
Peer-to-Peer Networks based on
Random Graphs

Dissertation

by

Peter Mahlmann

Faculty for Electrical Engineering, Computer Science and Mathematics
Department of Computer Science and Heinz Nixdorf Institute

University of Paderborn, Germany

February 2010

Reviewers:

• Prof. Dr. Friedhelm Meyer auf der Heide, University of Paderborn, Germany

• Prof. Dr. Christian Schindelhauer, University of Freiburg, Germany

To Lena and Pia Marie

iv

Acknowledgements

This work would not have been possible without the understanding and encourage-
ment of my family and my parents as well as the support of all the colleagues with
whom I worked together. I have to thank them all and I am especially indebted to the
following people.

I am deeply grateful to my advisor, Prof. Friedhelm Meyer auf der Heide for his
continuous encouragement during all the stages of this thesis and for giving me the
opportunity to choose the direction of my research. In particular I would like to thank
him for the opportunity to participate in the EU integrated project DELIS and especially
for involving me into the management and administration of this project. The latter
seemed to be a time intensive and thankless task at first glance, yet turned out to be a
great time and an invaluable experience in the end.

I also want to sincerely thank my co-advisor, Prof. Christian Schindelhauer for the co-
operation in research, his patience in numerous discussions, and knowing to appreciate
a critical point of view.

Last but not least I want to thank Thomas Janson for his excellent work as student
assistant and many fruitful discussions about 3nuts.

v

vi

Contents

1 Introduction 1
1.1 Unstructured vs. Structured Networks . 3
1.2 Our Contribution . 3

1.2.1 Contributions Concerning Unstructured Networks 4
1.2.2 Contributions Concerning Structured Networks 5

1.3 Bibliographical Notes . 5

I Unstructured Networks 7

2 Introduction to Random Graphs and Unstructured Networks 9
2.1 Notations . 12

3 The Undirected Case: Flipper 15
3.1 Uniform Generation of Regular Connected Graphs 15
3.2 Fast Construction of Expander Graphs . 22
3.3 Peer-to-Peer Networks based on Random Regular Graphs 27

3.3.1 Joining Peers . 28
3.3.2 Leaving Peers . 30
3.3.3 Concurrency . 30

3.4 Experimental Evaluation . 32
3.4.1 Results for the 1-Flipper . 35
3.4.2 Results for the k-Flipper . 38
3.4.3 1-Flipper in a Real World Network 40

4 The Directed Case: Pointer-Push&Pull 43
4.1 The Pointer-Push&Pull Graph Transformation 43

4.1.1 Multi-Digraphs . 44
4.1.2 Edge Labeled Multi-Digraphs . 49
4.1.3 Simple Digraphs . 53

4.2 Pointer-Push&Pull in Peer-to-Peer Networks 54
4.2.1 Concurrency . 55
4.2.2 Joining Peers . 55

vii

Contents

5 Conclusion and Open Problems 61

II Structured Networks 65

6 Introduction to Structured Networks 67
6.1 Locality in Peer-to-Peer Networks . 68

6.1.1 Network Locality . 68
6.1.2 Information Locality . 68
6.1.3 Interest Locality . 70

7 3nuts: Combining Random Networks, Search Trees, and DHTs 73
7.1 The 3nuts Architecture . 74

7.1.1 Basic Concepts: Data Tree and Network Tree 74
7.1.2 Peer Assignment, Load-Balancing, and Responsibilities 76
7.1.3 Maintaining Random Networks 78
7.1.4 A Peer’s Local View . 79
7.1.5 Initializing the Local View . 80
7.1.6 Maintaining the Local View . 81
7.1.7 Routing . 82

7.2 Locality in 3nuts . 85
7.3 Experimental Evaluation . 87

7.3.1 Routing . 87
7.3.2 Load Balancing . 89
7.3.3 Degree . 89
7.3.4 Dynamics and Robustness . 91

8 Conclusion and Outlook 93

A Pointer-Push and Pointer-Pull Operations 95

Bibliography 99

viii

Notation

Frequently Used Variables and Notations

d degree of a graph
n number of nodes in a graph or peers in a network
P a path in a graph or network

E(S, T) set of edges between S ⊂ V and T ⊂ V, i.e. {{u, v} ∈ E : u ∈ S, v ∈ T}
δS set of undirected edges with exactly one endpoint in S
δ+S set of directed edges starting in S and pointing to nodes not in S
δ−S set of directed edges pointing to nodes in S and not starting in S
#E(e) multiplicity of edge e in the set of edges E of a multi-graph

N(v) set of nodes neighboring v in an undirected graph
N+(v) successor nodes of v in a digraph, i.e. {u ∈ V : (v, u) ∈ E}
N−(v) predecessor nodes of v in a digraph, i.e. {u ∈ V : (u, v) ∈ E}
N+(v, i) successor node of v in an edge-labeled digraph due to the i-th labeled edge

A(G) adjacency matrix of graph G
λi i-th Eigenvalue of an adjacency matrix
h(G) edge expansion of graph G

log n the binary logarithm log2(n)
a.a.s. asymptotically almost surely, a probability p ≥ 1− o(1)
w.h.p. with high probability, a probability p ≥ 1− n−c

Asymptotic Growth of Functions [109]

O(n) f (n) = O(g(n)) :⇔ lim sup
n→∞

| f (n)|
|g(n)| < ∞

Ω(n) f (n) = Ω(g(n)) :⇔ lim inf
n→∞

| f (n)|
|g(n)| > 0

Θ(n) f (n) = Θ(g(n)) :⇔ f (n) = O(g(n)) ∧ f (n) = Ω(g(n))
o(n) f (n) = o(g(n)) :⇔ lim

n→∞
| f (n)|
|g(n)| = 0

ω(n) f (n) = ω(g(n)) :⇔ lim
n→∞

| f (n)|
|g(n)| = ∞

ix

x

1
Introduction

Starting with Napster [100] and the Gnutella network [44] a new type of network ar-
chitectures has emerged and continues pervading the Internet: Peer-to-peer networks.
In a recent study by Ipoque1 1.3 petabytes of Internet traffic have been monitored and
analyzed [105], revealing that peer-to-peer generated most traffic in all regions moni-
tored (e.g. the fraction of peer-to-peer traffic in Germany was 52.79%). “Peer” literally
means equal and describes the circumstance that the nodes (i.e. peers) of a peer-to-peer
network can not be classified as client or server. On the contrary, the nodes (i.e. peers)
of a peer-to-peer network have symmetrical functionality and each peer acts as server,
client, and router at the same time. The literature provides several descriptions of what
exactly characterizes “peer-to-peer” [106, 104, 85, 111, 112, 6]. In [6] peer-to-peer net-
works are defined as

“[...] distributed systems consisting of interconnected nodes able to self-organize
into network topologies with the purpose of sharing resources such as content,
CPU cycles, storage and bandwidth, capable of adapting to failures and accommo-
dating transient populations of nodes while maintaining acceptable connectivity
and performance, without requiring the intermediation or support of a global cen-
tralized server or authority.”

This can be considered as a broad definition of peer-to-peer networks because it is not
assumed that peers are exactly equal, i.e. according to the definition more powerful
peers may take over additional tasks or provide additional resources to the network. In
this thesis however, we are interested in networks which are strictly peer-to-peer, i.e. all
peers of the network are exactly equal and each peer provides the same functionality.

The first application area of peer-to-peer networks was file sharing [74]. A file shar-
ing network allows users to publish own files and make them available for download
to other users. In file sharing networks such as Gnutella [44] the peer-to-peer structure
is used only for the purpose of publication and searching files. The actual file transfer
between users is performed using a direct connection. While file sharing surely still is
the most prominent application area of peer-to-peer networks, it often is in conflict with

1 See http://www.ipoque.com.

1

1 Introduction

overlay network

physical network

Figure 1.1: An overlay network with underlying physical network. A single hop in the overlay
(dashed lines) typically involves multiple hops in the physical network.

copyright laws. However, there is also an increasing number of companies [25] devel-
oping legal peer-to-peer applications such as the Skype [10] VoIP (Voice over Internet
Protocol) software allowing to make phone calls via Internet or the ZATTOO network
[21] for live streaming of radio and television programs.2

Peer-to-peer networks belong to the class of so called overlay networks. An overlay
network is a network which is build on top of a physical network, e.g. the Internet,
and uses the physical network for realizing the communication among nodes (peers)
that are connected in the overlay network, see Figure 1.1. Thus, links between peers
are not physical but logical and therefore peers are able to join or leave the overlay
at any time. Indeed, measurement studies of real world peer-to-peer networks reveal
that these underly high churn rates [12, 46, 101], i.e. peers frequently join and leave the
network without prior notice. Therefore, failure resilience plays an important role in
peer-to-peer networks and robustness is a key to realize the actual potential of peer-to-
peer in applications other than file sharing [97, 42]. So it is important to fully exploit the
potential of the symmetrical functionality among peers since this property bears the po-
tential of excellent failure resilience, i.e. there is no single point of failure and the impact
of individual failures may be less than in conventional client server architectures.

2 See http://www.skype.com respectively http://www.zattoo.com .

2

http://www.skype.com
http://www.zattoo.com

1.1 Unstructured vs. Structured Networks

1.1 Unstructured vs. Structured Networks

Peer-to-peer networks may be divided into unstructured and structured networks. Un-
structured networks such as Gnutella [44] are characterized by the lack of constraints
on resource distribution and topology. A peer may select arbitrary other peers as neigh-
bors (yet, these may reject connections) resulting in a random graph like topology. To
publish resources a peer either maintains its own local index or places references on
randomly chosen peers. For resource discovery each local index has to be queried sep-
arately so that complex queries — such as range queries or keyword queries with reg-
ular expressions — can be implemented easily. However, flooding or random walks
have to be used for resource discovery. In consequence unstructured networks only
have loose guarantees regarding resource discovery and resources may not be found
although they exist in the network.

In structured peer-to-peer networks the placement of resources and the evolution
of the topology is strictly controlled and therefore causes extra overhead. Control-
ling placement of resources obviously has the not inconsiderable advantage that peers
searching for resources can determine the location of these resources in the network
and so resources are guaranteed to be found as long as they exist. Often hash functions
are used for resource placement, whereby many structured peer-to-peer networks are
limited to exact match queries. The topology is controlled to allow efficient routing, i.e.
the number of hops needed typically is logarithmic in the number of peers, and achieve
low congestion. Often the topology is designed in such a way that routing architectures
known from static networks — such as the DeBruijn, Butterfly, and Hypercube network
— are emulated. Here, it seems that some static network architectures are better suited
than others for this purpose, e.g. the Butterfly network seems to be harder to implement
[76] than the DeBruijn network [80] in the dynamic setting of a peer-to-peer network.
Generally, structured peer-to-peer networks are considered to be harder to maintain un-
der churn and to be less robust than unstructured networks due to the extra overhead
[22, 36, 103].

In the bottom line both unstructured and structured peer-to-peer networks have their
individual advantages and disadvantages. Unstructured networks stand out with sim-
plicity, robustness and allow complex queries, but can not guarantee to find existing
resources and lack efficient query algorithms. On the other hand structured networks
provide efficient query algorithms and guarantee to find existing resources but are less
robust, harder to maintain under churn, and limited to exact match queries or range
queries at the best.

1.2 Our Contribution

As pointed out above robustness is of major importance when designing peer-to-peer
networks. It is reasonable to choose a simple network structure that is easy to main-
tain in case of strong dynamics and therefore keeps the network fully functional under
churn or at least allows to recover quickly from worst case scenarios. These criteri-

3

1 Introduction

ons are met by random networks. In this thesis we present methods to construct and
maintain random networks using local operations which are applied to the network
regularly. We propose to use these operations to improve the robustness of unstruc-
tured peer-to-peer networks or use them as building block for a structured peer-to-peer
network.

1.2.1 Contributions Concerning Unstructured Networks

In Part I of this thesis we introduce and analyze several local distributed algorithms
— we refer to these as local graph transformations — to generate and maintain truly
random graphs respectively expander graphs3. We also show how these graph trans-
formations can be implemented in a peer-to-peer network and propose to use them
as simple and effective maintenance operation. Their practical relevance is underlined
by experimental evaluation. Note that the local graph transformations presented here
constitute an important improvement since previously known algorithms to generate
random regular graphs can not be implemented in a peer-to-peer networking concept
[58, 110] and algorithms proposed to maintain random graphs as network topology so
far either make use of a central server [86], can not recover from degenerate network
states [64], or do not guarantee connectivity [26].

In Chapter 3 our focus is on undirected random networks and we introduce a family
of local graph transformations for the domain of connected regular undirected graphs,
the so called k-Flipper operations. Given a path of k + 2 edges a k-Flipper operation
interchanges the end vertices of the path. We show that for all k ≥ 1 every d-regular
connected graph can be reached by a series of k-Flipper operations and use a random-
ized version, called Random k-Flipper, in order to create random regular connected
undirected graphs. For the Random 1-Flipper we show that in the limit a series of these
operations converges against an uniform probability distribution over all connected
labeled d-regular graphs, implying that the Random 1-Flipper transforms any given
graph into an expander graph asymptotically almost surely. Furthermore, we prove
that any connected d-regular graph with n nodes and d ∈ Ω(log n) will be transformed
into an expander graph by a series ofO(dn) Random k-Flipper operations when choos-
ing k ∈ Θ

(
d2n2 log(1/ε)

)
with high probability, i.e. 1− n−Θ(1). The Flipper operations

arose strong interest in the research community. At the time of publication [72], no the-
oretical bounds for the convergence rate of the 1-Flipper operation were known and
several researchers tried to find upper bounds. A first bound was given by Feder et al.
[35], who showed polynomial convergence. Recently, their result has been improved
by Cooper et al. [28]. Despite all the efforts, a tight bound for the convergence rate still
seems to be out of reach with current proof techniques. So, we conclude the chapter
with experimental results indicating a convergence rate of O(dn log n) operations for
the 1-Flipper.

3 An expander graph is a graph in which for every subset S of nodes has a relatively large number of
edges with exactly one endpoint S. A formal definition of expander graphs is given by Definition 3.2 on
Page 21.

4

1.3 Bibliographical Notes

In Chapter 4 we focus on directed random networks and introduce the so called
Pointer-Push&Pull graph transformation. The aim of Pointer-Push&Pull is to improve
the Flipper operations from a practical point of view and minimize the number of
messages needed per graph transformation. The Pointer-Push&Pull operation can be
used in parallel without central coordination and each operation involves only two
peers which have to exchange two messages, each carrying the information of one
edge only. We prove that a series of random Pointer-Push&Pull operations eventually
leads to a uniform probability distribution over all weakly connected out-regular multi-
digraphs4. Depending on the probabilities used in the operation this uniform proba-
bility distribution either refers to the set of all weakly connected out-regular multi-
digraphs or to the set of all weakly connected out-regular edge-labeled multi-digraphs.

1.2.2 Contributions Concerning Structured Networks

In Part II we introduce a structured peer-to-peer architecture called 3nuts. One of the
aims of 3nuts is to combine concepts of unstructured and structured peer-to-peer net-
works to overcome their individual shortcomings. This is achieved by cleverly com-
bining self maintaining random networks for robustness, a search tree to allow range
queries, and distributed hash tables (DHT) for load balancing. All network operations
in 3nuts are local and distributed, i.e. 3nuts makes extensive use of Pointer-Push&Pull5

maintained random networks and their excellent communication properties to main-
tain the network structure, spread information for load balancing, and measure round
trip times (RTT) to adapt the overlay to the underlying physical network and thus allow
routing with small latency.

Another important aim of 3nuts is to forgo the use of heuristics wherever possible
since most other peer-to-peer networks providing similar functionality heavily rely on
heuristics [2, 56, 66], this is especially the case for load-balancing mechanisms. So, in
Chapter 7 efficiency of load balancing, fast data access, and robustness are proven by
rigorous analysis. To the best of our knowledge 3nuts is the first structured peer-to-peer
network efficiently supporting range queries, providing load balancing, and adapting
the overlay to the physical network at the same time.

1.3 Bibliographical Notes

Many of the results presented in this thesis have been presented and published in a
preliminary version in conference proceedings. The Flipper operations and their anal-
ysis have been presented in [72]. The corresponding experimental results for the Flip-
per operations (Section 3.4) appeared in [75]. The Pointer-Push&Pull operation and its

4 In out-regular multi-digraphs each node has the same number of outgoing edges and multi-edges or
self-loops may occur.

5 Note that Flipper operations could be used as well, yet these would slightly increase the overall network
traffic.

5

1 Introduction

analysis has been presented in [73] and the 3nuts peer-to-peer network appeared as
technical report [71] and is currently under submission.

6

Part I

Unstructured Networks

7

2
Introduction to Random Graphs and

Unstructured Networks

In the first part of this theses, we concentrate on two important features necessary for
successful peer-to-peer networks: Robust connectivity and randomness. As an example
consider the Gnutella network [44]. In its first implementation Gnutella used an inser-
tion procedure aiming at constructing a robust random network structure with small
diameter. In Gnutella new peers join the network by connecting to former neighbors.
If this fails, e.g. if the Gnutella network is used for the first time, the peer tries out a
list of peers which often happen to participate in the network. The history of Napster
and other cases have shown that specific hosts may cease to exist. If all former mem-
bers do so, then a peer is not able to connect to the network. Since the list of former
members is extended after each session this risk becomes smaller and smaller. Studies
reveal that the network structure of Gnutella is not truly random, but a so-called Pareto
(or power law) distributed graph [59, 96]. Compared to a random network, the degree
distribution (i.e. the density function of neighbors) is skewed and also the diameter of
the network is larger than in random networks with the same average out-degree. The
original query algorithm of Gnutella — a broadcast of limited depth (usually referred
to as flooding) — has severe scalability issues [98]. In [70] the authors evaluate several
query strategies for Gnutella on different types of random graphs and the note that
among the various network topologies considered, uniform random graphs yield the
best performance. So, Gnutella would have been a better network if the peers would
have been connected by a truly random network.

The idea of using random networks as topology for peer-to-peer networks also ap-
pears in the peer-to-peer network design suite JXTA of Sun Microsystems [90, 118, 84].
JXTA aims at connecting all peers by a random network to provide robustness, i.e. pre-
vent peers or groups of peers from being disconnected. So, JXTA forms a design tool
for peer-to-peer network applications like distributed search for web-sites [18]. The ro-
bustness and reliability of such random backbones is affirmed in [63], [82], [45], and
[11]. The usage of random networks can be further motivated by results of graph the-
ory, which show that random graphs provide high connectivity and expansion even for
very small degrees [121]. Informally, the expansion property means that all partitions

9

2 Introduction to Random Graphs and Unstructured Networks

of the set of nodes of a graph have a number of edges on the cut which is proportional
to the smaller set of the partitions. Such expander graphs have a lot of desirable prop-
erties, e.g. logarithmic diameter, large conductance, and short mixing times of random
walks [43].

Here, we concentrate on the generation of d-regular connected graphs (Chapter 3) re-
spectively d-out-regular connected digraphs (Chapter 4). There is a number of reasons
for this choice. These graphs describe the situation in peer-to-peer networks where the
uniform degree induces some fairness to the network since each peer stores the same
amount of network information. Furthermore, messages passed over a long random
walk will pass all peers with equal probability. For an excellent survey on random
regular graphs and their properties we refer to [121].

Little is known so far, whether the processes used in practice to maintain random
graphs satisfy even minimal standards. We desire the following properties for random
transformations of graphs:

Soundness No transformation maps to graphs which are not in the domain space,
e.g. for d-regular undirected connected graphs, this means that each operation
preserves degree d at every node and there is not even the slightest (small proba-
bility) chance to disconnect parts from the graph.

Generality The random transformation process does not converge to a specific graph.
All graphs are reachable and in the limit all graphs occur with non-zero probabil-
ity. This requirement can be tightened to uniform generality where in the limit all
graphs occur with the same probability.

Feasibility The graph transformation can be described by a simple (distributed) rou-
tine changing only a small number of edges of the graph. Its implementation in a
distributed network should be straightforward.

Convergence rate Only a small number of transformations is necessary to achieve an
approximation of the ultimate distribution of all graphs.

Surprisingly, the process used in JXTA which is widely used, has never been ana-
lyzed with respect to these features. Identifying such transformations meeting all these
requirements gives an approximate solution to the problem of generating all graphs
of a specific domain respectively sampling random graphs — a well studied problem.
Algorithms for sampling regular graphs uniformly at random have been presented by
Bollobás [15], and McKay and Wormald [77]. For the problem of generating random
regular graphs with nearly uniform probability distribution Jerrum and Sinclair [58]
give a generator for d-regular graphs on n vertices which approximates the uniform
probability distribution by a factor of 1+ ε and runs polynomial in n and log 1/ε. Their
result was improved by Steger and Wormald [110]. It is well known that almost every
d-regular graph is connected and it is easy to use these algorithms to approximate also
d-regular connected graphs. However, these methods cannot be applied in a network-
ing concept. Furthermore, the algorithms do not guarantee connectivity of the graph.

10

Methods to generate random graphs that can be applied in a networking concept also
have been proposed. We will briefly discuss some of these in the following. Panduran-
gan, Rhagavan, and Upfal presented an approach to build unstructured peer-to-peer
networks in [86, 87]. In their protocol randomness is introduced to the network via the
join operation only. New peers join the network by connecting to a random set of peers
which is obtained via central cache server. There are explicit rules for nodes when to
enter or leave the cache so that the degree of peers can be controlled. Furthermore, the
protocol ensures that the resulting network is connected and has logarithmic diameter
with high probability. The crucial weakness of the protocol however is the central cache
server which represents a single point of failure and grossly contradicts the peer-to-peer
paradigm.

Law and Siu [64] presented a distributed algorithm for constructing random overlay
networks that are composed of d Hamilton cycles. A newly arriving peer joins each
of the d Hamilton cycles at random positions respectively. The protocol is completely
decentralized and the constructed topologies are expanders with diameter O (logd n)
with high probability. However, as the authors note the probability space produced
by their protocol may deviate far from the uniformly distributed space in a dynamic
setting, what may lead to graphs with small or no expansion and their protocol is not
able to recover from bad graphs.

A solution that is closely related to the algorithm that we will present in Chapter 3
has been proposed by Cooper, Dyer and Greenhill [26, 27].1 They use a simple graph
transformation called switch to maintain the network structure. A switch operation
choses two nonadjacent distinct edges {u, v}, {u′, v′} uniformly at random (u.a.r.) and
chooses a perfect matching M of {u, v, u′, v′} uniformly at random. If the edges of M do
not already exist in the network, {u, v}, {u′, v′} are deleted and replaced by the edges
of M. The switch operation is applied repeatedly to the network and thus “repairs” the
topology in case of node failures or if unfavorable join operations have been used. The
authors also present a detailed analysis of the Markov chain described by the switch
operation and show that repeatedly applying switch operations to a d-regular graph
generates all graphs of this domain with the same probability. Furthermore, they give
an upper bound of d15n8 (dn log(dn) + log(ε−1)

)
switch operations to reach an 1 + ε

approximation of the uniform probability distribution. The switch operation is feasible
if the graph is given as a data structure on a single machine. However, when the graph
constitutes an interconnection network of computers, this operation is no more feasi-
ble. As long as all nodes are connected one can choose random edges by performing
a random walk with an appropriate length, i.e. the mixing time of the graph. But the
switch operation may — and in the long run definitely will — disconnect parts from
the network. Then, without extra network connections the network cannot be rejoined
anymore. Our point is that feasibility in terms of distributed algorithms implies main-
taining connectivity at all stakes.

So, several algorithm to build respectively maintain the topology of unstructured

1 Note that the results of Cooper, Dyer and Greenhill [26, 27] and ours [72] have been developed indepen-
dently and at the same time.

11

2 Introduction to Random Graphs and Unstructured Networks

peer-to-peer networks, i.e. random graphs, have been proposed. However, none of
them fulfills the four properties we pointed out as desirable above. Chapter 3 and 4
will introduce maintenance operations that overcome the shortcomings of the switch
operation as we will see.

2.1 Notations

In the following we introduce some notations which are used throughout this theses. By
log n = log2 n we denote the dual logarithm function. The term “with high probability”
(w.h.p.) describes a probability p ≥ 1− n−c and “asymptotically almost surely” (a.a.s.)
is a probability p ≥ 1− o(1). Furthermore, we use the following definitions for several
classes of directed graphs, which we will refer to as digraphs from now on.

Definition 2.1 (Simple Digraph) A simple digraph G = (V, E) is defined by a node set
V = {1, . . . , n} and a set of directed edges E = {(u, v) : u, v ∈ V, u 6= v}.

A digraph is strongly connected if for all pairs of nodes there exists a directed path in
E and weakly connected if there exists a path neglecting the direction of the edges for
each pair of nodes. For v ∈ V we define N+(v) = {w : (v, w) ∈ E} and N−(v) =
{u : (u, v) ∈ E} to refer to the successor and predecessor nodes of v in G. A digraph is
called d-regular if ∀v ∈ V : |N−(v)| = |N+(v)| = d. Furthermore, we say a digraph is
d-out-regular if ∀v ∈ V : |N+(v)| = d.

The usage of a multiset for the set of edges in digraphs will allow us to define a more
general model of digraphs. Therefore, we give a formal definition of multisets.

Definition 2.2 (Multiset) A set E and a function #E : E → N0, specifying the multiplicity
of its elements, define a multiset. For e ∈ E we write e ∈k E if #E(e) = k. This implies e ∈0 E
for all e 6∈ E. The cardinality of a multiset E is defined as |E| = ∑e∈E #E(e).

For the subtraction on multisets we define E′ = E \ e such that #E′(e) = #E(e)− 1 if
#E(e) > 0 and #E′(e) = #E(e) = 0 otherwise. The union of sets is defined analogously,
i.e. #E′(e) = #E(e) + 1. On basis of simple digraphs and multisets we can now define
the more general model of multi-digraphs.

Definition 2.3 (Multi-Digraph) A multi-digraph G = (V, E, #E) is defined by a node set
V = {1, . . . , n} and a multiset of directed edges E = {(u, v) : u, v ∈ V} with #E specifying
the multiplicity of the edges.

In a multi-digraph self-loops (u, u) and multiple occurrence of edges are explicitly
allowed, e.g. an edge (u, v) may occur twice. Analogous to simple digraphs, a multi-
digraph is called d-regular if

∀u ∈ V : ∑
v∈V,(u,v)∈E

#E((u, v)) = ∑
v∈V,(v,u)∈E

#E((v, u)) = d

12

2.1 Notations

and called d-out-regular if

∀u ∈ V : ∑
v∈V,(u,v)∈E

#E((u, v)) = d .

Note, that if no self-loops occur and the multiplicity of all edges is at most one then a
multi-digraph describes a simple digraph. So, simple digraphs form a subset of multi-
digraphs. As in case of simple digraphs we define the neighborhood of a node v ∈ V
as N+(v) = {w : (v, w) ∈ E}. Note that N+(v) is not a multi-set and therefore that
|N+(v)| < d is possible in a d-out-regular multi-digraph.

The operations we introduce in the first part of this thesis are so called graph trans-
formations, i.e. they transform a graph of a specific domain to another graph of that
domain. We now give a formal definition of a graph transformation.

