fehler führen kann.

2.4.2. Dielektrische Grenzflächen

Die Annahme einer unendlich ausgedehnten ebenen Grenzfläche besitzt selbstverständlich
nur Modellcharakter, ist aber unter der Annahme einer räumlich beschränkten Feldlösung
sinnvoll. Aus demselben Grund lassen sich leicht gekrümmte Grenzflächen durch einen
ebenen Halbraum approximieren. Erst bei hinreichend starken Krümmungen sind Erwei-
terungen notwendig.

Der ebene Halbraum

Das Verhalten ebener Wellen am dielektrischen Halbraum ist von fundamentaler Bedeu-
tung in der Optik. Relativ problemlos lassen sich die bekannten Gesetze der Optik ableiten,
allen voran das Gesetz von Snellius. Die Bedeutung dieser Gesetze ist jedoch weitreichend.
So lassen sich zum Beispiel die Moden des Schichtwellenleiters vollständig durch sie be-
schreiben, vgl. Kapitel 3.1.3.

Betrachtet wird der schräge Einfall einer ebenen Welle auf einen Halbraum mit unterschied-
licher Permittivität (ε1 → ε2) gemäß Abbildung 2.3 mit %K → ∞. Es wird zunächst ein
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Abbildung 2.3.: Darstellung der Wellenvektoren beim schrägen Einfall einer ebenen Welle
auf einen Halbraum unterschiedlicher Permittivität. Gestrichelt dargestellt
ist eine konkav gekrümmte Grenzschicht.

polarisationsunabhängiger Ansatz formuliert, in dem Ψ die y-Komponente des elektrischen
Feldes (TE-Polarisation) oder des magnetischen Feldes (TM-Polarisation) kennzeichnet:

ΨEy = Ψ0 e
−j~kE~r, ~kE = k1~eE = kEx~ex + kEz~ez, (2.94)

ΨRy = rF Ψ0 e
−j~kR~r, ~kR = k1~eR = kRx~ex + kRz~ez, (2.95)

ΨTy = tF Ψ0 e
−j~kT~r, ~kT = k2~eT = kTx~ex + kTz~ez. (2.96)

Darin sind k1 und k2 die spezifischen Wellenzahlen der Teilräume. Die Größen tF und
rF sind der Transmissions- bzw. Reflexionsfaktor. Zusammen werden sie auch als Fresnel-
Koeffizienten bezeichnet. Durch Auswerten der Stetigkeitsbedingungen in der Grenzschicht
x = 0 lassen sich leicht die bekannten Bedingungen „Reflexionswinkel gleich Einfallswinkel“

ϑR = ϑE (2.97)

sowie das Gesetz von Snellius
n1 sinϑE = n2 sinϑT (2.98)

ableiten. Die Fresnel-Koeffizienten lassen sich ebenfalls direkt aus den Stetigkeitsbedingun-
gen ableiten. Sie sind jedoch abhängig von der Polarisation. Neben den Fresnel-Koeffizienten
werden im Folgenden auch die zugehörigen Leistungsfaktoren RF und TF angegeben, die
sich durch abschnittsweise Integration der x-Komponente des Poyntingvektors ergeben.

TE-Polarisation (Ψ = E):

tTEF =
2kEx

kEx + kTx
, T TEF =

kTx
kEx

∣∣tTEF
∣∣2 , (2.99)

rTEF =
kEx − kTx
kEx + kTx

, RTE
F =

∣∣rTEF
∣∣2 . (2.100)
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TM-Polarisation (Ψ = H):

tTMF =
2ε2kEx

ε2kEx + ε1kTx
, T TMF =

ε1kTx
ε2kEx

∣∣tTMF
∣∣2 , (2.101)

rTMF =
ε2kEx − ε1kTx
ε2kEx + ε1kTx

, RTM
F =

∣∣rTMF
∣∣2 . (2.102)

Von besonderem Interesse ist der Fall der Totalreflexion. Er tritt ein, falls

n1 sinϑE ≥ n2 (2.103)

gilt. Es folgt direkt

kTx = k2 cos(ϑT ) = k2

√
1− sin2(ϑT ) = −jk2

√
ε1

ε2

sin2(ϑE)− 1. (2.104)

Die Phasenkonstante kTx ist rein imaginär und für x > 0 findet keine Wellenausbreitung
in x-Richtung statt. Stattdessen klingen die Feldgrößen evaneszent ab. Der Betrag des
Reflexionsfaktors ist wie erwartet gleich eins. Es gilt:

TE:
rTEF = exp

(
j2 arctan

|kTx|
kEx

)
, (2.105)

TM:
rTMF = exp

(
j2 arctan

ε1|kTx|
ε2kEx

)
. (2.106)

Zu beachten ist, dass die Transmissionsfaktoren TF im Fall der Totalreflexion rein ima-
ginär sind. Im zeitlichen Mittel findet somit kein Leistungfluss in x-Richtung statt und
im strahlenoptischen Modell sollte daher der Transmissionsfaktor T = <{TF} verwendet
werden.

In Abbildung 2.4a ist der Verlauf der Reflexionsfaktoren RTE
F und RTM

F in Abhängigkeit
vom Einfallswinkel ϑE für einen typischen Parametersatz aufgetragen. Im transversalma-
gnetischen Fall existiert ein Winkel, der sogenannte Brewsterwinkel, so dass rTM = 0
gilt. Für transversalelektrische Felder existiert aufgrund der konstanten Permeabilität kein
entsprechender Winkel. Alle obigen Zusammenhänge gelten in guter Näherung auch bei
leicht gekrümmten Grenzschichten mit %K < ∞. Bei starken Krümmungen sind jedoch
Modifikationen nötig.

Gekrümmte Grenzflächen

Bereits in der 1970er Jahren hat insbesondere Snyder das Verhalten lokal ebener Wellen
am gekrümmten dielektrischen Halbraum untersucht [62]. Seine Ergebnisse sind allgemein
akzeptiert und werden im Folgenden aus Platzgründen nur angegeben.

Von besonderem Interesse ist die Fragestellung, wie groß die Verluste durch Transmission
sind, wenn eine ursprünglich (%K → ∞) totalreflektierte ebene Welle auf eine konkav
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Abbildung 2.4.: Reflexionsfaktor RF und Transmissionsfaktor T in Abhängigkeit vom Ein-
fallswinkel. Es gilt n1 = 1,57 und n2 = 1,55.

gekrümmte Grenzschicht (%K < ∞) trifft. Zur Beschreibung dieser Krümmungsverluste
werden die Leistungsfaktoren modifiziert. Es gilt polarisationsunabhängig:

T = |TF |Λ und R = 1− T. (2.107)

Darin ist der Korrekturfaktor Λ gegeben durch

Λ =
|Ai(∆ exp(j2π/3))|−2

4π|∆|1/2 mit ∆ =

(
k2
Ez%K
2k1

)2/3
(k2
Ez − k2

2)

k2
1

. (2.108)

Die Funktion Ai ist eine Airy-Funktion. In Abbildung 2.4b ist der Verlauf des modifizierten
Transmissionsfaktors im relevanten Einfallswinkelbereich für typische Werte %K aufgetra-
gen.

Die Goos-Hänchen-Verschiebung

Auch im Fall der Totalreflexion ebener Wellen am dielektrischen Halbraum ist der gesamte
Raum durch ein Feld ausgefüllt. Die transmittierte Welle klingt jedoch normal zur Grenz-
schicht evaneszent ab. Ein Leistungstransport findet nur parallel zur Grenzschicht statt.
Das Eindringen der Felder in den Halbraum mit kleinerer Brechzahl kann auch strahlen-
optisch mit Hilfe der Goos-Hänchen-Verschiebung modelliert werden [19, 32, 59].

Betrachtet wird ein einfaches Wellenpaket, bestehend aus zwei Teilwellen mit den Wellen-
zahlen kz ±∆kz. Es wird angenommen ∆kz ist hinreichend klein, so dass das Wellenpaket
in guter Näherung durch einen Strahl approximiert werden kann, vgl. Abbildung 2.5. Die
komplexe Amplitude des einfallenden Wellenpakets in der Ebene x = 0 sei gegeben durch

ΨE =
(
exp (j∆kzz) + exp (−j∆kzz)

)
exp (−jkzz) = 2 cos (∆kzz) exp (−jkzz) . (2.109)

Jede der beiden Teilwellen erfährt bei der Reflexion am dielektrischen Halbraum einen
Phasensprung von 2Φ(kz). Der Faktor 2 ist hier zunächst willkürlich gewählt worden. Die
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Abbildung 2.5.: Die Goos-Hänchen-Verschiebung eines Strahlbündels.

Phase Φ ist eine Funktion von kz, wobei für kleine Änderungen ∆kz der Ausbreitungskon-
stanten die Entwicklung

Φ(kz + ∆kz) ≈ Φ(kz) +
dΦ

dkz
∆kz = Φ(kz) + ∆Φ (2.110)

verwendet werden kann. Für die Amplitude des reflektierten Wellenpakets gilt dann

ΨR =
(
exp (j (∆kzz − 2∆Φ)) + exp (−j (∆kzz − 2∆Φ))

)
exp (−j (kzz − 2Φ))

= 2 cos (∆kz(z − 2zs)) exp (−j (kzz − 2Φ))
(2.111)

mit
zs =

dΦ

dkz
. (2.112)

Das reflektierte Wellenpaket erfährt also eine Verschiebung in Ausbreitungsrichtung um
2zs. Diese Verschiebung lässt sich explizit berechnen. Im TE-Fall gilt gemäß (2.105)

Φ = arctan
|kTx|
kEx

= arctan

√
k2
z − k2

2√
k2

1 − k2
z

(2.113)

und folglich

zTEs =
kz√

(k2
1 − k2

z)(k
2
z − k2

2)
. (2.114)

Analog gilt für den TM-Fall mit (2.106)

Φ = arctan
ε1|kTx|
ε2kEx

= arctan
ε1

√
k2
z − k2

2

ε2

√
k2

1 − k2
z

(2.115)

und

zTMs =
kz√

(k2
1 − k2

z)(k
2
z − k2

2)

k2
1k

2
2

(k2
1 + k2

2)k2
z − k2

1k
2
2

. (2.116)

Werden die den Teilwellen zugeordneten Strahlpfade, wie in Abbildung 2.5 angedeutet,
im Raum x > 0 fortgesetzt, stellt sich ein Schnittpunkt ein, der um xs gegenüber der
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Grenzschicht verschoben ist. Die Strahlen werden somit effektiv erst an der Grenzschicht
x = xs reflektiert. Die Eindringtiefe xs ergibt sich allgemein zu

xs =
zs

tanϑ
=
kx
kz
zs. (2.117)

Speziell für die beiden Polarisationen folgt:

xTEs =
1√

k2
z − k2

2

(2.118)

und
xTMs =

1√
k2
z − k2

2

k2
1k

2
2

(k2
1 + k2

2)k2
z − k2

1k
2
2

. (2.119)

2.4.3. Strahlenoptisches Modell des Gaußstrahls

Das strahlenoptische Modell wird aus dem Wirkleistungsfluss der optischen Welle abge-
leitet. Da sich die im zeitlichen Mittel durch eine Fläche übertragene Wirkleistung aus
der Integration der reellen Komponente des komplexen Poyntingvektors berechnet, wird
gelegentlich auch der Begriff Poyntingvektormodell verwendet.

Zur Entwicklung des Modells wird eine Fläche transversal zur Ausbreitungsrichtung, hier
die z-Richtung, in diskrete Flächenelemente aufgeteilt und die Leistungsflussdichte durch
das Flächenelement aufintegriert. Diese Leistung kann dann einem Strahl zugeordnet wer-
den, der in der Mitte des Flächenelements entspringt und in Richtung des Poyntingvektors
zeigt. Der Realteil des Poyntingschen Vektors, abgeleitet aus den Feldgrößen (2.38), lautet
nach direkter Rechnung

1
2
<
{
~S(~r)

}
= 1

2

√
ε

µ0

|E0|2|u(~r)|2
(
~ez + ~rt

z

z2 + z2
0

)
. (2.120)

Der Ausdruck ist wie erwartet unabhängig von der Polarisation der Welle, da die Felder
rotationssymmetrisch bzgl. der Ausbreitungsachse sind.

Aufgrund der Rotationssymmetrie und der radial abnehmenden Intensitätsverteilung emp-
fiehlt sich eine Flächendiskretisierung in kreiszylindrischen Koordinaten. Im Fall einer re-
gelmäßigen Diskretisierung mit äquidistanten Stützstellen in %- und ϕ-Richtung wird so
der Bereich höchster Intensität am feinsten diskretisiert. Ein Flächensegment in kreiszylin-
drischen Koordinaten mit der Normalen in z-Richtung ist gegeben durch die Punkte (%,ϕ)
mit

%m < % < %m+1 und ϕn < ϕ < ϕn+1. (2.121)

Werden M Koordinaten in %-Richtung und N Koordinaten in ϕ-Richtung angesetzt, dann
gilt

%m = m∆% mit m ∈ {1,2,3, . . . ,M}, (2.122)
und ϕn = n∆ϕ mit n ∈ {0,1,2, . . . ,N−1}. (2.123)
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Der Punkt %0 = 0 wird ebenfalls berücksichtigt, jedoch ist in diesem Fall der Winkel ϕ
nicht definiert. Für N ergibt sich unmittelbar

N =
2π

∆ϕ
. (2.124)

Durch die Fläche % < 2,5w(z) wird bereits nahezu 100% der Energie des Gaußstrahls
geführt5. Der Bereich % > 2,5w(z) wird daher nicht berücksichtigt und es gilt

M =
2,5w(z)

∆%
. (2.125)

In kreiszylindrischen Koordinaten ergibt sich mit %2 = x2 + y2 gemäß (2.39)

|u(~r)| = w0

w(z)
exp

(
− %2

w2(z)

)
. (2.126)

Das Integral über die Leistungsflussdichte (2.120) durch ein Kreissegment mit der Norma-
len ~ez ist somit gegeben durch:

Pmn =1
2

√
ε

µ0

|E0|2
%m+1∫

%m

ϕn+1∫

ϕn

|u(%,z)|2% dϕ d%

=

√
ε

µ0

|E0|2∆ϕ
w2

0

8

[
exp

(
− 2%2

m

w2(z)

)
− exp

(
−2%2

m+1

w2(z)

)]
.

(2.127)

Damit ist das Modell des Gaußstrahls vollständig parametrisiert. Der Gaußstrahl wird
durch eine Schar von N ·M +1 Strahlen approximiert, welche im Weiteren kurz als Strahl-
schar bezeichnet wird. Ein Strahl Smn besitzt folgende Eigenschaften:

• den Aufpunkt
(
%̃m,ϕ̃n

)
=
( [
m+ 1

2

]
∆%,

[
n+ 1

2

]
∆ϕ
)
,

• die Richtung ~esmn =

((
z%̃m
z2+z20

)2

+ 1

)−1/2




z%̃m cos ϕ̃n
z2+z20

z%̃m sin ϕ̃n
z2+z20

1


,

• die Leistung Pmn, sowie

• eine Polarisation in Richtung der elektrischen Feldstärke (2.38a).

Anzumerken ist, dass sich je nach Position der Transversalebene in z-Richtung unterschied-
liche Poyntingvektormodelle ergeben. Erst im Fall z � z0 stellt sich ein näherungsweise
konstanter Divergenzwinkel des Gaußstrahls ein und damit auch ein z-unabhängiges Poyn-
tingvektormodell. Für große z ähneln die Felder des Gaußstrahls denen eines elementaren
Punktstrahlers [23]. Die Phasenfronten sind näherungsweise sphärisch und verhalten sich

5Näherungsweise sind es 99,99963%.
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lokal wie eine ebene Welle. Im Rahmen der Rechnungen dieser Arbeit kann die Bedingung
z � z0 nicht immer eingehalten werden, da über den Abstand z zur Strahltaille die ange-
strebte Strahlbreite eingestellt wird. Es ergeben sich trotz eines konstanten asymptotischen
Divergenzwinkels unterschiedliche Poyntingvektormodelle. Es zeigt sich somit bereits hier
eine erste Einschränkung in der Leistungsfähigkeit der geometrischen Optik.

Modellierung transienter Zeitverläufe

In der Feldtheorie lassen sich die Übergänge zwischen Zeit- und Frequenzbereich zumindest
theoretisch mit Hilfe der Fouriertransformation beschreiben, wenngleich in der Praxis in
der Regel direkt eine Lösung im Zeitbereich angestrebt wird. Im klassischen strahlenopti-
schen Modell wird die Frequenzabhängigkeit nahezu vollständig vernachlässigt. Die Aus-
breitungsgeschwindigkeit ci = c0/ni eines Strahls ist wie bei der ebenen Welle ausschließlich
abhängig von den Materialparametern, die hier als dispersionsfrei und damit frequenzu-
nabhängig angenommen werden. Zur Modellierung beliebiger transienter Schaltvorgänge
muss eine Überlagerung mehrerer Strahlscharen angesetzt werden, denen jeweils eine Start-
zeit und eine Dauer zugeordnet wird. Folglich muss wie schon die Ortsabhängigkeit auch
die Zeitabhängigkeit diskretisiert werden. Ein transientes strahlenoptisches Modell müsste
für den Vergleich der Theorien aus einer Poyntingvektorverteilung im Zeitbereich abgelei-
tet werden. Da aktuell keine zeitabhängigen Modelle realer Quellen existieren, beschränkt
sich diese Arbeit im Kapitel 5.3.2 auf sprunghafte Änderungen im Leistungsfluss. Für jede
positive Flanke wird dann eine Strahlschar angesetzt.



3. Die Moden dielektrischer
Stufenindex-Wellenleiter

Im homogenen freien Raum können sich elektromagnetische Wellen ungestört ausbreiten.
Die Felder müssen lediglich den Maxwellschen Gleichungen genügen, aber darüber hinaus
keine weiteren Randbedingungen erfüllen. Physikalisch reale Felder divergieren mit Aus-
breitung der Welle und genügen der Abstrahlbedingung [16]. Dagegen werden in wellenlei-
tenden Strukturen die elektromagnetischen Felder entlang elektrischer Leiter oder, wie in
dieser Arbeit, entlang dielektrischer Fasern geführt. Diese geführten Wellen müssen zusätz-
liche Randbedingungen an den Grenzen zwischen Wellenleiterkern und Wellenleitermantel
erfüllen, welche den Lösungsraum beschränken. Im Folgenden werden die Eigenschaften
der spezifischen Lösungen, der sogenannten Moden, vorgestellt.

3.1. Grundlegende Eigenschaften der Moden
dielektrischer Wellenleiter

Zur Beschreibung beliebiger Wellenleiterstrukturen muss stets zwischen ausbreitungsfähi-
gen und evaneszenten Moden unterschieden werden. Die Felder evaneszenter Moden klingen
in longitudinaler Richtung ab und sind daher oft nicht von praktischer Relevanz. Der Be-
reich der ausbreitungsfähigen Moden wird wiederum unterteilt in den Bereich der geführten
Moden und den Bereich der Strahlungsmoden. Die Felder der geführten Moden konzen-
trieren sich auf den Wellenleiterkern. Dagegen füllen die Felder der Strahlungsmoden im
Allgemeinen den gesamten Raum aus.

Alle Beschreibungen des gesamten Kapitels 3 beziehen sich auf den einzelnen Mode. Der
im Kapitel 2.3 eingeführte Index ν wird daher der Übersichtlichkeit wegen weggelassen.

3.1.1. Dielektrische Wellenleiter mit leitender Abschirmung

Eine Schwierigkeit in der Modellierung offener Strukturen ist das in der Regel kontinuier-
liche Modenspektrum. Im Fall längshomogener Strukturen setzt sich lediglich der Bereich
der geführten Moden aus einem diskreten Spektrum zusammen. Die Gesamtfelder werden
somit durch ein Integral über alle Moden beschrieben (vgl. Spektren ebener Wellen). Folg-
lich müssen zur Beschreibung von Wellenleiterinhomogenitäten häufig Integralgleichungen
gelöst werden, was analytisch oft nicht möglich ist und auch numerisch sehr anspruchsvoll
ist. Sinnvoll ist daher der Übergang zu einer geschlossenen Anordnung, d.h. der optische

33
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Wellenleiter wird in hinreichender Entfernung vom Kern durch einen perfekt leitenden
Schirm begrenzt. In vielen Problemstellungen führt dies zu einem vollständig diskreten
Modenspektrum [76].

Der Mantel wird im Modell des offenen Wellenleiters als unendlich ausgedehnt angenom-
men. Aufgrund der vielfältigen Modellierungsmöglichkeiten wird der unendlich ausgedehn-
te homogene Raum in vielen theoretischen Modellen der Feldtheorie angenommen. In der
Praxis ist diese Vorstellung jedoch genauso unrealistisch wie das Einbringen einer per-
fekt leitenden Abschirmung. Letzteres birgt jedoch den Vorteil eines vollständig diskreten
Modenspektrums. Im realen Wellenleiter muss die Dicke des Mantels so gewählt werden,
dass die Feldgrößen der geführten Moden im Mantel hinreichend abgeklungen sind. In den
Simulationen dieser Arbeit ist an diesen Stellen ein perfekt leitender Schirm eingefügt.
Das Spektrum der geführten Moden des offenen und geschlossenen Wellenleiters ist so-
mit in sehr guter Näherung identisch. Der Begriff Strahlungsmode mag nun jedoch etwas
irreführend zu sein. Synonym wird daher auch die Bezeichnung Mantelmode verwendet.

Ein optischer Wellenleiter mit leitender Abschirmung stellt gleichzeitig auch einen inhomo-
gen gefüllten Hohlleiter dar. Diese Begrifflichkeit ist insbesondere bei der Literaturrecher-
che wichtig. Hohleiter werden jedoch in der Regel als Singlemode-Wellenleiter betrieben.
Optische Wellenleiter mit leitender Abschirmung können mit Blick auf ihre Hohlleiterei-
genschaften als höchstmultimodal angesehen werden.

3.1.2. Einteilung des Modenspektrums

Ausbreitungsfähige Moden

Im optischen Wellenleiter erfolgt die Führung der Wellen durch einen Wellenleiterkern,
welcher eine größere Brechzahl n1 besitzt als der umgebende Mantel, mit n2 < n1. Ab-
bildung 3.1 verdeutlicht das Prinzip. Aufgrund der verlustfreien Materialien werden die
ausbreitungsfähigen Moden nicht gedämpft und sind daher durch eine reelle Wellenzahl

Kern
n1

Mantel
n2

Abbildung 3.1.: Kern und Mantel des optischen Wellenleiters. Im Modell des geschlosse-
nen Wellenleiters wird der Mantel durch einen perfekt leitenden Schirm
abgeschlossen.



3.1. Grundlegende Eigenschaften der Moden dielektrischer Wellenleiter 35

gekennzeichnet, d.h. gemäß (2.53) muss gelten

kz =

√
k2

1 − k2
t1 =

√
k2

2 + k2
t2. (3.1)

Die Vorzeichen in der Wurzel wurden so gewählt, dass sich im Fall reeller kti die Felder
auf den Wellenleiterkern konzentrieren. Ohnehin darf die Wellenzahl nicht größer als die
spezifische Wellenzahl des Kernmaterials, k1 = k0

√
εr1, sein. Die Bedingung

k2
t1 > 0 (3.2)

ist somit zwingend erforderlich und kt1 ist stets reellwertig. Die Bedingung

k2
t2 > 0 (3.3)

ruft ein evaneszentes Abklingen der Feldgrößen im Mantel in transversaler Richtung hervor.
Für die Wellenzahl folgt damit unmittelbar

n2 <
kz
k0

< n1. (3.4)

Dieses Intervall kennzeichnet den Bereich der geführten Moden. Für die Größe kz/k0 wird
auch der Begriff effektiver Brechungsindex verwendet. Der Grenzfall neff = kz/k0 = n2

wird als Cut-Off bzw. neff > n2 als Cut-Off Bedingung bezeichnet.

Reelle Wellenzahlen im Bereich
0 <

kz
k0

< n2 (3.5)

bilden dagegen das Spektrum der Strahlungsmoden. Es gilt nun

k2
t2 < 0. (3.6)

kt2 ist rein imaginär und die Feldgrößen klingen im Mantel nicht mehr evaneszent ab.
Der Begriff Strahlungsmode erklärt sich dadurch, dass dieser Teil des Modenspektrums
Wellen beschreibt, die Leistung vom Kern abstrahlen oder auch auf den Kern einstrahlen.
Strahlungsmoden werden durch eine nicht ideale Einkopplung oder durch Wellenleiterinho-
mogenitäten angeregt. Im letztgenannten Fall kommt es zur sogenannten Modenkopplung
[47].

Evaneszente und komplexe Moden

Um ein vollständiges Modenspektrum zu erhalten müssen neben den geführten Moden und
den Strahlungsmoden weitere Moden berücksichtigt werden. Moden mit rein imaginärer
Ausbreitungskonstante klingen in Ausbreitungsrichtung evaneszent ab. Entsprechend wer-
den sie auch als evaneszente Moden bezeichnet. Mathematisch gehen die evaneszenten
Moden direkt aus den Strahlungsmoden hervor, falls gilt

k2
1 < k2

t1 ⇒ kz = ∓j
√
k2
t1 − k2

1. (3.7)
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Obwohl durch den einzelnen evaneszenten Mode kein Leistungstransport erfolgt, sind sie
zur Erfüllung der Stetigkeitsbedingungen in Wellenleiterschnittstellen erforderlich. Im Fall
hochmultimodaler optischer Wellenleiter können sie jedoch in der Regel vernachlässigt
werden.

Für alle ausbreitungsfähigen und evaneszenten Moden gilt

k2
z ∈ R. (3.8)

Neben diesen Moden können weitere Moden existieren, deren Wellenzahlen komplexwertig
sind:

kz = ∓ (∓β − jα) mit α 6= 0 ∧ β 6= 0. (3.9)

Es ist bislang noch nicht hinreichend geklärt, welche Eigenschaften Wellenleiter besitzen
müssen, damit komplexe Moden existieren können. Für den offenen optischen Wellenleiter
ist bislang nur eine Arbeit bekannt, die die Möglichkeit der Existenz komplexer Moden vor-
hersagt [27]. Wichtig ist an dieser Stelle die Abgrenzung zu den sogenannten Leckmoden
(englisch: Leaky Modes), welche zwar ebenfalls komplexe Wellenzahlen besitzen, jedoch
unphysikalische Lösungen darstellen, da sie mit ansteigender transversaler Koordinate di-
vergieren. Aufgrund des diskreten Spektrums kann auch durch eine Normalisierung keine
physikalische Lösung gefunden werden. Leckmoden gehören daher nicht zum vollständigen
Modenspektrum eines offenen dielektrischen Wellenleiters [72].

Fundamentale Arbeiten hinsichtlich geschlossener Wellenleiter sind [54] und [56]. Ihnen
kann beispielsweise entnommen werden, dass in geschlossenen Wellenleitern, deren Brech-
zahlprofil nur von einer kartesischen Koordinate abhängt, keine komplexen Moden existie-
ren. Dieser Fall schließt auch den geschlossenen Schichtwellenleiter ein. In geschlossenen
Wellenleitern mit einem Brechzahlprofil, das von beiden transversalen Koordinaten ab-
hängt, können jedoch auch komplexe Moden auftreten. Ein einzelner komplexer Mode
liefert keinen physikalischen Feldbeitrag. Diese Moden treten daher stets paarweise auf.
Ein Paar verhält sich physikalisch wie ein evaneszenter Mode, trägt also nicht zum Leis-
tungstransport im Wellenleiter bei.

Alle aus der Literatur bekannten Beispiele, in denen komplexe Moden einen signifikanten
Beitrag zum resultierenden Feld liefern, beziehen sich auf Hohlleiter, in denen nur weni-
ge Moden ausbreitungsfähig sind. Darüber hinaus muss der Bereich nahe dem Cut-Off
untersucht werden, denn in der Regel bilden sich komplexe Moden beim Übergang vom
evaneszenten in den ausbreitungsfähigen Modenbereich aus. Der Brechungsindexkontrast
der Wellenleiter ist zudem typischerweise sehr groß, z.B. n1/n2 = 4 in [30]. Es ist daher
davon auszugehen, dass komplexe Moden eines geschirmten optischen Wellenleiters keinen
signifikanten Beitrag zum Feld liefern. In allen folgenden Beschreibungen wird daher (3.8)
vorausgesetzt.

3.1.3. Planare Schichtwellenleiter

Betrachtet werden zunächst Wellenleiter, deren Geometrien sich neben der Ausbreitungs-
richtung auch in einer transversalen Richtung nicht ändert. Die Feldgrößen ändern sich
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PEC

s

x

z
n1

(a) Parallelplattenleitung

PEC

a2

d

a3x

z
n1

n2

n3

(b) Schichtwellenleiter

Abbildung 3.2.: Planare Wellenleiter (PEC: Perfect Electric Conductor).

entlang dieser transversalen Koordinate, hier der y-Koordinate, nicht. Es gilt

∂

∂y
=̂ 0. (3.10)

Diese Annahme ist natürlich unphysikalisch und besitzt nur Modellcharakter, führt jedoch
zu einem einfachen und kompakten mathematischen Modell und eröffnet somit vielfältige
Simulationsmöglichkeiten. Insbesondere lässt sich auch leicht der Bezug zur geometrischen
Optik herstellen.

Für die transversalen Modenfunktionen verbleiben gewöhnliche Differenzialgleichungen,
die im kartesischen Koordinatensystem von allen Feldkomponenten erfüllt werden müssen:

∂2E(x)

∂x2
= ∓k2

xE(x) bzw.
∂2H(x)

∂x2
= ∓k2

xH(x). (3.11)

Unter den gemachten Annahmen mit abschnittsweise konstanten Materialien können die
erforderlichen Randbedingungen mit einem Ansatz erfüllt werden, in dem entweder Ez
oder Hz gleich Null ist. Im Fall Hz = 0 spricht man von TM-Moden (TM für “transver-
sal magnetisch”). Im anderen Fall Ez = 0 entsprechend von TE-Moden (für “transversal
elektrisch”). Mit (3.10) gilt weiter

• TM-Moden: Hz, Hx und Ey gleich Null,

• TE-Moden: Ez, Ex und Hy gleich Null.

Im Folgenden werden nur die TE-Moden näher betrachtet. Alle Erläuterungen gelten je-
doch analog auch für die TM-Moden.

Die Parallelplattenleitung

Die einfachste planare wellenführende Struktur besteht aus zwei parallelen, perfekt lei-
tenden Platten (Parallelplattenleitung), deren Zwischenraum homogen gefüllt ist, Abbil-
dung 3.2a. Da die elektrische Feldstärke nur eine y-Komponente besitzt, kann die zugehö-
rige Modenfunktion der TE-Moden unmittelbar angegeben werden. Mit

Ey(x) = sin
(
kx
(
x− s

2

))
und kx =

νπ

s
, ν = 1,2,3 . . . (3.12)
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sind die erforderlichen Randbedingungen an den perfekt leitenden Platten erfüllt. Mit Hilfe
der Beziehung (2.53) können die Wellenzahlen explizit angegeben werden:

kz =

√
k2

1 −
(νπ
s

)2

. (3.13)

Aus (3.12) lässt sich unmittelbar der Bezug zur Strahlenoptik herstellen, wenn die Sinus-
funktion mit Hilfe der Euler-Relation durch zwei Exponentialfunktionen ausgedrückt wird.
Diese können als zwei ebene Wellen interpretiert werden, die zwischen den Platten total-
reflektiert werden. Die Teilwellen müssen sich phasenrichtig überlagern, womit wiederum
(3.13) resultiert.

Anzumerken sei noch, dass in der homogenen Parallelplattenleitung auch der TEM-Mode
(TEM für “transversal elektromagnetisch”) als Spezialfall der TM-Moden existiert.

Der geschirmte Schichtwellenleiter

Ist der Wellenleiter nur abschnittsweise homogen gefüllt, muss der Lösungsansatz eben-
falls abschnittsweise unterschiedlich angesetzt werden. In dieser Arbeit werden Dreischicht-
Probleme gemäß Abbildung 3.2b betrachtet. Der Bereich mit der Brechzahl n1 wird als
optisch dichter gegenüber dem restlichen Bereich angenommen mit n1 > n2 ≥ n3. Die
folgende Beschreibung löst dieses Randwertproblem:

Ey(x) =





−A2 sinh
(
kx3(x− d

2
− a3)

)
/ sinh(kx3a3) für d

2
<x< d

2
+a3

cos
(
kx1(x− d

2
)
)

+ A1 sin
(
kx1(x− d

2
)
)

für − d
2
<x< d

2

A3 sinh
(
kx2(x+ d

2
+ a2)

)
/ sinh(kx2a2) für −a2− d

2
<x< −d

2
.

(3.14)

Aus der Gleichung (2.53) lassen sich die folgenden Beziehungen für die kxi, mit i = 1, 2, 3,
ableiten:

k2
z = k2

1 − k2
x1

= k2 + k2
x2

= k3 + k2
x3.

(3.15)

Die Randbedingungen an der perfekt leitenden Berandung bei x = −d
2
− a2 bzw. x =

d
2

+ a3 sind mit diesem Ansatz bereits erfüllt. In den Grenzschichten x = ±d
2
müssen die

tangentialen Feldstärken stetig sein. Es folgt aus den Randbedingungen für die elektrische
Feldstärke

A2 = 1, (3.16)

A3 = cos
(
kx1d

)
− A1 sin

(
kx1d

)
. (3.17)

Die z-Komponente der magnetischen Feldstärke berechnet sich aus Hz = − 1
jωµ0

~ez
∂Ey
∂x

, und
man gewinnt aus den zugehörigen Randbedingungen zwei weitere Gleichungen:

− kx3A2/ tanh(kx3a3) = kx1A1, (3.18)
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k2
x1 > 0

< k2
0(n2

1 − n2
2)

> k2
0(n2

1 − n2
2)

< k2
0(n2

1 − n2
3)

> k2
0(n2

1 − n2
3)

< k2
0n

2
1

> k2
0n

2
1

kx2 reell imaginär imaginär imaginär
kx3 reell reell imaginär imaginär
kz reell reell reell imaginär
Typ geführter Mode Substratmode Strahlungsmode evaneszenter Mode

Tabelle 3.1.: Einteilung des Modenspektrums des asymmetrischen Schichtwellenleiters.

kx2A3/ tanh(kx2a2) = kx1 sin
(
kx1d

)
+ kx1A1 cos

(
kx1d

)
. (3.19)

Fasst man (3.16) – (3.19) als Gleichungssystem mit dem Lösungsvektor (A1A2A3)T auf,
wird deutlich, dass das Gleichungssystem überbestimmt ist. Eine Lösung existiert nur, falls
gilt

kx1

kx2

tanh(kx2a2) =
kx1 tanh(kx3a3) + kx3 tan

(
kx1d

)

kx1 tan
(
kx1d

)
tanh(kx3a3)− kx3

. (3.20)

Zur Lösung von Gleichung (3.20) können beispielsweise kx2 und kx3 substituiert werden und
nach Lösungen für kx1 gesucht werden. Die Wellenzahlen kz des Schichtwellenleiters lassen
sich somit nicht mehr explizit bestimmen, sondern erfordern die Lösung der transzendenten
Eigenwertgleichung (3.20).

Der Ansatz (3.14) wurde so gewählt, dass sich im Fall reeller kxi die Felder auf den Wel-
lenleiterkern im Bereich |x| < d

2
konzentrieren. Im Fall geführter Moden nimmt k2

x1 Werte
im Intervall

0 < k2
x1 < k2

0(n2
1 − n2

2) (3.21)

an. Nimmt kx1 größere Werte an, können kx2, kx3 und auch kz auch rein imaginäre Wer-
te annehmen. Die Tabelle 3.1 gibt einen Überblick. Hyperbolische Funktionen eines rein
imaginären Arguments lassen sich durch trigonometrische Funktionen ausdrücken:

sinh(jx) = j sin(x) und cosh(jx) = cos(x). (3.22)

Werden diese Beziehungen konsequent auf den obigen Ansatz angewendet, kann die ma-
thematische Beschreibung der Strahlungsmoden wiederum durch reellwertige Funktionen
erfolgen.

Im Fall des asymmetrischen Schichtwellenleiters muss der Bereich der Strahlungsmoden
unterteilt werden. Mit größer werdenden kx1 bilden sich zunächst Moden aus, deren Felder
sich neben dem Kern nur auf den Mantelbereich mit der Brechzahl n2 konzentrieren. Die-
se werden oft als Substratmoden bezeichnet. Die weiteren Untersuchungen dieser Arbeit
konzentrieren sich jedoch auf symmetrische Wellenleiter, in denen dieser Modentyp nicht
existiert.

Eigenwerte und Leistung

Für die Parallelplattenleitung können die Wellenzahlen mit (3.13) explizit angegeben wer-
den. Die transzendente Eigenwertgleichung des Schichtwellenleiters (3.20) ist dagegen nur
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kx1

Abbildung 3.3.: Ausschnitt einer grafischen Darstellung der links- (gestrichelt) und rechts-
seitigen Funktionen der Eigenwertgleichung (3.20) für den Bereich der
Strahlungsmoden.

numerisch lösbar. Diese numerische Lösung der Eigenwertgleichung kann algorithmisch auf
Basis der bekannten Nullstellen und Singularitäten der Tangensfunktion durchgeführt wer-
den. Zur Illustration ist in Abbildung 3.3 die linke und rechte Seite von (3.20) exemplarisch
für den Bereich der Strahlungsmoden dargestellt. Zwischen zwei beliebigen benachbarten
Singularitäten befindet sich immer genau eine Lösung. Zum Auffinden der Eigenwerte
reicht in der Regel ein einfaches Bisektions- oder Sekantenverfahren aus. In dieser Arbeit
wurde die Brent-Dekker-Methode angewendet.

Zur Bestimmung der pro Mode geführten Leistung muss gemäß 2.66 im TE-Fall das Integral

P = ∆y
<{kz}
2ωµ

∫

z=0

|Ey(x)|2 dx (3.23)

gelöst werden. ∆y kennzeichnet einen Längenabschnitt in y-Richtung. Die elektrische Feld-
stärke ist durch (3.12) und (3.14) gegeben. Die auftretenden Integrationen sind elementar
durchführbar und im Anhang A.2.1 aufgeführt.

3.2. Kreiszylindrische Fasern

Die Stufenindex-Faser ist einer der wenigen optischen Wellenleiter mit zweidimensionalen
Querschnittsprofil, dessen Modenspektrum sich analytisch berechnen lässt. Lediglich die
wiederum transzendente Eigenwertgleichung muss analog zum Schichtwellenleiter nume-
risch gelöst werden. Als ergänzende Literatur für den offenen Wellenleiter seien [9, 35, 53]
genannt. Eine Beschreibung der geschlossenen Faser befindet sich u.a. in [78]. Neben der
kreiszylindrischen Faser existieren analytische Lösungen lediglich noch für elliptische Wel-
lenleiter [14].
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3.2.1. Feldgrößen der Moden

Separation der Helmholtzgleichung

Anders als im kartesischen Koordinatensystem führt die Separation der Helmholtzgleichung
im kreiszylindrischen Koordinatensystem nicht zu einem System ausschließlich gewöhnli-
cher Differenzialgleichungen. Aus dem Produktansatz

Ez(%,ϕ) = R(%)Φ(ϕ) (3.24)

folgt eingesetzt in die Wellendifferenzialgleichung (2.53) die partielle Differenzialgleichung

1

R

(
∂2R

∂%2
+

1

%

∂R

∂%

)
+

1

%2

1

Φ

∂2Φ

∂ϕ2

︸ ︷︷ ︸
=−m2

+ k2
i − k2

z︸ ︷︷ ︸
=±k2%i

= 0 . (3.25)

Die Funktion Φ muss einer gewöhnlichen Differenzialgleichung genügen. Aufgrund der Pe-
riodizität der ϕ-Koordinate folgt

Φ(ϕ) =

{
cos(mϕ)
sin(mϕ)

}
mit m = 0,1,2 . . . . (3.26)

Für die Funktion R verbleiben Besselsche Differenzialgleichungen. Es ist sinnvoll zwei Fälle
zu unterscheiden:

k2
%1 = k2

0εr1 − k2
z > 0 : R(%) = A1 Jm(k%1%) + A2Nm(k%1%) , (3.27)

k2
%2 = k2

z − k2
0εr2 > 0 : R(%) = A1 Im(k%2%) + A2Km(k%2%) . (3.28)

Die wesentlichen Eigenschaften der gewöhnlichen Besselfunktionen Jm und Nm sowie der
modifizierten Besselfunktionen Im und Km werden im Anhang A.5.2 vorgestellt.

Im Fall einer zweidimensionalen Querschnittsgeometrie ist im Allgemeinen keine Aufteilung
nach TE- und TM-Moden möglich. Vielmehr sind die Moden hybrid, d.h. alle Feldkompo-
nenten sind ungleich Null. Jedoch ist aufgrund der Kreissymmetrie eine Unterscheidung
zweier orthogonaler Polarisationen möglich, deren Felder durch eine Drehung um π

2
inein-

ander übergehen. Daher wird im Folgenden nur eine Polarisation explizit betrachtet. Wie
auch im noch folgenden Kapitel 4 ist dies (näherungsweise) eine y-Polarisation.

Der kreiszylindrische Hohlleiter

Eine Ausnahme bildet der homogen gefüllte Rundhohlleiter in Abbildung 3.4a. In diesem
Fall besteht das Modenspektrum wieder vollständig aus TE- und TM-Moden. Ohne die im
Koordinatenursprung singuläre Neumannfunktion Nm lautet der Ansatz für die TE-Moden

Hz(%,ϕ) = Jm(k%%) cos(mϕ). (3.29)

Daraus berechnet sich die elektrische Feldstärke zu

~E = −ωµ0

jk2
%

(
~e%
m

%
Jm(k%%) sin(mϕ) + ~eϕk%J

′
m(k%%) cos(mϕ)

)
, (3.30)
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Abbildung 3.4.: Kreiszylindrische Wellenleiter im Querschnitt.

mit J ′m der Ableitung von Jm nach dem Argument. Aus der Randbedingung in % = rs folgt
schließlich

k%1 =
j′mn
rs

mit n = 1,2,3 . . . . (3.31)

Darin ist j′mn die n-te Nullstelle der Ableitung der Besselfunktion Jm.

Die geschirmte Faser

Der Ansatz für den gemäß Abbildung 3.4b inhomogen gefüllten Wellenleiter muss nun
hybrid gewählt werden, d.h. die z-Komponenten der elektrischen und der magnetischen
Feldstärke sind gleichzeitig ungleich Null. Es wird der folgende Ansatz betrachtet:

Ez(%,ϕ) = B1i(%) sin(mϕ), (3.32a)
Hz(%,ϕ) = −B2i(%) cos(mϕ). (3.32b)

Im Kern, 0 ≤ % < rd, werden gewöhnliche Besselfunktionen angesetzt:

B11(%) = Jm(k%1%)/Jm(k%1rd), (3.33a)
B21(%) = A4Jm(k%1%)/Jm(k%1rd). (3.33b)

Dagegen werden im Außenraum rd ≤ % ≤ rs modifizierte Besselfunktionen gewählt:

B12(%) = A2Im(k%2%)/Im(k%2rd) + A3Km(k%2%)/Km(k%2rd), (3.34a)
B22(%) = A5Im(k%2%)/Im(k%2rd) + A6Km(k%2%)/Km(k%2rd). (3.34b)

Aus (3.32) lassen sich die transversalen Komponenten gemäß

E% =
−j

k2
i − k2

z

(
kzB

′
1i(%) +m

ωµ

%
B2i(%)

)
sin(mϕ), (3.35a)

Eϕ =
−j

k2
i − k2

z

(
m
kz
%
B1i(%) + ωµB′2i(%)

)
cos(mϕ), (3.35b)

H% =
j

k2
i − k2

z

(
m
ωεi
%
B1i(%) + kzB

′
2i(%)

)
cos(mϕ), (3.35c)
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Hϕ =
−j

k2
i − k2

z

(
ωεiB

′
1i(%) +m

kz
%
B2i(%)

)
sin(mϕ), (3.35d)

ableiten. Die Konstanten A2 bis A6 können aus den Stetigkeitsbedingungen der Feldgrößen
bestimmt werden. In % = rd müssen die tangentialen Komponenten der elektrischen und
magnetischen Feldstärke stetig sein. Dies betrifft somit die ϕ- und z-Komponenten. In % =
rs müssen zudem die transversalen Komponenten der elektrischen Feldstärke verschwinden.
Es sind somit sechs Gleichungen zu erfüllen, von denen fünf ausreichen um die Konstanten
A2 bis A6 zu bestimmen. Aus der sechsten gewinnt man dann die Eigenwertgleichung
der geschlossenen kreiszylindrischen Faser. Mit Hilfe der Stetigkeitsbedingungen für die
z-Komponente der elektrischen Feldstärke in % = rd und % = rs lassen sich zunächst A2

und A3 bestimmen:

A2 = −Im(k%2rd)Km(k%2rs)

M00
m (k%2)

, (3.36)

A3 =
Im(k%2rs)Km(k%2rd)

M00
m (k%2)

. (3.37)

Aus den Stetigkeitsbedingungen für die magnetischen Feldkomponenten in % = rd folgt:

A4 = −rdωk%2

mkz

k2
%1

k2
0(εr1 − εr2)

(
ε2
M01

m (k%2)

M00
m (k%2)

+ ε1Gm(k%1, k%2)

)
. (3.38)

Um die Konstanten A5 und A6 zu bestimmen, reicht es nun aus, z.B. die Stetigkeitsbedin-
gung für die ϕ-Komponente der elektrischen Feldstärke in % = rs auszuwerten:

A5 = −A4
Im(k%2rd)K

′
m(k%2rs)

M10
m (k%2rs)

, (3.39)

A6 = A4
I ′m(k%2rs)Km(k%2rd)

M10
m (k%2rs)

. (3.40)

Es verbleibt die Stetigkeitsbedingung für die ϕ-Komponente der elektrischen Feldstärke in
% = rd, aus der man schließlich die Eigenwertgleichung gewinnt:

m2k2
zk

2
0(εr1 − εr2)2

r2
dεr2k

2
%2k

4
%1

=

(
ε1

ε2

Gm(k%1,k%2) +
M01

m (k%2)

M00
m (k%2)

)(
Gm(k%1,k%2) +

M11
m (k%2)

M10
m (k%2)

)
. (3.41)

Darin sind
Gm(k%1,k%2) =

k%2

k%1

J ′m(k%1rd)

Jm(k%1rd)
, (3.42)

M00
m (k%2) = Im(k%2rs)Km(k%2rd)−Km(k%2rs)Im(k%2rd), (3.43a)

M01
m (k%2) = Im(k%2rs)K

′
m(k%2rd)−Km(k%2rs)I

′
m(k%2rd), (3.43b)

M10
m (k%2) = I ′m(k%2rs)Km(k%2rd)−K ′n(k%2rs)Im(k%2rd), (3.43c)

M11
m (k%2) = I ′m(k%2rs)K

′
m(k%2rd)−K ′m(k%2rs)I

′
m(k%2rd). (3.43d)

Für m = 0 können die rechtsseitigen Faktoren der Eigenwertgleichung (3.41) unabhän-
gig voneinander gleich Null gesetzt werden und somit die Gleichung erfüllen. In diesem
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Fall kann wiederum zwischen TE- und TM-Moden unterschieden werden. Die zugehörigen
Eigenwertgleichungen sind

ε1

ε2

Gm(k%1) +
M01

m (k%2)

M00
m (k%2)

= 0 (TM-Moden) , (3.44)

Gm(k%1) +
M11

m (k%2)

M10
m (k%2)

= 0 (TE-Moden) . (3.45)

Analog zu dem im vorherigen Unterkapitel betrachteten planaren Wellenleiter lässt sich das
Modenspektrum in unterschiedliche Bereiche aufteilen. Lösungen der Eigenwertgleichung
mit

0 < k2
%1
< k2

0(n2
1 − n2

2) (3.46)

gehören dem Bereich der geführten Moden an. Im Intervall

k2
0(n2

1 − n2
2) < k2

%1
< k2

0n
2
1 (3.47)

nimmt k%2 imaginäre Werte an. Da kz noch reell ist, kennzeichnet dieses Intervall den
Bereich der Strahlungsmoden. Falls

k2
0n

2
1 < k2

%1
(3.48)

gilt, ist auch kz rein imaginär. Die zugehörigen Moden sind evaneszente Moden. In den
letzten beiden Fällen empfiehlt sich die Substitution der rein imaginären Wellenzahl k%2

gemäß
k%2 −→ k̃%2 =

√
k2

0n
2
2 − k2

z . (3.49)

Die Besselschen Funktionen Im und Km sowie die Funktion Gm können gemäß

Im(k%2 ,%) −→ Jm(k̃%2 ,%), (3.50a)

Km(k%2 ,%) −→ Nm(k̃%2 ,%), (3.50b)

Gm(k%1 ,k%2) −→ −Gm(k%1 ,k̃%2) (3.50c)

substituiert werden. Konsequent angewendet kann somit auch das Spektrum der Strah-
lungsmoden und der evaneszenten Moden wiederum durch reelle Funktionen beschrieben
werden.

3.2.2. Lösung der Eigenwertgleichung und geführte Leistung pro
Mode

Analog zum Schichtwellenleiter kann die Eigenwertgleichung (3.41) so dargestellt werden,
dass sich in einer grafischen Darstellung zwischen zwei benachbarten Singularitäten wie-
derum genau eine Lösung befindet. Dazu wird (3.41) wie folgt umgestellt

m2k2
zk

2
0(εr1 − εr2)2

r2
dεr2k

2
%2k

4
%1

(
Gm +

M11
m

M10
m

)−1

=

(
ε1

ε2

Gm +
M01

m

M00
m

)
. (3.51)
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k%1

0
√
k2
1 − k2

2

Abbildung 3.5.: Exemplarische grafische Darstellung der links- (gestrichelt) und rechtssei-
tigen Funktionen der Eigenwertgleichung (3.51) für den Bereich der ge-
führten Moden.

