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danken. Darüber hinaus gilt mein Dank meinen Kollegen Dipl.-Ing. Yasin Sönmez, Dipl.-
Ing. Amir Wallrabenstein und Dipl.-Ing. Andrej Hein für die zahlreichen Diskussionen
und die tatkräftige Unterstützung bei der Entstehung dieser Arbeit.

Ein ganz besonderer Dank gilt Frau Dipl. oec. troph. Sabine Panten, die unermüdlich
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7.3. Beschreibung der Simulationsdurchführung . . . . . . . . . . . . . . . . . . 123
7.4. Evaluation des Verfahrens . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4.1. Kanalwellenleiter mit gerader Trajektorie . . . . . . . . . . . . . . . 125
7.4.2. Kanalwellenleiter mit konstant gekrümmter Trajektorie . . . . . . . 130
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Kapitel 1

Einleitung

Die fortschreitende Entwicklung neuer Hard- und Softwareanwendungen führt zu einer
Zunahme der zu verarbeitenden Datenmengen und zu einem stetig wachsenden Bedarf
an Bandbreite. Beispiele für Applikationen sind die Virtualisierung von Computerar-
beitsplätzen, Video-on-demand und Blu-ray Disc1 [49,108]. Es ist schon jetzt abzusehen,
dass sich dieser Trend in Zukunft weiter fortsetzen wird. Um diese Daten effizient verar-
beiten zu können, werden immer leistungsfähigere Systeme der Informations- und Kom-
munikationstechnik benötigt. Die Leistungsfähigkeit dieser Systeme wird im Wesentlichen
von den einzelnen Komponenten und den hochdatenratigen elektrischen Verbindungen zur
Anbindung der Komponenten untereinander bestimmt. Maßgebliche Komponenten sind
die Prozessoren und der Speicher sowie das verbindende Bussystem.

Die Rechenleistung eines Prozessors ist stark an die chip-interne Taktfrequenz geknüpft.
Um diese Rechenleistung unter Beibehaltung der Taktfrequenz weiter zu steigern, beinhal-
ten moderne Prozessoren mehr als einen Prozessorkern. Derzeitige Prozessoren arbeiten
bei einer Taktfrequenz von 3.2 GHz und verwenden zwei bis vier Prozessorkerne [95]. In
Zukunft werden die Taktfrequenz und die Anzahl der Prozessorkerne weiter zunehmen.
Somit steigt auch die zur Verfügung stehende Rechenleistung entsprechend dem Bedarf
weiter an.

Neben den Prozessoren wird die Leistungsfähigkeit der Systeme durch den Datendurchsatz
des Bussystems geprägt. Dieser Datendurchsatz bestimmt sich aus der Busbreite und dem
Bustakt. Um den Datendurchsatz zu steigern, werden mehrere Datenpakete pro Taktzy-
klus gleichzeitig übermittelt. Es ist allerdings schon jetzt abzusehen, dass in Zukunft die
Bussysteme die Leistungsfähigkeit des gesamten Systems beeinträchtigen werden. Zudem
lasten die genannten Mehrkernprozessoren und die zunehmende Speicherbandbreite diese
Bussysteme immer stärker aus [6].

Eine Möglichkeit, die in nationalen und internationalen Forschungs- und Entwicklungs-
projekten verfolgt wird, ist der Einsatz von optischen Verbindungen als Ersatz der hochda-
tenratigen elektrischen Verbindungen [5,32,61,70,71,94]. Um diese Technik kosteneffizient
einzusetzen, wird eine herkömmliche Leiterplatte um eine zusätzliche optische Lage erwei-
tert. Diese optische Lage ist planar und enthält vielmodige rechteckförmige Wellenleiter,
die in einem niederbrechenden Mantelmaterial eingebettet sind.

1Namengebend für dieses Technik ist die verwendete Wellenlänge des Lasers λ = 405nm. Hierbei wird
gewollt von der korrekten Schreibweise blue abgewichen.
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Abb. 1.1.: Skizze einer elektrisch-optischen Leiterplatte

Die Abbildung 1.1 zeigt eine Leiterplatte, die um eine optische Lage erweitert ist. Zu-
sätzlich ist die Einkopplung der emittierten Leistung mit Hilfe eines Spiegels dargestellt.
In der Literatur wurden bereits Systeme vorgestellt, die 10 Gbit/s pro Kanal übertragen
können [35,50]. Als Weiterführung dieses Prinzips existieren Ansätze, um die Kanaldichte
der optischen Lage weiter zu erhöhen. Bei diesen Ansätzen wird eine umfassende La-
ge aus mehreren übereinander liegenden optischen Lagen aufgebaut [38, 40, 52]. Um die
Bandbreite pro Kanal weiter zu steigern, ist in [87] ein Wellenlängenmultiplex-Verfahren
vorgestellt worden. Die optische Lage kann die benötigte Bandbreite zur Verfügung stellen
und somit die hochdatenratigen elektrischen Verbindungen ersetzen.

Alle vorgestellten elektrisch-optischen Verbindungssysteme bestehen aus aktiven Kompo-
nenten für die Signalwandlung [114] und passiven Komponenten für den Signaltransport.
Die Abbildung 1.2 zeigt die zugrunde liegende Struktur dieses Verbindungssystems [4].

Abb. 1.2.: Struktur eines elektrisch-optischen Verbindungssystems

Der dargestellte optische Pfad wird weiter unterteilt in die oben aufgeführten eingebet-
teten Wellenleiter und Bauelemente für die Ein- und Auskopplung. Diese Bauelemente
ermöglichen die optimierte Kopplung zwischen den aktiven Komponenten und den in-
tegrierten Wellenleitern. Sie enthalten sowohl die Strahlformung und -umlenkung, siehe
Abbildung 1.1, als auch die Einkopplung der Leistung in die Wellenleiter.
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1.1. Zielsetzung und Inhalt der Arbeit

Bei der Entwicklung von mechanischen und elektrischen Bauelementen kann unter Kosten-
gesichtspunkten nicht mehr auf die Modellierung und Simulation vor der Herstellung des
Produktes verzichtet werden. Dieses gilt ebenso für das im letzten Abschnitt vorgestellte
elektrisch-optische Verbindungssystem.

Derzeit existieren keine Verfahren, die eine zeitnahe Analyse des Übertragungsverhaltens
des Verbindungssystems ermöglichen. An diesem Punkt setzt diese Arbeit an. Ziel ist
es, Modelle für eine zeiteffiziente Simulation der eingebetteten optischen Wellenleiter zu
entwickeln und die Effizienz der Modelle zu verifizieren. Die Modelle müssen Schnittstellen
zu den Komponenten für die Ein- und Auskopplung sowie den aktiven Bauelementen
bereitstellen, siehe Abbildung 1.2. Somit ist eine Gesamtsystemsimulation durchführbar
und der Entwicklungsprozess einer elektrisch-optischen Leiterplatte kann durch zeitnah
vorliegende Simulationsergebnisse unterstützt werden.

Aufgrund der Vielmodigkeit der verwendeten Wellenleiter eignen sich strahlenoptische
Verfahren für die Bestimmung des transienten Übertragungsverhaltens [11,42]. In Kapitel
2 werden die Grundlagen hierfür aufgezeigt. Für die aktiven Komponenten existieren keine
physikalisch basierten Modelle. Aufgrund dessen werden in diesem Kapitel Ersatzmodel-
le vorgestellt. Zu einem späteren Zeitpunkt können diese durch exakte Modelle ersetzt
werden.

In Kapitel 3 wird der in Abbildung 1.2 dargestellte passive optische Pfad näher be-
trachtet. Hierbei werden aufbautechnische Charakteristika aufgezeigt, die für eine Modell-
generierung im Hinblick auf eine zeiteffiziente Simulation von großem Nutzen sind. Zudem
wird die Parameterabhängigkeit des transienten Übertragungsverhaltens aufgezeigt. Ab-
schließend wird der Stand der Technik zur Bestimmung dieses Übertragungsverhaltens
anhand von zwei unterschiedlichen Verfahren präsentiert und die Einsetzbarkeit dieser
Verfahren vor dem Hintergrund einer zeiteffizienten Simulation diskutiert.

Kapitel 4 stellt die Methodik für die Entwicklung von leistungsfähigen Modellen vor.
Diese Methodik basiert auf einem modularen Konzept für die Modellgenerierung. Das
zu modellierende Gesamtsystem wird in Teil- und Grundsysteme partitioniert. Für jedes
Grundsystem existiert ein entsprechendes Grundmodell. Aus den Grundmodellen wer-
den die benötigten Teilmodelle entwickelt. Das Gesamtmodell entsteht schließlich aus der
Kaskadierung dieser Teilmodelle. Dieses Gesamtmodell repräsentiert das zu analysieren-
de Gesamtsystem. Hierbei können sowohl passive als auch aktive Komponenten durch
entsprechende Modelle verkörpert werden. Somit ermöglicht der modulare Ansatz eine
komponentenübergreifende Gesamtsystemsimulation.

Erst nach der Festlegung der Modellierungsebene und dadurch auch die zu verwendende
Modellbeschreibung erfolgt die Umsetzung des modularen Konzepts. Basierend auf der
Modellbeschreibung werden zwei Strategien für die Generierung von leistungsfähigen Mo-
dellen für eine zeiteffiziente Simulation entwickelt. Bei der ersten Strategie werden Sym-
metriebetrachtungen der Kerngrenzhülle aufgezeigt. Hierdurch kann die Strahltrajektorie
im Raum in zwei voneinander unabhängige Trajektorien innerhalb orthogonaler Ebenen
aufgeteilt werden. Die zweite Strategie weist auf Redundanzen bei der Strahlparameter-
berechnung hin. Durch Ausnutzen dieser Redundanzen können einmal ermittelte Strahlpa-
rameter bei der Bestimmung von Parametern weiterer Strahlen wiederverwendet werden.
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Aufbauend auf der ersten Strategie werden in Kapitel 5 leistungsfähige Modelle für gera-
de und konstant gekrümmte Schichtwellenleiterstrukturen entwickelt. Diese Modelle ent-
halten wenige, analytisch lösbare Gleichungen, die sukzessive durchlaufen werden, um
die notwendigen Strahlparameter in der Ebene zu ermitteln. Die Rechenzeit dieser Ver-
fahren ist somit nicht von Geometrie- oder Materialparametern der zu modellierenden
Wellenleiter abhängig. Außerdem kann eine Parametervariation sehr schnell durchgeführt
werden.

Um die Strahlparameter im Raum zu berechnen, wird in Kapitel 6 das Konzept des virtu-
ellen Schichtwellenleiters vorgestellt. Mit Hilfe dieses Konzepts ist es möglich, die Strahl-
verfolgung innerhalb der betrachteten Wellenleiter durch zwei Strahlverfolgungen in ortho-
gonalen Flächen zu ersetzen. Hierbei wird auf die in Kapitel 5 entwickelten zeiteffizienten
analytischen Verfahren zurückgegriffen. Um das vorgestellte Konzept zu verifizieren und
die Zeiteffizienz des Verfahrens anzugeben, werden unterschiedliche Wellenleiterverläufe
modelliert und analysiert. Als Referenzverfahren dient das in [7] vorgestellte Strahlverfol-
gungsverfahren.

Das Konzept des virtuellen Schichtwellenleiters basiert auf der sukzessiven Berechnung
aller Strahlparameter mit Hilfe weniger analytischer Gleichungen. In Kapitel 7 wird ein
Mehrtormodell für die zeiteffiziente Bestimmung des transienten Übertragungsverhaltens
unter Verwendung der Methoden der linearen Algebra aufgezeigt. Hiebei werden Redun-
danzen bei der Ermittlung der Strahlparameter in der Ebene ausgenutzt, um das Mehr-
tormodell zu generieren. Dieses Modell in Kombination mit dem Konzept des virtuellen
Schichtwellenleiters ermöglicht die zeitnahe Berechnung der Strahlparameter innerhalb
der betrachteten Wellenleiter. Für die Verifikation des vorgestellten Mehrtormodells und
die Analyse der Effizienz des Verfahrens werden unterschiedliche Wellenleiterverläufe mo-
delliert und das Übertragungsverhalten dieser bestimmt. Diese Ergebnisse werden mit den
in Kapitel 6 erzielten Ergebnissen verglichen.

Um die Anpassungsfähigkeit und Flexibilität der entwickelten Verfahren aufzuzeigen, wird
in Kapitel 8 ein symmetrischer Leistungsteiler untersucht. Die Modellierung und anschlie-
ßende Analyse dieser Struktur erfolgt mit dem strahlenoptischen Referenzverfahren, dem
vorgestellten Konzept des virtuellen Schichtwellenleiters und dem vorgestellten Mehrtor-
verfahren. Die Simulationsergebnisse werden abschließend hinsichtlich ihrer Abweichungen
und der erzielten Zeiteffizienz diskutiert.



Kapitel 2

Grundlagen

Optische Verbindungen sind eine Alternative zu hochdatenratigen elektrischen Verbindun-
gen auf Leiterplattenebene. Sie werden als zusätzliche optische Lage in den Aufbau einer
herkömmlichen Leiterplatte eingebracht. Diese Lage besteht aus einem Wellenleiterkern
(engl. core) mit einem konstanten Brechungsindex sowie dem umgebenden Mantelmaterial
(engl. cladding). Die Brechungsindizes der Materialien sind ncore und nclad. In der Literatur
werden diese Wellenleiter aufgrund des konstanten Brechungsindexes ncore als Stufenin-
dexwellenleiter bezeichnet (engl. step index waveguide) [90]. Damit eine Wellenführung
innerhalb des Wellenleiters erfolgen kann, muss der Brechungsindex des Kernmaterials
ncore größer als der Brechungsindex des Mantelmaterials nclad sein:

ncore > nclad.

Grundsätzlich muss von drei unterschiedlichen Mantelmaterialien ausgegangen werden:
dem Mantelmaterial unterhalb des Wellenleiterkerns (engl. undercladding), dem Material
oberhalb des Wellenleiterkerns (engl. overcladding) und dem Material zwischen benach-
barten Wellenleitern. Die Tendenz bei der Herstellung der optischen Lagen geht dahin,
dass das gesamte Mantelmaterial aus Material mit einem gemeinsamen Brechungsindex
nclad besteht. Mit Hilfe der Brechungsindizes kann die numerische Apertur AN

AN = sin(αN) =
√

n2
core − n2

clad (2.1)

des Stufenindexwellenleiters sowie der halbe Öffnungswinkel αN angegeben werden [31].

n
clad

n
Luft

n
clad

n
core

Abb. 2.1.: Darstellung des Akzeptanzwinkels αN und des inneren Akzeptanzwinkels ϑN

Dieser ist in der Skizze 2.1 abgebildet. Der Winkel αN wird auch als Akzeptanzwinkel
bezeichnet. Strahlen, die unter dem Winkel α < αN in einen Wellenleiter eingekoppelt
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werden, erfüllen die Bedingung der Totalreflexion [37]. Des Weiteren kann der innere
Akzeptanzwinkel ϑN

sin(ϑN) =

√

n2
core − n2

clad

ncore
(2.2)

angegeben werden.

Die eingesetzten Kern- und Mantelmaterialien müssen temperaturstabil, druckstabil und
alterungsbeständig sein, damit sie den Fertigungsprozess ohne signifikante Zunahme der
Dämpfung der optisch übertragenen Leistung überstehen. Das Gebiet der Materialfor-
schung für die Herstellung der optischen Lage ist gegenwärtig Gegenstand intensiver For-
schung und Entwicklung. Aus diesem Grund können keine standardisierten numerischen
Aperturen AN angegeben werden. In dieser Arbeit wird der folgende Bereich für die nu-
merische Apertur gewählt:

0.2 ≤ AN ≤ 0.3.

Dieser Wertebereich ist den Veröffentlichungen [3,55,72] entnommen. Als Anregungsquelle
werden Laser verwendet, die optische Leistung bei einer Wellenlänge von

λ = 850nm

emittieren [60]. Die Modellierung dieser Quelle erfolgt in dieser Arbeit durch Punktquellen.
Der Kernquerschnitt der verwendeten Wellenleiter ist nahezu rechteckförmig. Die Höhe
H und Weite W liegen im Bereich von

{W,H} ∈ [50, 100]µm.

Der Kernquerschnitt der verwendeten Wellenleiter ist damit sehr viel größer als die ver-
wendete Wellenlänge λ. Durch die äußeren Abmessungen und die verwendeten Materialien
dieser Wellenleiter ist eine große Anzahl von Moden ausbreitungsfähig [88]. Das tran-
siente Übertragungsverhalten kann mit Hilfe von Strahlverfolgungsverfahren berechnet
werden [11].

Im folgenden Abschnitt werden zuerst die Grundlagen für die physikalische Strahlverfol-
gung kurz zusammengefasst. Diese basieren auf den Maxwellschen Gleichungen für nicht
bewegte Medien. In Abschnitt 2.2 wird eine strahlenoptische Modellierung der aktiven op-
tischen Komponenten aufgezeigt. Diese Modellierung beinhaltet zudem die Bestimmung
der Leistungsverteilung im Nah- und Fernfeld. Abschließend werden in Abschnitt 2.3 die
Grundlagen für die Bestimmung der transienten Übertragungseigenschaften von hochmul-
timodalen Wellenleitern erläutert.

2.1. Strahlverfolgung im dielektrischen Material

In diesem Abschnitt werden die Grundlagen der geometrischen Optik für die Strahlver-
folgung innerhalb eines dielektrischen Materials beschrieben.
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2.1.1. Maxwellsche Gleichungen für nichtbewegte Medien

Ausgangspunkt für die Beschreibung der elektromagnetischen Felder sind die Maxwell-
schen Gleichungen für nicht bewegte Medien in differentieller Form [88]

rotE(r, t) = − ∂

∂t
B(r, t), (2.3)

rotH(r, t) =
∂

∂t
D(r, t) + J(r, t), (2.4)

divD(r, t) = ρ(r, t), (2.5)

divB(r, t) = 0. (2.6)

Darin ist E die elektrische Feldstärke, H die magnetische Feldstärke, D die elektrische
Flussdichte, B die magnetische Flussdichte, J die Stromdichte, ρ die Raumladungsdichte,
r der Ortsvektor und t die Zeit. Innerhalb des betrachteten dielektrischen Materials kann
von Quellfreiheit ausgegangen werden

ρ(r, t) = 0. (2.7)

Die in dieser Arbeit betrachteten optischen Wellenleiter sind nichtmagnetisch, nichtleitend
und isotrop, damit gelten die Materialgleichungen

D(r, t) = ε0εr(r)E(r, t), (2.8)

B(r, t) = µ0H(r, t). (2.9)

In diesen Gleichungen ist ε0 die Permittivität des Vakuums, εr(r) die relative Permittivität
und µ0 die Permeabilität des Vakuums. Das Verhalten der Feldkomponenten auf der
Grenzfläche b, mit Normalenvektor n zwischen Bereichen mit unterschiedlichen Material-
eigenschaften, wird für die betrachteten dielektrischen Medien1 durch

n × (E2(r, t)− E1(r, t))|b = 0, (2.10)

n × (H2(r, t)−H1(r, t))|b = 0, (2.11)

n · (D2(r, t)−D1(r, t))|b = 0, (2.12)

n · (B2(r, t)−B1(r, t))|b = 0 (2.13)

festgelegt. Die Leistungsflussdichte des elektromagnetischen Feldes wird im Zeitbereich
mit Hilfe des Poyntingvektors

S(r, t) = E(r, t)×H(r, t) (2.14)

beschrieben. Mit Hilfe der Gleichungen (2.3), (2.4), (2.7) und der Vektoridentität (C.25)
ergibt die Integration über das Volumen V den Poyntingschen Satz [88]

−
∮

a

S(r, t)da =

∫

V



pv +
∂

∂t
(we + wm)
︸ ︷︷ ︸

w



 dV. (2.15)

1Bei den Randbedingungen wird von abschnittsweise konstanter Permittivität ε(r) ausgegangen.
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Darin ist pv die Verlustleistungsdichte und w die im elektromagnetischen Feld gespeicherte
Energiedichte. Für die einzelnen Energiedichten gilt:

we =
1

2
E(r, t) ·D(r, t) ∧ wm =

1

2
H(r, t) ·B(r, t). (2.16)

Die Feldgrößen und Flussdichten sind reelle Größen der Zeit. Bei sinusförmigen Ver-
änderungen der Feldgrößen können die Maxwellschen Gleichungen durch die komplexen
Amplituden E(r) und H(r) für die Feldgrößen

E(r, t) = Re{E(r)ejωt}, (2.17)

H(r, t) = Re{H(r)ejωt} (2.18)

und

J(r) = κ(r)E(r) (2.19)

beschrieben werden. Damit gilt für die Maxwellschen Gleichungen (2.3) bis (2.6)

rotE(r) = −jωB(r), (2.20)

rotH(r) = jωD(r) + κ(r)E(r), (2.21)

divD(r) = 0, (2.22)

divB(r) = 0. (2.23)

Für die Leitfähigkeit des dielektrischen Materials gilt

κ(r) = 0.

Durch das Zulassen einer geringen Leitfähigkeit können intrinsische Materialverluste, in-
nerhalb des dielektrischen Materials, mit Hilfe eines komplexen Brechungsindexes nach-
gebildet werden [7, 88, 110]. Diese Nachbildung stützt sich nicht auf die physikalischen
Verlustmechanismen Streuung und Absorption innerhalb des dielektrischen und somit
nichtleitenden Materials. In Abschnitt 2.1.5 wird die Modellierung von Verlusten inner-
halb des Kern- und Mantelmaterials vorgestellt.

Bei sinusförmigen Zeitabhängigkeiten gilt für die komplexe Amplitude des Poynting-
vektors

S =
1

2
E(r)×H∗(r). (2.24)

Wird nur der zeitliche Mittelwert der übertragenen Leistungsflussdichte betrachtet, so ist

S =
1

2
Re {E(r)×H∗(r)} . (2.25)

Für die zeitlichen Mittelwerte der elektromagnetischen Energiedichten folgt bei sinus-
förmiger Zeitabhängigkeit

wm =
1

4
Re {H(r) ·B∗(r)} , (2.26)

we =
1

4
Re {E(r) ·D∗(r)} . (2.27)
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2.1.2. Bestimmung der Eikonalgleichung aus den Maxwellschen

Gleichungen

Als Ansatz für das elektrische und magnetische Feld wird die Luneburg-Kline Entwicklung

E(r) ∼= e−jk0S(r)
∞∑

n=0

En(r)

(jω)n
, (2.28)

H(r) ∼= e−jk0S(r)
∞∑

n=0

Hn(r)

(jω)n
(2.29)

mit

k0 =
2π

λ0

=
ω

c0
(2.30)

verwendet [12, 53]. In dieser Gleichung ist c0

c0 =
1√
ε0µ0

(2.31)

die Lichtgeschwindigkeit im Vakuum. Aufgrund der sehr großen Werte von ω ist der
Einfluss der Terme höherer Ordnung für n > 0 zu vernachlässigen. Es werden nur die
Terme niedrigster Ordnung (n = 0) für die Feldkomponenten berücksichtigt

E(r) = E0(r)e
−jk0S(r), (2.32)

H(r) = H0(r)e
−jk0S(r). (2.33)

Um die Lesbarkeit der Gleichungen zu erhöhen wird im Folgenden auf die Darstellung der
Ortsabhängigkeit der Feldstärken und der Permittivität verzichtet.

Mit Hilfe der Formeln zur Vektoranalysis, siehe Abschnitt C.4.2, können die Gleichungen
(2.32) und (2.33) in die Maxwellschen Gleichungen eingesetzt werden

rotE = [rotE0 − jk0 gradS(r)× E0] e
−jk0S(r), (2.34)

rotH = [rotH0 − jk0 gradS(r)×H0] e
−jk0S(r), (2.35)

div (ε0εrE) = ε0 [εr divE0 + E0 grad εr −jk0εrE0 gradS(r)] e−jk0S(r), (2.36)

µ0 divH = µ0 (divH0 − jk0µ0H0 gradS(r)) e−jk0S(r). (2.37)

Damit ergeben sich aus den Maxwellschen Gleichungen

gradS(r)×H0 + c0ε0εrE0 = − j

k0
rotH0, (2.38)

gradS(r)× E0 − c0µ0H0 = − j

k0
rotE0, (2.39)

E0 gradS(r) = − j

k0
(E0 grad ln[εr] + divE0) , (2.40)

H0 gradS(r) = − j

k0
(divH0) . (2.41)
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Aufgrund der betrachteten kleinen Wellenlängen λ0 und den daraus resultierenden großen
Werten k0 vereinfachen sich die Gleichungen zu

gradS(r)×H0 + c0ε0εrE0 = 0, (2.42)

gradS(r)×E0 − c0µ0H0 = 0, (2.43)

E0 gradS(r) = 0, (2.44)

H0 gradS(r) = 0. (2.45)

Um die magnetische Feldstärke H0 in (2.42) zu eliminieren, wird (2.43) nach dieser
Feldstärke umgeformt und in (2.42) eingesetzt. Durch Ausnutzen der Formeln zur Vekto-
ranalysis folgt

1

c0µ0

[
(E0 gradS(r)) gradS(r)− E0 (gradS(r))

2]+ c0ε0εrE0 = 0. (2.46)

Unter Beachtung der Lichtgeschwindigkeit c0 im Vakuum und der Gleichung (2.45) wird
die Gleichung (2.46) zu

(gradS(r))2 = n(r)2 (2.47)

reduziert. Darin ist

n(r) =
√
εr (2.48)

der ortsabhängige Brechungsindex des Materials. Die Funktion S(r) in Gleichung (2.47)
wird auch als Eikonal2 bezeichnet. Die Eikonalgleichung (2.47) ist die grundlegende Glei-
chung der geometrischen Optik. Die Fläche

S(r) = konstant (2.49)

wird auch als geometrische Wellenfläche oder als geometrische Wellenfront bezeichnet [12].

Um den Leistungsfluss zu berechnen wird der Realteil des komplexen Poyntingschen Vek-
tors bei sinusförmigen Zeitabhängigkeiten betrachtet

S =
1

2
Re {E×H∗} ,

siehe Gleichung (2.25). Unter Berücksichtigung der Gleichungen (2.32), (2.33) und (2.43)
ist dieser

S =
1

2µ0c0
Re {E0 × (gradS(r)× E0)

∗} . (2.50)

Unter Zuhilfenahme der Formeln zur Vektoranalysis sowie Gleichung (2.44) wird das
Kreuzprodukt ausgewertet

S =
1

2µ0c0
gradS(r) (E0 ·E∗

0) . (2.51)

2Die Bezeichnung Eikonal (aus dem Griechischen εικω̃ν = Abbild) wurde 1895 von dem Mathematiker
Heinrich Bruns eingeführt.
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Durch die Betrachtung der Energiedichte we (2.27) wird Gleichung (2.51) vereinfacht zu

S =
2we

εrε0µ0c0
gradS(r) (2.52)

bzw.

S = 2we
c0

(n(r))2
gradS(r). (2.53)

Wird anstelle der Energiedichte we die Energiedichte w

w = 2we = we + wm (2.54)

verwendet [53], so ist

S = w
c0
n(r)

gradS(r)

n(r)
. (2.55)

Unter Verwendung der Eikonalgleichung (2.47) wird der Vektor k(r)

k(r) =
gradS(r)

n(r)
=

gradS(r)

|gradS(r)| ∧ |k(r)| = 1 (2.56)

bestimmt. Mit diesem folgt für den zeitlich gemittelten Poyntingvektor

S = w v(r)k(r). (2.57)

In dieser Gleichung ist

v(r) =
c0
n(r)

(2.58)

die Lichtgeschwindigkeit im Medium mit dem Brechungsindex n(r).

Der Poyntingvektor (2.57) steht orthogonal auf der geometrischen Wellenfront S(r), siehe
Gleichung (2.49), und beschreibt den Leistungsfluss entlang der Trajektorie der Wellen-
front. Die elektromagnetische Leistungsdichte p(r) oder

”
Intensität” I(r) ist in der geome-

trischen Optik definiert als Betrag des zeitlich gemittelten Poyntingvektors (2.57) [12,110]

I(r) = |S(r)| = v(r)w. (2.59)

Lichtstrahlen werden im Folgenden als orthogonale Trajektorien zu den geometrischen
Wellenfronten S(r) = konstant betrachtet [12]. Die Richtung der Trajektorie dieser Strah-
len stimmt für isotrope Medien mit der Richtung des zeitlich gemittelten Poyntingvektors
(2.57) überein.

Im Folgenden wird eine Strahlenschar betrachtet, die von dem Flächenelement dA1 der
Wellenfront S(r) = a1 ausgeht und das Flächenelement dA2 der Wellenfront S(r) = a2
erreicht. Hierbei sind a1 und a2 konstante Werte. Der hieraus resultierende Strahltrichter
ist in Abbildung 2.2 dargestellt.
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Abb. 2.2.: Veranschaulichung des Intensitätsgesetzes der geometrischen Optik

Für die Intensität innerhalb der Flächensegmente dA1 und dA2 gilt mit Hilfe des Inten-
sitätsgesetzes der geometrischen Optik [12, 17]

I1dA1 = I2dA2. (2.60)

Ist der Brechungsindex des Materials innerhalb des betrachteten Raumes konstant, so
wird das elektromagnetische Feld durch die Überlagerung von ebenen Wellen beschrieben.
Für den Fall eines annähernd konstanten Brechungsindexes3 wird das elektromagnetische
Feld an jedem Punkt durch lokal ebene Wellen dargestellt [63,90]. Jede Wellenfront wird
somit abschnittsweise in lokal ebene Wellenfronten zerlegt, deren Ausbreitung durch lokal
ebene Wellen nachgebildet wird. Das nicht kollimierte Strahlenbündel in Abbildung 2.2
kann folglich durch ein kollimiertes Strahlenbündel ersetzt werden, damit sind die beiden
Flächenelemente dA1 und dA2 kongruent.

Die Berandungen der Fläche dA1 auf beiden Wellenfronten wird nun durch ein kollimiertes
Strahlenbündel verbunden. Innerhalb der entstandenen Strahlröhre bleibt die Intensität
I über den gesamten Strahlverlauf erhalten

IdA1|S(r)=a1
= IdA1|S(r)=a2

(2.61)

und ermöglicht die strahlenoptische Nachbildung der Ausbreitung eines geometrischen
Wellenfeldes durch einen einzigen räumlich kohärenten Strahlpfad [12]. Ein geometrischer
Strahl Sn wird nun definiert als lokal ebene Welle mit einer Trajektorie orthogonal zu
der Wellenfront S(r) = konstant und mit der über einem Flächenelement dA konstanten
Intensität I.

2.1.3. Strahlkomponenten im homogenen dielektrischen Medium

Betrachtet wird ein Strahlverlauf im Raum mit dem Brechungsindex n(r). Jeder Punkt
des Strahlverlaufs kann mit dem Ortsvektor r(s) als Funktion der Weglänge s beschrieben
werden. Zudem ist dr/ds = k. Daraus folgt für Gleichung (2.56)

n(r)
dr

ds
= gradS(r). (2.62)

3Hierbei ändert sich der Brechungsindex nur schwach innerhalb der Distanz der betrachteten Wellenlänge
der emittierten optischen Leistung.
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Um die Gleichung (2.62) als Funktion von n(r) zu bestimmen, wird die Ableitung der
Gleichung (2.62) nach der Koordinate ds berechnet. Hieraus ergibt sich die Differential-
gleichung der Strahlen [12]

d

ds

(

n(r)
dr

ds

)

= gradn(r). (2.63)

Die in dieser Arbeit betrachteten Wellenleiter sind innerhalb des Kernmaterials homogen
mit dem konstanten Brechungsindex n(r) = ncore. Für ein homogenes Medium vereinfacht
sich die Gleichung (2.63) zu

d2r

ds2
= 0. (2.64)

Die Lösung dieser Vektorgleichung ist die Gleichung einer geraden Linie mit dem Orts-
vektor zum Aufpunkt A und der Richtung k

r(s) = sk +A. (2.65)

Daraus folgt, dass Lichtstrahlen innerhalb von Medien mit homogenem Brechungsindex
geradlinig verlaufen. Diese Strahlen repräsentieren lokal ebene Wellen, die innerhalb des
Mediums mit der konstanten Geschwindigkeit

v =
c0
n

(2.66)

propagieren.

Betrachtet wird der Strahlpfad r(s), auf dem sich die Punkte A1 und A2 befinden. Als
optische Weglänge Lopt zwischen beiden Punkten wird das Integral

Lopt =

∫

s

n(r)ds (2.67)

bezeichnet. Im Fall homogener Materialien vereinfacht sich (2.67) zu

Lopt = n |A1 −A2|
︸ ︷︷ ︸

Lgeo

, (2.68)

mit Lgeo als der geometrischen Weglänge. Die Propagationszeit topt des Strahls entlang
des Strahlpfades ist

topt =
Lopt

c0
=

Lgeo

v
. (2.69)

Basierend auf den Gleichungen (2.65) wird in dieser Arbeit jeder gerade Strahl Sn durch

Sn = An + l kn (2.70)

beschrieben. Darin ist An der Ortsvektor zum Aufpunkt des Strahls im Raum, kn die
Strahlrichtung und l die zurückgelegte geometrische Pfadlänge. Für die Strahlrichtung kn

gilt in dieser Arbeit

|kn| = 1. (2.71)
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Wie im letzten Abschnitt gezeigt, repräsentiert ein Strahl eine lokal ebene Welle mit
über einem Fächenelement dA konstanter Intensität I bzw. Leistungsdichte p. Folglich
kann jedem Strahl Sn eine konstante Leistung Pn zugeordnet werden. Die initiale Leis-
tung jedes Strahls kann von der Strahlrichtung kn, vom Aufpunktvektor An und von
der Zeit t abhängen. Hierdurch können nahezu beliebige Abstrahlcharakteristiken von zu
modellierenden realen Quellen nachgebildet werden.

2.1.4. Reflexion und Transmission an dielektrischen Grenzflächen

Die betrachteten dielektrischen Wellenleiter bestehen aus Materialien mit unterschied-
lichen Brechungsindizes. Die Grenzflächen zwischen den Materialien der Wellenleiter sind
planar oder konstant gekrümmt. Um das Verhalten einer einfallenden lokal ebenen Welle
an diesen Grenzflächen zu analysieren, wird der gesamte Raum im Folgenden in zwei
Teilräume mit unterschiedlichen Brechungsindizes unterteilt.

2.1.4.1. Planarer dielektrischer Halbraum

Gegeben ist ein Raum, der in zwei Halbräume mit den Brechungsindizes n1 und n2 unter-
teilt ist. Die Grenzfläche zwischen den beiden Halbräumen ist eine Ebene. Der Normalen-
vektor n zeigt in Richtung des ersten Halbraumes. Die beschriebene Anordnung ist in
Abbildung 2.3 dargestellt.

Die Gleichung der Grenzfläche lautet

n · r = 0. (2.72)

Aus dem dielektrischen Halbraum mit dem Brechungsindex n1 trifft eine ebene Welle Ee

auf den dielektrischen Halbraum mit dem Brechungsindex n2. Ein Teil der einfallenden
Welle wird an der Grenzfläche reflektiert (Er) und ein weiterer Teil transmittiert (Et).
Allgemein gilt für die Feldstärken

Ee = Ee0e
−jk1(ke·r), He =

√
ε1
µ
(ke ×Ee) , einfallende Welle (2.73)

Er = Er0e
−jk1(kr ·r), Hr =

√
ε1
µ
(kr × Er) , reflektierte Welle (2.74)

Et = Et0e
−jk2(kt·r), Ht =

√
ε2
µ
(kt × Et) , transmittierte Welle (2.75)

mit

ki = ω
√
εiµ, i ∈ [1, 2].

An der Grenzfläche zwischen beiden Materialien gilt die Stetigkeit der Tangentialkom-
ponenten von E für alle Punkte der Ebene

n × (Ee + Er)|n·r=0 = n × Et|n·r=0 , (2.76)

n × (He +Hr)|n·r=0 = n ×Ht|n·r=0 . (2.77)
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Es muss für alle Punkte der Berandungsebene gelten

k1(ke · r)|n·r=0 = k1(kr · r)|n·r=0 = k2(kt · r)|n·r=0 . (2.78)

Die Vektoren ke, kr, kt und n sind demnach komplanar. Aus dem ersten Teil der Gleichung
(2.78) folgt das Reflexionsgesetz:

ke · r = kr · r. (2.79)

Der Einfallswinkel αe entspricht dem Reflexionswinkel αr, siehe auch Abbildung 2.3. Wei-
ter folgt aus

k1(ke · r)|n·r=0 = k2(kt · r)|n·r=0

das Snelliussche Brechungsgesetz [37]

n1 sin(αe) = n2 sin(αt).

Alternativ kann das Brechungsgesetz auch mit Hilfe des Normalenvektors n und den
Strahlrichtungen ke und kt beschrieben werden [37]

n1 (ke × n)|
n·r=0 = n2 (kt × n)|

n·r=0 . (2.80)

Fällt die ebene Welle aus dem optisch dichteren auf das optisch dünnere Medium, so wird
für αt = π/2 die Welle total reflektiert. Der Winkel, ab welchem die einfallende Leistung
vollständig reflektiert wird, ist

sin(αG) =
n2

n1
. (2.81)

Dieser wird im Folgenden als Winkel der Totalreflexion bezeichnet.

(a) Elektrische Feldstärke steht senk-

recht auf der Einfallsebene

(b) Elektrische Feldstärke liegt in der

Einfallsebene

Abb. 2.3.: Reflexion und Transmission ebener Wellen am dielektrischen Halbraum

Der Vektor der elektrischen Feldstärke kann immer in zwei orthogonale Komponenten
zerlegt werden. Steht die elektrische Feldstärke senkrecht auf der Einfallsebene, so ist sie
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s-polarisiert, siehe Abbildung 2.3(a). Liegt die elektrische Feldstärke in der Einfallsebene,
so ist sie p-polarisiert, siehe Abbildung 2.3(b).

Im ersten Fall wird die senkrechte Polarisation betrachtet. In Abbildung 2.3(a) ist die Ori-
entierung der Feldstärken im Raum skizziert. Der Vektor E steht senkrecht auf der Ein-
fallsebene. Aus den Gleichungen (2.73) bis (2.77) resultiert für die elektrische Feldstärke
an der Berandungsebene

Ee + Er = Et (2.82)

und für die magnetische Feldstärke

He cos(αe)−Hr cos(αe) = Ht cos(αt). (2.83)

Bei der Betrachtung der parallelen Polarisation liegt der Vektor E in der Einfallsebene,
siehe Abbildung 2.3(b). Hier gilt für die magnetische Feldstärke an der Berandungsebene

He −Hr = Ht (2.84)

und für die elektrische Feldstärke

(Ee + Er) cos(αe) = Et cos(αt). (2.85)

Aus der Betrachtung der Feldstärken an der Berandungsebene werden die Fresnelschen
Formeln für die relativen Amplituden der reflektierten und transmittierten Welle

r =
Er

Ee

∧ t =
Et

Ee

(2.86)

bestimmt. Für die beiden Polarisationsarten lauten diese

rs =
n1 cos(αe)− n2 cos(αt)

n1 cos(αe) + n2 cos(αt)
∧ ts =

2n1 cos(αe)

n1 cos(αe) + n2 cos(αt)
(2.87)

und

rp =
n2 cos(αe)− n1 cos(αt)

n2 cos(αe) + n1 cos(αt)
∧ tp =

2n1 cos(αe)

n2 cos(αe) + n1 cos(αt)
. (2.88)

In dieser Beschreibung kennzeichnet der Index s die senkrechte und der Index p die par-
allele Polarisation. Mit Hilfe des Poyntingvektors (2.57) werden die Reflektivität R und
die Transmittivität T

Rs = r2s ∧ Ts = 1−Rs (2.89)

und

Rp = r2p ∧ Tp = 1−Rp (2.90)

für die beiden Polarisationsarten an der dielektrischen Grenzfläche berechnet.
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Abb. 2.4.: Reflexionsgrad für parallele Polarisation (Rp) und senkrechte Polarisation (Rs)

Die Abbildung 2.4 stellt den Reflexionsgrad R für parallele (Rp) und senkrechte Polari-
sation (Rs) für einen dielektrischen Halbraum mit den Brechungsindizes n1 = 1.56 und
n2 = 1.53 dar. Auf der Abszisse ist der Einfallswinkel αe und auf der Ordinate ist der
Reflexionsgrad R aufgetragen. Der Winkel der Totalreflexion ist αG ≈ 78.75◦. Für einen
Einfallswinkel αe < αG ist R < 1, es wird nur ein Teil der Leistung reflektiert. Ist der
einfallende Winkel gleich bzw. größer als der Winkel der Totalreflexion (αe ≥ αG), so wird
unabhängig von der Polarisation die gesamte einfallende Leistung reflektiert.

Bei paralleler Polarisation existiert zudem der sogenannte Brewsterwinkel αB, mit

tan(αB) =
n1

n2

.

Bei diesem Winkel wird keine Leistung reflektiert [37,77]. In der Abbildung 2.4 ist dieser
Winkel durch die Singularität bei αB ≈ 44◦ im Kurvenrverlauf Rp zu erkennen.

2.1.4.2. Konstant gekrümmter dielektrischer Raum

Gegeben sind zwei dielektrische Räume mit den Brechungsindizes n1 und n2, es gilt

n1 > n2.

Die Berandungsfläche zwischen beiden Räumen ist kreisförmig gekrümmt. Der konstante
Krümmungsradius RK ist sehr viel größer als die verwendete Wellenlänge λ

RK ≫ λ.

Der Mittelpunkt der Krümmung liegt bei AR. Diese Räume sind in Abbildung 2.5 darge-
stellt.

Ein lokal ebene Welle breitet sich unter der Richtung ke im Medium mit dem Brechungsin-
dex n1 aus. Im Ursprung des kartesischen Koordinatensystems trifft sie die Berandungs-
ebene, siehe Abbildung 2.5. Der Einfallswinkel zwischen der einfallenden lokal ebenen
Welle und dem Normalenvektor der Berandungsfläche ist αe.
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Abb. 2.5.: Reflexion an einem kreisförmig gekrümmten nichtabsorbierenden Raum

Trifft eine lokal ebene Welle unter dem Einfallswinkel

αe > αG (2.91)

auf eine konkav gekrümmte Oberfläche, wird nur ein Teil der Leistung reflektiert [89]. Der
andere Teil der Leistung wird transmittiert und nach der sogenannten Tunneldistanz ytp
in das optisch dünnere Material abgestrahlt. Für die Tunneldistanz gilt

ytp =

{

RK

(
sin(αe)
sin(αG)

− 1
)

αe ≥ αG,

0 αe ≤ αG.
(2.92)

Ab αG gibt ytp die Dicke der Kaustik zwischen der evaneszenten Abnahme (zwischen
0 ≤ y ≤ ytp) und der Wellenausbreitung (für y > ytp) innerhalb des optisch dünneren
Materials an. Die Welle

”
tunnelt” von y = 0 durch die evaneszente Region und breitet

sich in Richtung kt im Medium 2 weiter aus.

Für eine Erklärung wird die sich im optisch dichteren Material ausbreitende lokal ebene
Welle näher betrachtet. Neben den Leistungsanteilen im optisch dichteren Material hat
diese Welle Leistungsanteile innerhalb des Bereichs des optisch dünneren Materials. Beide
Leistungsanteile bewegen sich mit einer gemeinsamen Geschwindigkeit. Ab y = ytp bewegt
sich der Leistungsanteil im optisch dünneren Material mit der Geschwindigkeit v2 = c0/n2.
Hier löst sich ein Teil der Leistung und wird im optisch dünneren Material tangential zur
Berandungsfläche abgestrahlt [67]. Damit ergibt sich der Winkel, mit dem die Leistung
am Ort y = ytp abgestrahlt wird, zu αt = π/2. Dieser Winkel ist unabhängig von ytp. Bei
einer konvex gekrümmten Oberfläche existiert dieser Effekt nicht.

Die polarisationsabhängige Transmission in ein umgebendes Medium wird für den pla-
naren dielektrischen Halbraum mit Hilfe der Fresnelschen Formeln (2.89) und (2.90) be-
stimmt. Für den Fall einer gekrümmten Berandung wird dieser Transmissionskoeffizient
durch

Tp,s = |T F
p,s|C (2.93)
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ersetzt [89]. Darin ist T F
p,s der Fresnelsche Transmissionskoeffizient (T F

p (2.90) oder T F
s

(2.89)) und C der Krümmungsfaktor. Der Krümmungsfaktor C wird für αe 6= αG be-
stimmt durch

C =

∣
∣ Ai

(
∆e(j2π/3)

) ∣
∣
−2

4π
√

|∆|
(2.94)

mit

∆ =
(
cos2(αG)− cos2(αe)

) 3

√
[
k1RK sin2(αe)

2

]2

(2.95)

und

k1 =
2πn1

λ
. (2.96)

Darin ist λ die Wellenlänge im Vakuum und Ai(x) die Airy-Funktion [1]. Für αe
∼= αG

kann der Transmissionskoeffizient T für die beiden Polarisationsarten durch

T = Ts ≃ Tp sin
2(αG) ≃

1

π cos(αG)
3

√
(
2 sin2 αG

k1RK

)

·
∣
∣Ai

(
∆ej2π/3

)∣
∣
−2

(2.97)

abgeschätzt werden.
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Abb. 2.6.: Transmissionsgrad Tp bei konstant gekrümmten Wellenleitern und unterschied-
lichen Einfallswinkeln αe

In Abbildung 2.6(a) ist der Transmissionsgrad Tp in Abhängigkeit vom Einfallswinkel αe

für unterschiedliche Krümmungsradien RK dargestellt. Die gewählten Brechungsindizes
sind n1 = 1.56 und n2 = 1.53. Der Winkel der Totalreflexion ist αG ≈ 78.75◦. Als
Krümmungsradien werden

RK ∈ {5, 10, 100,∞}mm
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verwendet. Der Krümmungsradius RK/mm = ∞ entspricht einer planaren Berandungs-
fläche. Kleinere Krümmungsradien werden aufgrund der zu erwartenden hohen Dämpfung
vernachlässigt [75]. Der hier nicht dargestellte Transmissionskoeffizient Ts unterscheidet
sich nur geringfügig von Tp. Zu erkennen ist, dass sich für größer werdende Krümmungs-
radien RK die Transmissionskoeffizienten dem planaren Fall nähern. Zudem nimmt Tp für
geringe Abweichungen des Einfallswinkels αe vomWinkel der Totalreflexion signifikant ab.
Bei einem Einfallswinkel αe = 79.25◦, dies entspricht einer Abweichung von ∆α = 0.5◦

von αG, ergibt sich für den Radius von RK = 5mm ein Transmissionskoeffizient von
Tp < 10−3. Für größer werdende Krümmungsradien werden diese Werte weiter verringert.

Um den Einfluss einer Materialvariation zu bestimmen, wird bei einem konstanten Bre-
chungsindex n1 der Brechungsindex n2 so variiert, dass sich numerische Aperturen von

AN ∈ {0.2, 0.25, 0.3}

einstellen. Der Krümmungsradius RK bleibt bei allen Untersuchungen unverändert bei
RK = 10mm. In Abbildung 2.6(b) sind die resultierenden Kurvenverläufe abgebildet. Der
Ordinate ist der Transmissionskoeffizient und der Abszisse ist der Wert αE(n2)

αE(n2) =
αe

αG(n2)
(2.98)

zugeordnet. Aus Gründen der Vergleichbarkeit wird hier der Einfallswinkel αe auf den
jeweiligen Winkel der Totalreflexion αG(n2) normiert. Wie in der Abbildung 2.6(b) zu
erkennen, beeinflusst der Transmissionskoeffizient nur im unmittelbaren Bereich der To-
talreflexion eine einfallende lokal ebene Welle. Für große Abweichungen nimmt der Einfluss
signifikant ab. Dieses Verhalten ist identisch bei den gewählten Materialien.

Eine Makrokrümmung beeinflusst nur lokal ebene Wellen, die sehr nahe am Bereich der
Totalreflexion reflektiert werden. Diese Wellen können aufgrund der Krümmung leicht
den Bereich der Totalreflexion verlassen [7]. Hierbei ist der Einfluss der Tunnelverluste
gegenüber den stärkeren refraktiven Strahlungsverlusten zu vernachlässigen. Demzufolge
wird der vorgestellte Effekt in dieser Arbeit vernachlässigt.

2.1.5. Absorptionsverluste

Eine lokal ebene Welle, die sich innerhalb eines dielektrischen Wellenleiters ausbreitet,
kann durch verlustbehaftetes Material gedämpft werden. Die Modellierung dieses Dämp-
fungsverhaltens erfolgt mit Hilfe einer komplexen ortsabhängigen Permittivität ε(r) bzw.
eines komplexen Brechungsindexes n(r) [82,90,110]. Hierfür wird das Durchflutungsgesetz
(2.21) bei sinusförmiger Anregung betrachtet

rotH(r) = jωD(r) + κ(r)E(r).

Das Zulassen einer physikalisch unbegründeten geringen Leitfähigkeit κ(r) bei den dielek-
trischen Wellenleitern ermöglicht die Nachbildung des Dämpfungsverhaltens. Beruhend
darauf und unter Beachtung der Materialgleichung (2.8) wird das Durchflutungsgesetz zu

rotH(r) = jωε0εr(r)E(r) (2.99)
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umgeformt, mit

εr(r) =

(

εr(r)− j
κ(r)

ωε0

)

(2.100)

als komplexe ortsabhängige Permittivität. Aufgrund der hohen Kreisfrequenz ω und der
als gering angenommenen Leitfähigkeit κ(r) ist der Realteil der komplexen Permittivität
(2.100) immer sehr viel größer als der Imaginärteil

εr(r) ≫
κ(r)

ωε0
.

Der Brechungsindex des betrachteten dielektrischen Materials ist demnach eine komplexe
Funktion des Ortes

n(r) =
√

εr(r). (2.101)

Im Folgenden wird unterschieden zwischen Absorptionsverlusten im Kern- und im Mantel-
material.

2.1.5.1. Absorptionsverluste im Kernmaterial

Ist das Kernmaterial verlustbehaftet, so wird aufgrund der intrinsischen Absorptions-
verluste eine lokal ebene Welle beim Durchlaufen des Materials gedämpft. Diese Dämpfung
wird durch den ortsabhängigen Absorptionskoeffizienten

αcore(r) =
4π

λ
Im {ncore(r)} (2.102)

bestimmt [90]. Darin ist ncore der komplexe Brechungsindex des Kernmaterials.

Ist die Absorption innerhalb des Materials homogen, so ist die Dämpfung nur abhängig
von der zurückgelegten Wegstrecke s der Welle. Unter dieser Bedingung ergibt sich der
auf die Weglänge lp normierte Dämpfungskoeffizient αcore Ist die zurückgelegte Wegstrecke
der Welle bekannt, kann der Gesamtdämpfungsfaktor der Welle direkt angegeben werden.

2.1.5.2. Verlustbehaftetes Mantelmaterial

Ein verlustbehaftetes Mantelmaterial resultiert in einem reduzierten polarisationsabhängi-
gen Reflexionsgrad Rp (2.90) bzw. Rs (2.89). Dies wird mit Hilfe eines komplexen Bre-
chungsindexes des Mantelmaterials nclad berücksichtigt [90]. Um den Einfluss von nclad

auf den Reflexionsgrad zu bestimmen, wird im Folgenden der Imaginärteil des komplexen
Mantelmaterials als Funktion des Realteils vorgegeben

nclad = nclad · (1 + jx)

mit

{nclad, x} ∈ R ∧ nclad ≥ 1, x ≥ 0.
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Abb. 2.7.: Reflexionsgrad Rp bei Reflexionen am verlustbehafteten Mantelmaterial

Die gewählten Materialparameter sind

ncore = 1.56 ∧ nclad = 1.53.

