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Zusammenfassung

Wir betrachten eine Gruppe von autonomen Robotern, die in einem unbekannten Gelände
ausgesetzt werden. Es gibt keine zentrale Steuerung und die Roboter müssen sich selbst
koordinieren. Zentrale Herausforderung dabei ist, dass jeder Roboter nur seine unmittel-
bare Nachbarschaft sieht und auch nur mit Robotern in seiner unmittelbaren Nachbar-
schaft kommunizieren kann. Daraus ergeben sich viele algorithmische Fragestellungen.
In dieser Arbeit wird untersucht, wie in einem solchen Szenario Zuweisungsaufgaben
gelöst werden können, so dass sich trotz der lokalen Einschränkungen global beweisbar
gute Lösungen ergeben. Dabei werden im ersten Teil der Arbeit Roboter zu Schätzen
zugewiesen, die im Gelände gefunden wurden. Im zweiten Teil der Arbeit werden dy-
namische Rollenzuweisungen innerhalb des Roboterteams vorgenommen. Dabei müssen
die Zuweisungen mit der Zeit geändert werden, da die Roboter sich bewegen. Es werden
jeweils untere Schranken gezeigt, sowie lokale Approximationsalgorithmen beschrieben
und analysiert.
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C H A P T E R 1

Introduction

Consider a set of robots that are deployed to an unknown environment, for instance an
ocean or an outer planet. Since there is no global control, the robots have to organize
their actions by themselves. Among the problems that have to be considered is the main-
tenance of good infrastructures, exploration of the environment and assignment of tasks
within the team, always under the restriction of limited energy. While there are already
considerable results achieved in most single fields, there are not as many results in the
field of assigning tasks to the robots. This thesis aims at filling this gap, since assigning
tasks to individual entities seems to be a fundamental field of problems when dealing with
cooperative agents.

The main difficulty in the described scenario arises from the fact that each robot has
only a limited view on the world, namely a limited viewing radius which is determined
by a geometric ball. This is a natural restriction for robot teams deployed to areas un-
accessible to humans. Each robot has to take decisions based on this information only
and is restricted to communication with robots located within the geometric ball as well.
Nevertheless, we will design and analyze strategies that globally lead to provably good
solutions. This is in contrast to many state-of-the-art approaches in distributed settings,
which rely on good heuristics that work well on instances occurring in practice. However,
we focus on rigorous analysis of our algorithms under worst-case assumptions. This is
favorable, because the detailed circumstances of an application are often not known in
advance and furthermore we want to get a structural insight into the problems.

Local algorithms Local algorithms gain increased interest recently, since computing
entities are becoming smaller and smaller nowadays and therefore portable. Thus, we
have to deal with dynamics. Furthermore, because the computing entities are getting
smaller they are also getting cheaper and more of them can be deployed. Thus, dis-
tributed algorithms have to be scalable. Dynamics and scalability are a motivation to
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8 INTRODUCTION

consider local algorithms, since it is unrealistic to have all information at hand, espe-
cially in an environment that dynamically changes. Additionally, communication over
long distances is usually slow and expensive. But local algorithms can deal with these
circumstances. Since the algorithms use only little information, they are mostly easy to
describe, understand and implement. They usually pose few requirements on the execut-
ing nodes in terms of computing power, sensing capabilities and storage. Despite the easy
description, it is often hard to analyze them and to prove that they are good from a global
point of view. The problem is rather the interaction between the nodes than the data struc-
tures and the design of the local algorithms running on the nodes. This is for example
evident in the second part of the thesis, where we first analyze a global algorithm, which
is difficult mainly due to the interaction between the data structures, the algorithm and
mobility. While for the local algorithm that we consider afterwards, the worst-case order
of interaction is crucial to consider.

External and internal assignment There are two major fields of problems that have
to be addressed: external and internal tasks. External tasks arise from the environment.
For instance, there might be treasures (which could also be victims from catastrophes that
need to be rescued or objects that need to be monitored for instance) that are found and
that have to be processed by several robots. In this case the robots have to be assigned
to the treasures. See Figure 1.1 for an illustration. On the other hand, there are internal
tasks. Here, different roles have to be taken by members of the team (e.g. providing a
costly service for other robots). Ultimately, each robot should decide on its own which
role it takes, based on its local information. These role assignments might need to be
changed due to the movement of the robots. An example is shown in Figure 1.2. Hence,
we denote problems where robots are assigned to external entities as external assign-
ment problems and problems where assignments take place only within the robot team as
internal assignment problems.

This thesis consists of two parts, dedicating one to each field. Both parts start with
’bad news’, such as lower bounds concerning the locality, the dynamics as well as com-
plexity theoretic aspects of computation. Then, we present ’good news’ in terms of local
approximation algorithms for the respective problem at hand. In the second part, the con-
ceptually simpler problem of finding a good assignment in a dynamic environment with
global view and central control is considered first. The gained insights and developed
techniques are afterwards applied to a completely distributed setting with local view. At
the end of each part we conclude and give an outlook on possible future research.

Our local algorithms and our model Often local algorithms are considered in graphs,
where the notion of locality is the hop distance. Then an algorithm is called k-local if
only nodes in a hop distance of at most k are considered. However, by our geometric
motivation it is natural to assume that a geometric ball is the proper notion of locality.
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Figure 1.1.: An example instance for the external assignment problem. The circles
around the treasures indicate the robots that can be assigned to them due to the uniform
viewing radius of the robots. For the given assignment three out of four treasures can be
unearthed, since the robot strength sums up at least to the corresponding treasure weight.

From a theoretical point of view this is interesting, since the additional information at
hand can be used to solve our problems. This gives an insight into the structure of the
problems.

All presented algorithms in this thesis are oblivious, deterministic and the runtime in
terms of communication rounds is only a small function in n, where n is the number of
robots. It has been pointed out that those local algorithms can be easily transformed into
self-stabilizing algorithms by an efficient roll back compiler mechanism, which is able
to handle transient failures [AV91]. This means that started form an arbitrary state, the
algorithm will lead to a recovery by returning to a state that is desired by the designer.
Hence, our algorithms are robust in the sense that slight perturbations in the input, such as
temporary wrong measurements, will not harm the results. For a recent survey on related
subjects see [LSW09].

Our algorithms need no global information, not even the total number of nodes n is
required to execute them. In the first part dedicated to external assignment, our algorithm
is stated in a synchronous round model to simplify the description. Therefore all robots
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Figure 1.2.: An example instance for the internal assignment problem. The green circles
are the chosen robots that take a predefined role. The red robots make use of the green
robots. Movement of robots leads to a reassignment of the providing robots.

act in parallel in synchronous rounds. Standard techniques are available to deal with the
problem of applying our synchronous algorithm to an asynchronous setting via α syn-
chronizers, where a node basically waits for all its neighbors to acknowledge that they
completed a round before proceeding to the next round [Awe85]. The distributed algo-
rithm in the second part of the thesis concerning internal assignment is applied directly to
the more natural asynchronous round model. There, nodes wake up in an asynchronous
manner and a round is counted, as soon as each robot was active at least once. We assume
idealized robots that are capable of exact measurements within their perfectly round ge-
ometric ball, that the robots have no physical extend and communication is reliable. We
abstract from physical robots to capture the locality constraints that we are mainly inter-
ested in. Sometimes we refer to the abstract robots as objects, points or nodes.

Our main contributions The main contributions in the first part of the thesis are several
complexity theoretic results showing the computational hardness of the problem and a
local constant factor approximation algorithm with constant factor resource augmentation
for the UNEARTH TREASURE problem. With this algorithm, robots can assign themselves
locally to treasures such that they are capable of unearthing them and the number of
treasures unearthed is maximized. Due to its design, the algorithm can be applied to
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various other objective functions in this context. As a building block, we introduce a
local constant factor approximation algorithm for the maximum weighted independent
set problem1 on bounded degree graphs.

In the second part of the thesis, the two main contributions are a kinetic data structure
solving the classical FACILITY LOCATION problem under dynamics as well as a local al-
gorithm for the same problem. From a technical point of view, the most important feature
of the kinetic data structure is a technique to respond to changes of the location of the
robots in poly-logarithmic time. For the local algorithm we are able to prove that changes
in the environment lead to changes in the role assignment in the local neighborhood which
is upper bounded by a geometric ball with constant radius.

Bibliographic note Parts of this thesis were previously published in [BDKP09] for the
first part and in [DGL08a, DGL08b, DGL08c, DKP10] for the second part:

• [BDKP09] O. Bonorden, B. Degener, B. Kempkes, and P. Pietrzyk. Complexity
and approximation of a geometric local robot assignment problem. In Algosensors,
2009.

• [DGL08b] B. Degener, J. Gehweiler, and C. Lammersen. The kinetic facility lo-
cation problem. In Proceedings of the 24th European Workshop on Computational
Geometry, pages 251–254, 2008.

• [DGL08c] B. Degener, J. Gehweiler, and C. Lammersen. The kinetic facility
location problem. In Proceedings of the 11th Scandinavian Workshop on Algorithm
Theory (SWAT), pages 378–389, 2008.

• [DGL08a] B. Degener, J. Gehweiler, and C. Lammersen. Kinetic facility location.
Algorithmica, 2008.

• [DKP10] B. Degener, B. Kempkes, and P. Pietrzyk. A local, distributed constant-
factor approximation algorithm for the dynamic facility location problem. In 24th
IEEE International Parallel and Distributed Processing Symposium, 2010. to ap-
pear.

1 Throughout this thesis we call a set of nodes in a graph independent, iff their is no pair of nodes that
share an edge. We call a set maximal independent, iff it is independent and no node can be added without
violating the independence constraint. We consider a maximal independent set as a maximum independent
set, iff there is no independent set with larger cardinality. Similar, the maximum weighted independent set
is an independent set where the sum of the node weights in the set has the largest cardinality.



12 INTRODUCTION

In [BDKP09], the problem described in Chapter 2 is introduced, the lower bounds
presented in Chapter 3 are summarized and the algorithm in Chapter 4 is presented.
[DGL08b] describes the problem defined in Chapter 6 from the global point of view.
In [DGL08a, DGL08c] the solution to the global problem is given. Chapter 8 elaborates
on this. In [DKP10] the local variant of the problem defined in Chapter 6 is introduced.
Chapter 7 on lower bounds for the problem and Chapter 9, where the local algorithm is
presented are also based on this paper. The relevant technical related work is presented in
the respective chapters.



Part I.

External assignment
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C H A P T E R 2

Introduction to external assignment

We are given a group of robots which is deployed arbitrarily to a Euclidean space, in
which treasures are hidden. Being equipped with sensors, the robots are able to de-
tect treasures positioned within a given viewing range. The treasures can have different
weights and the robots can have different amounts of strength. The task is to assign the
robots to treasures in such a way that the number of treasures which are unearthed by
the robots is maximized. A treasure is unearthed if the amount of strength of the robots
assigned to it sums up to at least the weight of the treasure. One constraint must be kept
for the assignment: A robot may only be assigned to a treasure if the treasure is within the
robot’s viewing range. The viewing range of all robots is equal. Note that the robots do
not actually move before the assignment is computed. Hence, we are dealing with a static
scenario. For an illustration of the problem refer to Figure 1.1 in the previous chapter.

Throughout this chapter, we will adhere to the figurative description of treasures which
have to be unearthed. Nevertheless, in an application these treasures could for example
also be tasks which have to be handled by teams of robots. Another application would be
the assignment of mobile robotic sensors to objects that need a certain number of guards
to be properly monitored. These are just a few examples for applications of autonomous
robot teams or mobile robotic sensors with the objective at hand. Remember that our
main challenge is that all acting entities have only their own local view and no knowledge
about the global state of the environment.

We present complexity results for the problems at hand - though stated in a traditional
global fashion - capturing the hardness of locality, which is modeled through the con-
straint that a robot may only be assigned to a treasure in its viewing range. Furthermore,
we present a distributed local approximation algorithm using resource augmentation.
This is a well established tool for algorithmic analysis: An algorithm is provided with
some additional resources, but is still compared to an optimal algorithm without these.

We distinguish two scenarios of the problem in this part: In the heterogeneous sce-
nario each robot holds an integer value indicating its individual strength, while in the

15



16 INTRODUCTION TO EXTERNAL ASSIGNMENT

homogeneous scenario every single robot has a strength of 1.

2.1. Our contribution

We explore the complexity of calculating the optimal solution for the heterogeneous and
the homogeneous scenario in different variants if all knowledge about the treasures and
robots is at hand. Because we show that most variants are NP-complete, the calculation
of the optimal solution is also impracticable in a local and distributed way. So we present
a local, distributed approximation algorithm that uses resource augmentation and provides
a constant factor approximation of the optimal solution. The algorithm has a runtime of
O(log∗ n)1 communication rounds. As a building block, we use an algorithm which we
consider to be of independent interest, because it is the first distributed local algorithm for
the maximum weighted independent set problem on ∆-bounded degree graphs (Lemma
4.4). It has a ∆∆-approximation ratio, which is constant in our case.

2.2. Related work

This part of the thesis deals with allocating robots to points in a Euclidean space. A related
area is the one of Multi-Robot Coordination, especially Multi-Robot Task Allocation
(MRTA) (for an overview, see [GM04]). Here, robots need to be allocated to some kind
of task, e.g. an emergency handling or exploration task. For each task, every robot
has an estimated fitness and performance cost, which depend on the concrete task and
which need not be constant. The utility for a robot to handle one task is often defined
as the difference between its fitness and cost. The goal is to assign the robots to the
tasks such that all tasks are handled and the overall utility is maximized. Due to the
nature of the problems, distributed solutions are often favored. Most approaches to MRTA
use experiments or simulations to evaluate the strategies ([LZ05], [BMSS05], [OMS01],
[TP07]), but some theoretical results exist as well. In [LBK+05], a two-approximation
algorithm is given for allocating exploration tasks to robots. Here, a robot fulfills a task
by traveling to a destination point indicated by the task. The cost to be minimized is the
overall traveled distance.

For our local approximation algorithm, we need to compute a maximal independent
set on unit disk graphs locally. This has recently been shown to be possible in time
O(log∗ n) [SW08], which is asymptotically optimal [Lin92]. Furthermore, we use a lo-
cal variant of an approximation algorithm for the maximal independent set problem on
bounded degree graphs [GPS87]. The main idea of this algorithm is to compare the IDs

1 The function log∗ n is the iterated logarithm and defined as log∗ n :=

{
0 if n≤ 1;

1+ log∗(logn) if n > 1
. Note

that the function tends to infinity, but extremely slowly.
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of adjacent nodes and iteratively collapse them. The position of a bit where two IDs differ
is concatenated with the value of the bit. Since this shortens the ID exponentially in each
iteration, IDs have a constant length after O(log∗ n) iterations and are all different. After
some refinement this yields a maximal independent set. This algorithm has a runtime of
O(log∆(∆2 + log∗ n)), which is an improvement of a coloring based algorithm given in
[CV86] with complexity O(log∗ n + 3∆). However, it is possible to compute a maximal
independent set in only O(∆2 + log∗ n) rounds [Lin92]. Since ∆ is bounded by a con-
stant in our case, all algorithms have a runtime of O(log∗ n). The authors in [SW08] also
elaborate on this approach, when designing their algorithm for unit disk graphs.

We furthermore present a local distributed ∆∆ approximation algorithm for the max-
imum weighted independent set problem. The best global approximation algorithm for
this problem yields a ∆-approximation [STK03]. Note that we assume that global coordi-
nates are not available to the robots. While our complexity results would still be valid, our
algorithm would be a lot simpler and it would run in constant time using the approach of
[KMW05] for computing a maximal independent set. They define a global grid, in which
generalized unit disk graphs can easily be colored and turned into maximal independent
sets in constant time.

2.3. Formal problem definition

We define different variants of the UNEARTH TREASURES problem. All of these variants
accept the same kind of input, which is modeled by two sets T and R and an integer
v. The set T = {t1, . . . , tn} represents n treasures, the set R = {r1, . . . ,rm} represents m
robots. The viewing range of the robots is represented by v. Since v is equal for all robots,
exactly all robots positioned in the sphere around a treasure of radius v can be assigned to
the treasure. We call this the viewing range v of the treasure. With every treasure ti ∈ T
and every robot r j ∈ R a position p(ti) respectively p(r j) in the d-dimensional Euclidean
space is associated. Each of the n + m positions is modeled as a d-tuple. Additionally,
we associate an integer value w(ti) with treasure ti representing its weight and an integer
value s(ri) with robot ri representing its strength. The function assign : R→ T is defined
in such a way that for all ri ∈ R the implication (assign(ri) = t j⇒‖p(ri)− p(t j)‖ ≤ v)
is true. This means that it only assigns a robot to a treasure, if the treasure is in the
robot’s viewing range. The function unearth : (T,R,assign)→N computes the number
of treasures that can be unearthed if the assignment assign is employed. A treasure t j

counts as being unearthed under assign if ∑i|assign(ri)=t j s(ri)≥ w(t j).
We define the decision problem UNEARTH TREASURES by a function k : N → R

with k(n) ≤ n. This function tells us how many of the n treasures are supposed to be
unearthed. In general, the decision problem of UNEARTH TREASURES with the function
k(n) is formulated as follows: Given two arbitrary sets T and R and an integer v as defined
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above, does a function assign exist with unearth(T,R,assign)≥ k(n)? We only consider
k which are computable in polynomial time and which are monotonically increasing. In
Section 4 we consider the optimization variant of the problem.

Note that we formally classify a scenario as homogeneous, if for all ri ∈ R the equality
s(ri) = 1 is true. Otherwise, we call it heterogeneous.

2.4. Organization of the part external assignment

In Chapter 3 we deal with the UNEARTH TREASURES problem in the heterogeneous
and the homogeneous scenario. For both scenarios, we prove the complexity of different
variants of the problem, i.e. for different functions k(n). Then we present a local approx-
imation algorithm using resource augmentation in Chapter 4. We conclude in Chapter 5
by discussing some open problems.



C H A P T E R 3

The complexity of external assignment

This chapter deals with the complexity of finding a solution for the different variants of
the UNEARTH TREASURES problem. In order to keep the results as general as possi-
ble, we consider a centralized version in two dimensions. In Section 3.1, the problem is
analyzed within the more general heterogeneous scenario, while in Section 3.2 we inves-
tigate whether a restriction of the strength-values of the robots to 1 simplifies the problem.
Table 3.1 shows an overview of the results presented in this chapter.

3.1. The heterogeneous scenario

In this section we will analyze four variants of the UNEARTH TREASURES problem in the
heterogeneous scenario. First we show that providing a solution when just one treasure is
supposed to be unearthed (k(n) = 1) is in P. Then, for k(n) = c with a constant c > 1, we
prove that the problem becomes weak NP-complete. Thus, deciding whether a constant
number of treasures can be unearthed is already hard. The third variant we analyze is
k(n) = n, i.e. the question if all treasures can be unearthed. This variant turns out to be
strongly NP-complete. Finally, we show that the problem stays strongly NP-complete
even if we relax the constrains from k(n) = n to k(n) ∈ Ω(nε) and 0 < ε ≤ 1 for each
k(n).

3.1.1. Unearthing a single treasure

As a warm-up we start with a simple observation for the simplest problem one can imag-
ine in this scenario. We just want to know, whether it is possible at all to unearth a single
treasure.

Theorem 3.1. The variant of UNEARTH TREASURES with k(n) = 1 in the heterogeneous
scenario is in P.

19



20 THE COMPLEXITY OF EXTERNAL ASSIGNMENT

k(n) homogen. proof sketch

general strong NP-complete reduction from PL. INDEP. SET

1 O(n ·m)

c O(nc ·m3) multiple net flows

[c,nε ] unknown

[nε ,n−nε ] strong NP-complete add treasures, reduction from general
k(n)

[n−nε ,n− c] unknown

n− c O(nc(n+m)3) multiple net flows

n O((n+m)3) netflow

k(n) heterogeneous proof sketch

general strong NP-complete see k(n) = n

1 O(n ·m)

c weak NP-complete
O((n ·m ·max str.)c)

reduction from PARTITION

dynamic program

[c,nε ] NP-complete reduction from PARTITION

[nε ,n−nε ] strong NP-complete add treasures, reduction from k(n) = n

[n−nε ,n− c] strong NP-complete see [nε ,n−nε ]

n− c strong NP-complete see [nε ,n−nε ]

n strong NP-complete reduction from 3-SAT

Table 3.1.: Complexity Classes

Proof. It is easy to check for each treasure one after the other whether it is satisfied or not
by assigning all adjacent robots to this treasure. A trivial algorithm runs in timeO(n ·m),
where n is the number of treasures and m the number of robots. �

3.1.2. Unearthing a constant number of treasures

By reduction from PARTITION to UNEARTH TREASURES with k(n) = c, we show that
unearthing a constant number of treasures is NP-complete. Still, there exists a pseudo-
polynomial algorithm to solve this problem, which uses a dynamic programming tech-
nique similar to the one usually used to solve the PARTITION problem, which we will
present afterwards.

Theorem 3.2. The variant of UNEARTH TREASURES with k(n) = c in the heterogeneous
scenario is NP-complete for any constant c > 1.
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Proof. It is easy to see that all variants of UNEARTH TREASURES are in NP. To show
the NP-hardness we reduce the NP-complete PARTITION (see [Kar72]) to UNEARTH

TREASURES with k(n) = 2. We only need to consider k(n) = 2, since deciding if k(n) = c
with c > 2 treasures can be unearthed is at least as difficult as deciding whether two
treasures can be unearthed.

In the PARTITION problem we are given a finite set A = {a1,a2, . . . ,am} of m posi-
tive integers which sum up to 2b, b ∈N. Using this set A, we construct an instance of
UNEARTH TREASURES in the following way: We position two treasures t1 and t2 with
w(t1) = w(t2) = b in the plane, so that their viewing ranges intersect. Into this intersection
we place m robots r1,r2, . . . ,rm with s(ri) = ai for all 1 ≤ i ≤ m. An assignment for the
robots yields a solution for the PARTITION problem and the reduction takes polynomial
time in m. �

The theorem above states that the problem at hand is NP-complete. From the proof
also easily follows that the problem cannot be approximated within 2−ε for ε > 0 unless
NP = P: In the given instance both treasures need to be unearthed to achieve a (2− ε)-
approximation, but this would imply solving PARTITION exactly. This could also be
done with several copies of one PARTITION instance in the same UNEARTH TREASURES

instance. This technique is sometimes referred to as gap producing.

Considering the fact that ri with strength s(ri) can be interpreted as a team of s(ri)
robots where every robot has strength one and which have to stay together due to a com-
mon device, a unary coding of s(ri) would make sense. Thus, from a practical point of
view, it is reasonable to ask whether there exists an pseudo-polynomial algorithm for the
UNEARTH TREASURES problem with k(n) = c, as is the case for PARTITION. The proof
for the following theorem provides such an algorithm.

Theorem 3.3. There is a pseudo-polynomial time algorithm for the UNEARTH TREA-
SURES problem with k(n) = c.

Proof. We use a dynamic programming technique which is similar to the one usually
used to solve the PARTITION problem.

As a first step, we identify the treasures that are candidates for being satisfied in a final
solution. There are

(n
c

)
possible combinations. Since c is a constant and

(n
c

)
< nc

c! , the
number of possible combinations is polynomial in n. We define a dynamic program to
deal with each combination.

The dynamic program receives c treasures t1, . . . tc and the robot set R = {r1, . . . ,rm}
as input. It iteratively creates m+1 c-dimensional arrays with boolean entries. We name
these arrays Arr0,Arr1, . . .Arrm. First, we give a definition for array Arri (0≤ i≤m) and
then describe an efficient way to compute Arri using Arri−1.
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Figure 3.1.: Dynamic Program

The array Arri is defined with the help of the set Ri := Ri−1 ∪{ri} with R0 := /0. The
dimension j (1 ≤ j ≤ c) of Arri represents the treasure t j. Every dimension of every
array has length ∑

m
l=1 s(rl). The value of the entry Arri[x1,x2, . . . ,xc] is only set to true if

a function assign : Ri → {t1, . . . tc} (as defined in Section 2.3) exists, such that for all t j

(1≤ j ≤ c) the sum of the strength of all robots assigned to t j using assign is equal to x j.
The values of array Arri can be computed easily with the help of array Arri−1. The

entry Arri[x1, . . . ,xc] is true, if the entry Arri−1[x1, . . . ,xc] is true or if Arri−1[x1, . . . ,xk−
s(ri), . . . ,xc] is true and ri is in viewing range of treasure tk. For Arr0 only the entry
Arr0[0, . . . ,0] is true, while all others are f alse.