Die Funktion Gm weist in Abhängigkeit von k%1 ein oszillatorisches Verhalten auf und be-
stimmt maßgeblich die Singularitäten von (3.51) für den Bereich der geführten Moden. Die
linksseitige Funktion von (3.51) ist exemplarisch in Abbildung 3.5 gestrichelt dargestellt
und abgesehen vom ersten Intervall monoton steigend zwischen ihren Singularitäten. Die
rechtsseitige Funktion verläuft dagegen monoton fallend zwischen ihren Singularitäten. Die
Singularitäten der Funktion Gm sind durch die Nullstellen der Besselfunktion Jm(k%1a) ge-
geben. Da diese bekannt sind und in numerischen Bibliotheken verfügbar sind, dienen sie
als Basis für eine algorithmische Lösungssuche. Lediglich die Intervalle vor der ersten und
nach der letzten Singularität müssen separat untersucht werden.

Im Bereich der Strahlungsmoden weisen die FunktionenM00
m ,M01

m ,M10
m undM11

m ebenfalls
ein oszillatorisches Verhalten auf. Das aufgezeigte Prinzip der algorithmischen Lösungssu-
che ändert sich jedoch nicht. Die Bedingung monoton steigender und fallender Funktionen
ist weiterhin erfüllt. Allerdings nimmt die Anzahl der Lösungen pro Abschnitt ∆k%1 in
Abhängigkeit des Radius des leitenden Schirms rs deutlich zu. Für rs → ∞ lassen sich
schließlich keine diskreten Moden mehr angeben. Es liegt daher nahe, dass auch schon bei
endlichem Radius die Genauigkeit einer Double-Variablen, etwa 15 Dezimalstellen, mögli-
cherweise nicht ausreicht, um alle Eigenwerte mit hinreichender Genauigkeit zu bestimmen;
mehr dazu im Kapitel 4.3.4.

Zur Bestimmung des Leistungsflusses muss die Integration des Poyntingvektors nun im
kreiszylindrischen Koordinatensystem erfolgen:

P =
1

2
<





∫∫

z=0

Sz% d% dϕ



 . (3.52)

Darin berechnet sich die z-Komponente des Poyntingvektors mit Hilfe der Ausdrücke (3.35)



46 Kapitel 3. Die Moden dielektrischer Stufenindex-Wellenleiter

zu

Sz =
1

2 (k2
i − k2

z)
2

((
ωεikz|B′1i(%)|2 +m

|kz|2
%

B′1i(%)B∗2i(%)

+m
k2
i

%
B′∗1i(%)B2i(%) +m2ωµk

∗
z

%2
|B2i(%)|2

)
sin2(mϕ)

+

(
m2ωεikz

%2
|B1i(%)|2 +m

|kz|2
%

B1i(%)B′∗2i(%)

+m
k2
i

%
B∗1i(%)B′2i(%) + ωµk∗z |B′2i(%)|2

)
cos2(mϕ)

)
.

(3.53)

Für die erforderlichen Integrationen sind Stammfunktionen bekannt. Exemplarisch wird
im Anhang A.2.2 die Lösung von (3.52) für den Bereich der geführten Moden hergeleitet.

3.3. Rechteckförmige Wellenleiter

Die Felder des planaren Schichtwellenleiters und der Faser lassen sich analytisch berech-
nen, da sich die Randbedingungen formulieren lassen, indem jeweils nur eine Koordinate
konstant gesetzt wird. Dadurch lassen sich die jeweiligen Randwertprobleme mit Hilfe eines
Produktansatzes lösen. Im Fall des rechteckförmigen dielektrischen Wellenleiters ist dies
nicht mehr möglich. Bereits im Jahr 1969 wurden von Marcatili [44] und Goell [18] zwei
grundlegend unterschiedliche Lösungsansätze für die Bestimmung der geführten Moden
vorgestellt. Während Marcatili durch Vernachlässigung bestimmter Feldanteile im Mantel
einen approximativen analytischen Lösungsweg beschreibt, zeigte Goell ein erstes effizien-
tes numerisches Verfahren auf. Beide Verfahren werden noch heute oft referenziert und im
Folgenden kurz vorgestellt. Anschließend wird noch auf die weiteren, mittlerweile fortge-
schrittenen numerischen Methoden eingegangen.

3.3.1. Näherungslösungen von Marcatili

Im Folgenden soll nur das grundlegende Prinzip des Marcatili-Ansatzes vorgestellt werden.
Daher beschränkt sich dieser Abschnitt auf die Beschreibung der bzgl. beider kartesischen
Richtungen geraden Moden des offenen symmetrischen Rechteckwellenleiters. Die Beschrei-
bung der ungeraden Moden kann aber direkt abgeleitet werden. Eine umfassende Darstel-
lung auch für den asymmetrischen Wellenleiter befindet sich z.B. in [47]. Es sei erwähnt,
dass Marcatili ursprünglich Singlemode-Koppelstrukturen untersuchte. Mittlerweile wird
sein Ansatz jedoch oft auch für Multimode-Wellenleiter verwendet [39].

Der Lösungsansatz von Marcatili beruht auf der Vernachlässigung der Feldanteile in den
Eckbereichen des Mantels. Gemäß der Abbildung 3.6 sind dies die Bereiche für die gilt
dx
2
< |x| ∧ dy

2
< |y|. Aufgrund der Symmetrie des Wellenleiters braucht nur ein Viertel der

Wellenleitergeometrie explizit berücksichtigt werden. Außerhalb dieses Bereichs wird der
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x

yz
y = dy/2

x = dx/2

n1

n2

n2

Abbildung 3.6.: Geometrie des Rechteckleiters. Aus Symmetriegründen wird nur ein Vier-
tel explizit betrachtet.

Feldansatz entsprechend gerade fortgesetzt. Willkürlich wird eine Polarisation gewählt, in
der die y-Komponente der magnetischen Feldstärke gegenüber der x-Komponente domi-
niert. Mit Blick auf die zu erfüllenden Randbedingungen wird der folgende Ansatz gewählt:

Hx ≈ 0, Hy =





cos(kxx) cos(kyy) für x < dx
2
, y < dy

2

A2e
−kx2x cos(kyy) für x > dx

2
, y < dy

2

A3 cos(kxx)e−ky3y für x < dx
2
, y > dy

2
.

(3.54)

Die übrigen Feldkomponenten berechnen sich gemäß den Maxwellschen Gleichungen:

Hz =
1

jkz





−ky cos(kxx) sin(kyy)

−kyA2e
−kx2x sin(kyy)

−ky3A3 cos(kxx)e−ky3y,
(3.55)

Ez =
1

jωεi





−kx sin(kxx) cos(kyy)

−kx2A2e
−kx2x cos(kyy)

−kxA3 sin(kxx)e−ky3y,
(3.56)

Ex =
1

ωεikz





(k2
y + k2

z) cos(kxx) cos(kyy)

(k2
y + k2

z)A2e
−kx2x cos(kyy)

(−k2
y3 + k2

z)A3 cos(kxx)e−ky3y,
(3.57),

Ey =
1

ωεikz





kykx sin(kxx) sin(kyy)

kykx2A2e
−kx2x sin(kyy)

ky3kxA3 sin(kxx)e−ky3y.
(3.58)

Im Bereich der geführten Moden gilt bei hinreichender Führung der Moden

kx,ky � kz bzw. kx,ky � k0n1, k0n2. (3.59)

Folglich dominiert gemäß (3.57) und (3.58) die x-Komponente der elektrischen Feldstärke
deutlich die y-Komponente. Die somit beschriebenen Moden können als quasi-x-polarisiert
angesehen werden. Für die Phasenkonstanten gilt weiter:

k2
z = k2

0n
2
1 − k2

x − k2
y (3.60)

= k2
0n

2
2 + k2

x2 − k2
y (3.61)

= k2
0n

2
2 − k2

x + k2
y3. (3.62)
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Die Bestimmung der noch unbekannten Konstanten erfolgt durch Auswertung der Rand-
bedingungen. Zunächst in x = dx/2:

Hy,Hz : cos(kxdx/2) = A2e
−kx2dx/2, (3.63)

Ey,Ez :
ε2

ε1

kx sin(kxdx/2) = kx2A2e
−kx2dx/2. (3.64)

Die Konstante A2 lässt sich unmittelbar aus einer der Gleichungen bestimmen, wenn die
kx die Eigenwertgleichung erfüllt, die sich durch Division der beiden Gleichungen ergibt:

tan(kxa/2) =
ε1

ε2

kx2

kx
. (3.65)

Darin kann kx2 mit Hilfe von (3.60) und (3.61) substituiert werden. Gleichung (3.65) ent-
spricht der Eigenwertgleichung der geraden TM-Moden eines offenen Schichtwellenleiters.

Aus den Randbedingungen in y = dy/2 folgt

Hz : ky sin(kydy/2 + β) = ky3A3e
−ky3dy/2, (3.66)

Ex :
1

ε1

(k2
0εr1 − k2

x) cos(kydy/2) =
1

ε2

(k2
0εr2 − k2

x)A3e
−ky3dy/2, (3.67)

Ez :
1

ε1

cos(kydy/2) =
1

ε2

A3e
−ky3dy/2. (3.68)

Aufgrund des fehlerhaften Ansatzes muss es im Laufe der Rechnung zu Unstimmigkeiten
kommen. Dies ist nun der Fall. Die Gleichungen (3.67) und (3.68) lassen sich nicht un-
abhängig voneinander erfüllen. Mit der Annahme (3.59) kann jedoch kx gegenüber k2

0εr2
vernachlässigt werden und (3.67) geht über in

cos(kydy/2) = A3e
−ky3dy/2. (3.69)

Mit (3.69) und (3.66) lässt sich dann A3 bestimmen und die Eigenwertgleichung für die ky
ableiten:

tan(kydy/2) =
ky3

ky
. (3.70)

Diese entspricht der Eigenwertgleichung der geraden TE-Moden des offenen Schichtwellen-
leiters.

Dem Modell der Marcatili-Moden liegt also die Annahme (3.59) zu Grunde. Anschaulich
heißt das, die Feldoszillation in transversaler Richtung ist klein gegenüber der Oszillation in
Ausbreitungsrichtung. Die Näherung (3.59) lässt sich wie folgt quantisieren. Gemäß (3.21)
liegen die kx,ky im Bereich

0 < kx,ky < k0

√
n2

1 − n2
2. (3.71)

Aus (3.59) folgt damit als obere Abschätzung für den höchsten gerade noch geführten
Mode

NA =
√
n2

1 − n2
2 � n2. (3.72)

Diese Bedingung unterstützt die allgemein Annahme, dass die Näherungslösungen von
Marcatili für schwach führende Wellenleiter genauere Ergebnisse liefern. Allerdings dringen
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x

y

y = dy
2

x = dx
2

(a) Gesamter Querschnitt, Mode 6,4 (b) Ausschnitt, Mode 50,25

Abbildung 3.7.: Betrag der elektrischen Feldstärke zweier quasi x-polarisierter Moden.

die Felder im Wellenleiter mit kleiner NA im Mittel aller Moden auch weiter in den Mantel
ein, so dass die Vernachlässigung der Feldanteile in den Eckbereichen möglicherweise zu
einem erhöhten Fehler führt.

Eine direkte Auswertung der Bedingungen (3.59) und (3.72) zur Ableitung eines Fehler-
maßes ist schwierig bzw. nicht sehr aussagekräftig. Eine weitere Methode zur Abschätzung
der Phasenkonstanten ist die Methode der effektiven Brechzahl [36]. In der ursprüngli-
chen Form berechnet diese Methode die Phasenkonstanten ebenfalls aus der Kombination
zweier Schichtwellenleiter1. Jedoch wird das Kernmaterial des zweiten Schichtwellenleiters
aus den effektiven Brechzahlen des ersten Schichtwellenleiters gebildet. Die resultierenden
effektiven Brechzahlen des rechteckförmigen Wellenleiters sind in der Regel größer als die
Näherungslösungen von Marcatili und überschätzen die exakte Lösung etwas. Mittlerweile
existieren jedoch diverse Erweiterungen zur klassischen Vorgehensweise. Diese haben die
Vermutung bestätigt, dass die Näherungslösungen von Marcatili die Führung der Moden
unterschätzt [11, 47]. Mit einer verbesserten Abschätzung der Phasenkonstanten liegt je-
doch nicht automatisch eine bessere Feldlösung vor. Grundsätzlich ist es zwar denkbar,
aus der effektiven Brechzahl Ausdrücke für die transversalen Phasenkonstanten kx und ky
abzuleiten und diese in der vorhandenen Feldlösung (3.55) - (3.58) zu verwenden. Dieser
Ansatz soll hier jedoch nicht weiter verfolgt werden.

Zur Illustration zeigt Abbildung 3.7 zwei Feldbilder nach dem Lösungsansatz von Marcatili
für die Parameter n1 = 1,57 und n2 = 1,55 sowie dx = 50 µm und dy = 100 µm. In der
gewählten quasi x-Polarisation existieren 30 Lösungen der Eigenwertgleichung (3.65) für die
kx und 59 Lösungen der Eigenwertgleichung (3.70) für die ky, die jeweils mit den geführten
Moden des jeweiligen Schichtwellenleiters korrespondieren. Insgesamt existieren jedoch nur
1370 Kombinationen, die gemäß (3.60) eine effektive Brechzahl hervorrufen, die größer als
die Mantelbrechzahl ist und damit den Bereich der geführten Moden zuzuordnen sind.
Wie oben erwähnt unterschätzt der Marcatili-Ansatz die Phasenkonstanten etwas, so dass
ggf. auch Moden mit neff < n2 als geführte Moden einzuordnen sind. Abbildung 3.7a zeigt

1Diese Aussage bezieht sich wiederum auf symmetrische Wellenleiter. Asymmetrische Wellenleiter erfor-
dern einige zusätzliche Rechenschritte.
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den Betrag der elektrischen Feldstärke des 6,4-Modes2 und soll lediglich verdeutlichen,
dass die Feldlösungen im Kern einem vollkommen symmetrischen Feldbild entsprechen.
Abbildung 3.7b zeigt einen Ausschnitt des Feldbildes des 50,25-Modes. Die Felder dringen
nun bereits deutlich in den Mantel ein und der Fehler durch Vernachlässigung der Felder
in den Eckbereichen steigt.

Da sich die Näherungslösungen von Marcatili auf den offenen Wellenleiter beziehen, sei
noch erwähnt, dass auch auch für eine geschlossene Anordnung keine exakte analytische
Feldlösung existiert. Es gibt jedoch Arbeiten, die Näherungslösungen für geschlossene Wel-
lenleiter behandeln [77].

3.3.2. Numerische Verfahren

In der Literatur sind viele unterschiedliche numerische Verfahren bekannt. Alle gängi-
gen Verfahren lassen sich auch für die Bestimmung der Moden dielektrischer Wellenlei-
ter verwenden. Es seien hier beispielsweise Finite-Elemente-Methoden, Finite-Differenzen-
Methoden, Finite-Integrations-Methoden und Randelementmethoden genannt. Einen Über-
blick verschafft u.a. [10, 71, 72]. Zunächst sollen jedoch Beispiele für Verfahren vorgestellt
werden, die nicht die Querschnittsebene des Wellenleiters diskretisieren, sondern den Lö-
sungsraum der Helmholtzgleichung.

Reihenentwicklungen

In der Mathematik ist es oft hilfreich, Funktionen durch Reihenentwicklungen auszu-
drücken oder zu approximieren. Klassische Beispiele sind Taylorreihen und Fourierreihen.
Es liegt daher nahe, auch Lösungen der Maxwellschen Gleichungen durch Reihenentwick-
lungen zu approximieren, sofern keine exakte Lösung gefunden werden kann. Als Pionier-
arbeit für den Bereich der optischen Wellenleiter kann die von Goell 1969 präsentierte
Methode [18] angesehen werden. Diese sieht einen abschnittsweise unterschiedlichen An-
satz in kreiszylindrischen Koordinaten für die z-Komponenten der Felder vor:

Ezi(%,ϕ) =
N∑

n=0

anΦin(%) sin(nϕ+ γi), (3.73a)

Hzi(%,ϕ) =
N∑

n=0

bnΦin(%) cos(nϕ+ γi). (3.73b)

Der Index i kennzeichnet wieder die unterschiedlichen Raumbereiche. Analog zur kreiszy-
lindrischen Faser müssen im Kern gewöhnliche Besselfunktionen und im Mantel modifi-
zierte Besselfunktionen angesetzt werden. Es gilt Φ1n(%) = Jn

(√
k2

1 − k2
z %
)
und Φ2n(%) =

Kn

(√
k2
z − k2

2 %
)
. Über die Wahl der Phase γi = 0 oder γi = π

2
und die Wahl ausschließ-

lich gerader oder ungerader Reihenindizes n lässt sich die Symmetrie des rechteckförmigen
Wellenleiters berücksichtigen.
26,4-Mode: Es wird die sechste Lösung von (3.65) und die vierte Lösung von (3.70) verwendet.
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Zur Bestimmung der Gewichte an und bn werden mit Hilfe eines Point-Matching entspre-
chend der Anzahl der Gewichte viele Gleichungen abgeleitet. D.h. die Randbedingungen
werden nur an endlich vielen äquidistanten Stellen ausgewertet. Das so gewonnene Glei-
chungssystem besitzt nur dann eine nichttriviale Lösung, falls die Determinante der Sy-
stemmatrix verschwindet. Die Nullstellen der Determinante entsprechen den Eigenwerten
der Moden. Wie viele Reihenglieder (N + 1) tatsächlich angesetzt werden müssen, hängt
insbesondere auch von der Ordnung des zu bestimmenden Modes ab. Der Grundmode lässt
sich oft bereits mit sehr wenigen Reihengliedern approximieren. Leider ist das Verfahren
insgesamt numerisch schlecht konditioniert, so dass die Qualität der Lösungen mit wach-
sender Anzahl Reihenglieder nachlässt. Der Aufwand zur Berechnung eines Modes höherer
Ordnung ist somit sehr hoch, sofern der Mode überhaupt bestimmt werden kann.

Es ist auch nicht grundsätzlich geklärt, ob dieser Ansatz für N → ∞ gegen die exakte
Lösung konvergiert [72]. Ohnehin mag es abwegig erscheinen, die Moden eines Wellen-
leiters mit rechteckförmiger Geometrie durch Zylinderfunktionen zu approximieren. Eine
alternative Vorgehensweise sieht trigonometrische Ansatzfunktionen vor [24]. Dieses wurde
zunächst nur als Lösung der skalaren Wellendifferenzialgleichung formuliert:

∆tE(~rt,ω) + (k2
i − k2

z) E(~rt,ω) = 0. (3.74)

Darin ist E die dominierende transversale Komponente der elektrischen Feldstärke eines
Modes. Der Lösungsansatz entspricht einer zweidimensionalen Fourierreihe, die hier unge-
rade angesetzt wird:

E(x,y) =
N∑

n=1

M∑

m=1

cnmΦnm(x,y) mit Φnm(x,y) =
2√
LxLy

sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
.

(3.75)
Darin definieren Lx und Ly ein kartesisches Fenster, auf dessen Rand die Feldgrößen hin-
reichend gut abgeklungen sind. Die Ansatzfunktionen Φnm sind im Gegensatz zum Ansatz
von Goell (3.73) unabhängig von der Ausbreitungskonstanten kz. Eingesetzt in (3.74) lässt
sich unter Ausnutzung der Orthogonalität der Φnm ein Eigenwertproblem zur Bestimmung
der kz und cnm ableiten.

Die Lösungsansätze (3.73) und (3.75) sollen nur exemplarisch die grundlegenden Ansät-
ze beschreiben. Diese wurden in der Vergangenheit in vielen wissenschaftlichen Arbeiten
überarbeitet, u.a. [45, 55, 70, 73]. Die Untersuchungen beschränken sich jedoch im We-
sentlichen wiederum auf Wellenleiter mit wenigen geführten Moden. Für hochmultimodale
Wellenleiter und insbesondere für Moden nahe dem Cut-Off sind die vorgestellten Verfah-
ren jedoch oft unzuverlässig und nicht leistungsfähig. Ein Vergleich zwischen den Lösungen
von Goell und Marcatili befindet sich z.B. in [41].

Weitere numerische Lösungsansätze

Wie einleitend erwähnt existiert eine Vielzahl unterschiedlicher klassischer Verfahren. Im
Folgenden sollen nur die grundlegenden Probleme angesprochen werden, die im Grunde
alle Verfahren gemeinsam haben.
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Abbildung 3.8.: Betrag der elektrischen Feldstärke der Überlagerung zweier näherungswei-
se entarteter Moden nahe dem Cut-Off. Exemplarisches Simulationsergeb-
nis aus Comsol®.

Eine Schwierigkeit bei der Verwendung gitterbasierter Verfahren ist der Speicherbedarf.
Da sich die Problemstellungen auf die Querschnittsebene beschränken, bezieht sich diese
Aussage mittlerweile weniger auf den Bedarf zur Rechenzeit, als vielmehr auf den Bedarf
zur Nachbearbeitungzeit. Das Abspeichern der Feldlösungen einiger hundert bis tausen-
der hybrider Moden kann in Abhängigkeit der absoluten Abmessungen und der gewählten
Diskretisierung bis zu einigen Terabyte Speicher erfordern. Im Zuge steigender Festplat-
tenkapazitäten löst sich dieses Problem jedoch wahrscheinlich in Zukunft ohne weiteres
Zutun. Die erforderlichen Rechenzeiten liegen bereits jetzt selbst bei Verwendung konven-
tioneller PC-Hardware in einem akzeptablen Bereich. Einige hundert Moden lassen sich je
nach eingesetztem Verfahren in der Regel innerhalb weniger Minuten berechnen3.

Die größte Schwierigkeit in der Modellierung hochmultimodaler Wellenleiter ist die nähe-
rungsweise Entartung der Moden, die insbesondere nahe dem Cut-Off eine eindeutige Zu-
ordnung der Moden erschwert. In jedem Fall sollten mögliche Symmetrien in der Geometrie
ausgenutzt werden, um die mögliche Entartung zwischen Moden unterschiedlicher Polarisa-
tion zu berücksichtigen und um das Rechengebiet minimal klein zu halten. Dennoch lassen
sich auch durch eine feinere Diskretisierung des Rechengebiets aufgrund der stets endli-
chen Rechengenauigkeit nicht immer alle Moden eines Wellenleiters isolieren. Exempla-
risch zeigt Abbildung 3.8 die Ausgabe einer Rechnung mit Hilfe der Simulationsumgebung
COMSOL®, welche auf der Methode der Finiten Elemente (FEM) basiert. Dargestellt ist
der Betrag der elektrischen Feldstärke eines Modes nahe dem Cut-Off. Mit großer Wahr-
scheinlichkeit handelt es sich jedoch um die Überlagerung zweier näherungsweise entarteter
Moden.

Obwohl die Feldlösung aus Abbildung 3.8 im Rahmen der verfügbaren Rechengenauigkeit
durchaus eine korrekte Lösung der Helmholtzgleichung darstellen kann, offenbart sich an
3Die Angaben beziehen sich auf die in dieser Arbeit betrachteten Wellenleiter. Getestet wurden die
Simulationsumgebungen COMSOL® und CST MICROWAVE STUDIO® auf konventioneller PC-
Hardware, z.B. 2,4GHz Prozessor mit 4GB Arbeitsspeicher.
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dieser Stelle ein weiteres elementares Problem. Um letztlich effektiv mit den gewonnenen
Feldlösungen arbeiten zu können, beispielsweise die Einkopplung in den Wellenleiter zu
analysieren, muss zumindest das Spektrum der geführten Moden vollständig bestimmt sein.
Aktuell ist kein Verfahren verfügbar, das automatisiert diese Vollständigkeit garantieren
kann. Stattdessen muss so weit möglich visuell kontrolliert werden, welche Moden dem
vollständigen Spektrum geführter Moden zuzuordnen sind.

Der Vergleich zwischen den Feldlösungen von Marcatili und der FEM-Simulation hat im
Übrigen eine gute Übereinstimmung für Moden mit hinreichend großer effektiver Brechzahl
hervorgebracht. Je kleiner die Differenz zwischen effektiver Brechzahl und Mantelbrechzahl
ist, desto stärker sind jedoch die Abweichungen. Aufgrund der Schwierigkeiten beider Ver-
fahren bei der Bestimmung der Moden nahe dem Cut-Off wird an dieser Stelle auf einen
expliziten Vergleich anhand eines definierten Fehlermaßes verzichtet.





4. Koppeleffizienz Gaußscher
Eingangsstrahlen

Die Schnittstelle zwischen Laserdiode und optischem Wellenleiter ist aufgrund der ho-
hen Toleranzanfordungen bei der Montage stets ein kritischer Punkt im Aufbau optischer
Datenübertragungsstrecken [5]. In der Faseroptik gibt es ein große Anzahl verschiedener
Stecksysteme, die eine hinreichend gute Kopplung gewährleisten. Es ist nicht grundsätz-
lich ausgeschlossen diese Stecksysteme auch für die Anbindung an die in der Leiterplat-
te eingebetteten Wellenleiter zu verwenden. Stecker und Buchse müssen jedoch entspre-
chend adaptiert werden. Alternativ müssen neue Koppellösungen entwickelt werden. Die in
diesem Entwicklungsprozess eingesetzten Simulationswerkzeuge beruhen meist auf strah-
lenoptischen Methoden. Ziel dieses Kapitels ist die Verifikation dieser strahlenoptischen
Methoden, die bekanntlich nur eine Näherungslösung für hinreichend große Geometrien
darstellen. Als Referenzfeld dient der monochromatische Gaußstrahl, der zwar nur nähe-
rungsweise das Feld einer realen Laserdiode wiedergibt, aber aufgrund seiner geschlossenen
mathematischen Beschreibung gut für den Vergleich zwischen Wellenoptik und Strahlen-
optik geeignet ist.

Im Kapitel 4.1 wird zunächst das wellentheoretische Modell mit seinen Parametern und
den wesentlichen Modellierungsschritten vorgestellt. Anschließend werden im Kapitel 4.2
grundlegende Ergebnisse für die erreichbare Koppeleffizienz bei der Einkopplung in die
kreiszylindrische Faser vorgestellt. Da sich die Betrachtungen zur Wellenausbreitung im
Kapitel 5 gänzlich auf den planaren Schichtwellenleiter konzentrieren, werden die Unter-
schiede bei der Einkopplung kurz diskutiert. Der Einfluss verschiedener Simulationspa-
rameter, wie z.B. die Anzahl zu berücksichtigender Moden, und die damit verbundenen
Grenzen des Modells werden in Kapitel 4.3 besprochen. Die zentralen Ergebnisse des Ver-
gleichs zwischen Wellenoptik und Strahlenoptik werden dann im Kapitel 4.4 präsentiert.
Am Anfang dieses Kapitels stehen einige Erläuterungen zum strahlenoptischen Modell.
Zum Abschluss werden im Kapitel 4.5 einige Ergebnisse für den Rechteckwellenleiter disku-
tiert. Da auf Basis der Marcatili-Moden nur Lösungen für die geführten Moden existieren,
wird einleitend ein Näherungsverfahren zur wellentheoretischen Analyse vorgestellt.

4.1. Modellparameter und Modellierungsschritte

Zur Einordnung des Simulationsaufwands werden in diesem Kapitel die wesentlichen Mo-
dellierungsschritte vorgestellt. Der Modellierungsprozess lässt sich in vier Schritte aufteilen:

55
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• Charakterisierung des Modenspektrums der beteiligten Wellenleiter, insbesondere
Berechnung der Eigenwerte (Kapitel 3).

• Beschreibung der einfallenden Wellen durch Moden eines Hohlleiters (Kapitel 4.1.2).

• Berechnung der im Rahmen der Methode des Mode-Matchings auftretenden Über-
lappintegrale (Kapitel 4.1.3).

• Durchführung des Mode-Matchings, d.h. Aufstellen und Lösen des Gleichungssystems
(Kapitel 4.1.4).

Die Charakterisierung der Modenspektren wurde im Kapitel 3 hinreichend diskutiert. Die
verbleibenden drei Schritte werden im Folgenden näher beleuchtet. Zunächst werden jedoch
die betrachteten Geometrie- und Materialparameter vorgestellt, da diese essentiell für alle
weiteren Betrachtungen sind.

4.1.1. Geometrie- und Materialparameter, Parametrisierung der
Quelle

Das theoretische Modell der optischen Stufenindexfaser ist mit Definition der Kern- und
Mantelbrechzahl sowie dem Kerndurchmesser vollständig definiert. In der Praxis müsste
zumindest noch der Durchmesser des Mantels angegeben werden, welcher an dieser Stelle
zunächst als hinreichend groß angenommen wird. Der planare Schichtwellenleiter kann
zusätzlich ein asymmetrisches Brechzahlprofil aufweisen. Die Untersuchungen dieser Arbeit
beschränken sich jedoch auf den symmetrischen Wellenleiter. Aus den Brechungsindices
leitet sich unmittelbar die Numerische Apertur NA =

√
n2

1 − n2
2 sowie der Einfallswinkel

Θc = arcsin(NA) ab. Dieser Einfallswinkel bezogen auf die Wellenleiterachse definiert im
planaren Fall die Grenze, bis zu der ein einfallender Strahl noch im Kern geführt wird. Im
Fall einer zweidimensionalen Querschnittsgeomtrie ist Θc nur eine gute Näherung. Mehr
dazu in Kapitel 4.4.

In der Tabelle 4.1 sind einige Werte für unterschiedliche Parameterkonfigurationen aufge-
listet. Dabei ist die Wellenlänge λ ebenso wie die Kernbrechzahl n1 konstant. Es gilt im
Weiteren durchgehend

λ = 850 nm und n1 = 1,57. (4.1)

Des Weiteren sind ein Kerndurchmesser von d = 70 µm und eine Mantelbrechzahl von
n2 = 1,55 Ausgangsparameter, die jedoch im Verlauf der Arbeit variiert werden. In Ab-
hängigkeit des Kerndurchmessers sowie der Mantelbrechzahl werden die maximale azi-
muthale Ordnung MF , die Anzahl der geführten Moden, die numerische Apertur NA und
der Einfallswinkel Θc angegeben. Die Angabe der Anzahl geführter Moden bezieht sich
auf eine Polarisation. Die Anzahl geführter Fasermoden NF korrespondiert mit der Anzahl
geführter Schichtwellenleitermoden NS in etwa gemäß

NF ≈
π

4
NR ≈

(π
4

)2

N2
S. (4.2)
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d/µm n2 max Ord. Gef. Moden NA Θc

MF NF (m=1) NS

70 1,550 59 1075 (41) 42 0,250 14,47◦

50 1,550 41 554 (29) 30 0,250 14,47◦

30 1,550 24 208 (17) 18 0,250 14,47◦

10 1,550 7 26 (5) 6 0,250 14,47◦

70 1,560 41 543 (29) 30 0,177 10,19◦

70 1,565 28 279 (21) 21 0,125 7,19◦

70 1,568 17 113 (13) 14 0,079 4,54◦

Tabelle 4.1.: Diverse Wellenleiterparameter für λ = 850 nm und n1 = 1,57.

Darin ist NR eine Abschätzung für die Anzahl der geführten Moden des rechteckförmigen
Wellenleiters. Voraussetzung für (4.2) ist eine hinreichend große Anzahl Schichtwellenlei-
termoden. Für kleine NS stellt (4.2) nur eine sehr grobe Näherung dar. Für azimuthale
Ordnungen m > MF existieren keine geführten Fasermoden mehr. Sofern nur die Leistung
in den geführten Moden interessiert, braucht daher beim Mode-Matching nur die maximale
Ordnung MF berücksichtigt zu werden. Die Anzahl geführter Fasermoden in der Ordnung
m = 1 ist ungefähr gleich NS.

Neben den Geometrie- und Materialparametern des Wellenleiters ist die Parametrisierung
der Quelle von fundamentaler Bedeutung. Das Feld der Quelle wird durch einen Gauß-
strahl, wie er in Kapitel 2.2.3 vorgestellt wurde, approximiert. Bei gegebener Wellenzahl
k werden die grundlegenden Eigenschaften des Gaußstrahls ausschließlich durch einen Pa-
rameter festgelegt: der Rayleigh-Länge z0. Daraus abgeleitet ergibt sich mit (2.45) der
Divergenzwinkel Θa0 des Strahls. Für die Wellenzahl sei k = k0 angenommen, d.h. der
Bereich vor der Wellenleiterstirnfläche sei luftgefüllt mit n0 = 1. In der Praxis wird dieser
Fall vermieden, da die Reflexionsverluste maximal sind. In dieser Arbeit soll jedoch genau
dieser ungünstigste Fall untersucht werden.

Um die effektive Strahlbreite in der Wellenleiterstirnfläche bei senkrechtem Einfall einzu-
stellen, gibt es zwei mögliche unabhängige Vorgehensweisen, die auch miteinander kom-
biniert werden können. Die erste Möglichkeit besteht darin, die Rayleigh-Länge z0 und
damit auch den asymptotischen Divergenzwinkel Θa0 konstant zu halten und den Abstand
ze der Strahltaille zur Wellenleiterstirnfläche zu variieren. Diese Vorgehensweise wird in
dieser Arbeit favorisiert. Alternativ könnte der Abstand der Strahltaille konstant gehalten
werden und über die Rayleigh-Länge z0 die Strahlbreite eingestellt werden. Im Extremfall
befindet sich die Strahltaille direkt in der Grenzschicht, womit sich ebene Phasenfronten
des Gaußstrahls in der Wellenleiterstirnfläche ergeben. Eine Kombination beider Möglich-
keiten wäre, den lokalen Divergenzwinkel konstant zu halten, d.h. es gilt ∂/∂z w(z) = kon-
stant. Ein konstanter Divergenzwinkel vereinfacht die Interpretation und insbesondere den
Vergleich der Ergebnisse für unterschiedliche geometrische Abmessungen. In dieser Ar-
beit wird daher vornehmlich ein Gaußstrahl mit einem asymptotischen Divergenzwinkel
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b/µm 6,18 10 20 30 40 50 60 70

ze/µm 0 44,9 108,7 167,7 225,8 283,5 341,0 398,4

Θa(ze) 0 3,94◦ 4,76◦ 4,89◦ 4,94◦ 4,96◦ 4,97◦ 4,98◦

Tabelle 4.2.: Axiale Verschiebung ze des Gaußstrahls für Θa0 = 5◦ zum Einstellen unter-
schiedlicher Strahlbreiten b = 2w(ze) in der Wellenleiterstirnfläche.

Θa0 = 5◦ betrachtet. Größere Divergenzwinkel erhöhen den inhärenten Fehler der pa-
raxialen Approximation, welcher in Kapitel 4.3.1 näher diskutiert wird. Bezogen auf die
Wellenlänge λ = 850 nm ergibt sich im freien Raum die Rayleigh-Länge zu z0 = 35,3 µm.
In der Tabelle 4.2 sind typische Werte für die Strahlbreite b = 2w(ze) und die zugehörigen
Verschiebungen ze aufgelistet. Des Weiteren ist der lokale Divergenzwinkel

Θa(ze) = arctan

(
∂w(z)

∂z

) ∣∣∣∣
z=ze

= arctan

(√
2z2

e

kz0(z2
e + z2

0)

)
(4.3)

angegeben, der erst für sehr kleine Strahlbreiten deutlich vom asymptotischen Divergen-
zwinkel Θa0 abweicht, vgl. Abbildung 4.1b.

Ausgehend von der senkrechten meridionalen Positionierung der Strahlachse kann der
Strahl um einen Winkel verdreht oder lateral verschoben werden. Der Fall einer gleichzei-
tigen Verdrehung und Verschiebung wird in dieser Arbeit nicht betrachtet. Daher braucht

Θa0

z′

x′

b/2

z

x

n1

n2

n2n0 = 1

h
ϑ

(a) Querschnittsansicht

b/2 ze

Θa(ze)

z′

x′

(b) Der lokale Divergenzwinkel

Abbildung 4.1.: Ausbreitungseigenschaften des Gaußstrahls. (a) Position des Gaußstrahls
zur Wellenleiterstirnfläche. Die Strahlachse wird um denWinkel ϑ verdreht
oder um die Strecke h lateral verschoben. (b) Der lokale Divergenzwinkel
ist stets etwas kleiner als der asymptotische Divergenzwinkel Θa0.
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nur die Verdrehung um eine Achse bzw. die Verschiebung in Richtung einer Achse explizit
berechnet zu werden. Der jeweils orthogonale Fall kann durch Variation der Polarisati-
on des Gaußstrahls berücksichtigt werden. Abbildung 4.1a zeigt das definierte Modell zur
Einkopplung im Querschnitt, das sowohl für die Faser als auch für den Schichtwellenleiter
verwendet wird. Der Gaußstrahl wird somit um den Winkel ϑ um die y-Achse verdreht
oder um die Länge h lateral in x-Richtung verschoben. Die Feldbeschreibung (2.38) des
Gaußstrahls bezieht sich auf das Koordinatensystem (x′,y′,z′) und ist durch eine Koor-
dinatentransformation, welche die Rotation und die Translation berücksichtigt, mit dem
Koordinatensystem (x,y,z) verknüpft.

In Abbildung 4.1a nicht eingezeichnet ist der perfekt leitende Schirm, der die gesamte
Anordnung umgibt. Der Einfluss dieses Schirms ist gering, sofern nur die in die geführten
Moden eingekoppelte Leistung berechnet werden soll. Die Anzahl vorhandener Strahlungs-
moden steigt jedoch mit wachsendem Durchmesser des Schirms. Dieser Durchmesser wurde
standardmäßig auf das Doppelte des Ausgangskerndurchmessers s = 2d = 140 µm gesetzt.
Zur Verifikation wurde der Durchmesser auf bis zu 300 µm erhöht. Mit der Diskussion
über einen sinnvollen Abstand des leitenden Schirms zum Wellenleiterkern beschäftigt sich
Kapitel 4.3.2.

Neben den genannten physikalischen Parametern existiert eine Reihe weiterer Simulations-
parameter, die in den folgenden Kapiteln vorgestellt werden. Kritische Simulationspara-
meter sind beispielsweise die Anzahl berücksichtigter Moden oder die Anzahl angesetzter
Strahlen. Im wellentheoretischen Modell wurden stets alle propagierenden Moden berück-
sichtigt, mehr dazu im Kapitel 4.3.3. Um den Diskretisierungsfehler im strahlenoptischen
Modell zu minimieren wurden bis zu 2·106 Strahlen berücksichtigt, siehe auch Kapitel 4.4.2.

4.1.2. Spektraldarstellung der einfallenden Wellen

Die Durchführung des Mode-Matching-Verfahrens gemäß Kapitel 2.3.2 erfordert Felder,
die durch Moden eines geschlossenen, längshomogenen Wellenleiters beschrieben werden.
Zwar kann das Verfahren problemlos modifiziert werden, so dass die einfallende Welle ex-
plizit durch eine nahezu beliebige Feldlösung vorgegeben werden kann1. Die reflektierten
und transmittierten Wellen müssen jedoch weiterhin durch ein diskretes Modenspektrum
beschrieben werden, da ein kontinuierliches Modenspektrum ein System von Integralglei-
chungen hervorrufen würde, welches in der Regel nicht ohne Weiteres lösbar ist. In jedem
Fall müssen Integrale über ein Produkt der Feldgrößen der einfallende Welle mit denen
eines Wellenleitermodes gebildet werden. Diese werden oft als Überlappintegrale bezeich-
net und sind meist nur numerisch lösbar. Bei einer hohen Anzahl berücksichtigter Moden
ist dies mit einem entsprechend großen Rechenaufwand verbunden. Ist, wie in dieser Ar-
beit, der Raum vor dem betrachteten dielektrischen Wellenleiter homogen, wird durch
den eingefügten, perfekt leitenden Schirm ein homogener Hohlleiter gebildet. Sofern ei-
ne Entwicklung der einfallenden Welle in Moden dieses Hohlleiters möglich ist, können
bei einmalig erfolgter Entwicklung beliebig viele unterschiedliche Wellenleiter untersucht
werden. Bedingung ist natürlich ein konstanter Durchmesser des leitenden Schirms.

1Die rechte Seite in (2.85) oder (2.86) muss dann modifiziert werden.
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Es wird angenommen, dass eine Approximation der Felder des Gaußstrahls (2.38) unter
Verwendung der Notation aus Kapitel 2.3.1 gemäß der Reihenentwicklung

~E
P

(~r) ≈
NW−1∑

ν=0

(
CTM
ν

~E TMν (~rt) exp
(
−jkTMzν z

)
+ CTE

ν
~E TEν (~rt) exp

(
−jkTEzν z

))
(4.4)

möglich ist. Darin kennzeichnet der Index P die Feldgrößen des paraxialen Gaußstrahls.
Analog erfolgt die Beschreibung der magnetischen Feldstärke. Da die Moden des homoge-
nen Hohlleiters stets transversalelektrisch oder transversalmagnetisch sind, wurde bereits
hier eine Aufteilung vorgenommen. Eine detaillierte Diskussion über die Anzahl NW zu
berücksichtigender Moden wird in Kapitel 4.3.3 geführt. Die Entwicklung (4.4) unterliegt
drei wesentlichen systematischen Fehlern:

• Die Felder des Gaußstrahls füllen den gesamten Raum aus und werden durch den
leitenden Schirm abgeschnitten.

• Es kann nur eine endliche Anzahl Moden für die Reihenentwicklung berücksichtigt
werden.

• Die Felder des Gaußstrahls unterliegen der paraxiale Näherung.

Eine detailliertere Diskussion wird auf Kapitel 4.3 verschoben. Für den Moment sei ange-
nommen, dass alle drei Fehler im Kontext dieser Arbeit vernachlässigbar sind.

Parallelplattenleitung

Die Felder des planaren Gaußstrahls sind ebenfalls transversalelektrisch oder transversal-
magnetisch, vgl. A.1.2. Die Beziehung (4.4) vereinfacht sich im Fall transversalelektrischer
Felder somit zu

~E
P

(~r) ≈
NW−1∑

ν=0

CTE
ν

~E TEν (~rt) exp
(
−jkTEzν z

)
, (4.5)

worin ~E TEν (~rt) gemäß (3.12) gegeben ist:

~E TEyν (x) = ~ey sin
(
kx
(
x− s

2

))
mit kx =

νπ

s
, ν = 1,2,3 . . . . (4.6)

Im Allgemeinen wird zur Bestimmung der Amplituden CTE
ν die Modenorthogonalität (2.63)

ausgenutzt, d.h. es wird das Kreuzprodukt der Gleichung (4.5) mit einer Modenfunktion
der magnetischen Feldstärke gebildet. Anschließend wird über eine Ebene z = konstant
integriert. Die linksseitige Integration des Produkts aus Gaußfunktion und Modenfunktion
ist i.d.R. nur numerisch möglich. Aufgrund der einfachen mathematischen Beschreibung
der Moden durch trigonometrische Funktionen bietet sich eine alternative Herangehens-
weise an. Das Feld des Gaußstrahls wird dabei in der Transversalebene z = konstant durch
ein trigonometrisches Interpolationspolynom approximiert. Die Amplituden CTE

ν können
dann durch einen einfachen Koeffizientenvergleich bestimmt werden.
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Im Allgemeinen besitzt ein trigonometrisches Interpolationspolynom für eine gerade Stütz-
stellenanzahl die Form

I(x) = d0 + dK cos

(
K2π

x− x0

T

)
+

K−1∑

k=1

(dk + dN−k) cos

(
k2π

x− x0

T

)

+ j

K−1∑

k=1

(dk − dN−k) sin

(
k2π

x− x0

T

)
, (4.7)

mit dem Definitionsintervall [x0,x0 + T ]. Die Werte (d0, . . . ,dN−1) sind die den N = 2K
Abtastwerten2 der zu interpolierenden Funktion g(x) zugeordneten diskreten Fourierkoef-
fizienten. Diese lassen sich gemäß

dk =
1

N

N−1∑

i=0

g
(
i T
N

+ x0

)
e−jik2π/N , mit k = 0, . . . ,N−1 (4.8)

berechnen. Eine geeignet hohe Stützstellenanzahl vorausgesetzt, lassen sich die Koeffizien-
ten mit Hilfe einer schnellen Fouriertransformation (FFT) berechnen. Eine detailliertere
Beschreibung der trigonometrischen Interpolation befindet sich z.B. in [52].

Im Fall transversalelektrischer Felder darf das Interpolationspolynom nur Sinusfunktionen
enthalten. Das Wegfallen der Kosinusfunktionen in (4.7) erfordert dk = −dN−k sowie d0 =
dK = 0. Dies wird durch eine ungerade Fortsetzung auf das Intervall

[
−3T

4
,T

4

]
gemäß

g̃(x) =

{
g(x) : −T/4 ≤ x < T/4

−g (−x− T/2) : −3T/4 ≤ x < −T/4 (4.9)

erreicht. In der gewählten Notation gilt x0 = −3T/4 und T = 2s. Die Amplituden der
TE-Moden ergeben sich damit zu

CTE
ν =





0 : ν = 0

j 2dν : ν = 1, . . . ,K − 1

0 : ν = K.

(4.10)

Da sich aus dem Ansatz transversalelektrischer Felder kein TEM-Mode ableiten lässt, ist
die Amplitude CTE

0 richtigerweise gleich Null. Das Ergebnis CTE
K = 0 resultiert jedoch aus

der Approximation des Feldes durch ein Interpolationspolynom und gilt nur näherungs-
weise für hinreichend große K.

Es sei angemerkt, dass die Wahl der elektrischen Feldstärke für die Entwicklung willkürlich
ist. In analoger Vorgehensweise hätte auch die magnetische Feldstärke gewählt werden kön-
nen. Die Verwendung der y-gerichteten elektrischen Feldstärke hat jedoch den Vorteil, dass
sich die Richtung bei Rotation des Gaußstrahls um die y-Achse nicht ändert. Unabhängig
davon, welche Feldgröße für die Entwicklung verwendet wird, unterliegt die Gesamtlösung
2Die Anzahl der Abtastwerte muss nicht exakt mit der Anzahl Reihenglieder in 4.5 korrelieren. In der
Praxis sollte immer K > NW gelten.
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immer dem Fehler der paraxialen Näherung. Dazu mehr in Kapitel 4.3.3. Die Bestimmung
der Amplituden CTM

ν erfolgt analog, jedoch muss an Stelle der ungeraden Fortsetzung (4.9)
eine gerade Fortsetzung gewählt werden.

Die Anzahl der Stützstellen sollte in Abhängigkeit des Plattenabstandes s und der damit
verbundenen Anzahl geführter Moden gewählt werden. Ein typischer Wert ist s = 300 µm,
womit 706 geführte Moden pro Polarisation existieren. Die Stützstellenanzahl wurde stan-
dardmäßig auf mindestens N = 212 gesetzt. In der Regel sollte jedoch auch eine geringere
Stützstellenanzahl ausreichen. Die erforderliche Rechenzeit ist auch für große N vernach-
lässigbar gering.

Rundhohlleiter

Im dreidimensionalen Fall wird zunächst die Modenorthogonalität (2.63) ausgenutzt. Das
Kreuzprodukt von (4.4) mit der komplex konjugierten Funktion des magnetischen Feldes
des µ-ten TM-Modes und die anschließende Integration über eine transversale Ebene, hier
willkürlich z = 0, liefert

∫

z=0

~E
P × ~H TE∗

µ ~ez da =

∫

z=0

NW∑

ν=1

(
CTM
ν

~E TMν × ~H TE∗
µ + CTE

ν
~E TEν × ~H TE∗

µ

)
· ~ez da. (4.11)

Da im Rundhohlleiter kein TEM-Mode existiert, beginnt die Summation nun mit ν = 1.
Unter der Annahme, dass Summation und Integration vertauscht werden dürfen, und unter
Berücksichtigung der Modenorthogonalität folgt unmittelbar

CTE
µ =

1

Qµ

∫

z=0

(
~E
P × ~H TE∗

µ

)
· ~ez da. (4.12)

Analog dazu ergeben sich die CTM
µ zu

CTM
µ =

1

Qµ

∫

z=0

(
~E
P × ~H TM∗

µ

)
· ~ez da. (4.13)

Unter Verwendung des Feldansatzes (3.29) für die transversalelektrischen Moden ergibt
sich für die Amplituden

CTE
µ =

1

Qµ

rs∫

0

2π∫

0

(
EP
% H TE∗

ϕµ − EP
ϕH TE∗

%µ

)
% dϕ d%

=
1

Qµ

( rs∫

0

2π∫

0

EP
% (%,ϕ)

(
−jmkzµ

k2
%µ%

Jm(k%µ%) sin(mϕ)

)
% dϕ d%

−
rs∫

0

2π∫

0

EP
ϕ (%,ϕ)

(
j
kzµ
k%µ

J ′m(k%µ%) cos(mϕ)

)
% dϕ d%

)
.

(4.14)
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Ein analoger Ausdruck ergibt sich für die Bestimmung der CTM
µ . Die numerische Berech-

nung dieser Doppelintegrale ist i.d.R. mit einem hohen Rechenaufwand verbunden. Zur
Lösung wäre ein adaptives Verfahren wünschenswert, da die Feldverteilung des Gauß-
strahls in Abhängigkeit der Verdrehung ϑ und der lateralen Verschiebung h stark variiert.
Aufgrund dessen ist es aber auch schwierig, ein gleichsam stabiles wie effizientes adaptives
Verfahren zu implementieren. Da die Amplituden bei konstantem Radius des leitendem
Schirms nur einmalig bestimmt werden müssen, wurde im Rahmen dieser Arbeit ein ein-
faches Verfahren auf Basis der wiederhohlten eindimensionalen Integration verwendet. Die
Stützstellenstellenanzahl wurde entsprechend hoch angesetzt.

Die Integration in ϕ-Richtung wurde wie zuvor mit Hilfe der schnellen Fouriertransfor-
mation durchgeführt, d.h. die Feldfunktionen des Gaußstrahls EP

% und EP
ϕ wurden wieder

durch trigonometrische Interpolationspolynome approximiert. Anschließend kann die In-
tegration in ϕ-Richtung elementar durchgeführt werden. Die Integrale (4.14) werden dazu
wie folgt umgestellt:

CTE
µ = − j

Qµ

kzµ
k%µ


 m

k%µ

rs∫

0




2π∫

0

EP
% (%,ϕ) sin(mϕ) dϕ


 Jm(k%µ%) d%

+

rs∫

0




2π∫

0

EP
ϕ (%,ϕ) cos(mϕ) dϕ


 J ′m(k%µ%) % d%


 .