Damit ist der Winkel der Totalreflexion αG ≈ 78.75◦.

In Abbildung 2.7 ist der Reflexionsgrad Rp

Rp =

(
nclad cos(αe)− ncore cos(αt)

nclad cos(αe) + ncore cos(αt)

)2

für eine p-polarisierte Welle in Abhängigkeit des Einfallswinkels αe bei unterschiedlichen
komplexen Brechungsindizes nclad abgebildet. Bei einem rein reellen Brechungsindex (x =
0) wird die einfallende Welle für αe ≥ αG vollständig reflektiert. Mit größer werdendem
Imaginärteil (x > 0) nimmt der Reflexionsgrad Rp im Bereich der Totalreflexion ab. Die
Wellen werden nicht mehr ohne Leistungsverlust reflektiert. Der Verlauf des Reflexions-
grades für eine s-polarisierte ebene Welle unterscheidet sich im dargestellten Bereich nur
geringfügig von diesem Verlauf.

2.1.6. Einfluss von rauen Wellenleiterberandungen

Herstellungsbedingt haben alle Wellenleiterberandungen eine mikroraue Struktur [57,111].
Eine auf eine raue Wellenleiterberandung auftreffende lokal ebene Welle koppelt aufgrund
der Streueigenschaften der Berandungen Leistung in das umgebende Mantelmaterial und
in eine Vielzahl von reflektierten Streuwellen über. Diese Streueigenschaft ist im Bereich
der Totalreflexion unabhängig von der Polarisation der einfallenden lokal ebenen Welle [7].
Sie ist aber abhängig vom Einfallswinkel der lokal ebenen Welle, vom Brechzahlunterschied
der Materialien und von der verwendeten Wellenlänge. Wird der Brechzahlunterschied
durch die Verwendung anderer Materialien erhöht oder die Wellenlänge verringert, so
nimmt die Anzahl der Streuwellen und die in diese Streuwellen übergekoppelte Leistung
zu [7].
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Der exakte Verlauf der Rauigkeit der Wellenleiterberandung kann nicht analytisch be-
schrieben werden. Aus diesem Grund wird die Rauigkeit durch ein statistisches Modell
angenähert. Messungen bei einzelnen Proben haben ergeben, dass die Rauigkeit einer
Wellenleiterberandung durch eine Autokorrelationsfunktion

C(uy, uz) = σ2
re

−
|uy|

Ly · e−
|uz |
Lz (2.103)

beschrieben werden kann [57]. Darin sind σr die Standardabweichung vom Mittelwert der
Wellenleiteroberfläche, uy, uz transversale Komponenten auf der Grenzfläche und Ly, Lz

die Korrelationslängen. Der Normalenvektor der Wellenleiterberandung ist x-gerichtet.
Die Standardabweichung σr ist im Allgemeinen sehr viel kleiner als die verwendete Wel-
lenlänge. Als Werte werden in der Literatur

σr ∈ [20nm, 80nm]

angegeben [10,94]. Die Korrelationslänge beschreibt den Wert, bei dem die Korrelations-
funktion auf den Wert 1/e ihres Maximalwerts abgefallen ist. Eine glatte Oberfläche wird
durch die Standardabweichung σr = 0 oder durch die Korrelationslänge {Ly, Lz} → ∞
beschrieben. Die in Gleichung (2.103) angegebene Form der Autokorrelation ist abhängig
von der Herstellungsart. Bei anderen Herstellungsarten muss gegebenenfalls eine andere
Form der Autokorrelationsfunktion verwendet werden [74]. Die Bestimmung der Form der
Autokorrelationsfunktion und der Parameter kann messtechnisch mit Hilfe eines Raster-
kraftmikroskopes (AFM: atomic force microscope) erfolgen.

Im Folgenden wird eine raue Wellenleiterberandung mit der Berandungsnormalen ex be-
trachtet. Auf diese Berandung treffen lokal ebene Wellen Ei mit dem Wellenvektor ki

ki = −βixex + βizez, β2
ix + β2

iz = n2
corek0

2 (2.104)

auf, darin ist k0 die Wellenzahl im freien Raum. Diese lokal ebenen Wellen werden an der
Berandung reflektiert und resultieren in Wellen mit den Wellenvektoren

kr = βrxex + βyey + βzez, β2
rx + β2

y + β2
z = n2

corek0
2. (2.105)

Die Leistungskopplung der einfallenden lokal ebenen Welle und der diffus reflektierten
Leistung kann mit Hilfe von

Pr(βiz) =

∞∫∫

−∞

Re(βrx)

βix
||Kr · Ei||2J(βy, βz − βiz)dβydβz (2.106)

bestimmt werden [10]. In dieser Gleichung ist J(h, k) mit

J(h, k) =

∞∫∫

−∞

C(uy, uz)e
−j(huy+kuz)duyduz (2.107)

die Fouriertransformierte der Autokorrelationsfunktion C(uy, uz) (2.103) und Kr die Kop-
pelmatrix, mit der die Leistungskopplung der einfallenden lokal ebenen Wellen in die re-
flektierten Wellen beschrieben wird. Diese Koppelmatrix ist abhängig vom Einfallswinkel
der lokal ebenen Welle und enthält neben der numerischen Apertur AN noch die Infor-
mation über die Oberflächenrauigkeit der Wellenleiterberandung [10].
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2.2. Modellierung der aktiven Komponenten

Für die Ermittlung des Übertragungsverhaltens des gesamten optischen Pfades müssen
neben den Wellenleitern auch die aktiven Komponenten modelliert werden. Dies sind die
Quellen und die Detektoren der optischen Leistung. In dem folgenden Abschnitt 2.2.1 wird
zuerst die Modellierung der Detektoren vorgestellt. Hierbei wird zwischen der Detektion
der Leistung im Nah- und im Fernfeld unterschieden. Anschließend wird in Abschnitt
2.2.2 die Modellierung der Quellen aufgezeigt.

2.2.1. Modellierung der Detektoren

Der passive optische Pfad wird stets mit einem Detektorelement abgeschlossen. Um das
transiente Übertragungsverhalten des passiven optischen Pfades zu ermitteln, wird die
Propagationszeit topt jedes Strahls von der Quelle bis zum Detektor bestimmt. Daneben
ist es oft wünschenswert, die ortsabhängige Leistungsverteilung am Detektionsort (Nah-
feld) und die winkelabhängige Leistungsverteilung in großer Entfernung von der analy-
sierten Probe (Fernfeld) zu bestimmen. Der passive optische Pfad kann neben den Wel-
lenleitern auch strahlformende und strahlumlenkende Komponenten enthalten. Um diese
Komponenten optimal zu kaskadieren sind die Informationen über das Nah- und Fernfeld
relevant [111].

Abb. 2.8.: Skizzierte Anordnung für die Bestimmung der Leistungsverteilung des Nah- und
Fernfeldes

Für eine simulationstechnische Betrachtung der Leistungsverteilungen wird eine Referenz-
ebene eingeführt, siehe Abbildung 2.8. Diese Referenzebene wird durch einen Ortsvektor
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und den Normalenvektor ne

|ne| = 1

beschrieben. Im Folgenden wird die Bestimmung der Leistungsverteilung im Nah- und
Fernfeld mit Hilfe dieser Referenzebene vorgestellt.

2.2.1.1. Detektion der Leistungsverteilung im Nahfeld

Mit Hilfe des Nahfeldes wird die Leistungsverteilung an der Austrittsebene optischer Kom-
ponenten analysiert. Für eine ortsdiskrete Bestimmung der Leistungsverteilung wird die
Referenzebene in diskrete Flächensegmente mit dem konstanten Flächeninhalt ∆A par-
titioniert, siehe Abbildung 2.8. Ausgehend von der Quellstimulation werden alle Strahl-
aufpunkte Ak auf der Referenzebene ermittelt. Anschließend erfolgt eine Zuordnung der
Leistung Pn jedes Strahls zu einem entsprechenden Flächensegment ∆A. Der gesamte
Leistungsfluss durch das Flächensegment resultiert aus der Addition aller detektierten
Leistungen des Flächensegments. Die messtechnische Bestimmung des Nahfeldes erfolgt
durch die ortsdiskrete Abtastung der zu untersuchenden Probe mit Hilfe eines Detek-
tors [54, 68].

2.2.1.2. Detektion der Leistungsverteilung im Fernfeld

Die Leistungsverteilung des Fernfeldes gibt die Leistungsverteilung auf einer Kugelober-
fläche wieder, in deren Zentrum sich die zu untersuchende Probe befindet. Um die örtliche
Leistungsverteilung auf der Probenoberfläche zu vernachlässigen, ist der gewählte Radius
RK der Kugel sehr viel größer als die Querschnittsabmessungen der zu untersuchenden
Probe

RK ≫ W,H. (2.108)

In der Simulationstechnik wird für die Bestimmung des Fernfeldes die eingeführte Referenz-
ebene mit dem Normalenvektor ne verwendet, siehe Abbildung 2.8. Für alle Strahlen, die
auf die Referenzebene auftreffen, wird der Polarwinkel α

cos(α) = kl · ne (2.109)

ermittelt. Der Beobachtungspunkt ist für die Fernfeldverteilung sehr weit entfernt von der
Probe. Damit beeinflusst eine Verschiebung des Aufpunktes innerhalb der Emissionsfläche
der Probe den Winkel α nicht.

Für eine Charakterisierung des Fernfeldes wird der gesamte Winkelbereich α ∈ [0, αmax]
in eine diskrete Anzahl NWinkel konstanter Winkelsegmente ∆α unterteilt. Die detektierte
Leistung Pn jedes Strahls Sn wird entsprechend des berechneten Polarwinkels αn (2.109)
einem Winkelsegment

i ·∆α < αn ≤ (i+ 1) ·∆α, mit i ∈ [0, NWinkel − 1] (2.110)
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zugeordnet. Jedes Winkelsegment kann durch einen diskreten Polarwinkel αi

αi = i ·∆α +
∆α

2
, mit i ∈ [0, NWinkel − 1] (2.111)

repräsentiert werden. Die gesamte Leistungsverteilung im Fernfeld P (αi) ergibt sich durch
das segmentweise Zusammenfassen der Leistungen der emittierten Strahlen mit Aufpunkt
auf der Referenzebene.

Die Gleichung (2.109) enthält keine Information über rotationsabhängige Fernfeldvertei-
lungen. Um diese zu analysieren, wird zu der Referenzebene eine orthogonale Ebene mit
dem Normalenvektor te eingeführt, siehe Abbildung 2.8. Anschließend werden die Strahl-
projektionen der detektierten Strahlen auf dieser Referenzebene bestimmt. In Abbildung
2.8 ist die lokale Strahlrichtung kl und die projizierte Strahlrichtung kl p zur Verdeutli-
chung dargestellt. Der Projektionswinkel αp kann sowohl positive als auch negative Werte
annehmen. Eine Drehung der Projektionsebene um den Normalenvektor ne resultiert in
einer rotationsabhängigen Darstellung.

Bei der messtechnischen Bestimmung des Fernfeldes wird ein Detektor auf einer Kreis-
bahn mit Radius RK um die zu analysierende Probe bewegt, siehe Abbildung 2.8. Die-
ser Kreis befindet sich in der Ebene mit dem Normalenvektor te, orthogonal zur Re-
ferenzebene [110]. Die Schnittkante zwischen dieser Ebene und der eingangs erwähnten
Kugeloberfläche entspricht dieser Kreisbahn. Um den Einfluss der ortsabhängigen Leis-
tungsverteilung auf die Referenzebene im Fernfeld zu vermeiden, muss der Radius RK der
Fernfeldbedingung

RK ≫ πq2

4λ
(2.112)

genügen [110]. Darin ist q die Weite bzw. die Höhe der zu untersuchenden Emissionsfläche
der Probe. Die Fernfeldbedingung stammt aus der Fasermesstechnik, dort entspricht q
dem Durchmesser der zu untersuchenden Faser. Um ein rotationsabhängiges Fernfeldprofil
messtechnisch zu bestimmen, sind zusätzlich mehrere Fernfeldprofile mit einem um die
Faserachse drehbaren Detektor aufzunehmen. Hierfür eignet sich ein Emitor [16].

2.2.2. Modellierung der Quellen

Das Modell der Verteilung der emittierten Leistung einer optischen Quelle soll kommerziell
erhältlichen Quellen entsprechen. Zum aktuellen Zeitpunkt existieren keine Modelle, um
aus einem anregenden Strom i(t) das Emissionsspektrum p(r, t) exakt zu modellieren.
Aus diesem Grund werden Ersatzquellen mit sinnvoll definierbarer Leistungsverteilung
verwendet.

In Abbildung 2.9 ist das Modell einer Quelle dargestellt. Die Fläche A ist die Emissions-
fläche der Quelle. Bei einer strahlenoptischen Beschreibung wird die zu modellierende
Leistungsverteilung im Nah- und Fernfeld durch eine Strahlenschar, bestehend aus einer
Anzahl NStrahl diskreter Strahlen Sn, nachgebildet. Jeder Strahl repräsentiert eine lokal
ebene Welle mit über dem Flächenelement dA konstanter Leistung P , siehe Abschnitt
2.1. Daher ist jedem Strahl Sn der Strahlenschar neben einer Strahlrichtung kn, einem
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Laser

Abb. 2.9.: Skizziertes Modell einer Quelle

Ortsvektor zum Aufpunkt An auch eine Leistung Pn zugeordnet. Die zur Berechnung
der Leistung Pn jedes Strahls verwendete Funktion p(An,kn) hängt im Allgemeinen vom
Ortsvektor zum Aufpunkt An und von der lokalen Strahlrichtung kn ab.

Eine für die Simulationstechnik wichtige Quelle ist die Punktquelle. Für alle Strahlen der
Strahlenschar werden bei dieser Quelle identische Strahlaufpunkte verwendet. Es bietet
sich an, die Strahlrichtung kn durch einen Polarwinkel ϑi und einen Azimutwinkel ϕj

bezüglich der Oberflächennormalen nq der Quelle

kn = kij = sin(ϑi) cos(ϕj)e1 + sin(ϑi) sin(ϕj)e2 + cos(ϑi)nq (2.113)

mit

i = {1, 2, ..., I} ∧ j = {1, 2, ..., J}

und

ϑi ∈ [0, π] ∧ ϕj ∈ [0, 2π]

zu beschreiben, siehe Abbildung 2.9. Der Index n wird durch die Indizes i und j der
diskreten Winkel ϑi und ϕj ersetzt. Die Anzahl der emittierten Strahlen dieser Punktquelle

NStrahl = I · J

entspricht der Multiplikation des polaren Index I mit dem azimutalen Index J . Bei einer
äquidistanten Winkeldiskretisierung werden die Winkelschrittweiten ∆ϑ und ∆ϕ durch

∆ϑ = |ϑi − ϑi−1| ∧ ∆ϕ = |ϕi − ϕi−1|
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bestimmt. Alternativ können durch die Vorgabe des polaren Index I und des azimutalen
Index J konstante Winkelschrittweiten

∆ϑ =
|ϑmax − ϑmin|

I − 1
∧ ∆ϕ =

|ϕmax − ϕmin|
J − 1

(2.114)

festgelegt werden.

Im Folgenden werden exemplarisch Funktionen zur Modellierung der rotationssymmetri-
schen Leistungsverteilungen PRect und PGauss vorgestellt. Durch Auswerten der gewählten
Funktion p(ϑ, ϕ) an den diskreten Winkeln ϑi und ϕj wird die Leistung

Pij = p(ϑi, ϕj) (2.115)

des betrachteten Strahls Sij bestimmt.

Um den Polarwinkelbereich 0 < ϑ ≤ ϑmax homogen auszuleuchten, wird die Leistungs-
verteilung PRect verwendet. Die Funktion zur Bestimmung der Leistung jedes Strahls ist

PRect
ij = pRect(ϑi, ϕj) =

P0

J

u(ϑi)− u(ϑi − ϑmax)
∑I

i=1 (u(ϑi)− u(ϑi − ϑmax))
(2.116)

mit

ϑi ∈ [0, π] ∧ ϕj ∈ [0, 2π].

Darin ist ϑmax der maximal zulässige Polarwinkel, unter dem noch Leistung emittiert wird
und u(ϑi) die Sprungfunktion (C.1). Für ϑI = ϑmax vereinfacht sich die Gleichung (2.116)
zu

PRect
ij = pRect(ϑi, ϕj) =

P0

IJ
. (2.117)

Die von der Quelle emittierte Gesamtleistung ist

P0 =

I∑

i=1

J∑

j=1

PRect
ij .

Ein Anwendungsgebiet dieser Leistungsverteilung ist die homogene Ausleuchtung der ge-
samten numerischen Apertur eines Wellenleiters.

Für eine gaußförmige Leistungsverteilung im Fernfeld wird die Leistungsverteilung PGauss

gewählt. Die Leistung PGauss
ij jedes Strahls wird durch

PGauss
ij = pGauss(ϑi, ϕj) =

P0

J

exp
(

−1
2

(
ϑi

σ

)2
)

∑I
i=1 exp

(

−1
2

(
ϑi

σ

)2
) (2.118)

mit

ϑi ∈ [0, π] ∧ ϕj ∈ [0, 2π]
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bestimmt. Der Parameter σ gibt hier die Standardabweichung der Gaußverteilung an.
Durch die Vorgabe von σ muss gewährleistet sein, dass

PGauss
ij = 0 ∀ϑi ≥ π (2.119)

erfüllt4 ist. Die gesamte abgestrahlte Leistung der Quelle ist

P0 =
I∑

i=1

J∑

j=1

PGauss
ij .

Diese Leistungsverteilung wird genutzt, um das zu modellierende Fernfeld einer realen
Quelle anzunähern.
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Abb. 2.10.: Darstellung der Funktion p(ϑi, ϕj) der Leistungsverteilungen PGauss und PRect

bei einem konstanten Azimutwinkel ϕj = ϕM .

Die beiden vorgestellten Leistungsverteilungen PGauss und PRect sind in Abbildung 2.10
dargestellt. Auf der Abszisse ist der Polarwinkel ϑi und auf der Ordinate ist der Be-
trag der Funktion zur Berechnung der Strahlleistung p(ϑi, ϕj) für einen konstanten Azi-
mutwinkel ϕj = ϕM aufgetragen. Die gewählten Winkelschrittweiten sind konstant mit
∆ϑ = 0.1◦ und ∆ϕ = 1◦. Der maximale Abstrahlwinkel für die Leistungsverteilung
PRect ist ϑmax = 15◦. Bei der Leistungsverteilung PGauss ist für die Standardabweichung
σ = ϑmax/2 definiert.

Eine weitere in der Simulationstechnik verwendete Quelle ist der Flächenstrahler. Hier-
bei ist die Strahlleistung neben der Strahlrichtung auch vom Strahlaufpunkt abhängig
Pn = p(An,kn). Die Modellierung eines Gaußstrahls beruht auf der Modellierung eines
Flächenstrahlers [91]. Des Weiteren kann durch eine orts-, winkel- und zeitabhängige Funk-
tion p(An,kn, t) das Verhalten von realen Laserdioden beim Anlegen eines Signalverlaufs
nachgebildet werden. Mit dem hier vorgestellten Ansatz gelingt die sinnvolle Modellierung
von transienten Leistungsverteilungen im Fernfeld.

4Die Strahlaufweitung eines Lasers ist sehr viel kleiner als der oben genannte Bereich. Die Bedingung
(2.119) ist hierdurch in der Praxis immer erfüllt.
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2.3. Signaltheoretische Bestimmung der

Übertragungseigenschaften

Die Propagation der Leistung Pn durch den passiven optischen Pfad wird mit Hilfe von
Strahltrajektorien im Raum analysiert. Diese Analyse basiert auf den Gleichungen der
geometrischen Optik. Hier werden die intrinsischen Absorptionsverluste und die geome-
trische Pfadlänge Lgeo jedes Strahls Sn nach Durchlaufen des passiven optischen Pfa-
des berechnet. Unter Berücksichtigung der Materialparameter sind daraus die optische
Pfadlänge Lopt, Gleichung (2.68), und die Verzögerungszeit topt, Gleichung (2.69), zu be-
stimmen. Jeder eingekoppelte Strahl wird demnach durch einen Wellenleiter verzögert
und aufgrund intrinsischer Absorptionsverluste gedämpft.

Für die signaltheoretische Betrachtung wird zum Zeitpunkt t0 der Strahl Sn in einen Wel-
lenleiter eingekoppelt. Die Beschreibung der zeitabhängigen Leistung des Strahls an der
Quelle erfolgt durch xn(t− t0). Am Detektor wird die Systemantwort yn(t) im Zeitbereich
durch

yn(t) = xn(t− t0 − tn) en (2.120)

beschrieben. Darin ist en der Dämpfungskoeffizient aufgrund intrinsischer Absorptions-
verluste und tn die Verzögerung des Strahls durch den Wellenleiter. Diese entspricht der
Propagationszeit topt. Für die folgenden Betrachtungen ist t0 = 0.

Ist dieser Wellenleiter keinen äußeren Einflüssen ausgesetzt, so ändert sich der Strahlpfad
und damit die ermittelten Parameter des eingekoppelten Strahls nicht [98]. Eine um die
Verzögerungszeit tm zeitversetzte Stimulation resultiert in einer zeitversetzten Systemant-
wort

yn(t− tm) = xn(t− tm − tn) en. (2.121)

Wird das System mit zwei unterschiedlichen Anregungen stimuliert, so ergibt sich die
Gesamtsystemantwort aus der Addition der einzelnen Systemantworten

yn(t) + yn+1(t) = xn(t− tn) en + xn+1(t− tn+1) en+1. (2.122)

Damit ist die Leistungsübertragung des betrachteten Systems zeitinvariant und linear [21].

Die Stimulation eines Strahls zum Zeitpunkt t mit einer konstanten Leistung entspricht
der Anregung des Systems mit einer Sprungfunktion (C.1)

x(t) = u(t).

Die Systemantwort resultiert mit Gleichung (2.120) in der Sprungantwort an(t)

an(t) := yn(t) = u(t− tn) en (2.123)

und schließlich in der Impulsantwort hn(t)

hn(t) = δ(t− tn) en (2.124)
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des Systems5. Darin ist δ(t) die Impulsfunktion (C.3).

Diese Betrachtungen basieren auf der Anregung eines Strahls. Wird eine Quelle betrach-
tet, die eine Strahlenschar mit NStrahl Stimulationsstrahlen emittiert, so ist die Sprung-
antwort a(t), die Impulsantwort h(t) und die Übertragungsfunktion H(jω) der Leistung
des betrachteten Systems:

a(t) =

NStrahl∑

n=1

u(t− tn)en, (2.125)

h(t) =

NStrahl∑

n=1

δ(t− tn)en, (2.126)

H(jω) =

NStrahl∑

n=1

e−jωtnen. (2.127)

Diese Gleichungen basieren auf der gewählten Anregung und beinhalten über die Ver-
zögerungszeit tn die jeweilige optische Weglänge Lopt der einzelnen angeregten Strah-
len. Mit diesen ist das Übertragungsverhalten des vielmodigen optischen Wellenleiters
bei gegebenen Material-, Geometrie- und Anregungsparametern vollständig beschrieben.
Wie in diesen Gleichungen zu erkennen, resultiert eine Änderung der Materialparame-
ter oder der Stimulationsparameter in einer veränderten Übertragungsfunktion. Diese
Übertragungsfunktion muß nach einer Parameteränderung neu berechnet werden.

Um das Übertragungsverhalten zu charakterisieren, werden im Folgenden die Anstiegszeit
τD und die 3dB-Grenzfrequenz f3dB vorgestellt. Hierfür wird ein gerader Kanalwellenleiter
mit der Wellenleiterlänge L = 1m und quadratischem Kernquerschnitt mit W = 70µm
betrachtet. Die numerische Apertur des Wellenleiters ist AN=0.25, mit einem Brechungs-
index der Kernmaterials von ncore = 1.56. Die Anregung erfolgt durch eine Punktquelle
PRect, die diese numerische Apertur AN homogen ausleuchtet.

2.3.1. Anstiegszeit

Die Sprungantwort a(t) aller in dieser Arbeit betrachteten Wellenleiter hat einen cha-
rakteristischen Verlauf. In Abbildung 2.11 ist die Sprungantwort a(t) eines geraden Wel-
lenleiters dargestellt. Auf der Abszisse ist die Zeit t und auf der Ordinate die normierte
Leistung P (t)/Pges aufgetragen. Für t < τ0 ist die detektierte Leistung P (t) = 0. Ab
t = τ0 steigt die detektierte Leistung monoton an. Zum Zeitpunkt t = τ100 erreicht die
Sprungantwort den maximalen Wert.

Dieser charakteristische Verlauf ist in den unterschiedlichen Strahllaufzeiten der stimu-
lierten Strahlen begründet. Für einen geraden Wellenleiter werden die Zeiten τ0 und τ100
durch

τ0 = L
ncore

c0
, (2.128)

τ100 =
ncore

nclad
τ0 (2.129)

5Für den Zusammenhang zwischen Sprung- und Impulsantwort siehe (C.5).
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Abb. 2.11.: Sprungantwort eines geraden Wellenleiters der Länge L = 1m mit homogener
Anregung der gesamten numerischen Apertur AN = 0.25, ncore = 1.56

bestimmt [110]. Die Anstiegszeit τ vom niedrigsten Schwellwert bis zum Erreichen des
Maximums ist

τ =

(
ncore

nclad
− 1

)

L
ncore

c0
. (2.130)

Diese Anstiegszeit ist nur abhängig von der numerischen Apertur AN und der Wellenlei-
terlänge L. Eine Verlängerung des Wellenleiters oder eine Vergrößerung der numerischen
Apertur AN resultiert in einer Zunahme der Anstiegszeit. Je kleiner der Wert von τ ist,
desto steiler ist die ansteigende Flanke der Sprungantwort.

Messtechnisch wird nicht die Anstiegszeit τ , sondern die Anstiegszeit τD bestimmt. Hierfür
werden die beiden Schwellwerte PL und PH

PL := P (t) = 0.2 Pges → τ20,

PH := P (t) = 0.8 Pges → τ80,

definiert. Diese Werte repräsentieren das Ansprechverhalten zur eindeutigen Detektion
einer

”
0“ oder einer

”
1“ eines Photodetektors. Die Anstiegszeit τD ist die zeitliche Differenz

τD = τ80 − τ20 (2.131)

zwischen beiden Schwellwerten.

2.3.2. 3dB-Grenzfrequenz

Die Frequenz f bei der der Betrag der Übertragungsfunktion auf den halben Wert ihres
Maximalwertes gefallen ist, wird als 3dB-Grenzfrequenz f3dB bezeichnet

|H(jf = f3dB)|
|H(jf = 0| =

1

2
. (2.132)
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Diese Grenzfrequenz f3dB wird als Bandbreite des Übertragungssystems definiert [110].
Aufgrund der Normierung beinhaltet diese nicht die intrinsischen Verluste des Über-
tragungssystems. Das Produkt aus der 3dB-Grenzfrequenz f3dB und der Wellenleiterlänge
L wird als Bandbreiten-Längen-Produkt BLP bezeichnet.
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Abb. 2.12.: Übertragungsfunktion eines geraden Wellenleiters der Länge L = 1m mit ho-
mogener Anregung der gesamten numerischen Apertur AN = 0.25

Der Verlauf der Übertragungsfunktion |H(jf)| ist in Abbildung 2.12 dargestellt. Die Fre-
quenz f ist auf der Abszisse, der Betrag der Übertragungsfunktion ist auf der Ordinate
aufgetragen. Zusätzlich ist die Grenzfrequenz f3dB eingezeichnet. Bei dem betrachteten
Wellenleiter existieren keine Absorptionsverluste, der maximale Wert der Übertragungs-
funktion ist

|H(jf = 0)| = 1.

Das Übertragungsverhalten des Systems wird nur durch die Länge jeder Strahltrajek-
torie bestimmt. Für zunehmende Werte f3dB nimmt die in Abschnitt 2.3.1 vorgestellte
Anstiegszeit τD ab.

Der dargestellte Verlauf ist charakteristisch für die verwendeten vielmodigen optischen
Wellenleiter [104]. Ausgehend von dem Maximalwert |H(jf = 0)| wird mit steigender
Frequenz f der Betrag der Übertragungsfunktion verringert. Dies resultiert nicht in einer
reduzierten optischen Ausgangsleistung, sondern in einer Verringerung der Amplitude des
detektierten Signals bei konstanter mittlerer optischer Ausgangsleistung des Systems. Zur
Verdeutlichung wird im Folgenden das System mit einem Rechtecksignal

xR(t) =

{

1 für mT < t < 2m+1
2

T ∀m ∈ Z,

0 sonst,

mit steigender Taktfrequenz f = 1/T stimuliert. Aufgrund der begrenzten Anstiegszeit τ
(2.130) erreicht das Ausgangssignal für T < τ nicht mehr die maximale Signalamplitude.
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Ist T < τD (2.131), so wird die für eine eindeutige Detektion benötigte Signalamplitude
PH − PL nicht mehr erreicht, der Schwellwert PL wird hierbei über- und der Schwellwert
PH unterschritten. Mit einer darüber hinaus zunehmenden Taktfrequenz wird die Ampli-
tude des Ausgangssignals weiter verringert und es stellt sich ein nahezu zeitunabhängiges
Ausgangssignal ein. Die Darstellung des Ausgangssignals durch ein Augendiagramm re-
sultiert in einem mit zunehmender Taktfrequenz immer weiter geschlossenen Auge.

Für eine signaltheoretische Untersuchung dieses Verhaltens wird ein stark vereinfachtes
System bestehend aus einem Wellenleiter, einer Quelle und einem orts- und winkelun-
abhängigen Detektor betrachtet. Die Quelle emittiert Strahlen, die innerhalb des Wel-
lenleiters auf zwei unterschiedlichen Strahlpfaden propagieren. Hieraus folgt, das nur die
beiden Propagationszeiten t1 und t2, siehe Gleichung (2.69), existieren. Zudem wird die
von der Quelle emittierte Leistung homogen auf beide Strahlpfade aufgeteilt. Die Impuls-
antwort (2.126) kann für dieses System direkt durch

h(t) =
1

2
(δ(t− t1) + δ(t− t2))

angegeben werden. Anstelle des oben betrachteten Rechtecksignals wird das System durch
ein Sinussignal6

x(t) = 1 + sin(ωt)

stimuliert. Die aus der Impulsantwort und der Stimulation resultierende Systemantwort
lautet

y(t) = 1 +
1

2
sin(ω(t− t1)) +

1

2
sin(ω(t− t2)). (2.133)

Wenn gilt

ω (t1 − t2)
︸ ︷︷ ︸

∆t

= (2n + 1)π, ∀n ∈ Z, (2.134)

so sind die beiden Sinusfunktionen in der Systemantwort y(t) (2.133) immer um den
Faktor π phasenverschoben. Die Systemantwort verfügt nur noch über einen frequenz-
unabhängigen Anteil. Die Darstellung dieser Systemantwort durch ein Augendiagramm
resultiert in einem geschlossenen Auge.

In der Abbildung 2.12 ist eine weitere Eigenschaft der Übertragungsfunktion zu erken-
nen. Die Übertragungsfunktion von Multimode-Wellenleitern geht, im Gegensatz zur
Übertragungsfunktion von Singlemode-Wellenleitern, nicht gegen null, sondern weist die in
der Abbildung dargestellten Nebenschwingungen mit den entsprechenden Nebenmaxima
auf. Diese Eigenschaft wird verwendet, um oberhalb der 3dB-Grenzfrequenz Daten zu
übertragen [78].

2.4. Zusammenfassung

Strahlenoptische Verfahren werden zur Bestimmung der Leistungsausbreitung in viel-
modigen optischen Wellenleitern verwendet. Die Modellierung dieser Leistungsausbreitung

6Ein Rechtecksignal kann durch eine Fourierreihe nachgebildet werden.
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erfolgt mit Hilfe von Strahlen. Diese stehen orthogonal auf den Wellenfronten S(r) der lo-
kal ebenen Wellen. Damit eignen sich physikalische Strahlverfolgungsverfahren zur Model-
lierung der Leistungsausbreitung innerhalb dieser Wellenleiter. Diese Strahlverfolgungs-
verfahren berücksichtigen die Transmission und Reflexion an ebenen Grenzflächen zwi-
schen Räumen mit unterschiedlichen Brechungsindizes mit Hilfe der Fresnelschen Gleichun-
gen. Aufgrund der im Vergleich zur Wellenlänge λ großen Krümmungsradien werden für
gekrümmte Grenzflächen ebenfalls diese Koeffizienten verwendet. Die Berücksichtigung
von intrinsischen Absorptionsverlusten erfolgt unter Anwendung von komplexen Bre-
chungsindizes.

Die Modellierung der aktiven Komponenten beruht ebenso auf einer strahlenoptischen
Darstellung. Bei der Detektormodellierung ist es erforderlich, neben der optischen Weg-
länge jedes Strahls auch das Nah- und- Fernfeldverhalten auf der Detektorfläche zu be-
rechnen. Diese Information ist für eine Kaskadierung von Komponenten relevant. Mit Hilfe
der optischen Weglänge sämtlicher emittierter Strahlen wird das Übertragungsverhalten
bestimmt.

Gegenwärtig existieren keine exakten Quellmodelle, die reale Quellen beschreiben. Um
Modelle zu generieren, die das Nah- und Fernfeld dieser Quellen nachbilden, ist es daher
wesentlich, nahezu beliebige Leistungsverteilungen erzeugen zu können. Hierfür stehen
sowohl Punktquellen als auch Flächenstrahler zur Verfügung. Die vorgestellten Flächen-
strahler ermöglichen zudem die Modellierung eines transienten Quellverhaltens.

Aufgrund der Linearität und der Zeitinvarianz der Leistungsübertragung der vielmodigen
optischen Wellenleiter wird das Übertragungsverhalten des Systems vollständig durch die
Übertragungsfunktion beschrieben. Diese ist neben den Material- und Geometriepara-
metern abhängig von den Stimulationsbedingungen und muss bei der Veränderung eines
Parameters neu bestimmt werden.
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Kapitel 3

Aufbau und Analyse des passiven
optischen Pfades

Durch die optische Aufbau- und Verbindungstechnik sollen hochdatenratige, elektrische
Verbindungen herkömmlicher Leiterplatten durch optische Verbindungen ersetzt werden.
Dazu wird eine Leiterplatte um eine zusätzliche Lage mit optischen Komponenten er-
weitert. Diese Lage wird im Folgenden als optische Lage bezeichnet. Sie beinhaltet im
allgemeinen Wellenleiter, die bei der verwendeten Wellenlänge λ der Quelle eine geringe
Dämpfung aufweisen [50, 86]. Zusätzlich können auch strahlformende Komponenten ent-
halten sein [28,72]. Neben der optischen Lage enthält der gesamte passive optische Pfad,
siehe Abbildung 1.2, Komponenten außerhalb der optischen Lage. Diese Komponenten
ermöglichen unter Anderem eine optimale Kopplung der optischen Leistung zwischen den
aktiven und den passiven Komponenten.

Für eine Analyse des transienten Übertragungsverhaltens begleitend zum Entwurfsprozess
müssen Verfahren entwickelt werden, die zeitnah dieses transiente Übertragungsverhalten
ermitteln können. Zeitnah bedeutet hier innerhalb weniger Sekunden bis Minuten. Die
bisher verfügbaren Verfahren können dies nicht mit der geforderten Zeiteffizienz erfüllen.
Des Weiteren ist es wichtig, dass diese Analyse den gesamten optischen Pfad beinhaltet.
Hier ist gegebenenfalls eine simulatorübergreifende Berechnung denkbar. Zu diesem Zweck
müssen entsprechende Schnittstellen vorhanden sein.

Im folgenden Abschnitt 3.1 werden die Komponenten des gesamten passiven optischen
Pfades kurz vorgestellt. Den Schwerpunkt dieser Arbeit bilden die in die Leiterplatte ein-
gebetteten Wellenleiter. Anschließend werden in Abschnitt 3.2 die Abhängigkeiten des
transienten Übertragungsverhaltens dieser Wellenleiter von bestimmten Parametern un-
tersucht. Um dieses Übertragungsverhalten zu bestimmen, existieren verschiedene Verfah-
ren. Aufgrund der gegebenen Querschnittsabmessungen und der verwendeten Wellenlänge
eignen sich zur Bestimmung des Übertragungsverhaltens Verfahren, die auf der Strahlver-
folgung im Raum (engl. Ray-Tracing) beruhen [7]. Diese Verfahren werden in Abschnitt
3.3 vorgestellt und die Einschränkung dieser Verfahren hinsichtlich einer zeiteffizienten
Simulation werden diskutiert.
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3.1. Der passive optische Pfad

Der gesamte passive optische Pfad besteht aus Komponenten innerhalb der optischen
Lage und strahlformenden Komponenten außerhalb der optischen Lage. Im folgenden
Abschnitt 3.1.1 wird zuerst eine Übersicht über die Komponenten des passiven opti-
schen Pfades präsentiert. Der Schwerpunkt dieser Arbeit ist die zeiteffiziente Analyse
des Übertragungsverhaltens der eingebetteten Wellenleiter innerhalb der optischen Lage.
Diese weisen bestimmte herstellungsbedingte Charakteristika auf, die in Abschnitt 3.1.2
vorgestellt werden.

3.1.1. Komponenten des passiven optischen Pfades

Der passive optische Pfad besteht aus den eingebetteten Wellenleitern und strahlformen-
den Komponenten. Bei den eingebetteten Wellenleitern wird zwischen Kanalwellenleitern
und mikrooptischen Komponenten unterschieden. Bei den Kanalwellenleitern ist der Kern-
querschnitt entlang des Wellenleiterverlaufs konstant. Wird der Kernquerschnitt im Wel-
lenleiterverlauf verändert, so werden diese Wellenleiter als mikrooptische Komponenten
bezeichnet.

3.1.1.1. Eingebettete optische Kanalwellenleiter

Der größte Teil des betrachteten passiven optischen Pfades innerhalb der optischen Lage
besteht aus Wellenleitern mit rechteckförmigem Kernquerschnitt der Weite W und Höhe
H . Dieser Kernquerschnitt ist entlang der Wellenleitertrajektorie annähernd konstant. Die
Wellenleiter können vollständig durch diese Wellenleitertrajektorie und die Querschnitts-
abmessungen entlang der Trajektorie beschrieben werden. Aufgrund der Unabhängigkeit
der Querschnittskontur von der Wellenleitertrajektorie werden diese im Folgenden als
Kanalwellenleiter bezeichnet.

Die Anzahl Ntot aller ausbreitungsfähigen TE und TM Moden eines geraden Kanalwel-
lenleiters mit quadratischem Querschnittsprofil wird durch

Ntot ≈
π

2

(
2 W

λ

)2

A2
N (3.1)

grob abgeschätzt [76, 82]. Für einen Kanalwellenleiter mit den Parametern

W = 70µm, AN = 0.25

und einer Anregung durch eine Quelle der Wellenlänge

λ = 850nm

ergeben sich mehr als 2000 ausbreitungsfähige Moden. Die in dieser Arbeit betrachteten
Kanalwellenleiter sind damit hochgradig vielmodig.
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3.1.1.2. Eingebettete mikrooptische Komponenten

Neben den in Abschnitt 3.1.1.1 vorgestellten Kanalwellenleitern werden mikrooptische
Komponenten in die optische Lage integriert. Bei diesen ist das Querschnittsprofil nicht
konstant entlang des Wellenleiterverlaufs. Die Dicke der optischen Lage ist aufbaubedingt
konstant und damit ist auch die Höhe des Wellenleiters konstant. Die Veränderung des
Kernquerschnitts findet demnach nur in Abhängigkeit von der Wellenleiterweite W statt.
Diese Veränderung ist sehr viel größer als die verwendete Wellenlänge der Quelle, so dass
strahlenoptische Methoden bei der Bestimmung des Leistungsflusses verwendet werden
können.
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Abb. 3.1.: Mikrooptische Komponenten der optischen Lage

Zwei mikrooptische Komponenten sind in Abbildung 3.1 dargestellt. Die Abbildung 3.1(a)
zeigt eine Taperstruktur und die Abbildung 3.1(b) einen Leistungsteiler. Die Darstellungen
der beiden Komponenten sind nicht maßstabsgetreu.

Um den Wellenleiterquerschnitt in Abhängigkeit vom Wellenleiterverlauf zu verändern
werden Taperstrukturen, kurz Taper, verwendet [105]. Es existieren unterschiedliche Auf-
bauformen dieser Struktur, diese unterscheiden sich in der Form der Veränderung der
Wandweiterung entlang des Wellenleiterverlaufs. Bei dem dargestellten Taper erfolgt die-
se Veränderung linear. In Abschnitt 8.2 wird ein Taper mit kreisförmiger Veränderung
der Wandweiterung vorgestellt.

Um definiert Leistung von einem Kanalwellenleiter auf mehrere Kanalwellenleiter auf-
zuteilen werden Leistungsteiler (engl. Splitter) verwendet [44]. Auch hier wird zwischen
unterschiedlichen Aufbauformen unterschieden. Die Zuordnung zu einer Gruppe erfolgt
durch die charakteristische Aufweitung des Kernquerschnitts und des Verlaufs der an-
schließenden Wellenleiter [45]. Der dargestellte Leistungsteiler ist ein symmetrischer S-
Bogen-Leistungsteiler (engl. s-bend-splitter). Ausgehend von einem quadratischen Quer-
schnittsprofil wird die Leistung auf zwei Kanalwellenleiter mit ebenfalls quadratischem
Querschnittsprofil aufgeteilt. Der anschließende Kanalwellenleiter hat die Form eines S-
Bogens.
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3.1.1.3. Eingebettete strahlformende Komponenten

Neben den Komponenten, die aus dem Kernmaterial mit Brechungsindex ncore bestehen,
können zusätzliche Komponenten in die optische Lage eingebracht werden. Diese Kom-
ponenten dienen meist der Strahlumlenkung und Strahlformung. Die Herstellung er-
folgt durch die mechanische Bearbeitung der Kanalwellenleiter [27, 29] oder sie wer-
den als zusätzliches Bauelement in die optische Lage eingebracht, bevor das Mantel-
material ausgehärtet ist [20]. Für eine einfache Strahlumlenkung wird die optische La-
ge um 45◦-Umlenkspiegel erweitert [39, 41, 107]. Soll zusätzlich eine Strahlfokussierung
erfolgen, werden Spiegel in Form eines Rotationsparaboloiden in die optische Lage einge-
bracht [13, 18, 113].

3.1.1.4. Komponenten außerhalb der optischen Lage

Außerhalb der optischen Lage werden Komponenten für die Fokussierung, Kollimation
oder Umlenkung der emittierten Leistung verwendet. Mit Hilfe dieser Komponenten soll
eine effiziente Leistungskopplung zwischen den aktiven Komponenten und der optischen
Lage realisiert werden. Die hierfür verwendeten Komponenten sind Linsen oder Linsen-
systeme sowie Spiegel [26,28,72,81]. Es können aber auch komplexer aufgebaute strahlfor-
mende oder -umlenkende Systeme wie die in [3] vorgestellten PIFSO Komponenten (engl.
planar integrated free space optic) sein.

3.1.2. Aufbautechnische Charakteristika der eingebetteten

Wellenleiter

Im Allgemeinen ist die optische Lage aus drei unterschiedlichen Schichten aufgebaut. Dies
sind eine untere Mantelschicht (engl. undercladding), eine Wellenleiterschicht und eine
obere Mantelschicht (engl. overcladding). Die Wellenleiterschicht enthält neben den Wel-
lenleitern auch das Mantelmaterial zwischen den Wellenleitern. Der schematische Aufbau

Abb. 3.2.: Skizze einer optischen Lage

einer optischen Lage mit den unterschiedlichen Schichten ist in Abbildung 3.2 dargestellt.

Bei der Herstellung dieser Lage werden zurzeit maßgeblich drei Verfahren eingesetzt: das
Stempelverfahren [56], das Laserschreibverfahren [14, 62] und das photolithographische
Belichtungsverfahren [84]. Alle drei Verfahren arbeiten auf einer vorgefertigten unteren
Mantelschicht. Für die Herstellung der Wellenleiterschicht wird bei dem Stempelverfah-
ren der Wellenleiterkern ausgestanzt und auf die untere Mantelschicht aufgebracht. Bei
dem Laserschreibverfahren wird der Wellenleiterkern mit Hilfe eines Lasers in das flüssige
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Kernmaterial geschrieben und dadurch ausgehärtet. Diese Technik eignet sich vorwiegend
für die zeitnahe Fertigung von Mustern oder Kleinserien [69]. Die Wellenleiterschicht wird
bei dem photolithographischen Belichtungsverfahren mit Hilfe einer Maske erzeugt. Durch
diese wird gezielt der Bereich des Wellenleiterkerns belichtet. Die Herstellung erfolgt mit
Hilfe von nasschemischen Ätzverfahren. Nach der Fertigstellung der Wellenleiterschicht
durch die unterschiedlichen Verfahren, wird die obere Mantelschicht aufgebracht. Die
Kernquerschnitte der hergestellten Wellenleiter weisen bei den vorgestellten Verfahren
ein nahezu rechteckförmiges Querschnittsprofil auf [5, 15].

3.2. Parameterabhängigkeit des transienten

Übertragungsverhaltens

Für die Generierung von Modellen ist es notwendig, die Eigenschaften und Abhängigkeiten
der Zielgröße von bestimmten Parametern zu analysieren. Die Zielgröße ist hier das tran-
siente Übertragungsverhalten. Zunächst wird der Einfluss der Variation der Wellenlei-
terlänge auf dieses Übertragungsverhalten bestimmt. Anschließend werden die Stimulati-
onsparameter und der Trajektorienverlauf des Wellenleiters variiert.

Um die Eigenschaften des transienten Übertragungsverhaltens zu bestimmen, werden bei
den Simulationen Kanalwellenleiter mit quadratischem Kernquerschnitt und der Seiten-
länge W = H = 70µm verwendet. Als Brechungsindizes werden ncore = 1.56 und nclad =
1.54 verwendet, hierdurch stellt sich eine numerische Apertur von AN ≈ 0.25 ein. Der
innere Akzeptanzwinkel ϑN (2.2) ist damit ϑN ≈ 9.23◦. Um den Einfluss der Kopplung
zu vernachlässigen, sind bei allen Simulationen die aktiven Komponenten innerhalb des
Kernmaterials der untersuchten Wellenleiter positioniert.

3.2.1. Variation der Wellenleiterlänge

Um den Einfluss der Wellenleiterlänge zu analysieren, wird ein Kanalwellenleiter bei den
Wellenleiterlängen L = 0.5m und L = 1m betrachtet. Die Anregung erfolgt zunächst
durch eine Punktquelle auf der Wellenleiterstirnfläche, diese leuchtet die gesamte nume-
rische Apertur homogen aus. Die verwendete Leistungsverteilung im Fernfeld ist PRect

Gl. (2.116). Die Leistung jedes Strahls Pij wird durch

PRect
ij = pRect(ϑi, ϕj) =

P0

IJ

mit

ϑi ∈ [0, ϑmax] ∧ ϕj ∈ [0, 2π]

berechnet. Darin ist ϑi der Polarwinkel und ϕj der Azimutwinkel bezüglich der Ausbrei-
tungsrichtung des Wellenleiters. Diese Ausbreitungsrichtung entspricht dem Normalen-
vektor n der Emissionsfläche der Quelle, siehe Abbildung 2.9. Als Winkel ϑmax wird der
innere Akzeptanzwinkel ϑN

ϑmax = ϑN
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gewählt. Die Winkelschrittweite beträgt ∆ϑ = 0.05◦ und ∆ϕ = 1◦. Dies resultiert in einer
Strahlanzahl von NStrahl ≈ 67000 Strahlen. Auf der Ausgangsseite des Wellenleiters wird
die transmittierte Leistung detektiert. Anschließend werden die Sprungantwort a(t) und
die Übertragungsfunktion H(jω) bestimmt.
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Abb. 3.3.: Einfluss der Wellenleiterlänge auf die Übertragungseigenschaften eines geraden
Kanalwellenleiters

Die ermittelten Sprungantworten sind in der Abbildung 3.3(a) dargestellt. Auf der Abszis-
se ist die Zeit t und auf der Ordinate ist die detektierte Leistung P (t)/Pges aufgetragen.
Die detektierten Leistungen sind auf die gesamte emittierte Leistung der Quelle normiert.
Für einen Vergleich der beiden Sprungantworten sind diese um eine Zeit tL

tL = L
ncore

c0

verzögert. Die Länge L entspricht der Länge des jeweiligen Wellenleiters. Bedingt durch die
unterschiedlichen Strahllaufzeiten ergeben sich die in der Abbildung 3.3(a) dargestellten
Sprungantworten. Dadurch, dass nur geführte Strahlen stimuliert werden und intrinsische
Materialverluste ausgeschlossen werden, wird die gesamte emittierte Leistung von dem
Kanalwellenleiter geführt. Die Anstiegszeit τD (2.131) nimmt mit zunehmender Wellen-
leiterlänge L ebenfalls zu. Die entsprechende Flankensteilheit nimmt mit zunehmender
Wellenleiterlänge ab. Dieser Effekt beruht in der Strahlenoptik auf der Abhängigkeit der
Länge der jeweiligen Strahltrajektorie von der Wellenleiterlänge, siehe Gleichung (2.130).

In Abbildung 3.3(b) sind die Übertragungsfunktionen |H(jf)| beider Wellenleiter dar-
gestellt. Auf der Abszisse ist die Frequenz f und auf der Ordinate ist der Betrag der
Übertragungsfunktion aufgetragen. Mit zunehmender Frequenz nimmt der Betrag der
Übertragungsfunktion ab. Die charakteristische Größe der Übertragungsfunktion ist die
3dB-Grenzfrequenz f3dB (2.132). Für diese gilt

|H(jf = f3dB)| = 0.5.

Wie in der Abbildung 3.3(b) zu erkennen, sind die 3dB-Grenzfrequenz f3dB und die Wellen-
leiterlänge L eines geraden Wellenleiters für eine gewählte Anregung invers proportional
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zueinander. Wird die Wellenleiterlänge L verringert, so erhöht sich die 3dB-Grenzfrequenz
f3dB und damit die zur Verfügung stehende Bandbreite entsprechend [96]. Dieser Effekt
ist in der Literatur als konstantes Bandbreiten-Längen-Produkt bekannt [31].