If Arrm contains at least one entry Arrm[x1,x2, . . . ,xc] with value true, such that w(tk)≤
xk for all 0≤ k ≤ c, all c treasures can be unearthed. Figure 3.1 shows the arrays created
by our dynamic problem for a simple instance with two treasures with weight 4 and 3 and
two robots with strength 2 and 4.

Our dynamic program has runtime O((d ·m)c ·m) where d := max({s(r1), . . .s(rm)}).
Since the dynamic program is called a polynomial number of times, the entire algorithm
has a polynomial runtime, if d is bounded by a polynomial in n+m. �

3.1.3. Unearthing a polynomial number of treasures

In this section we show that the problem is strongly NP-complete for a broad range of
parameters. Now we are not dealing with a single problem, but we are actually dealing
with an infinite set of problems and therefore with a range of special cases. We first prove
that UNEARTH TREASURES isNP-complete for k(n) = n and then we reduce this variant
to the class of variants were k(n) ∈Ω(nε).

Theorem 3.4. The variant of UNEARTH TREASURES with k(n) = n in the heterogeneous
scenario is strongly NP-complete.
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Proof. It is easy to see that any variant of UNEARTH TREASURES is in NP, thus we just
need to prove that it is stronglyNP-hard. The proof is a reduction from the stronglyNP-
complete problem 3-SATISFIABILITY (3-SAT). Given a set of clauses we will construct
an instance of UNEARTH TREASURES in the Euclidean plane where all treasures can be
unearthed if and only if all clauses can be satisfied.

We will describe how to create treasures and robots from the 3-SAT formula and where
to place them. To help with the description, we introduce three different constructions:
The clause-gadget, the variable-gadget, and the connection-gadget.

Clause-gadget For every single clause Ck in the 3-SAT formula, one treasure, referred
to as the Ck-treasure, with weight 1 is created. Since every clause in 3-SAT consists of
exactly three literals, for each Ck-treasure three robots with strength 1 are placed in such a
way that they are in range of the Ck-treasure, but not in range of any other treasure. Each
of these robots represents one of the clause’s literals and is called a (xi,k)-literal-robot,
where xi specifies the literal the robot represents and k the clause it belongs to. We will
name a construction consisting of one Ck-treasure and the three corresponding (xi,k)-
literal-robots a Ck-clause-gadget. Apparently, after we are finished with constructing the
clause-gadgets from a 3-SAT formula containing t clauses we have t treasures and 3t
robots in the Euclidean plane.

Variable-gadget The next step in the construction of an UNEARTH TREASURES in-
stance from the 3-SAT formula is to create the variable-gadgets. For every variable Xi

appearing in the 3-SAT formula a single Xi-variable-gadget is created. It consists of two
treasures, referred to as the xi-treasure and the x̄i-treasure, and a certain number of robots.
These two treasures’ positions are chosen in such a way that the two circles defined by
their viewing ranges intersect with each other.

Let us assume the literal xi occurs in p clauses in the SAT formula, while x̄i occurs
in q clauses. This means that we have to set the weight of the xi-treasure to p and the
weight of the x̄i-treasure to q. We also place a single robot in the intersection of the two
spheres and set its strength to the maximum of p and q. This robot is referred to as the
Xi-robot. Next, we place p robots with strength one in range of the xi-treasure, but out of
range of the x̄i-treasure. These robots represent the clauses that contain the literal xi. We
call them (xi,k)-variable-robots, with xi representing the literal the robot stands for and
k specifying the clause. The same is done for the x̄i-treasure: We place q robots, called
(x̄i,k)-variable-robots, with strength 1 in its range, but outside of xi-treasure’s range. This
concludes the creation of a variable-gadget.

Connection-gadget A variable-gadget derived from the variable Xi has to be connected
to every single clause-gadget that is derived from a clause Ck containing either the literal
xi or x̄i. To create such a connection the (i,k)-connection-gadget is introduced, with i
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Figure 3.2.: Construction of treasure map for a 3-SAT instance

referring to Xi and k to Ck. We will first describe a naive idea how to create such a
connection. Later we will show how this idea can be implemented in a practical way.

To create the (i,k)-connection-gadget that connects the Xi-variable-gadget and the Ck-
clause-gadget, we first have to check whether clause Ck contains the literal xi or x̄i. (If nei-
ther literal xi, nor x̄i is contained in Ck, the (i,k)-connection-gadget is not created.) Let Ck

contain the literal l, with l = xi or l = x̄i. We place a treasure with weight 1 in such a way
that the (l,k)-literal-robot and the (l,k)-variable-robot are the only robots that can unearth
it and call it the (l,k)-connection-treasure. Thus, our (i,k)-connection-gadget consists of
the (l,k)-literal-robot, the (l,k)-variable-robot and the (l,k)-connection-treasure.

Geometrical constraints can make placing the (l,k)-connection-treasure between the
(l,k)-literal-robot and the (l,k)-variable-robot in the way described above impossible. In
order to still be able to connect a variable-gadget with a clause-gadget, even if those two
gadgets are far away from each other, the connection-gadget has to be modified. Instead
of placing just one treasure in range of the the (l,k)-literal-robot and the (l,k)-variable-
robot, we arrange a chain of treasures with weight 1 between those two robots. This
chain’s treasures are placed in such a way that the ranges of two neighboring treasures
intersect. In every one of these intersection a single robot with strength 1 is placed.

Arrangement of the Gadgets By now, we have constructed a graph with variable-
gadgets and clause-gadgets as nodes and connections-gadgets as edges. Next, we describe
the arrangement of these elements. An example for such an arrangement is provided by
Figure 3.3(a): In the upper part of the figure we arrange the clause-gadgets in a row, while
the variable-gadgets are also positioned in a row, but on the figure’s lower part. Since the
connection-gadgets represent our graph’s edges, they are displayed as lines connecting
the clause- and the variable-gadgets. These lines (that are actually rows of robots and
treasures) are placed on a grid with a lattice constant of 16 times viewing range v.
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Figure 3.3.: Positioning of treasures in the plane

Since we cannot guarantee that described construction leads to a planar graph, we also
need crossings of connection-gadgets for the two dimensional space. A crossing of two
connection-gadgets is shown in Figure 3.2. It is important to note that a line (connection-
gadget) can only overlap another line on a single point and that the maximal number of
lines that can cross each other at a single point of the grid is limited by two. The reason
we choose 16v for the lattice constant is to have enough space for such crossings. The
area covered by the grid that we placed the lines (connection-gadgets) on is quadratic in
the number of all the variable-robots from all variable-gadgets. The number of crossings
and the longest connection-gadget are also linear.

Geometrically correct construction of a variable-gadget Assuming that the number
of clauses in the 3-SAT formula is t, it might be necessary to connect a variable-gadget
to up to t clause-gadgets with the help of up to t connection-gadgets. Creating such
connections involves a careful choice of coordinates for the robots and treasures involved
in those connections:

Let K be the set of clauses containing xi and |K| = s. Recall that there are s (xi,k)-
variable-robots with k ∈ K within range of the xi-treasure. Every (xi,k)-variable-robot
must be positioned in such a way that it is in range of the xi-treasure and the (xi,k)-
connection-treasure, while not being in range of any other (xi, l)-connection-treasure with
k , l. It is also important that the coordinates of the robots’s position have a size poly-
nomial in s. To achieve this, we need the following construction: Choose an arbitrary
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position p∗ such that the distance between p∗ and the xi-treasure is exactly the treasure’s
viewing range v. Now, assume that the coordinates of the xi-treasure are (0,0), while
the coordinates of p∗ are (0,v). Let L1 be the line segment between the points (−1

2 v, 1
2 v)

and (1
2 v, 1

2 v) and L2 the line segment between the points (−1
2 v, 3

2 v) and (1
2 v, 3

2 v). We now
place the variable-robots on L1 in such a way that the distance between two of these
robots is at least s

v . The connection treasures are placed on L2 in the same way. Addition-
ally (xi,k)-connection-treasure is placed in such a way that it has minimal distance to the
(xi,k)-variable-robot. See also Figure 3.3 (b).

Satisfiability vs. unearthing treasures In this paragraph we show that all treasures in
an instance of UNEARTH TREASURES created from a 3-SAT formula according to the
instructions presented this far can only be unearthed if and only if all clauses from the
3-SAT formula can be satisfied.

Consider a 3-SAT formula and an assignment A of TRUE/FALSE values for the for-
mula’s variables. We create an UNEARTH TREASURE instance from the formula as de-
scribed above and assign the robots to the treasures according to the assignment A. If
the variable Xi is set to TRUE by A, the Xi-robot is assigned to unearth the xi-treasure. In
the case that A assigns FALSE to Xi, the Xi-robot is sent to unearth the x̄i-treasure. The
assignment for the rest of the robots follows directly from the Xi-robots’ assignment. We
will explain the assignment for the Xi = true case (the Xi = f alse is analogous) explicitly:

Assigning the Xi-robot to the xi-treasure allows all (xi,k)-variable-robots (with k ∈
1, . . . ,n : xi ∈ Ck) to unearth their (xi,k)-connection-treasures, while the (x̄i, l)-variable-
robots (with l ∈ 1, . . . ,n : x̄i ∈ Cl) are forced to team up together and unearth the x̄i-
treasure. Since every (xi,k)-variable-robot was free to unearth its connection-treasure,
the (xi,k)-literal-robots are free to unearth their corresponding Ck-treasures and thus sat-
isfy the Ck clauses containing the literal xi. On the other hand the (x̄i, l)-literal-robots
are needed to unearth all (x̄i, l)-connection-treasures, and thus they are not available to
unearth the Cl-treasures containing the x̄i literal. This means that the the Cl-clauses are
not satisfied by the x̄i literal and that other literals are needed to satisfy them. �

The result for k(n) = n is remarkable in the light of Theorem 3.6 in the next chapter,
where we show that the corresponding problem in the homogeneous scenario is in P.
However, now we use the construction above to show that the problem remains strongly
NP-complete for a broad range of parameters. This is a straight forward generalization
of the previous theorems, where we considered some special cases. As mentioned before,
we are not dealing with a single problem, but we are actually dealing with an infinite set
of problems. More formally, we prove that the following theorem holds for every fixed ε:

Theorem 3.5. The variant of UNEARTH TREASURES with fixed k(n) ∈Ω(nε),(0 < ε ≤
1) in the heterogeneous scenario is strongly NP-complete.
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Proof. We reduce the UNEARTH TREASURES problem with k(n) = n to the variant where
only f (n) ∈ Ω(nε) treasures have to be unearthed. So we are given an instance I of
UNEARTH TREASURES with n treasures and are asked whether it is possible to unearth
k(n) = n of them. For a constant 0 < ε ≤ 1, we create an instance I with n treasures from
I such that iff it is possible to unearth f (n) of the treasures in I it is possible to unearth
k(n) = n of the treasures in I. To achieve this, we extend I with t treasures which cannot
be reached by any robot and therefore cannot be unearthed. This means that in I we have
n = n + t robots. If we choose t in a way that f (n) = k(n) and therefore f (n + t) = n,
f (n) treasures in I can be unearthed if and only if f (n) treasures can be unearthed in
I. Moreover, t must be greater than or equal to 0 (we cannot add a negative number of
treasures) and polynomial in n, because otherwise the reduction would not be polynomial
(since f is computable in polynomial time, this also holds for a t polynomial in n). So
now we still need to prove that such a t exists.

There exists a t ′ such that f (n+t) = f (n)+t ′, where t ≥ 0 if and only if t ′ ≥ 0, because
f is monotonically increasing. Since f (n)≤ n (we cannot unearth more than all treasures)
and f (n)+ t ′ = k(n) = n, t ′ ≥ 0 and therefore also t ≥ 0. Moreover, because f (n) ≥ 0,
t ′ ≤ n. To see that t is polynomial in n, note that f (n + t) ≥ c · (n + t)ε for large n and a
constant c, because f (n) ∈Ω(nε). Additionally, f (n+ t) = f (n)+ t ′ ≤ 2n. Putting these
two inequalities together, c · (n+ t)ε ≤ 2n and therefore t ≤ (2n

c )
1
ε −n. Since c and ε are

constants, it follows that t is polynomial in n. �

3.2. The homogeneous scenario

In the homogeneous scenario, all robots have the same strength value set to 1. In this
section we analyze whether adding this constraint simplifies the problem in some of the
variants for the function k. This is the case: The problem is in P if k(n) or n− k(n) is
constant (where the case k(n) = 1 follows directly from the heterogeneous scenario, but
this is not the case for other c). It is strongly NP-complete for general k and for every k
with k(n) ∈Ω(nε1)∧ k(n) ∈ O(nε2), 0 < ε1 ≤ ε2 < 1.

Note that the homogeneous scenario is equivalent to a scenario where robots are split-
table resources and can be allocated to treasures partially. This makes sense if the weight
of a treasure corresponds to the energy the robots must spend to unearth it, and robots
can help unearthing several treasures until they have no energy left. The equivalence of
the scenarios follows from the proof of Theorem 3.6: If we have an assignment where
robots are assigned partially to treasures, we can build a flow network like shown in the
proof omitting all non-satisfied treasures. The assignment corresponds to a maximum
flow in the network with fractional flow on some (assignment) edges. Since all capacities
in the network are integer, there also exists an integer maximum flow in the network. This
flow also satisfies all treasures (otherwise it would not be a maximum flow) and can be
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computed in polynomial time.
We now first show the algorithms with polynomial running time, then we prove the
NP-hardness claims.

3.2.1. Variants of UNEARTH TREASURES which are in P

In this section we show that some variants of the considered problem are indeed easier in
the homogeneous scenario.

Theorem 3.6. The variants of UNEARTH TREASURES with k(n) = n (can all treasures be
unearthed?), with k(n) = n−c (can all but c treasures be unearthed?), and with k(n) = c
in the homogeneous scenario are in P for all c≥ 0.

Proof. We model an instance of the robot problem for k(n) = n as a flow network. There
is one source node and one sink node. Additionally, we create one node for each robot
and one for each treasure. We have an edge from the source node to each robot node with
an upper bound of 1 for the flow on this edge. We call these edges robot edges. There
is also an edge from each robot node to those treasure nodes which are reachable from
the respective robot. These edges are called assignment edges. From each treasure node
we create an edge to the sink. Here, the capacity of the edge is set to the weight of the
treasure to be unearthed. We call these edges treasure edges.

Since standard flow problems with integer capacities can be solved in polynomial time,
the maximum flow f of this network can also be computed in polynomial time. Moreover,
this maximum flow is integer on each edge [CLRS01]. Due to the capacities on the robot
edges, in a maximum flow there is at most one assignment edge from each robot node with
a flow of 1. All other assignment edges have a flow of 0. So the flow on the assignment
edges corresponds to an assignment of robots to treasures. All treasures can be unearthed
if and only if in a maximum flow all treasure edges are saturated, which can be checked
in polynomial time.

For the other cases, delete all
(n

c

)
respectively n−

(n
c

)
possible combinations of c re-

spectively n− c treasures (
(n

c

)
< nc

c! is polynomial in n) and formulate the corresponding
network for each combination. �

Note that the technique used above does not result in a polynomial time algorithm for
any c larger than a constant. That is due to the fact that

( n
f (n)

)
is larger than any polynomial

as n tends to infinity if f (n) is larger than a constant and smaller than n
2 . (If f (n) is larger

than n
2 , similar arguments apply for n− c due to symmetry).

Lemma 3.7. For c < f (n) < n
2 and a constant c, the following holds: lim

n→∞

( n
f (n)

)
> p(n)

for any polynomial p.
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Proof. It is well known that
( n

f (n)

)
≥ ( n

f (n))
f (n) holds. We consider two cases: f (n)≤

√
n

and f (n) >
√

n. For f (n)≤
√

n the term ( n
f (n)) is larger than n

1
2 . If this is raised to any

power which is not bounded by a constant, it cannot be a polynom. On the other hand, if
f (n) >

√
n (and is smaller than n

2 ), then ( n
f (n)) can be bounded from below by 2. Since

the exponent is at least
√

n, this results in a super-polynomial function as well. �

3.2.2. Unearthing an arbitrary number of treasures

So far we have only shown that there are special cases in the homogeneous scenario which
are in P. This was motivated by the special case k(n) = n which is stronglyNP-complete
in the heterogeneous scenario, but in P in the homogeneous scenario. In this section we
show that deciding the UNEARTH TREASURES problem with an arbitrary k(n) is also
NP-complete in the homogeneous scenario. We can assume that the function k(n) is part
of the input. This is equivalent to getting an integer k as input and being asked whether at
least k treasures can be unearthed.

Theorem 3.8. The general variant of UNEARTH TREASURES with an integer k as part
of the input is strongly NP-complete in the homogeneous scenario.

Proof. It is obvious that the problem is in NP, thus we just prove that it is strongly NP-
hard by reducing the NP-complete problem PLANAR INDEPENDENT SET to it. Given
a planar graph G and an integer k′, we construct the input for UNEARTH TREASURES

in the following way: For each node in G we create a treasure and set its weight to the
node’s degree, while for each edge e, we create a robot which can only reach the trea-
sures corresponding to the nodes adjacent to e. If these two treasures have to be placed
too far apart from each other, we use the construction of a connection-gadget to link them
(see proof of Theorem 3.4). Thus, a set of treasures T and a set of robots R is con-
structed. To make things easier to explain, we assume that for every connection-gadget
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only one of its robots is assigned to unearth a treasure corresponding to a node, while the
remaining robots unearth the treasures which belong to the connection-gadget. There-
fore, unearthing the treasure corresponding to u ∈ G makes unearthing treasures which
correspond to u’s neighbor nodes impossible. Thus, unearthing treasures that correspond
to a node is the same as building an independent set in G. Let l be the number of treasures
in all created connection-gadgets and k := l +k′. This means that an algorithm with input
T and R which can decide whether k treasures can be unearthed also decides whether an
independent set with cardinality k′ exists in G.

Note that allowing the robots to behave in a different way than we assumed above (i.e
assigning two robots belonging to the same connection-gadget to treasures corresponding
to nodes) does not increase the number of treasures that can be unearthed, since for every
treasure corresponding to a node that is additionally unearthed due to this behavior, at
least one treasure belonging to a connection-gadget cannot be unearthed. �

3.2.3. Unearthing a polynomial number of treasures

So far, we have shown, that in general UNEARTH TREASURE is hard to decide. However,
we know that the hardness of the problem depends on the number of treasures that are
unearthed by an optimal algorithm. The hardness result in the last subsection applies to
a quite special construction. This does not necessary tell us anything for typical sets of
parameters. In this subsection we show that the problem is strongly NP-complete for a
broad range of parameters, similar to the heterogeneous scenario (Section 3.1.3).

Theorem 3.9. The variant of UNEARTH TREASURES in the homogeneous scenario is
stronglyNP-complete for any function k with k(n)∈Ω(nε1) and k(n)∈O(nε2),(0 < ε1≤
ε2 < 1).

Proof. We first reduce the UNEARTH TREASURES problem with general k(n) to a variant
with k′(n) = n

2 and then we reduce the variant with k′(n) = n
2 to the variant where f (n)

treasures have to be unearthed, f (n) ∈Ω(nε1) and f (n) ∈ O(nε2).
For the first reduction, we are given an instance I of UNEARTH TREASURES with n

treasures and are asked whether it is possible to unearth k(n) of them. From I, we create
an instance I with n≥ n treasures and ask whether we can unearth f (n) = n

2 treasures.
If k(n) < n

2 , we add s = n−2k(n) to the n treasures from I, which are independent of the
old treasures, and the same number of robots which can unearth exactly these treasures.
s is positive and polynomial in n. In the new instance, the question is whether we can
unearth f (n) = f (n + s) = f (2n− 2k(n)) = n− k(n) = k(n)+ s treasures. This number
of treasures can be unearthed if and only if k(n) treasures in I can be unearthed.

If k(n) > n
2 , we add t = 2k(n)− n new treasures that cannot be reached by any robot.

Again, t ≥ 0 and polynomial in n, since k(n) ≤ n. Here, f (n) = f (n + t) = f (2k(n)) =
k(n). Since k(n) treasures in I can be unearthed if and only if k(n) treasures in I can be
unearthed, this concludes the first reduction.
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For the second reduction, we are given an instance I of UNEARTH TREASURES with
n treasures and are asked whether it is possible to unearth k′(n) = n

2 of them. For two
constants 0 < ε1 ≤ ε2 < 1, we create an instance I with n treasures from I such that iff
it is possible to unearth f (n) of the treasures in I it is possible to unearth k′(n) = n

2 of
the treasures in the original instance. To achieve this, we extend the original instance
with s treasures and s robots to unearth them and additionally t treasures which cannot
be reached by any robot and therefore cannot be unearthed. This means that in our new
instance we have n = n+ s+ t robots. If we choose s and t in a way that f (n) = k′(n)+ s
and therefore f (n + s + t) = n

2 + s, this question is equivalent to the question whether n
2

treasures in the original instance can be unearthed. Moreover, s and t must be greater
than or equal to 0 (we cannot add a negative number of treasures) and polynomial in n,
because otherwise the reduction would not be polynomial. So now we still need to prove
that such s and t exist and can be computed in polynomial time:

There exists a t ′ such that f (n + s + t) = f (n + s) + t ′, where t ≥ 0 if and only if

t ′ ≥ 0, because f is monotonically increasing. Now let s = (n
2)

1
ε2 −n. s≥ 0 iff n≥ 2

1
1−ε2 .

Moreover, since ε2 is constant, s is polynomial in n. f (n + s)+ t ′ = f (n + s + t) = n
2 +

s = −n
2 +(n

2)
1

ε2 . Additionally, since f (n) ∈ O(nε2), f (n + s) = f (n
2

1
ε2 ) ≤ c2

n
2 for some

constant c2 and large n. Because 1
ε2

> 1, it follows that t ′ ≥ 0 and therefore t ≥ 0 for large

n. Moreover, because f (n+ s)≥ 0, t ′ ≤ n
2 + s =−n

2 +(n
2)

1
ε2 .

To see that t is polynomial in n, note that f (n+s+t)≥ c1 ·(n+s+t)ε1 for large n and a
constant c1, because f (n)∈Ω(nε1). Additionally, because f (n)≤ n, f (n+s+ t) = f (n+
s)+ t ′ ≤ n+s+ t ′. Putting these two inequalities together, c1 ·(n+s+ t)ε1 ≤ n+s+ t ′ and

therefore t ≤ (n+s+t ′
c1

)
1

ε1 −n− s. Since c1 and ε1 are constants and s and t ′ polynomial in
n, it follows that t is polynomial in n. s can obviously be computed in polynomial time.
This is also true for t, because f can be computed in polynomial time. �

Now, we have systematically studied the complexity of UNEARTH TREASURE. Most
of the variants considered are NP-complete. However, we still want to deal with the
problem. Therefore, in the next chapter we present the main result of this part, a local
approximation algorithm.
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A local approximation algorithm with
resource augmentation

This section describes a local, distributed algorithm which uses resource augmentation
and computes a constant factor approximation for the UNEARTH TREASURES problem.
In order to be able to execute our algorithm, the robots must be able to perform compu-
tations and to communicate with other robots within distance c · v, where c is a constant
which we will set to 6. Furthermore, every robot has exact information about the position
and strength/weight of every robot/treasure within distance c · v. The communication is
performed in synchronous rounds. In each round, every robot can send an O(logn) num-
ber of bits to all robots within distance c · v. Only after a round is finished, a robot can
react to the information it received in the previous round. Moreover, robots and treasures
have a unique ID which can also be communicated to neighbors. We assume that trea-
sures have the same capabilities as robots. (A possible explanation for this is that each
treasure was located by a robot which now shares the same position as the treasure and
performs its communication.) To avoid trivialities, we demand that each robot has a trea-
sure within its viewing range (to achieve this, a robot with no treasures within distance v
switches itself off at the very beginning). The constant factor resource augmentation we
use in our algorithm allows the robots and treasures to communicate with each other if
the distance between them is at most c · v (not only v), and permits assigning a robot to a
treasure if they are within distance c · v of each other (and not just v).