Definition 2.4 (Graph Transformation) A graph transformation is a random transition be-
tween the graphs of a specific domain G, e.g. d-regular graphs or multi-digraphs. A graph
G ∈ G is mapped to a set of other graphs in G such that

∑
G′∈G

Pr[G → G′] = 1,

where G→ G′ denotes that G is transformed to G′. A graph transformation describes a Markov
chain, where the set of states equals the set of graphs in G, i.e. each G ∈ G represents a state
of the Markov chain. The transition matrix of the Markov chain is given by the transformation
probabilities P[G → G′] for all pairs G, G′ ∈ G.

13

14

3
The Undirected Case: Flipper

In this chapter we present sound, general, feasible, quickly converging transformations
for d-regular random graphs. We introduce a family of graph transformations, namely
the k-Flipper operations, for an integer k ≥ 1 and their randomized versions. Start-
ing with an arbitrary d-regular connected graph we repeatedly apply these operations.
Thereby we can guarantee the resulting graph to stay connected and d-regular. Fur-
thermore, these operations will turn any graph into an expander and introduce fresh
randomness to the graph which is especially helpful in dynamic graphs with a changing
node set. For the Random 1-Flipper we can prove uniform generality, i.e. all connected
d-regular graphs occur with the same probability in the limit and as a consequence,
expander graphs occur a.a.s. To the best of our knowledge this gives the first solution
to the problem of distributed generation of d-regular connected graphs with labeled
nodes with uniform probability.

Up to date no tight bounds for the number of Random 1-Flipper operations needed to
reach this uniform probability distribution are known. If we choose k ∈ Θ(d2n2 log 1/ε)
we can show the convergence rate of the Random k-Flipper. It turns out that afterO(dn)
Random k-Flipper operations an expander graph is established with high probability,
i.e. 1− n−Θ(1).

We use these operations to provide a peer-to-peer network based on random regular
connected graphs that provides high robustness and recovers from degenerate network
structures — which may be caused join operations or network failures — by contin-
uously applying these random graph transformations. For this, we discuss how the
concurrency of Flipper operations can be handled and how operations for joining and
leaving the network can be designed.

3.1 Uniform Generation of Regular Connected Graphs

In this section we present an elegant method to generate an uniform probability dis-
tribution of regular connected graphs in the limit. For this, we introduce the 1-Flipper
and its randomized version.

15

3 The Undirected Case: Flipper

u1 u4

u2 u3

u1 u4

u2 u3

Figure 3.1: The 1-Flipper operation F1
P.

Definition 3.1 (1-Flipper) Consider a d-regular undirected graph G = (V, E) and four dis-
tinct nodes u1, u2, u3, u4 ∈ V forming a path P = (u1, u2, u3, u4) in G. Then, if {u1, u3},
{u2, u4} 6∈ E the 1-Flipper operation F1

P transforms graph G to a graph F1
P(G) = (V, E′) with

E′ := (E \ {{u1, u2}, {u3, u4}}) ∪ {{u1, u3}, {u2, u4}} .

Figure 3.1 illustrates the 1-Flipper operation. We denote {u1, u2}, {u3, u4} ∈ E as
flipping edges and {u2, u3} ∈ E as hub edge of the 1-Flipper operation. A randomized
version of the 1-Flipper is given by the following algorithm.

Algorithm 3.1 Random 1-Flipper
1: Choose random edge {u2, u3} ∈ E
2: Choose random node u1 ∈ N(u2)\{u3}
3: Choose random node u4 ∈ N(u3)\{u2}
4: if {u1, u3}, {u2, u4} /∈ E then
5: E← E \ {{u1, u2}, {u3, u4}}
6: E← E ∪ {{u1, u3}, {u2, u4}}
7: end if

We will now analyze this simple graph transformation. The following lemma shows
that the 1-Flipper operation is sound.

Lemma 3.1 The 1-Flipper operation preserves connectivity and d-regularity.

Proof: Concerning d-regularity note that each node receives one new edge and looses
one of its former edges. For connectivity consider two nodes u, v and a path P con-
necting them. This path can be destroyed, if an edge of P is chosen as flipping edge.
However all participating nodes of the 1-Flipper operation remain connected so that
another path between u and v can be found.

A delimiting factor for applying the 1-Flipper operation is the existence of a triangle
such that for a hub edge {u2, u3} nodes v with {u2, v}, {u3, v} ∈ E exist. Then neither
{u2, v} nor {u3, v} can be chosen as flipping edges. Let 5G(u, v) be the number of
triangles in G with {u, v} as an edge. Then the following lemma holds:

Lemma 3.2 For an arbitrary hub edge e ∈ E there are (d− 1−5G(e))2 possibilities to per-
form a 1-Flipper operation that changes the edge set E.

16

3.1 Uniform Generation of Regular Connected Graphs

Proof: Assume for a hub edge e = {u, v} that edges {v, w}, {u, w} exist in G, then
choosing one of these triangle edges as flipping edges will prevent a change of the edge
set. If the flipping edges are not part of such triangles then the 1-Flipper operation will
change the edge set.

Note that in some graphs for certain hub edges there is no possibility to perform
an edge flip at all. In this case all neighbors are connected to both nodes of the hub
edge. Then, the 1-Flipper operation has no effect unless another hub edge is chosen.

Let G F1

−→ G′ denote the predicate that graph G is transformed to G′ by a 1-Flipper
operation. For the transformation probability between graphs the following lemma
holds:

Lemma 3.3
1. For all d > 2 there is a connected d-regular graph G such that Pr[G F1

−→ G] 6= 0 .

2. For graphs G′ = F1
P(G) with P = (u1, u2, u3, u4): 5G({u2, u3}) = 5G′({u2, u3}).

3. For graphs G′ = F1
P(G) with P = (u1, u2, u3, u4): 5G({u1, u4}) = 5G′({u1, u4}).

4. For all undirected regular graphs G, G′: Pr[G F1

−→ G′] = Pr[G′ F1

−→ G] .

Proof:

1. Consider a graph with edges {u1, u2}, {u1, ui}, {u2, ui} for i ∈ {3, . . . , d + 2} and
an arbitrary set of further edges satisfying the d-regularity. If edge e = {u1, u2} is
chosen as hub edge then5G(e) = d− 1 and from Lemma 3.2 it follows that there
is no possibility to perform a 1-Flipper operation that changes E.

2. This property follows by the definition of the 1-Flipper operation. Note that it is
not possible to establish or delete triangles containing the hub edge by definition.
Of course other triangles can be created or erased. However, they do not count
for5G′({u2, u3}).

3. The proof is analogous to the proof of Lemma 3.3.2.

4. Note that G and G′ differ by exactly four edges connecting four nodes. At least
two of these nodes are connected by a hub edge. If exactly two of these nodes
are connected by a hub edge e then the probability to perform a successful flip
with this hub edge is according to Lemma 3.2 given by 2

dn (1 −
5G(e)2

(d−1)2) and the

probability to transform G directly into G′ is given by 2
dn

1
(d−1)2 . From Lemma 3.3.2

the same probabilities follow for the opposite direction G′ F1

−→ G.

If there are two hub edges e and e′ forming a quadrangle together with the flip-
ping edges the probability to perform a successful flip with these hub edges is
2

dn (2−
5G(e)2+5G(e′)2

(d−1)2) and the probability to transform G to G′ is given by 4
dn

1
(d−1)2 .

Then, the claim follows by applying Lemma 3.3.2 and Lemma 3.3.3.

We will now prove that the 1-Flipper operation provides generality.

17

3 The Undirected Case: Flipper

v u v u

Figure 3.2: Extending a cycle in G by an 1-Flipper operation with {u, v} as hub edge. Nodes
of the cycle are depicted black.

Lemma 3.4 For all pairs G, G′ of connected d-regular undirected graphs, with d ≥ 2 and even,
there exists a sequence of 1-Flipper operations transforming G into G′.

Proof: We show that any connected d-regular graph G = (V, E) with V = {u1, . . . , un}
can be transformed into a canonical graph GC = (V, EC) with edge set defined to be
EC = {{ui, u(i mod n)+1}, . . . , {ui, u((i+d/2−1) mod n)+1}} for 1 ≤ i ≤ n. From this and
the symmetry of the 1-Flipper the lemma follows.

To transform G into GC we start with making G hamiltonian. Note that every con-
nected regular graph contains a node disjoint cycle, not necessarily containing all n
nodes. We extend this cycle to contain all nodes, thus make G hamiltonian. For this we
successively add neighboring nodes to the cycle: Let v denote a node of the cycle and
let u be a non-cycle node neighboring v. To add u to the cycle we perform a 1-Flipper
operation with {u, v} as hub edge. The flipping edges are one of v’s edges on the cycle
and an arbitrary edge incident to u different from {u, v}. This way u is connected to
two neighboring nodes on the cycle and thus the cycle can be extended using u (see
Figure 3.2).

It remains to show that no triangles prevent us from applying these 1-Flipper oper-
ations. If there exists an edge between u and the end node of the flipping edge lying
on the cycle, then u can be incorporated into the cycle without a 1-Flipper operation.
For the second flipping edge between u and one of its neighbors we show that u has at
least one neighbor which is non-adjacent to v using the d-regularity of G. Node v has
already three neighbors: u and two nodes on the cycle. Without v, u has d− 1 neigh-
bors which are different from v’s neighbors on the cycle (otherwise we do not have to
apply the 1-Flipper operation). Furthermore, these d− 1 nodes cannot all be adjacent
to v since this would imply degree d + 2 for v. So there exist flipping edges such that
the 1-Flipper operation described above can always be performed. After at most n− 3
applications G is hamiltonian.

Having built the Hamilton cycle we bring the nodes of the cycle into the right order-
ing such that the cycle represents the edges {ui, u(i mod n)+1} of GC. Note that applying
a 1-Flipper to a path (u1, u2, u3, u4) interchanges the two inner nodes and results in the
path (u1, u3, u2, u4). If we want to exchange two neighboring nodes u, v of the cycle then
we can choose {u, v} as hub edge and choose the other cycle edges of u respectively v
as flipping edges. This way we can arrange any ordering of the nodes on the cycle.

18

3.1 Uniform Generation of Regular Connected Graphs

u1
us

ur-1

urut

u1
us

ur-1

urut

Figure 3.3: Transforming G into GC: The endpoint ur of edge {u1, ur} is moved in direction
of node us with a 1-Flipper operation.

Again we have to show that no triangles prevent these 1-Flipper operations. There-
for consider a 1-Flipper operation applied to four neighboring nodes u1, u2, u3, u4 of the
cycle. This can be done unless edges {u1, u3} or {u2, u4} exist. If both of these edges
exist we simply redefine the path of the cycle to get the desired ordering. If only one of
these edges exists, we assume that {u2, u4} is the edge preventing the 1-Flipper opera-
tion without restriction of generality. In this case we can easily choose another flipping
edge instead of {u3, u4}. We need an edge incident to u3, not incident to u2 and not
part of a triangle over {u2, u3}. The existence of such an edge can be shown using the
d-regularity of G as we did above. So, we can always find flipping edges to perform the
desired graph transformations.

Having established the edges {ui, u(i mod n)+1} we change the remaining edges in-
crementally according to GC. To do this, we restrict ourselves to 1-Flipper operations,
where the the hub edge is an edge of the cycle and the flipping edges are non-cycle
edges. This way the Hamilton cycle remains unchanged. Furthermore, we do not use
edges which we have already moved according to GC as flipping edges, i.e. we do not
destroy parts of the graph which we already have adjusted.

We start at node u1 and establish edges {u1, u3}, . . . , {u1, ud/2+1} in this order. Then
we do the same for nodes u2, . . . , un. Here we only show how this can be done for
node u1. For the remaining nodes this can be done in the same manner. From the
outgoing (non-cycle) edges of u1 we choose the one whose endpoint is reached first
when following the Hamilton cycle in direction of increasing node numbers starting
from u1. Let ur denote the current and us, s < r, be the desired endpoint of this edge.
We move the endpoint of the edge in decreasing direction of the cycle successively
until us is reached. The first step is done by applying a 1-Flipper operation to the path
(u1, ur, ur−1, ut), with {ur−1, ut} being a non-cycle and not already adjusted edge. This
transformation is illustrated in Figure 3.3. The remaining steps towards us are done
using similar 1-Flipper operations.

Once again these 1-Flipper operations can be blocked by triangles. Note that the first
flipping edge {u1, ur} cannot be part of a triangle over {ur, ur−1} since {u1, ur−1} does
not exist in G, otherwise it would have been chosen as flipping edge. However node

19

3 The Undirected Case: Flipper

ur−1 can have no free flipping edge over the hub edge {ur, ur−1}. This can only happen
if the edge {ur−1, ur+1} exists or there is an already adjusted edge pointing to ur−1,
since ur−1 cannot be a neighbor of u1. Furthermore, the neighboring cycle edges can
also be blocked by triangles. However there will be a non-blocked hub edge in distance
(d− 2)/2, as the following lemma shows.

Lemma 3.5 In any hamiltonian d-regular graph G with d > 2 at most d− 3 contiguous edges
of the Hamilton cycle can be completely blocked by triangles such that no 1-Flipper using one of
these d− 3 edges as hub edge and edges lying not on the Hamilton cycle as flipping edges can
be applied.

Proof: Let {ui, u(i mod n)+1}, 1 ≤ i ≤ n, be the edges forming the Hamilton cycle.
Without restriction of generality we regard the neighboring nodes u1, . . . , ud−2 of the
Hamilton cycle. To block edge {u1, u2} u1 and u2 have to have d− 2 common neighbors
neglecting their neighbors on the Hamilton cycle. The same argumentation holds for
edge {u2, u3}, so that u3 has also to be connected to these d− 2 nodes. Continuing to
edge {ud−3, ud−2} this implies that these d − 2 neighbors have reached degree d and
thus can not have any more neighbors. This implies that edge {ud−2, ud−1} can be used
as hub edge since there cannot be d− 2 triangles over {ud−2, ud−1}.

Having such a non-blocked hub edge in distance at most (d− 2)/2, we can use it to
remove a triangle blocking the original considered hub edge as follows. Assume that
there are d− 2 neighboring cycle edges {uk, uk+1}, {uk+1, uk+2}, . . . , {uk+(d−3), uk+(d−2)}
blocked by triangles. From Lemma 3.5 we know that {uk−1, uk} has two free flipping
edges. Applying a 1-Flipper with hub edge {uk−1, uk} and a triangle edge of uk and
an arbitrary free edge of uk−1 as flipping edges will remove one of the triangles over
{uk, uk+1}, thus make {uk, uk+1} non-blocked. This procedure can be repeated until the
desired hub edge is non-blocked.

The way described above we can make any desired hub edge non-blocked and thus
apply the desired 1-Flipper operations. The situation is slightly different when we al-
ready have adjusted the edges of n− (d− 1) nodes. Then there are d− 2 hub edges left
which we will use (this is due to our construction scheme). According to Lemma 3.5
alone it is possible that these d− 2 edges are blocked. However in our particular case
this cannot happen since the endpoints of the blocking triangles would have to lie in
parts of G which we have already processed, and this is not possible by definition of
GC. This concludes the proof of Lemma 3.4.

Let G i→ G′ denote the predicate that G′ is derived from G by applying i Random
1-Flipper operations. Furthermore, let Cn,d denote the set of all connected d-regular
graphs with n nodes. The following theorem shows that the Random 1-Flipper opera-
tion provides uniform generality.

Theorem 3.1 Let G0 be a d-regular connected graph with n nodes and d > 2. Then in the
limit the Random 1-Flipper operation constructs all connected d-regular labeled graphs with the
same probability, i.e.

lim
t→∞

Pr[G0
t→ G] =

1
|Cn,d|

.

20

3.1 Uniform Generation of Regular Connected Graphs

Proof: Consider a Markov process over the set of all connected d-regular graphs de-
scribed by the Random 1-Flipper. From Lemma 3.3.1 we know that some diagonal
entries of the Markov transition matrix are non-zero. From Lemma 3.3.4 we know that
the process is symmetric and therefore doubly stochastic. Lemma 3.4 shows that every
state of the Markov process can be reached. From this the claim follows by applying
essential results of Markov theory.

We now give a definition for expander graphs. Expander graphs have a number
of advantageous properties, e.g. logarithmic diameter, high vertex connectivity and a
small mixing time of random walks (for an excellent survey about expander graphs and
their applications see [53]).

Definition 3.2 (Expander graph)

1. For a graph G = (V, E) and S, T ⊂ V denote the set of all edges between S and T by

E(S, T) = {{u, v}|u ∈ S, v ∈ T, {u, v} ∈ E}.

2. The edge boundary of a set S ⊂ V, denoted by δS, is δS = E(S, S̄) with S̄ = V \ S.

3. A graph G = (V, E) provides expansion β > 0, or is a β-expander, if for all node sets
S with |S| ≤ |V|/2 it holds that

|δS| ≥ β|S| .

Theorem 3.2 For d ∈ ω(1) a random connected d-regular graph is a Θ(d)-expander graph
a.a.s.

Proof: Note that for fixed d ≥ 3 any random d-regular graph is connected a.a.s. This
follows by independent proofs of Bollobás [16] and Wormald [120] who even prove
d-connectivity. Furthermore in [17] it is proved that the isoperimetric number (which
is the expansion) of a random regular graph is a.a.s. between 1

2 d− ε(d) and 1
2 d + ε(d)

where ε(d)→ 0 as d→ ∞.
Since, nearly all random regular graphs are connected and nearly all of them have an

expansion of Θ(d) it follows that nearly all random regular connected graphs have an
expansion of Θ(d).

Corollary 3.1 For d > 2 consider any d-regular connected graph G0 with n nodes. Then in
the limit the Random 1-Flipper operation establishes an expander graph after a sufficiently large
number of applications a.a.s.

As we have seen in this section the Random 1-Flipper constructs expander graphs in
the limit. A first bound for the number of operations needed to construct an expander
graph, i.e. an upper bound for the mixing time of the Markov chain defined by the
1-Flipper operation, has been given by Feder et al. in [35]. The authors were able to
bound the mixing time in terms of the mixing of the switch operation (see Page 2) with
help of a Markov chain comparison argument [31, 94, 34] and show that the mixing

21

3 The Undirected Case: Flipper

u1

uk+3u2

uk+2 u1

uk+3u2

uk+2

Figure 3.4: A k-Flipper can disconnect a graph.

time of the 1-Flipper is bounded by a high degree polynomial. Recently, this result has
been improved by Cooper, Dyer, and Handley [28], who show that the mixing time is
bounded by O

(
d20n14(dn log dn + log ε−1)

)
. We conjecture that the mixing time actu-

ally is bounded by O(dn log n), however this seems to be beyond the reach of current
proof techniques. Before we give some experimental evidence in favor of this conjecture
in Section 3.4, we will analyze a generalized version of the 1-Flipper.

3.2 Fast Construction of Expander Graphs

In this section we present a generalization of the 1-Flipper operation for which we can
show a polynomial bound on the convergence speed towards an expander graph. For
this, we extend the hub edge of the 1-Flipper to a path of k edges leading to following
definition.

Definition 3.3 (k-Flipper) Consider a d-regular undirected graph G = (V, E) and k + 3,
k ∈ N, nodes u1, . . . , uk+3 ∈ V forming a path P = (u1, . . . , uk+3) in G. We call {u1, u2},
{uk+2, uk+3} ∈ E flipping edges and the path (u2, . . . , uk+2) in G the hub path. If the edges
{u1, uk+2} and {u2, uk+3} do not exist in E then the k-Flipper operation Fk

P transforms G to
Fk

P(G) = (V, E′) with

E′ := (E \ {{u1, u2}, {uk+2, uk+3}})
∪ {{u1, uk+2}, {u2, uk+3}} .

In contrast to the 1-Flipper, the k-Flipper can disconnect a graph. Figure 3.4 shows
a k-Flipper operation which uses the flipping edge {u1, u2} twice such that the result-
ing graph is possibly partitioned into disconnected components. In order to preserve
connectivity we have to ensure that there is a hub path between nodes u2 and uk+2
of a k-Flipper operation without using the flipping edges. On the other hand we do
not want to bias the random walk by forbidding to use the first edge or the a priori
unknown last edge.

Fortunately, this problem is easy to handle. A simple solution is to truncate the hub
path P = (u1, . . . , uk+3) to a path P′ = (u`, . . . , ur+1) with 1 ≤ ` < r < k + 3 such that

22

3.2 Fast Construction of Expander Graphs

ul ur+1

ul+1 ur

ul ur+1

ul+1 ur

Figure 3.5: The k-Flipper with truncated hub path.

{u`, u`+1} = {u1, u2}, {ur, ur+1} = {uk+2, uk+3} and {u1, u2}, {uk+2, uk+3} do occur
only once in P′ (see Figure 3.5). This observation leads to the following algorithm.

Algorithm 3.2 Random k-Flipper
1: Choose random node u1 ∈ V
2: for i← 1 to k + 2 do
3: Choose random node ui+1 ∈ N(ui)
4: end for
5: for i← k + 2 downto 2 do
6: if {ui, ui+1} = {uk+2, uk+3} then r ← i
7: end if
8: end for
9: for i← 1 to r do

10: if {ui, ui+1} = {u1, u2} then `← i
11: end if
12: end for
13: if r ≥ `+ 2 and {u`, ur}, {u`+1, ur+1} /∈ E then
14: E← E \ {{u`, u`+1}, {ur, ur+1}}
15: E← E ∪ {{u`, ur}, {u`+1, ur+1}}
16: end if

We continue with the analysis of the Random k-Flipper.

Lemma 3.6 The Random k-Flipper operation preserves connectivity and d-regularity.

Proof: For d-regularity the same arguments as in Lemma 3.1 hold. Applying the
edge flip to the truncated path P′ = (u`, . . . , ur+1) it is ensured that the graph will
stay connected since no edges of the truncated hub path will be removed.

Similar to the 1-Flipper operation, the Random k-Flipper operation provides gener-
ality.

Lemma 3.7 For all pairs G, G′ of connected d-regular undirected graphs there exists a sequence
of Random k-Flipper operations transforming G into G′.

23

3 The Undirected Case: Flipper

Proof: Note that a Random k-Flipper operation can be reduced to a 1-Flipper operation
if the path at the beginning uses the start edge k − 1 times. In Lemma 3.4 we have
proved that this property holds for the 1-Flipper.

As opposed to the Random 1-Flipper, the Random k-Flipper is not a symmetric graph
transformation. Therefore, it is not clear if the Random k-Flipper provides uniform
generality. Nevertheless, it establishes an expander graph in a polynomial number of
rounds which we prove now. For this, we start with a bisection of the node set of a
graph G = (V, E) into S ⊂ V and S̄ = V \ S with |S| ≤ |V|/2. Let |V| = n, |S| = m and
|E(S, S̄)| = q be the number of edges of the cut. We are interested in the number q′ of
edges between S and S̄ after applying a Random k-Flipper operation. Now assume that
each edge is chosen with uniform probability 2

dn as a flipping edge. This assumption is
motivated by the fact that a long random walk in the graph will choose flipping edges
with uniform probability. Then there are the following cases:

1. Both flipping edges are chosen from E(S, S). Then the Random k-Flipper opera-
tion will not increase the number of edges of the cut, i.e. q′ = q.

2. Both flipping edges are chosen form E(S̄, S̄). Again q′ = q.

3. One flipping edge is in E(S, S) and one is in E(S̄, S̄). This will occur with proba-
bility 2(dm−q)(dn−dm−q)

d2n2 and two edges are added to the cut, i.e. q′ = q + 2.

4. One flipping edge is in E(S, S̄) and one is in E(S, S). Then q′ = q.

5. One flipping edge is in E(S, S̄) and one is in E(S̄, S̄). Then q′ = q.

6. Both flipping edges are in E(S, S̄). This happens with probability
(

2q
dn

)2
. In this

case the number of edges on the cut can be decreased by two or stay the same,
i.e. q′ ∈ {q− 2, q}. However, it is guaranteed from the connectivity property that
q′ ≥ 1.

This proves the following lemma.

Lemma 3.8 Consider a bisection of a graph G = (V, E) into S ⊂ V, S̄ = V \ S, |S| ≤ |V|/2
and let |V| = n, |S| = m and |E(S, S̄)| = q. If the flipping edges are chosen with uniform
probability then a Random k-Flipper operation transforms q to q′ as follows:

Pr[q′ = q− 2] ≤
(

2q
dn

)2

Pr[q′ = q + 2] = 2
(m

n
− q

dn

) (
1− m

n
− q

dn

)
So, for a given partition the Random k-Flipper operations describe a random drift

towards a state that satisfies an expansion. However, one cannot guarantee a truly
uniform choice of the flipping edges. Yet, if the random walk is long enough an ap-
proximation can be provided.

24

3.2 Fast Construction of Expander Graphs

Lemma 3.9 For k ∈ Θ
(
d2n2 log 1/ε

)
the Random k-Flipper chooses the first flipping edge

with uniform probability and the second edge with probability (1± ε) 2
dn for any ε > 0.

Proof: Consider the conductance Φ of a d-regular graph defined by

Φ := min
S⊂V,S 6=∅

n|δS|
d|S| · |S̄| .

As a lower bound for the conductance of connected graphs we have

Φ ≥ min
m∈{1,...,n−1}

n
dm(n−m)

=
4

dn
.

According to Lovász [69] the second eigenvalue λ2 of the Markov process is bounded
by

Φ2

8
≤ 1− λ2 ≤ Φ ,

which implies a bound of λ2 ≤ 1− 2
d2n2 . Let Pt(v) denote the probability that a random

walk ends at node v after t rounds. Then, this implies∣∣∣∣Pt(v)− 1
n

∣∣∣∣ ≤ (1− Φ2

8

)t

≤
(

1− 2
d2n2

)t

.

So, after d2n2 log 1/ε rounds in all graphs this term is smaller than ε. This proof follows
the ideas presented in [69].

Combining Lemma 3.8 and 3.9 we get the following lemma.

Lemma 3.10 Consider a bisection of a graph G = (V, E) into the sets S ⊂ V and S̄ = V \ S,
|S| ≤ |V|/2, with |V| = n, |S| = m and |E(S, S̄)| = q. Applying a Random k-Flipper
operation with k ∈ Θ

(
d2n2 log 1/ε

)
and ε ∈ (0, 1

8] the number of edges of the cut is changed
from q to q′ such that

Pr[q′ = q− 2] ≤ 4(1 + ε)α2

Pr[q′ = q + 2] ≥ 2(1− ε)(β− α)(1− β− α)

with α = q
dn and β = m

n .

Proof: The proof follows by adapting the approximation bound (1± ε) of Lemma 3.9
to Lemma 3.8.

Note that for α � β we observe a random walk with a strong drift over the number
of edges. The probability that two edges are added is larger than the probability that
two edges are removed. So, we can reduce the analysis to a random walk with a drift
and use the following lemma.

Lemma 3.11 Consider a random walk on the set of numbers {1, . . . , B} with transition proba-
bility 2p from i to i + 1 for i < B and probability p from i to i− 1 for i > 1. The probability to
remain in state i is 1− 3p for i ∈ {2, . . . , B− 1}, 1− 2p for state 1 and 1− p for state B.

For any c > 0 there exists c′ such that after c′B/p rounds the probability that the random
walk ends within the set {1, . . . , B− t} is at most 2−cB + 2−t+1.

25

3 The Undirected Case: Flipper

Proof: In the worst case the random walk starts at position 1. The expected distance
the random walk upwards within k rounds is pk. If we choose k = c′B/p we can apply
Chernoff bounds to prove that with probability 1− 2−cB the position B is reached at
least once.