(4.15)

Diese Vorgehensweise hat den Vorteil, dass durch das trigonometrische Interpolationspo-
lynom alle azimuthalen Ordnungen in einem Schritt berücksichtigt werden. Der Nachteil
ist, dass für alle Ordnungen dieselben Stützstellen in %-Richtung angesetzt werden. Daher
wird in dieser Richtung ein einfaches Quadraturverfahren mit äquidistanten Stützstellen
verwendet. Es sei betont, dass die vorgestellte Methode nicht zwangsläufig die effizien-
teste ist. Weitere Untersuchungen dahingehend wurden nicht vorgenommen, da die Rei-
henentwicklung nur einmalig durchgeführt werden muss, um unterschiedliche dielektrische
Wellenleiter zu berücksichtigen.

Die Rechenzeiten sind im Vergleich zur planaren Anordnung um ein Vielfaches höher,
denn neben dem höheren Aufwand bei der Integration ist auch die Gesamtzahl zu berück-
sichtigender Moden ungleich höher. Dazu mehr in Kapitel 4.3.3. Standardmäßig wurden
210 Punkte für die FFT verwendet und 2000 Punkte für die Integration in %-Richtung.
Zur Verifikation wurde die Anzahl der Stützstellen in beiden Richtungen verdoppelt. Die
Anzahl geführter Moden pro azimuthaler Ordnung m beträgt bei einem Durchmesser des
Hohlleiters von 300 µm zwischen 353 (m=1) und 324 (m=59).

4.1.3. Überlappintegrale links- und rechtsseitiger Moden

Im Rahmen der Methode des Mode-Matching müssen Überlappintegrale der Form (2.69)
gelöst werden:

Q(lr)
µν =

∫

z=zc

(
~E (l)

tν ×
{
~H(r)

tµ

}∗)
~ez da. (4.16)
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Zu beachten ist, dass die Anzahl zu berücksichtigender Moden links- und rechtsseitig sehr
groß sein kann. Im planaren Fall müssen jeweils einige hundert bis tausend Moden be-
rücksichtigt werden, im dreidimensionalen Fall sind es bereits bis zu einige zehntausend
Moden. Entsprechend hoch ist die Anzahl durchzuführender Integrationen. Für die Anord-
nungen dieser Arbeit lassen sich aufgrund der herrschenden Symmetrien die Integrationen
analytisch durchführen.

Planare Wellenleiter

In einer planaren Anordnung sind im Fall transversalelektrischer Wellen Integrale der Form

Q(lr)
µν =

kzµ
ωµ

∆y

∫

z=zc

E (l)
yν(x)

{
E (r)
yµ (x)

}∗ dx (4.17)

zu lösen. Der Integralkern besteht aus Produkten trigonometrischer und hyperbolischer
Funktionen und die Integrationen sind entsprechend elementar durchführbar. Für die Kom-
bination aus linksseitiger Parallelplattenleitung und rechtseitigem Schichtwellenleiter wur-
de (4.17) exemplarisch im Anhang A.3.1 gelöst. Zur Notation sei angemerkt, dass die
Phasenkonstanten kx und kz der Übersichtlichkeit wegen nur über den Index ν oder µ
unterschieden werden. Ob die Phasenkonstante zum links- oder rechtsseitigen Wellenleiter
gehört, muss über die Zuordnung in (4.17) entschieden werden.

Zylindrische Fasern

In kreiszylindrischen Koordinaten nimmt (4.16) die Form

Q(lr)
µν =

b∫

%=0

2π∫

ϕ=0

(
E (l)
%νH(r)∗

ϕµ − E (l)
ϕν
~H(r)∗
%µ

)
% dϕ d% (4.18)

an. Wird im linksseitigen Rundhohlleiter ein transversalelektrischer Mode mit der elektri-
schen Feldstärke (3.30) betrachtet und rechtsseitig ein Fasermode mit der magnetischen
Feldstärke (3.35) angesetzt, dann folgt aus (4.18) der Integralausdruck

Q(lr)
µν = −ωµ0

k2
%ν

π

k2
i − k2

zµ

∞∫

%=0

(
m

%
Jm(k%ν%)

(
ωεiB

′∗
1i(%) +m

k∗zµ
%
B∗2i(%)

)

+ k%νJ
′
m(k%ν%)

(
m
ωεi
%
B∗1i(%) + k∗zµB

′∗
2i(%)

))
% d%. (4.19)

Darin sind die B1/2i(%) gemäß (3.33) bzw. (3.34) Kombinationen aus gewöhnlichen oder
modifizierten Besselfunktionen. Auch dieses Integral ist analytisch lösbar. Der Rechenauf-
wand ist jedoch im Vergleich zur planaren Anordnung deutlich höher. Die Lösung von
(4.19) ist exemplarisch für einen geführten Fasermode im Anhang A.3.2 aufgeführt.
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Numerik

Das Vorhandensein analytischer Lösungen garantiert noch keine fehlerfreie Bestimmung
des Integralwertes. Da auf einem Rechensystem immer nur eine begrenzte Stellenanzahl
zur Verfügung steht, ist zum einen der gültige Zahlenbereich eingeschränkt. Es kann somit
zu Zahlenbereichsüberläufen kommen. Das zweite, in der Regel schwerer wiegende Problem
ist das Phänomen der Auslöschung. Dieser Fall tritt insbesondere auf, wenn das Überlap-
pintegral mit einem Strahlungsmode der Faser gebildet wird. Ein Faktor in den Lösungen
ist der Term

1

k2
%ν + k2

%2µ

=
1

k2
%ν − k̃2

%2µ

, (4.20)

vgl.(A.60). Mit wachsendem Radius des leitenden Schirms steigt die Anzahl der Lösungen
k̃2
%2µ und damit auch die Wahrscheinlichkeit, dass aufgrund von Auslöschung ein erhöhter

Fehler resultiert. Abhilfe schafft eine Taylorentwicklung. Sei F (x,y) mit x=̂k%ν und y=̂k̃%2µ

eine Stammfunktion des Überlappintegrals, mit

F (x,y) =
1

(x+ y)(x− y)
g(x,y). (4.21)

Wird die Funktion g(x,y) in eine Taylorreihe bzgl. ihres zweiten Arguments um den Punkt
y = x+ ∆x entwickelt, ergibt sich nach Abbruch hinter dem linearen Glied

g(x,x+ ∆x) ≈ g(x,x) +
d

dy
g(x,y)

∣∣∣∣
x

∆x. (4.22)

Da in den Integralausdrücken stets g(x,x) = konstant gilt, folgt für den Integralwert I(x,y)
nach Einsetzen der Grenzen

I(x,y) = F (x,y)
∣∣∣
%=b

%=a
≈ − 1

x+ y
g′(x,x)

∣∣∣
%=b

%=a
. (4.23)

Die Kennzeichnung g′ steht für die Ableitung nach dem zweiten Argument. Die Konstante
g(x,x) entfällt durch die Auswertung der Stammfunktion an den Grenzen % = [a,b]. Der
für x ≈ y numerisch schlecht auszuwertende Term x− y ist in dieser Approximation nicht
enthalten. Alternativ oder zur Kontrolle der korrekten Berechnung des Integralwertes kann
eine numerische Integration in %-Richtung durchgeführt werden.

4.1.4. Durchführung des Mode-Matching

Nach Abarbeitung der genannten Vorleistungen muss zur Bestimmung der Amplituden
der reflektierten und transmittierten Moden eines der beiden Gleichungssysteme (2.85)
oder (2.86) gelöst werden. Im planaren Fall sind in der Regel bis zu 1000 berücksichtigte
Moden auf beiden Seiten der Schnittstelle ausreichend. Die Dimension des resultierenden
Gleichungssystems ist damit handhabbar und ohne große Hardwareanforderungen mit ei-
nem direkten Verfahren lösbar. Die Verwendung eines direkten Verfahrens, wie z.B. eine
LR-Zerlegung, birgt zudem den Vorteil, dass sie einmalig durchgeführt für verschiedene
rechtsseitige Vektoren und damit verschiedene Anregungen verwendet werden kann.
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Die Anzahl zu berücksichtigender Fasermoden ist ungleich höher. Das Modenspektrum der
Faser ist jedoch so geartet, dass Moden unterschiedlicher azimuthaler Ordnung orthogonal
sind. Diese azimuthale Orthogonalität gilt auch für Moden unterschiedlicher zirkularsym-
metrischer Wellenleitertypen. WerdenMF azimuthale Ordnungen berücksichtigt, kann das
Gleichungssystem somit in MF Gleichungssysteme kleinerer Dimension aufgeteilt werden.
Die Dimension der resultierenden Gleichungssysteme ist wiederum hinreichend klein.

Der insgesamt zu leistende Rechenaufwand zur Beschreibung der Einkopplung in die Faser
übersteigt den Aufwand zur Beschreibung der Einkopplung in den Schichtwellenleiter um
ein Vielfaches. In der planaren Anordnung liegt die Rechenzeit für die einzelne Simula-
tion insgesamt im Bereich einiger Sekunden und erhöht sich nur mäßig für jede weitere
Variation der Anregung3. Bei der Faser wird der Großteil der Rechenzeit für die Rei-
henentwicklung der Anregung benötigt. Allerdings muss diese nur einmalig durchgeführt
werden, um unterschiedliche Fasern zu simulieren. Lediglich ein konstanter Radius des
leitenden Schirms ist Voraussetzung. Sofern nur die Leistung interessiert, die in die ge-
führten Moden eingekoppelt wird, muss sich die Reihenentwicklung zudem nur über die
entsprechenden azimuthalen Ordnungen erstrecken. Hinsichtlich der Implementierung auf
einem Rechensystem empfiehlt sich die Erstellung einer Lookup-Tabelle für die diversen
Besselfunktionswerte.

4.2. Koppeleffizienz für Stufenindex-Wellenleiter

Die in diesem Kapitel präsentierten Ergebnisse basieren auf dem zuvor präsentierten wel-
lentheoretischen Lösungsansatz zur Beschreibung der Einkopplung eines Gaußstrahls in
einen dielektrischen Wellenleiter. Es werden zunächst Ergebnisse für die dielektrische Fa-
ser gezeigt. Anschließend wird kurz auf die Unterschiede zur planaren Geometrie einge-
gangen. Alle Ergebnisse beziehen sich auf eine y-gerichtete Polarisation. Die Unterschiede
zur orthogonalen x-gerichteten Polarisation sind jedoch nicht signifikant und liegen in den
Abbildungen unterhalb der darstellbaren Genauigkeit.

4.2.1. Definition der Koppeleffizienz

Es wird angenommen, eine Welle trifft aus negativer z-Richtung kommend auf die Stirn-
fläche des dielektrischen Wellenleiters. Diese Welle führt die Leistung P (+l). Dann ist die
Koppeleffizienz η definiert als Quotient der in die geführten Moden eingekoppelten Leistung
und der einfallenden Leistung P (+l):

η = 100% · 1

2P
(+l)

∑

ν ∈
{gef. Moden}

|C(+r)
ν |2 Q(+r)

ν . (4.24)

Zur besseren Unterscheidung in den Diagrammen von der später eingeführten relativen
Abweichung δ wird die Koppeleffizienz in Prozent angegeben.
3Herkömmlicher PC, z.B. 2GHz Prozessor mit einem Kern und 1GB Arbeitsspeicher.
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d = 75 µm

z = 0 z = 1mm

Abbildung 4.2.: Leistungfluss im Schichtwellenleiter bei nicht idealer Einkopplung.

Bei sehr kurzen Wellenleitern ist die Definition (4.24) ggf. zu modifizieren. Durch eine nicht
ideale Kopplung kann Leistung in das Spektrum der Strahlungsmoden eingekoppelt wer-
den, die dann vomWellenleiterkern weg, radial nach außen abgestrahlt wird. Dieser Prozess
bedarf aber einer gewissen Wellenleiterlänge. Ist diese sehr kurz, kann ein Empfänger am
Wellenleiterende auch Leistung aufnehmen, die im Spektrum der Strahlungsmoden geführt
wird. Abbildung 4.2 zeigt exemplarisch die zeitl. gemittelte Leistungsflussdichte |<{~S}|
am Anfang eines Schichtwellenleiters. Die Darstellung in Abbildung 4.2 ist in transversaler
Richtung um den Faktor zwei gestreckt. Der Einfallswinkel des Gaußstrahls beträgt 14,5◦.

4.2.2. Koppeleffizienz bei Variation der Einfallsrichtung

Zunächst sollen einige elementare Ergebnisse betrachtet werden, die die Einarbeitung in die
Thematik erleichtern. Es werden daher auch Ergebnisse gezeigt, die nicht von praktischem
Interesse sind, da die Koppeleffizienz zu gering ist. Die maximal erreichbare Koppeleffizi-
enz liegt für die gewählten Parameter aufgrund von Reflektionsverlusten nicht bei 100%,
sondern etwa 5% darunter. Die Strahlbreite des Eingangsstrahls ist zunächst konstant mit
b = 50 µm.

Verdrehung des Eingangsstrahls

Abbildung 4.3a zeigt Ergebnisse für einen Kerndurchmesser d = 70 µm und vier verschiede-
ne Mantelbrechzahlen. Die Strahlachse trifft meridional auf (h = 0). Mit einer Strahlbreite
von b = 50 µm wird die Stirnfläche des Wellenleiterkerns nahezu vollständig ausgeleuchtet,
da die Felder des Gaußstrahls noch über den Strahlradius hinaus ragen. Die maximale
Koppeleffizienz ist mit 93,42% bereits etwas kleiner als das theoretische Maximum, dass
sich für deutlich kleinere Strahlbreiten ergibt und bei etwa 95,1% liegt. Bei der Verdrehung
des Eingangsstrahls um einen Winkel ϑ wird erwartet, dass die Koppeleffizienz ab einem
bestimmten kritischen Winkel stark abnimmt. Dieser kritische Winkel sollte aufgrund der
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Abbildung 4.3.: Die Koppeleffizienz in Abhängigkeit des Einfallswinkels ϑ.

Rotationssymmetrie des Gaußstrahls näherungsweise der Differenz des maximalem Ein-
fallswinkels Θc und des Divergenzwinkels Θa0 entsprechen:

ϑc = Θc −Θa0. (4.25)

Die in Abbildung 4.3a dargestellten Ergebnisse bestätigen diese Annahme. Zur Erinnerung:
Der asymptotische Divergenzwinkel Θa0 des Gaußstrahls ist konstant gleich 5◦. Mit den
Werten für Θc aus Tabelle 4.1 und den Mantelbrechzahlen n2 = 1,55, 1,56, 1,565 sind
die kritischen Winkel ϑc = 9,47◦, 5,19◦, 2,19◦. Im Fall n2 = 1,568 ist ϑc negativ und wie
erwartet stellt sich ein deutlicher Einbruch der maximalen Koppeleffizienz bei ϑ = 0 ein.
Die 3 dB-Grenze, bei der die Koppeleffizienz auf 50% des Maximalwerts abgefallen ist,
liegt etwas unterhalb des maximalen Einfallswinkels Θc.

Die Verkleinerung des Kerndurchmessers ohne Anpassung des Strahldurchmessers ist in
der Praxis natürlich unsinnig. Abbildung 4.3b zeigt Ergebnisse für vier unterschiedliche
Kerndurchmesser bei konstanter Mantelbrechzahl n2 = 1,55. Schon bei Verkleinerung des
Kerndurchmessers auf den Durchmesser des Strahls, d = 50 µm, sinkt die maximale Kop-
peleffizienz bei ϑ = 0 auf etwa 83,64%. Es sei daran erinnert, dass die Leistung, die der
Gaußstrahl innerhalb seines Strahlradius transportiert, gleich 86,47% seiner Gesamtleis-
tung ist. Wird der Kerndurchmesser weiter verkleinert, nimmt die erreichbare Koppeleffizi-
enz deutlich ab. Zu bemerken ist noch, dass im Fall ϑ = 0 aufgrund der Rotationssymmetrie
nur Moden der azimuthalen Ordnung m = 1 angeregt werden. Für d = 10 µm existieren
nur 5 geführte Moden in der Ordnung m = 1. Wird der Strahl verdreht, können auch
Moden höherer azimuthaler Ordnung angeregt werden und die Koppeleffizienz kann leicht
ansteigen. So erklärt sich das leicht oszillatorische Verhalten in den Graphen.

Laterale Verschiebung des Eingangsstrahls

Neben der Verdrehung des Quellstrahls stellt die laterale Verschiebung der Quelle den zwei-
ten wesentlichen Verlustmechanismus dar. Abbildung 4.4 zeigt Ergebnisse für die Koppelef-
fizienz in Abhängigkeit der lateralen Verschiebung bei senkrechtem Einfall des Gaußstrahls
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Abbildung 4.4.: Die Koppeleffizienz in Abhängigkeit der lateralen Verschiebung h.

(ϑ = 0). Dabei wurden dieselben Geometrie- und Materialparametervariationen wie zuvor
berücksichtigt. Wie erwartet sind die Ergebnisse nahezu unabhängig vom Wert der Man-
telbrechzahl und damit von der Numerischen Apertur NA, solange diese hinreichend groß
ist, so dass in etwa Θc > 1,5 Θa0 gilt, vgl. Tabelle 4.1. Erst für eine sehr kleine NA fällt
die Koppeleffizienz insgesamt ab.

Aufgrund der relativ großen Strahlbreite nimmt die Koppeleffizienz auch für kleine Ver-
schiebungen h schon leicht ab. Für d = 70 µm ist ab einer Verschiebung von etwa h = 15 µm
ein stärkerer Abfall zu verzeichnen, da bei größeren Verschiebungen wesentliche Feldantei-
le des Gaußstrahls nicht mehr auf die Stirnfläche des Wellenleiterkerns treffen. Die 3 dB-
Grenze liegt bei h = 34 µm und damit knapp unter dem Radius des Kerndurchmessers.
Wird der Kernradius verkleinert, verschiebt sich entsprechend auch die 3 dB-Grenze.

4.2.3. Koppeleffizienz bei gleichmäßiger Verkleinerung des Kern-
und des Strahldurchmessers

Ein wesentliches Ziel dieser Arbeit ist die Verifikation strahlenoptischer Methoden und
insbesondere das Auffinden des Grenzbereichs, in dem ein erhöhter methodischer Fehler
zu erwarten ist. Dieser wird erwartet, falls die Geometrie nicht hinreichend groß gegenüber
der Wellenlänge ist. Die zu betrachtende Geometriegröße ist in diesem Fall der Durchmes-
ser des Wellenleiterkerns. Eine Verringerung des Kerndurchmessers ohne entsprechende
Skalierung der Strahlbreite des Gaußstrahls führt wie gezeigt zu Einbußen bei der Kop-
peleffizienz. Es stellt sich die Frage, welchen Einfluss die gleichmäßige Verkleinerung des
Kerndurchmessers und des Strahldurchmessers auf die Koppeleffizienz hat. Schließlich än-
dert sich mit Variation des Kerndurchmessers auch das Spektrum der Moden. Ebenso
ändert sich die Feldverteilung des Gaußstrahls in der Schnittfläche leicht.

Mit Blick auf den Vergleich zur Strahlenoptik werden zwei Fälle betrachtet. Zum einen
der Fall einer idealen Koppelvoraussetzung, bei dem der Kerndurchmesser größer als der
Strahldurchmesser ist. Es gilt d/b = 1,5. Ausgehend von einem Kerndurchmesser von d =
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Abbildung 4.5.: Die Koppeleffizienz bei gleichmäßiger Verkleinerung des Kerndurchmes-
sers d und des Strahldurchmessers b. (a),(c): in Abhängigkeit des Einfalls-
winkels ϑ. (b),(d): in Abhängigkeit der lateralen Verschiebung h.

90 µm (b = 60 µm) wird der Kern in fünf Schritten bis auf einen Durchmesser von d = 15 µm
(b = 10 µm) verkleinert. Die Ergebnisse für η zeigt Abbildung 4.5. Die numerische Apertur
des Wellenleiters ist NA = 0,25 mit n2 = 1,55. Im zweiten Fall wird d/b = 1,0 gewählt. Bei
dieser Wahl ist die maximal erreichbare Koppeleffizienz auf etwa 83% begrenzt. Interessant
ist diese Wahl, da die Stirnfläche des Wellenleiterkerns und des direkt umgebenen Mantels
vollständig ausgeleuchtet sind.

Die Interpretation der Ergebnisse kann kurz ausfallen. Merkliche Abweichungen gibt es
jeweils dann, wenn ein signifikanter Anteil des einfallenden Leistungflusses auf den kern-
nahen Mantelbereich trifft. Dies ist insbesondere dann der Fall, wenn der Strahl lateral
verschoben wird, Abbildungen 4.5b und 4.5d. Insgesamt lässt sich jedoch festhalten, dass
die gesamte Anordnung innerhalb der gewählten Geometrieparameter weitestgehend ska-
lierbar ist, ohne dass massive Änderungen in der Koppeleffizienz zu erwarten sind. Die
leichten Unterschiede erklären sich im Wesentlichen aus dem kleiner werdenden lokalen
Divergenzwinkel des Gaußstrahls bei Verkleinerung des Strahldurchmessers b in der Wel-
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lenleiterstirnfläche, vgl. Tabelle 4.2.

4.2.4. Anmerkungen zur Approximation durch planare Wellenleiter

Da sich die Untersuchungen zur Wellenausbreitung im Kapitel 5 gänzlich auf den plana-
ren Schichtwellenleiter beschränken, müssen einige Unterschiede im Vergleich zur Faser
hinsichtlich der erreichbaren Koppeleffizienz hervorgehoben werden [65].

Alle in den vorherigen Kapiteln 4.2.2 und 4.2.3 gemachten Aussagen gelten qualitativ
auch für den planaren Schichtwellenleiter. Aufgrund der fehlenden Abhängigkeit von ei-
ner Dimension ergeben sich jedoch einige quantitative Unterschiede. Diese betreffen nicht
die wesentlichen Ausbreitungseigenschaften des Strahls. Insbesondere divergiert der Strahl
unter einem identischen Winkel. Wie der Beschreibung des planaren Gaußstrahls im An-
hang A.1.2 zu entnehmen ist, ist allerdings die innerhalb der Strahlbreite geführte Leistung
mit über 95% deutlich größer (vorher 86%). Dementsprechend ist die erreichbare Koppelef-
fizienz je nach Verhältnis d/b im Durchschnitt ebenfalls deutlich größer. Erst ab einem
Verhältnis von ca. d/b > 1,5 und hinreichend geringer Verdrehung bzw. Verschiebung des
Strahls stellen sich in etwa identische Koppeleffizienzen ein.

Die Besonderheit der planaren Approximation besteht insbesondere darin, dass sich ver-
schiedene Effekte stärker auswirken. Besonders deutlich werden diese Effekte im strah-
lenoptischen Modell. Es sei z.B. die Goos-Hänchen-Verschiebung genannt. Ursache ist die
fehlende transversale Abhängigkeit in einer Dimension, die im physikalisch realen Modell
einzelne Effekte etwas verschleiert. Mehr dazu in Kapitel 4.4.3. Darüber hinaus sind si-
gnifikante Unterschiede insbesondere auch dann zu erwarten, wenn nur wenige geführte
Moden existieren. Dieser Punkt steht jedoch nicht im Fokus dieser Arbeit.

4.3. Grenzen der Modellierung

Wie im Abschnitt 4.1.2 schon einleitend beschrieben, unterliegt das vorliegende Modell zur
Beschreibung der Einkopplung optischer Wellen in einen dielektrischen Wellenleiter einigen
Annahmen, die den allgemeinen Lösungsraum möglicherweise einschränken. Die folgenden
Abschnitte sollen die Grenzen des vorliegenden Modells etwas näher beschreiben.

4.3.1. Der Fehler der Paraxialen Näherung

Der Gaußstrahl wird in dieser Arbeit als Feld einer idealisierten Quelle herangezogen, um
die weiteren Eigenschaften einer optisch multimodalen Übertragungsstrecke zu analysieren.
Diese Untersuchungen erfolgen auf Basis der Theorie normaler Moden, Kapitel 2.3.1, mit
dem Ziel einer möglichst exakten Modellierung zur Entwicklung eines Referenzmodells. Ist
schon das Modell der Quelle mit einem hohen Fehler behaftet, ist dieses Ziel möglicherweise
nicht zu erreichen. Um zunächst ein Gefühl für den zu erwartenden Fehler zu bekommen, ist
in Abbildung 4.6 ein Vergleich der transversalen elektrischen Feldstärke des Maxwellschen
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Abbildung 4.6.: Vergleich des Realteils der transversalen elektrischen Feldstärke des Max-
wellschen EM

t und Paraxialen Gaußstrahls EP
t in Abhängigkeit der trans-

versalen Koordinate für b = 50 µm.

und Paraxialen Gaußstrahls dargestellt. Die Feldgrößen sind in der Ebene z ausgewertet
worden, in der die Strahlbreite jeweils den Wert b = 50 µm annimmt. Aufgrund der Ro-
tationssymmetrie reicht die Darstellung in Abhängigkeit der radialen Koordinate aus. Der
Divergenzwinkel Θa0 = 5◦ wurde gewählt, da in diesem Fall die Abweichung zwischen den
unterschiedlichen Feldlösungen gemäß Abbildung 4.6 vertretbar gering erscheint. Deutlich
größer ist die Abweichung im Fall Θa0 = 14◦. Dieser Wert entstammt dem Datenblatt einer
VCSEL-Diode.

Für eine weitere Abschätzung des Fehlers hervorgerufen durch die paraxiale Näherung wird
das folgenden Fehlermaß

fp(ze) =

∫∫
z=ze

∣∣EM
t (~r)− EP

t (~r)
∣∣2 da

∫∫
z=ze

∣∣EM
t (~r)

∣∣2 da
(4.26)

eingeführt. Darin steht wie schon in Abbildung 4.6 EM
t für das transversale Feld des Max-

wellschen Gaußstrahls und EP
t für das transversale Feld des Paraxialen Gaußstrahls. Das

Integral über das Betragsquadrat der elektrischen Feldstärke ist proportional zur transpor-
tierten Leistung. Das Fehlermaß fp setzt somit die im Differenzfeld transportierte Leistung
ins Verhältnis zur insgesamt transportierten Leistung. In der Strahltaille gilt fp = 0, die
Feldgrößen sind identisch. Mit wachsender Koordinate in Ausbreitungsrichtung werden die
Abweichungen größer und auch fp wird anwachsen.

Voraussetzung für die korrekte Berechnung von fp ist die hinreichend genaue Bestimmung
der Feldgrößen. Im Fall des Paraxialen Gaußstrahls ist mit (2.38a) eine analytische Lösung
gegeben, die sich auch numerisch problemlos auswerten lässt. Der Maxwellsche Gaußstrahl
erfordert mit (2.31) jedoch die Auswertung eines uneigentlichen Integrals. Insbesondere
bei kleinen Divergenzwinkeln ist anzunehmen, dass die Integration an einer bestimmten
Stelle %0 abgebrochen werden kann. Beispielsweise ist nicht zu erwarten, dass evaneszente
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Abbildung 4.7.: Das Fehlermaß fp in Abhängigkeit von %0/k für unterschiedliche Divergen-
zwinkel Θa0.

Anteile einen signifikanten Beitrag liefern. Es gilt also näherungsweise

EM
t (~r) ≈ E0

w2
0

2

%0∫

0

exp

(
−w

2
0 %̃

2

4

)
J0(%̃

√
x2 + y2) exp

(
−j
√
k2−%̃2 z

)
%̃ d%̃. (4.27)

Auf dieser Basis zeigt Abbildung 4.7 Ergebnisse für das Fehlermaß fp in Abhängigkeit der
Integrationsgrenze %0. Dargestellt sind Ergebnisse für vier unterschiedliche Divergenzwin-
kel. Des Weiteren werden die Fälle b = 2w0 (ze = 0) sowie b = 50 µm (ze = 283,5 µm)
unterschieden. Im ersten Fall, Abbildung 4.7a, gilt fp → 0 für %0 →∞ und diese Tendenz
wird auch in allen vier Fällen bestätigt, wie erwartet jedoch deutlich besser für kleine
Divergenzwinkel. Evaneszente Feldanteile liefern aber selbst für Θa0 = 14◦ keinen signifi-
kanten Beitrag, da am Übergang %0 = k das Fehlermaß bereits auf fp ≈ 4e-15 abgefallen
ist.

Für z > 0 strebt fp gegen einen konstanten Wert größer Null. In dem in Abbildung 4.7b
dargestellten Fall mit b = 50 µm sind dies bei einer Genauigkeit von drei Stellen die in Ta-
belle 4.3 gegebenen Werte. Interessieren soll zunächst die Frage, welche Integrationsgrenze
%0 mindestens gewählt werden muss, um die Felder des Maxwellschen Gaußstrahls hinrei-
chend genau zu berechnen. In den Kurven in Abbildung 4.7b ist insbesondere bei kleinem
Divergenzwinkel deutlich ein Knick zu erkennen, ab dem sich der Wert fp scheinbar nicht

Θa0 2◦ 5◦ 10◦ 14◦

fp|%0/k=1 4,04e-07 9,94e-05 6,35e-3 3,76e-2

Min. %0/k 0,2 0,4 0,55 0,6

2w0 15,5 µm 6,18 µm 3,06 µm 2,16 µm

Tabelle 4.3.: Exemplarische Grenzwerte des Fehlermaßes fp an der Stelle b = 50 µm, emp-
fohlene Integrationsgrenze %0 und der minimale Strahldurchmesser b = 2w0.
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Abbildung 4.8.: Das Fehlermaß fp: (a) in Abhängigkeit des Divergenzwinkels und (b) in
Abhängigkeit des Strahldurchmessers b.

mehr ändert. Bei genauer Betrachtung, außerhalb der in Abbildung 4.7 darstellbaren Ge-
nauigkeit, stellt sich auch nach diesem Knick noch eine leichte Oszillation ein. Aus diesen
Ergebnissen abgeleitete Grenzwerte für %0 sind ebenfalls in Tabelle 4.3 aufgeführt.

Abschließend soll noch etwas detaillierter die Abhängigkeit des Fehlermaßes fp vom Diver-
genzwinkel Θa0 und von der Strahlbreite b untersucht werden. In Abbildung 4.8a ist die
Abhängigkeit von Θa0 für drei in dieser Arbeit verwendeten Strahlbreiten dargestellt. Wird
ein maximaler Fehler von fp = 10−3 angesetzt, ergibt sich für b = 75 µm ein maximaler
Divergenzwinkel von etwa 6◦. In der Abbildung 4.8b ist zusätzlich die Entwicklung des
Fehlers für größer werdende Strahldurchmesser b dokumentiert. Insbesondere bei großem
Θa0 wächst der Fehler schnell so stark an, dass von der Verwendung der paraxialen Nähe-
rung abzuraten ist. Beispielsweise nimmt im Fall Θa0 = 14◦ und b = 200 µm das Fehlermaß
den Wert fp = 0,195 an. Da das Fehlermaß eine leistungsbezogene Größe ist, variiert ent-
sprechend auch die geführte Leistung nach der Entwicklung der Felder in Moden eines
Hohlleiters. Genau wie die Felder des Maxwellschen Gaußstrahls unterliegen die Moden
des Hohlleiters nicht der paraxialen Näherung. Natürlich hängt der tolerierbare Fehler
stark vom eigentlichen Ziel der Anwendung ab. Im Kontext dieser Arbeit ist dies die Ent-
wicklung eines Referenzmodells, in dem der Gaußstrahl als Referenzquelle dient. Da der
Vergleich zwischen den wellen- und strahlenoptischen Ergebnissen im Kapitel 4.4 teilweise
Abweichungen aufzeigt, die lediglich im Promillebereich liegen, sollte an dieser Stelle ein
maximales Fehlermaß zugelassen werden, das deutlich unter dem Promillebereich liegt. Mit
einer maximalen Strahlbreite von b = 75 µm und einem Divergenzwinkel von Θa0 = 5◦ ist
dies gegeben.

Als ergänzende Literatur empfiehlt sich insbesondere [69].
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4.3.2. Geschlossene oder offene Wellenleiter?

Im Kapitel 3.1 wurde bereits thematisiert, dass in der Modellierung optischer Wellenleiter
zwischen offenen und geschlossenen Anordnungen unterschieden werden kann. Dabei muss
beachtet werden, dass beide Ansätze nur Modellcharakter besitzen. Standard-Multimode-
Fasern besitzen in der Regel einen Kern mit Durchmessern von 50 µm oder 62,5 µm. Der
Durchmesser des umgebenden Mantels ist gleich 125 µm und damit etwa doppelt so groß
wie der Kern. Es wird somit angenommen, dass die Felder der geführten Moden ent-
sprechend schnell im Mantel abklingen. Dass dem auch so ist, zeigt exemplarisch Abbil-
dung 4.9a. Für die Parameter n1 = 1,57, n2 = 1,568 und d = 75 µm ist das transversale
Modenprofil des 14. und damit des letzten noch geführten Modes eines Schichtwellenleiters
aufgetragen, vgl. Abbildung 3.2b. Eine hinreichend große Mantelschichtdicke a vorausge-
setzt, dringt das Feld augenscheinlich ca. 30 µm weit in den Mantel ein.

Unerlässlich ist in jedem Fall die hinreichend genaue Beschreibung des Spektrums der
geführten Moden. Um den Einfluss des leitenden Schirms auf das Modenprofil zu verdeut-
lichen, zeigt Abbildung 4.9a Ergebnisse für unterschiedliche Mantelschichtdicken. Nimmt
man eine Mantelschichtdicke von a = 500 µm als Referenzwert an, wird deutlich, dass
selbst bei einer Dicke von nur 10 µm das Feld im Kern (|x| < 37,5 µm) noch hinreichend
gut beschrieben wird. Lediglich im Mantel kommt es zu größeren Abweichungen. Bei noch
kleineren Schichtdicken ändert sich das Modenprofil schließlich auch signifikant im Kern.

Die vergleichsweise kleine numerische Apertur wurde im Übrigen gewählt, da sich die Felder
eines 14. Modes noch in einem akzeptablen Maßstab darstellen lassen. Im Mittel dringen
die Felder bei kleiner werdender numerischer Apertur zwar weiter in den Mantel ein. Die
Felder des letzten gerade noch geführten Modes eines Wellenleiters mit großer Apertur
können aber durchaus noch weiter in den Mantel reichen, z.B. besitzt für n2 = 1,55 der
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Abbildung 4.9.: (a): Ausschnitt des transversalen Modenprofils |Eν | des 14. Modes für un-
terschiedliche Mantelschichtdicken a. Der Wellenleiterkern ist grau unter-
legt. (b): Das Fehlermaß fw in Abhängigkeit der Mantelschichtdicke a. Es
gilt jeweils d = 75 µm.
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Abbildung 4.10.: Zeitlich gemittelte Leistungsflussdichte |<{~S}| bei Anregung in z = 0
durch einen um 14,5◦ verdrehten Gaußstrahl für die Wellenleiterparame-
ter: n1 = 1,57, n2 = 1,55 und d = 70 µm. Dargestellt ist der Vergleich
zwischen einer geschlossenen und einer (näherungsweise) offenen Struk-
tur.

45. und damit letzte geführte Mode nach 60 µm noch merkliche Feldanteile.

Zur Quantifizierung des Fehlers im Profil der geführten Moden wurde wie im vorangegan-
gen Abschnitt ein Fehlermaß f berechnet:

fw =

∞∫
−∞
|E∞ν (x)− Ea<∞ν |2 dx

∞∫
−∞
|E∞ν (x)|2 dx

. (4.28)

Darin kennzeichnet E∞ν das Feld eines Modes des offenen Wellenleiters. Das Ergebnis für
die jeweils zwei letzten geführten Moden der beiden genannten Wellenleiter ist in Ab-
bildung 4.9b dargestellt. Legt man wiederum einen maximalen Fehler von f = 10−3 zu
Grunde, ist dieser auch im schlechtesten Fall bei a = d

2
erreicht. Alle Moden niedrigerer

Ordnung erreichen diese Fehlerschranke viel früher. Die Untersuchungen für die kreiszy-
lindrische Faser bringen analoge Ergebnisse hinsichtlich der Eindringtiefe der Felder in
den Mantel hervor. Es kann somit abschließend festgehalten werden, dass der Durchmes-
ser des leitenden Schirms mindestens doppelt so groß sein sollte wie der Durchmesser des
Kerns, um den Einfluss des leitenden Schirms auf die Koppeleffizienz zu minimieren. Ein
signifikanter Einfluss ist jedoch erst für deutlich kleinere Schirmdurchmesser zu erwarten.

Unter den genannten Bedingungen ist der Leistungsfluss im Kern des längshomogenen
Wellenleiters aufgrund der Modenorthogonalität unabhängig vom Durchmesser des um-
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gebenden Schirms. Voraussetzung ist natürlich die korrekte Berechnung der Amplituden
der geführten Moden. Das Spektrum der Strahlungsmoden variiert jedoch zwangsläufig
mit Änderung des Schirmradius, da durch den Schirm Reflexionen hervorgerufen werden.
Abbildung 4.10 zeigt exemplarisch die Änderung in der Leistungsflussdichte für den Fall
eines Schichtwellenleiters mit Schirmabstand a = 50 µm im Vergleich zu einem Wellenleiter
mit a = 800 µm. Da sich im letztgenannten Fall der Einfluss des leitenden Schirms erst
für deutlich größere z bemerkbar macht, wird in Abbildung 4.10 unten der Begriff offener
Rand verwendet. Die Darstellungen sind in transversaler Richtung um den Faktor 2 ge-
streckt. In der oberen Abbildung werden durch den PEC-Rand (PEC, englisch für perfekter
elektrischer Leiter) deutlich erkennbare Reflexionen hervorgerufen. In der Umgebung der
Schnittfläche z = 0 zeigen beide Abbildungen jedoch Übereinstimmung auf. Tatsächlich
ist die mit beiden Anordnungen berechnete Koppeleffizienz im Rahmen der erreichbaren
Genauigkeit identisch.

Der Einfluss des leitenden Schirms auf das anregende Feld ist im Übrigen vernachlässigbar.
Zwar werden die Felder, sofern noch signifikant vorhanden, durch den Schirm abgeschnit-
ten. Diese abgeschnittenden Anteile rufen jedoch keine unerwünschten Effekte hervor, son-
dern werden nicht weiter berücksichtigt.

4.3.3. Die Anzahl zu berücksichtigender Moden

Wie bereits diskutiert, setzt sich das Modenspektrum eines jeden Wellenleiters auch im
Fall eines diskreten Spektrums aus einer unendlichen Anzahl Moden zusammen. Unab-
hängig von der gewählten Vorgehensweise kann eine Simulation ohne zusätzliche Näherun-
gen jedoch immer nur endlich viele Moden berücksichtigen. Im Folgenden soll zunächst
untersucht werden, wie viele Moden für die hinreichend genaue Beschreibung des Gauß-
strahls durch Hohlleitermoden erforderlich sind. Anschließend wird die Untersuchung auf
die Durchführung des Mode-Matchings ausgedehnt.

Entwicklung des einfallenden Feldes

Die Entwicklung der Felder des Gaußstrahls in die Moden eines Rundhohlleiters ist der
rechenintensivste Teil der Simulationen dieser Arbeit. Wünschenswert wäre es daher, nur
die Amplituden der Moden zu berechnen, die auch signifikant angeregt werden. Zur Vi-
sualisierung des angeregten Modenspektrums wird die Folge der Partialsummen über die
Leistung der einzelnen Moden

PΞ(neff) =

µ∑

ν=1

P ν mit µ = max{ν|kzν ≥ k0neff} (4.29)

betrachtet. Der Übersichtlichkeit wegen und zur besseren Vergleichbarkeit wird PΞ definiert
als Funktion einer effektiven Brechzahl neff. Die Summation in (4.29) berücksichtigt Moden
im Indexbereich n1 > kzν/k0 > neff. Mit den in dieser Arbeit betrachteten diskreten
Modenspektren verläuft PΞ(neff) stufenförmig, was jedoch aufgrund der Vielmodigkeit der
Wellenleiter und der endlichen Darstellungsgenauigkeit oft nicht auffällt.
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Abbildung 4.11.: Anregung des Modenspektrums im Hohlleiter: Akkumulierte Leistung PΞ

für verschiedene Einfallswinkel ϑ. Es gilt Θa0 = 5◦ und MF = 59.

Die effektive Brechzahl ist für ausbreitungsfähige Moden reellwertig und liegt im Fall des
luftgefüllten Hohlleiters im Intervall (0,1). Abbildung 4.11a zeigt exemplarisch den Verlauf
von PΞ(neff) für einen Divergenzwinkel Θa0 = 5◦ und unterschiedliche Einfallswinkel ϑ. So-
fern eine hinreichend große Anzahl ausbreitungsfähiger Moden existiert, ist die Darstellung
nahezu unabhängig vom Radius des Hohlleiters. Die Leistung des einfallenden Gaußstrahls
ist im Weiteren stets normiert auf ein Watt.

Es zeigt sich, dass mit wachsendem Einfallswinkel das angeregte Spektrum verschoben
wird. Die Breite des angeregten Spektrums korrespondiert mit dem Divergenzwinkel des
Gaußstrahls. Dies wird unmittelbar deutlich, wenn die Winkel arccos(neff) der jeweiligen
Moden betrachtet werden. Da die maximale berücksichtigte azimuthale OrdnungMF = 59
ist, wird bei großem Einfallswinkel der Maximalwert nicht erreicht. Durch eine laterale
Verschiebung des Gaußstrahls werden zwar Moden höherer azimuthaler Ordnung ange-
regt, jedoch keine Moden mit kleinerem effektiven Index. Entsprechend wird dieser Fall
in Abbildung 4.11a nicht berücksichtigt. Dieses Ergebnis lässt sich aus der klassischen
Fouriertheorie ableiten, nach der eine Verschiebung im Ursprungsbereich lediglich eine
Änderung der Phase im Bildbereich hervorruft. Abgesehen von der fehlenden azimuthalen
Ordnung resultieren für den planaren Schichtwellenleiter vollkommen analoge Ergebnisse.

Abbildung 4.11b zeigt zusätzlich die akkumulierte Leistung, aufgetragen über die azi-
muthale Modenzahl m. Im Fall ϑ = 0 werden nur Moden der Ordnung m = 1 angeregt.
Mit wachsendem Einfallswinkel werden dann verstärkt höhere Ordnungen angeregt.

Für den Algorithmus zur Berechnung der Amplituden der Hohlleitermoden empfiehlt sich
somit die Implementierung eines Abbruchkriteriums bzgl. der Leistung pro Ordnung m. In
dieser Arbeit wurde eine Schranke von ∆P = 5e-7 verwendet. Ordnungen m, die weniger
Leistung als ∆P führen, werden nicht mehr berücksichtigt. In jeder Ordnung m brauchen
dann nur die Moden im entsprechenden Indexbereich berücksichtigt werden, wobei in dieser
Arbeit standardmäßig alle ausbreitungsfähigen Moden einer Ordnung m berücksichtigt
werden. Die Kontrolle der korrekten Entwicklung des Gaußstrahls erfolgt wiederum über
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Abbildung 4.12.: Anregung des Modenspektrums der Faser: Akkumulierte Leistung PΞ für
verschiedene Einfallswinkel ϑ und verschiedene Verschiebungen h. Es gilt
d = 70 µm, n2 = 1,55, Θa0 = 5◦ und MF = 59.

ein Fehlermaß äquivalent zu (4.26). Da die numerische zweidimensionale Integration sehr
aufwändig ist, wurde nur über die Koordinatenachsen integriert. Im planaren Fall lässt sich
zeigen, dass das Fehlermaß gegen Null strebt. Systematisch bedingt bleibt das Fehlermaß
im Rundhohleiter in der Regel etwas oberhalb ∆P .

Durchführung des Mode-Matching

Analog zu den vorherigen Untersuchungen zum Modenspektrum des Hohlleiters wurde
auch das Spektrum der Faser analysiert. Die Ergebnisse sind in Abbildung 4.12 dargestellt.
Aufgrund von Reflexionsverlusten ist die Gesamtleistung stets kleiner eins. Der effektive
Index der Kernmoden der Faser liegt im Intervall (1,57, 1,55). Für neff < 1,55 bilden sich
Mantelmoden aus. Die Aufteilung in Kern- und Mantelmoden ist der entscheidende Un-
terschied zum Hohlleiter. Besonders deutlich wird dieser Unterschied in der Anregung des
Modenspektrums bei Variation der lateralen Verschiebung, Abbildung 4.12a. Wiederum
werden auch für große Verschiebungen keine Kernmoden mit kleinerem neff angeregt. Ist
die Verschiebung so groß, dass wenig Leistung in die Kernmoden gekoppelt wird, werden
stattdessen die Mantelmoden angeregt, deren effektiver Index nur unwesentlich kleiner als
1,55 ist. Physikalisch ist dies plausibel, da über den effektiven Index, bzw. über den Winkel
des Wellenvektors zur Wellenleiterachse arccos(neff/ni), die Richtung der Wellenausbrei-
tung festgelegt wird.

Wie viele Moden nun tatsächlich in den Simulationen berücksichtigt werden müssen, ist wie
gezeigt sowohl von der Anregung als auch von den Eigenschaften des dielektrischen Wel-
lenleiters abhängig. Die Anzahl geführter Moden sowie die maximale azimuthale Ordnung
MF , bis zu der noch geführte Kernmoden existieren, ist in Tabelle 4.1 aufgeführt. Primär
wird die Anzahl ausbreitungsfähiger Mantelmoden durch den Durchmesser des leitenden
Schirms festgelegt. Abbildung 4.13 zeigt exemplarisch die über den effektiven Brechungs-
index aufsummierte Anzahl ausbreitungsfähiger Moden des Hohlleiters und der Faser für
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Abbildung 4.13.: Gesamtanzahl ausbreitungsfähiger Moden in einer Polarisation, aufsum-
miert über den effektiven Index neff = kz/k0 bis zur Ordnung MF = 59.
Es gilt d = 70 µm und n2 = 1,55.

zwei unterschiedliche Schirmdurchmesser. Dabei wurden nur Moden bis zur azimuthalen
Ordnung MF = 59 berücksichtigt. Die Gesamtanzahl ausbreitungsfähiger Moden ist noch
einmal deutlich größer. Aufgrund der größeren Brechzahlen der Faser, sowohl im Kern
als auch im Mantel, ist die Anzahl ausbreitungsfähiger Moden für die Faser größer. Alle
Angaben beziehen sich dabei auf nur eine Polarisation. Oft ist die maximal zu berücksich-
tigende azimuthale Ordnung deutlich kleiner als MF , vgl. Abbildung 4.12b. Im Extremfall
des senkrechten meridionalen Einfalls der Strahlachse muss nur die Ordnung m=1 berück-
sichtigt werden. In dieser Ordnung existieren für s = 140 µm im Hohlleiter 329 und in der
Faser 513 ausbreitungsfähige Moden (davon 41 Kernmoden). Im Fall s = 300 µm sind es
705 bzw. 1097 Moden. Wie bereits diskutiert brauchen nicht alle Moden einer Ordnung m
berücksichtigt werden. Die Anzahl der Kern- und Mantelmoden im planaren Schichtwel-
lenleiter entspricht nahezu der Anzahl Fasermoden der Ordnung m = 1.

Zur Kontrolle der Randbedingungen wurde erneut ein im Vergleich zu (4.26) leicht modi-
fiziertes Fehlermaß angewendet:

fm =

2
∞∫∫
−∞

∣∣∣E(l)
t (~r)− E(r)

t (~r)
∣∣∣
2

dat

∞∫∫
−∞

∣∣∣E(l)
t (~r) + E

(r)
t (~r)

∣∣∣
2

dat
. (4.30)

Wiederum lässt sich im planaren Fall zeigen, dass das Fehlermaß gegen Null strebt. Der
Aufwand für die zweidimensionale Querschnittsebene der Faser ist jedoch ungleich höher,
da die Anzahl der Moden deutlich größer ist und zudem die mathematische Beschreibung
der Fasermoden aufwändiger ist. In den Simulationen wurden wiederum standardmäßig
alle ausbreitungsfähigen Moden einer Ordnung m berücksichtigt. Bei großem Einfallswin-
kel müssen somit links- und rechtsseitig der Grenzschicht jeweils mehrere zehntausend
Moden berücksichtigt werden. Anstelle der Flächenintegrationen in (4.30) wurde daher
nur stichprobenartig über Linien ϕ = konstant integriert. Des Weiteren wurden vornehm-
lich Wellenleiter mit kleinem Kerndurchmesser untersucht, da diese im besonderen Fokus
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des Interesses stehen, mit dem Nebeneffekt, dass die Anzahl zu berücksichtigender Mo-
den relativ gering ist. Die Kontrolle für den Fall, dass die Achse des Gaußstrahls in einer
Meridionalebene liegt, ergab für den senkrechten Einfall mit ϑ = 0 einen maximalen Feh-
ler f < 10−7 und auch für größere Einfallswinkel einen maximalen Fehler f < 10−3. Im
Zweifelsfall wurde zusätzlich eine Sichtkontrolle durchgeführt, so dass in jedem Fall eine
hinreichend genaue Beschreibung des Einkoppelprozesses garantiert ist.

4.3.4. Anmerkungen zur numerischen Stabilität

In Anlehnung an die Erläuterungen des vorangegangenen Abschnitts soll noch einmal dar-
an erinnert werden, dass auch eine korrekte analytische Lösung der Wellengleichung keine
stabile Implementierung auf einem Rechensystem garantiert. Abgesehen vom grundsätz-
lich vorausgesetzten Determinismus der implementierten Algorithmen versteht sich das
Attribut stabil in dieser Arbeit derart, dass insbesondere die folgenden Teilaufgaben mit
hinreichender Genauigkeit durchgeführt werden:

• Auswertung aller Teilfunktionen (z.B. Besselfunktionen),

• Lösung der Eigenwertgleichungen,

• Durchführung der numerischen Integrationen.

Die ersten beiden genannten Punkte sind direkt miteinander verknüpft, da zur Lösung
der Eigenwertgleichung bereits entsprechend viele elementare Funktionsauswertungen nö-
tig sind. Durch die parallele Implementierung der zugehörigen Algorithmen in der Hoch-
sprache C++ und der Interpretersprache des Computeralgebrasystems Maple® konnte
die stabile Implementierung beider Teilaufgaben sichergestellt werden. Natürlich lassen
sich dennoch nicht die grundsätzlichen numerischen Schwierigkeiten vermeiden, die mit
einem endlichen verfügbaren Zahlenbereich verbunden sind, wie auch schon in Kapitel
4.1.3 angedeutet. Der Löser der Eigenwertgleichung beruht auf den bekannten Nullstellen
der Besselfunktionen bzw. auf den Nullstellen der Kombinationen von Besselfunktionen.
Insbesondere im Spektrum der Mantelmoden im Bereich des effektiven Index nahe der
Mantelbrechzahl existieren Lösungen, die sich mit der Genauigkeit eine Variablen doppel-
ter Genauigkeit nicht auflösen lassen. D.h. der Eigenwert stimmt quasi mit der Nullstelle
einer Besselfunktion überein. Hier besteht die Gefahr eines erhöhten Fehlers, da im Verlauf
der weiteren Rechnungen immer wieder Besselfunktionen mit entsprechendem Argument
aufgerufen werden. In den Simulationen dieser Arbeit konnten jedoch keine wesentlichen
Unstimmigkeiten beobachtet werden.