The algorithm we propose consists of two parts. In the first part, local clusters of
treasures and robots are built. Then, using resource augmentation as described above, the
algorithm computes an assignment of robots to treasures for each cluster. In the second
part, the algorithm chooses some clusters and, using the assignments computed in the first
part for these chosen clusters, creates an assignment for all robots.

The number of rounds used by our algorithm isO(log∗ n). Since the runtime in wireless
networks is dominated by the time needed for communication and since the computation

33



34 A LOCAL APPROXIMATION ALGORITHM WITH RESOURCE AUGMENTATION

which robots perform in each round is time efficient, we think that the number of com-
munication rounds is a good measure to determine our algorithm’s quality.

4.1. Basic Definitions

This paragraph presents definitions which are required in the remaining part of this chap-
ter.

Given an instance (T,R,v) of the UNEARTH TREASURES problem, we construct the
treasure graph Ḡ = (V̄ , Ē) as follows: For each treasure ti ∈ T we define a node vi ∈ V̄ .
An edge {vi,v j} ∈ Ē is created, if the treasures ti, t j ∈ T corresponding to vi and v j are
within distance 2v of each other.

A valid clustering of an UNEARTH TREASURES instance is a set of subsets Ci ⊆ R∪T
which we call clusters such that

1. each treasure and each robot is in at least one cluster

2. in each cluster Ci, exactly one treasure is marked as cluster-center ci

3. robots belong to a cluster Ci, iff they are in at most distance 3v from the cluster-
center ci

4. treasures belong to a cluster Ci, iff they are in at most distance 2v from the cluster-
center ci

5. each cluster-center ci is contained only in its own cluster Ci.

The cluster-graph Ĝ = (V̂ , Ê,w) with w : V̂ →N contains one node vi for each cluster-
center ci of a fixed valid clustering of an instance of UNEARTH TREASURES. Each node
vi has a weight wi, which is the value of an approximation for UNEARTH TREASURES in
its cluster. Iff there is a robot in the considered instance that can reach two cluster-centers
ci and c j, there is an edge {vi,v j} in Ê.

Given a graph G = (V,E), a subset V ′ of V is called independent, iff there are no two
nodes ni,n j in V ′ such that (ni,n j) ∈ E. V ′ is called an (inclusion-)maximal independent
set, iff there is no independent V ′′ with V ′ (V ′′.

For a graph G = (V,E) and a function weight that assigns a real number to each node,
a subset V ′ of V is called maximum weighted independent set, iff V ′ is independent and
there is no independent set V ′′ with ∑v′∈V ′ weight(v′) < ∑v′′∈V ′′ weight(v′′).
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Algorithm 1 LOCALUNEARTHTREASURES(INPUT: treasures and robots within dis-
tance 6v of me)

1: {This algorithm is executed locally by a treasure and described from its view}
2: Ḡlocal := treasure-graph induced by treasures within distance 2v of me
3: Use Ḡlocal to compute whether I am in INCLUSION-MAXIMAL INDEPENDENT SET

(MIS) of Ḡ
4: if NOT in MIS {I am no cluster-center} then
5: wait for assignment by cluster-center
6: else
7: myCluster := robots within distance 3v and treasures within distance 2v of me
8: Tc := treasures in myCluster; Rc := robots in myCluster
9: assignment := ALLTOALL(Tc,Rc) in myCluster

10: myWeight := number of unearthed treasures in assignment
11: Ĝlocal := cluster-graph induced by cluster-centers in local 6v-neighborhood of me

with respective weights
12: inFinalSet := LOCALMWIS(Ĝlocal)
13: if inFinalSet then
14: tell robots in cluster to use assignment (OUTPUT)

4.2. A description of the algorithm

In this section, we provide an intuition for how and why the algorithm works. A for-
mal description is given in Algorithm 1. This pseudocode is written from the view of a
single treasure, so that the input for the algorithm is the set of robots and treasures which
are within the augmented viewing range of the treasure. At the time of the algorithm’s
termination, each robot knows the treasure it is assigned to.

In the first step of the algorithm, a valid clustering of the robots and treasures is built.
This can be achieved by choosing treasures as cluster-centers and assigning all robots
and treasures which are in the corresponding distance of a cluster-center ci (point 3 and
4 of the definition of a valid clustering) to the cluster Ci. Cluster-centers are chosen by
computing an inclusion-maximal independent set on the treasure-graph. Each treasure
which is in the independent set marks itself as cluster-center (see Lemma 4.1 for why
an inclusion-maximal independent set yields a valid clustering of robots and treasures).
Since we have a valid clustering, a treasure and a robot belonging to the same cluster have
a Euclidean distance of at most five times the viewing range. This means that if we use
resource augmentation to increase the viewing range by a factor of five, we have a special
situation in each cluster: Any robot can be assigned to any one treasure. This property
is necessary to use the algorithm ALLTOALL (Algorithm 2). This algorithm receives a
set of robots and a set of treasures in which all robots can reach all treasures as input.
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Algorithm 2 ALLTOALL(INPUT: T,R)
1: L1 := treasures sorted by weight, lowest first
2: L2 := robots sorted by strength, lowest first
3: for all treasures ti in L1 do
4: if a single robot r j can satisfy ti then
5: satisfy ti by assigning r j to ti and delete r j from L2 and ti from L1

6: while there are treasures in L1 do
7: take first treasure t from L1

8: while t is not satisfied AND there are robots in L2 do
9: assign first robot from L2 to t

10: if t is satisfied then
11: delete t from L1

12: return assignment of robots to treasures

It computes a solution for these two sets, so that the number of treasures unearthed is at
least one half of the number of treasures unearthed in an optimal solution (see Lemma
4.3). Now, in each cluster the cluster-center can apply ALLTOALL to compute a solution
for its cluster. But having an approximation for each cluster does not directly lead to
an approximation for the whole problem instance, since robots can be in more than one
cluster and two different cluster-centers might therefore assign these robots to different
treasures. Therefore, we select some of the clusters for the final solution, so that we
still have a constant factor approximation, but each robot is only in one cluster of the
final solution. To do this, we approximate a maximum weighted independent set on the
cluster-graph (Algorithm 3) and select the clusters in this independent set for the final
solution. This computation is efficient (see Lemma 4.6), because the cluster-graph has a
constant degree (see Lemma 4.2). Ultimately, robots can only belong to one cluster in the
final solution and will therefore be assigned to at most one treasure.

4.3. Clustering of robots and treasures: Correctness

Now we have a closer look at how the clustering of robots and treasures is computed.
The idea is to select treasures as cluster-centers in such a way that a valid clustering is
generated and letting all treasures and robots which are in the according distance of a
cluster-center belong to its cluster. The next lemma shows how treasures can be selected
as cluster-centers.

Lemma 4.1. Any inclusion-maximal independent set on the treasure-graph Ḡ of an in-
stance of UNEARTH TREASURES corresponds to a selection of treasures as cluster-
centers which yield a valid clustering.
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Algorithm 3 LOCALMWIS(INPUT: Glocal = (V,E,w) {in local neighborhood of me})
1: {This algorithm is executed locally by a node and described from its point of view}
2: while (NOT marked as deleted) and (NOT assigned to MWIS) do
3: Use Glocal to compute whether I am in UNW. INCLUSION-MAXIMAL INDEPEN-

DENT SET(MIS) of G
4: if NOT in MIS then
5: wait this round
6: else
7: if (for all neighbors in cluster-graph) myWeight > neighbors.myweight then
8: assign myself to MWIS
9: mark neighboring nodes as deleted

10: else
11: mark myself as deleted
12: return whether assigned to MWIS

Proof. Since the clusters are constructed by the choice of cluster-centers, obviously each
cluster has a cluster-center. Furthermore, the distances from treasures and robots to
cluster-centers are also kept due to the construction of the clusters. We still have to show
that each treasure and each robot is in at least one cluster (Proposition 1) and that each
cluster-center is only in its own cluster (Proposition 2).

For the first proposition, assume that there is one treasure t which is not in a cluster.
It therefore exists no cluster-center within distance 2v of t. Therefore, there is no edge
between t and a cluster-center in the treasure-graph. So adding t to the independent set
increases the size of it and therefore the independent set was not inclusion-maximal. Now
assume that there is one robot r which is not in a cluster. It therefore exists no cluster-
center within distance 3v of r. Since there is at least one treasure in the viewing range
v of r, this treasure cannot be within distance 2v of a cluster-center. This constitutes the
contradiction.

For the second proposition, consider two cluster-centers c1 and c2. Since they both are
in the inclusion-maximal independent set of the treasure-graph Ḡ, there is no edge {ci,c j}
in Ḡ. This means that ci and c j are in distance more than 2v of each other and therefore
neither of them is in the other’s cluster. �

To be able to compute a maximum weighted independent set on the cluster-graph effi-
ciently, we need the cluster-graph to have a constant degree. Like Lemma 4.2 states, this
is guaranteed if the clustering of robots and treasures is valid.

Lemma 4.2. A valid clustering of an UNEARTH TREASURES instance yields a cluster-
graph with at most degree ∆ = 48.
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Proof. Since each cluster-center is only in its own cluster, the distance between two
cluster-centers is more than 2v. This implies that each cluster-center has a circle with
a radius v surrounding itself which does not intersect with the according circles of other
cluster-centers. We call this circle the exclusive area of a cluster-center. Furthermore,
two cluster-centers which share an edge in the cluster-graph can be at most in distance
6v of each other. Now consider a cluster-center c. All its neighbors in the cluster-graph
must be in distance 6v around c. This means that the exclusive areas of the neighbors of
c are in distance at most 7v and therefore in an area of size π · (7v)2 = π · 49v2 around
c. Since each cluster-center has an exclusive area of size πv2, there can be no more than
π·49v2

πv2 = 49 cluster-centers and therefore 48 neighbors of c in this area. �

Note that in the proof of Lemma 4.2 we made use of the fact that we are dealing
with a geometric setting. As we will see this is the only place in the analysis, where
we actually use geometry. Furthermore, the only geometric property used is the fact that
for objects with an extend or volume only a bounded number of objects fits into a fixed
sized neighborhood. Therefore any space offering this property will work for this setting
as well. In general, metrics with this property are called doubling metrics, because their
doubling dimension is constant. The doubling dimension dim(X) of a metric (X ,d) is at
most α , if every set of diameter D can be covered by 2α sets of diameter D/2.

4.4. Choosing clusters for a final solution: Correctness

As soon as the cluster-centers have been defined, each cluster-center computes an approx-
imation for its own cluster. To achieve that each robot can be assigned to each treasure,
the viewing range of each robot and treasure is increased by a factor of 6 (5 would be
sufficient here, but we need 6 later). The next lemma states that the solution computed
via ALLTOALL by a cluster-center is a two-approximation.

Lemma 4.3. Given an instance of UNEARTH TREASURES where each robot can reach
all treasures, ALLTOALL computes a 2-approximation.

Proof. We compare the solution computed by ALLTOALL with an optimal solution. We
show that for each treasure satisfied by ALLTOALL, there is at most one additional trea-
sure satisfied in the optimal solution. In the first loop, each satisfied treasure is satisfied
by a single robot. In an optimal solution this robot might have been assigned to another
treasure, which is the only one which might become unsatisfiable by this action.

The second loop iterates over all treasures. There are only two possibilities for how
the loop can be left. Either all treasures are satisfied, leading to an optimal solution, or
there are no robots left to assign. In this case, observe that the treasures with the smallest
values are satisfied. We claim that the algorithm assigns at most twice the needed amount
of robot strength to each of these treasures, thus the total power of the robots can at most
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satisfy the double number of treasures in an optimal solution. This follows from the fact
that all wasted robot power belongs to a single robot, because no robots are assigned after
the treasure is satisfied. Assume for the sake of contradiction that this robot has more
power than is needed to satisfy this single treasure. Then it would have been assigned to
the treasure in the first loop of the algorithm. �

As soon as the weights of each cluster-center in form of an approximation in each
cluster have been calculated, we have to choose the clusters that will be part of the final
solution. This is done by approximating a maximum weighted independent set on the
cluster-graph. For neighboring cluster-centers to be able to communicate with each other,
it is necessary to increase the viewing range of cluster-centers by a factor of 6 to 6v.

Lemma 4.4. Given a (node-)weighted graph G and a maximum degree ∆, LOCALMWIS
computes a ∆∆-approximation of the maximum weighted independent set of G.

Proof. First of all, we prove that the while-loop terminates after at most ∆ + 1 rounds,
where ∆ is the degree of the graph. If a node u is in the inclusion-maximal independent
set (MIS) in one round, either u will mark itself or all its neighbors as deleted. If u is not
in the MIS, one of its neighbors is. So either u will be marked as deleted by its neighbor
or one of its neighbors will be marked as deleted. This leaves no neighbors for deletion
after ∆ rounds. Furthermore, note that the final set is indeed independent: In each round
the nodes that are chosen to the maximal independent set are independent by definition.
If they assign themselves to the final set, they mark their neighbors as deleted, which
subsequently cannot be assigned to the final set in later rounds.

To show that we get a ∆∆-approximation, note that from each node which is not in the
final set we can define a path of dominating nodes to a node chosen to the final set. A
dominating node of a node u is a neighbor of u with a larger weight. For any given node
which is not in the final set, the next node on the path of dominating nodes is either the
one that marked it as deleted or, if the node marked itself as deleted, a neighboring node
with a higher value. This neighbor must exist, since otherwise the node would not have
marked itself as deleted. After at most ∆ hops from each node, a node in the final set is
reached, because there are at most ∆+1 rounds and all remaining nodes in the last round
(with no degree) are chosen to the final set. Now consider an arbitrary node u in the final
set and all nodes which are not in the final set whose paths lead to u. These are at most
∆∆ nodes, because this is an upper bound on the number of nodes in a ∆-neighborhood
of a ∆-degree graph. All those nodes have a smaller value than u. Therefore the value of
the chosen node is at least 1

∆∆ times the value of a set to which all other nodes would have
been chosen. This applies to all nodes in the final set. �
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4.5. Putting it all together

Now we have all preliminaries for proving the correctness of the algorithm.

Theorem 4.5. Algorithm LOCALUNEARTHTREASURES computes a constant-factor ap-
proximation of UNEARTH TREASURES using factor-6 resource augmentation.

Proof. According to Lemma 4.3, the weight of a cluster is a two-approximation of an
optimal solution in the cluster. Furthermore, the choice of clusters for a final solution is
approximized with a factor of ∆∆ (Lemma 4.4), where ∆ is the degree of the cluster-graph
and therefore constant (Lemma 4.2). Furthermore, each robot can only be assigned to
one treasure within the same cluster and therefore it needs to travel at most distance 5v.
Treasures must be able to communicate with robots and treasures in their own cluster and
additionally their neighbors in the cluster-graph. All these robots and treasures are within
distance at most 6v. �

Theorem 4.5 states the correctness of the algorithm. We still need to analyze its com-
plexity. Note that two different kinds of runtime can be employed. On the one hand,
we can count the number of local computations that the robots and treasures perform
and on the other hand we can count the communication rounds. In a wireless network,
the costly part concerning time and energy consumption is the communication between
robots and therefore we use the number of communication rounds for measuring the com-
plexity of our algorithms. This leads to a complexity of O(1) of the algorithm ALL-
TOALL, since this algorithm uses no communication besides the final broadcast of the
solution. However, it is worth noting that the local computation for ALLTOALL is still
efficient in the worst-case: If all treasures and robots are in one cluster, our algorithm
takes O(n logn + m logm) local computations. Since the runtime of ALLTOALL domi-
nates the runtime of all local computations, this is also an upper bound on the total local
processing time. Furthermore note that in each communication round at most O(logn)
bits are transmitted.

Lemma 4.6. Algorithm LOCALMWIS terminates in O(log∗ n) communication rounds.

Proof. According to the proof of Lemma 4.4, the while-loop in LOCALMWIS is exe-
cuted at most ∆ +1 times. In each round of the loop, an inclusion-maximal independent
set is computed. This can be done using the algorithm from [GPS87] inO(log∗ n) rounds.
Line 7 can again take ∆ time, the remaining of the loop takes constant time. Since ∆ is
also constant, the combined running time is O(log∗ n). �

Theorem 4.7. Algorithm LOCALUNEARTHTREASURES terminates in O(log∗ n) com-
munication rounds.
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Proof. In line 3 of the algorithm, an inclusion-maximal independent set on a unit disk
graph is computed. This can be done using [SW08] in O(log∗ n) communication rounds.
Since LOCALMWIS also takes O(log∗ n) communication rounds due to Lemma 4.6 and
the remaining of the algorithm takes constant time, the overall running time is O(log∗ n).

�

4.6. Generalizations

We claimed that our technique can be applied to other objective functions as well. In this
section, we will shortly demonstrate this for an easy example. As a motivation in our
scenario, we assume that robots are specialized and have different skills. The treasures
are of different kinds and each kind requires a set of skills to be unearthed. For instance,
to unearth a treasure that is buried deep in the ground, one needs a robot that is capable
of digging a hole. For a heavy treasure a special transportation robot might be necessary.
Depending on its specification a robot might have a set of skills. For ease of description,
we assume that there are only two skills in total: skill a and skill b.

Formally, we consider the UNERATH TREASURE problem as defined in in Section 2.3
for the homogeneous scenario. Furthermore, each treasure requires at most one robot of
each skill. Therefore, there are treasures that need one robot with skill a, treasures which
need one robot with skill b, and treasures that require one robot with skill a and one robot
with skill b.

We apply algorithm LOCALUNEARTHTREASURE (see Algorithm 1) and replace the
subroutine ALLTOALL (see Algorithm 2) by a greedy algorithm that runs in three steps:
First all treasures that only require skill a get robots which have skill a, as long as there
are such robots. Then all treasures that only require skill b get the respective robots.
Then the rest of the treasures are assigned. Observe, that this yields a two-approximation,
because for each wrong assigned robot still one treasure is unearthed and at most one
treasure in an optimal solution is lost. The rest of the analysis of the algorithm LO-
CALUNEARTHTREASURE remains unchanged.
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Conclusion and open questions concerning
external assignment

We presented the problem UNEARTH TREASURES, a simple assignment problem, reveal-
ing the difficulties of solving external assignment task in a local fashion. We studied the
complexity of this problem in detail and provided a quite general framework to compute
approximate solutions locally.

Furthermore, we introduced an algorithm that computes a constant factor approxima-
tion for the maximum weighted independent set on bounded degree graphs locally in
time O(log∗(n)). Note, that the runtime is of the same order as the lower bound given
by [Lin92] for computing inclusion-maximal unweighted independent sets locally. But,
here we were facing several additional difficulties. First of all, even from a global point
of view computing on bounded degree graphs a maximum independent set instead of a
maximal independent set changes the problem. While the latter admits a simple greedy
algorithm, the former is NP-complete and does not even admit a PTAS unless NP=P
[BK99]. Therefore having a constant-factor approximation is the best we can hope for.
Furthermore, checking whether an independent set is maximal can be easily checked lo-
cally, while this is obviously not true for maximum independent sets. The weighted case
seems to be even harder on the first glance. Consider a path of nodes, where the node
weights increase from one end to the other. The local view of all nodes is identical. They
do not know, if they should join the set, because they have more weight than their left
neighbor or if they should not join the set because they have less weight than their right
neighbor. Note, that we overcame the problem by breaking the symmetry first.

However, several problems remained open about external assignment. Concerning the
complexity analysis in Section 3, there are still some functions k(n) left, for which the
complexity of the corresponding variant of the UNEARTH TREASURES problem was not
covered. This is the case for the homogeneous scenario where the function k(n) grows
faster than a constant, but not as fast as a polynomial yet (see also Table 3.1 in Chapter
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3).
An important characteristic of the local algorithm presented in Chapter 4 is its use of re-

source augmentation. A question that arises is, whether resource augmentation is needed
to be able to compute a constant factor approximation for the UNEARTH TREASURES

problem in polynomial time. If this is the case, it is reasonable to improve the factor for
resource augmentation. Even a (1 + ε)-augmentation might be possible. This is not the
case for the approximation factor: Here, the analysis of the PARTITION problem shows a
lower bound of 2.

Another arising question is, how far the constants of our algorithm can be improved.
Especially the approximation factor of ∆∆ for the local weighted maximum independent
set problem should be significantly improved, since a ∆-approximation for global algo-
rithms is known. Extensions to higher dimensions seem straight forward.

However, it might also be worthwhile to study other metrics. Geometry is used only
in Lemma 4.2. As pointed out earlier, the arguments in the lemma hold for any doubling
metric. This covers many spaces, for instance for constant d, the space Rd under any Lp

norm has a constant doubling dimension. It has also been argued that distance metrics
induced by peer-to-peer networks or Internet latencies have doubling dimension.

More important is the fact, that the objective function is quite easy. Hence the lower
bounds hold also for more general objective functions. On the other hand, in the proof of
the central Theorem 4.5 it is only used that Lemma 4.3 guarantees a two-approximation.
Therefore, for any objective function, where an assignment with a (global) constant-factor
approximation is feasible, it seems to be straight forward to apply our technique.
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Introduction to internal assignment

In the first part of the thesis we were concerned about external assignment tasks, while
in this part of the thesis we are dealing with internal assignment tasks. Hence, we are
not longer concerned with entities outside the team. Rather we seek for (dynamic) as-
signments of different roles within the team. The reason is that in the domain of wireless
sensor networks it is often crucial to save energy in order to maximize the lifetime of the
network. Often these networks are clustered and each cluster contains a node referred
to as cluster-head that has to fulfill a special, possibly highly energy consuming task,
while the other nodes operate in an energy-saving mode, but their energy consumption
depends on their distance to the closest cluster-head. This can be seen as a hierarchical
organization, where the upper layer offers the lower layer a certain service, such as a
routing infrastructure. Each node can act as a cluster-head, but, at any time, cost arises
for each node that is set up or maintained as a cluster-head. This additional overhead for
a cluster-head is caused by a higher energy consumption due to message passing, setting
up communication channels, or maintaining equipment or other costs, for instance for
storing of routing tables, storing the data etc. Since each node should be able to access
a service as fast as possible, there is also a cost for each non-cluster-head, or client for
short, namely the energy to communicate with the cluster-head which depends on the
distance to the nearest cluster-head. Now, to decrease the total cost for the system, nodes
are allowed to change their status1 from cluster-head to client or vice versa. Note that in
particular, in our scenario where teams of autonomous robots deployed to an unknown
terrain have to handle certain tasks, the above described hierarchical communication sys-
tem can be applied. Finding the proper subset of robots that should act as cluster-head,
while the team is moving through the terrain, is the problem that we want to consider
here. We assume that each node has its own certain costs for being a cluster-head and
for being a client a cost-factor for the distance to the closest facility as well. It turns out

1 We use the terms ’role’ and ’status’ interchangeable. The terms ’system’ and ’configuration’ denote the
set of robots and their positions as well as their current roles at given point of time.
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that the problem described above is well known and studied in several fields of operations
research and computer science and is known as FACILITY LOCATION problem.

In its original version we are presented with a set of possible warehouse locations and a
set of customer locations. Our objective is to decide on which of these possible warehouse
locations we want to actually build warehouses. Since maintaining a warehouse incurs
high costs, we want to build as few as possible. On the other hand, every customer prefers
to be located as close to a warehouse as possible, since costs rise with the distance to the
nearest warehouse. This means that we are looking for a placement of the warehouses
that minimizes the sum of the costs caused by the customers and the warehouses. Since
this problem is NP-complete, approximations of the optimal solution are of interest.