Now consider the stationary distribution, when the Markov process has converged.
Let Pt be the probability for state B− t. For t > 1 we have the recursion

Pt = 2pPt+1 + (1− 3p)Pt + pPt−1.

This recursion is satisfied for Pt = γ2−t−1. Furthermore, this implies: P0 = 2P1 = γ/2.
Summing up over all positions and using PB−2 = 2PB−1 we have γ = 1

1−2−B−1 and the
probability that the random walk is in the interval {1, . . . , B− t} after reaching B is at
most 2−t+1, which implies the claim.

Now we are able to prove the fast convergence of the Random k-Flipper.

Theorem 3.3 If we choose d ∈ Ω (log n) applying O (dn) Random k-Flipper operations with
k ∈ Θ

(
d2n2 log 1/ε

)
transforms any given d-regular connected graph into a connected d-

regular graph with expansion Θ (d) with high probability.

Proof: We will prove an expansion of at least d/16. For this we consider all sub-sets
S ⊂ V, S 6= ∅ with |S| = m ≤ n/2. Now we apply Lemma 3.10 with a constant
choice for ε for a bisection where the edge set is at most twice than the expansion, i.e.
q ≤ md/8. Then α = q

dn ≤ m
8n = 1

8 β and β ≤ 1
2 . This implies for ε = 1

8 :

2(1− ε)(β− α)(1− β− α) ≥ 2(1− ε)
7
8

β

(
1− 9

8
β

)
≥ 63

64
(1− ε)β

≥ 63
32

(1− ε)β2

≥ 126(1− ε)α2 .

Again let q′ denote the number of edges of the cut after applying one Random k-Flipper
operation. Then, we have

Pr[q′ = q + 2] ≥ 94Pr[q′ = q− 2]

and

Pr[q′ = q + 2] ≥ 1
2

m
n

.

So, for the number of boundary edges we observe a random walk with a drift. The
process that we have studied in Lemma 3.11 gives an upper bound on the number of
Random k-Flipper operations for p = m

4n and B = md
4 (we spare a factor of two since

we walk two steps in a round). Hence, with probability 1− (2−cB + 2−
1
2 B) the number

26

3.3 Peer-to-Peer Networks based on Random Regular Graphs

of edges is at least md
16 within this cut after c′B/p ≤ c′ md

4
4n
m ≤ c′dn rounds of Random

k-Flipper operations.
Let c ≥ 1

2 . It remains to sum up all error probabilities 2−cB + 2−
1
2 B ≤ 2−

1
2 B + 2−

1
2 B =

2 · 2−md
4 of all sub-sets S ⊂ V of size m ≤ n/2 for some d = k log n with k > 8.

2
n/2

∑
m=1

(
n
m

)
2−

1
4 km log n ≤ 2

n/2

∑
m=1

nm2−
1
4 km log n

≤ 2
n/2

∑
m=1

2(1−
1
4 k)m log n

≤ 2
n/2

∑
m=1

n(1− 1
4 k)m

≤ 2
n
2

n1− 1
4 k

≤ n−k′ .

Possible Improvements

As noted above the Random k-Flipper is not symmetric, i.e. the transition probability
from graph G to G′ may differ from the transition probability from G′ to G. Therefore,
it is an open problem if the Random k-Flipper with k > 1 provides uniform generality.
Nevertheless, slightly modified versions provide symmetry. For this, the random walk
needs to avoid to traverse the flipping edges more than once. The Random k-Flipper
is allowed to traverse these edges and a sub-path of the random walk will be chosen.
This choice causes the break of symmetry. If we avoid visiting nodes more than once
we have the Node Disjoint Random k-Flipper and if we avoid visiting edges more than
once we get the Edge Disjoint Random k-Flipper. Both operations have symmetric tran-
sition probabilities. However, when using these operations long random walks are not
possible, especially not paths of length Θ

(
d2n2 log 1/ε

)
. Furthermore, the proof of The-

orem 3.3 cannot be applied since the random walk used in these modified versions is
rather biased. So, the practical use of these symmetric versions is doubtable.

As soon as the expansion property is established one can reduce the length of the ran-
dom walk of the Random k-Flipper to a polylogarithmic term. Furthermore, it maybe
that such a random walk suffices for the whole procedure.

3.3 Peer-to-Peer Networks based on Random Regular
Graphs

The operations introduced in the previous sections are particularly suitable for build-
ing and maintaining large distributed random networks. In this section we will discuss

27

3 The Undirected Case: Flipper

the networking aspects like dynamics (joining and leaving peers) and problems aris-
ing with the concurrent use of Random k-Flipper operations in a distributed network.
In particular we show how to maintain dynamic connected d-regular peer-to-peer net-
works based on random graphs with expansion property.

For this the Random k-Flipper operations are started distributedly by every peer
from time to time and control messages are sent over random paths and neighbors
are exchanged. This way continuously fresh randomness is introduced to the network
and with help of the parallel operations the network quickly converges to an expander
graph. Furthermore, the network connections are validated automatically by the ran-
dom walks of the k-Flipper operations.

Unlike as in the graph approach, in distributed dynamic networks it is difficult to
guarantee the d-regularity, e.g. if only one edge is missing, then there are only two
nodes with degree d − 1 while the other nodes have degree d. Finding the partner
would involve a search (or a data structure) for the whole network. Yet, the benefit of
having exactly d neighbors is rather small if d is at least logarithmic, what is charac-
teristic for peer-to-peer networks. Therefore, we allow nodes to have either d or d− 1
neighbors and call such networks {d, d− 1}-regular.

3.3.1 Joining Peers

A joining peer has to connect to d other peers to get a valid neighborhood. The easiest
way for a peer to do this without violating the {d, d− 1}-regularity of the network is to
randomly choose d/2 connections defined by d distinct nodes, erase these connections
and connect to each of the d nodes: “The peer places itself in the middle of these con-
nections”. The distinctness of the d peers of these connections is crucial, since otherwise
the new peer would either create multiple connections to some peers or reduce the de-
gree of some peers violating the {d, d− 1}-regularity. The ’randomness’ of the chosen
connections on the other hand is of subordinate importance since even the worst choice
of connections will be corrected by the periodic Flipper operations.

So, we have to find enough random connections in reasonable time, since no peer has
a global view of the network we propose to do this in a local way with help of a single or
up to d/2 concurrent random walks. We illustrate the local join operation with a single
random walk in the following and assume a peer u willing to join the network knows
at least one peer v within the network. Starting from v, u sends a control message on
a random walk, see Figure 3.6. Whenever a suitable connection e is found a lock is
created on e to prevent other peers from selecting this connection. Furthermore, these
locks prevent Flipper operations from choosing these connections as flipping edges.
According to [9] the length of the random walk can be chosen as O

(
d2 log d

)
. In the

expectation this number of hops is sufficient to detect d distinct nodes in any graph
by a random walk. If after O

(
d2 log d

)
hops not enough random connections could be

found the random walk is canceled. This process can fail if either the network is too
small or if the network structure is bad (which is unlikely, yet possible). A new peer
which could not find enough neighbors can retry finding new neighbors by the same

28

3.3 Peer-to-Peer Networks based on Random Regular Graphs

u

v

u

v

Figure 3.6: The local join operation when d = 4.

u u

Figure 3.7: The pegging operation when d = 4.

procedure after some time. If the control message has successfully finished the random
walk reporting enough connections, u is contacted by enough peers of the network and
can place itself in the middle of each of the connections.

As this scheme is somehow obvious to join a d-regular network, almost equal schemes
have been proposed by several researchers, e.g. [19, 26] and implicitly in [64]. Bourassa
and Holt [19] proposed a join operation called pegging to construct the d-regular un-
structured network SWAN for example. The pegging operation is illustrated in Fig-
ure 3.7 and the only difference to the join operation described above is that pegging
assumes the d/2 connections to be chosen uniformly at random. In the SWAN network
it is crucial that the chosen edges are indeed (almost) truly random since there is no
maintenance operation, i.e. the topology of the SWAN network is changed by joining
and leaving peers only.

It is easy to see that a network topology created by the pegging operation is not a
truly random connected d-regular graph, for example it is impossible to create cliques
of size greater than d/2 + 1 with pegging operations. Nevertheless they share some
desirable characteristics with random regular graphs [41, 40]. So, it was recently shown
by Gao [40] that the evolving graphs are a.a.s. d-connected for any even constant degree
d ≥ 4. Furthermore, the following theorem does hold.

Theorem 3.4 A d-regular graph G with d ∈ Ω(log n) constructed using the pegging opera-
tion is a θ(d) expander with high probability.

We will not prove this theorem here since we give an identical result for directed net-
works in Chapter 4 with Theorem 4.5 and the proof is almost identical.1 As mentioned

1 The proof of Theorem 3.4 can be found in [51]. Note however that the proof in [51] has been derived
from the proof of Theorem 4.5 presented in this thesis.

29

3 The Undirected Case: Flipper

in context of choosing flipping edges in the previous chapter already, it is difficult to
choose edges uniformly at random in a peer-to-peer network. Therefore, we propose
to not rely on the insertion scheme alone to form respectively maintain the topology as
it is done in SWAN, but to use random Flipper operations to correct “bad choices” that
may have been made by the insertion scheme.

3.3.2 Leaving Peers

The case of leaving peers can be divided in peers leaving intentionally and peers leav-
ing by some kind of local or network failure. We will consider the case of nodes leaving
intentionally first. It turns out that this case is easy to handle. A leaving peer u suc-
cessively selects two random peers v and v′ of its neighborhood. Then v and v′ are
informed that u is about to leave. The peers v and v′ then connect to each other and re-
move u from their neighborhood. Next, u removes v and v′ from its neighborhood and
continues with the next pair of neighbors until all neighbors are processed. This pro-
cedure ensures that the network still has degree d or d− 1 (provided that the network
consists of enough peers).

The case of peers failing unexpectedly is more problematic. First of all, failing peers
bear the problem of disconnecting the network. Classical failure analysis in peer-to-
peer networks is focused on analyzing the probability that a given peer becomes dis-
connected [114, 68], so that we will restrict to this case, too.

Fact 3.1 Let G be a random d-regular network of size n with d ∈ Ω(log n). When each peer
fails with probability 1/2, then a single peer will stay connected to the rest of the network with
high probability.

Proof: To separate a peer from the network all of his d ∈ Ω(log n) neighbors have to
fail. This will happen with probability 2−d ≤ 2−c log n = n−c.

Another issue is that a failing peer reduces its neighbors degree by one. As noted
above we do not want to fix this degree by choosing pairs since this causes too much
communication overhead. Our solution is that a neighbor detects an edge failure while
sending control information for the periodically occurring Random k-Flipper opera-
tions. If the degree is smaller than d− 1 then a peer uses the node joining algorithm to
increase its degree by the missing number of edges, i.e. it chooses random connections
of the network and places itself in the middle of these connections, thus increasing its
own degree by two without changing the degree of other peers.

3.3.3 Concurrency

When multiple Random k-Flipper operations are applied to a graph concurrently (which
is likely when the graph represents a huge network) some additional effort is necessary
to guarantee connectivity. In case of the Random 1-Flipper operation there is only a
small constant number of nodes involved in intersecting operations. So, these can co-
ordinate their graph transformations in a way that no two intersecting transformations
take place at the same time.

30

3.3 Peer-to-Peer Networks based on Random Regular Graphs

v2 v1

vj-1

u1 u2

vj

ui-1ui

(a)

v2 v1

vj-1

u1 u2

vj

ui-1ui

(b)

Figure 3.8: Concurrent Random k-Flipper operations can disconnect a graph. The graph at
the left shows random walks performed by two Random k-Flipper operations U (dashed) and
V (dotted), which result in a disconnected graph shown at the right.

However some additional effort is necessary to guarantee connectivity in case of con-
current Random k-Flipper operations without central coordination mechanisms. We
start our analysis with the following fact.

Fact 3.2 The only way to divide a graph into components with Random k-Flipper operations is
to destroy the hub path of a Random k-Flipper operation. Furthermore, the only way to remove
edges with Random k-Flipper operations is to choose these edges as flipping edges.

In the following we will consider two concurrent Random k-Flipper operations U and
V. Let u1, . . . , ui respectively v1, . . . , vj denote their truncated random walks according
to the Random k-Flipper algorithm (see Algorithm 3.2).

Lemma 3.12 The hub path of a Random k-Flipper operation U cannot be destroyed by another
Random k-Flipper operation V if V does not use the flipping edges {u1, u2}, {ui−1, ui} of U.

Proof: When V chooses one or both of its flipping edges to lie on the path (u2, . . . , ui−1)
this will only substitute the edges to be deleted by V by a path. Thus the network will
stay connected.

Things get more complicated when U and V interfere each other, i.e. U has an flipping
edge on the path (v2, . . . , vj) and V has a flipping edge on the path (u2, . . . , ui).2 This
may lead to a disconnected graph as shown in Figure 3.8.

However the partition of the graph does not necessarily take place since there may
be other independent paths between u1 and u2. While the probability of the discon-
necting the graph is rather small, we aim at guaranteed connectivity. In our view this
is important because on the long run also small probability events will surely occur –
regardless of their small probability.

2 Note that we can guarantee u1 6= v1 since no peer will start another Random k-Flipper operation before
the previous one is finished.

31

3 The Undirected Case: Flipper

So, we use the following locking mechanism. Each Random k-Flipper operation U
leaves a stamp — a representation of its starting edge — at each edge it passes. In
addition U keeps track of the edges it has visited during the random walk in a list L.
When the random walk is finished, it is checked whether one of the flipping edges
{u1, u2}, {ui−1, ui} has a stamp s ∈ L on it. In this case another Random k-Flipper with
starting edge on U’s random walk has already passed one of U’s flipping edges and U
is risking connectivity if the edges are flipped. The solution to this is rather simple. If
the last edge {ui−1, ui} has critical stamps on it U can do another random step or choose
another edge of the last but one node and check again for stamps in L. Critical stamps
on the starting edge {u1, u2} can be handled similar. If no suitable edges can be found
the Random k-Flipper operation is canceled. To prevent the whole graph from getting
locked, the stamps should be soft state and be deleted after some constant time t. This
implies that also all Random k-Flipper operations have to be finished in time t or they
will have to be canceled. Given this stamp mechanism the following lemma holds.

Lemma 3.13 Using random walks with stamps as described above, no two concurrent Random
k-Flipper operations can interfere with each other.

Proof: Again consider two Random k-Flipper operations U and V. For the proof we
will regard the path (u1, . . . , ui) of U as fixed. Furthermore, V has one flipping edge
on the path (u1, . . . , ui) and thus interferes U. We assume this to be the starting edge
{v1, v2} of V. Note that we can restrict to this case because of symmetry. In order to
make U and V interfere with each other, V has to pass at least one flipping edge of U.
When V passes one of these edges it will leave a stamp on it. This will make U to find
a stamp representing an edge of the path (u1, . . . , ui) on it when checking the flipping
edges {u1, u2}, {ui−1, ui}. Thus U will not perform the Random k-Flipper operation.

Combining our results the following theorem holds.

Theorem 3.5 Using random walks with stamps the network is guaranteed to stay connected
while applying concurrent Random k-Flipper operations.

Proof: This theorem follows directly from the combination of Lemma 3.12 and Lemma
3.13.

For peer-to-peer networks it turns out that the Random 1-Flipper is easier to handle
than the Random k-Flipper with larger k. Especially if k ∈ Θ

(
d2n2 log 1/ε

)
is chosen as

in Theorem 3.3 then the whole network is swamped with stamps of one type. Parallel
Random k-Flipper operations may block each other or in the best case are performed
sequentially. For the networking point a small choice for k is highly desirable. However,
little is known about the convergence rate except for the case of expander graphs. In an
expander graph k ∈ O(log n) can be used.

3.4 Experimental Evaluation

As mentioned above, the convergence rate of the 1-Flipper can be bounded by a high
degree polynomial, i.e. O

(
d20n14(dn log dn + log ε−1)

)
[28]. In this section we present

32

3.4 Experimental Evaluation

experimental results for the 1-Flipper operation which indicate that this bound is far
apart from the true bound. Furthermore, we will experimentally compare the perfor-
mance of 1-Flipper and k-Flipper.

There is no method known which can test the true randomness of a graph. Therefore,
we concentrate on the expansion h(G) of the graph. The exact determination of h(G)
for a given graph G is known to be co-NP-hard [14]. Fortunately it is possible to bound
the expansion with help of eigenvalues. Therefore, consider a d-regular graph G with
n nodes and its n × n adjacency matrix A(G). The entries aij of A(G) are 1 if node
i and j are adjacent and 0 otherwise. Since A(G) is symmetric and real there are n
real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, also denoted as spectrum of the graph G. The
following theorem gives an upper and a lower bound for h(G) using the eigenvalue λ2.

Theorem 3.6 Let G be a d- regular graph with spectrum λ1 ≥ λ2 ≥ · · · ≥ λn. Then

d− λ2

2
≤ h(G) ≤

√
2d(d− λ2).

Theorem 3.6 has been proven by several researchers, i.e. Dodziuk [32], Alon-Milman
[5], and Alon [4] in the discrete case and Cheeger [23] and Buser [20] in the continuous
case. The term d− λ2 is also known as spectral gap and according to Theorem 3.6 a large
spectral gap implies a high expansion.

Knowing that we can bound the expansion of a graph G by calculating its spectral
gap we still need to define when we should consider a graph as an expander based on
its spectral gap only. The following theorem (cf. [83, 53, 38]) will allow us to give an
upper bound on the spectral gap.

Theorem 3.7 (Alon-Boppana) For every d-regular graph it holds that

λ ≥ 2
√

d− 1− on(1)

where λ = max(|λ2|, |λn|) and on(1) tends to zero for fixed d as n→ ∞.

It follows that d− λ2 ≤ d− 2
√

d− 1 which reduces the interval for the spectral gap
from [0, 2d] to [0, d− 2

√
d− 1].3 Combining the results of Theorem 3.6 and 3.7 we may

use the function ρ(d) = d−2
√

d−1
2 to approximate the lower bound for the expansion

ratio of a graph from above. So, we use the following definition to assess a graph G as
an expander based on the eigenvalues of A(G) only.

Definition 3.4 We assess a d-regular graph G as an expander graph when the lower-bound
d−λ2

2 of h(G) satisfies
d− λ2

2
≥ 0.98 ρ(d).

3 We neglect the term on(1) here since we are interested in large graphs.

33

3 The Undirected Case: Flipper

(a) ring (b) torus (c) ring of cliques

Figure 3.9: Starting graphs used in the experiments.

To measure the number of Flipper operations needed to transform a graph G into
an expander graph we repeatedly calculate the spectral gap of G and hence the sec-
ond largest eigenvalue λ2 of A(G) while applying Flipper operations. To do this, we
used the simulation environment developed in [51], which uses the PRIMME (PRecon-
ditioned Iterative MultiMethod Eigensolver) [107, 108] by McCombs and Stathopoulos
for eigenvalue calculations.

Clearly, the time to transform a graph G into an expander depends on the structure
of G. For our experiments we selected three different starting graphs:

Ring The ring graph consists of a cycle containing all n nodes and for d > 2 of ad-
ditional edges connecting nodes in distance 2, 3, . . . , d/2 on the ring to reach the
desired degree d.

Torus A two dimensional mesh with wrap around edges (we restrict ourselves to the
two dimensional case here).

Ring of Cliques The ring of cliques graph of degree d consists of a number of (d + 1)-
cliques. These cliques are then connected to form a ring by removing one edge
from every clique and connecting the endpoints of the removed edges to form a
ring.

The three graph types are illustrated in Figure 3.9. These graph types were selected
for two reasons: they have a relatively large diameter and, in case of the ring and ring
of cliques, they contain a lot of triangles which prevent 1-Flipper operations from be-
ing applied successfully and therefore will delay the convergence process towards an
expander graph (recall that a 1-Flipper operation does not change the graph if one or
both flipping edges are part of triangles over the hub-edge).

34

3.4 Experimental Evaluation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100000 200000 300000 400000 500000

ex
pa

ns
io

n
h(

G
) (

lo
w

er
 b

ou
nd

)

number of 1 Flipper operations

torus 100x100
ring, n=10000, d=4

torus 2x5000
ring of cliques, n=10000, d=4

Figure 3.10: The start graph influences the convergence speed of the 1-Flipper operation.

3.4.1 Results for the 1-Flipper

If not mentioned otherwise experiments have been repeated ten times respectively and
the experimental results presented in the remainder of this section show the average of
these test runs.

Figure 3.10 shows the evolution of the lower bound of the graph expansion h(G)
for the 1-Flipper on the described graph types. All graphs have degree d = 4 and n =
10, 000 nodes. The shapes of the four curves are very similar, yet shifted on the x-axis. In
our experiments the ring of cliques needed the largest number of 1-Flipper operations
to be transformed into an expander graph. Figure 3.11 exemplifies the convergence
for a single test instance starting with the 10, 000 nodes 4-regular ring of cliques. We
observe the following three phases:

Initial Phase Steady small expansion with only minor changes in the lower bound of
the expansion (first 250, 000 Flipper operations).

Expansion Phase A short period in which the expansion of the graph grows dramat-
ically and reaches 0.98 ρ(d) (Flipper operations 250, 000− 360, 000).

Stable Phase The maximal expansion has been reached (after 360, 000 Flipper opera-
tions). Once this phase has been reached, the expansion is stable and stays on this
high level.

Figure 3.12 shows that during the initial phase the graph is modified already: The

35

3 The Undirected Case: Flipper

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100000 200000 300000 400000 500000 600000

ex
pa

ns
io

n
h(

G
) (

lo
w

er
 b

ou
nd

)

number of 1 Flipper operations

ring of cliques, n=10000, d=4

expansion
phaseinitial phase stable phase

Figure 3.11: The three convergence phases of the 1-Flipper operation.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5000 10000 15000 20000 25000 30000 35000 40000
 0

 0.1

 0.2

 0.3

 0.4

di
am

et
er

, t
ria

ng
le

s

ex
pa

ns
io

n
h(

G
) (

lo
w

er
 b

ou
nd

)

number of 1 Flipper operations

expansion
diameter
triangles

Figure 3.12: Evolution of expansion (lower bound), diameter, and triangles for 1-Flipper op-
eration started on a 1, 000 node 4-regular ring of cliques.

36

3.4 Experimental Evaluation

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 4 8 12 16 20 24 28 32 36 40

#o
pe

ra
tio

ns
 to

 re
ac

h
st

ab
le

 e
xp

an
si

on

degree (d)

ring of cliques (n=10000)

Figure 3.13: Number of 1-Flipper operations to reach stable expansion for variable degree d,
starting from a 10, 000 nodes ring of cliques.

number of triangles and the diameter of the graph are reduced dramatically. This seems
to be a pre-requisite for the expansion phase. The test has been performed for a 1, 000
node 4-regular ring of cliques.

The convergence rate also depends on the degree of the graph. Since dn/2 edges need
to be changed one expects at least a linear growth of the convergence speed depending
on the degree. In fact the growth seems to be linear as Figure 3.13 indicates. Starting
from a d-regular ring of cliques with 10, 000 nodes the number of operations to reach
the stable phase is shown.

The graph in Figure 3.14 shows the number of operations necessary to reach the sta-
ble phase for the ring of cliques with degree 4, 8, and 12 and growing number of nodes.
As a comparison the graphs of the functions 4n log n and 8n log n are added to the
diagram. We conjecture that the mixing time of the Markov chain described by the
1-Flipper operation is bounded by O(dn log n). According to the measurements in Fig-
ure 3.14 this conjecture might be correct since the curve representing the 4-regular ring
of cliques is bounded from above by the 4n log(n) curve. However, there are two impor-
tant things to note. Most importantly it is not clear if the ring of cliques really represents
the worst case graph concerning the convergence rate of the 1-Flipper operation. Sec-
ondly, we measured the number of operations needed to reach stable expansion only.
However, once an expander graph is reached a truly random graph should be reached
quickly.

37

3 The Undirected Case: Flipper

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 20000 40000 60000 80000 100000

#o
pe

ra
tio

ns
 to

 re
ac

h
st

ab
le

 e
xp

an
si

on

number of nodes (n)

d=4
d=8

d=12
4*n*log(n)
8*n*log(n)

Figure 3.14: Number of 1-Flipper operations to reach stable expansion for variable degree d
and variable number of nodes starting from node ring of cliques.

3.4.2 Results for the k -Flipper

In Section 3.2 we introduced the k-Flipper operation as a generalization of the 1-Flipper
operation. In contrast to the 1-Flipper, it is known that the k-Flipper operation needs
O(dn) operations to transform any connected d-regular graph into an expander graph
if k, i.e. the length of the hub-path, is chosen large enough and d ∈ Ω(log n). However,
in practice k should be chosen to be a small constant. Therefore, we also did simulations
to analyze the behavior of the k-Flipper operation with small k. As starting graph we
have chosen the ring of cliques graph with n = 10, 000 and d = 4, since this graph
turned out to behave worst for the 1-Flipper.

Figure 3.15 shows the evolution of the lower bound of the graph expansion for dif-
ferent values of k. Please note that the curve for k = 1 actually represents the 1-Flipper
operation (there is a small difference between the 1-Flipper and the k-Flipper when it
comes to the success rate of an operation, so that the k-Flipper with k = 1 would ac-
tually perform slightly worse than the 1-Flipper.). For the k-Flipper we observe the
same shape of the curve describing the lower bound of the graph expansion as for the
1-Flipper. As expected, the number of operations to convergence to an expander graph
is drastically decreased with increasing k. Figure 3.16 shows the number of operations
necessary to reach the stable phase for different values of k.

When comparing the performance of 1-Flipper and k-Flipper one should keep in
mind that increasing the hub-path length k also means to increase the number of mes-
sages per operation: a 1-Flipper operation requires 4 messages to be exchanged among
the participating nodes while a k-Flipper requires k + 5 messages (k + 2 messages to

38

3.4 Experimental Evaluation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50000 100000 150000 200000 250000 300000 350000 400000

ex
pa

ns
io

n
h(

G
) (

lo
w

er
 b

ou
nd

)

number of Flipper operations

k=1 (1 Flipper)
k=4
k=8

k=12
k=16

Figure 3.15: k-Flipper operations applied to a 10, 000 node 4-regular ring of cliques: evolution
of the lower bound of the graph expansion for different values of k.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

1
Flipper

2
Flipper

4
Flipper

6
Flipper

8
Flipper

10
Flipper

12
Flipper

14
Flipper

16
Flipper

18
Flipper

20
Flipper

22
Flipper

24
Flipper

#o
pe

ra
tio

ns
 to

 re
ac

h
st

ab
le

 e
xp

an
si

on

Figure 3.16: Number of k-Flipper operations to reach stable expansion for 10, 000 nodes and
4-regular ring of cliques.