Es soll jedoch nicht verschwiegen werden, dass auch in der vorhandenen Implementierung
einige Grenzen existieren. Beispielsweise können keine azimuthalen Ordnungen m > 97
berücksichtigt werden. Diese werden jedoch erst für Wellenleiterkerndurchmesser größer
100 µm benötigt. Darüberhinaus kommt es gelegentlich zu Schwierigkeiten bei der Aus-
wertung einiger Teilfunktionen in der Ordnung MF , in der gerade noch ein geführter Mo-
de existiert. In dieser Arbeit tritt dieser Fall für d = 60 µm (MF = 50) und d = 90 µm
(MF = 77) auf. Die Ursache dieses Problems wurde nicht weiter verfolgt, da in den entspre-
chenden Ordnungenm = MF auch für große Einfallswinkel jeweils nur ein vernachlässigbar
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kleiner Teil der Gesamtleistung geführt wird, vgl. Abbildung 4.12b.

Da für die notwendigen numerischen Integrationen dieser Arbeit zumeist Quadraturverfah-
ren mit äquidistanten Stützstellen verwendet wurden, wurde die Anzahl der Stützstellen
entweder direkt sehr hoch angesetzt oder aber zur Kontrolle stichprobenartig erhöht. Zu-
sammenfassend lässt sich festhalten, dass die implementierten Routinen dieser Arbeit sehr
stabil arbeiten. Die wenigen Ausnahmefälle sind detektierbar und lassen sich entsprechend
berücksichtigen.

4.4. Vergleich zur Strahlenoptik

Die vorangegangene Beschreibung des wellentheoretischen Modells hat einen nicht uner-
heblichen Rechenaufwand aufgezeigt. Der Rechenaufwand eines strahlenoptischen Modells
ist in der Regel geringer. Jedoch ist dies nicht zwangsläufig der Fall, wenn eine hohe Anzahl
Strahlen berücksichtigt werden muss. In jedem Fall ist die mathematische Beschreibung
deutlich einfacher, da aufgrund der abschnittsweise homogenen Materialeigenschaften die
Strahltrajektorien ebenfalls abschnittsweise gerade sind. Zu klären ist noch die Frage, wel-
cher Bedingung ein Strahl genügen muss, damit er im Wellenleiterkern geführt wird.

4.4.1. Effektiver Kernquerschnitt und Akzeptanzwinkel

Bekanntlich klingen die Felder eines geführten Modes in transversaler Richtung erst im
Mantel evaneszent ab, dringen also ein Stück weit in den Mantel ein. Wie im Kapitel 2.4.2
vorgestellt, kann das Eindringen der Felder in den Mantel strahlenoptisch mit Hilfe der
Goos-Hänchen-Verschiebung nachgebildet werden. Das setzt jedoch Strahlen voraus, die
bereits im Wellenleiterkern geführt werden. In der klassischen strahlenoptischen Theorie
wird ein Strahl im Wellenleiterkern geführt, wenn er zuvor auf die Stirnfläche des Wellenlei-
terkerns aufgetroffen ist und anschließend an der Grenzfläche zwischen Kern und Mantel
totalreflektiert wird. In einer möglichen Erweiterung dieses klassischen Modells könnten
auch Strahlen zugelassen werden, die zwar neben der Stirnfläche des Wellenleiterkerns auf-
treffen, jedoch noch innerhalb der Goos-Hänchen-Verschiebung bleiben. Zur Illustration
ist in Abbildung 4.14 der Grenzfall zweier möglicher Strahlpfade, S1 und S2, dargestellt.

Beide Strahlen treffen in einem Punkt, P1 bzw. P2, auf, der genau um den Betrag der
Goos-Hänchen-Verschiebung neben der Kern-Mantel-Grenzfläche liegt. Da der Strahl S2

unter einem größeren Winkel auftrifft, dringt er gemäß der Definition (2.118) weiter in den
Mantel ein. Die Eindringtiefe xs berechnet sich in Abhängigkeit des Einfallswinkels für die
TE-Polarisation gemäß

xTEs =
1

k0

√
n2
eff − n2

2

=
1

k0

√
n2

1 − n2
2 − (sin Θ)2

. (4.31)

Der Ausdruck für die TM -Polarisation ist etwas umfangreicher, vgl. (2.119). Im Ergebnis
sind die Unterschiede zwischen den Polarisationen jedoch gering. Die minimale Eindring-
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Abbildung 4.14.: Illustration zweier möglicher Strahlpfade im Wellenleiterkern unter Be-
rücksichtigung der Goos-Hänchen-Verschiebung.

tiefe ergibt sich für Θ = 0 zu

xTEs0 =
1

k0

√
n2

1 − n2
2

. (4.32)

Für den Einfallswinkel Θ sei angenommen

sin Θ < sin Θc = NA =
√
n2

1 − n2
2. (4.33)

Der Verlauf der Eindringtiefe als Funktion des effektiven Brechungsindex neff = kz/k0

ist für unterschiedliche Mantelbrechzahlen in Abbildung 4.15a dargestellt. Im Grenzpunkt
sin Θ = NA bzw. neff = n2 ist die Funktion jeweils singulär. Beachtet werden muss, dass
sich die Wellenzahl kz auf die Ausbreitung im Wellenleiterkern bezieht.

Es ist nicht ersichtlich, warum ein Strahl, der unter großem Winkel weit abseits vom Kern
einfällt, im Kern geführt wird, wohingegen ein senkrecht einfallender Strahl mit gleichem
Aufpunkt nicht im Kern geführt wird. Ein Strahl, der mit dem Grenzwinkel sinϑ = NA
auftritt, würde sogar unabhängig vom Aufpunkt im Kern geführt. Gleichzeitig erscheint
die vollkommene Vernachlässigung der Goos-Hänchen-Verschiebung bei der Einkopplung
in den Wellenleiter ebenso nicht gerechtfertigt, denn die minimale Verschiebung xs0 für
sinϑ = 0 kann bereits Werte im Mikrometerbereich annehmen. Die Tabelle in Abbil-
dung 4.15b listet die zugehörigen Werte auf. In [37] wird der effektive Kernquerschnitt um
die konstante Verschiebung xs|kz,min verbreitert. Darin ist kz,min die Wellenzahl des letzten
gerade noch geführten Modes. Der zugehörige effektive Index liegt bereits in der Nähe der
Mantelbrechzahl n2. Entsprechend groß ist xs, z.B. xs ≈ 7 µm für n2 = 1,55. Die Diskus-
sion, in welcher Art die Goos-Hänchen-Verschiebung berücksichtigt werden sollte, wird im
folgenden Kapitel anhand konkreter Beispiele fortgeführt.

Neben der effektiven Kernquerschnittsfläche ist der Einfallswinkel der Strahlen von beson-
derer Bedeutung. Gemäß Kapitel 2.4.3 trifft ein Strahl mit dem Richtungsvektor ~es auf die
Stirnfläche.
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Abbildung 4.15.: Die Eindringtiefe abgeleitet aus der Goos-Hänchen-Verschiebung.

Schicht- und Rechteckwellenleiter

Beim planaren Schichtwellenleiter werden Strahlen im Kern geführt, falls (4.33) gilt. Da in
diesem Fall die y-Komponente des Ausbreitungsvektors gleich Null ist, esy = 0, verbleibt
für die x-Komponente

|esx| < NA. (4.34)

Im Fall eines Wellenleiters mit zweidimensionalem Querschnittprofil muss die Bedingung (4.33)
erweitert werden. Für den rechteckförmigen Wellenleiter folgt analog zu (4.34) [37]

|esx| < NA ∧ |esy| < NA. (4.35)

Kreiszylindrische Fasern

Deutlich aufwändiger wird die Beschreibung jedoch für die kreiszylindrische Faser [58, 61].
Dazu wird Abbildung 4.16 betrachtet, die das Auftreffen eines Strahls auf die Kerngrenz-
fläche zeigt und einige notwendige Winkel definiert. Der Übersicht wegen werden zunächst
Strahlen betrachtet, die bereits die Stirnfläche transmittiert haben. Diese Größen werden
im Folgenden mit einer Schlange akzentuiert.

Nach den Gesetzen der geometrischen Optik für den ebenen Halbraum unterliegen Strahlen
mit

Θ̃N <
π

2
− Θ̃c (4.36)

nicht der Totalreflexion. Darin ist Θ̃N der Winkel zwischen dem Strahl und der Norma-
len der Grenzfläche. Θ̃c ist der kritische Winkel für Strahlen im Kern, mit cos Θ̃c = n2

n1
.

Diese Beziehung behält auch für die konkav gekrümmte Grenzfläche ihre Gültigkeit, der
verbleibende Bereich muss jedoch unterteilt werden. Strahlen mit

Θ̃z < Θ̃c und Θ̃N >
π

2
− Θ̃c (4.37)
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Abbildung 4.16.: Aufpunkt und zugehörige Winkel eines Strahls im Kern der kreiszylin-
drischen Faser nach der Einkopplung.

werden ohne Abstrahlung im Kern geführt. Dagegen geben Strahlen mit

Θ̃z > Θ̃c und Θ̃N >
π

2
− Θ̃c (4.38)

aufgrund von Tunnelverlusten Leistung an den Mantel ab. Diese Strahlen werden daher
als Leckstrahlen bezeichnet. Es sind jedoch in der Regel deutlich mehr Reflexionen nötig,
damit ein signifikanter Anteil der Leistung in den Mantel abgestrahlt wird, verglichen mit
den Strahlen, die die Bedingung (4.36) verletzten. Der Winkel Θ̃N lässt sich mit Hilfe der
Beziehung

cos Θ̃N = sin Θ̃z sin Θ̃Φ (4.39)

aus den Komponenten des Ausbreitungsvektors ~es bestimmen. Aufgrund der in dieser Ar-
beit gewählten Anregung wird nur sehr wenig Leistung in die Leckstrahlen gekoppelt. Für
eine detailliertere Darstellung und Interpretation der Strahlführung in kreiszylindrischen
Fasern sei daher auf [61] verwiesen.

Durch einen rotationssymmetrischen Gaußstrahl werden bei idealer Einkopplung, d.h.
Strahlachse und Wellenleiterachse fallen zusammen, nur Strahlpfade angeregt, die in einer
Ebene mit der Wellenleiterachse liegen. Man spricht auch von Meridionalebenen. In diesem
Fall gilt für alle Strahlen Θ̃Φ = π

2
und mit (4.39) lässt sich direkt zeigen, dass Leckstrahlen,

die der Bedingung (4.38) genügen, nicht existieren können. Damit ein maßgeblicher Anteil
der einfallenden Leistung in Leckstrahlen eingekoppelt wird, müsste der Strahl gleichzeitig
verdreht und lateral verschoben werden. Da die erreichbare Koppeleffizienz schnell ab-
nehmen würde, wird dieser Fall in dieser Arbeit nicht betrachtet. Leckstrahlen werden
daher nicht weiter berücksichtigt. Ein auf die Stirnfläche auftreffender Strahl muss da-
mit wie beim planaren Wellenleiter nur der Bedingung (4.33) genügen. Bezogen auf die
z-Komponenten des Ausbreitungsvektors des einfallenden Strahls gilt:

esz >
√

1− (n2
1 − n2

2). (4.40)
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4.4.2. Allgemeine Ergebnisse

Einleitend sollen zunächst kurz die Erwartungshaltung an die geometrische Optik und
die daraus resultierenden Konsequenzen rekapituliert werden. Die geometrische Optik ver-
spricht immer dann gute Ergebnisse, wenn die Geometrie groß gegenüber der Wellenlän-
ge ist. Übertragen auf den optischen Wellenleiter impliziert dies einen hinreichend großen
Kerndurchmesser und damit einen vielmodigen Wellenleiter. Die Anzahl der geführten Mo-
den wird jedoch neben der Geometrie auch von der numerischen Apertur des Wellenleiters
bestimmt, so dass mit kleiner werdender numerischer Apertur die Anzahl der geführten
Moden abnimmt. Eine hinreichend große Anzahl geführter Moden ist auch Voraussetzung,
wenn der Strahl als lokale ebene Welle interpretiert wird. Im klassischen strahlenoptischen
Modell kann der Ausbreitungsvektor dieser lokalen ebenen Welle beliebige Winkel zur Wel-
lenleiterachse annehmen. In der Theorie der normalen Moden sind es jedoch nur endlich
viele zulässige Winkel. Damit die Annahme eines kontinuierlichen Winkelspektrums ge-
rechtfertigt ist, sollte das diskrete Spektrum der normalen Moden also hinreichend dicht
sein.

Unabhängig von den absoluten Abmessungen besitzt eine Stufenindexfaser stets abrupte
Materialübergänge zwischen Kern und Mantel. Die zuvor geführte Diskussion hinsichtlich
der Berücksichtigung der Goos-Hänchen-Verschiebung bei der Einkopplung in den Wel-
lenleiter hat bereits aufgezeigt, dass ein Strahl, der im Grenzbereich zwischen Kern und
Mantel auftrifft, möglicherweise nicht eindeutig als geführt zugeordnet werden kann. Zu-
sammenfassend lässt sich festhalten, dass gute Übereinstimmung zwischen Wellentheorie
und Strahlenoptik erwartet wird, wenn

• der Durchmesser des Wellenleiterkerns und die numerische Apertur hinreichend groß
sind,

• wenig Leistung und damit wenig Strahlen auf den Bereich der Schnittstelle zwischen
Kern und Mantel treffen.

Ein expliziter Vergleich soll nun zunächst anhand der bereits im Kapitel 4.2.2 herangezoge-
nen Parametersätze erfolgen, siehe auch [64]. Für alle Parametersätze wurde die Koppelef-
fizienz auf Basis strahlenoptischer Methodik neu berechnet. Eine Gegenüberstellung der
Ergebnisse für die kreiszylindrische Faser ist in Abbildung 4.17 dargestellt. Dabei werden
im strahlenoptischen Modell drei Methoden unterschieden, die den effektiven Kerndurch-
messer betreffen. In der folgenden Auflistung der Methoden korrespondiert der Bezeichner
mit den Legenden in Abbildung 4.17.

STRAHL Der Kernradius verbleibt unverändert.

STRAHL GH Der Kernradius wird um die winkelabhängige Goos-Hänchen-
Verschiebung gemäß Abbildung 4.15a erweitert.

STRAHL CGH Der Kernradius wird um die konstante minimale Goos-Hänchen-
Verschiebung gemäß der Tabelle in Abbildung 4.15b erweitert.

Der Bezeichner WELLE kennzeichnet die bereits im Kapitel 4.2.2 präsentierten wellen-
theoretischen Resultate. Die Definition der Koppeleffizienz im strahlenoptischen Modell er-
folgt analog zu (4.24), jedoch wird nun die Leistung der im Kern totalreflektierten Strahlen
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aufsummiert. Um einen signifikanten Diskretisierungsfehler im strahlenoptischen Modell
auszuschließen, wurde in der Notation des Kapitels 2.4.3 standardmäßig eine Diskretisie-
rung von 500 Punkten in radialer Richtung und 1000 Punkten in azimuthaler Richtung
gewählt. Zur Verifikation wurde die Anzahl der Punkte in beiden Richtungen verdoppelt,
wobei keine Abweichungen in der Koppeleffizienz in fünf signifikanten Stellen festgestellt
werden konnte.

Die Interpretation der Ergebnisse in Abbildung 4.17 soll ausgehend von der Konfiguration
erfolgen, die die größte Anzahl geführter Moden bereitstellt: d = 70 µm und n2 = 1,55. Zur
Erinnerung, die Kernbrechzahl ist konstant gleich n1 = 1,57 und der Strahldurchmesser
ist konstant gleich b = 50 µm. Wie erwartet stimmen die Ergebnisse der unterschiedlichen
Methoden sehr gut überein, solange der Strahl nur verdreht wird, Abbildung 4.17a mit d =
70 µm. Da wenig Leistung auf den Bereich der Schnittstelle zwischen Kern und Mantel trifft,
hat die Goos-Hänchen-Verschiebung nahezu keinen Einfluss. Wird der Strahl jedoch lateral
verschoben, stellen sich mit wachsender Verschiebung h deutliche Abweichungen in den
Ergebnissen ein, Abbildung 4.17c mit d = 70 µm. Dabei verringert die Berücksichtigung der
Goos-Hänchen-Verschiebung die Abweichung deutlich. Ob die Methode STRAHL GH oder
STRAHL CGH verwendet wird, ist von untergeordneter Bedeutung, da sich die Winkel,
unter denen die Strahlen auftreffen, durch die laterale Verschiebung nicht verändern.

Wird nun bei konstanter numerischer Apertur und konstantem Strahldurchmesser der
Kerndurchmesser verringert, treffen zunehmend Strahlen im Grenzbereich Kern-Mantel
auf und die Abweichungen zwischen den Ergebnissen der Strahlen- und Wellenoptik wer-
den größer. Dies zeigt sich sowohl in Abbildung 4.17a als auch in Abbildung 4.17c. Bei
Verdrehung des Gaußstrahls zeigen sich nun auch deutliche Unterschiede zwischen den
Methoden STRAHL GH und STRAHL CGH auf. Waren bislang die strahlenoptisch be-
rechneten Koppeleffizienzen stets kleiner als die wellenoptische Referenz, ergeben sich ab
einem Winkel ϑ ≈ 7◦ größere Werte. Eine deutliche Überhöhung stellt sich insbeson-
dere durch Verwendung der winkelabhängigen Goos-Hänchen-Verschiebung ein, Methode
STRAHL GH. Diese Überhöhung wird hervorgerufen durch die Singularität im Ausdruck
für die Eindringtiefe xs, Gleichung (4.31), wenn Strahlen nahe oder gleich dem kritischen
Winkel Θc auftreffen. Als Zwischenfazit lässt sich festhalten, dass das klassische strah-
lenoptische Modell (Methode STRAHL) die Koppeleffizienz in jedem Fall grob qualitativ
richtig berechnet. Je nach Aufpunkt der Strahlachse und Größe des Kerndurchmessers
stellt sich jedoch ein absoluter Fehler von bis zu 5 Prozentpunkten ein. Die Erweiterung
des klassischen Modells um die minimale Goos-Hänchen-Verschiebung, Methode STRAHL
CGH minimiert den mittleren Fehler deutlich.

Die Verkleinerung der numerischen Apertur bei konstantem Kerndurchmesser d = 70 µm
sorgt erst mit deutlich kleinerer Apertur für einen größeren Fehler, Abbildungen 4.17b und
4.17d. Eine Verkleinerung von NA = 0,25 auf NA = 0,177 mit n2 = 1,56 lässt noch keinen
signifikanten Anstieg des Fehlers erkennen, obwohl die Gesamtanzahl geführter Moden be-
reits etwa halbiert wird, vgl. Tabelle 4.1. Daher sind diese beiden Fälle in Abbildung 4.17d
der Übersicht wegen nicht dargestellt. Bei einer weiteren Verkleinerung der numerischen
Apertur stellen sich jedoch merkliche Abweichungen ein. Zwar stimmen bei ausschließli-
cher Verdrehung des Gaußstrahls die Kurvenläufe insbesondere für größere Einfallswinkel
sehr gut überein, Abbildung 4.17c. Signifikante Unterschiede sind jedoch insbesondere für
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Abbildung 4.17.: Gegenüberstellung der wellentheoretischen und strahlenoptischen Ergebnisse für die erreichbare Koppeleffizienz
der Faser. Die Parametersätze entsprechen denen aus Kapitel 4.2.2. Wie zuvor gilt b = 50 µm und n1 = 1,57.
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kleine Einfallswinkel zu beobachten, obwohl wenig Leistung im Grenzbereich Kern-Mantel
auftrifft. Insbesondere stellt sich auch bei senkrechtem meridionalem Einfall der Strahl-
achse eine Abweichung von +0,75% für n2 = 1,565 und -1,6% für n2 = 1,568 ein. Hier
gilt es zu berücksichtigen, dass bei senkrechtem meridionalem Einfall der Strahlachse nur
Moden der azimuthalen Ordnung m = 1 angeregt werden. Die Anzahl der Moden in dieser
Ordnung ist mit 21 für n2 = 1,565 und 13 für n2 = 1,568 offenbar schon zu gering. Wird
der Strahl verdreht, können auch Moden höherer azimuthaler Ordnung angeregt werden.
Durch die insgesamt geringe Anzahl geführter Moden im Fall n2 = 1,568 (NA = 0,079) ist
der Kurvenverlauf der wellentheoretischen Berechnung leicht oszillatorisch. Die Graphen
der strahlenoptischen Simulation sind dagegen vollkommen glatt4 und ab einem definierten
Punkt monoton fallend. Das leicht oszillatorische Verhalten ist auch in Abbildung 4.17d
zu erkennen, in der die Abbhängigkeit von der lateralen Verschiebung aufgetragen ist. Hier
zeigen sich auch die größten Abweichungen, wenn der Strahl hinreichend weit verschoben
wird, so dass der Grenzbereich Kern-Mantel vollkommen ausgeleuchtet ist.

Wie sich zeigt, birgt die Berücksichtigung der Goos-Hänchen-Verschiebung bei einer kleinen
numerischen Apertur des Wellenleiters keinen Vorteil. In der Methode STRAHL GH tritt
für n2 = 1,568 wieder eine deutliche Überhöhung auf. Auch die Methode STRAHL CGH
verspricht im Mittel keinen kleineren Fehler. Bereits für die größere Apertur NA = 0,25
hat sich gezeigt, dass bei einer Verdrehung des Gaußstrahls durch die Goos-Hänchen-
Verschiebung ein erhöhter Fehler resultieren kann. Dieser ist offensichtlich besonders groß,
wenn viel Leistung im Grenzbereich Kern-Mantel einfällt und die korrespondierenden
Strahlen unter einem Winkel nahe dem kritischen Winkel Θc auftreffen. Bei einer kleinen
numerischen Apertur wird auch ohne Verdrehung des Gaußstrahls die gesamte Apertur
des Wellenleiters vollständig ausgeleuchtet, d.h. der Divergenzwinkel des Gaußstrahls Θa0

ist unter Umständen sogar größer als der kritische Winkel Θc. Dies ist z.B. für n2 = 1,568
und Θa0 = 5◦ der Fall, vgl. Tabelle 4.1. Letztlich ist es aber die bereits zu geringe Anzahl
geführter Moden, im Fall n2 = 1,568 sind es 113, die für das leicht oszillatorische Verhalten
der Graphen sorgt und damit für einen nicht vorhersehbaren Fehler in den strahlenopti-
schen Ergebnissen. Eine Korrektur ist mit elementaren Mittel, wie einer Manipulation des
effektiven Kernradius, nicht möglich.

Der insgesamt resultierende mittlere Fehler aller Ergebnisse in Abbildung 4.17 könnte
durch eine weitere Modifikation der Goos-Hänchen-Verschiebung möglicherweise noch ver-
ringert werden. An einige Stellen ist selbst bei Verwendung der konstanten Goos-Hänchen-
Verschiebung die berechnete Koppeleffizienz deutlich überhöht. Eine zumindest leichte
Verbesserung könnte die Substitution xsm = x2

s0/xs sein. Diese Funktion spiegelt gewisser-
maßen die Funktion xs an der Linie xs0 und skaliert dabei, so dass xsm|Θ=Θc = 0 gilt. Wird
der Kerndurchmesser um xsm erweitert, stellen sich Koppeleffizienzen ein, die zwischen
denen der Methoden STRAHL und STRAHL CGH liegen. Im Fokus der weiteren Unter-
suchungen steht jedoch nicht die Reduktion des mittleren Gesamtfehlers. Stattdessen wird
der aus praktischer Sicht relevante Bereich näher betrachtet, in dem Koppeleffizienzen von
zumindest über 80% erreicht werden.

Zunächst soll jedoch der Vergleich zwischen Wellen- und Strahlenoptik ausgedehnt werden

4Die Umschreibung vollkommen glatt ist nicht als mathematische Definition zu verstehen, sondern resul-
tiert allein aus der Anschauung.
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Abbildung 4.18.: Anregung des Modenspektrums der Faser (WELLE ) und der Ver-
gleich zur Strahlenoptik (STRAHL CGH ): Akkumulierte Leistung
PΞ für die Parameter aus Abbildung 4.12a (d = 70 µm, n2 = 1,55).

auf die Beschreibung der Anregung des Modenspektrums. Dieser Vergleich ist wichtig, da
der Leistungsfluss im Wellenleiter bedingt durch die Modendispersion in Abhängigkeit der
Anregung variieren kann. Betrachtet wird analog zu Abbildung 4.12a die akkumulierte Leis-
tung PΞ, aufgetragen über den effektiven Index neff. Im strahlenoptischen Modell ist der
effektive Index analog zur wellentheoretischen Referenz definiert über die z-Komponente
des Ausbreitungsvektors. Da dieser jedoch auf den Betrag eins normiert ist, wird entspre-
chend mit der Kernbrechzahl skaliert:

neff = n1esz. (4.41)

Die akkumulierte Leistung berechnet sich analog zu (4.29), jedoch wird die Leistung der
einzelnen geführten Strahlen aufsummiert. Abbildung 4.18 zeigt die Ergebnisse, deren In-
terpretation kurz ausfallen kann. Bei ausschließlicher Verdrehung des Gaußstrahls stimmen
die Ergebnisse sehr gut überein, wie schon die berechneten Koppeleffizienzen, vgl. Abbil-
dung 4.17a mit d = 70 µm. Da es bei der lateralen Verschiebung des Gaußstrahls bereits
merkliche Abweichungen in der Koppeleffizienz gibt, vgl. Abbildung 4.17c, stellen sich
dementsprechend auch merkliche Abweichungen im angeregten Moden- bzw. Strahlspek-
trum ein. Die Auswirkungen auf den zu erwartenden Leistungsfluss sind jedoch noch nicht
dramatisch, da das angeregte Spektrum im Wesentlichen nur leicht verschoben wird. Ohne-
hin ist die erreichbare Koppeleffizienz für den praktischen Einsatz bereits bei h = 20 µm zu
gering. Die Ergebnisse in Abbildung 4.18 für den senkrechten meridionalen Einfall, ϑ = 0
und h = 0, verdeutlichen auch noch einmal den wesentlichen Unterschied zwischen dem
diskreten Modenspektrum des Wellenleiters und dem kontinuierlichen Winkelspektrum im
strahlenoptischen Modell. In diesem Fall werden nur Moden der azimuthalen Ordnung
m = 1 angeregt und es stellt sich ein entsprechend treppenförmiger Verlauf ein, der im
strahlenoptischen Modell nicht nachgebildet werden kann. In der Praxis ist dieses Problem
jedoch unbedeutend, da beide Ergebnisse im lokalen Mittel übereinstimmen.

Bevor der Vergleich zwischen Wellen- und Strahlenoptik fortgesetzt wird, sollen einige An-
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merkungen zu den Unterschieden gemacht werden, die sich bei Verwendung eines Schicht-
wellenleiters an Stelle der Faser einstellen.

4.4.3. Anmerkungen zur Approximation durch planare Wellenleiter

Wie im Kapitel 4.2.4 bereits angemerkt, existieren einige quantitative Unterschiede bei
Verwendung eines planaren Wellenleiters. Wichtig ist jedoch zunächst zu betonen, dass
alle qualitativen Aussagen des vorherigen Abschnitts auch für den planaren Schichtwellen-
leiter gelten. Die quantitativen Unterschiede resultieren aus der fehlenden Abhängigkeit
von einer transversalen Koordinate. Im planaren Modell führt der Gaußstrahl deutlich
mehr Leistung innerhalb seiner Strahlbreite. Dadurch sind die Auswirkungen der Verbrei-
terung der Kernschichtdicke durch die Goos-Hänchen-Verschiebung wesentlich ausgepräg-
ter. Exemplarisch sind in Abbildung 4.19 Koppeleffizienzen für die mit Abbildung 4.17a
korrespondierenden Parametersätze aufgetragen. Dargestellt ist die Koppeleffizienz in Ab-
hängigkeit des Einfallswinkels ϑ für unterschiedliche Kernschichtdicken d des Schichtwel-
lenleiters bei konstanter Strahlbreite b = 50 µm und konstanter Mantelbrechzahl n2 = 1,55.
Dabei wurden im strahlenoptischen Modell 10 000 Strahlen angesetzt.

Wie bereits erwähnt, ist die erreichbare Koppeleffizienz im Vergleich zur Faser stets etwas
größer. Deutlich größer sind aber auch die Abweichungen zwischen den unterschiedlichen
strahlenoptischen Verfahren, was insbesondere für kleine Winkel ϑ wiederum aus der unter-
schiedlichen Leistungsverteilung innerhalb der Strahlbreite des Gaußstrahls resultiert. Für
größere Winkel nahe dem kritischen Winkel ergibt sich insbesondere für kleine Kernschicht-
dicken eine markante Spitze im Verlauf der mit der Methode STRAHL GH berechneten
Koppeleffizienz. Diese Überhöhungen sind auch in Abbildung 4.17a zu erkennen, jedoch
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Abbildung 4.19.: Gegenüberstellung der wellentheoretischen und strahlenoptischen Er-
gebnisse für den Schichtwellenleiter für die Parametersätze aus Abbil-
dung 4.17a.
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nicht so ausgeprägt. Da die Verdrehung des Gaußstrahls lediglich eine Transformation der
Felder bzw. der Strahlen in Abhängigkeit der bezüglich der Drehachse orthogonalen Koor-
dinaten bewirkt, ändern sich die Feldgrößen in Richtung der Drehachse nur unwesentlich.
Damit wirkt sich auch der Effekt der Goos-Hänchen-Verschiebung im Wesentlichen nur
in einer transversalen Richtung aus. Im planaren Modell liegt aber ohnehin nur eine Ab-
hängigkeit von einer transversalen Koordinate vor. Bezogen auf einen elementaren Strahl
lautet die Transformationsvorschrift bei Verdrehung des Gaußstrahls allgemein

~esϑ = (esx cosϑ+ esz sinϑ)~ex + esy~ey + (−esx sinϑ+ esz cosϑ)~ez. (4.42)

Im planaren Modell gilt jedoch stets esy = 0.

Wie schon zuvor für die Faser liefert auch beim Schichtwellenleiter die Methode STRAHL
CGH wieder im Mittel und insbesondere für kleine ϑ die beste Approximation. Eben-
so ist wieder ein leicht oszillatorisches Verhalten in den Graphen der wellentheoretischen
Simulationen für kleine Kernschichtdicken zu erkennen, das durch ein strahlenoptisches
Verfahren nicht nachgebildet werden kann. Dabei ist zu beachten, dass im Fall d = 10 µm
lediglich 6 geführte Moden existieren. Für d = 30 µm sind es immerhin bereits 18. Zur
Erinnerung sei erwähnt, dass für d = 70 µm auch nur 42 geführte Moden existieren, vgl.
Tabelle 4.1. Dennoch kann dieser Wellenleiter bereits als hochmultimodal angesehen wer-
den, denn ein Wellenleiter mit zweidimensionalem Querschnittsprofil führt bei gleichem
Durchmesser schon über 1000 Moden.

4.4.4. Gleichmäßige Verkleinerung des Kern- und des
Strahldurchmessers

Die im Kapitel 4.4.2 präsentierten Ergebnisse dienten der allgemeinen Beurteilung der
Qualität der strahlenoptischen Methoden. Da in einem realen System in der Regel mehrere
Schnittstellen auftreten, sollte die Koppeleffizienz einer einzigen Schnittstelle immer nahe
am theoretischen Maximum sein, damit die Dämpfung des Gesamtsystems nicht zu groß ist.
Denn neben den systematischen Verlusten durch Abstrahlung sind stets auch intrinsische
Materialverluste und Verluste durch zufällige Störstellen zu erwarten. Um das Erreichen
einer hinreichend großen Koppeleffizienz sicherzustellen, muss

• der Strahldurchmesser b kleiner als der Kerndurchmesser d sein,

• die Quelle, hier der Gaußstrahl, hinreichend gut positioniert werden.

Im Folgenden wird daher eine maximale Verdrehung ϑ = 5◦ berücksichtigt, bei einer nume-
rischen Apertur des Wellenleiters von NA = 0,25. Die maximale laterale Verschiebung ist
abhängig vom Durchmesser des Gaußstrahls und gleich h = 0,2 b. Der Strahldurchmesser b
steht im festen Verhältnis zum Kerndurchmesser der Faser d, wobei zwei Fälle unterschie-
den werden. Zum Einen soll d/b = 1,5 gelten. Der Kerndurchmesser ist deutlich größer
als der Strahldurchmesser und die damit erreichbare Koppeleffizienz liegt bei über 94%.
Im zweiten Fall gilt d/b = 1,0. Die erreichbare Koppeleffizienz sinkt auf etwa 83% und ist
damit für die Praxis bereits zu gering. Für den Vergleich zwischen den unterschiedlichen
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Simulationsmethoden ist dieser Fall jedoch interessant, da ein wesentlicher Teil der einfal-
lenden Leistung im Grenzbereich Kern-Mantel auftrifft und damit relativ große Differenzen
zu erwarten sind.

Untersucht werden soll, wie sich der inhärente Fehler der strahlenoptischen Methoden ent-
wickelt, wenn die Geometrie verkleinert wird. Im Kapitel 4.2.3 wurde schon einleitend
festgestellt, dass die Geometrie bei gleich bleibender Koppeleffizienz weitestgehend ska-
lierbar ist. Erst für sehr kleine Kerndurchmesser steigt die Koppeleffizienz aufgrund der
unterschiedlichen lokalen Eigenschaften des Gaußstrahls leicht an. Wie schon im Kapi-
tel 4.2.3 wird zunächst für d/b = 1,5 der Kerndurchmesser, ausgehend von d = 90 µm,
in fünf äquidistanten Schritten auf d = 15 µm verkleinert. Für einen expliziten Vergleich
der unterschiedlichen Methoden wird in den folgenden Darstellungen jeweils die relative
Abweichung

δr =
ηWelle − ηStrahl

ηWelle
(4.43)

aufgetragen. Darin ist ηWelle die mit Hilfe der wellentheoretischen Analyse errechnete Kop-
peleffizienz, die als Referenz dient, und ηStrahl ist die auf Basis strahlenoptischer Methoden
ermittelte Koppeleffizienz.

In Abbildung 4.20 sind die Ergebnisse für d/b = 1,5 aufgeführt. Abbildung 4.20a zeigt
den Fehler der klassischen Methode STRAHL in Abhängigkeit des Einfallswinkels. Dem
gegenübergestellt ist in Abbildung 4.20b der Fehler der Methode STRAHL CGH, wobei die
um den Faktor 0,5 skalierte Ordinate berücksichtigt werden muss. Wie erwartet steigt der
mittlere Fehler der Methode STRAHL mit kleiner werdendem Kerndurchmesser an. Die
relative Abweichung nimmt jedoch maximal einen Wert von δr = −0,007 für d = 15 µm
an und bleibt damit insgesamt sehr klein. Mit der Methode STRAHL CGH kann der
Fehler auch für kleine Kerndurchmesser im Mittel deutlich reduziert werden, wenngleich
die relative Abweichung mit wachsendem Einfallswinkel leicht ansteigt und für ϑ = 5◦

einen Wert von bis zu δr = 0,001 annehmen kann.

Die Entwicklung des Fehlers in Abhängigkeit der lateralen Verschiebung ist für die klas-
sische Methode STRAHL in Abbildung 4.20c dargestellt. Wiederum mit unterschiedlich
skalierter Ordinate ist in Abbildung 4.20d das Ergebnis für die Methode STRAHL CGH
gegenübergestellt. Wie zuvor steigt die Abweichung δr mit kleinere werdendem Kerndurch-
messer an. Im Unterschied zur Verdrehung des Gaußstrahls nimmt die Abweichung nun
jedoch mit wachsender Verschiebung weiter ab, so dass der Betrag der maximalen Ab-
weichung für d = 15 µm deutlich über |δr| = 0,01 liegt. Durch Anwendung der Methode
STRAHL CGH verringert sich der Fehler wiederum deutlich und bleibt für d ≥ 45 µm im-
mer unterhalb |δr| = 0,001. Lediglich für den kleinsten Kernquerschnitt verbleibt auch für
h = 0 eine minimale Abweichung von δr = −0,0018. Als Zwischenfazit lässt sich dennoch
festhalten, dass bei idealen Koppelbedingungen der Fehler der Methode STRAHL CGH
auch für sehr kleine Kernquerschnitte vernachlässigbar gering ist. Der maximale prozen-
tuale Fehler der Methode STRAHL CGH liegt selbst für d = 15 µm (b = 10 µm) unterhalb
4‰.

Bei einer maximalen Verschiebung h = 0,2 b und einem Verhältnis d/b = 1,5 ist der
Überlapp zwischen den durch die Durchmesser b und d beschriebenen Kreisflächen immer
maximal. Eine zwingende Voraussetzung, um die Koppeleffizienz zu maximieren. In der
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Abbildung 4.20.: Relative Abweichung δr für d/b = 1,5. Die Legende in Abbildung (b) ist
für alle Abbildungen gültig. Es gilt n2 = 1,55.

Praxis ist diese Voraussetzung sicher nicht immer gegeben und es soll daher nun der Fall
d/b = 1,0 betrachtet werden. Die Ergebnisse sind in Abbildung 4.21 aufgetragen. Darin
wird der Kerndurchmesser ausgehend von d = 70 µm in sechs äquidistanten Schritten auf
d = 10 µm verkleinert. Auf den ersten Blick gleichen die Kurvenverläufe denen in Ab-
bildung 4.20 sehr stark. Die Werte der relativen Abweichungen sind jedoch fast um eine
Zehnerpotenz angestiegen. Des Weiteren ist die Abweichung stets negativ. Erneut lässt
sich feststellen, dass der Fehler mit kleiner werdendem Kerndurchmesser ansteigt und dass
die Goos-Hänchen-Verschiebung (Methode STRAHL CGH) den mittleren Fehler deut-
lich reduziert. Der prozentuale Fehler liegt in der Methode STRAHL auch beim größten
Kerndurchmesser zwischen 1% und 2% und steigt auf über 6% für den kleinsten Kern-
durchmesser. Mit der Methode STRAHL CGH verringert sich der Fehler im Mittel auf
weniger als 0,5% für Kerndurchmesser bis d = 50 µm und Maximal 3,5% für den kleinsten
Kerndurchmesser.

Als Fazit lässt sich festhalten, dass die strahlenoptische Simulationstechnik unter Berück-
sichtigung eines erweiterten effektiven Kerndurchmessers grundsätzlich zur Bestimmung
der Koppeleffizienz geeignet ist. Bis zu einem Kerndurchmesser von d = 50 µm kann sie
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Abbildung 4.21.: Relative Abweichung δr für d/b = 1,0. Die Legende in Abbildung (b) ist
für alle Abbildungen gültig.

nahezu bedenkenlos eingesetzt werden. Für kleinere Kerndurchmesser muss mit einem Feh-
ler von maximal 2% für d ≥ 30 µm und 3,5% für d ≥ 10 µm gerechnet werden. Diese Werte
verstehen sich im Rahmen dieser Arbeit als Maximalwerte. Der mittlere Fehler liegt im
Mittel deutlich darunter, vgl. Abbildung 4.20. Es muss jedoch auch bedacht werden, dass
der verwendete Gaußstrahl die Feldverteilung einer realen Quelle möglicherweise nur in
grober Näherung wieder gibt, so dass eine konservative Einordnung des Fehlers sinnvoll
erscheint.

In Ergänzung und zur Bestätigung des formulierten Fazits befinden sich im Anhang A.4
Ergebnisse für die numerische Apertur NA = 0,177 (n2 = 1,56).
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4.5. Näherungsverfahren für rechteckförmige
Wellenleiter

Die Wellenleiter einer elektrooptischen Leiterplatte besitzen in der Regel ein rechteckför-
miges Querschnittsprofil. Leider existieren für diesen Wellenleitertyp lediglich Näherungs-
lösungen für die geführten Moden. Dieses Kapitel untersucht die Anwendbarkeit der im
Kapitel 3.3.1 vorgestellten Feldlösungen von Marcatili zur Bestimmung der Koppeleffizienz
des rechteckförmigen Wellenleiters. Dazu wird zunächst ein wellentheoretisches Näherungs-
verfahren vorgestellt, das auf Basis von Überlappintegralen unter ausschließlicher Verwen-
dung geführter Moden die Koppeleffizienz bestimmt [66]. Anschließend wird ein Vergleich
zur strahlenoptischen Simulation gezogen. Da die Ergebnisse für die dielektrische Faser
gezeigt haben, dass die strahlenoptische Berechnung der Koppeleffizienz für hinreichend
große Geometrien sehr genaue Ergebnisse liefern kann, dient die Strahlenoptik in diesem
Fall als Referenz.

4.5.1. Näherungsverfahren zur Berechnung der Koppeleffizienz

Im Kapitel 2.3.2 wurde die Theorie zur Beschreibung der Reflexion und Transmission durch
senkrechte Wellenleiterschnittstellen vorgestellt. Ist der Sprung in der mittleren Brechzahl
zwischen dem links- und rechtsseitigen Wellenleiter gering, können reflektierte Wellen ggf.
vernachlässigt werden. Aus (2.83a) folgt dann mit c(−l) = 0 eine direkte Lösung für die
Amplituden der transmittierten Wellen

c
(+r)
1 =

(
Q(r)

)−1
Q(lr)c(+l). (4.44)

Aus der alternativen Beschreibung ergibt sich

c
(+r)
2 =

(
Q(r)∗

)−1

Q(rl)H
c(+l). (4.45)

Da sich die Lösungen offensichtlich unterscheiden, wurden die Indices 1 und 2 eingeführt.
Die Amplituden der transmittierten Moden lassen sich nun explizit angeben:

C
(+r)
1µ =

1

Q
(r)
µ

∑

ν

Q(lr)
µν C

(+l)
ν , (4.46)

C
(+r)
2µ =

1

Q
(r)∗
µ

∑

ν

Q(rl)∗

νµ C(+l)
ν . (4.47)

Diese Ausdrücke können auch durch eine Reihenentwicklung der linksseitigen Modenfunk-
tionen in Termen der rechtseitigen Modenfunktionen hergeleitet werden. Der Gleichung
(4.46) liegt dabei die elektrische Feldstärke zugrunde und der Gleichung (4.47) die magne-
tische Feldstärke.

Es existieren somit zwei fehlerbehaftete Lösungen. Zur Verdeutlichung des entstehenden
Fehlers wird der einfache Fall einer Schnittstelle zweier Parallelplattenleitungen mit identi-
schen Querschnittsabmessungen, aber unterschiedlichem Dielektrikum betrachtet. Da ein
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linksseitiger Mode und ein rechtsseitiger Mode mit unterschiedlicher Ordnung orthogonal
sind, gilt

C
(+r)
1ν =

Q
(lr)
νν

Q
(r)
ν

C(+l)
ν , (4.48)

C
(+r)
2ν =

Q
(rl)∗
νν

Q
(r)∗
ν

C(+l)
ν . (4.49)

Wird linksseitig ein beliebiger TE-Moden angeregt, folgt mit (3.12)

C
(+r)
1ν =

∫
Gs

(
~E (l)

tν ×
{
~H(r)

tν

}∗)
~ez da

∫
Gs

(
~E (r)

tν ×
{
~H(r)

tν

}∗)
~ez da

C(+l)
ν = C(+l)

ν , (4.50)

C
(+r)
2ν =

∫
Gs

(
~E (r)

tν ×
{
~H(l)

tν

}∗)
~ez da

∫
Gs

(
~E (r)

tν ×
{
~H(r)

tν

}∗)
~ez da

C(+l)
ν =

k
(l)
z µ(r)

k
(r)
z µ(l)

C(+l)
ν . (4.51)

Die exakte Lösung lautet

C(+r)
ν =

2k
(l)
zνµ(r)

k
(l)
zνµ(r) + k

(r)
zν µ(l)

C(+l)
ν =

2

1 + k
(r)
zν µ(l)

k
(l)
zνµ(r)

C(+l)
ν . (4.52)

Mit der in der Optik allgemein angenommenen Beziehung µ(l) = µ(r) sowie der gemachten
Annahme einer ausschließlich kleinen Änderung der Permittivität gilt

k(l)
zν ≈ k(r)

zν ⇒ C
(+r)
1ν ≈ C

(+r)
2ν ≈ C(+r)

ν . (4.53)

Ein analoges Ergebnis erhält man für die TM-Moden, wenn man in den Ausdrücken die
Indices 1 und 2 vertauscht, sowie die Permeabilität durch die Permittivität ersetzt.

Im obigen Fall der Parallelplattenleitung lässt sich leicht zeigen, dass entweder

C
(+r)
1ν ≤ C(+r)

ν ≤ C
(+r)
2ν oder C

(+r)
2ν ≤ C(+r)

ν ≤ C
(+r)
1ν (4.54)

gilt. Es liegt daher nahe, zur Bestimmung von C(+r)
ν einen Mittelwert aus C(+r)

1ν und C(+r)
2ν

zu bilden. Eine interessante Eigenschaft offenbart das geometrische Mittel. Berechnet man
auf dieser Basis die transmittierte Leistung, ergibt sich in Matrixschreibweise

P
(+r)

= c
(+r)
1

T
Q(r)c

(+r)
2

∗
. (4.55)

Unabhängig vom Wellenleitertyp konserviert diese Herangehensweise bei einem Wellenlei-
terübergang die Leistung, was mit (2.79) leicht gezeigt werden kann:

P
(+r)

= c
(+r)
1

T
Q(r)c

(+r)
2

∗

= c
(+r)
1

T
Q(rl)T

c(+l)∗

= c(+l)T
Q(lr)T

Q(r)−1
Q(rl)T

︸ ︷︷ ︸
vgl. (2.79)

c(+l)∗

= c(+l)T
Q(l)c(+l)∗ = P

(l+)
.

(4.56)
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Für sehr kleine Reflexionsverluste stellt (4.56) eine sehr gute Approximation dar. Für
größere Reflexionsverluste können unter Berücksichtigung eines Korrekturfaktors T̃ sehr
gute Ergebnisse erzielt werden. Auf dieser Basis gilt für die Beträge der Amplituden C(+r)

ν

|C(+r)
ν |2 ≈ <

{
T̃ C

(+r)
1ν Q(r)

ν C
(+r)
2ν

∗}
. (4.57)

In den noch folgenden Rechnungen wird der Faktor T̃ durch den Leistungstransmissions-
faktor einer Ebenen Welle am dielektrischen Halbraum approximiert, T̃ = TF mit TF aus
Gleichung (2.99) oder (2.101). Die Phase der Lösungen C

(+r)
1ν und C

(+r)
2ν ist in der Regel

nahezu identisch, so dass sich auch die Phase von C
(+r)
ν rekonstruieren lässt. Formal ist

jedoch nur die Summe (4.56) reellwertig, so dass in (4.57) der Realteiloperator erforderlich
ist.

Neben dem vorgestellten Verfahren existieren einige weitere Approximationen, deren Im-
plementierungsaufwand etwas geringer ist, da beispielsweise nur eine Feldgröße explizit
berücksichtigt wird [33]. Die mit (4.57) definierte Vorgehensweise ist jedoch hinsichtlich
der Genauigkeit überlegen.

Verifikation des Näherungsverfahrens

Alle Rechnungen des Kapitels 4.2.2 wurden zur Verifikation des Näherungsverfahrens unter
Anwendung der Approximation (4.57) wiederholt. Abbildung 4.22 zeigt die Ergebnisse in
Form einer relativen Abweichung δr, die analog zu (4.43) definiert ist. Die Interpretation
der Ergebnisse kann erneut kurz ausfallen. In Bereichen, in denen hinreichend große Kop-
peleffizienzen erreicht werden, ist der maximale relative Fehler in der Regel deutlich kleiner
|δr| = 0,001. Außerhalb dieser Bereiche steigt der Fehler nur mäßig an und bleibt, solange
die Koppeleffizienz merklich größer Null ist, im unteren Promillebereich. Die Qualität des
Näherungsverfahrens ist demnach für die folgenden Simulationen ausreichend.

4.5.2. Ergebnisse für den rechteckförmigen Wellenleiter

Abschließend werden Ergebnisse für die Koppeleffizienz des rechteckförmigen Wellenleiters
gezeigt. Im Vordergrund steht dabei nicht die allgemeine Interpretation der Abhängigkeit
von der Einfallsrichtung und den Eigenschaften der Quelle, da diese sich nur unwesent-
lich von den Ergebnissen der kreiszylindrischen Faser unterscheiden. Stattdessen wird ver-
sucht, durch den Vergleich zur Strahlenoptik einige Aussagen über den Gültigkeitsbereich
der Näherungslösungen von Marcatili abzuleiten. Im Folgenden werden wiederum die Pa-
rametersätze des Kapitels 4.2.2 verwendet, wobei der Durchmesser d des Faserkerns nun
der Kantenlänge eines quadratischen Wellenleiterkerns entspricht. Aufgrund der größeren
Querschnittsfläche des quadratischen Wellenleiters ist die Koppeleffizienz bei entsprechen-
der Anregung etwas größer als die der Faser, die Abhängigkeiten vom Einfallswinkel und
von der Verschiebung des Gaußstrahls sind dennoch qualitativ gleich.

Die Näherungslösungen von Marcatili werden im Kapitel 3.3.1 beschrieben. Wie aufgezeigt
unterliegen sie der einschränkenden Bedingung (3.59), welche fordert, dass die transversa-
len Wellenzahlen kx und ky wesentlich kleiner als die Ausbreitungskonstante kz sind. Diese
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Abbildung 4.22.: Relative Abweichung δr der Koppeleffizienz für die kreiszylindrische Faser
im Vergleich zwischen der Näherungslösung und der exakten Lösung. Der
Strahldurchmesser ist gleich b = 50 µm.