However, usually the static variant of the problem is considered from a global view.
Here, we are interested in dynamic versions, as well as distributed and local variants, since
these are required in the decentralized settings we are dealing with. Since the ultimate
goal are distributed algorithm, where each acting robot has only information about its
local neighborhood, we cannot apply any centralized solution, where we need a central
instance that is not only able to see the entire team, but also able to compute a solution and
distribute it to the robots. In our scenario this is entirely out of scope. Although, we seek
-and eventually present- local solutions, we start our studies with a global framework.
This way we can deal with dynamics first and develop techniques that we use later on in
the local setting.

We seek at a given point of time for a constant-factor approximation of the optimal
solution at that point of time. The main goal is to reconstruct such a solution as fast as
possible if we cannot guarantee it anymore.

Next we will state our main contribution in this part both for the global scenario and
the local scenario in Section 6.1. We present relevant related work in Section 6.2, before
giving a formal definition of the FACILITY LOCATION problem as considered by us in
Section 6.3. We briefly review an important approach from the literature in Section 6.4
where some of our algorithmic ideas come from and which is due to Mettu and Plaxton
[MP00]. The organization of the rest of the second part of the thesis is given in Section
6.5. We finish this introduction with an overview over the main differences between our
global and local algorithm in the following chapters in Section 6.6.

6.1. Our contribution

The global scenario Although, we require local strategies in our distributed robot sce-
nario, we will first develop a global algorithm that is able to deal with dynamics. This
will provide us with the necessary insight on dynamics to develop a distributed, local
algorithm later on.
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The kinetic data structure framework (confer to Subsection 8.1.1) is well suited to deal
with objects moving in a Euclidean space. We present a kinetic Data Structure for the
FACILITY LOCATION problem for a set of n points with given trajectories in Rd , where
d is a constant. At any point of time, each point is either a facility or a client. The
cost that arises for a facility persists during the entire time it is open. Analogously, a
client permanently has to pay some cost for its connection to a facility. Our kinetic data
structure maintains a subset of the moving points as facilities such that, at any time, the
sum of the maintenance cost for the facilities and the connection cost for the clients is at
most a constant factor larger than the current optimal cost.

The challenge is to construct a kinetic data structure whose underlying combinatorial
structure is stable. To be able to ensure this, we keep up the invariant that, on the one
hand, for each client there exists a facility in a certain local neighborhood and, on the
other hand, no facility has another facility in a certain local neighborhood. The problem
is now that restoring the invariant at one point (by changing the status of the point from
facility to client or vice versa) can lead to a violation of the invariant at many other points.
Our main technical contribution is a technique that allows us to restore the invariant in
poly-logarithmic time.

The local scenario The main drawback of a global solution is that we cannot apply it
in our distributed setting, where each node has to take its action by itself and only with
the limited information given by its local neighborhood. Based on the methods developed
in the global case, we introduce a simple distributed algorithm that is executed by each
node and is used to determine whether the node should act as a facility or a client in the
current situation. Since the distances between the nodes change over time, the algorithm
constantly reevaluates its decision and, if necessary, changes the node’s role in order to
reestablish the approximation. Taken as a whole, the decisions of all the nodes yield a
constant factor approximation of the FACILITY LOCATION problem.

An important property of our algorithm is the fact that each node only requires local
information to be able to execute it: For each node pi a certain value is computed. In order
to compute this value, pi requires only information about nodes that are within constant
distance of pi (i.e. a distance independent of the total number of nodes). In addition to
that value, pi requires information about the current role of all nodes p j which are in a
distance from pi bounded from above by a constant. That value, the d j’s and the current
roles of pi’s neighbors p j is all that is necessary for pi to determine its own role.

We introduce a characterization for a broad range of motion patterns to add dynamics
to our local scenario. We will use the dynamics parameter to count the changes of the
relative movement of pairs of robots. It turns out to be a powerful tool for the analysis of
our algorithm and possibly for future algorithms in dynamic environments as well.

We describe and analyze this algorithm showing that, although the decisions of the
nodes are based on local information, the system stabilizes in a solution that yields a
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global O(1)- approximation. Furthermore, we prove that the process of finding the ap-
proximation only requires O(logn) communication rounds, and -most important- that
changes in the role or the radius of a node pi only affect nodes within constant distance
of pi.

6.2. Related work

General FACILITY LOCATION The FACILITY LOCATION problem has been extensively
studied in combinatorial optimization and operations research [CG99, GK98, JMS02,
JV01, MYZ02, MP00]. In general, the problem is known to be NP-complete. The first
global constant factor approximation for the static setting was presented in [STA97]. For
the Euclidean case, there exists a randomized PTAS [KR07]. However, the FACILITY LO-
CATION problem has also been investigated in other settings, for instance in dynamic set-
tings [Ind04]. Nevertheless, this thesis is based on [DGL08a, DGL08b, DGL08c, DKP10]
and no other algorithms are known for the kinetic or the local setting so far. Unfortunately,
it seems that the only known (1+ε)-approximation given in [KR07] cannot be translated
to neither the kinetic nor the local setting, since the authors use the Arora-scheme includ-
ing dynamic programming techniques, which does not well comply with kinetization or
local algorithms.

Kinetic data structures The kinetic data structure framework was introduced and ap-
plied on the convex hull problem by Basch et al. [BGH97]. Later kinetic data structures
for measuring various descriptors of the extent of a set of points, including the diameter,
width, or smallest bounding box, have been designed [AGHV97, AHPV04]. Several fur-
ther algorithms that use the kinetic data structure framework have been developed, e.g.,
algorithms for kinetic collision detection [AdBPS09, BEG+04, Her04, KSS00], kinetic
planar subdivisions [AEG98, ABdB+99, AGMV00], kinetic range searching [AAE03,
BGZ97], kinetic kd-trees [AdBS07, AGG02], and kinetic connectivity for unit disks,
rectangles, and hypercubes [GHSZ01, HS01]. Only some results are known for prob-
lems related to clustering, which the FACILITY LOCATION problem belongs to. For in-
stance, Gao et al. [GGH+01] provided a kinetic data structure to maintain an expected
constant factor approximation for the minimal number of centers to cover all points for a
given radius. The centers that they considered are a subset of the moving nodes, whereas
Bespamyatnikh et al. [BBKS00] studied k-center problems for k = 1 in the kinetic data
structure framework, where the centers are not necessarily located at the moving points.
Another algorithm for the kinetic k-center problem can be found in [GGN04]. Hersh-
berger [Her03] proposed a kinetic algorithm for maintaining a covering of the moving
points in Rd by unit boxes such that the number of boxes is always within a factor of
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3d of the optimal static covering at any instance. Czumaj et al. [CFS07] presented a ki-
netic data structure for the Euclidean MaxCut problem. For other work on kinetic data
structures, we refer to the survey by Guibas [Gui98].

Har-Peled [HP04] considered the k-center problem in a mobile setting different from
the kinetic data structure framework. Instead of handling events, a static set is provided,
which ensures a constant factor approximation at all times. However, a set of size kµ+1 is
required, where µ is the degree of the polynomial of the trajectories.

Distributed and local algorithms Recently, a 7-approximation for the FACILITY LO-
CATION problem on a complete bipartite graph in a distributed setting was introduced
in [PP09b] using a linear programming approach. Different to our approach they do not
focus on locality issues, but rather on the size of transmitted messages, limiting them
to O(logn) bits. A uniform variant of the problem with fi = di = 1 for all nodes was
also considered in distributed and static settings: In [MW05], a O(k(mn)1/k log(m+n))-
approximation inO(k) communication rounds is achieved, with m and n being the number
of facilities and clients. In [GLS06], three communication rounds are needed to calcu-
late a O(1)-approximation in the uniform setting. For both algorithms, the number of
bits transferred each round is bounded by O(logn) and both algorithms cannot easily be
transferred to a dynamic setting. The same applies to the non-uniform variant introduced
in [MW05], where the results are harder to compare to ours. In contrast to our constant
factor approximation, in their work, there is always a dependency of the approximation
factor on m and n like in the uniform case, but they do not require the distances to be a
metric.

Some papers use different notions of locality. [FR07] considers the hop-distance and
[PP09a] presents a distributed algorithm for the static FACILITY LOCATION problem in
unit disk graphs. Contrary to our distributed algorithm, global coordinates are required to
achieve a constant factor approximation.

While we present a rigorous analysis, there are also heuristic approaches, e.g.[KSW05].
For a recent survey on placing facilities in wireless mobile networks see [WS08].

[GLS06] applies the approach of Mettu and Plaxton [MP00], which is also a major
building block in this work (confer to Section 6.4), both for the kinetic and the local algo-
rithm. This approach has been successful in lot of other settings as well, for instance, in
game theoretic settings [PT03] and for algorithms working in sub-linear time [BCIS05].
However, the metric FACILITY LOCATION problem has never been considered before in
a dynamic and local setting.
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6.3. Formal problem definition

We consider a special case of the metric FACILITY LOCATION problem defined in the
following way: We are given a metric space M(P,D(t)) in which P represents a set of
nodes and the function D(t) : P×P→ R≥0 represents the distance between two nodes
pi, p j ∈ P at time t ∈ R≥0. We introduce dynamics to our problem by allowing the dis-
tances between nodes to change continuously over time.

For each point pi ∈ P, there exists a positive maintenance cost fi ∈ R, that has to be
paid at time t if pi is a facility, and a positive demand di ∈R, which is the cost-factor that
is multiplied with the distance to the closest facility when the pi is a client. Note that both
the maintenance cost and the demand of a point are provided as input and do not change
over time.

Every node can fulfill one of two roles: It can either be a facility or a client. The role of
a node is not fixed and can change over time. This means that, at any given time, we can
subdivide the set P into the sets F(t) and G(t), where F(t) contains all the nodes with the
facility role at time t, while G(t) contains all the client nodes. If the node pi is a client, it
causes costs di ·D(t)(pi,F), where D(t)(pi,F) := minpk∈F{D(t)(pi, pk)} is the distance
between pi and the closest facility to pi at time t. Otherwise the node pi is a facility and
causes a cost of fi.

Our goal is now to assign and maintain one of the two roles to each node in such a way
that the function

cost(F) := ∑
pi∈F

fi + ∑
p j∈G

d j ·D(p j,F)

is minimized at any point of time t. Note that changing from being a facility to client
and the other way around does not incur any cost. Furthermore, the cost for the facility
does not arise only once, but persists permanently for the entire time, the facility is open.
However, our algorithms aim at providing that for any snapshot point of time, the given set
of facilities yields a constant factor approximation for the corresponding static problem
instance. If this is not the case, we want to quickly reconstruct a good solution.

Moreover, we want algorithms that enables the nodes to switch their roles, so that the
subdivision into the sets F(t) and G(t) induced by their roles keeps the value of the cost(t)
function as small as possible during the changes of the metric function. The major goal
is to reconstruct a good solution as fast as possible.

We will use the following naming conventions to facilitate talking about the problem
we just described: A node being a facility will be referred to as open, while one being
client will be called closed. Analogously, we say that a node opens when it changes its
role from client to facility, respectively closes when it changes its role from facility to
client. When appropriate, we will omit the index t representing the time and refer to
D(t), F(t) and G(t) as D, F and G in order to improve on the readability. Furthermore,
we use the function D(pi, p j, t) to describe the Euclidean distance between pi and p j at
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Figure 6.1.: Illustration of ∑p j∈B(pi,rMP
i ) d j · (rMP

i −D(pi, p j)). The dotted lines weighted
with the d j’s correspond to the distances summed up to fi.

point of time t. We abbreviate this by D(pi, p j), when clear from context, as well as we
abbreviate D(pi,P, t) := minp j∈P{D(pi, p j, t)}, with D(pi,P).

6.4. The Mettu & Plaxton approach and radii

In [MP00], Mettu and Plaxton presented a simple greedy method for the static FACILITY

LOCATION problem. This method defines in time O(n2) a subset of a given point set P
as facilities that leads to a total cost which is at most a factor of 3 larger than the optimal
cost. The main idea of the algorithm is crucial for the remainder of this work. For this
reason, we introduce the algorithm briefly and discuss its significant properties. They
introduce so called radii and we use an approximation of those radii later on. Therefore
we start by defining those radii.

6.4.1. Radius associated with a point

For a point pi ∈ P and a non-negative value r, we define B(pi,r) to be the ball with center
pi and radius r. Given such a ball B(pi,r), we let weight(B(pi,r)) denote the sum of the
demands of all the points in P that are located in the ball B(pi,r), i.e., we define

weight(B(pi,r)) := ∑
p j∈P∩B(pi,r)

d j .

For each point pi ∈ P, we define the value rMP
i to be the radius of the ball with center

pi that is used in [MP00] and satisfies

∑
p j∈B(pi,rMP

i )

d j · (rMP
i −D(pi, p j)) = fi .
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For an illustration see Figure 6.1. Observe that the sum on the left side of the equality is
continuous and strictly monotonically increasing with rMP

i . Hence, there exists a unique
value rMP

i satisfying the equality. Moreover, at any point of time t and for any point

pi ∈ P, the radius rMP
i ranges from

minp j∈P f j

n·maxp j∈P d j
to

maxp j∈P f j

minp j∈P d j
.

An intuitive explanation for the limits of a radius is that the higher the contribution of
a point p j to the sum is the smaller is the value of rMP

i . More precisely, the lower limit of
the range is met if

1. fi = minp j∈P f j,

2. all the points in P are at the same position, and

3. the demands of all the points are uniform, such that d` = maxp j∈P d j for any `,
1≤ `≤ n.

Conditions 1 and 2 cause that the contribution of each point p j ∈ P to the sum is as
high as possible. The upper limit of the range is met if

1. fi = maxp j∈P f j,

2. pi is the only point in the ball with radius rMP
i and center pi, and

3. di = minp j∈P d j.

In this case, conditions 1 and 2 cause that the contribution of each point p j ∈ P\pi to
the sum is 0.

The value rMP
i is the value that we will refer to, when we talk about a radius. Later we

will also define rKFL
i and rLFL

i , and call them in the corresponding context radius as well.
Now, we have all preliminaries to discuss the algorithm as presented by Mettu and

Plaxton.

Algorithm 4 METTU-PLAXTON(P, t0)
1: calculate the radius rMP

i (t0) for each point pi(t0) ∈ P(t0)
2: sort all points in ascending order according to their radii
3: let p1(t0), p2(t0), . . . , pn(t0) be the sorted sequence
4: for i = 1 to n do
5: if there is no facility in B(pi(t0),2 · rMP

i (t0)) then
6: open facility at pi(t0)

The steps of the method developed by Mettu and Plaxton are listed in Algorithm 4. Let
t0 be a fixed point of time. Then, we can use algorithm METTU-PLAXTON to compute a
set of facilities at this specific point of time t0 for the global algorithm. In particular, we
will apply a modified version of algorithm METTU-PLAXTON on the initial positions of
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the input points to get an initial set of facilities. No such step is necessary for the local
algorithm. Based on the modified version, we will present a kinetic data structure with
poly-logarithmic update time.

Note that we cannot apply the original Mettu-Plaxton algorithm to obtain a kinetic data
structure with poly-logarithmic update time. The reason is that similar to maintaining an
exact solution for the FACILITY LOCATION problem, keeping up the solution provided by
algorithm METTU-PLAXTON is not stable. That means, a slight perturbation of the input
might result in Ω(n) status changes (also confer to Chapter 7), whereas we are looking
for stable solutions, where only a poly-logarithmic number of changes occur upon on an
event.

For the local algorithm no explicit initialization phase is necessary, however, similar
concepts apply also in the local algorithm.

As announced above, we will use modified definitions of the radius introduced in
[MP00]. These are slightly different for the global and the local algorithm.

6.5. Organization of the part internal assignment

In this chapter we gave an introduction to the part of internal assignment and defined the
FACILITY LOCATION problem. Now, we will compare the two approaches to the prob-
lem, that we use in the rest of the thesis. But, before actually introducing the algorithms,
like in the first part we start with ’bad news’ about the problem in Chapter 7 in terms of
complexity, and lower bounds on the number of required changes and the crucial bounds
on locality. The ’good news’ in terms of approximation algorithms start with an intro-
duction of the kinetic data structure framework that we use for the global algorithm in
Chapter 8. The algorithm will be described and analyzed. Then we proceed to the model
for the local algorithm, its description and analysis in Chapter 9. Finally we will conclude
the part on internal assignment and discuss some open questions in Chapter 10.

6.6. Similarities and differences between the global and the
local algorithm

Before we proceed to the lower bounds and the algorithms, we first describe what the
main differences between the two settings are. We use the term global algorithm when
we refer to the kinetic setting. The local setting is distributed and therefore harder by
concept. However:

• The kinetic data structure has to manage points. For instance, sophisticated data
structures are necessary to store the n2 distances with poly-logarithmic overhead
only. In a distributed setting this is not required, since each point just keeps its own
data structure with at most n distances.
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• The kinetic data structure has to manage explicitly the events. This happens implic-
itly in the local model. Actually the notion of events is quite different there, since
they are only used as means for analysis and not for the design of the algorithm.

• There is a central control with a sophisticated algorithm in the kinetic setting. For
the local algorithm the same ideas apply. However, the algorithm is just a simple
control loop per point. The difficulty is rather the analysis than the algorithm itself.

• The kinetic data structure framework is well established. Therefore certain ’rules’
apply. For instance, the points get an initial input of trajectories that are described
by bounded degree polynomials. In the local case we introduce our own (more
general) motion model.

• In the kinetic setting the order in which points are invoked is crucial. In the local
case each node just acts, when it is its turn.

• For the global algorithm there is no difference whether two events are close to
each other or far apart. If nodes that are far apart from each other change their
relative position, the algorithm has to take care of this. The main feature of the
local algorithm is that events have only an effect on their local neighborhood.

• Keeping track of the location of points is difficult in the kinetic setting as well. We
have to model were the points are at a certain point of time. In the local case we
just assume that the points reside at given locations and are aware of it (at least
relative to its local neighborhood, which is sufficient). An additional problem with
the analysis of the kinetic algorithm is the fact that we only use an approximation
of the exact location of a point.

• The global algorithm applies only to the Euclidean case due to the kinetic data
structure framework. We also describe the local algorithm for the Euclidean case.
However, there will be a subsection devoted to non-Euclidean generalizations.

• We have a central property called radius, that has to be maintained. This is easy to
do for a single node. Therefore this is not a problem for the local algorithm, but for
the global algorithm an own data structure is required for this.

• There is no explicit initialization for the local case. We just launch the algorithm
at all nodes and analyze the number of rounds until a stable state is reached for
the first time. The nodes themselves are not aware of the fact, that they are in
the initialization phase. In contrast, in the global case the initialization requires a
runtime of order n2 which is a major part of the entire runtime of the algorithm.
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• In the global algorithm, we have a constant factor approximation at all times. In the
local algorithm, we have to wait until the algorithm stabilizes before we can guar-
antee that we have constant factor approximation of the respective static setting.

• For kinetic data structures the trajectories of points have to be given as input, such
that the time of events can be precomputed. It is a rather strong assumption that
the movement of points in known in advance. This is not necessary for the local
algorithm. The points move and the trajectory is only of interest for the analysis.

• For the local algorithm we consider only the number n of robots as input, since
we assume that they are identically constructed. For the global algorithm we take
additionally the fi and di as input.

But there are similarities in the approach as well:

• Both algorithm pursue to keep two invariants, which are quite similar. However, in
order to fulfill the requirements of the data structures the invariants for the kinetic
setting are more complicated.

• When the invariants hold, this yields a global constant factor approximation for the
given static setting.

The main difference between the two setting is that we have to restore our data-structure
fast in the global setting and in the local setting it is crucial to argue why the order of ac-
tivation of nodes is not important.
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The complexity of internal assignment

In this chapter, we deal with ’bad news’. There is already a lot known about the complex-
ity theoretic limits, since FACILITY LOCATION is a prominent problem. However, besides
the complexity of computation, there are other aspects that are of concern as well.

First, the ultimate goal is to have the viewing range of the robots to be as limited as
possible. We will limit this viewing range to a constant, when dealing with our local
algorithm and achieve a constant factor approximation. In this chapter we ask ourselves,
whether we can get an improved approximation factor when allowing a larger viewing
range (which is not the case due to [GK98]), or whether we can even limit the viewing
range further, without getting a worse approximation factor (see Theorem 7.1).

Second, when dealing with dynamics, stable solutions get disturbed eventually. We
want changes at one part of the system to stay in a bounded neighborhood and not to
affect distant parts of the system. However, we will show that this is not possible for exact
FACILITY LOCATION (see Theorem 7.2). This gives another reason, to use approximation
algorithms instead of exact solutions. Note that this even holds if P=NP. Limiting
changes to a local neighborhood is also the only way to accomplish fast updates on an
existing solution. Furthermore, we cannot just apply the Mettu and Plaxton algorithm,
because then the affected neighborhood is not bounded either (see Theorem 7.3).

Third, we do not want too many nodes to be affected by the role change of a single
robot. Once again, for exact FACILITY LOCATION this turns out to be impossible (also
see Theorem 7.2).

Fourth, the number of required rounds until a constant factor approximation can be
achieved is of interest. In this respect, our algorithms can compete with state of the art
constant-factor approximation algorithms for the non-uniform metric FACILITY LOCA-
TION problem, since so far all these algorithms require Ω(logn) rounds. Finding lower
bounds in this model is still an important open problem according to [MW05]. We do not
tackle this problem in this thesis, since we are mainly interested in questions concerning
locality.

59
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Last, we do not want our solution to change too often in total. This obviously depends
on the motion pattern of the robots. For the global algorithm, we use the standard motion
pattern of kinetic data structures, which are bounded degree polynomials. For the local
algorithm we use a generalization of that motion model. In Section 7.3 we also state a
lower bound from the literature, which fits to both our models.

7.1. The locality

Our local algorithm in Chapter 9 shows that, in order to compute a constant factor ap-
proximation, it is sufficient for each node to have information about other nodes within
a constant distance from itself. It is known that (unless NP ⊂ DTIME(nO(log logn)) ) it
is not possible (even if each node is allowed to see the entire graph) to achieve a bet-
ter than constant approximation for general metrics in polynomial time [GK98]. (In the
Euclidean case a (randomized) PTAS, which is based on the Arora scheme [Aro98], is
known [ARR98]). Since our results for the local algorithm hold in general metrics, re-
laxing the locality constraints will not result in an improved approximation. Now the
question arises whether the approximation factor changes when the locality is restricted
such that nodes are only able to see other nodes within a distance smaller than constant.
The following theorem states that we lose in the approximation factor when locality is
restricted in such a way.

Theorem 7.1. A distributed algorithm ALG limited to information about nodes within
distance 1/ f (n) (in a general metric) can at best achieve an Ω( f (n))-approximation for
functions f with f (n) ∈Ω(1).

Proof. Consider a star graph constructed in such a way that the distance from the center
node p0 to all other nodes is ε/ f (n) for an ε > 1. This star graph is now used to induce
a metric M on the nodes. The metric is created by defining the distance between any two
nodes as the shortest path in the star graph between them. We set d0 = f0 = 0 for the
center node p0 and di = fi = 1 for the remaining nodes. Since an optimal algorithm OPT
operating on M opens p0 and keeps all other nodes closed, the resulting costs are 0 for
the center node and (n−1) · ε/ f (n) for the remaining nodes. See Figure 7.1.

Now, consider the metric M∞ where all distances are set to infinity. Here, we also
assign the d0 = f0 = 0 to p0 and di = fi = 1 to the remaining nodes. When operating
on M∞ any reasonable algorithm ALG is forced to open every single node, since closing
at least one node raises the costs to infinity. Because all nodes are more than 1/ f (n)
away from each other and only have information about nodes within distance 1/ f (n),
ALG cannot distinguish the metric M from the metric M∞ and therefore is forced to also
open every single node when working on M. The ratio of the local algorithm ALG to the
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Figure 7.1.: In the graph on the left side all optimal clients are just outside of the viewing
range. In the graph on the right side the other nodes are arbitrary far away. The two
graphs cannot be distinguished locally.

optimal algorithm OPT is

ALG
OPT

=
n−1

0+(n−1) · ε

f (n)
=

f (n)
ε

and thus ALG≥ f (n)
ε
·OPT. �

This proves our results concerning locality, which we will obtain in Chapter 9 to be
tight.