3.2.2. Variation der Stimulation

Die Anstiegszeit τD und damit auch die 3dB-Grenzfrequenz f3dB eines Systems hängt
neben den Wellenleiterparametern auch von den Stimulationsbedingungen ab [9, 104].
Um diesen Einfluss auf das Übertragungsverhalten zu bestimmen, wird ein gerader Ka-
nalwellenleiter der Länge L = 1m betrachtet. Als Anregung wird zuerst die im letzten
Abschnitt vorgestellte Quelle PRect genutzt, als zweite Quelle wird eine Quelle mit gauß-
scher Leistungsverteilung PGauss (2.118) im Fernfeld gewählt. Die Leistung jedes Strahls
dieser Quelle wird durch

PGauss
ij = pGauss

ij (ϑi, ϕj) =
P0

J

exp
(

−1
2

(
ϑi

σ

)2
)

∑I
i=1 exp

(

−1
2

(
ϑi

σ

)2
)

vorgegeben. Als Standardabweichung wird σ = ϑN/2 gewählt. Die Winkelschrittweite ∆ϑ
und ∆ϕ und die Anzahl der Strahlen NStrahl beider Quellen stimmen mit der im letzten
Abschnitt verwendeten Quelle überein.
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Abb. 3.4.: Einfluss der Anregung auf die Übertragungseigenschaften eines geraden
Kanalwellenleiters

Die Abbildung 3.4(a) stellt die Sprungantworten für die unterschiedlichen Stimulationen
dar. Diese Sprungantworten sind auf die jeweiligen emittierten Leistungen normiert wor-
den. Zu erkennen ist, dass die Anstiegszeit τD, siehe Gl (2.131), abhängig von der Stimula-
tion ist. Zusätzlich ist in Abbildung 3.4(b) der Einfluss der Quelle auf das Übertragungs-
verhalten dargestellt. Wird hier die 3dB-Grenzfrequenz f3dB betrachtet, so ist festzustel-
len, dass für die Anregung durch die Quelle PGauss eine höhere Bandbreite zur Verfügung
steht. Dies ist dadurch begründet, dass der größte Teil der detektierten Leistung durch
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Strahlen transportiert wird, deren eingeschlossener Winkel zwischen der Wellenleiter-
trajektorie und der lokalen Strahlrichtung klein ist. Die optischen Weglängen Lopt und
damit die Verzögerungszeiten tn dieser Strahlen durch das System sind geringer als bei
den Strahlen mit großem eingeschlossenen Winkel. Dies führt zu dem steilen Anstieg in
der Sprungantwort in Abbildung 3.4(a). Da die Sprungantwort a(t) und damit auch die
Übertragungsfunktion H(jω) eines geraden Wellenleiters abhängig von den Stimulations-
bedingungen sind, müssen a(t) und H(jω) bei Verwendung anderer Quellen neu berechnet
werden.

3.2.3. Einfluss des Trajektorienverlaufs

Um die Abhängigkeit der Übertragungsfunktion von der Wellenleitertrajektorie zu bestim-
men, wird der im letzten Abschnitt verwendete gerade Wellenleiter durch drei kaskadierte
Segmente ersetzt, siehe Abbildung 3.5.

Abb. 3.5.: Trajektorienverlauf bestehend aus zwei geraden und einem konstant ge-
krümmten Wellenleiter

Das erste Segment ist ein gerader Wellenleiter der Länge L1 = 0.5m. Das zweite Segment
ist ein konstant gekrümmter Wellenleiter mit Krümmungsradius R2 = 5mm und dem
Krümmungswinkel γ2 = π/2. Abgeschlossen wird der Kanalwellenleiter durch ein gerades
Segment der Länge L3. Die Länge der gesamten Wellenleitertrajektorie wird auf L = 1m
begrenzt, so dass gilt

L = L1 +
π

2
R2 + L3 = 1m.

Als Quelle werden die im letzten Abschnitt vorgestellten Anregungen PRect und PGauss

verwendet.
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Abb. 3.6.: Einfluss der Anregung auf die Übertragungsfunktion eines gekrümmten
Kanalwellenleiters

Zuerst sind in Abbildung 3.6(a) die ermittelten Sprungantworten des Systems auf die un-
terschiedlichen Stimulationen abgebildet. Bedingt durch die Wellenleiterkrümmung wird
Leistung in das umgebende Mantelmaterial abgestrahlt, siehe auch Abschnitt 2.1.4.2. Die
Sprungantworten erreichen nicht mehr die emittierte Gesamtleistung. Zu erkennen ist zu-
dem, dass durch die Krümmung die gesamte übertragene Leistung bei einer Anregung
mit PGaus geringer ist, als bei der Anregung mit PRect. Zudem ist die Anstiegszeit τD für
eine Anregung mit PGaus geringer als für eine Anregung mit PRect.

Für die Untersuchung der Bandbreite werden in Abbildung 3.6(b) die jeweiligen Über-
tragungsfunktionen |H(jf)| dargestellt. Bei dieser Darstellung werden zusätzlich die Ver-
luste aufgrund der Wellenleiterkrümmung berücksichtigt. Für Stimulationen unterhalb
der Frequenz f < 6Ghz wird das System mit der Anregung PGauss stärker gedämpft. Im
Gegensatz dazu ist die 3dB-Grenzfrequenz f3dB bei der Anregung PGauss größer. Damit
sind höhere Bandbreiten bei der Stimulation mit dieser Quelle möglich. Dies wird noch
deutlicher, wenn die Bandbreite mit Gleichung (2.132) bestimmt wird.

Um die Eigenschaften gekrümmter Kanalwellenleiter weiter zu analysieren, werden im
folgenden Abschnitt deren Fernfeldeigenschaften betrachtet.

3.2.3.1. Fernfeldeigenschaften konstant gekrümmter Kanalwellenleiter

Betrachtet wird der im letzten Abschnitt vorgestellte Kanalwellenleiter. Um den Einfluss
der Wellenleiterkrümmung auf die Leistungsverteilung im Fernfeld zu bestimmen, wird
der Radius R2 wie folgt variiert:

R2 ∈ {5, 10,∞}mm.

Der Radius R2 = ∞ kennzeichnet einen geraden Wellenleiter mit der Wellenleiterlänge
L = 1m. Als Anregung wird eine Quelle verwendet, die die gesamte numerische Apertur
des Wellenleiters homogen ausleuchtet. Die Leistungsverteilung des Fernfeldes wird an der
ausgangsseitigen Stirnfläche des Wellenleiters aufgenommen, siehe Abschnitt 2.2.1.2.
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Abb. 3.7.: Detektierte Leistungsverteilung im Fernfeld von Kanalwellenleitern mit kon-
stant gekrümmten Wellenleitersegmenten

In Abbildung 3.7 ist die detektierte Leistungsverteilung im Fernfeld von Kanalwellen-
leitern für die unterschiedlichen Krümmungsradien R2 dargestellt. Auf der Abszisse ist
der diskrete Polarwinkel αi, siehe Gleichung (2.109), aufgetragen. Die Ordinate stellt die
detektierte diskrete polarwinkelabhängige Leistung P (αi) dar. Die gesamte übertragene
Leistung PG wird aus der Summation der detektierten diskreten Leistungen

PG =
I∑

i=0

P (αi) (3.2)

bestimmt.

Bedingt durch die Wellenleiterkrümmung erfolgt entlang der gesamten Trajektorie Leis-
tungskopplung zwischen den Moden des Wellenleiters [7, 65]. Bei einer strahlenoptischen
Betrachtung kommt es zu einer Umverteilung der winkelabhängigen Leistungen. Dieser
Effekt nimmt mit abnehmendem Radius zu.

Für einen Vergleich wird die Leistungsverteilung für den Radius R2 = ∞ und R2 = 5mm
in Abbildung 3.7 betrachtet. Unter Beachtung von (3.2) ist zu erkennen, dass PG für den
geraden Wellenleiter (R2 = ∞) größer ist als für den gekrümmten Wellenleiter. Aufgrund
der Krümmung muss Leistung in das umgebende Material transmittiert werden, da diese
nicht mehr im Fernfeld enthalten ist. Dieser Effekt nimmt ebenfalls mit abnehmendem
Radius zu.

Des Weiteren ist zu erkennen, dass Leistungsanteile oberhalb des inneren Akzeptanzwin-
kels ϑN ≈ 9.22◦ vorhanden sind. Diese Leistungsanteile werden durch helikale Strahlen
entlang des Wellenleiterverlaufs geführt. Die Strahlen haben Aufpunkte auf allen be-
teiligten Wellenleiterberandungen und erfüllen an jedem Aufpunkt die Bedingung der
Totalreflexion [58]. In Abschnitt 6.3.1.3 wird dieser Effekt näher beschrieben.
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3.3. Stand der Technik zur Bestimmung des transienten

Übertragungsverhaltens

Beim Entwurf und bei der Bestimmung des transienten Übertragungsverhaltens des passi-
ven optischen Pfades für industriell einsetzbare Leiterplatten sind zeiteffiziente Verfahren
notwendig. Diese Verfahren müssen, wie in dem letzten Abschnitt dargestellt, neben den
Geometrie- und Materialparametern auch die Stimulationsbedingungen berücksichtigen.
In diesem Abschnitt wird der Stand der Technik zur Bestimmung des transienten Über-
tragungsverhaltens dieses passiven optischen Pfades vorgestellt.

Generell wird hierbei zwischen Verfahren, die auf wellenoptischen und die auf strahlenop-
tischen Methoden basieren, unterschieden. Die wellenoptischen Methoden berechnen die
Einkopplung in den Wellenleiter und die Wellenausbreitung innerhalb des Wellenleiters
mit Hilfe von Verfahren, die auf den Maxwellschen Gleichungen beruhen [58, 88, 92, 93].
Bei einfachen Strukturen, dem geraden Schichtwellenleiter oder der Faser, existieren ana-
lytische Lösungen [90, 106, 109]. Des Weiteren sind für rechteckförmige Wellenleiter mit
kleinem Indexsprung Näherungsverfahren [30,66] vorhanden. Hier wird der gerade Recht-
eckwellenleiter durch Überlagerung zweier Schichtwellenleiter angenähert.

Neben den vorgestellten Wellenleitern kann der passive optische Pfad aus Wellenleitern
mit gekrümmter Wellenleitertrajektorie und weiteren komplexeren Strukturen bestehen,
siehe Abschnitt 3.1.1. Für diese Wellenleiter existieren keine analytischen Lösungen. Hier
können unter bestimmten Voraussetzungen numerische Verfahren wie z. B. Finite Ele-
mente, FIT (Finite Integration), FDTD (Finite difference time domain) oder BPM (Be-
am Propagation Methode) verwendet werden [2, 48, 51]. Die benötigte Rechenzeit, der
Speicherbedarf und die Fehleranfälligkeit der Verfahren bei den betrachteten Stimulations-
bedingungen, Kernquerschnittsprofilen und Wellenleiterverläufen schränken den Einsatz
dieser Verfahren jedoch ein. Eine komponentenübergreifende und zeiteffiziente Simulation
ist mit diesen Verfahren ebenfalls nur eingeschränkt möglich.

Bei den strahlenoptischen Verfahren wird die Wellenausbreitung durch Strahlen approxi-
miert. Diese Strahlen stehen orthogonal auf den sich imWellenleiter ausbreitenden lokalen
ebenen Wellen [12, 17, 112]. Eine komponentenübergreifende Modellierung des gesamten
passiven optischen Pfades ist mit den strahlenoptischen Verfahren möglich [100]. In den
folgenden Abschnitten werden Verfahren für die Bestimmung des Übertragungsverhaltens
hochmultimodaler optischer Wellenleiter basierend auf Strahlenoptik vorgestellt. Abschlie-
ßend wird ein Fazit der Berechnungsmethoden diskutiert, der Fokus liegt dabei auf einer
zeiteffizienten Berechnung des Übertragungsverhaltens.

3.3.1. Physikalische Strahlverfolgung

Um den Leistungsfluss entlang des Wellenleiterverlaufs zu bestimmen, wird die emittier-
te Leistung durch eine Stimulationsstrahlenschar innerhalb des hochmultimodalen op-
tischen Wellenleiters repräsentiert. Mit Hilfe eines physikalischen Strahlverfolgungsalgo-
rithmus (engl. Ray-Tracing) wird für jeden Strahl der Strahlenschar die Strahltrajektorie
solange bestimmt, bis ein Abbruchkriterium erfüllt ist [11, 22]. Dieser Strahlverfolgungs-
algorithmus berücksichtigt die physikalischen Effekte der Ausbreitung einer lokal ebenen
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Welle innerhalb des dielektrischen Wellenleiters. Ein Abbruchkriterium des Strahlverfol-
gungsalgorithmus ist das Auftreffen des Strahls auf einen Detektor. Ein weiteres Ab-
bruchkriterium ist die Unterschreitung eines vorher definierten Schwellwertes. Der Strahl
hat dann keinen signifikanten Anteil am optischen Leistungsfluss in Richtung eines De-
tektors. Im Folgenden ist ein vereinfachter Strahlverfolgungsalgorithmus als Pseudocode
dargestellt.

Algorithmus 1 Vereinfachter Algorithmus für die physikalische Strahlverfolgung

1: for strahl = 1 bis NStrahl do

2: A := Aufpunkt(strahl)
3: k := Richtung(strahl)
4: while Abbruchkriterium = false do

5: for NB = 1 to NBerand do

6: [tempA(NB), tempL(NB)] =Berechne Aufpunkte(A, k, berandung(NB))
7: end for

8: [An, Berandung] = physik Aufpunkt(tempA, tempL, k)
9: kn = neue Strahlrichtung(k, Berandung)
10: A := An

11: k := kn
12: end while

13: end for

Gegeben ist ein Wellenleiter mit NBerand Wellenleiterberandungen. Diese Berandungen
beschreiben sowohl die Kerngrenzhülle, als auch die Eingangs- und Ausgangsstirnfläche
des Wellenleiters. Die Kerngrenzhülle trennt den höherbrechenden Kern vom niederbre-
chenden Mantelmaterial. Des Weiteren ist eine Stimulationsstrahlenschar mit der Anzahl
NStrahl Strahlen gegeben. Zur Berechnung des Strahlenpfades jedes Strahls wird im Fol-
genden der vorgestellte Algorithmus 1 verwendet.

Zuerst wird in Zeile 1 jeder Strahl sukzessive ausgewählt. Es werden in Zeile 2 und 3

die Aufpunkte und Richtungen jedes Strahls den Variablen A und k zugewiesen. An-
schließend wird die while() Schleife, Zeile 4 bis 10, durchlaufen. Innerhalb dieser Schleife
erfolgt die Berechnung aller Aufpunkte des aktuellen Strahls mit allen Wellenleiterbe-
randungen (Zeile 5 bis 7). Dies ist eine Schnittpunktsbestimmung des Strahls mit allen
Berandungsflächen durch die Funktion: Berechne Aufpunkt(). Nachdem alle Aufpunk-
te bekannt sind, wird der physikalisch sinnvolle Aufpunkt aus der Lösungsmenge tempA
durch die Funktion physik Aufpunkt() in Zeile 8 ermittelt. Hierbei wird die kürzeste Dis-
tanz tempL zwischen dem aktuellen Aufpunkt A und den berechneten Aufpunkten tempA
unter Berücksichtigung der Strahlrichtung k bestimmt. Die Rückgabewerte sind der neue
Aufpunkt An und die Berandung, auf der dieser Aufpunkt liegt. Unter Beachtung dieser
Berandung und der Strahlrichtung k erfolgt innerhalb der Funktion neue Strahlrichtung

Zeile 9 die Berechnung der Strahlrichtung kn des reflektierten Strahls. Diese Berechnung
basiert auf dem Brechungsgesetz (2.80). In den Zeilen 10 und 11 werden die Strahlrich-
tung und der Aufpunkt durch die neu berechneten Werte ersetzt. Die while() Schleife
wird solange wiederholt, bis eines der oben genannten Abbruchkriterien erfüllt ist.

Die Laufzeit des Algorithmus ist von der Anzahl der zu verfolgenden Strahlen NStrahl, von
der Anzahl der zu bestimmenden Schnittpunkte des einzelnen Strahls mit jeder Berandung
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und von der Gesamtzahl der zu ermittelnden inneren ReflexionenM abhängig. Die Anzahl
der zu ermittelnden Schnittpunkte pro Auftreffer wird durch die Anzahl NBerand und die
Form der Berandungen bestimmt1.

Die Laufzeit jedes Strahlverfolgungsalgorithmus hängt nahezu linear von der gesamten
Anzahl der zu berechnenden inneren Reflexionen M ab. Zur Abschätzung der Laufzeit
des Verfahrens wird im Folgenden M für Kanalwellenleiter mit zwei unterschiedlichen
Trajektorienverläufen bestimmt. Um eine Vergleichsmöglichkeit zu gewährleisten, ist die
Trajektorienlänge bei den Kanalwellenleitern identisch mit L = 1m. Der gewählte Kern-
querschnitt aller Kanalwellenleiter ist quadratisch W = H , die Seitenlänge W wird inner-
halb des Bereichs

W ∈ {50, 70, 100}µm
variiert. Der erste Kanalwellenleiter hat einen geraden Trajektorienverlauf, er entspricht
damit dem in Abschnitt 3.2.1 vorgestellten Kanalwellenleiter mit L = 1m. Der zweite
Kanalwellenleiter besteht aus drei Segmenten, entsprechend dem in Abschnitt 3.2.3 vor-
gestellten Kanalwellenleiter. Als Anregung wird die in Abschnitt 3.2.1 vorgestellte Punkt-
quelle PRect verwendet. Diese leuchtet die numerische Apertur des Wellenleiters homogen
aus. Die Anzahl der emittierten Strahlen ist NStrahl = 32 · 103.
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Abb. 3.8.: Anzahl innerer Reflexionen eines geraden Kanalwellenleiters der Länge L = 1m

Die Anzahl der inneren Reflexionen Mi für einen Kanalwellenleiter mit gerader Trajek-
torie, Wellenleiterlänge L = 1m und Weite W = 50µm ist in Abhängigkeit vom Azimut-
und Polarwinkel in Abbildung 3.8 dargestellt. Auf der Abszisse ist der Polarwinkel ϑ, auf
der Ordinate der Azimutwinkel ϕ und auf der Applikate die entsprechende Anzahl der
inneren Reflexionen Mi aufgetragen. Zu erkennen ist, dass die Anzahl der Reflexionen

1Für gekrümmte Berandungsflächen existieren mehrere Schnittpunktslösungen zwischen dem Strahl und
der Berandung, aber nur ein physikalisch sinnvoller Schnittpunkt.
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vom Polarwinkel ϑ dominiert wird. Für größer werdende Polarwinkel nimmt der Einfluss
des Azimutwinkels auf die Anzahl der Reflexionen Mi ebenfalls zu. In der nachfolgenden
Tabelle 3.1 ist die Anzahl der zu berechnenden Reflexionen M mit

M =

NStrahl∑

i=1

Mi (3.3)

angegeben. In dieser Tabelle ist zu erkennen, dass die Anzahl der inneren Reflexionen M
von den Querschnittsabmessungen und dem Trajektorienverlauf des Kanalwellenleiters
abhängt.

Tabelle 3.1.: Anzahl der inneren Reflexionen in unterschiedlichen Wellenleiterstrukturen
mit konstanter Trajektorienlänge L = 1m und konstanter Anzahl von Emis-
sionstrahlen NStrahl = 32 · 103

Anzahl innerer Reflexionen
W ×H Mgerade Mgekrümmt

[µm2] R = 5mm R = 50mm
50× 50 81 · 106 83 · 106 82 · 106
70× 70 58 · 106 60 · 106 59 · 106
100× 100 40 · 106 41 · 106 41 · 106

Für jede der bestimmten inneren Reflexionen muss die while() Schleife in Algorithmus
1 durchlaufen werden, d. h. für einen geraden Wellenleiter mit quadratischem Kernquer-
schnitt mit Seitenlänge W = 50µm und Wellenleiterlänge L = 1m wird die innere Schleife
ca. 81 · 106 mal durchlaufen. Dies kann bei komplexeren Strukturen, längeren Wellen-
leiterlängen und einer großen Anzahl von Stimulationsstrahlen zu hohen Rechenzeiten
führen.

Eine Optimierungsmöglichkeit bietet die semisequentielle Strahlverfolgung [8]. Bei die-
ser wird nicht die gesamte Kerngrenzhülle des Kanalwellenleiters als komplexe Struktur
modelliert, sondern ein Wellenleiter in Segmente gleichen Typs untergliedert, z. B. eine
Gerade oder eine Krümmung. Ein Strahl wird sukzessiv in diesen Strukturen verfolgt.
Hierbei wird die Kerngrenzhülle jedes Segments aus wenigen, analytisch beschreibbaren
Flächen zusammengesetzt [7]. Dadurch wird das Verfahren präziser und zeiteffizienter.
Die Anzahl der zu bestimmenden inneren Reflexionen M wird durch diesen Ansatz nicht
verringert.

Im Allgemeinen werden die Strahlverfolgungsverfahren in höheren Programmiersprachen
wie C oder C++ implementiert. Es existieren zudem Ansätze, um vorhandene Schaltungs-
simulatoren wie SPICE2 zu verwenden [73].

3.3.2. Mehrtoransatz und rekursive Faltung

Die vorgestellten klassischen strahlenoptischen Verfahren sind aufgrund ihres hohen Re-
chenzeitaufwandes nicht geeignet, um das Übertragungsverhalten im Entwurfsbereich

2Simulation Programm with Integrated Circuit Emphasis



3.3. Stand der Technik zur Bestimmung des transienten Übertragungsverhaltens 51

zeiteffizient zu bestimmen. Alternativ bietet es sich an, Wellenleitersegmente als Mehr-
tore auszulegen und das Übertragungsverhalten innerhalb des Mehrtores zu berechnen.
Eine Kaskadierung von Kanalwellenleitersegmenten wird durch die Kaskadierung dieser
Mehrtore nachgebildet [24]. Im Folgenden wird dieses Verfahren vorgestellt.

x∆

∆y

∆Ω

∆A

Abb. 3.9.: Ort- und Winkeldiskretisierung einer Wellenleiterstirnfläche

Bei dem Mehrtoransatz werden die Stirnflächen des Wellenleiters in eine diskrete Anzahl
von Flächensegmenten ∆A unterteilt. Über jedes Flächensegment ∆Ai wird eine Halb-
kugel positioniert und diese in diskrete Raumwinkelsegmente ∆Ω unterteilt, siehe Ab-
bildung 3.9. Ein diskretes Raumwinkelsegment ∆Ωj in Kombination mit dem beteiligten
Flächensegment ∆Ai entspricht einem Tor des Mehrtores.

Im Allgemeinen ergeben sich dadurch N Eingangs- und M Ausgangstore, jedes Eingangs-
tor ist mit jedem Ausgangtor verbunden, siehe Abbildung 3.10. Durch den gewählten
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Abb. 3.10.: Darstellung der Übertragungswege des Mehrtors

Mehrtoransatz ist eine Kaskadierung der gewählten Komponenten möglich. Die Bestim-
mung des Übertragungsverhaltens beliebiger Wellenleiter muss auf vorher bestimmte
Mehrtore zurückgeführt werden.

Im Folgenden wird angenommen, dass die Anzahl der Eingangstore identisch mit der
Anzahl der Ausgangstore ist M = N . Zwischen jedem Eingangstor (Index e) und je-
dem Ausgangstor (Index a) kann die Impulsantwort he,a(t) und die Übertragungsfunktion
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He,a(jω) angegeben werden

ya(t) = he,a(t) ∗ xe(t), (3.4)

Ya(jω) = He,a(jω) ·Xe(jω), mit e, a ∈ [1, N ]. (3.5)

Die Anzahl der zu bestimmenden Funktionen ist damit N2. Um die Übertragungsfunk-
tionen zu berechnen, werden die einzelnen Tore sukzessive mit Sprungfunktionen im Zeit-
bereich stimuliert. Hierbei muss im Allgemeinen die Kopplung eines Eingangstors in jedes
Ausgangstor berücksichtigt werden. Ausgehend von den dadurch bestimmten Sprung-
antworten ae,a(t) werden die Impulsantworten he,a(t) und die jeweiligen Übertragungs-
funktionen He,a(jω) ermittelt.

Die Sprungantworten können mit Hilfe strahlenoptischer Verfahren als Funktionsverlauf
ae,a(t) bestimmt werden, siehe Abbildung 3.11. Für eine Kaskadierung von Mehrtoren
werden die Impulsantworten oder die Übertragungsfunktionen als eine diskrete Anzahl
von Stützstellen abgelegt. Zudem muss für eine Bestimmung der Systemantwort y(t) eine
Faltung im Zeitbereich oder eine Multiplikation im Frequenzbereich durchgeführt werden.
Im Folgenden wird ein Ansatz vorgestellt, bei dem die Faltung im Zeitbereich durch eine
effiziente rekursive Faltung ersetzt wird.

Der Funktionsverlauf ae,a(t) weist bestimmte Charakteristika auf, so dass er mit Hilfe von
Exponentialfunktionen mit der Methode von Prony [79] als zeitkontinuierlicher Funkti-
onsverlauf in der Form

ae,a(t) =
P∑

p=1

cp e
αp

t
∆T (3.6)

approximiert werden kann [23]. Die Koeffizienten ci und αi sind im Allgemeinen komplex
und können durch ein numerisches Verfahren aus dem Verlauf der Sprungantwort ae,a(t)
ermittelt werden. Der Koeffizient ∆T stellt die Dauer der zu approximierenden Funktion
dar. Damit kann der zeitkontinuierliche Verlauf der Sprungantwort ae,a(t) durch wenige
Parameter approximiert werden. Durch diese Reduktion wird der notwendige Speicherbe-
darf signifikant verringert.

In [25, 97] wurde gezeigt, dass eine Sprungantwort ae,a(t) durch eine intervallbasierte ab-
schnittsweise Approximation mit nur einer Exponentialfunktion innerhalb jedes Intervalls
nachgebildet werden kann. Die resultierende Sprungantwort aP (t) hat die folgende Form:

aP (t) =
P∑

p=1

(

cp · eap
t−tp,L
∆T (p) + ap,0

)

· rect(t, tp,L, tp,H)

+ aP,H · σ(t− tP,H) + a0,L · [1− σ(t− t0,L)]

(3.7)

mit

rect(t, tp,L, tp,H) =

{

1 tp,L ≤ t ≤ tp,H

0 sonst.
(3.8)

In Gleichung (3.7) gibt p das aktuelle Intervall, P die Anzahl der Intervalle, tp,{L,H} die
Grenzen des aktuellen Intervalls und ∆T (p) = tp,H − tp,L die Breite des betrachteten
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Intervalls an. Die Konstanten a0,L und aP,H

a0,L = lim
t→−∞

a(t),

aP,H = lim
t→∞

a(t)

sind die Werte zu Beginn des ersten bzw. zum Ende des letzten Intervalls.
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Abb. 3.11.: Charakteristischer Verlauf der Sprungantwort ae,a(t) und abschnittsweise Ap-
proximation ap(t)

Ein charakteristischer Verlauf der Sprungantwort ae,a(t) und eines Intervalls ap(t) aus
Gleichung (3.7) ist in Abbildung 3.11 dargestellt.

Die Impulsantwort hP (t) ergibt sich aus der Differentiation der Sprungantwort zu

hP (t) =
P∑

p=1

(

c̃pe
ap

t−tp,L
∆T (p)

)

· rect(t, tp,L, tp,H) (3.9)

mit

c̃p = cp
ap

∆T (p)
. (3.10)

Um das Ausgangssignal ya(t) eines Übertragungsweges zu bestimmen, wird das Eingangs-
signal x(t) mit der Impulsantwort ha(t) gefaltet. Die Impulsantwort ist innerhalb jedes
Intervalls definiert als Exponentialfunktion der Form: α exp (βt)

ya(tn) =

∫ tn

0

x(τ)αae
βa(tn−τ)dτ. (3.11)

Das Intervall kann aufgeteilt werden in tn = tn−1 +∆t. Damit ergibt sich die Systemant-
wort zu

ya(tn) = eβa(∆t)ya(tn−1) +

∫ tn

tn−1

x(τ)αae
βa(tn−τ)dτ. (3.12)
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Die Berechnung von ya(t) erfolgt zeiteffizient durch eine rekursiv ausführbare Faltung des
Eingangssignals mit der Impulsantwort. Es wird auf vorher berechnete Werte ya(tn−1)
zurückgegriffen.

Um das Übertragungsverhalten eines Systems zu bestimmen, müssen sämtliche Torver-
bindungen des Mehrtores ausgewertet werden. Für eine Aufwandsabschätzung wird ein
Kanalwellenleiter mit quadratischem Querschnittsprofil der Seitenlänge W = 70µm und
einer numerischen Apertur von AN = 0.25 verwendet. Wird die Stirnfläche in

∆A = (5× 5)µm2

große Flächensegmente unterteilt, so ergeben sich insgesamt 196 Flächensegmente. Bei
der gewählten numerischen Apertur ergibt sich ein Akzeptanzwinkel

γN = 9.2◦

bezogen auf Luft. Bei einer Winkeldiskretisierung des Azimutwinkels von

∆ϕ = 10◦, ϕ ∈ [0◦, 360◦]

und des Polarwinkels

∆ϑ = 0.5◦, ∆ϑ = [0, γN ]

ergeben sich 664 Raumwinkeldiskretisierungen ∆Ω pro Flächenelement ∆A. Dies resul-
tiert in ca. 130 · 103 Eingangskanäle des Mehrtores. Wird eine identische Diskretisierung
des Ausgangs vorausgesetzt, so ist die Anzahl der Ausgangskanäle identisch zu der An-
zahl der Eingangskanäle. Die Anzahl der zu bestimmenden und zu berücksichtigenden
Übertragungswege ist damit 17·109. Diese Anzahl ist zu umfangreich für eine zeiteffiziente
Analyse. Wie in Abbildung 3.8 ersichtlich, kann die gewählte Diskretisierung des Azimut-
winkels für einen größer werdenden Polarwinkel zu grob sein und muss verfeinert werden.
Die Parameter wurden hier grob abgeschätzt, bei Analysen von Leistungsteilerstruktu-
ren, siehe Abschnitt 3.1.1.2, oder Krümmungen muss gegebenenfalls feiner diskretisiert
werden.

Weitergehend ist man bei diesem Ansatz auf vorher bestimmte Mehrtore festgelegt. Wird
ein Parameter des Mehrtores, z. B. die numerische Apertur AN , geändert, so muss zeit-
aufwändig ein neues Mehrtor generiert werden. Aus Gründen des hohen numerischen
Aufwandes, der begrenzten Genauigkeit und der eingeschränkten Flexibilität wird dieser
Ansatz in dieser Arbeit nicht weiterverfolgt.

3.4. Zusammenfassung

Der betrachtete passive optische Pfad besteht im Allgemeinen aus in eine optische La-
ge eingebetteten Kanalwellenleitern, mikrooptischen Komponenten und strahlformenden
und -umlenkenden optischen Bauelementen innerhalb und außerhalb der optischen Lage.
Schwerpunkt dieser Arbeit ist die zeiteffiziente Bestimmung des transienten Übertragungs-
verhaltens der eingebetteten optischen Kanalwellenleiter und mikrooptischen Komponen-
ten.
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Aufgrund der großen Querschnittsabmessungen und der großen Wellenleiterlänge eignen
sich strahlenoptische Verfahren zur Bestimmung des transienten Übertragungsverhaltens
hochmultimodaler Wellenleiter. Dieses Übertragungsverhalten ist, neben den Geometrie-
parametern und den Trajektorienverläufen, auch von den Anregungsbedingungen ab-
hängig. Ändern sich diese, muss das Übertragungsverhalten neu bestimmt werden.

Physikalische Strahlverfolgungsverfahren berechnen, ausgehend vom Strahlaufpunkt und
von der initialen Strahlrichtung, sukzessive die Auftreffer auf die Wellenleiterberandung
und die neue Strahlrichtung. Die Laufzeit dieser Verfahren ist deshalb von der Anzahl
der zu verfolgenden Strahlen und von der Anzahl der zu bestimmenden inneren Re-
flexionen abhängig. Diese Verfahren weisen eine große Flexibilität gegenüber der Variation
von Geometrie- und Materialparametern auf. Außerdem können Streuung durch Rauig-
keiten der Wellenleiterberandung, Polarisationseffekte und intrinsische Materialverluste
berücksichtigt werden. Ebenfalls können nahezu beliebige Leistungsquellspektren ange-
nommen werden. Die große Anzahl der zu berechnenden inneren Reflexionen verhindert
eine zeitnahe Bestimmung des transienten Übertragungsverhaltens [50].

Anstatt die Strahltrajektorie jedes Strahls neu zu bestimmen, kann als weiteres Verfahren
ein Mehrtorverfahren in Kombination mit einer rekursiven Faltung verwendet werden. Bei
diesem Verfahren wird die Eingangs- und Ausgangsebene eines Wellenleiters in ein orts-
und winkeldiskretes Mehrtor unterteilt. Jedes Eingangstor ist mit jedem Ausgangstor des
Mehrtores verbunden. Die Anzahl der möglichen Übertragungswege und damit die Anzahl
der zu bestimmenden Übertragungsfunktionen entspricht der Multiplikation der Anzahl
der Eingangs- mit der Anzahl der Ausgangstore. Mit Hilfe des Mehrtoransatzes kann das
Übertragungsverhalten eines Gesamtsystems aus einer Kaskadierung von vorher berech-
neten Mehrtoren bestimmt werden. Durch die hohe Anzahl der zu berücksichtigenden
Übertragungswege kann dieses Verfahren nicht speicher- und zeiteffizient eingesetzt wer-
den [24].

Grundlegend wurde gezeigt, dass das transiente Übertragungsverhalten von vielmodigen
optischen Kanalwellenleitern basierend auf physikalischen Strahlverfolgungsverfahren be-
stimmt werden kann. Zudem ist es möglich, mit Hilfe der vorgestellten Verfahren eine
komponentenübergreifende Simulation durchzuführen [99]. Eine zeiteffiziente Analyse ist
allerdings mit beiden vorgestellten Verfahren nicht durchführbar.
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Kapitel 4

Methodik für die Erstellung von
leistungsf ähigen Modellen für die

zeiteffiziente Simulation

Ziel dieser Arbeit ist es, leistungsfähige Modelle zu entwickeln, die eine zeiteffiziente Simu-
lation von hochgradig vielmodigen eingebetteten Wellenleitern ermöglichen. Diese Modelle
müssen flexibel gegenüber einer Variation der bekannten Modellparameter Wellenleiter-
geometrie und Wellenleitermaterial sein. Außerdem sollen diese Modelle die zeiteffiziente
Berechnung der unbekannten Modellparameter (Lgeo, M , kA AA ) ermöglichen.

Die generelle Vorgehensweise bei der Erstellung leistungsfähiger Modelle ist unabhängig
von der zugrunde liegenden Problemstellung. Nach [80] sind bei der Erstellung die folgen-
den Schritte zu durchlaufen:

1. Festlegung der Modellschnittstellen und Modellparameter

2. Festlegung der Modelltopologie

3. Implementierung der Beziehung zwischen den Modellparametern

4. Bestimmung der Modellparameter

5. Umsetzung in eine Simulatorsprache

Des Weiteren ist es stets erforderlich, ein erstelltes Modell zu verifizieren. Hierbei kann
sowohl auf messtechnisch ermittelte Ergebnisse als auch auf verifizierte Simulationsergeb-
nisse zurückgegriffen werden.

Kann kein Modell direkt für das zu untersuchende System erstellt werden, so muss
gewährleistet sein, dass ein Gesamtmodell aus der Integration einzelner Teilmodelle er-
zeugt werden kann. Hierfür wird in [80] ein modulares Konzept zur Modellgenerierung
aus Teilmodellen und Grundmodellen vorgeschlagen. Dieses Konzept wird im Abschnitt
4.1 vorgestellt.

Die oben genannten Punkte können erst nach der Festlegung eines geeigneten Model-
lierungsverfahrens durchlaufen werden. Diese Festlegung erfolgt in Abschnitt 4.2. Ab-
schließend werden in Abschnitt 4.3 Strategien für die Generierung von zeiteffizienten leis-
tungsfähigen Modellen vorgestellt.
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Als Simulatorsprache wird aus Gründen der Plattformunabhängigkeit die Skriptsprache
Matlab der Firma The MathWorks1 verwendet. Zudem können die entwickelten Modelle
mit dieser Sprache zeitnah entwickelt und die Funktionsfähigkeit kurzfristig überprüft
werden. Für eine spätere Implementierung bietet es sich an, die Algorithmen in einer
höheren Programmiersprache wie z. B. C oder C++ umzusetzen.

4.1. Modulares Konzept für die Modellgenerierung

Die Vorgehensweise bei der Generierung von Modellen für ein komplexes System ent-
springt der in der Wissenschaft vorherrschenden Methode der Partitionierung eines Sys-
tems in mehrere abgeschlossene Teilsysteme und Grundelemente (Top-down Entwurf) [80].
Die Modellierung und anschließende Simulation des Systems wird durch die Integration
des Gesamtmodells aus Teil- und Grundmodellen ermöglicht (Bottom-up Entwurf).

Gesamtsystem

Partitionierung

Grundelemente

TeilmodelleGesamtmodell

Teilsysteme

Integration

WL SF

Grundmodelle

Abb. 4.1.: Konzept der Modularisierung am Beispiel eines Leistungsteilers

Die genannte Vorgehensweise der Partitionierung und Integration ist am Beispiel eines
Leistungsteilers (siehe Abschnitt 3.1.1.2) in Abbildung 4.1 dargestellt. Ausgehend von dem
zu analysierenden Gesamtsystem wird dieses System in Teilsysteme partitioniert. Diese
Teilsysteme sind Komponenten mit konstanten Geometrie- oder Materialeigenschaften.
In dem Beispiel sind dies mehrere gerade Kanalwellenleiter der Länge Lte und ein Taper

1www.mathworks.com
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mit linearer Wandweiterung. Für jedes Teilsystem existiert ein Grundelement. Ein Grun-
delement ist in diesem Beispiel ein gerader Kanalwellenleiter mit einer konstanten Länge2

Lge, Lge ≤ Lte. Für jedes Grundelement muss ein Grundmodell existieren. Andernfalls
muss es entsprechend der gewählten Modellierungsart neu generiert werden. Zusätzlich
zu den hier benötigten Grundelementen sind in Abbildung 4.1 weitere Grundelemente
dargestellt. Hier wird zwischen Grundelementen für Wellenleiter WL und strahlformen-
den Komponenten SF unterschieden. Durch die Kaskadierung der Grundmodelle wird das
Teilmodell erzeugt. Die Erstellung des Gesamtmodells erfolgt durch die Integration aller
beteiligten Teilmodelle.

Als Weiterentwicklung der vorgestellten Strategie wird in dieser Arbeit für Komponenten
mit identischen Trajektorieneigenschaften (gerader oder konstant gekrümmter Wellenlei-
ter) nur ein Grundmodell entwickelt. Durch Übergabe der bekannten Modellparameter
wird aus diesem Grundmodell direkt das Teilmodell generiert. Diese Strategie wird im
Folgenden anhand eines Beispiels aufgezeigt.

Das in Abbildung 4.1 dargestellte Gesamtsystem besteht unter Anderem aus mehreren
geraden Wellenleitern mit unterschiedlichen Wellenleiterlängen. Jeder dieser geraden Wel-
lenleiter wird durch ein Teilmodell repräsentiert. Diese Teilmodelle beinhalten ein identi-
sches Grundmodell zu Berechnung der gesuchten Strahlparameter. Durch Übergabe der
Material- und Geometerieparameter entsteht das benötigte Teilmodell für den geraden
Wellenleiter der Länge L, Weite W , Höhe H und numerischen Apertur AN .

4.2. Modellierungsebenen

Bei der Modellierung von Systemen wird zwischen der Modellierung in der Mikroebene
und in der Makroebene unterschieden [4, 19, 33, 80]. In den folgenden Abschnitten wer-
den die Modellierungsebenen mit den entsprechenden Beschreibungsverfahren vorgestellt.
Außerdem werden Aussagen über die Einsatzfähigkeit hinsichtlich einer zeiteffizienten
Bestimmung des transienten Übertragungsverhaltens hochmultimodaler Kanalwellenlei-
ter und mikrooptischer Strukturen getroffen.

4.2.1. Modellierung in der Mikroebene

Bei der Modellierung in der Mikroebene wird die Funktion der Systemkomponenten, unter
Berücksichtigung der genauen physikalischen Struktur, innerhalb eines bestimmten Re-
chengebietes beschrieben. Der Grad der Detaillierung ist bei diesen Verfahren sehr hoch.
Diese Modelle der Mikroebene basieren im Allgemeinen auf Systemen von partiellen Dif-
ferentialgleichungen.

Als Modellbeschreibungsverfahren für die Wellenausbreitung innerhalb optischer Wellen-
leiter in der Mikroebene werden unter Anderem die Finite-Differenzen-Methode (FDTD),
die Finite-Elemente-Methode (FEM) oder die Finite-Integrationsmethode (FIT) verwen-
det [2,48,51]. Bei diesen Methoden werden die zu untersuchenden Gleichungen zeitdiskre-
tisiert und die Maxwellschen Gleichungen werden entsprechend dem zugrunde liegenden

2Für den Fall Lge = Lte entspricht das Grundelement dem Teilsystem.
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Verfahren aufgestellt. Als Resultat liegt das zu untersuchende Problem in Matrizenform
vor und kann mit den Methoden der linearen Algebra gelöst werden. Nach der Simulation
sind die Lösungen innerhalb des Rechengebietes an allen diskretisierten Orten bekannt.

Der Diskretisierungsgrad des Rechengebiets hängt bei der Bestimmung des transien-
ten Übertragungsverhaltens vielmodiger optischer Wellenleiter unter Anderem von den
zu erwartenden Wellenlängen ab. Die in dieser Arbeit verwendeten Strukturen weisen
Querschnitts- und Längenabmessungen auf, die sehr viel größer als die verwendete Wel-
lenlänge der Quelle sind. Die Anzahl der Freiheitsgrade und damit auch der Speicherbedarf
der erzeugten Matrizen ist sehr groß. Dies resultiert in einem hohen Rechenaufwand und
dementsprechend hohen Rechenzeiten zur Bestimmung des Übertragungsverhaltens. Aus
diesem Grund kann das Übertragungsverhalten nicht zeiteffizient mit diesen Methoden
bestimmt werden. Zudem ist eine komponentenübergreifende Gesamtsystemanalyse nur
eingeschränkt möglich.

4.2.2. Modellierung in der Makroebene

Neben der Modellierung in der Mikroebene können Systeme mit reduzierter Detaillierungs-
stufe und reduzierter Genauigkeit unter Berücksichtigung der wesentlichen Wirkzusam-
menhänge und gewünschten Parametervariationen in der Makroebene nachgebildet wer-
den [64]. Bei der Modellbildung in der Makroebene werden die physikalischen Wechselwir-
kungen für eine bereichsübergreifende Simulation durch einheitliche Größen repräsentiert.
Dieses Modell beschreibt dann den funktionalen Zusammenhang zwischen verschiedenen
Eingangs-, Ausgangs- und Störgrößen. Die so erhaltenen Modelle gestatten eine effiziente
Simulation ganzer Systemteile. Außerdem sollen mit Hilfe der Makromodelle Voraussagen
über das Systemverhalten bei veränderten Stimulationen und bei Variationen der signi-
fikanten Parameter getroffen werden. Durch die Wahl geeigneter Schnittstellen ist die
Analyse des Zusammenwirkens mit angrenzenden Systemteilen möglich.

Für die Modellgewinnung in der Makroebene wird in der Literatur zwischen zwei Ver-
fahren unterschieden. Ist der Systemaufbau oder das physikalische Verhalten bekannt,
so werden deterministische Modelle oder auch White-Box-Modelle verwendet, andernfalls
werden deskriptive Modelle oder auch Black-Box-Modelle verwendet. Außerdem existie-
ren Mischformen, die als Grey-Box-Modelle bezeichnet werden. Bei diesen werden beide
Verfahren kombiniert.

4.2.2.1. Deterministisches Modell

Bei den deterministischen Modellen ist der physikalische Zusammenhang zwischen dem
Ein- und dem Ausgangsverhalten bekannt und wird, basierend auf physikalischen Ge-
setzmäßigkeiten, mathematisch beschrieben. Den Modellparametern werden direkt physi-
kalische Parameter zugeordnet. Ändern sich Parameter innerhalb des Modells, kann dies
direkt berücksichtigt werden. Die Modellierung stützt sich beispielsweise auf Differential-
gleichungen oder Übertragungsfunktionen in Form von algebraischen Gleichungen.

Um eine hohe Flexibilität des deterministischen Modells zu erhalten, ist es wichtig, dass
viele interne Parameter durch externe Modellparameter beschrieben werden. Damit wer-
den z. B. veränderte Materialeigenschaften oder Aufbaueigenschaften berücksichtigt, ohne
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ein neues Modell entwickeln zu müssen. Das so gewonnene Makromodell entspricht dem
Grundmodell, siehe Abbildung 4.1. Es ist für verschiedene Teilmodelle gleichen Typs, aber
mit unterschiedlichen Modellparametern gültig.

4.2.2.2. Deskriptives Modell

Ist der innere Aufbau des zu untersuchenden Systems bzw. der physikalische Zusam-
menhang zwischen dem Eingang und dem Ausgang des Systems unbekannt, so wird ein
deskriptives Modell verwendet. Der unbekannte Zusammenhang wird durch eine große
Anzahl von Eingangsstimulationen und anschließender messtechnischer Charakterisierung
des Ausgangsverhaltens bestimmt. Aus den gewonnenen Daten werden mathematische Zu-
sammenhänge und Modellparameter extrahiert. Zur Ermittlung der Modellparameter sind
zusätzlich oft nichttriviale Identifikationsalgorithmen erforderlich [83]. Diese Modellpara-
meter stellen nur noch Zahlenwerte dar und haben keinen physikalischen Zusammenhang.
Die innere Struktur des Modells bleibt unbekannt.

Der gewonnene Zusammenhang zwischen dem Eingang und dem Ausgang ist somit nur
für das annähernd unveränderte System unter den zugrunde liegenden Randbedingungen
(z.B. Temperatur, Druck) gültig. Ändert sich der innere Aufbau des Systems oder wird
dieses unter anderen Randbedingungen betrieben, muss das Ein- und Ausgangsverhalten
neu bestimmt werden. Aus diesem Grund entspricht das beschriebene Makromodell meist
dem gesuchten Teil- oder Gesamtmodell.

4.3. Generierung leistungsfähiger Modelle für die

zeiteffiziente Simulation

Strahlenoptische Verfahren haben sich als geeignet herausgestellt, um das transiente Über-
tragungsverhalten von vielmodigen optischen Wellenleitern zu bestimmen, siehe Abschnitt
3.3.1. Außerdem ist eine Simulatorkopplung bzw. eine bereichsübergreifende Simulati-
on mit diesen Verfahren möglich. Allerdings können die klassischen Strahlverfolgungs-
verfahren das transiente Übertragungsverhalten von vielmodigen optischen Wellenlei-
tern nicht zeiteffizient bestimmen [50]. Aus diesem Grund ist es sinnvoll, eine Model-
lierung auf der Makroebene basierend auf strahlenoptischen Verfahren durchzuführen.
Ziel ist es, mit Hilfe reduzierter Genauigkeit und unter Berücksichtigung der wesent-
lichen Wirkzusammenhänge Modelle zu entwickeln, die es ermöglichen, das transiente
Übertragungsverhalten zeiteffizient zu bestimmen.

Durch die Festlegung auf die Modellierungsebene und das zu verwendende Verfahren
können die Modellschnittstellen und Modellparameter spezifiziert werden, siehe Abschnitt
4.1. Als Modellschnittstellen werden die Aufpunkte A und die Richtungen k der stimu-
lierten Strahlen festgelegt. Für eine vereinfachte Kaskadierung werden die Komponen-
tenaufpunkte W und die initialen Wellenleitertrajektorienrichtungen t der Teilmodelle
ebenfalls als Modellschnittstellen definiert.

Als Modellparameter werden die Topologieparameter, die Geometrieparameter, die Ma-
terialparameter und die zu bestimmenden Strahlparameter festgelegt. Die Topologiepara-
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meter legen die Art des zu verwendenden Grundmodells fest. Dies kann unter Anderem
ein gerader Kanalwellenleiter oder ein konstant gekrümmter Kanalwellenleiter sein.

Mit Hilfe der Geometrieparameter werden die Parameter der Kernquerschnittsgeometrie,
die Länge der Wellenleitertrajektorie oder der Krümmungsradius festgelegt. Die aus den
gegebenen Modellparametern und dem gewählten Grundmodell zu bestimmenden Strahl-
parameter sind die geometrische Weglänge Lgeo und der Leistungskoppelkoeffizient an.
Basierend auf diesen Parametern wird die Übertragungsfunktion der Kanalwellenleiter
mit Gleichung (2.127) bestimmt.

Die in dieser Arbeit verwendeten Kanalwellenleiter und mikrooptischen Strukturen können
vollständig durch die Kerngrenzhülle beschrieben werden. Die Kerngrenzhülle trennt den
höherbrechenden Kern vom niederbrechenden Mantelmaterial. Der Querschnitt der Kern-
grenzhülle weist eine nahezu rechteckfömige Kontur auf. Für die Makromodellierung wird
der Querschnitt im Folgenden als ideal rechteckfömig angenommen.

Bei einer Partitionierung komplexer Systeme in Teilsysteme ist es notwendig, dass die be-
schreibende Kerngrenzhülle modularisierbar ist. Zudem wird die Genauigkeit durch eine
analytische Beschreibung der Kerngrenzhüllen erhöht. In Abschnitt 4.3.1 wird ein Kon-
zept für eine segmentweise Beschreibung der Kerngrenzhülle vorgestellt. Darauf aufbau-
end wird in Abschnitt 4.3.2 ein Integrationskonzept beschrieben, das eine automatische
Positionierung der verwendeten Teilmodelle ermöglicht und somit die Kaskadierung der
Teilmodelle zu einem Gesamtmodell vereinfacht.

Charakteristisch für die betrachteten Kanalwellenleiter und mikrooptischen Komponen-
ten ist die rechteckförmige Querschnittskontur der Kerngrenzhülle. Zudem befindet sich
die Wellenleitertrajektorie in einer Ebene. Diese aufbaubedingten Eigenschaften werden
in Abschnitt 4.3.3 verwendet, um Entwicklungsstrategien für zeiteffiziente Modelle aufzu-
zeigen.
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4.3.1. Konforme Beschreibung der Kerngrenzhüllen

Die eingebetteten Kanalwellenleiter und mikrooptischen Strukturen werden vollständig
durch einen rechteckförmigen Kernquerschnitt und die Wellenleitertrajektorie W(s) be-
schrieben. Diese Wellenleitertrajektorie W(s) ist im Allgemeinen eine Kurve im dreidi-
mensionalen Raum, mit s als Ortskoordinate der Raumkurve, siehe Abbildung 4.2.

Abb. 4.2.: Kerngrenzhülle und Wellenleitertrajektorie eines Kanalwellenleiters

Die Wellenleitertrajektorie W(s) jedes Wellenleiters innerhalb der optischen Lage wird
abschnittsweise als stetig differenzierbare Raumkurve

W : [sE , sA] → R
3, s ∈ R (4.1)

dargestellt. Darin ist W(sE) der Aufpunkt und W(sA) der Endpunkt der Wellenleiter-
trajektorie. Der normierte Tangentenvektor t(s) der Wellenleitertrajektorie wird damit
für jeden Punkt der Trajektorie durch

t(s) =
W(s)′

|W(s)′| ∧ |t(s)| = 1 (4.2)

bestimmt3. Zusätzlich können noch der Normaleneinheitsvektor n(s) und der Binormalen-
vektor b(s) der Wellenleitertrajektorie W(s) durch

n(s) =
t(s)′

|t(s)′|

und

b(s) = t(s)× n(s)

angegeben werden [34]. Der Normaleneinheitsvektor n(s) zeigt in Richtung der Kurven-
krümmung. Beide Vektoren sind abhängig vom Kurvenverlauf der Trajektorie.