Bedingung wird offensichtlich von Moden nahe dem Cut-Off, d.h. mit einem effektiven In-
dex nahe der Mantelbrechzahl, am schlechtesten erfüllt. Hier schließt sich unmittelbar die
Frage an, welcher minimale effektive Index erlaubt ist, damit ein Mode dem Spektrum der
geführten Moden zugeordnet werden kann. Wie im Kapitel 3.3.1 diskutiert, unterschätzt
der Marcatili-Ansatz die Ausbreitungskonstanten kz und damit auch den effektiven Index
neff = kz/k0. Es wäre somit möglich, dass ein Mode mit neff < n2 noch den geführten Moden
zuzuordnen ist. Diese Möglichkeit wird im Folgenden nicht weiter verfolgt, da nicht direkt
ersichtlich ist, ob die zusätzliche Berücksichtigung eines Modes mit fehlerhafter Feldver-
teilung tatsächlich das Simulationsergebnis verbessert. Zusammenfassend lassen sich die
vermuteten Ursachen für Fehler im Simulationsergebnis festhalten:

• Fehlerhafte Feldverteilung für Moden nahe am Cut-Off,

• Vernachlässigung von Moden aufgrund einer fehlerhaften Berechnung der Ausbrei-
tungskonstanten.

Unter Berücksichtigung dieser Vermutungen sollen nun die Ergebnisse in Abbildung 4.23
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Abbildung 4.23.: Gegenüberstellung der wellentheoretischen und strahlenoptischen Ergebnisse für die erreichbare Koppeleffizienz
des rechteckförmigen Wellenleiters. Die Parametersätze entsprechen denen aus Abbildung 4.17 für die kreiszylin-
drische Faser.
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Abbildung 4.24.: Anregung des Modenspektrums des rechteckförmigen Wellenleiters auf
Basis der Näherungslösungen von Marcatili. Es gilt d = 70 µm, n2 = 1,55.
(Vgl. Abbildung 4.12a: Anregung des Modenspektrums der Faser.)

interpretiert werden. Diese müssen in Relation zu Abbildung 4.17 gesetzt werden, welche
die Ergebnisse für die kreiszylindrische Faser zeigt. Abbildung 4.23 stellt die auf Basis der
vorgestellten Näherungslösung (4.57) berechneten Koppeleffizienzen den strahlenoptischen
Ergebnissen gegenüber. Im strahlenoptischen Modell wurde der Kern um die konstante
Goos-Hänchen-Verschiebung verbreitert (Methode STRAHL CGH).

Die Interpretation der Ergebnisse startet mit Abbildung 4.23c, da hier die geringsten Ab-
weichungen auftreten. Bei konstanter NA sind nun Ergebnisse für unterschiedliche Kan-
tenlängen des Wellenleiterkerns dargestellt. Der Gaußstrahl wird nur lateral verschoben,
was auch im Fall des rechteckförmigen Wellenleiters im Bereich der geführten Moden zu
keiner Verbreiterung des angeregten Modenspektrums führt. Abbildung 4.24 zeigt die An-
regung des Modenspektrums des rechteckförmigen Wellenleiters für d = 70 µm. Da keine
Lösungen für das Spektrum der Strahlungsmoden vorliegen, bleiben diese unberücksichtigt.
Allerdings werden im Gegensatz zur Berechnung der Koppeleffizienz Marcatili-Lösungen
mit neff < n2 = 1,55 berücksichtigt. Im Graphen für h = 40 µm ist deutlich zu erkennen,
dass diese Moden noch signifikant angeregt werden. Insgesamt entsprechen die Abweichun-
gen in Abbildung 4.23c den bereits bei der Faser beobachteten Abweichungen zwischen den
Ergebnissen der Wellentheorie und der Strahlenoptik. Ein deutliches Indiz dafür, dass die
Näherungslösungen von Marcatili im hohen Indexbereich, n1 = 1,57 > neff > 1,565, eine
hinreichend gute Approximation darstellen.

Diese Aussage wird durch die Ergebnisse in Abbildung 4.23a bestätigt, welche bei iden-
tischen Geometrie- und Materialparametern des Wellenleiters die Verdrehung des Gauß-
strahls berücksichtigt. Erst für sehr große Einfallswinkel stellen sich deutliche Abweichun-
gen ein, die bei der Faser nicht beobachtet werden konnten. Demzufolge wird für große
Einfallswinkel die Koppeleffizienz durch Verwendung der Marcatili-Lösungen etwas über-
schätzt. Es zeigt sich jedoch auch, dass für d = 70 µm und ϑ = 10◦ immer noch eine gu-
te Übereinstimmung zwischen den Ergebnissen herrscht. Wie Abbildung 4.24 zeigt, wird
in diesem Fall nahezu das gesamte Spektrum der geführten Moden angeregt. Erst wenn
maßgeblich viel Leistung in die Moden nahe dem Cut-Off eingekoppelt wird, steigen die
Abweichungen deutlich an, z.B. für ϑ = 15◦.
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Die Ergebnisse in Abbildung 4.23b und 4.23d bestätigen diese Annahme. Hier wird die
Mantelbrechzahl verkleinert und damit werden bei gleich bleibendem Divergenzwinkel des
Gaußstrahls automatisch Moden angeregt, die näher am Cut-Off liegen. Mit abnehmender
Mantelbrechzahl nehmen die Abweichungen stark zu, jedoch unterschätzt die Verwendung
der Marcatili-Lösungen nun die Koppeleffizienz im Vergleich zur Strahlenoptik deutlich.
Ein Verhalten, das bei der Faser nicht beobachtet werden konnte. Natürlich muss im strah-
lenoptischen Modell ein möglicher zusätzlicher Fehler berücksichtigt werden, hervorgerufen
durch die Ecken im Querschnitt des Wellenleiterkerns, die ja im Modell der kreiszylindri-
schen Faser fehlen. In Abbildung 4.23b wird der Gaußstrahl jedoch nur verdreht und es
trifft wenig Leistung in den Eckbereichen auf. Es ist daher davon auszugehen, dass die
wellentheoretische Näherung hier einen Fehler verursacht. Da gemäß (3.72) der Marcatili-
Ansatz bei kleiner NA eine bessere Näherungslösung verspricht, ist möglicherweise die
Nichtberücksichtigung einiger Moden nahe am Cut-Off die Fehlerursache. Wohingegen zu-
vor in Abbildung 4.23a die Zunahme der Koppeleffizienz vornehmlich aus der fehlerhaften
Feldverteilung der Moden nahe am Cut-Off resultierten.

Als Fazit lässt sich festhalten, dass die Näherungslösungen von Marcatili einen sinnvol-
len Ansatz zur Modellierung rechteckförmiger Wellenleiter darstellen, solange vornehmlich
Moden mit hinreichend großer effektiver Brechzahl angeregt werden. Mit den präsentierten
Ergebnissen lässt sich zwar keine direkte Fehlerrechnung betreiben oder eine Fehlerschranke
für die effektive Brechzahl ableiten. Es gibt jedoch deutliche Indizien dafür, dass insbe-
sondere Lösungen im Intervall n1 < neff < n1+n2

2
eine hinreichend gute Approximation

darstellen. Wie von Marcatili vorhergesagt, tritt für Moden mit neff nahe n2 ein deutlich
erhöhter Fehler auf.



5. Wellenausbreitung in
dielektrischen Wellenleitern

Die Beschreibung der Wellenausbreitung im dielektrischen Wellenleiter ist wie schon die
Beschreibung der Einkopplung mathematisch sehr aufwändig und es sind nur wenige exak-
te Lösungen der Maxwellschen Gleichungen bekannt. Zur Erinnerung sei erwähnt, dass sich
das Modell zur Beschreibung der Einkopplung auf bzgl. der Wellenleiterachse senkrechte
Schnittstellen beschränkt. Sobald die Schnittstelle schräg verläuft oder Inhomogenitäten
wie raue Oberflächen berücksichtigt werden müssen, existieren in der Regel keine analy-
tischen Lösungen mehr. Analog dazu lässt sich die Wellenausbreitung ebenfalls nur im
längshomogenen Wellenleiter exakt beschreiben, sofern das Modenspektrum des Wellenlei-
ters bekannt ist. Einen analytischen Lösungsansatz gibt es darüber hinaus nur für zirkular
gekrümmte Schichtwellenleiter.

Aufgrund der Vielmodigkeit der Wellenleiter ist auch die Feldberechnung im längshomo-
genen Wellenleiter stets mit einem nicht unerheblichen Rechenaufwand verbunden. Ka-
pitel 5.1 stellt daher zunächst Ergebnisse für die monochromatische Anregung des Mo-
denspektrums dar. Anschließend wird das transiente Übertragungsverhalten am Beispiel
zeitperiodischer Anregungen betrachtet. Bei der Beschreibung zirkular gekrümmter Wel-
lenleiter kann man sich nicht mehr der Theorie normaler Moden bedienen. Stattdessen
muss ein kontinuierliches nichtorthogonales Modenspektrum angesetzt werden, aus dem
sich jedoch wiederum quasigeführte Moden ableiten lassen. Dieser Thematik widmet sich
Kapitel 5.2. Dass sich auch alle wesentlichen Ergebnisse auf Basis elementarer strahlenop-
tischer Methoden ableiten lassen, wird abschließend in Kapitel 5.3 diskutiert. Falls nicht
anders notiert, gelten für alle Parameter dieselben Annahmen wie im vorangegangenen
Kapitel 4.

5.1. Wellenausbreitung im längshomogenen
Wellenleiter

Das Übertragungsverhalten monochromatischer Wellen im längshomogen Wellenleiter ist
nach erfolgter Berechnung der Leistungsverteilung auf das Modenspektrum trivial zu be-
stimmen. Der Übergang in den Zeitbereich erfolgt nach Multiplikation mit exp(jωt) durch
einfache Realteilbildung. Um die Ausbreitung beliebig zeitabhängiger Wellen zu beschrei-
ben, muss jedoch die Fouriertransformation angewendet werden. Diese ist im Allgemeinen
nur für einfache Spezialfälle effektiv durchführbar, da das Modenspektrum für die gesamte
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Bandbreite des zeitabhängigen Signals bestimmt werden muss. Die im Folgenden gezeigten
exemplarischen Ergebnisse beziehen sich daher auf den planaren Schichtwellenleiter.

5.1.1. Monochromatische Wellenausbreitung

Sobald die Anregung des Modenspektrums eines längshomogenen Wellenleiters bestimmt
wurde, lässt sich das elektromagnetische Feld in jedem Punkt durch Überlagerung der
Feldanteile aller Moden berechnen. Obwohl die monochromatische Anregung kein direktes
praktisches Interesse offenbart – schließlich erfordert jede Form der Datenübertragung eine
bestimmte Bandbreite – lassen sich gerade im multimodalen Wellenleiter aufgrund der
Modendispersion interessante Interferenzerscheinungen beobachten [63]. Unter Annahme
einer hinreichend schmalbandigen Anregung können diese Effekte auch im realen System
ausgenutzt werden.

Abbildung 5.1 zeigt die zeitlich gemittelte Leistungsflussdichte |<{~S}| in einem Schicht-
wellenleiter der Dicke d = 70 µm und der numerischen Apertur NA = 0,25. Die Achse des
einfallenden Gaußstrahls trifft senkrecht und meridional bei z = 0 auf. Strahlbreite und
Divergenzwinkel sind gleich b = 50 µm und Θa0 = 5◦. Die Darstellung ist in z-Richtung um
den Faktor 50 gestaucht. Bedingt durch die symmetrische Anregung werden nur Moden

d = 70 µm

z = 0 z = 5mm

z = 5mm z = 10mm

Abbildung 5.1.: Zeitlich gemittelte Leistungsflussdichte |<{~S}| in einem Schichtwellenleiter
der Dicke d = 70 µm und NA = 0.25 bei Anregung in z = 0 durch einen
Gaußstrahl unter idealen Koppelbedingungen.

angeregt, die bzgl. der Wellenleiterachse eine gerades Profil aufweisen. Dementsprechend
ist auch die transversale Flussdichteverteilung stets symmetrisch und bedingt durch die un-
terschiedlichen Ausbreitungsgeschwindigkeiten der Moden stellen sich die gezeigten Inter-
ferenzmuster ein. Besonders markante Intensitätsverteilungen ergeben sich für z = 4,2 mm
und z = 8,9 mm. Im ersten Fall bilden sich zwei dominante lokale Maxima aus. Würde der
Wellenleiter an dieser Stelle in der Mitte geteilt, könnte ein Splitterstruktur aufgebaut wer-
den, die den Leistungsfluss in 3 dB-Anteile aufteilt. Im zweiten Fall konzentriert sich der
Leistungsfluss auf einen einzigen, sehr schmalen Bereich. Hier könnte ein Wellenleiter mit
kleinerem Durchmesser anschließen, ohne das ein signifikanter Verlust durch Abstrahlung
zu erwarten ist.
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Da sich die Interferenzmuster mit Ausbreitung der Welle wiederholen, wird im Englischen
von ‚Self-Imaging‘ gesprochen [63]. In der Praxis lassen sich diese Effekte jedoch nur mit
erheblichem Aufwand ausnutzen, da sehr hohe Anforderungen an die Qualität und die
Positionierung der Quelle gestellt werden müssen. Es sei auch noch einmal betont, dass
sich die gezeigten Ergebnisse nur auf ein planares zweidimensionales Problem beziehen.
Analoge Ergebnisse sind jedoch auch im Fall eines Wellenleiters mit zweidimensionalem
Querschnittprofil zu erwarten, da bei Einfall eines Gaußstrahls unter idealen Koppelbe-
dingungen immer nur ein entsprechender definierter Bereich im Modenspektrum angeregt
wird, vgl. Abbildung 4.12a.

Die in Abbildung 5.1 gezeigten Interferenzmuster in der Leistungsflussdichte sind insbeson-
dere auch dann von Bedeutung, wenn sich einem Stück geraden Wellenleiter ein gekrümm-
ter Wellenleiter anschließt. Je nach Länge des geraden Stücks variiert die Feldverteilung am
Anfang der Krümmung und damit auch das Übertragungsverhalten durch die Krümmung.
Mehr dazu im Kapitel 5.2.

Abschließend soll noch ein weiteres Phänomen angesprochen werden, dass zwar offensicht-
lich ist, jedoch selten diskutiert wird. In der geometrischen Optik wird zu Testzwecken oft
die NA des Wellenleiters homogen ausgeleuchtet. Dazu wird eine Punktquelle angesetzt,
die Strahlen gleicher Intensität unter einer äquidistanten Winkeldiskretisierung aussendet.
Wie sieht nun eine korrespondierende wellentheoretische Anregung aus? Diese Frage ist im
Grunde nicht zu beantworten, da aus einem strahlenoptischen Modell aufgrund der feh-
lenden Phaseninformation eine elektromagnetische Welle nur eingeschränkt rekonstruiert
werden kann. Abbildung 5.2 zeigt exemplarisch die Leistungsflussdichte in einem Schicht-
wellenleiter, wenn alle geführten Moden in z = 0 gleichphasig angeregt werden1. In der

d = 70 µm

z = 0 z = 5mm

Abbildung 5.2.: Zeitlich gemittelte Leistungsflussdichte |<{~S}| bei gleichphasiger Anre-
gung aller geführten Moden in z = 0 eines Schichtwellenleiters der Dicke
d = 70 µm sowie NA = 0,25.

Ebene z = 0 konzentrieren sich die Felder am unteren Rand des Wellenleiterkerns. Wird
die strahlenoptische Punktquelle ebenfalls am unteren Rand des Wellenleiterkerns plat-
ziert, lässt sich vermutlich eine größtmögliche Übereinstimmung hinsichtlich der weiteren
Propagation der Wellen und Strahlen im Wellenleiter erwirken. Wird ein expliziter Ver-
gleich der unterschiedlichen Theorien angestrebt, sollte jedoch immer das strahlenoptische
Modell aus dem Poyntingvektorfeld der wellentheoretischen Analyse abgeleitet werden.

1Unter der Annahme einer analytischen Beschreibung des Modenspektrums wie z.B. im Kapitel 3.1.3 gilt
für die Amplituden der geführten Moden Cν = 1.
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5.1.2. Transientes Übertragungsverhalten

Um die Implementierung auf einem Rechnersystem zu vereinfachen, beschränkt sich die
folgende Beschreibung auf eine periodische Zeitabhängigkeit des Modulationssignals und
damit implizit auf die Theorie der Fourierreihen [17]. Im Fokus steht das reine Übertra-
gungsverhalten des optischen Wellenleiters. Quelle und Empfänger werden als ideal ange-
nommen. Ebenso werden die Schnittstellen zwischen den Bauteilen als ideal angenommen
und damit Reflexionsverluste vernachlässigt.

Das elektrische Feld des Trägersignals sei y-polarisiert und gegeben durch

ET
y (~r0,t) = <

{
E0(~r0,ω0) exp(jω0t)

}
. (5.1)

Wird der Pumpstrom des Lasers durch eine periodische Pulsfolge moduliert, so besitzen
neben der Ausgangsleistung des Lasers auch die zugehörigen Feldgrößen eine periodische
Zeitabhängigkeit. Die Fouriersumme des Modulationssignals bezogen auf die Feldgrößen
sei durch

g(t) =
N∑

n=−N
cn exp(jnΩt), mit cn ∈ R und cn = c−n (5.2)

gegeben. Darin ist Ω = 2π
T

die Grundfrequenz und T ist die Grundperiode. Der kompak-
teren Schreibweise wegen beschränkt sich die Darstellung auf gerade Modulationssignale.
Für die noch folgende Beschreibung des Leistungsflusses im Wellenleiter ist es sinnvoll,
Koeffizienten mit |n| > N explizit gleich Null zu setzen, d.h. es gilt

cn = 0 ∀ |n| > N. (5.3)

Das resultierende modulierte Feld vor der Wellenleiterstirnfläche berechnet sich zu

EG
y (~r0,t) = ET

y (~r0,t) g(t) = <
{
E0(~r0,ω0)

N∑

n=−N
cn exp(j(ω0 + nΩ)t)

}
. (5.4)

Anders als im freien Raum unterliegen die Felder im dielektrischen Wellenleiter der chro-
matischen Dispersion sowie der Modendispersion [47], welche im multimodalen Wellenleiter
dominiert. Es ist daher von fundamentaler Bedeutung, wie sich die einfallende Leistung auf
die einzelnen Moden verteilt. Trotz der ursprünglich monochromatischen Anregung (5.1)
besitzt das Feld vor der Wellenleiterstirnfläche aufgrund der Modulation nun eine durch
(5.2) definierte Bandbreite und für die exakte Beschreibung der Einkopplung müsste für
jede Frequenz ωn = ω0 + nΩ ein Mode-Matching durchgeführt werden. Allerdings ändert
sich das Modenspektrum in Abhängigkeit von nΩ nur unwesentlich2. Da auch die anregen-
de Feldverteilung E0(~r0,ω0), die wie zuvor durch den Gaußstrahl gegeben ist, unabhängig
von nΩ ist, reicht es aus, das Mode-Matching einmalig für die Frequenz ω0 durchzuführen.

2Zur Erinnerung: die Wellenlänge des optischen Trägers ist in dieser Arbeit gleich 850 nm. Damit liegt
die Trägerfrequenz ω0 im höheren Terahertz-Bereich und ist um einige Dekaden größer als die Modu-
lationsfrequenz Ω, die typischerweise im Gigahertz-Bereich liegt.
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In der Notation gemäß Kapitel 2.3.1 lässt sich das Feld im Wellenleiter durch

EW
y (~r,t) = <

{
exp(jω0t)

N∑

n=−N
cn exp(jnΩt)Ey,n(~r,ωn)

}
, (5.5)

mit
Ey,n(~r,ωn) =

∑

ν

Cν Eν(~rt,ωn) exp(−jkzν,nz) (5.6)

beschreiben. Zu beachten ist, dass die Frequenzabhängigkeit nun durch den Index n be-
rücksichtigt wird. Die Amplituden Cν sind wie beschrieben frequenzunabhängig und da
Verluste durch Reflexion oder Abstrahlung vernachlässigt werden, werden die Maxima im
Leistungsfluss mit ∑

ν

C2
νP ν = 1 (5.7)

auf Eins normiert. Darin ist P ν die für ω = ω0 pro Mode geführte normierte Leistung, vgl.
(2.63). Die Summation in (5.6) erstreckt sich nur über die geführten Moden des Wellenlei-
ters.

Die Leistungsflussdichte im elektromagnetischen Feld beschreibt sich allgemein durch den
Poyntingvektor. Für die gewählte Polarisation berechnet sich die Komponente in Ausbrei-
tungsrichtung aus

Sz(~r,t) = −EW
y (~r,t)HW

x (~r,t). (5.8)

Darin wird die magnetische Feldstärke analog zu (5.5) beschrieben durch

HW
x (~r,t) = −<

{
exp(jω0t)

N∑

n=−N
cn exp(jnΩt)Hx,n(~r,ωn)

}
, (5.9)

Hx,n(~r,ωn) =
∑

ν

kzν,n
ωnµ

Cν,n Eν(~rt,ωn) exp(−jkzν,nz). (5.10)

In den Darstellungen (5.5) und (5.9) wurde die Zeitabhängigkeit vom hochfrequenten opti-
schen Träger bewusst vorangestellt. Die Zeitabhängigkeit der Feldgrößen ist von der Form

Ψ̃1/2(t) = <
{

exp(jω0t) Ψ1/2(t)
}
. (5.11)

Somit ergibt sich für das Produkt zweier Feldgrößen, und damit auch für den Poynting-
vektor, die Zeitabhängigkeit

Ψ̃1(~r,t)Ψ̃2(~r,t) =
1

4

(
Ψ1(t) exp(jω0t) + Ψ∗1(t) exp(−jω0t)

)

(
Ψ2(t) exp(jω0t) + Ψ∗2(t) exp(−jω0t)

)

=
1

2
<
{

Ψ1(t) Ψ∗2(t)
}

+
1

2
<
{

Ψ1(t) Ψ2(t) exp(j2ω0t)
}
.

(5.12)

In dieser Darstellung ist der erste Summand nicht mehr von der Trägerfrequenz ω0 abhän-
gig, im Gegensatz zum zweiten Summanden, welcher mit der doppelten Trägerfrequenz
oszilliert. Da dieser höchstfrequente Anteil von einer Photodiode nicht aufgelöst wird,
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wird er im Folgenden vernachlässigt. Die tiefpassgefilterte Leistungsflussdichte berechnet
sich dann zu

˜̄Sz(~r,t) =
1

2
<
{(

N∑

n=−N
cnEy,n(~r,ωn) exp(jnΩt)

) (
N∑

n=−N
c−nH

∗
x,−n(~r,ω−n) exp(jnΩt)

)}
.

(5.13)
Dieses Produkt zweier Fouriersummen kann mit Hilfe einer Faltung der diskreten Spektren
umgeformt werden:

˜̄Sz(~r,t) =
1

2
<
{

2N∑

n=−2N

[
N∑

m=−N

(
cmEy,m(~r,ωm)

) (
cm−nH

∗
x,m−n(~r,ωm−n)

)
]

exp(jnΩt)

}
.

(5.14)
Die in Ausbreitungsrichtung transportierte Leistung ergibt sich durch Integration und ist
gleich

˜̄p(zc,t) =
1

2
<
{

2N∑

n=−2N

[
N∑

m=−N
cmcm−n

∫

z=zc

Ey,m(~r,ωm)H∗x,m−n(~r,ωm−n) da

]

︸ ︷︷ ︸
p̃n(zc)

exp(jnΩt)

}
.

(5.15)
Weiter folgt für die Fouriersumme der Leistung

˜̄p(z,t) =
2N∑

n=−2N

pn(z) exp(jnΩt) mit pn(z) =
1

4

(
p̃n(z) + p̃∗−n(z)

)
. (5.16)

Die Rechenzeiten zur Bestimmung des Leistungsfluss ˜̄p(z,t) variieren in Abhängigkeit der
Bandbreite des Modulationssignals. Eine hohe Bandbreite korrespondiert mit einer großen
Anzahl Reihenglieder N und damit einer großen Anzahl Rechenoperationen zur Bestim-
mung des diskreten Faltungsprodukts. Des Weiteren muss pro Summand in (5.15) ein
Integral gelöst werden, das zwar ggf. analytisch berechnet werden kann, in jedem Fall aber
den Simultionsaufwand erhöht. Im Allgemeinen ist die Bandbreite jedoch hinreichend klein
gegenüber der optischer Trägerfrequenz, so dass die Änderung im transversalen Modenpro-
fil mit der Frequenz ω vernachlässigt werden kann. Anstelle von (5.6) und (5.10) können
die Feldausdrücke

Ey,n(~r,ωn) ≈
∑

ν

Cν Eν(~rt,ω0) exp(−jkzν,nz), (5.17)

Hx,n(~r,ωn) ≈
∑

ν

kzν,0
ωnµ

Cν Eν(~rt,ω0) exp(−jkzν,nz) (5.18)

verwendet werden. Gleichung (5.15) vereinfacht sich damit zu

˜̄p(z,t) ≈ <
{

2N∑

n=−2N

[
N∑

m=−N
cmcm−n

∑

ν

|Cν |2 P ν exp(−j(kzν,m − kzν,m−n)z)

]
exp(jnΩt)

}
.

(5.19)



5.1. Wellenausbreitung im längshomogenen Wellenleiter 109

Die Annahme, dass sich das transversale Modenprofil mit der Frequenz nur langsam ändert,
soll nicht ausschließen, dass die Anzahl der geführten Moden nicht variiert. Insbesondere
im hochmultimodalen Fall variiert die Anzahl der geführten Moden auch bei kleinen Fre-
quenzänderungen. Die Änderungen betreffen maßgeblich nur den Teil des Modenspektrums
nahe dem Cut-Off, d.h neff ≈ n2. Sollen hohe Koppeleffizienzen erzielt werden, wird dieser
Teil des Modenspektrums in der Regel nicht signifikant angeregt, vgl. Abbildung 4.12a.

Im Folgenden Beispiel wird ein Modulationssignal mit der Grundfrequenz Ω = 10 GHz
betrachtet. Es gilt somit T = 100 ps. Das Modulationssignal sei eine Folge von Sinusbögen
gemäß

g(t) ≈
{

cos(2πt
T

), ñ− 1/4 < t/T < ñ+ 1/4, ñ ∈ Z
0, sonst

. (5.20)

Aufgrund der endlichen verfügbaren Bandbreite gilt (5.20) nur näherungsweise. Um die
Auswirkungen der Modendispersion und die damit verbundene Pulsverformung zu ver-
deutlichen, wurde ein Puls-Pause Verhältnis von eins gewählt. Die Koeffizienten der zuge-
hörigen Fouriersumme sind gleich

c0 =
1

π
, c1 =

1

2
, cn =

{
−2

π(n2−1)
(−1)n/2, n = 2,4,6 . . .

0, n = 3,5,7 . . . .
(5.21)

Koeffizienten mit einem Index |n| > N sind gemäß (5.3) gleich Null. Die Folge der Fourier-
koeffizienten klingt quadratisch ab. Da sich das Modulationssignal auf die Feldgrößen be-
zieht, besitzt der initiale Leistungsfluss eine entsprechend quadratische Abhängigkeit, d.h.
es gilt ˜̄p(0,t) ∼ g2(t). Entsprechend schmalbandig ist das Frequenzspektrum3. Da jedoch für
den späteren Vergleich zur Strahlenoptik auch rechteckförmige Pulse näherungsweise mo-
delliert werden sollen, wird insgesamt ein Wellenlängenbereich von 838 nm < λ < 862 nm
berücksichtigt. Das entspricht einer Bandbreite von bereits etwa 10THz und somitN = 500
Reihengliedern in (5.2). Die Änderungen im Spektrum der geführten Moden sind in diesem
Bereich vernachlässigbar. Für den im Folgenden betrachteten Schichtwellenleiter der Dicke
d = 75 µm und der Apertur NA = 0,25 sinkt die Anzahl der geführten Moden ab der
Wellenlänge 851,5 nm zwar von 45 auf 44, das transversale Modenprofil der verbleibenden
44 Moden variiert jedoch nur sehr wenig.

In Abbildung 5.3 ist der normierte Leistungsfluss ˜̄p(z,t) an verschiedenen Stellen z = L für
unterschiedliche Anregungen des Modenspektrums aufgetragen. Es gilt d/b = 1,5, d.h. der
Durchmesser des Gaußstrahls ist gleich b = 50 µm. Die Kurven für L > 0 wurden auf der
Zeitachse verschoben, so dass der Überlapp in Abbildung 5.3a am größten ist. Diese Abbil-
dung zeigt den Fall der idealen Einkopplung, d.h. die Strahlachse trifft senkrecht meridional
auf. Gemäß Abbildung 4.12a werden nur Moden mit großem effektiven Index neff angeregt
und entsprechend gering ist die Pulsverformung. Dargestellt sind neben dem Eingangssi-
gnal Ergebnisse für fünf unterschiedliche Wellenleiterlängen L = 1,2, . . . 5 m. Es zeigt sich,
dass mit zunehmender Wellenleiterlänge wie erwartet die Amplitude der Pulse abnimmt
und die Breite zunimmt. Beachtet werden muss, dass in einem realen Übertragungssystem
keine derart große Pause zwischen den Pulsen existiert. Dennoch sollte in diesem Fall auch
noch nach L = 5 m eine Detektion der Pulse möglich sein. Da eine laterale Verschiebung h
3Diese Aussage bezieht sich auf eine Definition wie etwa die 3 dB-Bandbreite.
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Abbildung 5.3.: Normierter Leistungsfluss an ausgewählten Stellen z = L in einem Schicht-
wellenleiter nach Einkopplung eines Gaußstrahls unter verschiedenen Win-
keln ϑ. Es gilt d = 75 µm, b = 50 µm, h = 0 und NA = 0,25. Die Legende
in Abbildung (a) gilt auch in (b), (c) und (d).

des Gaußstrahls nicht zu einer Verbreiterung des angeregten Modenspektrums führt, sind
in den weiteren Abbildungen Ergebnisse für unterschiedliche Einfallswinkel ϑ dargestellt.

Mit zunehmendem Einfallswinkel des Gaußstrahls verbreitert sich auch die Anregung des
Modenspektrums, entsprechend nimmt der Einfluss der Modendispersion zu. Für ϑ = 2◦ ist
die Pulsverbreiterung auch bei L = 5 m noch moderat, die Amplitude sinkt auf etwa 0,666.
Bei ϑ = 5◦ nimmt die Amplitude bereits nach L = 3 m einen Wert unter 0,5 an. Im Fall
ϑ = 10◦ wird nahezu das gesamte Modenspektrum angeregt, insbesondere auch die Moden
hoher Ordnung. Die Amplitude sinkt bereits nach einem Meter auf etwa 0,6. Bedenkt man,
dass in einem realen System zusätzliche parasitäre Effekte die Dispersion weiter verstärken
können, dann ist eine Datenübertragung mit Wellenleiterlängen über 1 m wahrscheinlich
nicht mehr möglich. Im Kontext der EOPCB-Technologie sind jedoch Wellenleiterlängen
kleiner 1 m auch für den Einsatz in größeren Serversystemen oft ausreichend.
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5.1.3. Übertragungsfunktion des planaren Schichtwellenleiters

Sofern, wie in dieser Arbeit angenommen, alle eingesetzten Materialien lineare Eigenschaf-
ten besitzen, stellt auch der optische Wellenleiter ein lineares Bauelement dar. Jedoch
bezieht sich diese Linearität auf die Feldgrößen und nicht auf die übertragene Leistung,
die bekanntlich aus dem Integral über den Poyntingvektor hervorgeht. In der klassischen in-
kohärenten Übertragungstechnik wird durch Modulation des Pumpstroms der eingesetzten
Laserdiode die Ausgangsleistung variiert. Am Ende der Übertragungsstrecke wird umge-
kehrt die Eingangsleistung in einen Strom umgewandelt. Im Folgenden soll wie zuvor ein
System betrachtet werden, in dem sowohl die Laserdiode als auch die Photodiode als ide-
al angenommen werden. Die Eingangsgröße ist dann proportional zur Leistung ˜̄p(0,t) am
Wellenleiteranfang. Entsprechend ist die Ausgangsgröße proportional zur Leistung ˜̄p(L,t)
am Wellenleiterende.

Das somit definierte System wird vollständig durch Gleichung (5.15) beschrieben. Die Cha-
rakterisierung des Systems ist jedoch schwierig, da sich die Eingangsgröße nicht explizit aus
(5.15) isolieren lässt. Zwar lässt sich noch zeigen, dass das System das Verstärkungsprin-
zip (Homogenität) erfüllt. Im Allgemeinen ist das System jedoch nicht additiv. Dennoch
kann das System als näherungsweise linear angenommen werden, so dass die Systemeigen-
schaften durch eine Übertragungsfunktion beschrieben werden können, die sich aus (5.16)
gemäß

H(fn) =
pn(L)

pn(0)
mit fn =

nΩ

2π
(5.22)

ableiten lässt. Die Annahme eines linearen Systems ist gerechtfertigt, solange die chroma-
tische Dispersion vernachlässigbar ist. In diesem Fall lässt sich die Dispersionsbeziehung
der Moden linearisieren. Es gilt

kzν(ω) = kzν(ω0) + (ω − ω0)
dkzν
dω

∣∣∣
ω0

. (5.23)

Mit dieser Näherung kann (5.19)

˜̄p(z,t) = <
{

2N∑

n=−2N

[
N∑

m=−N
cmcm−n

∑

ν

|Cν |2 P ν exp(−j(kzνm − kzν,m−n)z)

]
exp(jnΩt)

}

(5.24)
vereinfacht werden. In der gewählten Notation folgt aus (5.23)

kzν,n = kzν,0 +
nΩ

vgν
und kzν,m − kzν,m−n =

nΩ

vgν
, mit vgν =

dω
dkzν

∣∣∣
ω0

. (5.25)

Die Größe vgν wird als Gruppengeschwindigkeit des Modes ν bezeichnet. Eingesetzt in
(5.24) ergibt sich

˜̄p(z,t) =
2N∑

n=−2N

(∑

ν

|Cν |2 P ν exp

(
−j nΩ

vgν
z

))[ N∑

m=−N
cmcm−n

]
exp(jnΩt). (5.26)
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Abbildung 5.4.: Übertragungsfunktion des planaren Schichtwellenleiters. Es gilt d = 75 µm,
b = 50 µm und n2 = 1,55.

Der Realteiloperator kann hier entfallen, da die Fourierkoeffizienten ein reelles Signal im-
plizieren. Mit (5.7) folgt nun für das Eingangssignal

˜̄p(0,t) =
2N∑

n=−2N

[
N∑

m=−N
cmcm−n

]
exp(jnΩt) (5.27)

und für das Ausgangssignal

˜̄p(L,t) =
2N∑

n=−2N

Hl

(
nΩ
2π

)
[

N∑

m=−N
cmcm−n

]
exp(jnΩt). (5.28)

Darin ist
Hl(fn) =

∑

ν

|Cν |2 P ν exp

(
−j 2πfn

vgν
L

)
(5.29)

die Übertragungsfunktion des linearisierten Systems. Im Vergleich zur Definition (5.22), in
der die Fourierkoeffizienten gemäß (5.16) berechnet werden, ist der erforderliche Rechen-
aufwand deutlich reduziert. Die Unterschiede sind jedoch in der Regel vernachlässigbar.

Abbildung 5.4 zeigt exemplarisch Ergebnisse für den Betrag der durch (5.22) definierten
Übertragungsfunktion4. Die Parametersätze korrespondieren mit denen aus Abbildung 5.3a
und 5.3d. Es gilt d = 75 µm und d/b = 1,5 sowie NA = 0,25. Die Kurven zeigen das er-
wartete Tiefpassverhalten auf. Die 3 dB-Frequenz, die Frequenz, bei der |H(f)| = 0,5 gilt,
nimmt mit zunehmender Wellenlänge ab. In Abbildung 5.4a ist analog zu Abbildung 5.3a
der Idealfall berücksichtigt, bei dem der Gaußstrahl senkrecht meridional auftrifft. Das
Bandbreitenlängenprodukt beträgt f3dB · L = 159 GHz·m. Der aus praktischer Sicht re-
levantere Fall mit ϑ = 10◦, bei dem nahezu das gesamte Modenspektrum angeregt wird,
ist in Abbildung 5.4b dargestellt. In diesem Fall sinkt das Bandbreitenlängenprodukt auf
4Die Koeffizienten des Modulationssignals 5.2 wurden hierzu konstant gleich cn = 1 ∀ n gesetzt.
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f3dB · L = 14 GHz·m. Somit lässt sich das Ergebnis aus Abbildung 5.3d leicht erklären.
Aus dem Bandbreitenlängenprodukt errechnet sich bei einer Frequenz von 10GHz eine
maximale Länge von lediglich 1,4m. Bei einer Länge von 2m ist bereits keine hinreichende
Amplitude für eine zuverlässige Detektion mehr vorhanden.

Die Unterschiede zur Übertragungsfunktion (5.29) liegen in Abbildung 5.4 meist unterhalb
der darstellbaren Genauigkeit. Lediglich in den Graphen für ϑ = 10◦ existieren im Bereich
zwischen 10GHz und 100GHz merkliche, insgesamt jedoch vernachlässigbare Unterschiede.
Diese begründen sich darin, dass der letzte geführte Mode mit einer effektiven Brechzahl
neff = 1,550047 für λ = 850 nm bereits sehr nahe am Cut-Off liegt und hier die Linearisie-
rung 5.23 problematisch ist. Es sei jedoch betont, dass er im betrachteten Frequenzbereich
nicht unterhalb des Cut-Off fällt. Für Einfallswinkel ϑ < 10◦ wird dieser Mode nicht signifi-
kant angeregt. Folglich ist die durch (5.22) bzw. (5.29) definierte Übertragungsfunktion ein
sinnvolles Instrument zur Charakterisierung optischer Wellenleiter. Es muss jedoch auch
betont werden, dass diese Übertragungsfunktionen nur Approximationen darstellen, die
gerechtfertigt sind, solange die chromatische Dispersion vernachlässigbar ist. Die starken
Oszillation in Abbildung 5.4 für Frequenzen größer 100GHz sind im Übrigen ein Resul-
tat der Modendispersion im Wellenleiter mit einer endlichen Anzahl geführter Moden. Je
weniger Moden geführt werden, desto ausgeprägter fallen diese Oszillationen aus.

5.2. Wellenausbreitung im gekrümmten
Schichtwellenleiter

Obwohl die Beschreibung der Wellenausbreitung in gekrümmten dielektrischen Wellen-
leitern schon lange Gegenstand wissenschaftlicher Arbeiten ist [13, 43], existieren man-
gels exakter analytischer Lösungen nahezu keine verifizierten Modellierungsansätze. Oft
wird der sogenannte Leckwellen-Ansatz5 als exakte physikalische Lösung der Maxwellschen
Gleichungen vorgestellt. Dieser in Kapitel 5.2.2 vorgestellte Ansatz berücksichtigt expli-
zit radial nach außen propagierende Wellen zur Beschreibung der Abstrahlverluste. Diese
Annahme erscheint auf den ersten Blick plausibel. Wie beim geraden Wellenleiter werden
die Abstrahlverluste jedoch durch die Überlagerung von Strahlungsmoden beschrieben,
d.h. der komplexe Poyntingsche Vektor des einzelnen Modes besitzt keine reelle radiale
Komponente. Ein entsprechend modifizierter Ansatz wurde erstmalig von Morita und Ya-
mada veröffentlicht [51]. Leider unterliegt dieser Arbeit ein Fehler in der Bestimmung des
Modenspektrums, welcher von Kerndlmaier kurze Zeit später korrigiert wurde [31]. Sein
Lösungsansatz und die wichtigsten abgeleiteten Ergebnisse werden in den Kapiteln 5.2.3
bis 5.2.5 vorgestellt. Da sich die Ergebnisse im Wesentlichen auf den Fall einer kleinen An-
zahl geführter Moden beschränken, werden im Kapitel 5.2.6 Ergebnisse für multimodale
Schichtwellenleiter präsentiert.

5In der englischsprachigen Literatur wird der Begriff Leaky Mode verwendet.
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5.2.1. Überblick

Aus Sicht der geometrischen Optik erfolgt die Wellenführung im optischen Wellenleiter
durch Totalreflexion an der Kern-Mantel Schnittstelle. Für nicht allzu starke Wellenleiter-
krümmungen sind die erforderlichen Bedingungen für die Totalreflexion weiterhin in guter
Näherung erfüllt, so dass ein Großteil der eingekoppelten Leistung nach Durchlaufen der
Krümmung im Wellenleiterkern erhalten bleibt. Abbildung 5.5 zeigt den Übergang zweier
um 90◦ verkippter gerader Wellenleiter, die durch einen zirkular gekrümmten Wellenleiter-
abschnitt mit mittlerem Radius R verbunden sind.

xp

R−

R
R+

% ϕ

y
x

z

z

d

n1n2 n3

Abbildung 5.5.: Übergang zweier um 90◦ verkippter Wellenleiter.

Die Dicke des Schichtwellenleiterkerns ist gleich d, so dass ein innerer Radius R− = R−d/2
und ein äußerer Radius R+ = R + d/2 angegeben werden kann. Hinsichtlich der Brech-
zahlen gelten dieselben Annahmen wie zuvor in der Beschreibung der Moden des geraden
Schichtwellenleiters, Kapitel 3.1.3. Ebenso wird wiederum nur der Fall transversalelektri-
scher Felder explizit betrachtet.

Es wird der Ansatz
~E = ~ezE(%,ϕ) = ~ezR(%)Φ(ϕ) (5.30)

gewählt. Eingesetzt in die Helmholtz-Gleichung folgt

1

R

(
∂2R

∂%2
+

1

%

∂R

∂%

)
+

1

%2

1

Φ

∂2Φ

∂ϕ2

︸ ︷︷ ︸
=−ν2

+ k2
i = 0 mit ki = ω

√
µ0εi. (5.31)

Ansatz und Lösung sind analog zur Beschreibung der Moden der Faser in Kapitel 3.2, es
liegt jedoch keine z-Abhängigkeit vor (kz = 0). Stattdessen erfolgt die Wellenausbreitung
nun in ϕ-Richtung. Daher wird für Φ ein Exponentialansatz gewählt

Φ(ϕ) = exp(∓jνϕ). (5.32)

Darin ist ν nun die Ausbreitungskonstante des Modes und nicht wie zuvor lediglich ein
Zählindex. Für die Funktion R(%) verbleibt wieder die Besselsche Differenzialgleichung mit
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den Lösungen

R(%) = A1 Jν(ki%) + A2Nν(ki%)

= A3H
(1)
ν (ki%) + A4H

(2)
ν (ki%) .

(5.33)

Da keine z-Abhängigkeit vorliegt, entfallen die modifizierten Besselfunktionen als Lösungs-
funktionen. Es mag jedoch sinnvoll erscheinen Hankelfunktionen zu verwenden, da sich so
leicht in radialer Richtung propagierende Wellen beschreiben lassen.

Die magnetische Feldstärke ergibt sich gemäß dem Induktionsgesetz zu

~H = − 1

jωµ

(
(∓jν)~e%

R(%)

%
− ~eϕ

∂R(%)

∂%

)
exp(∓jνϕ) (5.34)

und für den Poyntingschen Vektor folgt

~S =
1

2
~E × ~H

∗
=

1

2ωµ

(
(±ν∗)~eϕ

|R(%)|2
%

− j~e%R(%)
∂R∗(%)

∂%

)
exp(±2=(ν − ν∗)ϕ). (5.35)

Es zeigt sich somit direkt, dass im Fall einer reellwertigen Funktion R(%) der Poyntingvek-
tor keine reelle Komponente in radialer Richtung besitzt.

5.2.2. Der Leckwellen-Ansatz

Die Annahme radial nach außen laufender Wellen zur Beschreibung der Abstrahlverluste
ist physikalisch plausibel und gemäß der Abstrahlbedingung auch erforderlich [16]. Jedoch
muss im Modenspektrum eines Wellenleiters nicht jeder einzelne Mode der Abstrahlbedin-
gung genügen, sondern die resultierende Überlagerung aller Moden. In der vorhandenen
Literatur wird dennoch oft ein Ansatz mit der Hankelfunktion H(2)

ν im Außenraum R+ ≤ %
zur Beschreibung der Abstrahlverluste gewählt [25, 40, 46]. Dieser Ansatz löst zwar die
Maxwellschen Gleichungen und führt zu einem diskreten Spektrum quasigeführter Moden
mit komplexen Eigenwerten. Er führt jedoch nicht zum vollständigen Modenspektrum des
zirkular gekrümmten Schichtwellenleiters. Es wird sich jedoch zeigen, dass der Leckwellen-
Ansatz trotzdem eine sinnvolle Approximation darstellen kann.

Der Ansatz für die Funktion R(%) lautet

R(%) = aν





Jν(k2%) , 0 ≤ % ≤ R−

A2ν Jν(k1%) + A3ν Nν(k1%) , R− ≤ % ≤ R+

A4ν H
(2)
ν (k3%) , R+ ≤ %

. (5.36)

Darin entfallen im Innenraum % ≤ R− die im Koordinatenursprung singulären Neumann-
funktionen Nν . In den Grenzschichten % = R− und % = R+ muss die tangentiale elektrische
und magnetische Feldstärke stetig sein. Aus den resultierenden vier Gleichungen lässt sich
ein überbestimmtes Gleichungssystem für die drei Koeffizienten A2ν , A3ν und A4ν ablei-
ten. Dieses Gleichungssystem ist nur dann eindeutig lösbar, wenn die Determinante der
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Systemmatrix verschwindet. Dies ist der Fall, falls

k2J
′
ν(k2R

−)Nν(k1R
−)− k1Jν(k2R

−)N ′ν(k1R
−)

k3Nν(k1R+)H
(2)′
ν (k3R+)− k1N ′ν(k1R+)H

(2)
ν (k3R+)

=

k1J
′
ν(k1R

−)Jν(k2R
−)− k2J

′
ν(k2R

−)Jν(k1R
−)

k1J ′ν(k1R+)H
(2)
ν (k3R+)− k3Jν(k1R+)H

(2)′
ν (k3R+)

(5.37)

gilt. Die Koeffizienten berechnen sich zu6

A2ν =
πR−

2

(
k1Jν(k2R

−)N ′ν(k1R
−)− k2J

′
ν(k2R

−)Nν(k1R
−)
)
, (5.38)

A3ν =
πR−

2

(
k2J

′
ν(k2R

−)Jν(k1R
−)− k1J

′
ν(k1R

−)Jν(k2R
−)
)
, (5.39)

A4ν =
A2 Jν(k1R

+) + A3Nν(k1R
+)

H
(2)
ν (k3R+)

. (5.40)

Die Konstanten aν bleiben als Amplituden der Moden zunächst unbestimmt.

Es sind also nur diskrete Eigenwerte ν zulässig, die der Eigenwertgleichung (5.37) ge-
nügen. Die Lösung der Eigenwertgleichung ist durchaus anspruchsvoll, da die Eigenwerte
komplexwertig sind. Der Imaginärteil ist die Dämpfungskonstante der Moden bezüglich der
Ausbreitungsrichtung ϕ. Zur Lösung empfiehlt sich die in [49] präsentierte Vorgehensweise.
Diese separiert zunächst die Lösungen in der komplexen Ebene. Aus der Funktionentheorie
ist bekannt, dass sich die Phase einer Funktion f(ν) beim Durchlauf einer geschlossenen
Kontur ∂S um N2π ändert, falls sich innerhalb der geschlossenen Kontur N Nullstellen
der Funktion f befinden. Es gilt

N =
1

2π
∆∂S (arg f(ν)) . (5.41)

Die geschlossene Kontur wird dabei in mathematisch positiver Richtung durchlaufen. So-
bald ein hinreichend kleines Gebiet mit nur einer Nullstelle isoliert worden ist, bieten sich
Sekantenverfahren an, um die Lösung zu verbessern.

Im Vergleich zur Nullstellensuche auf der reellen Achse, wie es zuvor für die Bestimmung
der reellen Eigenwerte der Moden des geraden Wellenleiters erforderlich war, erfordert die
Entwicklung eines effizienten Lösers zur Nullstellensuche in der komplexen Ebene deutlich
mehr Implementierungsaufwand. Liegen Schätzwerte für die zu erwarteten Nullstellen vor,
reduziert sich dieser Aufwand deutlich. Im vorliegenden Problem können aus den bekannten
Eigenwerten des korrespondierenden geraden Wellenleiters Schätzwerte abgeleitet werden.
Alternativ bietet sich die im folgenden Kapitel 5.2.3 präsentierte Vorgehensweise an.

Orthogonalität und Leistung

Die Orthogonalität normaler Moden eines geraden Wellenleiters wird in der Literatur oft
aufgezeigt, u.a. [46]. Es sei hier nur genannt, dass der Nachweis der Orthogonalität der
6Es gilt Jν(z)N ′ν(z)− J ′ν(z)Nν(z) = 2

πz .
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Moden des Leckwellen-Ansatzes analog geführt werden kann [25]. Aufgrund der komplexen
Eigenwerte ist die Orthogonalität jedoch analog zu (2.62) definiert, d.h. ohne Konjugation
der Feldgrößen.

Zur Bestimmung des Leistungflusses im Mode ν in Ausbreitungsrichtung wird die ϕ-
Komponente des Poyntingvektors (5.35) über eine Fläche ϕ = konstant integriert:

P
′
ν =

P ν

∆z
=
<{ν}
2ωµ

exp(2=(ν − ν∗)ϕ)

∫ ∞

0

|R(%)|2
%

d%. (5.42)

Darin kennzeichnet ∆z einen Längenabschnitt in z-Richtung. Die Integration kann analy-
tisch durchgeführt werden [25], mit dem Ergebnis

P
′
ν =

|aνA4ν |2
2ωµ|=(ν)|π exp(|=(ν)|π) exp(2=(ν − ν∗)ϕ). (5.43)

Der Imaginärteil des Eigenwerts ν ist im Übrigen stets negativ.

5.2.3. Die Exakte Rechnung

Der Begriff Exakte Rechnung wurde von Kerndlmaier in seiner Dissertationsschrift ge-
prägt [31]. Da sich seine Argumentation auf reelle Eigenwerte beschränkt, darf aus dem
Hinweis auf eine exakte Rechnung nicht die Vollständigkeit des Lösungsraums abgelei-
tet werden. Die ausführlichen theoretischen Darstellungen von Kerndlmaier lassen jedoch
darauf schließen, dass sich analog zur Theorie des geraden Wellenleiters alle wesentlichen
Problemstellungen durch einen Ansatz mit rein reellen Eigenwerten lösen lassen. Als Bei-
spiel seien die in dieser Arbeit betrachtete Übergänge zwischen geraden und gekrümmten
Wellenleiterelementen genannt.