7.2. Exact FACILITY LOCATION and the Mettu & Plaxton
algorithm

We show that it is not possible to bound the distance between a node pi and the nodes
which are affected by pi’s change of role without using approximation. That is, we have
to approximate, not only because we require a polynomial runtime, but also due to our
locality constraints. The next theorem states that in contrast to our local approximation
algorithm, where changing the role of a single node affects only its local neighborhood
of constant size, an exact solution needs to change the role of nodes that are in linear
distance from a single node which moves.
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Figure 7.2.: Graph for the proof of Theorem 7.2

Theorem 7.2. There exists a placement of nodes in the Euclidean plane such that the
movement of a single node forces a solution for exact FACILITY LOCATION to perform
Ω(n) role changes. In particular, there are nodes which change their role in distance
Ω(n) from the moving node.

Proof. Consider a graph in the Euclidean plane with n nodes where n = 3k +4 for some
k ∈N. Let di = fi = 1 for all i. The graph is a horizontal line where the distance between
all nodes is 1− ε for some small ε > 0 , except for the nodes at the very right. Here,
the last two nodes are arranged in such a way that they are in distance 1− ε to the third-
last node and in distance 1− 3

2 ε to each other (and in distance larger than 1 to all other
nodes, see Figure 7.2). We will show in the remainder of the proof that moving the
leftmost node to the left for more than ε will change the exact solution for the FACILITY

LOCATION problem in Ω(n) nodes and hence covers an area which has a linear stretch.

We now first show the optimal solution for the original graph. For the sake of analysis,
we group the nodes in k components of 3 nodes each plus a component consisting of
the 4 nodes at the right end. We show that choosing exactly the middle nodes in each
component yields an optimal solution: This solution has facility costs of k +1 and client
costs of (2k +3) · (1− ε), since each of the k +1 facilities produces a cost of 1 and each
other node a cost of 1− ε . It is not possible to reduce the number of facilities, since
in each component there needs to be at least one facility. Furthermore, the client costs
can at most be reduced by 1

2 ε for choosing the connection to the right instead of another
one plus 1−ε times the number of additional facilities. Since opening additional facilities
produces a cost of 1, this would increase the overall costs by ε for each additional facility.
Furthermore, using the cheaper connection between the two rightmost nodes increases the
number of facilities in this component by one. Since the number in the other components
cannot be decreased, this would increase the overall costs by ε

2 . Thus the described choice
of facilities is optimal.
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Figure 7.3.: An instance, where applying the Mettu and Plaxton algorithm will lead to a
linear number of changes, after the movement of a single node.

Now we show that we have indeed Ω(n) role changes when moving the left node to
the left. Eventually this node has to open. We arrange the remaining nodes in k + 1
components again, but shift groups one unit to the right. The component on the very right
now consists only of three nodes. With the same argument as above we need at least one
facility in each component and it is cheapest to open the middle node in each except for
the right one. Here it is now cheapest to open one of the nodes to the very right, since
this does not increase the facility costs, but decreases the connection costs. The minimal
costs in this scenario are therefore (k+2)+(2k+1) ·(1−ε)+1− 3

2 ε . For this operation,
2k nodes in the components have to change their role plus the node on the left side plus
one of the two nodes on the right side. �

A similar argument holds for the algorithm of Mettu and Plaxton (confer to Algorithm
4 in Section 6.4).

Theorem 7.3. There exists a placement of nodes in the Euclidean plane such that the
movement of a single node results in Ω(n) role changes when the METTU-PLAXTON

algorithm is applied. In particular, there are nodes which change their role in distance
Ω(n) from the moving node.

Proof. Consider a graph in the Euclidean plane with n nodes. Let di = fi = 1 for all i.
The graph is a horizontal line where the distance between all nodes is 1− 1

2i , where the
nodes are labeled from 1 to n. See Figure 7.3 for an illustration. Note that the nodes cover
a linear stretch, since the distance between two neighbors is at least 1

2 . Observe that the
radii decrease from left to right, with the smallest radius being rMP

1 = 3
4 . Each node is the

only node in its radius additionally to its right neighbor, except for node p1. Lets consider
algorithm METTU-PLAXTON. The nodes are handled from right to left. The first node
to open is p1. The nodes p2 and p3 are not opened. For p2 it is obvious that p1 is in its
double radius. For p3 observe that p2 is contained in rMP

3 and D(p1, p2) < D(p2, p3). The
next point to open is p4, because its distance to p1 is 3− ( 1

23 + 1
22 + 1

21 ) > 2, while the
radius is at most 1. Therefore p1 cannot be in its double radius. For symmetry reasons,
this continues for the rest of the graph and every third node is opened.

Now, move p1 far enough to the right. Rerunning algorithm METTU-PLAXTON will
open p1 and p2. For symmetry reasons it will also open every third node again. But those
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nodes are shifted one node to the left now. Therefore Θ(n) facilities will close and Θ(n)
facilities will open, covering a linear stretch. �

7.3. The effect of dynamics

Our algorithms change the set of facilities due to motion. How often the set changes
depends on the motion pattern. Thus, we will analyze how often changes occur in depen-
dency of the given motion pattern at hand. Here, we want to recall a known lower bound
for changes of the solution, where the only motions are linear movements of robots only
in one dimensional space enforcing Ω(n2) changes.

In [GGH+01] it is shown that there exists a set of n nodes moving linearly on the real
line that forces any c-approximate cover to change Ω(n2/c2) times. Setting all fi and ci

to 1 yields that any c-approximation of the FACILITY LOCATION problem in this setting
has to change Ω(n2/c2) times as well. The proof is completely analogous to [GGH+01]
and we therefore omit it here. We just want to mention the main idea of the proof. We
have n

2c (for some c) many positions on the real line, each of these positions is the starting
position for a group of robots. The speed of the single points are assigned in such a way
that they all have pairwise a mutually distance that is large enough after some time. Again
after some time they meet at the positions again. This procedure iterates Ω(n2/c2) times.
Whenever the points are far apart, any c-approximate solution has open facilities at all
points. When the points are at the predefined positions, in an optimal solution only one
point is open at each of those positions. This forces the any constant factor approximation
to change Ω(n2/c2) times and therefore Ω(n2/c2) motion-induced changes of the solution
are inevitable.

We will show in Chapter 9 that so called events in our local algorithm only affect local
neighborhoods and that the number of events can be upper bounded by O(x · log(n)),
where x is the dynamics parameter which will be introduced there. Since all nodes move
linearly in the lower bound example, for the dynamics parameter holds x = O(n2) in
this example. Hence Theorem 9.9 in Chapter 9, which states that the number of events
is upper bounded by O(x logn) for any motion pattern is asymptotically tight up to the
factor of log(n). The number of rounds until stable configurations can be reached is also
only O(n2 log2 n) in this scenario due to Corollary 9.10. Since the movement is linear
and therefore in particular a bounded degree polynomial, the total processing time of the
kinetic data structure as stated in Theorem 8.22 in Chapter 8 is also tight up to poly-
logarithmic factors.

In this chapter we have seen the minimal effort to maintain a constant-factor approx-
imation for FACILITY LOCATION problem locally under motion. The viewing range has
to be at least constant, exact solutions are not stable and even approximate solutions have
to change at least a minimum number of Ω(n2/c2) times. For the remainder of the thesis
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it is left to show that those bounds can be (nearly) reached by approximation algorithms.
Therefore, we show in the next chapter how to deal with dynamics first, before we pro-
ceed to our fully distributed local algorithm.





C H A P T E R 8

The global scenario (A kinetic data
structure)

This chapter is devoted to the global algorithm in the kinetic data structure framework. We
start with a general introduction into the framework in Section 8.1. Then we introduce in
Section 8.2 an important property that is used in our algorithm which is based on the term
radius that we already discussed in Section 6.4. Then we describe our global algorithm
in detail in Section 8.3 and finally analyze it in Section 8.4.

8.1. The model

When designing the global algorithm for our problem, we were looking for a proper
framework to deal with moving objects. Although kinetic data structures are not designed
for distributed algorithms, it is a good starting point for our investigations and our local
algorithm will base on the ideas that we develop in this chapter. Therefore, we start with
an overview over this model.

8.1.1. Kinetic data structures

The kinetic data structure framework is well-suited to maintain a combinatorial struc-
ture (an approximation of a solution for the FACILITY LOCATION problem in our case)
of continuously moving objects and it is common in the field of computational geome-
try [AHPV04, BGH97, Gui98]. In this framework, we are given a set of objects and a
flight plan, i.e., each object moves continuously along a known trajectory. Furthermore,
at any point of time, it is possible to change the flight plan by performing a so-called
flight plan update, which means that one object changes its trajectory. The main idea
is now that the continuous motion of the objects is utilized in a way that updates of the
current solution take place only at discrete points of time and can be computed fast. As a

67
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result, a lot of computational effort can be saved by maintaining the kinetic data structure
compared to handling just a series of instances of the corresponding static problem. To
guarantee that the required properties of the combinatorial structure are satisfied at any
point of time, a kinetic data structure ensures that certificates which have to be defined for
each problem are always valid. This indicates that the combinatorial structure is main-
tained. Whenever a certificate fails, we call this an event, and an update is required to
restore the certificates and therefore the combinatorial structure. To be able to handle
each of these events at the correct time, an event queue is maintained. In the event queue
all events are stored with time stamps. They are precomputed on basis of the trajectories
that are given as in input.

There are four important properties to measure the quality of a kinetic data structure.
The worst-case amount of time to process an update is called responsiveness. The second
and third property are compactness and kinetic locality. The compactness is given by the
ratio between the maximum number of certificates ever present to guarantee the required
properties of the combinatorial structure and the number of the moving objects. An object
might be involved in several events in the event queue. The kinetic locality addresses the
maximum number of events in the queue, for any one object. As a result, the kinetic
locality is a measure for how easily flight plan updates can be performed. Is is important
to note that the term ’locality’ is used in different way in the context of kinetic data
structures than it is used in the rest of this thesis. Usually ’kinetic locality’ is just called
’locality’ in the context of kinetic data structures, but in order to separate it from our
notion, we will refer to it by ’kinetic locality’.

The fourth property, the efficiency of a kinetic data structure, is the worst case ratio
between the number of total events processed by the kinetic data structure and the min-
imum number of events that would have been sufficient to maintain a solution for the
given kinetic problem for an arbitrary instance. For a more detailed description of these
concepts, the reader is referred to [BGH97, Gui98]. We say that a kinetic data structure is
responsive, compact, kinetic local, and efficient, respectively, if the associated value is at
most poly-logarithmic in the size of the input. Thus, some additional overhead is allowed,
but it is limited to logarithmic factors, which is a common convention in the domain of
kinetic data structures.

8.2. The special radii

In this section, we present the essential ideas which our kinetic data structure (and later
the local algorithm) is based on and introduce some basics and notations used throughout
this part of the thesis. At first, we introduce a new radius associated with a point that it is
much easier to maintain when the points move than the radius rMP

i defined in Section 6.4.
Compared to the previous definition, the new radii of the points depend on cubes instead
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of balls. The key idea of our kinetic data structure is to use a set of nested cubes around
each point and to update the kinetic data structure each time a point enters or leaves a
cube of another point.

8.2.1. Definition of the special radii

8.2.1.1. Cubes

Similar to the definition of balls, for a point pi ∈ P and a non-negative value r, we define
C(pi,r) to be the axis-parallel cube whose center is the point pi and whose side length is
2r. Given such a cube C(pi,r), we let weight(C(pi,r)) denote the sum of the demands of
all the points in P that are located in the cube C(pi,r), i.e., we define

weight(C(pi,r)) := ∑
p j∈P∩C(pi,r)

d j .

Note that the cube C(pi,r) is a ball with radius r with respect to the L∞-metric. In the
following, we will refer to the value r of a cube C(pi,r) as the radius of the cube, i.e. the
double radius of a cube is equal to its side length.

8.2.1.2. Radius Associated with a Point

Our kinetic data structure maintains for each point pi ∈ P an approximation of rMP
i as

defined in Section 6.4, which we denote by rKFL
i . We define rKFL

i to be the value 2k∗ , such

that k∗ = k0 +dlog2(4
√

d)e and k0 is the minimum integer k with log2(
minp j∈P f j

n·maxp j∈P d j
)≤ k≤

log2(
maxp j∈P f j

minp j∈P d j
), for which weight(C(pi,2k0))≥ fi ·2−k0 holds. We will prove that, at any

point of time t, the special radius rKFL
i of any point pi ∈ P is a constant factor approxi-

mation for the value rMP
i . Similarly we will define the radius for the local algorithm in

Section 9.2. Note that our choice of the radius leads to discretization of the radius. While
rMP

i takes values form a continuous range this not the case for rKFL
i , where the set of

potential radii is known in advance. Each of the potential value differs form the next po-
tential radius by a factor of two. Therefore, we get only a logarithmic number of potential
radii for each point. The exact upper and lower bounds as stated here, follow from the
range that the radius takes as explained in Subsection 6.4.1 and the proof that we will see
for Lemma 8.3 later on.

In the following, we prove in Lemma 8.1 that, at any point of time t, the special radius
rKFL

i of any point pi ∈ P is a constant factor approximation for the value rMP
i .

The proof is based on two results obtained in [BCIS05]. For the uniform FACILITY

LOCATION problem, the authors in [BCIS05] gave lower and upper bounds for the value
rMP

i and showed how to approximate rMP
i by counting the number of points in a certain

ball around pi. We generalize their two results to the non-uniform case, by considering a
weighted sum instead of a simple sum:
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Lemma 8.1. For any point of time t and for each pi ∈ P, we have

fi

weight(B(pi,rMP
i ))

≤ rMP
i ≤ 2 · fi

weight(B(pi,
rMP

i
2 ))

.

Proof. From the definition of rMP
i follows ∑p j∈B(pi,rMP

i ) d j · rMP
i ≥ fi, so that

rMP
i ≥ fi

∑p j∈B(pi,rMP
i ) d j

=
fi

weight(B(pi,rMP
i ))

.

Furthermore, we get

fi = ∑
p j∈B(pi,rMP

i )

d j ·
(
rMP

i −D(pi, p j)
)

≥ ∑

p j∈B(pi,
rMP
i
2 )

d j ·
(
rMP

i −D(pi, p j)
)

≥ rMP
i

2
· ∑

p j∈B(pi,
rMP
i
2 )

d j

=
rMP

i

2
·weight(B(pi,rMP

i /2)) ,

where the second inequality follows from the fact that rMP
i −D(pi, p j) ≥ 0 for all p j ∈

B(pi,rMP
i ) and B(pi,

rMP
i
2 )⊆ B(pi,rMP

i ). �

The above lemma helps to calculate an approximation of the radius by counting the
weighted sum of points in an orthogonal range around a point. Those operations are sup-
ported by our range trees, which are the main data structures and which we will explain
in Section 8.3.2. Therefore we can use this method to calculate the radius rKFL

i that we
will use. However, we still need to show that our discretization is still a good enough
approximation of the radius rMP

i that was originally used. That is what the next lemma
states, which is once again a generalization of the uniform case considered in [BCIS05].

Lemma 8.2. At point of time t, let k1 be the minimum integer k with dlog2(
minp j∈P f j

n·maxp j∈P d j
)e ≤

k ≤ blog2(
maxp j∈P f j

minp j∈P d j
)c, such that weight(B(pi,2k))≥ fi ·2−k. Then 1

2 · r
MP
i ≤ 2k1 ≤ 2 · rMP

i

holds.

Proof. Due to the choice of k1, we have weight(B(pi,2k1−1)) < fi · 2−(k1−1). It follows
that, for any rMP

i < 2k1−1, we get

weight(B(pi,rMP
i )) ≤ weight(B(pi,2k1−1))

< fi ·2−(k1−1)

< fi ·
1

rMP
i

.
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Now, we have rMP
i < fi

weight(B(pi,rMP
i )) , which is a contradiction to Lemma 8.1. Hence,

ri ≥ 2k1−1 must be true, which proves the second inequality.
Furthermore, for any rMP

i > 2k1+1, we have

weight(B(pi,rMP
i /2)) ≥ weight(B(pi,2k1))

≥ fi ·2−k1

> fi ·
2

rMP
i

.

In this case, it follows that rMP
i > 2 fi

weight(B(pi,rMP
i /2)) , which is again a contradiction to

Lemma 8.1. Thus, we have rMP
i ≤ 2k1+1, which proves the first inequality. �

Our algorithm uses the approach of [BCIS05], but we approximate the sum of the
demands of all the points in a distance 2k, for an integer k, by the sum of the demands of
all the points in a cube instead of a ball with radius 2k. This way we can use orthogonal
range queries which are supported by our data structures. The following lemma shows
that using a cube still gives a constant factor approximation of rMP

i .

Lemma 8.3. At point of time t, let k0 be the minimum integer k with dlog2(
minp j∈P f j

n·maxp j∈P d j
)e ≤

k ≤ blog2(
maxp j∈P f j

minp j∈P d j
)c, such that weight(C(pi,2k)) ≥ fi · 2−k. Then 1

4
√

d
· rMP

i ≤ 2k0 ≤
2 · rMP

i holds.

Proof. Let k1 be defined as in Lemma 8.2. Then the radius of C(pi,2k0) is at most 2k1 ,
since each point in P, that is located in B(pi,2k1), is also located in C(pi,2k1), so that
we get weight(C(pi,2k1)) ≥ fi · 2−k1 . Furthermore, the radius of C(pi,2k0) is larger than

1√
d
· 2k1−1. The reason is that weight(B(pi,2k1−1)) < fi · 2−(k1−1) and weight(C(pi,

1√
d
·

2k1−1))≤ weight(B(pi,2k1−1)), so that we have

weight(C(pi,2k1−1−log2(
√

d))) = weight(C(pi,
1√
d
·2k1−1))

< fi ·2−(k1−1)

< fi ·2−(k1−1−log2(
√

d)) .

Now, due to the fact that 2k0 > 1√
d
· 2k1−1 and Lemma 8.2, the lemma follows. The

maximum and minimum radius of C(pi,2k0) is illustrated in Figure 8.1. �

Due to Lemma 8.3, we have 2− log2(4
√

d) ·rMP
i ≤ 2k0 ≤ 2 ·rMP

i . In order to get rMP
i ≤ rKFL

i ,
we set rKFL

i = 2k∗ = 2k0+dlog2(4
√

d)e). This implies rMP
i ≤ rKFL

i ≤ 23+dlog2(
√

d)e · rMP
i .

Due to the restriction of the possible values for k, we have to consider onlyO(log(nR))
possible values for the radii, where R := maxpi∈P fi ·maxpi∈P di

minpi∈P fi ·minpi∈P di
and nR is the ratio between the

upper and lower limit of the radii (see Subsection 6.4.1).
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Figure 8.1.: Maximum and minimum radius of C(pi,2k0).

8.2.1.3. The ratio R

We have just defined R to be maxpi∈P fi ·maxpi∈P di

minpi∈P fi ·minpi∈P di
. Note that it is necessary to consider R

because the number of possible radii directly depends on this ratio and the number of
radii is part of most of our bounds. On the other hand, all our bounds will only depend
on O(log(nR)), and this term is only dominated by R if it is super-polynomial in n. So,
for practical purposes, if the ratios of di’s and fi’s do not differ that much, we can omit
the parameter R in all our bounds. We will do so in Chapter 9, where we assume that we
have structurally identical robots.

8.2.1.4. Walls around a Point and certificates

As stated above, there are O(log(nR)) potential radii for each point pi ∈ P. This leads to
a set of O(log(nR)) nested cubes for each point pi ∈ P, each cube C(pi,2k) defined by a

potential radius 2k for each k∈ {dlog2(
minp j∈P f j

n·maxp j∈P d j
)e+dlog2(4

√
d)e,dlog2(

minp j∈P f j

n·maxp j∈P d j
)e+

1 + dlog2(4
√

d)e, . . . ,blog2(
maxp j∈P f j

minp j∈P d j
)c+ dlog2(4

√
d)e}. The side faces of the cube de-

fined by C(pi,2k) form a wall around pi, which we call Wi,k. Hence, there exists a set of
O(log(nR)) walls for pi. We use this set of walls to determine the points of time when an
update of pi in our kinetic data structure is required. These are our certificates: in each
dimension we keep a sorted list of the walls and the points. When two of the items in
one of the lists change their order, we call this an event. In general, an event occurs each
time when any point crosses any wall of another point. Certainly not all events require
an update operation, but each necessary update operation will be covered by an event.
Therefore the number of events is an upper bound on the number of updates.

The technical details will be explained in Subsection 8.3.5.1.
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8.3. Description of the global algorithm

Before going into detail on the description of the algorithm, we give an overview over
the elements of the algorithm and how they interact in Subsection 8.3.1. Afterwards, we
describe how the radius rKFL

i as defined in the last section is computed in our scenario
in Subsection 8.3.2, then we define in Subsection 8.3.3 an invariant which guarantees a
constant factor approximation. The invariant is maintained over time. Afterwards, we
show in Subsection 8.3.4 how the initialization can be done in order to get a first solution
that has the desired properties, like yielding a constant factor approximation. Then we
give in Subsection 8.3.5 a description of the kinetic data structure. It consists of two parts.
One is an event queue, where we store when and where updates have to be performed in
order to keep our invariant. The other one is an description how an update is performed.
In the last section of this chapter (Section 8.4) follows an analysis of the kinetic data
structure in terms of approximation quality, runtime and storage requirements.

8.3.1. How the parts of the model interact

Before starting the technical description of the algorithm, we want to sum up the main
idea: First we compute an initial set of facilities such that the invariant (which guarantees
a good structure) holds. Then the algorithm starts. We have points and walls around
the points representing the potential radii. All points and walls are stored in sorted lists
for each dimension. Due to motion, the sorting (which are our certificates) in the lists
changes. When this happens, we call this an event. These events are stored in the event
queue. The main algorithm processes the events one after the other. Upon an event an
invariant might get violated. Then the set of facilities has to be updated, such that the
invariant holds again.

Now, we show how we realize the idea above in an efficient way.

8.3.2. Computation of the special radii

In order to compute, at any point of time, the special radius associated with a point effi-
ciently, we maintain two (d +1)-dimensional dynamic range trees denoted by T1 and T2.
At any time, range tree T1 is used to manage the current set of facilities, and T2 stores the
current set of clients. Apart from the fact that the two data structures contain different
point sets, they are constructed in the same way. In the first d levels of the range trees,
the points are handled according to their coordinates and in the (d +1)-st level according
to their special radii. Additionally, with each node v in every binary search tree of the
(d +1)-st level, we store the sum of the demands of all the points contained in the subtree
of v. Besides the two range trees, we maintain a binary search tree T that contains, for
each point in P, a pair consisting of the point’s index and its current status (which is either
open or closed). T is sorted according to the indices.
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The dynamic data structure described in [BGZ97] supports all required properties of
T1 and T2 efficiently. In particular, a range tree for a set of n points in Rd+1 has size
O(n logd(n)) and can be built inO(n logd+1(n)) time. We can maintain this data structure
in O(logd+1(n)) worst case time per insertion and deletion. Given any orthogonal range
in Rd+1, we can output the points inside this range in O(logd+1(n)+ N) time, where N
is the output size. Due to the additional information stored at each node in level d +1 of
the range trees, we can also compute the sum of the demands of all the points in a certain
range in Rd+1 in O(logd+1(n)) time. Finally, we can output the status of a given point in
O(log(n)) time by querying T .

At any time t, the range trees rely on the relative position of the points in P. More
precisely, the leaves of any binary search tree of any level `, 1≤ `≤ d, in T1 and T2 store
the points sorted according to their `-th coordinate. We say that these points are sorted
according to their ranks based on dimension `. Now, the movement of the points in P is
reflected by insert and delete operations on T1 and T2. At each point of time t, when any
two points pi, p j ∈ P change their ranks based on any dimension `, we delete pi and p j

from T1 and T2 and reinsert them according to their position at time t.
Note that we have to rely on the efficient range tree operations. This is the reason why

we have to approximate the radius rMP
i by rKFL

i . Otherwise we could not use range trees,
since they do not support queries on balls.