39

3 The Undirected Case: Flipper

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

1
Flipper

2
Flipper

4
Flipper

6
Flipper

8
Flipper

10
Flipper

12
Flipper

14
Flipper

16
Flipper

18
Flipper

20
Flipper

22
Flipper

24
Flipper

#m
es

sa
ge

s
to

 re
ac

h
st

ab
le

 e
xp

an
si

on

Figure 3.17: Number of messages to reach stable expansion for 10, 000 nodes and 4-regular
ring of cliques.

perform the random walk and 3 further messages to communicate the truncated ran-
dom walk and perform the edge flip). The bar chart in Figure 3.17 shows the number of
messages needed to reach the phase of stable expansion. Notably the 1-Flipper needs
fewer messages than the 2-Flipper. This is because of the slightly higher success proba-
bility in case of the 1-Flipper and the longer hub path (which may have to be truncated)
in case of the 2-Flipper. For 3 ≤ k ≤ 24 the k-Flipper needs fewer messages than the
1-Flipper. Yet, the simulation was done applying Flipper operation sequentially. When
concurrent Flipper operations are applied without central coordination the operations
may block each other and thus decrease the rate of successful operations. So, for the
networking point, a small choice for k is highly desirable.

3.4.3 1-Flipper in a Real World Network

In the masters thesis of Nicolas Heine [51] we evaluated if the 1-Flipper operation can
be used to improve real world peer-to-peer networks such as the unstructured Gnutella
network. As mentioned in Chapter 2 peers join the Gnutella network by connecting
to neighbors of former sessions or by initiating a broadcast of limited depth to find
new neighbors to reach their specified degree. Since every peer may freely choose its
degree the resulting network is not regular. Therefore, the analysis of the 1-Flipper has
to be generalized to non-regular graphs. The generalization is rather straight forward
and has been shown by Feder et al. in [35]. The only stumbling block is the proof for
generality, i.e. to show that every connected graph with the same degree sequence can
be reached by a series of 1-Flipper operations. In a nutshell, generality is provided by

40

3.4 Experimental Evaluation

0.13

0.176

0.266

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6

E
x
p
a
n
si

on
h

G

Anzahl 1-Flipper-Operationen ×107

n = 421.391, davg = 24, 9

Abbildung 5.5: Anwedung der 1-Flipper-Operationen bis zur Phase der stabilen Ex-
pansion für den Gnutella-Graphen vom 24. Mai 2006 um 00:25 Uhr.

5.1.4 Expansion im Gnutella-Graph

Um irreguläre Graphen weiter zu untersuchen, haben wir zusätzlich einige Moment-
aufnahmen des Gnutella-Netzwerkes analysiert. Die Gnutella-Graphen wurden bereits
im Kapitel 4.1 erläutert.

Auch diesen Graphtyp können wir durch Anwenden der 1-Flipper-Operation in sei-
ner Expansionseigenschaft noch stark verbessern. Dazu müssen die Gnutella-Graphen
nach dem Einlesen jedoch erst nachbearbeitet werden. Beim Nachbearbeiten werden
alle, bis auf die größte Komponente, gelöscht, um dadurch einen zusammenhängen-
den Graphen zu erhalten. Wir können die Expansion sonst nicht approximieren, da
pro Komponente ein Eigenwert null ist und wir deshalb die Expansion nicht aus der
Eigenwertschranke ableiten können.

In Abbildung 5.5 sehen wir den Verlauf der Expansion eines Gnutella-Graphen
unter Anwendung der 1-Flipper-Operation. Hierbei handelt es sich um eine Moment-
aufnahme vom 24. Mai 2006 um 00:25 Uhr. Der abgebildete Gnutella-Graph hat in
diesem Fall |V | = 421 391 Knoten und |E| = 5264 433 Kanten. Damit besitzt er eine
Kantendichte von ρG = 5, 92 · 10−5. Für die Knotengrade gilt

dmin = 1, davg = 24, 9, dmax = 672.

Wie zu erkennen ist, tritt so gut wie keine Initialphase auf. Stattdessen befinden wir
uns direkt in der Expansionsphase. Das deutet darauf hin, dass die Graphstruktur,

55

number of 1-Flipper operations ∗107

ex
pa

ns
io

n
(lo

w
er

 b
ou

nd
)

Figure 3.18: Evolution of expansion when applying 1-Flipper operations to a Gnutella snap-
shot [51].

the 1-Flipper operation if the degree sequence of the graph implies diameter larger than
three for all possible graphs.4

We used a snapshot of the actual Gnutella network which was provided by Stutzbach
and Rejaie [115] and taken using Cruiser [116] on May 24th, 2006, 00:25am. The graph
generated from the snapshot consists of n = 421, 391 nodes and |E| = 5, 264, 433 edges.
For the node degrees

dmin = 1, davg = 24.9, and dmax = 672

were observed. Figure 3.18 shows the evolution of the expansion’s lower bound when
applying 1-Flipper operations to the Gnutella snapshot.5 First of all, we note that
there is no initial phase as it was observed for the three starting graphs above. So,
the Gnutella snapshot seems to provide minor expansion already. Yet, the 1-Flipper
operations are able to drastically increase the expansion. The stable phase, reached af-
ter 0.9 ∗ 107 operations, differs from the stable phase observed for regular graphs: the
lower bound of the graph expansion is more unsteady and oscillates in the interval
[0.13, 0.266]. This effect seems to be typical for irregular graphs [51]. The conclusion is

4 Otherwise an additional graph transformation, the so called bow-tie switch, has to be used to ensure
that every graph can be reached.

5 Concerning the scale of the y-axis note that a different definition of expansion defined over the volume
of subsets S ⊂ V, i.e. the sum of the degrees of all v ∈ S, instead of the number of nodes in S has been
used (see [24]).

41

3 The Undirected Case: Flipper

that an incorporation of the 1-Flipper operation into the Gnutella protocol would dras-
tically improve the network structure of Gnutella, resulting in improved robustness
and lookup performance.

42

4
The Directed Case: Pointer-Push&Pull

For the use in peer-to-peer networks, the 1-Flipper introduced in the previous chapter
can be improved. First, the 1-Flipper involves the active participation of four peers.
Second, the maintenance of undirected, or to be more precise bi-directed, graphs is
costly and not necessary at all costs. In practice the use of directed graphs (digraphs) is
often completely sufficient since peers do not necessarily need to know who is pointing
towards them as long as the network is connected and robust. Note, that there are sev-
eral peer-to-peer networks which use digraphs, see [114, 60, 80, 52] for some prominent
examples.

In this chapter we concentrate on random graph transformations for weakly con-
nected multi-digraphs and present the Pointer-Push&Pull operation. Its main advan-
tage is simplicity: For a local update operation only two peers need to exchange two
messages. Using Markov theory, we show that Pointer-Push&Pull operations will even-
tually generate all weakly connected out-regular multi-digraphs with the same prob-
ability. Interestingly this is not the case if Pointer-Push&Pull is applied to out-regular
simple digraphs. Then we show that a slight change of the probability distribution for
the choice of edges gives another terminal distribution over multi-digraphs with sim-
ple digraphs occurring with higher probability. At last we discuss how to implement
Pointer-Push&Pull in a distributed network and solve the problems arising by concur-
rent operations.

4.1 The Pointer-Push&Pull Graph Transformation

As in the previous chapter, our goal is to design a graph transformation for connected
digraphs which is sound, general, feasible, and converges quickly (cf. Chapter 2). Since
the model of multi-digraphs is less restrictive than the model of simple digraphs, we
will first consider multi-digraphs and then show that our results can not be transferred
to simple digraphs.

43

4 The Directed Case: Pointer-Push&Pull

v3v2

v1

v1

v2 v3

Figure 4.1: The Pointer-Push operation.

v3v2v1 v4

v3v2v1 v4

Figure 4.2: The Pointer-Pull operation.

4.1.1 Multi-Digraphs

We start with some fundamental considerations about transformations of multi-di-
graphs. Considering a node v1 of a multi-digraph G = (V, E), there are basically two
possibilities to change the set of edges E:

Pointer-Push Change the outgoing edges of the node, i.e. do a random walk v1, v2, v3
in G and replace (v1, v2) with (v1, v3) (see Figure 4.1).

Pointer-Pull Change the ingoing edges of the node, i.e. do a random walk v1, v2, v3, v4
in G and replace (v3, v4) with (v3, v1) (see Figure 4.2).

However, neither the Pointer-Push nor the Pointer-Pull operation meet our require-
ments for random graph transformations. For the Pointer-Push operation it turns out
that it is sound and feasible but not general, i.e. the digraph will converge to a set of
connected stars in the limit. This is because there is a non zero probability to generate
a sink in the digraph, i.e. a node with all edges pointing to itself. Once a node points
to such a sink there is no possibility to remove this edge with a Pointer-Push operation
anymore.

The situation of the Pointer-Pull operation is similar. The Pointer-Pull operation is
not able to preserve connectivity in a digraph and therefore is not sound. To see this,
note that there is a non-zero probability for a node to create self-loops. Once all edges
of a node are pointing to itself this node is disconnected from the rest of the digraph.
Without global knowledge such a situation is irrevocable and therefore the digraph

44

4.1 The Pointer-Push&Pull Graph Transformation

v3v2v1

v3v2v1

Figure 4.3: The Pointer-Push&Pull operation.

will consist only of disconnected nodes in the long run. A more detailed analysis of the
Pointer-Push and the Pointer-Pull operation is presented in Appendix A.

We now show that a combination of these basic graph transformations, called Pointer-
Push&Pull operation, overcomes the shortcomings of the Pointer-Push respectively
Pointer-Pull operation. It is defined as follows.

Definition 4.1 (Pointer-Push&Pull) Let G = (V, E, #E) be a d-out-regular multi-digraph
and let nodes v1, v2, v3 ∈ V form a directed path P = (v1, v2, v3) in G. Then, the Pointer-
Push&Pull operation PPP transforms graph G to graph PPP(G) = (V, E′, #E′) with

E′ = (E \ {(v1, v2), (v2, v3)}) ∪ {(v1, v3), (v2, v1)} .

The Pointer-Push&Pull operation is illustrated in Figure 4.3. Note, that a Pointer-
Push&Pull operation can be divided to a Pointer-Push operation (between nodes v1
and v3) and a Pointer-Pull operation (between nodes v1 and v2). We start our analysis
of this graph transformation with the following lemma.

Lemma 4.1 The Pointer-Push&Pull operation is sound for the domain of weakly connected
out-regular multi-digraphs.

Proof: We have to show that the Pointer-Push&Pull operation preserves connectiv-
ity and outdegree of all nodes. For connectivity note that all participating nodes stay
connected, what implies at least weak connectivity for the graph. Concerning the out-
degree node v1 as well as v2 just replace one of their outgoing edges and therefore their
outdegrees remain unchanged.

Algorithm 4.1 shows a randomized variant of the Pointer-Push&Pull operation. The
random Pointer-Push&Pull operation chooses its starting node uniformly at random
and then performs a random walk of length two with some probability. Recall that due
to multi-edges |N+(v)| may be less than d in d-out-regular multi-digraphs. Therefore,
a random Pointer-Push&Pull operation may cancel with a probability proportional to
the number of multi-edges of v1 and v2. This specific definition of the random Pointer-
Push&Pull operation is motivated by the following lemma.

45

4 The Directed Case: Pointer-Push&Pull

Algorithm 4.1 Random Pointer-Push&Pull
1: v1 ← random node ∈ V
2: if random event with p = |N+(v1)|

d occurs then
3: v2 ← random node ∈ N+(v1)

4: if random event with p = |N+(v2)|
d occurs then

5: v3 ← random node ∈ N+(v2)
6: E← (E \ {(v1, v2), (v2, v3)}) ∪ {(v1, v3), (v2, v1)}
7: end if
8: end if

Lemma 4.2 The random Pointer-Push&Pull operation is symmetric for out-regular multi-
digraphs. Thus, for two out-regular multi-digraphs G, G′ the probability to transform G to
G′ by a random Pointer-Push&Pull operation is the same as to transform G′ to G by a random
Pointer-Push&Pull operation, i.e.

Pr
[

G PP→ G′
]
= Pr

[
G′ PP→ G

]
,

where G PP→ G′ denotes that G can be transformed to G′ with a single Pointer-Push&Pull
operation.

Proof: Let P = (u, v, w) be the path of the Pointer-Push&Pull operation transforming
G to G′. To transform G′ back to G we need to apply a Pointer-Push&Pull operation
PPP′ with P′ = (v, u, w). Note, that PPP′ is the only possibility to transform G′ back
to G with a single operation. As noted above, the random Pointer-Push&Pull operation
chooses its starting node uniformly at random and then chooses a neighboring node
for two times with probability p = 1/d each. This implies

Pr
[

G PP→ G′
]
= Pr

[
G′ PP→ G

]
=

1
nd2 .

The following lemma names the set of graphs which can be reached by applying
random Pointer-Push&Pull operations to an arbitrary starting graph repeatedly.

Lemma 4.3 A series of random Pointer-Push&Pull operations can transform a graph to any
other graph within the domain of out-regular weakly connected multi-digraphs.

Proof: We show that any weakly connected d-out-regular multi-digraph G = (V, E, #E)
with V = {v1, . . . , vn} can be transformed to a canonical graph GC = (V, EC, #EC) with

EC = {(v1, v1), (v2, v1), . . . , (vn, v1)} ,

and ∀e ∈ EC : #EC(e) = d, i.e. all edges are pointing to v1. Then, the theorem follows
since each Pointer-Push&Pull operation is reversible so that two arbitrary graphs can
be transformed to each other using GC as an intermediate state.

46

4.1 The Pointer-Push&Pull Graph Transformation

v1 v1

vj vj

vk vk

(a)

v1 v1

vj vj

(b)

v1 v1

vj vj

(c)

Figure 4.4: Cases 1.1 (a), 1.2 (b), and 1.3 (c) of Lemma 4.3 (from left to right).

v1

vj

vk

v1

vj

vk

v1

vj

vk

v1

vj

vk

v1

vj

vk

1.1 1.2

Figure 4.5: Case 2.1 of Lemma 4.3.

We start with an arbitrary weakly connected d-out-regular multi-digraph G and in-
crease the indegree of v1 successively. This can be done by repeatedly applying the at
each time first applicable of the following six transformations:

Case 1: v1 has at least one edge (v1, vj) with j 6= 1

Case 1.1: vj has an edge (vj, vk) with k 6= 1 and k 6= j. Apply a Pointer-Push&Pull
operation to the path P = (v1, vj, vk) (see Figure 4.4(a)).

Case 1.2: vj has an edge (vj, v1). Apply a Pointer-Push&Pull operation with P =
(v1, vj, v1) (see Figure 4.4(b)).

Case 1.3: vj has an edge (vj, vj). Apply a Pointer-Push&Pull operation with P =
(v1, vj, vj) (see Figure 4.4(c)).

Case 2: v1 has no edge (v1, vj) with j 6= 1 and therefore has an edge (v1, v1)

Case 2.1: There is a node vj pointing to v1 and a node vk, with k 6= j, pointing
to vj. Apply Pointer-Push&Pull operations to the paths P1 = (vj, v1, v1),
P2 = (vk, vj, v1), P3 = (v1, vj, vk), and P4 = (v1, vk, v1) (see Figure 4.5).

Case 2.2: There is a node vj pointing both to v1 and vk, k 6= 1. Furthermore, vk
points to a node vl with l 6= 1. If we apply a Pointer-Push&Pull operation

47

4 The Directed Case: Pointer-Push&Pull

v1

vj

vk

vl

v1

vj

vk

vl

v1

vj

vk

vl

2.1

Figure 4.6: Case 2.2 of Lemma 4.3.

v1

vj

v1

vj

v1

vj

v1

vj
1.21.3

Figure 4.7: Case 2.3 of Lemma 4.3.

to the path P1 = (vj, vk, vl), then we reach the start configuration of case 2.1
and can continue with the operations described there (see Figure 4.6).

Case 2.3: There is a node vj pointing to v1 and itself. Apply Pointer-Push&Pull
operations to the paths P1 = (vj, v1, v1), P2 = (v1, vj, vj), and P3 = (v1, vj, v1)
(see Figure 4.7).

Following this scheme, the starting graph G will be transformed to GC in the limit. To
see this, note that GC is the only possible graph with indegree dn for node v1. Further-
more, the six cases cover all possible arrangements of edges, so that always one of the
cases can be applied unless GC is reached already.

As a side effect, the proof of Lemma 4.3 delivers an upper bound for the number of
Pointer-Push&Pull operations necessary to transform two graphs to each other: Start-
ing with an arbitrary d-out-regular weakly connected multi-digraph G, at most 10nd
Pointer-Push&Pull operations are needed to reach any other d-out-regular weakly con-
nected multi-digraph G′.

Combining our results, we are now able to show that the Pointer-Push&Pull opera-
tion provides uniform generality within the domain of d-out-regular weakly connected
multi-digraphs.

48

4.1 The Pointer-Push&Pull Graph Transformation

Theorem 4.1 Let G′ be an arbitrary d-out-regular weakly connected multi-digraph with n
nodes. Then, applying random Pointer-Push&Pull operations repeatedly to G′ will construct
every d-out-regular weakly connected multi-digraph with the same probability in the limit, i.e.

lim
t→∞

Pr
[

G′ t→ G
]
=

1
|MDGn,d|

,

where MDGn,d denotes the set of all d-out-regular weakly connected multi-digraphs with n
nodes.

Proof: Consider the Markov chain over the set of d-out-regular weakly connected
multi-digraphs described by the random Pointer-Push&Pull operation. Lemma 4.2 im-
plies that the transition matrix of the Markov chain is symmetric and therefore doubly
stochastic. Lemma 4.3 shows that every state of the Markov chain is reachable. Further-
more, there is a non-zero probability to transform a graph to itself (this happens when
the first edge chosen during the random walk is a self-loop). This implies that some di-
agonal entries of the transition matrix are non-zero. Using these three properties of the
transition matrix the theorem follows by applying essential results of Markov theory.

4.1.2 Edge Labeled Multi-Digraphs

We have seen that the Pointer-Push&Pull operation generates out-regular weakly con-
nected multi-digraphs with uniform probability. We now show that a slight change
of the probability distribution for the choice of edges gives another terminal distri-
bution over multi-digraphs with simple digraphs occurring with higher probability.
To achieve this, we modify the Pointer-Push&Pull operation to work with out-regular
edge labeled multi-digraphs, which we formally define as follows.

Definition 4.2 (Edge Labeled Multi-Digraph) An edge labeled d-out-regular multi-digraph
G∗ = (V, E∗) is defined by a node set V = {1, . . . , n} and an edge set E∗ = {(u, v, i) : u, v ∈
V, i ∈ {1, . . . , d}}, where i specifies the label of an edge. Here, we restrict to the labels 1, . . . , d
and unique labels for each outgoing edge of a node, i.e. ∀u ∈ V, ∀i ∈ {1, . . . , d} : ∃v ∈ V :
(u, v, i) ∈ E∗.

For the domain of d-out-regular edge labeled multi-digraphs we use the notation
N+(v, i) with i ∈ {1, . . . , d} and v ∈ V to refer to v’s neighbor due to the i-th labeled
edge. In addition we use E−(v) = {(w, v, i) ∈ E∗} to refer to the set of v’s ingoing
edges. Recall that N+(v, i) = N+(v, j), i 6= j is possible in a multi-digraph. Algo-
rithm 4.2 shows the random Pointer-Push&Pull operation, modified for edge labeled
multi-digraphs. For the sake of clarity and to simplify notation, we will refer to this
algorithm as labeled-Pointer-Push&Pull and use unlabeled-Pointer-Push&Pull to refer to
the previous section Pointer-Push&Pull algorithm.

The proofs for preserving connectivity and out-degrees of the unlabeled-Pointer-
Push&Pull can be transferred directly to the labeled-Pointer-Push&Pull operation. We
now show that the labeled-Pointer-Push&Pull operation is symmetric within the do-
main of out-regular weakly connected edge labeled multi-digraphs.

49

4 The Directed Case: Pointer-Push&Pull

Algorithm 4.2 Random labeled-Pointer-Push&Pull
1: v1 ← random node ∈ V
2: i← random number ∈ {1, ..., d}
3: v2 ← N+(v1, i)
4: j← random number ∈ {1, ..., d}
5: v3 ← N+(v2, j)
6: E∗ ← (E∗ \ {(v1, v2, i), (v2, v3, j)}) ∪ {(v1, v3, i), (v2, v1, j)}

Lemma 4.4 The labeled-Pointer-Push&Pull operation PP∗ is symmetric within the domain
of out-regular weakly connected edge labeled multi-digraphs. That is, for two arbitrary graphs
G∗1 , G∗2 of this domain

Pr
[

G∗1
PP∗→ G∗2

]
= Pr

[
G∗2
PP∗→ G∗1

]
.

Proof: According to Algorithm 4.2 G∗1 and G∗2 differ in exactly two edges. More pre-
cisely G∗1 has edges (v1, v2, i), (v2, v3, j) and G∗2 has edges (v1, v3, i), (v2, v1, j). The only
way to transform G∗2 back to G∗1 with a single operation is a labeled-Pointer-Push&Pull
operation using the edges (v2, v1, j) and (v1, v3, i). Now observe that the starting node
of the labeled-Pointer-Push&Pull operation is chosen uniformly at random, i.e. with
p = 1/n. So, the algorithm does a random walk by choosing two edges uniformly at

random, implying Pr[G∗1
PP∗→ G∗2] = Pr[G∗2

PP∗→ G∗1] = 1/(nd2).
Similar as in case of the unlabeled-Pointer-Push&Pull operation, every out-regular

weakly connected edge labeled multi-digraph can be reached by a series of labeled-
Pointer-Push&Pull operations. This can be shown by transferring the proof of Lemma
4.3 to edge labeled multi-digraphs. To see this, note that using the proof of Lemma
4.3 any starting graph will be transformed to the canonical graph GC — regardless of
its labeling. Furthermore, the labeling in GC can be neglected, since all edges point
to the same node. Therefore, the proof also holds for the labeled-Pointer-Push&Pull
operation.

Finally, these results lead to the following theorem showing that the labeled-Pointer-
Push&Pull operation provides uniform generality within the domain of out-regular
weakly connected edge labeled multi-digraph.

Theorem 4.2 Let G∗0 be an d-out-regular weakly connected edge labeled multi-digraph with n
nodes. Then, applying random labeled-Pointer-Push&Pull operations repeatedly to the graph
will construct every d-out-regular weakly connected edge labeled multi-digraph with the same
probability in the limit, i.e.

lim
t→∞

Pr
[

G∗0
t→ G∗

]
=

1
|MDG∗n,d|

,

whereMDG∗n,d denotes the set of all d-out-regular weakly connected edge labeled multi-digraphs.

50

4.1 The Pointer-Push&Pull Graph Transformation

Proof: The proof is essentially the same as the proof of Theorem 4.1. The transi-
tion matrix of the Markov chain described by the labeled-Pointer-Push&Pull operation
over all G∗ ∈ MDG∗n,d is doubly stochastic and every state is reachable. Furthermore
the labeled-Pointer-Push&Pull operation does not change the edge set if the operation
chooses a self-loop for two times, implying non-zero diagonal entries. Therefore, the
theorem follows by essential results of Markov theory.

At first glance this result does not seem to be more powerful than the uniform gener-
ation of d-out-regular weakly connected multi-digraphs, shown by Theorem 4.1. Note
however, that each d-out-regular edge labeled multi-digraph can be transformed to a d-
out-regular (unlabeled) multi-digraph G. For this, the set of triples in E∗ is transformed
to a multi-set by omitting the labels, i.e. the third element of each triple. This leads to
the following definition of an equivalence class.

Definition 4.3 (Equivalence Class) The set of d-out-regular edge labeled multi-digraphs de-
scribing a d-out-regular (unlabeled) multi-digraph G, when omitting the edge labels, is called
equivalence class of G: [G].

Now, we are able to transfer Theorem 4.2 to the domain of unlabeled multi-digraphs
using equivalence classes.

Theorem 4.3 Let G be a d-out-regular weakly connected multi-digraph with n nodes. Then,
applying random labeled-Pointer-Push&Pull operations to the graph repeatedly will construct
every d-out-regular weakly connected multi-digraph G with probability ∼ |[G]|.

It remains to analyze the size of the equivalence classes, i.e. how many ways are there
to label the edges of a d-out-regular multi-digraph with labels chosen according to Def-
inition 4.2. Straight forward combinatorics leads to the following sizes for equivalence
classes in dependency of the number of multi-edges in a graph.

Lemma 4.5 Let G be a d-out-regular multi-digraph. Then, the size of the equivalence class of
G is given by

|[G]| = ∏
u∈V(G)

d!
M0(u)! ∏d

i=1(i!)Mi(u)
,

with M0(u) denoting the number of slopes, M1(u) denoting the number of single edges, M2(u)
denoting the number of double edges, etc.

In other words, Lemma 4.5 shows: The lower the number of multi-edges in G is,
the larger is the cardinality of its equivalence class [G]. This again implies that the
labeled-Pointer-Push&Pull operation will generate a particular simple digraph with
higher probability than a particular multi-digraph. Therefore, and because there is
no additional overhead compared to the unlabeled-Pointer-Push&Pull operation, the
labeled-Pointer-Push&Pull operation will be preferable in the majority of cases.

By definition the Pointer-Push&Pull operations guarantee out-regularity only. In
many applications it is desirable to have regular digraphs. Therefore we now analyze

51

4 The Directed Case: Pointer-Push&Pull

nd-d-1 nd-dd0 1

p2p/dp/d

ppp p p p

(nd-d-1)p/d (nd-d)p/d(d+1)p/d

pp/d1-2p1-p-p/d1-p

.

Figure 4.8: A Markov chain modeling the change of a node’s indegree.

the indegree distribution of the evolving graphs. On the one hand a node v increases
its indegree by one if chosen as starting node.1 This occurs with probability p = 1/n.
On the other hand v’s indegree is decreased only if v is chosen as second node of a
Pointer-Push&Pull operation. This happens with probability proportional to v’s inde-
gree, i.e. |E−(v)|p/d. Knowing this, the change of v’s indegree can be modeled by a
Markov chain with states 0, . . . , nd− d representing the current indegree and transition
probabilities as shown in Figure 4.8. Analyzing the stationary probability distribution
of this Markov chain leads to an almost Poisson distribution with expectation d.

Lemma 4.6 Starting with an arbitrary d-out-regular weakly connected edge labeled multi-
digraph with n nodes and applying labeled-Pointer-Push&Pull operations repeatedly the in-
degrees of the nodes will be almost Poisson distributed, i.e. a node will have indegree k with
probability

Pk =
dk

k!

(
nd−d

∑
i=0

di

i!

)−1

.

Proof: Consider the stationary distribution when the Markov chain shown in Fig-
ure 4.8 has converged. Let Pk, 0 ≤ k ≤ nd− d, be the probability for state k. For state
1 ≤ k ≤ nd− d− 1 we observe the recurrence

Pk = pPk−1 +
(

1− p− k
p
d

)
Pk +

(
(k + 1)

p
d

)
Pk+1.

Furthermore we observe
P0 = (1− p)P0 +

p
d

P1 (4.1)

for state k = 0. Rearranging Equation 4.1 we have P1
P0

= d and using induction it can be
shown that

Pk

Pk−1
=

d
k

1 Actually v’s indegree will not increase if the first edge chosen is a self-loop. However the expected
overall number of self-loops in a d-out-regular multi-digraph is constant, or to be more specific d. So,
we neglect the constant number of affected nodes in our analysis and assume that the node has no
self-loops during the graph transformations.