Durch die Planarität der optischen Lage verläuft die Wellenleitertrajektorie immer in einer
Ebene mit dem aufpunktsunabhängigen Ebenenvektor n2

t(s) · n2 = 0 ∧ |n2| = 1. (4.3)

3In der Literatur wird häufig W(s)′ statt dW(s)/ds verwendet
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Dieser ist im Gegensatz zu n(s) und b(s) unabhängig von dem Verlauf der Wellenleiter-
trajektorie, siehe Abbildung 4.2.

Die betrachteten Wellenleiter bestehen aus vier Berandungsflächen und zwei Stirnflächen.
Die Berandungsflächen sind die Grenzflächen zwischen dem optisch dichteren Kern- und
dem optisch dünneren Mantelmaterial. Die Stirnflächen sind die Koppelflächen für die
definierte Ein- und Auskopplung der Leistung. Für die Beschreibung der Berandungs-
und Stirnflächen ist es sinnvoll, statt der Vektoren n(s) und b(s) den Normalenvektor
n1(s) einzuführen mit

n1(s)× n2 = t(s) ∧ |n1(s)| = 1. (4.4)

Dieser steht in einer konstanten Orientierung zu dem von der Weglänge s unabhängigen
Normalenvektor n2.

Mit Hilfe der Gleichungen (4.2) und (4.4) sowie des Normalenvektors n2 kann an einem
beliebigen Betrachtungspunkt innerhalb des Wellenleiters ein lokales rechtshändiges Ko-
ordinatensystem in Abhängigkeit von der Wellenleitertrajektorie W(s) und der Weglänge
s angegeben werden. Damit werden alle Flächen des Wellenleiters mit Hilfe der Wel-
lenleitertrajektorie W(s) und dem aufpunktsunabhängigen Normalenvektor n2 eindeutig
beschrieben. Jeder Punkt auf den Stirnflächen wird durch

FE = W(sE) + an1(sE) + bn2, (4.5)

FA = W(sA) + an1(sA) + bn2 (4.6)

mit

a ∈
[

−W

2
,
W

2

]

∧ b ∈
[

−H

2
,
H

2

]

bestimmt. Die Normalenvektoren dieser Stirnflächen sind t(sE) und t(sA). Für die vier
Berandungsflächen zwischen dem Kern und dem Mantel gilt

F1 = W(s) + an1(s) +
H

2
n2, (4.7)

F2 = W(s) +
W

2
n1(s) + bn2, (4.8)

F3 = W(s) + an1(s)−
H

2
n2, (4.9)

F4 = W(s)− W

2
n1(s) + bn2. (4.10)

Bei den Berandungsflächen wird zwischen den Deckel- F1 und Bodenflächen F3 (Normalen-
vektor n2) und den seitlichen Berandungsflächen F2 und F4 (Normalenvektor n1(s)) un-
terschieden, siehe Abbildung 4.2. Bedingt durch den rechteckförmigen Wellenleiterquer-
schnitt stehen bei einem Kanalwellenleiter die Normalenvektoren n1(s) und n2 immer
orthogonal zueinander und zum Trajektorientangentenvektor t(s), siehe auch Gleichung
(4.4) und Abbildung 4.2. Die Projektionskanten des Wellenleitereingangs WpE und des
Wellenleiterausgangs WpA werden mit

WpE = W(sE) + an1(sE)−
H

2
n2, (4.11)

WpA = W(sA) + an1(sA)−
H

2
n2 (4.12)
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bezogen auf die Bodenfläche F3 angegeben.

4.3.2. Integrationskonzept

Mit der im letzten Abschnitt beschriebenen Wellenleitertrajektorie W(s) und der Trajek-
torienrichtung t(s) sind die beiden letzten Modellschnittstellen definiert. Damit kann ein
Blockschaltbild für ein Teilmodell angegeben werden, siehe Abbildung 4.3.

Abb. 4.3.: Allgemeine Modellbeschreibung für ein Teilmodell

Dieses Blockschaltbild beinhaltet die Modellschnittstellen der Eingangsgrößen W(sE),
t(sE), kE , AE und die Modellschnittstellen der Ausgangsgrößen W(sA), t(sA) , kA und
AA. Bei diesen Größen wird zwischen Positionierungsschnittstellen und den Strahlpara-
metern unterschieden. Die Positionierungsschnittstellen sind der Komponentenaufpunkt
W(sE) und die Komponentenrichtung t(sE). Die Strahlparameter sind die Strahlaufpunk-
te AE und AA und die Strahlrichtungen kE und kA. Das Blockschaltbild beinhaltet die
gegebenen Modellparameter und die zu bestimmenden Modellparameter. Diese sind in
dem Blockschaltbild als Strahlparameter gekennzeichnet.

Innerhalb jedes Blocks wird eine Unterteilung in Positionierung und Grundmodell vor-
genommen. Mit Hilfe der Positionierung werden automatisch aus den gegebenen Topolo-
gieparametern, Geometrieparametern und den Eingangsschnittstellen W(sE), t(sE) die
Ausgangsschnittstellen W(sA), t(sA) bestimmt. Damit ist die vereinfachte Integration
von Teilmodellen zu einem Gesamtmodell möglich, da

Wn(sA) = Wn+1(sE) ∧ tn(sA) = tn+1(sE) (4.13)

gilt. Die hochgestellten Indizes n entsprechen dem aktuellen Teilmodell und n + 1 dem
nachfolgenden Teilmodell. Die Kaskadierung der nachfolgenden Segmente erfolgt nach der
sukzessiven Übergabe der Modellparameter an alle Segmente und nach der Übergabe des
Aufpunkts W1(sE) und der Richtung t1(sE) des ersten Segmentes automatisch. Dieser
Vorgang wird einmalig vor der Strahlparameterberechnung durchgeführt.
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Mit Hilfe der Topologieparameter wird das zu wählende Grundmodell festgelegt, z. B. ein
gerader oder ein gekrümmter Kanalwellenleiter. Durch die Übergabe der Geometrie- und
Materialparameter wird aus dem Grundmodell direkt das Teilmodell generiert. Damit
ist es möglich, Modellparameter wie Brechungsindex und Wellenleiterlänge zu ändern,
ohne eine Neuentwicklung des Grundmodells durchzuführen. Basierend auf den gegebenen
Modellparametern und den Eingangsgrößen werden die Ausgangsgrößen AA und kA unter
Zuhilfenahme des Teilmodells bestimmt. Bei der Kaskadierung der Teilmodelle zu einem
Gesamtmodell werden diese Ausgangsgrößen als Schnittstellen zwischen den Teilmodellen
verwendet

kn
A = kn+1

E ∧ An
A = An+1

E . (4.14)

Ziel ist es, die Strahlausgangsgrößen und Strahlverlaufsparameter zeiteffizient innerhalb
jedes Modells zu berechnen und damit das Gesamtmodell durch die Kaskadierung der
einzelnen Modelle zeiteffizient zu bestimmen.

4.3.3. Strategien zur Generierung von zeiteffizienten Modellen

Die in dieser Arbeit betrachteten Wellenleiter haben aufbaubedingt einen nahezu recht-
eckförmigen Kernquerschnitt, siehe Abschnitt 3.1.2. Diese Wellenleiter werden als zu-
sätzliche optische Lage in einen herkömmlichen Lagenaufbau einer Leiterplatte integriert.
Aus diesem Grund verläuft die Wellenleitertrajektorie in einer Ebene. Diese Eigenschaften
sind die Grundlage für die Generierung von zeiteffizienten Modellen. In Abschnitt 4.3.3.1
werden Symmetrieeigenschaften des Kanalwellenleiteraufbaus ausgenutzt, um zeiteffizien-
te Modelle zu konzipieren. Abschließend wird in Abschnitt 4.3.3.2 die Vermeidung von
Redundanzen zur weiteren Optimierung der Strahlparameterberechnung beschrieben.

4.3.3.1. Symmetriebetrachtungen

Aufgrund des rechteckförmigen Kernquerschnitts stehen die Wellenleiterberandungen or-
thogonal zueinander. Die Berandungsnormalen und die Trajektoriennormalen bilden an
jedem Ort innerhalb des Kanalwellenleiters ein rechthändiges Koordinatensystem, siehe
Gleichung (4.4). Jede Strahlrichtung kann mit Hilfe dieser lokalen Vektoren beschrieben
werden.

Betrachtet wird ein Strahl mit der lokalen Strahlrichtung4 km
l , der am lokalen Aufpunkt

Al die Berandung mit der lokalen Berandungsnormalen −n1(sl) trifft, siehe Abbildung
4.4. Die lokale Strahlrichtung km

l wird am Aufpunkt Al durch die lokalen orthogonalen
Vektoren beschrieben

km
l = [km

l · n1(sl)]n1(sl) + [km
l · n2]n2 + [km

l · t(sl)] t(sl). (4.15)

4Der Index m kennzeichnet hier die Anzahl der bisherigen inneren Reflexionen.
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Abb. 4.4.: Reflexion des einfallenden Strahls km
l an einer Berandungsebene mit dem

Normalenvektor n1(sl)

Mit Hilfe des Reflexionsgesetzes (2.80) erfolgt die Bestimmung des reflektierten Strahls
mit der lokalen Strahlrichtung km+1

l aus dem einfallenden Strahl km
l und der Normalen

n1(sl)

km+1
l = km

l − 2 [km
l · n1(sl)]n1(sl). (4.16)

Zu erkennen ist, dass nur die Vektorkomponenten der Strahlrichtung in Richtung der Be-
randungsnormalen der beteiligten Wellenleiterberandung im reflektierten Strahl geändert
werden.

Der Strahlverlauf innerhalb des rechteckförmigen Wellenleiters kann damit durch die zwei
Strahlverläufe kl‖ und kl⊥ innerhalb von zwei orthogonalen Ebenen bestimmt werden.
Die Berechnung des Strahlverlaufs innerhalb einer planaren Fläche ist zeiteffizienter als
die Berechnung des Strahlverlaufs im Raum. Bei der Schnittpunktsuche in dieser Fläche
muss nur der Schnittpunkt mit den vier Begrenzungsgeraden und nicht mit sechs Flächen
bestimmt werden. Nachdem die orthogonalen Strahlverläufe berechnet sind, wird der re-
sultierende Strahlverlauf im Raum aus der Überlagerung der einzelnen Strahlverläufe
bestimmt. In Kapitel 5 werden analytische Verfahren für die Strahlparameterberechnung
von geraden und konstant gekrümmten Schichtwellenleitern vorgestellt. Basierend auf
den analytischen Berechnungen wird in Kapitel 6 die Orthogonalität der Wellenleiterbe-
randungen ausgenutzt, um analytische bzw. semianalytische Modelle für rechteckförmige
Wellenleiter und mikrooptische Komponenten zu entwickeln.

4.3.3.2. Redundanzvermeidung

In dem letzten Abschnitt ist die Strahlverlaufsberechnung im Raum innerhalb des rechteck-
förmigen Wellenleiters durch zwei Strahlverlaufsberechnungen in orthogonalen Ebenen
ersetzt worden. Hierbei wird der Strahlverlauf auf diese orthogonalen Ebenen projiziert
und innerhalb der Ebenen separat berechnet. Anschließend wird der resultierende Strahl-
verlauf im Raum aus diesen beiden Strahlverläufen bestimmt. Im Folgenden wird die
Projektion auf eine Ebene näher betrachtet, um Redundanzen bei der Berechnung des
resultierenden Strahlpfades zu erkennen.
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Abb. 4.5.: Identische Projektion zweier Strahlen mit unterschiedlichen Strahlrichtungen

Gegeben sind zwei Strahlen mit den Strahlaufpunkten A1 und A2 und den unterschied-
lichen initialen Strahlrichtungen k1 und k2. Die Strahlrichtungen werden durch

kpi = Npi [(ki · n1(sE))n1(sE) + (ki · t(sE))t(sE)] i ∈ [1, 2] (4.17)

und

Npi =
1

√

1− (ki · n2)2

auf die Ebene mit dem Normalenvektor n2 projiziert. Durch den Normierungsfaktor Npi

gilt für den Betrag aller projizierten Strahlrichtungen

|kpi| = 1.

Gilt nun für die Aufpunkte

A1 −A2 = hn2 ∧ h ∈
[

−H

2
,
H

2

]

und für die Komponenten der Strahlrichtungen

Np1 (k1 · n1(sE)) = Np2 (k2 · n1(sE)) ∧ Np1 (k1 · t(sE)) = Np2 (k2 · t(sE)),
so sind die resultierenden projizierten Strahlverläufe in der Ebene mit dem Normalenvek-
tor n2 identisch, siehe Abbildung 4.5.

Damit kann ein projizierter Aufpunkt Ap auf der Projektionskante WpE, Gleichung (4.11),
und eine projizierte Strahlrichtung kp bestimmt werden.

Ap = (Ai · t(sE))t(sE) + (Ai · n1(sE))n1(sE), (4.18)

kp = Npi [(ki · n1(sE))n1(sE) + (ki · t(sE))t(sE)] ∀i ∈ [1, 2]. (4.19)

Alle Strahlen, die diesen Bedingungen genügen, haben identische projizierte Strahlverläufe
in der Ebene mit dem Normalenvektor n2. Dieser Strahlverlauf muss nur einmal berech-
net werden und kann für weitere Strahlen verwendet werden. In Kapitel 7 wird diese
Eigenschaft ausgenutzt, um ein Mehrtormodell zu generieren.
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4.4. Zusammenfassung

Zielsetzung bei der Modellgenerierung in dieser Arbeit ist die zeiteffiziente Bestimmung
des transienten Übertragungsverhaltens von vielmodigen Wellenleitern mit rechteckförmi-
gem Kernquerschnitt. Um dieses Übertragungsverhalten eines komplexen Gesamtmodells
zu bestimmen, wird ein modulares Konzept vorgeschlagen. Hierbei wird das Prinzip der
Partitionierung des Gesamtsystems in Teilsysteme und Grundelemente angewendet. Für
jedes Grundelement muss ein entsprechendes Grundmodell existieren. Das Gesamtmodell
wird durch die Integration der Grundmodelle zu Teilmodellen und der Kaskadierung dieser
Teilmodelle generiert. Ziel ist die zeiteffiziente Bestimmung der Strahlparameter jedes
emittierten Strahls durch diese Grundmodelle. Damit werden auch die Strahlparameter
des Gesamtmodells zeiteffizient berechnet. Als Erweiterung soll jedes Teilmodell durch die
Übergabe von Modellparametern an das Grundmodell entstehen, ohne dass die zugrunde
liegenden Algorithmen geändert werden.

Für die Modellgenerierung der Grund- und Teilmodelle existieren zwei unterschiedliche
Modellierungsebenen: die Modellierung in der Mikro- und in der Makroebene. Im Hinblick
auf eine zeiteffiziente und komponentenübergreifende Simulation ist die Modellierung in
der Makroebene erfolgversprechend. Bei dieser Modellierung wird zwischen dem determi-
nistischen und dem deskriptiven Modell unterschieden.

Hinsichtlich der partitionellen Zerlegung eines Systems wird eine konforme Beschreibung
der Wellenleitertrajektorie und der Kerngrenzhülle vorgeschlagen. Hierbei gehen alle Orts-
und Richtungsvektoren aus dem Verlauf der Wellenleitertrajektorien W(s) und dem Nor-
malenvektor n2 hervor. Mit Hilfe der konformen Beschreibung, der Modellparameter und
der Schnittstellen kann ein Integrationskonzept für die Teilmodelle entwickelt werden.
Bei diesem Konzept erfolgt die Integration der Grundmodelle und die Kaskadierung der
Teilmodelle automatisch.

Für die Generierung zeiteffizienter Modelle für Wellenleiter mit rechteckförmigem Kern-
querschnitt sind zwei Strategien diskutiert worden. Die erste Strategie beinhaltet Symme-
triebetrachtungen der Wellenleiterberandungen. Diese Symmetriebetrachtungen werden in
Kapitel 5 und 6 verwendet, um zeiteffiziente Grundmodelle und Teilmodelle zu entwickeln.
Mit Hilfe der zweiten Strategie wird die Anzahl der zu berechnenden Strahlwege durch
Vermeidung von Redundanzen reduziert. Unter Ausnutzung dieser Redundanzvermeidung
wird in Kapitel 7 ein Mehrtormodell generiert.
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Kapitel 5

Modelle für
Schichtwellenleiterstrukturen

Im vorangegangenen Abschnitt 4.3.3 wurden Optimierungsstrategien für die Bestimmung
von Strahlparametern im Raum vorgestellt. Eine Strategie ist die Projektion jedes Strahls
auf orthogonale Berandungsflächen und die Berechnung der Strahlverläufe innerhalb die-
ser Flächen. Eine Strahlverfolgung innerhalb einer Fläche ist zeiteffizienter als eine Strahl-
verfolgung im Raum. Physikalisch können diese Flächen als dielektrische Schichtwellen-
leiterstrukturen interpretiert werden. Der Strahl hat keine Komponente in Richtung des
Normalenvektors der Fläche.

Im Folgenden wird die Projektionsstrategie weitergeführt. Die klassische Strahlverfolgung
innerhalb von Schichtwellenleitern wird durch Berechnungsverfahren ersetzt, die auf ana-
lytisch lösbaren Gleichungen beruhen. Diese bieten den Vorteil der höheren Genauigkeit
und der zeiteffizienteren Berechnung der Strahlparameter. Die entwickelten analytischen
Berechnungsverfahren bilden für einen bestimmten Trajektorienverlauf (gerader oder kon-
stant gekrümmter Schichtwellenleiter) das Grundmodell, siehe Abschnitt 4.3.2. Durch die
Initialisierung des Grundmodells mit den Geometrieparametern und den Materialparame-
tern entsteht aus diesem das benötigte Teilmodell. Weiterhin müssen die Kaskadierbarkeit
und die Anbindung an die Modellparameter gewährleistet sein. Durch die Einbettung der
entwickelten Grundmodelle in die Teilmodelle entsprechend dem in Abbildung 4.3 vorge-
stellten Blockschaltbild wird dies gewährleistet.

Die Kopplung zwischen einem Schichtwellenleiter und der Umgebung (Luft) wird, bei dem
in dieser Arbeit verwendeten modularen Konzept, als eigenständiges Modell implementiert
und im Folgenden nicht weiter betrachtet, siehe Anhang B.1. Alle initialen Strahlaufpunk-
te befinden sich somit auf der Stirnfläche des Schichtwellenleiters im Kernmaterial ncore.
Das Snelliussche Brechungsgesetz (2.80) für die Ein- und Auskopplung muss nicht mehr
angewendet werden.
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5.1. Planarer Schichtwellenleiter

Betrachtet wird ein planarer dielektrischer Schichtwellenleiter der Länge L und Weite
W , siehe Abbildung 5.1. Ein höherbrechender Kern ist in einen niederbrechenden Mantel
eingebettet.

Abb. 5.1.: Strahlverlauf innerhalb eines geraden Schichtwellenleiters

Der Schichtwellenleiter kann vollständig mit der in Abschnitt 4.3.1 vorgestellten Trajekto-
rie W(s) beschrieben werden. Bei einem planaren Schichtwellenleiter ist die Trajektorien-
richtung t(s) und damit auch der Normalenvektor n1(s) unabhängig von der Weglänge s.
Weiterhin gilt an jedem Ort innerhalb des Schichtwellenleiters die folgende Beziehung
zwischen den Vektoren n1, n2 und t

n1 × n2 = t.

Diese Vektoren bilden ein lokales Rechtssystem, siehe auch Gleichung (4.4).

5.1.1. Analytische Strahlparameterberechnung

Für die analytische Berechnung der Strahlparameter wird der Strahl SE betrachtet. Dieser
Strahl mit der initialen Strahlrichtung kE wird am Aufpunkt AE in den Wellenleiter
eingekoppelt, siehe Abbildung 5.1. Aufgrund des konstanten Reflexionswinkels αE an den
Berandungen (2.79) propagiert der Strahl auf einem zickzackförmigen Pfad durch den
Schichtwellenleiter. Am Aufpunkt AA trifft der Strahl unter der Strahlrichtung kA auf
die ausgangsseitige Stirnfläche des Schichtwellenleiters. Für eine Kaskadierung von Teil-
modellen müssen somit neben der gesamten Strahlpfadlänge LG auch der Strahlaufpunkt
AA und die Strahlrichtung kA bestimmt werden.

Ein Strahl propagiert verlustlos durch den Schichtwellenleiter, solange der Winkel βE

cos(βE) = kE · t (5.1)

zwischen der Trajektoriennormalen t und der Strahlrichtung kE kleiner als der Winkel βG

βG =
π

2
− αG (5.2)
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ist. Dabei ist αG der Winkel der Totalreflexion, siehe Gleichung (2.81). Ist der einge-
schlossene Winkel βE größer als der Winkel βG, so nimmt die Intensität des Strahls in
Abhängigkeit von der Polarisation und dem Einfallswinkel bei jeder Reflexion an der
dielektrischen Berandung mit dem Reflexionskoeffizienten R < 1 ab, siehe Gleichungen
(2.89) und (2.90). Aus diesem Grund werden für die Bestimmung der Strahlparameter von
geraden Schichtwellenleitern nur Strahlen berücksichtigt, die innerhalb der Totalreflexion
geführt werden.

Der in Abbildung 5.1 dargestellte Strahl trifft an den Aufpunkten A1 und A2 die Wellen-
leiterberandung und am Aufpunkt AA auf die ausgangsseitige Wellenleiterstirnfläche. Die
gesamte geometrische Strahllänge LG innerhalb des Wellenleiters kann durch Addition
aller N Teilstrahllängen Ln zwischen den Aufpunkten berechnet werden

LG =
N∑

n=1

Ln. (5.3)

Aufgrund der konstanten Wellenleiterweite W und des Reflexionsgesetzes (2.79) kann die
geometrische Strahllänge LG aller geführten Strahlen ebenfalls durch

LG =
L

kE · t (5.4)

direkt bestimmt werden1. Es ist zu erkennen, dass die Länge des optischen Pfades in-
nerhalb eines dielektrischen Schichtwellenleiters unabhängig vom Aufpunkt AE auf der
Wellenleiterstirnfläche und von der Wellenleiterweite W ist. Die Länge des geometrischen
Strahlpfades LG ist nur abhängig von der Wellenleiterlänge L und von der lokalen initia-
len Strahlrichtung kE . Wird für eine zeiteffiziente Berechnung der Übertragungsfunktion
(2.127) nur die Strahllänge LG benötigt, so muss nur Gleichung (5.4) ausgewertet werden.

Da der Winkel αE, bedingt durch das Reflexionsgesetz (2.79), und die Wellenleiterweite
W entlang der Trajektorie W(s) konstant sind, besteht der gesamte Strahlpfad aus drei
unterschiedlichen Teilstrahllängen L1, Lp und LN , siehe Abbildung 5.1. Die Teilstrahllänge
L1 ist der Abstand vom Strahlursprung AE bis zum ersten Auftreffen des Strahls auf einer
der beiden Wellenleiterberandungen

L1 = |A1 −AE|. (5.5)

Zwischen zwei benachbarten inneren Aufpunkten Am und Am+1 befindet sich die kon-
stante Teilstrahllänge Lp

Lp = |Am −Am+1|, m ∈ [1,M − 1], M ∈ N. (5.6)

Der Wert M gibt die Anzahl der inneren Reflexionen an. Der Abstand zwischen dem
letzten Aufpunkt auf einer Wellenleiterberandung AM und dem Aufpunkt AA ist die
Teilstrahllänge LN

LN = |AM −AA|. (5.7)

1Hier wird der praxisnahe Fall 0 ≪ kE · t ≤ 1 betrachtet.
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Die Teilstrahllänge L1 ist abhängig vom Aufpunkt AE und der initialen Strahlrichtung
kE. Sie kann mit Hilfe der Vektorgleichung

A1 = AE + L1 · kE = W(sE) + Ls · t+
{

+W
2
n1 obere Berandungsebene,

−W
2
n1 untere Berandungsebene

(5.8)

bestimmt werden. Die Länge Ls gibt die Länge der Wellenleitertrajektorie beim ersten
Auftreffen des Strahls auf eine Berandungsebene an. Für eine Berechnung der Länge L1

wird die Gleichung (5.8) mit dem Normalenvektor n1 multipliziert. Durch Ausnutzung der
Orthogonalität der lokalen Koordinatenvektoren, siehe Gleichung (4.4), kann die gesuchte
Länge L1

L1 =
±W

2
− (AE −W(sE)) · n1

kE · n1
(5.9)

direkt angegeben werden. Falls der Strahl die Berandungsebene nicht trifft, entspricht die
Länge L1 der Gesamtstrahllänge LG, Gleichung (5.4).

Die Strahlpfadlänge Lp zwischen zwei benachbarten Strahlaufpunkten ist, bedingt durch
das Reflexionsgesetz und die konstante Weite W , immer konstant [90]. Dieser Abstand
wird mit Hilfe der Trajektorienrichtung t des Wellenleiters, der Wellenleiterweite W und
der initialen Strahlrichtung kE bestimmt

Lp =
W

|t× kE|
. (5.10)

Dieser Abstand ist immer größer als der Abstand LN

Lp > LN . (5.11)

Mit der nun bekannten Teilstrahllänge Lp kann die Summation in (5.3) durch eine Mul-
tiplikation der Teilstrahllänge Lp mit der Anzahl der inneren Reflexionen M an den Wel-
lenleiterberandungen ersetzt werden

LG = L1 + (M − 1)Lp + LN . (5.12)

Diese Gleichung ist nur gültig, wenn der Strahl mindestens einmal an der Wellenleiterbe-
randung reflektiert wird. Für die Anzahl der Reflexionen M gilt dann

M ∈ N ∧ M > 0. (5.13)

In Gleichung (5.12) sind die Längen L1, LG und Lp bekannt, die Anzahl der Reflexionen
M und die Länge LN sind noch unbekannt. Um M zu bestimmen, wird aus (5.12) die
unbekannte Länge LN entfernt. Damit ergibt sich folgende Ungleichung

LG > L1 + (M − 1)Lp. (5.14)

Unter Beachtung der Bedingungen (5.11) und (5.13) wird M durch

M = 1 +

⌊
LG − L1

Lp

⌋

(5.15)
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berechnet2. Mit der nun bekannten Anzahl der Reflexionen wird mit Gleichung (5.12) die
fehlende Länge LN bestimmt.

Die Strahlrichtung kE kann durch die Normalenvektoren des lokalen Koordinatensystems
beschrieben werden

kE = (kE · n1)n1 + (kE · t) t. (5.16)

Durch Reflexionen an den Wellenleiterberandungen mit dem Normalenvektor n1 wird nur
das Vorzeichen der transversalen Komponenten der Strahlrichtung kE verändert, somit
wird die Strahlrichtung kA durch

kA = (−1)M(kE · n1)n1 + (kE · t)t (5.17)

direkt ermittelt. Um den Strahlaufpunkt AA zu bestimmen, wird zuerst der Strahlauf-
punkt AM , siehe Abbildung 5.1, auf der Wellenleiterberandung berechnet

AM = W(sE) + [LG − LN ] (kE · t) t+ (−1)(M−1) W

2

kE · n1

|kE · n1|
n1. (5.18)

Anschließend kann AA direkt angegeben werden

AA = AM + LNkA. (5.19)

Damit werden alle für eine Kaskadierung und für die Bestimmung des transienten Über-
tragungsverhaltens notwendigen Strahlparameter des geraden Schichtwellenleiters analy-
tisch berechnet. Auf eine zeitaufwendige Berechnung sämtlicher Strahlaufpunkte Am und
Strahlrichtungen km kann verzichtet werden.

5.1.2. Zeiteffizienz des Verfahrens

Die Zeiteffizienz eines Verfahrens zur Strahlparameterberechnung kann mit Hilfe der An-
zahl der zu durchlaufenden Rechenschritte zur Bestimmung sämtlicher Parameter bewer-
tet werden. Wie in diesem Abschnitt vorgestellt, können die gesuchten Parameter AA,
kA und LG durch acht direkt lösbare Gleichungen berechnet werden. Dies sind die je-
weiligen Gleichungen zur Bestimmung der Parameter L1, Lp, M , LG, LN , AM , kA und
AA. Zusätzlich wird überprüft, ob der Strahl die Bedingung der Totalreflexion erfüllt.
Die Berechnungszeit zur Bestimmung der Strahlparameter mit Hilfe dieses Verfahrens ist
somit unabhängig von den Material- und Geometrieparametern des Schichtwellenleiters
und der initialen Strahlrichtung. Es ist damit im Gegensatz zu klassischen Strahlverfol-
gungsverfahren, siehe Abschnitt 3.3.1, unabhängig von der Anzahl der zu bestimmenden
inneren Reflexionen M . Damit ist die Berechnungszeit für jeden Strahlverlauf konstant.
Dies gilt für alle eingekoppelten Strahlen.

2Durch die Abrundungsklammer y = ⌊x⌋ wird die nächste abgerundete ganze Zahl bestimmt, somit
folgt y ∈ Z.
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Abb. 5.2.: Abhängigkeit der Anzahl der Reflexionen M von der Wellenleiterweite W in-
nerhalb eines geraden Schichtwellenleiters der Länge L = 25mm

Die Abbildung 5.2 stellt die Anzahl der Reflexionen M innerhalb eines geraden Schicht-
wellenleiters mit der Länge L =25mm und den Wellenleiterweiten W = 100µm und 50µm
in Abhängigkeit des Winkels αE dar. Auf der Abszisse ist der Winkel αE und auf der
Ordinate ist die entsprechende Anzahl der Reflexionen aufgetragen. Der Winkel αE ist
der Winkel zwischen der Wellenleitertrajektoriennormalen t und der Strahlrichtung kE

cos(αE) = kE · t.

Mit zunehmendem Winkel αE nimmt die Anzahl der zu bestimmenden Reflexionen M
treppenförmig zu. Der Treppenverlauf ist abhängig von der Weite W und der Wellenlei-
terlänge L. Die Anzahl M ist invers proportional zu der Wellenleiterweite W und nimmt
mit zunehmender Wellenleiterweite linear ab. Für Wellenleiter mit längerer Wellenleiter-
trajektorie nimmt die Anzahl zu.

Die Anzahl M gibt außerdem die Anzahl der zu durchlaufenden inneren while()-Schleifen
in Algorithmus 1, Seite 48 an. Für einen Wellenleiter der Weite W = 50µm wird bei dem
Winkel αE = 9◦ die innere Schleife ca. 80 mal durchlaufen. Bei jedem Schleifendurchlauf
muss sukzessive der Strahlaufpunkt auf drei unterschiedlichen Berandungen bestimmt und
der physikalisch sinnvolle ausgewählt werden. Anschließend wird die weiterführende lokale
Strahlrichtung bestimmt. Damit müssen fünf Gleichungen bei jedem Schleifendurchlauf
berechnet werden. Insgesamt benötigt die Berechnung dieses Strahls mit Hilfe eines klas-
sischen Strahlverfolgungsalgorithmus 400 Berechnungschritte. Im Gegensatz dazu müssen
bei dem vorgestellten analytischen Verfahren nur acht Berechnungsschritte durchgeführt
werden.

5.1.3. Blockschaltbild

Das vorgestellte Verfahren ist flexibel anwendbar. Die zugrunde liegenden Gleichungen
werden durch Variation der Material- und Geometrieparameter nicht verändert. Daher
ist das Grundmodell für alle geraden Schichtwellenleiter identisch. Durch Übergabe der
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Abb. 5.3.: Blockschaltbild des geraden Schichtwellenleiters

Material- und Geometrieparameter wird aus dem Grundmodell direkt das Teilmodell ent-
wickelt. Diese Vorgehensweise wurde in Abschnitt 4.3 vorgestellt. Für die Integration eines
Grundmodells in ein Teilmodell kann deshalb das beschriebene Grundmodell in ein, wie
in Abschnitt 4.3.2 vorgestelltes, Blockschaltbild integriert werden, siehe Abbildung 5.3.

Als Eingangsparameter werden vor der Berechnung der Strahlparameter einmalig der
Aufpunkt W(sE), die Wellenleiterrichtung t(sE) sowie die Material- und die Geometrie-
parameter übergeben. Basierend auf diesen Parametern erfolgt die einmalige Bestimmung
der Ausgangsparameter W(sA) und t(sA). Bei der Simulationsdurchführung werden für
die Berechnung der ausgangsseitigen Strahlparameter alle Strahlen sukzessive an dieses
Teilmodell übergeben.
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5.2. Schichtwellenleiter mit konstant gekrümmter

Trajektorie

Betrachtet wird ein in n2-Richtung unendlich ausgedehnter dielektrischer Schichtwellen-
leiter mit konstant gekrümmter Wellenleitertrajektorie W(s), siehe Abbildung 5.4. Für
die Trajektorienaufpunkte W(sE) und W(sA) gilt

W(sE) = AR +

(

R +
W

2

)

n1(sE), (5.20)

W(sA) = AR +

(

R +
W

2

)

n1(sA), (5.21)

cos(γG) = n1(sE) · n1(sA). (5.22)

In diesen Gleichungen ist AR der Krümmungsmittelpunkt, R der konstante Krümmungs-
radius, W die konstante Wellenleiterweite und γG der Mittelpunktswinkel. Der Trajektori-
envektor t(s) und der Normalenvektor n1(s) sind abhängig von der Weglänge s. An jedem

Abb. 5.4.: Wellenleitertrajektorie und Strahlverläufe eines konstant gekrümmten
Schichtwellenleiters

beliebigen Aufpunkt A innerhalb des Wellenleiters kann ein lokales Koordinatensystem

n1(s)× n2 = t(s), s ∈ [sE , sA] (5.23)

in Abhängigkeit von der Wellenleitertrajektorie W(s) und der Weglänge s angegeben
werden.

5.2.1. Analytische Strahlparameterberechnung

Bedingt durch den konstanten Krümmungsradius R und die konstante Wellenleiterweite
W entlang der Wellenleitertrajektorie existieren nur zwei unterschiedliche Strahlverläufe,
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siehe Abbildung 5.4.

1. Der Strahl S1 wird nur an der äußeren Berandung reflektiert. In der Literatur werden
diese Strahlen als Whispering-Gallery-Rays bezeichnet [90].

2. Der Strahl S2 wird an der äußeren und an der inneren Berandung reflektiert. Der
Strahlverlauf ist zickzackförmig.

In den folgenden Abschnitten werden die Strahlparameter für die unterschiedlichen Strahl-
verläufe bestimmt.

5.2.1.1. Strahlreflexion nur an der äußeren Berandung

Betrachtet wird der eingeführte konstant gekrümmte Schichtwellenleiter. An der Wellen-
leiterstirnfläche wird der Strahl SE mit dem AufpunktAE und der initialen Strahlrichtung
kE in den Wellenleiter eingekoppelt, siehe Abbildung 5.5. Der Strahl trifft am Aufpunkt
A1 die äußere Wellenleiterberandung. An diesem Aufpunkt wird der Strahl reflektiert
und propagiert unter der neuen Strahlrichtung k1 durch den Wellenleiter zum Aufpunkt
A2. Dabei überstreicht er den Mittelpunktswinkel γp. Bedingt durch das Reflexionsgesetz
(2.79) gilt an den Aufpunkten A1 und A2

cos(α1) = n1(s1) · kE = −n1(s1) · k1, (5.24)

cos(α2) = n1(s2) · k1 = −n1(s2) · k2. (5.25)

Abb. 5.5.: Strahlverlauf eines nur an der äußeren Berandung reflektierten Strahls inner-
halb eines konstant gekrümmten Schichtwellenleiters

Wie in Abbildung 5.5 zu erkennen, kann durch die AufpunkteA1,A2 und den Krümmungs-
mittelpunkt AR ein ebenes gleichschenkliges Dreieck mit der Schenkellänge LS

LS = R +W (5.26)
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und einer Basis mit der Länge Lp gebildet werden. Damit können die folgenden Beziehun-
gen zwischen den Winkeln aufgestellt werden

α1 = α2 = α, (5.27)

γp = π − 2α. (5.28)

Die Winkel α und γp und die Länge Lp sind für den Schichtwellenleiter mit der initialen
Strahlrichtung kE für alle folgenden Reflexionen an der äußeren Wellenleiterberandung
konstant

cos(α) = −km · n1(sm), ∀m ∈ [1,M ]. (5.29)

In dieser Gleichung ist M die unbekannte Anzahl der inneren Reflexionen. Der gesamte
Strahlpfad LG wird durch sukzessive Addition aller Teilstrahllängen

LG = L1 + (M − 1) · Lp + LN (5.30)

bestimmt. Darin ist L1 die Teilstrahllänge vom Strahlaufpunkt AE bis zum ersten Auf-
treffen auf die Wellenleiterberandung A1 und LN die Strahllänge vom letzten Aufpunkt
auf der Wellenleiterberandung AM bis zum Auftreffen auf die Wellenleiterstirnfläche AA.
Um die Teilstrahllänge L1 und den ersten Aufpunkt zu bestimmen, wird das Dreieck, das
durch die Punkte AE , A1 und AR beschrieben wird, betrachtet

AE −AR
︸ ︷︷ ︸

A

+L1 kE = (R +W ) · n1(s1). (5.31)

In dieser Gleichung sind die Länge L1 und der Vektor n1(s1) unbekannt. Für physikalisch
sinnvolle Lösungen muss gelten: L1 ≥ 0 und 0 < α < π/2. Mit

1

R +W
(A · kE + L1) = n1(s1) · kE

︸ ︷︷ ︸

cos(α)

(5.32)

1

R +W
(kE ×A) · n2 = (kE × n1(s1))

︸ ︷︷ ︸

sin(α)·n2

·n2 (5.33)

werden die Länge L1, der Aufpunkt A1 und der Normalenvektor n1(s1) am Aufpunkt
berechnet. Weiter gilt für den Mittelpunktswinkel γ1

γ1 = π − (α + δ). (5.34)

Darin ist δ der bekannte Winkel zwischen den Vektoren kE und −n1(sE), siehe Bild 5.5.
Um die gesamte Strahlpfadlänge LG zu bestimmen, werden in Gleichung (5.30) die Längen
durch die zwischen den Aufpunkten überstrichenen Winkelbereiche ersetzt

γG = γ1 + (M − 1) γp + γN . (5.35)

Zusätzlich gilt die Bedingung

γN < γp. (5.36)
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Die Gleichung (5.35) und die Bedingung (5.36) entsprechen der Gleichung (5.12) und der
Bedingung (5.11) des geraden Schichtwellenleiters. Aus diesem Grund erfolgt die weitere
Vorgehensweise analog der in Abschnitt 5.1.1 vorgestellten Vorgehensweise.

Zur Bestimmung der Anzahl der Reflexionen M und des Winkels γN wird letzterer aus
Gleichung (5.35) entfernt, es ergibt sich damit die Ungleichung

γG > γ1 + (M − 1)γp. (5.37)

Die Anzahl der Reflexionen kann unter Beachtung der Bedingung (5.36) mit Hilfe von
Gleichung (5.28) und (5.34)

M = 1 +

⌊
γG − γ1

γp

⌋

(5.38)

angegeben werden. Mit M und (5.35) wird γN abschließend berechnet.

Der letzte Aufpunkt AM auf der Wellenleiterberandung wird mit einer Drehungsmatrix3

D(γG − γN ,n2)

AM = AR + (R +W ) D(γG − γN ,n2) · n1(sE)
︸ ︷︷ ︸

n1(sM )

(5.39)

ermittelt [13]. Mit Hilfe des Sinussatzes können die Teilstrahllängen Lp, LN und der
Abstand |AA −AR| unter Verwendung der Schenkellängen, der Mittelpunktswinkel γp,
γN und des Winkels α angegeben werden. Die Strahlrichtung am Wellenleiterausgang kA

ist schließlich

kA =
1

LN
(AA −AM). (5.40)

Die geometrische Strahllänge LG und die Strahlparameter kA undAA können damit analy-
tisch berechnet werden, ohne die Strahlaufpunkte Am und Strahlrichtungen km innerhalb
des Wellenleiters sukzessive zu bestimmen. Die Berechnungszeit ist somit unabhängig von
der Trajektorienlänge L des Wellenleiters sowie von den Material- und Geometrieparame-
tern.

Bedingung für Whispering-Gallery-Rays

Ein Strahl, der innerhalb eines gekrümmten Wellenleiters propagiert und keinen Aufpunkt
auf der inneren Wellenleiterberandung hat, wird in der Literatur als Whispering-Gallery-
Ray bezeichnet. Um eine Bedingung für diese Whispering-Gallery-Rays zu ermitteln, wird
die folgende vektorielle Gleichung betrachtet

AR + (R +W )n1(s1)
︸ ︷︷ ︸

A1

+Lp k1 = AR + (R +W )n1(s2)
︸ ︷︷ ︸

A2

. (5.41)

Diese Gleichung beschreibt einen Strahl mit dem Aufpunkt A1 auf der Wellenleiterbe-
randung, siehe Abbildung 5.5. Die initiale Strahlrichtung, mit der der Strahl vom Auf-
punkt A1 durch den Wellenleiter propagiert, ist k1. Nachdem der Strahl die geometrische

3Eine Matrix-Vektor Multiplikation b = D(α, e) · a dreht den Vektor a um den Winkel α, mit dem
Eigenvektor e als Drehachse.
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Weglänge Lp zurückgelegt hat, trifft er am Aufpunkt A2 wieder die äußere Wellenleiterbe-
randung, ohne die innere Wellenleiterberandung zu berühren. Wird die Gleichung (5.41)
beidseitig mit k1 multipliziert und werden die Skalarprodukte durch

n1(s1) · k1 = − cos(α) (5.42)

n1(s2) · k1 = cos(α) (5.43)

ersetzt, kann die Strahllänge Lp durch

Lp = 2(R +W ) cos(α) (5.44)

angegeben werden. Im Folgenden wird die Strahlrichtung so verändert, dass der Strahl
gerade die untere Berandung am Aufpunkt Ã2

Ã2 = AR +Rn1(s̃2) (5.45)

tangiert. Dann gilt für das Skalarprodukt der Vektoren an diesem Aufpunkt

n1(s̃2) · k1 = 0. (5.46)

Die Vektoren stehen orthogonal zueinander, d. h. die Punkte AR, A1 und Ã2 beschreiben
ein ebenes rechtwinkliges Dreieck mit den Seitenlängen R und L̃p und der Hypotenuse
R +W . Zudem gilt für die Länge L̃p für den Fall, dass der Strahl die untere Berandung
tangiert,

L̃p =
Lp

2
.

Für die Strahllängen Lp kann damit die folgende Bedingung angegeben werden

Lp ≤ 2
√

(R +W )2 − R2. (5.47)

Jeder Strahl, der diese Bedingung erfüllt, ist ein Whispering-Gallery-Ray. Für größere
Werte für Lp wird der Strahl zusätzlich an der inneren Berandung reflektiert. Mit den
Gleichungen (5.44), (5.47) und (5.24) kann die Gleichung auf die Normalenvektoren n1(s1)
und kE

n1(s1) · kE ≤
√

W (2R+W )

R +W
(5.48)

zurückgeführt werden, ohne die Länge Lp explizit zu berechnen.

5.2.1.2. Strahlreflexion an äußeren und inneren Berandungen

Im Allgemeinen wird ein Strahl nicht nur an der äußeren Berandung reflektiert, sondern
an beiden Berandungen. Der Strahlverlauf ist dann zickzackförmig innerhalb des konstant
gekrümmten Wellenleiters. In Abbildung 5.4 ist dies der Strahlverlauf des Strahls S2.

Bei der Berechnung der Strahlparameter muss als erstes unterschieden werden, ob der
erste Aufpunkt des StrahlsA1 auf der äußeren Berandung oder auf der inneren Berandung



5.2. Schichtwellenleiter mit konstant gekrümmter Trajektorie 83

liegt. Dazu wird die Gleichung (5.31) um die Möglichkeit erweitert, dass der Aufpunkt
auch auf der unteren Berandung mit ρ = R liegen kann

A + L1 · kE =

{
R +W

R

}

︸ ︷︷ ︸

ρ

n1(s1). (5.49)

Durch diese beiden Gleichungen werden maximal vier Schnittpunkte des Strahls mit den
Berandungen berechnet. Anschließend wird der physikalisch sinnvolle aus der Lösungs-
menge entnommen.

Abb. 5.6.: Strahlverlauf eines an der äußeren und inneren Berandung mehrfach reflektier-
ten Strahls innerhalb eines konstant gekrümmten Schichtwellenleiters

Im Folgenden wird davon ausgegangen, dass der Strahl mehrmals an der äußeren und
der inneren Berandung reflektiert wird. Der erste und der dritte Strahlaufpunkt A1, bzw.
A3 befinden sich auf der äußeren Berandung, der zweite Aufpunkt A2 befindet sich auf
der inneren Berandung4, siehe Abbildung 5.6. Für die Aufpunkte können die folgenden
Vektorgleichungen aufgestellt werden

A1 = AR + (R +W ) · n1(s1),

A2 = AR +R · n1(s2),

A3 = AR + (R +W ) · n1(s3).

Die Punkte AR, A1 und A2 und die Punkte AR, A2 und A3 bilden jeweils die ebenen
Dreiecke DR12 und DR23. Die eingeschlossenen Winkel des ersten Dreiecks DR12 sind α1,
γ2 und δ2, hierbei ist

δ2 = π − α2.

4Die folgende Betrachtungen schließen ein erstes Auftreffen auf der inneren Berandung mit ein, Aus-
gangspunkt der Betrachtung ist dann A2 statt A1.
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Die Winkel des zweiten Dreiecks DR23 sind α3, δ3 und γ3. Die Indizes der Dreiecke kor-
respondieren mit den Indizes der Aufpunkte. Bedingt durch das Reflexionsgesetz (2.79)
sind die Winkel δ3 und δ2 identisch. In beiden Dreiecken ist jeweils eine Seite mit der
konstanten Länge R und R +W enthalten

|AR −A1| = R +W,

|AR −A2| = R,

|AR −A3| = R +W.

Zudem stimmen die Winkel δ2, die den Seiten mit der Länge R + W gegenüberliegen,
in beiden Dreiecken überein. Die beiden Dreiecke sind in Folge dessen kongruent5 [13].
Dadurch sind die Reflexionswinkel an der äußeren Berandung (α1, α3), die vom Strahl
überstrichenen Mittelpunktswinkel (γ2, γ3) und die Abstände zwischen den Reflexionen
innerhalb des Wellenleiters jeweils identisch

α1 = α3,

γ2 = γ3,

|A1 −A2| = |A2 −A3|.

Diese Parameter sind aufgrund der konstanten Krümmung unverändert für alle folgenden
Reflexionen des Strahls innerhalb des gekrümmten Schichtwellenleiters:

αi = αi+2 ∀i ∈ {1,M − 2}, (5.50)

γp = γ2 ∀p ∈ {2,M − 1}, (5.51)

Lp = |Am −Am+1| ∀m ∈ {1,M − 1}. (5.52)

Hierdurch können die in Abschnitt 5.2.1.1 vorgestellten Gleichungen verwendet werden,
um die Strahlparameter M , LG, kA und AA zu berechnen. Bei der Berechnung der Auf-
punkte AM und AA und der Strahlrichtung kA mit Hilfe der Gleichung (5.39) muss
zusätzlich berücksichtigt werden, ob der letzte Aufpunkt AM des Strahls auf der inneren
oder auf der äußeren Berandung liegt. Dies wird durch die Betrachtung von M bestimmt.
Ist M ungerade, so befindet sich AM auf der gleichen Berandung wie A1.

Für einen zickzackförmigen Strahlverlauf innerhalb eines konstant gekrümmten Wellen-
leiters erfolgt die Berechnung der Strahlparameter LG, AA und kA analytisch. Die zeit-
aufwändige sukzessive Berechnung aller inneren Aufpunkte Am und Reflexionsrichtungen
km entfällt hier. Die Berechnungszeit ist, wie bei dem Whispering-Gallery-Ray in Ab-
schnitt 5.2.1.1, unabhängig von den Wellenleiterparametern.

5.2.2. Zeiteffizienz des Verfahrens

Die Zeiteffizienz eines Verfahrens zur Strahlparameterberechnung kann mit Hilfe der An-
zahl der zu durchlaufenden Rechenschritte zur Bestimmung aller Parameter bewertet

5Zwei Dreiecke, die in zwei Seitenlängen (hier: Seiten mit der Länge R und mit der Länge R+W ) und
in jenem Winkel übereinstimmen, der der längeren Seite gegenüberliegt (hier der Winkel δ2), sind
kongruent (SSW).
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werden. Zur Bestimmung dieser Strahlparameter werden bei dem in diesem Abschnitt
vorgestellten Verfahren sukzessive A1, L1, γ1, α, γp, M , Lp, LN , AM , kA, AA und LG

für jeden Strahl berechnet. Außerdem muss zwischen einem Whispering-Gallery-Ray und
einen zickzackförmigem Strahlverlauf unterschieden werden. Diese Parameter werden mit
einer konstanten Anzahl von zwölf analytisch lösbaren Gleichungen ermittelt. Die Anzahl
der Berechnungsschritte ist somit unabhängig von den Material- und Geometrieparame-
tern des Wellenleiters. Dadurch ist die Zeit zur Berechnung der Strahlparameter eines
Strahls immer annähernd konstant. Bei der physikalischen Strahlverfolgung hängt die
Anzahl der Berechnungsschritte und damit die Berechnungszeit pro Strahl direkt von M
ab, siehe Abschnitt 3.3.1.

Für die Bestimmung von M wird ein gekrümmter Schichtwellenleiter mit der numeri-
schen Apertur AN = 0.25 und dem inneren Akzeptanzwinkel ϑN = 9.22◦ betrachtet. Der
Krümmungsradius ist R = 20mm und der Krümmungswinkel beträgt γG = π/2. Um
den Einfluss der Einkopplung zu vernachlässigen, befindet sich der Strahlaufpunkt AE

innerhalb des Materials des Wellenleiterkerns.

Die Variationsparameter sind die Wellenleiterweite W , die lokale Strahlrichtung kE und
der Strahlaufpunkt AE . Für die Darstellung der Abhängigkeit von M werden für kE und
AE die skalaren Größen αE und LE

cos(αE) = kE · t(sE) ∧ sin(αE) = kE · n1(sE), (5.53)

LE = (AE −W(sE)) · n1(sE) (5.54)

verwendet. Um den Aufpunkt AE auf der Wellenleiterstirnfläche eindeutig zu beschreiben,
ist LE vorzeichenbehaftet

LE ∈
[

−W

2
,
W

2

]

. (5.55)

Unter Beachtung des inneren Akzeptanzwinkels ϑN , wird für αE der zulässige Bereich
durch

αE ∈ [−ϑN , ϑN ].

weiter eingeschränkt.

Für eine Bestimmung vonM in Abhängigkeit von der Wellenleiterweite W wird die Strahl-
richtung kE bei konstantem StrahlaufpunktAE = W(sE) variiert. Die Größe LE ist damit
LE = 0. Die gewählte Winkelschrittweite ist ∆αE = 0.0185◦, hierdurch ergibt sich eine
Anzahl von NStrahl = 1001 Strahlen.