Die exakte Rechnung unterscheidet sich im Ansatz im Vergleich zu (5.36) bei der Beschrei-
bung der Felder im Außenraum (% > R+):

R(%) = aν





Jν(k2%) , 0 ≤ % ≤ R−

A2ν Jν(k1%) + A3ν Nν(k1%) , R− ≤ % ≤ R+

A4ν Jν(k3%) + A5ν Nν(k3%) , R+ ≤ %
. (5.44)

Aus den zu erfüllenden Randbedingungen lassen sich wiederum vier Gleichungen ableiten,
aus denen sich die vier Koeffizienten A2ν bis A5ν bestimmen lassen. Aufgrund der Äqui-
valenz zum Ansatz der Leckwellen (5.36) im Raum (% < R+) bleiben die Konstanten A2ν

und A3ν unverändert:

A2ν =
πR−

2

(
k1Jν(k2R

−)N ′ν(k1R
−)− k2J

′
ν(k2R

−)Nν(k1R
−)
)
, (5.45)

A3ν =
πR−

2

(
k2J

′
ν(k2R

−)Jν(k1R
−)− k1Jν(k2R

−)J ′ν(k1R
−)
)
, (5.46)

A4ν =
πR+

2

(
− k1Nν(k3R

+)
(
A2νJ

′
ν(k1R

+) + A3νN
′
ν(k1R

+)
)

+ k3N
′
ν(k3R

+)
(
A2νJν(k1R

+) + A3νNν(k1R
+)
))
, (5.47)
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A5ν =
πR+

2

(
k1Jν(k3R

+)
(
A2νJ

′
ν(k1R

+) + A3νN
′
ν(k1R

+)
)

− k3J
′
ν(k3R

+)
(
A2νJν(k1R

+) + A3νNν(k1R
+)
))
. (5.48)

Die Randbedingungen lassen sich somit für beliebige ν erfüllen und folglich liegt ein voll-
ständig kontinuierliches Modenspektrum vor. Wie oben erwähnt, wird angenommen, dass
es ausreicht, rein reellwertige Lösungen zu berücksichtigen, analog zum kontinuierlichen
Spektrum der Strahlungsmoden eines geraden Wellenleiters. Unter Zuhilfenahme der Be-
ziehungen für Besselfunktionen im Anhang A.5.2 lässt sich im Fall A5ν = −jA4ν der Ansatz
(5.44) in (5.36) überführen. Durch diese einschränkende Bedingung werden die diskreten
komplexwertigen Eigenwerte des Leckwellen-Ansatzes erzwungen.

Die Moden des gekrümmten Schichtwellenleiters werden im Weiteren analog zu den Moden
des geraden Wellenleiters (2.50) durch

~Eν(~r) = aν ~Eν(%) exp(−jνϕ), (5.49a)
~Hν(~r) = aν ~H ν(%) exp(−jνϕ) (5.49b)

beschrieben. Darin sind ~E und ~H die transversalen Modenfunktionen des gekrümmten
Schichtwellenleiters. Die resultierenden Gesamtfeldstärken berechnen sich aus den Integra-
len über (5.49).

Quasigeführte Moden

Im kontinuierlichen Modenspektrum existieren einige Lösungen, deren Felder sich auf den
Wellenleiterkern konzentrieren. Dies ist der Fall, wenn gilt

A4ν = 0. (5.50)

Aus der Anschauung lässt sich diese Gleichung wie folgt herleiten. Die Neumannfunktion
Nν ist im Koordinatenursprung singulär und nimmt auch in der Ebene % = R+ noch große
negative Werte an, vgl. Abbildung A.4. Dahingegen nimmt die Besselfunktion Jν in diesem
Bereich nur sehr kleine Werte an. Mit A4ν = 0 folgt damit aus den Randbedingungen in
% = R+, dass der Betrag von A5ν aufgrund des großen negativen Funktionswertes der
Neumannfunktion ebenfalls nur sehr kleine Werte annehmen kann. Da der Betrag der
Neumannfunktion mit wachsendem Argument schnell abnimmt, sind die Feldanteile im
Außenbereich minimal.

Nichtorthogonalität und Leistung

Das Konzept der quasigeführten Moden ist essentiell wichtig für die noch folgenden Be-
trachtungen dieser Arbeit. Die Beschreibungen aus [31] zur Nichtorthogonalität der Moden
des gekrümmten Schichtwellenleiters liefern in diesem Rahmen wichtige Erkenntnisse und
werden daher im Folgenden wiedergegeben.
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Zur weiteren Charakterisierung des Modenspektrums empfiehlt sich eine Normierung der
Feldstärken mit

aν =

√
2ωµ

A2
4ν + A2

5ν

. (5.51)

Die Moden des gekrümmten Schichtwellenleiters sind nichtorthogonal, d.h. es gilt

P
′
νξ =

P νξ

∆z
=

1

4

∫ ∞

0

(
~Eν × ~H

∗
ξ + ~E

∗
ξ × ~H ν

)
ϕ
d% 6= 0 für ν 6= ξ. (5.52)

Der im Vergleich zur Definition der Orthogonalität normaler Moden (2.63) abweichende
Ansatz wird gewählt, da er im Folgenden zu einer symmetrischeren Darstellung führt. Das
Integral in (5.52) kann analytisch gelöst werden [51], mit dem Ergebnis

P
′
νξ =

1

π(ν − ξ) =





(A4ν + jA5ν)√
A2

4ν + A2
5ν

(A4ξ − jA5ξ)√
A2

4ξ + A2
5ξ

ej
π
2

(ν−ξ)



 . (5.53)

Mit der Abkürzung βν = A4ν

A5ν
erhält man nach Bildung des Imaginärteils den Ausdruck

P
′
νξ =

1

π(ν − ξ)


 (βξ − βν)√

(1 + β2
ν)(1 + β2

ξ )
cos(π

2
(ν − ξ)) +

1 + βνβξ√
(1 + β2

ν)(1 + β2
ξ )

sin(π
2
(ν − ξ))


 .

(5.54)
Dieser Ausdruck besitzt keine Singularitäten für ν = ξ. Vielmehr gilt

P
′
νν = P

′
νξ

∣∣∣
ν→ξ

=
1

π

(
lim
ν→ξ

sin(π
2
(ν − ξ))

(ν − ξ) − 1

(1 + β2
ν)

lim
ν→ξ

(βν − βξ)
(ν − ξ)

)
=

1

2
− 1

π(1 + β2
ν)

dβν
dν

.

(5.55)
Werden nur quasigeführter Moden betrachtet gilt βν = βξ = 0 und somit

P
′
νξ =

sin(π
2
(ν − ξ))

π(ν − ξ) falls ν 6= ξ, (5.56)

sowie
P
′
νν =

1

2
− 1

π

dβν
dν

. (5.57)

Es wird sich noch zeigen, dass im Fall quasigeführter Moden dβν
dν sehr große negative Werte

annimmt. Folglich gilt
P
′
νν � P

′
νξ (5.58)

und die zugehörigen Moden können auch als quasiorthogonal angesehen werden, obwohl
das Modenspektrum insgesamt nichtorthogonal ist. Der Ausdruck P ′νν entspricht der im
Mode geführten Leistung. Werden die Feldstärken an Stelle der Normierung (5.51) bzgl.
der Leistung normiert, lässt sich aus (5.58) das Kriterium

1� P
′
νξ√

P
′
ννP

′
ξξ

, (5.59)

ableiten, welches zur Definition einer Quasi-Orthogonalität geeignet ist.
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Beschreibung physikalischer Felder

Wird der Übergang von einem geraden Wellenleiter in eine Krümmung betrachtet, Abbil-
dung 5.5, müssen die tangentialen Feldgrößen in der Übergangsebene stetig sein. Sofern
die Wellenleiterelemente identische Materialparameter besitzen, können Reflexionsverlus-
te vernachlässigt werden, da diese erst bei sehr starken Krümmungen zu erwarten sind.
Es reicht dann aus, die Randbedingung nur einer Feldstärke explizit zu berücksichtigen.
Befindet sich die Übergangsebene in ϕ = 0, folgt für die tangentiale elektrische Feldstärke

∑

µ

C(l)
µ
~E (l)

tµ =

∫

ν

aν ~E tν dν. (5.60)

Darin beschreibt die linksseitige Summation das Feld im geraden Wellenleiter. Eine voll-
kommen analoge Gleichung erhält man für die magnetische Feldstärke. Im Fall eines ortho-
gonalen Modenspektrums lässt sich aus den Randbedingungen eine Gleichung der Form

∑

µ

C(l)
µ

∫ (
~E (l)

tµ × ~H
∗
tξ + ~E

∗
tξ × ~H(l)

tµ

)
ϕ
d% =

∫

ν

aν

∫ (
~E tν × ~H

∗
tξ + ~E

∗
tξ × ~H tν

)
ϕ
d% dν

(5.61)
ableiten, wobei die rechtsseitige Integration nach ν nur einen Beitrag für ν = ξ liefern wür-
de. Im Fall des nichtorthogonalen Modenspektrums verbleibt jedoch die Integralgleichung:

∑

µ

C(l)
µ Iµξ =

∫

ν

aνP
′
νξ dν (5.62)

mit
Iµξ =

1

4

∫ (
~E (l)

tµ × ~H
∗
tξ + ~E

∗
tξ × ~H(l)

tµ

)
ϕ
d%. (5.63)

Bei den Integralgleichungen (5.60) und (5.62) handelt es sich um Fredholmsche Integral-
gleichungen erster Art, die auch numerisch nur sehr schwer handhabbar sind. Es lassen sich
jedoch Näherungslösungen finden, sofern angenommen werden kann, dass der Beitrag der
quasigeführten Moden im Modenspektrum dominiert. In diesem Fall ist eine Linearisierung
gemäß

βν = −k ν̄ mit ν̄ = ν − ν0 und − k =
dβν
dν

∣∣∣∣
ν0

. (5.64)

möglich. Darin kennzeichnet ν0 einen quasigeführten Mode. Im Rahmen dieser Näherung
wird aus (5.54):

P
′
νξ =

1

π


 k√(

1+k2 ν̄2
)(

1+k2 ξ̄2
) cos(π

2
(ν̄−ξ̄)) +

1+k2 ν̄ξ̄√(
1+k2 ν̄2

)(
1+k2 ξ̄2

)
sin(π

2
(ν̄−ξ̄))
ν̄−ξ̄


 .

(5.65)
Verwendet man diesen Integralkern in der Integralgleichung (5.62), lässt sich mit Hilfe des
Residuensatzes zeigen, dass die Wurzel einer Lorentzverteilung (

√
Lorentz-Verteilung)

aν =
1√

1 + k2ν̄2
mit k > 0 (5.66)
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Eigenlösung der Integralgleichung ist. Es gilt also
∫

ν

1√
1 + k2ν̄2

P
′
νξ dν =

1√
1 + k2ξ̄2

. (5.67)

Die Bedingung k > 0 ist im Übrigen für alle quasigeführten Moden, anders als in [31]
angemerkt, immer erfüllt.

Abschließend soll nun das Übertragungsverhalten des gekrümmtenWellenleiters untersucht
werden. Dazu wird die Vorstellung der Ankopplung durch einen geraden Wellenleiter für
den Moment fallen gelassen7 und es wird angenommen, dass die Feldverteilung im Wellen-
leiter durch eine

√
Lorentz-Verteilung bestimmt sei. Es gilt

~E(%,ϕ) =

∫

ν

aν ~E tν(%) exp(−jνϕ) dν mit aν =
1√

1 + k2ν̄2
. (5.68)

Ein analoger Ausdruck lässt sich für die magnetische Feldstärke formulieren. Zu beachten
ist, dass die Feldgrößen gemäß (5.51) normiert sind. Die Fragestellung ist nun, wie stark das
durch ~E(%,0) gegebene Eingangsfeld nach Durchlaufen einer Krümmung um den Winkel ϕ
verändert wird. Dazu wird mit Hilfe des folgenden Skalarprodukts der Überlapp zwischen
Eingangsfeld und Ausgangsfeld bestimmt:

B(ϕ) =
1

4

∫ ∞

0

(
~E(%,0)× ~H

∗
(%,ϕ) + ~E

∗
(%,ϕ)× ~H(%,0)

)
ϕ
d%. (5.69)

Es folgt mit (5.68) und (5.52)

B(ϕ) =

∫

ξ

a∗ξ

(∫

ν

aνP
′
νξ dν

)
exp(jξϕ) dξ (5.70)

und mit (5.67) schließlich

B(ϕ) =

∫

ξ

1

1 + k2ξ̄2
exp(jξϕ) dξ. (5.71)

Sofern die Integration von der reellen Achse auf die geschlossene Kontur der oberen Halb-
ebene ausgedehnt wird, lässt sich das Integral mit Hilfe des Residuensatzes lösen:

B(ϕ)

B(0)
=

1

πk

∮

obere
Halbebene

exp(jξϕ)

(ξ̄ − j/k)(ξ̄ + j/k)
dξ = exp(−ϕ/k) (5.72)

mit
B(0) =

∫

ξ

1

1 + k2ξ̄2
dξ =

π

k
. (5.73)

Es zeigt sich also, dass im Fall k � ϕ die initiale Feldverteilung (5.68) auch nach Durch-
laufen der Krümmung in sehr guter Näherung erhalten bleibt. Sofern nun sicher gestellt
7An dieser Stelle unterscheidet sich die Interpretation etwas von [31], nicht jedoch die mathematische
Beschreibung.
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ist, dass sich beim Übergang vom geraden Wellenleiter Feldverteilungen einstellen, die sich
durch eine oder mehrere

√
Lorentz-Verteilungen beschreiben lassen, dann liegt eine Feld-

lösung vor, die die Wellenausbreitung im gekrümmten Schichtwellenleiter in sehr guter
Näherung korrekt beschreibt.

Das Arbeiten mit einem kontinuierlichen Spektrum ist jedoch nach wie vor dahingehend
anspruchsvoll, als dass für jeden Punkt in der Übergangsschnittstelle ein Integral gelöst
werden muss. Für große k ist die

√
Lorentz-Verteilung sehr schmalbandig und es scheint

gerechtfertigt, die Breite des Spektrums als hinreichend klein anzunehmen, so dass explizit
nur das Feld des diskreten quasigeführten Mode zu berücksichtigten ist. Für kleine k stellt
diese Vorgehensweise nur eine grobe Näherung dar. Verwendet man jedoch den Wert α = 1

k

als Dämpfungskonstante des quasigeführten Modes, ergeben sich für kleine k schnell sehr
große Dämpfungswerte. Bevor diese Argumentation im Kapitel 5.2.5 fortgesetzt wird, soll
zunächst der Vergleich zum Leckwellen-Ansatz gezogen werden.

5.2.4. Vergleich der Ansätze

Mit den Lösungen des Leckwellen-Ansatzes und den quasigeführten Moden des exakten
Ansatzes existieren zwei unterschiedliche Feldlösungen, von denen erwartet wird, dass sie
die Wellenausbreitung im gekrümmtem Schichtwellenleiter für nicht allzu starke Krümmun-
gen hinreichend genau beschreiben. Sofern dies der Fall ist, müssen die Ansätze entweder
zumindest näherungsweise übereinstimmen oder auseinander hervorgehen. Zur Erinnerung
sei erwähnt, dass die Eigenwerte der quasigeführten Moden des exakten Ansatzes aus

A4ν = 0 (5.74)

hervorgehen, die Moden des Leckwellen-Ansatzes jedoch aus

A4ν = jA5ν . (5.75)

Darin sind A4ν und A5ν durch (5.47) und (5.48) gegeben. Ein allgemeiner analytischer
Nachweis der Äquivalenz beider Ansätze durch eine Abschätzung der Ausdrücke in den
jeweiligen Eigenwertgleichungen ist unter Umständen möglich, jedoch sehr aufwändig. Da
Implementierungen beider Ansätze vorliegen, bietet sich ein expliziter Vergleich anhand
praktischer Beispiele an. Für nahezu alle Parametersätze dieser Arbeit wurden beide Ei-
genwertgleichungen gelöst und die folgenden Aussagen können daher als allgemein gültig
angenommen werden. Aus Platzgründen werden nur die Ergebnisse für einen Wellenlei-
ter angegeben, der im geraden Fall (R → ∞) sechs Moden führt. Die Parameter lauten:
n1 = 1,57 , n2 = n3 = 1,55 , d = 10 µm, R = 3 mm und λ = 850 nm.

In der Tabelle 5.1 sind die Eigenwerte νe des exakten Ansatzes und der Real- und Imagi-
närteil der komplexen Eigenwerte νl des Leckwellen-Ansatzes aufgeführt. Der Imaginärteil
von νl ist das Dämpfungsmaß der Leckwellen und korrespondiert mit α = 1

k
aus der exak-

ten Rechnung. Die Ergebnisse in Tabelle 5.1 zeigen eine weitestgehende Übereinstimmung
der beiden Ansätze auf. So stimmt für die ersten fünf Moden der Realteil von νl innerhalb
des dargestellten Bereichs mit νe überein und weicht erst für den sechsten Mode leicht
ab. Der Imaginärteil von νl ist für die ersten vier Moden derart klein, dass er zum Einen
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Mode νe <{νl} −α ={νl}
1 34820,05 34820,05 -6,199e-34 –

2 34772,80 34772,80 -6,427e-28 –

3 34720,68 34720,68 -1,284e-21 –

4 34650,55 34650,55 -4,565e-14 –

5 34561,82 34561,82 -2,961e-6 -2,957e-6

6 34460,38 34460,58 -1,308 -1,263

Tabelle 5.1.: Eigenwerte und Dämpfungskonstanten der quasigeführten Moden (νe und α),
sowie der Moden des Leckwellen-Ansatzes (νl).
Es gilt: n1 = 1,57 , n2 = n3 = 1,55 , d = 10 µm, R = 3 mm und λ = 850 nm.

vernachlässigt werden kann und des Weiteren ohnehin nicht mit einem elementaren Se-
kantenverfahren bei doppelter Genauigkeit (∼ 15 Dezimalstellen) aufgelöst werden kann.
Für den fünften Mode stellt sich immer noch ein sehr kleines Dämpfungsmaß ein. Der
sechste Mode wird schließlich so stark gedämpft, dass bei Anregung dieses Modes nach
einer 90◦-Krümmung weniger als 2% der Leistung verbleibt. Die Werte für −α und ={νl}
stimmen dabei in drei (5. Mode) bzw. in zwei (6. Mode) Stellen überein. Dabei zeigt sich,
dass die quasigeführten Moden der exakten Rechnung die Dämpfung immer etwas größer
abschätzen als die Leckwellen.

Wie sich diese Unterschiede auf die Feldgrößen auswirken, ist in Abbildung 5.6 darge-
stellt. Die Feldgrößen sind bezüglich der im Mode geführten Leistung normiert. Skizziert
sind die Graphen der quasigeführten Moden ~E t(%) gemäß (5.49), der Real- und Imaginär-
teil der korrespondierenden Leckwellen sowie im Vergleich dazu der Mode eines geraden
Wellenleiters ~E t(%) gegeben durch (3.14). Wie erwartet sind die Unterschiede zwischen den
Ansätzen gering. Für den fünften Mode liegen die Unterschiede unterhalb der darstellbaren
Genauigkeit. Der Imaginärteil aus dem Leckwellen-Ansatz ist vernachlässigbar klein und
der Überlapp mit dem korrespondierenden Mode des geraden Wellenleiters ist relativ groß.
Merkliche Unterschiede gibt es jedoch beim sechsten Mode, bei dem der Leckwellen-Ansatz
einen deutlichen Imaginärteil ausbildet und sich entsprechend Unterschiede beim Realteil
ergeben. Da beim Leckwellen-Ansatz das Feld im Außenraum durch eine Hankelfunktion
beschrieben wird, ist der Betrag in diesem Fall eine monoton abklingende Funktion, im
Gegensatz zur exakten Rechnung, bei der das Feld im Außenraum durch eine Neumann-
funktion beschrieben wird. Ein Großteil der Leistung wird außerhalb des Kerns geführt
und somit verringert sich die Amplitude im Kern und damit auch der Überlapp mit dem
Mode des geraden Wellenleiters. Insgesamt sind die Unterschiede zwischen den beiden An-
sätzen jedoch in der Regel vernachlässigbar, da signifikante Unterschiede erst auftreten,
wenn die Dämpfungskonstante große Werte annimmt, so dass der Mode nach Durchlaufen
einer hinreichend großen Bogenlänge nahezu keine Leistung mehr führt. Da der Aufwand
zur Bestimmung der quasigeführten Moden nach der exakten Rechnung aufgrund der rein
reellen Eigenwerte deutlich geringer ist als nach dem Leckwellen-Ansatz, ist dieser An-
satz vorzuziehen. Die zur Bestimmung der Dämpfungskonstanten α = 1

k
durchzuführende
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Abbildung 5.6.: Gegenüberstellung der elektrische Feldstärke des 5. und 6. Modes: Quasi-
geführter Moden (QGM), Real- und Imaginärteil des Leckwellen-Ansatzes
(Leck < und Leck =) und die Moden des geraden Wellenleiters (Gerade).
Es gilt: n1 = 1,57, n2 = n3 = 1,55, d = 10 µm, R = 3 mm und λ = 850 nm.
Der Wellenleiterkern ist grau hinterlegt.

Differenziation ist numerisch problemlos möglich.

5.2.5. Rechnung auf Basis quasigeführter Moden

Die vorangegangenen Erläuterungen haben aufgezeigt, dass eine Rechnung unter aus-
schließlicher Verwendung der quasigeführten Moden eine einfache und effektive Methode
zur Beschreibung der Wellenausbreitung im gekrümmten Schichtwellenleiter ist, solange
die Verluste durch Abstrahlung vernachlässigbar sind. Vorausgesetzt wird an dieser Stelle,
dass beim Übergang vom geraden Wellenleiter vornehmlich quasigeführte Moden angeregt
werden. Zunächst soll anhand der Parameter aus Tabelle 5.1 begründet werden, warum die
Annahme eines diskreten Spektrums quasigeführten Moden gerechtfertigt ist. Da der Wert
2/k = 2α die Halbwertsbreite der Lorentz-Verteilung repräsentiert, liegt gemäß Tabelle 5.1
die Halbwertsbreite der ersten fünf Moden im Vergleich zum gegenseitigen Abstand der
Eigenwerte in einem vernachlässigbar kleinen Bereich. Lediglich für den bereits stark ge-
dämpften sechsten Mode stellt sich eine verbreiterte Verteilung ein, die sich jedoch immer
noch stark um den Quasi-Eigenwert konzentriert. Da sich dieses Ergebnis sowohl auf Wel-
lenleiter mit größerem Querschnitt und damit einer größeren Anzahl quasigeführter Moden
als auch auf größere Krümmungsradien und somit weniger quasigeführte Moden übertragen
lässt, erscheint es gerechtfertigt, einen Ansatz mit ausschließlich diskreten quasigeführten
Moden zu wählen. Dieser formuliert sich für die Gewichtsfunktion aν unter Verwendung
der Dirac-Distribution zu

aν =
∑

n

Cn exp(−αnϕ) δ(ν − νn). (5.76)

Darin kennzeichnet Cn die Amplitude, νn den Eigenwert und αn die Dämpfungskonstante
eines quasigeführten Modes. Unter dieser Annahme lässt sich das Feld im gekrümmten
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Wellenleiter durch

~E(%,ϕ) =

∫

ν

aν ~E tν(%) exp(−jνϕ)dν =
∑

n

Cn ~Eνn(%) exp
(
−j(νn−jαn)ϕ

)
(5.77)

beschreiben. Bevor auf dieser Basis die Ankopplung an gerade Wellenleiterelemente gemäß
Abbildung 5.5 untersucht wird, sollen einige in dieser Hinsicht wichtige Eigenschaften des
Spektrums der quasigeführten Moden hervorgehoben werden.

Eigenschaften des Spektrums quasigeführter Moden

Der Abbildung 5.6 kann leicht die irrtümliche Annahme entnommen werden, dass der
Überlapp zwischen einem quasigeführten Mode und dem korrespondierenden Mode eines
geraden Wellenleiters immer dann groß ist, wenn das Dämpfungsmaß α = 1/k hinreichend
kleine Werte annimmt. Dass dies nicht der Fall ist, zeigt exemplarisch Abbildung 5.7a für
den Grundmode eines Wellenleiters der Schichtdicke d = 50 µm bei gleichen Materialpara-
metern wie zuvor. Bei einem Krümmungsradius von R = 3 mm existieren 16 quasigeführte
Moden im gekrümmten Wellenleiter gegenüber 30 Moden im geraden Wellenleiter. Dabei
werden nur die Lösungen der Eigenwertgleichung (5.50) berücksichtigt, deren Feldamplitu-
de im Kern größer ist als im Außenraum, vgl. Abbildung 5.6b. Abbildung 5.7a zeigt einen
relativ geringen Überlapp zwischen den Feldbildern auf. Diese Tendenz ist gerade beim
Grundmode im multimodalen Wellenleiter besonders ausgeprägt. Erst mit sehr großen
Radien gehen die Modenfunktionen der quasigeführten Moden über in das korrespondie-
rende Modenspektrum eines geraden Wellenleiters [31]. Damit werden auch bei schwachen
Krümmungsverlusten stets mehrere quasigeführte Moden angeregt. Zum Vergleich ist in
Abbildung 5.7b der Mode eines Singlemode-Wellenleiters mit gleicher numerischer Apertur
und gleichem Krümmungsradius aufgetragen.
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Abbildung 5.7.: Vergleich der elektrische Feldstärke des jeweils 1. Modes der quasigeführten
Moden (QGM) und der Moden des geraden Wellenleiters (Gerade).
Es gilt: n1 = 1,57, n2 = n3 = 1,55, R = 3 mm und λ = 850 nm.
Der Wellenleiterkern ist grau hinterlegt.
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Der Zusammenhang zum geraden Wellenleiter lässt sich über die Eigenwerte wie folgt her-
stellen. Unter der Annahme, dass die Wegstrecke z im geraden Wellenleiter der Bogenlänge
Rϕ im gekrümmten Wellenleiter entspricht, gilt

exp(−jkzz) ≈ exp(−jkzRϕ) ⇒ ν ≈ kzR. (5.78)

Darin ist kz ein Eigenwert des geraden Wellenleiters. Hierbei handelt es sich insbesondere
für kleine Krümmungsradien nur um eine grobe Abschätzung, aus der jedoch der erwartete
Wertebereich der Eigenwerte ν abgeschätzt werden kann, vgl. (3.4):

k0n2 < kz < k0n1 ⇒ k0n2R
− < ν < k0n1R

+. (5.79)

Diese Abschätzung ist für die Implementierung eines Lösers der Eigenwertgleichungen
(5.37) und (5.50) erforderlich, wobei sich gezeigt hat, dass für den Grundmode vereinzelt
Lösungen mit k0n1R

+ < ν auftreten. Die Eigenwerte sind näherungsweise proportional
zum Krümmungsradius. Da der Eigenwert auch gleichzeitig der Ordnung der Besselfunk-
tionen entspricht, ist ein großer Krümmungsradius problematisch hinsichtlich der Imple-
mentierung eines stabilen Algorithmus, da die Neumannfunktion insbesondere für große
Ordnungen bei kleinem Argument Zahlenbereichsüberläufe provozieren kann, vgl. Abbil-
dung A.4b.

Die Proportionalität der Eigenwerte ν zum Krümmungsradius ist auch mit Blick auf den
Abstand der Eigenwerte zueinander interessant. Betrachtet man zunächst wieder einen
konstanten Krümmungsradius, so stellt sich ab einer bestimmten Schichtdicke eine kon-
stante Anzahl quasigeführter Moden ein, z.B. existieren für R = 3 mm ab einer Schichtdicke
von ca. d = 40 µm stets 16 quasigeführte Moden8. Ebenfalls konstant bleibt der Abstand
der Eigenwerte zueinander. Das Modenspektrum verschiebt sich jedoch mit wachsender
Schichtdicke insgesamt etwas in Richtung größerer Eigenwerte9, wodurch sich die transver-
sale Feldverteilung der Moden ebenfalls leicht in Richtung des äußeren Rands verschiebt.
Dieser Umstand und die Tatsache, dass die Anzahl der quasigeführten Moden nicht zu-
nimmt, führt bei konstantem Krümmungsradius und wachsender Schichtdicke zu stärkeren
Abstrahlungsverlusten. Um die Verluste zu minimieren, muss der Krümmungsradius pro-
portional zur Schichtdicke wachsen. Da die Eigenwerte ebenfalls proportional zum Krüm-
mungsradius wachsen, wird der Abstand der Eigenwerte zueinander größer. Dieser Abstand
ist entscheidend für den Gültigkeitsbereich der (Quasi)-Orthogonalität der quasigeführten
Moden, da die Differenz der Eigenwerte als Argument in der Si-Funktion auftritt, (5.56),
welche den Überlapp zwischen den unterschiedlichen Moden beschreibt. Ein hinreichend
großer Abstand ist Voraussetzung für die Beziehung (5.59), um auch im Fall kleiner k in
guter Näherung erfüllt zu sein. Für das oben genannte Zahlenbeispiel nimmt die minimale
Differenz benachbarter Eigenwerte etwa den Wert 20 an. Das Kriterium (5.59) ist damit
auch für zwei Moden mit sehr kleinem k in guter Näherung erfüllt und die Annahme der
Quasi-Orthogonalität ist damit gerechtfertigt.

8Es wurde eine maximale Schichtdicke d = 85 µm berücksichtigt. Materialparameter wie zuvor n1 = 1,57
und n2 = 1,55.

9Aufgrund dieser Verschiebung ist zu erwarten, dass bei deutlich größeren Schichtdicken die Anzahl der
Eigenwerte wieder leicht zunimmt.
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Ein- und Auskopplung

Da das Spektrum der quasigeführten Moden in keinem Fall ein vollständiges Modenspek-
trum beschreibt, lassen sich unter ausschließlicher Berücksichtigung quasigeführter Moden
die Randbedingungen in den Schnittstellen zu den geraden Wellenleiterelementen im All-
gemeinen nicht erfüllen. Dennoch lassen sich aus den abgeleiteten Gleichungen (5.60) oder
(5.62) die Amplituden der quasigeführten Moden bestimmen10. Aus (5.62) folgt mit (5.76)
unmittelbar ∑

µ

C(l)
µ Iµξ =

∑

ν

C(b)
ν P

′(b)
νξ . (5.80)

Darin kennzeichnen ν und ξ nun ausschließlich quasigeführte Moden, so dass der Index n
aus (5.76) nicht mehr dargestellt wird. Der umklammerte Index b kennzeichnet den Mode
des gekrümmten Wellenleiters analog zu den Indices l und r für die geraden Ein- und
Auskoppelwellenleiter. Unter Annahme der Quasi-Orthogonalität (5.59) folgt aus (5.80)

C(b)
ν ≈

1

P
′(b)
νν

∑

µ

C(l)
µ Iµν (5.81)

und somit ein expliziter Ausdruck zur Berechnung der Amplituden C(b)
ν . Einen analogen,

aber hinsichtlich der Implementierung effizienteren Ausdruck erhält man aus (5.60)

C(b)
ν ≈

1

2P
′(b)
νν

∞∫

0

[(∑

µ

C(l)
µ
~E (l)

tµ

)
× ~H tν

]

ϕ

d%. (5.82)

Hier wird explizit nur die Randbedingung der elektrischen Feldstärke berücksichtigt. Um
die Anzahl der Integrationen zu reduzieren, wird die Summation über die Moden des
geraden Wellenleiters bereits im Integranden durchgeführt.

Analog ergibt sich mit der elektrischen Feldstärke (5.77) nach Durchlaufen einer Krüm-
mung um den Winkel ϕ0 für den erneuten Übergang in einen geraden Wellenleiter

C(r)
µ ≈ 1

2P
′(r)
µ

∞∫

0

[(∑

ν

C(b)
ν exp

(
−j(ν−jαν)ϕ0

)
~E tν

)
× ~H(r)

tµ

]

ϕ

d%. (5.83)

Darin ist P ′(r)µ die normierte Leistung pro Mode des geraden Wellenleiters, definiert durch
(3.23), bezogen auf einen Längenabschnitt ∆z. Die im Vergleich zu dem im Kapitel 3.1.3
angesetzten Koordinatensystem erforderliche Koordinatentransformation zur Beschreibung
der Felder im Ein- und Auskoppelwellenleiter wird im Übrigen implizit vorausgesetzt.

Gänzlich unberücksichtigt blieb bislang die Frage, ob die Felddarstellung auf Basis quasi-
geführter Moden dahingehend hinreichend ist, dass die Anbindung an gerade Wellenleiter
tatsächlich korrekt beschrieben wird, siehe Abbildung 5.5. Unabhängig von möglichen Ver-
lusten durch Abstrahlung gilt es, ausgehend vom einfallenden Feld beschrieben durch ge-
führte Moden des Einkoppelwellenleiters, die Anregung der geführten Moden des geraden
10Siehe auch Kapitel 4.5.1.
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Auskoppelwellenleiters zu bestimmen. D.h. in den Beziehungen (5.82) und (5.83) werden
nur geführte Moden des geraden Wellenleiters verwendet. Diese Vorgehensweise wird im
Folgenden als QGM-Methode (Quasi-Geführte-Moden-Methode) bezeichnet.

Zur Validierung wird die Wellenausbreitung in zwei Wellenleitern mit unterschiedlichen
Krümmungsradien modelliert und mit den Ergebnissen einer numerischen Simulation ver-
glichen. Einmalig abweichend vom bisherigen Standard beträgt die Wellenlänge λ = 1,55 µm
und die Kernbrechzahl n1 = 1,1. Die Schichtdicke der Wellenleiter ist gleich d = 20 µm
und die Mantelbrechzahlen sind mit n2 = n3 = 1,0 die des freien Raums. Die Parameter
verstehen sich als akademisches Beispiel und wurden so gewählt, dass mit den Krümmungs-
radien R = 250 µm und R = 125 µm eine numerische Simulation in einem angemessenem
Zeitraum möglich ist. Diese Simulationen wurden mit Hilfe der Software CST MICRO-
WAVE STUDIO® durchgeführt11. Die Rechenzeiten sind systemabhängig und bewegen
sich für R = 250 µm in der Größenordnung von mehreren zehn Stunden12. Dagegen sind
die Rechenzeiten der wellentheoretischen Approximation auf Basis quasigeführter Moden
vernachlässigbar klein. Die numerische Simulation erfordert darüber hinaus mehrere zehn
Gigabyte Arbeitsspeicher. Des Weiteren wurden die Krümmungsradien dahingehend ge-
wählt, dass im ersten Fall nahezu keine Abstrahlung auftritt und im zweiten Fall bereits
ein Großteil der eingehenden Leistung abgestrahlt wird. Angeregt wird im geraden Ein-
koppelwellenleiter, der 12 geführte Moden besitzt, nur der Grundmode. Im gekrümmten
Wellenleiter existieren 10 bzw. 6 quasigeführte Moden, wobei der jeweils letzte Mode nach
einer 90◦-Krümmung bereits fast vollständig abgedämpft wird.

Abbildung 5.8 zeigt die Simulationsergebnisse der QGM-Methode in Form des Betrags der
elektrischen Feldstärke in der Einkoppelebene ϕ = 0 und in der Auskoppelebene ϕ = π/2.
Zur Kontrolle der Randbedingungen ist jeweils das Feld im geraden und im gekrümmten
Wellenleiter abgebildet. Zusätzlich ist für die Auskoppelebene das Feldergebnis der nume-
rischen Simulation dargestellt. Abbildung 5.8a verdeutlicht, dass im Fall eines hinreichend
großen Krümmungsradius die Randbedingungen in ϕ = 0 in guter Näherung erfüllt sind.
Im direkten Vergleich dazu zeigt Abbildung 5.8c, dass schon bei der Beschreibung der Ein-
kopplung in den gekrümmten Wellenleiter gravierende Abweichungen auftreten können. Es
sei jedoch betont, dass diese Unterschiede in der Feldverteilung noch kein K.O.-Kriterium
für die QGM-Methode bedeuten, denn diese nimmt an, dass die Leistung, die nicht in
quasigeführte Moden eingekoppelt wird, während des Durchlaufs der Krümmung abge-
strahlt wird. Dass diese Annahme nicht unbegründet ist, zeigt Abbildung 5.8d, in der
das Feld in der Auskoppelebene dargestellt ist. Der Überlapp zwischen den Feldlösungen
der QGM-Methode im gekrümmten Wellenleiter und im geraden Auskoppelwellenleiter ist
deutlich größer. Merkliche Abweichungen gibt es nur im Bereich außerhalb des Wellen-
leiterkerns. Allerdings existieren noch deutliche Unterschiede im Vergleich zum Ergebnis
der numerischen Simulation. Diese betreffen die lokalen Maxima innerhalb und außerhalb

11Die Simulationen wurden in Zusammenarbeit mit Herrn Dipl.-Ing. Bastian Bandlow durchgeführt. Ver-
wendet wurde CST MICROWAVE STUDIO® in der Version MWS2009. Simulationsmethode war die
Finite Integration im Zeitbereich. Bei einer minimalen Auflösung von 20 Gitterlinien pro Wellenlänge
resultierten für R = 250 µm insgesamt 8053×8053×2 Gitterpunkte. Für die seitliche Berandung wurde
ein offener Rand (PML) gewählt.

12Diese Angabe bezieht sich auf Rechenserver mit z.B. 2×2,4GHz Prozessoren und 128GB Arbeitsspei-
cher.
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Abbildung 5.8.: Betrag der elektrischen Feldstärke in den Ebenen ϕ = 0 und ϕ = π/2.
Zur Validierung der QGM-Methode wird durch den oberen Index (−/+)
das Feld vor und hinter der Grenzschicht unterschieden. Für ϕ = π/2
ist zusätzlich das Simulationsergebnis aus CST MICROWAVE STUDIO®

abgebildet. Der Wellenleiterkern ist grau hinterlegt. Einmalig abweichend
gilt: λ = 1,55 µm, n1 = 1,1 sowie n2 = n3 = 1,0 und d = 20 µm.

des Wellenleiterkerns. Abbildung 5.8b zeigt dagegen, dass im Fall eines hinreichend großen
Krümmungsradius auch die Ausgangsfeldverteilungen in guter Näherung übereinstimmen.

Um die Abweichungen in Abbildung 5.8d zu erklären, wird die Feldstärke im Wellenleiter
explizit betrachtet. Abbildung 5.9 zeigt die Resultate der numerischen Simulation. Die Er-
gebnisse in Abbildung 5.9a für R = 250 µm zeigen, dass nahezu keine Leistung abgestrahlt
wird. Die dargestellte Feldverteilung ist im Rahmen der darstellbaren Genauigkeit identisch
mit der Feldverteilung der QGM-Methode. Gänzlich anders verhält es sich für R = 125 µm,
Abbildung 5.9b. Vornehmlich an zwei Stellen kommt es zur Abstrahlung vom Wellenlei-
terkern. Zunächst wird nach einem Winkel von ca. ϕ = 30◦ deutlich Leistung abgestrahlt,
danach erst wieder kurz vor dem Ende der 90◦-Krümmung. Genau diese Abstrahlverluste
verfälschen das Feldbild am Ende der Krümmung im Kontext der QGM-Methode dahin-
gehend, als dass Feldanteile enthalten sind, die in keinem Fall die geführten Moden des
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Abbildung 5.9.: Betrag der Elektrischen Feldstärke im gekrümmten Schichtwellenleiter bei
Anregung durch den Grundmode eines geraden Wellenleiters. Simulations-
ergebnisse aus CST MICROWAVE STUDIO®. Einmalig abweichend gilt:
λ = 1,55 µm, n1 = 1,1 sowie n2 = n3 = 1,0 und d = 20 µm.
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geraden Wellenleiters anregen können. Somit erklären sich die Abweichungen zwischen den
Ergebnissen der QGM-Methode und der numerischen Simulation in Abbildung 5.8d.

Für eine Verifikation der QGM-Methode hinsichtlich der korrekten Beschreibung des Dämp-
fungsverhaltens, hervorgerufen durch Abstrahlverluste, sind sicherlich weitere Simulationen
nötig. Die gezeigten Ergebnisse sind jedoch bereits gute Indizien, die für die Anwendbar-
keit der QGM-Methode sprechen. Es sei noch einmal betont, dass mit quasigeführten
Moden in keinem Fall eine Abstrahlung explizit beschrieben werden kann. Das heißt im
Umkehrschluss, dass die Wellenleiterkrümmung einen hinreichend großen Winkel einschlie-
ßen sollte, damit sichergestellt ist, dass Wellenanteile, die nicht den quasigeführten Moden
zuzuordnen sind, am Wellenleiterende keine geführten Moden des geraden Wellenleiters
anregen können. Im Folgenden werden daher ausschließlich 90◦-Krümmungen betrachtet.

5.2.6. Ergebnisse für multimodale Wellenleiter

Die inhomogene Verbindung zweier gerader Wellenleiter sorgt in der Regel für eine Umver-
teilung der Leistung im Modenspektrum. Ein Teil der ursprünglich geführten Leistung wird
zumeist auch in das Spektrum der Strahlungsmoden gekoppelt und vom Wellenleiterkern
abgestrahlt. Diese Leistungsanteile stellen bezogen auf das Übertragungssystem Verluste
dar, die es zu minimieren gilt. Bezogen auf die hier betrachteten zirkularen Krümmungen
existiert gewöhnlich ein minimaler Krümmungsradius, ab dem erhöhte Verluste zu erwar-
ten sind. Im Folgenden wird das Dämpfungsverhalten um 90◦ gekrümmter Wellenleiter in
Abhängigkeit des Krümmungsradius untersucht. Die Wellenlänge ist nun wieder konstant
gleich λ = 850 nm und für die Brechzahlen gilt wie zuvor n1 = 1,57 und n2 = n3 = 1,55.

Abbildung 5.10 zeigt Ergebnisse für unterschiedliche Konfigurationen. Diese unterscheiden
sich in der Schichtdicke d des Wellenleiters, in der Länge xp des geraden Wellenleiters
vor der Krümmung und in der Wahl der Anregung. Das Verhältnis zwischen Schichtdicke
und Strahldurchmesser des anregenden Gaußstrahl ist stets gleich d/b = 1,5, dabei wird
der Einfallswinkel des Gaußstrahls variiert. Die aufgetragenen Graphen zeigen jeweils die
Leistung PA, die im geraden Ausgangswellenleiter geführt wird, bei auf eins normierter
Eingangsleistung. Abbildung 5.10a berücksichtigt fünf unterschiedliche Einfallswinkel, wo-
bei nun zwischen positiven und negativen Winkeln unterschieden wird. Die Schichtdicke
ist zunächst gleich d = 75 µm und es gilt xp = 0, d.h. der Gaußstrahl strahlt direkt in die
Krümmung. Es ist daher unmittelbar ersichtlich, dass sich gravierende Unterschiede für
unterschiedliche Vorzeichen des Einfallswinkels einstellen.

Es mag überraschen, dass sich für Ausgangsleistungen im Bereich PA > 0,5 niedrigere
Dämpfungswerte einstellen, wenn der Gaußstrahl entgegen dem Verlauf der Krümmung im
mathematisch negativen Sinn verdreht wird (ϑ < 0). Durch einen negativen Einfallswinkel
verschieben sich jedoch die Feldanteile etwas zum äußeren Rand bei % = R+ und in diesem
Fall ist damit der Überlapp mit den quasi-geführten Moden größer.

Neben dem Vorzeichen ist der Betrag des Einfallswinkels von entscheidender Bedeutung.
Bei großem Einfallswinkel sind auch für große Krümmungsradien signifikanten Dämfungs-
werte vorhanden. Obwohl in diesem Fall kein gerader Wellenleiter vorgeschaltet ist, emp-
fiehlt es sich, die Anregung des Modenspektrums des geraden Wellenleiters zu rekapitu-
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Abbildung 5.10.: Normierte Ausgangsleistung nach Durchlaufen einer 90◦-Krümmung. Der
anregende Gaußstrahl fällt meridional (h = 0) unter demWinkel ϑ ein. In
Abbildung (b) ist dem gekrümmten Wellenleiter ein gerader Wellenleiter
der Länge xp vorgeschaltet. Es gilt n1 = 1,57 und n2 = n3 = 1,55.

lieren, vgl. Abbildung 4.12a. Im Fall ϑ = 10◦ wird nahezu das gesamte Spektrum der
geführten Moden angeregt. Insbesondere die Leistungsanteile in den Moden nahe am Cut-
Off werden bereits bei relativ großen Krümmungsradien abgestrahlt.

An dieser Stelle muss betont werden, dass sich die Ergebnisse auf eine planare Appro-
ximation beziehen. Die aufgezeigten Effekte sind zwar auch im realen Wellenleiter mit
zweidimensionalem Querschnitt zu erwarten, jedoch nicht in der ausgeprägten Form. Die-
se Aussage bezieht sich insbesondere auf die Ergebnisse in Abbildung 5.10b. Hier werden
bei senkrechtem meridionalem Einfall des Gaußstrahls drei unterschiedlich lange gerade
Wellenleiter vorgeschaltet. Zur Interpretation empfiehlt sich ein Blick zurück auf Abbil-
dung 5.1, welche den Leistungfluss im geraden Wellenleiter zeigt13. In Abhängigkeit der
Länge des geraden Wellenleiterstücks stellen sich unterschiedliche Feldverteilungen am An-
fang der Krümmung ein. Je nachdem ob sich ein, zwei oder drei lokale Maxima ausbilden,

13Die Schichtdicke ist in Abbildung 5.1 etwas kleiner. Daher verschieben sich die Werte für xp etwas.
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stellen sich die gezeigten Verläufe in der Ausgangsleistung ein.

Mit den Abbildungen 5.10c und 5.10d soll das Verhalten für kleiner werdende Schicht-
dicken d verdeutlicht werden. Bekanntermaßen nimmt die Dämpfung mit kleiner wer-
dender Schichtdicke bei konstantem Krümmungsradius ab. Beim Vergleich der Graphen
muss beachtet werden, dass die Anregung durch den Gaußstrahl nicht vollkommen analog
zur Schichtdicke skaliert wird. Abbildung 5.10c zeigt Ergebnisse für den Fall der idealen
Einkopplung des Gaußstrahls, bei dem im geraden Wellenleiter vornehmlich Moden mit
großer effektiver Brechzahl angeregt werden. Dagegen lassen sich die Ergebnisse in Abbil-
dung 5.10d mit ϑ = 10◦ fast schon als ungünstigster Fall bezeichnen. Hier macht sich mit
kleiner werdender Schichtdicke die gleichzeitig abnehmende Anzahl geführter Moden deut-
lich bemerkbar. Für d = 15 µm existieren nur noch 9 geführte Moden. Die leichten Stufen in
den Graphen korrespondieren mit den einzelnen Moden dahingehend, dass mit jeder Stufe
ein Mode durch die Krümmung abgedämpft wird. Eine geringe Anzahl geführter Moden
führt dazu, dass auch bei nicht idealer Einkopplung erst ab einem vergleichsweise kleinen
Krümmungsradius eine signifikante Dämpfung eintritt. Für d = 15 µm liegt dieser Radius
bei etwa 11mm. Es sei jedoch betont, dass sich im Allgemeinen die Gesamtdämpfung nicht
aus der Dämpfung einzelner Moden ableiten lässt. Dennoch lässt die hohe Dämpfung eines
einzelnen Modes auch eine erhöhte Dämpfung der Gesamtwelle vermuten.

Neben der Ausgangsleistung ist die Leistungsverteilung im Modenspektrum des Ausgangs-
wellenleiters von entscheidender Bedeutung. Würde sich die Breite des angeregten Mo-
denspektrums durch eine Wellenleiterkrümmung vergrößern, könnte die Kaskadierung von
Wellenleiterelementen beispielsweise in Form von S-Bögen eine erhöhte Dämpfung verur-
sachen. Natürlich würde sich auch die Modendispersion stärker auswirken. Abbildung 5.11
zeigt das angeregten Modenspektrum in Form der akkumulierten Leistung PΞ definiert
durch (4.29) exemplarisch für ausgewählte Parametersätze. Zur Erinnerung daran, dass
Krümmungsverluste nicht isoliert von der initialen Anregung analysiert werden sollten,
berücksichtigt PΞ auch Reflexionsverluste bei der Einkopplung, d.h. die Graphen errei-
chen nicht den Wert eins. Die Parameter der Abbildungen 5.11a bis 5.11c korrespondieren
mit Abbildung 5.10a. Die Ergebnisse für ϑ = −5◦ verdeutlichen, dass sich das angeregte
Spektrum in diesem Fall nicht verbreitert, solange die hervorgerufene Dämpfung vernach-
lässigbar ist. Eine Leistungsüberkopplung findet lediglich zwischen benachbarten Moden
statt. Für ϑ = 0 werden initial nur sehr wenige Moden angeregt, so dass es zu einer
leichten Verbreiterung des angeregten Spektrums kommt. Diese Verbreiterung auf eine ge-
wisse Mindestbreite ist immer zu beobachten, insbesondere auch wenn ursprünglich nur
der Grundmode angeregt wurde. Bei großem Einfallswinkel ϑ = −10◦ wird ohnehin das
gesamte Modenspektrum angeregt und solange keine signifikanten Verluste auftreten, än-
dert sich dies im Wesentlichen nicht. Treten Verluste durch Abstrahlung auf, zeigt sich
jedoch, dass insbesondere die Moden nahe am Cut-Off keine Leistung mehr führen. Da die
Abstände zwischen den effektiven Brechzahlen benachbarter Moden nicht konstant sind,
verdeutlicht Abbildung 5.12 den Zusammenhang zwischen der Modenzahl ν und der ef-
fektiven Brechzahl neff. Insbesondere für den abschließend betrachteten Wellenleiter der
Dicke d = 15 µm muss beachtet werden, dass sich die Graphen aus einer Interpolation
durch lediglich 9 Punkte zusammensetzen. Entsprechend erreichen die Graphen auch nicht
den Endpunkt bei n2 = 1,55. Abbildung 5.11d zeigt exemplarisch, dass auch im Wellen-
leiter mit wenigen geführten Moden keine wesentliche Leistungsüberkopplung zu Moden
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Abbildung 5.11.: Anregung des Modenspektrums nach Durchlaufen einer 90◦-Krümmung:
Akkumulierte Leistung PΞ für unterschiedliche Krümmungsradien R.
Diese Darstellung berücksichtigt auch Reflexionsverluste bei der Einkopp-
lung. Es gilt xp = 0. Zur Erinnerung: Der asymptotische Divergenzwinkel
des Gaußstrahls ist gleich Θa0 = 5◦.

höherer Ordnung stattfindet, vorausgesetzt die Dämpfung ist hinreichend klein.