52

4.1 The Pointer-Push&Pull Graph Transformation

holds for k ≥ 1. Thus we have Pk =
d
k Pk−1 and rewriting this equation we get

Pk =
d
k
· d

k− 1
· · · d

1
· P0. (4.2)

Having Equation 4.2 it remains to find an adequate term for Po. Solving ∑nd−d
k=0 Pk = 1

for P0 we have

P0 =

(
nd−d

∑
k=0

dk

k!

)−1

. (4.3)

Combining Equation 4.2 and Equation 4.3 we receive

Pk =
dk

k!

(
nd−d

∑
i=0

di

i!

)−1

.

This concludes the proof of Lemma 4.6.

4.1.3 Simple Digraphs

We have seen that the labeled-Pointer-Push&Pull operation generates simple digraphs
with higher probability than the unlabeled-Pointer-Push&Pull operation. Though, the
following theorem shows that simple digraphs are still outnumbered.

Theorem 4.4 The fraction p∗ of d-out-regular edge labeled simple digraphs with n nodes in all
d-out-regular edge labeled multi-digraphs with n nodes is bounded by

e
− d2

1− d
n ≤ p∗ ≤ e−d .

Proof: In a d-out-regular edge labeled simple digraph neither self-loops nor multi-
edges occur. This implies that there are (n− 1)!/(n− d− 1)! possibilities for a nodes
neighborhood while there are nd possibilities if self-loops and multi-edges are allowed.
This gives an upper bound of

(
(n− 1)!

(n− d− 1)!nd

)n

≤ (n− 1)dn

ndn

=

(
1− 1

n

)dn

≤ e−d .

53

4 The Directed Case: Pointer-Push&Pull

For the lower bound of d-out-regular edge-labeled simple multi-digraphs, observe
that (n−1)!

(n−d−1)! ≥ (n− d)d. This implies(
(n− 1)!

(n− d− 1)!nd

)n

≥ (n− d)dn

ndn

=

(
1− d

n

)dn

=

(
1− d

n

)(n−d
d) d2n

n−d

≥ e−
d2n
n−d ,

and thus proves the theorem.
Given a node, the probability of being the source of only simple edges (not multiple

edges or self-loops) is quite high, i.e. at least 1− d
n−d−1 (which suffices practical needs).

Whereas, if we consider the complete graph, the fraction of simple digraphs created by
the labeled-Pointer-Push&Pull operation is rather small, i.e. decreasing exponentially
with the degree. Since multiple edges are an unnecessary waste of resources one might
want to generate simple digraphs only. A straight forward solution is to modify the
labeled- or unlabeled-Pointer-Push&Pull operation such that it is only applied if the
resulting digraph is simple. We call this modified graph transformation simple-Pointer-
Push&Pull. Unfortunately, the simple-Pointer-Push&Pull operation is not general for
the domain of simple digraphs. To see this consider any symmetric digraph, i.e. a di-
graph where for each edge (u, v) also the edge (v, u) is in the edge set. In such digraphs
no simple-Pointer-Push&Pull operation can be applied, since each operation would
either create a multi-edge or a self-loop and therefore leave the domain of simple di-
graphs. The only way to reach all simple digraphs using Pointer-Push&Pull operations
is to allow the multiple occurrence of edges, i.e. the use of multi-digraphs.

4.2 Pointer-Push&Pull in Peer-to-Peer Networks

The labeled- and unlabeled-Pointer-Push&Pull operations are in particular useful for
the maintenance of distributed random networks, as they are used in unstructured
peer-to-peer networks for example. Applying Pointer-Push&Pull operations repeat-
edly ensures that the network stays truly random, even if peers join, leave, or fail in
non-random fashion. In this section we discuss how to implement Pointer-Push&Pull
operations in a distributed network without central coordination.

A Pointer-Push&Pull operation on the path P = (v1, v2, v3) consists of the following
three sequential steps:

Step 1 v1 requests a random neighbor from v2

Step 2 v2 replaces v3 by v1 in its neighborhood list and sends the ID of v3 to v1

54

4.2 Pointer-Push&Pull in Peer-to-Peer Networks

Step 3 v1 receives the ID of v3 from v2 and replaces v2 by v3 in its neighborhood list

These three steps involve only two messages between v1 and v2, carrying the infor-
mation of one edge respectively. This shows, that a Pointer-Push&Pull operation does
not introduce additional overhead compared to so called ping messages for the period-
ical verification of the neighborhood, which is mandatory in dynamic networks. Since
Pointer-Push&Pull operations are initiated randomly by every peer they may be used
to replace periodical verification messages and allow to maintain the network structure
at the same time.

4.2.1 Concurrency

In the previous section we have shown that a single Pointer-Push&Pull operation never
disconnects a network. However, things are different when there are concurrent Pointer-
Push&Pull operations with intersecting paths. They bear the risk of disconnecting a
network. To see this, consider a directed path (s, t, u, v) in the network and two concur-
rent Pointer-Push&Pull operations PPP and PPP′ with P = (s, t, u) and P′ = (t, u, v).
Now consider the following situation. PPP′ has removed edge (u, v) and created edge
(u, t). At this point of time PPP starts and finishes before PPP′ continues, i.e. PPP
creates edges (s, u), (t, s) and removes edges (s, t), (t, u). Then, PPP′ can not be fin-
ished since PPP′ will try to remove edge (t, u) which no longer exists. Even worse, the
resulting network is possibly disconnected since there is no path between u and v.

Fortunately, there is a simple solution to this problem. To prevent the interference
of Pointer-Push&Pull operations the first edge of each operation is locked for the use
by further operations. This implies that this edge can not be used by multiple Pointer-
Push&Pull operations at the same time. The second edge of a Pointer-Push&Pull op-
eration does not need to be locked, since it will be replaced immediately without any
delay due to network communication.

If a Pointer-Push&Pull operation choses an edge, which is currently locked, then
there are two possible solutions. First, the Pointer-Push&Pull operation can of course
be canceled. This is unproblematic since no changes have been made to the network
graph, yet. Another option is to wait for the lock to disappear. This is reasonable since
an operation will usually need few milliseconds. Furthermore, the number of inter-
secting operations will be low if the interval in which a node starts Pointer-Push&Pull
operations is chosen reasonably.

4.2.2 Joining Peers

In this section we describe several operations for a peer to join a Pointer-Push&Pull
maintained network. Here, we distinguish between local and global join operations. Lo-
cal join operations do only rely on the local information each peer has of the network
and therefore can be easily implemented in the dynamic setting of a peer-to-peer net-
work. Global join operations require the whole topology of the network to be known.

55

4 The Directed Case: Pointer-Push&Pull

u u

Figure 4.9: The directed-pegging operation when d = 2.

Thus global join algorithms cannot be implemented one-to-one in a peer-to-peer net-
work but it is conceivable that local variations giving an approximate solution can be
implemented. Furthermore, we will prove that the evolving graphs of the global join
algorithm described below are expander graphs.

Local Join Operations

Since Pointer-Push&Pull operations allow to recover from any degenerate network
structure and the domain of connected out-regular multi-digraphs is very unrestrictive
joining peers may make use of minimalistic join operations. So, it would be sufficient
if a peer u willing to join the network via a previously known peer v creates d connec-
tions to v or even worse: creates one connection to v and d − 1 self-loops. Of course,
more elaborate join algorithms will speed up the convergence process to a truly ran-
dom topology. So, depending on the network dynamics it may be reasonable to join
a network by performing a short random walk in the network and make u’s outgoing
edges point to some of the nodes encountered during the random walk.

A Global Join Operation Generating Expander Digraphs

In Chapter 3 we described the pegging operation to join d-regular undirected graphs
respectively networks and have seen that the graphs created with this operation are
d-connected a.a.s. for example. Algorithm 4.3 describes a variation of the pegging op-
eration for the domain of d-regular digraphs to which we will refer to as directed-pegging
operation from now on.

Algorithm 4.3 directed-pegging (node u)
1: V ← V ∪ u
2: repeat
3: choose edge e = (v, w) ∈ E with v /∈ N−(u) and w /∈ N+(u) u.a.r.
4: E← (E \ (v, w)) ∪ {(v, u), (u, w)}
5: until |N+(u)| = d

The directed-pegging operation is illustrated in Figure 4.9. As the pegging operation
for undirected graphs, the directed-pegging operation chooses edges of the digraph
uniformly at random and puts a joining node (or peer) “in the middle” of these edges.

56

4.2 Pointer-Push&Pull in Peer-to-Peer Networks

The smallest digraph to which directed-pegging operations can be applied successfully
is a clique of d + 1 nodes. We will neglect smaller graphs here and assume that there is
a bootstrapping process to construct such a clique.

Before we analyze the digraphs evolving by the use of the directed-pegging operation
we define some additional notations. For a digraph G = (V, E) and a subset S ⊂ V we
denote the set of all directed edges leaving S as δ+S = {(u, v) ∈ E|u ∈ S, v /∈ S} and the
set of all directed edges entering S as δ−S = {(u, v) ∈ E|u /∈ S, v ∈ S}. The following
lemma states some fundamental properties of the digraphs evolving by the use of the
directed-pegging operation.

Lemma 4.7 A digraph G = (V, E) generated using the directed-pegging operation has the
following properties:

1. G is regular, i.e. out-regular and in-regular.

2. For every subset S ⊂ V it holds that |δ+S| = |δ−S|.

Proof: Note that the new node u creates d outgoing edges and receives d ingoing
edges. Furthermore, the out- and indegrees of existing nodes remain unchanged since
an edge (v, w) chosen by the directed-pegging operation is replaced by a directed path
(v, u, w), i.e. the outgoing edge of v respectively the ingoing edge of w are replaced by
new edges.

For the proof of property 2 we consider an arbitrary subset S ⊂ V and examine how
δ+S and δ−S change when a new node u arrives and the set of edges is changed. We
assume u /∈ S and the edge chosen by the insertion scheme is (v, w). First of all note
that the edge boundary of S, i.e. δ+S and δ−S, will not change if v, w /∈ S. So, the edge
boundary will change in the following cases only:

• v ∈ S and w ∈ S: Since (v, w) /∈ δ+S and (v, w) /∈ δ−S no edges will be removed
from δ+S respectively δ−S. But (v, u) will be added to δ+S and (u, w) will be
added to δ−S and thus |δ+S| and |δ−S| grow by one respectively.

• v ∈ S and w /∈ S: (v, w) will be removed from δ+S and (v, u) will be added to
δ+S. No changes are made to δ−S. Thus |δ+S| and |δ−S| remain unchanged.

• v /∈ S and w ∈ S: This case is symmetric to the previous case.

The same line of arguments holds when u /∈ S so we do not explicitly state these addi-
tional cases here. Note that |δ+S| = |δ−S| holds in a clique and that δ+S and δ−S always
grow by the same amount of edges when a new node is inserted. Thus, |δ+S| = |δ−S|
will still hold after the insertion.

In the following we prove that the evolving digraphs are expanders with high prob-
ability. Before we do this we give a formal definition of directed expander graphs by
transferring Definition 3.2 to the domain of digraphs.

57

4 The Directed Case: Pointer-Push&Pull

Definition 4.4 (Expander digraph) A digraph G = (V, E) provides expansion β > 0, or
is a β-expander, if for all node sets S with |S| ≤ |V|/2 it holds that

|δ+S| ≥ β|S| and |δ−S| ≥ β|S|.

Theorem 4.5 A d-regular digraph G = (V, E) with d ∈ Ω(log n) constructed using the
directed-pegging operation is a Θ(d)-expander w.h.p.

Proof: Let V = {v1, . . . , vn} be the nodes of G and let the indices 1, . . . , n denote the
order of their insertion into G. Without loss of generality we assume n to be even.
Furthermore, we define V1 = {v1, . . . , vn/2} and V2 = {vn/2+1, . . . , vn}. To proof the
theorem we will analyze the development of the size of the edge boundaries δ+S and
δ−S for all S ⊂ V with |S| ≤ n/2 during the insertion process. We start our analysis at
the point in time when all nodes in V1 have already been inserted into G and assume
that |δ+S| = 1 at this point in time (this is the lowest possible value for |δ+S| since G
is connected). Note that all bounds on probabilities presented in the remainder of this
proof refer to points in time after the insertion of all nodes in V1. From Lemma 4.7 we
know that |δ+S| = |δ−S| does hold so that we can restrict ourselves to the analysis of
δ+S here. In the analysis we distinguish between subsets S with |S ∩ V1| ≥ |S|/2 and
|S ∩V2| ≥ |S|/2, starting with the former.
|S ∩ V1| ≥ |S|/2 means that the majority of nodes in S belongs to the first half of

nodes inserted into G. Now consider the nodes in V2 \ S. Since |S ∩ V2| ≤ |S|/2 and
|S| ≤ n/2 it follows that there are at least n/4 nodes in V2 \ S. When these nodes choose
edges lying in S during their insertion δ+S will grow. For the choice of a single edge
we observe the following probability:

Pr[v ∈ V2 \ S chooses edge in S] ≥ |S|
2n
− |δ

+S|
dn

.

We now show that after inserting all the nodes in V2 \ S the edge boundary for an
arbitrary subset S ⊂ V, with |S ∩V1| ≥ |S|/2 and |S| ≤ n/2, satisfies |δ+S| > d|S|

16 with
high probability. First of all note that δ+S can not shrink and that the probability to add
edges to δ+S does shrink with growing δ+S. As long as |δ+S| ≤ d|S|

8 we observe the
following lower bound for the probability to add edges to δ+S

Pr
[
δ+S will grow

]
≥ |S|

2n
− |δ

+S|
dn

(4.4)

≥ |S|
2n
− d|S|

8dn
(4.5)

=
3|S|
8n

. (4.6)

This lower bound allows us to model the growth of the edge boundary as a Bernoulli
trial. The success probability is given by Inequality 4.6 and since each node in V2 \ S
will choose d edges we have a total number of d|V2 \ S| ≥ dn/4 trials. Assuming the

58

4.2 Pointer-Push&Pull in Peer-to-Peer Networks

minimum number of dn/4 trials, it follows that E [|δ+S|] ≥ 3
32 d|S|. Applying Chernoff

bounds we can bound the probability of being successful less than d|S|
16 times during

these trials as follows

Pr
[
|δ+S| ≤ d|S|

16

]
= Pr

[
|δ+S| ≤

(
1− 1

3

)
3

32
d|S|

]
≤ e−

1
2 (

1
3)

2 3
32 d|S|

= e−
1

192 d|S| .

Next, we consider the subsets S with |S ∩ V2| ≥ |S|/2 and show that these have a
large edge boundary after inserting all n nodes. Now, the majority of the nodes in S
belongs to V2, i.e. the last half nodes to be inserted. Once again we assume that the
nodes of V1 have already been inserted and that |δ+S| = 1 at this point in time. Note
that the edges chosen by nodes in S ∩ V2 are likely to lie in S̄ := V \ S and therefore
have the potential to add edges to δ+S. When all nodes in V1 have been inserted into G
it holds that |S̄| ≥ n

4 and thus the probability for nodes in S ∩V2 to choose an edge not
lying in S after this point in time is bounded by

Pr [v ∈ S ∩V2 chooses edge in S̄] ≥ d|S̄| − |δ+S̄|
dn

≥ 1
4
− |δ

+S̄|
dn

.

We will now make use of the fact that |δ+S̄| = |δ−S̄| = |δ+S|, see Lemma 4.7. As long
as |δ+S| ≤ d|S|

8 does hold we observe the following lower bound for the probability to
add edges to δ+S:

Prob
[
δ+S will grow

]
≥ 1

4
− |δ

+S̄|
dn

(4.7)

≥ 1
4
− |S|

8n
(4.8)

≥ 1
4
−

n
2

8n
(4.9)

=
3

16
. (4.10)

Again we can model the growth of the edge boundary as a Bernoulli trial with success
probability given by Inequality 4.10. Since |S∩V2| ≥ |S|/2 we have at least d|S|/2 trials
and E [|δ+S|] ≥ 3

32 d|S|. Applying Chernoff bounds we have

Pr
[
|δ+S| ≤ d|S|

16

]
≤ e−

1
2 (

1
3)

2 3
32 d|S|

= e−
1

192 d|S| .

59

4 The Directed Case: Pointer-Push&Pull

It remains to sum up the error probabilities for all subsets S ⊂ V with |S| = m ≤ n/2.
Assuming d ≥ c log n for some constant c chosen large enough we have

n/2

∑
m=1

(
n
m

)
e−

1
192 dm ≤

n/2

∑
m=1

nme−
1

192 dm

≤
n/2

∑
m=1

n(1− c
192)m

≤ n
2

n1− c
192

≤ n−c′ ,

so the probability that there is a subset S with |δ+S| = |δ−S| < d|S|
16 is polynomially

small in n.
The constant hidden in the degree Ω(log n) used in Theorem 4.5 is quite large. Note

that we made no effort to minimize this constant — this could be achieved by a more
exact distinction of the subsets S according to the points in time when their nodes are
inserted into the graph, for example.

The domain of digraphs generated by the directed-pegging operation is a subdo-
main of connected regular digraphs since the operation does not allow to construct
large cliques as subgraphs. The argumentation to prove this is the same as in case of
the (undirected) pegging operation, see [51]. A local version of the directed-pegging
operation could be derived by using d random walks to choose the random edges, with
the length of the random walks chosen according to the mixing time of the digraph.
However, the mixing time is unknown and there is no simple way for the peers to cal-
culate it in a distributed way. Furthermore, the mixing time may change with joining
and leaving peers. It is conceivable that random walks of length logarithmic in the
number of nodes are sufficient to construct expander digraphs, experimental results in
[51] give evidence to this.

60

5
Conclusion and Open Problems

In the first part of this thesis we have presented several random graph transforma-
tions for maintaining a stable random backbone for peer-to-peer networks: The family
of Flipper operations for undirected connected graphs in Chapter 3 and the Pointer-
Push&Pull operations for connected out-regular multi-digraphs in Chapter 4. In Chap-
ter 2 we defined four properties desirable for random transformations of graphs: sound-
ness, generality, feasibility, and fast convergence. Figure 5.1 presents a summary of the
graph transformations presented in this thesis and the switch operation proposed by
Cooper et al. [26, 27] with respect to these properties. The Archilles heel of the switch
operation is that it cannot guarantee connectivity and thus will disconnect a network
in the long run unless additional mechanism to guarantee connectivity are used. So,
the switch operation is neither feasible nor does it provide generality when used in
a networking concept since not every graph of the domain is reachable in the limit.
Flipper and Pointer-Push&Pull operations do not have this problem since they were
designed to guarantee connectivity — we even presented simple mechanisms to guar-
antee connectivity in case of concurrent operations. Furthermore, all findings are rig-
orously proved using Markov theory. In our view this is the only reasonable way as
graph transformations like the Pointer-Pull operation perform very well in simulations
of large networks, yet eventually disconnect the network as we have proven here.

Despite of their simplicity these operations are able to establish a stable network and
we have shown that in the limit truly random graphs respectively expander graphs

switch [26, 27] 1-Flipper k-Flipper Pointer-Push&Pull
domain regular graphs connected regular

graphs
connected regular

graphs
connected regular

multi-digraphs
soundness yes yes yes yes
generality no yes yes yes
feasibility no yes yes∗ yes
convergence yes yes yes yes

Figure 5.1: Comparing the properties of graph transformations (∗k-Flipper is only feasible for
small values of k)

61

5 Conclusion and Open Problems

evolve. Therefore, small diameter and high connectivity is guaranteed. An interesting
feature — making these graph transformations an ideal maintenance operation for un-
structured peer-to-peer networks — is that they allow to recover from any worst case
situation. For the 1-Flipper operation we have shown that it would indeed drastically
improve the network structure of Gnutella. Furthermore, the 1-Flipper operation could
be used to improve the unstructured overlay network proposed by Law and Siu [64]
which is composed of d Hamilton cycles and is not able to recover from degenerate
states (see Page 11).

From a practical point of view the Pointer-Push&Pull operation directly competes
with the 1-Flipper operation. Both graph transformations are able to maintain truly
random networks, yet in different domains: The 1-Flipper operation maintains undi-
rected connected regular graphs, whereas the Pointer-Push&Pull operation maintains
out-regular weakly connected multi-digraphs. While the domain of the 1-Flipper oper-
ation may be the more common one for random networks, there is a strong argument in
favor of the Pointer-Push&Pull operation and the — at first glance incongruous — use
of multi-digraphs: a Pointer-Push&Pull operation needs only two nodes to exchange
two messages per operation, while the 1-Flipper operation needs four nodes to com-
municate with each other. This implies lower network overhead and improved locality
for each operation. So, the Pointer-Push&Pull will be the operation of choice unless
there are strong arguments in favor of using undirected networks in a particular appli-
cation scenario.

In Sections 3.3.1 and 4.2.2 we have seen that there exist join operations construct-
ing expander (di)graphs right away. However, the join operations for which we were
able to prove that they construct expander graphs required global knowledge of the
network structure. Furthermore, one should not forget that — even if a join operation
constructs expanders right away — it is still mandatory for a peer to periodically ver-
ify its neighborhood in a dynamic network. So, at the latest with the introduction of
the Pointer-Push&Pull operation it is not that essential that join operations construct a
decent topology, since Pointer-Push&Pull operations can replace periodic verification
messages and maintain a random network at the same time without causing commu-
nication overhead. Last but not least a continuously changing and random topology
offers further advantages. The change of a peers neighborhood via random graph trans-
formations will make it harder for a group of malicious peers to take control over parts
of the network. Furthermore, a peer will be connect to every other peer over time so
random graph transformations are a tool to exchange or spread information in the net-
work.

Open Problems

The research in the field of local random graph transformations is still in its infancy.
Bounding the convergence rate of local graph transformations turned out to be hard
and the experimental results presented in Section 3.4 suggest that the best bound known
for the 1-Flipper operation [28] is far from the true behavior of this graph transforma-

62

tion. For the k-Flipper we were only able to bound the number of operations needed
to reach an expander graph for extra-ordinary large k, i.e. k chosen such that both flip-
ping edges are chosen uniformly at random. So, it remains open to show how many
operations are needed for reasonable values of k, i.e. k ∈ O(log n). Furthermore, the
convergence rate has been analyzed in static graphs without nodes joining and leaving
so far.

For the Pointer-Push&Pull operation no bounds on the convergence rate have been
proven so far. The hope that bounding the convergence rate of the Pointer-Push&Pull
operation would be easier than in case of the 1-Flipper since the domain of out-regular
multi-digraphs is less restrictive than the domain of regular undirected graphs has not
proven to be true so far. In case of undirected graphs we were able to examine the
convergence behavior of the 1-Flipper by simulations. Unfortunately we are not able
to bound the expansion of a digraph with help of eigenvalues. We certainly could
interpret the evolving digraphs as undirected by neglecting the direction of edges. This
however implies that the degree sequence of the graph would change constantly so that
it is rather doubtful to obtain useful results this way.

Another point is that we have only discussed undirected graphs and multi-digraphs
since it turns out that the Pointer-Push&Pull operation is unable to maintain simple di-
graphs. Yet, it is not clear if there exists a similar operation for simple digraphs suitable
for peer-to-peer networks.

63

64

Part II

Structured Networks

65

6
Introduction to Structured Networks

The local graph transformations introduced in Part I of this thesis improve the robust-
ness of unstructured peer-to-peer networks under churn. However, they do not help to
overcome the major drawback of unstructured networks: The lack of efficient query al-
gorithms. Queries still have to be performed by broadcasts of limited depth, imposing
a lot of traffic or by random walks, which reduce network traffic but massively increase
search latency [70].

Structured peer-to-peer networks overcome the shortcomings of unstructured peer-
to-peer networks concerning efficient queries. Starting with CAN [95], numerous net-
work designs based on distributed hash tables (DHT) [61] have been proposed. In
DHT based networks, peers and resources (e.g. data) are mapped into a virtual space
by hash functions to assign data to peers. Then, data is assigned to the peer which is
closest in the virtual space, for example. This way peers are able to calculate the posi-
tion of a data element in the virtual space and then route to the peer hosting that data
element. Additionally, the use of pseudo random hash functions provides simple and
efficient load balancing since data elements and peers will be evenly distributed in the
virtual space. The simplicity and elegance of the DHT scheme let to a large number
of DHT based peer-to-peer networks proposed by the scientific community, e.g. Chord
[114, 113], Viceroy [76], Pastry [99], Tapestry [52], Koorde [60], D2B [37], and the Dis-
tance Halving network [81, 80, 119]. These networks typically provide logarithmic hop
distance for lookups and mostly differ in the topology chosen to connect the peers (see
Figure 6.1). So, the design of static DHT based networks is well understood [65].

However, the use of DHTs also involves a few drawbacks compared to unstructured
networks. First of all, DHT based networks are harder to maintain under churn than
unstructured peer-to-peer networks in general [22]. Second, the use of hash functions
destroys any semantic interdependencies between data since data elements are mapped
to (pseudo) random positions in the virtual space. Thus, locality is neglected during
data placement and data items stored at the same peer are usually completely unre-
lated. Consequently, DHTs are considered to be inherently ill-suited to complex queries
such as range queries and in this regard constitute a step backwards compared to un-
structured networks [13].

67

6 Introduction to Structured Networks

6.1 Locality in Peer-to-Peer Networks

DHTs certainly constitute an important step towards scalable and robust peer-to-peer
networks. However, as we have seen the efficiency is bought dearly by neglecting
locality during data placement, resulting in the restriction to exact match queries. This
clearly shows that locality is of major importance in peer-to-peer networks. Here, we
distinguish three types of locality: Network locality, information locality, and interest
locality. In the following we will describe these types of locality and briefly discuss the
relevant literature for each type of locality.

6.1.1 Network Locality

While the typical measure to evaluate routing algorithms is the hop number, this alone
is not a good measure if the goal is to provide short response times. The reason for
this is that a hop connecting peers in Greece and Australia has higher latency than a
hop connecting peers in the same building for example. This observation leads to the
following definition of network locality.

Definition 6.1 (Network locality) A peer-to-peer network provides network locality if lookup
operations can be performed with small latency.

Network locality has been addressed early by the research community and several
peer-to-peer networks providing network locality have been proposed. Pastry [99] and
Tapestry [52], based on the seminal work of Plaxton et al. [89], were the first DHT
based peer-to-peer architectures providing network locality innately.1 Other architec-
tures have been extended to support network locality, e.g. Dabek et al. [30] as well as
Montresor et al. [79] extend the Chord architecture [114] in this regard. The crux in
providing network locality is to find latency wise close neighbors without generating
too much additional network traffic.

6.1.2 Information Locality

As we have seen during our discussion of DHTs locality and data placement plays a
key role when it comes to supporting complex queries such as range queries.

Definition 6.2 (Information locality) A peer-to-peer network provides information locality
if closely related data elements are stored on network-wise close peers.

The problem of supporting range queries in peer-to-peer overlays has been identified
early by several researchers, e.g. [49, 54]. Ratnasamy et al. proposed the trie based Pre-
fix Hash Tree (PHT) [92, 93], where prefixes of a trie are hashed onto an arbitrary DHT

1 We are aware that network locality has also been addressed in CAN [95] and Chord [114]. However,
the solution presented in [95] comes with the drawback of loosing the load balancing feature and the
solution presented in [114] is sketched very briefly and is not very effective. So, we do not consider
them here.

68

6.1 Locality in Peer-to-Peer Networks

network. An advantage of their approach is that this way the load balancing function-
ality of DHTs can still be used. However, as mentioned above DHTs are inherently
ill-suited to range queries and thus it is hardly surprising that the lookup in PHT is
not as efficient as in DHTs, i.e. a lookup requires O(log2n) hops, with n denoting the
number of peers.