Die Abbildung 5.7(a) stellt die Anzahl der Reflexionen M in Abhängigkeit des Win-
kels αE bei unterschiedlichen Wellenleiterweiten W dar. Diese Anzahl der Reflexionen M
ist abhängig von der Wellenleiterweite W . Nimmt diese zu, so wird M verringert. Dies
entspricht dem Verhalten des geraden Schichtwellenleiters. Für einen bestimmten Win-
kelbereich ist M nahezu unverändert. Bei der Wellenleiterweite W = 100µm ist dieser
Winkelbereich αE ∈ [−4◦, 4◦]. Die Breite dieses Bereichs nimmt mit abnehmender Wel-
lenleiterweite W ab. Außerhalb des Bereichs steigt die Anzahl M stark an. Das Maximum
wird für den Winkel |αE| ≈ ϑN erreicht.
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Abb. 5.7.: Anzahl der Reflexionen M innerhalb eines gekrümmten Schichtwellenleiters

mit Radius R = 20mm, Krümmungswinkel γ = 90◦ und numerischer Apertur
AN = 0.25

Um den Einfluss des Aufpunktes auf die Anzahl der inneren Reflexionen zu bestimmen,
wirdW = 70µm verwendet. Die Winkelschrittweite ∆αE wird beibehalten, die Aufpunkts-
varitation ist ∆LE = 0.1µm. Die resultierende Anzahl von Strahlen ist NStrahl ≈ 682 ·103.
In der Abbildung 5.7(b) ist eine Konturdarstellung der ermittelten Reflexionen M ab-
gebildet. Auf der Abszisse ist der Winkel αE und auf der Ordinate ist die Länge LE

aufgetragen, siehe Gleichungen (5.53) und (5.55). Jeder Farbe in der Darstellung ist eine
entsprechende Anzahl von Reflexionen M zugeordnet.

In der Abbildung ist zu erkennen, dass die Anzahl der Reflexionen M sowohl vom Auf-
punkt als auch vom der Strahlrichtung abhängt. Innerhalb bestimmter Winkel- und Auf-
punktsbereiche ist diese Anzahl annähernd konstant. Mit zunehmendem Winkel αE steigt
sie stark an. Für Strahlaufpunkte in der Nähe der äußeren Berandung LE > 20µm nimmt
auch für kleine Winkel |αE| < 2◦ die Anzahl der Reflexionen M stark zu. Hier werden
die Strahlen direkt an der äußeren Berandung reflektiert. Der in Abbildung 5.7(a) aufge-
zeigte Verlauf für die Wellenleiterweite W = 70µm ist in Abbildung 5.7(b) für LE = 0
entsprechend dargestellt.

Für einen Vergleich der Berechnungsschritte wird der Wellenleiter mit der Weite W =
70µm betrachtet. Bei LE = 0 und αE = 8◦ ist M ≈ 60. Dies bedeutet, dass die innere
while()-Schleife in Algorithmus 1, Seite 48 ca. 60 mal durchlaufen wird. Für die Bestim-
mung der gesamten Berechnungschritte wird im Folgenden angenommen, dass die Anzahl
der Berechnungen innerhalb der while()-Schleife der in Abschnitt 5.1.2 angenommenen
Anzahl entspricht. Dort wurden fünf Berechnungschritte zur Bestimmung des physikalisch
sinnvollen lokalen Aufpunkts und der neuen lokalen Strahlrichtung angenommen. Damit
müssen ca. 300 Berechnungschritte durchgeführt werden, um den gesamten Strahlverlauf
zu bestimmen. Mit dem vorgestellten analytischen Verfahren werden nur zwölf Berech-
nungschritte für die Bestimmung des gesamten Strahlverlaufs benötigt. Diese Anzahl wird
durch eine Variation der Parameter W , R, αE und LE nicht verändert.
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5.2.3. Blockschaltbild

Die vorgestellten Berechnungsverfahren werden durch unterschiedliche Material- und Geo-
metrieparameter nicht verändert. Das Grundmodell ist, genauso wie das Grundmodell für
den planaren Schichtwellenleiter, für alle gekrümmten Schichtwellenleiter identisch. Durch
Übergabe der Material- und Geometrieparameter wird aus dem Grundmodell direkt das
Teilmodell generiert, siehe Abschnitt 4.3.

Für die Integration eines Grundmodells in ein Teilmodell wird das beschriebene Modell
in ein Blockschaltbild integriert, siehe Abbildung 5.8 . Als Eingangsparameter werden vor

Abb. 5.8.: Blockschaltbild des konstant gekrümmten Schichtwellenleiters

der Simulation einmalig die Materialparameter und die Geometrieparameter übergeben.
Basierend auf diesen Parametern werden die Ausgangsparameter W(sA) und t(sA) für
eine Kaskadierung weiterer Teilmodelle einmalig berechnet. Damit ist die Initialisierungs-
phase abgeschlossen. Bei der Simulationsdurchführung werden alle Strahlen sukzessive an
das Teilmodell übergeben. Dieses Teilmodell berechnet anschließend die ausgangsseitigen
Strahlparameter.

5.3. Zusammenfassung

In diesem Kapitel wurden Modellierungsverfahren für gerade und konstant gekrümmte
Schichtwellenleiter vorgestellt. Mit diesen Modellierungsverfahren werden die Strahlpara-
meter mit Hilfe weniger analytisch lösbarer Gleichungen zeiteffizient berechnet. Die Be-
rechnungszeiten der vorgestellten Verfahren sind aus diesem Grund unabhängig von der
Anzahl der zu bestimmenden Reflexionen. Dies steht im Gegensatz zu dem in Abschnitt
3.3.1 vorgestellten physikalischen Strahlverfolgungsverfahren.

Bei dem analytischen Berechnungsverfahren werden die Material- und Geometrieparame-
ter dem Grundmodell übergeben. Die zugrunde liegenden Verfahren bleiben hierbei iden-
tisch. Somit wird die in Abschnitt 4.3.2 geforderte Bedingung eines universellen Grund-
modells für eine Struktur mit definierter Trajektorieneigenschaft erfüllt. Durch die Initia-
lisierung des Grundmodells mit den Modellparametern wird das Teilmodell generiert.
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Eine weitere Forderung wurde erfüllt, indem die entwickelten Modelle so beschrieben
wurden, dass eine einfache Kaskadierung der Teilmodelle erfolgen kann. Eine komple-
xe Schichtwellenleiterstruktur kann somit durch die Kaskadierung einzelner Strukturen
erfolgen.



Kapitel 6

Modelle für Kanalwellenleiter und
mikrooptische Komponenten

Im letzten Abschnitt wurden Modellierungsverfahren vorgestellt, mit denen gerade und
konstant gekrümmte Schichtwellenleiterstrukturen modelliert und die Strahlparameter
zeiteffizient berechnet werden können. Das vorgestellte Verfahren wird in diesem Ab-
schnitt erweitert, um rechteckförmige Kanalwellenleiter und mikrooptische Komponenten
zu analysieren. Um die geforderte Kaskadierbarkeit zu gewährleisten, wird bei den zu ent-
wickelnden Modellen das in Abschnitt 4.1 vorgestellte modulare Konzept berücksichtigt.
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Abb. 6.1.: S-bogenförmige Kanalwellenleiterstruktur aus kaskadierten Grundstrukturen
mit zwei aufgezeigten Strahlverläufen

Als Beispiel ist in Abbildung 6.1 ein s-bogenförmiger Kanalwellenleiter dargestellt. Dieser
wird in gerade und konstant gekrümmte Wellenleitersegmente partitioniert. Die dadurch
entstehenden Segmentgrenzen sind eingezeichnet. Zusätzlich sind zwei Strahlverläufe auf-
gezeigt.

Der Kernquerschnitt der betrachteten Wellenleiter ist rechteckförmig. Die Trajektorie die-
ser Wellenleiter verläuft parallel zur Ebene der optischen Lage, siehe Abschnitt 4.3.1.
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Diese Trajektorie kann damit abschnittsweise durch ebene Raumkurven beschrieben wer-
den. Die Beschreibung der Berandungen erfolgt durch die in Abschnitt 4.3.1 vorgestellten
Ortsvektoren, siehe Gleichung (4.5) bis (4.10).

In den folgenden Abschnitten wird zuerst ein Modell vorgestellt, um basierend auf Strahl-
projektionen zeiteffizient die Strahlparameter innerhalb einfacher Kanalwellenleiterstruk-
turen zu bestimmen. Dieses Modell wird anschließend erweitert, damit Strahlparameter
innerhalb komplexer Strukturen berechnet werden können. Abschließend erfolgt die Veri-
fizierung der vorgestellten Modellierung anhand unterschiedlicher Wellenleiterstrukturen.

6.1. Prinzip des virtuellen Schichtwellenleiters

Gegeben ist ein rechteckförmiger Wellenleiter mit der Trajektorie W(s), den Berandungs-
flächen F1 bis F4 und den Stirnflächen FE und FA. Betrachtet wird der Strahl SE , der den
Aufpunkt AE und die Strahlrichtung kE auf der Stirnfläche FE besitzt, siehe Abbildung
6.2. Dieser Strahl propagiert durch den Wellenleiter und trifft am Aufpunkt Al mit der
Strahlrichtung kE,l auf die Wellenleiterberandung. An dieser Wellenleiterberandung wird
der Strahl reflektiert. Die Strahlrichtung nach der Reflexion ist kA,l.

Abb. 6.2.: Strahlverlauf innerhalb eines Kanalwellenleiters

Die Strahlrichtung kE,l des einfallenden Strahls und der Aufpunkt Al werden durch die
Vektoren n1(sl), n2 und t(sl) des lokalen Koordinatensystems am Aufpunkt Al beschrie-
ben

kE,l = (kE,l · n1(sl)) n1(sl) + (kE,l · n2) n2 + (kE,l · t(sl)) t(sl),
Al = W(sl) + w n1(sl) + hn2

mit

sl ∈ [sE , sA] , w ∈
[

−W

2
,
W

2

]

, h ∈
[

−H

2
,
H

2

]

.
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Die Vektoren n1(sl) und t(sl) werden unter Anwendung der Gleichungen (4.4) und (4.2)
sowie dem Vektor n2 aus der Wellenleitertrajektorie W(sl) berechnet. Diese Wellenleiter-
trajektorie befindet sich weiterhin in der Mitte des Wellenleiters.

Für eine Reflexion an den Deckel- bzw. an den Bodenflächen F1,3 (Normalenvektor n2)
kann die reflektierte Strahlrichtung kA,l durch

kA,l = (kE,l · n1(sl)) · n1(sl)− (kE,l · n2) · n2 + (kE,l · t(sl)) · t(sl) (6.1)

angegeben werden. Bei einer Reflexion an den Seitenflächen F2,4 (Normalenvektor n1(sl))
ist kA,l

kA,l = − (kE,l · n1(sl)) · n1(sl) + (kE,l · n2) · n2 + (kE,l · t(sl)) · t(sl). (6.2)

Bedingt durch die Orthogonalität der Berandungsnormalen und der Trajektoriennorma-
len, werden nur Komponenten des Strahls mit einem Strahlanteil in Richtung dieser Beran-
dungsnormalen beeinflusst. Aus diesem Grund ist es möglich, den Strahlverlauf innerhalb
des Kanalwellenleiters durch zwei orthogonale Strahlverläufe zu berechnen.

Der Strahl kE wird in die orthogonalen Vektoren kE‖ und kE⊥

kE‖ = (kE · n1(sE)) · n1(sE) + (kE · t(sE)) · t(sE), (6.3)

kE⊥ = (kE · n2) · n2 + (kE · t(sE)) · t(sE) (6.4)

zerlegt, siehe Abbildung 6.2. Zwischen der Strahlrichtung kE und diesen Vektoren besteht
der Zusammenhang

kE = kE‖ + kE⊥ − (kE · t(sE)) · t(sE) ∧ |kE‖|, |kE⊥| ≤ 1. (6.5)

Die Vektoren kE‖ und kE⊥ haben nur noch Richtungsanteile in Richtung der Trajektorie
und der betrachteten Berandungsnormalen. Der Vektor kE‖ liegt in der Ebene der op-
tischen Lage mit der Berandungsnormalen n2 und der Vektor kE⊥ liegt in einer Fläche
orthogonal zu dieser Ebene.

Im Folgenden wird die Strecke AEAl zwischen den Aufpunkten AE und Al betrachtet

Al = AE + LlkE. (6.6)

Wird diese Strecke auf die Fläche F3 projiziert, so ergibt sich eine Strecke der Länge
Ll‖ (siehe Abbildung 6.2). Bedingt durch den Vektor n2 liegt diese Strecke immer auf
einer Ebene, die im Folgenden als Projektionsebene bezeichnet wird. Die Projektion der
Wellenleiterkontur auf diese Ebene resultiert in der Projektionsfläche des Wellenleiters.
Entspricht diese Projektionsfläche den in Kapitel 5 vorgestellten geraden oder konstant ge-
krümmten Schichtwellenleiterstrukturen, so werden die projizierten Strahlparameter mit
den in Abschnitt 5.1.1 und 5.2.1 vorgestellten Verfahren zeiteffizient analytisch berechnet.

Wird die Strecke AEAl auf die orthogonale Berandungsfläche F2 projiziert, so ist die re-
sultierende Strahltrajektorie im Allgemeinen eine gekrümmte Raumkurve. Die Verlaufs-
berechnung dieser Raumkurve kann nicht mit den klassischen Strahlverfolgungsverfahren
durchgeführt werden. Um eine Strahlverfolgung orthogonal zur Projektionsfläche F3 zu



92 Kapitel 6. Modelle für Kanalwellenleiter und mikrooptische Komponenten

Projektionsebene

Berandung der Projektionsfläche

Abb. 6.3.: Gekrümmter Kanalwellenleiter mit virtuellem Schichtwellenleiter entlang eines
projizierten Strahlpfades

ermöglichen, wird eine abschnittsweise ebene Fläche orthogonal auf die berechnete, pro-
jizierte Strahltrajektorie mit der Gesamtlänge L‖ positioniert [103]. Die Abmessungen
dieser Fläche entsprechen der Höhe H des betrachteten Kanalwellenleiters und der Länge
der projizierten Strahltrajektorie. Diese Fläche wird im Folgenden als virtueller Schicht-
wellenleiter bezeichnet.

In Abbildung 6.3 ist ein gekrümmter Kanalwellenleiter dargestellt. In dieser Abbildung
werden die oben genannten Strahlparameter sowie die Projektionsebene und -fläche ange-
geben. Zusätzlich ist der Strahlverlauf in der Projektionsebene durch die Teilstrahllängen
L1‖ und LM‖ aufgezeigt. Orthogonal auf den Teilstrahllängen werden die virtuellen Schicht-
wellenleiter positioniert. Der betrachtete Strahl mit der Strahlrichtung kE propagiert in
der planaren Fläche jedes virtuellen Schichtwellenleiters.

Bedingt durch die Orthogonalität der Strahlprojektion kE‖ und n2 entsteht der virtuelle
Gesamtschichtwellenleiter durch die Kaskadierung der einzelnen virtuellen Schichtwellen-
leiter. Die Berechnung der Länge des Gesamtschichtwellenleiters LG‖ erfolgt durch die
Addition der Längen der einzelnen virtuellen Schichtwellenleiter

LG‖ =

M∑

m=1

Lm‖, (6.7)

siehe Abbildung 6.3. Wird dieser virtuelle Schichtwellenleiter entfaltet1, so entspricht er
dem in Abschnitt 5.1 vorgestellten Schichtwellenleiter. Die Länge LG‖ gibt die Länge dieses
Schichtwellenleiters vor.

Der in Abbildung 6.3 dargestellte virtuelle Schichtwellenleiter wird als entfalteter Schicht-
wellenleiter in Abbildung 6.4 aufgezeigt. Für einen Vergleich sind die Längen L1‖ und LM‖

eingezeichnet. Zur Verdeutlichung ist in dieser Abbildung das lokale Koordinatensystem
des virtuellen Schichtwellenleiters in Anlehnung an das Koordinatensystem des Schicht-
wellenleiters angegeben. Zwischen dem lokalen Koordinatensystem des Schichtwellenlei-

1Dies ist vergleichbar mit dem Entfalten eines Leporello- oder Zickzack-Falzes.
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Virtueller Schichtwellenleiter

Abb. 6.4.: Entfalteter virtueller Schichtwellenleiter

ters und dem Koordinatensystem des Wellenleiters besteht der Zusammenhang

n1 v = n2, (6.8)

tv(sE ♯) =
kE‖

|kE‖|
, ∧ tv(sA♯) =

kA‖

|kA‖|
, (6.9)

Wv(sE ♯) = AE ‖ ∧ Wv(sA♯) = AA ‖. (6.10)

Der Index v kennzeichnet die Normalenvektoren und die Trajektorie im Koordinaten-
system des virtuellen Schichtwellenleiters. Durch den Index ♯ werden die Weglänge, die
Aufpunkte und die Strahlrichtungen innerhalb des virtuellen Schichtwellenleiters gekenn-
zeichnet. Der Strahlaufpunkt AE und die Strahlrichtung kE werden mit der Transforma-
tion

AE ♯ = Wv(sE ♯) + (AE · n2)n1 v, (6.11)

kE♯ = [kE · n1 v(sE ♯)]n1 v(sE ♯) + [kE · tv(sE ♯)]tv(sE ♯) (6.12)

in das lokale Koordinatensystem der virtuellen Schichtwellenleiter übertragen. Nach der
Berechnung der Strahlparameter erfolgt die Rücktransformation in das Koordinatensys-
tem des Wellenleiters

AA = (AA ♯ · n1 v)n2 +AA ‖, (6.13)

kA = (kA♯ · n1 v)n2 + kA ‖. (6.14)

Neben diesen Strahlparametern wird mit Hilfe des virtuellen Schichtwellenleiters direkt
die Gesamtstrahlpfadlänge Lgeo des Strahls im Raum bestimmt.

Der Vorteil dieser Methode besteht darin, dass die Strahlverfolgung im Raum äquivalent
durch zwei Strahlverfolgungen in zwei orthogonalen planaren Flächen erfolgen kann. Hier-
bei werden die Strahlparameter innerhalb der Fläche des virtuellen Schichtwellenleiters
immer zeiteffizient mit der in Abschnitt 5.1 vorgestellten analytischen Methode ermittelt.
Können die Strahlparameter in der Projektionsfläche zudem durch die in Kapitel 5 vorge-
stellten Verfahren bestimmt werden, so erfolgt die Berechnung sämtlicher Strahlparameter
zeiteffizient mit Hilfe analytischer Verfahren.
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6.1.1. Blockschaltbild des virtuellen Schichtwellenleiters

Die Berechnung der Strahlparameter des virtuellen Schichtwellenleiters erfolgt mit Hilfe
des Modells für den Schichtwellenleiter mit gerader Wellenleitertrajektorie, siehe Kapitel
5.1. Die Länge des virtuellen Schichtwellenleiters LG‖ ist erst nach der Strahlparameter-
berechnung in der Projektionsebene bekannt. Durch Übergabe der Aufpunktsparameter,
Strahlparameter und der projizierten Strahllänge LG‖ entsteht aus diesem Grundmodell
direkt das Teilmodell.

Abb. 6.5.: Blockschaltbild des virtuellen Schichtwellenleiters

Das zu verwendende Blockschaltbild des virtuellen Schichtwellenleiters ist in Abbildung
6.5 aufgezeigt. Im Kern besteht das Blockschaltbild aus dem verwendeten Grundmodell
und den übergebenen Aufpunkts- und Strahlparametern AE ♯ und kE ♯. Basierend auf
LG‖ und diesen Strahlparametern werden die ausgangsseitigen Strahlparameter berechnet.
Zudem erfolgt direkt die Berechnung der Gesamtstrahllänge Lgeo des Strahls im Raum.

6.2. Zeiteffiziente Berechnungsverfahren für komplexe

Strukturen

Der passive optische Pfad besteht nur im einfachsten Fall aus geraden oder konstant
gekrümmten Kanalwellenleitern. Um einen möglichst großen Freiheitsgrad bei der Mo-
dellierung und Simulation von optischen Kanalwellenleitern zu ermöglichen, müssen Ka-
nalwellenleiter geformt werden können, die einen nahezu beliebigen Trajektorienverlauf in
der Projektionsebene aufweisen. Zudem werden neben dem Kanalwellenleiter auch mikro-
optische Komponenten innerhalb der optischen Lage verwendet. Somit ist es notwendig,
Modellierungsverfahren für eine zeiteffiziente Berechnung des Übertragungsverhaltens die-
ser Kanalwellenleiter und mikrooptischen Komponenten zur Verfügung zu stellen. Diese
werden in den folgenden Abschnitten vorgestellt.

6.2.1. Kombinieren von Verfahren zur Strahlparameterberechnung

Neben den beschriebenen geraden oder konstant gekrümmten Kanalwellenleitern müssen
bei der Modellierung auch Trajektorien- und Berandungsverläufe berücksichtigt werden,
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bei denen die Wellenleiterweite W nicht konstant entlang der Wellenleitertrajektorie ist.
Aufgrund der verwendeten Herstellungsverfahren weisen alle Wellenleiter innerhalb der
optischen Lage den Normalenvektor n2 und über den gesamten Wellenleiterverlauf eine
konstante Höhe H auf. Des Weiteren ist der Kernquerschnitt entlang der Wellenleitertra-
jektorie dieser Komponenten nahezu rechteckförmig.

Es wird im Folgenden angenommen, dass die Wellenleiterweite W (s) durch eine Ab-
hängigkeit von der Weglänge s beschrieben werden kann. Der eingeführte Normalenvektor
n1(s) steht orthogonal auf den seitlichen Berandungen und ist somit von dem Verlauf die-
ser Berandungen abhängig. Hierbei ist zu beachten, dass die Vektoren n1(s), n2 und t

nun kein orthogonales Koordinatensystem mehr bilden.

Bedingt durch den rechteckförmigen Kernquerschnitt stehen die Vektoren n1(s) und n2

orthogonal zueinander

n1(s) · n2 = 0. (6.15)

Eine Reflexion des Strahls k an einer Berandung verändert damit nur die Komponente
dieser Strahlrichtung, die der betrachteten Berandungsnormalen n1(s) oder n2 entspricht.
Damit kann der Strahlverlauf in zwei orthogonale Strahlverläufe unterteilt werden. Im Fol-
genden wird bei der Bestimmung der Strahlparameter im Raum das Prinzip der Strahlpro-
jektion mit anschließender Positionierung des virtuellen Schichtwellenleiters angewendet.

Die Projektion der Berandung der mikrooptischen Komponenten auf die Projektionsebene
entspricht keiner der in Kapitel 5 vorgestellten Schichtwellenleiterstrukturen. Aus diesem
Grund wird der Strahlverlauf in der Projektionsebene nicht analytisch bestimmt, sondern
durch klassische Strahlverfolgungsverfahren in der Fläche berechnet. Auf diesem projizier-
ten Strahlverlauf wird der im letzten Abschnitt vorgestellte virtuelle Schichtwellenleiter
positioniert. Die Berechnung der Strahlparameter im Raum erfolgt anschließend mit Hilfe
des virtuellen Schichtwellenleiters analytisch.

Abb. 6.6.: Taper mit projiziertem Strahlverlauf LG‖ und resultierendem Strahlverlauf LG

In Abbildung 6.6 ist ein Taper mit linearer Aufweitung des Wandabstandes W (s) und
mit eingezeichnetem virtuellen Schichtwellenleiter dargestellt. Die Länge LG‖ wird durch
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klassische Strahlverfolgung in der Projektionsfläche berechnet. Darauf aufbauend wird die
Gesamtstrahllänge LG mit Hilfe des in Kapitel 6.1 vorgestellten virtuellen Schichtwellen-
leiters bestimmt.

Mit Hilfe dieses semianalytischen Verfahrens können die Strahlparameter von mikroop-
tischen Komponenten mit nahezu beliebig geformter Projektionsfläche bestimmt werden.
Durch den gewählten modularen Ansatz bei der Analyse eines Gesamtsystems ist die
Integration dieser Komponenten in ein Gesamtmodell einfach durchführbar.

6.2.2. Reduzierung der Anzahl der virtuellen Schichtwellenleiter

In eine optische Lage wird im Allgemeinen mehr als ein Wellenleiter integriert. Um die
zur Verfügung stehende Fläche der optischen Lage optimal auszunutzen und Wellenleiter-
kreuzungen zu vermeiden, ist der Verlauf der Trajektorie nicht beliebig geformt. Dieser
Verlauf besteht oft aus kaskadierten geraden und konstant gekrümmten Segmenten [3].
Das Gesamtsystem kann deshalb in N Teilsysteme mit konstanten Wellenleiterparametern
partitioniert werden, siehe Abschnitt 4.3. Ein Teilsystem kann zum Beispiel ein Kanalwel-
lenleiter mit gerader oder mit konstant gekrümmter Trajektorie sein. Für jedes Teilsystem
wird mit Hilfe des in Abschnitt 6.1 vorgestellten Verfahrens ein Teilmodell basierend auf
einem Grundmodell erstellt.

Jedes Teilmodell wird vollständig durch den Verlauf der Trajektorie W(s) und der Tra-
jektorienrichtung t(s) an der Ein- (s = sE) und Auskoppelseite (s = sA) beschrieben.
Die Positionierung und Ausrichtung jedes Teilmodells erfolgt mit der in Abschnitt 4.3.2
vorgestellten Vorgehensweise

W(sA)
n−1 = W(sE)

n,

t(sA)
n−1 = t(sE)

n ∀n ∈ [2, N ].

Darin kennzeichnet der Index n das aktuelle Teilmodell und der Index n−1 das vorherge-
hende Teilmodell. Hierdurch erfolgt die Kaskadierung der Teilmodelle zu einem Gesamt-
modell automatisch.

Nachdem das Gesamtmodell erstellt ist, werden alle Strahlen an das Gesamtmodell über-
geben und die resultierenden Strahlparameter sukzessive durch die Teilmodelle berechnet.
Die Strahlparameter

An−1
A = An

E,

kn−1
A = kn

E

sind die Schnittstellen zwischen den Teilmodellen. Die Berechnung der Strahlparameter
innerhalb jedes Teilmodells erfolgt durch das in Abschnitt 6.1 vorgestellte Verfahren. Die-
ses Verfahren beinhaltet bei mehr als einem Teilmodell (N > 1) Redundanz, da innerhalb
jedes Teilmodells ein virtueller Schichtwellenleiter auf den jeweiligen projizierten Strahl-
verlauf positioniert wird. Anstelle der Positionierung eines virtuellen Schichtwellenleiters
innerhalb jedes Teilmodells wird ein virtueller Schichtwellenleiter für einen projizierten
Gesamtstrahlverlauf verwendet.
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Abb. 6.7.: Kaskadierte Teilmodelle und virtueller Schichtwellenleiter

Zur Verdeutlichung ist in Abbildung 6.7 die Kaskadierung eines Wellenleiters mit einem
geraden Trajektorienverlauf und eines Wellenleiters mit einem konstant gekrümmten Tra-
jektorienverlauf dargestellt. In der Projektionsebene liegt der projizierte Strahlverlauf. Auf
diesem ist ein virtueller Schichtwellenleiter mit der Länge LG‖ positioniert. Zusätzlich sind
die projizierten Aufpunkte und die Strahlrichtungen

An−1
A‖ = An

E‖,

kn−1
A‖ = kn

E‖ ∀n ∈ [2, N ]

als Schnittstellen zwischen beiden Teilmodellen eingezeichnet. Die projizierte Gesamt-
strahllänge LG‖ als Länge des virtuellen Schichtwellenleiters ergibt sich durch die Addition
aller projizierten Teilstrahllängen Ln

G‖

LG‖ =
N∑

n=1

Ln
G‖. (6.16)

In diesem Beispiel ist das Verfahren für zwei Segmente vorgestellt. Es ist zu erkennen, dass
das Verfahren für eine beliebige Anzahl von Segmenten angewendet werden kann. Durch
die Reduzierung auf nur einen virtuellen Schichtwellenleiter kann die Berechnungszeit
zusätzlich verringert werden.

6.3. Evaluation und Verifikation des Verfahrens

In den vorangegangenen Abschnitten ist ein analytisches Verfahren für die zeiteffizien-
te Bestimmung der Strahlparameter innerhalb rechteckförmiger Kanalwellenleiter und
mikrooptischer Strukturen vorgestellt worden. In diesem Abschnitt wird das vorgestell-
te Verfahren anhand einiger Beispiele evaluiert. Hierbei wird neben der Verifikation der
Simulationsergebnisse auch die Zeiteffizienz des Verfahrens diskutiert.

Für die Verifikation des analytischen Verfahrens wird unter Anderem das in [7] vorge-
stellte semisequentielle Strahlverfolgungsverfahren verwendet, siehe Abschnitt 3.3.1. Die-
ses repräsentiert den aktuellen Stand der Technik für die Bestimmung des transienten
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Übertragungsverhaltens von vielmodigen optischen Wellenleitern. Bei diesem Verfahren
wird unter Verwendung eines physikalischen Strahlverfolgungsverfahren, entsprechend Al-
gorithmus 1, das orts-, winkel- und zeitaufgelöste Leistungspektrum ermittelt.

Bei dem zur Verfügung stehenden Programm zur semisequentiellen Strahlverfolgung kann
nicht auf die Strahlpfadlänge Lgeo oder die optische Weglänge Lopt einzelner Strahlen
zurückgegriffen werden. Aufgrund dessen werden aus den ermittelten Sprungantworten
die Dämpfung und die 3dB-Grenzfrequenz durch (2.127) und (2.132) bestimmt und mit
den Ergebnissen des analytischen Verfahrens verglichen. Im Folgenden werden die durch
das semisequentielle Verfahren ermittelten Ergebnisse mit dem Index SRT bezeichnet.
Die Ergebnisse, die mit dem in diesem Kapitel vorgestellten Verfahren erzielt werden,
sind durch den Index ART gekennzeichnet.

Für die Evaluation des Verfahrens wird zuerst ein Kanalwellenleiter mit gerader Wellen-
leitertrajektorie betrachtet. Diese Analyse demonstriert die Einsetzbarkeit des virtuellen
Schichtwellenleiters. Anschließend wird eine komplexe Struktur bestehend aus drei Wel-
lenleitersegmenten untersucht. Hierbei wird die in Abschnitt 6.2.2 vorgestellte Strategie
angewendet.

6.3.1. Kanalwellenleiter mit gerader Wellenleitertrajektorie

Eine Standardkomponente der optischen Aufbau- und Verbindungstechnik ist der gerade
dielektrische Kanalwellenleiter mit rechteckförmigem Querschnittsprofil, variabler Wellen-
leiterlänge L und der Wellenleitertrajektorie W(s) mit der Weglänge s ∈ [sE , sA]

L = |W(sE)−W(sA)|.

Die Trajektorienrichtung t und der Normalenvektor n1 sind unabhängig von dieser Weg-
länge s. Die Querschnittsabmessungen des betrachteten Kanalwellenleiters sind quadra-
tisch mit H = W = 70µm.

Als Anregung wird eine Punktquelle verwendet, die einen bestimmten Winkelbereich des
Wellenleiters homogen ausleuchtet. Die Leistungsverteilung im Fernfeld dieser Quelle ent-
spricht der in Abschnitt 2.2.2 vorgestellten Leistungsverteilung PRect (2.116). Die Leistung
PRect
ij jedes Strahls wird durch

PRect
ij = pRect(ϑi, ϕj) =

P0

J

u(ϑi)− u(ϑi − ϑmax)
∑I

i=1 (u(ϑi)− u(ϑi − ϑmax))

bestimmt, mit

ϑi ∈ [0, ϑmax] ∧ ϕj ∈ [0, 2π].

Der Polarwinkel ϑmax kann frei gewählt werden. Die Vorzugsrichtung der emittierten Leis-
tung der Quelle entspricht der Richtung der Trajektoriennormalen t des Kanalwellenleiters

nq = t.
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Abb. 6.8.: Blockschaltbild des Wellenleiters mit gerader Trajektorie

Der Aufpunkt AQ

AQ(a1, a2) = W(sE) + a1n1(sE) + a2n2, ∧ a1,2 ∈
[

−W

2
,
W

2

]

der Punktquelle befindet sich auf der Stirnfläche des Wellenleiters. Das umgebende Ma-
terial der Quelle ist ncore.

Um die gesamte geführte Leistung an der ausgangsseitigen Stirnfläche des Wellenleiters
aufzunehmen, wird am Aufpunkt W(sA) eine Referenzebene, siehe Abschnitt 2.2.1, mit
dem Normalenvektor ne

ne = t (6.17)

eingeführt. Dies entspricht einem Detektor, der direkt an der ausgangsseitigen Stirnfläche
des Wellenleiters im Kernmaterial angebracht ist.

Das Blockschaltbild 6.8 repräsentiert die Berechnung der Strahlparameter im Raum. Der
obere Teil des Blockschaltbildes zeigt die Bestimmung der Strahlparameter in der Projek-
tionsebene. Dies erfolgt mit den in Abschnitt 5.1 vorgestellten Verfahren. Im unteren Teil
des Blockschaltbildes ist die Berechnung der resultierenden Strahlparameter mit Hilfe des
virtuellen Schichtwellenleiters abgebildet.

6.3.1.1. Geometrische Strahlpfadlänge

Um das vorgestellte Verfahren und die implementierten Algorithmen zu verifizieren, wird
zuerst die geometrische Strahlpfadlänge Lgeo für unterschiedliche Wellenleiterlängen L
bestimmt. Als Wellenleiterlänge werden die Längen

L ∈ {1, 10, 100, 1000, 10000}mm
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verwendet. Die numerische Apertur des Wellenleiters ist AN = 0.25 bei einem Brechungs-
index von ncore = 1.56 des Kernmaterials. Als Anregung wird die vorgestellte Punktquelle
mit der Leistungsverteilung PRect verwendet. Der Winkel ϑmax entspricht dem inneren
Akzeptanzwinkel ϑN des Wellenleiters. Hierdurch wird die gesamte numerische Aper-
tur homogen ausgeleuchtet. Als Winkelschrittweite bei der Modellierung der Quelle wird
∆ϕ = 1◦ und ∆ϑ = 0.1◦ gewählt.

Basierend auf dieser Anregung wird die geometrische Weglänge Lgeo für jeden Strahl mit
Hilfe des in Abbildung 6.8 dargestellten Blockschaltbildes bestimmt. Bei einem geraden
Wellenleiter kann alternativ die geometrische Pfadlänge Ld

geo jedes Strahls durch

Ld
geo =

L

t · kE

direkt angegeben werden, siehe Gleichung (5.4). Basierend auf den berechneten Strahllängen
wird die relative prozentuale Abweichung ∆FLgeo zwischen Lgeo und Ld

geo durch

∆FLgeo =

∣
∣
∣
∣
∣

Lgeo − Ld
geo

Ld
geo

∣
∣
∣
∣
∣
· 100 [%] (6.18)

berechnet. Für jede betrachtete Wellenleiterlänge L wird anschließend der Maximalwert
von ∆FLgeo bestimmt. In der Tabelle 6.1 sind diese maximalen relativen Abweichungen
pro Wellenleiterlänge dargestellt.

Tabelle 6.1.: Maximale prozentuale Abweichung zwischen Lgeo und Ld
geo

.

L [mm] 1 10 100 1000 10000
max

(
∆FLgeo(L)

)
[%] 5.6 · 10−14 5.5 · 10−14 4.4 · 10−14 4.7 · 10−14 5.6 · 10−14

Diese maximale Abweichung ist

max
(
∆FLgeo(k,Ai, L)

)
< 5.7 · 10−14%.

Aufgrund der geringen Abweichung ist diese zu vernachlässigen. Die beiden bestimmten
geometrischen Weglängen Lgeo und Ld

geo sind identisch.

6.3.1.2. Übertragungsfunktion und Bandbreiten-Längen-Produkt

Für die Bestimmung der Übertragungsfunktion werden gerade Kanalwellenleiter bei unter-
schiedlichen Wellenleiterlängen L und unterschiedlichen numerischen Aperturen betrach-
tet. Als Brechungsindex des Kernmaterials wird ncore = 1.56 gewählt. Das Mantelmaterial
wird angepasst, so dass sich eine numerische Apertur von

AN ∈ {0.2, 0.25, 0.3}
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einstellt. Der Querschnitt des Wellenleiters ist quadratisch mit der Weite W = 70µm. Die
Anregung erfolgt durch eine Punktquelle mit der Leistungsverteilung PRect, die die jewei-
lige numerische Apertur des Wellenleiters vollständig homogen ausleuchtet. Der Winkel
ϑmax wird entsprechend der gewählten numerische Apertur angepasst

ϑmax = ϑN .

Die gewählte Winkeldiskretisierung ∆ϕ und ∆ϑ entspricht der im letzten Abschnitt
gewählten Diskretisierung. Basierend auf diesen Parametern wird die Übertragungsfunk-
tion H(jω) (2.127) des Wellenleiters bestimmt.
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Abb. 6.9.: Übertragungsfunktion und 3dB Grenzfrequenz von geraden Kanalwellenleitern
mit unterschiedlicher Wellenleiterlänge L und numerischer Apertur AN

Die Übertragungsfunktionen von drei Kanalwellenleitern mit der gemeinsamen Wellenlei-
terlänge L = 1m sowie unterschiedlichen numerischen Aperturen AN sind in Abbildung
6.9(a) dargestellt. Auf der Abszisse ist die Frequenz f und auf der Ordinate ist der Betrag
der Übertragungsfunktion |H(jf)| in dB aufgetragen. Der Schnittpunkt zwischen der ge-
strichelten Linie und der jeweiligen Übertragungsfunktion kennzeichnet die jeweilige 3dB
Grenzfrequenz f3dB, siehe Abschnitt 2.3. Zu erkennen ist, dass die 3dB Grenzfrequenz ei-
nes Wellenleiters mit zunehmender numerischer Apertur abnimmt. Dieser Effekt ist durch
die Modendispersion begründet. Bedingt durch die Zunahme der numerischen Apertur
nimmt die Laufzeitdifferenz der in dem Wellenleiter ausbreitungsfähigen Moden zu [9].
Die Abbildung 6.9(b) stellt die 3dB Grenzfrequenzen in Abhängigkeit von der Wellenlei-
terlänge L bei drei unterschiedlichen numerischen Aperturen dar. Die 3dB Grenzfrequenz
verhält sich invers zur Wellenleiterlänge L: je kürzer der Wellenleiter, desto höher ist die
zur Verfügung stehende Bandbreite [9, 16, 102].

Für eine weitere Verifikation werden die mit diesem Verfahren ermittelten Ergebnisse mit
dem in [7] vorgestellten semisequentiellen Strahlverfolgungsverfahren verglichen. Dazu
sind in Tabelle 6.2 die 3dB Grenzfrequenzen f3dB bei den Wellenleiterlängen

L ∈ {10, 20, 50, 100}cm,
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Tabelle 6.2.: 3dB Grenzfrequenz und Bandbreiten-Längen-Produkt (BLP) eines gera-
den Kanalwellenleiters mit homogener Anregung der gesamten numerischen
Apertur

f3dB(L)
L = 10cm L = 20cm L = 50cm L = 100cm BLPART BLPSRT ∆FBLP

AN [GHz] [GHz] [GHz] [GHz] [GHz·m] [GHz·m] [%]

0.20 140.45 70.23 28.09 14.04 14.04 14.04 0.010
0.25 89.38 44.69 17.88 8.94 8.94 8.94 0.001
0.30 61.73 30.86 12.34 6.17 6.17 6.17 0.009

das Bandbreiten-Längen-Produkt BLPART und das Bandbreiten-Längen-Produkt BLPSRT

für unterschiedliche numerische Aperturen angegeben. Zusätzlich ist die relative prozen-
tuale Abweichung

∆FBLP =

∣
∣
∣
∣

BLPART − BLPSRT

BLPSRT

∣
∣
∣
∣
· 100 [%] (6.19)

zwischen BLPART und BLPSRT aufgeführt. Die maximale prozentuale Abweichung ist

max(∆FBLP ) = 0.01%.

Es kann damit von sehr guter Übereinstimmung der ermittelten Bandbreiten-Längen-
Produkte ausgegangen werden. Beide Verfahren liefern annähernd identische Ergebnisse.

6.3.1.3. Leistungsverteilung im Fernfeld

Um die Fernfeldeigenschaften rechteckförmiger Kanalwellenleiter zu bestimmen, wird der
oben beschriebene Kanalwellenleiter verwendet. Die Länge des Wellenleiters ist L = 1m.
Als numerische Apertur wird AN = 0.25 gewählt. Hierbei ist der Brechungsindex des
Kernmaterials ncore = 1.56. Daraus resultiert ein innerer Akzeptanzwinkel von ϑN ≈ 9.2◦.
Diese numerische Apertur wird im Folgenden homogen überstrahlt. Dazu wird bei der
Leistungsverteilung des Fernfeldes (2.116) der Polarwinkel ϑmax = 20◦ vorgegeben. Als
Winkelschrittweite bei der Modellierung der Quelle wird ∆ϕ = 1◦ und ∆ϑ = 0.1◦ gewählt.

In Abbildung 6.10(a) ist die detektierte Leistungsverteilung des Fernfeldes abgebildet. Auf
der Abszisse ist der Polarwinkel α

cos(α) = kA · t(sA)

aufgetragen, siehe Gleichung (2.109). Die Ordinate stellt die Leistung P (α)/P (0) dar.
Aufgrund der homogenen Ausleuchtung ist das Fernfeld unterhalb des inneren Akzep-
tanzwinkels α ≤ ϑN konstant. Oberhalb von ϑN wird Leistung geführt. Diese Leistung
nimmt mit zunehmendem Winkel α > ϑN kontinuierlich ab. Dieses Ergebnis stimmt mit
den in [7] vorgestellten Ergebnissen überein.
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Abb. 6.10.: Fernfeld und Matrix der geführten Strahlen eines geraden rechteckförmigen
Kanalwellenleiters mit der numerischen Apertur AN = 0.25 bei homogener
Überstrahlung der numerischen Apertur

Für eine genauere Untersuchung ist in Abbildung 6.10(b) die Matrix der geführten Strah-
len des Wellenleiters dargestellt. Auf der Abszisse ist der Winkel ϕ und auf der Ordinate
ist der Winkel ϑ aufgetragen. Jeder Punkt in der Matrix entspricht einem Strahl, der
unter dem entsprechenden Winkel ϑ und ϕ emittiert wurde und ohne Leistungsverlust
durch den Kanalwellenleiter propagiert. Mit Hilfe dieser Matrix können die zulässigen
Winkelbereiche der geführten Strahlen aufgezeigt werden. Für eine weitere Betrachtung
wird zwischen meridionalen und helikalen Strahlverläufen unterschieden [47, 90]:� Bei meridionalen Strahlverläufen werden die Strahlen nur von den gegenüberliegen-

den Berandungen reflektiert. Die Strahlverläufe liegen in einer Ebene mit den Nor-
malenvektoren n1 oder n2. In diesem Beispiel sind das Strahlen, die unter dem
Winkel

ϕM = {0◦, 90◦, 180◦, 270◦}

emittiert werden, siehe Abbildung 6.10(b).� Helikale Strahlen werden von allen Berandungen reflektiert.

Wie in Abbildung 6.10(b) bei den Winkeln ϕ = ϕM zu erkennen, werden meridio-
nale Strahlen bis zum inneren Akzeptanzwinkel ϑ = ϑN geführt. Für größere Winkel
ϑ > ϑN erfüllen diese Strahlen nicht mehr die Bedingung der Totalreflexion. Aufgrund
des schrägen Einfall jedes helikalen Strahls auf die Wellenleiterberandungen ist in der Ma-
trixdarstellung 6.10(b) ein größerer Polarwinkelbereich ϑ > ϑN für diese Strahlen ausge-
wiesen. Jedoch erfüllen diese helikalen Strahlen auf jeder Berandungsfläche die Bedingung
der Totalreflexion.

Die Richtungen der Berandungsnormalen sind n1 und n2. Der Winkel zwischen einer
Berandungsnormalen und dem einfallenden Strahl kE kann durch

|kE · ni| = cos(α), ∀i ∈ [1, 2] (6.20)
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berechnet werden. Damit wird unter Beachtung des Winkels der Totalreflexion (2.81) der
Winkelbereich, unter dem Strahlen geführt werden, durch

| sin(ϑ) cos(ϕ)| ≤
√

n2
core − n2

clad

ncore
∧ | sin(ϑ) sin(ϕ)| ≤

√

n2
core − n2

clad

ncore
(6.21)

beschrieben. Alle Strahlen, die diesen Bedingungen genügen, werden innerhalb des Wel-
lenleiters geführt. Diese Bedingungen sind unabhängig von der Wellenleiterlänge L und
von den Querschnittsabmessungen W und H . Daher ist das Fernfeld nur abhängig von
den Brechungsindizes und von der Anregung. Der größtmögliche Winkel ϑmax ≈ 13◦ ergibt
sich in diesem Beispiel für

ϕ = {45◦, 135◦, 225◦, 315◦},
siehe Abbildung 6.10(b). In der Literatur wird anstelle eines Strahlkegels zur Beschreibung
des Akzeptanzwinkels eines Kanalwellenleiters eine Strahlpyramide verwendet, die der
Bedingung (6.21) genügt [58]. Mit Zunahme des Winkels ϑ für ϑ > ϑN nimmt die Anzahl
der geführten Strahlen ab, siehe Abbildung 6.10(b). Dies resultiert in der Abnahme der
Leistung in Abbildung 6.10(a) für größer werdende Winkel α > ϑN .

Eine strahlenoptische Analyse des Übertragungsverhaltens setzt damit zwingend eine Be-
trachtung der Strahltrajektorien im Raum voraus. Bei einer vereinfachten Modellierung,
nur unter Berücksichtigung der meridionalen Strahlen, werden Leistungsanteile, die durch
helikale Strahlen mit ϑ > ϑN geführt werden, vernachlässigt. Diese Effekte können durch
die in dieser Arbeit vorgestellten zeiteffizienten Modelle berücksichtigt werden.

6.3.1.4. Betrachtung der Effizienz

Abschließend wird die Effizienz zur Berechnung der gesamten Strahlparameter bestimmt.
Hierfür werden die Berechnungszeiten für beide Verfahren ermittelt. Als Variationspara-
meter werden die Wellenleiterlänge L und die Anzahl der Stimulationsstrahlen NStrahl

verändert.

Der Kernquerschnitt des betrachteten Kanalwellenleiters ist quadratisch mit der Seiten-
länge W = 70µm. Die gewählte numerische Apertur dieses Wellenleiters ist AN = 0.25,
mit Brechungsindex ncore = 1.56. Als Anregung wird eine Punktquelle mit der Leistungs-
verteilung PRect und dem maximalen Polarwinkel ϑmax = 9.2◦ gewählt, siehe (2.115). Für
die azimutale Winkelschrittweite bei der Quellmodellierung wird ∆ϕ = 1◦ vorgegeben.
Damit ergibt sich der azimutale Index J (2.113) zu J = 360. Um die Anzahl der emit-
tierten Strahlen festzulegen wird die polare Winkelschrittweite ∆ϑ der Quelle so variiert,
dass für den polaren Index I (2.113) gilt

I ∈ {90, 180, 360}.

Die Wahl von I und J resultiert in einer

NStrahl ∈ {32400, 64800, 129600}

Anzahl von Quellstrahlen.
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Alle Simulationen werden auf einem identischen Arbeitsplatzrechner durchgeführt. Als
Prozessor wird ein Intel Core 2 Quad Q6600 bei der Taktfrequenz von 2.4 GHz verwen-
det. Das installierte Betriebsystem ist Windows XP (Service Pack 2) der Firma Microsoft.
Das Verfahren für die semisequentielle Strahlverfolgung ist in der Programmiersprache C++
geschrieben und liegt als ausführbares Programm vor. Dieses Programm ist hochoptimiert
für die Berechnung des Übertragungsverhaltens von vielmodigen optischen Wellenleitern.
Das Programm für die analytische Bestimmung der Strahlparameter ist in der Sprache
Matlab in der Version 7.7 der Firma MathWorks Inc. implementiert. In der Tabelle 6.3 sind

Tabelle 6.3.: Effizienz des Verfahrens für einen Kanalwellenleiter mit gerader Wellenlei-
tertrajektorie, bei Variation der Trajektorienlänge L und Stimulationsstrahl-
anzahl NStrahl

NStrahl = 32400 NStrahl = 64800 NStrahl = 129600
L tSRT tART tSRT tSRT tART tSRT tSRT tART tSRT

[cm] [s] [s] tART [s] [s] tART [s] [s] tART

10 89 5.28 16.86 177 10.52 16.83 353 21.16 16.68
20 164 5.27 31.11 334 10.58 31.57 667 21.01 31.75
50 402 5.29 75.99 803 10.54 76.19 1606 21.11 76.08

MStrahl/10
6 MStrahl/10

6 MStrahl/10
6

10 4.7 9.3 18.6
20 9.3 18.6 37.2
50 23.2 46.5 93.0

die Berechnungszeiten des semisequentiellen Verfahren tSRT sowie die Berechnungszeit für
das in dieser Arbeit vorgestellte analytische Verfahren tART bei unterschiedlicher Wellen-
leiterlänge L und unterschiedlicher Anzahl von emittierten Strahlen NStrahl dargestellt.
Des Weiteren ist die Laufzeiteffizienz tSRT/tART aufgezeigt. Diese gibt an, um welchen
Faktor das analytische Verfahren (ART) schneller ist. Zusätzlich ist in dieser Tabelle die
gesamte Anzahl der zu berechnenden inneren Reflexionen MStrahl für die gewählte An-
zahl Strahlen NStrahl angegeben. Die Anzahl MStrahl entspricht der Anzahl der Durchläufe
durch die while()-Schleife in Algorithmus 1, Seite 48.

Die ermittelten Berechnungszeiten tART (NStrahl) und tSRT (NStrahl) sind in Abhängigkeit
von der Wellenleiterlänge L in Abbildung 6.11 dargestellt. Auf der Ordinate ist die Zeit
t logarithmisch aufgetragen. Bei konstanter Wellenleiterlänge L und ansteigender An-
zahl von Strahlen erhöht sich die Berechnungszeit bei beiden Verfahren nahezu linear.
Ist die Anzahl der Strahlen NStrahl konstant und erfolgt eine Verlängerung der Wellenlei-
terlänge L, so erhöht sich nur bei dem semisequentiellen Verfahren die Berechnungszeit
tSRT . Die Berechnungszeit tART ist annähernd konstant. Durch die Vergrößerung der Wel-
lenleiterlänge L wird die Anzahl der inneren Reflexionen MStrahl erhöht, siehe Tabelle
6.3. Hierbei ist deutlich die Unabhängigkeit des analytischen Verfahrens von der Anzahl
der inneren Reflexionen MStrahl zu erkennen. Auf Grund dessen steigt das Verhältnis
tSRT/tART zwischen beiden Verfahren mit zunehmender Wellenleiterlänge signifikant an.
Dieser Anstieg ist proportional zur Wellenleiterlänge L.
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Abb. 6.11.: Vergleich der Berechnungszeiten tART (NStrahl) und tSRT (NStrahl)

Die Tabelle 6.3 und die Abbildung 6.11 verdeutlichen die Effizienz des entwickelten Ver-
fahrens. Hierbei ist zu beachten, dass die Implementierung des analytischen Verfahrens
in Matlab generell zu höheren Rechenzeiten führt. Eine Implementierung des Verfahrens
in einer höheren Programmiersprache kann die Berechnungszeiten tART weiter signifikant
verringern und somit die Effizienz zur Berechnung des transienten Übertragungsverhaltens
erhöhen.

6.3.2. Direktverbindung basierend auf kaskadierten Segmenten

Um das in Abschnitt 6.2.2 vorgestellte Verfahren für die Berechnung komplexer Gesamt-
systeme zu verifizieren, wird ein System bestehend aus drei Segmenten aufgebaut, siehe
Abbildung 6.12.