Abbildung 5.12: Die Modenzahl ν des ge-
raden Wellenleiters aufgetragen über die
effektive Brechzahl neff für unterschiedli-
che Schichtdicken d. Neben der Anzahl
der Moden wird insbesondere der Ab-
stand zwischen den effektiven Brechzah-
len hervorgehoben.
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5.3. Vergleich zur Strahlenoptik

Der Vergleich zur Strahlenoptik hinsichtlich der Einkopplung optischer Wellen in einen di-
elektrischen Wellenleiter hat zunächst eine grundsätzliche Eignung strahlenoptischer Ver-
fahren aufgezeigt. Jedoch erfordert die Modellierung der Einkopplung keine explizite Be-
schreibung der Wellenausbreitung vor dem Wellenleiter, da das Poyntingvektormodell des
Gaußstrahls aus der Feldverteilung in der Ebene der Wellenleiterstirnfläche abgeleitet wird.
Wie bereits eingangs im Kapitel 2.4.3 erläutert, stellt sich ein einheitliches Poyntingvektor-
modell erst in hinreichender Entfernung von der Strahltaille ein, wenn der Divergenzwinkel
des Gaußstrahls näherungsweise konstant ist. Die Beschreibung der Wellenausbreitung im
dielektrischen Wellenleiter erfordert grundsätzlich Kenntnis über die Phase der Moden, vgl.
Kapitel 5.1.1, welche in einer strahlenoptischen Modellierung gänzlich verloren geht. Die
aus den Phasenbeziehungen resultierenden Interferenzmuster in der Intensitätsverteilung
im längshomogenen Wellenleiter sind jedoch unerheblich, solange am Wellenleiterende ein
Detektor mit hinreichend großer geometrischer Apertur aufwartet. Schließt sich jedoch bei-
spielsweise eine Krümmung an14, kann die Feldverteilung am Anfang der Krümmung wie
gezeigt deutlichen Einfluss auf den Leistungsfluss im bzw. auf die Abstrahlung vom Wel-
lenleiter nehmen. Ob und wie ein strahlenoptisches Modell die zuvor gezeigten Ergebnisse
der wellentheoretischen Simulationen reproduzieren kann, soll im Folgenden untersucht
werden.

5.3.1. Strahlverfolgung im Schichtwellenleiter

Im abschnittsweise homogenen Raum werden die Strahltrajektorien stückweise durch Ge-
raden beschrieben. Für die vergleichsweise einfachen Geometrien dieser Arbeit lassen sich
daher effiziente analytische Verfahren ableiten, die im Weiteren kurz vorgestellt werden
[6, 67]. Die Erläuterungen dieses Kapitels ergänzen das im Kapitel 2.4.3 vorgestellte Poyn-
tingvektormodell der Quelle sowie die im Kapitel 4.4.1 beschriebene strahlenoptische Mo-
dellierung der Einkopplung in den Wellenleiter. Für die strahlenoptische Analyse eines
(idealen) vollständigen Systems fehlt damit nur noch ein Modell eines Detektors, dass je-
doch elementar realisierbar ist, sofern nur die empfangene Gesamtleistung bestimmt werden
soll. Der Detektor versteht sich in dieser Arbeit als einfacher Summierer der Leistung aller
eingefallenen Strahlen. Es muss jedoch beachtet werden, dass die Strahlen eines transienten
Modells nur eine begrenzte Gültigkeitsdauer besitzen.

Gerade Wellenleiterelemente

Die Strahlausbreitung im homogenen Schichtwellenleiter ist elementar modellierbar, da sich
der Winkel aller Strahlen zur Wellenleiterberandung nicht verändert, siehe Abbildung 5.13.
Es wird in der folgenden Beschreibung nur der Fall eines positiven Einfallswinkels Θ explizit

14Auch beliebig andere Abweichungen von der homogenen Wellenleitergeometrie sind denkbar, beispiels-
weise Störstellen, hervorgerufen durch Material- oder Fertigungsfehler.
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Abbildung 5.13.: Strahlpfad im homogenen Schichtwellenleiter.

betrachtet und es wird angenommen, dass im Wellenleiter der Länge L mindestens eine
Reflexion an der Wellenleiterberandung auftritt.

Der Winkel δ im Wellenleiter ergibt sich aus dem Brechungsgesetz von Snellius. In Ab-
hängigkeit der N + 1 Reflexionen an den Schnittstellen zum Mantel berechnet sich das
Vorzeichen des Austrittswinkels δa sowie der Aufpunkt a auf der Endfläche gemäß

δa = δ, a = f tan δ falls N = 1,3,5, . . . , (5.84)

δa = −δ, a = d− f tan δ falls N = 0,2,4, . . . . (5.85)

Darin ist

f = L− c−Ne mit N =

⌊
L− c
e

⌋
(5.86)

sowie

e =
d

tan δ
und c =

d−h
tan δ

. (5.87)

Wie zuvor ist d die Schichtdicke des Wellenleiterkerns und h ist der Aufpunkt des initia-
len Strahls auf der Wellenleiterstirnfläche. Unterliegt der Strahl im Wellenleiter nicht der
Totalreflexion, wird mit jeder Reflexion die Leistung des Strahls um den Leistungsreflexi-
onsfaktor aus (2.100) bzw. (2.102) gedämpft. Mit den Beziehungen (5.84) - (5.87) ist das
strahlenoptische Modell des homogenen Schichtwellenleiters bereits vollständig parametri-
siert.

Zirkular gekrümmte Wellenleiterelemente

Aufgrund der idealen zirkular gekrümmten Grenzflächen ist analog zum geraden Wellenlei-
ter eine analytische Beschreibung möglich. Im Unterschied zum geraden Wellenleiter gibt
es jedoch den Spezialfall, dass Strahlen nur an der äußeren Berandung des Wellenleiter-
kerns reflektiert werden15. Dieser Spezialfall wird im Folgenden nicht explizit betrachtet.
Des Weiteren wird ein positiver initialer Winkel δ angenommen und der Strahlpfad erfährt
mindestens einmal eine Reflexion. Der Abbildung 5.14 ist jedoch zu entnehmen, dass sich
auch die Beschreibung der übrigen Fälle leicht ableiten lässt.

15Im Englischen werden diese Strahlpfade als Whispering Gallery Rays bezeichnet.
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Abbildung 5.14.: Strahlpfad im zirkular gekrümmten Schichtwellenleiter.

Für die Winkel im Wellenleiter ergibt sich

cos β =
R− + a

R+
cos δ und sinα =

R− + a

R−
cos δ. (5.88)

Damit ein Strahlpfad auch Schnittpunkte mit der inneren Berandung besitzt, muss die
Bedingung

R− + a

R−
cos δ < 1 (5.89)

erfüllt sein. Die Reflexionspunkte befinden sich in den Ebenen

ϕ = η +Nγ, N = 0,1,2, . . . (5.90)

mit
η = β − δ und γ = β + α− π/2. (5.91)

Wird angenommen, dass sich die Krümmung über einen Gesamtwinkel ϕ0 erstreckt, dann
gilt

κ = ϕ0 − η −Nγ mit N =

⌊
ϕ0 − η
γ

⌋
. (5.92)

Schließlich folgt für den Austrittswinkel ε sowie den Aufpunkt b auf der Wellenleiterend-
fläche

ε = β − κ, b =
cos β

cos ε
R+ −R− falls N = 0,2,4 . . . , (5.93)
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ε = −(π/2 + κ− α), b =

(
sinα

cos ε
− 1

)
R− falls N = 1,3,5 . . . . (5.94)

Aufgrund der gekrümmten Grenzflächen tritt weit häufiger als im geraden Wellenleiter
der Fall ein, dass Strahlen im Kern nicht totalreflektiert werden. Schließlich werden so die
Abstrahlverluste beschrieben. Bei den Reflexionen am Außenrand müssen wie im Kapi-
tel 2.4.2 beschrieben Tunnelverluste berücksichtigt werden, d.h. an Stelle von (2.100) wird
(2.107) verwendet. Da der Strahl zuerst auf den Außenrand (R+) trifft, finden, falls N
gerade ist, insgesamt N/2 + 1 Reflexionen am Außenrand statt, sowie N/2 Reflexionen
am Innenrand. Für ungerade N ist die Anzahl der Reflexionen am Innen- und Außenrand
gleich (N + 1)/2. Mit den Beziehungen (5.88)-(5.94) wird damit die Strahlausbreitung im
gekrümmten Schichtwellenleiter vollständig beschrieben.

5.3.2. Transientes Übertragungsverhalten des längshomogenen
Schichtwellenleiters

Die strahlenoptische Beschreibung des monochromatischen Leistungsflusses im homogenen
planaren Schichtwellenleiter ist wie aufgezeigt elementar beschreibbar, da sich mit jeder
Reflexion des Strahls an der Grenzfläche zum Mantel lediglich das Vorzeichen der trans-
versalen Komponente des Richtungsvektors ~es ändert. Dieses Verhalten bleibt natürlich
auch bei der Beschreibung eines transienten Leistungsflusses erhalten. Jedoch lässt sich,
wie im Kapitel 2.4.3 beschrieben, ein beliebiger transienter Leistungsfluss nicht mit ei-
ner einzigen Strahlschar modellieren, sondern erfordert mit jeder Änderung des initialen
Leistungsflusses die Aussendung einer neuen Strahlschar. Eine Ausnahme bildet die Mo-
dellierung zeitlich rechteckförmiger Pulse oder auch die Bestimmung einer Sprungantwort.
Da sich in diesem Fall der initiale Leistungsfluss am Wellenleiteranfang abrupt ändert,
reicht eine Strahlschar zur Modellierung aus.

Gemäß der Notation aus Kapitel 2.4.3 lässt sich die Sprungantwort eines planaren dielek-
trischen Wellenleiters aus

a(t) =
∑

m

Pm σ

(
t− L

eszm

n1

c0

)
mit σ(t) =

{
1, 0 ≤ t

0, t < 0
(5.95)

berechnen. Aufgrund der Planarität der im Folgenden betrachteten Modelle, werden die
Strahlen nur durch den Index m unterschieden. In (5.95) ist L/eszm die optische Weglänge
eines Strahls im Wellenleiter der Länge L und c0/n1 ist die Ausbreitungsgeschwindigkeit
im Wellenleiterkern. Es ist unmittelbar ersichtlich, dass diese Sprungantwort ein linea-
res System beschreibt. Im Gegensatz zur Wellenoptik arbeitet die geometrische Optik
ausschließlich mit Leistungsgrößen und umgeht damit die im Kapitel 5.1.3 diskutierten
Schwierigkeiten im wellentheoretischen Ansatz. Darüber hinaus bleiben chromatische Di-
spersioneffekte in der geometrische Optik gänzlich unberücksichtigt. Durch Differenziation
und Transformation in den Frequenzbereich lässt sich aus der Sprungantwort eine Über-
tragungsfunktion ableiten

H(f) =
∑

m

Pm exp

(
−j2πf L

eszm

n1

c0

)
. (5.96)
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Sowohl die Sprungantwort als auch die Übertragungsfunktion lassen sich also ohne exakte
Strahlverfolgung berechnen. Des Weiteren sind beide Funktionen nicht direkt abhängig von
der Dicke d des Wellenleiterkerns. Allerdings können die Anzahl der geführten Strahlen und
die Verteilung der Leistung auf die Strahlen und damit die Pm variieren.

Bevor nun ein expliziter Vergleich zwischen Wellen- und Strahlenoptik angestrebt wird,
soll kurz die Erwartungshaltung an die Qualität der strahlenoptischen Ergebnisse rekapi-
tuliert werden. Der wesentliche Unterschied besteht im jeweiligen Spektrum der zulässigen
Ausbreitungskonstanten. In der klassischen Strahlenoptik können sich Strahlen unter belie-
bigen Winkel und damit mit beliebiger Ausbreitungskonstante bzgl. der Wellenleiterachse
ausbreiten. Wellenoptisch sind allerdings nur endlich viele Ausbreitungskonstanten zuläs-
sig. Ein größerer Fehler ist daher zu erwarten, wenn nur wenige geführte Moden existieren.
Im Umkehrschluss heißt das: Solange ausreichend viele geführte Moden existieren und die
Verteilung der Leistung auf die jeweiligen zugehörigen Ausbreitungskonstanten näherungs-
weise identisch ist, vgl. Abbildung 4.18, ist eine gute Übereinstimmung zu erwarten. Der
direkte Vergleich zwischen (5.96) und der wellentheoretischen Approximation (5.29) zeigt
des Weiteren, dass Unterschiede in der Ausbreitungsgeschwindigkeit der Strahlen bzw. Mo-
den existieren. Die effektive Ausbreitungsgeschwindigkeit eines Strahls bzgl. der Wellen-
leiterachse ist stets proportional zur z-Komponente des Ausbreitungsvektors esz, während
sich ein Mode im linearisierten Modell mit der Gruppengeschwindigkeit vg ausbreitet.

Der Einfluss eines diskreten Modenspektrums mit nur wenigen geführten Moden wird
besonders im transienten Leistungfluss deutlich. Es soll daher zunächst ein Vergleich zwi-
schen Wellen- und Strahlenoptik anhand der Pulsverformung eines Rechteckpulses unter-
sucht werden. Strahlenoptisch kann ein Rechteckpuls modelliert werden, indem die Defini-
tion der Sprungantwort (5.95) um eine weitere Sprungfunktion σ ergänzt wird, welche die
Pulsdauer berücksichtigt. Im wellentheoretischen Modell sind die Fourierkoeffizienten des
Modulationssignals (5.2) bei einem Puls-Pause Verhältnis gleich eins durch

c0 =
1

2
, cm =

{
2
πm

(−1)
m+1

2 , m = 1,3,7 . . .

0, m = 2,4,8 . . .
(5.97)

gegeben. Das Spektrum eines Rechteckpulses ist aufgrund der steilen Flanken sehr breit
und die Folge der Fourierkoeffizienten klingt daher nur mit 1/m ab. Bei einer Grundfre-
quenz von 10GHz beträgt die (einseitige) 3 dB-Bandbreite des einzelnen Pulses bereits
12GHz. Der Rechteckpuls ist daher nur eine rein theoretische Modellannahme.

Zur Beschreibung der Wellenausbreitung in einem Wellenleiter muss zunächst die Einkopp-
lung modelliert werden. Entsprechend müssen auch bei der Interpretation der Ergebnis-
se die Unterschiede zwischen Wellen- und Strahlenoptik, die schon bei der Einkopplung
auftreten, gemäß Kapitel 4 berücksichtigt werden. Das Leistungsmaximum ist jedoch im
Folgenden auf eins normiert, so dass die Unterschiede in der Koppeleffizienz unberück-
sichtigt bleiben. Abbildung 5.15 zeigt Ergebnisse für vier unterschiedliche Schichtdicken
d und damit für vier unterschiedliche Modenspektren. Alle Ergebnisse beziehen sich auf
eine Wellenleiterlänge von L = 1 m. Berücksichtigt sind drei unterschiedliche Anregungen
ϑ = 0◦, 5◦, 10◦ bei einem Verhältnis d/b = 1,5. Der Fourierreihe im wellentheoretischen
Ansatz liegen wiederum 500 Reihenglieder zu Grunde, was bereits einer sehr großen Band-
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Abbildung 5.15.: Vergleich des transienten Leistungsflusses im Schichtwellenleiter der Län-
ge L = 1 m. Es gilt d/b = 1,5, n1 = 1,57 und n2 = 1,55. Die durchgezo-
genen Linien repräsentieren die strahlenoptischen Ergebnisse.

breite entspricht, jedoch naturgemäß aufgrund des Gibbsschen Phänomens zu einem deut-
lichen Überschwingen führt. Im planaren strahlenoptischen Modell wurden 10 000 initiale
Strahlen verwendet. Bedingt durch Einkoppelverluste kann die Anzahl der Strahlen, die
sich im Kern ausbreiten, etwas geringer sein.

In den vorangegangenen Studien war meist ein Wellenleiter der Dicke d = 75 µm (bzw.
d = 70 µm) Ausgangspunkt der Untersuchungen. Dieser Fall ist in Abbildung 5.15b be-
rücksichtigt. Um das Verhalten bei größeren Schichtdicken zu beurteilen, wurde in Ab-
bildung 5.15a ein Wellenleiter der Dicke d = 105 µm verwendet. Besonders interessieren
sollen jedoch die Ergebnisse für kleine Schichtdicken mit d = 30 µm und d = 15 µm in
den Abbildungen 5.15c und 5.15d. Die Ergebnisse der strahlenoptischen Simulationen sind
durch die durchgezogenen Linien gekennzeichnet. Dabei sind die Kurven um die minimale
Signallaufzeit von Ln1/c0 = 5,237 ns verschoben, so dass die positive Flanke, sofern noch
vorhanden, bei t = 0 liegt. Wie erwartet steigen die Unterschiede zwischen den Theorien
mit kleiner werdender Geometrie, jedoch sind die Abweichungen insgesamt gering. Für die
Einfallswinkel ϑ = 0◦ und 5◦ ist gewissermaßen eine perfekte Übereinstimmung festzu-
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Mode 1 2 3 4 5 6 7 8 9

neff 1,56978

∆neff · 103 -0,67 -1,11 -1,55 -1,98 -2,41 -2,82 -3,19 -3,48

vg/c0 0,636864

∆vg/c0 · 104 -2,35 -3,87 -5,34 -6,69 -7,82 -8,53 -8,14 -3,34

Tabelle 5.2.: Effektive Brechzahl neff und die normierte Gruppengeschwindigkeit vg/c0 des
ersten TE-Modes sowie die Differenz zwischen benachbarten TE-Moden für
d = 15 µm, n1 = 1,57 und n2 = 1,55.

stellen. Natürlich kann das strahlenoptische Modell den bedingt durch die endliche Anzahl
geführter Moden treppenförmigen Verlauf des Leistungsflusses nicht nachbilden. Im lokalen
zeitlichen Mittel gehen die Graphen jedoch näherungsweise ineinander über. Etwas größere
Abweichungen sind nur für ϑ = 10◦ zu verzeichnen, da nun insbesondere auch Moden nahe
dem Cut-Off angeregt werden.

Hier gilt es eine Besonderheit im Modenspektrum des dielektrischen Schichtwellenleiters
hervorzuheben. Wie zuvor erwähnt existieren Unterschiede in der Ausbreitungsgeschwin-
digkeit eines Strahls und eines Modes. Tabelle 5.2 listet die Veränderung der effekti-
ven Brechzahlen und der Gruppengeschwindigkeit zum jeweils benachbarten Mode für
d = 15 µm auf. Wie aus der Dispersionsbeziehung

kz =
√
k2

0n
2
1 − k2

x (5.98)

unmittelbar gefolgert werden kann, wächst der Abstand zwischen den Ausbreitungskon-
stanten ∆kz stetig an, da die kx näherungsweise äquidistant sind. Wie die Tabelle 5.2
zeigt, gilt dies nicht für die Gruppengeschwindigkeiten der Moden, die leider nur nume-
risch bestimmt werden können. Der Abstand der Gruppengeschwindigkeiten ∆vg steigt
zunächst ebenfalls an, nimmt dann für Moden nahe am Cut-Off aber wieder ab. Dieser
Effekt existiert auch für größere Schichtdicken und damit einer größeren Anzahl geführ-
ter Moden. Er wirkt sich jedoch mit zunehmender Schichtdicke nicht mehr so stark aus,
wie die Ergebnisse in den Abbildungen 5.15 für den Einfallswinkel ϑ = 10◦ zeigen. Im
Verlauf der Graphen ist ∆vg näherungsweise proportional zu dem Abstand der Stufen im
wellentheoretisch bestimmten Leistungsfluss. Als Zahlenbeispiel sei noch genannt, dass für
d = 105 µm in einer Polarisation 62 geführte Moden existieren. Davon besitzen die letzten
14 Moden eine kleinere Gruppengeschwindigkeit als der letzte Mode des Wellenleiters mit
d = 15 µm. Es sei daran erinnert, dass die strahlenoptischen Ergebnisse nahezu unabhän-
gig von der Dicke des Wellenleiters sind. Aufgrund des etwas kleineren Divergenzwinkels
des Gaußstrahls im Fall kleiner Schichtdicken, vgl. Tabelle 4.2, ist das angeregte Spektrum
etwas schmaler und durch die geringere Modendispersion ist letztlich die Pulsaufweitung
ebenfalls etwas abgeschwächt.

Zusammenfassend stimmen selbst für d = 15 µm und ϑ = 10◦ die Ergebnisse im Mittel im-
mer noch gut überein. Der Graph des strahlenoptisch bestimmten Leistungsflusses scheint
auf der Zeitachse etwas verschoben zu sein gegenüber der wellentheoretischen Referenz.
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Abbildung 5.16.: Vergleich der Übertragungsfunktionen für die Parametersätze aus Ab-
bildung 5.15. Die durchgezogenen Linien repräsentieren die strahlenopti-
schen Ergebnisse.

Diese Verschiebung um wenige Pikosekunden ist jedoch in der Regel nicht von praktischer
Relevanz. Die strahlenoptischen Simulationen wurden im Übrigen mit konstanter Goos-
Hänchen-Verschiebung durchgeführt. Abgesehen von der Beschreibung der Einkopplung
hat die Goos-Hänchen-Verschiebung jedoch keinen Einfluss auf den Gesamtleistungsfluss
im längshomogenen Wellenleiter.

Für alle Parametersätze wurde zusätzlich die Übertragungsfunktion sowohl wellentheore-
tisch gemäß (5.22) als auch strahlenoptisch gemäß (5.96) berechnet. Die Ergebnisse für den
Betrag der Übertragungsfunktion sind in Abbildung 5.16 aufgetragen und spiegeln im We-
sentlichen die bereits gewonnenen Erkenntnisse wieder. Mit kleiner werdender Geometrie
und mit größer werdendem Einfallswinkel werden die Abweichungen im Mittel größer. Bei
Anregung mit ϑ = 10◦ nimmt die Übertragungsfunktion im strahlenoptischen Modell im
Frequenzbereich f < 20 GHz immer etwas kleinere Werte an, was mit den kleinerem Maxi-
malwerten in Abbildung 5.15 korrespondiert. Für d = 105 µm ist insgesamt eine sehr gute
Übereinstimmung zu verzeichnen. Aber auch hier macht sich für sehr große Frequenzen
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400 GHz < f das diskrete Modenspektrum bemerkbar, die Übertragungsfunktion steigt
wieder an und geht in ein oszillierendes Verhalten über. Die Grenzfrequenz, ab der dieses
Verhalten eintritt, wird mit kleiner werdender Geometrie ebenfalls kleiner und insbesonde-
re für ϑ = 0◦ kann die Übertragungsfunktion wieder annähernd den Wert eins annehmen.
Dies ist möglich, da die Breite des angeregten Modenspektrums in diesem Fall minimal
ist. Für d = 15 µm und ϑ = 0◦ werden im Wesentlichen nur zwei Moden signifikant ange-
regt, vgl. Abbildung 5.15d. Ein periodisches Signal zerfällt lediglich in zwei Impulsfolgen,
die sich nach Durchlaufen einer definierten Strecke wieder nahezu vollkommen konstruktiv
überlagern. D.h. die Laufzeitdifferenz ist gleich der Grundperiode der Anregung.

Die Unterschiede zwischen dem exakten wellentheoretischen Ansatz (5.22) und der Appro-
ximation (5.29) sind im Übrigen für alle Ergebnisse in Abbildung 5.15 vernachlässigbar,
mit der in Kapitel 5.1.3 genannten Ausnahme. Abbildung 5.15 zeigt deutlich die Grenzen
des sinnvollen Anwendungsbereichs einer Übertragungsfunktion für multimodale optische
Wellenleiter auf. Zunächst sollte betont werden, dass der Verlauf der Übertragungsfunkti-
on massiv von der Anregung des Modenspektrums abhängt. Damit kann ein Wellenleiter
ohne Kenntnis über die Anregung nicht anhand einer Übertragungsfunktion charakteri-
siert werden. Werden nur wenige Moden angeregt oder hauptsächlich Moden nahe dem
Cut-Off, ist zudem mit einem erhöhten Fehler im strahlenoptischen Modell zu rechnen.
Ohnehin ist im Wellenleiter mit wenigen geführten Moden die Ableitung einer Übertra-
gungsfunktion abwegig. Hier empfiehlt es sich, die Übertragungskapazität direkt aus den
Gruppengeschwindigkeiten der Moden abzuleiten. Abschließend sollte noch einmal hervor-
gehoben werden, dass sich die gezeigten Ergebnisse auf einen Schichtwellenleiter beziehen.
Im realen Wellenleiter mit zweidimensionalem Querschnittsprofil existieren bei gleicher nu-
merischer Apertur deutlich mehr geführte Moden und die Abweichungen zur Strahlenoptik
werden im Mittel geringer sein. Zumindest im theoretischen Modell muss jedoch beachtet
werden, dass auch in der kreiszylindrischen Faser bei symmetrischer Anregung nur Mo-
den der azimuthalen Ordnung m = 1 angeregt werden. In dieser Ordnung existieren etwa
genauso viele geführte Moden wie im Schichtwellenleiter.

5.3.3. Verluste durch Wellenleiterkrümmungen

Wie erwartet haben die Untersuchungen zur Wellenausbreitung im geraden Wellenleiter
die Eignung strahlenoptischer Methoden im Wesentlichen bestätigt. Erst bei sehr kleinen
Kerndurchmessern und einer geringen Anzahl angeregter Moden treten deutliche Abwei-
chungen auf. Wie eingangs erläutert tritt bei der Beschreibung von Krümmungsverlusten
jedoch möglicherweise ein erhöhter Fehler auf, da diese in Abhängigkeit von der Feldver-
teilung am Wellenleiteranfang variieren. Bevor ein expliziter Vergleich anhand der wellen-
theoretischen Ergebnisse aus Kapitel 5.2.6 präsentiert wird, soll der Einfluss des modifizier-
ten Leistungstransmissionsfaktors für gekrümmte Grenzflächen gemäß Kapitel 2.4.2 sowie
der Einfluss der Goos-Hänchen-Verschiebung untersucht werden. Für die im Folgenden
betrachteten Ergebnisse ist das Verhältnis zwischen Kern- und Strahldurchmesser stets
gleich d/b = 1,5. Die Numerische Apertur des Wellenleiters ist ebenfalls konstant gleich
NA = 0,25 mit n2 = 1,55.

Abbildung 5.17a zeigt Ergebnisse für einen Wellenleiter der Dicke d = 75 µm und einen
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Abbildung 5.17.: Vergleich der unterschiedlichen strahlenoptischen Methoden: Normierte
Ausgangsleistung nach Durchlaufen einer 90◦-Krümmung und absolute
Differenz. Es gilt d =75 µm, b =50 µm, n1 = 1,57 und n2 = 1,55. Die
Legende in Abbildung (a) gilt auch in (b).

senkrecht meridional einfallenden Gaußstrahl (ϑ = 0). Dargestellt ist wiederum die Aus-
gangsleistung nach Durchlaufen einer 90◦-Krümmung bei auf eins normierter Eingangsleis-
tung. Der Krümmung ist kein gerades Element vorgeschaltet, xp = 0, so dass die initiale
Feldverteilung am Anfang der Krümmung mit dem strahlenoptischen Poyntingvektormo-
dell korrespondiert. Im strahlenoptischen Modell werden drei Methoden unterschieden.

STRAHL Es wird weder der modifizierte Transmissionsfaktor noch die Goos-
Hänchen-Verschiebung berücksichtigt.

STRAHL TV Es wird der modifizierte Transmissionsfaktor, jedoch keine Goos-
Hänchen-Verschiebung berücksichtigt.

STRAHL TV CGH Es wird sowohl der modifizierte Transmissionsfaktor als auch die
konstante Goos-Hänchen-Verschiebung berücksichtigt.

Der Bezeichner QGM kennzeichnet die wellentheoretische Approximation wie im Kapi-
tel 5.2.5 beschrieben. Die in Abbildung 5.17b aufgetragenen absoluten Differenzen zwischen
den Ergebnissen der strahlenoptischen Methoden und der wellentheoretischen Referenz zei-
gen deutlich die durch Anwendung eines modifizierten Transmissionsfaktors (2.107) und
der konstanten Goos-Hänchen-Verschiebung erreichbaren Verbesserungen auf. Für die Me-
thode STRAHL TV CGH stellt sich bereits eine Abweichung ein, die nahezu unterhalb der
darstellbaren Genauigkeit liegt. Daher wird im Weiteren ausschließlich diese Methode ver-
wendet. Es sei noch einmal betont, dass der modifizierte Transmissionsfaktor lediglich bei
der Reflexion am konkav gekrümmten äußeren Rand verwendet wird. Analog zu den Simu-
lationen im Kapitel 4.4 führt die konstante Goos-Hänchen-Verschiebung bei den gegebenen
Parametern zu einer Verbreiterung der effektiven Schichtdicke d um etwa 1,08 µm.

Der Vergleich zwischen Wellen- und Strahlenoptik soll nun anhand der Ergebnisse aus
Kapitel 5.2.6 fortgesetzt werden. Abbildung 5.18 zeigt Ergebnisse für die schon in Ab-
bildung 5.10 verwendeten Parameter. Den mit der strahlenoptischen Methode STRAHL
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Abbildung 5.18.: Vergleich der normierten Ausgangsleistung nach Durchlaufen einer 90◦-
Krümmung. Als Referenz dienen die Ergebnisse aus Abbildung 5.10, wel-
che grau hinterlegt sind.

TV CGH erstellten Graphen ist jeweils die wellentheoretische Referenz grau hinterlegt.
Abbildung 5.18a zeigt zunächst noch einmal die hervorragende Übereinstimmung für den
Wellenleiter der Dicke d = 75 µm, solange der Krümmung kein gerades Element vorgeschal-
tet ist. Es zeigt sich, dass diese Übereinstimmung auch bei Verdrehung der Strahlachse um
±5◦ erhalten bleibt. Bei größeren Einfallswinkeln würden im geraden Wellenleiter dann zu-
nehmend Moden nahe dem Cut-Off angeregt werden, welche auch schon bei großen Krüm-
mungsradien abgestrahlt werden. Für ϑ = ±10◦ treten daher leichte Abweichungen auf,
die im diskreten Modenspektrum begründet sind. Im strahlenoptischen Modell weisen die
Graphen aufgrund der näherungsweise kontinuierlich verteilten Strahlschar immer einen
vollkommen glatten Verlauf auf. Bei der vergleichsweise geringen Anzahl von 45 geführten
Moden kommt es im wellentheoretischen Modell dagegen zu einem leicht oszillierenden
Verlauf, da nach und nach die einzelnen Moden nahe dem Cut-Off abgedämpft werden.

Die Simulationsergebnisse in Abbildung 5.18b bestätigen die Annahme, dass die Variation
der Länge des vorgeschalteten geraden Wellenleiters nicht adäquat im strahlenoptischen
Modell berücksichtigt wird. Allerdings handelt es sich bei den gezeigten Ergebnissen im
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Wesentlichen um akademische Spezialfälle, die in der Praxis vermutlich nicht derart aus-
geprägt auftreten werden, zumal es sich nach wie vor um eine planare Approximation
handelt. Wie sich zeigt, stellt die Strahlenoptik zwischen den Extremwerten jedoch einen
ausgezeichneten Mittelwert dar, so dass die Ergebnisse in Abbildung 5.18b in keinem Fall
als K.O.-Kriterium für die strahlenoptische Methodik zu werten sind. Die Graphen der
strahlenoptischen Simulationen für xp > 0 fallen im Übrigen stets näherungsweise zusam-
men.

Eine kleinere Schichtdicke sorgt nicht zwangsläufig für einen erhöhten Fehler im strahlen-
optischen Modell, wie Abbildung 5.18c für ϑ = 0 zeigt. Wie oben diskutiert gibt es jedoch
Abweichungen, sobald Moden des geraden Eingangswellenleiters nahe dem Cut-Off ange-
regt werden, z.B. für ϑ = −10◦ in Abbildung 5.18d. Es sei an dieser Stelle daran erinnert,
dass nahe dem Cut-Off die Abstände zwischen den Phasenkonstanten maximal werden. Die
Abstände zwischen den neun Phasenkonstanten der geführten Moden des Wellenleiters der
Schichtdicke d = 15 µm wurden bereits exemplarisch in Tabelle 5.2 aufgeführt. Es liegt da-
her nahe, dass insbesondere bei kleinen Schichtdicken und somit wenigen geführten Moden
die Abweichungen maximal sind. Dennoch liefert auch hier die Strahlenoptik näherungs-
weise immer einen Mittelwert zwischen den lokalen Oszillationen der wellentheoretischen
Referenz.

Als Zwischenfazit lässt sich somit festhalten, dass die Ergebnisse der letztlich vollkommen
unterschiedlichen Vorgehensweisen, Wellenoptik und Strahlenoptik, über weite Teile über-
einstimmen. Solange im geraden Einkoppelwellenleiter wenig Leistung in Moden nahe dem
Cut-Off geführt wird, ist diese Übereinstimmung nahezu unabhängig von der Schichtdicke
des Wellenleiters. Wird jedoch auch Leistung in Moden nahe dem Cut-Off geführt, ist ins-
besondere für kleine Schichtdicken ein erhöhter Fehler zu erwarten. Darüber hinaus lassen
sich bedingt durch das diskrete Modenspektrum stets Spezialfälle konstruieren, in denen
die Strahlenoptik versagt bzw. nur näherungsweise einen Mittelwert ausgibt.

Abschließend soll noch die Leistungsverteilung im Modenspektrum des Ausgangswellenlei-
ters mit der Leistungsverteilung in der Strahlschar des strahlenoptischen Modells verglichen
werden. Abbildung 5.19 zeigt die Ergebnisse, die mit den Parametern aus Abbildung 5.11
korrespondieren, jedoch wurde in (b) und (c) das Vorzeichen des Einfallswinkels geändert,
um etwas aussagekräftigere Darstellungen zu erhalten. Die wellentheoretischen Ergebnis-
se sind dabei wiederum grau hinterlegt. Aufgrund der gegenüber der zweidimensionalen
Querschnittsgeometrie vergleichsweise geringen Anzahl geführter Moden ist grundsätzlich
nur eine mäßige Übereinstimmung zu erwarten. Die Abbildungen 5.19a bis 5.19c zeigen
jedoch eine sehr gute qualitative Übereinstimmung für die Schichtdicke d = 75 µm. Wie
zu erwarten sind die Graphen der strahlenoptischen Simulation anschaulich wieder glatte
Funktionen, während die wellentheoretischen Ergebnisse starke lokale Schwankungen auf-
weisen können. Insbesondere für kleine effektive Brechzahlen im Bereich 1,555 > neff > 1,55
ist jedoch eine gute Übereinstimmung zu verzeichnen, so dass die Breite des angeregten
Spektrums korrekt wiedergegeben wird. Gleiches gilt näherungsweise auch für kleinere
Schichtdicken. Durch die kleinere Anzahl geführter Moden werden die Abweichungen im
Mittel wiederum größer. Abbildung 5.19d zeigt jedoch, dass auch für d = 15 µm noch eine
gute qualitative Übereinstimmung herrscht, obwohl nur noch neun geführte Moden exis-
tieren. Die Abweichungen im Endwert für R = 1 mm sind nicht von großer Bedeutung, da
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Abbildung 5.19.: Anregung des Modenspektrums nach Durchlaufen einer 90◦-Krümmung:
Akkumulierte Ausgangsleistung für unterschiedliche Krümmungsradi-
en R. Die Parameter entsprechen denen der Abbildung 5.11, jedoch wurde
in (b) und (c) das Vorzeichen des Einfallswinkels geändert. Die wellen-
theoretische Referenz ist grau hinterlegt.

die Verluste insgesamt schon sehr groß sind.





6. Zusammenfassung und Ausblick

Zusammenfassung

Der Vergleich zwischen Wellen- und Strahlenoptik fokussiert sich zunächst auf die Beschrei-
bung der Einkopplung monochromatischer optischer Wellen in einen dielektrischen Wellen-
leiter mit senkrechter Stirnfläche und wird dann auf die Beschreibung des Leistungsflusses
im Wellenleiter ausgedehnt. Beides erfordert ein bekanntes Modenspektrum eines zunächst
als längshomogen angenommenen Wellenleiters. Die Untersuchungen beschränken sich da-
her im Wesentlichen auf kreiszylindrische Fasern und planare Schichtwellenleiter, jeweils
mit einem stufenförmigen Brechzahlprofil. Für das Randwertproblem eines rechteckförmi-
gen Wellenleiters existiert kein analytischer Lösungsansatz. Daher werden für diesen in der
Praxis wichtigen Wellenleiter die vorhandenen Näherungslösungen analysiert. Aber auch
ein exakter Lösungsansatz erfordert stets die Lösung einer transzendenten Eigenwertglei-
chung. Des Weiteren muss das im Allgemeinen kontinuierliche Spektrum der Strahlungs-
moden diskretisiert werden, z.B. wie in dieser Arbeit durch einen leitenden Schirm, und
die Anzahl der berücksichtigten Moden begrenzt werden, so dass eine Implementierung auf
einem Rechensystem möglich ist.

Insbesondere im Übertragungssystem mit multimodalen optischen Wellenleitern sind die
Eigenschaften der Quelle von fundamentaler Bedeutung, da die Leistungsverteilung auf
die Moden und damit die Übertragungseigenschaften des Systems von ihr abhängen. Das
elektromagnetische Feld der Quelle wird durch einen paraxialen Gaußstrahl approximiert,
dessen einfache mathematische Beschreibung und bekannte Eigenschaften einen umfassen-
den Vergleich zwischen Wellen- und Strahlenoptik ermöglichen. Aus dem resultierenden
Poyntingvektorfeld wird das strahlenoptische Modell der Quelle abgeleitet. Zu beachten
ist jedoch, dass der paraxiale Gaußstrahl nur eine Approximation für schwach divergieren-
de Felder darstellt. Um einen erhöhten Fehler auszuschließen, lässt sich für diese Arbeit
durch einen Vergleich mit einer Integraldarstellung über ebene Wellen ein maximaler Di-
vergenzwinkel von 5◦ ermitteln. Zur effizienten Beschreibung der Einkopplung wird der
Raum vor dem Wellenleiter ebenso wie der Wellenleiter selbst von einem leitenden Schirm
umgeben und die Felder des Gaußstrahls durch die Moden des resultierenden Hohlleiters
beschrieben. Somit ist es möglich, alle Teilfelder durch Wellenleitermoden zu beschreiben
und die Amplituden der reflektierten und transmittierten Wellen durch Auswertung der
Stetigkeitsbedingungen zu bestimmen. Nach einer ausführlichen Diskussion über die Aus-
wirkungen des leitenden Schirms auf die Modellierung kann ein merklicher Einfluss auf die
Anregung der geführten Moden der dielektrischen Wellenleiter ausgeschlossen werden.

Das kritische Element im strahlenoptischen Modell hinsichtlich der Modellierung der Ein-
kopplung ist die Schnittstelle zwischen Kern und Mantel des Wellenleiters. Hierzu wird
untersucht, ob die Verbreiterung des Faserkerndurchmessers um die Goos-Hänchen-Ver-
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schiebung eine sinnvolle Ergänzung darstellt. Als erstes wichtiges Ergebnis dieser Arbeit
lässt sich feststellen, dass die Berücksichtigung einer minimalen konstanten Goos-Hänchen-
Verschiebung den mittleren Fehler im strahlenoptischen Modell deutlich reduziert, ohne
den Simulationsaufwand zu erhöhen. Unter Anwendung dieser Methode wird anschließend
die Entwicklung des Fehlers bei der Berechnung der Koppeleffizienz für kleiner werdende
Wellenleitergeometrien untersucht. Der maximale Kerndurchmesser von 90 µm wird auf
bis zu 10 µm reduziert. Bei einer numerischen Apertur von 0,25 sinkt die Anzahl geführ-
ter Moden in einer Polarisation dabei von 1763 auf nur noch 26. Um hinreichend große
Koppeleffizienzen zu garantieren, muss der Durchmesser des Gaußstrahls kleiner als der
Kerndurchmesser sein. Dieser Fall wird zunächst mit einem Verhältnis zwischen Kern-
und Strahldurchmesser von 1,5 untersucht, wobei der einfallende Gaußstrahl um bis zu
5◦ verdreht und um bis zu 20% der Strahlbreite lateral verschoben wird. Innerhalb dieses
Bereichs resultiert eine hervorragende Übereinstimmung zwischen der wellentheoretischen
und der strahlenoptischen Modellierung, mit relativen Abweichungen im unteren Promille-
bereich selbst für einen Strahldurchmesser von lediglich 10 µm. Die Abweichungen erhöhen
sich merklich, wenn Kern- und Strahldurchmesser gleich groß sind. Unter der Vorausset-
zung, dass eine hinreichend große Koppeleffizienz erreicht wird, kann dieses Verhältnis
als schlechtester Fall bezeichnet werden, da der gesamte Grenzbereich am Rand des Fa-
serkerns ausgeleuchtet ist. Bei einer maximalen relativen Abweichung von 3,5% für den
Strahldurchmesser gleich 10 µm und einem im Mittel deutlich geringeren Fehler lässt sich
jedoch als Fazit festhalten, dass strahlenoptische Methoden nahezu uneingeschränkt zur
Modellierung der Einkopplung in multimodale optische Stufenindex-Fasern geeignet sind.
Deutlich erhöhte Abweichungen sind erst zu erwarten, wenn nur noch wenige geführte
Moden existieren.

Der Modellierungsaufwand für die kreiszylindrische Faser ist nicht unerheblich, wenn neben
dem Spektrum der geführten Moden auch das vollständige Spektrum der Strahlungsmo-
den berücksichtigt wird. Es wird daher zum Einen aufgezeigt, dass sich alle Ergebnisse
auch aus einem Modell mit einem planaren Schichtwellenleiters ableiten lassen. Es resul-
tieren aufgrund der fehlenden Abhängigkeit von einer Koordinate lediglich leichte quan-
titative Unterschiede im Vergleich zur Faser. Des Weiteren wird ein Näherungsverfahren
vorgestellt, das lediglich geführte Moden berücksichtigt, aber dennoch eine sehr hohe Ge-
nauigkeit garantiert. Mit Hilfe dieses Verfahrens lässt sich auch der Lösungsansatz von
Marcatili zur Modellierung rechteckförmiger Wellenleiter hinsichtlich der korrekten Be-
schreibung der Einkopplung in den Wellenleiter analysieren. Durch den Vergleich mit der
strahlenoptischen Methodik kann als Ergebnis festgestellt werden, dass der Ansatz von
Marcatili angewendet werden kann, solange keine Moden nahe dem Cut-Off angeregt wer-
den. Dieses Ergebnis entspricht den bekannten Erwartungen und in der Praxis muss im
Einzelfall entschieden werden, ob die damit verbundene Einschränkung hinnehmbar ist.

Im zweiten Schwerpunkt dieser Arbeit wird die Wellenausbreitung im dielektrischen Wel-
lenleiter behandelt. Im Fokus steht neben der Beschreibung des transienten Leistungsflusses
im längshomogenen Wellenleiter insbesondere die Bestimmung des Dämpfungsverhaltens
zirkular gekrümmter Wellenleiter. Da zur Beschreibung des transienten Leistungsflusses
das Modenspektrum innerhalb einer bestimmten Frequenzbandbreite bekannt sein muss,
beschränkt sich die Untersuchung auf den planaren Schichtwellenleiter und auf periodi-
sche Zeitverläufe. Neben der Zeitbereichsdarstellung lässt sich unter Vernachlässigung der
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chromatischen Dispersion auch eine Übertragungsfunktion für das Basisband ableiten. Es
muss jedoch beachtet werden, dass die Übertragungsfunktion stark von der gewählten
Anregung abhängt, d.h. die Übertragungseigenschaften eines multimodalen Wellenleiters
sollten nicht isoliert von der Quelle analysiert werden. Wie erwartet stimmen die Ergeb-
nisse der wellentheoretischen und strahlenoptischen Methoden für den längshomogenen
Wellenleiter weitestgehend überein. Diese Übereinstimmung bezieht sich jedoch nur auf
den tiefpassgefilterten Gesamtleistungsfluss und nicht auf die lokale Intensitätsverteilung
im Wellenleiter, die im strahlenoptischen Modell aufgrund der fehlenden Phaseninforma-
tion nicht wiedergegeben werden kann. Gravierende Unterschiede im Leistungsfluss und
in der Übertragungsfunktion des längshomogenen Wellenleiters existieren darüberhinaus
erst, wenn nur sehr wenige geführte Moden existieren bzw. angeregt werden oder wenn
ausschließlich Moden nahe dem Cut-Off angeregt werden.

Ein analytisch exakter Lösungsansatz für zirkular gekrümmte Wellenleiter existiert nur für
den planaren Schichtwellenleiter. Allerdings ist das resultierende Modenspektrum kontinu-
ierlich und zudem nichtorthogonal. Zur Beschreibung der Ankopplung an den Wellenleiter
müssten daher Integralgleichungen gelöst werden, für die keine analytische Lösung bekannt
ist und die auch numerisch schwer handhabbar sind. Aus dem Modenspektrum lassen sich
jedoch einige wenige quasigeführte Moden isolieren, deren Felder die Wellenleiterkrümmung
näherungsweise ungestört durchlaufen und für den unendlich großen Krümmungsradius in
die geführten Moden des geraden Wellenleiters übergehen. Die Eigenwerte dieser Moden
sind analog zum geraden Wellenleiter reellwertig, es lässt sich aber zusätzlich eine Dämp-
fungskonstante ableiten, die als Imaginärteil des Eigenwerts interpretiert werden kann.
Dieser zusammengesetzte Eigenwert entspricht einer Lösung nach dem aus der Literatur
bekannten Leckwellen-Ansatz, welcher explizit radial nach außen laufende Wellen ansetzt
und deren Eigenwerte in der komplexen Ebene liegen. Der Rechenaufwand dieser Methode
ist ungleich höher und die Methode der quasigeführten Moden ist daher vorzuziehen.

Die Rechnung auf Basis diskreter quasigeführter Moden verfolgt das Ziel, ausgehend von
einem geraden Eingangswellenleiter die Anregung der geführten Moden im wiederum ge-
raden Ausgangswellenleiter nach Durchlaufen einer 90◦-Krümmung zu bestimmen. Zur
Validierung wird ein Vergleich mit einer numerischen Simulation durchgeführt, welcher
eine sehr gute Übereinstimmung für schwache Abstrahlverluste aufzeigt. Für stärkere Ver-
luste stellt die Rechnung auf Basis quasigeführter Moden immer noch eine gute Näherung
dar.

Den Abschluss dieser Arbeit bildet ein umfangreicher Vergleich zur strahlenoptischen Theo-
rie. Nahezu unabhängig von der Schichtdicke des Wellenleiters herrscht immer dann eine
sehr gute Übereinstimmung bezüglich der berechneten Ausgangsleistung, wenn dem ge-
krümmten Wellenleiter kein gerades Element vorgeschaltet ist. Andernfalls können zwar
Abweichungen auftreten, da der örtliche Leistungsfluss im strahlenoptischen Modell nicht
korrekt wiedergegeben wird, im Mittel herrscht jedoch immer noch gute Übereinstimmung.
Insbesondere wird der Krümmungsradius, ab dem mit erhöhten Verlusten durch Abstrah-
lung zu rechnen ist, übereinstimmend berechnet. Merkliche Unterschiede existieren dann,
wenn Moden nahe dem Cut-Off angeregt werden, was sich insbesondere im Wellenleiter
mit kleiner Schichtdicke bemerkbar macht. Neben der Ausgangsleitung werden auch die
Ausbreitungskonstanten der ausgangsseitig angeregten Moden und Strahlen verglichen.
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Wieder lässt sich unabhängig von der Schichtdicke eine im Mittel gute Übereinstimmung
registrieren.

Ausblick

Die in dieser Arbeit präsentierten Ergebnisse haben aufgezeigt, dass strahlenoptische Ver-
fahren grundsätzlich zur Modellierung optisch multimodaler Wellenleiter geeignet sind und
zwar auch dann, wenn bei kleinem Kerndurchmesser nur noch einige zehn Moden geführt
werden. Jedoch handelt es sich insbesondere bei der Beschreibung des gekrümmten Wellen-
leiters noch um ein rein akademisches Beispiel. Wünschenswert im Kontext der EOPCB-
Technologie wäre es beispielsweise, den Vergleich zwischen Wellen- und Strahlenoptik auf
gekrümmte rechteckförmige Wellenleiter auszudehnen. Wellentheoretische Modellierungs-
ansätze hierzu gibt es bereits seit langem, doch mangels exakter Lösungen beruhen diese
gänzlich auf Näherungslösungen und sind daher nur bedingt als Referenz geeignet. Einen
Überblick verschaffen die Arbeiten [13, 57].

Wesentliche Fortschritte in der Modellierung optischer Wellenleiter sind daher voraussicht-
lich nur mit numerischen Methoden zu erwarten. Die stetigen Steigerungen der Rechen-
leistung und der Speicherkapazität der am Markt verfügbaren Hardware ermöglichen die
Simulation immer größerer Problemstellungen und machen damit klassische gitterbasierte
Verfahren zunehmend interessanter [10, 75]. Für eine ganzheitliche numerische Simulation
einer optisch multimodalen Übertragungsstrecke mit absoluten Abmessungen von einigen
hunderttausend Wellenlängen entlang der Wellenleitertrajektorie ist jedoch noch einige
Entwicklungsarbeit erforderlich, so dass die Ergebnisse dieser Arbeit vermutlich noch einige
Zeit lang eine hilfreiche Referenz darstellen werden. Numerische Verfahren sind insbesonde-
re auch vielversprechend anwendbar in der Modellierung von Laserdioden, so dass anstelle
eines idealen Gaußstrahls zukünftig Modelle realer Quellen verwendet werden könnten.