The skip list [91] based Skip Graphs by Aspnes and Shah [7] belongs to the most
prominent and earliest peer-to-peer networks supporting range queries efficiently. Yet,
range query support in Skip Graphs is bought dearly by the loss of load balancing:
Resources, e.g. data files, are managed by the peer hosting that resource respectively.
Consequently, a peer hosting k resources has to maintain k nodes in the Skip Graph
overlay. So, in a Skip Graph with n peers and m resources (m � n is a typical as-
sumption) a peer has to maintain O(k log m) links, whereas the number of links to be
maintained in DHT based networks typically is O(log n) [114] or constant [80, 76, 60]
per peer, and thus independent of the number of resources.

Several tree based peer-to-peer architectures supporting (multi-dimensional) range
queries and providing load balancing at the same time have been proposed, e.g. [66, 56,
2, 57, 29, 78, 67, 33, 123]. In the following we briefly discuss P-Grid [2], Baton [56], and
DPTree [66].

P-Grid [2, 3, 1] abstracts a binary trie structure defined by the data available in the
network. Each peer is responsible for a particular prefix of the trie and maintains links
to random peers of every subtree neighboring its own prefix. However, it is not clear
if the links to subtrees selected in P-Grid are truly random. The load balancing mech-
anism used in P-Grid is based on heuristics. Without a central load balancing instance
assigning prefixes to the peers, peers have to determine their prefix to manage in a dis-
tributed manner. This can result in complex dependencies between all peers. So, the
load balancing mechanism in P-Grid is based on random processes and the fact that
P-Grid needs an extra bootstrapping mechanism just for an initial network state under-
lines its complexity. Furthermore, it has been critiqued by Ganesan et al. that there is
no formal characterization of imbalance ratios and balancing costs in P-Grid [39].

Baton (BAlanced Tree Overlay Network) [56] is based on a binary balanced tree struc-
ture. Each peer is responsible for a particular node of the tree. Besides the obligatory
parent/child links of a tree, the peers of a layer of the tree are connected by a Chord
like ring with pointers to peers in distance 2i on the ring. Load balancing is achieved
by shedding load to an adjacent lightly loaded peer or by a leave/re-join mechanism.
In the latter case, the tree may get unbalanced so that it has to be rebalanced.

DPTree (Distributed Peer Tree) [66] is a peer-to-peer architecture inspired by balanced
tree indexes (R-Tree [47]). The authors propose to decouple the tree structure from the
actual structure of the overlay. This is achieved by using a Skip Graph as overlay struc-
ture and choosing peer identifiers such that these represent paths from the root to leaves
of the tree structure. Balancing of access load is done with the help of a wavelet based
mechanism that is used to choose peer identifiers. Peers noticing to be overloaded may
shed part of their load to neighboring peers. Unfortunately, a cost analysis of the load
balancing mechanism is not given in [66] and it may be critiqued that the authors do

69

6 Introduction to Structured Networks

not verify the robustness of DPTree under network dynamics. Furthermore, as men-
tioned by Tran and Nguyen [117], the costs of rebuilding the balanced index tree upon
structural changes remain unclear.

So, there exists large number of peer-to-peer network architectures that overcome
the crucial limitation of DHTs to exact match queries. However, all the network archi-
tectures mentioned above either do not provide load balancing at all (Skip Graphs) or
make use of complex heuristics (e.g. P-Grid, Baton, DPTree), which are in stark con-
trast simple and efficient load balancing provided by the DHT scheme and often make
a formal analysis impossible. The important thing to note here is that these networks
— although they allow to process range queries efficiently — are not superior to DHTs
in every respect.

6.1.3 Interest Locality

In the Web certain data is intrinsically local, e.g. most of all greek web-sites are created
in Greece and accessed from computers in Greece. Hence, it makes sense to store such
data on peers located in Greece.

Definition 6.3 (Interest locality) A peer-to-peer network provides interest locality if peers
can choose on providing lookup service and data storage for certain data. If peers choose to
provide certain data, then the network structure allows efficient lookup to data relevant to a
peer.

Interest locality is rarely addressed in peer-to-peer networks. An exception is the
SkipNet [50] architecture introduced by Harvey et al. SkipNet is based on skip lists
and therefore closely related to the Skip Graphs [7, 8] architecture mentioned above.2

So, it is hardly surprising that SkipNet shares some shortcomings with Skip Graphs,
i.e. the lack of load balancing. In fact the authors present a way to provide a constrained
form of load balancing in SkipNet, but we will not go into detail here and focus on
interest locality instead. In SkipNet peers may choose arbitrary name id’s. If all peers
of a domain (e.g. ’.de’ or ’.it’) choose their name id to begin with their domain, then
the peers of the same domain will be neighboring in the id space of SkipNet. Using
the domain as prefix for data elements as well, allows to control data placement. Since
the routing algorithm ensures that a query, which has reached the target domain will
never leave it again, SkipNet provides a form of interest locality. This, however, comes
at the price of diminishing information locality: To retrieve all documents relevant to a
query each domain has to be queried separately then. So, there is a trade-off between
information locality and interest locality in SkipNet.

The table shown in Figure 6.1 gives an overview of peer-to-peer networks and the
types of locality they provide. Network designs based on plain DHTs such as Chord
[114], Viceroy [76], and Koorde [60], to name just a few, do not support any type of

2 Note however that SkipNet and Skip Graphs have been developed independently and with different
focus.

70

6.1 Locality in Peer-to-Peer Networks

Network Topology Network locality Information locality Interest locality
Gnutella [44] random graph no yes no
Chord [114] hypercube no no no
CAN [95] torus no no no
Viceroy [76] butterfly no no no
Koorde [60] de Bruijn no no no
Distance Halving [80] de Bruijn no no no
Pastry [99]/Tapestry [52] mesh of trees yes no no
Skip Graphs [7] skip list/rings no yes no
Prefix Hash Tree [92] DHT/trie no yes no
DPTree [66] Skip Graph no yes no
Baton [56] B+-tree/rings no yes no
P-Grid [2] mesh of trees no yes no
SkipNet [50] skip list/rings no yes∗ yes∗

3nuts [71] tree/random graphs yes yes yes

Figure 6.1: Overview of peer-to-peer networks and provided types of locality (∗support of in-
terest locality in SkipNet will diminish information locality and vice versa).

locality, tree and skip list based networks provide information locality, etc. In the bot-
tom line many peer-to-peer architectures supporting either network, information, or
interest locality have been proposed in the past years. To the best of our knowledge the
3nuts architecture introduced in the following chapter is the first peer-to-peer network
providing all three types of locality at the same time.

71

72

7
3nuts: Combining Random Networks,

Search Trees, and DHTs

In this chapter we present the 3nuts peer-to-peer network, which provides network
locality, information locality, and interest locality at the same time. 3nuts combines
concepts of unstructured and structured peer-to-peer networks to overcome their par-
ticular shortcomings while keeping their individual strength. So, one of the most ro-
bust backbone structures is combined with one of the most efficient lookup methods:
random networks and search trees. These two structures complement each other ex-
cellently. On the one hand, random networks are provably robust, but there are no
efficient lookup algorithms. On the other hand, search trees allow efficient and non-
trivial lookups like range queries, but are not robust against node failures and do not
distribute access load evenly among peers when the tree structure is directly translated
into a network, i.e. nodes of the tree are replaced by peers.

In a nutshell the 3nuts network can be described as follows. In order to preserve
semantic relationship of data, peers resemble the prefix search tree (data tree) defined
by all data available in the network and build the so called network tree. In the network
tree each node of the data tree is represented by a directed, connected random network
of constant degree. Starting with the root of the tree, that is represented by a random
network containing all peers and thus forms a reliable backbone, peers are recursively
assigned to subtrees using a variation of DHTs. This recursive assignment is continued
until there is only a single peer left in a subtree of the data tree. So, a peer actually
chooses a path from the root to a leaf of the network tree and participates in each of
the random networks representing the corresponding nodes. To allow efficient routing,
each peer maintains so called branch links to a random peer of each subtree neighboring
its own path.

Random networks represent a core component of 3nuts and we make extensive use
of their excellent communication properties to maintain the network structure under
churn. 3nuts rigorously forgoes any form of central structures and coordination mech-
anisms, i.e. the network structure is maintained using local handshake operations ap-
plied in the random networks only. Furthermore, one of the major design goals of
3nuts was to forgo the use of heuristics wherever possible. So, 3nuts makes use of the

73

7 3nuts: Combining Random Networks, Search Trees, and DHTs

simple and efficient load balancing provided by DHTs — proven successful in many
peer-to-peer networks [114, 76, 99, 52, 60, 37, 80] — and thus differs greatly from the
majority of tree based peer-to-peer networks that rely on heuristics for load balancing
(e.g. [2, 56], see Section 6.1.2). Furthermore, the use of the Pointer-Push&Pull operation
to maintain the random networks guarantees that these are truly random and provide
excellent communication properties and robustness. Last but not least we will prove
in this chapter that the number of hops needed by the lookup operation is bounded by
O(log n) w.h.p. regardless of the structure of the data tree.

7.1 The 3nuts Architecture

In this section we describe the overall structure of the 3nuts network, the interplay of
tree structure and random networks, a peers local view of the network, and how the
network structure is maintained solely by local periodic handshake operations.

In contrast to the standard DHT approach where data is assigned to peers, peers are
assigned to data in 3nuts. Thus, an existent ordering (e.g. lexicographical) of data is
preserved, which is essential to be able to process range queries efficiently. As a con-
sequence, the actual network structure depends on the data currently available in the
network and may change when new data is inserted. Before we describe how data
forms the tree structure and how peers recreate this tree structure, note that in 3nuts
peers only store references to data. The actual data files remain at the peers owning
them and these peers inform the peers responsible for maintaining their data’s refer-
ences regularly.

7.1.1 Basic Concepts: Data Tree and Network Tree

The data tree is the prefix tree (trie) defined by the identifiers of data available in the
network (see Figure 7.1). Principally, any other tree based data structure could be used
as well. The main reason why we prefer a trie to more sophisticated balanced trees is its
simplicity. Our point is that simplicity can turn out to be crucial in a dynamic network
under churn and allows to cope with higher churn rates. On the other hand using an
unbalanced tree requires more elaborate mechanisms to balance the load among peers.
Therefore, the load balancing mechanism has to be designed carefully so that it does
not dissave the simplicity of the trie. There are many possibilities to define the load of
a subtree, e.g. accesses frequency or number of data elements in a subtree. Here, we
use the latter definition of load and balance the number of data elements managed by
a peer. Note however, that 3nuts is able to support other definitions of load as well.

The peers recreate the data tree in a distributed and scalable way. Each node of the
tree is replaced by a random network of peers, starting with the root of the tree which is
replaced by a random network containing all peers. Then, each of the peers is assigned
to one of the child nodes of the root using a simple randomized load balancing mech-
anism that assigns peers to subtrees with probabilities proportional to the load of the
subtree. Peers assigned to the same child node (respectively subtree) then form another

74

7.1 The 3nuts Architecture

0

0

0

0 1 0 1 0 1 1 0 1 0

0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1

1 0 1

1

10
10

10
11
0

11
0

11
10

0

01
00
0

01
00
1

01
01
0

01
10
0

01
10
10

10
01

00
11

00
10
1 1

00
10
11

01
11

01
01
1

0 1

00
01

00
00

Figure 7.1: Example of a prefix tree. Nodes storing data elements are depicted black.
10
10

10
11
0

11
0

11
10

01
00
0

01
00
1

01
01
0

01
10
0

01
10
10

10
01

00
11

00
10
1

00
10
11

01
11

01
01
1

00
00

00
01

1 2

3 4

3
4

5

1

2

3

4
5 7

1
2

34

5
7

6

6 7

5

43

21

6

Figure 7.2: Global view of the network tree with 7 peers.

75

7 3nuts: Combining Random Networks, Search Trees, and DHTs

random network. This procedure is continued recursively until either a peer is the only
one assigned to a subtree or a leaf of the data tree is reached (see Figure 7.2). For a peer
this actually means to choose a path starting at the root of the data tree leading down
the tree. We will refer to the combination of random networks and the data tree as net-
work tree from now on. The random networks play an important role in 3nuts. Besides
making the overlay robust, they are used to spread information about the tree struc-
ture, load of subtrees, etc., among peers. We will come back to the random networks in
Section 7.1.3 and describe their maintenance in detail.

7.1.2 Peer Assignment, Load-Balancing, and Responsibilities

A peer is responsible for all data in the subtree rooted at the leaf of its path in the
network tree (cf. subtrees highlighted light blue in Figure 7.2). Since 3nuts also allows
to store data in internal nodes of the tree, each internal node of the network tree has a
particular peer that is responsible for managing data in this node.

The recursive assignment of peers to subtrees is done using distributed heteroge-
neous hash tables (DHHT) [102], which is an extended form of consistent hashing,
a.k.a. distributed hash tables (DHT) [61], to support non-uniform load distributions.
In our case the actual number of peers assigned to a subtree depends on the load,
i.e. the amount respectively popularity of data stored in this subtree. We will give a
brief description of consistent hashing and then describe the weighting extension, in
both cases with focus on our particular application. To avoid confusion it is important
to recall that we assign peers to data (respectively subtrees) while the usual approach is
just the opposite way around, i.e. data is assigned to peers. This allows us to preserve a
given ordering of data elements and thus overcome the crucial limitation of DHT based
peer-to-peer overlays to exact match queries.

We exemplify the peer assignment in an arbitrary node v of the tree with child nodes
v1, . . . , vk. Furthermore, we assume that peers p1, . . . , pm have been assigned to v. Con-
sistent hashing uses a “two-sided” hashing into a continuous range M = [0, 1) to assign
peers to the subtrees rooted at v1, . . . , vk. Peers and subtrees are mapped randomly into
M by hash functions h1 respectively h2. Then, peers are assigned to the subtree which
is closest to them in descending direction in M (see Figure 7.3). So far all peers and
subtrees are handled as if they are uniform. While this is reasonable and intended in
the case of peers, it is very likely that some subtrees hold more data than others and
thus generate a higher load to the peers in these subtrees. So, when assigning peers
uniformly to subtrees, it is very likely that the load is not spread evenly among the
peers.

To take different weights of subtrees into account and to make the number of peers as-
signed to a subtree reflect its weight, the scheme is extended as follows: Let w1, . . . , wk ∈
R+ denote the weights of the subtrees rooted at v1, . . . , vk and let p′i = h1(pi) and
v′j = h2(vj) denote the position of peer pi, respectively the subtree rooted at vj, in M.

76

7.1 The 3nuts Architecture

subtrees

peers132 4

a cb
0 1

(a) DHT

subtrees

peers132 4

a cb
0 1

(b) DHHT

Figure 7.3: Assigning 4 peers to subtrees a, b, and c using a DHT respectively DHHT (dashed
lines show the positions peers have been hashed to in the [0, 1) interval).

Then, we define a scaled distance function

Lw
(

pi, vj
)
=
− ln

((
1−

(
p′i − v′j

))
mod 1

)
wj

,

with x mod 1 := x − bxc. Now each peer pi is assigned to the subtree rooted at the
node vj minimizing the term Lw(pi, vj) (see Figure 7.3). For peer pi and node vj we will
also refer to the value of this function as height.

If we further extend the scheme described so far to use double hashing, a peer pi is
mapped into M using p′i = h1(pi) as before, but each subtree rooted at vj, 1 ≤ j ≤ k, has
an individual hash function hvj . A peer then calculates its heights for each vj at position
hvj(p′i) and is assigned to the subtree minimizing the height. Using the combination of
DHHT and double hashing the following theorem does hold.

Theorem 7.1 Assigning peers to subtrees using the DHHT scheme in combination with double
hashing it holds w.h.p. that

Pr[pi is assigned to vj] =
wj

∑k
l=1 wl

.

Proof: The theorem is a direct consequence of Theorem 10 in [102].
Hence, peers are assigned to subtrees with probabilities proportional to the weights

of the subtrees. Note that the runtime of the assignment using double hashing is linear
in k, i.e. the number of subtrees. However, in our scenario k is a small constant.

As already mentioned, every node of the network tree has a designated responsible
peer. This peer has to, amongst other things, manage references to data stored in the
node, create new subtrees when data is inserted, and delete empty subtrees. The re-
sponsible peer for a node v of the tree is the peer that has been assigned to v with the
lowest height. So, the decision about responsibility is made in the parent node of v.

77

7 3nuts: Combining Random Networks, Search Trees, and DHTs

This choice is reasonable since the selected peer will be the last peer to leave the sub-
tree rooted at v if this subtree’s load decreases or the load of other subtrees rooted at
v’s siblings increases. Furthermore, the selection mechanism ensures that the selected
responsible peers are truly random and thus the responsibility for internal nodes of the
network tree is spread evenly among all peers.

When Hashing peers onto subtrees, it is possible that no peer is assigned to a specific
subtree and thus no peer is responsible to manage the data in that subtree. This will
principally happen to subtrees with low weight or leaves of the network tree. If there
is such a vacant subtree, then a particular peer is selected to manage this subtree by a
mechanism which we call shanghaiing (inspired by the english slang term, describing
the common act of forcibly conscripting someone to serve a term working on a ship,
usually after having been rendered senseless by alcohol or drugs, during the 19th cen-
tury [88]). Therefor, the peer that has the lowest height for the vacant subtree is selected
to be shanghaied. In the scenario of Figure 7.3(b) peer 4 would get shanghaied to be
responsible for subtree c. Again, this choice is obvious since the chosen peer will be the
first to be assigned regularly to the vacant subtree if the weight of the subtree increases.
A shanghaied peer is responsible for a subtree until either another peer is assigned reg-
ularly to that subtree or a peer with lower height is shanghaied to be responsible for
that subtree.

7.1.3 Maintaining Random Networks

Random networks play an important role in 3nuts. Their simplicity and provable ro-
bustness make them an ideal tool to improve the churn and fault resilience of a network.
As we have seen in Section 7.1.1 all peers that have been assigned to a particular node
of the network tree are connected by a random network. Here, we use d-out-regular
multi-digraphs with small constant d, e.g. d = 3. The random networks are main-
tained using the Pointer-Push&Pull operation described in Chapter 4 (see Figure 4.3 on
Page 45). Recall that a single Pointer-Push&Pull operation involves only two messages
between two peers and thus can be used to replace the mandatory heartbeat (ping) mes-
sages used to verify the availability of neighbors in dynamic networks. Consequently
Pointer-Push&Pull operations do not introduce additional traffic to the network.

We have also shown that Pointer-Push&Pull operations guarantee the resulting graph
structure to be truly random in the limit (cf. Theorem 4.2, Page 50). An important conse-
quence of Theorem 4.2 is that a peer will see every other peer participating in the same
random graph, i.e. node of the network tree, over time. Hence, Pointer-Push&Pull op-
erations constitute an excellent tool to exchange information about the tree structure,
weights, etc. among peers without inducing additional traffic to the network. This fact
is the main reason for us to prefer multi-digraphs over the more common domain of
regular undirected graphs, which can be maintained using the related 1-Flipper opera-
tion described in Chapter 3.

78

7.1 The 3nuts Architecture

trunk node table
node id

weight of node/subtrees
degree of resp. (dor)

random neighbors
address
address

address
...

responsibility list
address
address

address

...

resp.
resp.

resp.

1
2

d

1
2

r

branch links (random)
address
address...

weightsubtree id
subtree id weight

branch links (local)
address
address...

subtree id
subtree id

latency1
2 latency

1
2

dor
dor

dor

data (references)

Figure 7.4: Information a peer holds for a trunk node.

7.1.4 A Peer’s Local View

We have seen how peers recreate the data tree by choosing their path in the network
tree and replacing nodes of the data tree with random networks. A peer therefore only
has a limited local view of the network tree. We refer to the nodes a peer has been
assigned to (either regularly or shanghaied) as trunk nodes of the peer. For each of its
trunk nodes a peer maintains a so called trunk node table (see Figure 7.4). In this table
node id, weight, subtrees, and (if the peer itself is responsible for the node) references
to data are stored. Furthermore, the trunk node table contains the following lists:

Responsibility list A list of the r peers with the highest responsibility for this node.
Responsibility is determined by the height with which a peer has been assigned
to the node by the assignment process in the parent node (see Section 7.1.2). Here,
lower height connotes higher responsibility. While it would be sufficient to store
one peer responsible for the node, having a list of r peers with highest respon-
sibility helps greatly to improve the stability of the network under churn. Here,
choosing r as a small constant is completely sufficient.

Random neighbors A list of the d neighboring peers in the random network corre-
sponding to this node of the network tree. This list is used to perform the regular
Pointer-Push&Pull operations and thus the list is constantly refreshed and its ran-
domness is guaranteed by Theorem 4.2.

Branch links (random and local) To allow efficient routing a peer maintains branch
links to some peers of every subtree neighboring its own trunk nodes. We distin-
guish two types of these links: random branch links and local branch links. The
former links point to truly random peers of a subtree. With each of these links
the id and weight of the subtree as well as the address of the corresponding peer
is stored. Moreover, each link is tagged with a timestamp and a link is replaced

79

7 3nuts: Combining Random Networks, Search Trees, and DHTs

01
10
0

01
10
10

01
11

2

4

6

5

5

5

5

1*

00*

010*

1
0

0

0

1

1

Figure 7.5: The local view of peer 5. Branch links are depicted by dashed lines.

whenever a peer participating in the subtree is met during Pointer-Push&Pull
operations. The latter guarantees that branch links point to truly random peers.
Figure 7.5 shows the local view with trunk nodes and branch links of peer 5 (cf.
Figure 7.2 for the global view).

Local branch links are similar to random branch links with the exception that
these do not point to random peers of a subtree but to latency wise close peers of a
subtree. Again, Pointer-Push&Pull operations ensure that a peer sees all possible
candidates for a particular local branch link over time and that the quality of these
links improves quickly.

7.1.5 Initializing the Local View

To join the network, a peer contacts an arbitrary peer p that is already part of the net-
work and then proceeds as described in Algorithm 7.1. The joining peer will copy p’s
trunk node table for the root of the network tree and then, based on the subtrees and
weights given in the trunk node table, choose a subtree using the DHHT scheme. Using
the list of branch links it is ensured that a peer p′ that has chosen the same subtree can
be contacted. Then, the same procedure is continued in the root node of the chosen
subtree with peer p′. The algorithm terminates when either the joining peer is the only
one assigned to a subtree or a leaf of the data tree has been reached.

The subtrees chosen in line 4 of the join algorithm heavily depend on the correctness
of the branch link list and the weights obtained from the copied trunk node tables.

80

7.1 The 3nuts Architecture

Algorithm 7.1 Join(peer p)
1: initialize trunk node table for root node by copying p’s trunk node table
2: node← root of tree
3: while number of peers in node > 1 and node is not leaf of data tree do
4: node← subtree determined using DHHT
5: p′ ← peer participating in node found using branch link table
6: contact p′ in node and initialize trunk node table for node by copying table of p′

7: end while

Hence, it is crucial that all peers have consistent and accurate information about the
structure and weight of the tree. Before we describe how this information is exchanged
among peers let us recall the definition of weight used here. The weight w(v) of a node
v of the network tree is given by the number of data items it stores.1 The only peer
allowed to set w(v) is the peer responsible for v. The weight w(Tv) of the subtree Tv
rooted at v is determined by summing up w(v) and the weights of the subtrees rooted
at v’s child nodes.

7.1.6 Maintaining the Local View

Peers exchange information about tree structure and weights in their trunk nodes’ ran-
dom networks. This is where Pointer-Push&Pull operations play an important role:
Whenever two peers communicate during a Pointer-Push&Pull operation their respon-
sibility list, branch link list, and weights of the node and subtrees is piggy-backed to
the messages. A peer p that has communicated with a peer p′ uses the obtained infor-
mation to update its own trunk node table as follows:

• The weight of the node is updated. As mentioned above, the only peer allowed
to set the weight of a node is the responsible peer. Since the weight of a node may
change over time each weight distributed by the responsible peer is tagged with a
timestamp. Thus, peers will only update this entry in the trunk node table if they
receive a weight with newer timestamp.

• Entries of the branch link list corresponding to subtrees peer p′ actively partici-
pates in (i.e. subtrees p′ has trunk nodes in) are set to point to p′. This way the
entries of the branch link list are continuously replaced by peers which are en-
sured to be reachable. Furthermore, entries for subtrees not existent in the own
branch link list are copied and entries that have been identified to be dead dur-
ing Pointer-Push&Pull operations or routing are replaced. Most importantly the
combination of update procedure and Pointer-Push&Pull operation guarantees
that branch links point to truly random peers and that over time all peers partici-
pating in the trunk node are contacted.

1 Note that also internal nodes of the data tree may have load > 0, since we allow to store data on internal
nodes.

81

7 3nuts: Combining Random Networks, Search Trees, and DHTs

• Entries of the responsibility list are replaced when peers with higher responsibil-
ity are found in the list of p′ or added if their own list has less than r entries.

When changes to the weights or branch link list have been made, a peer recalculates
its own assignment to the subtrees and may change its path, i.e. trunk nodes in the
network tree, when necessary.

The exchange of information using Pointer-Push&Pull operations is closely related
to randomized rumor spreading using push and pull operations introduced by Karp
et al. [62]. A major difference making a formal analysis difficult is, that in our case the
underlying communication network is not a complete graph and furthermore changes
over time. Yet, if we assume the communication graph to be random we expect the
dissemination of information by Pointer-Push&Pull operations to behave comparably
as in [62], where O(n ln ln n) messages are sufficient to spread a rumor among n nodes
w.h.p.

7.1.7 Routing

A lookup algorithm for the 3nuts network is given by Algorithm 7.2. The lookup is
started at an arbitrary peer p and the only parameter is the identifier key of a data ele-
ment. Since the data tree is a prefix tree defined by the data elements currently available
in the network, the identifier key actually describes a path in the network tree. To reach
the node of the network tree storing key, peer p follows the path key in its local view
of the network tree until a leaf node is reached. This leaf node can either be a branch
link or a trunk node in p’s local view. In the former case the lookup is forwarded to the
corresponding peer in the branch link list. In the latter case the lookup is forwarded
to the peer responsible for the trunk node. Since number of data elements is typically
considerably greater than the number of peers and most data elements reside in the
leaves of the tree, it is very likely that the responsible peer is reached directly.

Algorithm 7.2 Lookup(key) at peer p
1: if p has branch link to a peer p′ sharing longer prefix with key then
2: forward Lookup(key) to p′

3: else
4: node← last node of path key in local tree of p
5: p′ ← peer responsible for node
6: if p = p′ then
7: return p
8: else
9: forward Lookup(key) to p′

10: end if
11: end if

The following theorem gives a bound for the number of hops needed by the lookup
operation to reach the peer responsible for a particular data element.

82

7.1 The 3nuts Architecture

v1

vi
vj

vk

Ti
Tj

Figure 7.6: Partitioning of the network tree into subtrees as used in Theorem 7.2. The path of
the lookup is given by P = (v1, . . . , vi, vj, . . . , vk). Ti is the smallest subtree rooted on P with
|Ti| ≥ n

2 .

Theorem 7.2 In a 3nuts network with n peers the number of hops for a lookup operation is
bounded by O(log n) w.h.p., regardless of the structure of the data tree.