Abb. 6.12.: Skizze des Gesamtsystems

Das erste Segment ist ein gerader Kanalwellenleiter mit der konstanten Länge L1 =
20mm. Das zweite Segment besteht aus einem konstant gekrümmten Kanalwellenleiter.
Der Krümmungsradius R dieses Wellenleiters ist frei definierbar. Der Krümmungswinkel
γ ist konstant mit γ = π/2. Das dritte Segment ist ein gerader Kanalwellenleiter mit einer
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vom Radius R abhängigen Wellenleiterlänge2 L2(R)

L2(R) =







10mm; R ≤ 10mm,

6mm; R = 15mm,

2mm; R = 20mm.

Die Höhe H des rechteckförmigen Kanalwellenleiters hat keinen Einfluss auf das Über-
tragungsverhalten des Systems [46,75]. Für die Höhe wird der konstante Wert H = 70µm
bei den folgenden Simulationen verwendet. Neben dem Krümmungsradius R werden die
Weite W des Kanalwellenleiters und die numerische Apertur AN variiert. Als Wellenlei-
terweite werden die Weiten

W = {40, 70, 100}µm
gewählt. Der Brechungsindex des Mantels nclad wird bei konstantem Brechungsindex des
Kernmaterials ncore = 1.56 so variiert, dass sich eine numerische Apertur von

AN = {0.2, 0.25, 0.3}

einstellt.

Als Anregung wird eine Quelle verwendet, die die gesamte numerische Apertur homogen
ausleuchtet. Diese Quelle entspricht der in Abschnitt 2.2.2 vorgestellten Quelle mit der
Leistungsverteilung PRect. Die Anzahl der verwendeten Quellstrahlen ist konstant mit
NStrahl = 32400. Diese Anzahl wird durch den azimutalen Index J = 360 und den polaren
Index I = 90, siehe (2.113), vorgegeben. Die Quelle wird auf der Stirnfläche des ersten
Segments positioniert. Die Vorzugsstrahlrichtung der Quelle entspricht der Richtung der
Trajektoriennormalen t

t = nq

des ersten Segments. Die Detektion der gesamten transmittierten Leistung erfolgt an der
Ausgangsseite des dritten Segments. Die Quelle und der Detektor befinden sich in einem
Material mit dem Brechungsindex ncore. Hierdurch werden die Verluste durch die Ein-
und Auskopplung vernachlässigt. Weiter wird angenommen, dass das Wellenleitermate-
rial die eingekoppelte optische Leistung verlustfrei überträgt. Die auftretenden Verluste
entstehen nur durch die Krümmung des Wellenleitersegments. In Abbildung 6.12 ist das
zu modellierende System mit den einzelnen Segmenten, der Anregung und der Detektion
skizziert.

Die Modellierung erfolgt mit der in Abschnitt 6.2.2 vorgestellten Methode. Das Gesamt-
system wird in drei Teilsysteme für die Berechnung des projizierten Strahlverlaufs partitio-
niert. Daran anschließend findet die Berechnung der resultierenden Strahlparameter mit
Hilfe des virtuellen Schichtwellenleiters statt. Das Gesamtmodell entsteht aus der Kas-
kadierung dieser Teilmodelle. Dies entspricht damit dem in Abschnitt 4.1 eingeführten
modularen Konzept. In Abbildung 6.13 ist das entsprechende Gesamtmodell als Gesamt-
blockschaltbild der verwendeten Teilmodelle dargestellt. Die Parameter des projizierten

2Die Abhängigkeit der Wellenleiterlänge L2 vom Parameter R wurde gewählt, damit bei der Fertigung
einer optischen Lage diese Strukturen platzsparend implementiert werden können und für Verifikati-
onsmessungen zur Verfügung stehen.
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Abb. 6.13.: Blockschaltbild des in Abbildung 6.12 dargestellten Systems

Strahlpfades werden durch die kaskadierten Blöcke für Schichtwellenleiter mit gerader
und konstant gekrümmter Trajektorie berechnet. Diese sind im oberen Teil des Block-
schaltbildes abgebildet. Alle Grundmodelle basieren auf den in Kapitel 5 entwickelten
Grundmodellen. Nach der Berechnung der Strahlpfadlänge LG‖ erfolgt die Bestimmung
der resultierenden Strahlparameter mit Hilfe des virtuellen Schichtwellenleiters. Dies ist im
unteren Teil des Blockschaltbildes abgebildet. Aus den so bestimmten Parametern können
die statischen und die transienten Übertragungseigenschaften des Systems berechnet wer-
den. Parallel wird das System mit Hilfe des semisequentiellen Strahlverfolgungsverfahrens
analysiert.
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Abb. 6.14.: Durch die Verfahren ART und SRT ermittelte Sprungantworten eines ge-

krümmten Kanalwellenleiters mit konstantem Krümmungsradius R = 5mm.

Basierend auf der gewählten Anregung werden zuerst die Sprungantworten a(t) des Sys-
tems bestimmt. Der verwendete Krümmungsradius ist R = 5mm. In den Abbildungen
6.14(a) und 6.14(b) sind die ermittelten Sprungantworten dargestellt. Auf der Abszisse
ist die Zeit t und auf der Ordinate ist die detektierte Leistung P (t)/Pges aufgetragen.
Hierbei ist Pges die gesamte emittierte Leistung. Es ist kein Unterschied in den auf-
gezeigten Sprungantworten zu erkennen. Die Ergebnisse beider Verfahren sind in guter
Übereinstimmung.
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Um die Sprungantworten zu diskutieren, wird zuerst die Abbildung 6.14(a) betrachtet. Die
numerische Apertur bei den betrachteten Kanalwellenleitern ist konstant mit AN = 0.25.
Die Wellenleiterweite W wird bei den Werten

W ∈ {40, 70, 100}µm
betrachtet. Mit zunehmender Wellenleiterweite W wird Leistung, aufgrund der Krüm-
mung, in das umgebende Material transmittiert. Das Maximum der jeweiligen Sprun-
gantwort ist mit zunehmender Wellenleiterweite W verringert. Anschließend wird in Ab-
bildung 6.14(b) die numerische Apertur AN bei konstanter Weite W = 70µm variiert.
Zu erkennen ist, dass durch eine Erhöhung der numerischen Apertur die oben genann-
te Transmission in das umgebende Material verringert werden kann. Zusätzlich wird die
Dispersionszeit τD der Sprungantwort verändert, siehe Abschnitt 2.3.1. Dies ist durch die
mit zunehmender numerischer Apertur AN gleichermaßen zunehmende Laufzeitdifferenz
der Moden begründet.

Für die Bestimmung der Effizienz des Verfahrens wird im Folgenden der Radius R vari-
iert. Hierbei werden die Abweichungen des statischen und des transienten Übertragungs-
verhaltens zwischen beiden Verfahren ermittelt. Außerdem wird die Zeiteffizienz von ART
anhand von Laufzeitvergleichen bestimmt.

6.3.2.1. Statisches Übertragungsverhalten

Im Folgenden wird das statische Übertragungsverhalten des Systems bei unterschiedli-
chen Radien, Wellenleiterweiten und numerischen Aperturen bestimmt. Hierbei wird nur
der Ausgangswert des Übertragungsystems betrachtet nachdem alle transienten Vorgänge
abgeklungen sind. Die verwendete Stimulation ist bei beiden Verfahren identisch. Anschlie-
ßend werden die Abweichungen zwischen beiden Verfahren ermittelt.
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Abb. 6.15.: Dämpfungsverhalten von gekrümmten Kanalwellenleitern, berechnet mit den
Verfahren ART und SRT

In den Abbildungen 6.15(a) und 6.15(b) sind die erzielten Ergebnisse dargestellt. In
beiden Abbildungen ist zu erkennen, dass die Krümmungsverluste mit abnehmendem
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Krümmungsradius nichtlinear zunehmen. Diese Verluste sind abhängig von der Wellenlei-
terweite W und von der numerischen Apertur AN . Sie sind in den Abstrahlverlusten der
Strahlen aufgrund der gekrümmten Wellenleiterberandung begründet und nehmen mit
verringertem Krümmungsradius R zu, siehe Abschnitt 3.2.3.

Zuerst werden die Krümmungsverluste in Abhängigkeit von der Wellenleiterweite W be-
trachtet. Dazu wird eine numerische Apertur von AN = 0.25 spezifiziert. Für die Wellen-
leiterweite W werden die Werte

W = {40, 70, 100}µm
gewählt. Die Ergebnisse sind in Abbildung 6.15(a) dargestellt. Wird in dieser Abbil-
dung der Krümmungsradius bei R = 4mm betrachtet, so ist zu erkennen, dass mit
zunehmender Wellenleiterweite W die Krümmungsverluste ansteigen. Für die Analyse
der Krümmungsverluste in Abhängigkeit von der numerischen Apertur wird eine Wel-
lenleiterweite von W = 70µm gewählt und die numerische Apertur AN verändert. In
Abbildung 6.15(b) sind diese Krümmungsverluste dargestellt. Betrachtet wird auch hier
der Krümmungsradius R = 4mm. Zu erkennen ist, dass mit zunehmender numerischer
Apertur die Krümmungsverluste abnehmen.
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Abb. 6.16.: Relative prozentuale Abweichung der Simulationsergebnisse bei gekrümmten
Kanalwellenleitern

Die erzielten Ergebnisse sind mit dem entwickelten Modellierungsansatz (ART) und mit
dem semisequentiellen Strahlverfolgungsverfahren (SRT) bestimmt worden. In den Ab-
bildungen 6.15(a) und 6.15(b) zeigen beide Verfahren nahezu identische Simulationser-
gebnisse. Um die Abweichungen zwischen beiden Verfahren zu bestimmen, ist in den
Abbildungen 6.16(a) und 6.16(b) die relative prozentuale Abweichung

∆FP =

∣
∣
∣
∣

P (R)ART − P (R)SRT

P (R)SRT

∣
∣
∣
∣
· 100 [%] (6.22)

dargestellt3. Aus den Abbildungen kann die maximale relative prozentuale Abweichung

3Da die Quelldiskretisierung identisch ist, ist die gesamte emittierte Leistung Pges ebenfalls identisch.
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bestimmt werden

max (∆FP ) < 0.2%.

Für größer werdende Krümmungsradien wird diese Abweichung geringer, da sich der Ver-
lauf dem in Abschnitt 6.3.1 untersuchten geraden Verlauf annähert.

Zu erkennen ist, dass die gewonnenen Ergebnisse des statischen Übertragungsverhaltens
nahezu identisch sind. Die in dieser Arbeit entwickelte Modellierung kann somit verwen-
det werden, um das statische Verhalten von Kanalwellenleitersystemen zu bestimmen.
Diese können sowohl aus einzelnen Kanalwellenleitersegmenten als auch aus kaskadierten
Segmenten bestehen.

6.3.2.2. Transientes Übertragungsverhalten

Neben den statischen Betrachtungen wird eine transiente Analyse des Übertragungs-
verhaltens durchgeführt. Die Kanalwellenleiter entsprechen den im letzten Abschnitt vor-
gestellten Kanalwellenleitern. Die Grenzfrequenz f3dB wird mit Hilfe der Gleichung (2.132)
bestimmt.
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Abb. 6.17.: Grenzfrequenz f3dB von gekrümmten Kanalwellenleitern, berechnet durch die
Verfahren ART und SRT

Die Abbildungen 6.17(a) und 6.17(b) stellen die bestimmten Grenzfrequenzen f3dB in
Abhängigkeit vom Radius R für beide Verfahren dar. Die Abbildung 6.17(a) demonstriert
den Einfluss der Variation der Wellenleiterweite W bei konstanter numerischer Apertur.
Der Einfluss der numerischen Apertur auf das Übertragungsverhalten ist in der Abbildung
6.17(a) aufgezeigt.

Durch die Makrokrümmung wird die lokale Strahlrichtung kl jedes Strahls bezogen auf
die Trajektorienrichtung t(s) verändert und Leistung in das umgebende Material trans-
mittiert. Dies resultiert in einer Veränderung der Übertragungsfunktion und der Grenz-
frequenz f3dB . Außerdem ist eine Veränderung der Leistungsverteilung im Fernfeld zu
beobachten, siehe Abschnitt 3.2.3.1.
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Bei der Variation der Wellenleiterweite ist diese Veränderung gering, siehe Abbildung
6.17(a). Wird die numerische Apertur verändert, siehe Abbildung 6.17(b), nimmt die
Grenzfrequenz mit verringerter AN zu. Dieser Effekt ist durch die Anstiegszeit τ (2.130)
begründet. Die Anstiegszeit τ nimmt mit verringerter numerischer Apertur AN ab, siehe
Abschnitt 2.3.1. Eine verringerte Anstiegszeit resultiert in einer höheren Grenzfrequenz
f3dB.

In den Abbildungen 6.17(a) und 6.17(b) ist zudem die gute Übereinstimmung der Ergeb-
nisse beider Verfahren erkennbar. Die dargestellten Kurven liegen annähernd übereinander.
Für eine detailliertere Analyse wird die relative prozentuale Abweichung

∆Fτ =

∣
∣
∣
∣

f3dB(R)ART − f3dB(R)SRT

f3dB(R)SRT

∣
∣
∣
∣
· 100 [%] (6.23)

berechnet.
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Abb. 6.18.: Relative prozentuale Abweichung zwischen ART und SRT bei der Bestimmung
der Grenzfrequenz f3dB von gekrümmten Kanalwellenleitern

Diese Abweichung ist in den Abbildungen 6.18(a) und 6.18(b) abgebildet. In beiden Ab-
bildungen ist zu erkennen, dass die relative Abweichung zwischen beiden Verfahren sehr
gering ist. Die maximale prozentuale Abweichung beträgt

max (∆Fτ ) < 0.3%.

Die in dieser Arbeit entwickelte Modellierung kann damit verwendet werden, um das
transiente Übertragungsverhalten von Kanalwellenleitern zu bestimmen.

Wie in den Abbildungen 6.15 zu erkennen, ist für bestimmte Radien die übertragene stati-
sche Leistung H(0) bedingt durch die Wellenleiterkrümmung um mehr als 3dB gedämpft.
Bei der Bestimmung der Grenzfrequenz f3dB wird dieses statische Verhalten nicht be-
rücksichtigt, siehe Abschnitt 2.3.2. Aufgrund der hohen Dämpfung und der begrenzten
Responsivität der verwendeten Photodioden ist eine hochdatenratige Übertragung bei
diesen Krümmungsradien nicht sinnvoll.
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6.3.2.3. Betrachtung der Effizienz

Für die Analyse der Effizienz des Verfahrens wird das System mit unterschiedlichen Quel-
len stimuliert. Als Variationsparameter werden der polare Index (2.113) und (2.114)

I ∈ {90, 180}

und damit die Anzahl der Strahlen NStrahl, die Wellenleiterweite W und der Wellenleiter-
radius R variiert. Der azimutale Index J ist konstant mit J = 360.

Tabelle 6.4.: Darstellung der Berechnungszeiten tSRT und tART , der Effizienz der Ver-
fahren sowie der Anzahl der inneren Reflexionen MStrahl für ein komplexes
System bei Variation der Wellenleiterweiten W , der Krümmungsradien R
und der Anzahl der Stimulationsstrahlen NStrahl

NStrahl = 32400
R = 10mm R = 15mm R = 20mm

LT = 45.7mm LT = 49.6mm LT = 53.4mm
W tSRT tART tSRT tSRT tART tSRT tSRT tART tSRT

[µm] [s] [s] tART [s] [s] tART [s] [s] tART

40 71 13 5.46 76 13 5.84 82 13 6.3
70 56 13 4.3 60 13 4.61 64 13 4.92
100 49 13 3.77 53 13 4.07 57 13 4.4

MStrahl/10
6 MStrahl/10

6 MStrahl/10
6

40 3.1 3.4 3.7
70 2.3 2.6 2.7
100 2.0 2.1 2.3

NStrahl = 64800
40 141 26 5.42 153 26 5.88 165 26 6.35
70 112 26 4.3 119 26 4.57 128 26 4.92
100 100 26 3.8 106 26 4.07 114 26 4.4

MStrahl/10
6 MStrahl/10

6 MStrahl/10
6

40 6.4 6.9 7.4
70 4.7 5.1 5.4
100 4.0 4.3 4.6

In der Tabelle 6.4 werden die Berechnungszeiten für das semisequentielle Berechnungs-
verfahren tSRT und für das in dieser Arbeit entwickelte Berechnungsverfahren tART ge-
genübergestellt. Zusätzlich wird das Verhältnis der Berechnungszeiten zur Bestimmung
der Zeiteffizienz gebildet. Außerdem ist die Anzahl der inneren Reflexionen MStrahl ange-
geben. Diese Werte wurden für eine unterschiedliche Anzahl von Strahlen NStrahl sowie
unterschiedliche Weiten W und Radien R bestimmt. Durch die Veränderung des Wellen-
leiterradius wird auch die Trajektorienlänge LT

LT = L1 +
π

2
· R + L2(R) (6.24)
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Abb. 6.19.: Berechnungszeiten tART (NStrahl) und tSRT (R,NStrahl) für das in Abbildung
6.12 dargestellte System

verändert. Diese Trajektorienlänge ist zusätzlich in der Tabelle 6.4 aufgeführt.

Die Berechnungszeiten tART (NStrahl) und tSRT (R,NStrahl) sind in Abhängigkeit von der
Wellenleiterweite W in Abbildung 6.19 dargestellt. Hierbei ist zu erkennen, dass die Be-
rechnungszeit tART unabhängig von dem verwendeten Radius R ist, siehe Tabelle 6.4. Die
Berechnungszeiten für das semisequentielle Berechnungsverfahren hängen nahezu linear
von der Verlängerung der Trajektorienlänge ab, da durch eine Verlängerung dieser Tra-
jektorienlänge auch die Anzahl der zu berechnenden inneren Reflexionen MStrahl ansteigt.
Dieses Verhalten entspricht dem in Abschnitt 6.3.1.4 diskutierten Verhalten. Die Anzahl
der zu berechnenden Reflexionen verringert sich mit der Vergrößerung der Wellenleiter-
weite W , siehe Gleichung (5.10) und Gleichung (5.15). Aus diesem Grund sinkt durch
eine Vergrößerung der Wellenleiterweite die Berechnungszeit des Strahlverfolgungsalgo-
rithmus.

Bei dem analytischen Verfahren ist die Berechnungszeit tART unabhängig von der Trajek-
torienlänge und der Wellenleiterweite. Sie ist bei konstanter Quelldiskretisierung nur von
der Anzahl der verwendeten Segmente abhängig. Dies ist durch den modularen Ansatz be-
gründet. Für einen geraden Wellenleiter bei NStrahl = 32400 beträgt die Berechnungszeit
tART = 5.28s, siehe Tabelle 6.3, für das hier betrachtete System beträgt die Berechnungs-
zeit tART = 13s. Die Strahlparameter des geraden Wellenleiters in Abschnitt 6.3.1 werden
mit Hilfe von zwei identischen Teilmodellen für gerade Wellenleiter bestimmt. Die Berech-
nungszeit pro Teilmodell kann durch tg ≈ 2.6s angenähert werden. Das hier betrachtete
System besteht aus vier Segmenten, siehe Blockschaltbild 6.13. Drei dieser vier Segmente
werden durch Teilmodelle für gerade Wellenleiter beschrieben. Die Berechnungszeit für das
Teilmodell mit konstant gekrümmter Trajektorie kann damit durch tk ≈ 5s angenähert
werden. Diese Berechnungszeit ist ebenfalls unabhängig von dem Wellenleiterradius und
der Wellenleiterweite.

Das Verhältnis tSRT /tART ist für dieses System geringer als das Verhältnis bei den in Ab-
schnitt 6.3.1.4 betrachteten geraden Kanalwellenleiterstrukturen. Dies ist in der Imple-
mentierung begründet, da die vorgestellten Algorithmen als von Matlab interpretierbares
Skript vorliegen. Es ist zu erwarten, dass bei einer Implementierung in C++ die Zeiteffizienz
verbessert wird.
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6.4. Zusammenfassung

In diesem Kapitel wurde ein Modellierungsverfahren vorgestellt, mit dem das Übertra-
gungsverhalten von Kanalwellenleitern und mikrooptischen Komponenten zeiteffizient be-
stimmt werden kann. Kern dieses Modellierungsverfahrens ist die Aufteilung jedes Strahl-
verlaufs im Raum in zwei orthogonale Strahlverläufe. Der erste Strahlverlauf repräsentiert
den Strahlverlauf in der Projektionsebene des Wellenleiters und wird mit den in Kapitel
5 vorgestellten Verfahren für gerade und konstant gekrümmte Schichtwellenleiter zeiteffi-
zient analytisch berechnet. Kann der Strahlverlauf nicht analytisch ermittelt werden, so
muss er mit Hilfe des in Kapitel 3.3.1 vorgestellten physikalischen Strahlverfolgungsalgo-
rithmus in der Ebene bestimmt werden. Hierbei ist zu beachten, dass im Gegensatz zu
einer Strahlverfolgung im Raum die Strahlverfolgung in der Ebene zeiteffizienter ist. Auf
dem projizierten Strahlverlauf wird der in diesem Kapitel vorgestellte virtuelle Schicht-
wellenleiter orthogonal zur Projektionsebene entlang des Strahlverlaufs positioniert. Die
Höhe des virtuellen Schichtwellenleiters entspricht der Höhe des Kanalwellenleiters, die
Länge des virtuellen Schichtwellenleiters entspricht der Länge des bestimmten projizier-
ten Strahlverlaufs. Die resultierenden Strahlparameter im Raum können mit Hilfe des in
Abschnitt 5.1 vorgestellten Verfahrens zeiteffizient analytisch berechnet werden.

Als Optimierungsstrategie wird bei Wellenleiterstrukturen, die aus kaskadierten Segmen-
ten integriert wurden, zuerst der gesamte projizierte Strahlverlauf in der Ebene bestimmt
und anschließend ein virtueller Schichtwellenleiter auf diesen gesamten projizierten Strahl-
verlauf positioniert. Damit ist es möglich, das transiente Übertragungsverhalten von Ka-
nalwellenleitern und mikrooptischen Komponenten zeiteffizient zu berechnen. Die Bestim-
mung der Strahlparameter im Raum mit Hilfe des virtuellen Schichtwellenleiters wurde
als internationales Patent angemeldet und am 15.01.09 veröffentlicht [101].

Das Teilmodell für einen geraden oder konstant gekrümmten Kanalwellenleiter besteht
aus den in Kapitel 5 vorgestellten Modellen. Das Teilmodell für eine Komponente mit va-
riabler Kernweite (Taper) wird mit Hilfe von Strahlverfolgungsalgorithmen in der Ebene
bestimmt. Die Integration zu einem Gesamtsystem kann mit den in Abschnitt 4.3.1 vorge-
stellten Methoden sehr leicht erfolgen. Die vorgestellten Verfahren sind somit sogenannte
White-Box-Verfahren, siehe Abschnitt 4.2.2.1, eine Parametervariation kann hierbei sehr
einfach und zeiteffizient durchgeführt werden.

Um die vorgestellten Verfahren zu verifizieren und deren Effizienz zu ermitteln, wur-
den zwei unterschiedliche Kanalwellenleiterstrukturen modelliert. Die erste analysierte
Struktur ist ein gerader Kanalwellenleiter mit variabler Wellenleiterlänge L. Die zwei-
te Struktur ist ein Kanalwellenleiter, der aus kaskadierten geraden und konstant ge-
krümmten Kanalwellenleitersegmenten besteht. Hierbei sind der Radius R und die Wel-
lenleiterweite W variabel. Die ermittelten Abweichungen des statischen und transienten
Übertragungsverhaltens sind bei beiden untersuchten Strukturen gering. Somit kann das
entwickelte Verfahren verwendet werden, um das transiente Übertragungsverhalten von
Kanalwellenleitern und mikrooptischen Strukturen zu bestimmen.

Die Laufzeit tART des in diesem Kapitel vorgestellten Modells hängt außer von der An-
zahl der Stimulationsstrahlen nur von der Anzahl der zu verwendenden Teilmodelle ab.
Diese Laufzeit ist damit, im Gegensatz zu der Laufzeit tSRT des klassischen Strahlverfol-
gungsverfahrens, siehe Abschnitt 3.3.1, unabhängig von der Anzahl der zu bestimmenden
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inneren Reflexionen MStrahl. Eine zeiteffiziente Bestimmung des Übertragungsverhaltens
ist somit mit Hilfe dieser Modelle möglich.

Durch den in diesem Kapitel vorgestellten Ansatz lassen sich zudem leicht weitere komple-
xe Strukturen modellieren und zeiteffizient analysieren. Die entwickelten Modelle werden
durch den gewählten modularen Ansatz problemlos in einen Simulationsablauf integriert.
Diese Modellierung schließt Komponenten ein, bei denen die Wellenleiterberandung nicht
in analytisch beschreibbarer Form oder mit nicht stetig differenzierbarer Trajektorie vor-
liegt (z. B. Wellenleiterkreuzungen). Es muss nur sichergestellt sein, dass die notwendigen
Modellschnittstellen vorhanden sind und die benötigten Modellparameter übergeben wer-
den können. Des Weiteren können dadurch, dass sämtliche Strahlparameter des Strahls
bekannt sind, Absorptionsverluste, Polarisationseffekte und der Einfluss der Oberflächen-
rauigkeit auf das transiente Übertragungsverhalten berücksichtigt werden.



Kapitel 7

Mehrtormodell für Kanalwellenleiter
und mikrooptische Komponenten

Im letzten Kapitel wurde mit Hilfe von Strahlprojektionen das dreidimensionale Problem
der Strahlverfolgung innerhalb eingebetteter Wellenleiter und mikrooptischer Komponen-
ten auf zwei zweidimensionale Probleme zurückgeführt. Hierbei wird jeder Strahl Sn

Sn = An + lkn (7.1)

auf die Projektionsebene des Wellenleiters projiziert. Die Berechnung der Strahlparameter
in der Projektionsebene kann bei bestimmten Projektionsflächen des Wellenleiters mit
Hilfe der in Kapitel 5 vorgestellten Verfahren analytisch erfolgen. Nachdem die Strahllänge
LG‖ in der Ebene bekannt ist, werden mit Hilfe des in Abschnitt 6.1 eingeführten virtuellen
Schichtwellenleiters zeiteffizient die resultierenden Strahlparameter im Raum bestimmt.
Hierbei wird auf die in Abschnitt 5.1 vorgestellten analytischen Verfahren zurückgegriffen.

Die Projektion eines Strahls auf eine Projektionsebene ist keine eindeutig umkehrbare
Abbildung. Es können unterschiedliche Strahlen mit identischem projizierten Aufpunkt
A‖ und identischer Strahlrichtung k‖ in der Projektionsebene angegeben werden, siehe
Abschnitt 4.3.3.2. Im Folgenden wird davon ausgegangen, dass der Strahlaufpunkt An

bei allen Strahlen identisch ist. Des Weiteren wird die lokale Strahlrichtung kn durch die
orthogonalen Vektoren des Wellenleiters beschrieben

kn = (kn · n1(sE))n1(sE) + (kn · n2)n2 + (kn · t(sE)) t(sE). (7.2)

Die initialen Strahlrichtungen kn können eindeutig durch den Polarwinkel ϑn und den
Azimutwinkel ϕn in Kugelkoordinaten angegeben werden

kn =





cos(ϕn) sin(ϑn)
sin(ϕn) sin(ϑn)

cos(ϑn)



 . (7.3)

Durch die Projektion jeder Strahlrichtung kn auf die Projektionsfläche mit dem Norma-
lenvektor n2 wird die projizierte Strahlrichtung kn‖

kn‖ = (kn · n1(sE))
︸ ︷︷ ︸

cos(ϕn) sin(ϑn)

n1(sE) + (kn · t(sE))
︸ ︷︷ ︸

cos(ϑn)

t(sE) (7.4)
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angegeben. Für diese gilt

|kn‖| =
√

[cos(ϕn) sin(ϑn)]
2 + cos(ϑn)2 ≤ 1. (7.5)

Weiter wird der Projektionswinkel αn‖ zwischen der Trajektorienrichtung des Wellenleiters
t(sE) und der projizierten Strahlrichtung kn‖ durch

cos(αn‖) =
kn‖

|kn‖|
· t(sE) =

cos(ϑ)
√

[sin(ϑ) cos(ϕ)]2 + cos(ϑ)2
(7.6)

sin(αn‖) =
kn‖

|kn‖|
· n1(sE) =

sin(ϑ) cos(ϕ)
√

[sin(ϑ) cos(ϕ)]2 + cos(ϑ)2
(7.7)

berechnet. Für diesen Projektionswinkel α‖ gilt:

α‖ ∈ [−ϑmax, ϑmax].

Der Projektionswinkel α‖ nimmt damit sowohl positive als auch negative Werte an. Durch
die Periodizität der Sinus- und der Cosinusfunktion für die Koordinate ϕ in den Gleichun-
gen (7.6) und (7.7) kann der Projektionswinkel α‖ identische Werte für unterschiedliche
ϕ und ϑ annehmen.
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Abb. 7.1.: Konturdarstellung des Projektionswinkels α‖ in Abhängigkeit vom
Polarwinkel ϑ und vom Azimutwinkel ϕ

Um dies zu verdeutlichen, ist in Abbildung 7.1 die Abhängigkeit des Projektionswinkels
α‖ vom Polarwinkel ϑ und vom Azimutwinkel ϕ als Kontur aufgezeigt. Durchgehende
Linien kennzeichnen konstante Werte für α‖. Die Farbe der Konturlinien bestimmt den
entsprechenden Wert von α‖. Wie in Abbildung 7.1 und in den Gleichungen (7.6) und
(7.7) zu erkennen, existieren für einen konstanten Projektionswinkel α‖ mehrere Winkel
ϑ und ϕ.
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Bei allen Strahlen mit dem identischen projizierten Aufpunkt AE‖ und dem Projektions-
winkel α‖ ist der Strahlverlauf in der Projektionsebene kongruent. Für eine zeiteffiziente
Simulation können alle Strahlen, die diesen Bedingungen genügen, zu einem projizier-
ten Strahl zusammengefasst werden, siehe Abschnitt 4.3.3.2. Diese Eigenschaft wird im
folgenden Abschnitt verwendet, um eine Orts- und Winkeldiskretisierung der Wellenlei-
terprojektionskanten durchzuführen und mit Hilfe eines Mehrtormodells die Strahllänge
LG‖, die Strahlrichtung kA‖ und den Aufpunkt AA‖ zu bestimmen. Die gesamte geometri-
sche Weglänge Lgeo der Strahltrajektorien innerhalb des Systems wird anschließend mit
Hilfe des virtuellen Schichtwellenleiters berechnet.

7.1. Bestimmung der Koppelmatrix des Mehrtores

Im letzten Abschnitt wurde aufgezeigt, dass unterschiedliche Strahlen mit identischem
projiziertem Aufpunkt A‖ und Projektionswinkel α‖ identische Strahlverläufe in der Pro-
jektionsebene aufweisen. Diese Eigenschaft wird im Folgenden verwendet, um eine Kop-
pelmatrix für jedes Wellenleitersegment zu generieren.

Abb. 7.2.: Orts- und Winkeldiskretisierung der Wellenleiterprojektionskanten WpE und
WpA

Hierzu werden die Projektionskanten WpE und WpA des Wellenleiters, siehe Gleichung
(4.11) und (4.12), in Nx, mit Nx ∈ N, konstante diskrete Längensegmente ∆a partitio-
niert. Über jedes Längensegment wird ein Bogen mit dem Winkel 2α gespannt. Dieser
Bogen wird in Nα, mit Nα ∈ N, konstante diskrete Winkelsegmente ∆α unterteilt, siehe
Abbildung 7.2. Es gilt damit

Nx∑

i=1

∆a = W ∧
Nα∑

j=1

∆α = 2α.

Hierdurch ergibt sich ein Mehrtor mit N = Nx · Nα Eingangstoren. Diese werden im
Folgenden als kE(i, j) bezeichnet. Jedes Tor k(i, j) repräsentiert einen projizierten Strahl
Sij‖ mit dem Aufpunkt AiE‖ und der Strahlrichtung kjE‖.



120 Kapitel 7. Mehrtormodell für Kanalwellenleiter und mikrooptische Komponenten

Im Allgemeinen muss die Anzahl der Eingangstore nicht mit der Anzahl der Ausgangstore
übereinstimmen. Außerdem ist es nicht erforderlich, dass die Orts- und die Winkeldiskreti-
sierung äquidistant sind. Ziel dieses Verfahrens ist es, ein komplexes Gesamtmodell durch
die Kaskadierung von Teilmodellen zu erstellen, siehe Abschnitt 4.1. Für eine vereinfach-
te Kaskadierung bietet es sich deshalb an, eine identische Diskretisierung für den Orts-
sowie den Winkelbereich des Wellenleitereingangs und -ausgangs zu verwenden. Aus die-
sem Grund wird die Anzahl der Ausgangstore identisch zu der Anzahl der Eingangstore
gewählt.

Der Einfachheit halber werden die Orts- und Winkelindizes (i, j) durch den fortlaufenden
Index n bzw. ñ

kE‖(i, j) = kE‖(n) (7.8)

ersetzt. Für jedes Eingangstor kE‖(n) wird das entsprechende Ausgangstor kA‖(ñ) und die
projizierte Strahllänge LG‖(n) berechnet, siehe auch Abbildung 7.2.

Die Eingangstore werden als Einheitsspaltenvektor VkE mit N Elementen dargestellt

VkE(n)(m) =

{

1 : m = n,

0 : sonst.
(7.9)

Damit ergibt sich der Eingangsspaltenvektor zu

VkE(n) = [ 0 · · · 1
︸︷︷︸

m=n

· · · 0 ]T ∧ |VkE(n)| = 1. (7.10)

Da die Anzahl der Eingangstore identisch mit der Anzahl der Ausgangstore ist, werden die
Ausgangstore durch einen Spaltenvektor VkA mit N Elementen repräsentiert. Es werden
nicht alle stimulierten Strahlen geführt, daher existiert nicht für jedes Eingangstor kE(n)
ein entsprechendes Ausgangstor kA(ñ). In diesem Fall ist der entsprechende Ausgangs-
vektor VkA der Nullvektor 0.

Werden alle Eingangstore sukzessive stimuliert und die entsprechenden Ausgangstore be-
rechnet, kann eine Koppelmatrix K̃ des betrachteten Wellenleitersegments angegeben
werden. Diese erfüllt für alle Eingangsvektoren die Bedingung

VkA(ñ) = K̃ ·VkE(n), ∀n ∈ N. (7.11)

Hier ist VkA(ñ) der Ausgangsvektor des Systems. Alternativ kann der Ausgangsvektor in
Abhängigkeit vom Eingangsvektor dargestellt werden

VkA(n) = K̃ ·VkE(n), ∀n ∈ N. (7.12)

In dieser Gleichung ist der Index n auf das Eingangstor bezogen. Die Koppelmatrix K̃

beschreibt eindeutig die Kopplung zwischen allen Eingangstoren mit den entsprechenden
Ausgangstoren. Bedingt durch die identische Anzahl der Eingangs- und Ausgangstore ist
die Koppelmatrix quadratisch, mit N Zeilen- und N Spaltenvektoren.

Um die Kaskadierung von Segmenten zu untersuchen, wird ein Gesamtsystem bestehend
aus zwei Teilsystemen betrachtet. Für jedes Teilsystem existiert eine (N × N) Koppel-
matrix. Die Koppelmatrix des ersten Teilsystems ist K̃1, die des zweiten Systems ist K̃2.
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Zuerst wird eine Stimulation des Systems am Tor kE1(n) des ersten Teilsystems betrach-
tet. Dieses Tor wird durch den Spaltenvektor VkE1(n) beschrieben. Die Multiplikation
des Eingangsspaltenvektors mit der Koppelmatrix K̃1 des ersten Teilsystems resultiert in
dem Ausgangsspaltenvektor VkA1(ñ)

VkA1(ñ) = K̃1 ·VkE1(n). (7.13)

Dieser Ausgangsvektor VkA1(ñ) dient als Eingangsvektor des zweiten Teilsystems mit der
Koppelmatrix K̃2

VkA2(˜̃n) = K̃2 ·VkA1(ñ) (7.14)

mit (7.13)

VkA2(˜̃n) = K̃2 · K̃1
︸ ︷︷ ︸

K̃G

·VkE1(n). (7.15)

Zu erkennen ist, dass die Kaskadierung der Teilsysteme durch Multiplikation der Koppel-
matrizen zu einer Gesamtkoppelmatrix K̃G erfolgen kann.

Für die Berechnung der Sprungantwort mit Gleichung (2.125) muss die geometrische
Weglänge Lgeo und die daraus resultierende Verweildauer jedes Strahls innerhalb des Wel-
lenleiters bestimmt werden. Hierzu wird die eingeführte Koppelmatrix so erweitert, dass
sie die projizierte geometrische Strahlpfadlänge LG(n) als normierten Exponenten lp(n)
zur Basis e auf den Koppelstellen enthält, siehe Gleichung (7.9),

lp(n) =
LG(n)

1m
. (7.16)

Das resultierende Gleichungssystem erfüllt für jedes angeregte Tor die Bedingung

e−lp(n) ·VkA(n) = e−lp(n) · K̃ ·VkE(n). (7.17)

Darin ist lp(n) die normierte geometrische Strahlpfadlänge, die der Strahl innerhalb des
Systems zurücklegt, um vom Tor kE(n) zum Tor kA(ñ) zu gelangen. Die Koppelmatrix
wird nun so erweitert, dass sie die Bedingung

VkA(n) · e−lp(n) = K ·VkE(n); ∀n ∈ N (7.18)

erfüllt. Für die Kaskadierung wird Gleichung (7.13) betrachtet, es gilt

e−lp1 (n) ·VkA1(ñ) = e−lp1 (n) · K̃1 ·VkE(n) = K1 ·VkE(n), (7.19)

e−lp2 (ñ) ·VkA1(˜̃n) = e−lp2 (ñ) · K̃2 ·VkA(ñ) = K2 ·VkA(ñ). (7.20)

Die Gleichung (7.19) wird in (7.20) eingesetzt. Unter Beachtung von (7.15) gilt

e−lp1 (n) · e−lp2 (ñ) ·VkA1(˜̃n) = e−(lp1 (n)+lp2)(ñ) · K̃G ·VkE(n) = K2 ·K1
︸ ︷︷ ︸

KG

·VkE(n). (7.21)
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Durch die Multiplikation der Koppelmatrizen addieren sich die geometrischen Strahllängen
im Exponenten. Der resultierende Spaltenvektor V̂kA(n)

V̂kA(n) = KG ·VkE(n) (7.22)

enthält damit Informationen über das Ausgangstor und über die zurückgelegte projizierte
Weglänge. Um die Leistungskopplung jedes eingekoppelten Strahls mit Hilfe von Matri-
zen zu berechnen, wird parallel zu der Koppelmatrix KG die Leistungskoppelmatrix KGP

ermittelt. Der Aufbau der Leistungskoppelmatrix ist identisch zu der Koppelmatrix, an-
stelle der Strahllängen enthält diese den Leistungskoppelkoeffizienten P = PA/PE. Mit
dem vorgestellten Verfahren ist es damit möglich, den Aufpunkt AA‖, die Richtung kA‖,
die projizierte Strahllänge LG‖ und die Leistungskopplung unter Verwendung von Metho-
den der linearen Algebra zu bestimmen. Nachdem die projizierte Gesamtstrahllänge LG‖

bekannt ist, wird die Gesamtstrahllänge Lgeo des Strahls innerhalb des Systems mit Hilfe
des in Kapitel 6.1 vorgestellten Konzepts des virtuellen Schichtwellenleiters berechnet.

7.2. Beschaffenheit der Koppelmatrix

Um die Beschaffenheit der Koppelmatrix aufzuzeigen, werden als Beispiel die Koppelma-
trizen für Wellenleiter der Weite W = 70µm und der numerischen Apertur AN = 0.25
betrachtet. Für die Verdeutlichung der Koppelstellen innerhalb der Koppelmatrix ist die
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(a) Gewählte Parameter: Nα = 5, Nx = 5
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(b) Gewählte Parameter: Nα = 100, Nx = 100

Abb. 7.3.: Koppelmatrizen eines geraden Wellenleiters der Länge L = 100mm, Weite
W = 70µm und AN=0.25 bei unterschiedlichen Ortsdiskretisierungen ∆a, Win-
keldiskretisierungen ∆α.

Anzahl der Ortsdiskretisierungen Nx im ersten Beispiel auf fünf Tore und die Anzahl der
Winkeldiskretisierungen Nα ebenfalls auf fünf Tore reduziert. Damit ergibt sich eine An-
zahl von N = 25 Eingangs- und Ausgangstoren. Die dazugehörige Koppelmatrix ist eine
N ×N Matrix mit 625 Elementen. In der Abbildung 7.3(a) ist diese Koppelmatrix darge-
stellt. Jeder aufgezeigte Punkt entspricht einem Element der Koppelmatrix der ungleich
null ist.
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Im Folgenden wird die Diskretisierung verfeinert, so dass sich eine Ortsdiskretisierung von
∆a = 0.7µm (Nx = 100) und eine Winkeldiskretisierung von ∆α = 0.185◦ (Nα = 100)
ergibt. Dies resultiert in N = 104 Eingangstoren, die resultierende N ×N -Koppelmatrix
enthält 108 Elemente1. Die Abbildung 7.3(b) stellt die entsprechende Koppelmatrix dar.
Zu erkennen ist eine regelmäßige Struktur innerhalb der Koppelmatrix des geraden Wel-
lenleiters. Dieses weist auf einen linearen Zusammenhang zwischen der Ein- und Aus-
kopplung hin. Bei einem geraden Schichtwellenleiter ist die geometrische Strahlpfadlänge
Lgeo nur abhängig von der initialen Strahlrichtung kE , siehe Abschnitt 5.1. Aufgrund
dessen stehen Ein- und Ausgangstore mit identischem Projektionswinkel α‖, aber unter-
schiedlichem Aufpunkt Ai‖ in einem linearen Zusammenhang. Dies ist in der resultierenden
Koppelmatrix Abbildung 7.3(b) ersichtlich.
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Abb. 7.4.: Koppelmatrix eines gekrümmten Wellenleiters mit dem Radius R = 50mm,
Weite W = 70µm, AN=0.25, Nα = 100 und Nx = 100

Dem gegenüber ist die Koppelmatrix eines gekrümmten Kanalwellenleiters in Abbildung
7.4 dargestellt. Hier sind keine linearen Zusammenhänge zwischen den Eingangs- und
Ausgangstoren erkennbar.

7.3. Beschreibung der Simulationsdurchführung

Unter Anwendung der Koppelmatrizen können die Strahlparameter und die Leistungs-
kopplung des projizierten Strahlpfads mit Hilfe von Methoden der linearen Algebra be-
stimmt werden. Ein gegebenes Gesamtsystem wird mit der in Kapitel 4.3 vorgestellten
Methode in Teilsysteme partitioniert. Als Erfordernis der Anwendbarkeit des Verfahrens
muss für jedes Teilsystem eine Koppelmatrix K existieren. Wird dies vorausgesetzt, so
kann das Gesamtmodell für die Berechnung des projizierten Strahlverlaufs durch die Mul-
tiplikation aller Koppelmatrizen der beteiligten Teilmodelle

KG =

I∏

i=1

Ki (7.23)

1Hierbei werden in Matlab sparse Matrizen verwendet.
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angegeben werden.

Gegeben ist das Leistungsemissionsspektrum einer Quelle bestehend aus einer Strahlen-
schar, siehe Abschnitt 2.2.2. Für die Bestimmung der projizierten Strahlparameter wird
das Emissionsspektrum der Quelle, entsprechend der zugrunde liegenden Tordiskretisie-
rungen des Mehrtors, diskretisiert. Dazu wird jeder Strahlaufpunkt AE n auf die Projekti-
onskante WpE projiziert und die Strahlkomponenten jedes Strahls kE n in der Projektions-
ebene berechnet. Anschließend wird der projizierte AufpunktAE‖n und die Strahlrichtung
in der Projektionsebene kE‖n entsprechend der gewählten Orts- und Winkeldiskretisierung
den entsprechenden Toren zugeordnet. Die Quelle liegt dann als Quellmatrix X vor, jeder
Strahl entspricht einer Spalte dieser Quellmatrix. Um eine zeiteffiziente Implementierung
zu ermöglichen, erfolgt dies schon beim Entwurf der Quelle, so dass die Berechnung der
Quellmatrix nicht in die Berechnungszeit eingeht. Die Ausgangsmatrix oder Detektions-
matrix Y wird durch Multiplikation der Koppelmatrix mit der Quellmatrix

Y = KG ·X (7.24)

berechnet. Darauf aufbauend erfolgt die Berechnung der resultierenden Strahlparameter
im Raum unter Anwendung des virtuellen Schichtwellenleiters, siehe Abschnitt 6.1.

Abb. 7.5.: Blockdiagramm für die Berechnung der Strahlparameter im Raum durch ein
Mehrtormodell

Die Abbildung 7.5 zeigt das für die Berechnung der gesamten Strahlparameter im Raum
zugrunde liegende Blockdiagramm. Im oberen Bereich ist die Bestimmung der Strahlpa-
rameter in der Projektionsebene mit Hilfe einer Koppelmatrix abgebildet und im unteren
Bereich ist die anschließende Berechnung der resultierenden Strahlparameter im Raum
unter Anwendung des virtuellen Schichtwellenleiters aufgeführt.

7.4. Evaluation des Verfahrens

Durch die Orts- und Winkeldiskretisierung werden alle Aufpunkte und Strahlrichtungen
durch stellvertretende Aufpunkte und Strahlrichtungen entsprechend der zugrunde liegen-
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den Tore angenähert. Der Einfluss dieser Näherung wird im Folgenden bei unterschiedli-
chen Kanalwellenleitern analysiert. Dazu werden die Strahlaufpunkte AA, die Strahlrich-
tungen kA und die geometrische Strahllänge Lgeo mit Hilfe des Mehrtoransatzes und des
in Kapitel 6 vorgestellten analytischen Modellierungsansatzes berechnet und verglichen.

Der gewählte Kernquerschnitt für die Verifikation ist bei allen betrachteten Kanalwellen-
leitern quadratisch mit der Seitenlänge W = 70µm. Die numerische Apertur der betrach-
teten Kanalwellenleiter ist AN = 0.25. Hierbei wird ein Brechungsindex des Kerns von
ncore = 1.56 genutzt.

Als Quelle wird ein Flächenstrahler mit NStrahl = 32400 Strahlen gewählt. Dieser ist auf
der Wellenleiterstirnfläche positioniert. Die einzelnen Strahlen Sn der Quelle werden durch

Sn = W(sE) + a n1(se) + b n2
︸ ︷︷ ︸

Strahlaufpunkt An

+l (sin(ϕ) sin(ϑ)n1(sE) + cos(ϕ) sin(ϑ)n2 + cos(ϑ)t(sE))
︸ ︷︷ ︸

Strahlrichtung kn

(7.25)

mit den zulässigen Intervallgrenzen der Parameter

a, b ∈
(

−W

2
,
W

2

)

∧ ϕ ∈ [0, 2π] ∧ ϑ ∈ [0, ϑN ] (7.26)

beschrieben. Darin ist ϑN der innere Akzeptanzwinkel. Um eine Verfälschung der Ergeb-
nisse durch optimal positionierte Quellstrahlen zu vermeiden, werden die Eingangsstrahlen
der Quelle mit Hilfe eines Zufallsprozesses erzeugt. Hierbei wird für jeden Strahl jeweils
ein diskreter Wert für a, b, ϕ und ϑ aus dem jeweiligen angegebenen Intervall (7.26)
bestimmt. Als Wahrscheinlichkeitsverteilung des Zufallsprozesses wird eine Gleichvertei-
lung verwendet2. Aus dieser Strahlenschar des Flächenstrahlers wird die Quellmatrix X

gebildet.

Als Variationsparameter für die Verifikation wird die Anzahl der Tordiskretisierungen Nx

und Nα verändert. Des Weiteren werden der Trajektorienverlauf W(s) und die Trajekto-
rienlänge modifiziert. In Abschnitt 7.4.1 wird ein Kanalwellenleiter mit geradem Trajek-
torienverlauf analysiert. Daran anschließend wird in Abschnitt 7.4.2 ein Kanalwellenleiter
mit konstant gekrümmtem Trajektorienverlauf untersucht. Für diese Verifikationen wer-
den die Abweichung des Aufpunkts, des Strahlwinkels und der geometrischen Strahllänge
von den analytisch bestimmten Werten ermittelt. Abschließend wird in Abschnitt 7.4.3
das in Abschnitt 6.3.2 vorgestellte System mit dem in diesem Kaptitel vorgestellten Mehr-
torverfahren untersucht und Abweichungen zwischen den beiden Verfahren bestimmt. Bei
den Darstellungen werden die durch dieses Verfahren erzielten Ergebnisse mit dem Index
MART gekennzeichnet.

7.4.1. Kanalwellenleiter mit gerader Trajektorie

Betrachtet werden gerade Kanalwellenleiter mit quadratischem Kernquerschnitt und den
Wellenleiterlängen L = 1mm und L = 10mm. Für diese Wellenleiter werden die Kop-
pelmatrizen für unterschiedliche Tordiskretisierungen im Ortsbereich, gekennzeichnet mit
Nx, und im Winkelbereich Nα bestimmt.

2Bei der Implementierung wurden die Werte mit Hilfe der Matlabfunktion rand() bestimmt.
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Entsprechend der in Abschnitt 7.3 vorgestellten Vorgehensweise werden die Strahlauf-
punkte, Strahlrichtungen und die geometrische Strahllänge mit Hilfe des Mehrtoransatzes
und des analytischen Verfahrens berechnet. Nachdem alle berechneten Strahllängen vor-
liegen, werden durch

∆FL =

∣
∣
∣
∣
∣

LMART
geo − LART

geo

LART
geo

∣
∣
∣
∣
∣
· 100 (7.27)

die relativen prozentualen Abweichungen der berechneten geometrischen Längen ermittelt.
In Tabelle 7.1 sind die maximalen prozentualen Abweichungen der ermittelten geometri-

Tabelle 7.1.: Maximale prozentuale Abweichungen der geometrischen Pfadlänge

max(∆FL) [%]
L [mm] Nx Na = 10 Na = 20 Na = 50 Na = 100 Na = 200 Na = 500

1 10 0.2 0.12 0.049 0.024 0.012 0.005
10 500 0.2 0.12 0.049 0.024 0.012 0.005

schen Pfadlängen Lgeo für unterschiedliche Orts- und Winkeldiskretisierungen aufgeführt.
Diese Ergebnisse sind zudem in Abbildung 7.6 dargestellt.
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Abb. 7.6.: Maximale prozentuale Abweichungen der geometrischen Pfadlänge

Die maximalen prozentualen Abweichungen max(∆FL) der geometrischen Pfadlängen sind
nur von der Winkeldiskretisierung Nα abhängig. Sie sind unabhängig von der Ortsdiskre-
tisierung Nx und von der Länge L des Wellenleiters. Für die Verifikation dieses Resultats
wird die Gleichung (5.4)

Lgeo =
L

kE · t =
L

cos(ϑ)

für die Bestimmung der geometrischen Weglänge verwendet. Darin ist ϑ der Polarwinkel
bezüglich der Wellenleitertrajektorie. Wird diese Gleichung in (7.27) eingesetzt resultiert
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dies in

∆FL =

∣
∣
∣
∣

cos(ϑMART )− cos(ϑART )

cos(ϑART )

∣
∣
∣
∣
· 100. (7.28)

Zu erkennen ist, dass die resultierende Gleichung unabhängig vom Aufpunkt und von der
Wellenleiterlänge L ist. Damit ist die Abweichung der geometrischen Strahllänge ∆FL

unabhängig von diesen Parametern. Außerdem ist die Abweichung ∆FL unabhängig von
der Weite W und der Höhe H des Kanalwellenleiters.