8.3.3. The invariant

The key idea of our kinetic data structure is to keep up one invariant consisting of the
following conditions:

(a) for each closed point pi ∈ G there is an open point p j ∈ F with rKFL
j ≤ rKFL

i in
C(pi,4 · rKFL

i ) and

(b) for each open point pi ∈ F there is no other open point p j ∈ F with rKFL
j ≤ rKFL

i in
C(pi,2 · rKFL

i ).

The choice of conditions (a) and (b) enables our kinetic data structure to be stable.
Moreover, the following proposition shows that, by keeping up conditions (a) and (b), we
maintain a set of facilities that leads to a total cost which is at most a constant factor larger
than the optimal cost. Thus, the goal of our kinetic data structure is to restore the invariant
each time it is violated. Note that the invariant for one point pi takes into account only
nodes with a smaller radius. This enables us later on to ensure that if the invariant is
not violated for all points with a radius bounded above by the same value, it will not be
violated unless an event occurs. We will use this property when analyzing the algorithm
in Section 8.4.
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Proposition 8.4. If the invariant is satisfied at time t, then we have

cost(F)≤ (64d +1) · cost(FOPT) .

Proof sketch. For each point pi ∈ P, there is a facility p j ∈ F with radius rKFL
j ≤ rKFL

i in

C(pi,4 · rKFL
i ). Since rMP

i ≤ rKFL
i ≤ 23+dlog2(

√
d)e · rMP

i , we get D(pi, p j)≤
√

d ·4 · rKFL
i ≤√

d · 4 · 23+dlog2(
√

d)e · rMP
i ≤ 64d · rMP

i . Now, the proposition follows from the analysis
in [MP00]. Details can be found in Section 8.4.1. �

8.3.4. Initialization

Let pi(t0) denote the initial position of the point pi ∈ P. To compute an initial set of
facilities, such that the invariant is satisfied, we apply Algorithm 5, which is a modified
version of Algorithm 4, on the point set P(t0). The modification is that, instead of follow-
ing the exact sorted sequence of the rMP

i (t0) values, we round each rMP
i (t0) to one of the

O(log(nR)) possible values for the special radii (i.e., its corresponding rKFL
i (t0) value)

and follow the sorted sequence of the rounded values. Note, that this is needed in the
global case only.

Algorithm 5 MODIFIED-METTU-PLAXTON(P, t0)
1: calculate the radius rKFL

i (t0) for each point pi(t0) ∈ P(t0)
2: let Ik be the set of indices of all the points with radius 2k+dlog2(4

√
d)e

3: for k← dlog2(
minp j∈P f j

n·maxp j∈P d j
)e to blog2(

maxp j∈P f j

minp j∈P d j
)c do

4: for each i ∈ Ik do
5: if there is no facility in C(pi(t0),2 ·2k+dlog2(4

√
d)e) then

6: open facility at pi(t0)

8.3.5. The kinetic data structure

This section addresses the design of our kinetic data structure for the FACILITY LOCA-
TION problem. In particular, we describe how the event queue is structured and how an
update of the kinetic data structure is processed.

8.3.5.1. Event queue

In order to maintain the invariant defined above, we have to update our kinetic data struc-
ture at certain points of time. More precisely, we perform an update each time a point p j

crosses a wall Wi,k, where dlog2(
minp j∈P f j

n·maxp j∈P d j
)e+ dlog2(4

√
d)e ≤ k ≤ blog2(

maxp j∈P f j

minp j∈P d j
)c+

dlog2(4
√

d)e, of another point pi. For technical reasons we call the crossing of a wall p j

with a wall of pi an event as well. It is just crucial that each possible point of time, where
an invariant might get violated is captured by an event.
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To keep track of these events, we use the following data structure: For each dimension
`, 1≤ `≤ d, we store all n points and all O(n · log(nR)) wall faces that are orthogonal to
the `-th coordinate axis in a list sorted by the `-coordinate. For each consecutive pair in
each of the d lists, we keep up one certificate to certify the sorted order of the lists. We
define the failure time of the certificate for any pair of consecutive objects to be the first
future time when these objects change their ranks in their sorted list. The failure times of
all certificates are maintained in one event queue.

In case that more than one event occurs at the same time, we handle them in an arbitrary
order. Certainly, it is not the case that each event implicates that a point crosses a wall
of another point (as, e.g., the change of the rank of two wall faces also causes an event),
but definitely every crossing of a wall is discovered by a failure of at least one certificate.
The event queue has the following complexity:

Lemma 8.5. The event queue for the kinetic FACILITY LOCATION problem has size
O(n log(nR)), can be initialized inO(n log2(nR)) time, and can be updated inO(log(nR))
time. Provided that each trajectory can be described by a bounded degree polynomial,
the total number of events is O(n2 log2(nR)). A flight plan update involves O(log(nR))
certificates and requires O(log2(nR)) time.

Proof. Since there areO(n log(nR)) elements in the d lists, the initialization of these lists
and of the event queue can be done inO(n log(nR) log(n log(nR))) =O(n log2(nR)) time
by sorting operations. In each following update we have to re-calculate the points of
time when the two objects involved in the current event change their ranks with their two
neighbors in the corresponding list. Thus, a constant number of events have to be updated
in the event queue. Since the event queue containsO(n log(nR)) elements and we can use
a min-heap to realize it, an update of an event requires O(log(n log(nR))) =O(log(nR))
time. Furthermore, a flight plan update of a point causes a re-calculation of the points of
time when the point and all its wall faces change their ranks with the associated neighbors
in all d lists. Afterwards, the involved certificates are updated in the event queue. This
can be accomplished in O(log2(nR)) time.

In case that each trajectory can be described by a bounded degree polynomial and no
flightplan update occurs, the upper bound on the total number of events is given as fol-
lows. For each pair of elements, an event occurs when the trajectories of the two elements
cross each other. The number of cuts of two polynomials is bounded by the maximum
degree of both polynomials. Hence, the total number of cuts of O(n log(nR)) bounded
degree polynomials is O(n2 log2(nR)). The upper bound on the space requirement is
obvious. �

Note, that the term ’event’ is part of the algorithm, as it is usually the case for kinetic
data structures. In Chapter 9 we will use the term ’event’ as well, since it occurs under
similar circumstances. However, there it is only a means of analysis instead of part of the
algorithm.
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8.3.5.2. Handling an update

In this subsection, we describe how an event e, occurring at any point of time t, is han-
dled (confer Algorithm 6)). As the first step, the event queue is updated as explained in
Subsection 8.3.5.1. Then, we have to distinguish between the following three cases:

(i) Both objects involved in the considered certificate are faces of walls.

(ii) Both objects involved in the considered certificate are points.

(iii) One object involved in the considered certificate is a point and the other one is a
face of a wall.

The handling of the three cases mainly depends on whether the invariant is violated or
not. A point pi violates the invariant at a point of time t in the following case: Either (a) pi

is closed but there is no facility with radius smaller than or equal to rMP
i in C(pi,4 · rKFL

i ),
or (b) pi is open but there is another facility with radius smaller than or equal to rMP

i in
C(pi,2 · rKFL

i ). We assume that the invariant is satisfied by the time when e occurs and
we describe in this section how the solution is changed so that the invariant holds again
afterwards (see algorithm RESTORE). The proof of correctness can be found in Section
8.4.2.

In case (i), no point crosses the wall of another point. As a result, the invariant is still
satisfied, so that handling e is finished.

In case (ii), the event indicates that a point pi and another point p j change their ranks
based on a dimension `, 1 ≤ ` ≤ d. This means that we have to update the position of
pi and p j in the range trees T1 and T2. Since no point crosses a wall of another point,
handling e is finished.

In case (iii), it might be that the invariant is violated. Let p j be the first object involved
in the considered certificate and pi be the point whose wall is the second object involved in
the considered certificate. Thus p j crosses a wall of pi. We update the radius rKFL

i = 2k∗ ,

such that k∗= k0 +dlog2(4
√

d)e and k0 is the minimum integer k with log2(
minp j∈P f j

n·maxp j∈P d j
)≤

k ≤ log2(
maxp j∈P f j

minp j∈P d j
), for which weight(C(pi,2k0))≥ fi ·2−k0 holds. We will show that the

new value of k0 differs from its value before e by at most 1. Thus, there are three possible
values for k0, where each value can be tested by one range query on both T1 and T2.
Afterwards, we test if pi violates the invariant by using a range query on T1. If this is
the case, we change the status of pi. As an effect of changing the radius or the status of
one point, the invariant may be violated by many other points (e.g., their open facility
has been closed). In the following, we will show how to deal with this problem (confer
Algorithm 7).
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Algorithm 6 KINETICFL(P, t0,M)
1: MODIFIED-METTU-PLAXTON(P, t0)
2: initialize event queue Q
3: while Q is not empty do
4: e← dequeue(Q)
5: update Q
6: if e indicates that pi and p j change their ranks in any list for any i, j then
7: update position of pi and p j in T1 and T2

8: else
9: if e indicates that p j crosses a wall of pi for any i, j then

10: update rKFL
i ← 2k∗ in T1 and T2

11: if pi violates the invariant then
12: change status of pi

13: if radius or status of pi changed then
14: RESTORE(pi,k∗)

Algorithm 7 RESTORE(pe,k∗)

1: for k← k∗−1 to blog2(
maxp j∈P f j

minp j∈P d j
)c+ dlog2(4

√
d)e do

2: define cubes S1 := C(pe,4 ·2k+1) and S2 := C(pe,6 ·2k+1)
3: for each cubelet C with center mC and radius 2k in S1 do
4: if ∃ facility with radius < 2k in C(mC,3 ·2k) then
5: close all facilities with radius 2k in C
6: for each cubelet C with center mC and radius 2k in S2 do
7: if @ facility with radius ≤ 2k in C(mC,3 ·2k) then
8: open one point with radius 2k in C (if existing)

Algorithm RESTORE Suppose that pe is a point that triggered an event e at a point of
time t and whose radius or status changed due to e. Let rKFL

e = 2k∗ be the updated radius
of pe. First, we restore the invariant at all points with radius 2k∗−1, to ensure that no point
with radius less than or equal to 2k∗−1 violates the invariant. Then we handle all points
with radius 2k∗ that violate the invariant, then the ones with radius 2k∗+1, . . . , up to the
biggest possible radius. Now, we describe the procedure in general for any radius 2k.

We define the two cubes S1 := C(pe,4 ·2k+1) and S2 := C(pe,6 ·2k+1). Both cubes are
divided into equally sized cubelets with radius 2k. The left side of Figure 8.2 illustrates
this decomposition in the plane.

To guarantee that no open point with radius 2k violates the invariant, we perform the
following test for each cubelet in S1: Let m be the center point of the considered cubelet.
If there is a facility with radius less than 2k in C(m,3 · 2k), then close all facilities with
radius 2k in C(m,2k). Note that there is at most one such facility, because otherwise the
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(a) (b)

Figure 8.2.: Illustration of the decomposition into cubelets and the tested area for a
cubelet. The shown decomposition is used during the iteration of algorithm RESTORE

that restores the invariant at all points with radius 2k. The cubes S1 and S2 are indicated
by thick lines. For each cubelet in S1 and S2, we perform a test. The shaded area indicates
the tested area for one cubelet in S1. This area is magnified on the right side of the figure.
The shaded area indicates C(m,3 ·2k) and the dark shaded area the tested cubelet C(m,2k).

invariant would have been violated before event e. The considered area around a cubelet
is illustrated in Figure 8.2.

In order to ensure that no closed point with radius 2k violates the invariant neither, we
test each cubelet in S2 one after the other, whether there exists a facility with radius less
than or equal to 2k in C(m,3 ·2k). If this is not the case, then we open a point with radius
2k in the cubelet (if there is such a point). No matter, whether we opened a point or not,
it is guaranteed, that for each closed point p j with rKFL

j = 2k in the cubelet, there is a
facility in C(p j,4 · rKFL

j ).

8.4. Analysis of the global algorithm

We start the analysis with the proof of the central claim, that the kinetic data structure
keeps a constant factor approximation of the static FACILITY LOCATION problem in Sub-
section 8.4.1 . Then we devote the main part of the section to the proof that the invariant
is indeed maintained by our algorithm in Subsection 8.4.2 and finish the section with
considerations about the runtime in Subsection 8.4.3.
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8.4.1. The approximation factor of the global algorithm

In this section we prove the claim that our global algorithm indeed yields a (64d+1)-
approximation. The analysis is basically the same as in [MP00]. Only a few adjustments
to our scenario have been made. For completeness, we include below the full analysis.

Proposition 8.6. For any point pi ∈ P, there exists a point p j ∈ F, such that rKFL
j ≤ rKFL

i

and D(pi, p j)≤ 64d · rMP
i .

Proof. Since, for each point pi ∈ P, there is a facility p j ∈ F with radius rKFL
j ≤ rKFL

i in
C(pi,4 ·rKFL

i ), we get D(pi, p j)≤
√

d ·4 ·rKFL
i . Now, due to Lemma 8.3 and the definition

of rKFL
i , we have D(pi, p j)≤

√
d ·4 ·23+dlog2(

√
d)e · rMP

i ≤ 64d · rMP
i . �

Proposition 8.7. Let pi and p j be distinct points in F. Then we have D(pi, p j) > 2 ·
max{rMP

i ,rMP
j }.

Proof. Without loss of generality, rKFL
j ≤ rKFL

i . From the fact that the invariant is al-
ways restored after an event occurred, it follows that p j <C(pi,2 · rKFL

i ). Thus, we have
D(pi, p j) > 2 · rKFL

i ≥ 2 · rMP
i and D(pi, p j) > 2 · rKFL

i ≥ 2 · rKFL
j ≥ 2 · rMP

j . �

For any point p j ∈ P and an arbitrary set of facilities X ⊆ P, let

charge(p j,X) = D(p j,X)+ ∑
pi∈X

max{0,rMP
i −D(pi, p j)} .

Note, that we will plug in for X later on. First we will plug in F for it and then the set
of optimally placed facilities.

Proposition 8.8. For an arbitrary set of facilities X ⊆ P, we get

∑
p j∈P

charge(p j,X) ·d j = cost(X) .

Proof. We get

∑
p j∈P

charge(p j,X) ·d j

= ∑
pi∈X

∑
p j∈B(pi,rMP

i )

(rMP
i −D(pi, p j)) ·d j

+ ∑
p j∈P

D(p j,X) ·d j

= ∑
pi∈X

fi + ∑
p j∈P

D(p j,X) ·d j .

�

Proposition 8.9. Let p j ∈ P be a point, let X ⊆ P an arbitrary set of facilities, and let
pi ∈ X. If D(p j, pi) = D(p j,X) then charge(p j,X)≥max{rMP

i ,D(p j, pi)}.
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Proof. If p j < B(pi,rMP
i ), then charge(p j,X)≥ D(p j, pi) > rMP

i . Otherwise,

charge(p j,X) ≥ (rMP
i −D(p j, pi))+D(p j, pi)

= rMP
i ≥ D(p j, pi) .

�

Proposition 8.10. Let p j ∈ P be a point, pi ∈ F. If p j ∈ B(pi,rMP
i ), then charge(p j,F)≤

rMP
i .

Proof. By Proposition 8.7, there is no open point p` ∈F such that i, ` and p j ∈B(p`,r`).
Since D(p j,F)≤ D(p j, pi), the lemma follows from the definition of charge(p j,F). �

Proposition 8.11. Let p j ∈ P be a point, pi ∈ F. If p j < B(pi,rMP
i ), then charge(p j,F)≤

D(p j, pi).

Proof. The correctness of the lemma follows immediately unless there is a point p` ∈ F
such that p j ∈ B(p`,rMP

` ). If such a point p` exists, then Propositions 8.7 and 8.10 imply
D(pi, p`) > 2 ·max{rMP

i ,rMP
` } and charge(p j,F) ≤ rMP

` , respectively. Furthermore, we
have D(p j, pi) ≥ D(pi, p`)−D(p j, p`) > 2rMP

` − rMP
` = rMP

` , which completes the proof
of the proposition. �

Proposition 8.12. For any point p j ∈ P and an arbitrary set of facilities X ⊆ P,

charge(p j,F)≤ (64d +1) · charge(p j,X) .

Proof. Let pi be some point in X such that we have D(p j, pi) = D(p j,X). By Proposi-
tion 8.6, there exists a point p` ∈ F such that rKFL

` ≤ rKFL
i and D(pi, p`)≤ 64d · rMP

i .
If p j ∈ B(p`,rMP

` ), then charge(p j,F)≤ rMP
` by Proposition 8.10. The proposition fol-

lows since rMP
` ≤ rKFL

` ≤ rKFL
i ≤

√
d ·4 ·23+dlog2(

√
d)e ·rMP

i ≤ 64d ·rMP
i and Proposition 8.9

implies charge(p j,X)≥ rMP
i .

If p j < B(p`,rMP
` ), then charge(p j,F)≤ D(p j, p`) by Proposition 8.11. Thus,

charge(p j,F) ≤ D(p j, pi)+D(pi, p`)

≤ D(p j, pi)+64d · rMP
i .

Since the ratio of D(p j, pi)+ 64d · rMP
i to the maximum of rMP

i and D(p j, pi) is at most
64d +1, the proposition now follows by Proposition 8.9. �

Due to Propositions 8.8 and 8.12, we have cost(F)≤ (64d+1) ·cost(X) for an arbitrary
set of facilities X ⊆ P. Thus, the approximation factor is also true for an optimal set of
facilities X = FOPT, which completes the proof of Proposition 8.4. We will use this later
to formulate the central statement about the approximation factor in Theorem 8.20.
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8.4.2. Global maintenance of the invariant

At first, we prove that the invariant is satisfied each time our kinetic data structure has han-
dled an update. From this fact and Proposition 8.4 follows that our kinetic data structure
maintains, at any point of time t, a set of facilities F such that cost(F) =O(cost(FOPT)).
We start by proving that the invariant is satisfied as long as algorithm KINETICFL does
not call algorithm RESTORE.

Proposition 8.13. The invariant is satisfied after the first step of algorithm KINETICFL.

Proof. Let t0 be the point of time when the algorithm KINETICFL is started. Since al-
gorithm MODIFIED-METTU-PLAXTON treats the points in ascending order according to
their special radii and opens a point pi(t0) with radius rKFL

i (t0) only if there is no other
open point in C(pi(t0),2 ·rKFL

i (t0)), no open point violates the invariant. This is due to the
fact that points with larger radii take care that their invariant is not violated by points with
smaller radius, when it is their turn and that their invariant cannot be violated by points
with a larger invariant, due to the construction of the invariant.

Furthermore, algorithm MODIFIED-METTU-PLAXTON does not open a point pi(t0)
with radius rKFL

i (t0) if and only if there is another open point in the cube C(pi(t0),2 ·
rKFL

i (t0))⊆C(pi(t0),4 · rKFL
i (t0)). Because this point has been treated earlier than pi(t0),

its radius is less than or equal to rKFL
i (t0). Thus, there exists an open point with radius

less than or equal to rKFL
i (t0) in C(pi(t0),4 · rKFL

i (t0)). Hence, no closed point violates the
invariant. �

Proposition 8.14. Let e be any event such that algorithm KINETICFL does not change
the radius or the status of any point. If the invariant is satisfied before e, then it holds
after e as well.

Proof. We have to consider two cases. In the first case two points cross or a wall crosses
a wall of another point. Thus, no point crosses a wall of another point. This implies that
no radius changes its value, and no invariant can be violated directly either, because then
the wall at 2 · rKFL

i or 4 · rKFL
i of a point pi has to be crossed. Thus the invariant is valid

and the proposition holds.
Let t be the point of time when event e occurs. Then, in the second case, we have

that a wall Wi,k of a point pi is crossed by another point p j, but our algorithm does not
change the radius or the status of pi. It follows that pi does not violate the invariant
because otherwise our algorithm would have changed its status. Due to the fact that pi

is unchanged and only the wall Wi,k is crossed at time t, no point in P\{pi} violates the
invariant. This completes the proof. �

Next, we prove that the updated radius of a point that triggered an event e differs only
slightly from the value before e. More precisely, the radius rKFL

i that we work with and
the radius rLFL

i that we use later in Chapter 9 will change at most by 1 upon an event.
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Proposition 8.15. Let e be an event at any time t, where any point p j(t) ∈ P(t) crosses
any wall of any other point pi(t)∈P(t). Let t ′< t be any point of time after the latest point
of time when pi has been involved in one event. We get rKFL

i (t ′)/2≤ rKFL
i (t)≤ 2rKFL

i (t ′).

Proof. Let k′0, k0 be the minimum integers k with log2(
minp j∈P f j

n·maxp j∈P d j
)≤ k≤ log2(

maxp j∈P f j

minp j∈P d j
),

for which we have weight(C(pi(t ′),2k′0))≥ fi ·2−k′0 and weight(C(pi(t),2k0))≥ fi ·2−k0 ,
respectively. Furthermore, let Wi,`(t) be the wall that is crossed by p j(t). We have to
consider the cases
(i) p j(t) leaves the cube C(pi(t),2`) and
(ii) p j(t) enters the cube C(pi(t),2`),
because otherwise pi’s radius does not change at all due to event e.

Case (i) Since the point of time t ′, p j is the only point that has crossed a wall of pi. It
follows that weight(C(pi(t),2m)) < fi ·2−m, for any m < k′0, and weight(C(pi(t),2k′0))≤
weight(C(pi(t ′),2k′0)). This implies k0 ≥ k′0.

Because p j(t) has only crossed one wall of pi(t), we get weight(C(pi(t),2k′0+1)) ≥
weight(C(pi(t ′),2k′0)) ≥ fi · 2−k′0 ≥ fi · 2−(k′0+1), where the second inequality is given by
the definition of k′0. Thus, we have k0 ≤ k′0 +1, so that k′0 ≤ k0 ≤ k′0 +1.

Case (ii) Since p j(t) is the only point that has crossed a wall of pi(t) and p j(t) enters
a cube with center pi(t), we have weight(C(pi(t),2m)) ≥ weight(C(pi(t ′),2m)), for all
possible values of m. Hence, we get k0 ≤ k′0.

Recall that p j(t) crosses the wall Wi,`(t). If ` ≥ k′0, then k0 ≥ k′0− 1 follows obvi-
ously. Now, let us assume that ` < k′0 and k0 = `− 1. Due to this assumption, we have
weight(C(pi(t),2`−1)) ≥ fi · 2−(`−1). Since p j is the only point that has crossed a wall
of pi, we also have weight(C(pi(t ′),2`)) ≥ fi · 2−(`−1) ≥ fi · 2−(`). This implies k′0 ≤ `,
which is a contradiction. Hence, we get k′0−1≤ k0 ≤ k′0.

Considering both cases, we get k′0−1≤ k0 ≤ k′0 +1. Now, the proposition follows due to
the definition of the special radii. �

The following propositions show that the invariant is restored after each call of algo-
rithm RESTORE.

Proposition 8.16. Let pe be a point that triggered an event e and whose radius or status
changed due to e. Let rKFL

e = 2k∗ be the updated radius of pe. If no point with radius less
than or equal to 2k∗−2 violates the invariant before e, then this holds after e as well.

Proof. Due to Proposition 8.15, the radius of pe has been at least 2k∗−1 before e. While
processing event e, we only change the status of points with radius larger than or equal to
2k∗−1. These status changes cannot affect the invariant at points with radius less than or
equal to 2k∗−2. Thus, the proposition follows. �
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Proposition 8.17. Let pe be a point that triggered an event e and whose radius or status
changed due to e. Let rKFL

e = 2k∗ be the updated radius of pe. If the invariant is satisfied
before e and no open point with radius less than or equal to 2`−1 violates the invariant
before running the outer for-loop of algorithm RESTORE for k = `, where k∗− 1 ≤ ` ≤
blog2(

maxp j∈P f j

minp j∈P d j
)c+ dlog2(4

√
d)e, then, after running this for-loop, no open point with

radius 2` violates the invariant.