Proof: To proof the theorem we will bound the number of hops needed to reach a
subtree T containing at most half of the peers. Let P = (v1, . . . , vi, vj, . . . , vk) be the path
starting at the root of the network tree leading to the target node of the network tree.
Furthermore let Ti and Tj be the subtrees rooted at vi respectively vj. We choose vi and
vj such that |Ti| ≥ n

2 and |Tj| ≤ n
2 . In other words: Ti is the smallest subtree rooted on

P containing at least half of the peers.
The lookup starts at an arbitrary peer p in v1, i.e. the root of the network tree. Let

p′ be the peer reached by the first hop. Since |Ti| ≥ n
2 and branch links point to truly

random peers, p′ will lie in Ti with probability of at least 1
2 . If, on the other hand, p′

does not lie in Ti, the same argumentation holds for the next hop from p′, i.e.: the next
hop from p′ will lead to a peer in Ti with probability of at least 1

2 . So, we reach Ti with
one hop with probability ≥ 1

2 , with two hops with probability ≥ 2−2, and with k hops
with probability ≥ 2−k. Thus, we have

E[#hops to reach peer in Ti] ≤
k= n

2−1

∑
k=1

k2−k ≤ 2 .

Since Ti is the smallest subtree with |Ti| ≥ n/2, once the lookup reached a node in Ti one
more hop is sufficient to reach the subtree Tj with |Tj| ≤ n

2 . Therefore, in expectation
at most 3 hops are needed to halve the number of peers. Due to the recursive structure
of 3nuts the same line of arguments as presented above does hold for subtree Tj. This
implies that after log n iterations respectively an expected number of 3 log n hops, the
lookup has reached vk, i.e. a single peer.

83

7 3nuts: Combining Random Networks, Search Trees, and DHTs

It remains to show that O(log n) hops are sufficient to reach vk with high probability.
We have seen that

Pr[#peers is halved within three hops] ≥ 1
2
+

1
4
=

3
4

.

Dividing the lookup into sequences of three hops allows us to reduce the analysis to
a sequence of mutually independent random variables X1, X2, . . . , Xc log n taking values

0 and 1 with Pr[Xi = 1] = 3
4 respectively, and X = ∑

c log n
i=1 Xi. Thus we can apply

Chernoff bounds and show that for c ≥ 5 we have X > log n with high probability,
i.e. the target peer is reached after 3c log n hops with high probability. The expected
number of successful steps is given by

E[X] =
3
4

c log n .

Choosing δ = 1− 4
3c and applying Chernoff bounds we have

Pr[X ≤ log n] = Pr[X ≤ (1− δ)E[X]] ≤ e−
1
2 (1− 4

3c)
2
E[X]

≤ e−
1
2 (

11
15)

2 3
4 c log n

≤ n−
121
600 c

≤ n−c′ .

So, the probability to be successful less than log n times is polynomially small in n. This
implies that the lookup operation will need at most 3c log n hops w.h.p. if we choose
c ≥ 5. Since we did not make any assumptions on the structure of the network tree,
this result does also hold for degenerated trees with linear depth.

It is notably and important that the bound given by Theorem 7.2 holds regardless of
the structure of the data tree since real world data will not be uniformly distributed,
but rather resemble a Zipf distribution. So, the data tree (and thus the network tree)
will be unbalanced and exceed logarithmic depth. The reason that Theorem 7.2 holds
for skewed data distributions is that branch links point to random peers of subtrees.
Due to the properties of the Pointer-Push&Pull operation (see Theorem 4.2) and the
way branch links are maintained (see Section 7.1.4), we can guarantee these to be truly
random. Actually branch links are not only random but continually change (recall that
whenever a peer communicates with another peer during a Pointer-Push&Pull oper-
ation that has been assigned to a subtree T neighboring its own path of trunk nodes
the corresponding branch link will be updated). This feature implies that routing path
are continually changing when random branch links are used for routing and thus the
routing load will be spread evenly among peers. A typical measure with respect to
routing load is the congestion. We formally define congestion as follows.

Definition 7.1 (Congestion) The congestion of a peer pi is the probability that pi is active
in the routing of a random lookup operation started at a random peer. The congestion of the
network is the maximum congestion over all its peers.

84

7.2 Locality in 3nuts

Assuming that the network is in a stable state and branch links are truly random we
can bound the congestion of the lookup operation in 3nuts as follows.

Theorem 7.3 The congestion of the 3nuts network is bounded by O
(

log n
n

)
.

Proof: From Theorem 7.2 we know that the number of hops is bounded by k ≤ c log n
for constant c. Let T1, . . . , Tk denote the subtrees reached during the k hops of the lookup
operation and by |Ti| we denote the number of peers that has been assigned to subtree
Ti, 1 ≤ i ≤ k. Now consider an arbitrary peer pj. Note that pj can only get active
once during a lookup. To become active during the i-th hop peer pj must have been
assigned to Ti and must have been chosen as branch link by the peer reached by the
previous hop. Since the assignment of peers to subtrees is done with DHHTs and|Ti|
peers have been assigned to Ti, the probability that peer pj has been assigned to Ti is
|Ti|/n. If the network is in a stable state, i.e. branch links point to truly random peers,
the probability for a peer assigned to Ti to become active during the i-th hop is 1/|Ti|.
Thus we have

Pr[pj is active during hop i] =
|Ti|
n

1
|Ti|

=
1
n

.

Consequently the probability for pj to become active during the whole lookup is given
by c log n

n .

Range Queries

Algorithm 7.2 can be extended to perform range queries easily. To search for all data
elements in a range [x, y] the peer initiating the query calculates the longest common
prefix z of x and y. Then, the query is routed to the node v of the network tree rep-
resenting z. The subtree rooted at v is the smallest subtree containing all elements in
the range [x, y]. Starting from v, the query is forwarded to all child nodes holding
data in the range [x, y] in parallel until the leaf nodes of the network tree are reached.2

Nodes receiving the query message will send their list of data elements to the peer that
originated the query respectively forward the query to the responsible peer in case of
internal nodes of the network tree.

7.2 Locality in 3nuts

Since the peers of a 3nuts network resemble the prefix tree defined by the data available
in the network, closely related data elements are stored on network-wise close peers.
In particular, the following theorem holds.

Theorem 7.4 Let d be the distance of two data elements x and y in the tree metric. Then, x and
y can be reached within d hops from one another in 3nuts.

2 Note that the border area of the subtree rooted at v may contain data elements not lying in [x, y].

85

7 3nuts: Combining Random Networks, Search Trees, and DHTs

Proof: Let z denote the node of the network tree representing the longest common
prefix of x and y. Note that z is present in the local tree of the peer responsible for
x since z lies on the path starting at the root of the tree leading to x. So, no hops are
needed to reach node z. From node z it is ensured that y can be reached within d hops
since each hop will advance at least one level in the tree and the distance between z
to y is bounded by d. The same line of arguments holds when routing from y to x.
Recall that in any case the maximum hop distance is bounded by O(log n) w.h.p., with
n denoting the number of peers.

Recalling the three types of locality introduced in Section 6.1, Theorem 7.4 implies
that 3nuts provides information locality and in the previous section we have already
seen how range queries can be processed efficiently in 3nuts.

3nuts provides network locality, i.e. lookups with small latency, through the list of
local branch links maintained in the trunk node tables. As discussed in Section 7.1.4
local branch links point to latency wise close peers of the corresponding subtrees and
may be used for routing instead of random branch links. Initially the local branch
link list is just a copy of the random branch link list. Latencies are measured during
Pointer-Push&Pull operations and whenever a peer with lower latency is met, it will
be saved in the local branch link list. Since a peer will see every other peer of the trunk
node’s corresponding random graph over time — and therefore will see all potential
candidates for a local branch link — it is ensured that at some point the entries of the
local branch link list point to the latency wise closest peers. Once again note that no
additional network traffic is generated to improve the quality of the local branch link
lists since latencies are obtained through Pointer-Push&Pull operations. In Section 7.3
we will experimentally verify the quality of local branch links and compare latencies
when routing with random branch links and local branch links.

3nuts provides interest locality by allowing peers to volunteer for the responsibility
of particular nodes of the data tree. Note that volunteering for the responsibility of a
node does not relieve a peer from participating in the regular peer assignment using
DHHTs described in Section 7.1.2, i.e. volunteering is completely independent of the
regular peer assignment and therefore induces additional workload to a peer. On the
other hand volunteering for the responsibility of a node allows a peer to dramatically
decrease access times to parts of the data tree that are close to this node.

A peer p volunteering for a node v will actively participate in the path starting at the
root of the data tree leading to v. For nodes of this path that are not coincident with the
regular path p has been assigned to, p will have to maintain additional trunk nodes.
Since the decision about responsibility is made using heights in the DHHT scheme (see
Section 7.1.2), it is possible that p has to take over responsibility for internal nodes of the
path in the network tree leading to node v. To avoid this, we make use of two special
flags. The volunteer flag indicates that a peer volunteers to be responsible for this node
and the volunteer_down flag indicates that a peer volunteers for a node further down
the tree. The latter flag prevents a volunteering peer to be responsible for nodes on
the path to v, i.e. a peer with volunteer_down flag always has lower responsibility than
peers regularly assigned to a node. In the node that a peer is volunteering for, it sets

86

7.3 Experimental Evaluation

the volunteer flag and therefore always has higher responsibility than peers that were
assigned regularly to the node. In case of several peers volunteering for the same node
the heights determined in the DHHT scheme are used to determine responsibility.

7.3 Experimental Evaluation

To verify the robustness and practicability of 3nuts we used a prototype implementa-
tion in Java, which is available for download at http://3nuts.upb.de. All experi-
mental results presented in this section have been generated using this prototype. For
the experiments the degree of random networks was set to d = 3 and if not stated oth-
erwise, the network consisted of n = 214 peers. Each peer stored five data elements
giving a total of 81, 920 data elements available in the network. Most of the measure-
ments have been performed with several types of data to verify the impacts of data
distribution and degree of the data tree respectively network tree. These are:

Binary tree (uniform) A binary tree with data elements representing binary strings of
length 40. The strings are chosen uniformly at random.

Binary tree (Zipf) A binary tree of data elements representing binary strings of length
52, chosen according to a Zipf distribution as follows. The leaf nodes of a com-
plete binary tree of depth 20 have been assigned probabilities following a Zipf
distribution with exponent set to 1. Data elements are placed by choosing a prefix
of length 20 according to the assigned probabilities and concatenating a (unique)
binary random string of length 32. So, some subtrees of the resulting data tree
contain by far more data elements than others.

Dictionary A tree generated by choosing data elements uniformly at random from a
list of english words (we used the freely available word list of the ispell [55]). In
contrast to the binary trees, nodes of the dictionary tree have degree up to 26.

If not stated otherwise, the following measurements have been performed multiple
times and the curves represent the mean of these measurements.

7.3.1 Routing

Figure 7.7 shows the average number of hops needed by the lookup operation for dif-
ferent data distributions and networks up to 214 peers. A single measurement for a
fixed network size and data distribution was done by performing 106 random lookup
operations chosen from all possible combinations of peers and data elements. Here,
the two curves representing the binary trees are almost equal, implying that the DHHT
based load balancing performs excellently and the scalability of 3nuts is not affected by
non-uniform data distributions. In case of the dictionary data distribution fewer hops
are needed since data and network tree have substantially higher degree and thus the

87

7 3nuts: Combining Random Networks, Search Trees, and DHTs

 0

 1

 2

 3

 4

 5

 6

 7

 8

20 22 24 26 28 210 212 214

#h
op

s

#peers

dictionary
binary tree (Zipf)

binary tree (uniform)
log(n)

Figure 7.7: Average number of hops needed
by the lookup operation.

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10 12 14 16

fra
ct

io
n

of
 lo

ok
up

 o
pe

ra
tio

ns

#hops

dictionary
binary tree (Zipf)

binary tree (uniform)

Figure 7.8: Distribution of number of hops
needed by the lookup operation.

depth of the network tree is smaller than in case of the binary trees. All curves lie be-
neath the log n curve showing that the performance of the lookup operation is better
than the performance formally proven in Theorem 7.2.

In Figure 7.8 the hop distribution measured in the network with 214 peers is shown.
The number of hops can vary between 0 (if the peer initiating the lookup itself is re-
sponsible for the data item) and the depth of the network tree. The latter is a merely
theoretical bound since it is very unlikely to advance only one level of the tree with each
hop of the lookup. However, greater depth of the data tree leads to higher variance of
the hop distances. Nevertheless, the maximum hop distance measured in case of the
binary trees is still bounded by log n.

To evaluate the benefit of using local branch links instead of random branch links
we used the Georgia Tech Internetwork Topology Model (GT-ITM) [122] to model the
underlying physical network of the 3nuts overlay. Figure 7.9 shows the average laten-
cies for different data distributions when using random respectively local branch links
during the lookup operation. First of all, we observe that the average latency measured
for routing with random links in binary trees exceeds the average latency measured for
routing with random links in the dictionary tree by a factor of 1.8. This is explained by
the larger number of hops needed in the comparatively deep binary trees. When using
local branch links, latencies are reduced significantly for all three types of data trees.
Notably, average latencies measured for dictionary and binary trees then only differ
by a factor of 1.1, i.e. the binary trees benefit more from the use of local links. This is
explained by the fact that the last few hops are by far the most “expensive” ones during
a lookup operation since the number of peers to choose from decreases with each hop,
i.e. it is more unlikely that latency wise close peers are among the peers to choose from.
Thus, the last hop makes up a large fraction of the total latency.

88

7.3 Experimental Evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

dictionary binary (Zipf) binary (unif.)

av
er

ag
e

la
te

nc
y

[m
s]

random links
local links

Figure 7.9: Average latency of the lookup op-
eration: random branch links vs. local
branch links.

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30

#p
ee

rs

#data elements

binary tree (uniform)
binary tree (Zipf)

dictionary

Figure 7.10: Load balancing: uniform dis-
tributed data, Zipf distributed data, and
dictionary.

7.3.2 Load Balancing

Figure 7.10 shows the distribution of data load among peers. Each peer contributes
5 data elements and thus the average load is as well 5. Since the DHHT based load
balancing makes use of pseudo-random hash functions there are some peers exceeding
the average load by factor 5. Anyhow, 90% of the peers have at most twice the average
load. While having peers exceeding the average load by factor 5 is for sure not optimal,
one has to recall the simplicity and elegance of the load balancing scheme used here.
It is in particular remarkable that the decisions a peer makes when choosing its path
are completely independent of the decisions made by other peers. So, a peer usually
does not have to change its path, respectively responsibility, when further peers enter
the network. Coping with not 100% fair load balancing is the price to pay for this
simplicity. One should not forget that this simplicity may turn out to be crucial to keep
the network stable under churn. Furthermore, a peer noticing that its load exceeds the
average by a large factor still has the option to leave and rejoin the network. Due to
the randomized nature of the load balancing scheme used here, it will most likely be
assigned to a different part of the tree.

7.3.3 Degree

Another interesting measure is the number of links, i.e. neighbors, a peer has to main-
tain. Figure 7.11 shows the sum of branch links and neighbors in the random networks
per peer, while Figure 7.12 shows the number of branch links per peer only. Of course
the degree of a peer depends on the degree and the depth of the data tree: high de-
gree of the data tree involves a large number of branch links and higher depth of the
data tree involves a larger number of trunk nodes and thus random networks, a peer is

89

7 3nuts: Combining Random Networks, Search Trees, and DHTs

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120 140

#p
ee

rs

degree

binary tree (uniform)
binary tree (Zipf)

dictionary

Figure 7.11: Degree distribution: number of
branch links and random neighbors per peer.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120 140

#p
ee

rs

degree

binary tree (uniform)
binary tree (Zipf)

dictionary

Figure 7.12: Degree distribution: number of
branch links per peer.

participating in. We start by analyzing the uniformly distributed binary tree. Consid-
ering the number of branch links only (Figure 7.12), a peer’s degree is comparable to
the degree of a peer in a standard DHT based network like Chord [114], i.e. in case of
the uniformly distributed binary tree the average degree is 14.5, i.e. around log n, and
the expected degree in a plain Chord network consisting of 214 peers is 15. Taking links
in random networks into account (Figure 7.11), the average degree increases to 42 since
a peer has to maintain three additional links for every trunk node. Note however, that
especially the links in the random networks are extremely easy to maintain, as pointed
out in Chapter 4 already.

Zipf distributed data leads to slightly increased average degree compared to the uni-
formly distributed binary tree. This is explained by the fact that data and network tree
have greater depth. In case of the dictionary tree the high fan out of the data tree im-
poses a large number of branch links to the peers. A solution to reduce the number of
branch links here is to convert the tree into a binary tree, i.e. interpret the characters of
data elements bit wise instead of byte wise. Furthermore, the depth of the tree and thus
the average peer degree can be reduced by using radix trees [48] instead of a simple
prefix tree. A radix tree, also known as Patricia trie/tree, or crit bit tree, is a special-
ized form of prefix tree. In contrast to a regular prefix tree, the edges of a radix tree
are labeled with sequences of characters rather than with single characters. This allows
to reduce the depth of the tree if sub-paths without branches exist in the tree, which is
likely when using bit wise interpretation of characters.

Considering the additional features 3nuts provides compared to DHT based net-
works, e.g. information locality and network locality, the “costs” for these features,
i.e. the increased degree, are negligible. Moreover, links in 3nuts are very easy to main-
tain: While links in most peer-to-peer networks have to point to one particular peer,

90

7.3 Experimental Evaluation

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 20 40 60 80 100 120 140

#i
nv

al
id

 b
ra

nc
h

lin
ks

 p
er

 p
ee

r

#Pointer Push&Pull operations per peer

dictionary
binary tree (uniform)

binary tree (Zipf)

Figure 7.13: Evolution of invalid branch
links after failure of 25% of peers.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80

fra
ct

io
n

of
 d

at
a

av
ai

la
bl

e

#Pointer Push&Pull operations per peer

binary tree (uniform)
dictionary

binary tree (Zipf)

Figure 7.14: Evolution of data availability af-
ter failure of 25% of peers.

a link in 3nuts may always point to a random peer out of a large set of candidates.3

This is especially true for the random networks, where even multi-edges are allowed
so that a failing neighbor can simply be replaced by duplicating another link — Pointer-
Push&Pull operations ensure the network structure to be re-randomized after a short
time only.

7.3.4 Dynamics and Robustness

We also verified the robustness of 3nuts when a substantial fraction of the peers fails
unexpectedly. A network of 104 peers was generated and once the network stabilized,
25% of the peers were removed simultaneously. Figure 7.13 shows the evolution of
the average number of invalid random branch links per peer (local branch links were
neglected here). Due to the higher fan-out, the number of branch links is significantly
higher in case of the dictionary tree and thus the number of invalid links is also higher
compared to the binary trees. The axis of abscissae shows the total number of Pointer-
Push&Pull operations per peer, i.e. cumulative for all random networks a peer partici-
pates in. In case of the binary trees about 20 random Pointer-Push&Pull operations are
sufficient to reduce the number of invalid links per peer to 2 while this takes about 50
operations in case of the dictionary tree. Here, the comparably strong decrease during
the first 50 operations is explained by the randomness of Pointer-Push&Pull operations
and the larger number of invalid links, i.e. links are “checked” randomly and the larger
the number of invalid links, the higher the probability to find these. Note however that
the dictionary tree may be converted to a binary tree as mentioned above. Furthermore,
when encountering an invalid branch link during a lookup operation, the lookup can
simply be forwarded to a random neighbor in the trunk node. Since branch links are

3 With exception of the lowest levels of the network tree.

91

7 3nuts: Combining Random Networks, Search Trees, and DHTs

ensured to be random, the branch link list of this neighbor most likely has a different
link to the designated subtree.

Figure 7.14 shows the evolution of data availability in the same scenario. Data avail-
ability was checked by performing 106 random lookup operations respectively. Here,
a lookup was considered as failed whenever an invalid branch link was encountered
and furthermore the repair process — usually initiated when invalid links are encoun-
tered during a lookup — was disabled. In other words: Trunk node tables were only
updated/repaired by Pointer-Push&Pull operations. The different data distributions,
respectively tree types, behave almost equal. Right after the removal of peers about
75% of the data remaining in the network is still available and after 30 to 50 Pointer-
Push&Pull operations per peer, data availability of 99% is reached. We stopped the
experiment at 99% availability since the removal of 2, 500 peers and thus 12, 500 data
elements also involves changes in the network tree and some peers change their path,
etc.

92

8
Conclusion and Outlook

The 3nuts peer-to-peer network introduced in the second part of this thesis combines
unstructured and structured peer-to-peer networking concepts, i.e. random networks,
prefix trees, and distributed hash tables, to overcome their individual shortcomings.
To the best of our knowledge 3nuts is the first peer-to-peer network providing interest
locality, network locality, and information locality at the same time. The practicability
of 3nuts has been affirmed by a prototypical implementation ready for practical use,
experimental evaluation, and verification on a mathematical level.

The 3nuts architecture has been designed around the Pointer-Push&Pull operation,
whose properties make it an excellent maintenance operation for dynamic networks.
Replacing the heartbeat (ping) messages between peers, Pointer-Push&Pull operations
are used in 3nuts to:

• maintain truly random networks to replace nodes of the data tree and thus make
the network robust,

• exchange information among peers and thus give peers a coherent view of the
tree structure,

• maintain branch links and guarantee them to be truly random, thus allow efficient
routing,

• and measure round trip times (RTT) to adapt the overlay to the underlying phys-
ical network and thus allow routing with small latency.

A possible drawback of the 3nuts architecture is the potentially high degree of the
network, which can be caused by highly skewed data distributions resulting in deep
paths. However, as pointed out in Section 7.3.3 one should keep in mind that main-
tenance of links is comparably cheap in 3nuts and higher degree also implies higher
robustness. If necessary, the degree can possibly be reduced by making use of radix
trees or balanced trees instead of simple prefix trees.

93

8 Conclusion and Outlook

Outlook

While making extensive use of DHTs for load balancing, 3nuts is able to overcome their
restriction to exact match queries. However, range queries can still be viewed as a
restriction when considering the types of queries possible in unstructured peer-to-peer
networks. Finding a way to support queries with regular expressions, e.g. search for
substrings, in a scalable way would constitute a significant advance.

Considering network locality, i.e. the interplay between the overlay network and the
physical network, there is vast number of possibilities to improve this interplay. First of
all, while the local branch links used in 3nuts allow to reduce latencies during routing,
it is not clear if the chosen routes are optimal since the local branch link of each hop is a
local optimum only. Furthermore, it may be worthwhile to consider other optimization
criteria than the latency of a lookup, e.g.:

Failure resilience The neighbors of a peer could be chosen such that the paths leading
to these in the physical network are node disjoint as far as possible.

High throughput The topology of the overlay could be constructed such that the avail-
able bandwidth of connections is taken into account and the congestion induced
to the physical network by the overlay is minimized.

Traffic costs From a network providers perspective it is desirable to reduce interdo-
main traffic for the simple reason of reducing costs. The overlay could be con-
structed such that routes preferably stay in the same autonomous system or the
number of autonomous systems crossed by a route is minimized.

It can also make sense that a network allows to choose among different optimization
criteria if the networks provides different types of service, e.g. lookup messages in a
network could be performed on routes with low latency and transfer of large files on a
different route with worse latency but higher bandwidth.

Pointer-Push&Pull operations constitute an interesting tool to explore the physical
network — with local handshake operations only and very little network traffic — since
a peer will meet every other peer of the network over time. Certainly, it has to be
examined which information about the physical network can be obtained by a peer, at
which cost, and how useful the obtained information is at all.

94

A
Pointer-Push and Pointer-Pull Operations

The Pointer-Push operation is a simple graph transformation defined on a path of two
edges applicable to multi-digraphs.

Definition A.1 (Pointer-Push Operation) Consider a multi-digraph G = (V, E, #E) and
nodes v1, v2, v3 ∈ V forming a directed path P = (v1, v2, v3) in G. Then, the Pointer-Push
operation PUSHP transforms graph G to a graph PUSHP(G) = (V, E′, #E′) with

E′ = (E \ (v1, v2)) ∪ (v1, v3).

Figure 4.1 illustrates the Pointer-Push operation. A randomized version of the Pointer-
Push operation is given by Algorithm A.1.

Algorithm A.1 Random Pointer-Push
1: Choose random node v1 ∈ V
2: v2 ← random node ∈ N+(v1)
3: v3 ← random node ∈ N+(v2)
4: E← (E \ (v1, v2)) ∪ (v1, v3)

The following Lemma shows that the Pointer-Push operation is sound.

Lemma A.1 Applying random Pointer-Push operations to a connected multi-digraph G will
preserve connectivity of G. Furthermore the outdegree of each node in G will stay the same.

Proof: Concerning the outdegree note, that one of the outgoing edges of v1 is deleted
and one new edge starting at v1 is created. Connectivity is preserved because all par-
ticipating nodes of a Pointer-Push operation stay connected. However, the resulting
graph may be weakly connected.

For the asymptotic behavior of the random Pointer-Push operation the following the-
orem holds.

Theorem A.1 A series of random Pointer-Push operations will transform any connected multi-
digraph into a connected set of stars in the limit with probability 1.

95

A Pointer-Push and Pointer-Pull Operations

Proof: When applying random Pointer-Push operations there is a non-zero probability
that a node creates self edges. Eventually, all outgoing edges of a node will point to
itself and therefore this node will be a sink. Every time the second node of a Pointer-
Push operation is such a sink s ∈ V, the third node will also be s. Therefore, the random
Pointer-Push operation will create edges pointing to the sink what in turn further in-
creases the probability of random Pointer-Push operations to end in a sink. Note, that
there is no way to remove edges pointing to a sink. So, in the long run the graph will
consist of at least one sink and all other nodes pointing directly to sinks.

Intuitively, nodes with higher indegree are prone to receive even higher indegree.
The above theorem shows, that this causes the Pointer-Push operation to not provide
generality.

We can overcome the problem of further increasing the indegree of nodes which al-
ready have high indegree with the following graph transformation, called Pointer-Pull
operation.

Definition A.2 (Pointer-Pull Operation) Consider a multi-digraph G = (V, E, #E) and
nodes v1, v2, v3, v4 ∈ V forming a directed path P = (v1, v2, v3, v4) in G. Then, the Pointer-
Pull operation PULLP transforms graph G to a graph PULLP(G) = (V, E′, #′E) with

E′ = (E \ (v3, v4)) ∪ (v3, v1).

The Pointer-Pull operation is illustrated in Figure 4.2 and a randomized version is given
by Algorithm A.2.

Algorithm A.2 Random Pointer-Pull
1: Choose random node v1 ∈ V
2: v2 ← random node ∈ N+(v1)
3: v3 ← random node ∈ N+(v2)
4: v4 ← random node ∈ N+(v3)
5: E← (E \ (v3, v4)) ∪ (v3, v1)

As in case of the Pointer-Push operation, the Pointer-Pull operation does not change
the outdegree of any node. The intuition, in contrast to the Pointer-Push operation, is
that applying random Pointer-Pull operations may balance the indegree of the nodes.
This is because the starting node v1 of each operation will increase its indegree by one
and v1 is chosen uniformly at random. Furthermore, nodes with high indegree have
a higher probability to be endpoint of a Pointer-Pull operation and therefore, higher
probability to get their indegree decreased. Even if this is the case, the following theo-
rem shows a major drawback of the Pointer-Pull operation.