Für eine Kaskadierung von Mehrtormodellen ist neben der Strahlrichtung auch die Be-
stimmung des Aufpunkts in Abhängigkeit von der Diskretisierung Nα und Nx relevant.
Hierfür wird die Abweichung zwischen allen berechneten Aufpunkten der Verfahren

∆An(L,Nα, Nx) =
∣
∣AART

An (L,Nα, Nx)−AMART
An (L,Nα, Nx)

∣
∣ (7.29)

ermittelt. In dieser Gleichung kennzeichnet der Index n den aktuellen Strahl. Darauf
aufbauend werden die Mittelwerte ∆A und die Standardabweichungen σ(∆A)

∆A(L,Nα, Nx) =
1

N

N∑

n=1

∆An(L,Nα, Nx) (7.30)

σ (∆A(L,Nα, Nx)) =

√
√
√
√ 1

N − 1

N∑

n=1

(
∆An(L,Nα, Nx)−∆A(L,Nα, Nx)

)2
(7.31)

berechnet. In diesen Gleichungen kennzeichnet N

N ≤ NStrahl

die Anzahl der Strahlen, die von dem System geführt werden.
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(b) Standardabweichung σ(∆A)(Nα, Nx)

Abb. 7.7.: Analyse der Abweichungen der Aufpunkte eines geraden Kanalwellenleiters

Die Abbildungen 7.7 stellen die Abhängigkeit des Mittelwertes ∆A (Abbildung 7.7(a))
und der Standardabweichung σ(∆A) (Abbildung 7.7(b)) von der gewählten Diskretisie-
rung Nα und Nx sowie von der Wellenleiterlänge L dar. Bei konstanter Diskretisierung
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Nα und Nx werden der Mittelwert und die Standardabweichung mit zunehmender Wellen-
leiterlänge erhöht. Damit nehmen die Abstände ∆A zwischen den Aufpunkten zu. Wird
die Anzahl Nα, bei konstanter Anzahl Nx und konstanter Länge L, erhöht, so verringern
sich diese Abstände. Dies wird durch die Verringerung der Mittelwerte und der Standard-
abweichung deutlich. Hierbei wird ein konstanter Wert erreicht, der trotz Erhöhung von
Nα nicht weiter verändert wird. In der Abbildung 7.7(a) ist dieses Minimum in dem Kur-
venverlauf für L = 1mm und Nx=10 ersichtlich. Eine Verringerung dieses Wertes erfolgt
durch die Vergrößerung der Diskretisierung Nx. Mit zunehmender Wellenleiterlänge L und
abnehmender Nα wird der Einfluss von Nx verringert. Dies verdeutlicht die Abbildung
7.7(a) bei der Wellenleiterlänge L = 10mm und den Diskretisierungen Nα < 200. Hier
sind keine Unterschiede in den beiden dargestellten Kurven für Nx = 10 und Nx = 500
zu identifizieren.

In den Kurvenverläufen ist zu erkennen, dass die Wellenleiterlänge L und die Winkeldiskre-
tisierungNα den dominanteren Einfluss auf den Mittelwert und die Standardabweichungen
haben. Beide Verfahren basieren auf der Strahlprojektion auf die Projektionsfläche des

Abb. 7.8.: Strahlverlauf innerhalb des Mehrtores

Wellenleiters. Abweichungen des Strahlverlaufs innerhalb dieser Projektionsfläche haben
einen signifikanten Einfluss auf die Berechnung der Strahlparameter im Raum. Für eine
Erklärung wird deshalb die Projektionsfläche des geraden Kanalwellenleiters betrachtet.
Diese Projektionsfläche wird durch einen geraden Schichtwellenleiter der Länge L und
Weite W repräsentiert, siehe Abbildung 7.8. Die Länge des Strahlpfads in der Ebene wird
durch

LG‖ =
L

kE‖ · t(sE)
=

L

cos(α‖)

berechnet, siehe Gleichung (5.4). Der Schichtwellenleiter ist ein- und ausgangsseitig orts-
∆a und winkeldiskretisiert ∆α. Ausgehend von dem Strahlaufpunkt AE‖ und der initia-
len Strahlrichtung kE‖, wird mit Hilfe des in Abschnitt 5.1 vorgestellten analytischen
Verfahrens der Aufpunkt AA‖ bestimmt. Die resultierende Strahlpfadlänge ist LG‖. Wird
der Strahlaufpunkt, unter Beibehaltung der Strahlrichtung, durch die Ortsdiskretisierung
von AE nach Aa

E verschoben, so resultiert dies in der Strahlpfadlänge La
G‖. Aufgrund

der identischen Strahlrichtungen sind die Längen La
G‖ und LG‖ ebenfalls identisch. Der

Abstand zwischen beiden Aufpunkten AA‖ und Aa
A‖ stimmt mit dem Abstand zwischen
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AE‖ und Aa
E‖ überein

|AE‖ −Aa
E‖| = |AA‖ −Aa

A‖|. (7.32)

Es besteht damit ein linearer Zusammenhang zwischen einer Verschiebung des Aufpunkts
AE‖ und dem Aufpunkt AA‖. Eine höhere Ortsdiskretisierung Nx hat somit keinen aus-
geprägten Einfluss auf ∆A und σ(∆A). Wird die Richtung des Strahls kE‖ durch die
gewählte Winkeldiskretisierung verändert, so hat dies einen signifikanten Einfluss auf die
Strahlpfadlänge und den resultierenden Aufpunkt. In Abbildung 7.8 ist diese Veränderung
der Strahlrichtung von dem eingeschlossenen Winkel α‖ zu dem Winkel αα

q
aufgezeigt. Je

feiner die Winkeldiskretisierung Nα ist, desto kleiner sind die Abstände zwischen den
Aufpunkten in der Ebene.

Nachdem die projizierten Strahlparameter bekannt sind, wird für die Berechnung der
Strahlparameter im Raum der virtuelle Schichtwellenleiter orthogonal auf den projizierten
Strahlpfad positioniert. Die Veränderungen in LG‖ und AA‖ beeinflussen damit direkt die
Parameter Lgeo und AA.

Die diskutierten Zusammenhänge zwischen der Orts- und Winkeldiskretisierung sowie der
Wellenleiterlänge L werden im Folgenden mit Hilfe des empirischen Korrelationskoeffizi-
enten rA1 [36, 43]

rAi = Korr(AART
i , AMART

i ), ∀i ∈ [1, 2, 3] (7.33)

mit

A1 = n1(sA) · AA ∧ A2 = n2 · AA ∧ A3 = t(sA) ·AA

analysiert, siehe Anhang C.5. Dieser Koeffizient ist ein Maß des linearen Zusammenhangs
zwischen den betrachteten Werten. Ist der Korrelationskoeffizient rAi = 0, so existiert
kein linearer Zusammenhang zwischen den Werten; ist |rAi| = 1, so existiert ein linearer
Zusammenhang. Für rAi = −1 ist der lineare Zusammenhang invers.
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Abb. 7.9.: Korrelationskoeffizient rA1

Der Korrelationskoeffizient rA1 ist in Abhängigkeit von den Diskretisierungen Nα und Nx

sowie der Wellenleiterlänge L in Abbildung 7.9 dargestellt. Diese Abbildung verdeutlicht
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die diskutierten Zusammenhänge. Eine Vergrößerung der Diskretisierung Nx erhöht den
Korrelationskoeffizienten rA1 nicht. Der nichtlineare Zusammenhang bleibt aufgrund der
gewählten Diskretisierung Nα erhalten. Durch die Erhöhung von Nα wird der Korrela-
tionskoeffizient rA1 vergrößert. Zudem ist in der Abbildung auch die Abnahme von rA1

durch Verlängerung von L ersichtlich. Für die Korrelationskoeffizienten rA2 und rA3 gilt

rA2 > 0.99998, rA3 = 1.

Bei der Bestimmung dieser Koeffizienten wurden die Diskretisierungen und die Wellen-
leiterlänge entsprechend variiert. Die Abweichungen des Aufpunkts ∆A und somit die
Strahlparameter im Raum werden signifikant durch die Wahl der Winkeldiskretisierung
Nα und die Wellenleiterlänge L beeinflusst.

7.4.2. Kanalwellenleiter mit konstant gekrümmter Trajektorie

Neben dem vorgestellten geraden Kanalwellenleiter werden beim Aufbau von optischen
Verbindungen gekrümmte Kanalwellenleiter verwendet. Im Folgenden wird der Einfluss
der Mehrtormodellierung auf die Strahlparameter im Raum bei diesen Wellenleitern ana-
lysiert. Die verwendeten Variationsparameter sind bei diesen Wellenleitern die Diskreti-
sierung des Ortsbereichs ∆a und des Winkelbereichs ∆α, sowie der Krümmungsradius
R. Als Werte für den Krümmungsradius werden R = 5mm und R = 20mm gewählt. Die
Berechnung der Strahlparameter erfolgt mit Hilfe des analytischen Verfahrens und des
Mehrtormodells. Anschließend werden diese Parameter verglichen.

Um den Einfluss der Mehrtormodellierung auf die geometrische Strahllänge Lgeo ge-
krümmter Wellenleiter zu analysieren, wird die relative prozentuale Abweichung

∆FL =

∣
∣
∣
∣
∣

LMART
geo − LART

geo

LART
geo

∣
∣
∣
∣
∣
· 100 (7.34)

bestimmt. Diese maximale prozentuale Abweichung ist für die unterschiedlichen Diskreti-
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Abb. 7.10.: Maximale prozentuale Abweichung max(∆FL) der Strahllänge Lgeo

sierungen und Krümmungsradien R in Abbildung 7.10 dargestellt. Auf der Abszisse ist die
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Variation der Winkeldiskretisierung durch die Anzahl der verwendeten Tore Nα und auf
der Ordinate die maximale ermittelte Abweichung max (∆FL) aufgetragen. Die maximale
prozentuale Abweichung ist stark von dem Krümmungsradius R des Kanalwellenleiters
abhängig. Sie wird durch einen zunehmenden Krümmungsradius verringert. Als maximale
prozentuale Abweichung ergibt sich der Wert

max (∆FL) = 0.45%

für den R = 5mm, Nx = 10 und Nα = 10. Mit zunehmender Winkeldiskretisierung
Nα wird die maximale prozentuale Abweichung verringert. Eine weitere Verringerung der
Abweichung wird durch eine erhöhte Ortsdiskretisierung Nx erreicht.

Um den Einfluss der Variationsparameter auf die Fernfeldeigenschaften zu bestimmen,
wird der Polarwinkel ϑ zwischen der Trajektorienrichtung t(sA) und den Strahlrichtungen
kAn aller Strahlen am Wellenleiterausgang W(sA)

cos(ϑART
n ) = t(sA) · kART

An ∧ cos(ϑMART
n ) = t(sA) · kMART

An

berechnet. Hierbei werden sukzessive der Krümmungsradius R, Nα und Nx variiert. Aus
den ermittelten Polarwinkeln werden die Abweichungen ∆ϑn

∆ϑn(R,Nα, Nx) =
∣
∣ϑART

n (R,Nα, Nx)− ϑMART
n (R,Nα, Nx)

∣
∣ (7.35)

ermittelt. Daran anschließend erfolgt die Berechnung des Mittelwerts ∆ϑ, der Standard-
abweichung σ(∆ϑ) und des Korrelationskoeffizienten rϑ, basierend auf den Gleichungen
(7.30), (7.31) und (7.33).
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(b) Standardabweichung σ(∆ϑ)(Nα, Nx)

Abb. 7.11.: Abweichungen des Polarwinkels ϑ eines gekrümmten Kanalwellenleiters

Die Abbildungen 7.11 stellen die Mittelwerte (Abbildung 7.11(a)) und die Standardabwei-
chungen (Abbildung 7.11(b)) des gekrümmten Kanalwellenleiters dar. Die Abweichungen
des Polarwinkels ∆ϑn sind von den Diskretisierungen Nα und Nx sowie vom Wellenleiter-
radius R abhängig. Mit zunehmender Diskretisierung Nx werden der Mittelwert ∆ϑ und
die Standardabweichung σ(∆ϑ) bei einem konstanten Wellenleiterradius R und konstan-
ter Diskretisierung Nα verringert. Für eine hinreichend große Diskretisierung Nx > 10
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werden diese Werte mit zunehmender Diskretisierung Nα weiter abgesenkt. Ist die Dis-
kretisierung Nx zu klein gewählt, so nehmen der Mittelwert und die Standardabweichung
einen konstant hohen Wert an. Dies ist in den Abbildungen 7.11 für das Mehrtor mit
der Diskretisierung Nx = 10 und dem Wellenleiter mit R = 5mm deutlich zu erken-
nen. Der Wert wird nicht durch eine Vergrößerung von Nα abgesenkt. Dieser Effekt ist
durch die Abhängigkeit der Anzahl der inneren Reflexionen M vom Aufpunkt AE und
von der Strahlrichtung kE begründet. Durch jede Reflexion wird die lokale Strahlrichtung
innerhalb des Wellenleiters verändert. Für eine detailliertere Betrachtung wird die Projek-
tionsfläche des gekrümmten Wellenleiters betrachtet. Diese Projektionsfläche entspricht
einem gekrümmten Schichtwellenleiter. In Abschnitt 5.2.2 Abbildung 5.7 auf Seite 86 ist
die Abhängigkeit der Anzahl der Reflexionen M von der projizierten Strahlrichtung und
vom Aufpunkt AE‖ abgebildet. In dieser Abbildung wird die projizierte Strahlrichtung
durch den Winkel αE und der Strahlaufpunkt durch die Länge LE repräsentiert. Hierbei
ist zu erkennen, dass eine Verschiebung des Aufpunkts AE, durch die gewählte Anzahl
der Tore Nx zu einer Veränderung der Anzahl der inneren Reflexionen M führt. Dies
beeinflusst gleichermaßen den Polarwinkel ϑn im Raum.

Bei einer hinreichend großen Diskretisierung des Orts- und Winkelbereichs (Nα und Nx)
wird mit Vergrößerung des Wellenleiterradius R nur die Standardabweichung leicht ver-
größert, der Mittelwert bleibt annähernd konstant. Mit zunehmender Winkeldiskretisie-
rung wird diese Standardabweichung weiter verringer.
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Abb. 7.12.: Empirischer Korrelationskoeffizient rϑ des Polarwinkels

Die in Abbildung 7.12 dargestellten Korrelationskoeffizienten rϑ, siehe (7.33),

rϑ = (ϑART , ϑMART ) (7.36)

bestätigen die diskutierten Ergebnisse. Mit Verringerung der Diskretisierung Nx wird der
lineare Zusammenhang zwischen den Polarwinkeln verringert. Dieser Effekt nimmt mit
Verkürzung des Radius R zu. Bei einer hinreichend großen Diskretisierung Nx kann durch
Vergrößerung von Nα der Korrelationskoeffizient rϑ vergrößert werden.
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Neben dem Polarwinkel ist für eine Kaskadierung von Komponenten die Kenntnis über
die Abweichung der berechneten Aufpunkte ∆An relevant. Die Abbildungen 7.13 stellen
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(c) Empirischer Korrelationskoeffizient rA1

Abb. 7.13.: Analyse der Abweichungen der Aufpunkte eines gekrümmten
Kanalwellenleiters

die Mittelwerte ∆A, die Standardabweichung σ(∆A) sowie die empirischen Korrelations-
koeffizienten rA1 (7.33) dar. Bei diesen Abbildungen ist auf der Abszisse die Winkeldis-
kretisierung Nα aufgetragen. Nicht in den Abbildungen enthalten sind die Korrelations-
koeffizienten rA2 und rA3. Für diese gilt

rA2 > 0.9982 ∧ rA3 = 1. (7.37)

Der Korrelationskoeffizient rA2 wurde hier bei der Diskretisierung Nx = 10, Nα = 10 und
dem Radius R = 5mm bestimmt. Für größer werdende Werte von Nx und Nα sowie einem
verlängerten Radius wird dieser Koeffizient weiter vergrößert.

Die Abweichung der Aufpunkte wird von den Diskretisierungen Nx und Nα sowie dem
Radius R beeinflusst. Ist die Ortsdiskretisierung Nx zu gering gewählt, kann durch eine
Erhöhung der Winkeldiskretisierung Nα die Abweichung ∆A nicht verringert werden. Dies
ist in den dargestellten Mittelwerten ∆A und Standardabweichungen σ(∆A) ersichtlich.
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Es wird ein annähernd konstanter Wert erreicht. In den Kurvenverläufen für Nx = 10
ist dieser Effekt sehr deutlich zu erkennen. Der entsprechende Korrelationskoeffizient rA1

in Abbildung 7.13(c) ist klein und wird durch eine Erhöhung von Nα nicht signifikant
verändert. Für den Radius R = 20mm ist dieser Korrelationskoeffizient

rA1 < 0.45.

Dies erklärt die großen Abweichungen in den Mittelwerten ∆A, Abbildung 7.13(a) und
Standardabweichungen σ(∆A), Abbildung 7.13(b) bei diesen Parametern. Die Abweichun-
gen und der lineare Zusammenhang zwischen den Aufpunkten wird durch die Erhöhung
von Nx signifikant beeinflusst. Ist dieser Wert entsprechend groß gewählt, so werden durch
die Vergrößerung von Nα die Abweichungen weiter verringert und somit der lineare Zu-
sammenhang erhöht.

Aus den in Abschnitt 5.2.2 dargestellten Ergebnissen lassen sich Schlüsse auf eine Ver-
größerung der Wellenleiterweite W ziehen. Wird die Weite vergrößert, so sinkt die Anzahl
der inneren Reflexionen M , damit werden die Abweichungen des Polarwinkels ∆ϑn und
der Aufpunkte ∆An verringert. Eine Verringerung der Wellenleiterweite führt somit zu
einer Erhöhung der Mittelwerte und der Standardabweichungen.

Zusammenfassend gilt für den gekrümmten Kanalwellenleiter, dass durch eine Vergrö-
ßerung der Anzahl der Tore Nα und Nx die Abweichung der Länge L, die Abweichung
des Polarwinkels ϑ sowie die Abweichung des Aufpunkts signifikant verringert wird. Eine
Vergrößerung des Krümmungsradius führt zu einer Abnahme der Abweichung der Längen-
unterschiede. Allerdings nimmt die Abweichung des Polarwinkels und des Aufpunks zu.

7.4.3. Analyse eines komplexen Systems

Für die Verifikation des vorgestellten Mehrtorverfahrens wird das Gesamtsystem be-
trachtet, welches in Kapitel 6.3.2 Abbildung 6.12 vorgestellt und analysiert wurde. Der
gewählte Wellenleiterquerschnitt ist quadratisch mit der Wellenleiterweite W = 70µm. Als
Materialparameter wird eine numerische Apertur von AN = 0.25 gewählt. Vor der Verifi-
kation werden die Koppelmatrizen für gerade Kg(L) und gekrümmte Wellenleitersegmente
Kk(R) der entsprechenden Wellenleiterlängen L = L1, L2(R) und der Krümmungsradien
R bestimmt. Neben den Krümmungsradien werden die Tordiskretisierungen Nx und Nα

variiert. In dem folgenden Beispiel wird eine Toranzahl von

Nα = Nx = {50, 100, 500}

gewählt. Damit ergibt sich eine Gesamtzahl der Tore von

N = {2.5, 10, 250} · 103

Ein- und Ausgangstoren, die Koppelmatrix ist damit vom Typ (N,N). Mit den so be-
stimmten Koppelmatrizen wird eine Gesamtkoppelmatrix durch

KN
G = KN

g(L1)
·KN

k(R) ·KN
g(L2(R)) (7.38)

berechnet.
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Als Anregung wird ein Flächenstrahler mit Aufpunkt auf der Stirnfläche des Kanalwellen-
leiters FE verwendet. Somit liegen alle Strahlaufpunkte auf dieser Stirnfläche und werden
vollständig durch den Aufpunkt der Wellenleitertrajektorie W(sE) und den beiden ortho-
gonalen Richtungsvektoren n1(sE) und n2 beschrieben, siehe Gleichung (4.5)

AE = W(sE) + an1(sE) + bn2.

Aufgrund des quadratischen Wellenleiterquerschnitts ist der zulässiger Wertebereich für
die skalaren Größen a und b identisch mit

a, b ∈
(

−W

2
,
W

2

)

.

Für die Azimut- und Polarwinkel der Strahlrichtung kE in Gleichung (7.2) wird als Wer-
tebereich

ϕ ∈ [0, 2π] ∧ ϑ ∈ [0, ϑN ]

gewählt. Darin ist ϑN der innere Akzeptanzwinkel.

Um eine Beeinflussung der Simulationsergebnisse durch die Wahl des Aufpunkts AE und
der Strahlrichtungen kE zu vermeiden, werden diese durch einen Zufallsprozess generiert.
Dazu werden die skalaren Werte von a, b, ϕ und ϑ innerhalb des angegebenen Bereichs
zufällig gewählt. Die verwendete Wahrscheinlichkeitsverteilung aller Werte ist eine Gleich-
verteilung3. Als Strahlanzahl wird NStrahl = 32400 gewählt. Aus dem so bestimmten
Strahlenspektrum wird eine Matrix X des Typs (N,NStrahl) bestimmt. Jede Spalte der
Matrix entspricht einem zu berechnenden Strahlverlauf. Aus der Matrizenmultiplikation
der Quellmatrix X mit der Gesamtkoppelmatrix KG wird die Detektionsmatrix Y durch

Y = KG ·X (7.39)

berechnet. Diese Matrix Y ist vom Typ (N,NStrahl) und enthält die Information über
die Strahlparameter AA‖, kA‖ und die geometrische Strahllänge LG‖. Nachdem die Strahl-
parameter in der Ebene bestimmt sind, erfolgt unter Anwendung des virtuellen Schicht-
wellenleiters die Berechnung der Strahlparameter im Raum. Diese Vorgehensweise ist in
Blockschaltbild 7.5, Seite 124, abgebildet. Aus den Parametern wird das statische und
transiente Übertragungsverhalten des Systems bestimmt. Parallel wird das statische und
das transiente Übertragungsverhalten mit den in Kapitel 6 beschriebenen Verfahren ana-
lytisch bestimmt.

3Bei der Implementierung wurden die Werte mit Hilfe der Matlabfunktion rand() ermittelt.
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Abb. 7.14.: Betrachtung des statischen Übertragungsverhaltens

In Abbildung 7.14(a) ist das Dämpfungsverhalten des Gesamtsystems dargestellt. Auf
der Abszisse ist der Radius R aufgetragen und auf der Ordinate die normierte Dämpfung
PMART (R)/Pges. In dieser Abbildung sind die durch das Mehrtormodell ermittelten Dämp-
fungswerte bei unterschiedlicher Anzahl von Toren N abgebildet, diese Kurven sind durch
den Index MART und der Anzahl der Tore N gekennzeichnet. Zudem ist der Kurvenver-
lauf, der durch das analytische Berechnungsverfahren bestimmt wurde, abgebildet. Dieser
ist durch den Index ART vermerkt. Zu erkennen ist, dass die Kurvenverläufe nahezu
identisch sind.

Um die relative prozentuale Abweichung zu bestimmen, wird die Abweichung der ermittel-
ten Leistungen PMART (R) von der durch das analytische Verfahren ermittelten Leistung
für jede Toranzahl N bestimmt

∆FP =

∣
∣
∣
∣

PN
MART (R)− PART (R)

PART (R)

∣
∣
∣
∣
· 100. (7.40)

Diese Abweichungen sind in der Abbildung 7.14(b) dargestellt. Für größer werdende
Krümmungsradien wird die prozentuale Abweichung zwischen den beiden Verfahren ge-
ringer. Die prozentuale Abweichung ist für R > 9mm kleiner als 0.1%. Sie ist durch die
Zuordnung eines Winkelbereiches zu einem konstanten Winkel α̃i

α̃i ±
∆α

2
→ α̃i (7.41)

und der Zuordnung eines Ortsbereiches zu einem konstanten Aufpunkt Ãj

Ãj ±
∆a

2
→ Ãj (7.42)

begründet. Durch diese Zuordnung können Strahlen mit Reflexionswinkel αn nahe dem
Winkel der Totalreflexion (2.81), Strahlen mit Reflexionswinkel αi außerhalb der Totalre-
flexion

αn > αG > α̃i (7.43)
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zugeordnet werden. Alternativ können auch Strahlen, die durch das System nicht mehr
geführt werden, Toren und damit Strahlen zugeordnet werden, die noch geführt werden.
Für die Reflexionswinkel gilt dann

αn < αG < α̃i. (7.44)

In den Abbildungen ist weiterhin zu erkennen, dass die Abweichung mit zunehmender
Toranzahl verringert wird. Dies ist auf die damit verbundene feinere Diskretisierung des
Orts- und Winkelbereichs zurückzuführen.
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(b) Relative prozentuale Abweichung ∆Fτ

Abb. 7.15.: Betrachtung des transienten Übertragungsverhaltens

Für eine Verifikation des transienten Verlaufs wird die Grenzfrequenz f3dB (2.132) be-
stimmt. Diese Grenzfrequenz ist in Abhängigkeit vom Radius R für das analytische Ver-
fahren und für das Matrizenverfahren bei unterschiedlicher Anzahl von Toren in Abbildung
7.15(a) dargestellt. Die ermittelten Grenzfrequenzen weisen gute Übereinstimmungen auf.

Für eine detailliertere Analyse ist die relative prozentuale Abweichung

∆Fτ =

∣
∣
∣
∣

fN
3dB(R)MART − f3dB(R)ART

f3dB(R)ART

∣
∣
∣
∣
· 100 (7.45)

in Abbildung 7.15(b) aufgezeigt. Für größer werdende Radien und für eine zunehmen-
de Anzahl von Toren wird die relative prozentuale Abweichung ∆Fτ geringer. Dies ist
in der zunehmenden Abweichung der Strahllänge Lgeo für verringerte Diskretisierung be-
gründet. Hierbei erfolgt eine Vergrößerung der prozentualen Abweichungen ∆FL mit ab-
nehmender Diskretisierung. Dies erfolgt sowohl bei dem geraden Kanalwellenleiter, als
auch bei dem gekrümmten Kanalwellenleiter, siehe Abbildung 7.6 und Abbildung 7.10.
Sind die Diskretisierungen konstant, so nimmt nur mit zunehmendem Radius R die Ab-
weichung der Strahllänge Lgeo weiter ab. Die Wellenleiterlänge L hat hierauf keinen Ein-
fluss. Basierend auf der Strahllänge Lgeo wird die Sprungantwort a(t) (2.125) und die
Übertragungsfunktion H(jω) (2.127) berechnet. Abweichungen in den Strahlpfadlängen
bewirken somit auch Abweichungen in den ermittelten Grenzfrequenzen f3dB.
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7.4.3.1. Betrachtung der Berechnungszeiten

Für die Betrachtung der Berechnungszeiten werden die Zeiten aufgenommen, die aus-
gehend von einer vorliegenden Quellmatrix X bis zur Bestimmung der geometrischen
Weglänge Lgeo sämtlicher Strahlen benötigt werden. Die ausgangsseitigen Strahlen liegen
nach der Berechnung als Aufpunkt und Richtung vor. Das verwendete Programm Matlab
ist hochspezialisiert für Aufgaben der linearen Algebra, aus diesem Grund ist die Berech-
nung der Matrizenmultiplikation zur Bestimmung der gesamten Koppelmatrix KG und
der Detektionsmatrix Y sehr zeiteffizient (wenige Millisekunden). Die Umwandlung der
Strahlen von den Ausgangstoren in die Aufpunkts- und Richtungsvektoren ist sehr zeit-
aufwändig. In der nachfolgenden Tabelle 7.2 sind die Zeiten zur Berechnung der gesamten
geometrischen Weglänge Lgeo für alle Strahlen aufgeführt. Zu erkennen ist, dass die Zeit

Tabelle 7.2.: Bestimmung der Berechnungszeiten tMART und tART und Bestimmung der
Effizienz des Verfahrens für ein komplexes System bei Variation der Krüm-
mungsradien R und Mehrtordiskretisierung N

N = 2.5 · 103 N = 10 · 103 N = 250 · 103
R tMART tART tART tMART tART tART tMART tART tART

[mm] [s] [s] tMART [s] [s] tMART [s] [s] tMART

10 2.52 13 5.2 2.48 13 5.2 2.65 13 4.9
15 2.48 13 5.2 2.47 13 5.3 2.73 13 4.8
20 2.48 13 5.2 2.44 13 5.3 2.61 13 5.0

tMART für die Berechnung des Systems unabhängig vom Radius R ist. Dieses Resultat ist
zu erwarten, da bei dem Mehrtorverfahren jedes Teilsystem als Koppelmatrix vorliegt.

Des Weiteren steigt die Berechnungzeit tMART mit der Anzahl der verwendeten Tore N ,
begründet durch die vergrößerten Matrizen leicht an. Die Wandlung von der Tordarstel-
lung in die Strahlendarstellung ist von der Anzahl der Strahlen abhängig. In der Tabelle

Tabelle 7.3.: Bestimmung der Berechnungszeiten tMatrix für die Bestimmung von Glei-
chung (7.39) unter Einbeziehen von Gleichung (7.23) bei unterschiedlichen
Mehrtordiskretisierungen N .

N = 2.5 · 103 N = 10 · 103 N = 250 · 103
R tMatrix tMatrix tMatrix

[mm] [ms] [ms] [ms]
10 3 6.87 207.34
15 2.5 5.78 208.43
20 2.5 5.93 198.43

7.3 sind nur die Zeiten tMatrix zur Berechnung der Detektionsmatrix Y aufgeführt. Diese
Berechnungszeiten sind abhängig von der Größe der Koppelmatrix. Werden die Zeiten in
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Tabelle 7.3 mit den entsprechenden Zeiten in Tabelle 7.2 verglichen, so ist zu erkennen,
dass die Berechnungszeiten dominiert werden von der Umwandlung der Strahlen von der
Tordarstellung in die Strahldarstellung und der Berechnung der resultierenden Strahlpa-
rameter mit Hilfe des virtuellen Wellenleiters. Es ist davon auszugehen, dass durch eine
Implementierung in einer Hochsprache wie z. B. C++ die Berechnungszeit tMART weiter
reduziert werden kann.

7.5. Zusammenfassung

In diesem Kapitel ist ein Verfahren vorgestellt worden, bei dem das transiente Über-
tragungsverhalten von hochmultimodalen rechteckförmigen Kanalwellenleitern mit Hilfe
von Mehrtoren und dem in Kapitel 6.1 eingeführten virtuellen Schichtwellenleiter zeitef-
fizient bestimmt werden kann. Diese Mehrtore repräsentieren das Ein- und Ausgangsver-
halten von Strahlen, die auf die Projektionsfläche der zu beschreibenden Komponenten
projiziert werden. Jedes Tor entspricht einem Ort und einer bestimmten projizierten Rich-
tung. Die Stimulation des Mehrtores kann durch einen Anregungsvektor erfolgen. Dieser
enthält, entsprechend der Diskretisierung des Mehrtores, die Strahlparameter des stimu-
lierten Strahls. Die Stimulation des Mehrtores durch diesen Anregungsvektor resultiert
in einem Detektionsvektor. In diesem sind die Strahlparameter des Ausgangsstrahls, ent-
sprechend der Diskretisierung des Mehrtores enthalten. Erfolgt die sukzessive Stimulation
aller Tore der Mehrtores, so kann eine Koppelmatrix angegeben werden.

Kann ein Gesamtmodell in Teilmodelle partitioniert werden, für die Koppelmatrizen exis-
tieren, so wird die Gesamtkoppelmatrix des Gesamtmodells durch Matrizenmultiplikati-
on der Koppelmatrizen der Teilmodelle berechnet. Die Berechnung des Detektionsvek-
tors erfolgt durch die Multiplikation des Anregungsvektors mit der Gesamtkoppelmatrix.
Die Strahlparameter müssen hier nicht, wie bei dem analytischen Verfahren, sukzessive
durch alle beteiligten Teilmodelle berechnet werden. Basierend auf dem so ermittelten
Detektionsvektor werden die Strahlparameter im Raum mit Hilfe des in Kapitel 6 ein-
geführten virtuellen Schichtwellenleiters bestimmt.

Bei der Mehrtormethode müssen die Koppelmatrizen aller beteiligten Teilmodelle bekannt
sein, um die Gesamtkoppelmatrix zu bestimmen. Die zugrunde liegenden Material- und
Geometrieparameter der Teilmodelle müssen mit den Parametern der vorher berechne-
ten Koppelmatrizen übereinstimmen. Diese Koppelmatrizen sind nur für einen bestimm-
ten Wellenleiter mit den definierten Materialparametern sowie den Geometrieparametern
Wellenleiterweite W und Trajektorienverlauf W(s) gültig. Dies ist z. B. eine Gerade
mit Trajektorienlänge L1 oder eine Krümmung mit dem Krümmungsradius R1 und dem
Krümmungswinkel γ1. Wird nur ein Parameter variiert, muss im Allgemeinen eine neue
Koppelmatrix berechnet werden. Im Gegensatz zu den Parametern der Projektionsebene
muss die Höhe H des betrachteten Gesamtmodells erst nach der Berechnung der Pro-
jektionsstrahlen definiert werden. Die zugrunde liegenden Koppelmatrizen sind für alle
rechteckförmigen Kanalwellenleiter mit beliebiger Wellenleiterhöhe H gültig. Aus diesem
Grund ist die Modellierung mit Hilfe des Mehrtormodells, im Gegensatz zu der in Ab-
schnitt 6 vorgestellten White-Box-Methode, eine Grey-Box-Methode.

Die berechneten Koppelmatrizen können in einer Bauteilbiliothek abgelegt werden. Damit
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stehen sie für spätere Verwendungen zur Verfügung. Dieses vorgestellte Mehrtormodell,
basierend auf Koppelmatrizen, ermöglicht eine zeiteffiziente Berechnung des statischen
und transienten Übertragungsverhaltens von vielmodigen optischen Kanalwellenleitern.
Die geforderte Zeiteffizienz bei der Berechnung des Übertragungsverhaltens wird durch
das Mehrtorverfahren gegenüber dem analytischen Verfahrens weiter erhöht. Die Abwei-
chungen zwischen beiden Verfahren werden durch eine höhere Diskretisierung verringert.
Hierbei kann auf Tordiskretisierungen zurückgegriffen werden, die mit herkömmlichen
Arbeitsplatzrechnern handhabbar sind.



Kapitel 8

Zeiteffiziente Analyse eines
symmetrischen Leistungsteilers

In den letzten Kapiteln sind Verfahren für die zeiteffiziente Bestimmung des Übertragungs-
verhaltens von vielmodigen optischen Kanalwellenleitern vorgestellt worden. Diese Ver-
fahren wurden verwendet, um das statische und transiente Übertragungsverhalten von
Direktverbindungen zu analysieren. Neben diesen Direktverbindungen werden in der op-
tischen Aufbau- und Verbindungstechnik auch Mehrpunktverbindungen verwendet. Mit
Hilfe dieser Mehrpunktverbindungen wird die emittierte Leistung definiert aufgeteilt (engl.
Splitter) oder zusammengefasst (engl. Combiner) [45].
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Abb. 8.1.: Kerngrenzhülle eines symmetrischen Leistungsteilers (nicht maßstabgetreu)

Im Folgenden werden die in dieser Arbeit vorgestellten Verfahren verwendet, um die
Mehrpunkttopologie symmetrischer Leistungsteiler, siehe Abbildung 8.1, zu analysieren.



142 Kapitel 8. Zeiteffiziente Analyse eines symmetrischen Leistungsteilers

8.1. Aufbau des symmetrischen Leistungsteilers

Eine Komponente, um die emittierte Leistung einer Quelle gleichmäßig aufzuteilen, ist
der symmetrische Leistungsteiler. Die Abbildung 8.2 zeigt den Trajektorienverlauf mit
einigen Geometrieparametern dieses Leistungsteilers.

Abb. 8.2.: Trajektorienverlauf und Geometrieparameter

Ausgehend von einem geraden Kanalwellenleiter L1 wird die optische Leistung bei die-
sem Leistungsteiler in zwei Kanalwellenleiter mit konstant gekrümmten Trajektorien-
verläufen aufgeteilt. Die Trajektorien der gekrümmten Kanalwellenleiter haben einen s-
bogenförmigen Verlauf und münden in zwei parallel verlaufende gerade Kanalwellenleiter.
Der s-bogenförmige Verlauf ist namengebend für diese Form des Leistungsteilers, der in
der Literatur als S-Bend-Splitter bezeichnet wird [44]. Charakteristische Größen dieser
Leistungsteiler sind die Krümmungsradien R11 und R12, die Krümmungswinkel γ11 und
γ12 der Trajektorienverläufe sowie der Mittenabstand p (engl. pitch) zwischen den ab-
schließenden geraden Segmenten L13 und L23. Nicht eingezeichnet sind die Winkel γ21
und γ22 sowie die Radien R21 und R22 des zweiten Arms des Leistungsteilers. Für diese
gilt

γ21 = γ11 ∧ γ22 = γ12,

R21 = R11 ∧ R22 = R12.

Im Folgenden wird als numerische Apertur des Leistungsteilers AN = 0.25 gewählt. Hier-
bei ist der Brechungsindex des Kerns ncore = 1.56. Für den Kernquerschnitt wird ein
quadratisches Querschnittsprofil mit der Wellenleiterweite W = 70µm verwendet. Als
Mittenabstand wird p = 250µm definiert. Aufgrund des symmetrischen Aufbaus sind die
Radien R11 bis R22 und die Winkel γ11 bis γ22 jeweils identisch. Für die Radien wird
R = 10mm angenommen. Mit Hilfe des Mittenabstandes p und der verwendeten Radien
R ergibt sich ein Krümmungswinkel γ durch

cos(γ) = 1− p

4 R
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von γ = 6.4◦.

Zur Bestimmung des Übertragungsverhaltens wird als Anregung eine Punktquelle mit der
Leistungsverteilung PRect verwendet, siehe Gleichung (2.116). Diese wird am Aufpunkt
WL1(sE) des ersten Wellenleiters positioniert. Die Punktquelle emittiert optische Leis-
tung in Richtung der Wellenleitertrajektorie tL1(sE) und leuchtet die gesamte numerische
Apertur AN = 0.25 mit

ϑi ∈ [0, ϑN ] ∧ ϕj ∈ [0, 2π]

homogen aus. Bei der Quellmodellierung wird der azimutale Index durch J = 360 vorge-
geben und der polare Index aus dem Intervall

I = {90, 180, 360}

entnommen, siehe Gleichung (2.113). An den ausgangsseitigen Stirnflächen der geraden
Wellenleiter L23 und L13 wird die gesamte auftreffende optische Leistung aufgenommen.
Um den Effekt der Ein- und Auskopplung zu vermeiden, werden die Quelle und die De-
tektoren innerhalb des Kernmaterials ncore positioniert.

In den folgenden Abschnitten wird das Übertragungsverhalten des Leistungsteilers mit
Hilfe der in dieser Arbeit vorgestellten Verfahren berechnet. Dazu wird in Abschnitt 8.2
das in Kapitel 6 vorgestellte analytische Verfahren verwendet und in Abschnitt 8.3 das in
Kapitel 7 vorgestellte Mehrtorverfahren. Zentrales Element beider Verfahren ist die Strahl-
projektion jedes Strahls auf die planare Projektionsebene und der darauf aufbauende
virtuelle Schichtwellenleiter. In Abschnitt 8.4 werden die Abweichungen der berechneten
Sprungantworten beider in dieser Arbeit vorgestellten Verfahren verglichen, abschließend
wird die Berechnungszeit für alle Verfahren vorgestellt.

8.2. Analyse mit Hilfe des analytischen Verfahrens

Bei der Modellierung mit Hilfe des analytischen Verfahrens werden die Strahlparameter in
der Projektionsebene durch physikalische Strahlverfolgungsmethoden berechnet. Hierbei
können für bestimmte Trajektorienverläufe analytische Methoden verwendet werden, um
so das Übertragungsverhalten zeiteffizient zu ermitteln.

8.2.1. Partitionierungskonzept und Blockschaltbild

Um die vorgestellten analytischen Verfahren effizient verwenden zu können, und um eine
zeiteffiziente Berechnung zu ermöglichen, wird der Leistungsteiler auf die Projektions-
ebene projiziert. Anschließend wird dieser in Teilmodelle partitioniert für die möglichst
zeiteffiziente Verfahren zur Verfügung stehen, siehe Abschnitt 4.3.
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In Abbildung 8.3(a) ist das verwendete Partitionierungskonzept für den Leistungsteiler
dargestellt.

(a) Globales Partitionierungskonzept (b) Detailliertes Partitionierungskonzept

des Übergangsbereichs T1, D1

Abb. 8.3.: Partitionierungskonzept für den Leistungsteiler

Das vorgestellte Partitionierungskonzept besteht aus drei geraden Teilmodellen G1, G13

und G23, aus vier Teilmodellen mit konstant gekrümmter Wellenleitertrajektorie K11,
K12, K21 K22, sowie einem Übergangsbereich zwischen dem geraden Teilmodell und den
konstant gekrümmten Teilmodellen. Dieser Übergangsbereich besteht aus einem Taper
mit zirkularer Wandweiterung T1 und einer dreieckförmigen Hilfsstruktur D1. Die Be-
randungsnormalen der angrenzenden Berandungen aller benachbarten Teilmodelle haben
eine identische Richtung

tn−1(sA) = tn(sE) ∀n ∈ {2, N}.
Hierbei kennzeichnet der Index n das aktuelle Segment.

Die Teilmodelle für die geraden und konstant gekrümmten Segmente können mit Hilfe
von Grundstrukturen beschrieben werden, für die analytische Modelle existieren. Für den
Übergangsbereich (T1 und D1) existieren keine analytisch berechenbaren Modelle. Die
Strahlparameter in der Ebene müssen hier durch physikalische Strahlverfolgung sukzes-
sive berechnet werden, siehe Abschnitt 3.3.1. Diese Berechnung erfolgt, bis der Strahl
auf einer der Berandungen zwischen den Teilmodellen auftrifft. Die Laufzeit des Verfah-
rens wird durch die Anzahl der zu berücksichtigenden Berandungen bestimmt. Durch die
Aufteilung des Übergangsbereichs in den Taper T1 und die Hilfstruktur D1 wird die physi-
kalische Strahlverfolgung vereinfacht, da nur Aufpunkte auf vier statt auf fünf Berandun-
gen berechnet werden müssen. Trifft ein Strahl auf die Hilfsstruktur D1, wird direkt das
weiterführende Teilmodell K11 oder K21 bestimmt, da innerhalb dieser dreieckförmigen
Hilfsstruktur keine innere Reflexion berechnet werden muss.

Die Weite WT und die Länge LT des Tapers ergeben sich, entsprechend der Abbildung
8.3(b), aus der Weite W und dem Radius R der gekrümmten Segmente

WT =
4 R W

2R +W
∧ LT =

(

1− 2W

2R +W

)
√

(

R +
W

2

)2

− R2. (8.1)
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Der Radius R ist durch

R = |AR −WT (sE)|

definiert, siehe Abbildung 8.2. Die Hilfsstruktur D1 weist die Form eines gleichschenkligen
Dreiecks mit Schenkellänge W auf. Die Länge der Basis dieses Dreiecks entspricht der
Weite WT , siehe Abbildung 8.3(b).

Der Aufbau des Gesamtmodells der Ebene erfolgt durch die Kaskadierung der Teilmodelle
der Ebene. Durch dieses Gesamtmodell wird der projizierte Strahlverlauf bestimmt. Dieser
dient als Eingangsparameter für den virtuellen Schichtwellenleiter. Zusammen mit dem
Gesamtmodell der Ebene und dem virtuellen Schichtwellenleiter wird das Gesamtmodell
des Leistungsteilers aufgebaut.

Abb. 8.4.: Blockschaltbild des Leistungsteilers

In Abbildung 8.4 ist das verwendete Blockschaltbild des Leistungsteilers dargestellt. Bei
diesem sind die Teilmodelle entsprechend dem zugrunde liegenden Grundmodell mit Hilfe
eines Buchstabens und einer fortlaufenden Nummer gekennzeichnet. Im oberen Teil des
Blockschaltbildes werden die Strahlparameter des projizierten Strahls bestimmt. Daran
anschließend werden im unteren Teil die resultierenden Strahlparameter im Raum mit
Hilfe des virtuellen Schichtwellenleiters berechnet. Zu erkennen ist, dass das Konzept
des virtuellen Wellenleiters in Kombination mit klassischen Strahlverfolgungsverfahren
verwendet wird, um die Berechnung des Übertragungsverhaltens innerhalb des Tapers
zeiteffizient zu ermöglichen, siehe auch Abschnitt 6.2.1. Des Weiteren ermöglicht das
vorgestellte Konzept den systematischen Entwurf eines Leistungsteilers aus bekannten
Strukturen.



146 Kapitel 8. Zeiteffiziente Analyse eines symmetrischen Leistungsteilers

In der Tabelle 8.1 sind die zugrundeliegenden Parameter der verwendeten Teilmodelle
aufgeführt. Aus der Wahl des Krümmungsradius R, der Wellenleiterweite W und des

Tabelle 8.1.: Verwendete Parameter des modellierten Leistungsteilers

Teilmodell
Parameter G1 G13 G23 T1 D1 K11 K12 K21 K22

L [mm] 100 100 100
R [mm] 10 10 10 10 10 10

γ̂ [◦] 1.6 -6.4 -1.6 6.4

Mittenabstandes p ergeben sich neben der Taperlänge LT und der Taperweite WT auch
die jeweiligen Krümmungswinkel γ̂ij der gekrümmten Teilmodelle. Die Krümmungswinkel
entsprechen nicht mehr den Krümmungswinkeln der Trajektorienverläufe, siehe Abbildung
8.2, da die Trajektorie auch innerhalb des Tapers T1 und des Dreiecks D1 verläuft.

Bei der Implementierung des Leistungsteilers erfolgt die Berechnung der Parameter WT

und LT automatisch nach Angabe der Form des Leistungsteilers, des Krümmungsradius R
und des Mittenabstandes p vor der Bestimmung des Übertragungsverhaltens. Des Weite-
ren erfolgt die Positionierung und Ausrichtung aller verwendeten Teilmodelle automatisch
durch das in Abschnitt 4.3.2 beschriebene Integrationskonzept.

8.2.2. Vergleich der Simulationsergebnisse

Ausgehend von einem identischen geometrischen Aufbau des Leistungsteilers, identischen
Materialparametern und einer Stimulation mit

NStrahl = {32400, 64800, 129800}

Strahlen wird das Übertragungsverhalten mit Hilfe semisequentieller Strahlverfolgung und
der vorgestellten analytischen Methoden bestimmt.

Die erzielten Simulationsergebnisse des semisequentiellen Verfahrens (SRT) und des auf
Blockschaltbild Abbildung 8.4 beruhenden analytischen Verfahrens (ART) sind in Abbil-
dung 8.5 aufgezeigt. Die Abbildung 8.5(a) stellt die Sprungantworten am Ausgang des
Segments G13 dar. Aus Gründen der Übersichtlichkeit sind nur die Sprungantworten für
NStrahl = 64800 abgebildet. Auf der Abszisse ist die Zeit t und auf der Ordinate ist die
detektierte Leistung P (t)/Pges aufgetragen. Diese ist auf die gesamte eingekoppelte Leis-
tung normiert. Infolge des symmetrischen Aufbaus sind die ermittelten Sprungantworten
am Ausgang des Segments G23 identisch mit den Ergebnissen des Segments G13 und wer-
den hier nicht dargestellt. Aufgrund der symmetrischen Leistungsteilung kann maximal
nur die Hälfte der eingekoppelten Leistung detektiert werden. In Abbildung 8.5(a) ist er-
kennbar, dass die detektierte Leistung geringer als die theoretisch detektierbare Leistung
ist. Bedingt durch die Wellenleiterkrümmung wird Leistung in das umgebende Material
transmittiert, siehe Abschnitt 6.3.2.
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Abb. 8.5.: Ermittelte Simulationsergebnisse ART und SRT für den Leistungsteiler bei Va-
riation der Stimulationsstrahlen NStrahl

Die Abbildung 8.5(b) stellt die resultierende Übertragungsfunktion |H(jf)| dar. In dieser
Abbildung ist ebenfalls die symmetrische Leistungsaufteilung erkennbar, da die Über-
tragungsfunktionen um etwas mehr als 3dB gedämpft sind. Für eine übersichtlichere Dar-
stellung der Kurvenverläufe sind in Abbildung 8.5(a) und 8.5(b) die durch das strahlenop-
tische Verfahren bestimmten Kurvenverläufe mit einer begrenzten Anzahl von Stützstellen
dargestellt.
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Abb. 8.6.: Abweichungen ∆PART
σ (t, NStrahl) der Sprungantworten

In den beiden Abbildungen 8.5(a) und 8.5(b) sind die Ergebnisse des semisequentiel-
len Verfahrens und des analytischen Verfahrens aufgezeigt. Zu erkennen sind die großen
Übereinstimmungen in den Ergebnissen. Zu Verdeutlichung der Unterschiede sind in Ab-
bildung 8.6 die Abweichungen zwischen den ermittelten Sprungantworten dargestellt.
Hierbei werden auch die berechneten Sprungantworten für NStrahl = 32400 und NStrahl =
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129600 berücksichtigt. In der Abbildung ist auf der Ordinate die durch

∆PART
σ (t, NStrahl) =

∣
∣
∣
∣

PSRT (t, NStrahl)− PART (t, NStrahl)

PSRT (NStrahl)

∣
∣
∣
∣
,

mit

PSRT (NStrahl) = lim
t→∞

PSRT (t, NStrahl)

ermittelte Abweichung ∆PART
σ (t) aufgetragen. Zunächst steigen die Kurvenverläufe stetig

an. Für t ≈ 1.0552ns erreichen sie ein Maximum. Für diese Abweichung gilt

max
(
∆PART

σ (t, NStrahl)
)
< 0.0235.

Das entspricht einer maximalen Abweichung von 2.35%. Nachdem dieses Maximum er-
reicht ist, verringern sich die Abweichungen. Als Abweichung des Endwerts wird mit

∆PART
σ (NStrahl) = lim

t→∞
∆PART

σ (t, NStrahl)

der Wert

max
(
∆PART

σ (NStrahl)
)
< 3.07 · 10−3

erreicht. Die maximale Abweichung entspricht damit 0.307%. Die Abweichung zwischen
den berechneten Werten ist sehr gering und somit stimmen die ermittelten Ergebnisse
sehr gut überein.