Proof. The proof is by contradiction. Let us assume that after running the outer for-loop
of algorithm RESTORE for k = ` there is an open point pi with radius rKFL

i = 2` that has
another open point p j with radius rKFL

j ≤ rKFL
i in C(pi,2 · rKFL

i ). We consider the cases
(i) rKFL

j = rKFL
i and (ii) rKFL

j < rKFL
i :

Case (i) We have to consider the case that neither pi nor p j is opened while running the
outer for-loop for k = ` and the case that at least one of pi and p j is opened during this
for-loop. In the first case, it follows that pi and p j must have been open before running
the outer for-loop for k = `. As a consequence, both points have been open before e or
one point is pe. Then either the invariant was violated before e or changing the status
of pe violated the invariant, a contradiction. In the latter case, we have opened pi or
p j or both while running the outer for-loop for k = `. Without loss of generality, let
us assume that we have opened pi before we have opened p j. Then we must have that
p j ∈ C(m,2`) and pi < C(m,3 · 2`) for one center m of a considered cubelet. It follows
that p j <C(pi,2`+1) = C(pi,2 · rKFL

i ), which is a contradiction.

Case (ii) Subcase pi ∈ S1: Due to the fact that rKFL
j < 2`, we have opened p j before

running the outer for-loop for k = `. It follows that pi ∈C(m,2`) and p j <C(m,3 ·2`) for
one center m of a considered cubelet, because otherwise we either would have closed pi

or would not have opened pi. As a consequence, p j <C(pi,2`+1) = C(pi,2 · rKFL
i ), which

is a contradiction.
Subcase pi < S1: Due to the fact that rKFL

j < 2`, we have opened p j before running
the outer for-loop for k = `. Hence, it must be located within S2 of an earlier round. No
cubelets of S2 from earlier rounds are involved in a test when running the second inner
for-loop for k = `. Hence, p j cannot violate the invariant of pi. �

Proposition 8.18. Let pe be a point that triggered an event e and whose radius or status
changed due to e. Let rKFL

e = 2k∗ be the updated radius of pe. If the invariant is satisfied
before e and no closed point with radius less than or equal to 2`−1 violates the invariant
before running the outer for-loop of algorithm RESTORE for k = `, where k∗− 1 ≤ ` ≤
blog2(

maxp j∈P f j

minp j∈P d j
)c+ dlog2(4

√
d)e, then, after running this for-loop, no closed point with

radius 2` violates the invariant.
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Proof. The proof is by contradiction. Let us assume that after running the outer for-loop
of algorithm RESTORE for k = ` there is a closed point pi with radius rKFL

i = 2` that has
no open point with radius less than or equal to rKFL

i in C(pi,4 ·rKFL
i ). We have to consider

the cases (i) pi ∈ S2 and (ii) pi < S2.

Case (i) The assumption implies that pi ∈ C(m,2`) and there is an open point p j in
C(m,3 · 2`) for any center m of a considered cubelet, because otherwise we would have
opened a point with radius 2` in C(m,2`). Note that, in case there is no other point
in C(m,2`) except pi, we would have opened pi and p j = pi. As a consequence, p j ∈
C(pi,2`+2) = C(pi,4 · rKFL

i ), which is a contradiction.

Case (ii) Let t ′ be any point of time between the occurrence of e and the latest event
before. Then there was an open point p j(t ′) with radius less than or equal to rKFL

i (t) in
the cube C(pi(t ′),4 · rKFL

i (t ′)), because otherwise the invariant was violated before e.
First let us assume that p j = pe. Since pi(t) < S2 = C(pe(t),6 ·2`+1), we have p j(t) <

C(pi(t),6 ·2`+1). From p j(t ′) ∈C(pi(t ′),4 ·2`) and p j(t) <C(pi(t),6 ·2`+1) follows that
p j must have crossed the wall Wi,`+3(t ′′) at a time t ′′ with t ′ < t ′′ < t. This implies an
event at time t ′′, which is a contradiction to the definition of t ′. Thus, we have p j , pe.

Due to pi , pe, p j , pe, and p j(t ′) ∈ C(pi(t ′),4 · rKFL
i (t ′)), we have that p j(t) ∈

C(pi(t),4 · rKFL
i (t)) is also true. Thus, if pi violates the invariant after e, then we must

have closed p j during processing e. We only close points with radius less than or equal
to rKFL

i (t) in S1. Since pi(t) < S2 and p j(t) ∈ S1, we get p j(t) < C(pi(t),2 · 2`+1) =
C(pi(t),4 · rKFL

i (t)), which is a contradiction. �

Now, we can combine the obtained results to the following lemma:

Lemma 8.19. The invariant is satisfied after algorithm KINETICFL has handled an
event.

Proof. Due to Propositions 8.13 and 8.14, the invariant is satisfied as long as we do not
call algorithm RESTORE. Now, we show that this is also true after processing algorithm
RESTORE.

Let pe be the point whose radius or status changed due to an event e, and let rKFL
e = 2k∗

be its updated radius. Because of the precondition given above and Proposition 8.16 the
lemma is true for all points pi with radius rKFL

i = 2` where ` ≤ k∗− 2. Due to Proposi-
tions 8.17 and 8.18, it also follows for `≥ k∗−2. Hence, it is true for all points. �

Due to Lemma 8.19 and Proposition 8.4, we get the following result:

Theorem 8.20. The kinetic data structure for the FACILITY LOCATION problem in Rd

maintains, at any point of time t, a subset F ⊆ P such that

cost(F)≤ (64d +1) · cost(FOPT) .
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8.4.3. Complexity

In the remainder of the section, we analyze our kinetic data structure in terms of its
complexity. Due to Lemma 8.5, we have already proven that our kinetic data structure
is compact and kinetic local. Next we show that the requirement for responsiveness and
efficiency is also fulfilled.

Lemma 8.21. An update operation requiresO(logd+1(n) · log(nR)) time andO(log(nR))
status changes.

Proof. Due to Lemma 8.5, the time to update the event queue is O(log(nR)). Except
for algorithm RESTORE, all further steps to handle an event require O(logd+1(n)) time.
Next we examine the time needed for algorithm RESTORE. We consider the running time
resulting for restoring the invariant at points with radius 2k. The number of cubelets with
radius 2k in C(pe,6 ·2k+1) is 12d . The query of open or closed points for one cubelet can
be answered by T1 and T2 in time O(logd+1(n)). Afterwards, there has to be at most one
point inserted and deleted in T1 and T2. This requires O(logd+1(n)) time. By summation
over all radii, we get a total running time of O(logd+1(n) · log(nR)).

There can exist at most one facility with radius 2k in a cubelet with radius 2k, because
otherwise at least one facility would violate the invariant. Hence, the number of facilities
with radius 2k that are closed while running algorithm RESTORE is constant. Further-
more, we open at most one facility in each cubelet, so that the number of opened facilities
with radius 2k is also constant. Due to the fact that we handle O(log(nR)) radii, there are
O(log(nR)) status changes per event. �

It follows from Lemma 8.5 and Lemma 8.21 that the total processing time is bounded
by O(n2 logd+1(n) · log3(nR)).

We summarize our results in the following theorem:

Theorem 8.22. Let P be a set of n independently moving points in Rd , where d is a fixed
dimension. Then there exists a kinetic data structure for the FACILITY LOCATION prob-
lem that maintains, at any point of time t, a set F ⊆P, such that we have cost(F)≤ (64d+
1) · cost(FOPT). The kinetic data structure has a space requirement of O(n(logd(n) +
log(nR))), where R = maxpi∈P fi ·maxpi∈P di

minpi∈P fi ·minpi∈P di
. Each event requires O(log(nR)) status changes

andO(logd+1(n) · log(nR)) update time. In case that each trajectory can be described by
a bounded degree polynomial, the total number of updates is O(n2 log2(nR)), which re-
sults in a total processing time ofO(n2 logd+1(n) · log3(nR)). A flight plan update involves
O(log(nR)) certificates and requires O(log2(nR)) time.

Note that according to the terms introduced in Section 8.1.1 our kinetic data structure
is responsive, compact, kinetic local, and efficient.
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This completes our considerations about the global scenario. The results are given in
the theorem above. We will discus them and have an outlook in Chapter 10. Note that
we only need a logarithmic number of status changes upon an event, while Theorem 7.2
states that for exact solutions are linear many changes necessary. The same holds for the
unmodified Mettu and Plaxton algorithm due to Theorem 7.3. Furthermore, remember
that the results in Section 7.3 show that any set of facilities on n linearly moving points
needs to change Ω(n2/c2) in order to keep a c-approximation. Since our kinetic data
structure processes a total number of events of O(n2 log2(nR)), the kinetic data structure
for the FACILITY LOCATION problem is efficient.

So far, we know how to deal with dynamics in a centralized fashion. However, our
robotic scenario, where the robots are limited to a local view only requires that our al-
gorithms can be executed in a distributed way, each node gathering information about its
immediate vicinity only. We will consider this case in the next chapter.
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The local scenario

So far, we have only considered a centralized algorithm. However, in our robot scenario,
we want our robots to decide autonomously whether they should be a facility or not.
Therefore, we need a distributed algorithm. Furthermore, we want our algorithm to be
local, because we assume that each robot knows only its local environment and none of
the robots is aware of the complete state of the system. Therefore the goal of this chapter
to provide and analyze such an algorithm.

Main contribution of this chapter We introduce a simple distributed algorithm that
is executed by each node and is used to determine whether the node should act as a
facility or a client in the current situation. Since the distances between the nodes change
over time, the algorithm constantly reevaluates its decision and, if necessary, changes the
node’s role in order to reestablish the approximation. Taken as a whole, the decisions of
all the nodes yield a constant factor approximation of the FACILITY LOCATION problem
in a stable solution. Here, we consider a solution (or configuration) to be stable, when
under the given configuration no node decides to change its role anymore.

An important property of our algorithm is the fact that each node only requires local
information to be able to execute it: For each node pi the value rLFL

i , referred to as radius,
is computed. In order to compute its radius, pi requires only information about nodes
that are within constant distance of pi (i.e. a distance independent of the total number
of nodes). In addition to the radius, pi requires information about the current role of all
nodes p j with D(pi, p j) bounded from above by a constant. The radius, the d j’s and the
current roles of pi’s neighbors p j is all that is necessary for pi to determine its own role.
Note, that due to Theorem 7.1, we cannot restrict the radius of the considered ball any
further.

We describe and analyze this algorithm showing that, although the decisions of the
nodes are based on local information, the system stabilizes in a solution that yields a

89
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global O(1)- approximation. Furthermore, we prove that the process of finding the ap-
proximation only requires O(logn) communication rounds, and that changes in the role
or the radius of a node pi only affect nodes within constant distance of pi. This also
implies that upon an change all information that is used by a node stems only form its
neighborhood that is bounded above by a constant, although it might require O(logn)
rounds until it reaches its final decision.

9.1. The model

While relying on the well established framework of kinetic data structures for the global
algorithm, we have to define our own model for the local algorithm, since there is no cor-
responding model established for geometric local algorithms, yet. One of the differences
is that in this framework the number of robots is the input that our results rely on. This
means that the fi and di are independent of n. This is a reasonable assumption, since it
does not make any sense that the parameters of structurally identical robots should depend
on the number of robots in the systems. Thus, formally the fi and di are constant. A con-
sequence of this is that the term R which is part of the theorems of the global algorithm
is not needed here. Note that for a global algorithm all input should be regarded when
stating runtime bounds and therefore the coding of the fi and di is indeed of interest.

9.1.1. The communication model

In order to gather the information required to execute the algorithm, nodes need to com-
municate with each other.

For our robot scenario we envision indirect communication only. Here, each node con-
stantly provides information about its role and radius to other nodes in its vicinity. This
is possible using an idea inspired by the s-bots [MGB+03]. Those s-bots are robots that
have 24 colored LEDs to represent their state (we assume that one can equip them with
a larger number of ’communication bits’). Furthermore, they are equipped with cameras
enabling them to acquire the information provided by other robots. Such a communica-
tion method could be adopted by nodes in sensor networks and is sometimes referred to
as local broadcast.

9.1.2. The round model

The execution of the algorithm is embedded in an asynchronous round model. Concern-
ing this model, a node’s state changes as follows: Starting in an inactive state, the node’s
state changes to active after an arbitrary amount of time. Now, it determines whether
it should change its role and acts according to this decision. After the node’s role has
been updated, it returns to the inactive state. This sequence of state changes is infinitely
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repeated by every node. Note that despite the asynchronous round model the movement
of the nodes takes place in parallel and in a continuous fashion as described in the next
subsection.

A round ends as soon as every single node has been active at least once since the end
of the previous round. We assume that nodes spend most of the time in the inactive state
and that at any point of time at most one node is in the active state.

As we need to define a relationship between the dynamics concerning the distance
function D and the nodes’ change of states, we introduce the term event. An event sym-
bolizes a change in the distance function upon which our algorithm reacts and is defined
formally later on. As the time between an event and the point in time until which all nodes
became active at least once cannot be bounded, we assume that the activation frequency
is high enough compared to the occurrence of events. More precisely, we suppose that
at least c logn rounds take place between two events, where c is a constant hidden in the
O-notation in Theorem 9.7. Note, that the term ’event’ is defined in different a way than
in Chapter 8. Although in both cases, an event requires some action of the algorithm, in
this chapter, an event is not part of the algorithm itself. It is rather a means of analysis.
No robot realizes that an event occurred. However, the movement that triggers an event
is similar in both settings.

9.1.3. Modeling dynamics

We allow the values of the distance function D to change arbitrarily over time. The only
restrictions we place on the changes is that we require them to happen in a continuous
way. Consider the time interval that starts at t0 and ends at t1. During this time the
distances between the nodes will be changing continuously and thus, due to the execution
of our algorithm, events will occur. In order to be able to bound the number of these
events, we introduce a characterization, the dynamics parameter, which we will denote by
x (x ∈N), of the distance function’s changes. For each of the

(n
2

)
pairs of nodes {pi, p j},

we consider the value D(pi, p j) as it changes over time. We say that at time t the pair of
nodes {pi, p j} is in increasing mode, if D(pi, p j) is increasing, and in decreasing mode, if
D(pi, p j) is decreasing. If D(pi, p j) is constant, we say that {pi, p j} is in constant mode.
The sum of all changes in the modes over all pairs of nodes during the time interval [t0, t1]
yields the value for the dynamics parameter x, where we assume that all pairs start in
constant mode. If they do not start in constant mode, these are formally the first changes
in the interval.

Obviously, x can be computed for any kind of continuous changes in the distance func-
tion D. If for example the set of nodes represents n robots moving on trajectories de-
scribed by polynomials with a degree bounded by a constant and D models the distance
between each pair of robots, then the movement parameter x is bounded by O(n2). This
is the case in the kinetic data structure framework presented in the global case. Therefore
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we are dealing with a generalization of the model of dynamics and here we are able to
model more general motion patterns. Another example is the way-point model1, where
x≤m ·n2 (with m upper bounding the number of points each node travels to in the consid-
ered time interval). When trying to upper bound the number of occurring events, it is not
important how exactly the distances between nodes change. It is only relevant how often
the distances change from increasing to decreasing or vice versa. (If we for example con-
sider two robots, it is irrelevant in which direction and speed the robots move away from
each other. All that is needed to bound the number of events is the fact that the distance
between them is increasing.) This makes the dynamics parameter x a useful abstraction
for all continuous dynamic changes in the distance function D.

9.1.4. How the parts of the model interact

The general idea is that nodes wake up seldom enough, such that at each point of time
in each local neighborhood only one robot is active. On the other hand the robots move
slow enough, such that between two consecutive events at least c logn rounds take place.
This way we are able to guarantee that we are always in a stable configuration before an
event occurs. The motion pattern itself is described by the dynamics parameter, while
the events are used to characterize the points of time, where a stable solution can become
unstable. In a stable configuration, the solution is a constant-factor approximation for the
corresponding static setting.

9.2. Description of the local algorithm

In the first section, we have already mentioned the radius and events. We now formally
introduce these concepts, define an invariant similar to the one in the global setting and
give a description of our algorithm.

Radius of a node Similar to rKFL
i , we now define rLFL

i , which is also crucial for our
local algorithm. Once again, instead of the exact radius rMP

i , we use an approximation
for it, but a better one than in Chapter 8. The idea is again to round the radius to a value
which is a power of 2. Because of the bounds for the original radius rMP

i , this leads to
O(logn) possible values for our radius. This is similar to the approach used for the global
scenario. However, here we do not need to approximate the radius any further since we
may exploit the possibility of parallelization and do not need to fit the calculation of the
radii to centralized data structures as the range trees. We restate the Lemma 8.2 here,
because it is crucial for our approximation factor:

1 In the way-point model each node is given a number of target points. All points move simultaneously on
a straight line to their next target point. After reaching the target they proceed to next one.



9.2.1 THE INVARIANT 93

Lemma 9.1. Let k1 be the minimum integer k with dlog2(
minp j f j

n·maxp j d j
)e ≤ k ≤

blog2(
maxp j f j

min p jd j
)c, such that weight(B(pi,2k))≥ fi ·2−k. Then 1

2 · r
MP
i ≤ 2k1 ≤ 2 · rMP

i holds.

Here, we define rLFL
i := 2k1+1 as the radius of node pi and k0 := k1 + 1. Because of

Lemma 9.1, rMP
i ≤ rLFL

i ≤ 4rMP
i . Like the original radius, rLFL

i can change over time.
This can happen when a node moves into certain multiples (which will be defined exactly
when the events are defined) of the radius of another node, since this is when the weight
of the respective ball increases or decreases. Furthermore, fi

di
is an upper bound for the

original radius rMP
i of node pi, which is reached when no other node is in pi’s radius.

With Lemma 9.1, this leads to an upper bound of 2blog( fi
di

)c+2 ≤ 8 fi
di

for rLFL
i . Since fi and

di are known to node pi, it can compute this upper bound. Moreover, since we assume
that all fi and di are constant, the value of a radius is bounded from above by a constant.
No lower bound on the radius is known to the nodes, since we assume that they do not
know the total number of nodes n, and in accordance with the results in Subsection 6.4.1
on rMP

i the lower bound of rLFL
i is of order 1

n . Note, that this is a difference to the kinetic
data structure, where all knowledge is at hand.

9.2.1. The invariant

The main idea of the algorithm is that all nodes try to maintain at all times the following
invariant, which is closely related to the invariant defined in Subsection 8.3.3 for the
global scenario:

1. If pi ∈ G, there is a facility p j ∈ F with rLFL
j ≤ rLFL

i and D(pi, p j)≤ 4 · rLFL
i

2. If pi ∈ F , there is no other facility p j ∈ F with rLFL
j ≤ rLFL

i and D(pi, p j)≤ 2 · rLFL
i

As soon as a node discovers that its invariant is violated, it repairs it by changing its role.
This can violate the invariant of other nodes. In Subsection 9.3.2.1 we show that the effect
of role changes is bounded.

9.2.2. The algorithm

The algorithm works as follows. As soon as a node pi turns active, it calculates its radius
(see below). Usually a recalculation from scratch is not necessary, once it is calculated,
because we assume that events are rare compared to the wake up pace. If the radius
is not valid, and only one event occurred, the argumentation from Proposition 8.15 can
be applied showing that only three possible values for rLFL

i have to be checked. After
updating the radius, the node pi checks whether its invariant is fulfilled. If this is the case,
it turns inactive again. Otherwise, its reaction depends on its role. If pi is a facility, the
invariant is violated because there is another facility with a smaller or equal radius within
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Algorithm 8 MAINALGO

1: myradius← CalculateRadius(me)
2: if myrole = open then
3: if ∃ node i with ((i.role = open) and (i.radius ≤ myradius) and

D(i.position,myposition) < 2 ·myradius) then
4: myrole← closed
5: else
6: if @ node i with ((i.role = open) and (i.radius ≤ myradius) and

D(i.position,myposition) < 4 ·myradius) then
7: myrole← open

distance 2 · rLFL
i of pi. So closing pi repairs its invariant. If pi is a client, its invariant can

only be violated because there is no facility with a smaller or equal radius within distance
4 ·rLFL

i of pi. Therefore, in this case opening pi repairs its invariant. Algorithm 8 formally
describes the algorithm.

To calculate its radius, a node pi computes k1 as defined in Lemma 9.1 and then returns
k0 = k1 + 1. Accordingly, its radius is 2k0 . To compute k1, pi first computes the largest
possible value for k1, kmax

1 , which is blog( fi
di

)c+ 1, and sets k to kmax
1 . Then it sorts all

nodes within distance 2kmax
1 by their distances to pi, and computes the weight of the ball

with radius 2kmax
1 as the sum of all d j of nodes p j within this distance. Now it reduces

k one by one until the inequality weight(B(pi,2k)) ≥ fi · 2−k (see Lemma 9.1) is not
valid any longer. To compute the current weight, the old value is decreased by the d j

of all nodes p j which are in the ball with radius 2k+1, but not in the ball with radius 2k,
using the sorting of the nodes. Since weight(B(pi,2k)) is monotonically increasing and
fi ·2−k monotonically decreasing with k, the resulting k is the largest value for which the
inequality is not kept and therefore k + 1 the desired k1. See Algorithm 9 for a formal
description. Note, once again that in accordance with Proposition 8.15 upon an event the
k of the radius can change at most by 1.

9.2.3. Events and initialization

To allow a better description of our algorithm and its analysis, we introduce the term
event, which is different to the notion of event in Chapter 8. An event occurs each time
a configuration might become unstable. This the case, when the radius of a node could
change or an invariant could be violated because distances between nodes have changed.
For a node pi there are two reasons for an event to occur:

• The distance D(pi, p j) between pi and p j changes in such a way that p j enters or
leaves the ball B(pi,

1
4 · r

LFL
i ) or the ball B(pi,

1
2 · r

LFL
i ). Here, the radius of pi can

change. For details confer to Figure 9.1
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Algorithm 9 CALCULATERADIUS

1: kmax
1 ← blog( fi

ci
)c+1

2: Vi← all nodes in distance at most 2kmax
1 +1 to me

3: sort Vi by the distance to me in decreasing order
4: weight← ci

5: for all nodes v j in Vi do
6: weight← weight + c j

7: k← kmax
1

8: while weight ≥ fi ·2−k do
9: for all nodes v j in distance d, 2k−1 < d ≤ 2k do

10: weight← weight −c j

11: k← k−1
12: k1← k +1
13: return k0← k1 +1

• The distance D(pi, p j) between pi and p j changes in such a way that p j enters
or leaves the ball B(pi,2 · rLFL

i ) or the ball B(pi,4 · rLFL
i ). This can violate pi’s

invariant, leading to a role change of pi. The first case might obviously violate
the invariant as it is defined for facilities, while the second case might violate the
invariant for clients.

If one of these situations occurs, we say that p j triggers an event at pi, which is similar
to the kinetic data structure. However, here the event is not part of the algorithm. A robot
just notices that the invariant is not valid when it is its turn again, but it does not know
whether this is the case due to an event, the change of a status of another robot, whether
it is in the initialization phase or even whether some malfunctioning just happened in its
local neighborhood. Note that similar to the kinetic data structure in Chapter 8 an event
does not necessary require an action. However, if an action is required this is guaranteed
to be detected by an event and therefore the number of events is a good upper bound on
the number of times when a solution becomes unstable.

If pi changes its role, invariants of neighboring nodes can be violated. A change of
a radius can also affect other nodes: If the radius of a node pi changes, it can become
necessary for pi to change its role as well. Moreover, if pi increases its radius, there may
be nodes which had a radius of rLFL

i before and now have a smaller radius. If pi is a
facility, the invariants of those nodes can now be violated. The same can occur when
pi is a facility and decreases its radius: There can be nodes which had a smaller radius
before and now have the same radius. Their invariants can now be violated, because
they now take pi into account. Note that if pi is a client, changing its radius does not
have any effects on the invariants of other nodes. Moreover, since the invariants only
consider facilities and not clients, changing the radius of a facility can be viewed as two
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Figure 9.1.: Entering the ball B(pi,
1
4 · r

LFL
i ) or leaving the ball B(pi,

1
2 · r

LFL
i ) might

change the value k1 that defines the radius rLFL
i by k0. Hence the radius might change,

which in turn might violate the invariant. For ease of description, we add the cases where
the arrows are marked by dotted lines. This is not crucial, since the set of events is a
superset of possible points of time, where a solution might become unstable.

simultaneous role changes at the same position: The original node closes, and a new
virtual node with the same position and the new radius opens. We will explain this in
detail in the respective proofs. Thus, from now on we only consider role changes when
we talk about events.