Theorem A.2 Starting with an arbitrary multi-digraph G with n nodes, random Pointer-Pull
operations disconnect G into n components of single nodes with slopes in the limit.

Proof: From every digraph, this terminal graph is reachable by a series of random
Pointer-Pull operations. Furthermore, applying random Pointer-Pull operations to the

96

terminal graph will transform the terminal graph to itself. So, in the limit the Markov
chain described by the random Pointer-Pull operation converges to this terminal graph.

97

98

Bibliography

[1] Karl Aberer. P-Grid: A self-organizing access structure for p2p information sys-
tems. In CoopIS ’01: Proceedings of the Sixth International Conference on Cooperative
Information Systems, 2001.

[2] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic,
Manfred Hauswirth, Magdalena Punceva, and Roman Schmidt. P-Grid: a self-
organizing structured P2P system. SIGMOD Record, 32(3):29–33, 2003.

[3] Karl Aberer, Anwitaman Datta, and Manfred Hauswirth. P-Grid: Dynamics of
self-organizing processes in structured p2p systems. In Peer-to-Peer Systems and
Applications, volume 3485 of Lecture Notes in Computer Science (LNCS). Springer
Verlag, 2005.

[4] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

[5] Noga Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and su-
perconcentrators. Journal of Combinatorial Theory. Series B, 38(1):73–88, 1985.

[6] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-
peer content distribution technologies. ACM Computing Surveys, 36(4):335–371,
2004.

[7] James Aspnes and Gauri Shah. Skip graphs. In SODA ’03: Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 384–393,
Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathematics.

[8] James Aspnes and Gauri Shah. Skip graphs. ACM Transactions on Algorithms,
3(4):37, November 2007.

[9] Greg Barnes and Uriel Feige. Short random walks on graphs. In STOC ’93: Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pages
728–737. ACM Press, 1993.

[10] Salman Baset and Henning Schulzrinne. An analysis of the skype peer-to-peer
internet telephony protocol. CoRR, abs/cs/0412017, 2004.

[11] Sonny Ben-Shimon and Michael Krivelevich. Vertex percolation on expander
graphs. European Journal of Combinatorics, 30(2):339 – 350, 2009.

99

Bibliography

[12] Ranjita Bhagwan, Stefan Savage, and Geoffrey M. Voelker. Understanding avail-
ability. In Proceedings of the Second International Workshop on Peer-to-Peer Systems
(IPTPS ’03), 2003.

[13] Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan. Mercury: sup-
porting scalable multi-attribute range queries. SIGCOMM Computer Communica-
tion Review, 34(4):353–366, 2004.

[14] Manuel Blum, Richard M. Karp, Oliver Vornberger, Christos H. Papadimitriou,
and Mihalis Yannakakis. The complexity of testing whether a graph is a super-
concentrator. Information Processing Letters, 13(4/5):164–167, 1981.

[15] Béla Bollobás. A probabilistic proof of an asymptotic formula for the number of
labelled regular graphs. European Journal of Combinatorics, 1:311–316, 1980.

[16] Béla Bollobás. Random graphs. Combinatorics, 52:80–102, 1981.

[17] Béla Bollobás. The isoperimetric number of a random graph. European Journal of
Combinatorics, 9:241–244, 1988.

[18] Sherif M. Botros and Steve R. Waterhouse. Search in jxta and other distributed
networks. In Proceedings of the First International Conference on Peer-to-Peer Com-
puting (P2P 2001), pages 30–35, 2001.

[19] V. Bourassa and F. Holt. Swan: Small-world wide area networks. In Proceedings
of the International Conference on Advances in Infrastructure (SSGRR 2003w), 2003.

[20] Peter Buser. A note on the isoperimetric constant. Annales Scientifiques de l’École
Normale Supérieure. Quatrième Série, 15(2):213–230, 1982.

[21] Hyunseok Chang, Sugih Jamin, and Wenjie Wang. Live streaming performance of
the zattoo network. In IMC ’09: Proceedings of the Ninth ACM SIGCOMM Internet
Measurement Conference, pages 417–429, New York, NY, USA, 2009. ACM.

[22] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott
Shenker. Making gnutella-like p2p systems scalable. In SIGCOMM ’03: Proceed-
ings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, pages 407–418, New York, NY, USA, 2003. ACM
Press.

[23] Jeff Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Prob-
lems in analysis (Papers dedicated to Salomon Bochner, 1969), pages 195–199. Prince-
ton University Press, Princeton, N. J., 1970.

[24] Fan R. K. Chung. Spectral Graph Theory. Number 92 in CBMS Regional Conference
Series in Mathematics. American Mathematical Society, 1997.

[25] JXTA Community. JXTA — company spotlight archive. https://jxta.dev.
java.net/companyarchive.htm, 2007.

100

https://jxta.dev.java.net/companyarchive.htm
https://jxta.dev.java.net/companyarchive.htm

Bibliography

[26] Colin Cooper, Martin Dyer, and Catherine Greenhill. Sampling regular graphs
and a peer-to-peer network. In SODA ’05: Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 980–988, Philadelphia, PA,
USA, 2005. Society for Industrial and Applied Mathematics.

[27] Colin Cooper, Martin Dyer, and Catherine Greenhill. Sampling regular graphs
and a peer-to-peer network. Combinatorics, Probability and Computing, 16(4):557–
593, 2007.

[28] Colin Cooper, Martin Dyer, and Andrew J. Handley. The flip markov chain and a
randomising p2p protocol. In PODC ’09: Proceedings of the Twenty-Eighth Annual
ACM Symposium on Principles of Distributed Computing, pages 141–150, New York,
NY, USA, 2009. ACM Press.

[29] Adina Crainiceanu, Prakash Linga, Johannes Gehrke, and Jayavel Shanmugasun-
daram. Querying peer-to-peer networks using P-trees. In WebDB ’04: Proceedings
of the 7th International Workshop on the Web and Databases, pages 25–30, New York,
NY, USA, 2004. ACM Press.

[30] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek, and
Robert Morris. Designing a dht for low latency and high throughput. In NSDI ’04:
Proceedings of the First Symposium on Networked Systems Design and Implementation,
pages 85–98, March 2004.

[31] Persi Diaconis and Laurent Saloff-Coste. Comparison theorems for reversible
markov chains. The Annals of Applied Probability, 3(3):696–730, 1993.

[32] Jozef Dodziuk. Difference equations, isoperimetric inequality and transience
of certain random walks. Transactions of the American Mathematical Society,
284(2):787–794, 1984.

[33] Cedric du Mouza, Witold Litwin, and Philippe Rigaux. SD-Rtree: A scalable dis-
tributed Rtree. In ICDE ’07: Proceedings of the Twenty-Third International Conference
on Data Engineering, pages 296–305, April 2007.

[34] Martin Dyer, Leslie Ann Goldberg, Mark Jerrum, and Russel Martin. Markov
chain comparison. Probability Surveys, 3:89–111, 2006.

[35] Tomas Feder, Adam Guetz, Milena Mihail, and Amin Saberi. A local switch
markov chain on given degree graphs with application in connectivity of peer-
to-peer networks. In FOCS’06: Proceedings of the Fourty-Seventh Annual IEEE Sym-
posium on Foundations of Computer Science, pages 69–76, October 2006.

[36] George H. L. Fletcher, Hardik A. Sheth, and Katy Börner. Unstructured peer-to-
peer networks: Topological properties and search performance. In AP2PC ’04:
Proceedings of the Third International Workshop on Agents and Peer-to-Peer Comput-
ing, pages 14–27, July 2004.

101

Bibliography

[37] Pierre Fraigniaud and Philippe Gauron. D2B: a de Bruijn based content-
addressable network. Theoretical Computer Science, 355(1):65–79, 2006.

[38] Joel Friedman and Jean-Pierre Tillich. Generalized Alon–Boppana theorems and
error-correcting codes. SIAM Journal on Discrete Mathematics, 19(3):700–718, 2005.

[39] Prasanna Ganesan, Mayank Bawa, and Hector Garcia-Molina. Online balancing
of range-partitioned data with applications to peer-to-peer systems. In VLDB ’04:
Proceedings of the thirtieth International Conference on Very Large Data Bases, pages
444–455. VLDB Endowment, 2004.

[40] Pu Gao. The connectivity of the random regular graphs generated by the pegging
algorithm. Journal of Graph Theory, 2010. To appear.

[41] Pu Gao and Nicholas Wormald. Short cycle distribution in random regular
graphs recursively generated by pegging. Random Structures and Algorithms,
34(1):54–86, 2009.

[42] Bugra Gedik and Ling Liu. Reliable peer-to-peer information monitoring through
replication. In Proceedings of the Twenty-Second International Symposium on Reliable
Distributed Systems, pages 56–65. IEEE Computer Society, October 2003.

[43] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random walks in peer-
to-peer networks. In INFOCOM ’04: Proceedings of the Twenty-Third Annual Joint
Conference of the IEEE Computer and Communications Societies, March 2004.

[44] The Gnutella protocol specification v0.4. http://www9.limewire.com/
developer/gnutella_protocol_0.4.pdf, 2001.

[45] Catherine Greenhill, Fred B. Holt, and Nicholas Wormald. Expansion properties
of a random regular graph after random vertex deletions. European Journal of
Combinatorics, 29(5):1139–1150, 2008.

[46] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Gribble,
Henry M. Levy, and John Zahorjan. Measurement, modeling, and analysis of
a peer-to-peer file-sharing workload. ACM SIGOPS Operating Systems Review,
37(5):314–329, 2003.

[47] Antonin Guttman. R-trees: a dynamic index structure for spatial searching. In
SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD International Conference on
Management of Data, pages 47–57, New York, NY, USA, 1984. ACM Press.

[48] Gernot Gwehenberger. Anwendung einer binären Verweiskettenmethode beim
Aufbau von Listen. Elektronische Rechenanlagen, 10(5):223–226, 1968.

[49] Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch, Boon Thau Loo, Scott
Shenker, and Ion Stoica. Complex queries in dht-based peer-to-peer networks.
In IPTPS ’01: Revised Papers from the First International Workshop on Peer-to-Peer
Systems, pages 242–259, London, UK, 2002. Springer-Verlag.

102

http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf

Bibliography

[50] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec
Wolman. SkipNet: A scalable overlay network with practical locality properties.
In USENIX Symposium on Internet Technologies and Systems, 2003.

[51] Nicolas Heine. Analyse von Graphtransformationen zur Aufrechterhaltung dy-
namischer Zufallsnetzwerke. Master’s thesis, University of Paderborn, 2009.

[52] Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and Ben Y. Zhao. Distribted
object location in a dynamic network. In SPAA ’02: Proceedings of the Fourteenth
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 41–52, New
York, August 10–13 2002. ACM Press.

[53] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their
applications. Bulletin of the American Mathematical Society, 43:439–561, 2006.

[54] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott
Shenker, and Ion Stoica. Querying the internet with pier. In VLDB ’2003: Pro-
ceedings of the Twenty-Ninth International Conference on Very Large Data Bases, pages
321–332. VLDB Endowment, 2003.

[55] International ispell. http://www.lasr.cs.ucla.edu/geoff/ispell.
html.

[56] H. V. Jagadish, Beng Chin Ooi, and Quang Hieu Vu. BATON: a balanced tree
structure for peer-to-peer networks. In VLDB ’05: Proceedings of the Thirty-First
International Conference on Very Large Data Bases, pages 661–672. VLDB Endow-
ment, 2005.

[57] H. V. Jagadish, Beng Chin Ooi, Quang Hieu Vu, Rong Zhang, and Aoying Zhou.
Vbi-tree: A peer-to-peer framework for supporting multi-dimensional indexing
schemes. In ICDE ’06: Proceedings of the Twenty-Second International Conference on
Data Engineering, Washington, DC, USA, 2006. IEEE Computer Society.

[58] M.R. Jerrum and A. J. Sinclair. Fast uniform generation of regular graphs. Theo-
retical Computer Science, 73:91–100, 1990.

[59] M. A. Jovanovic, F. S. Annexstein, and K. A. Berman. Scalability issues in large
peer-to-peer networks — a case study of Gnutella. Technical report, University
of Cincinnati, 2001.

[60] M. Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal dis-
tributed hash table. In IPTPS ’03: Proceedings of the Second International Workshop
on Peer-to-Peer Systems, pages 98–107, 2003.

[61] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin, and
Rina Panigrahy. Consistent hashing and random trees: Distributed caching pro-
tocols for relieving hot spots on the World Wide Web. In STOC ’97: Proceedings of

103

http://www.lasr.cs.ucla.edu/geoff/ispell.html
http://www.lasr.cs.ucla.edu/geoff/ispell.html

Bibliography

the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 654–663,
El Paso, Texas, 4–6 May 1997.

[62] Richard Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vöcking.
Randomized rumor spreading. In FOCS ’00: Proceedings of the Fourty-First An-
nual Symposium on Foundations of Computer Science, page 565, Washington, DC,
USA, 2000. IEEE Computer Society.

[63] Minkyu Kim and Muriel Medard. Robustness in large-scale random networks. In
INFOCOM ’04: Proceedings of the Twenty-Third Annual Joint Conference of the IEEE
Computer and Communications Societies, March 2004.

[64] Ching Law and Kay-Yeung Siu. Distributed construction of random expander
networks. In INFOCOM ’03: Proceedings of the Twenty-Second Annual Joint Con-
ference of the IEEE Computer and Communications Societies, volume 3, pages 2133–
2143, 2003.

[65] Jinyang Li, Jeremy Stribling, Robert Morris, M. Frans Kaashoek, and Thomer M.
Gil. A performance vs. cost framework for evaluating dht design tradeoffs under
churn. In INFOCOMM ’05: Proceedings of the Twenty-Fourth Annual Joint Conference
of the IEEE Computer and Communications Societies, pages 225–236, March 2005.

[66] Mei Li, Wang-chien Lee, and Anand Sivasubramaniam. DPTree: A balanced tree
based indexing framework for peer-to-peer systems. In ICNP ’06: Proceedings of
the 2006 IEEE International Conference on Network Protocols, pages 12–21, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[67] Chu Yee Liau, Wee Siong Ng, Yanfeng Shu, Kian-Lee Tan, and Stéphane Bres-
san. Efficient range queries and fast lookup services for scalable p2p networks.
In DBISP2P ’04: Proceedings of the Second International Workshop on Databases, In-
formation Systems and Peer-to-Peer Computing, Lecture Notes in Computer Science.
Springer, 2004.

[68] David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis of the evo-
lution of peer-to-peer systems. In PODC ’02: Proceedings of the Twenty-First Annual
Symposium on Principles of Distributed Computing, pages 233–242, New York, July
21–24 2002. ACM Press.

[69] Laszlo Lovász. Random walks on graphs: A survey. Combinatorics, Paul Erdös is
Eighty, 2:353–398, 1996.

[70] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and replication
in unstructured peer-to-peer networks. In ICS ’02: Proceedings of the Sixteenth In-
ternational Conference on Supercomputing, pages 84–95, New York, NY, USA, 2002.
ACM Press.

104

Bibliography

[71] Peter Mahlmann, Thomas Janson, and Christian Schindelhauer. 3nuts: A locality-
aware peer-to-peer network combining random networks, search trees, and dhts.
Technical Report tr-ri-09-309, Heinz Nixdorf Institute, Paderborn, Germany, De-
cember 2009.

[72] Peter Mahlmann and Christian Schindelhauer. Peer-to-peer networks based on
random transformations of connected regular undirected graphs. In SPAA’05:
Proceedings of the Seventeenth Annual ACM Symposium on Parallelism in Algorithms
and Architectures, pages 155–164, New York, NY, USA, 2005. ACM Press.

[73] Peter Mahlmann and Christian Schindelhauer. Distributed random digraph
transformations for peer-to-peer networks. In SPAA ’06: Proceedings of the Eigh-
teenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages
308–317, New York, NY, USA, 2006. ACM Press.

[74] Peter Mahlmann and Christian Schindelhauer. Peer-to-Peer-Netzwerke: Algo-
rithmen und Methoden. Springer-Verlag Berlin, 1st edition, June 2007. ISBN
3540339914.

[75] Peter Mahlmann and Christian Schindelhauer. Random graphs for peer-to-peer
overlays. In The European Integrated Project "Dynamically Evolving, Large Scale In-
formation Systems (DELIS), Proceedings of the Final Workshop, number 222, pages
1–22. HNI Verlagsschriftenreihe, Paderborn, 27 - 28 February 2008.

[76] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A scalable and dy-
namic emulation of the butterfly. In PODC ’02: Proceedings of the Twenty-First An-
nual Symposium on Principles of Distributed Computing, pages 183–192, New York,
NY, USA, 2002. ACM Press.

[77] Brendan D. McKay and Nicholas C. Wormald. Uniform generation of random
regular graphs of moderate degree. Journal of Algorithms, 11:52–67, 1990.

[78] Anirban Mondal, Yi Lifu, and Masaru Kitsuregawa. P2PR-Tree: An R-tree-based
spatial index for peer-to-peer environments. In Current Trends in Database Tech-
nology - EDBT 2004 Workshops, pages 516–525, 2004.

[79] Alberto Montresor, Mark Jelasity, and Ozalp Babaoglu. Chord on demand. In P2P
’05: Proceedings of the Fifth IEEE International Conference on Peer-to-Peer Computing,
pages 87–94, Washington, DC, USA, 2005. IEEE Computer Society.

[80] Moni Naor and Udi Wieder. Novel architectures for p2p applications: the
continuous-discrete approach. In SPAA ’03: Proceedings of the Fifteenth Annual
ACM Symposium on Parallel Algorithms and Architectures, pages 50–59, New York,
NY, USA, 2003. ACM Press.

[81] Moni Naor and Udi Wieder. A simple fault tolerant distributed hash table. In
IPTPS ’03: Proceedings of the Second International Workshop on Peer-to-Peer Networks,
pages 88–97, 2003.

105

Bibliography

[82] Sotiris E. Nikoletseas, Krishna V. Palem, Paul G. Spirakis, and Moti Yung. Con-
nectivity properties in random regular graphs with edge faults. International Jour-
nal on Foundations of Computer Science, 11(2):247–262, 2000.

[83] A. Nilli. On the second eigenvalue of a graph. Discrete Mathematics, 91(2):207–210,
1991.

[84] S. Oaks, B. Traversat, and L. Gong. JXTA in a Nutshell. O’Reilly Press, 2002.

[85] Andy Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly
Media, March 2001.

[86] Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Building low-diameter
p2p networks. In FOCS ’01: Proceedings of the Fourty-Second IEEE Symposium on
Foundations of Computer Science, pages 492–499, Washington, DC, USA, 2001. IEEE
Computer Society.

[87] Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Building low-
diameter peer-to-peer networks. IEEE Journal on Selected Areas in Communications,
21(6):995–1002, 2003.

[88] Bill Pickelhaupt and Kevin Starr. Shanghaied in San Francisco. Mystic Seaport
Museum, 1970.

[89] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea Richa. Accessing nearby
copies of replicated objects in a distributed environment. In SPAA ’97: Proceedings
of the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures, pages
311–320, New York, June 1997. ACM Press.

[90] Project jxta. http://www.jxta.org.

[91] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Communi-
cations of the ACM, 33(6):668–676, 1990.

[92] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M. Hellerstein, and Scott
Shenker. Brief announcement: prefix hash tree. In PODC ’04: Proceedings of
the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing,
pages 368–368, New York, NY, USA, 2004. ACM Press.

[93] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M. Hellerstein, and Scott
Shenker. Prefix hash tree: An indexing data structure over distributed hash ta-
bles. Technical report, Intel Research Berkeley, 2004.

[94] Dana Randall and Prasad Tetali. Analyzing glauber dynamics by comparison of
markov chains. In LATIN ’98: Proceedings of the Third Latin American Symposium on
Theoretical Informatics, pages 292–304, London, United Kingdom, 1998. Springer-
Verlag.

106

http://www.jxta.org

Bibliography

[95] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A scalable content-addressable network. In SIGCOMM ’01: Proceed-
ings of the 2001 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, pages 161–172, New York, NY, USA, 2001. ACM
Press.

[96] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network. In P2P
’01: Proceedings of the First IEEE International Conference on Peer-to-Peer Computing,
pages 99–100, Washington, DC, USA, 2001. IEEE Computer Society.

[97] John Risson and Tim Moors. Survey of research towards robust peer-to-peer net-
works: search methods. Computer Networks, 50(17):3485–3521, 2006.

[98] Jordan Ritter. Why gnutella can’t scale. no, really. http://www.darkridge.
com/~jpr5/doc/gnutella.html, 2001.

[99] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware ’01: Pro-
ceedings of the IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg, pages 329–350, London, United Kindgom, 2001. Springer-Verlag.

[100] Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble. Measuring and an-
alyzing the characteristics of napster and gnutella hosts. Multimedia Systems,
9(2):170–184, 2003.

[101] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measurement
study of peer-to-peer file sharing systems. In MMCN ’02: Proceedings of the 2002
SPIE Conference on Multimedia Computing and Networking, 2002.

[102] Christian Schindelhauer and Gunnar Schomaker. Weighted distributed hash ta-
bles. In SPAA ’05: Proceedings of the Seventeenth Annual ACM Symposium on Par-
allelism in Algorithms and Architectures, pages 218–227, New York, NY, USA, 2005.
ACM.

[103] Stefan Schmid and Roger Wattenhofer. Structuring unstructured peer-to-peer
networks. In HiPC ’07: Proceedings of the Fourteenth Annual IEEE International Con-
ference on High Performance Computing, LNCS 4873, Berlin, Heidelberg, Germany,
December 2007. Springer.

[104] Rüdiger Schollmeier. A definition of peer-to-peer networking for the classifi-
cation of peer-to-peer architectures and applications. In P2P ’01: Proceedings of
the First IEEE International Conference on Peer-to-Peer Computing, Washington, DC,
USA, 2001. IEEE Computer Society.

[105] Hendrik Schulze and Klaus Mochalski. ipoque internet study 2008/2009. http:
//www.ipoque.com/resources/internet-studies, 2009.

107

http://www.darkridge.com/~jpr5/doc/gnutella.html
http://www.darkridge.com/~jpr5/doc/gnutella.html
http://www.ipoque.com/resources/internet-studies
http://www.ipoque.com/resources/internet-studies

Bibliography

[106] Clay Shirky. What is p2p... and what isn’t, November 2000. http://
missingmanuals.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.
html, O’Reilly.

[107] Andreas Stathopoulos. Nearly optimal preconditioned methods for hermitian
eigenproblems under limited memory. Part I: Seeking one eigenvalue. SIAM Jour-
nal on Scientific Computing, 29(2):481–514, 2007.

[108] Andreas Stathopoulos and James R. McCombs. Nearly optimal preconditioned
methods for hermitian eigenproblems under limited memory. Part II: Seeking
many eigenvalues. SIAM Journal on Scientific Computing, 29(5):2162–2188, 2007.

[109] Angelika Steger. Diskrete Strukturen (Band 1). Springer-Verlag, January 2001.

[110] Angelika Steger and Nicholas C. Wormald. Generating random regular graphs
quickly. Combinatorics, Probability and Computing, 8(4):377–396, 1999.

[111] Ralf Steinmetz and Klaus Wehrle. Peer-to-peer-networking & -computing.
Informatik-Spektrum, 27(1):51–54, 2004.

[112] Ralf Steinmetz and Klaus Wehrle, editors. Peer-to-Peer Systems and Applications,
volume 3485 of Lecture Notes in Computer Science (LNCS). Springer, 2005.

[113] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
In SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 149–160, New York,
NY, USA, 2001. ACM.

[114] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM Transactions on Networking,
11(1):17–32, 2003.

[115] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer net-
works. In IMC ’06: Proceedings of the Sixth ACM SIGCOMM Conference on Internet
Measurement, pages 189–202, New York, NY, USA, 2006. ACM Press.

[116] Daniel Stutzbach, Reza Rejaie, and Subhabrata Sen. Characterizing unstructured
overlay topologies in modern p2p file-sharing systems. IEEE/ACM Transactions
on Networking, 16(2):267–280, 2008.

[117] D. A. Tran and T. Nguyen. Hierarchical multidimensional search in peer-to-peer
networks. Computer Communications, 31(2):346–357, 2008.

[118] Bernard Traversat, Ahkil Arora, Mohamed Abdelaziz, Mike Duigou, Carl Hay-
wood, Jean-Christophe Hugly, Eric Pouyoul, and Bill Yeager. Project jxta 2.0
super-peer virtual network, May 2003.

108

http://missingmanuals.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html
http://missingmanuals.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html
http://missingmanuals.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html

Bibliography

[119] Udi Wieder. The Continuous-Discrete Approach for Designing P2P Networks and Al-
gorithms. PhD thesis, Weizmann Institute of Science, 2005.

[120] Nicholas C. Wormald. The asymptotic connectivity of labelled regular graphs.
Journal of Combinatorial Theory, Series B, 31(2):156–167, 1981.

[121] Nicholas C. Wormald. Models of random regular graphs. In Surveys in Combina-
torics, pages 239–298. Cambridge University Press, 1999.

[122] Ellen Zegura, Kenneth Calvert, and Samrat Bhattacharjee. How to model an in-
ternetwork. In INFOCOM ’96: Proceedings of Fifteenth Annual Joint Conference of the
IEEE Computer Societies. Networking the Next Generation, volume 2, pages 594–602,
1996.

[123] Chi Zhang, Arvind Krishnamurthy, and Randolph Y. Wang. Brushwood: Dis-
tributed trees in peer-to-peer systems. In IPTPS ’05: Proceedings of the Fourth In-
ternational Workshop on Peer-To-Peer Systems, February 2005.

109

110

	Introduction
	Unstructured vs. Structured Networks
	Our Contribution
	Contributions Concerning Unstructured Networks
	Contributions Concerning Structured Networks

	Bibliographical Notes

	Unstructured Networks
	Introduction to Random Graphs and Unstructured Networks
	Notations

	The Undirected Case: Flipper
	Uniform Generation of Regular Connected Graphs
	Fast Construction of Expander Graphs
	Peer-to-Peer Networks based on Random Regular Graphs
	Joining Peers
	Leaving Peers
	Concurrency

	Experimental Evaluation
	Results for the 1-Flipper
	Results for the k-Flipper
	1-Flipper in a Real World Network

	The Directed Case: Pointer-Push&Pull
	The Pointer-Push&Pull Graph Transformation
	Multi-Digraphs
	Edge Labeled Multi-Digraphs
	Simple Digraphs

	Pointer-Push&Pull in Peer-to-Peer Networks
	Concurrency
	Joining Peers

	Conclusion and Open Problems

	Structured Networks
	Introduction to Structured Networks
	Locality in Peer-to-Peer Networks
	Network Locality
	Information Locality
	Interest Locality

	3nuts: Combining Random Networks, Search Trees, and DHTs
	The 3nuts Architecture
	Basic Concepts: Data Tree and Network Tree
	Peer Assignment, Load-Balancing, and Responsibilities
	Maintaining Random Networks
	A Peer's Local View
	Initializing the Local View
	Maintaining the Local View
	Routing

	Locality in 3nuts
	Experimental Evaluation
	Routing
	Load Balancing
	Degree
	Dynamics and Robustness

	Conclusion and Outlook
	Pointer-Push and Pointer-Pull Operations
	Bibliography