Die Form jeder dargestellten Kurve weist auf unterschiedliche ermittelte Strahllaufzeiten
der stimulierten Strahlen innerhalb des Systems hin. Diese unterschiedlichen Strahllauf-
zeiten sind durch die Zeitdiskretisierung des Detektors beim strahlenoptischen Verfahren
(SRT) und durch die hohe Anzahl der zu berechnenden inneren Reflexionen MStrahl be-
gründet. Um die Anzahl der zu bestimmenden Reflexionen abzuschätzen, werden die
Teilmodelle mit der längsten Trajektorie betrachtet. Dies sind bei dem untersuchten
Leistungsteiler die geraden Wellenleitersegmente. Die Gesamtlänge der Trajektorie ist
L = 200mm. Das strahlenoptische Verfahren (SRT) berechnet sukzessive die Strahlauf-
punkte und anschließend die neuen Strahlrichtungen. Wie in Tabelle 3.1 Seite 50 darge-
stellt, ergeben sich für einen geraden Wellenleiter der Weite W ×H = (70× 70)µm2, Tra-
jektorienlänge L = 1m und NStrahl = 32400 ca. 58 · 106 innere Reflexionen MStrahl. Damit
müssen bei der Strahlanzahl von NStrahl = 64800 und der Wellenleiterlänge L = 200mm
ca. MStrahl ≈ 23 · 106 innere Reflexionen berechnet werden. Kleine Abweichungen bei
der Bestimmung der geometrischen Weglänge Lgeo resultieren in einer leicht veränderten
Sprungantwort. Daraus ergeben sich die Abweichungen in den dargestellten Kurven-
verläufen in Abbildung 8.6.

8.3. Anwendung des Mehrtormodells

Bei der Modellierung mit Hilfe eines Mehrtores wird die zu analysierende Struktur mit
Hilfe vorher berechneter Koppelmatrizen beschrieben. Zur Bestimmung der Gesamtkop-
pelmatrix KG wird das zu untersuchende System in Teilsysteme partitioniert. Für jedes
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Teilsystem muss eine entsprechende, vorher berechnete Koppelmatrix existieren. Ausge-
hend von diesen Koppelmatrizen der Teilsysteme wird die Gesamtkoppelmatrix durch
Multiplikation der Koppelmatrizen bestimmt. Im Folgenden wird als Diskretisierung im
Ortsbereich Nx = 500 und als Diskretisierung im Winkelbereich Nα = 500 verwendet.
Damit ergibt sich eine quadratische Koppelmatrix für jedes Teilmodell. Die Anzahl der
Zeilen- und Spaltenvektoren ist N = 250 · 103.
Zur Bestimmung der Stimulationsmatrix X werden die Aufpunkte An und Strahlrichtun-
gen kn aller Quellstrahlen Sn auf die Projektionsebene projiziert und entsprechend der
Diskretisierung des Mehrtores den entsprechenden Toren zugeordnet. Die so gewonnene
Stimulationsmatrix XStrahl ist vom Typ (N × NStrahl), darin ist NStrahl die Anzahl der
Quellstrahlen. Durch die Multiplikation der Stimulationsmatrix mit der Koppelmatrix
wird die Detektionsmatrix Y

YStrahl = KG ·XStrahl

bestimmt. Diese enthält die Zuordnung zu den entsprechenden Ausgangstoren, die proji-
zierte Strahllänge LG und die entsprechende Leistungskopplung. Basierend darauf kann
jedem projiziertem Eingangstrahl ein projizierter Ausgangsstrahl zugeordnet werden. Aus
diesem werden unter Anwendung des virtuellen Schichtwellenleiters die resultierenden
Strahlparameter im Raum berechnet.

In dem folgenden Abschnitt 8.3.1 wird der Leistungsteiler in Teilmodelle partitioniert
und das zugrunde liegende Blockschaltbild angegeben. Anschließend wird das transiente
Übertragungsverhalten bestimmt und in Abschnitt 8.3.2 die erzielten Simulationsergeb-
nisse diskutiert.

8.3.1. Partitionierungskonzept und Blockschaltbild

Das Partitionierungskonzept basiert auf vorher bestimmten Mehrtoren. Sind diese noch
nicht vorhanden, so müssen sie neu berechnet werden. In Abschnitt 7 wurden Mehrtore
für gerade und konstant gekrümmte Wellenleiter vorgestellt. Für den in diesem Kapitel
betrachteten Leistungsteiler in kein Modell vorhanden, es muss somit ein neues Mehrtor
berechnet werden.

Abb. 8.7.: Partitionierungskonzept des Leistungsteilers

Die Abbildung 8.7 zeigt das verwendete Partitionierungskonzept. Das Gesamtmodell be-
steht aus drei geraden Teilmodellen mit den Koppelmatrizen KL1, KL12 und KL22 sowie
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einem Teilmodell des Leistungsteilers mit den Koppelmatrizen Ksp21 und Ksp11. Auf-
grund der Mehrpunkttopologie muss dieser Leistungsteiler durch zwei Koppelmatrizen
beschrieben werden. Der Leistungsteiler entspricht dem Übergangsbereich zwischen den
Teilmodellen G1, G12 und G23 in Abbildung 8.3(a). Bei der optischen Aufbau- und Ver-
bindungstechnik hat sich ein Mittenabstand von p = 250µm als Quasistandard zwischen
zwei Wellenleitern etabliert [5,50,59,85]. Folglich bietet es sich an, den Übergangsbereich
zwischen den geraden Segmenten als eigenständiges Mehrtor zu implementieren. Die Kop-
pelmatrizen der geraden Segmente sind alle identisch, da ihre geometrischen Abmessungen
und Materialparameter übereinstimmen.

Abb. 8.8.: Blockschaltbild des Leistungsteilers

Die Abbildung 8.8 zeigt das zugrunde liegende Blockschaltbild. Im oberen Teil des Block-
schaltbildes wird der projizierte Strahlpfad jedes Strahls bestimmt. Die Berechnung des
projizierten Strahlparameters erfolgt mit Hilfe der Matrizenmultiplikation der Stimula-
tionsmatrix mit der Gesamtkoppelmatrix. Im unteren Teil des Blockschaltbildes werden
die resultierenden Strahlparameter im Raum mit Hilfe des virtuellen Schichtwellenleiters
ermittelt.

8.3.2. Vergleich der Simulationsergebnisse

Um die Simulationsergebnisse der unterschiedlichen Verfahren zu vergleichen, werden die
Anregungen verwendet, die auch in Abschnitt 8.2 benutzt wurden. Aus diesen Anregungen
werden die Stimulationsmatrizen XStrahl vom Typ (N ×NStrahl) erzeugt. Das bestimmte
transiente Übertragungsverhalten wird zudem mit dem semisequentiellen Strahlverfol-
gungsverfahren verglichen. Im Folgenden ist das Mehrtorverfahren mit dem Index MART
und das semisequentielle Verfahren mit dem Index SRT gekennzeichnet.
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Abb. 8.9.: Ermittelte Simulationsergebnisse MART und SRT für den Leistungsteiler bei
Variation der Stimulationsstrahlen NStrahl

Die erzielten Simulationsergebnisse sind in Abbildung 8.9 dargestellt. Hierbei stellt die
Abbildung 8.9(a) die berechneten Sprungantworten des Systems für NStrahl = 64800
dar. Aus Gründen der Übersichtlichkeit sind die Sprungantworten der Strahlenscharen
NStrahl = 32400 und NStrahl = 129600 nicht abgebildet. Die dargestellten Sprungant-
worten sind auf die gesamte eingekoppelte Leistung normiert. Für eine bessere Differen-
zierbarkeit der Ergebnisse wurden nur wenige Stützstellen des semisequentiellen Verfah-
rens abgebildet. Wie auch in Abbildung 8.5(a) ist auch in dieser Abbildung die große
Übereinstimmung zwischen den beiden Verfahren zu erkennen.

In Abbildung 8.9(b) ist die der Sprungantwort entsprechende Übertragungsfunktion dar-
gestellt. Auch hier ist eine sehr gute Übereinstimmung zwischen den beiden Verfahren
erkennbar.
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Abb. 8.10.: Abweichungen ∆PMART
σ (t, NStrahl) der Sprungantworten

Abschließend ist in Abbildung 8.10 die jeweilige Abweichung zwischen den Sprungantwor-
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ten aufgezeigt. Auf der Abszisse ist die Zeit t und auf der Ordinate ist die Abweichung

∆PMART
σ (t, NStrahl) =

∣
∣
∣
∣

PSRT (t, NStrahl)− PMART (t, NStrahl)

PSRT (t, NStrahl)

∣
∣
∣
∣

mit

PSRT (NStrahl) = lim
t→∞

PSRT (t, NStrahl)

aufgetragen. Die maximale Abweichung ist

max
(
∆PMART

σ (t, NStrahl)
)
< 0.0235.

Diese wird zum Zeitpunkt t = 1.0552ns erreicht. Die Abweichung der Endwerte wird
durch

∆PMART
σ (NStrahl) = lim

t→∞
∆PMART

σ (t, NStrahl)

bestimmt. Für die maximale Abweichung der Endwerte gilt

max
(
∆PMART

σ (NStrahl)
)
< 2.4 · 10−3.

Der Verlauf der Kurve entspricht annähernd dem Verlauf der in Abbildung 8.6 abgebil-
deten Kurve. Die Begründung für diesen Verlauf entspricht der in Abschnitt 8.2.2.

8.4. Vergleich der verwendeten Verfahren

In den vorhergehenden Abschnitten sind die Abweichungen zwischen dem analytischen
Verfahren und dem strahlenoptischen Verfahren sowie die Abweichungen zwischen dem
Mehrtorverfahren und dem strahlenoptischen Verfahren vorgestellt worden. In diesem Ab-
schnitt werden die Abweichungen zwischen den in dieser Arbeit vorgestellten Verfahren
bestimmt. Des Weiteren wird die ermittelte Effizienz der verwendeten Verfahren disku-
tiert.

8.4.1. Abweichungen zwischen den Verfahren

Um die Abweichung zwischen den in dieser Arbeit vorgestellten Verfahren zu bestimmen,
werden die berechneten Sprungantworten miteinander verglichen. Dieses beinhaltet auch
die Berücksichtigung der Sprungantworten für NStrahl = 32400 und NStrahl = 129600.



8.4. Vergleich der verwendeten Verfahren 153

1.055 1.06 1.065 1.07
0

1

2

3

4

5

6

7

x 10
−4

t [ns]

∆ 
P

σ(t
,N

S
tr

ah
l)

 

 

N
Strahl

=32400

N
Strahl

=64800

N
Strahl

=129600

Abb. 8.11.: Abweichung ∆Pσ(t, NStrahl) zwischen den Sprungantworten

Die Abweichungen zwischen den Sprungantworten sind in Abbildung 8.11 aufgezeigt. Auf
der Abszisse ist die Zeit t und auf der Ordinate ist die durch

∆Pσ(t, NStrahl) =

∣
∣
∣
∣

PMART (t, NStrahl)− PART (t, NStrahl)

PMART (NStrahl)

∣
∣
∣
∣

(8.2)

mit

PMART (NStrahl) = lim
t→∞

PMART (t, NStrahl) (8.3)

bestimmte Abweichung aufgetragen. Die Abbildung verdeutlicht, dass diese Abweichungen
mit zunehmender Zeit t ansteigen. Die maximale Abweichung zwischen beiden Sprung-
antworten entspricht auch der Abweichung der Endwerte beider Sprungantworten. Diese
maximale Abweichung ist

max (∆Pσ(t, NStrahl)) < 7 · 10−4. (8.4)

Dies entspricht einem maximalen Abweichung von 0.07%. Die ermittelten Sprungantwor-
ten stimmen somit sehr gut überein.

Bei der Bestimmung der Sprungantwort werden die Leistungsteile der Strahlen entspre-
chend ihrer Verweildauer innerhalb des Systems addiert, siehe Gleichung (2.125). Durch
die Orts- und Winkeldiskretisierung des Mehrtormodells werden die Strahlen den kor-
respondierenden Toren zugeordnet. Hierbei können Strahlen, die die Bedingung der To-
talreflexion erfüllen, Toren zugeordnet werden, die diese Bedingung nicht erfüllen. Die
von diesen Strahlen geführte Leistung geht verloren. Strahlen, die die Bedingung der To-
talreflexion gerade nicht mehr erfüllen, können wiederum Toren zugeordnet werden, die
diese Bedingung erfüllen. Dieser Leistungsanteil wird zusätzlich detektiert. Die beiden
Vorgänge erklären die Abweichung in den ermittelten Sprungantworten. Aufgrund der
geringen Abweichungen können beide Verfahren verwendet werden, um das transiente
Übertragungsverhalten zu bestimmen.
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8.4.2. Effizienz der verwendeten Verfahren

Für eine Betrachtung der Effizienz der Verfahren werden die Berechnungszeiten der Ver-
fahren für die Bestimmung der in Abschnitt 8.2 und 8.3 aufgezeigten Sprungantworten
verglichen. Alle Berechnungszeiten sind mit dem in Abschnitt 6.3.1.4 vorgestellten Ar-
beitsplatzrechner durchgeführt worden.

Tabelle 8.2.: Berechnungszeiten tSRT , tART und tMART und Bestimmung der Effizi-
enz der Verfahren für einen Leistungsteiler bei Variation der Anzahl von
Stimulationsstrahlen

Anzahl Absolute Berechnungszeiten Zeiteffizienz
Strahlen tSRT tART tMART tSRT tSRT tART

NStrahl [s] [s] [s] tART tMART tMART

32400 194 20.26 2.48 9.58 78.2 8.2
64800 387 40.63 11.13 9.52 34.8 3.7
129600 777 81.72 34.39 9.50 22.6 2.4

Die Tabelle 8.2 enthält die Zeiten zur Berechnung der Sprungantworten des vorgestellten
Leistungsteilers bei unterschiedlicher Anzahl von Strahlen. Des Weiteren ist die Zeiteffi-
zienz durch das Verhältnis der Berechnungszeiten aufgeführt.
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Abb. 8.12.: Vergleich der Berechnungszeiten für die unterschiedlichen Verfahren

In Abbildung 8.12 sind die Berechnungszeiten in Abhängigkeit von der Anzahl NStrahl

für die unterschiedlichen Verfahren abgebildet. Hierbei ist die Zeit t auf der Ordinate
logarithmisch aufgetragen. Die Zeit zur Berechnung der Strahlparameter bei dem strah-
lenoptischen Verfahren tSRT und bei dem analytischen Verfahren tART steigt linear mit
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NStrahl an. Bei dem Mehrtorverfahren ist kein linearer Zusammenhang zwischen der Be-
rechnungszeit tMART und NStrahl erkennbar.

Bei diesem Verfahren entspricht die Anzahl a der Wellenleiterausgänge der Anzahl der zu
berücksichtigenden Gesamtkoppelmatrizen KGa

KGa = KL1 ·Ksp a1 ·KLa2 ∀a ∈ {1, 2}

zur Bestimmung des projizierten Strahlverlaufs. Somit entspricht diese Anzahl auch der
Anzahl der Matrizenmultiplikationen mit der Stimulationsmatrix

Y1 = KG1 ·XStrahl

Y2 = KG2 ·XStrahl.

Anschließend werden, basierend auf den Detektionsmatrizen Y1 und Y2, mit Hilfe des vir-
tuellen Wellenleiters die resultierenden Strahlparameter bestimmt. Aufgrund der beiden
Wellenleiterausgänge ist ein quadratischer Anstieg zu erwarten. Die ermittelten Detekti-
onsmatrizen weisen aufgrund der Mehrpunkttopologie eine große Anzahl von Nullvektoren
als Spaltenvektor auf. Die entsprechenden Strahlen sind entweder in der anderen Koppel-
matrix enthalten oder in das umgebende Material transmittiert. Bei der Berechnung der
Strahlparameter in der Projektionsebene werden nur Tore mit vom Nullvektor verschiede-
nen Spaltenvektoren betrachtet. Aus diesem Grund ist die Zunahme der Berechnungszeit
mit Zunahme der Strahlanzahl nicht quadratisch.

Neben den absoluten Berechnungszeiten zeigt die Tabelle 8.2 die Verhältnisse der Berech-
nungszeiten. Das Verhältnis tSRT/tART bleibt mit zunehmender Anzahl NStrahl konstant.
Dies entspricht dem in Abschnitt 6.3.1.4 und 6.3.2.3 diskutierten Verhalten. Das analy-
tische Verfahren ist, bei annähernd identischer Genauigkeit, um den Faktor 10 schneller
als das strahlenoptische Verfahren.

Für eine geringe Anzahl von Strahlen ist das Mehrtorverfahren um den Faktor 80 schnel-
ler als das semisequentielle Verfahren und um den Faktor 8.2 schneller als das analyti-
sche Verfahren. Für eine große Anzahl von Strahlen sinkt dieser Faktor auf den Faktor
22 gegenüber dem semisequentiellen Verfahren und auf den Faktor 2.4 gegenüber dem
analytischen Verfahren. Das Verhältnis zwischen den Berechnungszeiten tSRT /tMART und
tART/tMART nimmt im Gegensatz zu dem in Abschnitt 7.4.3.1 diskutierten Verhalten mit
zunehmender Anzahl der Strahlen aus den oben genannten Gründen ab.
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Kapitel 9

Schlussbetrachtungen

9.1. Zusammenfassung

Die benötigte Bandbreite innerhalb von Systemen der Kommunikations- und Informa-
tionstechnik wächst stetig an. Um diesem Bedarf in naher Zukunft gerecht zu werden,
bietet es sich an, optische Verbindungen innerhalb der Systeme zu verwenden. Ein von
Universitäten und der Großindustrie in weltweiten Forschungs- und Entwicklungsprojek-
ten verfolgter Ansatz sieht eine Erweiterung einer herkömmlichen elektrischen Leiterplat-
te um eine oder mehrere eingebettete optische Lagen vor. Eine optische Lage besteht
aus mehreren Wellenleiterkernen, die von einem Mantelmaterial umgeben sind. Aufgrund
des schichtförmigen Aufbaus der Leiterplatte ist diese optische Lage immer planar. Die
eingesetzten Wellenleiter sind hochgradig vielmodig und können mit strahlenoptischen
Verfahren analysiert werden.

Bei dem Entwurfsprozess einer elektrischen Lage wird das transiente Übertragungsver-
halten immer entwurfsbegleitend vor der Fertigung der Leiterplatte bestimmt. Bei dem
Entwurf der optischen Lage ist es daher sinnvoll, diesen Entwurfsprozess beizubehalten.
Mit den zurzeit zur Verfügung stehenden Verfahren ist eine zeiteffiziente Bestimmung des
transienten Übertragungsverhaltens nicht möglich. Hier setzte diese Arbeit an; das anvi-
sierte Ziel war die Entwicklung leistungsfähiger Modelle, um zeiteffizient das transiente
Übertragungsverhalten von eingebetteten Wellenleitern zu berechnen.

Hierfür wurden zuerst in Kapitel 2 die benötigten strahlenoptischen und systemtheore-
tischen Grundlagen für die Bestimmung des transienten Übertragungsverhaltens hoch-
gradig vielmodiger Wellenleiter erläutert. Anschließend wurde in Kapitel 3 der in dieser
Arbeit betrachtete passive optische Pfad vorgestellt. Zudem wurde die Abhängigkeit des
Übertragungsverhaltens bei der Variation von Material- und Geometrieparametern sowie
der Einfluss der Stimulation untersucht.

Aufgrund abschnittsweise konstanter Geometrieeigenschaften des Wellenleiterverlaufs bot
es sich in dieser Arbeit an, ein modulares Konzept für die Generierung zeiteffizienter Mo-
delle zu verwenden, siehe Kapitel 4. Bei diesem Konzept wird ein Gesamtsystem in Teil-
segmente und weiter in Grundelemente partitioniert. Für jedes Grundelement existiert in
dieser Arbeit ein auf strahlenoptischen Verfahren basierendes Grundmodell. Ein dem Ge-
samtsystem entsprechendes Gesamtmodell wird anschließend durch die Kaskadierung der
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Teilmodelle und Grundmodelle aufgebaut. Dieser modulare Ansatz wurde so erweitert,
dass nur ein Grundmodell für alle Wellenleitersegmente mit identischen Geometrieeigen-
schaften existieren muss.

Basierend auf dem modularen Ansatz wurden zwei Strategien für die Generierung von
zeiteffizienten Modellen aufgezeigt. Die erste Strategie verwendet Symmetrien im Auf-
bau der Kerngrenzhülle. Diese Kerngrenzhülle wird, aufgrund des rechteckförmigen Kern-
querschnitts der betrachteten Wellenleiter, aus vier orthogonalen Flächen aufgebaut. Ein
Strahlverlauf im Raum kann durch Strahlverläufe in diesen orthogonalen Flächen be-
stimmt werden. Hierzu wird jeder Strahl auf diese Flächen projiziert, sämtliche Strahl-
verläufe innerhalb der Flächen berechnet und zu einem Gesamtstrahlverlauf zusammenge-
fasst. Zwei dieser Flächen sind außerdem immer planar und kongruent, der Strahlverlauf
innerhalb dieser Flächen muss deshalb nur einmal berechnet werden. Die Ebene, in der
diese Fläche liegt, wird als Projektionsebene bezeichnet.

Die zweite Strategie führte das Konzept der Strahlprojektion weiter. Unterschiedliche
Strahlverläufe im Raum zeigten bei den betrachteten Wellenleitern einen identischen pro-
jizierten Strahlverlauf in der Projektionsebene. Dieser Strahlverlauf muss deshalb nur
einmal bestimmt werden und steht für weitere Berechnungen zur Verfügung.

Aufbauend auf der ersten Strategie wurden in Kapitel 5 Verfahren zur analytischen Be-
stimmung der Strahlparameter der projizierten Strahlverläufe innerhalb von geraden und
konstant gekrümmten Schichtwellenleiterstrukturen entwickelt. Diese Schichtwellenleiter
repräsentieren die Flächen der zu analysierenden Segmente in der Projektionsebene. Mit
Hilfe weniger, analytisch lösbarer Gleichungen werden sämtliche Strahlparameter eines
Strahls bestimmt. Im Gegensatz zu den klassischen Strahlverfolgungsverfahren sind die
Berechungszeiten dieser Verfahren unabhängig von der Anzahl der inneren Reflexionen. In
diesem Kapitel konnte gezeigt werden, dass Veränderungen der Geometrie- und Material-
parameter keinen Einfluss auf die Berechnungszeiten haben.

Für die Bestimmung der Strahlparameter innerhalb gekrümmter Wellenleiter muss ent-
sprechend der ersten Strategie jeder Strahl auf gekrümmte Flächen projiziert werden. Die
Bestimmung der Strahlparameter dieser Projektionsstrahlen ist nicht trivial. Zur Lösung
wurde in Kapitel 6 das Konzept des virtuellen Schichtwellenleiters vorgestellt. Bei diesem
Konzept wird auf jeden bestimmten Strahlverlauf in der Projektionsebene ein Schichtwel-
lenleiter orthogonal positioniert. Das zugrunde liegende Modell dieses Schichtwellenleiters
entspricht dem in Kapitel 5 vorgestellten analytischen Modell des geraden Schichtwel-
lenleiters. Durch das Konzept des virtuellen Schichtwellenleiters ist es möglich, jeden
Strahlverlauf im Raum durch zwei Strahlverläufe in orthogonalen Ebenen zu berechnen.
Können die Strahlverläufe in der Projektionsebene ebenfalls analytisch bestimmt werden,
so werden sämtliche Strahlparameter des Strahlverlaufs im Raum vollständig analytisch
berechnet. Aufgrund dessen wurde dieses Verfahren in dieser Arbeit als analytisches Ver-
fahren bezeichnet.

Für eine Verifikation wurde anschließend das transiente Übertragungsverhalten von ver-
schiedenen Wellenleiterstrukturen bestimmt und die Abweichungen zwischen dem analy-
tischen Verfahren und einem strahlenoptischen Referenzverfahren ermittelt. Bei geraden
Wellenleitersegmenten betrug die maximale prozentuale Abweichung aller berechneten
Bandbreitenlängenprodukte 0.01%, bei Wellenleitern mit gekrümmten Segmenten 0.27%.
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Die implementierten analytischen Verfahren berücksichtigen nicht Teilreflexionen an ge-
krümmten Wellenleiterberandungen außerhalb der Totalreflexion. Unter Berücksichtigung
dieses Effekts ist zu erwarten, dass die prozentuale Abweichung abnimmt.

Neben den Abweichungen wurde die Zeiteffizienz des analytischen Verfahrens untersucht.
Bei den betrachteten Strukturen war dieses Verfahren um den Faktor 76 bei langen gera-
den Wellenleitern und um den Faktor 4 bei kurzen gekrümmten Strukturen schneller als
das Referenzverfahren. Weiter wurde in diesem Kapitel nachgewiesen, dass das analyti-
sche Verfahren im Gegensatz zu klassischen Strahlverfolgungsverfahren unabhängig von
der Anzahl der zu berechnenden inneren Reflexionen ist. Die Berechnungszeit des analy-
tischen Verfahrens ist nur abhängig von der Anzahl der zu berücksichtigenden Segmente
und der Anzahl der Quellstrahlen.

Zur Berücksichtigung der zweiten Strategie wurde in Kapitel 7 ein Mehrtormodell vorge-
stellt. Bei diesem Mehrtormodell wird ausgenutzt, dass für unterschiedliche Strahlverläufe
im Raum identische projizierte Strahlverläufe in der Projektionsebene existieren. Um die-
ses systematisch zu verwenden, werden die Projektionskanten der Wellenleiterstirnflächen
einzelner Teilsegmente orts- und winkeldiskretisiert. Aus dieser Diskretisierung ergibt sich
die Anzahl der zu verwendenden Eingangs- und Ausgangstore des Mehrtores. Nach der
Diskretisierung werden sämtliche projizierte Strahlverläufe berechnet und die sich erge-
benden Übertragungswege in Koppelmatrizen zusammengefasst. Die Anzahl der zu be-
rechnenden Strahlverläufe entspricht der Anzahl der Eingangstore. Eine Kaskadierung von
Teilmodellen zu einem Gesamtmodell wird durch eine Matrizenmultiplikation der Koppel-
matrizen repräsentiert. Mit Hilfe der resultierenden Gesamtkoppelmatrix kann zeiteffizient
der Strahlverlauf in der Projektionsebene des Gesamtmodells bestimmt werden.

Um bei dem Mehrtorverfahren die Strahlparameter im Raum zu berechnen, wurde der in
Kapitel 6 eingeführte virtuelle Schichtwellenleiter verwendet. Für eine Verifikation wurden
transiente Übertragungsfunktionen mit Hilfe des vorgestellten Mehrtorverfahrens und des
strahlenoptischen Referenzverfahrens berechnet. Die maximale Abweichung zwischen bei-
den Verfahren ist abhängig von den untersuchten Strukturen und von der gewählten Dis-
kretisierung. Für einen Wellenleiter mit einem gekrümmten Segment mit RadiusR = 1mm
und bei einer Toranzahl von 10.000 Toren wurde eine maximale Abweichung von 2% er-
zielt. Wird die Anzahl der Tore auf 250.000 erhöht, so sinkt diese Abweichung auf 0.8%.
Eine Verlängerung des Radius führt zu einer Verringerung der maximalen prozentualen
Abweichung, bei einem Radius von R = 5mm und einer Toranzahl von 10.000 Toren
beträgt diese Abweichung 0.4%.

Neben der maximalen prozentualen Abweichung wurde die Zeiteffizienz des Mehrtorver-
fahrens in diesem Kapitel ermittelt. Hier konnte gezeigt werden, dass das Mehrtorver-
fahren noch zeiteffizienter als das in Kapitel 6 vorgestellte analytische Verfahren ist. In
Abhängigkeit von der Anzahl der Wellenleitersegmente und der Anzahl der Strahlen ist
das Mehrtorverfahren um den Faktor 2.4 bis 8.2 zeiteffizienter.

Abschließend wurden in Kapitel 8 die beiden Verfahren angewendet, um einen sym-
metrischen Leistungsteiler zu analysieren. Hierbei mussten auch Wellenleitersegmente
berücksichtigt werden, für die keine analytischen Verfahren in der Projektionsebene exis-
tieren. Jeder Strahlverlauf innerhalb der Projektionsebene dieser Segmente wurde mit
Hilfe klassischer Strahlverfolgungsverfahren bestimmt.
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Nach der Erstellung des Gesamtmodells des Leistungsteilers wurden die Sprungantworten,
die Übertragungsfunktionen, die Abweichungen zwischen den Verfahren und die Zeiteffi-
zienz der Verfahren ermittelt. Alle Verfahren zeigten sehr gute Übereinstimmung bei den
berechneten Sprungantworten und Übertragungsfunktionen. Die maximale Abweichung
zwischen den Sprungantworten des analytischen Verfahrens und des Referenzverfahrens
war kleiner als 0.31%. Zwischen dem analytischen Verfahren und dem Mehrtorverfahren
war diese maximale Abweichung kleiner als 0.07%.

Zudem zeigte sich auch hier wieder die erreichte große Zeiteffizienz bei der Berechnung
der transienten Übertragungsfunktion durch die beiden entwickelten Verfahren. Das ana-
lytische Verfahren ist konstant um den Faktor 10 schneller als das klassische Strahl-
verfolgungsverfahren. Das Mehrtorverfahren ist in Abhängigkeit von der Anzahl der zu
berücksichtigenden Strahlen um den Faktor 8.2 (32400 Strahlen) bzw. 2.4 (129600 Strah-
len) schneller als das analytische Verfahren.

Neben der Zeiteffizienz der entwickelten Verfahren wurde in diesem Kapitel gezeigt, dass
es möglich ist, basierend auf dem modularen Ansatz unterschiedliche Verfahren für die
Strahlparameterberechnung von komplexen Trajektorienverläufen zu kombinieren. Hier-
durch können neue Segmente zeitnah implementiert werden und nahezu beliebige Trajek-
torienverläufe in der optischen Lage berücksichtigt werden.

9.2. Ausblick

In dieser Arbeit sind zwei leistungsfähige Modellierungsverfahren entwickelt worden, die
das transiente Übertragungsverhalten der betrachteten Kanalwellenleiter und mikroop-
tischen Komponenten zeiteffizient bestimmen können. Das erste Verfahren, welches den
Ansatz der Strahlprojektion auf die Projektionsebenen der Wellenleitersegmente verfolgt,
ist äußerst flexibel anwendbar im Hinblick auf veränderte Material- und Geometriepara-
meter. Aufgrund des modularen Aufbaus kann dieses Verfahren zudem einfach um unbe-
kannte Komponenten erweitert werden. Zusätzlich kann eine Anbindung an aktive und
passive Komponenten außerhalb der optischen Lage erfolgen. Die Modelle für diese Kom-
ponenten müssen die in dieser Arbeit definierten Schnittstellen beinhalten. Existieren
diese Modelle, so ist eine ganzheitlich komponentenübergreifende Gesamtsystemanalyse
zeiteffizient durchführbar. Dieses Verfahren ist effektiv im Bereich der Vorfeldentwick-
lung einsetzbar. Hier können sehr schnell neue Modelle generiert, Parametervariationen
durchgeführt und in den Simulationsablauf integriert werden. Im Anhang B.1 sind weitere
Module aufgeführt. Dort ist auch aufgezeigt, wie Spiegel und Linsensysteme aufgebaut
werden können.

Das zweite Verfahren ist äußerst zeiteffizient, wenn die zu untersuchenden Wellenleiter-
segmente als Koppelmatrizen innerhalb einer Bauteilebibliothek vorliegen. Andernfalls
müssen diese zeitaufwändig neu bestimmt werden und können dann in eine Bauteil-
bibliothek integriert werden. Da dieses Verfahren mit dem ersten Verfahren kombiniert
werden kann, ist auch hier eine komponentenübergreifende Simulation durchführbar. Eine
Variation von Material- oder Geometrieparametern kann nur für vorher berechnete Kom-
ponenten erfolgen. Das Verfahren bietet sich an, wenn die benötigten Materialien definiert
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und die zu verwendenden Komponenten bekannt sind. Es liegt somit nahe, dieses Verfah-
ren im Rahmen eines CAD-Werkzeuges mit definierter Bauteilbibliothek zu verwenden.

In den vorgestellten Verfahren sind die Materialverluste, die Polarisation sowie die Tunnel-
verluste bei gekrümmten Kanalwellenleitern unberücksichtigt geblieben. Allerdings wer-
den mit den entwickelten Verfahren neben der geometrischen Strahlpfadlänge auch die
Anzahl der inneren Reflexionen jedes Strahls bestimmt. Mit diesen Strahlparametern
können durch Erweiterung der vorhanden Verfahren die obigen Effekte berücksichtigt
werden. Auch ein Einbeziehen des Goos-Hänchen-Effekts [106] ist durch eine Erweiterung
der entwickelten Verfahren möglich. Hierbei müssen abhängig von dem einfallenden Strahl
die Geometrieparameter verändert werden. Dies ist bei dem analytischen Verfahren ein-
fach realisierbar, da diese Parameter der Berechnungsvorschrift direkt übergeben werden
können. Um den Einfluss einer rauen Wellenleiterberandung zu berücksichtigen, kann der
in [98] vorgestellte Ansatz verfolgt werden. Bei diesem Ansatz wird die Leistung jedes
Strahls entsprechend dem zugrunde liegenden Rauigkeitsprofil der Wellenleiterberandung
verändert und neue Strahlen aufgrund der Leistungskopplung generiert.

Die beiden in dieser Arbeit entwickelten Verfahren sind deutlich zeiteffizienter als das
strahlenoptische Referenzverfahren. Die zugrunde liegenden Algorithmen beider Verfah-
ren sind in der Interpretersprache Matlab1 implementiert. Hierbei werden zur Laufzeit
des Programms die Instruktionen des Algorithmus interpretiert. Durch die Umsetzung
der entwickelten Verfahren in eine Hochsprache (z. B. C++) ist zu erwarten, dass die
gezeigte Zeiteffizienz weiter gesteigert werden kann. Aufgrund der Stärken von Matlab im
Bereich der linearen Algebra ist durch diese Umsetzung in eine Hochsprache eine größere
Effizienzsteigerung bei dem analytischen Verfahren zu erwarten.

1©The MathWorks Inc.
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Anhang A

Verzeichnis der verwendeten Symbole

A.1. Physikalische Konstanten

Symbol Beschreibung Wert Einheit

ε0 Permittivität des Vakuums 8, 854 187 817 62 · 10−12 [ As / Vm ]
µ0 Permeabilität des Vakuums 4π · 10−7 [ Vs / Am ]
c0 Lichtgeschwindigkeit im Vakuum 1/

√
ǫ0µ0 = 299 792 458 [ m / s ]

A.2. Formelzeichen

αcore(r) Ortsabhängiger Absorptionskoeffizient des Kernmaterials
αG Winkel der Totalreflexion
αN Akzeptanzwinkel
α‖ Projektionswinkel
a(t) Sprungantwort
an Dämpfungskoeffizient
Acore Querschnittsfläche des Wellenleiters
Ai(x) Airy Funktion
An Strahlaufpunkt
AA Strahlaufpunkt auf Auskoppelseite des Wellenleiters
AE Strahlaufpunkt auf Einkoppelseite des Wellenleiters
AN Numerische Apertur
AQ Aufpunkt Punktquelle
AR Krümmungsmittelpunkt
A‖ Strahlaufpunkt auf Projektionsfläche projiziert
A⊥ Strahlaufpunkt auf seitliche Wellenleiterberandung projiziert
A♯ Strahlaufpunkt innerhalb des virtuellen Schichtwellenleiters
βG Komplementärwinkel zum Winkel der Totalreflexion αG

b(s) Binominalvektor der Trajektorie
BLP Bandbreiten-Längen-Produkt
C Krümmungsfaktor
C(uy, uz) Autokorrelationsfunktion der Wellenleiterberandungsrauigkeit
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δ(t) Dirac-Impuls
∆α Winkelsegment
∆ϕ Winkelbereich Azimutwinkel
∆ϑ Winkelbereich Polarwinkel
∆a Längensegment
∆A Flächensegment
∆Fτ Relative prozentuale Abweichung der 3dB-Grenzfrequenz
∆FBLP Relative prozentuale Abweichung des Bandbreiten-Längen-Produkts
∆FLgeo

Relative prozentuale Abweichung der geometrischen Strahlpfadlänge
∆FP Relative prozentuale Abweichung der detektierten Leistung
∆Ω Raumwinkelbereich
ǫ(r) Komplexe Dielektrizitätskonstante
f3dB 3dB-Grenzfrequenz
Fi Berandungsflächen des Wellenleiters
γ(z) Dämpfungskoeffizient des gesamten Materials
γclad Dämpfungskoeffizient des Mantelmaterials
γcore Dämpfungskoeffizient des Kernmaterials
γp Konstanter Mittelpunktswinkel zwischen zwei inneren Aufpunkten
γG Gesamter Mittelpunktswinkel
γN Mittelpunktswinkel zwischen AM und AA

h(t) Impulsantwort des Systems
H Höhe des Wellenleiters
H(jω) Übertragungsfunktion
J(h, k) Fouriertransformierte der Autokorrelationsfunktion C(uy, uz)
k0 Wellenzahl im freien Raum 2π/λ0, ω/c0
kn Initiale Strahlrichtung
kA Strahlrichtung an der Auskoppelseite des Wellenleiters
kE Strahlrichtung an der Einkoppelseite des Wellenleiters
k‖ Auf die Projektionsfläche projizierte Strahlrichtung
k⊥ Auf die seitliche Wellenleiterberandung projizierte Strahlrichtung
k♯ Strahlrichung innerhalb des virtuellen Schichtwellenleiters
K Koppelmatrix
Kr Koppelmatrix der Leistungskopplung der einfallenden lokalen ebenen

Welle
KG Gesamtkoppelmatrix
λ0 Wellenlänge
lp(n) Normierte projizierte Strahlpfadlänge
L Trajektorienlänge des Wellenleiters
Lgeo Geometrische Strahlpfadlänge im Raum
Lp Konstante Teilstrahllänge zwischen zwei Aufpunkten innerhalb des

Schichtwellenleiters
Ly,z Korrelationslänge zur Beschreibung der rauen Wellenleiterberandung
LG Geometrische Strahlpfadlänge innerhalb des Schichtwellenleiters
LG‖ Geometrische Strahlpfadlänge in der Projektionsebene
LN Teilstrahllänge zwischen letztem inneren Aufpunkt AM und AA

LT Taperlänge
M Anzahl inneren Reflexionen
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n(r) Ortsabhängiger komplexer Brechungsindex des Materials
nclad Homogener Brechungsindex des Mantels
ncore Homogener Brechungsindex des Kerns
N Diskretisierung Mehrtor
Nα Tordiskretisierung im Winkelbereich
Na Tordiskretisierung Wellenleiterkante
NBerand Anzahl Berandungen eines Wellenleiters
n(s) Normaleneinheitsvektor der Trajektorie
n1(s) Normalenvektor orthogonal zu t(s) und n2

n2 Normalenvektor der Projektionsfläche
NStrahl Anzahl emittierter Strahlen
Ntot Anzahl ausbreitungfähiger Moden
Pges Gesamte stimulierte Leistung
PG Gesamte übertragene Leistung
PGauss Gaußförmige Leistungsverteilung im Fernfeld
pn Leistungsdichte eines Strahls
Pr(βiz) Leistungskopplung einer einfallenden ebenen Welle
PRect Rechteckförmige Leistungsverteilung im Fernfeld
Pσ Abweichung der detektierten Leistung des MART Verfahrens vom ART

Verfahren
PART
σ Abweichung der detektierten Leistung des ART Verfahrens vom SRT

Verfahren
PMART
σ Abweichung der detektierten Leistung des MART Verfahrens vom SRT

Verfahren
ρ Raumladungsdichte
rAi Empirischer Korrelationskoeffizient zwischen unterschiedlichen Auf-

punktskoordinaten
rϑ Empirischer Korrelationskoeffizient zwischen Polarwinkeln
R Krümmungsradius des Schichtwellenleiters
Rp Reflexionsfaktor für einfallende parallele Polarisation
Rs Reflexionsfaktor für einfallende senkrechte Polarisation
RK Krümmungsradius Halbraum
s Bogenlänge
σr Standardabweichung vom Mittelwert der Wellenleiteroberfläche
S Poyntingvektor
S Komplexer Poyntingvektor

S Zeitlicher Mittelwert der übertragenen Leistungsdichte
Sn Strahl im freien Raum
t(s) Trajektoriennormalenvektor
τ Anstiegszeit
τD Dispersionszeit
tART Berechnungszeit für die analytische Strahlparameterberechnung
tg Berechnungszeit gerades Teilmodell
tk Berechnungszeit für ein konstant gekrümmtes Teilmodell
tMatrix Berechnungszeit Matrizenmultiplikation
tMART Berechnungszeit Mehrtorverfahren
tSRT Berechnungszeit semisequentielle Strahlverfolgung
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Tp Transmissionsfaktor für einfallende parallele Polarisation
Ts Transmissionsfaktor für einfallende senkrechte Polarisation
ϑLaser Maximaler Divergenzwinkel eines Lasers
ϑN Innerer Akzeptanzwinkel
u(t) Sprungfunktion
W(s) Raumkurvenverlauf der Wellenleitertrajektorie
W Weite des Wellenleiters
WpA Projektionskante des Wellenleiters an der Auskoppelseite
WpE Projektionskante des Wellenleiters an der Einkoppelseite
WT Taperweite
X Stimulationsmatrix
Y Detektionsmatrix



Anhang B

Zusätzlich verwendete Strukturen

In diesem Abschnitt werden ausgewählte Module für das verwendete modulare Konzept
präsentiert. Diese können als Teilmodell oder Grundmodell in dieses Konzept integriert
werden.

B.1. Koppelmodul

Gegeben sind zwei Halbräume mit den Brechungsindizes n1 und n2 sowie dem Norma-
lenvektor n, dieser steht orthogonal auf der Berandungsfläche der beiden Halbräume und
zeigt in Richtung des Halbraumes mit dem Brechungsindex n2. Der einfallende Strahl mit
dem Aufpunkt AE und der Strahlrichtung kE trifft am Aufpunkt AA die Berandungs-
fläche. Mit Hilfe des Snelliusschen Brechungsgesetz (2.80) wird die neue Strahlrichtung
kA berechnet. Die resultierenden Transmissionskoeffizienten werden mit Hilfe der Fresnel-
schen Gleichungen (2.89) und (2.90) ermittelt.

Abb. B.1.: Blockschaltbild des Koppelmodules

Für die Berechnung dieser Ein- und Auskopplung innerhalb eines Simulationsdurchführung
wird das in Abbildung B.1 aufgezeigte Koppelmodul verwendet. Für die AufpunkteW(sE)
und Richtungen t gilt

W(sE) = W(sA) ∧ t(sE) = t(sA) = n

Das aufgezeigte Koppelmodul wird als Teilmodell in das modulare Konzept integriert.
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Linsen und Linsensysteme

Wird anstelle einer Berandungsebene eine gekrümmte Fläche verwendet, so können durch
die Kaskadierung mehrerer Koppelmodule Linsen und Linsensysteme aufgebaut werden.
Hierbei muss zusäzlich der Krümmungsgrad übergeben werden.

Spiegel

Um einen Umlenkspiegel zu generieren, muss die Reflektivität der Berandungsebene so
verändert werden, dass die Leistung an der Berandungsebene zurückgestrahlt wird. Weist
die Berandungsebene die Form eines Rotationsparaboloiden auf, so erfolgt zudem eine
Strahlfokussierung.

B.2. Planare dreieckförmige Hilfsstruktur

Die planare dreieckförmige Hilfsstruktur repräsentiert ein Mehrtor (ein Eingang und zwei
Ausgänge), bei dem abhängig vom Strahlverlauf ein Ausgangstor ausgewählt wird. Diese
Hilfstruktur wird verwendet um definiert Leistung aufzuteilen oder zusammenzufassen.
Die Form dieses Dreiecks kann variiert werden.

Abb. B.2.: Blockschaltbild der planaren dreieckförmigen Hilfsstruktur

In Abbildung B.2 ist das Blockschaltbild der Hilfsstruktur dargestellt. Für die Positionie-
rung des angrenzenden Kanalwellenleiter werden die Parameter der PositionierungW(sAi)
und t(sAi), i ∈ [1, 2], automatisch aus der Form des Dreiecks und der Information über
die Positionierung W(sE) und t(sE) bestimmt. Dies erfolgt einmal vor der Simulations-
durchführung. Hierdurch können die angrenzenden Kanalwellenleiter optimal und auto-
matisch positioniert werden.

Die Berechnung des Ausgangstors i und der Strahlparameter AA i und kA i erfolgt durch
das Modul. Diese Berechnung ist abhängig von der Form des Dreiecks. Allerdings muss
keine innere Reflexion ermittelt werden, da direkt vom Eingang auf ein Ausgangstor ge-
koppelt wird.
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Mathematik

C.1. Verwendete Funktionen

Im Folgenden sind die in dieser Arbeit verwendeten Funktionen aufgeführt. Die Sprung-
funktion u(t) und die Rechteckfunktion rect(t) sind wie folgt definiert [21]

u(t) =

{

0 für t < 0,

1 für t ≥ 0
(C.1)

und

rect(t) =







1 für |t| < 1,

1/2 für |t| = 1,

0 für |t| > 1.

(C.2)

Definition der Delta-Distribution oder Einheitsimpulsfunktion

δ(t) =

{

∞ für t = 0,

0 für t 6= 0
(C.3)

mit
∞∫

−∞

δ(t) = 1. (C.4)

Im Zusammenhang mit der Sprungfunktion u(t) (C.1) gilt

δ(t) =
du(t)

dt
. (C.5)

Des Weiteren gilt für die Ausblendeigenschaft der Impulsfunktion
∞∫

−∞

x(t)δ(t− t0)dt = x(t0) (C.6)

bzw.
b∫

a

x(t)δ(t− t0)dt = x(t0)

{

x(t0) für t0 ∈ (a, b)

0 für t0 6∈ (a, b).
(C.7)
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C.2. Fouriertransformation

Die Transformation der Funktion f(t) mit der reellen Variable t in ihre Fouriertransfor-
mierte F (jω) ist definiert als [21]

F (jω) =

∞∫

−∞

f(t)e−jωtdt, (C.8)

die Rücktransformation ist definiert als

f(t) =
1

2π

∞∫

−∞

F (jω)ejωtdω. (C.9)

Häufig wird f(t) und F (jω) als Transformationspaar geschrieben mit

f(t) d tF (jω). (C.10)

C.3. Eigenschaften von Systemen

C.3.1. Linearität

Ein System ist linear, wenn für gegebene Funktionen x1(t) und x2(t) mit

x1(t) → y1(t), x2(t) → y2(t) (C.11)

gilt

x1(t) + x2(t) → y1(t) + y2(t). (C.12)

Aus (C.12) folgt auch für die Linearität

Ax(t) → Ay(t). (C.13)

C.3.2. Zeitinvarianz

Betrachtet wird das System

x(t) → y(t). (C.14)

Ist das System zeitunabhängig, so gilt

x(t− t0) → y(t− t0), (C.15)

darin ist t0 eine beliebige reelle Konstante.
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C.4. Vektoranalysis

C.4.1. Der Nablaoperator

Mit Hilfe des Nablaoperators ∇ können die drei Differentialoperatoren grad , div und rot
beschrieben werden. Es gilt der folgende Zusammenhang:

∇U = gradU, (C.16)

∇ · ~A = div ~A, (C.17)

∇× ~A = rot ~A. (C.18)

C.4.2. Vektoridentitäten

Im Folgeden sind U und V Skalarfelder sowie ~A, ~B und ~C Vektorfelder. Damit werden
die folgenden Vektoridentitäten aufgestellt

grad (U + V ) = gradV + gradU, (C.19)

div ( ~A+ ~B) = div ~A+ div ~B, (C.20)

rot ( ~A+ ~B) = rot ~A+ rot ~B, (C.21)

~A× ( ~B × ~C) = ~B · ( ~A · ~C)− ~C · ( ~A · ~B). (C.22)

Es gelten die folgenden Produktregeln

grad (U V ) = UgradV + V gradU, (C.23)

div (U ~A) = Udiv ~A + ~AgradU, (C.24)

div ( ~A× ~B) = ~Brot ~A− ~Arot ~B, (C.25)

rot (U ~A) = Urot ~A+ (grad U)× ~A. (C.26)

Die wiederholte Anwendung der Differentialoperatoren ergibt

div gradU = ∆U, (C.27)

div (rot ~A) = 0 Potentialfreiheit des Wirbelfeldes, (C.28)

rot (gradU) = 0 Wirbelfreiheit des Potentialfeldes, (C.29)

rot rot ~A = grad (div ~A)−∆ ~A, (C.30)

mit ∆ als Laplace-Operator.

C.5. Empirische Kovarianz und Korrelationskoeffizient

Die empirische Kovarianz und der empirische Korrelationskoeffizient beschreiben die Stärke
des linearen Zusammenhangs, der zwischen zwei Messreihen besteht [36, 43]. Für zwei
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Messreihen X1, . . .XN und Y1, . . . YN berechnet sich die empirische Kovarianz durch

sxy =
1

N − 1

N∑

i=1

(
Xi −X

) (
Yi − Y

)
(C.31)

und der empirische Korrelationskoeffizient durch

rxy =
sxy
sx sy

∧ rxy ∈ [−1, 1]. (C.32)

Darin sind X und Y die empirischen Erwartungswerte mit

X =
1

N

N∑

i=1

Xi ∧ Y =
1

N

N∑

i=1

Yi, (C.33)

und sx und sy die empirische Standardabweichung der beiden Messreihen

sx =

√
√
√
√ 1

N − 1

N∑

i=1

(
Xi −X

)
∧ sy =

√
√
√
√ 1

N − 1

N∑

i=1

(
Yi − Y

)
. (C.34)

Ist der Korrelationskoeffizient rxy = 0, so existiert kein linearer Zusammenhang zwi-
schen den Messreihen; ist rxy = ±1, so existiert ein linearer Zusammenhang zwischen den
Messreihen. Für eine vereinfachte Schreibweise wird in dieser Arbeit die Berechnung des
Korrelationskoeffizienten durch

rxy = Korr(X, Y ) =
sxy
sx sy

(C.35)

beschrieben.
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schiedlichen Einfallswinkeln αe . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7. Reflexionsgrad Rp bei Reflexionen am verlustbehafteten Mantelmaterial . . 22
2.8. Skizzierte Anordnung für die Bestimmung der Leistungsverteilung des Nah-

und Fernfeldes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9. Skizziertes Modell einer Quelle . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.10. Darstellung der Funktion p(ϑi, ϕj) der Leistungsverteilungen PGauss und

PRect bei einem konstanten Azimutwinkel ϕj = ϕM . . . . . . . . . . . . . . 29
2.11. Sprungantwort eines geraden Wellenleiters der Länge L = 1m mit homo-

gener Anregung der gesamten numerischen Apertur AN = 0.25, ncore = 1.56 32
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3.4. Einfluss der Anregung auf die Übertragungseigenschaften eines geraden Ka-

nalwellenleiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5. Trajektorienverlauf bestehend aus zwei geraden und einem konstant ge-
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6.9. Übertragungsfunktion und 3dB Grenzfrequenz von geraden Kanalwellenlei-
tern mit unterschiedlicher Wellenleiterlänge L und numerischer Apertur
AN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



Abbildungsverzeichnis 177

6.10. Fernfeld und Matrix der geführten Strahlen eines geraden rechteckförmigen
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Kanalwellenleitern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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leiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
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[96] Stübbe, O.: Einfluss des Modenrauschens in hochgradig vielmodigen optischen
Wellenleitern. Studienarbeit, Universität Paderborn, 2002.
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[102] Stübbe, O., A. Himmler, E. Griese und G. Mrozynski: Influence of Mo-
dal Noise on the Bandwidth Length Product of Optical Multimode Waveguides with
Rough Surfaces . In: Optik in der Rechentechnik 2005 , S. 63–71, Mannheim, Deutsch-
land, Sep. 2002.
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