Often, events only affect one node directly and possibly other nodes indirectly. Never-
theless, in some cases two nodes can be directly affected: if both involved nodes have the
same radius, or one has the eightfold radius of the other. Even so, it can be shown that
only one of these two nodes needs to change its radius or role. Thus, for the analysis we
can assume that an event only occurs at one node.

For our analysis, we can distinguish the initialization, which is the time until the invari-
ants are kept for the first time at all nodes, and the time after that. After the initialization,
changes of the role or radius can only occur because of events. Note that, in contrast to
the kinetic data structure, no explicit initialization is necessary. The nodes just perform
their algorithm all the time. We just consider the initialization phase for the purpose of
analysis.
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9.3. Analysis of the algorithm

Starting with the obtained approximation factor of the algorithm, we show several proper-
ties such that it performs well under dynamics and finally give an overview over possible
non-Euclidean applications. For instance, the same problems arise when choosing the
right locations for services in a hardwired network with changing latencies on the edges.

Theorem 9.2. When the invariant holds for each node, the resulting set of facilities yields
a 17-approximation.

Proof sketch. Each node pi has a facility p j with radius rLFL
j ≤ rLFL

i in B(pi,4rLFL
i ).

Lemma 9.1 in combination with our definition of a radius yields rMP
i ≤ rLFL

i ≤ 4rMP
i .

Therefore D(pi, p j) ≤ 4 · 4rMP
i = 16rMP

i . The remaining of the analysis is analogous to
the proof for the global algorithm. Details can be found below in Subsection 9.3.1. �

9.3.1. The approximation factor of the local algorithm

This section is very similar to the corresponding section for the global algorithm. Here
we show that the local algorithm indeed keeps a 17-approximation in a stable solution.
Also refer to Subsection 8.4.1 for several propositions and the definition of charge, which
we use here.

Proposition 9.3. If the solution is stable, for any point pi ∈ P, there exists a point p j ∈ F,
such that rLFL

j ≤ rLFL
i and D(pi, p j)≤ 16 · rMP

i .

Proof. For each point pi ∈ P, there is a facility p j ∈ F with radius rLFL
j ≤ rLFL

i in distance
D(pi, p j) ·4 ·rLFL

i . Now, due to Lemma 9.1 and the definition of rLFL
i , we have D(pi, p j)≤

4 ·4 · rMP
i ≤ 16 · rMP

i . �

Proposition 9.4. For any point p j ∈ P and an arbitrary set of facilities X ⊆ P,

charge(p j,F)≤ (16+1) · charge(p j,X) .

Proof. Let pi be some point in X such that we have D(p j, pi) = D(p j,X). By Proposi-
tion 9.3, there exists a point p` ∈ F such that rLFL

` ≤ rLFL
i and D(pi, p`)≤ 16 · rMP

i .
If p j ∈ B(p`,rMP

` ), then charge(p j,F) ≤ rMP
` by Proposition 8.10. The proposition

follows since rMP
` ≤ rLFL

` ≤ rLFL
i ≤ 16 · rMP

i and Proposition 8.9 implies charge(p j,X)≥
rMP

i .
If p j < B(p`,rMP

` ), then charge(p j,F)≤ D(p j, p`) by Proposition 8.11. Thus,

charge(p j,F) ≤ D(p j, pi)+D(pi, p`)

≤ D(p j, pi)+16 · rMP
i .

Since the ratio of D(p j, pi) + 16 · rMP
i to the maximum of rMP

i and D(p j, pi) is at most
16+1, the proposition now follows by Proposition 8.9. �
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Due to Propositions 8.8 and 9.4, we have cost(F)≤ 17 · cost(X) for an arbitrary set of
facilities X ⊆ P. Thus, the approximation factor is also true for an optimal set of facilities
FOPT, which completes the proof of Theorem 9.2.

9.3.2. Main results about the local algorithm

In this section we prove that our algorithm stabilizes fast, that there are only few changes
in the set of facilities (depending on the motion pattern of course) and that the algorithm is
indeed local in the sense that only nodes in a local neighborhood are affected by changes.
We start by considering the efficiency of the local computations of the robots.

Theorem 9.5. Each time a node turns active, its local computations require O(n logn)
time. The data it needs to transmit is bounded by O(log logn) bits.

Proof. The time for computing the radius is dominated by sorting the nodes within the
maximum radius, which takesO(n logn) time. Checking whether the invariant is fulfilled
takes linear time only. A node pi needs to transmit three pieces of information: its role,
taking 1 bit, its di, which is constant, and its radius. Since there are onlyO(logn) possible
radii, the current radius can be transmitted using O(log logn) bits. �

Note that the actual runtime to determine the radius is of order n logn only, when it
needs to be calculated from scratch. Due to Proposition 8.15 it can be updated in three
rounds after one event. Before we analyze some interesting bounds, we state one helpful
lemma.

Lemma 9.6. A node pi opening itself can only violate invariants of nodes with a strictly
larger radius than rLFL

i .

Proof. Node pi only opens itself if there is no other facility with a radius less than or equal
to rLFL

i within distance 4 · rLFL
i of pi, since otherwise the invariant of pi is not violated.

When pi opens itself, this does not affect nodes with a radius smaller than rLFL
i due to

the construction of the invariant. Moreover, if a node pl also has radius rLFL
i and is a

facility, it must be in distance more than 4 · rLFL
i from pi and therefore its invariant cannot

be violated by pi. If pl is closed, a new facility does not violate pl’s invariant. �

From the next theorem follows that the initialization is efficient.

Theorem 9.7. After O(logn) rounds without an event, the invariant holds at all nodes.
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Proof. For the remainder of the proof we assume that no events occur. Thus, no node
changes its radius. Consider a set of nodes Sr with pi ∈ Sr ⇔ rLFL

i = r for a fixed radius
r and a set S<r comprising all nodes with a radius smaller than r. Let t be the first
round after which the invariant holds for all nodes with a radius smaller than r (i.e. those
contained in S<r). Since the invariants of the nodes belonging to S<r are not affected by
nodes with a radius greater or equal r, starting from round t +1 none of these nodes will
change its role. We say that these nodes are in a stable state, since their invariant can only
be violated by the occurrence of an event. We now show that after round t + 2 all nodes
belonging to Sr have restored their invariant and are in a stable state. Consequently, after
2l rounds all invariants of nodes with one of the l smallest radii are in a stable state. Since
O(logn) is an upper bound on the number of different radii, the theorem follows.

Consider all nodes in Sr that are open directly before round t +2 begins. We claim that
their invariants are not violated and that they will remain open (i.e. they are in a stable
state). To see this, we analyze the nodes’ behavior during round t + 1. There are two
reasons for a node to be open at the end of round t + 1: It was either closed before its
activation in round t + 1 and its invariant was violated, or it was open and did not need
to change its role. In the first case, we know due to Lemma 9.6 that the closed node’s
change of role did not violate the invariants of any node in Sr and S<r. Lemma 9.6 also
guarantees that this node will never close again. In the second case, the already open
node did not change its role and in accordance with Lemma 9.6 its invariant will not be
violated in the following rounds.

Having established that all open nodes in Sr are in a stable state at the end of round
t + 1, we now need to show that all closed nodes in Sr are in a stable state at the end of
round t + 2. Note, that it is possible for a closed node in Sr to not be in a stable state at
the end of round t + 1, since all facilities within distance 4r around it might have closed
after its activation in round t +1. When a closed node becomes active during round t +2
and its invariant is violated, it will open, not violate any invariant of nodes in Sr and S<r

and stay open for the remaining rounds (due to to Lemma 9.6). On the other hand, when
the invariant of an active closed node during round t +1 is not violated, it will stay closed
for the remaining rounds, since it will never lose its facility (open nodes from Sr and S<r

do not close in round t +2 or after it). This means that all nodes in Sr are in a stable state
at the end of round t +2. �

Corollary 9.8. If no event occurs, the initialization takes O(logn) rounds.

We have proven that after O(logn) rounds the nodes keep an O(1)-approximation of
the optimal solution until an event occurs. Before we analyze the effects of an event, we
want to bound the number of events that can occur.

Theorem 9.9. If the dynamics parameter in a time interval [t0, t1] is upper bounded by x
and all distances are in constant mode at time t0, then the number of events in this time
interval is O(x logn).



100 THE LOCAL SCENARIO

Proof. Consider a node pi with radius rLFL
i and another node p j. If the distance between

pi and p j remains the same (pi and p j are in constant mode), they cannot trigger events.
If the distance decreases (they are in decreasing mode), p j can trigger an event at pi only
when p j enters a ball with center pi and radius the 1

4 -, 1
2 -, two- or fourfold of one of the

O(logn) possible radii of pi. Since p j cannot leave a ball again as long as pi and p j stay
in decreasing mode, p j can trigger only O(logn) events at pi. Analogously, p j can only
trigger O(logn) events at pi when they are in increasing mode. Thus, for each change of
mode, there are at most O(logn) events resulting in O(x logn) events in total. �

Note that the O(logn) factor in Theorem 9.9 is necessary, because the current radius
of a node pi can change. Especially, when p j enters the ball with radius 1

4 rLFL
i , rLFL

i

can decrease by one. Thus, when p j enters the next smaller ball, this one again has radius
1
4 rLFL

i and rLFL
i decreases. Thus, by decreasing the distance between pi and p j, pi’s radius

can change from the largest possible to the smallest one, resulting in O(logn) events.
However, due to Theorem 9.7 and Theorem 9.9 we are now able to upper bound the

number of rounds directly in dependency of the mode changes without stating the events
explicitly.

Corollary 9.10. If the dynamics parameter in a time interval [t0, t1] is upper bounded
by x and all distances are in constant mode at time t0, then there are in total at most
O(x log2 n) rounds where nodes change their status.

Note that, if we use the same motion pattern that we used in the global scenario, which
are the bounded degree polynomials, we get an x which is set to n2 as mentioned before.
The total processing time for the scenario is O(n2 log2 n), which is of the same order up
to poly-logarithmic terms as for the kinetic data structure.

9.3.2.1. Effects of events

Now we show that an event is handled efficiently. Especially, it affects only nodes in a
constant distance from the event. We have already seen that it takes at most O(logn)
rounds until all invariants are kept again if no further event occurs in between. In the ge-
ometric setting that we consider under a slightly different round model, even in the worst
case only a poly-logarithmic number of nodes can be affected by the event. Moreover,
each affected node can change its role at most twice.

We state the central result that the algorithm is indeed local.

Theorem 9.11. A node p j can only be affected by an event if it is triggered at a node
which is at most in distance 12 · rLFL

j from p j.

Proof. Let pk be a node at which an event is triggered. Thus pk (and possibly also a
virtual node at the same position) changes its role. We prove that only nodes p j are
affected by a role change of pk for which hold D(pk, p j)≤ 12 · rLFL

j .
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Let ei ·rLFL
i be the maximal range around pk in which nodes with radius at most rLFL

i =
2i · rLFL

k are affected by the role change of pk (note that rLFL
i is not the radius of a specific

node here). We show that ei ≤ 12, the theorem follows. We start with computing e0.
To do this, we first consider the case, where the role of pk changes from open to closed.
This does not affect nodes with radius less than pk. Nodes with radius rLFL

k , which are
in distance at most 4 · rLFL

k from pk, may now need to open themselves. Let pl be such a
node. Because of Lemma 9.6, no nodes with radius smaller than or equal to rLFL

k close
themselves because of pl . Thus, e0 = 4. If the role of pk changes from closed to open,
the same argument applies: No node with the same radius rLFL

k can close itself due to pk.
Thus, in this case e0 = 0.

We now prove that ei = ei−1
2 + 6 for i > 0. This applies independent from the type of

role change of pk. By the definition of ei−1, nodes with radius 2i−1 · rLFL
k , which changed

their role due to the role change of pk, can be at most in distance ei−1 times their radius
from pk. Let p j be a node with radius rLFL

j = 2i · rLFL
k = rLFL

i , which changes its role due
to a role change of a node pl with a smaller radius (if there is a node with radius rLFL

j ,
which changes its role, there must also exist such nodes p j and pl). We first consider the
case that p j opens itself. Then, pl must have closed itself and be within distance 4 · rLFL

j

of p j. Moreover, because of Lemma 9.6, no facility with radius less than or equal to rLFL
j

can close itself due to p j. Because of the triangle inequality, p j is in distance at most
ei−1 · rLFL

l +4 · rLFL
j ≤ ( ei−1

2 +4)rLFL
j of pk. The second case is that p j closes itself. Now,

pl must have opened itself and be in distance of at most 2 · rLFL
j of p j. Here, the role

change of p j may affect nodes with the same radius: a node pm with radius rLFL
j may

have to open itself, because no facility is left within a range of 4 times its radius. Thus,
pm can be at most in distance 4rLFL

m = 4rLFL
j of p j and therefore 6rLFL

j of pl (triangle
inequality). Again, there cannot exist a node with radius less than or equal to rLFL

m = rLFL
j

which needs to close itself because of the role change of pm. Thus, no node with radius
less than or equal to rLFL

j = 2i · rLFL
k which changes its role due to the role change of

pk can be in distance of more than ei−1rLFL
l + 6rLFL

j ≤ ( ei−1
2 + 6)rLFL

j of pk and because
rLFL

j = rLFL
i and by the definition of ei, ei ≤ ei−1

2 +6. This recurrence can be solved:

ei ≤
ei−1

2
+6 =

e0

2i +
i−1

∑
k=0

6
2k =

e0

2i +6 ·
1− (1

2)i

1− 1
2

= 12− 12− e0

2i ≤ 12

Thus, each node can only be affected by events at nodes within 12 times its radius. Note
that this also holds if two role changes occur at the same time at the same position. �

Since rLFL
i is upper bounded by 8 fi

di
, nodes can only be in constant distance from events

by which they are affected. This also implies that upon an change all information that is
used by a node stems only form its neighborhood that is bounded above by a constant,
although it might require O(logn) rounds until it reaches its final decision. Remember
that in Theorem 7.2 it was shown, that small changes in a local neighborhood lead to
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changes in a linear distance when considering exact FACILITY LOCATION. The same
holds if the Mettu and Plaxton algorithm is not modified (besides not being applicable,
because it is a central algorithm). Now we formulate for the only time in this chapter a
theorem that holds in Euclidean spaces only. All other results hold in general metrics.
Additionally we have a slightly more restricted round model. We show that the number
of affected nodes upon an event is bounded from above.

Theorem 9.12. In a Euclidean space with constant dimension and for an asynchronous
round model where each node turns active exactly once per round in an arbitrary order,
an event affects at most O(log2 n) nodes, if no further event occurs before all invariants
hold again.

Proof. For simplicity we consider the case of the Euclidean plane only. For higher di-
mensions the arguments are analogous. We know from Theorem 9.7 that after O(logn)
rounds all invariants hold again. It is left to show that in each round O(logn) nodes
change their role. Hence, we prove that for each of the O(logn) possible radii at most a
constant number of nodes change their role in each round. Consider one arbitrary round
and a radius rLFL

i . Let pe be the node at which the event was triggered. If a node pi has
radius rLFL

i , it has distance at most 12 · rLFL
i to pe, due to Theorem 9.11. Therefore all

nodes with radius rLFL
i which potentially change their role are in an area around pe with

radius 12 · rLFL
i and therefore with an area 144π · rLFL

i · rLFL
i . On the other hand, at any

time all facilities with radius rLFL
i have a minimal distance of 2 ·rLFL

i to each other leading
to an area of π · rLFL

i · rLFL
i around each facility, which does not intersect with according

areas of other facilities. Hence, at any given point in time, there are at most 144 facilities
with a radius of rLFL

i . Because each node is active only once, only the constant number
of facilities at the beginning of the round can close. Out of the same reason, nodes which
open themselves stay open until the end of the round, and so at most 144 nodes can open
in one round. Thus, no more than 288 nodes with radius rLFL

i can change their role in one
round.

For higher dimensions, we consider a d-dimensional ball of radius 12 · rLFL
i and bound

the number of balls with radius rLFL
i that fit into the volume. �

Note that similar to the proof of Lemma 4.2 in the first part of the thesis, the only
geometric argument that is used is the fact that for objects with an extend or volume
only a bounded number of objects fits into a fixed sized neighborhood. Once again, the
analysis can be applied to any doubling metric. Now, we consider general metrics and
show that nodes do not flip their status arbitrary often upon an event.

Theorem 9.13. For each event, each node changes its role at most twice.
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Figure 9.2.: For one event a node can only change its status twice.

Proof. We show that when a node has closed itself, it only opens itself again because of
a later event. From this follows the theorem.

Let pi be a node that closed itself because of a chain of node role changes that was
initially triggered by an event e. Because of Lemma 9.6, the node p j that forced pi to
close itself must have a smaller radius than pi, and it must lie within distance 2rLFL

i of
pi. For pi to open again, p j must close. As long as no other event happens, this must be
because another node pl opens itself which is within distance 2rLFL

j of p j and for which
rLFL

l < rLFL
j (Lemma 9.6). This continues until we have no smaller radii left. Let pk be

the last node to open itself in this chain. We now show that it is still within distance 4rLFL
i

of pi.

We know that p j is in distance at most 2rLFL
i from pi, D(pl, p j) ≤ 2rLFL

j and so on.
This yields the following sum as an upper bound on the distance that pk can have from
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pi:

2rLFL
i +2rLFL

j +2rLFL
l + . . .

= 2rLFL
i +2 · 1

2
rLFL

i +2 · 1
4

rLFL
i + . . .

≤ 2rLFL
i

∞

∑
s=0

(
1
2
)s

= 2rLFL
i

1
1− 1

2

= 4rLFL
i

So as long as no new event occurs, there is always a facility with smaller radius within
distance 4rLFL

i of pi and thus pi does not close again. Figure 9.2 illustrates this proof. �

Now, we have shown all crucial properties of our local algorithm. Before concluding
our results in the next chapter, we present possible generalizations to other scenarios,
which are not geometric domains.

9.3.3. The non-Euclidean case

While in the kinetic data structure framework we were restricted to Euclidean metrics by
definition, we are not limited in such a way for our own local model.

Since the problem is not only defined for the Euclidean but for any metric, other appli-
cations are possible. A connected, weighted graph, where the edges represent hardwired
connections between nodes and the weights the quality of the connections (i.e. latencies),
can be used to represent the underlay for a computer network. This underlay induces a
metric on the nodes by defining the distance function D as the shortest path (regarding the
sum of weights on the path) in the underlay between two nodes. These latencies change
over time and thus dynamics is introduced. As in the setting with moving robots, finding
a clustering minimizing the costs can be an objective here, in order to provide a costly
service at some of the nodes for instance.

This is also the reason why our results in this chapter are stated as general as possible
and not for the Euclidean case only. Especially all theorems in this chapter hold except
for Theorem 9.12 . However, it is often assumed that the shortest path metric induced by
Internet latencies has constant doubling dimension. As mentioned before, Theorem 9.12
can be applied for any doubling metric.

There are a few aspects that have to be adopted in the non-Euclidean case. The round
model can be applied unchanged. The same holds for the model of dynamics. Note, that
our description of dynamics also fits the latency model above. The only real adjustment
has to be made in the communication model, which can be done as follows.
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A possible way of dealing with communication in the computer network scenario is to
broadcast the information about the radius and role using the underlay. Since each node
is only interested in the nodes within constant distance k, we can limit the messages’
traveling distance by adding a label to each message telling how far it is supposed to
be sent. In order for this approach to be reasonable, we need to assume that the rate at
which the latencies are changing is low and that communication overhead produced by
our algorithm is insignificant compared to the huge data streams sent through the network,
whose impact on the network is modeled by the distance function D (i.e. the latencies
between the nodes).
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Conclusion and open questions concerning
internal assignment

In this part of the thesis we considered the FACILITY LOCATION problem under motion.
We described and analyzed a global and a local algorithm and provided lower bounds,
showing that our results are tight in many respects.

For the global scenario, we proposed a kinetic data structure that maintains a subset of
the moving input points as facilities such that, at any point of time, the associated total
cost is at most a constant factor larger than the current optimal cost. We showed that our
kinetic data structure is compact, kinetic local, responsive, and efficient.

For the local scenario, we showed that after a logarithmic number of rounds the al-
gorithm stabilizes in constant factor approximation. Therefore we are comparable with
the runtime of state of the art algorithms while performing better concerning the locality.
The viewing range is upper bounded by a constant and we showed that this is the best one
can do when seeking a constant factor approximation. If the current solution becomes
unstable due to motion, changes until a stable solution is reached again are bounded to
a local neighborhood only and affects only a subset of nodes, whose cardinality is upper
bounded by O(log2 n). Each of those nodes changes its role at most twice.

The complexity of our kinetic data structure depends poly-logarithmically on the ratio
R as defined in Subsection 8.2.1.3, so that the compactness, kinetic locality, responsive-
ness, and efficiency are not fully poly-logarithmic, but only pseudo-poly-logarithmic. It
would be nice future work to reduce this pseudo-poly-logarithmic term to a real poly-
logarithmic term. Future work in the area of kinetic FACILITY LOCATION problems
could include to consider an additional opening cost that arises at the moment when a
point changes its status from client to facility. Here we point out that in our scenario the
opening cost per event would be already bounded, because we open at most a logarithmic
number of facilities per event. However, it is open, whether there are non-trivial lower
bounds about this. This question remains open for the local model as well.

107
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Furthermore, we presented a simple O(1)-approximation algorithm for the local FA-
CILITY LOCATION problem under worst case dynamics. We proved major key proper-
ties, such as upper bounds on the time until stabilization, the number of nodes affected
by dynamics and - most important - that only a local neighborhood is affected by events.
However, some questions remain open. For instance, we guarantee a constant-factor
approximation only in stable configurations. We believe that this also holds before the
algorithm stabilizes after an event.

An extension of our setting is the insertion and deletion of nodes. Furthermore, differ-
ent from the kinetic data structure we assumed for our local algorithm that all fi and di

are constant. Although this makes sense in a robotic scenario (Section 9.1), it remains to
show how our analysis changes when we allow those parameters to depend on n.

The number of events in our setting only depends on the dynamics parameter. However,
it would be better if many changes of direction on a short time interval could not trigger
many events. The approximation factor depends on the number of possible radii. Is it
possible to improve the approximation factor by considering more possible values for
the radii? Does a trade-off exist between the number of events, the approximation ratio
and the locality of the neighborhood? This open question also applies to our kinetic data
structure.

We need O(log logn) communication bits to guarantee a O(1)-approximation. What
kind of approximation can be obtained with a constant number of bits? Moreover, we
do not know yet whether Theorem 9.12 (which states that only logarithmic many nodes
are affected by an event if each node is invoked only once per round) also holds in an
unrestricted round model. Finally, we believe that our algorithm is resilient against all
kinds of transient failures: several events at the same time, nodes that wake up at the same
time, nodes missing some events or nodes that temporarily display wrong information.
Since we know that an initialization from any state stabilizes inO(logn) rounds in a good
approximation, this also holds after each transient failure recovers. However, a thorough
analysis what influence such failures have on their neighborhood would be nice. The
same holds for the case that events occur faster than the wake up pace of nodes for a
limited period of time.

We assumed for our local algorithm that at any point of time, at most one node is awake.
Obviously we can relax this restriction, such that it holds for any local neighborhood.
However, it might be possible that far less symmetry-breaking is necessary, since we only
run into troubles when two nodes in the same neighborhood are awake always at the same
time and that have the same radius and both block each other permanently. A systematic
analysis seems to be worthwhile.

Furthermore, other variants of the FACILITY LOCATION problem might be of interest,
such as multi-commodity and robust FACILITY LOCATION under motion or even in a
local scenario. In the latter, each node needs to connect not only to a single facility, but
to a given integer number l of different facilities. In the former, there are different kinds
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of facilities and each node needs to be connected to one facility of each kind. Another
possible variant to consider in our scenario is capacitated FACILITY LOCATION, where
each facility can serve only a bounded number of clients. Additionally challenges rise
since we have to deal with the problem of choosing the proper facility for each client.
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