
Decomposition for Compositional Verification 
 
Abstract 
 
Within the domain of safety-critical systems, software engineering becomes a major 
challenge, as failures of a system may have life-threatening ramifications. In order to ensure 
the reliability of software, its correctness is essential. For the correctness proof of a model, 
integrated formalisms with an underlying formal semantics can be used. 
 
Several obstacles complicate a successful application of model checking software models. 
The main challenge is to cope with the state explosion problem, that is, the exponential 
growth of the system’s state space in the size of the model. Several approaches deal with 
this well-known problem. One of them is compositional verification. The basic idea of 
compositional verification is that the check of correctness of a complex system can be 
divided into smaller verification tasks. The technique avoids to build up the entire state space 
of the model, as it solely needs to deal with the individual state spaces of the single 
components of a system. 
 
In order to facilitate an application of this technique, two problems need to be addressed: the 
model itself must be assembled from several components which is, in general, not the case. 
Furthermore, an application of compositional reasoning must provide an efficiency advantage 
over monolithic model checking. 
 
Within this thesis, we develop a technique on how to decompose software models specified 
in the integrated formalism CSP-OZ. Such a decomposition results in two components 
suitable for the application of compositional reasoning. A first challenge is posed by a proof 
of correctness, showing the equivalence of the original specification and a decomposition in 
our semantic domain. In order to achieve this, we carry out a dependence analysis by means 
of a specification’s dependence graph. The analysis leads to a set of correctness criteria, 
based on which the graph is fragmented into two parts. The fragmentation then results in the 
decomposition of the specification. In addition, we introduce several techniques and 
algorithms to restore the specification’s original control flow and its data flow. As a second 
challenge, we address the practicability of compositional reasoning: we identify heuristics for 
measuring the quality of a valid decomposition. Here, we neglect inefficient decompositions. 
This allows us to consider only those, which most likely result in an effective compositional 
verification. 
 
Overall, our approach facilitates a general application of compositional reasoning, as it does 
not rely on systems composed of several components. Moreover, valid decompositions, 
which are assessed as good by our heuristics, are beneficial for a compositional verification. 
The whole approach is tool-supported due to an integration into a graphical modelling 
environment, allowing for the modelling, analysis, decomposition and (compositional) 
verification of integrated specifications. Model checking itself is performed within an assume-
guarantee-based verification framework. Here, we use two proof rules, which are shown to 
be valid in our semantic domain. Along with this, we provide several case studies and 
experimental results. 