A. Anhang

A.1. Der Gaußstrahl: Ergänzungen

A.1.1. Hertzsche Potenziale des Gaußstrahls

Vektorpotenziale sind oft ein geeignetes Hilfsmittel komplexe Problemstellungen der Feld-
theorie transparenter darzustellen. Im zeitharmonischen Fall lassen sich die Feldgrößen
durch z-gerichtete Hertzsche Potenziale wie folgt beschreiben [16]:

~E = ∇×∇× ~ezΠez − jωµ∇× ~ezΠmz, (A.1)

~H = jωε∇× ~ezΠez +∇×∇× ~ezΠmz. (A.2)

Darin sind Πez und Πmz die z-Komponenten des elektrischen und magnetischen Hertzschen
Vektors.

Die Spektraldarstellung der Hertzschen Vektoren sei bekannt, vgl. 2.22. Es gilt

Πe/m,z =

∞∫

−∞

∞∫

−∞

AΠe/m
(kx,ky)h(kx,ky,~r) dkx dky (A.3)

mit
h(kx,ky,~r) = exp

(
−j
(
kxx+ kyy +

√
k2 − k2

x − k2
y z
))

. (A.4)

Unter der Annahme, dass Rotation und Integration vertauscht werden dürfen, müssen die
Rotationsoperatoren in (A.1) und (A.2) lediglich auf h angewendet werden. Mit

∇× ~ezh(kx,ky,~r) = −j (ky~ex − kx~ey)h(kx,ky,~r) (A.5)

und
∇×∇× ~ezh(kx,ky,~r) =

(
−kxkz~ex − kykz~ey + (k2

x + k2
y)~ez

)
h(kx,ky,~r) (A.6)

sowie
kz =

√
k2−k2

x−k2
y (A.7)

ergibt sich das elektrische Feld zu

~E =

∞∫

−∞

∞∫

−∞

((
−kxkz~ex − kykz~ey + (k2

x + k2
y)~ez

)
AΠe(kx,ky)

− ωµ (ky~ex − kx~ey)AΠm(kx,ky)

)
h(kx,ky,~r) dkx dky. (A.8)
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Wird angenommen, dass die transversale Spektralfunktion T t der elektrischen Feldstärke
bekannt ist, dann folgt

~ex · ~et T t(kx,ky) = −kxkzAΠe(kx,ky)− ωµkyAΠm(kx,ky), (A.9)

~ey · ~et T t(kx,ky) = −kykzAΠe(kx,ky) + ωµkxAΠm(kx,ky). (A.10)

Somit lassen sich die Spektralfunktionen der Hertzschen Potenziale in Abhängigkeit von
T t angeben:

AΠe(kx,ky) = −(kx~ex + ky~ey) · ~et
kz
(
k2
x + k2

y

) T t(kx,ky), (A.11)

AΠm(kx,ky) =
(kx~ey − ky~ex) · ~et
ωµ
(
k2
x + k2

y

) T t(kx,ky). (A.12)

Für die elektrische und magnetische Feldstärke folgt weiter:

~E =

∞∫

−∞
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−∞

(
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und
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(A.14)

Diese Ausdrücke finden sich in einer kompakteren Operatorschreibweise in (2.27) und (2.28)
wieder.

A.1.2. Feldbeschreibung des planaren Gaußstrahls

Die Modellierung der Einkopplung in den planaren Schichtwellenleiter erfordert analog zur
Beschreibung der Moden im Kapitel 3.1.3 eine Quelle, deren Feldgrößen unabhängig von
einer transversalen Koordinate sind, hier der y-Koordinate.

Die Einhüllende u des planaren Gaußstrahls ist durch

u(x,z) =

√
w0

w(z)
exp

(
− x2

w2(z)

)
exp

(
−jk x2

2R(z)

)
exp
(
j 1

2
arctan(z/z0)

)
(A.15)

gegeben, vgl. (2.39). Darin sind w0, w(z) und R(z) unverändert definiert durch (2.40).
Entsprechend ändern sich auch die Ausbreitungseigenschaften des planaren Gaußstrahls
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im Vergleich zum dreidimensionalen Gaußstrahl im Wesentlichen nicht. Jedoch ist die
innerhalb des Strahlradius w(z) transportierte Leistung mit über 95% der Gesamtleistung
deutlich größer.

Es ist sinnvoll, explizit zwischen einem transversalelektrischen und einem transversalma-
gnetischen Strahl zu unterscheiden:

TE: ~H(x,z) = −E0

Z

(
~ex −

x

z + jz0

~ez

)
u(x,z) exp(−jkz), (A.16)

~E(x,z) = E0~ey u(x,z) exp(−jkz), (A.17)

TM: ~H(x,z) =
E0

Z
~eyu(x,z) exp(−jkz), (A.18)

~E(x,z) = E0

(
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x

z + jz0

~ez

)
u(x,z) exp(−jkz). (A.19)

Die Feldgrößen werden in den Simulationen dieser Arbeit hinsichtlich der transportier-
ten Leistung normiert. Der Leistungstransport in z-Richtung pro Längenabschnitt ∆y ist
gegeben durch

P
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Um analog zur Beschreibung im Kapitel 2.4.3 ein strahlenoptisches Modell des planaren
Gaußstrahls abzuleiten, muss der Leistungsfluss in einem Längenabschnitt ∆x bestimmt
werden, mit dem Ergebnis
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Der Aufpunkt eines Strahls ist nun gegeben durch

x̃m =
(
m+ 1

2

)
∆x mit m ∈ {−M/2, . . . ,− 2,− 1,0,1,2, . . . ,M/2− 1}. (A.25)

Die Anzahl M der angesetzten Strahlen ist somit gerade und analog zu (2.125) gilt

M

2
=

2,5w(z)

∆x
. (A.26)
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A.2. Leistungstransport im optischen Wellenleiter

Die folgende Darstellung soll nur einen Überblick über den Implementierungsaufwand ver-
schaffen und es werden daher nur die geführten Moden explizit berücksichtigt.

A.2.1. Schichtwellenleiter

Die Bestimmung des Leistungstransports in Ausbreitungsrichtung im zeitlichen Mittel er-
folgt durch Integration der z-Komponente des Poyntingvektors. Dieses Integral ist durch
(3.23) gegeben

P = ∆y
<{kz}
2ωµ

∫

z=0

|Ey(x)|2 dx. (A.27)

Darin ist die elektrische Feldstärke der TE-Moden gegeben durch (3.14)

Ey(x) =





− sinh
(
kx3(x− d

2
− a3)

)
/ sinh(kx3a3) für d

2
<x< d

2
+a3

cos
(
kx1(x− d

2
)
)

+ A1 sin
(
kx1(x− d

2
)
)

für − d
2
<x< d

2

A3 sinh
(
kx2(x+ d

2
+ a2)

)
/ sinh(kx2a2) für −a2− d

2
<x< −d

2

. (A.28)

Die Integrationen erstrecken sich über insgesamt fünf Teilintegrationen mit dem Ergebnis
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<{kz}
4ωµ
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Darin sind:
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A.2.2. Kreiszylindrische Faser

Die Integration des Poyntingvektors (3.52) über die Querschnittsfläche der Faser lässt sich
aufteilen in Integrationen über die Kernfläche (P 1) und über die Mantelfläche (P 2). Die
Gesamtleistung ergibt sich als Summe beider Anteile

P = P 1 + P 2. (A.35)

Im Kernbereich 0 ≤ % < rd gilt B21 = A4B11. Zudem ist die Funktion B11 mit der
Bedingung (3.8) stets reellwertig. Nach der elementar durchführbaren Integration in ϕ-
Richtung verbleibt das Integral1
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(A.36)

Der Ausdruck ist bereits so umgeformt worden, dass nach Einsetzen von B11 die Bezie-
hungen (A.82), (A.83) und (A.87) direkt angewendet werden können. Es folgt:
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(A.37)

Das Integral kann nun mit Hilfe von (A.100) gelöst werden, mit dem Ergebnis
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(A.38)

1Da explizit nur geführte Moden berücksichtigt werden, wird auf eine Darstellung des Realteiloperators
verzichtet.
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Für die Integration über die Mantelfläche rd ≤ % < rs werden die Konstanten A2 und A3

sowie A5 und A6 zugunsten einer kompakten Schreibweise gemäß

Ã2 = A2/Im(k%2rd), (A.39)

Ã3 = A3/Km(k%2rd), (A.40)

Ã5 = A5/
(
A4Im(k%2rd)

)
, (A.41)

Ã6 = A6/
(
A4Km(k%2rd)

)
(A.42)

substituiert. Diese neuen Konstanten sind zudem auch im Fall evaneszenter Moden stets
reellwertig. Eingesetzt in (3.52) ergibt sich nach Integration in ϕ-Richtung der folgende
Integralausdruck:
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(A.43)

Das Argument der Besselfunktionen ist stets gleich k%2% und wurde daher nicht dargestellt.
Des Weiteren wurde der Ausdruck so umgeformt, dass die Beziehungen (A.90), (A.91) und
(A.92) direkt angewendet werden können. Es folgt
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2 + ωµk∗z |A4|2Ã2

5

) 1

2

(
I2
m−1 + I2

m+1

)

−
(

2ωε2kzÃ2Ã3 + 2ωµk∗z |A4|2Ã5Ã6

) 1

2
(Im−1Km−1 + Im+1Km+1)

+
(
ωε2kzÃ

2
3 + ωµk∗z |A4|2Ã2

6

) 1

2

(
K2
m−1 +K2

m+1

)

+
(
|kz|2A∗4 + k2

2A4

)
(

m

k%2%

(
2Ã2Ã5I

′
mIm + 2Ã3Ã6K

′
mKm

)

−
(
Ã3Ã5 + Ã2Ã6

)
(Im−1Km−1 − Im+1Km+1)

)]
% d%.

(A.44)
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Die Integrationen können mit Hilfe von (A.103) gelöst werden, mit dem Ergebnis

P 2 =
π

8k2
%2

[(
ω
(
ε2kzÃ

2
2 + µk∗z |A4|2Ã2

5

) (
I2
m−1 + I2

m+1 + Im
(
Im−2 + Im+2

))

+ ω
(
ε2kzÃ

2
3 + µk∗z |A4|2Ã2

6

) (
K2
m−1 +K2

m+1 +Km

(
Km−2 +Km+2

))

− (D + E) (Im−1Km−1 + Im−2Km + ImKm−2)

− (D − E) (+Im+1Km+1 + ImKm+2 + Im+2Km)

)
%2

+
(
|kz|2A∗4 + k2

2A4

) 4m

k2
%2

(
Ã2Ã5I

2
m + Ã3Ã6K

2
m

)]rs

rd

.

(A.45)

Darin sind
D = ω

(
ε2kzÃ2Ã3 + µk∗z |A4|2Ã5Ã6

)

und
E =

(
|kz|2A∗4 + k2

2A4

) (
Ã3Ã5 + Ã2Ã6

)
.

Die Integralgrenzen wurden zugunsten einer kompakteren Darstellung nicht eingesetzt. Im
Bereich der Strahlungsmoden ist k%2 imaginär und es empfiehlt sich, bereits im Ansatz
die Besselfunktionen gemäß (3.49) und (3.50) zu substituieren. Die Integration kann dann
analog durchgeführt werden, jedoch mit Änderungen in den einzelnen Vorzeichen.

Im Fall evaneszenter Moden sind kz und damit auch A4 rein imaginär. Bedingt durch die
dann erforderliche Realteilbildung ist die im zeitlichen Mittel transportierte Leistung des
einzelnen evaneszenten Modes wie erwartet gleich Null.
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A.3. Überlappintegrale abrupter Wellenleiterübergänge

Wie schon im vorherigen Abschnitt werden in der folgenden Beschreibung explizit nur
geführte Moden berücksichtigt.

A.3.1. Schichtwellenleiter

Im planaren Modell des Schichtwellenleiters muss gemäß (4.17) ein Überlappintegral der
Form

Q(lr)
µν =

kzµ
ωµ

∆y

∫

Gs

E (l)
yν(x)

{
E (r)
yµ (x)

}∗ dx (A.46)

gelöst werden. Darin wird das rechtsseitige Feld durch einen Mode des Schichtwellenleiters
beschrieben (3.14):

E (r)
yµ (x) =





− sinh
(
kx3µ(x− d

2
− a3)

)
/ sinh(kx3µa3) für d

2
<x< d

2
+a3

cos
(
kx1µ(x− d

2
)
)

+ A1 sin
(
kx1µ(x− d

2
)
)

für − d
2
<x< d

2

A3 sinh
(
kx2µ(x+ d

2
+ a2)

)
/ sinh(kx2µa2) für −a2− d

2
<x< −d

2

. (A.47)

Das linksseitige Feld des Modes der Parallelplattenleitung ist gegeben durch (3.12):

E (l)
xν(x,z) = sin(kxν(x− d

2
− a3)). (A.48)

Zur Bestimmung des Überlappintegrals sind vier Teilintegrationen erforderlich, mit dem
Ergebnis

Q(lr)
µν =

kzµ
ωµ

∆y

(
− I1

sinh(kx3µa3)
+ I2 + A1I3 +

A3I4

sinh(kx2µa2)

)
. (A.49)

Darin sind:

I1 =

∫ d
2

+a3

d
2

sinh
(
kx3µ(x− d

2
− a3)

)
sin(kxν(x− d

2
− a3)) dx =

1

k2
x3µ + k2

xν

(
kx3µ cosh

(
kx3µa3

)
sin(kxνa3)− kxν sinh

(
kx3µa3

)
cos(kxνa3)

)
(A.50)

I2 =

∫ +
d
2

−d
2

cos
(
kx1µ(x− d

2
)
)

sin(kxν(x− d
2
− a3)) dx =

−1

2

(
cos
(
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)

kx1µ − kxν
+

cos
(
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)

kx1µ + kxν

)
+

1

2

(
cos
(
kx1µd− kxν(d+ a3)

)

kx1µ − kxν
+

cos
(
kx1µd+ kxν(d+ a3)

)

kx1µ + kxν

)

(A.51)
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I3 =

∫ +
d
2

−d
2

sin
(
kx1µ(x− d

2
)
)

sin(kxν(x− d
2
− a3)) dx =

1

2

(
sin
(
kxνa3

)

kx1µ − kxν
+

sin
(
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)
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)
+

1

2

(
sin
(
kx1µd− kxν(d+ a3)

)
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(
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)
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(A.52)

I4 =

∫ −d
2

−d
2
−a2

sinh
(
kx2µ(x+ d

2
+ a2)

)
sin(kxν(x− d

2
− a3)) dx =

− 1

k2
x2µ + k2

xν

(
kx2µ cosh

(
kx2µa2

)
sin(kxν(d+ a3)) + kxν sinh

(
kx2µa2

)
cos(kxν(d+ a3))

)

(A.53)

A.3.2. Kreiszylindrische Faser

Das Überlappintegral zwischen Rundhohlleitermode und Fasermode ist durch (4.19) gege-
ben und nachfolgend leicht umgeformt aufgeführt:

Q(lr)
µν = −ωµ0

k2
%ν

π

k2
i − k2

zµ

rs∫

0

(
ωεi

(
m

%
Jm(k%ν%)B′∗1i(%) +

m

%
k%νJ

′
m(k%ν%)B∗1i(%)

)

+ k∗zµ

(
m2

%2
Jm(k%ν%)B∗2i(%) + k%νJ

′
m(k%ν%)B′∗2i(%)

))
% d%. (A.54)

Anteilig wird zunächst die Integration über den Faserkern betrachtet. Werden die gemäß
(3.33) definierten Ausdrücke B11 und B21 eingesetzt, lässt sich der Ausdruck

Q
(lr)
µν1 = −ωµ0

k%ν

π

k%1µ

1

Jm(k%1rd)

rd∫

0

(
ωε1

(
m
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Jm(k%ν%)J ′m(k%1µ%) +

m
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J ′m(k%ν%)Jm(k%1µ%)

)

+ k∗zµA
∗
4

(
m2

k%νk%1µ%2
Jm(k%ν%)Jm(k%1µ%) + J ′m(k%ν%)J ′m(k%1µ%)

))
% d% (A.55)

ableiten. Dieser Ausdruck vereinfacht sich mit Hilfe von (A.88) und (A.89) zu

Q
(lr)
µν1 = −ωµ0

k%ν

π

k%1µ

1

Jm(k%1rd)

1

2

rd∫

0

(
(ωε1 + k∗zµA

∗
4)Jm−1(k%ν%)Jm−1(k%1µ%)

− (ωε1 − k∗zµA∗4)Jm+1(k%ν%)Jm+1(k%1µ%)

)
% d%. (A.56)
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In dieser Schreibweise kann die Integration mit Hilfe von (A.101) durchgeführt werden,
mit dem Ergebnis

Q
(lr)
µν1 = − πωµ0

2k%νk%1µ

1

Jm(k%1rd)

rd
k2
%ν − k2

%1µ(
(ωε1 + k∗zµA

∗
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− (ωε1 − k∗zµA∗4) [−k%νJm(k%νrd)Jm+1(k%1µrd) + k%1µJm+1(k%νrd)Jm(k%1µrd)]

)
. (A.57)

Die Integration über den Querschnitt des Fasermantels erfolgt in analoger Schrittfolge.
Werden die gemäß (3.34) definierten Ausdrücke B12 und B22 eingesetzt, lässt sich der
Ausdruck
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% d% (A.58)

ableiten. Nach Umformungen mit Hilfe von (A.93) und (A.94) resultiert
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% d%. (A.59)

Schließlich können die Integrationen durch (A.104) und (A.105) gelöst werden, mit dem
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Ergebnis
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(A.60)

Wiederum wurden der Übersichtlichkeit wegen die Integrationsgrenzen nicht eingesetzt.

Der Wert des Überlappintegrals ergibt sich aus der Summe

Q(lr)
µν = Q

(lr)
µν1 +Q

(lr)
µν2. (A.61)



164 Anhang

A.4. Ergänzung zum Kapitel 4.4.4 für die
Mantelbrechzahl n2 = 1,56

Die Untersuchungen zur Koppeleffizienz bei gleichmäßiger Verkleinerung des Kern- und des
Strahldurchmessers im Kapitel 4.4.4 beschränken sich auf Wellenleiter mit der numerischen
Apertur NA = 0,25 (n2 = 1,55). Obwohl dieser Wert im Kontext der EOPCB-Technologie
üblich ist, lässt sich nicht gänzlich auszuschließen, dass in zukünftigen Anwendungen auch
Wellenleiter mit kleinerer NA eingesetzt werden. Aus diesem Grund wurden die Simu-
lationen des Kapitels 4.4.4 mit verkleinerter Mantelbrechzahl n2 = 1,56 wiederholt. Die
Gesamtanzahl geführter Fasermoden wird damit gemäß Tabelle 4.1 etwa halbiert.

Zunächst gilt es wiederum sicher zu stellen, dass die Koppeleffizienz bei gleichmäßiger
Verkleinerung des Kern- und des Strahldurchmessers nicht zu stark variiert. Analog zur
Abbildung 4.5, welche die Ergebnisse für n2 = 1,55 darstellt, zeigt Abbildung A.1 die
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Abbildung A.1.: Die Koppeleffizienz bei gleichmäßiger Verkleinerung des Kerndurchmes-
sers d und des Strahldurchmessers b. (a),(c): in Abhängigkeit des Einfalls-
winkels ϑ. (b),(d): in Abhängigkeit der lateralen Verschiebung h.
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Ergebnisse für n2 = 1,56. Wie zuvor lässt sich die gesamte Anordnung weitestgehend
skalieren, mit den bereits genannten Einschränkungen.

Bevor die Entwicklung des Fehlers im strahlenoptischen Modell analog zum Kapitel 4.4.4
untersucht wird, soll kurz die Erwartungshaltung rekapituliert werden. Die Abbildun-
gen 4.17b und 4.17d zeigen bereits allgemeine Ergebnisse für unterschiedliche NA eines
Wellenleiters mit dem Durchmesser d = 70 µm. Insbesondere für sehr kleine NA weisen die
Graphen der wellentheoretischen Simulation deutliche lokale Oszillationen auf, die in kei-
nem Fall von einem strahlenoptischen Modell nachgebildet werden können. Infolgedessen
ist auch durch die Berücksichtigung der Goos-Hänchen-Verschiebung keine Verbesserung
zu erwarten, da die strahlenoptisch errechnete Koppeleffizienz in einigen Fällen deutlich
größere Werte annimmt als die wellentheoretische Referenz. Für n2 = 1,56 zeigt Abbil-
dung 4.17b jedoch noch eine gute Übereinstimmung auf, so dass dieser Fall hier noch
einmal näher untersucht wird.

Abbildung A.2 zeigt die Ergebnisse für das Verhältnis Kerndurchmesser zu Strahldurch-
messer gleich d/b = 1,5. Alle weiteren Parameter sind analog zu denen in Abbildung 4.20
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Abbildung A.2.: Relative Abweichung δr für d/b = 1,5. Die Legende in Abbildung (b) ist
für alle Abbildungen gültig.
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definiert. Der relative Fehler δr nimmt im Vergleich zu Abbildung 4.20 insgesamt deutlich
größere Werte an, bleibt jedoch für d > 30 µm stets kleiner als 0,006 und steigt auch für klei-
ne Kerndurchmesser nur mäßig an. Die Berücksichtigung der Goos-Hänchen-Verschiebung
verspricht nur im Fall der lateralen Verschiebung h der Strahlachse eine leichte Verbes-
serung im Mittel. Insbesondere für große Einfallswinkel ϑ zeigt sich jedoch eine deutliche
Erhöhung der Abweichung. Der Fehler im strahlenoptischen Modell ist jedoch insgesamt
im Mittel deutlich kleiner als 1% und damit in einem akzeptablen Bereich. Es muss zudem
beachtet werden, dass eine Verdrehung der Strahlachse um 5◦ aufgrund der kleineren NA
bereits einen Grenzwert darstellt. Größere Einfallswinkel führen bereits zu einer deutlichen
Abnahme der Koppeleffizienz, vgl. Abbildung A.1a.

Die Ergebnisse für das Verhältnis Kerndurchmesser zu Strahldurchmesser gleich d/b = 1,0
sind in Abbildung A.3 dargestellt. Sie korrespondieren hinsichtlich der verbleibenden Pa-
rameter mit denen in Abbildung 4.21 und auch der relative Fehler im strahlenoptischen
Modell bewegt sich in derselben Größenordnung. Wie zuvor für n2 = 1,55 führt die Be-
rücksichtigung der Goos-Hänchen-Verschiebung zu einer deutlichen Reduktion des mittle-
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Abbildung A.3.: Relative Abweichung δr für d/b = 1,0. Die Legende in Abbildung (b) ist
für alle Abbildungen gültig.
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ren Fehlers. Lediglich für große Einfallswinkel kommt es wiederum zu einem Anstieg. Für
Einfallswinkel ϑ < 3◦ und insbesondere bei ausschließlicher Verschiebung der Strahlach-
se nimmt die Abweichung selbst für den kleinsten Kerndurchmesser einen Maximalwert
δr < 0,015 an. Im Mittel bleibt sie deutlich darunter, so dass das getroffene Fazit für
die NA = 0,25 hinsichtlich der Anwendbarkeit strahlenoptischer Verfahren auch für die
NA = 0,177 (n2 = 1,56) seine Gültigkeit behält.
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A.5. Mathematische Hilfsmittel

A.5.1. Grundlagen

Zahlenmengen

Es werden die Mengen

N natürliche Zahlen: 0,1,2,3, . . .

Z ganze Zahlen: . . . ,−2,−1,0,1,2, . . .

R reelle Zahlen: z.B. x = 1/4 (rationale Zahl) oder y =
√

2 (irrationale Zahl)

C komplexe Zahlen: z = x+ jy

unterschieden.

In der obigen Beschreibung wird der Menge der natürlichen Zahlen auch die Null zuge-
ordnet. Es ergibt sich aus dem Kontext, ob diese Zuordnung sinnvoll ist. Beispielsweise
geht der TEM-Mode der Parallelplattenleitung für ν = 0 aus den TM-Moden hervor. Für
TE-Moden verbleibt mit ν = 0 dagegen nur die triviale Nulllösung, vgl. (3.12).

Komplexe Konjugation

Die Konjugation einer komplexen Größe wird durch

z∗ = x− jy (A.62)

gekennzeichnet. Daraus abgeleitet folgt

<{z} = 1
2
(z + z∗) = x und ={z} = 1

2j
(z − z∗) = y. (A.63)

In Matrixgleichungen tritt zusätzlich zur Konjugation oft gleichzeitig eine Transposition
auf. Man erhält so die adjungierte Matrix

QH = (Q∗)T. (A.64)

Elementweise gilt
(Qνµ)H = Q∗µν . (A.65)

Operatoren

Die folgenden Operatoren werden exemplarisch in kartesischen Koordinaten angegebenen.
Für krummlinige Koordinaten empfiehlt sich u.a. [8, 50].

Nabla-Operator:

∇ := ~ex
∂

∂x
+ ~ey

∂

∂y
+ ~ez

∂

∂z
(A.66)



A.5. Mathematische Hilfsmittel 169

Gradient, Divergenz und Rotation:

∇U = gradU = ~ex
∂U

∂x
+ ~ey

∂U

∂y
+ ~ez

∂U

∂z
(A.67)

∇ · ~A = div ~A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

(A.68)

∇× ~A = rot ~A = ~ex

(
∂Az
∂y
− ∂Ay

∂z

)
+ ~ey

(
∂Ax
∂z
− ∂Az

∂x

)
+ ~ez

(
∂Ay
∂x
− ∂Ax

∂y

)
(A.69)

Laplace-Operator:

∆U = ∇ · ∇U =
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
(A.70)

Vektoridentität:
∇×∇× ~A = ∇(∇ · ~A)−∆ ~A (A.71)

In vielen Problemstellungen dieser Arbeit sind die verbleibenden Größen lediglich abhängig
von den transversalen Koordinaten

~rt = ~exx+ ~eyy. (A.72)

Analog dazu wird der transversale Nabla-Operator

∇t := ~ex
∂

∂x
+ ~ey

∂

∂y
(A.73)

definiert und in den Beziehungen (A.67) - (A.70) verwendet.

Die Fouriertransformation

Die Fouriertransformierte des Signals f(t) ist gegeben durch

F (ω) =

∞∫

−∞

f(t) exp(−jωt) dω. (A.74)

Es folgt für die Rücktransformation

f(t) =
1

2π

∞∫

−∞

F (ω) exp(jωt) dω. (A.75)
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Funktionsdefinitionen

Sprungfunktion: σ(t) =

{
1, 0 ≤ t

0, t < 0
(A.76)

Kronecker-Delta: δµν =

{
1, µ = ν

0, µ 6= ν
(A.77)

Ausblendeigenschaft der Dirac-Distribution:
∫ ∞

−∞
δ(x− x0)f(x) dx = f(x0) (A.78)

A.5.2. Besselfunktionen

Im Folgenden werden die Besselfunktionen ganzzahliger Ordnung vorgestellt, wie sie für
die Beschreibung der Fasermoden benötigt werden. Viele der Zusammenhänge behalten
jedoch auch im Fall einer beliebigen reell- oder komplexwertigen Ordnung ihre Gültigkeit.
Für eine umfassende Einführung sei auf [2] und [74] verwiesen.

Einteilung

Es wird unterschieden zwischen

Jn(z), Nn(z), gewöhnliche Besselfunktionen (1. und 2. Art),

In(z), Kn(z), modifizierte Besselfunktionen (1. und 2. Art),

H
(1)
n (z), H

(2)
n (z), Hankelfunktionen (Besselfunktionen dritter Art),

mit z ∈ C und hier n ∈ N.

Die gewöhnlichen Besselfunktionen und die Hankelfunktionen sind über

H(1)
n (z) = Jn(z) + jNn(z) , H(2)

n (z) = Jn(x)− jNn(z) (A.79)

miteinander verknüpft. Darüber hinaus gilt

In(z) = (−j)nJn(jz) , Kn(z) = jn+1π

2
H(1)
n (jz). (A.80)

Nachfolgend steht Ψn und Ψ̃n für eine beliebige gewöhnliche Besselfunktionen Jn oder Nn

und Υn für die modifizierte Besselfunktion In oder (−1)nKn.
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Abbildung A.4.: Funktionsverläufe gewöhnlicher Besselfunktionen.

Negative Ordnung

Ψ−n(z) = (−1)nΨn(z) , Υ−n(z) = Υn(z) (A.81)

Rekursion und Differenziation

Ψn−1(z) + Ψn+1(z) =
2n

z
Ψn(z) , Υn−1(z)−Υn+1(z) =

2n

z
Υn(z) , (A.82)

Ψn−1(z)−Ψn+1(z) = 2Ψ′n(z) , Υn−1(z) + Υn+1(z) = 2Υ′n(z) , (A.83)

Ψ′n(z) = Ψn−1(z)− n

z
Ψn(z) , Υ′n(z) = Υn−1(z)− n

z
Υn(z) , (A.84)

Ψ′n(z) = −Ψn+1(z) +
n

z
Ψn(z) , Υ′n(z) = Υn+1(z) +

n

z
Υn(z) , (A.85)

Ψ′0(z) = −Ψ1(z) , I ′0(z) = I1(z) , K ′0(z) = −K1(z) . (A.86)

Weitere abgeleitete Zusammenhänge

Ψ′2n (z) +
n2

z2
Ψ2
n(z) =

1

2

(
Ψ2
n−1(z) + Ψ2

n+1(z)
)

(A.87)

Ψ′n(z)Ψ̃′n(z̃) +
n2

zz̃
Ψn(z)Ψ̃n(z̃) =

1

2

(
Ψn−1(z)Ψ̃n−1(z̃) + Ψn+1(z)Ψ̃n+1(z̃)

)
(A.88)

n

z
Ψn(z)Ψ̃′n(z̃) +

n

z̃
Ψ′n(z)Ψ̃n(z̃) =

1

2

(
Ψn−1(z)Ψ̃n−1(z̃)−Ψn+1(z)Ψ̃n+1(z̃)

)
(A.89)

Υ′2n (z) +
n2

z2
Υ2
n(z) =

1

2

(
Υ2
n−1(z) + Υ2

n+1(z)
)

(A.90)

I ′n(z)K ′n(z) +
n2

z2
In(z)Kn(z) = −1

2

(
In−1(z)Kn−1(z) + In+1(z)Kn+1(z)

)
(A.91)

n

z

(
In(z)K ′n(z) + I ′n(z)Kn(z)

)
= −1

2

(
In−1(z)Kn−1(z)− In+1(z)Kn+1(z)

)
(A.92)
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Υ′n(z)Ψ′n(z̃) +
n2

zz̃
Υn(z)Ψn(z̃) =

1

2

(
Υn−1(z)Ψn−1(z̃)−Υn+1(z)Ψn+1(z̃)

)
(A.93)

n

z
Υn(z)Ψ′n(z̃) +

n

z̃
Υ′n(z)Ψn(z̃) =

1

2

(
Υn−1(z)Ψn−1(z̃) + Υn+1(z)Ψn+1(z̃)

)
(A.94)

A.5.3. Integrale

An dieser Stelle sind einige für diese Arbeit wichtige Integralausdrücke aufgelistet. Um-
fangreiche Integraltafeln befinden sich z.B. in [20].

Integrale über die kreiszylindrische Koordinate ϕ

2π∫

0

exp
(
∓j(x cos(ϕ) + y sin(ϕ))

)
dϕ = 2πJ0(

√
x2 + y2), (A.95)

π∫

−π

cos(ϕ) cos(r% cos(ϕ)) dϕ = 0 (A.96)

π∫

−π

cos(ϕ) sin(r% cos(ϕ)) dϕ = 2πJ1(r%) (A.97)

π∫

−π

sin(ϕ) cos(r% cos(ϕ)) dϕ = 0 (A.98)

π∫

−π

sin(ϕ) sin(r% cos(ϕ)) dϕ = 0 (A.99)

Unbestimmte Integrale mit Besselfunktionen

Im Folgenden ist ζ eine beliebige Besselfunktion, Ψ und Ψ̃ sind beliebige gewöhnliche
Besselfunktionen und Φ bzw. Φ̃ sind beliebige modifizierte Besselfunktionen. Weiter gilt
hier α,β ∈ R.

∫
ζ2
n(αz)z dz =

z2

2

(
ζ2
n(αz)− ζn−1(αz)ζn+1(αz)

)
(A.100)
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∫
Ψn(αz)Ψ̃n(βz)z dz =

z
(
−αΨn−1(αz)Ψ̃n(βz) + βΨn(αz)Ψ̃n−1(βz)

)

α2 − β2
(A.101)

∫
Ψn(αz)Ψ̃n(αz)z dz =

z2

4

(
2Ψn(αz)Ψ̃n(αz)−Ψn−1(αz)Ψ̃n+1(αz)

−Ψn+1(αz)Ψ̃n−1(αz)
) (A.102)

∫
Φn(αz)Φ̃n(αz)z dz =

z2

4

(
2Φn(αz)Φ̃n(αz) + Φn−1(αz)Φ̃n+1(αz)

+ Φn+1(αz)Φ̃n−1(αz)
) (A.103)

∫
Ψn(αz)In(βz)z dz =

−z
(
αΨn−1(αz)In(βz)− βΨn(αz)In−1(βz)

)

α2 + β2
(A.104)

∫
Ψn(αz)Kn(βz)z dz =

−z
(
αΨn−1(αz)Kn(βz) + βΨn(αz)Kn−1(βz)

)

α2 + β2
(A.105)
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Abkürzungen, Konventionen und
verwendete Symbole

Abkürzungen

Allgemein:

Cut-Off Grenze des Bereichs der geführten Moden; definiert auf Seite 35.
EOPCB Elektro-Optische Leiterplatte

(Englisch: Electro-Optical Printed Circuit Board).
PEC Perfekter elektrischer Leiter (Englisch: Perfect Electric Conductor).
VCSEL Halbleiterlaser, der senkrecht zur Ebene des Halbleitermaterials ab-

strahlt (Englisch: Vertical-Cavity Surface-Emitting Laser).
TE/M Transversal Elektrisch/Magnetisch

Strahlenoptische Methoden:

STRAHL Klassische strahlenoptische Vorgehensweise ohne Zusätze.
STRAHL GH Berücksichtigung der Goos-Hänchen-Verschiebung.
STRAHL CGH Berücksichtigung der minimalen Goos-Hänchen-Verschiebung.
STRAHL TV Berücksichtigung von Tunnelverlusten (gekrümmte Grenzflächen).
STRAHL TV CGH Kombination der Methoden STRAHL TV und STRAHL CGH.

Wellentheoretische Methoden:
WELLE Allgemeiner Ansatz auf Basis der exakten Lösung.
WELLE MA Näherungslösung von Marcatili für Rechteck-Wellenleiter.
QGM Näherungslösung für gekrümmteWellenleiter auf Basis quasigeführ-

ter Moden.

Allgemeine Konventionen

• Vektoren des dreidimensionalen Raums werden durch einen Pfeil gekennzeichnet,
z.B. ~E.

• Vektoren und Matrizen des allgemeinen mehrdimensionalen Raums werden fett dar-
gestellt, z.B. Q.

• Feldgrößen im Frequenzbereich werden durch einen Unterstrich gekennzeichnet, z.B.
E. Ggf. wird auf diese Kennzeichnung verzichtet, sofern sich die Größen eindeutig
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auf den Frequenzbereich beziehen.

• Die Abhängigkeiten der Feldgrößen werden im Allgemeinen nur einmalig bei der Defi-
nition angegeben. So wird z.B. die Frequenzabhängigkeit der komplexen Amplituden
nur initial in Kapitel 2.1 angegeben.

• Einheitsvektoren werden durch ~e gekennzeichnet. Ein zusätzlicher Index kennzeich-
net:
x,y,z kartesisches Koordinatensystem
%,ϕ,z kreiszylindrisches Koordinatensystem
k Komponente in Ausbreitungsrichtung einer Welle
t Komponente transversal zur Ausbreitungsrichtung einer Welle
s Ausbreitungsrichtung eines Strahls
g Normalenvektor einer Grenzfläche

• Analog zur Indizierung der Einheitsvektoren wird auf die Komponenten eines Vektors
zurückgegriffen, z.B. Ex = ~ex · ~E.

• Der Index i kennzeichnet stets Größen, die ausschließlich in einem bestimmten Raum-
teil gültig sind.

• Indices können kombiniert werden, z.B. kx2 ist die x-Komponente des Vektors ~k im
Raumteil 2.

Nachfolgend werden die wichtigsten Formelzeichen aufgelistet, die von zentraler Bedeutung
sind oder kapitelübergreifend verwendet werden. Zusätzlich wird der Ort des erstmaligen
Auftretens angegeben. Nichtaufgelistete Symbole besitzen nur lokale Gültigkeit und erge-
ben sich aus dem Kontext.

Lateinische Formelzeichen

A{1,2,...,6} Konstanten im Separationsansatz zur Herleitung der Modenspektren,
Glg. (3.14)

a, a{2,3} Mantelschichtdicke des Schichtwellenleiters, Abb. 3.2b
aν Gewichtungsfunktion des Modenspektrums des gekrümmten Wellenleiters,

Glg. (5.36) bzw. (5.44)
~B,B Magnetische Flussdichte, Glg. (2.1b)
b Durchmesser des Gaußstrahls, b = 2w, Glg. (2.42)
Cν Amplitude eines Modes, Glg. (2.50)
c0 Lichtgeschwindigkeit im Vakuum, Seite 32
c Lichtgeschwindigkeit im Medium, Seite 32
cn Koeffizienten in der Fourierreihe des Modulationssignals, Glg. (5.2)
c Vektor mit Einträgen Cν , Glg. (2.83)
~D,D Elektrische Flussdichte, Glg. (2.1a)
d Durchmesser des Faserkerns bzw. Kerndicke des Schichtwellenleiters, Abb. 3.2b
~E,E Elektrische Feldstärke, Glg. (2.1c)
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E0 Konstante Amplitude einer Welle, Glg. (2.17)
fm Fehlermaß, Kontrolle der Randbedingungen, Glg. (4.30)
fp Fehlermaß, Einfluss der paraxialen Näherung, Glg. (4.26)
fw Fehlermaß, Einfluss des leitenden Schirms, Glg. (4.28)
f Frequenzvariable, Abb. (5.4)
G(ω) Frequenzspektrum von g(t)
g(t) periodisches Modulationssignal, Glg. (5.2)
~H,H Magnetische Feldstärke, Glg. (2.1d)
H

(1)
m Hankelfunktion 1.Art der Ordnung m, Glg. (5.33)

H
(2)
m Hankelfunktion 2.Art der Ordnung m, Glg. (5.33)

H(f) Übertragungsfunktion des längshomogenen Wellenleiters, Glg. (5.22)
Hl(f) Übertragungsfunktion des linearisierten Systems, Glg. (5.29)
h laterale Verschiebung des Gaußstrahls, Abb. 4.1
Im modifizierte Besselfunktion 1. Art der Ordnung m, Glg. (3.28)
Iν modaler Strom, Glg. (2.59)
Iµξ Überlappintegral, Glg. (5.63)
i Vektor mit Einträgen Iν , Glg. (2.73)
~J ,J Elektrische Stromdichte, Glg. (2.1d)
J0 gewöhnliche Besselfunktion 1. Art der Ordnung 0, Glg. (2.31)
J1 gewöhnliche Besselfunktion 1. Art der Ordnung 1, Glg. (2.32)
Jm gewöhnliche Besselfunktion 1. Art der Ordnung m, Glg. (3.27)
j imaginäre Einheit, Glg. (2.3d)
~K Flächenstromdichte, Glg. (2.11b)
Km modifizierte Besselfunktion 2. Art der Ordnung m, Glg. (3.28)
k0 Wellenzahl des Vakuums k = ω

√
ε0µ0, Glg. (2.7)

k charakteristische Größe eines quasigeführten Modes des gekrümmten Wellen-
leiters, k = 1/α, Glg. (5.64)

k spezifische Wellenzahl k = k0
√
εr, Glg. (2.8)

~k Wellenvektor mit |~k| = k, Glg. (2.17)
L Länge eines geraden Wellenleiterelements, Abb. 5.3
M ohne Index: kontextabhängige Summationsgrenze, z.B. Glg. (2.122)
MF maximale azimuthale Modenzahl m der zylindrischen Faser in der noch ein

geführter Mode existiert, Seite 56
m azimuthale Modenzahl, Glg. (3.26)
Nm gewöhnliche Besselfunktion 2. Art der Ordnung m, Glg. (3.27)
NA Numerische Apertur NA =

√
n2

1 − n2
2

N ohne Index: kontextabhängige Summationsgrenze, z.B. Glg. (2.123)
NF Anzahl geführter Moden der kreiszylindrischen Faser, Seite 56
NR Anzahl geführter Moden des rechteckförmigen Wellenleiters, Seite 56
NS Anzahl geführter Moden des Schichtwellenleiters, Seite 56
NW Gesamtanzahl berücksichtigter Moden in einer Rechnung, Glg. (4.4)
n, ni Brechzahl ni =

√
εri, Glg. (2.9); in dieser Arbeit konstant: n1 = 1,57

(Ausnahme Kapitel 5.2.5: Abb. 5.8 und 5.9)
neff effektive Brechzahl neff = kz/k0, Seite 35
P zeitlich gemittelter Leistungsfluss durch eine Fläche z = konstant, Glg. (2.41)
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P
′ zeitlich gemittelter Leistungsfluss pro Längenabschnitt ∆y bzw.∆z, Glg. (5.42)

P
′
νξ Skalarprodukt zur Charakterisierung des Modenspektrums des gekrümmten

Schichtwellenleiters, Glg. (5.52)
PA Ausgangsleistung nach Durchlaufen einer Wellenleiterkrümmung bei auf ein

Watt normierter Eingangsleistung, Abb. 5.10
P ν spezifische geführte Leistung eines Modes, Glg. (2.63)
P v zeitlich gemittelte Verlustleistung, Glg. (2.16)
Pmn Leistung geführt durch einen elementaren Strahl, Glg. (2.127)
PΞ akkumulierte Leistung des Modenspektrums bzw. einer Strahlschar, Glg. (4.29)
pv zeitlich gemittelte Verlustleistungsdichte des elektrischen Feldes, Glg. (2.12)
˜̄p tiefpassgefilterter Leistungsfluss im Wellenleiter, Glg. (5.15)
pn Koeffizienten der Fourierreihe von ˜̄p, Glg. (5.16)
Qν Wert des Skalarprodukts zur Definition der Modenorthogonalität im Fall ver-

lustfreier Materialien; es gilt Qν = 2P ν , Glg. (2.63)
Qνµ Erweiterung des Skalarprodukts Qν zur Berücksichtigung von Moden unter-

schiedlicher Wellenleiter (Koppelkoeffizienten), Glg. (2.69)
Q Matrix mit Inhalten Qνµ, Glg. (2.73)
RF Leistungs-Reflexionsfaktor für ebene Wellen am dielek. Halbraum, Glg. (2.100)
R(%) Funktion im Separationsansatz, Glg. (3.24)
R Krümmungsradius der Phasenfronten des Gaußstrahls auf der Ausbreitungs-

achse, Glg. (2.39)
R mittlerer Radius der Wellenleiterkrümmung, Abb. 5.5
R− Innenradius der Wellenleiterkrümmung, Abb. 5.5
R+ Außenradius der Wellenleiterkrümmung, Abb. 5.5
~r allgemeiner Aufpunkt (Ortsvektor), Glg. (2.1a)
~rt transversaler Ortsvektor ~rt = ~r − ~ezz, Glg. (2.38a)
rd Radius des Faserkerns, Abb. 3.4a
rs Radius des leitenden Schirms, Abb. 3.4b
rF Reflexionsfaktor für ebene Wellen am dielektrischen Halbraum, Glg. (2.95)
~S,S Leistungsflussdichte (Poyntingvektor), Glg. (2.12)
˜̄Sz tiefpassgefilterte z-Komponente der Leistungsflussdichte, Glg. (5.13)
S Hilfsgröße im strahlenoptischen Modell, Glg. (2.87)
Smn Kennzeichnung eines Strahls innerhalb einer Strahlschar, Seite 31
s Durchmesser bzw. Plattenabstand des leitenden Schirms, Abb. 3.2a
~T Spektralfunktion nach der Zerlegung in ebene Wellen, Glg. (2.22)
TF Leistungs-Transmissionsfaktor für ebene Wellen am dielektrischen Halbraum,

Glg. (2.99)
T verallgemeinerter Leistungs-Transmissionsfaktor für den Fall der Totalreflexion

und gekrümmte Grenzflächen, Glg. (2.107)
T Grundperiode der Fouriersumme, Glg. (5.2)
t Zeitvariable, Glg. (2.1a)
tF Transmissionsfaktor für ebene Wellen am dielektrischen Halbraum, Glg. (2.96)
Vν modale Spannung, Glg. (2.58)
v Vektor mit Einträgen Vν , Glg. (2.73)
vgν Gruppengeschwindigkeit des Modes ν, Glg. (5.25)
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u Einhüllende des Gaußstrahls, Glg. (2.35)
w Radius des Gaußstrahls, Glg. (2.39)
w0 minimaler Radius des Gaußstrahls in der Strahltaille, Glg. (2.24)
we zeitlich gemittelte Energiedichte des elektrischen Feldes, Glg. (2.12)
wm zeitlich gemittelte Energiedichte des magnetischen Feldes, Glg. (2.12)
xp Länge eines geraden Wellenleiterelements vor einer Krümmung, Abb. 5.5
xs Eindringtiefe abgeleitet aus der Goos-Hänchen-Verschiebung, Abb. 2.5
xs0 minimale Eindringtiefe abgeleitet aus xs, Glg. (4.32)
Z Wellenwiderstand Z =

√
µ0/ε , Glg. (2.19)

z0 Rayleigh-Länge des Gaußstrahls, Glg. (2.35)
zc Konstante zur Definition einer beliebigen Ebene z = konstant, Glg. (2.62)
ze longitudinale Verschiebung der Taille des Gaußstrahls, Tab. 4.2
zs longitudinale Goos-Hänchen-Verschiebung eines Strahls, Abb. 2.5

Griechische Formelzeichen

α Dämpfungskonstante eines quasigeführten Modes, α = 1/k, Seite 122
βν Charakteristische Größe zur Beschreibung des Modenspektrums des gekrümm-

ten Wellenleiters, Glg. (5.54)
δ Dirac-Distribution, Glg. (5.76)
δµν Kronecker-Delta, Glg. (2.62)
ε0 Permittivität des Vakuums, Glg. (2.2)
εr, εr Relative Permittivität, Glg. (2.2)
η Koppeleffizienz, Glg. (4.24)
Θa lokaler Divergenzwinkel des Gaußstrahls, Glg. (4.3)
Θa0 asymptotischer Divergenzwinkel des Gaußstrahls, Glg. (2.45)
Θc Kritischer Winkel sin(Θc) = NA, Seite 56
ϑ Winkel um den der Gaußstrahl gedreht wird, Abb. 4.1
ϑ Winkel um den eine ebene Welle gedreht wird, Abb. 2.3
ϑc kritischer Winkel bei Verdrehung des Gaußstrahls, Glg. (4.25)
κ Elektrische Leitfähigkeit, Glg. (2.2)
λ Wellenlänge, in dieser Arbeit bei monochromatischer Anregung konstant gleich

850 nm (Ausnahme Kapitel 5.2.5: Abb. 5.8 und 5.9), Glg. (2.48)
µ0 Permeabilität des Vakuums, Glg. (2.2)
µr relative Permeabilität, Glg. (2.2)
ν Modenzahl, Integer in den Kapiteln 2 und 4, komplexwertig im Kapitel 5
νe Eigenwert eines quasigeführten Modes, Tabelle 5.1
νl Eigenwert einer Leckwelle, Tabelle 5.1
% Elektrische Raumladungsdichte, Glg. (2.1a)
%K Radius einer gekrümmten Grenzfläche, Abb. 2.3
σ Flächenladungsdichte, Glg. (2.11c)
Φ(ϕ) Funktion im Separationsansatz, Glg. (3.24)
Ψ skalare Komponente des elektrischen oder magnetischen Feldes, Glg. (2.87)
Ω Grundfrequenz der Fouriersumme, Glg. (5.2)
ω Frequenzvariable (Kreisfrequenz), Glg. (2.3)
ω0 Trägerfrequenz mit λ = 850 nm, Glg. (5.1)
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Operatoren

Siehe auch Anhang A.5.1.

∆ Laplace-Operator, Glg. (2.10)
~L(·) Vektoroperator zur Beschreibung des Maxwellschen Gaußstrahls, Glg. (2.26)
∇ Nabla-Operator, Glg. (2.1)
< Realteil-Operator, <{x+ jy} = x, Glg. (2.16)
= Imaginärteil-Operator, ={x+ jy} = y, Seite 18

Spezielle Indices

Unten:

E,R,T Einfallende, reflektierte oder transmittierte Teilwellen, Abb. 2.3
ν,µ,ξ Modenzahlen, Integer in den Kapiteln 2 und 4, komplexwertig in Kapitel 5,

Glg. (2.50)

Oben:

M Feldgröße des Maxwellschen Gaußstrahls, Glg. (4.26)
P Feldgröße des paraxialen Gaußstrahls, Glg. (4.26)
TE Die elektrische Feldstärke besitzt keine Komponente in Ausbreitungsrichtung,

Glg. (2.99)
TM Die magnetische Feldstärke besitzt keine Komponente in Ausbreitungsrich-

tung, Glg. (2.101)
(b) Quasigeführter Mode des gekrümmten Wellenleiters, Glg. (5.80)
(l) Teilraum linksseitig der Schnittstelle, Glg. (2.68)
(−l),(+l) Teilraum linksseitig der Schnittstelle; Wellenausbreitung in longitudinal nega-

tiver (−l) bzw. positiver (+l) Richtung, Abbildung 2.2
(r) Teilraum rechtsseitig der Schnittstelle, Glg. (2.68)
(−r),(+r) Teilraum rechtseitig der Schnittstelle; Wellenausbreitung in longitudinal nega-

tiver (−r) bzw. positiver (+r) Richtung, Abbildung 2.2
(lr), (rl) Kennzeichnung von Überlappintegralen, Glg. (2.69)

Sonstige

Die nachfolgenden Symbole kennzeichnen Modenfunktionen, welche die Abhängigkeit der
Feldgröße von den jeweils transversalen Koordinaten beschreibt.

~E ,E elektrische Feldstärke des gekrümmten Schichtwellenleiters, Glg. (5.49)
~E ,E elektrische Feldstärke eines geraden Wellenleiters, Glg. (2.50)
~H ,H magnetische Feldstärke des gekrümmten Schichtwellenleiters, Glg. (5.49)
~H,H magnetische Feldstärke eines geraden Wellenleiters, Glg. (2.50)
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